PostgreSQL Source Code  git master
lwlock.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * lwlock.c
4  * Lightweight lock manager
5  *
6  * Lightweight locks are intended primarily to provide mutual exclusion of
7  * access to shared-memory data structures. Therefore, they offer both
8  * exclusive and shared lock modes (to support read/write and read-only
9  * access to a shared object). There are few other frammishes. User-level
10  * locking should be done with the full lock manager --- which depends on
11  * LWLocks to protect its shared state.
12  *
13  * In addition to exclusive and shared modes, lightweight locks can be used to
14  * wait until a variable changes value. The variable is initially not set
15  * when the lock is acquired with LWLockAcquire, i.e. it remains set to the
16  * value it was set to when the lock was released last, and can be updated
17  * without releasing the lock by calling LWLockUpdateVar. LWLockWaitForVar
18  * waits for the variable to be updated, or until the lock is free. When
19  * releasing the lock with LWLockReleaseClearVar() the value can be set to an
20  * appropriate value for a free lock. The meaning of the variable is up to
21  * the caller, the lightweight lock code just assigns and compares it.
22  *
23  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
24  * Portions Copyright (c) 1994, Regents of the University of California
25  *
26  * IDENTIFICATION
27  * src/backend/storage/lmgr/lwlock.c
28  *
29  * NOTES:
30  *
31  * This used to be a pretty straight forward reader-writer lock
32  * implementation, in which the internal state was protected by a
33  * spinlock. Unfortunately the overhead of taking the spinlock proved to be
34  * too high for workloads/locks that were taken in shared mode very
35  * frequently. Often we were spinning in the (obviously exclusive) spinlock,
36  * while trying to acquire a shared lock that was actually free.
37  *
38  * Thus a new implementation was devised that provides wait-free shared lock
39  * acquisition for locks that aren't exclusively locked.
40  *
41  * The basic idea is to have a single atomic variable 'lockcount' instead of
42  * the formerly separate shared and exclusive counters and to use atomic
43  * operations to acquire the lock. That's fairly easy to do for plain
44  * rw-spinlocks, but a lot harder for something like LWLocks that want to wait
45  * in the OS.
46  *
47  * For lock acquisition we use an atomic compare-and-exchange on the lockcount
48  * variable. For exclusive lock we swap in a sentinel value
49  * (LW_VAL_EXCLUSIVE), for shared locks we count the number of holders.
50  *
51  * To release the lock we use an atomic decrement to release the lock. If the
52  * new value is zero (we get that atomically), we know we can/have to release
53  * waiters.
54  *
55  * Obviously it is important that the sentinel value for exclusive locks
56  * doesn't conflict with the maximum number of possible share lockers -
57  * luckily MAX_BACKENDS makes that easily possible.
58  *
59  *
60  * The attentive reader might have noticed that naively doing the above has a
61  * glaring race condition: We try to lock using the atomic operations and
62  * notice that we have to wait. Unfortunately by the time we have finished
63  * queuing, the former locker very well might have already finished it's
64  * work. That's problematic because we're now stuck waiting inside the OS.
65 
66  * To mitigate those races we use a two phased attempt at locking:
67  * Phase 1: Try to do it atomically, if we succeed, nice
68  * Phase 2: Add ourselves to the waitqueue of the lock
69  * Phase 3: Try to grab the lock again, if we succeed, remove ourselves from
70  * the queue
71  * Phase 4: Sleep till wake-up, goto Phase 1
72  *
73  * This protects us against the problem from above as nobody can release too
74  * quick, before we're queued, since after Phase 2 we're already queued.
75  * -------------------------------------------------------------------------
76  */
77 #include "postgres.h"
78 
79 #include "miscadmin.h"
80 #include "pg_trace.h"
81 #include "pgstat.h"
82 #include "port/pg_bitutils.h"
83 #include "postmaster/postmaster.h"
84 #include "storage/proc.h"
85 #include "storage/proclist.h"
86 #include "storage/spin.h"
87 #include "utils/memutils.h"
88 
89 #ifdef LWLOCK_STATS
90 #include "utils/hsearch.h"
91 #endif
92 
93 
94 /* We use the ShmemLock spinlock to protect LWLockCounter */
95 extern slock_t *ShmemLock;
96 
97 #define LW_FLAG_HAS_WAITERS ((uint32) 1 << 30)
98 #define LW_FLAG_RELEASE_OK ((uint32) 1 << 29)
99 #define LW_FLAG_LOCKED ((uint32) 1 << 28)
100 
101 #define LW_VAL_EXCLUSIVE ((uint32) 1 << 24)
102 #define LW_VAL_SHARED 1
103 
104 #define LW_LOCK_MASK ((uint32) ((1 << 25)-1))
105 /* Must be greater than MAX_BACKENDS - which is 2^23-1, so we're fine. */
106 #define LW_SHARED_MASK ((uint32) ((1 << 24)-1))
107 
109  "MAX_BACKENDS too big for lwlock.c");
110 
111 /*
112  * There are three sorts of LWLock "tranches":
113  *
114  * 1. The individually-named locks defined in lwlocknames.h each have their
115  * own tranche. We absorb the names of these tranches from there into
116  * BuiltinTrancheNames here.
117  *
118  * 2. There are some predefined tranches for built-in groups of locks.
119  * These are listed in enum BuiltinTrancheIds in lwlock.h, and their names
120  * appear in BuiltinTrancheNames[] below.
121  *
122  * 3. Extensions can create new tranches, via either RequestNamedLWLockTranche
123  * or LWLockRegisterTranche. The names of these that are known in the current
124  * process appear in LWLockTrancheNames[].
125  *
126  * All these names are user-visible as wait event names, so choose with care
127  * ... and do not forget to update the documentation's list of wait events.
128  */
129 static const char *const BuiltinTrancheNames[] = {
130 #define PG_LWLOCK(id, lockname) [id] = CppAsString(lockname) "Lock",
131 #include "storage/lwlocklist.h"
132 #undef PG_LWLOCK
133  [LWTRANCHE_XACT_BUFFER] = "XactBuffer",
134  [LWTRANCHE_COMMITTS_BUFFER] = "CommitTsBuffer",
135  [LWTRANCHE_SUBTRANS_BUFFER] = "SubtransBuffer",
136  [LWTRANCHE_MULTIXACTOFFSET_BUFFER] = "MultiXactOffsetBuffer",
137  [LWTRANCHE_MULTIXACTMEMBER_BUFFER] = "MultiXactMemberBuffer",
138  [LWTRANCHE_NOTIFY_BUFFER] = "NotifyBuffer",
139  [LWTRANCHE_SERIAL_BUFFER] = "SerialBuffer",
140  [LWTRANCHE_WAL_INSERT] = "WALInsert",
141  [LWTRANCHE_BUFFER_CONTENT] = "BufferContent",
142  [LWTRANCHE_REPLICATION_ORIGIN_STATE] = "ReplicationOriginState",
143  [LWTRANCHE_REPLICATION_SLOT_IO] = "ReplicationSlotIO",
144  [LWTRANCHE_LOCK_FASTPATH] = "LockFastPath",
145  [LWTRANCHE_BUFFER_MAPPING] = "BufferMapping",
146  [LWTRANCHE_LOCK_MANAGER] = "LockManager",
147  [LWTRANCHE_PREDICATE_LOCK_MANAGER] = "PredicateLockManager",
148  [LWTRANCHE_PARALLEL_HASH_JOIN] = "ParallelHashJoin",
149  [LWTRANCHE_PARALLEL_QUERY_DSA] = "ParallelQueryDSA",
150  [LWTRANCHE_PER_SESSION_DSA] = "PerSessionDSA",
151  [LWTRANCHE_PER_SESSION_RECORD_TYPE] = "PerSessionRecordType",
152  [LWTRANCHE_PER_SESSION_RECORD_TYPMOD] = "PerSessionRecordTypmod",
153  [LWTRANCHE_SHARED_TUPLESTORE] = "SharedTupleStore",
154  [LWTRANCHE_SHARED_TIDBITMAP] = "SharedTidBitmap",
155  [LWTRANCHE_PARALLEL_APPEND] = "ParallelAppend",
156  [LWTRANCHE_PER_XACT_PREDICATE_LIST] = "PerXactPredicateList",
157  [LWTRANCHE_PGSTATS_DSA] = "PgStatsDSA",
158  [LWTRANCHE_PGSTATS_HASH] = "PgStatsHash",
159  [LWTRANCHE_PGSTATS_DATA] = "PgStatsData",
160  [LWTRANCHE_LAUNCHER_DSA] = "LogicalRepLauncherDSA",
161  [LWTRANCHE_LAUNCHER_HASH] = "LogicalRepLauncherHash",
162  [LWTRANCHE_DSM_REGISTRY_DSA] = "DSMRegistryDSA",
163  [LWTRANCHE_DSM_REGISTRY_HASH] = "DSMRegistryHash",
164  [LWTRANCHE_COMMITTS_SLRU] = "CommitTSSLRU",
165  [LWTRANCHE_MULTIXACTOFFSET_SLRU] = "MultixactOffsetSLRU",
166  [LWTRANCHE_MULTIXACTMEMBER_SLRU] = "MultixactMemberSLRU",
167  [LWTRANCHE_NOTIFY_SLRU] = "NotifySLRU",
168  [LWTRANCHE_SERIAL_SLRU] = "SerialSLRU",
169  [LWTRANCHE_SUBTRANS_SLRU] = "SubtransSLRU",
170  [LWTRANCHE_XACT_SLRU] = "XactSLRU",
171  [LWTRANCHE_PARALLEL_VACUUM_DSA] = "ParallelVacuumDSA",
172 };
173 
176  "missing entries in BuiltinTrancheNames[]");
177 
178 /*
179  * This is indexed by tranche ID minus LWTRANCHE_FIRST_USER_DEFINED, and
180  * stores the names of all dynamically-created tranches known to the current
181  * process. Any unused entries in the array will contain NULL.
