PostgreSQL Source Code  git master
xlog.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * xlog.c
4  * PostgreSQL write-ahead log manager
5  *
6  * The Write-Ahead Log (WAL) functionality is split into several source
7  * files, in addition to this one:
8  *
9  * xloginsert.c - Functions for constructing WAL records
10  * xlogrecovery.c - WAL recovery and standby code
11  * xlogreader.c - Facility for reading WAL files and parsing WAL records
12  * xlogutils.c - Helper functions for WAL redo routines
13  *
14  * This file contains functions for coordinating database startup and
15  * checkpointing, and managing the write-ahead log buffers when the
16  * system is running.
17  *
18  * StartupXLOG() is the main entry point of the startup process. It
19  * coordinates database startup, performing WAL recovery, and the
20  * transition from WAL recovery into normal operations.
21  *
22  * XLogInsertRecord() inserts a WAL record into the WAL buffers. Most
23  * callers should not call this directly, but use the functions in
24  * xloginsert.c to construct the WAL record. XLogFlush() can be used
25  * to force the WAL to disk.
26  *
27  * In addition to those, there are many other functions for interrogating
28  * the current system state, and for starting/stopping backups.
29  *
30  *
31  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
32  * Portions Copyright (c) 1994, Regents of the University of California
33  *
34  * src/backend/access/transam/xlog.c
35  *
36  *-------------------------------------------------------------------------
37  */
38 
39 #include "postgres.h"
40 
41 #include <ctype.h>
42 #include <math.h>
43 #include <time.h>
44 #include <fcntl.h>
45 #include <sys/stat.h>
46 #include <sys/time.h>
47 #include <unistd.h>
48 
49 #include "access/clog.h"
50 #include "access/commit_ts.h"
51 #include "access/heaptoast.h"
52 #include "access/multixact.h"
53 #include "access/rewriteheap.h"
54 #include "access/subtrans.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/twophase.h"
58 #include "access/xact.h"
59 #include "access/xlog_internal.h"
60 #include "access/xlogarchive.h"
61 #include "access/xloginsert.h"
62 #include "access/xlogreader.h"
63 #include "access/xlogrecovery.h"
64 #include "access/xlogutils.h"
65 #include "backup/basebackup.h"
66 #include "catalog/catversion.h"
67 #include "catalog/pg_control.h"
68 #include "catalog/pg_database.h"
70 #include "common/file_utils.h"
71 #include "executor/instrument.h"
72 #include "miscadmin.h"
73 #include "pg_trace.h"
74 #include "pgstat.h"
75 #include "port/atomics.h"
76 #include "port/pg_iovec.h"
77 #include "postmaster/bgwriter.h"
78 #include "postmaster/startup.h"
80 #include "postmaster/walwriter.h"
81 #include "replication/origin.h"
82 #include "replication/slot.h"
83 #include "replication/snapbuild.h"
85 #include "replication/walsender.h"
86 #include "storage/bufmgr.h"
87 #include "storage/fd.h"
88 #include "storage/ipc.h"
89 #include "storage/large_object.h"
90 #include "storage/latch.h"
91 #include "storage/predicate.h"
92 #include "storage/proc.h"
93 #include "storage/procarray.h"
94 #include "storage/reinit.h"
95 #include "storage/spin.h"
96 #include "storage/sync.h"
97 #include "utils/guc_hooks.h"
98 #include "utils/guc_tables.h"
99 #include "utils/injection_point.h"
100 #include "utils/memutils.h"
101 #include "utils/ps_status.h"
102 #include "utils/relmapper.h"
103 #include "utils/snapmgr.h"
104 #include "utils/timeout.h"
105 #include "utils/timestamp.h"
106 #include "utils/varlena.h"
107 
109 
110 /* timeline ID to be used when bootstrapping */
111 #define BootstrapTimeLineID 1
112 
113 /* User-settable parameters */
114 int max_wal_size_mb = 1024; /* 1 GB */
115 int min_wal_size_mb = 80; /* 80 MB */
117 int XLOGbuffers = -1;
120 char *XLogArchiveCommand = NULL;
121 bool EnableHotStandby = false;
122 bool fullPageWrites = true;
123 bool wal_log_hints = false;
127 bool wal_init_zero = true;
128 bool wal_recycle = true;
129 bool log_checkpoints = true;
132 int CommitDelay = 0; /* precommit delay in microseconds */
133 int CommitSiblings = 5; /* # concurrent xacts needed to sleep */
136 int wal_decode_buffer_size = 512 * 1024;
137 bool track_wal_io_timing = false;
138 
139 #ifdef WAL_DEBUG
140 bool XLOG_DEBUG = false;
141 #endif
142 
144 
145 /*
146  * Number of WAL insertion locks to use. A higher value allows more insertions
147  * to happen concurrently, but adds some CPU overhead to flushing the WAL,
148  * which needs to iterate all the locks.
149  */
150 #define NUM_XLOGINSERT_LOCKS 8
151 
152 /*
153  * Max distance from last checkpoint, before triggering a new xlog-based
154  * checkpoint.
155  */
157 
158 /* Estimated distance between checkpoints, in bytes */
159 static double CheckPointDistanceEstimate = 0;
160 static double PrevCheckPointDistance = 0;
161 
162 /*
163  * Track whether there were any deferred checks for custom resource managers
164  * specified in wal_consistency_checking.
165  */
167 
168 /*
169  * GUC support
170  */
172  {"fsync", WAL_SYNC_METHOD_FSYNC, false},
173 #ifdef HAVE_FSYNC_WRITETHROUGH
174  {"fsync_writethrough", WAL_SYNC_METHOD_FSYNC_WRITETHROUGH, false},
175 #endif
176  {"fdatasync", WAL_SYNC_METHOD_FDATASYNC, false},
177 #ifdef O_SYNC
178  {"open_sync", WAL_SYNC_METHOD_OPEN, false},
179 #endif
180 #ifdef O_DSYNC
181  {"open_datasync", WAL_SYNC_METHOD_OPEN_DSYNC, false},
182 #endif
183  {NULL, 0, false}
184 };
185 
186 
187 /*
188  * Although only "on", "off", and "always" are documented,
189  * we accept all the likely variants of "on" and "off".
190  */
191 const struct config_enum_entry archive_mode_options[] = {
192  {"always", ARCHIVE_MODE_ALWAYS, false},
193  {"on", ARCHIVE_MODE_ON, false},
194  {"off", ARCHIVE_MODE_OFF, false},
195  {"true", ARCHIVE_MODE_ON, true},
196  {"false", ARCHIVE_MODE_OFF, true},
197  {"yes", ARCHIVE_MODE_ON, true},
198  {"no", ARCHIVE_MODE_OFF, true},
199  {"1", ARCHIVE_MODE_ON, true},
200  {"0", ARCHIVE_MODE_OFF, true},
201  {NULL, 0, false}
202 };
203 
204 /*
205  * Statistics for current checkpoint are collected in this global struct.
206  * Because only the checkpointer or a stand-alone backend can perform
207  * checkpoints, this will be unused in normal backends.
208  */
210 
211 /*
212  * During recovery, lastFullPageWrites keeps track of full_page_writes that
213  * the replayed WAL records indicate. It's initialized with full_page_writes
214  * that the recovery starting checkpoint record indicates, and then updated
215  * each time XLOG_FPW_CHANGE record is replayed.
216  */
217 static bool lastFullPageWrites;
218 
219 /*
220  * Local copy of the state tracked by SharedRecoveryState in shared memory,
221  * It is false if SharedRecoveryState is RECOVERY_STATE_DONE. True actually
222  * means "not known, need to check the shared state".
223  */
224 static bool LocalRecoveryInProgress = true;
225 
226 /*
227  * Local state for XLogInsertAllowed():
228  * 1: unconditionally allowed to insert XLOG
229  * 0: unconditionally not allowed to insert XLOG
230  * -1: must check RecoveryInProgress(); disallow until it is false
231  * Most processes start with -1 and transition to 1 after seeing that recovery
232  * is not in progress. But we can also force the value for special cases.
233  * The coding in XLogInsertAllowed() depends on the first two of these states
234  * being numerically the same as bool true and false.
235  */
236 static int LocalXLogInsertAllowed = -1;
237 
238 /*
239  * ProcLastRecPtr points to the start of the last XLOG record inserted by the
240  * current backend. It is updated for all inserts. XactLastRecEnd points to
241  * end+1 of the last record, and is reset when we end a top-level transaction,
242  * or start a new one; so it can be used to tell if the current transaction has
243  * created any XLOG records.
244  *
245  * While in parallel mode, this may not be fully up to date. When committing,
246  * a transaction can assume this covers all xlog records written either by the
247  * user backend or by any parallel worker which was present at any point during
248  * the transaction. But when aborting, or when still in parallel mode, other
249  * parallel backends may have written WAL records at later LSNs than the value
250  * stored here. The parallel leader advances its own copy, when necessary,
251  * in WaitForParallelWorkersToFinish.
252  */
256 
257 /*
258  * RedoRecPtr is this backend's local copy of the REDO record pointer
259  * (which is almost but not quite the same as a pointer to the most recent
260  * CHECKPOINT record). We update this from the shared-memory copy,
261  * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
262  * hold an insertion lock). See XLogInsertRecord for details. We are also
263  * allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck;
264  * see GetRedoRecPtr.
265  *
266  * NB: Code that uses this variable must be prepared not only for the
267  * possibility that it may be arbitrarily out of date, but also for the
268  * possibility that it might be set to InvalidXLogRecPtr. We used to
269  * initialize it as a side effect of the first call to RecoveryInProgress(),
270  * which meant that most code that might use it could assume that it had a
271  * real if perhaps stale value. That's no longer the case.
272  */
274 
275 /*
276  * doPageWrites is this backend's local copy of (fullPageWrites ||
277  * runningBackups > 0). It is used together with RedoRecPtr to decide whether
278  * a full-page image of a page need to be taken.
279  *
280  * NB: Initially this is false, and there's no guarantee that it will be
281  * initialized to any other value before it is first used. Any code that
282  * makes use of it must recheck the value after obtaining a WALInsertLock,
283  * and respond appropriately if it turns out that the previous value wasn't
284  * accurate.
285  */
286 static bool doPageWrites;
287 
288 /*----------
289  * Shared-memory data structures for XLOG control
290  *
291  * LogwrtRqst indicates a byte position that we need to write and/or fsync
292  * the log up to (all records before that point must be written or fsynced).
293  * The positions already written/fsynced are maintained in logWriteResult
294  * and logFlushResult using atomic access.
295  * In addition to the shared variable, each backend has a private copy of
296  * both in LogwrtResult, which is updated when convenient.
297  *
298  * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
299  * (protected by info_lck), but we don't need to cache any copies of it.
300  *
301  * info_lck is only held long enough to read/update the protected variables,
302  * so it's a plain spinlock. The other locks are held longer (potentially
303  * over I/O operations), so we use LWLocks for them. These locks are:
304  *
305  * WALBufMappingLock: must be held to replace a page in the WAL buffer cache.
306  * It is only held while initializing and changing the mapping. If the
307  * contents of the buffer being replaced haven't been written yet, the mapping
308  * lock is released while the write is done, and reacquired afterwards.
309  *
310  * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
311  * XLogFlush).
312  *
313  * ControlFileLock: must be held to read/update control file or create
314  * new log file.
315  *
316  *----------
317  */
318 
319 typedef struct XLogwrtRqst
320 {
321  XLogRecPtr Write; /* last byte + 1 to write out */
322  XLogRecPtr Flush; /* last byte + 1 to flush */
324 
325 typedef struct XLogwrtResult
326 {
327  XLogRecPtr Write; /* last byte + 1 written out */
328  XLogRecPtr Flush; /* last byte + 1 flushed */
330 
331 /*
332  * Inserting to WAL is protected by a small fixed number of WAL insertion
333  * locks. To insert to the WAL, you must hold one of the locks - it doesn't
334  * matter which one. To lock out other concurrent insertions, you must hold
335  * of them. Each WAL insertion lock consists of a lightweight lock, plus an
336  * indicator of how far the insertion has progressed (insertingAt).
337  *
338  * The insertingAt values are read when a process wants to flush WAL from
339  * the in-memory buffers to disk, to check that all the insertions to the
340  * region the process is about to write out have finished. You could simply
341  * wait for all currently in-progress insertions to finish, but the
342  * insertingAt indicator allows you to ignore insertions to later in the WAL,
343  * so that you only wait for the insertions that are modifying the buffers
344  * you're about to write out.
345  *
346  * This isn't just an optimization. If all the WAL buffers are dirty, an
347  * inserter that's holding a WAL insert lock might need to evict an old WAL
348  * buffer, which requires flushing the WAL. If it's possible for an inserter
349  * to block on another inserter unnecessarily, deadlock can arise when two
350  * inserters holding a WAL insert lock wait for each other to finish their
351  * insertion.
352  *
353  * Small WAL records that don't cross a page boundary never update the value,
354  * the WAL record is just copied to the page and the lock is released. But
355  * to avoid the deadlock-scenario explained above, the indicator is always
356  * updated before sleeping while holding an insertion lock.
357  *
358  * lastImportantAt contains the LSN of the last important WAL record inserted
359  * using a given lock. This value is used to detect if there has been
360  * important WAL activity since the last time some action, like a checkpoint,
361  * was performed - allowing to not repeat the action if not. The LSN is
362  * updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was
363  * set. lastImportantAt is never cleared, only overwritten by the LSN of newer
364  * records. Tracking the WAL activity directly in WALInsertLock has the
365  * advantage of not needing any additional locks to update the value.
366  */
367 typedef struct
368 {
372 } WALInsertLock;
373 
374 /*
375  * All the WAL insertion locks are allocated as an array in shared memory. We
376  * force the array stride to be a power of 2, which saves a few cycles in
377  * indexing, but more importantly also ensures that individual slots don't
378  * cross cache line boundaries. (Of course, we have to also ensure that the
379  * array start address is suitably aligned.)
380  */
381 typedef union WALInsertLockPadded
382 {
386 
387 /*
388  * Session status of running backup, used for sanity checks in SQL-callable
389  * functions to start and stop backups.
390  */
392 
393 /*
394  * Shared state data for WAL insertion.
395  */
396 typedef struct XLogCtlInsert
397 {
398  slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */
399 
400  /*
401  * CurrBytePos is the end of reserved WAL. The next record will be
402  * inserted at that position. PrevBytePos is the start position of the
403  * previously inserted (or rather, reserved) record - it is copied to the
404  * prev-link of the next record. These are stored as "usable byte
405  * positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()).
406  */
407  uint64 CurrBytePos;
408  uint64 PrevBytePos;
409 
410  /*
411  * Make sure the above heavily-contended spinlock and byte positions are
412  * on their own cache line. In particular, the RedoRecPtr and full page
413  * write variables below should be on a different cache line. They are
414  * read on every WAL insertion, but updated rarely, and we don't want
415  * those reads to steal the cache line containing Curr/PrevBytePos.
416  */
418 
419  /*
420  * fullPageWrites is the authoritative value used by all backends to
421  * determine whether to write full-page image to WAL. This shared value,
422  * instead of the process-local fullPageWrites, is required because, when
423  * full_page_writes is changed by SIGHUP, we must WAL-log it before it
424  * actually affects WAL-logging by backends. Checkpointer sets at startup
425  * or after SIGHUP.
426  *
427  * To read these fields, you must hold an insertion lock. To modify them,
428  * you must hold ALL the locks.
429  */
430  XLogRecPtr RedoRecPtr; /* current redo point for insertions */
432 
433  /*
434  * runningBackups is a counter indicating the number of backups currently
435  * in progress. lastBackupStart is the latest checkpoint redo location
436  * used as a starting point for an online backup.
437  */
440 
441  /*
442  * WAL insertion locks.
443  */
446 
447 /*
448  * Total shared-memory state for XLOG.
449  */
450 typedef struct XLogCtlData
451 {
453 
454  /* Protected by info_lck: */
456  XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */
457  FullTransactionId ckptFullXid; /* nextXid of latest checkpoint */
458  XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */
459  XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */
460 
461  XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */
462 
463  /* Fake LSN counter, for unlogged relations. */
465 
466  /* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */
469 
470  /* These are accessed using atomics -- info_lck not needed */
471  pg_atomic_uint64 logInsertResult; /* last byte + 1 inserted to buffers */
472  pg_atomic_uint64 logWriteResult; /* last byte + 1 written out */
473  pg_atomic_uint64 logFlushResult; /* last byte + 1 flushed */
474 
475  /*
476  * Latest initialized page in the cache (last byte position + 1).
477  *
478  * To change the identity of a buffer (and InitializedUpTo), you need to
479  * hold WALBufMappingLock. To change the identity of a buffer that's
480  * still dirty, the old page needs to be written out first, and for that
481  * you need WALWriteLock, and you need to ensure that there are no
482  * in-progress insertions to the page by calling
483  * WaitXLogInsertionsToFinish().
484  */
486 
487  /*
488  * These values do not change after startup, although the pointed-to pages
489  * and xlblocks values certainly do. xlblocks values are protected by
490  * WALBufMappingLock.
491  */
492  char *pages; /* buffers for unwritten XLOG pages */
493  pg_atomic_uint64 *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
494  int XLogCacheBlck; /* highest allocated xlog buffer index */
495 
496  /*
497  * InsertTimeLineID is the timeline into which new WAL is being inserted
498  * and flushed. It is zero during recovery, and does not change once set.
499  *
500  * If we create a new timeline when the system was started up,
501  * PrevTimeLineID is the old timeline's ID that we forked off from.
502  * Otherwise it's equal to InsertTimeLineID.
503  */
506 
507  /*
508  * SharedRecoveryState indicates if we're still in crash or archive
509  * recovery. Protected by info_lck.
510  */
512 
513  /*
514  * InstallXLogFileSegmentActive indicates whether the checkpointer should
515  * arrange for future segments by recycling and/or PreallocXlogFiles().
516  * Protected by ControlFileLock. Only the startup process changes it. If
517  * true, anyone can use InstallXLogFileSegment(). If false, the startup
518  * process owns the exclusive right to install segments, by reading from
519  * the archive and possibly replacing existing files.
520  */
522 
523  /*
524  * WalWriterSleeping indicates whether the WAL writer is currently in
525  * low-power mode (and hence should be nudged if an async commit occurs).
526  * Protected by info_lck.
527  */
529 
530  /*
531  * During recovery, we keep a copy of the latest checkpoint record here.
532  * lastCheckPointRecPtr points to start of checkpoint record and
533  * lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the
534  * checkpointer when it wants to create a restartpoint.
535  *
536  * Protected by info_lck.
537  */
541 
542  /*
543  * lastFpwDisableRecPtr points to the start of the last replayed
544  * XLOG_FPW_CHANGE record that instructs full_page_writes is disabled.
545  */
547 
548  slock_t info_lck; /* locks shared variables shown above */
550 
551 /*
552  * Classification of XLogRecordInsert operations.
553  */
554 typedef enum
555 {
560 
561 static XLogCtlData *XLogCtl = NULL;
562 
563 /* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */
565 
566 /*
567  * We maintain an image of pg_control in shared memory.
568  */
570 
571 /*
572  * Calculate the amount of space left on the page after 'endptr'. Beware
573  * multiple evaluation!
574  */
575 #define INSERT_FREESPACE(endptr) \
576  (((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ))
577 
578 /* Macro to advance to next buffer index. */
579 #define NextBufIdx(idx) \
580  (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
581 
582 /*
583  * XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or
584  * would hold if it was in cache, the page containing 'recptr'.
585  */
586 #define XLogRecPtrToBufIdx(recptr) \
587  (((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1))
588 
589 /*
590  * These are the number of bytes in a WAL page usable for WAL data.
591  */
592 #define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD)
593 
594 /*
595  * Convert values of GUCs measured in megabytes to equiv. segment count.
596  * Rounds down.
597  */
598 #define ConvertToXSegs(x, segsize) XLogMBVarToSegs((x), (segsize))
599 
600 /* The number of bytes in a WAL segment usable for WAL data. */
602 
603 /*
604  * Private, possibly out-of-date copy of shared LogwrtResult.
605  * See discussion above.
606  */
607 static XLogwrtResult LogwrtResult = {0, 0};
608 
609 /*
610  * Update local copy of shared XLogCtl->log{Write,Flush}Result
611  *
612  * It's critical that Flush always trails Write, so the order of the reads is
613  * important, as is the barrier. See also XLogWrite.
614  */
615 #define RefreshXLogWriteResult(_target) \
616  do { \
617  _target.Flush = pg_atomic_read_u64(&XLogCtl->logFlushResult); \
618  pg_read_barrier(); \
619  _target.Write = pg_atomic_read_u64(&XLogCtl->logWriteResult); \
620  } while (0)
621 
622 /*
623  * openLogFile is -1 or a kernel FD for an open log file segment.
624  * openLogSegNo identifies the segment, and openLogTLI the corresponding TLI.
625  * These variables are only used to write the XLOG, and so will normally refer
626  * to the active segment.
627  *
628  * Note: call Reserve/ReleaseExternalFD to track consumption of this FD.
629  */
630 static int openLogFile = -1;
633 
634 /*
635  * Local copies of equivalent fields in the control file. When running
636  * crash recovery, LocalMinRecoveryPoint is set to InvalidXLogRecPtr as we
637  * expect to replay all the WAL available, and updateMinRecoveryPoint is
638  * switched to false to prevent any updates while replaying records.
639  * Those values are kept consistent as long as crash recovery runs.
640  */
643 static bool updateMinRecoveryPoint = true;
644 
645 /* For WALInsertLockAcquire/Release functions */
646 static int MyLockNo = 0;
647 static bool holdingAllLocks = false;
648 
649 #ifdef WAL_DEBUG
650 static MemoryContext walDebugCxt = NULL;
651 #endif
652 
653 static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI,
654  XLogRecPtr EndOfLog,
655  TimeLineID newTLI);
656 static void CheckRequiredParameterValues(void);
657 static void XLogReportParameters(void);
658 static int LocalSetXLogInsertAllowed(void);
659 static void CreateEndOfRecoveryRecord(void);
661  XLogRecPtr pagePtr,
662  TimeLineID newTLI);
663 static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
664 static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo);
666 
667 static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli,
668  bool opportunistic);
669 static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible);
670 static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
671  bool find_free, XLogSegNo max_segno,
672  TimeLineID tli);
673 static void XLogFileClose(void);
674 static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli);
675 static void RemoveTempXlogFiles(void);
676 static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr,
677  XLogRecPtr endptr, TimeLineID insertTLI);
678 static void RemoveXlogFile(const struct dirent *segment_de,
679  XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
680  TimeLineID insertTLI);
681 static void UpdateLastRemovedPtr(char *filename);
682 static void ValidateXLOGDirectoryStructure(void);
683 static void CleanupBackupHistory(void);
684 static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
685 static bool PerformRecoveryXLogAction(void);
686 static void InitControlFile(uint64 sysidentifier);
687 static void WriteControlFile(void);
688 static void ReadControlFile(void);
689 static void UpdateControlFile(void);
690 static char *str_time(pg_time_t tnow);
691 
692 static int get_sync_bit(int method);
693 
694 static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch,
695  XLogRecData *rdata,
696  XLogRecPtr StartPos, XLogRecPtr EndPos,
697  TimeLineID tli);
698 static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos,
699  XLogRecPtr *EndPos, XLogRecPtr *PrevPtr);
700 static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos,
701  XLogRecPtr *PrevPtr);
703 static char *GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli);
704 static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos);
705 static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos);
706 static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr);
707 
708 static void WALInsertLockAcquire(void);
709 static void WALInsertLockAcquireExclusive(void);
710 static void WALInsertLockRelease(void);
711 static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt);
712 
713 /*
714  * Insert an XLOG record represented by an already-constructed chain of data
715  * chunks. This is a low-level routine; to construct the WAL record header
716  * and data, use the higher-level routines in xloginsert.c.
717  *
718  * If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this
719  * WAL record applies to, that were not included in the record as full page
720  * images. If fpw_lsn <= RedoRecPtr, the function does not perform the
721  * insertion and returns InvalidXLogRecPtr. The caller can then recalculate
722  * which pages need a full-page image, and retry. If fpw_lsn is invalid, the
723  * record is always inserted.
724  *
725  * 'flags' gives more in-depth control on the record being inserted. See
726  * XLogSetRecordFlags() for details.
727  *
728  * 'topxid_included' tells whether the top-transaction id is logged along with
729  * current subtransaction. See XLogRecordAssemble().
730  *
731  * The first XLogRecData in the chain must be for the record header, and its
732  * data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and
733  * xl_crc fields in the header, the rest of the header must already be filled
734  * by the caller.
735  *
736  * Returns XLOG pointer to end of record (beginning of next record).
737  * This can be used as LSN for data pages affected by the logged action.
738  * (LSN is the XLOG point up to which the XLOG must be flushed to disk
739  * before the data page can be written out. This implements the basic
740  * WAL rule "write the log before the data".)
741  */
744  XLogRecPtr fpw_lsn,
745  uint8 flags,
746  int num_fpi,
747  bool topxid_included)
748 {
750  pg_crc32c rdata_crc;
751  bool inserted;
752  XLogRecord *rechdr = (XLogRecord *) rdata->data;
753  uint8 info = rechdr->xl_info & ~XLR_INFO_MASK;
755  XLogRecPtr StartPos;
756  XLogRecPtr EndPos;
757  bool prevDoPageWrites = doPageWrites;
758  TimeLineID insertTLI;
759 
760  /* Does this record type require special handling? */
761  if (unlikely(rechdr->xl_rmid == RM_XLOG_ID))
762  {
763  if (info == XLOG_SWITCH)
764  class = WALINSERT_SPECIAL_SWITCH;
765  else if (info == XLOG_CHECKPOINT_REDO)
767  }
768 
769  /* we assume that all of the record header is in the first chunk */
770  Assert(rdata->len >= SizeOfXLogRecord);
771 
772  /* cross-check on whether we should be here or not */
773  if (!XLogInsertAllowed())
774  elog(ERROR, "cannot make new WAL entries during recovery");
775 
776  /*
777  * Given that we're not in recovery, InsertTimeLineID is set and can't
778  * change, so we can read it without a lock.
779  */
780  insertTLI = XLogCtl->InsertTimeLineID;
781 
782  /*----------
783  *
784  * We have now done all the preparatory work we can without holding a
785  * lock or modifying shared state. From here on, inserting the new WAL
786  * record to the shared WAL buffer cache is a two-step process:
787  *
788  * 1. Reserve the right amount of space from the WAL. The current head of
789  * reserved space is kept in Insert->CurrBytePos, and is protected by
790  * insertpos_lck.
791  *
792  * 2. Copy the record to the reserved WAL space. This involves finding the
793  * correct WAL buffer containing the reserved space, and copying the
794  * record in place. This can be done concurrently in multiple processes.
795  *
796  * To keep track of which insertions are still in-progress, each concurrent
797  * inserter acquires an insertion lock. In addition to just indicating that
798  * an insertion is in progress, the lock tells others how far the inserter
799  * has progressed. There is a small fixed number of insertion locks,
800  * determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page
801  * boundary, it updates the value stored in the lock to the how far it has
802  * inserted, to allow the previous buffer to be flushed.
803  *
804  * Holding onto an insertion lock also protects RedoRecPtr and
805  * fullPageWrites from changing until the insertion is finished.
806  *
807  * Step 2 can usually be done completely in parallel. If the required WAL
808  * page is not initialized yet, you have to grab WALBufMappingLock to
809  * initialize it, but the WAL writer tries to do that ahead of insertions
810  * to avoid that from happening in the critical path.
811  *
812  *----------
813  */
815 
816  if (likely(class == WALINSERT_NORMAL))
817  {
819 
820  /*
821  * Check to see if my copy of RedoRecPtr is out of date. If so, may
822  * have to go back and have the caller recompute everything. This can
823  * only happen just after a checkpoint, so it's better to be slow in
824  * this case and fast otherwise.
825  *
826  * Also check to see if fullPageWrites was just turned on or there's a
827  * running backup (which forces full-page writes); if we weren't
828  * already doing full-page writes then go back and recompute.
829  *
830  * If we aren't doing full-page writes then RedoRecPtr doesn't
831  * actually affect the contents of the XLOG record, so we'll update
832  * our local copy but not force a recomputation. (If doPageWrites was
833  * just turned off, we could recompute the record without full pages,
834  * but we choose not to bother.)
835  */
836  if (RedoRecPtr != Insert->RedoRecPtr)
837  {
838  Assert(RedoRecPtr < Insert->RedoRecPtr);
839  RedoRecPtr = Insert->RedoRecPtr;
840  }
841  doPageWrites = (Insert->fullPageWrites || Insert->runningBackups > 0);
842 
843  if (doPageWrites &&
844  (!prevDoPageWrites ||
845  (fpw_lsn != InvalidXLogRecPtr && fpw_lsn <= RedoRecPtr)))
846  {
847  /*
848  * Oops, some buffer now needs to be backed up that the caller
849  * didn't back up. Start over.
850  */
853  return InvalidXLogRecPtr;
854  }
855 
856  /*
857  * Reserve space for the record in the WAL. This also sets the xl_prev
858  * pointer.
859  */
860  ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
861  &rechdr->xl_prev);
862 
863  /* Normal records are always inserted. */
864  inserted = true;
865  }
866  else if (class == WALINSERT_SPECIAL_SWITCH)
867  {
868  /*
869  * In order to insert an XLOG_SWITCH record, we need to hold all of
870  * the WAL insertion locks, not just one, so that no one else can
871  * begin inserting a record until we've figured out how much space
872  * remains in the current WAL segment and claimed all of it.
873  *
874  * Nonetheless, this case is simpler than the normal cases handled
875  * below, which must check for changes in doPageWrites and RedoRecPtr.
876  * Those checks are only needed for records that can contain buffer
877  * references, and an XLOG_SWITCH record never does.
878  */
879  Assert(fpw_lsn == InvalidXLogRecPtr);
881  inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev);
882  }
883  else
884  {
886 
887  /*
888  * We need to update both the local and shared copies of RedoRecPtr,
889  * which means that we need to hold all the WAL insertion locks.
890  * However, there can't be any buffer references, so as above, we need
891  * not check RedoRecPtr before inserting the record; we just need to
892  * update it afterwards.
893  */
894  Assert(fpw_lsn == InvalidXLogRecPtr);
896  ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
897  &rechdr->xl_prev);
898  RedoRecPtr = Insert->RedoRecPtr = StartPos;
899  inserted = true;
900  }
901 
902  if (inserted)
903  {
904  /*
905  * Now that xl_prev has been filled in, calculate CRC of the record
906  * header.
907  */
908  rdata_crc = rechdr->xl_crc;
909  COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc));
910  FIN_CRC32C(rdata_crc);
911  rechdr->xl_crc = rdata_crc;
912 
913  /*
914  * All the record data, including the header, is now ready to be
915  * inserted. Copy the record in the space reserved.
916  */
918  class == WALINSERT_SPECIAL_SWITCH, rdata,
919  StartPos, EndPos, insertTLI);
920 
921  /*
922  * Unless record is flagged as not important, update LSN of last
923  * important record in the current slot. When holding all locks, just
924  * update the first one.
925  */
926  if ((flags & XLOG_MARK_UNIMPORTANT) == 0)
927  {
928  int lockno = holdingAllLocks ? 0 : MyLockNo;
929 
930  WALInsertLocks[lockno].l.lastImportantAt = StartPos;
931  }
932  }
933  else
934  {
935  /*
936  * This was an xlog-switch record, but the current insert location was
937  * already exactly at the beginning of a segment, so there was no need
938  * to do anything.
939  */
940  }
941 
942  /*
943  * Done! Let others know that we're finished.
944  */
946 
948 
950 
951  /*
952  * Mark top transaction id is logged (if needed) so that we should not try
953  * to log it again with the next WAL record in the current subtransaction.
954  */
955  if (topxid_included)
957 
958  /*
959  * Update shared LogwrtRqst.Write, if we crossed page boundary.
960  */
961  if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
962  {
964  /* advance global request to include new block(s) */
965  if (XLogCtl->LogwrtRqst.Write < EndPos)
966  XLogCtl->LogwrtRqst.Write = EndPos;
969  }
970 
971  /*
972  * If this was an XLOG_SWITCH record, flush the record and the empty
973  * padding space that fills the rest of the segment, and perform
974  * end-of-segment actions (eg, notifying archiver).
975  */
976  if (class == WALINSERT_SPECIAL_SWITCH)
977  {
978  TRACE_POSTGRESQL_WAL_SWITCH();
979  XLogFlush(EndPos);
980 
981  /*
982  * Even though we reserved the rest of the segment for us, which is
983  * reflected in EndPos, we return a pointer to just the end of the
984  * xlog-switch record.
985  */
986  if (inserted)
987  {
988  EndPos = StartPos + SizeOfXLogRecord;
989  if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
990  {
991  uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size);
992 
993  if (offset == EndPos % XLOG_BLCKSZ)
994  EndPos += SizeOfXLogLongPHD;
995  else
996  EndPos += SizeOfXLogShortPHD;
997  }
998  }
999  }
1000 
1001 #ifdef WAL_DEBUG
1002  if (XLOG_DEBUG)
1003  {
1004  static XLogReaderState *debug_reader = NULL;
1005  XLogRecord *record;
1006  DecodedXLogRecord *decoded;
1008  StringInfoData recordBuf;
1009  char *errormsg = NULL;
1010  MemoryContext oldCxt;
1011 
1012  oldCxt = MemoryContextSwitchTo(walDebugCxt);
1013 
1014  initStringInfo(&buf);
1015  appendStringInfo(&buf, "INSERT @ %X/%X: ", LSN_FORMAT_ARGS(EndPos));
1016 
1017  /*
1018  * We have to piece together the WAL record data from the XLogRecData
1019  * entries, so that we can pass it to the rm_desc function as one
1020  * contiguous chunk.
1021  */
1022  initStringInfo(&recordBuf);
1023  for (; rdata != NULL; rdata = rdata->next)
1024  appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len);
1025 
1026  /* We also need temporary space to decode the record. */
1027  record = (XLogRecord *) recordBuf.data;
1028  decoded = (DecodedXLogRecord *)
1030 
1031  if (!debug_reader)
1032  debug_reader = XLogReaderAllocate(wal_segment_size, NULL,
1033  XL_ROUTINE(.page_read = NULL,
1034  .segment_open = NULL,
1035  .segment_close = NULL),
1036  NULL);
1037  if (!debug_reader)
1038  {
1039  appendStringInfoString(&buf, "error decoding record: out of memory while allocating a WAL reading processor");
1040  }
1041  else if (!DecodeXLogRecord(debug_reader,
1042  decoded,
1043  record,
1044  EndPos,
1045  &errormsg))
1046  {
1047  appendStringInfo(&buf, "error decoding record: %s",
1048  errormsg ? errormsg : "no error message");
1049  }
1050  else
1051  {
1052  appendStringInfoString(&buf, " - ");
1053 
1054  debug_reader->record = decoded;
1055  xlog_outdesc(&buf, debug_reader);
1056  debug_reader->record = NULL;
1057  }
1058  elog(LOG, "%s", buf.data);
1059 
1060  pfree(decoded);
1061  pfree(buf.data);
1062  pfree(recordBuf.data);
1063  MemoryContextSwitchTo(oldCxt);
1064  }
1065 #endif
1066 
1067  /*
1068  * Update our global variables
1069  */
1070  ProcLastRecPtr = StartPos;
1071  XactLastRecEnd = EndPos;
1072 
1073  /* Report WAL traffic to the instrumentation. */
1074  if (inserted)
1075  {
1076  pgWalUsage.wal_bytes += rechdr->xl_tot_len;
1078  pgWalUsage.wal_fpi += num_fpi;
1079  }
1080 
1081  return EndPos;
1082 }
1083 
1084 /*
1085  * Reserves the right amount of space for a record of given size from the WAL.
1086  * *StartPos is set to the beginning of the reserved section, *EndPos to
1087  * its end+1. *PrevPtr is set to the beginning of the previous record; it is
1088  * used to set the xl_prev of this record.
1089  *
1090  * This is the performance critical part of XLogInsert that must be serialized
1091  * across backends. The rest can happen mostly in parallel. Try to keep this
1092  * section as short as possible, insertpos_lck can be heavily contended on a
1093  * busy system.
1094  *
1095  * NB: The space calculation here must match the code in CopyXLogRecordToWAL,
1096  * where we actually copy the record to the reserved space.
1097  *
1098  * NB: Testing shows that XLogInsertRecord runs faster if this code is inlined;
1099  * however, because there are two call sites, the compiler is reluctant to
1100  * inline. We use pg_attribute_always_inline here to try to convince it.
1101  */
1102 static pg_attribute_always_inline void
1104  XLogRecPtr *PrevPtr)
1105 {
1107  uint64 startbytepos;
1108  uint64 endbytepos;
1109  uint64 prevbytepos;
1110 
1111  size = MAXALIGN(size);
1112 
1113  /* All (non xlog-switch) records should contain data. */
1115 
1116  /*
1117  * The duration the spinlock needs to be held is minimized by minimizing
1118  * the calculations that have to be done while holding the lock. The
1119  * current tip of reserved WAL is kept in CurrBytePos, as a byte position
1120  * that only counts "usable" bytes in WAL, that is, it excludes all WAL
1121  * page headers. The mapping between "usable" byte positions and physical
1122  * positions (XLogRecPtrs) can be done outside the locked region, and
1123  * because the usable byte position doesn't include any headers, reserving
1124  * X bytes from WAL is almost as simple as "CurrBytePos += X".
1125  */
1126  SpinLockAcquire(&Insert->insertpos_lck);
1127 
1128  startbytepos = Insert->CurrBytePos;
1129  endbytepos = startbytepos + size;
1130  prevbytepos = Insert->PrevBytePos;
1131  Insert->CurrBytePos = endbytepos;
1132  Insert->PrevBytePos = startbytepos;
1133 
1134  SpinLockRelease(&Insert->insertpos_lck);
1135 
1136  *StartPos = XLogBytePosToRecPtr(startbytepos);
1137  *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1138  *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1139 
1140  /*
1141  * Check that the conversions between "usable byte positions" and
1142  * XLogRecPtrs work consistently in both directions.
1143  */
1144  Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1145  Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1146  Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1147 }
1148 
1149 /*
1150  * Like ReserveXLogInsertLocation(), but for an xlog-switch record.
1151  *
1152  * A log-switch record is handled slightly differently. The rest of the
1153  * segment will be reserved for this insertion, as indicated by the returned
1154  * *EndPos value. However, if we are already at the beginning of the current
1155  * segment, *StartPos and *EndPos are set to the current location without
1156  * reserving any space, and the function returns false.
1157 */
1158 static bool
1159 ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
1160 {
1162  uint64 startbytepos;
1163  uint64 endbytepos;
1164  uint64 prevbytepos;
1166  XLogRecPtr ptr;
1167  uint32 segleft;
1168 
1169  /*
1170  * These calculations are a bit heavy-weight to be done while holding a
1171  * spinlock, but since we're holding all the WAL insertion locks, there
1172  * are no other inserters competing for it. GetXLogInsertRecPtr() does
1173  * compete for it, but that's not called very frequently.
1174  */
1175  SpinLockAcquire(&Insert->insertpos_lck);
1176 
1177  startbytepos = Insert->CurrBytePos;
1178 
1179  ptr = XLogBytePosToEndRecPtr(startbytepos);
1180  if (XLogSegmentOffset(ptr, wal_segment_size) == 0)
1181  {
1182  SpinLockRelease(&Insert->insertpos_lck);
1183  *EndPos = *StartPos = ptr;
1184  return false;
1185  }
1186 
1187  endbytepos = startbytepos + size;
1188  prevbytepos = Insert->PrevBytePos;
1189 
1190  *StartPos = XLogBytePosToRecPtr(startbytepos);
1191  *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1192 
1193  segleft = wal_segment_size - XLogSegmentOffset(*EndPos, wal_segment_size);
1194  if (segleft != wal_segment_size)
1195  {
1196  /* consume the rest of the segment */
1197  *EndPos += segleft;
1198  endbytepos = XLogRecPtrToBytePos(*EndPos);
1199  }
1200  Insert->CurrBytePos = endbytepos;
1201  Insert->PrevBytePos = startbytepos;
1202 
1203  SpinLockRelease(&Insert->insertpos_lck);
1204 
1205  *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1206 
1207  Assert(XLogSegmentOffset(*EndPos, wal_segment_size) == 0);
1208  Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1209  Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1210  Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1211 
1212  return true;
1213 }
1214 
1215 /*
1216  * Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved
1217  * area in the WAL.
1218  */
1219 static void
1220 CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata,
1221  XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
1222 {
1223  char *currpos;
1224  int freespace;
1225  int written;
1226  XLogRecPtr CurrPos;
1227  XLogPageHeader pagehdr;
1228 
1229  /*
1230  * Get a pointer to the right place in the right WAL buffer to start
1231  * inserting to.
1232  */
1233  CurrPos = StartPos;
1234  currpos = GetXLogBuffer(CurrPos, tli);
1235  freespace = INSERT_FREESPACE(CurrPos);
1236 
1237  /*
1238  * there should be enough space for at least the first field (xl_tot_len)
1239  * on this page.
1240  */
1241  Assert(freespace >= sizeof(uint32));
1242 
1243  /* Copy record data */
1244  written = 0;
1245  while (rdata != NULL)
1246  {
1247  char *rdata_data = rdata->data;
1248  int rdata_len = rdata->len;
1249 
1250  while (rdata_len > freespace)
1251  {
1252  /*
1253  * Write what fits on this page, and continue on the next page.
1254  */
1255  Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0);
1256  memcpy(currpos, rdata_data, freespace);
1257  rdata_data += freespace;
1258  rdata_len -= freespace;
1259  written += freespace;
1260  CurrPos += freespace;
1261 
1262  /*
1263  * Get pointer to beginning of next page, and set the xlp_rem_len
1264  * in the page header. Set XLP_FIRST_IS_CONTRECORD.
1265  *
1266  * It's safe to set the contrecord flag and xlp_rem_len without a
1267  * lock on the page. All the other flags were already set when the
1268  * page was initialized, in AdvanceXLInsertBuffer, and we're the
1269  * only backend that needs to set the contrecord flag.
1270  */
1271  currpos = GetXLogBuffer(CurrPos, tli);
1272  pagehdr = (XLogPageHeader) currpos;
1273  pagehdr->xlp_rem_len = write_len - written;
1274  pagehdr->xlp_info |= XLP_FIRST_IS_CONTRECORD;
1275 
1276  /* skip over the page header */
1277  if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0)
1278  {
1279  CurrPos += SizeOfXLogLongPHD;
1280  currpos += SizeOfXLogLongPHD;
1281  }
1282  else
1283  {
1284  CurrPos += SizeOfXLogShortPHD;
1285  currpos += SizeOfXLogShortPHD;
1286  }
1287  freespace = INSERT_FREESPACE(CurrPos);
1288  }
1289 
1290  Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0);
1291  memcpy(currpos, rdata_data, rdata_len);
1292  currpos += rdata_len;
1293  CurrPos += rdata_len;
1294  freespace -= rdata_len;
1295  written += rdata_len;
1296 
1297  rdata = rdata->next;
1298  }
1299  Assert(written == write_len);
1300 
1301  /*
1302  * If this was an xlog-switch, it's not enough to write the switch record,
1303  * we also have to consume all the remaining space in the WAL segment. We
1304  * have already reserved that space, but we need to actually fill it.
1305  */
1306  if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0)
1307  {
1308  /* An xlog-switch record doesn't contain any data besides the header */
1309  Assert(write_len == SizeOfXLogRecord);
1310 
1311  /* Assert that we did reserve the right amount of space */
1312  Assert(XLogSegmentOffset(EndPos, wal_segment_size) == 0);
1313 
1314  /* Use up all the remaining space on the current page */
1315  CurrPos += freespace;
1316 
1317  /*
1318  * Cause all remaining pages in the segment to be flushed, leaving the
1319  * XLog position where it should be, at the start of the next segment.
