PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
costsize.c File Reference
#include "postgres.h"
#include <limits.h>
#include <math.h>
#include "access/amapi.h"
#include "access/htup_details.h"
#include "access/tsmapi.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "executor/nodeHash.h"
#include "executor/nodeMemoize.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/placeholder.h"
#include "optimizer/plancat.h"
#include "optimizer/restrictinfo.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"
#include "utils/spccache.h"
#include "utils/tuplesort.h"
Include dependency graph for costsize.c:

Go to the source code of this file.

Data Structures

struct  cost_qual_eval_context
 

Macros

#define LOG2(x)   (log(x) / 0.693147180559945)
 
#define APPEND_CPU_COST_MULTIPLIER   0.5
 
#define MAXIMUM_ROWCOUNT   1e100
 

Functions

static Listextract_nonindex_conditions (List *qual_clauses, List *indexclauses)
 
static MergeScanSelCachecached_scansel (PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
 
static void cost_rescan (PlannerInfo *root, Path *path, Cost *rescan_startup_cost, Cost *rescan_total_cost)
 
static bool cost_qual_eval_walker (Node *node, cost_qual_eval_context *context)
 
static void get_restriction_qual_cost (PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, QualCost *qpqual_cost)
 
static bool has_indexed_join_quals (NestPath *path)
 
static double approx_tuple_count (PlannerInfo *root, JoinPath *path, List *quals)
 
static double calc_joinrel_size_estimate (PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, double outer_rows, double inner_rows, SpecialJoinInfo *sjinfo, List *restrictlist)
 
static Selectivity get_foreign_key_join_selectivity (PlannerInfo *root, Relids outer_relids, Relids inner_relids, SpecialJoinInfo *sjinfo, List **restrictlist)
 
static Cost append_nonpartial_cost (List *subpaths, int numpaths, int parallel_workers)
 
static void set_rel_width (PlannerInfo *root, RelOptInfo *rel)
 
static int32 get_expr_width (PlannerInfo *root, const Node *expr)
 
static double relation_byte_size (double tuples, int width)
 
static double page_size (double tuples, int width)
 
static double get_parallel_divisor (Path *path)
 
double clamp_row_est (double nrows)
 
int32 clamp_width_est (int64 tuple_width)
 
long clamp_cardinality_to_long (Cardinality x)
 
void cost_seqscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_samplescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_gather (GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
 
void cost_gather_merge (GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
 
void cost_index (IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
 
double index_pages_fetched (double tuples_fetched, BlockNumber pages, double index_pages, PlannerInfo *root)
 
static double get_indexpath_pages (Path *bitmapqual)
 
void cost_bitmap_heap_scan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
 
void cost_bitmap_tree_node (Path *path, Cost *cost, Selectivity *selec)
 
void cost_bitmap_and_node (BitmapAndPath *path, PlannerInfo *root)
 
void cost_bitmap_or_node (BitmapOrPath *path, PlannerInfo *root)
 
void cost_tidscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
 
void cost_tidrangescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
 
void cost_subqueryscan (SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
 
void cost_functionscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_tablefuncscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_valuesscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_ctescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_namedtuplestorescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_resultscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_recursive_union (Path *runion, Path *nrterm, Path *rterm)
 
static void cost_tuplesort (Cost *startup_cost, Cost *run_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
 
void cost_incremental_sort (Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
 
void cost_sort (Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
 
void cost_append (AppendPath *apath)
 
void cost_merge_append (Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
 
void cost_material (Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
 
static void cost_memoize_rescan (PlannerInfo *root, MemoizePath *mpath, Cost *rescan_startup_cost, Cost *rescan_total_cost)
 
void cost_agg (Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
 
static double get_windowclause_startup_tuples (PlannerInfo *root, WindowClause *wc, double input_tuples)
 
void cost_windowagg (Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
 
void cost_group (Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
 
void initial_cost_nestloop (PlannerInfo *root, JoinCostWorkspace *workspace, JoinType jointype, Path *outer_path, Path *inner_path, JoinPathExtraData *extra)
 
void final_cost_nestloop (PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
 
void initial_cost_mergejoin (PlannerInfo *root, JoinCostWorkspace *workspace, JoinType jointype, List *mergeclauses, Path *outer_path, Path *inner_path, List *outersortkeys, List *innersortkeys, JoinPathExtraData *extra)
 
void final_cost_mergejoin (PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
 
void initial_cost_hashjoin (PlannerInfo *root, JoinCostWorkspace *workspace, JoinType jointype, List *hashclauses, Path *outer_path, Path *inner_path, JoinPathExtraData *extra, bool parallel_hash)
 
void final_cost_hashjoin (PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
 
void cost_subplan (PlannerInfo *root, SubPlan *subplan, Plan *plan)
 
void cost_qual_eval (QualCost *cost, List *quals, PlannerInfo *root)
 
void cost_qual_eval_node (QualCost *cost, Node *qual, PlannerInfo *root)
 
void compute_semi_anti_join_factors (PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel, JoinType jointype, SpecialJoinInfo *sjinfo, List *restrictlist, SemiAntiJoinFactors *semifactors)
 
void set_baserel_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
double get_parameterized_baserel_size (PlannerInfo *root, RelOptInfo *rel, List *param_clauses)
 
void set_joinrel_size_estimates (PlannerInfo *root, RelOptInfo *rel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *restrictlist)
 
double get_parameterized_joinrel_size (PlannerInfo *root, RelOptInfo *rel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, List *restrict_clauses)
 
void set_subquery_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_function_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_tablefunc_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_values_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_cte_size_estimates (PlannerInfo *root, RelOptInfo *rel, double cte_rows)
 
void set_namedtuplestore_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_result_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_foreign_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
PathTargetset_pathtarget_cost_width (PlannerInfo *root, PathTarget *target)
 
double compute_bitmap_pages (PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual, double loop_count, Cost *cost_p, double *tuples_p)
 
double compute_gather_rows (Path *path)
 

Variables

double seq_page_cost = DEFAULT_SEQ_PAGE_COST
 
double random_page_cost = DEFAULT_RANDOM_PAGE_COST
 
double cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST
 
double cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST
 
double cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST
 
double parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST
 
double parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST
 
double recursive_worktable_factor = DEFAULT_RECURSIVE_WORKTABLE_FACTOR
 
int effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE
 
Cost disable_cost = 1.0e10
 
int max_parallel_workers_per_gather = 2
 
bool enable_seqscan = true
 
bool enable_indexscan = true
 
bool enable_indexonlyscan = true
 
bool enable_bitmapscan = true
 
bool enable_tidscan = true
 
bool enable_sort = true
 
bool enable_incremental_sort = true
 
bool enable_hashagg = true
 
bool enable_nestloop = true
 
bool enable_material = true
 
bool enable_memoize = true
 
bool enable_mergejoin = true
 
bool enable_hashjoin = true
 
bool enable_gathermerge = true
 
bool enable_partitionwise_join = false
 
bool enable_partitionwise_aggregate = false
 
bool enable_parallel_append = true
 
bool enable_parallel_hash = true
 
bool enable_partition_pruning = true
 
bool enable_presorted_aggregate = true
 
bool enable_async_append = true
 

Macro Definition Documentation

◆ APPEND_CPU_COST_MULTIPLIER

#define APPEND_CPU_COST_MULTIPLIER   0.5

Definition at line 120 of file costsize.c.

◆ LOG2

#define LOG2 (   x)    (log(x) / 0.693147180559945)

Definition at line 113 of file costsize.c.

◆ MAXIMUM_ROWCOUNT

#define MAXIMUM_ROWCOUNT   1e100

Definition at line 128 of file costsize.c.

Function Documentation

◆ append_nonpartial_cost()

static Cost append_nonpartial_cost ( List subpaths,
int  numpaths,
int  parallel_workers 
)
static

Definition at line 2174 of file costsize.c.

2175{
2176 Cost *costarr;
2177 int arrlen;
2178 ListCell *l;
2179 ListCell *cell;
2180 int path_index;
2181 int min_index;
2182 int max_index;
2183
2184 if (numpaths == 0)
2185 return 0;
2186
2187 /*
2188 * Array length is number of workers or number of relevant paths,
2189 * whichever is less.
2190 */
2191 arrlen = Min(parallel_workers, numpaths);
2192 costarr = (Cost *) palloc(sizeof(Cost) * arrlen);
2193
2194 /* The first few paths will each be claimed by a different worker. */
2195 path_index = 0;
2196 foreach(cell, subpaths)
2197 {
2198 Path *subpath = (Path *) lfirst(cell);
2199
2200 if (path_index == arrlen)
2201 break;
2202 costarr[path_index++] = subpath->total_cost;
2203 }
2204
2205 /*
2206 * Since subpaths are sorted by decreasing cost, the last one will have
2207 * the minimum cost.
2208 */
2209 min_index = arrlen - 1;
2210
2211 /*
2212 * For each of the remaining subpaths, add its cost to the array element
2213 * with minimum cost.
2214 */
2215 for_each_cell(l, subpaths, cell)
2216 {
2217 Path *subpath = (Path *) lfirst(l);
2218
2219 /* Consider only the non-partial paths */
2220 if (path_index++ == numpaths)
2221 break;
2222
2223 costarr[min_index] += subpath->total_cost;
2224
2225 /* Update the new min cost array index */
2226 min_index = 0;
2227 for (int i = 0; i < arrlen; i++)
2228 {
2229 if (costarr[i] < costarr[min_index])
2230 min_index = i;
2231 }
2232 }
2233
2234 /* Return the highest cost from the array */
2235 max_index = 0;
2236 for (int i = 0; i < arrlen; i++)
2237 {
2238 if (costarr[i] > costarr[max_index])
2239 max_index = i;
2240 }
2241
2242 return costarr[max_index];
2243}
#define Min(x, y)
Definition: c.h:975
int i
Definition: isn.c:77
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:311
void * palloc(Size size)
Definition: mcxt.c:1940
double Cost
Definition: nodes.h:257
#define lfirst(lc)
Definition: pg_list.h:172
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:438

References for_each_cell, i, lfirst, Min, palloc(), and subpath().

Referenced by cost_append().

◆ approx_tuple_count()

static double approx_tuple_count ( PlannerInfo root,
JoinPath path,
List quals 
)
static

Definition at line 5289 of file costsize.c.

5290{
5291 double tuples;
5292 double outer_tuples = path->outerjoinpath->rows;
5293 double inner_tuples = path->innerjoinpath->rows;
5294 SpecialJoinInfo sjinfo;
5295 Selectivity selec = 1.0;
5296 ListCell *l;
5297
5298 /*
5299 * Make up a SpecialJoinInfo for JOIN_INNER semantics.
5300 */
5301 init_dummy_sjinfo(&sjinfo, path->outerjoinpath->parent->relids,
5302 path->innerjoinpath->parent->relids);
5303
5304 /* Get the approximate selectivity */
5305 foreach(l, quals)
5306 {
5307 Node *qual = (Node *) lfirst(l);
5308
5309 /* Note that clause_selectivity will be able to cache its result */
5310 selec *= clause_selectivity(root, qual, 0, JOIN_INNER, &sjinfo);
5311 }
5312
5313 /* Apply it to the input relation sizes */
5314 tuples = selec * outer_tuples * inner_tuples;
5315
5316 return clamp_row_est(tuples);
5317}
Selectivity clause_selectivity(PlannerInfo *root, Node *clause, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: clausesel.c:667
double clamp_row_est(double nrows)
Definition: costsize.c:213
void init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:670
double Selectivity
Definition: nodes.h:256
@ JOIN_INNER
Definition: nodes.h:299
tree ctl root
Definition: radixtree.h:1857
Path * outerjoinpath
Definition: pathnodes.h:2211
Path * innerjoinpath
Definition: pathnodes.h:2212
Definition: nodes.h:135
Cardinality rows
Definition: pathnodes.h:1796

References clamp_row_est(), clause_selectivity(), init_dummy_sjinfo(), JoinPath::innerjoinpath, JOIN_INNER, lfirst, JoinPath::outerjoinpath, root, and Path::rows.

Referenced by final_cost_hashjoin(), and final_cost_mergejoin().

◆ cached_scansel()

static MergeScanSelCache * cached_scansel ( PlannerInfo root,
RestrictInfo rinfo,
PathKey pathkey 
)
static

Definition at line 4080 of file costsize.c.

4081{
4082 MergeScanSelCache *cache;
4083 ListCell *lc;
4084 Selectivity leftstartsel,
4085 leftendsel,
4086 rightstartsel,
4087 rightendsel;
4088 MemoryContext oldcontext;
4089
4090 /* Do we have this result already? */
4091 foreach(lc, rinfo->scansel_cache)
4092 {
4093 cache = (MergeScanSelCache *) lfirst(lc);
4094 if (cache->opfamily == pathkey->pk_opfamily &&
4095 cache->collation == pathkey->pk_eclass->ec_collation &&
4096 cache->cmptype == pathkey->pk_cmptype &&
4097 cache->nulls_first == pathkey->pk_nulls_first)
4098 return cache;
4099 }
4100
4101 /* Nope, do the computation */
4103 (Node *) rinfo->clause,
4104 pathkey->pk_opfamily,
4105 pathkey->pk_cmptype,
4106 pathkey->pk_nulls_first,
4107 &leftstartsel,
4108 &leftendsel,
4109 &rightstartsel,
4110 &rightendsel);
4111
4112 /* Cache the result in suitably long-lived workspace */
4113 oldcontext = MemoryContextSwitchTo(root->planner_cxt);
4114
4115 cache = (MergeScanSelCache *) palloc(sizeof(MergeScanSelCache));
4116 cache->opfamily = pathkey->pk_opfamily;
4117 cache->collation = pathkey->pk_eclass->ec_collation;
4118 cache->cmptype = pathkey->pk_cmptype;
4119 cache->nulls_first = pathkey->pk_nulls_first;
4120 cache->leftstartsel = leftstartsel;
4121 cache->leftendsel = leftendsel;
4122 cache->rightstartsel = rightstartsel;
4123 cache->rightendsel = rightendsel;
4124
4125 rinfo->scansel_cache = lappend(rinfo->scansel_cache, cache);
4126
4127 MemoryContextSwitchTo(oldcontext);
4128
4129 return cache;
4130}
List * lappend(List *list, void *datum)
Definition: list.c:339
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void mergejoinscansel(PlannerInfo *root, Node *clause, Oid opfamily, CompareType cmptype, bool nulls_first, Selectivity *leftstart, Selectivity *leftend, Selectivity *rightstart, Selectivity *rightend)
Definition: selfuncs.c:2960
Selectivity leftstartsel
Definition: pathnodes.h:2876
Selectivity leftendsel
Definition: pathnodes.h:2877
CompareType cmptype
Definition: pathnodes.h:2873
Selectivity rightendsel
Definition: pathnodes.h:2879
Selectivity rightstartsel
Definition: pathnodes.h:2878
CompareType pk_cmptype
Definition: pathnodes.h:1606
bool pk_nulls_first
Definition: pathnodes.h:1607
Oid pk_opfamily
Definition: pathnodes.h:1605
Expr * clause
Definition: pathnodes.h:2700

References RestrictInfo::clause, MergeScanSelCache::cmptype, MergeScanSelCache::collation, lappend(), MergeScanSelCache::leftendsel, MergeScanSelCache::leftstartsel, lfirst, MemoryContextSwitchTo(), mergejoinscansel(), MergeScanSelCache::nulls_first, MergeScanSelCache::opfamily, palloc(), PathKey::pk_cmptype, PathKey::pk_nulls_first, PathKey::pk_opfamily, MergeScanSelCache::rightendsel, MergeScanSelCache::rightstartsel, and root.

Referenced by initial_cost_mergejoin().

◆ calc_joinrel_size_estimate()

static double calc_joinrel_size_estimate ( PlannerInfo root,
RelOptInfo joinrel,
RelOptInfo outer_rel,
RelOptInfo inner_rel,
double  outer_rows,
double  inner_rows,
SpecialJoinInfo sjinfo,
List restrictlist 
)
static

Definition at line 5486 of file costsize.c.

5494{
5495 JoinType jointype = sjinfo->jointype;
5496 Selectivity fkselec;
5497 Selectivity jselec;
5498 Selectivity pselec;
5499 double nrows;
5500
5501 /*
5502 * Compute joinclause selectivity. Note that we are only considering
5503 * clauses that become restriction clauses at this join level; we are not
5504 * double-counting them because they were not considered in estimating the
5505 * sizes of the component rels.
5506 *
5507 * First, see whether any of the joinclauses can be matched to known FK
5508 * constraints. If so, drop those clauses from the restrictlist, and
5509 * instead estimate their selectivity using FK semantics. (We do this
5510 * without regard to whether said clauses are local or "pushed down".
5511 * Probably, an FK-matching clause could never be seen as pushed down at
5512 * an outer join, since it would be strict and hence would be grounds for
5513 * join strength reduction.) fkselec gets the net selectivity for
5514 * FK-matching clauses, or 1.0 if there are none.
5515 */
5517 outer_rel->relids,
5518 inner_rel->relids,
5519 sjinfo,
5520 &restrictlist);
5521
5522 /*
5523 * For an outer join, we have to distinguish the selectivity of the join's
5524 * own clauses (JOIN/ON conditions) from any clauses that were "pushed
5525 * down". For inner joins we just count them all as joinclauses.
5526 */
5527 if (IS_OUTER_JOIN(jointype))
5528 {
5529 List *joinquals = NIL;
5530 List *pushedquals = NIL;
5531 ListCell *l;
5532
5533 /* Grovel through the clauses to separate into two lists */
5534 foreach(l, restrictlist)
5535 {
5537
5538 if (RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
5539 pushedquals = lappend(pushedquals, rinfo);
5540 else
5541 joinquals = lappend(joinquals, rinfo);
5542 }
5543
5544 /* Get the separate selectivities */
5546 joinquals,
5547 0,
5548 jointype,
5549 sjinfo);
5551 pushedquals,
5552 0,
5553 jointype,
5554 sjinfo);
5555
5556 /* Avoid leaking a lot of ListCells */
5557 list_free(joinquals);
5558 list_free(pushedquals);
5559 }
5560 else
5561 {
5563 restrictlist,
5564 0,
5565 jointype,
5566 sjinfo);
5567 pselec = 0.0; /* not used, keep compiler quiet */
5568 }
5569
5570 /*
5571 * Basically, we multiply size of Cartesian product by selectivity.
5572 *
5573 * If we are doing an outer join, take that into account: the joinqual
5574 * selectivity has to be clamped using the knowledge that the output must
5575 * be at least as large as the non-nullable input. However, any
5576 * pushed-down quals are applied after the outer join, so their
5577 * selectivity applies fully.
5578 *
5579 * For JOIN_SEMI and JOIN_ANTI, the selectivity is defined as the fraction
5580 * of LHS rows that have matches, and we apply that straightforwardly.
5581 */
5582 switch (jointype)
5583 {
5584 case JOIN_INNER:
5585 nrows = outer_rows * inner_rows * fkselec * jselec;
5586 /* pselec not used */
5587 break;
5588 case JOIN_LEFT:
5589 nrows = outer_rows * inner_rows * fkselec * jselec;
5590 if (nrows < outer_rows)
5591 nrows = outer_rows;
5592 nrows *= pselec;
5593 break;
5594 case JOIN_FULL:
5595 nrows = outer_rows * inner_rows * fkselec * jselec;
5596 if (nrows < outer_rows)
5597 nrows = outer_rows;
5598 if (nrows < inner_rows)
5599 nrows = inner_rows;
5600 nrows *= pselec;
5601 break;
5602 case JOIN_SEMI:
5603 nrows = outer_rows * fkselec * jselec;
5604 /* pselec not used */
5605 break;
5606 case JOIN_ANTI:
5607 nrows = outer_rows * (1.0 - fkselec * jselec);
5608 nrows *= pselec;
5609 break;
5610 default:
5611 /* other values not expected here */
5612 elog(ERROR, "unrecognized join type: %d", (int) jointype);
5613 nrows = 0; /* keep compiler quiet */
5614 break;
5615 }
5616
5617 return clamp_row_est(nrows);
5618}
Selectivity clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: clausesel.c:100
static Selectivity get_foreign_key_join_selectivity(PlannerInfo *root, Relids outer_relids, Relids inner_relids, SpecialJoinInfo *sjinfo, List **restrictlist)
Definition: costsize.c:5636
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
void list_free(List *list)
Definition: list.c:1546
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:344
JoinType
Definition: nodes.h:294
@ JOIN_SEMI
Definition: nodes.h:313
@ JOIN_FULL
Definition: nodes.h:301
@ JOIN_LEFT
Definition: nodes.h:300
@ JOIN_ANTI
Definition: nodes.h:314
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2857
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define NIL
Definition: pg_list.h:68
Definition: pg_list.h:54
Relids relids
Definition: pathnodes.h:898
JoinType jointype
Definition: pathnodes.h:3034

References clamp_row_est(), clauselist_selectivity(), elog, ERROR, get_foreign_key_join_selectivity(), IS_OUTER_JOIN, JOIN_ANTI, JOIN_FULL, JOIN_INNER, JOIN_LEFT, JOIN_SEMI, SpecialJoinInfo::jointype, lappend(), lfirst_node, list_free(), NIL, RelOptInfo::relids, RINFO_IS_PUSHED_DOWN, and root.

Referenced by get_parameterized_joinrel_size(), and set_joinrel_size_estimates().

◆ clamp_cardinality_to_long()

long clamp_cardinality_to_long ( Cardinality  x)

Definition at line 265 of file costsize.c.

266{
267 /*
268 * Just for paranoia's sake, ensure we do something sane with negative or
269 * NaN values.
270 */
271 if (isnan(x))
272 return LONG_MAX;
273 if (x <= 0)
274 return 0;
275
276 /*
277 * If "long" is 64 bits, then LONG_MAX cannot be represented exactly as a
278 * double. Casting it to double and back may well result in overflow due
279 * to rounding, so avoid doing that. We trust that any double value that
280 * compares strictly less than "(double) LONG_MAX" will cast to a
281 * representable "long" value.
282 */
283 return (x < (double) LONG_MAX) ? (long) x : LONG_MAX;
284}
int x
Definition: isn.c:75

References x.

Referenced by buildSubPlanHash(), create_recursiveunion_plan(), create_setop_plan(), and make_agg().

◆ clamp_row_est()

double clamp_row_est ( double  nrows)

Definition at line 213 of file costsize.c.

