PostgreSQL Source Code  git master
bufmgr.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * bufmgr.c
4  * buffer manager interface routines
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/storage/buffer/bufmgr.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 /*
16  * Principal entry points:
17  *
18  * ReadBuffer() -- find or create a buffer holding the requested page,
19  * and pin it so that no one can destroy it while this process
20  * is using it.
21  *
22  * StartReadBuffer() -- as above, with separate wait step
23  * StartReadBuffers() -- multiple block version
24  * WaitReadBuffers() -- second step of above
25  *
26  * ReleaseBuffer() -- unpin a buffer
27  *
28  * MarkBufferDirty() -- mark a pinned buffer's contents as "dirty".
29  * The disk write is delayed until buffer replacement or checkpoint.
30  *
31  * See also these files:
32  * freelist.c -- chooses victim for buffer replacement
33  * buf_table.c -- manages the buffer lookup table
34  */
35 #include "postgres.h"
36 
37 #include <sys/file.h>
38 #include <unistd.h>
39 
40 #include "access/tableam.h"
41 #include "access/xloginsert.h"
42 #include "access/xlogutils.h"
43 #include "catalog/storage.h"
44 #include "catalog/storage_xlog.h"
45 #include "executor/instrument.h"
46 #include "lib/binaryheap.h"
47 #include "miscadmin.h"
48 #include "pg_trace.h"
49 #include "pgstat.h"
50 #include "postmaster/bgwriter.h"
51 #include "storage/buf_internals.h"
52 #include "storage/bufmgr.h"
53 #include "storage/fd.h"
54 #include "storage/ipc.h"
55 #include "storage/lmgr.h"
56 #include "storage/proc.h"
57 #include "storage/smgr.h"
58 #include "storage/standby.h"
59 #include "utils/memdebug.h"
60 #include "utils/ps_status.h"
61 #include "utils/rel.h"
62 #include "utils/resowner.h"
63 #include "utils/timestamp.h"
64 
65 
66 /* Note: these two macros only work on shared buffers, not local ones! */
67 #define BufHdrGetBlock(bufHdr) ((Block) (BufferBlocks + ((Size) (bufHdr)->buf_id) * BLCKSZ))
68 #define BufferGetLSN(bufHdr) (PageGetLSN(BufHdrGetBlock(bufHdr)))
69 
70 /* Note: this macro only works on local buffers, not shared ones! */
71 #define LocalBufHdrGetBlock(bufHdr) \
72  LocalBufferBlockPointers[-((bufHdr)->buf_id + 2)]
73 
74 /* Bits in SyncOneBuffer's return value */
75 #define BUF_WRITTEN 0x01
76 #define BUF_REUSABLE 0x02
77 
78 #define RELS_BSEARCH_THRESHOLD 20
79 
80 /*
81  * This is the size (in the number of blocks) above which we scan the
82  * entire buffer pool to remove the buffers for all the pages of relation
83  * being dropped. For the relations with size below this threshold, we find
84  * the buffers by doing lookups in BufMapping table.
85  */
86 #define BUF_DROP_FULL_SCAN_THRESHOLD (uint64) (NBuffers / 32)
87 
88 typedef struct PrivateRefCountEntry
89 {
93 
94 /* 64 bytes, about the size of a cache line on common systems */
95 #define REFCOUNT_ARRAY_ENTRIES 8
96 
97 /*
98  * Status of buffers to checkpoint for a particular tablespace, used
99  * internally in BufferSync.
100  */
101 typedef struct CkptTsStatus
102 {
103  /* oid of the tablespace */
105 
106  /*
107  * Checkpoint progress for this tablespace. To make progress comparable
108  * between tablespaces the progress is, for each tablespace, measured as a
109  * number between 0 and the total number of to-be-checkpointed pages. Each
110  * page checkpointed in this tablespace increments this space's progress
111  * by progress_slice.
112  */
115 
116  /* number of to-be checkpointed pages in this tablespace */
118  /* already processed pages in this tablespace */
120 
121  /* current offset in CkptBufferIds for this tablespace */
122  int index;
124 
125 /*
126  * Type for array used to sort SMgrRelations
127  *
128  * FlushRelationsAllBuffers shares the same comparator function with
129  * DropRelationsAllBuffers. Pointer to this struct and RelFileLocator must be
130  * compatible.
131  */
132 typedef struct SMgrSortArray
133 {
134  RelFileLocator rlocator; /* This must be the first member */
137 
138 /* GUC variables */
139 bool zero_damaged_pages = false;
142 bool track_io_timing = false;
143 
144 /*
145  * How many buffers PrefetchBuffer callers should try to stay ahead of their
146  * ReadBuffer calls by. Zero means "never prefetch". This value is only used
147  * for buffers not belonging to tablespaces that have their
148  * effective_io_concurrency parameter set.
149  */
151 
152 /*
153  * Like effective_io_concurrency, but used by maintenance code paths that might
154  * benefit from a higher setting because they work on behalf of many sessions.
155  * Overridden by the tablespace setting of the same name.
156  */
158 
159 /*
160  * Limit on how many blocks should be handled in single I/O operations.
161  * StartReadBuffers() callers should respect it, as should other operations
162  * that call smgr APIs directly.
163  */
165 
166 /*
167  * GUC variables about triggering kernel writeback for buffers written; OS
168  * dependent defaults are set via the GUC mechanism.
169  */
173 
174 /* local state for LockBufferForCleanup */
176 
177 /*
178  * Backend-Private refcount management:
179  *
180  * Each buffer also has a private refcount that keeps track of the number of
181  * times the buffer is pinned in the current process. This is so that the
182  * shared refcount needs to be modified only once if a buffer is pinned more
183  * than once by an individual backend. It's also used to check that no buffers
184  * are still pinned at the end of transactions and when exiting.
185  *
186  *
187  * To avoid - as we used to - requiring an array with NBuffers entries to keep
188  * track of local buffers, we use a small sequentially searched array
189  * (PrivateRefCountArray) and an overflow hash table (PrivateRefCountHash) to
190  * keep track of backend local pins.
191  *
192  * Until no more than REFCOUNT_ARRAY_ENTRIES buffers are pinned at once, all
193  * refcounts are kept track of in the array; after that, new array entries
194  * displace old ones into the hash table. That way a frequently used entry
195  * can't get "stuck" in the hashtable while infrequent ones clog the array.
196  *
197  * Note that in most scenarios the number of pinned buffers will not exceed
198  * REFCOUNT_ARRAY_ENTRIES.
199  *
200  *
201  * To enter a buffer into the refcount tracking mechanism first reserve a free
202  * entry using ReservePrivateRefCountEntry() and then later, if necessary,
203  * fill it with NewPrivateRefCountEntry(). That split lets us avoid doing
204  * memory allocations in NewPrivateRefCountEntry() which can be important
205  * because in some scenarios it's called with a spinlock held...
206  */
208 static HTAB *PrivateRefCountHash = NULL;
212 
213 static void ReservePrivateRefCountEntry(void);
216 static inline int32 GetPrivateRefCount(Buffer buffer);
218 
219 /* ResourceOwner callbacks to hold in-progress I/Os and buffer pins */
220 static void ResOwnerReleaseBufferIO(Datum res);
221 static char *ResOwnerPrintBufferIO(Datum res);
222 static void ResOwnerReleaseBufferPin(Datum res);
223 static char *ResOwnerPrintBufferPin(Datum res);
224 
226 {
227  .name = "buffer io",
228  .release_phase = RESOURCE_RELEASE_BEFORE_LOCKS,
229  .release_priority = RELEASE_PRIO_BUFFER_IOS,
230  .ReleaseResource = ResOwnerReleaseBufferIO,
231  .DebugPrint = ResOwnerPrintBufferIO
232 };
233 
235 {
236  .name = "buffer pin",
237  .release_phase = RESOURCE_RELEASE_BEFORE_LOCKS,
238  .release_priority = RELEASE_PRIO_BUFFER_PINS,
239  .ReleaseResource = ResOwnerReleaseBufferPin,
240  .DebugPrint = ResOwnerPrintBufferPin
241 };
242 
243 /*
244  * Ensure that the PrivateRefCountArray has sufficient space to store one more
245  * entry. This has to be called before using NewPrivateRefCountEntry() to fill
246  * a new entry - but it's perfectly fine to not use a reserved entry.
247  */
248 static void
250 {
251  /* Already reserved (or freed), nothing to do */
252  if (ReservedRefCountEntry != NULL)
253  return;
254 
255  /*
256  * First search for a free entry the array, that'll be sufficient in the
257  * majority of cases.
258  */
259  {
260  int i;
261 
262  for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
263  {
265 
267 
268  if (res->buffer == InvalidBuffer)
269  {
271  return;
272  }
273  }
274  }
275 
276  /*
277  * No luck. All array entries are full. Move one array entry into the hash
278  * table.
279  */
280  {
281  /*
282  * Move entry from the current clock position in the array into the
283  * hashtable. Use that slot.
284  */
285  PrivateRefCountEntry *hashent;
286  bool found;
287 
288  /* select victim slot */
291 
292  /* Better be used, otherwise we shouldn't get here. */
294 
295  /* enter victim array entry into hashtable */
298  HASH_ENTER,
299  &found);
300  Assert(!found);
302 
303  /* clear the now free array slot */
306 
308  }
309 }
310 
311 /*
312  * Fill a previously reserved refcount entry.
313  */
314 static PrivateRefCountEntry *
316 {
318 
319  /* only allowed to be called when a reservation has been made */
320  Assert(ReservedRefCountEntry != NULL);
321 
322  /* use up the reserved entry */
324  ReservedRefCountEntry = NULL;
325 
326  /* and fill it */
327  res->buffer = buffer;
328  res->refcount = 0;
329 
330  return res;
331 }
332 
333 /*
334  * Return the PrivateRefCount entry for the passed buffer.
335  *
336  * Returns NULL if a buffer doesn't have a refcount entry. Otherwise, if
337  * do_move is true, and the entry resides in the hashtable the entry is
338  * optimized for frequent access by moving it to the array.
339  */
340 static PrivateRefCountEntry *
342 {
344  int i;
345 
348 
349  /*
350  * First search for references in the array, that'll be sufficient in the
351  * majority of cases.
352  */
353  for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
354  {
356 
357  if (res->buffer == buffer)
358  return res;
359  }
360 
361  /*
362  * By here we know that the buffer, if already pinned, isn't residing in
363  * the array.
364  *
365  * Only look up the buffer in the hashtable if we've previously overflowed
366  * into it.
367  */
368  if (PrivateRefCountOverflowed == 0)
369  return NULL;
370 
372 
373  if (res == NULL)
374  return NULL;
375  else if (!do_move)
376  {
377  /* caller doesn't want us to move the hash entry into the array */
378  return res;
379  }
380  else
381  {
382  /* move buffer from hashtable into the free array slot */
383  bool found;
385 
386  /* Ensure there's a free array slot */
388 
389  /* Use up the reserved slot */
390  Assert(ReservedRefCountEntry != NULL);
392  ReservedRefCountEntry = NULL;
393  Assert(free->buffer == InvalidBuffer);
394 
395  /* and fill it */
396  free->buffer = buffer;
397  free->refcount = res->refcount;
398 
399  /* delete from hashtable */
401  Assert(found);
404 
405  return free;
406  }
407 }
408 
409 /*
410  * Returns how many times the passed buffer is pinned by this backend.
411  *
412  * Only works for shared memory buffers!
413  */
414 static inline int32
416 {
418 
421 
422  /*
423  * Not moving the entry - that's ok for the current users, but we might
424  * want to change this one day.
425  */
426  ref = GetPrivateRefCountEntry(buffer, false);
427 
428  if (ref == NULL)
429  return 0;
430  return ref->refcount;
431 }
432 
433 /*
434  * Release resources used to track the reference count of a buffer which we no
435  * longer have pinned and don't want to pin again immediately.
436  */
437 static void
439 {
440  Assert(ref->refcount == 0);
441 
442  if (ref >= &PrivateRefCountArray[0] &&
444  {
445  ref->buffer = InvalidBuffer;
446 
447  /*
448  * Mark the just used entry as reserved - in many scenarios that
449  * allows us to avoid ever having to search the array/hash for free
450  * entries.
451  */
452  ReservedRefCountEntry = ref;
453  }
454  else
455  {
456  bool found;
457  Buffer buffer = ref->buffer;
458 
460  Assert(found);
463  }
464 }
465 
466 /*
467  * BufferIsPinned
468  * True iff the buffer is pinned (also checks for valid buffer number).
469  *
470  * NOTE: what we check here is that *this* backend holds a pin on
471  * the buffer. We do not care whether some other backend does.
472  */
473 #define BufferIsPinned(bufnum) \
474 ( \
475  !BufferIsValid(bufnum) ? \
476  false \
477  : \
478  BufferIsLocal(bufnum) ? \
479  (LocalRefCount[-(bufnum) - 1] > 0) \
480  : \
481  (GetPrivateRefCount(bufnum) > 0) \
482 )
483 
484 
486  SMgrRelation smgr, char smgr_persistence,
487  ForkNumber forkNum, BlockNumber blockNum,
490  ForkNumber fork,
491  BufferAccessStrategy strategy,
492  uint32 flags,
493  uint32 extend_by,
494  BlockNumber extend_upto,
495  Buffer *buffers,
496  uint32 *extended_by);
498  ForkNumber fork,
499  BufferAccessStrategy strategy,
500  uint32 flags,
501  uint32 extend_by,
502  BlockNumber extend_upto,
503  Buffer *buffers,
504  uint32 *extended_by);
505 static bool PinBuffer(BufferDesc *buf, BufferAccessStrategy strategy);
506 static void PinBuffer_Locked(BufferDesc *buf);
507 static void UnpinBuffer(BufferDesc *buf);
508 static void UnpinBufferNoOwner(BufferDesc *buf);
509 static void BufferSync(int flags);
511 static int SyncOneBuffer(int buf_id, bool skip_recently_used,
512  WritebackContext *wb_context);
513 static void WaitIO(BufferDesc *buf);
514 static bool StartBufferIO(BufferDesc *buf, bool forInput, bool nowait);
515 static void TerminateBufferIO(BufferDesc *buf, bool clear_dirty,
516  uint32 set_flag_bits, bool forget_owner);
517 static void AbortBufferIO(Buffer buffer);
518 static void shared_buffer_write_error_callback(void *arg);
519 static void local_buffer_write_error_callback(void *arg);
520 static inline BufferDesc *BufferAlloc(SMgrRelation smgr,
521  char relpersistence,
522  ForkNumber forkNum,
523  BlockNumber blockNum,
524  BufferAccessStrategy strategy,
525  bool *foundPtr, IOContext io_context);
526 static Buffer GetVictimBuffer(BufferAccessStrategy strategy, IOContext io_context);
527 static void FlushBuffer(BufferDesc *buf, SMgrRelation reln,
528  IOObject io_object, IOContext io_context);
529 static void FindAndDropRelationBuffers(RelFileLocator rlocator,
530  ForkNumber forkNum,
531  BlockNumber nForkBlock,
532  BlockNumber firstDelBlock);
533 static void RelationCopyStorageUsingBuffer(RelFileLocator srclocator,
534  RelFileLocator dstlocator,
535  ForkNumber forkNum, bool permanent);
536 static void AtProcExit_Buffers(int code, Datum arg);
537 static void CheckForBufferLeaks(void);
538 static int rlocator_comparator(const void *p1, const void *p2);
539 static inline int buffertag_comparator(const BufferTag *ba, const BufferTag *bb);
540 static inline int ckpt_buforder_comparator(const CkptSortItem *a, const CkptSortItem *b);
541 static int ts_ckpt_progress_comparator(Datum a, Datum b, void *arg);
542 
543 
544 /*
545  * Implementation of PrefetchBuffer() for shared buffers.
546  */
549  ForkNumber forkNum,
550  BlockNumber blockNum)
551 {
552  PrefetchBufferResult result = {InvalidBuffer, false};
553  BufferTag newTag; /* identity of requested block */
554  uint32 newHash; /* hash value for newTag */
555  LWLock *newPartitionLock; /* buffer partition lock for it */
556  int buf_id;
557 
558  Assert(BlockNumberIsValid(blockNum));
559 
560  /* create a tag so we can lookup the buffer */
561  InitBufferTag(&newTag, &smgr_reln->smgr_rlocator.locator,
562  forkNum, blockNum);
563 
564  /* determine its hash code and partition lock ID */
565  newHash = BufTableHashCode(&newTag);
566  newPartitionLock = BufMappingPartitionLock(newHash);
567 
568  /* see if the block is in the buffer pool already */
569  LWLockAcquire(newPartitionLock, LW_SHARED);
570  buf_id = BufTableLookup(&newTag, newHash);
571  LWLockRelease(newPartitionLock);
572 
573  /* If not in buffers, initiate prefetch */
574  if (buf_id < 0)
575  {
576 #ifdef USE_PREFETCH
577  /*
578  * Try to initiate an asynchronous read. This returns false in
579  * recovery if the relation file doesn't exist.
580  */
581  if ((io_direct_flags & IO_DIRECT_DATA) == 0 &&
582  smgrprefetch(smgr_reln, forkNum, blockNum, 1))
583  {
584  result.initiated_io = true;
585  }
586 #endif /* USE_PREFETCH */
587  }
588  else
589  {
590  /*
591  * Report the buffer it was in at that time. The caller may be able
592  * to avoid a buffer table lookup, but it's not pinned and it must be
593  * rechecked!
594  */
595  result.recent_buffer = buf_id + 1;
596  }
597 
598  /*
599  * If the block *is* in buffers, we do nothing. This is not really ideal:
600  * the block might be just about to be evicted, which would be stupid
601  * since we know we are going to need it soon. But the only easy answer
602  * is to bump the usage_count, which does not seem like a great solution:
603  * when the caller does ultimately touch the block, usage_count would get
604  * bumped again, resulting in too much favoritism for blocks that are
605  * involved in a prefetch sequence. A real fix would involve some
606  * additional per-buffer state, and it's not clear that there's enough of
607  * a problem to justify that.
608  */
609 
610  return result;
611 }
612 
613 /*
614  * PrefetchBuffer -- initiate asynchronous read of a block of a relation
615  *
616  * This is named by analogy to ReadBuffer but doesn't actually allocate a
617  * buffer. Instead it tries to ensure that a future ReadBuffer for the given
618  * block will not be delayed by the I/O. Prefetching is optional.
619  *
620  * There are three possible outcomes:
621  *
622  * 1. If the block is already cached, the result includes a valid buffer that
623  * could be used by the caller to avoid the need for a later buffer lookup, but
624  * it's not pinned, so the caller must recheck it.
625  *
626  * 2. If the kernel has been asked to initiate I/O, the initiated_io member is
627  * true. Currently there is no way to know if the data was already cached by
628  * the kernel and therefore didn't really initiate I/O, and no way to know when
629  * the I/O completes other than using synchronous ReadBuffer().
630  *
631  * 3. Otherwise, the buffer wasn't already cached by PostgreSQL, and
632  * USE_PREFETCH is not defined (this build doesn't support prefetching due to
633  * lack of a kernel facility), direct I/O is enabled, or the underlying
634  * relation file wasn't found and we are in recovery. (If the relation file
635  * wasn't found and we are not in recovery, an error is raised).
636  */
639 {
640  Assert(RelationIsValid(reln));
641  Assert(BlockNumberIsValid(blockNum));
642 
643  if (RelationUsesLocalBuffers(reln))
644  {
645  /* see comments in ReadBufferExtended */
646  if (RELATION_IS_OTHER_TEMP(reln))
647  ereport(ERROR,
648  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
649  errmsg("cannot access temporary tables of other sessions")));
650 
651  /* pass it off to localbuf.c */
652  return PrefetchLocalBuffer(RelationGetSmgr(reln), forkNum, blockNum);
653  }
654  else
655  {
656  /* pass it to the shared buffer version */
657  return PrefetchSharedBuffer(RelationGetSmgr(reln), forkNum, blockNum);
658  }
659 }
660 
661 /*
662  * ReadRecentBuffer -- try to pin a block in a recently observed buffer
663  *
664  * Compared to ReadBuffer(), this avoids a buffer mapping lookup when it's
665  * successful. Return true if the buffer is valid and still has the expected
666  * tag. In that case, the buffer is pinned and the usage count is bumped.
667  */
668 bool
670  Buffer recent_buffer)
671 {
672  BufferDesc *bufHdr;
673  BufferTag tag;
674  uint32 buf_state;
675  bool have_private_ref;
676 
677  Assert(BufferIsValid(recent_buffer));
678 
681  InitBufferTag(&tag, &rlocator, forkNum, blockNum);
682 
683  if (BufferIsLocal(recent_buffer))
684  {
685  int b = -recent_buffer - 1;
686 
687  bufHdr = GetLocalBufferDescriptor(b);
688  buf_state = pg_atomic_read_u32(&bufHdr->state);
689 
690  /* Is it still valid and holding the right tag? */
691  if ((buf_state & BM_VALID) && BufferTagsEqual(&tag, &bufHdr->tag))
692  {
693  PinLocalBuffer(bufHdr, true);
694 
696 
697  return true;
698  }
699  }
700  else
701  {
702  bufHdr = GetBufferDescriptor(recent_buffer - 1);
703  have_private_ref = GetPrivateRefCount(recent_buffer) > 0;
704 
705  /*
706  * Do we already have this buffer pinned with a private reference? If
707  * so, it must be valid and it is safe to check the tag without
708  * locking. If not, we have to lock the header first and then check.
709  */
710  if (have_private_ref)
711  buf_state = pg_atomic_read_u32(&bufHdr->state);
712  else
713  buf_state = LockBufHdr(bufHdr);
714 
715  if ((buf_state & BM_VALID) && BufferTagsEqual(&tag, &bufHdr->tag))
716  {
717  /*
718  * It's now safe to pin the buffer. We can't pin first and ask
719  * questions later, because it might confuse code paths like
720  * InvalidateBuffer() if we pinned a random non-matching buffer.
721  */
722  if (have_private_ref)
723  PinBuffer(bufHdr, NULL); /* bump pin count */
724  else
725  PinBuffer_Locked(bufHdr); /* pin for first time */
726 
728 
729  return true;
730  }
731 
732  /* If we locked the header above, now unlock. */
733  if (!have_private_ref)
734  UnlockBufHdr(bufHdr, buf_state);
735  }
736 
737  return false;
738 }
739 
740 /*
741  * ReadBuffer -- a shorthand for ReadBufferExtended, for reading from main
742  * fork with RBM_NORMAL mode and default strategy.
743  */
744 Buffer
746 {
747  return ReadBufferExtended(reln, MAIN_FORKNUM, blockNum, RBM_NORMAL, NULL);
748 }
749 
750 /*
751  * ReadBufferExtended -- returns a buffer containing the requested
752  * block of the requested relation. If the blknum
753  * requested is P_NEW, extend the relation file and
754  * allocate a new block. (Caller is responsible for
755  * ensuring that only one backend tries to extend a
756  * relation at the same time!)
757  *
758  * Returns: the buffer number for the buffer containing
759  * the block read. The returned buffer has been pinned.
760  * Does not return on error --- elog's instead.
761  *
762  * Assume when this function is called, that reln has been opened already.
763  *
764  * In RBM_NORMAL mode, the page is read from disk, and the page header is
765  * validated. An error is thrown if the page header is not valid. (But
766  * note that an all-zero page is considered "valid"; see
767  * PageIsVerifiedExtended().)
768  *
769  * RBM_ZERO_ON_ERROR is like the normal mode, but if the page header is not
770  * valid, the page is zeroed instead of throwing an error. This is intended
771  * for non-critical data, where the caller is prepared to repair errors.
772  *
773  * In RBM_ZERO_AND_LOCK mode, if the page isn't in buffer cache already, it's
774  * filled with zeros instead of reading it from disk. Useful when the caller
775  * is going to fill the page from scratch, since this saves I/O and avoids
776  * unnecessary failure if the page-on-disk has corrupt page headers.
777  * The page is returned locked to ensure that the caller has a chance to
778  * initialize the page before it's made visible to others.
779  * Caution: do not use this mode to read a page that is beyond the relation's
780  * current physical EOF; that is likely to cause problems in md.c when
781  * the page is modified and written out. P_NEW is OK, though.
782  *
783  * RBM_ZERO_AND_CLEANUP_LOCK is the same as RBM_ZERO_AND_LOCK, but acquires
784  * a cleanup-strength lock on the page.
785  *
786  * RBM_NORMAL_NO_LOG mode is treated the same as RBM_NORMAL here.
787  *
788  * If strategy is not NULL, a nondefault buffer access strategy is used.
789  * See buffer/README for details.
790  */
791 inline Buffer
794 {
795  Buffer buf;
796 
797  /*
798  * Reject attempts to read non-local temporary relations; we would be
799  * likely to get wrong data since we have no visibility into the owning
800  * session's local buffers.
801  */
802  if (RELATION_IS_OTHER_TEMP(reln))
803  ereport(ERROR,
804  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
805  errmsg("cannot access temporary tables of other sessions")));
806 
807  /*
808  * Read the buffer, and update pgstat counters to reflect a cache hit or
809  * miss.
810  */
811  buf = ReadBuffer_common(reln, RelationGetSmgr(reln), 0,
812  forkNum, blockNum, mode, strategy);
813 
814  return buf;
815 }
816 
817 
818 /*
819  * ReadBufferWithoutRelcache -- like ReadBufferExtended, but doesn't require
820  * a relcache entry for the relation.
821  *
822  * Pass permanent = true for a RELPERSISTENCE_PERMANENT relation, and
823  * permanent = false for a RELPERSISTENCE_UNLOGGED relation. This function
824  * cannot be used for temporary relations (and making that work might be
825  * difficult, unless we only want to read temporary relations for our own
826  * ProcNumber).
827  */
828 Buffer
830  BlockNumber blockNum, ReadBufferMode mode,
831  BufferAccessStrategy strategy, bool permanent)
832 {
833  SMgrRelation smgr = smgropen(rlocator, INVALID_PROC_NUMBER);
834 
835  return ReadBuffer_common(NULL, smgr,
836  permanent ? RELPERSISTENCE_PERMANENT : RELPERSISTENCE_UNLOGGED,
837  forkNum, blockNum,
838  mode, strategy);
839 }
840 
841 /*
842  * Convenience wrapper around ExtendBufferedRelBy() extending by one block.
843  */
844 Buffer
846  ForkNumber forkNum,
847  BufferAccessStrategy strategy,
848  uint32 flags)
849 {
850  Buffer buf;
851  uint32 extend_by = 1;
852 
853  ExtendBufferedRelBy(bmr, forkNum, strategy, flags, extend_by,
854  &buf, &extend_by);
855 
856  return buf;
857 }
858 
859 /*
860  * Extend relation by multiple blocks.
861  *
862  * Tries to extend the relation by extend_by blocks. Depending on the
863  * availability of resources the relation may end up being extended by a
864  * smaller number of pages (unless an error is thrown, always by at least one
865  * page). *extended_by is updated to the number of pages the relation has been
866  * extended to.
867  *
868  * buffers needs to be an array that is at least extend_by long. Upon
869  * completion, the first extend_by array elements will point to a pinned
870  * buffer.
871  *
872  * If EB_LOCK_FIRST is part of flags, the first returned buffer is
873  * locked. This is useful for callers that want a buffer that is guaranteed to
874  * be empty.
875  */
878  ForkNumber fork,
879  BufferAccessStrategy strategy,
880  uint32 flags,
881  uint32 extend_by,
882  Buffer *buffers,
883  uint32 *extended_by)
884 {
885  Assert((bmr.rel != NULL) != (bmr.smgr != NULL));
886  Assert(bmr.smgr == NULL || bmr.relpersistence != 0);
887  Assert(extend_by > 0);
888 
889  if (bmr.smgr == NULL)
890  {
891  bmr.smgr = RelationGetSmgr(bmr.rel);
892  bmr.relpersistence = bmr.rel->rd_rel->relpersistence;
893  }
894 
895  return ExtendBufferedRelCommon(bmr, fork, strategy, flags,
896  extend_by, InvalidBlockNumber,
897  buffers, extended_by);
898 }
899 
900 /*
901  * Extend the relation so it is at least extend_to blocks large, return buffer
902  * (extend_to - 1).
903  *
904  * This is useful for callers that want to write a specific page, regardless
905  * of the current size of the relation (e.g. useful for visibilitymap and for
906  * crash recovery).
907  */
908 Buffer
910  ForkNumber fork,
911  BufferAccessStrategy strategy,
912  uint32 flags,
913  BlockNumber extend_to,
915 {
917  uint32 extended_by = 0;
919  Buffer buffers[64];
920 
921  Assert((bmr.rel != NULL) != (bmr.smgr != NULL));
922  Assert(bmr.smgr == NULL || bmr.relpersistence != 0);
923  Assert(extend_to != InvalidBlockNumber && extend_to > 0);
924 
925  if (bmr.smgr == NULL)
926  {
927  bmr.smgr = RelationGetSmgr(bmr.rel);
928  bmr.relpersistence = bmr.rel->rd_rel->relpersistence;
929  }
930 
931  /*
932  * If desired, create the file if it doesn't exist. If
933  * smgr_cached_nblocks[fork] is positive then it must exist, no need for
934  * an smgrexists call.
935  */
936  if ((flags & EB_CREATE_FORK_IF_NEEDED) &&
937  (bmr.smgr->smgr_cached_nblocks[fork] == 0 ||
939  !smgrexists(bmr.smgr, fork))
940  {
942 
943  /* recheck, fork might have been created concurrently */
944  if (!smgrexists(bmr.smgr, fork))
945  smgrcreate(bmr.smgr, fork, flags & EB_PERFORMING_RECOVERY);
946 
948  }
949 
950  /*
951  * If requested, invalidate size cache, so that smgrnblocks asks the
952  * kernel.
