PostgreSQL Source Code  git master
nbtree.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * nbtree.h
4  * header file for postgres btree access method implementation.
5  *
6  *
7  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  * src/include/access/nbtree.h
11  *
12  *-------------------------------------------------------------------------
13  */
14 #ifndef NBTREE_H
15 #define NBTREE_H
16 
17 #include "access/amapi.h"
18 #include "access/itup.h"
19 #include "access/sdir.h"
20 #include "access/tableam.h"
21 #include "access/xlogreader.h"
22 #include "catalog/pg_am_d.h"
23 #include "catalog/pg_index.h"
24 #include "lib/stringinfo.h"
25 #include "storage/bufmgr.h"
26 #include "storage/shm_toc.h"
27 
28 /* There's room for a 16-bit vacuum cycle ID in BTPageOpaqueData */
29 typedef uint16 BTCycleId;
30 
31 /*
32  * BTPageOpaqueData -- At the end of every page, we store a pointer
33  * to both siblings in the tree. This is used to do forward/backward
34  * index scans. The next-page link is also critical for recovery when
35  * a search has navigated to the wrong page due to concurrent page splits
36  * or deletions; see src/backend/access/nbtree/README for more info.
37  *
38  * In addition, we store the page's btree level (counting upwards from
39  * zero at a leaf page) as well as some flag bits indicating the page type
40  * and status. If the page is deleted, a BTDeletedPageData struct is stored
41  * in the page's tuple area, while a standard BTPageOpaqueData struct is
42  * stored in the page special area.
43  *
44  * We also store a "vacuum cycle ID". When a page is split while VACUUM is
45  * processing the index, a nonzero value associated with the VACUUM run is
46  * stored into both halves of the split page. (If VACUUM is not running,
47  * both pages receive zero cycleids.) This allows VACUUM to detect whether
48  * a page was split since it started, with a small probability of false match
49  * if the page was last split some exact multiple of MAX_BT_CYCLE_ID VACUUMs
50  * ago. Also, during a split, the BTP_SPLIT_END flag is cleared in the left
51  * (original) page, and set in the right page, but only if the next page
52  * to its right has a different cycleid.
53  *
54  * NOTE: the BTP_LEAF flag bit is redundant since level==0 could be tested
55  * instead.
56  *
57  * NOTE: the btpo_level field used to be a union type in order to allow
58  * deleted pages to store a 32-bit safexid in the same field. We now store
59  * 64-bit/full safexid values using BTDeletedPageData instead.
60  */
61 
62 typedef struct BTPageOpaqueData
63 {
64  BlockNumber btpo_prev; /* left sibling, or P_NONE if leftmost */
65  BlockNumber btpo_next; /* right sibling, or P_NONE if rightmost */
66  uint32 btpo_level; /* tree level --- zero for leaf pages */
67  uint16 btpo_flags; /* flag bits, see below */
68  BTCycleId btpo_cycleid; /* vacuum cycle ID of latest split */
70 
72 
73 #define BTPageGetOpaque(page) ((BTPageOpaque) PageGetSpecialPointer(page))
74 
75 /* Bits defined in btpo_flags */
76 #define BTP_LEAF (1 << 0) /* leaf page, i.e. not internal page */
77 #define BTP_ROOT (1 << 1) /* root page (has no parent) */
78 #define BTP_DELETED (1 << 2) /* page has been deleted from tree */
79 #define BTP_META (1 << 3) /* meta-page */
80 #define BTP_HALF_DEAD (1 << 4) /* empty, but still in tree */
81 #define BTP_SPLIT_END (1 << 5) /* rightmost page of split group */
82 #define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DEAD tuples (deprecated) */
83 #define BTP_INCOMPLETE_SPLIT (1 << 7) /* right sibling's downlink is missing */
84 #define BTP_HAS_FULLXID (1 << 8) /* contains BTDeletedPageData */
85 
86 /*
87  * The max allowed value of a cycle ID is a bit less than 64K. This is
88  * for convenience of pg_filedump and similar utilities: we want to use
89  * the last 2 bytes of special space as an index type indicator, and
90  * restricting cycle ID lets btree use that space for vacuum cycle IDs
91  * while still allowing index type to be identified.
92  */
93 #define MAX_BT_CYCLE_ID 0xFF7F
94 
95 
96 /*
97  * The Meta page is always the first page in the btree index.
98  * Its primary purpose is to point to the location of the btree root page.
99  * We also point to the "fast" root, which is the current effective root;
100  * see README for discussion.
101  */
102 
103 typedef struct BTMetaPageData
104 {
105  uint32 btm_magic; /* should contain BTREE_MAGIC */
106  uint32 btm_version; /* nbtree version (always <= BTREE_VERSION) */
107  BlockNumber btm_root; /* current root location */
108  uint32 btm_level; /* tree level of the root page */
109  BlockNumber btm_fastroot; /* current "fast" root location */
110  uint32 btm_fastlevel; /* tree level of the "fast" root page */
111  /* remaining fields only valid when btm_version >= BTREE_NOVAC_VERSION */
112 
113  /* number of deleted, non-recyclable pages during last cleanup */
115  /* number of heap tuples during last cleanup (deprecated) */
117 
118  bool btm_allequalimage; /* are all columns "equalimage"? */
120 
121 #define BTPageGetMeta(p) \
122  ((BTMetaPageData *) PageGetContents(p))
123 
124 /*
125  * The current Btree version is 4. That's what you'll get when you create
126  * a new index.
127  *
128  * Btree version 3 was used in PostgreSQL v11. It is mostly the same as
129  * version 4, but heap TIDs were not part of the keyspace. Index tuples
130  * with duplicate keys could be stored in any order. We continue to
131  * support reading and writing Btree versions 2 and 3, so that they don't
132  * need to be immediately re-indexed at pg_upgrade. In order to get the
133  * new heapkeyspace semantics, however, a REINDEX is needed.
134  *
135  * Deduplication is safe to use when the btm_allequalimage field is set to
136  * true. It's safe to read the btm_allequalimage field on version 3, but
137  * only version 4 indexes make use of deduplication. Even version 4
138  * indexes created on PostgreSQL v12 will need a REINDEX to make use of
139  * deduplication, though, since there is no other way to set
140  * btm_allequalimage to true (pg_upgrade hasn't been taught to set the
141  * metapage field).
142  *
143  * Btree version 2 is mostly the same as version 3. There are two new
144  * fields in the metapage that were introduced in version 3. A version 2
145  * metapage will be automatically upgraded to version 3 on the first
146  * insert to it. INCLUDE indexes cannot use version 2.
147  */
148 #define BTREE_METAPAGE 0 /* first page is meta */
149 #define BTREE_MAGIC 0x053162 /* magic number in metapage */
150 #define BTREE_VERSION 4 /* current version number */
151 #define BTREE_MIN_VERSION 2 /* minimum supported version */
152 #define BTREE_NOVAC_VERSION 3 /* version with all meta fields set */
153 
154 /*
155  * Maximum size of a btree index entry, including its tuple header.
156  *
157  * We actually need to be able to fit three items on every page,
158  * so restrict any one item to 1/3 the per-page available space.
159  *
160  * There are rare cases where _bt_truncate() will need to enlarge
161  * a heap index tuple to make space for a tiebreaker heap TID
162  * attribute, which we account for here.
163  */
164 #define BTMaxItemSize(page) \
165  (MAXALIGN_DOWN((PageGetPageSize(page) - \
166  MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \
167  MAXALIGN(sizeof(BTPageOpaqueData))) / 3) - \
168  MAXALIGN(sizeof(ItemPointerData)))
169 #define BTMaxItemSizeNoHeapTid(page) \
170  MAXALIGN_DOWN((PageGetPageSize(page) - \
171  MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \
172  MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
173 
174 /*
175  * MaxTIDsPerBTreePage is an upper bound on the number of heap TIDs tuples
176  * that may be stored on a btree leaf page. It is used to size the
177  * per-page temporary buffers.
178  *
179  * Note: we don't bother considering per-tuple overheads here to keep
180  * things simple (value is based on how many elements a single array of
181  * heap TIDs must have to fill the space between the page header and
182  * special area). The value is slightly higher (i.e. more conservative)
183  * than necessary as a result, which is considered acceptable.
184  */
185 #define MaxTIDsPerBTreePage \
186  (int) ((BLCKSZ - SizeOfPageHeaderData - sizeof(BTPageOpaqueData)) / \
187  sizeof(ItemPointerData))
188 
189 /*
190  * The leaf-page fillfactor defaults to 90% but is user-adjustable.
191  * For pages above the leaf level, we use a fixed 70% fillfactor.
192  * The fillfactor is applied during index build and when splitting
193  * a rightmost page; when splitting non-rightmost pages we try to
194  * divide the data equally. When splitting a page that's entirely
195  * filled with a single value (duplicates), the effective leaf-page
196  * fillfactor is 96%, regardless of whether the page is a rightmost
197  * page.
198  */
199 #define BTREE_MIN_FILLFACTOR 10
200 #define BTREE_DEFAULT_FILLFACTOR 90
201 #define BTREE_NONLEAF_FILLFACTOR 70
202 #define BTREE_SINGLEVAL_FILLFACTOR 96
203 
204 /*
205  * In general, the btree code tries to localize its knowledge about
206  * page layout to a couple of routines. However, we need a special
207  * value to indicate "no page number" in those places where we expect
208  * page numbers. We can use zero for this because we never need to
209  * make a pointer to the metadata page.
210  */
211 
212 #define P_NONE 0
213 
214 /*
215  * Macros to test whether a page is leftmost or rightmost on its tree level,
216  * as well as other state info kept in the opaque data.
