PostgreSQL Source Code  git master
procarray.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * procarray.c
4  * POSTGRES process array code.
5  *
6  *
7  * This module maintains arrays of PGPROC substructures, as well as associated
8  * arrays in ProcGlobal, for all active backends. Although there are several
9  * uses for this, the principal one is as a means of determining the set of
10  * currently running transactions.
11  *
12  * Because of various subtle race conditions it is critical that a backend
13  * hold the correct locks while setting or clearing its xid (in
14  * ProcGlobal->xids[]/MyProc->xid). See notes in
15  * src/backend/access/transam/README.
16  *
17  * The process arrays now also include structures representing prepared
18  * transactions. The xid and subxids fields of these are valid, as are the
19  * myProcLocks lists. They can be distinguished from regular backend PGPROCs
20  * at need by checking for pid == 0.
21  *
22  * During hot standby, we also keep a list of XIDs representing transactions
23  * that are known to be running on the primary (or more precisely, were running
24  * as of the current point in the WAL stream). This list is kept in the
25  * KnownAssignedXids array, and is updated by watching the sequence of
26  * arriving XIDs. This is necessary because if we leave those XIDs out of
27  * snapshots taken for standby queries, then they will appear to be already
28  * complete, leading to MVCC failures. Note that in hot standby, the PGPROC
29  * array represents standby processes, which by definition are not running
30  * transactions that have XIDs.
31  *
32  * It is perhaps possible for a backend on the primary to terminate without
33  * writing an abort record for its transaction. While that shouldn't really
34  * happen, it would tie up KnownAssignedXids indefinitely, so we protect
35  * ourselves by pruning the array when a valid list of running XIDs arrives.
36  *
37  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
38  * Portions Copyright (c) 1994, Regents of the University of California
39  *
40  *
41  * IDENTIFICATION
42  * src/backend/storage/ipc/procarray.c
43  *
44  *-------------------------------------------------------------------------
45  */
46 #include "postgres.h"
47 
48 #include <signal.h>
49 
50 #include "access/subtrans.h"
51 #include "access/transam.h"
52 #include "access/twophase.h"
53 #include "access/xact.h"
54 #include "access/xlogutils.h"
55 #include "catalog/catalog.h"
56 #include "catalog/pg_authid.h"
57 #include "commands/dbcommands.h"
58 #include "miscadmin.h"
59 #include "pgstat.h"
60 #include "port/pg_lfind.h"
61 #include "storage/proc.h"
62 #include "storage/procarray.h"
63 #include "utils/acl.h"
64 #include "utils/builtins.h"
65 #include "utils/rel.h"
66 #include "utils/snapmgr.h"
67 
68 #define UINT32_ACCESS_ONCE(var) ((uint32)(*((volatile uint32 *)&(var))))
69 
70 /* Our shared memory area */
71 typedef struct ProcArrayStruct
72 {
73  int numProcs; /* number of valid procs entries */
74  int maxProcs; /* allocated size of procs array */
75 
76  /*
77  * Known assigned XIDs handling
78  */
79  int maxKnownAssignedXids; /* allocated size of array */
80  int numKnownAssignedXids; /* current # of valid entries */
81  int tailKnownAssignedXids; /* index of oldest valid element */
82  int headKnownAssignedXids; /* index of newest element, + 1 */
83 
84  /*
85  * Highest subxid that has been removed from KnownAssignedXids array to
86  * prevent overflow; or InvalidTransactionId if none. We track this for
87  * similar reasons to tracking overflowing cached subxids in PGPROC
88  * entries. Must hold exclusive ProcArrayLock to change this, and shared
89  * lock to read it.
90  */
92 
93  /* oldest xmin of any replication slot */
95  /* oldest catalog xmin of any replication slot */
97 
98  /* indexes into allProcs[], has PROCARRAY_MAXPROCS entries */
101 
102 /*
103  * State for the GlobalVisTest* family of functions. Those functions can
104  * e.g. be used to decide if a deleted row can be removed without violating
105  * MVCC semantics: If the deleted row's xmax is not considered to be running
106  * by anyone, the row can be removed.
107  *
108  * To avoid slowing down GetSnapshotData(), we don't calculate a precise
109  * cutoff XID while building a snapshot (looking at the frequently changing
110  * xmins scales badly). Instead we compute two boundaries while building the
111  * snapshot:
112  *
113  * 1) definitely_needed, indicating that rows deleted by XIDs >=
114  * definitely_needed are definitely still visible.
115  *
116  * 2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
117  * definitely be removed
118  *
119  * When testing an XID that falls in between the two (i.e. XID >= maybe_needed
120  * && XID < definitely_needed), the boundaries can be recomputed (using
121  * ComputeXidHorizons()) to get a more accurate answer. This is cheaper than
122  * maintaining an accurate value all the time.
123  *
124  * As it is not cheap to compute accurate boundaries, we limit the number of
125  * times that happens in short succession. See GlobalVisTestShouldUpdate().
126  *
127  *
128  * There are three backend lifetime instances of this struct, optimized for
129  * different types of relations. As e.g. a normal user defined table in one
130  * database is inaccessible to backends connected to another database, a test
131  * specific to a relation can be more aggressive than a test for a shared
132  * relation. Currently we track four different states:
133  *
134  * 1) GlobalVisSharedRels, which only considers an XID's
135  * effects visible-to-everyone if neither snapshots in any database, nor a
136  * replication slot's xmin, nor a replication slot's catalog_xmin might
137  * still consider XID as running.
138  *
139  * 2) GlobalVisCatalogRels, which only considers an XID's
140  * effects visible-to-everyone if neither snapshots in the current
141  * database, nor a replication slot's xmin, nor a replication slot's
142  * catalog_xmin might still consider XID as running.
143  *
144  * I.e. the difference to GlobalVisSharedRels is that
145  * snapshot in other databases are ignored.
146  *
147  * 3) GlobalVisDataRels, which only considers an XID's
148  * effects visible-to-everyone if neither snapshots in the current
149  * database, nor a replication slot's xmin consider XID as running.
150  *
151  * I.e. the difference to GlobalVisCatalogRels is that
152  * replication slot's catalog_xmin is not taken into account.
153  *
154  * 4) GlobalVisTempRels, which only considers the current session, as temp
155  * tables are not visible to other sessions.
156  *
157  * GlobalVisTestFor(relation) returns the appropriate state
158  * for the relation.
159  *
160  * The boundaries are FullTransactionIds instead of TransactionIds to avoid
161  * wraparound dangers. There e.g. would otherwise exist no procarray state to
162  * prevent maybe_needed to become old enough after the GetSnapshotData()
163  * call.
164  *
165  * The typedef is in the header.
166  */
168 {
169  /* XIDs >= are considered running by some backend */
171 
172  /* XIDs < are not considered to be running by any backend */
174 };
175 
176 /*
177  * Result of ComputeXidHorizons().
178  */
180 {
181  /*
182  * The value of TransamVariables->latestCompletedXid when
183  * ComputeXidHorizons() held ProcArrayLock.
184  */
186 
187  /*
188  * The same for procArray->replication_slot_xmin and.
189  * procArray->replication_slot_catalog_xmin.
190  */
193 
194  /*
195  * Oldest xid that any backend might still consider running. This needs to
196  * include processes running VACUUM, in contrast to the normal visibility
197  * cutoffs, as vacuum needs to be able to perform pg_subtrans lookups when
198  * determining visibility, but doesn't care about rows above its xmin to
199  * be removed.
200  *
201  * This likely should only be needed to determine whether pg_subtrans can
202  * be truncated. It currently includes the effects of replication slots,
203  * for historical reasons. But that could likely be changed.
204  */
206 
207  /*
208  * Oldest xid for which deleted tuples need to be retained in shared
209  * tables.
210  *
211  * This includes the effects of replication slots. If that's not desired,
212  * look at shared_oldest_nonremovable_raw;
213  */
215 
216  /*
217  * Oldest xid that may be necessary to retain in shared tables. This is
218  * the same as shared_oldest_nonremovable, except that is not affected by
219  * replication slot's catalog_xmin.
220  *
221  * This is mainly useful to be able to send the catalog_xmin to upstream
222  * streaming replication servers via hot_standby_feedback, so they can
223  * apply the limit only when accessing catalog tables.
224  */
226 
227  /*
228  * Oldest xid for which deleted tuples need to be retained in non-shared
229  * catalog tables.
230  */
232 
233  /*
234  * Oldest xid for which deleted tuples need to be retained in normal user
235  * defined tables.
236  */
238 
239  /*
240  * Oldest xid for which deleted tuples need to be retained in this
241  * session's temporary tables.
242  */
245 
246 /*
247  * Return value for GlobalVisHorizonKindForRel().
248  */
250 {
256 
257 /*
258  * Reason codes for KnownAssignedXidsCompress().
259  */
260 typedef enum KAXCompressReason
261 {
262  KAX_NO_SPACE, /* need to free up space at array end */
263  KAX_PRUNE, /* we just pruned old entries */
264  KAX_TRANSACTION_END, /* we just committed/removed some XIDs */
265  KAX_STARTUP_PROCESS_IDLE, /* startup process is about to sleep */
267 
268 
270 
271 static PGPROC *allProcs;
272 
273 /*
274  * Cache to reduce overhead of repeated calls to TransactionIdIsInProgress()
275  */
277 
278 /*
279  * Bookkeeping for tracking emulated transactions in recovery
280  */
284 
285 /*
286  * If we're in STANDBY_SNAPSHOT_PENDING state, standbySnapshotPendingXmin is
287  * the highest xid that might still be running that we don't have in
288  * KnownAssignedXids.
289  */
291 
292 /*
293  * State for visibility checks on different types of relations. See struct
294  * GlobalVisState for details. As shared, catalog, normal and temporary
295  * relations can have different horizons, one such state exists for each.
296  */
301 
302 /*
303  * This backend's RecentXmin at the last time the accurate xmin horizon was
304  * recomputed, or InvalidTransactionId if it has not. Used to limit how many
305  * times accurate horizons are recomputed. See GlobalVisTestShouldUpdate().
306  */
308 
309 #ifdef XIDCACHE_DEBUG
310 
311 /* counters for XidCache measurement */
312 static long xc_by_recent_xmin = 0;
313 static long xc_by_known_xact = 0;
314 static long xc_by_my_xact = 0;
315 static long xc_by_latest_xid = 0;
316 static long xc_by_main_xid = 0;
317 static long xc_by_child_xid = 0;
318 static long xc_by_known_assigned = 0;
319 static long xc_no_overflow = 0;
320 static long xc_slow_answer = 0;
321 
322 #define xc_by_recent_xmin_inc() (xc_by_recent_xmin++)
323 #define xc_by_known_xact_inc() (xc_by_known_xact++)
324 #define xc_by_my_xact_inc() (xc_by_my_xact++)
325 #define xc_by_latest_xid_inc() (xc_by_latest_xid++)
326 #define xc_by_main_xid_inc() (xc_by_main_xid++)
327 #define xc_by_child_xid_inc() (xc_by_child_xid++)
328 #define xc_by_known_assigned_inc() (xc_by_known_assigned++)
329 #define xc_no_overflow_inc() (xc_no_overflow++)
330 #define xc_slow_answer_inc() (xc_slow_answer++)
331 
332 static void DisplayXidCache(void);
333 #else /* !XIDCACHE_DEBUG */
334 
335 #define xc_by_recent_xmin_inc() ((void) 0)
336 #define xc_by_known_xact_inc() ((void) 0)
337 #define xc_by_my_xact_inc() ((void) 0)
338 #define xc_by_latest_xid_inc() ((void) 0)
339 #define xc_by_main_xid_inc() ((void) 0)
340 #define xc_by_child_xid_inc() ((void) 0)
341 #define xc_by_known_assigned_inc() ((void) 0)
342 #define xc_no_overflow_inc() ((void) 0)
343 #define xc_slow_answer_inc() ((void) 0)
344 #endif /* XIDCACHE_DEBUG */
345 
346 /* Primitives for KnownAssignedXids array handling for standby */
347 static void KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock);
348 static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid,
349  bool exclusive_lock);
350 static bool KnownAssignedXidsSearch(TransactionId xid, bool remove);
351 static bool KnownAssignedXidExists(TransactionId xid);
352 static void KnownAssignedXidsRemove(TransactionId xid);
353 static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids,
354  TransactionId *subxids);
355 static void KnownAssignedXidsRemovePreceding(TransactionId removeXid);
356 static int KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax);
358  TransactionId *xmin,
359  TransactionId xmax);
361 static void KnownAssignedXidsDisplay(int trace_level);
362 static void KnownAssignedXidsReset(void);
363 static inline void ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid);
364 static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid);
365 static void MaintainLatestCompletedXid(TransactionId latestXid);
367 
369  TransactionId xid);
370 static void GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons);
371 
372 /*
373  * Report shared-memory space needed by CreateSharedProcArray.
374  */
375 Size
377 {
378  Size size;
379 
380  /* Size of the ProcArray structure itself */
381 #define PROCARRAY_MAXPROCS (MaxBackends + max_prepared_xacts)
382 
383  size = offsetof(ProcArrayStruct, pgprocnos);
384  size = add_size(size, mul_size(sizeof(int), PROCARRAY_MAXPROCS));
385 
386  /*
387  * During Hot Standby processing we have a data structure called
388  * KnownAssignedXids, created in shared memory. Local data structures are
389  * also created in various backends during GetSnapshotData(),
390  * TransactionIdIsInProgress() and GetRunningTransactionData(). All of the
391  * main structures created in those functions must be identically sized,
392  * since we may at times copy the whole of the data structures around. We
393  * refer to this size as TOTAL_MAX_CACHED_SUBXIDS.
394  *
395  * Ideally we'd only create this structure if we were actually doing hot
396  * standby in the current run, but we don't know that yet at the time
397  * shared memory is being set up.
398  */
399 #define TOTAL_MAX_CACHED_SUBXIDS \
400  ((PGPROC_MAX_CACHED_SUBXIDS + 1) * PROCARRAY_MAXPROCS)
401 
402  if (EnableHotStandby)
403  {
404  size = add_size(size,
405  mul_size(sizeof(TransactionId),
407  size = add_size(size,
408  mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS));
409  }
410 
411  return size;
412 }
413 
414 /*
415  * Initialize the shared PGPROC array during postmaster startup.
416  */
417 void
419 {
420  bool found;
421 
422  /* Create or attach to the ProcArray shared structure */
424  ShmemInitStruct("Proc Array",
425  add_size(offsetof(ProcArrayStruct, pgprocnos),
426  mul_size(sizeof(int),
428  &found);
429 
430  if (!found)
431  {
432  /*
433  * We're the first - initialize.
434  */
435  procArray->numProcs = 0;
445  }
446 
448 
449  /* Create or attach to the KnownAssignedXids arrays too, if needed */
450  if (EnableHotStandby)
451  {
453  ShmemInitStruct("KnownAssignedXids",
454  mul_size(sizeof(TransactionId),
456  &found);
457  KnownAssignedXidsValid = (bool *)
458  ShmemInitStruct("KnownAssignedXidsValid",
459  mul_size(sizeof(bool), TOTAL_MAX_CACHED_SUBXIDS),
460  &found);
461  }
462 }
463 
464 /*
465  * Add the specified PGPROC to the shared array.
466  */
467 void
469 {
470  int pgprocno = GetNumberFromPGProc(proc);
471  ProcArrayStruct *arrayP = procArray;
472  int index;
473  int movecount;
474 
475  /* See ProcGlobal comment explaining why both locks are held */
476  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
477  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
478 
479  if (arrayP->numProcs >= arrayP->maxProcs)
480  {
481  /*
482  * Oops, no room. (This really shouldn't happen, since there is a
483  * fixed supply of PGPROC structs too, and so we should have failed
484  * earlier.)
485  */
486  ereport(FATAL,
487  (errcode(ERRCODE_TOO_MANY_CONNECTIONS),
488  errmsg("sorry, too many clients already")));
489  }
490 
491  /*
492  * Keep the procs array sorted by (PGPROC *) so that we can utilize
493  * locality of references much better. This is useful while traversing the
494  * ProcArray because there is an increased likelihood of finding the next
495  * PGPROC structure in the cache.
496  *
497  * Since the occurrence of adding/removing a proc is much lower than the
498  * access to the ProcArray itself, the overhead should be marginal
499  */
500  for (index = 0; index < arrayP->numProcs; index++)
501  {
502  int this_procno = arrayP->pgprocnos[index];
503 
504  Assert(this_procno >= 0 && this_procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
505  Assert(allProcs[this_procno].pgxactoff == index);
506 
507  /* If we have found our right position in the array, break */
508  if (this_procno > pgprocno)
509  break;
510  }
511 
512  movecount = arrayP->numProcs - index;
513  memmove(&arrayP->pgprocnos[index + 1],
514  &arrayP->pgprocnos[index],
515  movecount * sizeof(*arrayP->pgprocnos));
516  memmove(&ProcGlobal->xids[index + 1],
517  &ProcGlobal->xids[index],
518  movecount * sizeof(*ProcGlobal->xids));
519  memmove(&ProcGlobal->subxidStates[index + 1],
521  movecount * sizeof(*ProcGlobal->subxidStates));
522  memmove(&ProcGlobal->statusFlags[index + 1],
524  movecount * sizeof(*ProcGlobal->statusFlags));
525 
526  arrayP->pgprocnos[index] = GetNumberFromPGProc(proc);
527  proc->pgxactoff = index;
528  ProcGlobal->xids[index] = proc->xid;
531 
532  arrayP->numProcs++;
533 
534  /* adjust pgxactoff for all following PGPROCs */
535  index++;
536  for (; index < arrayP->numProcs; index++)
537  {
538  int procno = arrayP->pgprocnos[index];
539 
540  Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
541  Assert(allProcs[procno].pgxactoff == index - 1);
542 
543  allProcs[procno].pgxactoff = index;
544  }
545 
546  /*
547  * Release in reversed acquisition order, to reduce frequency of having to
548  * wait for XidGenLock while holding ProcArrayLock.
549  */
550  LWLockRelease(XidGenLock);
551  LWLockRelease(ProcArrayLock);
552 }
553 
554 /*
555  * Remove the specified PGPROC from the shared array.
556  *
557  * When latestXid is a valid XID, we are removing a live 2PC gxact from the
558  * array, and thus causing it to appear as "not running" anymore. In this
559  * case we must advance latestCompletedXid. (This is essentially the same
560  * as ProcArrayEndTransaction followed by removal of the PGPROC, but we take
561  * the ProcArrayLock only once, and don't damage the content of the PGPROC;
562  * twophase.c depends on the latter.)
563  */
564 void
566 {
567  ProcArrayStruct *arrayP = procArray;
568  int myoff;
569  int movecount;
570 
571 #ifdef XIDCACHE_DEBUG
572  /* dump stats at backend shutdown, but not prepared-xact end */
573  if (proc->pid != 0)
574  DisplayXidCache();
575 #endif
576 
577  /* See ProcGlobal comment explaining why both locks are held */
578  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
579  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
580 
581  myoff = proc->pgxactoff;
582 
583  Assert(myoff >= 0 && myoff < arrayP->numProcs);
584  Assert(ProcGlobal->allProcs[arrayP->pgprocnos[myoff]].pgxactoff == myoff);
585 
586  if (TransactionIdIsValid(latestXid))
587  {
589 
590  /* Advance global latestCompletedXid while holding the lock */
591  MaintainLatestCompletedXid(latestXid);
592 
593  /* Same with xactCompletionCount */
595 
597  ProcGlobal->subxidStates[myoff].overflowed = false;
598  ProcGlobal->subxidStates[myoff].count = 0;
599  }
600  else
601  {
602  /* Shouldn't be trying to remove a live transaction here */
604  }
605 
607  Assert(ProcGlobal->subxidStates[myoff].count == 0);
608  Assert(ProcGlobal->subxidStates[myoff].overflowed == false);
609 
610  ProcGlobal->statusFlags[myoff] = 0;
611 
612  /* Keep the PGPROC array sorted. See notes above */
613  movecount = arrayP->numProcs - myoff - 1;
614  memmove(&arrayP->pgprocnos[myoff],
615  &arrayP->pgprocnos[myoff + 1],
616  movecount * sizeof(*arrayP->pgprocnos));
617  memmove(&ProcGlobal->xids[myoff],
618  &ProcGlobal->xids[myoff + 1],
619  movecount * sizeof(*ProcGlobal->xids));
620  memmove(&ProcGlobal->subxidStates[myoff],
621  &ProcGlobal->subxidStates[myoff + 1],
622  movecount * sizeof(*ProcGlobal->subxidStates));
623  memmove(&ProcGlobal->statusFlags[myoff],
624  &ProcGlobal->statusFlags[myoff + 1],
625  movecount * sizeof(*ProcGlobal->statusFlags));
626 
627  arrayP->pgprocnos[arrayP->numProcs - 1] = -1; /* for debugging */
628  arrayP->numProcs--;
629 
630  /*
631  * Adjust pgxactoff of following procs for removed PGPROC (note that
632  * numProcs already has been decremented).
633  */
634  for (int index = myoff; index < arrayP->numProcs; index++)
635  {
636  int procno = arrayP->pgprocnos[index];
637 
638  Assert(procno >= 0 && procno < (arrayP->maxProcs + NUM_AUXILIARY_PROCS));
639  Assert(allProcs[procno].pgxactoff - 1 == index);
640 
641  allProcs[procno].pgxactoff = index;
642  }
643 
644  /*
645  * Release in reversed acquisition order, to reduce frequency of having to
646  * wait for XidGenLock while holding ProcArrayLock.
647  */
648  LWLockRelease(XidGenLock);
649  LWLockRelease(ProcArrayLock);
650 }
651 
652 
653 /*
654  * ProcArrayEndTransaction -- mark a transaction as no longer running
655  *
656  * This is used interchangeably for commit and abort cases. The transaction
657  * commit/abort must already be reported to WAL and pg_xact.
658  *
659  * proc is currently always MyProc, but we pass it explicitly for flexibility.
660  * latestXid is the latest Xid among the transaction's main XID and
661  * subtransactions, or InvalidTransactionId if it has no XID. (We must ask
662  * the caller to pass latestXid, instead of computing it from the PGPROC's
663  * contents, because the subxid information in the PGPROC might be
664  * incomplete.)
665  */
666 void
668 {
669  if (TransactionIdIsValid(latestXid))
670  {
671  /*
672  * We must lock ProcArrayLock while clearing our advertised XID, so
673  * that we do not exit the set of "running" transactions while someone
674  * else is taking a snapshot. See discussion in
675  * src/backend/access/transam/README.
676  */
678 
679  /*
680  * If we can immediately acquire ProcArrayLock, we clear our own XID
681  * and release the lock. If not, use group XID clearing to improve
682  * efficiency.
683  */
684  if (LWLockConditionalAcquire(ProcArrayLock, LW_EXCLUSIVE))
685  {
686  ProcArrayEndTransactionInternal(proc, latestXid);
687  LWLockRelease(ProcArrayLock);
688  }
689  else
690  ProcArrayGroupClearXid(proc, latestXid);
691  }
692  else
693  {
694  /*
695  * If we have no XID, we don't need to lock, since we won't affect
696  * anyone else's calculation of a snapshot. We might change their
697  * estimate of global xmin, but that's OK.
698  */
700  Assert(proc->subxidStatus.count == 0);
702 
704  proc->xmin = InvalidTransactionId;
705 
706  /* be sure this is cleared in abort */
707  proc->delayChkptFlags = 0;
708 
709  proc->recoveryConflictPending = false;
710 
711  /* must be cleared with xid/xmin: */
712  /* avoid unnecessarily dirtying shared cachelines */
714  {
715  Assert(!LWLockHeldByMe(ProcArrayLock));
716  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
720  LWLockRelease(ProcArrayLock);
721  }
722  }
723 }
724 
725 /*
726  * Mark a write transaction as no longer running.
727  *
728  * We don't do any locking here; caller must handle that.
729  */
730 static inline void
732 {
733  int pgxactoff = proc->pgxactoff;
734 
735  /*
736  * Note: we need exclusive lock here because we're going to change other
737  * processes' PGPROC entries.
