PostgreSQL Source Code  git master
clauses.c File Reference
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_language.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/functions.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/multibitmapset.h"
#include "nodes/nodeFuncs.h"
#include "nodes/subscripting.h"
#include "nodes/supportnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "parser/analyze.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "rewrite/rewriteHandler.h"
#include "rewrite/rewriteManip.h"
#include "tcop/tcopprot.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/json.h"
#include "utils/jsonb.h"
#include "utils/jsonpath.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
Include dependency graph for clauses.c:

Go to the source code of this file.

Data Structures

struct  eval_const_expressions_context
 
struct  substitute_actual_parameters_context
 
struct  substitute_actual_srf_parameters_context
 
struct  inline_error_callback_arg
 
struct  max_parallel_hazard_context
 

Macros

#define CCDN_CASETESTEXPR_OK   0x0001 /* CaseTestExpr okay here? */
 
#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP   9
 
#define ece_generic_processing(node)
 
#define ece_all_arguments_const(node)    (!expression_tree_walker((Node *) (node), contain_non_const_walker, NULL))
 
#define ece_evaluate_expr(node)
 

Functions

static bool contain_agg_clause_walker (Node *node, void *context)
 
static bool find_window_functions_walker (Node *node, WindowFuncLists *lists)
 
static bool contain_subplans_walker (Node *node, void *context)
 
static bool contain_mutable_functions_walker (Node *node, void *context)
 
static bool contain_volatile_functions_walker (Node *node, void *context)
 
static bool contain_volatile_functions_not_nextval_walker (Node *node, void *context)
 
static bool max_parallel_hazard_walker (Node *node, max_parallel_hazard_context *context)
 
static bool contain_nonstrict_functions_walker (Node *node, void *context)
 
static bool contain_exec_param_walker (Node *node, List *param_ids)
 
static bool contain_context_dependent_node (Node *clause)
 
static bool contain_context_dependent_node_walker (Node *node, int *flags)
 
static bool contain_leaked_vars_walker (Node *node, void *context)
 
static Relids find_nonnullable_rels_walker (Node *node, bool top_level)
 
static Listfind_nonnullable_vars_walker (Node *node, bool top_level)
 
static bool is_strict_saop (ScalarArrayOpExpr *expr, bool falseOK)
 
static bool convert_saop_to_hashed_saop_walker (Node *node, void *context)
 
static Nodeeval_const_expressions_mutator (Node *node, eval_const_expressions_context *context)
 
static bool contain_non_const_walker (Node *node, void *context)
 
static bool ece_function_is_safe (Oid funcid, eval_const_expressions_context *context)
 
static Listsimplify_or_arguments (List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceTrue)
 
static Listsimplify_and_arguments (List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceFalse)
 
static Nodesimplify_boolean_equality (Oid opno, List *args)
 
static Exprsimplify_function (Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List **args_p, bool funcvariadic, bool process_args, bool allow_non_const, eval_const_expressions_context *context)
 
static Listreorder_function_arguments (List *args, int pronargs, HeapTuple func_tuple)
 
static Listadd_function_defaults (List *args, int pronargs, HeapTuple func_tuple)
 
static Listfetch_function_defaults (HeapTuple func_tuple)
 
static void recheck_cast_function_args (List *args, Oid result_type, Oid *proargtypes, int pronargs, HeapTuple func_tuple)
 
static Exprevaluate_function (Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
 
static Exprinline_function (Oid funcid, Oid result_type, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
 
static Nodesubstitute_actual_parameters (Node *expr, int nargs, List *args, int *usecounts)
 
static Nodesubstitute_actual_parameters_mutator (Node *node, substitute_actual_parameters_context *context)
 
static void sql_inline_error_callback (void *arg)
 
static Querysubstitute_actual_srf_parameters (Query *expr, int nargs, List *args)
 
static Nodesubstitute_actual_srf_parameters_mutator (Node *node, substitute_actual_srf_parameters_context *context)
 
static bool pull_paramids_walker (Node *node, Bitmapset **context)
 
bool contain_agg_clause (Node *clause)
 
bool contain_window_function (Node *clause)
 
WindowFuncListsfind_window_functions (Node *clause, Index maxWinRef)
 
double expression_returns_set_rows (PlannerInfo *root, Node *clause)
 
bool contain_subplans (Node *clause)
 
bool contain_mutable_functions (Node *clause)
 
static bool contain_mutable_functions_checker (Oid func_id, void *context)
 
bool contain_mutable_functions_after_planning (Expr *expr)
 
bool contain_volatile_functions (Node *clause)
 
static bool contain_volatile_functions_checker (Oid func_id, void *context)
 
bool contain_volatile_functions_after_planning (Expr *expr)
 
bool contain_volatile_functions_not_nextval (Node *clause)
 
static bool contain_volatile_functions_not_nextval_checker (Oid func_id, void *context)
 
char max_parallel_hazard (Query *parse)
 
bool is_parallel_safe (PlannerInfo *root, Node *node)
 
static bool max_parallel_hazard_test (char proparallel, max_parallel_hazard_context *context)
 
static bool max_parallel_hazard_checker (Oid func_id, void *context)
 
bool contain_nonstrict_functions (Node *clause)
 
static bool contain_nonstrict_functions_checker (Oid func_id, void *context)
 
bool contain_exec_param (Node *clause, List *param_ids)
 
bool contain_leaked_vars (Node *clause)
 
static bool contain_leaked_vars_checker (Oid func_id, void *context)
 
Relids find_nonnullable_rels (Node *clause)
 
Listfind_nonnullable_vars (Node *clause)
 
Listfind_forced_null_vars (Node *node)
 
Varfind_forced_null_var (Node *node)
 
bool is_pseudo_constant_clause (Node *clause)
 
bool is_pseudo_constant_clause_relids (Node *clause, Relids relids)
 
int NumRelids (PlannerInfo *root, Node *clause)
 
void CommuteOpExpr (OpExpr *clause)
 
static bool rowtype_field_matches (Oid rowtypeid, int fieldnum, Oid expectedtype, int32 expectedtypmod, Oid expectedcollation)
 
Nodeeval_const_expressions (PlannerInfo *root, Node *node)
 
void convert_saop_to_hashed_saop (Node *node)
 
Nodeestimate_expression_value (PlannerInfo *root, Node *node)
 
Listexpand_function_arguments (List *args, bool include_out_arguments, Oid result_type, HeapTuple func_tuple)
 
Exprevaluate_expr (Expr *expr, Oid result_type, int32 result_typmod, Oid result_collation)
 
Queryinline_set_returning_function (PlannerInfo *root, RangeTblEntry *rte)
 
Bitmapsetpull_paramids (Expr *expr)
 

Macro Definition Documentation

◆ CCDN_CASETESTEXPR_OK

#define CCDN_CASETESTEXPR_OK   0x0001 /* CaseTestExpr okay here? */

Definition at line 1186 of file clauses.c.

◆ ece_all_arguments_const

#define ece_all_arguments_const (   node)     (!expression_tree_walker((Node *) (node), contain_non_const_walker, NULL))

Definition at line 2426 of file clauses.c.

◆ ece_evaluate_expr

#define ece_evaluate_expr (   node)
Value:
((Node *) evaluate_expr((Expr *) (node), \
exprType((Node *) (node)), \
exprTypmod((Node *) (node)), \
exprCollation((Node *) (node))))
Expr * evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod, Oid result_collation)
Definition: clauses.c:4960
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
Definition: nodes.h:129

Definition at line 2430 of file clauses.c.

◆ ece_generic_processing

#define ece_generic_processing (   node)
Value:
(void *) context)
static Node * eval_const_expressions_mutator(Node *node, eval_const_expressions_context *context)
Definition: clauses.c:2440
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:153
tree context
Definition: radixtree.h:1829

Definition at line 2417 of file clauses.c.

◆ MIN_ARRAY_SIZE_FOR_HASHED_SAOP

#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP   9

Definition at line 2269 of file clauses.c.

Function Documentation

◆ add_function_defaults()

static List * add_function_defaults ( List args,
int  pronargs,
HeapTuple  func_tuple 
)
static

Definition at line 4313 of file clauses.c.

4314 {
4315  int nargsprovided = list_length(args);
4316  List *defaults;
4317  int ndelete;
4318 
4319  /* Get all the default expressions from the pg_proc tuple */
4320  defaults = fetch_function_defaults(func_tuple);
4321 
4322  /* Delete any unused defaults from the list */
4323  ndelete = nargsprovided + list_length(defaults) - pronargs;
4324  if (ndelete < 0)
4325  elog(ERROR, "not enough default arguments");
4326  if (ndelete > 0)
4327  defaults = list_delete_first_n(defaults, ndelete);
4328 
4329  /* And form the combined argument list, not modifying the input list */
4330  return list_concat_copy(args, defaults);
4331 }
static List * fetch_function_defaults(HeapTuple func_tuple)
Definition: clauses.c:4337
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
List * list_delete_first_n(List *list, int n)
Definition: list.c:983
List * list_concat_copy(const List *list1, const List *list2)
Definition: list.c:598
static int list_length(const List *l)
Definition: pg_list.h:152
int16 pronargs
Definition: pg_proc.h:81
Definition: pg_list.h:54

References generate_unaccent_rules::args, elog, ERROR, fetch_function_defaults(), list_concat_copy(), list_delete_first_n(), list_length(), and pronargs.

Referenced by expand_function_arguments().

◆ CommuteOpExpr()

void CommuteOpExpr ( OpExpr clause)

Definition at line 2147 of file clauses.c.

2148 {
2149  Oid opoid;
2150  Node *temp;
2151 
2152  /* Sanity checks: caller is at fault if these fail */
2153  if (!is_opclause(clause) ||
2154  list_length(clause->args) != 2)
2155  elog(ERROR, "cannot commute non-binary-operator clause");
2156 
2157  opoid = get_commutator(clause->opno);
2158 
2159  if (!OidIsValid(opoid))
2160  elog(ERROR, "could not find commutator for operator %u",
2161  clause->opno);
2162 
2163  /*
2164  * modify the clause in-place!
2165  */
2166  clause->opno = opoid;
2167  clause->opfuncid = InvalidOid;
2168  /* opresulttype, opretset, opcollid, inputcollid need not change */
2169 
2170  temp = linitial(clause->args);
2171  linitial(clause->args) = lsecond(clause->args);
2172  lsecond(clause->args) = temp;
2173 }
#define OidIsValid(objectId)
Definition: c.h:775
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1509
static bool is_opclause(const void *clause)
Definition: nodeFuncs.h:74
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
Oid opno
Definition: primnodes.h:788
List * args
Definition: primnodes.h:806

References OpExpr::args, elog, ERROR, get_commutator(), InvalidOid, is_opclause(), linitial, list_length(), lsecond, OidIsValid, and OpExpr::opno.

Referenced by get_switched_clauses().

◆ contain_agg_clause()

bool contain_agg_clause ( Node clause)

Definition at line 177 of file clauses.c.

178 {
179  return contain_agg_clause_walker(clause, NULL);
180 }
static bool contain_agg_clause_walker(Node *node, void *context)
Definition: clauses.c:183

References contain_agg_clause_walker().

Referenced by get_eclass_for_sort_expr(), and subquery_planner().

◆ contain_agg_clause_walker()

static bool contain_agg_clause_walker ( Node node,
void *  context 
)
static

Definition at line 183 of file clauses.c.

184 {
185  if (node == NULL)
186  return false;
187  if (IsA(node, Aggref))
188  {
189  Assert(((Aggref *) node)->agglevelsup == 0);
190  return true; /* abort the tree traversal and return true */
191  }
192  if (IsA(node, GroupingFunc))
193  {
194  Assert(((GroupingFunc *) node)->agglevelsup == 0);
195  return true; /* abort the tree traversal and return true */
196  }
197  Assert(!IsA(node, SubLink));
199 }
#define Assert(condition)
Definition: c.h:858
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:151
#define IsA(nodeptr, _type_)
Definition: nodes.h:158

References Assert, context, expression_tree_walker, and IsA.

Referenced by contain_agg_clause().

◆ contain_context_dependent_node()

static bool contain_context_dependent_node ( Node clause)
static

Definition at line 1179 of file clauses.c.

1180 {
1181  int flags = 0;
1182 
1183  return contain_context_dependent_node_walker(clause, &flags);
1184 }
static bool contain_context_dependent_node_walker(Node *node, int *flags)
Definition: clauses.c:1189

References contain_context_dependent_node_walker().

Referenced by inline_function().

◆ contain_context_dependent_node_walker()

static bool contain_context_dependent_node_walker ( Node node,
int *  flags 
)
static

Definition at line 1189 of file clauses.c.

1190 {
1191  if (node == NULL)
1192  return false;
1193  if (IsA(node, CaseTestExpr))
1194  return !(*flags & CCDN_CASETESTEXPR_OK);
1195  else if (IsA(node, CaseExpr))
1196  {
1197  CaseExpr *caseexpr = (CaseExpr *) node;
1198 
1199  /*
1200  * If this CASE doesn't have a test expression, then it doesn't create
1201  * a context in which CaseTestExprs should appear, so just fall
1202  * through and treat it as a generic expression node.
1203  */
1204  if (caseexpr->arg)
1205  {
1206  int save_flags = *flags;
1207  bool res;
1208 
1209  /*
1210  * Note: in principle, we could distinguish the various sub-parts
1211  * of a CASE construct and set the flag bit only for some of them,
1212  * since we are only expecting CaseTestExprs to appear in the
1213  * "expr" subtree of the CaseWhen nodes. But it doesn't really
1214  * seem worth any extra code. If there are any bare CaseTestExprs
1215  * elsewhere in the CASE, something's wrong already.
1216  */
1217  *flags |= CCDN_CASETESTEXPR_OK;
1218  res = expression_tree_walker(node,
1220  (void *) flags);
1221  *flags = save_flags;
1222  return res;
1223  }
1224  }
1225  else if (IsA(node, ArrayCoerceExpr))
1226  {
1227  ArrayCoerceExpr *ac = (ArrayCoerceExpr *) node;
1228  int save_flags;
1229  bool res;
1230 
1231  /* Check the array expression */
1232  if (contain_context_dependent_node_walker((Node *) ac->arg, flags))
1233  return true;
1234 
1235  /* Check the elemexpr, which is allowed to contain CaseTestExpr */
1236  save_flags = *flags;
1237  *flags |= CCDN_CASETESTEXPR_OK;
1239  flags);
1240  *flags = save_flags;
1241  return res;
1242  }
1244  (void *) flags);
1245 }
#define CCDN_CASETESTEXPR_OK
Definition: clauses.c:1186
Expr * arg
Definition: primnodes.h:1283

References ArrayCoerceExpr::arg, CaseExpr::arg, CCDN_CASETESTEXPR_OK, ArrayCoerceExpr::elemexpr, expression_tree_walker, IsA, and res.

Referenced by contain_context_dependent_node().

◆ contain_exec_param()

bool contain_exec_param ( Node clause,
List param_ids 
)

Definition at line 1137 of file clauses.c.

1138 {
1139  return contain_exec_param_walker(clause, param_ids);
1140 }
static bool contain_exec_param_walker(Node *node, List *param_ids)
Definition: clauses.c:1143

References contain_exec_param_walker().

Referenced by test_opexpr_is_hashable().

◆ contain_exec_param_walker()

static bool contain_exec_param_walker ( Node node,
List param_ids 
)
static

Definition at line 1143 of file clauses.c.

1144 {
1145  if (node == NULL)
1146  return false;
1147  if (IsA(node, Param))
1148  {
1149  Param *p = (Param *) node;
1150 
1151  if (p->paramkind == PARAM_EXEC &&
1152  list_member_int(param_ids, p->paramid))
1153  return true;
1154  }
1155  return expression_tree_walker(node, contain_exec_param_walker, param_ids);
1156 }
bool list_member_int(const List *list, int datum)
Definition: list.c:702
@ PARAM_EXEC
Definition: primnodes.h:368
int paramid
Definition: primnodes.h:377
ParamKind paramkind
Definition: primnodes.h:376

References expression_tree_walker, IsA, list_member_int(), PARAM_EXEC, Param::paramid, and Param::paramkind.

Referenced by contain_exec_param().

◆ contain_leaked_vars()

bool contain_leaked_vars ( Node clause)

Definition at line 1263 of file clauses.c.

1264 {
1265  return contain_leaked_vars_walker(clause, NULL);
1266 }
static bool contain_leaked_vars_walker(Node *node, void *context)
Definition: clauses.c:1275

References contain_leaked_vars_walker().

Referenced by make_restrictinfo_internal(), and qual_is_pushdown_safe().

◆ contain_leaked_vars_checker()

static bool contain_leaked_vars_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 1269 of file clauses.c.

1270 {
1271  return !get_func_leakproof(func_id);
1272 }
bool get_func_leakproof(Oid funcid)
Definition: lsyscache.c:1837

References get_func_leakproof().

Referenced by contain_leaked_vars_walker().

◆ contain_leaked_vars_walker()

static bool contain_leaked_vars_walker ( Node node,
void *  context 
)
static

Definition at line 1275 of file clauses.c.

1276 {
1277  if (node == NULL)
1278  return false;
1279 
1280  switch (nodeTag(node))
1281  {
1282  case T_Var:
1283  case T_Const:
1284  case T_Param:
1285  case T_ArrayExpr:
1286  case T_FieldSelect:
1287  case T_FieldStore:
1288  case T_NamedArgExpr:
1289  case T_BoolExpr:
1290  case T_RelabelType:
1291  case T_CollateExpr:
1292  case T_CaseExpr:
1293  case T_CaseTestExpr:
1294  case T_RowExpr:
1295  case T_SQLValueFunction:
1296  case T_NullTest:
1297  case T_BooleanTest:
1298  case T_NextValueExpr:
1299  case T_List:
1300 
1301  /*
1302  * We know these node types don't contain function calls; but
1303  * something further down in the node tree might.
1304  */
1305  break;
1306 
1307  case T_FuncExpr:
1308  case T_OpExpr:
1309  case T_DistinctExpr:
1310  case T_NullIfExpr:
1311  case T_ScalarArrayOpExpr:
1312  case T_CoerceViaIO:
1313  case T_ArrayCoerceExpr:
1314 
1315  /*
1316  * If node contains a leaky function call, and there's any Var
1317  * underneath it, reject.
1318  */
1320  context) &&
1321  contain_var_clause(node))
1322  return true;
1323  break;
1324 
1325  case T_SubscriptingRef:
1326  {
1327  SubscriptingRef *sbsref = (SubscriptingRef *) node;
1328  const SubscriptRoutines *sbsroutines;
1329 
1330  /* Consult the subscripting support method info */
1331  sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype,
1332  NULL);
1333  if (!sbsroutines ||
1334  !(sbsref->refassgnexpr != NULL ?
1335  sbsroutines->store_leakproof :
1336  sbsroutines->fetch_leakproof))
1337  {
1338  /* Node is leaky, so reject if it contains Vars */
1339  if (contain_var_clause(node))
1340  return true;
1341  }
1342  }
1343  break;
1344 
1345  case T_RowCompareExpr:
1346  {
1347  /*
1348  * It's worth special-casing this because a leaky comparison
1349  * function only compromises one pair of row elements, which
1350  * might not contain Vars while others do.
1351  */
1352  RowCompareExpr *rcexpr = (RowCompareExpr *) node;
1353  ListCell *opid;
1354  ListCell *larg;
1355  ListCell *rarg;
1356 
1357  forthree(opid, rcexpr->opnos,
1358  larg, rcexpr->largs,
1359  rarg, rcexpr->rargs)
1360  {
1361  Oid funcid = get_opcode(lfirst_oid(opid));
1362 
1363  if (!get_func_leakproof(funcid) &&
1364  (contain_var_clause((Node *) lfirst(larg)) ||
1365  contain_var_clause((Node *) lfirst(rarg))))
1366  return true;
1367  }
1368  }
1369  break;
1370 
1371  case T_MinMaxExpr:
1372  {
1373  /*
1374  * MinMaxExpr is leakproof if the comparison function it calls
1375  * is leakproof.
1376  */
1377  MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
1378  TypeCacheEntry *typentry;
1379  bool leakproof;
1380 
1381  /* Look up the btree comparison function for the datatype */
1382  typentry = lookup_type_cache(minmaxexpr->minmaxtype,
1384  if (OidIsValid(typentry->cmp_proc))
1385  leakproof = get_func_leakproof(typentry->cmp_proc);
1386  else
1387  {
1388  /*
1389  * The executor will throw an error, but here we just
1390  * treat the missing function as leaky.
1391  */
1392  leakproof = false;
1393  }
1394 
1395  if (!leakproof &&
1396  contain_var_clause((Node *) minmaxexpr->args))
1397  return true;
1398  }
1399  break;
1400 
1401  case T_CurrentOfExpr:
1402 
1403  /*
1404  * WHERE CURRENT OF doesn't contain leaky function calls.
1405  * Moreover, it is essential that this is considered non-leaky,
1406  * since the planner must always generate a TID scan when CURRENT
1407  * OF is present -- cf. cost_tidscan.
1408  */
1409  return false;
1410 
1411  default:
1412 
1413  /*
1414  * If we don't recognize the node tag, assume it might be leaky.
1415  * This prevents an unexpected security hole if someone adds a new
1416  * node type that can call a function.
1417  */
1418  return true;
1419  }
1421  context);
1422 }
static bool contain_leaked_vars_checker(Oid func_id, void *context)
Definition: clauses.c:1269
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1285
const struct SubscriptRoutines * getSubscriptingRoutines(Oid typid, Oid *typelemp)
Definition: lsyscache.c:3130
bool check_functions_in_node(Node *node, check_function_callback checker, void *context)
Definition: nodeFuncs.c:1906
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define lfirst(lc)
Definition: pg_list.h:172
#define forthree(cell1, list1, cell2, list2, cell3, list3)
Definition: pg_list.h:563
#define lfirst_oid(lc)
Definition: pg_list.h:174
List * args
Definition: primnodes.h:1488
Expr * refassgnexpr
Definition: primnodes.h:673
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:346
#define TYPECACHE_CMP_PROC
Definition: typcache.h:140
bool contain_var_clause(Node *node)
Definition: var.c:403

References MinMaxExpr::args, check_functions_in_node(), TypeCacheEntry::cmp_proc, contain_leaked_vars_checker(), contain_var_clause(), context, expression_tree_walker, SubscriptRoutines::fetch_leakproof, forthree, get_func_leakproof(), get_opcode(), getSubscriptingRoutines(), RowCompareExpr::largs, lfirst, lfirst_oid, lookup_type_cache(), nodeTag, OidIsValid, RowCompareExpr::rargs, SubscriptingRef::refassgnexpr, SubscriptRoutines::store_leakproof, and TYPECACHE_CMP_PROC.

Referenced by contain_leaked_vars().

◆ contain_mutable_functions()

◆ contain_mutable_functions_after_planning()

bool contain_mutable_functions_after_planning ( Expr expr)

Definition at line 490 of file clauses.c.

491 {
492  /* We assume here that expression_planner() won't scribble on its input */
493  expr = expression_planner(expr);
494 
495  /* Now we can search for non-immutable functions */
496  return contain_mutable_functions((Node *) expr);
497 }
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:370
Expr * expression_planner(Expr *expr)
Definition: planner.c:6457

References contain_mutable_functions(), and expression_planner().

Referenced by CheckPredicate(), ComputeIndexAttrs(), and cookDefault().

◆ contain_mutable_functions_checker()

static bool contain_mutable_functions_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 376 of file clauses.c.

377 {
378  return (func_volatile(func_id) != PROVOLATILE_IMMUTABLE);
379 }
char func_volatile(Oid funcid)
Definition: lsyscache.c:1780

References func_volatile().

Referenced by contain_mutable_functions_walker().

◆ contain_mutable_functions_walker()

static bool contain_mutable_functions_walker ( Node node,
void *  context 
)
static

Definition at line 382 of file clauses.c.