1320  * We do this one page at a time, to make sure we don't deadlock
1321  * against ourselves if wal_buffers < wal_segment_size.
1322  */
1323  while (CurrPos < EndPos)
1324  {
1325  /*
1326  * The minimal action to flush the page would be to call
1327  * WALInsertLockUpdateInsertingAt(CurrPos) followed by
1328  * AdvanceXLInsertBuffer(...). The page would be left initialized
1329  * mostly to zeros, except for the page header (always the short
1330  * variant, as this is never a segment's first page).
1331  *
1332  * The large vistas of zeros are good for compressibility, but the
1333  * headers interrupting them every XLOG_BLCKSZ (with values that
1334  * differ from page to page) are not. The effect varies with
1335  * compression tool, but bzip2 for instance compresses about an
1336  * order of magnitude worse if those headers are left in place.
1337  *
1338  * Rather than complicating AdvanceXLInsertBuffer itself (which is
1339  * called in heavily-loaded circumstances as well as this lightly-
1340  * loaded one) with variant behavior, we just use GetXLogBuffer
1341  * (which itself calls the two methods we need) to get the pointer
1342  * and zero most of the page. Then we just zero the page header.
1343  */
1344  currpos = GetXLogBuffer(CurrPos, tli);
1345  MemSet(currpos, 0, SizeOfXLogShortPHD);
1346 
1347  CurrPos += XLOG_BLCKSZ;
1348  }
1349  }
1350  else
1351  {
1352  /* Align the end position, so that the next record starts aligned */
1353  CurrPos = MAXALIGN64(CurrPos);
1354  }
1355 
1356  if (CurrPos != EndPos)
1357  ereport(PANIC,
1359  errmsg_internal("space reserved for WAL record does not match what was written"));
1360 }
1361 
1362 /*
1363  * Acquire a WAL insertion lock, for inserting to WAL.
1364  */
1365 static void
1367 {
1368  bool immed;
1369 
1370  /*
1371  * It doesn't matter which of the WAL insertion locks we acquire, so try
1372  * the one we used last time. If the system isn't particularly busy, it's
1373  * a good bet that it's still available, and it's good to have some
1374  * affinity to a particular lock so that you don't unnecessarily bounce
1375  * cache lines between processes when there's no contention.
1376  *
1377  * If this is the first time through in this backend, pick a lock
1378  * (semi-)randomly. This allows the locks to be used evenly if you have a
1379  * lot of very short connections.
1380  */
1381  static int lockToTry = -1;
1382 
1383  if (lockToTry == -1)
1384  lockToTry = MyProcNumber % NUM_XLOGINSERT_LOCKS;
1385  MyLockNo = lockToTry;
1386 
1387  /*
1388  * The insertingAt value is initially set to 0, as we don't know our
1389  * insert location yet.
1390  */
1392  if (!immed)
1393  {
1394  /*
1395  * If we couldn't get the lock immediately, try another lock next
1396  * time. On a system with more insertion locks than concurrent
1397  * inserters, this causes all the inserters to eventually migrate to a
1398  * lock that no-one else is using. On a system with more inserters
1399  * than locks, it still helps to distribute the inserters evenly
1400  * across the locks.
1401  */
1402  lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS;
1403  }
1404 }
1405 
1406 /*
1407  * Acquire all WAL insertion locks, to prevent other backends from inserting
1408  * to WAL.
1409  */
1410 static void
1412 {
1413  int i;
1414 
1415  /*
1416  * When holding all the locks, all but the last lock's insertingAt
1417  * indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real
1418  * XLogRecPtr value, to make sure that no-one blocks waiting on those.
1419  */
1420  for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++)
1421  {
1423  LWLockUpdateVar(&WALInsertLocks[i].l.lock,
1425  PG_UINT64_MAX);
1426  }
1427  /* Variable value reset to 0 at release */
1429 
1430  holdingAllLocks = true;
1431 }
1432 
1433 /*
1434  * Release our insertion lock (or locks, if we're holding them all).
1435  *
1436  * NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the
1437  * next time the lock is acquired.
1438  */
1439 static void
1441 {
1442  if (holdingAllLocks)
1443  {
1444  int i;
1445 
1446  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1449  0);
1450 
1451  holdingAllLocks = false;
1452  }
1453  else
1454  {
1457  0);
1458  }
1459 }
1460 
1461 /*
1462  * Update our insertingAt value, to let others know that we've finished
1463  * inserting up to that point.
1464  */
1465 static void
1467 {
1468  if (holdingAllLocks)
1469  {
1470  /*
1471  * We use the last lock to mark our actual position, see comments in
1472  * WALInsertLockAcquireExclusive.
1473  */
1476  insertingAt);
1477  }
1478  else
1481  insertingAt);
1482 }
1483 
1484 /*
1485  * Wait for any WAL insertions < upto to finish.
1486  *
1487  * Returns the location of the oldest insertion that is still in-progress.
1488  * Any WAL prior to that point has been fully copied into WAL buffers, and
1489  * can be flushed out to disk. Because this waits for any insertions older
1490  * than 'upto' to finish, the return value is always >= 'upto'.
1491  *
1492  * Note: When you are about to write out WAL, you must call this function
1493  * *before* acquiring WALWriteLock, to avoid deadlocks. This function might
1494  * need to wait for an insertion to finish (or at least advance to next
1495  * uninitialized page), and the inserter might need to evict an old WAL buffer
1496  * to make room for a new one, which in turn requires WALWriteLock.
1497  */
1498 static XLogRecPtr
1500 {
1501  uint64 bytepos;
1502  XLogRecPtr inserted;
1503  XLogRecPtr reservedUpto;
1504  XLogRecPtr finishedUpto;
1506  int i;
1507 
1508  if (MyProc == NULL)
1509  elog(PANIC, "cannot wait without a PGPROC structure");
1510 
1511  /*
1512  * Check if there's any work to do. Use a barrier to ensure we get the
1513  * freshest value.
1514  */
1516  if (upto <= inserted)
1517  return inserted;
1518 
1519  /* Read the current insert position */
1520  SpinLockAcquire(&Insert->insertpos_lck);
1521  bytepos = Insert->CurrBytePos;
1522  SpinLockRelease(&Insert->insertpos_lck);
1523  reservedUpto = XLogBytePosToEndRecPtr(bytepos);
1524 
1525  /*
1526  * No-one should request to flush a piece of WAL that hasn't even been
1527  * reserved yet. However, it can happen if there is a block with a bogus
1528  * LSN on disk, for example. XLogFlush checks for that situation and
1529  * complains, but only after the flush. Here we just assume that to mean
1530  * that all WAL that has been reserved needs to be finished. In this
1531  * corner-case, the return value can be smaller than 'upto' argument.
1532  */
1533  if (upto > reservedUpto)
1534  {
1535  ereport(LOG,
1536  (errmsg("request to flush past end of generated WAL; request %X/%X, current position %X/%X",
1537  LSN_FORMAT_ARGS(upto), LSN_FORMAT_ARGS(reservedUpto))));
1538  upto = reservedUpto;
1539  }
1540 
1541  /*
1542  * Loop through all the locks, sleeping on any in-progress insert older
1543  * than 'upto'.
1544  *
1545  * finishedUpto is our return value, indicating the point upto which all
1546  * the WAL insertions have been finished. Initialize it to the head of
1547  * reserved WAL, and as we iterate through the insertion locks, back it
1548  * out for any insertion that's still in progress.
1549  */
1550  finishedUpto = reservedUpto;
1551  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1552  {
1553  XLogRecPtr insertingat = InvalidXLogRecPtr;
1554 
1555  do
1556  {
1557  /*
1558  * See if this insertion is in progress. LWLockWaitForVar will
1559  * wait for the lock to be released, or for the 'value' to be set
1560  * by a LWLockUpdateVar call. When a lock is initially acquired,
1561  * its value is 0 (InvalidXLogRecPtr), which means that we don't
1562  * know where it's inserting yet. We will have to wait for it. If
1563  * it's a small insertion, the record will most likely fit on the
1564  * same page and the inserter will release the lock without ever
1565  * calling LWLockUpdateVar. But if it has to sleep, it will
1566  * advertise the insertion point with LWLockUpdateVar before
1567  * sleeping.
1568  *
1569  * In this loop we are only waiting for insertions that started
1570  * before WaitXLogInsertionsToFinish was called. The lack of
1571  * memory barriers in the loop means that we might see locks as
1572  * "unused" that have since become used. This is fine because
1573  * they only can be used for later insertions that we would not
1574  * want to wait on anyway. Not taking a lock to acquire the
1575  * current insertingAt value means that we might see older
1576  * insertingAt values. This is also fine, because if we read a
1577  * value too old, we will add ourselves to the wait queue, which
1578  * contains atomic operations.
1579  */
1580  if (LWLockWaitForVar(&WALInsertLocks[i].l.lock,
1582  insertingat, &insertingat))
1583  {
1584  /* the lock was free, so no insertion in progress */
1585  insertingat = InvalidXLogRecPtr;
1586  break;
1587  }
1588 
1589  /*
1590  * This insertion is still in progress. Have to wait, unless the
1591  * inserter has proceeded past 'upto'.
1592  */
1593  } while (insertingat < upto);
1594 
1595  if (insertingat != InvalidXLogRecPtr && insertingat < finishedUpto)
1596  finishedUpto = insertingat;
1597  }
1598 
1599  /*
1600  * Advance the limit we know to have been inserted and return the freshest
1601  * value we know of, which might be beyond what we requested if somebody
1602  * is concurrently doing this with an 'upto' pointer ahead of us.
1603  */
1605  finishedUpto);
1606 
1607  return finishedUpto;
1608 }
1609 
1610 /*
1611  * Get a pointer to the right location in the WAL buffer containing the
1612  * given XLogRecPtr.
1613  *
1614  * If the page is not initialized yet, it is initialized. That might require
1615  * evicting an old dirty buffer from the buffer cache, which means I/O.
1616  *
1617  * The caller must ensure that the page containing the requested location
1618  * isn't evicted yet, and won't be evicted. The way to ensure that is to
1619  * hold onto a WAL insertion lock with the insertingAt position set to
1620  * something <= ptr. GetXLogBuffer() will update insertingAt if it needs
1621  * to evict an old page from the buffer. (This means that once you call
1622  * GetXLogBuffer() with a given 'ptr', you must not access anything before
1623  * that point anymore, and must not call GetXLogBuffer() with an older 'ptr'
1624  * later, because older buffers might be recycled already)
1625  */
1626 static char *
1628 {
1629  int idx;
1630  XLogRecPtr endptr;
1631  static uint64 cachedPage = 0;
1632  static char *cachedPos = NULL;
1633  XLogRecPtr expectedEndPtr;
1634 
1635  /*
1636  * Fast path for the common case that we need to access again the same
1637  * page as last time.
1638  */
1639  if (ptr / XLOG_BLCKSZ == cachedPage)
1640  {
1641  Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1642  Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1643  return cachedPos + ptr % XLOG_BLCKSZ;
1644  }
1645 
1646  /*
1647  * The XLog buffer cache is organized so that a page is always loaded to a
1648  * particular buffer. That way we can easily calculate the buffer a given
1649  * page must be loaded into, from the XLogRecPtr alone.
1650  */
1651  idx = XLogRecPtrToBufIdx(ptr);
1652 
1653  /*
1654  * See what page is loaded in the buffer at the moment. It could be the
1655  * page we're looking for, or something older. It can't be anything newer
1656  * - that would imply the page we're looking for has already been written
1657  * out to disk and evicted, and the caller is responsible for making sure
1658  * that doesn't happen.
1659  *
1660  * We don't hold a lock while we read the value. If someone is just about
1661  * to initialize or has just initialized the page, it's possible that we
1662  * get InvalidXLogRecPtr. That's ok, we'll grab the mapping lock (in
1663  * AdvanceXLInsertBuffer) and retry if we see anything other than the page
1664  * we're looking for.
1665  */
1666  expectedEndPtr = ptr;
1667  expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ;
1668 
1669  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1670  if (expectedEndPtr != endptr)
1671  {
1672  XLogRecPtr initializedUpto;
1673 
1674  /*
1675  * Before calling AdvanceXLInsertBuffer(), which can block, let others
1676  * know how far we're finished with inserting the record.
1677  *
1678  * NB: If 'ptr' points to just after the page header, advertise a
1679  * position at the beginning of the page rather than 'ptr' itself. If
1680  * there are no other insertions running, someone might try to flush
1681  * up to our advertised location. If we advertised a position after
1682  * the page header, someone might try to flush the page header, even
1683  * though page might actually not be initialized yet. As the first
1684  * inserter on the page, we are effectively responsible for making
1685  * sure that it's initialized, before we let insertingAt to move past
1686  * the page header.
1687  */
1688  if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD &&
1689  XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ)
1690  initializedUpto = ptr - SizeOfXLogShortPHD;
1691  else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD &&
1692  XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ)
1693  initializedUpto = ptr - SizeOfXLogLongPHD;
1694  else
1695  initializedUpto = ptr;
1696 
1697  WALInsertLockUpdateInsertingAt(initializedUpto);
1698 
1699  AdvanceXLInsertBuffer(ptr, tli, false);
1700  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1701 
1702  if (expectedEndPtr != endptr)
1703  elog(PANIC, "could not find WAL buffer for %X/%X",
1704  LSN_FORMAT_ARGS(ptr));
1705  }
1706  else
1707  {
1708  /*
1709  * Make sure the initialization of the page is visible to us, and
1710  * won't arrive later to overwrite the WAL data we write on the page.
1711  */
1713  }
1714 
1715  /*
1716  * Found the buffer holding this page. Return a pointer to the right
1717  * offset within the page.
1718  */
1719  cachedPage = ptr / XLOG_BLCKSZ;
1720  cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1721 
1722  Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1723  Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1724 
1725  return cachedPos + ptr % XLOG_BLCKSZ;
1726 }
1727 
1728 /*
1729  * Read WAL data directly from WAL buffers, if available. Returns the number
1730  * of bytes read successfully.
1731  *
1732  * Fewer than 'count' bytes may be read if some of the requested WAL data has
1733  * already been evicted.
1734  *
1735  * No locks are taken.
1736  *
1737  * Caller should ensure that it reads no further than LogwrtResult.Write
1738  * (which should have been updated by the caller when determining how far to
1739  * read). The 'tli' argument is only used as a convenient safety check so that
1740  * callers do not read from WAL buffers on a historical timeline.
1741  */
1742 Size
1743 WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count,
1744  TimeLineID tli)
1745 {
1746  char *pdst = dstbuf;
1747  XLogRecPtr recptr = startptr;
1748  XLogRecPtr inserted;
1749  Size nbytes = count;
1750 
1751  if (RecoveryInProgress() || tli != GetWALInsertionTimeLine())
1752  return 0;
1753 
1754  Assert(!XLogRecPtrIsInvalid(startptr));
1755 
1756  /*
1757  * Caller should ensure that the requested data has been inserted into WAL
1758  * buffers before we try to read it.
1759  */
1761  if (startptr + count > inserted)
1762  ereport(ERROR,
1763  errmsg("cannot read past end of generated WAL: requested %X/%X, current position %X/%X",
1764  LSN_FORMAT_ARGS(startptr + count),
1765  LSN_FORMAT_ARGS(inserted)));
1766 
1767  /*
1768  * Loop through the buffers without a lock. For each buffer, atomically
1769  * read and verify the end pointer, then copy the data out, and finally
1770  * re-read and re-verify the end pointer.
1771  *
1772  * Once a page is evicted, it never returns to the WAL buffers, so if the
1773  * end pointer matches the expected end pointer before and after we copy
1774  * the data, then the right page must have been present during the data
1775  * copy. Read barriers are necessary to ensure that the data copy actually
1776  * happens between the two verification steps.
1777  *
1778  * If either verification fails, we simply terminate the loop and return
1779  * with the data that had been already copied out successfully.
1780  */
1781  while (nbytes > 0)
1782  {
1783  uint32 offset = recptr % XLOG_BLCKSZ;
1784  int idx = XLogRecPtrToBufIdx(recptr);
1785  XLogRecPtr expectedEndPtr;
1786  XLogRecPtr endptr;
1787  const char *page;
1788  const char *psrc;
1789  Size npagebytes;
1790 
1791  /*
1792  * Calculate the end pointer we expect in the xlblocks array if the
1793  * correct page is present.
1794  */
1795  expectedEndPtr = recptr + (XLOG_BLCKSZ - offset);
1796 
1797  /*
1798  * First verification step: check that the correct page is present in
1799  * the WAL buffers.
1800  */
1801  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1802  if (expectedEndPtr != endptr)
1803  break;
1804 
1805  /*
1806  * The correct page is present (or was at the time the endptr was
1807  * read; must re-verify later). Calculate pointer to source data and
1808  * determine how much data to read from this page.
1809  */
1810  page = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1811  psrc = page + offset;
1812  npagebytes = Min(nbytes, XLOG_BLCKSZ - offset);
1813 
1814  /*
1815  * Ensure that the data copy and the first verification step are not
1816  * reordered.
1817  */
1818  pg_read_barrier();
1819 
1820  /* data copy */
1821  memcpy(pdst, psrc, npagebytes);
1822 
1823  /*
1824  * Ensure that the data copy and the second verification step are not
1825  * reordered.
1826  */
1827  pg_read_barrier();
1828 
1829  /*
1830  * Second verification step: check that the page we read from wasn't
1831  * evicted while we were copying the data.
1832  */
1833  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1834  if (expectedEndPtr != endptr)
1835  break;
1836 
1837  pdst += npagebytes;
1838  recptr += npagebytes;
1839  nbytes -= npagebytes;
1840  }
1841 
1842  Assert(pdst - dstbuf <= count);
1843 
1844  return pdst - dstbuf;
1845 }
1846 
1847 /*
1848  * Converts a "usable byte position" to XLogRecPtr. A usable byte position
1849  * is the position starting from the beginning of WAL, excluding all WAL
1850  * page headers.
1851  */
1852 static XLogRecPtr
1853 XLogBytePosToRecPtr(uint64 bytepos)
1854 {
1855  uint64 fullsegs;
1856  uint64 fullpages;
1857  uint64 bytesleft;
1858  uint32 seg_offset;
1859  XLogRecPtr result;
1860 
1861  fullsegs = bytepos / UsableBytesInSegment;
1862  bytesleft = bytepos % UsableBytesInSegment;
1863 
1864  if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1865  {
1866  /* fits on first page of segment */
1867  seg_offset = bytesleft + SizeOfXLogLongPHD;
1868  }
1869  else
1870  {
1871  /* account for the first page on segment with long header */
1872  seg_offset = XLOG_BLCKSZ;
1873  bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1874 
1875  fullpages = bytesleft / UsableBytesInPage;
1876  bytesleft = bytesleft % UsableBytesInPage;
1877 
1878  seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1879  }
1880 
1881  XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1882 
1883  return result;
1884 }
1885 
1886 /*
1887  * Like XLogBytePosToRecPtr, but if the position is at a page boundary,
1888  * returns a pointer to the beginning of the page (ie. before page header),
1889  * not to where the first xlog record on that page would go to. This is used
1890  * when converting a pointer to the end of a record.
1891  */
1892 static XLogRecPtr
1893 XLogBytePosToEndRecPtr(uint64 bytepos)
1894 {
1895  uint64 fullsegs;
1896  uint64 fullpages;
1897  uint64 bytesleft;
1898  uint32 seg_offset;
1899  XLogRecPtr result;
1900 
1901  fullsegs = bytepos / UsableBytesInSegment;
1902  bytesleft = bytepos % UsableBytesInSegment;
1903 
1904  if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1905  {
1906  /* fits on first page of segment */
1907  if (bytesleft == 0)
1908  seg_offset = 0;
1909  else
1910  seg_offset = bytesleft + SizeOfXLogLongPHD;
1911  }
1912  else
1913  {
1914  /* account for the first page on segment with long header */
1915  seg_offset = XLOG_BLCKSZ;
1916  bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1917 
1918  fullpages = bytesleft / UsableBytesInPage;
1919  bytesleft = bytesleft % UsableBytesInPage;
1920 
1921  if (bytesleft == 0)
1922  seg_offset += fullpages * XLOG_BLCKSZ + bytesleft;
1923  else
1924  seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1925  }
1926 
1927  XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1928 
1929  return result;
1930 }
1931 
1932 /*
1933  * Convert an XLogRecPtr to a "usable byte position".
1934  */
1935 static uint64
1937 {
1938  uint64 fullsegs;
1939  uint32 fullpages;
1940  uint32 offset;
1941  uint64 result;
1942 
1943  XLByteToSeg(ptr, fullsegs, wal_segment_size);
1944 
1945  fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ;
1946  offset = ptr % XLOG_BLCKSZ;
1947 
1948  if (fullpages == 0)
1949  {
1950  result = fullsegs * UsableBytesInSegment;
1951  if (offset > 0)
1952  {
1953  Assert(offset >= SizeOfXLogLongPHD);
1954  result += offset - SizeOfXLogLongPHD;
1955  }
1956  }
1957  else
1958  {
1959  result = fullsegs * UsableBytesInSegment +
1960  (XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */
1961  (fullpages - 1) * UsableBytesInPage; /* full pages */
1962  if (offset > 0)
1963  {
1964  Assert(offset >= SizeOfXLogShortPHD);
1965  result += offset - SizeOfXLogShortPHD;
1966  }
1967  }
1968 
1969  return result;
1970 }
1971 
1972 /*
1973  * Initialize XLOG buffers, writing out old buffers if they still contain
1974  * unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is
1975  * true, initialize as many pages as we can without having to write out
1976  * unwritten data. Any new pages are initialized to zeros, with pages headers
1977  * initialized properly.
1978  */
1979 static void
1980 AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
1981 {
1983  int nextidx;
1984  XLogRecPtr OldPageRqstPtr;
1985  XLogwrtRqst WriteRqst;
1986  XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr;
1987  XLogRecPtr NewPageBeginPtr;
1988  XLogPageHeader NewPage;
1989  int npages pg_attribute_unused() = 0;
1990 
1991  LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
1992 
1993  /*
1994  * Now that we have the lock, check if someone initialized the page
1995  * already.
1996  */
1997  while (upto >= XLogCtl->InitializedUpTo || opportunistic)
1998  {
2000 
2001  /*
2002  * Get ending-offset of the buffer page we need to replace (this may
2003  * be zero if the buffer hasn't been used yet). Fall through if it's
2004  * already written out.
2005  */
2006  OldPageRqstPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[nextidx]);
2007  if (LogwrtResult.Write < OldPageRqstPtr)
2008  {
2009  /*
2010  * Nope, got work to do. If we just want to pre-initialize as much
2011  * as we can without flushing, give up now.
2012  */
2013  if (opportunistic)
2014  break;
2015 
2016  /* Advance shared memory write request position */
2018  if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr)
2019  XLogCtl->LogwrtRqst.Write = OldPageRqstPtr;
2021 
2022  /*
2023  * Acquire an up-to-date LogwrtResult value and see if we still
2024  * need to write it or if someone else already did.
2025  */
2027  if (LogwrtResult.Write < OldPageRqstPtr)
2028  {
2029  /*
2030  * Must acquire write lock. Release WALBufMappingLock first,
2031  * to make sure that all insertions that we need to wait for
2032  * can finish (up to this same position). Otherwise we risk
2033  * deadlock.
2034  */
2035  LWLockRelease(WALBufMappingLock);
2036 
2037  WaitXLogInsertionsToFinish(OldPageRqstPtr);
2038 
2039  LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
2040 
2042  if (LogwrtResult.Write >= OldPageRqstPtr)
2043  {
2044  /* OK, someone wrote it already */
2045  LWLockRelease(WALWriteLock);
2046  }
2047  else
2048  {
2049  /* Have to write it ourselves */
2050  TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
2051  WriteRqst.Write = OldPageRqstPtr;
2052  WriteRqst.Flush = 0;
2053  XLogWrite(WriteRqst, tli, false);
2054  LWLockRelease(WALWriteLock);
2056  TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
2057  }
2058  /* Re-acquire WALBufMappingLock and retry */
2059  LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
2060  continue;
2061  }
2062  }
2063 
2064  /*
2065  * Now the next buffer slot is free and we can set it up to be the
2066  * next output page.
2067  */
2068  NewPageBeginPtr = XLogCtl->InitializedUpTo;
2069  NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ;
2070 
2071  Assert(XLogRecPtrToBufIdx(NewPageBeginPtr) == nextidx);
2072 
2073  NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
2074 
2075  /*
2076  * Mark the xlblock with InvalidXLogRecPtr and issue a write barrier
2077  * before initializing. Otherwise, the old page may be partially
2078  * zeroed but look valid.
2079  */
2081  pg_write_barrier();
2082 
2083  /*
2084  * Be sure to re-zero the buffer so that bytes beyond what we've
2085  * written will look like zeroes and not valid XLOG records...
2086  */
2087  MemSet((char *) NewPage, 0, XLOG_BLCKSZ);
2088 
2089  /*
2090  * Fill the new page's header
2091  */
2092  NewPage->xlp_magic = XLOG_PAGE_MAGIC;
2093 
2094  /* NewPage->xlp_info = 0; */ /* done by memset */
2095  NewPage->xlp_tli = tli;
2096  NewPage->xlp_pageaddr = NewPageBeginPtr;
2097 
2098  /* NewPage->xlp_rem_len = 0; */ /* done by memset */
2099 
2100  /*
2101  * If online backup is not in progress, mark the header to indicate
2102  * that WAL records beginning in this page have removable backup
2103  * blocks. This allows the WAL archiver to know whether it is safe to
2104  * compress archived WAL data by transforming full-block records into
2105  * the non-full-block format. It is sufficient to record this at the
2106  * page level because we force a page switch (in fact a segment
2107  * switch) when starting a backup, so the flag will be off before any
2108  * records can be written during the backup. At the end of a backup,
2109  * the last page will be marked as all unsafe when perhaps only part
2110  * is unsafe, but at worst the archiver would miss the opportunity to
2111  * compress a few records.
2112  */
2113  if (Insert->runningBackups == 0)
2114  NewPage->xlp_info |= XLP_BKP_REMOVABLE;
2115 
2116  /*
2117  * If first page of an XLOG segment file, make it a long header.
2118  */
2119  if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0)
2120  {
2121  XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
2122 
2123  NewLongPage->xlp_sysid = ControlFile->system_identifier;
2124  NewLongPage->xlp_seg_size = wal_segment_size;
2125  NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
2126  NewPage->xlp_info |= XLP_LONG_HEADER;
2127  }
2128 
2129  /*
2130  * Make sure the initialization of the page becomes visible to others
2131  * before the xlblocks update. GetXLogBuffer() reads xlblocks without
2132  * holding a lock.
2133  */
2134  pg_write_barrier();
2135 
2136  pg_atomic_write_u64(&XLogCtl->xlblocks[nextidx], NewPageEndPtr);
2137  XLogCtl->InitializedUpTo = NewPageEndPtr;
2138 
2139  npages++;
2140  }
2141  LWLockRelease(WALBufMappingLock);
2142 
2143 #ifdef WAL_DEBUG
2144  if (XLOG_DEBUG && npages > 0)
2145  {
2146  elog(DEBUG1, "initialized %d pages, up to %X/%X",
2147  npages, LSN_FORMAT_ARGS(NewPageEndPtr));
2148  }
2149 #endif
2150 }
2151 
2152 /*
2153  * Calculate CheckPointSegments based on max_wal_size_mb and
2154  * checkpoint_completion_target.
2155  */
2156 static void
2158 {
2159  double target;
2160 
2161  /*-------
2162  * Calculate the distance at which to trigger a checkpoint, to avoid
2163  * exceeding max_wal_size_mb. This is based on two assumptions:
2164  *
2165  * a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept
2166  * WAL for two checkpoint cycles to allow us to recover from the
2167  * secondary checkpoint if the first checkpoint failed, though we
2168  * only did this on the primary anyway, not on standby. Keeping just
2169  * one checkpoint simplifies processing and reduces disk space in
2170  * many smaller databases.)
2171  * b) during checkpoint, we consume checkpoint_completion_target *
2172  * number of segments consumed between checkpoints.
2173  *-------
2174  */
2175  target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) /
2177 
2178  /* round down */
2179  CheckPointSegments = (int) target;
2180 
2181  if (CheckPointSegments < 1)
2182  CheckPointSegments = 1;
2183 }
2184 
2185 void
2186 assign_max_wal_size(int newval, void *extra)
2187 {
2190 }
2191 
2192 void
2194 {
2197 }
2198 
2199 bool
2201 {
2202  if (!IsValidWalSegSize(*newval))
2203  {
2204  GUC_check_errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.");
2205  return false;
2206  }
2207 
2208  return true;
2209 }
2210 
2211 /*
2212  * GUC check_hook for max_slot_wal_keep_size
2213  *
2214  * We don't allow the value of max_slot_wal_keep_size other than -1 during the
2215  * binary upgrade. See start_postmaster() in pg_upgrade for more details.
2216  */
2217 bool
2219 {
2220  if (IsBinaryUpgrade && *newval != -1)
2221  {
2222  GUC_check_errdetail("\"%s\" must be set to -1 during binary upgrade mode.",
2223  "max_slot_wal_keep_size");
2224  return false;
2225  }
2226 
2227  return true;
2228 }
2229 
2230 /*
2231  * At a checkpoint, how many WAL segments to recycle as preallocated future
2232  * XLOG segments? Returns the highest segment that should be preallocated.
2233  */
2234 static XLogSegNo
2236 {
2237  XLogSegNo minSegNo;
2238  XLogSegNo maxSegNo;
2239  double distance;
2240  XLogSegNo recycleSegNo;
2241 
2242  /*
2243  * Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb
2244  * correspond to. Always recycle enough segments to meet the minimum, and
2245  * remove enough segments to stay below the maximum.
2246  */
2247  minSegNo = lastredoptr / wal_segment_size +
2249  maxSegNo = lastredoptr / wal_segment_size +
2251 
2252  /*
2253  * Between those limits, recycle enough segments to get us through to the
2254  * estimated end of next checkpoint.
2255  *
2256  * To estimate where the next checkpoint will finish, assume that the
2257  * system runs steadily consuming CheckPointDistanceEstimate bytes between
2258  * every checkpoint.
2259  */
2261  /* add 10% for good measure. */
2262  distance *= 1.10;
2263 
2264  recycleSegNo = (XLogSegNo) ceil(((double) lastredoptr + distance) /
2266 
2267  if (recycleSegNo < minSegNo)
2268  recycleSegNo = minSegNo;
2269  if (recycleSegNo > maxSegNo)
2270  recycleSegNo = maxSegNo;
2271 
2272  return recycleSegNo;
2273 }
2274 
2275 /*
2276  * Check whether we've consumed enough xlog space that a checkpoint is needed.
2277  *
2278  * new_segno indicates a log file that has just been filled up (or read
2279  * during recovery). We measure the distance from RedoRecPtr to new_segno
2280  * and see if that exceeds CheckPointSegments.
2281  *
2282  * Note: it is caller's responsibility that RedoRecPtr is up-to-date.
2283  */
2284 bool
2286 {
2287  XLogSegNo old_segno;
2288 
2290 
2291  if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1))
2292  return true;
2293  return false;
2294 }
2295 
2296 /*
2297  * Write and/or fsync the log at least as far as WriteRqst indicates.
2298  *
2299  * If flexible == true, we don't have to write as far as WriteRqst, but
2300  * may stop at any convenient boundary (such as a cache or logfile boundary).
2301  * This option allows us to avoid uselessly issuing multiple writes when a
2302  * single one would do.
2303  *
2304  * Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst)
2305  * must be called before grabbing the lock, to make sure the data is ready to
2306  * write.
2307  */
2308 static void
2309 XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
2310 {
2311  bool ispartialpage;
2312  bool last_iteration;
2313  bool finishing_seg;
2314  int curridx;
2315  int npages;
2316  int startidx;
2317  uint32 startoffset;
2318 
2319  /* We should always be inside a critical section here */
2320  Assert(CritSectionCount > 0);
2321 
2322  /*
2323  * Update local LogwrtResult (caller probably did this already, but...)
2324  */
2326 
2327  /*
2328  * Since successive pages in the xlog cache are consecutively allocated,
2329  * we can usually gather multiple pages together and issue just one
2330  * write() call. npages is the number of pages we have determined can be
2331  * written together; startidx is the cache block index of the first one,
2332  * and startoffset is the file offset at which it should go. The latter
2333  * two variables are only valid when npages > 0, but we must initialize
2334  * all of them to keep the compiler quiet.
2335  */
2336  npages = 0;
2337  startidx = 0;
2338  startoffset = 0;
2339 
2340  /*
2341  * Within the loop, curridx is the cache block index of the page to
2342  * consider writing. Begin at the buffer containing the next unwritten
2343  * page, or last partially written page.
2344  */
2346 
2347  while (LogwrtResult.Write < WriteRqst.Write)
2348  {
2349  /*
2350  * Make sure we're not ahead of the insert process. This could happen
2351  * if we're passed a bogus WriteRqst.Write that is past the end of the
2352  * last page that's been initialized by AdvanceXLInsertBuffer.
2353  */
2354  XLogRecPtr EndPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[curridx]);
2355 
2356  if (LogwrtResult.Write >= EndPtr)
2357  elog(PANIC, "xlog write request %X/%X is past end of log %X/%X",
2359  LSN_FORMAT_ARGS(EndPtr));
2360 
2361  /* Advance LogwrtResult.Write to end of current buffer page */
2362  LogwrtResult.Write = EndPtr;
2363  ispartialpage = WriteRqst.Write < LogwrtResult.Write;
2364 
2367  {
2368  /*
2369  * Switch to new logfile segment. We cannot have any pending
2370  * pages here (since we dump what we have at segment end).
2371  */
2372  Assert(npages == 0);
2373  if (openLogFile >= 0)
2374  XLogFileClose();
2377  openLogTLI = tli;
2378 
2379  /* create/use new log file */
2382  }
2383 
2384  /* Make sure we have the current logfile open */
2385  if (openLogFile < 0)
2386  {
2389  openLogTLI = tli;
2392  }
2393 
2394  /* Add current page to the set of pending pages-to-dump */
2395  if (npages == 0)
2396  {
2397  /* first of group */
2398  startidx = curridx;
2399  startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ,
2401  }
2402  npages++;
2403 
2404  /*
2405  * Dump the set if this will be the last loop iteration, or if we are
2406  * at the last page of the cache area (since the next page won't be
2407  * contiguous in memory), or if we are at the end of the logfile
2408  * segment.
2409  */
2410  last_iteration = WriteRqst.Write <= LogwrtResult.Write;
2411 
2412  finishing_seg = !ispartialpage &&
2413  (startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size;
2414 
2415  if (last_iteration ||
2416  curridx == XLogCtl->XLogCacheBlck ||
2417  finishing_seg)
2418  {
2419  char *from;
2420  Size nbytes;
2421  Size nleft;
2422  ssize_t written;
2423  instr_time start;
2424 
2425  /* OK to write the page(s) */
2426  from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
2427  nbytes = npages * (Size) XLOG_BLCKSZ;
2428  nleft = nbytes;
2429  do
2430  {
2431  errno = 0;
2432 
2433  /* Measure I/O timing to write WAL data */
2434  if (track_wal_io_timing)
2436  else
2438 
2439  pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE);
2440  written = pg_pwrite(openLogFile, from, nleft, startoffset);
2442 
2443  /*
2444  * Increment the I/O timing and the number of times WAL data
2445  * were written out to disk.
2446  */
2447  if (track_wal_io_timing)
2448  {
2449  instr_time end;
2450 
2453  }
2454 
2456 
2457  if (written <= 0)
2458  {
2459  char xlogfname[MAXFNAMELEN];
2460  int save_errno;
2461 
2462  if (errno == EINTR)
2463  continue;
2464 
2465  save_errno = errno;
2466  XLogFileName(xlogfname, tli, openLogSegNo,
2468  errno = save_errno;
2469  ereport(PANIC,
2471  errmsg("could not write to log file \"%s\" at offset %u, length %zu: %m",
2472  xlogfname, startoffset, nleft)));
2473  }
2474  nleft -= written;
2475  from += written;
2476  startoffset += written;
2477  } while (nleft > 0);
2478 
2479  npages = 0;
2480 
2481  /*
2482  * If we just wrote the whole last page of a logfile segment,
2483  * fsync the segment immediately. This avoids having to go back
2484  * and re-open prior segments when an fsync request comes along
2485  * later. Doing it here ensures that one and only one backend will
2486  * perform this fsync.
2487  *
2488  * This is also the right place to notify the Archiver that the
2489  * segment is ready to copy to archival storage, and to update the
2490  * timer for archive_timeout, and to signal for a checkpoint if
2491  * too many logfile segments have been used since the last
2492  * checkpoint.
2493  */
2494  if (finishing_seg)
2495  {
2497 
2498  /* signal that we need to wakeup walsenders later */
2500 
2501  LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
2502 
2503  if (XLogArchivingActive())
2505 
2506  XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
2508 
2509  /*
2510  * Request a checkpoint if we've consumed too much xlog since
2511  * the last one. For speed, we first check using the local
2512  * copy of RedoRecPtr, which might be out of date; if it looks
2513  * like a checkpoint is needed, forcibly update RedoRecPtr and
2514  * recheck.
2515  */
2517  {
2518  (void) GetRedoRecPtr();
2521  }
2522  }
2523  }
2524 
2525  if (ispartialpage)
2526  {
2527  /* Only asked to write a partial page */
2528  LogwrtResult.Write = WriteRqst.Write;
2529  break;
2530  }
2531  curridx = NextBufIdx(curridx);
2532 
2533  /* If flexible, break out of loop as soon as we wrote something */
2534  if (flexible && npages == 0)
2535  break;
2536  }
2537 
2538  Assert(npages == 0);
2539 
2540  /*
2541  * If asked to flush, do so
2542  */
2543  if (LogwrtResult.Flush < WriteRqst.Flush &&
2545  {
2546  /*
2547  * Could get here without iterating above loop, in which case we might
2548  * have no open file or the wrong one. However, we do not need to
2549  * fsync more than one file.
2550  */
2553  {
2554  if (openLogFile >= 0 &&
2557  XLogFileClose();
2558  if (openLogFile < 0)
2559  {
2562  openLogTLI = tli;
2565  }
2566 
2568  }
2569 
2570  /* signal that we need to wakeup walsenders later */
2572 
2574  }
2575 
2576  /*
2577  * Update shared-memory status
2578  *
2579  * We make sure that the shared 'request' values do not fall behind the
2580  * 'result' values. This is not absolutely essential, but it saves some
2581  * code in a couple of places.
2582  */
2589 
2590  /*
2591  * We write Write first, bar, then Flush. When reading, the opposite must
2592  * be done (with a matching barrier in between), so that we always see a
2593  * Flush value that trails behind the Write value seen.
2594  */
2596  pg_write_barrier();
2598 
2599 #ifdef USE_ASSERT_CHECKING
2600  {
2601  XLogRecPtr Flush;
2602  XLogRecPtr Write;
2604 
2606  pg_read_barrier();
2608  pg_read_barrier();
2610 
2611  /* WAL written to disk is always ahead of WAL flushed */
2612  Assert(Write >= Flush);
2613 
2614  /* WAL inserted to buffers is always ahead of WAL written */
2615  Assert(Insert >= Write);
2616  }
2617 #endif
2618 }
2619 
2620 /*
2621  * Record the LSN for an asynchronous transaction commit/abort
2622  * and nudge the WALWriter if there is work for it to do.
2623  * (This should not be called for synchronous commits.)
2624  */
2625 void
2627 {
2628  XLogRecPtr WriteRqstPtr = asyncXactLSN;
2629  bool sleeping;
2630  bool wakeup = false;
2631  XLogRecPtr prevAsyncXactLSN;
2632 
2634  sleeping = XLogCtl->WalWriterSleeping;
2635  prevAsyncXactLSN = XLogCtl->asyncXactLSN;
2636  if (XLogCtl->asyncXactLSN < asyncXactLSN)
2637  XLogCtl->asyncXactLSN = asyncXactLSN;
2639 
2640  /*
2641  * If somebody else already called this function with a more aggressive
2642  * LSN, they will have done what we needed (and perhaps more).
2643  */
2644  if (asyncXactLSN <= prevAsyncXactLSN)
2645  return;
2646 
2647  /*
2648  * If the WALWriter is sleeping, kick it to make it come out of low-power
2649  * mode, so that this async commit will reach disk within the expected
2650  * amount of time. Otherwise, determine whether it has enough WAL
2651  * available to flush, the same way that XLogBackgroundFlush() does.
2652  */
2653  if (sleeping)
2654  wakeup = true;
2655  else
2656  {
2657  int flushblocks;
2658 
2660 
2661  flushblocks =
2662  WriteRqstPtr / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
2663 
2664  if (WalWriterFlushAfter == 0 || flushblocks >= WalWriterFlushAfter)
2665  wakeup = true;
2666  }
2667 
2670 }
2671 
2672 /*
2673  * Record the LSN up to which we can remove WAL because it's not required by
2674  * any replication slot.
2675  */
2676 void
2678 {
2682 }
2683 
2684 
2685 /*
2686  * Return the oldest LSN we must retain to satisfy the needs of some
2687  * replication slot.
2688  */
2689 static XLogRecPtr
2691 {
2692  XLogRecPtr retval;
2693 
2695  retval = XLogCtl->replicationSlotMinLSN;
2697 
2698  return retval;
2699 }
2700 
2701 /*
2702  * Advance minRecoveryPoint in control file.
2703  *
2704  * If we crash during recovery, we must reach this point again before the
2705  * database is consistent.
2706  *
2707  * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
2708  * is only updated if it's not already greater than or equal to 'lsn'.
2709  */
2710 static void
2712 {
2713  /* Quick check using our local copy of the variable */
2714  if (!updateMinRecoveryPoint || (!force && lsn <= LocalMinRecoveryPoint))
2715  return;
2716 
2717  /*
2718  * An invalid minRecoveryPoint means that we need to recover all the WAL,
2719  * i.e., we're doing crash recovery. We never modify the control file's
2720  * value in that case, so we can short-circuit future checks here too. The
2721  * local values of minRecoveryPoint and minRecoveryPointTLI should not be
2722  * updated until crash recovery finishes. We only do this for the startup
2723  * process as it should not update its own reference of minRecoveryPoint
2724  * until it has finished crash recovery to make sure that all WAL
2725  * available is replayed in this case. This also saves from extra locks
2726  * taken on the control file from the startup process.
2727  */
2729  {
2730  updateMinRecoveryPoint = false;
2731  return;
2732  }
2733 
2734  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
2735 
2736  /* update local copy */
2739 
2741  updateMinRecoveryPoint = false;
2742  else if (force || LocalMinRecoveryPoint < lsn)
2743  {
2744  XLogRecPtr newMinRecoveryPoint;
2745  TimeLineID newMinRecoveryPointTLI;
2746 
2747  /*
2748  * To avoid having to update the control file too often, we update it
2749  * all the way to the last record being replayed, even though 'lsn'
2750  * would suffice for correctness. This also allows the 'force' case
2751  * to not need a valid 'lsn' value.
2752  *
2753  * Another important reason for doing it this way is that the passed
2754  * 'lsn' value could be bogus, i.e., past the end of available WAL, if
2755  * the caller got it from a corrupted heap page. Accepting such a
2756  * value as the min recovery point would prevent us from coming up at
2757  * all. Instead, we just log a warning and continue with recovery.
2758  * (See also the comments about corrupt LSNs in XLogFlush.)