182  */
183 static const char **LWLockTrancheNames = NULL;
185 
186 /*
187  * This points to the main array of LWLocks in shared memory. Backends inherit
188  * the pointer by fork from the postmaster (except in the EXEC_BACKEND case,
189  * where we have special measures to pass it down).
190  */
192 
193 /*
194  * We use this structure to keep track of locked LWLocks for release
195  * during error recovery. Normally, only a few will be held at once, but
196  * occasionally the number can be much higher; for example, the pg_buffercache
197  * extension locks all buffer partitions simultaneously.
198  */
199 #define MAX_SIMUL_LWLOCKS 200
200 
201 /* struct representing the LWLocks we're holding */
202 typedef struct LWLockHandle
203 {
207 
208 static int num_held_lwlocks = 0;
210 
211 /* struct representing the LWLock tranche request for named tranche */
213 {
217 
220 
221 /*
222  * NamedLWLockTrancheRequests is both the valid length of the request array,
223  * and the length of the shared-memory NamedLWLockTrancheArray later on.
224  * This variable and NamedLWLockTrancheArray are non-static so that
225  * postmaster.c can copy them to child processes in EXEC_BACKEND builds.
226  */
228 
229 /* points to data in shared memory: */
231 
232 static void InitializeLWLocks(void);
233 static inline void LWLockReportWaitStart(LWLock *lock);
234 static inline void LWLockReportWaitEnd(void);
235 static const char *GetLWTrancheName(uint16 trancheId);
236 
237 #define T_NAME(lock) \
238  GetLWTrancheName((lock)->tranche)
239 
240 #ifdef LWLOCK_STATS
241 typedef struct lwlock_stats_key
242 {
243  int tranche;
244  void *instance;
245 } lwlock_stats_key;
246 
247 typedef struct lwlock_stats
248 {
249  lwlock_stats_key key;
250  int sh_acquire_count;
251  int ex_acquire_count;
252  int block_count;
253  int dequeue_self_count;
254  int spin_delay_count;
255 } lwlock_stats;
256 
257 static HTAB *lwlock_stats_htab;
258 static lwlock_stats lwlock_stats_dummy;
259 #endif
260 
261 #ifdef LOCK_DEBUG
262 bool Trace_lwlocks = false;
263 
264 inline static void
265 PRINT_LWDEBUG(const char *where, LWLock *lock, LWLockMode mode)
266 {
267  /* hide statement & context here, otherwise the log is just too verbose */
268  if (Trace_lwlocks)
269  {
271 
272  ereport(LOG,
273  (errhidestmt(true),
274  errhidecontext(true),
275  errmsg_internal("%d: %s(%s %p): excl %u shared %u haswaiters %u waiters %u rOK %d",
276  MyProcPid,
277  where, T_NAME(lock), lock,
278  (state & LW_VAL_EXCLUSIVE) != 0,
280  (state & LW_FLAG_HAS_WAITERS) != 0,
281  pg_atomic_read_u32(&lock->nwaiters),
282  (state & LW_FLAG_RELEASE_OK) != 0)));
283  }
284 }
285 
286 inline static void
287 LOG_LWDEBUG(const char *where, LWLock *lock, const char *msg)
288 {
289  /* hide statement & context here, otherwise the log is just too verbose */
290  if (Trace_lwlocks)
291  {
292  ereport(LOG,
293  (errhidestmt(true),
294  errhidecontext(true),
295  errmsg_internal("%s(%s %p): %s", where,
296  T_NAME(lock), lock, msg)));
297  }
298 }
299 
300 #else /* not LOCK_DEBUG */
301 #define PRINT_LWDEBUG(a,b,c) ((void)0)
302 #define LOG_LWDEBUG(a,b,c) ((void)0)
303 #endif /* LOCK_DEBUG */
304 
305 #ifdef LWLOCK_STATS
306 
307 static void init_lwlock_stats(void);
308 static void print_lwlock_stats(int code, Datum arg);
309 static lwlock_stats * get_lwlock_stats_entry(LWLock *lock);
310 
311 static void
312 init_lwlock_stats(void)
313 {
314  HASHCTL ctl;
315  static MemoryContext lwlock_stats_cxt = NULL;
316  static bool exit_registered = false;
317 
318  if (lwlock_stats_cxt != NULL)
319  MemoryContextDelete(lwlock_stats_cxt);
320 
321  /*
322  * The LWLock stats will be updated within a critical section, which
323  * requires allocating new hash entries. Allocations within a critical
324  * section are normally not allowed because running out of memory would
325  * lead to a PANIC, but LWLOCK_STATS is debugging code that's not normally
326  * turned on in production, so that's an acceptable risk. The hash entries
327  * are small, so the risk of running out of memory is minimal in practice.
328  */
329  lwlock_stats_cxt = AllocSetContextCreate(TopMemoryContext,
330  "LWLock stats",
332  MemoryContextAllowInCriticalSection(lwlock_stats_cxt, true);
333 
334  ctl.keysize = sizeof(lwlock_stats_key);
335  ctl.entrysize = sizeof(lwlock_stats);
336  ctl.hcxt = lwlock_stats_cxt;
337  lwlock_stats_htab = hash_create("lwlock stats", 16384, &ctl,
339  if (!exit_registered)
340  {
341  on_shmem_exit(print_lwlock_stats, 0);
342  exit_registered = true;
343  }
344 }
345 
346 static void
347 print_lwlock_stats(int code, Datum arg)
348 {
349  HASH_SEQ_STATUS scan;
350  lwlock_stats *lwstats;
351 
352  hash_seq_init(&scan, lwlock_stats_htab);
353 
354  /* Grab an LWLock to keep different backends from mixing reports */
356 
357  while ((lwstats = (lwlock_stats *) hash_seq_search(&scan)) != NULL)
358  {
359  fprintf(stderr,
360  "PID %d lwlock %s %p: shacq %u exacq %u blk %u spindelay %u dequeue self %u\n",
361  MyProcPid, GetLWTrancheName(lwstats->key.tranche),
362  lwstats->key.instance, lwstats->sh_acquire_count,
363  lwstats->ex_acquire_count, lwstats->block_count,
364  lwstats->spin_delay_count, lwstats->dequeue_self_count);
365  }
366 
367  LWLockRelease(&MainLWLockArray[0].lock);
368 }
369 
370 static lwlock_stats *
371 get_lwlock_stats_entry(LWLock *lock)
372 {
373  lwlock_stats_key key;
374  lwlock_stats *lwstats;
375  bool found;
376 
377  /*
378  * During shared memory initialization, the hash table doesn't exist yet.
379  * Stats of that phase aren't very interesting, so just collect operations
380  * on all locks in a single dummy entry.
381  */
382  if (lwlock_stats_htab == NULL)
383  return &lwlock_stats_dummy;
384 
385  /* Fetch or create the entry. */
386  MemSet(&key, 0, sizeof(key));
387  key.tranche = lock->tranche;
388  key.instance = lock;
389  lwstats = hash_search(lwlock_stats_htab, &key, HASH_ENTER, &found);
390  if (!found)
391  {
392  lwstats->sh_acquire_count = 0;
393  lwstats->ex_acquire_count = 0;
394  lwstats->block_count = 0;
395  lwstats->dequeue_self_count = 0;
396  lwstats->spin_delay_count = 0;
397  }
398  return lwstats;
399 }
400 #endif /* LWLOCK_STATS */
401 
402 
403 /*
404  * Compute number of LWLocks required by named tranches. These will be
405  * allocated in the main array.
406  */
407 static int
409 {
410  int numLocks = 0;
411  int i;
412 
413  for (i = 0; i < NamedLWLockTrancheRequests; i++)
414  numLocks += NamedLWLockTrancheRequestArray[i].num_lwlocks;
415 
416  return numLocks;
417 }
418 
419 /*
420  * Compute shmem space needed for LWLocks and named tranches.
421  */
422 Size
424 {
425  Size size;
426  int i;
427  int numLocks = NUM_FIXED_LWLOCKS;
428 
429  /* Calculate total number of locks needed in the main array. */
430  numLocks += NumLWLocksForNamedTranches();
431 
432  /* Space for the LWLock array. */
433  size = mul_size(numLocks, sizeof(LWLockPadded));
434 
435  /* Space for dynamic allocation counter, plus room for alignment. */
436  size = add_size(size, sizeof(int) + LWLOCK_PADDED_SIZE);
437 
438  /* space for named tranches. */
440 
441  /* space for name of each tranche. */
442  for (i = 0; i < NamedLWLockTrancheRequests; i++)
443  size = add_size(size, strlen(NamedLWLockTrancheRequestArray[i].tranche_name) + 1);
444 
445  return size;
446 }
447 
448 /*
449  * Allocate shmem space for the main LWLock array and all tranches and
450  * initialize it. We also register extension LWLock tranches here.