953  */
954  if (flags & EB_CLEAR_SIZE_CACHE)
956 
957  /*
958  * Estimate how many pages we'll need to extend by. This avoids acquiring
959  * unnecessarily many victim buffers.
960  */
961  current_size = smgrnblocks(bmr.smgr, fork);
962 
963  /*
964  * Since no-one else can be looking at the page contents yet, there is no
965  * difference between an exclusive lock and a cleanup-strength lock. Note
966  * that we pass the original mode to ReadBuffer_common() below, when
967  * falling back to reading the buffer to a concurrent relation extension.
968  */
970  flags |= EB_LOCK_TARGET;
971 
972  while (current_size < extend_to)
973  {
974  uint32 num_pages = lengthof(buffers);
975  BlockNumber first_block;
976 
977  if ((uint64) current_size + num_pages > extend_to)
978  num_pages = extend_to - current_size;
979 
980  first_block = ExtendBufferedRelCommon(bmr, fork, strategy, flags,
981  num_pages, extend_to,
982  buffers, &extended_by);
983 
984  current_size = first_block + extended_by;
985  Assert(num_pages != 0 || current_size >= extend_to);
986 
987  for (uint32 i = 0; i < extended_by; i++)
988  {
989  if (first_block + i != extend_to - 1)
990  ReleaseBuffer(buffers[i]);
991  else
992  buffer = buffers[i];
993  }
994  }
995 
996  /*
997  * It's possible that another backend concurrently extended the relation.
998  * In that case read the buffer.
999  *
1000  * XXX: Should we control this via a flag?
1001  */
1002  if (buffer == InvalidBuffer)
1003  {
1004  Assert(extended_by == 0);
1005  buffer = ReadBuffer_common(bmr.rel, bmr.smgr, 0,
1006  fork, extend_to - 1, mode, strategy);
1007  }
1008 
1009  return buffer;
1010 }
1011 
1012 /*
1013  * Zero a buffer and lock it, as part of the implementation of
1014  * RBM_ZERO_AND_LOCK or RBM_ZERO_AND_CLEANUP_LOCK. The buffer must be already
1015  * pinned. It does not have to be valid, but it is valid and locked on
1016  * return.
1017  */
1018 static void
1020 {
1021  BufferDesc *bufHdr;
1022  uint32 buf_state;
1023 
1025 
1026  if (BufferIsLocal(buffer))
1027  bufHdr = GetLocalBufferDescriptor(-buffer - 1);
1028  else
1029  {
1030  bufHdr = GetBufferDescriptor(buffer - 1);
1031  if (mode == RBM_ZERO_AND_LOCK)
1033  else
1035  }
1036 
1037  memset(BufferGetPage(buffer), 0, BLCKSZ);
1038 
1039  if (BufferIsLocal(buffer))
1040  {
1041  buf_state = pg_atomic_read_u32(&bufHdr->state);
1042  buf_state |= BM_VALID;
1043  pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state);
1044  }
1045  else
1046  {
1047  buf_state = LockBufHdr(bufHdr);
1048  buf_state |= BM_VALID;
1049  UnlockBufHdr(bufHdr, buf_state);
1050  }
1051 }
1052 
1053 /*
1054  * Pin a buffer for a given block. *foundPtr is set to true if the block was
1055  * already present, or false if more work is required to either read it in or
1056  * zero it.
1057  */
1060  SMgrRelation smgr,
1061  char smgr_persistence,
1062  ForkNumber forkNum,
1063  BlockNumber blockNum,
1064  BufferAccessStrategy strategy,
1065  bool *foundPtr)
1066 {
1067  BufferDesc *bufHdr;
1068  IOContext io_context;
1069  IOObject io_object;
1070  char persistence;
1071 
1072  Assert(blockNum != P_NEW);
1073 
1074  /*
1075  * If there is no Relation it usually implies recovery and thus permanent,
1076  * but we take an argument because CreateAndCopyRelationData can reach us
1077  * with only an SMgrRelation for an unlogged relation that we don't want
1078  * to flag with BM_PERMANENT.
1079  */
1080  if (rel)
1081  persistence = rel->rd_rel->relpersistence;
1082  else if (smgr_persistence == 0)
1083  persistence = RELPERSISTENCE_PERMANENT;
1084  else
1085  persistence = smgr_persistence;
1086 
1087  if (persistence == RELPERSISTENCE_TEMP)
1088  {
1089  io_context = IOCONTEXT_NORMAL;
1090  io_object = IOOBJECT_TEMP_RELATION;
1091  }
1092  else
1093  {
1094  io_context = IOContextForStrategy(strategy);
1095  io_object = IOOBJECT_RELATION;
1096  }
1097 
1098  TRACE_POSTGRESQL_BUFFER_READ_START(forkNum, blockNum,
1100  smgr->smgr_rlocator.locator.dbOid,
1102  smgr->smgr_rlocator.backend);
1103 
1104  if (persistence == RELPERSISTENCE_TEMP)
1105  {
1106  bufHdr = LocalBufferAlloc(smgr, forkNum, blockNum, foundPtr);
1107  if (*foundPtr)
1109  }
1110  else
1111  {
1112  bufHdr = BufferAlloc(smgr, persistence, forkNum, blockNum,
1113  strategy, foundPtr, io_context);
1114  if (*foundPtr)
1116  }
1117  if (rel)
1118  {
1119  /*
1120  * While pgBufferUsage's "read" counter isn't bumped unless we reach
1121  * WaitReadBuffers() (so, not for hits, and not for buffers that are
1122  * zeroed instead), the per-relation stats always count them.
1123  */
1125  if (*foundPtr)
1127  }
1128  if (*foundPtr)
1129  {
1130  VacuumPageHit++;
1131  pgstat_count_io_op(io_object, io_context, IOOP_HIT);
1132  if (VacuumCostActive)
1134 
1135  TRACE_POSTGRESQL_BUFFER_READ_DONE(forkNum, blockNum,
1137  smgr->smgr_rlocator.locator.dbOid,
1139  smgr->smgr_rlocator.backend,
1140  true);
1141  }
1142 
1143  return BufferDescriptorGetBuffer(bufHdr);
1144 }
1145 
1146 /*
1147  * ReadBuffer_common -- common logic for all ReadBuffer variants
1148  *
1149  * smgr is required, rel is optional unless using P_NEW.
1150  */
1152 ReadBuffer_common(Relation rel, SMgrRelation smgr, char smgr_persistence,
1153  ForkNumber forkNum,
1154  BlockNumber blockNum, ReadBufferMode mode,
1155  BufferAccessStrategy strategy)
1156 {
1157  ReadBuffersOperation operation;
1158  Buffer buffer;
1159  int flags;
1160 
1161  /*
1162  * Backward compatibility path, most code should use ExtendBufferedRel()
1163  * instead, as acquiring the extension lock inside ExtendBufferedRel()
1164  * scales a lot better.
1165  */
1166  if (unlikely(blockNum == P_NEW))
1167  {
1169 
1170  /*
1171  * Since no-one else can be looking at the page contents yet, there is
1172  * no difference between an exclusive lock and a cleanup-strength
1173  * lock.
1174  */
1176  flags |= EB_LOCK_FIRST;
1177 
1178  return ExtendBufferedRel(BMR_REL(rel), forkNum, strategy, flags);
1179  }
1180 
1182  mode == RBM_ZERO_AND_LOCK))
1183  {
1184  bool found;
1185 
1186  buffer = PinBufferForBlock(rel, smgr, smgr_persistence,
1187  forkNum, blockNum, strategy, &found);
1189  return buffer;
1190  }
1191 
1192  if (mode == RBM_ZERO_ON_ERROR)
1194  else
1195  flags = 0;
1196  operation.smgr = smgr;
1197  operation.rel = rel;
1198  operation.smgr_persistence = smgr_persistence;
1199  operation.forknum = forkNum;
1200  operation.strategy = strategy;
1201  if (StartReadBuffer(&operation,
1202  &buffer,
1203  blockNum,
1204  flags))
1205  WaitReadBuffers(&operation);
1206 
1207  return buffer;
1208 }
1209 
1210 static pg_attribute_always_inline bool
1212  Buffer *buffers,
1213  BlockNumber blockNum,
1214  int *nblocks,
1215  int flags)
1216 {
1217  int actual_nblocks = *nblocks;
1218  int io_buffers_len = 0;
1219 
1220  Assert(*nblocks > 0);
1221  Assert(*nblocks <= MAX_IO_COMBINE_LIMIT);
1222 
1223  for (int i = 0; i < actual_nblocks; ++i)
1224  {
1225  bool found;
1226 
1227  buffers[i] = PinBufferForBlock(operation->rel,
1228  operation->smgr,
1229  operation->smgr_persistence,
1230  operation->forknum,
1231  blockNum + i,
1232  operation->strategy,
1233  &found);
1234 
1235  if (found)
1236  {
1237  /*
1238  * Terminate the read as soon as we get a hit. It could be a
1239  * single buffer hit, or it could be a hit that follows a readable
1240  * range. We don't want to create more than one readable range,
1241  * so we stop here.
1242  */
1243  actual_nblocks = i + 1;
1244  break;
1245  }
1246  else
1247  {
1248  /* Extend the readable range to cover this block. */
1249  io_buffers_len++;
1250  }
1251  }
1252  *nblocks = actual_nblocks;
1253 
1254  if (likely(io_buffers_len == 0))
1255  return false;
1256 
1257  /* Populate information needed for I/O. */
1258  operation->buffers = buffers;
1259  operation->blocknum = blockNum;
1260  operation->flags = flags;
1261  operation->nblocks = actual_nblocks;
1262  operation->io_buffers_len = io_buffers_len;
1263 
1264  if (flags & READ_BUFFERS_ISSUE_ADVICE)
1265  {
1266  /*
1267  * In theory we should only do this if PinBufferForBlock() had to
1268  * allocate new buffers above. That way, if two calls to
1269  * StartReadBuffers() were made for the same blocks before
1270  * WaitReadBuffers(), only the first would issue the advice. That'd be
1271  * a better simulation of true asynchronous I/O, which would only
1272  * start the I/O once, but isn't done here for simplicity. Note also
1273  * that the following call might actually issue two advice calls if we
1274  * cross a segment boundary; in a true asynchronous version we might
1275  * choose to process only one real I/O at a time in that case.
1276  */
1277  smgrprefetch(operation->smgr,
1278  operation->forknum,
1279  blockNum,
1280  operation->io_buffers_len);
1281  }
1282 
1283  /* Indicate that WaitReadBuffers() should be called. */
1284  return true;
1285 }
1286 
1287 /*
1288  * Begin reading a range of blocks beginning at blockNum and extending for
1289  * *nblocks. On return, up to *nblocks pinned buffers holding those blocks
1290  * are written into the buffers array, and *nblocks is updated to contain the
1291  * actual number, which may be fewer than requested. Caller sets some of the
1292  * members of operation; see struct definition.
1293  *
1294  * If false is returned, no I/O is necessary. If true is returned, one I/O
1295  * has been started, and WaitReadBuffers() must be called with the same
1296  * operation object before the buffers are accessed. Along with the operation
1297  * object, the caller-supplied array of buffers must remain valid until
1298  * WaitReadBuffers() is called.
1299  *
1300  * Currently the I/O is only started with optional operating system advice if
1301  * requested by the caller with READ_BUFFERS_ISSUE_ADVICE, and the real I/O
1302  * happens synchronously in WaitReadBuffers(). In future work, true I/O could
1303  * be initiated here.
1304  */
1305 bool
1307  Buffer *buffers,
1308  BlockNumber blockNum,
1309  int *nblocks,
1310  int flags)
1311 {
1312  return StartReadBuffersImpl(operation, buffers, blockNum, nblocks, flags);
1313 }
1314 
1315 /*
1316  * Single block version of the StartReadBuffers(). This might save a few
1317  * instructions when called from another translation unit, because it is
1318  * specialized for nblocks == 1.
1319  */
1320 bool
1322  Buffer *buffer,
1323  BlockNumber blocknum,
1324  int flags)
1325 {
1326  int nblocks = 1;
1327  bool result;
1328 
1329  result = StartReadBuffersImpl(operation, buffer, blocknum, &nblocks, flags);
1330  Assert(nblocks == 1); /* single block can't be short */
1331 
1332  return result;
1333 }
1334 
1335 static inline bool
1337 {
1338  if (BufferIsLocal(buffer))
1339  {
1340  BufferDesc *bufHdr = GetLocalBufferDescriptor(-buffer - 1);
1341 
1342  return (pg_atomic_read_u32(&bufHdr->state) & BM_VALID) == 0;
1343  }
1344  else
1345  return StartBufferIO(GetBufferDescriptor(buffer - 1), true, nowait);
1346 }
1347 
1348 void
1350 {
1351  Buffer *buffers;
1352  int nblocks;
1353  BlockNumber blocknum;
1354  ForkNumber forknum;
1355  IOContext io_context;
1356  IOObject io_object;
1357  char persistence;
1358 
1359  /*
1360  * Currently operations are only allowed to include a read of some range,
1361  * with an optional extra buffer that is already pinned at the end. So
1362  * nblocks can be at most one more than io_buffers_len.
1363  */
1364  Assert((operation->nblocks == operation->io_buffers_len) ||
1365  (operation->nblocks == operation->io_buffers_len + 1));
1366 
1367  /* Find the range of the physical read we need to perform. */
1368  nblocks = operation->io_buffers_len;
1369  if (nblocks == 0)
1370  return; /* nothing to do */
1371 
1372  buffers = &operation->buffers[0];
1373  blocknum = operation->blocknum;
1374  forknum = operation->forknum;
1375 
1376  persistence = operation->rel
1377  ? operation->rel->rd_rel->relpersistence
1378  : RELPERSISTENCE_PERMANENT;
1379  if (persistence == RELPERSISTENCE_TEMP)
1380  {
1381  io_context = IOCONTEXT_NORMAL;
1382  io_object = IOOBJECT_TEMP_RELATION;
1383  }
1384  else
1385  {
1386  io_context = IOContextForStrategy(operation->strategy);
1387  io_object = IOOBJECT_RELATION;
1388  }
1389 
1390  /*
1391  * We count all these blocks as read by this backend. This is traditional
1392  * behavior, but might turn out to be not true if we find that someone
1393  * else has beaten us and completed the read of some of these blocks. In
1394  * that case the system globally double-counts, but we traditionally don't
1395  * count this as a "hit", and we don't have a separate counter for "miss,
1396  * but another backend completed the read".
1397  */
1398  if (persistence == RELPERSISTENCE_TEMP)
1399  pgBufferUsage.local_blks_read += nblocks;
1400  else
1401  pgBufferUsage.shared_blks_read += nblocks;
1402 
1403  for (int i = 0; i < nblocks; ++i)
1404  {
1405  int io_buffers_len;
1406  Buffer io_buffers[MAX_IO_COMBINE_LIMIT];
1407  void *io_pages[MAX_IO_COMBINE_LIMIT];
1408  instr_time io_start;
1409  BlockNumber io_first_block;
1410 
1411  /*
1412  * Skip this block if someone else has already completed it. If an
1413  * I/O is already in progress in another backend, this will wait for
1414  * the outcome: either done, or something went wrong and we will
1415  * retry.
1416  */
1417  if (!WaitReadBuffersCanStartIO(buffers[i], false))
1418  {
1419  /*
1420  * Report this as a 'hit' for this backend, even though it must
1421  * have started out as a miss in PinBufferForBlock().
1422  */
1423  TRACE_POSTGRESQL_BUFFER_READ_DONE(forknum, blocknum + i,
1424  operation->smgr->smgr_rlocator.locator.spcOid,
1425  operation->smgr->smgr_rlocator.locator.dbOid,
1426  operation->smgr->smgr_rlocator.locator.relNumber,
1427  operation->smgr->smgr_rlocator.backend,
1428  true);
1429  continue;
1430  }
1431 
1432  /* We found a buffer that we need to read in. */
1433  io_buffers[0] = buffers[i];
1434  io_pages[0] = BufferGetBlock(buffers[i]);
1435  io_first_block = blocknum + i;
1436  io_buffers_len = 1;
1437 
1438  /*
1439  * How many neighboring-on-disk blocks can we can scatter-read into
1440  * other buffers at the same time? In this case we don't wait if we
1441  * see an I/O already in progress. We already hold BM_IO_IN_PROGRESS
1442  * for the head block, so we should get on with that I/O as soon as
1443  * possible. We'll come back to this block again, above.
1444  */
1445  while ((i + 1) < nblocks &&
1446  WaitReadBuffersCanStartIO(buffers[i + 1], true))
1447  {
1448  /* Must be consecutive block numbers. */
1449  Assert(BufferGetBlockNumber(buffers[i + 1]) ==
1450  BufferGetBlockNumber(buffers[i]) + 1);
1451 
1452  io_buffers[io_buffers_len] = buffers[++i];
1453  io_pages[io_buffers_len++] = BufferGetBlock(buffers[i]);
1454  }
1455 
1457  smgrreadv(operation->smgr, forknum, io_first_block, io_pages, io_buffers_len);
1458  pgstat_count_io_op_time(io_object, io_context, IOOP_READ, io_start,
1459  io_buffers_len);
1460 
1461  /* Verify each block we read, and terminate the I/O. */
1462  for (int j = 0; j < io_buffers_len; ++j)
1463  {
1464  BufferDesc *bufHdr;
1465  Block bufBlock;
1466 
1467  if (persistence == RELPERSISTENCE_TEMP)
1468  {
1469  bufHdr = GetLocalBufferDescriptor(-io_buffers[j] - 1);
1470  bufBlock = LocalBufHdrGetBlock(bufHdr);
1471  }
1472  else
1473  {
1474  bufHdr = GetBufferDescriptor(io_buffers[j] - 1);
1475  bufBlock = BufHdrGetBlock(bufHdr);
1476  }
1477 
1478  /* check for garbage data */
1479  if (!PageIsVerifiedExtended((Page) bufBlock, io_first_block + j,
1481  {
1482  if ((operation->flags & READ_BUFFERS_ZERO_ON_ERROR) || zero_damaged_pages)
1483  {
1484  ereport(WARNING,
1486  errmsg("invalid page in block %u of relation %s; zeroing out page",
1487  io_first_block + j,
1488  relpath(operation->smgr->smgr_rlocator, forknum))));
1489  memset(bufBlock, 0, BLCKSZ);
1490  }
1491  else
1492  ereport(ERROR,
1494  errmsg("invalid page in block %u of relation %s",
1495  io_first_block + j,
1496  relpath(operation->smgr->smgr_rlocator, forknum))));
1497  }
1498 
1499  /* Terminate I/O and set BM_VALID. */
1500  if (persistence == RELPERSISTENCE_TEMP)
1501  {
1502  uint32 buf_state = pg_atomic_read_u32(&bufHdr->state);
1503 
1504  buf_state |= BM_VALID;
1505  pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state);
1506  }
1507  else
1508  {
1509  /* Set BM_VALID, terminate IO, and wake up any waiters */
1510  TerminateBufferIO(bufHdr, false, BM_VALID, true);
1511  }
1512 
1513  /* Report I/Os as completing individually. */
1514  TRACE_POSTGRESQL_BUFFER_READ_DONE(forknum, io_first_block + j,
1515  operation->smgr->smgr_rlocator.locator.spcOid,
1516  operation->smgr->smgr_rlocator.locator.dbOid,
1517  operation->smgr->smgr_rlocator.locator.relNumber,
1518  operation->smgr->smgr_rlocator.backend,
1519  false);
1520  }
1521 
1522  VacuumPageMiss += io_buffers_len;
1523  if (VacuumCostActive)
1524  VacuumCostBalance += VacuumCostPageMiss * io_buffers_len;
1525  }
1526 }
1527 
1528 /*
1529  * BufferAlloc -- subroutine for PinBufferForBlock. Handles lookup of a shared
1530  * buffer. If no buffer exists already, selects a replacement victim and
1531  * evicts the old page, but does NOT read in new page.
1532  *
1533  * "strategy" can be a buffer replacement strategy object, or NULL for
1534  * the default strategy. The selected buffer's usage_count is advanced when
1535  * using the default strategy, but otherwise possibly not (see PinBuffer).
1536  *
1537  * The returned buffer is pinned and is already marked as holding the
1538  * desired page. If it already did have the desired page, *foundPtr is
1539  * set true. Otherwise, *foundPtr is set false.
1540  *
1541  * io_context is passed as an output parameter to avoid calling
1542  * IOContextForStrategy() when there is a shared buffers hit and no IO
1543  * statistics need be captured.
1544  *
1545  * No locks are held either at entry or exit.
1546  */
1548 BufferAlloc(SMgrRelation smgr, char relpersistence, ForkNumber forkNum,
1549  BlockNumber blockNum,
1550  BufferAccessStrategy strategy,
1551  bool *foundPtr, IOContext io_context)
1552 {
1553  BufferTag newTag; /* identity of requested block */
1554  uint32 newHash; /* hash value for newTag */
1555  LWLock *newPartitionLock; /* buffer partition lock for it */
1556  int existing_buf_id;
1557  Buffer victim_buffer;
1558  BufferDesc *victim_buf_hdr;
1559  uint32 victim_buf_state;
1560 
1561  /* Make sure we will have room to remember the buffer pin */
1564 
1565  /* create a tag so we can lookup the buffer */
1566  InitBufferTag(&newTag, &smgr->smgr_rlocator.locator, forkNum, blockNum);
1567 
1568  /* determine its hash code and partition lock ID */
1569  newHash = BufTableHashCode(&newTag);
1570  newPartitionLock = BufMappingPartitionLock(newHash);
1571 
1572  /* see if the block is in the buffer pool already */
1573  LWLockAcquire(newPartitionLock, LW_SHARED);
1574  existing_buf_id = BufTableLookup(&newTag, newHash);
1575  if (existing_buf_id >= 0)
1576  {
1577  BufferDesc *buf;
1578  bool valid;
1579 
1580  /*
1581  * Found it. Now, pin the buffer so no one can steal it from the
1582  * buffer pool, and check to see if the correct data has been loaded
1583  * into the buffer.
1584  */
1585  buf = GetBufferDescriptor(existing_buf_id);
1586 
1587  valid = PinBuffer(buf, strategy);
1588 
1589  /* Can release the mapping lock as soon as we've pinned it */
1590  LWLockRelease(newPartitionLock);
1591 
1592  *foundPtr = true;
1593 
1594  if (!valid)
1595  {
1596  /*
1597  * We can only get here if (a) someone else is still reading in
1598  * the page, (b) a previous read attempt failed, or (c) someone
1599  * called StartReadBuffers() but not yet WaitReadBuffers().
1600  */
1601  *foundPtr = false;
1602  }
1603 
1604  return buf;
1605  }
1606 
1607  /*
1608  * Didn't find it in the buffer pool. We'll have to initialize a new
1609  * buffer. Remember to unlock the mapping lock while doing the work.
1610  */
1611  LWLockRelease(newPartitionLock);
1612 
1613  /*
1614  * Acquire a victim buffer. Somebody else might try to do the same, we
1615  * don't hold any conflicting locks. If so we'll have to undo our work
1616  * later.
1617  */
1618  victim_buffer = GetVictimBuffer(strategy, io_context);
1619  victim_buf_hdr = GetBufferDescriptor(victim_buffer - 1);
1620 
1621  /*
1622  * Try to make a hashtable entry for the buffer under its new tag. If
1623  * somebody else inserted another buffer for the tag, we'll release the
1624  * victim buffer we acquired and use the already inserted one.
1625  */
1626  LWLockAcquire(newPartitionLock, LW_EXCLUSIVE);
1627  existing_buf_id = BufTableInsert(&newTag, newHash, victim_buf_hdr->buf_id);
1628  if (existing_buf_id >= 0)
1629  {
1630  BufferDesc *existing_buf_hdr;
1631  bool valid;
1632 
1633  /*
1634  * Got a collision. Someone has already done what we were about to do.
1635  * We'll just handle this as if it were found in the buffer pool in
1636  * the first place. First, give up the buffer we were planning to
1637  * use.
1638  *
1639  * We could do this after releasing the partition lock, but then we'd
1640  * have to call ResourceOwnerEnlarge() & ReservePrivateRefCountEntry()
1641  * before acquiring the lock, for the rare case of such a collision.
1642  */
1643  UnpinBuffer(victim_buf_hdr);
1644 
1645  /*
1646  * The victim buffer we acquired previously is clean and unused, let
1647  * it be found again quickly
1648  */
1649  StrategyFreeBuffer(victim_buf_hdr);
1650 
1651  /* remaining code should match code at top of routine */
1652 
1653  existing_buf_hdr = GetBufferDescriptor(existing_buf_id);
1654 
1655  valid = PinBuffer(existing_buf_hdr, strategy);
1656 
1657  /* Can release the mapping lock as soon as we've pinned it */
1658  LWLockRelease(newPartitionLock);
1659 
1660  *foundPtr = true;
1661 
1662  if (!valid)
1663  {
1664  /*
1665  * We can only get here if (a) someone else is still reading in
1666  * the page, (b) a previous read attempt failed, or (c) someone
1667  * called StartReadBuffers() but not yet WaitReadBuffers().
1668  */
1669  *foundPtr = false;
1670  }
1671 
1672  return existing_buf_hdr;
1673  }
1674 
1675  /*
1676  * Need to lock the buffer header too in order to change its tag.
1677  */
1678  victim_buf_state = LockBufHdr(victim_buf_hdr);
1679 
1680  /* some sanity checks while we hold the buffer header lock */
1681  Assert(BUF_STATE_GET_REFCOUNT(victim_buf_state) == 1);
1682  Assert(!(victim_buf_state & (BM_TAG_VALID | BM_VALID | BM_DIRTY | BM_IO_IN_PROGRESS)));
1683 
1684  victim_buf_hdr->tag = newTag;
1685 
1686  /*
1687  * Make sure BM_PERMANENT is set for buffers that must be written at every
1688  * checkpoint. Unlogged buffers only need to be written at shutdown
1689  * checkpoints, except for their "init" forks, which need to be treated
1690  * just like permanent relations.
1691  */
1692  victim_buf_state |= BM_TAG_VALID | BUF_USAGECOUNT_ONE;
1693  if (relpersistence == RELPERSISTENCE_PERMANENT || forkNum == INIT_FORKNUM)
1694  victim_buf_state |= BM_PERMANENT;
1695 
1696  UnlockBufHdr(victim_buf_hdr, victim_buf_state);
1697 
1698  LWLockRelease(newPartitionLock);
1699 
1700  /*
1701  * Buffer contents are currently invalid.
1702  */
1703  *foundPtr = false;
1704 
1705  return victim_buf_hdr;
1706 }
1707 
1708 /*
1709  * InvalidateBuffer -- mark a shared buffer invalid and return it to the
1710  * freelist.
1711  *
1712  * The buffer header spinlock must be held at entry. We drop it before
1713  * returning. (This is sane because the caller must have locked the
1714  * buffer in order to be sure it should be dropped.)
1715  *
1716  * This is used only in contexts such as dropping a relation. We assume
1717  * that no other backend could possibly be interested in using the page,
1718  * so the only reason the buffer might be pinned is if someone else is
1719  * trying to write it out. We have to let them finish before we can
1720  * reclaim the buffer.
1721  *
1722  * The buffer could get reclaimed by someone else while we are waiting
1723  * to acquire the necessary locks; if so, don't mess it up.
1724  */
1725 static void
1727 {
1728  BufferTag oldTag;
1729  uint32 oldHash; /* hash value for oldTag */
1730  LWLock *oldPartitionLock; /* buffer partition lock for it */
1731  uint32 oldFlags;
1732  uint32 buf_state;
1733 
1734  /* Save the original buffer tag before dropping the spinlock */
1735  oldTag = buf->tag;
1736 
1737  buf_state = pg_atomic_read_u32(&buf->state);
1738  Assert(buf_state & BM_LOCKED);
1739  UnlockBufHdr(buf, buf_state);
1740 
1741  /*
1742  * Need to compute the old tag's hashcode and partition lock ID. XXX is it
1743  * worth storing the hashcode in BufferDesc so we need not recompute it
1744  * here? Probably not.
1745  */
1746  oldHash = BufTableHashCode(&oldTag);
1747  oldPartitionLock = BufMappingPartitionLock(oldHash);
1748 
1749 retry:
1750 
1751  /*
1752  * Acquire exclusive mapping lock in preparation for changing the buffer's
1753  * association.
1754  */
1755  LWLockAcquire(oldPartitionLock, LW_EXCLUSIVE);
1756 
1757  /* Re-lock the buffer header */
1758  buf_state = LockBufHdr(buf);
1759 
1760  /* If it's changed while we were waiting for lock, do nothing */
1761  if (!BufferTagsEqual(&buf->tag, &oldTag))
1762  {
1763  UnlockBufHdr(buf, buf_state);
1764  LWLockRelease(oldPartitionLock);
1765  return;
1766  }
1767 
1768  /*
1769  * We assume the only reason for it to be pinned is that someone else is
1770  * flushing the page out. Wait for them to finish. (This could be an
1771  * infinite loop if the refcount is messed up... it would be nice to time
1772  * out after awhile, but there seems no way to be sure how many loops may
1773  * be needed. Note that if the other guy has pinned the buffer but not
1774  * yet done StartBufferIO, WaitIO will fall through and we'll effectively
1775  * be busy-looping here.)
1776  */
1777  if (BUF_STATE_GET_REFCOUNT(buf_state) != 0)
1778  {
1779  UnlockBufHdr(buf, buf_state);
1780  LWLockRelease(oldPartitionLock);
1781  /* safety check: should definitely not be our *own* pin */
1783  elog(ERROR, "buffer is pinned in InvalidateBuffer");
1784  WaitIO(buf);
1785  goto retry;
1786  }
1787 
1788  /*
1789  * Clear out the buffer's tag and flags. We must do this to ensure that
1790  * linear scans of the buffer array don't think the buffer is valid.
