PostgreSQL Source Code  git master
s_lock.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * s_lock.h
4  * Hardware-dependent implementation of spinlocks.
5  *
6  * NOTE: none of the macros in this file are intended to be called directly.
7  * Call them through the hardware-independent macros in spin.h.
8  *
9  * The following hardware-dependent macros must be provided for each
10  * supported platform:
11  *
12  * void S_INIT_LOCK(slock_t *lock)
13  * Initialize a spinlock (to the unlocked state).
14  *
15  * int S_LOCK(slock_t *lock)
16  * Acquire a spinlock, waiting if necessary.
17  * Time out and abort() if unable to acquire the lock in a
18  * "reasonable" amount of time --- typically ~ 1 minute.
19  * Should return number of "delays"; see s_lock.c
20  *
21  * void S_UNLOCK(slock_t *lock)
22  * Unlock a previously acquired lock.
23  *
24  * bool S_LOCK_FREE(slock_t *lock)
25  * Tests if the lock is free. Returns true if free, false if locked.
26  * This does *not* change the state of the lock.
27  *
28  * void SPIN_DELAY(void)
29  * Delay operation to occur inside spinlock wait loop.
30  *
31  * Note to implementors: there are default implementations for all these
32  * macros at the bottom of the file. Check if your platform can use
33  * these or needs to override them.
34  *
35  * Usually, S_LOCK() is implemented in terms of even lower-level macros
36  * TAS() and TAS_SPIN():
37  *
38  * int TAS(slock_t *lock)
39  * Atomic test-and-set instruction. Attempt to acquire the lock,
40  * but do *not* wait. Returns 0 if successful, nonzero if unable
41  * to acquire the lock.
42  *
43  * int TAS_SPIN(slock_t *lock)
44  * Like TAS(), but this version is used when waiting for a lock
45  * previously found to be contended. By default, this is the
46  * same as TAS(), but on some architectures it's better to poll a
47  * contended lock using an unlocked instruction and retry the
48  * atomic test-and-set only when it appears free.
49  *
50  * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
51  * directly.
52  *
53  * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
54  * failure to acquire a lock even when the lock is not locked. For example,
55  * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
56  * always be used, even if you are certain the lock is free.
57  *
58  * It is the responsibility of these macros to make sure that the compiler
59  * does not re-order accesses to shared memory to precede the actual lock
60  * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
61  * was the caller's responsibility, which meant that callers had to use
62  * volatile-qualified pointers to refer to both the spinlock itself and the
63  * shared data being accessed within the spinlocked critical section. This
64  * was notationally awkward, easy to forget (and thus error-prone), and
65  * prevented some useful compiler optimizations. For these reasons, we
66  * now require that the macros themselves prevent compiler re-ordering,
67  * so that the caller doesn't need to take special precautions.
68  *
69  * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
70  * S_UNLOCK() macros must further include hardware-level memory fence
71  * instructions to prevent similar re-ordering at the hardware level.
72  * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
73  * the macro are not executed until the lock has been obtained. Conversely,
74  * S_UNLOCK() must guarantee that loads and stores issued before the macro
75  * have been executed before the lock is released.
76  *
77  * On most supported platforms, TAS() uses a tas() function written
78  * in assembly language to execute a hardware atomic-test-and-set
79  * instruction. Equivalent OS-supplied mutex routines could be used too.
80  *
81  * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not
82  * defined), then we fall back on an emulation that uses SysV semaphores
83  * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS()
84  * implementation, because of the cost of a kernel call per lock or unlock.
85  * An old report is that Postgres spends around 40% of its time in semop(2)
86  * when using the SysV semaphore code.
87  *
88  *
89  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
90  * Portions Copyright (c) 1994, Regents of the University of California
91  *
92  * src/include/storage/s_lock.h
93  *
94  *-------------------------------------------------------------------------
95  */
96 #ifndef S_LOCK_H
97 #define S_LOCK_H
98 
99 #ifdef FRONTEND
100 #error "s_lock.h may not be included from frontend code"
101 #endif
102 
103 #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */
104 
105 #if defined(__GNUC__) || defined(__INTEL_COMPILER)
106 /*************************************************************************
107  * All the gcc inlines
108  * Gcc consistently defines the CPU as __cpu__.