451  */
452 void
454 {
455  if (!IsUnderPostmaster)
456  {
457  Size spaceLocks = LWLockShmemSize();
458  int *LWLockCounter;
459  char *ptr;
460 
461  /* Allocate space */
462  ptr = (char *) ShmemAlloc(spaceLocks);
463 
464  /* Leave room for dynamic allocation of tranches */
465  ptr += sizeof(int);
466 
467  /* Ensure desired alignment of LWLock array */
468  ptr += LWLOCK_PADDED_SIZE - ((uintptr_t) ptr) % LWLOCK_PADDED_SIZE;
469 
470  MainLWLockArray = (LWLockPadded *) ptr;
471 
472  /*
473  * Initialize the dynamic-allocation counter for tranches, which is
474  * stored just before the first LWLock.
475  */
476  LWLockCounter = (int *) ((char *) MainLWLockArray - sizeof(int));
477  *LWLockCounter = LWTRANCHE_FIRST_USER_DEFINED;
478 
479  /* Initialize all LWLocks */
481  }
482 
483  /* Register named extension LWLock tranches in the current process. */
484  for (int i = 0; i < NamedLWLockTrancheRequests; i++)
486  NamedLWLockTrancheArray[i].trancheName);
487 }
488 
489 /*
490  * Initialize LWLocks that are fixed and those belonging to named tranches.
491  */
492 static void
494 {
495  int numNamedLocks = NumLWLocksForNamedTranches();
496  int id;
497  int i;
498  int j;
499  LWLockPadded *lock;
500 
501  /* Initialize all individual LWLocks in main array */
502  for (id = 0, lock = MainLWLockArray; id < NUM_INDIVIDUAL_LWLOCKS; id++, lock++)
503  LWLockInitialize(&lock->lock, id);
504 
505  /* Initialize buffer mapping LWLocks in main array */
507  for (id = 0; id < NUM_BUFFER_PARTITIONS; id++, lock++)
509 
510  /* Initialize lmgrs' LWLocks in main array */
512  for (id = 0; id < NUM_LOCK_PARTITIONS; id++, lock++)
514 
515  /* Initialize predicate lmgrs' LWLocks in main array */
517  for (id = 0; id < NUM_PREDICATELOCK_PARTITIONS; id++, lock++)
519 
520  /*
521  * Copy the info about any named tranches into shared memory (so that
522  * other processes can see it), and initialize the requested LWLocks.
523  */
525  {
526  char *trancheNames;
527 
529  &MainLWLockArray[NUM_FIXED_LWLOCKS + numNamedLocks];
530 
531  trancheNames = (char *) NamedLWLockTrancheArray +
534 
535  for (i = 0; i < NamedLWLockTrancheRequests; i++)
536  {
537  NamedLWLockTrancheRequest *request;
538  NamedLWLockTranche *tranche;
539  char *name;
540 
541  request = &NamedLWLockTrancheRequestArray[i];
542  tranche = &NamedLWLockTrancheArray[i];
543 
544  name = trancheNames;
545  trancheNames += strlen(request->tranche_name) + 1;
546  strcpy(name, request->tranche_name);
547  tranche->trancheId = LWLockNewTrancheId();
548  tranche->trancheName = name;
549 
550  for (j = 0; j < request->num_lwlocks; j++, lock++)
551  LWLockInitialize(&lock->lock, tranche->trancheId);
552  }
553  }
554 }
555 
556 /*
557  * InitLWLockAccess - initialize backend-local state needed to hold LWLocks
558  */
559 void
561 {
562 #ifdef LWLOCK_STATS
563  init_lwlock_stats();
564 #endif
565 }
566 
567 /*
568  * GetNamedLWLockTranche - returns the base address of LWLock from the
569  * specified tranche.
570  *
571  * Caller needs to retrieve the requested number of LWLocks starting from
572  * the base lock address returned by this API. This can be used for
573  * tranches that are requested by using RequestNamedLWLockTranche() API.
574  */
575 LWLockPadded *
576 GetNamedLWLockTranche(const char *tranche_name)
577 {
578  int lock_pos;
579  int i;
580 
581  /*
582  * Obtain the position of base address of LWLock belonging to requested
583  * tranche_name in MainLWLockArray. LWLocks for named tranches are placed
584  * in MainLWLockArray after fixed locks.
585  */
586  lock_pos = NUM_FIXED_LWLOCKS;
587  for (i = 0; i < NamedLWLockTrancheRequests; i++)
588  {
589  if (strcmp(NamedLWLockTrancheRequestArray[i].tranche_name,
590  tranche_name) == 0)
591  return &MainLWLockArray[lock_pos];
592 
594  }
595 
596  elog(ERROR, "requested tranche is not registered");
597 
598  /* just to keep compiler quiet */
599  return NULL;
600 }
601 
602 /*
603  * Allocate a new tranche ID.
604  */
605 int
607 {
608  int result;
609  int *LWLockCounter;
610 
611  LWLockCounter = (int *) ((char *) MainLWLockArray - sizeof(int));
613  result = (*LWLockCounter)++;
615 
616  return result;
617 }
618 
619 /*
620  * Register a dynamic tranche name in the lookup table of the current process.
621  *
622  * This routine will save a pointer to the tranche name passed as an argument,
623  * so the name should be allocated in a backend-lifetime context
624  * (shared memory, TopMemoryContext, static constant, or similar).
625  *
626  * The tranche name will be user-visible as a wait event name, so try to
627  * use a name that fits the style for those.
628  */
629 void
630 LWLockRegisterTranche(int tranche_id, const char *tranche_name)
631 {
632  /* This should only be called for user-defined tranches. */
633  if (tranche_id < LWTRANCHE_FIRST_USER_DEFINED)
634  return;
635 
636  /* Convert to array index. */
637  tranche_id -= LWTRANCHE_FIRST_USER_DEFINED;
638 
639  /* If necessary, create or enlarge array. */
640  if (tranche_id >= LWLockTrancheNamesAllocated)
641  {
642  int newalloc;
643 
644  newalloc = pg_nextpower2_32(Max(8, tranche_id + 1));
645 
646  if (LWLockTrancheNames == NULL)
647  LWLockTrancheNames = (const char **)
649  newalloc * sizeof(char *));
650  else
653  LWLockTrancheNamesAllocated = newalloc;
654  }
655 
656  LWLockTrancheNames[tranche_id] = tranche_name;
657 }
658 
659 /*
660  * RequestNamedLWLockTranche
661  * Request that extra LWLocks be allocated during postmaster
662  * startup.
663  *
664  * This may only be called via the shmem_request_hook of a library that is
665  * loaded into the postmaster via shared_preload_libraries. Calls from
666  * elsewhere will fail.
667  *
668  * The tranche name will be user-visible as a wait event name, so try to
669  * use a name that fits the style for those.
670  */
671 void
672 RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
673 {
674  NamedLWLockTrancheRequest *request;
675 
677  elog(FATAL, "cannot request additional LWLocks outside shmem_request_hook");
678 
679  if (NamedLWLockTrancheRequestArray == NULL)
680  {
685  * sizeof(NamedLWLockTrancheRequest));
686  }
687 
689  {
691 
694  i * sizeof(NamedLWLockTrancheRequest));
696  }
697 
699  Assert(strlen(tranche_name) + 1 <= NAMEDATALEN);
700  strlcpy(request->tranche_name, tranche_name, NAMEDATALEN);
701  request->num_lwlocks = num_lwlocks;
703 }
704 
705 /*
706  * LWLockInitialize - initialize a new lwlock; it's initially unlocked
707  */
708 void
709 LWLockInitialize(LWLock *lock, int tranche_id)
710 {
712 #ifdef LOCK_DEBUG
713  pg_atomic_init_u32(&lock->nwaiters, 0);
714 #endif
715  lock->tranche = tranche_id;
716  proclist_init(&lock->waiters);
717 }
718 
719 /*
720  * Report start of wait event for light-weight locks.
721  *
722  * This function will be used by all the light-weight lock calls which
723  * needs to wait to acquire the lock. This function distinguishes wait
724  * event based on tranche and lock id.
725  */
726 static inline void
728 {
730 }
731 
732 /*
733  * Report end of wait event for light-weight locks.
734  */
735 static inline void
737 {
739 }
740 
741 /*
742  * Return the name of an LWLock tranche.
743  */
744 static const char *
746 {
747  /* Built-in tranche or individual LWLock? */
748  if (trancheId < LWTRANCHE_FIRST_USER_DEFINED)
749  return BuiltinTrancheNames[trancheId];
750 
751  /*
752  * It's an extension tranche, so look in LWLockTrancheNames[]. However,
753  * it's possible that the tranche has never been registered in the current
754  * process, in which case give up and return "extension".
755  */
756  trancheId -= LWTRANCHE_FIRST_USER_DEFINED;
757 
758  if (trancheId >= LWLockTrancheNamesAllocated ||
759  LWLockTrancheNames[trancheId] == NULL)
760  return "extension";
761 
762  return LWLockTrancheNames[trancheId];
763 }
764 
765 /*
766  * Return an identifier for an LWLock based on the wait class and event.
767  */
768 const char *
770 {
771  Assert(classId == PG_WAIT_LWLOCK);
772  /* The event IDs are just tranche numbers. */
773  return GetLWTrancheName(eventId);
774 }
775 
776 /*
777  * Internal function that tries to atomically acquire the lwlock in the passed
778  * in mode.
779  *
780  * This function will not block waiting for a lock to become free - that's the
781  * caller's job.
782  *
783  * Returns true if the lock isn't free and we need to wait.
784  */
785 static bool
787 {
788  uint32 old_state;
789 
791 
792  /*
793  * Read once outside the loop, later iterations will get the newer value
794  * via compare & exchange.