738  */
739  Assert(LWLockHeldByMeInMode(ProcArrayLock, LW_EXCLUSIVE));
741  Assert(ProcGlobal->xids[pgxactoff] == proc->xid);
742 
743  ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
744  proc->xid = InvalidTransactionId;
746  proc->xmin = InvalidTransactionId;
747 
748  /* be sure this is cleared in abort */
749  proc->delayChkptFlags = 0;
750 
751  proc->recoveryConflictPending = false;
752 
753  /* must be cleared with xid/xmin: */
754  /* avoid unnecessarily dirtying shared cachelines */
756  {
759  }
760 
761  /* Clear the subtransaction-XID cache too while holding the lock */
762  Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
764  if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
765  {
766  ProcGlobal->subxidStates[pgxactoff].count = 0;
767  ProcGlobal->subxidStates[pgxactoff].overflowed = false;
768  proc->subxidStatus.count = 0;
769  proc->subxidStatus.overflowed = false;
770  }
771 
772  /* Also advance global latestCompletedXid while holding the lock */
773  MaintainLatestCompletedXid(latestXid);
774 
775  /* Same with xactCompletionCount */
777 }
778 
779 /*
780  * ProcArrayGroupClearXid -- group XID clearing
781  *
782  * When we cannot immediately acquire ProcArrayLock in exclusive mode at
783  * commit time, add ourselves to a list of processes that need their XIDs
784  * cleared. The first process to add itself to the list will acquire
785  * ProcArrayLock in exclusive mode and perform ProcArrayEndTransactionInternal
786  * on behalf of all group members. This avoids a great deal of contention
787  * around ProcArrayLock when many processes are trying to commit at once,
788  * since the lock need not be repeatedly handed off from one committing
789  * process to the next.
790  */
791 static void
793 {
794  int pgprocno = GetNumberFromPGProc(proc);
795  PROC_HDR *procglobal = ProcGlobal;
796  uint32 nextidx;
797  uint32 wakeidx;
798 
799  /* We should definitely have an XID to clear. */
801 
802  /* Add ourselves to the list of processes needing a group XID clear. */
803  proc->procArrayGroupMember = true;
804  proc->procArrayGroupMemberXid = latestXid;
805  nextidx = pg_atomic_read_u32(&procglobal->procArrayGroupFirst);
806  while (true)
807  {
808  pg_atomic_write_u32(&proc->procArrayGroupNext, nextidx);
809 
811  &nextidx,
812  (uint32) pgprocno))
813  break;
814  }
815 
816  /*
817  * If the list was not empty, the leader will clear our XID. It is
818  * impossible to have followers without a leader because the first process
819  * that has added itself to the list will always have nextidx as
820  * INVALID_PROC_NUMBER.
821  */
822  if (nextidx != INVALID_PROC_NUMBER)
823  {
824  int extraWaits = 0;
825 
826  /* Sleep until the leader clears our XID. */
827  pgstat_report_wait_start(WAIT_EVENT_PROCARRAY_GROUP_UPDATE);
828  for (;;)
829  {
830  /* acts as a read barrier */
831  PGSemaphoreLock(proc->sem);
832  if (!proc->procArrayGroupMember)
833  break;
834  extraWaits++;
835  }
837 
839 
840  /* Fix semaphore count for any absorbed wakeups */
841  while (extraWaits-- > 0)
842  PGSemaphoreUnlock(proc->sem);
843  return;
844  }
845 
846  /* We are the leader. Acquire the lock on behalf of everyone. */
847  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
848 
849  /*
850  * Now that we've got the lock, clear the list of processes waiting for
851  * group XID clearing, saving a pointer to the head of the list. Trying
852  * to pop elements one at a time could lead to an ABA problem.
853  */
854  nextidx = pg_atomic_exchange_u32(&procglobal->procArrayGroupFirst,
856 
857  /* Remember head of list so we can perform wakeups after dropping lock. */
858  wakeidx = nextidx;
859 
860  /* Walk the list and clear all XIDs. */
861  while (nextidx != INVALID_PROC_NUMBER)
862  {
863  PGPROC *nextproc = &allProcs[nextidx];
864 
866 
867  /* Move to next proc in list. */
868  nextidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
869  }
870 
871  /* We're done with the lock now. */
872  LWLockRelease(ProcArrayLock);
873 
874  /*
875  * Now that we've released the lock, go back and wake everybody up. We
876  * don't do this under the lock so as to keep lock hold times to a
877  * minimum. The system calls we need to perform to wake other processes
878  * up are probably much slower than the simple memory writes we did while
879  * holding the lock.
880  */
881  while (wakeidx != INVALID_PROC_NUMBER)
882  {
883  PGPROC *nextproc = &allProcs[wakeidx];
884 
885  wakeidx = pg_atomic_read_u32(&nextproc->procArrayGroupNext);
887 
888  /* ensure all previous writes are visible before follower continues. */
890 
891  nextproc->procArrayGroupMember = false;
892 
893  if (nextproc != MyProc)
894  PGSemaphoreUnlock(nextproc->sem);
895  }
896 }
897 
898 /*
899  * ProcArrayClearTransaction -- clear the transaction fields
900  *
901  * This is used after successfully preparing a 2-phase transaction. We are
902  * not actually reporting the transaction's XID as no longer running --- it
903  * will still appear as running because the 2PC's gxact is in the ProcArray
904  * too. We just have to clear out our own PGPROC.
905  */
906 void
908 {
909  int pgxactoff;
910 
911  /*
912  * Currently we need to lock ProcArrayLock exclusively here, as we
913  * increment xactCompletionCount below. We also need it at least in shared
914  * mode for pgproc->pgxactoff to stay the same below.
915  *
916  * We could however, as this action does not actually change anyone's view
917  * of the set of running XIDs (our entry is duplicate with the gxact that
918  * has already been inserted into the ProcArray), lower the lock level to
919  * shared if we were to make xactCompletionCount an atomic variable. But
920  * that doesn't seem worth it currently, as a 2PC commit is heavyweight
921  * enough for this not to be the bottleneck. If it ever becomes a
922  * bottleneck it may also be worth considering to combine this with the
923  * subsequent ProcArrayRemove()
924  */
925  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
926 
927  pgxactoff = proc->pgxactoff;
928 
929  ProcGlobal->xids[pgxactoff] = InvalidTransactionId;
930  proc->xid = InvalidTransactionId;
931 
933  proc->xmin = InvalidTransactionId;
934  proc->recoveryConflictPending = false;
935 
937  Assert(!proc->delayChkptFlags);
938 
939  /*
940  * Need to increment completion count even though transaction hasn't
941  * really committed yet. The reason for that is that GetSnapshotData()
942  * omits the xid of the current transaction, thus without the increment we
943  * otherwise could end up reusing the snapshot later. Which would be bad,
944  * because it might not count the prepared transaction as running.
945  */
947 
948  /* Clear the subtransaction-XID cache too */
949  Assert(ProcGlobal->subxidStates[pgxactoff].count == proc->subxidStatus.count &&
951  if (proc->subxidStatus.count > 0 || proc->subxidStatus.overflowed)
952  {
953  ProcGlobal->subxidStates[pgxactoff].count = 0;
954  ProcGlobal->subxidStates[pgxactoff].overflowed = false;
955  proc->subxidStatus.count = 0;
956  proc->subxidStatus.overflowed = false;
957  }
958 
959  LWLockRelease(ProcArrayLock);
960 }
961 
962 /*
963  * Update TransamVariables->latestCompletedXid to point to latestXid if
964  * currently older.
965  */
966 static void
968 {
970 
971  Assert(FullTransactionIdIsValid(cur_latest));
973  Assert(LWLockHeldByMe(ProcArrayLock));
974 
975  if (TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
976  {
978  FullXidRelativeTo(cur_latest, latestXid);
979  }
980 
983 }
984 
985 /*
986  * Same as MaintainLatestCompletedXid, except for use during WAL replay.
987  */
988 static void
990 {
992  FullTransactionId rel;
993 
995  Assert(LWLockHeldByMe(ProcArrayLock));
996 
997  /*
998  * Need a FullTransactionId to compare latestXid with. Can't rely on
999  * latestCompletedXid to be initialized in recovery. But in recovery it's
1000  * safe to access nextXid without a lock for the startup process.
1001  */
1002  rel = TransamVariables->nextXid;
1004 
1005  if (!FullTransactionIdIsValid(cur_latest) ||
1006  TransactionIdPrecedes(XidFromFullTransactionId(cur_latest), latestXid))
1007  {
1009  FullXidRelativeTo(rel, latestXid);
1010  }
1011 
1013 }
1014 
1015 /*
1016  * ProcArrayInitRecovery -- initialize recovery xid mgmt environment
1017  *
1018  * Remember up to where the startup process initialized the CLOG and subtrans
1019  * so we can ensure it's initialized gaplessly up to the point where necessary
1020  * while in recovery.
1021  */
1022 void
1024 {
1026  Assert(TransactionIdIsNormal(initializedUptoXID));
1027 
1028  /*
1029  * we set latestObservedXid to the xid SUBTRANS has been initialized up
1030  * to, so we can extend it from that point onwards in
1031  * RecordKnownAssignedTransactionIds, and when we get consistent in
1032  * ProcArrayApplyRecoveryInfo().
1033  */
1034  latestObservedXid = initializedUptoXID;
1036 }
1037 
1038 /*
1039  * ProcArrayApplyRecoveryInfo -- apply recovery info about xids
1040  *
1041  * Takes us through 3 states: Initialized, Pending and Ready.
1042  * Normal case is to go all the way to Ready straight away, though there
1043  * are atypical cases where we need to take it in steps.
1044  *
1045  * Use the data about running transactions on the primary to create the initial
1046  * state of KnownAssignedXids. We also use these records to regularly prune
1047  * KnownAssignedXids because we know it is possible that some transactions
1048  * with FATAL errors fail to write abort records, which could cause eventual
1049  * overflow.
1050  *
1051  * See comments for LogStandbySnapshot().
1052  */
1053 void
1055 {
1056  TransactionId *xids;
1057  TransactionId advanceNextXid;
1058  int nxids;
1059  int i;
1060 
1062  Assert(TransactionIdIsValid(running->nextXid));
1065 
1066  /*
1067  * Remove stale transactions, if any.
1068  */
1070 
1071  /*
1072  * Adjust TransamVariables->nextXid before StandbyReleaseOldLocks(),
1073  * because we will need it up to date for accessing two-phase transactions
1074  * in StandbyReleaseOldLocks().
1075  */
1076  advanceNextXid = running->nextXid;
1077  TransactionIdRetreat(advanceNextXid);
1078  AdvanceNextFullTransactionIdPastXid(advanceNextXid);
1080 
1081  /*
1082  * Remove stale locks, if any.
1083  */
1085 
1086  /*
1087  * If our snapshot is already valid, nothing else to do...
1088  */
1090  return;
1091 
1092  /*
1093  * If our initial RunningTransactionsData had an overflowed snapshot then
1094  * we knew we were missing some subxids from our snapshot. If we continue
1095  * to see overflowed snapshots then we might never be able to start up, so
1096  * we make another test to see if our snapshot is now valid. We know that
1097  * the missing subxids are equal to or earlier than nextXid. After we
1098  * initialise we continue to apply changes during recovery, so once the
1099  * oldestRunningXid is later than the nextXid from the initial snapshot we
1100  * know that we no longer have missing information and can mark the
1101  * snapshot as valid.
1102  */
1104  {
1105  /*
1106  * If the snapshot isn't overflowed or if its empty we can reset our
1107  * pending state and use this snapshot instead.
1108  */
1109  if (!running->subxid_overflow || running->xcnt == 0)
1110  {
1111  /*
1112  * If we have already collected known assigned xids, we need to
1113  * throw them away before we apply the recovery snapshot.
1114  */
1117  }
1118  else
1119  {
1121  running->oldestRunningXid))
1122  {
1124  elog(DEBUG1,
1125  "recovery snapshots are now enabled");
1126  }
1127  else
1128  elog(DEBUG1,
1129  "recovery snapshot waiting for non-overflowed snapshot or "
1130  "until oldest active xid on standby is at least %u (now %u)",
1132  running->oldestRunningXid);
1133  return;
1134  }
1135  }
1136 
1138 
1139  /*
1140  * NB: this can be reached at least twice, so make sure new code can deal
1141  * with that.
1142  */
1143 
1144  /*
1145  * Nobody else is running yet, but take locks anyhow
1146  */
1147  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1148 
1149  /*
1150  * KnownAssignedXids is sorted so we cannot just add the xids, we have to
1151  * sort them first.
1152  *
1153  * Some of the new xids are top-level xids and some are subtransactions.
1154  * We don't call SubTransSetParent because it doesn't matter yet. If we
1155  * aren't overflowed then all xids will fit in snapshot and so we don't
1156  * need subtrans. If we later overflow, an xid assignment record will add
1157  * xids to subtrans. If RunningTransactionsData is overflowed then we
1158  * don't have enough information to correctly update subtrans anyway.
1159  */
1160 
1161  /*
1162  * Allocate a temporary array to avoid modifying the array passed as
1163  * argument.
1164  */
1165  xids = palloc(sizeof(TransactionId) * (running->xcnt + running->subxcnt));
1166 
1167  /*
1168  * Add to the temp array any xids which have not already completed.
1169  */
1170  nxids = 0;
1171  for (i = 0; i < running->xcnt + running->subxcnt; i++)
1172  {
1173  TransactionId xid = running->xids[i];
1174 
1175  /*
1176  * The running-xacts snapshot can contain xids that were still visible
1177  * in the procarray when the snapshot was taken, but were already
1178  * WAL-logged as completed. They're not running anymore, so ignore
1179  * them.
1180  */
1182  continue;
1183 
1184  xids[nxids++] = xid;
1185  }
1186 
1187  if (nxids > 0)
1188  {
1189  if (procArray->numKnownAssignedXids != 0)
1190  {
1191  LWLockRelease(ProcArrayLock);
1192  elog(ERROR, "KnownAssignedXids is not empty");
1193  }
1194 
1195  /*
1196  * Sort the array so that we can add them safely into
1197  * KnownAssignedXids.
1198  *
1199  * We have to sort them logically, because in KnownAssignedXidsAdd we
1200  * call TransactionIdFollowsOrEquals and so on. But we know these XIDs
1201  * come from RUNNING_XACTS, which means there are only normal XIDs
1202  * from the same epoch, so this is safe.
1203  */
1204  qsort(xids, nxids, sizeof(TransactionId), xidLogicalComparator);
1205 
1206  /*
1207  * Add the sorted snapshot into KnownAssignedXids. The running-xacts
1208  * snapshot may include duplicated xids because of prepared
1209  * transactions, so ignore them.
1210  */
1211  for (i = 0; i < nxids; i++)
1212  {
1213  if (i > 0 && TransactionIdEquals(xids[i - 1], xids[i]))
1214  {
1215  elog(DEBUG1,
1216  "found duplicated transaction %u for KnownAssignedXids insertion",
1217  xids[i]);
1218  continue;
1219  }
1220  KnownAssignedXidsAdd(xids[i], xids[i], true);
1221  }
1222 
1224  }
1225 
1226  pfree(xids);
1227 
1228  /*
1229  * latestObservedXid is at least set to the point where SUBTRANS was
1230  * started up to (cf. ProcArrayInitRecovery()) or to the biggest xid
1231  * RecordKnownAssignedTransactionIds() was called for. Initialize
1232  * subtrans from thereon, up to nextXid - 1.
1233  *
1234  * We need to duplicate parts of RecordKnownAssignedTransactionId() here,
1235  * because we've just added xids to the known assigned xids machinery that
1236  * haven't gone through RecordKnownAssignedTransactionId().
1237  */
1241  {
1244  }
1245  TransactionIdRetreat(latestObservedXid); /* = running->nextXid - 1 */
1246 
1247  /* ----------
1248  * Now we've got the running xids we need to set the global values that
1249  * are used to track snapshots as they evolve further.
1250  *
1251  * - latestCompletedXid which will be the xmax for snapshots
1252  * - lastOverflowedXid which shows whether snapshots overflow
1253  * - nextXid
1254  *
1255  * If the snapshot overflowed, then we still initialise with what we know,
1256  * but the recovery snapshot isn't fully valid yet because we know there
1257  * are some subxids missing. We don't know the specific subxids that are
1258  * missing, so conservatively assume the last one is latestObservedXid.
1259  * ----------
1260  */
1261  if (running->subxid_overflow)
1262  {
1264 
1267  }
1268  else
1269  {
1271 
1273  }
1274 
1275  /*
1276  * If a transaction wrote a commit record in the gap between taking and
1277  * logging the snapshot then latestCompletedXid may already be higher than
1278  * the value from the snapshot, so check before we use the incoming value.
1279  * It also might not yet be set at all.
1280  */
1282 
1283  /*
1284  * NB: No need to increment TransamVariables->xactCompletionCount here,
1285  * nobody can see it yet.
1286  */
1287 
1288  LWLockRelease(ProcArrayLock);
1289 
1292  elog(DEBUG1, "recovery snapshots are now enabled");
1293  else
1294  elog(DEBUG1,
1295  "recovery snapshot waiting for non-overflowed snapshot or "
1296  "until oldest active xid on standby is at least %u (now %u)",
1298  running->oldestRunningXid);
1299 }
1300 
1301 /*
1302  * ProcArrayApplyXidAssignment
1303  * Process an XLOG_XACT_ASSIGNMENT WAL record
1304  */
1305 void
1307  int nsubxids, TransactionId *subxids)
1308 {
1309  TransactionId max_xid;
1310  int i;
1311 
1313 
1314  max_xid = TransactionIdLatest(topxid, nsubxids, subxids);
1315 
1316  /*
1317  * Mark all the subtransactions as observed.
1318  *
1319  * NOTE: This will fail if the subxid contains too many previously
1320  * unobserved xids to fit into known-assigned-xids. That shouldn't happen
1321  * as the code stands, because xid-assignment records should never contain
1322  * more than PGPROC_MAX_CACHED_SUBXIDS entries.
1323  */
1325 
1326  /*
1327  * Notice that we update pg_subtrans with the top-level xid, rather than
1328  * the parent xid. This is a difference between normal processing and
1329  * recovery, yet is still correct in all cases. The reason is that
1330  * subtransaction commit is not marked in clog until commit processing, so
1331  * all aborted subtransactions have already been clearly marked in clog.
1332  * As a result we are able to refer directly to the top-level
1333  * transaction's state rather than skipping through all the intermediate
1334  * states in the subtransaction tree. This should be the first time we
1335  * have attempted to SubTransSetParent().
1336  */
1337  for (i = 0; i < nsubxids; i++)
1338  SubTransSetParent(subxids[i], topxid);
1339 
1340  /* KnownAssignedXids isn't maintained yet, so we're done for now */
1342  return;
1343 
1344  /*
1345  * Uses same locking as transaction commit
1346  */
1347  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
1348 
1349  /*
1350  * Remove subxids from known-assigned-xacts.
1351  */
1353 
1354  /*
1355  * Advance lastOverflowedXid to be at least the last of these subxids.
1356  */
1358  procArray->lastOverflowedXid = max_xid;
1359 
1360  LWLockRelease(ProcArrayLock);
1361 }
1362 
1363 /*
1364  * TransactionIdIsInProgress -- is given transaction running in some backend
1365  *
1366  * Aside from some shortcuts such as checking RecentXmin and our own Xid,
1367  * there are four possibilities for finding a running transaction:
1368  *
1369  * 1. The given Xid is a main transaction Id. We will find this out cheaply
1370  * by looking at ProcGlobal->xids.
1371  *
1372  * 2. The given Xid is one of the cached subxact Xids in the PGPROC array.
1373  * We can find this out cheaply too.
1374  *
1375  * 3. In Hot Standby mode, we must search the KnownAssignedXids list to see
1376  * if the Xid is running on the primary.
1377  *
1378  * 4. Search the SubTrans tree to find the Xid's topmost parent, and then see
1379  * if that is running according to ProcGlobal->xids[] or KnownAssignedXids.
1380  * This is the slowest way, but sadly it has to be done always if the others
1381  * failed, unless we see that the cached subxact sets are complete (none have
1382  * overflowed).
1383  *
1384  * ProcArrayLock has to be held while we do 1, 2, 3. If we save the top Xids
1385  * while doing 1 and 3, we can release the ProcArrayLock while we do 4.
1386  * This buys back some concurrency (and we can't retrieve the main Xids from
1387  * ProcGlobal->xids[] again anyway; see GetNewTransactionId).
1388  */
1389 bool
1391 {
1392  static TransactionId *xids = NULL;
1393  static TransactionId *other_xids;
1394  XidCacheStatus *other_subxidstates;
1395  int nxids = 0;
1396  ProcArrayStruct *arrayP = procArray;
1397  TransactionId topxid;
1398  TransactionId latestCompletedXid;
1399  int mypgxactoff;
1400  int numProcs;
1401  int j;
1402 
1403  /*
1404  * Don't bother checking a transaction older than RecentXmin; it could not
1405  * possibly still be running. (Note: in particular, this guarantees that
1406  * we reject InvalidTransactionId, FrozenTransactionId, etc as not
1407  * running.)
1408  */
1410  {
1412  return false;
1413  }
1414 
1415  /*
1416  * We may have just checked the status of this transaction, so if it is
1417  * already known to be completed, we can fall out without any access to
1418  * shared memory.
1419  */
1421  {
1423  return false;
1424  }
1425 
1426  /*
1427  * Also, we can handle our own transaction (and subtransactions) without
1428  * any access to shared memory.
1429  */
1431  {
1433  return true;
1434  }
1435 
1436  /*
1437  * If first time through, get workspace to remember main XIDs in. We
1438  * malloc it permanently to avoid repeated palloc/pfree overhead.
1439  */
1440  if (xids == NULL)
1441  {
1442  /*
1443  * In hot standby mode, reserve enough space to hold all xids in the
1444  * known-assigned list. If we later finish recovery, we no longer need
1445  * the bigger array, but we don't bother to shrink it.
1446  */
1447  int maxxids = RecoveryInProgress() ? TOTAL_MAX_CACHED_SUBXIDS : arrayP->maxProcs;
1448 
1449  xids = (TransactionId *) malloc(maxxids * sizeof(TransactionId));
1450  if (xids == NULL)
1451  ereport(ERROR,
1452  (errcode(ERRCODE_OUT_OF_MEMORY),
1453  errmsg("out of memory")));
1454  }
1455 
1456  other_xids = ProcGlobal->xids;
1457  other_subxidstates = ProcGlobal->subxidStates;
1458 
1459  LWLockAcquire(ProcArrayLock, LW_SHARED);
1460 
1461  /*
1462  * Now that we have the lock, we can check latestCompletedXid; if the
1463  * target Xid is after that, it's surely still running.
1464  */
1465  latestCompletedXid =
1467  if (TransactionIdPrecedes(latestCompletedXid, xid))
1468  {
1469  LWLockRelease(ProcArrayLock);
1471  return true;
1472  }
1473 
1474  /* No shortcuts, gotta grovel through the array */
1475  mypgxactoff = MyProc->pgxactoff;
1476  numProcs = arrayP->numProcs;
1477  for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
1478  {
1479  int pgprocno;
1480  PGPROC *proc;
1481  TransactionId pxid;
1482  int pxids;
1483 
1484  /* Ignore ourselves --- dealt with it above */
1485  if (pgxactoff == mypgxactoff)
1486  continue;
1487 
1488  /* Fetch xid just once - see GetNewTransactionId */
1489  pxid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
1490 
1491  if (!TransactionIdIsValid(pxid))
1492  continue;
1493 
1494  /*
1495  * Step 1: check the main Xid
1496  */
1497  if (TransactionIdEquals(pxid, xid))
1498  {
1499  LWLockRelease(ProcArrayLock);
1501  return true;
1502  }
1503 
1504  /*
1505  * We can ignore main Xids that are younger than the target Xid, since
1506  * the target could not possibly be their child.
1507  */
1508  if (TransactionIdPrecedes(xid, pxid))
1509  continue;
1510 
1511  /*
1512  * Step 2: check the cached child-Xids arrays
1513  */
1514  pxids = other_subxidstates[pgxactoff].count;
1515  pg_read_barrier(); /* pairs with barrier in GetNewTransactionId() */
1516  pgprocno = arrayP->pgprocnos[pgxactoff];
1517  proc = &allProcs[pgprocno];
1518  for (j = pxids - 1; j >= 0; j--)
1519  {
1520  /* Fetch xid just once - see GetNewTransactionId */
1522 
1523  if (TransactionIdEquals(cxid, xid))
1524  {
1525  LWLockRelease(ProcArrayLock);
1527  return true;
1528  }
1529  }
1530 
1531  /*
1532  * Save the main Xid for step 4. We only need to remember main Xids
1533  * that have uncached children. (Note: there is no race condition
1534  * here because the overflowed flag cannot be cleared, only set, while
1535  * we hold ProcArrayLock. So we can't miss an Xid that we need to
1536  * worry about.)