217  */
218 #define P_LEFTMOST(opaque) ((opaque)->btpo_prev == P_NONE)
219 #define P_RIGHTMOST(opaque) ((opaque)->btpo_next == P_NONE)
220 #define P_ISLEAF(opaque) (((opaque)->btpo_flags & BTP_LEAF) != 0)
221 #define P_ISROOT(opaque) (((opaque)->btpo_flags & BTP_ROOT) != 0)
222 #define P_ISDELETED(opaque) (((opaque)->btpo_flags & BTP_DELETED) != 0)
223 #define P_ISMETA(opaque) (((opaque)->btpo_flags & BTP_META) != 0)
224 #define P_ISHALFDEAD(opaque) (((opaque)->btpo_flags & BTP_HALF_DEAD) != 0)
225 #define P_IGNORE(opaque) (((opaque)->btpo_flags & (BTP_DELETED|BTP_HALF_DEAD)) != 0)
226 #define P_HAS_GARBAGE(opaque) (((opaque)->btpo_flags & BTP_HAS_GARBAGE) != 0)
227 #define P_INCOMPLETE_SPLIT(opaque) (((opaque)->btpo_flags & BTP_INCOMPLETE_SPLIT) != 0)
228 #define P_HAS_FULLXID(opaque) (((opaque)->btpo_flags & BTP_HAS_FULLXID) != 0)
229 
230 /*
231  * BTDeletedPageData is the page contents of a deleted page
232  */
233 typedef struct BTDeletedPageData
234 {
235  FullTransactionId safexid; /* See BTPageIsRecyclable() */
237 
238 static inline void
240 {
241  BTPageOpaque opaque;
242  PageHeader header;
243  BTDeletedPageData *contents;
244 
245  opaque = BTPageGetOpaque(page);
246  header = ((PageHeader) page);
247 
248  opaque->btpo_flags &= ~BTP_HALF_DEAD;
251  sizeof(BTDeletedPageData);
252  header->pd_upper = header->pd_special;
253 
254  /* Set safexid in deleted page */
255  contents = ((BTDeletedPageData *) PageGetContents(page));
256  contents->safexid = safexid;
257 }
258 
259 static inline FullTransactionId
261 {
262  BTPageOpaque opaque;
263  BTDeletedPageData *contents;
264 
265  /* We only expect to be called with a deleted page */
266  Assert(!PageIsNew(page));
267  opaque = BTPageGetOpaque(page);
268  Assert(P_ISDELETED(opaque));
269 
270  /* pg_upgrade'd deleted page -- must be safe to recycle now */
271  if (!P_HAS_FULLXID(opaque))
273 
274  /* Get safexid from deleted page */
275  contents = ((BTDeletedPageData *) PageGetContents(page));
276  return contents->safexid;
277 }
278 
279 /*
280  * Is an existing page recyclable?
281  *
282  * This exists to centralize the policy on which deleted pages are now safe to
283  * re-use. However, _bt_pendingfsm_finalize() duplicates some of the same
284  * logic because it doesn't work directly with pages -- keep the two in sync.
285  *
286  * Note: PageIsNew() pages are always safe to recycle, but we can't deal with
287  * them here (caller is responsible for that case themselves). Caller might
288  * well need special handling for new pages anyway.
289  */
290 static inline bool
292 {
293  BTPageOpaque opaque;
294 
295  Assert(!PageIsNew(page));
296  Assert(heaprel != NULL);
297 
298  /* Recycling okay iff page is deleted and safexid is old enough */
299  opaque = BTPageGetOpaque(page);
300  if (P_ISDELETED(opaque))
301  {
302  FullTransactionId safexid = BTPageGetDeleteXid(page);
303 
304  /*
305  * The page was deleted, but when? If it was just deleted, a scan
306  * might have seen the downlink to it, and will read the page later.
307  * As long as that can happen, we must keep the deleted page around as
308  * a tombstone.
309  *
310  * For that check if the deletion XID could still be visible to
311  * anyone. If not, then no scan that's still in progress could have
312  * seen its downlink, and we can recycle it.
313  */
314  return GlobalVisCheckRemovableFullXid(heaprel, safexid);
315  }
316 
317  return false;
318 }
319 
320 /*
321  * BTVacState and BTPendingFSM are private nbtree.c state used during VACUUM.
322  * They are exported for use by page deletion related code in nbtpage.c.
323  */
324 typedef struct BTPendingFSM
325 {
326  BlockNumber target; /* Page deleted by current VACUUM */
327  FullTransactionId safexid; /* Page's BTDeletedPageData.safexid */
329 
330 typedef struct BTVacState
331 {
338 
339  /*
340  * _bt_pendingfsm_finalize() state
341  */
342  int bufsize; /* pendingpages space (in # elements) */
343  int maxbufsize; /* max bufsize that respects work_mem */
344  BTPendingFSM *pendingpages; /* One entry per newly deleted page */
345  int npendingpages; /* current # valid pendingpages */
347 
348 /*
349  * Lehman and Yao's algorithm requires a ``high key'' on every non-rightmost
350  * page. The high key is not a tuple that is used to visit the heap. It is
351  * a pivot tuple (see "Notes on B-Tree tuple format" below for definition).
352  * The high key on a page is required to be greater than or equal to any
353  * other key that appears on the page. If we find ourselves trying to
354  * insert a key that is strictly > high key, we know we need to move right
355  * (this should only happen if the page was split since we examined the
356  * parent page).
357  *
358  * Our insertion algorithm guarantees that we can use the initial least key
359  * on our right sibling as the high key. Once a page is created, its high
360  * key changes only if the page is split.
361  *
362  * On a non-rightmost page, the high key lives in item 1 and data items
363  * start in item 2. Rightmost pages have no high key, so we store data
364  * items beginning in item 1.
365  */
366 
367 #define P_HIKEY ((OffsetNumber) 1)
368 #define P_FIRSTKEY ((OffsetNumber) 2)
369 #define P_FIRSTDATAKEY(opaque) (P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY)
370 
371 /*
372  * Notes on B-Tree tuple format, and key and non-key attributes:
373  *
374  * INCLUDE B-Tree indexes have non-key attributes. These are extra
375  * attributes that may be returned by index-only scans, but do not influence
376  * the order of items in the index (formally, non-key attributes are not
377  * considered to be part of the key space). Non-key attributes are only
378  * present in leaf index tuples whose item pointers actually point to heap
379  * tuples (non-pivot tuples). _bt_check_natts() enforces the rules
380  * described here.
381  *
382  * Non-pivot tuple format (plain/non-posting variant):
383  *
384  * t_tid | t_info | key values | INCLUDE columns, if any
385  *
386  * t_tid points to the heap TID, which is a tiebreaker key column as of
387  * BTREE_VERSION 4.
388  *
389  * Non-pivot tuples complement pivot tuples, which only have key columns.
390  * The sole purpose of pivot tuples is to represent how the key space is
391  * separated. In general, any B-Tree index that has more than one level
392  * (i.e. any index that does not just consist of a metapage and a single
393  * leaf root page) must have some number of pivot tuples, since pivot
394  * tuples are used for traversing the tree. Suffix truncation can omit
395  * trailing key columns when a new pivot is formed, which makes minus
396  * infinity their logical value. Since BTREE_VERSION 4 indexes treat heap
397  * TID as a trailing key column that ensures that all index tuples are
398  * physically unique, it is necessary to represent heap TID as a trailing
399  * key column in pivot tuples, though very often this can be truncated
400  * away, just like any other key column. (Actually, the heap TID is
401  * omitted rather than truncated, since its representation is different to
402  * the non-pivot representation.)
403  *
404  * Pivot tuple format:
405  *
406  * t_tid | t_info | key values | [heap TID]
407  *
408  * We store the number of columns present inside pivot tuples by abusing
409  * their t_tid offset field, since pivot tuples never need to store a real
410  * offset (pivot tuples generally store a downlink in t_tid, though). The
411  * offset field only stores the number of columns/attributes when the
412  * INDEX_ALT_TID_MASK bit is set, which doesn't count the trailing heap
413  * TID column sometimes stored in pivot tuples -- that's represented by
414  * the presence of BT_PIVOT_HEAP_TID_ATTR. The INDEX_ALT_TID_MASK bit in
415  * t_info is always set on BTREE_VERSION 4 pivot tuples, since
416  * BTreeTupleIsPivot() must work reliably on heapkeyspace versions.
417  *
418  * In version 2 or version 3 (!heapkeyspace) indexes, INDEX_ALT_TID_MASK
419  * might not be set in pivot tuples. BTreeTupleIsPivot() won't work
420  * reliably as a result. The number of columns stored is implicitly the
421  * same as the number of columns in the index, just like any non-pivot
422  * tuple. (The number of columns stored should not vary, since suffix
423  * truncation of key columns is unsafe within any !heapkeyspace index.)
424  *
425  * The 12 least significant bits from t_tid's offset number are used to
426  * represent the number of key columns within a pivot tuple. This leaves 4
427  * status bits (BT_STATUS_OFFSET_MASK bits), which are shared by all tuples
428  * that have the INDEX_ALT_TID_MASK bit set (set in t_info) to store basic
429  * tuple metadata. BTreeTupleIsPivot() and BTreeTupleIsPosting() use the
430  * BT_STATUS_OFFSET_MASK bits.
431  *
432  * Sometimes non-pivot tuples also use a representation that repurposes
433  * t_tid to store metadata rather than a TID. PostgreSQL v13 introduced a
434  * new non-pivot tuple format to support deduplication: posting list
435  * tuples. Deduplication merges together multiple equal non-pivot tuples
436  * into a logically equivalent, space efficient representation. A posting
437  * list is an array of ItemPointerData elements. Non-pivot tuples are
438  * merged together to form posting list tuples lazily, at the point where
439  * we'd otherwise have to split a leaf page.