1791  */
1792  oldFlags = buf_state & BUF_FLAG_MASK;
1793  ClearBufferTag(&buf->tag);
1794  buf_state &= ~(BUF_FLAG_MASK | BUF_USAGECOUNT_MASK);
1795  UnlockBufHdr(buf, buf_state);
1796 
1797  /*
1798  * Remove the buffer from the lookup hashtable, if it was in there.
1799  */
1800  if (oldFlags & BM_TAG_VALID)
1801  BufTableDelete(&oldTag, oldHash);
1802 
1803  /*
1804  * Done with mapping lock.
1805  */
1806  LWLockRelease(oldPartitionLock);
1807 
1808  /*
1809  * Insert the buffer at the head of the list of free buffers.
1810  */
1812 }
1813 
1814 /*
1815  * Helper routine for GetVictimBuffer()
1816  *
1817  * Needs to be called on a buffer with a valid tag, pinned, but without the
1818  * buffer header spinlock held.
1819  *
1820  * Returns true if the buffer can be reused, in which case the buffer is only
1821  * pinned by this backend and marked as invalid, false otherwise.
1822  */
1823 static bool
1825 {
1826  uint32 buf_state;
1827  uint32 hash;
1828  LWLock *partition_lock;
1829  BufferTag tag;
1830 
1832 
1833  /* have buffer pinned, so it's safe to read tag without lock */
1834  tag = buf_hdr->tag;
1835 
1836  hash = BufTableHashCode(&tag);
1837  partition_lock = BufMappingPartitionLock(hash);
1838 
1839  LWLockAcquire(partition_lock, LW_EXCLUSIVE);
1840 
1841  /* lock the buffer header */
1842  buf_state = LockBufHdr(buf_hdr);
1843 
1844  /*
1845  * We have the buffer pinned nobody else should have been able to unset
1846  * this concurrently.
1847  */
1848  Assert(buf_state & BM_TAG_VALID);
1849  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
1850  Assert(BufferTagsEqual(&buf_hdr->tag, &tag));
1851 
1852  /*
1853  * If somebody else pinned the buffer since, or even worse, dirtied it,
1854  * give up on this buffer: It's clearly in use.
1855  */
1856  if (BUF_STATE_GET_REFCOUNT(buf_state) != 1 || (buf_state & BM_DIRTY))
1857  {
1858  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
1859 
1860  UnlockBufHdr(buf_hdr, buf_state);
1861  LWLockRelease(partition_lock);
1862 
1863  return false;
1864  }
1865 
1866  /*
1867  * Clear out the buffer's tag and flags and usagecount. This is not
1868  * strictly required, as BM_TAG_VALID/BM_VALID needs to be checked before
1869  * doing anything with the buffer. But currently it's beneficial, as the
1870  * cheaper pre-check for several linear scans of shared buffers use the
1871  * tag (see e.g. FlushDatabaseBuffers()).
1872  */
1873  ClearBufferTag(&buf_hdr->tag);
1874  buf_state &= ~(BUF_FLAG_MASK | BUF_USAGECOUNT_MASK);
1875  UnlockBufHdr(buf_hdr, buf_state);
1876 
1877  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
1878 
1879  /* finally delete buffer from the buffer mapping table */
1880  BufTableDelete(&tag, hash);
1881 
1882  LWLockRelease(partition_lock);
1883 
1884  Assert(!(buf_state & (BM_DIRTY | BM_VALID | BM_TAG_VALID)));
1885  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
1887 
1888  return true;
1889 }
1890 
1891 static Buffer
1893 {
1894  BufferDesc *buf_hdr;
1895  Buffer buf;
1896  uint32 buf_state;
1897  bool from_ring;
1898 
1899  /*
1900  * Ensure, while the spinlock's not yet held, that there's a free refcount
1901  * entry, and a resource owner slot for the pin.
1902  */
1905 
1906  /* we return here if a prospective victim buffer gets used concurrently */
1907 again:
1908 
1909  /*
1910  * Select a victim buffer. The buffer is returned with its header
1911  * spinlock still held!
1912  */
1913  buf_hdr = StrategyGetBuffer(strategy, &buf_state, &from_ring);
1914  buf = BufferDescriptorGetBuffer(buf_hdr);
1915 
1916  Assert(BUF_STATE_GET_REFCOUNT(buf_state) == 0);
1917 
1918  /* Pin the buffer and then release the buffer spinlock */
1919  PinBuffer_Locked(buf_hdr);
1920 
1921  /*
1922  * We shouldn't have any other pins for this buffer.
1923  */
1925 
1926  /*
1927  * If the buffer was dirty, try to write it out. There is a race
1928  * condition here, in that someone might dirty it after we released the
1929  * buffer header lock above, or even while we are writing it out (since
1930  * our share-lock won't prevent hint-bit updates). We will recheck the
1931  * dirty bit after re-locking the buffer header.
1932  */
1933  if (buf_state & BM_DIRTY)
1934  {
1935  LWLock *content_lock;
1936 
1937  Assert(buf_state & BM_TAG_VALID);
1938  Assert(buf_state & BM_VALID);
1939 
1940  /*
1941  * We need a share-lock on the buffer contents to write it out (else
1942  * we might write invalid data, eg because someone else is compacting
1943  * the page contents while we write). We must use a conditional lock
1944  * acquisition here to avoid deadlock. Even though the buffer was not
1945  * pinned (and therefore surely not locked) when StrategyGetBuffer
1946  * returned it, someone else could have pinned and exclusive-locked it
1947  * by the time we get here. If we try to get the lock unconditionally,
1948  * we'd block waiting for them; if they later block waiting for us,
1949  * deadlock ensues. (This has been observed to happen when two
1950  * backends are both trying to split btree index pages, and the second
1951  * one just happens to be trying to split the page the first one got
1952  * from StrategyGetBuffer.)
1953  */
1954  content_lock = BufferDescriptorGetContentLock(buf_hdr);
1955  if (!LWLockConditionalAcquire(content_lock, LW_SHARED))
1956  {
1957  /*
1958  * Someone else has locked the buffer, so give it up and loop back
1959  * to get another one.
1960  */
1961  UnpinBuffer(buf_hdr);
1962  goto again;
1963  }
1964 
1965  /*
1966  * If using a nondefault strategy, and writing the buffer would
1967  * require a WAL flush, let the strategy decide whether to go ahead
1968  * and write/reuse the buffer or to choose another victim. We need a
1969  * lock to inspect the page LSN, so this can't be done inside
1970  * StrategyGetBuffer.
1971  */
1972  if (strategy != NULL)
1973  {
1974  XLogRecPtr lsn;
1975 
1976  /* Read the LSN while holding buffer header lock */
1977  buf_state = LockBufHdr(buf_hdr);
1978  lsn = BufferGetLSN(buf_hdr);
1979  UnlockBufHdr(buf_hdr, buf_state);
1980 
1981  if (XLogNeedsFlush(lsn)
1982  && StrategyRejectBuffer(strategy, buf_hdr, from_ring))
1983  {
1984  LWLockRelease(content_lock);
1985  UnpinBuffer(buf_hdr);
1986  goto again;
1987  }
1988  }
1989 
1990  /* OK, do the I/O */
1991  FlushBuffer(buf_hdr, NULL, IOOBJECT_RELATION, io_context);
1992  LWLockRelease(content_lock);
1993 
1995  &buf_hdr->tag);
1996  }
1997 
1998 
1999  if (buf_state & BM_VALID)
2000  {
2001  /*
2002  * When a BufferAccessStrategy is in use, blocks evicted from shared
2003  * buffers are counted as IOOP_EVICT in the corresponding context
2004  * (e.g. IOCONTEXT_BULKWRITE). Shared buffers are evicted by a
2005  * strategy in two cases: 1) while initially claiming buffers for the
2006  * strategy ring 2) to replace an existing strategy ring buffer
2007  * because it is pinned or in use and cannot be reused.
2008  *
2009  * Blocks evicted from buffers already in the strategy ring are
2010  * counted as IOOP_REUSE in the corresponding strategy context.
2011  *
2012  * At this point, we can accurately count evictions and reuses,
2013  * because we have successfully claimed the valid buffer. Previously,
2014  * we may have been forced to release the buffer due to concurrent
2015  * pinners or erroring out.
2016  */
2018  from_ring ? IOOP_REUSE : IOOP_EVICT);
2019  }
2020 
2021  /*
2022  * If the buffer has an entry in the buffer mapping table, delete it. This
2023  * can fail because another backend could have pinned or dirtied the
2024  * buffer.
2025  */
2026  if ((buf_state & BM_TAG_VALID) && !InvalidateVictimBuffer(buf_hdr))
2027  {
2028  UnpinBuffer(buf_hdr);
2029  goto again;
2030  }
2031 
2032  /* a final set of sanity checks */
2033 #ifdef USE_ASSERT_CHECKING
2034  buf_state = pg_atomic_read_u32(&buf_hdr->state);
2035 
2036  Assert(BUF_STATE_GET_REFCOUNT(buf_state) == 1);
2037  Assert(!(buf_state & (BM_TAG_VALID | BM_VALID | BM_DIRTY)));
2038 
2040 #endif
2041 
2042  return buf;
2043 }
2044 
2045 /*
2046  * Limit the number of pins a batch operation may additionally acquire, to
2047  * avoid running out of pinnable buffers.
2048  *
2049  * One additional pin is always allowed, as otherwise the operation likely
2050  * cannot be performed at all.
2051  *
2052  * The number of allowed pins for a backend is computed based on
2053  * shared_buffers and the maximum number of connections possible. That's very
2054  * pessimistic, but outside of toy-sized shared_buffers it should allow
2055  * sufficient pins.
2056  */
2057 void
2058 LimitAdditionalPins(uint32 *additional_pins)
2059 {
2060  uint32 max_backends;
2061  int max_proportional_pins;
2062 
2063  if (*additional_pins <= 1)
2064  return;
2065 
2066  max_backends = MaxBackends + NUM_AUXILIARY_PROCS;
2067  max_proportional_pins = NBuffers / max_backends;
2068 
2069  /*
2070  * Subtract the approximate number of buffers already pinned by this
2071  * backend. We get the number of "overflowed" pins for free, but don't
2072  * know the number of pins in PrivateRefCountArray. The cost of
2073  * calculating that exactly doesn't seem worth it, so just assume the max.
2074  */
2075  max_proportional_pins -= PrivateRefCountOverflowed + REFCOUNT_ARRAY_ENTRIES;
2076 
2077  if (max_proportional_pins <= 0)
2078  max_proportional_pins = 1;
2079 
2080  if (*additional_pins > max_proportional_pins)
2081  *additional_pins = max_proportional_pins;
2082 }
2083 
2084 /*
2085  * Logic shared between ExtendBufferedRelBy(), ExtendBufferedRelTo(). Just to
2086  * avoid duplicating the tracing and relpersistence related logic.
2087  */
2088 static BlockNumber
2090  ForkNumber fork,
2091  BufferAccessStrategy strategy,
2092  uint32 flags,
2093  uint32 extend_by,
2094  BlockNumber extend_upto,
2095  Buffer *buffers,
2096  uint32 *extended_by)
2097 {
2098  BlockNumber first_block;
2099 
2100  TRACE_POSTGRESQL_BUFFER_EXTEND_START(fork,
2104  bmr.smgr->smgr_rlocator.backend,
2105  extend_by);
2106 
2107  if (bmr.relpersistence == RELPERSISTENCE_TEMP)
2108  first_block = ExtendBufferedRelLocal(bmr, fork, flags,
2109  extend_by, extend_upto,
2110  buffers, &extend_by);
2111  else
2112  first_block = ExtendBufferedRelShared(bmr, fork, strategy, flags,
2113  extend_by, extend_upto,
2114  buffers, &extend_by);
2115  *extended_by = extend_by;
2116 
2117  TRACE_POSTGRESQL_BUFFER_EXTEND_DONE(fork,
2121  bmr.smgr->smgr_rlocator.backend,
2122  *extended_by,
2123  first_block);
2124 
2125  return first_block;
2126 }
2127 
2128 /*
2129  * Implementation of ExtendBufferedRelBy() and ExtendBufferedRelTo() for
2130  * shared buffers.
2131  */
2132 static BlockNumber
2134  ForkNumber fork,
2135  BufferAccessStrategy strategy,
2136  uint32 flags,
2137  uint32 extend_by,
2138  BlockNumber extend_upto,
2139  Buffer *buffers,
2140  uint32 *extended_by)
2141 {
2142  BlockNumber first_block;
2143  IOContext io_context = IOContextForStrategy(strategy);
2144  instr_time io_start;
2145 
2146  LimitAdditionalPins(&extend_by);
2147 
2148  /*
2149  * Acquire victim buffers for extension without holding extension lock.
2150  * Writing out victim buffers is the most expensive part of extending the
2151  * relation, particularly when doing so requires WAL flushes. Zeroing out
2152  * the buffers is also quite expensive, so do that before holding the
2153  * extension lock as well.
2154  *
2155  * These pages are pinned by us and not valid. While we hold the pin they
2156  * can't be acquired as victim buffers by another backend.
2157  */
2158  for (uint32 i = 0; i < extend_by; i++)
2159  {
2160  Block buf_block;
2161 
2162  buffers[i] = GetVictimBuffer(strategy, io_context);
2163  buf_block = BufHdrGetBlock(GetBufferDescriptor(buffers[i] - 1));
2164 
2165  /* new buffers are zero-filled */
2166  MemSet((char *) buf_block, 0, BLCKSZ);
2167  }
2168 
2169  /*
2170  * Lock relation against concurrent extensions, unless requested not to.
2171  *
2172  * We use the same extension lock for all forks. That's unnecessarily
2173  * restrictive, but currently extensions for forks don't happen often
2174  * enough to make it worth locking more granularly.
2175  *
2176  * Note that another backend might have extended the relation by the time
2177  * we get the lock.
2178  */
2179  if (!(flags & EB_SKIP_EXTENSION_LOCK))
2181 
2182  /*
2183  * If requested, invalidate size cache, so that smgrnblocks asks the
2184  * kernel.
2185  */
2186  if (flags & EB_CLEAR_SIZE_CACHE)
2188 
2189  first_block = smgrnblocks(bmr.smgr, fork);
2190 
2191  /*
2192  * Now that we have the accurate relation size, check if the caller wants
2193  * us to extend to only up to a specific size. If there were concurrent
2194  * extensions, we might have acquired too many buffers and need to release
2195  * them.
2196  */
2197  if (extend_upto != InvalidBlockNumber)
2198  {
2199  uint32 orig_extend_by = extend_by;
2200 
2201  if (first_block > extend_upto)
2202  extend_by = 0;
2203  else if ((uint64) first_block + extend_by > extend_upto)
2204  extend_by = extend_upto - first_block;
2205 
2206  for (uint32 i = extend_by; i < orig_extend_by; i++)
2207  {
2208  BufferDesc *buf_hdr = GetBufferDescriptor(buffers[i] - 1);
2209 
2210  /*
2211  * The victim buffer we acquired previously is clean and unused,
2212  * let it be found again quickly
2213  */
2214  StrategyFreeBuffer(buf_hdr);
2215  UnpinBuffer(buf_hdr);
2216  }
2217 
2218  if (extend_by == 0)
2219  {
2220  if (!(flags & EB_SKIP_EXTENSION_LOCK))
2222  *extended_by = extend_by;
2223  return first_block;
2224  }
2225  }
2226 
2227  /* Fail if relation is already at maximum possible length */
2228  if ((uint64) first_block + extend_by >= MaxBlockNumber)
2229  ereport(ERROR,
2230  (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
2231  errmsg("cannot extend relation %s beyond %u blocks",
2232  relpath(bmr.smgr->smgr_rlocator, fork),
2233  MaxBlockNumber)));
2234 
2235  /*
2236  * Insert buffers into buffer table, mark as IO_IN_PROGRESS.
2237  *
2238  * This needs to happen before we extend the relation, because as soon as
2239  * we do, other backends can start to read in those pages.
2240  */
2241  for (uint32 i = 0; i < extend_by; i++)
2242  {
2243  Buffer victim_buf = buffers[i];
2244  BufferDesc *victim_buf_hdr = GetBufferDescriptor(victim_buf - 1);
2245  BufferTag tag;
2246  uint32 hash;
2247  LWLock *partition_lock;
2248  int existing_id;
2249 
2250  /* in case we need to pin an existing buffer below */
2253 
2254  InitBufferTag(&tag, &bmr.smgr->smgr_rlocator.locator, fork, first_block + i);
2255  hash = BufTableHashCode(&tag);
2256  partition_lock = BufMappingPartitionLock(hash);
2257 
2258  LWLockAcquire(partition_lock, LW_EXCLUSIVE);
2259 
2260  existing_id = BufTableInsert(&tag, hash, victim_buf_hdr->buf_id);
2261 
2262  /*
2263  * We get here only in the corner case where we are trying to extend
2264  * the relation but we found a pre-existing buffer. This can happen
2265  * because a prior attempt at extending the relation failed, and
2266  * because mdread doesn't complain about reads beyond EOF (when
2267  * zero_damaged_pages is ON) and so a previous attempt to read a block
2268  * beyond EOF could have left a "valid" zero-filled buffer.
2269  * Unfortunately, we have also seen this case occurring because of
2270  * buggy Linux kernels that sometimes return an lseek(SEEK_END) result
2271  * that doesn't account for a recent write. In that situation, the
2272  * pre-existing buffer would contain valid data that we don't want to
2273  * overwrite. Since the legitimate cases should always have left a
2274  * zero-filled buffer, complain if not PageIsNew.
2275  */
2276  if (existing_id >= 0)
2277  {
2278  BufferDesc *existing_hdr = GetBufferDescriptor(existing_id);
2279  Block buf_block;
2280  bool valid;
2281 
2282  /*
2283  * Pin the existing buffer before releasing the partition lock,
2284  * preventing it from being evicted.
2285  */
2286  valid = PinBuffer(existing_hdr, strategy);
2287 
2288  LWLockRelease(partition_lock);
2289 
2290  /*
2291  * The victim buffer we acquired previously is clean and unused,
2292  * let it be found again quickly
2293  */
2294  StrategyFreeBuffer(victim_buf_hdr);
2295  UnpinBuffer(victim_buf_hdr);
2296 
2297  buffers[i] = BufferDescriptorGetBuffer(existing_hdr);
2298  buf_block = BufHdrGetBlock(existing_hdr);
2299 
2300  if (valid && !PageIsNew((Page) buf_block))
2301  ereport(ERROR,
2302  (errmsg("unexpected data beyond EOF in block %u of relation %s",
2303  existing_hdr->tag.blockNum, relpath(bmr.smgr->smgr_rlocator, fork)),
2304  errhint("This has been seen to occur with buggy kernels; consider updating your system.")));
2305 
2306  /*
2307  * We *must* do smgr[zero]extend before succeeding, else the page
2308  * will not be reserved by the kernel, and the next P_NEW call
2309  * will decide to return the same page. Clear the BM_VALID bit,
2310  * do StartBufferIO() and proceed.
2311  *
2312  * Loop to handle the very small possibility that someone re-sets
2313  * BM_VALID between our clearing it and StartBufferIO inspecting
2314  * it.
2315  */
2316  do
2317  {
2318  uint32 buf_state = LockBufHdr(existing_hdr);
2319 
2320  buf_state &= ~BM_VALID;
2321  UnlockBufHdr(existing_hdr, buf_state);
2322  } while (!StartBufferIO(existing_hdr, true, false));
2323  }
2324  else
2325  {
2326  uint32 buf_state;
2327 
2328  buf_state = LockBufHdr(victim_buf_hdr);
2329 
2330  /* some sanity checks while we hold the buffer header lock */
2331  Assert(!(buf_state & (BM_VALID | BM_TAG_VALID | BM_DIRTY | BM_JUST_DIRTIED)));
2332  Assert(BUF_STATE_GET_REFCOUNT(buf_state) == 1);
2333 
2334  victim_buf_hdr->tag = tag;
2335 
2336  buf_state |= BM_TAG_VALID | BUF_USAGECOUNT_ONE;
2337  if (bmr.relpersistence == RELPERSISTENCE_PERMANENT || fork == INIT_FORKNUM)
2338  buf_state |= BM_PERMANENT;
2339 
2340  UnlockBufHdr(victim_buf_hdr, buf_state);
2341 
2342  LWLockRelease(partition_lock);
2343 
2344  /* XXX: could combine the locked operations in it with the above */
2345  StartBufferIO(victim_buf_hdr, true, false);
2346  }
2347  }
2348 
2350 
2351  /*
2352  * Note: if smgrzeroextend fails, we will end up with buffers that are
2353  * allocated but not marked BM_VALID. The next relation extension will
2354  * still select the same block number (because the relation didn't get any
2355  * longer on disk) and so future attempts to extend the relation will find
2356  * the same buffers (if they have not been recycled) but come right back
2357  * here to try smgrzeroextend again.
2358  *
2359  * We don't need to set checksum for all-zero pages.
2360  */
2361  smgrzeroextend(bmr.smgr, fork, first_block, extend_by, false);
2362 
2363  /*
2364  * Release the file-extension lock; it's now OK for someone else to extend
2365  * the relation some more.
2366  *
2367  * We remove IO_IN_PROGRESS after this, as waking up waiting backends can
2368  * take noticeable time.
2369  */
2370  if (!(flags & EB_SKIP_EXTENSION_LOCK))
2372 
2374  io_start, extend_by);
2375 
2376  /* Set BM_VALID, terminate IO, and wake up any waiters */
2377  for (uint32 i = 0; i < extend_by; i++)
2378  {
2379  Buffer buf = buffers[i];
2380  BufferDesc *buf_hdr = GetBufferDescriptor(buf - 1);
2381  bool lock = false;
2382 
2383  if (flags & EB_LOCK_FIRST && i == 0)
2384  lock = true;
2385  else if (flags & EB_LOCK_TARGET)
2386  {
2387  Assert(extend_upto != InvalidBlockNumber);
2388  if (first_block + i + 1 == extend_upto)
2389  lock = true;
2390  }
2391 
2392  if (lock)
2394 
2395  TerminateBufferIO(buf_hdr, false, BM_VALID, true);
2396  }
2397 
2398  pgBufferUsage.shared_blks_written += extend_by;
2399 
2400  *extended_by = extend_by;
2401 
2402  return first_block;
2403 }
2404 
2405 /*
2406  * BufferIsExclusiveLocked
2407  *
2408  * Checks if buffer is exclusive-locked.
2409  *
2410  * Buffer must be pinned.
2411  */
2412 bool
2414 {
2415  BufferDesc *bufHdr;
2416 
2417  if (BufferIsLocal(buffer))
2418  {
2419  int bufid = -buffer - 1;
2420 
2421  bufHdr = GetLocalBufferDescriptor(bufid);
2422  }
2423  else
2424  {
2425  bufHdr = GetBufferDescriptor(buffer - 1);
2426  }
2427 
2430  LW_EXCLUSIVE);
2431 }
2432 
2433 /*
2434  * BufferIsDirty
2435  *
2436  * Checks if buffer is already dirty.
2437  *
2438  * Buffer must be pinned and exclusive-locked. (Without an exclusive lock,
2439  * the result may be stale before it's returned.)
2440  */
2441 bool
2443 {
2444  BufferDesc *bufHdr;
2445 
2446  if (BufferIsLocal(buffer))
2447  {
2448  int bufid = -buffer - 1;
2449 
2450  bufHdr = GetLocalBufferDescriptor(bufid);
2451  }
2452  else
2453  {
2454  bufHdr = GetBufferDescriptor(buffer - 1);
2455  }
2456 
2459  LW_EXCLUSIVE));
2460 
2461  return pg_atomic_read_u32(&bufHdr->state) & BM_DIRTY;
2462 }
2463 
2464 /*
2465  * MarkBufferDirty
2466  *
2467  * Marks buffer contents as dirty (actual write happens later).
2468  *
2469  * Buffer must be pinned and exclusive-locked. (If caller does not hold
2470  * exclusive lock, then somebody could be in process of writing the buffer,
2471  * leading to risk of bad data written to disk.)
2472  */
2473 void
2475 {
2476  BufferDesc *bufHdr;
2477  uint32 buf_state;
2478  uint32 old_buf_state;
2479 
2480  if (!BufferIsValid(buffer))
2481  elog(ERROR, "bad buffer ID: %d", buffer);
2482 
2483  if (BufferIsLocal(buffer))
2484  {
2486  return;
2487  }
2488 
2489  bufHdr = GetBufferDescriptor(buffer - 1);
2490 
2493  LW_EXCLUSIVE));
2494 
2495  old_buf_state = pg_atomic_read_u32(&bufHdr->state);
2496  for (;;)
2497  {
2498  if (old_buf_state & BM_LOCKED)
2499  old_buf_state = WaitBufHdrUnlocked(bufHdr);
2500 
2501  buf_state = old_buf_state;
2502 
2503  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
2504  buf_state |= BM_DIRTY | BM_JUST_DIRTIED;
2505 
2506  if (pg_atomic_compare_exchange_u32(&bufHdr->state, &old_buf_state,
2507  buf_state))
2508  break;
2509  }
2510 
2511  /*
2512  * If the buffer was not dirty already, do vacuum accounting.
2513  */
2514  if (!(old_buf_state & BM_DIRTY))
2515  {
2516  VacuumPageDirty++;
2518  if (VacuumCostActive)
2520  }
2521 }
2522 
2523 /*
2524  * ReleaseAndReadBuffer -- combine ReleaseBuffer() and ReadBuffer()
2525  *
2526  * Formerly, this saved one cycle of acquiring/releasing the BufMgrLock
2527  * compared to calling the two routines separately. Now it's mainly just
2528  * a convenience function. However, if the passed buffer is valid and
2529  * already contains the desired block, we just return it as-is; and that
2530  * does save considerable work compared to a full release and reacquire.
2531  *
2532  * Note: it is OK to pass buffer == InvalidBuffer, indicating that no old
2533  * buffer actually needs to be released. This case is the same as ReadBuffer,
2534  * but can save some tests in the caller.
2535  */
2536 Buffer
2538  Relation relation,
2539  BlockNumber blockNum)
2540 {
2541  ForkNumber forkNum = MAIN_FORKNUM;
2542  BufferDesc *bufHdr;
2543 
2544  if (BufferIsValid(buffer))
2545  {
2547  if (BufferIsLocal(buffer))
2548  {
2549  bufHdr = GetLocalBufferDescriptor(-buffer - 1);
2550  if (bufHdr->tag.blockNum == blockNum &&
2551  BufTagMatchesRelFileLocator(&bufHdr->tag, &relation->rd_locator) &&
2552  BufTagGetForkNum(&bufHdr->tag) == forkNum)
2553  return buffer;
2555  }
2556  else
2557  {
2558  bufHdr = GetBufferDescriptor(buffer - 1);
2559  /* we have pin, so it's ok to examine tag without spinlock */
2560  if (bufHdr->tag.blockNum == blockNum &&
2561  BufTagMatchesRelFileLocator(&bufHdr->tag, &relation->rd_locator) &&
2562  BufTagGetForkNum(&bufHdr->tag) == forkNum)
2563  return buffer;
2564  UnpinBuffer(bufHdr);
2565  }
2566  }
2567 
2568  return ReadBuffer(relation, blockNum);
2569 }
2570 
2571 /*
2572  * PinBuffer -- make buffer unavailable for replacement.
2573  *
2574  * For the default access strategy, the buffer's usage_count is incremented
2575  * when we first pin it; for other strategies we just make sure the usage_count
2576  * isn't zero. (The idea of the latter is that we don't want synchronized
2577  * heap scans to inflate the count, but we need it to not be zero to discourage
2578  * other backends from stealing buffers from our ring. As long as we cycle
2579  * through the ring faster than the global clock-sweep cycles, buffers in
2580  * our ring won't be chosen as victims for replacement by other backends.)
2581  *
2582  * This should be applied only to shared buffers, never local ones.
2583  *
2584  * Since buffers are pinned/unpinned very frequently, pin buffers without
2585  * taking the buffer header lock; instead update the state variable in loop of
2586  * CAS operations. Hopefully it's just a single CAS.
2587  *
2588  * Note that ResourceOwnerEnlarge() and ReservePrivateRefCountEntry()
2589  * must have been done already.
2590  *
2591  * Returns true if buffer is BM_VALID, else false. This provision allows
2592  * some callers to avoid an extra spinlock cycle.
2593  */
2594 static bool
2596 {
2598  bool result;
2599  PrivateRefCountEntry *ref;
2600 
2601  Assert(!BufferIsLocal(b));
2602  Assert(ReservedRefCountEntry != NULL);
2603 
2604  ref = GetPrivateRefCountEntry(b, true);
2605 
2606  if (ref == NULL)
2607  {
2608  uint32 buf_state;
2609  uint32 old_buf_state;
2610 
2611  ref = NewPrivateRefCountEntry(b);
2612 
2613  old_buf_state = pg_atomic_read_u32(&buf->state);
2614  for (;;)
2615  {
2616  if (old_buf_state & BM_LOCKED)
2617  old_buf_state = WaitBufHdrUnlocked(buf);
2618 
2619  buf_state = old_buf_state;
2620 
2621  /* increase refcount */
2622  buf_state += BUF_REFCOUNT_ONE;
2623 
2624  if (strategy == NULL)
2625  {
2626  /* Default case: increase usagecount unless already max. */
2628  buf_state += BUF_USAGECOUNT_ONE;
2629  }
2630  else
2631  {
2632  /*
2633  * Ring buffers shouldn't evict others from pool. Thus we
2634  * don't make usagecount more than 1.
2635  */
2636  if (BUF_STATE_GET_USAGECOUNT(buf_state) == 0)
2637  buf_state += BUF_USAGECOUNT_ONE;
2638  }
2639 
2640  if (pg_atomic_compare_exchange_u32(&buf->state, &old_buf_state,
2641  buf_state))
2642  {
2643  result = (buf_state & BM_VALID) != 0;
2644 
2645  /*
2646  * Assume that we acquired a buffer pin for the purposes of
2647  * Valgrind buffer client checks (even in !result case) to
2648  * keep things simple. Buffers that are unsafe to access are
2649  * not generally guaranteed to be marked undefined or
2650  * non-accessible in any case.