1537  */
1538  if (other_subxidstates[pgxactoff].overflowed)
1539  xids[nxids++] = pxid;
1540  }
1541 
1542  /*
1543  * Step 3: in hot standby mode, check the known-assigned-xids list. XIDs
1544  * in the list must be treated as running.
1545  */
1546  if (RecoveryInProgress())
1547  {
1548  /* none of the PGPROC entries should have XIDs in hot standby mode */
1549  Assert(nxids == 0);
1550 
1551  if (KnownAssignedXidExists(xid))
1552  {
1553  LWLockRelease(ProcArrayLock);
1555  return true;
1556  }
1557 
1558  /*
1559  * If the KnownAssignedXids overflowed, we have to check pg_subtrans
1560  * too. Fetch all xids from KnownAssignedXids that are lower than
1561  * xid, since if xid is a subtransaction its parent will always have a
1562  * lower value. Note we will collect both main and subXIDs here, but
1563  * there's no help for it.
1564  */
1566  nxids = KnownAssignedXidsGet(xids, xid);
1567  }
1568 
1569  LWLockRelease(ProcArrayLock);
1570 
1571  /*
1572  * If none of the relevant caches overflowed, we know the Xid is not
1573  * running without even looking at pg_subtrans.
1574  */
1575  if (nxids == 0)
1576  {
1579  return false;
1580  }
1581 
1582  /*
1583  * Step 4: have to check pg_subtrans.
1584  *
1585  * At this point, we know it's either a subtransaction of one of the Xids
1586  * in xids[], or it's not running. If it's an already-failed
1587  * subtransaction, we want to say "not running" even though its parent may
1588  * still be running. So first, check pg_xact to see if it's been aborted.
1589  */
1591 
1592  if (TransactionIdDidAbort(xid))
1593  {
1595  return false;
1596  }
1597 
1598  /*
1599  * It isn't aborted, so check whether the transaction tree it belongs to
1600  * is still running (or, more precisely, whether it was running when we
1601  * held ProcArrayLock).
1602  */
1603  topxid = SubTransGetTopmostTransaction(xid);
1604  Assert(TransactionIdIsValid(topxid));
1605  if (!TransactionIdEquals(topxid, xid) &&
1606  pg_lfind32(topxid, xids, nxids))
1607  return true;
1608 
1610  return false;
1611 }
1612 
1613 /*
1614  * TransactionIdIsActive -- is xid the top-level XID of an active backend?
1615  *
1616  * This differs from TransactionIdIsInProgress in that it ignores prepared
1617  * transactions, as well as transactions running on the primary if we're in
1618  * hot standby. Also, we ignore subtransactions since that's not needed
1619  * for current uses.
1620  */
1621 bool
1623 {
1624  bool result = false;
1625  ProcArrayStruct *arrayP = procArray;
1626  TransactionId *other_xids = ProcGlobal->xids;
1627  int i;
1628 
1629  /*
1630  * Don't bother checking a transaction older than RecentXmin; it could not
1631  * possibly still be running.
1632  */
1634  return false;
1635 
1636  LWLockAcquire(ProcArrayLock, LW_SHARED);
1637 
1638  for (i = 0; i < arrayP->numProcs; i++)
1639  {
1640  int pgprocno = arrayP->pgprocnos[i];
1641  PGPROC *proc = &allProcs[pgprocno];
1642  TransactionId pxid;
1643 
1644  /* Fetch xid just once - see GetNewTransactionId */
1645  pxid = UINT32_ACCESS_ONCE(other_xids[i]);
1646 
1647  if (!TransactionIdIsValid(pxid))
1648  continue;
1649 
1650  if (proc->pid == 0)
1651  continue; /* ignore prepared transactions */
1652 
1653  if (TransactionIdEquals(pxid, xid))
1654  {
1655  result = true;
1656  break;
1657  }
1658  }
1659 
1660  LWLockRelease(ProcArrayLock);
1661 
1662  return result;
1663 }
1664 
1665 
1666 /*
1667  * Determine XID horizons.
1668  *
1669  * This is used by wrapper functions like GetOldestNonRemovableTransactionId()
1670  * (for VACUUM), GetReplicationHorizons() (for hot_standby_feedback), etc as
1671  * well as "internally" by GlobalVisUpdate() (see comment above struct
1672  * GlobalVisState).
1673  *
1674  * See the definition of ComputeXidHorizonsResult for the various computed
1675  * horizons.
1676  *
1677  * For VACUUM separate horizons (used to decide which deleted tuples must
1678  * be preserved), for shared and non-shared tables are computed. For shared
1679  * relations backends in all databases must be considered, but for non-shared
1680  * relations that's not required, since only backends in my own database could
1681  * ever see the tuples in them. Also, we can ignore concurrently running lazy
1682  * VACUUMs because (a) they must be working on other tables, and (b) they
1683  * don't need to do snapshot-based lookups.
1684  *
1685  * This also computes a horizon used to truncate pg_subtrans. For that
1686  * backends in all databases have to be considered, and concurrently running
1687  * lazy VACUUMs cannot be ignored, as they still may perform pg_subtrans
1688  * accesses.
1689  *
1690  * Note: we include all currently running xids in the set of considered xids.
1691  * This ensures that if a just-started xact has not yet set its snapshot,
1692  * when it does set the snapshot it cannot set xmin less than what we compute.
1693  * See notes in src/backend/access/transam/README.
1694  *
1695  * Note: despite the above, it's possible for the calculated values to move
1696  * backwards on repeated calls. The calculated values are conservative, so
1697  * that anything older is definitely not considered as running by anyone
1698  * anymore, but the exact values calculated depend on a number of things. For
1699  * example, if there are no transactions running in the current database, the
1700  * horizon for normal tables will be latestCompletedXid. If a transaction
1701  * begins after that, its xmin will include in-progress transactions in other
1702  * databases that started earlier, so another call will return a lower value.
1703  * Nonetheless it is safe to vacuum a table in the current database with the
1704  * first result. There are also replication-related effects: a walsender
1705  * process can set its xmin based on transactions that are no longer running
1706  * on the primary but are still being replayed on the standby, thus possibly
1707  * making the values go backwards. In this case there is a possibility that
1708  * we lose data that the standby would like to have, but unless the standby
1709  * uses a replication slot to make its xmin persistent there is little we can
1710  * do about that --- data is only protected if the walsender runs continuously
1711  * while queries are executed on the standby. (The Hot Standby code deals
1712  * with such cases by failing standby queries that needed to access
1713  * already-removed data, so there's no integrity bug.)
1714  *
1715  * Note: the approximate horizons (see definition of GlobalVisState) are
1716  * updated by the computations done here. That's currently required for
1717  * correctness and a small optimization. Without doing so it's possible that
1718  * heap vacuum's call to heap_page_prune_and_freeze() uses a more conservative
1719  * horizon than later when deciding which tuples can be removed - which the
1720  * code doesn't expect (breaking HOT).
1721  */
1722 static void
1724 {
1725  ProcArrayStruct *arrayP = procArray;
1726  TransactionId kaxmin;
1727  bool in_recovery = RecoveryInProgress();
1728  TransactionId *other_xids = ProcGlobal->xids;
1729 
1730  /* inferred after ProcArrayLock is released */
1732 
1733  LWLockAcquire(ProcArrayLock, LW_SHARED);
1734 
1736 
1737  /*
1738  * We initialize the MIN() calculation with latestCompletedXid + 1. This
1739  * is a lower bound for the XIDs that might appear in the ProcArray later,
1740  * and so protects us against overestimating the result due to future
1741  * additions.
1742  */
1743  {
1744  TransactionId initial;
1745 
1747  Assert(TransactionIdIsValid(initial));
1748  TransactionIdAdvance(initial);
1749 
1750  h->oldest_considered_running = initial;
1751  h->shared_oldest_nonremovable = initial;
1752  h->data_oldest_nonremovable = initial;
1753 
1754  /*
1755  * Only modifications made by this backend affect the horizon for
1756  * temporary relations. Instead of a check in each iteration of the
1757  * loop over all PGPROCs it is cheaper to just initialize to the
1758  * current top-level xid any.
1759  *
1760  * Without an assigned xid we could use a horizon as aggressive as
1761  * GetNewTransactionId(), but we can get away with the much cheaper
1762  * latestCompletedXid + 1: If this backend has no xid there, by
1763  * definition, can't be any newer changes in the temp table than
1764  * latestCompletedXid.
1765  */
1768  else
1769  h->temp_oldest_nonremovable = initial;
1770  }
1771 
1772  /*
1773  * Fetch slot horizons while ProcArrayLock is held - the
1774  * LWLockAcquire/LWLockRelease are a barrier, ensuring this happens inside
1775  * the lock.
1776  */
1779 
1780  for (int index = 0; index < arrayP->numProcs; index++)
1781  {
1782  int pgprocno = arrayP->pgprocnos[index];
1783  PGPROC *proc = &allProcs[pgprocno];
1784  int8 statusFlags = ProcGlobal->statusFlags[index];
1785  TransactionId xid;
1786  TransactionId xmin;
1787 
1788  /* Fetch xid just once - see GetNewTransactionId */
1789  xid = UINT32_ACCESS_ONCE(other_xids[index]);
1790  xmin = UINT32_ACCESS_ONCE(proc->xmin);
1791 
1792  /*
1793  * Consider both the transaction's Xmin, and its Xid.
1794  *
1795  * We must check both because a transaction might have an Xmin but not
1796  * (yet) an Xid; conversely, if it has an Xid, that could determine
1797  * some not-yet-set Xmin.
1798  */
1799  xmin = TransactionIdOlder(xmin, xid);
1800 
1801  /* if neither is set, this proc doesn't influence the horizon */
1802  if (!TransactionIdIsValid(xmin))
1803  continue;
1804 
1805  /*
1806  * Don't ignore any procs when determining which transactions might be
1807  * considered running. While slots should ensure logical decoding
1808  * backends are protected even without this check, it can't hurt to
1809  * include them here as well..
1810  */
1813 
1814  /*
1815  * Skip over backends either vacuuming (which is ok with rows being
1816  * removed, as long as pg_subtrans is not truncated) or doing logical
1817  * decoding (which manages xmin separately, check below).
1818  */
1819  if (statusFlags & (PROC_IN_VACUUM | PROC_IN_LOGICAL_DECODING))
1820  continue;
1821 
1822  /* shared tables need to take backends in all databases into account */
1825 
1826  /*
1827  * Normally sessions in other databases are ignored for anything but
1828  * the shared horizon.
1829  *
1830  * However, include them when MyDatabaseId is not (yet) set. A
1831  * backend in the process of starting up must not compute a "too
1832  * aggressive" horizon, otherwise we could end up using it to prune
1833  * still-needed data away. If the current backend never connects to a
1834  * database this is harmless, because data_oldest_nonremovable will
1835  * never be utilized.
1836  *
1837  * Also, sessions marked with PROC_AFFECTS_ALL_HORIZONS should always
1838  * be included. (This flag is used for hot standby feedback, which
1839  * can't be tied to a specific database.)
1840  *
1841  * Also, while in recovery we cannot compute an accurate per-database
1842  * horizon, as all xids are managed via the KnownAssignedXids
1843  * machinery.
1844  */
1845  if (proc->databaseId == MyDatabaseId ||
1846  MyDatabaseId == InvalidOid ||
1847  (statusFlags & PROC_AFFECTS_ALL_HORIZONS) ||
1848  in_recovery)
1849  {
1852  }
1853  }
1854 
1855  /*
1856  * If in recovery fetch oldest xid in KnownAssignedXids, will be applied
1857  * after lock is released.
1858  */
1859  if (in_recovery)
1860  kaxmin = KnownAssignedXidsGetOldestXmin();
1861 
1862  /*
1863  * No other information from shared state is needed, release the lock
1864  * immediately. The rest of the computations can be done without a lock.
1865  */
1866  LWLockRelease(ProcArrayLock);
1867 
1868  if (in_recovery)
1869  {
1876  /* temp relations cannot be accessed in recovery */
1877  }
1878 
1883 
1884  /*
1885  * Check whether there are replication slots requiring an older xmin.
1886  */
1891 
1892  /*
1893  * The only difference between catalog / data horizons is that the slot's
1894  * catalog xmin is applied to the catalog one (so catalogs can be accessed
1895  * for logical decoding). Initialize with data horizon, and then back up
1896  * further if necessary. Have to back up the shared horizon as well, since
1897  * that also can contain catalogs.
1898  */
1902  h->slot_catalog_xmin);
1906  h->slot_catalog_xmin);
1907 
1908  /*
1909  * It's possible that slots backed up the horizons further than
1910  * oldest_considered_running. Fix.
1911  */
1921 
1922  /*
1923  * shared horizons have to be at least as old as the oldest visible in
1924  * current db
1925  */
1930 
1931  /*
1932  * Horizons need to ensure that pg_subtrans access is still possible for
1933  * the relevant backends.
1934  */
1945  h->slot_xmin));
1948  h->slot_catalog_xmin));
1949 
1950  /* update approximate horizons with the computed horizons */
1952 }
1953 
1954 /*
1955  * Determine what kind of visibility horizon needs to be used for a
1956  * relation. If rel is NULL, the most conservative horizon is used.
1957  */
1958 static inline GlobalVisHorizonKind
1960 {
1961  /*
1962  * Other relkinds currently don't contain xids, nor always the necessary
1963  * logical decoding markers.
1964  */
1965  Assert(!rel ||
1966  rel->rd_rel->relkind == RELKIND_RELATION ||
1967  rel->rd_rel->relkind == RELKIND_MATVIEW ||
1968  rel->rd_rel->relkind == RELKIND_TOASTVALUE);
1969 
1970  if (rel == NULL || rel->rd_rel->relisshared || RecoveryInProgress())
1971  return VISHORIZON_SHARED;
1972  else if (IsCatalogRelation(rel) ||
1974  return VISHORIZON_CATALOG;
1975  else if (!RELATION_IS_LOCAL(rel))
1976  return VISHORIZON_DATA;
1977  else
1978  return VISHORIZON_TEMP;
1979 }
1980 
1981 /*
1982  * Return the oldest XID for which deleted tuples must be preserved in the
1983  * passed table.
1984  *
1985  * If rel is not NULL the horizon may be considerably more recent than
1986  * otherwise (i.e. fewer tuples will be removable). In the NULL case a horizon
1987  * that is correct (but not optimal) for all relations will be returned.
1988  *
1989  * This is used by VACUUM to decide which deleted tuples must be preserved in
1990  * the passed in table.
1991  */
1994 {
1995  ComputeXidHorizonsResult horizons;
1996 
1997  ComputeXidHorizons(&horizons);
1998 
1999  switch (GlobalVisHorizonKindForRel(rel))
2000  {
2001  case VISHORIZON_SHARED:
2002  return horizons.shared_oldest_nonremovable;
2003  case VISHORIZON_CATALOG:
2004  return horizons.catalog_oldest_nonremovable;
2005  case VISHORIZON_DATA:
2006  return horizons.data_oldest_nonremovable;
2007  case VISHORIZON_TEMP:
2008  return horizons.temp_oldest_nonremovable;
2009  }
2010 
2011  /* just to prevent compiler warnings */
2012  return InvalidTransactionId;
2013 }
2014 
2015 /*
2016  * Return the oldest transaction id any currently running backend might still
2017  * consider running. This should not be used for visibility / pruning
2018  * determinations (see GetOldestNonRemovableTransactionId()), but for
2019  * decisions like up to where pg_subtrans can be truncated.
2020  */
2023 {
2024  ComputeXidHorizonsResult horizons;
2025 
2026  ComputeXidHorizons(&horizons);
2027 
2028  return horizons.oldest_considered_running;
2029 }
2030 
2031 /*
2032  * Return the visibility horizons for a hot standby feedback message.
2033  */
2034 void
2036 {
2037  ComputeXidHorizonsResult horizons;
2038 
2039  ComputeXidHorizons(&horizons);
2040 
2041  /*
2042  * Don't want to use shared_oldest_nonremovable here, as that contains the
2043  * effect of replication slot's catalog_xmin. We want to send a separate
2044  * feedback for the catalog horizon, so the primary can remove data table
2045  * contents more aggressively.
2046  */
2047  *xmin = horizons.shared_oldest_nonremovable_raw;
2048  *catalog_xmin = horizons.slot_catalog_xmin;
2049 }
2050 
2051 /*
2052  * GetMaxSnapshotXidCount -- get max size for snapshot XID array
2053  *
2054  * We have to export this for use by snapmgr.c.
2055  */
2056 int
2058 {
2059  return procArray->maxProcs;
2060 }
2061 
2062 /*
2063  * GetMaxSnapshotSubxidCount -- get max size for snapshot sub-XID array
2064  *
2065  * We have to export this for use by snapmgr.c.
2066  */
2067 int
2069 {
2070  return TOTAL_MAX_CACHED_SUBXIDS;
2071 }
2072 
2073 /*
2074  * Helper function for GetSnapshotData() that checks if the bulk of the
2075  * visibility information in the snapshot is still valid. If so, it updates
2076  * the fields that need to change and returns true. Otherwise it returns
2077  * false.
2078  *
2079  * This very likely can be evolved to not need ProcArrayLock held (at very
2080  * least in the case we already hold a snapshot), but that's for another day.
2081  */
2082 static bool
2084 {
2085  uint64 curXactCompletionCount;
2086 
2087  Assert(LWLockHeldByMe(ProcArrayLock));
2088 
2089  if (unlikely(snapshot->snapXactCompletionCount == 0))
2090  return false;
2091 
2092  curXactCompletionCount = TransamVariables->xactCompletionCount;
2093  if (curXactCompletionCount != snapshot->snapXactCompletionCount)
2094  return false;
2095 
2096  /*
2097  * If the current xactCompletionCount is still the same as it was at the
2098  * time the snapshot was built, we can be sure that rebuilding the
2099  * contents of the snapshot the hard way would result in the same snapshot
2100  * contents:
2101  *
2102  * As explained in transam/README, the set of xids considered running by
2103  * GetSnapshotData() cannot change while ProcArrayLock is held. Snapshot
2104  * contents only depend on transactions with xids and xactCompletionCount
2105  * is incremented whenever a transaction with an xid finishes (while
2106  * holding ProcArrayLock exclusively). Thus the xactCompletionCount check
2107  * ensures we would detect if the snapshot would have changed.
2108  *
2109  * As the snapshot contents are the same as it was before, it is safe to
2110  * re-enter the snapshot's xmin into the PGPROC array. None of the rows
2111  * visible under the snapshot could already have been removed (that'd
2112  * require the set of running transactions to change) and it fulfills the
2113  * requirement that concurrent GetSnapshotData() calls yield the same
2114  * xmin.
2115  */
2117  MyProc->xmin = TransactionXmin = snapshot->xmin;
2118 
2119  RecentXmin = snapshot->xmin;
2121 
2122  snapshot->curcid = GetCurrentCommandId(false);
2123  snapshot->active_count = 0;
2124  snapshot->regd_count = 0;
2125  snapshot->copied = false;
2126  snapshot->lsn = InvalidXLogRecPtr;
2127  snapshot->whenTaken = 0;
2128 
2129  return true;
2130 }
2131 
2132 /*
2133  * GetSnapshotData -- returns information about running transactions.
2134  *
2135  * The returned snapshot includes xmin (lowest still-running xact ID),
2136  * xmax (highest completed xact ID + 1), and a list of running xact IDs
2137  * in the range xmin <= xid < xmax. It is used as follows:
2138  * All xact IDs < xmin are considered finished.
2139  * All xact IDs >= xmax are considered still running.
2140  * For an xact ID xmin <= xid < xmax, consult list to see whether
2141  * it is considered running or not.
2142  * This ensures that the set of transactions seen as "running" by the
2143  * current xact will not change after it takes the snapshot.
2144  *
2145  * All running top-level XIDs are included in the snapshot, except for lazy
2146  * VACUUM processes. We also try to include running subtransaction XIDs,
2147  * but since PGPROC has only a limited cache area for subxact XIDs, full
2148  * information may not be available. If we find any overflowed subxid arrays,
2149  * we have to mark the snapshot's subxid data as overflowed, and extra work
2150  * *may* need to be done to determine what's running (see XidInMVCCSnapshot()).
2151  *
2152  * We also update the following backend-global variables:
2153  * TransactionXmin: the oldest xmin of any snapshot in use in the
2154  * current transaction (this is the same as MyProc->xmin).
2155  * RecentXmin: the xmin computed for the most recent snapshot. XIDs
2156  * older than this are known not running any more.
2157  *
2158  * And try to advance the bounds of GlobalVis{Shared,Catalog,Data,Temp}Rels
2159  * for the benefit of the GlobalVisTest* family of functions.
2160  *
2161  * Note: this function should probably not be called with an argument that's
2162  * not statically allocated (see xip allocation below).
2163  */
2164 Snapshot
2166 {
2167  ProcArrayStruct *arrayP = procArray;
2168  TransactionId *other_xids = ProcGlobal->xids;
2169  TransactionId xmin;
2170  TransactionId xmax;
2171  int count = 0;
2172  int subcount = 0;
2173  bool suboverflowed = false;
2174  FullTransactionId latest_completed;
2175  TransactionId oldestxid;
2176  int mypgxactoff;
2177  TransactionId myxid;
2178  uint64 curXactCompletionCount;
2179 
2180  TransactionId replication_slot_xmin = InvalidTransactionId;
2181  TransactionId replication_slot_catalog_xmin = InvalidTransactionId;
2182 
2183  Assert(snapshot != NULL);
2184 
2185  /*
2186  * Allocating space for maxProcs xids is usually overkill; numProcs would
2187  * be sufficient. But it seems better to do the malloc while not holding
2188  * the lock, so we can't look at numProcs. Likewise, we allocate much
2189  * more subxip storage than is probably needed.
2190  *
2191  * This does open a possibility for avoiding repeated malloc/free: since
2192  * maxProcs does not change at runtime, we can simply reuse the previous
2193  * xip arrays if any. (This relies on the fact that all callers pass
2194  * static SnapshotData structs.)
2195  */
2196  if (snapshot->xip == NULL)
2197  {
2198  /*
2199  * First call for this snapshot. Snapshot is same size whether or not
2200  * we are in recovery, see later comments.
2201  */
2202  snapshot->xip = (TransactionId *)
2204  if (snapshot->xip == NULL)
2205  ereport(ERROR,
2206  (errcode(ERRCODE_OUT_OF_MEMORY),
2207  errmsg("out of memory")));
2208  Assert(snapshot->subxip == NULL);
2209  snapshot->subxip = (TransactionId *)
2211  if (snapshot->subxip == NULL)
2212  ereport(ERROR,
2213  (errcode(ERRCODE_OUT_OF_MEMORY),
2214  errmsg("out of memory")));
2215  }
2216 
2217  /*
2218  * It is sufficient to get shared lock on ProcArrayLock, even if we are
2219  * going to set MyProc->xmin.
2220  */
2221  LWLockAcquire(ProcArrayLock, LW_SHARED);
2222 
2223  if (GetSnapshotDataReuse(snapshot))
2224  {
2225  LWLockRelease(ProcArrayLock);
2226  return snapshot;
2227  }
2228 
2229  latest_completed = TransamVariables->latestCompletedXid;
2230  mypgxactoff = MyProc->pgxactoff;
2231  myxid = other_xids[mypgxactoff];
2232  Assert(myxid == MyProc->xid);
2233 
2234  oldestxid = TransamVariables->oldestXid;
2235  curXactCompletionCount = TransamVariables->xactCompletionCount;
2236 
2237  /* xmax is always latestCompletedXid + 1 */
2238  xmax = XidFromFullTransactionId(latest_completed);
2239  TransactionIdAdvance(xmax);
2241 
2242  /* initialize xmin calculation with xmax */
2243  xmin = xmax;
2244 
2245  /* take own xid into account, saves a check inside the loop */
2246  if (TransactionIdIsNormal(myxid) && NormalTransactionIdPrecedes(myxid, xmin))
2247  xmin = myxid;
2248 
2250 
2251  if (!snapshot->takenDuringRecovery)
2252  {
2253  int numProcs = arrayP->numProcs;
2254  TransactionId *xip = snapshot->xip;
2255  int *pgprocnos = arrayP->pgprocnos;
2256  XidCacheStatus *subxidStates = ProcGlobal->subxidStates;
2257  uint8 *allStatusFlags = ProcGlobal->statusFlags;
2258 
2259  /*
2260  * First collect set of pgxactoff/xids that need to be included in the
2261  * snapshot.
