PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
rijndael.c
Go to the documentation of this file.
1 /* $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
2 
3 /* contrib/pgcrypto/rijndael.c */
4 
5 /* This is an independent implementation of the encryption algorithm: */
6 /* */
7 /* RIJNDAEL by Joan Daemen and Vincent Rijmen */
8 /* */
9 /* which is a candidate algorithm in the Advanced Encryption Standard */
10 /* programme of the US National Institute of Standards and Technology. */
11 /* */
12 /* Copyright in this implementation is held by Dr B R Gladman but I */
13 /* hereby give permission for its free direct or derivative use subject */
14 /* to acknowledgment of its origin and compliance with any conditions */
15 /* that the originators of the algorithm place on its exploitation. */
16 /* */
17 /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
18 
19 /* Timing data for Rijndael (rijndael.c)
20 
21 Algorithm: rijndael (rijndael.c)
22 
23 128 bit key:
24 Key Setup: 305/1389 cycles (encrypt/decrypt)
25 Encrypt: 374 cycles = 68.4 mbits/sec
26 Decrypt: 352 cycles = 72.7 mbits/sec
27 Mean: 363 cycles = 70.5 mbits/sec
28 
29 192 bit key:
30 Key Setup: 277/1595 cycles (encrypt/decrypt)
31 Encrypt: 439 cycles = 58.3 mbits/sec
32 Decrypt: 425 cycles = 60.2 mbits/sec
33 Mean: 432 cycles = 59.3 mbits/sec
34 
35 256 bit key:
36 Key Setup: 374/1960 cycles (encrypt/decrypt)
37 Encrypt: 502 cycles = 51.0 mbits/sec
38 Decrypt: 498 cycles = 51.4 mbits/sec
39 Mean: 500 cycles = 51.2 mbits/sec
40 
41 */
42 
43 #include "postgres.h"
44 
45 #include <sys/param.h>
46 
47 #include "px.h"
48 #include "rijndael.h"
49 
50 #define PRE_CALC_TABLES
51 #define LARGE_TABLES
52 
53 static void gen_tabs(void);
54 
55 /* 3. Basic macros for speeding up generic operations */
56 
57 /* Circular rotate of 32 bit values */
58 
59 #define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
60 #define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
61 
62 /* Invert byte order in a 32 bit variable */
63 
64 #define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
65 
66 /* Extract byte from a 32 bit quantity (little endian notation) */
67 
68 #define byte(x,n) ((u1byte)((x) >> (8 * (n))))
69 
70 #ifdef WORDS_BIGENDIAN
71 #define io_swap(x) bswap(x)
72 #else
73 #define io_swap(x) (x)
74 #endif
75 
76 #ifdef PRINT_TABS
77 #undef PRE_CALC_TABLES
78 #endif
79 
80 #ifdef PRE_CALC_TABLES
81 
82 #include "rijndael.tbl"
83 #define tab_gen 1
84 #else /* !PRE_CALC_TABLES */
85 
86 static u1byte pow_tab[256];
87 static u1byte log_tab[256];
88 static u1byte sbx_tab[256];
89 static u1byte isb_tab[256];
90 static u4byte rco_tab[10];
91 static u4byte ft_tab[4][256];
92 static u4byte it_tab[4][256];
93 
94 #ifdef LARGE_TABLES
95 static u4byte fl_tab[4][256];
96 static u4byte il_tab[4][256];
97 #endif
98 
99 static u4byte tab_gen = 0;
100 #endif /* !PRE_CALC_TABLES */
101 
102 #define ff_mult(a,b) ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
103 
104 #define f_rn(bo, bi, n, k) \
105  (bo)[n] = ft_tab[0][byte((bi)[n],0)] ^ \