214{
215 /*
216 * Avoid infinite and NaN row estimates. Costs derived from such values
217 * are going to be useless. Also force the estimate to be at least one
218 * row, to make explain output look better and to avoid possible
219 * divide-by-zero when interpolating costs. Make it an integer, too.
220 */
221 if (nrows > MAXIMUM_ROWCOUNT || isnan(nrows))
222 nrows = MAXIMUM_ROWCOUNT;
223 else if (nrows <= 1.0)
224 nrows = 1.0;
225 else
226 nrows = rint(nrows);
227
228 return nrows;
229}
#define MAXIMUM_ROWCOUNT
Definition: costsize.c:128

References MAXIMUM_ROWCOUNT.

Referenced by adjust_limit_rows_costs(), approx_tuple_count(), bernoulli_samplescangetsamplesize(), calc_joinrel_size_estimate(), compute_bitmap_pages(), compute_gather_rows(), cost_agg(), cost_append(), cost_bitmap_heap_scan(), cost_group(), cost_index(), cost_seqscan(), cost_subplan(), cost_subqueryscan(), create_bitmap_subplan(), create_memoize_path(), estimate_array_length(), estimate_hash_bucket_stats(), estimate_num_groups(), estimate_path_cost_size(), estimate_size(), expression_returns_set_rows(), final_cost_hashjoin(), final_cost_mergejoin(), final_cost_nestloop(), get_parameterized_baserel_size(), get_variable_numdistinct(), get_windowclause_startup_tuples(), initial_cost_mergejoin(), set_baserel_size_estimates(), set_cte_size_estimates(), set_foreign_size(), system_rows_samplescangetsamplesize(), system_samplescangetsamplesize(), system_time_samplescangetsamplesize(), and table_block_relation_estimate_size().

◆ clamp_width_est()

int32 clamp_width_est ( int64  tuple_width)

Definition at line 242 of file costsize.c.

243{
244 /*
245 * Anything more than MaxAllocSize is clearly bogus, since we could not
246 * create a tuple that large.
247 */
248 if (tuple_width > MaxAllocSize)
249 return (int32) MaxAllocSize;
250
251 /*
252 * Unlike clamp_row_est, we just Assert that the value isn't negative,
253 * rather than masking such errors.
254 */
255 Assert(tuple_width >= 0);
256
257 return (int32) tuple_width;
258}
int32_t int32
Definition: c.h:498
#define MaxAllocSize
Definition: fe_memutils.h:22
Assert(PointerIsAligned(start, uint64))

References Assert(), and MaxAllocSize.

Referenced by add_placeholders_to_joinrel(), build_joinrel_tlist(), create_one_window_path(), get_rel_data_width(), set_pathtarget_cost_width(), and set_rel_width().

◆ compute_bitmap_pages()

double compute_bitmap_pages ( PlannerInfo root,
RelOptInfo baserel,
Path bitmapqual,
double  loop_count,
Cost cost_p,
double *  tuples_p 
)

Definition at line 6499 of file costsize.c.

6502{
6503 Cost indexTotalCost;
6504 Selectivity indexSelectivity;
6505 double T;
6506 double pages_fetched;
6507 double tuples_fetched;
6508 double heap_pages;
6509 double maxentries;
6510
6511 /*
6512 * Fetch total cost of obtaining the bitmap, as well as its total
6513 * selectivity.
6514 */
6515 cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
6516
6517 /*
6518 * Estimate number of main-table pages fetched.
6519 */
6520 tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
6521
6522 T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
6523
6524 /*
6525 * For a single scan, the number of heap pages that need to be fetched is
6526 * the same as the Mackert and Lohman formula for the case T <= b (ie, no
6527 * re-reads needed).
6528 */
6529 pages_fetched = (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
6530
6531 /*
6532 * Calculate the number of pages fetched from the heap. Then based on
6533 * current work_mem estimate get the estimated maxentries in the bitmap.
6534 * (Note that we always do this calculation based on the number of pages
6535 * that would be fetched in a single iteration, even if loop_count > 1.
6536 * That's correct, because only that number of entries will be stored in
6537 * the bitmap at one time.)
6538 */
6539 heap_pages = Min(pages_fetched, baserel->pages);
6540 maxentries = tbm_calculate_entries(work_mem * (Size) 1024);
6541
6542 if (loop_count > 1)
6543 {
6544 /*
6545 * For repeated bitmap scans, scale up the number of tuples fetched in
6546 * the Mackert and Lohman formula by the number of scans, so that we
6547 * estimate the number of pages fetched by all the scans. Then
6548 * pro-rate for one scan.
6549 */
6550 pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
6551 baserel->pages,
6552 get_indexpath_pages(bitmapqual),
6553 root);
6554 pages_fetched /= loop_count;
6555 }
6556
6557 if (pages_fetched >= T)
6558 pages_fetched = T;
6559 else
6560 pages_fetched = ceil(pages_fetched);
6561
6562 if (maxentries < heap_pages)
6563 {
6564 double exact_pages;
6565 double lossy_pages;
6566
6567 /*
6568 * Crude approximation of the number of lossy pages. Because of the
6569 * way tbm_lossify() is coded, the number of lossy pages increases
6570 * very sharply as soon as we run short of memory; this formula has
6571 * that property and seems to perform adequately in testing, but it's
6572 * possible we could do better somehow.
6573 */
6574 lossy_pages = Max(0, heap_pages - maxentries / 2);
6575 exact_pages = heap_pages - lossy_pages;
6576
6577 /*
6578 * If there are lossy pages then recompute the number of tuples
6579 * processed by the bitmap heap node. We assume here that the chance
6580 * of a given tuple coming from an exact page is the same as the
6581 * chance that a given page is exact. This might not be true, but
6582 * it's not clear how we can do any better.
6583 */
6584 if (lossy_pages > 0)
6585 tuples_fetched =
6586 clamp_row_est(indexSelectivity *
6587 (exact_pages / heap_pages) * baserel->tuples +
6588 (lossy_pages / heap_pages) * baserel->tuples);
6589 }
6590
6591 if (cost_p)
6592 *cost_p = indexTotalCost;
6593 if (tuples_p)
6594 *tuples_p = tuples_fetched;
6595
6596 return pages_fetched;
6597}
#define Max(x, y)
Definition: c.h:969
size_t Size
Definition: c.h:576
double index_pages_fetched(double tuples_fetched, BlockNumber pages, double index_pages, PlannerInfo *root)
Definition: costsize.c:908
void cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
Definition: costsize.c:1122
static double get_indexpath_pages(Path *bitmapqual)
Definition: costsize.c:973
int work_mem
Definition: globals.c:132
static const uint32 T[65]
Definition: md5.c:119
Cardinality tuples
Definition: pathnodes.h:976
BlockNumber pages
Definition: pathnodes.h:975
int tbm_calculate_entries(Size maxbytes)
Definition: tidbitmap.c:1545

References clamp_row_est(), cost_bitmap_tree_node(), get_indexpath_pages(), index_pages_fetched(), Max, Min, RelOptInfo::pages, root, T, tbm_calculate_entries(), RelOptInfo::tuples, and work_mem.

Referenced by cost_bitmap_heap_scan(), and create_partial_bitmap_paths().

◆ compute_gather_rows()

double compute_gather_rows ( Path path)

Definition at line 6610 of file costsize.c.

6611{
6612 Assert(path->parallel_workers > 0);
6613
6614 return clamp_row_est(path->rows * get_parallel_divisor(path));
6615}
static double get_parallel_divisor(Path *path)
Definition: costsize.c:6459
int parallel_workers
Definition: pathnodes.h:1793

References Assert(), clamp_row_est(), get_parallel_divisor(), Path::parallel_workers, and Path::rows.

Referenced by create_ordered_paths(), gather_grouping_paths(), generate_gather_paths(), and generate_useful_gather_paths().

◆ compute_semi_anti_join_factors()

void compute_semi_anti_join_factors ( PlannerInfo root,
RelOptInfo joinrel,
RelOptInfo outerrel,
RelOptInfo innerrel,
JoinType  jointype,
SpecialJoinInfo sjinfo,
List restrictlist,
SemiAntiJoinFactors semifactors 
)

Definition at line 5099 of file costsize.c.

5107{
5108 Selectivity jselec;
5109 Selectivity nselec;
5110 Selectivity avgmatch;
5111 SpecialJoinInfo norm_sjinfo;
5112 List *joinquals;
5113 ListCell *l;
5114
5115 /*
5116 * In an ANTI join, we must ignore clauses that are "pushed down", since
5117 * those won't affect the match logic. In a SEMI join, we do not
5118 * distinguish joinquals from "pushed down" quals, so just use the whole
5119 * restrictinfo list. For other outer join types, we should consider only
5120 * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
5121 */
5122 if (IS_OUTER_JOIN(jointype))
5123 {
5124 joinquals = NIL;
5125 foreach(l, restrictlist)
5126 {
5128
5129 if (!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
5130 joinquals = lappend(joinquals, rinfo);
5131 }
5132 }
5133 else
5134 joinquals = restrictlist;
5135
5136 /*
5137 * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
5138 */
5140 joinquals,
5141 0,
5142 (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
5143 sjinfo);
5144
5145 /*
5146 * Also get the normal inner-join selectivity of the join clauses.
5147 */
5148 init_dummy_sjinfo(&norm_sjinfo, outerrel->relids, innerrel->relids);
5149
5151 joinquals,
5152 0,
5153 JOIN_INNER,
5154 &norm_sjinfo);
5155
5156 /* Avoid leaking a lot of ListCells */
5157 if (IS_OUTER_JOIN(jointype))
5158 list_free(joinquals);
5159
5160 /*
5161 * jselec can be interpreted as the fraction of outer-rel rows that have
5162 * any matches (this is true for both SEMI and ANTI cases). And nselec is
5163 * the fraction of the Cartesian product that matches. So, the average
5164 * number of matches for each outer-rel row that has at least one match is
5165 * nselec * inner_rows / jselec.
5166 *
5167 * Note: it is correct to use the inner rel's "rows" count here, even
5168 * though we might later be considering a parameterized inner path with
5169 * fewer rows. This is because we have included all the join clauses in
5170 * the selectivity estimate.
5171 */
5172 if (jselec > 0) /* protect against zero divide */
5173 {
5174 avgmatch = nselec * innerrel->rows / jselec;
5175 /* Clamp to sane range */
5176 avgmatch = Max(1.0, avgmatch);
5177 }
5178 else
5179 avgmatch = 1.0;
5180
5181 semifactors->outer_match_frac = jselec;
5182 semifactors->match_count = avgmatch;
5183}
Cardinality rows
Definition: pathnodes.h:904
Selectivity outer_match_frac
Definition: pathnodes.h:3347
Selectivity match_count
Definition: pathnodes.h:3348

References clauselist_selectivity(), init_dummy_sjinfo(), IS_OUTER_JOIN, JOIN_ANTI, JOIN_INNER, JOIN_SEMI, lappend(), lfirst_node, list_free(), SemiAntiJoinFactors::match_count, Max, NIL, SemiAntiJoinFactors::outer_match_frac, RelOptInfo::relids, RINFO_IS_PUSHED_DOWN, root, and RelOptInfo::rows.

Referenced by add_paths_to_joinrel().

◆ cost_agg()

void cost_agg ( Path path,
PlannerInfo root,
AggStrategy  aggstrategy,
const AggClauseCosts aggcosts,
int  numGroupCols,
double  numGroups,
List quals,
int  disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples,
double  input_width 
)

Definition at line 2682 of file costsize.c.

2689{
2690 double output_tuples;
2691 Cost startup_cost;
2692 Cost total_cost;
2693 const AggClauseCosts dummy_aggcosts = {0};
2694
2695 /* Use all-zero per-aggregate costs if NULL is passed */
2696 if (aggcosts == NULL)
2697 {
2698 Assert(aggstrategy == AGG_HASHED);
2699 aggcosts = &dummy_aggcosts;
2700 }
2701
2702 /*
2703 * The transCost.per_tuple component of aggcosts should be charged once
2704 * per input tuple, corresponding to the costs of evaluating the aggregate
2705 * transfns and their input expressions. The finalCost.per_tuple component
2706 * is charged once per output tuple, corresponding to the costs of
2707 * evaluating the finalfns. Startup costs are of course charged but once.
2708 *
2709 * If we are grouping, we charge an additional cpu_operator_cost per
2710 * grouping column per input tuple for grouping comparisons.
2711 *
2712 * We will produce a single output tuple if not grouping, and a tuple per
2713 * group otherwise. We charge cpu_tuple_cost for each output tuple.
2714 *
2715 * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
2716 * same total CPU cost, but AGG_SORTED has lower startup cost. If the
2717 * input path is already sorted appropriately, AGG_SORTED should be
2718 * preferred (since it has no risk of memory overflow). This will happen
2719 * as long as the computed total costs are indeed exactly equal --- but if
2720 * there's roundoff error we might do the wrong thing. So be sure that
2721 * the computations below form the same intermediate values in the same
2722 * order.
2723 */
2724 if (aggstrategy == AGG_PLAIN)
2725 {
2726 startup_cost = input_total_cost;
2727 startup_cost += aggcosts->transCost.startup;
2728 startup_cost += aggcosts->transCost.per_tuple * input_tuples;
2729 startup_cost += aggcosts->finalCost.startup;
2730 startup_cost += aggcosts->finalCost.per_tuple;
2731 /* we aren't grouping */
2732 total_cost = startup_cost + cpu_tuple_cost;
2733 output_tuples = 1;
2734 }
2735 else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
2736 {
2737 /* Here we are able to deliver output on-the-fly */
2738 startup_cost = input_startup_cost;
2739 total_cost = input_total_cost;
2740 if (aggstrategy == AGG_MIXED && !enable_hashagg)
2741 ++disabled_nodes;
2742 /* calcs phrased this way to match HASHED case, see note above */
2743 total_cost += aggcosts->transCost.startup;
2744 total_cost += aggcosts->transCost.per_tuple * input_tuples;
2745 total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
2746 total_cost += aggcosts->finalCost.startup;
2747 total_cost += aggcosts->finalCost.per_tuple * numGroups;
2748 total_cost += cpu_tuple_cost * numGroups;
2749 output_tuples = numGroups;
2750 }
2751 else
2752 {
2753 /* must be AGG_HASHED */
2754 startup_cost = input_total_cost;
2755 if (!enable_hashagg)
2756 ++disabled_nodes;
2757 startup_cost += aggcosts->transCost.startup;
2758 startup_cost += aggcosts->transCost.per_tuple * input_tuples;
2759 /* cost of computing hash value */
2760 startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
2761 startup_cost += aggcosts->finalCost.startup;
2762
2763 total_cost = startup_cost;
2764 total_cost += aggcosts->finalCost.per_tuple * numGroups;
2765 /* cost of retrieving from hash table */
2766 total_cost += cpu_tuple_cost * numGroups;
2767 output_tuples = numGroups;
2768 }
2769
2770 /*
2771 * Add the disk costs of hash aggregation that spills to disk.
2772 *
2773 * Groups that go into the hash table stay in memory until finalized, so
2774 * spilling and reprocessing tuples doesn't incur additional invocations
2775 * of transCost or finalCost. Furthermore, the computed hash value is
2776 * stored with the spilled tuples, so we don't incur extra invocations of
2777 * the hash function.
2778 *
2779 * Hash Agg begins returning tuples after the first batch is complete.
2780 * Accrue writes (spilled tuples) to startup_cost and to total_cost;
2781 * accrue reads only to total_cost.
2782 */
2783 if (aggstrategy == AGG_HASHED || aggstrategy == AGG_MIXED)
2784 {
2785 double pages;
2786 double pages_written = 0.0;
2787 double pages_read = 0.0;
2788 double spill_cost;
2789 double hashentrysize;
2790 double nbatches;
2791 Size mem_limit;
2792 uint64 ngroups_limit;
2793 int num_partitions;
2794 int depth;
2795
2796 /*
2797 * Estimate number of batches based on the computed limits. If less
2798 * than or equal to one, all groups are expected to fit in memory;
2799 * otherwise we expect to spill.
2800 */
2801 hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
2802 input_width,
2803 aggcosts->transitionSpace);
2804 hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
2805 &ngroups_limit, &num_partitions);
2806
2807 nbatches = Max((numGroups * hashentrysize) / mem_limit,
2808 numGroups / ngroups_limit);
2809
2810 nbatches = Max(ceil(nbatches), 1.0);
2811 num_partitions = Max(num_partitions, 2);
2812
2813 /*
2814 * The number of partitions can change at different levels of
2815 * recursion; but for the purposes of this calculation assume it stays
2816 * constant.
2817 */
2818 depth = ceil(log(nbatches) / log(num_partitions));
2819
2820 /*
2821 * Estimate number of pages read and written. For each level of
2822 * recursion, a tuple must be written and then later read.
2823 */
2824 pages = relation_byte_size(input_tuples, input_width) / BLCKSZ;
2825 pages_written = pages_read = pages * depth;
2826
2827 /*
2828 * HashAgg has somewhat worse IO behavior than Sort on typical
2829 * hardware/OS combinations. Account for this with a generic penalty.
2830 */
2831 pages_read *= 2.0;
2832 pages_written *= 2.0;
2833
2834 startup_cost += pages_written * random_page_cost;
2835 total_cost += pages_written * random_page_cost;
2836 total_cost += pages_read * seq_page_cost;
2837
2838 /* account for CPU cost of spilling a tuple and reading it back */
2839 spill_cost = depth * input_tuples * 2.0 * cpu_tuple_cost;
2840 startup_cost += spill_cost;
2841 total_cost += spill_cost;
2842 }
2843
2844 /*
2845 * If there are quals (HAVING quals), account for their cost and
2846 * selectivity.
2847 */
2848 if (quals)
2849 {
2850 QualCost qual_cost;
2851
2852 cost_qual_eval(&qual_cost, quals, root);
2853 startup_cost += qual_cost.startup;
2854 total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
2855
2856 output_tuples = clamp_row_est(output_tuples *
2858 quals,
2859 0,
2860 JOIN_INNER,
2861 NULL));
2862 }
2863
2864 path->rows = output_tuples;
2865 path->disabled_nodes = disabled_nodes;
2866 path->startup_cost = startup_cost;
2867 path->total_cost = total_cost;
2868}
uint64_t uint64
Definition: c.h:503
double random_page_cost
Definition: costsize.c:131
double cpu_operator_cost
Definition: costsize.c:134
static double relation_byte_size(double tuples, int width)
Definition: costsize.c:6438
double cpu_tuple_cost
Definition: costsize.c:132
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4741
double seq_page_cost
Definition: costsize.c:130
bool enable_hashagg
Definition: costsize.c:152
Size hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
Definition: nodeAgg.c:1701
void hash_agg_set_limits(double hashentrysize, double input_groups, int used_bits, Size *mem_limit, uint64 *ngroups_limit, int *num_partitions)
Definition: nodeAgg.c:1809
@ AGG_SORTED
Definition: nodes.h:361
@ AGG_HASHED
Definition: nodes.h:362
@ AGG_MIXED
Definition: nodes.h:363
@ AGG_PLAIN
Definition: nodes.h:360
static int list_length(const List *l)
Definition: pg_list.h:152
QualCost finalCost
Definition: pathnodes.h:61
Size transitionSpace
Definition: pathnodes.h:62
QualCost transCost
Definition: pathnodes.h:60
Cost startup_cost
Definition: pathnodes.h:1798
int disabled_nodes
Definition: pathnodes.h:1797
Cost total_cost
Definition: pathnodes.h:1799
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47

References AGG_HASHED, AGG_MIXED, AGG_PLAIN, AGG_SORTED, Assert(), clamp_row_est(), clauselist_selectivity(), cost_qual_eval(), cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, enable_hashagg, AggClauseCosts::finalCost, hash_agg_entry_size(), hash_agg_set_limits(), JOIN_INNER, list_length(), Max, QualCost::per_tuple, random_page_cost, relation_byte_size(), root, Path::rows, seq_page_cost, QualCost::startup, Path::startup_cost, Path::total_cost, AggClauseCosts::transCost, and AggClauseCosts::transitionSpace.

Referenced by create_agg_path(), create_groupingsets_path(), and create_unique_path().

◆ cost_append()

void cost_append ( AppendPath apath)

Definition at line 2250 of file costsize.c.