2759  */
2760  newMinRecoveryPoint = GetCurrentReplayRecPtr(&newMinRecoveryPointTLI);
2761  if (!force && newMinRecoveryPoint < lsn)
2762  elog(WARNING,
2763  "xlog min recovery request %X/%X is past current point %X/%X",
2764  LSN_FORMAT_ARGS(lsn), LSN_FORMAT_ARGS(newMinRecoveryPoint));
2765 
2766  /* update control file */
2767  if (ControlFile->minRecoveryPoint < newMinRecoveryPoint)
2768  {
2769  ControlFile->minRecoveryPoint = newMinRecoveryPoint;
2770  ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI;
2772  LocalMinRecoveryPoint = newMinRecoveryPoint;
2773  LocalMinRecoveryPointTLI = newMinRecoveryPointTLI;
2774 
2775  ereport(DEBUG2,
2776  (errmsg_internal("updated min recovery point to %X/%X on timeline %u",
2777  LSN_FORMAT_ARGS(newMinRecoveryPoint),
2778  newMinRecoveryPointTLI)));
2779  }
2780  }
2781  LWLockRelease(ControlFileLock);
2782 }
2783 
2784 /*
2785  * Ensure that all XLOG data through the given position is flushed to disk.
2786  *
2787  * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
2788  * already held, and we try to avoid acquiring it if possible.
2789  */
2790 void
2792 {
2793  XLogRecPtr WriteRqstPtr;
2794  XLogwrtRqst WriteRqst;
2795  TimeLineID insertTLI = XLogCtl->InsertTimeLineID;
2796 
2797  /*
2798  * During REDO, we are reading not writing WAL. Therefore, instead of
2799  * trying to flush the WAL, we should update minRecoveryPoint instead. We
2800  * test XLogInsertAllowed(), not InRecovery, because we need checkpointer
2801  * to act this way too, and because when it tries to write the
2802  * end-of-recovery checkpoint, it should indeed flush.
2803  */
2804  if (!XLogInsertAllowed())
2805  {
2806  UpdateMinRecoveryPoint(record, false);
2807  return;
2808  }
2809 
2810  /* Quick exit if already known flushed */
2811  if (record <= LogwrtResult.Flush)
2812  return;
2813 
2814 #ifdef WAL_DEBUG
2815  if (XLOG_DEBUG)
2816  elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X",
2817  LSN_FORMAT_ARGS(record),
2820 #endif
2821 
2823 
2824  /*
2825  * Since fsync is usually a horribly expensive operation, we try to
2826  * piggyback as much data as we can on each fsync: if we see any more data
2827  * entered into the xlog buffer, we'll write and fsync that too, so that
2828  * the final value of LogwrtResult.Flush is as large as possible. This
2829  * gives us some chance of avoiding another fsync immediately after.
2830  */
2831 
2832  /* initialize to given target; may increase below */
2833  WriteRqstPtr = record;
2834 
2835  /*
2836  * Now wait until we get the write lock, or someone else does the flush
2837  * for us.
2838  */
2839  for (;;)
2840  {
2841  XLogRecPtr insertpos;
2842 
2843  /* done already? */
2845  if (record <= LogwrtResult.Flush)
2846  break;
2847 
2848  /*
2849  * Before actually performing the write, wait for all in-flight
2850  * insertions to the pages we're about to write to finish.
2851  */
2853  if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write)
2854  WriteRqstPtr = XLogCtl->LogwrtRqst.Write;
2856  insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr);
2857 
2858  /*
2859  * Try to get the write lock. If we can't get it immediately, wait
2860  * until it's released, and recheck if we still need to do the flush
2861  * or if the backend that held the lock did it for us already. This
2862  * helps to maintain a good rate of group committing when the system
2863  * is bottlenecked by the speed of fsyncing.
2864  */
2865  if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE))
2866  {
2867  /*
2868  * The lock is now free, but we didn't acquire it yet. Before we
2869  * do, loop back to check if someone else flushed the record for
2870  * us already.
2871  */
2872  continue;
2873  }
2874 
2875  /* Got the lock; recheck whether request is satisfied */
2877  if (record <= LogwrtResult.Flush)
2878  {
2879  LWLockRelease(WALWriteLock);
2880  break;
2881  }
2882 
2883  /*
2884  * Sleep before flush! By adding a delay here, we may give further
2885  * backends the opportunity to join the backlog of group commit
2886  * followers; this can significantly improve transaction throughput,
2887  * at the risk of increasing transaction latency.
2888  *
2889  * We do not sleep if enableFsync is not turned on, nor if there are
2890  * fewer than CommitSiblings other backends with active transactions.
2891  */
2892  if (CommitDelay > 0 && enableFsync &&
2894  {
2896 
2897  /*
2898  * Re-check how far we can now flush the WAL. It's generally not
2899  * safe to call WaitXLogInsertionsToFinish while holding
2900  * WALWriteLock, because an in-progress insertion might need to
2901  * also grab WALWriteLock to make progress. But we know that all
2902  * the insertions up to insertpos have already finished, because
2903  * that's what the earlier WaitXLogInsertionsToFinish() returned.
2904  * We're only calling it again to allow insertpos to be moved
2905  * further forward, not to actually wait for anyone.
2906  */
2907  insertpos = WaitXLogInsertionsToFinish(insertpos);
2908  }
2909 
2910  /* try to write/flush later additions to XLOG as well */
2911  WriteRqst.Write = insertpos;
2912  WriteRqst.Flush = insertpos;
2913 
2914  XLogWrite(WriteRqst, insertTLI, false);
2915 
2916  LWLockRelease(WALWriteLock);
2917  /* done */
2918  break;
2919  }
2920 
2921  END_CRIT_SECTION();
2922 
2923  /* wake up walsenders now that we've released heavily contended locks */
2925 
2926  /*
2927  * If we still haven't flushed to the request point then we have a
2928  * problem; most likely, the requested flush point is past end of XLOG.
2929  * This has been seen to occur when a disk page has a corrupted LSN.
2930  *
2931  * Formerly we treated this as a PANIC condition, but that hurts the
2932  * system's robustness rather than helping it: we do not want to take down
2933  * the whole system due to corruption on one data page. In particular, if
2934  * the bad page is encountered again during recovery then we would be
2935  * unable to restart the database at all! (This scenario actually
2936  * happened in the field several times with 7.1 releases.) As of 8.4, bad
2937  * LSNs encountered during recovery are UpdateMinRecoveryPoint's problem;
2938  * the only time we can reach here during recovery is while flushing the
2939  * end-of-recovery checkpoint record, and we don't expect that to have a
2940  * bad LSN.
2941  *
2942  * Note that for calls from xact.c, the ERROR will be promoted to PANIC
2943  * since xact.c calls this routine inside a critical section. However,
2944  * calls from bufmgr.c are not within critical sections and so we will not
2945  * force a restart for a bad LSN on a data page.
2946  */
2947  if (LogwrtResult.Flush < record)
2948  elog(ERROR,
2949  "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X",
2950  LSN_FORMAT_ARGS(record),
2952 }
2953 
2954 /*
2955  * Write & flush xlog, but without specifying exactly where to.
2956  *
2957  * We normally write only completed blocks; but if there is nothing to do on
2958  * that basis, we check for unwritten async commits in the current incomplete
2959  * block, and write through the latest one of those. Thus, if async commits
2960  * are not being used, we will write complete blocks only.
2961  *
2962  * If, based on the above, there's anything to write we do so immediately. But
2963  * to avoid calling fsync, fdatasync et. al. at a rate that'd impact
2964  * concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's
2965  * more than wal_writer_flush_after unflushed blocks.
2966  *
2967  * We can guarantee that async commits reach disk after at most three
2968  * wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite
2969  * to write "flexibly", meaning it can stop at the end of the buffer ring;
2970  * this makes a difference only with very high load or long wal_writer_delay,
2971  * but imposes one extra cycle for the worst case for async commits.)
2972  *
2973  * This routine is invoked periodically by the background walwriter process.
2974  *
2975  * Returns true if there was any work to do, even if we skipped flushing due
2976  * to wal_writer_delay/wal_writer_flush_after.
2977  */
2978 bool
2980 {
2981  XLogwrtRqst WriteRqst;
2982  bool flexible = true;
2983  static TimestampTz lastflush;
2984  TimestampTz now;
2985  int flushblocks;
2986  TimeLineID insertTLI;
2987 
2988  /* XLOG doesn't need flushing during recovery */
2989  if (RecoveryInProgress())
2990  return false;
2991 
2992  /*
2993  * Since we're not in recovery, InsertTimeLineID is set and can't change,
2994  * so we can read it without a lock.
2995  */
2996  insertTLI = XLogCtl->InsertTimeLineID;
2997 
2998  /* read updated LogwrtRqst */
3000  WriteRqst = XLogCtl->LogwrtRqst;
3002 
3003  /* back off to last completed page boundary */
3004  WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ;
3005 
3006  /* if we have already flushed that far, consider async commit records */
3008  if (WriteRqst.Write <= LogwrtResult.Flush)
3009  {
3011  WriteRqst.Write = XLogCtl->asyncXactLSN;
3013  flexible = false; /* ensure it all gets written */
3014  }
3015 
3016  /*
3017  * If already known flushed, we're done. Just need to check if we are
3018  * holding an open file handle to a logfile that's no longer in use,
3019  * preventing the file from being deleted.
3020  */
3021  if (WriteRqst.Write <= LogwrtResult.Flush)
3022  {
3023  if (openLogFile >= 0)
3024  {
3027  {
3028  XLogFileClose();
3029  }
3030  }
3031  return false;
3032  }
3033 
3034  /*
3035  * Determine how far to flush WAL, based on the wal_writer_delay and
3036  * wal_writer_flush_after GUCs.
3037  *
3038  * Note that XLogSetAsyncXactLSN() performs similar calculation based on
3039  * wal_writer_flush_after, to decide when to wake us up. Make sure the
3040  * logic is the same in both places if you change this.
3041  */
3043  flushblocks =
3044  WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
3045 
3046  if (WalWriterFlushAfter == 0 || lastflush == 0)
3047  {
3048  /* first call, or block based limits disabled */
3049  WriteRqst.Flush = WriteRqst.Write;
3050  lastflush = now;
3051  }
3052  else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay))
3053  {
3054  /*
3055  * Flush the writes at least every WalWriterDelay ms. This is
3056  * important to bound the amount of time it takes for an asynchronous
3057  * commit to hit disk.
3058  */
3059  WriteRqst.Flush = WriteRqst.Write;
3060  lastflush = now;
3061  }
3062  else if (flushblocks >= WalWriterFlushAfter)
3063  {
3064  /* exceeded wal_writer_flush_after blocks, flush */
3065  WriteRqst.Flush = WriteRqst.Write;
3066  lastflush = now;
3067  }
3068  else
3069  {
3070  /* no flushing, this time round */
3071  WriteRqst.Flush = 0;
3072  }
3073 
3074 #ifdef WAL_DEBUG
3075  if (XLOG_DEBUG)
3076  elog(LOG, "xlog bg flush request write %X/%X; flush: %X/%X, current is write %X/%X; flush %X/%X",
3077  LSN_FORMAT_ARGS(WriteRqst.Write),
3078  LSN_FORMAT_ARGS(WriteRqst.Flush),
3081 #endif
3082 
3084 
3085  /* now wait for any in-progress insertions to finish and get write lock */
3086  WaitXLogInsertionsToFinish(WriteRqst.Write);
3087  LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
3089  if (WriteRqst.Write > LogwrtResult.Write ||
3090  WriteRqst.Flush > LogwrtResult.Flush)
3091  {
3092  XLogWrite(WriteRqst, insertTLI, flexible);
3093  }
3094  LWLockRelease(WALWriteLock);
3095 
3096  END_CRIT_SECTION();
3097 
3098  /* wake up walsenders now that we've released heavily contended locks */
3100 
3101  /*
3102  * Great, done. To take some work off the critical path, try to initialize
3103  * as many of the no-longer-needed WAL buffers for future use as we can.
3104  */
3105  AdvanceXLInsertBuffer(InvalidXLogRecPtr, insertTLI, true);
3106 
3107  /*
3108  * If we determined that we need to write data, but somebody else
3109  * wrote/flushed already, it should be considered as being active, to
3110  * avoid hibernating too early.
3111  */
3112  return true;
3113 }
3114 
3115 /*
3116  * Test whether XLOG data has been flushed up to (at least) the given position.
3117  *
3118  * Returns true if a flush is still needed. (It may be that someone else
3119  * is already in process of flushing that far, however.)
3120  */
3121 bool
3123 {
3124  /*
3125  * During recovery, we don't flush WAL but update minRecoveryPoint
3126  * instead. So "needs flush" is taken to mean whether minRecoveryPoint
3127  * would need to be updated.
3128  */
3129  if (RecoveryInProgress())
3130  {
3131  /*
3132  * An invalid minRecoveryPoint means that we need to recover all the
3133  * WAL, i.e., we're doing crash recovery. We never modify the control
3134  * file's value in that case, so we can short-circuit future checks
3135  * here too. This triggers a quick exit path for the startup process,
3136  * which cannot update its local copy of minRecoveryPoint as long as
3137  * it has not replayed all WAL available when doing crash recovery.
3138  */
3140  updateMinRecoveryPoint = false;
3141 
3142  /* Quick exit if already known to be updated or cannot be updated */
3144  return false;
3145 
3146  /*
3147  * Update local copy of minRecoveryPoint. But if the lock is busy,
3148  * just return a conservative guess.
3149  */
3150  if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED))
3151  return true;
3154  LWLockRelease(ControlFileLock);
3155 
3156  /*
3157  * Check minRecoveryPoint for any other process than the startup
3158  * process doing crash recovery, which should not update the control
3159  * file value if crash recovery is still running.
3160  */
3162  updateMinRecoveryPoint = false;
3163 
3164  /* check again */
3166  return false;
3167  else
3168  return true;
3169  }
3170 
3171  /* Quick exit if already known flushed */
3172  if (record <= LogwrtResult.Flush)
3173  return false;
3174 
3175  /* read LogwrtResult and update local state */
3177 
3178  /* check again */
3179  if (record <= LogwrtResult.Flush)
3180  return false;
3181 
3182  return true;
3183 }
3184 
3185 /*
3186  * Try to make a given XLOG file segment exist.
3187  *
3188  * logsegno: identify segment.
3189  *
3190  * *added: on return, true if this call raised the number of extant segments.
3191  *
3192  * path: on return, this char[MAXPGPATH] has the path to the logsegno file.
3193  *
3194  * Returns -1 or FD of opened file. A -1 here is not an error; a caller
3195  * wanting an open segment should attempt to open "path", which usually will
3196  * succeed. (This is weird, but it's efficient for the callers.)
3197  */
3198 static int
3200  bool *added, char *path)
3201 {
3202  char tmppath[MAXPGPATH];
3203  XLogSegNo installed_segno;
3204  XLogSegNo max_segno;
3205  int fd;
3206  int save_errno;
3207  int open_flags = O_RDWR | O_CREAT | O_EXCL | PG_BINARY;
3208 
3209  Assert(logtli != 0);
3210 
3211  XLogFilePath(path, logtli, logsegno, wal_segment_size);
3212 
3213  /*
3214  * Try to use existent file (checkpoint maker may have created it already)
3215  */
3216  *added = false;
3217  fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3219  if (fd < 0)
3220  {
3221  if (errno != ENOENT)
3222  ereport(ERROR,
3224  errmsg("could not open file \"%s\": %m", path)));
3225  }
3226  else
3227  return fd;
3228 
3229  /*
3230  * Initialize an empty (all zeroes) segment. NOTE: it is possible that
3231  * another process is doing the same thing. If so, we will end up
3232  * pre-creating an extra log segment. That seems OK, and better than
3233  * holding the lock throughout this lengthy process.
3234  */
3235  elog(DEBUG2, "creating and filling new WAL file");
3236 
3237  snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3238 
3239  unlink(tmppath);
3240 
3242  open_flags |= PG_O_DIRECT;
3243 
3244  /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3245  fd = BasicOpenFile(tmppath, open_flags);
3246  if (fd < 0)
3247  ereport(ERROR,
3249  errmsg("could not create file \"%s\": %m", tmppath)));
3250 
3251  pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE);
3252  save_errno = 0;
3253  if (wal_init_zero)
3254  {
3255  ssize_t rc;
3256 
3257  /*
3258  * Zero-fill the file. With this setting, we do this the hard way to
3259  * ensure that all the file space has really been allocated. On
3260  * platforms that allow "holes" in files, just seeking to the end
3261  * doesn't allocate intermediate space. This way, we know that we
3262  * have all the space and (after the fsync below) that all the
3263  * indirect blocks are down on disk. Therefore, fdatasync(2) or
3264  * O_DSYNC will be sufficient to sync future writes to the log file.
3265  */
3267 
3268  if (rc < 0)
3269  save_errno = errno;
3270  }
3271  else
3272  {
3273  /*
3274  * Otherwise, seeking to the end and writing a solitary byte is
3275  * enough.
3276  */
3277  errno = 0;
3278  if (pg_pwrite(fd, "\0", 1, wal_segment_size - 1) != 1)
3279  {
3280  /* if write didn't set errno, assume no disk space */
3281  save_errno = errno ? errno : ENOSPC;
3282  }
3283  }
3285 
3286  if (save_errno)
3287  {
3288  /*
3289  * If we fail to make the file, delete it to release disk space
3290  */
3291  unlink(tmppath);
3292 
3293  close(fd);
3294 
3295  errno = save_errno;
3296 
3297  ereport(ERROR,
3299  errmsg("could not write to file \"%s\": %m", tmppath)));
3300  }
3301 
3302  pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC);
3303  if (pg_fsync(fd) != 0)
3304  {
3305  save_errno = errno;
3306  close(fd);
3307  errno = save_errno;
3308  ereport(ERROR,
3310  errmsg("could not fsync file \"%s\": %m", tmppath)));
3311  }
3313 
3314  if (close(fd) != 0)
3315  ereport(ERROR,
3317  errmsg("could not close file \"%s\": %m", tmppath)));
3318 
3319  /*
3320  * Now move the segment into place with its final name. Cope with
3321  * possibility that someone else has created the file while we were
3322  * filling ours: if so, use ours to pre-create a future log segment.
3323  */
3324  installed_segno = logsegno;
3325 
3326  /*
3327  * XXX: What should we use as max_segno? We used to use XLOGfileslop when
3328  * that was a constant, but that was always a bit dubious: normally, at a
3329  * checkpoint, XLOGfileslop was the offset from the checkpoint record, but
3330  * here, it was the offset from the insert location. We can't do the
3331  * normal XLOGfileslop calculation here because we don't have access to
3332  * the prior checkpoint's redo location. So somewhat arbitrarily, just use
3333  * CheckPointSegments.
3334  */
3335  max_segno = logsegno + CheckPointSegments;
3336  if (InstallXLogFileSegment(&installed_segno, tmppath, true, max_segno,
3337  logtli))
3338  {
3339  *added = true;
3340  elog(DEBUG2, "done creating and filling new WAL file");
3341  }
3342  else
3343  {
3344  /*
3345  * No need for any more future segments, or InstallXLogFileSegment()
3346  * failed to rename the file into place. If the rename failed, a
3347  * caller opening the file may fail.
3348  */
3349  unlink(tmppath);
3350  elog(DEBUG2, "abandoned new WAL file");
3351  }
3352 
3353  return -1;
3354 }
3355 
3356 /*
3357  * Create a new XLOG file segment, or open a pre-existing one.
3358  *
3359  * logsegno: identify segment to be created/opened.
3360  *
3361  * Returns FD of opened file.
3362  *
3363  * Note: errors here are ERROR not PANIC because we might or might not be
3364  * inside a critical section (eg, during checkpoint there is no reason to
3365  * take down the system on failure). They will promote to PANIC if we are
3366  * in a critical section.
3367  */
3368 int
3370 {
3371  bool ignore_added;
3372  char path[MAXPGPATH];
3373  int fd;
3374 
3375  Assert(logtli != 0);
3376 
3377  fd = XLogFileInitInternal(logsegno, logtli, &ignore_added, path);
3378  if (fd >= 0)
3379  return fd;
3380 
3381  /* Now open original target segment (might not be file I just made) */
3382  fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3384  if (fd < 0)
3385  ereport(ERROR,
3387  errmsg("could not open file \"%s\": %m", path)));
3388  return fd;
3389 }
3390 
3391 /*
3392  * Create a new XLOG file segment by copying a pre-existing one.
3393  *
3394  * destsegno: identify segment to be created.
3395  *
3396  * srcTLI, srcsegno: identify segment to be copied (could be from
3397  * a different timeline)
3398  *
3399  * upto: how much of the source file to copy (the rest is filled with
3400  * zeros)
3401  *
3402  * Currently this is only used during recovery, and so there are no locking
3403  * considerations. But we should be just as tense as XLogFileInit to avoid
3404  * emplacing a bogus file.
3405  */
3406 static void
3407 XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno,
3408  TimeLineID srcTLI, XLogSegNo srcsegno,
3409  int upto)
3410 {
3411  char path[MAXPGPATH];
3412  char tmppath[MAXPGPATH];
3413  PGAlignedXLogBlock buffer;
3414  int srcfd;
3415  int fd;
3416  int nbytes;
3417 
3418  /*
3419  * Open the source file
3420  */
3421  XLogFilePath(path, srcTLI, srcsegno, wal_segment_size);
3422  srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
3423  if (srcfd < 0)
3424  ereport(ERROR,
3426  errmsg("could not open file \"%s\": %m", path)));
3427 
3428  /*
3429  * Copy into a temp file name.
3430  */
3431  snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3432 
3433  unlink(tmppath);
3434 
3435  /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3436  fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
3437  if (fd < 0)
3438  ereport(ERROR,
3440  errmsg("could not create file \"%s\": %m", tmppath)));
3441 
3442  /*
3443  * Do the data copying.
3444  */
3445  for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer))
3446  {
3447  int nread;
3448 
3449  nread = upto - nbytes;
3450 
3451  /*
3452  * The part that is not read from the source file is filled with
3453  * zeros.
3454  */
3455  if (nread < sizeof(buffer))
3456  memset(buffer.data, 0, sizeof(buffer));
3457 
3458  if (nread > 0)
3459  {
3460  int r;
3461 
3462  if (nread > sizeof(buffer))
3463  nread = sizeof(buffer);
3464  pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ);
3465  r = read(srcfd, buffer.data, nread);
3466  if (r != nread)
3467  {
3468  if (r < 0)
3469  ereport(ERROR,
3471  errmsg("could not read file \"%s\": %m",
3472  path)));
3473  else
3474  ereport(ERROR,
3476  errmsg("could not read file \"%s\": read %d of %zu",
3477  path, r, (Size) nread)));
3478  }
3480  }
3481  errno = 0;
3482  pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE);
3483  if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer))
3484  {
3485  int save_errno = errno;
3486 
3487  /*
3488  * If we fail to make the file, delete it to release disk space
3489  */
3490  unlink(tmppath);
3491  /* if write didn't set errno, assume problem is no disk space */
3492  errno = save_errno ? save_errno : ENOSPC;
3493 
3494  ereport(ERROR,
3496  errmsg("could not write to file \"%s\": %m", tmppath)));
3497  }
3499  }
3500 
3501  pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC);
3502  if (pg_fsync(fd) != 0)
3505  errmsg("could not fsync file \"%s\": %m", tmppath)));
3507 
3508  if (CloseTransientFile(fd) != 0)
3509  ereport(ERROR,
3511  errmsg("could not close file \"%s\": %m", tmppath)));
3512 
3513  if (CloseTransientFile(srcfd) != 0)
3514  ereport(ERROR,
3516  errmsg("could not close file \"%s\": %m", path)));
3517 
3518  /*
3519  * Now move the segment into place with its final name.
3520  */
3521  if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, destTLI))
3522  elog(ERROR, "InstallXLogFileSegment should not have failed");
3523 }
3524 
3525 /*
3526  * Install a new XLOG segment file as a current or future log segment.
3527  *
3528  * This is used both to install a newly-created segment (which has a temp
3529  * filename while it's being created) and to recycle an old segment.
3530  *
3531  * *segno: identify segment to install as (or first possible target).
3532  * When find_free is true, this is modified on return to indicate the
3533  * actual installation location or last segment searched.
3534  *
3535  * tmppath: initial name of file to install. It will be renamed into place.
3536  *
3537  * find_free: if true, install the new segment at the first empty segno
3538  * number at or after the passed numbers. If false, install the new segment
3539  * exactly where specified, deleting any existing segment file there.
3540  *
3541  * max_segno: maximum segment number to install the new file as. Fail if no
3542  * free slot is found between *segno and max_segno. (Ignored when find_free
3543  * is false.)
3544  *
3545  * tli: The timeline on which the new segment should be installed.
3546  *
3547  * Returns true if the file was installed successfully. false indicates that
3548  * max_segno limit was exceeded, the startup process has disabled this
3549  * function for now, or an error occurred while renaming the file into place.
3550  */
3551 static bool
3552 InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
3553  bool find_free, XLogSegNo max_segno, TimeLineID tli)
3554 {
3555  char path[MAXPGPATH];
3556  struct stat stat_buf;
3557 
3558  Assert(tli != 0);
3559 
3560  XLogFilePath(path, tli, *segno, wal_segment_size);
3561 
3562  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
3564  {
3565  LWLockRelease(ControlFileLock);
3566  return false;
3567  }
3568 
3569  if (!find_free)
3570  {
3571  /* Force installation: get rid of any pre-existing segment file */
3572  durable_unlink(path, DEBUG1);
3573  }
3574  else
3575  {
3576  /* Find a free slot to put it in */
3577  while (stat(path, &stat_buf) == 0)
3578  {
3579  if ((*segno) >= max_segno)
3580  {
3581  /* Failed to find a free slot within specified range */
3582  LWLockRelease(ControlFileLock);
3583  return false;
3584  }
3585  (*segno)++;
3586  XLogFilePath(path, tli, *segno, wal_segment_size);
3587  }
3588  }
3589 
3590  Assert(access(path, F_OK) != 0 && errno == ENOENT);
3591  if (durable_rename(tmppath, path, LOG) != 0)
3592  {
3593  LWLockRelease(ControlFileLock);
3594  /* durable_rename already emitted log message */
3595  return false;
3596  }
3597 
3598  LWLockRelease(ControlFileLock);
3599 
3600  return true;
3601 }
3602 
3603 /*
3604  * Open a pre-existing logfile segment for writing.
3605  */
3606 int
3608 {
3609  char path[MAXPGPATH];
3610  int fd;
3611 
3612  XLogFilePath(path, tli, segno, wal_segment_size);
3613 
3614  fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3616  if (fd < 0)
3617  ereport(PANIC,
3619  errmsg("could not open file \"%s\": %m", path)));
3620 
3621  return fd;
3622 }
3623 
3624 /*
3625  * Close the current logfile segment for writing.
3626  */
3627 static void
3629 {
3630  Assert(openLogFile >= 0);
3631 
3632  /*
3633  * WAL segment files will not be re-read in normal operation, so we advise
3634  * the OS to release any cached pages. But do not do so if WAL archiving
3635  * or streaming is active, because archiver and walsender process could
3636  * use the cache to read the WAL segment.
3637  */
3638 #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
3639  if (!XLogIsNeeded() && (io_direct_flags & IO_DIRECT_WAL) == 0)
3640  (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
3641 #endif
3642 
3643  if (close(openLogFile) != 0)
3644  {
3645  char xlogfname[MAXFNAMELEN];
3646  int save_errno = errno;
3647 
3649  errno = save_errno;
3650  ereport(PANIC,
3652  errmsg("could not close file \"%s\": %m", xlogfname)));
3653  }
3654 
3655  openLogFile = -1;
3657 }
3658 
3659 /*
3660  * Preallocate log files beyond the specified log endpoint.
3661  *
3662  * XXX this is currently extremely conservative, since it forces only one
3663  * future log segment to exist, and even that only if we are 75% done with
3664  * the current one. This is only appropriate for very low-WAL-volume systems.
3665  * High-volume systems will be OK once they've built up a sufficient set of
3666  * recycled log segments, but the startup transient is likely to include
3667  * a lot of segment creations by foreground processes, which is not so good.
3668  *
3669  * XLogFileInitInternal() can ereport(ERROR). All known causes indicate big
3670  * trouble; for example, a full filesystem is one cause. The checkpoint WAL
3671  * and/or ControlFile updates already completed. If a RequestCheckpoint()
3672  * initiated the present checkpoint and an ERROR ends this function, the
3673  * command that called RequestCheckpoint() fails. That's not ideal, but it's
3674  * not worth contorting more functions to use caller-specified elevel values.
3675  * (With or without RequestCheckpoint(), an ERROR forestalls some inessential
3676  * reporting and resource reclamation.)
3677  */
3678 static void
3680 {
3681  XLogSegNo _logSegNo;
3682  int lf;
3683  bool added;
3684  char path[MAXPGPATH];
3685  uint64 offset;
3686 
3688  return; /* unlocked check says no */
3689 
3690  XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size);
3691  offset = XLogSegmentOffset(endptr - 1, wal_segment_size);
3692  if (offset >= (uint32) (0.75 * wal_segment_size))
3693  {
3694  _logSegNo++;
3695  lf = XLogFileInitInternal(_logSegNo, tli, &added, path);
3696  if (lf >= 0)
3697  close(lf);
3698  if (added)
3700  }
3701 }
3702 
3703 /*
3704  * Throws an error if the given log segment has already been removed or
3705  * recycled. The caller should only pass a segment that it knows to have
3706  * existed while the server has been running, as this function always
3707  * succeeds if no WAL segments have been removed since startup.
3708  * 'tli' is only used in the error message.
3709  *
3710  * Note: this function guarantees to keep errno unchanged on return.
3711  * This supports callers that use this to possibly deliver a better
3712  * error message about a missing file, while still being able to throw
3713  * a normal file-access error afterwards, if this does return.
3714  */
3715 void
3717 {
3718  int save_errno = errno;
3719  XLogSegNo lastRemovedSegNo;
3720 
3722  lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3724 
3725  if (segno <= lastRemovedSegNo)
3726  {
3727  char filename[MAXFNAMELEN];
3728 
3729  XLogFileName(filename, tli, segno, wal_segment_size);
3730  errno = save_errno;
3731  ereport(ERROR,
3733  errmsg("requested WAL segment %s has already been removed",
3734  filename)));
3735  }
3736  errno = save_errno;
3737 }
3738 
3739 /*
3740  * Return the last WAL segment removed, or 0 if no segment has been removed
3741  * since startup.
3742  *
3743  * NB: the result can be out of date arbitrarily fast, the caller has to deal
3744  * with that.
3745  */
3746 XLogSegNo
3748 {
3749  XLogSegNo lastRemovedSegNo;
3750 
3752  lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3754 
3755  return lastRemovedSegNo;
3756 }
3757 
3758 /*
3759  * Return the oldest WAL segment on the given TLI that still exists in
3760  * XLOGDIR, or 0 if none.
3761  */
3762 XLogSegNo
3764 {
3765  DIR *xldir;
3766  struct dirent *xlde;
3767  XLogSegNo oldest_segno = 0;
3768 
3769  xldir = AllocateDir(XLOGDIR);
3770  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3771  {
3772  TimeLineID file_tli;
3773  XLogSegNo file_segno;
3774 
3775  /* Ignore files that are not XLOG segments. */
3776  if (!IsXLogFileName(xlde->d_name))
3777  continue;
3778 
3779  /* Parse filename to get TLI and segno. */
3780  XLogFromFileName(xlde->d_name, &file_tli, &file_segno,
3782 
3783  /* Ignore anything that's not from the TLI of interest. */
3784  if (tli != file_tli)
3785  continue;
3786 
3787  /* If it's the oldest so far, update oldest_segno. */
3788  if (oldest_segno == 0 || file_segno < oldest_segno)
3789  oldest_segno = file_segno;
3790  }
3791 
3792  FreeDir(xldir);
3793  return oldest_segno;
3794 }
3795 
3796 /*
3797  * Update the last removed segno pointer in shared memory, to reflect that the
3798  * given XLOG file has been removed.
3799  */
3800 static void
3802 {
3803  uint32 tli;
3804  XLogSegNo segno;
3805 
3806  XLogFromFileName(filename, &tli, &segno, wal_segment_size);
3807 
3809  if (segno > XLogCtl->lastRemovedSegNo)
3810  XLogCtl->lastRemovedSegNo = segno;
3812 }
3813 
3814 /*
3815  * Remove all temporary log files in pg_wal
3816  *
3817  * This is called at the beginning of recovery after a previous crash,
3818  * at a point where no other processes write fresh WAL data.
3819  */
3820 static void
3822 {
3823  DIR *xldir;
3824  struct dirent *xlde;
3825 
3826  elog(DEBUG2, "removing all temporary WAL segments");
3827 
3828  xldir = AllocateDir(XLOGDIR);
3829  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3830  {
3831  char path[MAXPGPATH];
3832 
3833  if (strncmp(xlde->d_name, "xlogtemp.", 9) != 0)
3834  continue;
3835 
3836  snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
3837  unlink(path);
3838  elog(DEBUG2, "removed temporary WAL segment \"%s\"", path);
3839  }
3840  FreeDir(xldir);
3841 }
3842 
3843 /*
3844  * Recycle or remove all log files older or equal to passed segno.
3845  *
3846  * endptr is current (or recent) end of xlog, and lastredoptr is the
3847  * redo pointer of the last checkpoint. These are used to determine
3848  * whether we want to recycle rather than delete no-longer-wanted log files.
3849  *
3850  * insertTLI is the current timeline for XLOG insertion. Any recycled
3851  * segments should be reused for this timeline.
3852  */
3853 static void
3855  TimeLineID insertTLI)
3856 {
3857  DIR *xldir;
3858  struct dirent *xlde;
3859  char lastoff[MAXFNAMELEN];
3860  XLogSegNo endlogSegNo;
3861  XLogSegNo recycleSegNo;
3862 
3863  /* Initialize info about where to try to recycle to */
3864  XLByteToSeg(endptr, endlogSegNo, wal_segment_size);
3865  recycleSegNo = XLOGfileslop(lastredoptr);
3866 
3867  /*
3868  * Construct a filename of the last segment to be kept. The timeline ID
3869  * doesn't matter, we ignore that in the comparison. (During recovery,
3870  * InsertTimeLineID isn't set, so we can't use that.)
3871  */
3872  XLogFileName(lastoff, 0, segno, wal_segment_size);
3873 
3874  elog(DEBUG2, "attempting to remove WAL segments older than log file %s",
3875  lastoff);
3876 
3877  xldir = AllocateDir(XLOGDIR);
3878 
3879  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3880  {
3881  /* Ignore files that are not XLOG segments */
3882  if (!IsXLogFileName(xlde->d_name) &&
3883  !IsPartialXLogFileName(xlde->d_name))
3884  continue;
3885 
3886  /*
3887  * We ignore the timeline part of the XLOG segment identifiers in
3888  * deciding whether a segment is still needed. This ensures that we
3889  * won't prematurely remove a segment from a parent timeline. We could
3890  * probably be a little more proactive about removing segments of
3891  * non-parent timelines, but that would be a whole lot more
3892  * complicated.
3893  *
3894  * We use the alphanumeric sorting property of the filenames to decide
3895  * which ones are earlier than the lastoff segment.
3896  */
3897  if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
3898  {
3899  if (XLogArchiveCheckDone(xlde->d_name))
3900  {
3901  /* Update the last removed location in shared memory first */
3903 
3904  RemoveXlogFile(xlde, recycleSegNo, &endlogSegNo, insertTLI);
3905  }
3906  }
3907  }
3908 
3909  FreeDir(xldir);
3910 }
3911 
3912 /*
3913  * Recycle or remove WAL files that are not part of the given timeline's
3914  * history.
3915  *
3916  * This is called during recovery, whenever we switch to follow a new
3917  * timeline, and at the end of recovery when we create a new timeline. We
3918  * wouldn't otherwise care about extra WAL files lying in pg_wal, but they
3919  * might be leftover pre-allocated or recycled WAL segments on the old timeline
3920  * that we haven't used yet, and contain garbage. If we just leave them in
3921  * pg_wal, they will eventually be archived, and we can't let that happen.
3922  * Files that belong to our timeline history are valid, because we have
3923  * successfully replayed them, but from others we can't be sure.
3924  *
3925  * 'switchpoint' is the current point in WAL where we switch to new timeline,
3926  * and 'newTLI' is the new timeline we switch to.
3927  */
3928 void
3930 {
3931  DIR *xldir;
3932  struct dirent *xlde;
3933  char switchseg[MAXFNAMELEN];
3934  XLogSegNo endLogSegNo;
3935  XLogSegNo switchLogSegNo;
3936  XLogSegNo recycleSegNo;
3937 
3938  /*
3939  * Initialize info about where to begin the work. This will recycle,
3940  * somewhat arbitrarily, 10 future segments.
3941  */
3942  XLByteToPrevSeg(switchpoint, switchLogSegNo, wal_segment_size);
3943  XLByteToSeg(switchpoint, endLogSegNo, wal_segment_size);
3944  recycleSegNo = endLogSegNo + 10;
3945 
3946  /*
3947  * Construct a filename of the last segment to be kept.
3948  */
3949  XLogFileName(switchseg, newTLI, switchLogSegNo, wal_segment_size);
3950 
3951  elog(DEBUG2, "attempting to remove WAL segments newer than log file %s",
3952  switchseg);
3953 
3954  xldir = AllocateDir(XLOGDIR);
3955 
3956  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3957  {
3958  /* Ignore files that are not XLOG segments */
3959  if (!IsXLogFileName(xlde->d_name))
3960  continue;
3961 
3962  /*
3963  * Remove files that are on a timeline older than the new one we're
3964  * switching to, but with a segment number >= the first segment on the
3965  * new timeline.
3966  */
3967  if (strncmp(xlde->d_name, switchseg, 8) < 0 &&
3968  strcmp(xlde->d_name + 8, switchseg + 8) > 0)
3969  {
3970  /*
3971  * If the file has already been marked as .ready, however, don't
3972  * remove it yet. It should be OK to remove it - files that are
3973  * not part of our timeline history are not required for recovery
3974  * - but seems safer to let them be archived and removed later.
3975  */
3976  if (!XLogArchiveIsReady(xlde->d_name))
3977  RemoveXlogFile(xlde, recycleSegNo, &endLogSegNo, newTLI);
3978  }
3979  }
3980 
3981  FreeDir(xldir);
3982 }
3983 
3984 /*
3985  * Recycle or remove a log file that's no longer needed.
3986  *
3987  * segment_de is the dirent structure of the segment to recycle or remove.
3988  * recycleSegNo is the segment number to recycle up to. endlogSegNo is
3989  * the segment number of the current (or recent) end of WAL.
3990  *
3991  * endlogSegNo gets incremented if the segment is recycled so as it is not
3992  * checked again with future callers of this function.
3993  *
3994  * insertTLI is the current timeline for XLOG insertion. Any recycled segments
3995  * should be used for this timeline.
3996  */
3997 static void
3998 RemoveXlogFile(const struct dirent *segment_de,
3999  XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
4000  TimeLineID insertTLI)
4001 {
4002  char path[MAXPGPATH];
4003 #ifdef WIN32
4004  char newpath[MAXPGPATH];
4005 #endif
4006  const char *segname = segment_de->d_name;
4007 
4008  snprintf(path, MAXPGPATH, XLOGDIR "/%s", segname);
4009 
4010  /*
4011  * Before deleting the file, see if it can be recycled as a future log
4012  * segment. Only recycle normal files, because we don't want to recycle
4013  * symbolic links pointing to a separate archive directory.
4014  */
4015  if (wal_recycle &&
4016  *endlogSegNo <= recycleSegNo &&
4017  XLogCtl->InstallXLogFileSegmentActive && /* callee rechecks this */
4018  get_dirent_type(path, segment_de, false, DEBUG2) == PGFILETYPE_REG &&
4019  InstallXLogFileSegment(endlogSegNo, path,
4020  true, recycleSegNo, insertTLI))
4021  {
4022  ereport(DEBUG2,
4023  (errmsg_internal("recycled write-ahead log file \"%s\"",
4024  segname)));
4026  /* Needn't recheck that slot on future iterations */
4027  (*endlogSegNo)++;
4028  }
4029  else
4030  {
4031  /* No need for any more future segments, or recycling failed ... */
4032  int rc;
4033 
4034  ereport(DEBUG2,
4035  (errmsg_internal("removing write-ahead log file \"%s\"",
4036  segname)));
4037 
4038 #ifdef WIN32
4039 
4040  /*
4041  * On Windows, if another process (e.g another backend) holds the file
4042  * open in FILE_SHARE_DELETE mode, unlink will succeed, but the file
4043  * will still show up in directory listing until the last handle is
4044  * closed. To avoid confusing the lingering deleted file for a live
4045  * WAL file that needs to be archived, rename it before deleting it.
4046  *
4047  * If another process holds the file open without FILE_SHARE_DELETE
4048  * flag, rename will fail. We'll try again at the next checkpoint.
4049  */
4050  snprintf(newpath, MAXPGPATH, "%s.deleted", path);
4051  if (rename(path, newpath) != 0)
4052  {
4053  ereport(LOG,
4055  errmsg("could not rename file \"%s\": %m",
4056  path)));
4057  return;
4058  }
4059  rc = durable_unlink(newpath, LOG);
4060 #else
4061  rc = durable_unlink(path, LOG);
4062 #endif
4063  if (rc != 0)
4064  {
4065  /* Message already logged by durable_unlink() */
4066  return;
4067  }
4069  }
4070 
4071  XLogArchiveCleanup(segname);
4072 }
4073 
4074 /*
4075  * Verify whether pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
4076  * If the latter do not exist, recreate them.
4077  *
4078  * It is not the goal of this function to verify the contents of these
4079  * directories, but to help in cases where someone has performed a cluster
4080  * copy for PITR purposes but omitted pg_wal from the copy.
4081  *
4082  * We could also recreate pg_wal if it doesn't exist, but a deliberate
4083  * policy decision was made not to. It is fairly common for pg_wal to be
4084  * a symlink, and if that was the DBA's intent then automatically making a
4085  * plain directory would result in degraded performance with no notice.
4086  */
4087 static void
4089 {
4090  char path[MAXPGPATH];
4091  struct stat stat_buf;
4092 
4093  /* Check for pg_wal; if it doesn't exist, error out */
4094  if (stat(XLOGDIR, &stat_buf) != 0 ||
4095  !S_ISDIR(stat_buf.st_mode))
4096  ereport(FATAL,
4098  errmsg("required WAL directory \"%s\" does not exist",
4099  XLOGDIR)));
4100 
4101  /* Check for archive_status */
4102  snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
4103  if (stat(path, &stat_buf) == 0)
4104  {
4105  /* Check for weird cases where it exists but isn't a directory */
4106  if (!S_ISDIR(stat_buf.st_mode))
4107  ereport(FATAL,
4109  errmsg("required WAL directory \"%s\" does not exist",
4110  path)));
4111  }
4112  else
4113  {
4114  ereport(LOG,
4115  (errmsg("creating missing WAL directory \"%s\"", path)));
4116  if (MakePGDirectory(path) < 0)
4117  ereport(FATAL,
4119  errmsg("could not create missing directory \"%s\": %m",
4120  path)));
4121  }
4122 
4123  /* Check for summaries */
4124  snprintf(path, MAXPGPATH, XLOGDIR "/summaries");
4125  if (stat(path, &stat_buf) == 0)
4126  {
4127  /* Check for weird cases where it exists but isn't a directory */
4128  if (!S_ISDIR(stat_buf.st_mode))
4129  ereport(FATAL,
4130  (errmsg("required WAL directory \"%s\" does not exist",
4131  path)));
4132  }
4133  else
4134  {
4135  ereport(LOG,
4136  (errmsg("creating missing WAL directory \"%s\"", path)));
4137  if (MakePGDirectory(path) < 0)
4138  ereport(FATAL,
4139  (errmsg("could not create missing directory \"%s\": %m",
4140  path)));
4141  }
4142 }
4143 
4144 /*
4145  * Remove previous backup history files. This also retries creation of
4146  * .ready files for any backup history files for which XLogArchiveNotify
4147  * failed earlier.
