PostgreSQL Source Code git master
selfuncs.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * selfuncs.c
4 * Selectivity functions and index cost estimation functions for
5 * standard operators and index access methods.
6 *
7 * Selectivity routines are registered in the pg_operator catalog
8 * in the "oprrest" and "oprjoin" attributes.
9 *
10 * Index cost functions are located via the index AM's API struct,
11 * which is obtained from the handler function registered in pg_am.
12 *
13 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
14 * Portions Copyright (c) 1994, Regents of the University of California
15 *
16 *
17 * IDENTIFICATION
18 * src/backend/utils/adt/selfuncs.c
19 *
20 *-------------------------------------------------------------------------
21 */
22
23/*----------
24 * Operator selectivity estimation functions are called to estimate the
25 * selectivity of WHERE clauses whose top-level operator is their operator.
26 * We divide the problem into two cases:
27 * Restriction clause estimation: the clause involves vars of just
28 * one relation.
29 * Join clause estimation: the clause involves vars of multiple rels.
30 * Join selectivity estimation is far more difficult and usually less accurate
31 * than restriction estimation.
32 *
33 * When dealing with the inner scan of a nestloop join, we consider the
34 * join's joinclauses as restriction clauses for the inner relation, and
35 * treat vars of the outer relation as parameters (a/k/a constants of unknown
36 * values). So, restriction estimators need to be able to accept an argument
37 * telling which relation is to be treated as the variable.
38 *
39 * The call convention for a restriction estimator (oprrest function) is
40 *
41 * Selectivity oprrest (PlannerInfo *root,
42 * Oid operator,
43 * List *args,
44 * int varRelid);
45 *
46 * root: general information about the query (rtable and RelOptInfo lists
47 * are particularly important for the estimator).
48 * operator: OID of the specific operator in question.
49 * args: argument list from the operator clause.
50 * varRelid: if not zero, the relid (rtable index) of the relation to
51 * be treated as the variable relation. May be zero if the args list
52 * is known to contain vars of only one relation.
53 *
54 * This is represented at the SQL level (in pg_proc) as
55 *
56 * float8 oprrest (internal, oid, internal, int4);
57 *
58 * The result is a selectivity, that is, a fraction (0 to 1) of the rows
59 * of the relation that are expected to produce a TRUE result for the
60 * given operator.
61 *
62 * The call convention for a join estimator (oprjoin function) is similar
63 * except that varRelid is not needed, and instead join information is
64 * supplied:
65 *
66 * Selectivity oprjoin (PlannerInfo *root,
67 * Oid operator,
68 * List *args,
69 * JoinType jointype,
70 * SpecialJoinInfo *sjinfo);
71 *
72 * float8 oprjoin (internal, oid, internal, int2, internal);
73 *
74 * (Before Postgres 8.4, join estimators had only the first four of these
75 * parameters. That signature is still allowed, but deprecated.) The
76 * relationship between jointype and sjinfo is explained in the comments for
77 * clause_selectivity() --- the short version is that jointype is usually
78 * best ignored in favor of examining sjinfo.
79 *
80 * Join selectivity for regular inner and outer joins is defined as the
81 * fraction (0 to 1) of the cross product of the relations that is expected
82 * to produce a TRUE result for the given operator. For both semi and anti
83 * joins, however, the selectivity is defined as the fraction of the left-hand
84 * side relation's rows that are expected to have a match (ie, at least one
85 * row with a TRUE result) in the right-hand side.
86 *
87 * For both oprrest and oprjoin functions, the operator's input collation OID
88 * (if any) is passed using the standard fmgr mechanism, so that the estimator
89 * function can fetch it with PG_GET_COLLATION(). Note, however, that all
90 * statistics in pg_statistic are currently built using the relevant column's
91 * collation.
92 *----------
93 */
94
95#include "postgres.h"
96
97#include <ctype.h>
98#include <math.h>
99
100#include "access/brin.h"
101#include "access/brin_page.h"
102#include "access/gin.h"
103#include "access/table.h"
104#include "access/tableam.h"
105#include "access/visibilitymap.h"
106#include "catalog/pg_collation.h"
107#include "catalog/pg_operator.h"
108#include "catalog/pg_statistic.h"
110#include "executor/nodeAgg.h"
111#include "miscadmin.h"
112#include "nodes/makefuncs.h"
113#include "nodes/nodeFuncs.h"
114#include "optimizer/clauses.h"
115#include "optimizer/cost.h"
116#include "optimizer/optimizer.h"
117#include "optimizer/pathnode.h"
118#include "optimizer/paths.h"
119#include "optimizer/plancat.h"
120#include "parser/parse_clause.h"
122#include "parser/parsetree.h"
123#include "rewrite/rewriteManip.h"
125#include "storage/bufmgr.h"
126#include "utils/acl.h"
127#include "utils/array.h"
128#include "utils/builtins.h"
129#include "utils/date.h"
130#include "utils/datum.h"
131#include "utils/fmgroids.h"
132#include "utils/index_selfuncs.h"
133#include "utils/lsyscache.h"
134#include "utils/memutils.h"
135#include "utils/pg_locale.h"
136#include "utils/rel.h"
137#include "utils/selfuncs.h"
138#include "utils/snapmgr.h"
139#include "utils/spccache.h"
140#include "utils/syscache.h"
141#include "utils/timestamp.h"
142#include "utils/typcache.h"
143
144#define DEFAULT_PAGE_CPU_MULTIPLIER 50.0
145
146/*
147 * In production builds, switch to hash-based MCV matching when the lists are
148 * large enough to amortize hash setup cost. (This threshold is compared to
149 * the sum of the lengths of the two MCV lists. This is simplistic but seems
150 * to work well enough.) In debug builds, we use a smaller threshold so that
151 * the regression tests cover both paths well.
152 */
153#ifndef USE_ASSERT_CHECKING
154#define EQJOINSEL_MCV_HASH_THRESHOLD 200
155#else
156#define EQJOINSEL_MCV_HASH_THRESHOLD 20
157#endif
158
159/* Entries in the simplehash hash table used by eqjoinsel_find_matches */
160typedef struct MCVHashEntry
161{
162 Datum value; /* the value represented by this entry */
163 int index; /* its index in the relevant AttStatsSlot */
164 uint32 hash; /* hash code for the Datum */
165 char status; /* status code used by simplehash.h */
167
168/* private_data for the simplehash hash table */
169typedef struct MCVHashContext
170{
171 FunctionCallInfo equal_fcinfo; /* the equality join operator */
172 FunctionCallInfo hash_fcinfo; /* the hash function to use */
173 bool op_is_reversed; /* equality compares hash type to probe type */
174 bool insert_mode; /* doing inserts or lookups? */
175 bool hash_typbyval; /* typbyval of hashed data type */
176 int16 hash_typlen; /* typlen of hashed data type */
178
179/* forward reference */
181
182/* Hooks for plugins to get control when we ask for stats */
185
186static double eqsel_internal(PG_FUNCTION_ARGS, bool negate);
187static double eqjoinsel_inner(FmgrInfo *eqproc, Oid collation,
188 Oid hashLeft, Oid hashRight,
189 VariableStatData *vardata1, VariableStatData *vardata2,
190 double nd1, double nd2,
191 bool isdefault1, bool isdefault2,
192 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
194 bool have_mcvs1, bool have_mcvs2,
195 bool *hasmatch1, bool *hasmatch2,
196 int *p_nmatches);
197static double eqjoinsel_semi(FmgrInfo *eqproc, Oid collation,
198 Oid hashLeft, Oid hashRight,
199 bool op_is_reversed,
200 VariableStatData *vardata1, VariableStatData *vardata2,
201 double nd1, double nd2,
202 bool isdefault1, bool isdefault2,
203 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
205 bool have_mcvs1, bool have_mcvs2,
206 bool *hasmatch1, bool *hasmatch2,
207 int *p_nmatches,
208 RelOptInfo *inner_rel);
209static void eqjoinsel_find_matches(FmgrInfo *eqproc, Oid collation,
210 Oid hashLeft, Oid hashRight,
211 bool op_is_reversed,
212 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
213 int nvalues1, int nvalues2,
214 bool *hasmatch1, bool *hasmatch2,
215 int *p_nmatches, double *p_matchprodfreq);
217static bool mcvs_equal(MCVHashTable_hash *tab, Datum key0, Datum key1);
219 RelOptInfo *rel, List **varinfos, double *ndistinct);
220static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid,
221 double *scaledvalue,
222 Datum lobound, Datum hibound, Oid boundstypid,
223 double *scaledlobound, double *scaledhibound);
224static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure);
225static void convert_string_to_scalar(char *value,
226 double *scaledvalue,
227 char *lobound,
228 double *scaledlobound,
229 char *hibound,
230 double *scaledhibound);
232 double *scaledvalue,
233 Datum lobound,
234 double *scaledlobound,
235 Datum hibound,
236 double *scaledhibound);
237static double convert_one_string_to_scalar(char *value,
238 int rangelo, int rangehi);
239static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
240 int rangelo, int rangehi);
241static char *convert_string_datum(Datum value, Oid typid, Oid collid,
242 bool *failure);
243static double convert_timevalue_to_scalar(Datum value, Oid typid,
244 bool *failure);
246static bool contain_placeholder_walker(Node *node, void *context);
247static Node *strip_all_phvs_mutator(Node *node, void *context);
249 VariableStatData *vardata);
251 int indexcol, VariableStatData *vardata);
253 Oid sortop, Oid collation,
254 Datum *min, Datum *max);
255static void get_stats_slot_range(AttStatsSlot *sslot,
256 Oid opfuncoid, FmgrInfo *opproc,
257 Oid collation, int16 typLen, bool typByVal,
258 Datum *min, Datum *max, bool *p_have_data);
260 VariableStatData *vardata,
261 Oid sortop, Oid collation,
262 Datum *min, Datum *max);
263static bool get_actual_variable_endpoint(Relation heapRel,
264 Relation indexRel,
265 ScanDirection indexscandir,
266 ScanKey scankeys,
267 int16 typLen,
268 bool typByVal,
269 TupleTableSlot *tableslot,
270 MemoryContext outercontext,
271 Datum *endpointDatum);
274 VariableStatData *vardata);
275
276/* Define support routines for MCV hash tables */
277#define SH_PREFIX MCVHashTable
278#define SH_ELEMENT_TYPE MCVHashEntry
279#define SH_KEY_TYPE Datum
280#define SH_KEY value
281#define SH_HASH_KEY(tab,key) hash_mcv(tab, key)
282#define SH_EQUAL(tab,key0,key1) mcvs_equal(tab, key0, key1)
283#define SH_SCOPE static inline
284#define SH_STORE_HASH
285#define SH_GET_HASH(tab,ent) (ent)->hash
286#define SH_DEFINE
287#define SH_DECLARE
288#include "lib/simplehash.h"
289
290
291/*
292 * eqsel - Selectivity of "=" for any data types.
293 *
294 * Note: this routine is also used to estimate selectivity for some
295 * operators that are not "=" but have comparable selectivity behavior,
296 * such as "~=" (geometric approximate-match). Even for "=", we must
297 * keep in mind that the left and right datatypes may differ.
298 */
299Datum
301{
302 PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false));
303}
304
305/*
306 * Common code for eqsel() and neqsel()
307 */
308static double
310{
312 Oid operator = PG_GETARG_OID(1);
314 int varRelid = PG_GETARG_INT32(3);
315 Oid collation = PG_GET_COLLATION();
316 VariableStatData vardata;
317 Node *other;
318 bool varonleft;
319 double selec;
320
321 /*
322 * When asked about <>, we do the estimation using the corresponding =
323 * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
324 */
325 if (negate)
326 {
327 operator = get_negator(operator);
328 if (!OidIsValid(operator))
329 {
330 /* Use default selectivity (should we raise an error instead?) */
331 return 1.0 - DEFAULT_EQ_SEL;
332 }
333 }
334
335 /*
336 * If expression is not variable = something or something = variable, then
337 * punt and return a default estimate.
338 */
339 if (!get_restriction_variable(root, args, varRelid,
340 &vardata, &other, &varonleft))
341 return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL;
342
343 /*
344 * We can do a lot better if the something is a constant. (Note: the
345 * Const might result from estimation rather than being a simple constant
346 * in the query.)
347 */
348 if (IsA(other, Const))
349 selec = var_eq_const(&vardata, operator, collation,
350 ((Const *) other)->constvalue,
351 ((Const *) other)->constisnull,
352 varonleft, negate);
353 else
354 selec = var_eq_non_const(&vardata, operator, collation, other,
355 varonleft, negate);
356
357 ReleaseVariableStats(vardata);
358
359 return selec;
360}
361
362/*
363 * var_eq_const --- eqsel for var = const case
364 *
365 * This is exported so that some other estimation functions can use it.
366 */
367double
368var_eq_const(VariableStatData *vardata, Oid oproid, Oid collation,
369 Datum constval, bool constisnull,
370 bool varonleft, bool negate)
371{
372 double selec;
373 double nullfrac = 0.0;
374 bool isdefault;
375 Oid opfuncoid;
376
377 /*
378 * If the constant is NULL, assume operator is strict and return zero, ie,
379 * operator will never return TRUE. (It's zero even for a negator op.)
380 */
381 if (constisnull)
382 return 0.0;
383
384 /*
385 * Grab the nullfrac for use below. Note we allow use of nullfrac
386 * regardless of security check.
387 */
388 if (HeapTupleIsValid(vardata->statsTuple))
389 {
390 Form_pg_statistic stats;
391
392 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
393 nullfrac = stats->stanullfrac;
394 }
395
396 /*
397 * If we matched the var to a unique index, DISTINCT or GROUP-BY clause,
398 * assume there is exactly one match regardless of anything else. (This
399 * is slightly bogus, since the index or clause's equality operator might
400 * be different from ours, but it's much more likely to be right than
401 * ignoring the information.)
402 */
403 if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
404 {
405 selec = 1.0 / vardata->rel->tuples;
406 }
407 else if (HeapTupleIsValid(vardata->statsTuple) &&
409 (opfuncoid = get_opcode(oproid))))
410 {
411 AttStatsSlot sslot;
412 bool match = false;
413 int i;
414
415 /*
416 * Is the constant "=" to any of the column's most common values?
417 * (Although the given operator may not really be "=", we will assume
418 * that seeing whether it returns TRUE is an appropriate test. If you
419 * don't like this, maybe you shouldn't be using eqsel for your
420 * operator...)
421 */
422 if (get_attstatsslot(&sslot, vardata->statsTuple,
423 STATISTIC_KIND_MCV, InvalidOid,
425 {
426 LOCAL_FCINFO(fcinfo, 2);
427 FmgrInfo eqproc;
428
429 fmgr_info(opfuncoid, &eqproc);
430
431 /*
432 * Save a few cycles by setting up the fcinfo struct just once.
433 * Using FunctionCallInvoke directly also avoids failure if the
434 * eqproc returns NULL, though really equality functions should
435 * never do that.
436 */
437 InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
438 NULL, NULL);
439 fcinfo->args[0].isnull = false;
440 fcinfo->args[1].isnull = false;
441 /* be careful to apply operator right way 'round */
442 if (varonleft)
443 fcinfo->args[1].value = constval;
444 else
445 fcinfo->args[0].value = constval;
446
447 for (i = 0; i < sslot.nvalues; i++)
448 {
449 Datum fresult;
450
451 if (varonleft)
452 fcinfo->args[0].value = sslot.values[i];
453 else
454 fcinfo->args[1].value = sslot.values[i];
455 fcinfo->isnull = false;
456 fresult = FunctionCallInvoke(fcinfo);
457 if (!fcinfo->isnull && DatumGetBool(fresult))
458 {
459 match = true;
460 break;
461 }
462 }
463 }
464 else
465 {
466 /* no most-common-value info available */
467 i = 0; /* keep compiler quiet */
468 }
469
470 if (match)
471 {
472 /*
473 * Constant is "=" to this common value. We know selectivity
474 * exactly (or as exactly as ANALYZE could calculate it, anyway).
475 */
476 selec = sslot.numbers[i];
477 }
478 else
479 {
480 /*
481 * Comparison is against a constant that is neither NULL nor any
482 * of the common values. Its selectivity cannot be more than
483 * this:
484 */
485 double sumcommon = 0.0;
486 double otherdistinct;
487
488 for (i = 0; i < sslot.nnumbers; i++)
489 sumcommon += sslot.numbers[i];
490 selec = 1.0 - sumcommon - nullfrac;
491 CLAMP_PROBABILITY(selec);
492
493 /*
494 * and in fact it's probably a good deal less. We approximate that
495 * all the not-common values share this remaining fraction
496 * equally, so we divide by the number of other distinct values.
497 */
498 otherdistinct = get_variable_numdistinct(vardata, &isdefault) -
499 sslot.nnumbers;
500 if (otherdistinct > 1)
501 selec /= otherdistinct;
502
503 /*
504 * Another cross-check: selectivity shouldn't be estimated as more
505 * than the least common "most common value".
506 */
507 if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1])
508 selec = sslot.numbers[sslot.nnumbers - 1];
509 }
510
511 free_attstatsslot(&sslot);
512 }
513 else
514 {
515 /*
516 * No ANALYZE stats available, so make a guess using estimated number
517 * of distinct values and assuming they are equally common. (The guess
518 * is unlikely to be very good, but we do know a few special cases.)
519 */
520 selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
521 }
522
523 /* now adjust if we wanted <> rather than = */
524 if (negate)
525 selec = 1.0 - selec - nullfrac;
526
527 /* result should be in range, but make sure... */
528 CLAMP_PROBABILITY(selec);
529
530 return selec;
531}
532
533/*
534 * var_eq_non_const --- eqsel for var = something-other-than-const case
535 *
536 * This is exported so that some other estimation functions can use it.
537 */
538double
539var_eq_non_const(VariableStatData *vardata, Oid oproid, Oid collation,
540 Node *other,
541 bool varonleft, bool negate)
542{
543 double selec;
544 double nullfrac = 0.0;
545 bool isdefault;
546
547 /*
548 * Grab the nullfrac for use below.
549 */
550 if (HeapTupleIsValid(vardata->statsTuple))
551 {
552 Form_pg_statistic stats;
553
554 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
555 nullfrac = stats->stanullfrac;
556 }
557
558 /*
559 * If we matched the var to a unique index, DISTINCT or GROUP-BY clause,
560 * assume there is exactly one match regardless of anything else. (This
561 * is slightly bogus, since the index or clause's equality operator might
562 * be different from ours, but it's much more likely to be right than
563 * ignoring the information.)
564 */
565 if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
566 {
567 selec = 1.0 / vardata->rel->tuples;
568 }
569 else if (HeapTupleIsValid(vardata->statsTuple))
570 {
571 double ndistinct;
572 AttStatsSlot sslot;
573
574 /*
575 * Search is for a value that we do not know a priori, but we will
576 * assume it is not NULL. Estimate the selectivity as non-null
577 * fraction divided by number of distinct values, so that we get a
578 * result averaged over all possible values whether common or
579 * uncommon. (Essentially, we are assuming that the not-yet-known
580 * comparison value is equally likely to be any of the possible
581 * values, regardless of their frequency in the table. Is that a good
582 * idea?)
583 */
584 selec = 1.0 - nullfrac;
585 ndistinct = get_variable_numdistinct(vardata, &isdefault);
586 if (ndistinct > 1)
587 selec /= ndistinct;
588
589 /*
590 * Cross-check: selectivity should never be estimated as more than the
591 * most common value's.
592 */
593 if (get_attstatsslot(&sslot, vardata->statsTuple,
594 STATISTIC_KIND_MCV, InvalidOid,
596 {
597 if (sslot.nnumbers > 0 && selec > sslot.numbers[0])
598 selec = sslot.numbers[0];
599 free_attstatsslot(&sslot);
600 }
601 }
602 else
603 {
604 /*
605 * No ANALYZE stats available, so make a guess using estimated number
606 * of distinct values and assuming they are equally common. (The guess
607 * is unlikely to be very good, but we do know a few special cases.)
608 */
609 selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
610 }
611
612 /* now adjust if we wanted <> rather than = */
613 if (negate)
614 selec = 1.0 - selec - nullfrac;
615
616 /* result should be in range, but make sure... */
617 CLAMP_PROBABILITY(selec);
618
619 return selec;
620}
621
622/*
623 * neqsel - Selectivity of "!=" for any data types.
624 *
625 * This routine is also used for some operators that are not "!="
626 * but have comparable selectivity behavior. See above comments
627 * for eqsel().
628 */
629Datum
631{
632 PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true));
633}
634
635/*
636 * scalarineqsel - Selectivity of "<", "<=", ">", ">=" for scalars.
637 *
638 * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel.
639 * The isgt and iseq flags distinguish which of the four cases apply.
640 *
641 * The caller has commuted the clause, if necessary, so that we can treat
642 * the variable as being on the left. The caller must also make sure that
643 * the other side of the clause is a non-null Const, and dissect that into
644 * a value and datatype. (This definition simplifies some callers that
645 * want to estimate against a computed value instead of a Const node.)
646 *
647 * This routine works for any datatype (or pair of datatypes) known to
648 * convert_to_scalar(). If it is applied to some other datatype,
649 * it will return an approximate estimate based on assuming that the constant
650 * value falls in the middle of the bin identified by binary search.
651 */
652static double
653scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq,
654 Oid collation,
655 VariableStatData *vardata, Datum constval, Oid consttype)
656{
657 Form_pg_statistic stats;
658 FmgrInfo opproc;
659 double mcv_selec,
660 hist_selec,
661 sumcommon;
662 double selec;
663
664 if (!HeapTupleIsValid(vardata->statsTuple))
665 {
666 /*
667 * No stats are available. Typically this means we have to fall back
668 * on the default estimate; but if the variable is CTID then we can
669 * make an estimate based on comparing the constant to the table size.
670 */
671 if (vardata->var && IsA(vardata->var, Var) &&
672 ((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber)
673 {
674 ItemPointer itemptr;
675 double block;
676 double density;
677
678 /*
679 * If the relation's empty, we're going to include all of it.
680 * (This is mostly to avoid divide-by-zero below.)
681 */
682 if (vardata->rel->pages == 0)
683 return 1.0;
684
685 itemptr = (ItemPointer) DatumGetPointer(constval);
686 block = ItemPointerGetBlockNumberNoCheck(itemptr);
687
688 /*
689 * Determine the average number of tuples per page (density).
690 *
691 * Since the last page will, on average, be only half full, we can
692 * estimate it to have half as many tuples as earlier pages. So
693 * give it half the weight of a regular page.
694 */
695 density = vardata->rel->tuples / (vardata->rel->pages - 0.5);
696
697 /* If target is the last page, use half the density. */
698 if (block >= vardata->rel->pages - 1)
699 density *= 0.5;
700
701 /*
702 * Using the average tuples per page, calculate how far into the
703 * page the itemptr is likely to be and adjust block accordingly,
704 * by adding that fraction of a whole block (but never more than a
705 * whole block, no matter how high the itemptr's offset is). Here
706 * we are ignoring the possibility of dead-tuple line pointers,
707 * which is fairly bogus, but we lack the info to do better.
708 */
709 if (density > 0.0)
710 {
712
713 block += Min(offset / density, 1.0);
714 }
715
716 /*
717 * Convert relative block number to selectivity. Again, the last
718 * page has only half weight.
719 */
720 selec = block / (vardata->rel->pages - 0.5);
721
722 /*
723 * The calculation so far gave us a selectivity for the "<=" case.
724 * We'll have one fewer tuple for "<" and one additional tuple for
725 * ">=", the latter of which we'll reverse the selectivity for
726 * below, so we can simply subtract one tuple for both cases. The
727 * cases that need this adjustment can be identified by iseq being
728 * equal to isgt.
729 */
730 if (iseq == isgt && vardata->rel->tuples >= 1.0)
731 selec -= (1.0 / vardata->rel->tuples);
732
733 /* Finally, reverse the selectivity for the ">", ">=" cases. */
734 if (isgt)
735 selec = 1.0 - selec;
736
737 CLAMP_PROBABILITY(selec);
738 return selec;
739 }
740
741 /* no stats available, so default result */
742 return DEFAULT_INEQ_SEL;
743 }
744 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
745
746 fmgr_info(get_opcode(operator), &opproc);
747
748 /*
749 * If we have most-common-values info, add up the fractions of the MCV
750 * entries that satisfy MCV OP CONST. These fractions contribute directly
751 * to the result selectivity. Also add up the total fraction represented
752 * by MCV entries.
753 */
754 mcv_selec = mcv_selectivity(vardata, &opproc, collation, constval, true,
755 &sumcommon);
756
757 /*
758 * If there is a histogram, determine which bin the constant falls in, and
759 * compute the resulting contribution to selectivity.
760 */
761 hist_selec = ineq_histogram_selectivity(root, vardata,
762 operator, &opproc, isgt, iseq,
763 collation,
764 constval, consttype);
765
766 /*
767 * Now merge the results from the MCV and histogram calculations,
768 * realizing that the histogram covers only the non-null values that are
769 * not listed in MCV.
770 */
771 selec = 1.0 - stats->stanullfrac - sumcommon;
772
773 if (hist_selec >= 0.0)
774 selec *= hist_selec;
775 else
776 {
777 /*
778 * If no histogram but there are values not accounted for by MCV,
779 * arbitrarily assume half of them will match.
780 */
781 selec *= 0.5;
782 }
783
784 selec += mcv_selec;
785
786 /* result should be in range, but make sure... */
787 CLAMP_PROBABILITY(selec);
788
789 return selec;
790}
791
792/*
793 * mcv_selectivity - Examine the MCV list for selectivity estimates
794 *
795 * Determine the fraction of the variable's MCV population that satisfies
796 * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft. Also
797 * compute the fraction of the total column population represented by the MCV
798 * list. This code will work for any boolean-returning predicate operator.
799 *
800 * The function result is the MCV selectivity, and the fraction of the
801 * total population is returned into *sumcommonp. Zeroes are returned
802 * if there is no MCV list.
803 */
804double
805mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation,
806 Datum constval, bool varonleft,
807 double *sumcommonp)
808{
809 double mcv_selec,
810 sumcommon;
811 AttStatsSlot sslot;
812 int i;
813
814 mcv_selec = 0.0;
815 sumcommon = 0.0;
816
817 if (HeapTupleIsValid(vardata->statsTuple) &&
818 statistic_proc_security_check(vardata, opproc->fn_oid) &&
819 get_attstatsslot(&sslot, vardata->statsTuple,
820 STATISTIC_KIND_MCV, InvalidOid,
822 {
823 LOCAL_FCINFO(fcinfo, 2);
824
825 /*
826 * We invoke the opproc "by hand" so that we won't fail on NULL
827 * results. Such cases won't arise for normal comparison functions,
828 * but generic_restriction_selectivity could perhaps be used with
829 * operators that can return NULL. A small side benefit is to not
830 * need to re-initialize the fcinfo struct from scratch each time.
831 */
832 InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
833 NULL, NULL);
834 fcinfo->args[0].isnull = false;
835 fcinfo->args[1].isnull = false;
836 /* be careful to apply operator right way 'round */
837 if (varonleft)
838 fcinfo->args[1].value = constval;
839 else
840 fcinfo->args[0].value = constval;
841
842 for (i = 0; i < sslot.nvalues; i++)
843 {
844 Datum fresult;
845
846 if (varonleft)
847 fcinfo->args[0].value = sslot.values[i];
848 else
849 fcinfo->args[1].value = sslot.values[i];
850 fcinfo->isnull = false;
851 fresult = FunctionCallInvoke(fcinfo);
852 if (!fcinfo->isnull && DatumGetBool(fresult))
853 mcv_selec += sslot.numbers[i];
854 sumcommon += sslot.numbers[i];
855 }
856 free_attstatsslot(&sslot);
857 }
858
859 *sumcommonp = sumcommon;
860 return mcv_selec;
861}
862
863/*
864 * histogram_selectivity - Examine the histogram for selectivity estimates
865 *
866 * Determine the fraction of the variable's histogram entries that satisfy
867 * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
868 *
869 * This code will work for any boolean-returning predicate operator, whether
870 * or not it has anything to do with the histogram sort operator. We are
871 * essentially using the histogram just as a representative sample. However,
872 * small histograms are unlikely to be all that representative, so the caller
873 * should be prepared to fall back on some other estimation approach when the
874 * histogram is missing or very small. It may also be prudent to combine this
875 * approach with another one when the histogram is small.
876 *
877 * If the actual histogram size is not at least min_hist_size, we won't bother
878 * to do the calculation at all. Also, if the n_skip parameter is > 0, we
879 * ignore the first and last n_skip histogram elements, on the grounds that
880 * they are outliers and hence not very representative. Typical values for
881 * these parameters are 10 and 1.
882 *
883 * The function result is the selectivity, or -1 if there is no histogram
884 * or it's smaller than min_hist_size.
885 *
886 * The output parameter *hist_size receives the actual histogram size,
887 * or zero if no histogram. Callers may use this number to decide how
888 * much faith to put in the function result.
889 *
890 * Note that the result disregards both the most-common-values (if any) and
891 * null entries. The caller is expected to combine this result with
892 * statistics for those portions of the column population. It may also be
893 * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
894 */
895double
897 FmgrInfo *opproc, Oid collation,
898 Datum constval, bool varonleft,
899 int min_hist_size, int n_skip,
900 int *hist_size)
901{
902 double result;
903 AttStatsSlot sslot;
904
905 /* check sanity of parameters */
906 Assert(n_skip >= 0);
907 Assert(min_hist_size > 2 * n_skip);
908
909 if (HeapTupleIsValid(vardata->statsTuple) &&
910 statistic_proc_security_check(vardata, opproc->fn_oid) &&
911 get_attstatsslot(&sslot, vardata->statsTuple,
912 STATISTIC_KIND_HISTOGRAM, InvalidOid,
914 {
915 *hist_size = sslot.nvalues;
916 if (sslot.nvalues >= min_hist_size)
917 {
918 LOCAL_FCINFO(fcinfo, 2);
919 int nmatch = 0;
920 int i;
921
922 /*
923 * We invoke the opproc "by hand" so that we won't fail on NULL
924 * results. Such cases won't arise for normal comparison
925 * functions, but generic_restriction_selectivity could perhaps be
926 * used with operators that can return NULL. A small side benefit
927 * is to not need to re-initialize the fcinfo struct from scratch
928 * each time.
929 */
930 InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
931 NULL, NULL);
932 fcinfo->args[0].isnull = false;
933 fcinfo->args[1].isnull = false;
934 /* be careful to apply operator right way 'round */
935 if (varonleft)
936 fcinfo->args[1].value = constval;
937 else
938 fcinfo->args[0].value = constval;
939
940 for (i = n_skip; i < sslot.nvalues - n_skip; i++)
941 {
942 Datum fresult;
943
944 if (varonleft)
945 fcinfo->args[0].value = sslot.values[i];
946 else
947 fcinfo->args[1].value = sslot.values[i];
948 fcinfo->isnull = false;
949 fresult = FunctionCallInvoke(fcinfo);
950 if (!fcinfo->isnull && DatumGetBool(fresult))
951 nmatch++;
952 }
953 result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip));
954 }
955 else
956 result = -1;
957 free_attstatsslot(&sslot);
958 }
959 else
960 {
961 *hist_size = 0;
962 result = -1;
963 }
964
965 return result;
966}
967
968/*
969 * generic_restriction_selectivity - Selectivity for almost anything
970 *
971 * This function estimates selectivity for operators that we don't have any
972 * special knowledge about, but are on data types that we collect standard
973 * MCV and/or histogram statistics for. (Additional assumptions are that
974 * the operator is strict and immutable, or at least stable.)
975 *
976 * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
977 * applying the operator to each element of the column's MCV and/or histogram
978 * stats, and merging the results using the assumption that the histogram is
979 * a reasonable random sample of the column's non-MCV population. Note that
980 * if the operator's semantics are related to the histogram ordering, this
981 * might not be such a great assumption; other functions such as
982 * scalarineqsel() are probably a better match in such cases.
983 *
984 * Otherwise, fall back to the default selectivity provided by the caller.
985 */
986double
988 List *args, int varRelid,
989 double default_selectivity)
990{
991 double selec;
992 VariableStatData vardata;
993 Node *other;
994 bool varonleft;
995
996 /*
997 * If expression is not variable OP something or something OP variable,
998 * then punt and return the default estimate.
999 */
1000 if (!get_restriction_variable(root, args, varRelid,
1001 &vardata, &other, &varonleft))
1002 return default_selectivity;
1003
1004 /*
1005 * If the something is a NULL constant, assume operator is strict and
1006 * return zero, ie, operator will never return TRUE.
1007 */
1008 if (IsA(other, Const) &&
1009 ((Const *) other)->constisnull)
1010 {
1011 ReleaseVariableStats(vardata);
1012 return 0.0;
1013 }
1014
1015 if (IsA(other, Const))
1016 {
1017 /* Variable is being compared to a known non-null constant */
1018 Datum constval = ((Const *) other)->constvalue;
1019 FmgrInfo opproc;
1020 double mcvsum;
1021 double mcvsel;
1022 double nullfrac;
1023 int hist_size;
1024
1025 fmgr_info(get_opcode(oproid), &opproc);
1026
1027 /*
1028 * Calculate the selectivity for the column's most common values.
1029 */
1030 mcvsel = mcv_selectivity(&vardata, &opproc, collation,
1031 constval, varonleft,
1032 &mcvsum);
1033
1034 /*
1035 * If the histogram is large enough, see what fraction of it matches
1036 * the query, and assume that's representative of the non-MCV
1037 * population. Otherwise use the default selectivity for the non-MCV
1038 * population.
1039 */
1040 selec = histogram_selectivity(&vardata, &opproc, collation,
1041 constval, varonleft,
1042 10, 1, &hist_size);
1043 if (selec < 0)
1044 {
1045 /* Nope, fall back on default */
1046 selec = default_selectivity;
1047 }
1048 else if (hist_size < 100)
1049 {
1050 /*
1051 * For histogram sizes from 10 to 100, we combine the histogram
1052 * and default selectivities, putting increasingly more trust in
1053 * the histogram for larger sizes.
1054 */
1055 double hist_weight = hist_size / 100.0;
1056
1057 selec = selec * hist_weight +
1058 default_selectivity * (1.0 - hist_weight);
1059 }
1060
1061 /* In any case, don't believe extremely small or large estimates. */
1062 if (selec < 0.0001)
1063 selec = 0.0001;
1064 else if (selec > 0.9999)
1065 selec = 0.9999;
1066
1067 /* Don't forget to account for nulls. */
1068 if (HeapTupleIsValid(vardata.statsTuple))
1069 nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
1070 else
1071 nullfrac = 0.0;
1072
1073 /*
1074 * Now merge the results from the MCV and histogram calculations,
1075 * realizing that the histogram covers only the non-null values that
1076 * are not listed in MCV.
1077 */
1078 selec *= 1.0 - nullfrac - mcvsum;
1079 selec += mcvsel;
1080 }
1081 else
1082 {
1083 /* Comparison value is not constant, so we can't do anything */
1084 selec = default_selectivity;
1085 }
1086
1087 ReleaseVariableStats(vardata);
1088
1089 /* result should be in range, but make sure... */
1090 CLAMP_PROBABILITY(selec);
1091
1092 return selec;
1093}
1094
1095/*
1096 * ineq_histogram_selectivity - Examine the histogram for scalarineqsel
1097 *
1098 * Determine the fraction of the variable's histogram population that
1099 * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST.
1100 * The isgt and iseq flags distinguish which of the four cases apply.
1101 *
1102 * While opproc could be looked up from the operator OID, common callers
1103 * also need to call it separately, so we make the caller pass both.
1104 *
1105 * Returns -1 if there is no histogram (valid results will always be >= 0).
1106 *
1107 * Note that the result disregards both the most-common-values (if any) and
1108 * null entries. The caller is expected to combine this result with
1109 * statistics for those portions of the column population.
1110 *
1111 * This is exported so that some other estimation functions can use it.
1112 */
1113double
1115 VariableStatData *vardata,
1116 Oid opoid, FmgrInfo *opproc, bool isgt, bool iseq,
1117 Oid collation,
1118 Datum constval, Oid consttype)
1119{
1120 double hist_selec;
1121 AttStatsSlot sslot;
1122
1123 hist_selec = -1.0;
1124
1125 /*
1126 * Someday, ANALYZE might store more than one histogram per rel/att,
1127 * corresponding to more than one possible sort ordering defined for the
1128 * column type. Right now, we know there is only one, so just grab it and
1129 * see if it matches the query.
1130 *
1131 * Note that we can't use opoid as search argument; the staop appearing in
1132 * pg_statistic will be for the relevant '<' operator, but what we have
1133 * might be some other inequality operator such as '>='. (Even if opoid
1134 * is a '<' operator, it could be cross-type.) Hence we must use
1135 * comparison_ops_are_compatible() to see if the operators match.
1136 */
1137 if (HeapTupleIsValid(vardata->statsTuple) &&
1138 statistic_proc_security_check(vardata, opproc->fn_oid) &&
1139 get_attstatsslot(&sslot, vardata->statsTuple,
1140 STATISTIC_KIND_HISTOGRAM, InvalidOid,
1142 {
1143 if (sslot.nvalues > 1 &&
1144 sslot.stacoll == collation &&
1146 {
1147 /*
1148 * Use binary search to find the desired location, namely the
1149 * right end of the histogram bin containing the comparison value,
1150 * which is the leftmost entry for which the comparison operator
1151 * succeeds (if isgt) or fails (if !isgt).
1152 *
1153 * In this loop, we pay no attention to whether the operator iseq
1154 * or not; that detail will be mopped up below. (We cannot tell,
1155 * anyway, whether the operator thinks the values are equal.)
1156 *
1157 * If the binary search accesses the first or last histogram
1158 * entry, we try to replace that endpoint with the true column min
1159 * or max as found by get_actual_variable_range(). This
1160 * ameliorates misestimates when the min or max is moving as a
1161 * result of changes since the last ANALYZE. Note that this could
1162 * result in effectively including MCVs into the histogram that
1163 * weren't there before, but we don't try to correct for that.
1164 */
1165 double histfrac;
1166 int lobound = 0; /* first possible slot to search */
1167 int hibound = sslot.nvalues; /* last+1 slot to search */
1168 bool have_end = false;
1169
1170 /*
1171 * If there are only two histogram entries, we'll want up-to-date
1172 * values for both. (If there are more than two, we need at most
1173 * one of them to be updated, so we deal with that within the
1174 * loop.)
1175 */
1176 if (sslot.nvalues == 2)
1178 vardata,
1179 sslot.staop,
1180 collation,
1181 &sslot.values[0],
1182 &sslot.values[1]);
1183
1184 while (lobound < hibound)
1185 {
1186 int probe = (lobound + hibound) / 2;
1187 bool ltcmp;
1188
1189 /*
1190 * If we find ourselves about to compare to the first or last
1191 * histogram entry, first try to replace it with the actual
1192 * current min or max (unless we already did so above).
1193 */
1194 if (probe == 0 && sslot.nvalues > 2)
1196 vardata,
1197 sslot.staop,
1198 collation,
1199 &sslot.values[0],
1200 NULL);
1201 else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2)
1203 vardata,
1204 sslot.staop,
1205 collation,
1206 NULL,
1207 &sslot.values[probe]);
1208
1209 ltcmp = DatumGetBool(FunctionCall2Coll(opproc,
1210 collation,
1211 sslot.values[probe],
1212 constval));
1213 if (isgt)
1214 ltcmp = !ltcmp;
1215 if (ltcmp)
1216 lobound = probe + 1;
1217 else
1218 hibound = probe;
1219 }
1220
1221 if (lobound <= 0)
1222 {
1223 /*
1224 * Constant is below lower histogram boundary. More
1225 * precisely, we have found that no entry in the histogram
1226 * satisfies the inequality clause (if !isgt) or they all do
1227 * (if isgt). We estimate that that's true of the entire
1228 * table, so set histfrac to 0.0 (which we'll flip to 1.0
1229 * below, if isgt).
1230 */
1231 histfrac = 0.0;
1232 }
1233 else if (lobound >= sslot.nvalues)
1234 {
1235 /*
1236 * Inverse case: constant is above upper histogram boundary.
1237 */
1238 histfrac = 1.0;
1239 }
1240 else
1241 {
1242 /* We have values[i-1] <= constant <= values[i]. */
1243 int i = lobound;
1244 double eq_selec = 0;
1245 double val,
1246 high,
1247 low;
1248 double binfrac;
1249
1250 /*
1251 * In the cases where we'll need it below, obtain an estimate
1252 * of the selectivity of "x = constval". We use a calculation
1253 * similar to what var_eq_const() does for a non-MCV constant,
1254 * ie, estimate that all distinct non-MCV values occur equally
1255 * often. But multiplication by "1.0 - sumcommon - nullfrac"
1256 * will be done by our caller, so we shouldn't do that here.
1257 * Therefore we can't try to clamp the estimate by reference
1258 * to the least common MCV; the result would be too small.
1259 *
1260 * Note: since this is effectively assuming that constval
1261 * isn't an MCV, it's logically dubious if constval in fact is
1262 * one. But we have to apply *some* correction for equality,
1263 * and anyway we cannot tell if constval is an MCV, since we
1264 * don't have a suitable equality operator at hand.
1265 */
1266 if (i == 1 || isgt == iseq)
1267 {
1268 double otherdistinct;
1269 bool isdefault;
1270 AttStatsSlot mcvslot;
1271
1272 /* Get estimated number of distinct values */
1273 otherdistinct = get_variable_numdistinct(vardata,
1274 &isdefault);
1275
1276 /* Subtract off the number of known MCVs */
1277 if (get_attstatsslot(&mcvslot, vardata->statsTuple,
1278 STATISTIC_KIND_MCV, InvalidOid,
1280 {
1281 otherdistinct -= mcvslot.nnumbers;
1282 free_attstatsslot(&mcvslot);
1283 }
1284
1285 /* If result doesn't seem sane, leave eq_selec at 0 */
1286 if (otherdistinct > 1)
1287 eq_selec = 1.0 / otherdistinct;
1288 }
1289
1290 /*
1291 * Convert the constant and the two nearest bin boundary
1292 * values to a uniform comparison scale, and do a linear
1293 * interpolation within this bin.
1294 */
1295 if (convert_to_scalar(constval, consttype, collation,
1296 &val,
1297 sslot.values[i - 1], sslot.values[i],
1298 vardata->vartype,
1299 &low, &high))
1300 {
1301 if (high <= low)
1302 {
1303 /* cope if bin boundaries appear identical */
1304 binfrac = 0.5;
1305 }
1306 else if (val <= low)
1307 binfrac = 0.0;
1308 else if (val >= high)
1309 binfrac = 1.0;
1310 else
1311 {
1312 binfrac = (val - low) / (high - low);
1313
1314 /*
1315 * Watch out for the possibility that we got a NaN or
1316 * Infinity from the division. This can happen
1317 * despite the previous checks, if for example "low"
1318 * is -Infinity.