109  * Other compilers use __cpu or __cpu__ so we test for both in those cases.
110  */
111 
112 /*----------
113  * Standard gcc asm format (assuming "volatile slock_t *lock"):
114 
115  __asm__ __volatile__(
116  " instruction \n"
117  " instruction \n"
118  " instruction \n"
119 : "=r"(_res), "+m"(*lock) // return register, in/out lock value
120 : "r"(lock) // lock pointer, in input register
121 : "memory", "cc"); // show clobbered registers here
122 
123  * The output-operands list (after first colon) should always include
124  * "+m"(*lock), whether or not the asm code actually refers to this
125  * operand directly. This ensures that gcc believes the value in the
126  * lock variable is used and set by the asm code. Also, the clobbers
127  * list (after third colon) should always include "memory"; this prevents
128  * gcc from thinking it can cache the values of shared-memory fields
129  * across the asm code. Add "cc" if your asm code changes the condition
130  * code register, and also list any temp registers the code uses.
131  *----------
132  */
133 
134 
135 #ifdef __i386__ /* 32-bit i386 */
136 #define HAS_TEST_AND_SET
137 
138 typedef unsigned char slock_t;
139 
140 #define TAS(lock) tas(lock)
141 
142 static __inline__ int
143 tas(volatile slock_t *lock)
144 {
145  slock_t _res = 1;
146 
147  /*
148  * Use a non-locking test before asserting the bus lock. Note that the
149  * extra test appears to be a small loss on some x86 platforms and a small
150  * win on others; it's by no means clear that we should keep it.
151  *
152  * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
153  * macros. Nowadays it probably would be better to do a non-locking test
154  * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
155  * testing to verify that. Without some empirical evidence, better to
156  * leave it alone.
157  */
158  __asm__ __volatile__(
159  " cmpb $0,%1 \n"
160  " jne 1f \n"
161  " lock \n"
162  " xchgb %0,%1 \n"
163  "1: \n"
164 : "+q"(_res), "+m"(*lock)
165 : /* no inputs */
166 : "memory", "cc");
167  return (int) _res;
168 }
169 
170 #define SPIN_DELAY() spin_delay()
171 
172 static __inline__ void
173 spin_delay(void)
174 {
175  /*
176  * This sequence is equivalent to the PAUSE instruction ("rep" is
177  * ignored by old IA32 processors if the following instruction is
178  * not a string operation); the IA-32 Architecture Software
179  * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
180  * PAUSE in the inner loop of a spin lock is necessary for good
181  * performance:
182  *
183  * The PAUSE instruction improves the performance of IA-32
184  * processors supporting Hyper-Threading Technology when
185  * executing spin-wait loops and other routines where one
186  * thread is accessing a shared lock or semaphore in a tight
187  * polling loop. When executing a spin-wait loop, the
188  * processor can suffer a severe performance penalty when
189  * exiting the loop because it detects a possible memory order
190  * violation and flushes the core processor's pipeline. The
191  * PAUSE instruction provides a hint to the processor that the
192  * code sequence is a spin-wait loop. The processor uses this
193  * hint to avoid the memory order violation and prevent the
194  * pipeline flush. In addition, the PAUSE instruction
195  * de-pipelines the spin-wait loop to prevent it from
196  * consuming execution resources excessively.
197  */
198  __asm__ __volatile__(
199  " rep; nop \n");
200 }
201 
202 #endif /* __i386__ */
203 
204 
205 #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
206 #define HAS_TEST_AND_SET
207 
208 typedef unsigned char slock_t;
209 
210 #define TAS(lock) tas(lock)
211 
212 /*
213  * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
214  * but only when spinning.
