PostgreSQL Source Code  git master
index.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * index.c
4  * code to create and destroy POSTGRES index relations
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/catalog/index.c
12  *
13  *
14  * INTERFACE ROUTINES
15  * index_create() - Create a cataloged index relation
16  * index_drop() - Removes index relation from catalogs
17  * BuildIndexInfo() - Prepare to insert index tuples
18  * FormIndexDatum() - Construct datum vector for one index tuple
19  *
20  *-------------------------------------------------------------------------
21  */
22 #include "postgres.h"
23 
24 #include <unistd.h>
25 
26 #include "access/amapi.h"
27 #include "access/heapam.h"
28 #include "access/multixact.h"
29 #include "access/relscan.h"
30 #include "access/tableam.h"
32 #include "access/transam.h"
33 #include "access/visibilitymap.h"
34 #include "access/xact.h"
35 #include "bootstrap/bootstrap.h"
36 #include "catalog/binary_upgrade.h"
37 #include "catalog/catalog.h"
38 #include "catalog/dependency.h"
39 #include "catalog/heap.h"
40 #include "catalog/index.h"
41 #include "catalog/objectaccess.h"
42 #include "catalog/partition.h"
43 #include "catalog/pg_am.h"
44 #include "catalog/pg_collation.h"
45 #include "catalog/pg_constraint.h"
46 #include "catalog/pg_description.h"
47 #include "catalog/pg_inherits.h"
48 #include "catalog/pg_opclass.h"
49 #include "catalog/pg_operator.h"
50 #include "catalog/pg_tablespace.h"
51 #include "catalog/pg_trigger.h"
52 #include "catalog/pg_type.h"
53 #include "catalog/storage.h"
54 #include "catalog/storage_xlog.h"
55 #include "commands/event_trigger.h"
56 #include "commands/progress.h"
57 #include "commands/tablecmds.h"
58 #include "commands/trigger.h"
59 #include "executor/executor.h"
60 #include "miscadmin.h"
61 #include "nodes/makefuncs.h"
62 #include "nodes/nodeFuncs.h"
63 #include "optimizer/optimizer.h"
64 #include "parser/parser.h"
65 #include "pgstat.h"
66 #include "rewrite/rewriteManip.h"
67 #include "storage/bufmgr.h"
68 #include "storage/lmgr.h"
69 #include "storage/predicate.h"
70 #include "storage/smgr.h"
71 #include "utils/builtins.h"
72 #include "utils/fmgroids.h"
73 #include "utils/guc.h"
74 #include "utils/inval.h"
75 #include "utils/lsyscache.h"
76 #include "utils/memutils.h"
77 #include "utils/pg_rusage.h"
78 #include "utils/rel.h"
79 #include "utils/snapmgr.h"
80 #include "utils/syscache.h"
81 #include "utils/tuplesort.h"
82 
83 /* Potentially set by pg_upgrade_support functions */
87 
88 /*
89  * Pointer-free representation of variables used when reindexing system
90  * catalogs; we use this to propagate those values to parallel workers.
91  */
92 typedef struct
93 {
99 
100 /* non-export function prototypes */
101 static bool relationHasPrimaryKey(Relation rel);
102 static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
103  const IndexInfo *indexInfo,
104  const List *indexColNames,
105  Oid accessMethodId,
106  const Oid *collationIds,
107  const Oid *opclassIds);
108 static void InitializeAttributeOids(Relation indexRelation,
109  int numatts, Oid indexoid);
110 static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets);
111 static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
112  Oid parentIndexId,
113  const IndexInfo *indexInfo,
114  const Oid *collationOids,
115  const Oid *opclassOids,
116  const int16 *coloptions,
117  bool primary,
118  bool isexclusion,
119  bool immediate,
120  bool isvalid,
121  bool isready);
122 static void index_update_stats(Relation rel,
123  bool hasindex,
124  double reltuples);
125 static void IndexCheckExclusion(Relation heapRelation,
126  Relation indexRelation,
127  IndexInfo *indexInfo);
128 static bool validate_index_callback(ItemPointer itemptr, void *opaque);
129 static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid);
130 static void SetReindexProcessing(Oid heapOid, Oid indexOid);
131 static void ResetReindexProcessing(void);
132 static void SetReindexPending(List *indexes);
133 static void RemoveReindexPending(Oid indexOid);
134 
135 
136 /*
137  * relationHasPrimaryKey
138  * See whether an existing relation has a primary key.
139  *
140  * Caller must have suitable lock on the relation.
141  *
142  * Note: we intentionally do not check indisvalid here; that's because this
143  * is used to enforce the rule that there can be only one indisprimary index,
144  * and we want that to be true even if said index is invalid.
145  */
146 static bool
148 {
149  bool result = false;
150  List *indexoidlist;
151  ListCell *indexoidscan;
152 
153  /*
154  * Get the list of index OIDs for the table from the relcache, and look up
155  * each one in the pg_index syscache until we find one marked primary key
156  * (hopefully there isn't more than one such).
157  */
158  indexoidlist = RelationGetIndexList(rel);
159 
160  foreach(indexoidscan, indexoidlist)
161  {
162  Oid indexoid = lfirst_oid(indexoidscan);
163  HeapTuple indexTuple;
164 
165  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexoid));
166  if (!HeapTupleIsValid(indexTuple)) /* should not happen */
167  elog(ERROR, "cache lookup failed for index %u", indexoid);
168  result = ((Form_pg_index) GETSTRUCT(indexTuple))->indisprimary;
169  ReleaseSysCache(indexTuple);
170  if (result)
171  break;
172  }
173 
174  list_free(indexoidlist);
175 
176  return result;
177 }
178 
179 /*
180  * index_check_primary_key
181  * Apply special checks needed before creating a PRIMARY KEY index
182  *
183  * This processing used to be in DefineIndex(), but has been split out
184  * so that it can be applied during ALTER TABLE ADD PRIMARY KEY USING INDEX.
185  *
186  * We check for a pre-existing primary key, and that all columns of the index
187  * are simple column references (not expressions), and that all those
188  * columns are marked NOT NULL. If not, fail.
189  *
190  * We used to automatically change unmarked columns to NOT NULL here by doing
191  * our own local ALTER TABLE command. But that doesn't work well if we're
192  * executing one subcommand of an ALTER TABLE: the operations may not get
193  * performed in the right order overall. Now we expect that the parser
194  * inserted any required ALTER TABLE SET NOT NULL operations before trying
195  * to create a primary-key index.
196  *
197  * Caller had better have at least ShareLock on the table, else the not-null
198  * checking isn't trustworthy.
199  */
200 void
202  const IndexInfo *indexInfo,
203  bool is_alter_table,
204  const IndexStmt *stmt)
205 {
206  int i;
207 
208  /*
209  * If ALTER TABLE or CREATE TABLE .. PARTITION OF, check that there isn't
210  * already a PRIMARY KEY. In CREATE TABLE for an ordinary relation, we
211  * have faith that the parser rejected multiple pkey clauses; and CREATE
212  * INDEX doesn't have a way to say PRIMARY KEY, so it's no problem either.
213  */
214  if ((is_alter_table || heapRel->rd_rel->relispartition) &&
215  relationHasPrimaryKey(heapRel))
216  {
217  ereport(ERROR,
218  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
219  errmsg("multiple primary keys for table \"%s\" are not allowed",
220  RelationGetRelationName(heapRel))));
221  }
222 
223  /*
224  * Indexes created with NULLS NOT DISTINCT cannot be used for primary key
225  * constraints. While there is no direct syntax to reach here, it can be
226  * done by creating a separate index and attaching it via ALTER TABLE ..
227  * USING INDEX.
228  */
229  if (indexInfo->ii_NullsNotDistinct)
230  {
231  ereport(ERROR,
232  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
233  errmsg("primary keys cannot use NULLS NOT DISTINCT indexes")));
234  }
235 
236  /*
237  * Check that all of the attributes in a primary key are marked as not
238  * null. (We don't really expect to see that; it'd mean the parser messed
239  * up. But it seems wise to check anyway.)
240  */
241  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
242  {
243  AttrNumber attnum = indexInfo->ii_IndexAttrNumbers[i];
244  HeapTuple atttuple;
245  Form_pg_attribute attform;
246 
247  if (attnum == 0)
248  ereport(ERROR,
249  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
250  errmsg("primary keys cannot be expressions")));
251 
252  /* System attributes are never null, so no need to check */
253  if (attnum < 0)
254  continue;
255 
256  atttuple = SearchSysCache2(ATTNUM,
259  if (!HeapTupleIsValid(atttuple))
260  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
261  attnum, RelationGetRelid(heapRel));
262  attform = (Form_pg_attribute) GETSTRUCT(atttuple);
263 
264  if (!attform->attnotnull)
265  ereport(ERROR,
266  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
267  errmsg("primary key column \"%s\" is not marked NOT NULL",
268  NameStr(attform->attname))));
269 
270  ReleaseSysCache(atttuple);
271  }
272 }
273 
274 /*
275  * ConstructTupleDescriptor
276  *
277  * Build an index tuple descriptor for a new index
278  */
279 static TupleDesc
281  const IndexInfo *indexInfo,
282  const List *indexColNames,
283  Oid accessMethodId,
284  const Oid *collationIds,
285  const Oid *opclassIds)
286 {
287  int numatts = indexInfo->ii_NumIndexAttrs;
288  int numkeyatts = indexInfo->ii_NumIndexKeyAttrs;
289  ListCell *colnames_item = list_head(indexColNames);
290  ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
291  IndexAmRoutine *amroutine;
292  TupleDesc heapTupDesc;
293  TupleDesc indexTupDesc;
294  int natts; /* #atts in heap rel --- for error checks */
295  int i;
296 
297  /* We need access to the index AM's API struct */
298  amroutine = GetIndexAmRoutineByAmId(accessMethodId, false);
299 
300  /* ... and to the table's tuple descriptor */
301  heapTupDesc = RelationGetDescr(heapRelation);
302  natts = RelationGetForm(heapRelation)->relnatts;
303 
304  /*
305  * allocate the new tuple descriptor
306  */
307  indexTupDesc = CreateTemplateTupleDesc(numatts);
308 
309  /*
310  * Fill in the pg_attribute row.
311  */
312  for (i = 0; i < numatts; i++)
313  {
314  AttrNumber atnum = indexInfo->ii_IndexAttrNumbers[i];
315  Form_pg_attribute to = TupleDescAttr(indexTupDesc, i);
316  HeapTuple tuple;
317  Form_pg_type typeTup;
318  Form_pg_opclass opclassTup;
319  Oid keyType;
320 
322  to->attnum = i + 1;
323  to->attcacheoff = -1;
324  to->attislocal = true;
325  to->attcollation = (i < numkeyatts) ? collationIds[i] : InvalidOid;
326 
327  /*
328  * Set the attribute name as specified by caller.
329  */
330  if (colnames_item == NULL) /* shouldn't happen */
331  elog(ERROR, "too few entries in colnames list");
332  namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
333  colnames_item = lnext(indexColNames, colnames_item);
334 
335  /*
336  * For simple index columns, we copy some pg_attribute fields from the
337  * parent relation. For expressions we have to look at the expression
338  * result.
339  */
340  if (atnum != 0)
341  {
342  /* Simple index column */
343  const FormData_pg_attribute *from;
344 
345  Assert(atnum > 0); /* should've been caught above */
346 
347  if (atnum > natts) /* safety check */
348  elog(ERROR, "invalid column number %d", atnum);
349  from = TupleDescAttr(heapTupDesc,
350  AttrNumberGetAttrOffset(atnum));
351 
352  to->atttypid = from->atttypid;
353  to->attlen = from->attlen;
354  to->attndims = from->attndims;
355  to->atttypmod = from->atttypmod;
356  to->attbyval = from->attbyval;
357  to->attalign = from->attalign;
358  to->attstorage = from->attstorage;
359  to->attcompression = from->attcompression;
360  }
361  else
362  {
363  /* Expressional index */
364  Node *indexkey;
365 
366  if (indexpr_item == NULL) /* shouldn't happen */
367  elog(ERROR, "too few entries in indexprs list");
368  indexkey = (Node *) lfirst(indexpr_item);
369  indexpr_item = lnext(indexInfo->ii_Expressions, indexpr_item);
370 
371  /*
372  * Lookup the expression type in pg_type for the type length etc.
373  */
374  keyType = exprType(indexkey);
375  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
376  if (!HeapTupleIsValid(tuple))
377  elog(ERROR, "cache lookup failed for type %u", keyType);
378  typeTup = (Form_pg_type) GETSTRUCT(tuple);
379 
380  /*
381  * Assign some of the attributes values. Leave the rest.
382  */
383  to->atttypid = keyType;
384  to->attlen = typeTup->typlen;
385  to->atttypmod = exprTypmod(indexkey);
386  to->attbyval = typeTup->typbyval;
387  to->attalign = typeTup->typalign;
388  to->attstorage = typeTup->typstorage;
389 
390  /*
391  * For expression columns, set attcompression invalid, since
392  * there's no table column from which to copy the value. Whenever
393  * we actually need to compress a value, we'll use whatever the
394  * current value of default_toast_compression is at that point in
395  * time.
396  */
397  to->attcompression = InvalidCompressionMethod;
398 
399  ReleaseSysCache(tuple);
400 
401  /*
402  * Make sure the expression yields a type that's safe to store in
403  * an index. We need this defense because we have index opclasses
404  * for pseudo-types such as "record", and the actually stored type
405  * had better be safe; eg, a named composite type is okay, an
406  * anonymous record type is not. The test is the same as for
407  * whether a table column is of a safe type (which is why we
408  * needn't check for the non-expression case).
409  */
410  CheckAttributeType(NameStr(to->attname),
411  to->atttypid, to->attcollation,
412  NIL, 0);
413  }
414 
415  /*
416  * We do not yet have the correct relation OID for the index, so just
417  * set it invalid for now. InitializeAttributeOids() will fix it
418  * later.
419  */
420  to->attrelid = InvalidOid;
421 
422  /*
423  * Check the opclass and index AM to see if either provides a keytype
424  * (overriding the attribute type). Opclass (if exists) takes
425  * precedence.
426  */
427  keyType = amroutine->amkeytype;
428 
429  if (i < indexInfo->ii_NumIndexKeyAttrs)
430  {
431  tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclassIds[i]));
432  if (!HeapTupleIsValid(tuple))
433  elog(ERROR, "cache lookup failed for opclass %u", opclassIds[i]);
434  opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
435  if (OidIsValid(opclassTup->opckeytype))
436  keyType = opclassTup->opckeytype;
437 
438  /*
439  * If keytype is specified as ANYELEMENT, and opcintype is
440  * ANYARRAY, then the attribute type must be an array (else it'd
441  * not have matched this opclass); use its element type.
442  *
443  * We could also allow ANYCOMPATIBLE/ANYCOMPATIBLEARRAY here, but
444  * there seems no need to do so; there's no reason to declare an
445  * opclass as taking ANYCOMPATIBLEARRAY rather than ANYARRAY.
446  */
447  if (keyType == ANYELEMENTOID && opclassTup->opcintype == ANYARRAYOID)
448  {
449  keyType = get_base_element_type(to->atttypid);
450  if (!OidIsValid(keyType))
451  elog(ERROR, "could not get element type of array type %u",
452  to->atttypid);
453  }
454 
455  ReleaseSysCache(tuple);
456  }
457 
458  /*
459  * If a key type different from the heap value is specified, update
460  * the type-related fields in the index tupdesc.
461  */
462  if (OidIsValid(keyType) && keyType != to->atttypid)
463  {
464  tuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(keyType));
465  if (!HeapTupleIsValid(tuple))
466  elog(ERROR, "cache lookup failed for type %u", keyType);
467  typeTup = (Form_pg_type) GETSTRUCT(tuple);
468 
469  to->atttypid = keyType;
470  to->atttypmod = -1;
471  to->attlen = typeTup->typlen;
472  to->attbyval = typeTup->typbyval;
473  to->attalign = typeTup->typalign;
474  to->attstorage = typeTup->typstorage;
475  /* As above, use the default compression method in this case */
476  to->attcompression = InvalidCompressionMethod;
477 
478  ReleaseSysCache(tuple);
479  }
480  }
481 
482  pfree(amroutine);
483 
484  return indexTupDesc;
485 }
486 
487 /* ----------------------------------------------------------------
488  * InitializeAttributeOids
489  * ----------------------------------------------------------------
490  */
491 static void
493  int numatts,
494  Oid indexoid)
495 {
496  TupleDesc tupleDescriptor;
497  int i;
498 
499  tupleDescriptor = RelationGetDescr(indexRelation);
500 
501  for (i = 0; i < numatts; i += 1)
502  TupleDescAttr(tupleDescriptor, i)->attrelid = indexoid;
503 }
504 
505 /* ----------------------------------------------------------------
506  * AppendAttributeTuples
507  * ----------------------------------------------------------------
508  */
509 static void
510 AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets)
511 {
512  Relation pg_attribute;
513  CatalogIndexState indstate;
514  TupleDesc indexTupDesc;
515  FormExtraData_pg_attribute *attrs_extra = NULL;
516 
517  if (attopts)
518  {
519  attrs_extra = palloc0_array(FormExtraData_pg_attribute, indexRelation->rd_att->natts);
520 
521  for (int i = 0; i < indexRelation->rd_att->natts; i++)
522  {
523  if (attopts[i])
524  attrs_extra[i].attoptions.value = attopts[i];
525  else
526  attrs_extra[i].attoptions.isnull = true;
527 
528  if (stattargets)
529  attrs_extra[i].attstattarget = stattargets[i];
530  else
531  attrs_extra[i].attstattarget.isnull = true;
532  }
533  }
534 
535  /*
536  * open the attribute relation and its indexes
537  */
538  pg_attribute = table_open(AttributeRelationId, RowExclusiveLock);
539 
540  indstate = CatalogOpenIndexes(pg_attribute);
541 
542  /*
543  * insert data from new index's tupdesc into pg_attribute
544  */
545  indexTupDesc = RelationGetDescr(indexRelation);
546 
547  InsertPgAttributeTuples(pg_attribute, indexTupDesc, InvalidOid, attrs_extra, indstate);
548 
549  CatalogCloseIndexes(indstate);
550 
551  table_close(pg_attribute, RowExclusiveLock);
552 }
553 
554 /* ----------------------------------------------------------------
555  * UpdateIndexRelation
556  *
557  * Construct and insert a new entry in the pg_index catalog
558  * ----------------------------------------------------------------
559  */
560 static void
562  Oid heapoid,
563  Oid parentIndexId,
564  const IndexInfo *indexInfo,
565  const Oid *collationOids,
566  const Oid *opclassOids,
567  const int16 *coloptions,
568  bool primary,
569  bool isexclusion,
570  bool immediate,
571  bool isvalid,
572  bool isready)
573 {
574  int2vector *indkey;
575  oidvector *indcollation;
576  oidvector *indclass;
577  int2vector *indoption;
578  Datum exprsDatum;
579  Datum predDatum;
580  Datum values[Natts_pg_index];
581  bool nulls[Natts_pg_index] = {0};
582  Relation pg_index;
583  HeapTuple tuple;
584  int i;
585 
586  /*
587  * Copy the index key, opclass, and indoption info into arrays (should we
588  * make the caller pass them like this to start with?)
589  */
590  indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
591  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
592  indkey->values[i] = indexInfo->ii_IndexAttrNumbers[i];
593  indcollation = buildoidvector(collationOids, indexInfo->ii_NumIndexKeyAttrs);
594  indclass = buildoidvector(opclassOids, indexInfo->ii_NumIndexKeyAttrs);
595  indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexKeyAttrs);
596 
597  /*
598  * Convert the index expressions (if any) to a text datum
599  */
600  if (indexInfo->ii_Expressions != NIL)
601  {
602  char *exprsString;
603 
604  exprsString = nodeToString(indexInfo->ii_Expressions);
605  exprsDatum = CStringGetTextDatum(exprsString);
606  pfree(exprsString);
607  }
608  else
609  exprsDatum = (Datum) 0;
610 
611  /*
612  * Convert the index predicate (if any) to a text datum. Note we convert
613  * implicit-AND format to normal explicit-AND for storage.
614  */
615  if (indexInfo->ii_Predicate != NIL)
616  {
617  char *predString;
618 
619  predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
620  predDatum = CStringGetTextDatum(predString);
621  pfree(predString);
622  }
623  else
624  predDatum = (Datum) 0;
625 
626 
627  /*
628  * open the system catalog index relation
629  */
630  pg_index = table_open(IndexRelationId, RowExclusiveLock);
631 
632  /*
633  * Build a pg_index tuple
634  */
635  values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
636  values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
637  values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
638  values[Anum_pg_index_indnkeyatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexKeyAttrs);
639  values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
640  values[Anum_pg_index_indnullsnotdistinct - 1] = BoolGetDatum(indexInfo->ii_NullsNotDistinct);
641  values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
642  values[Anum_pg_index_indisexclusion - 1] = BoolGetDatum(isexclusion);
643  values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
644  values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
645  values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
646  values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
647  values[Anum_pg_index_indisready - 1] = BoolGetDatum(isready);
648  values[Anum_pg_index_indislive - 1] = BoolGetDatum(true);
649  values[Anum_pg_index_indisreplident - 1] = BoolGetDatum(false);
650  values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
651  values[Anum_pg_index_indcollation - 1] = PointerGetDatum(indcollation);
652  values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
653  values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
654  values[Anum_pg_index_indexprs - 1] = exprsDatum;
655  if (exprsDatum == (Datum) 0)
656  nulls[Anum_pg_index_indexprs - 1] = true;
657  values[Anum_pg_index_indpred - 1] = predDatum;
658  if (predDatum == (Datum) 0)
659  nulls[Anum_pg_index_indpred - 1] = true;
660 
661  tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
662 
663  /*
664  * insert the tuple into the pg_index catalog
665  */
666  CatalogTupleInsert(pg_index, tuple);
667 
668  /*
669  * close the relation and free the tuple
670  */
671  table_close(pg_index, RowExclusiveLock);
672  heap_freetuple(tuple);
673 }
674 
675 
676 /*
677  * index_create
678  *
679  * heapRelation: table to build index on (suitably locked by caller)
680  * indexRelationName: what it say
681  * indexRelationId: normally, pass InvalidOid to let this routine
682  * generate an OID for the index. During bootstrap this may be
683  * nonzero to specify a preselected OID.