2651  */
2653  break;
2654  }
2655  }
2656  }
2657  else
2658  {
2659  /*
2660  * If we previously pinned the buffer, it is likely to be valid, but
2661  * it may not be if StartReadBuffers() was called and
2662  * WaitReadBuffers() hasn't been called yet. We'll check by loading
2663  * the flags without locking. This is racy, but it's OK to return
2664  * false spuriously: when WaitReadBuffers() calls StartBufferIO(),
2665  * it'll see that it's now valid.
2666  *
2667  * Note: We deliberately avoid a Valgrind client request here.
2668  * Individual access methods can optionally superimpose buffer page
2669  * client requests on top of our client requests to enforce that
2670  * buffers are only accessed while locked (and pinned). It's possible
2671  * that the buffer page is legitimately non-accessible here. We
2672  * cannot meddle with that.
2673  */
2674  result = (pg_atomic_read_u32(&buf->state) & BM_VALID) != 0;
2675  }
2676 
2677  ref->refcount++;
2678  Assert(ref->refcount > 0);
2680  return result;
2681 }
2682 
2683 /*
2684  * PinBuffer_Locked -- as above, but caller already locked the buffer header.
2685  * The spinlock is released before return.
2686  *
2687  * As this function is called with the spinlock held, the caller has to
2688  * previously call ReservePrivateRefCountEntry() and
2689  * ResourceOwnerEnlarge(CurrentResourceOwner);
2690  *
2691  * Currently, no callers of this function want to modify the buffer's
2692  * usage_count at all, so there's no need for a strategy parameter.
2693  * Also we don't bother with a BM_VALID test (the caller could check that for
2694  * itself).
2695  *
2696  * Also all callers only ever use this function when it's known that the
2697  * buffer can't have a preexisting pin by this backend. That allows us to skip
2698  * searching the private refcount array & hash, which is a boon, because the
2699  * spinlock is still held.
2700  *
2701  * Note: use of this routine is frequently mandatory, not just an optimization
2702  * to save a spin lock/unlock cycle, because we need to pin a buffer before
2703  * its state can change under us.
2704  */
2705 static void
2707 {
2708  Buffer b;
2709  PrivateRefCountEntry *ref;
2710  uint32 buf_state;
2711 
2712  /*
2713  * As explained, We don't expect any preexisting pins. That allows us to
2714  * manipulate the PrivateRefCount after releasing the spinlock
2715  */
2717 
2718  /*
2719  * Buffer can't have a preexisting pin, so mark its page as defined to
2720  * Valgrind (this is similar to the PinBuffer() case where the backend
2721  * doesn't already have a buffer pin)
2722  */
2724 
2725  /*
2726  * Since we hold the buffer spinlock, we can update the buffer state and
2727  * release the lock in one operation.
2728  */
2729  buf_state = pg_atomic_read_u32(&buf->state);
2730  Assert(buf_state & BM_LOCKED);
2731  buf_state += BUF_REFCOUNT_ONE;
2732  UnlockBufHdr(buf, buf_state);
2733 
2735 
2736  ref = NewPrivateRefCountEntry(b);
2737  ref->refcount++;
2738 
2740 }
2741 
2742 /*
2743  * UnpinBuffer -- make buffer available for replacement.
2744  *
2745  * This should be applied only to shared buffers, never local ones. This
2746  * always adjusts CurrentResourceOwner.
2747  */
2748 static void
2750 {
2752 
2755 }
2756 
2757 static void
2759 {
2760  PrivateRefCountEntry *ref;
2762 
2763  Assert(!BufferIsLocal(b));
2764 
2765  /* not moving as we're likely deleting it soon anyway */
2766  ref = GetPrivateRefCountEntry(b, false);
2767  Assert(ref != NULL);
2768  Assert(ref->refcount > 0);
2769  ref->refcount--;
2770  if (ref->refcount == 0)
2771  {
2772  uint32 buf_state;
2773  uint32 old_buf_state;
2774 
2775  /*
2776  * Mark buffer non-accessible to Valgrind.
2777  *
2778  * Note that the buffer may have already been marked non-accessible
2779  * within access method code that enforces that buffers are only
2780  * accessed while a buffer lock is held.
2781  */
2783 
2784  /* I'd better not still hold the buffer content lock */
2786 
2787  /*
2788  * Decrement the shared reference count.
2789  *
2790  * Since buffer spinlock holder can update status using just write,
2791  * it's not safe to use atomic decrement here; thus use a CAS loop.
2792  */
2793  old_buf_state = pg_atomic_read_u32(&buf->state);
2794  for (;;)
2795  {
2796  if (old_buf_state & BM_LOCKED)
2797  old_buf_state = WaitBufHdrUnlocked(buf);
2798 
2799  buf_state = old_buf_state;
2800 
2801  buf_state -= BUF_REFCOUNT_ONE;
2802 
2803  if (pg_atomic_compare_exchange_u32(&buf->state, &old_buf_state,
2804  buf_state))
2805  break;
2806  }
2807 
2808  /* Support LockBufferForCleanup() */
2809  if (buf_state & BM_PIN_COUNT_WAITER)
2810  {
2811  /*
2812  * Acquire the buffer header lock, re-check that there's a waiter.
2813  * Another backend could have unpinned this buffer, and already
2814  * woken up the waiter. There's no danger of the buffer being
2815  * replaced after we unpinned it above, as it's pinned by the
2816  * waiter.
2817  */
2818  buf_state = LockBufHdr(buf);
2819 
2820  if ((buf_state & BM_PIN_COUNT_WAITER) &&
2821  BUF_STATE_GET_REFCOUNT(buf_state) == 1)
2822  {
2823  /* we just released the last pin other than the waiter's */
2824  int wait_backend_pgprocno = buf->wait_backend_pgprocno;
2825 
2826  buf_state &= ~BM_PIN_COUNT_WAITER;
2827  UnlockBufHdr(buf, buf_state);
2828  ProcSendSignal(wait_backend_pgprocno);
2829  }
2830  else
2831  UnlockBufHdr(buf, buf_state);
2832  }
2834  }
2835 }
2836 
2837 #define ST_SORT sort_checkpoint_bufferids
2838 #define ST_ELEMENT_TYPE CkptSortItem
2839 #define ST_COMPARE(a, b) ckpt_buforder_comparator(a, b)
2840 #define ST_SCOPE static
2841 #define ST_DEFINE
2842 #include <lib/sort_template.h>
2843 
2844 /*
2845  * BufferSync -- Write out all dirty buffers in the pool.
2846  *
2847  * This is called at checkpoint time to write out all dirty shared buffers.
2848  * The checkpoint request flags should be passed in. If CHECKPOINT_IMMEDIATE
2849  * is set, we disable delays between writes; if CHECKPOINT_IS_SHUTDOWN,
2850  * CHECKPOINT_END_OF_RECOVERY or CHECKPOINT_FLUSH_ALL is set, we write even
2851  * unlogged buffers, which are otherwise skipped. The remaining flags
2852  * currently have no effect here.
2853  */
2854 static void
2855 BufferSync(int flags)
2856 {
2857  uint32 buf_state;
2858  int buf_id;
2859  int num_to_scan;
2860  int num_spaces;
2861  int num_processed;
2862  int num_written;
2863  CkptTsStatus *per_ts_stat = NULL;
2864  Oid last_tsid;
2865  binaryheap *ts_heap;
2866  int i;
2867  int mask = BM_DIRTY;
2868  WritebackContext wb_context;
2869 
2870  /*
2871  * Unless this is a shutdown checkpoint or we have been explicitly told,
2872  * we write only permanent, dirty buffers. But at shutdown or end of
2873  * recovery, we write all dirty buffers.
2874  */
2877  mask |= BM_PERMANENT;
2878 
2879  /*
2880  * Loop over all buffers, and mark the ones that need to be written with
2881  * BM_CHECKPOINT_NEEDED. Count them as we go (num_to_scan), so that we
2882  * can estimate how much work needs to be done.
2883  *
2884  * This allows us to write only those pages that were dirty when the
2885  * checkpoint began, and not those that get dirtied while it proceeds.
2886  * Whenever a page with BM_CHECKPOINT_NEEDED is written out, either by us
2887  * later in this function, or by normal backends or the bgwriter cleaning
2888  * scan, the flag is cleared. Any buffer dirtied after this point won't
2889  * have the flag set.
2890  *
2891  * Note that if we fail to write some buffer, we may leave buffers with
2892  * BM_CHECKPOINT_NEEDED still set. This is OK since any such buffer would
2893  * certainly need to be written for the next checkpoint attempt, too.
2894  */
2895  num_to_scan = 0;
2896  for (buf_id = 0; buf_id < NBuffers; buf_id++)
2897  {
2898  BufferDesc *bufHdr = GetBufferDescriptor(buf_id);
2899 
2900  /*
2901  * Header spinlock is enough to examine BM_DIRTY, see comment in
2902  * SyncOneBuffer.
2903  */
2904  buf_state = LockBufHdr(bufHdr);
2905 
2906  if ((buf_state & mask) == mask)
2907  {
2908  CkptSortItem *item;
2909 
2910  buf_state |= BM_CHECKPOINT_NEEDED;
2911 
2912  item = &CkptBufferIds[num_to_scan++];
2913  item->buf_id = buf_id;
2914  item->tsId = bufHdr->tag.spcOid;
2915  item->relNumber = BufTagGetRelNumber(&bufHdr->tag);
2916  item->forkNum = BufTagGetForkNum(&bufHdr->tag);
2917  item->blockNum = bufHdr->tag.blockNum;
2918  }
2919 
2920  UnlockBufHdr(bufHdr, buf_state);
2921 
2922  /* Check for barrier events in case NBuffers is large. */
2925  }
2926 
2927  if (num_to_scan == 0)
2928  return; /* nothing to do */
2929 
2931 
2932  TRACE_POSTGRESQL_BUFFER_SYNC_START(NBuffers, num_to_scan);
2933 
2934  /*
2935  * Sort buffers that need to be written to reduce the likelihood of random
2936  * IO. The sorting is also important for the implementation of balancing
2937  * writes between tablespaces. Without balancing writes we'd potentially
2938  * end up writing to the tablespaces one-by-one; possibly overloading the
2939  * underlying system.
2940  */
2941  sort_checkpoint_bufferids(CkptBufferIds, num_to_scan);
2942 
2943  num_spaces = 0;
2944 
2945  /*
2946  * Allocate progress status for each tablespace with buffers that need to
2947  * be flushed. This requires the to-be-flushed array to be sorted.
2948  */
2949  last_tsid = InvalidOid;
2950  for (i = 0; i < num_to_scan; i++)
2951  {
2952  CkptTsStatus *s;
2953  Oid cur_tsid;
2954 
2955  cur_tsid = CkptBufferIds[i].tsId;
2956 
2957  /*
2958  * Grow array of per-tablespace status structs, every time a new
2959  * tablespace is found.
2960  */
2961  if (last_tsid == InvalidOid || last_tsid != cur_tsid)
2962  {
2963  Size sz;
2964 
2965  num_spaces++;
2966 
2967  /*
2968  * Not worth adding grow-by-power-of-2 logic here - even with a
2969  * few hundred tablespaces this should be fine.
2970  */
2971  sz = sizeof(CkptTsStatus) * num_spaces;
2972 
2973  if (per_ts_stat == NULL)
2974  per_ts_stat = (CkptTsStatus *) palloc(sz);
2975  else
2976  per_ts_stat = (CkptTsStatus *) repalloc(per_ts_stat, sz);
2977 
2978  s = &per_ts_stat[num_spaces - 1];
2979  memset(s, 0, sizeof(*s));
2980  s->tsId = cur_tsid;
2981 
2982  /*
2983  * The first buffer in this tablespace. As CkptBufferIds is sorted
2984  * by tablespace all (s->num_to_scan) buffers in this tablespace
2985  * will follow afterwards.
2986  */
2987  s->index = i;
2988 
2989  /*
2990  * progress_slice will be determined once we know how many buffers
2991  * are in each tablespace, i.e. after this loop.
2992  */
2993 
2994  last_tsid = cur_tsid;
2995  }
2996  else
2997  {
2998  s = &per_ts_stat[num_spaces - 1];
2999  }
3000 
3001  s->num_to_scan++;
3002 
3003  /* Check for barrier events. */
3006  }
3007 
3008  Assert(num_spaces > 0);
3009 
3010  /*
3011  * Build a min-heap over the write-progress in the individual tablespaces,
3012  * and compute how large a portion of the total progress a single
3013  * processed buffer is.
3014  */
3015  ts_heap = binaryheap_allocate(num_spaces,
3017  NULL);
3018 
3019  for (i = 0; i < num_spaces; i++)
3020  {
3021  CkptTsStatus *ts_stat = &per_ts_stat[i];
3022 
3023  ts_stat->progress_slice = (float8) num_to_scan / ts_stat->num_to_scan;
3024 
3025  binaryheap_add_unordered(ts_heap, PointerGetDatum(ts_stat));
3026  }
3027 
3028  binaryheap_build(ts_heap);
3029 
3030  /*
3031  * Iterate through to-be-checkpointed buffers and write the ones (still)
3032  * marked with BM_CHECKPOINT_NEEDED. The writes are balanced between
3033  * tablespaces; otherwise the sorting would lead to only one tablespace
3034  * receiving writes at a time, making inefficient use of the hardware.
3035  */
3036  num_processed = 0;
3037  num_written = 0;
3038  while (!binaryheap_empty(ts_heap))
3039  {
3040  BufferDesc *bufHdr = NULL;
3041  CkptTsStatus *ts_stat = (CkptTsStatus *)
3043 
3044  buf_id = CkptBufferIds[ts_stat->index].buf_id;
3045  Assert(buf_id != -1);
3046 
3047  bufHdr = GetBufferDescriptor(buf_id);
3048 
3049  num_processed++;
3050 
3051  /*
3052  * We don't need to acquire the lock here, because we're only looking
3053  * at a single bit. It's possible that someone else writes the buffer
3054  * and clears the flag right after we check, but that doesn't matter
3055  * since SyncOneBuffer will then do nothing. However, there is a
3056  * further race condition: it's conceivable that between the time we
3057  * examine the bit here and the time SyncOneBuffer acquires the lock,
3058  * someone else not only wrote the buffer but replaced it with another
3059  * page and dirtied it. In that improbable case, SyncOneBuffer will
3060  * write the buffer though we didn't need to. It doesn't seem worth
3061  * guarding against this, though.
3062  */
3064  {
3065  if (SyncOneBuffer(buf_id, false, &wb_context) & BUF_WRITTEN)
3066  {
3067  TRACE_POSTGRESQL_BUFFER_SYNC_WRITTEN(buf_id);
3069  num_written++;
3070  }
3071  }
3072 
3073  /*
3074  * Measure progress independent of actually having to flush the buffer
3075  * - otherwise writing become unbalanced.
3076  */
3077  ts_stat->progress += ts_stat->progress_slice;
3078  ts_stat->num_scanned++;
3079  ts_stat->index++;
3080 
3081  /* Have all the buffers from the tablespace been processed? */
3082  if (ts_stat->num_scanned == ts_stat->num_to_scan)
3083  {
3084  binaryheap_remove_first(ts_heap);
3085  }
3086  else
3087  {
3088  /* update heap with the new progress */
3089  binaryheap_replace_first(ts_heap, PointerGetDatum(ts_stat));
3090  }
3091 
3092  /*
3093  * Sleep to throttle our I/O rate.
3094  *
3095  * (This will check for barrier events even if it doesn't sleep.)
3096  */
3097  CheckpointWriteDelay(flags, (double) num_processed / num_to_scan);
3098  }
3099 
3100  /*
3101  * Issue all pending flushes. Only checkpointer calls BufferSync(), so
3102  * IOContext will always be IOCONTEXT_NORMAL.
3103  */
3105 
3106  pfree(per_ts_stat);
3107  per_ts_stat = NULL;
3108  binaryheap_free(ts_heap);
3109 
3110  /*
3111  * Update checkpoint statistics. As noted above, this doesn't include
3112  * buffers written by other backends or bgwriter scan.
3113  */
3114  CheckpointStats.ckpt_bufs_written += num_written;
3115 
3116  TRACE_POSTGRESQL_BUFFER_SYNC_DONE(NBuffers, num_written, num_to_scan);
3117 }
3118 
3119 /*
3120  * BgBufferSync -- Write out some dirty buffers in the pool.
3121  *
3122  * This is called periodically by the background writer process.
3123  *
3124  * Returns true if it's appropriate for the bgwriter process to go into
3125  * low-power hibernation mode. (This happens if the strategy clock sweep
3126  * has been "lapped" and no buffer allocations have occurred recently,
3127  * or if the bgwriter has been effectively disabled by setting
3128  * bgwriter_lru_maxpages to 0.)
3129  */
3130 bool
3132 {
3133  /* info obtained from freelist.c */
3134  int strategy_buf_id;
3135  uint32 strategy_passes;
3136  uint32 recent_alloc;
3137 
3138  /*
3139  * Information saved between calls so we can determine the strategy
3140  * point's advance rate and avoid scanning already-cleaned buffers.
3141  */
3142  static bool saved_info_valid = false;
3143  static int prev_strategy_buf_id;
3144  static uint32 prev_strategy_passes;
3145  static int next_to_clean;
3146  static uint32 next_passes;
3147 
3148  /* Moving averages of allocation rate and clean-buffer density */
3149  static float smoothed_alloc = 0;
3150  static float smoothed_density = 10.0;
3151 
3152  /* Potentially these could be tunables, but for now, not */
3153  float smoothing_samples = 16;
3154  float scan_whole_pool_milliseconds = 120000.0;
3155 
3156  /* Used to compute how far we scan ahead */
3157  long strategy_delta;
3158  int bufs_to_lap;
3159  int bufs_ahead;
3160  float scans_per_alloc;
3161  int reusable_buffers_est;
3162  int upcoming_alloc_est;
3163  int min_scan_buffers;
3164 
3165  /* Variables for the scanning loop proper */
3166  int num_to_scan;
3167  int num_written;
3168  int reusable_buffers;
3169 
3170  /* Variables for final smoothed_density update */
3171  long new_strategy_delta;
3172  uint32 new_recent_alloc;
3173 
3174  /*
3175  * Find out where the freelist clock sweep currently is, and how many
3176  * buffer allocations have happened since our last call.
3177  */
3178  strategy_buf_id = StrategySyncStart(&strategy_passes, &recent_alloc);
3179 
3180  /* Report buffer alloc counts to pgstat */
3181  PendingBgWriterStats.buf_alloc += recent_alloc;
3182 
3183  /*
3184  * If we're not running the LRU scan, just stop after doing the stats
3185  * stuff. We mark the saved state invalid so that we can recover sanely
3186  * if LRU scan is turned back on later.
3187  */
3188  if (bgwriter_lru_maxpages <= 0)
3189  {
3190  saved_info_valid = false;
3191  return true;
3192  }
3193 
3194  /*
3195  * Compute strategy_delta = how many buffers have been scanned by the
3196  * clock sweep since last time. If first time through, assume none. Then
3197  * see if we are still ahead of the clock sweep, and if so, how many
3198  * buffers we could scan before we'd catch up with it and "lap" it. Note:
3199  * weird-looking coding of xxx_passes comparisons are to avoid bogus
3200  * behavior when the passes counts wrap around.
3201  */
3202  if (saved_info_valid)
3203  {
3204  int32 passes_delta = strategy_passes - prev_strategy_passes;
3205 
3206  strategy_delta = strategy_buf_id - prev_strategy_buf_id;
3207  strategy_delta += (long) passes_delta * NBuffers;
3208 
3209  Assert(strategy_delta >= 0);
3210 
3211  if ((int32) (next_passes - strategy_passes) > 0)
3212  {
3213  /* we're one pass ahead of the strategy point */
3214  bufs_to_lap = strategy_buf_id - next_to_clean;
3215 #ifdef BGW_DEBUG
3216  elog(DEBUG2, "bgwriter ahead: bgw %u-%u strategy %u-%u delta=%ld lap=%d",
3217  next_passes, next_to_clean,
3218  strategy_passes, strategy_buf_id,
3219  strategy_delta, bufs_to_lap);
3220 #endif
3221  }
3222  else if (next_passes == strategy_passes &&
3223  next_to_clean >= strategy_buf_id)
3224  {
3225  /* on same pass, but ahead or at least not behind */
3226  bufs_to_lap = NBuffers - (next_to_clean - strategy_buf_id);
3227 #ifdef BGW_DEBUG
3228  elog(DEBUG2, "bgwriter ahead: bgw %u-%u strategy %u-%u delta=%ld lap=%d",
3229  next_passes, next_to_clean,
3230  strategy_passes, strategy_buf_id,
3231  strategy_delta, bufs_to_lap);
3232 #endif
3233  }
3234  else
3235  {
3236  /*
3237  * We're behind, so skip forward to the strategy point and start
3238  * cleaning from there.
3239  */
3240 #ifdef BGW_DEBUG
3241  elog(DEBUG2, "bgwriter behind: bgw %u-%u strategy %u-%u delta=%ld",
3242  next_passes, next_to_clean,
3243  strategy_passes, strategy_buf_id,
3244  strategy_delta);
3245 #endif
3246  next_to_clean = strategy_buf_id;
3247  next_passes = strategy_passes;
3248  bufs_to_lap = NBuffers;
3249  }
3250  }
3251  else
3252  {
3253  /*
3254  * Initializing at startup or after LRU scanning had been off. Always
3255  * start at the strategy point.
3256  */
3257 #ifdef BGW_DEBUG
3258  elog(DEBUG2, "bgwriter initializing: strategy %u-%u",
3259  strategy_passes, strategy_buf_id);
3260 #endif
3261  strategy_delta = 0;
3262  next_to_clean = strategy_buf_id;
3263  next_passes = strategy_passes;
3264  bufs_to_lap = NBuffers;
3265  }
3266 
3267  /* Update saved info for next time */
3268  prev_strategy_buf_id = strategy_buf_id;
3269  prev_strategy_passes = strategy_passes;
3270  saved_info_valid = true;
3271 
3272  /*
3273  * Compute how many buffers had to be scanned for each new allocation, ie,
3274  * 1/density of reusable buffers, and track a moving average of that.
3275  *
3276  * If the strategy point didn't move, we don't update the density estimate
3277  */
3278  if (strategy_delta > 0 && recent_alloc > 0)
3279  {
3280  scans_per_alloc = (float) strategy_delta / (float) recent_alloc;
3281  smoothed_density += (scans_per_alloc - smoothed_density) /
3282  smoothing_samples;
3283  }
3284 
3285  /*
3286  * Estimate how many reusable buffers there are between the current
3287  * strategy point and where we've scanned ahead to, based on the smoothed
3288  * density estimate.
3289  */
3290  bufs_ahead = NBuffers - bufs_to_lap;
3291  reusable_buffers_est = (float) bufs_ahead / smoothed_density;
3292 
3293  /*
3294  * Track a moving average of recent buffer allocations. Here, rather than
3295  * a true average we want a fast-attack, slow-decline behavior: we
3296  * immediately follow any increase.
3297  */
3298  if (smoothed_alloc <= (float) recent_alloc)
3299  smoothed_alloc = recent_alloc;
3300  else
3301  smoothed_alloc += ((float) recent_alloc - smoothed_alloc) /
3302  smoothing_samples;
3303 
3304  /* Scale the estimate by a GUC to allow more aggressive tuning. */
3305  upcoming_alloc_est = (int) (smoothed_alloc * bgwriter_lru_multiplier);
3306 
3307  /*
3308  * If recent_alloc remains at zero for many cycles, smoothed_alloc will
3309  * eventually underflow to zero, and the underflows produce annoying
3310  * kernel warnings on some platforms. Once upcoming_alloc_est has gone to
3311  * zero, there's no point in tracking smaller and smaller values of
3312  * smoothed_alloc, so just reset it to exactly zero to avoid this
3313  * syndrome. It will pop back up as soon as recent_alloc increases.
3314  */
3315  if (upcoming_alloc_est == 0)
3316  smoothed_alloc = 0;
3317 
3318  /*
3319  * Even in cases where there's been little or no buffer allocation
3320  * activity, we want to make a small amount of progress through the buffer
3321  * cache so that as many reusable buffers as possible are clean after an
3322  * idle period.
3323  *
3324  * (scan_whole_pool_milliseconds / BgWriterDelay) computes how many times
3325  * the BGW will be called during the scan_whole_pool time; slice the
3326  * buffer pool into that many sections.
3327  */
3328  min_scan_buffers = (int) (NBuffers / (scan_whole_pool_milliseconds / BgWriterDelay));
3329 
3330  if (upcoming_alloc_est < (min_scan_buffers + reusable_buffers_est))
3331  {
3332 #ifdef BGW_DEBUG
3333  elog(DEBUG2, "bgwriter: alloc_est=%d too small, using min=%d + reusable_est=%d",
3334  upcoming_alloc_est, min_scan_buffers, reusable_buffers_est);
3335 #endif
3336  upcoming_alloc_est = min_scan_buffers + reusable_buffers_est;
3337  }
3338 
3339  /*
3340  * Now write out dirty reusable buffers, working forward from the
3341  * next_to_clean point, until we have lapped the strategy scan, or cleaned
3342  * enough buffers to match our estimate of the next cycle's allocation
3343  * requirements, or hit the bgwriter_lru_maxpages limit.
3344  */
3345 
3346  num_to_scan = bufs_to_lap;
3347  num_written = 0;
3348  reusable_buffers = reusable_buffers_est;
3349 
3350  /* Execute the LRU scan */
3351  while (num_to_scan > 0 && reusable_buffers < upcoming_alloc_est)
3352  {
3353  int sync_state = SyncOneBuffer(next_to_clean, true,
3354  wb_context);
3355 
3356  if (++next_to_clean >= NBuffers)
3357  {
3358  next_to_clean = 0;
3359  next_passes++;
3360  }
3361  num_to_scan--;
3362 
3363  if (sync_state & BUF_WRITTEN)
3364  {
3365  reusable_buffers++;
3366  if (++num_written >= bgwriter_lru_maxpages)
3367  {
3369  break;
3370  }
3371  }
3372  else if (sync_state & BUF_REUSABLE)
3373  reusable_buffers++;
3374  }
3375 
3376  PendingBgWriterStats.buf_written_clean += num_written;
3377 
3378 #ifdef BGW_DEBUG
3379  elog(DEBUG1, "bgwriter: recent_alloc=%u smoothed=%.2f delta=%ld ahead=%d density=%.2f reusable_est=%d upcoming_est=%d scanned=%d wrote=%d reusable=%d",
3380  recent_alloc, smoothed_alloc, strategy_delta, bufs_ahead,
3381  smoothed_density, reusable_buffers_est, upcoming_alloc_est,
3382  bufs_to_lap - num_to_scan,
3383  num_written,
3384  reusable_buffers - reusable_buffers_est);
3385 #endif
3386 
3387  /*
3388  * Consider the above scan as being like a new allocation scan.
3389  * Characterize its density and update the smoothed one based on it. This
3390  * effectively halves the moving average period in cases where both the
3391  * strategy and the background writer are doing some useful scanning,
3392  * which is helpful because a long memory isn't as desirable on the
3393  * density estimates.
3394  */
3395  new_strategy_delta = bufs_to_lap - num_to_scan;
3396  new_recent_alloc = reusable_buffers - reusable_buffers_est;
3397  if (new_strategy_delta > 0 && new_recent_alloc > 0)
3398  {
3399  scans_per_alloc = (float) new_strategy_delta / (float) new_recent_alloc;
3400  smoothed_density += (scans_per_alloc - smoothed_density) /
3401  smoothing_samples;
3402 
3403 #ifdef BGW_DEBUG
3404  elog(DEBUG2, "bgwriter: cleaner density alloc=%u scan=%ld density=%.2f new smoothed=%.2f",
3405  new_recent_alloc, new_strategy_delta,
3406  scans_per_alloc, smoothed_density);
3407 #endif
3408  }
3409 
3410  /* Return true if OK to hibernate */
3411  return (bufs_to_lap == 0 && recent_alloc == 0);
3412 }
3413 
3414 /*
3415  * SyncOneBuffer -- process a single buffer during syncing.
3416  *
3417  * If skip_recently_used is true, we don't write currently-pinned buffers, nor
3418  * buffers marked recently used, as these are not replacement candidates.
3419  *
3420  * Returns a bitmask containing the following flag bits:
3421  * BUF_WRITTEN: we wrote the buffer.
3422  * BUF_REUSABLE: buffer is available for replacement, ie, it has
3423  * pin count 0 and usage count 0.
3424  *
3425  * (BUF_WRITTEN could be set in error if FlushBuffer finds the buffer clean
3426  * after locking it, but we don't care all that much.)
3427  */
3428 static int
3429 SyncOneBuffer(int buf_id, bool skip_recently_used, WritebackContext *wb_context)
3430 {
3431  BufferDesc *bufHdr = GetBufferDescriptor(buf_id);
3432  int result = 0;
3433  uint32 buf_state;
3434  BufferTag tag;
3435 
3436  /* Make sure we can handle the pin */
3439 
3440  /*
3441  * Check whether buffer needs writing.
3442  *
3443  * We can make this check without taking the buffer content lock so long
3444  * as we mark pages dirty in access methods *before* logging changes with
3445  * XLogInsert(): if someone marks the buffer dirty just after our check we
3446  * don't worry because our checkpoint.redo points before log record for
3447  * upcoming changes and so we are not required to write such dirty buffer.
