PostgreSQL Source Code  git master
rewriteheap.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * rewriteheap.c
4  * Support functions to rewrite tables.
5  *
6  * These functions provide a facility to completely rewrite a heap, while
7  * preserving visibility information and update chains.
8  *
9  * INTERFACE
10  *
11  * The caller is responsible for creating the new heap, all catalog
12  * changes, supplying the tuples to be written to the new heap, and
13  * rebuilding indexes. The caller must hold AccessExclusiveLock on the
14  * target table, because we assume no one else is writing into it.
15  *
16  * To use the facility:
17  *
18  * begin_heap_rewrite
19  * while (fetch next tuple)
20  * {
21  * if (tuple is dead)
22  * rewrite_heap_dead_tuple
23  * else
24  * {
25  * // do any transformations here if required
26  * rewrite_heap_tuple
27  * }
28  * }
29  * end_heap_rewrite
30  *
31  * The contents of the new relation shouldn't be relied on until after
32  * end_heap_rewrite is called.
33  *
34  *
35  * IMPLEMENTATION
36  *
37  * This would be a fairly trivial affair, except that we need to maintain
38  * the ctid chains that link versions of an updated tuple together.
39  * Since the newly stored tuples will have tids different from the original
40  * ones, if we just copied t_ctid fields to the new table the links would
41  * be wrong. When we are required to copy a (presumably recently-dead or
42  * delete-in-progress) tuple whose ctid doesn't point to itself, we have
43  * to substitute the correct ctid instead.
44  *
45  * For each ctid reference from A -> B, we might encounter either A first
46  * or B first. (Note that a tuple in the middle of a chain is both A and B
47  * of different pairs.)
48  *
49  * If we encounter A first, we'll store the tuple in the unresolved_tups
50  * hash table. When we later encounter B, we remove A from the hash table,
51  * fix the ctid to point to the new location of B, and insert both A and B
52  * to the new heap.
53  *
54  * If we encounter B first, we can insert B to the new heap right away.
55  * We then add an entry to the old_new_tid_map hash table showing B's
56  * original tid (in the old heap) and new tid (in the new heap).
57  * When we later encounter A, we get the new location of B from the table,
58  * and can write A immediately with the correct ctid.
59  *
60  * Entries in the hash tables can be removed as soon as the later tuple
61  * is encountered. That helps to keep the memory usage down. At the end,
62  * both tables are usually empty; we should have encountered both A and B
63  * of each pair. However, it's possible for A to be RECENTLY_DEAD and B
64  * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
65  * for deadness using OldestXmin is not exact. In such a case we might
66  * encounter B first, and skip it, and find A later. Then A would be added
67  * to unresolved_tups, and stay there until end of the rewrite. Since
68  * this case is very unusual, we don't worry about the memory usage.
69  *
70  * Using in-memory hash tables means that we use some memory for each live
71  * update chain in the table, from the time we find one end of the
72  * reference until we find the other end. That shouldn't be a problem in
73  * practice, but if you do something like an UPDATE without a where-clause
74  * on a large table, and then run CLUSTER in the same transaction, you
75  * could run out of memory. It doesn't seem worthwhile to add support for
76  * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
77  * table under normal circumstances. Furthermore, in the typical scenario
78  * of CLUSTERing on an unchanging key column, we'll see all the versions
79  * of a given tuple together anyway, and so the peak memory usage is only
80  * proportional to the number of RECENTLY_DEAD versions of a single row, not
81  * in the whole table. Note that if we do fail halfway through a CLUSTER,
82  * the old table is still valid, so failure is not catastrophic.
83  *
84  * We can't use the normal heap_insert function to insert into the new
85  * heap, because heap_insert overwrites the visibility information.
86  * We use a special-purpose raw_heap_insert function instead, which
87  * is optimized for bulk inserting a lot of tuples, knowing that we have
88  * exclusive access to the heap. raw_heap_insert builds new pages in
89  * local storage. When a page is full, or at the end of the process,
90  * we insert it to WAL as a single record and then write it to disk with
91  * the bulk smgr writer. Note, however, that any data sent to the new
92  * heap's TOAST table will go through the normal bufmgr.
93  *
94  *
95  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
96  * Portions Copyright (c) 1994-5, Regents of the University of California
97  *
98  * IDENTIFICATION
99  * src/backend/access/heap/rewriteheap.c
100  *
101  *-------------------------------------------------------------------------
102  */
103 #include "postgres.h"
104 
105 #include <unistd.h>
106 
107 #include "access/heapam.h"
108 #include "access/heapam_xlog.h"
109 #include "access/heaptoast.h"
110 #include "access/rewriteheap.h"
111 #include "access/transam.h"
112 #include "access/xact.h"
113 #include "access/xloginsert.h"
114 #include "common/file_utils.h"
115 #include "lib/ilist.h"
116 #include "miscadmin.h"
117 #include "pgstat.h"
118 #include "replication/slot.h"
119 #include "storage/bufmgr.h"
120 #include "storage/bulk_write.h"
121 #include "storage/fd.h"
122 #include "storage/procarray.h"
123 #include "utils/memutils.h"
124 #include "utils/rel.h"
125 
126 /*
127  * State associated with a rewrite operation. This is opaque to the user
128  * of the rewrite facility.
129  */
130 typedef struct RewriteStateData
131 {
132  Relation rs_old_rel; /* source heap */
133  Relation rs_new_rel; /* destination heap */
134  BulkWriteState *rs_bulkstate; /* writer for the destination */
135  BulkWriteBuffer rs_buffer; /* page currently being built */
136  BlockNumber rs_blockno; /* block where page will go */
137  bool rs_logical_rewrite; /* do we need to do logical rewriting */
138  TransactionId rs_oldest_xmin; /* oldest xmin used by caller to determine
139  * tuple visibility */
140  TransactionId rs_freeze_xid; /* Xid that will be used as freeze cutoff
141  * point */
142  TransactionId rs_logical_xmin; /* Xid that will be used as cutoff point
143  * for logical rewrites */
144  MultiXactId rs_cutoff_multi; /* MultiXactId that will be used as cutoff
145  * point for multixacts */
146  MemoryContext rs_cxt; /* for hash tables and entries and tuples in
147  * them */
148  XLogRecPtr rs_begin_lsn; /* XLogInsertLsn when starting the rewrite */
149  HTAB *rs_unresolved_tups; /* unmatched A tuples */
150  HTAB *rs_old_new_tid_map; /* unmatched B tuples */
151  HTAB *rs_logical_mappings; /* logical remapping files */
152  uint32 rs_num_rewrite_mappings; /* # in memory mappings */
154 
155 /*
156  * The lookup keys for the hash tables are tuple TID and xmin (we must check
157  * both to avoid false matches from dead tuples). Beware that there is
158  * probably some padding space in this struct; it must be zeroed out for
159  * correct hashtable operation.
