PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
plancat.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * plancat.c
4 * routines for accessing the system catalogs
5 *
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 *
11 * IDENTIFICATION
12 * src/backend/optimizer/util/plancat.c
13 *
14 *-------------------------------------------------------------------------
15 */
16#include "postgres.h"
17
18#include <math.h>
19
20#include "access/genam.h"
21#include "access/htup_details.h"
22#include "access/nbtree.h"
23#include "access/sysattr.h"
24#include "access/table.h"
25#include "access/tableam.h"
26#include "access/transam.h"
27#include "access/xlog.h"
28#include "catalog/catalog.h"
29#include "catalog/heap.h"
30#include "catalog/pg_am.h"
31#include "catalog/pg_proc.h"
34#include "foreign/fdwapi.h"
35#include "miscadmin.h"
36#include "nodes/makefuncs.h"
37#include "nodes/nodeFuncs.h"
38#include "nodes/supportnodes.h"
39#include "optimizer/cost.h"
40#include "optimizer/optimizer.h"
41#include "optimizer/plancat.h"
43#include "parser/parsetree.h"
47#include "storage/bufmgr.h"
48#include "tcop/tcopprot.h"
49#include "utils/builtins.h"
50#include "utils/lsyscache.h"
51#include "utils/partcache.h"
52#include "utils/rel.h"
53#include "utils/snapmgr.h"
54#include "utils/syscache.h"
55
56/* GUC parameter */
58
59/* Hook for plugins to get control in get_relation_info() */
61
62
64 Relation relation, bool inhparent);
66 List *idxExprs);
68 Oid relationObjectId, RelOptInfo *rel,
69 bool include_noinherit,
70 bool include_notnull,
71 bool include_partition);
73 Relation heapRelation);
74static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
76 Relation relation);
78 Relation relation);
79static void set_baserel_partition_key_exprs(Relation relation,
80 RelOptInfo *rel);
82 RelOptInfo *rel);
83
84
85/*
86 * get_relation_info -
87 * Retrieves catalog information for a given relation.
88 *
89 * Given the Oid of the relation, return the following info into fields
90 * of the RelOptInfo struct:
91 *
92 * min_attr lowest valid AttrNumber
93 * max_attr highest valid AttrNumber
94 * indexlist list of IndexOptInfos for relation's indexes
95 * statlist list of StatisticExtInfo for relation's statistic objects
96 * serverid if it's a foreign table, the server OID
97 * fdwroutine if it's a foreign table, the FDW function pointers
98 * pages number of pages
99 * tuples number of tuples
100 * rel_parallel_workers user-defined number of parallel workers
101 *
102 * Also, add information about the relation's foreign keys to root->fkey_list.
103 *
104 * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
105 * cases these are left as zeroes, but sometimes we need to compute attr
106 * widths here, and we may as well cache the results for costsize.c.
107 *
108 * If inhparent is true, all we need to do is set up the attr arrays:
109 * the RelOptInfo actually represents the appendrel formed by an inheritance
110 * tree, and so the parent rel's physical size and index information isn't
111 * important for it, however, for partitioned tables, we do populate the
112 * indexlist as the planner uses unique indexes as unique proofs for certain
113 * optimizations.
114 */
115void
116get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
117 RelOptInfo *rel)
118{
119 Index varno = rel->relid;
120 Relation relation;
121 bool hasindex;
122 List *indexinfos = NIL;
123
124 /*
125 * We need not lock the relation since it was already locked, either by
126 * the rewriter or when expand_inherited_rtentry() added it to the query's
127 * rangetable.
128 */
129 relation = table_open(relationObjectId, NoLock);
130
131 /*
132 * Relations without a table AM can be used in a query only if they are of
133 * special-cased relkinds. This check prevents us from crashing later if,
134 * for example, a view's ON SELECT rule has gone missing. Note that
135 * table_open() already rejected indexes and composite types; spell the
136 * error the same way it does.
137 */
138 if (!relation->rd_tableam)
139 {
140 if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
141 relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
143 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
144 errmsg("cannot open relation \"%s\"",
145 RelationGetRelationName(relation)),
146 errdetail_relkind_not_supported(relation->rd_rel->relkind)));
147 }
148
149 /* Temporary and unlogged relations are inaccessible during recovery. */
150 if (!RelationIsPermanent(relation) && RecoveryInProgress())
152 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
153 errmsg("cannot access temporary or unlogged relations during recovery")));
154
157 rel->reltablespace = RelationGetForm(relation)->reltablespace;
158
159 Assert(rel->max_attr >= rel->min_attr);
160 rel->attr_needed = (Relids *)
161 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
162 rel->attr_widths = (int32 *)
163 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
164
165 /*
166 * Record which columns are defined as NOT NULL. We leave this
167 * unpopulated for non-partitioned inheritance parent relations as it's
168 * ambiguous as to what it means. Some child tables may have a NOT NULL
169 * constraint for a column while others may not. We could work harder and
170 * build a unioned set of all child relations notnullattnums, but there's
171 * currently no need. The RelOptInfo corresponding to the !inh
172 * RangeTblEntry does get populated.
173 */
174 if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
175 {
176 for (int i = 0; i < relation->rd_att->natts; i++)
177 {
178 CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
179
180 if (attr->attnotnull)
181 {
183 i + 1);
184
185 /*
186 * Per RemoveAttributeById(), dropped columns will have their
187 * attnotnull unset, so we needn't check for dropped columns
188 * in the above condition.
189 */
190 Assert(!attr->attisdropped);
191 }
192 }
193 }
194
195 /*
196 * Estimate relation size --- unless it's an inheritance parent, in which
197 * case the size we want is not the rel's own size but the size of its
198 * inheritance tree. That will be computed in set_append_rel_size().
199 */
200 if (!inhparent)
201 estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
202 &rel->pages, &rel->tuples, &rel->allvisfrac);
203
204 /* Retrieve the parallel_workers reloption, or -1 if not set. */
206
207 /*
208 * Make list of indexes. Ignore indexes on system catalogs if told to.
209 * Don't bother with indexes from traditional inheritance parents. For
210 * partitioned tables, we need a list of at least unique indexes as these
211 * serve as unique proofs for certain planner optimizations. However,
212 * let's not discriminate here and just record all partitioned indexes
213 * whether they're unique indexes or not.
214 */
215 if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
216 || (IgnoreSystemIndexes && IsSystemRelation(relation)))
217 hasindex = false;
218 else
219 hasindex = relation->rd_rel->relhasindex;
220
221 if (hasindex)
222 {
223 List *indexoidlist;
224 LOCKMODE lmode;
225 ListCell *l;
226
227 indexoidlist = RelationGetIndexList(relation);
228
229 /*
230 * For each index, we get the same type of lock that the executor will
231 * need, and do not release it. This saves a couple of trips to the
232 * shared lock manager while not creating any real loss of
233 * concurrency, because no schema changes could be happening on the
234 * index while we hold lock on the parent rel, and no lock type used
235 * for queries blocks any other kind of index operation.
236 */
237 lmode = root->simple_rte_array[varno]->rellockmode;
238
239 foreach(l, indexoidlist)
240 {
241 Oid indexoid = lfirst_oid(l);
242 Relation indexRelation;
244 IndexAmRoutine *amroutine = NULL;
245 IndexOptInfo *info;
246 int ncolumns,
247 nkeycolumns;
248 int i;
249
250 /*
251 * Extract info from the relation descriptor for the index.
252 */
253 indexRelation = index_open(indexoid, lmode);
254 index = indexRelation->rd_index;
255
256 /*
257 * Ignore invalid indexes, since they can't safely be used for
258 * queries. Note that this is OK because the data structure we
259 * are constructing is only used by the planner --- the executor
260 * still needs to insert into "invalid" indexes, if they're marked
261 * indisready.
262 */
263 if (!index->indisvalid)
264 {
265 index_close(indexRelation, NoLock);
266 continue;
267 }
268
269 /*
270 * If the index is valid, but cannot yet be used, ignore it; but
271 * mark the plan we are generating as transient. See
272 * src/backend/access/heap/README.HOT for discussion.
273 */
274 if (index->indcheckxmin &&
277 {
278 root->glob->transientPlan = true;
279 index_close(indexRelation, NoLock);
280 continue;
281 }
282
283 info = makeNode(IndexOptInfo);
284
285 info->indexoid = index->indexrelid;
286 info->reltablespace =
287 RelationGetForm(indexRelation)->reltablespace;
288 info->rel = rel;
289 info->ncolumns = ncolumns = index->indnatts;
290 info->nkeycolumns = nkeycolumns = index->indnkeyatts;
291
292 info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
293 info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
294 info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
295 info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
296 info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
297
298 for (i = 0; i < ncolumns; i++)
299 {
300 info->indexkeys[i] = index->indkey.values[i];
301 info->canreturn[i] = index_can_return(indexRelation, i + 1);
302 }
303
304 for (i = 0; i < nkeycolumns; i++)
305 {
306 info->opfamily[i] = indexRelation->rd_opfamily[i];
307 info->opcintype[i] = indexRelation->rd_opcintype[i];
308 info->indexcollations[i] = indexRelation->rd_indcollation[i];
309 }
310
311 info->relam = indexRelation->rd_rel->relam;
312
313 /*
314 * We don't have an AM for partitioned indexes, so we'll just
315 * NULLify the AM related fields for those.
316 */
317 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
318 {
319 /* We copy just the fields we need, not all of rd_indam */
320 amroutine = indexRelation->rd_indam;
321 info->amcanorderbyop = amroutine->amcanorderbyop;
322 info->amoptionalkey = amroutine->amoptionalkey;
323 info->amsearcharray = amroutine->amsearcharray;
324 info->amsearchnulls = amroutine->amsearchnulls;
325 info->amcanparallel = amroutine->amcanparallel;
326 info->amhasgettuple = (amroutine->amgettuple != NULL);
327 info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
328 relation->rd_tableam->scan_bitmap_next_block != NULL;
329 info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
330 amroutine->amrestrpos != NULL);
331 info->amcostestimate = amroutine->amcostestimate;
332 Assert(info->amcostestimate != NULL);
333
334 /* Fetch index opclass options */
335 info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
336
337 /*
338 * Fetch the ordering information for the index, if any.
339 */
340 if (info->relam == BTREE_AM_OID)
341 {
342 /*
343 * If it's a btree index, we can use its opfamily OIDs
344 * directly as the sort ordering opfamily OIDs.
345 */
346 Assert(amroutine->amcanorder);
347
348 info->sortopfamily = info->opfamily;
349 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351
352 for (i = 0; i < nkeycolumns; i++)
353 {
354 int16 opt = indexRelation->rd_indoption[i];
355
356 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
357 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
358 }
359 }
360 else if (amroutine->amcanorder)
361 {
362 /*
363 * Otherwise, identify the corresponding btree opfamilies
364 * by trying to map this index's "<" operators into btree.
365 * Since "<" uniquely defines the behavior of a sort
366 * order, this is a sufficient test.
367 *
368 * XXX This method is rather slow and also requires the
369 * undesirable assumption that the other index AM numbers
370 * its strategies the same as btree. It'd be better to
371 * have a way to explicitly declare the corresponding
372 * btree opfamily for each opfamily of the other index
373 * type. But given the lack of current or foreseeable
374 * amcanorder index types, it's not worth expending more
375 * effort on now.