106  ft_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
107  ft_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
108  ft_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
109 
110 #define i_rn(bo, bi, n, k) \
111  (bo)[n] = it_tab[0][byte((bi)[n],0)] ^ \
112  it_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
113  it_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
114  it_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
115 
116 #ifdef LARGE_TABLES
117 
118 #define ls_box(x) \
119  ( fl_tab[0][byte(x, 0)] ^ \
120  fl_tab[1][byte(x, 1)] ^ \
121  fl_tab[2][byte(x, 2)] ^ \
122  fl_tab[3][byte(x, 3)] )
123 
124 #define f_rl(bo, bi, n, k) \
125  (bo)[n] = fl_tab[0][byte((bi)[n],0)] ^ \
126  fl_tab[1][byte((bi)[((n) + 1) & 3],1)] ^ \
127  fl_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
128  fl_tab[3][byte((bi)[((n) + 3) & 3],3)] ^ *((k) + (n))
129 
130 #define i_rl(bo, bi, n, k) \
131  (bo)[n] = il_tab[0][byte((bi)[n],0)] ^ \
132  il_tab[1][byte((bi)[((n) + 3) & 3],1)] ^ \
133  il_tab[2][byte((bi)[((n) + 2) & 3],2)] ^ \
134  il_tab[3][byte((bi)[((n) + 1) & 3],3)] ^ *((k) + (n))
135 #else
136 
137 #define ls_box(x) \
138  ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
139  ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
140  ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
141  ((u4byte)sbx_tab[byte(x, 3)] << 24)
142 
143 #define f_rl(bo, bi, n, k) \
144  (bo)[n] = (u4byte)sbx_tab[byte((bi)[n],0)] ^ \
145  rotl(((u4byte)sbx_tab[byte((bi)[((n) + 1) & 3],1)]), 8) ^ \
146  rotl(((u4byte)sbx_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
147  rotl(((u4byte)sbx_tab[byte((bi)[((n) + 3) & 3],3)]), 24) ^ *((k) + (n))
148 
149 #define i_rl(bo, bi, n, k) \
150  (bo)[n] = (u4byte)isb_tab[byte((bi)[n],0)] ^ \
151  rotl(((u4byte)isb_tab[byte((bi)[((n) + 3) & 3],1)]), 8) ^ \
152  rotl(((u4byte)isb_tab[byte((bi)[((n) + 2) & 3],2)]), 16) ^ \
153  rotl(((u4byte)isb_tab[byte((bi)[((n) + 1) & 3],3)]), 24) ^ *((k) + (n))
154 #endif
155 
156 static void
157 gen_tabs(void)
158 {
159 #ifndef PRE_CALC_TABLES
160  u4byte i,
161  t;
162  u1byte p,
163  q;
164 
165  /* log and power tables for GF(2**8) finite field with */
166  /* 0x11b as modular polynomial - the simplest prmitive */
167  /* root is 0x11, used here to generate the tables */
168 
169  for (i = 0, p = 1; i < 256; ++i)
170  {
171  pow_tab[i] = (u1byte) p;
172  log_tab[p] = (u1byte) i;
173 
174  p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
175  }
176 
177  log_tab[1] = 0;
178  p = 1;
179 
180  for (i = 0; i < 10; ++i)
181  {
182  rco_tab[i] = p;
183 
184  p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
185  }
186 
187  /* note that the affine byte transformation matrix in */
188  /* rijndael specification is in big endian format with */
189  /* bit 0 as the most significant bit. In the remainder */
190  /* of the specification the bits are numbered from the */
191  /* least significant end of a byte. */
192 
193  for (i = 0; i < 256; ++i)
194  {
195  p = (i ? pow_tab[255 - log_tab[i]] : 0);