160  */
161 typedef struct
162 {
163  TransactionId xmin; /* tuple xmin */
164  ItemPointerData tid; /* tuple location in old heap */
165 } TidHashKey;
166 
167 /*
168  * Entry structures for the hash tables
169  */
170 typedef struct
171 {
172  TidHashKey key; /* expected xmin/old location of B tuple */
173  ItemPointerData old_tid; /* A's location in the old heap */
174  HeapTuple tuple; /* A's tuple contents */
176 
178 
179 typedef struct
180 {
181  TidHashKey key; /* actual xmin/old location of B tuple */
182  ItemPointerData new_tid; /* where we put it in the new heap */
184 
186 
187 /*
188  * In-Memory data for an xid that might need logical remapping entries
189  * to be logged.
190  */
191 typedef struct RewriteMappingFile
192 {
193  TransactionId xid; /* xid that might need to see the row */
194  int vfd; /* fd of mappings file */
195  off_t off; /* how far have we written yet */
196  dclist_head mappings; /* list of in-memory mappings */
197  char path[MAXPGPATH]; /* path, for error messages */
199 
200 /*
201  * A single In-Memory logical rewrite mapping, hanging off
202  * RewriteMappingFile->mappings.
203  */
205 {
206  LogicalRewriteMappingData map; /* map between old and new location of the
207  * tuple */
210 
211 
212 /* prototypes for internal functions */
213 static void raw_heap_insert(RewriteState state, HeapTuple tup);
214 
215 /* internal logical remapping prototypes */
219 
220 
221 /*
222  * Begin a rewrite of a table
223  *
224  * old_heap old, locked heap relation tuples will be read from
225  * new_heap new, locked heap relation to insert tuples to
226  * oldest_xmin xid used by the caller to determine which tuples are dead
227  * freeze_xid xid before which tuples will be frozen
228  * cutoff_multi multixact before which multis will be removed
229  *
230  * Returns an opaque RewriteState, allocated in current memory context,
231  * to be used in subsequent calls to the other functions.
232  */
234 begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
235  TransactionId freeze_xid, MultiXactId cutoff_multi)
236 {
238  MemoryContext rw_cxt;
239  MemoryContext old_cxt;
240  HASHCTL hash_ctl;
241 
242  /*
243  * To ease cleanup, make a separate context that will contain the
244  * RewriteState struct itself plus all subsidiary data.
245  */
247  "Table rewrite",
249  old_cxt = MemoryContextSwitchTo(rw_cxt);
250 
251  /* Create and fill in the state struct */
252  state = palloc0(sizeof(RewriteStateData));
253 
254  state->rs_old_rel = old_heap;
255  state->rs_new_rel = new_heap;
256  state->rs_buffer = NULL;
257  /* new_heap needn't be empty, just locked */
258  state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
259  state->rs_oldest_xmin = oldest_xmin;
260  state->rs_freeze_xid = freeze_xid;
261  state->rs_cutoff_multi = cutoff_multi;
262  state->rs_cxt = rw_cxt;
263  state->rs_bulkstate = smgr_bulk_start_rel(new_heap, MAIN_FORKNUM);
264 
265  /* Initialize hash tables used to track update chains */
266  hash_ctl.keysize = sizeof(TidHashKey);
267  hash_ctl.entrysize = sizeof(UnresolvedTupData);
268  hash_ctl.hcxt = state->rs_cxt;
269 
270  state->rs_unresolved_tups =
271  hash_create("Rewrite / Unresolved ctids",
272  128, /* arbitrary initial size */
273  &hash_ctl,
275 
276  hash_ctl.entrysize = sizeof(OldToNewMappingData);
277 
278  state->rs_old_new_tid_map =
279  hash_create("Rewrite / Old to new tid map",
280  128, /* arbitrary initial size */
281  &hash_ctl,
283 
284  MemoryContextSwitchTo(old_cxt);
285 
287 
288  return state;
289 }
290 
291 /*
292  * End a rewrite.
293  *
294  * state and any other resources are freed.
295  */
296 void
298 {
299  HASH_SEQ_STATUS seq_status;
300  UnresolvedTup unresolved;
301 
302  /*
303  * Write any remaining tuples in the UnresolvedTups table. If we have any
304  * left, they should in fact be dead, but let's err on the safe side.
305  */
306  hash_seq_init(&seq_status, state->rs_unresolved_tups);
307 
308  while ((unresolved = hash_seq_search(&seq_status)) != NULL)
309  {
310  ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
311  raw_heap_insert(state, unresolved->tuple);
312  }
313 
314  /* Write the last page, if any */
315  if (state->rs_buffer)
316  {
317  smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
318  state->rs_buffer = NULL;
319  }
320 
321  smgr_bulk_finish(state->rs_bulkstate);
322 
324 
325  /* Deleting the context frees everything */
326  MemoryContextDelete(state->rs_cxt);
327 }
328 
329 /*
330  * Add a tuple to the new heap.
331  *
332  * Visibility information is copied from the original tuple, except that
333  * we "freeze" very-old tuples. Note that since we scribble on new_tuple,
334  * it had better be temp storage not a pointer to the original tuple.
335  *
336  * state opaque state as returned by begin_heap_rewrite
337  * old_tuple original tuple in the old heap
338  * new_tuple new, rewritten tuple to be inserted to new heap
339  */
340 void
342  HeapTuple old_tuple, HeapTuple new_tuple)
343 {
344  MemoryContext old_cxt;
345  ItemPointerData old_tid;
346  TidHashKey hashkey;
347  bool found;
348  bool free_new;
349 
350  old_cxt = MemoryContextSwitchTo(state->rs_cxt);
351 
352  /*
353  * Copy the original tuple's visibility information into new_tuple.
354  *
355  * XXX we might later need to copy some t_infomask2 bits, too? Right now,
356  * we intentionally clear the HOT status bits.