684  * parentIndexRelid: if creating an index partition, the OID of the
685  * parent index; otherwise InvalidOid.
686  * parentConstraintId: if creating a constraint on a partition, the OID
687  * of the constraint in the parent; otherwise InvalidOid.
688  * relFileNumber: normally, pass InvalidRelFileNumber to get new storage.
689  * May be nonzero to attach an existing valid build.
690  * indexInfo: same info executor uses to insert into the index
691  * indexColNames: column names to use for index (List of char *)
692  * accessMethodId: OID of index AM to use
693  * tableSpaceId: OID of tablespace to use
694  * collationIds: array of collation OIDs, one per index column
695  * opclassIds: array of index opclass OIDs, one per index column
696  * coloptions: array of per-index-column indoption settings
697  * reloptions: AM-specific options
698  * flags: bitmask that can include any combination of these bits:
699  * INDEX_CREATE_IS_PRIMARY
700  * the index is a primary key
701  * INDEX_CREATE_ADD_CONSTRAINT:
702  * invoke index_constraint_create also
703  * INDEX_CREATE_SKIP_BUILD:
704  * skip the index_build() step for the moment; caller must do it
705  * later (typically via reindex_index())
706  * INDEX_CREATE_CONCURRENT:
707  * do not lock the table against writers. The index will be
708  * marked "invalid" and the caller must take additional steps
709  * to fix it up.
710  * INDEX_CREATE_IF_NOT_EXISTS:
711  * do not throw an error if a relation with the same name
712  * already exists.
713  * INDEX_CREATE_PARTITIONED:
714  * create a partitioned index (table must be partitioned)
715  * constr_flags: flags passed to index_constraint_create
716  * (only if INDEX_CREATE_ADD_CONSTRAINT is set)
717  * allow_system_table_mods: allow table to be a system catalog
718  * is_internal: if true, post creation hook for new index
719  * constraintId: if not NULL, receives OID of created constraint
720  *
721  * Returns the OID of the created index.
722  */
723 Oid
724 index_create(Relation heapRelation,
725  const char *indexRelationName,
726  Oid indexRelationId,
727  Oid parentIndexRelid,
728  Oid parentConstraintId,
729  RelFileNumber relFileNumber,
730  IndexInfo *indexInfo,
731  const List *indexColNames,
732  Oid accessMethodId,
733  Oid tableSpaceId,
734  const Oid *collationIds,
735  const Oid *opclassIds,
736  const Datum *opclassOptions,
737  const int16 *coloptions,
738  const NullableDatum *stattargets,
739  Datum reloptions,
740  bits16 flags,
741  bits16 constr_flags,
742  bool allow_system_table_mods,
743  bool is_internal,
744  Oid *constraintId)
745 {
746  Oid heapRelationId = RelationGetRelid(heapRelation);
747  Relation pg_class;
748  Relation indexRelation;
749  TupleDesc indexTupDesc;
750  bool shared_relation;
751  bool mapped_relation;
752  bool is_exclusion;
753  Oid namespaceId;
754  int i;
755  char relpersistence;
756  bool isprimary = (flags & INDEX_CREATE_IS_PRIMARY) != 0;
757  bool invalid = (flags & INDEX_CREATE_INVALID) != 0;
758  bool concurrent = (flags & INDEX_CREATE_CONCURRENT) != 0;
759  bool partitioned = (flags & INDEX_CREATE_PARTITIONED) != 0;
760  char relkind;
761  TransactionId relfrozenxid;
762  MultiXactId relminmxid;
763  bool create_storage = !RelFileNumberIsValid(relFileNumber);
764 
765  /* constraint flags can only be set when a constraint is requested */
766  Assert((constr_flags == 0) ||
767  ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0));
768  /* partitioned indexes must never be "built" by themselves */
769  Assert(!partitioned || (flags & INDEX_CREATE_SKIP_BUILD));
770 
771  relkind = partitioned ? RELKIND_PARTITIONED_INDEX : RELKIND_INDEX;
772  is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
773 
774  pg_class = table_open(RelationRelationId, RowExclusiveLock);
775 
776  /*
777  * The index will be in the same namespace as its parent table, and is
778  * shared across databases if and only if the parent is. Likewise, it
779  * will use the relfilenumber map if and only if the parent does; and it
780  * inherits the parent's relpersistence.
781  */
782  namespaceId = RelationGetNamespace(heapRelation);
783  shared_relation = heapRelation->rd_rel->relisshared;
784  mapped_relation = RelationIsMapped(heapRelation);
785  relpersistence = heapRelation->rd_rel->relpersistence;
786 
787  /*
788  * check parameters
789  */
790  if (indexInfo->ii_NumIndexAttrs < 1)
791  elog(ERROR, "must index at least one column");
792 
793  if (!allow_system_table_mods &&
794  IsSystemRelation(heapRelation) &&
796  ereport(ERROR,
797  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
798  errmsg("user-defined indexes on system catalog tables are not supported")));
799 
800  /*
801  * Btree text_pattern_ops uses text_eq as the equality operator, which is
802  * fine as long as the collation is deterministic; text_eq then reduces to
803  * bitwise equality and so it is semantically compatible with the other
804  * operators and functions in that opclass. But with a nondeterministic
805  * collation, text_eq could yield results that are incompatible with the
806  * actual behavior of the index (which is determined by the opclass's
807  * comparison function). We prevent such problems by refusing creation of
808  * an index with that opclass and a nondeterministic collation.
809  *
810  * The same applies to varchar_pattern_ops and bpchar_pattern_ops. If we
811  * find more cases, we might decide to create a real mechanism for marking
812  * opclasses as incompatible with nondeterminism; but for now, this small
813  * hack suffices.
814  *
815  * Another solution is to use a special operator, not text_eq, as the
816  * equality opclass member; but that is undesirable because it would
817  * prevent index usage in many queries that work fine today.
818  */
819  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
820  {
821  Oid collation = collationIds[i];
822  Oid opclass = opclassIds[i];
823 
824  if (collation)
825  {
826  if ((opclass == TEXT_BTREE_PATTERN_OPS_OID ||
827  opclass == VARCHAR_BTREE_PATTERN_OPS_OID ||
828  opclass == BPCHAR_BTREE_PATTERN_OPS_OID) &&
829  !get_collation_isdeterministic(collation))
830  {
831  HeapTuple classtup;
832 
833  classtup = SearchSysCache1(CLAOID, ObjectIdGetDatum(opclass));
834  if (!HeapTupleIsValid(classtup))
835  elog(ERROR, "cache lookup failed for operator class %u", opclass);
836  ereport(ERROR,
837  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
838  errmsg("nondeterministic collations are not supported for operator class \"%s\"",
839  NameStr(((Form_pg_opclass) GETSTRUCT(classtup))->opcname))));
840  ReleaseSysCache(classtup);
841  }
842  }
843  }
844 
845  /*
846  * Concurrent index build on a system catalog is unsafe because we tend to
847  * release locks before committing in catalogs.
848  */
849  if (concurrent &&
850  IsCatalogRelation(heapRelation))
851  ereport(ERROR,
852  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
853  errmsg("concurrent index creation on system catalog tables is not supported")));
854 
855  /*
856  * This case is currently not supported. There's no way to ask for it in
857  * the grammar with CREATE INDEX, but it can happen with REINDEX.
858  */
859  if (concurrent && is_exclusion)
860  ereport(ERROR,
861  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
862  errmsg("concurrent index creation for exclusion constraints is not supported")));
863 
864  /*
865  * We cannot allow indexing a shared relation after initdb (because
866  * there's no way to make the entry in other databases' pg_class).
867  */
868  if (shared_relation && !IsBootstrapProcessingMode())
869  ereport(ERROR,
870  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
871  errmsg("shared indexes cannot be created after initdb")));
872 
873  /*
874  * Shared relations must be in pg_global, too (last-ditch check)
875  */
876  if (shared_relation && tableSpaceId != GLOBALTABLESPACE_OID)
877  elog(ERROR, "shared relations must be placed in pg_global tablespace");
878 
879  /*
880  * Check for duplicate name (both as to the index, and as to the
881  * associated constraint if any). Such cases would fail on the relevant
882  * catalogs' unique indexes anyway, but we prefer to give a friendlier
883  * error message.
884  */
885  if (get_relname_relid(indexRelationName, namespaceId))
886  {
887  if ((flags & INDEX_CREATE_IF_NOT_EXISTS) != 0)
888  {
889  ereport(NOTICE,
890  (errcode(ERRCODE_DUPLICATE_TABLE),
891  errmsg("relation \"%s\" already exists, skipping",
892  indexRelationName)));
893  table_close(pg_class, RowExclusiveLock);
894  return InvalidOid;
895  }
896 
897  ereport(ERROR,
898  (errcode(ERRCODE_DUPLICATE_TABLE),
899  errmsg("relation \"%s\" already exists",
900  indexRelationName)));
901  }
902 
903  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0 &&
905  indexRelationName))
906  {
907  /*
908  * INDEX_CREATE_IF_NOT_EXISTS does not apply here, since the
909  * conflicting constraint is not an index.
910  */
911  ereport(ERROR,
913  errmsg("constraint \"%s\" for relation \"%s\" already exists",
914  indexRelationName, RelationGetRelationName(heapRelation))));
915  }
916 
917  /*
918  * construct tuple descriptor for index tuples
919  */
920  indexTupDesc = ConstructTupleDescriptor(heapRelation,
921  indexInfo,
922  indexColNames,
923  accessMethodId,
924  collationIds,
925  opclassIds);
926 
927  /*
928  * Allocate an OID for the index, unless we were told what to use.
929  *
930  * The OID will be the relfilenumber as well, so make sure it doesn't
931  * collide with either pg_class OIDs or existing physical files.
932  */
933  if (!OidIsValid(indexRelationId))
934  {
935  /* Use binary-upgrade override for pg_class.oid and relfilenumber */
936  if (IsBinaryUpgrade)
937  {
939  ereport(ERROR,
940  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
941  errmsg("pg_class index OID value not set when in binary upgrade mode")));
942 
943  indexRelationId = binary_upgrade_next_index_pg_class_oid;
945 
946  /* Override the index relfilenumber */
947  if ((relkind == RELKIND_INDEX) &&
949  ereport(ERROR,
950  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
951  errmsg("index relfilenumber value not set when in binary upgrade mode")));
954 
955  /*
956  * Note that we want create_storage = true for binary upgrade. The
957  * storage we create here will be replaced later, but we need to
958  * have something on disk in the meanwhile.
959  */
960  Assert(create_storage);
961  }
962  else
963  {
964  indexRelationId =
965  GetNewRelFileNumber(tableSpaceId, pg_class, relpersistence);
966  }
967  }
968 
969  /*
970  * create the index relation's relcache entry and, if necessary, the
971  * physical disk file. (If we fail further down, it's the smgr's
972  * responsibility to remove the disk file again, if any.)
973  */
974  indexRelation = heap_create(indexRelationName,
975  namespaceId,
976  tableSpaceId,
977  indexRelationId,
978  relFileNumber,
979  accessMethodId,
980  indexTupDesc,
981  relkind,
982  relpersistence,
983  shared_relation,
984  mapped_relation,
985  allow_system_table_mods,
986  &relfrozenxid,
987  &relminmxid,
988  create_storage);
989 
990  Assert(relfrozenxid == InvalidTransactionId);
991  Assert(relminmxid == InvalidMultiXactId);
992  Assert(indexRelationId == RelationGetRelid(indexRelation));
993 
994  /*
995  * Obtain exclusive lock on it. Although no other transactions can see it
996  * until we commit, this prevents deadlock-risk complaints from lock
997  * manager in cases such as CLUSTER.
998  */
999  LockRelation(indexRelation, AccessExclusiveLock);
1000 
1001  /*
1002  * Fill in fields of the index's pg_class entry that are not set correctly
1003  * by heap_create.
1004  *
1005  * XXX should have a cleaner way to create cataloged indexes
1006  */
1007  indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
1008  indexRelation->rd_rel->relam = accessMethodId;
1009  indexRelation->rd_rel->relispartition = OidIsValid(parentIndexRelid);
1010 
1011  /*
1012  * store index's pg_class entry
1013  */
1014  InsertPgClassTuple(pg_class, indexRelation,
1015  RelationGetRelid(indexRelation),
1016  (Datum) 0,
1017  reloptions);
1018 
1019  /* done with pg_class */
1020  table_close(pg_class, RowExclusiveLock);
1021 
1022  /*
1023  * now update the object id's of all the attribute tuple forms in the
1024  * index relation's tuple descriptor
1025  */
1026  InitializeAttributeOids(indexRelation,
1027  indexInfo->ii_NumIndexAttrs,
1028  indexRelationId);
1029 
1030  /*
1031  * append ATTRIBUTE tuples for the index
1032  */
1033  AppendAttributeTuples(indexRelation, opclassOptions, stattargets);
1034 
1035  /* ----------------
1036  * update pg_index
1037  * (append INDEX tuple)
1038  *
1039  * Note that this stows away a representation of "predicate".
1040  * (Or, could define a rule to maintain the predicate) --Nels, Feb '92
1041  * ----------------
1042  */
1043  UpdateIndexRelation(indexRelationId, heapRelationId, parentIndexRelid,
1044  indexInfo,
1045  collationIds, opclassIds, coloptions,
1046  isprimary, is_exclusion,
1047  (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) == 0,
1048  !concurrent && !invalid,
1049  !concurrent);
1050 
1051  /*
1052  * Register relcache invalidation on the indexes' heap relation, to
1053  * maintain consistency of its index list
1054  */
1055  CacheInvalidateRelcache(heapRelation);
1056 
1057  /* update pg_inherits and the parent's relhassubclass, if needed */
1058  if (OidIsValid(parentIndexRelid))
1059  {
1060  StoreSingleInheritance(indexRelationId, parentIndexRelid, 1);
1061  SetRelationHasSubclass(parentIndexRelid, true);
1062  }
1063 
1064  /*
1065  * Register constraint and dependencies for the index.
1066  *
1067  * If the index is from a CONSTRAINT clause, construct a pg_constraint
1068  * entry. The index will be linked to the constraint, which in turn is
1069  * linked to the table. If it's not a CONSTRAINT, we need to make a
1070  * dependency directly on the table.
1071  *
1072  * We don't need a dependency on the namespace, because there'll be an
1073  * indirect dependency via our parent table.
1074  *
1075  * During bootstrap we can't register any dependencies, and we don't try
1076  * to make a constraint either.
1077  */
1079  {
1080  ObjectAddress myself,
1081  referenced;
1082  ObjectAddresses *addrs;
1083 
1084  ObjectAddressSet(myself, RelationRelationId, indexRelationId);
1085 
1086  if ((flags & INDEX_CREATE_ADD_CONSTRAINT) != 0)
1087  {
1088  char constraintType;
1089  ObjectAddress localaddr;
1090 
1091  if (isprimary)
1092  constraintType = CONSTRAINT_PRIMARY;
1093  else if (indexInfo->ii_Unique)
1094  constraintType = CONSTRAINT_UNIQUE;
1095  else if (is_exclusion)
1096  constraintType = CONSTRAINT_EXCLUSION;
1097  else
1098  {
1099  elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
1100  constraintType = 0; /* keep compiler quiet */
1101  }
1102 
1103  localaddr = index_constraint_create(heapRelation,
1104  indexRelationId,
1105  parentConstraintId,
1106  indexInfo,
1107  indexRelationName,
1108  constraintType,
1109  constr_flags,
1110  allow_system_table_mods,
1111  is_internal);
1112  if (constraintId)
1113  *constraintId = localaddr.objectId;
1114  }
1115  else
1116  {
1117  bool have_simple_col = false;
1118 
1119  addrs = new_object_addresses();
1120 
1121  /* Create auto dependencies on simply-referenced columns */
1122  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
1123  {
1124  if (indexInfo->ii_IndexAttrNumbers[i] != 0)
1125  {
1126  ObjectAddressSubSet(referenced, RelationRelationId,
1127  heapRelationId,
1128  indexInfo->ii_IndexAttrNumbers[i]);
1129  add_exact_object_address(&referenced, addrs);
1130  have_simple_col = true;
1131  }
1132  }
1133 
1134  /*
1135  * If there are no simply-referenced columns, give the index an
1136  * auto dependency on the whole table. In most cases, this will
1137  * be redundant, but it might not be if the index expressions and
1138  * predicate contain no Vars or only whole-row Vars.
1139  */
1140  if (!have_simple_col)
1141  {
1142  ObjectAddressSet(referenced, RelationRelationId,
1143  heapRelationId);
1144  add_exact_object_address(&referenced, addrs);
1145  }
1146 
1148  free_object_addresses(addrs);
1149  }
1150 
1151  /*
1152  * If this is an index partition, create partition dependencies on
1153  * both the parent index and the table. (Note: these must be *in
1154  * addition to*, not instead of, all other dependencies. Otherwise
1155  * we'll be short some dependencies after DETACH PARTITION.)
1156  */
1157  if (OidIsValid(parentIndexRelid))
1158  {
1159  ObjectAddressSet(referenced, RelationRelationId, parentIndexRelid);
1160  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
1161 
1162  ObjectAddressSet(referenced, RelationRelationId, heapRelationId);
1163  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
1164  }
1165 
1166  /* placeholder for normal dependencies */
1167  addrs = new_object_addresses();
1168 
1169  /* Store dependency on collations */
1170 
1171  /* The default collation is pinned, so don't bother recording it */
1172  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1173  {
1174  if (OidIsValid(collationIds[i]) && collationIds[i] != DEFAULT_COLLATION_OID)
1175  {
1176  ObjectAddressSet(referenced, CollationRelationId, collationIds[i]);
1177  add_exact_object_address(&referenced, addrs);
1178  }
1179  }
1180 
1181  /* Store dependency on operator classes */
1182  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1183  {
1184  ObjectAddressSet(referenced, OperatorClassRelationId, opclassIds[i]);
1185  add_exact_object_address(&referenced, addrs);
1186  }
1187 
1189  free_object_addresses(addrs);
1190 
1191  /* Store dependencies on anything mentioned in index expressions */
1192  if (indexInfo->ii_Expressions)
1193  {
1195  (Node *) indexInfo->ii_Expressions,
1196  heapRelationId,
1198  DEPENDENCY_AUTO, false);
1199  }
1200 
1201  /* Store dependencies on anything mentioned in predicate */
1202  if (indexInfo->ii_Predicate)
1203  {
1205  (Node *) indexInfo->ii_Predicate,
1206  heapRelationId,
1208  DEPENDENCY_AUTO, false);
1209  }
1210  }
1211  else
1212  {
1213  /* Bootstrap mode - assert we weren't asked for constraint support */
1214  Assert((flags & INDEX_CREATE_ADD_CONSTRAINT) == 0);
1215  }
1216 
1217  /* Post creation hook for new index */
1218  InvokeObjectPostCreateHookArg(RelationRelationId,
1219  indexRelationId, 0, is_internal);
1220 
1221  /*
1222  * Advance the command counter so that we can see the newly-entered
1223  * catalog tuples for the index.
1224  */
1226 
1227  /*
1228  * In bootstrap mode, we have to fill in the index strategy structure with
1229  * information from the catalogs. If we aren't bootstrapping, then the
1230  * relcache entry has already been rebuilt thanks to sinval update during
1231  * CommandCounterIncrement.
1232  */
1234  RelationInitIndexAccessInfo(indexRelation);
1235  else
1236  Assert(indexRelation->rd_indexcxt != NULL);
1237 
1238  indexRelation->rd_index->indnkeyatts = indexInfo->ii_NumIndexKeyAttrs;
1239 
1240  /* Validate opclass-specific options */
1241  if (opclassOptions)
1242  for (i = 0; i < indexInfo->ii_NumIndexKeyAttrs; i++)
1243  (void) index_opclass_options(indexRelation, i + 1,
1244  opclassOptions[i],
1245  true);
1246 
1247  /*
1248  * If this is bootstrap (initdb) time, then we don't actually fill in the
1249  * index yet. We'll be creating more indexes and classes later, so we
1250  * delay filling them in until just before we're done with bootstrapping.
1251  * Similarly, if the caller specified to skip the build then filling the
1252  * index is delayed till later (ALTER TABLE can save work in some cases
1253  * with this). Otherwise, we call the AM routine that constructs the
1254  * index.
1255  */
1257  {
1258  index_register(heapRelationId, indexRelationId, indexInfo);
1259  }
1260  else if ((flags & INDEX_CREATE_SKIP_BUILD) != 0)
1261  {
1262  /*
1263  * Caller is responsible for filling the index later on. However,
1264  * we'd better make sure that the heap relation is correctly marked as
1265  * having an index.
1266  */
1267  index_update_stats(heapRelation,
1268  true,
1269  -1.0);
1270  /* Make the above update visible */
1272  }
1273  else
1274  {
1275  index_build(heapRelation, indexRelation, indexInfo, false, true);
1276  }
1277 
1278  /*
1279  * Close the index; but we keep the lock that we acquired above until end
1280  * of transaction. Closing the heap is caller's responsibility.
1281  */
1282  index_close(indexRelation, NoLock);
1283 
1284  return indexRelationId;
1285 }
1286 
1287 /*
1288  * index_concurrently_create_copy
1289  *
1290  * Create concurrently an index based on the definition of the one provided by
1291  * caller. The index is inserted into catalogs and needs to be built later
1292  * on. This is called during concurrent reindex processing.
1293  *
1294  * "tablespaceOid" is the tablespace to use for this index.