196  q = p;
197  q = (q >> 7) | (q << 1);
198  p ^= q;
199  q = (q >> 7) | (q << 1);
200  p ^= q;
201  q = (q >> 7) | (q << 1);
202  p ^= q;
203  q = (q >> 7) | (q << 1);
204  p ^= q ^ 0x63;
205  sbx_tab[i] = (u1byte) p;
206  isb_tab[p] = (u1byte) i;
207  }
208 
209  for (i = 0; i < 256; ++i)
210  {
211  p = sbx_tab[i];
212 
213 #ifdef LARGE_TABLES
214 
215  t = p;
216  fl_tab[0][i] = t;
217  fl_tab[1][i] = rotl(t, 8);
218  fl_tab[2][i] = rotl(t, 16);
219  fl_tab[3][i] = rotl(t, 24);
220 #endif
221  t = ((u4byte) ff_mult(2, p)) |
222  ((u4byte) p << 8) |
223  ((u4byte) p << 16) |
224  ((u4byte) ff_mult(3, p) << 24);
225 
226  ft_tab[0][i] = t;
227  ft_tab[1][i] = rotl(t, 8);
228  ft_tab[2][i] = rotl(t, 16);
229  ft_tab[3][i] = rotl(t, 24);
230 
231  p = isb_tab[i];
232 
233 #ifdef LARGE_TABLES
234 
235  t = p;
236  il_tab[0][i] = t;
237  il_tab[1][i] = rotl(t, 8);
238  il_tab[2][i] = rotl(t, 16);
239  il_tab[3][i] = rotl(t, 24);
240 #endif
241  t = ((u4byte) ff_mult(14, p)) |
242  ((u4byte) ff_mult(9, p) << 8) |
243  ((u4byte) ff_mult(13, p) << 16) |
244  ((u4byte) ff_mult(11, p) << 24);
245 
246  it_tab[0][i] = t;
247  it_tab[1][i] = rotl(t, 8);
248  it_tab[2][i] = rotl(t, 16);
249  it_tab[3][i] = rotl(t, 24);
250  }
251 
252  tab_gen = 1;
253 #endif /* !PRE_CALC_TABLES */
254 }
255 
256 
257 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
258 
259 #define imix_col(y,x) \
260 do { \
261  u = star_x(x); \
262  v = star_x(u); \
263  w = star_x(v); \
264  t = w ^ (x); \
265  (y) = u ^ v ^ w; \
266  (y) ^= rotr(u ^ t, 8) ^ \
267  rotr(v ^ t, 16) ^ \
268  rotr(t,24); \
269 } while (0)
270 
271 /* initialise the key schedule from the user supplied key */
272 
273 #define loop4(i) \
274 do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
275  t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
276  t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
277  t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
278  t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
279 } while (0)
280 
281 #define loop6(i) \
282 do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
283  t ^= e_key[6 * (i)]; e_key[6 * (i) + 6] = t; \
284  t ^= e_key[6 * (i) + 1]; e_key[6 * (i) + 7] = t; \
285  t ^= e_key[6 * (i) + 2]; e_key[6 * (i) + 8] = t; \
286  t ^= e_key[6 * (i) + 3]; e_key[6 * (i) + 9] = t; \
287  t ^= e_key[6 * (i) + 4]; e_key[6 * (i) + 10] = t; \
288  t ^= e_key[6 * (i) + 5]; e_key[6 * (i) + 11] = t; \
289 } while (0)
290 
291 #define loop8(i) \
292 do { t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
293  t ^= e_key[8 * (i)]; e_key[8 * (i) + 8] = t; \
294  t ^= e_key[8 * (i) + 1]; e_key[8 * (i) + 9] = t; \
295  t ^= e_key[8 * (i) + 2]; e_key[8 * (i) + 10] = t; \
296  t ^= e_key[8 * (i) + 3]; e_key[8 * (i) + 11] = t; \
297  t = e_key[8 * (i) + 4] ^ ls_box(t); \
298  e_key[8 * (i) + 12] = t; \
299  t ^= e_key[8 * (i) + 5]; e_key[8 * (i) + 13] = t; \
300  t ^= e_key[8 * (i) + 6]; e_key[8 * (i) + 14] = t; \
301  t ^= e_key[8 * (i) + 7]; e_key[8 * (i) + 15] = t; \
302 } while (0)