2251{
2252 ListCell *l;
2253
2254 apath->path.disabled_nodes = 0;
2255 apath->path.startup_cost = 0;
2256 apath->path.total_cost = 0;
2257 apath->path.rows = 0;
2258
2259 if (apath->subpaths == NIL)
2260 return;
2261
2262 if (!apath->path.parallel_aware)
2263 {
2264 List *pathkeys = apath->path.pathkeys;
2265
2266 if (pathkeys == NIL)
2267 {
2268 Path *firstsubpath = (Path *) linitial(apath->subpaths);
2269
2270 /*
2271 * For an unordered, non-parallel-aware Append we take the startup
2272 * cost as the startup cost of the first subpath.
2273 */
2274 apath->path.startup_cost = firstsubpath->startup_cost;
2275
2276 /*
2277 * Compute rows, number of disabled nodes, and total cost as sums
2278 * of underlying subplan values.
2279 */
2280 foreach(l, apath->subpaths)
2281 {
2282 Path *subpath = (Path *) lfirst(l);
2283
2284 apath->path.rows += subpath->rows;
2285 apath->path.disabled_nodes += subpath->disabled_nodes;
2286 apath->path.total_cost += subpath->total_cost;
2287 }
2288 }
2289 else
2290 {
2291 /*
2292 * For an ordered, non-parallel-aware Append we take the startup
2293 * cost as the sum of the subpath startup costs. This ensures
2294 * that we don't underestimate the startup cost when a query's
2295 * LIMIT is such that several of the children have to be run to
2296 * satisfy it. This might be overkill --- another plausible hack
2297 * would be to take the Append's startup cost as the maximum of
2298 * the child startup costs. But we don't want to risk believing
2299 * that an ORDER BY LIMIT query can be satisfied at small cost
2300 * when the first child has small startup cost but later ones
2301 * don't. (If we had the ability to deal with nonlinear cost
2302 * interpolation for partial retrievals, we would not need to be
2303 * so conservative about this.)
2304 *
2305 * This case is also different from the above in that we have to
2306 * account for possibly injecting sorts into subpaths that aren't
2307 * natively ordered.
2308 */
2309 foreach(l, apath->subpaths)
2310 {
2311 Path *subpath = (Path *) lfirst(l);
2312 Path sort_path; /* dummy for result of cost_sort */
2313
2314 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
2315 {
2316 /*
2317 * We'll need to insert a Sort node, so include costs for
2318 * that. We can use the parent's LIMIT if any, since we
2319 * certainly won't pull more than that many tuples from
2320 * any child.
2321 */
2322 cost_sort(&sort_path,
2323 NULL, /* doesn't currently need root */
2324 pathkeys,
2325 subpath->disabled_nodes,
2326 subpath->total_cost,
2327 subpath->rows,
2328 subpath->pathtarget->width,
2329 0.0,
2330 work_mem,
2331 apath->limit_tuples);
2332 subpath = &sort_path;
2333 }
2334
2335 apath->path.rows += subpath->rows;
2336 apath->path.disabled_nodes += subpath->disabled_nodes;
2337 apath->path.startup_cost += subpath->startup_cost;
2338 apath->path.total_cost += subpath->total_cost;
2339 }
2340 }
2341 }
2342 else /* parallel-aware */
2343 {
2344 int i = 0;
2345 double parallel_divisor = get_parallel_divisor(&apath->path);
2346
2347 /* Parallel-aware Append never produces ordered output. */
2348 Assert(apath->path.pathkeys == NIL);
2349
2350 /* Calculate startup cost. */
2351 foreach(l, apath->subpaths)
2352 {
2353 Path *subpath = (Path *) lfirst(l);
2354
2355 /*
2356 * Append will start returning tuples when the child node having
2357 * lowest startup cost is done setting up. We consider only the
2358 * first few subplans that immediately get a worker assigned.
2359 */
2360 if (i == 0)
2361 apath->path.startup_cost = subpath->startup_cost;
2362 else if (i < apath->path.parallel_workers)
2363 apath->path.startup_cost = Min(apath->path.startup_cost,
2364 subpath->startup_cost);
2365
2366 /*
2367 * Apply parallel divisor to subpaths. Scale the number of rows
2368 * for each partial subpath based on the ratio of the parallel
2369 * divisor originally used for the subpath to the one we adopted.
2370 * Also add the cost of partial paths to the total cost, but
2371 * ignore non-partial paths for now.
2372 */
2373 if (i < apath->first_partial_path)
2374 apath->path.rows += subpath->rows / parallel_divisor;
2375 else
2376 {
2377 double subpath_parallel_divisor;
2378
2379 subpath_parallel_divisor = get_parallel_divisor(subpath);
2380 apath->path.rows += subpath->rows * (subpath_parallel_divisor /
2381 parallel_divisor);
2382 apath->path.total_cost += subpath->total_cost;
2383 }
2384
2385 apath->path.disabled_nodes += subpath->disabled_nodes;
2386 apath->path.rows = clamp_row_est(apath->path.rows);
2387
2388 i++;
2389 }
2390
2391 /* Add cost for non-partial subpaths. */
2392 apath->path.total_cost +=
2394 apath->first_partial_path,
2395 apath->path.parallel_workers);
2396 }
2397
2398 /*
2399 * Although Append does not do any selection or projection, it's not free;
2400 * add a small per-tuple overhead.
2401 */
2402 apath->path.total_cost +=
2404}
#define APPEND_CPU_COST_MULTIPLIER
Definition: costsize.c:120
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2144
static Cost append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
Definition: costsize.c:2174
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
#define linitial(l)
Definition: pg_list.h:178
int first_partial_path
Definition: pathnodes.h:2071
Cardinality limit_tuples
Definition: pathnodes.h:2072
List * subpaths
Definition: pathnodes.h:2069
List * pathkeys
Definition: pathnodes.h:1802
bool parallel_aware
Definition: pathnodes.h:1789

References APPEND_CPU_COST_MULTIPLIER, append_nonpartial_cost(), Assert(), clamp_row_est(), cost_sort(), cpu_tuple_cost, Path::disabled_nodes, AppendPath::first_partial_path, get_parallel_divisor(), i, lfirst, AppendPath::limit_tuples, linitial, Min, NIL, Path::parallel_aware, Path::parallel_workers, AppendPath::path, Path::pathkeys, pathkeys_contained_in(), Path::rows, Path::startup_cost, subpath(), AppendPath::subpaths, Path::total_cost, and work_mem.

Referenced by create_append_path().

◆ cost_bitmap_and_node()

void cost_bitmap_and_node ( BitmapAndPath path,
PlannerInfo root 
)

Definition at line 1165 of file costsize.c.

1166{
1167 Cost totalCost;
1168 Selectivity selec;
1169 ListCell *l;
1170
1171 /*
1172 * We estimate AND selectivity on the assumption that the inputs are
1173 * independent. This is probably often wrong, but we don't have the info
1174 * to do better.
1175 *
1176 * The runtime cost of the BitmapAnd itself is estimated at 100x
1177 * cpu_operator_cost for each tbm_intersect needed. Probably too small,
1178 * definitely too simplistic?
1179 */
1180 totalCost = 0.0;
1181 selec = 1.0;
1182 foreach(l, path->bitmapquals)
1183 {
1184 Path *subpath = (Path *) lfirst(l);
1185 Cost subCost;
1186 Selectivity subselec;
1187
1188 cost_bitmap_tree_node(subpath, &subCost, &subselec);
1189
1190 selec *= subselec;
1191
1192 totalCost += subCost;
1193 if (l != list_head(path->bitmapquals))
1194 totalCost += 100.0 * cpu_operator_cost;
1195 }
1196 path->bitmapselectivity = selec;
1197 path->path.rows = 0; /* per above, not used */
1198 path->path.disabled_nodes = 0;
1199 path->path.startup_cost = totalCost;
1200 path->path.total_cost = totalCost;
1201}
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
Selectivity bitmapselectivity
Definition: pathnodes.h:1935
List * bitmapquals
Definition: pathnodes.h:1934

References BitmapAndPath::bitmapquals, BitmapAndPath::bitmapselectivity, cost_bitmap_tree_node(), cpu_operator_cost, Path::disabled_nodes, lfirst, list_head(), BitmapAndPath::path, Path::rows, Path::startup_cost, subpath(), and Path::total_cost.

Referenced by create_bitmap_and_path().

◆ cost_bitmap_heap_scan()

void cost_bitmap_heap_scan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info,
Path bitmapqual,
double  loop_count 
)

Definition at line 1023 of file costsize.c.

1026{
1027 Cost startup_cost = 0;
1028 Cost run_cost = 0;
1029 Cost indexTotalCost;
1030 QualCost qpqual_cost;
1031 Cost cpu_per_tuple;
1032 Cost cost_per_page;
1033 Cost cpu_run_cost;
1034 double tuples_fetched;
1035 double pages_fetched;
1036 double spc_seq_page_cost,
1037 spc_random_page_cost;
1038 double T;
1039
1040 /* Should only be applied to base relations */
1041 Assert(IsA(baserel, RelOptInfo));
1042 Assert(baserel->relid > 0);
1043 Assert(baserel->rtekind == RTE_RELATION);
1044
1045 /* Mark the path with the correct row estimate */
1046 if (param_info)
1047 path->rows = param_info->ppi_rows;
1048 else
1049 path->rows = baserel->rows;
1050
1051 pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
1052 loop_count, &indexTotalCost,
1053 &tuples_fetched);
1054
1055 startup_cost += indexTotalCost;
1056 T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
1057
1058 /* Fetch estimated page costs for tablespace containing table. */
1060 &spc_random_page_cost,
1061 &spc_seq_page_cost);
1062
1063 /*
1064 * For small numbers of pages we should charge spc_random_page_cost
1065 * apiece, while if nearly all the table's pages are being read, it's more
1066 * appropriate to charge spc_seq_page_cost apiece. The effect is
1067 * nonlinear, too. For lack of a better idea, interpolate like this to
1068 * determine the cost per page.
1069 */
1070 if (pages_fetched >= 2.0)
1071 cost_per_page = spc_random_page_cost -
1072 (spc_random_page_cost - spc_seq_page_cost)
1073 * sqrt(pages_fetched / T);
1074 else
1075 cost_per_page = spc_random_page_cost;
1076
1077 run_cost += pages_fetched * cost_per_page;
1078
1079 /*
1080 * Estimate CPU costs per tuple.
1081 *
1082 * Often the indexquals don't need to be rechecked at each tuple ... but
1083 * not always, especially not if there are enough tuples involved that the
1084 * bitmaps become lossy. For the moment, just assume they will be
1085 * rechecked always. This means we charge the full freight for all the
1086 * scan clauses.
1087 */
1088 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1089
1090 startup_cost += qpqual_cost.startup;
1091 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1092 cpu_run_cost = cpu_per_tuple * tuples_fetched;
1093
1094 /* Adjust costing for parallelism, if used. */
1095 if (path->parallel_workers > 0)
1096 {
1097 double parallel_divisor = get_parallel_divisor(path);
1098
1099 /* The CPU cost is divided among all the workers. */
1100 cpu_run_cost /= parallel_divisor;
1101
1102 path->rows = clamp_row_est(path->rows / parallel_divisor);
1103 }
1104
1105
1106 run_cost += cpu_run_cost;
1107
1108 /* tlist eval costs are paid per output row, not per tuple scanned */
1109 startup_cost += path->pathtarget->cost.startup;
1110 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1111
1112 path->disabled_nodes = enable_bitmapscan ? 0 : 1;
1113 path->startup_cost = startup_cost;
1114 path->total_cost = startup_cost + run_cost;
1115}
static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, QualCost *qpqual_cost)
Definition: costsize.c:5057
double compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual, double loop_count, Cost *cost_p, double *tuples_p)
Definition: costsize.c:6499
bool enable_bitmapscan
Definition: costsize.c:148
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
@ RTE_RELATION
Definition: parsenodes.h:1026
void get_tablespace_page_costs(Oid spcid, double *spc_random_page_cost, double *spc_seq_page_cost)
Definition: spccache.c:182
Cardinality ppi_rows
Definition: pathnodes.h:1716
Index relid
Definition: pathnodes.h:945
Oid reltablespace
Definition: pathnodes.h:947
RTEKind rtekind
Definition: pathnodes.h:949

References Assert(), clamp_row_est(), compute_bitmap_pages(), cpu_tuple_cost, Path::disabled_nodes, enable_bitmapscan, get_parallel_divisor(), get_restriction_qual_cost(), get_tablespace_page_costs(), IsA, RelOptInfo::pages, Path::parallel_workers, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, T, and Path::total_cost.

Referenced by bitmap_scan_cost_est(), and create_bitmap_heap_path().

◆ cost_bitmap_or_node()

void cost_bitmap_or_node ( BitmapOrPath path,
PlannerInfo root 
)

Definition at line 1210 of file costsize.c.

1211{
1212 Cost totalCost;
1213 Selectivity selec;
1214 ListCell *l;
1215
1216 /*
1217 * We estimate OR selectivity on the assumption that the inputs are
1218 * non-overlapping, since that's often the case in "x IN (list)" type
1219 * situations. Of course, we clamp to 1.0 at the end.
1220 *
1221 * The runtime cost of the BitmapOr itself is estimated at 100x
1222 * cpu_operator_cost for each tbm_union needed. Probably too small,
1223 * definitely too simplistic? We are aware that the tbm_unions are
1224 * optimized out when the inputs are BitmapIndexScans.
1225 */
1226 totalCost = 0.0;
1227 selec = 0.0;
1228 foreach(l, path->bitmapquals)
1229 {
1230 Path *subpath = (Path *) lfirst(l);
1231 Cost subCost;
1232 Selectivity subselec;
1233
1234 cost_bitmap_tree_node(subpath, &subCost, &subselec);
1235
1236 selec += subselec;
1237
1238 totalCost += subCost;
1239 if (l != list_head(path->bitmapquals) &&
1241 totalCost += 100.0 * cpu_operator_cost;
1242 }
1243 path->bitmapselectivity = Min(selec, 1.0);
1244 path->path.rows = 0; /* per above, not used */
1245 path->path.startup_cost = totalCost;
1246 path->path.total_cost = totalCost;
1247}
Selectivity bitmapselectivity
Definition: pathnodes.h:1948
List * bitmapquals
Definition: pathnodes.h:1947

References BitmapOrPath::bitmapquals, BitmapOrPath::bitmapselectivity, cost_bitmap_tree_node(), cpu_operator_cost, IsA, lfirst, list_head(), Min, BitmapOrPath::path, Path::rows, Path::startup_cost, subpath(), and Path::total_cost.

Referenced by create_bitmap_or_path().

◆ cost_bitmap_tree_node()

void cost_bitmap_tree_node ( Path path,
Cost cost,
Selectivity selec 
)

Definition at line 1122 of file costsize.c.

1123{
1124 if (IsA(path, IndexPath))
1125 {
1126 *cost = ((IndexPath *) path)->indextotalcost;
1127 *selec = ((IndexPath *) path)->indexselectivity;
1128
1129 /*
1130 * Charge a small amount per retrieved tuple to reflect the costs of
1131 * manipulating the bitmap. This is mostly to make sure that a bitmap
1132 * scan doesn't look to be the same cost as an indexscan to retrieve a
1133 * single tuple.
1134 */
1135 *cost += 0.1 * cpu_operator_cost * path->rows;
1136 }
1137 else if (IsA(path, BitmapAndPath))
1138 {
1139 *cost = path->total_cost;
1140 *selec = ((BitmapAndPath *) path)->bitmapselectivity;
1141 }
1142 else if (IsA(path, BitmapOrPath))
1143 {
1144 *cost = path->total_cost;
1145 *selec = ((BitmapOrPath *) path)->bitmapselectivity;
1146 }
1147 else
1148 {
1149 elog(ERROR, "unrecognized node type: %d", nodeTag(path));
1150 *cost = *selec = 0; /* keep compiler quiet */
1151 }
1152}
#define nodeTag(nodeptr)
Definition: nodes.h:139

References cpu_operator_cost, elog, ERROR, IsA, nodeTag, Path::rows, and Path::total_cost.

Referenced by choose_bitmap_and(), compute_bitmap_pages(), cost_bitmap_and_node(), cost_bitmap_or_node(), and path_usage_comparator().

◆ cost_ctescan()

void cost_ctescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1708 of file costsize.c.

1710{
1711 Cost startup_cost = 0;
1712 Cost run_cost = 0;
1713 QualCost qpqual_cost;
1714 Cost cpu_per_tuple;
1715
1716 /* Should only be applied to base relations that are CTEs */
1717 Assert(baserel->relid > 0);
1718 Assert(baserel->rtekind == RTE_CTE);
1719
1720 /* Mark the path with the correct row estimate */
1721 if (param_info)
1722 path->rows = param_info->ppi_rows;
1723 else
1724 path->rows = baserel->rows;
1725
1726 /* Charge one CPU tuple cost per row for tuplestore manipulation */
1727 cpu_per_tuple = cpu_tuple_cost;
1728
1729 /* Add scanning CPU costs */
1730 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1731
1732 startup_cost += qpqual_cost.startup;
1733 cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1734 run_cost += cpu_per_tuple * baserel->tuples;
1735
1736 /* tlist eval costs are paid per output row, not per tuple scanned */
1737 startup_cost += path->pathtarget->cost.startup;
1738 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1739
1740 path->disabled_nodes = 0;
1741 path->startup_cost = startup_cost;
1742 path->total_cost = startup_cost + run_cost;
1743}
@ RTE_CTE
Definition: parsenodes.h:1032

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_CTE, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_ctescan_path(), and create_worktablescan_path().

◆ cost_functionscan()

void cost_functionscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1538 of file costsize.c.

1540{
1541 Cost startup_cost = 0;
1542 Cost run_cost = 0;
1543 QualCost qpqual_cost;
1544 Cost cpu_per_tuple;
1545 RangeTblEntry *rte;
1546 QualCost exprcost;
1547
1548 /* Should only be applied to base relations that are functions */
1549 Assert(baserel->relid > 0);
1550 rte = planner_rt_fetch(baserel->relid, root);
1551 Assert(rte->rtekind == RTE_FUNCTION);
1552
1553 /* Mark the path with the correct row estimate */
1554 if (param_info)
1555 path->rows = param_info->ppi_rows;
1556 else
1557 path->rows = baserel->rows;
1558
1559 /*
1560 * Estimate costs of executing the function expression(s).
1561 *
1562 * Currently, nodeFunctionscan.c always executes the functions to
1563 * completion before returning any rows, and caches the results in a
1564 * tuplestore. So the function eval cost is all startup cost, and per-row
1565 * costs are minimal.
1566 *
1567 * XXX in principle we ought to charge tuplestore spill costs if the
1568 * number of rows is large. However, given how phony our rowcount
1569 * estimates for functions tend to be, there's not a lot of point in that
1570 * refinement right now.
1571 */
1572 cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
1573
1574 startup_cost += exprcost.startup + exprcost.per_tuple;
1575
1576 /* Add scanning CPU costs */
1577 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1578
1579 startup_cost += qpqual_cost.startup;
1580 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1581 run_cost += cpu_per_tuple * baserel->tuples;
1582
1583 /* tlist eval costs are paid per output row, not per tuple scanned */
1584 startup_cost += path->pathtarget->cost.startup;
1585 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1586
1587 path->disabled_nodes = 0;
1588 path->startup_cost = startup_cost;
1589 path->total_cost = startup_cost + run_cost;
1590}
void cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
Definition: costsize.c:4767
@ RTE_FUNCTION
Definition: parsenodes.h:1029
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:597
List * functions
Definition: parsenodes.h:1191
RTEKind rtekind
Definition: parsenodes.h:1061

References Assert(), cost_qual_eval_node(), cpu_tuple_cost, Path::disabled_nodes, RangeTblEntry::functions, get_restriction_qual_cost(), QualCost::per_tuple, planner_rt_fetch, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_FUNCTION, RangeTblEntry::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_functionscan_path().

◆ cost_gather()

void cost_gather ( GatherPath path,
PlannerInfo root,
RelOptInfo rel,
ParamPathInfo param_info,
double *  rows 
)

Definition at line 446 of file costsize.c.

449{
450 Cost startup_cost = 0;
451 Cost run_cost = 0;
452
453 /* Mark the path with the correct row estimate */
454 if (rows)
455 path->path.rows = *rows;
456 else if (param_info)
457 path->path.rows = param_info->ppi_rows;
458 else
459 path->path.rows = rel->rows;
460
461 startup_cost = path->subpath->startup_cost;
462
463 run_cost = path->subpath->total_cost - path->subpath->startup_cost;
464
465 /* Parallel setup and communication cost. */
466 startup_cost += parallel_setup_cost;
467 run_cost += parallel_tuple_cost * path->path.rows;
468
470 path->path.startup_cost = startup_cost;
471 path->path.total_cost = (startup_cost + run_cost);
472}
double parallel_setup_cost
Definition: costsize.c:136
double parallel_tuple_cost
Definition: costsize.c:135
Path * subpath
Definition: pathnodes.h:2179

References Path::disabled_nodes, parallel_setup_cost, parallel_tuple_cost, GatherPath::path, ParamPathInfo::ppi_rows, RelOptInfo::rows, Path::rows, Path::startup_cost, GatherPath::subpath, and Path::total_cost.

Referenced by create_gather_path().

◆ cost_gather_merge()

void cost_gather_merge ( GatherMergePath path,
PlannerInfo root,
RelOptInfo rel,
ParamPathInfo param_info,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double *  rows 
)

Definition at line 485 of file costsize.c.

490{
491 Cost startup_cost = 0;
492 Cost run_cost = 0;
493 Cost comparison_cost;
494 double N;
495 double logN;
496
497 /* Mark the path with the correct row estimate */
498 if (rows)
499 path->path.rows = *rows;
500 else if (param_info)
501 path->path.rows = param_info->ppi_rows;
502 else
503 path->path.rows = rel->rows;
504
505 /*
506 * Add one to the number of workers to account for the leader. This might
507 * be overgenerous since the leader will do less work than other workers
508 * in typical cases, but we'll go with it for now.
509 */
510 Assert(path->num_workers > 0);
511 N = (double) path->num_workers + 1;
512 logN = LOG2(N);
513
514 /* Assumed cost per tuple comparison */
515 comparison_cost = 2.0 * cpu_operator_cost;
516
517 /* Heap creation cost */
518 startup_cost += comparison_cost * N * logN;
519
520 /* Per-tuple heap maintenance cost */
521 run_cost += path->path.rows * comparison_cost * logN;
522
523 /* small cost for heap management, like cost_merge_append */
524 run_cost += cpu_operator_cost * path->path.rows;
525
526 /*
527 * Parallel setup and communication cost. Since Gather Merge, unlike
528 * Gather, requires us to block until a tuple is available from every
529 * worker, we bump the IPC cost up a little bit as compared with Gather.
530 * For lack of a better idea, charge an extra 5%.
531 */
532 startup_cost += parallel_setup_cost;
533 run_cost += parallel_tuple_cost * path->path.rows * 1.05;
534
535 path->path.disabled_nodes = input_disabled_nodes
536 + (enable_gathermerge ? 0 : 1);
537 path->path.startup_cost = startup_cost + input_startup_cost;
538 path->path.total_cost = (startup_cost + run_cost + input_total_cost);
539}
#define LOG2(x)
Definition: costsize.c:113
bool enable_gathermerge
Definition: costsize.c:158

References Assert(), cpu_operator_cost, Path::disabled_nodes, enable_gathermerge, LOG2, GatherMergePath::num_workers, parallel_setup_cost, parallel_tuple_cost, GatherMergePath::path, ParamPathInfo::ppi_rows, RelOptInfo::rows, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by create_gather_merge_path().

◆ cost_group()

void cost_group ( Path path,
PlannerInfo root,
int  numGroupCols,
double  numGroups,
List quals,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples 
)

Definition at line 3195 of file costsize.c.

3201{
3202 double output_tuples;
3203 Cost startup_cost;
3204 Cost total_cost;
3205
3206 output_tuples = numGroups;
3207 startup_cost = input_startup_cost;
3208 total_cost = input_total_cost;
3209
3210 /*
3211 * Charge one cpu_operator_cost per comparison per input tuple. We assume
3212 * all columns get compared at most of the tuples.
3213 */
3214 total_cost += cpu_operator_cost * input_tuples * numGroupCols;
3215
3216 /*
3217 * If there are quals (HAVING quals), account for their cost and
3218 * selectivity.
3219 */
3220 if (quals)
3221 {
3222 QualCost qual_cost;
3223
3224 cost_qual_eval(&qual_cost, quals, root);
3225 startup_cost += qual_cost.startup;
3226 total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
3227
3228 output_tuples = clamp_row_est(output_tuples *
3230 quals,
3231 0,
3232 JOIN_INNER,
3233 NULL));
3234 }
3235
3236 path->rows = output_tuples;
3237 path->disabled_nodes = input_disabled_nodes;
3238 path->startup_cost = startup_cost;
3239 path->total_cost = total_cost;
3240}

References clamp_row_est(), clauselist_selectivity(), cost_qual_eval(), cpu_operator_cost, Path::disabled_nodes, JOIN_INNER, QualCost::per_tuple, root, Path::rows, QualCost::startup, Path::startup_cost, and Path::total_cost.