2262  */
2263  for (int pgxactoff = 0; pgxactoff < numProcs; pgxactoff++)
2264  {
2265  /* Fetch xid just once - see GetNewTransactionId */
2266  TransactionId xid = UINT32_ACCESS_ONCE(other_xids[pgxactoff]);
2267  uint8 statusFlags;
2268 
2269  Assert(allProcs[arrayP->pgprocnos[pgxactoff]].pgxactoff == pgxactoff);
2270 
2271  /*
2272  * If the transaction has no XID assigned, we can skip it; it
2273  * won't have sub-XIDs either.
2274  */
2275  if (likely(xid == InvalidTransactionId))
2276  continue;
2277 
2278  /*
2279  * We don't include our own XIDs (if any) in the snapshot. It
2280  * needs to be included in the xmin computation, but we did so
2281  * outside the loop.
2282  */
2283  if (pgxactoff == mypgxactoff)
2284  continue;
2285 
2286  /*
2287  * The only way we are able to get here with a non-normal xid is
2288  * during bootstrap - with this backend using
2289  * BootstrapTransactionId. But the above test should filter that
2290  * out.
2291  */
2293 
2294  /*
2295  * If the XID is >= xmax, we can skip it; such transactions will
2296  * be treated as running anyway (and any sub-XIDs will also be >=
2297  * xmax).
2298  */
2299  if (!NormalTransactionIdPrecedes(xid, xmax))
2300  continue;
2301 
2302  /*
2303  * Skip over backends doing logical decoding which manages xmin
2304  * separately (check below) and ones running LAZY VACUUM.
2305  */
2306  statusFlags = allStatusFlags[pgxactoff];
2307  if (statusFlags & (PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM))
2308  continue;
2309 
2310  if (NormalTransactionIdPrecedes(xid, xmin))
2311  xmin = xid;
2312 
2313  /* Add XID to snapshot. */
2314  xip[count++] = xid;
2315 
2316  /*
2317  * Save subtransaction XIDs if possible (if we've already
2318  * overflowed, there's no point). Note that the subxact XIDs must
2319  * be later than their parent, so no need to check them against
2320  * xmin. We could filter against xmax, but it seems better not to
2321  * do that much work while holding the ProcArrayLock.
2322  *
2323  * The other backend can add more subxids concurrently, but cannot
2324  * remove any. Hence it's important to fetch nxids just once.
2325  * Should be safe to use memcpy, though. (We needn't worry about
2326  * missing any xids added concurrently, because they must postdate
2327  * xmax.)
2328  *
2329  * Again, our own XIDs are not included in the snapshot.
2330  */
2331  if (!suboverflowed)
2332  {
2333 
2334  if (subxidStates[pgxactoff].overflowed)
2335  suboverflowed = true;
2336  else
2337  {
2338  int nsubxids = subxidStates[pgxactoff].count;
2339 
2340  if (nsubxids > 0)
2341  {
2342  int pgprocno = pgprocnos[pgxactoff];
2343  PGPROC *proc = &allProcs[pgprocno];
2344 
2345  pg_read_barrier(); /* pairs with GetNewTransactionId */
2346 
2347  memcpy(snapshot->subxip + subcount,
2348  proc->subxids.xids,
2349  nsubxids * sizeof(TransactionId));
2350  subcount += nsubxids;
2351  }
2352  }
2353  }
2354  }
2355  }
2356  else
2357  {
2358  /*
2359  * We're in hot standby, so get XIDs from KnownAssignedXids.
2360  *
2361  * We store all xids directly into subxip[]. Here's why:
2362  *
2363  * In recovery we don't know which xids are top-level and which are
2364  * subxacts, a design choice that greatly simplifies xid processing.
2365  *
2366  * It seems like we would want to try to put xids into xip[] only, but
2367  * that is fairly small. We would either need to make that bigger or
2368  * to increase the rate at which we WAL-log xid assignment; neither is
2369  * an appealing choice.
2370  *
2371  * We could try to store xids into xip[] first and then into subxip[]
2372  * if there are too many xids. That only works if the snapshot doesn't
2373  * overflow because we do not search subxip[] in that case. A simpler
2374  * way is to just store all xids in the subxip array because this is
2375  * by far the bigger array. We just leave the xip array empty.
2376  *
2377  * Either way we need to change the way XidInMVCCSnapshot() works
2378  * depending upon when the snapshot was taken, or change normal
2379  * snapshot processing so it matches.
2380  *
2381  * Note: It is possible for recovery to end before we finish taking
2382  * the snapshot, and for newly assigned transaction ids to be added to
2383  * the ProcArray. xmax cannot change while we hold ProcArrayLock, so
2384  * those newly added transaction ids would be filtered away, so we
2385  * need not be concerned about them.
2386  */
2387  subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin,
2388  xmax);
2389 
2391  suboverflowed = true;
2392  }
2393 
2394 
2395  /*
2396  * Fetch into local variable while ProcArrayLock is held - the
2397  * LWLockRelease below is a barrier, ensuring this happens inside the
2398  * lock.
2399  */
2400  replication_slot_xmin = procArray->replication_slot_xmin;
2401  replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin;
2402 
2404  MyProc->xmin = TransactionXmin = xmin;
2405 
2406  LWLockRelease(ProcArrayLock);
2407 
2408  /* maintain state for GlobalVis* */
2409  {
2410  TransactionId def_vis_xid;
2411  TransactionId def_vis_xid_data;
2412  FullTransactionId def_vis_fxid;
2413  FullTransactionId def_vis_fxid_data;
2414  FullTransactionId oldestfxid;
2415 
2416  /*
2417  * Converting oldestXid is only safe when xid horizon cannot advance,
2418  * i.e. holding locks. While we don't hold the lock anymore, all the
2419  * necessary data has been gathered with lock held.
2420  */
2421  oldestfxid = FullXidRelativeTo(latest_completed, oldestxid);
2422 
2423  /* Check whether there's a replication slot requiring an older xmin. */
2424  def_vis_xid_data =
2425  TransactionIdOlder(xmin, replication_slot_xmin);
2426 
2427  /*
2428  * Rows in non-shared, non-catalog tables possibly could be vacuumed
2429  * if older than this xid.
2430  */
2431  def_vis_xid = def_vis_xid_data;
2432 
2433  /*
2434  * Check whether there's a replication slot requiring an older catalog
2435  * xmin.
2436  */
2437  def_vis_xid =
2438  TransactionIdOlder(replication_slot_catalog_xmin, def_vis_xid);
2439 
2440  def_vis_fxid = FullXidRelativeTo(latest_completed, def_vis_xid);
2441  def_vis_fxid_data = FullXidRelativeTo(latest_completed, def_vis_xid_data);
2442 
2443  /*
2444  * Check if we can increase upper bound. As a previous
2445  * GlobalVisUpdate() might have computed more aggressive values, don't
2446  * overwrite them if so.
2447  */
2449  FullTransactionIdNewer(def_vis_fxid,
2452  FullTransactionIdNewer(def_vis_fxid,
2455  FullTransactionIdNewer(def_vis_fxid_data,
2457  /* See temp_oldest_nonremovable computation in ComputeXidHorizons() */
2458  if (TransactionIdIsNormal(myxid))
2460  FullXidRelativeTo(latest_completed, myxid);
2461  else
2462  {
2463  GlobalVisTempRels.definitely_needed = latest_completed;
2465  }
2466 
2467  /*
2468  * Check if we know that we can initialize or increase the lower
2469  * bound. Currently the only cheap way to do so is to use
2470  * TransamVariables->oldestXid as input.
2471  *
2472  * We should definitely be able to do better. We could e.g. put a
2473  * global lower bound value into TransamVariables.
2474  */
2477  oldestfxid);
2480  oldestfxid);
2483  oldestfxid);
2484  /* accurate value known */
2486  }
2487 
2488  RecentXmin = xmin;
2490 
2491  snapshot->xmin = xmin;
2492  snapshot->xmax = xmax;
2493  snapshot->xcnt = count;
2494  snapshot->subxcnt = subcount;
2495  snapshot->suboverflowed = suboverflowed;
2496  snapshot->snapXactCompletionCount = curXactCompletionCount;
2497 
2498  snapshot->curcid = GetCurrentCommandId(false);
2499 
2500  /*
2501  * This is a new snapshot, so set both refcounts are zero, and mark it as
2502  * not copied in persistent memory.
2503  */
2504  snapshot->active_count = 0;
2505  snapshot->regd_count = 0;
2506  snapshot->copied = false;
2507  snapshot->lsn = InvalidXLogRecPtr;
2508  snapshot->whenTaken = 0;
2509 
2510  return snapshot;
2511 }
2512 
2513 /*
2514  * ProcArrayInstallImportedXmin -- install imported xmin into MyProc->xmin
2515  *
2516  * This is called when installing a snapshot imported from another
2517  * transaction. To ensure that OldestXmin doesn't go backwards, we must
2518  * check that the source transaction is still running, and we'd better do
2519  * that atomically with installing the new xmin.
2520  *
2521  * Returns true if successful, false if source xact is no longer running.
2522  */
2523 bool
2525  VirtualTransactionId *sourcevxid)
2526 {
2527  bool result = false;
2528  ProcArrayStruct *arrayP = procArray;
2529  int index;
2530 
2532  if (!sourcevxid)
2533  return false;
2534 
2535  /* Get lock so source xact can't end while we're doing this */
2536  LWLockAcquire(ProcArrayLock, LW_SHARED);
2537 
2538  /*
2539  * Find the PGPROC entry of the source transaction. (This could use
2540  * GetPGProcByNumber(), unless it's a prepared xact. But this isn't
2541  * performance critical.)
2542  */
2543  for (index = 0; index < arrayP->numProcs; index++)
2544  {
2545  int pgprocno = arrayP->pgprocnos[index];
2546  PGPROC *proc = &allProcs[pgprocno];
2547  int statusFlags = ProcGlobal->statusFlags[index];
2548  TransactionId xid;
2549 
2550  /* Ignore procs running LAZY VACUUM */
2551  if (statusFlags & PROC_IN_VACUUM)
2552  continue;
2553 
2554  /* We are only interested in the specific virtual transaction. */
2555  if (proc->vxid.procNumber != sourcevxid->procNumber)
2556  continue;
2557  if (proc->vxid.lxid != sourcevxid->localTransactionId)
2558  continue;
2559 
2560  /*
2561  * We check the transaction's database ID for paranoia's sake: if it's
2562  * in another DB then its xmin does not cover us. Caller should have
2563  * detected this already, so we just treat any funny cases as
2564  * "transaction not found".
2565  */
2566  if (proc->databaseId != MyDatabaseId)
2567  continue;
2568 
2569  /*
2570  * Likewise, let's just make real sure its xmin does cover us.
2571  */
2572  xid = UINT32_ACCESS_ONCE(proc->xmin);
2573  if (!TransactionIdIsNormal(xid) ||
2574  !TransactionIdPrecedesOrEquals(xid, xmin))
2575  continue;
2576 
2577  /*
2578  * We're good. Install the new xmin. As in GetSnapshotData, set
2579  * TransactionXmin too. (Note that because snapmgr.c called
2580  * GetSnapshotData first, we'll be overwriting a valid xmin here, so
2581  * we don't check that.)
2582  */
2583  MyProc->xmin = TransactionXmin = xmin;
2584 
2585  result = true;
2586  break;
2587  }
2588 
2589  LWLockRelease(ProcArrayLock);
2590 
2591  return result;
2592 }
2593 
2594 /*
2595  * ProcArrayInstallRestoredXmin -- install restored xmin into MyProc->xmin
2596  *
2597  * This is like ProcArrayInstallImportedXmin, but we have a pointer to the
2598  * PGPROC of the transaction from which we imported the snapshot, rather than
2599  * an XID.
2600  *
2601  * Note that this function also copies statusFlags from the source `proc` in
2602  * order to avoid the case where MyProc's xmin needs to be skipped for
2603  * computing xid horizon.
2604  *
2605  * Returns true if successful, false if source xact is no longer running.
2606  */
2607 bool
2609 {
2610  bool result = false;
2611  TransactionId xid;
2612 
2614  Assert(proc != NULL);
2615 
2616  /*
2617  * Get an exclusive lock so that we can copy statusFlags from source proc.
2618  */
2619  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
2620 
2621  /*
2622  * Be certain that the referenced PGPROC has an advertised xmin which is
2623  * no later than the one we're installing, so that the system-wide xmin
2624  * can't go backwards. Also, make sure it's running in the same database,
2625  * so that the per-database xmin cannot go backwards.
2626  */
2627  xid = UINT32_ACCESS_ONCE(proc->xmin);
2628  if (proc->databaseId == MyDatabaseId &&
2629  TransactionIdIsNormal(xid) &&
2630  TransactionIdPrecedesOrEquals(xid, xmin))
2631  {
2632  /*
2633  * Install xmin and propagate the statusFlags that affect how the
2634  * value is interpreted by vacuum.
2635  */
2636  MyProc->xmin = TransactionXmin = xmin;
2638  (proc->statusFlags & PROC_XMIN_FLAGS);
2640 
2641  result = true;
2642  }
2643 
2644  LWLockRelease(ProcArrayLock);
2645 
2646  return result;
2647 }
2648 
2649 /*
2650  * GetRunningTransactionData -- returns information about running transactions.
2651  *
2652  * Similar to GetSnapshotData but returns more information. We include
2653  * all PGPROCs with an assigned TransactionId, even VACUUM processes and
2654  * prepared transactions.
2655  *
2656  * We acquire XidGenLock and ProcArrayLock, but the caller is responsible for
2657  * releasing them. Acquiring XidGenLock ensures that no new XIDs enter the proc
2658  * array until the caller has WAL-logged this snapshot, and releases the
2659  * lock. Acquiring ProcArrayLock ensures that no transactions commit until the
2660  * lock is released.
2661  *
2662  * The returned data structure is statically allocated; caller should not
2663  * modify it, and must not assume it is valid past the next call.
2664  *
2665  * This is never executed during recovery so there is no need to look at
2666  * KnownAssignedXids.
2667  *
2668  * Dummy PGPROCs from prepared transaction are included, meaning that this
2669  * may return entries with duplicated TransactionId values coming from
2670  * transaction finishing to prepare. Nothing is done about duplicated
2671  * entries here to not hold on ProcArrayLock more than necessary.
2672  *
2673  * We don't worry about updating other counters, we want to keep this as
2674  * simple as possible and leave GetSnapshotData() as the primary code for
2675  * that bookkeeping.
2676  *
2677  * Note that if any transaction has overflowed its cached subtransactions
2678  * then there is no real need include any subtransactions.
2679  */
2682 {
2683  /* result workspace */
2684  static RunningTransactionsData CurrentRunningXactsData;
2685 
2686  ProcArrayStruct *arrayP = procArray;
2687  TransactionId *other_xids = ProcGlobal->xids;
2688  RunningTransactions CurrentRunningXacts = &CurrentRunningXactsData;
2689  TransactionId latestCompletedXid;
2690  TransactionId oldestRunningXid;
2691  TransactionId oldestDatabaseRunningXid;
2692  TransactionId *xids;
2693  int index;
2694  int count;
2695  int subcount;
2696  bool suboverflowed;
2697 
2699 
2700  /*
2701  * Allocating space for maxProcs xids is usually overkill; numProcs would
2702  * be sufficient. But it seems better to do the malloc while not holding
2703  * the lock, so we can't look at numProcs. Likewise, we allocate much
2704  * more subxip storage than is probably needed.
2705  *
2706  * Should only be allocated in bgwriter, since only ever executed during
2707  * checkpoints.
2708  */
2709  if (CurrentRunningXacts->xids == NULL)
2710  {
2711  /*
2712  * First call
2713  */
2714  CurrentRunningXacts->xids = (TransactionId *)
2716  if (CurrentRunningXacts->xids == NULL)
2717  ereport(ERROR,
2718  (errcode(ERRCODE_OUT_OF_MEMORY),
2719  errmsg("out of memory")));
2720  }
2721 
2722  xids = CurrentRunningXacts->xids;
2723 
2724  count = subcount = 0;
2725  suboverflowed = false;
2726 
2727  /*
2728  * Ensure that no xids enter or leave the procarray while we obtain
2729  * snapshot.
2730  */
2731  LWLockAcquire(ProcArrayLock, LW_SHARED);
2732  LWLockAcquire(XidGenLock, LW_SHARED);
2733 
2734  latestCompletedXid =
2736  oldestDatabaseRunningXid = oldestRunningXid =
2738 
2739  /*
2740  * Spin over procArray collecting all xids
2741  */
2742  for (index = 0; index < arrayP->numProcs; index++)
2743  {
2744  int pgprocno = arrayP->pgprocnos[index];
2745  PGPROC *proc = &allProcs[pgprocno];
2746  TransactionId xid;
2747 
2748  /* Fetch xid just once - see GetNewTransactionId */
2749  xid = UINT32_ACCESS_ONCE(other_xids[index]);
2750 
2751  /*
2752  * We don't need to store transactions that don't have a TransactionId
2753  * yet because they will not show as running on a standby server.
2754  */
2755  if (!TransactionIdIsValid(xid))
2756  continue;
2757 
2758  /*
2759  * Be careful not to exclude any xids before calculating the values of
2760  * oldestRunningXid and suboverflowed, since these are used to clean
2761  * up transaction information held on standbys.
2762  */
2763  if (TransactionIdPrecedes(xid, oldestRunningXid))
2764  oldestRunningXid = xid;
2765 
2766  /*
2767  * Also, update the oldest running xid within the current database.
2768  */
2769  if (proc->databaseId == MyDatabaseId &&
2770  TransactionIdPrecedes(xid, oldestRunningXid))
2771  oldestDatabaseRunningXid = xid;
2772 
2774  suboverflowed = true;
2775 
2776  /*
2777  * If we wished to exclude xids this would be the right place for it.
2778  * Procs with the PROC_IN_VACUUM flag set don't usually assign xids,
2779  * but they do during truncation at the end when they get the lock and
2780  * truncate, so it is not much of a problem to include them if they
2781  * are seen and it is cleaner to include them.
2782  */
2783 
2784  xids[count++] = xid;
2785  }
2786 
2787  /*
2788  * Spin over procArray collecting all subxids, but only if there hasn't
2789  * been a suboverflow.
2790  */
2791  if (!suboverflowed)
2792  {
2793  XidCacheStatus *other_subxidstates = ProcGlobal->subxidStates;
2794 
2795  for (index = 0; index < arrayP->numProcs; index++)
2796  {
2797  int pgprocno = arrayP->pgprocnos[index];
2798  PGPROC *proc = &allProcs[pgprocno];
2799  int nsubxids;
2800 
2801  /*
2802  * Save subtransaction XIDs. Other backends can't add or remove
2803  * entries while we're holding XidGenLock.
2804  */
2805  nsubxids = other_subxidstates[index].count;
2806  if (nsubxids > 0)
2807  {
2808  /* barrier not really required, as XidGenLock is held, but ... */
2809  pg_read_barrier(); /* pairs with GetNewTransactionId */
2810 
2811  memcpy(&xids[count], proc->subxids.xids,
2812  nsubxids * sizeof(TransactionId));
2813  count += nsubxids;
2814  subcount += nsubxids;
2815 
2816  /*
2817  * Top-level XID of a transaction is always less than any of
2818  * its subxids, so we don't need to check if any of the
2819  * subxids are smaller than oldestRunningXid
2820  */
2821  }
2822  }
2823  }
2824 
2825  /*
2826  * It's important *not* to include the limits set by slots here because
2827  * snapbuild.c uses oldestRunningXid to manage its xmin horizon. If those
2828  * were to be included here the initial value could never increase because
2829  * of a circular dependency where slots only increase their limits when
2830  * running xacts increases oldestRunningXid and running xacts only
2831  * increases if slots do.
2832  */
2833 
2834  CurrentRunningXacts->xcnt = count - subcount;
2835  CurrentRunningXacts->subxcnt = subcount;
2836  CurrentRunningXacts->subxid_overflow = suboverflowed;
2837  CurrentRunningXacts->nextXid = XidFromFullTransactionId(TransamVariables->nextXid);
2838  CurrentRunningXacts->oldestRunningXid = oldestRunningXid;
2839  CurrentRunningXacts->oldestDatabaseRunningXid = oldestDatabaseRunningXid;
2840  CurrentRunningXacts->latestCompletedXid = latestCompletedXid;
2841 
2842  Assert(TransactionIdIsValid(CurrentRunningXacts->nextXid));
2843  Assert(TransactionIdIsValid(CurrentRunningXacts->oldestRunningXid));
2844  Assert(TransactionIdIsNormal(CurrentRunningXacts->latestCompletedXid));
2845 
2846  /* We don't release the locks here, the caller is responsible for that */
2847 
2848  return CurrentRunningXacts;
2849 }
2850 
2851 /*
2852  * GetOldestActiveTransactionId()
2853  *
2854  * Similar to GetSnapshotData but returns just oldestActiveXid. We include
2855  * all PGPROCs with an assigned TransactionId, even VACUUM processes.
2856  * We look at all databases, though there is no need to include WALSender
2857  * since this has no effect on hot standby conflicts.
2858  *
2859  * This is never executed during recovery so there is no need to look at
2860  * KnownAssignedXids.
2861  *
2862  * We don't worry about updating other counters, we want to keep this as
2863  * simple as possible and leave GetSnapshotData() as the primary code for
2864  * that bookkeeping.
2865  */
2868 {
2869  ProcArrayStruct *arrayP = procArray;
2870  TransactionId *other_xids = ProcGlobal->xids;
2871  TransactionId oldestRunningXid;
2872  int index;
2873 
2875 
2876  /*
2877  * Read nextXid, as the upper bound of what's still active.
2878  *
2879  * Reading a TransactionId is atomic, but we must grab the lock to make
2880  * sure that all XIDs < nextXid are already present in the proc array (or
2881  * have already completed), when we spin over it.
2882  */
2883  LWLockAcquire(XidGenLock, LW_SHARED);
2884  oldestRunningXid = XidFromFullTransactionId(TransamVariables->nextXid);
2885  LWLockRelease(XidGenLock);
2886 
2887  /*
2888  * Spin over procArray collecting all xids and subxids.
2889  */
2890  LWLockAcquire(ProcArrayLock, LW_SHARED);
2891  for (index = 0; index < arrayP->numProcs; index++)
2892  {
2893  TransactionId xid;
2894 
2895  /* Fetch xid just once - see GetNewTransactionId */
2896  xid = UINT32_ACCESS_ONCE(other_xids[index]);
2897 
2898  if (!TransactionIdIsNormal(xid))
2899  continue;
2900 
2901  if (TransactionIdPrecedes(xid, oldestRunningXid))
2902  oldestRunningXid = xid;
2903 
2904  /*
2905  * Top-level XID of a transaction is always less than any of its
2906  * subxids, so we don't need to check if any of the subxids are
2907  * smaller than oldestRunningXid
2908  */
2909  }
2910  LWLockRelease(ProcArrayLock);
2911 
2912  return oldestRunningXid;
2913 }
2914 
2915 /*
2916  * GetOldestSafeDecodingTransactionId -- lowest xid not affected by vacuum
2917  *
2918  * Returns the oldest xid that we can guarantee not to have been affected by
2919  * vacuum, i.e. no rows >= that xid have been vacuumed away unless the
2920  * transaction aborted. Note that the value can (and most of the time will) be
2921  * much more conservative than what really has been affected by vacuum, but we
2922  * currently don't have better data available.
2923  *
2924  * This is useful to initialize the cutoff xid after which a new changeset
2925  * extraction replication slot can start decoding changes.
2926  *
2927  * Must be called with ProcArrayLock held either shared or exclusively,
2928  * although most callers will want to use exclusive mode since it is expected
2929  * that the caller will immediately use the xid to peg the xmin horizon.
2930  */
2933 {
2934  ProcArrayStruct *arrayP = procArray;
2935  TransactionId oldestSafeXid;
2936  int index;
2937  bool recovery_in_progress = RecoveryInProgress();
2938 
2939  Assert(LWLockHeldByMe(ProcArrayLock));
2940 
2941  /*
2942  * Acquire XidGenLock, so no transactions can acquire an xid while we're
2943  * running. If no transaction with xid were running concurrently a new xid
2944  * could influence the RecentXmin et al.
2945  *
2946  * We initialize the computation to nextXid since that's guaranteed to be
2947  * a safe, albeit pessimal, value.