4148  */
4149 static void
4151 {
4152  DIR *xldir;
4153  struct dirent *xlde;
4154  char path[MAXPGPATH + sizeof(XLOGDIR)];
4155 
4156  xldir = AllocateDir(XLOGDIR);
4157 
4158  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
4159  {
4160  if (IsBackupHistoryFileName(xlde->d_name))
4161  {
4162  if (XLogArchiveCheckDone(xlde->d_name))
4163  {
4164  elog(DEBUG2, "removing WAL backup history file \"%s\"",
4165  xlde->d_name);
4166  snprintf(path, sizeof(path), XLOGDIR "/%s", xlde->d_name);
4167  unlink(path);
4168  XLogArchiveCleanup(xlde->d_name);
4169  }
4170  }
4171  }
4172 
4173  FreeDir(xldir);
4174 }
4175 
4176 /*
4177  * I/O routines for pg_control
4178  *
4179  * *ControlFile is a buffer in shared memory that holds an image of the
4180  * contents of pg_control. WriteControlFile() initializes pg_control
4181  * given a preloaded buffer, ReadControlFile() loads the buffer from
4182  * the pg_control file (during postmaster or standalone-backend startup),
4183  * and UpdateControlFile() rewrites pg_control after we modify xlog state.
4184  * InitControlFile() fills the buffer with initial values.
4185  *
4186  * For simplicity, WriteControlFile() initializes the fields of pg_control
4187  * that are related to checking backend/database compatibility, and
4188  * ReadControlFile() verifies they are correct. We could split out the
4189  * I/O and compatibility-check functions, but there seems no need currently.
4190  */
4191 
4192 static void
4193 InitControlFile(uint64 sysidentifier)
4194 {
4195  char mock_auth_nonce[MOCK_AUTH_NONCE_LEN];
4196 
4197  /*
4198  * Generate a random nonce. This is used for authentication requests that
4199  * will fail because the user does not exist. The nonce is used to create
4200  * a genuine-looking password challenge for the non-existent user, in lieu
4201  * of an actual stored password.
4202  */
4203  if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN))
4204  ereport(PANIC,
4205  (errcode(ERRCODE_INTERNAL_ERROR),
4206  errmsg("could not generate secret authorization token")));
4207 
4208  memset(ControlFile, 0, sizeof(ControlFileData));
4209  /* Initialize pg_control status fields */
4210  ControlFile->system_identifier = sysidentifier;
4211  memcpy(ControlFile->mock_authentication_nonce, mock_auth_nonce, MOCK_AUTH_NONCE_LEN);
4214 
4215  /* Set important parameter values for use when replaying WAL */
4225 }
4226 
4227 static void
4229 {
4230  int fd;
4231  char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */
4232 
4233  /*
4234  * Initialize version and compatibility-check fields
4235  */
4238 
4239  ControlFile->maxAlign = MAXIMUM_ALIGNOF;
4241 
4242  ControlFile->blcksz = BLCKSZ;
4243  ControlFile->relseg_size = RELSEG_SIZE;
4244  ControlFile->xlog_blcksz = XLOG_BLCKSZ;
4246 
4249 
4252 
4254 
4255  /* Contents are protected with a CRC */
4258  (char *) ControlFile,
4259  offsetof(ControlFileData, crc));
4261 
4262  /*
4263  * We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding
4264  * the excess over sizeof(ControlFileData). This reduces the odds of
4265  * premature-EOF errors when reading pg_control. We'll still fail when we
4266  * check the contents of the file, but hopefully with a more specific
4267  * error than "couldn't read pg_control".
4268  */
4269  memset(buffer, 0, PG_CONTROL_FILE_SIZE);
4270  memcpy(buffer, ControlFile, sizeof(ControlFileData));
4271 
4273  O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
4274  if (fd < 0)
4275  ereport(PANIC,
4277  errmsg("could not create file \"%s\": %m",
4278  XLOG_CONTROL_FILE)));
4279 
4280  errno = 0;
4281  pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE);
4283  {
4284  /* if write didn't set errno, assume problem is no disk space */
4285  if (errno == 0)
4286  errno = ENOSPC;
4287  ereport(PANIC,
4289  errmsg("could not write to file \"%s\": %m",
4290  XLOG_CONTROL_FILE)));
4291  }
4293 
4294  pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC);
4295  if (pg_fsync(fd) != 0)
4296  ereport(PANIC,
4298  errmsg("could not fsync file \"%s\": %m",
4299  XLOG_CONTROL_FILE)));
4301 
4302  if (close(fd) != 0)
4303  ereport(PANIC,
4305  errmsg("could not close file \"%s\": %m",
4306  XLOG_CONTROL_FILE)));
4307 }
4308 
4309 static void
4311 {
4312  pg_crc32c crc;
4313  int fd;
4314  static char wal_segsz_str[20];
4315  int r;
4316 
4317  /*
4318  * Read data...
4319  */
4321  O_RDWR | PG_BINARY);
4322  if (fd < 0)
4323  ereport(PANIC,
4325  errmsg("could not open file \"%s\": %m",
4326  XLOG_CONTROL_FILE)));
4327 
4328  pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ);
4329  r = read(fd, ControlFile, sizeof(ControlFileData));
4330  if (r != sizeof(ControlFileData))
4331  {
4332  if (r < 0)
4333  ereport(PANIC,
4335  errmsg("could not read file \"%s\": %m",
4336  XLOG_CONTROL_FILE)));
4337  else
4338  ereport(PANIC,
4340  errmsg("could not read file \"%s\": read %d of %zu",
4341  XLOG_CONTROL_FILE, r, sizeof(ControlFileData))));
4342  }
4344 
4345  close(fd);
4346 
4347  /*
4348  * Check for expected pg_control format version. If this is wrong, the
4349  * CRC check will likely fail because we'll be checking the wrong number
4350  * of bytes. Complaining about wrong version will probably be more
4351  * enlightening than complaining about wrong CRC.
4352  */
4353 
4355  ereport(FATAL,
4356  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4357  errmsg("database files are incompatible with server"),
4358  errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
4359  " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
4362  errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
4363 
4365  ereport(FATAL,
4366  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4367  errmsg("database files are incompatible with server"),
4368  errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
4369  " but the server was compiled with PG_CONTROL_VERSION %d.",
4371  errhint("It looks like you need to initdb.")));
4372 
4373  /* Now check the CRC. */
4374  INIT_CRC32C(crc);
4375  COMP_CRC32C(crc,
4376  (char *) ControlFile,
4377  offsetof(ControlFileData, crc));
4378  FIN_CRC32C(crc);
4379 
4380  if (!EQ_CRC32C(crc, ControlFile->crc))
4381  ereport(FATAL,
4382  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4383  errmsg("incorrect checksum in control file")));
4384 
4385  /*
4386  * Do compatibility checking immediately. If the database isn't
4387  * compatible with the backend executable, we want to abort before we can
4388  * possibly do any damage.
4389  */
4391  ereport(FATAL,
4392  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4393  errmsg("database files are incompatible with server"),
4394  errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d,"
4395  " but the server was compiled with CATALOG_VERSION_NO %d.",
4397  errhint("It looks like you need to initdb.")));
4398  if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
4399  ereport(FATAL,
4400  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4401  errmsg("database files are incompatible with server"),
4402  errdetail("The database cluster was initialized with MAXALIGN %d,"
4403  " but the server was compiled with MAXALIGN %d.",
4404  ControlFile->maxAlign, MAXIMUM_ALIGNOF),
4405  errhint("It looks like you need to initdb.")));
4407  ereport(FATAL,
4408  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4409  errmsg("database files are incompatible with server"),
4410  errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
4411  errhint("It looks like you need to initdb.")));
4412  if (ControlFile->blcksz != BLCKSZ)
4413  ereport(FATAL,
4414  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4415  errmsg("database files are incompatible with server"),
4416  errdetail("The database cluster was initialized with BLCKSZ %d,"
4417  " but the server was compiled with BLCKSZ %d.",
4418  ControlFile->blcksz, BLCKSZ),
4419  errhint("It looks like you need to recompile or initdb.")));
4420  if (ControlFile->relseg_size != RELSEG_SIZE)
4421  ereport(FATAL,
4422  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4423  errmsg("database files are incompatible with server"),
4424  errdetail("The database cluster was initialized with RELSEG_SIZE %d,"
4425  " but the server was compiled with RELSEG_SIZE %d.",
4426  ControlFile->relseg_size, RELSEG_SIZE),
4427  errhint("It looks like you need to recompile or initdb.")));
4428  if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
4429  ereport(FATAL,
4430  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4431  errmsg("database files are incompatible with server"),
4432  errdetail("The database cluster was initialized with XLOG_BLCKSZ %d,"
4433  " but the server was compiled with XLOG_BLCKSZ %d.",
4434  ControlFile->xlog_blcksz, XLOG_BLCKSZ),
4435  errhint("It looks like you need to recompile or initdb.")));
4437  ereport(FATAL,
4438  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4439  errmsg("database files are incompatible with server"),
4440  errdetail("The database cluster was initialized with NAMEDATALEN %d,"
4441  " but the server was compiled with NAMEDATALEN %d.",
4443  errhint("It looks like you need to recompile or initdb.")));
4445  ereport(FATAL,
4446  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4447  errmsg("database files are incompatible with server"),
4448  errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d,"
4449  " but the server was compiled with INDEX_MAX_KEYS %d.",
4451  errhint("It looks like you need to recompile or initdb.")));
4453  ereport(FATAL,
4454  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4455  errmsg("database files are incompatible with server"),
4456  errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d,"
4457  " but the server was compiled with TOAST_MAX_CHUNK_SIZE %d.",
4459  errhint("It looks like you need to recompile or initdb.")));
4461  ereport(FATAL,
4462  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4463  errmsg("database files are incompatible with server"),
4464  errdetail("The database cluster was initialized with LOBLKSIZE %d,"
4465  " but the server was compiled with LOBLKSIZE %d.",
4466  ControlFile->loblksize, (int) LOBLKSIZE),
4467  errhint("It looks like you need to recompile or initdb.")));
4468 
4469 #ifdef USE_FLOAT8_BYVAL
4470  if (ControlFile->float8ByVal != true)
4471  ereport(FATAL,
4472  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4473  errmsg("database files are incompatible with server"),
4474  errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL"
4475  " but the server was compiled with USE_FLOAT8_BYVAL."),
4476  errhint("It looks like you need to recompile or initdb.")));
4477 #else
4478  if (ControlFile->float8ByVal != false)
4479  ereport(FATAL,
4480  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4481  errmsg("database files are incompatible with server"),
4482  errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL"
4483  " but the server was compiled without USE_FLOAT8_BYVAL."),
4484  errhint("It looks like you need to recompile or initdb.")));
4485 #endif
4486 
4488 
4490  ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4491  errmsg_plural("invalid WAL segment size in control file (%d byte)",
4492  "invalid WAL segment size in control file (%d bytes)",
4495  errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.")));
4496 
4497  snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d", wal_segment_size);
4498  SetConfigOption("wal_segment_size", wal_segsz_str, PGC_INTERNAL,
4500 
4501  /* check and update variables dependent on wal_segment_size */
4503  ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4504  errmsg("min_wal_size must be at least twice wal_segment_size")));
4505 
4507  ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4508  errmsg("max_wal_size must be at least twice wal_segment_size")));
4509 
4511  (wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) -
4513 
4515 
4516  /* Make the initdb settings visible as GUC variables, too */
4517  SetConfigOption("data_checksums", DataChecksumsEnabled() ? "yes" : "no",
4519 }
4520 
4521 /*
4522  * Utility wrapper to update the control file. Note that the control
4523  * file gets flushed.
4524  */
4525 static void
4527 {
4529 }
4530 
4531 /*
4532  * Returns the unique system identifier from control file.
4533  */
4534 uint64
4536 {
4537  Assert(ControlFile != NULL);
4539 }
4540 
4541 /*
4542  * Returns the random nonce from control file.
4543  */
4544 char *
4546 {
4547  Assert(ControlFile != NULL);
4549 }
4550 
4551 /*
4552  * Are checksums enabled for data pages?
4553  */
4554 bool
4556 {
4557  Assert(ControlFile != NULL);
4558  return (ControlFile->data_checksum_version > 0);
4559 }
4560 
4561 /*
4562  * Returns a fake LSN for unlogged relations.
4563  *
4564  * Each call generates an LSN that is greater than any previous value
4565  * returned. The current counter value is saved and restored across clean
4566  * shutdowns, but like unlogged relations, does not survive a crash. This can
4567  * be used in lieu of real LSN values returned by XLogInsert, if you need an
4568  * LSN-like increasing sequence of numbers without writing any WAL.
4569  */
4570 XLogRecPtr
4572 {
4574 }
4575 
4576 /*
4577  * Auto-tune the number of XLOG buffers.
4578  *
4579  * The preferred setting for wal_buffers is about 3% of shared_buffers, with
4580  * a maximum of one XLOG segment (there is little reason to think that more
4581  * is helpful, at least so long as we force an fsync when switching log files)
4582  * and a minimum of 8 blocks (which was the default value prior to PostgreSQL
4583  * 9.1, when auto-tuning was added).
4584  *
4585  * This should not be called until NBuffers has received its final value.
4586  */
4587 static int
4589 {
4590  int xbuffers;
4591 
4592  xbuffers = NBuffers / 32;
4593  if (xbuffers > (wal_segment_size / XLOG_BLCKSZ))
4594  xbuffers = (wal_segment_size / XLOG_BLCKSZ);
4595  if (xbuffers < 8)
4596  xbuffers = 8;
4597  return xbuffers;
4598 }
4599 
4600 /*
4601  * GUC check_hook for wal_buffers
4602  */
4603 bool
4605 {
4606  /*
4607  * -1 indicates a request for auto-tune.
4608  */
4609  if (*newval == -1)
4610  {
4611  /*
4612  * If we haven't yet changed the boot_val default of -1, just let it
4613  * be. We'll fix it when XLOGShmemSize is called.
4614  */
4615  if (XLOGbuffers == -1)
4616  return true;
4617 
4618  /* Otherwise, substitute the auto-tune value */
4620  }
4621 
4622  /*
4623  * We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL
4624  * 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer
4625  * the case, we just silently treat such values as a request for the
4626  * minimum. (We could throw an error instead, but that doesn't seem very
4627  * helpful.)
4628  */
4629  if (*newval < 4)
4630  *newval = 4;
4631 
4632  return true;
4633 }
4634 
4635 /*
4636  * GUC check_hook for wal_consistency_checking
4637  */
4638 bool
4640 {
4641  char *rawstring;
4642  List *elemlist;
4643  ListCell *l;
4644  bool newwalconsistency[RM_MAX_ID + 1];
4645 
4646  /* Initialize the array */
4647  MemSet(newwalconsistency, 0, (RM_MAX_ID + 1) * sizeof(bool));
4648 
4649  /* Need a modifiable copy of string */
4650  rawstring = pstrdup(*newval);
4651 
4652  /* Parse string into list of identifiers */
4653  if (!SplitIdentifierString(rawstring, ',', &elemlist))
4654  {
4655  /* syntax error in list */
4656  GUC_check_errdetail("List syntax is invalid.");
4657  pfree(rawstring);
4658  list_free(elemlist);
4659  return false;
4660  }
4661 
4662  foreach(l, elemlist)
4663  {
4664  char *tok = (char *) lfirst(l);
4665  int rmid;
4666 
4667  /* Check for 'all'. */
4668  if (pg_strcasecmp(tok, "all") == 0)
4669  {
4670  for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4671  if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL)
4672  newwalconsistency[rmid] = true;
4673  }
4674  else
4675  {
4676  /* Check if the token matches any known resource manager. */
4677  bool found = false;
4678 
4679  for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4680  {
4681  if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL &&
4682  pg_strcasecmp(tok, GetRmgr(rmid).rm_name) == 0)
4683  {
4684  newwalconsistency[rmid] = true;
4685  found = true;
4686  break;
4687  }
4688  }
4689  if (!found)
4690  {
4691  /*
4692  * During startup, it might be a not-yet-loaded custom
4693  * resource manager. Defer checking until
4694  * InitializeWalConsistencyChecking().
4695  */
4697  {
4699  }
4700  else
4701  {
4702  GUC_check_errdetail("Unrecognized key word: \"%s\".", tok);
4703  pfree(rawstring);
4704  list_free(elemlist);
4705  return false;
4706  }
4707  }
4708  }
4709  }
4710 
4711  pfree(rawstring);
4712  list_free(elemlist);
4713 
4714  /* assign new value */
4715  *extra = guc_malloc(ERROR, (RM_MAX_ID + 1) * sizeof(bool));
4716  memcpy(*extra, newwalconsistency, (RM_MAX_ID + 1) * sizeof(bool));
4717  return true;
4718 }
4719 
4720 /*
4721  * GUC assign_hook for wal_consistency_checking
4722  */
4723 void
4724 assign_wal_consistency_checking(const char *newval, void *extra)
4725 {
4726  /*
4727  * If some checks were deferred, it's possible that the checks will fail
4728  * later during InitializeWalConsistencyChecking(). But in that case, the
4729  * postmaster will exit anyway, so it's safe to proceed with the
4730  * assignment.
4731  *
4732  * Any built-in resource managers specified are assigned immediately,
4733  * which affects WAL created before shared_preload_libraries are
4734  * processed. Any custom resource managers specified won't be assigned
4735  * until after shared_preload_libraries are processed, but that's OK
4736  * because WAL for a custom resource manager can't be written before the
4737  * module is loaded anyway.
4738  */
4739  wal_consistency_checking = extra;
4740 }
4741 
4742 /*
4743  * InitializeWalConsistencyChecking: run after loading custom resource managers
4744  *
4745  * If any unknown resource managers were specified in the
4746  * wal_consistency_checking GUC, processing was deferred. Now that
4747  * shared_preload_libraries have been loaded, process wal_consistency_checking
4748  * again.
4749  */
4750 void
4752 {
4754 
4756  {
4757  struct config_generic *guc;
4758 
4759  guc = find_option("wal_consistency_checking", false, false, ERROR);
4760 
4762 
4763  set_config_option_ext("wal_consistency_checking",
4765  guc->scontext, guc->source, guc->srole,
4766  GUC_ACTION_SET, true, ERROR, false);
4767 
4768  /* checking should not be deferred again */
4770  }
4771 }
4772 
4773 /*
4774  * GUC show_hook for archive_command
4775  */
4776 const char *
4778 {
4779  if (XLogArchivingActive())
4780  return XLogArchiveCommand;
4781  else
4782  return "(disabled)";
4783 }
4784 
4785 /*
4786  * GUC show_hook for in_hot_standby
4787  */
4788 const char *
4790 {
4791  /*
4792  * We display the actual state based on shared memory, so that this GUC
4793  * reports up-to-date state if examined intra-query. The underlying
4794  * variable (in_hot_standby_guc) changes only when we transmit a new value
4795  * to the client.
4796  */
4797  return RecoveryInProgress() ? "on" : "off";
4798 }
4799 
4800 /*
4801  * Read the control file, set respective GUCs.
4802  *
4803  * This is to be called during startup, including a crash recovery cycle,
4804  * unless in bootstrap mode, where no control file yet exists. As there's no
4805  * usable shared memory yet (its sizing can depend on the contents of the
4806  * control file!), first store the contents in local memory. XLOGShmemInit()
4807  * will then copy it to shared memory later.
4808  *
4809  * reset just controls whether previous contents are to be expected (in the
4810  * reset case, there's a dangling pointer into old shared memory), or not.
4811  */
4812 void
4814 {
4815  Assert(reset || ControlFile == NULL);
4816  ControlFile = palloc(sizeof(ControlFileData));
4817  ReadControlFile();
4818 }
4819 
4820 /*
4821  * Get the wal_level from the control file. For a standby, this value should be
4822  * considered as its active wal_level, because it may be different from what
4823  * was originally configured on standby.
4824  */
4825 WalLevel
4827 {
4828  return ControlFile->wal_level;
4829 }
4830 
4831 /*
4832  * Initialization of shared memory for XLOG
4833  */
4834 Size
4836 {
4837  Size size;
4838 
4839  /*
4840  * If the value of wal_buffers is -1, use the preferred auto-tune value.
4841  * This isn't an amazingly clean place to do this, but we must wait till
4842  * NBuffers has received its final value, and must do it before using the
4843  * value of XLOGbuffers to do anything important.
4844  *
4845  * We prefer to report this value's source as PGC_S_DYNAMIC_DEFAULT.
4846  * However, if the DBA explicitly set wal_buffers = -1 in the config file,
4847  * then PGC_S_DYNAMIC_DEFAULT will fail to override that and we must force
4848  * the matter with PGC_S_OVERRIDE.
4849  */
4850  if (XLOGbuffers == -1)
4851  {
4852  char buf[32];
4853 
4854  snprintf(buf, sizeof(buf), "%d", XLOGChooseNumBuffers());
4855  SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
4857  if (XLOGbuffers == -1) /* failed to apply it? */
4858  SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
4859  PGC_S_OVERRIDE);
4860  }
4861  Assert(XLOGbuffers > 0);
4862 
4863  /* XLogCtl */
4864  size = sizeof(XLogCtlData);
4865 
4866  /* WAL insertion locks, plus alignment */
4868  /* xlblocks array */
4870  /* extra alignment padding for XLOG I/O buffers */
4871  size = add_size(size, Max(XLOG_BLCKSZ, PG_IO_ALIGN_SIZE));
4872  /* and the buffers themselves */
4873  size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
4874 
4875  /*
4876  * Note: we don't count ControlFileData, it comes out of the "slop factor"
4877  * added by CreateSharedMemoryAndSemaphores. This lets us use this
4878  * routine again below to compute the actual allocation size.
4879  */
4880 
4881  return size;
4882 }
4883 
4884 void
4886 {
4887  bool foundCFile,
4888  foundXLog;
4889  char *allocptr;
4890  int i;
4891  ControlFileData *localControlFile;
4892 
4893 #ifdef WAL_DEBUG
4894 
4895  /*
4896  * Create a memory context for WAL debugging that's exempt from the normal
4897  * "no pallocs in critical section" rule. Yes, that can lead to a PANIC if
4898  * an allocation fails, but wal_debug is not for production use anyway.
4899  */
4900  if (walDebugCxt == NULL)
4901  {
4903  "WAL Debug",
4905  MemoryContextAllowInCriticalSection(walDebugCxt, true);
4906  }
4907 #endif
4908 
4909 
4910  XLogCtl = (XLogCtlData *)
4911  ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
4912 
4913  localControlFile = ControlFile;
4915  ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
4916 
4917  if (foundCFile || foundXLog)
4918  {
4919  /* both should be present or neither */
4920  Assert(foundCFile && foundXLog);
4921 
4922  /* Initialize local copy of WALInsertLocks */
4924 
4925  if (localControlFile)
4926  pfree(localControlFile);
4927  return;
4928  }
4929  memset(XLogCtl, 0, sizeof(XLogCtlData));
4930 
4931  /*
4932  * Already have read control file locally, unless in bootstrap mode. Move
4933  * contents into shared memory.
4934  */
4935  if (localControlFile)
4936  {
4937  memcpy(ControlFile, localControlFile, sizeof(ControlFileData));
4938  pfree(localControlFile);
4939  }
4940 
4941  /*
4942  * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
4943  * multiple of the alignment for same, so no extra alignment padding is
4944  * needed here.
4945  */
4946  allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
4947  XLogCtl->xlblocks = (pg_atomic_uint64 *) allocptr;
4948  allocptr += sizeof(pg_atomic_uint64) * XLOGbuffers;
4949 
4950  for (i = 0; i < XLOGbuffers; i++)
4951  {
4953  }
4954 
4955  /* WAL insertion locks. Ensure they're aligned to the full padded size */
4956  allocptr += sizeof(WALInsertLockPadded) -
4957  ((uintptr_t) allocptr) % sizeof(WALInsertLockPadded);
4959  (WALInsertLockPadded *) allocptr;
4960  allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS;
4961 
4962  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
4963  {
4967  }
4968 
4969  /*
4970  * Align the start of the page buffers to a full xlog block size boundary.
4971  * This simplifies some calculations in XLOG insertion. It is also
4972  * required for O_DIRECT.
4973  */
4974  allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr);
4975  XLogCtl->pages = allocptr;
4976  memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
4977 
4978  /*
4979  * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
4980  * in additional info.)
4981  */
4985  XLogCtl->WalWriterSleeping = false;
4986 
4993 }
4994 
4995 /*
4996  * This func must be called ONCE on system install. It creates pg_control
4997  * and the initial XLOG segment.
4998  */
4999 void
5001 {
5002  CheckPoint checkPoint;
5003  char *buffer;
5004  XLogPageHeader page;
5005  XLogLongPageHeader longpage;
5006  XLogRecord *record;
5007  char *recptr;
5008  uint64 sysidentifier;
5009  struct timeval tv;
5010  pg_crc32c crc;
5011 
5012  /* allow ordinary WAL segment creation, like StartupXLOG() would */
5014 
5015  /*
5016  * Select a hopefully-unique system identifier code for this installation.
5017  * We use the result of gettimeofday(), including the fractional seconds
5018  * field, as being about as unique as we can easily get. (Think not to
5019  * use random(), since it hasn't been seeded and there's no portable way
5020  * to seed it other than the system clock value...) The upper half of the
5021  * uint64 value is just the tv_sec part, while the lower half contains the
5022  * tv_usec part (which must fit in 20 bits), plus 12 bits from our current
5023  * PID for a little extra uniqueness. A person knowing this encoding can
5024  * determine the initialization time of the installation, which could
5025  * perhaps be useful sometimes.
5026  */
5027  gettimeofday(&tv, NULL);
5028  sysidentifier = ((uint64) tv.tv_sec) << 32;
5029  sysidentifier |= ((uint64) tv.tv_usec) << 12;
5030  sysidentifier |= getpid() & 0xFFF;
5031 
5032  /* page buffer must be aligned suitably for O_DIRECT */
5033  buffer = (char *) palloc(XLOG_BLCKSZ + XLOG_BLCKSZ);
5034  page = (XLogPageHeader) TYPEALIGN(XLOG_BLCKSZ, buffer);
5035  memset(page, 0, XLOG_BLCKSZ);
5036 
5037  /*
5038  * Set up information for the initial checkpoint record
5039  *
5040  * The initial checkpoint record is written to the beginning of the WAL
5041  * segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not
5042  * used, so that we can use 0/0 to mean "before any valid WAL segment".
5043  */
5044  checkPoint.redo = wal_segment_size + SizeOfXLogLongPHD;
5045  checkPoint.ThisTimeLineID = BootstrapTimeLineID;
5046  checkPoint.PrevTimeLineID = BootstrapTimeLineID;
5047  checkPoint.fullPageWrites = fullPageWrites;
5048  checkPoint.nextXid =
5050  checkPoint.nextOid = FirstGenbkiObjectId;
5051  checkPoint.nextMulti = FirstMultiXactId;
5052  checkPoint.nextMultiOffset = 0;
5053  checkPoint.oldestXid = FirstNormalTransactionId;
5054  checkPoint.oldestXidDB = Template1DbOid;
5055  checkPoint.oldestMulti = FirstMultiXactId;
5056  checkPoint.oldestMultiDB = Template1DbOid;
5059  checkPoint.time = (pg_time_t) time(NULL);
5061 
5062  TransamVariables->nextXid = checkPoint.nextXid;
5063  TransamVariables->nextOid = checkPoint.nextOid;
5065  MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5066  AdvanceOldestClogXid(checkPoint.oldestXid);
5067  SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5068  SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
5070 
5071  /* Set up the XLOG page header */
5072  page->xlp_magic = XLOG_PAGE_MAGIC;
5073  page->xlp_info = XLP_LONG_HEADER;
5074  page->xlp_tli = BootstrapTimeLineID;
5076  longpage = (XLogLongPageHeader) page;
5077  longpage->xlp_sysid = sysidentifier;
5078  longpage->xlp_seg_size = wal_segment_size;
5079  longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
5080 
5081  /* Insert the initial checkpoint record */
5082  recptr = ((char *) page + SizeOfXLogLongPHD);
5083  record = (XLogRecord *) recptr;
5084  record->xl_prev = 0;
5085  record->xl_xid = InvalidTransactionId;
5086  record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint);
5088  record->xl_rmid = RM_XLOG_ID;
5089  recptr += SizeOfXLogRecord;
5090  /* fill the XLogRecordDataHeaderShort struct */
5091  *(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT;
5092  *(recptr++) = sizeof(checkPoint);
5093  memcpy(recptr, &checkPoint, sizeof(checkPoint));
5094  recptr += sizeof(checkPoint);
5095  Assert(recptr - (char *) record == record->xl_tot_len);
5096 
5097  INIT_CRC32C(crc);
5098  COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord);
5099  COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc));
5100  FIN_CRC32C(crc);
5101  record->xl_crc = crc;
5102 
5103  /* Create first XLOG segment file */
5106 
5107  /*
5108  * We needn't bother with Reserve/ReleaseExternalFD here, since we'll
5109  * close the file again in a moment.
5110  */
5111 
5112  /* Write the first page with the initial record */
5113  errno = 0;
5114  pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE);
5115  if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ)
5116  {
5117  /* if write didn't set errno, assume problem is no disk space */
5118  if (errno == 0)
5119  errno = ENOSPC;
5120  ereport(PANIC,
5122  errmsg("could not write bootstrap write-ahead log file: %m")));
5123  }
5125 
5126  pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC);
5127  if (pg_fsync(openLogFile) != 0)
5128  ereport(PANIC,
5130  errmsg("could not fsync bootstrap write-ahead log file: %m")));
5132 
5133  if (close(openLogFile) != 0)
5134  ereport(PANIC,
5136  errmsg("could not close bootstrap write-ahead log file: %m")));
5137 
5138  openLogFile = -1;
5139 
5140  /* Now create pg_control */
5141  InitControlFile(sysidentifier);
5142  ControlFile->time = checkPoint.time;
5143  ControlFile->checkPoint = checkPoint.redo;
5144  ControlFile->checkPointCopy = checkPoint;
5145 
5146  /* some additional ControlFile fields are set in WriteControlFile() */
5147  WriteControlFile();
5148 
5149  /* Bootstrap the commit log, too */
5150  BootStrapCLOG();
5154 
5155  pfree(buffer);
5156 
5157  /*
5158  * Force control file to be read - in contrast to normal processing we'd
5159  * otherwise never run the checks and GUC related initializations therein.
5160  */
5161  ReadControlFile();
5162 }
5163 
5164 static char *
5166 {
5167  static char buf[128];
5168 
5169  pg_strftime(buf, sizeof(buf),
5170  "%Y-%m-%d %H:%M:%S %Z",
5171  pg_localtime(&tnow, log_timezone));
5172 
5173  return buf;
5174 }
5175 
5176 /*
5177  * Initialize the first WAL segment on new timeline.
5178  */
5179 static void
5181 {
5182  char xlogfname[MAXFNAMELEN];
5183  XLogSegNo endLogSegNo;
5184  XLogSegNo startLogSegNo;
5185 
5186  /* we always switch to a new timeline after archive recovery */
5187  Assert(endTLI != newTLI);
5188 
5189  /*
5190  * Update min recovery point one last time.
5191  */
5193 
5194  /*
5195  * Calculate the last segment on the old timeline, and the first segment
5196  * on the new timeline. If the switch happens in the middle of a segment,
5197  * they are the same, but if the switch happens exactly at a segment
5198  * boundary, startLogSegNo will be endLogSegNo + 1.
5199  */
5200  XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size);
5201  XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size);
5202 
5203  /*
5204  * Initialize the starting WAL segment for the new timeline. If the switch
5205  * happens in the middle of a segment, copy data from the last WAL segment
5206  * of the old timeline up to the switch point, to the starting WAL segment
5207  * on the new timeline.
5208  */
5209  if (endLogSegNo == startLogSegNo)
5210  {
5211  /*
5212  * Make a copy of the file on the new timeline.
5213  *
5214  * Writing WAL isn't allowed yet, so there are no locking
5215  * considerations. But we should be just as tense as XLogFileInit to
5216  * avoid emplacing a bogus file.
5217  */
5218  XLogFileCopy(newTLI, endLogSegNo, endTLI, endLogSegNo,
5219  XLogSegmentOffset(endOfLog, wal_segment_size));
5220  }
5221  else
5222  {
5223  /*
5224  * The switch happened at a segment boundary, so just create the next
5225  * segment on the new timeline.
5226  */
5227  int fd;
5228 
5229  fd = XLogFileInit(startLogSegNo, newTLI);
5230 
5231  if (close(fd) != 0)
5232  {
5233  int save_errno = errno;
5234 
5235  XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5236  errno = save_errno;
5237  ereport(ERROR,
5239  errmsg("could not close file \"%s\": %m", xlogfname)));
5240  }
5241  }
5242 
5243  /*
5244  * Let's just make real sure there are not .ready or .done flags posted
5245  * for the new segment.
5246  */
5247  XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5248  XLogArchiveCleanup(xlogfname);
5249 }
5250 
5251 /*
5252  * Perform cleanup actions at the conclusion of archive recovery.
5253  */
5254 static void
5256  TimeLineID newTLI)
5257 {
5258  /*
5259  * Execute the recovery_end_command, if any.
5260  */
5261  if (recoveryEndCommand && strcmp(recoveryEndCommand, "") != 0)
5263  "recovery_end_command",
5264  true,
5265  WAIT_EVENT_RECOVERY_END_COMMAND);
5266 
5267  /*
5268  * We switched to a new timeline. Clean up segments on the old timeline.
5269  *
5270  * If there are any higher-numbered segments on the old timeline, remove
5271  * them. They might contain valid WAL, but they might also be
5272  * pre-allocated files containing garbage. In any case, they are not part
5273  * of the new timeline's history so we don't need them.
5274  */
5275  RemoveNonParentXlogFiles(EndOfLog, newTLI);
5276 
5277  /*
5278  * If the switch happened in the middle of a segment, what to do with the
5279  * last, partial segment on the old timeline? If we don't archive it, and
5280  * the server that created the WAL never archives it either (e.g. because
5281  * it was hit by a meteor), it will never make it to the archive. That's
5282  * OK from our point of view, because the new segment that we created with
5283  * the new TLI contains all the WAL from the old timeline up to the switch
5284  * point. But if you later try to do PITR to the "missing" WAL on the old
5285  * timeline, recovery won't find it in the archive. It's physically
5286  * present in the new file with new TLI, but recovery won't look there
5287  * when it's recovering to the older timeline. On the other hand, if we
5288  * archive the partial segment, and the original server on that timeline
5289  * is still running and archives the completed version of the same segment
5290  * later, it will fail. (We used to do that in 9.4 and below, and it
5291  * caused such problems).
5292  *
5293  * As a compromise, we rename the last segment with the .partial suffix,
5294  * and archive it. Archive recovery will never try to read .partial
5295  * segments, so they will normally go unused. But in the odd PITR case,
5296  * the administrator can copy them manually to the pg_wal directory
5297  * (removing the suffix). They can be useful in debugging, too.
5298  *
5299  * If a .done or .ready file already exists for the old timeline, however,
5300  * we had already determined that the segment is complete, so we can let
5301  * it be archived normally. (In particular, if it was restored from the
5302  * archive to begin with, it's expected to have a .done file).
5303  */
5304  if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 &&
5306  {
5307  char origfname[MAXFNAMELEN];
5308  XLogSegNo endLogSegNo;
5309 
5310  XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size);
5311  XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size);
5312 
5313  if (!XLogArchiveIsReadyOrDone(origfname))
5314  {
5315  char origpath[MAXPGPATH];
5316  char partialfname[MAXFNAMELEN];
5317  char partialpath[MAXPGPATH];
5318 
5319  XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size);
5320  snprintf(partialfname, MAXFNAMELEN, "%s.partial", origfname);
5321  snprintf(partialpath, MAXPGPATH, "%s.partial", origpath);
5322 
5323  /*
5324  * Make sure there's no .done or .ready file for the .partial
5325  * file.
5326  */
5327  XLogArchiveCleanup(partialfname);
5328 
5329  durable_rename(origpath, partialpath, ERROR);
5330  XLogArchiveNotify(partialfname);
5331  }
5332  }
5333 }
5334 
5335 /*
5336  * Check to see if required parameters are set high enough on this server
5337  * for various aspects of recovery operation.
5338  *
5339  * Note that all the parameters which this function tests need to be
5340  * listed in Administrator's Overview section in high-availability.sgml.
5341  * If you change them, don't forget to update the list.
5342  */
5343 static void
5345 {
5346  /*
5347  * For archive recovery, the WAL must be generated with at least 'replica'
5348  * wal_level.
5349  */
5351  {
5352  ereport(FATAL,
5353  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5354  errmsg("WAL was generated with wal_level=minimal, cannot continue recovering"),
5355  errdetail("This happens if you temporarily set wal_level=minimal on the server."),
5356  errhint("Use a backup taken after setting wal_level to higher than minimal.")));
5357  }
5358 
5359  /*
5360  * For Hot Standby, the WAL must be generated with 'replica' mode, and we
5361  * must have at least as many backend slots as the primary.
5362  */
5364  {
5365  /* We ignore autovacuum_max_workers when we make this test. */
5366  RecoveryRequiresIntParameter("max_connections",
5369  RecoveryRequiresIntParameter("max_worker_processes",
5372  RecoveryRequiresIntParameter("max_wal_senders",
5375  RecoveryRequiresIntParameter("max_prepared_transactions",
5378  RecoveryRequiresIntParameter("max_locks_per_transaction",
5381  }
5382 }
5383 
5384 /*
5385  * This must be called ONCE during postmaster or standalone-backend startup
5386  */
5387 void
5389 {
5391  CheckPoint checkPoint;
5392  bool wasShutdown;
5393  bool didCrash;
5394  bool haveTblspcMap;
5395  bool haveBackupLabel;
5396  XLogRecPtr EndOfLog;
5397  TimeLineID EndOfLogTLI;
5398  TimeLineID newTLI;
5399  bool performedWalRecovery;
5400  EndOfWalRecoveryInfo *endOfRecoveryInfo;
5403  TransactionId oldestActiveXID;
5404  bool promoted = false;
5405 
5406  /*
5407  * We should have an aux process resource owner to use, and we should not
5408  * be in a transaction that's installed some other resowner.
5409  */
5411  Assert(CurrentResourceOwner == NULL ||
5414 
5415  /*
5416  * Check that contents look valid.
5417  */
5419  ereport(FATAL,
5421  errmsg("control file contains invalid checkpoint location")));
5422 
5423  switch (ControlFile->state)
5424  {
5425  case DB_SHUTDOWNED:
5426 
5427  /*
5428  * This is the expected case, so don't be chatty in standalone
5429  * mode
5430  */
5432  (errmsg("database system was shut down at %s",
5433  str_time(ControlFile->time))));
5434  break;
5435 
5437  ereport(LOG,
5438  (errmsg("database system was shut down in recovery at %s",
5439  str_time(ControlFile->time))));
5440  break;
5441 
5442  case DB_SHUTDOWNING:
5443  ereport(LOG,
5444  (errmsg("database system shutdown was interrupted; last known up at %s",
5445  str_time(ControlFile->time))));
5446  break;
5447 
5448  case DB_IN_CRASH_RECOVERY:
5449  ereport(LOG,
5450  (errmsg("database system was interrupted while in recovery at %s",
5452  errhint("This probably means that some data is corrupted and"
5453  " you will have to use the last backup for recovery.")));
5454  break;
5455 
5457  ereport(LOG,
5458  (errmsg("database system was interrupted while in recovery at log time %s",
5460  errhint("If this has occurred more than once some data might be corrupted"
5461  " and you might need to choose an earlier recovery target.")));
5462  break;
5463 
5464  case DB_IN_PRODUCTION:
5465  ereport(LOG,
5466  (errmsg("database system was interrupted; last known up at %s",
5467  str_time(ControlFile->time))));
5468  break;
5469 
5470  default:
5471  ereport(FATAL,
5473  errmsg("control file contains invalid database cluster state")));
5474  }
5475 
5476  /* This is just to allow attaching to startup process with a debugger */
5477 #ifdef XLOG_REPLAY_DELAY
5479  pg_usleep(60000000L);
5480 #endif
5481 
5482  /*
5483  * Verify that pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
5484  * In cases where someone has performed a copy for PITR, these directories
5485  * may have been excluded and need to be re-created.
5486  */
5488 
5489  /* Set up timeout handler needed to report startup progress. */
5493 
5494  /*----------
5495  * If we previously crashed, perform a couple of actions:
5496  *
5497  * - The pg_wal directory may still include some temporary WAL segments
5498  * used when creating a new segment, so perform some clean up to not
5499  * bloat this path. This is done first as there is no point to sync
5500  * this temporary data.
5501  *
5502  * - There might be data which we had written, intending to fsync it, but
5503  * which we had not actually fsync'd yet. Therefore, a power failure in
5504  * the near future might cause earlier unflushed writes to be lost, even
5505  * though more recent data written to disk from here on would be
5506  * persisted. To avoid that, fsync the entire data directory.
5507  */
5508  if (ControlFile->state != DB_SHUTDOWNED &&
5510  {
5513  didCrash = true;
5514  }
5515  else
5516  didCrash = false;
5517 
5518  /*
5519  * Prepare for WAL recovery if needed.
5520  *
5521  * InitWalRecovery analyzes the control file and the backup label file, if
5522  * any. It updates the in-memory ControlFile buffer according to the
5523  * starting checkpoint, and sets InRecovery and ArchiveRecoveryRequested.
5524  * It also applies the tablespace map file, if any.
5525  */
5526  InitWalRecovery(ControlFile, &wasShutdown,
5527  &haveBackupLabel, &haveTblspcMap);
5528  checkPoint = ControlFile->checkPointCopy;
5529 
5530  /* initialize shared memory variables from the checkpoint record */
5531  TransamVariables->nextXid = checkPoint.nextXid;
5532  TransamVariables->nextOid = checkPoint.nextOid;
5534  MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5535  AdvanceOldestClogXid(checkPoint.oldestXid);
5536  SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5537  SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
5539  checkPoint.newestCommitTsXid);
5540  XLogCtl->ckptFullXid = checkPoint.nextXid;
5541 
5542  /*
5543  * Clear out any old relcache cache files. This is *necessary* if we do
5544  * any WAL replay, since that would probably result in the cache files
5545  * being out of sync with database reality. In theory we could leave them
5546  * in place if the database had been cleanly shut down, but it seems
5547  * safest to just remove them always and let them be rebuilt during the
5548  * first backend startup. These files needs to be removed from all
5549  * directories including pg_tblspc, however the symlinks are created only
5550  * after reading tablespace_map file in case of archive recovery from
5551  * backup, so needs to clear old relcache files here after creating
5552  * symlinks.
5553  */
5555 
5556  /*
5557  * Initialize replication slots, before there's a chance to remove
5558  * required resources.
5559  */
5561 
5562  /*
5563  * Startup logical state, needs to be setup now so we have proper data
5564  * during crash recovery.
5565  */
5567 
5568  /*
5569  * Startup CLOG. This must be done after TransamVariables->nextXid has
5570  * been initialized and before we accept connections or begin WAL replay.
5571  */
5572  StartupCLOG();
5573 
5574  /*
5575  * Startup MultiXact. We need to do this early to be able to replay
5576  * truncations.
5577  */
5578  StartupMultiXact();
5579 
5580  /*
5581  * Ditto for commit timestamps. Activate the facility if the setting is
5582  * enabled in the control file, as there should be no tracking of commit
5583  * timestamps done when the setting was disabled. This facility can be
5584  * started or stopped when replaying a XLOG_PARAMETER_CHANGE record.
5585  */
5587  StartupCommitTs();
5588 
5589  /*
5590  * Recover knowledge about replay progress of known replication partners.