376 */
377 info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
378 info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
379 info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
380
381 for (i = 0; i < nkeycolumns; i++)
382 {
383 int16 opt = indexRelation->rd_indoption[i];
384 Oid ltopr;
385 Oid btopfamily;
386 Oid btopcintype;
387 int16 btstrategy;
388
389 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
390 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
391
392 ltopr = get_opfamily_member(info->opfamily[i],
393 info->opcintype[i],
394 info->opcintype[i],
396 if (OidIsValid(ltopr) &&
398 &btopfamily,
399 &btopcintype,
400 &btstrategy) &&
401 btopcintype == info->opcintype[i] &&
402 btstrategy == BTLessStrategyNumber)
403 {
404 /* Successful mapping */
405 info->sortopfamily[i] = btopfamily;
406 }
407 else
408 {
409 /* Fail ... quietly treat index as unordered */
410 info->sortopfamily = NULL;
411 info->reverse_sort = NULL;
412 info->nulls_first = NULL;
413 break;
414 }
415 }
416 }
417 else
418 {
419 info->sortopfamily = NULL;
420 info->reverse_sort = NULL;
421 info->nulls_first = NULL;
422 }
423 }
424 else
425 {
426 info->amcanorderbyop = false;
427 info->amoptionalkey = false;
428 info->amsearcharray = false;
429 info->amsearchnulls = false;
430 info->amcanparallel = false;
431 info->amhasgettuple = false;
432 info->amhasgetbitmap = false;
433 info->amcanmarkpos = false;
434 info->amcostestimate = NULL;
435
436 info->sortopfamily = NULL;
437 info->reverse_sort = NULL;
438 info->nulls_first = NULL;
439 }
440
441 /*
442 * Fetch the index expressions and predicate, if any. We must
443 * modify the copies we obtain from the relcache to have the
444 * correct varno for the parent relation, so that they match up
445 * correctly against qual clauses.
446 */
447 info->indexprs = RelationGetIndexExpressions(indexRelation);
448 info->indpred = RelationGetIndexPredicate(indexRelation);
449 if (info->indexprs && varno != 1)
450 ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
451 if (info->indpred && varno != 1)
452 ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
453
454 /* Build targetlist using the completed indexprs data */
455 info->indextlist = build_index_tlist(root, info, relation);
456
457 info->indrestrictinfo = NIL; /* set later, in indxpath.c */
458 info->predOK = false; /* set later, in indxpath.c */
459 info->unique = index->indisunique;
460 info->nullsnotdistinct = index->indnullsnotdistinct;
461 info->immediate = index->indimmediate;
462 info->hypothetical = false;
463
464 /*
465 * Estimate the index size. If it's not a partial index, we lock
466 * the number-of-tuples estimate to equal the parent table; if it
467 * is partial then we have to use the same methods as we would for
468 * a table, except we can be sure that the index is not larger
469 * than the table. We must ignore partitioned indexes here as
470 * there are not physical indexes.
471 */
472 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
473 {
474 if (info->indpred == NIL)
475 {
476 info->pages = RelationGetNumberOfBlocks(indexRelation);
477 info->tuples = rel->tuples;
478 }
479 else
480 {
481 double allvisfrac; /* dummy */
482
483 estimate_rel_size(indexRelation, NULL,
484 &info->pages, &info->tuples, &allvisfrac);
485 if (info->tuples > rel->tuples)
486 info->tuples = rel->tuples;
487 }
488
489 /*
490 * Get tree height while we have the index open
491 */
492 if (amroutine->amgettreeheight)
493 {
494 info->tree_height = amroutine->amgettreeheight(indexRelation);
495 }
496 else
497 {
498 /* For other index types, just set it to "unknown" for now */
499 info->tree_height = -1;
500 }
501 }
502 else
503 {
504 /* Zero these out for partitioned indexes */
505 info->pages = 0;
506 info->tuples = 0.0;
507 info->tree_height = -1;
508 }
509
510 index_close(indexRelation, NoLock);
511
512 /*
513 * We've historically used lcons() here. It'd make more sense to
514 * use lappend(), but that causes the planner to change behavior
515 * in cases where two indexes seem equally attractive. For now,
516 * stick with lcons() --- few tables should have so many indexes
517 * that the O(N^2) behavior of lcons() is really a problem.
518 */
519 indexinfos = lcons(info, indexinfos);
520 }
521
522 list_free(indexoidlist);
523 }
524
525 rel->indexlist = indexinfos;
526
527 rel->statlist = get_relation_statistics(rel, relation);
528
529 /* Grab foreign-table info using the relcache, while we have it */
530 if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
531 {
532 /* Check if the access to foreign tables is restricted */
534 {
535 /* there must not be built-in foreign tables */
537
539 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
540 errmsg("access to non-system foreign table is restricted")));
541 }
542
544 rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
545 }
546 else
547 {
548 rel->serverid = InvalidOid;
549 rel->fdwroutine = NULL;
550 }
551
552 /* Collect info about relation's foreign keys, if relevant */
553 get_relation_foreign_keys(root, rel, relation, inhparent);
554
555 /* Collect info about functions implemented by the rel's table AM. */
556 if (relation->rd_tableam &&
557 relation->rd_tableam->scan_set_tidrange != NULL &&
558 relation->rd_tableam->scan_getnextslot_tidrange != NULL)
560
561 /*
562 * Collect info about relation's partitioning scheme, if any. Only
563 * inheritance parents may be partitioned.
564 */
565 if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
566 set_relation_partition_info(root, rel, relation);
567
568 table_close(relation, NoLock);
569
570 /*
571 * Allow a plugin to editorialize on the info we obtained from the
572 * catalogs. Actions might include altering the assumed relation size,
573 * removing an index, or adding a hypothetical index to the indexlist.
574 */
576 (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
577}
578
579/*
580 * get_relation_foreign_keys -
581 * Retrieves foreign key information for a given relation.
582 *
583 * ForeignKeyOptInfos for relevant foreign keys are created and added to
584 * root->fkey_list. We do this now while we have the relcache entry open.
585 * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
586 * until all RelOptInfos have been built, but the cost of re-opening the
587 * relcache entries would probably exceed any savings.
588 */
589static void
591 Relation relation, bool inhparent)
592{
593 List *rtable = root->parse->rtable;
594 List *cachedfkeys;
595 ListCell *lc;
596
597 /*
598 * If it's not a baserel, we don't care about its FKs. Also, if the query
599 * references only a single relation, we can skip the lookup since no FKs
600 * could satisfy the requirements below.
601 */
602 if (rel->reloptkind != RELOPT_BASEREL ||
603 list_length(rtable) < 2)
604 return;
605
606 /*
607 * If it's the parent of an inheritance tree, ignore its FKs. We could
608 * make useful FK-based deductions if we found that all members of the
609 * inheritance tree have equivalent FK constraints, but detecting that
610 * would require code that hasn't been written.
611 */
612 if (inhparent)
613 return;
614
615 /*
616 * Extract data about relation's FKs from the relcache. Note that this
617 * list belongs to the relcache and might disappear in a cache flush, so
618 * we must not do any further catalog access within this function.
619 */
620 cachedfkeys = RelationGetFKeyList(relation);
621
622 /*
623 * Figure out which FKs are of interest for this query, and create
624 * ForeignKeyOptInfos for them. We want only FKs that reference some
625 * other RTE of the current query. In queries containing self-joins,
626 * there might be more than one other RTE for a referenced table, and we
627 * should make a ForeignKeyOptInfo for each occurrence.
628 *
629 * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
630 * too hard to identify those here, so we might end up making some useless
631 * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
632 * them again.
633 */
634 foreach(lc, cachedfkeys)
635 {
637 Index rti;
638 ListCell *lc2;
639
640 /* conrelid should always be that of the table we're considering */
641 Assert(cachedfk->conrelid == RelationGetRelid(relation));
642
643 /* Scan to find other RTEs matching confrelid */
644 rti = 0;
645 foreach(lc2, rtable)
646 {
647 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
648 ForeignKeyOptInfo *info;
649
650 rti++;
651 /* Ignore if not the correct table */
652 if (rte->rtekind != RTE_RELATION ||
653 rte->relid != cachedfk->confrelid)
654 continue;
655 /* Ignore if it's an inheritance parent; doesn't really match */
656 if (rte->inh)
657 continue;
658 /* Ignore self-referential FKs; we only care about joins */
659 if (rti == rel->relid)
660 continue;
661
662 /* OK, let's make an entry */
664 info->con_relid = rel->relid;
665 info->ref_relid = rti;
666 info->nkeys = cachedfk->nkeys;
667 memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
668 memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
669 memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
670 /* zero out fields to be filled by match_foreign_keys_to_quals */
671 info->nmatched_ec = 0;
672 info->nconst_ec = 0;
673 info->nmatched_rcols = 0;
674 info->nmatched_ri = 0;
675 memset(info->eclass, 0, sizeof(info->eclass));
676 memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
677 memset(info->rinfos, 0, sizeof(info->rinfos));
678
679 root->fkey_list = lappend(root->fkey_list, info);
680 }
681 }
682}
683
684/*
685 * infer_arbiter_indexes -
686 * Determine the unique indexes used to arbitrate speculative insertion.
687 *
688 * Uses user-supplied inference clause expressions and predicate to match a
689 * unique index from those defined and ready on the heap relation (target).
690 * An exact match is required on columns/expressions (although they can appear
691 * in any order). However, the predicate given by the user need only restrict
692 * insertion to a subset of some part of the table covered by some particular
693 * unique index (in particular, a partial unique index) in order to be
694 * inferred.
695 *
696 * The implementation does not consider which B-Tree operator class any
697 * particular available unique index attribute uses, unless one was specified
698 * in the inference specification. The same is true of collations. In
699 * particular, there is no system dependency on the default operator class for
700 * the purposes of inference. If no opclass (or collation) is specified, then
701 * all matching indexes (that may or may not match the default in terms of
702 * each attribute opclass/collation) are used for inference.
703 */
704List *
706{
707 OnConflictExpr *onconflict = root->parse->onConflict;
708
709 /* Iteration state */
710 Index varno;
711 RangeTblEntry *rte;
712 Relation relation;
713 Oid indexOidFromConstraint = InvalidOid;
714 List *indexList;
715 ListCell *l;
716
717 /* Normalized inference attributes and inference expressions: */
718 Bitmapset *inferAttrs = NULL;
719 List *inferElems = NIL;
720
721 /* Results */
722 List *results = NIL;
723
724 /*
725 * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
726 * specification or named constraint. ON CONFLICT DO UPDATE statements
727 * must always provide one or the other (but parser ought to have caught
728 * that already).
729 */
730 if (onconflict->arbiterElems == NIL &&
731 onconflict->constraint == InvalidOid)
732 return NIL;
733
734 /*
735 * We need not lock the relation since it was already locked, either by
736 * the rewriter or when expand_inherited_rtentry() added it to the query's
737 * rangetable.
738 */
739 varno = root->parse->resultRelation;
740 rte = rt_fetch(varno, root->parse->rtable);
741
742 relation = table_open(rte->relid, NoLock);
743
744 /*
745 * Build normalized/BMS representation of plain indexed attributes, as
746 * well as a separate list of expression items. This simplifies matching
747 * the cataloged definition of indexes.