440  *
441  * Posting tuple format (alternative non-pivot tuple representation):
442  *
443  * t_tid | t_info | key values | posting list (TID array)
444  *
445  * Posting list tuples are recognized as such by having the
446  * INDEX_ALT_TID_MASK status bit set in t_info and the BT_IS_POSTING status
447  * bit set in t_tid's offset number. These flags redefine the content of
448  * the posting tuple's t_tid to store the location of the posting list
449  * (instead of a block number), as well as the total number of heap TIDs
450  * present in the tuple (instead of a real offset number).
451  *
452  * The 12 least significant bits from t_tid's offset number are used to
453  * represent the number of heap TIDs present in the tuple, leaving 4 status
454  * bits (the BT_STATUS_OFFSET_MASK bits). Like any non-pivot tuple, the
455  * number of columns stored is always implicitly the total number in the
456  * index (in practice there can never be non-key columns stored, since
457  * deduplication is not supported with INCLUDE indexes).
458  */
459 #define INDEX_ALT_TID_MASK INDEX_AM_RESERVED_BIT
460 
461 /* Item pointer offset bit masks */
462 #define BT_OFFSET_MASK 0x0FFF
463 #define BT_STATUS_OFFSET_MASK 0xF000
464 /* BT_STATUS_OFFSET_MASK status bits */
465 #define BT_PIVOT_HEAP_TID_ATTR 0x1000
466 #define BT_IS_POSTING 0x2000
467 
468 /*
469  * Mask allocated for number of keys in index tuple must be able to fit
470  * maximum possible number of index attributes
471  */
473  "BT_OFFSET_MASK can't fit INDEX_MAX_KEYS");
474 
475 /*
476  * Note: BTreeTupleIsPivot() can have false negatives (but not false
477  * positives) when used with !heapkeyspace indexes
478  */
479 static inline bool
481 {
482  if ((itup->t_info & INDEX_ALT_TID_MASK) == 0)
483  return false;
484  /* absence of BT_IS_POSTING in offset number indicates pivot tuple */
486  return false;
487 
488  return true;
489 }
490 
491 static inline bool
493 {
494  if ((itup->t_info & INDEX_ALT_TID_MASK) == 0)
495  return false;
496  /* presence of BT_IS_POSTING in offset number indicates posting tuple */
498  return false;
499 
500  return true;
501 }
502 
503 static inline void
504 BTreeTupleSetPosting(IndexTuple itup, uint16 nhtids, int postingoffset)
505 {
506  Assert(nhtids > 1);
507  Assert((nhtids & BT_STATUS_OFFSET_MASK) == 0);
508  Assert((size_t) postingoffset == MAXALIGN(postingoffset));
509  Assert(postingoffset < INDEX_SIZE_MASK);
510  Assert(!BTreeTupleIsPivot(itup));
511 
512  itup->t_info |= INDEX_ALT_TID_MASK;
513  ItemPointerSetOffsetNumber(&itup->t_tid, (nhtids | BT_IS_POSTING));
514  ItemPointerSetBlockNumber(&itup->t_tid, postingoffset);
515 }
516 
517 static inline uint16
519 {
520  OffsetNumber existing;
521 
522  Assert(BTreeTupleIsPosting(posting));
523 
524  existing = ItemPointerGetOffsetNumberNoCheck(&posting->t_tid);
525  return (existing & BT_OFFSET_MASK);
526 }
527 
528 static inline uint32
530 {
531  Assert(BTreeTupleIsPosting(posting));
532 
533  return ItemPointerGetBlockNumberNoCheck(&posting->t_tid);
534 }
535 
536 static inline ItemPointer
538 {
539  return (ItemPointer) ((char *) posting +
540  BTreeTupleGetPostingOffset(posting));
541 }
542 
543 static inline ItemPointer
545 {
546  return BTreeTupleGetPosting(posting) + n;
547 }
548 
549 /*
550  * Get/set downlink block number in pivot tuple.
551  *
552  * Note: Cannot assert that tuple is a pivot tuple. If we did so then
553  * !heapkeyspace indexes would exhibit false positive assertion failures.
554  */
555 static inline BlockNumber
557 {
558  return ItemPointerGetBlockNumberNoCheck(&pivot->t_tid);
559 }
560 
561 static inline void
563 {
564  ItemPointerSetBlockNumber(&pivot->t_tid, blkno);
565 }
566 
567 /*
568  * Get number of attributes within tuple.
569  *
570  * Note that this does not include an implicit tiebreaker heap TID
571  * attribute, if any. Note also that the number of key attributes must be
572  * explicitly represented in all heapkeyspace pivot tuples.
573  *
574  * Note: This is defined as a macro rather than an inline function to
575  * avoid including rel.h.
576  */
577 #define BTreeTupleGetNAtts(itup, rel) \
578  ( \
579  (BTreeTupleIsPivot(itup)) ? \
580  ( \
581  ItemPointerGetOffsetNumberNoCheck(&(itup)->t_tid) & BT_OFFSET_MASK \
582  ) \
583  : \
584  IndexRelationGetNumberOfAttributes(rel) \
585  )
586 
587 /*
588  * Set number of key attributes in tuple.
589  *
590  * The heap TID tiebreaker attribute bit may also be set here, indicating that
591  * a heap TID value will be stored at the end of the tuple (i.e. using the
592  * special pivot tuple representation).
593  */
594 static inline void
595 BTreeTupleSetNAtts(IndexTuple itup, uint16 nkeyatts, bool heaptid)
596 {
597  Assert(nkeyatts <= INDEX_MAX_KEYS);
598  Assert((nkeyatts & BT_STATUS_OFFSET_MASK) == 0);
599  Assert(!heaptid || nkeyatts > 0);
600  Assert(!BTreeTupleIsPivot(itup) || nkeyatts == 0);
601 
602  itup->t_info |= INDEX_ALT_TID_MASK;
603 
604  if (heaptid)
605  nkeyatts |= BT_PIVOT_HEAP_TID_ATTR;
606 
607  /* BT_IS_POSTING bit is deliberately unset here */
608  ItemPointerSetOffsetNumber(&itup->t_tid, nkeyatts);
609  Assert(BTreeTupleIsPivot(itup));
610 }
611 
612 /*
613  * Get/set leaf page's "top parent" link from its high key. Used during page
614  * deletion.
615  *
616  * Note: Cannot assert that tuple is a pivot tuple. If we did so then
617  * !heapkeyspace indexes would exhibit false positive assertion failures.
618  */
619 static inline BlockNumber
621 {
622  return ItemPointerGetBlockNumberNoCheck(&leafhikey->t_tid);
623 }
624 
625 static inline void
627 {
628  ItemPointerSetBlockNumber(&leafhikey->t_tid, blkno);
629  BTreeTupleSetNAtts(leafhikey, 0, false);
630 }
631 
632 /*
633  * Get tiebreaker heap TID attribute, if any.
634  *
635  * This returns the first/lowest heap TID in the case of a posting list tuple.
636  */
637 static inline ItemPointer
639 {
640  if (BTreeTupleIsPivot(itup))
641  {
642  /* Pivot tuple heap TID representation? */
645  return (ItemPointer) ((char *) itup + IndexTupleSize(itup) -
646  sizeof(ItemPointerData));
647 
648  /* Heap TID attribute was truncated */
649  return NULL;
650  }
651  else if (BTreeTupleIsPosting(itup))
652  return BTreeTupleGetPosting(itup);
653 
654  return &itup->t_tid;
655 }
656 
657 /*
658  * Get maximum heap TID attribute, which could be the only TID in the case of
659  * a non-pivot tuple that does not have a posting list.
660  *
661  * Works with non-pivot tuples only.
662  */
663 static inline ItemPointer
665 {
666  Assert(!BTreeTupleIsPivot(itup));
667 
668  if (BTreeTupleIsPosting(itup))
669  {
670  uint16 nposting = BTreeTupleGetNPosting(itup);
671 
672  return BTreeTupleGetPostingN(itup, nposting - 1);
673  }
674 
675  return &itup->t_tid;
676 }
677 
678 /*
679  * Operator strategy numbers for B-tree have been moved to access/stratnum.h,
680  * because many places need to use them in ScanKeyInit() calls.
681  *
682  * The strategy numbers are chosen so that we can commute them by
683  * subtraction, thus:
684  */
685 #define BTCommuteStrategyNumber(strat) (BTMaxStrategyNumber + 1 - (strat))
686 
687 /*
688  * When a new operator class is declared, we require that the user
689  * supply us with an amproc procedure (BTORDER_PROC) for determining
690  * whether, for two keys a and b, a < b, a = b, or a > b. This routine
691  * must return < 0, 0, > 0, respectively, in these three cases.
692  *
693  * To facilitate accelerated sorting, an operator class may choose to
694  * offer a second procedure (BTSORTSUPPORT_PROC). For full details, see
695  * src/include/utils/sortsupport.h.
696  *
697  * To support window frames defined by "RANGE offset PRECEDING/FOLLOWING",
698  * an operator class may choose to offer a third amproc procedure
699  * (BTINRANGE_PROC), independently of whether it offers sortsupport.
700  * For full details, see doc/src/sgml/btree.sgml.
701  *
702  * To facilitate B-Tree deduplication, an operator class may choose to
703  * offer a forth amproc procedure (BTEQUALIMAGE_PROC). For full details,
704  * see doc/src/sgml/btree.sgml.
705  */
706 
707 #define BTORDER_PROC 1
708 #define BTSORTSUPPORT_PROC 2
709 #define BTINRANGE_PROC 3
710 #define BTEQUALIMAGE_PROC 4
711 #define BTOPTIONS_PROC 5
712 #define BTNProcs 5
713 
714 /*
715  * We need to be able to tell the difference between read and write
716  * requests for pages, in order to do locking correctly.