3448  */
3449  buf_state = LockBufHdr(bufHdr);
3450 
3451  if (BUF_STATE_GET_REFCOUNT(buf_state) == 0 &&
3452  BUF_STATE_GET_USAGECOUNT(buf_state) == 0)
3453  {
3454  result |= BUF_REUSABLE;
3455  }
3456  else if (skip_recently_used)
3457  {
3458  /* Caller told us not to write recently-used buffers */
3459  UnlockBufHdr(bufHdr, buf_state);
3460  return result;
3461  }
3462 
3463  if (!(buf_state & BM_VALID) || !(buf_state & BM_DIRTY))
3464  {
3465  /* It's clean, so nothing to do */
3466  UnlockBufHdr(bufHdr, buf_state);
3467  return result;
3468  }
3469 
3470  /*
3471  * Pin it, share-lock it, write it. (FlushBuffer will do nothing if the
3472  * buffer is clean by the time we've locked it.)
3473  */
3474  PinBuffer_Locked(bufHdr);
3476 
3478 
3480 
3481  tag = bufHdr->tag;
3482 
3483  UnpinBuffer(bufHdr);
3484 
3485  /*
3486  * SyncOneBuffer() is only called by checkpointer and bgwriter, so
3487  * IOContext will always be IOCONTEXT_NORMAL.
3488  */
3490 
3491  return result | BUF_WRITTEN;
3492 }
3493 
3494 /*
3495  * AtEOXact_Buffers - clean up at end of transaction.
3496  *
3497  * As of PostgreSQL 8.0, buffer pins should get released by the
3498  * ResourceOwner mechanism. This routine is just a debugging
3499  * cross-check that no pins remain.
3500  */
3501 void
3502 AtEOXact_Buffers(bool isCommit)
3503 {
3505 
3506  AtEOXact_LocalBuffers(isCommit);
3507 
3509 }
3510 
3511 /*
3512  * Initialize access to shared buffer pool
3513  *
3514  * This is called during backend startup (whether standalone or under the
3515  * postmaster). It sets up for this backend's access to the already-existing
3516  * buffer pool.
3517  */
3518 void
3520 {
3521  HASHCTL hash_ctl;
3522 
3523  memset(&PrivateRefCountArray, 0, sizeof(PrivateRefCountArray));
3524 
3525  hash_ctl.keysize = sizeof(int32);
3526  hash_ctl.entrysize = sizeof(PrivateRefCountEntry);
3527 
3528  PrivateRefCountHash = hash_create("PrivateRefCount", 100, &hash_ctl,
3529  HASH_ELEM | HASH_BLOBS);
3530 
3531  /*
3532  * AtProcExit_Buffers needs LWLock access, and thereby has to be called at
3533  * the corresponding phase of backend shutdown.
3534  */
3535  Assert(MyProc != NULL);
3537 }
3538 
3539 /*
3540  * During backend exit, ensure that we released all shared-buffer locks and
3541  * assert that we have no remaining pins.
3542  */
3543 static void
3545 {
3546  UnlockBuffers();
3547 
3549 
3550  /* localbuf.c needs a chance too */
3552 }
3553 
3554 /*
3555  * CheckForBufferLeaks - ensure this backend holds no buffer pins
3556  *
3557  * As of PostgreSQL 8.0, buffer pins should get released by the
3558  * ResourceOwner mechanism. This routine is just a debugging
3559  * cross-check that no pins remain.
3560  */
3561 static void
3563 {
3564 #ifdef USE_ASSERT_CHECKING
3565  int RefCountErrors = 0;
3567  int i;
3568  char *s;
3569 
3570  /* check the array */
3571  for (i = 0; i < REFCOUNT_ARRAY_ENTRIES; i++)
3572  {
3574 
3575  if (res->buffer != InvalidBuffer)
3576  {
3577  s = DebugPrintBufferRefcount(res->buffer);
3578  elog(WARNING, "buffer refcount leak: %s", s);
3579  pfree(s);
3580 
3581  RefCountErrors++;
3582  }
3583  }
3584 
3585  /* if necessary search the hash */
3587  {
3588  HASH_SEQ_STATUS hstat;
3589 
3591  while ((res = (PrivateRefCountEntry *) hash_seq_search(&hstat)) != NULL)
3592  {
3593  s = DebugPrintBufferRefcount(res->buffer);
3594  elog(WARNING, "buffer refcount leak: %s", s);
3595  pfree(s);
3596  RefCountErrors++;
3597  }
3598  }
3599 
3600  Assert(RefCountErrors == 0);
3601 #endif
3602 }
3603 
3604 /*
3605  * Helper routine to issue warnings when a buffer is unexpectedly pinned
3606  */
3607 char *
3609 {
3610  BufferDesc *buf;
3611  int32 loccount;
3612  char *path;
3613  char *result;
3614  ProcNumber backend;
3615  uint32 buf_state;
3616 
3618  if (BufferIsLocal(buffer))
3619  {
3621  loccount = LocalRefCount[-buffer - 1];
3622  backend = MyProcNumber;
3623  }
3624  else
3625  {
3627  loccount = GetPrivateRefCount(buffer);
3628  backend = INVALID_PROC_NUMBER;
3629  }
3630 
3631  /* theoretically we should lock the bufhdr here */
3632  path = relpathbackend(BufTagGetRelFileLocator(&buf->tag), backend,
3633  BufTagGetForkNum(&buf->tag));
3634  buf_state = pg_atomic_read_u32(&buf->state);
3635 
3636  result = psprintf("[%03d] (rel=%s, blockNum=%u, flags=0x%x, refcount=%u %d)",
3637  buffer, path,
3638  buf->tag.blockNum, buf_state & BUF_FLAG_MASK,
3639  BUF_STATE_GET_REFCOUNT(buf_state), loccount);
3640  pfree(path);
3641  return result;
3642 }
3643 
3644 /*
3645  * CheckPointBuffers
3646  *
3647  * Flush all dirty blocks in buffer pool to disk at checkpoint time.
3648  *
3649  * Note: temporary relations do not participate in checkpoints, so they don't
3650  * need to be flushed.
3651  */
3652 void
3654 {
3655  BufferSync(flags);
3656 }
3657 
3658 /*
3659  * BufferGetBlockNumber
3660  * Returns the block number associated with a buffer.
3661  *
3662  * Note:
3663  * Assumes that the buffer is valid and pinned, else the
3664  * value may be obsolete immediately...
3665  */
3668 {
3669  BufferDesc *bufHdr;
3670 
3672 
3673  if (BufferIsLocal(buffer))
3674  bufHdr = GetLocalBufferDescriptor(-buffer - 1);
3675  else
3676  bufHdr = GetBufferDescriptor(buffer - 1);
3677 
3678  /* pinned, so OK to read tag without spinlock */
3679  return bufHdr->tag.blockNum;
3680 }
3681 
3682 /*
3683  * BufferGetTag
3684  * Returns the relfilelocator, fork number and block number associated with
3685  * a buffer.
3686  */
3687 void
3689  BlockNumber *blknum)
3690 {
3691  BufferDesc *bufHdr;
3692 
3693  /* Do the same checks as BufferGetBlockNumber. */
3695 
3696  if (BufferIsLocal(buffer))
3697  bufHdr = GetLocalBufferDescriptor(-buffer - 1);
3698  else
3699  bufHdr = GetBufferDescriptor(buffer - 1);
3700 
3701  /* pinned, so OK to read tag without spinlock */
3702  *rlocator = BufTagGetRelFileLocator(&bufHdr->tag);
3703  *forknum = BufTagGetForkNum(&bufHdr->tag);
3704  *blknum = bufHdr->tag.blockNum;
3705 }
3706 
3707 /*
3708  * FlushBuffer
3709  * Physically write out a shared buffer.
3710  *
3711  * NOTE: this actually just passes the buffer contents to the kernel; the
3712  * real write to disk won't happen until the kernel feels like it. This
3713  * is okay from our point of view since we can redo the changes from WAL.
3714  * However, we will need to force the changes to disk via fsync before
3715  * we can checkpoint WAL.
3716  *
3717  * The caller must hold a pin on the buffer and have share-locked the
3718  * buffer contents. (Note: a share-lock does not prevent updates of
3719  * hint bits in the buffer, so the page could change while the write
3720  * is in progress, but we assume that that will not invalidate the data
3721  * written.)
3722  *
3723  * If the caller has an smgr reference for the buffer's relation, pass it
3724  * as the second parameter. If not, pass NULL.
3725  */
3726 static void
3728  IOContext io_context)
3729 {
3730  XLogRecPtr recptr;
3731  ErrorContextCallback errcallback;
3732  instr_time io_start;
3733  Block bufBlock;
3734  char *bufToWrite;
3735  uint32 buf_state;
3736 
3737  /*
3738  * Try to start an I/O operation. If StartBufferIO returns false, then
3739  * someone else flushed the buffer before we could, so we need not do
3740  * anything.
3741  */
3742  if (!StartBufferIO(buf, false, false))
3743  return;
3744 
3745  /* Setup error traceback support for ereport() */
3747  errcallback.arg = (void *) buf;
3748  errcallback.previous = error_context_stack;
3749  error_context_stack = &errcallback;
3750 
3751  /* Find smgr relation for buffer */
3752  if (reln == NULL)
3754 
3755  TRACE_POSTGRESQL_BUFFER_FLUSH_START(BufTagGetForkNum(&buf->tag),
3756  buf->tag.blockNum,
3758  reln->smgr_rlocator.locator.dbOid,
3760 
3761  buf_state = LockBufHdr(buf);
3762 
3763  /*
3764  * Run PageGetLSN while holding header lock, since we don't have the
3765  * buffer locked exclusively in all cases.
3766  */
3767  recptr = BufferGetLSN(buf);
3768 
3769  /* To check if block content changes while flushing. - vadim 01/17/97 */
3770  buf_state &= ~BM_JUST_DIRTIED;
3771  UnlockBufHdr(buf, buf_state);
3772 
3773  /*
3774  * Force XLOG flush up to buffer's LSN. This implements the basic WAL
3775  * rule that log updates must hit disk before any of the data-file changes
3776  * they describe do.
3777  *
3778  * However, this rule does not apply to unlogged relations, which will be
3779  * lost after a crash anyway. Most unlogged relation pages do not bear
3780  * LSNs since we never emit WAL records for them, and therefore flushing
3781  * up through the buffer LSN would be useless, but harmless. However,
3782  * GiST indexes use LSNs internally to track page-splits, and therefore
3783  * unlogged GiST pages bear "fake" LSNs generated by
3784  * GetFakeLSNForUnloggedRel. It is unlikely but possible that the fake
3785  * LSN counter could advance past the WAL insertion point; and if it did
3786  * happen, attempting to flush WAL through that location would fail, with
3787  * disastrous system-wide consequences. To make sure that can't happen,
3788  * skip the flush if the buffer isn't permanent.
3789  */
3790  if (buf_state & BM_PERMANENT)
3791  XLogFlush(recptr);
3792 
3793  /*
3794  * Now it's safe to write buffer to disk. Note that no one else should
3795  * have been able to write it while we were busy with log flushing because
3796  * only one process at a time can set the BM_IO_IN_PROGRESS bit.
3797  */
3798  bufBlock = BufHdrGetBlock(buf);
3799 
3800  /*
3801  * Update page checksum if desired. Since we have only shared lock on the
3802  * buffer, other processes might be updating hint bits in it, so we must
3803  * copy the page to private storage if we do checksumming.
3804  */
3805  bufToWrite = PageSetChecksumCopy((Page) bufBlock, buf->tag.blockNum);
3806 
3808 
3809  /*
3810  * bufToWrite is either the shared buffer or a copy, as appropriate.
3811  */
3812  smgrwrite(reln,
3813  BufTagGetForkNum(&buf->tag),
3814  buf->tag.blockNum,
3815  bufToWrite,
3816  false);
3817 
3818  /*
3819  * When a strategy is in use, only flushes of dirty buffers already in the
3820  * strategy ring are counted as strategy writes (IOCONTEXT
3821  * [BULKREAD|BULKWRITE|VACUUM] IOOP_WRITE) for the purpose of IO
3822  * statistics tracking.
3823  *
3824  * If a shared buffer initially added to the ring must be flushed before
3825  * being used, this is counted as an IOCONTEXT_NORMAL IOOP_WRITE.
3826  *
3827  * If a shared buffer which was added to the ring later because the
3828  * current strategy buffer is pinned or in use or because all strategy
3829  * buffers were dirty and rejected (for BAS_BULKREAD operations only)
3830  * requires flushing, this is counted as an IOCONTEXT_NORMAL IOOP_WRITE
3831  * (from_ring will be false).
3832  *
3833  * When a strategy is not in use, the write can only be a "regular" write
3834  * of a dirty shared buffer (IOCONTEXT_NORMAL IOOP_WRITE).
3835  */
3837  IOOP_WRITE, io_start, 1);
3838 
3840 
3841  /*
3842  * Mark the buffer as clean (unless BM_JUST_DIRTIED has become set) and
3843  * end the BM_IO_IN_PROGRESS state.
3844  */
3845  TerminateBufferIO(buf, true, 0, true);
3846 
3847  TRACE_POSTGRESQL_BUFFER_FLUSH_DONE(BufTagGetForkNum(&buf->tag),
3848  buf->tag.blockNum,
3850  reln->smgr_rlocator.locator.dbOid,
3852 
3853  /* Pop the error context stack */
3854  error_context_stack = errcallback.previous;
3855 }
3856 
3857 /*
3858  * RelationGetNumberOfBlocksInFork
3859  * Determines the current number of pages in the specified relation fork.
3860  *
3861  * Note that the accuracy of the result will depend on the details of the
3862  * relation's storage. For builtin AMs it'll be accurate, but for external AMs
3863  * it might not be.
3864  */
3867 {
3868  if (RELKIND_HAS_TABLE_AM(relation->rd_rel->relkind))
3869  {
3870  /*
3871  * Not every table AM uses BLCKSZ wide fixed size blocks. Therefore
3872  * tableam returns the size in bytes - but for the purpose of this
3873  * routine, we want the number of blocks. Therefore divide, rounding
3874  * up.
3875  */
3876  uint64 szbytes;
3877 
3878  szbytes = table_relation_size(relation, forkNum);
3879 
3880  return (szbytes + (BLCKSZ - 1)) / BLCKSZ;
3881  }
3882  else if (RELKIND_HAS_STORAGE(relation->rd_rel->relkind))
3883  {
3884  return smgrnblocks(RelationGetSmgr(relation), forkNum);
3885  }
3886  else
3887  Assert(false);
3888 
3889  return 0; /* keep compiler quiet */
3890 }
3891 
3892 /*
3893  * BufferIsPermanent
3894  * Determines whether a buffer will potentially still be around after
3895  * a crash. Caller must hold a buffer pin.
3896  */
3897 bool
3899 {
3900  BufferDesc *bufHdr;
3901 
3902  /* Local buffers are used only for temp relations. */
3903  if (BufferIsLocal(buffer))
3904  return false;
3905 
3906  /* Make sure we've got a real buffer, and that we hold a pin on it. */
3909 
3910  /*
3911  * BM_PERMANENT can't be changed while we hold a pin on the buffer, so we
3912  * need not bother with the buffer header spinlock. Even if someone else
3913  * changes the buffer header state while we're doing this, the state is
3914  * changed atomically, so we'll read the old value or the new value, but
3915  * not random garbage.
3916  */
3917  bufHdr = GetBufferDescriptor(buffer - 1);
3918  return (pg_atomic_read_u32(&bufHdr->state) & BM_PERMANENT) != 0;
3919 }
3920 
3921 /*
3922  * BufferGetLSNAtomic
3923  * Retrieves the LSN of the buffer atomically using a buffer header lock.
3924  * This is necessary for some callers who may not have an exclusive lock
3925  * on the buffer.
3926  */
3927 XLogRecPtr
3929 {
3930  BufferDesc *bufHdr = GetBufferDescriptor(buffer - 1);
3931  char *page = BufferGetPage(buffer);
3932  XLogRecPtr lsn;
3933  uint32 buf_state;
3934 
3935  /*
3936  * If we don't need locking for correctness, fastpath out.
3937  */
3939  return PageGetLSN(page);
3940 
3941  /* Make sure we've got a real buffer, and that we hold a pin on it. */
3944 
3945  buf_state = LockBufHdr(bufHdr);
3946  lsn = PageGetLSN(page);
3947  UnlockBufHdr(bufHdr, buf_state);
3948 
3949  return lsn;
3950 }
3951 
3952 /* ---------------------------------------------------------------------
3953  * DropRelationBuffers
3954  *
3955  * This function removes from the buffer pool all the pages of the
3956  * specified relation forks that have block numbers >= firstDelBlock.
3957  * (In particular, with firstDelBlock = 0, all pages are removed.)
3958  * Dirty pages are simply dropped, without bothering to write them
3959  * out first. Therefore, this is NOT rollback-able, and so should be
3960  * used only with extreme caution!
3961  *
3962  * Currently, this is called only from smgr.c when the underlying file
3963  * is about to be deleted or truncated (firstDelBlock is needed for
3964  * the truncation case). The data in the affected pages would therefore
3965  * be deleted momentarily anyway, and there is no point in writing it.
3966  * It is the responsibility of higher-level code to ensure that the
3967  * deletion or truncation does not lose any data that could be needed
3968  * later. It is also the responsibility of higher-level code to ensure
3969  * that no other process could be trying to load more pages of the
3970  * relation into buffers.
3971  * --------------------------------------------------------------------
3972  */
3973 void
3975  int nforks, BlockNumber *firstDelBlock)
3976 {
3977  int i;
3978  int j;
3979  RelFileLocatorBackend rlocator;
3980  BlockNumber nForkBlock[MAX_FORKNUM];
3981  uint64 nBlocksToInvalidate = 0;
3982 
3983  rlocator = smgr_reln->smgr_rlocator;
3984 
3985  /* If it's a local relation, it's localbuf.c's problem. */
3986  if (RelFileLocatorBackendIsTemp(rlocator))
3987  {
3988  if (rlocator.backend == MyProcNumber)
3989  {
3990  for (j = 0; j < nforks; j++)
3991  DropRelationLocalBuffers(rlocator.locator, forkNum[j],
3992  firstDelBlock[j]);
3993  }
3994  return;
3995  }
3996 
3997  /*
3998  * To remove all the pages of the specified relation forks from the buffer
3999  * pool, we need to scan the entire buffer pool but we can optimize it by
4000  * finding the buffers from BufMapping table provided we know the exact
4001  * size of each fork of the relation. The exact size is required to ensure
4002  * that we don't leave any buffer for the relation being dropped as
4003  * otherwise the background writer or checkpointer can lead to a PANIC
4004  * error while flushing buffers corresponding to files that don't exist.
4005  *
4006  * To know the exact size, we rely on the size cached for each fork by us
4007  * during recovery which limits the optimization to recovery and on
4008  * standbys but we can easily extend it once we have shared cache for
4009  * relation size.
4010  *
4011  * In recovery, we cache the value returned by the first lseek(SEEK_END)
4012  * and the future writes keeps the cached value up-to-date. See
4013  * smgrextend. It is possible that the value of the first lseek is smaller
4014  * than the actual number of existing blocks in the file due to buggy
4015  * Linux kernels that might not have accounted for the recent write. But
4016  * that should be fine because there must not be any buffers after that
4017  * file size.
4018  */
4019  for (i = 0; i < nforks; i++)
4020  {
4021  /* Get the number of blocks for a relation's fork */
4022  nForkBlock[i] = smgrnblocks_cached(smgr_reln, forkNum[i]);
4023 
4024  if (nForkBlock[i] == InvalidBlockNumber)
4025  {
4026  nBlocksToInvalidate = InvalidBlockNumber;
4027  break;
4028  }
4029 
4030  /* calculate the number of blocks to be invalidated */
4031  nBlocksToInvalidate += (nForkBlock[i] - firstDelBlock[i]);
4032  }
4033 
4034  /*
4035  * We apply the optimization iff the total number of blocks to invalidate
4036  * is below the BUF_DROP_FULL_SCAN_THRESHOLD.
4037  */
4038  if (BlockNumberIsValid(nBlocksToInvalidate) &&
4039  nBlocksToInvalidate < BUF_DROP_FULL_SCAN_THRESHOLD)
4040  {
4041  for (j = 0; j < nforks; j++)
4042  FindAndDropRelationBuffers(rlocator.locator, forkNum[j],
4043  nForkBlock[j], firstDelBlock[j]);
4044  return;
4045  }
4046 
4047  for (i = 0; i < NBuffers; i++)
4048  {
4049  BufferDesc *bufHdr = GetBufferDescriptor(i);
4050  uint32 buf_state;
4051 
4052  /*
4053  * We can make this a tad faster by prechecking the buffer tag before
4054  * we attempt to lock the buffer; this saves a lot of lock
4055  * acquisitions in typical cases. It should be safe because the
4056  * caller must have AccessExclusiveLock on the relation, or some other
4057  * reason to be certain that no one is loading new pages of the rel
4058  * into the buffer pool. (Otherwise we might well miss such pages
4059  * entirely.) Therefore, while the tag might be changing while we
4060  * look at it, it can't be changing *to* a value we care about, only
4061  * *away* from such a value. So false negatives are impossible, and
4062  * false positives are safe because we'll recheck after getting the
4063  * buffer lock.
4064  *
4065  * We could check forkNum and blockNum as well as the rlocator, but
4066  * the incremental win from doing so seems small.
4067  */
4068  if (!BufTagMatchesRelFileLocator(&bufHdr->tag, &rlocator.locator))
4069  continue;
4070 
4071  buf_state = LockBufHdr(bufHdr);
4072 
4073  for (j = 0; j < nforks; j++)
4074  {
4075  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rlocator.locator) &&
4076  BufTagGetForkNum(&bufHdr->tag) == forkNum[j] &&
4077  bufHdr->tag.blockNum >= firstDelBlock[j])
4078  {
4079  InvalidateBuffer(bufHdr); /* releases spinlock */
4080  break;
4081  }
4082  }
4083  if (j >= nforks)
4084  UnlockBufHdr(bufHdr, buf_state);
4085  }
4086 }
4087 
4088 /* ---------------------------------------------------------------------
4089  * DropRelationsAllBuffers
4090  *
4091  * This function removes from the buffer pool all the pages of all
4092  * forks of the specified relations. It's equivalent to calling
4093  * DropRelationBuffers once per fork per relation with firstDelBlock = 0.
4094  * --------------------------------------------------------------------
4095  */
4096 void
4097 DropRelationsAllBuffers(SMgrRelation *smgr_reln, int nlocators)
4098 {
4099  int i;
4100  int n = 0;
4101  SMgrRelation *rels;
4102  BlockNumber (*block)[MAX_FORKNUM + 1];
4103  uint64 nBlocksToInvalidate = 0;
4104  RelFileLocator *locators;
4105  bool cached = true;
4106  bool use_bsearch;
4107 
4108  if (nlocators == 0)
4109  return;
4110 
4111  rels = palloc(sizeof(SMgrRelation) * nlocators); /* non-local relations */
4112 
4113  /* If it's a local relation, it's localbuf.c's problem. */
4114  for (i = 0; i < nlocators; i++)
4115  {
4116  if (RelFileLocatorBackendIsTemp(smgr_reln[i]->smgr_rlocator))
4117  {
4118  if (smgr_reln[i]->smgr_rlocator.backend == MyProcNumber)
4119  DropRelationAllLocalBuffers(smgr_reln[i]->smgr_rlocator.locator);
4120  }
4121  else
4122  rels[n++] = smgr_reln[i];
4123  }
4124 
4125  /*
4126  * If there are no non-local relations, then we're done. Release the
4127  * memory and return.
4128  */
4129  if (n == 0)
4130  {
4131  pfree(rels);
4132  return;
4133  }
4134 
4135  /*
4136  * This is used to remember the number of blocks for all the relations
4137  * forks.
4138  */
4139  block = (BlockNumber (*)[MAX_FORKNUM + 1])
4140  palloc(sizeof(BlockNumber) * n * (MAX_FORKNUM + 1));
4141 
4142  /*
4143  * We can avoid scanning the entire buffer pool if we know the exact size
4144  * of each of the given relation forks. See DropRelationBuffers.
4145  */
4146  for (i = 0; i < n && cached; i++)
4147  {
4148  for (int j = 0; j <= MAX_FORKNUM; j++)
4149  {
4150  /* Get the number of blocks for a relation's fork. */
4151  block[i][j] = smgrnblocks_cached(rels[i], j);
4152 
4153  /* We need to only consider the relation forks that exists. */
4154  if (block[i][j] == InvalidBlockNumber)
4155  {
4156  if (!smgrexists(rels[i], j))
4157  continue;
4158  cached = false;
4159  break;
4160  }
4161 
4162  /* calculate the total number of blocks to be invalidated */
4163  nBlocksToInvalidate += block[i][j];
4164  }
4165  }
4166 
4167  /*
4168  * We apply the optimization iff the total number of blocks to invalidate
4169  * is below the BUF_DROP_FULL_SCAN_THRESHOLD.
4170  */
4171  if (cached && nBlocksToInvalidate < BUF_DROP_FULL_SCAN_THRESHOLD)
4172  {
4173  for (i = 0; i < n; i++)
4174  {
4175  for (int j = 0; j <= MAX_FORKNUM; j++)
4176  {
4177  /* ignore relation forks that doesn't exist */
4178  if (!BlockNumberIsValid(block[i][j]))
4179  continue;
4180 
4181  /* drop all the buffers for a particular relation fork */
4182  FindAndDropRelationBuffers(rels[i]->smgr_rlocator.locator,
4183  j, block[i][j], 0);
4184  }
4185  }
4186 
4187  pfree(block);
4188  pfree(rels);
4189  return;
4190  }
4191 
4192  pfree(block);
4193  locators = palloc(sizeof(RelFileLocator) * n); /* non-local relations */
4194  for (i = 0; i < n; i++)
4195  locators[i] = rels[i]->smgr_rlocator.locator;
4196 
4197  /*
4198  * For low number of relations to drop just use a simple walk through, to
4199  * save the bsearch overhead. The threshold to use is rather a guess than
4200  * an exactly determined value, as it depends on many factors (CPU and RAM
4201  * speeds, amount of shared buffers etc.).
4202  */
4203  use_bsearch = n > RELS_BSEARCH_THRESHOLD;
4204 
4205  /* sort the list of rlocators if necessary */
4206  if (use_bsearch)
4207  qsort(locators, n, sizeof(RelFileLocator), rlocator_comparator);
4208 
4209  for (i = 0; i < NBuffers; i++)
4210  {
4211  RelFileLocator *rlocator = NULL;
4212  BufferDesc *bufHdr = GetBufferDescriptor(i);
4213  uint32 buf_state;
4214 
4215  /*
4216  * As in DropRelationBuffers, an unlocked precheck should be safe and
4217  * saves some cycles.
4218  */
4219 
4220  if (!use_bsearch)
4221  {
4222  int j;
4223 
4224  for (j = 0; j < n; j++)
4225  {
4226  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &locators[j]))
4227  {
4228  rlocator = &locators[j];
4229  break;
4230  }
4231  }
4232  }
4233  else
4234  {
4235  RelFileLocator locator;
4236 
4237  locator = BufTagGetRelFileLocator(&bufHdr->tag);
4238  rlocator = bsearch((const void *) &(locator),
4239  locators, n, sizeof(RelFileLocator),
4241  }
4242 
4243  /* buffer doesn't belong to any of the given relfilelocators; skip it */
4244  if (rlocator == NULL)
4245  continue;
4246 
4247  buf_state = LockBufHdr(bufHdr);
4248  if (BufTagMatchesRelFileLocator(&bufHdr->tag, rlocator))
4249  InvalidateBuffer(bufHdr); /* releases spinlock */
4250  else
4251  UnlockBufHdr(bufHdr, buf_state);
4252  }
4253 
4254  pfree(locators);
4255  pfree(rels);
4256 }
4257 
4258 /* ---------------------------------------------------------------------
4259  * FindAndDropRelationBuffers
4260  *
4261  * This function performs look up in BufMapping table and removes from the
4262  * buffer pool all the pages of the specified relation fork that has block
4263  * number >= firstDelBlock. (In particular, with firstDelBlock = 0, all
4264  * pages are removed.)
4265  * --------------------------------------------------------------------
4266  */
4267 static void
4269  BlockNumber nForkBlock,
4270  BlockNumber firstDelBlock)
4271 {
4272  BlockNumber curBlock;
4273 
4274  for (curBlock = firstDelBlock; curBlock < nForkBlock; curBlock++)
4275  {
4276  uint32 bufHash; /* hash value for tag */
4277  BufferTag bufTag; /* identity of requested block */
4278  LWLock *bufPartitionLock; /* buffer partition lock for it */
4279  int buf_id;
4280  BufferDesc *bufHdr;
4281  uint32 buf_state;
4282 
4283  /* create a tag so we can lookup the buffer */
4284  InitBufferTag(&bufTag, &rlocator, forkNum, curBlock);
4285 
4286  /* determine its hash code and partition lock ID */
4287  bufHash = BufTableHashCode(&bufTag);
4288  bufPartitionLock = BufMappingPartitionLock(bufHash);
4289 
4290  /* Check that it is in the buffer pool. If not, do nothing. */
4291  LWLockAcquire(bufPartitionLock, LW_SHARED);
4292  buf_id = BufTableLookup(&bufTag, bufHash);
4293  LWLockRelease(bufPartitionLock);
4294 
4295  if (buf_id < 0)
4296  continue;
4297 
4298  bufHdr = GetBufferDescriptor(buf_id);
4299 
4300  /*
4301  * We need to lock the buffer header and recheck if the buffer is
4302  * still associated with the same block because the buffer could be
4303  * evicted by some other backend loading blocks for a different
4304  * relation after we release lock on the BufMapping table.