795  */
796  old_state = pg_atomic_read_u32(&lock->state);
797 
798  /* loop until we've determined whether we could acquire the lock or not */
799  while (true)
800  {
801  uint32 desired_state;
802  bool lock_free;
803 
804  desired_state = old_state;
805 
806  if (mode == LW_EXCLUSIVE)
807  {
808  lock_free = (old_state & LW_LOCK_MASK) == 0;
809  if (lock_free)
810  desired_state += LW_VAL_EXCLUSIVE;
811  }
812  else
813  {
814  lock_free = (old_state & LW_VAL_EXCLUSIVE) == 0;
815  if (lock_free)
816  desired_state += LW_VAL_SHARED;
817  }
818 
819  /*
820  * Attempt to swap in the state we are expecting. If we didn't see
821  * lock to be free, that's just the old value. If we saw it as free,
822  * we'll attempt to mark it acquired. The reason that we always swap
823  * in the value is that this doubles as a memory barrier. We could try
824  * to be smarter and only swap in values if we saw the lock as free,
825  * but benchmark haven't shown it as beneficial so far.
826  *
827  * Retry if the value changed since we last looked at it.
828  */
830  &old_state, desired_state))
831  {
832  if (lock_free)
833  {
834  /* Great! Got the lock. */
835 #ifdef LOCK_DEBUG
836  if (mode == LW_EXCLUSIVE)
837  lock->owner = MyProc;
838 #endif
839  return false;
840  }
841  else
842  return true; /* somebody else has the lock */
843  }
844  }
845  pg_unreachable();
846 }
847 
848 /*
849  * Lock the LWLock's wait list against concurrent activity.
850  *
851  * NB: even though the wait list is locked, non-conflicting lock operations
852  * may still happen concurrently.
853  *
854  * Time spent holding mutex should be short!
855  */
856 static void
858 {
859  uint32 old_state;
860 #ifdef LWLOCK_STATS
861  lwlock_stats *lwstats;
862  uint32 delays = 0;
863 
864  lwstats = get_lwlock_stats_entry(lock);
865 #endif
866 
867  while (true)
868  {
869  /* always try once to acquire lock directly */
870  old_state = pg_atomic_fetch_or_u32(&lock->state, LW_FLAG_LOCKED);
871  if (!(old_state & LW_FLAG_LOCKED))
872  break; /* got lock */
873 
874  /* and then spin without atomic operations until lock is released */
875  {
876  SpinDelayStatus delayStatus;
877 
878  init_local_spin_delay(&delayStatus);
879 
880  while (old_state & LW_FLAG_LOCKED)
881  {
882  perform_spin_delay(&delayStatus);
883  old_state = pg_atomic_read_u32(&lock->state);
884  }
885 #ifdef LWLOCK_STATS
886  delays += delayStatus.delays;
887 #endif
888  finish_spin_delay(&delayStatus);
889  }
890 
891  /*
892  * Retry. The lock might obviously already be re-acquired by the time
893  * we're attempting to get it again.
894  */
895  }
896 
897 #ifdef LWLOCK_STATS
898  lwstats->spin_delay_count += delays;
899 #endif
900 }
901 
902 /*
903  * Unlock the LWLock's wait list.
904  *
905  * Note that it can be more efficient to manipulate flags and release the
906  * locks in a single atomic operation.
907  */
908 static void
910 {
912 
913  old_state = pg_atomic_fetch_and_u32(&lock->state, ~LW_FLAG_LOCKED);
914 
915  Assert(old_state & LW_FLAG_LOCKED);
916 }
917 
918 /*
919  * Wakeup all the lockers that currently have a chance to acquire the lock.
920  */
921 static void
923 {
924  bool new_release_ok;
925  bool wokeup_somebody = false;
928 
930 
931  new_release_ok = true;
932 
933  /* lock wait list while collecting backends to wake up */
934  LWLockWaitListLock(lock);
935 
936  proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
937  {
938  PGPROC *waiter = GetPGProcByNumber(iter.cur);
939 
940  if (wokeup_somebody && waiter->lwWaitMode == LW_EXCLUSIVE)
941  continue;
942 
943  proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
944  proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
945 
946  if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
947  {
948  /*
949  * Prevent additional wakeups until retryer gets to run. Backends
950  * that are just waiting for the lock to become free don't retry
951  * automatically.
952  */
953  new_release_ok = false;
954 
955  /*
956  * Don't wakeup (further) exclusive locks.
957  */
958  wokeup_somebody = true;
959  }
960 
961  /*
962  * Signal that the process isn't on the wait list anymore. This allows
963  * LWLockDequeueSelf() to remove itself of the waitlist with a
964  * proclist_delete(), rather than having to check if it has been
965  * removed from the list.
966  */
967  Assert(waiter->lwWaiting == LW_WS_WAITING);
969 
970  /*
971  * Once we've woken up an exclusive lock, there's no point in waking
972  * up anybody else.
973  */
974  if (waiter->lwWaitMode == LW_EXCLUSIVE)
975  break;
976  }
977 
979 
980  /* unset required flags, and release lock, in one fell swoop */
981  {
982  uint32 old_state;
983  uint32 desired_state;
984 
985  old_state = pg_atomic_read_u32(&lock->state);
986  while (true)
987  {
988  desired_state = old_state;
989 
990  /* compute desired flags */
991 
992  if (new_release_ok)
993  desired_state |= LW_FLAG_RELEASE_OK;
994  else
995  desired_state &= ~LW_FLAG_RELEASE_OK;
996 
998  desired_state &= ~LW_FLAG_HAS_WAITERS;
999 
1000  desired_state &= ~LW_FLAG_LOCKED; /* release lock */
1001 
1002  if (pg_atomic_compare_exchange_u32(&lock->state, &old_state,
1003  desired_state))
1004  break;
1005  }
1006  }
1007 
1008  /* Awaken any waiters I removed from the queue. */
1009  proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1010  {
1011  PGPROC *waiter = GetPGProcByNumber(iter.cur);
1012 
1013  LOG_LWDEBUG("LWLockRelease", lock, "release waiter");
1014  proclist_delete(&wakeup, iter.cur, lwWaitLink);
1015 
1016  /*
1017  * Guarantee that lwWaiting being unset only becomes visible once the
1018  * unlink from the link has completed. Otherwise the target backend
1019  * could be woken up for other reason and enqueue for a new lock - if
1020  * that happens before the list unlink happens, the list would end up
1021  * being corrupted.
1022  *
1023  * The barrier pairs with the LWLockWaitListLock() when enqueuing for
1024  * another lock.
1025  */
1026  pg_write_barrier();
1027  waiter->lwWaiting = LW_WS_NOT_WAITING;
1028  PGSemaphoreUnlock(waiter->sem);
1029  }
1030 }
1031 
1032 /*
1033  * Add ourselves to the end of the queue.
1034  *
1035  * NB: Mode can be LW_WAIT_UNTIL_FREE here!
1036  */
1037 static void
1039 {
1040  /*
1041  * If we don't have a PGPROC structure, there's no way to wait. This
1042  * should never occur, since MyProc should only be null during shared
1043  * memory initialization.
1044  */
1045  if (MyProc == NULL)
1046  elog(PANIC, "cannot wait without a PGPROC structure");
1047 
1049  elog(PANIC, "queueing for lock while waiting on another one");
1050 
1051  LWLockWaitListLock(lock);
1052 
1053  /* setting the flag is protected by the spinlock */
1055 
1057  MyProc->lwWaitMode = mode;
1058 
1059  /* LW_WAIT_UNTIL_FREE waiters are always at the front of the queue */
1060  if (mode == LW_WAIT_UNTIL_FREE)
1061  proclist_push_head(&lock->waiters, MyProcNumber, lwWaitLink);
1062  else
1063  proclist_push_tail(&lock->waiters, MyProcNumber, lwWaitLink);
1064 
1065  /* Can release the mutex now */
1066  LWLockWaitListUnlock(lock);
1067 
1068 #ifdef LOCK_DEBUG
1069  pg_atomic_fetch_add_u32(&lock->nwaiters, 1);
1070 #endif
1071 }
1072 
1073 /*
1074  * Remove ourselves from the waitlist.
1075  *
1076  * This is used if we queued ourselves because we thought we needed to sleep
1077  * but, after further checking, we discovered that we don't actually need to
1078  * do so.
1079  */
1080 static void
1082 {
1083  bool on_waitlist;
1084 
1085 #ifdef LWLOCK_STATS
1086  lwlock_stats *lwstats;
1087 
1088  lwstats = get_lwlock_stats_entry(lock);
1089 
1090  lwstats->dequeue_self_count++;
1091 #endif
1092 
1093  LWLockWaitListLock(lock);
1094 
1095  /*
1096  * Remove ourselves from the waitlist, unless we've already been removed.
1097  * The removal happens with the wait list lock held, so there's no race in
1098  * this check.
1099  */
1100  on_waitlist = MyProc->lwWaiting == LW_WS_WAITING;
1101  if (on_waitlist)
1102  proclist_delete(&lock->waiters, MyProcNumber, lwWaitLink);
1103 
1104  if (proclist_is_empty(&lock->waiters) &&
1105  (pg_atomic_read_u32(&lock->state) & LW_FLAG_HAS_WAITERS) != 0)
1106  {
1108  }
1109 
1110  /* XXX: combine with fetch_and above? */
1111  LWLockWaitListUnlock(lock);
1112 
1113  /* clear waiting state again, nice for debugging */
1114  if (on_waitlist)
1116  else
1117  {
1118  int extraWaits = 0;
1119 
1120  /*
1121  * Somebody else dequeued us and has or will wake us up. Deal with the
1122  * superfluous absorption of a wakeup.