717  */
718 
719 #define BT_READ BUFFER_LOCK_SHARE
720 #define BT_WRITE BUFFER_LOCK_EXCLUSIVE
721 
722 /*
723  * BTStackData -- As we descend a tree, we push the location of pivot
724  * tuples whose downlink we are about to follow onto a private stack. If
725  * we split a leaf, we use this stack to walk back up the tree and insert
726  * data into its parent page at the correct location. We also have to
727  * recursively insert into the grandparent page if and when the parent page
728  * splits. Our private stack can become stale due to concurrent page
729  * splits and page deletions, but it should never give us an irredeemably
730  * bad picture.
731  */
732 typedef struct BTStackData
733 {
738 
740 
741 /*
742  * BTScanInsertData is the btree-private state needed to find an initial
743  * position for an indexscan, or to insert new tuples -- an "insertion
744  * scankey" (not to be confused with a search scankey). It's used to descend
745  * a B-Tree using _bt_search.
746  *
747  * heapkeyspace indicates if we expect all keys in the index to be physically
748  * unique because heap TID is used as a tiebreaker attribute, and if index may
749  * have truncated key attributes in pivot tuples. This is actually a property
750  * of the index relation itself (not an indexscan). heapkeyspace indexes are
751  * indexes whose version is >= version 4. It's convenient to keep this close
752  * by, rather than accessing the metapage repeatedly.
753  *
754  * allequalimage is set to indicate that deduplication is safe for the index.
755  * This is also a property of the index relation rather than an indexscan.
756  *
757  * anynullkeys indicates if any of the keys had NULL value when scankey was
758  * built from index tuple (note that already-truncated tuple key attributes
759  * set NULL as a placeholder key value, which also affects value of
760  * anynullkeys). This is a convenience for unique index non-pivot tuple
761  * insertion, which usually temporarily unsets scantid, but shouldn't iff
762  * anynullkeys is true. Value generally matches non-pivot tuple's HasNulls
763  * bit, but may not when inserting into an INCLUDE index (tuple header value
764  * is affected by the NULL-ness of both key and non-key attributes).
765  *
766  * See comments in _bt_first for an explanation of the nextkey and backward
767  * fields.
768  *
769  * scantid is the heap TID that is used as a final tiebreaker attribute. It
770  * is set to NULL when index scan doesn't need to find a position for a
771  * specific physical tuple. Must be set when inserting new tuples into
772  * heapkeyspace indexes, since every tuple in the tree unambiguously belongs
773  * in one exact position (it's never set with !heapkeyspace indexes, though).
774  * Despite the representational difference, nbtree search code considers
775  * scantid to be just another insertion scankey attribute.
776  *
777  * scankeys is an array of scan key entries for attributes that are compared
778  * before scantid (user-visible attributes). keysz is the size of the array.
779  * During insertion, there must be a scan key for every attribute, but when
780  * starting a regular index scan some can be omitted. The array is used as a
781  * flexible array member, though it's sized in a way that makes it possible to
782  * use stack allocations. See nbtree/README for full details.
783  */
784 typedef struct BTScanInsertData
785 {
789  bool nextkey;
790  bool backward; /* backward index scan? */
791  ItemPointer scantid; /* tiebreaker for scankeys */
792  int keysz; /* Size of scankeys array */
793  ScanKeyData scankeys[INDEX_MAX_KEYS]; /* Must appear last */
795 
797 
798 /*
799  * BTInsertStateData is a working area used during insertion.
800  *
801  * This is filled in after descending the tree to the first leaf page the new
802  * tuple might belong on. Tracks the current position while performing
803  * uniqueness check, before we have determined which exact page to insert
804  * to.
805  *
806  * (This should be private to nbtinsert.c, but it's also used by
807  * _bt_binsrch_insert)
808  */
809 typedef struct BTInsertStateData
810 {
811  IndexTuple itup; /* Item we're inserting */
812  Size itemsz; /* Size of itup -- should be MAXALIGN()'d */
813  BTScanInsert itup_key; /* Insertion scankey */
814 
815  /* Buffer containing leaf page we're likely to insert itup on */
817 
818  /*
819  * Cache of bounds within the current buffer. Only used for insertions
820  * where _bt_check_unique is called. See _bt_binsrch_insert and
821  * _bt_findinsertloc for details.
822  */
826 
827  /*
828  * if _bt_binsrch_insert found the location inside existing posting list,
829  * save the position inside the list. -1 sentinel value indicates overlap
830  * with an existing posting list tuple that has its LP_DEAD bit set.
831  */
834 
836 
837 /*
838  * State used to representing an individual pending tuple during
839  * deduplication.
840  */
841 typedef struct BTDedupInterval
842 {
846 
847 /*
848  * BTDedupStateData is a working area used during deduplication.
849  *
850  * The status info fields track the state of a whole-page deduplication pass.
851  * State about the current pending posting list is also tracked.
852  *
853  * A pending posting list is comprised of a contiguous group of equal items
854  * from the page, starting from page offset number 'baseoff'. This is the
855  * offset number of the "base" tuple for new posting list. 'nitems' is the
856  * current total number of existing items from the page that will be merged to
857  * make a new posting list tuple, including the base tuple item. (Existing
858  * items may themselves be posting list tuples, or regular non-pivot tuples.)
859  *
860  * The total size of the existing tuples to be freed when pending posting list
861  * is processed gets tracked by 'phystupsize'. This information allows
862  * deduplication to calculate the space saving for each new posting list
863  * tuple, and for the entire pass over the page as a whole.
864  */
865 typedef struct BTDedupStateData
866 {
867  /* Deduplication status info for entire pass over page */
868  bool deduplicate; /* Still deduplicating page? */
869  int nmaxitems; /* Number of max-sized tuples so far */
870  Size maxpostingsize; /* Limit on size of final tuple */
871 
872  /* Metadata about base tuple of current pending posting list */
873  IndexTuple base; /* Use to form new posting list */
874  OffsetNumber baseoff; /* page offset of base */
875  Size basetupsize; /* base size without original posting list */
876 
877  /* Other metadata about pending posting list */
878  ItemPointer htids; /* Heap TIDs in pending posting list */
879  int nhtids; /* Number of heap TIDs in htids array */
880  int nitems; /* Number of existing tuples/line pointers */
881  Size phystupsize; /* Includes line pointer overhead */
882 
883  /*
884  * Array of tuples to go on new version of the page. Contains one entry
885  * for each group of consecutive items. Note that existing tuples that
886  * will not become posting list tuples do not appear in the array (they
887  * are implicitly unchanged by deduplication pass).
888  */
889  int nintervals; /* current number of intervals in array */
892 
894 
895 /*
896  * BTVacuumPostingData is state that represents how to VACUUM (or delete) a
897  * posting list tuple when some (though not all) of its TIDs are to be
898  * deleted.
899  *
900  * Convention is that itup field is the original posting list tuple on input,
901  * and palloc()'d final tuple used to overwrite existing tuple on output.
902  */
903 typedef struct BTVacuumPostingData
904 {
905  /* Tuple that will be/was updated */
908 
909  /* State needed to describe final itup in WAL */
913 
915 
916 /*
917  * BTScanOpaqueData is the btree-private state needed for an indexscan.
918  * This consists of preprocessed scan keys (see _bt_preprocess_keys() for
919  * details of the preprocessing), information about the current location
920  * of the scan, and information about the marked location, if any. (We use
921  * BTScanPosData to represent the data needed for each of current and marked
922  * locations.) In addition we can remember some known-killed index entries
923  * that must be marked before we can move off the current page.
924  *
925  * Index scans work a page at a time: we pin and read-lock the page, identify
926  * all the matching items on the page and save them in BTScanPosData, then
927  * release the read-lock while returning the items to the caller for
928  * processing. This approach minimizes lock/unlock traffic. Note that we
929  * keep the pin on the index page until the caller is done with all the items
930  * (this is needed for VACUUM synchronization, see nbtree/README). When we
931  * are ready to step to the next page, if the caller has told us any of the
932  * items were killed, we re-lock the page to mark them killed, then unlock.
933  * Finally we drop the pin and step to the next page in the appropriate
934  * direction.
935  *
936  * If we are doing an index-only scan, we save the entire IndexTuple for each
937  * matched item, otherwise only its heap TID and offset. The IndexTuples go
938  * into a separate workspace array; each BTScanPosItem stores its tuple's
939  * offset within that array. Posting list tuples store a "base" tuple once,
940  * allowing the same key to be returned for each TID in the posting list
941  * tuple.
942  */
943 
944 typedef struct BTScanPosItem /* what we remember about each match */
945 {
946  ItemPointerData heapTid; /* TID of referenced heap item */
947  OffsetNumber indexOffset; /* index item's location within page */
948  LocationIndex tupleOffset; /* IndexTuple's offset in workspace, if any */
950 
951 typedef struct BTScanPosData
952 {
953  Buffer buf; /* if valid, the buffer is pinned */
954 
955  XLogRecPtr lsn; /* pos in the WAL stream when page was read */
956  BlockNumber currPage; /* page referenced by items array */
957  BlockNumber nextPage; /* page's right link when we scanned it */
958 
959  /*
960  * moreLeft and moreRight track whether we think there may be matching
961  * index entries to the left and right of the current page, respectively.
962  * We can clear the appropriate one of these flags when _bt_checkkeys()
963  * sets BTReadPageState.continuescan = false.
964  */
965  bool moreLeft;
966  bool moreRight;
967 
968  /*
969  * Direction of the scan at the time that _bt_readpage was called.
970  *
971  * Used by btrestrpos to "restore" the scan's array keys by resetting each
972  * array to its first element's value (first in this scan direction). This
973  * avoids the need to directly track the array keys in btmarkpos.
974  */
976 
977  /*
978  * If we are doing an index-only scan, nextTupleOffset is the first free
979  * location in the associated tuple storage workspace.