357  */
358  memcpy(&new_tuple->t_data->t_choice.t_heap,
359  &old_tuple->t_data->t_choice.t_heap,
360  sizeof(HeapTupleFields));
361 
362  new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
363  new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
364  new_tuple->t_data->t_infomask |=
365  old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
366 
367  /*
368  * While we have our hands on the tuple, we may as well freeze any
369  * eligible xmin or xmax, so that future VACUUM effort can be saved.
370  */
371  heap_freeze_tuple(new_tuple->t_data,
372  state->rs_old_rel->rd_rel->relfrozenxid,
373  state->rs_old_rel->rd_rel->relminmxid,
374  state->rs_freeze_xid,
375  state->rs_cutoff_multi);
376 
377  /*
378  * Invalid ctid means that ctid should point to the tuple itself. We'll
379  * override it later if the tuple is part of an update chain.
380  */
381  ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
382 
383  /*
384  * If the tuple has been updated, check the old-to-new mapping hash table.
385  */
386  if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
387  HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
389  !(ItemPointerEquals(&(old_tuple->t_self),
390  &(old_tuple->t_data->t_ctid))))
391  {
392  OldToNewMapping mapping;
393 
394  memset(&hashkey, 0, sizeof(hashkey));
395  hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
396  hashkey.tid = old_tuple->t_data->t_ctid;
397 
398  mapping = (OldToNewMapping)
399  hash_search(state->rs_old_new_tid_map, &hashkey,
400  HASH_FIND, NULL);
401 
402  if (mapping != NULL)
403  {
404  /*
405  * We've already copied the tuple that t_ctid points to, so we can
406  * set the ctid of this tuple to point to the new location, and
407  * insert it right away.
408  */
409  new_tuple->t_data->t_ctid = mapping->new_tid;
410 
411  /* We don't need the mapping entry anymore */
412  hash_search(state->rs_old_new_tid_map, &hashkey,
413  HASH_REMOVE, &found);
414  Assert(found);
415  }
416  else
417  {
418  /*
419  * We haven't seen the tuple t_ctid points to yet. Stash this
420  * tuple into unresolved_tups to be written later.
421  */
422  UnresolvedTup unresolved;
423 
424  unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
425  HASH_ENTER, &found);
426  Assert(!found);
427 
428  unresolved->old_tid = old_tuple->t_self;
429  unresolved->tuple = heap_copytuple(new_tuple);
430 
431  /*
432  * We can't do anything more now, since we don't know where the
433  * tuple will be written.
434  */
435  MemoryContextSwitchTo(old_cxt);
436  return;
437  }
438  }
439 
440  /*
441  * Now we will write the tuple, and then check to see if it is the B tuple
442  * in any new or known pair. When we resolve a known pair, we will be
443  * able to write that pair's A tuple, and then we have to check if it
444  * resolves some other pair. Hence, we need a loop here.
445  */
446  old_tid = old_tuple->t_self;
447  free_new = false;
448 
449  for (;;)
450  {
451  ItemPointerData new_tid;
452 
453  /* Insert the tuple and find out where it's put in new_heap */
454  raw_heap_insert(state, new_tuple);
455  new_tid = new_tuple->t_self;
456 
457  logical_rewrite_heap_tuple(state, old_tid, new_tuple);
458 
459  /*
460  * If the tuple is the updated version of a row, and the prior version
461  * wouldn't be DEAD yet, then we need to either resolve the prior
462  * version (if it's waiting in rs_unresolved_tups), or make an entry
463  * in rs_old_new_tid_map (so we can resolve it when we do see it). The
464  * previous tuple's xmax would equal this one's xmin, so it's
465  * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
466  */
467  if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
469  state->rs_oldest_xmin))
470  {
471  /*
472  * Okay, this is B in an update pair. See if we've seen A.
473  */
474  UnresolvedTup unresolved;
475 
476  memset(&hashkey, 0, sizeof(hashkey));
477  hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
478  hashkey.tid = old_tid;
479 
480  unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
481  HASH_FIND, NULL);
482 
483  if (unresolved != NULL)
484  {
485  /*
486  * We have seen and memorized the previous tuple already. Now
487  * that we know where we inserted the tuple its t_ctid points
488  * to, fix its t_ctid and insert it to the new heap.
489  */
490  if (free_new)
491  heap_freetuple(new_tuple);
492  new_tuple = unresolved->tuple;
493  free_new = true;
494  old_tid = unresolved->old_tid;
495  new_tuple->t_data->t_ctid = new_tid;
496 
497  /*
498  * We don't need the hash entry anymore, but don't free its
499  * tuple just yet.
500  */
501  hash_search(state->rs_unresolved_tups, &hashkey,
502  HASH_REMOVE, &found);
503  Assert(found);
504 
505  /* loop back to insert the previous tuple in the chain */
506  continue;
507  }
508  else
509  {
510  /*
511  * Remember the new tid of this tuple. We'll use it to set the
512  * ctid when we find the previous tuple in the chain.
513  */
514  OldToNewMapping mapping;
515 
516  mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
517  HASH_ENTER, &found);
518  Assert(!found);
519 
520  mapping->new_tid = new_tid;
521  }
522  }
523 
524  /* Done with this (chain of) tuples, for now */
525  if (free_new)
526  heap_freetuple(new_tuple);
527  break;
528  }
529 
530  MemoryContextSwitchTo(old_cxt);
531 }
532 
533 /*
534  * Register a dead tuple with an ongoing rewrite. Dead tuples are not
535  * copied to the new table, but we still make note of them so that we
536  * can release some resources earlier.
537  *
538  * Returns true if a tuple was removed from the unresolved_tups table.
539  * This indicates that that tuple, previously thought to be "recently dead",
540  * is now known really dead and won't be written to the output.
541  */
542 bool
544 {
545  /*
546  * If we have already seen an earlier tuple in the update chain that
547  * points to this tuple, let's forget about that earlier tuple. It's in
548  * fact dead as well, our simple xmax < OldestXmin test in
549  * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
550  * when xmin of a tuple is greater than xmax, which sounds
551  * counter-intuitive but is perfectly valid.
552  *
553  * We don't bother to try to detect the situation the other way round,
554  * when we encounter the dead tuple first and then the recently dead one
555  * that points to it. If that happens, we'll have some unmatched entries
556  * in the UnresolvedTups hash table at the end. That can happen anyway,
557  * because a vacuum might have removed the dead tuple in the chain before
558  * us.