1295  */
1296 Oid
1298  Oid tablespaceOid, const char *newName)
1299 {
1300  Relation indexRelation;
1301  IndexInfo *oldInfo,
1302  *newInfo;
1303  Oid newIndexId = InvalidOid;
1304  HeapTuple indexTuple,
1305  classTuple;
1306  Datum indclassDatum,
1307  colOptionDatum,
1308  reloptionsDatum;
1309  Datum *opclassOptions;
1310  oidvector *indclass;
1311  int2vector *indcoloptions;
1312  NullableDatum *stattargets;
1313  bool isnull;
1314  List *indexColNames = NIL;
1315  List *indexExprs = NIL;
1316  List *indexPreds = NIL;
1317 
1318  indexRelation = index_open(oldIndexId, RowExclusiveLock);
1319 
1320  /* The new index needs some information from the old index */
1321  oldInfo = BuildIndexInfo(indexRelation);
1322 
1323  /*
1324  * Concurrent build of an index with exclusion constraints is not
1325  * supported.
1326  */
1327  if (oldInfo->ii_ExclusionOps != NULL)
1328  ereport(ERROR,
1329  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1330  errmsg("concurrent index creation for exclusion constraints is not supported")));
1331 
1332  /* Get the array of class and column options IDs from index info */
1333  indexTuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldIndexId));
1334  if (!HeapTupleIsValid(indexTuple))
1335  elog(ERROR, "cache lookup failed for index %u", oldIndexId);
1336  indclassDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1337  Anum_pg_index_indclass);
1338  indclass = (oidvector *) DatumGetPointer(indclassDatum);
1339 
1340  colOptionDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1341  Anum_pg_index_indoption);
1342  indcoloptions = (int2vector *) DatumGetPointer(colOptionDatum);
1343 
1344  /* Fetch reloptions of index if any */
1345  classTuple = SearchSysCache1(RELOID, ObjectIdGetDatum(oldIndexId));
1346  if (!HeapTupleIsValid(classTuple))
1347  elog(ERROR, "cache lookup failed for relation %u", oldIndexId);
1348  reloptionsDatum = SysCacheGetAttr(RELOID, classTuple,
1349  Anum_pg_class_reloptions, &isnull);
1350 
1351  /*
1352  * Fetch the list of expressions and predicates directly from the
1353  * catalogs. This cannot rely on the information from IndexInfo of the
1354  * old index as these have been flattened for the planner.
1355  */
1356  if (oldInfo->ii_Expressions != NIL)
1357  {
1358  Datum exprDatum;
1359  char *exprString;
1360 
1361  exprDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1362  Anum_pg_index_indexprs);
1363  exprString = TextDatumGetCString(exprDatum);
1364  indexExprs = (List *) stringToNode(exprString);
1365  pfree(exprString);
1366  }
1367  if (oldInfo->ii_Predicate != NIL)
1368  {
1369  Datum predDatum;
1370  char *predString;
1371 
1372  predDatum = SysCacheGetAttrNotNull(INDEXRELID, indexTuple,
1373  Anum_pg_index_indpred);
1374  predString = TextDatumGetCString(predDatum);
1375  indexPreds = (List *) stringToNode(predString);
1376 
1377  /* Also convert to implicit-AND format */
1378  indexPreds = make_ands_implicit((Expr *) indexPreds);
1379  pfree(predString);
1380  }
1381 
1382  /*
1383  * Build the index information for the new index. Note that rebuild of
1384  * indexes with exclusion constraints is not supported, hence there is no
1385  * need to fill all the ii_Exclusion* fields.
1386  */
1387  newInfo = makeIndexInfo(oldInfo->ii_NumIndexAttrs,
1388  oldInfo->ii_NumIndexKeyAttrs,
1389  oldInfo->ii_Am,
1390  indexExprs,
1391  indexPreds,
1392  oldInfo->ii_Unique,
1393  oldInfo->ii_NullsNotDistinct,
1394  false, /* not ready for inserts */
1395  true,
1396  indexRelation->rd_indam->amsummarizing);
1397 
1398  /*
1399  * Extract the list of column names and the column numbers for the new
1400  * index information. All this information will be used for the index
1401  * creation.
1402  */
1403  for (int i = 0; i < oldInfo->ii_NumIndexAttrs; i++)
1404  {
1405  TupleDesc indexTupDesc = RelationGetDescr(indexRelation);
1406  Form_pg_attribute att = TupleDescAttr(indexTupDesc, i);
1407 
1408  indexColNames = lappend(indexColNames, NameStr(att->attname));
1409  newInfo->ii_IndexAttrNumbers[i] = oldInfo->ii_IndexAttrNumbers[i];
1410  }
1411 
1412  /* Extract opclass options for each attribute */
1413  opclassOptions = palloc0(sizeof(Datum) * newInfo->ii_NumIndexAttrs);
1414  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1415  opclassOptions[i] = get_attoptions(oldIndexId, i + 1);
1416 
1417  /* Extract statistic targets for each attribute */
1418  stattargets = palloc0_array(NullableDatum, newInfo->ii_NumIndexAttrs);
1419  for (int i = 0; i < newInfo->ii_NumIndexAttrs; i++)
1420  {
1421  HeapTuple tp;
1422  Datum dat;
1423 
1424  tp = SearchSysCache2(ATTNUM, ObjectIdGetDatum(oldIndexId), Int16GetDatum(i + 1));
1425  if (!HeapTupleIsValid(tp))
1426  elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1427  i + 1, oldIndexId);
1428  dat = SysCacheGetAttr(ATTNUM, tp, Anum_pg_attribute_attstattarget, &isnull);
1429  ReleaseSysCache(tp);
1430  stattargets[i].value = dat;
1431  stattargets[i].isnull = isnull;
1432  }
1433 
1434  /*
1435  * Now create the new index.
1436  *
1437  * For a partition index, we adjust the partition dependency later, to
1438  * ensure a consistent state at all times. That is why parentIndexRelid
1439  * is not set here.
1440  */
1441  newIndexId = index_create(heapRelation,
1442  newName,
1443  InvalidOid, /* indexRelationId */
1444  InvalidOid, /* parentIndexRelid */
1445  InvalidOid, /* parentConstraintId */
1446  InvalidRelFileNumber, /* relFileNumber */
1447  newInfo,
1448  indexColNames,
1449  indexRelation->rd_rel->relam,
1450  tablespaceOid,
1451  indexRelation->rd_indcollation,
1452  indclass->values,
1453  opclassOptions,
1454  indcoloptions->values,
1455  stattargets,
1456  reloptionsDatum,
1458  0,
1459  true, /* allow table to be a system catalog? */
1460  false, /* is_internal? */
1461  NULL);
1462 
1463  /* Close the relations used and clean up */
1464  index_close(indexRelation, NoLock);
1465  ReleaseSysCache(indexTuple);
1466  ReleaseSysCache(classTuple);
1467 
1468  return newIndexId;
1469 }
1470 
1471 /*
1472  * index_concurrently_build
1473  *
1474  * Build index for a concurrent operation. Low-level locks are taken when
1475  * this operation is performed to prevent only schema changes, but they need
1476  * to be kept until the end of the transaction performing this operation.
1477  * 'indexOid' refers to an index relation OID already created as part of
1478  * previous processing, and 'heapOid' refers to its parent heap relation.
1479  */
1480 void
1482  Oid indexRelationId)
1483 {
1484  Relation heapRel;
1485  Oid save_userid;
1486  int save_sec_context;
1487  int save_nestlevel;
1488  Relation indexRelation;
1489  IndexInfo *indexInfo;
1490 
1491  /* This had better make sure that a snapshot is active */
1493 
1494  /* Open and lock the parent heap relation */
1495  heapRel = table_open(heapRelationId, ShareUpdateExclusiveLock);
1496 
1497  /*
1498  * Switch to the table owner's userid, so that any index functions are run
1499  * as that user. Also lock down security-restricted operations and
1500  * arrange to make GUC variable changes local to this command.
1501  */
1502  GetUserIdAndSecContext(&save_userid, &save_sec_context);
1503  SetUserIdAndSecContext(heapRel->rd_rel->relowner,
1504  save_sec_context | SECURITY_RESTRICTED_OPERATION);
1505  save_nestlevel = NewGUCNestLevel();
1507 
1508  indexRelation = index_open(indexRelationId, RowExclusiveLock);
1509 
1510  /*
1511  * We have to re-build the IndexInfo struct, since it was lost in the
1512  * commit of the transaction where this concurrent index was created at
1513  * the catalog level.
1514  */
1515  indexInfo = BuildIndexInfo(indexRelation);
1516  Assert(!indexInfo->ii_ReadyForInserts);
1517  indexInfo->ii_Concurrent = true;
1518  indexInfo->ii_BrokenHotChain = false;
1519 
1520  /* Now build the index */
1521  index_build(heapRel, indexRelation, indexInfo, false, true);
1522 
1523  /* Roll back any GUC changes executed by index functions */
1524  AtEOXact_GUC(false, save_nestlevel);
1525 
1526  /* Restore userid and security context */
1527  SetUserIdAndSecContext(save_userid, save_sec_context);
1528 
1529  /* Close both the relations, but keep the locks */
1530  table_close(heapRel, NoLock);
1531  index_close(indexRelation, NoLock);
1532 
1533  /*
1534  * Update the pg_index row to mark the index as ready for inserts. Once we
1535  * commit this transaction, any new transactions that open the table must
1536  * insert new entries into the index for insertions and non-HOT updates.
1537  */
1539 }
1540 
1541 /*
1542  * index_concurrently_swap
1543  *
1544  * Swap name, dependencies, and constraints of the old index over to the new
1545  * index, while marking the old index as invalid and the new as valid.
1546  */
1547 void
1548 index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
1549 {
1550  Relation pg_class,
1551  pg_index,
1552  pg_constraint,
1553  pg_trigger;
1554  Relation oldClassRel,
1555  newClassRel;
1556  HeapTuple oldClassTuple,
1557  newClassTuple;
1558  Form_pg_class oldClassForm,
1559  newClassForm;
1560  HeapTuple oldIndexTuple,
1561  newIndexTuple;
1562  Form_pg_index oldIndexForm,
1563  newIndexForm;
1564  bool isPartition;
1565  Oid indexConstraintOid;
1566  List *constraintOids = NIL;
1567  ListCell *lc;
1568 
1569  /*
1570  * Take a necessary lock on the old and new index before swapping them.
1571  */
1572  oldClassRel = relation_open(oldIndexId, ShareUpdateExclusiveLock);
1573  newClassRel = relation_open(newIndexId, ShareUpdateExclusiveLock);
1574 
1575  /* Now swap names and dependencies of those indexes */
1576  pg_class = table_open(RelationRelationId, RowExclusiveLock);
1577 
1578  oldClassTuple = SearchSysCacheCopy1(RELOID,
1579  ObjectIdGetDatum(oldIndexId));
1580  if (!HeapTupleIsValid(oldClassTuple))
1581  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1582  newClassTuple = SearchSysCacheCopy1(RELOID,
1583  ObjectIdGetDatum(newIndexId));
1584  if (!HeapTupleIsValid(newClassTuple))
1585  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1586 
1587  oldClassForm = (Form_pg_class) GETSTRUCT(oldClassTuple);
1588  newClassForm = (Form_pg_class) GETSTRUCT(newClassTuple);
1589 
1590  /* Swap the names */
1591  namestrcpy(&newClassForm->relname, NameStr(oldClassForm->relname));
1592  namestrcpy(&oldClassForm->relname, oldName);
1593 
1594  /* Swap the partition flags to track inheritance properly */
1595  isPartition = newClassForm->relispartition;
1596  newClassForm->relispartition = oldClassForm->relispartition;
1597  oldClassForm->relispartition = isPartition;
1598 
1599  CatalogTupleUpdate(pg_class, &oldClassTuple->t_self, oldClassTuple);
1600  CatalogTupleUpdate(pg_class, &newClassTuple->t_self, newClassTuple);
1601 
1602  heap_freetuple(oldClassTuple);
1603  heap_freetuple(newClassTuple);
1604 
1605  /* Now swap index info */
1606  pg_index = table_open(IndexRelationId, RowExclusiveLock);
1607 
1608  oldIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1609  ObjectIdGetDatum(oldIndexId));
1610  if (!HeapTupleIsValid(oldIndexTuple))
1611  elog(ERROR, "could not find tuple for relation %u", oldIndexId);
1612  newIndexTuple = SearchSysCacheCopy1(INDEXRELID,
1613  ObjectIdGetDatum(newIndexId));
1614  if (!HeapTupleIsValid(newIndexTuple))
1615  elog(ERROR, "could not find tuple for relation %u", newIndexId);
1616 
1617  oldIndexForm = (Form_pg_index) GETSTRUCT(oldIndexTuple);
1618  newIndexForm = (Form_pg_index) GETSTRUCT(newIndexTuple);
1619 
1620  /*
1621  * Copy constraint flags from the old index. This is safe because the old
1622  * index guaranteed uniqueness.
1623  */
1624  newIndexForm->indisprimary = oldIndexForm->indisprimary;
1625  oldIndexForm->indisprimary = false;
1626  newIndexForm->indisexclusion = oldIndexForm->indisexclusion;
1627  oldIndexForm->indisexclusion = false;
1628  newIndexForm->indimmediate = oldIndexForm->indimmediate;
1629  oldIndexForm->indimmediate = true;
1630 
1631  /* Preserve indisreplident in the new index */
1632  newIndexForm->indisreplident = oldIndexForm->indisreplident;
1633 
1634  /* Preserve indisclustered in the new index */
1635  newIndexForm->indisclustered = oldIndexForm->indisclustered;
1636 
1637  /*
1638  * Mark the new index as valid, and the old index as invalid similarly to
1639  * what index_set_state_flags() does.
1640  */
1641  newIndexForm->indisvalid = true;
1642  oldIndexForm->indisvalid = false;
1643  oldIndexForm->indisclustered = false;
1644  oldIndexForm->indisreplident = false;
1645 
1646  CatalogTupleUpdate(pg_index, &oldIndexTuple->t_self, oldIndexTuple);
1647  CatalogTupleUpdate(pg_index, &newIndexTuple->t_self, newIndexTuple);
1648 
1649  heap_freetuple(oldIndexTuple);
1650  heap_freetuple(newIndexTuple);
1651 
1652  /*
1653  * Move constraints and triggers over to the new index
1654  */
1655 
1656  constraintOids = get_index_ref_constraints(oldIndexId);
1657 
1658  indexConstraintOid = get_index_constraint(oldIndexId);
1659 
1660  if (OidIsValid(indexConstraintOid))
1661  constraintOids = lappend_oid(constraintOids, indexConstraintOid);
1662 
1663  pg_constraint = table_open(ConstraintRelationId, RowExclusiveLock);
1664  pg_trigger = table_open(TriggerRelationId, RowExclusiveLock);
1665 
1666  foreach(lc, constraintOids)
1667  {
1668  HeapTuple constraintTuple,
1669  triggerTuple;
1670  Form_pg_constraint conForm;
1671  ScanKeyData key[1];
1672  SysScanDesc scan;
1673  Oid constraintOid = lfirst_oid(lc);
1674 
1675  /* Move the constraint from the old to the new index */
1676  constraintTuple = SearchSysCacheCopy1(CONSTROID,
1677  ObjectIdGetDatum(constraintOid));
1678  if (!HeapTupleIsValid(constraintTuple))
1679  elog(ERROR, "could not find tuple for constraint %u", constraintOid);
1680 
1681  conForm = ((Form_pg_constraint) GETSTRUCT(constraintTuple));
1682 
1683  if (conForm->conindid == oldIndexId)
1684  {
1685  conForm->conindid = newIndexId;
1686 
1687  CatalogTupleUpdate(pg_constraint, &constraintTuple->t_self, constraintTuple);
1688  }
1689 
1690  heap_freetuple(constraintTuple);
1691 
1692  /* Search for trigger records */
1693  ScanKeyInit(&key[0],
1694  Anum_pg_trigger_tgconstraint,
1695  BTEqualStrategyNumber, F_OIDEQ,
1696  ObjectIdGetDatum(constraintOid));
1697 
1698  scan = systable_beginscan(pg_trigger, TriggerConstraintIndexId, true,
1699  NULL, 1, key);
1700 
1701  while (HeapTupleIsValid((triggerTuple = systable_getnext(scan))))
1702  {
1703  Form_pg_trigger tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1704 
1705  if (tgForm->tgconstrindid != oldIndexId)
1706  continue;
1707 
1708  /* Make a modifiable copy */
1709  triggerTuple = heap_copytuple(triggerTuple);
1710  tgForm = (Form_pg_trigger) GETSTRUCT(triggerTuple);
1711 
1712  tgForm->tgconstrindid = newIndexId;
1713 
1714  CatalogTupleUpdate(pg_trigger, &triggerTuple->t_self, triggerTuple);
1715 
1716  heap_freetuple(triggerTuple);
1717  }
1718 
1719  systable_endscan(scan);
1720  }
1721 
1722  /*
1723  * Move comment if any
1724  */
1725  {
1727  ScanKeyData skey[3];
1728  SysScanDesc sd;
1729  HeapTuple tuple;
1730  Datum values[Natts_pg_description] = {0};
1731  bool nulls[Natts_pg_description] = {0};
1732  bool replaces[Natts_pg_description] = {0};
1733 
1734  values[Anum_pg_description_objoid - 1] = ObjectIdGetDatum(newIndexId);
1735  replaces[Anum_pg_description_objoid - 1] = true;
1736 
1737  ScanKeyInit(&skey[0],
1738  Anum_pg_description_objoid,
1739  BTEqualStrategyNumber, F_OIDEQ,
1740  ObjectIdGetDatum(oldIndexId));
1741  ScanKeyInit(&skey[1],
1742  Anum_pg_description_classoid,
1743  BTEqualStrategyNumber, F_OIDEQ,
1744  ObjectIdGetDatum(RelationRelationId));
1745  ScanKeyInit(&skey[2],
1746  Anum_pg_description_objsubid,
1747  BTEqualStrategyNumber, F_INT4EQ,
1748  Int32GetDatum(0));
1749 
1750  description = table_open(DescriptionRelationId, RowExclusiveLock);
1751 
1752  sd = systable_beginscan(description, DescriptionObjIndexId, true,
1753  NULL, 3, skey);
1754 
1755  while ((tuple = systable_getnext(sd)) != NULL)
1756  {
1758  values, nulls, replaces);
1759  CatalogTupleUpdate(description, &tuple->t_self, tuple);
1760 
1761  break; /* Assume there can be only one match */
1762  }
1763 
1764  systable_endscan(sd);
1766  }
1767 
1768  /*
1769  * Swap inheritance relationship with parent index
1770  */
1771  if (get_rel_relispartition(oldIndexId))
1772  {
1773  List *ancestors = get_partition_ancestors(oldIndexId);
1774  Oid parentIndexRelid = linitial_oid(ancestors);
1775 
1776  DeleteInheritsTuple(oldIndexId, parentIndexRelid, false, NULL);
1777  StoreSingleInheritance(newIndexId, parentIndexRelid, 1);
1778 
1779  list_free(ancestors);
1780  }
1781 
1782  /*
1783  * Swap all dependencies of and on the old index to the new one, and
1784  * vice-versa. Note that a call to CommandCounterIncrement() would cause
1785  * duplicate entries in pg_depend, so this should not be done.
1786  */
1787  changeDependenciesOf(RelationRelationId, newIndexId, oldIndexId);
1788  changeDependenciesOn(RelationRelationId, newIndexId, oldIndexId);
1789 
1790  changeDependenciesOf(RelationRelationId, oldIndexId, newIndexId);
1791  changeDependenciesOn(RelationRelationId, oldIndexId, newIndexId);
1792 
1793  /* copy over statistics from old to new index */
1794  pgstat_copy_relation_stats(newClassRel, oldClassRel);
1795 
1796  /* Copy data of pg_statistic from the old index to the new one */
1797  CopyStatistics(oldIndexId, newIndexId);
1798 
1799  /* Close relations */
1800  table_close(pg_class, RowExclusiveLock);
1801  table_close(pg_index, RowExclusiveLock);
1802  table_close(pg_constraint, RowExclusiveLock);
1803  table_close(pg_trigger, RowExclusiveLock);
1804 
1805  /* The lock taken previously is not released until the end of transaction */
1806  relation_close(oldClassRel, NoLock);
1807  relation_close(newClassRel, NoLock);
1808 }
1809 
1810 /*
1811  * index_concurrently_set_dead
1812  *
1813  * Perform the last invalidation stage of DROP INDEX CONCURRENTLY or REINDEX
1814  * CONCURRENTLY before actually dropping the index. After calling this
1815  * function, the index is seen by all the backends as dead. Low-level locks
1816  * taken here are kept until the end of the transaction calling this function.
1817  */
1818 void
1820 {
1821  Relation userHeapRelation;
1822  Relation userIndexRelation;
1823 
1824  /*
1825  * No more predicate locks will be acquired on this index, and we're about
1826  * to stop doing inserts into the index which could show conflicts with
1827  * existing predicate locks, so now is the time to move them to the heap
1828  * relation.
1829  */
1830  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
1831  userIndexRelation = index_open(indexId, ShareUpdateExclusiveLock);
1832  TransferPredicateLocksToHeapRelation(userIndexRelation);
1833 
1834  /*
1835  * Now we are sure that nobody uses the index for queries; they just might
1836  * have it open for updating it. So now we can unset indisready and
1837  * indislive, then wait till nobody could be using it at all anymore.
1838  */
1840 
1841  /*
1842  * Invalidate the relcache for the table, so that after this commit all
1843  * sessions will refresh the table's index list. Forgetting just the
1844  * index's relcache entry is not enough.
1845  */
1846  CacheInvalidateRelcache(userHeapRelation);
1847 
1848  /*
1849  * Close the relations again, though still holding session lock.
1850  */
1851  table_close(userHeapRelation, NoLock);
1852  index_close(userIndexRelation, NoLock);
1853 }
1854 
1855 /*
1856  * index_constraint_create
1857  *
1858  * Set up a constraint associated with an index. Return the new constraint's
1859  * address.
1860  *
1861  * heapRelation: table owning the index (must be suitably locked by caller)
1862  * indexRelationId: OID of the index
1863  * parentConstraintId: if constraint is on a partition, the OID of the
1864  * constraint in the parent.