Referenced by create_group_path().

◆ cost_incremental_sort()

void cost_incremental_sort ( Path path,
PlannerInfo root,
List pathkeys,
int  presorted_keys,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples,
int  width,
Cost  comparison_cost,
int  sort_mem,
double  limit_tuples 
)

Definition at line 2000 of file costsize.c.

2006{
2007 Cost startup_cost,
2008 run_cost,
2009 input_run_cost = input_total_cost - input_startup_cost;
2010 double group_tuples,
2011 input_groups;
2012 Cost group_startup_cost,
2013 group_run_cost,
2014 group_input_run_cost;
2015 List *presortedExprs = NIL;
2016 ListCell *l;
2017 bool unknown_varno = false;
2018
2019 Assert(presorted_keys > 0 && presorted_keys < list_length(pathkeys));
2020
2021 /*
2022 * We want to be sure the cost of a sort is never estimated as zero, even
2023 * if passed-in tuple count is zero. Besides, mustn't do log(0)...
2024 */
2025 if (input_tuples < 2.0)
2026 input_tuples = 2.0;
2027
2028 /* Default estimate of number of groups, capped to one group per row. */
2029 input_groups = Min(input_tuples, DEFAULT_NUM_DISTINCT);
2030
2031 /*
2032 * Extract presorted keys as list of expressions.
2033 *
2034 * We need to be careful about Vars containing "varno 0" which might have
2035 * been introduced by generate_append_tlist, which would confuse
2036 * estimate_num_groups (in fact it'd fail for such expressions). See
2037 * recurse_set_operations which has to deal with the same issue.
2038 *
2039 * Unlike recurse_set_operations we can't access the original target list
2040 * here, and even if we could it's not very clear how useful would that be
2041 * for a set operation combining multiple tables. So we simply detect if
2042 * there are any expressions with "varno 0" and use the default
2043 * DEFAULT_NUM_DISTINCT in that case.
2044 *
2045 * We might also use either 1.0 (a single group) or input_tuples (each row
2046 * being a separate group), pretty much the worst and best case for
2047 * incremental sort. But those are extreme cases and using something in
2048 * between seems reasonable. Furthermore, generate_append_tlist is used
2049 * for set operations, which are likely to produce mostly unique output
2050 * anyway - from that standpoint the DEFAULT_NUM_DISTINCT is defensive
2051 * while maintaining lower startup cost.
2052 */
2053 foreach(l, pathkeys)
2054 {
2055 PathKey *key = (PathKey *) lfirst(l);
2057 linitial(key->pk_eclass->ec_members);
2058
2059 /*
2060 * Check if the expression contains Var with "varno 0" so that we
2061 * don't call estimate_num_groups in that case.
2062 */
2063 if (bms_is_member(0, pull_varnos(root, (Node *) member->em_expr)))
2064 {
2065 unknown_varno = true;
2066 break;
2067 }
2068
2069 /* expression not containing any Vars with "varno 0" */
2070 presortedExprs = lappend(presortedExprs, member->em_expr);
2071
2072 if (foreach_current_index(l) + 1 >= presorted_keys)
2073 break;
2074 }
2075
2076 /* Estimate the number of groups with equal presorted keys. */
2077 if (!unknown_varno)
2078 input_groups = estimate_num_groups(root, presortedExprs, input_tuples,
2079 NULL, NULL);
2080
2081 group_tuples = input_tuples / input_groups;
2082 group_input_run_cost = input_run_cost / input_groups;
2083
2084 /*
2085 * Estimate the average cost of sorting of one group where presorted keys
2086 * are equal.
2087 */
2088 cost_tuplesort(&group_startup_cost, &group_run_cost,
2089 group_tuples, width, comparison_cost, sort_mem,
2090 limit_tuples);
2091
2092 /*
2093 * Startup cost of incremental sort is the startup cost of its first group
2094 * plus the cost of its input.
2095 */
2096 startup_cost = group_startup_cost + input_startup_cost +
2097 group_input_run_cost;
2098
2099 /*
2100 * After we started producing tuples from the first group, the cost of
2101 * producing all the tuples is given by the cost to finish processing this
2102 * group, plus the total cost to process the remaining groups, plus the
2103 * remaining cost of input.
2104 */
2105 run_cost = group_run_cost + (group_run_cost + group_startup_cost) *
2106 (input_groups - 1) + group_input_run_cost * (input_groups - 1);
2107
2108 /*
2109 * Incremental sort adds some overhead by itself. Firstly, it has to
2110 * detect the sort groups. This is roughly equal to one extra copy and
2111 * comparison per tuple.
2112 */
2113 run_cost += (cpu_tuple_cost + comparison_cost) * input_tuples;
2114
2115 /*
2116 * Additionally, we charge double cpu_tuple_cost for each input group to
2117 * account for the tuplesort_reset that's performed after each group.
2118 */
2119 run_cost += 2.0 * cpu_tuple_cost * input_groups;
2120
2121 path->rows = input_tuples;
2122
2123 /* should not generate these paths when enable_incremental_sort=false */
2125 path->disabled_nodes = input_disabled_nodes;
2126
2127 path->startup_cost = startup_cost;
2128 path->total_cost = startup_cost + run_cost;
2129}
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
static void cost_tuplesort(Cost *startup_cost, Cost *run_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:1898
bool enable_incremental_sort
Definition: costsize.c:151
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset, EstimationInfo *estinfo)
Definition: selfuncs.c:3446
#define DEFAULT_NUM_DISTINCT
Definition: selfuncs.h:52
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114

References Assert(), bms_is_member(), cost_tuplesort(), cpu_tuple_cost, DEFAULT_NUM_DISTINCT, Path::disabled_nodes, EquivalenceMember::em_expr, enable_incremental_sort, estimate_num_groups(), foreach_current_index, sort-test::key, lappend(), lfirst, linitial, list_length(), Min, NIL, pull_varnos(), root, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by create_incremental_sort_path(), initial_cost_mergejoin(), and label_incrementalsort_with_costsize().

◆ cost_index()

void cost_index ( IndexPath path,
PlannerInfo root,
double  loop_count,
bool  partial_path 
)

Definition at line 560 of file costsize.c.

562{
564 RelOptInfo *baserel = index->rel;
565 bool indexonly = (path->path.pathtype == T_IndexOnlyScan);
566 amcostestimate_function amcostestimate;
567 List *qpquals;
568 Cost startup_cost = 0;
569 Cost run_cost = 0;
570 Cost cpu_run_cost = 0;
571 Cost indexStartupCost;
572 Cost indexTotalCost;
573 Selectivity indexSelectivity;
574 double indexCorrelation,
575 csquared;
576 double spc_seq_page_cost,
577 spc_random_page_cost;
578 Cost min_IO_cost,
579 max_IO_cost;
580 QualCost qpqual_cost;
581 Cost cpu_per_tuple;
582 double tuples_fetched;
583 double pages_fetched;
584 double rand_heap_pages;
585 double index_pages;
586
587 /* Should only be applied to base relations */
588 Assert(IsA(baserel, RelOptInfo) &&
590 Assert(baserel->relid > 0);
591 Assert(baserel->rtekind == RTE_RELATION);
592
593 /*
594 * Mark the path with the correct row estimate, and identify which quals
595 * will need to be enforced as qpquals. We need not check any quals that
596 * are implied by the index's predicate, so we can use indrestrictinfo not
597 * baserestrictinfo as the list of relevant restriction clauses for the
598 * rel.
599 */
600 if (path->path.param_info)
601 {
602 path->path.rows = path->path.param_info->ppi_rows;
603 /* qpquals come from the rel's restriction clauses and ppi_clauses */
605 path->indexclauses),
606 extract_nonindex_conditions(path->path.param_info->ppi_clauses,
607 path->indexclauses));
608 }
609 else
610 {
611 path->path.rows = baserel->rows;
612 /* qpquals come from just the rel's restriction clauses */
614 path->indexclauses);
615 }
616
617 /* we don't need to check enable_indexonlyscan; indxpath.c does that */
618 path->path.disabled_nodes = enable_indexscan ? 0 : 1;
619
620 /*
621 * Call index-access-method-specific code to estimate the processing cost
622 * for scanning the index, as well as the selectivity of the index (ie,
623 * the fraction of main-table tuples we will have to retrieve) and its
624 * correlation to the main-table tuple order. We need a cast here because
625 * pathnodes.h uses a weak function type to avoid including amapi.h.
626 */
627 amcostestimate = (amcostestimate_function) index->amcostestimate;
628 amcostestimate(root, path, loop_count,
629 &indexStartupCost, &indexTotalCost,
630 &indexSelectivity, &indexCorrelation,
631 &index_pages);
632
633 /*
634 * Save amcostestimate's results for possible use in bitmap scan planning.
635 * We don't bother to save indexStartupCost or indexCorrelation, because a
636 * bitmap scan doesn't care about either.
637 */
638 path->indextotalcost = indexTotalCost;
639 path->indexselectivity = indexSelectivity;
640
641 /* all costs for touching index itself included here */
642 startup_cost += indexStartupCost;
643 run_cost += indexTotalCost - indexStartupCost;
644
645 /* estimate number of main-table tuples fetched */
646 tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
647
648 /* fetch estimated page costs for tablespace containing table */
650 &spc_random_page_cost,
651 &spc_seq_page_cost);
652
653 /*----------
654 * Estimate number of main-table pages fetched, and compute I/O cost.
655 *
656 * When the index ordering is uncorrelated with the table ordering,
657 * we use an approximation proposed by Mackert and Lohman (see
658 * index_pages_fetched() for details) to compute the number of pages
659 * fetched, and then charge spc_random_page_cost per page fetched.
660 *
661 * When the index ordering is exactly correlated with the table ordering
662 * (just after a CLUSTER, for example), the number of pages fetched should
663 * be exactly selectivity * table_size. What's more, all but the first
664 * will be sequential fetches, not the random fetches that occur in the
665 * uncorrelated case. So if the number of pages is more than 1, we
666 * ought to charge
667 * spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
668 * For partially-correlated indexes, we ought to charge somewhere between
669 * these two estimates. We currently interpolate linearly between the
670 * estimates based on the correlation squared (XXX is that appropriate?).
671 *
672 * If it's an index-only scan, then we will not need to fetch any heap
673 * pages for which the visibility map shows all tuples are visible.
674 * Hence, reduce the estimated number of heap fetches accordingly.
675 * We use the measured fraction of the entire heap that is all-visible,
676 * which might not be particularly relevant to the subset of the heap
677 * that this query will fetch; but it's not clear how to do better.
678 *----------
679 */
680 if (loop_count > 1)
681 {
682 /*
683 * For repeated indexscans, the appropriate estimate for the
684 * uncorrelated case is to scale up the number of tuples fetched in
685 * the Mackert and Lohman formula by the number of scans, so that we
686 * estimate the number of pages fetched by all the scans; then
687 * pro-rate the costs for one scan. In this case we assume all the
688 * fetches are random accesses.
689 */
690 pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
691 baserel->pages,
692 (double) index->pages,
693 root);
694
695 if (indexonly)
696 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
697
698 rand_heap_pages = pages_fetched;
699
700 max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
701
702 /*
703 * In the perfectly correlated case, the number of pages touched by
704 * each scan is selectivity * table_size, and we can use the Mackert
705 * and Lohman formula at the page level to estimate how much work is
706 * saved by caching across scans. We still assume all the fetches are
707 * random, though, which is an overestimate that's hard to correct for
708 * without double-counting the cache effects. (But in most cases
709 * where such a plan is actually interesting, only one page would get
710 * fetched per scan anyway, so it shouldn't matter much.)
711 */
712 pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
713
714 pages_fetched = index_pages_fetched(pages_fetched * loop_count,
715 baserel->pages,
716 (double) index->pages,
717 root);
718
719 if (indexonly)
720 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
721
722 min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
723 }
724 else
725 {
726 /*
727 * Normal case: apply the Mackert and Lohman formula, and then
728 * interpolate between that and the correlation-derived result.
729 */
730 pages_fetched = index_pages_fetched(tuples_fetched,
731 baserel->pages,
732 (double) index->pages,
733 root);
734
735 if (indexonly)
736 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
737
738 rand_heap_pages = pages_fetched;
739
740 /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
741 max_IO_cost = pages_fetched * spc_random_page_cost;
742
743 /* min_IO_cost is for the perfectly correlated case (csquared=1) */
744 pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
745
746 if (indexonly)
747 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
748
749 if (pages_fetched > 0)
750 {
751 min_IO_cost = spc_random_page_cost;
752 if (pages_fetched > 1)
753 min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
754 }
755 else
756 min_IO_cost = 0;
757 }
758
759 if (partial_path)
760 {
761 /*
762 * For index only scans compute workers based on number of index pages
763 * fetched; the number of heap pages we fetch might be so small as to
764 * effectively rule out parallelism, which we don't want to do.
765 */
766 if (indexonly)
767 rand_heap_pages = -1;
768
769 /*
770 * Estimate the number of parallel workers required to scan index. Use
771 * the number of heap pages computed considering heap fetches won't be
772 * sequential as for parallel scans the pages are accessed in random
773 * order.
774 */
776 rand_heap_pages,
777 index_pages,
779
780 /*
781 * Fall out if workers can't be assigned for parallel scan, because in
782 * such a case this path will be rejected. So there is no benefit in
783 * doing extra computation.
784 */
785 if (path->path.parallel_workers <= 0)
786 return;
787
788 path->path.parallel_aware = true;
789 }
790
791 /*
792 * Now interpolate based on estimated index order correlation to get total
793 * disk I/O cost for main table accesses.
794 */
795 csquared = indexCorrelation * indexCorrelation;
796
797 run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
798
799 /*
800 * Estimate CPU costs per tuple.
801 *
802 * What we want here is cpu_tuple_cost plus the evaluation costs of any
803 * qual clauses that we have to evaluate as qpquals.
804 */
805 cost_qual_eval(&qpqual_cost, qpquals, root);
806
807 startup_cost += qpqual_cost.startup;
808 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
809
810 cpu_run_cost += cpu_per_tuple * tuples_fetched;
811
812 /* tlist eval costs are paid per output row, not per tuple scanned */
813 startup_cost += path->path.pathtarget->cost.startup;
814 cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
815
816 /* Adjust costing for parallelism, if used. */
817 if (path->path.parallel_workers > 0)
818 {
819 double parallel_divisor = get_parallel_divisor(&path->path);
820
821 path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
822
823 /* The CPU cost is divided among all the workers. */
824 cpu_run_cost /= parallel_divisor;
825 }
826
827 run_cost += cpu_run_cost;
828
829 path->path.startup_cost = startup_cost;
830 path->path.total_cost = startup_cost + run_cost;
831}
int compute_parallel_worker(RelOptInfo *rel, double heap_pages, double index_pages, int max_workers)
Definition: allpaths.c:4234
void(* amcostestimate_function)(struct PlannerInfo *root, struct IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: amapi.h:146
int max_parallel_workers_per_gather
Definition: costsize.c:143
static List * extract_nonindex_conditions(List *qual_clauses, List *indexclauses)
Definition: costsize.c:850
bool enable_indexscan
Definition: costsize.c:146
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * indrestrictinfo
Definition: pathnodes.h:1210
List * indexclauses
Definition: pathnodes.h:1848
Path path
Definition: pathnodes.h:1846
Selectivity indexselectivity
Definition: pathnodes.h:1853
Cost indextotalcost
Definition: pathnodes.h:1852
IndexOptInfo * indexinfo
Definition: pathnodes.h:1847
NodeTag pathtype
Definition: pathnodes.h:1762
double allvisfrac
Definition: pathnodes.h:977
Definition: type.h:96

References RelOptInfo::allvisfrac, Assert(), clamp_row_est(), compute_parallel_worker(), cost_qual_eval(), cpu_tuple_cost, Path::disabled_nodes, enable_indexscan, extract_nonindex_conditions(), get_parallel_divisor(), get_tablespace_page_costs(), index_pages_fetched(), IndexPath::indexclauses, IndexPath::indexinfo, IndexPath::indexselectivity, IndexPath::indextotalcost, IndexOptInfo::indrestrictinfo, IsA, list_concat(), max_parallel_workers_per_gather, RelOptInfo::pages, Path::parallel_aware, Path::parallel_workers, IndexPath::path, Path::pathtype, QualCost::per_tuple, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_index_path(), and reparameterize_path().

◆ cost_material()

void cost_material ( Path path,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  tuples,
int  width 
)

Definition at line 2483 of file costsize.c.

2487{
2488 Cost startup_cost = input_startup_cost;
2489 Cost run_cost = input_total_cost - input_startup_cost;
2490 double nbytes = relation_byte_size(tuples, width);
2491 double work_mem_bytes = work_mem * (Size) 1024;
2492
2493 path->rows = tuples;
2494
2495 /*
2496 * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
2497 * reflect bookkeeping overhead. (This rate must be more than what
2498 * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
2499 * if it is exactly the same then there will be a cost tie between
2500 * nestloop with A outer, materialized B inner and nestloop with B outer,
2501 * materialized A inner. The extra cost ensures we'll prefer
2502 * materializing the smaller rel.) Note that this is normally a good deal
2503 * less than cpu_tuple_cost; which is OK because a Material plan node
2504 * doesn't do qual-checking or projection, so it's got less overhead than
2505 * most plan nodes.
2506 */
2507 run_cost += 2 * cpu_operator_cost * tuples;
2508
2509 /*
2510 * If we will spill to disk, charge at the rate of seq_page_cost per page.
2511 * This cost is assumed to be evenly spread through the plan run phase,
2512 * which isn't exactly accurate but our cost model doesn't allow for
2513 * nonuniform costs within the run phase.
2514 */
2515 if (nbytes > work_mem_bytes)
2516 {
2517 double npages = ceil(nbytes / BLCKSZ);
2518
2519 run_cost += seq_page_cost * npages;
2520 }
2521
2522 path->disabled_nodes = input_disabled_nodes + (enable_material ? 0 : 1);
2523 path->startup_cost = startup_cost;
2524 path->total_cost = startup_cost + run_cost;
2525}
bool enable_material
Definition: costsize.c:154

References cpu_operator_cost, Path::disabled_nodes, enable_material, relation_byte_size(), Path::rows, seq_page_cost, Path::startup_cost, Path::total_cost, and work_mem.

Referenced by create_material_path(), and materialize_finished_plan().

◆ cost_memoize_rescan()

static void cost_memoize_rescan ( PlannerInfo root,
MemoizePath mpath,
Cost rescan_startup_cost,
Cost rescan_total_cost 
)
static

Definition at line 2541 of file costsize.c.

2543{
2544 EstimationInfo estinfo;
2545 ListCell *lc;
2546 Cost input_startup_cost = mpath->subpath->startup_cost;
2547 Cost input_total_cost = mpath->subpath->total_cost;
2548 double tuples = mpath->subpath->rows;
2549 double calls = mpath->calls;
2550 int width = mpath->subpath->pathtarget->width;
2551
2552 double hash_mem_bytes;
2553 double est_entry_bytes;
2554 double est_cache_entries;
2555 double ndistinct;
2556 double evict_ratio;
2557 double hit_ratio;
2558 Cost startup_cost;
2559 Cost total_cost;
2560
2561 /* available cache space */
2562 hash_mem_bytes = get_hash_memory_limit();
2563
2564 /*
2565 * Set the number of bytes each cache entry should consume in the cache.
2566 * To provide us with better estimations on how many cache entries we can
2567 * store at once, we make a call to the executor here to ask it what
2568 * memory overheads there are for a single cache entry.
2569 */
2570 est_entry_bytes = relation_byte_size(tuples, width) +
2572
2573 /* include the estimated width for the cache keys */
2574 foreach(lc, mpath->param_exprs)
2575 est_entry_bytes += get_expr_width(root, (Node *) lfirst(lc));
2576
2577 /* estimate on the upper limit of cache entries we can hold at once */
2578 est_cache_entries = floor(hash_mem_bytes / est_entry_bytes);
2579
2580 /* estimate on the distinct number of parameter values */
2581 ndistinct = estimate_num_groups(root, mpath->param_exprs, calls, NULL,
2582 &estinfo);
2583
2584 /*
2585 * When the estimation fell back on using a default value, it's a bit too
2586 * risky to assume that it's ok to use a Memoize node. The use of a
2587 * default could cause us to use a Memoize node when it's really
2588 * inappropriate to do so. If we see that this has been done, then we'll
2589 * assume that every call will have unique parameters, which will almost
2590 * certainly mean a MemoizePath will never survive add_path().
2591 */
2592 if ((estinfo.flags & SELFLAG_USED_DEFAULT) != 0)
2593 ndistinct = calls;
2594
2595 /*
2596 * Since we've already estimated the maximum number of entries we can
2597 * store at once and know the estimated number of distinct values we'll be
2598 * called with, we'll take this opportunity to set the path's est_entries.
2599 * This will ultimately determine the hash table size that the executor
2600 * will use. If we leave this at zero, the executor will just choose the
2601 * size itself. Really this is not the right place to do this, but it's
2602 * convenient since everything is already calculated.
2603 */
2604 mpath->est_entries = Min(Min(ndistinct, est_cache_entries),
2606
2607 /*
2608 * When the number of distinct parameter values is above the amount we can
2609 * store in the cache, then we'll have to evict some entries from the
2610 * cache. This is not free. Here we estimate how often we'll incur the
2611 * cost of that eviction.
2612 */
2613 evict_ratio = 1.0 - Min(est_cache_entries, ndistinct) / ndistinct;
2614
2615 /*
2616 * In order to estimate how costly a single scan will be, we need to
2617 * attempt to estimate what the cache hit ratio will be. To do that we
2618 * must look at how many scans are estimated in total for this node and
2619 * how many of those scans we expect to get a cache hit.
2620 */
2621 hit_ratio = ((calls - ndistinct) / calls) *
2622 (est_cache_entries / Max(ndistinct, est_cache_entries));
2623
2624 Assert(hit_ratio >= 0 && hit_ratio <= 1.0);
2625
2626 /*
2627 * Set the total_cost accounting for the expected cache hit ratio. We
2628 * also add on a cpu_operator_cost to account for a cache lookup. This
2629 * will happen regardless of whether it's a cache hit or not.
2630 */
2631 total_cost = input_total_cost * (1.0 - hit_ratio) + cpu_operator_cost;
2632
2633 /* Now adjust the total cost to account for cache evictions */
2634
2635 /* Charge a cpu_tuple_cost for evicting the actual cache entry */
2636 total_cost += cpu_tuple_cost * evict_ratio;
2637
2638 /*
2639 * Charge a 10th of cpu_operator_cost to evict every tuple in that entry.
2640 * The per-tuple eviction is really just a pfree, so charging a whole
2641 * cpu_operator_cost seems a little excessive.
2642 */
2643 total_cost += cpu_operator_cost / 10.0 * evict_ratio * tuples;
2644
2645 /*
2646 * Now adjust for storing things in the cache, since that's not free
2647 * either. Everything must go in the cache. We don't proportion this
2648 * over any ratio, just apply it once for the scan. We charge a
2649 * cpu_tuple_cost for the creation of the cache entry and also a
2650 * cpu_operator_cost for each tuple we expect to cache.
2651 */
2652 total_cost += cpu_tuple_cost + cpu_operator_cost * tuples;
2653
2654 /*
2655 * Getting the first row must be also be proportioned according to the
2656 * expected cache hit ratio.
2657 */
2658 startup_cost = input_startup_cost * (1.0 - hit_ratio);
2659
2660 /*
2661 * Additionally we charge a cpu_tuple_cost to account for cache lookups,
2662 * which we'll do regardless of whether it was a cache hit or not.
2663 */
2664 startup_cost += cpu_tuple_cost;
2665
2666 *rescan_startup_cost = startup_cost;
2667 *rescan_total_cost = total_cost;
2668}
#define PG_UINT32_MAX
Definition: c.h:561
static int32 get_expr_width(PlannerInfo *root, const Node *expr)
Definition: costsize.c:6390
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3616
double ExecEstimateCacheEntryOverheadBytes(double ntuples)
Definition: nodeMemoize.c:1171
#define SELFLAG_USED_DEFAULT
Definition: selfuncs.h:76
uint32 flags
Definition: selfuncs.h:80
uint32 est_entries
Definition: pathnodes.h:2138
Cardinality calls
Definition: pathnodes.h:2137
Path * subpath
Definition: pathnodes.h:2130
List * param_exprs
Definition: pathnodes.h:2132

References Assert(), MemoizePath::calls, cpu_operator_cost, cpu_tuple_cost, MemoizePath::est_entries, estimate_num_groups(), ExecEstimateCacheEntryOverheadBytes(), EstimationInfo::flags, get_expr_width(), get_hash_memory_limit(), lfirst, Max, Min, MemoizePath::param_exprs, PG_UINT32_MAX, relation_byte_size(), root, Path::rows, SELFLAG_USED_DEFAULT, Path::startup_cost, MemoizePath::subpath, and Path::total_cost.