1123  */
1124 
1125  /*
1126  * Reset RELEASE_OK flag if somebody woke us before we removed
1127  * ourselves - they'll have set it to false.
1128  */
1130 
1131  /*
1132  * Now wait for the scheduled wakeup, otherwise our ->lwWaiting would
1133  * get reset at some inconvenient point later. Most of the time this
1134  * will immediately return.
1135  */
1136  for (;;)
1137  {
1140  break;
1141  extraWaits++;
1142  }
1143 
1144  /*
1145  * Fix the process wait semaphore's count for any absorbed wakeups.
1146  */
1147  while (extraWaits-- > 0)
1149  }
1150 
1151 #ifdef LOCK_DEBUG
1152  {
1153  /* not waiting anymore */
1154  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1155 
1156  Assert(nwaiters < MAX_BACKENDS);
1157  }
1158 #endif
1159 }
1160 
1161 /*
1162  * LWLockAcquire - acquire a lightweight lock in the specified mode
1163  *
1164  * If the lock is not available, sleep until it is. Returns true if the lock
1165  * was available immediately, false if we had to sleep.
1166  *
1167  * Side effect: cancel/die interrupts are held off until lock release.
1168  */
1169 bool
1171 {
1172  PGPROC *proc = MyProc;
1173  bool result = true;
1174  int extraWaits = 0;
1175 #ifdef LWLOCK_STATS
1176  lwlock_stats *lwstats;
1177 
1178  lwstats = get_lwlock_stats_entry(lock);
1179 #endif
1180 
1182 
1183  PRINT_LWDEBUG("LWLockAcquire", lock, mode);
1184 
1185 #ifdef LWLOCK_STATS
1186  /* Count lock acquisition attempts */
1187  if (mode == LW_EXCLUSIVE)
1188  lwstats->ex_acquire_count++;
1189  else
1190  lwstats->sh_acquire_count++;
1191 #endif /* LWLOCK_STATS */
1192 
1193  /*
1194  * We can't wait if we haven't got a PGPROC. This should only occur
1195  * during bootstrap or shared memory initialization. Put an Assert here
1196  * to catch unsafe coding practices.
1197  */
1198  Assert(!(proc == NULL && IsUnderPostmaster));
1199 
1200  /* Ensure we will have room to remember the lock */
1202  elog(ERROR, "too many LWLocks taken");
1203 
1204  /*
1205  * Lock out cancel/die interrupts until we exit the code section protected
1206  * by the LWLock. This ensures that interrupts will not interfere with
1207  * manipulations of data structures in shared memory.
1208  */
1209  HOLD_INTERRUPTS();
1210 
1211  /*
1212  * Loop here to try to acquire lock after each time we are signaled by
1213  * LWLockRelease.
1214  *
1215  * NOTE: it might seem better to have LWLockRelease actually grant us the
1216  * lock, rather than retrying and possibly having to go back to sleep. But
1217  * in practice that is no good because it means a process swap for every
1218  * lock acquisition when two or more processes are contending for the same
1219  * lock. Since LWLocks are normally used to protect not-very-long
1220  * sections of computation, a process needs to be able to acquire and
1221  * release the same lock many times during a single CPU time slice, even
1222  * in the presence of contention. The efficiency of being able to do that
1223  * outweighs the inefficiency of sometimes wasting a process dispatch
1224  * cycle because the lock is not free when a released waiter finally gets
1225  * to run. See pgsql-hackers archives for 29-Dec-01.
1226  */
1227  for (;;)
1228  {
1229  bool mustwait;
1230 
1231  /*
1232  * Try to grab the lock the first time, we're not in the waitqueue
1233  * yet/anymore.
1234  */
1235  mustwait = LWLockAttemptLock(lock, mode);
1236 
1237  if (!mustwait)
1238  {
1239  LOG_LWDEBUG("LWLockAcquire", lock, "immediately acquired lock");
1240  break; /* got the lock */
1241  }
1242 
1243  /*
1244  * Ok, at this point we couldn't grab the lock on the first try. We
1245  * cannot simply queue ourselves to the end of the list and wait to be
1246  * woken up because by now the lock could long have been released.
1247  * Instead add us to the queue and try to grab the lock again. If we
1248  * succeed we need to revert the queuing and be happy, otherwise we
1249  * recheck the lock. If we still couldn't grab it, we know that the
1250  * other locker will see our queue entries when releasing since they
1251  * existed before we checked for the lock.
1252  */
1253 
1254  /* add to the queue */
1255  LWLockQueueSelf(lock, mode);
1256 
1257  /* we're now guaranteed to be woken up if necessary */
1258  mustwait = LWLockAttemptLock(lock, mode);
1259 
1260  /* ok, grabbed the lock the second time round, need to undo queueing */
1261  if (!mustwait)
1262  {
1263  LOG_LWDEBUG("LWLockAcquire", lock, "acquired, undoing queue");
1264 
1265  LWLockDequeueSelf(lock);
1266  break;
1267  }
1268 
1269  /*
1270  * Wait until awakened.
1271  *
1272  * It is possible that we get awakened for a reason other than being
1273  * signaled by LWLockRelease. If so, loop back and wait again. Once
1274  * we've gotten the LWLock, re-increment the sema by the number of
1275  * additional signals received.
1276  */
1277  LOG_LWDEBUG("LWLockAcquire", lock, "waiting");
1278 
1279 #ifdef LWLOCK_STATS
1280  lwstats->block_count++;
1281 #endif
1282 
1283  LWLockReportWaitStart(lock);
1284  if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1285  TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1286 
1287  for (;;)
1288  {
1289  PGSemaphoreLock(proc->sem);
1290  if (proc->lwWaiting == LW_WS_NOT_WAITING)
1291  break;
1292  extraWaits++;
1293  }
1294 
1295  /* Retrying, allow LWLockRelease to release waiters again. */
1297 
1298 #ifdef LOCK_DEBUG
1299  {
1300  /* not waiting anymore */
1301  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1302 
1303  Assert(nwaiters < MAX_BACKENDS);
1304  }
1305 #endif
1306 
1307  if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1308  TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1310 
1311  LOG_LWDEBUG("LWLockAcquire", lock, "awakened");
1312 
1313  /* Now loop back and try to acquire lock again. */
1314  result = false;
1315  }
1316 
1317  if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_ENABLED())
1318  TRACE_POSTGRESQL_LWLOCK_ACQUIRE(T_NAME(lock), mode);
1319 
1320  /* Add lock to list of locks held by this backend */
1323 
1324  /*
1325  * Fix the process wait semaphore's count for any absorbed wakeups.
1326  */
1327  while (extraWaits-- > 0)
1328  PGSemaphoreUnlock(proc->sem);
1329 
1330  return result;
1331 }
1332 
1333 /*
1334  * LWLockConditionalAcquire - acquire a lightweight lock in the specified mode
1335  *
1336  * If the lock is not available, return false with no side-effects.
1337  *
1338  * If successful, cancel/die interrupts are held off until lock release.
1339  */
1340 bool
1342 {
1343  bool mustwait;
1344 
1346 
1347  PRINT_LWDEBUG("LWLockConditionalAcquire", lock, mode);
1348 
1349  /* Ensure we will have room to remember the lock */
1351  elog(ERROR, "too many LWLocks taken");
1352 
1353  /*
1354  * Lock out cancel/die interrupts until we exit the code section protected
1355  * by the LWLock. This ensures that interrupts will not interfere with
1356  * manipulations of data structures in shared memory.
1357  */
1358  HOLD_INTERRUPTS();
1359 
1360  /* Check for the lock */
1361  mustwait = LWLockAttemptLock(lock, mode);
1362 
1363  if (mustwait)
1364  {
1365  /* Failed to get lock, so release interrupt holdoff */
1367 
1368  LOG_LWDEBUG("LWLockConditionalAcquire", lock, "failed");
1369  if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL_ENABLED())
1370  TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL(T_NAME(lock), mode);
1371  }
1372  else
1373  {
1374  /* Add lock to list of locks held by this backend */
1377  if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_ENABLED())
1378  TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE(T_NAME(lock), mode);
1379  }
1380  return !mustwait;
1381 }
1382 
1383 /*
1384  * LWLockAcquireOrWait - Acquire lock, or wait until it's free
1385  *
1386  * The semantics of this function are a bit funky. If the lock is currently
1387  * free, it is acquired in the given mode, and the function returns true. If
1388  * the lock isn't immediately free, the function waits until it is released
1389  * and returns false, but does not acquire the lock.
1390  *
1391  * This is currently used for WALWriteLock: when a backend flushes the WAL,
1392  * holding WALWriteLock, it can flush the commit records of many other
1393  * backends as a side-effect. Those other backends need to wait until the
1394  * flush finishes, but don't need to acquire the lock anymore. They can just
1395  * wake up, observe that their records have already been flushed, and return.