1865  * indexInfo: same info executor uses to insert into the index
1866  * constraintName: what it say (generally, should match name of index)
1867  * constraintType: one of CONSTRAINT_PRIMARY, CONSTRAINT_UNIQUE, or
1868  * CONSTRAINT_EXCLUSION
1869  * flags: bitmask that can include any combination of these bits:
1870  * INDEX_CONSTR_CREATE_MARK_AS_PRIMARY: index is a PRIMARY KEY
1871  * INDEX_CONSTR_CREATE_DEFERRABLE: constraint is DEFERRABLE
1872  * INDEX_CONSTR_CREATE_INIT_DEFERRED: constraint is INITIALLY DEFERRED
1873  * INDEX_CONSTR_CREATE_UPDATE_INDEX: update the pg_index row
1874  * INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS: remove existing dependencies
1875  * of index on table's columns
1876  * INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS: constraint uses WITHOUT OVERLAPS
1877  * allow_system_table_mods: allow table to be a system catalog
1878  * is_internal: index is constructed due to internal process
1879  */
1882  Oid indexRelationId,
1883  Oid parentConstraintId,
1884  const IndexInfo *indexInfo,
1885  const char *constraintName,
1886  char constraintType,
1887  bits16 constr_flags,
1888  bool allow_system_table_mods,
1889  bool is_internal)
1890 {
1891  Oid namespaceId = RelationGetNamespace(heapRelation);
1892  ObjectAddress myself,
1893  idxaddr;
1894  Oid conOid;
1895  bool deferrable;
1896  bool initdeferred;
1897  bool mark_as_primary;
1898  bool islocal;
1899  bool noinherit;
1900  bool is_without_overlaps;
1901  int inhcount;
1902 
1903  deferrable = (constr_flags & INDEX_CONSTR_CREATE_DEFERRABLE) != 0;
1904  initdeferred = (constr_flags & INDEX_CONSTR_CREATE_INIT_DEFERRED) != 0;
1905  mark_as_primary = (constr_flags & INDEX_CONSTR_CREATE_MARK_AS_PRIMARY) != 0;
1906  is_without_overlaps = (constr_flags & INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS) != 0;
1907 
1908  /* constraint creation support doesn't work while bootstrapping */
1910 
1911  /* enforce system-table restriction */
1912  if (!allow_system_table_mods &&
1913  IsSystemRelation(heapRelation) &&
1915  ereport(ERROR,
1916  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1917  errmsg("user-defined indexes on system catalog tables are not supported")));
1918 
1919  /* primary/unique constraints shouldn't have any expressions */
1920  if (indexInfo->ii_Expressions &&
1921  constraintType != CONSTRAINT_EXCLUSION)
1922  elog(ERROR, "constraints cannot have index expressions");
1923 
1924  /*
1925  * If we're manufacturing a constraint for a pre-existing index, we need
1926  * to get rid of the existing auto dependencies for the index (the ones
1927  * that index_create() would have made instead of calling this function).
1928  *
1929  * Note: this code would not necessarily do the right thing if the index
1930  * has any expressions or predicate, but we'd never be turning such an
1931  * index into a UNIQUE or PRIMARY KEY constraint.
1932  */
1933  if (constr_flags & INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS)
1934  deleteDependencyRecordsForClass(RelationRelationId, indexRelationId,
1935  RelationRelationId, DEPENDENCY_AUTO);
1936 
1937  if (OidIsValid(parentConstraintId))
1938  {
1939  islocal = false;
1940  inhcount = 1;
1941  noinherit = false;
1942  }
1943  else
1944  {
1945  islocal = true;
1946  inhcount = 0;
1947  noinherit = true;
1948  }
1949 
1950  /*
1951  * Construct a pg_constraint entry.
1952  */
1953  conOid = CreateConstraintEntry(constraintName,
1954  namespaceId,
1955  constraintType,
1956  deferrable,
1957  initdeferred,
1958  true,
1959  parentConstraintId,
1960  RelationGetRelid(heapRelation),
1961  indexInfo->ii_IndexAttrNumbers,
1962  indexInfo->ii_NumIndexKeyAttrs,
1963  indexInfo->ii_NumIndexAttrs,
1964  InvalidOid, /* no domain */
1965  indexRelationId, /* index OID */
1966  InvalidOid, /* no foreign key */
1967  NULL,
1968  NULL,
1969  NULL,
1970  NULL,
1971  0,
1972  ' ',
1973  ' ',
1974  NULL,
1975  0,
1976  ' ',
1977  indexInfo->ii_ExclusionOps,
1978  NULL, /* no check constraint */
1979  NULL,
1980  islocal,
1981  inhcount,
1982  noinherit,
1983  is_without_overlaps,
1984  is_internal);
1985 
1986  /*
1987  * Register the index as internally dependent on the constraint.
1988  *
1989  * Note that the constraint has a dependency on the table, so we don't
1990  * need (or want) any direct dependency from the index to the table.
1991  */
1992  ObjectAddressSet(myself, ConstraintRelationId, conOid);
1993  ObjectAddressSet(idxaddr, RelationRelationId, indexRelationId);
1994  recordDependencyOn(&idxaddr, &myself, DEPENDENCY_INTERNAL);
1995 
1996  /*
1997  * Also, if this is a constraint on a partition, give it partition-type
1998  * dependencies on the parent constraint as well as the table.
1999  */
2000  if (OidIsValid(parentConstraintId))
2001  {
2002  ObjectAddress referenced;
2003 
2004  ObjectAddressSet(referenced, ConstraintRelationId, parentConstraintId);
2005  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_PRI);
2006  ObjectAddressSet(referenced, RelationRelationId,
2007  RelationGetRelid(heapRelation));
2008  recordDependencyOn(&myself, &referenced, DEPENDENCY_PARTITION_SEC);
2009  }
2010 
2011  /*
2012  * If the constraint is deferrable, create the deferred uniqueness
2013  * checking trigger. (The trigger will be given an internal dependency on
2014  * the constraint by CreateTrigger.)
2015  */
2016  if (deferrable)
2017  {
2019 
2020  trigger->replace = false;
2021  trigger->isconstraint = true;
2022  trigger->trigname = (constraintType == CONSTRAINT_PRIMARY) ?
2023  "PK_ConstraintTrigger" :
2024  "Unique_ConstraintTrigger";
2025  trigger->relation = NULL;
2026  trigger->funcname = SystemFuncName("unique_key_recheck");
2027  trigger->args = NIL;
2028  trigger->row = true;
2029  trigger->timing = TRIGGER_TYPE_AFTER;
2030  trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
2031  trigger->columns = NIL;
2032  trigger->whenClause = NULL;
2033  trigger->transitionRels = NIL;
2034  trigger->deferrable = true;
2035  trigger->initdeferred = initdeferred;
2036  trigger->constrrel = NULL;
2037 
2038  (void) CreateTrigger(trigger, NULL, RelationGetRelid(heapRelation),
2039  InvalidOid, conOid, indexRelationId, InvalidOid,
2040  InvalidOid, NULL, true, false);
2041  }
2042 
2043  /*
2044  * If needed, mark the index as primary and/or deferred in pg_index.
2045  *
2046  * Note: When making an existing index into a constraint, caller must have
2047  * a table lock that prevents concurrent table updates; otherwise, there
2048  * is a risk that concurrent readers of the table will miss seeing this
2049  * index at all.
2050  */
2051  if ((constr_flags & INDEX_CONSTR_CREATE_UPDATE_INDEX) &&
2052  (mark_as_primary || deferrable))
2053  {
2054  Relation pg_index;
2055  HeapTuple indexTuple;
2056  Form_pg_index indexForm;
2057  bool dirty = false;
2058  bool marked_as_primary = false;
2059 
2060  pg_index = table_open(IndexRelationId, RowExclusiveLock);
2061 
2062  indexTuple = SearchSysCacheCopy1(INDEXRELID,
2063  ObjectIdGetDatum(indexRelationId));
2064  if (!HeapTupleIsValid(indexTuple))
2065  elog(ERROR, "cache lookup failed for index %u", indexRelationId);
2066  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
2067 
2068  if (mark_as_primary && !indexForm->indisprimary)
2069  {
2070  indexForm->indisprimary = true;
2071  dirty = true;
2072  marked_as_primary = true;
2073  }
2074 
2075  if (deferrable && indexForm->indimmediate)
2076  {
2077  indexForm->indimmediate = false;
2078  dirty = true;
2079  }
2080 
2081  if (dirty)
2082  {
2083  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
2084 
2085  /*
2086  * When we mark an existing index as primary, force a relcache
2087  * flush on its parent table, so that all sessions will become
2088  * aware that the table now has a primary key. This is important
2089  * because it affects some replication behaviors.
2090  */
2091  if (marked_as_primary)
2092  CacheInvalidateRelcache(heapRelation);
2093 
2094  InvokeObjectPostAlterHookArg(IndexRelationId, indexRelationId, 0,
2095  InvalidOid, is_internal);
2096  }
2097 
2098  heap_freetuple(indexTuple);
2099  table_close(pg_index, RowExclusiveLock);
2100  }
2101 
2102  return myself;
2103 }
2104 
2105 /*
2106  * index_drop
2107  *
2108  * NOTE: this routine should now only be called through performDeletion(),
2109  * else associated dependencies won't be cleaned up.
2110  *
2111  * If concurrent is true, do a DROP INDEX CONCURRENTLY. If concurrent is
2112  * false but concurrent_lock_mode is true, then do a normal DROP INDEX but
2113  * take a lock for CONCURRENTLY processing. That is used as part of REINDEX
2114  * CONCURRENTLY.
2115  */
2116 void
2117 index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
2118 {
2119  Oid heapId;
2120  Relation userHeapRelation;
2121  Relation userIndexRelation;
2122  Relation indexRelation;
2123  HeapTuple tuple;
2124  bool hasexprs;
2125  LockRelId heaprelid,
2126  indexrelid;
2127  LOCKTAG heaplocktag;
2128  LOCKMODE lockmode;
2129 
2130  /*
2131  * A temporary relation uses a non-concurrent DROP. Other backends can't
2132  * access a temporary relation, so there's no harm in grabbing a stronger
2133  * lock (see comments in RemoveRelations), and a non-concurrent DROP is
2134  * more efficient.
2135  */
2136  Assert(get_rel_persistence(indexId) != RELPERSISTENCE_TEMP ||
2137  (!concurrent && !concurrent_lock_mode));
2138 
2139  /*
2140  * To drop an index safely, we must grab exclusive lock on its parent
2141  * table. Exclusive lock on the index alone is insufficient because
2142  * another backend might be about to execute a query on the parent table.
2143  * If it relies on a previously cached list of index OIDs, then it could
2144  * attempt to access the just-dropped index. We must therefore take a
2145  * table lock strong enough to prevent all queries on the table from
2146  * proceeding until we commit and send out a shared-cache-inval notice
2147  * that will make them update their index lists.
2148  *
2149  * In the concurrent case we avoid this requirement by disabling index use
2150  * in multiple steps and waiting out any transactions that might be using
2151  * the index, so we don't need exclusive lock on the parent table. Instead
2152  * we take ShareUpdateExclusiveLock, to ensure that two sessions aren't
2153  * doing CREATE/DROP INDEX CONCURRENTLY on the same index. (We will get
2154  * AccessExclusiveLock on the index below, once we're sure nobody else is
2155  * using it.)
2156  */
2157  heapId = IndexGetRelation(indexId, false);
2158  lockmode = (concurrent || concurrent_lock_mode) ? ShareUpdateExclusiveLock : AccessExclusiveLock;
2159  userHeapRelation = table_open(heapId, lockmode);
2160  userIndexRelation = index_open(indexId, lockmode);
2161 
2162  /*
2163  * We might still have open queries using it in our own session, which the
2164  * above locking won't prevent, so test explicitly.
2165  */
2166  CheckTableNotInUse(userIndexRelation, "DROP INDEX");
2167 
2168  /*
2169  * Drop Index Concurrently is more or less the reverse process of Create
2170  * Index Concurrently.
2171  *
2172  * First we unset indisvalid so queries starting afterwards don't use the
2173  * index to answer queries anymore. We have to keep indisready = true so
2174  * transactions that are still scanning the index can continue to see
2175  * valid index contents. For instance, if they are using READ COMMITTED
2176  * mode, and another transaction makes changes and commits, they need to
2177  * see those new tuples in the index.
2178  *
2179  * After all transactions that could possibly have used the index for
2180  * queries end, we can unset indisready and indislive, then wait till
2181  * nobody could be touching it anymore. (Note: we need indislive because
2182  * this state must be distinct from the initial state during CREATE INDEX
2183  * CONCURRENTLY, which has indislive true while indisready and indisvalid
2184  * are false. That's because in that state, transactions must examine the
2185  * index for HOT-safety decisions, while in this state we don't want them
2186  * to open it at all.)
2187  *
2188  * Since all predicate locks on the index are about to be made invalid, we
2189  * must promote them to predicate locks on the heap. In the
2190  * non-concurrent case we can just do that now. In the concurrent case
2191  * it's a bit trickier. The predicate locks must be moved when there are
2192  * no index scans in progress on the index and no more can subsequently
2193  * start, so that no new predicate locks can be made on the index. Also,
2194  * they must be moved before heap inserts stop maintaining the index, else
2195  * the conflict with the predicate lock on the index gap could be missed
2196  * before the lock on the heap relation is in place to detect a conflict
2197  * based on the heap tuple insert.
2198  */
2199  if (concurrent)
2200  {
2201  /*
2202  * We must commit our transaction in order to make the first pg_index
2203  * state update visible to other sessions. If the DROP machinery has
2204  * already performed any other actions (removal of other objects,
2205  * pg_depend entries, etc), the commit would make those actions
2206  * permanent, which would leave us with inconsistent catalog state if
2207  * we fail partway through the following sequence. Since DROP INDEX
2208  * CONCURRENTLY is restricted to dropping just one index that has no
2209  * dependencies, we should get here before anything's been done ---
2210  * but let's check that to be sure. We can verify that the current
2211  * transaction has not executed any transactional updates by checking
2212  * that no XID has been assigned.
2213  */
2215  ereport(ERROR,
2216  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2217  errmsg("DROP INDEX CONCURRENTLY must be first action in transaction")));
2218 
2219  /*
2220  * Mark index invalid by updating its pg_index entry
2221  */
2223 
2224  /*
2225  * Invalidate the relcache for the table, so that after this commit
2226  * all sessions will refresh any cached plans that might reference the
2227  * index.
2228  */
2229  CacheInvalidateRelcache(userHeapRelation);
2230 
2231  /* save lockrelid and locktag for below, then close but keep locks */
2232  heaprelid = userHeapRelation->rd_lockInfo.lockRelId;
2233  SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
2234  indexrelid = userIndexRelation->rd_lockInfo.lockRelId;
2235 
2236  table_close(userHeapRelation, NoLock);
2237  index_close(userIndexRelation, NoLock);
2238 
2239  /*
2240  * We must commit our current transaction so that the indisvalid
2241  * update becomes visible to other transactions; then start another.
2242  * Note that any previously-built data structures are lost in the
2243  * commit. The only data we keep past here are the relation IDs.
2244  *
2245  * Before committing, get a session-level lock on the table, to ensure
2246  * that neither it nor the index can be dropped before we finish. This
2247  * cannot block, even if someone else is waiting for access, because
2248  * we already have the same lock within our transaction.
2249  */
2252 
2256 
2257  /*
2258  * Now we must wait until no running transaction could be using the
2259  * index for a query. Use AccessExclusiveLock here to check for
2260  * running transactions that hold locks of any kind on the table. Note
2261  * we do not need to worry about xacts that open the table for reading
2262  * after this point; they will see the index as invalid when they open
2263  * the relation.
2264  *
2265  * Note: the reason we use actual lock acquisition here, rather than
2266  * just checking the ProcArray and sleeping, is that deadlock is
2267  * possible if one of the transactions in question is blocked trying
2268  * to acquire an exclusive lock on our table. The lock code will
2269  * detect deadlock and error out properly.
2270  *
2271  * Note: we report progress through WaitForLockers() unconditionally
2272  * here, even though it will only be used when we're called by REINDEX
2273  * CONCURRENTLY and not when called by DROP INDEX CONCURRENTLY.
2274  */
2275  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2276 
2277  /* Finish invalidation of index and mark it as dead */
2278  index_concurrently_set_dead(heapId, indexId);
2279 
2280  /*
2281  * Again, commit the transaction to make the pg_index update visible
2282  * to other sessions.
2283  */
2286 
2287  /*
2288  * Wait till every transaction that saw the old index state has
2289  * finished. See above about progress reporting.
2290  */
2291  WaitForLockers(heaplocktag, AccessExclusiveLock, true);
2292 
2293  /*
2294  * Re-open relations to allow us to complete our actions.
2295  *
2296  * At this point, nothing should be accessing the index, but lets
2297  * leave nothing to chance and grab AccessExclusiveLock on the index
2298  * before the physical deletion.
2299  */
2300  userHeapRelation = table_open(heapId, ShareUpdateExclusiveLock);
2301  userIndexRelation = index_open(indexId, AccessExclusiveLock);
2302  }
2303  else
2304  {
2305  /* Not concurrent, so just transfer predicate locks and we're good */
2306  TransferPredicateLocksToHeapRelation(userIndexRelation);
2307  }
2308 
2309  /*
2310  * Schedule physical removal of the files (if any)
2311  */
2312  if (RELKIND_HAS_STORAGE(userIndexRelation->rd_rel->relkind))
2313  RelationDropStorage(userIndexRelation);
2314 
2315  /* ensure that stats are dropped if transaction commits */
2316  pgstat_drop_relation(userIndexRelation);
2317 
2318  /*
2319  * Close and flush the index's relcache entry, to ensure relcache doesn't
2320  * try to rebuild it while we're deleting catalog entries. We keep the
2321  * lock though.
2322  */
2323  index_close(userIndexRelation, NoLock);
2324 
2325  RelationForgetRelation(indexId);
2326 
2327  /*
2328  * fix INDEX relation, and check for expressional index
2329  */
2330  indexRelation = table_open(IndexRelationId, RowExclusiveLock);
2331 
2332  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
2333  if (!HeapTupleIsValid(tuple))
2334  elog(ERROR, "cache lookup failed for index %u", indexId);
2335 
2336  hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs,
2337  RelationGetDescr(indexRelation));
2338 
2339  CatalogTupleDelete(indexRelation, &tuple->t_self);
2340 
2341  ReleaseSysCache(tuple);
2342  table_close(indexRelation, RowExclusiveLock);
2343 
2344  /*
2345  * if it has any expression columns, we might have stored statistics about
2346  * them.
2347  */
2348  if (hasexprs)
2349  RemoveStatistics(indexId, 0);
2350 
2351  /*
2352  * fix ATTRIBUTE relation
2353  */
2354  DeleteAttributeTuples(indexId);
2355 
2356  /*
2357  * fix RELATION relation
2358  */
2359  DeleteRelationTuple(indexId);
2360 
2361  /*
2362  * fix INHERITS relation
2363  */
2364  DeleteInheritsTuple(indexId, InvalidOid, false, NULL);
2365 
2366  /*
2367  * We are presently too lazy to attempt to compute the new correct value
2368  * of relhasindex (the next VACUUM will fix it if necessary). So there is
2369  * no need to update the pg_class tuple for the owning relation. But we
2370  * must send out a shared-cache-inval notice on the owning relation to
2371  * ensure other backends update their relcache lists of indexes. (In the
2372  * concurrent case, this is redundant but harmless.)
2373  */
2374  CacheInvalidateRelcache(userHeapRelation);
2375 
2376  /*
2377  * Close owning rel, but keep lock
2378  */
2379  table_close(userHeapRelation, NoLock);
2380 
2381  /*
2382  * Release the session locks before we go.
2383  */
2384  if (concurrent)
2385  {
2388  }
2389 }
2390 
2391 /* ----------------------------------------------------------------
2392  * index_build support
2393  * ----------------------------------------------------------------
2394  */
2395 
2396 /* ----------------
2397  * BuildIndexInfo
2398  * Construct an IndexInfo record for an open index
2399  *
2400  * IndexInfo stores the information about the index that's needed by
2401  * FormIndexDatum, which is used for both index_build() and later insertion
2402  * of individual index tuples. Normally we build an IndexInfo for an index
2403  * just once per command, and then use it for (potentially) many tuples.
2404  * ----------------
2405  */
2406 IndexInfo *
2408 {
2409  IndexInfo *ii;
2410  Form_pg_index indexStruct = index->rd_index;
2411  int i;
2412  int numAtts;
2413 
2414  /* check the number of keys, and copy attr numbers into the IndexInfo */
2415  numAtts = indexStruct->indnatts;
2416  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2417  elog(ERROR, "invalid indnatts %d for index %u",
2418  numAtts, RelationGetRelid(index));
2419 
2420  /*
2421  * Create the node, fetching any expressions needed for expressional
2422  * indexes and index predicate if any.
2423  */
2424  ii = makeIndexInfo(indexStruct->indnatts,
2425  indexStruct->indnkeyatts,
2426  index->rd_rel->relam,
2429  indexStruct->indisunique,
2430  indexStruct->indnullsnotdistinct,
2431  indexStruct->indisready,
2432  false,
2433  index->rd_indam->amsummarizing);
2434 
2435  /* fill in attribute numbers */
2436  for (i = 0; i < numAtts; i++)
2437  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2438 
2439  /* fetch exclusion constraint info if any */
2440  if (indexStruct->indisexclusion)
2441  {
2443  &ii->ii_ExclusionOps,
2444  &ii->ii_ExclusionProcs,
2445  &ii->ii_ExclusionStrats);
2446  }
2447 
2448  return ii;
2449 }
2450 
2451 /* ----------------
2452  * BuildDummyIndexInfo
2453  * Construct a dummy IndexInfo record for an open index
2454  *
2455  * This differs from the real BuildIndexInfo in that it will never run any
2456  * user-defined code that might exist in index expressions or predicates.