748 */
749 foreach(l, onconflict->arbiterElems)
750 {
751 InferenceElem *elem = (InferenceElem *) lfirst(l);
752 Var *var;
753 int attno;
754
755 if (!IsA(elem->expr, Var))
756 {
757 /* If not a plain Var, just shove it in inferElems for now */
758 inferElems = lappend(inferElems, elem->expr);
759 continue;
760 }
761
762 var = (Var *) elem->expr;
763 attno = var->varattno;
764
765 if (attno == 0)
767 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
768 errmsg("whole row unique index inference specifications are not supported")));
769
770 inferAttrs = bms_add_member(inferAttrs,
772 }
773
774 /*
775 * Lookup named constraint's index. This is not immediately returned
776 * because some additional sanity checks are required.
777 */
778 if (onconflict->constraint != InvalidOid)
779 {
780 indexOidFromConstraint = get_constraint_index(onconflict->constraint);
781
782 if (indexOidFromConstraint == InvalidOid)
784 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
785 errmsg("constraint in ON CONFLICT clause has no associated index")));
786 }
787
788 /*
789 * Using that representation, iterate through the list of indexes on the
790 * target relation to try and find a match
791 */
792 indexList = RelationGetIndexList(relation);
793
794 foreach(l, indexList)
795 {
796 Oid indexoid = lfirst_oid(l);
797 Relation idxRel;
798 Form_pg_index idxForm;
799 Bitmapset *indexedAttrs;
800 List *idxExprs;
801 List *predExprs;
802 AttrNumber natt;
803 ListCell *el;
804
805 /*
806 * Extract info from the relation descriptor for the index. Obtain
807 * the same lock type that the executor will ultimately use.
808 *
809 * Let executor complain about !indimmediate case directly, because
810 * enforcement needs to occur there anyway when an inference clause is
811 * omitted.
812 */
813 idxRel = index_open(indexoid, rte->rellockmode);
814 idxForm = idxRel->rd_index;
815
816 if (!idxForm->indisvalid)
817 goto next;
818
819 /*
820 * Note that we do not perform a check against indcheckxmin (like e.g.
821 * get_relation_info()) here to eliminate candidates, because
822 * uniqueness checking only cares about the most recently committed
823 * tuple versions.
824 */
825
826 /*
827 * Look for match on "ON constraint_name" variant, which may not be
828 * unique constraint. This can only be a constraint name.
829 */
830 if (indexOidFromConstraint == idxForm->indexrelid)
831 {
832 if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
834 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
835 errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
836
837 results = lappend_oid(results, idxForm->indexrelid);
838 list_free(indexList);
839 index_close(idxRel, NoLock);
840 table_close(relation, NoLock);
841 return results;
842 }
843 else if (indexOidFromConstraint != InvalidOid)
844 {
845 /* No point in further work for index in named constraint case */
846 goto next;
847 }
848
849 /*
850 * Only considering conventional inference at this point (not named
851 * constraints), so index under consideration can be immediately
852 * skipped if it's not unique
853 */
854 if (!idxForm->indisunique)
855 goto next;
856
857 /*
858 * So-called unique constraints with WITHOUT OVERLAPS are really
859 * exclusion constraints, so skip those too.
860 */
861 if (idxForm->indisexclusion)
862 goto next;
863
864 /* Build BMS representation of plain (non expression) index attrs */
865 indexedAttrs = NULL;
866 for (natt = 0; natt < idxForm->indnkeyatts; natt++)
867 {
868 int attno = idxRel->rd_index->indkey.values[natt];
869
870 if (attno != 0)
871 indexedAttrs = bms_add_member(indexedAttrs,
873 }
874
875 /* Non-expression attributes (if any) must match */
876 if (!bms_equal(indexedAttrs, inferAttrs))
877 goto next;
878
879 /* Expression attributes (if any) must match */
880 idxExprs = RelationGetIndexExpressions(idxRel);
881 if (idxExprs && varno != 1)
882 ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
883
884 foreach(el, onconflict->arbiterElems)
885 {
886 InferenceElem *elem = (InferenceElem *) lfirst(el);
887
888 /*
889 * Ensure that collation/opclass aspects of inference expression
890 * element match. Even though this loop is primarily concerned
891 * with matching expressions, it is a convenient point to check
892 * this for both expressions and ordinary (non-expression)
893 * attributes appearing as inference elements.
894 */
895 if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
896 goto next;
897
898 /*
899 * Plain Vars don't factor into count of expression elements, and
900 * the question of whether or not they satisfy the index
901 * definition has already been considered (they must).
902 */
903 if (IsA(elem->expr, Var))
904 continue;
905
906 /*
907 * Might as well avoid redundant check in the rare cases where
908 * infer_collation_opclass_match() is required to do real work.
909 * Otherwise, check that element expression appears in cataloged
910 * index definition.
911 */
912 if (elem->infercollid != InvalidOid ||
913 elem->inferopclass != InvalidOid ||
914 list_member(idxExprs, elem->expr))
915 continue;
916
917 goto next;
918 }
919
920 /*
921 * Now that all inference elements were matched, ensure that the
922 * expression elements from inference clause are not missing any
923 * cataloged expressions. This does the right thing when unique
924 * indexes redundantly repeat the same attribute, or if attributes
925 * redundantly appear multiple times within an inference clause.
926 */
927 if (list_difference(idxExprs, inferElems) != NIL)
928 goto next;
929
930 /*
931 * If it's a partial index, its predicate must be implied by the ON
932 * CONFLICT's WHERE clause.
933 */
934 predExprs = RelationGetIndexPredicate(idxRel);
935 if (predExprs && varno != 1)
936 ChangeVarNodes((Node *) predExprs, 1, varno, 0);
937
938 if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
939 goto next;
940
941 results = lappend_oid(results, idxForm->indexrelid);
942next:
943 index_close(idxRel, NoLock);
944 }
945
946 list_free(indexList);
947 table_close(relation, NoLock);
948
949 if (results == NIL)
951 (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
952 errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
953
954 return results;
955}
956
957/*
958 * infer_collation_opclass_match - ensure infer element opclass/collation match
959 *
960 * Given unique index inference element from inference specification, if
961 * collation was specified, or if opclass was specified, verify that there is
962 * at least one matching indexed attribute (occasionally, there may be more).
963 * Skip this in the common case where inference specification does not include
964 * collation or opclass (instead matching everything, regardless of cataloged
965 * collation/opclass of indexed attribute).
966 *
967 * At least historically, Postgres has not offered collations or opclasses
968 * with alternative-to-default notions of equality, so these additional
969 * criteria should only be required infrequently.
970 *
971 * Don't give up immediately when an inference element matches some attribute
972 * cataloged as indexed but not matching additional opclass/collation
973 * criteria. This is done so that the implementation is as forgiving as
974 * possible of redundancy within cataloged index attributes (or, less
975 * usefully, within inference specification elements). If collations actually
976 * differ between apparently redundantly indexed attributes (redundant within
977 * or across indexes), then there really is no redundancy as such.
978 *
979 * Note that if an inference element specifies an opclass and a collation at
980 * once, both must match in at least one particular attribute within index
981 * catalog definition in order for that inference element to be considered
982 * inferred/satisfied.
983 */
984static bool
986 List *idxExprs)
987{
988 AttrNumber natt;
989 Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
990 Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
991 int nplain = 0; /* # plain attrs observed */
992
993 /*
994 * If inference specification element lacks collation/opclass, then no
995 * need to check for exact match.
996 */
997 if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
998 return true;
999
1000 /*
1001 * Lookup opfamily and input type, for matching indexes
1002 */
1003 if (elem->inferopclass)
1004 {
1005 inferopfamily = get_opclass_family(elem->inferopclass);
1006 inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1007 }
1008
1009 for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1010 {
1011 Oid opfamily = idxRel->rd_opfamily[natt - 1];
1012 Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1013 Oid collation = idxRel->rd_indcollation[natt - 1];
1014 int attno = idxRel->rd_index->indkey.values[natt - 1];
1015
1016 if (attno != 0)
1017 nplain++;
1018
1019 if (elem->inferopclass != InvalidOid &&
1020 (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1021 {
1022 /* Attribute needed to match opclass, but didn't */
1023 continue;
1024 }
1025
1026 if (elem->infercollid != InvalidOid &&
1027 elem->infercollid != collation)
1028 {
1029 /* Attribute needed to match collation, but didn't */
1030 continue;
1031 }
1032
1033 /* If one matching index att found, good enough -- return true */
1034 if (IsA(elem->expr, Var))
1035 {
1036 if (((Var *) elem->expr)->varattno == attno)
1037 return true;
1038 }
1039 else if (attno == 0)
1040 {
1041 Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1042
1043 /*
1044 * Note that unlike routines like match_index_to_operand() we
1045 * don't need to care about RelabelType. Neither the index
1046 * definition nor the inference clause should contain them.
1047 */
1048 if (equal(elem->expr, nattExpr))
1049 return true;
1050 }
1051 }
1052
1053 return false;
1054}
1055
1056/*
1057 * estimate_rel_size - estimate # pages and # tuples in a table or index
1058 *
1059 * We also estimate the fraction of the pages that are marked all-visible in
1060 * the visibility map, for use in estimation of index-only scans.
1061 *
1062 * If attr_widths isn't NULL, it points to the zero-index entry of the
1063 * relation's attr_widths[] cache; we fill this in if we have need to compute
1064 * the attribute widths for estimation purposes.
1065 */
1066void
1068 BlockNumber *pages, double *tuples, double *allvisfrac)
1069{
1070 BlockNumber curpages;
1071 BlockNumber relpages;
1072 double reltuples;
1073 BlockNumber relallvisible;
1074 double density;
1075
1076 if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1077 {
1078 table_relation_estimate_size(rel, attr_widths, pages, tuples,
1079 allvisfrac);
1080 }
1081 else if (rel->rd_rel->relkind == RELKIND_INDEX)
1082 {
1083 /*
1084 * XXX: It'd probably be good to move this into a callback, individual
1085 * index types e.g. know if they have a metapage.
1086 */
1087
1088 /* it has storage, ok to call the smgr */
1089 curpages = RelationGetNumberOfBlocks(rel);
1090
1091 /* report estimated # pages */
1092 *pages = curpages;
1093 /* quick exit if rel is clearly empty */
1094 if (curpages == 0)
1095 {
1096 *tuples = 0;
1097 *allvisfrac = 0;
1098 return;
1099 }
1100
1101 /* coerce values in pg_class to more desirable types */
1102 relpages = (BlockNumber) rel->rd_rel->relpages;
1103 reltuples = (double) rel->rd_rel->reltuples;
1104 relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1105
1106 /*
1107 * Discount the metapage while estimating the number of tuples. This
1108 * is a kluge because it assumes more than it ought to about index
1109 * structure. Currently it's OK for btree, hash, and GIN indexes but
1110 * suspect for GiST indexes.
1111 */
1112 if (relpages > 0)
1113 {
1114 curpages--;
1115 relpages--;
1116 }
1117
1118 /* estimate number of tuples from previous tuple density */
1119 if (reltuples >= 0 && relpages > 0)
1120 density = reltuples / (double) relpages;
1121 else
1122 {
1123 /*
1124 * If we have no data because the relation was never vacuumed,
1125 * estimate tuple width from attribute datatypes. We assume here
1126 * that the pages are completely full, which is OK for tables
1127 * (since they've presumably not been VACUUMed yet) but is
1128 * probably an overestimate for indexes. Fortunately
1129 * get_relation_info() can clamp the overestimate to the parent
1130 * table's size.