2948  */
2949  LWLockAcquire(XidGenLock, LW_SHARED);
2951 
2952  /*
2953  * If there's already a slot pegging the xmin horizon, we can start with
2954  * that value, it's guaranteed to be safe since it's computed by this
2955  * routine initially and has been enforced since. We can always use the
2956  * slot's general xmin horizon, but the catalog horizon is only usable
2957  * when only catalog data is going to be looked at.
2958  */
2961  oldestSafeXid))
2962  oldestSafeXid = procArray->replication_slot_xmin;
2963 
2964  if (catalogOnly &&
2967  oldestSafeXid))
2968  oldestSafeXid = procArray->replication_slot_catalog_xmin;
2969 
2970  /*
2971  * If we're not in recovery, we walk over the procarray and collect the
2972  * lowest xid. Since we're called with ProcArrayLock held and have
2973  * acquired XidGenLock, no entries can vanish concurrently, since
2974  * ProcGlobal->xids[i] is only set with XidGenLock held and only cleared
2975  * with ProcArrayLock held.
2976  *
2977  * In recovery we can't lower the safe value besides what we've computed
2978  * above, so we'll have to wait a bit longer there. We unfortunately can
2979  * *not* use KnownAssignedXidsGetOldestXmin() since the KnownAssignedXids
2980  * machinery can miss values and return an older value than is safe.
2981  */
2982  if (!recovery_in_progress)
2983  {
2984  TransactionId *other_xids = ProcGlobal->xids;
2985 
2986  /*
2987  * Spin over procArray collecting min(ProcGlobal->xids[i])
2988  */
2989  for (index = 0; index < arrayP->numProcs; index++)
2990  {
2991  TransactionId xid;
2992 
2993  /* Fetch xid just once - see GetNewTransactionId */
2994  xid = UINT32_ACCESS_ONCE(other_xids[index]);
2995 
2996  if (!TransactionIdIsNormal(xid))
2997  continue;
2998 
2999  if (TransactionIdPrecedes(xid, oldestSafeXid))
3000  oldestSafeXid = xid;
3001  }
3002  }
3003 
3004  LWLockRelease(XidGenLock);
3005 
3006  return oldestSafeXid;
3007 }
3008 
3009 /*
3010  * GetVirtualXIDsDelayingChkpt -- Get the VXIDs of transactions that are
3011  * delaying checkpoint because they have critical actions in progress.
3012  *
3013  * Constructs an array of VXIDs of transactions that are currently in commit
3014  * critical sections, as shown by having specified delayChkptFlags bits set
3015  * in their PGPROC.
3016  *
3017  * Returns a palloc'd array that should be freed by the caller.
3018  * *nvxids is the number of valid entries.
3019  *
3020  * Note that because backends set or clear delayChkptFlags without holding any
3021  * lock, the result is somewhat indeterminate, but we don't really care. Even
3022  * in a multiprocessor with delayed writes to shared memory, it should be
3023  * certain that setting of delayChkptFlags will propagate to shared memory
3024  * when the backend takes a lock, so we cannot fail to see a virtual xact as
3025  * delayChkptFlags if it's already inserted its commit record. Whether it
3026  * takes a little while for clearing of delayChkptFlags to propagate is
3027  * unimportant for correctness.
3028  */
3031 {
3032  VirtualTransactionId *vxids;
3033  ProcArrayStruct *arrayP = procArray;
3034  int count = 0;
3035  int index;
3036 
3037  Assert(type != 0);
3038 
3039  /* allocate what's certainly enough result space */
3040  vxids = (VirtualTransactionId *)
3041  palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs);
3042 
3043  LWLockAcquire(ProcArrayLock, LW_SHARED);
3044 
3045  for (index = 0; index < arrayP->numProcs; index++)
3046  {
3047  int pgprocno = arrayP->pgprocnos[index];
3048  PGPROC *proc = &allProcs[pgprocno];
3049 
3050  if ((proc->delayChkptFlags & type) != 0)
3051  {
3052  VirtualTransactionId vxid;
3053 
3054  GET_VXID_FROM_PGPROC(vxid, *proc);
3055  if (VirtualTransactionIdIsValid(vxid))
3056  vxids[count++] = vxid;
3057  }
3058  }
3059 
3060  LWLockRelease(ProcArrayLock);
3061 
3062  *nvxids = count;
3063  return vxids;
3064 }
3065 
3066 /*
3067  * HaveVirtualXIDsDelayingChkpt -- Are any of the specified VXIDs delaying?
3068  *
3069  * This is used with the results of GetVirtualXIDsDelayingChkpt to see if any
3070  * of the specified VXIDs are still in critical sections of code.
3071  *
3072  * Note: this is O(N^2) in the number of vxacts that are/were delaying, but
3073  * those numbers should be small enough for it not to be a problem.
3074  */
3075 bool
3077 {
3078  bool result = false;
3079  ProcArrayStruct *arrayP = procArray;
3080  int index;
3081 
3082  Assert(type != 0);
3083 
3084  LWLockAcquire(ProcArrayLock, LW_SHARED);
3085 
3086  for (index = 0; index < arrayP->numProcs; index++)
3087  {
3088  int pgprocno = arrayP->pgprocnos[index];
3089  PGPROC *proc = &allProcs[pgprocno];
3090  VirtualTransactionId vxid;
3091 
3092  GET_VXID_FROM_PGPROC(vxid, *proc);
3093 
3094  if ((proc->delayChkptFlags & type) != 0 &&
3096  {
3097  int i;
3098 
3099  for (i = 0; i < nvxids; i++)
3100  {
3101  if (VirtualTransactionIdEquals(vxid, vxids[i]))
3102  {
3103  result = true;
3104  break;
3105  }
3106  }
3107  if (result)
3108  break;
3109  }
3110  }
3111 
3112  LWLockRelease(ProcArrayLock);
3113 
3114  return result;
3115 }
3116 
3117 /*
3118  * ProcNumberGetProc -- get a backend's PGPROC given its proc number
3119  *
3120  * The result may be out of date arbitrarily quickly, so the caller
3121  * must be careful about how this information is used. NULL is
3122  * returned if the backend is not active.
3123  */
3124 PGPROC *
3126 {
3127  PGPROC *result;
3128 
3129  if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
3130  return NULL;
3131  result = GetPGProcByNumber(procNumber);
3132 
3133  if (result->pid == 0)
3134  return NULL;
3135 
3136  return result;
3137 }
3138 
3139 /*
3140  * ProcNumberGetTransactionIds -- get a backend's transaction status
3141  *
3142  * Get the xid, xmin, nsubxid and overflow status of the backend. The
3143  * result may be out of date arbitrarily quickly, so the caller must be
3144  * careful about how this information is used.
3145  */
3146 void
3148  TransactionId *xmin, int *nsubxid, bool *overflowed)
3149 {
3150  PGPROC *proc;
3151 
3152  *xid = InvalidTransactionId;
3153  *xmin = InvalidTransactionId;
3154  *nsubxid = 0;
3155  *overflowed = false;
3156 
3157  if (procNumber < 0 || procNumber >= ProcGlobal->allProcCount)
3158  return;
3159  proc = GetPGProcByNumber(procNumber);
3160 
3161  /* Need to lock out additions/removals of backends */
3162  LWLockAcquire(ProcArrayLock, LW_SHARED);
3163 
3164  if (proc->pid != 0)
3165  {
3166  *xid = proc->xid;
3167  *xmin = proc->xmin;
3168  *nsubxid = proc->subxidStatus.count;
3169  *overflowed = proc->subxidStatus.overflowed;
3170  }
3171 
3172  LWLockRelease(ProcArrayLock);
3173 }
3174 
3175 /*
3176  * BackendPidGetProc -- get a backend's PGPROC given its PID
3177  *
3178  * Returns NULL if not found. Note that it is up to the caller to be
3179  * sure that the question remains meaningful for long enough for the
3180  * answer to be used ...
3181  */
3182 PGPROC *
3184 {
3185  PGPROC *result;
3186 
3187  if (pid == 0) /* never match dummy PGPROCs */
3188  return NULL;
3189 
3190  LWLockAcquire(ProcArrayLock, LW_SHARED);
3191 
3192  result = BackendPidGetProcWithLock(pid);
3193 
3194  LWLockRelease(ProcArrayLock);
3195 
3196  return result;
3197 }
3198 
3199 /*
3200  * BackendPidGetProcWithLock -- get a backend's PGPROC given its PID
3201  *
3202  * Same as above, except caller must be holding ProcArrayLock. The found
3203  * entry, if any, can be assumed to be valid as long as the lock remains held.
3204  */
3205 PGPROC *
3207 {
3208  PGPROC *result = NULL;
3209  ProcArrayStruct *arrayP = procArray;
3210  int index;
3211 
3212  if (pid == 0) /* never match dummy PGPROCs */
3213  return NULL;
3214 
3215  for (index = 0; index < arrayP->numProcs; index++)
3216  {
3217  PGPROC *proc = &allProcs[arrayP->pgprocnos[index]];
3218 
3219  if (proc->pid == pid)
3220  {
3221  result = proc;
3222  break;
3223  }
3224  }
3225 
3226  return result;
3227 }
3228 
3229 /*
3230  * BackendXidGetPid -- get a backend's pid given its XID
3231  *
3232  * Returns 0 if not found or it's a prepared transaction. Note that
3233  * it is up to the caller to be sure that the question remains
3234  * meaningful for long enough for the answer to be used ...
3235  *
3236  * Only main transaction Ids are considered. This function is mainly
3237  * useful for determining what backend owns a lock.
3238  *
3239  * Beware that not every xact has an XID assigned. However, as long as you
3240  * only call this using an XID found on disk, you're safe.
3241  */
3242 int
3244 {
3245  int result = 0;
3246  ProcArrayStruct *arrayP = procArray;
3247  TransactionId *other_xids = ProcGlobal->xids;
3248  int index;
3249 
3250  if (xid == InvalidTransactionId) /* never match invalid xid */
3251  return 0;
3252 
3253  LWLockAcquire(ProcArrayLock, LW_SHARED);
3254 
3255  for (index = 0; index < arrayP->numProcs; index++)
3256  {
3257  if (other_xids[index] == xid)
3258  {
3259  int pgprocno = arrayP->pgprocnos[index];
3260  PGPROC *proc = &allProcs[pgprocno];
3261 
3262  result = proc->pid;
3263  break;
3264  }
3265  }
3266 
3267  LWLockRelease(ProcArrayLock);
3268 
3269  return result;
3270 }
3271 
3272 /*
3273  * IsBackendPid -- is a given pid a running backend
3274  *
3275  * This is not called by the backend, but is called by external modules.
3276  */
3277 bool
3279 {
3280  return (BackendPidGetProc(pid) != NULL);
3281 }
3282 
3283 
3284 /*
3285  * GetCurrentVirtualXIDs -- returns an array of currently active VXIDs.
3286  *
3287  * The array is palloc'd. The number of valid entries is returned into *nvxids.
3288  *
3289  * The arguments allow filtering the set of VXIDs returned. Our own process
3290  * is always skipped. In addition:
3291  * If limitXmin is not InvalidTransactionId, skip processes with
3292  * xmin > limitXmin.
3293  * If excludeXmin0 is true, skip processes with xmin = 0.
3294  * If allDbs is false, skip processes attached to other databases.
3295  * If excludeVacuum isn't zero, skip processes for which
3296  * (statusFlags & excludeVacuum) is not zero.
3297  *
3298  * Note: the purpose of the limitXmin and excludeXmin0 parameters is to
3299  * allow skipping backends whose oldest live snapshot is no older than
3300  * some snapshot we have. Since we examine the procarray with only shared
3301  * lock, there are race conditions: a backend could set its xmin just after
3302  * we look. Indeed, on multiprocessors with weak memory ordering, the
3303  * other backend could have set its xmin *before* we look. We know however
3304  * that such a backend must have held shared ProcArrayLock overlapping our
3305  * own hold of ProcArrayLock, else we would see its xmin update. Therefore,
3306  * any snapshot the other backend is taking concurrently with our scan cannot
3307  * consider any transactions as still running that we think are committed
3308  * (since backends must hold ProcArrayLock exclusive to commit).
3309  */
3311 GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0,
3312  bool allDbs, int excludeVacuum,
3313  int *nvxids)
3314 {
3315  VirtualTransactionId *vxids;
3316  ProcArrayStruct *arrayP = procArray;
3317  int count = 0;
3318  int index;
3319 
3320  /* allocate what's certainly enough result space */
3321  vxids = (VirtualTransactionId *)
3322  palloc(sizeof(VirtualTransactionId) * arrayP->maxProcs);
3323 
3324  LWLockAcquire(ProcArrayLock, LW_SHARED);
3325 
3326  for (index = 0; index < arrayP->numProcs; index++)
3327  {
3328  int pgprocno = arrayP->pgprocnos[index];
3329  PGPROC *proc = &allProcs[pgprocno];
3330  uint8 statusFlags = ProcGlobal->statusFlags[index];
3331 
3332  if (proc == MyProc)
3333  continue;
3334 
3335  if (excludeVacuum & statusFlags)
3336  continue;
3337 
3338  if (allDbs || proc->databaseId == MyDatabaseId)
3339  {
3340  /* Fetch xmin just once - might change on us */
3341  TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
3342 
3343  if (excludeXmin0 && !TransactionIdIsValid(pxmin))
3344  continue;
3345 
3346  /*
3347  * InvalidTransactionId precedes all other XIDs, so a proc that
3348  * hasn't set xmin yet will not be rejected by this test.
3349  */
3350  if (!TransactionIdIsValid(limitXmin) ||
3351  TransactionIdPrecedesOrEquals(pxmin, limitXmin))
3352  {
3353  VirtualTransactionId vxid;
3354 
3355  GET_VXID_FROM_PGPROC(vxid, *proc);
3356  if (VirtualTransactionIdIsValid(vxid))
3357  vxids[count++] = vxid;
3358  }
3359  }
3360  }
3361 
3362  LWLockRelease(ProcArrayLock);
3363 
3364  *nvxids = count;
3365  return vxids;
3366 }
3367 
3368 /*
3369  * GetConflictingVirtualXIDs -- returns an array of currently active VXIDs.
3370  *
3371  * Usage is limited to conflict resolution during recovery on standby servers.
3372  * limitXmin is supplied as either a cutoff with snapshotConflictHorizon
3373  * semantics, or InvalidTransactionId in cases where caller cannot accurately
3374  * determine a safe snapshotConflictHorizon value.
3375  *
3376  * If limitXmin is InvalidTransactionId then we want to kill everybody,
3377  * so we're not worried if they have a snapshot or not, nor does it really
3378  * matter what type of lock we hold. Caller must avoid calling here with
3379  * snapshotConflictHorizon style cutoffs that were set to InvalidTransactionId
3380  * during original execution, since that actually indicates that there is
3381  * definitely no need for a recovery conflict (the snapshotConflictHorizon
3382  * convention for InvalidTransactionId values is the opposite of our own!).
3383  *
3384  * All callers that are checking xmins always now supply a valid and useful
3385  * value for limitXmin. The limitXmin is always lower than the lowest
3386  * numbered KnownAssignedXid that is not already a FATAL error. This is
3387  * because we only care about cleanup records that are cleaning up tuple
3388  * versions from committed transactions. In that case they will only occur
3389  * at the point where the record is less than the lowest running xid. That
3390  * allows us to say that if any backend takes a snapshot concurrently with
3391  * us then the conflict assessment made here would never include the snapshot
3392  * that is being derived. So we take LW_SHARED on the ProcArray and allow
3393  * concurrent snapshots when limitXmin is valid. We might think about adding
3394  * Assert(limitXmin < lowest(KnownAssignedXids))
3395  * but that would not be true in the case of FATAL errors lagging in array,
3396  * but we already know those are bogus anyway, so we skip that test.
3397  *
3398  * If dbOid is valid we skip backends attached to other databases.
3399  *
3400  * Be careful to *not* pfree the result from this function. We reuse
3401  * this array sufficiently often that we use malloc for the result.
3402  */
3405 {
3406  static VirtualTransactionId *vxids;
3407  ProcArrayStruct *arrayP = procArray;
3408  int count = 0;
3409  int index;
3410 
3411  /*
3412  * If first time through, get workspace to remember main XIDs in. We
3413  * malloc it permanently to avoid repeated palloc/pfree overhead. Allow
3414  * result space, remembering room for a terminator.
3415  */
3416  if (vxids == NULL)
3417  {
3418  vxids = (VirtualTransactionId *)
3419  malloc(sizeof(VirtualTransactionId) * (arrayP->maxProcs + 1));
3420  if (vxids == NULL)
3421  ereport(ERROR,
3422  (errcode(ERRCODE_OUT_OF_MEMORY),
3423  errmsg("out of memory")));
3424  }
3425 
3426  LWLockAcquire(ProcArrayLock, LW_SHARED);
3427 
3428  for (index = 0; index < arrayP->numProcs; index++)
3429  {
3430  int pgprocno = arrayP->pgprocnos[index];
3431  PGPROC *proc = &allProcs[pgprocno];
3432 
3433  /* Exclude prepared transactions */
3434  if (proc->pid == 0)
3435  continue;
3436 
3437  if (!OidIsValid(dbOid) ||
3438  proc->databaseId == dbOid)
3439  {
3440  /* Fetch xmin just once - can't change on us, but good coding */
3441  TransactionId pxmin = UINT32_ACCESS_ONCE(proc->xmin);
3442 
3443  /*
3444  * We ignore an invalid pxmin because this means that backend has
3445  * no snapshot currently. We hold a Share lock to avoid contention
3446  * with users taking snapshots. That is not a problem because the
3447  * current xmin is always at least one higher than the latest
3448  * removed xid, so any new snapshot would never conflict with the
3449  * test here.
3450  */
3451  if (!TransactionIdIsValid(limitXmin) ||
3452  (TransactionIdIsValid(pxmin) && !TransactionIdFollows(pxmin, limitXmin)))
3453  {
3454  VirtualTransactionId vxid;
3455 
3456  GET_VXID_FROM_PGPROC(vxid, *proc);
3457  if (VirtualTransactionIdIsValid(vxid))
3458  vxids[count++] = vxid;
3459  }
3460  }
3461  }
3462 
3463  LWLockRelease(ProcArrayLock);
3464 
3465  /* add the terminator */
3466  vxids[count].procNumber = INVALID_PROC_NUMBER;
3468 
3469  return vxids;
3470 }
3471 
3472 /*
3473  * CancelVirtualTransaction - used in recovery conflict processing
3474  *
3475  * Returns pid of the process signaled, or 0 if not found.
3476  */
3477 pid_t
3479 {
3480  return SignalVirtualTransaction(vxid, sigmode, true);
3481 }
3482 
3483 pid_t
3485  bool conflictPending)
3486 {
3487  ProcArrayStruct *arrayP = procArray;
3488  int index;
3489  pid_t pid = 0;
3490 
3491  LWLockAcquire(ProcArrayLock, LW_SHARED);
3492 
3493  for (index = 0; index < arrayP->numProcs; index++)
3494  {
3495  int pgprocno = arrayP->pgprocnos[index];
3496  PGPROC *proc = &allProcs[pgprocno];
3497  VirtualTransactionId procvxid;
3498 
3499  GET_VXID_FROM_PGPROC(procvxid, *proc);
3500 
3501  if (procvxid.procNumber == vxid.procNumber &&
3502  procvxid.localTransactionId == vxid.localTransactionId)
3503  {
3504  proc->recoveryConflictPending = conflictPending;
3505  pid = proc->pid;
3506  if (pid != 0)
3507  {
3508  /*
3509  * Kill the pid if it's still here. If not, that's what we
3510  * wanted so ignore any errors.
3511  */
3512  (void) SendProcSignal(pid, sigmode, vxid.procNumber);
3513  }
3514  break;
3515  }
3516  }
3517 
3518  LWLockRelease(ProcArrayLock);
3519 
3520  return pid;
3521 }
3522 
3523 /*
3524  * MinimumActiveBackends --- count backends (other than myself) that are
3525  * in active transactions. Return true if the count exceeds the
3526  * minimum threshold passed. This is used as a heuristic to decide if
3527  * a pre-XLOG-flush delay is worthwhile during commit.
3528  *
3529  * Do not count backends that are blocked waiting for locks, since they are
3530  * not going to get to run until someone else commits.
3531  */
3532 bool
3534 {
3535  ProcArrayStruct *arrayP = procArray;
3536  int count = 0;
3537  int index;
3538 
3539  /* Quick short-circuit if no minimum is specified */
3540  if (min == 0)
3541  return true;
3542 
3543  /*
3544  * Note: for speed, we don't acquire ProcArrayLock. This is a little bit
3545  * bogus, but since we are only testing fields for zero or nonzero, it
3546  * should be OK. The result is only used for heuristic purposes anyway...
3547  */
3548  for (index = 0; index < arrayP->numProcs; index++)
3549  {
3550  int pgprocno = arrayP->pgprocnos[index];
3551  PGPROC *proc = &allProcs[pgprocno];
3552 
3553  /*
3554  * Since we're not holding a lock, need to be prepared to deal with
3555  * garbage, as someone could have incremented numProcs but not yet
3556  * filled the structure.
3557  *
3558  * If someone just decremented numProcs, 'proc' could also point to a
3559  * PGPROC entry that's no longer in the array. It still points to a
3560  * PGPROC struct, though, because freed PGPROC entries just go to the
3561  * free list and are recycled. Its contents are nonsense in that case,
3562  * but that's acceptable for this function.
3563  */
3564  if (pgprocno == -1)
3565  continue; /* do not count deleted entries */
3566  if (proc == MyProc)
3567  continue; /* do not count myself */
3568  if (proc->xid == InvalidTransactionId)
3569  continue; /* do not count if no XID assigned */
3570  if (proc->pid == 0)
3571  continue; /* do not count prepared xacts */
3572  if (proc->waitLock != NULL)
3573  continue; /* do not count if blocked on a lock */
3574  count++;
3575  if (count >= min)
3576  break;
3577  }
3578 
3579  return count >= min;
3580 }
3581 
3582 /*
3583  * CountDBBackends --- count backends that are using specified database
3584  */
3585 int
3587 {
3588  ProcArrayStruct *arrayP = procArray;
3589  int count = 0;
3590  int index;
3591 
3592  LWLockAcquire(ProcArrayLock, LW_SHARED);
3593 
3594  for (index = 0; index < arrayP->numProcs; index++)
3595  {
3596  int pgprocno = arrayP->pgprocnos[index];
3597  PGPROC *proc = &allProcs[pgprocno];
3598 
3599  if (proc->pid == 0)
3600  continue; /* do not count prepared xacts */
3601  if (!OidIsValid(databaseid) ||
3602  proc->databaseId == databaseid)
3603  count++;
3604  }
3605 
3606  LWLockRelease(ProcArrayLock);
3607 
3608  return count;
3609 }
3610 
3611 /*
3612  * CountDBConnections --- counts database backends ignoring any background
3613  * worker processes
3614  */
3615 int
3617 {
3618  ProcArrayStruct *arrayP = procArray;
3619  int count = 0;
3620  int index;
3621 
3622  LWLockAcquire(ProcArrayLock, LW_SHARED);
3623 
3624  for (index = 0; index < arrayP->numProcs; index++)
3625  {
3626  int pgprocno = arrayP->pgprocnos[index];
3627  PGPROC *proc = &allProcs[pgprocno];
3628 
3629  if (proc->pid == 0)
3630  continue; /* do not count prepared xacts */
3631  if (proc->isBackgroundWorker)
3632  continue; /* do not count background workers */
3633  if (!OidIsValid(databaseid) ||
3634  proc->databaseId == databaseid)
3635  count++;
3636  }
3637 
3638  LWLockRelease(ProcArrayLock);
3639 
3640  return count;
3641 }
3642 
3643 /*
3644  * CancelDBBackends --- cancel backends that are using specified database
3645  */
3646 void
3647 CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending)
3648 {
3649  ProcArrayStruct *arrayP = procArray;
3650  int index;
3651 
3652  /* tell all backends to die */
3653  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3654 
3655  for (index = 0; index < arrayP->numProcs; index++)
3656  {
3657  int pgprocno = arrayP->pgprocnos[index];
3658  PGPROC *proc = &allProcs[pgprocno];
3659 
3660  if (databaseid == InvalidOid || proc->databaseId == databaseid)
3661  {
3662  VirtualTransactionId procvxid;
3663  pid_t pid;
3664 
3665  GET_VXID_FROM_PGPROC(procvxid, *proc);
3666 
3667  proc->recoveryConflictPending = conflictPending;
3668  pid = proc->pid;
3669  if (pid != 0)
3670  {
3671  /*
3672  * Kill the pid if it's still here. If not, that's what we
3673  * wanted so ignore any errors.