Referenced by cost_rescan().

◆ cost_merge_append()

void cost_merge_append ( Path path,
PlannerInfo root,
List pathkeys,
int  n_streams,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  tuples 
)

Definition at line 2432 of file costsize.c.

2437{
2438 Cost startup_cost = 0;
2439 Cost run_cost = 0;
2440 Cost comparison_cost;
2441 double N;
2442 double logN;
2443
2444 /*
2445 * Avoid log(0)...
2446 */
2447 N = (n_streams < 2) ? 2.0 : (double) n_streams;
2448 logN = LOG2(N);
2449
2450 /* Assumed cost per tuple comparison */
2451 comparison_cost = 2.0 * cpu_operator_cost;
2452
2453 /* Heap creation cost */
2454 startup_cost += comparison_cost * N * logN;
2455
2456 /* Per-tuple heap maintenance cost */
2457 run_cost += tuples * comparison_cost * logN;
2458
2459 /*
2460 * Although MergeAppend does not do any selection or projection, it's not
2461 * free; add a small per-tuple overhead.
2462 */
2463 run_cost += cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * tuples;
2464
2465 path->disabled_nodes = input_disabled_nodes;
2466 path->startup_cost = startup_cost + input_startup_cost;
2467 path->total_cost = startup_cost + run_cost + input_total_cost;
2468}

References APPEND_CPU_COST_MULTIPLIER, cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, LOG2, Path::startup_cost, and Path::total_cost.

Referenced by create_merge_append_path().

◆ cost_namedtuplestorescan()

void cost_namedtuplestorescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1750 of file costsize.c.

1752{
1753 Cost startup_cost = 0;
1754 Cost run_cost = 0;
1755 QualCost qpqual_cost;
1756 Cost cpu_per_tuple;
1757
1758 /* Should only be applied to base relations that are Tuplestores */
1759 Assert(baserel->relid > 0);
1760 Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
1761
1762 /* Mark the path with the correct row estimate */
1763 if (param_info)
1764 path->rows = param_info->ppi_rows;
1765 else
1766 path->rows = baserel->rows;
1767
1768 /* Charge one CPU tuple cost per row for tuplestore manipulation */
1769 cpu_per_tuple = cpu_tuple_cost;
1770
1771 /* Add scanning CPU costs */
1772 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1773
1774 startup_cost += qpqual_cost.startup;
1775 cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1776 run_cost += cpu_per_tuple * baserel->tuples;
1777
1778 path->disabled_nodes = 0;
1779 path->startup_cost = startup_cost;
1780 path->total_cost = startup_cost + run_cost;
1781}
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1033

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_NAMEDTUPLESTORE, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_namedtuplestorescan_path().

◆ cost_qual_eval()

void cost_qual_eval ( QualCost cost,
List quals,
PlannerInfo root 
)

Definition at line 4741 of file costsize.c.

4742{
4743 cost_qual_eval_context context;
4744 ListCell *l;
4745
4746 context.root = root;
4747 context.total.startup = 0;
4748 context.total.per_tuple = 0;
4749
4750 /* We don't charge any cost for the implicit ANDing at top level ... */
4751
4752 foreach(l, quals)
4753 {
4754 Node *qual = (Node *) lfirst(l);
4755
4756 cost_qual_eval_walker(qual, &context);
4757 }
4758
4759 *cost = context.total;
4760}
static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)
Definition: costsize.c:4781
PlannerInfo * root
Definition: costsize.c:169

References cost_qual_eval_walker(), lfirst, QualCost::per_tuple, cost_qual_eval_context::root, root, QualCost::startup, and cost_qual_eval_context::total.

Referenced by add_foreign_grouping_paths(), cost_agg(), cost_group(), cost_index(), cost_subplan(), cost_tidrangescan(), cost_tidscan(), create_group_result_path(), create_minmaxagg_path(), estimate_path_cost_size(), final_cost_hashjoin(), final_cost_mergejoin(), final_cost_nestloop(), get_restriction_qual_cost(), inline_function(), plan_cluster_use_sort(), postgresGetForeignJoinPaths(), postgresGetForeignRelSize(), set_baserel_size_estimates(), and set_foreign_size_estimates().

◆ cost_qual_eval_node()

◆ cost_qual_eval_walker()

static bool cost_qual_eval_walker ( Node node,
cost_qual_eval_context context 
)
static

Definition at line 4781 of file costsize.c.

4782{
4783 if (node == NULL)
4784 return false;
4785
4786 /*
4787 * RestrictInfo nodes contain an eval_cost field reserved for this
4788 * routine's use, so that it's not necessary to evaluate the qual clause's
4789 * cost more than once. If the clause's cost hasn't been computed yet,
4790 * the field's startup value will contain -1.
4791 */
4792 if (IsA(node, RestrictInfo))
4793 {
4794 RestrictInfo *rinfo = (RestrictInfo *) node;
4795
4796 if (rinfo->eval_cost.startup < 0)
4797 {
4798 cost_qual_eval_context locContext;
4799
4800 locContext.root = context->root;
4801 locContext.total.startup = 0;
4802 locContext.total.per_tuple = 0;
4803
4804 /*
4805 * For an OR clause, recurse into the marked-up tree so that we
4806 * set the eval_cost for contained RestrictInfos too.
4807 */
4808 if (rinfo->orclause)
4809 cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);
4810 else
4811 cost_qual_eval_walker((Node *) rinfo->clause, &locContext);
4812
4813 /*
4814 * If the RestrictInfo is marked pseudoconstant, it will be tested
4815 * only once, so treat its cost as all startup cost.
4816 */
4817 if (rinfo->pseudoconstant)
4818 {
4819 /* count one execution during startup */
4820 locContext.total.startup += locContext.total.per_tuple;
4821 locContext.total.per_tuple = 0;
4822 }
4823 rinfo->eval_cost = locContext.total;
4824 }
4825 context->total.startup += rinfo->eval_cost.startup;
4826 context->total.per_tuple += rinfo->eval_cost.per_tuple;
4827 /* do NOT recurse into children */
4828 return false;
4829 }
4830
4831 /*
4832 * For each operator or function node in the given tree, we charge the
4833 * estimated execution cost given by pg_proc.procost (remember to multiply
4834 * this by cpu_operator_cost).
4835 *
4836 * Vars and Consts are charged zero, and so are boolean operators (AND,
4837 * OR, NOT). Simplistic, but a lot better than no model at all.
4838 *
4839 * Should we try to account for the possibility of short-circuit
4840 * evaluation of AND/OR? Probably *not*, because that would make the
4841 * results depend on the clause ordering, and we are not in any position
4842 * to expect that the current ordering of the clauses is the one that's
4843 * going to end up being used. The above per-RestrictInfo caching would
4844 * not mix well with trying to re-order clauses anyway.
4845 *
4846 * Another issue that is entirely ignored here is that if a set-returning
4847 * function is below top level in the tree, the functions/operators above
4848 * it will need to be evaluated multiple times. In practical use, such
4849 * cases arise so seldom as to not be worth the added complexity needed;
4850 * moreover, since our rowcount estimates for functions tend to be pretty
4851 * phony, the results would also be pretty phony.
4852 */
4853 if (IsA(node, FuncExpr))
4854 {
4855 add_function_cost(context->root, ((FuncExpr *) node)->funcid, node,
4856 &context->total);
4857 }
4858 else if (IsA(node, OpExpr) ||
4859 IsA(node, DistinctExpr) ||
4860 IsA(node, NullIfExpr))
4861 {
4862 /* rely on struct equivalence to treat these all alike */
4863 set_opfuncid((OpExpr *) node);
4864 add_function_cost(context->root, ((OpExpr *) node)->opfuncid, node,
4865 &context->total);
4866 }
4867 else if (IsA(node, ScalarArrayOpExpr))
4868 {
4869 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
4870 Node *arraynode = (Node *) lsecond(saop->args);
4871 QualCost sacosts;
4872 QualCost hcosts;
4873 double estarraylen = estimate_array_length(context->root, arraynode);
4874
4875 set_sa_opfuncid(saop);
4876 sacosts.startup = sacosts.per_tuple = 0;
4877 add_function_cost(context->root, saop->opfuncid, NULL,
4878 &sacosts);
4879
4880 if (OidIsValid(saop->hashfuncid))
4881 {
4882 /* Handle costs for hashed ScalarArrayOpExpr */
4883 hcosts.startup = hcosts.per_tuple = 0;
4884
4885 add_function_cost(context->root, saop->hashfuncid, NULL, &hcosts);
4886 context->total.startup += sacosts.startup + hcosts.startup;
4887
4888 /* Estimate the cost of building the hashtable. */
4889 context->total.startup += estarraylen * hcosts.per_tuple;
4890
4891 /*
4892 * XXX should we charge a little bit for sacosts.per_tuple when
4893 * building the table, or is it ok to assume there will be zero
4894 * hash collision?
4895 */
4896
4897 /*
4898 * Charge for hashtable lookups. Charge a single hash and a
4899 * single comparison.
4900 */
4901 context->total.per_tuple += hcosts.per_tuple + sacosts.per_tuple;
4902 }
4903 else
4904 {
4905 /*
4906 * Estimate that the operator will be applied to about half of the
4907 * array elements before the answer is determined.
4908 */
4909 context->total.startup += sacosts.startup;
4910 context->total.per_tuple += sacosts.per_tuple *
4911 estimate_array_length(context->root, arraynode) * 0.5;
4912 }
4913 }
4914 else if (IsA(node, Aggref) ||
4915 IsA(node, WindowFunc))
4916 {
4917 /*
4918 * Aggref and WindowFunc nodes are (and should be) treated like Vars,
4919 * ie, zero execution cost in the current model, because they behave
4920 * essentially like Vars at execution. We disregard the costs of
4921 * their input expressions for the same reason. The actual execution
4922 * costs of the aggregate/window functions and their arguments have to
4923 * be factored into plan-node-specific costing of the Agg or WindowAgg
4924 * plan node.
4925 */
4926 return false; /* don't recurse into children */
4927 }
4928 else if (IsA(node, GroupingFunc))
4929 {
4930 /* Treat this as having cost 1 */
4931 context->total.per_tuple += cpu_operator_cost;
4932 return false; /* don't recurse into children */
4933 }
4934 else if (IsA(node, CoerceViaIO))
4935 {
4936 CoerceViaIO *iocoerce = (CoerceViaIO *) node;
4937 Oid iofunc;
4938 Oid typioparam;
4939 bool typisvarlena;
4940
4941 /* check the result type's input function */
4942 getTypeInputInfo(iocoerce->resulttype,
4943 &iofunc, &typioparam);
4944 add_function_cost(context->root, iofunc, NULL,
4945 &context->total);
4946 /* check the input type's output function */
4947 getTypeOutputInfo(exprType((Node *) iocoerce->arg),
4948 &iofunc, &typisvarlena);
4949 add_function_cost(context->root, iofunc, NULL,
4950 &context->total);
4951 }
4952 else if (IsA(node, ArrayCoerceExpr))
4953 {
4954 ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
4955 QualCost perelemcost;
4956
4957 cost_qual_eval_node(&perelemcost, (Node *) acoerce->elemexpr,
4958 context->root);
4959 context->total.startup += perelemcost.startup;
4960 if (perelemcost.per_tuple > 0)
4961 context->total.per_tuple += perelemcost.per_tuple *
4962 estimate_array_length(context->root, (Node *) acoerce->arg);
4963 }
4964 else if (IsA(node, RowCompareExpr))
4965 {
4966 /* Conservatively assume we will check all the columns */
4967 RowCompareExpr *rcexpr = (RowCompareExpr *) node;
4968 ListCell *lc;
4969
4970 foreach(lc, rcexpr->opnos)
4971 {
4972 Oid opid = lfirst_oid(lc);
4973
4974 add_function_cost(context->root, get_opcode(opid), NULL,
4975 &context->total);
4976 }
4977 }
4978 else if (IsA(node, MinMaxExpr) ||
4979 IsA(node, SQLValueFunction) ||
4980 IsA(node, XmlExpr) ||
4981 IsA(node, CoerceToDomain) ||
4982 IsA(node, NextValueExpr) ||
4983 IsA(node, JsonExpr))
4984 {
4985 /* Treat all these as having cost 1 */
4986 context->total.per_tuple += cpu_operator_cost;
4987 }
4988 else if (IsA(node, SubLink))
4989 {
4990 /* This routine should not be applied to un-planned expressions */
4991 elog(ERROR, "cannot handle unplanned sub-select");
4992 }
4993 else if (IsA(node, SubPlan))
4994 {
4995 /*
4996 * A subplan node in an expression typically indicates that the
4997 * subplan will be executed on each evaluation, so charge accordingly.
4998 * (Sub-selects that can be executed as InitPlans have already been
4999 * removed from the expression.)
5000 */
5001 SubPlan *subplan = (SubPlan *) node;
5002
5003 context->total.startup += subplan->startup_cost;
5004 context->total.per_tuple += subplan->per_call_cost;
5005
5006 /*
5007 * We don't want to recurse into the testexpr, because it was already
5008 * counted in the SubPlan node's costs. So we're done.
5009 */
5010 return false;
5011 }
5012 else if (IsA(node, AlternativeSubPlan))
5013 {
5014 /*
5015 * Arbitrarily use the first alternative plan for costing. (We should
5016 * certainly only include one alternative, and we don't yet have
5017 * enough information to know which one the executor is most likely to
5018 * use.)
5019 */
5020 AlternativeSubPlan *asplan = (AlternativeSubPlan *) node;
5021
5022 return cost_qual_eval_walker((Node *) linitial(asplan->subplans),
5023 context);
5024 }
5025 else if (IsA(node, PlaceHolderVar))
5026 {
5027 /*
5028 * A PlaceHolderVar should be given cost zero when considering general
5029 * expression evaluation costs. The expense of doing the contained
5030 * expression is charged as part of the tlist eval costs of the scan
5031 * or join where the PHV is first computed (see set_rel_width and
5032 * add_placeholders_to_joinrel). If we charged it again here, we'd be
5033 * double-counting the cost for each level of plan that the PHV
5034 * bubbles up through. Hence, return without recursing into the
5035 * phexpr.
5036 */
5037 return false;
5038 }
5039
5040 /* recurse into children */
5041 return expression_tree_walker(node, cost_qual_eval_walker, context);
5042}
#define OidIsValid(objectId)
Definition: c.h:746
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:3047
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1425
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:3014
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
void set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
Definition: nodeFuncs.c:1883
void set_opfuncid(OpExpr *opexpr)
Definition: nodeFuncs.c:1872
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define lsecond(l)
Definition: pg_list.h:183
#define lfirst_oid(lc)
Definition: pg_list.h:174
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2111
unsigned int Oid
Definition: postgres_ext.h:30
double estimate_array_length(PlannerInfo *root, Node *arrayexpr)
Definition: selfuncs.c:2144
Expr * arg
Definition: primnodes.h:1224
Oid resulttype
Definition: primnodes.h:1225
Cost startup_cost
Definition: primnodes.h:1110
Cost per_call_cost
Definition: primnodes.h:1111

References add_function_cost(), CoerceViaIO::arg, ArrayCoerceExpr::arg, ScalarArrayOpExpr::args, RestrictInfo::clause, cost_qual_eval_node(), cost_qual_eval_walker(), cpu_operator_cost, ArrayCoerceExpr::elemexpr, elog, ERROR, estimate_array_length(), expression_tree_walker, exprType(), get_opcode(), getTypeInputInfo(), getTypeOutputInfo(), IsA, lfirst_oid, linitial, lsecond, OidIsValid, SubPlan::per_call_cost, QualCost::per_tuple, CoerceViaIO::resulttype, cost_qual_eval_context::root, set_opfuncid(), set_sa_opfuncid(), QualCost::startup, SubPlan::startup_cost, AlternativeSubPlan::subplans, and cost_qual_eval_context::total.

Referenced by cost_qual_eval(), cost_qual_eval_node(), and cost_qual_eval_walker().

◆ cost_recursive_union()

void cost_recursive_union ( Path runion,
Path nrterm,
Path rterm 
)

Definition at line 1826 of file costsize.c.

1827{
1828 Cost startup_cost;
1829 Cost total_cost;
1830 double total_rows;
1831
1832 /* We probably have decent estimates for the non-recursive term */
1833 startup_cost = nrterm->startup_cost;
1834 total_cost = nrterm->total_cost;
1835 total_rows = nrterm->rows;
1836
1837 /*
1838 * We arbitrarily assume that about 10 recursive iterations will be
1839 * needed, and that we've managed to get a good fix on the cost and output
1840 * size of each one of them. These are mighty shaky assumptions but it's
1841 * hard to see how to do better.
1842 */
1843 total_cost += 10 * rterm->total_cost;
1844 total_rows += 10 * rterm->rows;
1845
1846 /*
1847 * Also charge cpu_tuple_cost per row to account for the costs of
1848 * manipulating the tuplestores. (We don't worry about possible
1849 * spill-to-disk costs.)
1850 */
1851 total_cost += cpu_tuple_cost * total_rows;
1852
1853 runion->disabled_nodes = nrterm->disabled_nodes + rterm->disabled_nodes;
1854 runion->startup_cost = startup_cost;
1855 runion->total_cost = total_cost;
1856 runion->rows = total_rows;
1857 runion->pathtarget->width = Max(nrterm->pathtarget->width,
1858 rterm->pathtarget->width);
1859}

References cpu_tuple_cost, Path::disabled_nodes, Max, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by create_recursiveunion_path().

◆ cost_rescan()

static void cost_rescan ( PlannerInfo root,
Path path,
Cost rescan_startup_cost,
Cost rescan_total_cost 
)
static

Definition at line 4626 of file costsize.c.

4629{
4630 switch (path->pathtype)
4631 {
4632 case T_FunctionScan:
4633
4634 /*
4635 * Currently, nodeFunctionscan.c always executes the function to
4636 * completion before returning any rows, and caches the results in
4637 * a tuplestore. So the function eval cost is all startup cost
4638 * and isn't paid over again on rescans. However, all run costs
4639 * will be paid over again.
4640 */
4641 *rescan_startup_cost = 0;
4642 *rescan_total_cost = path->total_cost - path->startup_cost;
4643 break;
4644 case T_HashJoin:
4645
4646 /*
4647 * If it's a single-batch join, we don't need to rebuild the hash
4648 * table during a rescan.
4649 */
4650 if (((HashPath *) path)->num_batches == 1)
4651 {
4652 /* Startup cost is exactly the cost of hash table building */
4653 *rescan_startup_cost = 0;
4654 *rescan_total_cost = path->total_cost - path->startup_cost;
4655 }
4656 else
4657 {
4658 /* Otherwise, no special treatment */
4659 *rescan_startup_cost = path->startup_cost;
4660 *rescan_total_cost = path->total_cost;
4661 }
4662 break;
4663 case T_CteScan:
4664 case T_WorkTableScan:
4665 {
4666 /*
4667 * These plan types materialize their final result in a
4668 * tuplestore or tuplesort object. So the rescan cost is only
4669 * cpu_tuple_cost per tuple, unless the result is large enough
4670 * to spill to disk.
4671 */
4672 Cost run_cost = cpu_tuple_cost * path->rows;
4673 double nbytes = relation_byte_size(path->rows,
4674 path->pathtarget->width);
4675 double work_mem_bytes = work_mem * (Size) 1024;
4676
4677 if (nbytes > work_mem_bytes)
4678 {
4679 /* It will spill, so account for re-read cost */
4680 double npages = ceil(nbytes / BLCKSZ);
4681
4682 run_cost += seq_page_cost * npages;
4683 }
4684 *rescan_startup_cost = 0;
4685 *rescan_total_cost = run_cost;
4686 }
4687 break;
4688 case T_Material:
4689 case T_Sort:
4690 {
4691 /*
4692 * These plan types not only materialize their results, but do
4693 * not implement qual filtering or projection. So they are
4694 * even cheaper to rescan than the ones above. We charge only
4695 * cpu_operator_cost per tuple. (Note: keep that in sync with
4696 * the run_cost charge in cost_sort, and also see comments in
4697 * cost_material before you change it.)
4698 */
4699 Cost run_cost = cpu_operator_cost * path->rows;
4700 double nbytes = relation_byte_size(path->rows,
4701 path->pathtarget->width);
4702 double work_mem_bytes = work_mem * (Size) 1024;
4703
4704 if (nbytes > work_mem_bytes)
4705 {
4706 /* It will spill, so account for re-read cost */
4707 double npages = ceil(nbytes / BLCKSZ);
4708
4709 run_cost += seq_page_cost * npages;
4710 }
4711 *rescan_startup_cost = 0;
4712 *rescan_total_cost = run_cost;
4713 }
4714 break;
4715 case T_Memoize:
4716 /* All the hard work is done by cost_memoize_rescan */
4718 rescan_startup_cost, rescan_total_cost);
4719 break;
4720 default:
4721 *rescan_startup_cost = path->startup_cost;
4722 *rescan_total_cost = path->total_cost;
4723 break;
4724 }
4725}
static void cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath, Cost *rescan_startup_cost, Cost *rescan_total_cost)
Definition: costsize.c:2541

References cost_memoize_rescan(), cpu_operator_cost, cpu_tuple_cost, Path::pathtype, relation_byte_size(), root, seq_page_cost, Path::startup_cost, Path::total_cost, and work_mem.