215  *
216  * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
217  * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
218  * available at:
219  * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
220  */
221 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
222 
223 static __inline__ int
224 tas(volatile slock_t *lock)
225 {
226  slock_t _res = 1;
227 
228  __asm__ __volatile__(
229  " lock \n"
230  " xchgb %0,%1 \n"
231 : "+q"(_res), "+m"(*lock)
232 : /* no inputs */
233 : "memory", "cc");
234  return (int) _res;
235 }
236 
237 #define SPIN_DELAY() spin_delay()
238 
239 static __inline__ void
240 spin_delay(void)
241 {
242  /*
243  * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
244  * Opteron, but it may be of some use on EM64T, so we keep it.
245  */
246  __asm__ __volatile__(
247  " rep; nop \n");
248 }
249 
250 #endif /* __x86_64__ */
251 
252 
253 /*
254  * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
255  *
256  * We use the int-width variant of the builtin because it works on more chips
257  * than other widths.
258  */
259 #if defined(__arm__) || defined(__arm) || defined(__aarch64__)
260 #ifdef HAVE_GCC__SYNC_INT32_TAS
261 #define HAS_TEST_AND_SET
262 
263 #define TAS(lock) tas(lock)
264 
265 typedef int slock_t;
266 
267 static __inline__ int
268 tas(volatile slock_t *lock)
269 {
270  return __sync_lock_test_and_set(lock, 1);
271 }
272 
273 #define S_UNLOCK(lock) __sync_lock_release(lock)
274 
275 /*
276  * Using an ISB instruction to delay in spinlock loops appears beneficial on
277  * high-core-count ARM64 processors. It seems mostly a wash for smaller gear,
278  * and ISB doesn't exist at all on pre-v7 ARM chips.
279  */
280 #if defined(__aarch64__)
281 
282 #define SPIN_DELAY() spin_delay()
283 
284 static __inline__ void
285 spin_delay(void)
286 {
287  __asm__ __volatile__(
288  " isb; \n");
289 }
290 
291 #endif /* __aarch64__ */
292 #endif /* HAVE_GCC__SYNC_INT32_TAS */
293 #endif /* __arm__ || __arm || __aarch64__ */
294 
295 
296 /* S/390 and S/390x Linux (32- and 64-bit zSeries) */
297 #if defined(__s390__) || defined(__s390x__)
298 #define HAS_TEST_AND_SET
299 
300 typedef unsigned int slock_t;
301 
302 #define TAS(lock) tas(lock)
303 
304 static __inline__ int
305 tas(volatile slock_t *lock)
306 {
307  int _res = 0;
308 
309  __asm__ __volatile__(
310  " cs %0,%3,0(%2) \n"
311 : "+d"(_res), "+m"(*lock)
312 : "a"(lock), "d"(1)
313 : "memory", "cc");
314  return _res;
315 }
316 
317 #endif /* __s390__ || __s390x__ */
318 
319 
320 #if defined(__sparc__) /* Sparc */
321 /*
322  * Solaris has always run sparc processors in TSO (total store) mode, but
323  * linux didn't use to and the *BSDs still don't. So, be careful about
324  * acquire/release semantics. The CPU will treat superfluous members as
325  * NOPs, so it's just code space.
326  */
327 #define HAS_TEST_AND_SET
328 
329 typedef unsigned char slock_t;
330 
331 #define TAS(lock) tas(lock)
332 
333 static __inline__ int
334 tas(volatile slock_t *lock)
335 {
336  slock_t _res;
337 
338  /*
339  * See comment in src/backend/port/tas/sunstudio_sparc.s for why this
340  * uses "ldstub", and that file uses "cas". gcc currently generates
341  * sparcv7-targeted binaries, so "cas" use isn't possible.
342  */
343  __asm__ __volatile__(
344  " ldstub [%2], %0 \n"
345 : "=r"(_res), "+m"(*lock)
346 : "r"(lock)
347 : "memory");
348 #if defined(__sparcv7) || defined(__sparc_v7__)
349  /*
350  * No stbar or membar available, luckily no actually produced hardware
351  * requires a barrier.
352  */
353 #elif defined(__sparcv8) || defined(__sparc_v8__)
354  /* stbar is available (and required for both PSO, RMO), membar isn't */
355  __asm__ __volatile__ ("stbar \n":::"memory");
356 #else
357  /*
358  * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
359  * barrier for sparcv8+ upwards.