3674  */
3675  (void) SendProcSignal(pid, sigmode, procvxid.procNumber);
3676  }
3677  }
3678  }
3679 
3680  LWLockRelease(ProcArrayLock);
3681 }
3682 
3683 /*
3684  * CountUserBackends --- count backends that are used by specified user
3685  */
3686 int
3688 {
3689  ProcArrayStruct *arrayP = procArray;
3690  int count = 0;
3691  int index;
3692 
3693  LWLockAcquire(ProcArrayLock, LW_SHARED);
3694 
3695  for (index = 0; index < arrayP->numProcs; index++)
3696  {
3697  int pgprocno = arrayP->pgprocnos[index];
3698  PGPROC *proc = &allProcs[pgprocno];
3699 
3700  if (proc->pid == 0)
3701  continue; /* do not count prepared xacts */
3702  if (proc->isBackgroundWorker)
3703  continue; /* do not count background workers */
3704  if (proc->roleId == roleid)
3705  count++;
3706  }
3707 
3708  LWLockRelease(ProcArrayLock);
3709 
3710  return count;
3711 }
3712 
3713 /*
3714  * CountOtherDBBackends -- check for other backends running in the given DB
3715  *
3716  * If there are other backends in the DB, we will wait a maximum of 5 seconds
3717  * for them to exit. Autovacuum backends are encouraged to exit early by
3718  * sending them SIGTERM, but normal user backends are just waited for.
3719  *
3720  * The current backend is always ignored; it is caller's responsibility to
3721  * check whether the current backend uses the given DB, if it's important.
3722  *
3723  * Returns true if there are (still) other backends in the DB, false if not.
3724  * Also, *nbackends and *nprepared are set to the number of other backends
3725  * and prepared transactions in the DB, respectively.
3726  *
3727  * This function is used to interlock DROP DATABASE and related commands
3728  * against there being any active backends in the target DB --- dropping the
3729  * DB while active backends remain would be a Bad Thing. Note that we cannot
3730  * detect here the possibility of a newly-started backend that is trying to
3731  * connect to the doomed database, so additional interlocking is needed during
3732  * backend startup. The caller should normally hold an exclusive lock on the
3733  * target DB before calling this, which is one reason we mustn't wait
3734  * indefinitely.
3735  */
3736 bool
3737 CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared)
3738 {
3739  ProcArrayStruct *arrayP = procArray;
3740 
3741 #define MAXAUTOVACPIDS 10 /* max autovacs to SIGTERM per iteration */
3742  int autovac_pids[MAXAUTOVACPIDS];
3743  int tries;
3744 
3745  /* 50 tries with 100ms sleep between tries makes 5 sec total wait */
3746  for (tries = 0; tries < 50; tries++)
3747  {
3748  int nautovacs = 0;
3749  bool found = false;
3750  int index;
3751 
3753 
3754  *nbackends = *nprepared = 0;
3755 
3756  LWLockAcquire(ProcArrayLock, LW_SHARED);
3757 
3758  for (index = 0; index < arrayP->numProcs; index++)
3759  {
3760  int pgprocno = arrayP->pgprocnos[index];
3761  PGPROC *proc = &allProcs[pgprocno];
3762  uint8 statusFlags = ProcGlobal->statusFlags[index];
3763 
3764  if (proc->databaseId != databaseId)
3765  continue;
3766  if (proc == MyProc)
3767  continue;
3768 
3769  found = true;
3770 
3771  if (proc->pid == 0)
3772  (*nprepared)++;
3773  else
3774  {
3775  (*nbackends)++;
3776  if ((statusFlags & PROC_IS_AUTOVACUUM) &&
3777  nautovacs < MAXAUTOVACPIDS)
3778  autovac_pids[nautovacs++] = proc->pid;
3779  }
3780  }
3781 
3782  LWLockRelease(ProcArrayLock);
3783 
3784  if (!found)
3785  return false; /* no conflicting backends, so done */
3786 
3787  /*
3788  * Send SIGTERM to any conflicting autovacuums before sleeping. We
3789  * postpone this step until after the loop because we don't want to
3790  * hold ProcArrayLock while issuing kill(). We have no idea what might
3791  * block kill() inside the kernel...
3792  */
3793  for (index = 0; index < nautovacs; index++)
3794  (void) kill(autovac_pids[index], SIGTERM); /* ignore any error */
3795 
3796  /* sleep, then try again */
3797  pg_usleep(100 * 1000L); /* 100ms */
3798  }
3799 
3800  return true; /* timed out, still conflicts */
3801 }
3802 
3803 /*
3804  * Terminate existing connections to the specified database. This routine
3805  * is used by the DROP DATABASE command when user has asked to forcefully
3806  * drop the database.
3807  *
3808  * The current backend is always ignored; it is caller's responsibility to
3809  * check whether the current backend uses the given DB, if it's important.
3810  *
3811  * It doesn't allow to terminate the connections even if there is a one
3812  * backend with the prepared transaction in the target database.
3813  */
3814 void
3816 {
3817  ProcArrayStruct *arrayP = procArray;
3818  List *pids = NIL;
3819  int nprepared = 0;
3820  int i;
3821 
3822  LWLockAcquire(ProcArrayLock, LW_SHARED);
3823 
3824  for (i = 0; i < procArray->numProcs; i++)
3825  {
3826  int pgprocno = arrayP->pgprocnos[i];
3827  PGPROC *proc = &allProcs[pgprocno];
3828 
3829  if (proc->databaseId != databaseId)
3830  continue;
3831  if (proc == MyProc)
3832  continue;
3833 
3834  if (proc->pid != 0)
3835  pids = lappend_int(pids, proc->pid);
3836  else
3837  nprepared++;
3838  }
3839 
3840  LWLockRelease(ProcArrayLock);
3841 
3842  if (nprepared > 0)
3843  ereport(ERROR,
3844  (errcode(ERRCODE_OBJECT_IN_USE),
3845  errmsg("database \"%s\" is being used by prepared transactions",
3846  get_database_name(databaseId)),
3847  errdetail_plural("There is %d prepared transaction using the database.",
3848  "There are %d prepared transactions using the database.",
3849  nprepared,
3850  nprepared)));
3851 
3852  if (pids)
3853  {
3854  ListCell *lc;
3855 
3856  /*
3857  * Check whether we have the necessary rights to terminate other
3858  * sessions. We don't terminate any session until we ensure that we
3859  * have rights on all the sessions to be terminated. These checks are
3860  * the same as we do in pg_terminate_backend.
3861  *
3862  * In this case we don't raise some warnings - like "PID %d is not a
3863  * PostgreSQL server process", because for us already finished session
3864  * is not a problem.
3865  */
3866  foreach(lc, pids)
3867  {
3868  int pid = lfirst_int(lc);
3869  PGPROC *proc = BackendPidGetProc(pid);
3870 
3871  if (proc != NULL)
3872  {
3873  /* Only allow superusers to signal superuser-owned backends. */
3874  if (superuser_arg(proc->roleId) && !superuser())
3875  ereport(ERROR,
3876  (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
3877  errmsg("permission denied to terminate process"),
3878  errdetail("Only roles with the %s attribute may terminate processes of roles with the %s attribute.",
3879  "SUPERUSER", "SUPERUSER")));
3880 
3881  /* Users can signal backends they have role membership in. */
3882  if (!has_privs_of_role(GetUserId(), proc->roleId) &&
3883  !has_privs_of_role(GetUserId(), ROLE_PG_SIGNAL_BACKEND))
3884  ereport(ERROR,
3885  (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
3886  errmsg("permission denied to terminate process"),
3887  errdetail("Only roles with privileges of the role whose process is being terminated or with privileges of the \"%s\" role may terminate this process.",
3888  "pg_signal_backend")));
3889  }
3890  }
3891 
3892  /*
3893  * There's a race condition here: once we release the ProcArrayLock,
3894  * it's possible for the session to exit before we issue kill. That
3895  * race condition possibility seems too unlikely to worry about. See
3896  * pg_signal_backend.
3897  */
3898  foreach(lc, pids)
3899  {
3900  int pid = lfirst_int(lc);
3901  PGPROC *proc = BackendPidGetProc(pid);
3902 
3903  if (proc != NULL)
3904  {
3905  /*
3906  * If we have setsid(), signal the backend's whole process
3907  * group
3908  */
3909 #ifdef HAVE_SETSID
3910  (void) kill(-pid, SIGTERM);
3911 #else
3912  (void) kill(pid, SIGTERM);
3913 #endif
3914  }
3915  }
3916  }
3917 }
3918 
3919 /*
3920  * ProcArraySetReplicationSlotXmin
3921  *
3922  * Install limits to future computations of the xmin horizon to prevent vacuum
3923  * and HOT pruning from removing affected rows still needed by clients with
3924  * replication slots.
3925  */
3926 void
3928  bool already_locked)
3929 {
3930  Assert(!already_locked || LWLockHeldByMe(ProcArrayLock));
3931 
3932  if (!already_locked)
3933  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3934 
3936  procArray->replication_slot_catalog_xmin = catalog_xmin;
3937 
3938  if (!already_locked)
3939  LWLockRelease(ProcArrayLock);
3940 
3941  elog(DEBUG1, "xmin required by slots: data %u, catalog %u",
3942  xmin, catalog_xmin);
3943 }
3944 
3945 /*
3946  * ProcArrayGetReplicationSlotXmin
3947  *
3948  * Return the current slot xmin limits. That's useful to be able to remove
3949  * data that's older than those limits.
3950  */
3951 void
3953  TransactionId *catalog_xmin)
3954 {
3955  LWLockAcquire(ProcArrayLock, LW_SHARED);
3956 
3957  if (xmin != NULL)
3959 
3960  if (catalog_xmin != NULL)
3961  *catalog_xmin = procArray->replication_slot_catalog_xmin;
3962 
3963  LWLockRelease(ProcArrayLock);
3964 }
3965 
3966 /*
3967  * XidCacheRemoveRunningXids
3968  *
3969  * Remove a bunch of TransactionIds from the list of known-running
3970  * subtransactions for my backend. Both the specified xid and those in
3971  * the xids[] array (of length nxids) are removed from the subxids cache.
3972  * latestXid must be the latest XID among the group.
3973  */
3974 void
3976  int nxids, const TransactionId *xids,
3977  TransactionId latestXid)
3978 {
3979  int i,
3980  j;
3981  XidCacheStatus *mysubxidstat;
3982 
3984 
3985  /*
3986  * We must hold ProcArrayLock exclusively in order to remove transactions
3987  * from the PGPROC array. (See src/backend/access/transam/README.) It's
3988  * possible this could be relaxed since we know this routine is only used
3989  * to abort subtransactions, but pending closer analysis we'd best be
3990  * conservative.
3991  *
3992  * Note that we do not have to be careful about memory ordering of our own
3993  * reads wrt. GetNewTransactionId() here - only this process can modify
3994  * relevant fields of MyProc/ProcGlobal->xids[]. But we do have to be
3995  * careful about our own writes being well ordered.
3996  */
3997  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
3998 
3999  mysubxidstat = &ProcGlobal->subxidStates[MyProc->pgxactoff];
4000 
4001  /*
4002  * Under normal circumstances xid and xids[] will be in increasing order,
4003  * as will be the entries in subxids. Scan backwards to avoid O(N^2)
4004  * behavior when removing a lot of xids.
4005  */
4006  for (i = nxids - 1; i >= 0; i--)
4007  {
4008  TransactionId anxid = xids[i];
4009 
4010  for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
4011  {
4012  if (TransactionIdEquals(MyProc->subxids.xids[j], anxid))
4013  {
4015  pg_write_barrier();
4016  mysubxidstat->count--;
4018  break;
4019  }
4020  }
4021 
4022  /*
4023  * Ordinarily we should have found it, unless the cache has
4024  * overflowed. However it's also possible for this routine to be
4025  * invoked multiple times for the same subtransaction, in case of an
4026  * error during AbortSubTransaction. So instead of Assert, emit a
4027  * debug warning.
4028  */
4029  if (j < 0 && !MyProc->subxidStatus.overflowed)
4030  elog(WARNING, "did not find subXID %u in MyProc", anxid);
4031  }
4032 
4033  for (j = MyProc->subxidStatus.count - 1; j >= 0; j--)
4034  {
4035  if (TransactionIdEquals(MyProc->subxids.xids[j], xid))
4036  {
4038  pg_write_barrier();
4039  mysubxidstat->count--;
4041  break;
4042  }
4043  }
4044  /* Ordinarily we should have found it, unless the cache has overflowed */
4045  if (j < 0 && !MyProc->subxidStatus.overflowed)
4046  elog(WARNING, "did not find subXID %u in MyProc", xid);
4047 
4048  /* Also advance global latestCompletedXid while holding the lock */
4049  MaintainLatestCompletedXid(latestXid);
4050 
4051  /* ... and xactCompletionCount */
4053 
4054  LWLockRelease(ProcArrayLock);
4055 }
4056 
4057 #ifdef XIDCACHE_DEBUG
4058 
4059 /*
4060  * Print stats about effectiveness of XID cache
4061  */
4062 static void
4063 DisplayXidCache(void)
4064 {
4065  fprintf(stderr,
4066  "XidCache: xmin: %ld, known: %ld, myxact: %ld, latest: %ld, mainxid: %ld, childxid: %ld, knownassigned: %ld, nooflo: %ld, slow: %ld\n",
4067  xc_by_recent_xmin,
4068  xc_by_known_xact,
4069  xc_by_my_xact,
4070  xc_by_latest_xid,
4071  xc_by_main_xid,
4072  xc_by_child_xid,
4073  xc_by_known_assigned,
4074  xc_no_overflow,
4075  xc_slow_answer);
4076 }
4077 #endif /* XIDCACHE_DEBUG */
4078 
4079 /*
4080  * If rel != NULL, return test state appropriate for relation, otherwise
4081  * return state usable for all relations. The latter may consider XIDs as
4082  * not-yet-visible-to-everyone that a state for a specific relation would
4083  * already consider visible-to-everyone.
4084  *
4085  * This needs to be called while a snapshot is active or registered, otherwise
4086  * there are wraparound and other dangers.
4087  *
4088  * See comment for GlobalVisState for details.
4089  */
4092 {
4093  GlobalVisState *state = NULL;
4094 
4095  /* XXX: we should assert that a snapshot is pushed or registered */
4096  Assert(RecentXmin);
4097 
4098  switch (GlobalVisHorizonKindForRel(rel))
4099  {
4100  case VISHORIZON_SHARED:
4102  break;
4103  case VISHORIZON_CATALOG:
4105  break;
4106  case VISHORIZON_DATA:
4108  break;
4109  case VISHORIZON_TEMP:
4111  break;
4112  }
4113 
4114  Assert(FullTransactionIdIsValid(state->definitely_needed) &&
4115  FullTransactionIdIsValid(state->maybe_needed));
4116 
4117  return state;
4118 }
4119 
4120 /*
4121  * Return true if it's worth updating the accurate maybe_needed boundary.
4122  *
4123  * As it is somewhat expensive to determine xmin horizons, we don't want to
4124  * repeatedly do so when there is a low likelihood of it being beneficial.
4125  *
4126  * The current heuristic is that we update only if RecentXmin has changed
4127  * since the last update. If the oldest currently running transaction has not
4128  * finished, it is unlikely that recomputing the horizon would be useful.
4129  */
4130 static bool
4132 {
4133  /* hasn't been updated yet */
4135  return true;
4136 
4137  /*
4138  * If the maybe_needed/definitely_needed boundaries are the same, it's
4139  * unlikely to be beneficial to refresh boundaries.
4140  */
4141  if (FullTransactionIdFollowsOrEquals(state->maybe_needed,
4142  state->definitely_needed))
4143  return false;
4144 
4145  /* does the last snapshot built have a different xmin? */
4147 }
4148 
4149 static void
4151 {
4154  horizons->shared_oldest_nonremovable);
4157  horizons->catalog_oldest_nonremovable);
4160  horizons->data_oldest_nonremovable);
4163  horizons->temp_oldest_nonremovable);
4164 
4165  /*
4166  * In longer running transactions it's possible that transactions we
4167  * previously needed to treat as running aren't around anymore. So update
4168  * definitely_needed to not be earlier than maybe_needed.
4169  */
4180 
4182 }
4183 
4184 /*
4185  * Update boundaries in GlobalVis{Shared,Catalog, Data}Rels
4186  * using ComputeXidHorizons().
4187  */
4188 static void
4190 {
4191  ComputeXidHorizonsResult horizons;
4192 
4193  /* updates the horizons as a side-effect */
4194  ComputeXidHorizons(&horizons);
4195 }
4196 
4197 /*
4198  * Return true if no snapshot still considers fxid to be running.
4199  *
4200  * The state passed needs to have been initialized for the relation fxid is
4201  * from (NULL is also OK), otherwise the result may not be correct.
4202  *
4203  * See comment for GlobalVisState for details.
4204  */
4205 bool
4207  FullTransactionId fxid)
4208 {
4209  /*
4210  * If fxid is older than maybe_needed bound, it definitely is visible to
4211  * everyone.
4212  */
4213  if (FullTransactionIdPrecedes(fxid, state->maybe_needed))
4214  return true;
4215 
4216  /*
4217  * If fxid is >= definitely_needed bound, it is very likely to still be
4218  * considered running.
4219  */
4220  if (FullTransactionIdFollowsOrEquals(fxid, state->definitely_needed))
4221  return false;
4222 
4223  /*
4224  * fxid is between maybe_needed and definitely_needed, i.e. there might or
4225  * might not exist a snapshot considering fxid running. If it makes sense,
4226  * update boundaries and recheck.
4227  */
4229  {
4230  GlobalVisUpdate();
4231 
4232  Assert(FullTransactionIdPrecedes(fxid, state->definitely_needed));
4233 
4234  return FullTransactionIdPrecedes(fxid, state->maybe_needed);
4235  }
4236  else
4237  return false;
4238 }
4239 
4240 /*
4241  * Wrapper around GlobalVisTestIsRemovableFullXid() for 32bit xids.
4242  *
4243  * It is crucial that this only gets called for xids from a source that
4244  * protects against xid wraparounds (e.g. from a table and thus protected by
4245  * relfrozenxid).
4246  */
4247 bool
4249 {
4250  FullTransactionId fxid;
4251 
4252  /*
4253  * Convert 32 bit argument to FullTransactionId. We can do so safely
4254  * because we know the xid has to, at the very least, be between
4255  * [oldestXid, nextXid), i.e. within 2 billion of xid. To avoid taking a
4256  * lock to determine either, we can just compare with
4257  * state->definitely_needed, which was based on those value at the time
4258  * the current snapshot was built.
4259  */
4260  fxid = FullXidRelativeTo(state->definitely_needed, xid);
4261 
4262  return GlobalVisTestIsRemovableFullXid(state, fxid);
4263 }
4264 
4265 /*
4266  * Convenience wrapper around GlobalVisTestFor() and
4267  * GlobalVisTestIsRemovableFullXid(), see their comments.
4268  */
4269 bool
4271 {
4273 
4274  state = GlobalVisTestFor(rel);
4275 
4276  return GlobalVisTestIsRemovableFullXid(state, fxid);
4277 }
4278 
4279 /*
4280  * Convenience wrapper around GlobalVisTestFor() and
4281  * GlobalVisTestIsRemovableXid(), see their comments.
4282  */
4283 bool
4285 {
4287 
4288  state = GlobalVisTestFor(rel);
4289 
4290  return GlobalVisTestIsRemovableXid(state, xid);
4291 }
4292 
4293 /*
4294  * Convert a 32 bit transaction id into 64 bit transaction id, by assuming it
4295  * is within MaxTransactionId / 2 of XidFromFullTransactionId(rel).
4296  *
4297  * Be very careful about when to use this function. It can only safely be used
4298  * when there is a guarantee that xid is within MaxTransactionId / 2 xids of
4299  * rel. That e.g. can be guaranteed if the caller assures a snapshot is
4300  * held by the backend and xid is from a table (where vacuum/freezing ensures
4301  * the xid has to be within that range), or if xid is from the procarray and
4302  * prevents xid wraparound that way.
4303  */
4304 static inline FullTransactionId
4306 {
4307  TransactionId rel_xid = XidFromFullTransactionId(rel);
4308 
4310  Assert(TransactionIdIsValid(rel_xid));
4311 
4312  /* not guaranteed to find issues, but likely to catch mistakes */
4314 
4316  + (int32) (xid - rel_xid));
4317 }
4318 
4319 
4320 /* ----------------------------------------------
4321  * KnownAssignedTransactionIds sub-module
4322  * ----------------------------------------------
4323  */
4324 
4325 /*
4326  * In Hot Standby mode, we maintain a list of transactions that are (or were)
4327  * running on the primary at the current point in WAL. These XIDs must be
4328  * treated as running by standby transactions, even though they are not in
4329  * the standby server's PGPROC array.
4330  *
4331  * We record all XIDs that we know have been assigned. That includes all the
4332  * XIDs seen in WAL records, plus all unobserved XIDs that we can deduce have
4333  * been assigned. We can deduce the existence of unobserved XIDs because we
4334  * know XIDs are assigned in sequence, with no gaps. The KnownAssignedXids
4335  * list expands as new XIDs are observed or inferred, and contracts when
4336  * transaction completion records arrive.
4337  *
4338  * During hot standby we do not fret too much about the distinction between
4339  * top-level XIDs and subtransaction XIDs. We store both together in the
4340  * KnownAssignedXids list. In backends, this is copied into snapshots in
4341  * GetSnapshotData(), taking advantage of the fact that XidInMVCCSnapshot()
4342  * doesn't care about the distinction either. Subtransaction XIDs are
4343  * effectively treated as top-level XIDs and in the typical case pg_subtrans
4344  * links are *not* maintained (which does not affect visibility).
4345  *
4346  * We have room in KnownAssignedXids and in snapshots to hold maxProcs *
4347  * (1 + PGPROC_MAX_CACHED_SUBXIDS) XIDs, so every primary transaction must
4348  * report its subtransaction XIDs in a WAL XLOG_XACT_ASSIGNMENT record at
4349  * least every PGPROC_MAX_CACHED_SUBXIDS. When we receive one of these
4350  * records, we mark the subXIDs as children of the top XID in pg_subtrans,
4351  * and then remove them from KnownAssignedXids. This prevents overflow of
4352  * KnownAssignedXids and snapshots, at the cost that status checks for these
4353  * subXIDs will take a slower path through TransactionIdIsInProgress().
4354  * This means that KnownAssignedXids is not necessarily complete for subXIDs,
4355  * though it should be complete for top-level XIDs; this is the same situation
4356  * that holds with respect to the PGPROC entries in normal running.
4357  *
4358  * When we throw away subXIDs from KnownAssignedXids, we need to keep track of
4359  * that, similarly to tracking overflow of a PGPROC's subxids array. We do
4360  * that by remembering the lastOverflowedXid, ie the last thrown-away subXID.
4361  * As long as that is within the range of interesting XIDs, we have to assume
4362  * that subXIDs are missing from snapshots. (Note that subXID overflow occurs
4363  * on primary when 65th subXID arrives, whereas on standby it occurs when 64th
4364  * subXID arrives - that is not an error.)
4365  *
4366  * Should a backend on primary somehow disappear before it can write an abort
4367  * record, then we just leave those XIDs in KnownAssignedXids. They actually
4368  * aborted but we think they were running; the distinction is irrelevant
4369  * because either way any changes done by the transaction are not visible to
4370  * backends in the standby. We prune KnownAssignedXids when
4371  * XLOG_RUNNING_XACTS arrives, to forestall possible overflow of the
4372  * array due to such dead XIDs.
4373  */
4374 
4375 /*
4376  * RecordKnownAssignedTransactionIds
4377  * Record the given XID in KnownAssignedXids, as well as any preceding
4378  * unobserved XIDs.
4379  *
4380  * RecordKnownAssignedTransactionIds() should be run for *every* WAL record
4381  * associated with a transaction. Must be called for each record after we
4382  * have executed StartupCLOG() et al, since we must ExtendCLOG() etc..