980  */
982 
983  /*
984  * The items array is always ordered in index order (ie, increasing
985  * indexoffset). When scanning backwards it is convenient to fill the
986  * array back-to-front, so we start at the last slot and fill downwards.
987  * Hence we need both a first-valid-entry and a last-valid-entry counter.
988  * itemIndex is a cursor showing which entry was last returned to caller.
989  */
990  int firstItem; /* first valid index in items[] */
991  int lastItem; /* last valid index in items[] */
992  int itemIndex; /* current index in items[] */
993 
996 
998 
999 #define BTScanPosIsPinned(scanpos) \
1000 ( \
1001  AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
1002  !BufferIsValid((scanpos).buf)), \
1003  BufferIsValid((scanpos).buf) \
1004 )
1005 #define BTScanPosUnpin(scanpos) \
1006  do { \
1007  ReleaseBuffer((scanpos).buf); \
1008  (scanpos).buf = InvalidBuffer; \
1009  } while (0)
1010 #define BTScanPosUnpinIfPinned(scanpos) \
1011  do { \
1012  if (BTScanPosIsPinned(scanpos)) \
1013  BTScanPosUnpin(scanpos); \
1014  } while (0)
1015 
1016 #define BTScanPosIsValid(scanpos) \
1017 ( \
1018  AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
1019  !BufferIsValid((scanpos).buf)), \
1020  BlockNumberIsValid((scanpos).currPage) \
1021 )
1022 #define BTScanPosInvalidate(scanpos) \
1023  do { \
1024  (scanpos).currPage = InvalidBlockNumber; \
1025  (scanpos).nextPage = InvalidBlockNumber; \
1026  (scanpos).buf = InvalidBuffer; \
1027  (scanpos).lsn = InvalidXLogRecPtr; \
1028  (scanpos).nextTupleOffset = 0; \
1029  } while (0)
1030 
1031 /* We need one of these for each equality-type SK_SEARCHARRAY scan key */
1032 typedef struct BTArrayKeyInfo
1033 {
1034  int scan_key; /* index of associated key in keyData */
1035  int cur_elem; /* index of current element in elem_values */
1036  int num_elems; /* number of elems in current array value */
1037  Datum *elem_values; /* array of num_elems Datums */
1039 
1040 typedef struct BTScanOpaqueData
1041 {
1042  /* these fields are set by _bt_preprocess_keys(): */
1043  bool qual_ok; /* false if qual can never be satisfied */
1044  int numberOfKeys; /* number of preprocessed scan keys */
1045  ScanKey keyData; /* array of preprocessed scan keys */
1046 
1047  /* workspace for SK_SEARCHARRAY support */
1048  int numArrayKeys; /* number of equality-type array keys */
1049  bool needPrimScan; /* New prim scan to continue in current dir? */
1050  bool scanBehind; /* Last array advancement matched -inf attr? */
1051  BTArrayKeyInfo *arrayKeys; /* info about each equality-type array key */
1052  FmgrInfo *orderProcs; /* ORDER procs for required equality keys */
1053  MemoryContext arrayContext; /* scan-lifespan context for array data */
1054 
1055  /* info about killed items if any (killedItems is NULL if never used) */
1056  int *killedItems; /* currPos.items indexes of killed items */
1057  int numKilled; /* number of currently stored items */
1058 
1059  /*
1060  * If we are doing an index-only scan, these are the tuple storage
1061  * workspaces for the currPos and markPos respectively. Each is of size
1062  * BLCKSZ, so it can hold as much as a full page's worth of tuples.
1063  */
1064  char *currTuples; /* tuple storage for currPos */
1065  char *markTuples; /* tuple storage for markPos */
1066 
1067  /*
1068  * If the marked position is on the same page as current position, we
1069  * don't use markPos, but just keep the marked itemIndex in markItemIndex
1070  * (all the rest of currPos is valid for the mark position). Hence, to
1071  * determine if there is a mark, first look at markItemIndex, then at
1072  * markPos.
1073  */
1074  int markItemIndex; /* itemIndex, or -1 if not valid */
1075 
1076  /* keep these last in struct for efficiency */
1077  BTScanPosData currPos; /* current position data */
1078  BTScanPosData markPos; /* marked position, if any */
1080 
1082 
1083 /*
1084  * _bt_readpage state used across _bt_checkkeys calls for a page
1085  */
1086 typedef struct BTReadPageState
1087 {
1088  /* Input parameters, set by _bt_readpage for _bt_checkkeys */
1089  ScanDirection dir; /* current scan direction */
1090  OffsetNumber minoff; /* Lowest non-pivot tuple's offset */
1091  OffsetNumber maxoff; /* Highest non-pivot tuple's offset */
1092  IndexTuple finaltup; /* Needed by scans with array keys */
1093  BlockNumber prev_scan_page; /* previous _bt_parallel_release block */
1094  Page page; /* Page being read */
1095 
1096  /* Per-tuple input parameters, set by _bt_readpage for _bt_checkkeys */
1097  OffsetNumber offnum; /* current tuple's page offset number */
1098 
1099  /* Output parameter, set by _bt_checkkeys for _bt_readpage */
1100  OffsetNumber skip; /* Array keys "look ahead" skip offnum */
1101  bool continuescan; /* Terminate ongoing (primitive) index scan? */
1102 
1103  /*
1104  * Input and output parameters, set and unset by both _bt_readpage and
1105  * _bt_checkkeys to manage precheck optimizations
1106  */
1107  bool prechecked; /* precheck set continuescan to 'true'? */
1108  bool firstmatch; /* at least one match so far? */
1109 
1110  /*
1111  * Private _bt_checkkeys state used to manage "look ahead" optimization
1112  * (only used during scans with array keys)
1113  */
1116 
1118 
1119 /*
1120  * We use some private sk_flags bits in preprocessed scan keys. We're allowed
1121  * to use bits 16-31 (see skey.h). The uppermost bits are copied from the
1122  * index's indoption[] array entry for the index attribute.
1123  */
1124 #define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */
1125 #define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */
1126 #define SK_BT_INDOPTION_SHIFT 24 /* must clear the above bits */
1127 #define SK_BT_DESC (INDOPTION_DESC << SK_BT_INDOPTION_SHIFT)
1128 #define SK_BT_NULLS_FIRST (INDOPTION_NULLS_FIRST << SK_BT_INDOPTION_SHIFT)
1129 
1130 typedef struct BTOptions
1131 {
1132  int32 varlena_header_; /* varlena header (do not touch directly!) */
1133  int fillfactor; /* page fill factor in percent (0..100) */
1135  bool deduplicate_items; /* Try to deduplicate items? */
1137 
1138 #define BTGetFillFactor(relation) \
1139  (AssertMacro(relation->rd_rel->relkind == RELKIND_INDEX && \
1140  relation->rd_rel->relam == BTREE_AM_OID), \
1141  (relation)->rd_options ? \
1142  ((BTOptions *) (relation)->rd_options)->fillfactor : \
1143  BTREE_DEFAULT_FILLFACTOR)
1144 #define BTGetTargetPageFreeSpace(relation) \
1145  (BLCKSZ * (100 - BTGetFillFactor(relation)) / 100)
1146 #define BTGetDeduplicateItems(relation) \
1147  (AssertMacro(relation->rd_rel->relkind == RELKIND_INDEX && \
1148  relation->rd_rel->relam == BTREE_AM_OID), \
1149  ((relation)->rd_options ? \
1150  ((BTOptions *) (relation)->rd_options)->deduplicate_items : true))
1151 
1152 /*
1153  * Constant definition for progress reporting. Phase numbers must match
1154  * btbuildphasename.