1131 *
1132 * Note: this code intentionally disregards alignment
1133 * considerations, because (a) that would be gilding the lily
1134 * considering how crude the estimate is, and (b) it creates
1135 * platform dependencies in the default plans which are kind of a
1136 * headache for regression testing.
1137 *
1138 * XXX: Should this logic be more index specific?
1139 */
1140 int32 tuple_width;
1141
1142 tuple_width = get_rel_data_width(rel, attr_widths);
1143 tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1144 tuple_width += sizeof(ItemIdData);
1145 /* note: integer division is intentional here */
1146 density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1147 }
1148 *tuples = rint(density * (double) curpages);
1149
1150 /*
1151 * We use relallvisible as-is, rather than scaling it up like we do
1152 * for the pages and tuples counts, on the theory that any pages added
1153 * since the last VACUUM are most likely not marked all-visible. But
1154 * costsize.c wants it converted to a fraction.
1155 */
1156 if (relallvisible == 0 || curpages <= 0)
1157 *allvisfrac = 0;
1158 else if ((double) relallvisible >= curpages)
1159 *allvisfrac = 1;
1160 else
1161 *allvisfrac = (double) relallvisible / curpages;
1162 }
1163 else
1164 {
1165 /*
1166 * Just use whatever's in pg_class. This covers foreign tables,
1167 * sequences, and also relkinds without storage (shouldn't get here?);
1168 * see initializations in AddNewRelationTuple(). Note that FDW must
1169 * cope if reltuples is -1!
1170 */
1171 *pages = rel->rd_rel->relpages;
1172 *tuples = rel->rd_rel->reltuples;
1173 *allvisfrac = 0;
1174 }
1175}
1176
1177
1178/*
1179 * get_rel_data_width
1180 *
1181 * Estimate the average width of (the data part of) the relation's tuples.
1182 *
1183 * If attr_widths isn't NULL, it points to the zero-index entry of the
1184 * relation's attr_widths[] cache; use and update that cache as appropriate.
1185 *
1186 * Currently we ignore dropped columns. Ideally those should be included
1187 * in the result, but we haven't got any way to get info about them; and
1188 * since they might be mostly NULLs, treating them as zero-width is not
1189 * necessarily the wrong thing anyway.
1190 */
1191int32
1193{
1194 int64 tuple_width = 0;
1195 int i;
1196
1197 for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1198 {
1199 Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1200 int32 item_width;
1201
1202 if (att->attisdropped)
1203 continue;
1204
1205 /* use previously cached data, if any */
1206 if (attr_widths != NULL && attr_widths[i] > 0)
1207 {
1208 tuple_width += attr_widths[i];
1209 continue;
1210 }
1211
1212 /* This should match set_rel_width() in costsize.c */
1213 item_width = get_attavgwidth(RelationGetRelid(rel), i);
1214 if (item_width <= 0)
1215 {
1216 item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1217 Assert(item_width > 0);
1218 }
1219 if (attr_widths != NULL)
1220 attr_widths[i] = item_width;
1221 tuple_width += item_width;
1222 }
1223
1224 return clamp_width_est(tuple_width);
1225}
1226
1227/*
1228 * get_relation_data_width
1229 *
1230 * External API for get_rel_data_width: same behavior except we have to
1231 * open the relcache entry.
1232 */
1233int32
1235{
1236 int32 result;
1237 Relation relation;
1238
1239 /* As above, assume relation is already locked */
1240 relation = table_open(relid, NoLock);
1241
1242 result = get_rel_data_width(relation, attr_widths);
1243
1244 table_close(relation, NoLock);
1245
1246 return result;
1247}
1248
1249
1250/*
1251 * get_relation_constraints
1252 *
1253 * Retrieve the applicable constraint expressions of the given relation.
1254 *
1255 * Returns a List (possibly empty) of constraint expressions. Each one
1256 * has been canonicalized, and its Vars are changed to have the varno
1257 * indicated by rel->relid. This allows the expressions to be easily
1258 * compared to expressions taken from WHERE.
1259 *
1260 * If include_noinherit is true, it's okay to include constraints that
1261 * are marked NO INHERIT.
1262 *
1263 * If include_notnull is true, "col IS NOT NULL" expressions are generated
1264 * and added to the result for each column that's marked attnotnull.
1265 *
1266 * If include_partition is true, and the relation is a partition,
1267 * also include the partitioning constraints.
1268 *
1269 * Note: at present this is invoked at most once per relation per planner
1270 * run, and in many cases it won't be invoked at all, so there seems no
1271 * point in caching the data in RelOptInfo.
1272 */
1273static List *
1275 Oid relationObjectId, RelOptInfo *rel,
1276 bool include_noinherit,
1277 bool include_notnull,
1278 bool include_partition)
1279{
1280 List *result = NIL;
1281 Index varno = rel->relid;
1282 Relation relation;
1283 TupleConstr *constr;
1284
1285 /*
1286 * We assume the relation has already been safely locked.
1287 */
1288 relation = table_open(relationObjectId, NoLock);
1289
1290 constr = relation->rd_att->constr;
1291 if (constr != NULL)
1292 {
1293 int num_check = constr->num_check;
1294 int i;
1295
1296 for (i = 0; i < num_check; i++)
1297 {
1298 Node *cexpr;
1299
1300 /*
1301 * If this constraint hasn't been fully validated yet, we must
1302 * ignore it here. Also ignore if NO INHERIT and we weren't told
1303 * that that's safe.
1304 */
1305 if (!constr->check[i].ccvalid)
1306 continue;
1307
1308 /*
1309 * NOT ENFORCED constraints are always marked as invalid, which
1310 * should have been ignored.
1311 */
1312 Assert(constr->check[i].ccenforced);
1313
1314 /*
1315 * Also ignore if NO INHERIT and we weren't told that that's safe.
1316 */
1317 if (constr->check[i].ccnoinherit && !include_noinherit)
1318 continue;
1319
1320
1321 cexpr = stringToNode(constr->check[i].ccbin);
1322
1323 /*
1324 * Run each expression through const-simplification and
1325 * canonicalization. This is not just an optimization, but is
1326 * necessary, because we will be comparing it to
1327 * similarly-processed qual clauses, and may fail to detect valid
1328 * matches without this. This must match the processing done to
1329 * qual clauses in preprocess_expression()! (We can skip the
1330 * stuff involving subqueries, however, since we don't allow any
1331 * in check constraints.)
1332 */
1333 cexpr = eval_const_expressions(root, cexpr);
1334
1335 cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1336
1337 /* Fix Vars to have the desired varno */
1338 if (varno != 1)
1339 ChangeVarNodes(cexpr, 1, varno, 0);
1340
1341 /*
1342 * Finally, convert to implicit-AND format (that is, a List) and
1343 * append the resulting item(s) to our output list.
1344 */
1345 result = list_concat(result,
1346 make_ands_implicit((Expr *) cexpr));
1347 }
1348
1349 /* Add NOT NULL constraints in expression form, if requested */
1350 if (include_notnull && constr->has_not_null)
1351 {
1352 int natts = relation->rd_att->natts;
1353
1354 for (i = 1; i <= natts; i++)
1355 {
1356 Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1357
1358 if (att->attnotnull && !att->attisdropped)
1359 {
1360 NullTest *ntest = makeNode(NullTest);
1361
1362 ntest->arg = (Expr *) makeVar(varno,
1363 i,
1364 att->atttypid,
1365 att->atttypmod,
1366 att->attcollation,
1367 0);
1368 ntest->nulltesttype = IS_NOT_NULL;
1369
1370 /*
1371 * argisrow=false is correct even for a composite column,
1372 * because attnotnull does not represent a SQL-spec IS NOT
1373 * NULL test in such a case, just IS DISTINCT FROM NULL.
1374 */
1375 ntest->argisrow = false;
1376 ntest->location = -1;
1377 result = lappend(result, ntest);
1378 }
1379 }
1380 }
1381 }
1382
1383 /*
1384 * Add partitioning constraints, if requested.
1385 */
1386 if (include_partition && relation->rd_rel->relispartition)
1387 {
1388 /* make sure rel->partition_qual is set */
1389 set_baserel_partition_constraint(relation, rel);
1390 result = list_concat(result, rel->partition_qual);
1391 }
1392
1393 table_close(relation, NoLock);
1394
1395 return result;
1396}
1397
1398/*
1399 * Try loading data for the statistics object.
1400 *
1401 * We don't know if the data (specified by statOid and inh value) exist.
1402 * The result is stored in stainfos list.
1403 */
1404static void
1406 Oid statOid, bool inh,
1407 Bitmapset *keys, List *exprs)
1408{
1410 HeapTuple dtup;
1411
1412 dtup = SearchSysCache2(STATEXTDATASTXOID,
1413 ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1414 if (!HeapTupleIsValid(dtup))
1415 return;
1416
1417 dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1418
1419 /* add one StatisticExtInfo for each kind built */
1420 if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1421 {
1423
1424 info->statOid = statOid;
1425 info->inherit = dataForm->stxdinherit;
1426 info->rel = rel;
1427 info->kind = STATS_EXT_NDISTINCT;
1428 info->keys = bms_copy(keys);
1429 info->exprs = exprs;
1430
1431 *stainfos = lappend(*stainfos, info);
1432 }
1433
1434 if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1435 {
1437
1438 info->statOid = statOid;
1439 info->inherit = dataForm->stxdinherit;
1440 info->rel = rel;
1441 info->kind = STATS_EXT_DEPENDENCIES;
1442 info->keys = bms_copy(keys);
1443 info->exprs = exprs;
1444
1445 *stainfos = lappend(*stainfos, info);
1446 }
1447
1448 if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1449 {
1451
1452 info->statOid = statOid;
1453 info->inherit = dataForm->stxdinherit;
1454 info->rel = rel;
1455 info->kind = STATS_EXT_MCV;
1456 info->keys = bms_copy(keys);
1457 info->exprs = exprs;
1458
1459 *stainfos = lappend(*stainfos, info);
1460 }
1461
1462 if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1463 {
1465
1466 info->statOid = statOid;
1467 info->inherit = dataForm->stxdinherit;
1468 info->rel = rel;
1469 info->kind = STATS_EXT_EXPRESSIONS;
1470 info->keys = bms_copy(keys);
1471 info->exprs = exprs;
1472
1473 *stainfos = lappend(*stainfos, info);
1474 }
1475
1476 ReleaseSysCache(dtup);
1477}
1478
1479/*
1480 * get_relation_statistics
1481 * Retrieve extended statistics defined on the table.
1482 *
1483 * Returns a List (possibly empty) of StatisticExtInfo objects describing
1484 * the statistics. Note that this doesn't load the actual statistics data,
1485 * just the identifying metadata. Only stats actually built are considered.
