PostgreSQL Source Code  git master
multixact.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * multixact.c
4  * PostgreSQL multi-transaction-log manager
5  *
6  * The pg_multixact manager is a pg_xact-like manager that stores an array of
7  * MultiXactMember for each MultiXactId. It is a fundamental part of the
8  * shared-row-lock implementation. Each MultiXactMember is comprised of a
9  * TransactionId and a set of flag bits. The name is a bit historical:
10  * originally, a MultiXactId consisted of more than one TransactionId (except
11  * in rare corner cases), hence "multi". Nowadays, however, it's perfectly
12  * legitimate to have MultiXactIds that only include a single Xid.
13  *
14  * The meaning of the flag bits is opaque to this module, but they are mostly
15  * used in heapam.c to identify lock modes that each of the member transactions
16  * is holding on any given tuple. This module just contains support to store
17  * and retrieve the arrays.
18  *
19  * We use two SLRU areas, one for storing the offsets at which the data
20  * starts for each MultiXactId in the other one. This trick allows us to
21  * store variable length arrays of TransactionIds. (We could alternatively
22  * use one area containing counts and TransactionIds, with valid MultiXactId
23  * values pointing at slots containing counts; but that way seems less robust
24  * since it would get completely confused if someone inquired about a bogus
25  * MultiXactId that pointed to an intermediate slot containing an XID.)
26  *
27  * XLOG interactions: this module generates a record whenever a new OFFSETs or
28  * MEMBERs page is initialized to zeroes, as well as an
29  * XLOG_MULTIXACT_CREATE_ID record whenever a new MultiXactId is defined.
30  * This module ignores the WAL rule "write xlog before data," because it
31  * suffices that actions recording a MultiXactId in a heap xmax do follow that
32  * rule. The only way for the MXID to be referenced from any data page is for
33  * heap_lock_tuple() or heap_update() to have put it there, and each generates
34  * an XLOG record that must follow ours. The normal LSN interlock between the
35  * data page and that XLOG record will ensure that our XLOG record reaches
36  * disk first. If the SLRU members/offsets data reaches disk sooner than the
37  * XLOG records, we do not care; after recovery, no xmax will refer to it. On
38  * the flip side, to ensure that all referenced entries _do_ reach disk, this
39  * module's XLOG records completely rebuild the data entered since the last
40  * checkpoint. We flush and sync all dirty OFFSETs and MEMBERs pages to disk
41  * before each checkpoint is considered complete.
42  *
43  * Like clog.c, and unlike subtrans.c, we have to preserve state across
44  * crashes and ensure that MXID and offset numbering increases monotonically
45  * across a crash. We do this in the same way as it's done for transaction
46  * IDs: the WAL record is guaranteed to contain evidence of every MXID we
47  * could need to worry about, and we just make sure that at the end of
48  * replay, the next-MXID and next-offset counters are at least as large as
49  * anything we saw during replay.
50  *
51  * We are able to remove segments no longer necessary by carefully tracking
52  * each table's used values: during vacuum, any multixact older than a certain
53  * value is removed; the cutoff value is stored in pg_class. The minimum value
54  * across all tables in each database is stored in pg_database, and the global
55  * minimum across all databases is part of pg_control and is kept in shared
56  * memory. Whenever that minimum is advanced, the SLRUs are truncated.
57  *
58  * When new multixactid values are to be created, care is taken that the
59  * counter does not fall within the wraparound horizon considering the global
60  * minimum value.
61  *
62  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
63  * Portions Copyright (c) 1994, Regents of the University of California
64  *
65  * src/backend/access/transam/multixact.c
66  *
67  *-------------------------------------------------------------------------
68  */
69 #include "postgres.h"
70 
71 #include "access/multixact.h"
72 #include "access/slru.h"
73 #include "access/transam.h"
74 #include "access/twophase.h"
75 #include "access/twophase_rmgr.h"
76 #include "access/xact.h"
77 #include "access/xlog.h"
78 #include "access/xloginsert.h"
79 #include "access/xlogutils.h"
80 #include "commands/dbcommands.h"
81 #include "funcapi.h"
82 #include "lib/ilist.h"
83 #include "miscadmin.h"
84 #include "pg_trace.h"
85 #include "pgstat.h"
86 #include "postmaster/autovacuum.h"
87 #include "storage/pmsignal.h"
88 #include "storage/proc.h"
89 #include "storage/procarray.h"
90 #include "utils/fmgrprotos.h"
91 #include "utils/guc_hooks.h"
92 #include "utils/memutils.h"
93 
94 
95 /*
96  * Defines for MultiXactOffset page sizes. A page is the same BLCKSZ as is
97  * used everywhere else in Postgres.
98  *
99  * Note: because MultiXactOffsets are 32 bits and wrap around at 0xFFFFFFFF,
100  * MultiXact page numbering also wraps around at
101  * 0xFFFFFFFF/MULTIXACT_OFFSETS_PER_PAGE, and segment numbering at
102  * 0xFFFFFFFF/MULTIXACT_OFFSETS_PER_PAGE/SLRU_PAGES_PER_SEGMENT. We need
103  * take no explicit notice of that fact in this module, except when comparing
104  * segment and page numbers in TruncateMultiXact (see
105  * MultiXactOffsetPagePrecedes).
106  */
107 
108 /* We need four bytes per offset */
109 #define MULTIXACT_OFFSETS_PER_PAGE (BLCKSZ / sizeof(MultiXactOffset))
110 
111 #define MultiXactIdToOffsetPage(xid) \
112  ((xid) / (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
113 #define MultiXactIdToOffsetEntry(xid) \
114  ((xid) % (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
115 #define MultiXactIdToOffsetSegment(xid) (MultiXactIdToOffsetPage(xid) / SLRU_PAGES_PER_SEGMENT)
116 
117 /*
118  * The situation for members is a bit more complex: we store one byte of
119  * additional flag bits for each TransactionId. To do this without getting
120  * into alignment issues, we store four bytes of flags, and then the
121  * corresponding 4 Xids. Each such 5-word (20-byte) set we call a "group", and
122  * are stored as a whole in pages. Thus, with 8kB BLCKSZ, we keep 409 groups
123  * per page. This wastes 12 bytes per page, but that's OK -- simplicity (and
124  * performance) trumps space efficiency here.
125  *
126  * Note that the "offset" macros work with byte offset, not array indexes, so
127  * arithmetic must be done using "char *" pointers.
128  */
129 /* We need eight bits per xact, so one xact fits in a byte */
130 #define MXACT_MEMBER_BITS_PER_XACT 8
131 #define MXACT_MEMBER_FLAGS_PER_BYTE 1
132 #define MXACT_MEMBER_XACT_BITMASK ((1 << MXACT_MEMBER_BITS_PER_XACT) - 1)
133 
134 /* how many full bytes of flags are there in a group? */
135 #define MULTIXACT_FLAGBYTES_PER_GROUP 4
136 #define MULTIXACT_MEMBERS_PER_MEMBERGROUP \
137  (MULTIXACT_FLAGBYTES_PER_GROUP * MXACT_MEMBER_FLAGS_PER_BYTE)
138 /* size in bytes of a complete group */
139 #define MULTIXACT_MEMBERGROUP_SIZE \
140  (sizeof(TransactionId) * MULTIXACT_MEMBERS_PER_MEMBERGROUP + MULTIXACT_FLAGBYTES_PER_GROUP)
141 #define MULTIXACT_MEMBERGROUPS_PER_PAGE (BLCKSZ / MULTIXACT_MEMBERGROUP_SIZE)
142 #define MULTIXACT_MEMBERS_PER_PAGE \
143  (MULTIXACT_MEMBERGROUPS_PER_PAGE * MULTIXACT_MEMBERS_PER_MEMBERGROUP)
144 
145 /*
146  * Because the number of items per page is not a divisor of the last item
147  * number (member 0xFFFFFFFF), the last segment does not use the maximum number
148  * of pages, and moreover the last used page therein does not use the same
149  * number of items as previous pages. (Another way to say it is that the
150  * 0xFFFFFFFF member is somewhere in the middle of the last page, so the page
151  * has some empty space after that item.)
152  *
153  * This constant is the number of members in the last page of the last segment.
154  */
155 #define MAX_MEMBERS_IN_LAST_MEMBERS_PAGE \
156  ((uint32) ((0xFFFFFFFF % MULTIXACT_MEMBERS_PER_PAGE) + 1))
157 
158 /* page in which a member is to be found */
159 #define MXOffsetToMemberPage(xid) ((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
160 #define MXOffsetToMemberSegment(xid) (MXOffsetToMemberPage(xid) / SLRU_PAGES_PER_SEGMENT)
161 
162 /* Location (byte offset within page) of flag word for a given member */
163 #define MXOffsetToFlagsOffset(xid) \
164  ((((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_MEMBERGROUP) % \
165  (TransactionId) MULTIXACT_MEMBERGROUPS_PER_PAGE) * \
166  (TransactionId) MULTIXACT_MEMBERGROUP_SIZE)
167 #define MXOffsetToFlagsBitShift(xid) \
168  (((xid) % (TransactionId) MULTIXACT_MEMBERS_PER_MEMBERGROUP) * \
169  MXACT_MEMBER_BITS_PER_XACT)
170 
171 /* Location (byte offset within page) of TransactionId of given member */
172 #define MXOffsetToMemberOffset(xid) \
173  (MXOffsetToFlagsOffset(xid) + MULTIXACT_FLAGBYTES_PER_GROUP + \
174  ((xid) % MULTIXACT_MEMBERS_PER_MEMBERGROUP) * sizeof(TransactionId))
175 
176 /* Multixact members wraparound thresholds. */
177 #define MULTIXACT_MEMBER_SAFE_THRESHOLD (MaxMultiXactOffset / 2)
178 #define MULTIXACT_MEMBER_DANGER_THRESHOLD \
179  (MaxMultiXactOffset - MaxMultiXactOffset / 4)
180 
181 #define PreviousMultiXactId(xid) \
182  ((xid) == FirstMultiXactId ? MaxMultiXactId : (xid) - 1)
183 
184 /*
185  * Links to shared-memory data structures for MultiXact control
186  */
189 
190 #define MultiXactOffsetCtl (&MultiXactOffsetCtlData)
191 #define MultiXactMemberCtl (&MultiXactMemberCtlData)
192 
193 /*
194  * MultiXact state shared across all backends. All this state is protected
195  * by MultiXactGenLock. (We also use SLRU bank's lock of MultiXactOffset and
196  * MultiXactMember to guard accesses to the two sets of SLRU buffers. For
197  * concurrency's sake, we avoid holding more than one of these locks at a
198  * time.)
199  */
200 typedef struct MultiXactStateData
201 {
202  /* next-to-be-assigned MultiXactId */
204 
205  /* next-to-be-assigned offset */
207 
208  /* Have we completed multixact startup? */
210 
211  /*
212  * Oldest multixact that is still potentially referenced by a relation.
213  * Anything older than this should not be consulted. These values are
214  * updated by vacuum.
215  */
218 
219  /*
220  * Oldest multixact offset that is potentially referenced by a multixact
221  * referenced by a relation. We don't always know this value, so there's
222  * a flag here to indicate whether or not we currently do.
223  */
226 
227  /* support for anti-wraparound measures */
232 
233  /* support for members anti-wraparound measures */
234  MultiXactOffset offsetStopLimit; /* known if oldestOffsetKnown */
235 
236  /*
237  * This is used to sleep until a multixact offset is written when we want
238  * to create the next one.
239  */
241 
242  /*
243  * Per-backend data starts here. We have two arrays stored in the area
244  * immediately following the MultiXactStateData struct. Each is indexed by
245  * ProcNumber.
246  *
247  * In both arrays, there's a slot for all normal backends
248  * (0..MaxBackends-1) followed by a slot for max_prepared_xacts prepared
249  * transactions.
250  *
251  * OldestMemberMXactId[k] is the oldest MultiXactId each backend's current
252  * transaction(s) could possibly be a member of, or InvalidMultiXactId
253  * when the backend has no live transaction that could possibly be a
254  * member of a MultiXact. Each backend sets its entry to the current
255  * nextMXact counter just before first acquiring a shared lock in a given
256  * transaction, and clears it at transaction end. (This works because only
257  * during or after acquiring a shared lock could an XID possibly become a
258  * member of a MultiXact, and that MultiXact would have to be created
259  * during or after the lock acquisition.)
260  *
261  * OldestVisibleMXactId[k] is the oldest MultiXactId each backend's
262  * current transaction(s) think is potentially live, or InvalidMultiXactId
263  * when not in a transaction or not in a transaction that's paid any
264  * attention to MultiXacts yet. This is computed when first needed in a
265  * given transaction, and cleared at transaction end. We can compute it
266  * as the minimum of the valid OldestMemberMXactId[] entries at the time
267  * we compute it (using nextMXact if none are valid). Each backend is
268  * required not to attempt to access any SLRU data for MultiXactIds older
269  * than its own OldestVisibleMXactId[] setting; this is necessary because
270  * the relevant SLRU data can be concurrently truncated away.
271  *
272  * The oldest valid value among all of the OldestMemberMXactId[] and
273  * OldestVisibleMXactId[] entries is considered by vacuum as the earliest
274  * possible value still having any live member transaction -- OldestMxact.
275  * Any value older than that is typically removed from tuple headers, or
276  * "frozen" via being replaced with a new xmax. VACUUM can sometimes even
277  * remove an individual MultiXact xmax whose value is >= its OldestMxact
278  * cutoff, though typically only when no individual member XID is still
279  * running. See FreezeMultiXactId for full details.
280  *
281  * Whenever VACUUM advances relminmxid, then either its OldestMxact cutoff
282  * or the oldest extant Multi remaining in the table is used as the new
283  * pg_class.relminmxid value (whichever is earlier). The minimum of all
284  * relminmxid values in each database is stored in pg_database.datminmxid.
285  * In turn, the minimum of all of those values is stored in pg_control.
286  * This is used as the truncation point for pg_multixact when unneeded
287  * segments get removed by vac_truncate_clog() during vacuuming.
288  */
291 
292 /*
293  * Size of OldestMemberMXactId and OldestVisibleMXactId arrays.
294  */
295 #define MaxOldestSlot (MaxBackends + max_prepared_xacts)
296 
297 /* Pointers to the state data in shared memory */
301 
302 
303 /*
304  * Definitions for the backend-local MultiXactId cache.
305  *
306  * We use this cache to store known MultiXacts, so we don't need to go to
307  * SLRU areas every time.
308  *
309  * The cache lasts for the duration of a single transaction, the rationale
310  * for this being that most entries will contain our own TransactionId and
311  * so they will be uninteresting by the time our next transaction starts.
312  * (XXX not clear that this is correct --- other members of the MultiXact
313  * could hang around longer than we did. However, it's not clear what a
314  * better policy for flushing old cache entries would be.) FIXME actually
315  * this is plain wrong now that multixact's may contain update Xids.
316  *
317  * We allocate the cache entries in a memory context that is deleted at
318  * transaction end, so we don't need to do retail freeing of entries.
319  */
320 typedef struct mXactCacheEnt
321 {
323  int nmembers;
327 
328 #define MAX_CACHE_ENTRIES 256
331 
332 #ifdef MULTIXACT_DEBUG
333 #define debug_elog2(a,b) elog(a,b)
334 #define debug_elog3(a,b,c) elog(a,b,c)
335 #define debug_elog4(a,b,c,d) elog(a,b,c,d)
336 #define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
337 #define debug_elog6(a,b,c,d,e,f) elog(a,b,c,d,e,f)
338 #else
339 #define debug_elog2(a,b)
340 #define debug_elog3(a,b,c)
341 #define debug_elog4(a,b,c,d)
342 #define debug_elog5(a,b,c,d,e)
343 #define debug_elog6(a,b,c,d,e,f)
344 #endif
345 
346 /* internal MultiXactId management */
347 static void MultiXactIdSetOldestVisible(void);
348 static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
349  int nmembers, MultiXactMember *members);
350 static MultiXactId GetNewMultiXactId(int nmembers, MultiXactOffset *offset);
351 
352 /* MultiXact cache management */
353 static int mxactMemberComparator(const void *arg1, const void *arg2);
354 static MultiXactId mXactCacheGetBySet(int nmembers, MultiXactMember *members);
355 static int mXactCacheGetById(MultiXactId multi, MultiXactMember **members);
356 static void mXactCachePut(MultiXactId multi, int nmembers,
357  MultiXactMember *members);
358 
359 static char *mxstatus_to_string(MultiXactStatus status);
360 
361 /* management of SLRU infrastructure */
362 static int ZeroMultiXactOffsetPage(int64 pageno, bool writeXlog);
363 static int ZeroMultiXactMemberPage(int64 pageno, bool writeXlog);
364 static bool MultiXactOffsetPagePrecedes(int64 page1, int64 page2);
365 static bool MultiXactMemberPagePrecedes(int64 page1, int64 page2);
366 static bool MultiXactOffsetPrecedes(MultiXactOffset offset1,
367  MultiXactOffset offset2);
368 static void ExtendMultiXactOffset(MultiXactId multi);
369 static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers);
370 static bool MultiXactOffsetWouldWrap(MultiXactOffset boundary,
371  MultiXactOffset start, uint32 distance);
372 static bool SetOffsetVacuumLimit(bool is_startup);
373 static bool find_multixact_start(MultiXactId multi, MultiXactOffset *result);
374 static void WriteMZeroPageXlogRec(int64 pageno, uint8 info);
375 static void WriteMTruncateXlogRec(Oid oldestMultiDB,
376  MultiXactId startTruncOff,
377  MultiXactId endTruncOff,
378  MultiXactOffset startTruncMemb,
379  MultiXactOffset endTruncMemb);
380 
381 
382 /*
383  * MultiXactIdCreate
384  * Construct a MultiXactId representing two TransactionIds.
385  *
386  * The two XIDs must be different, or be requesting different statuses.
387  *
388  * NB - we don't worry about our local MultiXactId cache here, because that
389  * is handled by the lower-level routines.