559  */
560  UnresolvedTup unresolved;
561  TidHashKey hashkey;
562  bool found;
563 
564  memset(&hashkey, 0, sizeof(hashkey));
565  hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
566  hashkey.tid = old_tuple->t_self;
567 
568  unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
569  HASH_FIND, NULL);
570 
571  if (unresolved != NULL)
572  {
573  /* Need to free the contained tuple as well as the hashtable entry */
574  heap_freetuple(unresolved->tuple);
575  hash_search(state->rs_unresolved_tups, &hashkey,
576  HASH_REMOVE, &found);
577  Assert(found);
578  return true;
579  }
580 
581  return false;
582 }
583 
584 /*
585  * Insert a tuple to the new relation. This has to track heap_insert
586  * and its subsidiary functions!
587  *
588  * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
589  * tuple is invalid on entry, it's replaced with the new TID as well (in
590  * the inserted data only, not in the caller's copy).
591  */
592 static void
594 {
595  Page page;
596  Size pageFreeSpace,
597  saveFreeSpace;
598  Size len;
599  OffsetNumber newoff;
600  HeapTuple heaptup;
601 
602  /*
603  * If the new tuple is too big for storage or contains already toasted
604  * out-of-line attributes from some other relation, invoke the toaster.
605  *
606  * Note: below this point, heaptup is the data we actually intend to store
607  * into the relation; tup is the caller's original untoasted data.
608  */
609  if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
610  {
611  /* toast table entries should never be recursively toasted */
613  heaptup = tup;
614  }
615  else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
616  {
618 
619  /*
620  * While rewriting the heap for VACUUM FULL / CLUSTER, make sure data
621  * for the TOAST table are not logically decoded. The main heap is
622  * WAL-logged as XLOG FPI records, which are not logically decoded.
623  */
625 
626  heaptup = heap_toast_insert_or_update(state->rs_new_rel, tup, NULL,
627  options);
628  }
629  else
630  heaptup = tup;
631 
632  len = MAXALIGN(heaptup->t_len); /* be conservative */
633 
634  /*
635  * If we're gonna fail for oversize tuple, do it right away
636  */
637  if (len > MaxHeapTupleSize)
638  ereport(ERROR,
639  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
640  errmsg("row is too big: size %zu, maximum size %zu",
641  len, MaxHeapTupleSize)));
642 
643  /* Compute desired extra freespace due to fillfactor option */
644  saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
646 
647  /* Now we can check to see if there's enough free space already. */
648  page = (Page) state->rs_buffer;
649  if (page)
650  {
651  pageFreeSpace = PageGetHeapFreeSpace(page);
652 
653  if (len + saveFreeSpace > pageFreeSpace)
654  {
655  /*
656  * Doesn't fit, so write out the existing page. It always
657  * contains a tuple. Hence, unlike RelationGetBufferForTuple(),
658  * enforce saveFreeSpace unconditionally.
659  */
660  smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
661  state->rs_buffer = NULL;
662  page = NULL;
663  state->rs_blockno++;
664  }
665  }
666 
667  if (!page)
668  {
669  /* Initialize a new empty page */
670  state->rs_buffer = smgr_bulk_get_buf(state->rs_bulkstate);
671  page = (Page) state->rs_buffer;
672  PageInit(page, BLCKSZ, 0);
673  }
674 
675  /* And now we can insert the tuple into the page */
676  newoff = PageAddItem(page, (Item) heaptup->t_data, heaptup->t_len,
677  InvalidOffsetNumber, false, true);
678  if (newoff == InvalidOffsetNumber)
679  elog(ERROR, "failed to add tuple");
680 
681  /* Update caller's t_self to the actual position where it was stored */
682  ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
683 
684  /*
685  * Insert the correct position into CTID of the stored tuple, too, if the
686  * caller didn't supply a valid CTID.
687  */
688  if (!ItemPointerIsValid(&tup->t_data->t_ctid))
689  {
690  ItemId newitemid;
691  HeapTupleHeader onpage_tup;
692 
693  newitemid = PageGetItemId(page, newoff);
694  onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
695 
696  onpage_tup->t_ctid = tup->t_self;
697  }
698 
699  /* If heaptup is a private copy, release it. */
700  if (heaptup != tup)
701  heap_freetuple(heaptup);
702 }
703 
704 /* ------------------------------------------------------------------------
705  * Logical rewrite support
706  *
707  * When doing logical decoding - which relies on using cmin/cmax of catalog
708  * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
709  * information to allow the decoding backend to update its internal mapping
710  * of (relfilelocator,ctid) => (cmin, cmax) to be correct for the rewritten heap.
711  *
712  * For that, every time we find a tuple that's been modified in a catalog
713  * relation within the xmin horizon of any decoding slot, we log a mapping
714  * from the old to the new location.
715  *
716  * To deal with rewrites that abort the filename of a mapping file contains
717  * the xid of the transaction performing the rewrite, which then can be
718  * checked before being read in.
719  *
720  * For efficiency we don't immediately spill every single map mapping for a
721  * row to disk but only do so in batches when we've collected several of them
722  * in memory or when end_heap_rewrite() has been called.
723  *
724  * Crash-Safety: This module diverts from the usual patterns of doing WAL
725  * since it cannot rely on checkpoint flushing out all buffers and thus
726  * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
727  * buffer modifications is performed while the buffer(s) that are being
728  * modified are exclusively locked guaranteeing that both the WAL record and
729  * the modified heap are on either side of the checkpoint. But since the
730  * mapping files we log aren't in shared_buffers that interlock doesn't work.
731  *
732  * Instead we simply write the mapping files out to disk, *before* the
733  * XLogInsert() is performed. That guarantees that either the XLogInsert() is
734  * inserted after the checkpoint's redo pointer or that the checkpoint (via
735  * CheckPointLogicalRewriteHeap()) has flushed the (partial) mapping file to
736  * disk. That leaves the tail end that has not yet been flushed open to
737  * corruption, which is solved by including the current offset in the
738  * xl_heap_rewrite_mapping records and truncating the mapping file to it
739  * during replay. Every time a rewrite is finished all generated mapping files
740  * are synced to disk.
741  *
742  * Note that if we were only concerned about crash safety we wouldn't have to
743  * deal with WAL logging at all - an fsync() at the end of a rewrite would be
744  * sufficient for crash safety. Any mapping that hasn't been safely flushed to
745  * disk has to be by an aborted (explicitly or via a crash) transaction and is
746  * ignored by virtue of the xid in its name being subject to a
747  * TransactionDidCommit() check. But we want to support having standbys via
748  * physical replication, both for availability and to do logical decoding
749  * there.