1486 */
1487static List *
1489{
1490 Index varno = rel->relid;
1491 List *statoidlist;
1492 List *stainfos = NIL;
1493 ListCell *l;
1494
1495 statoidlist = RelationGetStatExtList(relation);
1496
1497 foreach(l, statoidlist)
1498 {
1499 Oid statOid = lfirst_oid(l);
1500 Form_pg_statistic_ext staForm;
1501 HeapTuple htup;
1502 Bitmapset *keys = NULL;
1503 List *exprs = NIL;
1504 int i;
1505
1506 htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1507 if (!HeapTupleIsValid(htup))
1508 elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1509 staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1510
1511 /*
1512 * First, build the array of columns covered. This is ultimately
1513 * wasted if no stats within the object have actually been built, but
1514 * it doesn't seem worth troubling over that case.
1515 */
1516 for (i = 0; i < staForm->stxkeys.dim1; i++)
1517 keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1518
1519 /*
1520 * Preprocess expressions (if any). We read the expressions, run them
1521 * through eval_const_expressions, and fix the varnos.
1522 *
1523 * XXX We don't know yet if there are any data for this stats object,
1524 * with either stxdinherit value. But it's reasonable to assume there
1525 * is at least one of those, possibly both. So it's better to process
1526 * keys and expressions here.
1527 */
1528 {
1529 bool isnull;
1530 Datum datum;
1531
1532 /* decode expression (if any) */
1533 datum = SysCacheGetAttr(STATEXTOID, htup,
1534 Anum_pg_statistic_ext_stxexprs, &isnull);
1535
1536 if (!isnull)
1537 {
1538 char *exprsString;
1539
1540 exprsString = TextDatumGetCString(datum);
1541 exprs = (List *) stringToNode(exprsString);
1542 pfree(exprsString);
1543
1544 /*
1545 * Run the expressions through eval_const_expressions. This is
1546 * not just an optimization, but is necessary, because the
1547 * planner will be comparing them to similarly-processed qual
1548 * clauses, and may fail to detect valid matches without this.
1549 * We must not use canonicalize_qual, however, since these
1550 * aren't qual expressions.
1551 */
1552 exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1553
1554 /* May as well fix opfuncids too */
1555 fix_opfuncids((Node *) exprs);
1556
1557 /*
1558 * Modify the copies we obtain from the relcache to have the
1559 * correct varno for the parent relation, so that they match
1560 * up correctly against qual clauses.
1561 */
1562 if (varno != 1)
1563 ChangeVarNodes((Node *) exprs, 1, varno, 0);
1564 }
1565 }
1566
1567 /* extract statistics for possible values of stxdinherit flag */
1568
1569 get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1570
1571 get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1572
1573 ReleaseSysCache(htup);
1574 bms_free(keys);
1575 }
1576
1577 list_free(statoidlist);
1578
1579 return stainfos;
1580}
1581
1582/*
1583 * relation_excluded_by_constraints
1584 *
1585 * Detect whether the relation need not be scanned because it has either
1586 * self-inconsistent restrictions, or restrictions inconsistent with the
1587 * relation's applicable constraints.
1588 *
1589 * Note: this examines only rel->relid, rel->reloptkind, and
1590 * rel->baserestrictinfo; therefore it can be called before filling in
1591 * other fields of the RelOptInfo.
1592 */
1593bool
1595 RelOptInfo *rel, RangeTblEntry *rte)
1596{
1597 bool include_noinherit;
1598 bool include_notnull;
1599 bool include_partition = false;
1600 List *safe_restrictions;
1601 List *constraint_pred;
1602 List *safe_constraints;
1603 ListCell *lc;
1604
1605 /* As of now, constraint exclusion works only with simple relations. */
1606 Assert(IS_SIMPLE_REL(rel));
1607
1608 /*
1609 * If there are no base restriction clauses, we have no hope of proving
1610 * anything below, so fall out quickly.
1611 */
1612 if (rel->baserestrictinfo == NIL)
1613 return false;
1614
1615 /*
1616 * Regardless of the setting of constraint_exclusion, detect
1617 * constant-FALSE-or-NULL restriction clauses. Although const-folding
1618 * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1619 * list can still have other members besides the FALSE constant, due to
1620 * qual pushdown and other mechanisms; so check them all. This doesn't
1621 * fire very often, but it seems cheap enough to be worth doing anyway.
1622 * (Without this, we'd miss some optimizations that 9.5 and earlier found
1623 * via much more roundabout methods.)
1624 */
1625 foreach(lc, rel->baserestrictinfo)
1626 {
1627 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1628 Expr *clause = rinfo->clause;
1629
1630 if (clause && IsA(clause, Const) &&
1631 (((Const *) clause)->constisnull ||
1632 !DatumGetBool(((Const *) clause)->constvalue)))
1633 return true;
1634 }
1635
1636 /*
1637 * Skip further tests, depending on constraint_exclusion.
1638 */
1639 switch (constraint_exclusion)
1640 {
1642 /* In 'off' mode, never make any further tests */
1643 return false;
1644
1646
1647 /*
1648 * When constraint_exclusion is set to 'partition' we only handle
1649 * appendrel members. Partition pruning has already been applied,
1650 * so there is no need to consider the rel's partition constraints
1651 * here.
1652 */
1654 break; /* appendrel member, so process it */
1655 return false;
1656
1658
1659 /*
1660 * In 'on' mode, always apply constraint exclusion. If we are
1661 * considering a baserel that is a partition (i.e., it was
1662 * directly named rather than expanded from a parent table), then
1663 * its partition constraints haven't been considered yet, so
1664 * include them in the processing here.
1665 */
1666 if (rel->reloptkind == RELOPT_BASEREL)
1667 include_partition = true;
1668 break; /* always try to exclude */
1669 }
1670
1671 /*
1672 * Check for self-contradictory restriction clauses. We dare not make
1673 * deductions with non-immutable functions, but any immutable clauses that
1674 * are self-contradictory allow us to conclude the scan is unnecessary.
1675 *
1676 * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1677 * expecting to see any in its predicate argument.
1678 */
1679 safe_restrictions = NIL;
1680 foreach(lc, rel->baserestrictinfo)
1681 {
1682 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1683
1684 if (!contain_mutable_functions((Node *) rinfo->clause))
1685 safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1686 }
1687
1688 /*
1689 * We can use weak refutation here, since we're comparing restriction
1690 * clauses with restriction clauses.
1691 */
1692 if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1693 return true;
1694
1695 /*
1696 * Only plain relations have constraints, so stop here for other rtekinds.
1697 */
1698 if (rte->rtekind != RTE_RELATION)
1699 return false;
1700
1701 /*
1702 * If we are scanning just this table, we can use NO INHERIT constraints,
1703 * but not if we're scanning its children too. (Note that partitioned
1704 * tables should never have NO INHERIT constraints; but it's not necessary
1705 * for us to assume that here.)
1706 */
1707 include_noinherit = !rte->inh;
1708
1709 /*
1710 * Currently, attnotnull constraints must be treated as NO INHERIT unless
1711 * this is a partitioned table. In future we might track their
1712 * inheritance status more accurately, allowing this to be refined.
1713 *
1714 * XXX do we need/want to change this?
1715 */
1716 include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1717
1718 /*
1719 * Fetch the appropriate set of constraint expressions.
1720 */
1721 constraint_pred = get_relation_constraints(root, rte->relid, rel,
1722 include_noinherit,
1723 include_notnull,
1724 include_partition);
1725
1726 /*
1727 * We do not currently enforce that CHECK constraints contain only
1728 * immutable functions, so it's necessary to check here. We daren't draw
1729 * conclusions from plan-time evaluation of non-immutable functions. Since
1730 * they're ANDed, we can just ignore any mutable constraints in the list,
1731 * and reason about the rest.
1732 */
1733 safe_constraints = NIL;
1734 foreach(lc, constraint_pred)
1735 {
1736 Node *pred = (Node *) lfirst(lc);
1737
1738 if (!contain_mutable_functions(pred))
1739 safe_constraints = lappend(safe_constraints, pred);
1740 }
1741
1742 /*
1743 * The constraints are effectively ANDed together, so we can just try to
1744 * refute the entire collection at once. This may allow us to make proofs
1745 * that would fail if we took them individually.
1746 *
1747 * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1748 * an obvious optimization. Some of the clauses might be OR clauses that
1749 * have volatile and nonvolatile subclauses, and it's OK to make
1750 * deductions with the nonvolatile parts.
1751 *
1752 * We need strong refutation because we have to prove that the constraints
1753 * would yield false, not just NULL.
1754 */
1755 if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1756 return true;
1757
1758 return false;
1759}
1760
1761
1762/*
1763 * build_physical_tlist
1764 *
1765 * Build a targetlist consisting of exactly the relation's user attributes,
1766 * in order. The executor can special-case such tlists to avoid a projection
1767 * step at runtime, so we use such tlists preferentially for scan nodes.
1768 *
1769 * Exception: if there are any dropped or missing columns, we punt and return
1770 * NIL. Ideally we would like to handle these cases too. However this
1771 * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1772 * for a tlist that includes vars of no-longer-existent types. In theory we
1773 * could dig out the required info from the pg_attribute entries of the
1774 * relation, but that data is not readily available to ExecTypeFromTL.
1775 * For now, we don't apply the physical-tlist optimization when there are
1776 * dropped cols.
1777 *
1778 * We also support building a "physical" tlist for subqueries, functions,
1779 * values lists, table expressions, and CTEs, since the same optimization can
1780 * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1781 * NamedTuplestoreScan, and WorkTableScan nodes.
1782 */
1783List *
1785{
1786 List *tlist = NIL;
1787 Index varno = rel->relid;
1788 RangeTblEntry *rte = planner_rt_fetch(varno, root);
1789 Relation relation;
1790 Query *subquery;
1791 Var *var;
1792 ListCell *l;
1793 int attrno,
1794 numattrs;
1795 List *colvars;
1796
1797 switch (rte->rtekind)
1798 {
1799 case RTE_RELATION:
1800 /* Assume we already have adequate lock */
1801 relation = table_open(rte->relid, NoLock);
1802
1803 numattrs = RelationGetNumberOfAttributes(relation);
1804 for (attrno = 1; attrno <= numattrs; attrno++)
1805 {
1806 Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1807 attrno - 1);
1808
1809 if (att_tup->attisdropped || att_tup->atthasmissing)
1810 {
1811 /* found a dropped or missing col, so punt */
1812 tlist = NIL;
1813 break;
1814 }
1815
1816 var = makeVar(varno,
1817 attrno,
1818 att_tup->atttypid,
1819 att_tup->atttypmod,
1820 att_tup->attcollation,
1821 0);
1822
1823 tlist = lappend(tlist,
1824 makeTargetEntry((Expr *) var,
1825 attrno,
1826 NULL,
1827 false));
1828 }
1829
1830 table_close(relation, NoLock);
1831 break;
1832
1833 case RTE_SUBQUERY:
1834 subquery = rte->subquery;
1835 foreach(l, subquery->targetList)
1836 {
1837 TargetEntry *tle = (TargetEntry *) lfirst(l);
1838
1839 /*
1840 * A resjunk column of the subquery can be reflected as
1841 * resjunk in the physical tlist; we need not punt.
1842 */
1843 var = makeVarFromTargetEntry(varno, tle);
1844
1845 tlist = lappend(tlist,
1846 makeTargetEntry((Expr *) var,
1847 tle->resno,
1848 NULL,
1849 tle->resjunk));
1850 }
1851 break;
1852
1853 case RTE_FUNCTION:
1854 case RTE_TABLEFUNC:
1855 case RTE_VALUES:
1856 case RTE_CTE:
1858 case RTE_RESULT:
1859 /* Not all of these can have dropped cols, but share code anyway */
1860 expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
1861 true /* include dropped */ , NULL, &colvars);
1862 foreach(l, colvars)
1863 {
1864 var = (Var *) lfirst(l);
1865
1866 /*
1867 * A non-Var in expandRTE's output means a dropped column;
1868 * must punt.