360  */
361  __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
362 #endif
363  return (int) _res;
364 }
365 
366 #if defined(__sparcv7) || defined(__sparc_v7__)
367 /*
368  * No stbar or membar available, luckily no actually produced hardware
369  * requires a barrier. We fall through to the default gcc definition of
370  * S_UNLOCK in this case.
371  */
372 #elif defined(__sparcv8) || defined(__sparc_v8__)
373 /* stbar is available (and required for both PSO, RMO), membar isn't */
374 #define S_UNLOCK(lock) \
375 do \
376 { \
377  __asm__ __volatile__ ("stbar \n":::"memory"); \
378  *((volatile slock_t *) (lock)) = 0; \
379 } while (0)
380 #else
381 /*
382  * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
383  * release barrier for sparcv8+ upwards.
384  */
385 #define S_UNLOCK(lock) \
386 do \
387 { \
388  __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
389  *((volatile slock_t *) (lock)) = 0; \
390 } while (0)
391 #endif
392 
393 #endif /* __sparc__ */
394 
395 
396 /* PowerPC */
397 #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
398 #define HAS_TEST_AND_SET
399 
400 typedef unsigned int slock_t;
401 
402 #define TAS(lock) tas(lock)
403 
404 /* On PPC, it's a win to use a non-locking test before the lwarx */
405 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
406 
407 /*
408  * The second operand of addi can hold a constant zero or a register number,
409  * hence constraint "=&b" to avoid allocating r0. "b" stands for "address
410  * base register"; most operands having this register-or-zero property are
411  * address bases, e.g. the second operand of lwax.
412  *
413  * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
414  * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
415  * But if the spinlock is in ordinary memory, we can use lwsync instead for
416  * better performance.
417  */
418 static __inline__ int
419 tas(volatile slock_t *lock)
420 {
421  slock_t _t;
422  int _res;
423 
424  __asm__ __volatile__(
425 " lwarx %0,0,%3,1 \n"
426 " cmpwi %0,0 \n"
427 " bne 1f \n"
428 " addi %0,%0,1 \n"
429 " stwcx. %0,0,%3 \n"
430 " beq 2f \n"
431 "1: \n"
432 " li %1,1 \n"
433 " b 3f \n"
434 "2: \n"
435 " lwsync \n"
436 " li %1,0 \n"
437 "3: \n"
438 : "=&b"(_t), "=r"(_res), "+m"(*lock)
439 : "r"(lock)
440 : "memory", "cc");
441  return _res;
442 }
443 
444 /*
445  * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
446  * But we can use lwsync instead for better performance.
447  */
448 #define S_UNLOCK(lock) \
449 do \
450 { \
451  __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
452  *((volatile slock_t *) (lock)) = 0; \
453 } while (0)
454 
455 #endif /* powerpc */
456 
457 
458 #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
459 #define HAS_TEST_AND_SET
460 
461 typedef unsigned int slock_t;
462 
463 #define TAS(lock) tas(lock)
464 
465 /*
466  * Original MIPS-I processors lacked the LL/SC instructions, but if we are
467  * so unfortunate as to be running on one of those, we expect that the kernel
468  * will handle the illegal-instruction traps and emulate them for us. On
469  * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane
470  * choice because any other synchronization method must involve a kernel
471  * call. Unfortunately, many toolchains still default to MIPS-I as the
472  * codegen target; if the symbol __mips shows that that's the case, we
473  * have to force the assembler to accept LL/SC.
474  *
475  * R10000 and up processors require a separate SYNC, which has the same
476  * issues as LL/SC.