750  * ------------------------------------------------------------------------
751  */
752 
753 /*
754  * Do preparations for logging logical mappings during a rewrite if
755  * necessary. If we detect that we don't need to log anything we'll prevent
756  * any further action by the various logical rewrite functions.
757  */
758 static void
760 {
761  HASHCTL hash_ctl;
762  TransactionId logical_xmin;
763 
764  /*
765  * We only need to persist these mappings if the rewritten table can be
766  * accessed during logical decoding, if not, we can skip doing any
767  * additional work.
768  */
769  state->rs_logical_rewrite =
771 
772  if (!state->rs_logical_rewrite)
773  return;
774 
775  ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
776 
777  /*
778  * If there are no logical slots in progress we don't need to do anything,
779  * there cannot be any remappings for relevant rows yet. The relation's
780  * lock protects us against races.
781  */
782  if (logical_xmin == InvalidTransactionId)
783  {
784  state->rs_logical_rewrite = false;
785  return;
786  }
787 
788  state->rs_logical_xmin = logical_xmin;
789  state->rs_begin_lsn = GetXLogInsertRecPtr();
790  state->rs_num_rewrite_mappings = 0;
791 
792  hash_ctl.keysize = sizeof(TransactionId);
793  hash_ctl.entrysize = sizeof(RewriteMappingFile);
794  hash_ctl.hcxt = state->rs_cxt;
795 
796  state->rs_logical_mappings =
797  hash_create("Logical rewrite mapping",
798  128, /* arbitrary initial size */
799  &hash_ctl,
801 }
802 
803 /*
804  * Flush all logical in-memory mappings to disk, but don't fsync them yet.
805  */
806 static void
808 {
809  HASH_SEQ_STATUS seq_status;
810  RewriteMappingFile *src;
811  dlist_mutable_iter iter;
812 
813  Assert(state->rs_logical_rewrite);
814 
815  /* no logical rewrite in progress, no need to iterate over mappings */
816  if (state->rs_num_rewrite_mappings == 0)
817  return;
818 
819  elog(DEBUG1, "flushing %u logical rewrite mapping entries",
820  state->rs_num_rewrite_mappings);
821 
822  hash_seq_init(&seq_status, state->rs_logical_mappings);
823  while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
824  {
825  char *waldata;
826  char *waldata_start;
828  Oid dboid;
829  uint32 len;
830  int written;
831  uint32 num_mappings = dclist_count(&src->mappings);
832 
833  /* this file hasn't got any new mappings */
834  if (num_mappings == 0)
835  continue;
836 
837  if (state->rs_old_rel->rd_rel->relisshared)
838  dboid = InvalidOid;
839  else
840  dboid = MyDatabaseId;
841 
842  xlrec.num_mappings = num_mappings;
843  xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
844  xlrec.mapped_xid = src->xid;
845  xlrec.mapped_db = dboid;
846  xlrec.offset = src->off;
847  xlrec.start_lsn = state->rs_begin_lsn;
848 
849  /* write all mappings consecutively */
850  len = num_mappings * sizeof(LogicalRewriteMappingData);
851  waldata_start = waldata = palloc(len);
852 
853  /*
854  * collect data we need to write out, but don't modify ondisk data yet
855  */
856  dclist_foreach_modify(iter, &src->mappings)
857  {
859 
860  pmap = dclist_container(RewriteMappingDataEntry, node, iter.cur);
861 
862  memcpy(waldata, &pmap->map, sizeof(pmap->map));
863  waldata += sizeof(pmap->map);
864 
865  /* remove from the list and free */
866  dclist_delete_from(&src->mappings, &pmap->node);
867  pfree(pmap);
868 
869  /* update bookkeeping */
870  state->rs_num_rewrite_mappings--;
871  }
872 
873  Assert(dclist_count(&src->mappings) == 0);
874  Assert(waldata == waldata_start + len);
875 
876  /*
877  * Note that we deviate from the usual WAL coding practices here,
878  * check the above "Logical rewrite support" comment for reasoning.
879  */
880  written = FileWrite(src->vfd, waldata_start, len, src->off,
881  WAIT_EVENT_LOGICAL_REWRITE_WRITE);
882  if (written != len)
883  ereport(ERROR,
885  errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
886  written, len)));
887  src->off += len;
888 
889  XLogBeginInsert();
890  XLogRegisterData((char *) (&xlrec), sizeof(xlrec));
891  XLogRegisterData(waldata_start, len);
892 
893  /* write xlog record */
894  XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
895 
896  pfree(waldata_start);
897  }
898  Assert(state->rs_num_rewrite_mappings == 0);
899 }
900 
901 /*
902  * Logical remapping part of end_heap_rewrite().
903  */
904 static void
906 {
907  HASH_SEQ_STATUS seq_status;
908  RewriteMappingFile *src;
909 
910  /* done, no logical rewrite in progress */
911  if (!state->rs_logical_rewrite)
912  return;
913 
914  /* writeout remaining in-memory entries */
915  if (state->rs_num_rewrite_mappings > 0)
917 
918  /* Iterate over all mappings we have written and fsync the files. */
919  hash_seq_init(&seq_status, state->rs_logical_mappings);
920  while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
921  {
922  if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
925  errmsg("could not fsync file \"%s\": %m", src->path)));
926  FileClose(src->vfd);
927  }
928  /* memory context cleanup will deal with the rest */
929 }
930 
931 /*
932  * Log a single (old->new) mapping for 'xid'.
933  */
934 static void
937 {
938  RewriteMappingFile *src;
940  Oid relid;
941  bool found;
942 
943  relid = RelationGetRelid(state->rs_old_rel);
944 
945  /* look for existing mappings for this 'mapped' xid */
946  src = hash_search(state->rs_logical_mappings, &xid,
947  HASH_ENTER, &found);
948 
949  /*
950  * We haven't yet had the need to map anything for this xid, create
951  * per-xid data structures.