1869 */
1870 if (!IsA(var, Var))
1871 {
1872 tlist = NIL;
1873 break;
1874 }
1875
1876 tlist = lappend(tlist,
1877 makeTargetEntry((Expr *) var,
1878 var->varattno,
1879 NULL,
1880 false));
1881 }
1882 break;
1883
1884 default:
1885 /* caller error */
1886 elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1887 (int) rte->rtekind);
1888 break;
1889 }
1890
1891 return tlist;
1892}
1893
1894/*
1895 * build_index_tlist
1896 *
1897 * Build a targetlist representing the columns of the specified index.
1898 * Each column is represented by a Var for the corresponding base-relation
1899 * column, or an expression in base-relation Vars, as appropriate.
1900 *
1901 * There are never any dropped columns in indexes, so unlike
1902 * build_physical_tlist, we need no failure case.
1903 */
1904static List *
1906 Relation heapRelation)
1907{
1908 List *tlist = NIL;
1909 Index varno = index->rel->relid;
1910 ListCell *indexpr_item;
1911 int i;
1912
1913 indexpr_item = list_head(index->indexprs);
1914 for (i = 0; i < index->ncolumns; i++)
1915 {
1916 int indexkey = index->indexkeys[i];
1917 Expr *indexvar;
1918
1919 if (indexkey != 0)
1920 {
1921 /* simple column */
1922 const FormData_pg_attribute *att_tup;
1923
1924 if (indexkey < 0)
1925 att_tup = SystemAttributeDefinition(indexkey);
1926 else
1927 att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1928
1929 indexvar = (Expr *) makeVar(varno,
1930 indexkey,
1931 att_tup->atttypid,
1932 att_tup->atttypmod,
1933 att_tup->attcollation,
1934 0);
1935 }
1936 else
1937 {
1938 /* expression column */
1939 if (indexpr_item == NULL)
1940 elog(ERROR, "wrong number of index expressions");
1941 indexvar = (Expr *) lfirst(indexpr_item);
1942 indexpr_item = lnext(index->indexprs, indexpr_item);
1943 }
1944
1945 tlist = lappend(tlist,
1946 makeTargetEntry(indexvar,
1947 i + 1,
1948 NULL,
1949 false));
1950 }
1951 if (indexpr_item != NULL)
1952 elog(ERROR, "wrong number of index expressions");
1953
1954 return tlist;
1955}
1956
1957/*
1958 * restriction_selectivity
1959 *
1960 * Returns the selectivity of a specified restriction operator clause.
1961 * This code executes registered procedures stored in the
1962 * operator relation, by calling the function manager.
1963 *
1964 * See clause_selectivity() for the meaning of the additional parameters.
1965 */
1968 Oid operatorid,
1969 List *args,
1970 Oid inputcollid,
1971 int varRelid)
1972{
1973 RegProcedure oprrest = get_oprrest(operatorid);
1974 float8 result;
1975
1976 /*
1977 * if the oprrest procedure is missing for whatever reason, use a
1978 * selectivity of 0.5
1979 */
1980 if (!oprrest)
1981 return (Selectivity) 0.5;
1982
1983 result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1984 inputcollid,
1986 ObjectIdGetDatum(operatorid),
1988 Int32GetDatum(varRelid)));
1989
1990 if (result < 0.0 || result > 1.0)
1991 elog(ERROR, "invalid restriction selectivity: %f", result);
1992
1993 return (Selectivity) result;
1994}
1995
1996/*
1997 * join_selectivity
1998 *
1999 * Returns the selectivity of a specified join operator clause.
2000 * This code executes registered procedures stored in the
2001 * operator relation, by calling the function manager.
2002 *
2003 * See clause_selectivity() for the meaning of the additional parameters.
2004 */
2007 Oid operatorid,
2008 List *args,
2009 Oid inputcollid,
2010 JoinType jointype,
2011 SpecialJoinInfo *sjinfo)
2012{
2013 RegProcedure oprjoin = get_oprjoin(operatorid);
2014 float8 result;
2015
2016 /*
2017 * if the oprjoin procedure is missing for whatever reason, use a
2018 * selectivity of 0.5
2019 */
2020 if (!oprjoin)
2021 return (Selectivity) 0.5;
2022
2023 result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2024 inputcollid,
2026 ObjectIdGetDatum(operatorid),
2028 Int16GetDatum(jointype),
2029 PointerGetDatum(sjinfo)));
2030
2031 if (result < 0.0 || result > 1.0)
2032 elog(ERROR, "invalid join selectivity: %f", result);
2033
2034 return (Selectivity) result;
2035}
2036
2037/*
2038 * function_selectivity
2039 *
2040 * Returns the selectivity of a specified boolean function clause.
2041 * This code executes registered procedures stored in the
2042 * pg_proc relation, by calling the function manager.
2043 *
2044 * See clause_selectivity() for the meaning of the additional parameters.
2045 */
2048 Oid funcid,
2049 List *args,
2050 Oid inputcollid,
2051 bool is_join,
2052 int varRelid,
2053 JoinType jointype,
2054 SpecialJoinInfo *sjinfo)
2055{
2056 RegProcedure prosupport = get_func_support(funcid);
2059
2060 /*
2061 * If no support function is provided, use our historical default
2062 * estimate, 0.3333333. This seems a pretty unprincipled choice, but
2063 * Postgres has been using that estimate for function calls since 1992.
2064 * The hoariness of this behavior suggests that we should not be in too
2065 * much hurry to use another value.
2066 */
2067 if (!prosupport)
2068 return (Selectivity) 0.3333333;
2069
2070 req.type = T_SupportRequestSelectivity;
2071 req.root = root;
2072 req.funcid = funcid;
2073 req.args = args;
2074 req.inputcollid = inputcollid;
2075 req.is_join = is_join;
2076 req.varRelid = varRelid;
2077 req.jointype = jointype;
2078 req.sjinfo = sjinfo;
2079 req.selectivity = -1; /* to catch failure to set the value */
2080
2081 sresult = (SupportRequestSelectivity *)
2083 PointerGetDatum(&req)));
2084
2085 /* If support function fails, use default */
2086 if (sresult != &req)
2087 return (Selectivity) 0.3333333;
2088
2089 if (req.selectivity < 0.0 || req.selectivity > 1.0)
2090 elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2091
2092 return (Selectivity) req.selectivity;
2093}
2094
2095/*
2096 * add_function_cost
2097 *
2098 * Get an estimate of the execution cost of a function, and *add* it to
2099 * the contents of *cost. The estimate may include both one-time and
2100 * per-tuple components, since QualCost does.
2101 *
2102 * The funcid must always be supplied. If it is being called as the
2103 * implementation of a specific parsetree node (FuncExpr, OpExpr,
2104 * WindowFunc, etc), pass that as "node", else pass NULL.
2105 *
2106 * In some usages root might be NULL, too.
2107 */
2108void
2110 QualCost *cost)
2111{
2112 HeapTuple proctup;
2113 Form_pg_proc procform;
2114
2115 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2116 if (!HeapTupleIsValid(proctup))
2117 elog(ERROR, "cache lookup failed for function %u", funcid);
2118 procform = (Form_pg_proc) GETSTRUCT(proctup);
2119
2120 if (OidIsValid(procform->prosupport))
2121 {
2123 SupportRequestCost *sresult;
2124
2125 req.type = T_SupportRequestCost;
2126 req.root = root;
2127 req.funcid = funcid;
2128 req.node = node;
2129
2130 /* Initialize cost fields so that support function doesn't have to */
2131 req.startup = 0;
2132 req.per_tuple = 0;
2133
2134 sresult = (SupportRequestCost *)
2135 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2136 PointerGetDatum(&req)));
2137
2138 if (sresult == &req)
2139 {
2140 /* Success, so accumulate support function's estimate into *cost */
2141 cost->startup += req.startup;
2142 cost->per_tuple += req.per_tuple;
2143 ReleaseSysCache(proctup);
2144 return;
2145 }
2146 }
2147
2148 /* No support function, or it failed, so rely on procost */
2149 cost->per_tuple += procform->procost * cpu_operator_cost;
2150
2151 ReleaseSysCache(proctup);
2152}
2153
2154/*
2155 * get_function_rows
2156 *
2157 * Get an estimate of the number of rows returned by a set-returning function.
2158 *
2159 * The funcid must always be supplied. In current usage, the calling node
2160 * will always be supplied, and will be either a FuncExpr or OpExpr.
2161 * But it's a good idea to not fail if it's NULL.
2162 *
2163 * In some usages root might be NULL, too.
2164 *
2165 * Note: this returns the unfiltered result of the support function, if any.
2166 * It's usually a good idea to apply clamp_row_est() to the result, but we
2167 * leave it to the caller to do so.
2168 */
2169double
2171{
2172 HeapTuple proctup;
2173 Form_pg_proc procform;
2174 double result;
2175
2176 proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2177 if (!HeapTupleIsValid(proctup))
2178 elog(ERROR, "cache lookup failed for function %u", funcid);
2179 procform = (Form_pg_proc) GETSTRUCT(proctup);
2180
2181 Assert(procform->proretset); /* else caller error */
2182
2183 if (OidIsValid(procform->prosupport))
2184 {
2186 SupportRequestRows *sresult;
2187
2188 req.type = T_SupportRequestRows;
2189 req.root = root;
2190 req.funcid = funcid;
2191 req.node = node;
2192
2193 req.rows = 0; /* just for sanity */
2194
2195 sresult = (SupportRequestRows *)
2196 DatumGetPointer(OidFunctionCall1(procform->prosupport,
2197 PointerGetDatum(&req)));
2198
2199 if (sresult == &req)
2200 {
2201 /* Success */
2202 ReleaseSysCache(proctup);
2203 return req.rows;
2204 }
2205 }
2206
2207 /* No support function, or it failed, so rely on prorows */
2208 result = procform->prorows;
2209
2210 ReleaseSysCache(proctup);
2211
2212 return result;
2213}
2214
2215/*
2216 * has_unique_index
2217 *
2218 * Detect whether there is a unique index on the specified attribute
2219 * of the specified relation, thus allowing us to conclude that all
2220 * the (non-null) values of the attribute are distinct.
2221 *
2222 * This function does not check the index's indimmediate property, which
2223 * means that uniqueness may transiently fail to hold intra-transaction.
2224 * That's appropriate when we are making statistical estimates, but beware
2225 * of using this for any correctness proofs.
2226 */
2227bool
2229{
2230 ListCell *ilist;
2231
2232 foreach(ilist, rel->indexlist)
2233 {
2234 IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2235
2236 /*
2237 * Note: ignore partial indexes, since they don't allow us to conclude
2238 * that all attr values are distinct, *unless* they are marked predOK
2239 * which means we know the index's predicate is satisfied by the
2240 * query. We don't take any interest in expressional indexes either.
2241 * Also, a multicolumn unique index doesn't allow us to conclude that
2242 * just the specified attr is unique.