477  */
478 #if __mips < 2
479 #define MIPS_SET_MIPS2 " .set mips2 \n"
480 #else
481 #define MIPS_SET_MIPS2
482 #endif
483 
484 static __inline__ int
485 tas(volatile slock_t *lock)
486 {
487  volatile slock_t *_l = lock;
488  int _res;
489  int _tmp;
490 
491  __asm__ __volatile__(
492  " .set push \n"
493  MIPS_SET_MIPS2
494  " .set noreorder \n"
495  " .set nomacro \n"
496  " ll %0, %2 \n"
497  " or %1, %0, 1 \n"
498  " sc %1, %2 \n"
499  " xori %1, 1 \n"
500  " or %0, %0, %1 \n"
501  " sync \n"
502  " .set pop "
503 : "=&r" (_res), "=&r" (_tmp), "+R" (*_l)
504 : /* no inputs */
505 : "memory");
506  return _res;
507 }
508 
509 /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
510 #define S_UNLOCK(lock) \
511 do \
512 { \
513  __asm__ __volatile__( \
514  " .set push \n" \
515  MIPS_SET_MIPS2 \
516  " .set noreorder \n" \
517  " .set nomacro \n" \
518  " sync \n" \
519  " .set pop " \
520 : /* no outputs */ \
521 : /* no inputs */ \
522 : "memory"); \
523  *((volatile slock_t *) (lock)) = 0; \
524 } while (0)
525 
526 #endif /* __mips__ && !__sgi */
527 
528 
529 #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC */
530 /*
531  * HP's PA-RISC
532  *
533  * Because LDCWX requires a 16-byte-aligned address, we declare slock_t as a
534  * 16-byte struct. The active word in the struct is whichever has the aligned
535  * address; the other three words just sit at -1.
536  */
537 #define HAS_TEST_AND_SET
538 
539 typedef struct
540 {
541  int sema[4];
542 } slock_t;
543 
544 #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15))
545 
546 static __inline__ int
547 tas(volatile slock_t *lock)
548 {
549  volatile int *lockword = TAS_ACTIVE_WORD(lock);
550  int lockval;
551 
552  /*
553  * The LDCWX instruction atomically clears the target word and
554  * returns the previous value. Hence, if the instruction returns
555  * 0, someone else has already acquired the lock before we tested
556  * it (i.e., we have failed).
557  *
558  * Notice that this means that we actually clear the word to set
559  * the lock and set the word to clear the lock. This is the
560  * opposite behavior from the SPARC LDSTUB instruction. For some
561  * reason everything that H-P does is rather baroque...
562  *
563  * For details about the LDCWX instruction, see the "Precision
564  * Architecture and Instruction Reference Manual" (09740-90014 of June
565  * 1987), p. 5-38.
566  */
567  __asm__ __volatile__(
568  " ldcwx 0(0,%2),%0 \n"
569 : "=r"(lockval), "+m"(*lockword)
570 : "r"(lockword)
571 : "memory");
572  return (lockval == 0);
573 }
574 
575 #define S_UNLOCK(lock) \
576  do { \
577  __asm__ __volatile__("" : : : "memory"); \
578  *TAS_ACTIVE_WORD(lock) = -1; \
579  } while (0)
580 
581 #define S_INIT_LOCK(lock) \
582  do { \
583  volatile slock_t *lock_ = (lock); \
584  lock_->sema[0] = -1; \
585  lock_->sema[1] = -1; \
586  lock_->sema[2] = -1; \
587  lock_->sema[3] = -1; \
588  } while (0)
589 
590 #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0)
591 
592 #endif /* __hppa || __hppa__ */
593 
594 
595 /*
596  * If we have no platform-specific knowledge, but we found that the compiler
597  * provides __sync_lock_test_and_set(), use that. Prefer the int-width
598  * version over the char-width version if we have both, on the rather dubious
599  * grounds that that's known to be more likely to work in the ARM ecosystem.
600  * (But we dealt with ARM above.)