383 {
384  if (node == NULL)
385  return false;
386  /* Check for mutable functions in node itself */
388  context))
389  return true;
390 
391  if (IsA(node, JsonConstructorExpr))
392  {
393  const JsonConstructorExpr *ctor = (JsonConstructorExpr *) node;
394  ListCell *lc;
395  bool is_jsonb;
396 
397  is_jsonb = ctor->returning->format->format_type == JS_FORMAT_JSONB;
398 
399  /*
400  * Check argument_type => json[b] conversions specifically. We still
401  * recurse to check 'args' below, but here we want to specifically
402  * check whether or not the emitted clause would fail to be immutable
403  * because of TimeZone, for example.
404  */
405  foreach(lc, ctor->args)
406  {
407  Oid typid = exprType(lfirst(lc));
408 
409  if (is_jsonb ?
410  !to_jsonb_is_immutable(typid) :
411  !to_json_is_immutable(typid))
412  return true;
413  }
414 
415  /* Check all subnodes */
416  }
417 
418  if (IsA(node, JsonExpr))
419  {
420  JsonExpr *jexpr = castNode(JsonExpr, node);
421  Const *cnst;
422 
423  if (!IsA(jexpr->path_spec, Const))
424  return true;
425 
426  cnst = castNode(Const, jexpr->path_spec);
427 
428  Assert(cnst->consttype == JSONPATHOID);
429  if (cnst->constisnull)
430  return false;
431 
432  if (jspIsMutable(DatumGetJsonPathP(cnst->constvalue),
433  jexpr->passing_names, jexpr->passing_values))
434  return true;
435  }
436 
437  if (IsA(node, SQLValueFunction))
438  {
439  /* all variants of SQLValueFunction are stable */
440  return true;
441  }
442 
443  if (IsA(node, NextValueExpr))
444  {
445  /* NextValueExpr is volatile */
446  return true;
447  }
448 
449  /*
450  * It should be safe to treat MinMaxExpr as immutable, because it will
451  * depend on a non-cross-type btree comparison function, and those should
452  * always be immutable. Treating XmlExpr as immutable is more dubious,
453  * and treating CoerceToDomain as immutable is outright dangerous. But we
454  * have done so historically, and changing this would probably cause more
455  * problems than it would fix. In practice, if you have a non-immutable
456  * domain constraint you are in for pain anyhow.
457  */
458 
459  /* Recurse to check arguments */
460  if (IsA(node, Query))
461  {
462  /* Recurse into subselects */
463  return query_tree_walker((Query *) node,
465  context, 0);
466  }
468  context);
469 }
static bool contain_mutable_functions_checker(Oid func_id, void *context)
Definition: clauses.c:376
bool to_json_is_immutable(Oid typoid)
Definition: json.c:691
bool to_jsonb_is_immutable(Oid typoid)
Definition: jsonb.c:1049
bool jspIsMutable(JsonPath *path, List *varnames, List *varexprs)
Definition: jsonpath.c:1273
static JsonPath * DatumGetJsonPathP(Datum d)
Definition: jsonpath.h:35
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:156
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
@ JS_FORMAT_JSONB
Definition: primnodes.h:1610
Oid consttype
Definition: primnodes.h:312
JsonReturning * returning
Definition: primnodes.h:1676
List * passing_values
Definition: primnodes.h:1799
List * passing_names
Definition: primnodes.h:1798
Node * path_spec
Definition: primnodes.h:1792
JsonFormatType format_type
Definition: primnodes.h:1621
JsonFormat * format
Definition: primnodes.h:1633

References JsonConstructorExpr::args, Assert, castNode, check_functions_in_node(), Const::consttype, contain_mutable_functions_checker(), context, DatumGetJsonPathP(), expression_tree_walker, exprType(), JsonReturning::format, JsonFormat::format_type, IsA, JS_FORMAT_JSONB, jspIsMutable(), lfirst, JsonExpr::passing_names, JsonExpr::passing_values, JsonExpr::path_spec, query_tree_walker, JsonConstructorExpr::returning, to_json_is_immutable(), and to_jsonb_is_immutable().

Referenced by contain_mutable_functions().

◆ contain_non_const_walker()

static bool contain_non_const_walker ( Node node,
void *  context 
)
static

Definition at line 3723 of file clauses.c.

3724 {
3725  if (node == NULL)
3726  return false;
3727  if (IsA(node, Const))
3728  return false;
3729  if (IsA(node, List))
3731  /* Otherwise, abort the tree traversal and return true */
3732  return true;
3733 }
static bool contain_non_const_walker(Node *node, void *context)
Definition: clauses.c:3723

References context, expression_tree_walker, and IsA.

◆ contain_nonstrict_functions()

bool contain_nonstrict_functions ( Node clause)

Definition at line 993 of file clauses.c.

994 {
995  return contain_nonstrict_functions_walker(clause, NULL);
996 }
static bool contain_nonstrict_functions_walker(Node *node, void *context)
Definition: clauses.c:1005

References contain_nonstrict_functions_walker().

Referenced by inline_function().

◆ contain_nonstrict_functions_checker()

static bool contain_nonstrict_functions_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 999 of file clauses.c.

1000 {
1001  return !func_strict(func_id);
1002 }
bool func_strict(Oid funcid)
Definition: lsyscache.c:1761

References func_strict().

Referenced by contain_nonstrict_functions_walker().

◆ contain_nonstrict_functions_walker()

static bool contain_nonstrict_functions_walker ( Node node,
void *  context 
)
static

Definition at line 1005 of file clauses.c.

1006 {
1007  if (node == NULL)
1008  return false;
1009  if (IsA(node, Aggref))
1010  {
1011  /* an aggregate could return non-null with null input */
1012  return true;
1013  }
1014  if (IsA(node, GroupingFunc))
1015  {
1016  /*
1017  * A GroupingFunc doesn't evaluate its arguments, and therefore must
1018  * be treated as nonstrict.
1019  */
1020  return true;
1021  }
1022  if (IsA(node, WindowFunc))
1023  {
1024  /* a window function could return non-null with null input */
1025  return true;
1026  }
1027  if (IsA(node, SubscriptingRef))
1028  {
1029  SubscriptingRef *sbsref = (SubscriptingRef *) node;
1030  const SubscriptRoutines *sbsroutines;
1031 
1032  /* Subscripting assignment is always presumed nonstrict */
1033  if (sbsref->refassgnexpr != NULL)
1034  return true;
1035  /* Otherwise we must look up the subscripting support methods */
1036  sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype, NULL);
1037  if (!(sbsroutines && sbsroutines->fetch_strict))
1038  return true;
1039  /* else fall through to check args */
1040  }
1041  if (IsA(node, DistinctExpr))
1042  {
1043  /* IS DISTINCT FROM is inherently non-strict */
1044  return true;
1045  }
1046  if (IsA(node, NullIfExpr))
1047  {
1048  /* NULLIF is inherently non-strict */
1049  return true;
1050  }
1051  if (IsA(node, BoolExpr))
1052  {
1053  BoolExpr *expr = (BoolExpr *) node;
1054 
1055  switch (expr->boolop)
1056  {
1057  case AND_EXPR:
1058  case OR_EXPR:
1059  /* AND, OR are inherently non-strict */
1060  return true;
1061  default:
1062  break;
1063  }
1064  }
1065  if (IsA(node, SubLink))
1066  {
1067  /* In some cases a sublink might be strict, but in general not */
1068  return true;
1069  }
1070  if (IsA(node, SubPlan))
1071  return true;
1072  if (IsA(node, AlternativeSubPlan))
1073  return true;
1074  if (IsA(node, FieldStore))
1075  return true;
1076  if (IsA(node, CoerceViaIO))
1077  {
1078  /*
1079  * CoerceViaIO is strict regardless of whether the I/O functions are,
1080  * so just go look at its argument; asking check_functions_in_node is
1081  * useless expense and could deliver the wrong answer.
1082  */
1083  return contain_nonstrict_functions_walker((Node *) ((CoerceViaIO *) node)->arg,
1084  context);
1085  }
1086  if (IsA(node, ArrayCoerceExpr))
1087  {
1088  /*
1089  * ArrayCoerceExpr is strict at the array level, regardless of what
1090  * the per-element expression is; so we should ignore elemexpr and
1091  * recurse only into the arg.
1092  */
1094  context);
1095  }
1096  if (IsA(node, CaseExpr))
1097  return true;
1098  if (IsA(node, ArrayExpr))
1099  return true;
1100  if (IsA(node, RowExpr))
1101  return true;
1102  if (IsA(node, RowCompareExpr))
1103  return true;
1104  if (IsA(node, CoalesceExpr))
1105  return true;
1106  if (IsA(node, MinMaxExpr))
1107  return true;
1108  if (IsA(node, XmlExpr))
1109  return true;
1110  if (IsA(node, NullTest))
1111  return true;
1112  if (IsA(node, BooleanTest))
1113  return true;
1114 
1115  /* Check other function-containing nodes */
1117  context))
1118  return true;
1119 
1121  context);
1122 }
static bool contain_nonstrict_functions_checker(Oid func_id, void *context)
Definition: clauses.c:999
void * arg
@ AND_EXPR
Definition: primnodes.h:901
@ OR_EXPR
Definition: primnodes.h:901
BoolExprType boolop
Definition: primnodes.h:909

References AND_EXPR, arg, BoolExpr::boolop, check_functions_in_node(), contain_nonstrict_functions_checker(), context, expression_tree_walker, SubscriptRoutines::fetch_strict, getSubscriptingRoutines(), IsA, OR_EXPR, and SubscriptingRef::refassgnexpr.

Referenced by contain_nonstrict_functions().

◆ contain_subplans()

bool contain_subplans ( Node clause)

◆ contain_subplans_walker()

static bool contain_subplans_walker ( Node node,
void *  context 
)
static

Definition at line 336 of file clauses.c.

337 {
338  if (node == NULL)
339  return false;
340  if (IsA(node, SubPlan) ||
341  IsA(node, AlternativeSubPlan) ||
342  IsA(node, SubLink))
343  return true; /* abort the tree traversal and return true */
345 }

References context, expression_tree_walker, and IsA.

Referenced by contain_subplans().

◆ contain_volatile_functions()

◆ contain_volatile_functions_after_planning()

bool contain_volatile_functions_after_planning ( Expr expr)

Definition at line 659 of file clauses.c.

660 {
661  /* We assume here that expression_planner() won't scribble on its input */
662  expr = expression_planner(expr);
663 
664  /* Now we can search for volatile functions */
665  return contain_volatile_functions((Node *) expr);
666 }
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:538

References contain_volatile_functions(), and expression_planner().

Referenced by AddRelationNewConstraints().

◆ contain_volatile_functions_checker()

static bool contain_volatile_functions_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 544 of file clauses.c.

545 {
546  return (func_volatile(func_id) == PROVOLATILE_VOLATILE);
547 }

References func_volatile().

Referenced by contain_volatile_functions_walker().

◆ contain_volatile_functions_not_nextval()

bool contain_volatile_functions_not_nextval ( Node clause)

Definition at line 673 of file clauses.c.

674 {
676 }
static bool contain_volatile_functions_not_nextval_walker(Node *node, void *context)
Definition: clauses.c:686

References contain_volatile_functions_not_nextval_walker().

Referenced by BeginCopyFrom().

◆ contain_volatile_functions_not_nextval_checker()

static bool contain_volatile_functions_not_nextval_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 679 of file clauses.c.

680 {
681  return (func_id != F_NEXTVAL &&
682  func_volatile(func_id) == PROVOLATILE_VOLATILE);
683 }

References func_volatile().

Referenced by contain_volatile_functions_not_nextval_walker().

◆ contain_volatile_functions_not_nextval_walker()

static bool contain_volatile_functions_not_nextval_walker ( Node node,
void *  context 
)
static

Definition at line 686 of file clauses.c.

687 {
688  if (node == NULL)
689  return false;
690  /* Check for volatile functions in node itself */
691  if (check_functions_in_node(node,
693  context))
694  return true;
695 
696  /*
697  * See notes in contain_mutable_functions_walker about why we treat
698  * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
699  * SQLValueFunction is stable. Hence, none of them are of interest here.
700  * Also, since we're intentionally ignoring nextval(), presumably we
701  * should ignore NextValueExpr.
702  */
703 
704  /* Recurse to check arguments */
705  if (IsA(node, Query))
706  {
707  /* Recurse into subselects */
708  return query_tree_walker((Query *) node,
710  context, 0);
711  }
712  return expression_tree_walker(node,
714  context);
715 }
static bool contain_volatile_functions_not_nextval_checker(Oid func_id, void *context)
Definition: clauses.c:679

References check_functions_in_node(), contain_volatile_functions_not_nextval_checker(), context, expression_tree_walker, IsA, and query_tree_walker.

Referenced by contain_volatile_functions_not_nextval().

◆ contain_volatile_functions_walker()

static bool contain_volatile_functions_walker ( Node node,
void *  context 
)
static

Definition at line 550 of file clauses.c.

551 {
552  if (node == NULL)
553  return false;
554  /* Check for volatile functions in node itself */
556  context))
557  return true;
558 
559  if (IsA(node, NextValueExpr))
560  {
561  /* NextValueExpr is volatile */
562  return true;
563  }
564 
565  if (IsA(node, RestrictInfo))
566  {
567  RestrictInfo *rinfo = (RestrictInfo *) node;
568 
569  /*
570  * For RestrictInfo, check if we've checked the volatility of it
571  * before. If so, we can just use the cached value and not bother
572  * checking it again. Otherwise, check it and cache if whether we
573  * found any volatile functions.
574  */
575  if (rinfo->has_volatile == VOLATILITY_NOVOLATILE)
576  return false;
577  else if (rinfo->has_volatile == VOLATILITY_VOLATILE)
578  return true;
579  else
580  {
581  bool hasvolatile;
582 
583  hasvolatile = contain_volatile_functions_walker((Node *) rinfo->clause,
584  context);
585  if (hasvolatile)
586  rinfo->has_volatile = VOLATILITY_VOLATILE;
587  else
588  rinfo->has_volatile = VOLATILITY_NOVOLATILE;
589 
590  return hasvolatile;
591  }
592  }
593 
594  if (IsA(node, PathTarget))
595  {
596  PathTarget *target = (PathTarget *) node;
597 
598  /*
599  * We also do caching for PathTarget the same as we do above for
600  * RestrictInfos.
601  */
603  return false;
604  else if (target->has_volatile_expr == VOLATILITY_VOLATILE)
605  return true;
606  else
607  {
608  bool hasvolatile;
609 
610  hasvolatile = contain_volatile_functions_walker((Node *) target->exprs,
611  context);
612 
613  if (hasvolatile)
615  else
617 
618  return hasvolatile;
619  }
620  }
621 
622  /*
623  * See notes in contain_mutable_functions_walker about why we treat
624  * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
625  * SQLValueFunction is stable. Hence, none of them are of interest here.
626  */
627 
628  /* Recurse to check arguments */
629  if (IsA(node, Query))
630  {
631  /* Recurse into subselects */
632  return query_tree_walker((Query *) node,
634  context, 0);
635  }
637  context);
638 }
static bool contain_volatile_functions_checker(Oid func_id, void *context)
Definition: clauses.c:544
@ VOLATILITY_NOVOLATILE
Definition: pathnodes.h:1489
@ VOLATILITY_VOLATILE
Definition: pathnodes.h:1488
VolatileFunctionStatus has_volatile_expr
Definition: pathnodes.h:1534
List * exprs
Definition: pathnodes.h:1522
Expr * clause
Definition: pathnodes.h:2552

References check_functions_in_node(), RestrictInfo::clause, contain_volatile_functions_checker(), context, expression_tree_walker, PathTarget::exprs, PathTarget::has_volatile_expr, IsA, query_tree_walker, VOLATILITY_NOVOLATILE, and VOLATILITY_VOLATILE.

Referenced by contain_volatile_functions().

◆ contain_window_function()

bool contain_window_function ( Node clause)

Definition at line 214 of file clauses.c.

215 {
216  return contain_windowfuncs(clause);
217 }
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:215

References contain_windowfuncs().

Referenced by get_eclass_for_sort_expr().

◆ convert_saop_to_hashed_saop()

void convert_saop_to_hashed_saop ( Node node)

Definition at line 2287 of file clauses.c.

2288 {
2289  (void) convert_saop_to_hashed_saop_walker(node, NULL);
2290 }
static bool convert_saop_to_hashed_saop_walker(Node *node, void *context)
Definition: clauses.c:2293

References convert_saop_to_hashed_saop_walker().

Referenced by preprocess_expression().

◆ convert_saop_to_hashed_saop_walker()

static bool convert_saop_to_hashed_saop_walker ( Node node,
void *  context 
)
static

Definition at line 2293 of file clauses.c.

2294 {
2295  if (node == NULL)
2296  return false;
2297 
2298  if (IsA(node, ScalarArrayOpExpr))
2299  {
2300  ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2301  Expr *arrayarg = (Expr *) lsecond(saop->args);
2302  Oid lefthashfunc;
2303  Oid righthashfunc;
2304 
2305  if (arrayarg && IsA(arrayarg, Const) &&
2306  !((Const *) arrayarg)->constisnull)
2307  {
2308  if (saop->useOr)
2309  {
2310  if (get_op_hash_functions(saop->opno, &lefthashfunc, &righthashfunc) &&
2311  lefthashfunc == righthashfunc)
2312  {
2313  Datum arrdatum = ((Const *) arrayarg)->constvalue;
2314  ArrayType *arr = (ArrayType *) DatumGetPointer(arrdatum);
2315  int nitems;
2316 
2317  /*
2318  * Only fill in the hash functions if the array looks
2319  * large enough for it to be worth hashing instead of
2320  * doing a linear search.
2321  */
2322  nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
2323 
2325  {
2326  /* Looks good. Fill in the hash functions */
2327  saop->hashfuncid = lefthashfunc;
2328  }
2329  return true;
2330  }
2331  }
2332  else /* !saop->useOr */
2333  {
2334  Oid negator = get_negator(saop->opno);
2335 
2336  /*
2337  * Check if this is a NOT IN using an operator whose negator
2338  * is hashable. If so we can still build a hash table and
2339  * just ensure the lookup items are not in the hash table.
2340  */
2341  if (OidIsValid(negator) &&
2342  get_op_hash_functions(negator, &lefthashfunc, &righthashfunc) &&
2343  lefthashfunc == righthashfunc)
2344  {
2345  Datum arrdatum = ((Const *) arrayarg)->constvalue;
2346  ArrayType *arr = (ArrayType *) DatumGetPointer(arrdatum);
2347  int nitems;
2348 
2349  /*
2350  * Only fill in the hash functions if the array looks
2351  * large enough for it to be worth hashing instead of
2352  * doing a linear search.
2353  */
2354  nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
2355 
2357  {
2358  /* Looks good. Fill in the hash functions */
2359  saop->hashfuncid = lefthashfunc;
2360 
2361  /*
2362  * Also set the negfuncid. The executor will need
2363  * that to perform hashtable lookups.
2364  */
2365  saop->negfuncid = get_opcode(negator);
2366  }
2367  return true;
2368  }
2369  }
2370  }
2371  }
2372 
2374 }
#define ARR_NDIM(a)
Definition: array.h:290
#define ARR_DIMS(a)
Definition: array.h:294
int ArrayGetNItems(int ndim, const int *dims)
Definition: arrayutils.c:57
#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP
Definition: clauses.c:2269
#define nitems(x)
Definition: indent.h:31
bool get_op_hash_functions(Oid opno, RegProcedure *lhs_procno, RegProcedure *rhs_procno)
Definition: lsyscache.c:510
Oid get_negator(Oid opno)
Definition: lsyscache.c:1533
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312

References ScalarArrayOpExpr::args, ARR_DIMS, ARR_NDIM, ArrayGetNItems(), DatumGetPointer(), expression_tree_walker, get_negator(), get_op_hash_functions(), get_opcode(), IsA, lsecond, MIN_ARRAY_SIZE_FOR_HASHED_SAOP, nitems, OidIsValid, ScalarArrayOpExpr::opno, and ScalarArrayOpExpr::useOr.

Referenced by convert_saop_to_hashed_saop().

◆ ece_function_is_safe()

static bool ece_function_is_safe ( Oid  funcid,
eval_const_expressions_context context 
)
static

Definition at line 3739 of file clauses.c.

3740 {
3741  char provolatile = func_volatile(funcid);
3742 
3743  /*
3744  * Ordinarily we are only allowed to simplify immutable functions. But for
3745  * purposes of estimation, we consider it okay to simplify functions that
3746  * are merely stable; the risk that the result might change from planning
3747  * time to execution time is worth taking in preference to not being able
3748  * to estimate the value at all.
3749  */
3750  if (provolatile == PROVOLATILE_IMMUTABLE)
3751  return true;
3752  if (context->estimate && provolatile == PROVOLATILE_STABLE)
3753  return true;
3754  return false;
3755 }

References context, and func_volatile().

Referenced by eval_const_expressions_mutator().

◆ estimate_expression_value()

Node* estimate_expression_value ( PlannerInfo root,
Node node 
)

Definition at line 2395 of file clauses.c.

2396 {
2398 
2399  context.boundParams = root->glob->boundParams; /* bound Params */
2400  /* we do not need to mark the plan as depending on inlined functions */
2401  context.root = NULL;
2402  context.active_fns = NIL; /* nothing being recursively simplified */
2403  context.case_val = NULL; /* no CASE being examined */
2404  context.estimate = true; /* unsafe transformations OK */
2405  return eval_const_expressions_mutator(node, &context);
2406 }
#define NIL
Definition: pg_list.h:68
tree ctl root
Definition: radixtree.h:1880

References context, eval_const_expressions_mutator(), NIL, and root.

Referenced by array_unnest_support(), bernoulli_samplescangetsamplesize(), clause_selectivity_ext(), generate_series_int4_support(), generate_series_int8_support(), get_restriction_variable(), gincost_opexpr(), gincost_scalararrayopexpr(), preprocess_limit(), scalararraysel(), system_rows_samplescangetsamplesize(), system_samplescangetsamplesize(), and system_time_samplescangetsamplesize().

◆ eval_const_expressions()

Node* eval_const_expressions ( PlannerInfo root,
Node node 
)

Definition at line 2254 of file clauses.c.

2255 {
2257 
2258  if (root)
2259  context.boundParams = root->glob->boundParams; /* bound Params */
2260  else
2261  context.boundParams = NULL;
2262  context.root = root; /* for inlined-function dependencies */
2263  context.active_fns = NIL; /* nothing being recursively simplified */
2264  context.case_val = NULL; /* no CASE being examined */
2265  context.estimate = false; /* safe transformations only */
2266  return eval_const_expressions_mutator(node, &context);
2267 }

References context, eval_const_expressions_mutator(), NIL, and root.

Referenced by apply_child_basequals(), ATExecAttachPartition(), ConstraintImpliedByRelConstraint(), convert_EXISTS_to_ANY(), DetachAddConstraintIfNeeded(), DoCopy(), expression_planner(), expression_planner_with_deps(), fetch_statentries_for_relation(), get_proposed_default_constraint(), get_relation_constraints(), get_relation_statistics(), moveSplitTableRows(), preprocess_expression(), preprocess_function_rtes(), process_implied_equality(), RelationBuildPartitionKey(), RelationGetIndexExpressions(), RelationGetIndexPredicate(), and simplify_EXISTS_query().

◆ eval_const_expressions_mutator()

static Node * eval_const_expressions_mutator ( Node node,
eval_const_expressions_context context 
)
static

Definition at line 2440 of file clauses.c.