Referenced by initial_cost_nestloop().

◆ cost_resultscan()

void cost_resultscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1788 of file costsize.c.

1790{
1791 Cost startup_cost = 0;
1792 Cost run_cost = 0;
1793 QualCost qpqual_cost;
1794 Cost cpu_per_tuple;
1795
1796 /* Should only be applied to RTE_RESULT base relations */
1797 Assert(baserel->relid > 0);
1798 Assert(baserel->rtekind == RTE_RESULT);
1799
1800 /* Mark the path with the correct row estimate */
1801 if (param_info)
1802 path->rows = param_info->ppi_rows;
1803 else
1804 path->rows = baserel->rows;
1805
1806 /* We charge qual cost plus cpu_tuple_cost */
1807 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1808
1809 startup_cost += qpqual_cost.startup;
1810 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1811 run_cost += cpu_per_tuple * baserel->tuples;
1812
1813 path->disabled_nodes = 0;
1814 path->startup_cost = startup_cost;
1815 path->total_cost = startup_cost + run_cost;
1816}
@ RTE_RESULT
Definition: parsenodes.h:1034

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_RESULT, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_resultscan_path().

◆ cost_samplescan()

void cost_samplescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 370 of file costsize.c.

372{
373 Cost startup_cost = 0;
374 Cost run_cost = 0;
375 RangeTblEntry *rte;
377 TsmRoutine *tsm;
378 double spc_seq_page_cost,
379 spc_random_page_cost,
380 spc_page_cost;
381 QualCost qpqual_cost;
382 Cost cpu_per_tuple;
383
384 /* Should only be applied to base relations with tablesample clauses */
385 Assert(baserel->relid > 0);
386 rte = planner_rt_fetch(baserel->relid, root);
387 Assert(rte->rtekind == RTE_RELATION);
388 tsc = rte->tablesample;
389 Assert(tsc != NULL);
390 tsm = GetTsmRoutine(tsc->tsmhandler);
391
392 /* Mark the path with the correct row estimate */
393 if (param_info)
394 path->rows = param_info->ppi_rows;
395 else
396 path->rows = baserel->rows;
397
398 /* fetch estimated page cost for tablespace containing table */
400 &spc_random_page_cost,
401 &spc_seq_page_cost);
402
403 /* if NextSampleBlock is used, assume random access, else sequential */
404 spc_page_cost = (tsm->NextSampleBlock != NULL) ?
405 spc_random_page_cost : spc_seq_page_cost;
406
407 /*
408 * disk costs (recall that baserel->pages has already been set to the
409 * number of pages the sampling method will visit)
410 */
411 run_cost += spc_page_cost * baserel->pages;
412
413 /*
414 * CPU costs (recall that baserel->tuples has already been set to the
415 * number of tuples the sampling method will select). Note that we ignore
416 * execution cost of the TABLESAMPLE parameter expressions; they will be
417 * evaluated only once per scan, and in most usages they'll likely be
418 * simple constants anyway. We also don't charge anything for the
419 * calculations the sampling method might do internally.
420 */
421 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
422
423 startup_cost += qpqual_cost.startup;
424 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
425 run_cost += cpu_per_tuple * baserel->tuples;
426 /* tlist eval costs are paid per output row, not per tuple scanned */
427 startup_cost += path->pathtarget->cost.startup;
428 run_cost += path->pathtarget->cost.per_tuple * path->rows;
429
430 path->disabled_nodes = 0;
431 path->startup_cost = startup_cost;
432 path->total_cost = startup_cost + run_cost;
433}
struct TableSampleClause * tablesample
Definition: parsenodes.h:1112
NextSampleBlock_function NextSampleBlock
Definition: tsmapi.h:73
TsmRoutine * GetTsmRoutine(Oid tsmhandler)
Definition: tablesample.c:27

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), get_tablespace_page_costs(), GetTsmRoutine(), TsmRoutine::NextSampleBlock, RelOptInfo::pages, QualCost::per_tuple, planner_rt_fetch, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RangeTblEntry::rtekind, QualCost::startup, Path::startup_cost, RangeTblEntry::tablesample, Path::total_cost, TableSampleClause::tsmhandler, and RelOptInfo::tuples.

Referenced by create_samplescan_path().

◆ cost_seqscan()

void cost_seqscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 295 of file costsize.c.

297{
298 Cost startup_cost = 0;
299 Cost cpu_run_cost;
300 Cost disk_run_cost;
301 double spc_seq_page_cost;
302 QualCost qpqual_cost;
303 Cost cpu_per_tuple;
304
305 /* Should only be applied to base relations */
306 Assert(baserel->relid > 0);
307 Assert(baserel->rtekind == RTE_RELATION);
308
309 /* Mark the path with the correct row estimate */
310 if (param_info)
311 path->rows = param_info->ppi_rows;
312 else
313 path->rows = baserel->rows;
314
315 /* fetch estimated page cost for tablespace containing table */
317 NULL,
318 &spc_seq_page_cost);
319
320 /*
321 * disk costs
322 */
323 disk_run_cost = spc_seq_page_cost * baserel->pages;
324
325 /* CPU costs */
326 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
327
328 startup_cost += qpqual_cost.startup;
329 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
330 cpu_run_cost = cpu_per_tuple * baserel->tuples;
331 /* tlist eval costs are paid per output row, not per tuple scanned */
332 startup_cost += path->pathtarget->cost.startup;
333 cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
334
335 /* Adjust costing for parallelism, if used. */
336 if (path->parallel_workers > 0)
337 {
338 double parallel_divisor = get_parallel_divisor(path);
339
340 /* The CPU cost is divided among all the workers. */
341 cpu_run_cost /= parallel_divisor;
342
343 /*
344 * It may be possible to amortize some of the I/O cost, but probably
345 * not very much, because most operating systems already do aggressive
346 * prefetching. For now, we assume that the disk run cost can't be
347 * amortized at all.
348 */
349
350 /*
351 * In the case of a parallel plan, the row count needs to represent
352 * the number of tuples processed per worker.
353 */
354 path->rows = clamp_row_est(path->rows / parallel_divisor);
355 }
356
357 path->disabled_nodes = enable_seqscan ? 0 : 1;
358 path->startup_cost = startup_cost;
359 path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
360}
bool enable_seqscan
Definition: costsize.c:145

References Assert(), clamp_row_est(), cpu_tuple_cost, Path::disabled_nodes, enable_seqscan, get_parallel_divisor(), get_restriction_qual_cost(), get_tablespace_page_costs(), RelOptInfo::pages, Path::parallel_workers, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_seqscan_path().

◆ cost_sort()

void cost_sort ( Path path,
PlannerInfo root,
List pathkeys,
int  input_disabled_nodes,
Cost  input_cost,
double  tuples,
int  width,
Cost  comparison_cost,
int  sort_mem,
double  limit_tuples 
)

Definition at line 2144 of file costsize.c.

2150{
2151 Cost startup_cost;
2152 Cost run_cost;
2153
2154 cost_tuplesort(&startup_cost, &run_cost,
2155 tuples, width,
2156 comparison_cost, sort_mem,
2157 limit_tuples);
2158
2159 startup_cost += input_cost;
2160
2161 path->rows = tuples;
2162 path->disabled_nodes = input_disabled_nodes + (enable_sort ? 0 : 1);
2163 path->startup_cost = startup_cost;
2164 path->total_cost = startup_cost + run_cost;
2165}
bool enable_sort
Definition: costsize.c:150

References cost_tuplesort(), Path::disabled_nodes, enable_sort, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by adjust_foreign_grouping_path_cost(), cost_append(), create_groupingsets_path(), create_merge_append_path(), create_sort_path(), create_unique_path(), initial_cost_mergejoin(), label_sort_with_costsize(), and plan_cluster_use_sort().

◆ cost_subplan()

void cost_subplan ( PlannerInfo root,
SubPlan subplan,
Plan plan 
)

Definition at line 4533 of file costsize.c.

4534{
4535 QualCost sp_cost;
4536
4537 /* Figure any cost for evaluating the testexpr */
4538 cost_qual_eval(&sp_cost,
4539 make_ands_implicit((Expr *) subplan->testexpr),
4540 root);
4541
4542 if (subplan->useHashTable)
4543 {
4544 /*
4545 * If we are using a hash table for the subquery outputs, then the
4546 * cost of evaluating the query is a one-time cost. We charge one
4547 * cpu_operator_cost per tuple for the work of loading the hashtable,
4548 * too.
4549 */
4550 sp_cost.startup += plan->total_cost +
4551 cpu_operator_cost * plan->plan_rows;
4552
4553 /*
4554 * The per-tuple costs include the cost of evaluating the lefthand
4555 * expressions, plus the cost of probing the hashtable. We already
4556 * accounted for the lefthand expressions as part of the testexpr, and
4557 * will also have counted one cpu_operator_cost for each comparison
4558 * operator. That is probably too low for the probing cost, but it's
4559 * hard to make a better estimate, so live with it for now.
4560 */
4561 }
4562 else
4563 {
4564 /*
4565 * Otherwise we will be rescanning the subplan output on each
4566 * evaluation. We need to estimate how much of the output we will
4567 * actually need to scan. NOTE: this logic should agree with the
4568 * tuple_fraction estimates used by make_subplan() in
4569 * plan/subselect.c.
4570 */
4571 Cost plan_run_cost = plan->total_cost - plan->startup_cost;
4572
4573 if (subplan->subLinkType == EXISTS_SUBLINK)
4574 {
4575 /* we only need to fetch 1 tuple; clamp to avoid zero divide */
4576 sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
4577 }
4578 else if (subplan->subLinkType == ALL_SUBLINK ||
4579 subplan->subLinkType == ANY_SUBLINK)
4580 {
4581 /* assume we need 50% of the tuples */
4582 sp_cost.per_tuple += 0.50 * plan_run_cost;
4583 /* also charge a cpu_operator_cost per row examined */
4584 sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
4585 }
4586 else
4587 {
4588 /* assume we need all tuples */
4589 sp_cost.per_tuple += plan_run_cost;
4590 }
4591
4592 /*
4593 * Also account for subplan's startup cost. If the subplan is
4594 * uncorrelated or undirect correlated, AND its topmost node is one
4595 * that materializes its output, assume that we'll only need to pay
4596 * its startup cost once; otherwise assume we pay the startup cost
4597 * every time.
4598 */
4599 if (subplan->parParam == NIL &&
4601 sp_cost.startup += plan->startup_cost;
4602 else
4603 sp_cost.per_tuple += plan->startup_cost;
4604 }
4605
4606 subplan->startup_cost = sp_cost.startup;
4607 subplan->per_call_cost = sp_cost.per_tuple;
4608}
bool ExecMaterializesOutput(NodeTag plantype)
Definition: execAmi.c:636
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
#define plan(x)
Definition: pg_regress.c:161
@ ANY_SUBLINK
Definition: primnodes.h:1016
@ ALL_SUBLINK
Definition: primnodes.h:1015
@ EXISTS_SUBLINK
Definition: primnodes.h:1014
bool useHashTable
Definition: primnodes.h:1096
Node * testexpr
Definition: primnodes.h:1084
List * parParam
Definition: primnodes.h:1107
SubLinkType subLinkType
Definition: primnodes.h:1082

References ALL_SUBLINK, ANY_SUBLINK, clamp_row_est(), cost_qual_eval(), cpu_operator_cost, ExecMaterializesOutput(), EXISTS_SUBLINK, make_ands_implicit(), NIL, nodeTag, SubPlan::parParam, SubPlan::per_call_cost, QualCost::per_tuple, plan, root, QualCost::startup, SubPlan::startup_cost, SubPlan::subLinkType, SubPlan::testexpr, and SubPlan::useHashTable.

Referenced by build_subplan(), SS_make_initplan_from_plan(), and SS_process_ctes().

◆ cost_subqueryscan()

void cost_subqueryscan ( SubqueryScanPath path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info,
bool  trivial_pathtarget 
)

Definition at line 1457 of file costsize.c.

1460{
1461 Cost startup_cost;
1462 Cost run_cost;
1463 List *qpquals;
1464 QualCost qpqual_cost;
1465 Cost cpu_per_tuple;
1466
1467 /* Should only be applied to base relations that are subqueries */
1468 Assert(baserel->relid > 0);
1469 Assert(baserel->rtekind == RTE_SUBQUERY);
1470
1471 /*
1472 * We compute the rowcount estimate as the subplan's estimate times the
1473 * selectivity of relevant restriction clauses. In simple cases this will
1474 * come out the same as baserel->rows; but when dealing with parallelized
1475 * paths we must do it like this to get the right answer.
1476 */
1477 if (param_info)
1478 qpquals = list_concat_copy(param_info->ppi_clauses,
1479 baserel->baserestrictinfo);
1480 else
1481 qpquals = baserel->baserestrictinfo;
1482
1483 path->path.rows = clamp_row_est(path->subpath->rows *
1485 qpquals,
1486 0,
1487 JOIN_INNER,
1488 NULL));
1489
1490 /*
1491 * Cost of path is cost of evaluating the subplan, plus cost of evaluating
1492 * any restriction clauses and tlist that will be attached to the
1493 * SubqueryScan node, plus cpu_tuple_cost to account for selection and
1494 * projection overhead.
1495 */
1497 path->path.startup_cost = path->subpath->startup_cost;
1498 path->path.total_cost = path->subpath->total_cost;
1499
1500 /*
1501 * However, if there are no relevant restriction clauses and the
1502 * pathtarget is trivial, then we expect that setrefs.c will optimize away
1503 * the SubqueryScan plan node altogether, so we should just make its cost
1504 * and rowcount equal to the input path's.
1505 *
1506 * Note: there are some edge cases where createplan.c will apply a
1507 * different targetlist to the SubqueryScan node, thus falsifying our
1508 * current estimate of whether the target is trivial, and making the cost
1509 * estimate (though not the rowcount) wrong. It does not seem worth the
1510 * extra complication to try to account for that exactly, especially since
1511 * that behavior falsifies other cost estimates as well.
1512 */
1513 if (qpquals == NIL && trivial_pathtarget)
1514 return;
1515
1516 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1517
1518 startup_cost = qpqual_cost.startup;
1519 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1520 run_cost = cpu_per_tuple * path->subpath->rows;
1521
1522 /* tlist eval costs are paid per output row, not per tuple scanned */
1523 startup_cost += path->path.pathtarget->cost.startup;
1524 run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
1525
1526 path->path.startup_cost += startup_cost;
1527 path->path.total_cost += startup_cost + run_cost;
1528}
List * list_concat_copy(const List *list1, const List *list2)
Definition: list.c:598
@ RTE_SUBQUERY
Definition: parsenodes.h:1027
List * ppi_clauses
Definition: pathnodes.h:1717
List * baserestrictinfo
Definition: pathnodes.h:1012

References Assert(), RelOptInfo::baserestrictinfo, clamp_row_est(), clauselist_selectivity(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), JOIN_INNER, list_concat_copy(), NIL, SubqueryScanPath::path, QualCost::per_tuple, ParamPathInfo::ppi_clauses, RelOptInfo::relid, root, Path::rows, RTE_SUBQUERY, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, SubqueryScanPath::subpath, and Path::total_cost.

Referenced by create_subqueryscan_path().

◆ cost_tablefuncscan()

void cost_tablefuncscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1600 of file costsize.c.

1602{
1603 Cost startup_cost = 0;
1604 Cost run_cost = 0;
1605 QualCost qpqual_cost;
1606 Cost cpu_per_tuple;
1607 RangeTblEntry *rte;
1608 QualCost exprcost;
1609
1610 /* Should only be applied to base relations that are functions */
1611 Assert(baserel->relid > 0);
1612 rte = planner_rt_fetch(baserel->relid, root);
1613 Assert(rte->rtekind == RTE_TABLEFUNC);
1614
1615 /* Mark the path with the correct row estimate */
1616 if (param_info)
1617 path->rows = param_info->ppi_rows;
1618 else
1619 path->rows = baserel->rows;
1620
1621 /*
1622 * Estimate costs of executing the table func expression(s).
1623 *
1624 * XXX in principle we ought to charge tuplestore spill costs if the
1625 * number of rows is large. However, given how phony our rowcount
1626 * estimates for tablefuncs tend to be, there's not a lot of point in that
1627 * refinement right now.
1628 */
1629 cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
1630
1631 startup_cost += exprcost.startup + exprcost.per_tuple;
1632
1633 /* Add scanning CPU costs */
1634 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1635
1636 startup_cost += qpqual_cost.startup;
1637 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1638 run_cost += cpu_per_tuple * baserel->tuples;
1639
1640 /* tlist eval costs are paid per output row, not per tuple scanned */
1641 startup_cost += path->pathtarget->cost.startup;
1642 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1643
1644 path->disabled_nodes = 0;
1645 path->startup_cost = startup_cost;
1646 path->total_cost = startup_cost + run_cost;
1647}
@ RTE_TABLEFUNC
Definition: parsenodes.h:1030
TableFunc * tablefunc
Definition: parsenodes.h:1198

References Assert(), cost_qual_eval_node(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, planner_rt_fetch, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_TABLEFUNC, RangeTblEntry::rtekind, QualCost::startup, Path::startup_cost, RangeTblEntry::tablefunc, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_tablefuncscan_path().

◆ cost_tidrangescan()

void cost_tidrangescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
List tidrangequals,
ParamPathInfo param_info 
)

Definition at line 1363 of file costsize.c.

1366{
1367 Selectivity selectivity;
1368 double pages;
1369 Cost startup_cost = 0;
1370 Cost run_cost = 0;
1371 QualCost qpqual_cost;
1372 Cost cpu_per_tuple;
1373 QualCost tid_qual_cost;
1374 double ntuples;
1375 double nseqpages;
1376 double spc_random_page_cost;
1377 double spc_seq_page_cost;
1378
1379 /* Should only be applied to base relations */
1380 Assert(baserel->relid > 0);
1381 Assert(baserel->rtekind == RTE_RELATION);
1382
1383 /* Mark the path with the correct row estimate */
1384 if (param_info)
1385 path->rows = param_info->ppi_rows;
1386 else
1387 path->rows = baserel->rows;
1388
1389 /* Count how many tuples and pages we expect to scan */
1390 selectivity = clauselist_selectivity(root, tidrangequals, baserel->relid,
1391 JOIN_INNER, NULL);
1392 pages = ceil(selectivity * baserel->pages);
1393
1394 if (pages <= 0.0)
1395 pages = 1.0;
1396
1397 /*
1398 * The first page in a range requires a random seek, but each subsequent
1399 * page is just a normal sequential page read. NOTE: it's desirable for
1400 * TID Range Scans to cost more than the equivalent Sequential Scans,
1401 * because Seq Scans have some performance advantages such as scan
1402 * synchronization and parallelizability, and we'd prefer one of them to
1403 * be picked unless a TID Range Scan really is better.
1404 */
1405 ntuples = selectivity * baserel->tuples;
1406 nseqpages = pages - 1.0;
1407
1408 /*
1409 * The TID qual expressions will be computed once, any other baserestrict
1410 * quals once per retrieved tuple.
1411 */
1412 cost_qual_eval(&tid_qual_cost, tidrangequals, root);
1413
1414 /* fetch estimated page cost for tablespace containing table */
1416 &spc_random_page_cost,
1417 &spc_seq_page_cost);
1418
1419 /* disk costs; 1 random page and the remainder as seq pages */
1420 run_cost += spc_random_page_cost + spc_seq_page_cost * nseqpages;
1421
1422 /* Add scanning CPU costs */
1423 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1424
1425 /*
1426 * XXX currently we assume TID quals are a subset of qpquals at this
1427 * point; they will be removed (if possible) when we create the plan, so
1428 * we subtract their cost from the total qpqual cost. (If the TID quals
1429 * can't be removed, this is a mistake and we're going to underestimate
1430 * the CPU cost a bit.)
1431 */
1432 startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
1433 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
1434 tid_qual_cost.per_tuple;
1435 run_cost += cpu_per_tuple * ntuples;
1436
1437 /* tlist eval costs are paid per output row, not per tuple scanned */
1438 startup_cost += path->pathtarget->cost.startup;
1439 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1440
1441 /* we should not generate this path type when enable_tidscan=false */
1443 path->disabled_nodes = 0;
1444 path->startup_cost = startup_cost;
1445 path->total_cost = startup_cost + run_cost;
1446}
bool enable_tidscan
Definition: costsize.c:149

References Assert(), clauselist_selectivity(), cost_qual_eval(), cpu_tuple_cost, Path::disabled_nodes, enable_tidscan, get_restriction_qual_cost(), get_tablespace_page_costs(), JOIN_INNER, RelOptInfo::pages, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_tidrangescan_path().

◆ cost_tidscan()

void cost_tidscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
List tidquals,
ParamPathInfo param_info 
)

Definition at line 1258 of file costsize.c.