2243 */
2244 if (index->unique &&
2245 index->nkeycolumns == 1 &&
2246 index->indexkeys[0] == attno &&
2247 (index->indpred == NIL || index->predOK))
2248 return true;
2249 }
2250 return false;
2251}
2252
2253
2254/*
2255 * has_row_triggers
2256 *
2257 * Detect whether the specified relation has any row-level triggers for event.
2258 */
2259bool
2261{
2262 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2263 Relation relation;
2264 TriggerDesc *trigDesc;
2265 bool result = false;
2266
2267 /* Assume we already have adequate lock */
2268 relation = table_open(rte->relid, NoLock);
2269
2270 trigDesc = relation->trigdesc;
2271 switch (event)
2272 {
2273 case CMD_INSERT:
2274 if (trigDesc &&
2275 (trigDesc->trig_insert_after_row ||
2276 trigDesc->trig_insert_before_row))
2277 result = true;
2278 break;
2279 case CMD_UPDATE:
2280 if (trigDesc &&
2281 (trigDesc->trig_update_after_row ||
2282 trigDesc->trig_update_before_row))
2283 result = true;
2284 break;
2285 case CMD_DELETE:
2286 if (trigDesc &&
2287 (trigDesc->trig_delete_after_row ||
2288 trigDesc->trig_delete_before_row))
2289 result = true;
2290 break;
2291 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2292 case CMD_MERGE:
2293 result = false;
2294 break;
2295 default:
2296 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2297 break;
2298 }
2299
2300 table_close(relation, NoLock);
2301 return result;
2302}
2303
2304/*
2305 * has_stored_generated_columns
2306 *
2307 * Does table identified by RTI have any STORED GENERATED columns?
2308 */
2309bool
2311{
2312 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2313 Relation relation;
2314 TupleDesc tupdesc;
2315 bool result = false;
2316
2317 /* Assume we already have adequate lock */
2318 relation = table_open(rte->relid, NoLock);
2319
2320 tupdesc = RelationGetDescr(relation);
2321 result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2322
2323 table_close(relation, NoLock);
2324
2325 return result;
2326}
2327
2328/*
2329 * get_dependent_generated_columns
2330 *
2331 * Get the column numbers of any STORED GENERATED columns of the relation
2332 * that depend on any column listed in target_cols. Both the input and
2333 * result bitmapsets contain column numbers offset by
2334 * FirstLowInvalidHeapAttributeNumber.
2335 */
2336Bitmapset *
2338 Bitmapset *target_cols)
2339{
2340 Bitmapset *dependentCols = NULL;
2341 RangeTblEntry *rte = planner_rt_fetch(rti, root);
2342 Relation relation;
2343 TupleDesc tupdesc;
2344 TupleConstr *constr;
2345
2346 /* Assume we already have adequate lock */
2347 relation = table_open(rte->relid, NoLock);
2348
2349 tupdesc = RelationGetDescr(relation);
2350 constr = tupdesc->constr;
2351
2352 if (constr && constr->has_generated_stored)
2353 {
2354 for (int i = 0; i < constr->num_defval; i++)
2355 {
2356 AttrDefault *defval = &constr->defval[i];
2357 Node *expr;
2358 Bitmapset *attrs_used = NULL;
2359
2360 /* skip if not generated column */
2361 if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2362 continue;
2363
2364 /* identify columns this generated column depends on */
2365 expr = stringToNode(defval->adbin);
2366 pull_varattnos(expr, 1, &attrs_used);
2367
2368 if (bms_overlap(target_cols, attrs_used))
2369 dependentCols = bms_add_member(dependentCols,
2371 }
2372 }
2373
2374 table_close(relation, NoLock);
2375
2376 return dependentCols;
2377}
2378
2379/*
2380 * set_relation_partition_info
2381 *
2382 * Set partitioning scheme and related information for a partitioned table.
2383 */
2384static void
2386 Relation relation)
2387{
2388 PartitionDesc partdesc;
2389
2390 /*
2391 * Create the PartitionDirectory infrastructure if we didn't already.
2392 */
2393 if (root->glob->partition_directory == NULL)
2394 {
2395 root->glob->partition_directory =
2397 }
2398
2399 partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2400 relation);
2401 rel->part_scheme = find_partition_scheme(root, relation);
2402 Assert(partdesc != NULL && rel->part_scheme != NULL);
2403 rel->boundinfo = partdesc->boundinfo;
2404 rel->nparts = partdesc->nparts;
2405 set_baserel_partition_key_exprs(relation, rel);
2406 set_baserel_partition_constraint(relation, rel);
2407}
2408
2409/*
2410 * find_partition_scheme
2411 *
2412 * Find or create a PartitionScheme for this Relation.
2413 */
2414static PartitionScheme
2416{
2417 PartitionKey partkey = RelationGetPartitionKey(relation);
2418 ListCell *lc;
2419 int partnatts,
2420 i;
2421 PartitionScheme part_scheme;
2422
2423 /* A partitioned table should have a partition key. */
2424 Assert(partkey != NULL);
2425
2426 partnatts = partkey->partnatts;
2427
2428 /* Search for a matching partition scheme and return if found one. */
2429 foreach(lc, root->part_schemes)
2430 {
2431 part_scheme = lfirst(lc);
2432
2433 /* Match partitioning strategy and number of keys. */
2434 if (partkey->strategy != part_scheme->strategy ||
2435 partnatts != part_scheme->partnatts)
2436 continue;
2437
2438 /* Match partition key type properties. */
2439 if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2440 sizeof(Oid) * partnatts) != 0 ||
2441 memcmp(partkey->partopcintype, part_scheme->partopcintype,
2442 sizeof(Oid) * partnatts) != 0 ||
2443 memcmp(partkey->partcollation, part_scheme->partcollation,
2444 sizeof(Oid) * partnatts) != 0)
2445 continue;
2446
2447 /*
2448 * Length and byval information should match when partopcintype
2449 * matches.
2450 */
2451 Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2452 sizeof(int16) * partnatts) == 0);
2453 Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2454 sizeof(bool) * partnatts) == 0);
2455
2456 /*
2457 * If partopfamily and partopcintype matched, must have the same
2458 * partition comparison functions. Note that we cannot reliably
2459 * Assert the equality of function structs themselves for they might
2460 * be different across PartitionKey's, so just Assert for the function
2461 * OIDs.
2462 */
2463#ifdef USE_ASSERT_CHECKING
2464 for (i = 0; i < partkey->partnatts; i++)
2465 Assert(partkey->partsupfunc[i].fn_oid ==
2466 part_scheme->partsupfunc[i].fn_oid);
2467#endif
2468
2469 /* Found matching partition scheme. */
2470 return part_scheme;
2471 }
2472
2473 /*
2474 * Did not find matching partition scheme. Create one copying relevant
2475 * information from the relcache. We need to copy the contents of the
2476 * array since the relcache entry may not survive after we have closed the
2477 * relation.
2478 */
2479 part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2480 part_scheme->strategy = partkey->strategy;
2481 part_scheme->partnatts = partkey->partnatts;
2482
2483 part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2484 memcpy(part_scheme->partopfamily, partkey->partopfamily,
2485 sizeof(Oid) * partnatts);
2486
2487 part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2488 memcpy(part_scheme->partopcintype, partkey->partopcintype,
2489 sizeof(Oid) * partnatts);
2490
2491 part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2492 memcpy(part_scheme->partcollation, partkey->partcollation,
2493 sizeof(Oid) * partnatts);
2494
2495 part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2496 memcpy(part_scheme->parttyplen, partkey->parttyplen,
2497 sizeof(int16) * partnatts);
2498
2499 part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2500 memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2501 sizeof(bool) * partnatts);
2502
2503 part_scheme->partsupfunc = (FmgrInfo *)
2504 palloc(sizeof(FmgrInfo) * partnatts);
2505 for (i = 0; i < partnatts; i++)
2506 fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2508
2509 /* Add the partitioning scheme to PlannerInfo. */
2510 root->part_schemes = lappend(root->part_schemes, part_scheme);
2511
2512 return part_scheme;
2513}
2514
2515/*
2516 * set_baserel_partition_key_exprs
2517 *
2518 * Builds partition key expressions for the given base relation and fills
2519 * rel->partexprs.
2520 */
2521static void
2523 RelOptInfo *rel)
2524{
2525 PartitionKey partkey = RelationGetPartitionKey(relation);
2526 int partnatts;
2527 int cnt;
2528 List **partexprs;
2529 ListCell *lc;
2530 Index varno = rel->relid;
2531
2532 Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2533
2534 /* A partitioned table should have a partition key. */
2535 Assert(partkey != NULL);
2536
2537 partnatts = partkey->partnatts;
2538 partexprs = (List **) palloc(sizeof(List *) * partnatts);
2539 lc = list_head(partkey->partexprs);
2540
2541 for (cnt = 0; cnt < partnatts; cnt++)
2542 {
2543 Expr *partexpr;
2544 AttrNumber attno = partkey->partattrs[cnt];
2545
2546 if (attno != InvalidAttrNumber)
2547 {
2548 /* Single column partition key is stored as a Var node. */
2549 Assert(attno > 0);
2550
2551 partexpr = (Expr *) makeVar(varno, attno,
2552 partkey->parttypid[cnt],
2553 partkey->parttypmod[cnt],
2554 partkey->parttypcoll[cnt], 0);
2555 }
2556 else
2557 {
2558 if (lc == NULL)
2559 elog(ERROR, "wrong number of partition key expressions");
2560
2561 /* Re-stamp the expression with given varno. */
2562 partexpr = (Expr *) copyObject(lfirst(lc));
2563 ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2564 lc = lnext(partkey->partexprs, lc);
2565 }
2566
2567 /* Base relations have a single expression per key. */
2568 partexprs[cnt] = list_make1(partexpr);
2569 }
2570
2571 rel->partexprs = partexprs;
2572
2573 /*
2574 * A base relation does not have nullable partition key expressions, since
2575 * no outer join is involved. We still allocate an array of empty
2576 * expression lists to keep partition key expression handling code simple.
2577 * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2578 */
2579 rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2580}
2581
2582/*
2583 * set_baserel_partition_constraint
2584 *
2585 * Builds the partition constraint for the given base relation and sets it
2586 * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2587 * given relation.
2588 */
2589static void
2591{
2592 List *partconstr;
2593
2594 if (rel->partition_qual) /* already done */
2595 return;
2596
2597 /*
2598 * Run the partition quals through const-simplification similar to check
2599 * constraints. We skip canonicalize_qual, though, because partition
2600 * quals should be in canonical form already; also, since the qual is in
2601 * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2602 * format and back again.