2457  * Instead of the real index expressions, we return null constants that have
2458  * the right types/typmods/collations. Predicates and exclusion clauses are
2459  * just ignored. This is sufficient for the purpose of truncating an index,
2460  * since we will not need to actually evaluate the expressions or predicates;
2461  * the only thing that's likely to be done with the data is construction of
2462  * a tupdesc describing the index's rowtype.
2463  * ----------------
2464  */
2465 IndexInfo *
2467 {
2468  IndexInfo *ii;
2469  Form_pg_index indexStruct = index->rd_index;
2470  int i;
2471  int numAtts;
2472 
2473  /* check the number of keys, and copy attr numbers into the IndexInfo */
2474  numAtts = indexStruct->indnatts;
2475  if (numAtts < 1 || numAtts > INDEX_MAX_KEYS)
2476  elog(ERROR, "invalid indnatts %d for index %u",
2477  numAtts, RelationGetRelid(index));
2478 
2479  /*
2480  * Create the node, using dummy index expressions, and pretending there is
2481  * no predicate.
2482  */
2483  ii = makeIndexInfo(indexStruct->indnatts,
2484  indexStruct->indnkeyatts,
2485  index->rd_rel->relam,
2487  NIL,
2488  indexStruct->indisunique,
2489  indexStruct->indnullsnotdistinct,
2490  indexStruct->indisready,
2491  false,
2492  index->rd_indam->amsummarizing);
2493 
2494  /* fill in attribute numbers */
2495  for (i = 0; i < numAtts; i++)
2496  ii->ii_IndexAttrNumbers[i] = indexStruct->indkey.values[i];
2497 
2498  /* We ignore the exclusion constraint if any */
2499 
2500  return ii;
2501 }
2502 
2503 /*
2504  * CompareIndexInfo
2505  * Return whether the properties of two indexes (in different tables)
2506  * indicate that they have the "same" definitions.
2507  *
2508  * Note: passing collations and opfamilies separately is a kludge. Adding
2509  * them to IndexInfo may result in better coding here and elsewhere.
2510  *
2511  * Use build_attrmap_by_name(index2, index1) to build the attmap.
2512  */
2513 bool
2514 CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2,
2515  const Oid *collations1, const Oid *collations2,
2516  const Oid *opfamilies1, const Oid *opfamilies2,
2517  const AttrMap *attmap)
2518 {
2519  int i;
2520 
2521  if (info1->ii_Unique != info2->ii_Unique)
2522  return false;
2523 
2524  if (info1->ii_NullsNotDistinct != info2->ii_NullsNotDistinct)
2525  return false;
2526 
2527  /* indexes are only equivalent if they have the same access method */
2528  if (info1->ii_Am != info2->ii_Am)
2529  return false;
2530 
2531  /* and same number of attributes */
2532  if (info1->ii_NumIndexAttrs != info2->ii_NumIndexAttrs)
2533  return false;
2534 
2535  /* and same number of key attributes */
2536  if (info1->ii_NumIndexKeyAttrs != info2->ii_NumIndexKeyAttrs)
2537  return false;
2538 
2539  /*
2540  * and columns match through the attribute map (actual attribute numbers
2541  * might differ!) Note that this checks that index columns that are
2542  * expressions appear in the same positions. We will next compare the
2543  * expressions themselves.
2544  */
2545  for (i = 0; i < info1->ii_NumIndexAttrs; i++)
2546  {
2547  if (attmap->maplen < info2->ii_IndexAttrNumbers[i])
2548  elog(ERROR, "incorrect attribute map");
2549 
2550  /* ignore expressions for now (but check their collation/opfamily) */
2551  if (!(info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber &&
2553  {
2554  /* fail if just one index has an expression in this column */
2555  if (info1->ii_IndexAttrNumbers[i] == InvalidAttrNumber ||
2557  return false;
2558 
2559  /* both are columns, so check for match after mapping */
2560  if (attmap->attnums[info2->ii_IndexAttrNumbers[i] - 1] !=
2561  info1->ii_IndexAttrNumbers[i])
2562  return false;
2563  }
2564 
2565  /* collation and opfamily are not valid for included columns */
2566  if (i >= info1->ii_NumIndexKeyAttrs)
2567  continue;
2568 
2569  if (collations1[i] != collations2[i])
2570  return false;
2571  if (opfamilies1[i] != opfamilies2[i])
2572  return false;
2573  }
2574 
2575  /*
2576  * For expression indexes: either both are expression indexes, or neither
2577  * is; if they are, make sure the expressions match.
2578  */
2579  if ((info1->ii_Expressions != NIL) != (info2->ii_Expressions != NIL))
2580  return false;
2581  if (info1->ii_Expressions != NIL)
2582  {
2583  bool found_whole_row;
2584  Node *mapped;
2585 
2586  mapped = map_variable_attnos((Node *) info2->ii_Expressions,
2587  1, 0, attmap,
2588  InvalidOid, &found_whole_row);
2589  if (found_whole_row)
2590  {
2591  /*
2592  * we could throw an error here, but seems out of scope for this
2593  * routine.
2594  */
2595  return false;
2596  }
2597 
2598  if (!equal(info1->ii_Expressions, mapped))
2599  return false;
2600  }
2601 
2602  /* Partial index predicates must be identical, if they exist */
2603  if ((info1->ii_Predicate == NULL) != (info2->ii_Predicate == NULL))
2604  return false;
2605  if (info1->ii_Predicate != NULL)
2606  {
2607  bool found_whole_row;
2608  Node *mapped;
2609 
2610  mapped = map_variable_attnos((Node *) info2->ii_Predicate,
2611  1, 0, attmap,
2612  InvalidOid, &found_whole_row);
2613  if (found_whole_row)
2614  {
2615  /*
2616  * we could throw an error here, but seems out of scope for this
2617  * routine.
2618  */
2619  return false;
2620  }
2621  if (!equal(info1->ii_Predicate, mapped))
2622  return false;
2623  }
2624 
2625  /* No support currently for comparing exclusion indexes. */
2626  if (info1->ii_ExclusionOps != NULL || info2->ii_ExclusionOps != NULL)
2627  return false;
2628 
2629  return true;
2630 }
2631 
2632 /* ----------------
2633  * BuildSpeculativeIndexInfo
2634  * Add extra state to IndexInfo record
2635  *
2636  * For unique indexes, we usually don't want to add info to the IndexInfo for
2637  * checking uniqueness, since the B-Tree AM handles that directly. However,
2638  * in the case of speculative insertion, additional support is required.
2639  *
2640  * Do this processing here rather than in BuildIndexInfo() to not incur the
2641  * overhead in the common non-speculative cases.
2642  * ----------------
2643  */
2644 void
2646 {
2647  int indnkeyatts;
2648  int i;
2649 
2651 
2652  /*
2653  * fetch info for checking unique indexes
2654  */
2655  Assert(ii->ii_Unique);
2656 
2657  if (index->rd_rel->relam != BTREE_AM_OID)
2658  elog(ERROR, "unexpected non-btree speculative unique index");
2659 
2660  ii->ii_UniqueOps = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2661  ii->ii_UniqueProcs = (Oid *) palloc(sizeof(Oid) * indnkeyatts);
2662  ii->ii_UniqueStrats = (uint16 *) palloc(sizeof(uint16) * indnkeyatts);
2663 
2664  /*
2665  * We have to look up the operator's strategy number. This provides a
2666  * cross-check that the operator does match the index.
2667  */
2668  /* We need the func OIDs and strategy numbers too */
2669  for (i = 0; i < indnkeyatts; i++)
2670  {
2672  ii->ii_UniqueOps[i] =
2673  get_opfamily_member(index->rd_opfamily[i],
2674  index->rd_opcintype[i],
2675  index->rd_opcintype[i],
2676  ii->ii_UniqueStrats[i]);
2677  if (!OidIsValid(ii->ii_UniqueOps[i]))
2678  elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2679  ii->ii_UniqueStrats[i], index->rd_opcintype[i],
2680  index->rd_opcintype[i], index->rd_opfamily[i]);
2681  ii->ii_UniqueProcs[i] = get_opcode(ii->ii_UniqueOps[i]);
2682  }
2683 }
2684 
2685 /* ----------------
2686  * FormIndexDatum
2687  * Construct values[] and isnull[] arrays for a new index tuple.
2688  *
2689  * indexInfo Info about the index
2690  * slot Heap tuple for which we must prepare an index entry
2691  * estate executor state for evaluating any index expressions
2692  * values Array of index Datums (output area)
2693  * isnull Array of is-null indicators (output area)
2694  *
2695  * When there are no index expressions, estate may be NULL. Otherwise it
2696  * must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
2697  * context must point to the heap tuple passed in.
2698  *
2699  * Notice we don't actually call index_form_tuple() here; we just prepare
2700  * its input arrays values[] and isnull[]. This is because the index AM
2701  * may wish to alter the data before storage.
2702  * ----------------
2703  */
2704 void
2706  TupleTableSlot *slot,
2707  EState *estate,
2708  Datum *values,
2709  bool *isnull)
2710 {
2711  ListCell *indexpr_item;
2712  int i;
2713 
2714  if (indexInfo->ii_Expressions != NIL &&
2715  indexInfo->ii_ExpressionsState == NIL)
2716  {
2717  /* First time through, set up expression evaluation state */
2718  indexInfo->ii_ExpressionsState =
2719  ExecPrepareExprList(indexInfo->ii_Expressions, estate);
2720  /* Check caller has set up context correctly */
2721  Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
2722  }
2723  indexpr_item = list_head(indexInfo->ii_ExpressionsState);
2724 
2725  for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
2726  {
2727  int keycol = indexInfo->ii_IndexAttrNumbers[i];
2728  Datum iDatum;
2729  bool isNull;
2730 
2731  if (keycol < 0)
2732  iDatum = slot_getsysattr(slot, keycol, &isNull);
2733  else if (keycol != 0)
2734  {
2735  /*
2736  * Plain index column; get the value we need directly from the
2737  * heap tuple.
2738  */
2739  iDatum = slot_getattr(slot, keycol, &isNull);
2740  }
2741  else
2742  {
2743  /*
2744  * Index expression --- need to evaluate it.
2745  */
2746  if (indexpr_item == NULL)
2747  elog(ERROR, "wrong number of index expressions");
2748  iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
2749  GetPerTupleExprContext(estate),
2750  &isNull);
2751  indexpr_item = lnext(indexInfo->ii_ExpressionsState, indexpr_item);
2752  }
2753  values[i] = iDatum;
2754  isnull[i] = isNull;
2755  }
2756 
2757  if (indexpr_item != NULL)
2758  elog(ERROR, "wrong number of index expressions");
2759 }
2760 
2761 
2762 /*
2763  * index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
2764  *
2765  * This routine updates the pg_class row of either an index or its parent
2766  * relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
2767  * to ensure we can do all the necessary work in just one update.
2768  *
2769  * hasindex: set relhasindex to this value
2770  * reltuples: if >= 0, set reltuples to this value; else no change
2771  *
2772  * If reltuples >= 0, relpages and relallvisible are also updated (using
2773  * RelationGetNumberOfBlocks() and visibilitymap_count()).
2774  *
2775  * NOTE: an important side-effect of this operation is that an SI invalidation
2776  * message is sent out to all backends --- including me --- causing relcache
2777  * entries to be flushed or updated with the new data. This must happen even
2778  * if we find that no change is needed in the pg_class row. When updating
2779  * a heap entry, this ensures that other backends find out about the new
2780  * index. When updating an index, it's important because some index AMs
2781  * expect a relcache flush to occur after REINDEX.
2782  */
2783 static void
2785  bool hasindex,
2786  double reltuples)
2787 {
2788  Oid relid = RelationGetRelid(rel);
2789  Relation pg_class;
2790  HeapTuple tuple;
2791  Form_pg_class rd_rel;
2792  bool dirty;
2793 
2794  /*
2795  * We always update the pg_class row using a non-transactional,
2796  * overwrite-in-place update. There are several reasons for this:
2797  *
2798  * 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
2799  *
2800  * 2. We could be reindexing pg_class itself, in which case we can't move
2801  * its pg_class row because CatalogTupleInsert/CatalogTupleUpdate might
2802  * not know about all the indexes yet (see reindex_relation).
2803  *
2804  * 3. Because we execute CREATE INDEX with just share lock on the parent
2805  * rel (to allow concurrent index creations), an ordinary update could
2806  * suffer a tuple-concurrently-updated failure against another CREATE
2807  * INDEX committing at about the same time. We can avoid that by having
2808  * them both do nontransactional updates (we assume they will both be
2809  * trying to change the pg_class row to the same thing, so it doesn't
2810  * matter which goes first).
2811  *
2812  * It is safe to use a non-transactional update even though our
2813  * transaction could still fail before committing. Setting relhasindex
2814  * true is safe even if there are no indexes (VACUUM will eventually fix
2815  * it). And of course the new relpages and reltuples counts are correct
2816  * regardless. However, we don't want to change relpages (or
2817  * relallvisible) if the caller isn't providing an updated reltuples
2818  * count, because that would bollix the reltuples/relpages ratio which is
2819  * what's really important.
2820  */
2821 
2822  pg_class = table_open(RelationRelationId, RowExclusiveLock);
2823 
2824  /*
2825  * Make a copy of the tuple to update. Normally we use the syscache, but
2826  * we can't rely on that during bootstrap or while reindexing pg_class
2827  * itself.
2828  */
2829  if (IsBootstrapProcessingMode() ||
2830  ReindexIsProcessingHeap(RelationRelationId))
2831  {
2832  /* don't assume syscache will work */
2833  TableScanDesc pg_class_scan;
2834  ScanKeyData key[1];
2835 
2836  ScanKeyInit(&key[0],
2837  Anum_pg_class_oid,
2838  BTEqualStrategyNumber, F_OIDEQ,
2839  ObjectIdGetDatum(relid));
2840 
2841  pg_class_scan = table_beginscan_catalog(pg_class, 1, key);
2842  tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
2843  tuple = heap_copytuple(tuple);
2844  table_endscan(pg_class_scan);
2845  }
2846  else
2847  {
2848  /* normal case, use syscache */
2849  tuple = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relid));
2850  }
2851 
2852  if (!HeapTupleIsValid(tuple))
2853  elog(ERROR, "could not find tuple for relation %u", relid);
2854  rd_rel = (Form_pg_class) GETSTRUCT(tuple);
2855 
2856  /* Should this be a more comprehensive test? */
2857  Assert(rd_rel->relkind != RELKIND_PARTITIONED_INDEX);
2858 
2859  /*
2860  * As a special hack, if we are dealing with an empty table and the
2861  * existing reltuples is -1, we leave that alone. This ensures that
2862  * creating an index as part of CREATE TABLE doesn't cause the table to
2863  * prematurely look like it's been vacuumed.
2864  */
2865  if (reltuples == 0 && rd_rel->reltuples < 0)
2866  reltuples = -1;
2867 
2868  /* Apply required updates, if any, to copied tuple */
2869 
2870  dirty = false;
2871  if (rd_rel->relhasindex != hasindex)
2872  {
2873  rd_rel->relhasindex = hasindex;
2874  dirty = true;
2875  }
2876 
2877  /*
2878  * Avoid updating statistics during binary upgrade, because the indexes
2879  * are created before the data is moved into place.
2880  */
2881  if (reltuples >= 0 && !IsBinaryUpgrade)
2882  {
2883  BlockNumber relpages = RelationGetNumberOfBlocks(rel);
2884  BlockNumber relallvisible;
2885 
2886  if (rd_rel->relkind != RELKIND_INDEX)
2887  visibilitymap_count(rel, &relallvisible, NULL);
2888  else /* don't bother for indexes */
2889  relallvisible = 0;
2890 
2891  if (rd_rel->relpages != (int32) relpages)
2892  {
2893  rd_rel->relpages = (int32) relpages;
2894  dirty = true;
2895  }
2896  if (rd_rel->reltuples != (float4) reltuples)
2897  {
2898  rd_rel->reltuples = (float4) reltuples;
2899  dirty = true;
2900  }
2901  if (rd_rel->relallvisible != (int32) relallvisible)
2902  {
2903  rd_rel->relallvisible = (int32) relallvisible;
2904  dirty = true;
2905  }
2906  }
2907 
2908  /*
2909  * If anything changed, write out the tuple
2910  */
2911  if (dirty)
2912  {
2913  heap_inplace_update(pg_class, tuple);
2914  /* the above sends a cache inval message */
2915  }
2916  else
2917  {
2918  /* no need to change tuple, but force relcache inval anyway */
2920  }
2921 
2922  heap_freetuple(tuple);
2923 
2924  table_close(pg_class, RowExclusiveLock);
2925 }
2926 
2927 
2928 /*
2929  * index_build - invoke access-method-specific index build procedure
2930  *
2931  * On entry, the index's catalog entries are valid, and its physical disk
2932  * file has been created but is empty. We call the AM-specific build
2933  * procedure to fill in the index contents. We then update the pg_class
2934  * entries of the index and heap relation as needed, using statistics
2935  * returned by ambuild as well as data passed by the caller.
2936  *
2937  * isreindex indicates we are recreating a previously-existing index.
2938  * parallel indicates if parallelism may be useful.
2939  *
2940  * Note: before Postgres 8.2, the passed-in heap and index Relations
2941  * were automatically closed by this routine. This is no longer the case.
2942  * The caller opened 'em, and the caller should close 'em.
2943  */
2944 void
2945 index_build(Relation heapRelation,
2946  Relation indexRelation,
2947  IndexInfo *indexInfo,
2948  bool isreindex,
2949  bool parallel)
2950 {
2951  IndexBuildResult *stats;
2952  Oid save_userid;
2953  int save_sec_context;
2954  int save_nestlevel;
2955 
2956  /*
2957  * sanity checks
2958  */
2959  Assert(RelationIsValid(indexRelation));
2960  Assert(PointerIsValid(indexRelation->rd_indam));
2961  Assert(PointerIsValid(indexRelation->rd_indam->ambuild));
2962  Assert(PointerIsValid(indexRelation->rd_indam->ambuildempty));
2963 
2964  /*
2965  * Determine worker process details for parallel CREATE INDEX. Currently,
2966  * only btree has support for parallel builds.
2967  *
2968  * Note that planner considers parallel safety for us.
2969  */
2970  if (parallel && IsNormalProcessingMode() &&
2971  indexRelation->rd_indam->amcanbuildparallel)
2972  indexInfo->ii_ParallelWorkers =
2974  RelationGetRelid(indexRelation));
2975 
2976  if (indexInfo->ii_ParallelWorkers == 0)
2977  ereport(DEBUG1,
2978  (errmsg_internal("building index \"%s\" on table \"%s\" serially",
2979  RelationGetRelationName(indexRelation),
2980  RelationGetRelationName(heapRelation))));
2981  else
2982  ereport(DEBUG1,
2983  (errmsg_internal("building index \"%s\" on table \"%s\" with request for %d parallel workers",
2984  RelationGetRelationName(indexRelation),
2985  RelationGetRelationName(heapRelation),
2986  indexInfo->ii_ParallelWorkers)));
2987 
2988  /*
2989  * Switch to the table owner's userid, so that any index functions are run
2990  * as that user. Also lock down security-restricted operations and
2991  * arrange to make GUC variable changes local to this command.
2992  */
2993  GetUserIdAndSecContext(&save_userid, &save_sec_context);
2994  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
2995  save_sec_context | SECURITY_RESTRICTED_OPERATION);
2996  save_nestlevel = NewGUCNestLevel();
2998 
2999  /* Set up initial progress report status */
3000  {
3001  const int progress_index[] = {
3008  };
3009  const int64 progress_vals[] = {
3012  0, 0, 0, 0
3013  };
3014 
3015  pgstat_progress_update_multi_param(6, progress_index, progress_vals);
3016  }
3017 
3018  /*
3019  * Call the access method's build procedure
3020  */
3021  stats = indexRelation->rd_indam->ambuild(heapRelation, indexRelation,
3022  indexInfo);
3023  Assert(PointerIsValid(stats));
3024 
3025  /*
3026  * If this is an unlogged index, we may need to write out an init fork for
3027  * it -- but we must first check whether one already exists. If, for
3028  * example, an unlogged relation is truncated in the transaction that
3029  * created it, or truncated twice in a subsequent transaction, the
3030  * relfilenumber won't change, and nothing needs to be done here.
3031  */
3032  if (indexRelation->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED &&
3033  !smgrexists(RelationGetSmgr(indexRelation), INIT_FORKNUM))
3034  {
3035  smgrcreate(RelationGetSmgr(indexRelation), INIT_FORKNUM, false);
3036  log_smgrcreate(&indexRelation->rd_locator, INIT_FORKNUM);
3037  indexRelation->rd_indam->ambuildempty(indexRelation);
3038  }
3039 
3040  /*
3041  * If we found any potentially broken HOT chains, mark the index as not
3042  * being usable until the current transaction is below the event horizon.
3043  * See src/backend/access/heap/README.HOT for discussion. While it might
3044  * become safe to use the index earlier based on actual cleanup activity
3045  * and other active transactions, the test for that would be much more
3046  * complex and would require some form of blocking, so keep it simple and
3047  * fast by just using the current transaction.
3048  *
3049  * However, when reindexing an existing index, we should do nothing here.
3050  * Any HOT chains that are broken with respect to the index must predate
3051  * the index's original creation, so there is no need to change the
3052  * index's usability horizon. Moreover, we *must not* try to change the
3053  * index's pg_index entry while reindexing pg_index itself, and this
3054  * optimization nicely prevents that. The more complex rules needed for a
3055  * reindex are handled separately after this function returns.
3056  *
3057  * We also need not set indcheckxmin during a concurrent index build,
3058  * because we won't set indisvalid true until all transactions that care
3059  * about the broken HOT chains are gone.
3060  *
3061  * Therefore, this code path can only be taken during non-concurrent
3062  * CREATE INDEX. Thus the fact that heap_update will set the pg_index
3063  * tuple's xmin doesn't matter, because that tuple was created in the
3064  * current transaction anyway. That also means we don't need to worry
3065  * about any concurrent readers of the tuple; no other transaction can see
3066  * it yet.