390  */
393  TransactionId xid2, MultiXactStatus status2)
394 {
395  MultiXactId newMulti;
396  MultiXactMember members[2];
397 
400 
401  Assert(!TransactionIdEquals(xid1, xid2) || (status1 != status2));
402 
403  /* MultiXactIdSetOldestMember() must have been called already. */
405 
406  /*
407  * Note: unlike MultiXactIdExpand, we don't bother to check that both XIDs
408  * are still running. In typical usage, xid2 will be our own XID and the
409  * caller just did a check on xid1, so it'd be wasted effort.
410  */
411 
412  members[0].xid = xid1;
413  members[0].status = status1;
414  members[1].xid = xid2;
415  members[1].status = status2;
416 
417  newMulti = MultiXactIdCreateFromMembers(2, members);
418 
419  debug_elog3(DEBUG2, "Create: %s",
420  mxid_to_string(newMulti, 2, members));
421 
422  return newMulti;
423 }
424 
425 /*
426  * MultiXactIdExpand
427  * Add a TransactionId to a pre-existing MultiXactId.
428  *
429  * If the TransactionId is already a member of the passed MultiXactId with the
430  * same status, just return it as-is.
431  *
432  * Note that we do NOT actually modify the membership of a pre-existing
433  * MultiXactId; instead we create a new one. This is necessary to avoid
434  * a race condition against code trying to wait for one MultiXactId to finish;
435  * see notes in heapam.c.
436  *
437  * NB - we don't worry about our local MultiXactId cache here, because that
438  * is handled by the lower-level routines.
439  *
440  * Note: It is critical that MultiXactIds that come from an old cluster (i.e.
441  * one upgraded by pg_upgrade from a cluster older than this feature) are not
442  * passed in.
443  */
446 {
447  MultiXactId newMulti;
448  MultiXactMember *members;
449  MultiXactMember *newMembers;
450  int nmembers;
451  int i;
452  int j;
453 
454  Assert(MultiXactIdIsValid(multi));
456 
457  /* MultiXactIdSetOldestMember() must have been called already. */
459 
460  debug_elog5(DEBUG2, "Expand: received multi %u, xid %u status %s",
461  multi, xid, mxstatus_to_string(status));
462 
463  /*
464  * Note: we don't allow for old multis here. The reason is that the only
465  * caller of this function does a check that the multixact is no longer
466  * running.
467  */
468  nmembers = GetMultiXactIdMembers(multi, &members, false, false);
469 
470  if (nmembers < 0)
471  {
472  MultiXactMember member;
473 
474  /*
475  * The MultiXactId is obsolete. This can only happen if all the
476  * MultiXactId members stop running between the caller checking and
477  * passing it to us. It would be better to return that fact to the
478  * caller, but it would complicate the API and it's unlikely to happen
479  * too often, so just deal with it by creating a singleton MultiXact.
480  */
481  member.xid = xid;
482  member.status = status;
483  newMulti = MultiXactIdCreateFromMembers(1, &member);
484 
485  debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
486  multi, newMulti);
487  return newMulti;
488  }
489 
490  /*
491  * If the TransactionId is already a member of the MultiXactId with the
492  * same status, just return the existing MultiXactId.
493  */
494  for (i = 0; i < nmembers; i++)
495  {
496  if (TransactionIdEquals(members[i].xid, xid) &&
497  (members[i].status == status))
498  {
499  debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
500  xid, multi);
501  pfree(members);
502  return multi;
503  }
504  }
505 
506  /*
507  * Determine which of the members of the MultiXactId are still of
508  * interest. This is any running transaction, and also any transaction
509  * that grabbed something stronger than just a lock and was committed. (An
510  * update that aborted is of no interest here; and having more than one
511  * update Xid in a multixact would cause errors elsewhere.)
512  *
513  * Removing dead members is not just an optimization: freezing of tuples
514  * whose Xmax are multis depends on this behavior.
515  *
516  * Note we have the same race condition here as above: j could be 0 at the
517  * end of the loop.
518  */
519  newMembers = (MultiXactMember *)
520  palloc(sizeof(MultiXactMember) * (nmembers + 1));
521 
522  for (i = 0, j = 0; i < nmembers; i++)
523  {
524  if (TransactionIdIsInProgress(members[i].xid) ||
525  (ISUPDATE_from_mxstatus(members[i].status) &&
526  TransactionIdDidCommit(members[i].xid)))
527  {
528  newMembers[j].xid = members[i].xid;
529  newMembers[j++].status = members[i].status;
530  }
531  }
532 
533  newMembers[j].xid = xid;
534  newMembers[j++].status = status;
535  newMulti = MultiXactIdCreateFromMembers(j, newMembers);
536 
537  pfree(members);
538  pfree(newMembers);
539 
540  debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
541 
542  return newMulti;
543 }
544 
545 /*
546  * MultiXactIdIsRunning
547  * Returns whether a MultiXactId is "running".
548  *
549  * We return true if at least one member of the given MultiXactId is still
550  * running. Note that a "false" result is certain not to change,
551  * because it is not legal to add members to an existing MultiXactId.
552  *
553  * Caller is expected to have verified that the multixact does not come from
554  * a pg_upgraded share-locked tuple.
555  */
556 bool
557 MultiXactIdIsRunning(MultiXactId multi, bool isLockOnly)
558 {
559  MultiXactMember *members;
560  int nmembers;
561  int i;
562 
563  debug_elog3(DEBUG2, "IsRunning %u?", multi);
564 
565  /*
566  * "false" here means we assume our callers have checked that the given
567  * multi cannot possibly come from a pg_upgraded database.
568  */
569  nmembers = GetMultiXactIdMembers(multi, &members, false, isLockOnly);
570 
571  if (nmembers <= 0)
572  {
573  debug_elog2(DEBUG2, "IsRunning: no members");
574  return false;
575  }
576 
577  /*
578  * Checking for myself is cheap compared to looking in shared memory;
579  * return true if any live subtransaction of the current top-level
580  * transaction is a member.
581  *
582  * This is not needed for correctness, it's just a fast path.
583  */
584  for (i = 0; i < nmembers; i++)
585  {
586  if (TransactionIdIsCurrentTransactionId(members[i].xid))
587  {
588  debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
589  pfree(members);
590  return true;
591  }
592  }
593 
594  /*
595  * This could be made faster by having another entry point in procarray.c,
596  * walking the PGPROC array only once for all the members. But in most
597  * cases nmembers should be small enough that it doesn't much matter.
598  */
599  for (i = 0; i < nmembers; i++)
600  {
601  if (TransactionIdIsInProgress(members[i].xid))
602  {
603  debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
604  i, members[i].xid);
605  pfree(members);
606  return true;
607  }
608  }
609 
610  pfree(members);
611 
612  debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
613 
614  return false;
615 }
616 
617 /*
618  * MultiXactIdSetOldestMember
619  * Save the oldest MultiXactId this transaction could be a member of.
620  *
621  * We set the OldestMemberMXactId for a given transaction the first time it's
622  * going to do some operation that might require a MultiXactId (tuple lock,
623  * update or delete). We need to do this even if we end up using a
624  * TransactionId instead of a MultiXactId, because there is a chance that
625  * another transaction would add our XID to a MultiXactId.
626  *
627  * The value to set is the next-to-be-assigned MultiXactId, so this is meant to
628  * be called just before doing any such possibly-MultiXactId-able operation.
629  */
630 void
632 {
634  {
635  MultiXactId nextMXact;
636 
637  /*
638  * You might think we don't need to acquire a lock here, since
639  * fetching and storing of TransactionIds is probably atomic, but in
640  * fact we do: suppose we pick up nextMXact and then lose the CPU for
641  * a long time. Someone else could advance nextMXact, and then
642  * another someone else could compute an OldestVisibleMXactId that
643  * would be after the value we are going to store when we get control
644  * back. Which would be wrong.
645  *
646  * Note that a shared lock is sufficient, because it's enough to stop
647  * someone from advancing nextMXact; and nobody else could be trying
648  * to write to our OldestMember entry, only reading (and we assume
649  * storing it is atomic.)
650  */
651  LWLockAcquire(MultiXactGenLock, LW_SHARED);
652 
653  /*
654  * We have to beware of the possibility that nextMXact is in the
655  * wrapped-around state. We don't fix the counter itself here, but we
656  * must be sure to store a valid value in our array entry.
657  */
658  nextMXact = MultiXactState->nextMXact;
659  if (nextMXact < FirstMultiXactId)
660  nextMXact = FirstMultiXactId;
661 
662  OldestMemberMXactId[MyProcNumber] = nextMXact;
663 
664  LWLockRelease(MultiXactGenLock);
665 
666  debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
667  MyProcNumber, nextMXact);
668  }
669 }
670 
671 /*
672  * MultiXactIdSetOldestVisible
673  * Save the oldest MultiXactId this transaction considers possibly live.
674  *
675  * We set the OldestVisibleMXactId for a given transaction the first time
676  * it's going to inspect any MultiXactId. Once we have set this, we are
677  * guaranteed that SLRU data for MultiXactIds >= our own OldestVisibleMXactId
678  * won't be truncated away.
679  *
680  * The value to set is the oldest of nextMXact and all the valid per-backend
681  * OldestMemberMXactId[] entries. Because of the locking we do, we can be
682  * certain that no subsequent call to MultiXactIdSetOldestMember can set
683  * an OldestMemberMXactId[] entry older than what we compute here. Therefore
684  * there is no live transaction, now or later, that can be a member of any
685  * MultiXactId older than the OldestVisibleMXactId we compute here.
686  */
687 static void
689 {
691  {
692  MultiXactId oldestMXact;
693  int i;
694 
695  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
696 
697  /*
698  * We have to beware of the possibility that nextMXact is in the
699  * wrapped-around state. We don't fix the counter itself here, but we
700  * must be sure to store a valid value in our array entry.
701  */
702  oldestMXact = MultiXactState->nextMXact;
703  if (oldestMXact < FirstMultiXactId)
704  oldestMXact = FirstMultiXactId;
705 
706  for (i = 0; i < MaxOldestSlot; i++)
707  {
708  MultiXactId thisoldest = OldestMemberMXactId[i];
709 
710  if (MultiXactIdIsValid(thisoldest) &&
711  MultiXactIdPrecedes(thisoldest, oldestMXact))
712  oldestMXact = thisoldest;
713  }
714 
715  OldestVisibleMXactId[MyProcNumber] = oldestMXact;
716 
717  LWLockRelease(MultiXactGenLock);
718 
719  debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
720  MyProcNumber, oldestMXact);
721  }
722 }
723 
724 /*
725  * ReadNextMultiXactId
726  * Return the next MultiXactId to be assigned, but don't allocate it
727  */
730 {
731  MultiXactId mxid;
732 
733  /* XXX we could presumably do this without a lock. */
734  LWLockAcquire(MultiXactGenLock, LW_SHARED);
735  mxid = MultiXactState->nextMXact;
736  LWLockRelease(MultiXactGenLock);
737 
738  if (mxid < FirstMultiXactId)
739  mxid = FirstMultiXactId;
740 
741  return mxid;
742 }
743 
744 /*
745  * ReadMultiXactIdRange
746  * Get the range of IDs that may still be referenced by a relation.
747  */
748 void
750 {
751  LWLockAcquire(MultiXactGenLock, LW_SHARED);
754  LWLockRelease(MultiXactGenLock);
755 
756  if (*oldest < FirstMultiXactId)
757  *oldest = FirstMultiXactId;
758  if (*next < FirstMultiXactId)
760 }
761 
762 
763 /*
764  * MultiXactIdCreateFromMembers
765  * Make a new MultiXactId from the specified set of members
766  *
767  * Make XLOG, SLRU and cache entries for a new MultiXactId, recording the
768  * given TransactionIds as members. Returns the newly created MultiXactId.
769  *
770  * NB: the passed members[] array will be sorted in-place.
771  */
774 {
775  MultiXactId multi;
776  MultiXactOffset offset;
777  xl_multixact_create xlrec;
778 
779  debug_elog3(DEBUG2, "Create: %s",
780  mxid_to_string(InvalidMultiXactId, nmembers, members));
781 
782  /*
783  * See if the same set of members already exists in our cache; if so, just
784  * re-use that MultiXactId. (Note: it might seem that looking in our
785  * cache is insufficient, and we ought to search disk to see if a
786  * duplicate definition already exists. But since we only ever create
787  * MultiXacts containing our own XID, in most cases any such MultiXacts
788  * were in fact created by us, and so will be in our cache. There are
789  * corner cases where someone else added us to a MultiXact without our
790  * knowledge, but it's not worth checking for.)
791  */
792  multi = mXactCacheGetBySet(nmembers, members);
793  if (MultiXactIdIsValid(multi))
794  {
795  debug_elog2(DEBUG2, "Create: in cache!");
796  return multi;
797  }
798 
799  /* Verify that there is a single update Xid among the given members. */
800  {
801  int i;
802  bool has_update = false;
803 
804  for (i = 0; i < nmembers; i++)
805  {
806  if (ISUPDATE_from_mxstatus(members[i].status))
807  {
808  if (has_update)
809  elog(ERROR, "new multixact has more than one updating member: %s",
810  mxid_to_string(InvalidMultiXactId, nmembers, members));
811  has_update = true;
812  }
813  }
814  }
815 
816  /*
817  * Assign the MXID and offsets range to use, and make sure there is space
818  * in the OFFSETs and MEMBERs files. NB: this routine does
819  * START_CRIT_SECTION().
820  *
821  * Note: unlike MultiXactIdCreate and MultiXactIdExpand, we do not check
822  * that we've called MultiXactIdSetOldestMember here. This is because
823  * this routine is used in some places to create new MultiXactIds of which
824  * the current backend is not a member, notably during freezing of multis
825  * in vacuum. During vacuum, in particular, it would be unacceptable to
826  * keep OldestMulti set, in case it runs for long.
827  */
828  multi = GetNewMultiXactId(nmembers, &offset);
829 
830  /* Make an XLOG entry describing the new MXID. */
831  xlrec.mid = multi;
832  xlrec.moff = offset;
833  xlrec.nmembers = nmembers;
834 
835  /*
836  * XXX Note: there's a lot of padding space in MultiXactMember. We could
837  * find a more compact representation of this Xlog record -- perhaps all
838  * the status flags in one XLogRecData, then all the xids in another one?
839  * Not clear that it's worth the trouble though.
840  */
841  XLogBeginInsert();
842  XLogRegisterData((char *) (&xlrec), SizeOfMultiXactCreate);
843  XLogRegisterData((char *) members, nmembers * sizeof(MultiXactMember));
844 
845  (void) XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_CREATE_ID);
846 
847  /* Now enter the information into the OFFSETs and MEMBERs logs */
848  RecordNewMultiXact(multi, offset, nmembers, members);
849 
850  /* Done with critical section */
852 
853  /* Store the new MultiXactId in the local cache, too */
854  mXactCachePut(multi, nmembers, members);
855 
856  debug_elog2(DEBUG2, "Create: all done");
857 
858  return multi;
859 }
860 
861 /*
862  * RecordNewMultiXact
863  * Write info about a new multixact into the offsets and members files
864  *
865  * This is broken out of MultiXactIdCreateFromMembers so that xlog replay can
866  * use it.
867  */
868 static void
870  int nmembers, MultiXactMember *members)
871 {
872  int64 pageno;
873  int64 prev_pageno;
874  int entryno;
875  int slotno;
876  MultiXactOffset *offptr;
877  int i;
878  LWLock *lock;
879  LWLock *prevlock = NULL;
880 
881  pageno = MultiXactIdToOffsetPage(multi);
882  entryno = MultiXactIdToOffsetEntry(multi);
883 
886 
887  /*
888  * Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
889  * to complain about if there's any I/O error. This is kinda bogus, but
890  * since the errors will always give the full pathname, it should be clear
891  * enough that a MultiXactId is really involved. Perhaps someday we'll
892  * take the trouble to generalize the slru.c error reporting code.
893  */
894  slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
895  offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
896  offptr += entryno;
897 
898  *offptr = offset;
899 
900  MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
901 
902  /* Release MultiXactOffset SLRU lock. */
903  LWLockRelease(lock);
904 
905  /*
906  * If anybody was waiting to know the offset of this multixact ID we just
907  * wrote, they can read it now, so wake them up.
908  */
910 
911  prev_pageno = -1;
912 
913  for (i = 0; i < nmembers; i++, offset++)
914  {
915  TransactionId *memberptr;
916  uint32 *flagsptr;
917  uint32 flagsval;
918  int bshift;
919  int flagsoff;
920  int memberoff;
921 
922  Assert(members[i].status <= MultiXactStatusUpdate);
923 
924  pageno = MXOffsetToMemberPage(offset);
925  memberoff = MXOffsetToMemberOffset(offset);
926  flagsoff = MXOffsetToFlagsOffset(offset);
927  bshift = MXOffsetToFlagsBitShift(offset);
928 
929  if (pageno != prev_pageno)
930  {
931  /*
932  * MultiXactMember SLRU page is changed so check if this new page
933  * fall into the different SLRU bank then release the old bank's
934  * lock and acquire lock on the new bank.
935  */
937  if (lock != prevlock)
938  {
939  if (prevlock != NULL)
940  LWLockRelease(prevlock);
941 
943  prevlock = lock;
944  }
945  slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
946  prev_pageno = pageno;
947  }
948 
949  memberptr = (TransactionId *)
950  (MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
951 
952  *memberptr = members[i].xid;
953 
954  flagsptr = (uint32 *)
955  (MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
956 
957  flagsval = *flagsptr;
958  flagsval &= ~(((1 << MXACT_MEMBER_BITS_PER_XACT) - 1) << bshift);
959  flagsval |= (members[i].status << bshift);
960  *flagsptr = flagsval;
961 
962  MultiXactMemberCtl->shared->page_dirty[slotno] = true;
963  }
964 
965  if (prevlock != NULL)
966  LWLockRelease(prevlock);
967 }
968 
969 /*
970  * GetNewMultiXactId
971  * Get the next MultiXactId.
972  *
973  * Also, reserve the needed amount of space in the "members" area. The
974  * starting offset of the reserved space is returned in *offset.
975  *
976  * This may generate XLOG records for expansion of the offsets and/or members
977  * files. Unfortunately, we have to do that while holding MultiXactGenLock
978  * to avoid race conditions --- the XLOG record for zeroing a page must appear
979  * before any backend can possibly try to store data in that page!