2603 */
2604 partconstr = RelationGetPartitionQual(relation);
2605 if (partconstr)
2606 {
2607 partconstr = (List *) expression_planner((Expr *) partconstr);
2608 if (rel->relid != 1)
2609 ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2610 rel->partition_qual = partconstr;
2611 }
2612}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
uint32 BlockNumber
Definition: block.h:31
static int32 next
Definition: blutils.c:221
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
#define SizeOfPageHeaderData
Definition: bufpage.h:217
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define MAXALIGN(LEN)
Definition: c.h:768
#define Assert(condition)
Definition: c.h:815
int64_t int64
Definition: c.h:485
double float8
Definition: c.h:587
int16_t int16
Definition: c.h:483
regproc RegProcedure
Definition: c.h:607
int32_t int32
Definition: c.h:484
#define unlikely(x)
Definition: c.h:333
unsigned int Index
Definition: c.h:571
#define OidIsValid(objectId)
Definition: c.h:732
bool IsSystemRelation(Relation relation)
Definition: catalog.c:73
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:369
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2254
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39
double cpu_operator_cost
Definition: costsize.c:134
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1453
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1442
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:679
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:442
Oid GetForeignServerIdByRelId(Oid relid)
Definition: foreign.c:355
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition: heap.c:235
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
bool index_can_return(Relation indexRelation, int attno)
Definition: indexam.c:790
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
struct ItemIdData ItemIdData
List * list_difference(const List *list1, const List *list2)
Definition: list.c:1237
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * lcons(void *datum, List *list)
Definition: list.c:495
void list_free(List *list)
Definition: list.c:1546
bool list_member(const List *list, const void *datum)
Definition: list.c:661
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1584
Oid get_constraint_index(Oid conoid)
Definition: lsyscache.c:1114
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1213
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1191
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:1885
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3185
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1608
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:167
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, int16 *strategy)
Definition: lsyscache.c:208
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2605
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:242
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:763
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
void * palloc(Size size)
Definition: mcxt.c:1317
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
bool IgnoreSystemIndexes
Definition: miscinit.c:81
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1841
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
@ ONCONFLICT_UPDATE
Definition: nodes.h:420
CmdType
Definition: nodes.h:263
@ CMD_MERGE
Definition: nodes.h:269
@ CMD_INSERT
Definition: nodes.h:267
@ CMD_DELETE
Definition: nodes.h:268
@ CMD_UPDATE
Definition: nodes.h:266
double Selectivity
Definition: nodes.h:250
#define makeNode(_type_)
Definition: nodes.h:155
JoinType
Definition: nodes.h:288
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, VarReturningType returning_type, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
Definition: parsenodes.h:1032
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1033
@ RTE_VALUES
Definition: parsenodes.h:1031
@ RTE_SUBQUERY
Definition: parsenodes.h:1027
@ RTE_RESULT
Definition: parsenodes.h:1034
@ RTE_FUNCTION
Definition: parsenodes.h:1029
@ RTE_TABLEFUNC
Definition: parsenodes.h:1030
@ RTE_RELATION
Definition: parsenodes.h:1026
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition: partcache.c:277
PartitionKey RelationGetPartitionKey(Relation rel)
Definition: partcache.c:51
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition: partdesc.c:423
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition: partdesc.c:456
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:863
Bitmapset * Relids
Definition: pathnodes.h:30
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:594
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:628
@ RELOPT_BASEREL
Definition: pathnodes.h:851
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:853
#define AMFLAG_HAS_TID_RANGE
Definition: pathnodes.h:847
FormData_pg_attribute
Definition: pg_attribute.h:184
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
int errdetail_relkind_not_supported(char relkind)
Definition: pg_class.c:24
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1067
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1192
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition: plancat.c:2310
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition: plancat.c:590
int constraint_exclusion
Definition: plancat.c:57
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition: plancat.c:1594
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2170
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2260
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition: plancat.c:1274
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2109
get_relation_info_hook_type get_relation_info_hook
Definition: plancat.c:60
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition: plancat.c:1405
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition: plancat.c:1784
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:1967
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1234
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2590
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition: plancat.c:1905
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition: plancat.c:985
static List * get_relation_statistics(RelOptInfo *rel, Relation relation)
Definition: plancat.c:1488
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:2385
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2228
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition: plancat.c:2415
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2522
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2006
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2047
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition: plancat.c:2337
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:116
List * infer_arbiter_indexes(PlannerInfo *root)
Definition: plancat.c:705
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.h:21
Expr * expression_planner(Expr *expr)
Definition: planner.c:6573
int restrict_nonsystem_relation_kind
Definition: postgres.c:104
static bool DatumGetBool(Datum X)
Definition: postgres.h:95
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:327
uintptr_t Datum
Definition: postgres.h:69
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:177
static Datum BoolGetDatum(bool X)
Definition: postgres.h:107
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:499
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:257
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:317
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:217
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
@ VAR_RETURNING_DEFAULT
Definition: primnodes.h:256
@ IS_NOT_NULL
Definition: primnodes.h:1957
tree ctl root
Definition: radixtree.h:1857
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:506
#define RelationGetRelid(relation)
Definition: rel.h:512
#define RelationGetParallelWorkers(relation, defaultpw)
Definition: rel.h:404
#define RelationGetDescr(relation)
Definition: rel.h:538
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:518
#define RelationGetRelationName(relation)
Definition: rel.h:546
#define RelationIsPermanent(relation)
Definition: rel.h:624
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4759
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5133
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4900
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4650
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5020
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5911
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:793
TransactionId TransactionXmin
Definition: snapmgr.c:99
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
bool attisdropped
Definition: tupdesc.h:77
bool attnotnull
Definition: tupdesc.h:79
bool ccenforced
Definition: tupdesc.h:32
bool ccnoinherit
Definition: tupdesc.h:34
bool ccvalid
Definition: tupdesc.h:33
char * ccbin
Definition: tupdesc.h:31
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1285
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1289
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1287
HeapTupleHeader t_data
Definition: htup.h:68
amrestrpos_function amrestrpos
Definition: amapi.h:306
amcostestimate_function amcostestimate
Definition: amapi.h:293
bool amcanorderbyop
Definition: amapi.h:245
bool amoptionalkey
Definition: amapi.h:253
amgettuple_function amgettuple
Definition: amapi.h:302
amgetbitmap_function amgetbitmap
Definition: amapi.h:303
bool amsearcharray
Definition: amapi.h:255
ammarkpos_function ammarkpos
Definition: amapi.h:305
bool amcanparallel
Definition: amapi.h:265
bool amcanorder
Definition: amapi.h:243
amgettreeheight_function amgettreeheight
Definition: amapi.h:294
bool amsearchnulls
Definition: amapi.h:257
bool amcanparallel
Definition: pathnodes.h:1233
void(* amcostestimate)(struct PlannerInfo *, struct IndexPath *, double, Cost *, Cost *, Selectivity *, double *, double *) pg_node_attr(read_write_ignore)
Definition: pathnodes.h:1238
bool amoptionalkey
Definition: pathnodes.h:1226
Oid reltablespace
Definition: pathnodes.h:1146
bool amcanmarkpos
Definition: pathnodes.h:1235
List * indrestrictinfo
Definition: pathnodes.h:1208
bool amhasgettuple
Definition: pathnodes.h:1230
bool amcanorderbyop
Definition: pathnodes.h:1225
bool hypothetical
Definition: pathnodes.h:1219
bool nullsnotdistinct
Definition: pathnodes.h:1215
List * indpred
Definition: pathnodes.h:1198
Cardinality tuples
Definition: pathnodes.h:1156
bool amsearcharray
Definition: pathnodes.h:1227
BlockNumber pages
Definition: pathnodes.h:1154
bool amsearchnulls
Definition: pathnodes.h:1228
bool amhasgetbitmap
Definition: pathnodes.h:1232
List * indextlist
Definition: pathnodes.h:1201
bool immediate
Definition: pathnodes.h:1217
Definition: pg_list.h:54
Definition: nodes.h:129
NullTestType nulltesttype
Definition: primnodes.h:1964
ParseLoc location
Definition: primnodes.h:1967
Expr * arg
Definition: primnodes.h:1963
List * arbiterElems
Definition: primnodes.h:2356
OnConflictAction action
Definition: primnodes.h:2353
Node * arbiterWhere
Definition: primnodes.h:2358
PartitionBoundInfo boundinfo
Definition: partdesc.h:38
Oid * partcollation
Definition: partcache.h:39
Oid * parttypcoll
Definition: partcache.h:47
int32 * parttypmod
Definition: partcache.h:43
Oid * partopfamily
Definition: partcache.h:34
bool * parttypbyval
Definition: partcache.h:45
PartitionStrategy strategy
Definition: partcache.h:27
List * partexprs
Definition: partcache.h:31
int16 * parttyplen
Definition: partcache.h:44
FmgrInfo * partsupfunc
Definition: partcache.h:36
Oid * partopcintype
Definition: partcache.h:35
AttrNumber * partattrs
Definition: partcache.h:29
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:625
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * targetList
Definition: parsenodes.h:193
Query * subquery
Definition: parsenodes.h:1113
RTEKind rtekind
Definition: parsenodes.h:1056
List * baserestrictinfo
Definition: pathnodes.h:1009
uint32 amflags
Definition: pathnodes.h:982
Bitmapset * notnullattnums
Definition: pathnodes.h:960
List * partition_qual
Definition: pathnodes.h:1051
Index relid
Definition: pathnodes.h:942
List * statlist
Definition: pathnodes.h:970
Cardinality tuples
Definition: pathnodes.h:973
BlockNumber pages
Definition: pathnodes.h:972
RelOptKind reloptkind
Definition: pathnodes.h:889
List * indexlist
Definition: pathnodes.h:968
Oid reltablespace
Definition: pathnodes.h:944
Oid serverid
Definition: pathnodes.h:988
int rel_parallel_workers
Definition: pathnodes.h:980
AttrNumber max_attr
Definition: pathnodes.h:950
double allvisfrac
Definition: pathnodes.h:974
AttrNumber min_attr
Definition: pathnodes.h:948
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
TriggerDesc * trigdesc
Definition: rel.h:117
Oid * rd_opcintype
Definition: rel.h:208
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
int16 * rd_indoption
Definition: rel.h:211
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Expr * clause
Definition: pathnodes.h:2599
Bitmapset * keys
Definition: pathnodes.h:1318
struct PlannerInfo * root
Definition: supportnodes.h:136
struct PlannerInfo * root
Definition: supportnodes.h:163
struct PlannerInfo * root
Definition: supportnodes.h:96
struct SpecialJoinInfo * sjinfo
Definition: supportnodes.h:103
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:380
bool(* scan_bitmap_next_block)(TableScanDesc scan, BlockNumber *blockno, bool *recheck, uint64 *lossy_pages, uint64 *exact_pages)
Definition: tableam.h:820
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition: tableam.h:372
AttrNumber resno
Definition: primnodes.h:2221
bool trig_delete_before_row
Definition: reltrigger.h:66
bool trig_update_after_row
Definition: reltrigger.h:62
bool trig_insert_after_row
Definition: reltrigger.h:57
bool trig_update_before_row
Definition: reltrigger.h:61
bool trig_delete_after_row
Definition: reltrigger.h:67
bool trig_insert_before_row
Definition: reltrigger.h:56
bool has_not_null
Definition: tupdesc.h:45
AttrDefault * defval
Definition: tupdesc.h:40
bool has_generated_stored
Definition: tupdesc.h:46
ConstrCheck * check
Definition: tupdesc.h:41
uint16 num_defval
Definition: tupdesc.h:43
uint16 num_check
Definition: tupdesc.h:44
TupleConstr * constr
Definition: tupdesc.h:135
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
Definition: type.h:96
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:600
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:232
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: tableam.h:1943
#define RESTRICT_RELKIND_FOREIGN_TABLE
Definition: tcopprot.h:44
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define FirstNormalObjectId
Definition: transam.h:197
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:154
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:169
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:296
bool RecoveryInProgress(void)
Definition: xlog.c:6395