1319 */
1320 if (isnan(binfrac) ||
1321 binfrac < 0.0 || binfrac > 1.0)
1322 binfrac = 0.5;
1323 }
1324 }
1325 else
1326 {
1327 /*
1328 * Ideally we'd produce an error here, on the grounds that
1329 * the given operator shouldn't have scalarXXsel
1330 * registered as its selectivity func unless we can deal
1331 * with its operand types. But currently, all manner of
1332 * stuff is invoking scalarXXsel, so give a default
1333 * estimate until that can be fixed.
1334 */
1335 binfrac = 0.5;
1336 }
1337
1338 /*
1339 * Now, compute the overall selectivity across the values
1340 * represented by the histogram. We have i-1 full bins and
1341 * binfrac partial bin below the constant.
1342 */
1343 histfrac = (double) (i - 1) + binfrac;
1344 histfrac /= (double) (sslot.nvalues - 1);
1345
1346 /*
1347 * At this point, histfrac is an estimate of the fraction of
1348 * the population represented by the histogram that satisfies
1349 * "x <= constval". Somewhat remarkably, this statement is
1350 * true regardless of which operator we were doing the probes
1351 * with, so long as convert_to_scalar() delivers reasonable
1352 * results. If the probe constant is equal to some histogram
1353 * entry, we would have considered the bin to the left of that
1354 * entry if probing with "<" or ">=", or the bin to the right
1355 * if probing with "<=" or ">"; but binfrac would have come
1356 * out as 1.0 in the first case and 0.0 in the second, leading
1357 * to the same histfrac in either case. For probe constants
1358 * between histogram entries, we find the same bin and get the
1359 * same estimate with any operator.
1360 *
1361 * The fact that the estimate corresponds to "x <= constval"
1362 * and not "x < constval" is because of the way that ANALYZE
1363 * constructs the histogram: each entry is, effectively, the
1364 * rightmost value in its sample bucket. So selectivity
1365 * values that are exact multiples of 1/(histogram_size-1)
1366 * should be understood as estimates including a histogram
1367 * entry plus everything to its left.
1368 *
1369 * However, that breaks down for the first histogram entry,
1370 * which necessarily is the leftmost value in its sample
1371 * bucket. That means the first histogram bin is slightly
1372 * narrower than the rest, by an amount equal to eq_selec.
1373 * Another way to say that is that we want "x <= leftmost" to
1374 * be estimated as eq_selec not zero. So, if we're dealing
1375 * with the first bin (i==1), rescale to make that true while
1376 * adjusting the rest of that bin linearly.
1377 */
1378 if (i == 1)
1379 histfrac += eq_selec * (1.0 - binfrac);
1380
1381 /*
1382 * "x <= constval" is good if we want an estimate for "<=" or
1383 * ">", but if we are estimating for "<" or ">=", we now need
1384 * to decrease the estimate by eq_selec.
1385 */
1386 if (isgt == iseq)
1387 histfrac -= eq_selec;
1388 }
1389
1390 /*
1391 * Now the estimate is finished for "<" and "<=" cases. If we are
1392 * estimating for ">" or ">=", flip it.
1393 */
1394 hist_selec = isgt ? (1.0 - histfrac) : histfrac;
1395
1396 /*
1397 * The histogram boundaries are only approximate to begin with,
1398 * and may well be out of date anyway. Therefore, don't believe
1399 * extremely small or large selectivity estimates --- unless we
1400 * got actual current endpoint values from the table, in which
1401 * case just do the usual sanity clamp. Somewhat arbitrarily, we
1402 * set the cutoff for other cases at a hundredth of the histogram
1403 * resolution.
1404 */
1405 if (have_end)
1406 CLAMP_PROBABILITY(hist_selec);
1407 else
1408 {
1409 double cutoff = 0.01 / (double) (sslot.nvalues - 1);
1410
1411 if (hist_selec < cutoff)
1412 hist_selec = cutoff;
1413 else if (hist_selec > 1.0 - cutoff)
1414 hist_selec = 1.0 - cutoff;
1415 }
1416 }
1417 else if (sslot.nvalues > 1)
1418 {
1419 /*
1420 * If we get here, we have a histogram but it's not sorted the way
1421 * we want. Do a brute-force search to see how many of the
1422 * entries satisfy the comparison condition, and take that
1423 * fraction as our estimate. (This is identical to the inner loop
1424 * of histogram_selectivity; maybe share code?)
1425 */
1426 LOCAL_FCINFO(fcinfo, 2);
1427 int nmatch = 0;
1428
1429 InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
1430 NULL, NULL);
1431 fcinfo->args[0].isnull = false;
1432 fcinfo->args[1].isnull = false;
1433 fcinfo->args[1].value = constval;
1434 for (int i = 0; i < sslot.nvalues; i++)
1435 {
1436 Datum fresult;
1437
1438 fcinfo->args[0].value = sslot.values[i];
1439 fcinfo->isnull = false;
1440 fresult = FunctionCallInvoke(fcinfo);
1441 if (!fcinfo->isnull && DatumGetBool(fresult))
1442 nmatch++;
1443 }
1444 hist_selec = ((double) nmatch) / ((double) sslot.nvalues);
1445
1446 /*
1447 * As above, clamp to a hundredth of the histogram resolution.
1448 * This case is surely even less trustworthy than the normal one,
1449 * so we shouldn't believe exact 0 or 1 selectivity. (Maybe the
1450 * clamp should be more restrictive in this case?)
1451 */
1452 {
1453 double cutoff = 0.01 / (double) (sslot.nvalues - 1);
1454
1455 if (hist_selec < cutoff)
1456 hist_selec = cutoff;
1457 else if (hist_selec > 1.0 - cutoff)
1458 hist_selec = 1.0 - cutoff;
1459 }
1460 }
1461
1462 free_attstatsslot(&sslot);
1463 }
1464
1465 return hist_selec;
1466}
1467
1468/*
1469 * Common wrapper function for the selectivity estimators that simply
1470 * invoke scalarineqsel().
1471 */
1472static Datum
1474{
1476 Oid operator = PG_GETARG_OID(1);
1477 List *args = (List *) PG_GETARG_POINTER(2);
1478 int varRelid = PG_GETARG_INT32(3);
1479 Oid collation = PG_GET_COLLATION();
1480 VariableStatData vardata;
1481 Node *other;
1482 bool varonleft;
1483 Datum constval;
1484 Oid consttype;
1485 double selec;
1486
1487 /*
1488 * If expression is not variable op something or something op variable,
1489 * then punt and return a default estimate.
1490 */
1491 if (!get_restriction_variable(root, args, varRelid,
1492 &vardata, &other, &varonleft))
1494
1495 /*
1496 * Can't do anything useful if the something is not a constant, either.
1497 */
1498 if (!IsA(other, Const))
1499 {
1500 ReleaseVariableStats(vardata);
1502 }
1503
1504 /*
1505 * If the constant is NULL, assume operator is strict and return zero, ie,
1506 * operator will never return TRUE.
1507 */
1508 if (((Const *) other)->constisnull)
1509 {
1510 ReleaseVariableStats(vardata);
1511 PG_RETURN_FLOAT8(0.0);
1512 }
1513 constval = ((Const *) other)->constvalue;
1514 consttype = ((Const *) other)->consttype;
1515
1516 /*
1517 * Force the var to be on the left to simplify logic in scalarineqsel.
1518 */
1519 if (!varonleft)
1520 {
1521 operator = get_commutator(operator);
1522 if (!operator)
1523 {
1524 /* Use default selectivity (should we raise an error instead?) */
1525 ReleaseVariableStats(vardata);
1527 }
1528 isgt = !isgt;
1529 }
1530
1531 /* The rest of the work is done by scalarineqsel(). */
1532 selec = scalarineqsel(root, operator, isgt, iseq, collation,
1533 &vardata, constval, consttype);
1534
1535 ReleaseVariableStats(vardata);
1536
1537 PG_RETURN_FLOAT8((float8) selec);
1538}
1539
1540/*
1541 * scalarltsel - Selectivity of "<" for scalars.
1542 */
1543Datum
1545{
1546 return scalarineqsel_wrapper(fcinfo, false, false);
1547}
1548
1549/*
1550 * scalarlesel - Selectivity of "<=" for scalars.
1551 */
1552Datum
1554{
1555 return scalarineqsel_wrapper(fcinfo, false, true);
1556}
1557
1558/*
1559 * scalargtsel - Selectivity of ">" for scalars.
1560 */
1561Datum
1563{
1564 return scalarineqsel_wrapper(fcinfo, true, false);
1565}
1566
1567/*
1568 * scalargesel - Selectivity of ">=" for scalars.
1569 */
1570Datum
1572{
1573 return scalarineqsel_wrapper(fcinfo, true, true);
1574}
1575
1576/*
1577 * boolvarsel - Selectivity of Boolean variable.
1578 *
1579 * This can actually be called on any boolean-valued expression. If it
1580 * involves only Vars of the specified relation, and if there are statistics
1581 * about the Var or expression (the latter is possible if it's indexed) then
1582 * we'll produce a real estimate; otherwise it's just a default.
1583 */
1586{
1587 VariableStatData vardata;
1588 double selec;
1589
1590 examine_variable(root, arg, varRelid, &vardata);
1591 if (HeapTupleIsValid(vardata.statsTuple))
1592 {
1593 /*
1594 * A boolean variable V is equivalent to the clause V = 't', so we
1595 * compute the selectivity as if that is what we have.
1596 */
1597 selec = var_eq_const(&vardata, BooleanEqualOperator, InvalidOid,
1598 BoolGetDatum(true), false, true, false);
1599 }
1600 else if (is_funcclause(arg))
1601 {
1602 /*
1603 * If we have no stats and it's a function call, estimate 0.3333333.
1604 * This seems a pretty unprincipled choice, but Postgres has been
1605 * using that estimate for function calls since 1992. The hoariness
1606 * of this behavior suggests that we should not be in too much hurry
1607 * to use another value.
1608 */
1609 selec = 0.3333333;
1610 }
1611 else
1612 {
1613 /* Otherwise, the default estimate is 0.5 */
1614 selec = 0.5;
1615 }
1616 ReleaseVariableStats(vardata);
1617 return selec;
1618}
1619
1620/*
1621 * booltestsel - Selectivity of BooleanTest Node.
1622 */
1625 int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
1626{
1627 VariableStatData vardata;
1628 double selec;
1629
1630 examine_variable(root, arg, varRelid, &vardata);
1631
1632 if (HeapTupleIsValid(vardata.statsTuple))
1633 {
1634 Form_pg_statistic stats;
1635 double freq_null;
1636 AttStatsSlot sslot;
1637
1638 stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
1639 freq_null = stats->stanullfrac;
1640
1641 if (get_attstatsslot(&sslot, vardata.statsTuple,
1642 STATISTIC_KIND_MCV, InvalidOid,
1644 && sslot.nnumbers > 0)
1645 {
1646 double freq_true;
1647 double freq_false;
1648
1649 /*
1650 * Get first MCV frequency and derive frequency for true.
1651 */
1652 if (DatumGetBool(sslot.values[0]))
1653 freq_true = sslot.numbers[0];
1654 else
1655 freq_true = 1.0 - sslot.numbers[0] - freq_null;
1656
1657 /*
1658 * Next derive frequency for false. Then use these as appropriate
1659 * to derive frequency for each case.
1660 */
1661 freq_false = 1.0 - freq_true - freq_null;
1662
1663 switch (booltesttype)
1664 {
1665 case IS_UNKNOWN:
1666 /* select only NULL values */
1667 selec = freq_null;
1668 break;
1669 case IS_NOT_UNKNOWN:
1670 /* select non-NULL values */
1671 selec = 1.0 - freq_null;
1672 break;
1673 case IS_TRUE:
1674 /* select only TRUE values */
1675 selec = freq_true;
1676 break;
1677 case IS_NOT_TRUE:
1678 /* select non-TRUE values */
1679 selec = 1.0 - freq_true;
1680 break;
1681 case IS_FALSE:
1682 /* select only FALSE values */
1683 selec = freq_false;
1684 break;
1685 case IS_NOT_FALSE:
1686 /* select non-FALSE values */
1687 selec = 1.0 - freq_false;
1688 break;
1689 default:
1690 elog(ERROR, "unrecognized booltesttype: %d",
1691 (int) booltesttype);
1692 selec = 0.0; /* Keep compiler quiet */
1693 break;
1694 }
1695
1696 free_attstatsslot(&sslot);
1697 }
1698 else
1699 {
1700 /*
1701 * No most-common-value info available. Still have null fraction
1702 * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
1703 * for null fraction and assume a 50-50 split of TRUE and FALSE.
1704 */
1705 switch (booltesttype)
1706 {
1707 case IS_UNKNOWN:
1708 /* select only NULL values */
1709 selec = freq_null;
1710 break;
1711 case IS_NOT_UNKNOWN:
1712 /* select non-NULL values */
1713 selec = 1.0 - freq_null;
1714 break;
1715 case IS_TRUE:
1716 case IS_FALSE:
1717 /* Assume we select half of the non-NULL values */
1718 selec = (1.0 - freq_null) / 2.0;
1719 break;
1720 case IS_NOT_TRUE:
1721 case IS_NOT_FALSE:
1722 /* Assume we select NULLs plus half of the non-NULLs */
1723 /* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
1724 selec = (freq_null + 1.0) / 2.0;
1725 break;
1726 default:
1727 elog(ERROR, "unrecognized booltesttype: %d",
1728 (int) booltesttype);
1729 selec = 0.0; /* Keep compiler quiet */
1730 break;
1731 }
1732 }
1733 }
1734 else
1735 {
1736 /*
1737 * If we can't get variable statistics for the argument, perhaps
1738 * clause_selectivity can do something with it. We ignore the
1739 * possibility of a NULL value when using clause_selectivity, and just
1740 * assume the value is either TRUE or FALSE.
1741 */
1742 switch (booltesttype)
1743 {
1744 case IS_UNKNOWN:
1745 selec = DEFAULT_UNK_SEL;
1746 break;
1747 case IS_NOT_UNKNOWN:
1748 selec = DEFAULT_NOT_UNK_SEL;
1749 break;
1750 case IS_TRUE:
1751 case IS_NOT_FALSE:
1752 selec = (double) clause_selectivity(root, arg,
1753 varRelid,
1754 jointype, sjinfo);
1755 break;
1756 case IS_FALSE:
1757 case IS_NOT_TRUE:
1758 selec = 1.0 - (double) clause_selectivity(root, arg,
1759 varRelid,
1760 jointype, sjinfo);
1761 break;
1762 default:
1763 elog(ERROR, "unrecognized booltesttype: %d",
1764 (int) booltesttype);
1765 selec = 0.0; /* Keep compiler quiet */
1766 break;
1767 }
1768 }
1769
1770 ReleaseVariableStats(vardata);
1771
1772 /* result should be in range, but make sure... */
1773 CLAMP_PROBABILITY(selec);
1774
1775 return (Selectivity) selec;
1776}
1777
1778/*
1779 * nulltestsel - Selectivity of NullTest Node.
1780 */
1783 int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
1784{
1785 VariableStatData vardata;
1786 double selec;
1787
1788 examine_variable(root, arg, varRelid, &vardata);
1789
1790 if (HeapTupleIsValid(vardata.statsTuple))
1791 {
1792 Form_pg_statistic stats;
1793 double freq_null;
1794
1795 stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
1796 freq_null = stats->stanullfrac;
1797
1798 switch (nulltesttype)
1799 {
1800 case IS_NULL:
1801
1802 /*
1803 * Use freq_null directly.
1804 */
1805 selec = freq_null;
1806 break;
1807 case IS_NOT_NULL:
1808
1809 /*
1810 * Select not unknown (not null) values. Calculate from
1811 * freq_null.
1812 */
1813 selec = 1.0 - freq_null;
1814 break;
1815 default:
1816 elog(ERROR, "unrecognized nulltesttype: %d",
1817 (int) nulltesttype);
1818 return (Selectivity) 0; /* keep compiler quiet */
1819 }
1820 }
1821 else if (vardata.var && IsA(vardata.var, Var) &&
1822 ((Var *) vardata.var)->varattno < 0)
1823 {
1824 /*
1825 * There are no stats for system columns, but we know they are never
1826 * NULL.
1827 */
1828 selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0;
1829 }
1830 else
1831 {
1832 /*
1833 * No ANALYZE stats available, so make a guess
1834 */
1835 switch (nulltesttype)
1836 {
1837 case IS_NULL:
1838 selec = DEFAULT_UNK_SEL;
1839 break;
1840 case IS_NOT_NULL:
1841 selec = DEFAULT_NOT_UNK_SEL;
1842 break;
1843 default:
1844 elog(ERROR, "unrecognized nulltesttype: %d",
1845 (int) nulltesttype);
1846 return (Selectivity) 0; /* keep compiler quiet */
1847 }
1848 }
1849
1850 ReleaseVariableStats(vardata);
1851
1852 /* result should be in range, but make sure... */
1853 CLAMP_PROBABILITY(selec);
1854
1855 return (Selectivity) selec;
1856}
1857
1858/*
1859 * strip_array_coercion - strip binary-compatible relabeling from an array expr
1860 *
1861 * For array values, the parser normally generates ArrayCoerceExpr conversions,
1862 * but it seems possible that RelabelType might show up. Also, the planner
1863 * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
1864 * so we need to be ready to deal with more than one level.
1865 */
1866static Node *
1868{
1869 for (;;)
1870 {
1871 if (node && IsA(node, ArrayCoerceExpr))
1872 {
1873 ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
1874
1875 /*
1876 * If the per-element expression is just a RelabelType on top of
1877 * CaseTestExpr, then we know it's a binary-compatible relabeling.
1878 */
1879 if (IsA(acoerce->elemexpr, RelabelType) &&
1880 IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr))
1881 node = (Node *) acoerce->arg;
1882 else
1883 break;
1884 }
1885 else if (node && IsA(node, RelabelType))
1886 {
1887 /* We don't really expect this case, but may as well cope */
1888 node = (Node *) ((RelabelType *) node)->arg;
1889 }
1890 else
1891 break;
1892 }
1893 return node;
1894}
1895
1896/*
1897 * scalararraysel - Selectivity of ScalarArrayOpExpr Node.
1898 */
1901 ScalarArrayOpExpr *clause,
1902 bool is_join_clause,
1903 int varRelid,
1904 JoinType jointype,
1905 SpecialJoinInfo *sjinfo)
1906{
1907 Oid operator = clause->opno;
1908 bool useOr = clause->useOr;
1909 bool isEquality = false;
1910 bool isInequality = false;
1911 Node *leftop;
1912 Node *rightop;
1913 Oid nominal_element_type;
1914 Oid nominal_element_collation;
1915 TypeCacheEntry *typentry;
1916 RegProcedure oprsel;
1917 FmgrInfo oprselproc;
1919 Selectivity s1disjoint;
1920
1921 /* First, deconstruct the expression */
1922 Assert(list_length(clause->args) == 2);
1923 leftop = (Node *) linitial(clause->args);
1924 rightop = (Node *) lsecond(clause->args);
1925
1926 /* aggressively reduce both sides to constants */
1927 leftop = estimate_expression_value(root, leftop);
1928 rightop = estimate_expression_value(root, rightop);
1929
1930 /* get nominal (after relabeling) element type of rightop */
1931 nominal_element_type = get_base_element_type(exprType(rightop));
1932 if (!OidIsValid(nominal_element_type))
1933 return (Selectivity) 0.5; /* probably shouldn't happen */
1934 /* get nominal collation, too, for generating constants */
1935 nominal_element_collation = exprCollation(rightop);
1936
1937 /* look through any binary-compatible relabeling of rightop */
1938 rightop = strip_array_coercion(rightop);
1939
1940 /*
1941 * Detect whether the operator is the default equality or inequality
1942 * operator of the array element type.
1943 */
1944 typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR);
1945 if (OidIsValid(typentry->eq_opr))
1946 {
1947 if (operator == typentry->eq_opr)
1948 isEquality = true;
1949 else if (get_negator(operator) == typentry->eq_opr)
1950 isInequality = true;
1951 }
1952
1953 /*
1954 * If it is equality or inequality, we might be able to estimate this as a
1955 * form of array containment; for instance "const = ANY(column)" can be
1956 * treated as "ARRAY[const] <@ column". scalararraysel_containment tries
1957 * that, and returns the selectivity estimate if successful, or -1 if not.
1958 */
1959 if ((isEquality || isInequality) && !is_join_clause)
1960 {
1961 s1 = scalararraysel_containment(root, leftop, rightop,
1962 nominal_element_type,
1963 isEquality, useOr, varRelid);
1964 if (s1 >= 0.0)
1965 return s1;
1966 }
1967
1968 /*
1969 * Look up the underlying operator's selectivity estimator. Punt if it
1970 * hasn't got one.
1971 */
1972 if (is_join_clause)
1973 oprsel = get_oprjoin(operator);
1974 else
1975 oprsel = get_oprrest(operator);
1976 if (!oprsel)
1977 return (Selectivity) 0.5;
1978 fmgr_info(oprsel, &oprselproc);
1979
1980 /*
1981 * In the array-containment check above, we must only believe that an
1982 * operator is equality or inequality if it is the default btree equality
1983 * operator (or its negator) for the element type, since those are the
1984 * operators that array containment will use. But in what follows, we can
1985 * be a little laxer, and also believe that any operators using eqsel() or
1986 * neqsel() as selectivity estimator act like equality or inequality.
1987 */
1988 if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL)
1989 isEquality = true;
1990 else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL)
1991 isInequality = true;
1992
1993 /*
1994 * We consider three cases:
1995 *
1996 * 1. rightop is an Array constant: deconstruct the array, apply the
1997 * operator's selectivity function for each array element, and merge the
1998 * results in the same way that clausesel.c does for AND/OR combinations.
1999 *
2000 * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
2001 * function for each element of the ARRAY[] construct, and merge.
2002 *
2003 * 3. otherwise, make a guess ...
2004 */
2005 if (rightop && IsA(rightop, Const))
2006 {
2007 Datum arraydatum = ((Const *) rightop)->constvalue;
2008 bool arrayisnull = ((Const *) rightop)->constisnull;
2009 ArrayType *arrayval;
2010 int16 elmlen;
2011 bool elmbyval;
2012 char elmalign;
2013 int num_elems;
2014 Datum *elem_values;
2015 bool *elem_nulls;
2016 int i;
2017
2018 if (arrayisnull) /* qual can't succeed if null array */
2019 return (Selectivity) 0.0;
2020 arrayval = DatumGetArrayTypeP(arraydatum);
2022 &elmlen, &elmbyval, &elmalign);
2023 deconstruct_array(arrayval,
2024 ARR_ELEMTYPE(arrayval),
2025 elmlen, elmbyval, elmalign,
2026 &elem_values, &elem_nulls, &num_elems);
2027
2028 /*
2029 * For generic operators, we assume the probability of success is
2030 * independent for each array element. But for "= ANY" or "<> ALL",
2031 * if the array elements are distinct (which'd typically be the case)
2032 * then the probabilities are disjoint, and we should just sum them.
2033 *
2034 * If we were being really tense we would try to confirm that the
2035 * elements are all distinct, but that would be expensive and it
2036 * doesn't seem to be worth the cycles; it would amount to penalizing
2037 * well-written queries in favor of poorly-written ones. However, we
2038 * do protect ourselves a little bit by checking whether the
2039 * disjointness assumption leads to an impossible (out of range)
2040 * probability; if so, we fall back to the normal calculation.
2041 */
2042 s1 = s1disjoint = (useOr ? 0.0 : 1.0);
2043
2044 for (i = 0; i < num_elems; i++)
2045 {
2046 List *args;
2048
2049 args = list_make2(leftop,
2050 makeConst(nominal_element_type,
2051 -1,
2052 nominal_element_collation,
2053 elmlen,
2054 elem_values[i],
2055 elem_nulls[i],
2056 elmbyval));
2057 if (is_join_clause)
2058 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
2059 clause->inputcollid,
2061 ObjectIdGetDatum(operator),
2063 Int16GetDatum(jointype),
2064 PointerGetDatum(sjinfo)));
2065 else
2066 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
2067 clause->inputcollid,
2069 ObjectIdGetDatum(operator),
2071 Int32GetDatum(varRelid)));
2072
2073 if (useOr)
2074 {
2075 s1 = s1 + s2 - s1 * s2;
2076 if (isEquality)
2077 s1disjoint += s2;
2078 }
2079 else
2080 {
2081 s1 = s1 * s2;
2082 if (isInequality)
2083 s1disjoint += s2 - 1.0;
2084 }
2085 }
2086
2087 /* accept disjoint-probability estimate if in range */
2088 if ((useOr ? isEquality : isInequality) &&
2089 s1disjoint >= 0.0 && s1disjoint <= 1.0)
2090 s1 = s1disjoint;
2091 }
2092 else if (rightop && IsA(rightop, ArrayExpr) &&
2093 !((ArrayExpr *) rightop)->multidims)
2094 {
2095 ArrayExpr *arrayexpr = (ArrayExpr *) rightop;
2096 int16 elmlen;
2097 bool elmbyval;
2098 ListCell *l;
2099
2100 get_typlenbyval(arrayexpr->element_typeid,
2101 &elmlen, &elmbyval);
2102
2103 /*
2104 * We use the assumption of disjoint probabilities here too, although
2105 * the odds of equal array elements are rather higher if the elements
2106 * are not all constants (which they won't be, else constant folding
2107 * would have reduced the ArrayExpr to a Const). In this path it's
2108 * critical to have the sanity check on the s1disjoint estimate.
2109 */
2110 s1 = s1disjoint = (useOr ? 0.0 : 1.0);
2111
2112 foreach(l, arrayexpr->elements)
2113 {
2114 Node *elem = (Node *) lfirst(l);
2115 List *args;
2117
2118 /*
2119 * Theoretically, if elem isn't of nominal_element_type we should
2120 * insert a RelabelType, but it seems unlikely that any operator
2121 * estimation function would really care ...
2122 */
2123 args = list_make2(leftop, elem);
2124 if (is_join_clause)
2125 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
2126 clause->inputcollid,
2128 ObjectIdGetDatum(operator),
2130 Int16GetDatum(jointype),
2131 PointerGetDatum(sjinfo)));
2132 else
2133 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
2134 clause->inputcollid,
2136 ObjectIdGetDatum(operator),
2138 Int32GetDatum(varRelid)));
2139
2140 if (useOr)
2141 {
2142 s1 = s1 + s2 - s1 * s2;
2143 if (isEquality)
2144 s1disjoint += s2;
2145 }
2146 else
2147 {
2148 s1 = s1 * s2;
2149 if (isInequality)
2150 s1disjoint += s2 - 1.0;
2151 }
2152 }
2153
2154 /* accept disjoint-probability estimate if in range */
2155 if ((useOr ? isEquality : isInequality) &&
2156 s1disjoint >= 0.0 && s1disjoint <= 1.0)
2157 s1 = s1disjoint;
2158 }
2159 else
2160 {
2161 CaseTestExpr *dummyexpr;
2162 List *args;
2164 int i;
2165
2166 /*
2167 * We need a dummy rightop to pass to the operator selectivity
2168 * routine. It can be pretty much anything that doesn't look like a
2169 * constant; CaseTestExpr is a convenient choice.
2170 */
2171 dummyexpr = makeNode(CaseTestExpr);
2172 dummyexpr->typeId = nominal_element_type;
2173 dummyexpr->typeMod = -1;
2174 dummyexpr->collation = clause->inputcollid;
2175 args = list_make2(leftop, dummyexpr);
2176 if (is_join_clause)
2177 s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
2178 clause->inputcollid,
2180 ObjectIdGetDatum(operator),
2182 Int16GetDatum(jointype),
2183 PointerGetDatum(sjinfo)));
2184 else
2185 s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
2186 clause->inputcollid,
2188 ObjectIdGetDatum(operator),
2190 Int32GetDatum(varRelid)));
2191 s1 = useOr ? 0.0 : 1.0;
2192
2193 /*
2194 * Arbitrarily assume 10 elements in the eventual array value (see
2195 * also estimate_array_length). We don't risk an assumption of
2196 * disjoint probabilities here.
2197 */
2198 for (i = 0; i < 10; i++)
2199 {
2200 if (useOr)
2201 s1 = s1 + s2 - s1 * s2;
2202 else
2203 s1 = s1 * s2;
2204 }
2205 }
2206
2207 /* result should be in range, but make sure... */
2209
2210 return s1;
2211}
2212
2213/*
2214 * Estimate number of elements in the array yielded by an expression.
2215 *
2216 * Note: the result is integral, but we use "double" to avoid overflow
2217 * concerns. Most callers will use it in double-type expressions anyway.
2218 *
2219 * Note: in some code paths root can be passed as NULL, resulting in
2220 * slightly worse estimates.
2221 */
2222double
2224{
2225 /* look through any binary-compatible relabeling of arrayexpr */
2226 arrayexpr = strip_array_coercion(arrayexpr);
2227
2228 if (arrayexpr && IsA(arrayexpr, Const))
2229 {
2230 Datum arraydatum = ((Const *) arrayexpr)->constvalue;
2231 bool arrayisnull = ((Const *) arrayexpr)->constisnull;
2232 ArrayType *arrayval;
2233
2234 if (arrayisnull)
2235 return 0;
2236 arrayval = DatumGetArrayTypeP(arraydatum);
2237 return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
2238 }
2239 else if (arrayexpr && IsA(arrayexpr, ArrayExpr) &&
2240 !((ArrayExpr *) arrayexpr)->multidims)
2241 {
2242 return list_length(((ArrayExpr *) arrayexpr)->elements);
2243 }
2244 else if (arrayexpr && root)
2245 {
2246 /* See if we can find any statistics about it */
2247 VariableStatData vardata;
2248 AttStatsSlot sslot;
2249 double nelem = 0;
2250
2251 examine_variable(root, arrayexpr, 0, &vardata);
2252 if (HeapTupleIsValid(vardata.statsTuple))
2253 {
2254 /*
2255 * Found stats, so use the average element count, which is stored
2256 * in the last stanumbers element of the DECHIST statistics.
2257 * Actually that is the average count of *distinct* elements;
2258 * perhaps we should scale it up somewhat?
2259 */
2260 if (get_attstatsslot(&sslot, vardata.statsTuple,
2261 STATISTIC_KIND_DECHIST, InvalidOid,
2263 {
2264 if (sslot.nnumbers > 0)
2265 nelem = clamp_row_est(sslot.numbers[sslot.nnumbers - 1]);
2266 free_attstatsslot(&sslot);
2267 }
2268 }
2269 ReleaseVariableStats(vardata);
2270
2271 if (nelem > 0)
2272 return nelem;
2273 }
2274
2275 /* Else use a default guess --- this should match scalararraysel */
2276 return 10;
2277}
2278
2279/*
2280 * rowcomparesel - Selectivity of RowCompareExpr Node.
2281 *
2282 * We estimate RowCompare selectivity by considering just the first (high
2283 * order) columns, which makes it equivalent to an ordinary OpExpr. While
2284 * this estimate could be refined by considering additional columns, it
2285 * seems unlikely that we could do a lot better without multi-column
2286 * statistics.
2287 */
2290 RowCompareExpr *clause,
2291 int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
2292{
2294 Oid opno = linitial_oid(clause->opnos);
2295 Oid inputcollid = linitial_oid(clause->inputcollids);
2296 List *opargs;
2297 bool is_join_clause;
2298
2299 /* Build equivalent arg list for single operator */
2300 opargs = list_make2(linitial(clause->largs), linitial(clause->rargs));
2301
2302 /*
2303 * Decide if it's a join clause. This should match clausesel.c's
2304 * treat_as_join_clause(), except that we intentionally consider only the
2305 * leading columns and not the rest of the clause.
2306 */
2307 if (varRelid != 0)
2308 {
2309 /*
2310 * Caller is forcing restriction mode (eg, because we are examining an
2311 * inner indexscan qual).
2312 */
2313 is_join_clause = false;
2314 }
2315 else if (sjinfo == NULL)
2316 {
2317 /*
2318 * It must be a restriction clause, since it's being evaluated at a
2319 * scan node.
2320 */
2321 is_join_clause = false;
2322 }
2323 else
2324 {
2325 /*
2326 * Otherwise, it's a join if there's more than one base relation used.
2327 */
2328 is_join_clause = (NumRelids(root, (Node *) opargs) > 1);
2329 }
2330
2331 if (is_join_clause)
2332 {
2333 /* Estimate selectivity for a join clause. */
2334 s1 = join_selectivity(root, opno,
2335 opargs,
2336 inputcollid,
2337 jointype,
2338 sjinfo);
2339 }
2340 else
2341 {
2342 /* Estimate selectivity for a restriction clause. */
2344 opargs,
2345 inputcollid,
2346 varRelid);
2347 }
2348
2349 return s1;
2350}
2351
2352/*
2353 * eqjoinsel - Join selectivity of "="
2354 */
2355Datum
2357{
2359 Oid operator = PG_GETARG_OID(1);
2360 List *args = (List *) PG_GETARG_POINTER(2);
2361
2362#ifdef NOT_USED
2363 JoinType jointype = (JoinType) PG_GETARG_INT16(3);
2364#endif
2366 Oid collation = PG_GET_COLLATION();
2367 double selec;
2368 double selec_inner;
2369 VariableStatData vardata1;
2370 VariableStatData vardata2;
2371 double nd1;
2372 double nd2;
2373 bool isdefault1;
2374 bool isdefault2;
2375 Oid opfuncoid;
2376 FmgrInfo eqproc;
2377 Oid hashLeft = InvalidOid;
2378 Oid hashRight = InvalidOid;
2379 AttStatsSlot sslot1;
2380 AttStatsSlot sslot2;
2381 Form_pg_statistic stats1 = NULL;
2382 Form_pg_statistic stats2 = NULL;
2383 bool have_mcvs1 = false;
2384 bool have_mcvs2 = false;
2385 bool *hasmatch1 = NULL;
2386 bool *hasmatch2 = NULL;
2387 int nmatches = 0;
2388 bool get_mcv_stats;
2389 bool join_is_reversed;
2390 RelOptInfo *inner_rel;
2391
2392 get_join_variables(root, args, sjinfo,
2393 &vardata1, &vardata2, &join_is_reversed);
2394
2395 nd1 = get_variable_numdistinct(&vardata1, &isdefault1);
2396 nd2 = get_variable_numdistinct(&vardata2, &isdefault2);
2397
2398 opfuncoid = get_opcode(operator);
2399
2400 memset(&sslot1, 0, sizeof(sslot1));
2401 memset(&sslot2, 0, sizeof(sslot2));
2402
2403 /*
2404 * There is no use in fetching one side's MCVs if we lack MCVs for the
2405 * other side, so do a quick check to verify that both stats exist.
2406 */
2407 get_mcv_stats = (HeapTupleIsValid(vardata1.statsTuple) &&
2408 HeapTupleIsValid(vardata2.statsTuple) &&
2409 get_attstatsslot(&sslot1, vardata1.statsTuple,
2410 STATISTIC_KIND_MCV, InvalidOid,
2411 0) &&
2412 get_attstatsslot(&sslot2, vardata2.statsTuple,
2413 STATISTIC_KIND_MCV, InvalidOid,
2414 0));
2415
2416 if (HeapTupleIsValid(vardata1.statsTuple))
2417 {
2418 /* note we allow use of nullfrac regardless of security check */
2419 stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple);
2420 if (get_mcv_stats &&
2421 statistic_proc_security_check(&vardata1, opfuncoid))
2422 have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple,
2423 STATISTIC_KIND_MCV, InvalidOid,
2425 }
2426
2427 if (HeapTupleIsValid(vardata2.statsTuple))
2428 {
2429 /* note we allow use of nullfrac regardless of security check */
2430 stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple);
2431 if (get_mcv_stats &&
2432 statistic_proc_security_check(&vardata2, opfuncoid))
2433 have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple,
2434 STATISTIC_KIND_MCV, InvalidOid,
2436 }
2437
2438 /* Prepare info usable by both eqjoinsel_inner and eqjoinsel_semi */
2439 if (have_mcvs1 && have_mcvs2)
2440 {
2441 fmgr_info(opfuncoid, &eqproc);
2442 hasmatch1 = (bool *) palloc0(sslot1.nvalues * sizeof(bool));
2443 hasmatch2 = (bool *) palloc0(sslot2.nvalues * sizeof(bool));
2444
2445 /*
2446 * If the MCV lists are long enough to justify hashing, try to look up
2447 * hash functions for the join operator.
2448 */
2449 if ((sslot1.nvalues + sslot2.nvalues) >= EQJOINSEL_MCV_HASH_THRESHOLD)
2450 (void) get_op_hash_functions(operator, &hashLeft, &hashRight);
2451 }
2452 else
2453 memset(&eqproc, 0, sizeof(eqproc)); /* silence uninit-var warnings */
2454
2455 /* We need to compute the inner-join selectivity in all cases */
2456 selec_inner = eqjoinsel_inner(&eqproc, collation,
2457 hashLeft, hashRight,
2458 &vardata1, &vardata2,
2459 nd1, nd2,
2460 isdefault1, isdefault2,
2461 &sslot1, &sslot2,
2462 stats1, stats2,
2463 have_mcvs1, have_mcvs2,
2464 hasmatch1, hasmatch2,
2465 &nmatches);
2466
2467 switch (sjinfo->jointype)
2468 {
2469 case JOIN_INNER:
2470 case JOIN_LEFT:
2471 case JOIN_FULL:
2472 selec = selec_inner;
2473 break;
2474 case JOIN_SEMI:
2475 case JOIN_ANTI:
2476
2477 /*
2478 * Look up the join's inner relation. min_righthand is sufficient
2479 * information because neither SEMI nor ANTI joins permit any
2480 * reassociation into or out of their RHS, so the righthand will
2481 * always be exactly that set of rels.
2482 */
2483 inner_rel = find_join_input_rel(root, sjinfo->min_righthand);
2484
2485 if (!join_is_reversed)
2486 selec = eqjoinsel_semi(&eqproc, collation,
2487 hashLeft, hashRight,
2488 false,
2489 &vardata1, &vardata2,
2490 nd1, nd2,
2491 isdefault1, isdefault2,
2492 &sslot1, &sslot2,
2493 stats1, stats2,
2494 have_mcvs1, have_mcvs2,
2495 hasmatch1, hasmatch2,
2496 &nmatches,
2497 inner_rel);
2498 else
2499 selec = eqjoinsel_semi(&eqproc, collation,
2500 hashLeft, hashRight,
2501 true,
2502 &vardata2, &vardata1,
2503 nd2, nd1,
2504 isdefault2, isdefault1,
2505 &sslot2, &sslot1,
2506 stats2, stats1,
2507 have_mcvs2, have_mcvs1,
2508 hasmatch2, hasmatch1,
2509 &nmatches,
2510 inner_rel);
2511
2512 /*
2513 * We should never estimate the output of a semijoin to be more
2514 * rows than we estimate for an inner join with the same input
2515 * rels and join condition; it's obviously impossible for that to
2516 * happen. The former estimate is N1 * Ssemi while the latter is
2517 * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner. Doing
2518 * this is worthwhile because of the shakier estimation rules we
2519 * use in eqjoinsel_semi, particularly in cases where it has to
2520 * punt entirely.
2521 */
2522 selec = Min(selec, inner_rel->rows * selec_inner);
2523 break;
2524 default:
2525 /* other values not expected here */
2526 elog(ERROR, "unrecognized join type: %d",
2527 (int) sjinfo->jointype);
2528 selec = 0; /* keep compiler quiet */
2529 break;
2530 }
2531
2532 free_attstatsslot(&sslot1);
2533 free_attstatsslot(&sslot2);
2534
2535 ReleaseVariableStats(vardata1);
2536 ReleaseVariableStats(vardata2);
2537
2538 if (hasmatch1)
2539 pfree(hasmatch1);
2540 if (hasmatch2)
2541 pfree(hasmatch2);
2542
2543 CLAMP_PROBABILITY(selec);
2544
2545 PG_RETURN_FLOAT8((float8) selec);
2546}
2547
2548/*
2549 * eqjoinsel_inner --- eqjoinsel for normal inner join
2550 *
2551 * In addition to computing the selectivity estimate, this will fill
2552 * hasmatch1[], hasmatch2[], and *p_nmatches (if have_mcvs1 && have_mcvs2).
2553 * We may be able to re-use that data in eqjoinsel_semi.
2554 *
2555 * We also use this for LEFT/FULL outer joins; it's not presently clear
2556 * that it's worth trying to distinguish them here.
2557 */
2558static double
2559eqjoinsel_inner(FmgrInfo *eqproc, Oid collation,
2560 Oid hashLeft, Oid hashRight,
2561 VariableStatData *vardata1, VariableStatData *vardata2,
2562 double nd1, double nd2,
2563 bool isdefault1, bool isdefault2,
2564 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
2565 Form_pg_statistic stats1, Form_pg_statistic stats2,
2566 bool have_mcvs1, bool have_mcvs2,
2567 bool *hasmatch1, bool *hasmatch2,
2568 int *p_nmatches)
2569{
2570 double selec;
2571
2572 if (have_mcvs1 && have_mcvs2)
2573 {
2574 /*
2575 * We have most-common-value lists for both relations. Run through
2576 * the lists to see which MCVs actually join to each other with the
2577 * given operator. This allows us to determine the exact join
2578 * selectivity for the portion of the relations represented by the MCV
2579 * lists. We still have to estimate for the remaining population, but
2580 * in a skewed distribution this gives us a big leg up in accuracy.
2581 * For motivation see the analysis in Y. Ioannidis and S.
2582 * Christodoulakis, "On the propagation of errors in the size of join
2583 * results", Technical Report 1018, Computer Science Dept., University
2584 * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
2585 */
2586 double nullfrac1 = stats1->stanullfrac;
2587 double nullfrac2 = stats2->stanullfrac;
2588 double matchprodfreq,
2589 matchfreq1,
2590 matchfreq2,
2591 unmatchfreq1,
2592 unmatchfreq2,
2593 otherfreq1,
2594 otherfreq2,
2595 totalsel1,
2596 totalsel2;
2597 int i,
2598 nmatches;
2599
2600 /* Fill the match arrays */
2601 eqjoinsel_find_matches(eqproc, collation,
2602 hashLeft, hashRight,
2603 false,
2604 sslot1, sslot2,
2605 sslot1->nvalues, sslot2->nvalues,
2606 hasmatch1, hasmatch2,
2607 p_nmatches, &matchprodfreq);
2608 nmatches = *p_nmatches;
2609 CLAMP_PROBABILITY(matchprodfreq);
2610
2611 /* Sum up frequencies of matched and unmatched MCVs */
2612 matchfreq1 = unmatchfreq1 = 0.0;
2613 for (i = 0; i < sslot1->nvalues; i++)
2614 {
2615 if (hasmatch1[i])
2616 matchfreq1 += sslot1->numbers[i];
2617 else
2618 unmatchfreq1 += sslot1->numbers[i];
2619 }
2620 CLAMP_PROBABILITY(matchfreq1);
2621 CLAMP_PROBABILITY(unmatchfreq1);
2622 matchfreq2 = unmatchfreq2 = 0.0;
2623 for (i = 0; i < sslot2->nvalues; i++)
2624 {
2625 if (hasmatch2[i])
2626 matchfreq2 += sslot2->numbers[i];
2627 else
2628 unmatchfreq2 += sslot2->numbers[i];
2629 }
2630 CLAMP_PROBABILITY(matchfreq2);
2631 CLAMP_PROBABILITY(unmatchfreq2);
2632
2633 /*
2634 * Compute total frequency of non-null values that are not in the MCV
2635 * lists.