980  *
981  * We start a critical section before advancing the shared counters. The
982  * caller must end the critical section after writing SLRU data.
983  */
984 static MultiXactId
985 GetNewMultiXactId(int nmembers, MultiXactOffset *offset)
986 {
987  MultiXactId result;
988  MultiXactOffset nextOffset;
989 
990  debug_elog3(DEBUG2, "GetNew: for %d xids", nmembers);
991 
992  /* safety check, we should never get this far in a HS standby */
993  if (RecoveryInProgress())
994  elog(ERROR, "cannot assign MultiXactIds during recovery");
995 
996  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
997 
998  /* Handle wraparound of the nextMXact counter */
1001 
1002  /* Assign the MXID */
1003  result = MultiXactState->nextMXact;
1004 
1005  /*----------
1006  * Check to see if it's safe to assign another MultiXactId. This protects
1007  * against catastrophic data loss due to multixact wraparound. The basic
1008  * rules are:
1009  *
1010  * If we're past multiVacLimit or the safe threshold for member storage
1011  * space, or we don't know what the safe threshold for member storage is,
1012  * start trying to force autovacuum cycles.
1013  * If we're past multiWarnLimit, start issuing warnings.
1014  * If we're past multiStopLimit, refuse to create new MultiXactIds.
1015  *
1016  * Note these are pretty much the same protections in GetNewTransactionId.
1017  *----------
1018  */
1020  {
1021  /*
1022  * For safety's sake, we release MultiXactGenLock while sending
1023  * signals, warnings, etc. This is not so much because we care about
1024  * preserving concurrency in this situation, as to avoid any
1025  * possibility of deadlock while doing get_database_name(). First,
1026  * copy all the shared values we'll need in this path.
1027  */
1028  MultiXactId multiWarnLimit = MultiXactState->multiWarnLimit;
1029  MultiXactId multiStopLimit = MultiXactState->multiStopLimit;
1030  MultiXactId multiWrapLimit = MultiXactState->multiWrapLimit;
1031  Oid oldest_datoid = MultiXactState->oldestMultiXactDB;
1032 
1033  LWLockRelease(MultiXactGenLock);
1034 
1035  if (IsUnderPostmaster &&
1036  !MultiXactIdPrecedes(result, multiStopLimit))
1037  {
1038  char *oldest_datname = get_database_name(oldest_datoid);
1039 
1040  /*
1041  * Immediately kick autovacuum into action as we're already in
1042  * ERROR territory.
1043  */
1045 
1046  /* complain even if that DB has disappeared */
1047  if (oldest_datname)
1048  ereport(ERROR,
1049  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1050  errmsg("database is not accepting commands that assign new MultiXactIds to avoid wraparound data loss in database \"%s\"",
1051  oldest_datname),
1052  errhint("Execute a database-wide VACUUM in that database.\n"
1053  "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1054  else
1055  ereport(ERROR,
1056  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1057  errmsg("database is not accepting commands that assign new MultiXactIds to avoid wraparound data loss in database with OID %u",
1058  oldest_datoid),
1059  errhint("Execute a database-wide VACUUM in that database.\n"
1060  "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1061  }
1062 
1063  /*
1064  * To avoid swamping the postmaster with signals, we issue the autovac
1065  * request only once per 64K multis generated. This still gives
1066  * plenty of chances before we get into real trouble.
1067  */
1068  if (IsUnderPostmaster && (result % 65536) == 0)
1070 
1071  if (!MultiXactIdPrecedes(result, multiWarnLimit))
1072  {
1073  char *oldest_datname = get_database_name(oldest_datoid);
1074 
1075  /* complain even if that DB has disappeared */
1076  if (oldest_datname)
1077  ereport(WARNING,
1078  (errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
1079  "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
1080  multiWrapLimit - result,
1081  oldest_datname,
1082  multiWrapLimit - result),
1083  errhint("Execute a database-wide VACUUM in that database.\n"
1084  "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1085  else
1086  ereport(WARNING,
1087  (errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
1088  "database with OID %u must be vacuumed before %u more MultiXactIds are used",
1089  multiWrapLimit - result,
1090  oldest_datoid,
1091  multiWrapLimit - result),
1092  errhint("Execute a database-wide VACUUM in that database.\n"
1093  "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
1094  }
1095 
1096  /* Re-acquire lock and start over */
1097  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1098  result = MultiXactState->nextMXact;
1099  if (result < FirstMultiXactId)
1100  result = FirstMultiXactId;
1101  }
1102 
1103  /* Make sure there is room for the MXID in the file. */
1104  ExtendMultiXactOffset(result);
1105 
1106  /*
1107  * Reserve the members space, similarly to above. Also, be careful not to
1108  * return zero as the starting offset for any multixact. See
1109  * GetMultiXactIdMembers() for motivation.
1110  */
1111  nextOffset = MultiXactState->nextOffset;
1112  if (nextOffset == 0)
1113  {
1114  *offset = 1;
1115  nmembers++; /* allocate member slot 0 too */
1116  }
1117  else
1118  *offset = nextOffset;
1119 
1120  /*----------
1121  * Protect against overrun of the members space as well, with the
1122  * following rules:
1123  *
1124  * If we're past offsetStopLimit, refuse to generate more multis.
1125  * If we're close to offsetStopLimit, emit a warning.
1126  *
1127  * Arbitrarily, we start emitting warnings when we're 20 segments or less
1128  * from offsetStopLimit.
1129  *
1130  * Note we haven't updated the shared state yet, so if we fail at this
1131  * point, the multixact ID we grabbed can still be used by the next guy.
1132  *
1133  * Note that there is no point in forcing autovacuum runs here: the
1134  * multixact freeze settings would have to be reduced for that to have any
1135  * effect.
1136  *----------
1137  */
1138 #define OFFSET_WARN_SEGMENTS 20
1141  nmembers))
1142  {
1143  /* see comment in the corresponding offsets wraparound case */
1145 
1146  ereport(ERROR,
1147  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1148  errmsg("multixact \"members\" limit exceeded"),
1149  errdetail_plural("This command would create a multixact with %u members, but the remaining space is only enough for %u member.",
1150  "This command would create a multixact with %u members, but the remaining space is only enough for %u members.",
1151  MultiXactState->offsetStopLimit - nextOffset - 1,
1152  nmembers,
1153  MultiXactState->offsetStopLimit - nextOffset - 1),
1154  errhint("Execute a database-wide VACUUM in database with OID %u with reduced vacuum_multixact_freeze_min_age and vacuum_multixact_freeze_table_age settings.",
1156  }
1157 
1158  /*
1159  * Check whether we should kick autovacuum into action, to prevent members
1160  * wraparound. NB we use a much larger window to trigger autovacuum than
1161  * just the warning limit. The warning is just a measure of last resort -
1162  * this is in line with GetNewTransactionId's behaviour.
1163  */
1167  {
1168  /*
1169  * To avoid swamping the postmaster with signals, we issue the autovac
1170  * request only when crossing a segment boundary. With default
1171  * compilation settings that's roughly after 50k members. This still
1172  * gives plenty of chances before we get into real trouble.
1173  */
1174  if ((MXOffsetToMemberPage(nextOffset) / SLRU_PAGES_PER_SEGMENT) !=
1175  (MXOffsetToMemberPage(nextOffset + nmembers) / SLRU_PAGES_PER_SEGMENT))
1177  }
1178 
1181  nextOffset,
1183  ereport(WARNING,
1184  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
1185  errmsg_plural("database with OID %u must be vacuumed before %d more multixact member is used",
1186  "database with OID %u must be vacuumed before %d more multixact members are used",
1187  MultiXactState->offsetStopLimit - nextOffset + nmembers,
1189  MultiXactState->offsetStopLimit - nextOffset + nmembers),
1190  errhint("Execute a database-wide VACUUM in that database with reduced vacuum_multixact_freeze_min_age and vacuum_multixact_freeze_table_age settings.")));
1191 
1192  ExtendMultiXactMember(nextOffset, nmembers);
1193 
1194  /*
1195  * Critical section from here until caller has written the data into the
1196  * just-reserved SLRU space; we don't want to error out with a partly
1197  * written MultiXact structure. (In particular, failing to write our
1198  * start offset after advancing nextMXact would effectively corrupt the
1199  * previous MultiXact.)
1200  */
1202 
1203  /*
1204  * Advance counters. As in GetNewTransactionId(), this must not happen
1205  * until after file extension has succeeded!
1206  *
1207  * We don't care about MultiXactId wraparound here; it will be handled by
1208  * the next iteration. But note that nextMXact may be InvalidMultiXactId
1209  * or the first value on a segment-beginning page after this routine
1210  * exits, so anyone else looking at the variable must be prepared to deal
1211  * with either case. Similarly, nextOffset may be zero, but we won't use
1212  * that as the actual start offset of the next multixact.
1213  */
1215 
1216  MultiXactState->nextOffset += nmembers;
1217 
1218  LWLockRelease(MultiXactGenLock);
1219 
1220  debug_elog4(DEBUG2, "GetNew: returning %u offset %u", result, *offset);
1221  return result;
1222 }
1223 
1224 /*
1225  * GetMultiXactIdMembers
1226  * Return the set of MultiXactMembers that make up a MultiXactId
1227  *
1228  * Return value is the number of members found, or -1 if there are none,
1229  * and *members is set to a newly palloc'ed array of members. It's the
1230  * caller's responsibility to free it when done with it.
1231  *
1232  * from_pgupgrade must be passed as true if and only if only the multixact
1233  * corresponds to a value from a tuple that was locked in a 9.2-or-older
1234  * installation and later pg_upgrade'd (that is, the infomask is
1235  * HEAP_LOCKED_UPGRADED). In this case, we know for certain that no members
1236  * can still be running, so we return -1 just like for an empty multixact
1237  * without any further checking. It would be wrong to try to resolve such a
1238  * multixact: either the multixact is within the current valid multixact
1239  * range, in which case the returned result would be bogus, or outside that
1240  * range, in which case an error would be raised.
1241  *
1242  * In all other cases, the passed multixact must be within the known valid
1243  * range, that is, greater to or equal than oldestMultiXactId, and less than
1244  * nextMXact. Otherwise, an error is raised.
1245  *
1246  * isLockOnly must be set to true if caller is certain that the given multi
1247  * is used only to lock tuples; can be false without loss of correctness,
1248  * but passing a true means we can return quickly without checking for
1249  * old updates.
1250  */
1251 int
1253  bool from_pgupgrade, bool isLockOnly)
1254 {
1255  int64 pageno;
1256  int64 prev_pageno;
1257  int entryno;
1258  int slotno;
1259  MultiXactOffset *offptr;
1260  MultiXactOffset offset;
1261  int length;
1262  int truelength;
1263  MultiXactId oldestMXact;
1264  MultiXactId nextMXact;
1265  MultiXactId tmpMXact;
1266  MultiXactOffset nextOffset;
1267  MultiXactMember *ptr;
1268  LWLock *lock;
1269  bool slept = false;
1270 
1271  debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
1272 
1273  if (!MultiXactIdIsValid(multi) || from_pgupgrade)
1274  {
1275  *members = NULL;
1276  return -1;
1277  }
1278 
1279  /* See if the MultiXactId is in the local cache */
1280  length = mXactCacheGetById(multi, members);
1281  if (length >= 0)
1282  {
1283  debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
1284  mxid_to_string(multi, length, *members));
1285  return length;
1286  }
1287 
1288  /* Set our OldestVisibleMXactId[] entry if we didn't already */
1290 
1291  /*
1292  * If we know the multi is used only for locking and not for updates, then
1293  * we can skip checking if the value is older than our oldest visible
1294  * multi. It cannot possibly still be running.
1295  */
1296  if (isLockOnly &&
1298  {
1299  debug_elog2(DEBUG2, "GetMembers: a locker-only multi is too old");
1300  *members = NULL;
1301  return -1;
1302  }
1303 
1304  /*
1305  * We check known limits on MultiXact before resorting to the SLRU area.
1306  *
1307  * An ID older than MultiXactState->oldestMultiXactId cannot possibly be
1308  * useful; it has already been removed, or will be removed shortly, by
1309  * truncation. If one is passed, an error is raised.
1310  *
1311  * Also, an ID >= nextMXact shouldn't ever be seen here; if it is seen, it
1312  * implies undetected ID wraparound has occurred. This raises a hard
1313  * error.
1314  *
1315  * Shared lock is enough here since we aren't modifying any global state.
1316  * Acquire it just long enough to grab the current counter values. We may
1317  * need both nextMXact and nextOffset; see below.
1318  */
1319  LWLockAcquire(MultiXactGenLock, LW_SHARED);
1320 
1321  oldestMXact = MultiXactState->oldestMultiXactId;
1322  nextMXact = MultiXactState->nextMXact;
1323  nextOffset = MultiXactState->nextOffset;
1324 
1325  LWLockRelease(MultiXactGenLock);
1326 
1327  if (MultiXactIdPrecedes(multi, oldestMXact))
1328  ereport(ERROR,
1329  (errcode(ERRCODE_INTERNAL_ERROR),
1330  errmsg("MultiXactId %u does no longer exist -- apparent wraparound",
1331  multi)));
1332 
1333  if (!MultiXactIdPrecedes(multi, nextMXact))
1334  ereport(ERROR,
1335  (errcode(ERRCODE_INTERNAL_ERROR),
1336  errmsg("MultiXactId %u has not been created yet -- apparent wraparound",
1337  multi)));
1338 
1339  /*
1340  * Find out the offset at which we need to start reading MultiXactMembers
1341  * and the number of members in the multixact. We determine the latter as
1342  * the difference between this multixact's starting offset and the next
1343  * one's. However, there are some corner cases to worry about:
1344  *
1345  * 1. This multixact may be the latest one created, in which case there is
1346  * no next one to look at. In this case the nextOffset value we just
1347  * saved is the correct endpoint.
1348  *
1349  * 2. The next multixact may still be in process of being filled in: that
1350  * is, another process may have done GetNewMultiXactId but not yet written
1351  * the offset entry for that ID. In that scenario, it is guaranteed that
1352  * the offset entry for that multixact exists (because GetNewMultiXactId
1353  * won't release MultiXactGenLock until it does) but contains zero
1354  * (because we are careful to pre-zero offset pages). Because
1355  * GetNewMultiXactId will never return zero as the starting offset for a
1356  * multixact, when we read zero as the next multixact's offset, we know we
1357  * have this case. We handle this by sleeping on the condition variable
1358  * we have just for this; the process in charge will signal the CV as soon
1359  * as it has finished writing the multixact offset.
1360  *
1361  * 3. Because GetNewMultiXactId increments offset zero to offset one to
1362  * handle case #2, there is an ambiguity near the point of offset
1363  * wraparound. If we see next multixact's offset is one, is that our
1364  * multixact's actual endpoint, or did it end at zero with a subsequent
1365  * increment? We handle this using the knowledge that if the zero'th
1366  * member slot wasn't filled, it'll contain zero, and zero isn't a valid
1367  * transaction ID so it can't be a multixact member. Therefore, if we
1368  * read a zero from the members array, just ignore it.
1369  *
1370  * This is all pretty messy, but the mess occurs only in infrequent corner
1371  * cases, so it seems better than holding the MultiXactGenLock for a long
1372  * time on every multixact creation.
1373  */
1374 retry:
1375  pageno = MultiXactIdToOffsetPage(multi);
1376  entryno = MultiXactIdToOffsetEntry(multi);
1377 
1378  /* Acquire the bank lock for the page we need. */
1379  lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
1380  LWLockAcquire(lock, LW_EXCLUSIVE);
1381 
1382  slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, multi);
1383  offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1384  offptr += entryno;
1385  offset = *offptr;
1386 
1387  Assert(offset != 0);
1388 
1389  /*
1390  * Use the same increment rule as GetNewMultiXactId(), that is, don't
1391  * handle wraparound explicitly until needed.
1392  */
1393  tmpMXact = multi + 1;
1394 
1395  if (nextMXact == tmpMXact)
1396  {
1397  /* Corner case 1: there is no next multixact */
1398  length = nextOffset - offset;
1399  }
1400  else
1401  {
1402  MultiXactOffset nextMXOffset;
1403 
1404  /* handle wraparound if needed */
1405  if (tmpMXact < FirstMultiXactId)
1406  tmpMXact = FirstMultiXactId;
1407 
1408  prev_pageno = pageno;
1409 
1410  pageno = MultiXactIdToOffsetPage(tmpMXact);
1411  entryno = MultiXactIdToOffsetEntry(tmpMXact);
1412 
1413  if (pageno != prev_pageno)
1414  {
1415  LWLock *newlock;
1416 
1417  /*
1418  * Since we're going to access a different SLRU page, if this page
1419  * falls under a different bank, release the old bank's lock and
1420  * acquire the lock of the new bank.
1421  */
1422  newlock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
1423  if (newlock != lock)
1424  {
1425  LWLockRelease(lock);
1426  LWLockAcquire(newlock, LW_EXCLUSIVE);
1427  lock = newlock;
1428  }
1429  slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, tmpMXact);
1430  }
1431 
1432  offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
1433  offptr += entryno;
1434  nextMXOffset = *offptr;
1435 
1436  if (nextMXOffset == 0)
1437  {
1438  /* Corner case 2: next multixact is still being filled in */
1439  LWLockRelease(lock);
1441 
1443  WAIT_EVENT_MULTIXACT_CREATION);
1444  slept = true;
1445  goto retry;
1446  }
1447 
1448  length = nextMXOffset - offset;
1449  }
1450 
1451  LWLockRelease(lock);
1452  lock = NULL;
1453 
1454  /*
1455  * If we slept above, clean up state; it's no longer needed.