5591  */
5593 
5594  /*
5595  * Initialize unlogged LSN. On a clean shutdown, it's restored from the
5596  * control file. On recovery, all unlogged relations are blown away, so
5597  * the unlogged LSN counter can be reset too.
5598  */
5602  else
5605 
5606  /*
5607  * Copy any missing timeline history files between 'now' and the recovery
5608  * target timeline from archive to pg_wal. While we don't need those files
5609  * ourselves - the history file of the recovery target timeline covers all
5610  * the previous timelines in the history too - a cascading standby server
5611  * might be interested in them. Or, if you archive the WAL from this
5612  * server to a different archive than the primary, it'd be good for all
5613  * the history files to get archived there after failover, so that you can
5614  * use one of the old timelines as a PITR target. Timeline history files
5615  * are small, so it's better to copy them unnecessarily than not copy them
5616  * and regret later.
5617  */
5619 
5620  /*
5621  * Before running in recovery, scan pg_twophase and fill in its status to
5622  * be able to work on entries generated by redo. Doing a scan before
5623  * taking any recovery action has the merit to discard any 2PC files that
5624  * are newer than the first record to replay, saving from any conflicts at
5625  * replay. This avoids as well any subsequent scans when doing recovery
5626  * of the on-disk two-phase data.
5627  */
5629 
5630  /*
5631  * When starting with crash recovery, reset pgstat data - it might not be
5632  * valid. Otherwise restore pgstat data. It's safe to do this here,
5633  * because postmaster will not yet have started any other processes.
5634  *
5635  * NB: Restoring replication slot stats relies on slot state to have
5636  * already been restored from disk.
5637  *
5638  * TODO: With a bit of extra work we could just start with a pgstat file
5639  * associated with the checkpoint redo location we're starting from.
5640  */
5641  if (didCrash)
5643  else
5645 
5646  lastFullPageWrites = checkPoint.fullPageWrites;
5647 
5650 
5651  /* REDO */
5652  if (InRecovery)
5653  {
5654  /* Initialize state for RecoveryInProgress() */
5656  if (InArchiveRecovery)
5658  else
5661 
5662  /*
5663  * Update pg_control to show that we are recovering and to show the
5664  * selected checkpoint as the place we are starting from. We also mark
5665  * pg_control with any minimum recovery stop point obtained from a
5666  * backup history file.
5667  *
5668  * No need to hold ControlFileLock yet, we aren't up far enough.
5669  */
5671 
5672  /*
5673  * If there was a backup label file, it's done its job and the info
5674  * has now been propagated into pg_control. We must get rid of the
5675  * label file so that if we crash during recovery, we'll pick up at
5676  * the latest recovery restartpoint instead of going all the way back
5677  * to the backup start point. It seems prudent though to just rename
5678  * the file out of the way rather than delete it completely.
5679  */
5680  if (haveBackupLabel)
5681  {
5682  unlink(BACKUP_LABEL_OLD);
5684  }
5685 
5686  /*
5687  * If there was a tablespace_map file, it's done its job and the
5688  * symlinks have been created. We must get rid of the map file so
5689  * that if we crash during recovery, we don't create symlinks again.
5690  * It seems prudent though to just rename the file out of the way
5691  * rather than delete it completely.
5692  */
5693  if (haveTblspcMap)
5694  {
5695  unlink(TABLESPACE_MAP_OLD);
5697  }
5698 
5699  /*
5700  * Initialize our local copy of minRecoveryPoint. When doing crash
5701  * recovery we want to replay up to the end of WAL. Particularly, in
5702  * the case of a promoted standby minRecoveryPoint value in the
5703  * control file is only updated after the first checkpoint. However,
5704  * if the instance crashes before the first post-recovery checkpoint
5705  * is completed then recovery will use a stale location causing the
5706  * startup process to think that there are still invalid page
5707  * references when checking for data consistency.
5708  */
5709  if (InArchiveRecovery)
5710  {
5713  }
5714  else
5715  {
5718  }
5719 
5720  /* Check that the GUCs used to generate the WAL allow recovery */
5722 
5723  /*
5724  * We're in recovery, so unlogged relations may be trashed and must be
5725  * reset. This should be done BEFORE allowing Hot Standby
5726  * connections, so that read-only backends don't try to read whatever
5727  * garbage is left over from before.
5728  */
5730 
5731  /*
5732  * Likewise, delete any saved transaction snapshot files that got left
5733  * behind by crashed backends.
5734  */
5736 
5737  /*
5738  * Initialize for Hot Standby, if enabled. We won't let backends in
5739  * yet, not until we've reached the min recovery point specified in
5740  * control file and we've established a recovery snapshot from a
5741  * running-xacts WAL record.
5742  */
5744  {
5745  TransactionId *xids;
5746  int nxids;
5747 
5748  ereport(DEBUG1,
5749  (errmsg_internal("initializing for hot standby")));
5750 
5752 
5753  if (wasShutdown)
5754  oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
5755  else
5756  oldestActiveXID = checkPoint.oldestActiveXid;
5757  Assert(TransactionIdIsValid(oldestActiveXID));
5758 
5759  /* Tell procarray about the range of xids it has to deal with */
5761 
5762  /*
5763  * Startup subtrans only. CLOG, MultiXact and commit timestamp
5764  * have already been started up and other SLRUs are not maintained
5765  * during recovery and need not be started yet.
5766  */
5767  StartupSUBTRANS(oldestActiveXID);
5768 
5769  /*
5770  * If we're beginning at a shutdown checkpoint, we know that
5771  * nothing was running on the primary at this point. So fake-up an
5772  * empty running-xacts record and use that here and now. Recover
5773  * additional standby state for prepared transactions.
5774  */
5775  if (wasShutdown)
5776  {
5777  RunningTransactionsData running;
5778  TransactionId latestCompletedXid;
5779 
5780  /*
5781  * Construct a RunningTransactions snapshot representing a
5782  * shut down server, with only prepared transactions still
5783  * alive. We're never overflowed at this point because all
5784  * subxids are listed with their parent prepared transactions.
5785  */
5786  running.xcnt = nxids;
5787  running.subxcnt = 0;
5788  running.subxid_overflow = false;
5789  running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
5790  running.oldestRunningXid = oldestActiveXID;
5791  latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
5792  TransactionIdRetreat(latestCompletedXid);
5793  Assert(TransactionIdIsNormal(latestCompletedXid));
5794  running.latestCompletedXid = latestCompletedXid;
5795  running.xids = xids;
5796 
5797  ProcArrayApplyRecoveryInfo(&running);
5798 
5800  }
5801  }
5802 
5803  /*
5804  * We're all set for replaying the WAL now. Do it.
5805  */
5807  performedWalRecovery = true;
5808  }
5809  else
5810  performedWalRecovery = false;
5811 
5812  /*
5813  * Finish WAL recovery.
5814  */
5815  endOfRecoveryInfo = FinishWalRecovery();
5816  EndOfLog = endOfRecoveryInfo->endOfLog;
5817  EndOfLogTLI = endOfRecoveryInfo->endOfLogTLI;
5818  abortedRecPtr = endOfRecoveryInfo->abortedRecPtr;
5819  missingContrecPtr = endOfRecoveryInfo->missingContrecPtr;
5820 
5821  /*
5822  * Reset ps status display, so as no information related to recovery shows
5823  * up.
5824  */
5825  set_ps_display("");
5826 
5827  /*
5828  * When recovering from a backup (we are in recovery, and archive recovery
5829  * was requested), complain if we did not roll forward far enough to reach
5830  * the point where the database is consistent. For regular online
5831  * backup-from-primary, that means reaching the end-of-backup WAL record
5832  * (at which point we reset backupStartPoint to be Invalid), for
5833  * backup-from-replica (which can't inject records into the WAL stream),
5834  * that point is when we reach the minRecoveryPoint in pg_control (which
5835  * we purposefully copy last when backing up from a replica). For
5836  * pg_rewind (which creates a backup_label with a method of "pg_rewind")
5837  * or snapshot-style backups (which don't), backupEndRequired will be set
5838  * to false.
5839  *
5840  * Note: it is indeed okay to look at the local variable
5841  * LocalMinRecoveryPoint here, even though ControlFile->minRecoveryPoint
5842  * might be further ahead --- ControlFile->minRecoveryPoint cannot have
5843  * been advanced beyond the WAL we processed.
5844  */
5845  if (InRecovery &&
5846  (EndOfLog < LocalMinRecoveryPoint ||
5848  {
5849  /*
5850  * Ran off end of WAL before reaching end-of-backup WAL record, or
5851  * minRecoveryPoint. That's a bad sign, indicating that you tried to
5852  * recover from an online backup but never called pg_backup_stop(), or
5853  * you didn't archive all the WAL needed.
5854  */
5856  {
5858  ereport(FATAL,
5859  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5860  errmsg("WAL ends before end of online backup"),
5861  errhint("All WAL generated while online backup was taken must be available at recovery.")));
5862  else
5863  ereport(FATAL,
5864  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5865  errmsg("WAL ends before consistent recovery point")));
5866  }
5867  }
5868 
5869  /*
5870  * Reset unlogged relations to the contents of their INIT fork. This is
5871  * done AFTER recovery is complete so as to include any unlogged relations
5872  * created during recovery, but BEFORE recovery is marked as having
5873  * completed successfully. Otherwise we'd not retry if any of the post
5874  * end-of-recovery steps fail.
5875  */
5876  if (InRecovery)
5878 
5879  /*
5880  * Pre-scan prepared transactions to find out the range of XIDs present.
5881  * This information is not quite needed yet, but it is positioned here so
5882  * as potential problems are detected before any on-disk change is done.
5883  */
5884  oldestActiveXID = PrescanPreparedTransactions(NULL, NULL);
5885 
5886  /*
5887  * Allow ordinary WAL segment creation before possibly switching to a new
5888  * timeline, which creates a new segment, and after the last ReadRecord().
5889  */
5891 
5892  /*
5893  * Consider whether we need to assign a new timeline ID.
5894  *
5895  * If we did archive recovery, we always assign a new ID. This handles a
5896  * couple of issues. If we stopped short of the end of WAL during
5897  * recovery, then we are clearly generating a new timeline and must assign
5898  * it a unique new ID. Even if we ran to the end, modifying the current
5899  * last segment is problematic because it may result in trying to
5900  * overwrite an already-archived copy of that segment, and we encourage
5901  * DBAs to make their archive_commands reject that. We can dodge the
5902  * problem by making the new active segment have a new timeline ID.
5903  *
5904  * In a normal crash recovery, we can just extend the timeline we were in.
5905  */
5906  newTLI = endOfRecoveryInfo->lastRecTLI;
5908  {
5909  newTLI = findNewestTimeLine(recoveryTargetTLI) + 1;
5910  ereport(LOG,
5911  (errmsg("selected new timeline ID: %u", newTLI)));
5912 
5913  /*
5914  * Make a writable copy of the last WAL segment. (Note that we also
5915  * have a copy of the last block of the old WAL in
5916  * endOfRecovery->lastPage; we will use that below.)
5917  */
5918  XLogInitNewTimeline(EndOfLogTLI, EndOfLog, newTLI);
5919 
5920  /*
5921  * Remove the signal files out of the way, so that we don't
5922  * accidentally re-enter archive recovery mode in a subsequent crash.
5923  */
5924  if (endOfRecoveryInfo->standby_signal_file_found)
5926 
5927  if (endOfRecoveryInfo->recovery_signal_file_found)
5929 
5930  /*
5931  * Write the timeline history file, and have it archived. After this
5932  * point (or rather, as soon as the file is archived), the timeline
5933  * will appear as "taken" in the WAL archive and to any standby
5934  * servers. If we crash before actually switching to the new
5935  * timeline, standby servers will nevertheless think that we switched
5936  * to the new timeline, and will try to connect to the new timeline.
5937  * To minimize the window for that, try to do as little as possible
5938  * between here and writing the end-of-recovery record.
5939  */
5941  EndOfLog, endOfRecoveryInfo->recoveryStopReason);
5942 
5943  ereport(LOG,
5944  (errmsg("archive recovery complete")));
5945  }
5946 
5947  /* Save the selected TimeLineID in shared memory, too */
5948  XLogCtl->InsertTimeLineID = newTLI;
5949  XLogCtl->PrevTimeLineID = endOfRecoveryInfo->lastRecTLI;
5950 
5951  /*
5952  * Actually, if WAL ended in an incomplete record, skip the parts that
5953  * made it through and start writing after the portion that persisted.
5954  * (It's critical to first write an OVERWRITE_CONTRECORD message, which
5955  * we'll do as soon as we're open for writing new WAL.)
5956  */
5958  {
5959  /*
5960  * We should only have a missingContrecPtr if we're not switching to a
5961  * new timeline. When a timeline switch occurs, WAL is copied from the
5962  * old timeline to the new only up to the end of the last complete
5963  * record, so there can't be an incomplete WAL record that we need to
5964  * disregard.
5965  */
5966  Assert(newTLI == endOfRecoveryInfo->lastRecTLI);
5968  EndOfLog = missingContrecPtr;
5969  }
5970 
5971  /*
5972  * Prepare to write WAL starting at EndOfLog location, and init xlog
5973  * buffer cache using the block containing the last record from the
5974  * previous incarnation.
5975  */
5976  Insert = &XLogCtl->Insert;
5977  Insert->PrevBytePos = XLogRecPtrToBytePos(endOfRecoveryInfo->lastRec);
5978  Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog);
5979 
5980  /*
5981  * Tricky point here: lastPage contains the *last* block that the LastRec
5982  * record spans, not the one it starts in. The last block is indeed the
5983  * one we want to use.
5984  */
5985  if (EndOfLog % XLOG_BLCKSZ != 0)
5986  {
5987  char *page;
5988  int len;
5989  int firstIdx;
5990 
5991  firstIdx = XLogRecPtrToBufIdx(EndOfLog);
5992  len = EndOfLog - endOfRecoveryInfo->lastPageBeginPtr;
5993  Assert(len < XLOG_BLCKSZ);
5994 
5995  /* Copy the valid part of the last block, and zero the rest */
5996  page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ];
5997  memcpy(page, endOfRecoveryInfo->lastPage, len);
5998  memset(page + len, 0, XLOG_BLCKSZ - len);
5999 
6000  pg_atomic_write_u64(&XLogCtl->xlblocks[firstIdx], endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ);
6001  XLogCtl->InitializedUpTo = endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ;
6002  }
6003  else
6004  {
6005  /*
6006  * There is no partial block to copy. Just set InitializedUpTo, and
6007  * let the first attempt to insert a log record to initialize the next
6008  * buffer.
6009  */
6010  XLogCtl->InitializedUpTo = EndOfLog;
6011  }
6012 
6013  /*
6014  * Update local and shared status. This is OK to do without any locks
6015  * because no other process can be reading or writing WAL yet.
6016  */
6017  LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
6021  XLogCtl->LogwrtRqst.Write = EndOfLog;
6022  XLogCtl->LogwrtRqst.Flush = EndOfLog;
6023 
6024  /*
6025  * Preallocate additional log files, if wanted.
6026  */
6027  PreallocXlogFiles(EndOfLog, newTLI);
6028 
6029  /*
6030  * Okay, we're officially UP.
6031  */
6032  InRecovery = false;
6033 
6034  /* start the archive_timeout timer and LSN running */
6035  XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
6036  XLogCtl->lastSegSwitchLSN = EndOfLog;
6037 
6038  /* also initialize latestCompletedXid, to nextXid - 1 */
6039  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
6042  LWLockRelease(ProcArrayLock);
6043 
6044  /*
6045  * Start up subtrans, if not already done for hot standby. (commit
6046  * timestamps are started below, if necessary.)
6047  */
6049  StartupSUBTRANS(oldestActiveXID);
6050 
6051  /*
6052  * Perform end of recovery actions for any SLRUs that need it.
6053  */
6054  TrimCLOG();
6055  TrimMultiXact();
6056 
6057  /*
6058  * Reload shared-memory state for prepared transactions. This needs to
6059  * happen before renaming the last partial segment of the old timeline as
6060  * it may be possible that we have to recovery some transactions from it.
6061  */
6063 
6064  /* Shut down xlogreader */
6066 
6067  /* Enable WAL writes for this backend only. */
6069 
6070  /* If necessary, write overwrite-contrecord before doing anything else */
6072  {
6075  }
6076 
6077  /*
6078  * Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE
6079  * record before resource manager writes cleanup WAL records or checkpoint
6080  * record is written.
6081  */
6082  Insert->fullPageWrites = lastFullPageWrites;
6084 
6085  /*
6086  * Emit checkpoint or end-of-recovery record in XLOG, if required.
6087  */
6088  if (performedWalRecovery)
6089  promoted = PerformRecoveryXLogAction();
6090 
6091  /*
6092  * If any of the critical GUCs have changed, log them before we allow
6093  * backends to write WAL.
6094  */
6096 
6097  /* If this is archive recovery, perform post-recovery cleanup actions. */
6099  CleanupAfterArchiveRecovery(EndOfLogTLI, EndOfLog, newTLI);
6100 
6101  /*
6102  * Local WAL inserts enabled, so it's time to finish initialization of
6103  * commit timestamp.
6104  */
6106 
6107  /*
6108  * All done with end-of-recovery actions.
6109  *
6110  * Now allow backends to write WAL and update the control file status in
6111  * consequence. SharedRecoveryState, that controls if backends can write
6112  * WAL, is updated while holding ControlFileLock to prevent other backends
6113  * to look at an inconsistent state of the control file in shared memory.
6114  * There is still a small window during which backends can write WAL and
6115  * the control file is still referring to a system not in DB_IN_PRODUCTION
6116  * state while looking at the on-disk control file.
6117  *
6118  * Also, we use info_lck to update SharedRecoveryState to ensure that
6119  * there are no race conditions concerning visibility of other recent
6120  * updates to shared memory.
6121  */
6122  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6124 
6128 
6130  LWLockRelease(ControlFileLock);
6131 
6132  /*
6133  * Shutdown the recovery environment. This must occur after
6134  * RecoverPreparedTransactions() (see notes in lock_twophase_recover())
6135  * and after switching SharedRecoveryState to RECOVERY_STATE_DONE so as
6136  * any session building a snapshot will not rely on KnownAssignedXids as
6137  * RecoveryInProgress() would return false at this stage. This is
6138  * particularly critical for prepared 2PC transactions, that would still
6139  * need to be included in snapshots once recovery has ended.
6140  */
6143 
6144  /*
6145  * If there were cascading standby servers connected to us, nudge any wal
6146  * sender processes to notice that we've been promoted.
6147  */
6148  WalSndWakeup(true, true);
6149 
6150  /*
6151  * If this was a promotion, request an (online) checkpoint now. This isn't
6152  * required for consistency, but the last restartpoint might be far back,
6153  * and in case of a crash, recovering from it might take a longer than is
6154  * appropriate now that we're not in standby mode anymore.
6155  */
6156  if (promoted)
6158 }
6159 
6160 /*
6161  * Callback from PerformWalRecovery(), called when we switch from crash
6162  * recovery to archive recovery mode. Updates the control file accordingly.
6163  */
6164 void
6166 {
6167  /* initialize minRecoveryPoint to this record */
6168  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6170  if (ControlFile->minRecoveryPoint < EndRecPtr)
6171  {
6172  ControlFile->minRecoveryPoint = EndRecPtr;
6173  ControlFile->minRecoveryPointTLI = replayTLI;
6174  }
6175  /* update local copy */
6178 
6179  /*
6180  * The startup process can update its local copy of minRecoveryPoint from
6181  * this point.
6182  */
6183  updateMinRecoveryPoint = true;
6184 
6186 
6187  /*
6188  * We update SharedRecoveryState while holding the lock on ControlFileLock
6189  * so both states are consistent in shared memory.
6190  */
6194 
6195  LWLockRelease(ControlFileLock);
6196 }
6197 
6198 /*
6199  * Callback from PerformWalRecovery(), called when we reach the end of backup.
6200  * Updates the control file accordingly.
6201  */
6202 void
6204 {
6205  /*
6206  * We have reached the end of base backup, as indicated by pg_control. The
6207  * data on disk is now consistent (unless minRecoveryPoint is further
6208  * ahead, which can happen if we crashed during previous recovery). Reset
6209  * backupStartPoint and backupEndPoint, and update minRecoveryPoint to
6210  * make sure we don't allow starting up at an earlier point even if
6211  * recovery is stopped and restarted soon after this.
6212  */
6213  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6214 
6215  if (ControlFile->minRecoveryPoint < EndRecPtr)
6216  {
6217  ControlFile->minRecoveryPoint = EndRecPtr;
6219  }
6220 
6223  ControlFile->backupEndRequired = false;
6225 
6226  LWLockRelease(ControlFileLock);
6227 }
6228 
6229 /*
6230  * Perform whatever XLOG actions are necessary at end of REDO.
6231  *
6232  * The goal here is to make sure that we'll be able to recover properly if
6233  * we crash again. If we choose to write a checkpoint, we'll write a shutdown
6234  * checkpoint rather than an on-line one. This is not particularly critical,
6235  * but since we may be assigning a new TLI, using a shutdown checkpoint allows
6236  * us to have the rule that TLI only changes in shutdown checkpoints, which
6237  * allows some extra error checking in xlog_redo.
6238  */
6239 static bool
6241 {
6242  bool promoted = false;
6243 
6244  /*
6245  * Perform a checkpoint to update all our recovery activity to disk.
6246  *
6247  * Note that we write a shutdown checkpoint rather than an on-line one.
6248  * This is not particularly critical, but since we may be assigning a new
6249  * TLI, using a shutdown checkpoint allows us to have the rule that TLI
6250  * only changes in shutdown checkpoints, which allows some extra error
6251  * checking in xlog_redo.
6252  *
6253  * In promotion, only create a lightweight end-of-recovery record instead
6254  * of a full checkpoint. A checkpoint is requested later, after we're
6255  * fully out of recovery mode and already accepting queries.
6256  */
6259  {
6260  promoted = true;
6261 
6262  /*
6263  * Insert a special WAL record to mark the end of recovery, since we
6264  * aren't doing a checkpoint. That means that the checkpointer process
6265  * may likely be in the middle of a time-smoothed restartpoint and
6266  * could continue to be for minutes after this. That sounds strange,
6267  * but the effect is roughly the same and it would be stranger to try
6268  * to come out of the restartpoint and then checkpoint. We request a
6269  * checkpoint later anyway, just for safety.
6270  */
6272  }
6273  else
6274  {
6277  CHECKPOINT_WAIT);
6278  }
6279 
6280  return promoted;
6281 }
6282 
6283 /*
6284  * Is the system still in recovery?
6285  *
6286  * Unlike testing InRecovery, this works in any process that's connected to
6287  * shared memory.
6288  */
6289 bool
6291 {
6292  /*
6293  * We check shared state each time only until we leave recovery mode. We
6294  * can't re-enter recovery, so there's no need to keep checking after the
6295  * shared variable has once been seen false.
6296  */
6298  return false;
6299  else
6300  {
6301  /*
6302  * use volatile pointer to make sure we make a fresh read of the
6303  * shared variable.
6304  */
6305  volatile XLogCtlData *xlogctl = XLogCtl;
6306 
6308 
6309  /*
6310  * Note: We don't need a memory barrier when we're still in recovery.
6311  * We might exit recovery immediately after return, so the caller
6312  * can't rely on 'true' meaning that we're still in recovery anyway.
6313  */
6314 
6315  return LocalRecoveryInProgress;
6316  }
6317 }
6318 
6319 /*
6320  * Returns current recovery state from shared memory.
6321  *
6322  * This returned state is kept consistent with the contents of the control
6323  * file. See details about the possible values of RecoveryState in xlog.h.
6324  */
6327 {
6328  RecoveryState retval;
6329 
6331  retval = XLogCtl->SharedRecoveryState;
6333 
6334  return retval;
6335 }
6336 
6337 /*
6338  * Is this process allowed to insert new WAL records?
6339  *
6340  * Ordinarily this is essentially equivalent to !RecoveryInProgress().
6341  * But we also have provisions for forcing the result "true" or "false"
6342  * within specific processes regardless of the global state.
6343  */
6344 bool
6346 {
6347  /*
6348  * If value is "unconditionally true" or "unconditionally false", just
6349  * return it. This provides the normal fast path once recovery is known
6350  * done.
6351  */
6352  if (LocalXLogInsertAllowed >= 0)
6353  return (bool) LocalXLogInsertAllowed;
6354 
6355  /*
6356  * Else, must check to see if we're still in recovery.
6357  */
6358  if (RecoveryInProgress())
6359  return false;
6360 
6361  /*
6362  * On exit from recovery, reset to "unconditionally true", since there is
6363  * no need to keep checking.
6364  */
6366  return true;
6367 }
6368 
6369 /*
6370  * Make XLogInsertAllowed() return true in the current process only.
6371  *
6372  * Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later,
6373  * and even call LocalSetXLogInsertAllowed() again after that.
6374  *
6375  * Returns the previous value of LocalXLogInsertAllowed.
6376  */
6377 static int
6379 {
6380  int oldXLogAllowed = LocalXLogInsertAllowed;
6381 
6383 
6384  return oldXLogAllowed;
6385 }
6386 
6387 /*
6388  * Return the current Redo pointer from shared memory.
6389  *
6390  * As a side-effect, the local RedoRecPtr copy is updated.
6391  */
6392 XLogRecPtr
6394 {
6395  XLogRecPtr ptr;
6396 
6397  /*
6398  * The possibly not up-to-date copy in XlogCtl is enough. Even if we
6399  * grabbed a WAL insertion lock to read the authoritative value in
6400  * Insert->RedoRecPtr, someone might update it just after we've released
6401  * the lock.
6402  */
6404  ptr = XLogCtl->RedoRecPtr;
6406 
6407  if (RedoRecPtr < ptr)
6408  RedoRecPtr = ptr;
6409 
6410  return RedoRecPtr;
6411 }
6412 
6413 /*
6414  * Return information needed to decide whether a modified block needs a
6415  * full-page image to be included in the WAL record.
6416  *
6417  * The returned values are cached copies from backend-private memory, and
6418  * possibly out-of-date or, indeed, uninitialized, in which case they will
6419  * be InvalidXLogRecPtr and false, respectively. XLogInsertRecord will
6420  * re-check them against up-to-date values, while holding the WAL insert lock.
6421  */
6422 void
6423 GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
6424 {
6425  *RedoRecPtr_p = RedoRecPtr;
6426  *doPageWrites_p = doPageWrites;
6427 }
6428 
6429 /*
6430  * GetInsertRecPtr -- Returns the current insert position.
6431  *
6432  * NOTE: The value *actually* returned is the position of the last full
6433  * xlog page. It lags behind the real insert position by at most 1 page.
6434  * For that, we don't need to scan through WAL insertion locks, and an
6435  * approximation is enough for the current usage of this function.
6436  */
6437 XLogRecPtr
6439 {
6440  XLogRecPtr recptr;
6441 
6443  recptr = XLogCtl->LogwrtRqst.Write;
6445 
6446  return recptr;
6447 }
6448 
6449 /*
6450  * GetFlushRecPtr -- Returns the current flush position, ie, the last WAL
6451  * position known to be fsync'd to disk. This should only be used on a
6452  * system that is known not to be in recovery.
6453  */
6454 XLogRecPtr
6456 {
6458 
6460 
6461  /*
6462  * If we're writing and flushing WAL, the time line can't be changing, so
6463  * no lock is required.
6464  */
6465  if (insertTLI)
6466  *insertTLI = XLogCtl->InsertTimeLineID;
6467 
6468  return LogwrtResult.Flush;
6469 }
6470 
6471 /*
6472  * GetWALInsertionTimeLine -- Returns the current timeline of a system that
6473  * is not in recovery.
6474  */
6475 TimeLineID
6477 {
6479 
6480  /* Since the value can't be changing, no lock is required. */
6481  return XLogCtl->InsertTimeLineID;
6482 }
6483 
6484 /*
6485  * GetLastImportantRecPtr -- Returns the LSN of the last important record
6486  * inserted. All records not explicitly marked as unimportant are considered
6487  * important.
6488  *
6489  * The LSN is determined by computing the maximum of
6490  * WALInsertLocks[i].lastImportantAt.
6491  */
6492 XLogRecPtr
6494 {
6496  int i;
6497 
6498  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
6499  {
6500  XLogRecPtr last_important;
6501 
6502  /*
6503  * Need to take a lock to prevent torn reads of the LSN, which are
6504  * possible on some of the supported platforms. WAL insert locks only
6505  * support exclusive mode, so we have to use that.
6506  */
6508  last_important = WALInsertLocks[i].l.lastImportantAt;
6509  LWLockRelease(&WALInsertLocks[i].l.lock);
6510 
6511  if (res < last_important)
6512  res = last_important;
6513  }
6514 
6515  return res;
6516 }
6517 
6518 /*
6519  * Get the time and LSN of the last xlog segment switch
6520  */
6521 pg_time_t
6523 {
6524  pg_time_t result;
6525 
6526  /* Need WALWriteLock, but shared lock is sufficient */
6527  LWLockAcquire(WALWriteLock, LW_SHARED);
6528  result = XLogCtl->lastSegSwitchTime;
6529  *lastSwitchLSN = XLogCtl->lastSegSwitchLSN;
6530  LWLockRelease(WALWriteLock);
6531 
6532  return result;
6533 }
6534 
6535 /*
6536  * This must be called ONCE during postmaster or standalone-backend shutdown
6537  */
6538 void
6540 {
6541  /*
6542  * We should have an aux process resource owner to use, and we should not
6543  * be in a transaction that's installed some other resowner.
6544  */
6546  Assert(CurrentResourceOwner == NULL ||
6549 
6550  /* Don't be chatty in standalone mode */
6552  (errmsg("shutting down")));
6553 
6554  /*
6555  * Signal walsenders to move to stopping state.
6556  */
6558 
6559  /*
6560  * Wait for WAL senders to be in stopping state. This prevents commands
6561  * from writing new WAL.
6562  */
6564 
6565  if (RecoveryInProgress())
6567  else
6568  {
6569  /*
6570  * If archiving is enabled, rotate the last XLOG file so that all the
6571  * remaining records are archived (postmaster wakes up the archiver
6572  * process one more time at the end of shutdown). The checkpoint
6573  * record will go to the next XLOG file and won't be archived (yet).
6574  */
6575  if (XLogArchivingActive())
6576  RequestXLogSwitch(false);
6577 
6579  }
6580 }
6581 
6582 /*
6583  * Log start of a checkpoint.
6584  */
6585 static void
6586 LogCheckpointStart(int flags, bool restartpoint)
6587 {
6588  if (restartpoint)
6589  ereport(LOG,
6590  /* translator: the placeholders show checkpoint options */
6591  (errmsg("restartpoint starting:%s%s%s%s%s%s%s%s",
6592  (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6593  (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6594  (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6595  (flags & CHECKPOINT_FORCE) ? " force" : "",
6596  (flags & CHECKPOINT_WAIT) ? " wait" : "",
6597  (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6598  (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6599  (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
6600  else
6601  ereport(LOG,
6602  /* translator: the placeholders show checkpoint options */
6603  (errmsg("checkpoint starting:%s%s%s%s%s%s%s%s",
6604  (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6605  (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6606  (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6607  (flags & CHECKPOINT_FORCE) ? " force" : "",
6608  (flags & CHECKPOINT_WAIT) ? " wait" : "",
6609  (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6610  (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6611  (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
6612 }
6613 
6614 /*
6615  * Log end of a checkpoint.
6616  */
6617 static void
6618 LogCheckpointEnd(bool restartpoint)
6619 {
6620  long write_msecs,
6621  sync_msecs,
6622  total_msecs,
6623  longest_msecs,
6624  average_msecs;
6625  uint64 average_sync_time;
6626 
6628 
6631 
6634 
6635  /* Accumulate checkpoint timing summary data, in milliseconds. */
6636  PendingCheckpointerStats.write_time += write_msecs;
6637  PendingCheckpointerStats.sync_time += sync_msecs;
6638 
6639  /*
6640  * All of the published timing statistics are accounted for. Only
6641  * continue if a log message is to be written.
6642  */
6643  if (!log_checkpoints)
6644  return;
6645 
6648 
6649  /*
6650  * Timing values returned from CheckpointStats are in microseconds.
6651  * Convert to milliseconds for consistent printing.
6652  */
6653  longest_msecs = (long) ((CheckpointStats.ckpt_longest_sync + 999) / 1000);
6654 
6655  average_sync_time = 0;
6657  average_sync_time = CheckpointStats.ckpt_agg_sync_time /
6659  average_msecs = (long) ((average_sync_time + 999) / 1000);
6660 
6661  /*
6662  * ControlFileLock is not required to see ControlFile->checkPoint and
6663  * ->checkPointCopy here as we are the only updator of those variables at
6664  * this moment.
6665  */
6666  if (restartpoint)
6667  ereport(LOG,
6668  (errmsg("restartpoint complete: wrote %d buffers (%.1f%%); "
6669  "%d WAL file(s) added, %d removed, %d recycled; "
6670  "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
6671  "sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; "
6672  "distance=%d kB, estimate=%d kB; "
6673  "lsn=%X/%X, redo lsn=%X/%X",
6675  (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
6679  write_msecs / 1000, (int) (write_msecs % 1000),
6680  sync_msecs / 1000, (int) (sync_msecs % 1000),
6681  total_msecs / 1000, (int) (total_msecs % 1000),
6683  longest_msecs / 1000, (int) (longest_msecs % 1000),
6684  average_msecs / 1000, (int) (average_msecs % 1000),
6685  (int) (PrevCheckPointDistance / 1024.0),
6686  (int) (CheckPointDistanceEstimate / 1024.0),
6689  else
6690  ereport(LOG,
6691  (errmsg("checkpoint complete: wrote %d buffers (%.1f%%); "
6692  "%d WAL file(s) added, %d removed, %d recycled; "
6693  "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
6694  "sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; "
6695  "distance=%d kB, estimate=%d kB; "
6696  "lsn=%X/%X, redo lsn=%X/%X",
6698  (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
6702  write_msecs / 1000, (int) (write_msecs % 1000),
6703  sync_msecs / 1000, (int) (sync_msecs % 1000),
6704  total_msecs / 1000, (int) (total_msecs % 1000),
6706  longest_msecs / 1000, (int) (longest_msecs % 1000),
6707  average_msecs / 1000, (int) (average_msecs % 1000),
6708  (int) (PrevCheckPointDistance / 1024.0),
6709  (int) (CheckPointDistanceEstimate / 1024.0),
6712 }
6713 
6714 /*
6715  * Update the estimate of distance between checkpoints.
6716  *
6717  * The estimate is used to calculate the number of WAL segments to keep
6718  * preallocated, see XLOGfileslop().
6719  */
6720 static void
6722 {
6723  /*
6724  * To estimate the number of segments consumed between checkpoints, keep a
6725  * moving average of the amount of WAL generated in previous checkpoint
6726  * cycles. However, if the load is bursty, with quiet periods and busy
6727  * periods, we want to cater for the peak load. So instead of a plain
6728  * moving average, let the average decline slowly if the previous cycle
6729  * used less WAL than estimated, but bump it up immediately if it used
6730  * more.
6731  *
6732  * When checkpoints are triggered by max_wal_size, this should converge to
6733  * CheckpointSegments * wal_segment_size,
6734  *
6735  * Note: This doesn't pay any attention to what caused the checkpoint.
6736  * Checkpoints triggered manually with CHECKPOINT command, or by e.g.
6737  * starting a base backup, are counted the same as those created
6738  * automatically. The slow-decline will largely mask them out, if they are
6739  * not frequent. If they are frequent, it seems reasonable to count them
6740  * in as any others; if you issue a manual checkpoint every 5 minutes and
6741  * never let a timed checkpoint happen, it makes sense to base the
6742  * preallocation on that 5 minute interval rather than whatever
6743  * checkpoint_timeout is set to.
6744  */
6745  PrevCheckPointDistance = nbytes;
6746  if (CheckPointDistanceEstimate < nbytes)
6747  CheckPointDistanceEstimate = nbytes;
6748  else
6750  (0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes);
6751 }
6752 
6753 /*
6754  * Update the ps display for a process running a checkpoint. Note that
6755  * this routine should not do any allocations so as it can be called
6756  * from a critical section.
6757  */
6758 static void
6759 update_checkpoint_display(int flags, bool restartpoint, bool reset)
6760 {
6761  /*
6762  * The status is reported only for end-of-recovery and shutdown
6763  * checkpoints or shutdown restartpoints. Updating the ps display is
6764  * useful in those situations as it may not be possible to rely on
6765  * pg_stat_activity to see the status of the checkpointer or the startup
6766  * process.
6767  */
6768  if ((flags & (CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IS_SHUTDOWN)) == 0)
6769  return;
6770 
6771  if (reset)
6772  set_ps_display("");
6773  else
6774  {
6775  char activitymsg[128];
6776 
6777  snprintf(activitymsg, sizeof(activitymsg), "performing %s%s%s",
6778  (flags & CHECKPOINT_END_OF_RECOVERY) ? "end-of-recovery " : "",
6779  (flags & CHECKPOINT_IS_SHUTDOWN) ? "shutdown " : "",
6780  restartpoint ? "restartpoint" : "checkpoint");
6781  set_ps_display(activitymsg);
6782  }
6783 }
6784 
6785 
6786 /*
6787  * Perform a checkpoint --- either during shutdown, or on-the-fly
6788  *
6789  * flags is a bitwise OR of the following:
6790  * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
6791  * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
6792  * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
6793  * ignoring checkpoint_completion_target parameter.
6794  * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
6795  * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
6796  * CHECKPOINT_END_OF_RECOVERY).
6797  * CHECKPOINT_FLUSH_ALL: also flush buffers of unlogged tables.
6798  *
6799  * Note: flags contains other bits, of interest here only for logging purposes.
6800  * In particular note that this routine is synchronous and does not pay
6801  * attention to CHECKPOINT_WAIT.
6802  *
6803  * If !shutdown then we are writing an online checkpoint. An XLOG_CHECKPOINT_REDO
6804  * record is inserted into WAL at the logical location of the checkpoint, before
6805  * flushing anything to disk, and when the checkpoint is eventually completed,
6806  * and it is from this point that WAL replay will begin in the case of a recovery
6807  * from this checkpoint. Once everything is written to disk, an
6808  * XLOG_CHECKPOINT_ONLINE record is written to complete the checkpoint, and
6809  * points back to the earlier XLOG_CHECKPOINT_REDO record. This mechanism allows
6810  * other write-ahead log records to be written while the checkpoint is in
6811  * progress, but we must be very careful about order of operations. This function
6812  * may take many minutes to execute on a busy system.
6813  *
6814  * On the other hand, when shutdown is true, concurrent insertion into the
6815  * write-ahead log is impossible, so there is no need for two separate records.
6816  * In this case, we only insert an XLOG_CHECKPOINT_SHUTDOWN record, and it's
6817  * both the record marking the completion of the checkpoint and the location
6818  * from which WAL replay would begin if needed.
6819  */
6820 void
6822 {
6823  bool shutdown;
6824  CheckPoint checkPoint;
6825  XLogRecPtr recptr;
6826  XLogSegNo _logSegNo;
6828  uint32 freespace;
6829  XLogRecPtr PriorRedoPtr;
6830  XLogRecPtr last_important_lsn;
6831  VirtualTransactionId *vxids;
6832  int nvxids;
6833  int oldXLogAllowed = 0;
6834 
6835  /*
6836  * An end-of-recovery checkpoint is really a shutdown checkpoint, just
6837  * issued at a different time.
6838  */
6840  shutdown = true;
6841  else
6842  shutdown = false;
6843 
6844  /* sanity check */
6845  if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
6846  elog(ERROR, "can't create a checkpoint during recovery");
6847 
6848  /*
6849  * Prepare to accumulate statistics.
6850  *
6851  * Note: because it is possible for log_checkpoints to change while a
6852  * checkpoint proceeds, we always accumulate stats, even if
6853  * log_checkpoints is currently off.
6854  */
6855  MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
6857 
6858  /*
6859  * Let smgr prepare for checkpoint; this has to happen outside the
6860  * critical section and before we determine the REDO pointer. Note that
6861  * smgr must not do anything that'd have to be undone if we decide no
6862  * checkpoint is needed.
6863  */
6865 
6866  /*
6867  * Use a critical section to force system panic if we have trouble.
6868  */
6870 
6871  if (shutdown)
6872  {
6873  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6876  LWLockRelease(ControlFileLock);
6877  }
6878 
6879  /* Begin filling in the checkpoint WAL record */
6880  MemSet(&checkPoint, 0, sizeof(checkPoint));
6881  checkPoint.time = (pg_time_t) time(NULL);
6882 
6883  /*
6884  * For Hot Standby, derive the oldestActiveXid before we fix the redo
6885  * pointer. This allows us to begin accumulating changes to assemble our
6886  * starting snapshot of locks and transactions.
6887  */
6888  if (!shutdown && XLogStandbyInfoActive())
6890  else
6892 
6893  /*
6894  * Get location of last important record before acquiring insert locks (as
6895  * GetLastImportantRecPtr() also locks WAL locks).
6896  */
6897  last_important_lsn = GetLastImportantRecPtr();
6898 
6899  /*
6900  * If this isn't a shutdown or forced checkpoint, and if there has been no
6901  * WAL activity requiring a checkpoint, skip it. The idea here is to
6902  * avoid inserting duplicate checkpoints when the system is idle.
6903  */
6905  CHECKPOINT_FORCE)) == 0)
6906  {
6907  if (last_important_lsn == ControlFile->checkPoint)
6908  {
6909  END_CRIT_SECTION();
6910  ereport(DEBUG1,
6911  (errmsg_internal("checkpoint skipped because system is idle")));
6912  return;
6913  }
6914  }
6915 
6916  /*
6917  * An end-of-recovery checkpoint is created before anyone is allowed to
6918  * write WAL. To allow us to write the checkpoint record, temporarily
6919  * enable XLogInsertAllowed.
6920  */
6921  if (flags & CHECKPOINT_END_OF_RECOVERY)
6922  oldXLogAllowed = LocalSetXLogInsertAllowed();
6923 
6924  checkPoint.ThisTimeLineID = XLogCtl->InsertTimeLineID;
6925  if (flags & CHECKPOINT_END_OF_RECOVERY)
6926  checkPoint.PrevTimeLineID = XLogCtl->PrevTimeLineID;
6927  else
6928  checkPoint.PrevTimeLineID = checkPoint.ThisTimeLineID;
6929 
6930  /*
6931  * We must block concurrent insertions while examining insert state.
6932  */
6934 
6935  checkPoint.fullPageWrites = Insert->fullPageWrites;
6936 
6937  if (shutdown)
6938  {
6939  XLogRecPtr curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos);
6940 
6941  /*
6942  * Compute new REDO record ptr = location of next XLOG record.
6943  *
6944  * Since this is a shutdown checkpoint, there can't be any concurrent
6945  * WAL insertion.
6946  */
6947  freespace = INSERT_FREESPACE(curInsert);
6948  if (freespace == 0)
6949  {
6950  if (XLogSegmentOffset(curInsert, wal_segment_size) == 0)
6951  curInsert += SizeOfXLogLongPHD;
6952  else
6953  curInsert += SizeOfXLogShortPHD;
6954  }
6955  checkPoint.redo = curInsert;
6956 
6957  /*
6958  * Here we update the shared RedoRecPtr for future XLogInsert calls;
6959  * this must be done while holding all the insertion locks.
6960  *
6961  * Note: if we fail to complete the checkpoint, RedoRecPtr will be
6962  * left pointing past where it really needs to point. This is okay;
6963  * the only consequence is that XLogInsert might back up whole buffers
6964  * that it didn't really need to. We can't postpone advancing
6965  * RedoRecPtr because XLogInserts that happen while we are dumping
6966  * buffers must assume that their buffer changes are not included in
6967  * the checkpoint.
6968  */
6969  RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
6970  }
6971 
6972  /*
6973  * Now we can release the WAL insertion locks, allowing other xacts to
6974  * proceed while we are flushing disk buffers.