2636 */
2637 otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
2638 otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
2639 CLAMP_PROBABILITY(otherfreq1);
2640 CLAMP_PROBABILITY(otherfreq2);
2641
2642 /*
2643 * We can estimate the total selectivity from the point of view of
2644 * relation 1 as: the known selectivity for matched MCVs, plus
2645 * unmatched MCVs that are assumed to match against random members of
2646 * relation 2's non-MCV population, plus non-MCV values that are
2647 * assumed to match against random members of relation 2's unmatched
2648 * MCVs plus non-MCV values.
2649 */
2650 totalsel1 = matchprodfreq;
2651 if (nd2 > sslot2->nvalues)
2652 totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues);
2653 if (nd2 > nmatches)
2654 totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
2655 (nd2 - nmatches);
2656 /* Same estimate from the point of view of relation 2. */
2657 totalsel2 = matchprodfreq;
2658 if (nd1 > sslot1->nvalues)
2659 totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues);
2660 if (nd1 > nmatches)
2661 totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
2662 (nd1 - nmatches);
2663
2664 /*
2665 * Use the smaller of the two estimates. This can be justified in
2666 * essentially the same terms as given below for the no-stats case: to
2667 * a first approximation, we are estimating from the point of view of
2668 * the relation with smaller nd.
2669 */
2670 selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
2671 }
2672 else
2673 {
2674 /*
2675 * We do not have MCV lists for both sides. Estimate the join
2676 * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
2677 * is plausible if we assume that the join operator is strict and the
2678 * non-null values are about equally distributed: a given non-null
2679 * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
2680 * of rel2, so total join rows are at most
2681 * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
2682 * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
2683 * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
2684 * with MIN() is an upper bound. Using the MIN() means we estimate
2685 * from the point of view of the relation with smaller nd (since the
2686 * larger nd is determining the MIN). It is reasonable to assume that
2687 * most tuples in this rel will have join partners, so the bound is
2688 * probably reasonably tight and should be taken as-is.
2689 *
2690 * XXX Can we be smarter if we have an MCV list for just one side? It
2691 * seems that if we assume equal distribution for the other side, we
2692 * end up with the same answer anyway.
2693 */
2694 double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
2695 double nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;
2696
2697 selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
2698 if (nd1 > nd2)
2699 selec /= nd1;
2700 else
2701 selec /= nd2;
2702 }
2703
2704 return selec;
2705}
2706
2707/*
2708 * eqjoinsel_semi --- eqjoinsel for semi join
2709 *
2710 * (Also used for anti join, which we are supposed to estimate the same way.)
2711 * Caller has ensured that vardata1 is the LHS variable; however, eqproc
2712 * is for the original join operator, which might now need to have the inputs
2713 * swapped in order to apply correctly. Also, if have_mcvs1 && have_mcvs2
2714 * then hasmatch1[], hasmatch2[], and *p_nmatches were filled by
2715 * eqjoinsel_inner.
2716 */
2717static double
2718eqjoinsel_semi(FmgrInfo *eqproc, Oid collation,
2719 Oid hashLeft, Oid hashRight,
2720 bool op_is_reversed,
2721 VariableStatData *vardata1, VariableStatData *vardata2,
2722 double nd1, double nd2,
2723 bool isdefault1, bool isdefault2,
2724 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
2725 Form_pg_statistic stats1, Form_pg_statistic stats2,
2726 bool have_mcvs1, bool have_mcvs2,
2727 bool *hasmatch1, bool *hasmatch2,
2728 int *p_nmatches,
2729 RelOptInfo *inner_rel)
2730{
2731 double selec;
2732
2733 /*
2734 * We clamp nd2 to be not more than what we estimate the inner relation's
2735 * size to be. This is intuitively somewhat reasonable since obviously
2736 * there can't be more than that many distinct values coming from the
2737 * inner rel. The reason for the asymmetry (ie, that we don't clamp nd1
2738 * likewise) is that this is the only pathway by which restriction clauses
2739 * applied to the inner rel will affect the join result size estimate,
2740 * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
2741 * only the outer rel's size. If we clamped nd1 we'd be double-counting
2742 * the selectivity of outer-rel restrictions.
2743 *
2744 * We can apply this clamping both with respect to the base relation from
2745 * which the join variable comes (if there is just one), and to the
2746 * immediate inner input relation of the current join.
2747 *
2748 * If we clamp, we can treat nd2 as being a non-default estimate; it's not
2749 * great, maybe, but it didn't come out of nowhere either. This is most
2750 * helpful when the inner relation is empty and consequently has no stats.
2751 */
2752 if (vardata2->rel)
2753 {
2754 if (nd2 >= vardata2->rel->rows)
2755 {
2756 nd2 = vardata2->rel->rows;
2757 isdefault2 = false;
2758 }
2759 }
2760 if (nd2 >= inner_rel->rows)
2761 {
2762 nd2 = inner_rel->rows;
2763 isdefault2 = false;
2764 }
2765
2766 if (have_mcvs1 && have_mcvs2)
2767 {
2768 /*
2769 * We have most-common-value lists for both relations. Run through
2770 * the lists to see which MCVs actually join to each other with the
2771 * given operator. This allows us to determine the exact join
2772 * selectivity for the portion of the relations represented by the MCV
2773 * lists. We still have to estimate for the remaining population, but
2774 * in a skewed distribution this gives us a big leg up in accuracy.
2775 */
2776 double nullfrac1 = stats1->stanullfrac;
2777 double matchprodfreq,
2778 matchfreq1,
2779 uncertainfrac,
2780 uncertain;
2781 int i,
2782 nmatches,
2783 clamped_nvalues2;
2784
2785 /*
2786 * The clamping above could have resulted in nd2 being less than
2787 * sslot2->nvalues; in which case, we assume that precisely the nd2
2788 * most common values in the relation will appear in the join input,
2789 * and so compare to only the first nd2 members of the MCV list. Of
2790 * course this is frequently wrong, but it's the best bet we can make.
2791 */
2792 clamped_nvalues2 = Min(sslot2->nvalues, nd2);
2793
2794 /*
2795 * If we did not set clamped_nvalues2 to less than sslot2->nvalues,
2796 * then the hasmatch1[] and hasmatch2[] match flags computed by
2797 * eqjoinsel_inner are still perfectly applicable, so we need not
2798 * re-do the matching work. Note that it does not matter if
2799 * op_is_reversed: we'd get the same answers.
2800 *
2801 * If we did clamp, then a different set of sslot2 values is to be
2802 * compared, so we have to re-do the matching.
2803 */
2804 if (clamped_nvalues2 != sslot2->nvalues)
2805 {
2806 /* Must re-zero the arrays */
2807 memset(hasmatch1, 0, sslot1->nvalues * sizeof(bool));
2808 memset(hasmatch2, 0, clamped_nvalues2 * sizeof(bool));
2809 /* Re-fill the match arrays */
2810 eqjoinsel_find_matches(eqproc, collation,
2811 hashLeft, hashRight,
2812 op_is_reversed,
2813 sslot1, sslot2,
2814 sslot1->nvalues, clamped_nvalues2,
2815 hasmatch1, hasmatch2,
2816 p_nmatches, &matchprodfreq);
2817 }
2818 nmatches = *p_nmatches;
2819
2820 /* Sum up frequencies of matched MCVs */
2821 matchfreq1 = 0.0;
2822 for (i = 0; i < sslot1->nvalues; i++)
2823 {
2824 if (hasmatch1[i])
2825 matchfreq1 += sslot1->numbers[i];
2826 }
2827 CLAMP_PROBABILITY(matchfreq1);
2828
2829 /*
2830 * Now we need to estimate the fraction of relation 1 that has at
2831 * least one join partner. We know for certain that the matched MCVs
2832 * do, so that gives us a lower bound, but we're really in the dark
2833 * about everything else. Our crude approach is: if nd1 <= nd2 then
2834 * assume all non-null rel1 rows have join partners, else assume for
2835 * the uncertain rows that a fraction nd2/nd1 have join partners. We
2836 * can discount the known-matched MCVs from the distinct-values counts
2837 * before doing the division.
2838 *
2839 * Crude as the above is, it's completely useless if we don't have
2840 * reliable ndistinct values for both sides. Hence, if either nd1 or
2841 * nd2 is default, punt and assume half of the uncertain rows have
2842 * join partners.
2843 */
2844 if (!isdefault1 && !isdefault2)
2845 {
2846 nd1 -= nmatches;
2847 nd2 -= nmatches;
2848 if (nd1 <= nd2 || nd2 < 0)
2849 uncertainfrac = 1.0;
2850 else
2851 uncertainfrac = nd2 / nd1;
2852 }
2853 else
2854 uncertainfrac = 0.5;
2855 uncertain = 1.0 - matchfreq1 - nullfrac1;
2856 CLAMP_PROBABILITY(uncertain);
2857 selec = matchfreq1 + uncertainfrac * uncertain;
2858 }
2859 else
2860 {
2861 /*
2862 * Without MCV lists for both sides, we can only use the heuristic
2863 * about nd1 vs nd2.
2864 */
2865 double nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
2866
2867 if (!isdefault1 && !isdefault2)
2868 {
2869 if (nd1 <= nd2 || nd2 < 0)
2870 selec = 1.0 - nullfrac1;
2871 else
2872 selec = (nd2 / nd1) * (1.0 - nullfrac1);
2873 }
2874 else
2875 selec = 0.5 * (1.0 - nullfrac1);
2876 }
2877
2878 return selec;
2879}
2880
2881/*
2882 * Identify matching MCVs for eqjoinsel_inner or eqjoinsel_semi.
2883 *
2884 * Inputs:
2885 * eqproc: FmgrInfo for equality function to use (might be reversed)
2886 * collation: OID of collation to use
2887 * hashLeft, hashRight: OIDs of hash functions associated with equality op,
2888 * or InvalidOid if we're not to use hashing
2889 * op_is_reversed: indicates that eqproc compares right type to left type
2890 * sslot1, sslot2: MCV values for the lefthand and righthand inputs
2891 * nvalues1, nvalues2: number of values to be considered (can be less than
2892 * sslotN->nvalues, but not more)
2893 * Outputs:
2894 * hasmatch1[], hasmatch2[]: pre-zeroed arrays of lengths nvalues1, nvalues2;
2895 * entries are set to true if that MCV has a match on the other side
2896 * *p_nmatches: receives number of MCV pairs that match
2897 * *p_matchprodfreq: receives sum(sslot1->numbers[i] * sslot2->numbers[j])
2898 * for matching MCVs
2899 *
2900 * Note that hashLeft is for the eqproc's left-hand input type, hashRight
2901 * for its right, regardless of op_is_reversed.
2902 *
2903 * Note we assume that each MCV will match at most one member of the other
2904 * MCV list. If the operator isn't really equality, there could be multiple
2905 * matches --- but we don't look for them, both for speed and because the
2906 * math wouldn't add up...
2907 */
2908static void
2910 Oid hashLeft, Oid hashRight,
2911 bool op_is_reversed,
2912 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
2913 int nvalues1, int nvalues2,
2914 bool *hasmatch1, bool *hasmatch2,
2915 int *p_nmatches, double *p_matchprodfreq)
2916{
2917 LOCAL_FCINFO(fcinfo, 2);
2918 double matchprodfreq = 0.0;
2919 int nmatches = 0;
2920
2921 /*
2922 * Save a few cycles by setting up the fcinfo struct just once. Using
2923 * FunctionCallInvoke directly also avoids failure if the eqproc returns
2924 * NULL, though really equality functions should never do that.
2925 */
2926 InitFunctionCallInfoData(*fcinfo, eqproc, 2, collation,
2927 NULL, NULL);
2928 fcinfo->args[0].isnull = false;
2929 fcinfo->args[1].isnull = false;
2930
2931 if (OidIsValid(hashLeft) && OidIsValid(hashRight))
2932 {
2933 /* Use a hash table to speed up the matching */
2934 LOCAL_FCINFO(hash_fcinfo, 1);
2935 FmgrInfo hash_proc;
2936 MCVHashContext hashContext;
2937 MCVHashTable_hash *hashTable;
2938 AttStatsSlot *statsProbe;
2939 AttStatsSlot *statsHash;
2940 bool *hasMatchProbe;
2941 bool *hasMatchHash;
2942 int nvaluesProbe;
2943 int nvaluesHash;
2944
2945 /* Make sure we build the hash table on the smaller array. */
2946 if (sslot1->nvalues >= sslot2->nvalues)
2947 {
2948 statsProbe = sslot1;
2949 statsHash = sslot2;
2950 hasMatchProbe = hasmatch1;
2951 hasMatchHash = hasmatch2;
2952 nvaluesProbe = nvalues1;
2953 nvaluesHash = nvalues2;
2954 }
2955 else
2956 {
2957 /* We'll have to reverse the direction of use of the operator. */
2958 op_is_reversed = !op_is_reversed;
2959 statsProbe = sslot2;
2960 statsHash = sslot1;
2961 hasMatchProbe = hasmatch2;
2962 hasMatchHash = hasmatch1;
2963 nvaluesProbe = nvalues2;
2964 nvaluesHash = nvalues1;
2965 }
2966
2967 /*
2968 * Build the hash table on the smaller array, using the appropriate
2969 * hash function for its data type.
2970 */
2971 fmgr_info(op_is_reversed ? hashLeft : hashRight, &hash_proc);
2972 InitFunctionCallInfoData(*hash_fcinfo, &hash_proc, 1, collation,
2973 NULL, NULL);
2974 hash_fcinfo->args[0].isnull = false;
2975
2976 hashContext.equal_fcinfo = fcinfo;
2977 hashContext.hash_fcinfo = hash_fcinfo;
2978 hashContext.op_is_reversed = op_is_reversed;
2979 hashContext.insert_mode = true;
2980 get_typlenbyval(statsHash->valuetype,
2981 &hashContext.hash_typlen,
2982 &hashContext.hash_typbyval);
2983
2984 hashTable = MCVHashTable_create(CurrentMemoryContext,
2985 nvaluesHash,
2986 &hashContext);
2987
2988 for (int i = 0; i < nvaluesHash; i++)
2989 {
2990 bool found = false;
2991 MCVHashEntry *entry = MCVHashTable_insert(hashTable,
2992 statsHash->values[i],
2993 &found);
2994
2995 /*
2996 * MCVHashTable_insert will only report "found" if the new value
2997 * is equal to some previous one per datum_image_eq(). That
2998 * probably shouldn't happen, since we're not expecting duplicates
2999 * in the MCV list. If we do find a dup, just ignore it, leaving
3000 * the hash entry's index pointing at the first occurrence. That
3001 * matches the behavior that the non-hashed code path would have.
3002 */
3003 if (likely(!found))
3004 entry->index = i;
3005 }
3006
3007 /*
3008 * Prepare to probe the hash table. If the probe values are of a
3009 * different data type, then we need to change hash functions. (This
3010 * code relies on the assumption that since we defined SH_STORE_HASH,
3011 * simplehash.h will never need to compute hash values for existing
3012 * hash table entries.)
3013 */
3014 hashContext.insert_mode = false;
3015 if (hashLeft != hashRight)
3016 {
3017 fmgr_info(op_is_reversed ? hashRight : hashLeft, &hash_proc);
3018 /* Resetting hash_fcinfo is probably unnecessary, but be safe */
3019 InitFunctionCallInfoData(*hash_fcinfo, &hash_proc, 1, collation,
3020 NULL, NULL);
3021 hash_fcinfo->args[0].isnull = false;
3022 }
3023
3024 /* Look up each probe value in turn. */
3025 for (int i = 0; i < nvaluesProbe; i++)
3026 {
3027 MCVHashEntry *entry = MCVHashTable_lookup(hashTable,
3028 statsProbe->values[i]);
3029
3030 /* As in the other code path, skip already-matched hash entries */
3031 if (entry != NULL && !hasMatchHash[entry->index])
3032 {
3033 hasMatchHash[entry->index] = hasMatchProbe[i] = true;
3034 nmatches++;
3035 matchprodfreq += statsHash->numbers[entry->index] * statsProbe->numbers[i];
3036 }
3037 }
3038
3039 MCVHashTable_destroy(hashTable);
3040 }
3041 else
3042 {
3043 /* We're not to use hashing, so do it the O(N^2) way */
3044 int index1,
3045 index2;
3046
3047 /* Set up to supply the values in the order the operator expects */
3048 if (op_is_reversed)
3049 {
3050 index1 = 1;
3051 index2 = 0;
3052 }
3053 else
3054 {
3055 index1 = 0;
3056 index2 = 1;
3057 }
3058
3059 for (int i = 0; i < nvalues1; i++)
3060 {
3061 fcinfo->args[index1].value = sslot1->values[i];
3062
3063 for (int j = 0; j < nvalues2; j++)
3064 {
3065 Datum fresult;
3066
3067 if (hasmatch2[j])
3068 continue;
3069 fcinfo->args[index2].value = sslot2->values[j];
3070 fcinfo->isnull = false;
3071 fresult = FunctionCallInvoke(fcinfo);
3072 if (!fcinfo->isnull && DatumGetBool(fresult))
3073 {
3074 hasmatch1[i] = hasmatch2[j] = true;
3075 matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j];
3076 nmatches++;
3077 break;
3078 }
3079 }
3080 }
3081 }
3082
3083 *p_nmatches = nmatches;
3084 *p_matchprodfreq = matchprodfreq;
3085}
3086
3087/*
3088 * Support functions for the hash tables used by eqjoinsel_find_matches
3089 */
3090static uint32
3092{
3093 MCVHashContext *context = (MCVHashContext *) tab->private_data;
3094 FunctionCallInfo fcinfo = context->hash_fcinfo;
3095 Datum fresult;
3096
3097 fcinfo->args[0].value = key;
3098 fcinfo->isnull = false;
3099 fresult = FunctionCallInvoke(fcinfo);
3100 Assert(!fcinfo->isnull);
3101 return DatumGetUInt32(fresult);
3102}
3103
3104static bool
3106{
3107 MCVHashContext *context = (MCVHashContext *) tab->private_data;
3108
3109 if (context->insert_mode)
3110 {
3111 /*
3112 * During the insertion step, any comparisons will be between two
3113 * Datums of the hash table's data type, so if the given operator is
3114 * cross-type it will be the wrong thing to use. Fortunately, we can
3115 * use datum_image_eq instead. The MCV values should all be distinct
3116 * anyway, so it's mostly pro-forma to compare them at all.
3117 */
3118 return datum_image_eq(key0, key1,
3119 context->hash_typbyval, context->hash_typlen);
3120 }
3121 else
3122 {
3123 FunctionCallInfo fcinfo = context->equal_fcinfo;
3124 Datum fresult;
3125
3126 /*
3127 * Apply the operator the correct way around. Although simplehash.h
3128 * doesn't document this explicitly, during lookups key0 is from the
3129 * hash table while key1 is the probe value, so we should compare them
3130 * in that order only if op_is_reversed.
3131 */
3132 if (context->op_is_reversed)
3133 {
3134 fcinfo->args[0].value = key0;
3135 fcinfo->args[1].value = key1;
3136 }
3137 else
3138 {
3139 fcinfo->args[0].value = key1;
3140 fcinfo->args[1].value = key0;
3141 }
3142 fcinfo->isnull = false;
3143 fresult = FunctionCallInvoke(fcinfo);
3144 return (!fcinfo->isnull && DatumGetBool(fresult));
3145 }
3146}
3147
3148/*
3149 * neqjoinsel - Join selectivity of "!="
3150 */
3151Datum
3153{
3155 Oid operator = PG_GETARG_OID(1);
3156 List *args = (List *) PG_GETARG_POINTER(2);
3157 JoinType jointype = (JoinType) PG_GETARG_INT16(3);
3159 Oid collation = PG_GET_COLLATION();
3160 float8 result;
3161
3162 if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
3163 {
3164 /*
3165 * For semi-joins, if there is more than one distinct value in the RHS
3166 * relation then every non-null LHS row must find a row to join since
3167 * it can only be equal to one of them. We'll assume that there is
3168 * always more than one distinct RHS value for the sake of stability,
3169 * though in theory we could have special cases for empty RHS
3170 * (selectivity = 0) and single-distinct-value RHS (selectivity =
3171 * fraction of LHS that has the same value as the single RHS value).
3172 *
3173 * For anti-joins, if we use the same assumption that there is more
3174 * than one distinct key in the RHS relation, then every non-null LHS
3175 * row must be suppressed by the anti-join.
3176 *
3177 * So either way, the selectivity estimate should be 1 - nullfrac.
3178 */
3179 VariableStatData leftvar;
3180 VariableStatData rightvar;
3181 bool reversed;
3182 HeapTuple statsTuple;
3183 double nullfrac;
3184
3185 get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed);
3186 statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple;
3187 if (HeapTupleIsValid(statsTuple))
3188 nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac;
3189 else
3190 nullfrac = 0.0;
3191 ReleaseVariableStats(leftvar);
3192 ReleaseVariableStats(rightvar);
3193
3194 result = 1.0 - nullfrac;
3195 }
3196 else
3197 {
3198 /*
3199 * We want 1 - eqjoinsel() where the equality operator is the one
3200 * associated with this != operator, that is, its negator.
3201 */
3202 Oid eqop = get_negator(operator);
3203
3204 if (eqop)
3205 {
3206 result =
3208 collation,
3210 ObjectIdGetDatum(eqop),
3212 Int16GetDatum(jointype),
3213 PointerGetDatum(sjinfo)));
3214 }
3215 else
3216 {
3217 /* Use default selectivity (should we raise an error instead?) */
3218 result = DEFAULT_EQ_SEL;
3219 }
3220 result = 1.0 - result;
3221 }
3222
3223 PG_RETURN_FLOAT8(result);
3224}
3225
3226/*
3227 * scalarltjoinsel - Join selectivity of "<" for scalars
3228 */
3229Datum
3231{
3233}
3234
3235/*
3236 * scalarlejoinsel - Join selectivity of "<=" for scalars
3237 */
3238Datum
3240{
3242}
3243
3244/*
3245 * scalargtjoinsel - Join selectivity of ">" for scalars
3246 */
3247Datum
3249{
3251}
3252
3253/*
3254 * scalargejoinsel - Join selectivity of ">=" for scalars
3255 */
3256Datum
3258{
3260}
3261
3262
3263/*
3264 * mergejoinscansel - Scan selectivity of merge join.
3265 *
3266 * A merge join will stop as soon as it exhausts either input stream.
3267 * Therefore, if we can estimate the ranges of both input variables,
3268 * we can estimate how much of the input will actually be read. This
3269 * can have a considerable impact on the cost when using indexscans.
3270 *
3271 * Also, we can estimate how much of each input has to be read before the
3272 * first join pair is found, which will affect the join's startup time.
3273 *
3274 * clause should be a clause already known to be mergejoinable. opfamily,
3275 * cmptype, and nulls_first specify the sort ordering being used.
3276 *
3277 * The outputs are:
3278 * *leftstart is set to the fraction of the left-hand variable expected
3279 * to be scanned before the first join pair is found (0 to 1).
3280 * *leftend is set to the fraction of the left-hand variable expected
3281 * to be scanned before the join terminates (0 to 1).
3282 * *rightstart, *rightend similarly for the right-hand variable.
3283 */
3284void
3286 Oid opfamily, CompareType cmptype, bool nulls_first,
3287 Selectivity *leftstart, Selectivity *leftend,
3288 Selectivity *rightstart, Selectivity *rightend)
3289{
3290 Node *left,
3291 *right;
3292 VariableStatData leftvar,
3293 rightvar;
3294 Oid opmethod;
3295 int op_strategy;
3296 Oid op_lefttype;
3297 Oid op_righttype;
3298 Oid opno,
3299 collation,
3300 lsortop,
3301 rsortop,
3302 lstatop,
3303 rstatop,
3304 ltop,
3305 leop,
3306 revltop,
3307 revleop;
3308 StrategyNumber ltstrat,
3309 lestrat,
3310 gtstrat,
3311 gestrat;
3312 bool isgt;
3313 Datum leftmin,
3314 leftmax,
3315 rightmin,
3316 rightmax;
3317 double selec;
3318
3319 /* Set default results if we can't figure anything out. */
3320 /* XXX should default "start" fraction be a bit more than 0? */
3321 *leftstart = *rightstart = 0.0;
3322 *leftend = *rightend = 1.0;
3323
3324 /* Deconstruct the merge clause */
3325 if (!is_opclause(clause))
3326 return; /* shouldn't happen */
3327 opno = ((OpExpr *) clause)->opno;
3328 collation = ((OpExpr *) clause)->inputcollid;
3329 left = get_leftop((Expr *) clause);
3330 right = get_rightop((Expr *) clause);
3331 if (!right)
3332 return; /* shouldn't happen */
3333
3334 /* Look for stats for the inputs */
3335 examine_variable(root, left, 0, &leftvar);
3336 examine_variable(root, right, 0, &rightvar);
3337
3338 opmethod = get_opfamily_method(opfamily);
3339
3340 /* Extract the operator's declared left/right datatypes */
3341 get_op_opfamily_properties(opno, opfamily, false,
3342 &op_strategy,
3343 &op_lefttype,
3344 &op_righttype);
3345 Assert(IndexAmTranslateStrategy(op_strategy, opmethod, opfamily, true) == COMPARE_EQ);
3346
3347 /*
3348 * Look up the various operators we need. If we don't find them all, it
3349 * probably means the opfamily is broken, but we just fail silently.
3350 *
3351 * Note: we expect that pg_statistic histograms will be sorted by the '<'
3352 * operator, regardless of which sort direction we are considering.
3353 */
3354 switch (cmptype)
3355 {
3356 case COMPARE_LT:
3357 isgt = false;
3358 ltstrat = IndexAmTranslateCompareType(COMPARE_LT, opmethod, opfamily, true);
3359 lestrat = IndexAmTranslateCompareType(COMPARE_LE, opmethod, opfamily, true);
3360 if (op_lefttype == op_righttype)
3361 {
3362 /* easy case */
3363 ltop = get_opfamily_member(opfamily,
3364 op_lefttype, op_righttype,
3365 ltstrat);
3366 leop = get_opfamily_member(opfamily,
3367 op_lefttype, op_righttype,
3368 lestrat);
3369 lsortop = ltop;
3370 rsortop = ltop;
3371 lstatop = lsortop;
3372 rstatop = rsortop;
3373 revltop = ltop;
3374 revleop = leop;
3375 }
3376 else
3377 {
3378 ltop = get_opfamily_member(opfamily,
3379 op_lefttype, op_righttype,
3380 ltstrat);
3381 leop = get_opfamily_member(opfamily,
3382 op_lefttype, op_righttype,
3383 lestrat);
3384 lsortop = get_opfamily_member(opfamily,
3385 op_lefttype, op_lefttype,
3386 ltstrat);
3387 rsortop = get_opfamily_member(opfamily,
3388 op_righttype, op_righttype,
3389 ltstrat);
3390 lstatop = lsortop;
3391 rstatop = rsortop;
3392 revltop = get_opfamily_member(opfamily,
3393 op_righttype, op_lefttype,
3394 ltstrat);
3395 revleop = get_opfamily_member(opfamily,
3396 op_righttype, op_lefttype,
3397 lestrat);
3398 }
3399 break;
3400 case COMPARE_GT:
3401 /* descending-order case */
3402 isgt = true;
3403 ltstrat = IndexAmTranslateCompareType(COMPARE_LT, opmethod, opfamily, true);
3404 gtstrat = IndexAmTranslateCompareType(COMPARE_GT, opmethod, opfamily, true);
3405 gestrat = IndexAmTranslateCompareType(COMPARE_GE, opmethod, opfamily, true);
3406 if (op_lefttype == op_righttype)
3407 {
3408 /* easy case */
3409 ltop = get_opfamily_member(opfamily,
3410 op_lefttype, op_righttype,
3411 gtstrat);
3412 leop = get_opfamily_member(opfamily,
3413 op_lefttype, op_righttype,
3414 gestrat);
3415 lsortop = ltop;
3416 rsortop = ltop;
3417 lstatop = get_opfamily_member(opfamily,
3418 op_lefttype, op_lefttype,
3419 ltstrat);
3420 rstatop = lstatop;
3421 revltop = ltop;
3422 revleop = leop;
3423 }
3424 else
3425 {
3426 ltop = get_opfamily_member(opfamily,
3427 op_lefttype, op_righttype,
3428 gtstrat);
3429 leop = get_opfamily_member(opfamily,
3430 op_lefttype, op_righttype,
3431 gestrat);
3432 lsortop = get_opfamily_member(opfamily,
3433 op_lefttype, op_lefttype,
3434 gtstrat);
3435 rsortop = get_opfamily_member(opfamily,
3436 op_righttype, op_righttype,
3437 gtstrat);
3438 lstatop = get_opfamily_member(opfamily,
3439 op_lefttype, op_lefttype,
3440 ltstrat);
3441 rstatop = get_opfamily_member(opfamily,
3442 op_righttype, op_righttype,
3443 ltstrat);
3444 revltop = get_opfamily_member(opfamily,
3445 op_righttype, op_lefttype,
3446 gtstrat);
3447 revleop = get_opfamily_member(opfamily,
3448 op_righttype, op_lefttype,
3449 gestrat);
3450 }
3451 break;
3452 default:
3453 goto fail; /* shouldn't get here */
3454 }
3455
3456 if (!OidIsValid(lsortop) ||
3457 !OidIsValid(rsortop) ||
3458 !OidIsValid(lstatop) ||
3459 !OidIsValid(rstatop) ||
3460 !OidIsValid(ltop) ||
3461 !OidIsValid(leop) ||
3462 !OidIsValid(revltop) ||
3463 !OidIsValid(revleop))
3464 goto fail; /* insufficient info in catalogs */
3465
3466 /* Try to get ranges of both inputs */
3467 if (!isgt)
3468 {
3469 if (!get_variable_range(root, &leftvar, lstatop, collation,
3470 &leftmin, &leftmax))
3471 goto fail; /* no range available from stats */
3472 if (!get_variable_range(root, &rightvar, rstatop, collation,
3473 &rightmin, &rightmax))
3474 goto fail; /* no range available from stats */
3475 }
3476 else
3477 {
3478 /* need to swap the max and min */
3479 if (!get_variable_range(root, &leftvar, lstatop, collation,
3480 &leftmax, &leftmin))
3481 goto fail; /* no range available from stats */
3482 if (!get_variable_range(root, &rightvar, rstatop, collation,
3483 &rightmax, &rightmin))
3484 goto fail; /* no range available from stats */
3485 }
3486
3487 /*
3488 * Now, the fraction of the left variable that will be scanned is the
3489 * fraction that's <= the right-side maximum value. But only believe
3490 * non-default estimates, else stick with our 1.0.
3491 */
3492 selec = scalarineqsel(root, leop, isgt, true, collation, &leftvar,
3493 rightmax, op_righttype);
3494 if (selec != DEFAULT_INEQ_SEL)
3495 *leftend = selec;
3496
3497 /* And similarly for the right variable. */
3498 selec = scalarineqsel(root, revleop, isgt, true, collation, &rightvar,
3499 leftmax, op_lefttype);
3500 if (selec != DEFAULT_INEQ_SEL)
3501 *rightend = selec;
3502
3503 /*
3504 * Only one of the two "end" fractions can really be less than 1.0;
3505 * believe the smaller estimate and reset the other one to exactly 1.0. If
3506 * we get exactly equal estimates (as can easily happen with self-joins),
3507 * believe neither.
3508 */
3509 if (*leftend > *rightend)
3510 *leftend = 1.0;
3511 else if (*leftend < *rightend)
3512 *rightend = 1.0;
3513 else
3514 *leftend = *rightend = 1.0;
3515
3516 /*
3517 * Also, the fraction of the left variable that will be scanned before the
3518 * first join pair is found is the fraction that's < the right-side
3519 * minimum value. But only believe non-default estimates, else stick with
3520 * our own default.
3521 */
3522 selec = scalarineqsel(root, ltop, isgt, false, collation, &leftvar,
3523 rightmin, op_righttype);
3524 if (selec != DEFAULT_INEQ_SEL)
3525 *leftstart = selec;
3526
3527 /* And similarly for the right variable. */
3528 selec = scalarineqsel(root, revltop, isgt, false, collation, &rightvar,
3529 leftmin, op_lefttype);
3530 if (selec != DEFAULT_INEQ_SEL)
3531 *rightstart = selec;
3532
3533 /*
3534 * Only one of the two "start" fractions can really be more than zero;
3535 * believe the larger estimate and reset the other one to exactly 0.0. If
3536 * we get exactly equal estimates (as can easily happen with self-joins),
3537 * believe neither.
3538 */
3539 if (*leftstart < *rightstart)
3540 *leftstart = 0.0;
3541 else if (*leftstart > *rightstart)
3542 *rightstart = 0.0;
3543 else
3544 *leftstart = *rightstart = 0.0;
3545
3546 /*
3547 * If the sort order is nulls-first, we're going to have to skip over any
3548 * nulls too. These would not have been counted by scalarineqsel, and we
3549 * can safely add in this fraction regardless of whether we believe
3550 * scalarineqsel's results or not. But be sure to clamp the sum to 1.0!
3551 */
3552 if (nulls_first)
3553 {
3554 Form_pg_statistic stats;
3555
3556 if (HeapTupleIsValid(leftvar.statsTuple))
3557 {
3558 stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple);
3559 *leftstart += stats->stanullfrac;
3560 CLAMP_PROBABILITY(*leftstart);
3561 *leftend += stats->stanullfrac;
3562 CLAMP_PROBABILITY(*leftend);
3563 }
3564 if (HeapTupleIsValid(rightvar.statsTuple))
3565 {
3566 stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple);
3567 *rightstart += stats->stanullfrac;
3568 CLAMP_PROBABILITY(*rightstart);
3569 *rightend += stats->stanullfrac;
3570 CLAMP_PROBABILITY(*rightend);
3571 }
3572 }
3573
3574 /* Disbelieve start >= end, just in case that can happen */
3575 if (*leftstart >= *leftend)
3576 {
3577 *leftstart = 0.0;
3578 *leftend = 1.0;
3579 }
3580 if (*rightstart >= *rightend)
3581 {
3582 *rightstart = 0.0;
3583 *rightend = 1.0;
3584 }
3585
3586fail:
3587 ReleaseVariableStats(leftvar);
3588 ReleaseVariableStats(rightvar);
3589}
3590
3591
3592/*
3593 * matchingsel -- generic matching-operator selectivity support
3594 *
3595 * Use these for any operators that (a) are on data types for which we collect
3596 * standard statistics, and (b) have behavior for which the default estimate
3597 * (twice DEFAULT_EQ_SEL) is sane. Typically that is good for match-like
3598 * operators.
3599 */
3600
3601Datum
3603{
3605 Oid operator = PG_GETARG_OID(1);
3606 List *args = (List *) PG_GETARG_POINTER(2);
3607 int varRelid = PG_GETARG_INT32(3);
3608 Oid collation = PG_GET_COLLATION();
3609 double selec;
3610
3611 /* Use generic restriction selectivity logic. */
3612 selec = generic_restriction_selectivity(root, operator, collation,
3613 args, varRelid,
3615
3616 PG_RETURN_FLOAT8((float8) selec);
3617}
3618
3619Datum
3621{
3622 /* Just punt, for the moment. */
3624}
3625
3626
3627/*
3628 * Helper routine for estimate_num_groups: add an item to a list of
3629 * GroupVarInfos, but only if it's not known equal to any of the existing
3630 * entries.
3631 */
3632typedef struct
3633{
3634 Node *var; /* might be an expression, not just a Var */
3635 RelOptInfo *rel; /* relation it belongs to */
3636 double ndistinct; /* # distinct values */
3637 bool isdefault; /* true if DEFAULT_NUM_DISTINCT was used */
3638} GroupVarInfo;
3639
3640static List *
3642 Node *var, VariableStatData *vardata)
3643{
3644 GroupVarInfo *varinfo;
3645 double ndistinct;
3646 bool isdefault;
3647 ListCell *lc;
3648
3649 ndistinct = get_variable_numdistinct(vardata, &isdefault);
3650
3651 /*
3652 * The nullingrels bits within the var could cause the same var to be
3653 * counted multiple times if it's marked with different nullingrels. They
3654 * could also prevent us from matching the var to the expressions in
3655 * extended statistics (see estimate_multivariate_ndistinct). So strip
3656 * them out first.
3657 */
3658 var = remove_nulling_relids(var, root->outer_join_rels, NULL);
3659
3660 foreach(lc, varinfos)
3661 {
3662 varinfo = (GroupVarInfo *) lfirst(lc);
3663
3664 /* Drop exact duplicates */
3665 if (equal(var, varinfo->var))
3666 return varinfos;
3667
3668 /*
3669 * Drop known-equal vars, but only if they belong to different
3670 * relations (see comments for estimate_num_groups). We aren't too
3671 * fussy about the semantics of "equal" here.
3672 */
3673 if (vardata->rel != varinfo->rel &&
3674 exprs_known_equal(root, var, varinfo->var, InvalidOid))
3675 {
3676 if (varinfo->ndistinct <= ndistinct)
3677 {
3678 /* Keep older item, forget new one */
3679 return varinfos;
3680 }
3681 else
3682 {
3683 /* Delete the older item */
3684 varinfos = foreach_delete_current(varinfos, lc);
3685 }
3686 }
3687 }
3688
3689 varinfo = palloc_object(GroupVarInfo);
3690
3691 varinfo->var = var;
3692 varinfo->rel = vardata->rel;
3693 varinfo->ndistinct = ndistinct;
3694 varinfo->isdefault = isdefault;
3695 varinfos = lappend(varinfos, varinfo);
3696 return varinfos;
3697}
3698
3699/*
3700 * estimate_num_groups - Estimate number of groups in a grouped query
3701 *
3702 * Given a query having a GROUP BY clause, estimate how many groups there
3703 * will be --- ie, the number of distinct combinations of the GROUP BY
3704 * expressions.
3705 *
3706 * This routine is also used to estimate the number of rows emitted by
3707 * a DISTINCT filtering step; that is an isomorphic problem. (Note:
3708 * actually, we only use it for DISTINCT when there's no grouping or
3709 * aggregation ahead of the DISTINCT.)
3710 *
3711 * Inputs:
3712 * root - the query
3713 * groupExprs - list of expressions being grouped by
3714 * input_rows - number of rows estimated to arrive at the group/unique
3715 * filter step
3716 * pgset - NULL, or a List** pointing to a grouping set to filter the
3717 * groupExprs against
3718 *
3719 * Outputs:
3720 * estinfo - When passed as non-NULL, the function will set bits in the
3721 * "flags" field in order to provide callers with additional information
3722 * about the estimation. Currently, we only set the SELFLAG_USED_DEFAULT
3723 * bit if we used any default values in the estimation.
3724 *
3725 * Given the lack of any cross-correlation statistics in the system, it's
3726 * impossible to do anything really trustworthy with GROUP BY conditions
3727 * involving multiple Vars. We should however avoid assuming the worst
3728 * case (all possible cross-product terms actually appear as groups) since
3729 * very often the grouped-by Vars are highly correlated. Our current approach
3730 * is as follows:
3731 * 1. Expressions yielding boolean are assumed to contribute two groups,
3732 * independently of their content, and are ignored in the subsequent
3733 * steps. This is mainly because tests like "col IS NULL" break the
3734 * heuristic used in step 2 especially badly.
3735 * 2. Reduce the given expressions to a list of unique Vars used. For
3736 * example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
3737 * It is clearly correct not to count the same Var more than once.
3738 * It is also reasonable to treat f(x) the same as x: f() cannot
3739 * increase the number of distinct values (unless it is volatile,
3740 * which we consider unlikely for grouping), but it probably won't
3741 * reduce the number of distinct values much either.
3742 * As a special case, if a GROUP BY expression can be matched to an
3743 * expressional index for which we have statistics, then we treat the
3744 * whole expression as though it were just a Var.
3745 * 3. If the list contains Vars of different relations that are known equal
3746 * due to equivalence classes, then drop all but one of the Vars from each
3747 * known-equal set, keeping the one with smallest estimated # of values
3748 * (since the extra values of the others can't appear in joined rows).
3749 * Note the reason we only consider Vars of different relations is that
3750 * if we considered ones of the same rel, we'd be double-counting the
3751 * restriction selectivity of the equality in the next step.
3752 * 4. For Vars within a single source rel, we multiply together the numbers
3753 * of values, clamp to the number of rows in the rel (divided by 10 if
3754 * more than one Var), and then multiply by a factor based on the
3755 * selectivity of the restriction clauses for that rel. When there's
3756 * more than one Var, the initial product is probably too high (it's the
3757 * worst case) but clamping to a fraction of the rel's rows seems to be a
3758 * helpful heuristic for not letting the estimate get out of hand. (The
3759 * factor of 10 is derived from pre-Postgres-7.4 practice.) The factor
3760 * we multiply by to adjust for the restriction selectivity assumes that
3761 * the restriction clauses are independent of the grouping, which may not
3762 * be a valid assumption, but it's hard to do better.
3763 * 5. If there are Vars from multiple rels, we repeat step 4 for each such
3764 * rel, and multiply the results together.
3765 * Note that rels not containing grouped Vars are ignored completely, as are
3766 * join clauses. Such rels cannot increase the number of groups, and we
3767 * assume such clauses do not reduce the number either (somewhat bogus,
3768 * but we don't have the info to do better).
3769 */
3770double
3771estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
3772 List **pgset, EstimationInfo *estinfo)
3773{
3774 List *varinfos = NIL;
3775 double srf_multiplier = 1.0;
3776 double numdistinct;
3777 ListCell *l;
3778 int i;
3779
3780 /* Zero the estinfo output parameter, if non-NULL */
3781 if (estinfo != NULL)
3782 memset(estinfo, 0, sizeof(EstimationInfo));
3783
3784 /*
3785 * We don't ever want to return an estimate of zero groups, as that tends
3786 * to lead to division-by-zero and other unpleasantness. The input_rows
3787 * estimate is usually already at least 1, but clamp it just in case it
3788 * isn't.
3789 */
3790 input_rows = clamp_row_est(input_rows);
3791
3792 /*
3793 * If no grouping columns, there's exactly one group. (This can't happen
3794 * for normal cases with GROUP BY or DISTINCT, but it is possible for
3795 * corner cases with set operations.)
3796 */
3797 if (groupExprs == NIL || (pgset && *pgset == NIL))
3798 return 1.0;
3799
3800 /*
3801 * Count groups derived from boolean grouping expressions. For other
3802 * expressions, find the unique Vars used, treating an expression as a Var
3803 * if we can find stats for it. For each one, record the statistical
3804 * estimate of number of distinct values (total in its table, without
3805 * regard for filtering).
3806 */
3807 numdistinct = 1.0;
3808
3809 i = 0;
3810 foreach(l, groupExprs)
3811 {
3812 Node *groupexpr = (Node *) lfirst(l);
3813 double this_srf_multiplier;
3814 VariableStatData vardata;
3815 List *varshere;
3816 ListCell *l2;
3817
3818 /* is expression in this grouping set? */
3819 if (pgset && !list_member_int(*pgset, i++))
3820 continue;
3821
3822 /*
3823 * Set-returning functions in grouping columns are a bit problematic.