2442 {
2443 
2444  /* since this function recurses, it could be driven to stack overflow */
2446 
2447  if (node == NULL)
2448  return NULL;
2449  switch (nodeTag(node))
2450  {
2451  case T_Param:
2452  {
2453  Param *param = (Param *) node;
2454  ParamListInfo paramLI = context->boundParams;
2455 
2456  /* Look to see if we've been given a value for this Param */
2457  if (param->paramkind == PARAM_EXTERN &&
2458  paramLI != NULL &&
2459  param->paramid > 0 &&
2460  param->paramid <= paramLI->numParams)
2461  {
2462  ParamExternData *prm;
2463  ParamExternData prmdata;
2464 
2465  /*
2466  * Give hook a chance in case parameter is dynamic. Tell
2467  * it that this fetch is speculative, so it should avoid
2468  * erroring out if parameter is unavailable.
2469  */
2470  if (paramLI->paramFetch != NULL)
2471  prm = paramLI->paramFetch(paramLI, param->paramid,
2472  true, &prmdata);
2473  else
2474  prm = &paramLI->params[param->paramid - 1];
2475 
2476  /*
2477  * We don't just check OidIsValid, but insist that the
2478  * fetched type match the Param, just in case the hook did
2479  * something unexpected. No need to throw an error here
2480  * though; leave that for runtime.
2481  */
2482  if (OidIsValid(prm->ptype) &&
2483  prm->ptype == param->paramtype)
2484  {
2485  /* OK to substitute parameter value? */
2486  if (context->estimate ||
2487  (prm->pflags & PARAM_FLAG_CONST))
2488  {
2489  /*
2490  * Return a Const representing the param value.
2491  * Must copy pass-by-ref datatypes, since the
2492  * Param might be in a memory context
2493  * shorter-lived than our output plan should be.
2494  */
2495  int16 typLen;
2496  bool typByVal;
2497  Datum pval;
2498  Const *con;
2499 
2500  get_typlenbyval(param->paramtype,
2501  &typLen, &typByVal);
2502  if (prm->isnull || typByVal)
2503  pval = prm->value;
2504  else
2505  pval = datumCopy(prm->value, typByVal, typLen);
2506  con = makeConst(param->paramtype,
2507  param->paramtypmod,
2508  param->paramcollid,
2509  (int) typLen,
2510  pval,
2511  prm->isnull,
2512  typByVal);
2513  con->location = param->location;
2514  return (Node *) con;
2515  }
2516  }
2517  }
2518 
2519  /*
2520  * Not replaceable, so just copy the Param (no need to
2521  * recurse)
2522  */
2523  return (Node *) copyObject(param);
2524  }
2525  case T_WindowFunc:
2526  {
2527  WindowFunc *expr = (WindowFunc *) node;
2528  Oid funcid = expr->winfnoid;
2529  List *args;
2530  Expr *aggfilter;
2531  HeapTuple func_tuple;
2532  WindowFunc *newexpr;
2533 
2534  /*
2535  * We can't really simplify a WindowFunc node, but we mustn't
2536  * just fall through to the default processing, because we
2537  * have to apply expand_function_arguments to its argument
2538  * list. That takes care of inserting default arguments and
2539  * expanding named-argument notation.
2540  */
2541  func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2542  if (!HeapTupleIsValid(func_tuple))
2543  elog(ERROR, "cache lookup failed for function %u", funcid);
2544 
2546  false, expr->wintype,
2547  func_tuple);
2548 
2549  ReleaseSysCache(func_tuple);
2550 
2551  /* Now, recursively simplify the args (which are a List) */
2552  args = (List *)
2555  (void *) context);
2556  /* ... and the filter expression, which isn't */
2557  aggfilter = (Expr *)
2559  context);
2560 
2561  /* And build the replacement WindowFunc node */
2562  newexpr = makeNode(WindowFunc);
2563  newexpr->winfnoid = expr->winfnoid;
2564  newexpr->wintype = expr->wintype;
2565  newexpr->wincollid = expr->wincollid;
2566  newexpr->inputcollid = expr->inputcollid;
2567  newexpr->args = args;
2568  newexpr->aggfilter = aggfilter;
2569  newexpr->winref = expr->winref;
2570  newexpr->winstar = expr->winstar;
2571  newexpr->winagg = expr->winagg;
2572  newexpr->location = expr->location;
2573 
2574  return (Node *) newexpr;
2575  }
2576  case T_FuncExpr:
2577  {
2578  FuncExpr *expr = (FuncExpr *) node;
2579  List *args = expr->args;
2580  Expr *simple;
2581  FuncExpr *newexpr;
2582 
2583  /*
2584  * Code for op/func reduction is pretty bulky, so split it out
2585  * as a separate function. Note: exprTypmod normally returns
2586  * -1 for a FuncExpr, but not when the node is recognizably a
2587  * length coercion; we want to preserve the typmod in the
2588  * eventual Const if so.
2589  */
2590  simple = simplify_function(expr->funcid,
2591  expr->funcresulttype,
2592  exprTypmod(node),
2593  expr->funccollid,
2594  expr->inputcollid,
2595  &args,
2596  expr->funcvariadic,
2597  true,
2598  true,
2599  context);
2600  if (simple) /* successfully simplified it */
2601  return (Node *) simple;
2602 
2603  /*
2604  * The expression cannot be simplified any further, so build
2605  * and return a replacement FuncExpr node using the
2606  * possibly-simplified arguments. Note that we have also
2607  * converted the argument list to positional notation.
2608  */
2609  newexpr = makeNode(FuncExpr);
2610  newexpr->funcid = expr->funcid;
2611  newexpr->funcresulttype = expr->funcresulttype;
2612  newexpr->funcretset = expr->funcretset;
2613  newexpr->funcvariadic = expr->funcvariadic;
2614  newexpr->funcformat = expr->funcformat;
2615  newexpr->funccollid = expr->funccollid;
2616  newexpr->inputcollid = expr->inputcollid;
2617  newexpr->args = args;
2618  newexpr->location = expr->location;
2619  return (Node *) newexpr;
2620  }
2621  case T_OpExpr:
2622  {
2623  OpExpr *expr = (OpExpr *) node;
2624  List *args = expr->args;
2625  Expr *simple;
2626  OpExpr *newexpr;
2627 
2628  /*
2629  * Need to get OID of underlying function. Okay to scribble
2630  * on input to this extent.
2631  */
2632  set_opfuncid(expr);
2633 
2634  /*
2635  * Code for op/func reduction is pretty bulky, so split it out
2636  * as a separate function.
2637  */
2638  simple = simplify_function(expr->opfuncid,
2639  expr->opresulttype, -1,
2640  expr->opcollid,
2641  expr->inputcollid,
2642  &args,
2643  false,
2644  true,
2645  true,
2646  context);
2647  if (simple) /* successfully simplified it */
2648  return (Node *) simple;
2649 
2650  /*
2651  * If the operator is boolean equality or inequality, we know
2652  * how to simplify cases involving one constant and one
2653  * non-constant argument.
2654  */
2655  if (expr->opno == BooleanEqualOperator ||
2656  expr->opno == BooleanNotEqualOperator)
2657  {
2658  simple = (Expr *) simplify_boolean_equality(expr->opno,
2659  args);
2660  if (simple) /* successfully simplified it */
2661  return (Node *) simple;
2662  }
2663 
2664  /*
2665  * The expression cannot be simplified any further, so build
2666  * and return a replacement OpExpr node using the
2667  * possibly-simplified arguments.
2668  */
2669  newexpr = makeNode(OpExpr);
2670  newexpr->opno = expr->opno;
2671  newexpr->opfuncid = expr->opfuncid;
2672  newexpr->opresulttype = expr->opresulttype;
2673  newexpr->opretset = expr->opretset;
2674  newexpr->opcollid = expr->opcollid;
2675  newexpr->inputcollid = expr->inputcollid;
2676  newexpr->args = args;
2677  newexpr->location = expr->location;
2678  return (Node *) newexpr;
2679  }
2680  case T_DistinctExpr:
2681  {
2682  DistinctExpr *expr = (DistinctExpr *) node;
2683  List *args;
2684  ListCell *arg;
2685  bool has_null_input = false;
2686  bool all_null_input = true;
2687  bool has_nonconst_input = false;
2688  Expr *simple;
2689  DistinctExpr *newexpr;
2690 
2691  /*
2692  * Reduce constants in the DistinctExpr's arguments. We know
2693  * args is either NIL or a List node, so we can call
2694  * expression_tree_mutator directly rather than recursing to
2695  * self.
2696  */
2697  args = (List *) expression_tree_mutator((Node *) expr->args,
2699  (void *) context);
2700 
2701  /*
2702  * We must do our own check for NULLs because DistinctExpr has
2703  * different results for NULL input than the underlying
2704  * operator does.
2705  */
2706  foreach(arg, args)
2707  {
2708  if (IsA(lfirst(arg), Const))
2709  {
2710  has_null_input |= ((Const *) lfirst(arg))->constisnull;
2711  all_null_input &= ((Const *) lfirst(arg))->constisnull;
2712  }
2713  else
2714  has_nonconst_input = true;
2715  }
2716 
2717  /* all constants? then can optimize this out */
2718  if (!has_nonconst_input)
2719  {
2720  /* all nulls? then not distinct */
2721  if (all_null_input)
2722  return makeBoolConst(false, false);
2723 
2724  /* one null? then distinct */
2725  if (has_null_input)
2726  return makeBoolConst(true, false);
2727 
2728  /* otherwise try to evaluate the '=' operator */
2729  /* (NOT okay to try to inline it, though!) */
2730 
2731  /*
2732  * Need to get OID of underlying function. Okay to
2733  * scribble on input to this extent.
2734  */
2735  set_opfuncid((OpExpr *) expr); /* rely on struct
2736  * equivalence */
2737 
2738  /*
2739  * Code for op/func reduction is pretty bulky, so split it
2740  * out as a separate function.
2741  */
2742  simple = simplify_function(expr->opfuncid,
2743  expr->opresulttype, -1,
2744  expr->opcollid,
2745  expr->inputcollid,
2746  &args,
2747  false,
2748  false,
2749  false,
2750  context);
2751  if (simple) /* successfully simplified it */
2752  {
2753  /*
2754  * Since the underlying operator is "=", must negate
2755  * its result
2756  */
2757  Const *csimple = castNode(Const, simple);
2758 
2759  csimple->constvalue =
2760  BoolGetDatum(!DatumGetBool(csimple->constvalue));
2761  return (Node *) csimple;
2762  }
2763  }
2764 
2765  /*
2766  * The expression cannot be simplified any further, so build
2767  * and return a replacement DistinctExpr node using the
2768  * possibly-simplified arguments.
2769  */
2770  newexpr = makeNode(DistinctExpr);
2771  newexpr->opno = expr->opno;
2772  newexpr->opfuncid = expr->opfuncid;
2773  newexpr->opresulttype = expr->opresulttype;
2774  newexpr->opretset = expr->opretset;
2775  newexpr->opcollid = expr->opcollid;
2776  newexpr->inputcollid = expr->inputcollid;
2777  newexpr->args = args;
2778  newexpr->location = expr->location;
2779  return (Node *) newexpr;
2780  }
2781  case T_NullIfExpr:
2782  {
2783  NullIfExpr *expr;
2784  ListCell *arg;
2785  bool has_nonconst_input = false;
2786 
2787  /* Copy the node and const-simplify its arguments */
2788  expr = (NullIfExpr *) ece_generic_processing(node);
2789 
2790  /* If either argument is NULL they can't be equal */
2791  foreach(arg, expr->args)
2792  {
2793  if (!IsA(lfirst(arg), Const))
2794  has_nonconst_input = true;
2795  else if (((Const *) lfirst(arg))->constisnull)
2796  return (Node *) linitial(expr->args);
2797  }
2798 
2799  /*
2800  * Need to get OID of underlying function before checking if
2801  * the function is OK to evaluate.
2802  */
2803  set_opfuncid((OpExpr *) expr);
2804 
2805  if (!has_nonconst_input &&
2806  ece_function_is_safe(expr->opfuncid, context))
2807  return ece_evaluate_expr(expr);
2808 
2809  return (Node *) expr;
2810  }
2811  case T_ScalarArrayOpExpr:
2812  {
2813  ScalarArrayOpExpr *saop;
2814 
2815  /* Copy the node and const-simplify its arguments */
2816  saop = (ScalarArrayOpExpr *) ece_generic_processing(node);
2817 
2818  /* Make sure we know underlying function */
2819  set_sa_opfuncid(saop);
2820 
2821  /*
2822  * If all arguments are Consts, and it's a safe function, we
2823  * can fold to a constant
2824  */
2825  if (ece_all_arguments_const(saop) &&
2826  ece_function_is_safe(saop->opfuncid, context))
2827  return ece_evaluate_expr(saop);
2828  return (Node *) saop;
2829  }
2830  case T_BoolExpr:
2831  {
2832  BoolExpr *expr = (BoolExpr *) node;
2833 
2834  switch (expr->boolop)
2835  {
2836  case OR_EXPR:
2837  {
2838  List *newargs;
2839  bool haveNull = false;
2840  bool forceTrue = false;
2841 
2842  newargs = simplify_or_arguments(expr->args,
2843  context,
2844  &haveNull,
2845  &forceTrue);
2846  if (forceTrue)
2847  return makeBoolConst(true, false);
2848  if (haveNull)
2849  newargs = lappend(newargs,
2850  makeBoolConst(false, true));
2851  /* If all the inputs are FALSE, result is FALSE */
2852  if (newargs == NIL)
2853  return makeBoolConst(false, false);
2854 
2855  /*
2856  * If only one nonconst-or-NULL input, it's the
2857  * result
2858  */
2859  if (list_length(newargs) == 1)
2860  return (Node *) linitial(newargs);
2861  /* Else we still need an OR node */
2862  return (Node *) make_orclause(newargs);
2863  }
2864  case AND_EXPR:
2865  {
2866  List *newargs;
2867  bool haveNull = false;
2868  bool forceFalse = false;
2869 
2870  newargs = simplify_and_arguments(expr->args,
2871  context,
2872  &haveNull,
2873  &forceFalse);
2874  if (forceFalse)
2875  return makeBoolConst(false, false);
2876  if (haveNull)
2877  newargs = lappend(newargs,
2878  makeBoolConst(false, true));
2879  /* If all the inputs are TRUE, result is TRUE */
2880  if (newargs == NIL)
2881  return makeBoolConst(true, false);
2882 
2883  /*
2884  * If only one nonconst-or-NULL input, it's the
2885  * result
2886  */
2887  if (list_length(newargs) == 1)
2888  return (Node *) linitial(newargs);
2889  /* Else we still need an AND node */
2890  return (Node *) make_andclause(newargs);
2891  }
2892  case NOT_EXPR:
2893  {
2894  Node *arg;
2895 
2896  Assert(list_length(expr->args) == 1);
2898  context);
2899 
2900  /*
2901  * Use negate_clause() to see if we can simplify
2902  * away the NOT.
2903  */
2904  return negate_clause(arg);
2905  }
2906  default:
2907  elog(ERROR, "unrecognized boolop: %d",
2908  (int) expr->boolop);
2909  break;
2910  }
2911  break;
2912  }
2913 
2914  case T_JsonValueExpr:
2915  {
2916  JsonValueExpr *jve = (JsonValueExpr *) node;
2917  Node *formatted;
2918 
2919  formatted = eval_const_expressions_mutator((Node *) jve->formatted_expr,
2920  context);
2921  if (formatted && IsA(formatted, Const))
2922  return formatted;
2923  break;
2924  }
2925 
2926  case T_SubPlan:
2927  case T_AlternativeSubPlan:
2928 
2929  /*
2930  * Return a SubPlan unchanged --- too late to do anything with it.
2931  *
2932  * XXX should we ereport() here instead? Probably this routine
2933  * should never be invoked after SubPlan creation.
2934  */
2935  return node;
2936  case T_RelabelType:
2937  {
2938  RelabelType *relabel = (RelabelType *) node;
2939  Node *arg;
2940 
2941  /* Simplify the input ... */
2942  arg = eval_const_expressions_mutator((Node *) relabel->arg,
2943  context);
2944  /* ... and attach a new RelabelType node, if needed */
2945  return applyRelabelType(arg,
2946  relabel->resulttype,
2947  relabel->resulttypmod,
2948  relabel->resultcollid,
2949  relabel->relabelformat,
2950  relabel->location,
2951  true);
2952  }
2953  case T_CoerceViaIO:
2954  {
2955  CoerceViaIO *expr = (CoerceViaIO *) node;
2956  List *args;
2957  Oid outfunc;
2958  bool outtypisvarlena;
2959  Oid infunc;
2960  Oid intypioparam;
2961  Expr *simple;
2962  CoerceViaIO *newexpr;
2963 
2964  /* Make a List so we can use simplify_function */
2965  args = list_make1(expr->arg);
2966 
2967  /*
2968  * CoerceViaIO represents calling the source type's output
2969  * function then the result type's input function. So, try to
2970  * simplify it as though it were a stack of two such function
2971  * calls. First we need to know what the functions are.
2972  *
2973  * Note that the coercion functions are assumed not to care
2974  * about input collation, so we just pass InvalidOid for that.
2975  */
2976  getTypeOutputInfo(exprType((Node *) expr->arg),
2977  &outfunc, &outtypisvarlena);
2979  &infunc, &intypioparam);
2980 
2981  simple = simplify_function(outfunc,
2982  CSTRINGOID, -1,
2983  InvalidOid,
2984  InvalidOid,
2985  &args,
2986  false,
2987  true,
2988  true,
2989  context);
2990  if (simple) /* successfully simplified output fn */
2991  {
2992  /*
2993  * Input functions may want 1 to 3 arguments. We always
2994  * supply all three, trusting that nothing downstream will
2995  * complain.
2996  */
2997  args = list_make3(simple,
2998  makeConst(OIDOID,
2999  -1,
3000  InvalidOid,
3001  sizeof(Oid),
3002  ObjectIdGetDatum(intypioparam),
3003  false,
3004  true),
3005  makeConst(INT4OID,
3006  -1,
3007  InvalidOid,
3008  sizeof(int32),
3009  Int32GetDatum(-1),
3010  false,
3011  true));
3012 
3013  simple = simplify_function(infunc,
3014  expr->resulttype, -1,
3015  expr->resultcollid,
3016  InvalidOid,
3017  &args,
3018  false,
3019  false,
3020  true,
3021  context);
3022  if (simple) /* successfully simplified input fn */
3023  return (Node *) simple;
3024  }
3025 
3026  /*
3027  * The expression cannot be simplified any further, so build
3028  * and return a replacement CoerceViaIO node using the
3029  * possibly-simplified argument.
3030  */
3031  newexpr = makeNode(CoerceViaIO);
3032  newexpr->arg = (Expr *) linitial(args);
3033  newexpr->resulttype = expr->resulttype;
3034  newexpr->resultcollid = expr->resultcollid;
3035  newexpr->coerceformat = expr->coerceformat;
3036  newexpr->location = expr->location;
3037  return (Node *) newexpr;
3038  }
3039  case T_ArrayCoerceExpr:
3040  {
3042  Node *save_case_val;
3043 
3044  /*
3045  * Copy the node and const-simplify its arguments. We can't
3046  * use ece_generic_processing() here because we need to mess
3047  * with case_val only while processing the elemexpr.
3048  */
3049  memcpy(ac, node, sizeof(ArrayCoerceExpr));
3050  ac->arg = (Expr *)
3052  context);
3053 
3054  /*
3055  * Set up for the CaseTestExpr node contained in the elemexpr.
3056  * We must prevent it from absorbing any outer CASE value.
3057  */
3058  save_case_val = context->case_val;
3059  context->case_val = NULL;
3060 
3061  ac->elemexpr = (Expr *)
3063  context);
3064 
3065  context->case_val = save_case_val;
3066 
3067  /*
3068  * If constant argument and the per-element expression is
3069  * immutable, we can simplify the whole thing to a constant.
3070  * Exception: although contain_mutable_functions considers
3071  * CoerceToDomain immutable for historical reasons, let's not
3072  * do so here; this ensures coercion to an array-over-domain
3073  * does not apply the domain's constraints until runtime.
3074  */
3075  if (ac->arg && IsA(ac->arg, Const) &&
3076  ac->elemexpr && !IsA(ac->elemexpr, CoerceToDomain) &&
3078  return ece_evaluate_expr(ac);
3079 
3080  return (Node *) ac;
3081  }
3082  case T_CollateExpr:
3083  {
3084  /*
3085  * We replace CollateExpr with RelabelType, so as to improve
3086  * uniformity of expression representation and thus simplify
3087  * comparison of expressions. Hence this looks very nearly
3088  * the same as the RelabelType case, and we can apply the same
3089  * optimizations to avoid unnecessary RelabelTypes.
3090  */
3091  CollateExpr *collate = (CollateExpr *) node;
3092  Node *arg;
3093 
3094  /* Simplify the input ... */
3095  arg = eval_const_expressions_mutator((Node *) collate->arg,
3096  context);
3097  /* ... and attach a new RelabelType node, if needed */
3098  return applyRelabelType(arg,
3099  exprType(arg),
3100  exprTypmod(arg),
3101  collate->collOid,
3103  collate->location,
3104  true);
3105  }
3106  case T_CaseExpr:
3107  {
3108  /*----------
3109  * CASE expressions can be simplified if there are constant
3110  * condition clauses:
3111  * FALSE (or NULL): drop the alternative
3112  * TRUE: drop all remaining alternatives
3113  * If the first non-FALSE alternative is a constant TRUE,
3114  * we can simplify the entire CASE to that alternative's
3115  * expression. If there are no non-FALSE alternatives,
3116  * we simplify the entire CASE to the default result (ELSE).
3117  *
3118  * If we have a simple-form CASE with constant test
3119  * expression, we substitute the constant value for contained
3120  * CaseTestExpr placeholder nodes, so that we have the
3121  * opportunity to reduce constant test conditions. For
3122  * example this allows
3123  * CASE 0 WHEN 0 THEN 1 ELSE 1/0 END
3124  * to reduce to 1 rather than drawing a divide-by-0 error.
3125  * Note that when the test expression is constant, we don't
3126  * have to include it in the resulting CASE; for example
3127  * CASE 0 WHEN x THEN y ELSE z END
3128  * is transformed by the parser to
3129  * CASE 0 WHEN CaseTestExpr = x THEN y ELSE z END
3130  * which we can simplify to
3131  * CASE WHEN 0 = x THEN y ELSE z END
3132  * It is not necessary for the executor to evaluate the "arg"
3133  * expression when executing the CASE, since any contained
3134  * CaseTestExprs that might have referred to it will have been
3135  * replaced by the constant.
3136  *----------
3137  */
3138  CaseExpr *caseexpr = (CaseExpr *) node;
3139  CaseExpr *newcase;
3140  Node *save_case_val;
3141  Node *newarg;
3142  List *newargs;
3143  bool const_true_cond;
3144  Node *defresult = NULL;
3145  ListCell *arg;
3146 
3147  /* Simplify the test expression, if any */
3148  newarg = eval_const_expressions_mutator((Node *) caseexpr->arg,
3149  context);
3150 
3151  /* Set up for contained CaseTestExpr nodes */
3152  save_case_val = context->case_val;
3153  if (newarg && IsA(newarg, Const))
3154  {
3155  context->case_val = newarg;
3156  newarg = NULL; /* not needed anymore, see above */
3157  }
3158  else
3159  context->case_val = NULL;
3160 
3161  /* Simplify the WHEN clauses */
3162  newargs = NIL;
3163  const_true_cond = false;
3164  foreach(arg, caseexpr->args)
3165  {
3166  CaseWhen *oldcasewhen = lfirst_node(CaseWhen, arg);
3167  Node *casecond;
3168  Node *caseresult;
3169 
3170  /* Simplify this alternative's test condition */
3171  casecond = eval_const_expressions_mutator((Node *) oldcasewhen->expr,
3172  context);
3173 
3174  /*
3175  * If the test condition is constant FALSE (or NULL), then
3176  * drop this WHEN clause completely, without processing
3177  * the result.
3178  */
3179  if (casecond && IsA(casecond, Const))
3180  {
3181  Const *const_input = (Const *) casecond;
3182 
3183  if (const_input->constisnull ||
3184  !DatumGetBool(const_input->constvalue))
3185  continue; /* drop alternative with FALSE cond */
3186  /* Else it's constant TRUE */
3187  const_true_cond = true;
3188  }
3189 
3190  /* Simplify this alternative's result value */
3191  caseresult = eval_const_expressions_mutator((Node *) oldcasewhen->result,
3192  context);
3193 
3194  /* If non-constant test condition, emit a new WHEN node */
3195  if (!const_true_cond)
3196  {
3197  CaseWhen *newcasewhen = makeNode(CaseWhen);
3198 
3199  newcasewhen->expr = (Expr *) casecond;
3200  newcasewhen->result = (Expr *) caseresult;
3201  newcasewhen->location = oldcasewhen->location;
3202  newargs = lappend(newargs, newcasewhen);
3203  continue;
3204  }
3205 
3206  /*
3207  * Found a TRUE condition, so none of the remaining
3208  * alternatives can be reached. We treat the result as
3209  * the default result.
3210  */
3211  defresult = caseresult;
3212  break;
3213  }
3214 
3215  /* Simplify the default result, unless we replaced it above */
3216  if (!const_true_cond)
3217  defresult = eval_const_expressions_mutator((Node *) caseexpr->defresult,
3218  context);
3219 
3220  context->case_val = save_case_val;
3221 
3222  /*
3223  * If no non-FALSE alternatives, CASE reduces to the default
3224  * result
3225  */
3226  if (newargs == NIL)
3227  return defresult;
3228  /* Otherwise we need a new CASE node */
3229  newcase = makeNode(CaseExpr);
3230  newcase->casetype = caseexpr->casetype;
3231  newcase->casecollid = caseexpr->casecollid;
3232  newcase->arg = (Expr *) newarg;
3233  newcase->args = newargs;
3234  newcase->defresult = (Expr *) defresult;
3235  newcase->location = caseexpr->location;
3236  return (Node *) newcase;
3237  }
3238  case T_CaseTestExpr:
3239  {
3240  /*
3241  * If we know a constant test value for the current CASE
3242  * construct, substitute it for the placeholder. Else just
3243  * return the placeholder as-is.
3244  */
3245  if (context->case_val)
3246  return copyObject(context->case_val);
3247  else
3248  return copyObject(node);
3249  }
3250  case T_SubscriptingRef:
3251  case T_ArrayExpr:
3252  case T_RowExpr:
3253  case T_MinMaxExpr:
3254  {
3255  /*
3256  * Generic handling for node types whose own processing is
3257  * known to be immutable, and for which we need no smarts
3258  * beyond "simplify if all inputs are constants".
3259  *
3260  * Treating SubscriptingRef this way assumes that subscripting
3261  * fetch and assignment are both immutable. This constrains
3262  * type-specific subscripting implementations; maybe we should
3263  * relax it someday.
3264  *
3265  * Treating MinMaxExpr this way amounts to assuming that the
3266  * btree comparison function it calls is immutable; see the
3267  * reasoning in contain_mutable_functions_walker.
3268  */
3269 
3270  /* Copy the node and const-simplify its arguments */
3271  node = ece_generic_processing(node);
3272  /* If all arguments are Consts, we can fold to a constant */
3273  if (ece_all_arguments_const(node))
3274  return ece_evaluate_expr(node);
3275  return node;
3276  }
3277  case T_CoalesceExpr:
3278  {
3279  CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
3280  CoalesceExpr *newcoalesce;
3281  List *newargs;
3282  ListCell *arg;
3283 
3284  newargs = NIL;
3285  foreach(arg, coalesceexpr->args)
3286  {
3287  Node *e;
3288 
3290  context);
3291 
3292  /*
3293  * We can remove null constants from the list. For a
3294  * non-null constant, if it has not been preceded by any
3295  * other non-null-constant expressions then it is the
3296  * result. Otherwise, it's the next argument, but we can
3297  * drop following arguments since they will never be
3298  * reached.
3299  */
3300  if (IsA(e, Const))
3301  {
3302  if (((Const *) e)->constisnull)
3303  continue; /* drop null constant */
3304  if (newargs == NIL)
3305  return e; /* first expr */
3306  newargs = lappend(newargs, e);
3307  break;
3308  }
3309  newargs = lappend(newargs, e);
3310  }
3311 
3312  /*
3313  * If all the arguments were constant null, the result is just
3314  * null
3315  */
3316  if (newargs == NIL)
3317  return (Node *) makeNullConst(coalesceexpr->coalescetype,
3318  -1,
3319  coalesceexpr->coalescecollid);
3320 
3321  newcoalesce = makeNode(CoalesceExpr);
3322  newcoalesce->coalescetype = coalesceexpr->coalescetype;
3323  newcoalesce->coalescecollid = coalesceexpr->coalescecollid;
3324  newcoalesce->args = newargs;
3325  newcoalesce->location = coalesceexpr->location;
3326  return (Node *) newcoalesce;
3327  }
3328  case T_SQLValueFunction:
3329  {
3330  /*
3331  * All variants of SQLValueFunction are stable, so if we are
3332  * estimating the expression's value, we should evaluate the
3333  * current function value. Otherwise just copy.
3334  */
3335  SQLValueFunction *svf = (SQLValueFunction *) node;
3336 
3337  if (context->estimate)
3338  return (Node *) evaluate_expr((Expr *) svf,
3339  svf->type,
3340  svf->typmod,
3341  InvalidOid);
3342  else
3343  return copyObject((Node *) svf);
3344  }
3345  case T_FieldSelect:
3346  {
3347  /*
3348  * We can optimize field selection from a whole-row Var into a
3349  * simple Var. (This case won't be generated directly by the
3350  * parser, because ParseComplexProjection short-circuits it.
3351  * But it can arise while simplifying functions.) Also, we
3352  * can optimize field selection from a RowExpr construct, or
3353  * of course from a constant.
3354  *
3355  * However, replacing a whole-row Var in this way has a
3356  * pitfall: if we've already built the rel targetlist for the
3357  * source relation, then the whole-row Var is scheduled to be
3358  * produced by the relation scan, but the simple Var probably
3359  * isn't, which will lead to a failure in setrefs.c. This is
3360  * not a problem when handling simple single-level queries, in
3361  * which expression simplification always happens first. It
3362  * is a risk for lateral references from subqueries, though.
3363  * To avoid such failures, don't optimize uplevel references.
3364  *
3365  * We must also check that the declared type of the field is
3366  * still the same as when the FieldSelect was created --- this
3367  * can change if someone did ALTER COLUMN TYPE on the rowtype.
3368  * If it isn't, we skip the optimization; the case will
3369  * probably fail at runtime, but that's not our problem here.
3370  */
3371  FieldSelect *fselect = (FieldSelect *) node;
3372  FieldSelect *newfselect;
3373  Node *arg;
3374 
3375  arg = eval_const_expressions_mutator((Node *) fselect->arg,
3376  context);
3377  if (arg && IsA(arg, Var) &&
3378  ((Var *) arg)->varattno == InvalidAttrNumber &&
3379  ((Var *) arg)->varlevelsup == 0)
3380  {
3381  if (rowtype_field_matches(((Var *) arg)->vartype,
3382  fselect->fieldnum,
3383  fselect->resulttype,
3384  fselect->resulttypmod,
3385  fselect->resultcollid))
3386  {
3387  Var *newvar;
3388 
3389  newvar = makeVar(((Var *) arg)->varno,
3390  fselect->fieldnum,
3391  fselect->resulttype,
3392  fselect->resulttypmod,
3393  fselect->resultcollid,
3394  ((Var *) arg)->varlevelsup);
3395  /* New Var is nullable by same rels as the old one */
3396  newvar->varnullingrels = ((Var *) arg)->varnullingrels;
3397  return (Node *) newvar;
3398  }
3399  }
3400  if (arg && IsA(arg, RowExpr))
3401  {
3402  RowExpr *rowexpr = (RowExpr *) arg;
3403 
3404  if (fselect->fieldnum > 0 &&
3405  fselect->fieldnum <= list_length(rowexpr->args))
3406  {
3407  Node *fld = (Node *) list_nth(rowexpr->args,
3408  fselect->fieldnum - 1);
3409 
3410  if (rowtype_field_matches(rowexpr->row_typeid,
3411  fselect->fieldnum,
3412  fselect->resulttype,
3413  fselect->resulttypmod,
3414  fselect->resultcollid) &&
3415  fselect->resulttype == exprType(fld) &&
3416  fselect->resulttypmod == exprTypmod(fld) &&
3417  fselect->resultcollid == exprCollation(fld))
3418  return fld;
3419  }
3420  }
3421  newfselect = makeNode(FieldSelect);
3422  newfselect->arg = (Expr *) arg;
3423  newfselect->fieldnum = fselect->fieldnum;
3424  newfselect->resulttype = fselect->resulttype;
3425  newfselect->resulttypmod = fselect->resulttypmod;
3426  newfselect->resultcollid = fselect->resultcollid;
3427  if (arg && IsA(arg, Const))
3428  {
3429  Const *con = (Const *) arg;
3430 
3432  newfselect->fieldnum,
3433  newfselect->resulttype,
3434  newfselect->resulttypmod,
3435  newfselect->resultcollid))
3436  return ece_evaluate_expr(newfselect);
3437  }
3438  return (Node *) newfselect;
3439  }
3440  case T_NullTest:
3441  {
3442  NullTest *ntest = (NullTest *) node;
3443  NullTest *newntest;
3444  Node *arg;
3445 
3447  context);
3448  if (ntest->argisrow && arg && IsA(arg, RowExpr))
3449  {
3450  /*
3451  * We break ROW(...) IS [NOT] NULL into separate tests on
3452  * its component fields. This form is usually more
3453  * efficient to evaluate, as well as being more amenable
3454  * to optimization.
3455  */
3456  RowExpr *rarg = (RowExpr *) arg;
3457  List *newargs = NIL;
3458  ListCell *l;
3459 
3460  foreach(l, rarg->args)
3461  {
3462  Node *relem = (Node *) lfirst(l);
3463 
3464  /*
3465  * A constant field refutes the whole NullTest if it's
3466  * of the wrong nullness; else we can discard it.
3467  */
3468  if (relem && IsA(relem, Const))
3469  {
3470  Const *carg = (Const *) relem;
3471 
3472  if (carg->constisnull ?
3473  (ntest->nulltesttype == IS_NOT_NULL) :
3474  (ntest->nulltesttype == IS_NULL))
3475  return makeBoolConst(false, false);
3476  continue;
3477  }
3478 
3479  /*
3480  * Else, make a scalar (argisrow == false) NullTest
3481  * for this field. Scalar semantics are required
3482  * because IS [NOT] NULL doesn't recurse; see comments
3483  * in ExecEvalRowNullInt().
3484  */
3485  newntest = makeNode(NullTest);
3486  newntest->arg = (Expr *) relem;
3487  newntest->nulltesttype = ntest->nulltesttype;
3488  newntest->argisrow = false;
3489  newntest->location = ntest->location;
3490  newargs = lappend(newargs, newntest);
3491  }
3492  /* If all the inputs were constants, result is TRUE */
3493  if (newargs == NIL)
3494  return makeBoolConst(true, false);
3495  /* If only one nonconst input, it's the result */
3496  if (list_length(newargs) == 1)
3497  return (Node *) linitial(newargs);
3498  /* Else we need an AND node */
3499  return (Node *) make_andclause(newargs);
3500  }
3501  if (!ntest->argisrow && arg && IsA(arg, Const))
3502  {
3503  Const *carg = (Const *) arg;
3504  bool result;
3505 
3506  switch (ntest->nulltesttype)
3507  {
3508  case IS_NULL:
3509  result = carg->constisnull;
3510  break;
3511  case IS_NOT_NULL:
3512  result = !carg->constisnull;
3513  break;
3514  default:
3515  elog(ERROR, "unrecognized nulltesttype: %d",
3516  (int) ntest->nulltesttype);
3517  result = false; /* keep compiler quiet */
3518  break;
3519  }
3520 
3521  return makeBoolConst(result, false);
3522  }
3523 
3524  newntest = makeNode(NullTest);
3525  newntest->arg = (Expr *) arg;
3526  newntest->nulltesttype = ntest->nulltesttype;
3527  newntest->argisrow = ntest->argisrow;
3528  newntest->location = ntest->location;
3529  return (Node *) newntest;
3530  }
3531  case T_BooleanTest:
3532  {
3533  /*
3534  * This case could be folded into the generic handling used
3535  * for ArrayExpr etc. But because the simplification logic is
3536  * so trivial, applying evaluate_expr() to perform it would be
3537  * a heavy overhead. BooleanTest is probably common enough to
3538  * justify keeping this bespoke implementation.
3539  */
3540  BooleanTest *btest = (BooleanTest *) node;
3541  BooleanTest *newbtest;
3542  Node *arg;
3543 
3545  context);
3546  if (arg && IsA(arg, Const))
3547  {
3548  Const *carg = (Const *) arg;
3549  bool result;
3550 
3551  switch (btest->booltesttype)
3552  {
3553  case IS_TRUE:
3554  result = (!carg->constisnull &&
3555  DatumGetBool(carg->constvalue));
3556  break;
3557  case IS_NOT_TRUE:
3558  result = (carg->constisnull ||
3559  !DatumGetBool(carg->constvalue));
3560  break;
3561  case IS_FALSE:
3562  result = (!carg->constisnull &&
3563  !DatumGetBool(carg->constvalue));
3564  break;
3565  case IS_NOT_FALSE:
3566  result = (carg->constisnull ||
3567  DatumGetBool(carg->constvalue));
3568  break;
3569  case IS_UNKNOWN:
3570  result = carg->constisnull;
3571  break;
3572  case IS_NOT_UNKNOWN:
3573  result = !carg->constisnull;
3574  break;
3575  default:
3576  elog(ERROR, "unrecognized booltesttype: %d",
3577  (int) btest->booltesttype);
3578  result = false; /* keep compiler quiet */
3579  break;
3580  }
3581 
3582  return makeBoolConst(result, false);
3583  }
3584 
3585  newbtest = makeNode(BooleanTest);
3586  newbtest->arg = (Expr *) arg;
3587  newbtest->booltesttype = btest->booltesttype;
3588  newbtest->location = btest->location;
3589  return (Node *) newbtest;
3590  }
3591  case T_CoerceToDomain:
3592  {
3593  /*
3594  * If the domain currently has no constraints, we replace the
3595  * CoerceToDomain node with a simple RelabelType, which is
3596  * both far faster to execute and more amenable to later
3597  * optimization. We must then mark the plan as needing to be
3598  * rebuilt if the domain's constraints change.
3599  *
3600  * Also, in estimation mode, always replace CoerceToDomain
3601  * nodes, effectively assuming that the coercion will succeed.
3602  */
3603  CoerceToDomain *cdomain = (CoerceToDomain *) node;
3604  CoerceToDomain *newcdomain;
3605  Node *arg;
3606 
3607  arg = eval_const_expressions_mutator((Node *) cdomain->arg,
3608  context);
3609  if (context->estimate ||
3610  !DomainHasConstraints(cdomain->resulttype))
3611  {
3612  /* Record dependency, if this isn't estimation mode */
3613  if (context->root && !context->estimate)
3615  cdomain->resulttype);
3616 
3617  /* Generate RelabelType to substitute for CoerceToDomain */
3618  return applyRelabelType(arg,
3619  cdomain->resulttype,
3620  cdomain->resulttypmod,
3621  cdomain->resultcollid,
3622  cdomain->coercionformat,
3623  cdomain->location,
3624  true);
3625  }
3626 
3627  newcdomain = makeNode(CoerceToDomain);
3628  newcdomain->arg = (Expr *) arg;
3629  newcdomain->resulttype = cdomain->resulttype;
3630  newcdomain->resulttypmod = cdomain->resulttypmod;
3631  newcdomain->resultcollid = cdomain->resultcollid;
3632  newcdomain->coercionformat = cdomain->coercionformat;
3633  newcdomain->location = cdomain->location;
3634  return (Node *) newcdomain;
3635  }
3636  case T_PlaceHolderVar:
3637 
3638  /*
3639  * In estimation mode, just strip the PlaceHolderVar node
3640  * altogether; this amounts to estimating that the contained value
3641  * won't be forced to null by an outer join. In regular mode we
3642  * just use the default behavior (ie, simplify the expression but
3643  * leave the PlaceHolderVar node intact).
3644  */
3645  if (context->estimate)
3646  {
3647  PlaceHolderVar *phv = (PlaceHolderVar *) node;
3648 
3649  return eval_const_expressions_mutator((Node *) phv->phexpr,
3650  context);
3651  }
3652  break;
3653  case T_ConvertRowtypeExpr:
3654  {
3656  Node *arg;
3657  ConvertRowtypeExpr *newcre;
3658 
3660  context);
3661 
3662  newcre = makeNode(ConvertRowtypeExpr);
3663  newcre->resulttype = cre->resulttype;
3664  newcre->convertformat = cre->convertformat;
3665  newcre->location = cre->location;
3666 
3667  /*
3668  * In case of a nested ConvertRowtypeExpr, we can convert the
3669  * leaf row directly to the topmost row format without any
3670  * intermediate conversions. (This works because
3671  * ConvertRowtypeExpr is used only for child->parent
3672  * conversion in inheritance trees, which works by exact match
3673  * of column name, and a column absent in an intermediate
3674  * result can't be present in the final result.)
3675  *
3676  * No need to check more than one level deep, because the
3677  * above recursion will have flattened anything else.
3678  */
3679  if (arg != NULL && IsA(arg, ConvertRowtypeExpr))
3680  {
3682 
3683  arg = (Node *) argcre->arg;
3684 
3685  /*
3686  * Make sure an outer implicit conversion can't hide an
3687  * inner explicit one.
3688  */
3689  if (newcre->convertformat == COERCE_IMPLICIT_CAST)
3690  newcre->convertformat = argcre->convertformat;
3691  }
3692 
3693  newcre->arg = (Expr *) arg;
3694 
3695  if (arg != NULL && IsA(arg, Const))
3696  return ece_evaluate_expr((Node *) newcre);
3697  return (Node *) newcre;
3698  }
3699  default:
3700  break;
3701  }
3702 
3703  /*
3704  * For any node type not handled above, copy the node unchanged but
3705  * const-simplify its subexpressions. This is the correct thing for node
3706  * types whose behavior might change between planning and execution, such
3707  * as CurrentOfExpr. It's also a safe default for new node types not
3708  * known to this routine.
3709  */
3710  return ece_generic_processing(node);
3711 }
#define InvalidAttrNumber
Definition: attnum.h:23
signed short int16
Definition: c.h:493
signed int int32
Definition: c.h:494
static List * simplify_or_arguments(List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceTrue)
Definition: clauses.c:3777
static bool rowtype_field_matches(Oid rowtypeid, int fieldnum, Oid expectedtype, int32 expectedtypmod, Oid expectedcollation)
Definition: clauses.c:2186
#define ece_all_arguments_const(node)
Definition: clauses.c:2426
#define ece_evaluate_expr(node)
Definition: clauses.c:2430
#define ece_generic_processing(node)
Definition: clauses.c:2417
List * expand_function_arguments(List *args, bool include_out_arguments, Oid result_type, HeapTuple func_tuple)
Definition: clauses.c:4162
static bool ece_function_is_safe(Oid funcid, eval_const_expressions_context *context)
Definition: clauses.c:3739
static List * simplify_and_arguments(List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceFalse)
Definition: clauses.c:3883
static Expr * simplify_function(Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List **args_p, bool funcvariadic, bool process_args, bool allow_non_const, eval_const_expressions_context *context)
Definition: clauses.c:4046
static Node * simplify_boolean_equality(Oid opno, List *args)
Definition: clauses.c:3977
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
List * lappend(List *list, void *datum)
Definition: list.c:339
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2907
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2251
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:2874
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:339
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:301
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:654
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Node * makeBoolConst(bool value, bool isnull)
Definition: makefuncs.c:359
Expr * make_orclause(List *orclauses)
Definition: makefuncs.c:670
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:816
Node * applyRelabelType(Node *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat, int rlocation, bool overwrite_ok)
Definition: nodeFuncs.c:631
void set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
Definition: nodeFuncs.c:1879
void set_opfuncid(OpExpr *opexpr)
Definition: nodeFuncs.c:1868
#define copyObject(obj)
Definition: nodes.h:224
#define makeNode(_type_)
Definition: nodes.h:155
#define PARAM_FLAG_CONST
Definition: params.h:88
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define list_make1(x1)
Definition: pg_list.h:212
#define list_make3(x1, x2, x3)
Definition: pg_list.h:216
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
void check_stack_depth(void)
Definition: postgres.c:3531
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
Node * negate_clause(Node *node)
Definition: prepqual.c:73
e
Definition: preproc-init.c:82
@ IS_NOT_TRUE
Definition: primnodes.h:1945
@ IS_NOT_FALSE
Definition: primnodes.h:1945
@ IS_NOT_UNKNOWN
Definition: primnodes.h:1945
@ IS_TRUE
Definition: primnodes.h:1945
@ IS_UNKNOWN
Definition: primnodes.h:1945
@ IS_FALSE
Definition: primnodes.h:1945
@ NOT_EXPR
Definition: primnodes.h:901
@ PARAM_EXTERN
Definition: primnodes.h:367
@ COERCE_IMPLICIT_CAST
Definition: primnodes.h:706
@ IS_NULL
Definition: primnodes.h:1921
@ IS_NOT_NULL
Definition: primnodes.h:1921
struct Const Const
void record_plan_type_dependency(PlannerInfo *root, Oid typid)
Definition: setrefs.c:3500
List * args
Definition: primnodes.h:910
ParseLoc location
Definition: primnodes.h:1953
BoolTestType booltesttype
Definition: primnodes.h:1952
Expr * arg
Definition: primnodes.h:1951
ParseLoc location
Definition: primnodes.h:1286
Expr * defresult
Definition: primnodes.h:1285
List * args
Definition: primnodes.h:1284
Expr * result
Definition: primnodes.h:1296
Expr * expr
Definition: primnodes.h:1295
ParseLoc location
Definition: primnodes.h:1297
List * args
Definition: primnodes.h:1462
ParseLoc location
Definition: primnodes.h:1464
ParseLoc location
Definition: primnodes.h:2003
Expr * arg
Definition: primnodes.h:1177
ParseLoc location
Definition: primnodes.h:1184
Oid resulttype
Definition: primnodes.h:1178
Expr * arg
Definition: primnodes.h:1249
ParseLoc location
Definition: primnodes.h:1251
AttrNumber fieldnum
Definition: primnodes.h:1099
Expr * arg
Definition: primnodes.h:1098
ParseLoc location
Definition: primnodes.h:740
Oid funcid
Definition: primnodes.h:720
List * args
Definition: primnodes.h:738
Expr * formatted_expr
Definition: primnodes.h:1650
NullTestType nulltesttype
Definition: primnodes.h:1928
ParseLoc location
Definition: primnodes.h:1931
Expr * arg
Definition: primnodes.h:1927
ParseLoc location
Definition: primnodes.h:809
bool isnull
Definition: params.h:93
uint16 pflags
Definition: params.h:94
Datum value
Definition: params.h:92
ParamExternData params[FLEXIBLE_ARRAY_MEMBER]
Definition: params.h:125
ParamFetchHook paramFetch
Definition: params.h:112
ParseLoc location
Definition: primnodes.h:384
Oid paramtype
Definition: primnodes.h:378
Oid resulttype
Definition: primnodes.h:1155
ParseLoc location
Definition: primnodes.h:1162
Expr * arg
Definition: primnodes.h:1154
List * args
Definition: primnodes.h:1381
Definition: primnodes.h:248
List * args
Definition: primnodes.h:575
Index winref
Definition: primnodes.h:579
Expr * aggfilter
Definition: primnodes.h:577
ParseLoc location
Definition: primnodes.h:585
Oid winfnoid
Definition: primnodes.h:567
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:218
bool DomainHasConstraints(Oid type_id)
Definition: typcache.c:1400