1396  */
1397 bool
1399 {
1400  PGPROC *proc = MyProc;
1401  bool mustwait;
1402  int extraWaits = 0;
1403 #ifdef LWLOCK_STATS
1404  lwlock_stats *lwstats;
1405 
1406  lwstats = get_lwlock_stats_entry(lock);
1407 #endif
1408 
1410 
1411  PRINT_LWDEBUG("LWLockAcquireOrWait", lock, mode);
1412 
1413  /* Ensure we will have room to remember the lock */
1415  elog(ERROR, "too many LWLocks taken");
1416 
1417  /*
1418  * Lock out cancel/die interrupts until we exit the code section protected
1419  * by the LWLock. This ensures that interrupts will not interfere with
1420  * manipulations of data structures in shared memory.
1421  */
1422  HOLD_INTERRUPTS();
1423 
1424  /*
1425  * NB: We're using nearly the same twice-in-a-row lock acquisition
1426  * protocol as LWLockAcquire(). Check its comments for details.
1427  */
1428  mustwait = LWLockAttemptLock(lock, mode);
1429 
1430  if (mustwait)
1431  {
1433 
1434  mustwait = LWLockAttemptLock(lock, mode);
1435 
1436  if (mustwait)
1437  {
1438  /*
1439  * Wait until awakened. Like in LWLockAcquire, be prepared for
1440  * bogus wakeups.
1441  */
1442  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "waiting");
1443 
1444 #ifdef LWLOCK_STATS
1445  lwstats->block_count++;
1446 #endif
1447 
1448  LWLockReportWaitStart(lock);
1449  if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1450  TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1451 
1452  for (;;)
1453  {
1454  PGSemaphoreLock(proc->sem);
1455  if (proc->lwWaiting == LW_WS_NOT_WAITING)
1456  break;
1457  extraWaits++;
1458  }
1459 
1460 #ifdef LOCK_DEBUG
1461  {
1462  /* not waiting anymore */
1463  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1464 
1465  Assert(nwaiters < MAX_BACKENDS);
1466  }
1467 #endif
1468  if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1469  TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1471 
1472  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "awakened");
1473  }
1474  else
1475  {
1476  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "acquired, undoing queue");
1477 
1478  /*
1479  * Got lock in the second attempt, undo queueing. We need to treat
1480  * this as having successfully acquired the lock, otherwise we'd
1481  * not necessarily wake up people we've prevented from acquiring
1482  * the lock.
1483  */
1484  LWLockDequeueSelf(lock);
1485  }
1486  }
1487 
1488  /*
1489  * Fix the process wait semaphore's count for any absorbed wakeups.
1490  */
1491  while (extraWaits-- > 0)
1492  PGSemaphoreUnlock(proc->sem);
1493 
1494  if (mustwait)
1495  {
1496  /* Failed to get lock, so release interrupt holdoff */
1498  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "failed");
1499  if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL_ENABLED())
1500  TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL(T_NAME(lock), mode);
1501  }
1502  else
1503  {
1504  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "succeeded");
1505  /* Add lock to list of locks held by this backend */
1508  if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_ENABLED())
1509  TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT(T_NAME(lock), mode);
1510  }
1511 
1512  return !mustwait;
1513 }
1514 
1515 /*
1516  * Does the lwlock in its current state need to wait for the variable value to
1517  * change?
1518  *
1519  * If we don't need to wait, and it's because the value of the variable has
1520  * changed, store the current value in newval.
1521  *
1522  * *result is set to true if the lock was free, and false otherwise.
1523  */
1524 static bool
1525 LWLockConflictsWithVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval,
1526  uint64 *newval, bool *result)
1527 {
1528  bool mustwait;
1529  uint64 value;
1530 
1531  /*
1532  * Test first to see if it the slot is free right now.
1533  *
1534  * XXX: the unique caller of this routine, WaitXLogInsertionsToFinish()
1535  * via LWLockWaitForVar(), uses an implied barrier with a spinlock before
1536  * this, so we don't need a memory barrier here as far as the current
1537  * usage is concerned. But that might not be safe in general.
1538  */
1539  mustwait = (pg_atomic_read_u32(&lock->state) & LW_VAL_EXCLUSIVE) != 0;
1540 
1541  if (!mustwait)
1542  {
1543  *result = true;
1544  return false;
1545  }
1546 
1547  *result = false;
1548 
1549  /*
1550  * Reading this value atomically is safe even on platforms where uint64
1551  * cannot be read without observing a torn value.
1552  */
1553  value = pg_atomic_read_u64(valptr);
1554 
1555  if (value != oldval)
1556  {
1557  mustwait = false;
1558  *newval = value;
1559  }
1560  else
1561  {
1562  mustwait = true;
1563  }
1564 
1565  return mustwait;
1566 }
1567 
1568 /*
1569  * LWLockWaitForVar - Wait until lock is free, or a variable is updated.
1570  *
1571  * If the lock is held and *valptr equals oldval, waits until the lock is
1572  * either freed, or the lock holder updates *valptr by calling
1573  * LWLockUpdateVar. If the lock is free on exit (immediately or after
1574  * waiting), returns true. If the lock is still held, but *valptr no longer
1575  * matches oldval, returns false and sets *newval to the current value in
1576  * *valptr.
1577  *
1578  * Note: this function ignores shared lock holders; if the lock is held
1579  * in shared mode, returns 'true'.
1580  *
1581  * Be aware that LWLockConflictsWithVar() does not include a memory barrier,
1582  * hence the caller of this function may want to rely on an explicit barrier or
1583  * an implied barrier via spinlock or LWLock to avoid memory ordering issues.
1584  */
1585 bool
1586 LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval,
1587  uint64 *newval)
1588 {
1589  PGPROC *proc = MyProc;
1590  int extraWaits = 0;
1591  bool result = false;
1592 #ifdef LWLOCK_STATS
1593  lwlock_stats *lwstats;
1594 
1595  lwstats = get_lwlock_stats_entry(lock);
1596 #endif
1597 
1598  PRINT_LWDEBUG("LWLockWaitForVar", lock, LW_WAIT_UNTIL_FREE);
1599 
1600  /*
1601  * Lock out cancel/die interrupts while we sleep on the lock. There is no
1602  * cleanup mechanism to remove us from the wait queue if we got
1603  * interrupted.
1604  */
1605  HOLD_INTERRUPTS();
1606 
1607  /*
1608  * Loop here to check the lock's status after each time we are signaled.
1609  */
1610  for (;;)
1611  {
1612  bool mustwait;
1613 
1614  mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1615  &result);
1616 
1617  if (!mustwait)
1618  break; /* the lock was free or value didn't match */
1619 
1620  /*
1621  * Add myself to wait queue. Note that this is racy, somebody else
1622  * could wakeup before we're finished queuing. NB: We're using nearly
1623  * the same twice-in-a-row lock acquisition protocol as
1624  * LWLockAcquire(). Check its comments for details. The only
1625  * difference is that we also have to check the variable's values when
1626  * checking the state of the lock.
1627  */
1629 
1630  /*
1631  * Set RELEASE_OK flag, to make sure we get woken up as soon as the
1632  * lock is released.
1633  */
1635 
1636  /*
1637  * We're now guaranteed to be woken up if necessary. Recheck the lock
1638  * and variables state.
1639  */
1640  mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1641  &result);
1642 
1643  /* Ok, no conflict after we queued ourselves. Undo queueing. */
1644  if (!mustwait)
1645  {
1646  LOG_LWDEBUG("LWLockWaitForVar", lock, "free, undoing queue");
1647 
1648  LWLockDequeueSelf(lock);
1649  break;
1650  }
1651 
1652  /*
1653  * Wait until awakened.
1654  *
1655  * It is possible that we get awakened for a reason other than being
1656  * signaled by LWLockRelease. If so, loop back and wait again. Once
1657  * we've gotten the LWLock, re-increment the sema by the number of
1658  * additional signals received.
1659  */
1660  LOG_LWDEBUG("LWLockWaitForVar", lock, "waiting");
1661 
1662 #ifdef LWLOCK_STATS
1663  lwstats->block_count++;
1664 #endif
1665 
1666  LWLockReportWaitStart(lock);
1667  if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1668  TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), LW_EXCLUSIVE);
1669 
1670  for (;;)
1671  {
1672  PGSemaphoreLock(proc->sem);
1673  if (proc->lwWaiting == LW_WS_NOT_WAITING)
1674  break;
1675  extraWaits++;
1676  }
1677 
1678 #ifdef LOCK_DEBUG
1679  {
1680  /* not waiting anymore */
1681  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1682 
1683  Assert(nwaiters < MAX_BACKENDS);
1684  }
1685 #endif
1686 
1687  if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1688  TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), LW_EXCLUSIVE);
1690 
1691  LOG_LWDEBUG("LWLockWaitForVar", lock, "awakened");
1692 
1693  /* Now loop back and check the status of the lock again. */
1694  }
1695 
1696  /*
1697  * Fix the process wait semaphore's count for any absorbed wakeups.
1698  */
1699  while (extraWaits-- > 0)
1700  PGSemaphoreUnlock(proc->sem);
1701 
1702  /*
1703  * Now okay to allow cancel/die interrupts.
1704  */
1706 
1707  return result;
1708 }
1709 
1710 
1711 /*
1712  * LWLockUpdateVar - Update a variable and wake up waiters atomically
1713  *
1714  * Sets *valptr to 'val', and wakes up all processes waiting for us with
1715  * LWLockWaitForVar(). It first sets the value atomically and then wakes up
1716  * waiting processes so that any process calling LWLockWaitForVar() on the same
1717  * lock is guaranteed to see the new value, and act accordingly.
1718  *
1719  * The caller must be holding the lock in exclusive mode.