3824 * The code below will effectively ignore their SRF nature and come up
3825 * with a numdistinct estimate as though they were scalar functions.
3826 * We compensate by scaling up the end result by the largest SRF
3827 * rowcount estimate. (This will be an overestimate if the SRF
3828 * produces multiple copies of any output value, but it seems best to
3829 * assume the SRF's outputs are distinct. In any case, it's probably
3830 * pointless to worry too much about this without much better
3831 * estimates for SRF output rowcounts than we have today.)
3832 */
3833 this_srf_multiplier = expression_returns_set_rows(root, groupexpr);
3834 if (srf_multiplier < this_srf_multiplier)
3835 srf_multiplier = this_srf_multiplier;
3836
3837 /* Short-circuit for expressions returning boolean */
3838 if (exprType(groupexpr) == BOOLOID)
3839 {
3840 numdistinct *= 2.0;
3841 continue;
3842 }
3843
3844 /*
3845 * If examine_variable is able to deduce anything about the GROUP BY
3846 * expression, treat it as a single variable even if it's really more
3847 * complicated.
3848 *
3849 * XXX This has the consequence that if there's a statistics object on
3850 * the expression, we don't split it into individual Vars. This
3851 * affects our selection of statistics in
3852 * estimate_multivariate_ndistinct, because it's probably better to
3853 * use more accurate estimate for each expression and treat them as
3854 * independent, than to combine estimates for the extracted variables
3855 * when we don't know how that relates to the expressions.
3856 */
3857 examine_variable(root, groupexpr, 0, &vardata);
3858 if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique)
3859 {
3860 varinfos = add_unique_group_var(root, varinfos,
3861 groupexpr, &vardata);
3862 ReleaseVariableStats(vardata);
3863 continue;
3864 }
3865 ReleaseVariableStats(vardata);
3866
3867 /*
3868 * Else pull out the component Vars. Handle PlaceHolderVars by
3869 * recursing into their arguments (effectively assuming that the
3870 * PlaceHolderVar doesn't change the number of groups, which boils
3871 * down to ignoring the possible addition of nulls to the result set).
3872 */
3873 varshere = pull_var_clause(groupexpr,
3877
3878 /*
3879 * If we find any variable-free GROUP BY item, then either it is a
3880 * constant (and we can ignore it) or it contains a volatile function;
3881 * in the latter case we punt and assume that each input row will
3882 * yield a distinct group.
3883 */
3884 if (varshere == NIL)
3885 {
3886 if (contain_volatile_functions(groupexpr))
3887 return input_rows;
3888 continue;
3889 }
3890
3891 /*
3892 * Else add variables to varinfos list
3893 */
3894 foreach(l2, varshere)
3895 {
3896 Node *var = (Node *) lfirst(l2);
3897
3898 examine_variable(root, var, 0, &vardata);
3899 varinfos = add_unique_group_var(root, varinfos, var, &vardata);
3900 ReleaseVariableStats(vardata);
3901 }
3902 }
3903
3904 /*
3905 * If now no Vars, we must have an all-constant or all-boolean GROUP BY
3906 * list.
3907 */
3908 if (varinfos == NIL)
3909 {
3910 /* Apply SRF multiplier as we would do in the long path */
3911 numdistinct *= srf_multiplier;
3912 /* Round off */
3913 numdistinct = ceil(numdistinct);
3914 /* Guard against out-of-range answers */
3915 if (numdistinct > input_rows)
3916 numdistinct = input_rows;
3917 if (numdistinct < 1.0)
3918 numdistinct = 1.0;
3919 return numdistinct;
3920 }
3921
3922 /*
3923 * Group Vars by relation and estimate total numdistinct.
3924 *
3925 * For each iteration of the outer loop, we process the frontmost Var in
3926 * varinfos, plus all other Vars in the same relation. We remove these
3927 * Vars from the newvarinfos list for the next iteration. This is the
3928 * easiest way to group Vars of same rel together.
3929 */
3930 do
3931 {
3932 GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos);
3933 RelOptInfo *rel = varinfo1->rel;
3934 double reldistinct = 1;
3935 double relmaxndistinct = reldistinct;
3936 int relvarcount = 0;
3937 List *newvarinfos = NIL;
3938 List *relvarinfos = NIL;
3939
3940 /*
3941 * Split the list of varinfos in two - one for the current rel, one
3942 * for remaining Vars on other rels.
3943 */
3944 relvarinfos = lappend(relvarinfos, varinfo1);
3945 for_each_from(l, varinfos, 1)
3946 {
3947 GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
3948
3949 if (varinfo2->rel == varinfo1->rel)
3950 {
3951 /* varinfos on current rel */
3952 relvarinfos = lappend(relvarinfos, varinfo2);
3953 }
3954 else
3955 {
3956 /* not time to process varinfo2 yet */
3957 newvarinfos = lappend(newvarinfos, varinfo2);
3958 }
3959 }
3960
3961 /*
3962 * Get the numdistinct estimate for the Vars of this rel. We
3963 * iteratively search for multivariate n-distinct with maximum number
3964 * of vars; assuming that each var group is independent of the others,
3965 * we multiply them together. Any remaining relvarinfos after no more
3966 * multivariate matches are found are assumed independent too, so
3967 * their individual ndistinct estimates are multiplied also.
3968 *
3969 * While iterating, count how many separate numdistinct values we
3970 * apply. We apply a fudge factor below, but only if we multiplied
3971 * more than one such values.
3972 */
3973 while (relvarinfos)
3974 {
3975 double mvndistinct;
3976
3977 if (estimate_multivariate_ndistinct(root, rel, &relvarinfos,
3978 &mvndistinct))
3979 {
3980 reldistinct *= mvndistinct;
3981 if (relmaxndistinct < mvndistinct)
3982 relmaxndistinct = mvndistinct;
3983 relvarcount++;
3984 }
3985 else
3986 {
3987 foreach(l, relvarinfos)
3988 {
3989 GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);
3990
3991 reldistinct *= varinfo2->ndistinct;
3992 if (relmaxndistinct < varinfo2->ndistinct)
3993 relmaxndistinct = varinfo2->ndistinct;
3994 relvarcount++;
3995
3996 /*
3997 * When varinfo2's isdefault is set then we'd better set
3998 * the SELFLAG_USED_DEFAULT bit in the EstimationInfo.
3999 */
4000 if (estinfo != NULL && varinfo2->isdefault)
4001 estinfo->flags |= SELFLAG_USED_DEFAULT;
4002 }
4003
4004 /* we're done with this relation */
4005 relvarinfos = NIL;
4006 }
4007 }
4008
4009 /*
4010 * Sanity check --- don't divide by zero if empty relation.
4011 */
4012 Assert(IS_SIMPLE_REL(rel));
4013 if (rel->tuples > 0)
4014 {
4015 /*
4016 * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
4017 * fudge factor is because the Vars are probably correlated but we
4018 * don't know by how much. We should never clamp to less than the
4019 * largest ndistinct value for any of the Vars, though, since
4020 * there will surely be at least that many groups.
4021 */
4022 double clamp = rel->tuples;
4023
4024 if (relvarcount > 1)
4025 {
4026 clamp *= 0.1;
4027 if (clamp < relmaxndistinct)
4028 {
4029 clamp = relmaxndistinct;
4030 /* for sanity in case some ndistinct is too large: */
4031 if (clamp > rel->tuples)
4032 clamp = rel->tuples;
4033 }
4034 }
4035 if (reldistinct > clamp)
4036 reldistinct = clamp;
4037
4038 /*
4039 * Update the estimate based on the restriction selectivity,
4040 * guarding against division by zero when reldistinct is zero.
4041 * Also skip this if we know that we are returning all rows.
4042 */
4043 if (reldistinct > 0 && rel->rows < rel->tuples)
4044 {
4045 /*
4046 * Given a table containing N rows with n distinct values in a
4047 * uniform distribution, if we select p rows at random then
4048 * the expected number of distinct values selected is
4049 *
4050 * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
4051 *
4052 * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
4053 *
4054 * See "Approximating block accesses in database
4055 * organizations", S. B. Yao, Communications of the ACM,
4056 * Volume 20 Issue 4, April 1977 Pages 260-261.
4057 *
4058 * Alternatively, re-arranging the terms from the factorials,
4059 * this may be written as
4060 *
4061 * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
4062 *
4063 * This form of the formula is more efficient to compute in
4064 * the common case where p is larger than N/n. Additionally,
4065 * as pointed out by Dell'Era, if i << N for all terms in the
4066 * product, it can be approximated by
4067 *
4068 * n * (1 - ((N-p)/N)^(N/n))
4069 *
4070 * See "Expected distinct values when selecting from a bag
4071 * without replacement", Alberto Dell'Era,
4072 * http://www.adellera.it/investigations/distinct_balls/.
4073 *
4074 * The condition i << N is equivalent to n >> 1, so this is a
4075 * good approximation when the number of distinct values in
4076 * the table is large. It turns out that this formula also
4077 * works well even when n is small.
4078 */
4079 reldistinct *=
4080 (1 - pow((rel->tuples - rel->rows) / rel->tuples,
4081 rel->tuples / reldistinct));
4082 }
4083 reldistinct = clamp_row_est(reldistinct);
4084
4085 /*
4086 * Update estimate of total distinct groups.
4087 */
4088 numdistinct *= reldistinct;
4089 }
4090
4091 varinfos = newvarinfos;
4092 } while (varinfos != NIL);
4093
4094 /* Now we can account for the effects of any SRFs */
4095 numdistinct *= srf_multiplier;
4096
4097 /* Round off */
4098 numdistinct = ceil(numdistinct);
4099
4100 /* Guard against out-of-range answers */
4101 if (numdistinct > input_rows)
4102 numdistinct = input_rows;
4103 if (numdistinct < 1.0)
4104 numdistinct = 1.0;
4105
4106 return numdistinct;
4107}
4108
4109/*
4110 * Try to estimate the bucket size of the hash join inner side when the join
4111 * condition contains two or more clauses by employing extended statistics.
4112 *
4113 * The main idea of this approach is that the distinct value generated by
4114 * multivariate estimation on two or more columns would provide less bucket size
4115 * than estimation on one separate column.
4116 *
4117 * IMPORTANT: It is crucial to synchronize the approach of combining different
4118 * estimations with the caller's method.
4119 *
4120 * Return a list of clauses that didn't fetch any extended statistics.
4121 */
4122List *
4124 List *hashclauses,
4125 Selectivity *innerbucketsize)
4126{
4127 List *clauses;
4128 List *otherclauses;
4129 double ndistinct;
4130
4131 if (list_length(hashclauses) <= 1)
4132 {
4133 /*
4134 * Nothing to do for a single clause. Could we employ univariate
4135 * extended stat here?
4136 */
4137 return hashclauses;
4138 }
4139
4140 /* "clauses" is the list of hashclauses we've not dealt with yet */
4141 clauses = list_copy(hashclauses);
4142 /* "otherclauses" holds clauses we are going to return to caller */
4143 otherclauses = NIL;
4144 /* current estimate of ndistinct */
4145 ndistinct = 1.0;
4146 while (clauses != NIL)
4147 {
4148 ListCell *lc;
4149 int relid = -1;
4150 List *varinfos = NIL;
4151 List *origin_rinfos = NIL;
4152 double mvndistinct;
4153 List *origin_varinfos;
4154 int group_relid = -1;
4155 RelOptInfo *group_rel = NULL;
4156 ListCell *lc1,
4157 *lc2;
4158
4159 /*
4160 * Find clauses, referencing the same single base relation and try to
4161 * estimate such a group with extended statistics. Create varinfo for
4162 * an approved clause, push it to otherclauses, if it can't be
4163 * estimated here or ignore to process at the next iteration.
4164 */
4165 foreach(lc, clauses)
4166 {
4168 Node *expr;
4169 Relids relids;
4170 GroupVarInfo *varinfo;
4171
4172 /*
4173 * Find the inner side of the join, which we need to estimate the
4174 * number of buckets. Use outer_is_left because the
4175 * clause_sides_match_join routine has called on hash clauses.
4176 */
4177 relids = rinfo->outer_is_left ?
4178 rinfo->right_relids : rinfo->left_relids;
4179 expr = rinfo->outer_is_left ?
4180 get_rightop(rinfo->clause) : get_leftop(rinfo->clause);
4181
4182 if (bms_get_singleton_member(relids, &relid) &&
4183 root->simple_rel_array[relid]->statlist != NIL)
4184 {
4185 bool is_duplicate = false;
4186
4187 /*
4188 * This inner-side expression references only one relation.
4189 * Extended statistics on this clause can exist.
4190 */
4191 if (group_relid < 0)
4192 {
4193 RangeTblEntry *rte = root->simple_rte_array[relid];
4194
4195 if (!rte || (rte->relkind != RELKIND_RELATION &&
4196 rte->relkind != RELKIND_MATVIEW &&
4197 rte->relkind != RELKIND_FOREIGN_TABLE &&
4198 rte->relkind != RELKIND_PARTITIONED_TABLE))
4199 {
4200 /* Extended statistics can't exist in principle */
4201 otherclauses = lappend(otherclauses, rinfo);
4202 clauses = foreach_delete_current(clauses, lc);
4203 continue;
4204 }
4205
4206 group_relid = relid;
4207 group_rel = root->simple_rel_array[relid];
4208 }
4209 else if (group_relid != relid)
4210 {
4211 /*
4212 * Being in the group forming state we don't need other
4213 * clauses.
4214 */
4215 continue;
4216 }
4217
4218 /*
4219 * We're going to add the new clause to the varinfos list. We
4220 * might re-use add_unique_group_var(), but we don't do so for
4221 * two reasons.
4222 *
4223 * 1) We must keep the origin_rinfos list ordered exactly the
4224 * same way as varinfos.
4225 *
4226 * 2) add_unique_group_var() is designed for
4227 * estimate_num_groups(), where a larger number of groups is
4228 * worse. While estimating the number of hash buckets, we
4229 * have the opposite: a lesser number of groups is worse.
4230 * Therefore, we don't have to remove "known equal" vars: the
4231 * removed var may valuably contribute to the multivariate
4232 * statistics to grow the number of groups.
4233 */
4234
4235 /*
4236 * Clear nullingrels to correctly match hash keys. See
4237 * add_unique_group_var()'s comment for details.
4238 */
4239 expr = remove_nulling_relids(expr, root->outer_join_rels, NULL);
4240
4241 /*
4242 * Detect and exclude exact duplicates from the list of hash
4243 * keys (like add_unique_group_var does).
4244 */
4245 foreach(lc1, varinfos)
4246 {
4247 varinfo = (GroupVarInfo *) lfirst(lc1);
4248
4249 if (!equal(expr, varinfo->var))
4250 continue;
4251
4252 is_duplicate = true;
4253 break;
4254 }
4255
4256 if (is_duplicate)
4257 {
4258 /*
4259 * Skip exact duplicates. Adding them to the otherclauses
4260 * list also doesn't make sense.
4261 */
4262 continue;
4263 }
4264
4265 /*
4266 * Initialize GroupVarInfo. We only use it to call
4267 * estimate_multivariate_ndistinct(), which doesn't care about
4268 * ndistinct and isdefault fields. Thus, skip these fields.
4269 */
4270 varinfo = palloc0_object(GroupVarInfo);
4271 varinfo->var = expr;
4272 varinfo->rel = root->simple_rel_array[relid];
4273 varinfos = lappend(varinfos, varinfo);
4274
4275 /*
4276 * Remember the link to RestrictInfo for the case the clause
4277 * is failed to be estimated.
4278 */
4279 origin_rinfos = lappend(origin_rinfos, rinfo);
4280 }
4281 else
4282 {
4283 /* This clause can't be estimated with extended statistics */
4284 otherclauses = lappend(otherclauses, rinfo);
4285 }
4286
4287 clauses = foreach_delete_current(clauses, lc);
4288 }
4289
4290 if (list_length(varinfos) < 2)
4291 {
4292 /*
4293 * Multivariate statistics doesn't apply to single columns except
4294 * for expressions, but it has not been implemented yet.
4295 */
4296 otherclauses = list_concat(otherclauses, origin_rinfos);
4297 list_free_deep(varinfos);
4298 list_free(origin_rinfos);
4299 continue;
4300 }
4301
4302 Assert(group_rel != NULL);
4303
4304 /* Employ the extended statistics. */
4305 origin_varinfos = varinfos;
4306 for (;;)
4307 {
4308 bool estimated = estimate_multivariate_ndistinct(root,
4309 group_rel,
4310 &varinfos,
4311 &mvndistinct);
4312
4313 if (!estimated)
4314 break;
4315
4316 /*
4317 * We've got an estimation. Use ndistinct value in a consistent
4318 * way - according to the caller's logic (see
4319 * final_cost_hashjoin).
4320 */
4321 if (ndistinct < mvndistinct)
4322 ndistinct = mvndistinct;
4323 Assert(ndistinct >= 1.0);
4324 }
4325
4326 Assert(list_length(origin_varinfos) == list_length(origin_rinfos));
4327
4328 /* Collect unmatched clauses as otherclauses. */
4329 forboth(lc1, origin_varinfos, lc2, origin_rinfos)
4330 {
4331 GroupVarInfo *vinfo = lfirst(lc1);
4332
4333 if (!list_member_ptr(varinfos, vinfo))
4334 /* Already estimated */
4335 continue;
4336
4337 /* Can't be estimated here - push to the returning list */
4338 otherclauses = lappend(otherclauses, lfirst(lc2));
4339 }
4340 }
4341
4342 *innerbucketsize = 1.0 / ndistinct;
4343 return otherclauses;
4344}
4345
4346/*
4347 * Estimate hash bucket statistics when the specified expression is used
4348 * as a hash key for the given number of buckets.
4349 *
4350 * This attempts to determine two values:
4351 *
4352 * 1. The frequency of the most common value of the expression (returns
4353 * zero into *mcv_freq if we can't get that).
4354 *
4355 * 2. The "bucketsize fraction", ie, average number of entries in a bucket
4356 * divided by total tuples in relation.
4357 *
4358 * XXX This is really pretty bogus since we're effectively assuming that the
4359 * distribution of hash keys will be the same after applying restriction
4360 * clauses as it was in the underlying relation. However, we are not nearly
4361 * smart enough to figure out how the restrict clauses might change the
4362 * distribution, so this will have to do for now.
4363 *
4364 * We are passed the number of buckets the executor will use for the given
4365 * input relation. If the data were perfectly distributed, with the same
4366 * number of tuples going into each available bucket, then the bucketsize
4367 * fraction would be 1/nbuckets. But this happy state of affairs will occur
4368 * only if (a) there are at least nbuckets distinct data values, and (b)
4369 * we have a not-too-skewed data distribution. Otherwise the buckets will
4370 * be nonuniformly occupied. If the other relation in the join has a key
4371 * distribution similar to this one's, then the most-loaded buckets are
4372 * exactly those that will be probed most often. Therefore, the "average"
4373 * bucket size for costing purposes should really be taken as something close
4374 * to the "worst case" bucket size. We try to estimate this by adjusting the
4375 * fraction if there are too few distinct data values, and then scaling up
4376 * by the ratio of the most common value's frequency to the average frequency.
4377 *
4378 * If no statistics are available, use a default estimate of 0.1. This will
4379 * discourage use of a hash rather strongly if the inner relation is large,
4380 * which is what we want. We do not want to hash unless we know that the
4381 * inner rel is well-dispersed (or the alternatives seem much worse).
4382 *
4383 * The caller should also check that the mcv_freq is not so large that the
4384 * most common value would by itself require an impractically large bucket.
4385 * In a hash join, the executor can split buckets if they get too big, but
4386 * obviously that doesn't help for a bucket that contains many duplicates of
4387 * the same value.
4388 */
4389void
4391 Selectivity *mcv_freq,
4392 Selectivity *bucketsize_frac)
4393{
4394 VariableStatData vardata;
4395 double estfract,
4396 ndistinct,
4397 stanullfrac,
4398 avgfreq;
4399 bool isdefault;
4400 AttStatsSlot sslot;
4401
4402 examine_variable(root, hashkey, 0, &vardata);
4403
4404 /* Initialize *mcv_freq to "unknown" */
4405 *mcv_freq = 0.0;
4406
4407 /* Look up the frequency of the most common value, if available */
4408 if (HeapTupleIsValid(vardata.statsTuple))
4409 {
4410 if (get_attstatsslot(&sslot, vardata.statsTuple,
4411 STATISTIC_KIND_MCV, InvalidOid,
4413 {
4414 /*
4415 * The first MCV stat is for the most common value.
4416 */
4417 if (sslot.nnumbers > 0)
4418 *mcv_freq = sslot.numbers[0];
4419 free_attstatsslot(&sslot);
4420 }
4421 else if (get_attstatsslot(&sslot, vardata.statsTuple,
4422 STATISTIC_KIND_HISTOGRAM, InvalidOid,
4423 0))
4424 {
4425 /*
4426 * If there are no recorded MCVs, but we do have a histogram, then
4427 * assume that ANALYZE determined that the column is unique.
4428 */
4429 if (vardata.rel && vardata.rel->rows > 0)
4430 *mcv_freq = 1.0 / vardata.rel->rows;
4431 }
4432 }
4433
4434 /* Get number of distinct values */
4435 ndistinct = get_variable_numdistinct(&vardata, &isdefault);
4436
4437 /*
4438 * If ndistinct isn't real, punt. We normally return 0.1, but if the
4439 * mcv_freq is known to be even higher than that, use it instead.
4440 */
4441 if (isdefault)
4442 {
4443 *bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq);
4444 ReleaseVariableStats(vardata);
4445 return;
4446 }
4447
4448 /* Get fraction that are null */
4449 if (HeapTupleIsValid(vardata.statsTuple))
4450 {
4451 Form_pg_statistic stats;
4452
4453 stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
4454 stanullfrac = stats->stanullfrac;
4455 }
4456 else
4457 stanullfrac = 0.0;
4458
4459 /* Compute avg freq of all distinct data values in raw relation */
4460 avgfreq = (1.0 - stanullfrac) / ndistinct;
4461
4462 /*
4463 * Adjust ndistinct to account for restriction clauses. Observe we are
4464 * assuming that the data distribution is affected uniformly by the
4465 * restriction clauses!
4466 *
4467 * XXX Possibly better way, but much more expensive: multiply by
4468 * selectivity of rel's restriction clauses that mention the target Var.
4469 */
4470 if (vardata.rel && vardata.rel->tuples > 0)
4471 {
4472 ndistinct *= vardata.rel->rows / vardata.rel->tuples;
4473 ndistinct = clamp_row_est(ndistinct);
4474 }
4475
4476 /*
4477 * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
4478 * number of buckets is less than the expected number of distinct values;
4479 * otherwise it is 1/ndistinct.
4480 */
4481 if (ndistinct > nbuckets)
4482 estfract = 1.0 / nbuckets;
4483 else
4484 estfract = 1.0 / ndistinct;
4485
4486 /*
4487 * Adjust estimated bucketsize upward to account for skewed distribution.
4488 */
4489 if (avgfreq > 0.0 && *mcv_freq > avgfreq)
4490 estfract *= *mcv_freq / avgfreq;
4491
4492 /*
4493 * Clamp bucketsize to sane range (the above adjustment could easily
4494 * produce an out-of-range result). We set the lower bound a little above
4495 * zero, since zero isn't a very sane result.
4496 */
4497 if (estfract < 1.0e-6)
4498 estfract = 1.0e-6;
4499 else if (estfract > 1.0)
4500 estfract = 1.0;
4501
4502 *bucketsize_frac = (Selectivity) estfract;
4503
4504 ReleaseVariableStats(vardata);
4505}
4506
4507/*
4508 * estimate_hashagg_tablesize
4509 * estimate the number of bytes that a hash aggregate hashtable will
4510 * require based on the agg_costs, path width and number of groups.
4511 *
4512 * We return the result as "double" to forestall any possible overflow
4513 * problem in the multiplication by dNumGroups.
4514 *
4515 * XXX this may be over-estimating the size now that hashagg knows to omit
4516 * unneeded columns from the hashtable. Also for mixed-mode grouping sets,
4517 * grouping columns not in the hashed set are counted here even though hashagg
4518 * won't store them. Is this a problem?
4519 */
4520double
4522 const AggClauseCosts *agg_costs, double dNumGroups)
4523{
4524 Size hashentrysize;
4525
4526 hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
4527 path->pathtarget->width,
4528 agg_costs->transitionSpace);
4529
4530 /*
4531 * Note that this disregards the effect of fill-factor and growth policy
4532 * of the hash table. That's probably ok, given that the default
4533 * fill-factor is relatively high. It'd be hard to meaningfully factor in
4534 * "double-in-size" growth policies here.
4535 */
4536 return hashentrysize * dNumGroups;
4537}
4538
4539
4540/*-------------------------------------------------------------------------
4541 *
4542 * Support routines
4543 *
4544 *-------------------------------------------------------------------------
4545 */
4546
4547/*
4548 * Find the best matching ndistinct extended statistics for the given list of
4549 * GroupVarInfos.
4550 *
4551 * Callers must ensure that the given GroupVarInfos all belong to 'rel' and
4552 * the GroupVarInfos list does not contain any duplicate Vars or expressions.
4553 *
4554 * When statistics are found that match > 1 of the given GroupVarInfo, the
4555 * *ndistinct parameter is set according to the ndistinct estimate and a new
4556 * list is built with the matching GroupVarInfos removed, which is output via
4557 * the *varinfos parameter before returning true. When no matching stats are
4558 * found, false is returned and the *varinfos and *ndistinct parameters are
4559 * left untouched.
4560 */
4561static bool
4563 List **varinfos, double *ndistinct)
4564{
4565 ListCell *lc;
4566 int nmatches_vars;
4567 int nmatches_exprs;
4568 Oid statOid = InvalidOid;
4569 MVNDistinct *stats;
4570 StatisticExtInfo *matched_info = NULL;
4572
4573 /* bail out immediately if the table has no extended statistics */
4574 if (!rel->statlist)
4575 return false;
4576
4577 /* look for the ndistinct statistics object matching the most vars */
4578 nmatches_vars = 0; /* we require at least two matches */
4579 nmatches_exprs = 0;
4580 foreach(lc, rel->statlist)
4581 {
4582 ListCell *lc2;
4584 int nshared_vars = 0;
4585 int nshared_exprs = 0;
4586
4587 /* skip statistics of other kinds */
4588 if (info->kind != STATS_EXT_NDISTINCT)
4589 continue;
4590
4591 /* skip statistics with mismatching stxdinherit value */
4592 if (info->inherit != rte->inh)
4593 continue;
4594
4595 /*
4596 * Determine how many expressions (and variables in non-matched
4597 * expressions) match. We'll then use these numbers to pick the
4598 * statistics object that best matches the clauses.
4599 */
4600 foreach(lc2, *varinfos)
4601 {
4602 ListCell *lc3;
4603 GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
4605
4606 Assert(varinfo->rel == rel);
4607
4608 /* simple Var, search in statistics keys directly */
4609 if (IsA(varinfo->var, Var))
4610 {
4611 attnum = ((Var *) varinfo->var)->varattno;
4612
4613 /*
4614 * Ignore system attributes - we don't support statistics on
4615 * them, so can't match them (and it'd fail as the values are
4616 * negative).
4617 */
4619 continue;
4620
4621 if (bms_is_member(attnum, info->keys))
4622 nshared_vars++;
4623
4624 continue;
4625 }
4626
4627 /* expression - see if it's in the statistics object */
4628 foreach(lc3, info->exprs)
4629 {
4630 Node *expr = (Node *) lfirst(lc3);
4631
4632 if (equal(varinfo->var, expr))
4633 {
4634 nshared_exprs++;
4635 break;
4636 }
4637 }
4638 }
4639
4640 /*
4641 * The ndistinct extended statistics contain estimates for a minimum
4642 * of pairs of columns which the statistics are defined on and
4643 * certainly not single columns. Here we skip unless we managed to
4644 * match to at least two columns.
4645 */
4646 if (nshared_vars + nshared_exprs < 2)
4647 continue;
4648
4649 /*
4650 * Check if these statistics are a better match than the previous best
4651 * match and if so, take note of the StatisticExtInfo.
4652 *
4653 * The statslist is sorted by statOid, so the StatisticExtInfo we
4654 * select as the best match is deterministic even when multiple sets
4655 * of statistics match equally as well.
4656 */
4657 if ((nshared_exprs > nmatches_exprs) ||
4658 (((nshared_exprs == nmatches_exprs)) && (nshared_vars > nmatches_vars)))
4659 {
4660 statOid = info->statOid;
4661 nmatches_vars = nshared_vars;
4662 nmatches_exprs = nshared_exprs;
4663 matched_info = info;
4664 }
4665 }
4666
4667 /* No match? */
4668 if (statOid == InvalidOid)
4669 return false;
4670
4671 Assert(nmatches_vars + nmatches_exprs > 1);
4672
4673 stats = statext_ndistinct_load(statOid, rte->inh);
4674
4675 /*
4676 * If we have a match, search it for the specific item that matches (there
4677 * must be one), and construct the output values.
4678 */
4679 if (stats)
4680 {
4681 int i;
4682 List *newlist = NIL;
4683 MVNDistinctItem *item = NULL;
4684 ListCell *lc2;
4685 Bitmapset *matched = NULL;
4686 AttrNumber attnum_offset;
4687
4688 /*
4689 * How much we need to offset the attnums? If there are no
4690 * expressions, no offset is needed. Otherwise offset enough to move
4691 * the lowest one (which is equal to number of expressions) to 1.
4692 */
4693 if (matched_info->exprs)
4694 attnum_offset = (list_length(matched_info->exprs) + 1);
4695 else
4696 attnum_offset = 0;
4697
4698 /* see what actually matched */
4699 foreach(lc2, *varinfos)
4700 {
4701 ListCell *lc3;
4702 int idx;
4703 bool found = false;
4704
4705 GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
4706
4707 /*
4708 * Process a simple Var expression, by matching it to keys
4709 * directly. If there's a matching expression, we'll try matching
4710 * it later.
4711 */
4712 if (IsA(varinfo->var, Var))
4713 {
4714 AttrNumber attnum = ((Var *) varinfo->var)->varattno;
4715
4716 /*
4717 * Ignore expressions on system attributes. Can't rely on the
4718 * bms check for negative values.
4719 */
4721 continue;
4722
4723 /* Is the variable covered by the statistics object? */
4724 if (!bms_is_member(attnum, matched_info->keys))
4725 continue;
4726
4727 attnum = attnum + attnum_offset;
4728
4729 /* ensure sufficient offset */
4731
4732 matched = bms_add_member(matched, attnum);
4733
4734 found = true;
4735 }
4736
4737 /*
4738 * XXX Maybe we should allow searching the expressions even if we
4739 * found an attribute matching the expression? That would handle
4740 * trivial expressions like "(a)" but it seems fairly useless.
4741 */
4742 if (found)
4743 continue;
4744
4745 /* expression - see if it's in the statistics object */
4746 idx = 0;
4747 foreach(lc3, matched_info->exprs)
4748 {
4749 Node *expr = (Node *) lfirst(lc3);
4750
4751 if (equal(varinfo->var, expr))
4752 {
4753 AttrNumber attnum = -(idx + 1);
4754
4755 attnum = attnum + attnum_offset;
4756
4757 /* ensure sufficient offset */
4759
4760 matched = bms_add_member(matched, attnum);
4761
4762 /* there should be just one matching expression */
4763 break;
4764 }
4765
4766 idx++;
4767 }
4768 }
4769
4770 /* Find the specific item that exactly matches the combination */
4771 for (i = 0; i < stats->nitems; i++)
4772 {
4773 int j;
4774 MVNDistinctItem *tmpitem = &stats->items[i];
4775
4776 if (tmpitem->nattributes != bms_num_members(matched))
4777 continue;
4778
4779 /* assume it's the right item */
4780 item = tmpitem;
4781
4782 /* check that all item attributes/expressions fit the match */
4783 for (j = 0; j < tmpitem->nattributes; j++)
4784 {
4785 AttrNumber attnum = tmpitem->attributes[j];
4786
4787 /*
4788 * Thanks to how we constructed the matched bitmap above, we
4789 * can just offset all attnums the same way.
4790 */
4791 attnum = attnum + attnum_offset;
4792
4793 if (!bms_is_member(attnum, matched))
4794 {
4795 /* nah, it's not this item */
4796 item = NULL;
4797 break;
4798 }
4799 }
4800
4801 /*
4802 * If the item has all the matched attributes, we know it's the
4803 * right one - there can't be a better one. matching more.
4804 */
4805 if (item)
4806 break;
4807 }
4808
4809 /*
4810 * Make sure we found an item. There has to be one, because ndistinct
4811 * statistics includes all combinations of attributes.
4812 */
4813 if (!item)
4814 elog(ERROR, "corrupt MVNDistinct entry");
4815
4816 /* Form the output varinfo list, keeping only unmatched ones */
4817 foreach(lc, *varinfos)
4818 {
4819 GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
4820 ListCell *lc3;
4821 bool found = false;
4822
4823 /*
4824 * Let's look at plain variables first, because it's the most
4825 * common case and the check is quite cheap. We can simply get the
4826 * attnum and check (with an offset) matched bitmap.
4827 */
4828 if (IsA(varinfo->var, Var))
4829 {
4830 AttrNumber attnum = ((Var *) varinfo->var)->varattno;
4831
4832 /*
4833 * If it's a system attribute, we're done. We don't support
4834 * extended statistics on system attributes, so it's clearly
4835 * not matched. Just keep the expression and continue.
4836 */
4838 {
4839 newlist = lappend(newlist, varinfo);
4840 continue;
4841 }
4842
4843 /* apply the same offset as above */
4844 attnum += attnum_offset;
4845
4846 /* if it's not matched, keep the varinfo */
4847 if (!bms_is_member(attnum, matched))
4848 newlist = lappend(newlist, varinfo);
4849
4850 /* The rest of the loop deals with complex expressions. */
4851 continue;
4852 }
4853
4854 /*
4855 * Process complex expressions, not just simple Vars.
4856 *
4857 * First, we search for an exact match of an expression. If we
4858 * find one, we can just discard the whole GroupVarInfo, with all
4859 * the variables we extracted from it.
4860 *
4861 * Otherwise we inspect the individual vars, and try matching it
4862 * to variables in the item.
4863 */
4864 foreach(lc3, matched_info->exprs)
4865 {
4866 Node *expr = (Node *) lfirst(lc3);
4867
4868 if (equal(varinfo->var, expr))
4869 {
4870 found = true;
4871 break;
4872 }
4873 }
4874
4875 /* found exact match, skip */
4876 if (found)
4877 continue;
4878
4879 newlist = lappend(newlist, varinfo);
4880 }
4881
4882 *varinfos = newlist;
4883 *ndistinct = item->ndistinct;
4884 return true;
4885 }
4886
4887 return false;
4888}
4889
4890/*
4891 * convert_to_scalar
4892 * Convert non-NULL values of the indicated types to the comparison
4893 * scale needed by scalarineqsel().
4894 * Returns "true" if successful.
4895 *
4896 * XXX this routine is a hack: ideally we should look up the conversion
4897 * subroutines in pg_type.
4898 *
4899 * All numeric datatypes are simply converted to their equivalent
4900 * "double" values. (NUMERIC values that are outside the range of "double"
4901 * are clamped to +/- HUGE_VAL.)
4902 *
4903 * String datatypes are converted by convert_string_to_scalar(),
4904 * which is explained below. The reason why this routine deals with
4905 * three values at a time, not just one, is that we need it for strings.
4906 *
4907 * The bytea datatype is just enough different from strings that it has
4908 * to be treated separately.
4909 *
4910 * The several datatypes representing absolute times are all converted
4911 * to Timestamp, which is actually an int64, and then we promote that to
4912 * a double. Note this will give correct results even for the "special"
4913 * values of Timestamp, since those are chosen to compare correctly;
4914 * see timestamp_cmp.
4915 *
4916 * The several datatypes representing relative times (intervals) are all
4917 * converted to measurements expressed in seconds.
4918 */
4919static bool
4920convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue,
4921 Datum lobound, Datum hibound, Oid boundstypid,
4922 double *scaledlobound, double *scaledhibound)
4923{
4924 bool failure = false;
4925
4926 /*
4927 * Both the valuetypid and the boundstypid should exactly match the
4928 * declared input type(s) of the operator we are invoked for. However,
4929 * extensions might try to use scalarineqsel as estimator for operators
4930 * with input type(s) we don't handle here; in such cases, we want to
4931 * return false, not fail. In any case, we mustn't assume that valuetypid
4932 * and boundstypid are identical.
4933 *
4934 * XXX The histogram we are interpolating between points of could belong
4935 * to a column that's only binary-compatible with the declared type. In
4936 * essence we are assuming that the semantics of binary-compatible types
4937 * are enough alike that we can use a histogram generated with one type's
4938 * operators to estimate selectivity for the other's. This is outright
4939 * wrong in some cases --- in particular signed versus unsigned
4940 * interpretation could trip us up. But it's useful enough in the
4941 * majority of cases that we do it anyway. Should think about more
4942 * rigorous ways to do it.
4943 */
4944 switch (valuetypid)
4945 {
4946 /*
4947 * Built-in numeric types
4948 */
4949 case BOOLOID:
4950 case INT2OID:
4951 case INT4OID:
4952 case INT8OID:
4953 case FLOAT4OID:
4954 case FLOAT8OID:
4955 case NUMERICOID:
4956 case OIDOID:
4957 case REGPROCOID:
4958 case REGPROCEDUREOID:
4959 case REGOPEROID:
4960 case REGOPERATOROID:
4961 case REGCLASSOID:
4962 case REGTYPEOID:
4963 case REGCOLLATIONOID:
4964 case REGCONFIGOID:
4965 case REGDICTIONARYOID:
4966 case REGROLEOID:
4967 case REGNAMESPACEOID:
4968 case REGDATABASEOID:
4969 *scaledvalue = convert_numeric_to_scalar(value, valuetypid,
4970 &failure);
4971 *scaledlobound = convert_numeric_to_scalar(lobound, boundstypid,
4972 &failure);
4973 *scaledhibound = convert_numeric_to_scalar(hibound, boundstypid,
4974 &failure);
4975 return !failure;
4976
4977 /*
4978 * Built-in string types
4979 */
4980 case CHAROID:
4981 case BPCHAROID:
4982 case VARCHAROID:
4983 case TEXTOID:
4984 case NAMEOID:
4985 {
4986 char *valstr = convert_string_datum(value, valuetypid,
4987 collid, &failure);
4988 char *lostr = convert_string_datum(lobound, boundstypid,
4989 collid, &failure);
4990 char *histr = convert_string_datum(hibound, boundstypid,
4991 collid, &failure);
4992
4993 /*
4994 * Bail out if any of the values is not of string type. We
4995 * might leak converted strings for the other value(s), but
4996 * that's not worth troubling over.
4997 */
4998 if (failure)
4999 return false;
5000
5001 convert_string_to_scalar(valstr, scaledvalue,
5002 lostr, scaledlobound,
5003 histr, scaledhibound);
5004 pfree(valstr);
5005 pfree(lostr);
5006 pfree(histr);
5007 return true;
5008 }
5009
5010 /*
5011 * Built-in bytea type
5012 */
5013 case BYTEAOID:
5014 {
5015 /* We only support bytea vs bytea comparison */
5016 if (boundstypid != BYTEAOID)
5017 return false;
5018 convert_bytea_to_scalar(value, scaledvalue,
5019 lobound, scaledlobound,
5020 hibound, scaledhibound);
5021 return true;
5022 }
5023
5024 /*
5025 * Built-in time types
5026 */
5027 case TIMESTAMPOID:
5028 case TIMESTAMPTZOID:
5029 case DATEOID:
5030 case INTERVALOID:
5031 case TIMEOID:
5032 case TIMETZOID:
5033 *scaledvalue = convert_timevalue_to_scalar(value, valuetypid,
5034 &failure);
5035 *scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid,
5036 &failure);
5037 *scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid,
5038 &failure);
5039 return !failure;
5040
5041 /*
5042 * Built-in network types
5043 */
5044 case INETOID:
5045 case CIDROID:
5046 case MACADDROID:
5047 case MACADDR8OID:
5048 *scaledvalue = convert_network_to_scalar(value, valuetypid,
5049 &failure);
5050 *scaledlobound = convert_network_to_scalar(lobound, boundstypid,
5051 &failure);
5052 *scaledhibound = convert_network_to_scalar(hibound, boundstypid,
5053 &failure);
5054 return !failure;
5055 }
5056 /* Don't know how to convert */
5057 *scaledvalue = *scaledlobound = *scaledhibound = 0;
5058 return false;
5059}
5060
5061/*
5062 * Do convert_to_scalar()'s work for any numeric data type.
5063 *
5064 * On failure (e.g., unsupported typid), set *failure to true;
5065 * otherwise, that variable is not changed.
5066 */
5067static double
5069{
5070 switch (typid)
5071 {
5072 case BOOLOID:
5073 return (double) DatumGetBool(value);
5074 case INT2OID:
5075 return (double) DatumGetInt16(value);
5076 case INT4OID:
5077 return (double) DatumGetInt32(value);
5078 case INT8OID:
5079 return (double) DatumGetInt64(value);
5080 case FLOAT4OID:
5081 return (double) DatumGetFloat4(value);
5082 case FLOAT8OID:
5083 return (double) DatumGetFloat8(value);
5084 case NUMERICOID:
5085 /* Note: out-of-range values will be clamped to +-HUGE_VAL */
5086 return (double)
5088 value));
5089 case OIDOID:
5090 case REGPROCOID:
5091 case REGPROCEDUREOID:
5092 case REGOPEROID:
5093 case REGOPERATOROID:
5094 case REGCLASSOID:
5095 case REGTYPEOID:
5096 case REGCOLLATIONOID:
5097 case REGCONFIGOID:
5098 case REGDICTIONARYOID:
5099 case REGROLEOID:
5100 case REGNAMESPACEOID:
5101 case REGDATABASEOID:
5102 /* we can treat OIDs as integers... */
5103 return (double) DatumGetObjectId(value);
5104 }
5105
5106 *failure = true;
5107 return 0;
5108}
5109
5110/*
5111 * Do convert_to_scalar()'s work for any character-string data type.
5112 *
5113 * String datatypes are converted to a scale that ranges from 0 to 1,
5114 * where we visualize the bytes of the string as fractional digits.
5115 *
5116 * We do not want the base to be 256, however, since that tends to
5117 * generate inflated selectivity estimates; few databases will have
5118 * occurrences of all 256 possible byte values at each position.
5119 * Instead, use the smallest and largest byte values seen in the bounds
5120 * as the estimated range for each byte, after some fudging to deal with
5121 * the fact that we probably aren't going to see the full range that way.
5122 *
5123 * An additional refinement is that we discard any common prefix of the
5124 * three strings before computing the scaled values. This allows us to
5125 * "zoom in" when we encounter a narrow data range. An example is a phone
5126 * number database where all the values begin with the same area code.
5127 * (Actually, the bounds will be adjacent histogram-bin-boundary values,
5128 * so this is more likely to happen than you might think.)