3067  */
3068  if (indexInfo->ii_BrokenHotChain &&
3069  !isreindex &&
3070  !indexInfo->ii_Concurrent)
3071  {
3072  Oid indexId = RelationGetRelid(indexRelation);
3073  Relation pg_index;
3074  HeapTuple indexTuple;
3075  Form_pg_index indexForm;
3076 
3077  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3078 
3079  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3080  ObjectIdGetDatum(indexId));
3081  if (!HeapTupleIsValid(indexTuple))
3082  elog(ERROR, "cache lookup failed for index %u", indexId);
3083  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3084 
3085  /* If it's a new index, indcheckxmin shouldn't be set ... */
3086  Assert(!indexForm->indcheckxmin);
3087 
3088  indexForm->indcheckxmin = true;
3089  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3090 
3091  heap_freetuple(indexTuple);
3092  table_close(pg_index, RowExclusiveLock);
3093  }
3094 
3095  /*
3096  * Update heap and index pg_class rows
3097  */
3098  index_update_stats(heapRelation,
3099  true,
3100  stats->heap_tuples);
3101 
3102  index_update_stats(indexRelation,
3103  false,
3104  stats->index_tuples);
3105 
3106  /* Make the updated catalog row versions visible */
3108 
3109  /*
3110  * If it's for an exclusion constraint, make a second pass over the heap
3111  * to verify that the constraint is satisfied. We must not do this until
3112  * the index is fully valid. (Broken HOT chains shouldn't matter, though;
3113  * see comments for IndexCheckExclusion.)
3114  */
3115  if (indexInfo->ii_ExclusionOps != NULL)
3116  IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
3117 
3118  /* Roll back any GUC changes executed by index functions */
3119  AtEOXact_GUC(false, save_nestlevel);
3120 
3121  /* Restore userid and security context */
3122  SetUserIdAndSecContext(save_userid, save_sec_context);
3123 }
3124 
3125 /*
3126  * IndexCheckExclusion - verify that a new exclusion constraint is satisfied
3127  *
3128  * When creating an exclusion constraint, we first build the index normally
3129  * and then rescan the heap to check for conflicts. We assume that we only
3130  * need to validate tuples that are live according to an up-to-date snapshot,
3131  * and that these were correctly indexed even in the presence of broken HOT
3132  * chains. This should be OK since we are holding at least ShareLock on the
3133  * table, meaning there can be no uncommitted updates from other transactions.
3134  * (Note: that wouldn't necessarily work for system catalogs, since many
3135  * operations release write lock early on the system catalogs.)
3136  */
3137 static void
3139  Relation indexRelation,
3140  IndexInfo *indexInfo)
3141 {
3142  TableScanDesc scan;
3144  bool isnull[INDEX_MAX_KEYS];
3145  ExprState *predicate;
3146  TupleTableSlot *slot;
3147  EState *estate;
3148  ExprContext *econtext;
3149  Snapshot snapshot;
3150 
3151  /*
3152  * If we are reindexing the target index, mark it as no longer being
3153  * reindexed, to forestall an Assert in index_beginscan when we try to use
3154  * the index for probes. This is OK because the index is now fully valid.
3155  */
3158 
3159  /*
3160  * Need an EState for evaluation of index expressions and partial-index
3161  * predicates. Also a slot to hold the current tuple.
3162  */
3163  estate = CreateExecutorState();
3164  econtext = GetPerTupleExprContext(estate);
3165  slot = table_slot_create(heapRelation, NULL);
3166 
3167  /* Arrange for econtext's scan tuple to be the tuple under test */
3168  econtext->ecxt_scantuple = slot;
3169 
3170  /* Set up execution state for predicate, if any. */
3171  predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
3172 
3173  /*
3174  * Scan all live tuples in the base relation.
3175  */
3176  snapshot = RegisterSnapshot(GetLatestSnapshot());
3177  scan = table_beginscan_strat(heapRelation, /* relation */
3178  snapshot, /* snapshot */
3179  0, /* number of keys */
3180  NULL, /* scan key */
3181  true, /* buffer access strategy OK */
3182  true); /* syncscan OK */
3183 
3184  while (table_scan_getnextslot(scan, ForwardScanDirection, slot))
3185  {
3187 
3188  /*
3189  * In a partial index, ignore tuples that don't satisfy the predicate.
3190  */
3191  if (predicate != NULL)
3192  {
3193  if (!ExecQual(predicate, econtext))
3194  continue;
3195  }
3196 
3197  /*
3198  * Extract index column values, including computing expressions.
3199  */
3200  FormIndexDatum(indexInfo,
3201  slot,
3202  estate,
3203  values,
3204  isnull);
3205 
3206  /*
3207  * Check that this tuple has no conflicts.
3208  */
3209  check_exclusion_constraint(heapRelation,
3210  indexRelation, indexInfo,
3211  &(slot->tts_tid), values, isnull,
3212  estate, true);
3213 
3215  }
3216 
3217  table_endscan(scan);
3218  UnregisterSnapshot(snapshot);
3219 
3221 
3222  FreeExecutorState(estate);
3223 
3224  /* These may have been pointing to the now-gone estate */
3225  indexInfo->ii_ExpressionsState = NIL;
3226  indexInfo->ii_PredicateState = NULL;
3227 }
3228 
3229 
3230 /*
3231  * validate_index - support code for concurrent index builds
3232  *
3233  * We do a concurrent index build by first inserting the catalog entry for the
3234  * index via index_create(), marking it not indisready and not indisvalid.
3235  * Then we commit our transaction and start a new one, then we wait for all
3236  * transactions that could have been modifying the table to terminate. Now
3237  * we know that any subsequently-started transactions will see the index and
3238  * honor its constraints on HOT updates; so while existing HOT-chains might
3239  * be broken with respect to the index, no currently live tuple will have an
3240  * incompatible HOT update done to it. We now build the index normally via
3241  * index_build(), while holding a weak lock that allows concurrent
3242  * insert/update/delete. Also, we index only tuples that are valid
3243  * as of the start of the scan (see table_index_build_scan), whereas a normal
3244  * build takes care to include recently-dead tuples. This is OK because
3245  * we won't mark the index valid until all transactions that might be able
3246  * to see those tuples are gone. The reason for doing that is to avoid
3247  * bogus unique-index failures due to concurrent UPDATEs (we might see
3248  * different versions of the same row as being valid when we pass over them,
3249  * if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
3250  * does not contain any tuples added to the table while we built the index.
3251  *
3252  * Next, we mark the index "indisready" (but still not "indisvalid") and
3253  * commit the second transaction and start a third. Again we wait for all
3254  * transactions that could have been modifying the table to terminate. Now
3255  * we know that any subsequently-started transactions will see the index and
3256  * insert their new tuples into it. We then take a new reference snapshot
3257  * which is passed to validate_index(). Any tuples that are valid according
3258  * to this snap, but are not in the index, must be added to the index.
3259  * (Any tuples committed live after the snap will be inserted into the
3260  * index by their originating transaction. Any tuples committed dead before
3261  * the snap need not be indexed, because we will wait out all transactions
3262  * that might care about them before we mark the index valid.)
3263  *
3264  * validate_index() works by first gathering all the TIDs currently in the
3265  * index, using a bulkdelete callback that just stores the TIDs and doesn't
3266  * ever say "delete it". (This should be faster than a plain indexscan;
3267  * also, not all index AMs support full-index indexscan.) Then we sort the
3268  * TIDs, and finally scan the table doing a "merge join" against the TID list
3269  * to see which tuples are missing from the index. Thus we will ensure that
3270  * all tuples valid according to the reference snapshot are in the index.
3271  *
3272  * Building a unique index this way is tricky: we might try to insert a
3273  * tuple that is already dead or is in process of being deleted, and we
3274  * mustn't have a uniqueness failure against an updated version of the same
3275  * row. We could try to check the tuple to see if it's already dead and tell
3276  * index_insert() not to do the uniqueness check, but that still leaves us
3277  * with a race condition against an in-progress update. To handle that,
3278  * we expect the index AM to recheck liveness of the to-be-inserted tuple
3279  * before it declares a uniqueness error.
3280  *
3281  * After completing validate_index(), we wait until all transactions that
3282  * were alive at the time of the reference snapshot are gone; this is
3283  * necessary to be sure there are none left with a transaction snapshot
3284  * older than the reference (and hence possibly able to see tuples we did
3285  * not index). Then we mark the index "indisvalid" and commit. Subsequent
3286  * transactions will be able to use it for queries.
3287  *
3288  * Doing two full table scans is a brute-force strategy. We could try to be
3289  * cleverer, eg storing new tuples in a special area of the table (perhaps
3290  * making the table append-only by setting use_fsm). However that would
3291  * add yet more locking issues.
3292  */
3293 void
3294 validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
3295 {
3296  Relation heapRelation,
3297  indexRelation;
3298  IndexInfo *indexInfo;
3299  IndexVacuumInfo ivinfo;
3301  Oid save_userid;
3302  int save_sec_context;
3303  int save_nestlevel;
3304 
3305  {
3306  const int progress_index[] = {
3312  };
3313  const int64 progress_vals[] = {
3315  0, 0, 0, 0
3316  };
3317 
3318  pgstat_progress_update_multi_param(5, progress_index, progress_vals);
3319  }
3320 
3321  /* Open and lock the parent heap relation */
3322  heapRelation = table_open(heapId, ShareUpdateExclusiveLock);
3323 
3324  /*
3325  * Switch to the table owner's userid, so that any index functions are run
3326  * as that user. Also lock down security-restricted operations and
3327  * arrange to make GUC variable changes local to this command.
3328  */
3329  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3330  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3331  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3332  save_nestlevel = NewGUCNestLevel();
3334 
3335  indexRelation = index_open(indexId, RowExclusiveLock);
3336 
3337  /*
3338  * Fetch info needed for index_insert. (You might think this should be
3339  * passed in from DefineIndex, but its copy is long gone due to having
3340  * been built in a previous transaction.)
3341  */
3342  indexInfo = BuildIndexInfo(indexRelation);
3343 
3344  /* mark build is concurrent just for consistency */
3345  indexInfo->ii_Concurrent = true;
3346 
3347  /*
3348  * Scan the index and gather up all the TIDs into a tuplesort object.
3349  */
3350  ivinfo.index = indexRelation;
3351  ivinfo.heaprel = heapRelation;
3352  ivinfo.analyze_only = false;
3353  ivinfo.report_progress = true;
3354  ivinfo.estimated_count = true;
3355  ivinfo.message_level = DEBUG2;
3356  ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
3357  ivinfo.strategy = NULL;
3358 
3359  /*
3360  * Encode TIDs as int8 values for the sort, rather than directly sorting
3361  * item pointers. This can be significantly faster, primarily because TID
3362  * is a pass-by-reference type on all platforms, whereas int8 is
3363  * pass-by-value on most platforms.
3364  */
3365  state.tuplesort = tuplesort_begin_datum(INT8OID, Int8LessOperator,
3366  InvalidOid, false,
3368  NULL, TUPLESORT_NONE);
3369  state.htups = state.itups = state.tups_inserted = 0;
3370 
3371  /* ambulkdelete updates progress metrics */
3372  (void) index_bulk_delete(&ivinfo, NULL,
3373  validate_index_callback, (void *) &state);
3374 
3375  /* Execute the sort */
3376  {
3377  const int progress_index[] = {
3381  };
3382  const int64 progress_vals[] = {
3384  0, 0
3385  };
3386 
3387  pgstat_progress_update_multi_param(3, progress_index, progress_vals);
3388  }
3389  tuplesort_performsort(state.tuplesort);
3390 
3391  /*
3392  * Now scan the heap and "merge" it with the index
3393  */
3396  table_index_validate_scan(heapRelation,
3397  indexRelation,
3398  indexInfo,
3399  snapshot,
3400  &state);
3401 
3402  /* Done with tuplesort object */
3403  tuplesort_end(state.tuplesort);
3404 
3405  /* Make sure to release resources cached in indexInfo (if needed). */
3406  index_insert_cleanup(indexRelation, indexInfo);
3407 
3408  elog(DEBUG2,
3409  "validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
3410  state.htups, state.itups, state.tups_inserted);
3411 
3412  /* Roll back any GUC changes executed by index functions */
3413  AtEOXact_GUC(false, save_nestlevel);
3414 
3415  /* Restore userid and security context */
3416  SetUserIdAndSecContext(save_userid, save_sec_context);
3417 
3418  /* Close rels, but keep locks */
3419  index_close(indexRelation, NoLock);
3420  table_close(heapRelation, NoLock);
3421 }
3422 
3423 /*
3424  * validate_index_callback - bulkdelete callback to collect the index TIDs
3425  */
3426 static bool
3427 validate_index_callback(ItemPointer itemptr, void *opaque)
3428 {
3430  int64 encoded = itemptr_encode(itemptr);
3431 
3432  tuplesort_putdatum(state->tuplesort, Int64GetDatum(encoded), false);
3433  state->itups += 1;
3434  return false; /* never actually delete anything */
3435 }
3436 
3437 /*
3438  * index_set_state_flags - adjust pg_index state flags
3439  *
3440  * This is used during CREATE/DROP INDEX CONCURRENTLY to adjust the pg_index
3441  * flags that denote the index's state.
3442  *
3443  * Note that CatalogTupleUpdate() sends a cache invalidation message for the
3444  * tuple, so other sessions will hear about the update as soon as we commit.
3445  */
3446 void
3448 {
3449  Relation pg_index;
3450  HeapTuple indexTuple;
3451  Form_pg_index indexForm;
3452 
3453  /* Open pg_index and fetch a writable copy of the index's tuple */
3454  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3455 
3456  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3457  ObjectIdGetDatum(indexId));
3458  if (!HeapTupleIsValid(indexTuple))
3459  elog(ERROR, "cache lookup failed for index %u", indexId);
3460  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3461 
3462  /* Perform the requested state change on the copy */
3463  switch (action)
3464  {
3466  /* Set indisready during a CREATE INDEX CONCURRENTLY sequence */
3467  Assert(indexForm->indislive);
3468  Assert(!indexForm->indisready);
3469  Assert(!indexForm->indisvalid);
3470  indexForm->indisready = true;
3471  break;
3473  /* Set indisvalid during a CREATE INDEX CONCURRENTLY sequence */
3474  Assert(indexForm->indislive);
3475  Assert(indexForm->indisready);
3476  Assert(!indexForm->indisvalid);
3477  indexForm->indisvalid = true;
3478  break;
3480 
3481  /*
3482  * Clear indisvalid during a DROP INDEX CONCURRENTLY sequence
3483  *
3484  * If indisready == true we leave it set so the index still gets
3485  * maintained by active transactions. We only need to ensure that
3486  * indisvalid is false. (We don't assert that either is initially
3487  * true, though, since we want to be able to retry a DROP INDEX
3488  * CONCURRENTLY that failed partway through.)
3489  *
3490  * Note: the CLUSTER logic assumes that indisclustered cannot be
3491  * set on any invalid index, so clear that flag too. For
3492  * cleanliness, also clear indisreplident.
3493  */
3494  indexForm->indisvalid = false;
3495  indexForm->indisclustered = false;
3496  indexForm->indisreplident = false;
3497  break;
3498  case INDEX_DROP_SET_DEAD:
3499 
3500  /*
3501  * Clear indisready/indislive during DROP INDEX CONCURRENTLY
3502  *
3503  * We clear both indisready and indislive, because we not only
3504  * want to stop updates, we want to prevent sessions from touching
3505  * the index at all.
3506  */
3507  Assert(!indexForm->indisvalid);
3508  Assert(!indexForm->indisclustered);
3509  Assert(!indexForm->indisreplident);
3510  indexForm->indisready = false;
3511  indexForm->indislive = false;
3512  break;
3513  }
3514 
3515  /* ... and update it */
3516  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3517 
3518  table_close(pg_index, RowExclusiveLock);
3519 }
3520 
3521 
3522 /*
3523  * IndexGetRelation: given an index's relation OID, get the OID of the
3524  * relation it is an index on. Uses the system cache.
3525  */
3526 Oid
3527 IndexGetRelation(Oid indexId, bool missing_ok)
3528 {
3529  HeapTuple tuple;
3531  Oid result;
3532 
3533  tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(indexId));
3534  if (!HeapTupleIsValid(tuple))
3535  {
3536  if (missing_ok)
3537  return InvalidOid;
3538  elog(ERROR, "cache lookup failed for index %u", indexId);
3539  }
3540  index = (Form_pg_index) GETSTRUCT(tuple);
3541  Assert(index->indexrelid == indexId);
3542 
3543  result = index->indrelid;
3544  ReleaseSysCache(tuple);
3545  return result;
3546 }
3547 
3548 /*
3549  * reindex_index - This routine is used to recreate a single index
3550  */
3551 void
3553  bool skip_constraint_checks, char persistence,
3554  const ReindexParams *params)
3555 {
3556  Relation iRel,
3557  heapRelation;
3558  Oid heapId;
3559  Oid save_userid;
3560  int save_sec_context;
3561  int save_nestlevel;
3562  IndexInfo *indexInfo;
3563  volatile bool skipped_constraint = false;
3564  PGRUsage ru0;
3565  bool progress = ((params->options & REINDEXOPT_REPORT_PROGRESS) != 0);
3566  bool set_tablespace = false;
3567 
3568  pg_rusage_init(&ru0);
3569 
3570  /*
3571  * Open and lock the parent heap relation. ShareLock is sufficient since
3572  * we only need to be sure no schema or data changes are going on.
3573  */
3574  heapId = IndexGetRelation(indexId,
3575  (params->options & REINDEXOPT_MISSING_OK) != 0);
3576  /* if relation is missing, leave */
3577  if (!OidIsValid(heapId))
3578  return;
3579 
3580  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3581  heapRelation = try_table_open(heapId, ShareLock);
3582  else
3583  heapRelation = table_open(heapId, ShareLock);
3584 
3585  /* if relation is gone, leave */
3586  if (!heapRelation)
3587  return;
3588 
3589  /*
3590  * Switch to the table owner's userid, so that any index functions are run
3591  * as that user. Also lock down security-restricted operations and
3592  * arrange to make GUC variable changes local to this command.
3593  */
3594  GetUserIdAndSecContext(&save_userid, &save_sec_context);
3595  SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
3596  save_sec_context | SECURITY_RESTRICTED_OPERATION);
3597  save_nestlevel = NewGUCNestLevel();
3599 
3600  if (progress)
3601  {
3602  const int progress_cols[] = {
3605  };
3606  const int64 progress_vals[] = {
3608  indexId
3609  };
3610 
3612  heapId);
3613  pgstat_progress_update_multi_param(2, progress_cols, progress_vals);
3614  }
3615 
3616  /*
3617  * Open the target index relation and get an exclusive lock on it, to
3618  * ensure that no one else is touching this particular index.
3619  */
3620  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3621  iRel = try_index_open(indexId, AccessExclusiveLock);
3622  else
3623  iRel = index_open(indexId, AccessExclusiveLock);
3624 
3625  /* if index relation is gone, leave */
3626  if (!iRel)
3627  {
3628  /* Roll back any GUC changes */
3629  AtEOXact_GUC(false, save_nestlevel);
3630 
3631  /* Restore userid and security context */
3632  SetUserIdAndSecContext(save_userid, save_sec_context);
3633 
3634  /* Close parent heap relation, but keep locks */
3635  table_close(heapRelation, NoLock);
3636  return;
3637  }
3638 
3639  if (progress)
3641  iRel->rd_rel->relam);
3642 
3643  /*
3644  * If a statement is available, telling that this comes from a REINDEX
3645  * command, collect the index for event triggers.
3646  */
3647  if (stmt)
3648  {
3649  ObjectAddress address;
3650 
3651  ObjectAddressSet(address, RelationRelationId, indexId);
3654  (Node *) stmt);
3655  }
3656 
3657  /*
3658  * Partitioned indexes should never get processed here, as they have no
3659  * physical storage.
3660  */
3661  if (iRel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
3662  elog(ERROR, "cannot reindex partitioned index \"%s.%s\"",
3664  RelationGetRelationName(iRel));
3665 
3666  /*
3667  * Don't allow reindex on temp tables of other backends ... their local
3668  * buffer manager is not going to cope.
3669  */
3670  if (RELATION_IS_OTHER_TEMP(iRel))
3671  ereport(ERROR,
3672  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3673  errmsg("cannot reindex temporary tables of other sessions")));
3674 
3675  /*
3676  * Don't allow reindex of an invalid index on TOAST table. This is a
3677  * leftover from a failed REINDEX CONCURRENTLY, and if rebuilt it would
3678  * not be possible to drop it anymore.
3679  */
3681  !get_index_isvalid(indexId))
3682  ereport(ERROR,
3683  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3684  errmsg("cannot reindex invalid index on TOAST table")));
3685 
3686  /*
3687  * System relations cannot be moved even if allow_system_table_mods is
3688  * enabled to keep things consistent with the concurrent case where all
3689  * the indexes of a relation are processed in series, including indexes of
3690  * toast relations.
3691  *
3692  * Note that this check is not part of CheckRelationTableSpaceMove() as it
3693  * gets used for ALTER TABLE SET TABLESPACE that could cascade across
3694  * toast relations.
3695  */
3696  if (OidIsValid(params->tablespaceOid) &&
3697  IsSystemRelation(iRel))
3698  ereport(ERROR,
3699  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3700  errmsg("cannot move system relation \"%s\"",
3701  RelationGetRelationName(iRel))));
3702 
3703  /* Check if the tablespace of this index needs to be changed */
3704  if (OidIsValid(params->tablespaceOid) &&
3706  set_tablespace = true;
3707 
3708  /*
3709  * Also check for active uses of the index in the current transaction; we
3710  * don't want to reindex underneath an open indexscan.
3711  */
3712  CheckTableNotInUse(iRel, "REINDEX INDEX");
3713 
3714  /* Set new tablespace, if requested */
3715  if (set_tablespace)
3716  {
3717  /* Update its pg_class row */
3719 
3720  /*
3721  * Schedule unlinking of the old index storage at transaction commit.