952  */
953  if (!found)
954  {
955  char path[MAXPGPATH];
956  Oid dboid;
957 
958  if (state->rs_old_rel->rd_rel->relisshared)
959  dboid = InvalidOid;
960  else
961  dboid = MyDatabaseId;
962 
963  snprintf(path, MAXPGPATH,
964  "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
965  dboid, relid,
966  LSN_FORMAT_ARGS(state->rs_begin_lsn),
967  xid, GetCurrentTransactionId());
968 
969  dclist_init(&src->mappings);
970  src->off = 0;
971  memcpy(src->path, path, sizeof(path));
972  src->vfd = PathNameOpenFile(path,
973  O_CREAT | O_EXCL | O_WRONLY | PG_BINARY);
974  if (src->vfd < 0)
975  ereport(ERROR,
977  errmsg("could not create file \"%s\": %m", path)));
978  }
979 
980  pmap = MemoryContextAlloc(state->rs_cxt,
981  sizeof(RewriteMappingDataEntry));
982  memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
983  dclist_push_tail(&src->mappings, &pmap->node);
984  state->rs_num_rewrite_mappings++;
985 
986  /*
987  * Write out buffer every time we've too many in-memory entries across all
988  * mapping files.
989  */
990  if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
992 }
993 
994 /*
995  * Perform logical remapping for a tuple that's mapped from old_tid to
996  * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
997  */
998 static void
1000  HeapTuple new_tuple)
1001 {
1002  ItemPointerData new_tid = new_tuple->t_self;
1003  TransactionId cutoff = state->rs_logical_xmin;
1004  TransactionId xmin;
1005  TransactionId xmax;
1006  bool do_log_xmin = false;
1007  bool do_log_xmax = false;
1009 
1010  /* no logical rewrite in progress, we don't need to log anything */
1011  if (!state->rs_logical_rewrite)
1012  return;
1013 
1014  xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
1015  /* use *GetUpdateXid to correctly deal with multixacts */
1016  xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
1017 
1018  /*
1019  * Log the mapping iff the tuple has been created recently.
1020  */
1021  if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
1022  do_log_xmin = true;
1023 
1024  if (!TransactionIdIsNormal(xmax))
1025  {
1026  /*
1027  * no xmax is set, can't have any permanent ones, so this check is
1028  * sufficient
1029  */
1030  }
1031  else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
1032  {
1033  /* only locked, we don't care */
1034  }
1035  else if (!TransactionIdPrecedes(xmax, cutoff))
1036  {
1037  /* tuple has been deleted recently, log */
1038  do_log_xmax = true;
1039  }
1040 
1041  /* if neither needs to be logged, we're done */
1042  if (!do_log_xmin && !do_log_xmax)
1043  return;
1044 
1045  /* fill out mapping information */
1046  map.old_locator = state->rs_old_rel->rd_locator;
1047  map.old_tid = old_tid;
1048  map.new_locator = state->rs_new_rel->rd_locator;
1049  map.new_tid = new_tid;
1050 
1051  /* ---
1052  * Now persist the mapping for the individual xids that are affected. We
1053  * need to log for both xmin and xmax if they aren't the same transaction
1054  * since the mapping files are per "affected" xid.
1055  * We don't muster all that much effort detecting whether xmin and xmax
1056  * are actually the same transaction, we just check whether the xid is the
1057  * same disregarding subtransactions. Logging too much is relatively
1058  * harmless and we could never do the check fully since subtransaction
1059  * data is thrown away during restarts.
1060  * ---
1061  */
1062  if (do_log_xmin)
1063  logical_rewrite_log_mapping(state, xmin, &map);
1064  /* separately log mapping for xmax unless it'd be redundant */
1065  if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
1066  logical_rewrite_log_mapping(state, xmax, &map);
1067 }
1068 
1069 /*
1070  * Replay XLOG_HEAP2_REWRITE records
1071  */
1072 void
1074 {
1075  char path[MAXPGPATH];
1076  int fd;
1077  xl_heap_rewrite_mapping *xlrec;
1078  uint32 len;
1079  char *data;
1080 
1081  xlrec = (xl_heap_rewrite_mapping *) XLogRecGetData(r);
1082 
1083  snprintf(path, MAXPGPATH,
1084  "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
1085  xlrec->mapped_db, xlrec->mapped_rel,
1086  LSN_FORMAT_ARGS(xlrec->start_lsn),
1087  xlrec->mapped_xid, XLogRecGetXid(r));
1088 
1089  fd = OpenTransientFile(path,
1090  O_CREAT | O_WRONLY | PG_BINARY);
1091  if (fd < 0)
1092  ereport(ERROR,
1094  errmsg("could not create file \"%s\": %m", path)));
1095 
1096  /*
1097  * Truncate all data that's not guaranteed to have been safely fsynced (by
1098  * previous record or by the last checkpoint).
1099  */
1100  pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
1101  if (ftruncate(fd, xlrec->offset) != 0)
1102  ereport(ERROR,
1104  errmsg("could not truncate file \"%s\" to %u: %m",
1105  path, (uint32) xlrec->offset)));
1107 
1108  data = XLogRecGetData(r) + sizeof(*xlrec);
1109 
1110  len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
1111 
1112  /* write out tail end of mapping file (again) */
1113  errno = 0;
1114  pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
1115  if (pg_pwrite(fd, data, len, xlrec->offset) != len)
1116  {
1117  /* if write didn't set errno, assume problem is no disk space */
1118  if (errno == 0)
1119  errno = ENOSPC;
1120  ereport(ERROR,
1122  errmsg("could not write to file \"%s\": %m", path)));
1123  }
1125 
1126  /*
1127  * Now fsync all previously written data. We could improve things and only
1128  * do this for the last write to a file, but the required bookkeeping
1129  * doesn't seem worth the trouble.
1130  */
1131  pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
1132  if (pg_fsync(fd) != 0)
1135  errmsg("could not fsync file \"%s\": %m", path)));
1137 
1138  if (CloseTransientFile(fd) != 0)
1139  ereport(ERROR,
1141  errmsg("could not close file \"%s\": %m", path)));
1142 }
1143 
1144 /* ---
1145  * Perform a checkpoint for logical rewrite mappings
1146  *
1147  * This serves two tasks:
1148  * 1) Remove all mappings not needed anymore based on the logical restart LSN
1149  * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
1150  * only has to deal with the parts of a mapping that have been written out
1151  * after the checkpoint started.
1152  * ---
1153  */
1154 void
1156 {
1157  XLogRecPtr cutoff;
1158  XLogRecPtr redo;
1159  DIR *mappings_dir;
1160  struct dirent *mapping_de;
1161  char path[MAXPGPATH + 20];
1162 
1163  /*
1164  * We start of with a minimum of the last redo pointer. No new decoding
1165  * slot will start before that, so that's a safe upper bound for removal.