5129 */
5130static void
5132 double *scaledvalue,
5133 char *lobound,
5134 double *scaledlobound,
5135 char *hibound,
5136 double *scaledhibound)
5137{
5138 int rangelo,
5139 rangehi;
5140 char *sptr;
5141
5142 rangelo = rangehi = (unsigned char) hibound[0];
5143 for (sptr = lobound; *sptr; sptr++)
5144 {
5145 if (rangelo > (unsigned char) *sptr)
5146 rangelo = (unsigned char) *sptr;
5147 if (rangehi < (unsigned char) *sptr)
5148 rangehi = (unsigned char) *sptr;
5149 }
5150 for (sptr = hibound; *sptr; sptr++)
5151 {
5152 if (rangelo > (unsigned char) *sptr)
5153 rangelo = (unsigned char) *sptr;
5154 if (rangehi < (unsigned char) *sptr)
5155 rangehi = (unsigned char) *sptr;
5156 }
5157 /* If range includes any upper-case ASCII chars, make it include all */
5158 if (rangelo <= 'Z' && rangehi >= 'A')
5159 {
5160 if (rangelo > 'A')
5161 rangelo = 'A';
5162 if (rangehi < 'Z')
5163 rangehi = 'Z';
5164 }
5165 /* Ditto lower-case */
5166 if (rangelo <= 'z' && rangehi >= 'a')
5167 {
5168 if (rangelo > 'a')
5169 rangelo = 'a';
5170 if (rangehi < 'z')
5171 rangehi = 'z';
5172 }
5173 /* Ditto digits */
5174 if (rangelo <= '9' && rangehi >= '0')
5175 {
5176 if (rangelo > '0')
5177 rangelo = '0';
5178 if (rangehi < '9')
5179 rangehi = '9';
5180 }
5181
5182 /*
5183 * If range includes less than 10 chars, assume we have not got enough
5184 * data, and make it include regular ASCII set.
5185 */
5186 if (rangehi - rangelo < 9)
5187 {
5188 rangelo = ' ';
5189 rangehi = 127;
5190 }
5191
5192 /*
5193 * Now strip any common prefix of the three strings.
5194 */
5195 while (*lobound)
5196 {
5197 if (*lobound != *hibound || *lobound != *value)
5198 break;
5199 lobound++, hibound++, value++;
5200 }
5201
5202 /*
5203 * Now we can do the conversions.
5204 */
5205 *scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
5206 *scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
5207 *scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
5208}
5209
5210static double
5211convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
5212{
5213 int slen = strlen(value);
5214 double num,
5215 denom,
5216 base;
5217
5218 if (slen <= 0)
5219 return 0.0; /* empty string has scalar value 0 */
5220
5221 /*
5222 * There seems little point in considering more than a dozen bytes from
5223 * the string. Since base is at least 10, that will give us nominal
5224 * resolution of at least 12 decimal digits, which is surely far more
5225 * precision than this estimation technique has got anyway (especially in
5226 * non-C locales). Also, even with the maximum possible base of 256, this
5227 * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
5228 * overflow on any known machine.
5229 */
5230 if (slen > 12)
5231 slen = 12;
5232
5233 /* Convert initial characters to fraction */
5234 base = rangehi - rangelo + 1;
5235 num = 0.0;
5236 denom = base;
5237 while (slen-- > 0)
5238 {
5239 int ch = (unsigned char) *value++;
5240
5241 if (ch < rangelo)
5242 ch = rangelo - 1;
5243 else if (ch > rangehi)
5244 ch = rangehi + 1;
5245 num += ((double) (ch - rangelo)) / denom;
5246 denom *= base;
5247 }
5248
5249 return num;
5250}
5251
5252/*
5253 * Convert a string-type Datum into a palloc'd, null-terminated string.
5254 *
5255 * On failure (e.g., unsupported typid), set *failure to true;
5256 * otherwise, that variable is not changed. (We'll return NULL on failure.)
5257 *
5258 * When using a non-C locale, we must pass the string through pg_strxfrm()
5259 * before continuing, so as to generate correct locale-specific results.
5260 */
5261static char *
5263{
5264 char *val;
5265 pg_locale_t mylocale;
5266
5267 switch (typid)
5268 {
5269 case CHAROID:
5270 val = (char *) palloc(2);
5271 val[0] = DatumGetChar(value);
5272 val[1] = '\0';
5273 break;
5274 case BPCHAROID:
5275 case VARCHAROID:
5276 case TEXTOID:
5278 break;
5279 case NAMEOID:
5280 {
5282
5283 val = pstrdup(NameStr(*nm));
5284 break;
5285 }
5286 default:
5287 *failure = true;
5288 return NULL;
5289 }
5290
5292
5293 if (!mylocale->collate_is_c)
5294 {
5295 char *xfrmstr;
5296 size_t xfrmlen;
5297 size_t xfrmlen2 PG_USED_FOR_ASSERTS_ONLY;
5298
5299 /*
5300 * XXX: We could guess at a suitable output buffer size and only call
5301 * pg_strxfrm() twice if our guess is too small.
5302 *
5303 * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
5304 * bogus data or set an error. This is not really a problem unless it
5305 * crashes since it will only give an estimation error and nothing
5306 * fatal.
5307 *
5308 * XXX: we do not check pg_strxfrm_enabled(). On some platforms and in
5309 * some cases, libc strxfrm() may return the wrong results, but that
5310 * will only lead to an estimation error.
5311 */
5312 xfrmlen = pg_strxfrm(NULL, val, 0, mylocale);
5313#ifdef WIN32
5314
5315 /*
5316 * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
5317 * of trying to allocate this much memory (and fail), just return the
5318 * original string unmodified as if we were in the C locale.
5319 */
5320 if (xfrmlen == INT_MAX)
5321 return val;
5322#endif
5323 xfrmstr = (char *) palloc(xfrmlen + 1);
5324 xfrmlen2 = pg_strxfrm(xfrmstr, val, xfrmlen + 1, mylocale);
5325
5326 /*
5327 * Some systems (e.g., glibc) can return a smaller value from the
5328 * second call than the first; thus the Assert must be <= not ==.
5329 */
5330 Assert(xfrmlen2 <= xfrmlen);
5331 pfree(val);
5332 val = xfrmstr;
5333 }
5334
5335 return val;
5336}
5337
5338/*
5339 * Do convert_to_scalar()'s work for any bytea data type.
5340 *
5341 * Very similar to convert_string_to_scalar except we can't assume
5342 * null-termination and therefore pass explicit lengths around.
5343 *
5344 * Also, assumptions about likely "normal" ranges of characters have been
5345 * removed - a data range of 0..255 is always used, for now. (Perhaps
5346 * someday we will add information about actual byte data range to
5347 * pg_statistic.)
5348 */
5349static void
5351 double *scaledvalue,
5352 Datum lobound,
5353 double *scaledlobound,
5354 Datum hibound,
5355 double *scaledhibound)
5356{
5357 bytea *valuep = DatumGetByteaPP(value);
5358 bytea *loboundp = DatumGetByteaPP(lobound);
5359 bytea *hiboundp = DatumGetByteaPP(hibound);
5360 int rangelo,
5361 rangehi,
5362 valuelen = VARSIZE_ANY_EXHDR(valuep),
5363 loboundlen = VARSIZE_ANY_EXHDR(loboundp),
5364 hiboundlen = VARSIZE_ANY_EXHDR(hiboundp),
5365 i,
5366 minlen;
5367 unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep);
5368 unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp);
5369 unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp);
5370
5371 /*
5372 * Assume bytea data is uniformly distributed across all byte values.
5373 */
5374 rangelo = 0;
5375 rangehi = 255;
5376
5377 /*
5378 * Now strip any common prefix of the three strings.
5379 */
5380 minlen = Min(Min(valuelen, loboundlen), hiboundlen);
5381 for (i = 0; i < minlen; i++)
5382 {
5383 if (*lostr != *histr || *lostr != *valstr)
5384 break;
5385 lostr++, histr++, valstr++;
5386 loboundlen--, hiboundlen--, valuelen--;
5387 }
5388
5389 /*
5390 * Now we can do the conversions.
5391 */
5392 *scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
5393 *scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
5394 *scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
5395}
5396
5397static double
5398convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
5399 int rangelo, int rangehi)
5400{
5401 double num,
5402 denom,
5403 base;
5404
5405 if (valuelen <= 0)
5406 return 0.0; /* empty string has scalar value 0 */
5407
5408 /*
5409 * Since base is 256, need not consider more than about 10 chars (even
5410 * this many seems like overkill)
5411 */
5412 if (valuelen > 10)
5413 valuelen = 10;
5414
5415 /* Convert initial characters to fraction */
5416 base = rangehi - rangelo + 1;
5417 num = 0.0;
5418 denom = base;
5419 while (valuelen-- > 0)
5420 {
5421 int ch = *value++;
5422
5423 if (ch < rangelo)
5424 ch = rangelo - 1;
5425 else if (ch > rangehi)
5426 ch = rangehi + 1;
5427 num += ((double) (ch - rangelo)) / denom;
5428 denom *= base;
5429 }
5430
5431 return num;
5432}
5433
5434/*
5435 * Do convert_to_scalar()'s work for any timevalue data type.
5436 *
5437 * On failure (e.g., unsupported typid), set *failure to true;
5438 * otherwise, that variable is not changed.
5439 */
5440static double
5442{
5443 switch (typid)
5444 {
5445 case TIMESTAMPOID:
5446 return DatumGetTimestamp(value);
5447 case TIMESTAMPTZOID:
5448 return DatumGetTimestampTz(value);
5449 case DATEOID:
5451 case INTERVALOID:
5452 {
5454
5455 /*
5456 * Convert the month part of Interval to days using assumed
5457 * average month length of 365.25/12.0 days. Not too
5458 * accurate, but plenty good enough for our purposes.
5459 *
5460 * This also works for infinite intervals, which just have all
5461 * fields set to INT_MIN/INT_MAX, and so will produce a result
5462 * smaller/larger than any finite interval.
5463 */
5464 return interval->time + interval->day * (double) USECS_PER_DAY +
5466 }
5467 case TIMEOID:
5468 return DatumGetTimeADT(value);
5469 case TIMETZOID:
5470 {
5472
5473 /* use GMT-equivalent time */
5474 return (double) (timetz->time + (timetz->zone * 1000000.0));
5475 }
5476 }
5477
5478 *failure = true;
5479 return 0;
5480}
5481
5482
5483/*
5484 * get_restriction_variable
5485 * Examine the args of a restriction clause to see if it's of the
5486 * form (variable op pseudoconstant) or (pseudoconstant op variable),
5487 * where "variable" could be either a Var or an expression in vars of a
5488 * single relation. If so, extract information about the variable,
5489 * and also indicate which side it was on and the other argument.
5490 *
5491 * Inputs:
5492 * root: the planner info
5493 * args: clause argument list
5494 * varRelid: see specs for restriction selectivity functions
5495 *
5496 * Outputs: (these are valid only if true is returned)
5497 * *vardata: gets information about variable (see examine_variable)
5498 * *other: gets other clause argument, aggressively reduced to a constant
5499 * *varonleft: set true if variable is on the left, false if on the right
5500 *
5501 * Returns true if a variable is identified, otherwise false.
5502 *
5503 * Note: if there are Vars on both sides of the clause, we must fail, because
5504 * callers are expecting that the other side will act like a pseudoconstant.
5505 */
5506bool
5508 VariableStatData *vardata, Node **other,
5509 bool *varonleft)
5510{
5511 Node *left,
5512 *right;
5513 VariableStatData rdata;
5514
5515 /* Fail if not a binary opclause (probably shouldn't happen) */
5516 if (list_length(args) != 2)
5517 return false;
5518
5519 left = (Node *) linitial(args);
5520 right = (Node *) lsecond(args);
5521
5522 /*
5523 * Examine both sides. Note that when varRelid is nonzero, Vars of other
5524 * relations will be treated as pseudoconstants.
5525 */
5526 examine_variable(root, left, varRelid, vardata);
5527 examine_variable(root, right, varRelid, &rdata);
5528
5529 /*
5530 * If one side is a variable and the other not, we win.
5531 */
5532 if (vardata->rel && rdata.rel == NULL)
5533 {
5534 *varonleft = true;
5535 *other = estimate_expression_value(root, rdata.var);
5536 /* Assume we need no ReleaseVariableStats(rdata) here */
5537 return true;
5538 }
5539
5540 if (vardata->rel == NULL && rdata.rel)
5541 {
5542 *varonleft = false;
5543 *other = estimate_expression_value(root, vardata->var);
5544 /* Assume we need no ReleaseVariableStats(*vardata) here */
5545 *vardata = rdata;
5546 return true;
5547 }
5548
5549 /* Oops, clause has wrong structure (probably var op var) */
5550 ReleaseVariableStats(*vardata);
5551 ReleaseVariableStats(rdata);
5552
5553 return false;
5554}
5555
5556/*
5557 * get_join_variables
5558 * Apply examine_variable() to each side of a join clause.
5559 * Also, attempt to identify whether the join clause has the same
5560 * or reversed sense compared to the SpecialJoinInfo.
5561 *
5562 * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
5563 * or "reversed" if it is "rhs_var OP lhs_var". In complicated cases
5564 * where we can't tell for sure, we default to assuming it's normal.
5565 */
5566void
5568 VariableStatData *vardata1, VariableStatData *vardata2,
5569 bool *join_is_reversed)
5570{
5571 Node *left,
5572 *right;
5573
5574 if (list_length(args) != 2)
5575 elog(ERROR, "join operator should take two arguments");
5576
5577 left = (Node *) linitial(args);
5578 right = (Node *) lsecond(args);
5579
5580 examine_variable(root, left, 0, vardata1);
5581 examine_variable(root, right, 0, vardata2);
5582
5583 if (vardata1->rel &&
5584 bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand))
5585 *join_is_reversed = true; /* var1 is on RHS */
5586 else if (vardata2->rel &&
5587 bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand))
5588 *join_is_reversed = true; /* var2 is on LHS */
5589 else
5590 *join_is_reversed = false;
5591}
5592
5593/* statext_expressions_load copies the tuple, so just pfree it. */
5594static void
5596{
5597 pfree(tuple);
5598}
5599
5600/*
5601 * examine_variable
5602 * Try to look up statistical data about an expression.
5603 * Fill in a VariableStatData struct to describe the expression.
5604 *
5605 * Inputs:
5606 * root: the planner info
5607 * node: the expression tree to examine
5608 * varRelid: see specs for restriction selectivity functions
5609 *
5610 * Outputs: *vardata is filled as follows:
5611 * var: the input expression (with any phvs or binary relabeling stripped,
5612 * if it is or contains a variable; but otherwise unchanged)
5613 * rel: RelOptInfo for relation containing variable; NULL if expression
5614 * contains no Vars (NOTE this could point to a RelOptInfo of a
5615 * subquery, not one in the current query).
5616 * statsTuple: the pg_statistic entry for the variable, if one exists;
5617 * otherwise NULL.
5618 * freefunc: pointer to a function to release statsTuple with.
5619 * vartype: exposed type of the expression; this should always match
5620 * the declared input type of the operator we are estimating for.
5621 * atttype, atttypmod: actual type/typmod of the "var" expression. This is
5622 * commonly the same as the exposed type of the variable argument,
5623 * but can be different in binary-compatible-type cases.
5624 * isunique: true if we were able to match the var to a unique index, a
5625 * single-column DISTINCT or GROUP-BY clause, implying its values are
5626 * unique for this query. (Caution: this should be trusted for
5627 * statistical purposes only, since we do not check indimmediate nor
5628 * verify that the exact same definition of equality applies.)
5629 * acl_ok: true if current user has permission to read all table rows from
5630 * the column(s) underlying the pg_statistic entry. This is consulted by
5631 * statistic_proc_security_check().
5632 *
5633 * Caller is responsible for doing ReleaseVariableStats() before exiting.
5634 */
5635void
5637 VariableStatData *vardata)
5638{
5639 Node *basenode;
5640 Relids varnos;
5641 Relids basevarnos;
5642 RelOptInfo *onerel;
5643
5644 /* Make sure we don't return dangling pointers in vardata */
5645 MemSet(vardata, 0, sizeof(VariableStatData));
5646
5647 /* Save the exposed type of the expression */
5648 vardata->vartype = exprType(node);
5649
5650 /*
5651 * PlaceHolderVars are transparent for the purpose of statistics lookup;
5652 * they do not alter the value distribution of the underlying expression.
5653 * However, they can obscure the structure, preventing us from recognizing
5654 * matches to base columns, index expressions, or extended statistics. So
5655 * strip them out first.
5656 */
5657 basenode = strip_all_phvs_deep(root, node);
5658
5659 /*
5660 * Look inside any binary-compatible relabeling. We need to handle nested
5661 * RelabelType nodes here, because the prior stripping of PlaceHolderVars
5662 * may have brought separate RelabelTypes into adjacency.
5663 */
5664 while (IsA(basenode, RelabelType))
5665 basenode = (Node *) ((RelabelType *) basenode)->arg;
5666
5667 /* Fast path for a simple Var */
5668 if (IsA(basenode, Var) &&
5669 (varRelid == 0 || varRelid == ((Var *) basenode)->varno))
5670 {
5671 Var *var = (Var *) basenode;
5672
5673 /* Set up result fields other than the stats tuple */
5674 vardata->var = basenode; /* return Var without phvs or relabeling */
5675 vardata->rel = find_base_rel(root, var->varno);
5676 vardata->atttype = var->vartype;
5677 vardata->atttypmod = var->vartypmod;
5678 vardata->isunique = has_unique_index(vardata->rel, var->varattno);
5679
5680 /* Try to locate some stats */
5681 examine_simple_variable(root, var, vardata);
5682
5683 return;
5684 }
5685
5686 /*
5687 * Okay, it's a more complicated expression. Determine variable
5688 * membership. Note that when varRelid isn't zero, only vars of that
5689 * relation are considered "real" vars.
5690 */
5691 varnos = pull_varnos(root, basenode);
5692 basevarnos = bms_difference(varnos, root->outer_join_rels);
5693
5694 onerel = NULL;
5695
5696 if (bms_is_empty(basevarnos))
5697 {
5698 /* No Vars at all ... must be pseudo-constant clause */
5699 }
5700 else
5701 {
5702 int relid;
5703
5704 /* Check if the expression is in vars of a single base relation */
5705 if (bms_get_singleton_member(basevarnos, &relid))
5706 {
5707 if (varRelid == 0 || varRelid == relid)
5708 {
5709 onerel = find_base_rel(root, relid);
5710 vardata->rel = onerel;
5711 node = basenode; /* strip any phvs or relabeling */
5712 }
5713 /* else treat it as a constant */
5714 }
5715 else
5716 {
5717 /* varnos has multiple relids */
5718 if (varRelid == 0)
5719 {
5720 /* treat it as a variable of a join relation */
5721 vardata->rel = find_join_rel(root, varnos);
5722 node = basenode; /* strip any phvs or relabeling */
5723 }
5724 else if (bms_is_member(varRelid, varnos))
5725 {
5726 /* ignore the vars belonging to other relations */
5727 vardata->rel = find_base_rel(root, varRelid);
5728 node = basenode; /* strip any phvs or relabeling */
5729 /* note: no point in expressional-index search here */
5730 }
5731 /* else treat it as a constant */
5732 }
5733 }
5734
5735 bms_free(basevarnos);
5736
5737 vardata->var = node;
5738 vardata->atttype = exprType(node);
5739 vardata->atttypmod = exprTypmod(node);
5740
5741 if (onerel)
5742 {
5743 /*
5744 * We have an expression in vars of a single relation. Try to match
5745 * it to expressional index columns, in hopes of finding some
5746 * statistics.
5747 *
5748 * Note that we consider all index columns including INCLUDE columns,
5749 * since there could be stats for such columns. But the test for
5750 * uniqueness needs to be warier.
5751 *
5752 * XXX it's conceivable that there are multiple matches with different
5753 * index opfamilies; if so, we need to pick one that matches the
5754 * operator we are estimating for. FIXME later.
5755 */
5756 ListCell *ilist;
5757 ListCell *slist;
5758
5759 /*
5760 * The nullingrels bits within the expression could prevent us from
5761 * matching it to expressional index columns or to the expressions in
5762 * extended statistics. So strip them out first.
5763 */
5764 if (bms_overlap(varnos, root->outer_join_rels))
5765 node = remove_nulling_relids(node, root->outer_join_rels, NULL);
5766
5767 foreach(ilist, onerel->indexlist)
5768 {
5769 IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
5770 ListCell *indexpr_item;
5771 int pos;
5772
5773 indexpr_item = list_head(index->indexprs);
5774 if (indexpr_item == NULL)
5775 continue; /* no expressions here... */
5776
5777 for (pos = 0; pos < index->ncolumns; pos++)
5778 {
5779 if (index->indexkeys[pos] == 0)
5780 {
5781 Node *indexkey;
5782
5783 if (indexpr_item == NULL)
5784 elog(ERROR, "too few entries in indexprs list");
5785 indexkey = (Node *) lfirst(indexpr_item);
5786 if (indexkey && IsA(indexkey, RelabelType))
5787 indexkey = (Node *) ((RelabelType *) indexkey)->arg;
5788 if (equal(node, indexkey))
5789 {
5790 /*
5791 * Found a match ... is it a unique index? Tests here
5792 * should match has_unique_index().
5793 */
5794 if (index->unique &&
5795 index->nkeycolumns == 1 &&
5796 pos == 0 &&
5797 (index->indpred == NIL || index->predOK))
5798 vardata->isunique = true;
5799
5800 /*
5801 * Has it got stats? We only consider stats for
5802 * non-partial indexes, since partial indexes probably
5803 * don't reflect whole-relation statistics; the above
5804 * check for uniqueness is the only info we take from
5805 * a partial index.
5806 *
5807 * An index stats hook, however, must make its own
5808 * decisions about what to do with partial indexes.
5809 */
5811 (*get_index_stats_hook) (root, index->indexoid,
5812 pos + 1, vardata))
5813 {
5814 /*
5815 * The hook took control of acquiring a stats
5816 * tuple. If it did supply a tuple, it'd better
5817 * have supplied a freefunc.
5818 */
5819 if (HeapTupleIsValid(vardata->statsTuple) &&
5820 !vardata->freefunc)
5821 elog(ERROR, "no function provided to release variable stats with");
5822 }
5823 else if (index->indpred == NIL)
5824 {
5825 vardata->statsTuple =
5826 SearchSysCache3(STATRELATTINH,
5827 ObjectIdGetDatum(index->indexoid),
5828 Int16GetDatum(pos + 1),
5829 BoolGetDatum(false));
5830 vardata->freefunc = ReleaseSysCache;
5831
5832 if (HeapTupleIsValid(vardata->statsTuple))
5833 {
5834 /*
5835 * Test if user has permission to access all
5836 * rows from the index's table.
5837 *
5838 * For simplicity, we insist on the whole
5839 * table being selectable, rather than trying
5840 * to identify which column(s) the index
5841 * depends on.
5842 *
5843 * Note that for an inheritance child,
5844 * permissions are checked on the inheritance
5845 * root parent, and whole-table select
5846 * privilege on the parent doesn't quite
5847 * guarantee that the user could read all
5848 * columns of the child. But in practice it's
5849 * unlikely that any interesting security
5850 * violation could result from allowing access
5851 * to the expression index's stats, so we
5852 * allow it anyway. See similar code in
5853 * examine_simple_variable() for additional
5854 * comments.
5855 */
5856 vardata->acl_ok =
5858 index->rel->relid,
5859 NULL);
5860 }
5861 else
5862 {
5863 /* suppress leakproofness checks later */
5864 vardata->acl_ok = true;
5865 }
5866 }
5867 if (vardata->statsTuple)
5868 break;
5869 }
5870 indexpr_item = lnext(index->indexprs, indexpr_item);
5871 }
5872 }
5873 if (vardata->statsTuple)
5874 break;
5875 }
5876
5877 /*
5878 * Search extended statistics for one with a matching expression.
5879 * There might be multiple ones, so just grab the first one. In the
5880 * future, we might consider the statistics target (and pick the most
5881 * accurate statistics) and maybe some other parameters.
5882 */
5883 foreach(slist, onerel->statlist)
5884 {
5885 StatisticExtInfo *info = (StatisticExtInfo *) lfirst(slist);
5886 RangeTblEntry *rte = planner_rt_fetch(onerel->relid, root);
5887 ListCell *expr_item;
5888 int pos;
5889
5890 /*
5891 * Stop once we've found statistics for the expression (either
5892 * from extended stats, or for an index in the preceding loop).
5893 */
5894 if (vardata->statsTuple)
5895 break;
5896
5897 /* skip stats without per-expression stats */
5898 if (info->kind != STATS_EXT_EXPRESSIONS)
5899 continue;
5900
5901 /* skip stats with mismatching stxdinherit value */
5902 if (info->inherit != rte->inh)
5903 continue;
5904
5905 pos = 0;
5906 foreach(expr_item, info->exprs)
5907 {
5908 Node *expr = (Node *) lfirst(expr_item);
5909
5910 Assert(expr);
5911
5912 /* strip RelabelType before comparing it */
5913 if (expr && IsA(expr, RelabelType))
5914 expr = (Node *) ((RelabelType *) expr)->arg;
5915
5916 /* found a match, see if we can extract pg_statistic row */
5917 if (equal(node, expr))
5918 {
5919 /*
5920 * XXX Not sure if we should cache the tuple somewhere.
5921 * Now we just create a new copy every time.
5922 */
5923 vardata->statsTuple =
5924 statext_expressions_load(info->statOid, rte->inh, pos);
5925
5926 vardata->freefunc = ReleaseDummy;
5927
5928 /*
5929 * Test if user has permission to access all rows from the
5930 * table.
5931 *
5932 * For simplicity, we insist on the whole table being
5933 * selectable, rather than trying to identify which
5934 * column(s) the statistics object depends on.
5935 *
5936 * Note that for an inheritance child, permissions are
5937 * checked on the inheritance root parent, and whole-table
5938 * select privilege on the parent doesn't quite guarantee
5939 * that the user could read all columns of the child. But
5940 * in practice it's unlikely that any interesting security
5941 * violation could result from allowing access to the
5942 * expression stats, so we allow it anyway. See similar
5943 * code in examine_simple_variable() for additional
5944 * comments.
5945 */
5946 vardata->acl_ok = all_rows_selectable(root,
5947 onerel->relid,
5948 NULL);
5949
5950 break;
5951 }
5952
5953 pos++;
5954 }
5955 }
5956 }
5957
5958 bms_free(varnos);
5959}
5960
5961/*
5962 * strip_all_phvs_deep
5963 * Deeply strip all PlaceHolderVars in an expression.
5964
5965 * As a performance optimization, we first use a lightweight walker to check
5966 * for the presence of any PlaceHolderVars. The expensive mutator is invoked
5967 * only if a PlaceHolderVar is found, avoiding unnecessary memory allocation
5968 * and tree copying in the common case where no PlaceHolderVars are present.
5969 */
5970static Node *
5972{
5973 /* If there are no PHVs anywhere, we needn't work hard */
5974 if (root->glob->lastPHId == 0)
5975 return node;
5976
5977 if (!contain_placeholder_walker(node, NULL))
5978 return node;
5979 return strip_all_phvs_mutator(node, NULL);
5980}
5981
5982/*
5983 * contain_placeholder_walker
5984 * Lightweight walker to check if an expression contains any
5985 * PlaceHolderVars
5986 */
5987static bool
5989{
5990 if (node == NULL)
5991 return false;
5992 if (IsA(node, PlaceHolderVar))
5993 return true;
5994
5996}
5997
5998/*
5999 * strip_all_phvs_mutator
6000 * Mutator to deeply strip all PlaceHolderVars
6001 */
6002static Node *
6003strip_all_phvs_mutator(Node *node, void *context)
6004{
6005 if (node == NULL)
6006 return NULL;
6007 if (IsA(node, PlaceHolderVar))
6008 {
6009 /* Strip it and recurse into its contained expression */
6010 PlaceHolderVar *phv = (PlaceHolderVar *) node;
6011
6012 return strip_all_phvs_mutator((Node *) phv->phexpr, context);
6013 }
6014
6015 return expression_tree_mutator(node, strip_all_phvs_mutator, context);
6016}
6017
6018/*
6019 * examine_simple_variable
6020 * Handle a simple Var for examine_variable
6021 *
6022 * This is split out as a subroutine so that we can recurse to deal with
6023 * Vars referencing subqueries (either sub-SELECT-in-FROM or CTE style).
6024 *
6025 * We already filled in all the fields of *vardata except for the stats tuple.
6026 */
6027static void
6029 VariableStatData *vardata)
6030{
6031 RangeTblEntry *rte = root->simple_rte_array[var->varno];
6032
6033 Assert(IsA(rte, RangeTblEntry));
6034
6036 (*get_relation_stats_hook) (root, rte, var->varattno, vardata))
6037 {
6038 /*
6039 * The hook took control of acquiring a stats tuple. If it did supply
6040 * a tuple, it'd better have supplied a freefunc.
6041 */
6042 if (HeapTupleIsValid(vardata->statsTuple) &&
6043 !vardata->freefunc)
6044 elog(ERROR, "no function provided to release variable stats with");
6045 }
6046 else if (rte->rtekind == RTE_RELATION)
6047 {
6048 /*
6049 * Plain table or parent of an inheritance appendrel, so look up the
6050 * column in pg_statistic
6051 */
6052 vardata->statsTuple = SearchSysCache3(STATRELATTINH,
6053 ObjectIdGetDatum(rte->relid),
6054 Int16GetDatum(var->varattno),
6055 BoolGetDatum(rte->inh));
6056 vardata->freefunc = ReleaseSysCache;
6057
6058 if (HeapTupleIsValid(vardata->statsTuple))
6059 {
6060 /*
6061 * Test if user has permission to read all rows from this column.
6062 *
6063 * This requires that the user has the appropriate SELECT
6064 * privileges and that there are no securityQuals from security
6065 * barrier views or RLS policies. If that's not the case, then we
6066 * only permit leakproof functions to be passed pg_statistic data
6067 * in vardata, otherwise the functions might reveal data that the
6068 * user doesn't have permission to see --- see
6069 * statistic_proc_security_check().
6070 */
6071 vardata->acl_ok =
6074 }
6075 else
6076 {
6077 /* suppress any possible leakproofness checks later */
6078 vardata->acl_ok = true;
6079 }
6080 }
6081 else if ((rte->rtekind == RTE_SUBQUERY && !rte->inh) ||
6082 (rte->rtekind == RTE_CTE && !rte->self_reference))
6083 {
6084 /*
6085 * Plain subquery (not one that was converted to an appendrel) or
6086 * non-recursive CTE. In either case, we can try to find out what the
6087 * Var refers to within the subquery. We skip this for appendrel and
6088 * recursive-CTE cases because any column stats we did find would
6089 * likely not be very relevant.
6090 */
6091 PlannerInfo *subroot;
6092 Query *subquery;
6093 List *subtlist;
6094 TargetEntry *ste;
6095
6096 /*
6097 * Punt if it's a whole-row var rather than a plain column reference.
6098 */
6099 if (var->varattno == InvalidAttrNumber)
6100 return;
6101
6102 /*
6103 * Otherwise, find the subquery's planner subroot.
6104 */
6105 if (rte->rtekind == RTE_SUBQUERY)
6106 {
6107 RelOptInfo *rel;
6108
6109 /*
6110 * Fetch RelOptInfo for subquery. Note that we don't change the
6111 * rel returned in vardata, since caller expects it to be a rel of
6112 * the caller's query level. Because we might already be
6113 * recursing, we can't use that rel pointer either, but have to
6114 * look up the Var's rel afresh.
6115 */
6116 rel = find_base_rel(root, var->varno);
6117
6118 subroot = rel->subroot;
6119 }
6120 else
6121 {
6122 /* CTE case is more difficult */
6123 PlannerInfo *cteroot;
6124 Index levelsup;
6125 int ndx;
6126 int plan_id;
6127 ListCell *lc;
6128
6129 /*
6130 * Find the referenced CTE, and locate the subroot previously made
6131 * for it.
6132 */
6133 levelsup = rte->ctelevelsup;
6134 cteroot = root;
6135 while (levelsup-- > 0)
6136 {
6137 cteroot = cteroot->parent_root;
6138 if (!cteroot) /* shouldn't happen */
6139 elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
6140 }
6141
6142 /*
6143 * Note: cte_plan_ids can be shorter than cteList, if we are still
6144 * working on planning the CTEs (ie, this is a side-reference from
6145 * another CTE). So we mustn't use forboth here.
6146 */
6147 ndx = 0;
6148 foreach(lc, cteroot->parse->cteList)
6149 {
6150 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
6151
6152 if (strcmp(cte->ctename, rte->ctename) == 0)
6153 break;
6154 ndx++;
6155 }
6156 if (lc == NULL) /* shouldn't happen */
6157 elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
6158 if (ndx >= list_length(cteroot->cte_plan_ids))
6159 elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
6160 plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
6161 if (plan_id <= 0)
6162 elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
6163 subroot = list_nth(root->glob->subroots, plan_id - 1);
6164 }
6165
6166 /* If the subquery hasn't been planned yet, we have to punt */
6167 if (subroot == NULL)
6168 return;
6169 Assert(IsA(subroot, PlannerInfo));
6170
6171 /*
6172 * We must use the subquery parsetree as mangled by the planner, not
6173 * the raw version from the RTE, because we need a Var that will refer
6174 * to the subroot's live RelOptInfos. For instance, if any subquery
6175 * pullup happened during planning, Vars in the targetlist might have
6176 * gotten replaced, and we need to see the replacement expressions.
6177 */
6178 subquery = subroot->parse;
6179 Assert(IsA(subquery, Query));
6180
6181 /*
6182 * Punt if subquery uses set operations or grouping sets, as these
6183 * will mash underlying columns' stats beyond recognition. (Set ops
6184 * are particularly nasty; if we forged ahead, we would return stats
6185 * relevant to only the leftmost subselect...) DISTINCT is also
6186 * problematic, but we check that later because there is a possibility
6187 * of learning something even with it.
6188 */
6189 if (subquery->setOperations ||
6190 subquery->groupingSets)
6191 return;
6192
6193 /* Get the subquery output expression referenced by the upper Var */
6194 if (subquery->returningList)
6195 subtlist = subquery->returningList;
6196 else
6197 subtlist = subquery->targetList;
6198 ste = get_tle_by_resno(subtlist, var->varattno);
6199 if (ste == NULL || ste->resjunk)
6200 elog(ERROR, "subquery %s does not have attribute %d",
6201 rte->eref->aliasname, var->varattno);
6202 var = (Var *) ste->expr;
6203
6204 /*
6205 * If subquery uses DISTINCT, we can't make use of any stats for the
6206 * variable ... but, if it's the only DISTINCT column, we are entitled
6207 * to consider it unique. We do the test this way so that it works
6208 * for cases involving DISTINCT ON.
6209 */
6210 if (subquery->distinctClause)
6211 {
6212 if (list_length(subquery->distinctClause) == 1 &&
6214 vardata->isunique = true;
6215 /* cannot go further */
6216 return;
6217 }
6218
6219 /* The same idea as with DISTINCT clause works for a GROUP-BY too */
6220 if (subquery->groupClause)
6221 {
6222 if (list_length(subquery->groupClause) == 1 &&
6223 targetIsInSortList(ste, InvalidOid, subquery->groupClause))
6224 vardata->isunique = true;
6225 /* cannot go further */
6226 return;
6227 }
6228
6229 /*
6230 * If the sub-query originated from a view with the security_barrier
6231 * attribute, we must not look at the variable's statistics, though it
6232 * seems all right to notice the existence of a DISTINCT clause. So
6233 * stop here.
6234 *
6235 * This is probably a harsher restriction than necessary; it's
6236 * certainly OK for the selectivity estimator (which is a C function,
6237 * and therefore omnipotent anyway) to look at the statistics. But
6238 * many selectivity estimators will happily *invoke the operator
6239 * function* to try to work out a good estimate - and that's not OK.
6240 * So for now, don't dig down for stats.
6241 */
6242 if (rte->security_barrier)
6243 return;
6244
6245 /* Can only handle a simple Var of subquery's query level */
6246 if (var && IsA(var, Var) &&
6247 var->varlevelsup == 0)
6248 {
6249 /*
6250 * OK, recurse into the subquery. Note that the original setting
6251 * of vardata->isunique (which will surely be false) is left
6252 * unchanged in this situation. That's what we want, since even
6253 * if the underlying column is unique, the subquery may have
6254 * joined to other tables in a way that creates duplicates.
6255 */
6256 examine_simple_variable(subroot, var, vardata);
6257 }
6258 }
6259 else
6260 {
6261 /*
6262 * Otherwise, the Var comes from a FUNCTION or VALUES RTE. (We won't
6263 * see RTE_JOIN here because join alias Vars have already been
6264 * flattened.) There's not much we can do with function outputs, but
6265 * maybe someday try to be smarter about VALUES.
6266 */
6267 }
6268}
6269
6270/*
6271 * all_rows_selectable
6272 * Test whether the user has permission to select all rows from a given
6273 * relation.
6274 *
6275 * Inputs:
6276 * root: the planner info
6277 * varno: the index of the relation (assumed to be an RTE_RELATION)
6278 * varattnos: the attributes for which permission is required, or NULL if
6279 * whole-table access is required
6280 *
6281 * Returns true if the user has the required select permissions, and there are
6282 * no securityQuals from security barrier views or RLS policies.
6283 *
6284 * Note that if the relation is an inheritance child relation, securityQuals
6285 * and access permissions are checked against the inheritance root parent (the
6286 * relation actually mentioned in the query) --- see the comments in
6287 * expand_single_inheritance_child() for an explanation of why it has to be
6288 * done this way.
6289 *
6290 * If varattnos is non-NULL, its attribute numbers should be offset by
6291 * FirstLowInvalidHeapAttributeNumber so that system attributes can be
6292 * checked. If varattnos is NULL, only table-level SELECT privileges are
6293 * checked, not any column-level privileges.
6294 *
6295 * Note: if the relation is accessed via a view, this function actually tests
6296 * whether the view owner has permission to select from the relation. To
6297 * ensure that the current user has permission, it is also necessary to check
6298 * that the current user has permission to select from the view, which we do
6299 * at planner-startup --- see subquery_planner().
6300 *
6301 * This is exported so that other estimation functions can use it.
6302 */
6303bool
6305{
6306 RelOptInfo *rel = find_base_rel_noerr(root, varno);
6307 RangeTblEntry *rte = planner_rt_fetch(varno, root);
6308 Oid userid;
6309 int varattno;
6310
6311 Assert(rte->rtekind == RTE_RELATION);
6312
6313 /*
6314 * Determine the user ID to use for privilege checks (either the current
6315 * user or the view owner, if we're accessing the table via a view).
6316 *
6317 * Normally the relation will have an associated RelOptInfo from which we
6318 * can find the userid, but it might not if it's a RETURNING Var for an
6319 * INSERT target relation. In that case use the RTEPermissionInfo
6320 * associated with the RTE.
6321 *
6322 * If we navigate up to a parent relation, we keep using the same userid,
6323 * since it's the same in all relations of a given inheritance tree.
6324 */
6325 if (rel)
6326 userid = rel->userid;
6327 else
6328 {
6329 RTEPermissionInfo *perminfo;
6330
6331 perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
6332 userid = perminfo->checkAsUser;
6333 }
6334 if (!OidIsValid(userid))
6335 userid = GetUserId();
6336
6337 /*
6338 * Permissions and securityQuals must be checked on the table actually
6339 * mentioned in the query, so if this is an inheritance child, navigate up
6340 * to the inheritance root parent. If the user can read the whole table
6341 * or the required columns there, then they can read from the child table
6342 * too. For per-column checks, we must find out which of the root
6343 * parent's attributes the child relation's attributes correspond to.
6344 */
6345 if (root->append_rel_array != NULL)
6346 {
6347 AppendRelInfo *appinfo;
6348
6349 appinfo = root->append_rel_array[varno];
6350
6351 /*
6352 * Partitions are mapped to their immediate parent, not the root
6353 * parent, so must be ready to walk up multiple AppendRelInfos. But
6354 * stop if we hit a parent that is not RTE_RELATION --- that's a
6355 * flattened UNION ALL subquery, not an inheritance parent.
6356 */
6357 while (appinfo &&
6359 root)->rtekind == RTE_RELATION)
6360 {
6361 Bitmapset *parent_varattnos = NULL;
6362
6363 /*
6364 * For each child attribute, find the corresponding parent
6365 * attribute. In rare cases, the attribute may be local to the
6366 * child table, in which case, we've got to live with having no
6367 * access to this column.
6368 */
6369 varattno = -1;
6370 while ((varattno = bms_next_member(varattnos, varattno)) >= 0)
6371 {
6372 AttrNumber attno;
6373 AttrNumber parent_attno;
6374
6375 attno = varattno + FirstLowInvalidHeapAttributeNumber;
6376
6377 if (attno == InvalidAttrNumber)
6378 {
6379 /*
6380 * Whole-row reference, so must map each column of the
6381 * child to the parent table.
6382 */
6383 for (attno = 1; attno <= appinfo->num_child_cols; attno++)
6384 {
6385 parent_attno = appinfo->parent_colnos[attno - 1];
6386 if (parent_attno == 0)
6387 return false; /* attr is local to child */
6388 parent_varattnos =
6389 bms_add_member(parent_varattnos,
6390 parent_attno - FirstLowInvalidHeapAttributeNumber);
6391 }
6392 }
6393 else
6394 {
6395 if (attno < 0)
6396 {
6397 /* System attnos are the same in all tables */
6398 parent_attno = attno;
6399 }
6400 else
6401 {
6402 if (attno > appinfo->num_child_cols)
6403 return false; /* safety check */
6404 parent_attno = appinfo->parent_colnos[attno - 1];
6405 if (parent_attno == 0)
6406 return false; /* attr is local to child */
6407 }
6408 parent_varattnos =
6409 bms_add_member(parent_varattnos,
6410 parent_attno - FirstLowInvalidHeapAttributeNumber);
6411 }
6412 }
6413
6414 /* If the parent is itself a child, continue up */
6415 varno = appinfo->parent_relid;
6416 varattnos = parent_varattnos;
6417 appinfo = root->append_rel_array[varno];
6418 }
6419
6420 /* Perform the access check on this parent rel */
6421 rte = planner_rt_fetch(varno, root);
6422 Assert(rte->rtekind == RTE_RELATION);
6423 }
6424
6425 /*
6426 * For all rows to be accessible, there must be no securityQuals from
6427 * security barrier views or RLS policies.
6428 */
6429 if (rte->securityQuals != NIL)
6430 return false;
6431
6432 /*
6433 * Test for table-level SELECT privilege.
6434 *
6435 * If varattnos is non-NULL, this is sufficient to give access to all
6436 * requested attributes, even for a child table, since we have verified
6437 * that all required child columns have matching parent columns.
6438 *
6439 * If varattnos is NULL (whole-table access requested), this doesn't
6440 * necessarily guarantee that the user can read all columns of a child
6441 * table, but we allow it anyway (see comments in examine_variable()) and
6442 * don't bother checking any column privileges.