6975  */
6977 
6978  /*
6979  * If this is an online checkpoint, we have not yet determined the redo
6980  * point. We do so now by inserting the special XLOG_CHECKPOINT_REDO
6981  * record; the LSN at which it starts becomes the new redo pointer. We
6982  * don't do this for a shutdown checkpoint, because in that case no WAL
6983  * can be written between the redo point and the insertion of the
6984  * checkpoint record itself, so the checkpoint record itself serves to
6985  * mark the redo point.
6986  */
6987  if (!shutdown)
6988  {
6989  int dummy = 0;
6990 
6991  /* Record must have payload to avoid assertion failure. */
6992  XLogBeginInsert();
6993  XLogRegisterData((char *) &dummy, sizeof(dummy));
6994  (void) XLogInsert(RM_XLOG_ID, XLOG_CHECKPOINT_REDO);
6995 
6996  /*
6997  * XLogInsertRecord will have updated XLogCtl->Insert.RedoRecPtr in
6998  * shared memory and RedoRecPtr in backend-local memory, but we need
6999  * to copy that into the record that will be inserted when the
7000  * checkpoint is complete.
7001  */
7002  checkPoint.redo = RedoRecPtr;
7003  }
7004 
7005  /* Update the info_lck-protected copy of RedoRecPtr as well */
7007  XLogCtl->RedoRecPtr = checkPoint.redo;
7009 
7010  /*
7011  * If enabled, log checkpoint start. We postpone this until now so as not
7012  * to log anything if we decided to skip the checkpoint.
7013  */
7014  if (log_checkpoints)
7015  LogCheckpointStart(flags, false);
7016 
7017  /* Update the process title */
7018  update_checkpoint_display(flags, false, false);
7019 
7020  TRACE_POSTGRESQL_CHECKPOINT_START(flags);
7021 
7022  /*
7023  * Get the other info we need for the checkpoint record.
7024  *
7025  * We don't need to save oldestClogXid in the checkpoint, it only matters
7026  * for the short period in which clog is being truncated, and if we crash
7027  * during that we'll redo the clog truncation and fix up oldestClogXid
7028  * there.
7029  */
7030  LWLockAcquire(XidGenLock, LW_SHARED);
7031  checkPoint.nextXid = TransamVariables->nextXid;
7032  checkPoint.oldestXid = TransamVariables->oldestXid;
7034  LWLockRelease(XidGenLock);
7035 
7036  LWLockAcquire(CommitTsLock, LW_SHARED);
7039  LWLockRelease(CommitTsLock);
7040 
7041  LWLockAcquire(OidGenLock, LW_SHARED);
7042  checkPoint.nextOid = TransamVariables->nextOid;
7043  if (!shutdown)
7044  checkPoint.nextOid += TransamVariables->oidCount;
7045  LWLockRelease(OidGenLock);
7046 
7047  MultiXactGetCheckptMulti(shutdown,
7048  &checkPoint.nextMulti,
7049  &checkPoint.nextMultiOffset,
7050  &checkPoint.oldestMulti,
7051  &checkPoint.oldestMultiDB);
7052 
7053  /*
7054  * Having constructed the checkpoint record, ensure all shmem disk buffers
7055  * and commit-log buffers are flushed to disk.
7056  *
7057  * This I/O could fail for various reasons. If so, we will fail to
7058  * complete the checkpoint, but there is no reason to force a system
7059  * panic. Accordingly, exit critical section while doing it.
7060  */
7061  END_CRIT_SECTION();
7062 
7063  /*
7064  * In some cases there are groups of actions that must all occur on one
7065  * side or the other of a checkpoint record. Before flushing the
7066  * checkpoint record we must explicitly wait for any backend currently
7067  * performing those groups of actions.
7068  *
7069  * One example is end of transaction, so we must wait for any transactions
7070  * that are currently in commit critical sections. If an xact inserted
7071  * its commit record into XLOG just before the REDO point, then a crash
7072  * restart from the REDO point would not replay that record, which means
7073  * that our flushing had better include the xact's update of pg_xact. So
7074  * we wait till he's out of his commit critical section before proceeding.
7075  * See notes in RecordTransactionCommit().
7076  *
7077  * Because we've already released the insertion locks, this test is a bit
7078  * fuzzy: it is possible that we will wait for xacts we didn't really need
7079  * to wait for. But the delay should be short and it seems better to make
7080  * checkpoint take a bit longer than to hold off insertions longer than
7081  * necessary. (In fact, the whole reason we have this issue is that xact.c
7082  * does commit record XLOG insertion and clog update as two separate steps
7083  * protected by different locks, but again that seems best on grounds of
7084  * minimizing lock contention.)
7085  *
7086  * A transaction that has not yet set delayChkptFlags when we look cannot
7087  * be at risk, since it has not inserted its commit record yet; and one
7088  * that's already cleared it is not at risk either, since it's done fixing
7089  * clog and we will correctly flush the update below. So we cannot miss
7090  * any xacts we need to wait for.
7091  */
7093  if (nvxids > 0)
7094  {
7095  do
7096  {
7097  pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_START);
7098  pg_usleep(10000L); /* wait for 10 msec */
7100  } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7102  }
7103  pfree(vxids);
7104 
7105  CheckPointGuts(checkPoint.redo, flags);
7106 
7108  if (nvxids > 0)
7109  {
7110  do
7111  {
7112  pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_COMPLETE);
7113  pg_usleep(10000L); /* wait for 10 msec */
7115  } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7117  }
7118  pfree(vxids);
7119 
7120  /*
7121  * Take a snapshot of running transactions and write this to WAL. This
7122  * allows us to reconstruct the state of running transactions during
7123  * archive recovery, if required. Skip, if this info disabled.
7124  *
7125  * If we are shutting down, or Startup process is completing crash
7126  * recovery we don't need to write running xact data.
7127  */
7128  if (!shutdown && XLogStandbyInfoActive())
7130 
7132 
7133  /*
7134  * Now insert the checkpoint record into XLOG.
7135  */
7136  XLogBeginInsert();
7137  XLogRegisterData((char *) (&checkPoint), sizeof(checkPoint));
7138  recptr = XLogInsert(RM_XLOG_ID,
7139  shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
7141 
7142  XLogFlush(recptr);
7143 
7144  /*
7145  * We mustn't write any new WAL after a shutdown checkpoint, or it will be
7146  * overwritten at next startup. No-one should even try, this just allows
7147  * sanity-checking. In the case of an end-of-recovery checkpoint, we want
7148  * to just temporarily disable writing until the system has exited
7149  * recovery.
7150  */
7151  if (shutdown)
7152  {
7153  if (flags & CHECKPOINT_END_OF_RECOVERY)
7154  LocalXLogInsertAllowed = oldXLogAllowed;
7155  else
7156  LocalXLogInsertAllowed = 0; /* never again write WAL */
7157  }
7158 
7159  /*
7160  * We now have ProcLastRecPtr = start of actual checkpoint record, recptr
7161  * = end of actual checkpoint record.
7162  */
7163  if (shutdown && checkPoint.redo != ProcLastRecPtr)
7164  ereport(PANIC,
7165  (errmsg("concurrent write-ahead log activity while database system is shutting down")));
7166 
7167  /*
7168  * Remember the prior checkpoint's redo ptr for
7169  * UpdateCheckPointDistanceEstimate()
7170  */
7171  PriorRedoPtr = ControlFile->checkPointCopy.redo;
7172 
7173  /*
7174  * Update the control file.
7175  */
7176  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7177  if (shutdown)
7180  ControlFile->checkPointCopy = checkPoint;
7181  /* crash recovery should always recover to the end of WAL */
7184 
7185  /*
7186  * Persist unloggedLSN value. It's reset on crash recovery, so this goes
7187  * unused on non-shutdown checkpoints, but seems useful to store it always
7188  * for debugging purposes.
7189  */
7191 
7193  LWLockRelease(ControlFileLock);
7194 
7195  /* Update shared-memory copy of checkpoint XID/epoch */
7197  XLogCtl->ckptFullXid = checkPoint.nextXid;
7199 
7200  /*
7201  * We are now done with critical updates; no need for system panic if we
7202  * have trouble while fooling with old log segments.
7203  */
7204  END_CRIT_SECTION();
7205 
7206  /*
7207  * WAL summaries end when the next XLOG_CHECKPOINT_REDO or
7208  * XLOG_CHECKPOINT_SHUTDOWN record is reached. This is the first point
7209  * where (a) we're not inside of a critical section and (b) we can be
7210  * certain that the relevant record has been flushed to disk, which must
7211  * happen before it can be summarized.
7212  *
7213  * If this is a shutdown checkpoint, then this happens reasonably
7214  * promptly: we've only just inserted and flushed the
7215  * XLOG_CHECKPOINT_SHUTDOWN record. If this is not a shutdown checkpoint,
7216  * then this might not be very prompt at all: the XLOG_CHECKPOINT_REDO
7217  * record was written before we began flushing data to disk, and that
7218  * could be many minutes ago at this point. However, we don't XLogFlush()
7219  * after inserting that record, so we're not guaranteed that it's on disk
7220  * until after the above call that flushes the XLOG_CHECKPOINT_ONLINE
7221  * record.
7222  */
7224 
7225  /*
7226  * Let smgr do post-checkpoint cleanup (eg, deleting old files).
7227  */
7229 
7230  /*
7231  * Update the average distance between checkpoints if the prior checkpoint
7232  * exists.
7233  */
7234  if (PriorRedoPtr != InvalidXLogRecPtr)
7236 
7237  /*
7238  * Delete old log files, those no longer needed for last checkpoint to
7239  * prevent the disk holding the xlog from growing full.
7240  */
7242  KeepLogSeg(recptr, &_logSegNo);
7244  _logSegNo, InvalidOid,
7246  {
7247  /*
7248  * Some slots have been invalidated; recalculate the old-segment
7249  * horizon, starting again from RedoRecPtr.
7250  */
7252  KeepLogSeg(recptr, &_logSegNo);
7253  }
7254  _logSegNo--;
7255  RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr,
7256  checkPoint.ThisTimeLineID);
7257 
7258  /*
7259  * Make more log segments if needed. (Do this after recycling old log
7260  * segments, since that may supply some of the needed files.)
7261  */
7262  if (!shutdown)
7263  PreallocXlogFiles(recptr, checkPoint.ThisTimeLineID);
7264 
7265  /*
7266  * Truncate pg_subtrans if possible. We can throw away all data before
7267  * the oldest XMIN of any running transaction. No future transaction will
7268  * attempt to reference any pg_subtrans entry older than that (see Asserts
7269  * in subtrans.c). During recovery, though, we mustn't do this because
7270  * StartupSUBTRANS hasn't been called yet.
7271  */
7272  if (!RecoveryInProgress())
7274 
7275  /* Real work is done; log and update stats. */
7276  LogCheckpointEnd(false);
7277 
7278  /* Reset the process title */
7279  update_checkpoint_display(flags, false, true);
7280 
7281  TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
7282  NBuffers,
7286 }
7287 
7288 /*
7289  * Mark the end of recovery in WAL though without running a full checkpoint.
7290  * We can expect that a restartpoint is likely to be in progress as we
7291  * do this, though we are unwilling to wait for it to complete.
7292  *
7293  * CreateRestartPoint() allows for the case where recovery may end before
7294  * the restartpoint completes so there is no concern of concurrent behaviour.
7295  */
7296 static void
7298 {
7299  xl_end_of_recovery xlrec;
7300  XLogRecPtr recptr;
7301 
7302  /* sanity check */
7303  if (!RecoveryInProgress())
7304  elog(ERROR, "can only be used to end recovery");
7305 
7306  xlrec.end_time = GetCurrentTimestamp();
7307 
7312 
7314 
7315  XLogBeginInsert();
7316  XLogRegisterData((char *) &xlrec, sizeof(xl_end_of_recovery));
7317  recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY);
7318 
7319  XLogFlush(recptr);
7320 
7321  /*
7322  * Update the control file so that crash recovery can follow the timeline
7323  * changes to this point.
7324  */
7325  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7326  ControlFile->minRecoveryPoint = recptr;
7329  LWLockRelease(ControlFileLock);
7330 
7331  END_CRIT_SECTION();
7332 }
7333 
7334 /*
7335  * Write an OVERWRITE_CONTRECORD message.
7336  *
7337  * When on WAL replay we expect a continuation record at the start of a page
7338  * that is not there, recovery ends and WAL writing resumes at that point.
7339  * But it's wrong to resume writing new WAL back at the start of the record
7340  * that was broken, because downstream consumers of that WAL (physical
7341  * replicas) are not prepared to "rewind". So the first action after
7342  * finishing replay of all valid WAL must be to write a record of this type
7343  * at the point where the contrecord was missing; to support xlogreader
7344  * detecting the special case, XLP_FIRST_IS_OVERWRITE_CONTRECORD is also added
7345  * to the page header where the record occurs. xlogreader has an ad-hoc
7346  * mechanism to report metadata about the broken record, which is what we
7347  * use here.
7348  *
7349  * At replay time, XLP_FIRST_IS_OVERWRITE_CONTRECORD instructs xlogreader to
7350  * skip the record it was reading, and pass back the LSN of the skipped
7351  * record, so that its caller can verify (on "replay" of that record) that the
7352  * XLOG_OVERWRITE_CONTRECORD matches what was effectively overwritten.
7353  *
7354  * 'aborted_lsn' is the beginning position of the record that was incomplete.
7355  * It is included in the WAL record. 'pagePtr' and 'newTLI' point to the
7356  * beginning of the XLOG page where the record is to be inserted. They must
7357  * match the current WAL insert position, they're passed here just so that we
7358  * can verify that.
7359  */
7360 static XLogRecPtr
7362  TimeLineID newTLI)
7363 {
7365  XLogRecPtr recptr;
7366  XLogPageHeader pagehdr;
7367  XLogRecPtr startPos;
7368 
7369  /* sanity checks */
7370  if (!RecoveryInProgress())
7371  elog(ERROR, "can only be used at end of recovery");
7372  if (pagePtr % XLOG_BLCKSZ != 0)
7373  elog(ERROR, "invalid position for missing continuation record %X/%X",
7374  LSN_FORMAT_ARGS(pagePtr));
7375 
7376  /* The current WAL insert position should be right after the page header */
7377  startPos = pagePtr;
7378  if (XLogSegmentOffset(startPos, wal_segment_size) == 0)
7379  startPos += SizeOfXLogLongPHD;
7380  else
7381  startPos += SizeOfXLogShortPHD;
7382  recptr = GetXLogInsertRecPtr();
7383  if (recptr != startPos)
7384  elog(ERROR, "invalid WAL insert position %X/%X for OVERWRITE_CONTRECORD",
7385  LSN_FORMAT_ARGS(recptr));
7386 
7388 
7389  /*
7390  * Initialize the XLOG page header (by GetXLogBuffer), and set the
7391  * XLP_FIRST_IS_OVERWRITE_CONTRECORD flag.
7392  *
7393  * No other backend is allowed to write WAL yet, so acquiring the WAL
7394  * insertion lock is just pro forma.
7395  */
7397  pagehdr = (XLogPageHeader) GetXLogBuffer(pagePtr, newTLI);
7400 
7401  /*
7402  * Insert the XLOG_OVERWRITE_CONTRECORD record as the first record on the
7403  * page. We know it becomes the first record, because no other backend is
7404  * allowed to write WAL yet.
7405  */
7406  XLogBeginInsert();
7407  xlrec.overwritten_lsn = aborted_lsn;
7409  XLogRegisterData((char *) &xlrec, sizeof(xl_overwrite_contrecord));
7410  recptr = XLogInsert(RM_XLOG_ID, XLOG_OVERWRITE_CONTRECORD);
7411 
7412  /* check that the record was inserted to the right place */
7413  if (ProcLastRecPtr != startPos)
7414  elog(ERROR, "OVERWRITE_CONTRECORD was inserted to unexpected position %X/%X",
7416 
7417  XLogFlush(recptr);
7418 
7419  END_CRIT_SECTION();
7420 
7421  return recptr;
7422 }
7423 
7424 /*
7425  * Flush all data in shared memory to disk, and fsync
7426  *
7427  * This is the common code shared between regular checkpoints and
7428  * recovery restartpoints.
7429  */
7430 static void
7431 CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
7432 {
7438 
7439  /* Write out all dirty data in SLRUs and the main buffer pool */
7440  TRACE_POSTGRESQL_BUFFER_CHECKPOINT_START(flags);
7442  CheckPointCLOG();
7447  CheckPointBuffers(flags);
7448 
7449  /* Perform all queued up fsyncs */
7450  TRACE_POSTGRESQL_BUFFER_CHECKPOINT_SYNC_START();
7454  TRACE_POSTGRESQL_BUFFER_CHECKPOINT_DONE();
7455 
7456  /* We deliberately delay 2PC checkpointing as long as possible */
7457  CheckPointTwoPhase(checkPointRedo);
7458 }
7459 
7460 /*
7461  * Save a checkpoint for recovery restart if appropriate
7462  *
7463  * This function is called each time a checkpoint record is read from XLOG.
7464  * It must determine whether the checkpoint represents a safe restartpoint or
7465  * not. If so, the checkpoint record is stashed in shared memory so that
7466  * CreateRestartPoint can consult it. (Note that the latter function is
7467  * executed by the checkpointer, while this one will be executed by the
7468  * startup process.)
7469  */
7470 static void
7472 {
7473  /*
7474  * Also refrain from creating a restartpoint if we have seen any
7475  * references to non-existent pages. Restarting recovery from the
7476  * restartpoint would not see the references, so we would lose the
7477  * cross-check that the pages belonged to a relation that was dropped
7478  * later.
7479  */
7480  if (XLogHaveInvalidPages())
7481  {
7482  elog(DEBUG2,
7483  "could not record restart point at %X/%X because there "
7484  "are unresolved references to invalid pages",
7485  LSN_FORMAT_ARGS(checkPoint->redo));
7486  return;
7487  }
7488 
7489  /*
7490  * Copy the checkpoint record to shared memory, so that checkpointer can
7491  * work out the next time it wants to perform a restartpoint.
7492  */
7496  XLogCtl->lastCheckPoint = *checkPoint;
7498 }
7499 
7500 /*
7501  * Establish a restartpoint if possible.
7502  *
7503  * This is similar to CreateCheckPoint, but is used during WAL recovery
7504  * to establish a point from which recovery can roll forward without
7505  * replaying the entire recovery log.
7506  *
7507  * Returns true if a new restartpoint was established. We can only establish
7508  * a restartpoint if we have replayed a safe checkpoint record since last
7509  * restartpoint.
7510  */
7511 bool
7513 {
7514  XLogRecPtr lastCheckPointRecPtr;
7515  XLogRecPtr lastCheckPointEndPtr;
7516  CheckPoint lastCheckPoint;
7517  XLogRecPtr PriorRedoPtr;
7518  XLogRecPtr receivePtr;
7519  XLogRecPtr replayPtr;
7520  TimeLineID replayTLI;
7521  XLogRecPtr endptr;
7522  XLogSegNo _logSegNo;
7523  TimestampTz xtime;
7524 
7525  /* Concurrent checkpoint/restartpoint cannot happen */
7527 
7528  /* Get a local copy of the last safe checkpoint record. */
7530  lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr;
7531  lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr;
7532  lastCheckPoint = XLogCtl->lastCheckPoint;
7534 
7535  /*
7536  * Check that we're still in recovery mode. It's ok if we exit recovery
7537  * mode after this check, the restart point is valid anyway.
7538  */
7539  if (!RecoveryInProgress())
7540  {
7541  ereport(DEBUG2,
7542  (errmsg_internal("skipping restartpoint, recovery has already ended")));
7543  return false;
7544  }
7545 
7546  /*
7547  * If the last checkpoint record we've replayed is already our last
7548  * restartpoint, we can't perform a new restart point. We still update
7549  * minRecoveryPoint in that case, so that if this is a shutdown restart
7550  * point, we won't start up earlier than before. That's not strictly
7551  * necessary, but when hot standby is enabled, it would be rather weird if
7552  * the database opened up for read-only connections at a point-in-time
7553  * before the last shutdown. Such time travel is still possible in case of
7554  * immediate shutdown, though.
7555  *
7556  * We don't explicitly advance minRecoveryPoint when we do create a
7557  * restartpoint. It's assumed that flushing the buffers will do that as a
7558  * side-effect.
7559  */
7560  if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) ||
7561  lastCheckPoint.redo <= ControlFile->checkPointCopy.redo)
7562  {
7563  ereport(DEBUG2,
7564  (errmsg_internal("skipping restartpoint, already performed at %X/%X",
7565  LSN_FORMAT_ARGS(lastCheckPoint.redo))));
7566 
7568  if (flags & CHECKPOINT_IS_SHUTDOWN)
7569  {
7570  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7573  LWLockRelease(ControlFileLock);
7574  }
7575  return false;
7576  }
7577 
7578  /*
7579  * Update the shared RedoRecPtr so that the startup process can calculate
7580  * the number of segments replayed since last restartpoint, and request a
7581  * restartpoint if it exceeds CheckPointSegments.
7582  *
7583  * Like in CreateCheckPoint(), hold off insertions to update it, although
7584  * during recovery this is just pro forma, because no WAL insertions are
7585  * happening.
7586  */
7588  RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo;
7590 
7591  /* Also update the info_lck-protected copy */
7593  XLogCtl->RedoRecPtr = lastCheckPoint.redo;
7595 
7596  /*
7597  * Prepare to accumulate statistics.
7598  *
7599  * Note: because it is possible for log_checkpoints to change while a
7600  * checkpoint proceeds, we always accumulate stats, even if
7601  * log_checkpoints is currently off.
7602  */
7603  MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
7605 
7606  if (log_checkpoints)
7607  LogCheckpointStart(flags, true);
7608 
7609  /* Update the process title */
7610  update_checkpoint_display(flags, true, false);
7611 
7612  CheckPointGuts(lastCheckPoint.redo, flags);
7613 
7614  /*
7615  * This location needs to be after CheckPointGuts() to ensure that some
7616  * work has already happened during this checkpoint.
7617  */
7618  INJECTION_POINT("create-restart-point");
7619 
7620  /*
7621  * Remember the prior checkpoint's redo ptr for
7622  * UpdateCheckPointDistanceEstimate()
7623  */
7624  PriorRedoPtr = ControlFile->checkPointCopy.redo;
7625 
7626  /*
7627  * Update pg_control, using current time. Check that it still shows an
7628  * older checkpoint, else do nothing; this is a quick hack to make sure
7629  * nothing really bad happens if somehow we get here after the
7630  * end-of-recovery checkpoint.
7631  */
7632  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7633  if (ControlFile->checkPointCopy.redo < lastCheckPoint.redo)
7634  {
7635  /*
7636  * Update the checkpoint information. We do this even if the cluster
7637  * does not show DB_IN_ARCHIVE_RECOVERY to match with the set of WAL
7638  * segments recycled below.
7639  */
7640  ControlFile->checkPoint = lastCheckPointRecPtr;
7641  ControlFile->checkPointCopy = lastCheckPoint;
7642 
7643  /*
7644  * Ensure minRecoveryPoint is past the checkpoint record and update it
7645  * if the control file still shows DB_IN_ARCHIVE_RECOVERY. Normally,
7646  * this will have happened already while writing out dirty buffers,
7647  * but not necessarily - e.g. because no buffers were dirtied. We do
7648  * this because a backup performed in recovery uses minRecoveryPoint
7649  * to determine which WAL files must be included in the backup, and
7650  * the file (or files) containing the checkpoint record must be
7651  * included, at a minimum. Note that for an ordinary restart of
7652  * recovery there's no value in having the minimum recovery point any
7653  * earlier than this anyway, because redo will begin just after the
7654  * checkpoint record.
7655  */
7657  {
7658  if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr)
7659  {
7660  ControlFile->minRecoveryPoint = lastCheckPointEndPtr;
7662 
7663  /* update local copy */
7666  }
7667  if (flags & CHECKPOINT_IS_SHUTDOWN)
7669  }
7671  }
7672  LWLockRelease(ControlFileLock);
7673 
7674  /*
7675  * Update the average distance between checkpoints/restartpoints if the
7676  * prior checkpoint exists.
7677  */
7678  if (PriorRedoPtr != InvalidXLogRecPtr)
7680 
7681  /*
7682  * Delete old log files, those no longer needed for last restartpoint to
7683  * prevent the disk holding the xlog from growing full.
7684  */
7686 
7687  /*
7688  * Retreat _logSegNo using the current end of xlog replayed or received,
7689  * whichever is later.
7690  */
7691  receivePtr = GetWalRcvFlushRecPtr(NULL, NULL);
7692  replayPtr = GetXLogReplayRecPtr(&replayTLI);
7693  endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr;
7694  KeepLogSeg(endptr, &_logSegNo);
7696  _logSegNo, InvalidOid,
7698  {
7699  /*
7700  * Some slots have been invalidated; recalculate the old-segment
7701  * horizon, starting again from RedoRecPtr.
7702  */
7704  KeepLogSeg(endptr, &_logSegNo);
7705  }
7706  _logSegNo--;
7707 
7708  /*
7709  * Try to recycle segments on a useful timeline. If we've been promoted
7710  * since the beginning of this restartpoint, use the new timeline chosen
7711  * at end of recovery. If we're still in recovery, use the timeline we're
7712  * currently replaying.
7713  *
7714  * There is no guarantee that the WAL segments will be useful on the
7715  * current timeline; if recovery proceeds to a new timeline right after
7716  * this, the pre-allocated WAL segments on this timeline will not be used,
7717  * and will go wasted until recycled on the next restartpoint. We'll live
7718  * with that.
7719  */
7720  if (!RecoveryInProgress())
7721  replayTLI = XLogCtl->InsertTimeLineID;
7722 
7723  RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr, replayTLI);
7724 
7725  /*
7726  * Make more log segments if needed. (Do this after recycling old log
7727  * segments, since that may supply some of the needed files.)
7728  */
7729  PreallocXlogFiles(endptr, replayTLI);
7730 
7731  /*
7732  * Truncate pg_subtrans if possible. We can throw away all data before
7733  * the oldest XMIN of any running transaction. No future transaction will
7734  * attempt to reference any pg_subtrans entry older than that (see Asserts
7735  * in subtrans.c). When hot standby is disabled, though, we mustn't do
7736  * this because StartupSUBTRANS hasn't been called yet.
7737  */
7738  if (EnableHotStandby)
7740 
7741  /* Real work is done; log and update stats. */
7742  LogCheckpointEnd(true);
7743 
7744  /* Reset the process title */
7745  update_checkpoint_display(flags, true, true);
7746 
7747  xtime = GetLatestXTime();
7749  (errmsg("recovery restart point at %X/%X",
7750  LSN_FORMAT_ARGS(lastCheckPoint.redo)),
7751  xtime ? errdetail("Last completed transaction was at log time %s.",
7752  timestamptz_to_str(xtime)) : 0));
7753 
7754  /*
7755  * Finally, execute archive_cleanup_command, if any.
7756  */
7757  if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "") != 0)
7759  "archive_cleanup_command",
7760  false,
7761  WAIT_EVENT_ARCHIVE_CLEANUP_COMMAND);
7762 
7763  return true;
7764 }
7765 
7766 /*
7767  * Report availability of WAL for the given target LSN
7768  * (typically a slot's restart_lsn)
7769  *
7770  * Returns one of the following enum values:
7771  *
7772  * * WALAVAIL_RESERVED means targetLSN is available and it is in the range of
7773  * max_wal_size.
7774  *
7775  * * WALAVAIL_EXTENDED means it is still available by preserving extra
7776  * segments beyond max_wal_size. If max_slot_wal_keep_size is smaller
7777  * than max_wal_size, this state is not returned.
7778  *
7779  * * WALAVAIL_UNRESERVED means it is being lost and the next checkpoint will
7780  * remove reserved segments. The walsender using this slot may return to the
7781  * above.
7782  *
7783  * * WALAVAIL_REMOVED means it has been removed. A replication stream on
7784  * a slot with this LSN cannot continue. (Any associated walsender
7785  * processes should have been terminated already.)
7786  *
7787  * * WALAVAIL_INVALID_LSN means the slot hasn't been set to reserve WAL.
7788  */
7791 {
7792  XLogRecPtr currpos; /* current write LSN */
7793  XLogSegNo currSeg; /* segid of currpos */
7794  XLogSegNo targetSeg; /* segid of targetLSN */
7795  XLogSegNo oldestSeg; /* actual oldest segid */
7796  XLogSegNo oldestSegMaxWalSize; /* oldest segid kept by max_wal_size */
7797  XLogSegNo oldestSlotSeg; /* oldest segid kept by slot */
7798  uint64 keepSegs;
7799 
7800  /*
7801  * slot does not reserve WAL. Either deactivated, or has never been active
7802  */
7803  if (XLogRecPtrIsInvalid(targetLSN))
7804  return WALAVAIL_INVALID_LSN;
7805 
7806  /*
7807  * Calculate the oldest segment currently reserved by all slots,
7808  * considering wal_keep_size and max_slot_wal_keep_size. Initialize
7809  * oldestSlotSeg to the current segment.
7810  */
7811  currpos = GetXLogWriteRecPtr();
7812  XLByteToSeg(currpos, oldestSlotSeg, wal_segment_size);
7813  KeepLogSeg(currpos, &oldestSlotSeg);
7814 
7815  /*
7816  * Find the oldest extant segment file. We get 1 until checkpoint removes
7817  * the first WAL segment file since startup, which causes the status being
7818  * wrong under certain abnormal conditions but that doesn't actually harm.
7819  */
7820  oldestSeg = XLogGetLastRemovedSegno() + 1;
7821 
7822  /* calculate oldest segment by max_wal_size */
7823  XLByteToSeg(currpos, currSeg, wal_segment_size);
7825 
7826  if (currSeg > keepSegs)
7827  oldestSegMaxWalSize = currSeg - keepSegs;
7828  else
7829  oldestSegMaxWalSize = 1;
7830 
7831  /* the segment we care about */
7832  XLByteToSeg(targetLSN, targetSeg, wal_segment_size);
7833 
7834  /*
7835  * No point in returning reserved or extended status values if the
7836  * targetSeg is known to be lost.
7837  */
7838  if (targetSeg >= oldestSlotSeg)
7839  {
7840  /* show "reserved" when targetSeg is within max_wal_size */
7841  if (targetSeg >= oldestSegMaxWalSize)
7842  return WALAVAIL_RESERVED;
7843 
7844  /* being retained by slots exceeding max_wal_size */
7845  return WALAVAIL_EXTENDED;
7846  }
7847 
7848  /* WAL segments are no longer retained but haven't been removed yet */
7849  if (targetSeg >= oldestSeg)
7850  return WALAVAIL_UNRESERVED;
7851 
7852  /* Definitely lost */
7853  return WALAVAIL_REMOVED;
7854 }
7855 
7856 
7857 /*
7858  * Retreat *logSegNo to the last segment that we need to retain because of
7859  * either wal_keep_size or replication slots.
7860  *
7861  * This is calculated by subtracting wal_keep_size from the given xlog
7862  * location, recptr and by making sure that that result is below the
7863  * requirement of replication slots. For the latter criterion we do consider
7864  * the effects of max_slot_wal_keep_size: reserve at most that much space back
7865  * from recptr.
7866  *
7867  * Note about replication slots: if this function calculates a value
7868  * that's further ahead than what slots need reserved, then affected
7869  * slots need to be invalidated and this function invoked again.
7870  * XXX it might be a good idea to rewrite this function so that
7871  * invalidation is optionally done here, instead.
7872  */
7873 static void
7874 KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
7875 {
7876  XLogSegNo currSegNo;
7877  XLogSegNo segno;
7878  XLogRecPtr keep;
7879 
7880  XLByteToSeg(recptr, currSegNo, wal_segment_size);
7881  segno = currSegNo;
7882 
7883  /*
7884  * Calculate how many segments are kept by slots first, adjusting for
7885  * max_slot_wal_keep_size.
7886  */
7888  if (keep != InvalidXLogRecPtr && keep < recptr)
7889  {
7890  XLByteToSeg(keep, segno, wal_segment_size);
7891 
7892  /* Cap by max_slot_wal_keep_size ... */
7893  if (max_slot_wal_keep_size_mb >= 0)
7894  {
7895  uint64 slot_keep_segs;
7896 
7897  slot_keep_segs =
7899 
7900  if (currSegNo - segno > slot_keep_segs)
7901  segno = currSegNo - slot_keep_segs;
7902  }
7903  }
7904 
7905  /*
7906  * If WAL summarization is in use, don't remove WAL that has yet to be
7907  * summarized.
7908  */
7909  keep = GetOldestUnsummarizedLSN(NULL, NULL, false);
7910  if (keep != InvalidXLogRecPtr)
7911  {
7912  XLogSegNo unsummarized_segno;
7913 
7914  XLByteToSeg(keep, unsummarized_segno, wal_segment_size);
7915  if (unsummarized_segno < segno)
7916  segno = unsummarized_segno;
7917  }
7918 
7919  /* but, keep at least wal_keep_size if that's set */
7920  if (wal_keep_size_mb > 0)
7921  {
7922  uint64 keep_segs;
7923 
7925  if (currSegNo - segno < keep_segs)
7926  {
7927  /* avoid underflow, don't go below 1 */
7928  if (currSegNo <= keep_segs)
7929  segno = 1;
7930  else
7931  segno = currSegNo - keep_segs;
7932  }
7933  }
7934 
7935  /* don't delete WAL segments newer than the calculated segment */
7936  if (segno < *logSegNo)
7937  *logSegNo = segno;
7938 }
7939 
7940 /*
7941  * Write a NEXTOID log record
7942  */
7943 void
7945 {
7946  XLogBeginInsert();
7947  XLogRegisterData((char *) (&nextOid), sizeof(Oid));
7948  (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID);
7949 
7950  /*
7951  * We need not flush the NEXTOID record immediately, because any of the
7952  * just-allocated OIDs could only reach disk as part of a tuple insert or
7953  * update that would have its own XLOG record that must follow the NEXTOID
7954  * record. Therefore, the standard buffer LSN interlock applied to those
7955  * records will ensure no such OID reaches disk before the NEXTOID record
7956  * does.
7957  *
7958  * Note, however, that the above statement only covers state "within" the
7959  * database. When we use a generated OID as a file or directory name, we
7960  * are in a sense violating the basic WAL rule, because that filesystem
7961  * change may reach disk before the NEXTOID WAL record does. The impact
7962  * of this is that if a database crash occurs immediately afterward, we
7963  * might after restart re-generate the same OID and find that it conflicts
7964  * with the leftover file or directory. But since for safety's sake we
7965  * always loop until finding a nonconflicting filename, this poses no real
7966  * problem in practice. See pgsql-hackers discussion 27-Sep-2006.
7967  */
7968 }
7969 
7970 /*
7971  * Write an XLOG SWITCH record.
7972  *
7973  * Here we just blindly issue an XLogInsert request for the record.
7974  * All the magic happens inside XLogInsert.
7975  *
7976  * The return value is either the end+1 address of the switch record,
7977  * or the end+1 address of the prior segment if we did not need to
7978  * write a switch record because we are already at segment start.
7979  */
7980 XLogRecPtr
7981 RequestXLogSwitch(bool mark_unimportant)
7982 {
7983  XLogRecPtr RecPtr;
7984 
7985  /* XLOG SWITCH has no data */
7986  XLogBeginInsert();
7987 
7988  if (mark_unimportant)
7990  RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH);
7991 
7992  return RecPtr;
7993 }
7994 
7995 /*
7996  * Write a RESTORE POINT record
7997  */
7998 XLogRecPtr
7999 XLogRestorePoint(const char *rpName)
8000 {
8001  XLogRecPtr RecPtr;
8002  xl_restore_point xlrec;
8003 
8004  xlrec.rp_time = GetCurrentTimestamp();
8005  strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN);
8006 
8007  XLogBeginInsert();
8008  XLogRegisterData((char *) &xlrec, sizeof(xl_restore_point));
8009 
8010  RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT);
8011 
8012  ereport(LOG,
8013  (errmsg("restore point \"%s\" created at %X/%X",
8014  rpName, LSN_FORMAT_ARGS(RecPtr))));
8015 
8016  return RecPtr;
8017 }
8018 
8019 /*
8020  * Check if any of the GUC parameters that are critical for hot standby
8021  * have changed, and update the value in pg_control file if necessary.
8022  */
8023 static void
8025 {
8026  if (wal_level != ControlFile->wal_level ||
8034  {
8035  /*
8036  * The change in number of backend slots doesn't need to be WAL-logged
8037  * if archiving is not enabled, as you can't start archive recovery
8038  * with wal_level=minimal anyway. We don't really care about the
8039  * values in pg_control either if wal_level=minimal, but seems better
8040  * to keep them up-to-date to avoid confusion.
8041  */
8043  {
8044  xl_parameter_change xlrec;
8045  XLogRecPtr recptr;
8046 
8052  xlrec.wal_level = wal_level;
8053  xlrec.wal_log_hints = wal_log_hints;
8055 
8056  XLogBeginInsert();
8057  XLogRegisterData((char *) &xlrec, sizeof(xlrec));
8058 
8059  recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE);
8060  XLogFlush(recptr);
8061  }
8062 
8063  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8064 
8074 
8075  LWLockRelease(ControlFileLock);
8076  }
8077 }
8078 
8079 /*
8080  * Update full_page_writes in shared memory, and write an
8081  * XLOG_FPW_CHANGE record if necessary.
8082  *
8083  * Note: this function assumes there is no other process running
8084  * concurrently that could update it.
8085  */
8086 void
8088 {
8090  bool recoveryInProgress;
8091 
8092  /*
8093  * Do nothing if full_page_writes has not been changed.
8094  *
8095  * It's safe to check the shared full_page_writes without the lock,
8096  * because we assume that there is no concurrently running process which
8097  * can update it.
8098  */
8099  if (fullPageWrites == Insert->fullPageWrites)
8100  return;
8101 
8102  /*
8103  * Perform this outside critical section so that the WAL insert
8104  * initialization done by RecoveryInProgress() doesn't trigger an
8105  * assertion failure.
8106  */
8107  recoveryInProgress = RecoveryInProgress();
8108 
8110 
8111  /*
8112  * It's always safe to take full page images, even when not strictly
8113  * required, but not the other round. So if we're setting full_page_writes
8114  * to true, first set it true and then write the WAL record. If we're
8115  * setting it to false, first write the WAL record and then set the global
8116  * flag.
8117  */
8118  if (fullPageWrites)
8119  {
8121  Insert->fullPageWrites = true;
8123  }
8124 
8125  /*
8126  * Write an XLOG_FPW_CHANGE record. This allows us to keep track of
8127  * full_page_writes during archive recovery, if required.
8128  */
8129  if (XLogStandbyInfoActive() && !recoveryInProgress)
8130  {
8131  XLogBeginInsert();
8132  XLogRegisterData((char *) (&fullPageWrites), sizeof(bool));
8133 
8134  XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE);
8135  }
8136 
8137  if (!fullPageWrites)
8138  {
8140  Insert->fullPageWrites = false;
8142  }
8143  END_CRIT_SECTION();
8144 }
8145 
8146 /*
8147  * XLOG resource manager's routines
8148  *
8149  * Definitions of info values are in include/catalog/pg_control.h, though
8150  * not all record types are related to control file updates.
8151  *
8152  * NOTE: Some XLOG record types that are directly related to WAL recovery
8153  * are handled in xlogrecovery_redo().
8154  */
8155 void
8157 {
8158  uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
8159  XLogRecPtr lsn = record->EndRecPtr;
8160 
8161  /*
8162  * In XLOG rmgr, backup blocks are only used by XLOG_FPI and
8163  * XLOG_FPI_FOR_HINT records.
8164  */
8165  Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT ||
8166  !XLogRecHasAnyBlockRefs(record));
8167 
8168  if (info == XLOG_NEXTOID)
8169  {
8170  Oid nextOid;
8171 
8172  /*
8173  * We used to try to take the maximum of TransamVariables->nextOid and
8174  * the recorded nextOid, but that fails if the OID counter wraps
8175  * around. Since no OID allocation should be happening during replay
8176  * anyway, better to just believe the record exactly. We still take
8177  * OidGenLock while setting the variable, just in case.
8178  */
8179  memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
8180  LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8181  TransamVariables->nextOid = nextOid;
8183  LWLockRelease(OidGenLock);
8184  }
8185  else if (info == XLOG_CHECKPOINT_SHUTDOWN)
8186  {
8187  CheckPoint checkPoint;
8188  TimeLineID replayTLI;
8189 
8190  memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8191  /* In a SHUTDOWN checkpoint, believe the counters exactly */
8192  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8193  TransamVariables->nextXid = checkPoint.nextXid;
8194  LWLockRelease(XidGenLock);
8195  LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8196  TransamVariables->nextOid = checkPoint.nextOid;
8198  LWLockRelease(OidGenLock);
8199  MultiXactSetNextMXact(checkPoint.nextMulti,
8200  checkPoint.nextMultiOffset);
8201 
8203  checkPoint.oldestMultiDB);
8204 
8205  /*
8206  * No need to set oldestClogXid here as well; it'll be set when we
8207  * redo an xl_clog_truncate if it changed since initialization.
8208  */
8209  SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
8210 
8211  /*
8212  * If we see a shutdown checkpoint while waiting for an end-of-backup
8213  * record, the backup was canceled and the end-of-backup record will
8214  * never arrive.
8215  */
8219  ereport(PANIC,
8220  (errmsg("online backup was canceled, recovery cannot continue")));
8221 
8222  /*
8223  * If we see a shutdown checkpoint, we know that nothing was running
8224  * on the primary at this point. So fake-up an empty running-xacts
8225  * record and use that here and now. Recover additional standby state
8226  * for prepared transactions.
8227  */
8229  {
8230  TransactionId *xids;
8231  int nxids;
8232  TransactionId oldestActiveXID;
8233  TransactionId latestCompletedXid;
8234  RunningTransactionsData running;
8235 
8236  oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
8237 
8238  /*
8239  * Construct a RunningTransactions snapshot representing a shut
8240  * down server, with only prepared transactions still alive. We're
8241  * never overflowed at this point because all subxids are listed
8242  * with their parent prepared transactions.
8243  */
8244  running.xcnt = nxids;
8245  running.subxcnt = 0;
8246  running.subxid_overflow = false;
8247  running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
8248  running.oldestRunningXid = oldestActiveXID;
8249  latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
8250  TransactionIdRetreat(latestCompletedXid);
8251  Assert(TransactionIdIsNormal(latestCompletedXid));
8252  running.latestCompletedXid = latestCompletedXid;
8253  running.xids = xids;
8254 
8255  ProcArrayApplyRecoveryInfo(&running);
8256 
8258  }
8259 
8260  /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8261  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8262  ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
8263  LWLockRelease(ControlFileLock);
8264 
8265  /* Update shared-memory copy of checkpoint XID/epoch */
8267  XLogCtl->ckptFullXid = checkPoint.nextXid;
8269 
8270  /*
8271  * We should've already switched to the new TLI before replaying this
8272  * record.
8273  */
8274  (void) GetCurrentReplayRecPtr(&replayTLI);
8275  if (checkPoint.ThisTimeLineID != replayTLI)
8276  ereport(PANIC,
8277  (errmsg("unexpected timeline ID %u (should be %u) in shutdown checkpoint record",
8278  checkPoint.ThisTimeLineID, replayTLI)));
8279 
8280  RecoveryRestartPoint(&checkPoint, record);
8281  }
8282  else if (info == XLOG_CHECKPOINT_ONLINE)
8283  {
8284  CheckPoint checkPoint;
8285  TimeLineID replayTLI;
8286 
8287  memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8288  /* In an ONLINE checkpoint, treat the XID counter as a minimum */
8289  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8291  checkPoint.nextXid))
8292  TransamVariables->nextXid = checkPoint.nextXid;
8293  LWLockRelease(XidGenLock);
8294 
8295  /*
8296  * We ignore the nextOid counter in an ONLINE checkpoint, preferring
8297  * to track OID assignment through XLOG_NEXTOID records. The nextOid
8298  * counter is from the start of the checkpoint and might well be stale
8299  * compared to later XLOG_NEXTOID records. We could try to take the
8300  * maximum of the nextOid counter and our latest value, but since
8301  * there's no particular guarantee about the speed with which the OID
8302  * counter wraps around, that's a risky thing to do. In any case,
8303  * users of the nextOid counter are required to avoid assignment of
8304  * duplicates, so that a somewhat out-of-date value should be safe.