3722  */
3723  RelationDropStorage(iRel);
3725 
3726  /* Make sure the reltablespace change is visible */
3728  }
3729 
3730  /*
3731  * All predicate locks on the index are about to be made invalid. Promote
3732  * them to relation locks on the heap.
3733  */
3735 
3736  /* Fetch info needed for index_build */
3737  indexInfo = BuildIndexInfo(iRel);
3738 
3739  /* If requested, skip checking uniqueness/exclusion constraints */
3740  if (skip_constraint_checks)
3741  {
3742  if (indexInfo->ii_Unique || indexInfo->ii_ExclusionOps != NULL)
3743  skipped_constraint = true;
3744  indexInfo->ii_Unique = false;
3745  indexInfo->ii_ExclusionOps = NULL;
3746  indexInfo->ii_ExclusionProcs = NULL;
3747  indexInfo->ii_ExclusionStrats = NULL;
3748  }
3749 
3750  /* Suppress use of the target index while rebuilding it */
3751  SetReindexProcessing(heapId, indexId);
3752 
3753  /* Create a new physical relation for the index */
3754  RelationSetNewRelfilenumber(iRel, persistence);
3755 
3756  /* Initialize the index and rebuild */
3757  /* Note: we do not need to re-establish pkey setting */
3758  index_build(heapRelation, iRel, indexInfo, true, true);
3759 
3760  /* Re-allow use of target index */
3762 
3763  /*
3764  * If the index is marked invalid/not-ready/dead (ie, it's from a failed
3765  * CREATE INDEX CONCURRENTLY, or a DROP INDEX CONCURRENTLY failed midway),
3766  * and we didn't skip a uniqueness check, we can now mark it valid. This
3767  * allows REINDEX to be used to clean up in such cases.
3768  *
3769  * We can also reset indcheckxmin, because we have now done a
3770  * non-concurrent index build, *except* in the case where index_build
3771  * found some still-broken HOT chains. If it did, and we don't have to
3772  * change any of the other flags, we just leave indcheckxmin alone (note
3773  * that index_build won't have changed it, because this is a reindex).
3774  * This is okay and desirable because not updating the tuple leaves the
3775  * index's usability horizon (recorded as the tuple's xmin value) the same
3776  * as it was.
3777  *
3778  * But, if the index was invalid/not-ready/dead and there were broken HOT
3779  * chains, we had better force indcheckxmin true, because the normal
3780  * argument that the HOT chains couldn't conflict with the index is
3781  * suspect for an invalid index. (A conflict is definitely possible if
3782  * the index was dead. It probably shouldn't happen otherwise, but let's
3783  * be conservative.) In this case advancing the usability horizon is
3784  * appropriate.
3785  *
3786  * Another reason for avoiding unnecessary updates here is that while
3787  * reindexing pg_index itself, we must not try to update tuples in it.
3788  * pg_index's indexes should always have these flags in their clean state,
3789  * so that won't happen.
3790  */
3791  if (!skipped_constraint)
3792  {
3793  Relation pg_index;
3794  HeapTuple indexTuple;
3795  Form_pg_index indexForm;
3796  bool index_bad;
3797 
3798  pg_index = table_open(IndexRelationId, RowExclusiveLock);
3799 
3800  indexTuple = SearchSysCacheCopy1(INDEXRELID,
3801  ObjectIdGetDatum(indexId));
3802  if (!HeapTupleIsValid(indexTuple))
3803  elog(ERROR, "cache lookup failed for index %u", indexId);
3804  indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
3805 
3806  index_bad = (!indexForm->indisvalid ||
3807  !indexForm->indisready ||
3808  !indexForm->indislive);
3809  if (index_bad ||
3810  (indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain))
3811  {
3812  if (!indexInfo->ii_BrokenHotChain)
3813  indexForm->indcheckxmin = false;
3814  else if (index_bad)
3815  indexForm->indcheckxmin = true;
3816  indexForm->indisvalid = true;
3817  indexForm->indisready = true;
3818  indexForm->indislive = true;
3819  CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple);
3820 
3821  /*
3822  * Invalidate the relcache for the table, so that after we commit
3823  * all sessions will refresh the table's index list. This ensures
3824  * that if anyone misses seeing the pg_index row during this
3825  * update, they'll refresh their list before attempting any update
3826  * on the table.
3827  */
3828  CacheInvalidateRelcache(heapRelation);
3829  }
3830 
3831  table_close(pg_index, RowExclusiveLock);
3832  }
3833 
3834  /* Log what we did */
3835  if ((params->options & REINDEXOPT_VERBOSE) != 0)
3836  ereport(INFO,
3837  (errmsg("index \"%s\" was reindexed",
3838  get_rel_name(indexId)),
3839  errdetail_internal("%s",
3840  pg_rusage_show(&ru0))));
3841 
3842  /* Roll back any GUC changes executed by index functions */
3843  AtEOXact_GUC(false, save_nestlevel);
3844 
3845  /* Restore userid and security context */
3846  SetUserIdAndSecContext(save_userid, save_sec_context);
3847 
3848  /* Close rels, but keep locks */
3849  index_close(iRel, NoLock);
3850  table_close(heapRelation, NoLock);
3851 
3852  if (progress)
3854 }
3855 
3856 /*
3857  * reindex_relation - This routine is used to recreate all indexes
3858  * of a relation (and optionally its toast relation too, if any).
3859  *
3860  * "flags" is a bitmask that can include any combination of these bits:
3861  *
3862  * REINDEX_REL_PROCESS_TOAST: if true, process the toast table too (if any).
3863  *
3864  * REINDEX_REL_SUPPRESS_INDEX_USE: if true, the relation was just completely
3865  * rebuilt by an operation such as VACUUM FULL or CLUSTER, and therefore its
3866  * indexes are inconsistent with it. This makes things tricky if the relation
3867  * is a system catalog that we might consult during the reindexing. To deal
3868  * with that case, we mark all of the indexes as pending rebuild so that they
3869  * won't be trusted until rebuilt. The caller is required to call us *without*
3870  * having made the rebuilt table visible by doing CommandCounterIncrement;
3871  * we'll do CCI after having collected the index list. (This way we can still
3872  * use catalog indexes while collecting the list.)
3873  *
3874  * REINDEX_REL_CHECK_CONSTRAINTS: if true, recheck unique and exclusion
3875  * constraint conditions, else don't. To avoid deadlocks, VACUUM FULL or
3876  * CLUSTER on a system catalog must omit this flag. REINDEX should be used to
3877  * rebuild an index if constraint inconsistency is suspected. For optimal
3878  * performance, other callers should include the flag only after transforming
3879  * the data in a manner that risks a change in constraint validity.
3880  *
3881  * REINDEX_REL_FORCE_INDEXES_UNLOGGED: if true, set the persistence of the
3882  * rebuilt indexes to unlogged.
3883  *
3884  * REINDEX_REL_FORCE_INDEXES_PERMANENT: if true, set the persistence of the
3885  * rebuilt indexes to permanent.
3886  *
3887  * Returns true if any indexes were rebuilt (including toast table's index
3888  * when relevant). Note that a CommandCounterIncrement will occur after each
3889  * index rebuild.
3890  */
3891 bool
3892 reindex_relation(const ReindexStmt *stmt, Oid relid, int flags,
3893  const ReindexParams *params)
3894 {
3895  Relation rel;
3896  Oid toast_relid;
3897  List *indexIds;
3898  char persistence;
3899  bool result = false;
3900  ListCell *indexId;
3901  int i;
3902 
3903  /*
3904  * Open and lock the relation. ShareLock is sufficient since we only need
3905  * to prevent schema and data changes in it. The lock level used here
3906  * should match ReindexTable().
3907  */
3908  if ((params->options & REINDEXOPT_MISSING_OK) != 0)
3909  rel = try_table_open(relid, ShareLock);
3910  else
3911  rel = table_open(relid, ShareLock);
3912 
3913  /* if relation is gone, leave */
3914  if (!rel)
3915  return false;
3916 
3917  /*
3918  * Partitioned tables should never get processed here, as they have no
3919  * physical storage.
3920  */
3921  if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
3922  elog(ERROR, "cannot reindex partitioned table \"%s.%s\"",
3925 
3926  toast_relid = rel->rd_rel->reltoastrelid;
3927 
3928  /*
3929  * Get the list of index OIDs for this relation. (We trust the relcache
3930  * to get this with a sequential scan if ignoring system indexes.)
3931  */
3932  indexIds = RelationGetIndexList(rel);
3933 
3934  if (flags & REINDEX_REL_SUPPRESS_INDEX_USE)
3935  {
3936  /* Suppress use of all the indexes until they are rebuilt */
3937  SetReindexPending(indexIds);
3938 
3939  /*
3940  * Make the new heap contents visible --- now things might be
3941  * inconsistent!
3942  */
3944  }
3945 
3946  /*
3947  * Reindex the toast table, if any, before the main table.
3948  *
3949  * This helps in cases where a corruption in the toast table's index would
3950  * otherwise error and stop REINDEX TABLE command when it tries to fetch a
3951  * toasted datum. This way. the toast table's index is rebuilt and fixed
3952  * before it is used for reindexing the main table.
3953  *
3954  * It is critical to call reindex_relation() *after* the call to
3955  * RelationGetIndexList() returning the list of indexes on the relation,
3956  * because reindex_relation() will call CommandCounterIncrement() after
3957  * every reindex_index(). See REINDEX_REL_SUPPRESS_INDEX_USE for more
3958  * details.
3959  */
3960  if ((flags & REINDEX_REL_PROCESS_TOAST) && OidIsValid(toast_relid))
3961  {
3962  /*
3963  * Note that this should fail if the toast relation is missing, so
3964  * reset REINDEXOPT_MISSING_OK. Even if a new tablespace is set for
3965  * the parent relation, the indexes on its toast table are not moved.
3966  * This rule is enforced by setting tablespaceOid to InvalidOid.
3967  */
3968  ReindexParams newparams = *params;
3969 
3970  newparams.options &= ~(REINDEXOPT_MISSING_OK);
3971  newparams.tablespaceOid = InvalidOid;
3972  result |= reindex_relation(stmt, toast_relid, flags, &newparams);
3973  }
3974 
3975  /*
3976  * Compute persistence of indexes: same as that of owning rel, unless
3977  * caller specified otherwise.
3978  */
3980  persistence = RELPERSISTENCE_UNLOGGED;
3981  else if (flags & REINDEX_REL_FORCE_INDEXES_PERMANENT)
3982  persistence = RELPERSISTENCE_PERMANENT;
3983  else
3984  persistence = rel->rd_rel->relpersistence;
3985 
3986  /* Reindex all the indexes. */
3987  i = 1;
3988  foreach(indexId, indexIds)
3989  {
3990  Oid indexOid = lfirst_oid(indexId);
3991  Oid indexNamespaceId = get_rel_namespace(indexOid);
3992 
3993  /*
3994  * Skip any invalid indexes on a TOAST table. These can only be
3995  * duplicate leftovers from a failed REINDEX CONCURRENTLY, and if
3996  * rebuilt it would not be possible to drop them anymore.
3997  */
3998  if (IsToastNamespace(indexNamespaceId) &&
3999  !get_index_isvalid(indexOid))
4000  {
4001  ereport(WARNING,
4002  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4003  errmsg("cannot reindex invalid index \"%s.%s\" on TOAST table, skipping",
4004  get_namespace_name(indexNamespaceId),
4005  get_rel_name(indexOid))));
4006  continue;
4007  }
4008 
4009  reindex_index(stmt, indexOid, !(flags & REINDEX_REL_CHECK_CONSTRAINTS),
4010  persistence, params);
4011 
4013 
4014  /* Index should no longer be in the pending list */
4015  Assert(!ReindexIsProcessingIndex(indexOid));
4016 
4017  /* Set index rebuild count */
4019  i);
4020  i++;
4021  }
4022 
4023  /*
4024  * Close rel, but continue to hold the lock.
4025  */
4026  table_close(rel, NoLock);
4027 
4028  result |= (indexIds != NIL);
4029 
4030  return result;
4031 }
4032 
4033 
4034 /* ----------------------------------------------------------------
4035  * System index reindexing support
4036  *
4037  * When we are busy reindexing a system index, this code provides support
4038  * for preventing catalog lookups from using that index. We also make use
4039  * of this to catch attempted uses of user indexes during reindexing of
4040  * those indexes. This information is propagated to parallel workers;
4041  * attempting to change it during a parallel operation is not permitted.
4042  * ----------------------------------------------------------------
4043  */
4044 
4048 static int reindexingNestLevel = 0;
4049 
4050 /*
4051  * ReindexIsProcessingHeap
4052  * True if heap specified by OID is currently being reindexed.
4053  */
4054 bool
4056 {
4057  return heapOid == currentlyReindexedHeap;
4058 }
4059 
4060 /*
4061  * ReindexIsCurrentlyProcessingIndex
4062  * True if index specified by OID is currently being reindexed.
4063  */
4064 static bool
4066 {
4067  return indexOid == currentlyReindexedIndex;
4068 }
4069 
4070 /*
4071  * ReindexIsProcessingIndex
4072  * True if index specified by OID is currently being reindexed,
4073  * or should be treated as invalid because it is awaiting reindex.
4074  */
4075 bool
4077 {
4078  return indexOid == currentlyReindexedIndex ||
4080 }
4081 
4082 /*
4083  * SetReindexProcessing
4084  * Set flag that specified heap/index are being reindexed.
4085  */
4086 static void
4087 SetReindexProcessing(Oid heapOid, Oid indexOid)
4088 {
4089  Assert(OidIsValid(heapOid) && OidIsValid(indexOid));
4090  /* Reindexing is not re-entrant. */
4092  elog(ERROR, "cannot reindex while reindexing");
4093  currentlyReindexedHeap = heapOid;
4094  currentlyReindexedIndex = indexOid;
4095  /* Index is no longer "pending" reindex. */
4096  RemoveReindexPending(indexOid);
4097  /* This may have been set already, but in case it isn't, do so now. */
4099 }
4100 
4101 /*
4102  * ResetReindexProcessing
4103  * Unset reindexing status.
4104  */
4105 static void
4107 {
4110  /* reindexingNestLevel remains set till end of (sub)transaction */
4111 }
4112 
4113 /*
4114  * SetReindexPending
4115  * Mark the given indexes as pending reindex.
4116  *
4117  * NB: we assume that the current memory context stays valid throughout.
4118  */
4119 static void
4121 {
4122  /* Reindexing is not re-entrant. */
4124  elog(ERROR, "cannot reindex while reindexing");
4125  if (IsInParallelMode())
4126  elog(ERROR, "cannot modify reindex state during a parallel operation");
4129 }
4130 
4131 /*
4132  * RemoveReindexPending
4133  * Remove the given index from the pending list.
4134  */
4135 static void
4137 {
4138  if (IsInParallelMode())
4139  elog(ERROR, "cannot modify reindex state during a parallel operation");
4141  indexOid);
4142 }
4143 
4144 /*
4145  * ResetReindexState
4146  * Clear all reindexing state during (sub)transaction abort.
4147  */
4148 void
4149 ResetReindexState(int nestLevel)
4150 {
4151  /*
4152  * Because reindexing is not re-entrant, we don't need to cope with nested
4153  * reindexing states. We just need to avoid messing up the outer-level
4154  * state in case a subtransaction fails within a REINDEX. So checking the
4155  * current nest level against that of the reindex operation is sufficient.
4156  */
4157  if (reindexingNestLevel >= nestLevel)
4158  {
4161 
4162  /*
4163  * We needn't try to release the contents of pendingReindexedIndexes;
4164  * that list should be in a transaction-lifespan context, so it will
4165  * go away automatically.
4166  */
4168 
4169  reindexingNestLevel = 0;
4170  }
4171 }
4172 
4173 /*
4174  * EstimateReindexStateSpace
4175  * Estimate space needed to pass reindex state to parallel workers.
4176  */
4177 Size
4179 {
4182 }
4183 
4184 /*
4185  * SerializeReindexState
4186  * Serialize reindex state for parallel workers.
4187  */
4188 void
4189 SerializeReindexState(Size maxsize, char *start_address)
4190 {
4191  SerializedReindexState *sistate = (SerializedReindexState *) start_address;
4192  int c = 0;
4193  ListCell *lc;
4194 
4198  foreach(lc, pendingReindexedIndexes)
4199  sistate->pendingReindexedIndexes[c++] = lfirst_oid(lc);
4200 }
4201 
4202 /*
4203  * RestoreReindexState
4204  * Restore reindex state in a parallel worker.