4305  */
4306  buf_state = LockBufHdr(bufHdr);
4307 
4308  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rlocator) &&
4309  BufTagGetForkNum(&bufHdr->tag) == forkNum &&
4310  bufHdr->tag.blockNum >= firstDelBlock)
4311  InvalidateBuffer(bufHdr); /* releases spinlock */
4312  else
4313  UnlockBufHdr(bufHdr, buf_state);
4314  }
4315 }
4316 
4317 /* ---------------------------------------------------------------------
4318  * DropDatabaseBuffers
4319  *
4320  * This function removes all the buffers in the buffer cache for a
4321  * particular database. Dirty pages are simply dropped, without
4322  * bothering to write them out first. This is used when we destroy a
4323  * database, to avoid trying to flush data to disk when the directory
4324  * tree no longer exists. Implementation is pretty similar to
4325  * DropRelationBuffers() which is for destroying just one relation.
4326  * --------------------------------------------------------------------
4327  */
4328 void
4330 {
4331  int i;
4332 
4333  /*
4334  * We needn't consider local buffers, since by assumption the target
4335  * database isn't our own.
4336  */
4337 
4338  for (i = 0; i < NBuffers; i++)
4339  {
4340  BufferDesc *bufHdr = GetBufferDescriptor(i);
4341  uint32 buf_state;
4342 
4343  /*
4344  * As in DropRelationBuffers, an unlocked precheck should be safe and
4345  * saves some cycles.
4346  */
4347  if (bufHdr->tag.dbOid != dbid)
4348  continue;
4349 
4350  buf_state = LockBufHdr(bufHdr);
4351  if (bufHdr->tag.dbOid == dbid)
4352  InvalidateBuffer(bufHdr); /* releases spinlock */
4353  else
4354  UnlockBufHdr(bufHdr, buf_state);
4355  }
4356 }
4357 
4358 /* -----------------------------------------------------------------
4359  * PrintBufferDescs
4360  *
4361  * this function prints all the buffer descriptors, for debugging
4362  * use only.
4363  * -----------------------------------------------------------------
4364  */
4365 #ifdef NOT_USED
4366 void
4367 PrintBufferDescs(void)
4368 {
4369  int i;
4370 
4371  for (i = 0; i < NBuffers; ++i)
4372  {
4375 
4376  /* theoretically we should lock the bufhdr here */
4377  elog(LOG,
4378  "[%02d] (freeNext=%d, rel=%s, "
4379  "blockNum=%u, flags=0x%x, refcount=%u %d)",
4380  i, buf->freeNext,
4383  buf->tag.blockNum, buf->flags,
4384  buf->refcount, GetPrivateRefCount(b));
4385  }
4386 }
4387 #endif
4388 
4389 #ifdef NOT_USED
4390 void
4391 PrintPinnedBufs(void)
4392 {
4393  int i;
4394 
4395  for (i = 0; i < NBuffers; ++i)
4396  {
4399 
4400  if (GetPrivateRefCount(b) > 0)
4401  {
4402  /* theoretically we should lock the bufhdr here */
4403  elog(LOG,
4404  "[%02d] (freeNext=%d, rel=%s, "
4405  "blockNum=%u, flags=0x%x, refcount=%u %d)",
4406  i, buf->freeNext,
4408  BufTagGetForkNum(&buf->tag)),
4409  buf->tag.blockNum, buf->flags,
4410  buf->refcount, GetPrivateRefCount(b));
4411  }
4412  }
4413 }
4414 #endif
4415 
4416 /* ---------------------------------------------------------------------
4417  * FlushRelationBuffers
4418  *
4419  * This function writes all dirty pages of a relation out to disk
4420  * (or more accurately, out to kernel disk buffers), ensuring that the
4421  * kernel has an up-to-date view of the relation.
4422  *
4423  * Generally, the caller should be holding AccessExclusiveLock on the
4424  * target relation to ensure that no other backend is busy dirtying
4425  * more blocks of the relation; the effects can't be expected to last
4426  * after the lock is released.
4427  *
4428  * XXX currently it sequentially searches the buffer pool, should be
4429  * changed to more clever ways of searching. This routine is not
4430  * used in any performance-critical code paths, so it's not worth
4431  * adding additional overhead to normal paths to make it go faster.
4432  * --------------------------------------------------------------------
4433  */
4434 void
4436 {
4437  int i;
4438  BufferDesc *bufHdr;
4439  SMgrRelation srel = RelationGetSmgr(rel);
4440 
4441  if (RelationUsesLocalBuffers(rel))
4442  {
4443  for (i = 0; i < NLocBuffer; i++)
4444  {
4445  uint32 buf_state;
4446  instr_time io_start;
4447 
4448  bufHdr = GetLocalBufferDescriptor(i);
4449  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rel->rd_locator) &&
4450  ((buf_state = pg_atomic_read_u32(&bufHdr->state)) &
4451  (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
4452  {
4453  ErrorContextCallback errcallback;
4454  Page localpage;
4455 
4456  localpage = (char *) LocalBufHdrGetBlock(bufHdr);
4457 
4458  /* Setup error traceback support for ereport() */
4460  errcallback.arg = (void *) bufHdr;
4461  errcallback.previous = error_context_stack;
4462  error_context_stack = &errcallback;
4463 
4464  PageSetChecksumInplace(localpage, bufHdr->tag.blockNum);
4465 
4467 
4468  smgrwrite(srel,
4469  BufTagGetForkNum(&bufHdr->tag),
4470  bufHdr->tag.blockNum,
4471  localpage,
4472  false);
4473 
4476  io_start, 1);
4477 
4478  buf_state &= ~(BM_DIRTY | BM_JUST_DIRTIED);
4479  pg_atomic_unlocked_write_u32(&bufHdr->state, buf_state);
4480 
4482 
4483  /* Pop the error context stack */
4484  error_context_stack = errcallback.previous;
4485  }
4486  }
4487 
4488  return;
4489  }
4490 
4491  for (i = 0; i < NBuffers; i++)
4492  {
4493  uint32 buf_state;
4494 
4495  bufHdr = GetBufferDescriptor(i);
4496 
4497  /*
4498  * As in DropRelationBuffers, an unlocked precheck should be safe and
4499  * saves some cycles.
4500  */
4501  if (!BufTagMatchesRelFileLocator(&bufHdr->tag, &rel->rd_locator))
4502  continue;
4503 
4504  /* Make sure we can handle the pin */
4507 
4508  buf_state = LockBufHdr(bufHdr);
4509  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &rel->rd_locator) &&
4510  (buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
4511  {
4512  PinBuffer_Locked(bufHdr);
4516  UnpinBuffer(bufHdr);
4517  }
4518  else
4519  UnlockBufHdr(bufHdr, buf_state);
4520  }
4521 }
4522 
4523 /* ---------------------------------------------------------------------
4524  * FlushRelationsAllBuffers
4525  *
4526  * This function flushes out of the buffer pool all the pages of all
4527  * forks of the specified smgr relations. It's equivalent to calling
4528  * FlushRelationBuffers once per relation. The relations are assumed not
4529  * to use local buffers.
4530  * --------------------------------------------------------------------
4531  */
4532 void
4534 {
4535  int i;
4536  SMgrSortArray *srels;
4537  bool use_bsearch;
4538 
4539  if (nrels == 0)
4540  return;
4541 
4542  /* fill-in array for qsort */
4543  srels = palloc(sizeof(SMgrSortArray) * nrels);
4544 
4545  for (i = 0; i < nrels; i++)
4546  {
4547  Assert(!RelFileLocatorBackendIsTemp(smgrs[i]->smgr_rlocator));
4548 
4549  srels[i].rlocator = smgrs[i]->smgr_rlocator.locator;
4550  srels[i].srel = smgrs[i];
4551  }
4552 
4553  /*
4554  * Save the bsearch overhead for low number of relations to sync. See
4555  * DropRelationsAllBuffers for details.
4556  */
4557  use_bsearch = nrels > RELS_BSEARCH_THRESHOLD;
4558 
4559  /* sort the list of SMgrRelations if necessary */
4560  if (use_bsearch)
4561  qsort(srels, nrels, sizeof(SMgrSortArray), rlocator_comparator);
4562 
4563  for (i = 0; i < NBuffers; i++)
4564  {
4565  SMgrSortArray *srelent = NULL;
4566  BufferDesc *bufHdr = GetBufferDescriptor(i);
4567  uint32 buf_state;
4568 
4569  /*
4570  * As in DropRelationBuffers, an unlocked precheck should be safe and
4571  * saves some cycles.
4572  */
4573 
4574  if (!use_bsearch)
4575  {
4576  int j;
4577 
4578  for (j = 0; j < nrels; j++)
4579  {
4580  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &srels[j].rlocator))
4581  {
4582  srelent = &srels[j];
4583  break;
4584  }
4585  }
4586  }
4587  else
4588  {
4589  RelFileLocator rlocator;
4590 
4591  rlocator = BufTagGetRelFileLocator(&bufHdr->tag);
4592  srelent = bsearch((const void *) &(rlocator),
4593  srels, nrels, sizeof(SMgrSortArray),
4595  }
4596 
4597  /* buffer doesn't belong to any of the given relfilelocators; skip it */
4598  if (srelent == NULL)
4599  continue;
4600 
4601  /* Make sure we can handle the pin */
4604 
4605  buf_state = LockBufHdr(bufHdr);
4606  if (BufTagMatchesRelFileLocator(&bufHdr->tag, &srelent->rlocator) &&
4607  (buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
4608  {
4609  PinBuffer_Locked(bufHdr);
4611  FlushBuffer(bufHdr, srelent->srel, IOOBJECT_RELATION, IOCONTEXT_NORMAL);
4613  UnpinBuffer(bufHdr);
4614  }
4615  else
4616  UnlockBufHdr(bufHdr, buf_state);
4617  }
4618 
4619  pfree(srels);
4620 }
4621 
4622 /* ---------------------------------------------------------------------
4623  * RelationCopyStorageUsingBuffer
4624  *
4625  * Copy fork's data using bufmgr. Same as RelationCopyStorage but instead
4626  * of using smgrread and smgrextend this will copy using bufmgr APIs.
4627  *
4628  * Refer comments atop CreateAndCopyRelationData() for details about
4629  * 'permanent' parameter.
4630  * --------------------------------------------------------------------
4631  */
4632 static void
4634  RelFileLocator dstlocator,
4635  ForkNumber forkNum, bool permanent)
4636 {
4637  Buffer srcBuf;
4638  Buffer dstBuf;
4639  Page srcPage;
4640  Page dstPage;
4641  bool use_wal;
4642  BlockNumber nblocks;
4643  BlockNumber blkno;
4645  BufferAccessStrategy bstrategy_src;
4646  BufferAccessStrategy bstrategy_dst;
4647 
4648  /*
4649  * In general, we want to write WAL whenever wal_level > 'minimal', but we
4650  * can skip it when copying any fork of an unlogged relation other than
4651  * the init fork.
4652  */
4653  use_wal = XLogIsNeeded() && (permanent || forkNum == INIT_FORKNUM);
4654 
4655  /* Get number of blocks in the source relation. */
4656  nblocks = smgrnblocks(smgropen(srclocator, INVALID_PROC_NUMBER),
4657  forkNum);
4658 
4659  /* Nothing to copy; just return. */
4660  if (nblocks == 0)
4661  return;
4662 
4663  /*
4664  * Bulk extend the destination relation of the same size as the source
4665  * relation before starting to copy block by block.
4666  */
4667  memset(buf.data, 0, BLCKSZ);
4668  smgrextend(smgropen(dstlocator, INVALID_PROC_NUMBER), forkNum, nblocks - 1,
4669  buf.data, true);
4670 
4671  /* This is a bulk operation, so use buffer access strategies. */
4672  bstrategy_src = GetAccessStrategy(BAS_BULKREAD);
4673  bstrategy_dst = GetAccessStrategy(BAS_BULKWRITE);
4674 
4675  /* Iterate over each block of the source relation file. */
4676  for (blkno = 0; blkno < nblocks; blkno++)
4677  {
4679 
4680  /* Read block from source relation. */
4681  srcBuf = ReadBufferWithoutRelcache(srclocator, forkNum, blkno,
4682  RBM_NORMAL, bstrategy_src,
4683  permanent);
4684  LockBuffer(srcBuf, BUFFER_LOCK_SHARE);
4685  srcPage = BufferGetPage(srcBuf);
4686 
4687  dstBuf = ReadBufferWithoutRelcache(dstlocator, forkNum, blkno,
4688  RBM_ZERO_AND_LOCK, bstrategy_dst,
4689  permanent);
4690  dstPage = BufferGetPage(dstBuf);
4691 
4693 
4694  /* Copy page data from the source to the destination. */
4695  memcpy(dstPage, srcPage, BLCKSZ);
4696  MarkBufferDirty(dstBuf);
4697 
4698  /* WAL-log the copied page. */
4699  if (use_wal)
4700  log_newpage_buffer(dstBuf, true);
4701 
4702  END_CRIT_SECTION();
4703 
4704  UnlockReleaseBuffer(dstBuf);
4705  UnlockReleaseBuffer(srcBuf);
4706  }
4707 
4708  FreeAccessStrategy(bstrategy_src);
4709  FreeAccessStrategy(bstrategy_dst);
4710 }
4711 
4712 /* ---------------------------------------------------------------------
4713  * CreateAndCopyRelationData
4714  *
4715  * Create destination relation storage and copy all forks from the
4716  * source relation to the destination.
4717  *
4718  * Pass permanent as true for permanent relations and false for
4719  * unlogged relations. Currently this API is not supported for
4720  * temporary relations.
4721  * --------------------------------------------------------------------
4722  */
4723 void
4725  RelFileLocator dst_rlocator, bool permanent)
4726 {
4727  char relpersistence;
4728  SMgrRelation src_rel;
4729  SMgrRelation dst_rel;
4730 
4731  /* Set the relpersistence. */
4732  relpersistence = permanent ?
4733  RELPERSISTENCE_PERMANENT : RELPERSISTENCE_UNLOGGED;
4734 
4735  src_rel = smgropen(src_rlocator, INVALID_PROC_NUMBER);
4736  dst_rel = smgropen(dst_rlocator, INVALID_PROC_NUMBER);
4737 
4738  /*
4739  * Create and copy all forks of the relation. During create database we
4740  * have a separate cleanup mechanism which deletes complete database
4741  * directory. Therefore, each individual relation doesn't need to be
4742  * registered for cleanup.
4743  */
4744  RelationCreateStorage(dst_rlocator, relpersistence, false);
4745 
4746  /* copy main fork. */
4747  RelationCopyStorageUsingBuffer(src_rlocator, dst_rlocator, MAIN_FORKNUM,
4748  permanent);
4749 
4750  /* copy those extra forks that exist */
4751  for (ForkNumber forkNum = MAIN_FORKNUM + 1;
4752  forkNum <= MAX_FORKNUM; forkNum++)
4753  {
4754  if (smgrexists(src_rel, forkNum))
4755  {
4756  smgrcreate(dst_rel, forkNum, false);
4757 
4758  /*
4759  * WAL log creation if the relation is persistent, or this is the
4760  * init fork of an unlogged relation.
4761  */
4762  if (permanent || forkNum == INIT_FORKNUM)
4763  log_smgrcreate(&dst_rlocator, forkNum);
4764 
4765  /* Copy a fork's data, block by block. */
4766  RelationCopyStorageUsingBuffer(src_rlocator, dst_rlocator, forkNum,
4767  permanent);
4768  }
4769  }
4770 }
4771 
4772 /* ---------------------------------------------------------------------
4773  * FlushDatabaseBuffers
4774  *
4775  * This function writes all dirty pages of a database out to disk
4776  * (or more accurately, out to kernel disk buffers), ensuring that the
4777  * kernel has an up-to-date view of the database.
4778  *
4779  * Generally, the caller should be holding an appropriate lock to ensure
4780  * no other backend is active in the target database; otherwise more
4781  * pages could get dirtied.
4782  *
4783  * Note we don't worry about flushing any pages of temporary relations.
4784  * It's assumed these wouldn't be interesting.
4785  * --------------------------------------------------------------------
4786  */
4787 void
4789 {
4790  int i;
4791  BufferDesc *bufHdr;
4792 
4793  for (i = 0; i < NBuffers; i++)
4794  {
4795  uint32 buf_state;
4796 
4797  bufHdr = GetBufferDescriptor(i);
4798 
4799  /*
4800  * As in DropRelationBuffers, an unlocked precheck should be safe and
4801  * saves some cycles.
4802  */
4803  if (bufHdr->tag.dbOid != dbid)
4804  continue;
4805 
4806  /* Make sure we can handle the pin */
4809 
4810  buf_state = LockBufHdr(bufHdr);
4811  if (bufHdr->tag.dbOid == dbid &&
4812  (buf_state & (BM_VALID | BM_DIRTY)) == (BM_VALID | BM_DIRTY))
4813  {
4814  PinBuffer_Locked(bufHdr);
4818  UnpinBuffer(bufHdr);
4819  }
4820  else
4821  UnlockBufHdr(bufHdr, buf_state);
4822  }
4823 }
4824 
4825 /*
4826  * Flush a previously, shared or exclusively, locked and pinned buffer to the
4827  * OS.
4828  */
4829 void
4831 {
4832  BufferDesc *bufHdr;
4833 
4834  /* currently not needed, but no fundamental reason not to support */
4836 
4838 
4839  bufHdr = GetBufferDescriptor(buffer - 1);
4840 
4842 
4844 }
4845 
4846 /*
4847  * ReleaseBuffer -- release the pin on a buffer
4848  */
4849 void
4851 {
4852  if (!BufferIsValid(buffer))
4853  elog(ERROR, "bad buffer ID: %d", buffer);
4854 
4855  if (BufferIsLocal(buffer))
4857  else
4859 }
4860 
4861 /*
4862  * UnlockReleaseBuffer -- release the content lock and pin on a buffer
4863  *
4864  * This is just a shorthand for a common combination.
4865  */
4866 void
4868 {
4871 }
4872 
4873 /*
4874  * IncrBufferRefCount
4875  * Increment the pin count on a buffer that we have *already* pinned
4876  * at least once.
4877  *
4878  * This function cannot be used on a buffer we do not have pinned,
4879  * because it doesn't change the shared buffer state.
4880  */
4881 void
4883 {
4886  if (BufferIsLocal(buffer))
4887  LocalRefCount[-buffer - 1]++;
4888  else
4889  {
4890  PrivateRefCountEntry *ref;
4891 
4892  ref = GetPrivateRefCountEntry(buffer, true);
4893  Assert(ref != NULL);
4894  ref->refcount++;
4895  }
4897 }
4898 
4899 /*
4900  * MarkBufferDirtyHint
4901  *
4902  * Mark a buffer dirty for non-critical changes.
4903  *
4904  * This is essentially the same as MarkBufferDirty, except:
4905  *
4906  * 1. The caller does not write WAL; so if checksums are enabled, we may need
4907  * to write an XLOG_FPI_FOR_HINT WAL record to protect against torn pages.
4908  * 2. The caller might have only share-lock instead of exclusive-lock on the
4909  * buffer's content lock.
4910  * 3. This function does not guarantee that the buffer is always marked dirty
4911  * (due to a race condition), so it cannot be used for important changes.
4912  */
4913 void
4915 {
4916  BufferDesc *bufHdr;
4917  Page page = BufferGetPage(buffer);
4918 
4919  if (!BufferIsValid(buffer))
4920  elog(ERROR, "bad buffer ID: %d", buffer);
4921 
4922  if (BufferIsLocal(buffer))
4923  {
4925  return;
4926  }
4927 
4928  bufHdr = GetBufferDescriptor(buffer - 1);
4929 
4931  /* here, either share or exclusive lock is OK */
4933 
4934  /*
4935  * This routine might get called many times on the same page, if we are
4936  * making the first scan after commit of an xact that added/deleted many
4937  * tuples. So, be as quick as we can if the buffer is already dirty. We
4938  * do this by not acquiring spinlock if it looks like the status bits are
4939  * already set. Since we make this test unlocked, there's a chance we
4940  * might fail to notice that the flags have just been cleared, and failed
4941  * to reset them, due to memory-ordering issues. But since this function
4942  * is only intended to be used in cases where failing to write out the
4943  * data would be harmless anyway, it doesn't really matter.
4944  */
4945  if ((pg_atomic_read_u32(&bufHdr->state) & (BM_DIRTY | BM_JUST_DIRTIED)) !=
4947  {
4949  bool dirtied = false;
4950  bool delayChkptFlags = false;
4951  uint32 buf_state;
4952 
4953  /*
4954  * If we need to protect hint bit updates from torn writes, WAL-log a
4955  * full page image of the page. This full page image is only necessary
4956  * if the hint bit update is the first change to the page since the
4957  * last checkpoint.
4958  *
4959  * We don't check full_page_writes here because that logic is included
4960  * when we call XLogInsert() since the value changes dynamically.
4961  */
4962  if (XLogHintBitIsNeeded() &&
4963  (pg_atomic_read_u32(&bufHdr->state) & BM_PERMANENT))
4964  {
4965  /*
4966  * If we must not write WAL, due to a relfilelocator-specific
4967  * condition or being in recovery, don't dirty the page. We can
4968  * set the hint, just not dirty the page as a result so the hint
4969  * is lost when we evict the page or shutdown.
4970  *
4971  * See src/backend/storage/page/README for longer discussion.
4972  */
4973  if (RecoveryInProgress() ||
4975  return;
4976 
4977  /*
4978  * If the block is already dirty because we either made a change
4979  * or set a hint already, then we don't need to write a full page
4980  * image. Note that aggressive cleaning of blocks dirtied by hint
4981  * bit setting would increase the call rate. Bulk setting of hint
4982  * bits would reduce the call rate...
4983  *
4984  * We must issue the WAL record before we mark the buffer dirty.
4985  * Otherwise we might write the page before we write the WAL. That
4986  * causes a race condition, since a checkpoint might occur between
4987  * writing the WAL record and marking the buffer dirty. We solve
4988  * that with a kluge, but one that is already in use during
4989  * transaction commit to prevent race conditions. Basically, we
4990  * simply prevent the checkpoint WAL record from being written
4991  * until we have marked the buffer dirty. We don't start the
4992  * checkpoint flush until we have marked dirty, so our checkpoint
4993  * must flush the change to disk successfully or the checkpoint
4994  * never gets written, so crash recovery will fix.
4995  *
4996  * It's possible we may enter here without an xid, so it is
4997  * essential that CreateCheckPoint waits for virtual transactions
4998  * rather than full transactionids.
4999  */
5002  delayChkptFlags = true;
5003  lsn = XLogSaveBufferForHint(buffer, buffer_std);
5004  }
5005 
5006  buf_state = LockBufHdr(bufHdr);
5007 
5008  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
5009 
5010  if (!(buf_state & BM_DIRTY))
5011  {
5012  dirtied = true; /* Means "will be dirtied by this action" */
5013 
5014  /*
5015  * Set the page LSN if we wrote a backup block. We aren't supposed
5016  * to set this when only holding a share lock but as long as we
5017  * serialise it somehow we're OK. We choose to set LSN while
5018  * holding the buffer header lock, which causes any reader of an
5019  * LSN who holds only a share lock to also obtain a buffer header
5020  * lock before using PageGetLSN(), which is enforced in
5021  * BufferGetLSNAtomic().
5022  *
5023  * If checksums are enabled, you might think we should reset the
5024  * checksum here. That will happen when the page is written
5025  * sometime later in this checkpoint cycle.
5026  */
5027  if (!XLogRecPtrIsInvalid(lsn))
5028  PageSetLSN(page, lsn);
5029  }
5030 
5031  buf_state |= BM_DIRTY | BM_JUST_DIRTIED;
5032  UnlockBufHdr(bufHdr, buf_state);
5033 
5034  if (delayChkptFlags)
5036 
5037  if (dirtied)
5038  {
5039  VacuumPageDirty++;
5041  if (VacuumCostActive)
5043  }
5044  }
5045 }
5046 
5047 /*
5048  * Release buffer content locks for shared buffers.
5049  *
5050  * Used to clean up after errors.
5051  *
5052  * Currently, we can expect that lwlock.c's LWLockReleaseAll() took care
5053  * of releasing buffer content locks per se; the only thing we need to deal
5054  * with here is clearing any PIN_COUNT request that was in progress.
5055  */
5056 void
5058 {
5060 
5061  if (buf)
5062  {
5063  uint32 buf_state;
5064 
5065  buf_state = LockBufHdr(buf);
5066 
5067  /*
5068  * Don't complain if flag bit not set; it could have been reset but we
5069  * got a cancel/die interrupt before getting the signal.
5070  */
5071  if ((buf_state & BM_PIN_COUNT_WAITER) != 0 &&
5072  buf->wait_backend_pgprocno == MyProcNumber)
5073  buf_state &= ~BM_PIN_COUNT_WAITER;
5074 
5075  UnlockBufHdr(buf, buf_state);
5076 
5077  PinCountWaitBuf = NULL;
5078  }
5079 }
5080 
5081 /*
5082  * Acquire or release the content_lock for the buffer.
5083  */
5084 void
5086 {
5087  BufferDesc *buf;
5088 
5090  if (BufferIsLocal(buffer))
5091  return; /* local buffers need no lock */
5092 
5094 
5095  if (mode == BUFFER_LOCK_UNLOCK)
5097  else if (mode == BUFFER_LOCK_SHARE)
5099  else if (mode == BUFFER_LOCK_EXCLUSIVE)
5101  else
5102  elog(ERROR, "unrecognized buffer lock mode: %d", mode);
5103 }
5104 
5105 /*
5106  * Acquire the content_lock for the buffer, but only if we don't have to wait.
5107  *
5108  * This assumes the caller wants BUFFER_LOCK_EXCLUSIVE mode.
5109  */
5110 bool
5112 {
5113  BufferDesc *buf;
5114 
5116  if (BufferIsLocal(buffer))
5117  return true; /* act as though we got it */
5118 
5120 
5122  LW_EXCLUSIVE);
5123 }
5124 
5125 /*
5126  * Verify that this backend is pinning the buffer exactly once.
5127  *
5128  * NOTE: Like in BufferIsPinned(), what we check here is that *this* backend
5129  * holds a pin on the buffer. We do not care whether some other backend does.
5130  */
5131 void
5133 {
5134  if (BufferIsLocal(buffer))
5135  {
5136  if (LocalRefCount[-buffer - 1] != 1)
5137  elog(ERROR, "incorrect local pin count: %d",
5138  LocalRefCount[-buffer - 1]);
5139  }
5140  else
5141  {
5142  if (GetPrivateRefCount(buffer) != 1)
5143  elog(ERROR, "incorrect local pin count: %d",
5145  }
5146 }
5147 
5148 /*
5149  * LockBufferForCleanup - lock a buffer in preparation for deleting items
5150  *
5151  * Items may be deleted from a disk page only when the caller (a) holds an
5152  * exclusive lock on the buffer and (b) has observed that no other backend
5153  * holds a pin on the buffer. If there is a pin, then the other backend
5154  * might have a pointer into the buffer (for example, a heapscan reference
5155  * to an item --- see README for more details). It's OK if a pin is added
5156  * after the cleanup starts, however; the newly-arrived backend will be
5157  * unable to look at the page until we release the exclusive lock.
5158  *
5159  * To implement this protocol, a would-be deleter must pin the buffer and
5160  * then call LockBufferForCleanup(). LockBufferForCleanup() is similar to
5161  * LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE), except that it loops until
5162  * it has successfully observed pin count = 1.
5163  */
5164 void
5166 {
5167  BufferDesc *bufHdr;
5168  TimestampTz waitStart = 0;
5169  bool waiting = false;
5170  bool logged_recovery_conflict = false;
5171 
5173  Assert(PinCountWaitBuf == NULL);
5174 
5176 
5177  /* Nobody else to wait for */
5178  if (BufferIsLocal(buffer))
5179  return;
5180 
5181  bufHdr = GetBufferDescriptor(buffer - 1);
5182 
5183  for (;;)
5184  {
5185  uint32 buf_state;
5186 
5187  /* Try to acquire lock */
5189  buf_state = LockBufHdr(bufHdr);
5190 
5191  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
5192  if (BUF_STATE_GET_REFCOUNT(buf_state) == 1)
5193  {
5194  /* Successfully acquired exclusive lock with pincount 1 */
5195  UnlockBufHdr(bufHdr, buf_state);
5196 
5197  /*
5198  * Emit the log message if recovery conflict on buffer pin was
5199  * resolved but the startup process waited longer than
5200  * deadlock_timeout for it.
5201  */
5202  if (logged_recovery_conflict)
5204  waitStart, GetCurrentTimestamp(),
5205  NULL, false);
5206 
5207  if (waiting)
5208  {
5209  /* reset ps display to remove the suffix if we added one */
5211  waiting = false;
5212  }
5213  return;
5214  }
5215  /* Failed, so mark myself as waiting for pincount 1 */
5216  if (buf_state & BM_PIN_COUNT_WAITER)
5217  {
5218  UnlockBufHdr(bufHdr, buf_state);
5220  elog(ERROR, "multiple backends attempting to wait for pincount 1");
5221  }
5223  PinCountWaitBuf = bufHdr;
5224  buf_state |= BM_PIN_COUNT_WAITER;
5225  UnlockBufHdr(bufHdr, buf_state);
5227 
5228  /* Wait to be signaled by UnpinBuffer() */
5229  if (InHotStandby)
5230  {
5231  if (!waiting)
5232  {
5233  /* adjust the process title to indicate that it's waiting */
5234  set_ps_display_suffix("waiting");
5235  waiting = true;
5236  }
5237 
5238  /*
5239  * Emit the log message if the startup process is waiting longer
5240  * than deadlock_timeout for recovery conflict on buffer pin.
5241  *
5242  * Skip this if first time through because the startup process has
5243  * not started waiting yet in this case. So, the wait start
5244  * timestamp is set after this logic.
5245  */
5246  if (waitStart != 0 && !logged_recovery_conflict)
5247  {
5249 
5250  if (TimestampDifferenceExceeds(waitStart, now,
5251  DeadlockTimeout))
5252  {
5254  waitStart, now, NULL, true);
5255  logged_recovery_conflict = true;
5256  }
5257  }
5258 
5259  /*
5260  * Set the wait start timestamp if logging is enabled and first
5261  * time through.