4383  *
4384  * Called during recovery in analogy with and in place of GetNewTransactionId()
4385  */
4386 void
4388 {
4392 
4393  elog(DEBUG4, "record known xact %u latestObservedXid %u",
4394  xid, latestObservedXid);
4395 
4396  /*
4397  * When a newly observed xid arrives, it is frequently the case that it is
4398  * *not* the next xid in sequence. When this occurs, we must treat the
4399  * intervening xids as running also.
4400  */
4402  {
4403  TransactionId next_expected_xid;
4404 
4405  /*
4406  * Extend subtrans like we do in GetNewTransactionId() during normal
4407  * operation using individual extend steps. Note that we do not need
4408  * to extend clog since its extensions are WAL logged.
4409  *
4410  * This part has to be done regardless of standbyState since we
4411  * immediately start assigning subtransactions to their toplevel
4412  * transactions.
4413  */
4414  next_expected_xid = latestObservedXid;
4415  while (TransactionIdPrecedes(next_expected_xid, xid))
4416  {
4417  TransactionIdAdvance(next_expected_xid);
4418  ExtendSUBTRANS(next_expected_xid);
4419  }
4420  Assert(next_expected_xid == xid);
4421 
4422  /*
4423  * If the KnownAssignedXids machinery isn't up yet, there's nothing
4424  * more to do since we don't track assigned xids yet.
4425  */
4427  {
4428  latestObservedXid = xid;
4429  return;
4430  }
4431 
4432  /*
4433  * Add (latestObservedXid, xid] onto the KnownAssignedXids array.
4434  */
4435  next_expected_xid = latestObservedXid;
4436  TransactionIdAdvance(next_expected_xid);
4437  KnownAssignedXidsAdd(next_expected_xid, xid, false);
4438 
4439  /*
4440  * Now we can advance latestObservedXid
4441  */
4442  latestObservedXid = xid;
4443 
4444  /* TransamVariables->nextXid must be beyond any observed xid */
4446  }
4447 }
4448 
4449 /*
4450  * ExpireTreeKnownAssignedTransactionIds
4451  * Remove the given XIDs from KnownAssignedXids.
4452  *
4453  * Called during recovery in analogy with and in place of ProcArrayEndTransaction()
4454  */
4455 void
4457  TransactionId *subxids, TransactionId max_xid)
4458 {
4460 
4461  /*
4462  * Uses same locking as transaction commit
4463  */
4464  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4465 
4466  KnownAssignedXidsRemoveTree(xid, nsubxids, subxids);
4467 
4468  /* As in ProcArrayEndTransaction, advance latestCompletedXid */
4470 
4471  /* ... and xactCompletionCount */
4473 
4474  LWLockRelease(ProcArrayLock);
4475 }
4476 
4477 /*
4478  * ExpireAllKnownAssignedTransactionIds
4479  * Remove all entries in KnownAssignedXids and reset lastOverflowedXid.
4480  */
4481 void
4483 {
4484  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4486 
4487  /*
4488  * Reset lastOverflowedXid. Currently, lastOverflowedXid has no use after
4489  * the call of this function. But do this for unification with what
4490  * ExpireOldKnownAssignedTransactionIds() do.
4491  */
4493  LWLockRelease(ProcArrayLock);
4494 }
4495 
4496 /*
4497  * ExpireOldKnownAssignedTransactionIds
4498  * Remove KnownAssignedXids entries preceding the given XID and
4499  * potentially reset lastOverflowedXid.
4500  */
4501 void
4503 {
4504  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4505 
4506  /*
4507  * Reset lastOverflowedXid if we know all transactions that have been
4508  * possibly running are being gone. Not doing so could cause an incorrect
4509  * lastOverflowedXid value, which makes extra snapshots be marked as
4510  * suboverflowed.
4511  */
4515  LWLockRelease(ProcArrayLock);
4516 }
4517 
4518 /*
4519  * KnownAssignedTransactionIdsIdleMaintenance
4520  * Opportunistically do maintenance work when the startup process
4521  * is about to go idle.
4522  */
4523 void
4525 {
4527 }
4528 
4529 
4530 /*
4531  * Private module functions to manipulate KnownAssignedXids
4532  *
4533  * There are 5 main uses of the KnownAssignedXids data structure:
4534  *
4535  * * backends taking snapshots - all valid XIDs need to be copied out
4536  * * backends seeking to determine presence of a specific XID
4537  * * startup process adding new known-assigned XIDs
4538  * * startup process removing specific XIDs as transactions end
4539  * * startup process pruning array when special WAL records arrive
4540  *
4541  * This data structure is known to be a hot spot during Hot Standby, so we
4542  * go to some lengths to make these operations as efficient and as concurrent
4543  * as possible.
4544  *
4545  * The XIDs are stored in an array in sorted order --- TransactionIdPrecedes
4546  * order, to be exact --- to allow binary search for specific XIDs. Note:
4547  * in general TransactionIdPrecedes would not provide a total order, but
4548  * we know that the entries present at any instant should not extend across
4549  * a large enough fraction of XID space to wrap around (the primary would
4550  * shut down for fear of XID wrap long before that happens). So it's OK to
4551  * use TransactionIdPrecedes as a binary-search comparator.
4552  *
4553  * It's cheap to maintain the sortedness during insertions, since new known
4554  * XIDs are always reported in XID order; we just append them at the right.
4555  *
4556  * To keep individual deletions cheap, we need to allow gaps in the array.
4557  * This is implemented by marking array elements as valid or invalid using
4558  * the parallel boolean array KnownAssignedXidsValid[]. A deletion is done
4559  * by setting KnownAssignedXidsValid[i] to false, *without* clearing the
4560  * XID entry itself. This preserves the property that the XID entries are
4561  * sorted, so we can do binary searches easily. Periodically we compress
4562  * out the unused entries; that's much cheaper than having to compress the
4563  * array immediately on every deletion.
4564  *
4565  * The actually valid items in KnownAssignedXids[] and KnownAssignedXidsValid[]
4566  * are those with indexes tail <= i < head; items outside this subscript range
4567  * have unspecified contents. When head reaches the end of the array, we
4568  * force compression of unused entries rather than wrapping around, since
4569  * allowing wraparound would greatly complicate the search logic. We maintain
4570  * an explicit tail pointer so that pruning of old XIDs can be done without
4571  * immediately moving the array contents. In most cases only a small fraction
4572  * of the array contains valid entries at any instant.
4573  *
4574  * Although only the startup process can ever change the KnownAssignedXids
4575  * data structure, we still need interlocking so that standby backends will
4576  * not observe invalid intermediate states. The convention is that backends
4577  * must hold shared ProcArrayLock to examine the array. To remove XIDs from
4578  * the array, the startup process must hold ProcArrayLock exclusively, for
4579  * the usual transactional reasons (compare commit/abort of a transaction
4580  * during normal running). Compressing unused entries out of the array
4581  * likewise requires exclusive lock. To add XIDs to the array, we just insert
4582  * them into slots to the right of the head pointer and then advance the head
4583  * pointer. This doesn't require any lock at all, but on machines with weak
4584  * memory ordering, we need to be careful that other processors see the array
4585  * element changes before they see the head pointer change. We handle this by
4586  * using memory barriers when reading or writing the head/tail pointers (unless
4587  * the caller holds ProcArrayLock exclusively).
4588  *
4589  * Algorithmic analysis:
4590  *
4591  * If we have a maximum of M slots, with N XIDs currently spread across
4592  * S elements then we have N <= S <= M always.
4593  *
4594  * * Adding a new XID is O(1) and needs no lock (unless compression must
4595  * happen)
4596  * * Compressing the array is O(S) and requires exclusive lock
4597  * * Removing an XID is O(logS) and requires exclusive lock
4598  * * Taking a snapshot is O(S) and requires shared lock
4599  * * Checking for an XID is O(logS) and requires shared lock
4600  *
4601  * In comparison, using a hash table for KnownAssignedXids would mean that
4602  * taking snapshots would be O(M). If we can maintain S << M then the
4603  * sorted array technique will deliver significantly faster snapshots.
4604  * If we try to keep S too small then we will spend too much time compressing,
4605  * so there is an optimal point for any workload mix. We use a heuristic to
4606  * decide when to compress the array, though trimming also helps reduce
4607  * frequency of compressing. The heuristic requires us to track the number of
4608  * currently valid XIDs in the array (N). Except in special cases, we'll
4609  * compress when S >= 2N. Bounding S at 2N in turn bounds the time for
4610  * taking a snapshot to be O(N), which it would have to be anyway.
4611  */
4612 
4613 
4614 /*
4615  * Compress KnownAssignedXids by shifting valid data down to the start of the
4616  * array, removing any gaps.
4617  *
4618  * A compression step is forced if "reason" is KAX_NO_SPACE, otherwise
4619  * we do it only if a heuristic indicates it's a good time to do it.
4620  *
4621  * Compression requires holding ProcArrayLock in exclusive mode.
4622  * Caller must pass haveLock = true if it already holds the lock.
4623  */
4624 static void
4626 {
4627  ProcArrayStruct *pArray = procArray;
4628  int head,
4629  tail,
4630  nelements;
4631  int compress_index;
4632  int i;
4633 
4634  /* Counters for compression heuristics */
4635  static unsigned int transactionEndsCounter;
4636  static TimestampTz lastCompressTs;
4637 
4638  /* Tuning constants */
4639 #define KAX_COMPRESS_FREQUENCY 128 /* in transactions */
4640 #define KAX_COMPRESS_IDLE_INTERVAL 1000 /* in ms */
4641 
4642  /*
4643  * Since only the startup process modifies the head/tail pointers, we
4644  * don't need a lock to read them here.
4645  */
4646  head = pArray->headKnownAssignedXids;
4647  tail = pArray->tailKnownAssignedXids;
4648  nelements = head - tail;
4649 
4650  /*
4651  * If we can choose whether to compress, use a heuristic to avoid
4652  * compressing too often or not often enough. "Compress" here simply
4653  * means moving the values to the beginning of the array, so it is not as
4654  * complex or costly as typical data compression algorithms.
4655  */
4656  if (nelements == pArray->numKnownAssignedXids)
4657  {
4658  /*
4659  * When there are no gaps between head and tail, don't bother to
4660  * compress, except in the KAX_NO_SPACE case where we must compress to
4661  * create some space after the head.
4662  */
4663  if (reason != KAX_NO_SPACE)
4664  return;
4665  }
4666  else if (reason == KAX_TRANSACTION_END)
4667  {
4668  /*
4669  * Consider compressing only once every so many commits. Frequency
4670  * determined by benchmarks.
4671  */
4672  if ((transactionEndsCounter++) % KAX_COMPRESS_FREQUENCY != 0)
4673  return;
4674 
4675  /*
4676  * Furthermore, compress only if the used part of the array is less
4677  * than 50% full (see comments above).
4678  */
4679  if (nelements < 2 * pArray->numKnownAssignedXids)
4680  return;
4681  }
4682  else if (reason == KAX_STARTUP_PROCESS_IDLE)
4683  {
4684  /*
4685  * We're about to go idle for lack of new WAL, so we might as well
4686  * compress. But not too often, to avoid ProcArray lock contention
4687  * with readers.
4688  */
4689  if (lastCompressTs != 0)
4690  {
4691  TimestampTz compress_after;
4692 
4693  compress_after = TimestampTzPlusMilliseconds(lastCompressTs,
4695  if (GetCurrentTimestamp() < compress_after)
4696  return;
4697  }
4698  }
4699 
4700  /* Need to compress, so get the lock if we don't have it. */
4701  if (!haveLock)
4702  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
4703 
4704  /*
4705  * We compress the array by reading the valid values from tail to head,
4706  * re-aligning data to 0th element.
4707  */
4708  compress_index = 0;
4709  for (i = tail; i < head; i++)
4710  {
4712  {
4713  KnownAssignedXids[compress_index] = KnownAssignedXids[i];
4714  KnownAssignedXidsValid[compress_index] = true;
4715  compress_index++;
4716  }
4717  }
4718  Assert(compress_index == pArray->numKnownAssignedXids);
4719 
4720  pArray->tailKnownAssignedXids = 0;
4721  pArray->headKnownAssignedXids = compress_index;
4722 
4723  if (!haveLock)
4724  LWLockRelease(ProcArrayLock);
4725 
4726  /* Update timestamp for maintenance. No need to hold lock for this. */
4727  lastCompressTs = GetCurrentTimestamp();
4728 }
4729 
4730 /*
4731  * Add xids into KnownAssignedXids at the head of the array.
4732  *
4733  * xids from from_xid to to_xid, inclusive, are added to the array.
4734  *
4735  * If exclusive_lock is true then caller already holds ProcArrayLock in
4736  * exclusive mode, so we need no extra locking here. Else caller holds no
4737  * lock, so we need to be sure we maintain sufficient interlocks against
4738  * concurrent readers. (Only the startup process ever calls this, so no need
4739  * to worry about concurrent writers.)
4740  */
4741 static void
4743  bool exclusive_lock)
4744 {
4745  ProcArrayStruct *pArray = procArray;
4746  TransactionId next_xid;
4747  int head,
4748  tail;
4749  int nxids;
4750  int i;
4751 
4752  Assert(TransactionIdPrecedesOrEquals(from_xid, to_xid));
4753 
4754  /*
4755  * Calculate how many array slots we'll need. Normally this is cheap; in
4756  * the unusual case where the XIDs cross the wrap point, we do it the hard
4757  * way.
4758  */
4759  if (to_xid >= from_xid)
4760  nxids = to_xid - from_xid + 1;
4761  else
4762  {
4763  nxids = 1;
4764  next_xid = from_xid;
4765  while (TransactionIdPrecedes(next_xid, to_xid))
4766  {
4767  nxids++;
4768  TransactionIdAdvance(next_xid);
4769  }
4770  }
4771 
4772  /*
4773  * Since only the startup process modifies the head/tail pointers, we
4774  * don't need a lock to read them here.
4775  */
4776  head = pArray->headKnownAssignedXids;
4777  tail = pArray->tailKnownAssignedXids;
4778 
4779  Assert(head >= 0 && head <= pArray->maxKnownAssignedXids);
4780  Assert(tail >= 0 && tail < pArray->maxKnownAssignedXids);
4781 
4782  /*
4783  * Verify that insertions occur in TransactionId sequence. Note that even
4784  * if the last existing element is marked invalid, it must still have a
4785  * correctly sequenced XID value.
4786  */
4787  if (head > tail &&
4788  TransactionIdFollowsOrEquals(KnownAssignedXids[head - 1], from_xid))
4789  {
4791  elog(ERROR, "out-of-order XID insertion in KnownAssignedXids");
4792  }
4793 
4794  /*
4795  * If our xids won't fit in the remaining space, compress out free space
4796  */
4797  if (head + nxids > pArray->maxKnownAssignedXids)
4798  {
4799  KnownAssignedXidsCompress(KAX_NO_SPACE, exclusive_lock);
4800 
4801  head = pArray->headKnownAssignedXids;
4802  /* note: we no longer care about the tail pointer */
4803 
4804  /*
4805  * If it still won't fit then we're out of memory
4806  */
4807  if (head + nxids > pArray->maxKnownAssignedXids)
4808  elog(ERROR, "too many KnownAssignedXids");
4809  }
4810 
4811  /* Now we can insert the xids into the space starting at head */
4812  next_xid = from_xid;
4813  for (i = 0; i < nxids; i++)
4814  {
4815  KnownAssignedXids[head] = next_xid;
4816  KnownAssignedXidsValid[head] = true;
4817  TransactionIdAdvance(next_xid);
4818  head++;
4819  }
4820 
4821  /* Adjust count of number of valid entries */
4822  pArray->numKnownAssignedXids += nxids;
4823 
4824  /*
4825  * Now update the head pointer. We use a write barrier to ensure that
4826  * other processors see the above array updates before they see the head
4827  * pointer change. The barrier isn't required if we're holding
4828  * ProcArrayLock exclusively.
4829  */
4830  if (!exclusive_lock)
4831  pg_write_barrier();
4832 
4833  pArray->headKnownAssignedXids = head;
4834 }
4835 
4836 /*
4837  * KnownAssignedXidsSearch
4838  *
4839  * Searches KnownAssignedXids for a specific xid and optionally removes it.
4840  * Returns true if it was found, false if not.
4841  *
4842  * Caller must hold ProcArrayLock in shared or exclusive mode.
4843  * Exclusive lock must be held for remove = true.
4844  */
4845 static bool
4847 {
4848  ProcArrayStruct *pArray = procArray;
4849  int first,
4850  last;
4851  int head;
4852  int tail;
4853  int result_index = -1;
4854 
4855  tail = pArray->tailKnownAssignedXids;
4856  head = pArray->headKnownAssignedXids;
4857 
4858  /*
4859  * Only the startup process removes entries, so we don't need the read
4860  * barrier in that case.
4861  */
4862  if (!remove)
4863  pg_read_barrier(); /* pairs with KnownAssignedXidsAdd */
4864 
4865  /*
4866  * Standard binary search. Note we can ignore the KnownAssignedXidsValid
4867  * array here, since even invalid entries will contain sorted XIDs.
4868  */
4869  first = tail;
4870  last = head - 1;
4871  while (first <= last)
4872  {
4873  int mid_index;
4874  TransactionId mid_xid;
4875 
4876  mid_index = (first + last) / 2;
4877  mid_xid = KnownAssignedXids[mid_index];
4878 
4879  if (xid == mid_xid)
4880  {
4881  result_index = mid_index;
4882  break;
4883  }
4884  else if (TransactionIdPrecedes(xid, mid_xid))
4885  last = mid_index - 1;
4886  else
4887  first = mid_index + 1;
4888  }
4889 
4890  if (result_index < 0)
4891  return false; /* not in array */
4892 
4893  if (!KnownAssignedXidsValid[result_index])
4894  return false; /* in array, but invalid */
4895 
4896  if (remove)
4897  {
4898  KnownAssignedXidsValid[result_index] = false;
4899 
4900  pArray->numKnownAssignedXids--;
4901  Assert(pArray->numKnownAssignedXids >= 0);
4902 
4903  /*
4904  * If we're removing the tail element then advance tail pointer over
4905  * any invalid elements. This will speed future searches.
4906  */
4907  if (result_index == tail)
4908  {
4909  tail++;
4910  while (tail < head && !KnownAssignedXidsValid[tail])
4911  tail++;
4912  if (tail >= head)
4913  {
4914  /* Array is empty, so we can reset both pointers */
4915  pArray->headKnownAssignedXids = 0;
4916  pArray->tailKnownAssignedXids = 0;
4917  }
4918  else
4919  {
4920  pArray->tailKnownAssignedXids = tail;
4921  }
4922  }
4923  }
4924 
4925  return true;
4926 }
4927 
4928 /*
4929  * Is the specified XID present in KnownAssignedXids[]?
4930  *
4931  * Caller must hold ProcArrayLock in shared or exclusive mode.
4932  */
4933 static bool
4935 {
4937 
4938  return KnownAssignedXidsSearch(xid, false);
4939 }
4940 
4941 /*
4942  * Remove the specified XID from KnownAssignedXids[].
4943  *
4944  * Caller must hold ProcArrayLock in exclusive mode.
4945  */
4946 static void
4948 {
4950 
4951  elog(DEBUG4, "remove KnownAssignedXid %u", xid);
4952 
4953  /*
4954  * Note: we cannot consider it an error to remove an XID that's not
4955  * present. We intentionally remove subxact IDs while processing
4956  * XLOG_XACT_ASSIGNMENT, to avoid array overflow. Then those XIDs will be
4957  * removed again when the top-level xact commits or aborts.
4958  *
4959  * It might be possible to track such XIDs to distinguish this case from
4960  * actual errors, but it would be complicated and probably not worth it.
4961  * So, just ignore the search result.
4962  */
4963  (void) KnownAssignedXidsSearch(xid, true);
4964 }
4965 
4966 /*
4967  * KnownAssignedXidsRemoveTree
4968  * Remove xid (if it's not InvalidTransactionId) and all the subxids.
4969  *
4970  * Caller must hold ProcArrayLock in exclusive mode.
4971  */
4972 static void
4974  TransactionId *subxids)
4975 {
4976  int i;
4977 
4978  if (TransactionIdIsValid(xid))
4980 
4981  for (i = 0; i < nsubxids; i++)
4982  KnownAssignedXidsRemove(subxids[i]);
4983 
4984  /* Opportunistically compress the array */
4986 }
4987 
4988 /*
4989  * Prune KnownAssignedXids up to, but *not* including xid. If xid is invalid
4990  * then clear the whole table.
4991  *
4992  * Caller must hold ProcArrayLock in exclusive mode.
4993  */
4994 static void
4996 {
4997  ProcArrayStruct *pArray = procArray;
4998  int count = 0;
4999  int head,
5000  tail,
5001  i;
5002 
5003  if (!TransactionIdIsValid(removeXid))
5004  {
5005  elog(DEBUG4, "removing all KnownAssignedXids");
5006  pArray->numKnownAssignedXids = 0;
5007  pArray->headKnownAssignedXids = pArray->tailKnownAssignedXids = 0;
5008  return;
5009  }
5010 
5011  elog(DEBUG4, "prune KnownAssignedXids to %u", removeXid);
5012 
5013  /*
5014  * Mark entries invalid starting at the tail. Since array is sorted, we
5015  * can stop as soon as we reach an entry >= removeXid.
5016  */
5017  tail = pArray->tailKnownAssignedXids;
5018  head = pArray->headKnownAssignedXids;
5019 
5020  for (i = tail; i < head; i++)
5021  {
5023  {
5024  TransactionId knownXid = KnownAssignedXids[i];
5025 
5026  if (TransactionIdFollowsOrEquals(knownXid, removeXid))
5027  break;
5028 
5029  if (!StandbyTransactionIdIsPrepared(knownXid))
5030  {
5031  KnownAssignedXidsValid[i] = false;
5032  count++;
5033  }
5034  }
5035  }
5036 
5037  pArray->numKnownAssignedXids -= count;
5038  Assert(pArray->numKnownAssignedXids >= 0);
5039 
5040  /*
5041  * Advance the tail pointer if we've marked the tail item invalid.
5042  */
5043  for (i = tail; i < head; i++)
5044  {
5046  break;
5047  }
5048  if (i >= head)
5049  {
5050  /* Array is empty, so we can reset both pointers */
5051  pArray->headKnownAssignedXids = 0;
5052  pArray->tailKnownAssignedXids = 0;
5053  }
5054  else
5055  {
5056  pArray->tailKnownAssignedXids = i;
5057  }
5058 
5059  /* Opportunistically compress the array */
5061 }
5062 
5063 /*
5064  * KnownAssignedXidsGet - Get an array of xids by scanning KnownAssignedXids.
5065  * We filter out anything >= xmax.
5066  *
5067  * Returns the number of XIDs stored into xarray[]. Caller is responsible
5068  * that array is large enough.
5069  *
5070  * Caller must hold ProcArrayLock in (at least) shared mode.
5071  */
5072 static int
5074 {
5076 
5077  return KnownAssignedXidsGetAndSetXmin(xarray, &xtmp, xmax);
5078 }
5079 
5080 /*
5081  * KnownAssignedXidsGetAndSetXmin - as KnownAssignedXidsGet, plus
5082  * we reduce *xmin to the lowest xid value seen if not already lower.
5083  *
5084  * Caller must hold ProcArrayLock in (at least) shared mode.
5085  */
5086 static int
5088  TransactionId xmax)
5089 {
5090  int count = 0;
5091  int head,
5092  tail;
5093  int i;
5094 
5095  /*
5096  * Fetch head just once, since it may change while we loop. We can stop
5097  * once we reach the initially seen head, since we are certain that an xid
5098  * cannot enter and then leave the array while we hold ProcArrayLock. We
5099  * might miss newly-added xids, but they should be >= xmax so irrelevant
5100  * anyway.
5101  */
5104 
5105  pg_read_barrier(); /* pairs with KnownAssignedXidsAdd */
5106 
5107  for (i = tail; i < head; i++)
5108  {
5109  /* Skip any gaps in the array */
5111  {
5112  TransactionId knownXid = KnownAssignedXids[i];
5113 
5114  /*
5115  * Update xmin if required. Only the first XID need be checked,
5116  * since the array is sorted.
5117  */
5118  if (count == 0 &&
5119  TransactionIdPrecedes(knownXid, *xmin))
5120  *xmin = knownXid;
5121 
5122  /*
5123  * Filter out anything >= xmax, again relying on sorted property
5124  * of array.