601  */
602 #if !defined(HAS_TEST_AND_SET)
603 
604 #if defined(HAVE_GCC__SYNC_INT32_TAS)
605 #define HAS_TEST_AND_SET
606 
607 #define TAS(lock) tas(lock)
608 
609 typedef int slock_t;
610 
611 static __inline__ int
612 tas(volatile slock_t *lock)
613 {
614  return __sync_lock_test_and_set(lock, 1);
615 }
616 
617 #define S_UNLOCK(lock) __sync_lock_release(lock)
618 
619 #elif defined(HAVE_GCC__SYNC_CHAR_TAS)
620 #define HAS_TEST_AND_SET
621 
622 #define TAS(lock) tas(lock)
623 
624 typedef char slock_t;
625 
626 static __inline__ int
627 tas(volatile slock_t *lock)
628 {
629  return __sync_lock_test_and_set(lock, 1);
630 }
631 
632 #define S_UNLOCK(lock) __sync_lock_release(lock)
633 
634 #endif /* HAVE_GCC__SYNC_INT32_TAS */
635 
636 #endif /* !defined(HAS_TEST_AND_SET) */
637 
638 
639 /*
640  * Default implementation of S_UNLOCK() for gcc/icc.
641  *
642  * Note that this implementation is unsafe for any platform that can reorder
643  * a memory access (either load or store) after a following store. That
644  * happens not to be possible on x86 and most legacy architectures (some are
645  * single-processor!), but many modern systems have weaker memory ordering.
646  * Those that do must define their own version of S_UNLOCK() rather than
647  * relying on this one.
648  */
649 #if !defined(S_UNLOCK)
650 #define S_UNLOCK(lock) \
651  do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
652 #endif
653 
654 #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
655 
656 
657 /*
658  * ---------------------------------------------------------------------
659  * Platforms that use non-gcc inline assembly:
660  * ---------------------------------------------------------------------
661  */
662 
663 #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
664 
665 /* These are in sunstudio_(sparc|x86).s */
666 
667 #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc))
668 #define HAS_TEST_AND_SET
669 
670 #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus)
671 typedef unsigned int slock_t;
672 #else
673 typedef unsigned char slock_t;
674 #endif
675 
676 extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with,
677  slock_t cmp);
678 
679 #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0)
680 #endif
681 
682 
683 #ifdef _MSC_VER
684 typedef LONG slock_t;
685 
686 #define HAS_TEST_AND_SET
687 #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
688 
689 #define SPIN_DELAY() spin_delay()
690 
691 /* If using Visual C++ on Win64, inline assembly is unavailable.
692  * Use a _mm_pause intrinsic instead of rep nop.
693  */
694 #if defined(_WIN64)
695 static __forceinline void
696 spin_delay(void)
697 {
698  _mm_pause();
699 }
700 #else
701 static __forceinline void
702 spin_delay(void)
703 {
704  /* See comment for gcc code. Same code, MASM syntax */
705  __asm rep nop;
706 }
707 #endif
708 
709 #include <intrin.h>
710 #pragma intrinsic(_ReadWriteBarrier)
711 
712 #define S_UNLOCK(lock) \
713  do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
714 
715 #endif
716 
717 
718 #endif /* !defined(HAS_TEST_AND_SET) */
719 
720 
721 /* Blow up if we didn't have any way to do spinlocks */
722 #ifndef HAS_TEST_AND_SET
723 #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@lists.postgresql.org.
724 #endif
725 
726 
727 #else /* !HAVE_SPINLOCKS */
728 
729 
730 /*
731  * Fake spinlock implementation using semaphores --- slow and prone
732  * to fall foul of kernel limits on number of semaphores, so don't use this
733  * unless you must! The subroutines appear in spin.c.
734  */
735 typedef int slock_t;
736 
737 extern bool s_lock_free_sema(volatile slock_t *lock);
738 extern void s_unlock_sema(volatile slock_t *lock);
739 extern void s_init_lock_sema(volatile slock_t *lock, bool nested);
740 extern int tas_sema(volatile slock_t *lock);
741 
742 #define S_LOCK_FREE(lock) s_lock_free_sema(lock)
743 #define S_UNLOCK(lock) s_unlock_sema(lock)
744 #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false)
745 #define TAS(lock) tas_sema(lock)
746 
747 
748 #endif /* HAVE_SPINLOCKS */
749 
750 
751 /*
752  * Default Definitions - override these above as needed.