1166  */
1167  redo = GetRedoRecPtr();
1168 
1169  /* now check for the restart ptrs from existing slots */
1171 
1172  /* don't start earlier than the restart lsn */
1173  if (cutoff != InvalidXLogRecPtr && redo < cutoff)
1174  cutoff = redo;
1175 
1176  mappings_dir = AllocateDir("pg_logical/mappings");
1177  while ((mapping_de = ReadDir(mappings_dir, "pg_logical/mappings")) != NULL)
1178  {
1179  Oid dboid;
1180  Oid relid;
1181  XLogRecPtr lsn;
1182  TransactionId rewrite_xid;
1183  TransactionId create_xid;
1184  uint32 hi,
1185  lo;
1186  PGFileType de_type;
1187 
1188  if (strcmp(mapping_de->d_name, ".") == 0 ||
1189  strcmp(mapping_de->d_name, "..") == 0)
1190  continue;
1191 
1192  snprintf(path, sizeof(path), "pg_logical/mappings/%s", mapping_de->d_name);
1193  de_type = get_dirent_type(path, mapping_de, false, DEBUG1);
1194 
1195  if (de_type != PGFILETYPE_ERROR && de_type != PGFILETYPE_REG)
1196  continue;
1197 
1198  /* Skip over files that cannot be ours. */
1199  if (strncmp(mapping_de->d_name, "map-", 4) != 0)
1200  continue;
1201 
1202  if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
1203  &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
1204  elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
1205 
1206  lsn = ((uint64) hi) << 32 | lo;
1207 
1208  if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
1209  {
1210  elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
1211  if (unlink(path) < 0)
1212  ereport(ERROR,
1214  errmsg("could not remove file \"%s\": %m", path)));
1215  }
1216  else
1217  {
1218  /* on some operating systems fsyncing a file requires O_RDWR */
1219  int fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
1220 
1221  /*
1222  * The file cannot vanish due to concurrency since this function
1223  * is the only one removing logical mappings and only one
1224  * checkpoint can be in progress at a time.
1225  */
1226  if (fd < 0)
1227  ereport(ERROR,
1229  errmsg("could not open file \"%s\": %m", path)));
1230 
1231  /*
1232  * We could try to avoid fsyncing files that either haven't
1233  * changed or have only been created since the checkpoint's start,
1234  * but it's currently not deemed worth the effort.
1235  */
1236  pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
1237  if (pg_fsync(fd) != 0)
1240  errmsg("could not fsync file \"%s\": %m", path)));
1242 
1243  if (CloseTransientFile(fd) != 0)
1244  ereport(ERROR,
1246  errmsg("could not close file \"%s\": %m", path)));
1247  }
1248  }
1249  FreeDir(mappings_dir);
1250 
1251  /* persist directory entries to disk */
1252  fsync_fname("pg_logical/mappings", true);
1253 }
uint32 BlockNumber
Definition: block.h:31
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:281
Size PageGetHeapFreeSpace(Page page)
Definition: bufpage.c:991
void PageInit(Page page, Size pageSize, Size specialSize)
Definition: bufpage.c:42
Pointer Page
Definition: bufpage.h:78
static Item PageGetItem(Page page, ItemId itemId)
Definition: bufpage.h:351
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:240
#define PageAddItem(page, item, size, offsetNumber, overwrite, is_heap)
Definition: bufpage.h:468
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:271
BulkWriteBuffer smgr_bulk_get_buf(BulkWriteState *bulkstate)
Definition: bulk_write.c:295
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:129
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:86
unsigned int uint32
Definition: c.h:506
#define MAXALIGN(LEN)
Definition: c.h:811
#define Assert(condition)
Definition: c.h:858
#define PG_BINARY
Definition: c.h:1273
TransactionId MultiXactId
Definition: c.h:662
uint32 TransactionId
Definition: c.h:652
size_t Size
Definition: c.h:605
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1395
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errcode_for_file_access(void)
Definition: elog.c:882
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2909
int FreeDir(DIR *dir)
Definition: fd.c:2961
int FileSync(File file, uint32 wait_event_info)
Definition: fd.c:2297
int CloseTransientFile(int fd)
Definition: fd.c:2809
void FileClose(File file)
Definition: fd.c:1978
void fsync_fname(const char *fname, bool isdir)
Definition: fd.c:756
int data_sync_elevel(int elevel)
Definition: fd.c:3936
File PathNameOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1575
int pg_fsync(int fd)
Definition: fd.c:386
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2633
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2843
static ssize_t FileWrite(File file, const void *buffer, size_t amount, off_t offset, uint32 wait_event_info)
Definition: fd.h:208
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:525
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_REG
Definition: file_utils.h:22
@ PGFILETYPE_ERROR
Definition: file_utils.h:20
Oid MyDatabaseId
Definition: globals.c:91
bool heap_freeze_tuple(HeapTupleHeader tuple, TransactionId relfrozenxid, TransactionId relminmxid, TransactionId FreezeLimit, TransactionId MultiXactCutoff)
Definition: heapam.c:6913
#define HEAP_INSERT_SKIP_FSM
Definition: heapam.h:35
#define HEAP_INSERT_NO_LOGICAL
Definition: heapam.h:37
bool HeapTupleHeaderIsOnlyLocked(HeapTupleHeader tuple)
#define XLOG_HEAP2_REWRITE
Definition: heapam_xlog.h:58
HeapTuple heap_toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup, int options)
Definition: heaptoast.c:96
#define TOAST_TUPLE_THRESHOLD
Definition: heaptoast.h:48
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:776
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1434
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define HEAP_XMAX_IS_LOCKED_ONLY(infomask)
Definition: htup_details.h:227
#define HeapTupleHeaderIndicatesMovedPartitions(tup)
Definition: htup_details.h:444
#define HEAP2_XACT_MASK
Definition: htup_details.h:279
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
#define HeapTupleHasExternal(tuple)
Definition: htup_details.h:671
#define HEAP_XACT_MASK
Definition: htup_details.h:215
#define HEAP_XMAX_INVALID
Definition: htup_details.h:208
#define HEAP_UPDATED
Definition: htup_details.h:210
#define HeapTupleHeaderGetUpdateXid(tup)
Definition: htup_details.h:361
#define MaxHeapTupleSize
Definition: htup_details.h:558
#define dclist_container(type, membername, ptr)
Definition: ilist.h:947
static void dclist_push_tail(dclist_head *head, dlist_node *node)