References WindowFunc::aggfilter, AND_EXPR, applyRelabelType(), arg, FieldSelect::arg, RelabelType::arg, CoerceViaIO::arg, ArrayCoerceExpr::arg, ConvertRowtypeExpr::arg, CollateExpr::arg, CaseExpr::arg, NullTest::arg, BooleanTest::arg, CoerceToDomain::arg, generate_unaccent_rules::args, WindowFunc::args, FuncExpr::args, OpExpr::args, BoolExpr::args, CaseExpr::args, RowExpr::args, CoalesceExpr::args, Assert, BoolGetDatum(), BoolExpr::boolop, BooleanTest::booltesttype, castNode, check_stack_depth(), COERCE_IMPLICIT_CAST, CollateExpr::collOid, Const::consttype, contain_mutable_functions(), context, copyObject, datumCopy(), DatumGetBool(), CaseExpr::defresult, DomainHasConstraints(), ece_all_arguments_const, ece_evaluate_expr, ece_function_is_safe(), ece_generic_processing, ArrayCoerceExpr::elemexpr, elog, ERROR, evaluate_expr(), expand_function_arguments(), CaseWhen::expr, exprCollation(), expression_tree_mutator, exprType(), exprTypmod(), FieldSelect::fieldnum, JsonValueExpr::formatted_expr, FuncExpr::funcid, get_typlenbyval(), getTypeInputInfo(), getTypeOutputInfo(), HeapTupleIsValid, if(), Int32GetDatum(), InvalidAttrNumber, InvalidOid, IS_FALSE, IS_NOT_FALSE, IS_NOT_NULL, IS_NOT_TRUE, IS_NOT_UNKNOWN, IS_NULL, IS_TRUE, IS_UNKNOWN, IsA, ParamExternData::isnull, lappend(), lfirst, lfirst_node, linitial, list_length(), list_make1, list_make3, list_nth(), Param::location, WindowFunc::location, FuncExpr::location, OpExpr::location, RelabelType::location, CoerceViaIO::location, ConvertRowtypeExpr::location, CollateExpr::location, CaseExpr::location, CaseWhen::location, CoalesceExpr::location, NullTest::location, BooleanTest::location, CoerceToDomain::location, make_andclause(), make_orclause(), makeBoolConst(), makeConst(), makeNode, makeNullConst(), makeVar(), negate_clause(), NIL, nodeTag, NOT_EXPR, NullTest::nulltesttype, ParamListInfoData::numParams, ObjectIdGetDatum(), OidIsValid, OpExpr::opno, OR_EXPR, PARAM_EXTERN, PARAM_FLAG_CONST, ParamListInfoData::paramFetch, Param::paramid, Param::paramkind, ParamListInfoData::params, Param::paramtype, ParamExternData::pflags, ParamExternData::ptype, record_plan_type_dependency(), ReleaseSysCache(), CaseWhen::result, RelabelType::resulttype, CoerceViaIO::resulttype, ConvertRowtypeExpr::resulttype, CoerceToDomain::resulttype, rowtype_field_matches(), SearchSysCache1(), set_opfuncid(), set_sa_opfuncid(), simplify_and_arguments(), simplify_boolean_equality(), simplify_function(), simplify_or_arguments(), SQLValueFunction::typmod, ParamExternData::value, WindowFunc::winfnoid, and WindowFunc::winref.

Referenced by estimate_expression_value(), eval_const_expressions(), inline_function(), simplify_and_arguments(), simplify_function(), and simplify_or_arguments().

◆ evaluate_expr()

Expr* evaluate_expr ( Expr expr,
Oid  result_type,
int32  result_typmod,
Oid  result_collation 
)

Definition at line 4960 of file clauses.c.

4962 {
4963  EState *estate;
4964  ExprState *exprstate;
4965  MemoryContext oldcontext;
4966  Datum const_val;
4967  bool const_is_null;
4968  int16 resultTypLen;
4969  bool resultTypByVal;
4970 
4971  /*
4972  * To use the executor, we need an EState.
4973  */
4974  estate = CreateExecutorState();
4975 
4976  /* We can use the estate's working context to avoid memory leaks. */
4977  oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
4978 
4979  /* Make sure any opfuncids are filled in. */
4980  fix_opfuncids((Node *) expr);
4981 
4982  /*
4983  * Prepare expr for execution. (Note: we can't use ExecPrepareExpr
4984  * because it'd result in recursively invoking eval_const_expressions.)
4985  */
4986  exprstate = ExecInitExpr(expr, NULL);
4987 
4988  /*
4989  * And evaluate it.
4990  *
4991  * It is OK to use a default econtext because none of the ExecEvalExpr()
4992  * code used in this situation will use econtext. That might seem
4993  * fortuitous, but it's not so unreasonable --- a constant expression does
4994  * not depend on context, by definition, n'est ce pas?
4995  */
4996  const_val = ExecEvalExprSwitchContext(exprstate,
4997  GetPerTupleExprContext(estate),
4998  &const_is_null);
4999 
5000  /* Get info needed about result datatype */
5001  get_typlenbyval(result_type, &resultTypLen, &resultTypByVal);
5002 
5003  /* Get back to outer memory context */
5004  MemoryContextSwitchTo(oldcontext);
5005 
5006  /*
5007  * Must copy result out of sub-context used by expression eval.
5008  *
5009  * Also, if it's varlena, forcibly detoast it. This protects us against
5010  * storing TOAST pointers into plans that might outlive the referenced
5011  * data. (makeConst would handle detoasting anyway, but it's worth a few
5012  * extra lines here so that we can do the copy and detoast in one step.)
5013  */
5014  if (!const_is_null)
5015  {
5016  if (resultTypLen == -1)
5017  const_val = PointerGetDatum(PG_DETOAST_DATUM_COPY(const_val));
5018  else
5019  const_val = datumCopy(const_val, resultTypByVal, resultTypLen);
5020  }
5021 
5022  /* Release all the junk we just created */
5023  FreeExecutorState(estate);
5024 
5025  /*
5026  * Make the constant result node.
5027  */
5028  return (Expr *) makeConst(result_type, result_typmod, result_collation,
5029  resultTypLen,
5030  const_val, const_is_null,
5031  resultTypByVal);
5032 }
ExprState * ExecInitExpr(Expr *node, PlanState *parent)
Definition: execExpr.c:134
EState * CreateExecutorState(void)
Definition: execUtils.c:88
void FreeExecutorState(EState *estate)
Definition: execUtils.c:189
#define GetPerTupleExprContext(estate)
Definition: executor.h:550
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:348
#define PG_DETOAST_DATUM_COPY(datum)
Definition: fmgr.h:242
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1837
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
MemoryContextSwitchTo(old_ctx)
MemoryContext es_query_cxt
Definition: execnodes.h:667

References CreateExecutorState(), datumCopy(), EState::es_query_cxt, ExecEvalExprSwitchContext(), ExecInitExpr(), fix_opfuncids(), FreeExecutorState(), get_typlenbyval(), GetPerTupleExprContext, makeConst(), MemoryContextSwitchTo(), PG_DETOAST_DATUM_COPY, and PointerGetDatum().

