PostgreSQL Source Code git master
Loading...
Searching...
No Matches
levenshtein.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * levenshtein.c
4 * Levenshtein distance implementation.
5 *
6 * Original author: Joe Conway <mail@joeconway.com>
7 *
8 * This file is included by varlena.c twice, to provide matching code for (1)
9 * Levenshtein distance with custom costings, and (2) Levenshtein distance with
10 * custom costings and a "max" value above which exact distances are not
11 * interesting. Before the inclusion, we rely on the presence of the inline
12 * function rest_of_char_same().
13 *
14 * Written based on a description of the algorithm by Michael Gilleland found
15 * at http://www.merriampark.com/ld.htm. Also looked at levenshtein.c in the
16 * PHP 4.0.6 distribution for inspiration. Configurable penalty costs
17 * extension is introduced by Volkan YAZICI <volkan.yazici@gmail.com.
18 *
19 * Copyright (c) 2001-2026, PostgreSQL Global Development Group
20 *
21 * IDENTIFICATION
22 * src/backend/utils/adt/levenshtein.c
23 *
24 *-------------------------------------------------------------------------
25 */
26#define MAX_LEVENSHTEIN_STRLEN 255
27
28/*
29 * Calculates Levenshtein distance metric between supplied strings, which are
30 * not necessarily null-terminated.
31 *
32 * source: source string, of length slen bytes.
33 * target: target string, of length tlen bytes.
34 * ins_c, del_c, sub_c: costs to charge for character insertion, deletion,
35 * and substitution respectively; (1, 1, 1) costs suffice for common
36 * cases, but your mileage may vary.
37 * max_d: if provided and >= 0, maximum distance we care about; see below.
38 * trusted: caller is trusted and need not obey MAX_LEVENSHTEIN_STRLEN.
39 *
40 * One way to compute Levenshtein distance is to incrementally construct
41 * an (m+1)x(n+1) matrix where cell (i, j) represents the minimum number
42 * of operations required to transform the first i characters of s into
43 * the first j characters of t. The last column of the final row is the
44 * answer.
45 *
46 * We use that algorithm here with some modification. In lieu of holding
47 * the entire array in memory at once, we'll just use two arrays of size
48 * m+1 for storing accumulated values. At each step one array represents
49 * the "previous" row and one is the "current" row of the notional large
50 * array.
51 *
52 * If max_d >= 0, we only need to provide an accurate answer when that answer
53 * is less than or equal to max_d. From any cell in the matrix, there is
54 * theoretical "minimum residual distance" from that cell to the last column
55 * of the final row. This minimum residual distance is zero when the
56 * untransformed portions of the strings are of equal length (because we might
57 * get lucky and find all the remaining characters matching) and is otherwise
58 * based on the minimum number of insertions or deletions needed to make them
59 * equal length. The residual distance grows as we move toward the upper
60 * right or lower left corners of the matrix. When the max_d bound is
61 * usefully tight, we can use this property to avoid computing the entirety
62 * of each row; instead, we maintain a start_column and stop_column that
63 * identify the portion of the matrix close to the diagonal which can still
64 * affect the final answer.
65 */
66int
67#ifdef LEVENSHTEIN_LESS_EQUAL
69 const char *target, int tlen,
70 int ins_c, int del_c, int sub_c,
71 int max_d, bool trusted)
72#else
74 const char *target, int tlen,
75 int ins_c, int del_c, int sub_c,
76 bool trusted)
77#endif
78{
79 int m,
80 n;
81 int *prev;
82 int *curr;
83 int *s_char_len = NULL;
84 int j;
85 const char *y;
86 const char *send = source + slen;
87 const char *tend = target + tlen;
88
89 /*
90 * For varstr_levenshtein_less_equal, we have real variables called
91 * start_column and stop_column; otherwise it's just short-hand for 0 and
92 * m.
93 */
94#ifdef LEVENSHTEIN_LESS_EQUAL
95 int start_column,
97
98#undef START_COLUMN
99#undef STOP_COLUMN
100#define START_COLUMN start_column
101#define STOP_COLUMN stop_column
102#else
103#undef START_COLUMN
104#undef STOP_COLUMN
105#define START_COLUMN 0
106#define STOP_COLUMN m
107#endif
108
109 /* Convert string lengths (in bytes) to lengths in characters */
111 n = pg_mbstrlen_with_len(target, tlen);
112
113 /*
114 * We can transform an empty s into t with n insertions, or a non-empty t
115 * into an empty s with m deletions.
116 */
117 if (!m)
118 return n * ins_c;
119 if (!n)
120 return m * del_c;
121
122 /*
123 * For security concerns, restrict excessive CPU+RAM usage. (This
124 * implementation uses O(m) memory and has O(mn) complexity.) If
125 * "trusted" is true, caller is responsible for not making excessive
126 * requests, typically by using a small max_d along with strings that are
127 * bounded, though not necessarily to MAX_LEVENSHTEIN_STRLEN exactly.