303 
304 rijndael_ctx *
305 rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
306  int encrypt)
307 {
308  u4byte i,
309  t,
310  u,
311  v,
312  w;
313  u4byte *e_key = ctx->e_key;
314  u4byte *d_key = ctx->d_key;
315 
316  ctx->decrypt = !encrypt;
317 
318  if (!tab_gen)
319  gen_tabs();
320 
321  ctx->k_len = (key_len + 31) / 32;
322 
323  e_key[0] = io_swap(in_key[0]);
324  e_key[1] = io_swap(in_key[1]);
325  e_key[2] = io_swap(in_key[2]);
326  e_key[3] = io_swap(in_key[3]);
327 
328  switch (ctx->k_len)
329  {
330  case 4:
331  t = e_key[3];
332  for (i = 0; i < 10; ++i)
333  loop4(i);
334  break;
335 
336  case 6:
337  e_key[4] = io_swap(in_key[4]);
338  t = e_key[5] = io_swap(in_key[5]);
339  for (i = 0; i < 8; ++i)
340  loop6(i);
341  break;
342 
343  case 8:
344  e_key[4] = io_swap(in_key[4]);
345  e_key[5] = io_swap(in_key[5]);
346  e_key[6] = io_swap(in_key[6]);
347  t = e_key[7] = io_swap(in_key[7]);
348  for (i = 0; i < 7; ++i)
349  loop8(i);
350  break;
351  }
352 
353  if (!encrypt)
354  {
355  d_key[0] = e_key[0];
356  d_key[1] = e_key[1];
357  d_key[2] = e_key[2];
358  d_key[3] = e_key[3];
359 
360  for (i = 4; i < 4 * ctx->k_len + 24; ++i)
361  imix_col(d_key[i], e_key[i]);
362  }
363 
364  return ctx;
365 }
366 
367 /* encrypt a block of text */
368 
369 #define f_nround(bo, bi, k) \
370 do { \
371  f_rn(bo, bi, 0, k); \
372  f_rn(bo, bi, 1, k); \
373  f_rn(bo, bi, 2, k); \
374  f_rn(bo, bi, 3, k); \
375  k += 4; \
376 } while (0)
377 
378 #define f_lround(bo, bi, k) \
379 do { \
380  f_rl(bo, bi, 0, k); \
381  f_rl(bo, bi, 1, k); \
382  f_rl(bo, bi, 2, k); \
383  f_rl(bo, bi, 3, k); \
384 } while (0)
385 
386 void
387 rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
388 {
389  u4byte k_len = ctx->k_len;
390  u4byte *e_key = ctx->e_key;
391  u4byte b0[4],
392  b1[4],
393  *kp;
394 
395  b0[0] = io_swap(in_blk[0]) ^ e_key[0];
396  b0[1] = io_swap(in_blk[1]) ^ e_key[1];
397  b0[2] = io_swap(in_blk[2]) ^ e_key[2];
398  b0[3] = io_swap(in_blk[3]) ^ e_key[3];
399 
400  kp = e_key + 4;
401 
402  if (k_len > 6)
403  {
404  f_nround(b1, b0, kp);
405  f_nround(b0, b1, kp);
406  }
407 
408  if (k_len > 4)
409  {
410  f_nround(b1, b0, kp);
411  f_nround(b0, b1, kp);
412  }
413 
414  f_nround(b1, b0, kp);
415  f_nround(b0, b1, kp);
416  f_nround(b1, b0, kp);
417  f_nround(b0, b1, kp);
418  f_nround(b1, b0, kp);
419  f_nround(b0, b1, kp);
420  f_nround(b1, b0, kp);
421  f_nround(b0, b1, kp);
422  f_nround(b1, b0, kp);
423  f_lround(b0, b1, kp);
424 
425  out_blk[0] = io_swap(b0[0]);
426  out_blk[1] = io_swap(b0[1]);
427  out_blk[2] = io_swap(b0[2]);
428  out_blk[3] = io_swap(b0[3]);
429 }
430 
431 /* decrypt a block of text */
432 
433 #define i_nround(bo, bi, k) \
434 do { \
435  i_rn(bo, bi, 0, k); \
436  i_rn(bo, bi, 1, k); \
437  i_rn(bo, bi, 2, k); \
438  i_rn(bo, bi, 3, k); \
439  k -= 4; \
440 } while (0)
441 
442 #define i_lround(bo, bi, k) \
443 do { \
444  i_rl(bo, bi, 0, k); \
445  i_rl(bo, bi, 1, k); \
446  i_rl(bo, bi, 2, k); \
447  i_rl(bo, bi, 3, k); \
448 } while (0)