1456  */
1457  if (slept)
1459 
1460  ptr = (MultiXactMember *) palloc(length * sizeof(MultiXactMember));
1461 
1462  truelength = 0;
1463  prev_pageno = -1;
1464  for (int i = 0; i < length; i++, offset++)
1465  {
1466  TransactionId *xactptr;
1467  uint32 *flagsptr;
1468  int flagsoff;
1469  int bshift;
1470  int memberoff;
1471 
1472  pageno = MXOffsetToMemberPage(offset);
1473  memberoff = MXOffsetToMemberOffset(offset);
1474 
1475  if (pageno != prev_pageno)
1476  {
1477  LWLock *newlock;
1478 
1479  /*
1480  * Since we're going to access a different SLRU page, if this page
1481  * falls under a different bank, release the old bank's lock and
1482  * acquire the lock of the new bank.
1483  */
1484  newlock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
1485  if (newlock != lock)
1486  {
1487  if (lock)
1488  LWLockRelease(lock);
1489  LWLockAcquire(newlock, LW_EXCLUSIVE);
1490  lock = newlock;
1491  }
1492 
1493  slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, multi);
1494  prev_pageno = pageno;
1495  }
1496 
1497  xactptr = (TransactionId *)
1498  (MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
1499 
1500  if (!TransactionIdIsValid(*xactptr))
1501  {
1502  /* Corner case 3: we must be looking at unused slot zero */
1503  Assert(offset == 0);
1504  continue;
1505  }
1506 
1507  flagsoff = MXOffsetToFlagsOffset(offset);
1508  bshift = MXOffsetToFlagsBitShift(offset);
1509  flagsptr = (uint32 *) (MultiXactMemberCtl->shared->page_buffer[slotno] + flagsoff);
1510 
1511  ptr[truelength].xid = *xactptr;
1512  ptr[truelength].status = (*flagsptr >> bshift) & MXACT_MEMBER_XACT_BITMASK;
1513  truelength++;
1514  }
1515 
1516  LWLockRelease(lock);
1517 
1518  /* A multixid with zero members should not happen */
1519  Assert(truelength > 0);
1520 
1521  /*
1522  * Copy the result into the local cache.
1523  */
1524  mXactCachePut(multi, truelength, ptr);
1525 
1526  debug_elog3(DEBUG2, "GetMembers: no cache for %s",
1527  mxid_to_string(multi, truelength, ptr));
1528  *members = ptr;
1529  return truelength;
1530 }
1531 
1532 /*
1533  * mxactMemberComparator
1534  * qsort comparison function for MultiXactMember
1535  *
1536  * We can't use wraparound comparison for XIDs because that does not respect
1537  * the triangle inequality! Any old sort order will do.
1538  */
1539 static int
1540 mxactMemberComparator(const void *arg1, const void *arg2)
1541 {
1542  MultiXactMember member1 = *(const MultiXactMember *) arg1;
1543  MultiXactMember member2 = *(const MultiXactMember *) arg2;
1544 
1545  if (member1.xid > member2.xid)
1546  return 1;
1547  if (member1.xid < member2.xid)
1548  return -1;
1549  if (member1.status > member2.status)
1550  return 1;
1551  if (member1.status < member2.status)
1552  return -1;
1553  return 0;
1554 }
1555 
1556 /*
1557  * mXactCacheGetBySet
1558  * returns a MultiXactId from the cache based on the set of
1559  * TransactionIds that compose it, or InvalidMultiXactId if
1560  * none matches.
1561  *
1562  * This is helpful, for example, if two transactions want to lock a huge
1563  * table. By using the cache, the second will use the same MultiXactId
1564  * for the majority of tuples, thus keeping MultiXactId usage low (saving
1565  * both I/O and wraparound issues).
1566  *
1567  * NB: the passed members array will be sorted in-place.
1568  */
1569 static MultiXactId
1570 mXactCacheGetBySet(int nmembers, MultiXactMember *members)
1571 {
1572  dlist_iter iter;
1573 
1574  debug_elog3(DEBUG2, "CacheGet: looking for %s",
1575  mxid_to_string(InvalidMultiXactId, nmembers, members));
1576 
1577  /* sort the array so comparison is easy */
1578  qsort(members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1579 
1580  dclist_foreach(iter, &MXactCache)
1581  {
1583  iter.cur);
1584 
1585  if (entry->nmembers != nmembers)
1586  continue;
1587 
1588  /*
1589  * We assume the cache entries are sorted, and that the unused bits in
1590  * "status" are zeroed.
1591  */
1592  if (memcmp(members, entry->members, nmembers * sizeof(MultiXactMember)) == 0)
1593  {
1594  debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
1596  return entry->multi;
1597  }
1598  }
1599 
1600  debug_elog2(DEBUG2, "CacheGet: not found :-(");
1601  return InvalidMultiXactId;
1602 }
1603 
1604 /*
1605  * mXactCacheGetById
1606  * returns the composing MultiXactMember set from the cache for a
1607  * given MultiXactId, if present.
1608  *
1609  * If successful, *xids is set to the address of a palloc'd copy of the
1610  * MultiXactMember set. Return value is number of members, or -1 on failure.
1611  */
1612 static int
1614 {
1615  dlist_iter iter;
1616 
1617  debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
1618 
1619  dclist_foreach(iter, &MXactCache)
1620  {
1622  iter.cur);
1623 
1624  if (entry->multi == multi)
1625  {
1626  MultiXactMember *ptr;
1627  Size size;
1628 
1629  size = sizeof(MultiXactMember) * entry->nmembers;
1630  ptr = (MultiXactMember *) palloc(size);
1631 
1632  memcpy(ptr, entry->members, size);
1633 
1634  debug_elog3(DEBUG2, "CacheGet: found %s",
1635  mxid_to_string(multi,
1636  entry->nmembers,
1637  entry->members));
1638 
1639  /*
1640  * Note we modify the list while not using a modifiable iterator.
1641  * This is acceptable only because we exit the iteration
1642  * immediately afterwards.
1643  */
1645 
1646  *members = ptr;
1647  return entry->nmembers;
1648  }
1649  }
1650 
1651  debug_elog2(DEBUG2, "CacheGet: not found");
1652  return -1;
1653 }
1654 
1655 /*
1656  * mXactCachePut
1657  * Add a new MultiXactId and its composing set into the local cache.
1658  */
1659 static void
1660 mXactCachePut(MultiXactId multi, int nmembers, MultiXactMember *members)
1661 {
1662  mXactCacheEnt *entry;
1663 
1664  debug_elog3(DEBUG2, "CachePut: storing %s",
1665  mxid_to_string(multi, nmembers, members));
1666 
1667  if (MXactContext == NULL)
1668  {
1669  /* The cache only lives as long as the current transaction */
1670  debug_elog2(DEBUG2, "CachePut: initializing memory context");
1672  "MultiXact cache context",
1674  }
1675 
1676  entry = (mXactCacheEnt *)
1678  offsetof(mXactCacheEnt, members) +
1679  nmembers * sizeof(MultiXactMember));
1680 
1681  entry->multi = multi;
1682  entry->nmembers = nmembers;
1683  memcpy(entry->members, members, nmembers * sizeof(MultiXactMember));
1684 
1685  /* mXactCacheGetBySet assumes the entries are sorted, so sort them */
1686  qsort(entry->members, nmembers, sizeof(MultiXactMember), mxactMemberComparator);
1687 
1688  dclist_push_head(&MXactCache, &entry->node);
1690  {
1691  dlist_node *node;
1692 
1693  node = dclist_tail_node(&MXactCache);
1695 
1696  entry = dclist_container(mXactCacheEnt, node, node);
1697  debug_elog3(DEBUG2, "CachePut: pruning cached multi %u",
1698  entry->multi);
1699 
1700  pfree(entry);
1701  }
1702 }
1703 
1704 static char *
1706 {
1707  switch (status)
1708  {
1710  return "keysh";
1712  return "sh";
1714  return "fornokeyupd";
1716  return "forupd";
1718  return "nokeyupd";
1719  case MultiXactStatusUpdate:
1720  return "upd";
1721  default:
1722  elog(ERROR, "unrecognized multixact status %d", status);
1723  return "";
1724  }
1725 }
1726 
1727 char *
1728 mxid_to_string(MultiXactId multi, int nmembers, MultiXactMember *members)
1729 {
1730  static char *str = NULL;
1732  int i;
1733 
1734  if (str != NULL)
1735  pfree(str);
1736 
1737  initStringInfo(&buf);
1738 
1739  appendStringInfo(&buf, "%u %d[%u (%s)", multi, nmembers, members[0].xid,
1740  mxstatus_to_string(members[0].status));
1741 
1742  for (i = 1; i < nmembers; i++)
1743  appendStringInfo(&buf, ", %u (%s)", members[i].xid,
1744  mxstatus_to_string(members[i].status));
1745 
1746  appendStringInfoChar(&buf, ']');
1748  pfree(buf.data);
1749  return str;
1750 }
1751 
1752 /*
1753  * AtEOXact_MultiXact
1754  * Handle transaction end for MultiXact
1755  *
1756  * This is called at top transaction commit or abort (we don't care which).
1757  */
1758 void
1760 {
1761  /*
1762  * Reset our OldestMemberMXactId and OldestVisibleMXactId values, both of
1763  * which should only be valid while within a transaction.
1764  *
1765  * We assume that storing a MultiXactId is atomic and so we need not take
1766  * MultiXactGenLock to do this.
1767  */
1770 
1771  /*
1772  * Discard the local MultiXactId cache. Since MXactContext was created as
1773  * a child of TopTransactionContext, we needn't delete it explicitly.
1774  */
1775  MXactContext = NULL;
1777 }
1778 
1779 /*
1780  * AtPrepare_MultiXact
1781  * Save multixact state at 2PC transaction prepare
1782  *
1783  * In this phase, we only store our OldestMemberMXactId value in the two-phase
1784  * state file.
1785  */
1786 void
1788 {
1789  MultiXactId myOldestMember = OldestMemberMXactId[MyProcNumber];
1790 
1791  if (MultiXactIdIsValid(myOldestMember))
1793  &myOldestMember, sizeof(MultiXactId));
1794 }
1795 
1796 /*
1797  * PostPrepare_MultiXact
1798  * Clean up after successful PREPARE TRANSACTION
1799  */
1800 void
1802 {
1803  MultiXactId myOldestMember;
1804 
1805  /*
1806  * Transfer our OldestMemberMXactId value to the slot reserved for the
1807  * prepared transaction.
1808  */
1809  myOldestMember = OldestMemberMXactId[MyProcNumber];
1810  if (MultiXactIdIsValid(myOldestMember))
1811  {
1812  ProcNumber dummyProcNumber = TwoPhaseGetDummyProcNumber(xid, false);
1813 
1814  /*
1815  * Even though storing MultiXactId is atomic, acquire lock to make
1816  * sure others see both changes, not just the reset of the slot of the
1817  * current backend. Using a volatile pointer might suffice, but this
1818  * isn't a hot spot.
1819  */
1820  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
1821 
1822  OldestMemberMXactId[dummyProcNumber] = myOldestMember;
1824 
1825  LWLockRelease(MultiXactGenLock);
1826  }
1827 
1828  /*
1829  * We don't need to transfer OldestVisibleMXactId value, because the
1830  * transaction is not going to be looking at any more multixacts once it's
1831  * prepared.
1832  *
1833  * We assume that storing a MultiXactId is atomic and so we need not take
1834  * MultiXactGenLock to do this.
1835  */
1837 
1838  /*
1839  * Discard the local MultiXactId cache like in AtEOXact_MultiXact.
1840  */
1841  MXactContext = NULL;
1843 }
1844 
1845 /*
1846  * multixact_twophase_recover
1847  * Recover the state of a prepared transaction at startup
1848  */
1849 void
1851  void *recdata, uint32 len)
1852 {
1853  ProcNumber dummyProcNumber = TwoPhaseGetDummyProcNumber(xid, false);
1854  MultiXactId oldestMember;
1855 
1856  /*
1857  * Get the oldest member XID from the state file record, and set it in the
1858  * OldestMemberMXactId slot reserved for this prepared transaction.
1859  */
1860  Assert(len == sizeof(MultiXactId));
1861  oldestMember = *((MultiXactId *) recdata);
1862 
1863  OldestMemberMXactId[dummyProcNumber] = oldestMember;
1864 }
1865 
1866 /*
1867  * multixact_twophase_postcommit
1868  * Similar to AtEOXact_MultiXact but for COMMIT PREPARED
1869  */
1870 void
1872  void *recdata, uint32 len)
1873 {
1874  ProcNumber dummyProcNumber = TwoPhaseGetDummyProcNumber(xid, true);
1875 
1876  Assert(len == sizeof(MultiXactId));
1877 
1878  OldestMemberMXactId[dummyProcNumber] = InvalidMultiXactId;
1879 }
1880 
1881 /*
1882  * multixact_twophase_postabort
1883  * This is actually just the same as the COMMIT case.
1884  */
1885 void
1887  void *recdata, uint32 len)
1888 {
1889  multixact_twophase_postcommit(xid, info, recdata, len);
1890 }
1891 
1892 /*
1893  * Initialization of shared memory for MultiXact. We use two SLRU areas,
1894  * thus double memory. Also, reserve space for the shared MultiXactState
1895  * struct and the per-backend MultiXactId arrays (two of those, too).
1896  */
1897 Size
1899 {
1900  Size size;
1901 
1902  /* We need 2*MaxOldestSlot perBackendXactIds[] entries */
1903 #define SHARED_MULTIXACT_STATE_SIZE \
1904  add_size(offsetof(MultiXactStateData, perBackendXactIds), \
1905  mul_size(sizeof(MultiXactId) * 2, MaxOldestSlot))
1906 
1910 
1911  return size;
1912 }
1913 
1914 void
1916 {
1917  bool found;
1918 
1919  debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
1920 
1923 
1925  "multixact_offset", multixact_offset_buffers, 0,
1926  "pg_multixact/offsets", LWTRANCHE_MULTIXACTOFFSET_BUFFER,
1929  false);
1932  "multixact_member", multixact_member_buffers, 0,
1933  "pg_multixact/members", LWTRANCHE_MULTIXACTMEMBER_BUFFER,
1936  false);
1937  /* doesn't call SimpleLruTruncate() or meet criteria for unit tests */
1938 
1939  /* Initialize our shared state struct */
1940  MultiXactState = ShmemInitStruct("Shared MultiXact State",
1942  &found);
1943  if (!IsUnderPostmaster)
1944  {
1945  Assert(!found);
1946 
1947  /* Make sure we zero out the per-backend state */
1950  }
1951  else
1952  Assert(found);
1953 
1954  /*
1955  * Set up array pointers.
1956  */
1959 }
1960 
1961 /*
1962  * GUC check_hook for multixact_offset_buffers
1963  */
1964 bool
1966 {
1967  return check_slru_buffers("multixact_offset_buffers", newval);
1968 }
1969 
1970 /*
1971  * GUC check_hook for multixact_member_buffer
1972  */
1973 bool
1975 {
1976  return check_slru_buffers("multixact_member_buffers", newval);
1977 }
1978 
1979 /*
1980  * This func must be called ONCE on system install. It creates the initial
1981  * MultiXact segments. (The MultiXacts directories are assumed to have been
1982  * created by initdb, and MultiXactShmemInit must have been called already.)
1983  */
1984 void
1986 {
1987  int slotno;
1988  LWLock *lock;
1989 
1991  LWLockAcquire(lock, LW_EXCLUSIVE);
1992 
1993  /* Create and zero the first page of the offsets log */
1994  slotno = ZeroMultiXactOffsetPage(0, false);
1995 
1996  /* Make sure it's written out */
1998  Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
1999 
2000  LWLockRelease(lock);
2001 
2003  LWLockAcquire(lock, LW_EXCLUSIVE);
2004 
2005  /* Create and zero the first page of the members log */
2006  slotno = ZeroMultiXactMemberPage(0, false);
2007 
2008  /* Make sure it's written out */
2010  Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
2011 
2012  LWLockRelease(lock);
2013 }
2014 
2015 /*
2016  * Initialize (or reinitialize) a page of MultiXactOffset to zeroes.
2017  * If writeXlog is true, also emit an XLOG record saying we did this.
2018  *
2019  * The page is not actually written, just set up in shared memory.
2020  * The slot number of the new page is returned.
2021  *
2022  * Control lock must be held at entry, and will be held at exit.
2023  */
2024 static int
2025 ZeroMultiXactOffsetPage(int64 pageno, bool writeXlog)
2026 {
2027  int slotno;
2028 
2029  slotno = SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
2030 
2031  if (writeXlog)
2033 
2034  return slotno;
2035 }
2036 
2037 /*
2038  * Ditto, for MultiXactMember
2039  */
2040 static int
2041 ZeroMultiXactMemberPage(int64 pageno, bool writeXlog)
2042 {
2043  int slotno;
2044 
2045  slotno = SimpleLruZeroPage(MultiXactMemberCtl, pageno);
2046 
2047  if (writeXlog)
2049 
2050  return slotno;
2051 }
2052 
2053 /*
2054  * MaybeExtendOffsetSlru
2055  * Extend the offsets SLRU area, if necessary
2056  *
2057  * After a binary upgrade from <= 9.2, the pg_multixact/offsets SLRU area might
2058  * contain files that are shorter than necessary; this would occur if the old
2059  * installation had used multixacts beyond the first page (files cannot be
2060  * copied, because the on-disk representation is different). pg_upgrade would
2061  * update pg_control to set the next offset value to be at that position, so
2062  * that tuples marked as locked by such MultiXacts would be seen as visible
2063  * without having to consult multixact. However, trying to create and use a
2064  * new MultiXactId would result in an error because the page on which the new
2065  * value would reside does not exist. This routine is in charge of creating
2066  * such pages.
2067  */
2068 static void
2070 {
2071  int64 pageno;
2072  LWLock *lock;
2073 
2075  lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
2076 
2077  LWLockAcquire(lock, LW_EXCLUSIVE);
2078 
2080  {
2081  int slotno;
2082 
2083  /*
2084  * Fortunately for us, SimpleLruWritePage is already prepared to deal
2085  * with creating a new segment file even if the page we're writing is
2086  * not the first in it, so this is enough.
2087  */
2088  slotno = ZeroMultiXactOffsetPage(pageno, false);
2090  }
2091 
2092  LWLockRelease(lock);
2093 }
2094 
2095 /*
2096  * This must be called ONCE during postmaster or standalone-backend startup.