5125  */
5126  if (TransactionIdIsValid(xmax) &&
5127  TransactionIdFollowsOrEquals(knownXid, xmax))
5128  break;
5129 
5130  /* Add knownXid into output array */
5131  xarray[count++] = knownXid;
5132  }
5133  }
5134 
5135  return count;
5136 }
5137 
5138 /*
5139  * Get oldest XID in the KnownAssignedXids array, or InvalidTransactionId
5140  * if nothing there.
5141  */
5142 static TransactionId
5144 {
5145  int head,
5146  tail;
5147  int i;
5148 
5149  /*
5150  * Fetch head just once, since it may change while we loop.
5151  */
5154 
5155  pg_read_barrier(); /* pairs with KnownAssignedXidsAdd */
5156 
5157  for (i = tail; i < head; i++)
5158  {
5159  /* Skip any gaps in the array */
5161  return KnownAssignedXids[i];
5162  }
5163 
5164  return InvalidTransactionId;
5165 }
5166 
5167 /*
5168  * Display KnownAssignedXids to provide debug trail
5169  *
5170  * Currently this is only called within startup process, so we need no
5171  * special locking.
5172  *
5173  * Note this is pretty expensive, and much of the expense will be incurred
5174  * even if the elog message will get discarded. It's not currently called
5175  * in any performance-critical places, however, so no need to be tenser.
5176  */
5177 static void
5179 {
5180  ProcArrayStruct *pArray = procArray;
5182  int head,
5183  tail,
5184  i;
5185  int nxids = 0;
5186 
5187  tail = pArray->tailKnownAssignedXids;
5188  head = pArray->headKnownAssignedXids;
5189 
5190  initStringInfo(&buf);
5191 
5192  for (i = tail; i < head; i++)
5193  {
5195  {
5196  nxids++;
5197  appendStringInfo(&buf, "[%d]=%u ", i, KnownAssignedXids[i]);
5198  }
5199  }
5200 
5201  elog(trace_level, "%d KnownAssignedXids (num=%d tail=%d head=%d) %s",
5202  nxids,
5203  pArray->numKnownAssignedXids,
5204  pArray->tailKnownAssignedXids,
5205  pArray->headKnownAssignedXids,
5206  buf.data);
5207 
5208  pfree(buf.data);
5209 }
5210 
5211 /*
5212  * KnownAssignedXidsReset
5213  * Resets KnownAssignedXids to be empty
5214  */
5215 static void
5217 {
5218  ProcArrayStruct *pArray = procArray;
5219 
5220  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
5221 
5222  pArray->numKnownAssignedXids = 0;
5223  pArray->tailKnownAssignedXids = 0;
5224  pArray->headKnownAssignedXids = 0;
5225 
5226  LWLockRelease(ProcArrayLock);
5227 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5128
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:344
#define pg_read_barrier()
Definition: atomics.h:151
#define pg_write_barrier()
Definition: atomics.h:152
static void pg_atomic_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:271
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:234
static uint32 pg_atomic_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 newval)
Definition: atomics.h:325
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1654
unsigned int uint32
Definition: c.h:506
signed char int8
Definition: c.h:492
#define likely(x)
Definition: c.h:310
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:398
#define unlikely(x)
Definition: c.h:311
unsigned char uint8
Definition: c.h:504
uint32 TransactionId
Definition: c.h:652
#define OidIsValid(objectId)
Definition: c.h:775
size_t Size
Definition: c.h:605
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:103
int64 TimestampTz
Definition: timestamp.h:39
char * get_database_name(Oid dbid)
Definition: dbcommands.c:3153
int errdetail(const char *fmt,...)
Definition: elog.c:1205
int errdetail_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1297
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define LOG
Definition: elog.h:31
#define DEBUG3
Definition: elog.h:28
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
#define DEBUG4
Definition: elog.h:27
bool IsUnderPostmaster
Definition: globals.c:117
Oid MyDatabaseId
Definition: globals.c:91
#define malloc(a)
Definition: header.h:50
int j
Definition: isn.c:74
int i
Definition: isn.c:73
List * lappend_int(List *list, int datum)
Definition: list.c:357
#define VirtualTransactionIdIsValid(vxid)
Definition: lock.h:67
#define GET_VXID_FROM_PGPROC(vxid_dst, proc)
Definition: lock.h:77
#define InvalidLocalTransactionId
Definition: lock.h:65
#define VirtualTransactionIdEquals(vxid1, vxid2)
Definition: lock.h:71
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1895
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1170
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1939
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1783
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1341
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
void pfree(void *pointer)
Definition: mcxt.c:1520
void * palloc(Size size)
Definition: mcxt.c:1316
#define AmStartupProcess()
Definition: miscadmin.h:382
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:454
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
Oid GetUserId(void)
Definition: miscinit.c:514
static bool pg_lfind32(uint32 key, const uint32 *base, uint32 nelem)
Definition: pg_lfind.h:153
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
static char * buf
Definition: pg_test_fsync.c:73
#define fprintf
Definition: port.h:242
#define qsort(a, b, c, d)
Definition: port.h:449
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:340
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:320
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
#define PROC_IN_LOGICAL_DECODING
Definition: proc.h:61
#define NUM_AUXILIARY_PROCS
Definition: proc.h:440
#define PROC_XMIN_FLAGS
Definition: proc.h:72
#define PROC_AFFECTS_ALL_HORIZONS
Definition: proc.h:62
#define PROC_IN_VACUUM
Definition: proc.h:58
#define GetPGProcByNumber(n)
Definition: proc.h:428
#define GetNumberFromPGProc(proc)
Definition: proc.h:429
#define PROC_VACUUM_STATE_MASK
Definition: proc.h:65
#define PROC_IS_AUTOVACUUM
Definition: proc.h:57
KAXCompressReason
Definition: procarray.c:261
@ KAX_PRUNE
Definition: procarray.c:263
@ KAX_NO_SPACE
Definition: procarray.c:262
@ KAX_TRANSACTION_END
Definition: procarray.c:264
@ KAX_STARTUP_PROCESS_IDLE
Definition: procarray.c:265
static GlobalVisState GlobalVisDataRels
Definition: procarray.c:299
bool GlobalVisTestIsRemovableFullXid(GlobalVisState *state, FullTransactionId fxid)
Definition: procarray.c:4206
TransactionId GetOldestNonRemovableTransactionId(Relation rel)
Definition: procarray.c:1993
VirtualTransactionId * GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
Definition: procarray.c:3030
#define TOTAL_MAX_CACHED_SUBXIDS
static GlobalVisState GlobalVisSharedRels
Definition: procarray.c:297
void ProcArrayGetReplicationSlotXmin(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:3952
static GlobalVisState GlobalVisCatalogRels
Definition: procarray.c:298
PGPROC * ProcNumberGetProc(ProcNumber procNumber)
Definition: procarray.c:3125
bool GlobalVisTestIsRemovableXid(GlobalVisState *state, TransactionId xid)
Definition: procarray.c:4248
bool GlobalVisCheckRemovableFullXid(Relation rel, FullTransactionId fxid)
Definition: procarray.c:4270
static void KnownAssignedXidsCompress(KAXCompressReason reason, bool haveLock)
Definition: procarray.c:4625
pid_t SignalVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode, bool conflictPending)
Definition: procarray.c:3484
Size ProcArrayShmemSize(void)
Definition: procarray.c:376
TransactionId GetOldestSafeDecodingTransactionId(bool catalogOnly)
Definition: procarray.c:2932
void XidCacheRemoveRunningXids(TransactionId xid, int nxids, const TransactionId *xids, TransactionId latestXid)
Definition: procarray.c:3975
bool TransactionIdIsActive(TransactionId xid)
Definition: procarray.c:1622
static FullTransactionId FullXidRelativeTo(FullTransactionId rel, TransactionId xid)
Definition: procarray.c:4305
bool MinimumActiveBackends(int min)
Definition: procarray.c:3533
void TerminateOtherDBBackends(Oid databaseId)
Definition: procarray.c:3815
#define xc_no_overflow_inc()
Definition: procarray.c:342
static TransactionId standbySnapshotPendingXmin
Definition: procarray.c:290
void ExpireAllKnownAssignedTransactionIds(void)
Definition: procarray.c:4482
#define UINT32_ACCESS_ONCE(var)
Definition: procarray.c:68
VirtualTransactionId * GetConflictingVirtualXIDs(TransactionId limitXmin, Oid dbOid)
Definition: procarray.c:3404
RunningTransactions GetRunningTransactionData(void)
Definition: procarray.c:2681
TransactionId GetOldestActiveTransactionId(void)
Definition: procarray.c:2867
static void KnownAssignedXidsRemoveTree(TransactionId xid, int nsubxids, TransactionId *subxids)
Definition: procarray.c:4973
static int KnownAssignedXidsGetAndSetXmin(TransactionId *xarray, TransactionId *xmin, TransactionId xmax)
Definition: procarray.c:5087
#define xc_by_recent_xmin_inc()
Definition: procarray.c:335
void ProcArrayEndTransaction(PGPROC *proc, TransactionId latestXid)
Definition: procarray.c:667
void ProcNumberGetTransactionIds(ProcNumber procNumber, TransactionId *xid, TransactionId *xmin, int *nsubxid, bool *overflowed)
Definition: procarray.c:3147
static PGPROC * allProcs
Definition: procarray.c:271
void RecordKnownAssignedTransactionIds(TransactionId xid)
Definition: procarray.c:4387
static int KnownAssignedXidsGet(TransactionId *xarray, TransactionId xmax)
Definition: procarray.c:5073
TransactionId GetOldestTransactionIdConsideredRunning(void)
Definition: procarray.c:2022
static TransactionId latestObservedXid
Definition: procarray.c:283
static ProcArrayStruct * procArray
Definition: procarray.c:269
int GetMaxSnapshotSubxidCount(void)
Definition: procarray.c:2068
int CountDBConnections(Oid databaseid)
Definition: procarray.c:3616
static GlobalVisState GlobalVisTempRels
Definition: procarray.c:300
#define xc_by_my_xact_inc()
Definition: procarray.c:337
#define xc_by_known_assigned_inc()
Definition: procarray.c:341
struct ProcArrayStruct ProcArrayStruct
void CancelDBBackends(Oid databaseid, ProcSignalReason sigmode, bool conflictPending)
Definition: procarray.c:3647
#define PROCARRAY_MAXPROCS
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:2035
static bool GlobalVisTestShouldUpdate(GlobalVisState *state)
Definition: procarray.c:4131
static void ProcArrayEndTransactionInternal(PGPROC *proc, TransactionId latestXid)
Definition: procarray.c:731
static void KnownAssignedXidsRemovePreceding(TransactionId removeXid)
Definition: procarray.c:4995
void ProcArrayAdd(PGPROC *proc)
Definition: procarray.c:468
struct ComputeXidHorizonsResult ComputeXidHorizonsResult
static TransactionId * KnownAssignedXids
Definition: procarray.c:281
#define xc_by_child_xid_inc()
Definition: procarray.c:340
pid_t CancelVirtualTransaction(VirtualTransactionId vxid, ProcSignalReason sigmode)
Definition: procarray.c:3478
Snapshot GetSnapshotData(Snapshot snapshot)
Definition: procarray.c:2165
static bool * KnownAssignedXidsValid
Definition: procarray.c:282
bool HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
Definition: procarray.c:3076
static void KnownAssignedXidsRemove(TransactionId xid)
Definition: procarray.c:4947
void KnownAssignedTransactionIdsIdleMaintenance(void)
Definition: procarray.c:4524
static void GlobalVisUpdateApply(ComputeXidHorizonsResult *horizons)
Definition: procarray.c:4150
int GetMaxSnapshotXidCount(void)
Definition: procarray.c:2057
GlobalVisState * GlobalVisTestFor(Relation rel)
Definition: procarray.c:4091
int CountDBBackends(Oid databaseid)
Definition: procarray.c:3586
bool GlobalVisCheckRemovableXid(Relation rel, TransactionId xid)
Definition: procarray.c:4284
#define MAXAUTOVACPIDS
bool ProcArrayInstallRestoredXmin(TransactionId xmin, PGPROC *proc)
Definition: procarray.c:2608
#define KAX_COMPRESS_FREQUENCY
void CreateSharedProcArray(void)
Definition: procarray.c:418
static TransactionId KnownAssignedXidsGetOldestXmin(void)
Definition: procarray.c:5143
void ProcArrayApplyRecoveryInfo(RunningTransactions running)
Definition: procarray.c:1054
void ProcArrayClearTransaction(PGPROC *proc)
Definition: procarray.c:907
VirtualTransactionId * GetCurrentVirtualXIDs(TransactionId limitXmin, bool excludeXmin0, bool allDbs, int excludeVacuum, int *nvxids)
Definition: procarray.c:3311
int CountUserBackends(Oid roleid)
Definition: procarray.c:3687
PGPROC * BackendPidGetProc(int pid)
Definition: procarray.c:3183
static TransactionId ComputeXidHorizonsResultLastXmin
Definition: procarray.c:307
static void GlobalVisUpdate(void)
Definition: procarray.c:4189
#define xc_slow_answer_inc()
Definition: procarray.c:343
static void KnownAssignedXidsDisplay(int trace_level)
Definition: procarray.c:5178
#define xc_by_main_xid_inc()
Definition: procarray.c:339
PGPROC * BackendPidGetProcWithLock(int pid)
Definition: procarray.c:3206
static void MaintainLatestCompletedXidRecovery(TransactionId latestXid)
Definition: procarray.c:989
static void ComputeXidHorizons(ComputeXidHorizonsResult *h)
Definition: procarray.c:1723
void ProcArrayApplyXidAssignment(TransactionId topxid, int nsubxids, TransactionId *subxids)
Definition: procarray.c:1306
static bool KnownAssignedXidExists(TransactionId xid)
Definition: procarray.c:4934
bool CountOtherDBBackends(Oid databaseId, int *nbackends, int *nprepared)
Definition: procarray.c:3737
GlobalVisHorizonKind
Definition: procarray.c:250
@ VISHORIZON_SHARED
Definition: procarray.c:251
@ VISHORIZON_DATA
Definition: procarray.c:253
@ VISHORIZON_CATALOG
Definition: procarray.c:252
@ VISHORIZON_TEMP
Definition: procarray.c:254
int BackendXidGetPid(TransactionId xid)
Definition: procarray.c:3243
#define xc_by_latest_xid_inc()
Definition: procarray.c:338
bool IsBackendPid(int pid)
Definition: procarray.c:3278
#define xc_by_known_xact_inc()
Definition: procarray.c:336
static bool KnownAssignedXidsSearch(TransactionId xid, bool remove)
Definition: procarray.c:4846
static void KnownAssignedXidsReset(void)
Definition: procarray.c:5216
static GlobalVisHorizonKind GlobalVisHorizonKindForRel(Relation rel)
Definition: procarray.c:1959
void ProcArraySetReplicationSlotXmin(TransactionId xmin, TransactionId catalog_xmin, bool already_locked)
Definition: procarray.c:3927
void ProcArrayInitRecovery(TransactionId initializedUptoXID)
Definition: procarray.c:1023
void ProcArrayRemove(PGPROC *proc, TransactionId latestXid)
Definition: procarray.c:565
#define KAX_COMPRESS_IDLE_INTERVAL
static void MaintainLatestCompletedXid(TransactionId latestXid)
Definition: procarray.c:967
static void ProcArrayGroupClearXid(PGPROC *proc, TransactionId latestXid)
Definition: procarray.c:792
void ExpireTreeKnownAssignedTransactionIds(TransactionId xid, int nsubxids, TransactionId *subxids, TransactionId max_xid)
Definition: procarray.c:4456
static TransactionId cachedXidIsNotInProgress
Definition: procarray.c:276
bool ProcArrayInstallImportedXmin(TransactionId xmin, VirtualTransactionId *sourcevxid)
Definition: procarray.c:2524
static bool GetSnapshotDataReuse(Snapshot snapshot)
Definition: procarray.c:2083
static void KnownAssignedXidsAdd(TransactionId from_xid, TransactionId to_xid, bool exclusive_lock)
Definition: procarray.c:4742
bool TransactionIdIsInProgress(TransactionId xid)
Definition: procarray.c:1390
void ExpireOldKnownAssignedTransactionIds(TransactionId xid)
Definition: procarray.c:4502
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int ProcNumber
Definition: procnumber.h:24
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:257
ProcSignalReason
Definition: procsignal.h:31
#define RELATION_IS_LOCAL(relation)
Definition: rel.h:648
#define RelationIsAccessibleInLogicalDecoding(relation)
Definition: rel.h:684
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void pg_usleep(long microsec)
Definition: signal.c:53
static pg_noinline void Size size
Definition: slab.c:607
TransactionId RecentXmin
Definition: snapmgr.c:99
TransactionId TransactionXmin
Definition: snapmgr.c:98
PGPROC * MyProc
Definition: proc.c:66
PROC_HDR * ProcGlobal
Definition: proc.c:78
void StandbyReleaseOldLocks(TransactionId oldxid)
Definition: standby.c:1126
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
TransactionId slot_catalog_xmin
Definition: procarray.c:192
TransactionId data_oldest_nonremovable
Definition: procarray.c:237
TransactionId temp_oldest_nonremovable
Definition: procarray.c:243
TransactionId shared_oldest_nonremovable
Definition: procarray.c:214
TransactionId oldest_considered_running
Definition: procarray.c:205
TransactionId slot_xmin
Definition: procarray.c:191
FullTransactionId latest_completed
Definition: procarray.c:185
TransactionId catalog_oldest_nonremovable
Definition: procarray.c:231
TransactionId shared_oldest_nonremovable_raw
Definition: procarray.c:225
FullTransactionId definitely_needed
Definition: procarray.c:170
FullTransactionId maybe_needed
Definition: procarray.c:173
Definition: pg_list.h:54
Definition: proc.h:157
TransactionId xmin
Definition: proc.h:173
bool procArrayGroupMember
Definition: proc.h:265
LocalTransactionId lxid
Definition: proc.h:196
pg_atomic_uint32 procArrayGroupNext
Definition: proc.h:267
uint8 statusFlags
Definition: proc.h:238
bool recoveryConflictPending
Definition: proc.h:216
Oid databaseId
Definition: proc.h:203
ProcNumber procNumber
Definition: proc.h:191
int pid
Definition: proc.h:178
bool isBackgroundWorker
Definition: proc.h:209
int pgxactoff
Definition: proc.h:180
XidCacheStatus subxidStatus
Definition: proc.h:259
LOCK * waitLock
Definition: proc.h:228
TransactionId xid
Definition: proc.h:168
struct XidCache subxids
Definition: proc.h:261
int delayChkptFlags
Definition: proc.h:236
struct PGPROC::@117 vxid
TransactionId procArrayGroupMemberXid
Definition: proc.h:273
PGSemaphore sem
Definition: proc.h:162
Oid roleId
Definition: proc.h:204
Definition: proc.h:378
uint8 * statusFlags
Definition: proc.h:395
XidCacheStatus * subxidStates
Definition: proc.h:389
PGPROC * allProcs
Definition: proc.h:380
TransactionId * xids
Definition: proc.h:383
pg_atomic_uint32 procArrayGroupFirst
Definition: proc.h:408
uint32 allProcCount
Definition: proc.h:398
TransactionId replication_slot_xmin
Definition: procarray.c:94
int maxKnownAssignedXids
Definition: procarray.c:79
TransactionId replication_slot_catalog_xmin
Definition: procarray.c:96
int numKnownAssignedXids
Definition: procarray.c:80
int pgprocnos[FLEXIBLE_ARRAY_MEMBER]
Definition: procarray.c:99
TransactionId lastOverflowedXid
Definition: procarray.c:91
int tailKnownAssignedXids
Definition: procarray.c:81
int headKnownAssignedXids
Definition: procarray.c:82
Form_pg_class rd_rel
Definition: rel.h:111
TransactionId oldestRunningXid
Definition: standby.h:84
TransactionId nextXid
Definition: standby.h:83
TransactionId oldestDatabaseRunningXid
Definition: standby.h:85
TransactionId latestCompletedXid
Definition: standby.h:87
TransactionId * xids
Definition: standby.h:89
TransactionId xmin
Definition: snapshot.h:157
int32 subxcnt
Definition: snapshot.h:181
bool copied
Definition: snapshot.h:185
uint32 regd_count
Definition: snapshot.h:205
uint32 active_count
Definition: snapshot.h:204
CommandId curcid
Definition: snapshot.h:187
TimestampTz whenTaken
Definition: snapshot.h:208
uint32 xcnt
Definition: snapshot.h:169
TransactionId * subxip
Definition: snapshot.h:180
uint64 snapXactCompletionCount
Definition: snapshot.h:216
TransactionId xmax
Definition: snapshot.h:158
XLogRecPtr lsn
Definition: snapshot.h:209
TransactionId * xip
Definition: snapshot.h:168
bool suboverflowed
Definition: snapshot.h:182
bool takenDuringRecovery
Definition: snapshot.h:184
FullTransactionId latestCompletedXid
Definition: transam.h:238
FullTransactionId nextXid
Definition: transam.h:220
uint64 xactCompletionCount
Definition: transam.h:248
TransactionId oldestXid
Definition: transam.h:222
LocalTransactionId localTransactionId
Definition: lock.h:62
ProcNumber procNumber
Definition: lock.h:61
bool overflowed
Definition: proc.h:46
uint8 count
Definition: proc.h:44
TransactionId xids[PGPROC_MAX_CACHED_SUBXIDS]
Definition: proc.h:51
Definition: type.h:95
Definition: regguts.h:323
void SubTransSetParent(TransactionId xid, TransactionId parent)
Definition: subtrans.c:85
TransactionId SubTransGetTopmostTransaction(TransactionId xid)
Definition: subtrans.c:163
void ExtendSUBTRANS(TransactionId newestXact)
Definition: subtrans.c:379
bool superuser_arg(Oid roleid)
Definition: superuser.c:56
bool superuser(void)
Definition: superuser.c:46
TransactionId TransactionIdLatest(TransactionId mainxid, int nxids, const TransactionId *xids)
Definition: transam.c:345
bool TransactionIdDidCommit(TransactionId transactionId)
Definition: transam.c:126
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:299
bool TransactionIdDidAbort(TransactionId transactionId)
Definition: transam.c:188
bool TransactionIdFollows(TransactionId id1, TransactionId id2)
Definition: transam.c:314
bool TransactionIdFollowsOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.c:329
#define FullTransactionIdIsNormal(x)
Definition: transam.h:58
static FullTransactionId FullTransactionIdNewer(FullTransactionId a, FullTransactionId b)
Definition: transam.h:360
#define TransactionIdRetreat(dest)
Definition: transam.h:141
#define InvalidTransactionId
Definition: transam.h:31
#define U64FromFullTransactionId(x)
Definition: transam.h:49
static FullTransactionId FullTransactionIdFromU64(uint64 value)
Definition: transam.h:81
#define FullTransactionIdFollowsOrEquals(a, b)
Definition: transam.h:54
#define AssertTransactionIdInAllowableRange(xid)
Definition: transam.h:301
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define NormalTransactionIdPrecedes(id1, id2)
Definition: transam.h:147
#define XidFromFullTransactionId(x)
Definition: transam.h:48
static void FullTransactionIdAdvance(FullTransactionId *dest)
Definition: transam.h:128
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
#define TransactionIdAdvance(dest)
Definition: transam.h:91
#define FullTransactionIdPrecedes(a, b)
Definition: transam.h:51
#define FullTransactionIdIsValid(x)
Definition: transam.h:55
static TransactionId TransactionIdOlder(TransactionId a, TransactionId b)
Definition: transam.h:334
bool StandbyTransactionIdIsPrepared(TransactionId xid)
Definition: twophase.c:1475
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
void AdvanceNextFullTransactionIdPastXid(TransactionId xid)
Definition: varsup.c:304
TransamVariablesData * TransamVariables
Definition: varsup.c:34
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:88
static void pgstat_report_wait_end(void)
Definition: wait_event.h:104
const char * type
#define kill(pid, sig)
Definition: win32_port.h:485
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:938
CommandId GetCurrentCommandId(bool used)
Definition: xact.c:826
int xidLogicalComparator(const void *arg1, const void *arg2)
Definition: xid.c:156
bool RecoveryInProgress(void)
Definition: xlog.c:6290
bool EnableHotStandby
Definition: xlog.c:121
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
HotStandbyState standbyState
Definition: xlogutils.c:53
@ STANDBY_SNAPSHOT_READY
Definition: xlogutils.h:52
@ STANDBY_SNAPSHOT_PENDING
Definition: xlogutils.h:51
@ STANDBY_INITIALIZED
Definition: xlogutils.h:50