Definition: ilist.h:709
static uint32 dclist_count(const dclist_head *head)
Definition: ilist.h:932
static void dclist_delete_from(dclist_head *head, dlist_node *node)
Definition: ilist.h:763
static void dclist_init(dclist_head *head)
Definition: ilist.h:671
#define dclist_foreach_modify(iter, lhead)
Definition: ilist.h:973
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
Pointer Item
Definition: item.h:17
bool ItemPointerEquals(ItemPointer pointer1, ItemPointer pointer2)
Definition: itemptr.c:35
static void ItemPointerSet(ItemPointerData *pointer, BlockNumber blockNumber, OffsetNumber offNum)
Definition: itemptr.h:135
static void ItemPointerSetInvalid(ItemPointerData *pointer)
Definition: itemptr.h:184
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition: itemptr.h:83
void pfree(void *pointer)
Definition: mcxt.c:1520
void * palloc0(Size size)
Definition: mcxt.c:1346
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1180
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
void * palloc(Size size)
Definition: mcxt.c:1316
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define InvalidOffsetNumber
Definition: off.h:26
uint16 OffsetNumber
Definition: off.h:24
#define MAXPGPATH
const void size_t len
const void * data
#define pg_pwrite
Definition: port.h:226
#define snprintf
Definition: port.h:238
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
static int fd(const char *x, int i)
Definition: preproc-init.c:105
void ProcArrayGetReplicationSlotXmin(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:3952
MemoryContextSwitchTo(old_ctx)
#define RelationGetRelid(relation)
Definition: rel.h:505
#define RelationGetTargetPageFreeSpace(relation, defaultff)
Definition: rel.h:378
#define RelationIsAccessibleInLogicalDecoding(relation)
Definition: rel.h:684
#define HEAP_DEFAULT_FILLFACTOR
Definition: rel.h:349
@ MAIN_FORKNUM
Definition: relpath.h:50
struct RewriteMappingDataEntry RewriteMappingDataEntry
static void raw_heap_insert(RewriteState state, HeapTuple tup)
Definition: rewriteheap.c:593
void end_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:297
bool rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
Definition: rewriteheap.c:543
UnresolvedTupData * UnresolvedTup
Definition: rewriteheap.c:177
RewriteState begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin, TransactionId freeze_xid, MultiXactId cutoff_multi)
Definition: rewriteheap.c:234
static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple)
Definition: rewriteheap.c:999
static void logical_heap_rewrite_flush_mappings(RewriteState state)
Definition: rewriteheap.c:807
void heap_xlog_logical_rewrite(XLogReaderState *r)
Definition: rewriteheap.c:1073
static void logical_begin_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:759
void CheckPointLogicalRewriteHeap(void)
Definition: rewriteheap.c:1155
struct RewriteMappingFile RewriteMappingFile
static void logical_end_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:905
OldToNewMappingData * OldToNewMapping
Definition: rewriteheap.c:185
struct RewriteStateData RewriteStateData
void rewrite_heap_tuple(RewriteState state, HeapTuple old_tuple, HeapTuple new_tuple)
Definition: rewriteheap.c:341
static void logical_rewrite_log_mapping(RewriteState state, TransactionId xid, LogicalRewriteMappingData *map)
Definition: rewriteheap.c:935
#define LOGICAL_REWRITE_FORMAT
Definition: rewriteheap.h:54
struct LogicalRewriteMappingData LogicalRewriteMappingData
XLogRecPtr ReplicationSlotsComputeLogicalRestartLSN(void)
Definition: slot.c:1154
Definition: dirent.c:26
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:220
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
ItemPointerData t_ctid
Definition: htup_details.h:161
HeapTupleFields t_heap
Definition: htup_details.h:157
union HeapTupleHeaderData::@48 t_choice
ItemPointerData new_tid
Definition: rewriteheap.h:40
RelFileLocator old_locator
Definition: rewriteheap.h:37
ItemPointerData old_tid
Definition: rewriteheap.h:39
RelFileLocator new_locator
Definition: rewriteheap.h:38
ItemPointerData new_tid
Definition: rewriteheap.c:182
LogicalRewriteMappingData map
Definition: rewriteheap.c:206
char path[MAXPGPATH]
Definition: rewriteheap.c:197
TransactionId xid
Definition: rewriteheap.c:193
dclist_head mappings
Definition: rewriteheap.c:196
TransactionId rs_freeze_xid
Definition: rewriteheap.c:140
MemoryContext rs_cxt
Definition: rewriteheap.c:146
TransactionId rs_oldest_xmin
Definition: rewriteheap.c:138
HTAB * rs_logical_mappings
Definition: rewriteheap.c:151
Relation rs_new_rel
Definition: rewriteheap.c:133
HTAB * rs_unresolved_tups
Definition: rewriteheap.c:149
uint32 rs_num_rewrite_mappings
Definition: rewriteheap.c:152
Relation rs_old_rel
Definition: rewriteheap.c:132
TransactionId rs_logical_xmin
Definition: rewriteheap.c:142
BulkWriteState * rs_bulkstate
Definition: rewriteheap.c:134
BulkWriteBuffer rs_buffer
Definition: rewriteheap.c:135
HTAB * rs_old_new_tid_map
Definition: rewriteheap.c:150
XLogRecPtr rs_begin_lsn
Definition: rewriteheap.c:148
BlockNumber rs_blockno
Definition: rewriteheap.c:136
MultiXactId rs_cutoff_multi
Definition: rewriteheap.c:144
TransactionId xmin
Definition: rewriteheap.c:163
ItemPointerData tid
Definition: rewriteheap.c:164
TidHashKey key
Definition: rewriteheap.c:172
ItemPointerData old_tid
Definition: rewriteheap.c:173
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
dlist_node * cur
Definition: ilist.h:200
Definition: regguts.h:323
TransactionId mapped_xid
Definition: heapam_xlog.h:470
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define InvalidTransactionId
Definition: transam.h:31
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:88
static void pgstat_report_wait_end(void)
Definition: wait_event.h:104
#define ftruncate(a, b)
Definition: win32_port.h:82
TransactionId GetCurrentTransactionId(void)
Definition: xact.c:451
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6393
XLogRecPtr GetXLogInsertRecPtr(void)
Definition: xlog.c:9355
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
void XLogRegisterData(char *data, uint32 len)
Definition: xloginsert.c:364
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:474
void XLogBeginInsert(void)
Definition: xloginsert.c:149
#define XLogRecGetData(decoder)
Definition: xlogreader.h:415
#define XLogRecGetXid(decoder)
Definition: xlogreader.h:412