6443 */
6444 if (pg_class_aclcheck(rte->relid, userid, ACL_SELECT) == ACLCHECK_OK)
6445 return true;
6446
6447 if (varattnos == NULL)
6448 return false; /* whole-table access requested */
6449
6450 /*
6451 * Don't have table-level SELECT privilege, so check per-column
6452 * privileges.
6453 */
6454 varattno = -1;
6455 while ((varattno = bms_next_member(varattnos, varattno)) >= 0)
6456 {
6458
6459 if (attno == InvalidAttrNumber)
6460 {
6461 /* Whole-row reference, so must have access to all columns */
6462 if (pg_attribute_aclcheck_all(rte->relid, userid, ACL_SELECT,
6464 return false;
6465 }
6466 else
6467 {
6468 if (pg_attribute_aclcheck(rte->relid, attno, userid,
6470 return false;
6471 }
6472 }
6473
6474 /* If we reach here, have all required column privileges */
6475 return true;
6476}
6477
6478/*
6479 * examine_indexcol_variable
6480 * Try to look up statistical data about an index column/expression.
6481 * Fill in a VariableStatData struct to describe the column.
6482 *
6483 * Inputs:
6484 * root: the planner info
6485 * index: the index whose column we're interested in
6486 * indexcol: 0-based index column number (subscripts index->indexkeys[])
6487 *
6488 * Outputs: *vardata is filled as follows:
6489 * var: the input expression (with any binary relabeling stripped, if
6490 * it is or contains a variable; but otherwise the type is preserved)
6491 * rel: RelOptInfo for table relation containing variable.
6492 * statsTuple: the pg_statistic entry for the variable, if one exists;
6493 * otherwise NULL.
6494 * freefunc: pointer to a function to release statsTuple with.
6495 *
6496 * Caller is responsible for doing ReleaseVariableStats() before exiting.
6497 */
6498static void
6500 int indexcol, VariableStatData *vardata)
6501{
6502 AttrNumber colnum;
6503 Oid relid;
6504
6505 if (index->indexkeys[indexcol] != 0)
6506 {
6507 /* Simple variable --- look to stats for the underlying table */
6508 RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root);
6509
6510 Assert(rte->rtekind == RTE_RELATION);
6511 relid = rte->relid;
6512 Assert(relid != InvalidOid);
6513 colnum = index->indexkeys[indexcol];
6514 vardata->rel = index->rel;
6515
6517 (*get_relation_stats_hook) (root, rte, colnum, vardata))
6518 {
6519 /*
6520 * The hook took control of acquiring a stats tuple. If it did
6521 * supply a tuple, it'd better have supplied a freefunc.
6522 */
6523 if (HeapTupleIsValid(vardata->statsTuple) &&
6524 !vardata->freefunc)
6525 elog(ERROR, "no function provided to release variable stats with");
6526 }
6527 else
6528 {
6529 vardata->statsTuple = SearchSysCache3(STATRELATTINH,
6530 ObjectIdGetDatum(relid),
6531 Int16GetDatum(colnum),
6532 BoolGetDatum(rte->inh));
6533 vardata->freefunc = ReleaseSysCache;
6534 }
6535 }
6536 else
6537 {
6538 /* Expression --- maybe there are stats for the index itself */
6539 relid = index->indexoid;
6540 colnum = indexcol + 1;
6541
6543 (*get_index_stats_hook) (root, relid, colnum, vardata))
6544 {
6545 /*
6546 * The hook took control of acquiring a stats tuple. If it did
6547 * supply a tuple, it'd better have supplied a freefunc.
6548 */
6549 if (HeapTupleIsValid(vardata->statsTuple) &&
6550 !vardata->freefunc)
6551 elog(ERROR, "no function provided to release variable stats with");
6552 }
6553 else
6554 {
6555 vardata->statsTuple = SearchSysCache3(STATRELATTINH,
6556 ObjectIdGetDatum(relid),
6557 Int16GetDatum(colnum),
6558 BoolGetDatum(false));
6559 vardata->freefunc = ReleaseSysCache;
6560 }
6561 }
6562}
6563
6564/*
6565 * Check whether it is permitted to call func_oid passing some of the
6566 * pg_statistic data in vardata. We allow this if either of the following
6567 * conditions is met: (1) the user has SELECT privileges on the table or
6568 * column underlying the pg_statistic data and there are no securityQuals from
6569 * security barrier views or RLS policies, or (2) the function is marked
6570 * leakproof.
6571 */
6572bool
6574{
6575 if (vardata->acl_ok)
6576 return true; /* have SELECT privs and no securityQuals */
6577
6578 if (!OidIsValid(func_oid))
6579 return false;
6580
6581 if (get_func_leakproof(func_oid))
6582 return true;
6583
6585 (errmsg_internal("not using statistics because function \"%s\" is not leakproof",
6586 get_func_name(func_oid))));
6587 return false;
6588}
6589
6590/*
6591 * get_variable_numdistinct
6592 * Estimate the number of distinct values of a variable.
6593 *
6594 * vardata: results of examine_variable
6595 * *isdefault: set to true if the result is a default rather than based on
6596 * anything meaningful.
6597 *
6598 * NB: be careful to produce a positive integral result, since callers may
6599 * compare the result to exact integer counts, or might divide by it.
6600 */
6601double
6603{
6604 double stadistinct;
6605 double stanullfrac = 0.0;
6606 double ntuples;
6607
6608 *isdefault = false;
6609
6610 /*
6611 * Determine the stadistinct value to use. There are cases where we can
6612 * get an estimate even without a pg_statistic entry, or can get a better
6613 * value than is in pg_statistic. Grab stanullfrac too if we can find it
6614 * (otherwise, assume no nulls, for lack of any better idea).
6615 */
6616 if (HeapTupleIsValid(vardata->statsTuple))
6617 {
6618 /* Use the pg_statistic entry */
6619 Form_pg_statistic stats;
6620
6621 stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
6622 stadistinct = stats->stadistinct;
6623 stanullfrac = stats->stanullfrac;
6624 }
6625 else if (vardata->vartype == BOOLOID)
6626 {
6627 /*
6628 * Special-case boolean columns: presumably, two distinct values.
6629 *
6630 * Are there any other datatypes we should wire in special estimates
6631 * for?
6632 */
6633 stadistinct = 2.0;
6634 }
6635 else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES)
6636 {
6637 /*
6638 * If the Var represents a column of a VALUES RTE, assume it's unique.
6639 * This could of course be very wrong, but it should tend to be true
6640 * in well-written queries. We could consider examining the VALUES'
6641 * contents to get some real statistics; but that only works if the
6642 * entries are all constants, and it would be pretty expensive anyway.
6643 */
6644 stadistinct = -1.0; /* unique (and all non null) */
6645 }
6646 else
6647 {
6648 /*
6649 * We don't keep statistics for system columns, but in some cases we
6650 * can infer distinctness anyway.
6651 */
6652 if (vardata->var && IsA(vardata->var, Var))
6653 {
6654 switch (((Var *) vardata->var)->varattno)
6655 {
6657 stadistinct = -1.0; /* unique (and all non null) */
6658 break;
6660 stadistinct = 1.0; /* only 1 value */
6661 break;
6662 default:
6663 stadistinct = 0.0; /* means "unknown" */
6664 break;
6665 }
6666 }
6667 else
6668 stadistinct = 0.0; /* means "unknown" */
6669
6670 /*
6671 * XXX consider using estimate_num_groups on expressions?
6672 */
6673 }
6674
6675 /*
6676 * If there is a unique index, DISTINCT or GROUP-BY clause for the
6677 * variable, assume it is unique no matter what pg_statistic says; the
6678 * statistics could be out of date, or we might have found a partial
6679 * unique index that proves the var is unique for this query. However,
6680 * we'd better still believe the null-fraction statistic.
6681 */
6682 if (vardata->isunique)
6683 stadistinct = -1.0 * (1.0 - stanullfrac);
6684
6685 /*
6686 * If we had an absolute estimate, use that.
6687 */
6688 if (stadistinct > 0.0)
6689 return clamp_row_est(stadistinct);
6690
6691 /*
6692 * Otherwise we need to get the relation size; punt if not available.
6693 */
6694 if (vardata->rel == NULL)
6695 {
6696 *isdefault = true;
6697 return DEFAULT_NUM_DISTINCT;
6698 }
6699 ntuples = vardata->rel->tuples;
6700 if (ntuples <= 0.0)
6701 {
6702 *isdefault = true;
6703 return DEFAULT_NUM_DISTINCT;
6704 }
6705
6706 /*
6707 * If we had a relative estimate, use that.
6708 */
6709 if (stadistinct < 0.0)
6710 return clamp_row_est(-stadistinct * ntuples);
6711
6712 /*
6713 * With no data, estimate ndistinct = ntuples if the table is small, else
6714 * use default. We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
6715 * that the behavior isn't discontinuous.
6716 */
6717 if (ntuples < DEFAULT_NUM_DISTINCT)
6718 return clamp_row_est(ntuples);
6719
6720 *isdefault = true;
6721 return DEFAULT_NUM_DISTINCT;
6722}
6723
6724/*
6725 * get_variable_range
6726 * Estimate the minimum and maximum value of the specified variable.
6727 * If successful, store values in *min and *max, and return true.
6728 * If no data available, return false.
6729 *
6730 * sortop is the "<" comparison operator to use. This should generally
6731 * be "<" not ">", as only the former is likely to be found in pg_statistic.
6732 * The collation must be specified too.
6733 */
6734static bool
6736 Oid sortop, Oid collation,
6737 Datum *min, Datum *max)
6738{
6739 Datum tmin = 0;
6740 Datum tmax = 0;
6741 bool have_data = false;
6742 int16 typLen;
6743 bool typByVal;
6744 Oid opfuncoid;
6745 FmgrInfo opproc;
6746 AttStatsSlot sslot;
6747
6748 /*
6749 * XXX It's very tempting to try to use the actual column min and max, if
6750 * we can get them relatively-cheaply with an index probe. However, since
6751 * this function is called many times during join planning, that could
6752 * have unpleasant effects on planning speed. Need more investigation
6753 * before enabling this.
6754 */
6755#ifdef NOT_USED
6756 if (get_actual_variable_range(root, vardata, sortop, collation, min, max))
6757 return true;
6758#endif
6759
6760 if (!HeapTupleIsValid(vardata->statsTuple))
6761 {
6762 /* no stats available, so default result */
6763 return false;
6764 }
6765
6766 /*
6767 * If we can't apply the sortop to the stats data, just fail. In
6768 * principle, if there's a histogram and no MCVs, we could return the
6769 * histogram endpoints without ever applying the sortop ... but it's
6770 * probably not worth trying, because whatever the caller wants to do with
6771 * the endpoints would likely fail the security check too.
6772 */
6773 if (!statistic_proc_security_check(vardata,
6774 (opfuncoid = get_opcode(sortop))))
6775 return false;
6776
6777 opproc.fn_oid = InvalidOid; /* mark this as not looked up yet */
6778
6779 get_typlenbyval(vardata->atttype, &typLen, &typByVal);
6780
6781 /*
6782 * If there is a histogram with the ordering we want, grab the first and
6783 * last values.
6784 */
6785 if (get_attstatsslot(&sslot, vardata->statsTuple,
6786 STATISTIC_KIND_HISTOGRAM, sortop,
6788 {
6789 if (sslot.stacoll == collation && sslot.nvalues > 0)
6790 {
6791 tmin = datumCopy(sslot.values[0], typByVal, typLen);
6792 tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen);
6793 have_data = true;
6794 }
6795 free_attstatsslot(&sslot);
6796 }
6797
6798 /*
6799 * Otherwise, if there is a histogram with some other ordering, scan it
6800 * and get the min and max values according to the ordering we want. This
6801 * of course may not find values that are really extremal according to our
6802 * ordering, but it beats ignoring available data.
6803 */
6804 if (!have_data &&
6805 get_attstatsslot(&sslot, vardata->statsTuple,
6806 STATISTIC_KIND_HISTOGRAM, InvalidOid,
6808 {
6809 get_stats_slot_range(&sslot, opfuncoid, &opproc,
6810 collation, typLen, typByVal,
6811 &tmin, &tmax, &have_data);
6812 free_attstatsslot(&sslot);
6813 }
6814
6815 /*
6816 * If we have most-common-values info, look for extreme MCVs. This is
6817 * needed even if we also have a histogram, since the histogram excludes
6818 * the MCVs. However, if we *only* have MCVs and no histogram, we should
6819 * be pretty wary of deciding that that is a full representation of the
6820 * data. Proceed only if the MCVs represent the whole table (to within
6821 * roundoff error).
6822 */
6823 if (get_attstatsslot(&sslot, vardata->statsTuple,
6824 STATISTIC_KIND_MCV, InvalidOid,
6825 have_data ? ATTSTATSSLOT_VALUES :
6827 {
6828 bool use_mcvs = have_data;
6829
6830 if (!have_data)
6831 {
6832 double sumcommon = 0.0;
6833 double nullfrac;
6834 int i;
6835
6836 for (i = 0; i < sslot.nnumbers; i++)
6837 sumcommon += sslot.numbers[i];
6838 nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata->statsTuple))->stanullfrac;
6839 if (sumcommon + nullfrac > 0.99999)
6840 use_mcvs = true;
6841 }
6842
6843 if (use_mcvs)
6844 get_stats_slot_range(&sslot, opfuncoid, &opproc,
6845 collation, typLen, typByVal,
6846 &tmin, &tmax, &have_data);
6847 free_attstatsslot(&sslot);
6848 }
6849
6850 *min = tmin;
6851 *max = tmax;
6852 return have_data;
6853}
6854
6855/*
6856 * get_stats_slot_range: scan sslot for min/max values
6857 *
6858 * Subroutine for get_variable_range: update min/max/have_data according
6859 * to what we find in the statistics array.
6860 */
6861static void
6863 Oid collation, int16 typLen, bool typByVal,
6864 Datum *min, Datum *max, bool *p_have_data)
6865{
6866 Datum tmin = *min;
6867 Datum tmax = *max;
6868 bool have_data = *p_have_data;
6869 bool found_tmin = false;
6870 bool found_tmax = false;
6871
6872 /* Look up the comparison function, if we didn't already do so */
6873 if (opproc->fn_oid != opfuncoid)
6874 fmgr_info(opfuncoid, opproc);
6875
6876 /* Scan all the slot's values */
6877 for (int i = 0; i < sslot->nvalues; i++)
6878 {
6879 if (!have_data)
6880 {
6881 tmin = tmax = sslot->values[i];
6882 found_tmin = found_tmax = true;
6883 *p_have_data = have_data = true;
6884 continue;
6885 }
6887 collation,
6888 sslot->values[i], tmin)))
6889 {
6890 tmin = sslot->values[i];
6891 found_tmin = true;
6892 }
6894 collation,
6895 tmax, sslot->values[i])))
6896 {
6897 tmax = sslot->values[i];
6898 found_tmax = true;
6899 }
6900 }
6901
6902 /*
6903 * Copy the slot's values, if we found new extreme values.
6904 */
6905 if (found_tmin)
6906 *min = datumCopy(tmin, typByVal, typLen);
6907 if (found_tmax)
6908 *max = datumCopy(tmax, typByVal, typLen);
6909}
6910
6911
6912/*
6913 * get_actual_variable_range
6914 * Attempt to identify the current *actual* minimum and/or maximum
6915 * of the specified variable, by looking for a suitable btree index
6916 * and fetching its low and/or high values.
6917 * If successful, store values in *min and *max, and return true.
6918 * (Either pointer can be NULL if that endpoint isn't needed.)
6919 * If unsuccessful, return false.
6920 *
6921 * sortop is the "<" comparison operator to use.
6922 * collation is the required collation.
6923 */
6924static bool
6926 Oid sortop, Oid collation,
6927 Datum *min, Datum *max)
6928{
6929 bool have_data = false;
6930 RelOptInfo *rel = vardata->rel;
6931 RangeTblEntry *rte;
6932 ListCell *lc;
6933
6934 /* No hope if no relation or it doesn't have indexes */
6935 if (rel == NULL || rel->indexlist == NIL)
6936 return false;
6937 /* If it has indexes it must be a plain relation */
6938 rte = root->simple_rte_array[rel->relid];
6939 Assert(rte->rtekind == RTE_RELATION);
6940
6941 /* ignore partitioned tables. Any indexes here are not real indexes */
6942 if (rte->relkind == RELKIND_PARTITIONED_TABLE)
6943 return false;
6944
6945 /* Search through the indexes to see if any match our problem */
6946 foreach(lc, rel->indexlist)
6947 {
6949 ScanDirection indexscandir;
6950 StrategyNumber strategy;
6951
6952 /* Ignore non-ordering indexes */
6953 if (index->sortopfamily == NULL)
6954 continue;
6955
6956 /*
6957 * Ignore partial indexes --- we only want stats that cover the entire
6958 * relation.
6959 */
6960 if (index->indpred != NIL)
6961 continue;
6962
6963 /*
6964 * The index list might include hypothetical indexes inserted by a
6965 * get_relation_info hook --- don't try to access them.
6966 */
6967 if (index->hypothetical)
6968 continue;
6969
6970 /*
6971 * get_actual_variable_endpoint uses the index-only-scan machinery, so
6972 * ignore indexes that can't use it on their first column.
6973 */
6974 if (!index->canreturn[0])
6975 continue;
6976
6977 /*
6978 * The first index column must match the desired variable, sortop, and
6979 * collation --- but we can use a descending-order index.
6980 */
6981 if (collation != index->indexcollations[0])
6982 continue; /* test first 'cause it's cheapest */
6983 if (!match_index_to_operand(vardata->var, 0, index))
6984 continue;
6985 strategy = get_op_opfamily_strategy(sortop, index->sortopfamily[0]);
6986 switch (IndexAmTranslateStrategy(strategy, index->relam, index->sortopfamily[0], true))
6987 {
6988 case COMPARE_LT:
6989 if (index->reverse_sort[0])
6990 indexscandir = BackwardScanDirection;
6991 else
6992 indexscandir = ForwardScanDirection;
6993 break;
6994 case COMPARE_GT:
6995 if (index->reverse_sort[0])
6996 indexscandir = ForwardScanDirection;
6997 else
6998 indexscandir = BackwardScanDirection;
6999 break;
7000 default:
7001 /* index doesn't match the sortop */
7002 continue;
7003 }
7004
7005 /*
7006 * Found a suitable index to extract data from. Set up some data that
7007 * can be used by both invocations of get_actual_variable_endpoint.
7008 */
7009 {
7010 MemoryContext tmpcontext;
7011 MemoryContext oldcontext;
7012 Relation heapRel;
7013 Relation indexRel;
7014 TupleTableSlot *slot;
7015 int16 typLen;
7016 bool typByVal;
7017 ScanKeyData scankeys[1];
7018
7019 /* Make sure any cruft gets recycled when we're done */
7021 "get_actual_variable_range workspace",
7023 oldcontext = MemoryContextSwitchTo(tmpcontext);
7024
7025 /*
7026 * Open the table and index so we can read from them. We should
7027 * already have some type of lock on each.
7028 */
7029 heapRel = table_open(rte->relid, NoLock);
7030 indexRel = index_open(index->indexoid, NoLock);
7031
7032 /* build some stuff needed for indexscan execution */
7033 slot = table_slot_create(heapRel, NULL);
7034 get_typlenbyval(vardata->atttype, &typLen, &typByVal);
7035
7036 /* set up an IS NOT NULL scan key so that we ignore nulls */
7037 ScanKeyEntryInitialize(&scankeys[0],
7039 1, /* index col to scan */
7040 InvalidStrategy, /* no strategy */
7041 InvalidOid, /* no strategy subtype */
7042 InvalidOid, /* no collation */
7043 InvalidOid, /* no reg proc for this */
7044 (Datum) 0); /* constant */
7045
7046 /* If min is requested ... */
7047 if (min)
7048 {
7049 have_data = get_actual_variable_endpoint(heapRel,
7050 indexRel,
7051 indexscandir,
7052 scankeys,
7053 typLen,
7054 typByVal,
7055 slot,
7056 oldcontext,
7057 min);
7058 }
7059 else
7060 {
7061 /* If min not requested, still want to fetch max */
7062 have_data = true;
7063 }
7064
7065 /* If max is requested, and we didn't already fail ... */
7066 if (max && have_data)
7067 {
7068 /* scan in the opposite direction; all else is the same */
7069 have_data = get_actual_variable_endpoint(heapRel,
7070 indexRel,
7071 -indexscandir,
7072 scankeys,
7073 typLen,
7074 typByVal,
7075 slot,
7076 oldcontext,
7077 max);
7078 }
7079
7080 /* Clean everything up */
7082
7083 index_close(indexRel, NoLock);
7084 table_close(heapRel, NoLock);
7085
7086 MemoryContextSwitchTo(oldcontext);
7087 MemoryContextDelete(tmpcontext);
7088
7089 /* And we're done */
7090 break;
7091 }
7092 }
7093
7094 return have_data;
7095}
7096
7097/*
7098 * Get one endpoint datum (min or max depending on indexscandir) from the
7099 * specified index. Return true if successful, false if not.
7100 * On success, endpoint value is stored to *endpointDatum (and copied into
7101 * outercontext).
7102 *
7103 * scankeys is a 1-element scankey array set up to reject nulls.
7104 * typLen/typByVal describe the datatype of the index's first column.
7105 * tableslot is a slot suitable to hold table tuples, in case we need
7106 * to probe the heap.
7107 * (We could compute these values locally, but that would mean computing them
7108 * twice when get_actual_variable_range needs both the min and the max.)
7109 *
7110 * Failure occurs either when the index is empty, or we decide that it's
7111 * taking too long to find a suitable tuple.
7112 */
7113static bool
7115 Relation indexRel,
7116 ScanDirection indexscandir,
7117 ScanKey scankeys,
7118 int16 typLen,
7119 bool typByVal,
7120 TupleTableSlot *tableslot,
7121 MemoryContext outercontext,
7122 Datum *endpointDatum)
7123{
7124 bool have_data = false;
7125 SnapshotData SnapshotNonVacuumable;
7126 IndexScanDesc index_scan;
7127 Buffer vmbuffer = InvalidBuffer;
7128 BlockNumber last_heap_block = InvalidBlockNumber;
7129 int n_visited_heap_pages = 0;
7130 ItemPointer tid;
7132 bool isnull[INDEX_MAX_KEYS];
7133 MemoryContext oldcontext;
7134
7135 /*
7136 * We use the index-only-scan machinery for this. With mostly-static
7137 * tables that's a win because it avoids a heap visit. It's also a win
7138 * for dynamic data, but the reason is less obvious; read on for details.
7139 *
7140 * In principle, we should scan the index with our current active
7141 * snapshot, which is the best approximation we've got to what the query
7142 * will see when executed. But that won't be exact if a new snap is taken
7143 * before running the query, and it can be very expensive if a lot of
7144 * recently-dead or uncommitted rows exist at the beginning or end of the
7145 * index (because we'll laboriously fetch each one and reject it).
7146 * Instead, we use SnapshotNonVacuumable. That will accept recently-dead
7147 * and uncommitted rows as well as normal visible rows. On the other
7148 * hand, it will reject known-dead rows, and thus not give a bogus answer
7149 * when the extreme value has been deleted (unless the deletion was quite
7150 * recent); that case motivates not using SnapshotAny here.
7151 *
7152 * A crucial point here is that SnapshotNonVacuumable, with
7153 * GlobalVisTestFor(heapRel) as horizon, yields the inverse of the
7154 * condition that the indexscan will use to decide that index entries are
7155 * killable (see heap_hot_search_buffer()). Therefore, if the snapshot
7156 * rejects a tuple (or more precisely, all tuples of a HOT chain) and we
7157 * have to continue scanning past it, we know that the indexscan will mark
7158 * that index entry killed. That means that the next
7159 * get_actual_variable_endpoint() call will not have to re-consider that
7160 * index entry. In this way we avoid repetitive work when this function
7161 * is used a lot during planning.
7162 *
7163 * But using SnapshotNonVacuumable creates a hazard of its own. In a
7164 * recently-created index, some index entries may point at "broken" HOT
7165 * chains in which not all the tuple versions contain data matching the
7166 * index entry. The live tuple version(s) certainly do match the index,
7167 * but SnapshotNonVacuumable can accept recently-dead tuple versions that
7168 * don't match. Hence, if we took data from the selected heap tuple, we
7169 * might get a bogus answer that's not close to the index extremal value,
7170 * or could even be NULL. We avoid this hazard because we take the data
7171 * from the index entry not the heap.
7172 *
7173 * Despite all this care, there are situations where we might find many
7174 * non-visible tuples near the end of the index. We don't want to expend
7175 * a huge amount of time here, so we give up once we've read too many heap
7176 * pages. When we fail for that reason, the caller will end up using
7177 * whatever extremal value is recorded in pg_statistic.
7178 */
7179 InitNonVacuumableSnapshot(SnapshotNonVacuumable,
7180 GlobalVisTestFor(heapRel));
7181
7182 index_scan = index_beginscan(heapRel, indexRel,
7183 &SnapshotNonVacuumable, NULL,
7184 1, 0);
7185 /* Set it up for index-only scan */
7186 index_scan->xs_want_itup = true;
7187 index_rescan(index_scan, scankeys, 1, NULL, 0);
7188
7189 /* Fetch first/next tuple in specified direction */
7190 while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL)
7191 {
7193
7194 if (!VM_ALL_VISIBLE(heapRel,
7195 block,
7196 &vmbuffer))
7197 {
7198 /* Rats, we have to visit the heap to check visibility */
7199 if (!index_fetch_heap(index_scan, tableslot))
7200 {
7201 /*
7202 * No visible tuple for this index entry, so we need to
7203 * advance to the next entry. Before doing so, count heap
7204 * page fetches and give up if we've done too many.
7205 *
7206 * We don't charge a page fetch if this is the same heap page
7207 * as the previous tuple. This is on the conservative side,
7208 * since other recently-accessed pages are probably still in
7209 * buffers too; but it's good enough for this heuristic.
7210 */
7211#define VISITED_PAGES_LIMIT 100
7212
7213 if (block != last_heap_block)
7214 {
7215 last_heap_block = block;
7216 n_visited_heap_pages++;
7217 if (n_visited_heap_pages > VISITED_PAGES_LIMIT)
7218 break;
7219 }
7220
7221 continue; /* no visible tuple, try next index entry */
7222 }
7223
7224 /* We don't actually need the heap tuple for anything */
7225 ExecClearTuple(tableslot);
7226
7227 /*
7228 * We don't care whether there's more than one visible tuple in
7229 * the HOT chain; if any are visible, that's good enough.
7230 */
7231 }
7232
7233 /*
7234 * We expect that the index will return data in IndexTuple not
7235 * HeapTuple format.
7236 */
7237 if (!index_scan->xs_itup)
7238 elog(ERROR, "no data returned for index-only scan");
7239
7240 /*
7241 * We do not yet support recheck here.
7242 */
7243 if (index_scan->xs_recheck)
7244 break;
7245
7246 /* OK to deconstruct the index tuple */
7247 index_deform_tuple(index_scan->xs_itup,
7248 index_scan->xs_itupdesc,
7249 values, isnull);
7250
7251 /* Shouldn't have got a null, but be careful */
7252 if (isnull[0])
7253 elog(ERROR, "found unexpected null value in index \"%s\"",
7254 RelationGetRelationName(indexRel));
7255
7256 /* Copy the index column value out to caller's context */
7257 oldcontext = MemoryContextSwitchTo(outercontext);
7258 *endpointDatum = datumCopy(values[0], typByVal, typLen);
7259 MemoryContextSwitchTo(oldcontext);
7260 have_data = true;
7261 break;
7262 }
7263
7264 if (vmbuffer != InvalidBuffer)
7265 ReleaseBuffer(vmbuffer);
7266 index_endscan(index_scan);
7267
7268 return have_data;
7269}
7270
7271/*
7272 * find_join_input_rel
7273 * Look up the input relation for a join.
7274 *
7275 * We assume that the input relation's RelOptInfo must have been constructed
7276 * already.
7277 */
7278static RelOptInfo *
7280{
7281 RelOptInfo *rel = NULL;
7282
7283 if (!bms_is_empty(relids))
7284 {
7285 int relid;
7286
7287 if (bms_get_singleton_member(relids, &relid))
7288 rel = find_base_rel(root, relid);
7289 else
7290 rel = find_join_rel(root, relids);
7291 }
7292
7293 if (rel == NULL)
7294 elog(ERROR, "could not find RelOptInfo for given relids");
7295
7296 return rel;
7297}
7298
7299
7300/*-------------------------------------------------------------------------
7301 *
7302 * Index cost estimation functions
7303 *
7304 *-------------------------------------------------------------------------
7305 */
7306
7307/*
7308 * Extract the actual indexquals (as RestrictInfos) from an IndexClause list
7309 */
7310List *
7312{
7313 List *result = NIL;
7314 ListCell *lc;
7315
7316 foreach(lc, indexclauses)
7317 {
7318 IndexClause *iclause = lfirst_node(IndexClause, lc);
7319 ListCell *lc2;
7320
7321 foreach(lc2, iclause->indexquals)
7322 {
7323 RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
7324
7325 result = lappend(result, rinfo);
7326 }
7327 }
7328 return result;
7329}
7330
7331/*
7332 * Compute the total evaluation cost of the comparison operands in a list
7333 * of index qual expressions. Since we know these will be evaluated just
7334 * once per scan, there's no need to distinguish startup from per-row cost.
7335 *
7336 * This can be used either on the result of get_quals_from_indexclauses(),
7337 * or directly on an indexorderbys list. In both cases, we expect that the
7338 * index key expression is on the left side of binary clauses.
7339 */
7340Cost
7342{
7343 Cost qual_arg_cost = 0;
7344 ListCell *lc;
7345
7346 foreach(lc, indexquals)
7347 {
7348 Expr *clause = (Expr *) lfirst(lc);
7349 Node *other_operand;
7350 QualCost index_qual_cost;
7351
7352 /*
7353 * Index quals will have RestrictInfos, indexorderbys won't. Look
7354 * through RestrictInfo if present.
7355 */
7356 if (IsA(clause, RestrictInfo))
7357 clause = ((RestrictInfo *) clause)->clause;
7358
7359 if (IsA(clause, OpExpr))
7360 {
7361 OpExpr *op = (OpExpr *) clause;
7362
7363 other_operand = (Node *) lsecond(op->args);
7364 }
7365 else if (IsA(clause, RowCompareExpr))
7366 {
7367 RowCompareExpr *rc = (RowCompareExpr *) clause;
7368
7369 other_operand = (Node *) rc->rargs;
7370 }
7371 else if (IsA(clause, ScalarArrayOpExpr))
7372 {
7373 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
7374
7375 other_operand = (Node *) lsecond(saop->args);
7376 }
7377 else if (IsA(clause, NullTest))
7378 {
7379 other_operand = NULL;
7380 }
7381 else
7382 {
7383 elog(ERROR, "unsupported indexqual type: %d",
7384 (int) nodeTag(clause));
7385 other_operand = NULL; /* keep compiler quiet */
7386 }
7387
7388 cost_qual_eval_node(&index_qual_cost, other_operand, root);
7389 qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
7390 }
7391 return qual_arg_cost;
7392}
7393
7394void
7396 IndexPath *path,
7397 double loop_count,
7398 GenericCosts *costs)
7399{
7400 IndexOptInfo *index = path->indexinfo;
7401 List *indexQuals = get_quals_from_indexclauses(path->indexclauses);
7402 List *indexOrderBys = path->indexorderbys;
7403 Cost indexStartupCost;
7404 Cost indexTotalCost;
7405 Selectivity indexSelectivity;
7406 double indexCorrelation;
7407 double numIndexPages;
7408 double numIndexTuples;
7409 double spc_random_page_cost;
7410 double num_sa_scans;
7411 double num_outer_scans;
7412 double num_scans;
7413 double qual_op_cost;
7414 double qual_arg_cost;
7415 List *selectivityQuals;
7416 ListCell *l;
7417
7418 /*
7419 * If the index is partial, AND the index predicate with the explicitly
7420 * given indexquals to produce a more accurate idea of the index
7421 * selectivity.
7422 */
7423 selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
7424
7425 /*
7426 * If caller didn't give us an estimate for ScalarArrayOpExpr index scans,
7427 * just assume that the number of index descents is the number of distinct
7428 * combinations of array elements from all of the scan's SAOP clauses.
7429 */
7430 num_sa_scans = costs->num_sa_scans;
7431 if (num_sa_scans < 1)
7432 {
7433 num_sa_scans = 1;
7434 foreach(l, indexQuals)
7435 {
7436 RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
7437
7438 if (IsA(rinfo->clause, ScalarArrayOpExpr))
7439 {
7440 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
7441 double alength = estimate_array_length(root, lsecond(saop->args));
7442
7443 if (alength > 1)
7444 num_sa_scans *= alength;
7445 }
7446 }
7447 }
7448
7449 /* Estimate the fraction of main-table tuples that will be visited */
7450 indexSelectivity = clauselist_selectivity(root, selectivityQuals,
7451 index->rel->relid,
7452 JOIN_INNER,
7453 NULL);
7454
7455 /*
7456 * If caller didn't give us an estimate, estimate the number of index
7457 * tuples that will be visited. We do it in this rather peculiar-looking
7458 * way in order to get the right answer for partial indexes.
7459 */
7460 numIndexTuples = costs->numIndexTuples;
7461 if (numIndexTuples <= 0.0)
7462 {
7463 numIndexTuples = indexSelectivity * index->rel->tuples;
7464
7465 /*
7466 * The above calculation counts all the tuples visited across all
7467 * scans induced by ScalarArrayOpExpr nodes. We want to consider the
7468 * average per-indexscan number, so adjust. This is a handy place to
7469 * round to integer, too. (If caller supplied tuple estimate, it's
7470 * responsible for handling these considerations.)
7471 */
7472 numIndexTuples = rint(numIndexTuples / num_sa_scans);
7473 }
7474
7475 /*
7476 * We can bound the number of tuples by the index size in any case. Also,
7477 * always estimate at least one tuple is touched, even when
7478 * indexSelectivity estimate is tiny.
7479 */
7480 if (numIndexTuples > index->tuples)
7481 numIndexTuples = index->tuples;
7482 if (numIndexTuples < 1.0)
7483 numIndexTuples = 1.0;
7484
7485 /*
7486 * Estimate the number of index pages that will be retrieved.
7487 *
7488 * We use the simplistic method of taking a pro-rata fraction of the total
7489 * number of index pages. In effect, this counts only leaf pages and not
7490 * any overhead such as index metapage or upper tree levels.
7491 *
7492 * In practice access to upper index levels is often nearly free because
7493 * those tend to stay in cache under load; moreover, the cost involved is
7494 * highly dependent on index type. We therefore ignore such costs here
7495 * and leave it to the caller to add a suitable charge if needed.
7496 */
7497 if (index->pages > 1 && index->tuples > 1)
7498 numIndexPages = ceil(numIndexTuples * index->pages / index->tuples);
7499 else
7500 numIndexPages = 1.0;
7501
7502 /* fetch estimated page cost for tablespace containing index */
7503 get_tablespace_page_costs(index->reltablespace,
7504 &spc_random_page_cost,
7505 NULL);
7506
7507 /*
7508 * Now compute the disk access costs.
7509 *
7510 * The above calculations are all per-index-scan. However, if we are in a
7511 * nestloop inner scan, we can expect the scan to be repeated (with
7512 * different search keys) for each row of the outer relation. Likewise,
7513 * ScalarArrayOpExpr quals result in multiple index scans. This creates
7514 * the potential for cache effects to reduce the number of disk page
7515 * fetches needed. We want to estimate the average per-scan I/O cost in
7516 * the presence of caching.
7517 *
7518 * We use the Mackert-Lohman formula (see costsize.c for details) to
7519 * estimate the total number of page fetches that occur. While this
7520 * wasn't what it was designed for, it seems a reasonable model anyway.
7521 * Note that we are counting pages not tuples anymore, so we take N = T =
7522 * index size, as if there were one "tuple" per page.
7523 */
7524 num_outer_scans = loop_count;
7525 num_scans = num_sa_scans * num_outer_scans;
7526
7527 if (num_scans > 1)
7528 {
7529 double pages_fetched;
7530
7531 /* total page fetches ignoring cache effects */
7532 pages_fetched = numIndexPages * num_scans;
7533
7534 /* use Mackert and Lohman formula to adjust for cache effects */
7535 pages_fetched = index_pages_fetched(pages_fetched,
7536 index->pages,
7537 (double) index->pages,
7538 root);
7539
7540 /*
7541 * Now compute the total disk access cost, and then report a pro-rated
7542 * share for each outer scan. (Don't pro-rate for ScalarArrayOpExpr,
7543 * since that's internal to the indexscan.)
7544 */
7545 indexTotalCost = (pages_fetched * spc_random_page_cost)
7546 / num_outer_scans;
7547 }
7548 else
7549 {
7550 /*
7551 * For a single index scan, we just charge spc_random_page_cost per
7552 * page touched.
7553 */
7554 indexTotalCost = numIndexPages * spc_random_page_cost;
7555 }
7556
7557 /*
7558 * CPU cost: any complex expressions in the indexquals will need to be
7559 * evaluated once at the start of the scan to reduce them to runtime keys
7560 * to pass to the index AM (see nodeIndexscan.c). We model the per-tuple
7561 * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
7562 * indexqual operator. Because we have numIndexTuples as a per-scan
7563 * number, we have to multiply by num_sa_scans to get the correct result
7564 * for ScalarArrayOpExpr cases. Similarly add in costs for any index
7565 * ORDER BY expressions.
7566 *
7567 * Note: this neglects the possible costs of rechecking lossy operators.
7568 * Detecting that that might be needed seems more expensive than it's
7569 * worth, though, considering all the other inaccuracies here ...
7570 */
7571 qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) +
7572 index_other_operands_eval_cost(root, indexOrderBys);
7573 qual_op_cost = cpu_operator_cost *
7574 (list_length(indexQuals) + list_length(indexOrderBys));
7575
7576 indexStartupCost = qual_arg_cost;
7577 indexTotalCost += qual_arg_cost;
7578 indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost);
7579
7580 /*
7581 * Generic assumption about index correlation: there isn't any.
7582 */
7583 indexCorrelation = 0.0;
7584
7585 /*
7586 * Return everything to caller.
7587 */
7588 costs->indexStartupCost = indexStartupCost;
7589 costs->indexTotalCost = indexTotalCost;
7590 costs->indexSelectivity = indexSelectivity;
7591 costs->indexCorrelation = indexCorrelation;
7592 costs->numIndexPages = numIndexPages;
7593 costs->numIndexTuples = numIndexTuples;
7594 costs->spc_random_page_cost = spc_random_page_cost;
7595 costs->num_sa_scans = num_sa_scans;
7596}
7597
7598/*
7599 * If the index is partial, add its predicate to the given qual list.
7600 *
7601 * ANDing the index predicate with the explicitly given indexquals produces
7602 * a more accurate idea of the index's selectivity. However, we need to be
7603 * careful not to insert redundant clauses, because clauselist_selectivity()
7604 * is easily fooled into computing a too-low selectivity estimate. Our
7605 * approach is to add only the predicate clause(s) that cannot be proven to
7606 * be implied by the given indexquals. This successfully handles cases such
7607 * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
7608 * There are many other cases where we won't detect redundancy, leading to a
7609 * too-low selectivity estimate, which will bias the system in favor of using
7610 * partial indexes where possible. That is not necessarily bad though.
7611 *
7612 * Note that indexQuals contains RestrictInfo nodes while the indpred
7613 * does not, so the output list will be mixed. This is OK for both
7614 * predicate_implied_by() and clauselist_selectivity(), but might be
7615 * problematic if the result were passed to other things.
7616 */
7617List *
7619{
7620 List *predExtraQuals = NIL;
7621 ListCell *lc;
7622
7623 if (index->indpred == NIL)
7624 return indexQuals;
7625
7626 foreach(lc, index->indpred)
7627 {
7628 Node *predQual = (Node *) lfirst(lc);
7629 List *oneQual = list_make1(predQual);
7630
7631 if (!predicate_implied_by(oneQual, indexQuals, false))
7632 predExtraQuals = list_concat(predExtraQuals, oneQual);
7633 }
7634 return list_concat(predExtraQuals, indexQuals);
7635}
7636
7637/*
7638 * Estimate correlation of btree index's first column.
7639 *
7640 * If we can get an estimate of the first column's ordering correlation C
7641 * from pg_statistic, estimate the index correlation as C for a single-column
7642 * index, or C * 0.75 for multiple columns. The idea here is that multiple
7643 * columns dilute the importance of the first column's ordering, but don't
7644 * negate it entirely.
7645 *
7646 * We already filled in the stats tuple for *vardata when called.
7647 */
7648static double
7650{
7651 Oid sortop;
7652 AttStatsSlot sslot;
7653 double indexCorrelation = 0;
7654
7656
7657 sortop = get_opfamily_member(index->opfamily[0],
7658 index->opcintype[0],
7659 index->opcintype[0],
7661 if (OidIsValid(sortop) &&
7662 get_attstatsslot(&sslot, vardata->statsTuple,
7663 STATISTIC_KIND_CORRELATION, sortop,
7665 {
7666 double varCorrelation;
7667
7668 Assert(sslot.nnumbers == 1);
7669 varCorrelation = sslot.numbers[0];
7670
7671 if (index->reverse_sort[0])
7672 varCorrelation = -varCorrelation;
7673
7674 if (index->nkeycolumns > 1)
7675 indexCorrelation = varCorrelation * 0.75;
7676 else
7677 indexCorrelation = varCorrelation;
7678
7679 free_attstatsslot(&sslot);
7680 }
7681
7682 return indexCorrelation;
7683}
7684
7685void
7686btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
7687 Cost *indexStartupCost, Cost *indexTotalCost,
7688 Selectivity *indexSelectivity, double *indexCorrelation,
7689 double *indexPages)
7690{
7691 IndexOptInfo *index = path->indexinfo;
7692 GenericCosts costs = {0};
7693 VariableStatData vardata = {0};
7694 double numIndexTuples;
7695 Cost descentCost;
7696 List *indexBoundQuals;
7697 List *indexSkipQuals;
7698 int indexcol;
7699 bool eqQualHere;
7700 bool found_row_compare;
7701 bool found_array;
7702 bool found_is_null_op;
7703 bool have_correlation = false;
7704 double num_sa_scans;
7705 double correlation = 0.0;
7706 ListCell *lc;
7707
7708 /*
7709 * For a btree scan, only leading '=' quals plus inequality quals for the
7710 * immediately next attribute contribute to index selectivity (these are
7711 * the "boundary quals" that determine the starting and stopping points of
7712 * the index scan). Additional quals can suppress visits to the heap, so
7713 * it's OK to count them in indexSelectivity, but they should not count
7714 * for estimating numIndexTuples. So we must examine the given indexquals
7715 * to find out which ones count as boundary quals. We rely on the
7716 * knowledge that they are given in index column order. Note that nbtree
7717 * preprocessing can add skip arrays that act as leading '=' quals in the
7718 * absence of ordinary input '=' quals, so in practice _most_ input quals
7719 * are able to act as index bound quals (which we take into account here).