5262  */
5263  if (log_recovery_conflict_waits && waitStart == 0)
5264  waitStart = GetCurrentTimestamp();
5265 
5266  /* Publish the bufid that Startup process waits on */
5268  /* Set alarm and then wait to be signaled by UnpinBuffer() */
5270  /* Reset the published bufid */
5272  }
5273  else
5274  ProcWaitForSignal(WAIT_EVENT_BUFFER_PIN);
5275 
5276  /*
5277  * Remove flag marking us as waiter. Normally this will not be set
5278  * anymore, but ProcWaitForSignal() can return for other signals as
5279  * well. We take care to only reset the flag if we're the waiter, as
5280  * theoretically another backend could have started waiting. That's
5281  * impossible with the current usages due to table level locking, but
5282  * better be safe.
5283  */
5284  buf_state = LockBufHdr(bufHdr);
5285  if ((buf_state & BM_PIN_COUNT_WAITER) != 0 &&
5287  buf_state &= ~BM_PIN_COUNT_WAITER;
5288  UnlockBufHdr(bufHdr, buf_state);
5289 
5290  PinCountWaitBuf = NULL;
5291  /* Loop back and try again */
5292  }
5293 }
5294 
5295 /*
5296  * Check called from ProcessRecoveryConflictInterrupts() when Startup process
5297  * requests cancellation of all pin holders that are blocking it.
5298  */
5299 bool
5301 {
5302  int bufid = GetStartupBufferPinWaitBufId();
5303 
5304  /*
5305  * If we get woken slowly then it's possible that the Startup process was
5306  * already woken by other backends before we got here. Also possible that
5307  * we get here by multiple interrupts or interrupts at inappropriate
5308  * times, so make sure we do nothing if the bufid is not set.
5309  */
5310  if (bufid < 0)
5311  return false;
5312 
5313  if (GetPrivateRefCount(bufid + 1) > 0)
5314  return true;
5315 
5316  return false;
5317 }
5318 
5319 /*
5320  * ConditionalLockBufferForCleanup - as above, but don't wait to get the lock
5321  *
5322  * We won't loop, but just check once to see if the pin count is OK. If
5323  * not, return false with no lock held.
5324  */
5325 bool
5327 {
5328  BufferDesc *bufHdr;
5329  uint32 buf_state,
5330  refcount;
5331 
5333 
5334  if (BufferIsLocal(buffer))
5335  {
5336  refcount = LocalRefCount[-buffer - 1];
5337  /* There should be exactly one pin */
5338  Assert(refcount > 0);
5339  if (refcount != 1)
5340  return false;
5341  /* Nobody else to wait for */
5342  return true;
5343  }
5344 
5345  /* There should be exactly one local pin */
5347  Assert(refcount);
5348  if (refcount != 1)
5349  return false;
5350 
5351  /* Try to acquire lock */
5353  return false;
5354 
5355  bufHdr = GetBufferDescriptor(buffer - 1);
5356  buf_state = LockBufHdr(bufHdr);
5357  refcount = BUF_STATE_GET_REFCOUNT(buf_state);
5358 
5359  Assert(refcount > 0);
5360  if (refcount == 1)
5361  {
5362  /* Successfully acquired exclusive lock with pincount 1 */
5363  UnlockBufHdr(bufHdr, buf_state);
5364  return true;
5365  }
5366 
5367  /* Failed, so release the lock */
5368  UnlockBufHdr(bufHdr, buf_state);
5370  return false;
5371 }
5372 
5373 /*
5374  * IsBufferCleanupOK - as above, but we already have the lock
5375  *
5376  * Check whether it's OK to perform cleanup on a buffer we've already
5377  * locked. If we observe that the pin count is 1, our exclusive lock
5378  * happens to be a cleanup lock, and we can proceed with anything that
5379  * would have been allowable had we sought a cleanup lock originally.
5380  */
5381 bool
5383 {
5384  BufferDesc *bufHdr;
5385  uint32 buf_state;
5386 
5388 
5389  if (BufferIsLocal(buffer))
5390  {
5391  /* There should be exactly one pin */
5392  if (LocalRefCount[-buffer - 1] != 1)
5393  return false;
5394  /* Nobody else to wait for */
5395  return true;
5396  }
5397 
5398  /* There should be exactly one local pin */
5399  if (GetPrivateRefCount(buffer) != 1)
5400  return false;
5401 
5402  bufHdr = GetBufferDescriptor(buffer - 1);
5403 
5404  /* caller must hold exclusive lock on buffer */
5406  LW_EXCLUSIVE));
5407 
5408  buf_state = LockBufHdr(bufHdr);
5409 
5410  Assert(BUF_STATE_GET_REFCOUNT(buf_state) > 0);
5411  if (BUF_STATE_GET_REFCOUNT(buf_state) == 1)
5412  {
5413  /* pincount is OK. */
5414  UnlockBufHdr(bufHdr, buf_state);
5415  return true;
5416  }
5417 
5418  UnlockBufHdr(bufHdr, buf_state);
5419  return false;
5420 }
5421 
5422 
5423 /*
5424  * Functions for buffer I/O handling
5425  *
5426  * Note: We assume that nested buffer I/O never occurs.
5427  * i.e at most one BM_IO_IN_PROGRESS bit is set per proc.
5428  *
5429  * Also note that these are used only for shared buffers, not local ones.
5430  */
5431 
5432 /*
5433  * WaitIO -- Block until the IO_IN_PROGRESS flag on 'buf' is cleared.
5434  */
5435 static void
5437 {
5439 
5441  for (;;)
5442  {
5443  uint32 buf_state;
5444 
5445  /*
5446  * It may not be necessary to acquire the spinlock to check the flag
5447  * here, but since this test is essential for correctness, we'd better
5448  * play it safe.
5449  */
5450  buf_state = LockBufHdr(buf);
5451  UnlockBufHdr(buf, buf_state);
5452 
5453  if (!(buf_state & BM_IO_IN_PROGRESS))
5454  break;
5455  ConditionVariableSleep(cv, WAIT_EVENT_BUFFER_IO);
5456  }
5458 }
5459 
5460 /*
5461  * StartBufferIO: begin I/O on this buffer
5462  * (Assumptions)
5463  * My process is executing no IO
5464  * The buffer is Pinned
5465  *
5466  * In some scenarios there are race conditions in which multiple backends
5467  * could attempt the same I/O operation concurrently. If someone else
5468  * has already started I/O on this buffer then we will block on the
5469  * I/O condition variable until he's done.
5470  *
5471  * Input operations are only attempted on buffers that are not BM_VALID,
5472  * and output operations only on buffers that are BM_VALID and BM_DIRTY,
5473  * so we can always tell if the work is already done.
5474  *
5475  * Returns true if we successfully marked the buffer as I/O busy,
5476  * false if someone else already did the work.
5477  *
5478  * If nowait is true, then we don't wait for an I/O to be finished by another
5479  * backend. In that case, false indicates either that the I/O was already
5480  * finished, or is still in progress. This is useful for callers that want to
5481  * find out if they can perform the I/O as part of a larger operation, without
5482  * waiting for the answer or distinguishing the reasons why not.
5483  */
5484 static bool
5485 StartBufferIO(BufferDesc *buf, bool forInput, bool nowait)
5486 {
5487  uint32 buf_state;
5488 
5490 
5491  for (;;)
5492  {
5493  buf_state = LockBufHdr(buf);
5494 
5495  if (!(buf_state & BM_IO_IN_PROGRESS))
5496  break;
5497  UnlockBufHdr(buf, buf_state);
5498  if (nowait)
5499  return false;
5500  WaitIO(buf);
5501  }
5502 
5503  /* Once we get here, there is definitely no I/O active on this buffer */
5504 
5505  if (forInput ? (buf_state & BM_VALID) : !(buf_state & BM_DIRTY))
5506  {
5507  /* someone else already did the I/O */
5508  UnlockBufHdr(buf, buf_state);
5509  return false;
5510  }
5511 
5512  buf_state |= BM_IO_IN_PROGRESS;
5513  UnlockBufHdr(buf, buf_state);
5514 
5517 
5518  return true;
5519 }
5520 
5521 /*
5522  * TerminateBufferIO: release a buffer we were doing I/O on
5523  * (Assumptions)
5524  * My process is executing IO for the buffer
5525  * BM_IO_IN_PROGRESS bit is set for the buffer
5526  * The buffer is Pinned
5527  *
5528  * If clear_dirty is true and BM_JUST_DIRTIED is not set, we clear the
5529  * buffer's BM_DIRTY flag. This is appropriate when terminating a
5530  * successful write. The check on BM_JUST_DIRTIED is necessary to avoid
5531  * marking the buffer clean if it was re-dirtied while we were writing.
5532  *
5533  * set_flag_bits gets ORed into the buffer's flags. It must include
5534  * BM_IO_ERROR in a failure case. For successful completion it could
5535  * be 0, or BM_VALID if we just finished reading in the page.
5536  *
5537  * If forget_owner is true, we release the buffer I/O from the current
5538  * resource owner. (forget_owner=false is used when the resource owner itself
5539  * is being released)
5540  */
5541 static void
5542 TerminateBufferIO(BufferDesc *buf, bool clear_dirty, uint32 set_flag_bits,
5543  bool forget_owner)
5544 {
5545  uint32 buf_state;
5546 
5547  buf_state = LockBufHdr(buf);
5548 
5549  Assert(buf_state & BM_IO_IN_PROGRESS);
5550 
5551  buf_state &= ~(BM_IO_IN_PROGRESS | BM_IO_ERROR);
5552  if (clear_dirty && !(buf_state & BM_JUST_DIRTIED))
5553  buf_state &= ~(BM_DIRTY | BM_CHECKPOINT_NEEDED);
5554 
5555  buf_state |= set_flag_bits;
5556  UnlockBufHdr(buf, buf_state);
5557 
5558  if (forget_owner)
5561 
5563 }
5564 
5565 /*
5566  * AbortBufferIO: Clean up active buffer I/O after an error.
5567  *
5568  * All LWLocks we might have held have been released,
5569  * but we haven't yet released buffer pins, so the buffer is still pinned.
5570  *
5571  * If I/O was in progress, we always set BM_IO_ERROR, even though it's
5572  * possible the error condition wasn't related to the I/O.
5573  *
5574  * Note: this does not remove the buffer I/O from the resource owner.
5575  * That's correct when we're releasing the whole resource owner, but
5576  * beware if you use this in other contexts.
5577  */
5578 static void
5580 {
5581  BufferDesc *buf_hdr = GetBufferDescriptor(buffer - 1);
5582  uint32 buf_state;
5583 
5584  buf_state = LockBufHdr(buf_hdr);
5585  Assert(buf_state & (BM_IO_IN_PROGRESS | BM_TAG_VALID));
5586 
5587  if (!(buf_state & BM_VALID))
5588  {
5589  Assert(!(buf_state & BM_DIRTY));
5590  UnlockBufHdr(buf_hdr, buf_state);
5591  }
5592  else
5593  {
5594  Assert(buf_state & BM_DIRTY);
5595  UnlockBufHdr(buf_hdr, buf_state);
5596 
5597  /* Issue notice if this is not the first failure... */
5598  if (buf_state & BM_IO_ERROR)
5599  {
5600  /* Buffer is pinned, so we can read tag without spinlock */
5601  char *path;
5602 
5603  path = relpathperm(BufTagGetRelFileLocator(&buf_hdr->tag),
5604  BufTagGetForkNum(&buf_hdr->tag));
5605  ereport(WARNING,
5606  (errcode(ERRCODE_IO_ERROR),
5607  errmsg("could not write block %u of %s",
5608  buf_hdr->tag.blockNum, path),
5609  errdetail("Multiple failures --- write error might be permanent.")));
5610  pfree(path);
5611  }
5612  }
5613 
5614  TerminateBufferIO(buf_hdr, false, BM_IO_ERROR, false);
5615 }
5616 
5617 /*
5618  * Error context callback for errors occurring during shared buffer writes.
5619  */
5620 static void
5622 {
5623  BufferDesc *bufHdr = (BufferDesc *) arg;
5624 
5625  /* Buffer is pinned, so we can read the tag without locking the spinlock */
5626  if (bufHdr != NULL)
5627  {
5628  char *path = relpathperm(BufTagGetRelFileLocator(&bufHdr->tag),
5629  BufTagGetForkNum(&bufHdr->tag));
5630 
5631  errcontext("writing block %u of relation %s",
5632  bufHdr->tag.blockNum, path);
5633  pfree(path);
5634  }
5635 }
5636 
5637 /*
5638  * Error context callback for errors occurring during local buffer writes.
5639  */
5640 static void
5642 {
5643  BufferDesc *bufHdr = (BufferDesc *) arg;
5644 
5645  if (bufHdr != NULL)
5646  {
5647  char *path = relpathbackend(BufTagGetRelFileLocator(&bufHdr->tag),
5648  MyProcNumber,
5649  BufTagGetForkNum(&bufHdr->tag));
5650 
5651  errcontext("writing block %u of relation %s",
5652  bufHdr->tag.blockNum, path);
5653  pfree(path);
5654  }
5655 }
5656 
5657 /*
5658  * RelFileLocator qsort/bsearch comparator; see RelFileLocatorEquals.
5659  */
5660 static int
5661 rlocator_comparator(const void *p1, const void *p2)
5662 {
5663  RelFileLocator n1 = *(const RelFileLocator *) p1;
5664  RelFileLocator n2 = *(const RelFileLocator *) p2;
5665 
5666  if (n1.relNumber < n2.relNumber)
5667  return -1;
5668  else if (n1.relNumber > n2.relNumber)
5669  return 1;
5670 
5671  if (n1.dbOid < n2.dbOid)
5672  return -1;
5673  else if (n1.dbOid > n2.dbOid)
5674  return 1;
5675 
5676  if (n1.spcOid < n2.spcOid)
5677  return -1;
5678  else if (n1.spcOid > n2.spcOid)
5679  return 1;
5680  else
5681  return 0;
5682 }
5683 
5684 /*
5685  * Lock buffer header - set BM_LOCKED in buffer state.
5686  */
5687 uint32
5689 {
5690  SpinDelayStatus delayStatus;
5691  uint32 old_buf_state;
5692 
5694 
5695  init_local_spin_delay(&delayStatus);
5696 
5697  while (true)
5698  {
5699  /* set BM_LOCKED flag */
5700  old_buf_state = pg_atomic_fetch_or_u32(&desc->state, BM_LOCKED);
5701  /* if it wasn't set before we're OK */
5702  if (!(old_buf_state & BM_LOCKED))
5703  break;
5704  perform_spin_delay(&delayStatus);
5705  }
5706  finish_spin_delay(&delayStatus);
5707  return old_buf_state | BM_LOCKED;
5708 }
5709 
5710 /*
5711  * Wait until the BM_LOCKED flag isn't set anymore and return the buffer's
5712  * state at that point.
5713  *
5714  * Obviously the buffer could be locked by the time the value is returned, so
5715  * this is primarily useful in CAS style loops.
5716  */
5717 static uint32
5719 {
5720  SpinDelayStatus delayStatus;
5721  uint32 buf_state;
5722 
5723  init_local_spin_delay(&delayStatus);
5724 
5725  buf_state = pg_atomic_read_u32(&buf->state);
5726 
5727  while (buf_state & BM_LOCKED)
5728  {
5729  perform_spin_delay(&delayStatus);
5730  buf_state = pg_atomic_read_u32(&buf->state);
5731  }
5732 
5733  finish_spin_delay(&delayStatus);
5734 
5735  return buf_state;
5736 }
5737 
5738 /*
5739  * BufferTag comparator.
5740  */
5741 static inline int
5743 {
5744  int ret;
5745  RelFileLocator rlocatora;
5746  RelFileLocator rlocatorb;
5747 
5748  rlocatora = BufTagGetRelFileLocator(ba);
5749  rlocatorb = BufTagGetRelFileLocator(bb);
5750 
5751  ret = rlocator_comparator(&rlocatora, &rlocatorb);
5752 
5753  if (ret != 0)
5754  return ret;
5755 
5756  if (BufTagGetForkNum(ba) < BufTagGetForkNum(bb))
5757  return -1;
5758  if (BufTagGetForkNum(ba) > BufTagGetForkNum(bb))
5759  return 1;
5760 
5761  if (ba->blockNum < bb->blockNum)
5762  return -1;
5763  if (ba->blockNum > bb->blockNum)
5764  return 1;
5765 
5766  return 0;
5767 }
5768 
5769 /*
5770  * Comparator determining the writeout order in a checkpoint.
5771  *
5772  * It is important that tablespaces are compared first, the logic balancing
5773  * writes between tablespaces relies on it.
5774  */
5775 static inline int
5777 {
5778  /* compare tablespace */
5779  if (a->tsId < b->tsId)
5780  return -1;
5781  else if (a->tsId > b->tsId)
5782  return 1;
5783  /* compare relation */
5784  if (a->relNumber < b->relNumber)
5785  return -1;
5786  else if (a->relNumber > b->relNumber)
5787  return 1;
5788  /* compare fork */
5789  else if (a->forkNum < b->forkNum)
5790  return -1;
5791  else if (a->forkNum > b->forkNum)
5792  return 1;
5793  /* compare block number */
5794  else if (a->blockNum < b->blockNum)
5795  return -1;
5796  else if (a->blockNum > b->blockNum)
5797  return 1;
5798  /* equal page IDs are unlikely, but not impossible */
5799  return 0;
5800 }
5801 
5802 /*
5803  * Comparator for a Min-Heap over the per-tablespace checkpoint completion
5804  * progress.
5805  */
5806 static int
5808 {
5809  CkptTsStatus *sa = (CkptTsStatus *) a;
5810  CkptTsStatus *sb = (CkptTsStatus *) b;
5811 
5812  /* we want a min-heap, so return 1 for the a < b */
5813  if (sa->progress < sb->progress)
5814  return 1;
5815  else if (sa->progress == sb->progress)
5816  return 0;
5817  else
5818  return -1;
5819 }
5820 
5821 /*
5822  * Initialize a writeback context, discarding potential previous state.
5823  *
5824  * *max_pending is a pointer instead of an immediate value, so the coalesce
5825  * limits can easily changed by the GUC mechanism, and so calling code does
5826  * not have to check the current configuration. A value of 0 means that no
5827  * writeback control will be performed.
5828  */
5829 void
5831 {
5832  Assert(*max_pending <= WRITEBACK_MAX_PENDING_FLUSHES);
5833 
5834  context->max_pending = max_pending;
5835  context->nr_pending = 0;
5836 }
5837 
5838 /*
5839  * Add buffer to list of pending writeback requests.
5840  */
5841 void
5843  BufferTag *tag)
5844 {
5845  PendingWriteback *pending;
5846 
5848  return;
5849 
5850  /*
5851  * Add buffer to the pending writeback array, unless writeback control is
5852  * disabled.
5853  */
5854  if (*wb_context->max_pending > 0)
5855  {
5857 
5858  pending = &wb_context->pending_writebacks[wb_context->nr_pending++];
5859 
5860  pending->tag = *tag;
5861  }
5862 
5863  /*
5864  * Perform pending flushes if the writeback limit is exceeded. This
5865  * includes the case where previously an item has been added, but control
5866  * is now disabled.
5867  */
5868  if (wb_context->nr_pending >= *wb_context->max_pending)
5869  IssuePendingWritebacks(wb_context, io_context);
5870 }
5871 
5872 #define ST_SORT sort_pending_writebacks
5873 #define ST_ELEMENT_TYPE PendingWriteback
5874 #define ST_COMPARE(a, b) buffertag_comparator(&a->tag, &b->tag)
5875 #define ST_SCOPE static
5876 #define ST_DEFINE
5877 #include <lib/sort_template.h>
5878 
5879 /*
5880  * Issue all pending writeback requests, previously scheduled with
5881  * ScheduleBufferTagForWriteback, to the OS.
5882  *
5883  * Because this is only used to improve the OSs IO scheduling we try to never
5884  * error out - it's just a hint.
5885  */
5886 void
5888 {
5889  instr_time io_start;
5890  int i;
5891 
5892  if (wb_context->nr_pending == 0)
5893  return;
5894 
5895  /*
5896  * Executing the writes in-order can make them a lot faster, and allows to
5897  * merge writeback requests to consecutive blocks into larger writebacks.
5898  */
5899  sort_pending_writebacks(wb_context->pending_writebacks,
5900  wb_context->nr_pending);
5901 
5903 
5904  /*
5905  * Coalesce neighbouring writes, but nothing else. For that we iterate
5906  * through the, now sorted, array of pending flushes, and look forward to
5907  * find all neighbouring (or identical) writes.
5908  */
5909  for (i = 0; i < wb_context->nr_pending; i++)
5910  {
5913  SMgrRelation reln;
5914  int ahead;
5915  BufferTag tag;
5916  RelFileLocator currlocator;
5917  Size nblocks = 1;
5918 
5919  cur = &wb_context->pending_writebacks[i];
5920  tag = cur->tag;
5921  currlocator = BufTagGetRelFileLocator(&tag);
5922 
5923  /*
5924  * Peek ahead, into following writeback requests, to see if they can
5925  * be combined with the current one.
5926  */
5927  for (ahead = 0; i + ahead + 1 < wb_context->nr_pending; ahead++)
5928  {
5929 
5930  next = &wb_context->pending_writebacks[i + ahead + 1];
5931 
5932  /* different file, stop */
5933  if (!RelFileLocatorEquals(currlocator,
5934  BufTagGetRelFileLocator(&next->tag)) ||
5935  BufTagGetForkNum(&cur->tag) != BufTagGetForkNum(&next->tag))
5936  break;
5937 
5938  /* ok, block queued twice, skip */
5939  if (cur->tag.blockNum == next->tag.blockNum)
5940  continue;
5941 
5942  /* only merge consecutive writes */
5943  if (cur->tag.blockNum + 1 != next->tag.blockNum)
5944  break;
5945 
5946  nblocks++;
5947  cur = next;
5948  }
5949 
5950  i += ahead;
5951 
5952  /* and finally tell the kernel to write the data to storage */
5953  reln = smgropen(currlocator, INVALID_PROC_NUMBER);
5954  smgrwriteback(reln, BufTagGetForkNum(&tag), tag.blockNum, nblocks);
5955  }
5956 
5957  /*
5958  * Assume that writeback requests are only issued for buffers containing
5959  * blocks of permanent relations.
5960  */
5962  IOOP_WRITEBACK, io_start, wb_context->nr_pending);
5963 
5964  wb_context->nr_pending = 0;
5965 }
5966 
5967 /* ResourceOwner callbacks */
5968 
5969 static void
5971 {
5973 
5975 }
5976 
5977 static char *
5979 {
5981 
5982  return psprintf("lost track of buffer IO on buffer %d", buffer);
5983 }
5984 
5985 static void
5987 {
5989 
5990  /* Like ReleaseBuffer, but don't call ResourceOwnerForgetBuffer */
5991  if (!BufferIsValid(buffer))
5992  elog(ERROR, "bad buffer ID: %d", buffer);
5993 
5994  if (BufferIsLocal(buffer))
5996  else
5998 }
5999 
6000 static char *
6002 {
6004 }
6005 
6006 /*
6007  * Try to evict the current block in a shared buffer.
6008  *
6009  * This function is intended for testing/development use only!
6010  *
6011  * To succeed, the buffer must not be pinned on entry, so if the caller had a
6012  * particular block in mind, it might already have been replaced by some other
6013  * block by the time this function runs. It's also unpinned on return, so the
6014  * buffer might be occupied again by the time control is returned, potentially
6015  * even by the same block. This inherent raciness without other interlocking
6016  * makes the function unsuitable for non-testing usage.
6017  *
6018  * Returns true if the buffer was valid and it has now been made invalid.
6019  * Returns false if it wasn't valid, if it couldn't be evicted due to a pin,
6020  * or if the buffer becomes dirty again while we're trying to write it out.