128 */
129 if (!trusted &&
134 errmsg("levenshtein argument exceeds maximum length of %d characters",
136
137#ifdef LEVENSHTEIN_LESS_EQUAL
138 /* Initialize start and stop columns. */
139 start_column = 0;
140 stop_column = m + 1;
141
142 /*
143 * If max_d >= 0, determine whether the bound is impossibly tight. If so,
144 * return max_d + 1 immediately. Otherwise, determine whether it's tight
145 * enough to limit the computation we must perform. If so, figure out
146 * initial stop column.
147 */
148 if (max_d >= 0)
149 {
150 int min_theo_d; /* Theoretical minimum distance. */
151 int max_theo_d; /* Theoretical maximum distance. */
152 int net_inserts = n - m;
153
154 min_theo_d = net_inserts < 0 ?
156 if (min_theo_d > max_d)
157 return max_d + 1;
158 if (ins_c + del_c < sub_c)
159 sub_c = ins_c + del_c;
160 max_theo_d = min_theo_d + sub_c * Min(m, n);
161 if (max_d >= max_theo_d)
162 max_d = -1;
163 else if (ins_c + del_c > 0)
164 {
165 /*
166 * Figure out how much of the first row of the notional matrix we
167 * need to fill in. If the string is growing, the theoretical
168 * minimum distance already incorporates the cost of deleting the
169 * number of characters necessary to make the two strings equal in
170 * length. Each additional deletion forces another insertion, so
171 * the best-case total cost increases by ins_c + del_c. If the
172 * string is shrinking, the minimum theoretical cost assumes no
173 * excess deletions; that is, we're starting no further right than
174 * column n - m. If we do start further right, the best-case
175 * total cost increases by ins_c + del_c for each move right.
176 */
177 int slack_d = max_d - min_theo_d;
178 int best_column = net_inserts < 0 ? -net_inserts : 0;
179
180 stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
181 if (stop_column > m)
182 stop_column = m + 1;
183 }
184 }
185#endif
186
187 /*
188 * In order to avoid calling pg_mblen_range() repeatedly on each character
189 * in s, we cache all the lengths before starting the main loop -- but if
190 * all the characters in both strings are single byte, then we skip this
191 * and use a fast-path in the main loop. If only one string contains
192 * multi-byte characters, we still build the array, so that the fast-path
193 * needn't deal with the case where the array hasn't been initialized.
194 */
195 if (m != slen || n != tlen)
196 {
197 int i;
198 const char *cp = source;
199
200 s_char_len = (int *) palloc((m + 1) * sizeof(int));
201 for (i = 0; i < m; ++i)
202 {
204 cp += s_char_len[i];
205 }
206 s_char_len[i] = 0;
207 }
208
209 /* One more cell for initialization column and row. */
210 ++m;
211 ++n;
212
213 /* Previous and current rows of notional array. */
214 prev = (int *) palloc(2 * m * sizeof(int));
215 curr = prev + m;
216
217 /*
218 * To transform the first i characters of s into the first 0 characters of
219 * t, we must perform i deletions.
220 */
221 for (int i = START_COLUMN; i < STOP_COLUMN; i++)
222 prev[i] = i * del_c;
223
224 /* Loop through rows of the notional array */
225 for (y = target, j = 1; j < n; j++)
226 {
227 int *temp;
228 const char *x = source;
229 int y_char_len = n != tlen + 1 ? pg_mblen_range(y, tend) : 1;
230 int i;
231
232#ifdef LEVENSHTEIN_LESS_EQUAL
233
234 /*
235 * In the best case, values percolate down the diagonal unchanged, so
236 * we must increment stop_column unless it's already on the right end
237 * of the array. The inner loop will read prev[stop_column], so we
238 * have to initialize it even though it shouldn't affect the result.
239 */
240 if (stop_column < m)
241 {
242 prev[stop_column] = max_d + 1;
243 ++stop_column;
244 }
245
246 /*
247 * The main loop fills in curr, but curr[0] needs a special case: to
248 * transform the first 0 characters of s into the first j characters
249 * of t, we must perform j insertions. However, if start_column > 0,
250 * this special case does not apply.
251 */
252 if (start_column == 0)
253 {
254 curr[0] = j * ins_c;
255 i = 1;
256 }
257 else
258 i = start_column;
259#else
260 curr[0] = j * ins_c;
261 i = 1;
262#endif
263
264 /*
265 * This inner loop is critical to performance, so we include a
266 * fast-path to handle the (fairly common) case where no multibyte
267 * characters are in the mix. The fast-path is entitled to assume
268 * that if s_char_len is not initialized then BOTH strings contain
269 * only single-byte characters.
270 */
271 if (s_char_len != NULL)
272 {
273 for (; i < STOP_COLUMN; i++)
274 {
275 int ins;
276 int del;
277 int sub;
278 int x_char_len = s_char_len[i - 1];
279
280 /*
281 * Calculate costs for insertion, deletion, and substitution.