449 
450 void
451 rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
452 {
453  u4byte b0[4],
454  b1[4],
455  *kp;
456  u4byte k_len = ctx->k_len;
457  u4byte *e_key = ctx->e_key;
458  u4byte *d_key = ctx->d_key;
459 
460  b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
461  b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
462  b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
463  b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
464 
465  kp = d_key + 4 * (k_len + 5);
466 
467  if (k_len > 6)
468  {
469  i_nround(b1, b0, kp);
470  i_nround(b0, b1, kp);
471  }
472 
473  if (k_len > 4)
474  {
475  i_nround(b1, b0, kp);
476  i_nround(b0, b1, kp);
477  }
478 
479  i_nround(b1, b0, kp);
480  i_nround(b0, b1, kp);
481  i_nround(b1, b0, kp);
482  i_nround(b0, b1, kp);
483  i_nround(b1, b0, kp);
484  i_nround(b0, b1, kp);
485  i_nround(b1, b0, kp);
486  i_nround(b0, b1, kp);
487  i_nround(b1, b0, kp);
488  i_lround(b0, b1, kp);
489 
490  out_blk[0] = io_swap(b0[0]);
491  out_blk[1] = io_swap(b0[1]);
492  out_blk[2] = io_swap(b0[2]);
493  out_blk[3] = io_swap(b0[3]);
494 }
495 
496 /*
497  * conventional interface
498  *
499  * ATM it hopes all data is 4-byte aligned - which
500  * should be true for PX. -marko
501  */
502 
503 void
504 aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc)
505 {
506  uint32 *k;
507 
508  k = (uint32 *) key;
509  rijndael_set_key(ctx, k, keybits, enc);
510 }
511 
512 void
513 aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
514 {
515  unsigned bs = 16;
516  uint32 *d;
517 
518  while (len >= bs)
519  {
520  d = (uint32 *) data;
521  rijndael_encrypt(ctx, d, d);
522 
523  len -= bs;
524  data += bs;
525  }
526 }
527 
528 void
529 aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
530 {
531  unsigned bs = 16;
532  uint32 *d;
533 
534  while (len >= bs)
535  {
536  d = (uint32 *) data;
537  rijndael_decrypt(ctx, d, d);
538 
539  len -= bs;
540  data += bs;
541  }
542 }
543 
544 void
545 aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
546 {
547  uint32 *iv = (uint32 *) iva;
548  uint32 *d = (uint32 *) data;
549  unsigned bs = 16;
550 
551  while (len >= bs)
552  {
553  d[0] ^= iv[0];
554  d[1] ^= iv[1];
555  d[2] ^= iv[2];
556  d[3] ^= iv[3];
557 
558  rijndael_encrypt(ctx, d, d);
559 
560  iv = d;
561  d += bs / 4;
562  len -= bs;
563  }
564 }
565 
566 void
567 aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
568 {
569  uint32 *d = (uint32 *) data;
570  unsigned bs = 16;
571  uint32 buf[4],
572  iv[4];
573 
574  memcpy(iv, iva, bs);
575  while (len >= bs)
576  {
577  buf[0] = d[0];
578  buf[1] = d[1];
579  buf[2] = d[2];
580  buf[3] = d[3];
581 
582  rijndael_decrypt(ctx, buf, d);
583 
584  d[0] ^= iv[0];
585  d[1] ^= iv[1];
586  d[2] ^= iv[2];
587  d[3] ^= iv[3];
588 
589  iv[0] = buf[0];
590  iv[1] = buf[1];
591  iv[2] = buf[2];
592  iv[3] = buf[3];
593  d += 4;
594  len -= bs;
595  }
596 }
597 
598 /*
599  * pre-calculate tables.
600  *
601  * On i386 lifts 17k from .bss to .rodata
602  * and avoids 1k code and setup time.