753  */
754 
755 #if !defined(S_LOCK)
756 #define S_LOCK(lock) \
757  (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, __func__) : 0)
758 #endif /* S_LOCK */
759 
760 #if !defined(S_LOCK_FREE)
761 #define S_LOCK_FREE(lock) (*(lock) == 0)
762 #endif /* S_LOCK_FREE */
763 
764 #if !defined(S_UNLOCK)
765 /*
766  * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
767  * is unsafe if the platform can reorder a memory access (either load or
768  * store) after a following store; platforms where this is possible must
769  * define their own S_UNLOCK. But CPU reordering is not the only concern:
770  * if we simply defined S_UNLOCK() as an inline macro, the compiler might
771  * reorder instructions from inside the critical section to occur after the
772  * lock release. Since the compiler probably can't know what the external
773  * function s_unlock is doing, putting the same logic there should be adequate.
774  * A sufficiently-smart globally optimizing compiler could break that
775  * assumption, though, and the cost of a function call for every spinlock
776  * release may hurt performance significantly, so we use this implementation
777  * only for platforms where we don't know of a suitable intrinsic. For the
778  * most part, those are relatively obscure platform/compiler combinations to
779  * which the PostgreSQL project does not have access.
780  */
781 #define USE_DEFAULT_S_UNLOCK
782 extern void s_unlock(volatile slock_t *lock);
783 #define S_UNLOCK(lock) s_unlock(lock)
784 #endif /* S_UNLOCK */
785 
786 #if !defined(S_INIT_LOCK)
787 #define S_INIT_LOCK(lock) S_UNLOCK(lock)
788 #endif /* S_INIT_LOCK */
789 
790 #if !defined(SPIN_DELAY)
791 #define SPIN_DELAY() ((void) 0)
792 #endif /* SPIN_DELAY */
793 
794 #if !defined(TAS)
795 extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or
796  * s_lock.c */
797 
798 #define TAS(lock) tas(lock)
799 #endif /* TAS */
800 
801 #if !defined(TAS_SPIN)
802 #define TAS_SPIN(lock) TAS(lock)
803 #endif /* TAS_SPIN */
804 
805 
806 /*
807  * Platform-independent out-of-line support routines
808  */
809 extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func);
810 
811 /* Support for dynamic adjustment of spins_per_delay */
812 #define DEFAULT_SPINS_PER_DELAY 100
813 
814 extern void set_spins_per_delay(int shared_spins_per_delay);
815 extern int update_spins_per_delay(int shared_spins_per_delay);
816 
817 /*
818  * Support for spin delay which is useful in various places where
819  * spinlock-like procedures take place.
820  */
821 typedef struct
822 {
823  int spins;
824  int delays;
826  const char *file;
827  int line;
828  const char *func;
830 
831 static inline void
833  const char *file, int line, const char *func)
834 {
835  status->spins = 0;
836  status->delays = 0;
837  status->cur_delay = 0;
838  status->file = file;
839  status->line = line;
840  status->func = func;
841 }
842 
843 #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, __func__)
844 extern void perform_spin_delay(SpinDelayStatus *status);
845 extern void finish_spin_delay(SpinDelayStatus *status);
846 
847 #endif /* S_LOCK_H */
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
void set_spins_per_delay(int shared_spins_per_delay)
Definition: s_lock.c:213
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:132
int tas_sema(volatile slock_t *lock)
Definition: spin.c:170
void s_unlock_sema(volatile slock_t *lock)
Definition: spin.c:152
static void init_spin_delay(SpinDelayStatus *status, const char *file, int line, const char *func)
Definition: s_lock.h:832
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:192
int slock_t
Definition: s_lock.h:735
int s_lock(volatile slock_t *lock, const char *file, int line, const char *func)
Definition: s_lock.c:99
void s_init_lock_sema(volatile slock_t *lock, bool nested)
Definition: spin.c:121
int update_spins_per_delay(int shared_spins_per_delay)
Definition: s_lock.c:224
bool s_lock_free_sema(volatile slock_t *lock)
Definition: spin.c:162
const char * file
Definition: s_lock.h:826
const char * func
Definition: s_lock.h:828