Referenced by eval_const_expressions_mutator(), evaluate_function(), and transformPartitionBoundValue().

◆ evaluate_function()

static Expr * evaluate_function ( Oid  funcid,
Oid  result_type,
int32  result_typmod,
Oid  result_collid,
Oid  input_collid,
List args,
bool  funcvariadic,
HeapTuple  func_tuple,
eval_const_expressions_context context 
)
static

Definition at line 4412 of file clauses.c.

4417 {
4418  Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4419  bool has_nonconst_input = false;
4420  bool has_null_input = false;
4421  ListCell *arg;
4422  FuncExpr *newexpr;
4423 
4424  /*
4425  * Can't simplify if it returns a set.
4426  */
4427  if (funcform->proretset)
4428  return NULL;
4429 
4430  /*
4431  * Can't simplify if it returns RECORD. The immediate problem is that it
4432  * will be needing an expected tupdesc which we can't supply here.
4433  *
4434  * In the case where it has OUT parameters, we could build an expected
4435  * tupdesc from those, but there may be other gotchas lurking. In
4436  * particular, if the function were to return NULL, we would produce a
4437  * null constant with no remaining indication of which concrete record
4438  * type it is. For now, seems best to leave the function call unreduced.
4439  */
4440  if (funcform->prorettype == RECORDOID)
4441  return NULL;
4442 
4443  /*
4444  * Check for constant inputs and especially constant-NULL inputs.
4445  */
4446  foreach(arg, args)
4447  {
4448  if (IsA(lfirst(arg), Const))
4449  has_null_input |= ((Const *) lfirst(arg))->constisnull;
4450  else
4451  has_nonconst_input = true;
4452  }
4453 
4454  /*
4455  * If the function is strict and has a constant-NULL input, it will never
4456  * be called at all, so we can replace the call by a NULL constant, even
4457  * if there are other inputs that aren't constant, and even if the
4458  * function is not otherwise immutable.
4459  */
4460  if (funcform->proisstrict && has_null_input)
4461  return (Expr *) makeNullConst(result_type, result_typmod,
4462  result_collid);
4463 
4464  /*
4465  * Otherwise, can simplify only if all inputs are constants. (For a
4466  * non-strict function, constant NULL inputs are treated the same as
4467  * constant non-NULL inputs.)
4468  */
4469  if (has_nonconst_input)
4470  return NULL;
4471 
4472  /*
4473  * Ordinarily we are only allowed to simplify immutable functions. But for
4474  * purposes of estimation, we consider it okay to simplify functions that
4475  * are merely stable; the risk that the result might change from planning
4476  * time to execution time is worth taking in preference to not being able
4477  * to estimate the value at all.
4478  */
4479  if (funcform->provolatile == PROVOLATILE_IMMUTABLE)
4480  /* okay */ ;
4481  else if (context->estimate && funcform->provolatile == PROVOLATILE_STABLE)
4482  /* okay */ ;
4483  else
4484  return NULL;
4485 
4486  /*
4487  * OK, looks like we can simplify this operator/function.
4488  *
4489  * Build a new FuncExpr node containing the already-simplified arguments.
4490  */
4491  newexpr = makeNode(FuncExpr);
4492  newexpr->funcid = funcid;
4493  newexpr->funcresulttype = result_type;
4494  newexpr->funcretset = false;
4495  newexpr->funcvariadic = funcvariadic;
4496  newexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
4497  newexpr->funccollid = result_collid; /* doesn't matter */
4498  newexpr->inputcollid = input_collid;
4499  newexpr->args = args;
4500  newexpr->location = -1;
4501 
4502  return evaluate_expr((Expr *) newexpr, result_type, result_typmod,
4503  result_collid);
4504 }
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
@ COERCE_EXPLICIT_CALL
Definition: primnodes.h:704

References arg, generate_unaccent_rules::args, FuncExpr::args, COERCE_EXPLICIT_CALL, context, evaluate_expr(), FuncExpr::funcid, GETSTRUCT, IsA, lfirst, FuncExpr::location, makeNode, and makeNullConst().

Referenced by simplify_function().

◆ expand_function_arguments()

List* expand_function_arguments ( List args,
bool  include_out_arguments,
Oid  result_type,
HeapTuple  func_tuple 
)

Definition at line 4162 of file clauses.c.

4164 {
4165  Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4166  Oid *proargtypes = funcform->proargtypes.values;
4167  int pronargs = funcform->pronargs;
4168  bool has_named_args = false;
4169  ListCell *lc;
4170 
4171  /*
4172  * If we are asked to match to OUT arguments, then use the proallargtypes
4173  * array (which includes those); otherwise use proargtypes (which
4174  * doesn't). Of course, if proallargtypes is null, we always use
4175  * proargtypes. (Fetching proallargtypes is annoyingly expensive
4176  * considering that we may have nothing to do here, but fortunately the
4177  * common case is include_out_arguments == false.)
4178  */
4179  if (include_out_arguments)
4180  {
4181  Datum proallargtypes;
4182  bool isNull;
4183 
4184  proallargtypes = SysCacheGetAttr(PROCOID, func_tuple,
4185  Anum_pg_proc_proallargtypes,
4186  &isNull);
4187  if (!isNull)
4188  {
4189  ArrayType *arr = DatumGetArrayTypeP(proallargtypes);
4190 
4191  pronargs = ARR_DIMS(arr)[0];
4192  if (ARR_NDIM(arr) != 1 ||
4193  pronargs < 0 ||
4194  ARR_HASNULL(arr) ||
4195  ARR_ELEMTYPE(arr) != OIDOID)
4196  elog(ERROR, "proallargtypes is not a 1-D Oid array or it contains nulls");
4197  Assert(pronargs >= funcform->pronargs);
4198  proargtypes = (Oid *) ARR_DATA_PTR(arr);
4199  }
4200  }
4201 
4202  /* Do we have any named arguments? */
4203  foreach(lc, args)
4204  {
4205  Node *arg = (Node *) lfirst(lc);
4206 
4207  if (IsA(arg, NamedArgExpr))
4208  {
4209  has_named_args = true;
4210  break;
4211  }
4212  }
4213 
4214  /* If so, we must apply reorder_function_arguments */
4215  if (has_named_args)
4216  {
4217  args = reorder_function_arguments(args, pronargs, func_tuple);
4218  /* Recheck argument types and add casts if needed */
4219  recheck_cast_function_args(args, result_type,
4220  proargtypes, pronargs,
4221  func_tuple);
4222  }
4223  else if (list_length(args) < pronargs)
4224  {
4225  /* No named args, but we seem to be short some defaults */
4226  args = add_function_defaults(args, pronargs, func_tuple);
4227  /* Recheck argument types and add casts if needed */
4228  recheck_cast_function_args(args, result_type,
4229  proargtypes, pronargs,
4230  func_tuple);
4231  }
4232 
4233  return args;
4234 }
#define ARR_DATA_PTR(a)
Definition: array.h:322
#define DatumGetArrayTypeP(X)
Definition: array.h:261
#define ARR_ELEMTYPE(a)
Definition: array.h:292
#define ARR_HASNULL(a)
Definition: array.h:291
static List * add_function_defaults(List *args, int pronargs, HeapTuple func_tuple)
Definition: clauses.c:4313
static List * reorder_function_arguments(List *args, int pronargs, HeapTuple func_tuple)
Definition: clauses.c:4243
static void recheck_cast_function_args(List *args, Oid result_type, Oid *proargtypes, int pronargs, HeapTuple func_tuple)
Definition: clauses.c:4367
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:479

References add_function_defaults(), arg, generate_unaccent_rules::args, ARR_DATA_PTR, ARR_DIMS, ARR_ELEMTYPE, ARR_HASNULL, ARR_NDIM, Assert, DatumGetArrayTypeP, elog, ERROR, GETSTRUCT, IsA, lfirst, list_length(), pronargs, recheck_cast_function_args(), reorder_function_arguments(), and SysCacheGetAttr().

Referenced by eval_const_expressions_mutator(), simplify_function(), and transformCallStmt().

◆ expression_returns_set_rows()

double expression_returns_set_rows ( PlannerInfo root,
Node clause 
)

Definition at line 289 of file clauses.c.

290 {
291  if (clause == NULL)
292  return 1.0;
293  if (IsA(clause, FuncExpr))
294  {
295  FuncExpr *expr = (FuncExpr *) clause;
296 
297  if (expr->funcretset)
298  return clamp_row_est(get_function_rows(root, expr->funcid, clause));
299  }
300  if (IsA(clause, OpExpr))
301  {
302  OpExpr *expr = (OpExpr *) clause;
303 
304  if (expr->opretset)
305  {
306  set_opfuncid(expr);
307  return clamp_row_est(get_function_rows(root, expr->opfuncid, clause));
308  }
309  }
310  return 1.0;
311 }
double clamp_row_est(double nrows)
Definition: costsize.c:202
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2133

References clamp_row_est(), FuncExpr::funcid, get_function_rows(), IsA, root, and set_opfuncid().

Referenced by create_set_projection_path(), estimate_num_groups(), and set_function_size_estimates().

◆ fetch_function_defaults()

static List * fetch_function_defaults ( HeapTuple  func_tuple)
static

Definition at line 4337 of file clauses.c.

4338 {
4339  List *defaults;
4340  Datum proargdefaults;
4341  char *str;
4342 
4343  proargdefaults = SysCacheGetAttrNotNull(PROCOID, func_tuple,
4344  Anum_pg_proc_proargdefaults);
4345  str = TextDatumGetCString(proargdefaults);
4346  defaults = castNode(List, stringToNode(str));
4347  pfree(str);
4348  return defaults;
4349 }
#define TextDatumGetCString(d)
Definition: builtins.h:98
const char * str
void pfree(void *pointer)
Definition: mcxt.c:1520
void * stringToNode(const char *str)
Definition: read.c:90
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:510

References castNode, pfree(), str, stringToNode(), SysCacheGetAttrNotNull(), and TextDatumGetCString.

Referenced by add_function_defaults(), and reorder_function_arguments().

◆ find_forced_null_var()

Var* find_forced_null_var ( Node node)

Definition at line 1977 of file clauses.c.

1978 {
1979  if (node == NULL)
1980  return NULL;
1981  if (IsA(node, NullTest))
1982  {
1983  /* check for var IS NULL */
1984  NullTest *expr = (NullTest *) node;
1985 
1986  if (expr->nulltesttype == IS_NULL && !expr->argisrow)
1987  {
1988  Var *var = (Var *) expr->arg;
1989 
1990  if (var && IsA(var, Var) &&
1991  var->varlevelsup == 0)
1992  return var;
1993  }
1994  }
1995  else if (IsA(node, BooleanTest))
1996  {
1997  /* var IS UNKNOWN is equivalent to var IS NULL */
1998  BooleanTest *expr = (BooleanTest *) node;
1999 
2000  if (expr->booltesttype == IS_UNKNOWN)
2001  {
2002  Var *var = (Var *) expr->arg;
2003 
2004  if (var && IsA(var, Var) &&
2005  var->varlevelsup == 0)
2006  return var;
2007  }
2008  }
2009  return NULL;
2010 }
Index varlevelsup
Definition: primnodes.h:280

References NullTest::arg, BooleanTest::arg, BooleanTest::booltesttype, if(), IS_NULL, IS_UNKNOWN, IsA, NullTest::nulltesttype, and Var::varlevelsup.

Referenced by check_redundant_nullability_qual(), and find_forced_null_vars().

◆ find_forced_null_vars()

List* find_forced_null_vars ( Node node)

Definition at line 1916 of file clauses.c.

1917 {
1918  List *result = NIL;
1919  Var *var;
1920  ListCell *l;
1921 
1922  if (node == NULL)
1923  return NIL;
1924  /* Check single-clause cases using subroutine */
1925  var = find_forced_null_var(node);
1926  if (var)
1927  {
1928  result = mbms_add_member(result,
1929  var->varno,
1931  }
1932  /* Otherwise, handle AND-conditions */
1933  else if (IsA(node, List))
1934  {
1935  /*
1936  * At top level, we are examining an implicit-AND list: if any of the
1937  * arms produces FALSE-or-NULL then the result is FALSE-or-NULL.
1938  */
1939  foreach(l, (List *) node)
1940  {
1941  result = mbms_add_members(result,
1943  }
1944  }
1945  else if (IsA(node, BoolExpr))
1946  {
1947  BoolExpr *expr = (BoolExpr *) node;
1948 
1949  /*
1950  * We don't bother considering the OR case, because it's fairly
1951  * unlikely anyone would write "v1 IS NULL OR v1 IS NULL". Likewise,
1952  * the NOT case isn't worth expending code on.
1953  */
1954  if (expr->boolop == AND_EXPR)
1955  {
1956  /* At top level we can just recurse (to the List case) */
1957  result = find_forced_null_vars((Node *) expr->args);
1958  }
1959  }
1960  return result;
1961 }
Var * find_forced_null_var(Node *node)
Definition: clauses.c:1977
List * find_forced_null_vars(Node *node)
Definition: clauses.c:1916
List * mbms_add_member(List *a, int listidx, int bitidx)
List * mbms_add_members(List *a, const List *b)
AttrNumber varattno
Definition: primnodes.h:260
int varno
Definition: primnodes.h:255
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27

References AND_EXPR, BoolExpr::args, BoolExpr::boolop, find_forced_null_var(), FirstLowInvalidHeapAttributeNumber, IsA, lfirst, mbms_add_member(), mbms_add_members(), NIL, Var::varattno, and Var::varno.

Referenced by reduce_outer_joins_pass2().

◆ find_nonnullable_rels()

Relids find_nonnullable_rels ( Node clause)

Definition at line 1456 of file clauses.c.

1457 {
1458  return find_nonnullable_rels_walker(clause, true);
1459 }
static Relids find_nonnullable_rels_walker(Node *node, bool top_level)
Definition: clauses.c:1462

References find_nonnullable_rels_walker().

Referenced by make_outerjoininfo(), and reduce_outer_joins_pass2().

◆ find_nonnullable_rels_walker()

static Relids find_nonnullable_rels_walker ( Node node,
bool  top_level 
)
static

Definition at line 1462 of file clauses.c.

1463 {
1464  Relids result = NULL;
1465  ListCell *l;
1466 
1467  if (node == NULL)
1468  return NULL;
1469  if (IsA(node, Var))
1470  {
1471  Var *var = (Var *) node;
1472 
1473  if (var->varlevelsup == 0)
1474  result = bms_make_singleton(var->varno);
1475  }
1476  else if (IsA(node, List))
1477  {
1478  /*
1479  * At top level, we are examining an implicit-AND list: if any of the
1480  * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
1481  * not at top level, we are examining the arguments of a strict
1482  * function: if any of them produce NULL then the result of the
1483  * function must be NULL. So in both cases, the set of nonnullable
1484  * rels is the union of those found in the arms, and we pass down the
1485  * top_level flag unmodified.
1486  */
1487  foreach(l, (List *) node)
1488  {
1489  result = bms_join(result,
1491  top_level));
1492  }
1493  }
1494  else if (IsA(node, FuncExpr))
1495  {
1496  FuncExpr *expr = (FuncExpr *) node;
1497 
1498  if (func_strict(expr->funcid))
1499  result = find_nonnullable_rels_walker((Node *) expr->args, false);
1500  }
1501  else if (IsA(node, OpExpr))
1502  {
1503  OpExpr *expr = (OpExpr *) node;
1504 
1505  set_opfuncid(expr);
1506  if (func_strict(expr->opfuncid))
1507  result = find_nonnullable_rels_walker((Node *) expr->args, false);
1508  }
1509  else if (IsA(node, ScalarArrayOpExpr))
1510  {
1511  ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
1512 
1513  if (is_strict_saop(expr, true))
1514  result = find_nonnullable_rels_walker((Node *) expr->args, false);
1515  }
1516  else if (IsA(node, BoolExpr))
1517  {
1518  BoolExpr *expr = (BoolExpr *) node;
1519 
1520  switch (expr->boolop)
1521  {
1522  case AND_EXPR:
1523  /* At top level we can just recurse (to the List case) */
1524  if (top_level)
1525  {
1526  result = find_nonnullable_rels_walker((Node *) expr->args,
1527  top_level);
1528  break;
1529  }
1530 
1531  /*
1532  * Below top level, even if one arm produces NULL, the result
1533  * could be FALSE (hence not NULL). However, if *all* the
1534  * arms produce NULL then the result is NULL, so we can take
1535  * the intersection of the sets of nonnullable rels, just as
1536  * for OR. Fall through to share code.
1537  */
1538  /* FALL THRU */
1539  case OR_EXPR:
1540 
1541  /*
1542  * OR is strict if all of its arms are, so we can take the
1543  * intersection of the sets of nonnullable rels for each arm.
1544  * This works for both values of top_level.
1545  */
1546  foreach(l, expr->args)
1547  {
1548  Relids subresult;
1549 
1550  subresult = find_nonnullable_rels_walker(lfirst(l),
1551  top_level);
1552  if (result == NULL) /* first subresult? */
1553  result = subresult;
1554  else
1555  result = bms_int_members(result, subresult);
1556 
1557  /*
1558  * If the intersection is empty, we can stop looking. This
1559  * also justifies the test for first-subresult above.
1560  */
1561  if (bms_is_empty(result))
1562  break;
1563  }
1564  break;
1565  case NOT_EXPR:
1566  /* NOT will return null if its arg is null */
1567  result = find_nonnullable_rels_walker((Node *) expr->args,
1568  false);
1569  break;
1570  default:
1571  elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
1572  break;
1573  }
1574  }
1575  else if (IsA(node, RelabelType))
1576  {
1577  RelabelType *expr = (RelabelType *) node;
1578 
1579  result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1580  }
1581  else if (IsA(node, CoerceViaIO))
1582  {
1583  /* not clear this is useful, but it can't hurt */
1584  CoerceViaIO *expr = (CoerceViaIO *) node;
1585 
1586  result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1587  }
1588  else if (IsA(node, ArrayCoerceExpr))
1589  {
1590  /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
1591  ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
1592 
1593  result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1594  }
1595  else if (IsA(node, ConvertRowtypeExpr))
1596  {
1597  /* not clear this is useful, but it can't hurt */
1598  ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
1599 
1600  result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1601  }
1602  else if (IsA(node, CollateExpr))
1603  {
1604  CollateExpr *expr = (CollateExpr *) node;
1605 
1606  result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1607  }
1608  else if (IsA(node, NullTest))
1609  {
1610  /* IS NOT NULL can be considered strict, but only at top level */
1611  NullTest *expr = (NullTest *) node;
1612 
1613  if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
1614  result = find_nonnullable_rels_walker((Node *) expr->arg, false);
1615  }
1616  else if (IsA(node, BooleanTest))
1617  {
1618  /* Boolean tests that reject NULL are strict at top level */
1619  BooleanTest *expr = (BooleanTest *) node;
1620 
1621  if (top_level &&
1622  (expr->booltesttype == IS_TRUE ||
1623  expr->booltesttype == IS_FALSE ||
1624  expr->booltesttype == IS_NOT_UNKNOWN))
1625  result = find_nonnullable_rels_walker((Node *) expr->arg, false);
1626  }
1627  else if (IsA(node, SubPlan))
1628  {
1629  SubPlan *splan = (SubPlan *) node;
1630 
1631  /*
1632  * For some types of SubPlan, we can infer strictness from Vars in the
1633  * testexpr (the LHS of the original SubLink).
1634  *
1635  * For ANY_SUBLINK, if the subquery produces zero rows, the result is
1636  * always FALSE. If the subquery produces more than one row, the
1637  * per-row results of the testexpr are combined using OR semantics.
1638  * Hence ANY_SUBLINK can be strict only at top level, but there it's
1639  * as strict as the testexpr is.
1640  *
1641  * For ROWCOMPARE_SUBLINK, if the subquery produces zero rows, the
1642  * result is always NULL. Otherwise, the result is as strict as the
1643  * testexpr is. So we can check regardless of top_level.
1644  *
1645  * We can't prove anything for other sublink types (in particular,
1646  * note that ALL_SUBLINK will return TRUE if the subquery is empty).
1647  */
1648  if ((top_level && splan->subLinkType == ANY_SUBLINK) ||
1649  splan->subLinkType == ROWCOMPARE_SUBLINK)
1650  result = find_nonnullable_rels_walker(splan->testexpr, top_level);
1651  }
1652  else if (IsA(node, PlaceHolderVar))
1653  {
1654  PlaceHolderVar *phv = (PlaceHolderVar *) node;
1655 
1656  /*
1657  * If the contained expression forces any rels non-nullable, so does
1658  * the PHV.
1659  */
1660  result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);
1661 
1662  /*
1663  * If the PHV's syntactic scope is exactly one rel, it will be forced
1664  * to be evaluated at that rel, and so it will behave like a Var of
1665  * that rel: if the rel's entire output goes to null, so will the PHV.
1666  * (If the syntactic scope is a join, we know that the PHV will go to
1667  * null if the whole join does; but that is AND semantics while we
1668  * need OR semantics for find_nonnullable_rels' result, so we can't do
1669  * anything with the knowledge.)
1670  */
1671  if (phv->phlevelsup == 0 &&
1672  bms_membership(phv->phrels) == BMS_SINGLETON)
1673  result = bms_add_members(result, phv->phrels);
1674  }
1675  return result;
1676 }
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1230
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_int_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1109
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:781
#define bms_is_empty(a)
Definition: bitmapset.h:118
@ BMS_SINGLETON
Definition: bitmapset.h:72
static bool is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK)
Definition: clauses.c:2026
@ ANY_SUBLINK
Definition: primnodes.h:969
@ ROWCOMPARE_SUBLINK
Definition: primnodes.h:970
static SPIPlanPtr splan
Definition: regress.c:269
Index phlevelsup
Definition: pathnodes.h:2785

References AND_EXPR, ANY_SUBLINK, RelabelType::arg, CoerceViaIO::arg, ArrayCoerceExpr::arg, ConvertRowtypeExpr::arg, CollateExpr::arg, NullTest::arg, BooleanTest::arg, FuncExpr::args, OpExpr::args, ScalarArrayOpExpr::args, BoolExpr::args, bms_add_members(), bms_int_members(), bms_is_empty, bms_join(), bms_make_singleton(), bms_membership(), BMS_SINGLETON, BoolExpr::boolop, BooleanTest::booltesttype, elog, ERROR, func_strict(), FuncExpr::funcid, IS_FALSE, IS_NOT_NULL, IS_NOT_UNKNOWN, is_strict_saop(), IS_TRUE, IsA, lfirst, NOT_EXPR, NullTest::nulltesttype, OR_EXPR, PlaceHolderVar::phlevelsup, ROWCOMPARE_SUBLINK, set_opfuncid(), splan, Var::varlevelsup, and Var::varno.

Referenced by find_nonnullable_rels().

◆ find_nonnullable_vars()

List* find_nonnullable_vars ( Node clause)

Definition at line 1707 of file clauses.c.

1708 {
1709  return find_nonnullable_vars_walker(clause, true);
1710 }
static List * find_nonnullable_vars_walker(Node *node, bool top_level)
Definition: clauses.c:1713

References find_nonnullable_vars_walker().

Referenced by reduce_outer_joins_pass2().

◆ find_nonnullable_vars_walker()

static List * find_nonnullable_vars_walker ( Node node,
bool  top_level 
)
static

Definition at line 1713 of file clauses.c.