4205  */
4206 void
4207 RestoreReindexState(const void *reindexstate)
4208 {
4209  const SerializedReindexState *sistate = (const SerializedReindexState *) reindexstate;
4210  int c = 0;
4211  MemoryContext oldcontext;
4212 
4215 
4218  for (c = 0; c < sistate->numPendingReindexedIndexes; ++c)
4221  sistate->pendingReindexedIndexes[c]);
4222  MemoryContextSwitchTo(oldcontext);
4223 
4224  /* Note the worker has its own transaction nesting level */
4226 }
IndexAmRoutine * GetIndexAmRoutineByAmId(Oid amoid, bool noerror)
Definition: amapi.c:56
int16 AttrNumber
Definition: attnum.h:21
#define AttrNumberGetAttrOffset(attNum)
Definition: attnum.h:51
#define InvalidAttrNumber
Definition: attnum.h:23
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_CREATE_INDEX
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:152
void index_register(Oid heap, Oid ind, const IndexInfo *indexInfo)
Definition: bootstrap.c:901
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:281
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define NameStr(name)
Definition: c.h:746
unsigned short uint16
Definition: c.h:505
uint16 bits16
Definition: c.h:514
signed short int16
Definition: c.h:493
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
TransactionId MultiXactId
Definition: c.h:662
#define PointerIsValid(pointer)
Definition: c.h:763
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:398
float float4
Definition: c.h:629
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
#define OidIsValid(objectId)
Definition: c.h:775
size_t Size
Definition: c.h:605
bool IsToastNamespace(Oid namespaceId)
Definition: catalog.c:200
bool IsSystemRelation(Relation relation)
Definition: catalog.c:73
RelFileNumber GetNewRelFileNumber(Oid reltablespace, Relation pg_class, char relpersistence)
Definition: catalog.c:500
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:103
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2740
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1594
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2485
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2531
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2771
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1159
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1232
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define NOTICE
Definition: elog.h:35
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
void EventTriggerCollectSimpleCommand(ObjectAddress address, ObjectAddress secondaryObject, Node *parsetree)
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:767
List * ExecPrepareExprList(List *nodes, EState *estate)
Definition: execExpr.c:813
void check_exclusion_constraint(Relation heap, Relation index, IndexInfo *indexInfo, ItemPointer tupleid, const Datum *values, const bool *isnull, EState *estate, bool newIndex)
Definition: execIndexing.c:915
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1341
EState * CreateExecutorState(void)
Definition: execUtils.c:88
void FreeExecutorState(EState *estate)
Definition: execUtils.c:189
#define GetPerTupleExprContext(estate)
Definition: executor.h:550
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:413
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:348
#define palloc0_array(type, count)
Definition: fe_memutils.h:65
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1807
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:596
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:503
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:384
bool IsBinaryUpgrade
Definition: globals.c:118
int maintenance_work_mem
Definition: globals.c:130
int NewGUCNestLevel(void)
Definition: guc.c:2237
void RestrictSearchPath(void)
Definition: guc.c:2248
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2264
void DeleteRelationTuple(Oid relid)
Definition: heap.c:1549
void DeleteAttributeTuples(Oid relid)
Definition: heap.c:1578
void RemoveStatistics(Oid relid, AttrNumber attnum)
Definition: heap.c:3282
void CheckAttributeType(const char *attname, Oid atttypid, Oid attcollation, List *containing_rowtypes, int flags)
Definition: heap.c:548
void CopyStatistics(Oid fromrelid, Oid torelid)
Definition: heap.c:3229
void InsertPgClassTuple(Relation pg_class_desc, Relation new_rel_desc, Oid new_rel_oid, Datum relacl, Datum reloptions)
Definition: heap.c:895
void InsertPgAttributeTuples(Relation pg_attribute_rel, TupleDesc tupdesc, Oid new_rel_oid, const FormExtraData_pg_attribute tupdesc_extra[], CatalogIndexState indstate)
Definition: heap.c:702
Relation heap_create(const char *relname, Oid relnamespace, Oid reltablespace, Oid relid, RelFileNumber relfilenumber, Oid accessmtd, TupleDesc tupDesc, char relkind, char relpersistence, bool shared_relation, bool mapped_relation, bool allow_system_table_mods, TransactionId *relfrozenxid, MultiXactId *relminmxid, bool create_storage)
Definition: heap.c:289
void heap_inplace_update(Relation relation, HeapTuple tuple)
Definition: heapam.c:6055
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1248
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, const Datum *replValues, const bool *replIsnull, const bool *doReplace)
Definition: heaptuple.c:1209
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:776
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1116
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:455
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1434
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
#define stmt
Definition: indent_codes.h:59
bool ReindexIsProcessingIndex(Oid indexOid)
Definition: index.c:4076
static bool validate_index_callback(ItemPointer itemptr, void *opaque)
Definition: index.c:3427
void validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
Definition: index.c:3294
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2117
void ResetReindexState(int nestLevel)
Definition: index.c:4149
Oid IndexGetRelation(Oid indexId, bool missing_ok)
Definition: index.c:3527
static int reindexingNestLevel
Definition: index.c:4048
void index_concurrently_set_dead(Oid heapId, Oid indexId)
Definition: index.c:1819
Oid index_create(Relation heapRelation, const char *indexRelationName, Oid indexRelationId, Oid parentIndexRelid, Oid parentConstraintId, RelFileNumber relFileNumber, IndexInfo *indexInfo, const List *indexColNames, Oid accessMethodId, Oid tableSpaceId, const Oid *collationIds, const Oid *opclassIds, const Datum *opclassOptions, const int16 *coloptions, const NullableDatum *stattargets, Datum reloptions, bits16 flags, bits16 constr_flags, bool allow_system_table_mods, bool is_internal, Oid *constraintId)
Definition: index.c:724
static Oid currentlyReindexedHeap
Definition: index.c:4045
static void ResetReindexProcessing(void)
Definition: index.c:4106
void index_concurrently_swap(Oid newIndexId, Oid oldIndexId, const char *oldName)
Definition: index.c:1548
static void RemoveReindexPending(Oid indexOid)
Definition: index.c:4136
static List * pendingReindexedIndexes
Definition: index.c:4047
void index_set_state_flags(Oid indexId, IndexStateFlagsAction action)
Definition: index.c:3447
bool CompareIndexInfo(const IndexInfo *info1, const IndexInfo *info2, const Oid *collations1, const Oid *collations2, const Oid *opfamilies1, const Oid *opfamilies2, const AttrMap *attmap)
Definition: index.c:2514
RelFileNumber binary_upgrade_next_index_pg_class_relfilenumber
Definition: index.c:85
IndexInfo * BuildDummyIndexInfo(Relation index)
Definition: index.c:2466
bool reindex_relation(const ReindexStmt *stmt, Oid relid, int flags, const ReindexParams *params)
Definition: index.c:3892
void SerializeReindexState(Size maxsize, char *start_address)
Definition: index.c:4189
static void index_update_stats(Relation rel, bool hasindex, double reltuples)
Definition: index.c:2784
static bool relationHasPrimaryKey(Relation rel)
Definition: index.c:147
static void SetReindexProcessing(Oid heapOid, Oid indexOid)
Definition: index.c:4087
static void IndexCheckExclusion(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo)
Definition: index.c:3138
static void InitializeAttributeOids(Relation indexRelation, int numatts, Oid indexoid)
Definition: index.c:492
Oid index_concurrently_create_copy(Relation heapRelation, Oid oldIndexId, Oid tablespaceOid, const char *newName)
Definition: index.c:1297
Oid binary_upgrade_next_index_pg_class_oid
Definition: index.c:84
static void AppendAttributeTuples(Relation indexRelation, const Datum *attopts, const NullableDatum *stattargets)
Definition: index.c:510
void BuildSpeculativeIndexInfo(Relation index, IndexInfo *ii)
Definition: index.c:2645
void index_check_primary_key(Relation heapRel, const IndexInfo *indexInfo, bool is_alter_table, const IndexStmt *stmt)
Definition: index.c:201
bool ReindexIsProcessingHeap(Oid heapOid)
Definition: index.c:4055
static bool ReindexIsCurrentlyProcessingIndex(Oid indexOid)
Definition: index.c:4065
void RestoreReindexState(const void *reindexstate)
Definition: index.c:4207
static TupleDesc ConstructTupleDescriptor(Relation heapRelation, const IndexInfo *indexInfo, const List *indexColNames, Oid accessMethodId, const Oid *collationIds, const Oid *opclassIds)
Definition: index.c:280
void index_build(Relation heapRelation, Relation indexRelation, IndexInfo *indexInfo, bool isreindex, bool parallel)
Definition: index.c:2945
ObjectAddress index_constraint_create(Relation heapRelation, Oid indexRelationId, Oid parentConstraintId, const IndexInfo *indexInfo, const char *constraintName, char constraintType, bits16 constr_flags, bool allow_system_table_mods, bool is_internal)
Definition: index.c:1881
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2705
static void SetReindexPending(List *indexes)
Definition: index.c:4120
void index_concurrently_build(Oid heapRelationId, Oid indexRelationId)
Definition: index.c:1481
static void UpdateIndexRelation(Oid indexoid, Oid heapoid, Oid parentIndexId, const IndexInfo *indexInfo, const Oid *collationOids, const Oid *opclassOids, const int16 *coloptions, bool primary, bool isexclusion, bool immediate, bool isvalid, bool isready)
Definition: index.c:561
static Oid currentlyReindexedIndex
Definition: index.c:4046
Size EstimateReindexStateSpace(void)
Definition: index.c:4178
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2407
void reindex_index(const ReindexStmt *stmt, Oid indexId, bool skip_constraint_checks, char persistence, const ReindexParams *params)
Definition: index.c:3552
#define INDEX_CREATE_IS_PRIMARY
Definition: index.h:61
#define INDEX_CREATE_IF_NOT_EXISTS
Definition: index.h:65
#define REINDEX_REL_PROCESS_TOAST
Definition: index.h:159
#define INDEX_CREATE_PARTITIONED
Definition: index.h:66
#define REINDEXOPT_MISSING_OK
Definition: index.h:43
#define INDEX_CREATE_INVALID
Definition: index.h:67
#define INDEX_CONSTR_CREATE_WITHOUT_OVERLAPS
Definition: index.h:96
static int64 itemptr_encode(ItemPointer itemptr)
Definition: index.h:190
#define INDEX_CREATE_ADD_CONSTRAINT
Definition: index.h:62
#define INDEX_CREATE_SKIP_BUILD
Definition: index.h:63
#define INDEX_CONSTR_CREATE_UPDATE_INDEX
Definition: index.h:94
#define REINDEX_REL_FORCE_INDEXES_UNLOGGED
Definition: index.h:162
#define INDEX_CONSTR_CREATE_REMOVE_OLD_DEPS
Definition: index.h:95
#define INDEX_CONSTR_CREATE_DEFERRABLE
Definition: index.h:92
#define REINDEXOPT_REPORT_PROGRESS
Definition: index.h:42
#define INDEX_CONSTR_CREATE_MARK_AS_PRIMARY
Definition: index.h:91
#define REINDEX_REL_SUPPRESS_INDEX_USE
Definition: index.h:160
IndexStateFlagsAction
Definition: index.h:25
@ INDEX_CREATE_SET_VALID
Definition: index.h:27
@ INDEX_DROP_CLEAR_VALID
Definition: index.h:28
@ INDEX_DROP_SET_DEAD
Definition: index.h:29
@ INDEX_CREATE_SET_READY
Definition: index.h:26
#define REINDEX_REL_FORCE_INDEXES_PERMANENT
Definition: index.h:163
#define INDEX_CONSTR_CREATE_INIT_DEFERRED
Definition: index.h:93
#define INDEX_CREATE_CONCURRENT
Definition: index.h:64
#define REINDEXOPT_VERBOSE
Definition: index.h:41
#define REINDEX_REL_CHECK_CONSTRAINTS
Definition: index.h:161
void index_insert_cleanup(Relation indexRelation, IndexInfo *indexInfo)
Definition: indexam.c:241
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation try_index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:152
IndexBulkDeleteResult * index_bulk_delete(IndexVacuumInfo *info, IndexBulkDeleteResult *istat, IndexBulkDeleteCallback callback, void *callback_state)
Definition: indexam.c:748
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
bytea * index_opclass_options(Relation indrel, AttrNumber attnum, Datum attoptions, bool validate)
Definition: indexam.c:996
void CatalogTupleUpdate(Relation heapRel, ItemPointer otid, HeapTuple tup)
Definition: indexing.c:313
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
void CatalogTupleInsert(Relation heapRel, HeapTuple tup)
Definition: indexing.c:233
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:365
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
void CacheInvalidateRelcache(Relation relation)
Definition: inval.c:1360
void CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
Definition: inval.c:1396
invalidindex index d is invalid
Definition: isn.c:134
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * list_delete_oid(List *list, Oid datum)
Definition: list.c:910
void list_free(List *list)
Definition: list.c:1546
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:722
void LockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:397
void LockRelation(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:244
void WaitForLockers(LOCKTAG heaplocktag, LOCKMODE lockmode, bool progress)
Definition: lmgr.c:985
void UnlockRelationIdForSession(LockRelId *relid, LOCKMODE lockmode)
Definition: lmgr.c:410
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ShareLock
Definition: lockdefs.h:40
#define RowExclusiveLock
Definition: lockdefs.h:38
bool get_rel_relispartition(Oid relid)
Definition: lsyscache.c:2027
char get_rel_persistence(Oid relid)
Definition: lsyscache.c:2078
bool get_index_isvalid(Oid index_oid)
Definition: lsyscache.c:3578
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3366
Datum get_attoptions(Oid relid, int16 attnum)
Definition: lsyscache.c:970
Oid get_rel_namespace(Oid relid)
Definition: lsyscache.c:1952
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1285
char * get_rel_name(Oid relid)
Definition: lsyscache.c:1928
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:166
bool get_collation_isdeterministic(Oid colloid)
Definition: lsyscache.c:1054
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2832
Oid get_relname_relid(const char *relname, Oid relnamespace)
Definition: lsyscache.c:1885
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:737
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:726
IndexInfo * makeIndexInfo(int numattrs, int numkeyattrs, Oid amoid, List *expressions, List *predicates, bool unique, bool nulls_not_distinct, bool isready, bool concurrent, bool summarizing)
Definition: makefuncs.c:761
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void pfree(void *pointer)
Definition: mcxt.c:1520
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * palloc0(Size size)
Definition: mcxt.c:1346
void * palloc(Size size)
Definition: mcxt.c:1316
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:454
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:315
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define IsNormalProcessingMode()
Definition: miscadmin.h:456
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:635
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:642
#define InvalidMultiXactId
Definition: multixact.h:24
void namestrcpy(Name name, const char *str)
Definition: name.c:233
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
#define makeNode(_type_)
Definition: nodes.h:155
#define InvokeObjectPostAlterHookArg(classId, objectId, subId, auxiliaryId, is_internal)
Definition: objectaccess.h:200
#define InvokeObjectPostCreateHookArg(classId, objectId, subId, is_internal)
Definition: objectaccess.h:175
const ObjectAddress InvalidObjectAddress
#define ObjectAddressSet(addr, class_id, object_id)
Definition: objectaddress.h:40
#define ObjectAddressSubSet(addr, class_id, object_id, object_sub_id)
Definition: objectaddress.h:33
oidvector * buildoidvector(const Oid *oids, int n)
Definition: oid.c:87
char * nodeToString(const void *obj)
Definition: outfuncs.c:791
List * SystemFuncName(char *name)
List * get_partition_ancestors(Oid relid)
Definition: partition.c:134
FormData_pg_attribute
Definition: pg_attribute.h:193
#define ATTRIBUTE_FIXED_PART_SIZE
Definition: pg_attribute.h:201
int16 attnum
Definition: pg_attribute.h:74
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define INDEX_MAX_KEYS
bool ConstraintNameIsUsed(ConstraintCategory conCat, Oid objId, const char *conname)
Oid CreateConstraintEntry(const char *constraintName, Oid constraintNamespace, char constraintType, bool isDeferrable, bool isDeferred, bool isValidated, Oid parentConstrId, Oid relId, const int16 *constraintKey, int constraintNKeys, int constraintNTotalKeys, Oid domainId, Oid indexRelId, Oid foreignRelId, const int16 *foreignKey, const Oid *pfEqOp, const Oid *ppEqOp, const Oid *ffEqOp, int foreignNKeys, char foreignUpdateType, char foreignDeleteType, const int16 *fkDeleteSetCols, int numFkDeleteSetCols, char foreignMatchType, const Oid *exclOp, Node *conExpr, const char *conBin, bool conIsLocal, int conInhCount, bool conNoInherit, bool conPeriod, bool is_internal)
Definition: pg_constraint.c:51
FormData_pg_constraint * Form_pg_constraint
@ CONSTRAINT_RELATION
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:44
long deleteDependencyRecordsForClass(Oid classId, Oid objectId, Oid refclassId, char deptype)
Definition: pg_depend.c:350
long changeDependenciesOf(Oid classId, Oid oldObjectId, Oid newObjectId)
Definition: pg_depend.c:564
long changeDependenciesOn(Oid refClassId, Oid oldRefObjectId, Oid newRefObjectId)
Definition: pg_depend.c:620
Oid get_index_constraint(Oid indexId)
Definition: pg_depend.c:968
List * get_index_ref_constraints(Oid indexId)
Definition: pg_depend.c:1024
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
bool DeleteInheritsTuple(Oid inhrelid, Oid inhparent, bool expect_detach_pending, const char *childname)
Definition: pg_inherits.c:552
void StoreSingleInheritance(Oid relationId, Oid parentOid, int32 seqNumber)
Definition: pg_inherits.c:508
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define linitial_oid(l)
Definition: pg_list.h:180
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_opclass * Form_pg_opclass
Definition: pg_opclass.h:83
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
FormData_pg_trigger * Form_pg_trigger
Definition: pg_trigger.h:80
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
int progress
Definition: pgbench.c:261
void pgstat_copy_relation_stats(Relation dst, Relation src)
void pgstat_drop_relation(Relation rel)
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6657
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void TransferPredicateLocksToHeapRelation(Relation relation)
Definition: predicate.c:3108
char * c
#define PROGRESS_CREATEIDX_PHASE_BUILD
Definition: progress.h:94
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_TABLESCAN
Definition: progress.h:98
#define PROGRESS_CREATEIDX_ACCESS_METHOD_OID
Definition: progress.h:83
#define PROGRESS_CREATEIDX_TUPLES_TOTAL
Definition: progress.h:86
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_SORT
Definition: progress.h:97
#define PROGRESS_SCAN_BLOCKS_DONE
Definition: progress.h:122
#define PROGRESS_CREATEIDX_TUPLES_DONE
Definition: progress.h:87
#define PROGRESS_CREATEIDX_SUBPHASE
Definition: progress.h:85
#define PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE
Definition: progress.h:106
#define PROGRESS_CREATEIDX_PHASE
Definition: progress.h:84
#define PROGRESS_CREATEIDX_COMMAND_REINDEX
Definition: progress.h:112
#define PROGRESS_CLUSTER_INDEX_REBUILD_COUNT
Definition: progress.h:64
#define PROGRESS_CREATEIDX_PHASE_VALIDATE_IDXSCAN
Definition: progress.h:96
#define PROGRESS_SCAN_BLOCKS_TOTAL
Definition: progress.h:121
#define PROGRESS_CREATEIDX_INDEX_OID
Definition: progress.h:82
#define PROGRESS_CREATEIDX_COMMAND
Definition: progress.h:81
MemoryContextSwitchTo(old_ctx)
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:499
#define RelationGetRelid(relation)
Definition: rel.h:505
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:567
#define RelationGetDescr(relation)
Definition: rel.h:531
#define RelationIsMapped(relation)
Definition: rel.h:554
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:658
#define RelationIsValid(relation)
Definition: rel.h:478
#define RelationGetNamespace(relation)
Definition: rel.h:546
#define IndexRelationGetNumberOfKeyAttributes(relation)
Definition: rel.h:524
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4760
void RelationInitIndexAccessInfo(Relation relation)
Definition: relcache.c:1425
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5138
List * RelationGetDummyIndexExpressions(Relation relation)
Definition: relcache.c:5084
void RelationSetNewRelfilenumber(Relation relation, char persistence)
Definition: relcache.c:3726
void RelationForgetRelation(Oid rid)
Definition: relcache.c:2873
void RelationAssumeNewRelfilelocator(Relation relation)
Definition: relcache.c:3925
void RelationGetExclusionInfo(Relation indexRelation, Oid **operators, Oid **procs, uint16 **strategies)
Definition: relcache.c:5581
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5025
Oid RelFileNumber
Definition: relpath.h:25
@ INIT_FORKNUM
Definition: relpath.h:53
#define InvalidRelFileNumber
Definition: relpath.h:26
#define RelFileNumberIsValid(relnumber)
Definition: relpath.h:27
Node * map_variable_attnos(Node *node, int target_varno, int sublevels_up, const AttrMap *attno_map, Oid to_rowtype, bool *found_whole_row)
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
@ ForwardScanDirection
Definition: sdir.h:28
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:411
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:398
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:291
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:836
bool ActiveSnapshotSet(void)
Definition: snapmgr.c:782
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:794
void PopActiveSnapshot(void)
Definition: snapmgr.c:743
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:47
void log_smgrcreate(const RelFileLocator *rlocator, ForkNumber forkNum)
Definition: storage.c:186
void RelationDropStorage(Relation rel)
Definition: storage.c:206
#define BTEqualStrategyNumber
Definition: stratnum.h:31
#define ERRCODE_DUPLICATE_OBJECT
Definition: streamutil.c:32
Definition: attmap.h:35
int maplen
Definition: attmap.h:37
AttrNumber * attnums
Definition: attmap.h:36
Node * whenClause
Definition: parsenodes.h:3027
List * transitionRels
Definition: parsenodes.h:3029
RangeVar * constrrel
Definition: parsenodes.h:3033
RangeVar * relation
Definition: parsenodes.h:3018
MemoryContext ecxt_per_tuple_memory
Definition: execnodes.h:263
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:255
ItemPointerData t_self
Definition: htup.h:65
ambuildempty_function ambuildempty
Definition: amapi.h:268
Oid amkeytype
Definition: amapi.h:258
ambuild_function ambuild
Definition: amapi.h:267
bool amsummarizing
Definition: amapi.h:254
bool amcanbuildparallel
Definition: amapi.h:248
double heap_tuples
Definition: genam.h:32
double index_tuples
Definition: genam.h:33
bool ii_Unique
Definition: execnodes.h:197
uint16 * ii_ExclusionStrats
Definition: execnodes.h:193
bool ii_BrokenHotChain
Definition: execnodes.h:203
int ii_NumIndexAttrs
Definition: execnodes.h:184
Oid * ii_UniqueOps
Definition: execnodes.h:194
ExprState * ii_PredicateState
Definition: execnodes.h:190
Oid * ii_ExclusionOps
Definition: execnodes.h:191
bool ii_NullsNotDistinct
Definition: execnodes.h:198
int ii_ParallelWorkers
Definition: execnodes.h:205
bool ii_Concurrent
Definition: execnodes.h:202
uint16 * ii_UniqueStrats
Definition: execnodes.h:196
int ii_NumIndexKeyAttrs
Definition: execnodes.h:185
List * ii_ExpressionsState
Definition: execnodes.h:188
List * ii_Expressions
Definition: execnodes.h:187
Oid * ii_ExclusionProcs
Definition: execnodes.h:192
Oid ii_Am
Definition: execnodes.h:206
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:186
Oid * ii_UniqueProcs
Definition: execnodes.h:195
bool ii_ReadyForInserts
Definition: execnodes.h:199
List * ii_Predicate
Definition: execnodes.h:189
Relation index
Definition: genam.h:46
double num_heap_tuples
Definition: genam.h:52
bool analyze_only
Definition: genam.h:48
BufferAccessStrategy strategy
Definition: genam.h:53
Relation heaprel
Definition: genam.h:47
bool report_progress
Definition: genam.h:49
int message_level
Definition: genam.h:51
bool estimated_count
Definition: genam.h:50
Definition: lock.h:165
Definition: pg_list.h:54
LockRelId lockRelId
Definition: rel.h:46
Definition: rel.h:39
Oid relId
Definition: rel.h:40
Oid dbId
Definition: rel.h:41
Definition: nodes.h:129
Datum value
Definition: postgres.h:75
bool isnull
Definition: postgres.h:77
Oid tablespaceOid
Definition: index.h:36
bits32 options
Definition: index.h:35
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
LockInfoData rd_lockInfo
Definition: rel.h:114
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
MemoryContext rd_indexcxt
Definition: rel.h:204
RelFileLocator rd_locator
Definition: rel.h:57
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Oid currentlyReindexedHeap
Definition: index.c:94
Oid currentlyReindexedIndex
Definition: index.c:95
int numPendingReindexedIndexes
Definition: index.c:96
Oid pendingReindexedIndexes[FLEXIBLE_ARRAY_MEMBER]
Definition: index.c:97
ItemPointerData tts_tid
Definition: tuptable.h:129
Definition: type.h:95
Definition: c.h:715
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:722
Definition: c.h:726
Oid values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:733
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:218
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:479
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:229
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:510
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:86
Relation try_table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:60
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TableScanDesc table_beginscan_catalog(Relation relation, int nkeys, struct ScanKeyData *key)
Definition: tableam.c:112
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:91
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:1029
static void table_index_validate_scan(Relation table_rel, Relation index_rel, struct IndexInfo *index_info, Snapshot snapshot, struct ValidateIndexState *state)
Definition: tableam.h:1849
static TableScanDesc table_beginscan_strat(Relation rel, Snapshot snapshot, int nkeys, struct ScanKeyData *key, bool allow_strat, bool allow_sync)
Definition: tableam.h:942
static bool table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:1065
void CheckTableNotInUse(Relation rel, const char *stmt)
Definition: tablecmds.c:4346
bool CheckRelationTableSpaceMove(Relation rel, Oid newTableSpaceId)
Definition: tablecmds.c:3629
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3588
void SetRelationTableSpace(Relation rel, Oid newTableSpaceId, RelFileNumber newRelFilenumber)
Definition: tablecmds.c:3686
#define InvalidCompressionMethod
#define InvalidTransactionId
Definition: transam.h:31
ObjectAddress CreateTrigger(CreateTrigStmt *stmt, const char *queryString, Oid relOid, Oid refRelOid, Oid constraintOid, Oid indexOid, Oid funcoid, Oid parentTriggerOid, Node *whenClause, bool isInternal, bool in_partition)
Definition: trigger.c:158
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:67
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void tuplesort_performsort(Tuplesortstate *state)
Definition: tuplesort.c:1385
void tuplesort_end(Tuplesortstate *state)
Definition: tuplesort.c:971
#define TUPLESORT_NONE
Definition: tuplesort.h:93
void tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
Tuplesortstate * tuplesort_begin_datum(Oid datumType, Oid sortOperator, Oid sortCollation, bool nullsFirstFlag, int workMem, SortCoordinate coordinate, int sortopt)
static Datum slot_getsysattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:416
static Datum slot_getattr(TupleTableSlot *slot, int attnum, bool *isnull)
Definition: tuptable.h:395
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)
const char * description
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:926
void CommandCounterIncrement(void)
Definition: xact.c:1097
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:438
void StartTransactionCommand(void)
Definition: xact.c:2995
bool IsInParallelMode(void)
Definition: xact.c:1086
void CommitTransactionCommand(void)
Definition: xact.c:3093