7720 *
7721 * For a RowCompareExpr, we consider only the first column, just as
7722 * rowcomparesel() does.
7723 *
7724 * If there's a SAOP or skip array in the quals, we'll actually perform up
7725 * to N index descents (not just one), but the underlying array key's
7726 * operator can be considered to act the same as it normally does.
7727 */
7728 indexBoundQuals = NIL;
7729 indexSkipQuals = NIL;
7730 indexcol = 0;
7731 eqQualHere = false;
7732 found_row_compare = false;
7733 found_array = false;
7734 found_is_null_op = false;
7735 num_sa_scans = 1;
7736 foreach(lc, path->indexclauses)
7737 {
7738 IndexClause *iclause = lfirst_node(IndexClause, lc);
7739 ListCell *lc2;
7740
7741 if (indexcol < iclause->indexcol)
7742 {
7743 double num_sa_scans_prev_cols = num_sa_scans;
7744
7745 /*
7746 * Beginning of a new column's quals.
7747 *
7748 * Skip scans use skip arrays, which are ScalarArrayOp style
7749 * arrays that generate their elements procedurally and on demand.
7750 * Given a multi-column index on "(a, b)", and an SQL WHERE clause
7751 * "WHERE b = 42", a skip scan will effectively use an indexqual
7752 * "WHERE a = ANY('{every col a value}') AND b = 42". (Obviously,
7753 * the array on "a" must also return "IS NULL" matches, since our
7754 * WHERE clause used no strict operator on "a").
7755 *
7756 * Here we consider how nbtree will backfill skip arrays for any
7757 * index columns that lacked an '=' qual. This maintains our
7758 * num_sa_scans estimate, and determines if this new column (the
7759 * "iclause->indexcol" column, not the prior "indexcol" column)
7760 * can have its RestrictInfos/quals added to indexBoundQuals.
7761 *
7762 * We'll need to handle columns that have inequality quals, where
7763 * the skip array generates values from a range constrained by the
7764 * quals (not every possible value). We've been maintaining
7765 * indexSkipQuals to help with this; it will now contain all of
7766 * the prior column's quals (that is, indexcol's quals) when they
7767 * might be used for this.
7768 */
7769 if (found_row_compare)
7770 {
7771 /*
7772 * Skip arrays can't be added after a RowCompare input qual
7773 * due to limitations in nbtree
7774 */
7775 break;
7776 }
7777 if (eqQualHere)
7778 {
7779 /*
7780 * Don't need to add a skip array for an indexcol that already
7781 * has an '=' qual/equality constraint
7782 */
7783 indexcol++;
7784 indexSkipQuals = NIL;
7785 }
7786 eqQualHere = false;
7787
7788 while (indexcol < iclause->indexcol)
7789 {
7790 double ndistinct;
7791 bool isdefault = true;
7792
7793 found_array = true;
7794
7795 /*
7796 * A skipped attribute's ndistinct forms the basis of our
7797 * estimate of the total number of "array elements" used by
7798 * its skip array at runtime. Look that up first.
7799 */
7800 examine_indexcol_variable(root, index, indexcol, &vardata);
7801 ndistinct = get_variable_numdistinct(&vardata, &isdefault);
7802
7803 if (indexcol == 0)
7804 {
7805 /*
7806 * Get an estimate of the leading column's correlation in
7807 * passing (avoids rereading variable stats below)
7808 */
7809 if (HeapTupleIsValid(vardata.statsTuple))
7810 correlation = btcost_correlation(index, &vardata);
7811 have_correlation = true;
7812 }
7813
7814 ReleaseVariableStats(vardata);
7815
7816 /*
7817 * If ndistinct is a default estimate, conservatively assume
7818 * that no skipping will happen at runtime
7819 */
7820 if (isdefault)
7821 {
7822 num_sa_scans = num_sa_scans_prev_cols;
7823 break; /* done building indexBoundQuals */
7824 }
7825
7826 /*
7827 * Apply indexcol's indexSkipQuals selectivity to ndistinct
7828 */
7829 if (indexSkipQuals != NIL)
7830 {
7831 List *partialSkipQuals;
7832 Selectivity ndistinctfrac;
7833
7834 /*
7835 * If the index is partial, AND the index predicate with
7836 * the index-bound quals to produce a more accurate idea
7837 * of the number of distinct values for prior indexcol
7838 */
7839 partialSkipQuals = add_predicate_to_index_quals(index,
7840 indexSkipQuals);
7841
7842 ndistinctfrac = clauselist_selectivity(root, partialSkipQuals,
7843 index->rel->relid,
7844 JOIN_INNER,
7845 NULL);
7846
7847 /*
7848 * If ndistinctfrac is selective (on its own), the scan is
7849 * unlikely to benefit from repositioning itself using
7850 * later quals. Do not allow iclause->indexcol's quals to
7851 * be added to indexBoundQuals (it would increase descent
7852 * costs, without lowering numIndexTuples costs by much).
7853 */
7854 if (ndistinctfrac < DEFAULT_RANGE_INEQ_SEL)
7855 {
7856 num_sa_scans = num_sa_scans_prev_cols;
7857 break; /* done building indexBoundQuals */
7858 }
7859
7860 /* Adjust ndistinct downward */
7861 ndistinct = rint(ndistinct * ndistinctfrac);
7862 ndistinct = Max(ndistinct, 1);
7863 }
7864
7865 /*
7866 * When there's no inequality quals, account for the need to
7867 * find an initial value by counting -inf/+inf as a value.
7868 *
7869 * We don't charge anything extra for possible next/prior key
7870 * index probes, which are sometimes used to find the next
7871 * valid skip array element (ahead of using the located
7872 * element value to relocate the scan to the next position
7873 * that might contain matching tuples). It seems hard to do
7874 * better here. Use of the skip support infrastructure often
7875 * avoids most next/prior key probes. But even when it can't,
7876 * there's a decent chance that most individual next/prior key
7877 * probes will locate a leaf page whose key space overlaps all
7878 * of the scan's keys (even the lower-order keys) -- which
7879 * also avoids the need for a separate, extra index descent.
7880 * Note also that these probes are much cheaper than non-probe
7881 * primitive index scans: they're reliably very selective.
7882 */
7883 if (indexSkipQuals == NIL)
7884 ndistinct += 1;
7885
7886 /*
7887 * Update num_sa_scans estimate by multiplying by ndistinct.
7888 *
7889 * We make the pessimistic assumption that there is no
7890 * naturally occurring cross-column correlation. This is
7891 * often wrong, but it seems best to err on the side of not
7892 * expecting skipping to be helpful...
7893 */
7894 num_sa_scans *= ndistinct;
7895
7896 /*
7897 * ...but back out of adding this latest group of 1 or more
7898 * skip arrays when num_sa_scans exceeds the total number of
7899 * index pages (revert to num_sa_scans from before indexcol).
7900 * This causes a sharp discontinuity in cost (as a function of
7901 * the indexcol's ndistinct), but that is representative of
7902 * actual runtime costs.
7903 *
7904 * Note that skipping is helpful when each primitive index
7905 * scan only manages to skip over 1 or 2 irrelevant leaf pages
7906 * on average. Skip arrays bring savings in CPU costs due to
7907 * the scan not needing to evaluate indexquals against every
7908 * tuple, which can greatly exceed any savings in I/O costs.
7909 * This test is a test of whether num_sa_scans implies that
7910 * we're past the point where the ability to skip ceases to
7911 * lower the scan's costs (even qual evaluation CPU costs).
7912 */
7913 if (index->pages < num_sa_scans)
7914 {
7915 num_sa_scans = num_sa_scans_prev_cols;
7916 break; /* done building indexBoundQuals */
7917 }
7918
7919 indexcol++;
7920 indexSkipQuals = NIL;
7921 }
7922
7923 /*
7924 * Finished considering the need to add skip arrays to bridge an
7925 * initial eqQualHere gap between the old and new index columns
7926 * (or there was no initial eqQualHere gap in the first place).
7927 *
7928 * If an initial gap could not be bridged, then new column's quals
7929 * (i.e. iclause->indexcol's quals) won't go into indexBoundQuals,
7930 * and so won't affect our final numIndexTuples estimate.
7931 */
7932 if (indexcol != iclause->indexcol)
7933 break; /* done building indexBoundQuals */
7934 }
7935
7936 Assert(indexcol == iclause->indexcol);
7937
7938 /* Examine each indexqual associated with this index clause */
7939 foreach(lc2, iclause->indexquals)
7940 {
7941 RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
7942 Expr *clause = rinfo->clause;
7943 Oid clause_op = InvalidOid;
7944 int op_strategy;
7945
7946 if (IsA(clause, OpExpr))
7947 {
7948 OpExpr *op = (OpExpr *) clause;
7949
7950 clause_op = op->opno;
7951 }
7952 else if (IsA(clause, RowCompareExpr))
7953 {
7954 RowCompareExpr *rc = (RowCompareExpr *) clause;
7955
7956 clause_op = linitial_oid(rc->opnos);
7957 found_row_compare = true;
7958 }
7959 else if (IsA(clause, ScalarArrayOpExpr))
7960 {
7961 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
7962 Node *other_operand = (Node *) lsecond(saop->args);
7963 double alength = estimate_array_length(root, other_operand);
7964
7965 clause_op = saop->opno;
7966 found_array = true;
7967 /* estimate SA descents by indexBoundQuals only */
7968 if (alength > 1)
7969 num_sa_scans *= alength;
7970 }
7971 else if (IsA(clause, NullTest))
7972 {
7973 NullTest *nt = (NullTest *) clause;
7974
7975 if (nt->nulltesttype == IS_NULL)
7976 {
7977 found_is_null_op = true;
7978 /* IS NULL is like = for selectivity/skip scan purposes */
7979 eqQualHere = true;
7980 }
7981 }
7982 else
7983 elog(ERROR, "unsupported indexqual type: %d",
7984 (int) nodeTag(clause));
7985
7986 /* check for equality operator */
7987 if (OidIsValid(clause_op))
7988 {
7989 op_strategy = get_op_opfamily_strategy(clause_op,
7990 index->opfamily[indexcol]);
7991 Assert(op_strategy != 0); /* not a member of opfamily?? */
7992 if (op_strategy == BTEqualStrategyNumber)
7993 eqQualHere = true;
7994 }
7995
7996 indexBoundQuals = lappend(indexBoundQuals, rinfo);
7997
7998 /*
7999 * We apply inequality selectivities to estimate index descent
8000 * costs with scans that use skip arrays. Save this indexcol's
8001 * RestrictInfos if it looks like they'll be needed for that.
8002 */
8003 if (!eqQualHere && !found_row_compare &&
8004 indexcol < index->nkeycolumns - 1)
8005 indexSkipQuals = lappend(indexSkipQuals, rinfo);
8006 }
8007 }
8008
8009 /*
8010 * If index is unique and we found an '=' clause for each column, we can
8011 * just assume numIndexTuples = 1 and skip the expensive
8012 * clauselist_selectivity calculations. However, an array or NullTest
8013 * always invalidates that theory (even when eqQualHere has been set).
8014 */
8015 if (index->unique &&
8016 indexcol == index->nkeycolumns - 1 &&
8017 eqQualHere &&
8018 !found_array &&
8019 !found_is_null_op)
8020 numIndexTuples = 1.0;
8021 else
8022 {
8023 List *selectivityQuals;
8024 Selectivity btreeSelectivity;
8025
8026 /*
8027 * If the index is partial, AND the index predicate with the
8028 * index-bound quals to produce a more accurate idea of the number of
8029 * rows covered by the bound conditions.
8030 */
8031 selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals);
8032
8033 btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
8034 index->rel->relid,
8035 JOIN_INNER,
8036 NULL);
8037 numIndexTuples = btreeSelectivity * index->rel->tuples;
8038
8039 /*
8040 * btree automatically combines individual array element primitive
8041 * index scans whenever the tuples covered by the next set of array
8042 * keys are close to tuples covered by the current set. That puts a
8043 * natural ceiling on the worst case number of descents -- there
8044 * cannot possibly be more than one descent per leaf page scanned.
8045 *
8046 * Clamp the number of descents to at most 1/3 the number of index
8047 * pages. This avoids implausibly high estimates with low selectivity
8048 * paths, where scans usually require only one or two descents. This
8049 * is most likely to help when there are several SAOP clauses, where
8050 * naively accepting the total number of distinct combinations of
8051 * array elements as the number of descents would frequently lead to
8052 * wild overestimates.
8053 *
8054 * We somewhat arbitrarily don't just make the cutoff the total number
8055 * of leaf pages (we make it 1/3 the total number of pages instead) to
8056 * give the btree code credit for its ability to continue on the leaf
8057 * level with low selectivity scans.
8058 *
8059 * Note: num_sa_scans includes both ScalarArrayOp array elements and
8060 * skip array elements whose qual affects our numIndexTuples estimate.
8061 */
8062 num_sa_scans = Min(num_sa_scans, ceil(index->pages * 0.3333333));
8063 num_sa_scans = Max(num_sa_scans, 1);
8064
8065 /*
8066 * As in genericcostestimate(), we have to adjust for any array quals
8067 * included in indexBoundQuals, and then round to integer.
8068 *
8069 * It is tempting to make genericcostestimate behave as if array
8070 * clauses work in almost the same way as scalar operators during
8071 * btree scans, making the top-level scan look like a continuous scan
8072 * (as opposed to num_sa_scans-many primitive index scans). After
8073 * all, btree scans mostly work like that at runtime. However, such a
8074 * scheme would badly bias genericcostestimate's simplistic approach
8075 * to calculating numIndexPages through prorating.
8076 *
8077 * Stick with the approach taken by non-native SAOP scans for now.
8078 * genericcostestimate will use the Mackert-Lohman formula to
8079 * compensate for repeat page fetches, even though that definitely
8080 * won't happen during btree scans (not for leaf pages, at least).
8081 * We're usually very pessimistic about the number of primitive index
8082 * scans that will be required, but it's not clear how to do better.
8083 */
8084 numIndexTuples = rint(numIndexTuples / num_sa_scans);
8085 }
8086
8087 /*
8088 * Now do generic index cost estimation.
8089 */
8090 costs.numIndexTuples = numIndexTuples;
8091 costs.num_sa_scans = num_sa_scans;
8092
8093 genericcostestimate(root, path, loop_count, &costs);
8094
8095 /*
8096 * Add a CPU-cost component to represent the costs of initial btree
8097 * descent. We don't charge any I/O cost for touching upper btree levels,
8098 * since they tend to stay in cache, but we still have to do about log2(N)
8099 * comparisons to descend a btree of N leaf tuples. We charge one
8100 * cpu_operator_cost per comparison.
8101 *
8102 * If there are SAOP or skip array keys, charge this once per estimated
8103 * index descent. The ones after the first one are not startup cost so
8104 * far as the overall plan goes, so just add them to "total" cost.
8105 */
8106 if (index->tuples > 1) /* avoid computing log(0) */
8107 {
8108 descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
8109 costs.indexStartupCost += descentCost;
8110 costs.indexTotalCost += costs.num_sa_scans * descentCost;
8111 }
8112
8113 /*
8114 * Even though we're not charging I/O cost for touching upper btree pages,
8115 * it's still reasonable to charge some CPU cost per page descended
8116 * through. Moreover, if we had no such charge at all, bloated indexes
8117 * would appear to have the same search cost as unbloated ones, at least
8118 * in cases where only a single leaf page is expected to be visited. This
8119 * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
8120 * touched. The number of such pages is btree tree height plus one (ie,
8121 * we charge for the leaf page too). As above, charge once per estimated
8122 * SAOP/skip array descent.
8123 */
8124 descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8125 costs.indexStartupCost += descentCost;
8126 costs.indexTotalCost += costs.num_sa_scans * descentCost;
8127
8128 if (!have_correlation)
8129 {
8130 examine_indexcol_variable(root, index, 0, &vardata);
8131 if (HeapTupleIsValid(vardata.statsTuple))
8132 costs.indexCorrelation = btcost_correlation(index, &vardata);
8133 ReleaseVariableStats(vardata);
8134 }
8135 else
8136 {
8137 /* btcost_correlation already called earlier on */
8138 costs.indexCorrelation = correlation;
8139 }
8140
8141 *indexStartupCost = costs.indexStartupCost;
8142 *indexTotalCost = costs.indexTotalCost;
8143 *indexSelectivity = costs.indexSelectivity;
8144 *indexCorrelation = costs.indexCorrelation;
8145 *indexPages = costs.numIndexPages;
8146}
8147
8148void
8149hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
8150 Cost *indexStartupCost, Cost *indexTotalCost,
8151 Selectivity *indexSelectivity, double *indexCorrelation,
8152 double *indexPages)
8153{
8154 GenericCosts costs = {0};
8155
8156 genericcostestimate(root, path, loop_count, &costs);
8157
8158 /*
8159 * A hash index has no descent costs as such, since the index AM can go
8160 * directly to the target bucket after computing the hash value. There
8161 * are a couple of other hash-specific costs that we could conceivably add
8162 * here, though:
8163 *
8164 * Ideally we'd charge spc_random_page_cost for each page in the target
8165 * bucket, not just the numIndexPages pages that genericcostestimate
8166 * thought we'd visit. However in most cases we don't know which bucket
8167 * that will be. There's no point in considering the average bucket size
8168 * because the hash AM makes sure that's always one page.
8169 *
8170 * Likewise, we could consider charging some CPU for each index tuple in
8171 * the bucket, if we knew how many there were. But the per-tuple cost is
8172 * just a hash value comparison, not a general datatype-dependent
8173 * comparison, so any such charge ought to be quite a bit less than
8174 * cpu_operator_cost; which makes it probably not worth worrying about.
8175 *
8176 * A bigger issue is that chance hash-value collisions will result in
8177 * wasted probes into the heap. We don't currently attempt to model this
8178 * cost on the grounds that it's rare, but maybe it's not rare enough.
8179 * (Any fix for this ought to consider the generic lossy-operator problem,
8180 * though; it's not entirely hash-specific.)
8181 */
8182
8183 *indexStartupCost = costs.indexStartupCost;
8184 *indexTotalCost = costs.indexTotalCost;
8185 *indexSelectivity = costs.indexSelectivity;
8186 *indexCorrelation = costs.indexCorrelation;
8187 *indexPages = costs.numIndexPages;
8188}
8189
8190void
8191gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
8192 Cost *indexStartupCost, Cost *indexTotalCost,
8193 Selectivity *indexSelectivity, double *indexCorrelation,
8194 double *indexPages)
8195{
8196 IndexOptInfo *index = path->indexinfo;
8197 GenericCosts costs = {0};
8198 Cost descentCost;
8199
8200 genericcostestimate(root, path, loop_count, &costs);
8201
8202 /*
8203 * We model index descent costs similarly to those for btree, but to do
8204 * that we first need an idea of the tree height. We somewhat arbitrarily
8205 * assume that the fanout is 100, meaning the tree height is at most
8206 * log100(index->pages).
8207 *
8208 * Although this computation isn't really expensive enough to require
8209 * caching, we might as well use index->tree_height to cache it.
8210 */
8211 if (index->tree_height < 0) /* unknown? */
8212 {
8213 if (index->pages > 1) /* avoid computing log(0) */
8214 index->tree_height = (int) (log(index->pages) / log(100.0));
8215 else
8216 index->tree_height = 0;
8217 }
8218
8219 /*
8220 * Add a CPU-cost component to represent the costs of initial descent. We
8221 * just use log(N) here not log2(N) since the branching factor isn't
8222 * necessarily two anyway. As for btree, charge once per SA scan.
8223 */
8224 if (index->tuples > 1) /* avoid computing log(0) */
8225 {
8226 descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
8227 costs.indexStartupCost += descentCost;
8228 costs.indexTotalCost += costs.num_sa_scans * descentCost;
8229 }
8230
8231 /*
8232 * Likewise add a per-page charge, calculated the same as for btrees.
8233 */
8234 descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8235 costs.indexStartupCost += descentCost;
8236 costs.indexTotalCost += costs.num_sa_scans * descentCost;
8237
8238 *indexStartupCost = costs.indexStartupCost;
8239 *indexTotalCost = costs.indexTotalCost;
8240 *indexSelectivity = costs.indexSelectivity;
8241 *indexCorrelation = costs.indexCorrelation;
8242 *indexPages = costs.numIndexPages;
8243}
8244
8245void
8246spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
8247 Cost *indexStartupCost, Cost *indexTotalCost,
8248 Selectivity *indexSelectivity, double *indexCorrelation,
8249 double *indexPages)
8250{
8251 IndexOptInfo *index = path->indexinfo;
8252 GenericCosts costs = {0};
8253 Cost descentCost;
8254
8255 genericcostestimate(root, path, loop_count, &costs);
8256
8257 /*
8258 * We model index descent costs similarly to those for btree, but to do
8259 * that we first need an idea of the tree height. We somewhat arbitrarily
8260 * assume that the fanout is 100, meaning the tree height is at most
8261 * log100(index->pages).
8262 *
8263 * Although this computation isn't really expensive enough to require
8264 * caching, we might as well use index->tree_height to cache it.
8265 */
8266 if (index->tree_height < 0) /* unknown? */
8267 {
8268 if (index->pages > 1) /* avoid computing log(0) */
8269 index->tree_height = (int) (log(index->pages) / log(100.0));
8270 else
8271 index->tree_height = 0;
8272 }
8273
8274 /*
8275 * Add a CPU-cost component to represent the costs of initial descent. We
8276 * just use log(N) here not log2(N) since the branching factor isn't
8277 * necessarily two anyway. As for btree, charge once per SA scan.
8278 */
8279 if (index->tuples > 1) /* avoid computing log(0) */
8280 {
8281 descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
8282 costs.indexStartupCost += descentCost;
8283 costs.indexTotalCost += costs.num_sa_scans * descentCost;
8284 }
8285
8286 /*
8287 * Likewise add a per-page charge, calculated the same as for btrees.
8288 */
8289 descentCost = (index->tree_height + 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8290 costs.indexStartupCost += descentCost;
8291 costs.indexTotalCost += costs.num_sa_scans * descentCost;
8292
8293 *indexStartupCost = costs.indexStartupCost;
8294 *indexTotalCost = costs.indexTotalCost;
8295 *indexSelectivity = costs.indexSelectivity;
8296 *indexCorrelation = costs.indexCorrelation;
8297 *indexPages = costs.numIndexPages;
8298}
8299
8300
8301/*
8302 * Support routines for gincostestimate
8303 */
8304
8305typedef struct
8306{
8307 bool attHasFullScan[INDEX_MAX_KEYS];
8308 bool attHasNormalScan[INDEX_MAX_KEYS];
8314
8315/*
8316 * Estimate the number of index terms that need to be searched for while
8317 * testing the given GIN query, and increment the counts in *counts
8318 * appropriately. If the query is unsatisfiable, return false.
8319 */
8320static bool
8322 Oid clause_op, Datum query,
8323 GinQualCounts *counts)
8324{
8325 FmgrInfo flinfo;
8326 Oid extractProcOid;
8327 Oid collation;
8328 int strategy_op;
8329 Oid lefttype,
8330 righttype;
8331 int32 nentries = 0;
8332 bool *partial_matches = NULL;
8333 Pointer *extra_data = NULL;
8334 bool *nullFlags = NULL;
8335 int32 searchMode = GIN_SEARCH_MODE_DEFAULT;
8336 int32 i;
8337
8338 Assert(indexcol < index->nkeycolumns);
8339
8340 /*
8341 * Get the operator's strategy number and declared input data types within
8342 * the index opfamily. (We don't need the latter, but we use
8343 * get_op_opfamily_properties because it will throw error if it fails to
8344 * find a matching pg_amop entry.)
8345 */
8346 get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false,
8347 &strategy_op, &lefttype, &righttype);
8348
8349 /*
8350 * GIN always uses the "default" support functions, which are those with
8351 * lefttype == righttype == the opclass' opcintype (see
8352 * IndexSupportInitialize in relcache.c).
8353 */
8354 extractProcOid = get_opfamily_proc(index->opfamily[indexcol],
8355 index->opcintype[indexcol],
8356 index->opcintype[indexcol],
8358
8359 if (!OidIsValid(extractProcOid))
8360 {
8361 /* should not happen; throw same error as index_getprocinfo */
8362 elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
8363 GIN_EXTRACTQUERY_PROC, indexcol + 1,
8364 get_rel_name(index->indexoid));
8365 }
8366
8367 /*
8368 * Choose collation to pass to extractProc (should match initGinState).
8369 */
8370 if (OidIsValid(index->indexcollations[indexcol]))
8371 collation = index->indexcollations[indexcol];
8372 else
8373 collation = DEFAULT_COLLATION_OID;
8374
8375 fmgr_info(extractProcOid, &flinfo);
8376
8377 set_fn_opclass_options(&flinfo, index->opclassoptions[indexcol]);
8378
8379 FunctionCall7Coll(&flinfo,
8380 collation,
8381 query,
8382 PointerGetDatum(&nentries),
8383 UInt16GetDatum(strategy_op),
8384 PointerGetDatum(&partial_matches),
8385 PointerGetDatum(&extra_data),
8386 PointerGetDatum(&nullFlags),
8387 PointerGetDatum(&searchMode));
8388
8389 if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT)
8390 {
8391 /* No match is possible */
8392 return false;
8393 }
8394
8395 for (i = 0; i < nentries; i++)
8396 {
8397 /*
8398 * For partial match we haven't any information to estimate number of
8399 * matched entries in index, so, we just estimate it as 100
8400 */
8401 if (partial_matches && partial_matches[i])
8402 counts->partialEntries += 100;
8403 else
8404 counts->exactEntries++;
8405
8406 counts->searchEntries++;
8407 }
8408
8409 if (searchMode == GIN_SEARCH_MODE_DEFAULT)
8410 {
8411 counts->attHasNormalScan[indexcol] = true;
8412 }
8413 else if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY)
8414 {
8415 /* Treat "include empty" like an exact-match item */
8416 counts->attHasNormalScan[indexcol] = true;
8417 counts->exactEntries++;
8418 counts->searchEntries++;
8419 }
8420 else
8421 {
8422 /* It's GIN_SEARCH_MODE_ALL */
8423 counts->attHasFullScan[indexcol] = true;
8424 }
8425
8426 return true;
8427}
8428
8429/*
8430 * Estimate the number of index terms that need to be searched for while
8431 * testing the given GIN index clause, and increment the counts in *counts
8432 * appropriately. If the query is unsatisfiable, return false.
8433 */
8434static bool
8437 int indexcol,
8438 OpExpr *clause,
8439 GinQualCounts *counts)
8440{
8441 Oid clause_op = clause->opno;
8442 Node *operand = (Node *) lsecond(clause->args);
8443
8444 /* aggressively reduce to a constant, and look through relabeling */
8445 operand = estimate_expression_value(root, operand);
8446
8447 if (IsA(operand, RelabelType))
8448 operand = (Node *) ((RelabelType *) operand)->arg;
8449
8450 /*
8451 * It's impossible to call extractQuery method for unknown operand. So
8452 * unless operand is a Const we can't do much; just assume there will be
8453 * one ordinary search entry from the operand at runtime.
8454 */
8455 if (!IsA(operand, Const))
8456 {
8457 counts->exactEntries++;
8458 counts->searchEntries++;
8459 return true;
8460 }
8461
8462 /* If Const is null, there can be no matches */
8463 if (((Const *) operand)->constisnull)
8464 return false;
8465
8466 /* Otherwise, apply extractQuery and get the actual term counts */
8467 return gincost_pattern(index, indexcol, clause_op,
8468 ((Const *) operand)->constvalue,
8469 counts);
8470}
8471
8472/*
8473 * Estimate the number of index terms that need to be searched for while
8474 * testing the given GIN index clause, and increment the counts in *counts
8475 * appropriately. If the query is unsatisfiable, return false.
8476 *
8477 * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
8478 * each of which involves one value from the RHS array, plus all the
8479 * non-array quals (if any). To model this, we average the counts across
8480 * the RHS elements, and add the averages to the counts in *counts (which
8481 * correspond to per-indexscan costs). We also multiply counts->arrayScans
8482 * by N, causing gincostestimate to scale up its estimates accordingly.
8483 */
8484static bool
8487 int indexcol,
8488 ScalarArrayOpExpr *clause,
8489 double numIndexEntries,
8490 GinQualCounts *counts)
8491{
8492 Oid clause_op = clause->opno;
8493 Node *rightop = (Node *) lsecond(clause->args);
8494 ArrayType *arrayval;
8495 int16 elmlen;
8496 bool elmbyval;
8497 char elmalign;
8498 int numElems;
8499 Datum *elemValues;
8500 bool *elemNulls;
8501 GinQualCounts arraycounts;
8502 int numPossible = 0;
8503 int i;
8504
8505 Assert(clause->useOr);
8506
8507 /* aggressively reduce to a constant, and look through relabeling */
8508 rightop = estimate_expression_value(root, rightop);
8509
8510 if (IsA(rightop, RelabelType))
8511 rightop = (Node *) ((RelabelType *) rightop)->arg;
8512
8513 /*
8514 * It's impossible to call extractQuery method for unknown operand. So
8515 * unless operand is a Const we can't do much; just assume there will be
8516 * one ordinary search entry from each array entry at runtime, and fall
8517 * back on a probably-bad estimate of the number of array entries.
8518 */
8519 if (!IsA(rightop, Const))
8520 {
8521 counts->exactEntries++;
8522 counts->searchEntries++;
8523 counts->arrayScans *= estimate_array_length(root, rightop);
8524 return true;
8525 }
8526
8527 /* If Const is null, there can be no matches */
8528 if (((Const *) rightop)->constisnull)
8529 return false;
8530
8531 /* Otherwise, extract the array elements and iterate over them */
8532 arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue);
8534 &elmlen, &elmbyval, &elmalign);
8535 deconstruct_array(arrayval,
8536 ARR_ELEMTYPE(arrayval),
8537 elmlen, elmbyval, elmalign,
8538 &elemValues, &elemNulls, &numElems);
8539
8540 memset(&arraycounts, 0, sizeof(arraycounts));
8541
8542 for (i = 0; i < numElems; i++)
8543 {
8544 GinQualCounts elemcounts;
8545
8546 /* NULL can't match anything, so ignore, as the executor will */
8547 if (elemNulls[i])
8548 continue;
8549
8550 /* Otherwise, apply extractQuery and get the actual term counts */
8551 memset(&elemcounts, 0, sizeof(elemcounts));
8552
8553 if (gincost_pattern(index, indexcol, clause_op, elemValues[i],
8554 &elemcounts))
8555 {
8556 /* We ignore array elements that are unsatisfiable patterns */
8557 numPossible++;
8558
8559 if (elemcounts.attHasFullScan[indexcol] &&
8560 !elemcounts.attHasNormalScan[indexcol])
8561 {
8562 /*
8563 * Full index scan will be required. We treat this as if
8564 * every key in the index had been listed in the query; is
8565 * that reasonable?
8566 */
8567 elemcounts.partialEntries = 0;
8568 elemcounts.exactEntries = numIndexEntries;
8569 elemcounts.searchEntries = numIndexEntries;
8570 }
8571 arraycounts.partialEntries += elemcounts.partialEntries;
8572 arraycounts.exactEntries += elemcounts.exactEntries;
8573 arraycounts.searchEntries += elemcounts.searchEntries;
8574 }
8575 }
8576
8577 if (numPossible == 0)
8578 {
8579 /* No satisfiable patterns in the array */
8580 return false;
8581 }
8582
8583 /*
8584 * Now add the averages to the global counts. This will give us an
8585 * estimate of the average number of terms searched for in each indexscan,
8586 * including contributions from both array and non-array quals.
8587 */
8588 counts->partialEntries += arraycounts.partialEntries / numPossible;
8589 counts->exactEntries += arraycounts.exactEntries / numPossible;
8590 counts->searchEntries += arraycounts.searchEntries / numPossible;
8591
8592 counts->arrayScans *= numPossible;
8593
8594 return true;
8595}
8596
8597/*
8598 * GIN has search behavior completely different from other index types
8599 */
8600void
8601gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
8602 Cost *indexStartupCost, Cost *indexTotalCost,
8603 Selectivity *indexSelectivity, double *indexCorrelation,
8604 double *indexPages)
8605{
8606 IndexOptInfo *index = path->indexinfo;
8607 List *indexQuals = get_quals_from_indexclauses(path->indexclauses);
8608 List *selectivityQuals;
8609 double numPages = index->pages,
8610 numTuples = index->tuples;
8611 double numEntryPages,
8612 numDataPages,
8613 numPendingPages,
8614 numEntries;
8615 GinQualCounts counts;
8616 bool matchPossible;
8617 bool fullIndexScan;
8618 double partialScale;
8619 double entryPagesFetched,
8620 dataPagesFetched,
8621 dataPagesFetchedBySel;
8622 double qual_op_cost,
8623 qual_arg_cost,
8624 spc_random_page_cost,
8625 outer_scans;
8626 Cost descentCost;
8627 Relation indexRel;
8628 GinStatsData ginStats;
8629 ListCell *lc;
8630 int i;
8631
8632 /*
8633 * Obtain statistical information from the meta page, if possible. Else
8634 * set ginStats to zeroes, and we'll cope below.
8635 */
8636 if (!index->hypothetical)
8637 {
8638 /* Lock should have already been obtained in plancat.c */
8639 indexRel = index_open(index->indexoid, NoLock);
8640 ginGetStats(indexRel, &ginStats);
8641 index_close(indexRel, NoLock);
8642 }
8643 else
8644 {
8645 memset(&ginStats, 0, sizeof(ginStats));
8646 }
8647
8648 /*
8649 * Assuming we got valid (nonzero) stats at all, nPendingPages can be
8650 * trusted, but the other fields are data as of the last VACUUM. We can
8651 * scale them up to account for growth since then, but that method only
8652 * goes so far; in the worst case, the stats might be for a completely
8653 * empty index, and scaling them will produce pretty bogus numbers.
8654 * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
8655 * it's grown more than that, fall back to estimating things only from the
8656 * assumed-accurate index size. But we'll trust nPendingPages in any case
8657 * so long as it's not clearly insane, ie, more than the index size.
8658 */
8659 if (ginStats.nPendingPages < numPages)
8660 numPendingPages = ginStats.nPendingPages;
8661 else
8662 numPendingPages = 0;
8663
8664 if (numPages > 0 && ginStats.nTotalPages <= numPages &&
8665 ginStats.nTotalPages > numPages / 4 &&
8666 ginStats.nEntryPages > 0 && ginStats.nEntries > 0)
8667 {
8668 /*
8669 * OK, the stats seem close enough to sane to be trusted. But we
8670 * still need to scale them by the ratio numPages / nTotalPages to
8671 * account for growth since the last VACUUM.
8672 */
8673 double scale = numPages / ginStats.nTotalPages;
8674
8675 numEntryPages = ceil(ginStats.nEntryPages * scale);
8676 numDataPages = ceil(ginStats.nDataPages * scale);
8677 numEntries = ceil(ginStats.nEntries * scale);
8678 /* ensure we didn't round up too much */
8679 numEntryPages = Min(numEntryPages, numPages - numPendingPages);
8680 numDataPages = Min(numDataPages,
8681 numPages - numPendingPages - numEntryPages);
8682 }
8683 else
8684 {
8685 /*
8686 * We might get here because it's a hypothetical index, or an index
8687 * created pre-9.1 and never vacuumed since upgrading (in which case
8688 * its stats would read as zeroes), or just because it's grown too
8689 * much since the last VACUUM for us to put our faith in scaling.
8690 *
8691 * Invent some plausible internal statistics based on the index page
8692 * count (and clamp that to at least 10 pages, just in case). We
8693 * estimate that 90% of the index is entry pages, and the rest is data
8694 * pages. Estimate 100 entries per entry page; this is rather bogus
8695 * since it'll depend on the size of the keys, but it's more robust
8696 * than trying to predict the number of entries per heap tuple.
8697 */
8698 numPages = Max(numPages, 10);
8699 numEntryPages = floor((numPages - numPendingPages) * 0.90);
8700 numDataPages = numPages - numPendingPages - numEntryPages;
8701 numEntries = floor(numEntryPages * 100);
8702 }
8703
8704 /* In an empty index, numEntries could be zero. Avoid divide-by-zero */
8705 if (numEntries < 1)
8706 numEntries = 1;
8707
8708 /*
8709 * If the index is partial, AND the index predicate with the index-bound
8710 * quals to produce a more accurate idea of the number of rows covered by
8711 * the bound conditions.
8712 */
8713 selectivityQuals = add_predicate_to_index_quals(index, indexQuals);
8714
8715 /* Estimate the fraction of main-table tuples that will be visited */
8716 *indexSelectivity = clauselist_selectivity(root, selectivityQuals,
8717 index->rel->relid,
8718 JOIN_INNER,
8719 NULL);
8720
8721 /* fetch estimated page cost for tablespace containing index */
8722 get_tablespace_page_costs(index->reltablespace,
8723 &spc_random_page_cost,
8724 NULL);
8725
8726 /*
8727 * Generic assumption about index correlation: there isn't any.
8728 */
8729 *indexCorrelation = 0.0;
8730
8731 /*
8732 * Examine quals to estimate number of search entries & partial matches
8733 */
8734 memset(&counts, 0, sizeof(counts));
8735 counts.arrayScans = 1;
8736 matchPossible = true;
8737
8738 foreach(lc, path->indexclauses)
8739 {
8740 IndexClause *iclause = lfirst_node(IndexClause, lc);
8741 ListCell *lc2;
8742
8743 foreach(lc2, iclause->indexquals)
8744 {
8745 RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
8746 Expr *clause = rinfo->clause;
8747
8748 if (IsA(clause, OpExpr))
8749 {
8750 matchPossible = gincost_opexpr(root,
8751 index,
8752 iclause->indexcol,
8753 (OpExpr *) clause,
8754 &counts);
8755 if (!matchPossible)
8756 break;
8757 }
8758 else if (IsA(clause, ScalarArrayOpExpr))
8759 {
8760 matchPossible = gincost_scalararrayopexpr(root,
8761 index,
8762 iclause->indexcol,
8763 (ScalarArrayOpExpr *) clause,
8764 numEntries,
8765 &counts);
8766 if (!matchPossible)
8767 break;
8768 }
8769 else
8770 {
8771 /* shouldn't be anything else for a GIN index */
8772 elog(ERROR, "unsupported GIN indexqual type: %d",
8773 (int) nodeTag(clause));
8774 }
8775 }
8776 }
8777
8778 /* Fall out if there were any provably-unsatisfiable quals */
8779 if (!matchPossible)
8780 {
8781 *indexStartupCost = 0;
8782 *indexTotalCost = 0;
8783 *indexSelectivity = 0;
8784 return;
8785 }
8786
8787 /*
8788 * If attribute has a full scan and at the same time doesn't have normal
8789 * scan, then we'll have to scan all non-null entries of that attribute.
8790 * Currently, we don't have per-attribute statistics for GIN. Thus, we
8791 * must assume the whole GIN index has to be scanned in this case.
8792 */
8793 fullIndexScan = false;
8794 for (i = 0; i < index->nkeycolumns; i++)
8795 {
8796 if (counts.attHasFullScan[i] && !counts.attHasNormalScan[i])
8797 {
8798 fullIndexScan = true;
8799 break;
8800 }
8801 }
8802
8803 if (fullIndexScan || indexQuals == NIL)
8804 {
8805 /*
8806 * Full index scan will be required. We treat this as if every key in
8807 * the index had been listed in the query; is that reasonable?
8808 */
8809 counts.partialEntries = 0;
8810 counts.exactEntries = numEntries;
8811 counts.searchEntries = numEntries;
8812 }
8813
8814 /* Will we have more than one iteration of a nestloop scan? */
8815 outer_scans = loop_count;
8816
8817 /*
8818 * Compute cost to begin scan, first of all, pay attention to pending
8819 * list.
8820 */
8821 entryPagesFetched = numPendingPages;
8822
8823 /*
8824 * Estimate number of entry pages read. We need to do
8825 * counts.searchEntries searches. Use a power function as it should be,
8826 * but tuples on leaf pages usually is much greater. Here we include all
8827 * searches in entry tree, including search of first entry in partial
8828 * match algorithm
8829 */
8830 entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15)));
8831
8832 /*
8833 * Add an estimate of entry pages read by partial match algorithm. It's a
8834 * scan over leaf pages in entry tree. We haven't any useful stats here,
8835 * so estimate it as proportion. Because counts.partialEntries is really
8836 * pretty bogus (see code above), it's possible that it is more than
8837 * numEntries; clamp the proportion to ensure sanity.
8838 */
8839 partialScale = counts.partialEntries / numEntries;
8840 partialScale = Min(partialScale, 1.0);
8841
8842 entryPagesFetched += ceil(numEntryPages * partialScale);
8843
8844 /*
8845 * Partial match algorithm reads all data pages before doing actual scan,
8846 * so it's a startup cost. Again, we haven't any useful stats here, so
8847 * estimate it as proportion.
8848 */
8849 dataPagesFetched = ceil(numDataPages * partialScale);
8850
8851 *indexStartupCost = 0;
8852 *indexTotalCost = 0;
8853
8854 /*
8855 * Add a CPU-cost component to represent the costs of initial entry btree
8856 * descent. We don't charge any I/O cost for touching upper btree levels,
8857 * since they tend to stay in cache, but we still have to do about log2(N)
8858 * comparisons to descend a btree of N leaf tuples. We charge one
8859 * cpu_operator_cost per comparison.
8860 *
8861 * If there are ScalarArrayOpExprs, charge this once per SA scan. The
8862 * ones after the first one are not startup cost so far as the overall
8863 * plan is concerned, so add them only to "total" cost.
8864 */
8865 if (numEntries > 1) /* avoid computing log(0) */
8866 {
8867 descentCost = ceil(log(numEntries) / log(2.0)) * cpu_operator_cost;
8868 *indexStartupCost += descentCost * counts.searchEntries;
8869 *indexTotalCost += counts.arrayScans * descentCost * counts.searchEntries;
8870 }
8871
8872 /*
8873 * Add a cpu cost per entry-page fetched. This is not amortized over a
8874 * loop.
8875 */
8876 *indexStartupCost += entryPagesFetched * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8877 *indexTotalCost += entryPagesFetched * counts.arrayScans * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8878
8879 /*
8880 * Add a cpu cost per data-page fetched. This is also not amortized over a
8881 * loop. Since those are the data pages from the partial match algorithm,
8882 * charge them as startup cost.
8883 */
8884 *indexStartupCost += DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost * dataPagesFetched;
8885
8886 /*
8887 * Since we add the startup cost to the total cost later on, remove the
8888 * initial arrayscan from the total.
8889 */
8890 *indexTotalCost += dataPagesFetched * (counts.arrayScans - 1) * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8891
8892 /*
8893 * Calculate cache effects if more than one scan due to nestloops or array
8894 * quals. The result is pro-rated per nestloop scan, but the array qual
8895 * factor shouldn't be pro-rated (compare genericcostestimate).