1714 {
1715  List *result = NIL;
1716  ListCell *l;
1717 
1718  if (node == NULL)
1719  return NIL;
1720  if (IsA(node, Var))
1721  {
1722  Var *var = (Var *) node;
1723 
1724  if (var->varlevelsup == 0)
1725  result = mbms_add_member(result,
1726  var->varno,
1728  }
1729  else if (IsA(node, List))
1730  {
1731  /*
1732  * At top level, we are examining an implicit-AND list: if any of the
1733  * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
1734  * not at top level, we are examining the arguments of a strict
1735  * function: if any of them produce NULL then the result of the
1736  * function must be NULL. So in both cases, the set of nonnullable
1737  * vars is the union of those found in the arms, and we pass down the
1738  * top_level flag unmodified.
1739  */
1740  foreach(l, (List *) node)
1741  {
1742  result = mbms_add_members(result,
1744  top_level));
1745  }
1746  }
1747  else if (IsA(node, FuncExpr))
1748  {
1749  FuncExpr *expr = (FuncExpr *) node;
1750 
1751  if (func_strict(expr->funcid))
1752  result = find_nonnullable_vars_walker((Node *) expr->args, false);
1753  }
1754  else if (IsA(node, OpExpr))
1755  {
1756  OpExpr *expr = (OpExpr *) node;
1757 
1758  set_opfuncid(expr);
1759  if (func_strict(expr->opfuncid))
1760  result = find_nonnullable_vars_walker((Node *) expr->args, false);
1761  }
1762  else if (IsA(node, ScalarArrayOpExpr))
1763  {
1764  ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
1765 
1766  if (is_strict_saop(expr, true))
1767  result = find_nonnullable_vars_walker((Node *) expr->args, false);
1768  }
1769  else if (IsA(node, BoolExpr))
1770  {
1771  BoolExpr *expr = (BoolExpr *) node;
1772 
1773  switch (expr->boolop)
1774  {
1775  case AND_EXPR:
1776 
1777  /*
1778  * At top level we can just recurse (to the List case), since
1779  * the result should be the union of what we can prove in each
1780  * arm.
1781  */
1782  if (top_level)
1783  {
1784  result = find_nonnullable_vars_walker((Node *) expr->args,
1785  top_level);
1786  break;
1787  }
1788 
1789  /*
1790  * Below top level, even if one arm produces NULL, the result
1791  * could be FALSE (hence not NULL). However, if *all* the
1792  * arms produce NULL then the result is NULL, so we can take
1793  * the intersection of the sets of nonnullable vars, just as
1794  * for OR. Fall through to share code.
1795  */
1796  /* FALL THRU */
1797  case OR_EXPR:
1798 
1799  /*
1800  * OR is strict if all of its arms are, so we can take the
1801  * intersection of the sets of nonnullable vars for each arm.
1802  * This works for both values of top_level.
1803  */
1804  foreach(l, expr->args)
1805  {
1806  List *subresult;
1807 
1808  subresult = find_nonnullable_vars_walker(lfirst(l),
1809  top_level);
1810  if (result == NIL) /* first subresult? */
1811  result = subresult;
1812  else
1813  result = mbms_int_members(result, subresult);
1814 
1815  /*
1816  * If the intersection is empty, we can stop looking. This
1817  * also justifies the test for first-subresult above.
1818  */
1819  if (result == NIL)
1820  break;
1821  }
1822  break;
1823  case NOT_EXPR:
1824  /* NOT will return null if its arg is null */
1825  result = find_nonnullable_vars_walker((Node *) expr->args,
1826  false);
1827  break;
1828  default:
1829  elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
1830  break;
1831  }
1832  }
1833  else if (IsA(node, RelabelType))
1834  {
1835  RelabelType *expr = (RelabelType *) node;
1836 
1837  result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1838  }
1839  else if (IsA(node, CoerceViaIO))
1840  {
1841  /* not clear this is useful, but it can't hurt */
1842  CoerceViaIO *expr = (CoerceViaIO *) node;
1843 
1844  result = find_nonnullable_vars_walker((Node *) expr->arg, false);
1845  }
1846  else if (IsA(node, ArrayCoerceExpr))
1847  {
1848  /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
1849  ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
1850 
1851  result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1852  }
1853  else if (IsA(node, ConvertRowtypeExpr))
1854  {
1855  /* not clear this is useful, but it can't hurt */
1856  ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
1857 
1858  result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1859  }
1860  else if (IsA(node, CollateExpr))
1861  {
1862  CollateExpr *expr = (CollateExpr *) node;
1863 
1864  result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1865  }
1866  else if (IsA(node, NullTest))
1867  {
1868  /* IS NOT NULL can be considered strict, but only at top level */
1869  NullTest *expr = (NullTest *) node;
1870 
1871  if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
1872  result = find_nonnullable_vars_walker((Node *) expr->arg, false);
1873  }
1874  else if (IsA(node, BooleanTest))
1875  {
1876  /* Boolean tests that reject NULL are strict at top level */
1877  BooleanTest *expr = (BooleanTest *) node;
1878 
1879  if (top_level &&
1880  (expr->booltesttype == IS_TRUE ||
1881  expr->booltesttype == IS_FALSE ||
1882  expr->booltesttype == IS_NOT_UNKNOWN))
1883  result = find_nonnullable_vars_walker((Node *) expr->arg, false);
1884  }
1885  else if (IsA(node, SubPlan))
1886  {
1887  SubPlan *splan = (SubPlan *) node;
1888 
1889  /* See analysis in find_nonnullable_rels_walker */
1890  if ((top_level && splan->subLinkType == ANY_SUBLINK) ||
1891  splan->subLinkType == ROWCOMPARE_SUBLINK)
1892  result = find_nonnullable_vars_walker(splan->testexpr, top_level);
1893  }
1894  else if (IsA(node, PlaceHolderVar))
1895  {
1896  PlaceHolderVar *phv = (PlaceHolderVar *) node;
1897 
1898  result = find_nonnullable_vars_walker((Node *) phv->phexpr, top_level);
1899  }
1900  return result;
1901 }
List * mbms_int_members(List *a, const List *b)

References AND_EXPR, ANY_SUBLINK, RelabelType::arg, CoerceViaIO::arg, ArrayCoerceExpr::arg, ConvertRowtypeExpr::arg, CollateExpr::arg, NullTest::arg, BooleanTest::arg, FuncExpr::args, OpExpr::args, ScalarArrayOpExpr::args, BoolExpr::args, BoolExpr::boolop, BooleanTest::booltesttype, elog, ERROR, FirstLowInvalidHeapAttributeNumber, func_strict(), FuncExpr::funcid, IS_FALSE, IS_NOT_NULL, IS_NOT_UNKNOWN, is_strict_saop(), IS_TRUE, IsA, lfirst, mbms_add_member(), mbms_add_members(), mbms_int_members(), NIL, NOT_EXPR, NullTest::nulltesttype, OR_EXPR, ROWCOMPARE_SUBLINK, set_opfuncid(), splan, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by find_nonnullable_vars().

◆ find_window_functions()

WindowFuncLists* find_window_functions ( Node clause,
Index  maxWinRef 
)

Definition at line 227 of file clauses.c.

228 {
229  WindowFuncLists *lists = palloc(sizeof(WindowFuncLists));
230 
231  lists->numWindowFuncs = 0;
232  lists->maxWinRef = maxWinRef;
233  lists->windowFuncs = (List **) palloc0((maxWinRef + 1) * sizeof(List *));
234  (void) find_window_functions_walker(clause, lists);
235  return lists;
236 }
static bool find_window_functions_walker(Node *node, WindowFuncLists *lists)
Definition: clauses.c:239
void * palloc0(Size size)
Definition: mcxt.c:1346
void * palloc(Size size)
Definition: mcxt.c:1316
List ** windowFuncs
Definition: clauses.h:23
Index maxWinRef
Definition: clauses.h:22
int numWindowFuncs
Definition: clauses.h:21

References find_window_functions_walker(), WindowFuncLists::maxWinRef, WindowFuncLists::numWindowFuncs, palloc(), palloc0(), and WindowFuncLists::windowFuncs.

Referenced by grouping_planner().

◆ find_window_functions_walker()

static bool find_window_functions_walker ( Node node,
WindowFuncLists lists 
)
static

Definition at line 239 of file clauses.c.

240 {
241  if (node == NULL)
242  return false;
243  if (IsA(node, WindowFunc))
244  {
245  WindowFunc *wfunc = (WindowFunc *) node;
246 
247  /* winref is unsigned, so one-sided test is OK */
248  if (wfunc->winref > lists->maxWinRef)
249  elog(ERROR, "WindowFunc contains out-of-range winref %u",
250  wfunc->winref);
251  /* eliminate duplicates, so that we avoid repeated computation */
252  if (!list_member(lists->windowFuncs[wfunc->winref], wfunc))
253  {
254  lists->windowFuncs[wfunc->winref] =
255  lappend(lists->windowFuncs[wfunc->winref], wfunc);
256  lists->numWindowFuncs++;
257  }
258 
259  /*
260  * We assume that the parser checked that there are no window
261  * functions in the arguments or filter clause. Hence, we need not
262  * recurse into them. (If either the parser or the planner screws up
263  * on this point, the executor will still catch it; see ExecInitExpr.)
264  */
265  return false;
266  }
267  Assert(!IsA(node, SubLink));
269  (void *) lists);
270 }
bool list_member(const List *list, const void *datum)
Definition: list.c:661

References Assert, elog, ERROR, expression_tree_walker, IsA, lappend(), list_member(), WindowFuncLists::maxWinRef, WindowFuncLists::numWindowFuncs, WindowFuncLists::windowFuncs, and WindowFunc::winref.

Referenced by find_window_functions().

◆ inline_function()

static Expr * inline_function ( Oid  funcid,
Oid  result_type,
Oid  result_collid,
Oid  input_collid,
List args,
bool  funcvariadic,
HeapTuple  func_tuple,
eval_const_expressions_context context 
)
static

Definition at line 4538 of file clauses.c.

4543 {
4544  Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4545  char *src;
4546  Datum tmp;
4547  bool isNull;
4548  MemoryContext oldcxt;
4549  MemoryContext mycxt;
4550  inline_error_callback_arg callback_arg;
4551  ErrorContextCallback sqlerrcontext;
4552  FuncExpr *fexpr;
4554  TupleDesc rettupdesc;
4555  ParseState *pstate;
4556  List *raw_parsetree_list;
4557  List *querytree_list;
4558  Query *querytree;
4559  Node *newexpr;
4560  int *usecounts;
4561  ListCell *arg;
4562  int i;
4563 
4564  /*
4565  * Forget it if the function is not SQL-language or has other showstopper
4566  * properties. (The prokind and nargs checks are just paranoia.)
4567  */
4568  if (funcform->prolang != SQLlanguageId ||
4569  funcform->prokind != PROKIND_FUNCTION ||
4570  funcform->prosecdef ||
4571  funcform->proretset ||
4572  funcform->prorettype == RECORDOID ||
4573  !heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL) ||
4574  funcform->pronargs != list_length(args))
4575  return NULL;
4576 
4577  /* Check for recursive function, and give up trying to expand if so */
4578  if (list_member_oid(context->active_fns, funcid))
4579  return NULL;
4580 
4581  /* Check permission to call function (fail later, if not) */
4582  if (object_aclcheck(ProcedureRelationId, funcid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
4583  return NULL;
4584 
4585  /* Check whether a plugin wants to hook function entry/exit */
4586  if (FmgrHookIsNeeded(funcid))
4587  return NULL;
4588 
4589  /*
4590  * Make a temporary memory context, so that we don't leak all the stuff
4591  * that parsing might create.
4592  */
4594  "inline_function",
4596  oldcxt = MemoryContextSwitchTo(mycxt);
4597 
4598  /*
4599  * We need a dummy FuncExpr node containing the already-simplified
4600  * arguments. (In some cases we don't really need it, but building it is
4601  * cheap enough that it's not worth contortions to avoid.)
4602  */
4603  fexpr = makeNode(FuncExpr);
4604  fexpr->funcid = funcid;
4605  fexpr->funcresulttype = result_type;
4606  fexpr->funcretset = false;
4607  fexpr->funcvariadic = funcvariadic;
4608  fexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
4609  fexpr->funccollid = result_collid; /* doesn't matter */
4610  fexpr->inputcollid = input_collid;
4611  fexpr->args = args;
4612  fexpr->location = -1;
4613 
4614  /* Fetch the function body */
4615  tmp = SysCacheGetAttrNotNull(PROCOID, func_tuple, Anum_pg_proc_prosrc);
4616  src = TextDatumGetCString(tmp);
4617 
4618  /*
4619  * Setup error traceback support for ereport(). This is so that we can
4620  * finger the function that bad information came from.
4621  */
4622  callback_arg.proname = NameStr(funcform->proname);
4623  callback_arg.prosrc = src;
4624 
4625  sqlerrcontext.callback = sql_inline_error_callback;
4626  sqlerrcontext.arg = (void *) &callback_arg;
4627  sqlerrcontext.previous = error_context_stack;
4628  error_context_stack = &sqlerrcontext;
4629 
4630  /* If we have prosqlbody, pay attention to that not prosrc */
4631  tmp = SysCacheGetAttr(PROCOID,
4632  func_tuple,
4633  Anum_pg_proc_prosqlbody,
4634  &isNull);
4635  if (!isNull)
4636  {
4637  Node *n;
4638  List *query_list;
4639 
4641  if (IsA(n, List))
4642  query_list = linitial_node(List, castNode(List, n));
4643  else
4644  query_list = list_make1(n);
4645  if (list_length(query_list) != 1)
4646  goto fail;
4647  querytree = linitial(query_list);
4648 
4649  /*
4650  * Because we'll insist below that the querytree have an empty rtable
4651  * and no sublinks, it cannot have any relation references that need
4652  * to be locked or rewritten. So we can omit those steps.
4653  */
4654  }
4655  else
4656  {
4657  /* Set up to handle parameters while parsing the function body. */
4658  pinfo = prepare_sql_fn_parse_info(func_tuple,
4659  (Node *) fexpr,
4660  input_collid);
4661 
4662  /*
4663  * We just do parsing and parse analysis, not rewriting, because
4664  * rewriting will not affect table-free-SELECT-only queries, which is
4665  * all that we care about. Also, we can punt as soon as we detect
4666  * more than one command in the function body.
4667  */
4668  raw_parsetree_list = pg_parse_query(src);
4669  if (list_length(raw_parsetree_list) != 1)
4670  goto fail;
4671 
4672  pstate = make_parsestate(NULL);
4673  pstate->p_sourcetext = src;
4674  sql_fn_parser_setup(pstate, pinfo);
4675 
4676  querytree = transformTopLevelStmt(pstate, linitial(raw_parsetree_list));
4677 
4678  free_parsestate(pstate);
4679  }
4680 
4681  /*
4682  * The single command must be a simple "SELECT expression".
4683  *
4684  * Note: if you change the tests involved in this, see also plpgsql's
4685  * exec_simple_check_plan(). That generally needs to have the same idea
4686  * of what's a "simple expression", so that inlining a function that
4687  * previously wasn't inlined won't change plpgsql's conclusion.
4688  */
4689  if (!IsA(querytree, Query) ||
4690  querytree->commandType != CMD_SELECT ||
4691  querytree->hasAggs ||
4692  querytree->hasWindowFuncs ||
4693  querytree->hasTargetSRFs ||
4694  querytree->hasSubLinks ||
4695  querytree->cteList ||
4696  querytree->rtable ||
4697  querytree->jointree->fromlist ||
4698  querytree->jointree->quals ||
4699  querytree->groupClause ||
4700  querytree->groupingSets ||
4701  querytree->havingQual ||
4702  querytree->windowClause ||
4703  querytree->distinctClause ||
4704  querytree->sortClause ||
4705  querytree->limitOffset ||
4706  querytree->limitCount ||
4707  querytree->setOperations ||
4708  list_length(querytree->targetList) != 1)
4709  goto fail;
4710 
4711  /* If the function result is composite, resolve it */
4712  (void) get_expr_result_type((Node *) fexpr,
4713  NULL,
4714  &rettupdesc);
4715 
4716  /*
4717  * Make sure the function (still) returns what it's declared to. This
4718  * will raise an error if wrong, but that's okay since the function would
4719  * fail at runtime anyway. Note that check_sql_fn_retval will also insert
4720  * a coercion if needed to make the tlist expression match the declared
4721  * type of the function.
4722  *
4723  * Note: we do not try this until we have verified that no rewriting was
4724  * needed; that's probably not important, but let's be careful.
4725  */
4726  querytree_list = list_make1(querytree);
4727  if (check_sql_fn_retval(list_make1(querytree_list),
4728  result_type, rettupdesc,
4729  funcform->prokind,
4730  false, NULL))
4731  goto fail; /* reject whole-tuple-result cases */
4732 
4733  /*
4734  * Given the tests above, check_sql_fn_retval shouldn't have decided to
4735  * inject a projection step, but let's just make sure.
4736  */
4737  if (querytree != linitial(querytree_list))
4738  goto fail;
4739 
4740  /* Now we can grab the tlist expression */
4741  newexpr = (Node *) ((TargetEntry *) linitial(querytree->targetList))->expr;
4742 
4743  /*
4744  * If the SQL function returns VOID, we can only inline it if it is a
4745  * SELECT of an expression returning VOID (ie, it's just a redirection to
4746  * another VOID-returning function). In all non-VOID-returning cases,
4747  * check_sql_fn_retval should ensure that newexpr returns the function's
4748  * declared result type, so this test shouldn't fail otherwise; but we may
4749  * as well cope gracefully if it does.
4750  */
4751  if (exprType(newexpr) != result_type)
4752  goto fail;
4753 
4754  /*
4755  * Additional validity checks on the expression. It mustn't be more
4756  * volatile than the surrounding function (this is to avoid breaking hacks
4757  * that involve pretending a function is immutable when it really ain't).
4758  * If the surrounding function is declared strict, then the expression
4759  * must contain only strict constructs and must use all of the function
4760  * parameters (this is overkill, but an exact analysis is hard).
4761  */
4762  if (funcform->provolatile == PROVOLATILE_IMMUTABLE &&
4763  contain_mutable_functions(newexpr))
4764  goto fail;
4765  else if (funcform->provolatile == PROVOLATILE_STABLE &&
4766  contain_volatile_functions(newexpr))
4767  goto fail;
4768 
4769  if (funcform->proisstrict &&
4770  contain_nonstrict_functions(newexpr))
4771  goto fail;
4772 
4773  /*
4774  * If any parameter expression contains a context-dependent node, we can't
4775  * inline, for fear of putting such a node into the wrong context.
4776  */
4778  goto fail;
4779 
4780  /*
4781  * We may be able to do it; there are still checks on parameter usage to
4782  * make, but those are most easily done in combination with the actual
4783  * substitution of the inputs. So start building expression with inputs
4784  * substituted.
4785  */
4786  usecounts = (int *) palloc0(funcform->pronargs * sizeof(int));
4787  newexpr = substitute_actual_parameters(newexpr, funcform->pronargs,
4788  args, usecounts);
4789 
4790  /* Now check for parameter usage */
4791  i = 0;
4792  foreach(arg, args)
4793  {
4794  Node *param = lfirst(arg);
4795 
4796  if (usecounts[i] == 0)
4797  {
4798  /* Param not used at all: uncool if func is strict */
4799  if (funcform->proisstrict)
4800  goto fail;
4801  }
4802  else if (usecounts[i] != 1)
4803  {
4804  /* Param used multiple times: uncool if expensive or volatile */
4805  QualCost eval_cost;
4806 
4807  /*
4808  * We define "expensive" as "contains any subplan or more than 10
4809  * operators". Note that the subplan search has to be done
4810  * explicitly, since cost_qual_eval() will barf on unplanned
4811  * subselects.
4812  */
4813  if (contain_subplans(param))
4814  goto fail;
4815  cost_qual_eval(&eval_cost, list_make1(param), NULL);
4816  if (eval_cost.startup + eval_cost.per_tuple >
4817  10 * cpu_operator_cost)
4818  goto fail;
4819 
4820  /*
4821  * Check volatility last since this is more expensive than the
4822  * above tests
4823  */
4824  if (contain_volatile_functions(param))
4825  goto fail;
4826  }
4827  i++;
4828  }
4829 
4830  /*
4831  * Whew --- we can make the substitution. Copy the modified expression
4832  * out of the temporary memory context, and clean up.
4833  */
4834  MemoryContextSwitchTo(oldcxt);
4835 
4836  newexpr = copyObject(newexpr);
4837 
4838  MemoryContextDelete(mycxt);
4839 
4840  /*
4841  * If the result is of a collatable type, force the result to expose the
4842  * correct collation. In most cases this does not matter, but it's
4843  * possible that the function result is used directly as a sort key or in
4844  * other places where we expect exprCollation() to tell the truth.
4845  */
4846  if (OidIsValid(result_collid))
4847  {
4848  Oid exprcoll = exprCollation(newexpr);
4849 
4850  if (OidIsValid(exprcoll) && exprcoll != result_collid)
4851  {
4852  CollateExpr *newnode = makeNode(CollateExpr);
4853 
4854  newnode->arg = (Expr *) newexpr;
4855  newnode->collOid = result_collid;
4856  newnode->location = -1;
4857 
4858  newexpr = (Node *) newnode;
4859  }
4860  }
4861 
4862  /*
4863  * Since there is now no trace of the function in the plan tree, we must
4864  * explicitly record the plan's dependency on the function.
4865  */
4866  if (context->root)
4868 
4869  /*
4870  * Recursively try to simplify the modified expression. Here we must add
4871  * the current function to the context list of active functions.
4872  */
4873  context->active_fns = lappend_oid(context->active_fns, funcid);
4874  newexpr = eval_const_expressions_mutator(newexpr, context);
4875  context->active_fns = list_delete_last(context->active_fns);
4876 
4877  error_context_stack = sqlerrcontext.previous;
4878 
4879  return (Expr *) newexpr;
4880 
4881  /* Here if func is not inlinable: release temp memory and return NULL */
4882 fail:
4883  MemoryContextSwitchTo(oldcxt);
4884  MemoryContextDelete(mycxt);
4885  error_context_stack = sqlerrcontext.previous;
4886 
4887  return NULL;
4888 }
Datum querytree(PG_FUNCTION_ARGS)
Definition: _int_bool.c:666
@ ACLCHECK_OK
Definition: acl.h:183
AclResult object_aclcheck(Oid classid, Oid objectid, Oid roleid, AclMode mode)
Definition: aclchk.c:3876
#define NameStr(name)
Definition: c.h:746
static Node * substitute_actual_parameters(Node *expr, int nargs, List *args, int *usecounts)
Definition: clauses.c:4894
static void sql_inline_error_callback(void *arg)
Definition: clauses.c:4936
static bool contain_context_dependent_node(Node *clause)
Definition: clauses.c:1179
bool contain_nonstrict_functions(Node *clause)
Definition: clauses.c:993
bool contain_subplans(Node *clause)
Definition: clauses.c:330
double cpu_operator_cost
Definition: costsize.c:123
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4640
ErrorContextCallback * error_context_stack
Definition: elog.c:94
#define FmgrHookIsNeeded(fn_oid)
Definition: fmgr.h:797
TypeFuncClass get_expr_result_type(Node *expr, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:299
void sql_fn_parser_setup(struct ParseState *pstate, SQLFunctionParseInfoPtr pinfo)
Definition: functions.c:265
bool check_sql_fn_retval(List *queryTreeLists, Oid rettype, TupleDesc rettupdesc, char prokind, bool insertDroppedCols, List **resultTargetList)
Definition: functions.c:1608
SQLFunctionParseInfoPtr prepare_sql_fn_parse_info(HeapTuple procedureTuple, Node *call_expr, Oid inputCollation)
Definition: functions.c:176
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:455
int i
Definition: isn.c:73
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:722
List * list_delete_last(List *list)
Definition: list.c:957
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
Oid GetUserId(void)
Definition: miscinit.c:514
@ CMD_SELECT
Definition: nodes.h:265
void free_parsestate(ParseState *pstate)
Definition: parse_node.c:72
ParseState * make_parsestate(ParseState *parentParseState)
Definition: parse_node.c:39
#define ACL_EXECUTE
Definition: parsenodes.h:83
Query * transformTopLevelStmt(ParseState *pstate, RawStmt *parseTree)
Definition: analyze.c:248
#define linitial_node(type, l)
Definition: pg_list.h:181
List * pg_parse_query(const char *query_string)
Definition: postgres.c:611
void record_plan_function_dependency(PlannerInfo *root, Oid funcid)
Definition: setrefs.c:3460
struct ErrorContextCallback * previous
Definition: elog.h:295
void(* callback)(void *arg)
Definition: elog.h:296
const char * p_sourcetext
Definition: parse_node.h:193
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47

References ACL_EXECUTE, ACLCHECK_OK, ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, arg, CollateExpr::arg, ErrorContextCallback::arg, generate_unaccent_rules::args, FuncExpr::args, ErrorContextCallback::callback, castNode, check_sql_fn_retval(), CMD_SELECT, COERCE_EXPLICIT_CALL, CollateExpr::collOid, contain_context_dependent_node(), contain_mutable_functions(), contain_nonstrict_functions(), contain_subplans(), contain_volatile_functions(), context, copyObject, cost_qual_eval(), cpu_operator_cost, CurrentMemoryContext, error_context_stack, eval_const_expressions_mutator(), exprCollation(), exprType(), FmgrHookIsNeeded, free_parsestate(), FuncExpr::funcid, get_expr_result_type(), GETSTRUCT, GetUserId(), heap_attisnull(), i, IsA, lappend_oid(), lfirst, linitial, linitial_node, list_delete_last(), list_length(), list_make1, list_member_oid(), FuncExpr::location, CollateExpr::location, make_parsestate(), makeNode, MemoryContextDelete(), MemoryContextSwitchTo(), NameStr, object_aclcheck(), OidIsValid, ParseState::p_sourcetext, palloc0(), QualCost::per_tuple, pg_parse_query(), prepare_sql_fn_parse_info(), ErrorContextCallback::previous, inline_error_callback_arg::proname, inline_error_callback_arg::prosrc, querytree(), record_plan_function_dependency(), sql_fn_parser_setup(), sql_inline_error_callback(), QualCost::startup, stringToNode(), substitute_actual_parameters(), SysCacheGetAttr(), SysCacheGetAttrNotNull(), TextDatumGetCString, and transformTopLevelStmt().

Referenced by simplify_function().

◆ inline_set_returning_function()

Query* inline_set_returning_function ( PlannerInfo root,
RangeTblEntry rte 
)

Definition at line 5052 of file clauses.c.