2097  *
2098  * StartupXLOG has already established nextMXact/nextOffset by calling
2099  * MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact, and the oldestMulti
2100  * info from pg_control and/or MultiXactAdvanceOldest, but we haven't yet
2101  * replayed WAL.
2102  */
2103 void
2105 {
2108  int64 pageno;
2109 
2110  /*
2111  * Initialize offset's idea of the latest page number.
2112  */
2113  pageno = MultiXactIdToOffsetPage(multi);
2114  pg_atomic_write_u64(&MultiXactOffsetCtl->shared->latest_page_number,
2115  pageno);
2116 
2117  /*
2118  * Initialize member's idea of the latest page number.
2119  */
2120  pageno = MXOffsetToMemberPage(offset);
2121  pg_atomic_write_u64(&MultiXactMemberCtl->shared->latest_page_number,
2122  pageno);
2123 }
2124 
2125 /*
2126  * This must be called ONCE at the end of startup/recovery.
2127  */
2128 void
2130 {
2131  MultiXactId nextMXact;
2132  MultiXactOffset offset;
2133  MultiXactId oldestMXact;
2134  Oid oldestMXactDB;
2135  int64 pageno;
2136  int entryno;
2137  int flagsoff;
2138 
2139  LWLockAcquire(MultiXactGenLock, LW_SHARED);
2140  nextMXact = MultiXactState->nextMXact;
2141  offset = MultiXactState->nextOffset;
2142  oldestMXact = MultiXactState->oldestMultiXactId;
2143  oldestMXactDB = MultiXactState->oldestMultiXactDB;
2144  LWLockRelease(MultiXactGenLock);
2145 
2146  /* Clean up offsets state */
2147 
2148  /*
2149  * (Re-)Initialize our idea of the latest page number for offsets.
2150  */
2151  pageno = MultiXactIdToOffsetPage(nextMXact);
2152  pg_atomic_write_u64(&MultiXactOffsetCtl->shared->latest_page_number,
2153  pageno);
2154 
2155  /*
2156  * Zero out the remainder of the current offsets page. See notes in
2157  * TrimCLOG() for background. Unlike CLOG, some WAL record covers every
2158  * pg_multixact SLRU mutation. Since, also unlike CLOG, we ignore the WAL
2159  * rule "write xlog before data," nextMXact successors may carry obsolete,
2160  * nonzero offset values. Zero those so case 2 of GetMultiXactIdMembers()
2161  * operates normally.
2162  */
2163  entryno = MultiXactIdToOffsetEntry(nextMXact);
2164  if (entryno != 0)
2165  {
2166  int slotno;
2167  MultiXactOffset *offptr;
2169 
2170  LWLockAcquire(lock, LW_EXCLUSIVE);
2171  slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, true, nextMXact);
2172  offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2173  offptr += entryno;
2174 
2175  MemSet(offptr, 0, BLCKSZ - (entryno * sizeof(MultiXactOffset)));
2176 
2177  MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
2178  LWLockRelease(lock);
2179  }
2180 
2181  /*
2182  * And the same for members.
2183  *
2184  * (Re-)Initialize our idea of the latest page number for members.
2185  */
2186  pageno = MXOffsetToMemberPage(offset);
2187  pg_atomic_write_u64(&MultiXactMemberCtl->shared->latest_page_number,
2188  pageno);
2189 
2190  /*
2191  * Zero out the remainder of the current members page. See notes in
2192  * TrimCLOG() for motivation.
2193  */
2194  flagsoff = MXOffsetToFlagsOffset(offset);
2195  if (flagsoff != 0)
2196  {
2197  int slotno;
2198  TransactionId *xidptr;
2199  int memberoff;
2201 
2202  LWLockAcquire(lock, LW_EXCLUSIVE);
2203  memberoff = MXOffsetToMemberOffset(offset);
2204  slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, true, offset);
2205  xidptr = (TransactionId *)
2206  (MultiXactMemberCtl->shared->page_buffer[slotno] + memberoff);
2207 
2208  MemSet(xidptr, 0, BLCKSZ - memberoff);
2209 
2210  /*
2211  * Note: we don't need to zero out the flag bits in the remaining
2212  * members of the current group, because they are always reset before
2213  * writing.
2214  */
2215 
2216  MultiXactMemberCtl->shared->page_dirty[slotno] = true;
2217  LWLockRelease(lock);
2218  }
2219 
2220  /* signal that we're officially up */
2221  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2223  LWLockRelease(MultiXactGenLock);
2224 
2225  /* Now compute how far away the next members wraparound is. */
2226  SetMultiXactIdLimit(oldestMXact, oldestMXactDB, true);
2227 }
2228 
2229 /*
2230  * Get the MultiXact data to save in a checkpoint record
2231  */
2232 void
2233 MultiXactGetCheckptMulti(bool is_shutdown,
2234  MultiXactId *nextMulti,
2235  MultiXactOffset *nextMultiOffset,
2236  MultiXactId *oldestMulti,
2237  Oid *oldestMultiDB)
2238 {
2239  LWLockAcquire(MultiXactGenLock, LW_SHARED);
2240  *nextMulti = MultiXactState->nextMXact;
2241  *nextMultiOffset = MultiXactState->nextOffset;
2242  *oldestMulti = MultiXactState->oldestMultiXactId;
2243  *oldestMultiDB = MultiXactState->oldestMultiXactDB;
2244  LWLockRelease(MultiXactGenLock);
2245 
2247  "MultiXact: checkpoint is nextMulti %u, nextOffset %u, oldestMulti %u in DB %u",
2248  *nextMulti, *nextMultiOffset, *oldestMulti, *oldestMultiDB);
2249 }
2250 
2251 /*
2252  * Perform a checkpoint --- either during shutdown, or on-the-fly
2253  */
2254 void
2256 {
2257  TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_START(true);
2258 
2259  /*
2260  * Write dirty MultiXact pages to disk. This may result in sync requests
2261  * queued for later handling by ProcessSyncRequests(), as part of the
2262  * checkpoint.
2263  */
2266 
2267  TRACE_POSTGRESQL_MULTIXACT_CHECKPOINT_DONE(true);
2268 }
2269 
2270 /*
2271  * Set the next-to-be-assigned MultiXactId and offset
2272  *
2273  * This is used when we can determine the correct next ID/offset exactly
2274  * from a checkpoint record. Although this is only called during bootstrap
2275  * and XLog replay, we take the lock in case any hot-standby backends are
2276  * examining the values.
2277  */
2278 void
2280  MultiXactOffset nextMultiOffset)
2281 {
2282  debug_elog4(DEBUG2, "MultiXact: setting next multi to %u offset %u",
2283  nextMulti, nextMultiOffset);
2284  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2285  MultiXactState->nextMXact = nextMulti;
2286  MultiXactState->nextOffset = nextMultiOffset;
2287  LWLockRelease(MultiXactGenLock);
2288 
2289  /*
2290  * During a binary upgrade, make sure that the offsets SLRU is large
2291  * enough to contain the next value that would be created.
2292  *
2293  * We need to do this pretty early during the first startup in binary
2294  * upgrade mode: before StartupMultiXact() in fact, because this routine
2295  * is called even before that by StartupXLOG(). And we can't do it
2296  * earlier than at this point, because during that first call of this
2297  * routine we determine the MultiXactState->nextMXact value that
2298  * MaybeExtendOffsetSlru needs.
2299  */
2300  if (IsBinaryUpgrade)
2302 }
2303 
2304 /*
2305  * Determine the last safe MultiXactId to allocate given the currently oldest
2306  * datminmxid (ie, the oldest MultiXactId that might exist in any database
2307  * of our cluster), and the OID of the (or a) database with that value.
2308  *
2309  * is_startup is true when we are just starting the cluster, false when we
2310  * are updating state in a running cluster. This only affects log messages.
2311  */
2312 void
2313 SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid,
2314  bool is_startup)
2315 {
2316  MultiXactId multiVacLimit;
2317  MultiXactId multiWarnLimit;
2318  MultiXactId multiStopLimit;
2319  MultiXactId multiWrapLimit;
2320  MultiXactId curMulti;
2321  bool needs_offset_vacuum;
2322 
2323  Assert(MultiXactIdIsValid(oldest_datminmxid));
2324 
2325  /*
2326  * We pretend that a wrap will happen halfway through the multixact ID
2327  * space, but that's not really true, because multixacts wrap differently
2328  * from transaction IDs. Note that, separately from any concern about
2329  * multixact IDs wrapping, we must ensure that multixact members do not
2330  * wrap. Limits for that are set in SetOffsetVacuumLimit, not here.
2331  */
2332  multiWrapLimit = oldest_datminmxid + (MaxMultiXactId >> 1);
2333  if (multiWrapLimit < FirstMultiXactId)
2334  multiWrapLimit += FirstMultiXactId;
2335 
2336  /*
2337  * We'll refuse to continue assigning MultiXactIds once we get within 3M
2338  * multi of data loss. See SetTransactionIdLimit.
2339  */
2340  multiStopLimit = multiWrapLimit - 3000000;
2341  if (multiStopLimit < FirstMultiXactId)
2342  multiStopLimit -= FirstMultiXactId;
2343 
2344  /*
2345  * We'll start complaining loudly when we get within 40M multis of data
2346  * loss. This is kind of arbitrary, but if you let your gas gauge get
2347  * down to 2% of full, would you be looking for the next gas station? We
2348  * need to be fairly liberal about this number because there are lots of
2349  * scenarios where most transactions are done by automatic clients that
2350  * won't pay attention to warnings. (No, we're not gonna make this
2351  * configurable. If you know enough to configure it, you know enough to
2352  * not get in this kind of trouble in the first place.)
2353  */
2354  multiWarnLimit = multiWrapLimit - 40000000;
2355  if (multiWarnLimit < FirstMultiXactId)
2356  multiWarnLimit -= FirstMultiXactId;
2357 
2358  /*
2359  * We'll start trying to force autovacuums when oldest_datminmxid gets to
2360  * be more than autovacuum_multixact_freeze_max_age mxids old.
2361  *
2362  * Note: autovacuum_multixact_freeze_max_age is a PGC_POSTMASTER parameter
2363  * so that we don't have to worry about dealing with on-the-fly changes in
2364  * its value. See SetTransactionIdLimit.
2365  */
2366  multiVacLimit = oldest_datminmxid + autovacuum_multixact_freeze_max_age;
2367  if (multiVacLimit < FirstMultiXactId)
2368  multiVacLimit += FirstMultiXactId;
2369 
2370  /* Grab lock for just long enough to set the new limit values */
2371  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2372  MultiXactState->oldestMultiXactId = oldest_datminmxid;
2373  MultiXactState->oldestMultiXactDB = oldest_datoid;
2374  MultiXactState->multiVacLimit = multiVacLimit;
2375  MultiXactState->multiWarnLimit = multiWarnLimit;
2376  MultiXactState->multiStopLimit = multiStopLimit;
2377  MultiXactState->multiWrapLimit = multiWrapLimit;
2378  curMulti = MultiXactState->nextMXact;
2379  LWLockRelease(MultiXactGenLock);
2380 
2381  /* Log the info */
2382  ereport(DEBUG1,
2383  (errmsg_internal("MultiXactId wrap limit is %u, limited by database with OID %u",
2384  multiWrapLimit, oldest_datoid)));
2385 
2386  /*
2387  * Computing the actual limits is only possible once the data directory is
2388  * in a consistent state. There's no need to compute the limits while
2389  * still replaying WAL - no decisions about new multis are made even
2390  * though multixact creations might be replayed. So we'll only do further
2391  * checks after TrimMultiXact() has been called.
2392  */
2394  return;
2395 
2396  Assert(!InRecovery);
2397 
2398  /* Set limits for offset vacuum. */
2399  needs_offset_vacuum = SetOffsetVacuumLimit(is_startup);
2400 
2401  /*
2402  * If past the autovacuum force point, immediately signal an autovac
2403  * request. The reason for this is that autovac only processes one
2404  * database per invocation. Once it's finished cleaning up the oldest
2405  * database, it'll call here, and we'll signal the postmaster to start
2406  * another iteration immediately if there are still any old databases.
2407  */
2408  if ((MultiXactIdPrecedes(multiVacLimit, curMulti) ||
2409  needs_offset_vacuum) && IsUnderPostmaster)
2411 
2412  /* Give an immediate warning if past the wrap warn point */
2413  if (MultiXactIdPrecedes(multiWarnLimit, curMulti))
2414  {
2415  char *oldest_datname;
2416 
2417  /*
2418  * We can be called when not inside a transaction, for example during
2419  * StartupXLOG(). In such a case we cannot do database access, so we
2420  * must just report the oldest DB's OID.
2421  *
2422  * Note: it's also possible that get_database_name fails and returns
2423  * NULL, for example because the database just got dropped. We'll
2424  * still warn, even though the warning might now be unnecessary.
2425  */
2426  if (IsTransactionState())
2427  oldest_datname = get_database_name(oldest_datoid);
2428  else
2429  oldest_datname = NULL;
2430 
2431  if (oldest_datname)
2432  ereport(WARNING,
2433  (errmsg_plural("database \"%s\" must be vacuumed before %u more MultiXactId is used",
2434  "database \"%s\" must be vacuumed before %u more MultiXactIds are used",
2435  multiWrapLimit - curMulti,
2436  oldest_datname,
2437  multiWrapLimit - curMulti),
2438  errhint("To avoid MultiXactId assignment failures, execute a database-wide VACUUM in that database.\n"
2439  "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2440  else
2441  ereport(WARNING,
2442  (errmsg_plural("database with OID %u must be vacuumed before %u more MultiXactId is used",
2443  "database with OID %u must be vacuumed before %u more MultiXactIds are used",
2444  multiWrapLimit - curMulti,
2445  oldest_datoid,
2446  multiWrapLimit - curMulti),
2447  errhint("To avoid MultiXactId assignment failures, execute a database-wide VACUUM in that database.\n"
2448  "You might also need to commit or roll back old prepared transactions, or drop stale replication slots.")));
2449  }
2450 }
2451 
2452 /*
2453  * Ensure the next-to-be-assigned MultiXactId is at least minMulti,
2454  * and similarly nextOffset is at least minMultiOffset.
2455  *
2456  * This is used when we can determine minimum safe values from an XLog
2457  * record (either an on-line checkpoint or an mxact creation log entry).
2458  * Although this is only called during XLog replay, we take the lock in case
2459  * any hot-standby backends are examining the values.
2460  */
2461 void
2463  MultiXactOffset minMultiOffset)
2464 {
2465  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2467  {
2468  debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
2469  MultiXactState->nextMXact = minMulti;
2470  }
2471  if (MultiXactOffsetPrecedes(MultiXactState->nextOffset, minMultiOffset))
2472  {
2473  debug_elog3(DEBUG2, "MultiXact: setting next offset to %u",
2474  minMultiOffset);
2475  MultiXactState->nextOffset = minMultiOffset;
2476  }
2477  LWLockRelease(MultiXactGenLock);
2478 }
2479 
2480 /*
2481  * Update our oldestMultiXactId value, but only if it's more recent than what
2482  * we had.
2483  *
2484  * This may only be called during WAL replay.
2485  */
2486 void
2487 MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
2488 {
2489  Assert(InRecovery);
2490 
2492  SetMultiXactIdLimit(oldestMulti, oldestMultiDB, false);
2493 }
2494 
2495 /*
2496  * Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
2497  *
2498  * NB: this is called while holding MultiXactGenLock. We want it to be very
2499  * fast most of the time; even when it's not so fast, no actual I/O need
2500  * happen unless we're forced to write out a dirty log or xlog page to make
2501  * room in shared memory.
2502  */
2503 static void
2505 {
2506  int64 pageno;
2507  LWLock *lock;
2508 
2509  /*
2510  * No work except at first MultiXactId of a page. But beware: just after
2511  * wraparound, the first MultiXactId of page zero is FirstMultiXactId.
2512  */
2513  if (MultiXactIdToOffsetEntry(multi) != 0 &&
2514  multi != FirstMultiXactId)
2515  return;
2516 
2517  pageno = MultiXactIdToOffsetPage(multi);
2518  lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
2519 
2520  LWLockAcquire(lock, LW_EXCLUSIVE);
2521 
2522  /* Zero the page and make an XLOG entry about it */
2523  ZeroMultiXactOffsetPage(pageno, true);
2524 
2525  LWLockRelease(lock);
2526 }
2527 
2528 /*
2529  * Make sure that MultiXactMember has room for the members of a newly-
2530  * allocated MultiXactId.
2531  *
2532  * Like the above routine, this is called while holding MultiXactGenLock;
2533  * same comments apply.
2534  */
2535 static void
2537 {
2538  /*
2539  * It's possible that the members span more than one page of the members
2540  * file, so we loop to ensure we consider each page. The coding is not
2541  * optimal if the members span several pages, but that seems unusual
2542  * enough to not worry much about.
2543  */
2544  while (nmembers > 0)
2545  {
2546  int flagsoff;
2547  int flagsbit;
2549 
2550  /*
2551  * Only zero when at first entry of a page.
2552  */
2553  flagsoff = MXOffsetToFlagsOffset(offset);
2554  flagsbit = MXOffsetToFlagsBitShift(offset);
2555  if (flagsoff == 0 && flagsbit == 0)
2556  {
2557  int64 pageno;
2558  LWLock *lock;
2559 
2560  pageno = MXOffsetToMemberPage(offset);
2561  lock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
2562 
2563  LWLockAcquire(lock, LW_EXCLUSIVE);
2564 
2565  /* Zero the page and make an XLOG entry about it */
2566  ZeroMultiXactMemberPage(pageno, true);
2567 
2568  LWLockRelease(lock);
2569  }
2570 
2571  /*
2572  * Compute the number of items till end of current page. Careful: if
2573  * addition of unsigned ints wraps around, we're at the last page of
2574  * the last segment; since that page holds a different number of items
2575  * than other pages, we need to do it differently.
2576  */
2577  if (offset + MAX_MEMBERS_IN_LAST_MEMBERS_PAGE < offset)
2578  {
2579  /*
2580  * This is the last page of the last segment; we can compute the
2581  * number of items left to allocate in it without modulo
2582  * arithmetic.