282 *
283 * When calculating cost for substitution, we compare the last
284 * character of each possibly-multibyte character first,
285 * because that's enough to rule out most mis-matches. If we
286 * get past that test, then we compare the lengths and the
287 * remaining bytes.
288 */
289 ins = prev[i] + ins_c;
290 del = curr[i - 1] + del_c;
291 if (x[x_char_len - 1] == y[y_char_len - 1]
292 && x_char_len == y_char_len &&
294 sub = prev[i - 1];
295 else
296 sub = prev[i - 1] + sub_c;
297
298 /* Take the one with minimum cost. */
299 curr[i] = Min(ins, del);
300 curr[i] = Min(curr[i], sub);
301
302 /* Point to next character. */
303 x += x_char_len;
304 }
305 }
306 else
307 {
308 for (; i < STOP_COLUMN; i++)
309 {
310 int ins;
311 int del;
312 int sub;
313
314 /* Calculate costs for insertion, deletion, and substitution. */
315 ins = prev[i] + ins_c;
316 del = curr[i - 1] + del_c;
317 sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
318
319 /* Take the one with minimum cost. */
320 curr[i] = Min(ins, del);
321 curr[i] = Min(curr[i], sub);
322
323 /* Point to next character. */
324 x++;
325 }
326 }
327
328 /* Swap current row with previous row. */
329 temp = curr;
330 curr = prev;
331 prev = temp;
332
333 /* Point to next character. */
334 y += y_char_len;
335
336#ifdef LEVENSHTEIN_LESS_EQUAL
337
338 /*
339 * This chunk of code represents a significant performance hit if used
340 * in the case where there is no max_d bound. This is probably not
341 * because the max_d >= 0 test itself is expensive, but rather because
342 * the possibility of needing to execute this code prevents tight
343 * optimization of the loop as a whole.
344 */
345 if (max_d >= 0)
346 {
347 /*
348 * The "zero point" is the column of the current row where the
349 * remaining portions of the strings are of equal length. There
350 * are (n - 1) characters in the target string, of which j have
351 * been transformed. There are (m - 1) characters in the source
352 * string, so we want to find the value for zp where (n - 1) - j =
353 * (m - 1) - zp.
354 */
355 int zp = j - (n - m);
356
357 /* Check whether the stop column can slide left. */
358 while (stop_column > 0)
359 {
360 int ii = stop_column - 1;
361 int net_inserts = ii - zp;
362
363 if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
364 -net_inserts * del_c) <= max_d)
365 break;
366 stop_column--;
367 }
368
369 /* Check whether the start column can slide right. */
370 while (start_column < stop_column)
371 {
373
374 if (prev[start_column] +
375 (net_inserts > 0 ? net_inserts * ins_c :
376 -net_inserts * del_c) <= max_d)
377 break;
378
379 /*
380 * We'll never again update these values, so we must make sure
381 * there's nothing here that could confuse any future
382 * iteration of the outer loop.
383 */
384 prev[start_column] = max_d + 1;
385 curr[start_column] = max_d + 1;
386 if (start_column != 0)
387 source += (s_char_len != NULL) ? s_char_len[start_column - 1] : 1;
388 start_column++;
389 }
390
391 /* If they cross, we're going to exceed the bound. */
393 return max_d + 1;
394 }
395#endif
396 }
397
398 /*
399 * Because the final value was swapped from the previous row to the
400 * current row, that's where we'll find it.
401 */
402 return prev[m - 1];
403}
#define Min(x, y)
Definition c.h:1019
int errcode(int sqlerrcode)
Definition elog.c:864
int errmsg(const char *fmt,...)
Definition elog.c:1081
#define ERROR
Definition elog.h:39
#define ereport(elevel,...)
Definition elog.h:150
int y
Definition isn.c:76
int x
Definition isn.c:75
int j
Definition isn.c:78
int i
Definition isn.c:77
#define START_COLUMN
#define MAX_LEVENSHTEIN_STRLEN
Definition levenshtein.c:26
int varstr_levenshtein(const char *source, int slen, const char *target, int tlen, int ins_c, int del_c, int sub_c, bool trusted)
Definition levenshtein.c:73
#define STOP_COLUMN
int pg_mbstrlen_with_len(const char *mbstr, int limit)
Definition mbutils.c:1185
int pg_mblen_range(const char *mbstr, const char *end)
Definition mbutils.c:1084
void * palloc(Size size)
Definition mcxt.c:1387
static rewind_source * source
Definition pg_rewind.c:89
static int fb(int x)
static bool rest_of_char_same(const char *s1, const char *s2, int len)
Definition varlena.c:5284
int varstr_levenshtein_less_equal(const char *source, int slen, const char *target, int tlen, int ins_c, int del_c, int sub_c, int max_d, bool trusted)
#define send(s, buf, len, flags)
Definition win32_port.h:502