8896 */
8897 if (outer_scans > 1 || counts.arrayScans > 1)
8898 {
8899 entryPagesFetched *= outer_scans * counts.arrayScans;
8900 entryPagesFetched = index_pages_fetched(entryPagesFetched,
8901 (BlockNumber) numEntryPages,
8902 numEntryPages, root);
8903 entryPagesFetched /= outer_scans;
8904 dataPagesFetched *= outer_scans * counts.arrayScans;
8905 dataPagesFetched = index_pages_fetched(dataPagesFetched,
8906 (BlockNumber) numDataPages,
8907 numDataPages, root);
8908 dataPagesFetched /= outer_scans;
8909 }
8910
8911 /*
8912 * Here we use random page cost because logically-close pages could be far
8913 * apart on disk.
8914 */
8915 *indexStartupCost += (entryPagesFetched + dataPagesFetched) * spc_random_page_cost;
8916
8917 /*
8918 * Now compute the number of data pages fetched during the scan.
8919 *
8920 * We assume every entry to have the same number of items, and that there
8921 * is no overlap between them. (XXX: tsvector and array opclasses collect
8922 * statistics on the frequency of individual keys; it would be nice to use
8923 * those here.)
8924 */
8925 dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries);
8926
8927 /*
8928 * If there is a lot of overlap among the entries, in particular if one of
8929 * the entries is very frequent, the above calculation can grossly
8930 * under-estimate. As a simple cross-check, calculate a lower bound based
8931 * on the overall selectivity of the quals. At a minimum, we must read
8932 * one item pointer for each matching entry.
8933 *
8934 * The width of each item pointer varies, based on the level of
8935 * compression. We don't have statistics on that, but an average of
8936 * around 3 bytes per item is fairly typical.
8937 */
8938 dataPagesFetchedBySel = ceil(*indexSelectivity *
8939 (numTuples / (BLCKSZ / 3)));
8940 if (dataPagesFetchedBySel > dataPagesFetched)
8941 dataPagesFetched = dataPagesFetchedBySel;
8942
8943 /* Add one page cpu-cost to the startup cost */
8944 *indexStartupCost += DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost * counts.searchEntries;
8945
8946 /*
8947 * Add once again a CPU-cost for those data pages, before amortizing for
8948 * cache.
8949 */
8950 *indexTotalCost += dataPagesFetched * counts.arrayScans * DEFAULT_PAGE_CPU_MULTIPLIER * cpu_operator_cost;
8951
8952 /* Account for cache effects, the same as above */
8953 if (outer_scans > 1 || counts.arrayScans > 1)
8954 {
8955 dataPagesFetched *= outer_scans * counts.arrayScans;
8956 dataPagesFetched = index_pages_fetched(dataPagesFetched,
8957 (BlockNumber) numDataPages,
8958 numDataPages, root);
8959 dataPagesFetched /= outer_scans;
8960 }
8961
8962 /* And apply random_page_cost as the cost per page */
8963 *indexTotalCost += *indexStartupCost +
8964 dataPagesFetched * spc_random_page_cost;
8965
8966 /*
8967 * Add on index qual eval costs, much as in genericcostestimate. We charge
8968 * cpu but we can disregard indexorderbys, since GIN doesn't support
8969 * those.
8970 */
8971 qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
8972 qual_op_cost = cpu_operator_cost * list_length(indexQuals);
8973
8974 *indexStartupCost += qual_arg_cost;
8975 *indexTotalCost += qual_arg_cost;
8976
8977 /*
8978 * Add a cpu cost per search entry, corresponding to the actual visited
8979 * entries.
8980 */
8981 *indexTotalCost += (counts.searchEntries * counts.arrayScans) * (qual_op_cost);
8982 /* Now add a cpu cost per tuple in the posting lists / trees */
8983 *indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost);
8984 *indexPages = dataPagesFetched;
8985}
8986
8987/*
8988 * BRIN has search behavior completely different from other index types
8989 */
8990void
8991brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
8992 Cost *indexStartupCost, Cost *indexTotalCost,
8993 Selectivity *indexSelectivity, double *indexCorrelation,
8994 double *indexPages)
8995{
8996 IndexOptInfo *index = path->indexinfo;
8997 List *indexQuals = get_quals_from_indexclauses(path->indexclauses);
8998 double numPages = index->pages;
8999 RelOptInfo *baserel = index->rel;
9000 RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
9001 Cost spc_seq_page_cost;
9002 Cost spc_random_page_cost;
9003 double qual_arg_cost;
9004 double qualSelectivity;
9005 BrinStatsData statsData;
9006 double indexRanges;
9007 double minimalRanges;
9008 double estimatedRanges;
9009 double selec;
9010 Relation indexRel;
9011 ListCell *l;
9012 VariableStatData vardata;
9013
9014 Assert(rte->rtekind == RTE_RELATION);
9015
9016 /* fetch estimated page cost for the tablespace containing the index */
9017 get_tablespace_page_costs(index->reltablespace,
9018 &spc_random_page_cost,
9019 &spc_seq_page_cost);
9020
9021 /*
9022 * Obtain some data from the index itself, if possible. Otherwise invent
9023 * some plausible internal statistics based on the relation page count.
9024 */
9025 if (!index->hypothetical)
9026 {
9027 /*
9028 * A lock should have already been obtained on the index in plancat.c.
9029 */
9030 indexRel = index_open(index->indexoid, NoLock);
9031 brinGetStats(indexRel, &statsData);
9032 index_close(indexRel, NoLock);
9033
9034 /* work out the actual number of ranges in the index */
9035 indexRanges = Max(ceil((double) baserel->pages /
9036 statsData.pagesPerRange), 1.0);
9037 }
9038 else
9039 {
9040 /*
9041 * Assume default number of pages per range, and estimate the number
9042 * of ranges based on that.
9043 */
9044 indexRanges = Max(ceil((double) baserel->pages /
9046
9048 statsData.revmapNumPages = (indexRanges / REVMAP_PAGE_MAXITEMS) + 1;
9049 }
9050
9051 /*
9052 * Compute index correlation
9053 *
9054 * Because we can use all index quals equally when scanning, we can use
9055 * the largest correlation (in absolute value) among columns used by the
9056 * query. Start at zero, the worst possible case. If we cannot find any
9057 * correlation statistics, we will keep it as 0.
9058 */
9059 *indexCorrelation = 0;
9060
9061 foreach(l, path->indexclauses)
9062 {
9063 IndexClause *iclause = lfirst_node(IndexClause, l);
9064 AttrNumber attnum = index->indexkeys[iclause->indexcol];
9065
9066 /* attempt to lookup stats in relation for this index column */
9067 if (attnum != 0)
9068 {
9069 /* Simple variable -- look to stats for the underlying table */
9071 (*get_relation_stats_hook) (root, rte, attnum, &vardata))
9072 {
9073 /*
9074 * The hook took control of acquiring a stats tuple. If it
9075 * did supply a tuple, it'd better have supplied a freefunc.
9076 */
9077 if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
9078 elog(ERROR,
9079 "no function provided to release variable stats with");
9080 }
9081 else
9082 {
9083 vardata.statsTuple =
9084 SearchSysCache3(STATRELATTINH,
9085 ObjectIdGetDatum(rte->relid),
9087 BoolGetDatum(false));
9088 vardata.freefunc = ReleaseSysCache;
9089 }
9090 }
9091 else
9092 {
9093 /*
9094 * Looks like we've found an expression column in the index. Let's
9095 * see if there's any stats for it.
9096 */
9097
9098 /* get the attnum from the 0-based index. */
9099 attnum = iclause->indexcol + 1;
9100
9102 (*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
9103 {
9104 /*
9105 * The hook took control of acquiring a stats tuple. If it
9106 * did supply a tuple, it'd better have supplied a freefunc.
9107 */
9108 if (HeapTupleIsValid(vardata.statsTuple) &&
9109 !vardata.freefunc)
9110 elog(ERROR, "no function provided to release variable stats with");
9111 }
9112 else
9113 {
9114 vardata.statsTuple = SearchSysCache3(STATRELATTINH,
9115 ObjectIdGetDatum(index->indexoid),
9117 BoolGetDatum(false));
9118 vardata.freefunc = ReleaseSysCache;
9119 }
9120 }
9121
9122 if (HeapTupleIsValid(vardata.statsTuple))
9123 {
9124 AttStatsSlot sslot;
9125
9126 if (get_attstatsslot(&sslot, vardata.statsTuple,
9127 STATISTIC_KIND_CORRELATION, InvalidOid,
9129 {
9130 double varCorrelation = 0.0;
9131
9132 if (sslot.nnumbers > 0)
9133 varCorrelation = fabs(sslot.numbers[0]);
9134
9135 if (varCorrelation > *indexCorrelation)
9136 *indexCorrelation = varCorrelation;
9137
9138 free_attstatsslot(&sslot);
9139 }
9140 }
9141
9142 ReleaseVariableStats(vardata);
9143 }
9144
9145 qualSelectivity = clauselist_selectivity(root, indexQuals,
9146 baserel->relid,
9147 JOIN_INNER, NULL);
9148
9149 /*
9150 * Now calculate the minimum possible ranges we could match with if all of
9151 * the rows were in the perfect order in the table's heap.
9152 */
9153 minimalRanges = ceil(indexRanges * qualSelectivity);
9154
9155 /*
9156 * Now estimate the number of ranges that we'll touch by using the
9157 * indexCorrelation from the stats. Careful not to divide by zero (note
9158 * we're using the absolute value of the correlation).
9159 */
9160 if (*indexCorrelation < 1.0e-10)
9161 estimatedRanges = indexRanges;
9162 else
9163 estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges);
9164
9165 /* we expect to visit this portion of the table */
9166 selec = estimatedRanges / indexRanges;
9167
9168 CLAMP_PROBABILITY(selec);
9169
9170 *indexSelectivity = selec;
9171
9172 /*
9173 * Compute the index qual costs, much as in genericcostestimate, to add to
9174 * the index costs. We can disregard indexorderbys, since BRIN doesn't
9175 * support those.
9176 */
9177 qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
9178
9179 /*
9180 * Compute the startup cost as the cost to read the whole revmap
9181 * sequentially, including the cost to execute the index quals.
9182 */
9183 *indexStartupCost =
9184 spc_seq_page_cost * statsData.revmapNumPages * loop_count;
9185 *indexStartupCost += qual_arg_cost;
9186
9187 /*
9188 * To read a BRIN index there might be a bit of back and forth over
9189 * regular pages, as revmap might point to them out of sequential order;
9190 * calculate the total cost as reading the whole index in random order.
9191 */
9192 *indexTotalCost = *indexStartupCost +
9193 spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count;
9194
9195 /*
9196 * Charge a small amount per range tuple which we expect to match to. This
9197 * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
9198 * will set a bit for each page in the range when we find a matching
9199 * range, so we must multiply the charge by the number of pages in the
9200 * range.
9201 */
9202 *indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges *
9203 statsData.pagesPerRange;
9204
9205 *indexPages = index->pages;
9206}
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:262
@ ACLCHECK_OK
Definition: acl.h:183
@ ACLMASK_ALL
Definition: acl.h:176
AclResult pg_attribute_aclcheck_all(Oid table_oid, Oid roleid, AclMode mode, AclMaskHow how)
Definition: aclchk.c:3910
AclResult pg_attribute_aclcheck(Oid table_oid, AttrNumber attnum, Oid roleid, AclMode mode)
Definition: aclchk.c:3868
AclResult pg_class_aclcheck(Oid table_oid, Oid roleid, AclMode mode)
Definition: aclchk.c:4039
StrategyNumber IndexAmTranslateCompareType(CompareType cmptype, Oid amoid, Oid opfamily, bool missing_ok)
Definition: amapi.c:161
CompareType IndexAmTranslateStrategy(StrategyNumber strategy, Oid amoid, Oid opfamily, bool missing_ok)
Definition: amapi.c:131
#define ARR_NDIM(a)
Definition: array.h:290
#define DatumGetArrayTypeP(X)
Definition: array.h:261
#define ARR_ELEMTYPE(a)
Definition: array.h:292
#define ARR_DIMS(a)
Definition: array.h:294
Selectivity scalararraysel_containment(PlannerInfo *root, Node *leftop, Node *rightop, Oid elemtype, bool isEquality, bool useOr, int varRelid)
void deconstruct_array(const ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, bool **nullsp, int *nelemsp)
Definition: arrayfuncs.c:3632
int ArrayGetNItems(int ndim, const int *dims)
Definition: arrayutils.c:57
int16 AttrNumber
Definition: attnum.h:21
#define AttrNumberIsForUserDefinedAttr(attributeNumber)
Definition: attnum.h:41
#define InvalidAttrNumber
Definition: attnum.h:23
Datum numeric_float8_no_overflow(PG_FUNCTION_ARGS)
Definition: numeric.c:4589
Bitmapset * bms_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:346
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1305
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:750
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:581
bool bms_get_singleton_member(const Bitmapset *a, int *member)
Definition: bitmapset.c:714
#define bms_is_empty(a)
Definition: bitmapset.h:118
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static Datum values[MAXATTR]
Definition: bootstrap.c:153
void brinGetStats(Relation index, BrinStatsData *stats)
Definition: brin.c:1649
#define BRIN_DEFAULT_PAGES_PER_RANGE
Definition: brin.h:40
#define REVMAP_PAGE_MAXITEMS
Definition: brin_page.h:93
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5461
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define NameStr(name)
Definition: c.h:765
#define Min(x, y)
Definition: c.h:995
#define likely(x)
Definition: c.h:417
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:229
#define Max(x, y)
Definition: c.h:989
double float8
Definition: c.h:649
int16_t int16
Definition: c.h:547
regproc RegProcedure
Definition: c.h:669
int32_t int32
Definition: c.h:548
uint32_t uint32
Definition: c.h:552
unsigned int Index
Definition: c.h:633
#define MemSet(start, val, len)
Definition: c.h:1011
void * Pointer
Definition: c.h:543
#define OidIsValid(objectId)
Definition: c.h:788
size_t Size
Definition: c.h:624
int NumRelids(PlannerInfo *root, Node *clause)
Definition: clauses.c:2145
Node * estimate_expression_value(PlannerInfo *root, Node *node)
Definition: clauses.c:2411
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:550
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:301
Selectivity clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: clausesel.c:100
Selectivity clause_selectivity(PlannerInfo *root, Node *clause, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: clausesel.c:667
CompareType
Definition: cmptype.h:32
@ COMPARE_LE
Definition: cmptype.h:35
@ COMPARE_GT
Definition: cmptype.h:38
@ COMPARE_EQ
Definition: cmptype.h:36
@ COMPARE_GE
Definition: cmptype.h:37
@ COMPARE_LT
Definition: cmptype.h:34
Oid collid
double cpu_operator_cost
Definition: costsize.c:134
double index_pages_fetched(double tuples_fetched, BlockNumber pages, double index_pages, PlannerInfo *root)
Definition: costsize.c:882
void cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
Definition: costsize.c:4808
double clamp_row_est(double nrows)
Definition: costsize.c:213
double cpu_index_tuple_cost
Definition: costsize.c:133
#define MONTHS_PER_YEAR
Definition: timestamp.h:108
#define USECS_PER_DAY
Definition: timestamp.h:131
#define DAYS_PER_YEAR
Definition: timestamp.h:107
double date2timestamp_no_overflow(DateADT dateVal)
Definition: date.c:753
static TimeTzADT * DatumGetTimeTzADTP(Datum X)
Definition: date.h:74
static DateADT DatumGetDateADT(Datum X)
Definition: date.h:62
static TimeADT DatumGetTimeADT(Datum X)
Definition: date.h:68
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
bool datum_image_eq(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:266
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool exprs_known_equal(PlannerInfo *root, Node *item1, Node *item2, Oid opfamily)
Definition: equivclass.c:2648
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1443
HeapTuple statext_expressions_load(Oid stxoid, bool inh, int idx)
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc0_object(type)
Definition: fe_memutils.h:75
Datum FunctionCall4Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1197
void set_fn_opclass_options(FmgrInfo *flinfo, bytea *options)
Definition: fmgr.c:2035
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1150
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:128
Datum FunctionCall5Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1224
Datum DirectFunctionCall5Coll(PGFunction func, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:887
Datum FunctionCall7Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5, Datum arg6, Datum arg7)
Definition: fmgr.c:1285
#define PG_GETARG_OID(n)
Definition: fmgr.h:275
#define DatumGetByteaPP(X)
Definition: fmgr.h:291
#define PG_RETURN_FLOAT8(x)
Definition: fmgr.h:367
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
#define InitFunctionCallInfoData(Fcinfo, Flinfo, Nargs, Collation, Context, Resultinfo)
Definition: fmgr.h:150
#define DirectFunctionCall1(func, arg1)
Definition: fmgr.h:682
#define LOCAL_FCINFO(name, nargs)
Definition: fmgr.h:110
#define FunctionCallInvoke(fcinfo)
Definition: fmgr.h:172
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define PG_GET_COLLATION()
Definition: fmgr.h:198
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define PG_GETARG_INT16(n)
Definition: fmgr.h:271
#define GIN_EXTRACTQUERY_PROC
Definition: gin.h:26
#define GIN_SEARCH_MODE_DEFAULT
Definition: gin.h:36
#define GIN_SEARCH_MODE_INCLUDE_EMPTY
Definition: gin.h:37
void ginGetStats(Relation index, GinStatsData *stats)
Definition: ginutil.c:629
Assert(PointerIsAligned(start, uint64))
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
IndexScanDesc index_beginscan(Relation heapRelation, Relation indexRelation, Snapshot snapshot, IndexScanInstrumentation *instrument, int nkeys, int norderbys)
Definition: indexam.c:256
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
ItemPointer index_getnext_tid(IndexScanDesc scan, ScanDirection direction)
Definition: indexam.c:631
bool index_fetch_heap(IndexScanDesc scan, TupleTableSlot *slot)
Definition: indexam.c:689
void index_endscan(IndexScanDesc scan)
Definition: indexam.c:392
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
void index_rescan(IndexScanDesc scan, ScanKey keys, int nkeys, ScanKey orderbys, int norderbys)
Definition: indexam.c:366
void index_deform_tuple(IndexTuple tup, TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: indextuple.c:456
bool match_index_to_operand(Node *operand, int indexcol, IndexOptInfo *index)
Definition: indxpath.c:4356
long val
Definition: informix.c:689
static struct @171 value
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
static OffsetNumber ItemPointerGetOffsetNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:114
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
ItemPointerData * ItemPointer
Definition: itemptr.h:49
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * list_copy(const List *oldlist)
Definition: list.c:1573
bool list_member_ptr(const List *list, const void *datum)
Definition: list.c:682
void list_free(List *list)
Definition: list.c:1546
bool list_member_int(const List *list, int datum)
Definition: list.c:702
void list_free_deep(List *list)
Definition: list.c:1560
#define NoLock
Definition: lockdefs.h:34
char * get_rel_name(Oid relid)
Definition: lsyscache.c:2078
void get_op_opfamily_properties(Oid opno, Oid opfamily, bool ordering_op, int *strategy, Oid *lefttype, Oid *righttype)
Definition: lsyscache.c:138
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1707
void free_attstatsslot(AttStatsSlot *sslot)
Definition: lsyscache.c:3494
bool comparison_ops_are_compatible(Oid opno1, Oid opno2)
Definition: lsyscache.c:823
void get_typlenbyvalalign(Oid typid, int16 *typlen, bool *typbyval, char *typalign)
Definition: lsyscache.c:2421
Oid get_opfamily_proc(Oid opfamily, Oid lefttype, Oid righttype, int16 procnum)
Definition: lsyscache.c:872
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1731
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2401
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1435
int get_op_opfamily_strategy(Oid opno, Oid opfamily)
Definition: lsyscache.c:85
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:168
bool get_func_leakproof(Oid funcid)
Definition: lsyscache.c:1987
char * get_func_name(Oid funcid)
Definition: lsyscache.c:1758
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2982
Oid get_opfamily_method(Oid opfid)
Definition: lsyscache.c:1386
bool get_op_hash_functions(Oid opno, RegProcedure *lhs_procno, RegProcedure *rhs_procno)
Definition: lsyscache.c:575
bool get_attstatsslot(AttStatsSlot *sslot, HeapTuple statstuple, int reqkind, Oid reqop, int flags)
Definition: lsyscache.c:3384
Oid get_negator(Oid opno)
Definition: lsyscache.c:1683
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1659
#define ATTSTATSSLOT_NUMBERS
Definition: lsyscache.h:44
#define ATTSTATSSLOT_VALUES
Definition: lsyscache.h:43
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:350
char * pstrdup(const char *in)
Definition: mcxt.c:1781
void pfree(void *pointer)
Definition: mcxt.c:1616
void * palloc0(Size size)
Definition: mcxt.c:1417
void * palloc(Size size)
Definition: mcxt.c:1387
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:472
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
Oid GetUserId(void)
Definition: miscinit.c:469
MVNDistinct * statext_ndistinct_load(Oid mvoid, bool inh)
Definition: mvdistinct.c:145
double convert_network_to_scalar(Datum value, Oid typid, bool *failure)
Definition: network.c:1435
Size hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
Definition: nodeAgg.c:1698
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:95
static bool is_opclause(const void *clause)
Definition: nodeFuncs.h:76
static bool is_funcclause(const void *clause)
Definition: nodeFuncs.h:69
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:83
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
double Cost
Definition: nodes.h:261
#define nodeTag(nodeptr)
Definition: nodes.h:139
double Selectivity
Definition: nodes.h:260
#define makeNode(_type_)
Definition: nodes.h:161
JoinType
Definition: nodes.h:298
@ JOIN_SEMI
Definition: nodes.h:317
@ JOIN_FULL
Definition: nodes.h:305
@ JOIN_INNER
Definition: nodes.h:303
@ JOIN_LEFT
Definition: nodes.h:304
@ JOIN_ANTI
Definition: nodes.h:318
uint16 OffsetNumber
Definition: off.h:24
#define PVC_RECURSE_AGGREGATES
Definition: optimizer.h:189
#define PVC_RECURSE_PLACEHOLDERS
Definition: optimizer.h:193
#define PVC_RECURSE_WINDOWFUNCS
Definition: optimizer.h:191
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
bool targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
RTEPermissionInfo * getRTEPermissionInfo(List *rteperminfos, RangeTblEntry *rte)
TargetEntry * get_tle_by_resno(List *tlist, AttrNumber resno)
@ RTE_CTE
Definition: parsenodes.h:1076
@ RTE_VALUES
Definition: parsenodes.h:1075
@ RTE_SUBQUERY
Definition: parsenodes.h:1071
@ RTE_RELATION
Definition: parsenodes.h:1070
#define ACL_SELECT
Definition: parsenodes.h:77
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:895
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:610
int16 attnum
Definition: pg_attribute.h:74
void * arg
#define INDEX_MAX_KEYS
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define linitial_oid(l)
Definition: pg_list.h:180
#define list_make2(x1, x2)
Definition: pg_list.h:214
static int list_nth_int(const List *list, int n)
Definition: pg_list.h:310
pg_locale_t pg_newlocale_from_collation(Oid collid)
Definition: pg_locale.c:1186
size_t pg_strxfrm(char *dest, const char *src, size_t destsize, pg_locale_t locale)
Definition: pg_locale.c:1431
FormData_pg_statistic * Form_pg_statistic
Definition: pg_statistic.h:135
static int scale
Definition: pgbench.c:182
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:2224
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2476
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2263
static uint32 DatumGetUInt32(Datum X)
Definition: postgres.h:232
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:393
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
static float4 DatumGetFloat4(Datum X)
Definition: postgres.h:441
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:252
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:182
static Datum UInt16GetDatum(uint16 X)
Definition: postgres.h:202
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:475
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
static char DatumGetChar(Datum X)
Definition: postgres.h:122
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:172
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
char * s1
char * s2
BoolTestType
Definition: primnodes.h:2000
@ IS_NOT_TRUE
Definition: primnodes.h:2001
@ IS_NOT_FALSE
Definition: primnodes.h:2001
@ IS_NOT_UNKNOWN
Definition: primnodes.h:2001
@ IS_TRUE
Definition: primnodes.h:2001
@ IS_UNKNOWN
Definition: primnodes.h:2001
@ IS_FALSE
Definition: primnodes.h:2001
NullTestType
Definition: primnodes.h:1976
@ IS_NULL
Definition: primnodes.h:1977
@ IS_NOT_NULL
Definition: primnodes.h:1977
GlobalVisState * GlobalVisTestFor(Relation rel)
Definition: procarray.c:4086
tree ctl root
Definition: radixtree.h:1857
#define RelationGetRelationName(relation)
Definition: rel.h:549
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:529
RelOptInfo * find_base_rel_noerr(PlannerInfo *root, int relid)
Definition: relnode.c:551
RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids)
Definition: relnode.c:642
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
void ScanKeyEntryInitialize(ScanKey entry, int flags, AttrNumber attributeNumber, StrategyNumber strategy, Oid subtype, Oid collation, RegProcedure procedure, Datum argument)
Definition: scankey.c:32
ScanDirection
Definition: sdir.h:25
@ BackwardScanDirection
Definition: sdir.h:26
@ ForwardScanDirection
Definition: sdir.h:28
static bool get_actual_variable_endpoint(Relation heapRel, Relation indexRel, ScanDirection indexscandir, ScanKey scankeys, int16 typLen, bool typByVal, TupleTableSlot *tableslot, MemoryContext outercontext, Datum *endpointDatum)
Definition: selfuncs.c:7114
bool get_restriction_variable(PlannerInfo *root, List *args, int varRelid, VariableStatData *vardata, Node **other, bool *varonleft)
Definition: selfuncs.c:5507
Datum neqsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:630
static RelOptInfo * find_join_input_rel(PlannerInfo *root, Relids relids)
Definition: selfuncs.c:7279
void mergejoinscansel(PlannerInfo *root, Node *clause, Oid opfamily, CompareType cmptype, bool nulls_first, Selectivity *leftstart, Selectivity *leftend, Selectivity *rightstart, Selectivity *rightend)
Definition: selfuncs.c:3285
bool all_rows_selectable(PlannerInfo *root, Index varno, Bitmapset *varattnos)
Definition: selfuncs.c:6304
static Node * strip_all_phvs_mutator(Node *node, void *context)
Definition: selfuncs.c:6003
static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata, Oid sortop, Oid collation, Datum *min, Datum *max)
Definition: selfuncs.c:6735
void btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:7686
List * get_quals_from_indexclauses(List *indexclauses)
Definition: selfuncs.c:7311
static void convert_string_to_scalar(char *value, double *scaledvalue, char *lobound, double *scaledlobound, char *hibound, double *scaledhibound)
Definition: selfuncs.c:5131
double var_eq_const(VariableStatData *vardata, Oid oproid, Oid collation, Datum constval, bool constisnull, bool varonleft, bool negate)
Definition: selfuncs.c:368
List * add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals)
Definition: selfuncs.c:7618
double generic_restriction_selectivity(PlannerInfo *root, Oid oproid, Oid collation, List *args, int varRelid, double default_selectivity)
Definition: selfuncs.c:987
#define VISITED_PAGES_LIMIT
void spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:8246
static double eqjoinsel_inner(FmgrInfo *eqproc, Oid collation, Oid hashLeft, Oid hashRight, VariableStatData *vardata1, VariableStatData *vardata2, double nd1, double nd2, bool isdefault1, bool isdefault2, AttStatsSlot *sslot1, AttStatsSlot *sslot2, Form_pg_statistic stats1, Form_pg_statistic stats2, bool have_mcvs1, bool have_mcvs2, bool *hasmatch1, bool *hasmatch2, int *p_nmatches)
Definition: selfuncs.c:2559
Datum scalargtsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:1562
#define DEFAULT_PAGE_CPU_MULTIPLIER
Definition: selfuncs.c:144
static bool estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel, List **varinfos, double *ndistinct)
Definition: selfuncs.c:4562
Selectivity booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: selfuncs.c:1624
Datum eqjoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:2356
double estimate_array_length(PlannerInfo *root, Node *arrayexpr)
Definition: selfuncs.c:2223
double mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation, Datum constval, bool varonleft, double *sumcommonp)
Definition: selfuncs.c:805
Selectivity nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: selfuncs.c:1782
static void examine_simple_variable(PlannerInfo *root, Var *var, VariableStatData *vardata)
Definition: selfuncs.c:6028
static List * add_unique_group_var(PlannerInfo *root, List *varinfos, Node *var, VariableStatData *vardata)
Definition: selfuncs.c:3641
Datum matchingsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3602
Datum eqsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:300
static bool mcvs_equal(MCVHashTable_hash *tab, Datum key0, Datum key1)
Definition: selfuncs.c:3105
void examine_variable(PlannerInfo *root, Node *node, int varRelid, VariableStatData *vardata)
Definition: selfuncs.c:5636
Datum scalargtjoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3248
static double convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
Definition: selfuncs.c:5211
static Datum scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq)
Definition: selfuncs.c:1473
static Node * strip_all_phvs_deep(PlannerInfo *root, Node *node)
Definition: selfuncs.c:5971
void gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:8601
static void eqjoinsel_find_matches(FmgrInfo *eqproc, Oid collation, Oid hashLeft, Oid hashRight, bool op_is_reversed, AttStatsSlot *sslot1, AttStatsSlot *sslot2, int nvalues1, int nvalues2, bool *hasmatch1, bool *hasmatch2, int *p_nmatches, double *p_matchprodfreq)
Definition: selfuncs.c:2909
static double convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure)
Definition: selfuncs.c:5441
static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure)
Definition: selfuncs.c:5068
#define EQJOINSEL_MCV_HASH_THRESHOLD
Definition: selfuncs.c:154
static Node * strip_array_coercion(Node *node)
Definition: selfuncs.c:1867
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset, EstimationInfo *estinfo)
Definition: selfuncs.c:3771
static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue, Datum lobound, Datum hibound, Oid boundstypid, double *scaledlobound, double *scaledhibound)
Definition: selfuncs.c:4920
double ineq_histogram_selectivity(PlannerInfo *root, VariableStatData *vardata, Oid opoid, FmgrInfo *opproc, bool isgt, bool iseq, Oid collation, Datum constval, Oid consttype)
Definition: selfuncs.c:1114
void genericcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, GenericCosts *costs)
Definition: selfuncs.c:7395
List * estimate_multivariate_bucketsize(PlannerInfo *root, RelOptInfo *inner, List *hashclauses, Selectivity *innerbucketsize)
Definition: selfuncs.c:4123
Datum scalarltjoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3230
static bool gincost_pattern(IndexOptInfo *index, int indexcol, Oid clause_op, Datum query, GinQualCounts *counts)
Definition: selfuncs.c:8321
static bool contain_placeholder_walker(Node *node, void *context)
Definition: selfuncs.c:5988
struct MCVHashTable_hash MCVHashTable_hash
Definition: selfuncs.c:180
void brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:8991
void gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:8191
Datum scalargejoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3257
static double eqjoinsel_semi(FmgrInfo *eqproc, Oid collation, Oid hashLeft, Oid hashRight, bool op_is_reversed, VariableStatData *vardata1, VariableStatData *vardata2, double nd1, double nd2, bool isdefault1, bool isdefault2, AttStatsSlot *sslot1, AttStatsSlot *sslot2, Form_pg_statistic stats1, Form_pg_statistic stats2, bool have_mcvs1, bool have_mcvs2, bool *hasmatch1, bool *hasmatch2, int *p_nmatches, RelOptInfo *inner_rel)
Definition: selfuncs.c:2718
get_index_stats_hook_type get_index_stats_hook
Definition: selfuncs.c:184
Datum matchingjoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3620
static bool gincost_scalararrayopexpr(PlannerInfo *root, IndexOptInfo *index, int indexcol, ScalarArrayOpExpr *clause, double numIndexEntries, GinQualCounts *counts)
Definition: selfuncs.c:8485
struct MCVHashEntry MCVHashEntry
double histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation, Datum constval, bool varonleft, int min_hist_size, int n_skip, int *hist_size)
Definition: selfuncs.c:896
static uint32 hash_mcv(MCVHashTable_hash *tab, Datum key)
Definition: selfuncs.c:3091
Selectivity boolvarsel(PlannerInfo *root, Node *arg, int varRelid)
Definition: selfuncs.c:1585
static void examine_indexcol_variable(PlannerInfo *root, IndexOptInfo *index, int indexcol, VariableStatData *vardata)
Definition: selfuncs.c:6499
struct MCVHashContext MCVHashContext
Datum scalarlesel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:1553
Datum scalargesel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:1571
static double scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq, Oid collation, VariableStatData *vardata, Datum constval, Oid consttype)
Definition: selfuncs.c:653
static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen, int rangelo, int rangehi)
Definition: selfuncs.c:5398
Selectivity scalararraysel(PlannerInfo *root, ScalarArrayOpExpr *clause, bool is_join_clause, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: selfuncs.c:1900
Datum scalarltsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:1544
static double btcost_correlation(IndexOptInfo *index, VariableStatData *vardata)
Definition: selfuncs.c:7649
double var_eq_non_const(VariableStatData *vardata, Oid oproid, Oid collation, Node *other, bool varonleft, bool negate)
Definition: selfuncs.c:539
static bool get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata, Oid sortop, Oid collation, Datum *min, Datum *max)
Definition: selfuncs.c:6925
Datum scalarlejoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3239
double get_variable_numdistinct(VariableStatData *vardata, bool *isdefault)
Definition: selfuncs.c:6602
bool statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
Definition: selfuncs.c:6573
void hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: selfuncs.c:8149
Datum neqjoinsel(PG_FUNCTION_ARGS)
Definition: selfuncs.c:3152
double estimate_hashagg_tablesize(PlannerInfo *root, Path *path, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: selfuncs.c:4521
void estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets, Selectivity *mcv_freq, Selectivity *bucketsize_frac)
Definition: selfuncs.c:4390
static void convert_bytea_to_scalar(Datum value, double *scaledvalue, Datum lobound, double *scaledlobound, Datum hibound, double *scaledhibound)
Definition: selfuncs.c:5350
Cost index_other_operands_eval_cost(PlannerInfo *root, List *indexquals)
Definition: selfuncs.c:7341
get_relation_stats_hook_type get_relation_stats_hook
Definition: selfuncs.c:183
Selectivity rowcomparesel(PlannerInfo *root, RowCompareExpr *clause, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: selfuncs.c:2289
static bool gincost_opexpr(PlannerInfo *root, IndexOptInfo *index, int indexcol, OpExpr *clause, GinQualCounts *counts)
Definition: selfuncs.c:8435
static void ReleaseDummy(HeapTuple tuple)
Definition: selfuncs.c:5595
static char * convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure)
Definition: selfuncs.c:5262
static double eqsel_internal(PG_FUNCTION_ARGS, bool negate)
Definition: selfuncs.c:309
static void get_stats_slot_range(AttStatsSlot *sslot, Oid opfuncoid, FmgrInfo *opproc, Oid collation, int16 typLen, bool typByVal, Datum *min, Datum *max, bool *p_have_data)
Definition: selfuncs.c:6862
void get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo, VariableStatData *vardata1, VariableStatData *vardata2, bool *join_is_reversed)
Definition: selfuncs.c:5567
#define DEFAULT_NOT_UNK_SEL
Definition: selfuncs.h:56
#define ReleaseVariableStats(vardata)
Definition: selfuncs.h:101
#define CLAMP_PROBABILITY(p)
Definition: selfuncs.h:63
bool(* get_relation_stats_hook_type)(PlannerInfo *root, RangeTblEntry *rte, AttrNumber attnum, VariableStatData *vardata)
Definition: selfuncs.h:140
#define DEFAULT_UNK_SEL
Definition: selfuncs.h:55
#define DEFAULT_RANGE_INEQ_SEL
Definition: selfuncs.h:40
bool(* get_index_stats_hook_type)(PlannerInfo *root, Oid indexOid, AttrNumber indexattnum, VariableStatData *vardata)
Definition: selfuncs.h:145
#define DEFAULT_EQ_SEL
Definition: selfuncs.h:34
#define DEFAULT_MATCHING_SEL
Definition: selfuncs.h:49
#define DEFAULT_INEQ_SEL
Definition: selfuncs.h:37
#define DEFAULT_NUM_DISTINCT
Definition: selfuncs.h:52
#define SELFLAG_USED_DEFAULT
Definition: selfuncs.h:76
#define SK_SEARCHNOTNULL
Definition: skey.h:122
#define SK_ISNULL
Definition: skey.h:115
#define InitNonVacuumableSnapshot(snapshotdata, vistestp)
Definition: snapmgr.h:50
void get_tablespace_page_costs(Oid spcid, double *spc_random_page_cost, double *spc_seq_page_cost)
Definition: spccache.c:182
uint16 StrategyNumber
Definition: stratnum.h:22
#define InvalidStrategy
Definition: stratnum.h:24
#define BTLessStrategyNumber
Definition: stratnum.h:29
#define BTEqualStrategyNumber
Definition: stratnum.h:31
Size transitionSpace
Definition: pathnodes.h:62
Index parent_relid
Definition: pathnodes.h:3192
int num_child_cols
Definition: pathnodes.h:3228
Oid valuetype
Definition: lsyscache.h:53
Datum * values
Definition: lsyscache.h:54
float4 * numbers
Definition: lsyscache.h:57
int nnumbers
Definition: lsyscache.h:58
BlockNumber revmapNumPages
Definition: brin.h:36
BlockNumber pagesPerRange
Definition: brin.h:35
uint32 flags
Definition: selfuncs.h:80
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
NullableDatum args[FLEXIBLE_ARRAY_MEMBER]
Definition: fmgr.h:95
Selectivity indexSelectivity
Definition: selfuncs.h:129
Cost indexStartupCost
Definition: selfuncs.h:127
double indexCorrelation
Definition: selfuncs.h:130
double spc_random_page_cost
Definition: selfuncs.h:135
double num_sa_scans
Definition: selfuncs.h:136
Cost indexTotalCost
Definition: selfuncs.h:128
double numIndexPages
Definition: selfuncs.h:133
double numIndexTuples
Definition: selfuncs.h:134
bool attHasNormalScan[INDEX_MAX_KEYS]
Definition: selfuncs.c:8308
double exactEntries
Definition: selfuncs.c:8310
double arrayScans
Definition: selfuncs.c:8312
double partialEntries
Definition: selfuncs.c:8309
bool attHasFullScan[INDEX_MAX_KEYS]
Definition: selfuncs.c:8307
double searchEntries
Definition: selfuncs.c:8311
BlockNumber nDataPages
Definition: gin.h:60
BlockNumber nPendingPages
Definition: gin.h:57
BlockNumber nEntryPages
Definition: gin.h:59
int64 nEntries
Definition: gin.h:61
BlockNumber nTotalPages
Definition: gin.h:58
RelOptInfo * rel
Definition: selfuncs.c:3635
double ndistinct
Definition: selfuncs.c:3636
bool isdefault
Definition: selfuncs.c:3637
Node * var
Definition: selfuncs.c:3634
AttrNumber indexcol
Definition: pathnodes.h:2009
List * indexquals
Definition: pathnodes.h:2007
List * indexclauses
Definition: pathnodes.h:1959
List * indexorderbys
Definition: pathnodes.h:1960
IndexOptInfo * indexinfo
Definition: pathnodes.h:1958
IndexTuple xs_itup
Definition: relscan.h:169
struct TupleDescData * xs_itupdesc
Definition: relscan.h:170
Definition: pg_list.h:54
int16 hash_typlen
Definition: selfuncs.c:176
FunctionCallInfo hash_fcinfo
Definition: selfuncs.c:172
bool op_is_reversed
Definition: selfuncs.c:173
FunctionCallInfo equal_fcinfo
Definition: selfuncs.c:171
bool insert_mode
Definition: selfuncs.c:174
bool hash_typbyval
Definition: selfuncs.c:175
char status
Definition: selfuncs.c:165
uint32 hash
Definition: selfuncs.c:164
Datum value
Definition: selfuncs.c:162
double ndistinct
Definition: statistics.h:28
AttrNumber * attributes
Definition: statistics.h:30
uint32 nitems
Definition: statistics.h:38
MVNDistinctItem items[FLEXIBLE_ARRAY_MEMBER]
Definition: statistics.h:39
Definition: nodes.h:135
NullTestType nulltesttype
Definition: primnodes.h:1984
Datum value
Definition: postgres.h:87
Oid opno
Definition: primnodes.h:850
List * args
Definition: primnodes.h:868
List * cte_plan_ids
Definition: pathnodes.h:333
Query * parse
Definition: pathnodes.h:227
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * returningList
Definition: parsenodes.h:214
Node * setOperations
Definition: parsenodes.h:236
List * cteList
Definition: parsenodes.h:173
List * groupClause
Definition: parsenodes.h:216
List * targetList
Definition: parsenodes.h:198
List * groupingSets
Definition: parsenodes.h:220
List * distinctClause
Definition: parsenodes.h:226
char * ctename
Definition: parsenodes.h:1254
Index ctelevelsup
Definition: parsenodes.h:1256
RTEKind rtekind
Definition: parsenodes.h:1105
Relids relids
Definition: pathnodes.h:927
Index relid
Definition: pathnodes.h:973
List * statlist
Definition: pathnodes.h:997
Cardinality tuples
Definition: pathnodes.h:1000
BlockNumber pages
Definition: pathnodes.h:999
List * indexlist
Definition: pathnodes.h:995
PlannerInfo * subroot
Definition: pathnodes.h:1004
Cardinality rows
Definition: pathnodes.h:933
RTEKind rtekind
Definition: pathnodes.h:977
Expr * clause
Definition: pathnodes.h:2792
Relids syn_lefthand
Definition: pathnodes.h:3119
Relids min_righthand
Definition: pathnodes.h:3118
JoinType jointype
Definition: pathnodes.h:3121
Relids syn_righthand
Definition: pathnodes.h:3120
Bitmapset * keys
Definition: pathnodes.h:1431
Expr * expr
Definition: primnodes.h:2239
Definition: date.h:28
TimeADT time
Definition: date.h:29
int32 zone
Definition: date.h:30
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
Index varlevelsup
Definition: primnodes.h:294
HeapTuple statsTuple
Definition: selfuncs.h:89
int32 atttypmod
Definition: selfuncs.h:94
RelOptInfo * rel
Definition: selfuncs.h:88
void(* freefunc)(HeapTuple tuple)
Definition: selfuncs.h:91
Definition: type.h:96
Definition: c.h:760
Definition: c.h:706
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
#define TableOidAttributeNumber
Definition: sysattr.h:26
#define SelfItemPointerAttributeNumber
Definition: sysattr.h:21
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache3(int cacheId, Datum key1, Datum key2, Datum key3)
Definition: syscache.c:240
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:92
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition: tuptable.h:457
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
#define TYPECACHE_EQ_OPR
Definition: typcache.h:138
static Interval * DatumGetIntervalP(Datum X)
Definition: timestamp.h:40
static Timestamp DatumGetTimestamp(Datum X)
Definition: timestamp.h:28
static TimestampTz DatumGetTimestampTz(Datum X)
Definition: timestamp.h:34
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114
List * pull_var_clause(Node *node, int flags)
Definition: var.c:653
static Size VARSIZE_ANY_EXHDR(const void *PTR)
Definition: varatt.h:472
static char * VARDATA_ANY(const void *PTR)
Definition: varatt.h:486
#define VM_ALL_VISIBLE(r, b, v)
Definition: visibilitymap.h:25