2583  */
2584  difference = MaxMultiXactOffset - offset + 1;
2585  }
2586  else
2588 
2589  /*
2590  * Advance to next page, taking care to properly handle the wraparound
2591  * case. OK if nmembers goes negative.
2592  */
2593  nmembers -= difference;
2594  offset += difference;
2595  }
2596 }
2597 
2598 /*
2599  * GetOldestMultiXactId
2600  *
2601  * Return the oldest MultiXactId that's still possibly still seen as live by
2602  * any running transaction. Older ones might still exist on disk, but they no
2603  * longer have any running member transaction.
2604  *
2605  * It's not safe to truncate MultiXact SLRU segments on the value returned by
2606  * this function; however, it can be set as the new relminmxid for any table
2607  * that VACUUM knows has no remaining MXIDs < the same value. It is only safe
2608  * to truncate SLRUs when no table can possibly still have a referencing MXID.
2609  */
2612 {
2613  MultiXactId oldestMXact;
2614  MultiXactId nextMXact;
2615  int i;
2616 
2617  /*
2618  * This is the oldest valid value among all the OldestMemberMXactId[] and
2619  * OldestVisibleMXactId[] entries, or nextMXact if none are valid.
2620  */
2621  LWLockAcquire(MultiXactGenLock, LW_SHARED);
2622 
2623  /*
2624  * We have to beware of the possibility that nextMXact is in the
2625  * wrapped-around state. We don't fix the counter itself here, but we
2626  * must be sure to use a valid value in our calculation.
2627  */
2628  nextMXact = MultiXactState->nextMXact;
2629  if (nextMXact < FirstMultiXactId)
2630  nextMXact = FirstMultiXactId;
2631 
2632  oldestMXact = nextMXact;
2633  for (i = 0; i < MaxOldestSlot; i++)
2634  {
2635  MultiXactId thisoldest;
2636 
2637  thisoldest = OldestMemberMXactId[i];
2638  if (MultiXactIdIsValid(thisoldest) &&
2639  MultiXactIdPrecedes(thisoldest, oldestMXact))
2640  oldestMXact = thisoldest;
2641  thisoldest = OldestVisibleMXactId[i];
2642  if (MultiXactIdIsValid(thisoldest) &&
2643  MultiXactIdPrecedes(thisoldest, oldestMXact))
2644  oldestMXact = thisoldest;
2645  }
2646 
2647  LWLockRelease(MultiXactGenLock);
2648 
2649  return oldestMXact;
2650 }
2651 
2652 /*
2653  * Determine how aggressively we need to vacuum in order to prevent member
2654  * wraparound.
2655  *
2656  * To do so determine what's the oldest member offset and install the limit
2657  * info in MultiXactState, where it can be used to prevent overrun of old data
2658  * in the members SLRU area.
2659  *
2660  * The return value is true if emergency autovacuum is required and false
2661  * otherwise.
2662  */
2663 static bool
2664 SetOffsetVacuumLimit(bool is_startup)
2665 {
2666  MultiXactId oldestMultiXactId;
2667  MultiXactId nextMXact;
2668  MultiXactOffset oldestOffset = 0; /* placate compiler */
2669  MultiXactOffset prevOldestOffset;
2670  MultiXactOffset nextOffset;
2671  bool oldestOffsetKnown = false;
2672  bool prevOldestOffsetKnown;
2673  MultiXactOffset offsetStopLimit = 0;
2674  MultiXactOffset prevOffsetStopLimit;
2675 
2676  /*
2677  * NB: Have to prevent concurrent truncation, we might otherwise try to
2678  * lookup an oldestMulti that's concurrently getting truncated away.
2679  */
2680  LWLockAcquire(MultiXactTruncationLock, LW_SHARED);
2681 
2682  /* Read relevant fields from shared memory. */
2683  LWLockAcquire(MultiXactGenLock, LW_SHARED);
2684  oldestMultiXactId = MultiXactState->oldestMultiXactId;
2685  nextMXact = MultiXactState->nextMXact;
2686  nextOffset = MultiXactState->nextOffset;
2687  prevOldestOffsetKnown = MultiXactState->oldestOffsetKnown;
2688  prevOldestOffset = MultiXactState->oldestOffset;
2689  prevOffsetStopLimit = MultiXactState->offsetStopLimit;
2691  LWLockRelease(MultiXactGenLock);
2692 
2693  /*
2694  * Determine the offset of the oldest multixact. Normally, we can read
2695  * the offset from the multixact itself, but there's an important special
2696  * case: if there are no multixacts in existence at all, oldestMXact
2697  * obviously can't point to one. It will instead point to the multixact
2698  * ID that will be assigned the next time one is needed.
2699  */
2700  if (oldestMultiXactId == nextMXact)
2701  {
2702  /*
2703  * When the next multixact gets created, it will be stored at the next
2704  * offset.
2705  */
2706  oldestOffset = nextOffset;
2707  oldestOffsetKnown = true;
2708  }
2709  else
2710  {
2711  /*
2712  * Figure out where the oldest existing multixact's offsets are
2713  * stored. Due to bugs in early release of PostgreSQL 9.3.X and 9.4.X,
2714  * the supposedly-earliest multixact might not really exist. We are
2715  * careful not to fail in that case.
2716  */
2717  oldestOffsetKnown =
2718  find_multixact_start(oldestMultiXactId, &oldestOffset);
2719 
2720  if (oldestOffsetKnown)
2721  ereport(DEBUG1,
2722  (errmsg_internal("oldest MultiXactId member is at offset %u",
2723  oldestOffset)));
2724  else
2725  ereport(LOG,
2726  (errmsg("MultiXact member wraparound protections are disabled because oldest checkpointed MultiXact %u does not exist on disk",
2727  oldestMultiXactId)));
2728  }
2729 
2730  LWLockRelease(MultiXactTruncationLock);
2731 
2732  /*
2733  * If we can, compute limits (and install them MultiXactState) to prevent
2734  * overrun of old data in the members SLRU area. We can only do so if the
2735  * oldest offset is known though.
2736  */
2737  if (oldestOffsetKnown)
2738  {
2739  /* move back to start of the corresponding segment */
2740  offsetStopLimit = oldestOffset - (oldestOffset %
2742 
2743  /* always leave one segment before the wraparound point */
2744  offsetStopLimit -= (MULTIXACT_MEMBERS_PER_PAGE * SLRU_PAGES_PER_SEGMENT);
2745 
2746  if (!prevOldestOffsetKnown && !is_startup)
2747  ereport(LOG,
2748  (errmsg("MultiXact member wraparound protections are now enabled")));
2749 
2750  ereport(DEBUG1,
2751  (errmsg_internal("MultiXact member stop limit is now %u based on MultiXact %u",
2752  offsetStopLimit, oldestMultiXactId)));
2753  }
2754  else if (prevOldestOffsetKnown)
2755  {
2756  /*
2757  * If we failed to get the oldest offset this time, but we have a
2758  * value from a previous pass through this function, use the old
2759  * values rather than automatically forcing an emergency autovacuum
2760  * cycle again.
2761  */
2762  oldestOffset = prevOldestOffset;
2763  oldestOffsetKnown = true;
2764  offsetStopLimit = prevOffsetStopLimit;
2765  }
2766 
2767  /* Install the computed values */
2768  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
2769  MultiXactState->oldestOffset = oldestOffset;
2770  MultiXactState->oldestOffsetKnown = oldestOffsetKnown;
2771  MultiXactState->offsetStopLimit = offsetStopLimit;
2772  LWLockRelease(MultiXactGenLock);
2773 
2774  /*
2775  * Do we need an emergency autovacuum? If we're not sure, assume yes.
2776  */
2777  return !oldestOffsetKnown ||
2778  (nextOffset - oldestOffset > MULTIXACT_MEMBER_SAFE_THRESHOLD);
2779 }
2780 
2781 /*
2782  * Return whether adding "distance" to "start" would move past "boundary".
2783  *
2784  * We use this to determine whether the addition is "wrapping around" the
2785  * boundary point, hence the name. The reason we don't want to use the regular
2786  * 2^31-modulo arithmetic here is that we want to be able to use the whole of
2787  * the 2^32-1 space here, allowing for more multixacts than would fit
2788  * otherwise.
2789  */
2790 static bool
2792  uint32 distance)
2793 {
2794  MultiXactOffset finish;
2795 
2796  /*
2797  * Note that offset number 0 is not used (see GetMultiXactIdMembers), so
2798  * if the addition wraps around the UINT_MAX boundary, skip that value.
2799  */
2800  finish = start + distance;
2801  if (finish < start)
2802  finish++;
2803 
2804  /*-----------------------------------------------------------------------
2805  * When the boundary is numerically greater than the starting point, any
2806  * value numerically between the two is not wrapped:
2807  *
2808  * <----S----B---->
2809  * [---) = F wrapped past B (and UINT_MAX)
2810  * [---) = F not wrapped
2811  * [----] = F wrapped past B
2812  *
2813  * When the boundary is numerically less than the starting point (i.e. the
2814  * UINT_MAX wraparound occurs somewhere in between) then all values in
2815  * between are wrapped:
2816  *
2817  * <----B----S---->
2818  * [---) = F not wrapped past B (but wrapped past UINT_MAX)
2819  * [---) = F wrapped past B (and UINT_MAX)
2820  * [----] = F not wrapped
2821  *-----------------------------------------------------------------------
2822  */
2823  if (start < boundary)
2824  return finish >= boundary || finish < start;
2825  else
2826  return finish >= boundary && finish < start;
2827 }
2828 
2829 /*
2830  * Find the starting offset of the given MultiXactId.
2831  *
2832  * Returns false if the file containing the multi does not exist on disk.
2833  * Otherwise, returns true and sets *result to the starting member offset.
2834  *
2835  * This function does not prevent concurrent truncation, so if that's
2836  * required, the caller has to protect against that.
2837  */
2838 static bool
2840 {
2841  MultiXactOffset offset;
2842  int64 pageno;
2843  int entryno;
2844  int slotno;
2845  MultiXactOffset *offptr;
2846 
2848 
2849  pageno = MultiXactIdToOffsetPage(multi);
2850  entryno = MultiXactIdToOffsetEntry(multi);
2851 
2852  /*
2853  * Write out dirty data, so PhysicalPageExists can work correctly.
2854  */
2857 
2859  return false;
2860 
2861  /* lock is acquired by SimpleLruReadPage_ReadOnly */
2862  slotno = SimpleLruReadPage_ReadOnly(MultiXactOffsetCtl, pageno, multi);
2863  offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
2864  offptr += entryno;
2865  offset = *offptr;
2867 
2868  *result = offset;
2869  return true;
2870 }
2871 
2872 /*
2873  * Determine how many multixacts, and how many multixact members, currently
2874  * exist. Return false if unable to determine.
2875  */
2876 static bool
2878 {
2879  MultiXactOffset nextOffset;
2880  MultiXactOffset oldestOffset;
2881  MultiXactId oldestMultiXactId;
2882  MultiXactId nextMultiXactId;
2883  bool oldestOffsetKnown;
2884 
2885  LWLockAcquire(MultiXactGenLock, LW_SHARED);
2886  nextOffset = MultiXactState->nextOffset;
2887  oldestMultiXactId = MultiXactState->oldestMultiXactId;
2888  nextMultiXactId = MultiXactState->nextMXact;
2889  oldestOffset = MultiXactState->oldestOffset;
2890  oldestOffsetKnown = MultiXactState->oldestOffsetKnown;
2891  LWLockRelease(MultiXactGenLock);
2892 
2893  if (!oldestOffsetKnown)
2894  return false;
2895 
2896  *members = nextOffset - oldestOffset;
2897  *multixacts = nextMultiXactId - oldestMultiXactId;
2898  return true;
2899 }
2900 
2901 /*
2902  * Multixact members can be removed once the multixacts that refer to them
2903  * are older than every datminmxid. autovacuum_multixact_freeze_max_age and
2904  * vacuum_multixact_freeze_table_age work together to make sure we never have
2905  * too many multixacts; we hope that, at least under normal circumstances,
2906  * this will also be sufficient to keep us from using too many offsets.
2907  * However, if the average multixact has many members, we might exhaust the
2908  * members space while still using few enough members that these limits fail
2909  * to trigger relminmxid advancement by VACUUM. At that point, we'd have no
2910  * choice but to start failing multixact-creating operations with an error.
2911  *
2912  * To prevent that, if more than a threshold portion of the members space is
2913  * used, we effectively reduce autovacuum_multixact_freeze_max_age and
2914  * to a value just less than the number of multixacts in use. We hope that
2915  * this will quickly trigger autovacuuming on the table or tables with the
2916  * oldest relminmxid, thus allowing datminmxid values to advance and removing
2917  * some members.
2918  *
2919  * As the fraction of the member space currently in use grows, we become
2920  * more aggressive in clamping this value. That not only causes autovacuum
2921  * to ramp up, but also makes any manual vacuums the user issues more
2922  * aggressive. This happens because vacuum_get_cutoffs() will clamp the
2923  * freeze table and the minimum freeze age cutoffs based on the effective
2924  * autovacuum_multixact_freeze_max_age this function returns. In the worst
2925  * case, we'll claim the freeze_max_age to zero, and every vacuum of any
2926  * table will freeze every multixact.
2927  */
2928 int
2930 {
2931  MultiXactOffset members;
2932  uint32 multixacts;
2933  uint32 victim_multixacts;
2934  double fraction;
2935 
2936  /* If we can't determine member space utilization, assume the worst. */
2937  if (!ReadMultiXactCounts(&multixacts, &members))
2938  return 0;
2939 
2940  /* If member space utilization is low, no special action is required. */
2941  if (members <= MULTIXACT_MEMBER_SAFE_THRESHOLD)
2943 
2944  /*
2945  * Compute a target for relminmxid advancement. The number of multixacts
2946  * we try to eliminate from the system is based on how far we are past
2947  * MULTIXACT_MEMBER_SAFE_THRESHOLD.
2948  */
2949  fraction = (double) (members - MULTIXACT_MEMBER_SAFE_THRESHOLD) /
2951  victim_multixacts = multixacts * fraction;
2952 
2953  /* fraction could be > 1.0, but lowest possible freeze age is zero */
2954  if (victim_multixacts > multixacts)
2955  return 0;
2956  return multixacts - victim_multixacts;
2957 }
2958 
2959 typedef struct mxtruncinfo
2960 {
2963 
2964 /*
2965  * SlruScanDirectory callback
2966  * This callback determines the earliest existing page number.
2967  */
2968 static bool
2969 SlruScanDirCbFindEarliest(SlruCtl ctl, char *filename, int64 segpage, void *data)
2970 {
2971  mxtruncinfo *trunc = (mxtruncinfo *) data;
2972 
2973  if (trunc->earliestExistingPage == -1 ||
2974  ctl->PagePrecedes(segpage, trunc->earliestExistingPage))
2975  {
2976  trunc->earliestExistingPage = segpage;
2977  }
2978 
2979  return false; /* keep going */
2980 }
2981 
2982 
2983 /*
2984  * Delete members segments [oldest, newOldest)
2985  *
2986  * The members SLRU can, in contrast to the offsets one, be filled to almost
2987  * the full range at once. This means SimpleLruTruncate() can't trivially be
2988  * used - instead the to-be-deleted range is computed using the offsets
2989  * SLRU. C.f. TruncateMultiXact().
2990  */
2991 static void
2993 {
2994  const int maxsegment = MXOffsetToMemberSegment(MaxMultiXactOffset);
2995  int startsegment = MXOffsetToMemberSegment(oldestOffset);
2996  int endsegment = MXOffsetToMemberSegment(newOldestOffset);
2997  int segment = startsegment;
2998 
2999  /*
3000  * Delete all the segments but the last one. The last segment can still
3001  * contain, possibly partially, valid data.
3002  */
3003  while (segment != endsegment)
3004  {
3005  elog(DEBUG2, "truncating multixact members segment %x", segment);
3007 
3008  /* move to next segment, handling wraparound correctly */
3009  if (segment == maxsegment)
3010  segment = 0;
3011  else
3012  segment += 1;
3013  }
3014 }
3015 
3016 /*
3017  * Delete offsets segments [oldest, newOldest)
3018  */
3019 static void
3021 {
3022  /*
3023  * We step back one multixact to avoid passing a cutoff page that hasn't
3024  * been created yet in the rare case that oldestMulti would be the first
3025  * item on a page and oldestMulti == nextMulti. In that case, if we
3026  * didn't subtract one, we'd trigger SimpleLruTruncate's wraparound
3027  * detection.
3028  */
3030  MultiXactIdToOffsetPage(PreviousMultiXactId(newOldestMulti)));
3031 }
3032 
3033 /*
3034  * Remove all MultiXactOffset and MultiXactMember segments before the oldest
3035  * ones still of interest.
3036  *
3037  * This is only called on a primary as part of vacuum (via
3038  * vac_truncate_clog()). During recovery truncation is done by replaying
3039  * truncation WAL records logged here.
3040  *
3041  * newOldestMulti is the oldest currently required multixact, newOldestMultiDB
3042  * is one of the databases preventing newOldestMulti from increasing.
3043  */
3044 void
3045 TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
3046 {
3047  MultiXactId oldestMulti;
3048  MultiXactId nextMulti;
3049  MultiXactOffset newOldestOffset;
3050  MultiXactOffset oldestOffset;
3051  MultiXactOffset nextOffset;
3052  mxtruncinfo trunc;
3053  MultiXactId earliest;
3054 
3057 
3058  /*
3059  * We can only allow one truncation to happen at once. Otherwise parts of
3060  * members might vanish while we're doing lookups or similar. There's no
3061  * need to have an interlock with creating new multis or such, since those
3062  * are constrained by the limits (which only grow, never shrink).
3063  */
3064  LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
3065 
3066  LWLockAcquire(MultiXactGenLock, LW_SHARED);
3067  nextMulti = MultiXactState->nextMXact;
3068  nextOffset = MultiXactState->nextOffset;
3069  oldestMulti = MultiXactState->oldestMultiXactId;
3070  LWLockRelease(MultiXactGenLock);
3071  Assert(MultiXactIdIsValid(oldestMulti));
3072 
3073  /*
3074  * Make sure to only attempt truncation if there's values to truncate
3075  * away. In normal processing values shouldn't go backwards, but there's
3076  * some corner cases (due to bugs) where that's possible.