6021  */
6022 bool
6024 {
6025  BufferDesc *desc;
6026  uint32 buf_state;
6027  bool result;
6028 
6029  /* Make sure we can pin the buffer. */
6032 
6034  desc = GetBufferDescriptor(buf - 1);
6035 
6036  /* Lock the header and check if it's valid. */
6037  buf_state = LockBufHdr(desc);
6038  if ((buf_state & BM_VALID) == 0)
6039  {
6040  UnlockBufHdr(desc, buf_state);
6041  return false;
6042  }
6043 
6044  /* Check that it's not pinned already. */
6045  if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
6046  {
6047  UnlockBufHdr(desc, buf_state);
6048  return false;
6049  }
6050 
6051  PinBuffer_Locked(desc); /* releases spinlock */
6052 
6053  /* If it was dirty, try to clean it once. */
6054  if (buf_state & BM_DIRTY)
6055  {
6059  }
6060 
6061  /* This will return false if it becomes dirty or someone else pins it. */
6062  result = InvalidateVictimBuffer(desc);
6063 
6064  UnpinBuffer(desc);
6065 
6066  return result;
6067 }
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:344
static uint32 pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
Definition: atomics.h:405
static void pg_atomic_unlocked_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:290
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:234
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1790
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1654
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1618
int BgWriterDelay
Definition: bgwriter.c:57
void binaryheap_build(binaryheap *heap)
Definition: binaryheap.c:138
void binaryheap_replace_first(binaryheap *heap, bh_node_type d)
Definition: binaryheap.c:255
bh_node_type binaryheap_first(binaryheap *heap)
Definition: binaryheap.c:177
bh_node_type binaryheap_remove_first(binaryheap *heap)
Definition: binaryheap.c:192
binaryheap * binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
Definition: binaryheap.c:39
void binaryheap_free(binaryheap *heap)
Definition: binaryheap.c:75
void binaryheap_add_unordered(binaryheap *heap, bh_node_type d)
Definition: binaryheap.c:116
#define binaryheap_empty(h)
Definition: binaryheap.h:65
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
#define MaxBlockNumber
Definition: block.h:35
static int32 next
Definition: blutils.c:221
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
#define BufferIsLocal(buffer)
Definition: buf.h:37
CkptSortItem * CkptBufferIds
Definition: buf_init.c:25
WritebackContext BackendWritebackContext
Definition: buf_init.c:24
#define BM_MAX_USAGE_COUNT
Definition: buf_internals.h:78
static void InitBufferTag(BufferTag *tag, const RelFileLocator *rlocator, ForkNumber forkNum, BlockNumber blockNum)
#define BM_TAG_VALID
Definition: buf_internals.h:63
#define BM_PERMANENT
Definition: buf_internals.h:69
#define BUF_USAGECOUNT_MASK
Definition: buf_internals.h:45
static ForkNumber BufTagGetForkNum(const BufferTag *tag)
#define BUF_REFCOUNT_ONE
Definition: buf_internals.h:43
static BufferDesc * GetLocalBufferDescriptor(uint32 id)
static BufferDesc * GetBufferDescriptor(uint32 id)
static void UnlockBufHdr(BufferDesc *desc, uint32 buf_state)
static bool BufferTagsEqual(const BufferTag *tag1, const BufferTag *tag2)
static RelFileNumber BufTagGetRelNumber(const BufferTag *tag)
static bool BufTagMatchesRelFileLocator(const BufferTag *tag, const RelFileLocator *rlocator)
#define BUF_FLAG_MASK
Definition: buf_internals.h:48
static LWLock * BufMappingPartitionLock(uint32 hashcode)
#define BM_PIN_COUNT_WAITER
Definition: buf_internals.h:67
#define BM_DIRTY
Definition: buf_internals.h:61
static void ResourceOwnerRememberBufferIO(ResourceOwner owner, Buffer buffer)
#define BM_LOCKED
Definition: buf_internals.h:60
#define BM_JUST_DIRTIED
Definition: buf_internals.h:66
#define BUF_STATE_GET_USAGECOUNT(state)
Definition: buf_internals.h:52
static void ResourceOwnerForgetBufferIO(ResourceOwner owner, Buffer buffer)
#define BM_IO_IN_PROGRESS
Definition: buf_internals.h:64
static void ClearBufferTag(BufferTag *tag)
static void ResourceOwnerRememberBuffer(ResourceOwner owner, Buffer buffer)
static void ResourceOwnerForgetBuffer(ResourceOwner owner, Buffer buffer)
static ConditionVariable * BufferDescriptorGetIOCV(const BufferDesc *bdesc)
#define BUF_USAGECOUNT_ONE
Definition: buf_internals.h:46
#define BUF_STATE_GET_REFCOUNT(state)
Definition: buf_internals.h:51
static RelFileLocator BufTagGetRelFileLocator(const BufferTag *tag)
#define BM_VALID
Definition: buf_internals.h:62
#define BM_IO_ERROR
Definition: buf_internals.h:65
static Buffer BufferDescriptorGetBuffer(const BufferDesc *bdesc)
#define BM_CHECKPOINT_NEEDED
Definition: buf_internals.h:68
static LWLock * BufferDescriptorGetContentLock(const BufferDesc *bdesc)
void BufTableDelete(BufferTag *tagPtr, uint32 hashcode)
Definition: buf_table.c:148
int BufTableLookup(BufferTag *tagPtr, uint32 hashcode)
Definition: buf_table.c:90
uint32 BufTableHashCode(BufferTag *tagPtr)
Definition: buf_table.c:78
int BufTableInsert(BufferTag *tagPtr, uint32 hashcode, int buf_id)
Definition: buf_table.c:118
bool track_io_timing
Definition: bufmgr.c:142
void CheckBufferIsPinnedOnce(Buffer buffer)
Definition: bufmgr.c:5132
void FlushRelationsAllBuffers(SMgrRelation *smgrs, int nrels)
Definition: bufmgr.c:4533
void IncrBufferRefCount(Buffer buffer)
Definition: bufmgr.c:4882
void DropDatabaseBuffers(Oid dbid)
Definition: bufmgr.c:4329
static int ckpt_buforder_comparator(const CkptSortItem *a, const CkptSortItem *b)
Definition: bufmgr.c:5776
bool BufferIsExclusiveLocked(Buffer buffer)
Definition: bufmgr.c:2413
const ResourceOwnerDesc buffer_pin_resowner_desc
Definition: bufmgr.c:234
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:3667
static PrivateRefCountEntry * NewPrivateRefCountEntry(Buffer buffer)
Definition: bufmgr.c:315
void DropRelationBuffers(SMgrRelation smgr_reln, ForkNumber *forkNum, int nforks, BlockNumber *firstDelBlock)
Definition: bufmgr.c:3974
Buffer ReleaseAndReadBuffer(Buffer buffer, Relation relation, BlockNumber blockNum)
Definition: bufmgr.c:2537
static pg_attribute_always_inline Buffer PinBufferForBlock(Relation rel, SMgrRelation smgr, char smgr_persistence, ForkNumber forkNum, BlockNumber blockNum, BufferAccessStrategy strategy, bool *foundPtr)
Definition: bufmgr.c:1059
PrefetchBufferResult PrefetchBuffer(Relation reln, ForkNumber forkNum, BlockNumber blockNum)
Definition: bufmgr.c:638
static uint32 PrivateRefCountClock
Definition: bufmgr.c:210
static void FlushBuffer(BufferDesc *buf, SMgrRelation reln, IOObject io_object, IOContext io_context)
Definition: bufmgr.c:3727
static void ResOwnerReleaseBufferIO(Datum res)
Definition: bufmgr.c:5970
bool StartReadBuffers(ReadBuffersOperation *operation, Buffer *buffers, BlockNumber blockNum, int *nblocks, int flags)
Definition: bufmgr.c:1306
static bool WaitReadBuffersCanStartIO(Buffer buffer, bool nowait)
Definition: bufmgr.c:1336
static bool PinBuffer(BufferDesc *buf, BufferAccessStrategy strategy)
Definition: bufmgr.c:2595
const ResourceOwnerDesc buffer_io_resowner_desc
Definition: bufmgr.c:225
bool zero_damaged_pages
Definition: bufmgr.c:139
#define BUF_DROP_FULL_SCAN_THRESHOLD
Definition: bufmgr.c:86
static void PinBuffer_Locked(BufferDesc *buf)
Definition: bufmgr.c:2706
static uint32 WaitBufHdrUnlocked(BufferDesc *buf)
Definition: bufmgr.c:5718
static int buffertag_comparator(const BufferTag *ba, const BufferTag *bb)
Definition: bufmgr.c:5742
#define LocalBufHdrGetBlock(bufHdr)
Definition: bufmgr.c:71
bool IsBufferCleanupOK(Buffer buffer)
Definition: bufmgr.c:5382
#define BufferGetLSN(bufHdr)
Definition: bufmgr.c:68
static void TerminateBufferIO(BufferDesc *buf, bool clear_dirty, uint32 set_flag_bits, bool forget_owner)
Definition: bufmgr.c:5542
static char * ResOwnerPrintBufferIO(Datum res)
Definition: bufmgr.c:5978
Buffer ExtendBufferedRel(BufferManagerRelation bmr, ForkNumber forkNum, BufferAccessStrategy strategy, uint32 flags)
Definition: bufmgr.c:845
void AtEOXact_Buffers(bool isCommit)
Definition: bufmgr.c:3502
char * DebugPrintBufferRefcount(Buffer buffer)
Definition: bufmgr.c:3608
static void AbortBufferIO(Buffer buffer)
Definition: bufmgr.c:5579
BlockNumber ExtendBufferedRelBy(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, uint32 extend_by, Buffer *buffers, uint32 *extended_by)
Definition: bufmgr.c:877
static Buffer ReadBuffer_common(Relation rel, SMgrRelation smgr, char smgr_persistence, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:1152
static BufferDesc * BufferAlloc(SMgrRelation smgr, char relpersistence, ForkNumber forkNum, BlockNumber blockNum, BufferAccessStrategy strategy, bool *foundPtr, IOContext io_context)
Definition: bufmgr.c:1548
static void CheckForBufferLeaks(void)
Definition: bufmgr.c:3562
void CreateAndCopyRelationData(RelFileLocator src_rlocator, RelFileLocator dst_rlocator, bool permanent)
Definition: bufmgr.c:4724
void DropRelationsAllBuffers(SMgrRelation *smgr_reln, int nlocators)
Definition: bufmgr.c:4097
static int rlocator_comparator(const void *p1, const void *p2)
Definition: bufmgr.c:5661
Buffer ExtendBufferedRelTo(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, BlockNumber extend_to, ReadBufferMode mode)
Definition: bufmgr.c:909
struct SMgrSortArray SMgrSortArray
static bool InvalidateVictimBuffer(BufferDesc *buf_hdr)
Definition: bufmgr.c:1824
static void AtProcExit_Buffers(int code, Datum arg)
Definition: bufmgr.c:3544
static int ts_ckpt_progress_comparator(Datum a, Datum b, void *arg)
Definition: bufmgr.c:5807
void BufferGetTag(Buffer buffer, RelFileLocator *rlocator, ForkNumber *forknum, BlockNumber *blknum)
Definition: bufmgr.c:3688
#define BufHdrGetBlock(bufHdr)
Definition: bufmgr.c:67
#define BUF_REUSABLE
Definition: bufmgr.c:76
static void local_buffer_write_error_callback(void *arg)
Definition: bufmgr.c:5641
static void BufferSync(int flags)
Definition: bufmgr.c:2855
static char * ResOwnerPrintBufferPin(Datum res)
Definition: bufmgr.c:6001
void CheckPointBuffers(int flags)
Definition: bufmgr.c:3653
bool BufferIsDirty(Buffer buffer)
Definition: bufmgr.c:2442
static BlockNumber ExtendBufferedRelShared(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, uint32 extend_by, BlockNumber extend_upto, Buffer *buffers, uint32 *extended_by)
Definition: bufmgr.c:2133
bool BgBufferSync(WritebackContext *wb_context)
Definition: bufmgr.c:3131
bool BufferIsPermanent(Buffer buffer)
Definition: bufmgr.c:3898
#define REFCOUNT_ARRAY_ENTRIES
Definition: bufmgr.c:95
void UnlockBuffers(void)
Definition: bufmgr.c:5057
PrefetchBufferResult PrefetchSharedBuffer(SMgrRelation smgr_reln, ForkNumber forkNum, BlockNumber blockNum)
Definition: bufmgr.c:548
static Buffer GetVictimBuffer(BufferAccessStrategy strategy, IOContext io_context)
Definition: bufmgr.c:1892
bool ConditionalLockBuffer(Buffer buffer)
Definition: bufmgr.c:5111
BlockNumber RelationGetNumberOfBlocksInFork(Relation relation, ForkNumber forkNum)
Definition: bufmgr.c:3866
int bgwriter_flush_after
Definition: bufmgr.c:171
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4850
static void FindAndDropRelationBuffers(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber nForkBlock, BlockNumber firstDelBlock)
Definition: bufmgr.c:4268
XLogRecPtr BufferGetLSNAtomic(Buffer buffer)
Definition: bufmgr.c:3928
bool HoldingBufferPinThatDelaysRecovery(void)
Definition: bufmgr.c:5300
int checkpoint_flush_after
Definition: bufmgr.c:170
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4867
static void UnpinBufferNoOwner(BufferDesc *buf)
Definition: bufmgr.c:2758
static void shared_buffer_write_error_callback(void *arg)
Definition: bufmgr.c:5621
void ScheduleBufferTagForWriteback(WritebackContext *wb_context, IOContext io_context, BufferTag *tag)
Definition: bufmgr.c:5842
void WaitReadBuffers(ReadBuffersOperation *operation)
Definition: bufmgr.c:1349
void WritebackContextInit(WritebackContext *context, int *max_pending)
Definition: bufmgr.c:5830
void MarkBufferDirty(Buffer buffer)
Definition: bufmgr.c:2474
void InitBufferPoolAccess(void)
Definition: bufmgr.c:3519
static pg_attribute_always_inline bool StartReadBuffersImpl(ReadBuffersOperation *operation, Buffer *buffers, BlockNumber blockNum, int *nblocks, int flags)
Definition: bufmgr.c:1211
#define BufferIsPinned(bufnum)
Definition: bufmgr.c:473
double bgwriter_lru_multiplier
Definition: bufmgr.c:141
int backend_flush_after
Definition: bufmgr.c:172
void LimitAdditionalPins(uint32 *additional_pins)
Definition: bufmgr.c:2058
static void ReservePrivateRefCountEntry(void)
Definition: bufmgr.c:249
static BufferDesc * PinCountWaitBuf
Definition: bufmgr.c:175
static int32 GetPrivateRefCount(Buffer buffer)
Definition: bufmgr.c:415
static void ZeroBuffer(Buffer buffer, ReadBufferMode mode)
Definition: bufmgr.c:1019
static BlockNumber ExtendBufferedRelCommon(BufferManagerRelation bmr, ForkNumber fork, BufferAccessStrategy strategy, uint32 flags, uint32 extend_by, BlockNumber extend_upto, Buffer *buffers, uint32 *extended_by)
Definition: bufmgr.c:2089
void LockBufferForCleanup(Buffer buffer)
Definition: bufmgr.c:5165
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:5085
static PrivateRefCountEntry * ReservedRefCountEntry
Definition: bufmgr.c:211
void MarkBufferDirtyHint(Buffer buffer, bool buffer_std)
Definition: bufmgr.c:4914
void FlushRelationBuffers(Relation rel)
Definition: bufmgr.c:4435
void IssuePendingWritebacks(WritebackContext *wb_context, IOContext io_context)
Definition: bufmgr.c:5887
static void ForgetPrivateRefCountEntry(PrivateRefCountEntry *ref)
Definition: bufmgr.c:438
Buffer ReadBufferWithoutRelcache(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy, bool permanent)
Definition: bufmgr.c:829
bool ReadRecentBuffer(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber blockNum, Buffer recent_buffer)
Definition: bufmgr.c:669
#define RELS_BSEARCH_THRESHOLD
Definition: bufmgr.c:78
int maintenance_io_concurrency
Definition: bufmgr.c:157
static void UnpinBuffer(BufferDesc *buf)
Definition: bufmgr.c:2749
void FlushDatabaseBuffers(Oid dbid)
Definition: bufmgr.c:4788
static void InvalidateBuffer(BufferDesc *buf)
Definition: bufmgr.c:1726
static void RelationCopyStorageUsingBuffer(RelFileLocator srclocator, RelFileLocator dstlocator, ForkNumber forkNum, bool permanent)
Definition: bufmgr.c:4633
int effective_io_concurrency
Definition: bufmgr.c:150
static PrivateRefCountEntry * GetPrivateRefCountEntry(Buffer buffer, bool do_move)
Definition: bufmgr.c:341
bool EvictUnpinnedBuffer(Buffer buf)
Definition: bufmgr.c:6023
struct PrivateRefCountEntry PrivateRefCountEntry
struct CkptTsStatus CkptTsStatus
bool StartReadBuffer(ReadBuffersOperation *operation, Buffer *buffer, BlockNumber blocknum, int flags)
Definition: bufmgr.c:1321
Buffer ReadBufferExtended(Relation reln, ForkNumber forkNum, BlockNumber blockNum, ReadBufferMode mode, BufferAccessStrategy strategy)
Definition: bufmgr.c:792
uint32 LockBufHdr(BufferDesc *desc)
Definition: bufmgr.c:5688
static void ResOwnerReleaseBufferPin(Datum res)
Definition: bufmgr.c:5986
static struct PrivateRefCountEntry PrivateRefCountArray[REFCOUNT_ARRAY_ENTRIES]
Definition: bufmgr.c:207
int io_combine_limit
Definition: bufmgr.c:164
static int SyncOneBuffer(int buf_id, bool skip_recently_used, WritebackContext *wb_context)
Definition: bufmgr.c:3429
Buffer ReadBuffer(Relation reln, BlockNumber blockNum)
Definition: bufmgr.c:745
static HTAB * PrivateRefCountHash
Definition: bufmgr.c:208
static int32 PrivateRefCountOverflowed
Definition: bufmgr.c:209
bool ConditionalLockBufferForCleanup(Buffer buffer)
Definition: bufmgr.c:5326
int bgwriter_lru_maxpages
Definition: bufmgr.c:140
static void WaitIO(BufferDesc *buf)
Definition: bufmgr.c:5436
static bool StartBufferIO(BufferDesc *buf, bool forInput, bool nowait)
Definition: bufmgr.c:5485
#define BUF_WRITTEN
Definition: bufmgr.c:75
void FlushOneBuffer(Buffer buffer)
Definition: bufmgr.c:4830
@ BAS_BULKREAD
Definition: bufmgr.h:36
@ BAS_BULKWRITE
Definition: bufmgr.h:38
#define BUFFER_LOCK_UNLOCK
Definition: bufmgr.h:197
#define BUFFER_LOCK_SHARE
Definition: bufmgr.h:198
#define P_NEW
Definition: bufmgr.h:192
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:408
#define DEFAULT_IO_COMBINE_LIMIT
Definition: bufmgr.h:173
static Block BufferGetBlock(Buffer buffer)
Definition: bufmgr.h:375
#define MAX_IO_COMBINE_LIMIT
Definition: bufmgr.h:172
#define DEFAULT_EFFECTIVE_IO_CONCURRENCY
Definition: bufmgr.h:166
@ READ_BUFFERS_ZERO_ON_ERROR
Definition: bufmgr.h:113
@ READ_BUFFERS_ISSUE_ADVICE
Definition: bufmgr.h:116
#define DEFAULT_MAINTENANCE_IO_CONCURRENCY
Definition: bufmgr.h:167
void * Block
Definition: bufmgr.h:25
@ EB_LOCK_TARGET
Definition: bufmgr.h:92
@ EB_CLEAR_SIZE_CACHE
Definition: bufmgr.h:89
@ EB_PERFORMING_RECOVERY
Definition: bufmgr.h:77
@ EB_CREATE_FORK_IF_NEEDED
Definition: bufmgr.h:83
@ EB_SKIP_EXTENSION_LOCK
Definition: bufmgr.h:74
@ EB_LOCK_FIRST
Definition: bufmgr.h:86
#define BUFFER_LOCK_EXCLUSIVE
Definition: bufmgr.h:199
ReadBufferMode
Definition: bufmgr.h:44
@ RBM_ZERO_ON_ERROR
Definition: bufmgr.h:50
@ RBM_ZERO_AND_CLEANUP_LOCK
Definition: bufmgr.h:48
@ RBM_ZERO_AND_LOCK
Definition: bufmgr.h:46
@ RBM_NORMAL
Definition: bufmgr.h:45
#define BMR_REL(p_rel)
Definition: bufmgr.h:107
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:359
bool PageIsVerifiedExtended(Page page, BlockNumber blkno, int flags)
Definition: bufpage.c:88
void PageSetChecksumInplace(Page page, BlockNumber blkno)
Definition: bufpage.c:1542
char * PageSetChecksumCopy(Page page, BlockNumber blkno)
Definition: bufpage.c:1510
Pointer Page
Definition: bufpage.h:78
#define PIV_LOG_WARNING
Definition: bufpage.h:465
static bool PageIsNew(Page page)
Definition: bufpage.h:230
static void PageSetLSN(Page page, XLogRecPtr lsn)
Definition: bufpage.h:388
static XLogRecPtr PageGetLSN(Page page)
Definition: bufpage.h:383
#define PIV_REPORT_STAT
Definition: bufpage.h:466
unsigned int uint32
Definition: c.h:506
#define likely(x)
Definition: c.h:310
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
double float8
Definition: c.h:630
#define pg_attribute_always_inline
Definition: c.h:234
#define unlikely(x)
Definition: c.h:311
#define lengthof(array)
Definition: c.h:788
#define MemSet(start, val, len)
Definition: c.h:1020
size_t Size
Definition: c.h:605
void CheckpointWriteDelay(int flags, double progress)
Definition: checkpointer.c:711
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
int64 TimestampTz
Definition: timestamp.h:39
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1395
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
struct cursor * cur
Definition: ecpg.c:28
int errdetail(const char *fmt,...)
Definition: elog.c:1205
ErrorContextCallback * error_context_stack
Definition: elog.c:94
int errhint(const char *fmt,...)
Definition: elog.c:1319
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define LOG
Definition: elog.h:31
#define errcontext
Definition: elog.h:196
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
int io_direct_flags
Definition: fd.c:168
#define IO_DIRECT_DATA
Definition: fd.h:54
int StrategySyncStart(uint32 *complete_passes, uint32 *num_buf_alloc)
Definition: freelist.c:394
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:541
BufferDesc * StrategyGetBuffer(BufferAccessStrategy strategy, uint32 *buf_state, bool *from_ring)
Definition: freelist.c:196
void FreeAccessStrategy(BufferAccessStrategy strategy)
Definition: freelist.c:681
IOContext IOContextForStrategy(BufferAccessStrategy strategy)
Definition: freelist.c:758
void StrategyFreeBuffer(BufferDesc *buf)
Definition: freelist.c:363
bool StrategyRejectBuffer(BufferAccessStrategy strategy, BufferDesc *buf, bool from_ring)
Definition: freelist.c:798
volatile sig_atomic_t ProcSignalBarrierPending
Definition: globals.c:38
int64 VacuumPageHit
Definition: globals.c:154
int NBuffers
Definition: globals.c:139
ProcNumber MyProcNumber
Definition: globals.c:87
int VacuumCostPageMiss
Definition: globals.c:149
int64 VacuumPageMiss
Definition: globals.c:155
bool VacuumCostActive
Definition: globals.c:159
int64 VacuumPageDirty
Definition: globals.c:156
int VacuumCostBalance
Definition: globals.c:158
int MaxBackends
Definition: globals.c:143
int VacuumCostPageDirty
Definition: globals.c:150
int VacuumCostPageHit
Definition: globals.c:148
#define free(a)
Definition: header.h:65
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
BufferUsage pgBufferUsage
Definition: instrument.c:20
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
int b
Definition: isn.c:70
int a
Definition: isn.c:69
int j
Definition: isn.c:74
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
static volatile sig_atomic_t waiting
Definition: latch.c:162
void LockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:430
void UnlockRelationForExtension(Relation relation, LOCKMODE lockmode)
Definition: lmgr.c:480
int32 * LocalRefCount
Definition: localbuf.c:46
void UnpinLocalBuffer(Buffer buffer)
Definition: localbuf.c:681
BufferDesc * LocalBufferAlloc(SMgrRelation smgr, ForkNumber forkNum, BlockNumber blockNum, bool *foundPtr)
Definition: localbuf.c:116
void AtEOXact_LocalBuffers(bool isCommit)
Definition: localbuf.c:819
void DropRelationLocalBuffers(RelFileLocator rlocator, ForkNumber forkNum, BlockNumber firstDelBlock)
Definition: localbuf.c:489
void AtProcExit_LocalBuffers(void)
Definition: localbuf.c:830
bool PinLocalBuffer(BufferDesc *buf_hdr, bool adjust_usagecount)
Definition: localbuf.c:655
void MarkLocalBufferDirty(Buffer buffer)
Definition: localbuf.c:449
void DropRelationAllLocalBuffers(RelFileLocator rlocator)
Definition: localbuf.c:537
int NLocBuffer
Definition: localbuf.c:42
PrefetchBufferResult PrefetchLocalBuffer(SMgrRelation smgr, ForkNumber forkNum, BlockNumber blockNum)
Definition: localbuf.c:69
BlockNumber ExtendBufferedRelLocal(BufferManagerRelation bmr, ForkNumber fork, uint32 flags, uint32 extend_by, BlockNumber extend_upto, Buffer *buffers, uint32 *extended_by)
Definition: localbuf.c:313
void UnpinLocalBufferNoOwner(Buffer buffer)
Definition: localbuf.c:688
#define ExclusiveLock
Definition: lockdefs.h:42
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1895
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1170
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1939
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1783
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1341
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
void pfree(void *pointer)
Definition: mcxt.c:1520
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1540
void * palloc(Size size)
Definition: mcxt.c:1316
#define VALGRIND_MAKE_MEM_DEFINED(addr, size)
Definition: memdebug.h:26
#define VALGRIND_MAKE_MEM_NOACCESS(addr, size)
Definition: memdebug.h:27
#define START_CRIT_SECTION()
Definition: miscadmin.h:149
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define END_CRIT_SECTION()
Definition: miscadmin.h:151
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
static PgChecksumMode mode
Definition: pg_checksums.c:56
int64 current_size
Definition: pg_checksums.c:64
#define WRITEBACK_MAX_PENDING_FLUSHES
#define DEFAULT_BACKEND_FLUSH_AFTER
#define DEFAULT_CHECKPOINT_FLUSH_AFTER
#define DEFAULT_BGWRITER_FLUSH_AFTER
static char * buf
Definition: pg_test_fsync.c:73
IOObject
Definition: pgstat.h:279
@ IOOBJECT_RELATION
Definition: pgstat.h:280
@ IOOBJECT_TEMP_RELATION
Definition: pgstat.h:281
#define pgstat_count_buffer_read(rel)
Definition: pgstat.h:635
IOContext
Definition: pgstat.h:287
@ IOCONTEXT_NORMAL
Definition: pgstat.h:290
@ IOOP_EXTEND
Definition: pgstat.h:299
@ IOOP_READ
Definition: pgstat.h:302
@ IOOP_WRITEBACK
Definition: pgstat.h:305
@ IOOP_HIT
Definition: pgstat.h:301
@ IOOP_EVICT
Definition: pgstat.h:298
@ IOOP_REUSE
Definition: pgstat.h:303
@ IOOP_WRITE
Definition: pgstat.h:304
#define pgstat_count_buffer_hit(rel)
Definition: pgstat.h:640
PgStat_BgWriterStats PendingBgWriterStats
PgStat_CheckpointerStats PendingCheckpointerStats
instr_time pgstat_prepare_io_time(bool track_io_guc)
Definition: pgstat_io.c:100
void pgstat_count_io_op_time(IOObject io_object, IOContext io_context, IOOp io_op, instr_time start_time, uint32 cnt)
Definition: pgstat_io.c:122
void pgstat_count_io_op(IOObject io_object, IOContext io_context, IOOp io_op)
Definition: pgstat_io.c:77
#define qsort(a, b, c, d)
Definition: port.h:449
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
#define NUM_AUXILIARY_PROCS
Definition: proc.h:440
#define DELAY_CHKPT_START
Definition: proc.h:114
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int ProcNumber
Definition: procnumber.h:24
void ProcessProcSignalBarrier(void)
Definition: procsignal.c:464
@ PROCSIG_RECOVERY_CONFLICT_BUFFERPIN
Definition: procsignal.h:47
void set_ps_display_remove_suffix(void)
Definition: ps_status.c:421
void set_ps_display_suffix(const char *suffix)
Definition: ps_status.c:369
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
tree context
Definition: radixtree.h:1833
static unsigned hash(unsigned *uv, int n)
Definition: rege_dfa.c:715
static SMgrRelation RelationGetSmgr(Relation rel)
Definition: rel.h:567
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:637
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:658
#define RelationIsValid(relation)
Definition: rel.h:478
#define RelFileLocatorBackendIsTemp(rlocator)
#define RelFileLocatorEquals(locator1, locator2)
ForkNumber
Definition: relpath.h:48
@ MAIN_FORKNUM
Definition: relpath.h:50
@ INIT_FORKNUM
Definition: relpath.h:53
#define MAX_FORKNUM
Definition: relpath.h:62
#define relpath(rlocator, forknum)
Definition: relpath.h:94
#define relpathbackend(rlocator, backend, forknum)
Definition: relpath.h:85
#define relpathperm(rlocator, forknum)
Definition: relpath.h:90
ResourceOwner CurrentResourceOwner
Definition: resowner.c:165
void ResourceOwnerEnlarge(ResourceOwner owner)
Definition: resowner.c:442
#define RELEASE_PRIO_BUFFER_IOS
Definition: resowner.h:62
@ RESOURCE_RELEASE_BEFORE_LOCKS
Definition: resowner.h:54
#define RELEASE_PRIO_BUFFER_PINS
Definition: resowner.h:63
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:132
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:192
#define init_local_spin_delay(status)
Definition: s_lock.h:843
BlockNumber smgrnblocks(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:655
void smgrwriteback(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, BlockNumber nblocks)
Definition: smgr.c:643
SMgrRelation smgropen(RelFileLocator rlocator, ProcNumber backend)
Definition: smgr.c:198
void smgrcreate(SMgrRelation reln, ForkNumber forknum, bool isRedo)
Definition: smgr.c:411
BlockNumber smgrnblocks_cached(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:679
void smgrzeroextend(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, int nblocks, bool skipFsync)
Definition: smgr.c:560
void smgrextend(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, const void *buffer, bool skipFsync)
Definition: smgr.c:535
bool smgrexists(SMgrRelation reln, ForkNumber forknum)
Definition: smgr.c:398
void smgrreadv(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, void **buffers, BlockNumber nblocks)
Definition: smgr.c:600
bool smgrprefetch(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, int nblocks)
Definition: smgr.c:585
static void smgrwrite(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum, const void *buffer, bool skipFsync)
Definition: smgr.h:121
void ProcSendSignal(ProcNumber procNumber)
Definition: proc.c:1878
PGPROC * MyProc
Definition: proc.c:66
int GetStartupBufferPinWaitBufId(void)
Definition: proc.c:671
int DeadlockTimeout
Definition: proc.c:57
void SetStartupBufferPinWaitBufId(int bufid)
Definition: proc.c:659
void ProcWaitForSignal(uint32 wait_event_info)
Definition: proc.c:1866
void ResolveRecoveryConflictWithBufferPin(void)
Definition: standby.c:792
bool log_recovery_conflict_waits
Definition: standby.c:41
void LogRecoveryConflict(ProcSignalReason reason, TimestampTz wait_start, TimestampTz now, VirtualTransactionId *wait_list, bool still_waiting)
Definition: standby.c:273
bool RelFileLocatorSkippingWAL(RelFileLocator rlocator)
Definition: storage.c:532
SMgrRelation RelationCreateStorage(RelFileLocator rlocator, char relpersistence, bool register_delete)
Definition: storage.c:121
void log_smgrcreate(const RelFileLocator *rlocator, ForkNumber forkNum)
Definition: storage.c:186
int wait_backend_pgprocno
BufferTag tag
pg_atomic_uint32 state
struct SMgrRelationData * smgr
Definition: bufmgr.h:103
int64 shared_blks_dirtied
Definition: instrument.h:28
int64 local_blks_hit
Definition: instrument.h:30
int64 local_blks_written
Definition: instrument.h:33
int64 shared_blks_read
Definition: instrument.h:27
int64 shared_blks_written
Definition: instrument.h:29
int64 local_blks_read
Definition: instrument.h:31
int64 shared_blks_hit
Definition: instrument.h:26
int ckpt_bufs_written
Definition: xlog.h:165
ForkNumber forkNum
RelFileNumber relNumber
BlockNumber blockNum
float8 progress_slice
Definition: bufmgr.c:114
int index
Definition: bufmgr.c:122
int num_scanned
Definition: bufmgr.c:119
float8 progress
Definition: bufmgr.c:113
int num_to_scan
Definition: bufmgr.c:117
Oid tsId
Definition: bufmgr.c:104
struct ErrorContextCallback * previous
Definition: elog.h:295
void(* callback)(void *arg)
Definition: elog.h:296
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
Definition: dynahash.c:220
Definition: lwlock.h:42
int delayChkptFlags
Definition: proc.h:236
PgStat_Counter buf_written_clean
Definition: pgstat.h:255
PgStat_Counter maxwritten_clean
Definition: pgstat.h:256
PgStat_Counter buf_alloc
Definition: pgstat.h:257
PgStat_Counter buffers_written
Definition: pgstat.h:270
Buffer recent_buffer
Definition: bufmgr.h:60
ForkNumber forknum
Definition: bufmgr.h:129
int16 io_buffers_len
Definition: bufmgr.h:141
Buffer * buffers
Definition: bufmgr.h:137
BufferAccessStrategy strategy
Definition: bufmgr.h:130
BlockNumber blocknum
Definition: bufmgr.h:138
struct SMgrRelationData * smgr
Definition: bufmgr.h:127
RelFileLocator locator
RelFileNumber relNumber
RelFileLocator rd_locator
Definition: rel.h:57
Form_pg_class rd_rel
Definition: rel.h:111
const char * name
Definition: resowner.h:93
BlockNumber smgr_cached_nblocks[MAX_FORKNUM+1]
Definition: smgr.h:46
RelFileLocatorBackend smgr_rlocator
Definition: smgr.h:37
SMgrRelation srel
Definition: bufmgr.c:135
RelFileLocator rlocator
Definition: bufmgr.c:134
PendingWriteback pending_writebacks[WRITEBACK_MAX_PENDING_FLUSHES]
BlockNumber blockNum
Definition: buf_internals.h:98
Oid spcOid
Definition: buf_internals.h:94
Oid dbOid
Definition: buf_internals.h:95
static uint64 table_relation_size(Relation rel, ForkNumber forkNumber)
Definition: tableam.h:1878
bool RecoveryInProgress(void)
Definition: xlog.c:6290
bool XLogNeedsFlush(XLogRecPtr record)
Definition: xlog.c:3122
CheckpointStatsData CheckpointStats
Definition: xlog.c:209
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2791
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:138
#define CHECKPOINT_FLUSH_ALL
Definition: xlog.h:141
#define CHECKPOINT_IS_SHUTDOWN
Definition: xlog.h:137
#define XLogIsNeeded()
Definition: xlog.h:107
#define XLogHintBitIsNeeded()
Definition: xlog.h:118
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
XLogRecPtr XLogSaveBufferForHint(Buffer buffer, bool buffer_std)
Definition: xloginsert.c:1065
XLogRecPtr log_newpage_buffer(Buffer buffer, bool page_std)
Definition: xloginsert.c:1237
#define InHotStandby
Definition: xlogutils.h:57