5053 {
5054  RangeTblFunction *rtfunc;
5055  FuncExpr *fexpr;
5056  Oid func_oid;
5057  HeapTuple func_tuple;
5058  Form_pg_proc funcform;
5059  char *src;
5060  Datum tmp;
5061  bool isNull;
5062  MemoryContext oldcxt;
5063  MemoryContext mycxt;
5064  inline_error_callback_arg callback_arg;
5065  ErrorContextCallback sqlerrcontext;
5067  TypeFuncClass functypclass;
5068  TupleDesc rettupdesc;
5069  List *raw_parsetree_list;
5070  List *querytree_list;
5071  Query *querytree;
5072 
5073  Assert(rte->rtekind == RTE_FUNCTION);
5074 
5075  /*
5076  * It doesn't make a lot of sense for a SQL SRF to refer to itself in its
5077  * own FROM clause, since that must cause infinite recursion at runtime.
5078  * It will cause this code to recurse too, so check for stack overflow.
5079  * (There's no need to do more.)
5080  */
5082 
5083  /* Fail if the RTE has ORDINALITY - we don't implement that here. */
5084  if (rte->funcordinality)
5085  return NULL;
5086 
5087  /* Fail if RTE isn't a single, simple FuncExpr */
5088  if (list_length(rte->functions) != 1)
5089  return NULL;
5090  rtfunc = (RangeTblFunction *) linitial(rte->functions);
5091 
5092  if (!IsA(rtfunc->funcexpr, FuncExpr))
5093  return NULL;
5094  fexpr = (FuncExpr *) rtfunc->funcexpr;
5095 
5096  func_oid = fexpr->funcid;
5097 
5098  /*
5099  * The function must be declared to return a set, else inlining would
5100  * change the results if the contained SELECT didn't return exactly one
5101  * row.
5102  */
5103  if (!fexpr->funcretset)
5104  return NULL;
5105 
5106  /*
5107  * Refuse to inline if the arguments contain any volatile functions or
5108  * sub-selects. Volatile functions are rejected because inlining may
5109  * result in the arguments being evaluated multiple times, risking a
5110  * change in behavior. Sub-selects are rejected partly for implementation
5111  * reasons (pushing them down another level might change their behavior)
5112  * and partly because they're likely to be expensive and so multiple
5113  * evaluation would be bad.
5114  */
5115  if (contain_volatile_functions((Node *) fexpr->args) ||
5116  contain_subplans((Node *) fexpr->args))
5117  return NULL;
5118 
5119  /* Check permission to call function (fail later, if not) */
5120  if (object_aclcheck(ProcedureRelationId, func_oid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
5121  return NULL;
5122 
5123  /* Check whether a plugin wants to hook function entry/exit */
5124  if (FmgrHookIsNeeded(func_oid))
5125  return NULL;
5126 
5127  /*
5128  * OK, let's take a look at the function's pg_proc entry.
5129  */
5130  func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(func_oid));
5131  if (!HeapTupleIsValid(func_tuple))
5132  elog(ERROR, "cache lookup failed for function %u", func_oid);
5133  funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
5134 
5135  /*
5136  * Forget it if the function is not SQL-language or has other showstopper
5137  * properties. In particular it mustn't be declared STRICT, since we
5138  * couldn't enforce that. It also mustn't be VOLATILE, because that is
5139  * supposed to cause it to be executed with its own snapshot, rather than
5140  * sharing the snapshot of the calling query. We also disallow returning
5141  * SETOF VOID, because inlining would result in exposing the actual result
5142  * of the function's last SELECT, which should not happen in that case.
5143  * (Rechecking prokind, proretset, and pronargs is just paranoia.)
5144  */
5145  if (funcform->prolang != SQLlanguageId ||
5146  funcform->prokind != PROKIND_FUNCTION ||
5147  funcform->proisstrict ||
5148  funcform->provolatile == PROVOLATILE_VOLATILE ||
5149  funcform->prorettype == VOIDOID ||
5150  funcform->prosecdef ||
5151  !funcform->proretset ||
5152  list_length(fexpr->args) != funcform->pronargs ||
5153  !heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL))
5154  {
5155  ReleaseSysCache(func_tuple);
5156  return NULL;
5157  }
5158 
5159  /*
5160  * Make a temporary memory context, so that we don't leak all the stuff
5161  * that parsing might create.
5162  */
5164  "inline_set_returning_function",
5166  oldcxt = MemoryContextSwitchTo(mycxt);
5167 
5168  /* Fetch the function body */
5169  tmp = SysCacheGetAttrNotNull(PROCOID, func_tuple, Anum_pg_proc_prosrc);
5170  src = TextDatumGetCString(tmp);
5171 
5172  /*
5173  * Setup error traceback support for ereport(). This is so that we can
5174  * finger the function that bad information came from.
5175  */
5176  callback_arg.proname = NameStr(funcform->proname);
5177  callback_arg.prosrc = src;
5178 
5179  sqlerrcontext.callback = sql_inline_error_callback;
5180  sqlerrcontext.arg = (void *) &callback_arg;
5181  sqlerrcontext.previous = error_context_stack;
5182  error_context_stack = &sqlerrcontext;
5183 
5184  /* If we have prosqlbody, pay attention to that not prosrc */
5185  tmp = SysCacheGetAttr(PROCOID,
5186  func_tuple,
5187  Anum_pg_proc_prosqlbody,
5188  &isNull);
5189  if (!isNull)
5190  {
5191  Node *n;
5192 
5194  if (IsA(n, List))
5195  querytree_list = linitial_node(List, castNode(List, n));
5196  else
5197  querytree_list = list_make1(n);
5198  if (list_length(querytree_list) != 1)
5199  goto fail;
5200  querytree = linitial(querytree_list);
5201 
5202  /* Acquire necessary locks, then apply rewriter. */
5203  AcquireRewriteLocks(querytree, true, false);
5204  querytree_list = pg_rewrite_query(querytree);
5205  if (list_length(querytree_list) != 1)
5206  goto fail;
5207  querytree = linitial(querytree_list);
5208  }
5209  else
5210  {
5211  /*
5212  * Set up to handle parameters while parsing the function body. We
5213  * can use the FuncExpr just created as the input for
5214  * prepare_sql_fn_parse_info.
5215  */
5216  pinfo = prepare_sql_fn_parse_info(func_tuple,
5217  (Node *) fexpr,
5218  fexpr->inputcollid);
5219 
5220  /*
5221  * Parse, analyze, and rewrite (unlike inline_function(), we can't
5222  * skip rewriting here). We can fail as soon as we find more than one
5223  * query, though.
5224  */
5225  raw_parsetree_list = pg_parse_query(src);
5226  if (list_length(raw_parsetree_list) != 1)
5227  goto fail;
5228 
5229  querytree_list = pg_analyze_and_rewrite_withcb(linitial(raw_parsetree_list),
5230  src,
5232  pinfo, NULL);
5233  if (list_length(querytree_list) != 1)
5234  goto fail;
5235  querytree = linitial(querytree_list);
5236  }
5237 
5238  /*
5239  * Also resolve the actual function result tupdesc, if composite. If we
5240  * have a coldeflist, believe that; otherwise use get_expr_result_type.
5241  * (This logic should match ExecInitFunctionScan.)
5242  */
5243  if (rtfunc->funccolnames != NIL)
5244  {
5245  functypclass = TYPEFUNC_RECORD;
5246  rettupdesc = BuildDescFromLists(rtfunc->funccolnames,
5247  rtfunc->funccoltypes,
5248  rtfunc->funccoltypmods,
5249  rtfunc->funccolcollations);
5250  }
5251  else
5252  functypclass = get_expr_result_type((Node *) fexpr, NULL, &rettupdesc);
5253 
5254  /*
5255  * The single command must be a plain SELECT.
5256  */
5257  if (!IsA(querytree, Query) ||
5258  querytree->commandType != CMD_SELECT)
5259  goto fail;
5260 
5261  /*
5262  * Make sure the function (still) returns what it's declared to. This
5263  * will raise an error if wrong, but that's okay since the function would
5264  * fail at runtime anyway. Note that check_sql_fn_retval will also insert
5265  * coercions if needed to make the tlist expression(s) match the declared
5266  * type of the function. We also ask it to insert dummy NULL columns for
5267  * any dropped columns in rettupdesc, so that the elements of the modified
5268  * tlist match up to the attribute numbers.
5269  *
5270  * If the function returns a composite type, don't inline unless the check
5271  * shows it's returning a whole tuple result; otherwise what it's
5272  * returning is a single composite column which is not what we need.
5273  */
5274  if (!check_sql_fn_retval(list_make1(querytree_list),
5275  fexpr->funcresulttype, rettupdesc,
5276  funcform->prokind,
5277  true, NULL) &&
5278  (functypclass == TYPEFUNC_COMPOSITE ||
5279  functypclass == TYPEFUNC_COMPOSITE_DOMAIN ||
5280  functypclass == TYPEFUNC_RECORD))
5281  goto fail; /* reject not-whole-tuple-result cases */
5282 
5283  /*
5284  * check_sql_fn_retval might've inserted a projection step, but that's
5285  * fine; just make sure we use the upper Query.
5286  */
5287  querytree = linitial_node(Query, querytree_list);
5288 
5289  /*
5290  * Looks good --- substitute parameters into the query.
5291  */
5293  funcform->pronargs,
5294  fexpr->args);
5295 
5296  /*
5297  * Copy the modified query out of the temporary memory context, and clean
5298  * up.
5299  */
5300  MemoryContextSwitchTo(oldcxt);
5301 
5303 
5304  MemoryContextDelete(mycxt);
5305  error_context_stack = sqlerrcontext.previous;
5306  ReleaseSysCache(func_tuple);
5307 
5308  /*
5309  * We don't have to fix collations here because the upper query is already
5310  * parsed, ie, the collations in the RTE are what count.
5311  */
5312 
5313  /*
5314  * Since there is now no trace of the function in the plan tree, we must
5315  * explicitly record the plan's dependency on the function.
5316  */
5318 
5319  /*
5320  * We must also notice if the inserted query adds a dependency on the
5321  * calling role due to RLS quals.
5322  */
5323  if (querytree->hasRowSecurity)
5324  root->glob->dependsOnRole = true;
5325 
5326  return querytree;
5327 
5328  /* Here if func is not inlinable: release temp memory and return NULL */
5329 fail:
5330  MemoryContextSwitchTo(oldcxt);
5331  MemoryContextDelete(mycxt);
5332  error_context_stack = sqlerrcontext.previous;
5333  ReleaseSysCache(func_tuple);
5334 
5335  return NULL;
5336 }
static Query * substitute_actual_srf_parameters(Query *expr, int nargs, List *args)
Definition: clauses.c:5345
TypeFuncClass
Definition: funcapi.h:147
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
@ TYPEFUNC_RECORD
Definition: funcapi.h:151
@ TYPEFUNC_COMPOSITE_DOMAIN
Definition: funcapi.h:150
void(* ParserSetupHook)(struct ParseState *pstate, void *arg)
Definition: params.h:108
@ RTE_FUNCTION
Definition: parsenodes.h:1031
List * pg_analyze_and_rewrite_withcb(RawStmt *parsetree, const char *query_string, ParserSetupHook parserSetup, void *parserSetupArg, QueryEnvironment *queryEnv)
Definition: postgres.c:764
List * pg_rewrite_query(Query *query)
Definition: postgres.c:804
void AcquireRewriteLocks(Query *parsetree, bool forExecute, bool forUpdatePushedDown)
bool funcordinality
Definition: parsenodes.h:1189
List * functions
Definition: parsenodes.h:1187
RTEKind rtekind
Definition: parsenodes.h:1057
TupleDesc BuildDescFromLists(const List *names, const List *types, const List *typmods, const List *collations)
Definition: tupdesc.c:858

References ACL_EXECUTE, ACLCHECK_OK, AcquireRewriteLocks(), ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, ErrorContextCallback::arg, FuncExpr::args, Assert, BuildDescFromLists(), ErrorContextCallback::callback, castNode, check_sql_fn_retval(), check_stack_depth(), CMD_SELECT, contain_subplans(), contain_volatile_functions(), copyObject, CurrentMemoryContext, elog, ERROR, error_context_stack, FmgrHookIsNeeded, RangeTblFunction::funcexpr, FuncExpr::funcid, RangeTblEntry::funcordinality, RangeTblEntry::functions, get_expr_result_type(), GETSTRUCT, GetUserId(), heap_attisnull(), HeapTupleIsValid, if(), IsA, linitial, linitial_node, list_length(), list_make1, MemoryContextDelete(), MemoryContextSwitchTo(), NameStr, NIL, object_aclcheck(), ObjectIdGetDatum(), pg_analyze_and_rewrite_withcb(), pg_parse_query(), pg_rewrite_query(), prepare_sql_fn_parse_info(), ErrorContextCallback::previous, inline_error_callback_arg::proname, inline_error_callback_arg::prosrc, querytree(), record_plan_function_dependency(), ReleaseSysCache(), root, RTE_FUNCTION, RangeTblEntry::rtekind, SearchSysCache1(), sql_fn_parser_setup(), sql_inline_error_callback(), stringToNode(), substitute_actual_srf_parameters(), SysCacheGetAttr(), SysCacheGetAttrNotNull(), TextDatumGetCString, TYPEFUNC_COMPOSITE, TYPEFUNC_COMPOSITE_DOMAIN, and TYPEFUNC_RECORD.

Referenced by preprocess_function_rtes().

◆ is_parallel_safe()

bool is_parallel_safe ( PlannerInfo root,
Node node 
)

Definition at line 753 of file clauses.c.

754 {
756  PlannerInfo *proot;
757  ListCell *l;
758 
759  /*
760  * Even if the original querytree contained nothing unsafe, we need to
761  * search the expression if we have generated any PARAM_EXEC Params while
762  * planning, because those are parallel-restricted and there might be one
763  * in this expression. But otherwise we don't need to look.
764  */
765  if (root->glob->maxParallelHazard == PROPARALLEL_SAFE &&
766  root->glob->paramExecTypes == NIL)
767  return true;
768  /* Else use max_parallel_hazard's search logic, but stop on RESTRICTED */
769  context.max_hazard = PROPARALLEL_SAFE;
770  context.max_interesting = PROPARALLEL_RESTRICTED;
771  context.safe_param_ids = NIL;
772 
773  /*
774  * The params that refer to the same or parent query level are considered
775  * parallel-safe. The idea is that we compute such params at Gather or
776  * Gather Merge node and pass their value to workers.
777  */
778  for (proot = root; proot != NULL; proot = proot->parent_root)
779  {
780  foreach(l, proot->init_plans)
781  {
782  SubPlan *initsubplan = (SubPlan *) lfirst(l);
783 
784  context.safe_param_ids = list_concat(context.safe_param_ids,
785  initsubplan->setParam);
786  }
787  }
788 
789  return !max_parallel_hazard_walker(node, &context);
790 }
static bool max_parallel_hazard_walker(Node *node, max_parallel_hazard_context *context)
Definition: clauses.c:829
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * init_plans
Definition: pathnodes.h:299
List * setParam
Definition: primnodes.h:1058

References context, PlannerInfo::init_plans, lfirst, list_concat(), max_parallel_hazard_walker(), NIL, root, and SubPlan::setParam.

Referenced by apply_projection_to_path(), build_join_rel(), create_minmaxagg_path(), create_projection_path(), create_set_projection_path(), create_window_paths(), find_computable_ec_member(), grouping_planner(), make_grouping_rel(), plan_create_index_workers(), query_planner(), relation_can_be_sorted_early(), and set_rel_consider_parallel().

◆ is_pseudo_constant_clause()

bool is_pseudo_constant_clause ( Node clause)

Definition at line 2088 of file clauses.c.

2089 {
2090  /*
2091  * We could implement this check in one recursive scan. But since the
2092  * check for volatile functions is both moderately expensive and unlikely
2093  * to fail, it seems better to look for Vars first and only check for
2094  * volatile functions if we find no Vars.
2095  */
2096  if (!contain_var_clause(clause) &&
2097  !contain_volatile_functions(clause))
2098  return true;
2099  return false;
2100 }

References contain_var_clause(), and contain_volatile_functions().

Referenced by clauselist_selectivity_ext(), dependency_is_compatible_clause(), dependency_is_compatible_expression(), and find_window_run_conditions().

◆ is_pseudo_constant_clause_relids()

bool is_pseudo_constant_clause_relids ( Node clause,
Relids  relids 
)

Definition at line 2108 of file clauses.c.

2109 {
2110  if (bms_is_empty(relids) &&
2111  !contain_volatile_functions(clause))
2112  return true;
2113  return false;
2114 }

References bms_is_empty, and contain_volatile_functions().

Referenced by clauselist_selectivity_ext().

◆ is_strict_saop()

static bool is_strict_saop ( ScalarArrayOpExpr expr,
bool  falseOK 
)
static

Definition at line 2026 of file clauses.c.

2027 {
2028  Node *rightop;
2029 
2030  /* The contained operator must be strict. */
2031  set_sa_opfuncid(expr);
2032  if (!func_strict(expr->opfuncid))
2033  return false;
2034  /* If ANY and falseOK, that's all we need to check. */
2035  if (expr->useOr && falseOK)
2036  return true;
2037  /* Else, we have to see if the array is provably non-empty. */
2038  Assert(list_length(expr->args) == 2);
2039  rightop = (Node *) lsecond(expr->args);
2040  if (rightop && IsA(rightop, Const))
2041  {
2042  Datum arraydatum = ((Const *) rightop)->constvalue;
2043  bool arrayisnull = ((Const *) rightop)->constisnull;
2044  ArrayType *arrayval;
2045  int nitems;
2046 
2047  if (arrayisnull)
2048  return false;
2049  arrayval = DatumGetArrayTypeP(arraydatum);
2050  nitems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
2051  if (nitems > 0)
2052  return true;
2053  }
2054  else if (rightop && IsA(rightop, ArrayExpr))
2055  {
2056  ArrayExpr *arrayexpr = (ArrayExpr *) rightop;
2057 
2058  if (arrayexpr->elements != NIL && !arrayexpr->multidims)
2059  return true;
2060  }
2061  return false;
2062 }
List * elements
Definition: primnodes.h:1350

References ScalarArrayOpExpr::args, ARR_DIMS, ARR_NDIM, ArrayGetNItems(), Assert, DatumGetArrayTypeP, ArrayExpr::elements, func_strict(), IsA, list_length(), lsecond, NIL, nitems, set_sa_opfuncid(), and ScalarArrayOpExpr::useOr.

Referenced by find_nonnullable_rels_walker(), and find_nonnullable_vars_walker().

◆ max_parallel_hazard()

char max_parallel_hazard ( Query parse)

Definition at line 734 of file clauses.c.

735 {
737 
738  context.max_hazard = PROPARALLEL_SAFE;
739  context.max_interesting = PROPARALLEL_UNSAFE;
740  context.safe_param_ids = NIL;
742  return context.max_hazard;
743 }
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:715

References context, max_parallel_hazard_walker(), NIL, and parse().

Referenced by standard_planner().

◆ max_parallel_hazard_checker()

static bool max_parallel_hazard_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 822 of file clauses.c.

823 {
824  return max_parallel_hazard_test(func_parallel(func_id),
826 }
static bool max_parallel_hazard_test(char proparallel, max_parallel_hazard_context *context)
Definition: clauses.c:794
char func_parallel(Oid funcid)
Definition: lsyscache.c:1799

References context, func_parallel(), and max_parallel_hazard_test().

Referenced by max_parallel_hazard_walker().

◆ max_parallel_hazard_test()

static bool max_parallel_hazard_test ( char  proparallel,
max_parallel_hazard_context context 
)
static

Definition at line 794 of file clauses.c.

795 {
796  switch (proparallel)
797  {
798  case PROPARALLEL_SAFE:
799  /* nothing to see here, move along */
800  break;
801  case PROPARALLEL_RESTRICTED:
802  /* increase max_hazard to RESTRICTED */
803  Assert(context->max_hazard != PROPARALLEL_UNSAFE);
804  context->max_hazard = proparallel;
805  /* done if we are not expecting any unsafe functions */
806  if (context->max_interesting == proparallel)
807  return true;
808  break;
809  case PROPARALLEL_UNSAFE:
810  context->max_hazard = proparallel;
811  /* we're always done at the first unsafe construct */
812  return true;
813  default:
814  elog(ERROR, "unrecognized proparallel value \"%c\"", proparallel);
815  break;
816  }
817  return false;
818 }

References Assert, context, elog, and ERROR.

Referenced by max_parallel_hazard_checker(), and max_parallel_hazard_walker().

◆ max_parallel_hazard_walker()

static bool max_parallel_hazard_walker ( Node node,
max_parallel_hazard_context context 
)
static

Definition at line 829 of file clauses.c.

830 {
831  if (node == NULL)
832  return false;
833 
834  /* Check for hazardous functions in node itself */
836  context))
837  return true;
838 
839  /*
840  * It should be OK to treat MinMaxExpr as parallel-safe, since btree
841  * opclass support functions are generally parallel-safe. XmlExpr is a
842  * bit more dubious but we can probably get away with it. We err on the
843  * side of caution by treating CoerceToDomain as parallel-restricted.
844  * (Note: in principle that's wrong because a domain constraint could
845  * contain a parallel-unsafe function; but useful constraints probably
846  * never would have such, and assuming they do would cripple use of
847  * parallel query in the presence of domain types.) SQLValueFunction
848  * should be safe in all cases. NextValueExpr is parallel-unsafe.
849  */
850  if (IsA(node, CoerceToDomain))
851  {
852  if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
853  return true;
854  }
855 
856  else if (IsA(node, NextValueExpr))
857  {
858  if (max_parallel_hazard_test(PROPARALLEL_UNSAFE, context))
859  return true;
860  }
861 
862  /*
863  * Treat window functions as parallel-restricted because we aren't sure
864  * whether the input row ordering is fully deterministic, and the output
865  * of window functions might vary across workers if not. (In some cases,
866  * like where the window frame orders by a primary key, we could relax
867  * this restriction. But it doesn't currently seem worth expending extra
868  * effort to do so.)
869  */
870  else if (IsA(node, WindowFunc))
871  {
872  if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
873  return true;
874  }
875 
876  /*
877  * As a notational convenience for callers, look through RestrictInfo.
878  */
879  else if (IsA(node, RestrictInfo))
880  {
881  RestrictInfo *rinfo = (RestrictInfo *) node;
882 
883  return max_parallel_hazard_walker((Node *) rinfo->clause, context);
884  }
885 
886  /*
887  * Really we should not see SubLink during a max_interesting == restricted
888  * scan, but if we do, return true.
889  */
890  else if (IsA(node, SubLink))
891  {
892  if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
893  return true;
894  }
895 
896  /*
897  * Only parallel-safe SubPlans can be sent to workers. Within the
898  * testexpr of the SubPlan, Params representing the output columns of the
899  * subplan can be treated as parallel-safe, so temporarily add their IDs
900  * to the safe_param_ids list while examining the testexpr.
901  */
902  else if (IsA(node, SubPlan))
903  {
904  SubPlan *subplan = (SubPlan *) node;
905  List *save_safe_param_ids;
906 
907  if (!subplan->parallel_safe &&
908  max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
909  return true;
910  save_safe_param_ids = context->safe_param_ids;
911  context->safe_param_ids = list_concat_copy(context->safe_param_ids,
912  subplan->paramIds);
914  return true; /* no need to restore safe_param_ids */
915  list_free(context->safe_param_ids);
916  context->safe_param_ids = save_safe_param_ids;
917  /* we must also check args, but no special Param treatment there */
918  if (max_parallel_hazard_walker((Node *) subplan->args, context))
919  return true;
920  /* don't want to recurse normally, so we're done */
921  return false;
922  }
923 
924  /*
925  * We can't pass Params to workers at the moment either, so they are also
926  * parallel-restricted, unless they are PARAM_EXTERN Params or are
927  * PARAM_EXEC Params listed in safe_param_ids, meaning they could be
928  * either generated within workers or can be computed by the leader and
929  * then their value can be passed to workers.
930  */
931  else if (IsA(node, Param))
932  {
933  Param *param = (Param *) node;
934 
935  if (param->paramkind == PARAM_EXTERN)
936  return false;
937 
938  if (param->paramkind != PARAM_EXEC ||
939  !list_member_int(context->safe_param_ids, param->paramid))
940  {
941  if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
942  return true;
943  }
944  return false; /* nothing to recurse to */
945  }
946 
947  /*
948  * When we're first invoked on a completely unplanned tree, we must
949  * recurse into subqueries so to as to locate parallel-unsafe constructs
950  * anywhere in the tree.
951  */
952  else if (IsA(node, Query))
953  {
954  Query *query = (Query *) node;
955 
956  /* SELECT FOR UPDATE/SHARE must be treated as unsafe */
957  if (query->rowMarks != NULL)
958  {
959  context->max_hazard = PROPARALLEL_UNSAFE;
960  return true;
961  }
962 
963  /* Recurse into subselects */
964  return query_tree_walker(query,
966  context, 0);
967  }
968 
969  /* Recurse to check arguments */
970  return expression_tree_walker(node,
972  context);
973 }
static bool max_parallel_hazard_checker(Oid func_id, void *context)
Definition: clauses.c:822
void list_free(List *list)
Definition: list.c:1546
List * rowMarks
Definition: parsenodes.h:217
List * args
Definition: primnodes.h:1061
List * paramIds
Definition: primnodes.h:1038
Node * testexpr
Definition: primnodes.h:1037
bool parallel_safe
Definition: primnodes.h:1054

References SubPlan::args, check_functions_in_node(), RestrictInfo::clause, context, expression_tree_walker, IsA, list_concat_copy(), list_free(), list_member_int(), max_parallel_hazard_checker(), max_parallel_hazard_test(), SubPlan::parallel_safe, PARAM_EXEC, PARAM_EXTERN, Param::paramid, SubPlan::paramIds, Param::paramkind, query_tree_walker, Query::rowMarks, and SubPlan::testexpr.