1720  */
1721 void
1723 {
1725  proclist_mutable_iter iter;
1726 
1727  PRINT_LWDEBUG("LWLockUpdateVar", lock, LW_EXCLUSIVE);
1728 
1729  /*
1730  * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1731  * that the variable is updated before waking up waiters.
1732  */
1733  pg_atomic_exchange_u64(valptr, val);
1734 
1736 
1737  LWLockWaitListLock(lock);
1738 
1740 
1741  /*
1742  * See if there are any LW_WAIT_UNTIL_FREE waiters that need to be woken
1743  * up. They are always in the front of the queue.
1744  */
1745  proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
1746  {
1747  PGPROC *waiter = GetPGProcByNumber(iter.cur);
1748 
1749  if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
1750  break;
1751 
1752  proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
1753  proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
1754 
1755  /* see LWLockWakeup() */
1756  Assert(waiter->lwWaiting == LW_WS_WAITING);
1757  waiter->lwWaiting = LW_WS_PENDING_WAKEUP;
1758  }
1759 
1760  /* We are done updating shared state of the lock itself. */
1761  LWLockWaitListUnlock(lock);
1762 
1763  /*
1764  * Awaken any waiters I removed from the queue.
1765  */
1766  proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1767  {
1768  PGPROC *waiter = GetPGProcByNumber(iter.cur);
1769 
1770  proclist_delete(&wakeup, iter.cur, lwWaitLink);
1771  /* check comment in LWLockWakeup() about this barrier */
1772  pg_write_barrier();
1773  waiter->lwWaiting = LW_WS_NOT_WAITING;
1774  PGSemaphoreUnlock(waiter->sem);
1775  }
1776 }
1777 
1778 
1779 /*
1780  * LWLockRelease - release a previously acquired lock
1781  */
1782 void
1784 {
1785  LWLockMode mode;
1786  uint32 oldstate;
1787  bool check_waiters;
1788  int i;
1789 
1790  /*
1791  * Remove lock from list of locks held. Usually, but not always, it will
1792  * be the latest-acquired lock; so search array backwards.
1793  */
1794  for (i = num_held_lwlocks; --i >= 0;)
1795  if (lock == held_lwlocks[i].lock)
1796  break;
1797 
1798  if (i < 0)
1799  elog(ERROR, "lock %s is not held", T_NAME(lock));
1800 
1801  mode = held_lwlocks[i].mode;
1802 
1803  num_held_lwlocks--;
1804  for (; i < num_held_lwlocks; i++)
1805  held_lwlocks[i] = held_lwlocks[i + 1];
1806 
1807  PRINT_LWDEBUG("LWLockRelease", lock, mode);
1808 
1809  /*
1810  * Release my hold on lock, after that it can immediately be acquired by
1811  * others, even if we still have to wakeup other waiters.
1812  */
1813  if (mode == LW_EXCLUSIVE)
1814  oldstate = pg_atomic_sub_fetch_u32(&lock->state, LW_VAL_EXCLUSIVE);
1815  else
1816  oldstate = pg_atomic_sub_fetch_u32(&lock->state, LW_VAL_SHARED);
1817 
1818  /* nobody else can have that kind of lock */
1819  Assert(!(oldstate & LW_VAL_EXCLUSIVE));
1820 
1821  if (TRACE_POSTGRESQL_LWLOCK_RELEASE_ENABLED())
1822  TRACE_POSTGRESQL_LWLOCK_RELEASE(T_NAME(lock));
1823 
1824  /*
1825  * We're still waiting for backends to get scheduled, don't wake them up
1826  * again.
1827  */
1828  if ((oldstate & (LW_FLAG_HAS_WAITERS | LW_FLAG_RELEASE_OK)) ==
1830  (oldstate & LW_LOCK_MASK) == 0)
1831  check_waiters = true;
1832  else
1833  check_waiters = false;
1834 
1835  /*
1836  * As waking up waiters requires the spinlock to be acquired, only do so
1837  * if necessary.
1838  */
1839  if (check_waiters)
1840  {
1841  /* XXX: remove before commit? */
1842  LOG_LWDEBUG("LWLockRelease", lock, "releasing waiters");
1843  LWLockWakeup(lock);
1844  }
1845 
1846  /*
1847  * Now okay to allow cancel/die interrupts.
1848  */
1850 }
1851 
1852 /*
1853  * LWLockReleaseClearVar - release a previously acquired lock, reset variable
1854  */
1855 void
1857 {
1858  /*
1859  * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1860  * that the variable is updated before releasing the lock.
1861  */
1862  pg_atomic_exchange_u64(valptr, val);
1863 
1864  LWLockRelease(lock);
1865 }
1866 
1867 
1868 /*
1869  * LWLockReleaseAll - release all currently-held locks
1870  *
1871  * Used to clean up after ereport(ERROR). An important difference between this
1872  * function and retail LWLockRelease calls is that InterruptHoldoffCount is
1873  * unchanged by this operation. This is necessary since InterruptHoldoffCount
1874  * has been set to an appropriate level earlier in error recovery. We could
1875  * decrement it below zero if we allow it to drop for each released lock!
1876  */
1877 void
1879 {
1880  while (num_held_lwlocks > 0)
1881  {
1882  HOLD_INTERRUPTS(); /* match the upcoming RESUME_INTERRUPTS */
1883 
1885  }
1886 }
1887 
1888 
1889 /*
1890  * LWLockHeldByMe - test whether my process holds a lock in any mode
1891  *
1892  * This is meant as debug support only.
1893  */
1894 bool
1896 {
1897  int i;
1898 
1899  for (i = 0; i < num_held_lwlocks; i++)
1900  {
1901  if (held_lwlocks[i].lock == lock)
1902  return true;
1903  }
1904  return false;
1905 }
1906 
1907 /*
1908  * LWLockAnyHeldByMe - test whether my process holds any of an array of locks
1909  *
1910  * This is meant as debug support only.
1911  */
1912 bool
1913 LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
1914 {
1915  char *held_lock_addr;
1916  char *begin;
1917  char *end;
1918  int i;
1919 
1920  begin = (char *) lock;
1921  end = begin + nlocks * stride;
1922  for (i = 0; i < num_held_lwlocks; i++)
1923  {
1924  held_lock_addr = (char *) held_lwlocks[i].lock;
1925  if (held_lock_addr >= begin &&
1926  held_lock_addr < end &&
1927  (held_lock_addr - begin) % stride == 0)
1928  return true;
1929  }
1930  return false;
1931 }
1932 
1933 /*
1934  * LWLockHeldByMeInMode - test whether my process holds a lock in given mode
1935  *
1936  * This is meant as debug support only.
1937  */
1938 bool
1940 {
1941  int i;
1942 
1943  for (i = 0; i < num_held_lwlocks; i++)
1944  {
1945  if (held_lwlocks[i].lock == lock && held_lwlocks[i].mode == mode)
1946  return true;
1947  }
1948  return false;
1949 }
static uint32 pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
Definition: atomics.h:391
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:344
static uint32 pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
Definition: atomics.h:405
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:434
static uint32 pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:376
static void pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:216
#define pg_write_barrier()
Definition: atomics.h:152
static uint32 pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:361
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:234
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:462
static uint64 pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval)
Definition: atomics.h:498
unsigned short uint16
Definition: c.h:505
unsigned int uint32
Definition: c.h:506
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:182
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
#define pg_unreachable()
Definition: c.h:296
#define lengthof(array)
Definition: c.h:788
#define MemSet(start, val, len)
Definition: c.h:1020
size_t Size
Definition: c.h:605
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1395
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1159
int errhidestmt(bool hide_stmt)
Definition: elog.c:1413
int errhidecontext(bool hide_ctx)
Definition: elog.c:1432
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
int MyProcPid
Definition: globals.c:45
ProcNumber MyProcNumber
Definition: globals.c:87
bool IsUnderPostmaster
Definition: globals.c:117
#define newval
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
long val
Definition: informix.c:670
static struct @155 value
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
int j
Definition: isn.c:74
int i
Definition: isn.c:73
#define LW_VAL_EXCLUSIVE
Definition: lwlock.c:101
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1722
StaticAssertDecl(LW_VAL_EXCLUSIVE >(uint32) MAX_BACKENDS, "MAX_BACKENDS too big for lwlock.c")
static void LWLockWakeup(LWLock *lock)
Definition: lwlock.c:922
#define LW_FLAG_LOCKED
Definition: lwlock.c:99
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1895
const char * GetLWLockIdentifier(uint32 classId, uint16 eventId)
Definition: lwlock.c:769
LWLockPadded * GetNamedLWLockTranche(const char *tranche_name)
Definition: lwlock.c:576
static LWLockHandle held_lwlocks[MAX_SIMUL_LWLOCKS]
Definition: lwlock.c:209
static int LWLockTrancheNamesAllocated
Definition: lwlock.c:184
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1856
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1170