3077  */
3078  if (MultiXactIdPrecedesOrEquals(newOldestMulti, oldestMulti))
3079  {
3080  LWLockRelease(MultiXactTruncationLock);
3081  return;
3082  }
3083 
3084  /*
3085  * Note we can't just plow ahead with the truncation; it's possible that
3086  * there are no segments to truncate, which is a problem because we are
3087  * going to attempt to read the offsets page to determine where to
3088  * truncate the members SLRU. So we first scan the directory to determine
3089  * the earliest offsets page number that we can read without error.
3090  *
3091  * When nextMXact is less than one segment away from multiWrapLimit,
3092  * SlruScanDirCbFindEarliest can find some early segment other than the
3093  * actual earliest. (MultiXactOffsetPagePrecedes(EARLIEST, LATEST)
3094  * returns false, because not all pairs of entries have the same answer.)
3095  * That can also arise when an earlier truncation attempt failed unlink()
3096  * or returned early from this function. The only consequence is
3097  * returning early, which wastes space that we could have liberated.
3098  *
3099  * NB: It's also possible that the page that oldestMulti is on has already
3100  * been truncated away, and we crashed before updating oldestMulti.
3101  */
3102  trunc.earliestExistingPage = -1;
3105  if (earliest < FirstMultiXactId)
3106  earliest = FirstMultiXactId;
3107 
3108  /* If there's nothing to remove, we can bail out early. */
3109  if (MultiXactIdPrecedes(oldestMulti, earliest))
3110  {
3111  LWLockRelease(MultiXactTruncationLock);
3112  return;
3113  }
3114 
3115  /*
3116  * First, compute the safe truncation point for MultiXactMember. This is
3117  * the starting offset of the oldest multixact.
3118  *
3119  * Hopefully, find_multixact_start will always work here, because we've
3120  * already checked that it doesn't precede the earliest MultiXact on disk.
3121  * But if it fails, don't truncate anything, and log a message.
3122  */
3123  if (oldestMulti == nextMulti)
3124  {
3125  /* there are NO MultiXacts */
3126  oldestOffset = nextOffset;
3127  }
3128  else if (!find_multixact_start(oldestMulti, &oldestOffset))
3129  {
3130  ereport(LOG,
3131  (errmsg("oldest MultiXact %u not found, earliest MultiXact %u, skipping truncation",
3132  oldestMulti, earliest)));
3133  LWLockRelease(MultiXactTruncationLock);
3134  return;
3135  }
3136 
3137  /*
3138  * Secondly compute up to where to truncate. Lookup the corresponding
3139  * member offset for newOldestMulti for that.
3140  */
3141  if (newOldestMulti == nextMulti)
3142  {
3143  /* there are NO MultiXacts */
3144  newOldestOffset = nextOffset;
3145  }
3146  else if (!find_multixact_start(newOldestMulti, &newOldestOffset))
3147  {
3148  ereport(LOG,
3149  (errmsg("cannot truncate up to MultiXact %u because it does not exist on disk, skipping truncation",
3150  newOldestMulti)));
3151  LWLockRelease(MultiXactTruncationLock);
3152  return;
3153  }
3154 
3155  elog(DEBUG1, "performing multixact truncation: "
3156  "offsets [%u, %u), offsets segments [%x, %x), "
3157  "members [%u, %u), members segments [%x, %x)",
3158  oldestMulti, newOldestMulti,
3159  MultiXactIdToOffsetSegment(oldestMulti),
3160  MultiXactIdToOffsetSegment(newOldestMulti),
3161  oldestOffset, newOldestOffset,
3162  MXOffsetToMemberSegment(oldestOffset),
3163  MXOffsetToMemberSegment(newOldestOffset));
3164 
3165  /*
3166  * Do truncation, and the WAL logging of the truncation, in a critical
3167  * section. That way offsets/members cannot get out of sync anymore, i.e.
3168  * once consistent the newOldestMulti will always exist in members, even
3169  * if we crashed in the wrong moment.
3170  */
3172 
3173  /*
3174  * Prevent checkpoints from being scheduled concurrently. This is critical
3175  * because otherwise a truncation record might not be replayed after a
3176  * crash/basebackup, even though the state of the data directory would
3177  * require it.
3178  */
3181 
3182  /* WAL log truncation */
3183  WriteMTruncateXlogRec(newOldestMultiDB,
3184  oldestMulti, newOldestMulti,
3185  oldestOffset, newOldestOffset);
3186 
3187  /*
3188  * Update in-memory limits before performing the truncation, while inside
3189  * the critical section: Have to do it before truncation, to prevent
3190  * concurrent lookups of those values. Has to be inside the critical
3191  * section as otherwise a future call to this function would error out,
3192  * while looking up the oldest member in offsets, if our caller crashes
3193  * before updating the limits.
3194  */
3195  LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
3196  MultiXactState->oldestMultiXactId = newOldestMulti;
3197  MultiXactState->oldestMultiXactDB = newOldestMultiDB;
3198  LWLockRelease(MultiXactGenLock);
3199 
3200  /* First truncate members */
3201  PerformMembersTruncation(oldestOffset, newOldestOffset);
3202 
3203  /* Then offsets */
3204  PerformOffsetsTruncation(oldestMulti, newOldestMulti);
3205 
3207 
3208  END_CRIT_SECTION();
3209  LWLockRelease(MultiXactTruncationLock);
3210 }
3211 
3212 /*
3213  * Decide whether a MultiXactOffset page number is "older" for truncation
3214  * purposes. Analogous to CLOGPagePrecedes().
3215  *
3216  * Offsetting the values is optional, because MultiXactIdPrecedes() has
3217  * translational symmetry.
3218  */
3219 static bool
3220 MultiXactOffsetPagePrecedes(int64 page1, int64 page2)
3221 {
3222  MultiXactId multi1;
3223  MultiXactId multi2;
3224 
3225  multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
3226  multi1 += FirstMultiXactId + 1;
3227  multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
3228  multi2 += FirstMultiXactId + 1;
3229 
3230  return (MultiXactIdPrecedes(multi1, multi2) &&
3231  MultiXactIdPrecedes(multi1,
3232  multi2 + MULTIXACT_OFFSETS_PER_PAGE - 1));
3233 }
3234 
3235 /*
3236  * Decide whether a MultiXactMember page number is "older" for truncation
3237  * purposes. There is no "invalid offset number" so use the numbers verbatim.
3238  */
3239 static bool
3240 MultiXactMemberPagePrecedes(int64 page1, int64 page2)
3241 {
3242  MultiXactOffset offset1;
3243  MultiXactOffset offset2;
3244 
3245  offset1 = ((MultiXactOffset) page1) * MULTIXACT_MEMBERS_PER_PAGE;
3246  offset2 = ((MultiXactOffset) page2) * MULTIXACT_MEMBERS_PER_PAGE;
3247 
3248  return (MultiXactOffsetPrecedes(offset1, offset2) &&
3249  MultiXactOffsetPrecedes(offset1,
3250  offset2 + MULTIXACT_MEMBERS_PER_PAGE - 1));
3251 }
3252 
3253 /*
3254  * Decide which of two MultiXactIds is earlier.
3255  *
3256  * XXX do we need to do something special for InvalidMultiXactId?
3257  * (Doesn't look like it.)
3258  */
3259 bool
3261 {
3262  int32 diff = (int32) (multi1 - multi2);
3263 
3264  return (diff < 0);
3265 }
3266 
3267 /*
3268  * MultiXactIdPrecedesOrEquals -- is multi1 logically <= multi2?
3269  *
3270  * XXX do we need to do something special for InvalidMultiXactId?
3271  * (Doesn't look like it.)
3272  */
3273 bool
3275 {
3276  int32 diff = (int32) (multi1 - multi2);
3277 
3278  return (diff <= 0);
3279 }
3280 
3281 
3282 /*
3283  * Decide which of two offsets is earlier.
3284  */
3285 static bool
3287 {
3288  int32 diff = (int32) (offset1 - offset2);
3289 
3290  return (diff < 0);
3291 }
3292 
3293 /*
3294  * Write an xlog record reflecting the zeroing of either a MEMBERs or
3295  * OFFSETs page (info shows which)
3296  */
3297 static void
3298 WriteMZeroPageXlogRec(int64 pageno, uint8 info)
3299 {
3300  XLogBeginInsert();
3301  XLogRegisterData((char *) (&pageno), sizeof(pageno));
3302  (void) XLogInsert(RM_MULTIXACT_ID, info);
3303 }
3304 
3305 /*
3306  * Write a TRUNCATE xlog record
3307  *
3308  * We must flush the xlog record to disk before returning --- see notes in
3309  * TruncateCLOG().
3310  */
3311 static void
3313  MultiXactId startTruncOff, MultiXactId endTruncOff,
3314  MultiXactOffset startTruncMemb, MultiXactOffset endTruncMemb)
3315 {
3316  XLogRecPtr recptr;
3317  xl_multixact_truncate xlrec;
3318 
3319  xlrec.oldestMultiDB = oldestMultiDB;
3320 
3321  xlrec.startTruncOff = startTruncOff;
3322  xlrec.endTruncOff = endTruncOff;
3323 
3324  xlrec.startTruncMemb = startTruncMemb;
3325  xlrec.endTruncMemb = endTruncMemb;
3326 
3327  XLogBeginInsert();
3328  XLogRegisterData((char *) (&xlrec), SizeOfMultiXactTruncate);
3329  recptr = XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_TRUNCATE_ID);
3330  XLogFlush(recptr);
3331 }
3332 
3333 /*
3334  * MULTIXACT resource manager's routines
3335  */
3336 void
3338 {
3339  uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
3340 
3341  /* Backup blocks are not used in multixact records */
3342  Assert(!XLogRecHasAnyBlockRefs(record));
3343 
3344  if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
3345  {
3346  int64 pageno;
3347  int slotno;
3348  LWLock *lock;
3349 
3350  memcpy(&pageno, XLogRecGetData(record), sizeof(pageno));
3351 
3352  lock = SimpleLruGetBankLock(MultiXactOffsetCtl, pageno);
3353  LWLockAcquire(lock, LW_EXCLUSIVE);
3354 
3355  slotno = ZeroMultiXactOffsetPage(pageno, false);
3357  Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
3358 
3359  LWLockRelease(lock);
3360  }
3361  else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
3362  {
3363  int64 pageno;
3364  int slotno;
3365  LWLock *lock;
3366 
3367  memcpy(&pageno, XLogRecGetData(record), sizeof(pageno));
3368 
3369  lock = SimpleLruGetBankLock(MultiXactMemberCtl, pageno);
3370  LWLockAcquire(lock, LW_EXCLUSIVE);
3371 
3372  slotno = ZeroMultiXactMemberPage(pageno, false);
3374  Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
3375 
3376  LWLockRelease(lock);
3377  }
3378  else if (info == XLOG_MULTIXACT_CREATE_ID)
3379  {
3380  xl_multixact_create *xlrec =
3381  (xl_multixact_create *) XLogRecGetData(record);
3382  TransactionId max_xid;
3383  int i;
3384 
3385  /* Store the data back into the SLRU files */
3386  RecordNewMultiXact(xlrec->mid, xlrec->moff, xlrec->nmembers,
3387  xlrec->members);
3388 
3389  /* Make sure nextMXact/nextOffset are beyond what this record has */
3390  MultiXactAdvanceNextMXact(xlrec->mid + 1,
3391  xlrec->moff + xlrec->nmembers);
3392 
3393  /*
3394  * Make sure nextXid is beyond any XID mentioned in the record. This
3395  * should be unnecessary, since any XID found here ought to have other
3396  * evidence in the XLOG, but let's be safe.
3397  */
3398  max_xid = XLogRecGetXid(record);
3399  for (i = 0; i < xlrec->nmembers; i++)
3400  {
3401  if (TransactionIdPrecedes(max_xid, xlrec->members[i].xid))
3402  max_xid = xlrec->members[i].xid;
3403  }
3404 
3406  }
3407  else if (info == XLOG_MULTIXACT_TRUNCATE_ID)
3408  {
3409  xl_multixact_truncate xlrec;
3410  int64 pageno;
3411 
3412  memcpy(&xlrec, XLogRecGetData(record),
3414 
3415  elog(DEBUG1, "replaying multixact truncation: "
3416  "offsets [%u, %u), offsets segments [%x, %x), "
3417  "members [%u, %u), members segments [%x, %x)",
3418  xlrec.startTruncOff, xlrec.endTruncOff,
3421  xlrec.startTruncMemb, xlrec.endTruncMemb,
3424 
3425  /* should not be required, but more than cheap enough */
3426  LWLockAcquire(MultiXactTruncationLock, LW_EXCLUSIVE);
3427 
3428  /*
3429  * Advance the horizon values, so they're current at the end of
3430  * recovery.
3431  */
3432  SetMultiXactIdLimit(xlrec.endTruncOff, xlrec.oldestMultiDB, false);
3433 
3435 
3436  /*
3437  * During XLOG replay, latest_page_number isn't necessarily set up
3438  * yet; insert a suitable value to bypass the sanity test in
3439  * SimpleLruTruncate.
3440  */
3441  pageno = MultiXactIdToOffsetPage(xlrec.endTruncOff);
3442  pg_atomic_write_u64(&MultiXactOffsetCtl->shared->latest_page_number,
3443  pageno);
3445 
3446  LWLockRelease(MultiXactTruncationLock);
3447  }
3448  else
3449  elog(PANIC, "multixact_redo: unknown op code %u", info);
3450 }
3451 
3452 Datum
3454 {
3455  typedef struct
3456  {
3457  MultiXactMember *members;
3458  int nmembers;
3459  int iter;
3460  } mxact;
3462  mxact *multi;
3463  FuncCallContext *funccxt;
3464 
3465  if (mxid < FirstMultiXactId)
3466  ereport(ERROR,
3467  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3468  errmsg("invalid MultiXactId: %u", mxid)));
3469 
3470  if (SRF_IS_FIRSTCALL())
3471  {
3472  MemoryContext oldcxt;
3473  TupleDesc tupdesc;
3474 
3475  funccxt = SRF_FIRSTCALL_INIT();
3476  oldcxt = MemoryContextSwitchTo(funccxt->multi_call_memory_ctx);
3477 
3478  multi = palloc(sizeof(mxact));
3479  /* no need to allow for old values here */
3480  multi->nmembers = GetMultiXactIdMembers(mxid, &multi->members, false,
3481  false);
3482  multi->iter = 0;
3483 
3484  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
3485  elog(ERROR, "return type must be a row type");
3486  funccxt->tuple_desc = tupdesc;
3487  funccxt->attinmeta = TupleDescGetAttInMetadata(tupdesc);
3488  funccxt->user_fctx = multi;
3489 
3490  MemoryContextSwitchTo(oldcxt);
3491  }
3492 
3493  funccxt = SRF_PERCALL_SETUP();
3494  multi = (mxact *) funccxt->user_fctx;
3495 
3496  while (multi->iter < multi->nmembers)
3497  {
3498  HeapTuple tuple;
3499  char *values[2];
3500 
3501  values[0] = psprintf("%u", multi->members[multi->iter].xid);
3502  values[1] = mxstatus_to_string(multi->members[multi->iter].status);
3503 
3504  tuple = BuildTupleFromCStrings(funccxt->attinmeta, values);
3505 
3506  multi->iter++;
3507  pfree(values[0]);
3508  SRF_RETURN_NEXT(funccxt, HeapTupleGetDatum(tuple));
3509  }
3510 
3511  SRF_RETURN_DONE(funccxt);
3512 }
3513 
3514 /*
3515  * Entrypoint for sync.c to sync offsets files.
3516  */
3517 int
3518 multixactoffsetssyncfiletag(const FileTag *ftag, char *path)
3519 {
3520  return SlruSyncFileTag(MultiXactOffsetCtl, ftag, path);
3521 }
3522 
3523 /*
3524  * Entrypoint for sync.c to sync members files.
3525  */
3526 int
3527 multixactmemberssyncfiletag(const FileTag *ftag, char *path)
3528 {
3529  return SlruSyncFileTag(MultiXactMemberCtl, ftag, path);
3530 }
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:480
int autovacuum_multixact_freeze_max_age
Definition: autovacuum.c:127
static int32 next
Definition: blutils.c:221
static Datum values[MAXATTR]
Definition: bootstrap.c:152
unsigned short uint16
Definition: c.h:505
unsigned int uint32
Definition: c.h:506
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
uint32 MultiXactOffset
Definition: c.h:664
TransactionId MultiXactId
Definition: c.h:662
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:398
unsigned char uint8
Definition: c.h:504
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
size_t Size
Definition: c.h:605
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
char * get_database_name(Oid dbid)
Definition: dbcommands.c:3153
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1182
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1159
int errdetail_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1297
int errhint(const char *fmt,...)