8305  */
8306 
8307  /* Handle multixact */
8309  checkPoint.nextMultiOffset);
8310 
8311  /*
8312  * NB: This may perform multixact truncation when replaying WAL
8313  * generated by an older primary.
8314  */
8316  checkPoint.oldestMultiDB);
8318  checkPoint.oldestXid))
8319  SetTransactionIdLimit(checkPoint.oldestXid,
8320  checkPoint.oldestXidDB);
8321  /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8322  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8323  ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
8324  LWLockRelease(ControlFileLock);
8325 
8326  /* Update shared-memory copy of checkpoint XID/epoch */
8328  XLogCtl->ckptFullXid = checkPoint.nextXid;
8330 
8331  /* TLI should not change in an on-line checkpoint */
8332  (void) GetCurrentReplayRecPtr(&replayTLI);
8333  if (checkPoint.ThisTimeLineID != replayTLI)
8334  ereport(PANIC,
8335  (errmsg("unexpected timeline ID %u (should be %u) in online checkpoint record",
8336  checkPoint.ThisTimeLineID, replayTLI)));
8337 
8338  RecoveryRestartPoint(&checkPoint, record);
8339  }
8340  else if (info == XLOG_OVERWRITE_CONTRECORD)
8341  {
8342  /* nothing to do here, handled in xlogrecovery_redo() */
8343  }
8344  else if (info == XLOG_END_OF_RECOVERY)
8345  {
8346  xl_end_of_recovery xlrec;
8347  TimeLineID replayTLI;
8348 
8349  memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery));
8350 
8351  /*
8352  * For Hot Standby, we could treat this like a Shutdown Checkpoint,
8353  * but this case is rarer and harder to test, so the benefit doesn't
8354  * outweigh the potential extra cost of maintenance.
8355  */
8356 
8357  /*
8358  * We should've already switched to the new TLI before replaying this
8359  * record.
8360  */
8361  (void) GetCurrentReplayRecPtr(&replayTLI);
8362  if (xlrec.ThisTimeLineID != replayTLI)
8363  ereport(PANIC,
8364  (errmsg("unexpected timeline ID %u (should be %u) in end-of-recovery record",
8365  xlrec.ThisTimeLineID, replayTLI)));
8366  }
8367  else if (info == XLOG_NOOP)
8368  {
8369  /* nothing to do here */
8370  }
8371  else if (info == XLOG_SWITCH)
8372  {
8373  /* nothing to do here */
8374  }
8375  else if (info == XLOG_RESTORE_POINT)
8376  {
8377  /* nothing to do here, handled in xlogrecovery.c */
8378  }
8379  else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT)
8380  {
8381  /*
8382  * XLOG_FPI records contain nothing else but one or more block
8383  * references. Every block reference must include a full-page image
8384  * even if full_page_writes was disabled when the record was generated
8385  * - otherwise there would be no point in this record.
8386  *
8387  * XLOG_FPI_FOR_HINT records are generated when a page needs to be
8388  * WAL-logged because of a hint bit update. They are only generated
8389  * when checksums and/or wal_log_hints are enabled. They may include
8390  * no full-page images if full_page_writes was disabled when they were
8391  * generated. In this case there is nothing to do here.
8392  *
8393  * No recovery conflicts are generated by these generic records - if a
8394  * resource manager needs to generate conflicts, it has to define a
8395  * separate WAL record type and redo routine.
8396  */
8397  for (uint8 block_id = 0; block_id <= XLogRecMaxBlockId(record); block_id++)
8398  {
8399  Buffer buffer;
8400 
8401  if (!XLogRecHasBlockImage(record, block_id))
8402  {
8403  if (info == XLOG_FPI)
8404  elog(ERROR, "XLOG_FPI record did not contain a full-page image");
8405  continue;
8406  }
8407 
8408  if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED)
8409  elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block");
8410  UnlockReleaseBuffer(buffer);
8411  }
8412  }
8413  else if (info == XLOG_BACKUP_END)
8414  {
8415  /* nothing to do here, handled in xlogrecovery_redo() */
8416  }
8417  else if (info == XLOG_PARAMETER_CHANGE)
8418  {
8419  xl_parameter_change xlrec;
8420 
8421  /* Update our copy of the parameters in pg_control */
8422  memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change));
8423 
8424  /*
8425  * Invalidate logical slots if we are in hot standby and the primary
8426  * does not have a WAL level sufficient for logical decoding. No need
8427  * to search for potentially conflicting logically slots if standby is
8428  * running with wal_level lower than logical, because in that case, we
8429  * would have either disallowed creation of logical slots or
8430  * invalidated existing ones.
8431  */
8432  if (InRecovery && InHotStandby &&
8433  xlrec.wal_level < WAL_LEVEL_LOGICAL &&
8436  0, InvalidOid,
8438 
8439  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8445  ControlFile->wal_level = xlrec.wal_level;
8447 
8448  /*
8449  * Update minRecoveryPoint to ensure that if recovery is aborted, we
8450  * recover back up to this point before allowing hot standby again.
8451  * This is important if the max_* settings are decreased, to ensure
8452  * you don't run queries against the WAL preceding the change. The
8453  * local copies cannot be updated as long as crash recovery is
8454  * happening and we expect all the WAL to be replayed.
8455  */
8456  if (InArchiveRecovery)
8457  {
8460  }
8462  {
8463  TimeLineID replayTLI;
8464 
8465  (void) GetCurrentReplayRecPtr(&replayTLI);
8467  ControlFile->minRecoveryPointTLI = replayTLI;
8468  }
8469 
8473 
8475  LWLockRelease(ControlFileLock);
8476 
8477  /* Check to see if any parameter change gives a problem on recovery */
8479  }
8480  else if (info == XLOG_FPW_CHANGE)
8481  {
8482  bool fpw;
8483 
8484  memcpy(&fpw, XLogRecGetData(record), sizeof(bool));
8485 
8486  /*
8487  * Update the LSN of the last replayed XLOG_FPW_CHANGE record so that
8488  * do_pg_backup_start() and do_pg_backup_stop() can check whether
8489  * full_page_writes has been disabled during online backup.
8490  */
8491  if (!fpw)
8492  {
8494  if (XLogCtl->lastFpwDisableRecPtr < record->ReadRecPtr)
8497  }
8498 
8499  /* Keep track of full_page_writes */
8500  lastFullPageWrites = fpw;
8501  }
8502  else if (info == XLOG_CHECKPOINT_REDO)
8503  {
8504  /* nothing to do here, just for informational purposes */
8505  }
8506 }
8507 
8508 /*
8509  * Return the extra open flags used for opening a file, depending on the
8510  * value of the GUCs wal_sync_method, fsync and io_direct.
8511  */
8512 static int
8513 get_sync_bit(int method)
8514 {
8515  int o_direct_flag = 0;
8516 
8517  /*
8518  * Use O_DIRECT if requested, except in walreceiver process. The WAL
8519  * written by walreceiver is normally read by the startup process soon
8520  * after it's written. Also, walreceiver performs unaligned writes, which
8521  * don't work with O_DIRECT, so it is required for correctness too.
8522  */
8524  o_direct_flag = PG_O_DIRECT;
8525 
8526  /* If fsync is disabled, never open in sync mode */
8527  if (!enableFsync)
8528  return o_direct_flag;
8529 
8530  switch (method)
8531  {
8532  /*
8533  * enum values for all sync options are defined even if they are
8534  * not supported on the current platform. But if not, they are
8535  * not included in the enum option array, and therefore will never
8536  * be seen here.
8537  */
8538  case WAL_SYNC_METHOD_FSYNC:
8541  return o_direct_flag;
8542 #ifdef O_SYNC
8543  case WAL_SYNC_METHOD_OPEN:
8544  return O_SYNC | o_direct_flag;
8545 #endif
8546 #ifdef O_DSYNC
8548  return O_DSYNC | o_direct_flag;
8549 #endif
8550  default:
8551  /* can't happen (unless we are out of sync with option array) */
8552  elog(ERROR, "unrecognized wal_sync_method: %d", method);
8553  return 0; /* silence warning */
8554  }
8555 }
8556 
8557 /*
8558  * GUC support
8559  */
8560 void
8561 assign_wal_sync_method(int new_wal_sync_method, void *extra)
8562 {
8563  if (wal_sync_method != new_wal_sync_method)
8564  {
8565  /*
8566  * To ensure that no blocks escape unsynced, force an fsync on the
8567  * currently open log segment (if any). Also, if the open flag is
8568  * changing, close the log file so it will be reopened (with new flag
8569  * bit) at next use.
8570  */
8571  if (openLogFile >= 0)
8572  {
8573  pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN);
8574  if (pg_fsync(openLogFile) != 0)
8575  {
8576  char xlogfname[MAXFNAMELEN];
8577  int save_errno;
8578 
8579  save_errno = errno;
8580  XLogFileName(xlogfname, openLogTLI, openLogSegNo,
8582  errno = save_errno;
8583  ereport(PANIC,
8585  errmsg("could not fsync file \"%s\": %m", xlogfname)));
8586  }
8587 
8589  if (get_sync_bit(wal_sync_method) != get_sync_bit(new_wal_sync_method))
8590  XLogFileClose();
8591  }
8592  }
8593 }
8594 
8595 
8596 /*
8597  * Issue appropriate kind of fsync (if any) for an XLOG output file.
8598  *
8599  * 'fd' is a file descriptor for the XLOG file to be fsync'd.
8600  * 'segno' is for error reporting purposes.
8601  */
8602 void
8604 {
8605  char *msg = NULL;
8606  instr_time start;
8607 
8608  Assert(tli != 0);
8609 
8610  /*
8611  * Quick exit if fsync is disabled or write() has already synced the WAL
8612  * file.
8613  */
8614  if (!enableFsync ||
8617  return;
8618 
8619  /* Measure I/O timing to sync the WAL file */
8620  if (track_wal_io_timing)
8622  else
8624 
8625  pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC);
8626  switch (wal_sync_method)
8627  {
8628  case WAL_SYNC_METHOD_FSYNC:
8629  if (pg_fsync_no_writethrough(fd) != 0)
8630  msg = _("could not fsync file \"%s\": %m");
8631  break;
8632 #ifdef HAVE_FSYNC_WRITETHROUGH
8634  if (pg_fsync_writethrough(fd) != 0)
8635  msg = _("could not fsync write-through file \"%s\": %m");
8636  break;
8637 #endif
8639  if (pg_fdatasync(fd) != 0)
8640  msg = _("could not fdatasync file \"%s\": %m");
8641  break;
8642  case WAL_SYNC_METHOD_OPEN:
8644  /* not reachable */
8645  Assert(false);
8646  break;
8647  default:
8648  ereport(PANIC,
8649  errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8650  errmsg_internal("unrecognized wal_sync_method: %d", wal_sync_method));
8651  break;
8652  }
8653 
8654  /* PANIC if failed to fsync */
8655  if (msg)
8656  {
8657  char xlogfname[MAXFNAMELEN];
8658  int save_errno = errno;
8659 
8660  XLogFileName(xlogfname, tli, segno, wal_segment_size);
8661  errno = save_errno;
8662  ereport(PANIC,
8664  errmsg(msg, xlogfname)));
8665  }
8666 
8668 
8669  /*
8670  * Increment the I/O timing and the number of times WAL files were synced.
8671  */
8672  if (track_wal_io_timing)
8673  {
8674  instr_time end;
8675 
8678  }
8679 
8681 }
8682 
8683 /*
8684  * do_pg_backup_start is the workhorse of the user-visible pg_backup_start()
8685  * function. It creates the necessary starting checkpoint and constructs the
8686  * backup state and tablespace map.
8687  *
8688  * Input parameters are "state" (the backup state), "fast" (if true, we do
8689  * the checkpoint in immediate mode to make it faster), and "tablespaces"
8690  * (if non-NULL, indicates a list of tablespaceinfo structs describing the
8691  * cluster's tablespaces.).
8692  *
8693  * The tablespace map contents are appended to passed-in parameter
8694  * tablespace_map and the caller is responsible for including it in the backup
8695  * archive as 'tablespace_map'. The tablespace_map file is required mainly for
8696  * tar format in windows as native windows utilities are not able to create
8697  * symlinks while extracting files from tar. However for consistency and
8698  * platform-independence, we do it the same way everywhere.
8699  *
8700  * It fills in "state" with the information required for the backup, such
8701  * as the minimum WAL location that must be present to restore from this
8702  * backup (starttli) and the corresponding timeline ID (starttli).
8703  *
8704  * Every successfully started backup must be stopped by calling
8705  * do_pg_backup_stop() or do_pg_abort_backup(). There can be many
8706  * backups active at the same time.
8707  *
8708  * It is the responsibility of the caller of this function to verify the
8709  * permissions of the calling user!
8710  */
8711 void
8712 do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces,
8713  BackupState *state, StringInfo tblspcmapfile)
8714 {
8716 
8717  Assert(state != NULL);
8719 
8720  /*
8721  * During recovery, we don't need to check WAL level. Because, if WAL
8722  * level is not sufficient, it's impossible to get here during recovery.
8723  */
8725  ereport(ERROR,
8726  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8727  errmsg("WAL level not sufficient for making an online backup"),
8728  errhint("wal_level must be set to \"replica\" or \"logical\" at server start.")));
8729 
8730  if (strlen(backupidstr) > MAXPGPATH)
8731  ereport(ERROR,
8732  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8733  errmsg("backup label too long (max %d bytes)",
8734  MAXPGPATH)));
8735 
8736  memcpy(state->name, backupidstr, strlen(backupidstr));
8737 
8738  /*
8739  * Mark backup active in shared memory. We must do full-page WAL writes
8740  * during an on-line backup even if not doing so at other times, because
8741  * it's quite possible for the backup dump to obtain a "torn" (partially
8742  * written) copy of a database page if it reads the page concurrently with
8743  * our write to the same page. This can be fixed as long as the first
8744  * write to the page in the WAL sequence is a full-page write. Hence, we
8745  * increment runningBackups then force a CHECKPOINT, to ensure there are
8746  * no dirty pages in shared memory that might get dumped while the backup
8747  * is in progress without having a corresponding WAL record. (Once the
8748  * backup is complete, we need not force full-page writes anymore, since
8749  * we expect that any pages not modified during the backup interval must
8750  * have been correctly captured by the backup.)
8751  *
8752  * Note that forcing full-page writes has no effect during an online
8753  * backup from the standby.
8754  *
8755  * We must hold all the insertion locks to change the value of
8756  * runningBackups, to ensure adequate interlocking against
8757  * XLogInsertRecord().
8758  */
8762 
8763  /*
8764  * Ensure we decrement runningBackups if we fail below. NB -- for this to
8765  * work correctly, it is critical that sessionBackupState is only updated
8766  * after this block is over.
8767  */
8769  {
8770  bool gotUniqueStartpoint = false;
8771  DIR *tblspcdir;
8772  struct dirent *de;
8773  tablespaceinfo *ti;
8774  int datadirpathlen;
8775 
8776  /*
8777  * Force an XLOG file switch before the checkpoint, to ensure that the
8778  * WAL segment the checkpoint is written to doesn't contain pages with
8779  * old timeline IDs. That would otherwise happen if you called
8780  * pg_backup_start() right after restoring from a PITR archive: the
8781  * first WAL segment containing the startup checkpoint has pages in
8782  * the beginning with the old timeline ID. That can cause trouble at
8783  * recovery: we won't have a history file covering the old timeline if
8784  * pg_wal directory was not included in the base backup and the WAL
8785  * archive was cleared too before starting the backup.
8786  *
8787  * This also ensures that we have emitted a WAL page header that has
8788  * XLP_BKP_REMOVABLE off before we emit the checkpoint record.
8789  * Therefore, if a WAL archiver (such as pglesslog) is trying to
8790  * compress out removable backup blocks, it won't remove any that
8791  * occur after this point.
8792  *
8793  * During recovery, we skip forcing XLOG file switch, which means that
8794  * the backup taken during recovery is not available for the special
8795  * recovery case described above.
8796  */
8798  RequestXLogSwitch(false);
8799 
8800  do
8801  {
8802  bool checkpointfpw;
8803 
8804  /*
8805  * Force a CHECKPOINT. Aside from being necessary to prevent torn
8806  * page problems, this guarantees that two successive backup runs
8807  * will have different checkpoint positions and hence different
8808  * history file names, even if nothing happened in between.
8809  *
8810  * During recovery, establish a restartpoint if possible. We use
8811  * the last restartpoint as the backup starting checkpoint. This
8812  * means that two successive backup runs can have same checkpoint
8813  * positions.
8814  *
8815  * Since the fact that we are executing do_pg_backup_start()
8816  * during recovery means that checkpointer is running, we can use
8817  * RequestCheckpoint() to establish a restartpoint.
8818  *
8819  * We use CHECKPOINT_IMMEDIATE only if requested by user (via
8820  * passing fast = true). Otherwise this can take awhile.
8821  */
8823  (fast ? CHECKPOINT_IMMEDIATE : 0));
8824 
8825  /*
8826  * Now we need to fetch the checkpoint record location, and also
8827  * its REDO pointer. The oldest point in WAL that would be needed
8828  * to restore starting from the checkpoint is precisely the REDO
8829  * pointer.
8830  */
8831  LWLockAcquire(ControlFileLock, LW_SHARED);
8832  state->checkpointloc = ControlFile->checkPoint;
8833  state->startpoint = ControlFile->checkPointCopy.redo;
8835  checkpointfpw = ControlFile->checkPointCopy.fullPageWrites;
8836  LWLockRelease(ControlFileLock);
8837 
8839  {
8840  XLogRecPtr recptr;
8841 
8842  /*
8843  * Check to see if all WAL replayed during online backup
8844  * (i.e., since last restartpoint used as backup starting
8845  * checkpoint) contain full-page writes.
8846  */
8848  recptr = XLogCtl->lastFpwDisableRecPtr;
8850 
8851  if (!checkpointfpw || state->startpoint <= recptr)
8852  ereport(ERROR,
8853  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8854  errmsg("WAL generated with full_page_writes=off was replayed "
8855  "since last restartpoint"),
8856  errhint("This means that the backup being taken on the standby "
8857  "is corrupt and should not be used. "
8858  "Enable full_page_writes and run CHECKPOINT on the primary, "
8859  "and then try an online backup again.")));
8860 
8861  /*
8862  * During recovery, since we don't use the end-of-backup WAL
8863  * record and don't write the backup history file, the
8864  * starting WAL location doesn't need to be unique. This means
8865  * that two base backups started at the same time might use
8866  * the same checkpoint as starting locations.
8867  */
8868  gotUniqueStartpoint = true;
8869  }
8870 
8871  /*
8872  * If two base backups are started at the same time (in WAL sender
8873  * processes), we need to make sure that they use different
8874  * checkpoints as starting locations, because we use the starting
8875  * WAL location as a unique identifier for the base backup in the
8876  * end-of-backup WAL record and when we write the backup history
8877  * file. Perhaps it would be better generate a separate unique ID
8878  * for each backup instead of forcing another checkpoint, but
8879  * taking a checkpoint right after another is not that expensive
8880  * either because only few buffers have been dirtied yet.
8881  */
8883  if (XLogCtl->Insert.lastBackupStart < state->startpoint)
8884  {
8885  XLogCtl->Insert.lastBackupStart = state->startpoint;
8886  gotUniqueStartpoint = true;
8887  }
8889  } while (!gotUniqueStartpoint);
8890 
8891  /*
8892  * Construct tablespace_map file.
8893  */
8894  datadirpathlen = strlen(DataDir);
8895 
8896  /* Collect information about all tablespaces */
8897  tblspcdir = AllocateDir("pg_tblspc");
8898  while ((de = ReadDir(tblspcdir, "pg_tblspc")) != NULL)
8899  {
8900  char fullpath[MAXPGPATH + 10];
8901  char linkpath[MAXPGPATH];
8902  char *relpath = NULL;
8903  char *s;
8904  PGFileType de_type;
8905  char *badp;
8906  Oid tsoid;
8907 
8908  /*
8909  * Try to parse the directory name as an unsigned integer.
8910  *
8911  * Tablespace directories should be positive integers that can be
8912  * represented in 32 bits, with no leading zeroes or trailing
8913  * garbage. If we come across a name that doesn't meet those
8914  * criteria, skip it.
8915  */
8916  if (de->d_name[0] < '1' || de->d_name[1] > '9')
8917  continue;
8918  errno = 0;
8919  tsoid = strtoul(de->d_name, &badp, 10);
8920  if (*badp != '\0' || errno == EINVAL || errno == ERANGE)
8921  continue;
8922 
8923  snprintf(fullpath, sizeof(fullpath), "pg_tblspc/%s", de->d_name);
8924 
8925  de_type = get_dirent_type(fullpath, de, false, ERROR);
8926 
8927  if (de_type == PGFILETYPE_LNK)
8928  {
8929  StringInfoData escapedpath;
8930  int rllen;
8931 
8932  rllen = readlink(fullpath, linkpath, sizeof(linkpath));
8933  if (rllen < 0)
8934  {
8935  ereport(WARNING,
8936  (errmsg("could not read symbolic link \"%s\": %m",
8937  fullpath)));
8938  continue;
8939  }
8940  else if (rllen >= sizeof(linkpath))
8941  {
8942  ereport(WARNING,
8943  (errmsg("symbolic link \"%s\" target is too long",
8944  fullpath)));
8945  continue;
8946  }
8947  linkpath[rllen] = '\0';
8948 
8949  /*
8950  * Relpath holds the relative path of the tablespace directory
8951  * when it's located within PGDATA, or NULL if it's located
8952  * elsewhere.
8953  */
8954  if (rllen > datadirpathlen &&
8955  strncmp(linkpath, DataDir, datadirpathlen) == 0 &&
8956  IS_DIR_SEP(linkpath[datadirpathlen]))
8957  relpath = pstrdup(linkpath + datadirpathlen + 1);
8958 
8959  /*
8960  * Add a backslash-escaped version of the link path to the
8961  * tablespace map file.
8962  */
8963  initStringInfo(&escapedpath);
8964  for (s = linkpath; *s; s++)
8965  {
8966  if (*s == '\n' || *s == '\r' || *s == '\\')
8967  appendStringInfoChar(&escapedpath, '\\');
8968  appendStringInfoChar(&escapedpath, *s);
8969  }
8970  appendStringInfo(tblspcmapfile, "%s %s\n",
8971  de->d_name, escapedpath.data);
8972  pfree(escapedpath.data);
8973  }
8974  else if (de_type == PGFILETYPE_DIR)
8975  {
8976  /*
8977  * It's possible to use allow_in_place_tablespaces to create
8978  * directories directly under pg_tblspc, for testing purposes
8979  * only.
8980  *
8981  * In this case, we store a relative path rather than an
8982  * absolute path into the tablespaceinfo.
8983  */
8984  snprintf(linkpath, sizeof(linkpath), "pg_tblspc/%s",
8985  de->d_name);
8986  relpath = pstrdup(linkpath);
8987  }
8988  else
8989  {
8990  /* Skip any other file type that appears here. */
8991  continue;
8992  }
8993 
8994  ti = palloc(sizeof(tablespaceinfo));
8995  ti->oid = tsoid;
8996  ti->path = pstrdup(linkpath);
8997  ti->rpath = relpath;
8998  ti->size = -1;
8999 
9000  if (tablespaces)
9001  *tablespaces = lappend(*tablespaces, ti);
9002  }
9003  FreeDir(tblspcdir);
9004 
9005  state->starttime = (pg_time_t) time(NULL);
9006  }
9008 
9009  state->started_in_recovery = backup_started_in_recovery;
9010 
9011  /*
9012  * Mark that the start phase has correctly finished for the backup.
9013  */
9015 }
9016 
9017 /*
9018  * Utility routine to fetch the session-level status of a backup running.
9019  */
9022 {
9023  return sessionBackupState;
9024 }
9025 
9026 /*
9027  * do_pg_backup_stop
9028  *
9029  * Utility function called at the end of an online backup. It creates history
9030  * file (if required), resets sessionBackupState and so on. It can optionally
9031  * wait for WAL segments to be archived.
9032  *
9033  * "state" is filled with the information necessary to restore from this
9034  * backup with its stop LSN (stoppoint), its timeline ID (stoptli), etc.
9035  *
9036  * It is the responsibility of the caller of this function to verify the
9037  * permissions of the calling user!
9038  */
9039 void
9040 do_pg_backup_stop(BackupState *state, bool waitforarchive)
9041 {
9042  bool backup_stopped_in_recovery = false;
9043  char histfilepath[MAXPGPATH];
9044  char lastxlogfilename[MAXFNAMELEN];
9045  char histfilename[MAXFNAMELEN];
9046  XLogSegNo _logSegNo;
9047  FILE *fp;
9048  int seconds_before_warning;
9049  int waits = 0;
9050  bool reported_waiting = false;
9051 
9052  Assert(state != NULL);
9053 
9054  backup_stopped_in_recovery = RecoveryInProgress();
9055 
9056  /*
9057  * During recovery, we don't need to check WAL level. Because, if WAL
9058  * level is not sufficient, it's impossible to get here during recovery.
9059  */
9060  if (!backup_stopped_in_recovery && !XLogIsNeeded())
9061  ereport(ERROR,
9062  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9063  errmsg("WAL level not sufficient for making an online backup"),
9064  errhint("wal_level must be set to \"replica\" or \"logical\" at server start.")));
9065 
9066  /*
9067  * OK to update backup counter and session-level lock.
9068  *
9069  * Note that CHECK_FOR_INTERRUPTS() must not occur while updating them,
9070  * otherwise they can be updated inconsistently, which might cause
9071  * do_pg_abort_backup() to fail.
9072  */
9074 
9075  /*
9076  * It is expected that each do_pg_backup_start() call is matched by
9077  * exactly one do_pg_backup_stop() call.
9078  */
9081 
9082  /*
9083  * Clean up session-level lock.
9084  *
9085  * You might think that WALInsertLockRelease() can be called before
9086  * cleaning up session-level lock because session-level lock doesn't need
9087  * to be protected with WAL insertion lock. But since
9088  * CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be
9089  * cleaned up before it.
9090  */
9092 
9094 
9095  /*
9096  * If we are taking an online backup from the standby, we confirm that the
9097  * standby has not been promoted during the backup.
9098  */
9099  if (state->started_in_recovery && !backup_stopped_in_recovery)
9100  ereport(ERROR,
9101  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9102  errmsg("the standby was promoted during online backup"),
9103  errhint("This means that the backup being taken is corrupt "
9104  "and should not be used. "
9105  "Try taking another online backup.")));
9106 
9107  /*
9108  * During recovery, we don't write an end-of-backup record. We assume that
9109  * pg_control was backed up last and its minimum recovery point can be
9110  * available as the backup end location. Since we don't have an
9111  * end-of-backup record, we use the pg_control value to check whether
9112  * we've reached the end of backup when starting recovery from this
9113  * backup. We have no way of checking if pg_control wasn't backed up last
9114  * however.
9115  *
9116  * We don't force a switch to new WAL file but it is still possible to
9117  * wait for all the required files to be archived if waitforarchive is
9118  * true. This is okay if we use the backup to start a standby and fetch
9119  * the missing WAL using streaming replication. But in the case of an
9120  * archive recovery, a user should set waitforarchive to true and wait for
9121  * them to be archived to ensure that all the required files are
9122  * available.
9123  *
9124  * We return the current minimum recovery point as the backup end
9125  * location. Note that it can be greater than the exact backup end
9126  * location if the minimum recovery point is updated after the backup of
9127  * pg_control. This is harmless for current uses.
9128  *
9129  * XXX currently a backup history file is for informational and debug
9130  * purposes only. It's not essential for an online backup. Furthermore,
9131  * even if it's created, it will not be archived during recovery because
9132  * an archiver is not invoked. So it doesn't seem worthwhile to write a
9133  * backup history file during recovery.
9134  */
9135  if (backup_stopped_in_recovery)
9136  {
9137  XLogRecPtr recptr;
9138 
9139  /*
9140  * Check to see if all WAL replayed during online backup contain
9141  * full-page writes.
9142  */
9144  recptr = XLogCtl->lastFpwDisableRecPtr;
9146 
9147  if (state->startpoint <= recptr)
9148  ereport(ERROR,
9149  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9150  errmsg("WAL generated with full_page_writes=off was replayed "
9151  "during online backup"),
9152  errhint("This means that the backup being taken on the standby "
9153  "is corrupt and should not be used. "
9154  "Enable full_page_writes and run CHECKPOINT on the primary, "
9155  "and then try an online backup again.")));
9156 
9157 
9158  LWLockAcquire(ControlFileLock, LW_SHARED);
9159  state->stoppoint = ControlFile->minRecoveryPoint;
9161  LWLockRelease(ControlFileLock);
9162  }
9163  else
9164  {
9165  char *history_file;
9166 
9167  /*
9168  * Write the backup-end xlog record
9169  */
9170  XLogBeginInsert();
9171  XLogRegisterData((char *) (&state->startpoint),
9172  sizeof(state->startpoint));
9173  state->stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END);
9174 
9175  /*
9176  * Given that we're not in recovery, InsertTimeLineID is set and can't
9177  * change, so we can read it without a lock.
9178  */
9179  state->stoptli = XLogCtl->InsertTimeLineID;
9180 
9181  /*
9182  * Force a switch to a new xlog segment file, so that the backup is
9183  * valid as soon as archiver moves out the current segment file.
9184  */
9185  RequestXLogSwitch(false);
9186 
9187  state->stoptime = (pg_time_t) time(NULL);
9188 
9189  /*
9190  * Write the backup history file
9191  */
9192  XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9193  BackupHistoryFilePath(histfilepath, state->stoptli, _logSegNo,
9194  state->startpoint, wal_segment_size);
9195  fp = AllocateFile(histfilepath, "w");
9196  if (!fp)
9197  ereport(ERROR,
9199  errmsg("could not create file \"%s\": %m",
9200  histfilepath)));
9201 
9202  /* Build and save the contents of the backup history file */
9203  history_file = build_backup_content(state, true);
9204  fprintf(fp, "%s", history_file);
9205  pfree(history_file);
9206 
9207  if (fflush(fp) || ferror(fp) || FreeFile(fp))
9208  ereport(ERROR,
9210  errmsg("could not write file \"%s\": %m",
9211  histfilepath)));
9212 
9213  /*
9214  * Clean out any no-longer-needed history files. As a side effect,
9215  * this will post a .ready file for the newly created history file,
9216  * notifying the archiver that history file may be archived
9217  * immediately.
9218  */
9220  }
9221 
9222  /*
9223  * If archiving is enabled, wait for all the required WAL files to be
9224  * archived before returning. If archiving isn't enabled, the required WAL
9225  * needs to be transported via streaming replication (hopefully with
9226  * wal_keep_size set high enough), or some more exotic mechanism like
9227  * polling and copying files from pg_wal with script. We have no knowledge
9228  * of those mechanisms, so it's up to the user to ensure that he gets all
9229  * the required WAL.
9230  *
9231  * We wait until both the last WAL file filled during backup and the
9232  * history file have been archived, and assume that the alphabetic sorting
9233  * property of the WAL files ensures any earlier WAL files are safely
9234  * archived as well.
9235  *
9236  * We wait forever, since archive_command is supposed to work and we
9237  * assume the admin wanted his backup to work completely. If you don't
9238  * wish to wait, then either waitforarchive should be passed in as false,
9239  * or you can set statement_timeout. Also, some notices are issued to
9240  * clue in anyone who might be doing this interactively.
9241  */
9242 
9243  if (waitforarchive &&
9244  ((!backup_stopped_in_recovery && XLogArchivingActive()) ||
9245  (backup_stopped_in_recovery && XLogArchivingAlways())))
9246  {
9247  XLByteToPrevSeg(state->stoppoint, _logSegNo, wal_segment_size);
9248  XLogFileName(lastxlogfilename, state->stoptli, _logSegNo,
9250 
9251  XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9252  BackupHistoryFileName(histfilename, state->stoptli, _logSegNo,
9253  state->startpoint, wal_segment_size);
9254 
9255  seconds_before_warning = 60;
9256  waits = 0;
9257 
9258  while (XLogArchiveIsBusy(lastxlogfilename) ||
9259  XLogArchiveIsBusy(histfilename))
9260  {
9262 
9263  if (!reported_waiting && waits > 5)
9264  {
9265  ereport(NOTICE,
9266  (errmsg("base backup done, waiting for required WAL segments to be archived")));
9267  reported_waiting = true;
9268  }
9269 
9270  (void) WaitLatch(MyLatch,
9272  1000L,
9273  WAIT_EVENT_BACKUP_WAIT_WAL_ARCHIVE);
9275 
9276  if (++waits >= seconds_before_warning)
9277  {
9278  seconds_before_warning *= 2; /* This wraps in >10 years... */
9279  ereport(WARNING,
9280  (errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)",
9281  waits),
9282  errhint("Check that your archive_command is executing properly. "
9283  "You can safely cancel this backup, "
9284  "but the database backup will not be usable without all the WAL segments.")));
9285  }
9286  }
9287 
9288  ereport(NOTICE,
9289  (errmsg("all required WAL segments have been archived")));
9290  }
9291  else if (waitforarchive)
9292  ereport(NOTICE,
9293  (errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup")));
9294 }
9295 
9296 
9297 /*
9298  * do_pg_abort_backup: abort a running backup
9299  *
9300  * This does just the most basic steps of do_pg_backup_stop(), by taking the
9301  * system out of backup mode, thus making it a lot more safe to call from
9302  * an error handler.
9303  *
9304  * 'arg' indicates that it's being called during backup setup; so
9305  * sessionBackupState has not been modified yet, but runningBackups has
9306  * already been incremented. When it's false, then it's invoked as a
9307  * before_shmem_exit handler, and therefore we must not change state
9308  * unless sessionBackupState indicates that a backup is actually running.
9309  *
9310  * NB: This gets used as a PG_ENSURE_ERROR_CLEANUP callback and
9311  * before_shmem_exit handler, hence the odd-looking signature.
9312  */
9313 void
9315 {
9316  bool during_backup_start = DatumGetBool(arg);
9317 
9318  /* If called during backup start, there shouldn't be one already running */
9319  Assert(!during_backup_start || sessionBackupState == SESSION_BACKUP_NONE);
9320 
9321  if (during_backup_start || sessionBackupState != SESSION_BACKUP_NONE)
9322  {
9326 
9329 
9330  if (!during_backup_start)
9331  ereport(WARNING,
9332  errmsg("aborting backup due to backend exiting before pg_backup_stop was called"));
9333  }
9334 }
9335 
9336 /*
9337  * Register a handler that will warn about unterminated backups at end of
9338  * session, unless this has already been done.
9339  */
9340 void
9342 {
9343  static bool already_done = false;
9344 
9345  if (already_done)
9346  return;
9348  already_done = true;
9349 }
9350 
9351 /*
9352  * Get latest WAL insert pointer
9353  */
9354 XLogRecPtr
9356 {
9358  uint64 current_bytepos;
9359 
9360  SpinLockAcquire(&Insert->insertpos_lck);
9361  current_bytepos = Insert->CurrBytePos;
9362  SpinLockRelease(&Insert->insertpos_lck);
9363 
9364  return XLogBytePosToRecPtr(current_bytepos);
9365 }
9366 
9367 /*
9368  * Get latest WAL write pointer
9369  */
9370 XLogRecPtr
9372 {
9374 
9375  return LogwrtResult.Write;
9376 }
9377 
9378 /*
9379  * Returns the redo pointer of the last checkpoint or restartpoint. This is
9380  * the oldest point in WAL that we still need, if we have to restart recovery.
9381  */
9382 void
9384 {
9385  LWLockAcquire(ControlFileLock, LW_SHARED);
9386  *oldrecptr = ControlFile->checkPointCopy.redo;
9388  LWLockRelease(ControlFileLock);
9389 }
9390 
9391 /* Thin wrapper around ShutdownWalRcv(). */
9392 void
9394 {
9395  ShutdownWalRcv();
9396 
9397  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9399  LWLockRelease(ControlFileLock);
9400 }
9401 
9402 /* Enable WAL file recycling and preallocation. */
9403 void
9405 {
9406  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9408  LWLockRelease(ControlFileLock);
9409 }
9410 
9411 bool
9413 {
9414  bool result;
9415 
9416  LWLockAcquire(ControlFileLock, LW_SHARED);
9418  LWLockRelease(ControlFileLock);
9419 
9420  return result;
9421 }
9422 
9423 /*
9424  * Update the WalWriterSleeping flag.
9425  */
9426 void
9427 SetWalWriterSleeping(bool sleeping)
9428 {
9430  XLogCtl->WalWriterSleeping = sleeping;
9432 }
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:480
#define pg_memory_barrier()
Definition: atomics.h:138
#define pg_read_barrier()
Definition: atomics.h:151
static uint64 pg_atomic_read_membarrier_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:471
#define pg_write_barrier()
Definition: atomics.h:152
static uint64 pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
Definition: atomics.h:518
static void pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:448
static void pg_atomic_write_membarrier_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:489
static uint64 pg_atomic_monotonic_advance_u64(volatile pg_atomic_uint64 *ptr, uint64 target_)
Definition: atomics.h:581
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:462
TimeLineID findNewestTimeLine(TimeLineID startTLI)
Definition: timeline.c:264
void restoreTimeLineHistoryFiles(TimeLineID begin, TimeLineID end)
Definition: timeline.c:50
void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI, XLogRecPtr switchpoint, char *reason)
Definition: timeline.c:304
void startup_progress_timeout_handler(void)
Definition: startup.c:303
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1766
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1790
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1654
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1618
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1853
static bool backup_started_in_recovery
Definition: basebackup.c:123
int Buffer
Definition: buf.h:23
void CheckPointBuffers(int flags)
Definition: bufmgr.c:3653
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4867
unsigned int uint32
Definition: c.h:506
#define Min(x, y)
Definition: c.h:1004
#define pg_attribute_unused()
Definition: c.h:123
#define likely(x)
Definition: c.h:310
#define MAXALIGN(LEN)
Definition: c.h:811
#define TYPEALIGN(ALIGNVAL, LEN)
Definition: c.h:804
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
#define PG_BINARY
Definition: c.h:1273
#define pg_attribute_always_inline
Definition: c.h:234
#define FLOAT8PASSBYVAL
Definition: c.h:635
#define unlikely(x)
Definition: c.h:311
#define MAXALIGN64(LEN)
Definition: c.h:836
#define PG_UINT64_MAX
Definition: c.h:593
unsigned char uint8
Definition: c.h:504
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
size_t Size
Definition: c.h:605
#define CATALOG_VERSION_NO
Definition: catversion.h:60
double CheckPointCompletionTarget
Definition: checkpointer.c:138
void RequestCheckpoint(int flags)
Definition: checkpointer.c:941
void BootStrapCLOG(void)
Definition: clog.c:833
void StartupCLOG(void)
Definition: clog.c:877
void CheckPointCLOG(void)
Definition: clog.c:937
void TrimCLOG(void)
Definition: clog.c:892
void StartupCommitTs(void)
Definition: commit_ts.c:632
void CommitTsParameterChange(bool newvalue, bool oldvalue)
Definition: commit_ts.c:664
bool track_commit_timestamp
Definition: commit_ts.c:109
void CompleteCommitTsInitialization(void)
Definition: commit_ts.c:642
void BootStrapCommitTs(void)
Definition: commit_ts.c:596
void SetCommitTsLimit(TransactionId oldestXact, TransactionId newestXact)
Definition: commit_ts.c:909
void CheckPointCommitTs(void)
Definition: commit_ts.c:820
void update_controlfile(const char *DataDir, ControlFileData *ControlFile, bool do_sync)
int64 TimestampTz
Definition: timestamp.h:39
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1182
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1159
int errcode_for_file_access(void)
Definition: elog.c:882
int errdetail(const char *fmt,...)
Definition: elog.c:1205
int errhint(const char *fmt,...)