1260{
1261 Cost startup_cost = 0;
1262 Cost run_cost = 0;
1263 QualCost qpqual_cost;
1264 Cost cpu_per_tuple;
1265 QualCost tid_qual_cost;
1266 double ntuples;
1267 ListCell *l;
1268 double spc_random_page_cost;
1269
1270 /* Should only be applied to base relations */
1271 Assert(baserel->relid > 0);
1272 Assert(baserel->rtekind == RTE_RELATION);
1273 Assert(tidquals != NIL);
1274
1275 /* Mark the path with the correct row estimate */
1276 if (param_info)
1277 path->rows = param_info->ppi_rows;
1278 else
1279 path->rows = baserel->rows;
1280
1281 /* Count how many tuples we expect to retrieve */
1282 ntuples = 0;
1283 foreach(l, tidquals)
1284 {
1286 Expr *qual = rinfo->clause;
1287
1288 /*
1289 * We must use a TID scan for CurrentOfExpr; in any other case, we
1290 * should be generating a TID scan only if enable_tidscan=true. Also,
1291 * if CurrentOfExpr is the qual, there should be only one.
1292 */
1294 Assert(list_length(tidquals) == 1 || !IsA(qual, CurrentOfExpr));
1295
1296 if (IsA(qual, ScalarArrayOpExpr))
1297 {
1298 /* Each element of the array yields 1 tuple */
1299 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) qual;
1300 Node *arraynode = (Node *) lsecond(saop->args);
1301
1302 ntuples += estimate_array_length(root, arraynode);
1303 }
1304 else if (IsA(qual, CurrentOfExpr))
1305 {
1306 /* CURRENT OF yields 1 tuple */
1307 ntuples++;
1308 }
1309 else
1310 {
1311 /* It's just CTID = something, count 1 tuple */
1312 ntuples++;
1313 }
1314 }
1315
1316 /*
1317 * The TID qual expressions will be computed once, any other baserestrict
1318 * quals once per retrieved tuple.
1319 */
1320 cost_qual_eval(&tid_qual_cost, tidquals, root);
1321
1322 /* fetch estimated page cost for tablespace containing table */
1324 &spc_random_page_cost,
1325 NULL);
1326
1327 /* disk costs --- assume each tuple on a different page */
1328 run_cost += spc_random_page_cost * ntuples;
1329
1330 /* Add scanning CPU costs */
1331 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1332
1333 /* XXX currently we assume TID quals are a subset of qpquals */
1334 startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
1335 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
1336 tid_qual_cost.per_tuple;
1337 run_cost += cpu_per_tuple * ntuples;
1338
1339 /* tlist eval costs are paid per output row, not per tuple scanned */
1340 startup_cost += path->pathtarget->cost.startup;
1341 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1342
1343 /*
1344 * There are assertions above verifying that we only reach this function
1345 * either when enable_tidscan=true or when the TID scan is the only legal
1346 * path, so it's safe to set disabled_nodes to zero here.
1347 */
1348 path->disabled_nodes = 0;
1349 path->startup_cost = startup_cost;
1350 path->total_cost = startup_cost + run_cost;
1351}

References ScalarArrayOpExpr::args, Assert(), RestrictInfo::clause, cost_qual_eval(), cpu_tuple_cost, Path::disabled_nodes, enable_tidscan, estimate_array_length(), get_restriction_qual_cost(), get_tablespace_page_costs(), IsA, lfirst_node, list_length(), lsecond, NIL, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, and Path::total_cost.

Referenced by create_tidscan_path().

◆ cost_tuplesort()

static void cost_tuplesort ( Cost startup_cost,
Cost run_cost,
double  tuples,
int  width,
Cost  comparison_cost,
int  sort_mem,
double  limit_tuples 
)
static

Definition at line 1898 of file costsize.c.

1902{
1903 double input_bytes = relation_byte_size(tuples, width);
1904 double output_bytes;
1905 double output_tuples;
1906 int64 sort_mem_bytes = sort_mem * (int64) 1024;
1907
1908 /*
1909 * We want to be sure the cost of a sort is never estimated as zero, even
1910 * if passed-in tuple count is zero. Besides, mustn't do log(0)...
1911 */
1912 if (tuples < 2.0)
1913 tuples = 2.0;
1914
1915 /* Include the default cost-per-comparison */
1916 comparison_cost += 2.0 * cpu_operator_cost;
1917
1918 /* Do we have a useful LIMIT? */
1919 if (limit_tuples > 0 && limit_tuples < tuples)
1920 {
1921 output_tuples = limit_tuples;
1922 output_bytes = relation_byte_size(output_tuples, width);
1923 }
1924 else
1925 {
1926 output_tuples = tuples;
1927 output_bytes = input_bytes;
1928 }
1929
1930 if (output_bytes > sort_mem_bytes)
1931 {
1932 /*
1933 * We'll have to use a disk-based sort of all the tuples
1934 */
1935 double npages = ceil(input_bytes / BLCKSZ);
1936 double nruns = input_bytes / sort_mem_bytes;
1937 double mergeorder = tuplesort_merge_order(sort_mem_bytes);
1938 double log_runs;
1939 double npageaccesses;
1940
1941 /*
1942 * CPU costs
1943 *
1944 * Assume about N log2 N comparisons
1945 */
1946 *startup_cost = comparison_cost * tuples * LOG2(tuples);
1947
1948 /* Disk costs */
1949
1950 /* Compute logM(r) as log(r) / log(M) */
1951 if (nruns > mergeorder)
1952 log_runs = ceil(log(nruns) / log(mergeorder));
1953 else
1954 log_runs = 1.0;
1955 npageaccesses = 2.0 * npages * log_runs;
1956 /* Assume 3/4ths of accesses are sequential, 1/4th are not */
1957 *startup_cost += npageaccesses *
1958 (seq_page_cost * 0.75 + random_page_cost * 0.25);
1959 }
1960 else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
1961 {
1962 /*
1963 * We'll use a bounded heap-sort keeping just K tuples in memory, for
1964 * a total number of tuple comparisons of N log2 K; but the constant
1965 * factor is a bit higher than for quicksort. Tweak it so that the
1966 * cost curve is continuous at the crossover point.
1967 */
1968 *startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
1969 }
1970 else
1971 {
1972 /* We'll use plain quicksort on all the input tuples */
1973 *startup_cost = comparison_cost * tuples * LOG2(tuples);
1974 }
1975
1976 /*
1977 * Also charge a small amount (arbitrarily set equal to operator cost) per
1978 * extracted tuple. We don't charge cpu_tuple_cost because a Sort node
1979 * doesn't do qual-checking or projection, so it has less overhead than
1980 * most plan nodes. Note it's correct to use tuples not output_tuples
1981 * here --- the upper LIMIT will pro-rate the run cost so we'd be double
1982 * counting the LIMIT otherwise.
1983 */
1984 *run_cost = cpu_operator_cost * tuples;
1985}
int64_t int64
Definition: c.h:499
int tuplesort_merge_order(int64 allowedMem)
Definition: tuplesort.c:1778

References cpu_operator_cost, LOG2, random_page_cost, relation_byte_size(), seq_page_cost, and tuplesort_merge_order().

Referenced by cost_incremental_sort(), and cost_sort().

◆ cost_valuesscan()

void cost_valuesscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1657 of file costsize.c.

1659{
1660 Cost startup_cost = 0;
1661 Cost run_cost = 0;
1662 QualCost qpqual_cost;
1663 Cost cpu_per_tuple;
1664
1665 /* Should only be applied to base relations that are values lists */
1666 Assert(baserel->relid > 0);
1667 Assert(baserel->rtekind == RTE_VALUES);
1668
1669 /* Mark the path with the correct row estimate */
1670 if (param_info)
1671 path->rows = param_info->ppi_rows;
1672 else
1673 path->rows = baserel->rows;
1674
1675 /*
1676 * For now, estimate list evaluation cost at one operator eval per list
1677 * (probably pretty bogus, but is it worth being smarter?)
1678 */
1679 cpu_per_tuple = cpu_operator_cost;
1680
1681 /* Add scanning CPU costs */
1682 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1683
1684 startup_cost += qpqual_cost.startup;
1685 cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1686 run_cost += cpu_per_tuple * baserel->tuples;
1687
1688 /* tlist eval costs are paid per output row, not per tuple scanned */
1689 startup_cost += path->pathtarget->cost.startup;
1690 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1691
1692 path->disabled_nodes = 0;
1693 path->startup_cost = startup_cost;
1694 path->total_cost = startup_cost + run_cost;
1695}
@ RTE_VALUES
Definition: parsenodes.h:1031

References Assert(), cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_VALUES, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_valuesscan_path().

◆ cost_windowagg()

void cost_windowagg ( Path path,
PlannerInfo root,
List windowFuncs,
WindowClause winclause,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples 
)

Definition at line 3098 of file costsize.c.

3103{
3104 Cost startup_cost;
3105 Cost total_cost;
3106 double startup_tuples;
3107 int numPartCols;
3108 int numOrderCols;
3109 ListCell *lc;
3110
3111 numPartCols = list_length(winclause->partitionClause);
3112 numOrderCols = list_length(winclause->orderClause);
3113
3114 startup_cost = input_startup_cost;
3115 total_cost = input_total_cost;
3116
3117 /*
3118 * Window functions are assumed to cost their stated execution cost, plus
3119 * the cost of evaluating their input expressions, per tuple. Since they
3120 * may in fact evaluate their inputs at multiple rows during each cycle,
3121 * this could be a drastic underestimate; but without a way to know how
3122 * many rows the window function will fetch, it's hard to do better. In
3123 * any case, it's a good estimate for all the built-in window functions,
3124 * so we'll just do this for now.
3125 */
3126 foreach(lc, windowFuncs)
3127 {
3128 WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
3129 Cost wfunccost;
3130 QualCost argcosts;
3131
3132 argcosts.startup = argcosts.per_tuple = 0;
3133 add_function_cost(root, wfunc->winfnoid, (Node *) wfunc,
3134 &argcosts);
3135 startup_cost += argcosts.startup;
3136 wfunccost = argcosts.per_tuple;
3137
3138 /* also add the input expressions' cost to per-input-row costs */
3139 cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
3140 startup_cost += argcosts.startup;
3141 wfunccost += argcosts.per_tuple;
3142
3143 /*
3144 * Add the filter's cost to per-input-row costs. XXX We should reduce
3145 * input expression costs according to filter selectivity.
3146 */
3147 cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
3148 startup_cost += argcosts.startup;
3149 wfunccost += argcosts.per_tuple;
3150
3151 total_cost += wfunccost * input_tuples;
3152 }
3153
3154 /*
3155 * We also charge cpu_operator_cost per grouping column per tuple for
3156 * grouping comparisons, plus cpu_tuple_cost per tuple for general
3157 * overhead.
3158 *
3159 * XXX this neglects costs of spooling the data to disk when it overflows
3160 * work_mem. Sooner or later that should get accounted for.
3161 */
3162 total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
3163 total_cost += cpu_tuple_cost * input_tuples;
3164
3165 path->rows = input_tuples;
3166 path->disabled_nodes = input_disabled_nodes;
3167 path->startup_cost = startup_cost;
3168 path->total_cost = total_cost;
3169
3170 /*
3171 * Also, take into account how many tuples we need to read from the
3172 * subnode in order to produce the first tuple from the WindowAgg. To do
3173 * this we proportion the run cost (total cost not including startup cost)
3174 * over the estimated startup tuples. We already included the startup
3175 * cost of the subnode, so we only need to do this when the estimated
3176 * startup tuples is above 1.0.
3177 */
3178 startup_tuples = get_windowclause_startup_tuples(root, winclause,
3179 input_tuples);
3180
3181 if (startup_tuples > 1.0)
3182 path->startup_cost += (total_cost - startup_cost) / input_tuples *
3183 (startup_tuples - 1.0);
3184}
static double get_windowclause_startup_tuples(PlannerInfo *root, WindowClause *wc, double input_tuples)
Definition: costsize.c:2884
List * partitionClause
Definition: parsenodes.h:1557
List * orderClause
Definition: parsenodes.h:1559
List * args
Definition: primnodes.h:592
Expr * aggfilter
Definition: primnodes.h:594
Oid winfnoid
Definition: primnodes.h:584

References add_function_cost(), WindowFunc::aggfilter, WindowFunc::args, cost_qual_eval_node(), cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, get_windowclause_startup_tuples(), lfirst_node, list_length(), WindowClause::orderClause, WindowClause::partitionClause, QualCost::per_tuple, root, Path::rows, QualCost::startup, Path::startup_cost, Path::total_cost, and WindowFunc::winfnoid.

Referenced by create_windowagg_path().

◆ extract_nonindex_conditions()

static List * extract_nonindex_conditions ( List qual_clauses,
List indexclauses 
)
static

Definition at line 850 of file costsize.c.

851{
852 List *result = NIL;
853 ListCell *lc;
854
855 foreach(lc, qual_clauses)
856 {
858
859 if (rinfo->pseudoconstant)
860 continue; /* we may drop pseudoconstants here */
861 if (is_redundant_with_indexclauses(rinfo, indexclauses))
862 continue; /* dup or derived from same EquivalenceClass */
863 /* ... skip the predicate proof attempt createplan.c will try ... */
864 result = lappend(result, rinfo);
865 }
866 return result;
867}
bool is_redundant_with_indexclauses(RestrictInfo *rinfo, List *indexclauses)
Definition: equivclass.c:3577

References is_redundant_with_indexclauses(), lappend(), lfirst_node, and NIL.

Referenced by cost_index().

◆ final_cost_hashjoin()

void final_cost_hashjoin ( PlannerInfo root,
HashPath path,
JoinCostWorkspace workspace,
JoinPathExtraData extra 
)

Definition at line 4274 of file costsize.c.

4277{
4278 Path *outer_path = path->jpath.outerjoinpath;
4279 Path *inner_path = path->jpath.innerjoinpath;
4280 double outer_path_rows = outer_path->rows;
4281 double inner_path_rows = inner_path->rows;
4282 double inner_path_rows_total = workspace->inner_rows_total;
4283 List *hashclauses = path->path_hashclauses;
4284 Cost startup_cost = workspace->startup_cost;
4285 Cost run_cost = workspace->run_cost;
4286 int numbuckets = workspace->numbuckets;
4287 int numbatches = workspace->numbatches;
4288 Cost cpu_per_tuple;
4289 QualCost hash_qual_cost;
4290 QualCost qp_qual_cost;
4291 double hashjointuples;
4292 double virtualbuckets;
4293 Selectivity innerbucketsize;
4294 Selectivity innermcvfreq;
4295 ListCell *hcl;
4296
4297 /* Set the number of disabled nodes. */
4298 path->jpath.path.disabled_nodes = workspace->disabled_nodes;
4299
4300 /* Mark the path with the correct row estimate */
4301 if (path->jpath.path.param_info)
4302 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
4303 else
4304 path->jpath.path.rows = path->jpath.path.parent->rows;
4305
4306 /* For partial paths, scale row estimate. */
4307 if (path->jpath.path.parallel_workers > 0)
4308 {
4309 double parallel_divisor = get_parallel_divisor(&path->jpath.path);
4310
4311 path->jpath.path.rows =
4312 clamp_row_est(path->jpath.path.rows / parallel_divisor);
4313 }
4314
4315 /* mark the path with estimated # of batches */
4316 path->num_batches = numbatches;
4317
4318 /* store the total number of tuples (sum of partial row estimates) */
4319 path->inner_rows_total = inner_path_rows_total;
4320
4321 /* and compute the number of "virtual" buckets in the whole join */
4322 virtualbuckets = (double) numbuckets * (double) numbatches;
4323
4324 /*
4325 * Determine bucketsize fraction and MCV frequency for the inner relation.
4326 * We use the smallest bucketsize or MCV frequency estimated for any
4327 * individual hashclause; this is undoubtedly conservative.
4328 *
4329 * BUT: if inner relation has been unique-ified, we can assume it's good
4330 * for hashing. This is important both because it's the right answer, and
4331 * because we avoid contaminating the cache with a value that's wrong for
4332 * non-unique-ified paths.
4333 */
4334 if (IsA(inner_path, UniquePath))
4335 {
4336 innerbucketsize = 1.0 / virtualbuckets;
4337 innermcvfreq = 0.0;
4338 }
4339 else
4340 {
4341 List *otherclauses;
4342
4343 innerbucketsize = 1.0;
4344 innermcvfreq = 1.0;
4345
4346 /* At first, try to estimate bucket size using extended statistics. */
4348 inner_path->parent,
4349 hashclauses,
4350 &innerbucketsize);
4351
4352 /* Pass through the remaining clauses */
4353 foreach(hcl, otherclauses)
4354 {
4355 RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
4356 Selectivity thisbucketsize;
4357 Selectivity thismcvfreq;
4358
4359 /*
4360 * First we have to figure out which side of the hashjoin clause
4361 * is the inner side.
4362 *
4363 * Since we tend to visit the same clauses over and over when
4364 * planning a large query, we cache the bucket stats estimates in
4365 * the RestrictInfo node to avoid repeated lookups of statistics.
4366 */
4367 if (bms_is_subset(restrictinfo->right_relids,
4368 inner_path->parent->relids))
4369 {
4370 /* righthand side is inner */
4371 thisbucketsize = restrictinfo->right_bucketsize;
4372 if (thisbucketsize < 0)
4373 {
4374 /* not cached yet */
4376 get_rightop(restrictinfo->clause),
4377 virtualbuckets,
4378 &restrictinfo->right_mcvfreq,
4379 &restrictinfo->right_bucketsize);
4380 thisbucketsize = restrictinfo->right_bucketsize;
4381 }
4382 thismcvfreq = restrictinfo->right_mcvfreq;
4383 }
4384 else
4385 {
4386 Assert(bms_is_subset(restrictinfo->left_relids,
4387 inner_path->parent->relids));
4388 /* lefthand side is inner */
4389 thisbucketsize = restrictinfo->left_bucketsize;
4390 if (thisbucketsize < 0)
4391 {
4392 /* not cached yet */
4394 get_leftop(restrictinfo->clause),
4395 virtualbuckets,
4396 &restrictinfo->left_mcvfreq,
4397 &restrictinfo->left_bucketsize);
4398 thisbucketsize = restrictinfo->left_bucketsize;
4399 }
4400 thismcvfreq = restrictinfo->left_mcvfreq;
4401 }
4402
4403 if (innerbucketsize > thisbucketsize)
4404 innerbucketsize = thisbucketsize;
4405 if (innermcvfreq > thismcvfreq)
4406 innermcvfreq = thismcvfreq;
4407 }
4408 }
4409
4410 /*
4411 * If the bucket holding the inner MCV would exceed hash_mem, we don't
4412 * want to hash unless there is really no other alternative, so apply
4413 * disable_cost. (The executor normally copes with excessive memory usage
4414 * by splitting batches, but obviously it cannot separate equal values
4415 * that way, so it will be unable to drive the batch size below hash_mem
4416 * when this is true.)
4417 */
4418 if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
4419 inner_path->pathtarget->width) > get_hash_memory_limit())
4420 startup_cost += disable_cost;
4421
4422 /*
4423 * Compute cost of the hashquals and qpquals (other restriction clauses)
4424 * separately.
4425 */
4426 cost_qual_eval(&hash_qual_cost, hashclauses, root);
4427 cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
4428 qp_qual_cost.startup -= hash_qual_cost.startup;
4429 qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
4430
4431 /* CPU costs */
4432
4433 if (path->jpath.jointype == JOIN_SEMI ||
4434 path->jpath.jointype == JOIN_ANTI ||
4435 extra->inner_unique)
4436 {
4437 double outer_matched_rows;
4438 Selectivity inner_scan_frac;
4439
4440 /*
4441 * With a SEMI or ANTI join, or if the innerrel is known unique, the
4442 * executor will stop after the first match.
4443 *
4444 * For an outer-rel row that has at least one match, we can expect the
4445 * bucket scan to stop after a fraction 1/(match_count+1) of the
4446 * bucket's rows, if the matches are evenly distributed. Since they
4447 * probably aren't quite evenly distributed, we apply a fuzz factor of
4448 * 2.0 to that fraction. (If we used a larger fuzz factor, we'd have
4449 * to clamp inner_scan_frac to at most 1.0; but since match_count is
4450 * at least 1, no such clamp is needed now.)
4451 */
4452 outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
4453 inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
4454
4455 startup_cost += hash_qual_cost.startup;
4456 run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
4457 clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
4458
4459 /*
4460 * For unmatched outer-rel rows, the picture is quite a lot different.
4461 * In the first place, there is no reason to assume that these rows
4462 * preferentially hit heavily-populated buckets; instead assume they
4463 * are uncorrelated with the inner distribution and so they see an
4464 * average bucket size of inner_path_rows / virtualbuckets. In the
4465 * second place, it seems likely that they will have few if any exact
4466 * hash-code matches and so very few of the tuples in the bucket will
4467 * actually require eval of the hash quals. We don't have any good
4468 * way to estimate how many will, but for the moment assume that the
4469 * effective cost per bucket entry is one-tenth what it is for
4470 * matchable tuples.
4471 */
4472 run_cost += hash_qual_cost.per_tuple *
4473 (outer_path_rows - outer_matched_rows) *
4474 clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
4475
4476 /* Get # of tuples that will pass the basic join */
4477 if (path->jpath.jointype == JOIN_ANTI)
4478 hashjointuples = outer_path_rows - outer_matched_rows;
4479 else
4480 hashjointuples = outer_matched_rows;
4481 }
4482 else
4483 {
4484 /*
4485 * The number of tuple comparisons needed is the number of outer
4486 * tuples times the typical number of tuples in a hash bucket, which
4487 * is the inner relation size times its bucketsize fraction. At each
4488 * one, we need to evaluate the hashjoin quals. But actually,
4489 * charging the full qual eval cost at each tuple is pessimistic,
4490 * since we don't evaluate the quals unless the hash values match
4491 * exactly. For lack of a better idea, halve the cost estimate to
4492 * allow for that.
4493 */
4494 startup_cost += hash_qual_cost.startup;
4495 run_cost += hash_qual_cost.per_tuple * outer_path_rows *
4496 clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
4497
4498 /*
4499 * Get approx # tuples passing the hashquals. We use
4500 * approx_tuple_count here because we need an estimate done with
4501 * JOIN_INNER semantics.
4502 */
4503 hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
4504 }
4505
4506 /*
4507 * For each tuple that gets through the hashjoin proper, we charge
4508 * cpu_tuple_cost plus the cost of evaluating additional restriction
4509 * clauses that are to be applied at the join. (This is pessimistic since
4510 * not all of the quals may get evaluated at each tuple.)
4511 */
4512 startup_cost += qp_qual_cost.startup;
4513 cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
4514 run_cost += cpu_per_tuple * hashjointuples;
4515
4516 /* tlist eval costs are paid per output row, not per tuple scanned */
4517 startup_cost += path->jpath.path.pathtarget->cost.startup;
4518 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
4519
4520 path->jpath.path.startup_cost = startup_cost;
4521 path->jpath.path.total_cost = startup_cost + run_cost;
4522}
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
static double approx_tuple_count(PlannerInfo *root, JoinPath *path, List *quals)
Definition: costsize.c:5289
Cost disable_cost
Definition: costsize.c:141
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:95
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:83
List * estimate_multivariate_bucketsize(PlannerInfo *root, RelOptInfo *inner, List *hashclauses, Selectivity *innerbucketsize)
Definition: selfuncs.c:3798
void estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets, Selectivity *mcv_freq, Selectivity *bucketsize_frac)
Definition: selfuncs.c:4003
List * path_hashclauses
Definition: pathnodes.h:2289
Cardinality inner_rows_total
Definition: pathnodes.h:2291
int num_batches
Definition: pathnodes.h:2290
JoinPath jpath
Definition: pathnodes.h:2288
Cardinality inner_rows_total
Definition: pathnodes.h:3492
SemiAntiJoinFactors semifactors
Definition: pathnodes.h:3370
JoinType jointype
Definition: pathnodes.h:2206
List * joinrestrictinfo
Definition: pathnodes.h:2214

References approx_tuple_count(), Assert(), bms_is_subset(), clamp_row_est(), RestrictInfo::clause, cost_qual_eval(), cpu_tuple_cost, disable_cost, JoinCostWorkspace::disabled_nodes, estimate_hash_bucket_stats(), estimate_multivariate_bucketsize(), get_hash_memory_limit(), get_leftop(), get_parallel_divisor(), get_rightop(), HashPath::inner_rows_total, JoinCostWorkspace::inner_rows_total, JoinPathExtraData::inner_unique, JoinPath::innerjoinpath, IsA, JOIN_ANTI, JOIN_SEMI, JoinPath::joinrestrictinfo, JoinPath::jointype, HashPath::jpath, lfirst_node, SemiAntiJoinFactors::match_count, HashPath::num_batches, JoinCostWorkspace::numbatches, JoinCostWorkspace::numbuckets, SemiAntiJoinFactors::outer_match_frac, JoinPath::outerjoinpath, HashPath::path_hashclauses, QualCost::per_tuple, relation_byte_size(), root, Path::rows, JoinCostWorkspace::run_cost, JoinPathExtraData::semifactors, QualCost::startup, and JoinCostWorkspace::startup_cost.