603  * -marko
604  */
605 #ifdef PRINT_TABS
606 
607 static void
608 show256u8(char *name, uint8 *data)
609 {
610  int i;
611 
612  printf("static const u1byte %s[256] = {\n ", name);
613  for (i = 0; i < 256;)
614  {
615  printf("%u", pow_tab[i++]);
616  if (i < 256)
617  printf(i % 16 ? ", " : ",\n ");
618  }
619  printf("\n};\n\n");
620 }
621 
622 
623 static void
624 show4x256u32(char *name, uint32 data[4][256])
625 {
626  int i,
627  j;
628 
629  printf("static const u4byte %s[4][256] = {\n{\n ", name);
630  for (i = 0; i < 4; i++)
631  {
632  for (j = 0; j < 256;)
633  {
634  printf("0x%08x", data[i][j]);
635  j++;
636  if (j < 256)
637  printf(j % 4 ? ", " : ",\n ");
638  }
639  printf(i < 3 ? "\n}, {\n " : "\n}\n");
640  }
641  printf("};\n\n");
642 }
643 
644 int
645 main()
646 {
647  int i;
648  char *hdr = "/* Generated by rijndael.c */\n\n";
649 
650  gen_tabs();
651 
652  printf(hdr);
653  show256u8("pow_tab", pow_tab);
654  show256u8("log_tab", log_tab);
655  show256u8("sbx_tab", sbx_tab);
656  show256u8("isb_tab", isb_tab);
657 
658  show4x256u32("ft_tab", ft_tab);
659  show4x256u32("it_tab", it_tab);
660 #ifdef LARGE_TABLES
661  show4x256u32("fl_tab", fl_tab);
662  show4x256u32("il_tab", il_tab);
663 #endif
664  printf("static const u4byte rco_tab[10] = {\n ");
665  for (i = 0; i < 10; i++)
666  {
667  printf("0x%08x", rco_tab[i]);
668  if (i < 9)
669  printf(", ");
670  if (i == 4)
671  printf("\n ");
672  }
673  printf("\n};\n\n");
674  return 0;
675 }
676 
677 #endif
#define loop6(i)
Definition: rijndael.c:281
void aes_cbc_encrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
Definition: rijndael.c:545
rijndael_ctx * rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len, int encrypt)
Definition: rijndael.c:305
#define loop4(i)
Definition: rijndael.c:273
#define i_lround(bo, bi, k)
Definition: rijndael.c:442
unsigned char uint8
Definition: c.h:256
void aes_cbc_decrypt(rijndael_ctx *ctx, uint8 *iva, uint8 *data, unsigned len)
Definition: rijndael.c:567
#define imix_col(y, x)
Definition: rijndael.c:259
uint32 u4byte
Definition: rijndael.h:27
int main(int argc, char **argv)
Definition: oid2name.c:545
u4byte k_len
Definition: rijndael.h:35
void aes_set_key(rijndael_ctx *ctx, const uint8 *key, unsigned keybits, int enc)
Definition: rijndael.c:504
uint8 u1byte
Definition: rijndael.h:25
struct pg_encoding enc
Definition: encode.c:522
void aes_ecb_decrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
Definition: rijndael.c:529
static char * buf
Definition: pg_test_fsync.c:67
#define f_nround(bo, bi, k)
Definition: rijndael.c:369
#define i_nround(bo, bi, k)
Definition: rijndael.c:433
unsigned int uint32
Definition: c.h:258
u4byte d_key[64]
Definition: rijndael.h:38
#define f_lround(bo, bi, k)
Definition: rijndael.c:378
#define io_swap(x)
Definition: rijndael.c:73
#define tab_gen
Definition: rijndael.c:83
#define loop8(i)
Definition: rijndael.c:291
void rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
Definition: rijndael.c:387
#define ff_mult(a, b)
Definition: rijndael.c:102
static void gen_tabs(void)
Definition: rijndael.c:157
void aes_ecb_encrypt(rijndael_ctx *ctx, uint8 *data, unsigned len)
Definition: rijndael.c:513
const char * name
Definition: encode.c:521
void rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
Definition: rijndael.c:451
u4byte e_key[64]
Definition: rijndael.h:37
int i
#define rotl(x, n)
Definition: rijndael.c:60