Definition: elog.c:1319
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define _(x)
Definition: elog.c:90
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:149
struct pg_atomic_uint64 pg_atomic_uint64
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2909
int MakePGDirectory(const char *directoryName)
Definition: fd.c:3913
int FreeDir(DIR *dir)
Definition: fd.c:2961
int pg_fsync_no_writethrough(int fd)
Definition: fd.c:441
int io_direct_flags
Definition: fd.c:168
FILE * AllocateFile(const char *name, const char *mode)
Definition: fd.c:2583
int durable_rename(const char *oldfile, const char *newfile, int elevel)
Definition: fd.c:782
int pg_fdatasync(int fd)
Definition: fd.c:480
int CloseTransientFile(int fd)
Definition: fd.c:2809
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1087
int FreeFile(FILE *file)
Definition: fd.c:2781
int pg_fsync_writethrough(int fd)
Definition: fd.c:461
void ReleaseExternalFD(void)
Definition: fd.c:1239
int data_sync_elevel(int elevel)
Definition: fd.c:3936
static void Insert(File file)
Definition: fd.c:1313
int durable_unlink(const char *fname, int elevel)
Definition: fd.c:872
void ReserveExternalFD(void)
Definition: fd.c:1221
int pg_fsync(int fd)
Definition: fd.c:386
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2633
void SyncDataDirectory(void)
Definition: fd.c:3544
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2843
#define IO_DIRECT_WAL
Definition: fd.h:55
#define IO_DIRECT_WAL_INIT
Definition: fd.h:56
#define PG_O_DIRECT
Definition: fd.h:97
ssize_t pg_pwrite_zeros(int fd, size_t size, off_t offset)
Definition: file_utils.c:687
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:525
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_LNK
Definition: file_utils.h:24
@ PGFILETYPE_DIR
Definition: file_utils.h:23
@ PGFILETYPE_REG
Definition: file_utils.h:22
bool IsBinaryUpgrade
Definition: globals.c:118
int NBuffers
Definition: globals.c:139
bool enableFsync
Definition: globals.c:126
ProcNumber MyProcNumber
Definition: globals.c:87
bool IsUnderPostmaster
Definition: globals.c:117
int MaxConnections
Definition: globals.c:140
volatile uint32 CritSectionCount
Definition: globals.c:43
char * DataDir
Definition: globals.c:68
bool IsPostmasterEnvironment
Definition: globals.c:116
struct Latch * MyLatch
Definition: globals.c:60
int max_worker_processes
Definition: globals.c:141
void * guc_malloc(int elevel, size_t size)
Definition: guc.c:640
struct config_generic * find_option(const char *name, bool create_placeholders, bool skip_errors, int elevel)
Definition: guc.c:1237
int set_config_option_ext(const char *name, const char *value, GucContext context, GucSource source, Oid srole, GucAction action, bool changeVal, int elevel, bool is_reload)
Definition: guc.c:3383
void SetConfigOption(const char *name, const char *value, GucContext context, GucSource source)
Definition: guc.c:4285
#define newval
@ GUC_ACTION_SET
Definition: guc.h:199
#define GUC_check_errdetail
Definition: guc.h:448
GucSource
Definition: guc.h:108
@ PGC_S_DYNAMIC_DEFAULT
Definition: guc.h:110
@ PGC_S_OVERRIDE
Definition: guc.h:119
@ PGC_INTERNAL
Definition: guc.h:69
@ PGC_POSTMASTER
Definition: guc.h:70
return str start
#define TOAST_MAX_CHUNK_SIZE
Definition: heaptoast.h:84
#define INJECTION_POINT(name)
#define INSTR_TIME_SET_CURRENT(t)
Definition: instr_time.h:122
#define INSTR_TIME_SET_ZERO(t)
Definition: instr_time.h:172
#define INSTR_TIME_ACCUM_DIFF(x, y, z)
Definition: instr_time.h:184
WalUsage pgWalUsage
Definition: instrument.c:22
#define close(a)
Definition: win32.h:12
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
#define PG_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:47
#define PG_END_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:52
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
#define LOBLKSIZE
Definition: large_object.h:70
void SetLatch(Latch *latch)
Definition: latch.c:632
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
static void const char fflush(stdout)
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_free(List *list)
Definition: list.c:1546
int max_locks_per_xact
Definition: lock.c:53
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1722
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1856
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1170
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1586
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1783
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:709
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1341
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1398
@ LWTRANCHE_WAL_INSERT
Definition: lwlock.h:186
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
char * pstrdup(const char *in)
Definition: mcxt.c:1695
void pfree(void *pointer)
Definition: mcxt.c:1520
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:694
void * palloc(Size size)
Definition: mcxt.c:1316
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:454
#define START_CRIT_SECTION()
Definition: miscadmin.h:149
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
@ B_CHECKPOINTER
Definition: miscadmin.h:357
#define END_CRIT_SECTION()
Definition: miscadmin.h:151
#define AmWalReceiverProcess()
Definition: miscadmin.h:383
bool process_shared_preload_libraries_done
Definition: miscinit.c:1779
BackendType MyBackendType
Definition: miscinit.c:63
void MultiXactSetNextMXact(MultiXactId nextMulti, MultiXactOffset nextMultiOffset)
Definition: multixact.c:2279
void MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
Definition: multixact.c:2487
void MultiXactGetCheckptMulti(bool is_shutdown, MultiXactId *nextMulti, MultiXactOffset *nextMultiOffset, MultiXactId *oldestMulti, Oid *oldestMultiDB)
Definition: multixact.c:2233
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid, bool is_startup)
Definition: multixact.c:2313
void CheckPointMultiXact(void)
Definition: multixact.c:2255
void TrimMultiXact(void)
Definition: multixact.c:2129
void MultiXactAdvanceNextMXact(MultiXactId minMulti, MultiXactOffset minMultiOffset)
Definition: multixact.c:2462
void BootStrapMultiXact(void)
Definition: multixact.c:1985
void StartupMultiXact(void)
Definition: multixact.c:2104
#define FirstMultiXactId
Definition: multixact.h:25
void StartupReplicationOrigin(void)
Definition: origin.c:699
void CheckPointReplicationOrigin(void)
Definition: origin.c:573
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define INDEX_MAX_KEYS
#define NAMEDATALEN
#define MAXPGPATH
#define DEFAULT_XLOG_SEG_SIZE
#define PG_IO_ALIGN_SIZE
#define PG_CACHE_LINE_SIZE
#define FLOATFORMAT_VALUE
Definition: pg_control.h:200
#define XLOG_RESTORE_POINT
Definition: pg_control.h:74
#define XLOG_FPW_CHANGE
Definition: pg_control.h:75
#define XLOG_CHECKPOINT_REDO
Definition: pg_control.h:81
#define PG_CONTROL_VERSION
Definition: pg_control.h:25
#define XLOG_OVERWRITE_CONTRECORD
Definition: pg_control.h:80
#define XLOG_FPI
Definition: pg_control.h:78
#define XLOG_FPI_FOR_HINT
Definition: pg_control.h:77
#define MOCK_AUTH_NONCE_LEN
Definition: pg_control.h:28
#define XLOG_NEXTOID
Definition: pg_control.h:70
@ DB_IN_PRODUCTION
Definition: pg_control.h:96
@ DB_SHUTDOWNING
Definition: pg_control.h:93
@ DB_IN_ARCHIVE_RECOVERY
Definition: pg_control.h:95
@ DB_SHUTDOWNED_IN_RECOVERY
Definition: pg_control.h:92
@ DB_SHUTDOWNED
Definition: pg_control.h:91
@ DB_IN_CRASH_RECOVERY
Definition: pg_control.h:94
#define XLOG_NOOP
Definition: pg_control.h:69
#define XLOG_CHECKPOINT_SHUTDOWN
Definition: pg_control.h:67
#define PG_CONTROL_FILE_SIZE
Definition: pg_control.h:249
#define XLOG_SWITCH
Definition: pg_control.h:71
#define XLOG_BACKUP_END
Definition: pg_control.h:72
#define XLOG_PARAMETER_CHANGE
Definition: pg_control.h:73
#define XLOG_CHECKPOINT_ONLINE
Definition: pg_control.h:68
#define XLOG_END_OF_RECOVERY
Definition: pg_control.h:76
uint32 pg_crc32c
Definition: pg_crc32c.h:38
#define COMP_CRC32C(crc, data, len)
Definition: pg_crc32c.h:98
#define EQ_CRC32C(c1, c2)
Definition: pg_crc32c.h:42
#define INIT_CRC32C(crc)
Definition: pg_crc32c.h:41
#define FIN_CRC32C(crc)
Definition: pg_crc32c.h:103
const void size_t len
return crc
static char * filename
Definition: pg_dumpall.c:119
#define lfirst(lc)
Definition: pg_list.h:172
static rewind_source * source
Definition: pg_rewind.c:89
static char * buf
Definition: pg_test_fsync.c:73
void pgstat_restore_stats(void)
Definition: pgstat.c:407
void pgstat_discard_stats(void)
Definition: pgstat.c:419
PgStat_CheckpointerStats PendingCheckpointerStats
PgStat_PendingWalStats PendingWalStats
Definition: pgstat_wal.c:24
int64 pg_time_t
Definition: pgtime.h:23
struct pg_tm * pg_localtime(const pg_time_t *timep, const pg_tz *tz)
Definition: localtime.c:1344
size_t pg_strftime(char *s, size_t maxsize, const char *format, const struct pg_tm *t)
Definition: strftime.c:128
PGDLLIMPORT pg_tz * log_timezone
Definition: pgtz.c:31
bool pg_strong_random(void *buf, size_t len)
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:36
#define pg_pwrite
Definition: port.h:226
#define snprintf
Definition: port.h:238
#define fprintf
Definition: port.h:242
#define IS_DIR_SEP(ch)
Definition: port.h:102
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
uintptr_t Datum
Definition: postgres.h:64
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void CheckPointPredicate(void)
Definition: predicate.c:1036
static int fd(const char *x, int i)
Definition: preproc-init.c:105
short access
Definition: preproc-type.c:36
#define DELAY_CHKPT_START
Definition: proc.h:114
#define DELAY_CHKPT_COMPLETE
Definition: proc.h:115
VirtualTransactionId * GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
Definition: procarray.c:3030
bool MinimumActiveBackends(int min)
Definition: procarray.c:3533
TransactionId GetOldestActiveTransactionId(void)
Definition: procarray.c:2867
TransactionId GetOldestTransactionIdConsideredRunning(void)
Definition: procarray.c:2022
bool HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
Definition: procarray.c:3076
void ProcArrayApplyRecoveryInfo(RunningTransactions running)
Definition: procarray.c:1054
void ProcArrayInitRecovery(TransactionId initializedUptoXID)
Definition: procarray.c:1023
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
MemoryContextSwitchTo(old_ctx)
void ResetUnloggedRelations(int op)
Definition: reinit.c:47
#define UNLOGGED_RELATION_INIT
Definition: reinit.h:28
#define UNLOGGED_RELATION_CLEANUP
Definition: reinit.h:27
void RelationCacheInitFileRemove(void)
Definition: relcache.c:6794
void CheckPointRelationMap(void)
Definition: relmapper.c:611
#define relpath(rlocator, forknum)
Definition: relpath.h:94
void StartupReorderBuffer(void)
ResourceOwner CurrentResourceOwner
Definition: resowner.c:165
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:168
void CheckPointLogicalRewriteHeap(void)
Definition: rewriteheap.c:1155
#define RM_MAX_ID
Definition: rmgr.h:33
int slock_t
Definition: s_lock.h:735
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void pg_usleep(long microsec)
Definition: signal.c:53
static pg_noinline void Size size
Definition: slab.c:607
void CheckPointReplicationSlots(bool is_shutdown)
Definition: slot.c:1839
bool InvalidateObsoleteReplicationSlots(ReplicationSlotInvalidationCause cause, XLogSegNo oldestSegno, Oid dboid, TransactionId snapshotConflictHorizon)
Definition: slot.c:1783
void StartupReplicationSlots(void)
Definition: slot.c:1898
@ RS_INVAL_WAL_REMOVED
Definition: slot.h:51
@ RS_INVAL_WAL_LEVEL
Definition: slot.h:55
void CheckPointSnapBuild(void)
Definition: snapbuild.c:2054
void DeleteAllExportedSnapshotFiles(void)
Definition: snapmgr.c:1567
#define SpinLockInit(lock)
Definition: spin.h:60
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
void reset(void)
Definition: sql-declare.c:600
PGPROC * MyProc
Definition: proc.c:66
PROC_HDR * ProcGlobal
Definition: proc.c:78
XLogRecPtr LogStandbySnapshot(void)
Definition: standby.c:1285
void InitRecoveryTransactionEnvironment(void)
Definition: standby.c:94
void ShutdownRecoveryTransactionEnvironment(void)
Definition: standby.c:160
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendBinaryStringInfo(StringInfo str, const void *data, int datalen)
Definition: stringinfo.c:233
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:182
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Oid oldestMultiDB
Definition: pg_control.h:50
MultiXactId oldestMulti
Definition: pg_control.h:49
MultiXactOffset nextMultiOffset
Definition: pg_control.h:46
TransactionId newestCommitTsXid
Definition: pg_control.h:54
TransactionId oldestXid
Definition: pg_control.h:47
TimeLineID PrevTimeLineID
Definition: pg_control.h:40
TimeLineID ThisTimeLineID
Definition: pg_control.h:39
Oid nextOid
Definition: pg_control.h:44
TransactionId oldestActiveXid
Definition: pg_control.h:63
bool fullPageWrites
Definition: pg_control.h:42
MultiXactId nextMulti
Definition: pg_control.h:45
FullTransactionId nextXid
Definition: pg_control.h:43
TransactionId oldestCommitTsXid
Definition: pg_control.h:52
pg_time_t time
Definition: pg_control.h:51
XLogRecPtr redo
Definition: pg_control.h:37
Oid oldestXidDB
Definition: pg_control.h:48
uint64 ckpt_agg_sync_time
Definition: xlog.h:173
uint64 ckpt_longest_sync
Definition: xlog.h:172
TimestampTz ckpt_start_t
Definition: xlog.h:159
TimestampTz ckpt_end_t
Definition: xlog.h:163
int ckpt_segs_removed
Definition: xlog.h:168
TimestampTz ckpt_write_t
Definition: xlog.h:160
int ckpt_segs_added
Definition: xlog.h:167
TimestampTz ckpt_sync_end_t
Definition: xlog.h:162
TimestampTz ckpt_sync_t
Definition: xlog.h:161
int ckpt_bufs_written
Definition: xlog.h:165
int ckpt_segs_recycled
Definition: xlog.h:169
int ckpt_sync_rels
Definition: xlog.h:171
char mock_authentication_nonce[MOCK_AUTH_NONCE_LEN]
Definition: pg_control.h:228
int max_worker_processes
Definition: pg_control.h:180
uint32 pg_control_version
Definition: pg_control.h:124
uint32 xlog_seg_size
Definition: pg_control.h:210
XLogRecPtr backupStartPoint
Definition: pg_control.h:169
bool track_commit_timestamp
Definition: pg_control.h:184
bool backupEndRequired
Definition: pg_control.h:171
int max_locks_per_xact
Definition: pg_control.h:183
uint32 nameDataLen
Definition: pg_control.h:212
CheckPoint checkPointCopy
Definition: pg_control.h:134
XLogRecPtr backupEndPoint
Definition: pg_control.h:170
XLogRecPtr minRecoveryPoint
Definition: pg_control.h:167
uint32 data_checksum_version
Definition: pg_control.h:221
XLogRecPtr unloggedLSN
Definition: pg_control.h:136
uint32 indexMaxKeys
Definition: pg_control.h:213
uint32 relseg_size
Definition: pg_control.h:207
pg_time_t time
Definition: pg_control.h:131
XLogRecPtr checkPoint
Definition: pg_control.h:132
uint64 system_identifier
Definition: pg_control.h:109
uint32 catalog_version_no
Definition: pg_control.h:125
double floatFormat
Definition: pg_control.h:199
int max_prepared_xacts
Definition: pg_control.h:182
uint32 xlog_blcksz
Definition: pg_control.h:209
TimeLineID minRecoveryPointTLI
Definition: pg_control.h:168
uint32 loblksize
Definition: pg_control.h:216
pg_crc32c crc
Definition: pg_control.h:231
uint32 toast_max_chunk_size
Definition: pg_control.h:215
Definition: dirent.c:26
XLogRecPtr lastPageBeginPtr
Definition: xlogrecovery.h:111
XLogRecPtr abortedRecPtr
Definition: xlogrecovery.h:120
XLogRecPtr missingContrecPtr
Definition: xlogrecovery.h:121
TimeLineID endOfLogTLI
Definition: xlogrecovery.h:109
Definition: lwlock.h:42
Definition: pg_list.h:54
Latch * walwriterLatch
Definition: proc.h:412
PgStat_Counter sync_time
Definition: pgstat.h:269
PgStat_Counter write_time
Definition: pgstat.h:268
instr_time wal_sync_time
Definition: pgstat.h:456
PgStat_Counter wal_write
Definition: pgstat.h:453
PgStat_Counter wal_buffers_full
Definition: pgstat.h:452
PgStat_Counter wal_sync
Definition: pgstat.h:454
instr_time wal_write_time
Definition: pgstat.h:455
void(* rm_mask)(char *pagedata, BlockNumber blkno)
TransactionId oldestRunningXid
Definition: standby.h:84
TransactionId nextXid
Definition: standby.h:83
TransactionId latestCompletedXid
Definition: standby.h:87
TransactionId * xids
Definition: standby.h:89
TransactionId oldestCommitTsXid
Definition: transam.h:232
TransactionId newestCommitTsXid
Definition: transam.h:233
FullTransactionId latestCompletedXid
Definition: transam.h:238
FullTransactionId nextXid
Definition: transam.h:220
TransactionId oldestXid
Definition: transam.h:222
pg_atomic_uint64 insertingAt
Definition: xlog.c:370
XLogRecPtr lastImportantAt
Definition: xlog.c:371
LWLock lock
Definition: xlog.c:369
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
int64 wal_records
Definition: instrument.h:53
CheckPoint lastCheckPoint
Definition: xlog.c:540
XLogwrtRqst LogwrtRqst
Definition: xlog.c:455
slock_t info_lck
Definition: xlog.c:548
XLogRecPtr InitializedUpTo
Definition: xlog.c:485
char * pages
Definition: xlog.c:492
FullTransactionId ckptFullXid
Definition: xlog.c:457
pg_time_t lastSegSwitchTime
Definition: xlog.c:467
XLogRecPtr replicationSlotMinLSN
Definition: xlog.c:459
RecoveryState SharedRecoveryState
Definition: xlog.c:511
TimeLineID InsertTimeLineID
Definition: xlog.c:504
XLogRecPtr lastSegSwitchLSN
Definition: xlog.c:468
XLogSegNo lastRemovedSegNo
Definition: xlog.c:461
pg_atomic_uint64 * xlblocks
Definition: xlog.c:493
pg_atomic_uint64 logWriteResult
Definition: xlog.c:472
int XLogCacheBlck
Definition: xlog.c:494
XLogRecPtr RedoRecPtr
Definition: xlog.c:456
XLogRecPtr lastCheckPointRecPtr
Definition: xlog.c:538
XLogRecPtr lastFpwDisableRecPtr
Definition: xlog.c:546
XLogCtlInsert Insert
Definition: xlog.c:452
bool InstallXLogFileSegmentActive
Definition: xlog.c:521
bool WalWriterSleeping
Definition: xlog.c:528
XLogRecPtr asyncXactLSN
Definition: xlog.c:458
XLogRecPtr lastCheckPointEndPtr
Definition: xlog.c:539
pg_atomic_uint64 logFlushResult
Definition: xlog.c:473
pg_atomic_uint64 logInsertResult
Definition: xlog.c:471
TimeLineID PrevTimeLineID
Definition: xlog.c:505
pg_atomic_uint64 unloggedLSN
Definition: xlog.c:464
WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:444
XLogRecPtr RedoRecPtr
Definition: xlog.c:430
uint64 PrevBytePos
Definition: xlog.c:408
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:417
int runningBackups
Definition: xlog.c:438
slock_t insertpos_lck
Definition: xlog.c:398
uint64 CurrBytePos
Definition: xlog.c:407
bool fullPageWrites
Definition: xlog.c:431
XLogRecPtr lastBackupStart
Definition: xlog.c:439
TimeLineID xlp_tli
Definition: xlog_internal.h:40
XLogRecPtr xlp_pageaddr
Definition: xlog_internal.h:41
DecodedXLogRecord * record
Definition: xlogreader.h:236
XLogRecPtr EndRecPtr
Definition: xlogreader.h:207
XLogRecPtr ReadRecPtr
Definition: xlogreader.h:206
struct XLogRecData * next
XLogRecPtr xl_prev
Definition: xlogrecord.h:45
pg_crc32c xl_crc
Definition: xlogrecord.h:49
uint8 xl_info
Definition: xlogrecord.h:46
uint32 xl_tot_len
Definition: xlogrecord.h:43
TransactionId xl_xid
Definition: xlogrecord.h:44
RmgrId xl_rmid
Definition: xlogrecord.h:47
XLogRecPtr Flush
Definition: xlog.c:328
XLogRecPtr Write
Definition: xlog.c:327
XLogRecPtr Flush
Definition: xlog.c:322
XLogRecPtr Write
Definition: xlog.c:321
Definition: guc.h:170
GucContext scontext
Definition: guc_tables.h:167
GucSource source
Definition: guc_tables.h:165
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
unsigned short st_mode
Definition: win32_port.h:268
Definition: regguts.h:323
char * rpath
Definition: basebackup.h:32
TimeLineID PrevTimeLineID
TimestampTz end_time
TimeLineID ThisTimeLineID
char rp_name[MAXFNAMELEN]
TimestampTz rp_time
void StartupSUBTRANS(TransactionId oldestActiveXID)
Definition: subtrans.c:309
void CheckPointSUBTRANS(void)
Definition: subtrans.c:355
void BootStrapSUBTRANS(void)
Definition: subtrans.c:270
void TruncateSUBTRANS(TransactionId oldestXact)
Definition: subtrans.c:411
void ProcessSyncRequests(void)
Definition: sync.c:286
void SyncPreCheckpoint(void)
Definition: sync.c:177
void SyncPostCheckpoint(void)
Definition: sync.c:202
TimeoutId RegisterTimeout(TimeoutId id, timeout_handler_proc handler)
Definition: timeout.c:505
@ STARTUP_PROGRESS_TIMEOUT
Definition: timeout.h:38
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TransactionIdRetreat(dest)
Definition: transam.h:141
#define InvalidTransactionId
Definition: transam.h:31
static void FullTransactionIdRetreat(FullTransactionId *dest)
Definition: transam.h:103
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstGenbkiObjectId
Definition: transam.h:195
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static FullTransactionId FullTransactionIdFromEpochAndXid(uint32 epoch, TransactionId xid)
Definition: transam.h:71
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
#define FullTransactionIdPrecedes(a, b)
Definition: transam.h:51
void RecoverPreparedTransactions(void)
Definition: twophase.c:2084
void restoreTwoPhaseData(void)
Definition: twophase.c:1898
int max_prepared_xacts
Definition: twophase.c:115
TransactionId PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p)
Definition: twophase.c:1962
void StandbyRecoverPreparedTransactions(void)
Definition: twophase.c:2043
void CheckPointTwoPhase(XLogRecPtr redo_horizon)
Definition: twophase.c:1816
char data[XLOG_BLCKSZ]
Definition: c.h:1148
WALInsertLock l
Definition: xlog.c:383
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:384
bool SplitIdentifierString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:3457
void SetTransactionIdLimit(TransactionId oldest_datfrozenxid, Oid oldest_datoid)
Definition: varsup.c:372
void AdvanceOldestClogXid(TransactionId oldest_datfrozenxid)
Definition: varsup.c:355
TransamVariablesData * TransamVariables
Definition: varsup.c:34
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:88
static void pgstat_report_wait_end(void)
Definition: wait_event.h:104
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:129
XLogRecPtr Flush
Definition: walreceiver.c:111
XLogRecPtr Write
Definition: walreceiver.c:110
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
void ShutdownWalRcv(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3666
int max_wal_senders
Definition: walsender.c:121
void WalSndInitStopping(void)
Definition: walsender.c:3745
void WalSndWaitStopping(void)
Definition: walsender.c:3771
static void WalSndWakeupProcessRequests(bool physical, bool logical)
Definition: walsender.h:66
#define WalSndWakeupRequest()
Definition: walsender.h:59
void SetWalSummarizerLatch(void)
XLogRecPtr GetOldestUnsummarizedLSN(TimeLineID *tli, bool *lsn_is_exact, bool reset_pending_lsn)
int WalWriterFlushAfter
Definition: walwriter.c:72
int WalWriterDelay
Definition: walwriter.c:71
#define stat
Definition: win32_port.h:284
#define EINTR
Definition: win32_port.h:374
#define S_ISDIR(m)
Definition: win32_port.h:325
#define readlink(path, buf, size)
Definition: win32_port.h:236
#define O_CLOEXEC
Definition: win32_port.h:359
#define O_DSYNC
Definition: win32_port.h:352
int gettimeofday(struct timeval *tp, void *tzp)
void MarkSubxactTopXidLogged(void)
Definition: xact.c:588
void MarkCurrentTransactionIdLoggedIfAny(void)
Definition: xact.c:538
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3369
void assign_wal_sync_method(int new_wal_sync_method, void *extra)
Definition: xlog.c:8561
static void CreateEndOfRecoveryRecord(void)
Definition: xlog.c:7297
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4535
int wal_decode_buffer_size
Definition: xlog.c:136
XLogRecPtr ProcLastRecPtr
Definition: xlog.c:253
static XLogCtlData * XLogCtl
Definition: xlog.c:561
bool fullPageWrites
Definition: xlog.c:122
void UpdateFullPageWrites(void)
Definition: xlog.c:8087
bool RecoveryInProgress(void)
Definition: xlog.c:6290
static void CleanupBackupHistory(void)
Definition: xlog.c:4150
void GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
Definition: xlog.c:6423
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6476
bool check_max_slot_wal_keep_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2218
const char * show_in_hot_standby(void)
Definition: xlog.c:4789
XLogRecPtr RequestXLogSwitch(bool mark_unimportant)
Definition: xlog.c:7981
void do_pg_abort_backup(int code, Datum arg)
Definition: xlog.c:9314
XLogSegNo XLogGetLastRemovedSegno(void)
Definition: xlog.c:3747
static char * str_time(pg_time_t tnow)
Definition: xlog.c:5165
char * XLogArchiveCommand
Definition: xlog.c:120
struct XLogCtlInsert XLogCtlInsert
int wal_keep_size_mb
Definition: xlog.c:116
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1743
static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto)
Definition: xlog.c:1499
static void WALInsertLockRelease(void)
Definition: xlog.c:1440
static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos)
Definition: xlog.c:1853
bool EnableHotStandby
Definition: xlog.c:121
static void InitControlFile(uint64 sysidentifier)
Definition: xlog.c:4193
static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt)
Definition: xlog.c:1466
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6393
void assign_wal_consistency_checking(const char *newval, void *extra)
Definition: xlog.c:4724
void SetInstallXLogFileSegmentActive(void)
Definition: xlog.c:9404
static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
Definition: xlog.c:1980
static void WALInsertLockAcquireExclusive(void)
Definition: xlog.c:1411
static void UpdateControlFile(void)
Definition: xlog.c:4526
void StartupXLOG(void)
Definition: xlog.c:5388
bool IsInstallXLogFileSegmentActive(void)
Definition: xlog.c:9412
static int openLogFile
Definition: xlog.c:630
XLogRecPtr XactLastRecEnd
Definition: xlog.c:254
bool CreateRestartPoint(int flags)
Definition: xlog.c:7512
static void ValidateXLOGDirectoryStructure(void)
Definition: xlog.c:4088
int CommitDelay
Definition: xlog.c:132
static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr, XLogRecPtr endptr, TimeLineID insertTLI)
Definition: xlog.c:3854
static XLogRecPtr CreateOverwriteContrecordRecord(XLogRecPtr aborted_lsn, XLogRecPtr pagePtr, TimeLineID newTLI)
Definition: xlog.c:7361
XLogRecPtr GetInsertRecPtr(void)
Definition: xlog.c:6438
bool wal_init_zero
Definition: xlog.c:127
static void CalculateCheckpointSegments(void)
Definition: xlog.c:2157
int XLogArchiveMode
Definition: xlog.c:119
SessionBackupState get_backup_status(void)
Definition: xlog.c:9021
static void XLogReportParameters(void)
Definition: xlog.c:8024
#define RefreshXLogWriteResult(_target)
Definition: xlog.c:615
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3716
int wal_level
Definition: xlog.c:131
static void LogCheckpointStart(int flags, bool restartpoint)
Definition: xlog.c:6586
static XLogRecPtr RedoRecPtr
Definition: xlog.c:273
void assign_checkpoint_completion_target(double newval, void *extra)
Definition: xlog.c:2193
static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void)
Definition: xlog.c:2690
XLogRecPtr XLogInsertRecord(XLogRecData *rdata, XLogRecPtr fpw_lsn, uint8 flags, int num_fpi, bool topxid_included)
Definition: xlog.c:743
static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, bool find_free, XLogSegNo max_segno, TimeLineID tli)
Definition: xlog.c:3552
static void WriteControlFile(void)
Definition: xlog.c:4228
int wal_segment_size
Definition: xlog.c:143
struct XLogwrtResult XLogwrtResult
WALAvailability GetWALAvailability(XLogRecPtr targetLSN)
Definition: xlog.c:7790
#define UsableBytesInPage
Definition: xlog.c:592
int max_wal_size_mb
Definition: xlog.c:114
void XLOGShmemInit(void)
Definition: xlog.c:4885
void ShutdownXLOG(int code, Datum arg)
Definition: xlog.c:6539
bool DataChecksumsEnabled(void)
Definition: xlog.c:4555
static bool PerformRecoveryXLogAction(void)
Definition: xlog.c:6240
RecoveryState GetRecoveryState(void)
Definition: xlog.c:6326
int XLogArchiveTimeout
Definition: xlog.c:118
static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI, XLogRecPtr EndOfLog, TimeLineID newTLI)
Definition: xlog.c:5255
#define ConvertToXSegs(x, segsize)
Definition: xlog.c:598
bool wal_recycle
Definition: xlog.c:128
static void RemoveXlogFile(const struct dirent *segment_de, XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo, TimeLineID insertTLI)
Definition: xlog.c:3998
pg_time_t GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN)
Definition: xlog.c:6522
char * GetMockAuthenticationNonce(void)
Definition: xlog.c:4545
static int XLOGChooseNumBuffers(void)
Definition: xlog.c:4588
static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos)
Definition: xlog.c:1893
static int get_sync_bit(int method)
Definition: xlog.c:8513
static XLogwrtResult LogwrtResult
Definition: xlog.c:607
void XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn)
Definition: xlog.c:2677
static void LogCheckpointEnd(bool restartpoint)
Definition: xlog.c:6618
union WALInsertLockPadded WALInsertLockPadded
void SwitchIntoArchiveRecovery(XLogRecPtr EndRecPtr, TimeLineID replayTLI)
Definition: xlog.c:6165
static bool lastFullPageWrites
Definition: xlog.c:217
char * wal_consistency_checking_string
Definition: xlog.c:125
static void WALInsertLockAcquire(void)
Definition: xlog.c:1366
int CommitSiblings
Definition: xlog.c:133
static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata, XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
Definition: xlog.c:1220
static double CheckPointDistanceEstimate
Definition: xlog.c:159
static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr)
Definition: xlog.c:1936
XLogRecPtr GetXLogInsertRecPtr(void)
Definition: xlog.c:9355
Size XLOGShmemSize(void)
Definition: xlog.c:4835
void SetWalWriterSleeping(bool sleeping)
Definition: xlog.c:9427
bool wal_log_hints
Definition: xlog.c:123
static void XLogInitNewTimeline(TimeLineID endTLI, XLogRecPtr endOfLog, TimeLineID newTLI)
Definition: xlog.c:5180
static void CheckRequiredParameterValues(void)
Definition: xlog.c:5344
#define XLogRecPtrToBufIdx(recptr)
Definition: xlog.c:586
int wal_sync_method
Definition: xlog.c:130
int XLogFileOpen(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3607
int max_slot_wal_keep_size_mb
Definition: xlog.c:135
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6455
static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli)
Definition: xlog.c:3679
static bool doPageWrites
Definition: xlog.c:286
static bool holdingAllLocks
Definition: xlog.c:647
static TimeLineID openLogTLI
Definition: xlog.c:632
XLogRecPtr XactLastCommitEnd
Definition: xlog.c:255
WalLevel GetActiveWalLevelOnStandby(void)
Definition: xlog.c:4826
bool log_checkpoints
Definition: xlog.c:129
static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
Definition: xlog.c:7874
static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
Definition: xlog.c:2309
void InitializeWalConsistencyChecking(void)
Definition: xlog.c:4751
static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
Definition: xlog.c:2711
static int LocalSetXLogInsertAllowed(void)
Definition: xlog.c:6378
void assign_max_wal_size(int newval, void *extra)
Definition: xlog.c:2186
void RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI)
Definition: xlog.c:3929
XLogRecPtr GetLastImportantRecPtr(void)
Definition: xlog.c:6493
void xlog_redo(XLogReaderState *record)
Definition: xlog.c:8156
static int MyLockNo
Definition: xlog.c:646
static void RecoveryRestartPoint(const CheckPoint *checkPoint, XLogReaderState *record)
Definition: xlog.c:7471
bool XLogNeedsFlush(XLogRecPtr record)
Definition: xlog.c:3122
void register_persistent_abort_backup_handler(void)
Definition: xlog.c:9341
static double PrevCheckPointDistance
Definition: xlog.c:160
void ReachedEndOfBackup(XLogRecPtr EndRecPtr, TimeLineID tli)
Definition: xlog.c:6203
void LocalProcessControlFile(bool reset)
Definition: xlog.c:4813
static void XLogFileClose(void)
Definition: xlog.c:3628
int wal_compression
Definition: xlog.c:124
static void UpdateCheckPointDistanceEstimate(uint64 nbytes)
Definition: xlog.c:6721
static bool LocalRecoveryInProgress
Definition: xlog.c:224
void BootStrapXLOG(void)
Definition: xlog.c:5000
XLogSegNo XLogGetOldestSegno(TimeLineID tli)
Definition: xlog.c:3763
XLogRecPtr GetXLogWriteRecPtr(void)
Definition: xlog.c:9371
static WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:564
static XLogSegNo openLogSegNo
Definition: xlog.c:631
#define INSERT_FREESPACE(endptr)
Definition: xlog.c:575
int wal_retrieve_retry_interval
Definition: xlog.c:134
int XLOGbuffers
Definition: xlog.c:117
bool XLogBackgroundFlush(void)
Definition: xlog.c:2979
const struct config_enum_entry archive_mode_options[]
Definition: xlog.c:191
void GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli)
Definition: xlog.c:9383
bool track_wal_io_timing
Definition: xlog.c:137
static XLogSegNo XLOGfileslop(XLogRecPtr lastredoptr)
Definition: xlog.c:2235
static int UsableBytesInSegment
Definition: xlog.c:601
static char * GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli)
Definition: xlog.c:1627
const char * show_archive_command(void)
Definition: xlog.c:4777
WalInsertClass
Definition: xlog.c:555
@ WALINSERT_SPECIAL_SWITCH
Definition: xlog.c:557
@ WALINSERT_NORMAL
Definition: xlog.c:556
@ WALINSERT_SPECIAL_CHECKPOINT
Definition: xlog.c:558
bool XLogInsertAllowed(void)
Definition: xlog.c:6345
void do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces, BackupState *state, StringInfo tblspcmapfile)
Definition: xlog.c:8712
static ControlFileData * ControlFile
Definition: xlog.c:569
bool check_wal_segment_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2200
static void XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno, TimeLineID srcTLI, XLogSegNo srcsegno, int upto)
Definition: xlog.c:3407
static int LocalXLogInsertAllowed
Definition: xlog.c:236
static void RemoveTempXlogFiles(void)
Definition: xlog.c:3821
XLogRecPtr XLogRestorePoint(const char *rpName)
Definition: xlog.c:7999
static XLogRecPtr LocalMinRecoveryPoint
Definition: xlog.c:641
#define NUM_XLOGINSERT_LOCKS
Definition: xlog.c:150
struct XLogwrtRqst XLogwrtRqst
void do_pg_backup_stop(BackupState *state, bool waitforarchive)
Definition: xlog.c:9040
bool check_wal_consistency_checking(char **newval, void **extra, GucSource source)
Definition: xlog.c:4639
const struct config_enum_entry wal_sync_method_options[]
Definition: xlog.c:171
int min_wal_size_mb
Definition: xlog.c:115
#define BootstrapTimeLineID
Definition: xlog.c:111
CheckpointStatsData CheckpointStats
Definition: xlog.c:209
bool check_wal_buffers(int *newval, void **extra, GucSource source)
Definition: xlog.c:4604
XLogRecPtr GetFakeLSNForUnloggedRel(void)
Definition: xlog.c:4571
void XLogPutNextOid(Oid nextOid)
Definition: xlog.c:7944
uint32 bootstrap_data_checksum_version
Definition: bootstrap.c:44
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2791
static void ReadControlFile(void)
Definition: xlog.c:4310
static SessionBackupState sessionBackupState
Definition: xlog.c:391
static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
Definition: xlog.c:7431
static bool updateMinRecoveryPoint
Definition: xlog.c:643
int CheckPointSegments
Definition: xlog.c:156
static bool check_wal_consistency_checking_deferred
Definition: xlog.c:166
static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1103
void XLogShutdownWalRcv(void)
Definition: xlog.c:9393
#define NextBufIdx(idx)
Definition: xlog.c:579
static void UpdateLastRemovedPtr(char *filename)
Definition: xlog.c:3801
void CreateCheckPoint(int flags)
Definition: xlog.c:6821
static TimeLineID LocalMinRecoveryPointTLI
Definition: xlog.c:642
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8603
struct XLogCtlData XLogCtlData
static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1159
void XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN)
Definition: xlog.c:2626
bool XLogCheckpointNeeded(XLogSegNo new_segno)
Definition: xlog.c:2285
bool * wal_consistency_checking
Definition: xlog.c:126
static int XLogFileInitInternal(XLogSegNo logsegno, TimeLineID logtli, bool *added, char *path)
Definition: xlog.c:3199
static void update_checkpoint_display(int flags, bool restartpoint, bool reset)
Definition: xlog.c:6759
#define XLogArchivingActive()
Definition: xlog.h:97
#define TABLESPACE_MAP_OLD
Definition: xlog.h:302
#define XLOG_MARK_UNIMPORTANT
Definition: xlog.h:153
#define TABLESPACE_MAP
Definition: xlog.h:301
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:65
@ ARCHIVE_MODE_OFF
Definition: xlog.h:63
@ ARCHIVE_MODE_ON
Definition: xlog.h:64
#define STANDBY_SIGNAL_FILE
Definition: xlog.h:297
#define CHECKPOINT_CAUSE_XLOG
Definition: xlog.h:146
WALAvailability
Definition: xlog.h:185
@ WALAVAIL_REMOVED
Definition: xlog.h:191
@ WALAVAIL_RESERVED
Definition: xlog.h:187
@ WALAVAIL_UNRESERVED
Definition: xlog.h:190
@ WALAVAIL_EXTENDED
Definition: xlog.h:188
@ WALAVAIL_INVALID_LSN
Definition: xlog.h:186
#define BACKUP_LABEL_OLD
Definition: xlog.h:299
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:138
#define CHECKPOINT_FLUSH_ALL
Definition: xlog.h:141
@ WAL_COMPRESSION_NONE
Definition: xlog.h:80
#define BACKUP_LABEL_FILE
Definition: xlog.h:298
#define CHECKPOINT_CAUSE_TIME
Definition: xlog.h:147
#define CHECKPOINT_FORCE
Definition: xlog.h:140
SessionBackupState
Definition: xlog.h:282
@ SESSION_BACKUP_RUNNING
Definition: xlog.h:284
@ SESSION_BACKUP_NONE
Definition: xlog.h:283
#define CHECKPOINT_WAIT
Definition: xlog.h:143
#define RECOVERY_SIGNAL_FILE
Definition: xlog.h:296
#define CHECKPOINT_IS_SHUTDOWN
Definition: xlog.h:137
#define XLogArchivingAlways()
Definition: xlog.h:100
WalLevel
Definition: xlog.h:71
@ WAL_LEVEL_REPLICA
Definition: xlog.h:73
@ WAL_LEVEL_LOGICAL
Definition: xlog.h:74
@ WAL_LEVEL_MINIMAL
Definition: xlog.h:72
#define CHECKPOINT_IMMEDIATE
Definition: xlog.h:139
RecoveryState
Definition: xlog.h:88
@ RECOVERY_STATE_CRASH
Definition: xlog.h:89
@ RECOVERY_STATE_DONE
Definition: xlog.h:91
@ RECOVERY_STATE_ARCHIVE
Definition: xlog.h:90
#define XLogIsNeeded()
Definition: xlog.h:107
@ WAL_SYNC_METHOD_OPEN
Definition: xlog.h:26
@ WAL_SYNC_METHOD_FDATASYNC
Definition: xlog.h:25
@ WAL_SYNC_METHOD_FSYNC_WRITETHROUGH
Definition: xlog.h:27
@ WAL_SYNC_METHOD_OPEN_DSYNC
Definition: xlog.h:28
@ WAL_SYNC_METHOD_FSYNC
Definition: xlog.h:24
#define XLogStandbyInfoActive()
Definition: xlog.h:121
#define XLP_FIRST_IS_CONTRECORD
Definition: xlog_internal.h:74
static RmgrData GetRmgr(RmgrId rmid)
#define IsValidWalSegSize(size)
Definition: xlog_internal.h:96
XLogLongPageHeaderData * XLogLongPageHeader
Definition: xlog_internal.h:71
#define XLP_FIRST_IS_OVERWRITE_CONTRECORD
Definition: xlog_internal.h:80
#define XLOG_CONTROL_FILE
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
static bool IsXLogFileName(const char *fname)
static void XLogFromFileName(const char *fname, TimeLineID *tli, XLogSegNo *logSegNo, int wal_segsz_bytes)
#define XLByteToPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
#define XLogSegNoOffsetToRecPtr(segno, offset, wal_segsz_bytes, dest)
#define MAXFNAMELEN
XLogPageHeaderData * XLogPageHeader
Definition: xlog_internal.h:54
#define XLOGDIR
#define XLP_LONG_HEADER
Definition: xlog_internal.h:76
static bool IsBackupHistoryFileName(const char *fname)
#define XLP_BKP_REMOVABLE
Definition: xlog_internal.h:78
#define XLOG_PAGE_MAGIC
Definition: xlog_internal.h:34
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void BackupHistoryFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XRecOffIsValid(xlrp)
#define SizeOfXLogShortPHD
Definition: xlog_internal.h:52
#define SizeOfXLogLongPHD
Definition: xlog_internal.h:69
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void BackupHistoryFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static bool RmgrIdExists(RmgrId rmid)
#define XLByteInPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
static bool IsPartialXLogFileName(const char *fname)
bool XLogArchiveIsReadyOrDone(const char *xlog)
Definition: xlogarchive.c:664
bool XLogArchiveIsBusy(const char *xlog)
Definition: xlogarchive.c:619
bool XLogArchiveIsReady(const char *xlog)
Definition: xlogarchive.c:694
void XLogArchiveNotifySeg(XLogSegNo segno, TimeLineID tli)
Definition: xlogarchive.c:492
void ExecuteRecoveryCommand(const char *command, const char *commandName, bool failOnSignal, uint32 wait_event_info)
Definition: xlogarchive.c:295
bool XLogArchiveCheckDone(const char *xlog)
Definition: xlogarchive.c:565
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:444
void XLogArchiveCleanup(const char *xlog)
Definition: xlogarchive.c:712
char * build_backup_content(BackupState *state, bool ishistoryfile)
Definition: xlogbackup.c:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define FirstNormalUnloggedLSN
Definition: xlogdefs.h:36
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
#define DEFAULT_WAL_SYNC_METHOD
Definition: xlogdefs.h:79
uint64 XLogSegNo
Definition: xlogdefs.h:48
void XLogRegisterData(char *data, uint32 len)
Definition: xloginsert.c:364
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:474
void XLogSetRecordFlags(uint8 flags)
Definition: xloginsert.c:456
void XLogBeginInsert(void)
Definition: xloginsert.c:149
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:106
bool DecodeXLogRecord(XLogReaderState *state, DecodedXLogRecord *decoded, XLogRecord *record, XLogRecPtr lsn, char **errormsg)
Definition: xlogreader.c:1662
size_t DecodeXLogRecordRequiredSpace(size_t xl_tot_len)
Definition: xlogreader.c:1629
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:410
#define XLogRecGetData(decoder)
Definition: xlogreader.h:415
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
#define XLogRecMaxBlockId(decoder)
Definition: xlogreader.h:418
#define XLogRecHasBlockImage(decoder, block_id)
Definition: xlogreader.h:423
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:417
#define SizeOfXLogRecordDataHeaderShort
Definition: xlogrecord.h:217
#define XLR_BLOCK_ID_DATA_SHORT
Definition: xlogrecord.h:241
#define XLR_INFO_MASK
Definition: xlogrecord.h:62
#define SizeOfXLogRecord
Definition: xlogrecord.h:55
void ShutdownWalRecovery(void)
bool ArchiveRecoveryRequested
Definition: xlogrecovery.c:137
bool InArchiveRecovery
Definition: xlogrecovery.c:138
void RecoveryRequiresIntParameter(const char *param_name, int currValue, int minValue)
void PerformWalRecovery(void)
EndOfWalRecoveryInfo * FinishWalRecovery(void)
char * archiveCleanupCommand
Definition: xlogrecovery.c:84
XLogRecPtr GetCurrentReplayRecPtr(TimeLineID *replayEndTLI)
void xlog_outdesc(StringInfo buf, XLogReaderState *record)
bool PromoteIsTriggered(void)
static XLogRecPtr missingContrecPtr
Definition: xlogrecovery.c:373
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
static XLogRecPtr abortedRecPtr
Definition: xlogrecovery.c:372
void InitWalRecovery(ControlFileData *ControlFile, bool *wasShutdown_ptr, bool *haveBackupLabel_ptr, bool *haveTblspcMap_ptr)
Definition: xlogrecovery.c:512
char * recoveryEndCommand
Definition: xlogrecovery.c:83
TimeLineID recoveryTargetTLI
Definition: xlogrecovery.c:122
TimestampTz GetLatestXTime(void)
bool XLogHaveInvalidPages(void)
Definition: xlogutils.c:235
XLogRedoAction XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id, Buffer *buf)
Definition: xlogutils.c:314
HotStandbyState standbyState
Definition: xlogutils.c:53
bool InRecovery
Definition: xlogutils.c:50
@ STANDBY_DISABLED
Definition: xlogutils.h:49
@ STANDBY_INITIALIZED
Definition: xlogutils.h:50
#define InHotStandby
Definition: xlogutils.h:57
@ BLK_RESTORED
Definition: xlogutils.h:73