Definition: elog.c:1319
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define LOG
Definition: elog.h:31
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
Definition: execTuples.c:2222
AttInMetadata * TupleDescGetAttInMetadata(TupleDesc tupdesc)
Definition: execTuples.c:2173
#define PG_GETARG_TRANSACTIONID(n)
Definition: fmgr.h:279
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:304
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:308
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:310
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:306
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition: funcapi.h:230
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:328
Datum difference(PG_FUNCTION_ARGS)
int multixact_offset_buffers
Definition: globals.c:164
bool IsBinaryUpgrade
Definition: globals.c:118
ProcNumber MyProcNumber
Definition: globals.c:87
bool IsUnderPostmaster
Definition: globals.c:117
int multixact_member_buffers
Definition: globals.c:163
#define newval
GucSource
Definition: guc.h:108
return str start
const char * str
#define dclist_container(type, membername, ptr)
Definition: ilist.h:947
static dlist_node * dclist_tail_node(dclist_head *head)
Definition: ilist.h:920
static uint32 dclist_count(const dclist_head *head)
Definition: ilist.h:932
static void dclist_move_head(dclist_head *head, dlist_node *node)
Definition: ilist.h:808
static void dclist_delete_from(dclist_head *head, dlist_node *node)
Definition: ilist.h:763
#define DCLIST_STATIC_INIT(name)
Definition: ilist.h:282
static void dclist_push_head(dclist_head *head, dlist_node *node)
Definition: ilist.h:693
static void dclist_init(dclist_head *head)
Definition: ilist.h:671
#define dclist_foreach(iter, lhead)
Definition: ilist.h:970
int j
Definition: isn.c:74
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1170
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1783
@ LWTRANCHE_MULTIXACTOFFSET_SLRU
Definition: lwlock.h:212
@ LWTRANCHE_MULTIXACTMEMBER_SLRU
Definition: lwlock.h:211
@ LWTRANCHE_MULTIXACTMEMBER_BUFFER
Definition: lwlock.h:183
@ LWTRANCHE_MULTIXACTOFFSET_BUFFER
Definition: lwlock.h:182
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
MemoryContext TopTransactionContext
Definition: mcxt.c:154
void pfree(void *pointer)
Definition: mcxt.c:1520
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1180
char * MemoryContextStrdup(MemoryContext context, const char *string)
Definition: mcxt.c:1682
void * palloc(Size size)
Definition: mcxt.c:1316
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_SMALL_SIZES
Definition: memutils.h:170
#define START_CRIT_SECTION()
Definition: miscadmin.h:149
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define END_CRIT_SECTION()
Definition: miscadmin.h:151
#define MXOffsetToMemberPage(xid)
Definition: multixact.c:159
static void WriteMTruncateXlogRec(Oid oldestMultiDB, MultiXactId startTruncOff, MultiXactId endTruncOff, MultiXactOffset startTruncMemb, MultiXactOffset endTruncMemb)
Definition: multixact.c:3312
static SlruCtlData MultiXactOffsetCtlData
Definition: multixact.c:187
void MultiXactShmemInit(void)
Definition: multixact.c:1915
#define MULTIXACT_MEMBER_SAFE_THRESHOLD
Definition: multixact.c:177
static bool MultiXactMemberPagePrecedes(int64 page1, int64 page2)
Definition: multixact.c:3240
static MultiXactId GetNewMultiXactId(int nmembers, MultiXactOffset *offset)
Definition: multixact.c:985
static int mXactCacheGetById(MultiXactId multi, MultiXactMember **members)
Definition: multixact.c:1613
MultiXactId MultiXactIdExpand(MultiXactId multi, TransactionId xid, MultiXactStatus status)
Definition: multixact.c:445
static int ZeroMultiXactMemberPage(int64 pageno, bool writeXlog)
Definition: multixact.c:2041
#define MXACT_MEMBER_BITS_PER_XACT
Definition: multixact.c:130
static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers)
Definition: multixact.c:2536
void ReadMultiXactIdRange(MultiXactId *oldest, MultiXactId *next)
Definition: multixact.c:749
static void PerformOffsetsTruncation(MultiXactId oldestMulti, MultiXactId newOldestMulti)
Definition: multixact.c:3020
#define MXACT_MEMBER_XACT_BITMASK
Definition: multixact.c:132
#define MultiXactIdToOffsetEntry(xid)
Definition: multixact.c:113
bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3260
void multixact_redo(XLogReaderState *record)
Definition: multixact.c:3337
#define MULTIXACT_OFFSETS_PER_PAGE
Definition: multixact.c:109
#define debug_elog5(a, b, c, d, e)
Definition: multixact.c:342
static void MultiXactIdSetOldestVisible(void)
Definition: multixact.c:688
int multixactoffsetssyncfiletag(const FileTag *ftag, char *path)
Definition: multixact.c:3518
void multixact_twophase_postcommit(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: multixact.c:1871
static bool find_multixact_start(MultiXactId multi, MultiXactOffset *result)
Definition: multixact.c:2839
void MultiXactSetNextMXact(MultiXactId nextMulti, MultiXactOffset nextMultiOffset)
Definition: multixact.c:2279
void multixact_twophase_recover(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: multixact.c:1850
#define MultiXactMemberCtl
Definition: multixact.c:191
static bool SlruScanDirCbFindEarliest(SlruCtl ctl, char *filename, int64 segpage, void *data)
Definition: multixact.c:2969
void AtPrepare_MultiXact(void)
Definition: multixact.c:1787
static bool MultiXactOffsetWouldWrap(MultiXactOffset boundary, MultiXactOffset start, uint32 distance)
Definition: multixact.c:2791
bool MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3274
#define MXOffsetToFlagsBitShift(xid)
Definition: multixact.c:167
void MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
Definition: multixact.c:2487
static void mXactCachePut(MultiXactId multi, int nmembers, MultiXactMember *members)
Definition: multixact.c:1660
#define MXOffsetToFlagsOffset(xid)
Definition: multixact.c:163
static void MaybeExtendOffsetSlru(void)
Definition: multixact.c:2069
bool MultiXactIdIsRunning(MultiXactId multi, bool isLockOnly)
Definition: multixact.c:557
void MultiXactIdSetOldestMember(void)
Definition: multixact.c:631
static void PerformMembersTruncation(MultiXactOffset oldestOffset, MultiXactOffset newOldestOffset)
Definition: multixact.c:2992
static MemoryContext MXactContext
Definition: multixact.c:330
#define SHARED_MULTIXACT_STATE_SIZE
static MultiXactId * OldestVisibleMXactId
Definition: multixact.c:300
struct mxtruncinfo mxtruncinfo
static int mxactMemberComparator(const void *arg1, const void *arg2)
Definition: multixact.c:1540
struct MultiXactStateData MultiXactStateData
static void ExtendMultiXactOffset(MultiXactId multi)
Definition: multixact.c:2504
void PostPrepare_MultiXact(TransactionId xid)
Definition: multixact.c:1801
Size MultiXactShmemSize(void)
Definition: multixact.c:1898
#define MultiXactOffsetCtl
Definition: multixact.c:190
void multixact_twophase_postabort(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: multixact.c:1886
#define PreviousMultiXactId(xid)
Definition: multixact.c:181
void MultiXactGetCheckptMulti(bool is_shutdown, MultiXactId *nextMulti, MultiXactOffset *nextMultiOffset, MultiXactId *oldestMulti, Oid *oldestMultiDB)
Definition: multixact.c:2233
static void WriteMZeroPageXlogRec(int64 pageno, uint8 info)
Definition: multixact.c:3298
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid, bool is_startup)
Definition: multixact.c:2313
static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset, int nmembers, MultiXactMember *members)
Definition: multixact.c:869
int multixactmemberssyncfiletag(const FileTag *ftag, char *path)
Definition: multixact.c:3527
#define MAX_CACHE_ENTRIES
Definition: multixact.c:328
#define MXOffsetToMemberOffset(xid)
Definition: multixact.c:172
MultiXactId GetOldestMultiXactId(void)
Definition: multixact.c:2611
void CheckPointMultiXact(void)
Definition: multixact.c:2255
#define MaxOldestSlot
Definition: multixact.c:295
MultiXactId MultiXactIdCreateFromMembers(int nmembers, MultiXactMember *members)
Definition: multixact.c:773
static bool ReadMultiXactCounts(uint32 *multixacts, MultiXactOffset *members)
Definition: multixact.c:2877
struct mXactCacheEnt mXactCacheEnt
static MultiXactId mXactCacheGetBySet(int nmembers, MultiXactMember *members)
Definition: multixact.c:1570
static dclist_head MXactCache
Definition: multixact.c:329
#define MXOffsetToMemberSegment(xid)
Definition: multixact.c:160
void TrimMultiXact(void)
Definition: multixact.c:2129
char * mxid_to_string(MultiXactId multi, int nmembers, MultiXactMember *members)
Definition: multixact.c:1728
#define debug_elog3(a, b, c)
Definition: multixact.c:340
#define debug_elog4(a, b, c, d)
Definition: multixact.c:341
static bool MultiXactOffsetPagePrecedes(int64 page1, int64 page2)
Definition: multixact.c:3220
static bool SetOffsetVacuumLimit(bool is_startup)
Definition: multixact.c:2664
int MultiXactMemberFreezeThreshold(void)
Definition: multixact.c:2929
void MultiXactAdvanceNextMXact(MultiXactId minMulti, MultiXactOffset minMultiOffset)
Definition: multixact.c:2462
static MultiXactId * OldestMemberMXactId
Definition: multixact.c:299
#define MAX_MEMBERS_IN_LAST_MEMBERS_PAGE
Definition: multixact.c:155
static MultiXactStateData * MultiXactState
Definition: multixact.c:298
static int ZeroMultiXactOffsetPage(int64 pageno, bool writeXlog)
Definition: multixact.c:2025
static char * mxstatus_to_string(MultiXactStatus status)
Definition: multixact.c:1705
#define OFFSET_WARN_SEGMENTS
Datum pg_get_multixact_members(PG_FUNCTION_ARGS)
Definition: multixact.c:3453
MultiXactId ReadNextMultiXactId(void)
Definition: multixact.c:729
void BootStrapMultiXact(void)
Definition: multixact.c:1985
#define debug_elog6(a, b, c, d, e, f)
Definition: multixact.c:343
#define MULTIXACT_MEMBERS_PER_PAGE
Definition: multixact.c:142
MultiXactId MultiXactIdCreate(TransactionId xid1, MultiXactStatus status1, TransactionId xid2, MultiXactStatus status2)
Definition: multixact.c:392
void TruncateMultiXact(MultiXactId newOldestMulti, Oid newOldestMultiDB)
Definition: multixact.c:3045
#define MULTIXACT_MEMBER_DANGER_THRESHOLD
Definition: multixact.c:178
bool check_multixact_offset_buffers(int *newval, void **extra, GucSource source)
Definition: multixact.c:1965
static bool MultiXactOffsetPrecedes(MultiXactOffset offset1, MultiXactOffset offset2)
Definition: multixact.c:3286
#define MultiXactIdToOffsetSegment(xid)
Definition: multixact.c:115
bool check_multixact_member_buffers(int *newval, void **extra, GucSource source)
Definition: multixact.c:1974
void AtEOXact_MultiXact(void)
Definition: multixact.c:1759
#define MultiXactIdToOffsetPage(xid)
Definition: multixact.c:111
static SlruCtlData MultiXactMemberCtlData
Definition: multixact.c:188
#define debug_elog2(a, b)
Definition: multixact.c:339
void StartupMultiXact(void)
Definition: multixact.c:2104
int GetMultiXactIdMembers(MultiXactId multi, MultiXactMember **members, bool from_pgupgrade, bool isLockOnly)
Definition: multixact.c:1252
#define MultiXactIdIsValid(multi)
Definition: multixact.h:28
#define XLOG_MULTIXACT_ZERO_MEM_PAGE
Definition: multixact.h:69
#define XLOG_MULTIXACT_ZERO_OFF_PAGE
Definition: multixact.h:68
#define FirstMultiXactId
Definition: multixact.h:25
MultiXactStatus
Definition: multixact.h:38
@ MultiXactStatusForShare
Definition: multixact.h:40
@ MultiXactStatusForNoKeyUpdate
Definition: multixact.h:41
@ MultiXactStatusNoKeyUpdate
Definition: multixact.h:44
@ MultiXactStatusUpdate
Definition: multixact.h:46
@ MultiXactStatusForUpdate
Definition: multixact.h:42
@ MultiXactStatusForKeyShare
Definition: multixact.h:39
#define ISUPDATE_from_mxstatus(status)
Definition: multixact.h:52
#define InvalidMultiXactId
Definition: multixact.h:24
#define XLOG_MULTIXACT_TRUNCATE_ID
Definition: multixact.h:71
#define SizeOfMultiXactCreate
Definition: multixact.h:81
#define SizeOfMultiXactTruncate
Definition: multixact.h:96
#define XLOG_MULTIXACT_CREATE_ID
Definition: multixact.h:70
#define MaxMultiXactOffset
Definition: multixact.h:30
#define MaxMultiXactId
Definition: multixact.h:26
struct MultiXactMember MultiXactMember
const void size_t len
const void * data
while(p+4<=pend)
static char * filename
Definition: pg_dumpall.c:119
static rewind_source * source
Definition: pg_rewind.c:89
static char * buf
Definition: pg_test_fsync.c:73
void SendPostmasterSignal(PMSignalReason reason)
Definition: pmsignal.c:181
@ PMSIGNAL_START_AUTOVAC_LAUNCHER
Definition: pmsignal.h:38
#define qsort(a, b, c, d)
Definition: port.h:449
uintptr_t Datum
Definition: postgres.h:64
unsigned int Oid
Definition: postgres_ext.h:31
#define DELAY_CHKPT_START
Definition: proc.h:114
bool TransactionIdIsInProgress(TransactionId xid)
Definition: procarray.c:1390
int ProcNumber
Definition: procnumber.h:24
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
MemoryContextSwitchTo(old_ctx)
tree ctl
Definition: radixtree.h:1847
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
static pg_noinline void Size size
Definition: slab.c:607
void SimpleLruInit(SlruCtl ctl, const char *name, int nslots, int nlsns, const char *subdir, int buffer_tranche_id, int bank_tranche_id, SyncRequestHandler sync_handler, bool long_segment_names)
Definition: slru.c:238
int SimpleLruReadPage_ReadOnly(SlruCtl ctl, int64 pageno, TransactionId xid)
Definition: slru.c:591
void SimpleLruWritePage(SlruCtl ctl, int slotno)
Definition: slru.c:715
void SimpleLruWriteAll(SlruCtl ctl, bool allow_redirtied)
Definition: slru.c:1305
bool SimpleLruDoesPhysicalPageExist(SlruCtl ctl, int64 pageno)
Definition: slru.c:729
void SlruDeleteSegment(SlruCtl ctl, int64 segno)
Definition: slru.c:1509
bool SlruScanDirectory(SlruCtl ctl, SlruScanCallback callback, void *data)
Definition: slru.c:1774
int SimpleLruReadPage(SlruCtl ctl, int64 pageno, bool write_ok, TransactionId xid)
Definition: slru.c:488
int SlruSyncFileTag(SlruCtl ctl, const FileTag *ftag, char *path)
Definition: slru.c:1814
int SimpleLruZeroPage(SlruCtl ctl, int64 pageno)
Definition: slru.c:361
void SimpleLruTruncate(SlruCtl ctl, int64 cutoffPage)
Definition: slru.c:1391
Size SimpleLruShmemSize(int nslots, int nlsns)
Definition: slru.c:184
bool check_slru_buffers(const char *name, int *newval)
Definition: slru.c:341
static LWLock * SimpleLruGetBankLock(SlruCtl ctl, int64 pageno)
Definition: slru.h:179
#define SlruPagePrecedesUnitTests(ctl, per_page)
Definition: slru.h:203
#define SLRU_PAGES_PER_SEGMENT
Definition: slru.h:39
PGPROC * MyProc
Definition: proc.c:66
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Definition: sync.h:51
void * user_fctx
Definition: funcapi.h:82
AttInMetadata * attinmeta
Definition: funcapi.h:91
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:101
TupleDesc tuple_desc
Definition: funcapi.h:112
Definition: lwlock.h:42
TransactionId xid
Definition: multixact.h:58
MultiXactStatus status
Definition: multixact.h:59
MultiXactId multiWrapLimit
Definition: multixact.c:231
MultiXactId multiStopLimit
Definition: multixact.c:230
MultiXactId multiWarnLimit
Definition: multixact.c:229
MultiXactId multiVacLimit
Definition: multixact.c:228
MultiXactOffset offsetStopLimit
Definition: multixact.c:234
MultiXactOffset nextOffset
Definition: multixact.c:206
MultiXactId nextMXact
Definition: multixact.c:203
MultiXactId oldestMultiXactId
Definition: multixact.c:216
MultiXactId perBackendXactIds[FLEXIBLE_ARRAY_MEMBER]
Definition: multixact.c:289
MultiXactOffset oldestOffset
Definition: multixact.c:224
ConditionVariable nextoff_cv
Definition: multixact.c:240
int delayChkptFlags
Definition: proc.h:236
dlist_node * cur
Definition: ilist.h:179
MultiXactId multi
Definition: multixact.c:322
dlist_node node
Definition: multixact.c:324
MultiXactMember members[FLEXIBLE_ARRAY_MEMBER]
Definition: multixact.c:325
int64 earliestExistingPage
Definition: multixact.c:2961
MultiXactId mid
Definition: multixact.h:75
MultiXactMember members[FLEXIBLE_ARRAY_MEMBER]
Definition: multixact.h:78
MultiXactOffset moff
Definition: multixact.h:76
MultiXactId endTruncOff
Definition: multixact.h:89
MultiXactOffset startTruncMemb
Definition: multixact.h:92
MultiXactOffset endTruncMemb
Definition: multixact.h:93
MultiXactId startTruncOff
Definition: multixact.h:88
@ SYNC_HANDLER_MULTIXACT_MEMBER
Definition: sync.h:41
@ SYNC_HANDLER_MULTIXACT_OFFSET
Definition: sync.h:40
bool TransactionIdDidCommit(TransactionId transactionId)
Definition: transam.c:126
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define TransactionIdIsValid(xid)
Definition: transam.h:41
void RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info, const void *data, uint32 len)
Definition: twophase.c:1280
ProcNumber TwoPhaseGetDummyProcNumber(TransactionId xid, bool lock_held)
Definition: twophase.c:903
#define TWOPHASE_RM_MULTIXACT_ID
Definition: twophase_rmgr.h:27
void AdvanceNextFullTransactionIdPastXid(TransactionId xid)
Definition: varsup.c:304
bool IsTransactionState(void)
Definition: xact.c:384
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:938
bool RecoveryInProgress(void)
Definition: xlog.c:6290
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2791
uint64 XLogRecPtr
Definition: xlogdefs.h:21
void XLogRegisterData(char *data, uint32 len)
Definition: xloginsert.c:364
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:474
void XLogBeginInsert(void)
Definition: xloginsert.c:149
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:410
#define XLogRecGetData(decoder)
Definition: xlogreader.h:415
#define XLogRecGetXid(decoder)
Definition: xlogreader.h:412
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:417
#define XLR_INFO_MASK
Definition: xlogrecord.h:62
bool InRecovery
Definition: xlogutils.c:50