1155  */
1156 /* PROGRESS_CREATEIDX_SUBPHASE_INITIALIZE is 1 (see progress.h) */
1157 #define PROGRESS_BTREE_PHASE_INDEXBUILD_TABLESCAN 2
1158 #define PROGRESS_BTREE_PHASE_PERFORMSORT_1 3
1159 #define PROGRESS_BTREE_PHASE_PERFORMSORT_2 4
1160 #define PROGRESS_BTREE_PHASE_LEAF_LOAD 5
1161 
1162 /*
1163  * external entry points for btree, in nbtree.c
1164  */
1165 extern void btbuildempty(Relation index);
1166 extern bool btinsert(Relation rel, Datum *values, bool *isnull,
1167  ItemPointer ht_ctid, Relation heapRel,
1168  IndexUniqueCheck checkUnique,
1169  bool indexUnchanged,
1170  struct IndexInfo *indexInfo);
1171 extern IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys);
1172 extern Size btestimateparallelscan(int nkeys, int norderbys);
1173 extern void btinitparallelscan(void *target);
1174 extern bool btgettuple(IndexScanDesc scan, ScanDirection dir);
1175 extern int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
1176 extern void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
1177  ScanKey orderbys, int norderbys);
1178 extern void btparallelrescan(IndexScanDesc scan);
1179 extern void btendscan(IndexScanDesc scan);
1180 extern void btmarkpos(IndexScanDesc scan);
1181 extern void btrestrpos(IndexScanDesc scan);
1183  IndexBulkDeleteResult *stats,
1185  void *callback_state);
1187  IndexBulkDeleteResult *stats);
1188 extern bool btcanreturn(Relation index, int attno);
1189 
1190 /*
1191  * prototypes for internal functions in nbtree.c
1192  */
1193 extern bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno,
1194  bool first);
1195 extern void _bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page);
1196 extern void _bt_parallel_done(IndexScanDesc scan);
1198  BlockNumber prev_scan_page);
1199 
1200 /*
1201  * prototypes for functions in nbtdedup.c
1202  */
1203 extern void _bt_dedup_pass(Relation rel, Buffer buf, IndexTuple newitem,
1204  Size newitemsz, bool bottomupdedup);
1205 extern bool _bt_bottomupdel_pass(Relation rel, Buffer buf, Relation heapRel,
1206  Size newitemsz);
1208  OffsetNumber baseoff);
1212  int nhtids);
1213 extern void _bt_update_posting(BTVacuumPosting vacposting);
1214 extern IndexTuple _bt_swap_posting(IndexTuple newitem, IndexTuple oposting,
1215  int postingoff);
1216 
1217 /*
1218  * prototypes for functions in nbtinsert.c
1219  */
1220 extern bool _bt_doinsert(Relation rel, IndexTuple itup,
1221  IndexUniqueCheck checkUnique, bool indexUnchanged,
1222  Relation heapRel);
1223 extern void _bt_finish_split(Relation rel, Relation heaprel, Buffer lbuf,
1224  BTStack stack);
1225 extern Buffer _bt_getstackbuf(Relation rel, Relation heaprel, BTStack stack,
1226  BlockNumber child);
1227 
1228 /*
1229  * prototypes for functions in nbtsplitloc.c
1230  */
1231 extern OffsetNumber _bt_findsplitloc(Relation rel, Page origpage,
1232  OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem,
1233  bool *newitemonleft);
1234 
1235 /*
1236  * prototypes for functions in nbtpage.c
1237  */
1238 extern void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level,
1239  bool allequalimage);
1240 extern bool _bt_vacuum_needs_cleanup(Relation rel);
1241 extern void _bt_set_cleanup_info(Relation rel, BlockNumber num_delpages);
1242 extern void _bt_upgrademetapage(Page page);
1243 extern Buffer _bt_getroot(Relation rel, Relation heaprel, int access);
1244 extern Buffer _bt_gettrueroot(Relation rel);
1245 extern int _bt_getrootheight(Relation rel);
1246 extern void _bt_metaversion(Relation rel, bool *heapkeyspace,
1247  bool *allequalimage);
1248 extern void _bt_checkpage(Relation rel, Buffer buf);
1249 extern Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access);
1250 extern Buffer _bt_allocbuf(Relation rel, Relation heaprel);
1251 extern Buffer _bt_relandgetbuf(Relation rel, Buffer obuf,
1252  BlockNumber blkno, int access);
1253 extern void _bt_relbuf(Relation rel, Buffer buf);
1254 extern void _bt_lockbuf(Relation rel, Buffer buf, int access);
1255 extern void _bt_unlockbuf(Relation rel, Buffer buf);
1256 extern bool _bt_conditionallockbuf(Relation rel, Buffer buf);
1257 extern void _bt_upgradelockbufcleanup(Relation rel, Buffer buf);
1258 extern void _bt_pageinit(Page page, Size size);
1259 extern void _bt_delitems_vacuum(Relation rel, Buffer buf,
1260  OffsetNumber *deletable, int ndeletable,
1261  BTVacuumPosting *updatable, int nupdatable);
1262 extern void _bt_delitems_delete_check(Relation rel, Buffer buf,
1263  Relation heapRel,
1264  TM_IndexDeleteOp *delstate);
1265 extern void _bt_pagedel(Relation rel, Buffer leafbuf, BTVacState *vstate);
1266 extern void _bt_pendingfsm_init(Relation rel, BTVacState *vstate,
1267  bool cleanuponly);
1268 extern void _bt_pendingfsm_finalize(Relation rel, BTVacState *vstate);
1269 
1270 /*
1271  * prototypes for functions in nbtsearch.c
1272  */
1273 extern BTStack _bt_search(Relation rel, Relation heaprel, BTScanInsert key,
1274  Buffer *bufP, int access);
1275 extern Buffer _bt_moveright(Relation rel, Relation heaprel, BTScanInsert key,
1276  Buffer buf, bool forupdate, BTStack stack,
1277  int access);
1278 extern OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate);
1279 extern int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum);
1280 extern bool _bt_first(IndexScanDesc scan, ScanDirection dir);
1281 extern bool _bt_next(IndexScanDesc scan, ScanDirection dir);
1282 extern Buffer _bt_get_endpoint(Relation rel, uint32 level, bool rightmost);
1283 
1284 /*
1285  * prototypes for functions in nbtutils.c
1286  */
1287 extern BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup);
1288 extern void _bt_freestack(BTStack stack);
1289 extern bool _bt_start_prim_scan(IndexScanDesc scan, ScanDirection dir);
1290 extern void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir);
1291 extern void _bt_preprocess_keys(IndexScanDesc scan);
1292 extern bool _bt_checkkeys(IndexScanDesc scan, BTReadPageState *pstate, bool arrayKeys,
1293  IndexTuple tuple, int tupnatts);
1294 extern void _bt_killitems(IndexScanDesc scan);
1296 extern BTCycleId _bt_start_vacuum(Relation rel);
1297 extern void _bt_end_vacuum(Relation rel);
1298 extern void _bt_end_vacuum_callback(int code, Datum arg);
1299 extern Size BTreeShmemSize(void);
1300 extern void BTreeShmemInit(void);
1301 extern bytea *btoptions(Datum reloptions, bool validate);
1302 extern bool btproperty(Oid index_oid, int attno,
1303  IndexAMProperty prop, const char *propname,
1304  bool *res, bool *isnull);
1305 extern char *btbuildphasename(int64 phasenum);
1306 extern IndexTuple _bt_truncate(Relation rel, IndexTuple lastleft,
1307  IndexTuple firstright, BTScanInsert itup_key);
1308 extern int _bt_keep_natts_fast(Relation rel, IndexTuple lastleft,
1309  IndexTuple firstright);
1310 extern bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page,
1311  OffsetNumber offnum);
1312 extern void _bt_check_third_page(Relation rel, Relation heap,
1313  bool needheaptidspace, Page page, IndexTuple newtup);
1314 extern bool _bt_allequalimage(Relation rel, bool debugmessage);
1315 
1316 /*
1317  * prototypes for functions in nbtvalidate.c
1318  */
1319 extern bool btvalidate(Oid opclassoid);
1320 extern void btadjustmembers(Oid opfamilyoid,
1321  Oid opclassoid,
1322  List *operators,
1323  List *functions);
1324 
1325 /*
1326  * prototypes for functions in nbtsort.c
1327  */
1329  struct IndexInfo *indexInfo);
1330 extern void _bt_parallel_build_main(dsm_segment *seg, shm_toc *toc);
1331 
1332 #endif /* NBTREE_H */
IndexAMProperty
Definition: amapi.h:35
uint32 BlockNumber
Definition: block.h:31
static Datum values[MAXATTR]
Definition: bootstrap.c:152
int Buffer
Definition: buf.h:23
PageHeaderData * PageHeader
Definition: bufpage.h:170
static char * PageGetContents(Page page)
Definition: bufpage.h:254
Pointer Page
Definition: bufpage.h:78
#define SizeOfPageHeaderData
Definition: bufpage.h:213
static bool PageIsNew(Page page)
Definition: bufpage.h:230
uint16 LocationIndex
Definition: bufpage.h:87
unsigned short uint16
Definition: c.h:505
unsigned int uint32
Definition: c.h:506
signed short int16
Definition: c.h:493
#define MAXALIGN(LEN)
Definition: c.h:811
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
double float8
Definition: c.h:630
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:398
size_t Size
Definition: c.h:605
bool(* IndexBulkDeleteCallback)(ItemPointer itemptr, void *state)
Definition: genam.h:87
IndexUniqueCheck
Definition: genam.h:116
static void ItemPointerSetOffsetNumber(ItemPointerData *pointer, OffsetNumber offsetNumber)
Definition: itemptr.h:158
static void ItemPointerSetBlockNumber(ItemPointerData *pointer, BlockNumber blockNumber)