Referenced by is_parallel_safe(), and max_parallel_hazard().

◆ NumRelids()

int NumRelids ( PlannerInfo root,
Node clause 
)

Definition at line 2130 of file clauses.c.

2131 {
2132  int result;
2133  Relids varnos = pull_varnos(root, clause);
2134 
2135  varnos = bms_del_members(varnos, root->outer_join_rels);
2136  result = bms_num_members(varnos);
2137  bms_free(varnos);
2138  return result;
2139 }
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:108

References bms_del_members(), bms_free(), bms_num_members(), pull_varnos(), and root.

Referenced by clauselist_selectivity_ext(), rowcomparesel(), and treat_as_join_clause().

◆ pull_paramids()

Bitmapset* pull_paramids ( Expr expr)

Definition at line 5405 of file clauses.c.

5406 {
5407  Bitmapset *result = NULL;
5408 
5409  (void) pull_paramids_walker((Node *) expr, &result);
5410 
5411  return result;
5412 }
static bool pull_paramids_walker(Node *node, Bitmapset **context)
Definition: clauses.c:5415

References pull_paramids_walker().

Referenced by create_memoize_plan().

◆ pull_paramids_walker()

static bool pull_paramids_walker ( Node node,
Bitmapset **  context 
)
static

Definition at line 5415 of file clauses.c.

5416 {
5417  if (node == NULL)
5418  return false;
5419  if (IsA(node, Param))
5420  {
5421  Param *param = (Param *) node;
5422 
5423  *context = bms_add_member(*context, param->paramid);
5424  return false;
5425  }
5427  (void *) context);
5428 }
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815

References bms_add_member(), context, expression_tree_walker, IsA, and Param::paramid.

Referenced by pull_paramids().

◆ recheck_cast_function_args()

static void recheck_cast_function_args ( List args,
Oid  result_type,
Oid proargtypes,
int  pronargs,
HeapTuple  func_tuple 
)
static

Definition at line 4367 of file clauses.c.

4370 {
4371  Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4372  int nargs;
4373  Oid actual_arg_types[FUNC_MAX_ARGS];
4374  Oid declared_arg_types[FUNC_MAX_ARGS];
4375  Oid rettype;
4376  ListCell *lc;
4377 
4379  elog(ERROR, "too many function arguments");
4380  nargs = 0;
4381  foreach(lc, args)
4382  {
4383  actual_arg_types[nargs++] = exprType((Node *) lfirst(lc));
4384  }
4385  Assert(nargs == pronargs);
4386  memcpy(declared_arg_types, proargtypes, pronargs * sizeof(Oid));
4387  rettype = enforce_generic_type_consistency(actual_arg_types,
4388  declared_arg_types,
4389  nargs,
4390  funcform->prorettype,
4391  false);
4392  /* let's just check we got the same answer as the parser did ... */
4393  if (rettype != result_type)
4394  elog(ERROR, "function's resolved result type changed during planning");
4395 
4396  /* perform any necessary typecasting of arguments */
4397  make_fn_arguments(NULL, args, actual_arg_types, declared_arg_types);
4398 }
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
void make_fn_arguments(ParseState *pstate, List *fargs, Oid *actual_arg_types, Oid *declared_arg_types)
Definition: parse_func.c:1824
#define FUNC_MAX_ARGS

References generate_unaccent_rules::args, Assert, elog, enforce_generic_type_consistency(), ERROR, exprType(), FUNC_MAX_ARGS, GETSTRUCT, lfirst, list_length(), make_fn_arguments(), and pronargs.

Referenced by expand_function_arguments().

◆ reorder_function_arguments()

static List * reorder_function_arguments ( List args,
int  pronargs,
HeapTuple  func_tuple 
)
static

Definition at line 4243 of file clauses.c.

4244 {
4245  Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4246  int nargsprovided = list_length(args);
4247  Node *argarray[FUNC_MAX_ARGS];
4248  ListCell *lc;
4249  int i;
4250 
4251  Assert(nargsprovided <= pronargs);
4252  if (pronargs < 0 || pronargs > FUNC_MAX_ARGS)
4253  elog(ERROR, "too many function arguments");
4254  memset(argarray, 0, pronargs * sizeof(Node *));
4255 
4256  /* Deconstruct the argument list into an array indexed by argnumber */
4257  i = 0;
4258  foreach(lc, args)
4259  {
4260  Node *arg = (Node *) lfirst(lc);
4261 
4262  if (!IsA(arg, NamedArgExpr))
4263  {
4264  /* positional argument, assumed to precede all named args */
4265  Assert(argarray[i] == NULL);
4266  argarray[i++] = arg;
4267  }
4268  else
4269  {
4270  NamedArgExpr *na = (NamedArgExpr *) arg;
4271 
4272  Assert(na->argnumber >= 0 && na->argnumber < pronargs);
4273  Assert(argarray[na->argnumber] == NULL);
4274  argarray[na->argnumber] = (Node *) na->arg;
4275  }
4276  }
4277 
4278  /*
4279  * Fetch default expressions, if needed, and insert into array at proper
4280  * locations (they aren't necessarily consecutive or all used)
4281  */
4282  if (nargsprovided < pronargs)
4283  {
4284  List *defaults = fetch_function_defaults(func_tuple);
4285 
4286  i = pronargs - funcform->pronargdefaults;
4287  foreach(lc, defaults)
4288  {
4289  if (argarray[i] == NULL)
4290  argarray[i] = (Node *) lfirst(lc);
4291  i++;
4292  }
4293  }
4294 
4295  /* Now reconstruct the args list in proper order */
4296  args = NIL;
4297  for (i = 0; i < pronargs; i++)
4298  {
4299  Assert(argarray[i] != NULL);
4300  args = lappend(args, argarray[i]);
4301  }
4302 
4303  return args;
4304 }
Expr * arg
Definition: primnodes.h:761

References arg, NamedArgExpr::arg, NamedArgExpr::argnumber, generate_unaccent_rules::args, Assert, elog, ERROR, fetch_function_defaults(), FUNC_MAX_ARGS, GETSTRUCT, i, IsA, lappend(), lfirst, list_length(), NIL, and pronargs.

Referenced by expand_function_arguments().

◆ rowtype_field_matches()

static bool rowtype_field_matches ( Oid  rowtypeid,
int  fieldnum,
Oid  expectedtype,
int32  expectedtypmod,
Oid  expectedcollation 
)
static

Definition at line 2186 of file clauses.c.

2189 {
2190  TupleDesc tupdesc;
2191  Form_pg_attribute attr;
2192 
2193  /* No issue for RECORD, since there is no way to ALTER such a type */
2194  if (rowtypeid == RECORDOID)
2195  return true;
2196  tupdesc = lookup_rowtype_tupdesc_domain(rowtypeid, -1, false);
2197  if (fieldnum <= 0 || fieldnum > tupdesc->natts)
2198  {
2199  ReleaseTupleDesc(tupdesc);
2200  return false;
2201  }
2202  attr = TupleDescAttr(tupdesc, fieldnum - 1);
2203  if (attr->attisdropped ||
2204  attr->atttypid != expectedtype ||
2205  attr->atttypmod != expectedtypmod ||
2206  attr->attcollation != expectedcollation)
2207  {
2208  ReleaseTupleDesc(tupdesc);
2209  return false;
2210  }
2211  ReleaseTupleDesc(tupdesc);
2212  return true;
2213 }
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
TupleDesc lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError)
Definition: typcache.c:1889

References lookup_rowtype_tupdesc_domain(), TupleDescData::natts, ReleaseTupleDesc, and TupleDescAttr.

Referenced by eval_const_expressions_mutator().

◆ simplify_and_arguments()

static List * simplify_and_arguments ( List args,
eval_const_expressions_context context,
bool haveNull,
bool forceFalse 
)
static

Definition at line 3883 of file clauses.c.

3886 {
3887  List *newargs = NIL;
3888  List *unprocessed_args;
3889 
3890  /* See comments in simplify_or_arguments */
3891  unprocessed_args = list_copy(args);
3892  while (unprocessed_args)
3893  {
3894  Node *arg = (Node *) linitial(unprocessed_args);
3895 
3896  unprocessed_args = list_delete_first(unprocessed_args);
3897 
3898  /* flatten nested ANDs as per above comment */
3899  if (is_andclause(arg))
3900  {
3901  List *subargs = ((BoolExpr *) arg)->args;
3902  List *oldlist = unprocessed_args;
3903 
3904  unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3905  /* perhaps-overly-tense code to avoid leaking old lists */
3906  list_free(oldlist);
3907  continue;
3908  }
3909 
3910  /* If it's not an AND, simplify it */
3912 
3913  /*
3914  * It is unlikely but not impossible for simplification of a non-AND
3915  * clause to produce an AND. Recheck, but don't be too tense about it
3916  * since it's not a mainstream case. In particular we don't worry
3917  * about const-simplifying the input twice, nor about list leakage.
3918  */
3919  if (is_andclause(arg))
3920  {
3921  List *subargs = ((BoolExpr *) arg)->args;
3922 
3923  unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3924  continue;
3925  }
3926 
3927  /*
3928  * OK, we have a const-simplified non-AND argument. Process it per
3929  * comments above.
3930  */
3931  if (IsA(arg, Const))
3932  {
3933  Const *const_input = (Const *) arg;
3934 
3935  if (const_input->constisnull)
3936  *haveNull = true;
3937  else if (!DatumGetBool(const_input->constvalue))
3938  {
3939  *forceFalse = true;
3940 
3941  /*
3942  * Once we detect a FALSE result we can just exit the loop
3943  * immediately. However, if we ever add a notion of
3944  * non-removable functions, we'd need to keep scanning.
3945  */
3946  return NIL;
3947  }
3948  /* otherwise, we can drop the constant-true input */
3949  continue;
3950  }
3951 
3952  /* else emit the simplified arg into the result list */
3953  newargs = lappend(newargs, arg);
3954  }
3955 
3956  return newargs;
3957 }
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * list_delete_first(List *list)
Definition: list.c:943
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:105

References arg, generate_unaccent_rules::args, context, DatumGetBool(), eval_const_expressions_mutator(), is_andclause(), IsA, lappend(), linitial, list_concat_copy(), list_copy(), list_delete_first(), list_free(), and NIL.

Referenced by eval_const_expressions_mutator().

◆ simplify_boolean_equality()

static Node * simplify_boolean_equality ( Oid  opno,
List args 
)
static

Definition at line 3977 of file clauses.c.

3978 {
3979  Node *leftop;
3980  Node *rightop;
3981 
3982  Assert(list_length(args) == 2);
3983  leftop = linitial(args);
3984  rightop = lsecond(args);
3985  if (leftop && IsA(leftop, Const))
3986  {
3987  Assert(!((Const *) leftop)->constisnull);
3988  if (opno == BooleanEqualOperator)
3989  {
3990  if (DatumGetBool(((Const *) leftop)->constvalue))
3991  return rightop; /* true = foo */
3992  else
3993  return negate_clause(rightop); /* false = foo */
3994  }
3995  else
3996  {
3997  if (DatumGetBool(((Const *) leftop)->constvalue))
3998  return negate_clause(rightop); /* true <> foo */
3999  else
4000  return rightop; /* false <> foo */
4001  }
4002  }
4003  if (rightop && IsA(rightop, Const))
4004  {
4005  Assert(!((Const *) rightop)->constisnull);
4006  if (opno == BooleanEqualOperator)
4007  {
4008  if (DatumGetBool(((Const *) rightop)->constvalue))
4009  return leftop; /* foo = true */
4010  else
4011  return negate_clause(leftop); /* foo = false */
4012  }
4013  else
4014  {
4015  if (DatumGetBool(((Const *) rightop)->constvalue))
4016  return negate_clause(leftop); /* foo <> true */
4017  else
4018  return leftop; /* foo <> false */
4019  }
4020  }
4021  return NULL;
4022 }

References generate_unaccent_rules::args, Assert, DatumGetBool(), IsA, linitial, list_length(), lsecond, and negate_clause().

Referenced by eval_const_expressions_mutator().

◆ simplify_function()

static Expr * simplify_function ( Oid  funcid,
Oid  result_type,
int32  result_typmod,
Oid  result_collid,
Oid  input_collid,
List **  args_p,
bool  funcvariadic,
bool  process_args,
bool  allow_non_const,
eval_const_expressions_context context 
)
static

Definition at line 4046 of file clauses.c.

4050 {
4051  List *args = *args_p;
4052  HeapTuple func_tuple;
4053  Form_pg_proc func_form;
4054  Expr *newexpr;
4055 
4056  /*
4057  * We have three strategies for simplification: execute the function to
4058  * deliver a constant result, use a transform function to generate a
4059  * substitute node tree, or expand in-line the body of the function
4060  * definition (which only works for simple SQL-language functions, but
4061  * that is a common case). Each case needs access to the function's
4062  * pg_proc tuple, so fetch it just once.
4063  *
4064  * Note: the allow_non_const flag suppresses both the second and third
4065  * strategies; so if !allow_non_const, simplify_function can only return a
4066  * Const or NULL. Argument-list rewriting happens anyway, though.
4067  */
4068  func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
4069  if (!HeapTupleIsValid(func_tuple))
4070  elog(ERROR, "cache lookup failed for function %u", funcid);
4071  func_form = (Form_pg_proc) GETSTRUCT(func_tuple);
4072 
4073  /*
4074  * Process the function arguments, unless the caller did it already.
4075  *
4076  * Here we must deal with named or defaulted arguments, and then
4077  * recursively apply eval_const_expressions to the whole argument list.
4078  */
4079  if (process_args)
4080  {
4081  args = expand_function_arguments(args, false, result_type, func_tuple);
4084  (void *) context);
4085  /* Argument processing done, give it back to the caller */
4086  *args_p = args;
4087  }
4088 
4089  /* Now attempt simplification of the function call proper. */
4090 
4091  newexpr = evaluate_function(funcid, result_type, result_typmod,
4092  result_collid, input_collid,
4093  args, funcvariadic,
4094  func_tuple, context);
4095 
4096  if (!newexpr && allow_non_const && OidIsValid(func_form->prosupport))
4097  {
4098  /*
4099  * Build a SupportRequestSimplify node to pass to the support
4100  * function, pointing to a dummy FuncExpr node containing the
4101  * simplified arg list. We use this approach to present a uniform
4102  * interface to the support function regardless of how the target
4103  * function is actually being invoked.
4104  */
4106  FuncExpr fexpr;
4107 
4108  fexpr.xpr.type = T_FuncExpr;
4109  fexpr.funcid = funcid;
4110  fexpr.funcresulttype = result_type;
4111  fexpr.funcretset = func_form->proretset;
4112  fexpr.funcvariadic = funcvariadic;
4113  fexpr.funcformat = COERCE_EXPLICIT_CALL;
4114  fexpr.funccollid = result_collid;
4115  fexpr.inputcollid = input_collid;
4116  fexpr.args = args;
4117  fexpr.location = -1;
4118 
4119  req.type = T_SupportRequestSimplify;
4120  req.root = context->root;
4121  req.fcall = &fexpr;
4122 
4123  newexpr = (Expr *)
4124  DatumGetPointer(OidFunctionCall1(func_form->prosupport,
4125  PointerGetDatum(&req)));
4126 
4127  /* catch a possible API misunderstanding */
4128  Assert(newexpr != (Expr *) &fexpr);
4129  }
4130 
4131  if (!newexpr && allow_non_const)
4132  newexpr = inline_function(funcid, result_type, result_collid,
4133  input_collid, args, funcvariadic,
4134  func_tuple, context);
4135 
4136  ReleaseSysCache(func_tuple);
4137 
4138  return newexpr;
4139 }
static Expr * evaluate_function(Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
Definition: clauses.c:4412
static Expr * inline_function(Oid funcid, Oid result_type, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
Definition: clauses.c:4538
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:680
Expr xpr
Definition: primnodes.h:718
struct PlannerInfo * root
Definition: supportnodes.h:68

References generate_unaccent_rules::args, FuncExpr::args, Assert, COERCE_EXPLICIT_CALL, context, DatumGetPointer(), elog, ERROR, eval_const_expressions_mutator(), evaluate_function(), expand_function_arguments(), expression_tree_mutator, SupportRequestSimplify::fcall, FuncExpr::funcid, GETSTRUCT, HeapTupleIsValid, inline_function(), FuncExpr::location, ObjectIdGetDatum(), OidFunctionCall1, OidIsValid, PointerGetDatum(), ReleaseSysCache(), SupportRequestSimplify::root, SearchSysCache1(), SupportRequestSimplify::type, and FuncExpr::xpr.

Referenced by eval_const_expressions_mutator().

◆ simplify_or_arguments()

static List * simplify_or_arguments ( List args,
eval_const_expressions_context context,
bool haveNull,
bool forceTrue 
)
static

Definition at line 3777 of file clauses.c.

3780 {
3781  List *newargs = NIL;
3782  List *unprocessed_args;
3783 
3784  /*
3785  * We want to ensure that any OR immediately beneath another OR gets
3786  * flattened into a single OR-list, so as to simplify later reasoning.
3787  *
3788  * To avoid stack overflow from recursion of eval_const_expressions, we
3789  * resort to some tenseness here: we keep a list of not-yet-processed
3790  * inputs, and handle flattening of nested ORs by prepending to the to-do
3791  * list instead of recursing. Now that the parser generates N-argument
3792  * ORs from simple lists, this complexity is probably less necessary than
3793  * it once was, but we might as well keep the logic.
3794  */
3795  unprocessed_args = list_copy(args);
3796  while (unprocessed_args)
3797  {
3798  Node *arg = (Node *) linitial(unprocessed_args);
3799 
3800  unprocessed_args = list_delete_first(unprocessed_args);
3801 
3802  /* flatten nested ORs as per above comment */
3803  if (is_orclause(arg))
3804  {
3805  List *subargs = ((BoolExpr *) arg)->args;
3806  List *oldlist = unprocessed_args;
3807 
3808  unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3809  /* perhaps-overly-tense code to avoid leaking old lists */
3810  list_free(oldlist);
3811  continue;
3812  }
3813 
3814  /* If it's not an OR, simplify it */
3816 
3817  /*
3818  * It is unlikely but not impossible for simplification of a non-OR
3819  * clause to produce an OR. Recheck, but don't be too tense about it
3820  * since it's not a mainstream case. In particular we don't worry
3821  * about const-simplifying the input twice, nor about list leakage.
3822  */
3823  if (is_orclause(arg))
3824  {
3825  List *subargs = ((BoolExpr *) arg)->args;
3826 
3827  unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3828  continue;
3829  }
3830 
3831  /*
3832  * OK, we have a const-simplified non-OR argument. Process it per
3833  * comments above.
3834  */
3835  if (IsA(arg, Const))
3836  {
3837  Const *const_input = (Const *) arg;
3838 
3839  if (const_input->constisnull)
3840  *haveNull = true;
3841  else if (DatumGetBool(const_input->constvalue))
3842  {
3843  *forceTrue = true;
3844 
3845  /*
3846  * Once we detect a TRUE result we can just exit the loop
3847  * immediately. However, if we ever add a notion of
3848  * non-removable functions, we'd need to keep scanning.
3849  */
3850  return NIL;
3851  }
3852  /* otherwise, we can drop the constant-false input */
3853  continue;
3854  }
3855 
3856  /* else emit the simplified arg into the result list */
3857  newargs = lappend(newargs, arg);
3858  }
3859 
3860  return newargs;
3861 }
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:114

References arg, generate_unaccent_rules::args, context, DatumGetBool(), eval_const_expressions_mutator(), is_orclause(), IsA, lappend(), linitial, list_concat_copy(), list_copy(), list_delete_first(), list_free(), and NIL.

Referenced by eval_const_expressions_mutator().

◆ sql_inline_error_callback()

static void sql_inline_error_callback ( void *  arg)
static

Definition at line 4936 of file clauses.c.

4937 {
4939  int syntaxerrposition;
4940 
4941  /* If it's a syntax error, convert to internal syntax error report */
4942  syntaxerrposition = geterrposition();
4943  if (syntaxerrposition > 0)
4944  {
4945  errposition(0);
4946  internalerrposition(syntaxerrposition);
4947  internalerrquery(callback_arg->prosrc);
4948  }
4949 
4950  errcontext("SQL function \"%s\" during inlining", callback_arg->proname);
4951 }
int internalerrquery(const char *query)
Definition: elog.c:1484
int internalerrposition(int cursorpos)
Definition: elog.c:1464
int geterrposition(void)
Definition: elog.c:1580
int errposition(int cursorpos)
Definition: elog.c:1448
#define errcontext
Definition: elog.h:196

References arg, errcontext, errposition(), geterrposition(), internalerrposition(), internalerrquery(), inline_error_callback_arg::proname, and inline_error_callback_arg::prosrc.

Referenced by inline_function(), and inline_set_returning_function().

◆ substitute_actual_parameters()

static Node * substitute_actual_parameters ( Node expr,
int  nargs,
List args,
int *  usecounts 
)
static

Definition at line 4894 of file clauses.c.

4896 {
4898 
4899  context.nargs = nargs;
4900  context.args = args;
4901  context.usecounts = usecounts;
4902 
4904 }
static Node * substitute_actual_parameters_mutator(Node *node, substitute_actual_parameters_context *context)
Definition: clauses.c:4907

References generate_unaccent_rules::args, context, and substitute_actual_parameters_mutator().

Referenced by inline_function().

◆ substitute_actual_parameters_mutator()

static Node * substitute_actual_parameters_mutator ( Node node,
substitute_actual_parameters_context context 
)
static

Definition at line 4907 of file clauses.c.

4909 {
4910  if (node == NULL)
4911  return NULL;
4912  if (IsA(node, Param))
4913  {
4914  Param *param = (Param *) node;
4915 
4916  if (param->paramkind != PARAM_EXTERN)
4917  elog(ERROR, "unexpected paramkind: %d", (int) param->paramkind);
4918  if (param->paramid <= 0 || param->paramid > context->nargs)
4919  elog(ERROR, "invalid paramid: %d", param->paramid);
4920 
4921  /* Count usage of parameter */
4922  context->usecounts[param->paramid - 1]++;
4923 
4924  /* Select the appropriate actual arg and replace the Param with it */
4925  /* We don't need to copy at this time (it'll get done later) */
4926  return list_nth(context->args, param->paramid - 1);
4927  }
4929  (void *) context);
4930 }

References context, elog, ERROR, expression_tree_mutator, IsA, list_nth(), PARAM_EXTERN, Param::paramid, and Param::paramkind.

Referenced by substitute_actual_parameters().

◆ substitute_actual_srf_parameters()

static Query * substitute_actual_srf_parameters ( Query expr,
int  nargs,
List args 
)
static

Definition at line 5345 of file clauses.c.

5346 {
5348 
5349  context.nargs = nargs;
5350  context.args = args;
5351  context.sublevels_up = 1;
5352 
5353  return query_tree_mutator(expr,
5355  &context,
5356  0);
5357 }
static Node * substitute_actual_srf_parameters_mutator(Node *node, substitute_actual_srf_parameters_context *context)
Definition: clauses.c:5360
#define query_tree_mutator(q, m, c, f)
Definition: nodeFuncs.h:158

References generate_unaccent_rules::args, context, query_tree_mutator, and substitute_actual_srf_parameters_mutator().

Referenced by inline_set_returning_function().

◆ substitute_actual_srf_parameters_mutator()

static Node * substitute_actual_srf_parameters_mutator ( Node node,
substitute_actual_srf_parameters_context context 
)
static

Definition at line 5360 of file clauses.c.

5362 {
5363  Node *result;
5364 
5365  if (node == NULL)
5366  return NULL;
5367  if (IsA(node, Query))
5368  {
5369  context->sublevels_up++;
5370  result = (Node *) query_tree_mutator((Query *) node,
5372  (void *) context,
5373  0);
5374  context->sublevels_up--;
5375  return result;
5376  }
5377  if (IsA(node, Param))
5378  {
5379  Param *param = (Param *) node;
5380 
5381  if (param->paramkind == PARAM_EXTERN)
5382  {
5383  if (param->paramid <= 0 || param->paramid > context->nargs)
5384  elog(ERROR, "invalid paramid: %d", param->paramid);
5385 
5386  /*
5387  * Since the parameter is being inserted into a subquery, we must
5388  * adjust levels.
5389  */
5390  result = copyObject(list_nth(context->args, param->paramid - 1));
5391  IncrementVarSublevelsUp(result, context->sublevels_up, 0);
5392  return result;
5393  }
5394  }
5395  return expression_tree_mutator(node,
5397  (void *) context);
5398 }
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:849

References context, copyObject, elog, ERROR, expression_tree_mutator, IncrementVarSublevelsUp(), IsA, list_nth(), PARAM_EXTERN, Param::paramid, Param::paramkind, and query_tree_mutator.

Referenced by substitute_actual_srf_parameters().