void CreateLWLocks(void)
Definition: lwlock.c:453
NamedLWLockTranche * NamedLWLockTrancheArray
Definition: lwlock.c:230
#define LW_VAL_SHARED
Definition: lwlock.c:102
static bool LWLockAttemptLock(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:786
static void LWLockWaitListLock(LWLock *lock)
Definition: lwlock.c:857
void LWLockRegisterTranche(int tranche_id, const char *tranche_name)
Definition: lwlock.c:630
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1939
static void LWLockReportWaitEnd(void)
Definition: lwlock.c:736
struct LWLockHandle LWLockHandle
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1586
int LWLockNewTrancheId(void)
Definition: lwlock.c:606
slock_t * ShmemLock
Definition: shmem.c:87
static const char * GetLWTrancheName(uint16 trancheId)
Definition: lwlock.c:745
#define LW_LOCK_MASK
Definition: lwlock.c:104
int NamedLWLockTrancheRequests
Definition: lwlock.c:227
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
Definition: lwlock.c:672
#define LW_FLAG_RELEASE_OK
Definition: lwlock.c:98
#define LW_FLAG_HAS_WAITERS
Definition: lwlock.c:97
#define MAX_SIMUL_LWLOCKS
Definition: lwlock.c:199
struct NamedLWLockTrancheRequest NamedLWLockTrancheRequest
static int NumLWLocksForNamedTranches(void)
Definition: lwlock.c:408
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1783
#define T_NAME(lock)
Definition: lwlock.c:237
static int num_held_lwlocks
Definition: lwlock.c:208
void LWLockReleaseAll(void)
Definition: lwlock.c:1878
static void InitializeLWLocks(void)
Definition: lwlock.c:493
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:709
static int NamedLWLockTrancheRequestsAllocated
Definition: lwlock.c:219
static const char *const BuiltinTrancheNames[]
Definition: lwlock.c:129
static NamedLWLockTrancheRequest * NamedLWLockTrancheRequestArray
Definition: lwlock.c:218
static void LWLockWaitListUnlock(LWLock *lock)
Definition: lwlock.c:909
static const char ** LWLockTrancheNames
Definition: lwlock.c:183
#define LOG_LWDEBUG(a, b, c)
Definition: lwlock.c:302
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1341
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1398
static void LWLockQueueSelf(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1038
#define PRINT_LWDEBUG(a, b, c)
Definition: lwlock.c:301
static void LWLockReportWaitStart(LWLock *lock)
Definition: lwlock.c:727
LWLockPadded * MainLWLockArray
Definition: lwlock.c:191
static void LWLockDequeueSelf(LWLock *lock)
Definition: lwlock.c:1081
Size LWLockShmemSize(void)
Definition: lwlock.c:423
bool LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
Definition: lwlock.c:1913
#define LW_SHARED_MASK
Definition: lwlock.c:106
static bool LWLockConflictsWithVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval, bool *result)
Definition: lwlock.c:1525
void InitLWLockAccess(void)
Definition: lwlock.c:560
@ LW_WS_NOT_WAITING
Definition: lwlock.h:30
@ LW_WS_WAITING
Definition: lwlock.h:31
@ LW_WS_PENDING_WAKEUP
Definition: lwlock.h:32
#define LWLOCK_PADDED_SIZE
Definition: lwlock.h:62
#define BUFFER_MAPPING_LWLOCK_OFFSET
Definition: lwlock.h:104
#define NUM_LOCK_PARTITIONS
Definition: lwlock.h:97
@ LWTRANCHE_FIRST_USER_DEFINED
Definition: lwlock.h:218
@ LWTRANCHE_SHARED_TIDBITMAP
Definition: lwlock.h:200
@ LWTRANCHE_SERIAL_SLRU
Definition: lwlock.h:214
@ LWTRANCHE_PER_SESSION_DSA
Definition: lwlock.h:196
@ LWTRANCHE_PARALLEL_QUERY_DSA
Definition: lwlock.h:195
@ LWTRANCHE_COMMITTS_BUFFER
Definition: lwlock.h:180
@ LWTRANCHE_PARALLEL_VACUUM_DSA
Definition: lwlock.h:217
@ LWTRANCHE_PGSTATS_HASH
Definition: lwlock.h:204
@ LWTRANCHE_SUBTRANS_BUFFER
Definition: lwlock.h:181
@ LWTRANCHE_PER_SESSION_RECORD_TYPMOD
Definition: lwlock.h:198
@ LWTRANCHE_LAUNCHER_HASH
Definition: lwlock.h:207
@ LWTRANCHE_DSM_REGISTRY_DSA
Definition: lwlock.h:208
@ LWTRANCHE_XACT_BUFFER
Definition: lwlock.h:179
@ LWTRANCHE_DSM_REGISTRY_HASH
Definition: lwlock.h:209
@ LWTRANCHE_NOTIFY_SLRU
Definition: lwlock.h:213
@ LWTRANCHE_REPLICATION_ORIGIN_STATE
Definition: lwlock.h:188
@ LWTRANCHE_MULTIXACTOFFSET_SLRU
Definition: lwlock.h:212
@ LWTRANCHE_PARALLEL_APPEND
Definition: lwlock.h:201
@ LWTRANCHE_REPLICATION_SLOT_IO
Definition: lwlock.h:189
@ LWTRANCHE_SUBTRANS_SLRU
Definition: lwlock.h:215
@ LWTRANCHE_MULTIXACTMEMBER_SLRU
Definition: lwlock.h:211
@ LWTRANCHE_BUFFER_CONTENT
Definition: lwlock.h:187
@ LWTRANCHE_MULTIXACTMEMBER_BUFFER
Definition: lwlock.h:183
@ LWTRANCHE_NOTIFY_BUFFER
Definition: lwlock.h:184
@ LWTRANCHE_PER_SESSION_RECORD_TYPE
Definition: lwlock.h:197
@ LWTRANCHE_PREDICATE_LOCK_MANAGER
Definition: lwlock.h:193
@ LWTRANCHE_BUFFER_MAPPING
Definition: lwlock.h:191
@ LWTRANCHE_SERIAL_BUFFER
Definition: lwlock.h:185
@ LWTRANCHE_LAUNCHER_DSA
Definition: lwlock.h:206
@ LWTRANCHE_PGSTATS_DSA
Definition: lwlock.h:203
@ LWTRANCHE_PARALLEL_HASH_JOIN
Definition: lwlock.h:194
@ LWTRANCHE_COMMITTS_SLRU
Definition: lwlock.h:210
@ LWTRANCHE_PGSTATS_DATA
Definition: lwlock.h:205
@ LWTRANCHE_PER_XACT_PREDICATE_LIST
Definition: lwlock.h:202
@ LWTRANCHE_XACT_SLRU
Definition: lwlock.h:216
@ LWTRANCHE_MULTIXACTOFFSET_BUFFER
Definition: lwlock.h:182
@ LWTRANCHE_WAL_INSERT
Definition: lwlock.h:186
@ LWTRANCHE_LOCK_MANAGER
Definition: lwlock.h:192
@ LWTRANCHE_SHARED_TUPLESTORE
Definition: lwlock.h:199
@ LWTRANCHE_LOCK_FASTPATH
Definition: lwlock.h:190
#define LOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:105
#define NUM_BUFFER_PARTITIONS
Definition: lwlock.h:93
#define PREDICATELOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:107
#define NUM_FIXED_LWLOCKS
Definition: lwlock.h:109
LWLockMode
Definition: lwlock.h:113
@ LW_SHARED
Definition: lwlock.h:115
@ LW_WAIT_UNTIL_FREE
Definition: lwlock.h:116
@ LW_EXCLUSIVE
Definition: lwlock.h:114
#define NUM_PREDICATELOCK_PARTITIONS
Definition: lwlock.h:101
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1214
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1540
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1180
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:694
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define RESUME_INTERRUPTS()
Definition: miscadmin.h:135
#define HOLD_INTERRUPTS()
Definition: miscadmin.h:133
bool process_shmem_requests_in_progress
Definition: miscinit.c:1782
#define repalloc0_array(pointer, type, oldcount, count)
Definition: palloc.h:109
void * arg
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
static PgChecksumMode mode
Definition: pg_checksums.c:56
#define NAMEDATALEN
#define fprintf
Definition: port.h:242
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:340
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:320
uintptr_t Datum
Definition: postgres.h:64
#define MAX_BACKENDS
Definition: postmaster.h:95
#define GetPGProcByNumber(n)
Definition: proc.h:428
#define proclist_delete(list, procno, link_member)
Definition: proclist.h:187
static void proclist_init(proclist_head *list)
Definition: proclist.h:29
#define proclist_push_tail(list, procno, link_member)
Definition: proclist.h:191
#define proclist_push_head(list, procno, link_member)
Definition: proclist.h:189
#define proclist_foreach_modify(iter, lhead, link_member)
Definition: proclist.h:206
static bool proclist_is_empty(const proclist_head *list)
Definition: proclist.h:38
tree ctl
Definition: radixtree.h:1851
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:132
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:192
#define init_local_spin_delay(status)
Definition: s_lock.h:843
int slock_t
Definition: s_lock.h:735
void * ShmemAlloc(Size size)
Definition: shmem.c:152
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
static pg_noinline void Size size
Definition: slab.c:607
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:66
Definition: dynahash.c:220
LWLockMode mode
Definition: lwlock.c:205
LWLock * lock
Definition: lwlock.c:204
Definition: lwlock.h:42
pg_atomic_uint32 state
Definition: lwlock.h:44
uint16 tranche
Definition: lwlock.h:43
proclist_head waiters
Definition: lwlock.h:45
char tranche_name[NAMEDATALEN]
Definition: lwlock.c:214
char * trancheName
Definition: lwlock.h:80
Definition: proc.h:157
uint8 lwWaitMode
Definition: proc.h:220
PGSemaphore sem
Definition: proc.h:162
uint8 lwWaiting
Definition: proc.h:219
Definition: regguts.h:323
LWLock lock
Definition: lwlock.h:70
#define PG_WAIT_LWLOCK
Definition: wait_event.h:18
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:88
static void pgstat_report_wait_end(void)
Definition: wait_event.h:104
const char * name
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:129