Definition: itemptr.h:147
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
struct ItemPointerData ItemPointerData
#define IndexTupleSize(itup)
Definition: itup.h:70
#define MaxIndexTuplesPerPage
Definition: itup.h:165
#define INDEX_SIZE_MASK
Definition: itup.h:65
#define P_HAS_FULLXID(opaque)
Definition: nbtree.h:228
bool btinsert(Relation rel, Datum *values, bool *isnull, ItemPointer ht_ctid, Relation heapRel, IndexUniqueCheck checkUnique, bool indexUnchanged, struct IndexInfo *indexInfo)
Definition: nbtree.c:182
Buffer _bt_get_endpoint(Relation rel, uint32 level, bool rightmost)
Definition: nbtsearch.c:2479
Buffer _bt_relandgetbuf(Relation rel, Buffer obuf, BlockNumber blkno, int access)
Definition: nbtpage.c:1003
void _bt_check_third_page(Relation rel, Relation heap, bool needheaptidspace, Page page, IndexTuple newtup)
Definition: nbtutils.c:5081
bool btcanreturn(Relation index, int attno)
Definition: nbtree.c:1444
void _bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page)
Definition: nbtree.c:709
BTPageOpaqueData * BTPageOpaque
Definition: nbtree.h:71
#define BT_PIVOT_HEAP_TID_ATTR
Definition: nbtree.h:465
Buffer _bt_moveright(Relation rel, Relation heaprel, BTScanInsert key, Buffer buf, bool forupdate, BTStack stack, int access)
Definition: nbtsearch.c:235
static uint16 BTreeTupleGetNPosting(IndexTuple posting)
Definition: nbtree.h:518
void _bt_upgrademetapage(Page page)
Definition: nbtpage.c:107
void _bt_relbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1023
IndexTuple _bt_swap_posting(IndexTuple newitem, IndexTuple oposting, int postingoff)
Definition: nbtdedup.c:1022
static bool BTreeTupleIsPivot(IndexTuple itup)
Definition: nbtree.h:480
Buffer _bt_gettrueroot(Relation rel)
Definition: nbtpage.c:580
int _bt_getrootheight(Relation rel)
Definition: nbtpage.c:675
BTStackData * BTStack
Definition: nbtree.h:739
void _bt_end_vacuum(Relation rel)
Definition: nbtutils.c:4483
bool btvalidate(Oid opclassoid)
Definition: nbtvalidate.c:41
void _bt_pageinit(Page page, Size size)
Definition: nbtpage.c:1129
bool _bt_first(IndexScanDesc scan, ScanDirection dir)
Definition: nbtsearch.c:876
void _bt_dedup_pass(Relation rel, Buffer buf, IndexTuple newitem, Size newitemsz, bool bottomupdedup)
Definition: nbtdedup.c:58
OffsetNumber _bt_findsplitloc(Relation rel, Page origpage, OffsetNumber newitemoff, Size newitemsz, IndexTuple newitem, bool *newitemonleft)
Definition: nbtsplitloc.c:129
static FullTransactionId BTPageGetDeleteXid(Page page)
Definition: nbtree.h:260
#define BTP_HAS_FULLXID
Definition: nbtree.h:84
void _bt_update_posting(BTVacuumPosting vacposting)
Definition: nbtdedup.c:924
bool _bt_bottomupdel_pass(Relation rel, Buffer buf, Relation heapRel, Size newitemsz)
Definition: nbtdedup.c:307
char * btbuildphasename(int64 phasenum)
Definition: nbtutils.c:4607
bool _bt_checkkeys(IndexScanDesc scan, BTReadPageState *pstate, bool arrayKeys, IndexTuple tuple, int tupnatts)
Definition: nbtutils.c:3512
#define BTP_HALF_DEAD
Definition: nbtree.h:80
bool _bt_dedup_save_htid(BTDedupState state, IndexTuple itup)
Definition: nbtdedup.c:484
void _bt_end_vacuum_callback(int code, Datum arg)
Definition: nbtutils.c:4511
void _bt_pagedel(Relation rel, Buffer leafbuf, BTVacState *vstate)
Definition: nbtpage.c:1802
Buffer _bt_allocbuf(Relation rel, Relation heaprel)
Definition: nbtpage.c:869
struct BTPageOpaqueData BTPageOpaqueData
IndexScanDesc btbeginscan(Relation rel, int nkeys, int norderbys)
Definition: nbtree.c:312
void _bt_delitems_vacuum(Relation rel, Buffer buf, OffsetNumber *deletable, int ndeletable, BTVacuumPosting *updatable, int nupdatable)
Definition: nbtpage.c:1154
struct BTReadPageState BTReadPageState
static void BTreeTupleSetTopParent(IndexTuple leafhikey, BlockNumber blkno)
Definition: nbtree.h:626
void _bt_freestack(BTStack stack)
Definition: nbtutils.c:221
static void BTreeTupleSetPosting(IndexTuple itup, uint16 nhtids, int postingoffset)
Definition: nbtree.h:504
Buffer _bt_getstackbuf(Relation rel, Relation heaprel, BTStack stack, BlockNumber child)
Definition: nbtinsert.c:2319
void BTreeShmemInit(void)
Definition: nbtutils.c:4533
void _bt_parallel_done(IndexScanDesc scan)
Definition: nbtree.c:732
IndexBulkDeleteResult * btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats, IndexBulkDeleteCallback callback, void *callback_state)
Definition: nbtree.c:808
void _bt_dedup_start_pending(BTDedupState state, IndexTuple base, OffsetNumber baseoff)
Definition: nbtdedup.c:433
#define BTPageGetOpaque(page)
Definition: nbtree.h:73
#define P_ISDELETED(opaque)
Definition: nbtree.h:222
bytea * btoptions(Datum reloptions, bool validate)
Definition: nbtutils.c:4561
static ItemPointer BTreeTupleGetPosting(IndexTuple posting)
Definition: nbtree.h:537
void _bt_checkpage(Relation rel, Buffer buf)
Definition: nbtpage.c:797
BTCycleId _bt_vacuum_cycleid(Relation rel)
Definition: nbtutils.c:4392
void _bt_metaversion(Relation rel, bool *heapkeyspace, bool *allequalimage)
Definition: nbtpage.c:739
static BlockNumber BTreeTupleGetTopParent(IndexTuple leafhikey)
Definition: nbtree.h:620
struct BTArrayKeyInfo BTArrayKeyInfo
void btadjustmembers(Oid opfamilyoid, Oid opclassoid, List *operators, List *functions)
Definition: nbtvalidate.c:293
BTScanInsert _bt_mkscankey(Relation rel, IndexTuple itup)
Definition: nbtutils.c:129
struct BTPendingFSM BTPendingFSM
void _bt_killitems(IndexScanDesc scan)
Definition: nbtutils.c:4175
#define BT_OFFSET_MASK
Definition: nbtree.h:462
IndexBulkDeleteResult * btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
Definition: nbtree.c:838
IndexTuple _bt_form_posting(IndexTuple base, ItemPointer htids, int nhtids)
Definition: nbtdedup.c:864
bool _bt_doinsert(Relation rel, IndexTuple itup, IndexUniqueCheck checkUnique, bool indexUnchanged, Relation heapRel)
Definition: nbtinsert.c:102
#define MaxTIDsPerBTreePage
Definition: nbtree.h:185
static void BTreeTupleSetDownLink(IndexTuple pivot, BlockNumber blkno)
Definition: nbtree.h:562
bool btgettuple(IndexScanDesc scan, ScanDirection dir)
Definition: nbtree.c:206
void btparallelrescan(IndexScanDesc scan)
Definition: nbtree.c:561
bool _bt_start_prim_scan(IndexScanDesc scan, ScanDirection dir)
Definition: nbtutils.c:1668
struct BTVacState BTVacState
bool _bt_check_natts(Relation rel, bool heapkeyspace, Page page, OffsetNumber offnum)
Definition: nbtutils.c:4921
IndexTuple _bt_truncate(Relation rel, IndexTuple lastleft, IndexTuple firstright, BTScanInsert itup_key)
Definition: nbtutils.c:4655
void _bt_set_cleanup_info(Relation rel, BlockNumber num_delpages)
Definition: nbtpage.c:232
#define BT_STATUS_OFFSET_MASK
Definition: nbtree.h:463
uint16 BTCycleId
Definition: nbtree.h:29
static uint32 BTreeTupleGetPostingOffset(IndexTuple posting)
Definition: nbtree.h:529
struct BTScanInsertData BTScanInsertData
void btbuildempty(Relation index)
Definition: nbtree.c:159
struct BTMetaPageData BTMetaPageData
bool _bt_conditionallockbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1093
Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access)
Definition: nbtpage.c:845
BTScanInsertData * BTScanInsert
Definition: nbtree.h:796
int _bt_keep_natts_fast(Relation rel, IndexTuple lastleft, IndexTuple firstright)
Definition: nbtutils.c:4874
static ItemPointer BTreeTupleGetPostingN(IndexTuple posting, int n)
Definition: nbtree.h:544
void _bt_finish_split(Relation rel, Relation heaprel, Buffer lbuf, BTStack stack)
Definition: nbtinsert.c:2241
IndexBuildResult * btbuild(Relation heap, Relation index, struct IndexInfo *indexInfo)
Definition: nbtsort.c:293
void btinitparallelscan(void *target)
Definition: nbtree.c:547
void _bt_parallel_build_main(dsm_segment *seg, shm_toc *toc)
Definition: nbtsort.c:1740
static bool BTPageIsRecyclable(Page page, Relation heaprel)
Definition: nbtree.h:291
void _bt_unlockbuf(Relation rel, Buffer buf)
Definition: nbtpage.c:1070
static BlockNumber BTreeTupleGetDownLink(IndexTuple pivot)
Definition: nbtree.h:556
#define INDEX_ALT_TID_MASK
Definition: nbtree.h:459
BTStack _bt_search(Relation rel, Relation heaprel, BTScanInsert key, Buffer *bufP, int access)
Definition: nbtsearch.c:96
void _bt_upgradelockbufcleanup(Relation rel, Buffer buf)
Definition: nbtpage.c:1109
void _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level, bool allequalimage)
Definition: nbtpage.c:67
BTVacuumPostingData * BTVacuumPosting
Definition: nbtree.h:914
void _bt_delitems_delete_check(Relation rel, Buffer buf, Relation heapRel, TM_IndexDeleteOp *delstate)
Definition: nbtpage.c:1513
struct BTDeletedPageData BTDeletedPageData
bool _bt_vacuum_needs_cleanup(Relation rel)
Definition: nbtpage.c:179
OffsetNumber _bt_binsrch_insert(Relation rel, BTInsertState insertstate)
Definition: nbtsearch.c:468
bool _bt_next(IndexScanDesc scan, ScanDirection dir)
Definition: nbtsearch.c:1492
struct BTDedupInterval BTDedupInterval
int32 _bt_compare(Relation rel, BTScanInsert key, Page page, OffsetNumber offnum)
Definition: nbtsearch.c:682
struct BTScanPosItem BTScanPosItem
bool _bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno, bool first)
Definition: nbtree.c:605
static ItemPointer BTreeTupleGetMaxHeapTID(IndexTuple itup)
Definition: nbtree.h:664
static bool BTreeTupleIsPosting(IndexTuple itup)
Definition: nbtree.h:492
Size BTreeShmemSize(void)
Definition: nbtutils.c:4520
static void BTPageSetDeleted(Page page, FullTransactionId safexid)
Definition: nbtree.h:239
Size btestimateparallelscan(int nkeys, int norderbys)
Definition: nbtree.c:537
int64 btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
Definition: nbtree.c:266
void btmarkpos(IndexScanDesc scan)
Definition: nbtree.c:453
BTDedupStateData * BTDedupState
Definition: nbtree.h:893
void btendscan(IndexScanDesc scan)
Definition: nbtree.c:417
void _bt_pendingfsm_finalize(Relation rel, BTVacState *vstate)
Definition: nbtpage.c:2995
#define BT_IS_POSTING
Definition: nbtree.h:466
void _bt_lockbuf(Relation rel, Buffer buf, int access)
Definition: nbtpage.c:1039
struct BTOptions BTOptions
void btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys, ScanKey orderbys, int norderbys)
Definition: nbtree.c:359
bool btproperty(Oid index_oid, int attno, IndexAMProperty prop, const char *propname, bool *res, bool *isnull)
Definition: nbtutils.c:4584
Buffer _bt_getroot(Relation rel, Relation heaprel, int access)
Definition: nbtpage.c:344
struct BTScanPosData BTScanPosData
static ItemPointer BTreeTupleGetHeapTID(IndexTuple itup)
Definition: nbtree.h:638
void _bt_pendingfsm_init(Relation rel, BTVacState *vstate, bool cleanuponly)
Definition: nbtpage.c:2954
Size _bt_dedup_finish_pending(Page newpage, BTDedupState state)
Definition: nbtdedup.c:555
struct BTScanOpaqueData BTScanOpaqueData
BTInsertStateData * BTInsertState
Definition: nbtree.h:835
static void BTreeTupleSetNAtts(IndexTuple itup, uint16 nkeyatts, bool heaptid)
Definition: nbtree.h:595
void _bt_parallel_primscan_schedule(IndexScanDesc scan, BlockNumber prev_scan_page)
Definition: nbtree.c:771
void btrestrpos(IndexScanDesc scan)
Definition: nbtree.c:479
bool _bt_allequalimage(Relation rel, bool debugmessage)
Definition: nbtutils.c:5139
struct BTDedupStateData BTDedupStateData
StaticAssertDecl(BT_OFFSET_MASK >=INDEX_MAX_KEYS, "BT_OFFSET_MASK can't fit INDEX_MAX_KEYS")
#define BTP_DELETED
Definition: nbtree.h:78
void _bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
Definition: nbtutils.c:1343
void _bt_preprocess_keys(IndexScanDesc scan)
Definition: nbtutils.c:2556
struct BTStackData BTStackData
BTCycleId _bt_start_vacuum(Relation rel)
Definition: nbtutils.c:4426
BTScanPosData * BTScanPos
Definition: nbtree.h:997
struct BTInsertStateData BTInsertStateData
struct BTVacuumPostingData BTVacuumPostingData
BTScanOpaqueData * BTScanOpaque
Definition: nbtree.h:1081
uint16 OffsetNumber
Definition: off.h:24
void * arg
#define INDEX_MAX_KEYS
static char * buf
Definition: pg_test_fsync.c:73
uintptr_t Datum
Definition: postgres.h:64
unsigned int Oid
Definition: postgres_ext.h:31
short access
Definition: preproc-type.c:36
bool GlobalVisCheckRemovableFullXid(Relation rel, FullTransactionId fxid)
Definition: procarray.c:4270
static const struct fns functions
Definition: regcomp.c:356
ScanDirection
Definition: sdir.h:25
static pg_noinline void Size size
Definition: slab.c:607
Datum * elem_values
Definition: nbtree.h:1037
uint16 nitems
Definition: nbtree.h:844
OffsetNumber baseoff
Definition: nbtree.h:843
Size maxpostingsize
Definition: nbtree.h:870
ItemPointer htids
Definition: nbtree.h:878
bool deduplicate
Definition: nbtree.h:868
OffsetNumber baseoff
Definition: nbtree.h:874
Size basetupsize
Definition: nbtree.h:875
BTDedupInterval intervals[MaxIndexTuplesPerPage]
Definition: nbtree.h:890
IndexTuple base
Definition: nbtree.h:873
Size phystupsize
Definition: nbtree.h:881
FullTransactionId safexid
Definition: nbtree.h:235
OffsetNumber stricthigh
Definition: nbtree.h:825
bool bounds_valid
Definition: nbtree.h:823
OffsetNumber low
Definition: nbtree.h:824
IndexTuple itup
Definition: nbtree.h:811
BTScanInsert itup_key
Definition: nbtree.h:813
uint32 btm_last_cleanup_num_delpages
Definition: nbtree.h:114
uint32 btm_level
Definition: nbtree.h:108
float8 btm_last_cleanup_num_heap_tuples
Definition: nbtree.h:116
BlockNumber btm_fastroot
Definition: nbtree.h:109
uint32 btm_version
Definition: nbtree.h:106
uint32 btm_magic
Definition: nbtree.h:105
BlockNumber btm_root
Definition: nbtree.h:107
bool btm_allequalimage
Definition: nbtree.h:118
uint32 btm_fastlevel
Definition: nbtree.h:110
int fillfactor
Definition: nbtree.h:1133
bool deduplicate_items
Definition: nbtree.h:1135
float8 vacuum_cleanup_index_scale_factor
Definition: nbtree.h:1134
int32 varlena_header_
Definition: nbtree.h:1132
BlockNumber btpo_next
Definition: nbtree.h:65
BlockNumber btpo_prev
Definition: nbtree.h:64
uint16 btpo_flags
Definition: nbtree.h:67
uint32 btpo_level
Definition: nbtree.h:66
BTCycleId btpo_cycleid
Definition: nbtree.h:68
FullTransactionId safexid
Definition: nbtree.h:327
BlockNumber target
Definition: nbtree.h:326
bool firstmatch
Definition: nbtree.h:1108
BlockNumber prev_scan_page
Definition: nbtree.h:1093
bool continuescan
Definition: nbtree.h:1101
IndexTuple finaltup
Definition: nbtree.h:1092
bool prechecked
Definition: nbtree.h:1107
ScanDirection dir
Definition: nbtree.h:1089
OffsetNumber minoff
Definition: nbtree.h:1090
int16 targetdistance
Definition: nbtree.h:1115
OffsetNumber offnum
Definition: nbtree.h:1097
int16 rechecks
Definition: nbtree.h:1114
OffsetNumber skip
Definition: nbtree.h:1100
OffsetNumber maxoff
Definition: nbtree.h:1091
ItemPointer scantid
Definition: nbtree.h:791
bool allequalimage
Definition: nbtree.h:787
bool heapkeyspace
Definition: nbtree.h:786
bool anynullkeys
Definition: nbtree.h:788
ScanKeyData scankeys[INDEX_MAX_KEYS]
Definition: nbtree.h:793
bool needPrimScan
Definition: nbtree.h:1049
BTArrayKeyInfo * arrayKeys
Definition: nbtree.h:1051
char * markTuples
Definition: nbtree.h:1065
FmgrInfo * orderProcs
Definition: nbtree.h:1052
BTScanPosData currPos
Definition: nbtree.h:1077
int * killedItems
Definition: nbtree.h:1056
char * currTuples
Definition: nbtree.h:1064
BTScanPosData markPos
Definition: nbtree.h:1078
ScanKey keyData
Definition: nbtree.h:1045
MemoryContext arrayContext
Definition: nbtree.h:1053
bool moreRight
Definition: nbtree.h:966
Buffer buf
Definition: nbtree.h:953
BlockNumber currPage
Definition: nbtree.h:956
int firstItem
Definition: nbtree.h:990
int nextTupleOffset
Definition: nbtree.h:981
BlockNumber nextPage
Definition: nbtree.h:957
bool moreLeft
Definition: nbtree.h:965
int lastItem
Definition: nbtree.h:991
BTScanPosItem items[MaxTIDsPerBTreePage]
Definition: nbtree.h:994
int itemIndex
Definition: nbtree.h:992
ScanDirection dir
Definition: nbtree.h:975
XLogRecPtr lsn
Definition: nbtree.h:955
ItemPointerData heapTid
Definition: nbtree.h:946
LocationIndex tupleOffset
Definition: nbtree.h:948
OffsetNumber indexOffset
Definition: nbtree.h:947
BlockNumber bts_blkno
Definition: nbtree.h:734
struct BTStackData * bts_parent
Definition: nbtree.h:736
OffsetNumber bts_offset
Definition: nbtree.h:735
IndexBulkDeleteResult * stats
Definition: nbtree.h:333
BTCycleId cycleid
Definition: nbtree.h:336
BTPendingFSM * pendingpages
Definition: nbtree.h:344
int npendingpages
Definition: nbtree.h:345
IndexBulkDeleteCallback callback
Definition: nbtree.h:334
MemoryContext pagedelcontext
Definition: nbtree.h:337
IndexVacuumInfo * info
Definition: nbtree.h:332
int bufsize
Definition: nbtree.h:342
int maxbufsize
Definition: nbtree.h:343
void * callback_state
Definition: nbtree.h:335
uint16 deletetids[FLEXIBLE_ARRAY_MEMBER]
Definition: nbtree.h:911
uint16 ndeletedtids
Definition: nbtree.h:910
IndexTuple itup
Definition: nbtree.h:906
OffsetNumber updatedoffset
Definition: nbtree.h:907
Definition: fmgr.h:57
ItemPointerData t_tid
Definition: itup.h:37
unsigned short t_info
Definition: itup.h:49
Definition: pg_list.h:54
LocationIndex pd_special
Definition: bufpage.h:164
LocationIndex pd_upper
Definition: bufpage.h:163
LocationIndex pd_lower
Definition: bufpage.h:162
Definition: type.h:95
Definition: regguts.h:323
Definition: c.h:687
static void callback(struct sockaddr *addr, struct sockaddr *mask, void *unused)
Definition: test_ifaddrs.c:46
#define FirstNormalFullTransactionId
Definition: transam.h:57
uint64 XLogRecPtr
Definition: xlogdefs.h:21