Referenced by create_hashjoin_path().

◆ final_cost_mergejoin()

void final_cost_mergejoin ( PlannerInfo root,
MergePath path,
JoinCostWorkspace workspace,
JoinPathExtraData extra 
)

Definition at line 3836 of file costsize.c.

3839{
3840 Path *outer_path = path->jpath.outerjoinpath;
3841 Path *inner_path = path->jpath.innerjoinpath;
3842 double inner_path_rows = inner_path->rows;
3843 List *mergeclauses = path->path_mergeclauses;
3844 List *innersortkeys = path->innersortkeys;
3845 Cost startup_cost = workspace->startup_cost;
3846 Cost run_cost = workspace->run_cost;
3847 Cost inner_run_cost = workspace->inner_run_cost;
3848 double outer_rows = workspace->outer_rows;
3849 double inner_rows = workspace->inner_rows;
3850 double outer_skip_rows = workspace->outer_skip_rows;
3851 double inner_skip_rows = workspace->inner_skip_rows;
3852 Cost cpu_per_tuple,
3853 bare_inner_cost,
3854 mat_inner_cost;
3855 QualCost merge_qual_cost;
3856 QualCost qp_qual_cost;
3857 double mergejointuples,
3858 rescannedtuples;
3859 double rescanratio;
3860
3861 /* Set the number of disabled nodes. */
3862 path->jpath.path.disabled_nodes = workspace->disabled_nodes;
3863
3864 /* Protect some assumptions below that rowcounts aren't zero */
3865 if (inner_path_rows <= 0)
3866 inner_path_rows = 1;
3867
3868 /* Mark the path with the correct row estimate */
3869 if (path->jpath.path.param_info)
3870 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
3871 else
3872 path->jpath.path.rows = path->jpath.path.parent->rows;
3873
3874 /* For partial paths, scale row estimate. */
3875 if (path->jpath.path.parallel_workers > 0)
3876 {
3877 double parallel_divisor = get_parallel_divisor(&path->jpath.path);
3878
3879 path->jpath.path.rows =
3880 clamp_row_est(path->jpath.path.rows / parallel_divisor);
3881 }
3882
3883 /*
3884 * Compute cost of the mergequals and qpquals (other restriction clauses)
3885 * separately.
3886 */
3887 cost_qual_eval(&merge_qual_cost, mergeclauses, root);
3888 cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
3889 qp_qual_cost.startup -= merge_qual_cost.startup;
3890 qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
3891
3892 /*
3893 * With a SEMI or ANTI join, or if the innerrel is known unique, the
3894 * executor will stop scanning for matches after the first match. When
3895 * all the joinclauses are merge clauses, this means we don't ever need to
3896 * back up the merge, and so we can skip mark/restore overhead.
3897 */
3898 if ((path->jpath.jointype == JOIN_SEMI ||
3899 path->jpath.jointype == JOIN_ANTI ||
3900 extra->inner_unique) &&
3903 path->skip_mark_restore = true;
3904 else
3905 path->skip_mark_restore = false;
3906
3907 /*
3908 * Get approx # tuples passing the mergequals. We use approx_tuple_count
3909 * here because we need an estimate done with JOIN_INNER semantics.
3910 */
3911 mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
3912
3913 /*
3914 * When there are equal merge keys in the outer relation, the mergejoin
3915 * must rescan any matching tuples in the inner relation. This means
3916 * re-fetching inner tuples; we have to estimate how often that happens.
3917 *
3918 * For regular inner and outer joins, the number of re-fetches can be
3919 * estimated approximately as size of merge join output minus size of
3920 * inner relation. Assume that the distinct key values are 1, 2, ..., and
3921 * denote the number of values of each key in the outer relation as m1,
3922 * m2, ...; in the inner relation, n1, n2, ... Then we have
3923 *
3924 * size of join = m1 * n1 + m2 * n2 + ...
3925 *
3926 * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
3927 * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
3928 * relation
3929 *
3930 * This equation works correctly for outer tuples having no inner match
3931 * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
3932 * are effectively subtracting those from the number of rescanned tuples,
3933 * when we should not. Can we do better without expensive selectivity
3934 * computations?
3935 *
3936 * The whole issue is moot if we are working from a unique-ified outer
3937 * input, or if we know we don't need to mark/restore at all.
3938 */
3939 if (IsA(outer_path, UniquePath) || path->skip_mark_restore)
3940 rescannedtuples = 0;
3941 else
3942 {
3943 rescannedtuples = mergejointuples - inner_path_rows;
3944 /* Must clamp because of possible underestimate */
3945 if (rescannedtuples < 0)
3946 rescannedtuples = 0;
3947 }
3948
3949 /*
3950 * We'll inflate various costs this much to account for rescanning. Note
3951 * that this is to be multiplied by something involving inner_rows, or
3952 * another number related to the portion of the inner rel we'll scan.
3953 */
3954 rescanratio = 1.0 + (rescannedtuples / inner_rows);
3955
3956 /*
3957 * Decide whether we want to materialize the inner input to shield it from
3958 * mark/restore and performing re-fetches. Our cost model for regular
3959 * re-fetches is that a re-fetch costs the same as an original fetch,
3960 * which is probably an overestimate; but on the other hand we ignore the
3961 * bookkeeping costs of mark/restore. Not clear if it's worth developing
3962 * a more refined model. So we just need to inflate the inner run cost by
3963 * rescanratio.
3964 */
3965 bare_inner_cost = inner_run_cost * rescanratio;
3966
3967 /*
3968 * When we interpose a Material node the re-fetch cost is assumed to be
3969 * just cpu_operator_cost per tuple, independently of the underlying
3970 * plan's cost; and we charge an extra cpu_operator_cost per original
3971 * fetch as well. Note that we're assuming the materialize node will
3972 * never spill to disk, since it only has to remember tuples back to the
3973 * last mark. (If there are a huge number of duplicates, our other cost
3974 * factors will make the path so expensive that it probably won't get
3975 * chosen anyway.) So we don't use cost_rescan here.
3976 *
3977 * Note: keep this estimate in sync with create_mergejoin_plan's labeling
3978 * of the generated Material node.
3979 */
3980 mat_inner_cost = inner_run_cost +
3981 cpu_operator_cost * inner_rows * rescanratio;
3982
3983 /*
3984 * If we don't need mark/restore at all, we don't need materialization.
3985 */
3986 if (path->skip_mark_restore)
3987 path->materialize_inner = false;
3988
3989 /*
3990 * Prefer materializing if it looks cheaper, unless the user has asked to
3991 * suppress materialization.
3992 */
3993 else if (enable_material && mat_inner_cost < bare_inner_cost)
3994 path->materialize_inner = true;
3995
3996 /*
3997 * Even if materializing doesn't look cheaper, we *must* do it if the
3998 * inner path is to be used directly (without sorting) and it doesn't
3999 * support mark/restore.
4000 *
4001 * Since the inner side must be ordered, and only Sorts and IndexScans can
4002 * create order to begin with, and they both support mark/restore, you
4003 * might think there's no problem --- but you'd be wrong. Nestloop and
4004 * merge joins can *preserve* the order of their inputs, so they can be
4005 * selected as the input of a mergejoin, and they don't support
4006 * mark/restore at present.
4007 *
4008 * We don't test the value of enable_material here, because
4009 * materialization is required for correctness in this case, and turning
4010 * it off does not entitle us to deliver an invalid plan.
4011 */
4012 else if (innersortkeys == NIL &&
4013 !ExecSupportsMarkRestore(inner_path))
4014 path->materialize_inner = true;
4015
4016 /*
4017 * Also, force materializing if the inner path is to be sorted and the
4018 * sort is expected to spill to disk. This is because the final merge
4019 * pass can be done on-the-fly if it doesn't have to support mark/restore.
4020 * We don't try to adjust the cost estimates for this consideration,
4021 * though.
4022 *
4023 * Since materialization is a performance optimization in this case,
4024 * rather than necessary for correctness, we skip it if enable_material is
4025 * off.
4026 */
4027 else if (enable_material && innersortkeys != NIL &&
4028 relation_byte_size(inner_path_rows,
4029 inner_path->pathtarget->width) >
4030 work_mem * (Size) 1024)
4031 path->materialize_inner = true;
4032 else
4033 path->materialize_inner = false;
4034
4035 /* Charge the right incremental cost for the chosen case */
4036 if (path->materialize_inner)
4037 run_cost += mat_inner_cost;
4038 else
4039 run_cost += bare_inner_cost;
4040
4041 /* CPU costs */
4042
4043 /*
4044 * The number of tuple comparisons needed is approximately number of outer
4045 * rows plus number of inner rows plus number of rescanned tuples (can we
4046 * refine this?). At each one, we need to evaluate the mergejoin quals.
4047 */
4048 startup_cost += merge_qual_cost.startup;
4049 startup_cost += merge_qual_cost.per_tuple *
4050 (outer_skip_rows + inner_skip_rows * rescanratio);
4051 run_cost += merge_qual_cost.per_tuple *
4052 ((outer_rows - outer_skip_rows) +
4053 (inner_rows - inner_skip_rows) * rescanratio);
4054
4055 /*
4056 * For each tuple that gets through the mergejoin proper, we charge
4057 * cpu_tuple_cost plus the cost of evaluating additional restriction
4058 * clauses that are to be applied at the join. (This is pessimistic since
4059 * not all of the quals may get evaluated at each tuple.)
4060 *
4061 * Note: we could adjust for SEMI/ANTI joins skipping some qual
4062 * evaluations here, but it's probably not worth the trouble.
4063 */
4064 startup_cost += qp_qual_cost.startup;
4065 cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
4066 run_cost += cpu_per_tuple * mergejointuples;
4067
4068 /* tlist eval costs are paid per output row, not per tuple scanned */
4069 startup_cost += path->jpath.path.pathtarget->cost.startup;
4070 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
4071
4072 path->jpath.path.startup_cost = startup_cost;
4073 path->jpath.path.total_cost = startup_cost + run_cost;
4074}
bool ExecSupportsMarkRestore(Path *pathnode)
Definition: execAmi.c:418
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
Cardinality inner_rows
Definition: pathnodes.h:3485
Cardinality outer_rows
Definition: pathnodes.h:3484
Cardinality inner_skip_rows
Definition: pathnodes.h:3487
Cardinality outer_skip_rows
Definition: pathnodes.h:3486
bool skip_mark_restore
Definition: pathnodes.h:2273
List * innersortkeys
Definition: pathnodes.h:2272
JoinPath jpath
Definition: pathnodes.h:2269
bool materialize_inner
Definition: pathnodes.h:2274
List * path_mergeclauses
Definition: pathnodes.h:2270

References approx_tuple_count(), clamp_row_est(), cost_qual_eval(), cpu_operator_cost, cpu_tuple_cost, JoinCostWorkspace::disabled_nodes, enable_material, ExecSupportsMarkRestore(), get_parallel_divisor(), if(), JoinCostWorkspace::inner_rows, JoinCostWorkspace::inner_run_cost, JoinCostWorkspace::inner_skip_rows, JoinPathExtraData::inner_unique, JoinPath::innerjoinpath, MergePath::innersortkeys, IsA, JOIN_ANTI, JOIN_SEMI, JoinPath::joinrestrictinfo, JoinPath::jointype, MergePath::jpath, list_length(), MergePath::materialize_inner, NIL, JoinCostWorkspace::outer_rows, JoinCostWorkspace::outer_skip_rows, JoinPath::outerjoinpath, MergePath::path_mergeclauses, QualCost::per_tuple, relation_byte_size(), root, Path::rows, JoinCostWorkspace::run_cost, MergePath::skip_mark_restore, QualCost::startup, JoinCostWorkspace::startup_cost, and work_mem.

Referenced by create_mergejoin_path().

◆ final_cost_nestloop()

void final_cost_nestloop ( PlannerInfo root,
NestPath path,
JoinCostWorkspace workspace,
JoinPathExtraData extra 
)

Definition at line 3349 of file costsize.c.

3352{
3353 Path *outer_path = path->jpath.outerjoinpath;
3354 Path *inner_path = path->jpath.innerjoinpath;
3355 double outer_path_rows = outer_path->rows;
3356 double inner_path_rows = inner_path->rows;
3357 Cost startup_cost = workspace->startup_cost;
3358 Cost run_cost = workspace->run_cost;
3359 Cost cpu_per_tuple;
3360 QualCost restrict_qual_cost;
3361 double ntuples;
3362
3363 /* Set the number of disabled nodes. */
3364 path->jpath.path.disabled_nodes = workspace->disabled_nodes;
3365
3366 /* Protect some assumptions below that rowcounts aren't zero */
3367 if (outer_path_rows <= 0)
3368 outer_path_rows = 1;
3369 if (inner_path_rows <= 0)
3370 inner_path_rows = 1;
3371 /* Mark the path with the correct row estimate */
3372 if (path->jpath.path.param_info)
3373 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
3374 else
3375 path->jpath.path.rows = path->jpath.path.parent->rows;
3376
3377 /* For partial paths, scale row estimate. */
3378 if (path->jpath.path.parallel_workers > 0)
3379 {
3380 double parallel_divisor = get_parallel_divisor(&path->jpath.path);
3381
3382 path->jpath.path.rows =
3383 clamp_row_est(path->jpath.path.rows / parallel_divisor);
3384 }
3385
3386 /* cost of inner-relation source data (we already dealt with outer rel) */
3387
3388 if (path->jpath.jointype == JOIN_SEMI || path->jpath.jointype == JOIN_ANTI ||
3389 extra->inner_unique)
3390 {
3391 /*
3392 * With a SEMI or ANTI join, or if the innerrel is known unique, the
3393 * executor will stop after the first match.
3394 */
3395 Cost inner_run_cost = workspace->inner_run_cost;
3396 Cost inner_rescan_run_cost = workspace->inner_rescan_run_cost;
3397 double outer_matched_rows;
3398 double outer_unmatched_rows;
3399 Selectivity inner_scan_frac;
3400
3401 /*
3402 * For an outer-rel row that has at least one match, we can expect the
3403 * inner scan to stop after a fraction 1/(match_count+1) of the inner
3404 * rows, if the matches are evenly distributed. Since they probably
3405 * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
3406 * that fraction. (If we used a larger fuzz factor, we'd have to
3407 * clamp inner_scan_frac to at most 1.0; but since match_count is at
3408 * least 1, no such clamp is needed now.)
3409 */
3410 outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
3411 outer_unmatched_rows = outer_path_rows - outer_matched_rows;
3412 inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
3413
3414 /*
3415 * Compute number of tuples processed (not number emitted!). First,
3416 * account for successfully-matched outer rows.
3417 */
3418 ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
3419
3420 /*
3421 * Now we need to estimate the actual costs of scanning the inner
3422 * relation, which may be quite a bit less than N times inner_run_cost
3423 * due to early scan stops. We consider two cases. If the inner path
3424 * is an indexscan using all the joinquals as indexquals, then an
3425 * unmatched outer row results in an indexscan returning no rows,
3426 * which is probably quite cheap. Otherwise, the executor will have
3427 * to scan the whole inner rel for an unmatched row; not so cheap.
3428 */
3429 if (has_indexed_join_quals(path))
3430 {
3431 /*
3432 * Successfully-matched outer rows will only require scanning
3433 * inner_scan_frac of the inner relation. In this case, we don't
3434 * need to charge the full inner_run_cost even when that's more
3435 * than inner_rescan_run_cost, because we can assume that none of
3436 * the inner scans ever scan the whole inner relation. So it's
3437 * okay to assume that all the inner scan executions can be
3438 * fractions of the full cost, even if materialization is reducing
3439 * the rescan cost. At this writing, it's impossible to get here
3440 * for a materialized inner scan, so inner_run_cost and
3441 * inner_rescan_run_cost will be the same anyway; but just in
3442 * case, use inner_run_cost for the first matched tuple and
3443 * inner_rescan_run_cost for additional ones.
3444 */
3445 run_cost += inner_run_cost * inner_scan_frac;
3446 if (outer_matched_rows > 1)
3447 run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
3448
3449 /*
3450 * Add the cost of inner-scan executions for unmatched outer rows.
3451 * We estimate this as the same cost as returning the first tuple
3452 * of a nonempty scan. We consider that these are all rescans,
3453 * since we used inner_run_cost once already.
3454 */
3455 run_cost += outer_unmatched_rows *
3456 inner_rescan_run_cost / inner_path_rows;
3457
3458 /*
3459 * We won't be evaluating any quals at all for unmatched rows, so
3460 * don't add them to ntuples.
3461 */
3462 }
3463 else
3464 {
3465 /*
3466 * Here, a complicating factor is that rescans may be cheaper than
3467 * first scans. If we never scan all the way to the end of the
3468 * inner rel, it might be (depending on the plan type) that we'd
3469 * never pay the whole inner first-scan run cost. However it is
3470 * difficult to estimate whether that will happen (and it could
3471 * not happen if there are any unmatched outer rows!), so be
3472 * conservative and always charge the whole first-scan cost once.
3473 * We consider this charge to correspond to the first unmatched
3474 * outer row, unless there isn't one in our estimate, in which
3475 * case blame it on the first matched row.
3476 */
3477
3478 /* First, count all unmatched join tuples as being processed */
3479 ntuples += outer_unmatched_rows * inner_path_rows;
3480
3481 /* Now add the forced full scan, and decrement appropriate count */
3482 run_cost += inner_run_cost;
3483 if (outer_unmatched_rows >= 1)
3484 outer_unmatched_rows -= 1;
3485 else
3486 outer_matched_rows -= 1;
3487
3488 /* Add inner run cost for additional outer tuples having matches */
3489 if (outer_matched_rows > 0)
3490 run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
3491
3492 /* Add inner run cost for additional unmatched outer tuples */
3493 if (outer_unmatched_rows > 0)
3494 run_cost += outer_unmatched_rows * inner_rescan_run_cost;
3495 }
3496 }
3497 else
3498 {
3499 /* Normal-case source costs were included in preliminary estimate */
3500
3501 /* Compute number of tuples processed (not number emitted!) */
3502 ntuples = outer_path_rows * inner_path_rows;
3503 }
3504
3505 /* CPU costs */
3506 cost_qual_eval(&restrict_qual_cost, path->jpath.joinrestrictinfo, root);
3507 startup_cost += restrict_qual_cost.startup;
3508 cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
3509 run_cost += cpu_per_tuple * ntuples;
3510
3511 /* tlist eval costs are paid per output row, not per tuple scanned */
3512 startup_cost += path->jpath.path.pathtarget->cost.startup;
3513 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
3514
3515 path->jpath.path.startup_cost = startup_cost;
3516 path->jpath.path.total_cost = startup_cost + run_cost;
3517}
static bool has_indexed_join_quals(NestPath *path)
Definition: costsize.c:5196
Cost inner_rescan_run_cost
Definition: pathnodes.h:3481
JoinPath jpath
Definition: pathnodes.h:2229

References clamp_row_est(), cost_qual_eval(), cpu_tuple_cost, JoinCostWorkspace::disabled_nodes, get_parallel_divisor(), has_indexed_join_quals(), JoinCostWorkspace::inner_rescan_run_cost, JoinCostWorkspace::inner_run_cost, JoinPathExtraData::inner_unique, JoinPath::innerjoinpath, JOIN_ANTI, JOIN_SEMI, JoinPath::joinrestrictinfo, JoinPath::jointype, NestPath::jpath, SemiAntiJoinFactors::match_count, SemiAntiJoinFactors::outer_match_frac, JoinPath::outerjoinpath, QualCost::per_tuple, root, Path::rows, JoinCostWorkspace::run_cost, JoinPathExtraData::semifactors, QualCost::startup, and JoinCostWorkspace::startup_cost.

Referenced by create_nestloop_path().

◆ get_expr_width()

static int32 get_expr_width ( PlannerInfo root,
const Node expr 
)
static

Definition at line 6390 of file costsize.c.

6391{
6392 int32 width;
6393
6394 if (IsA(expr, Var))
6395 {
6396 const Var *var = (const Var *) expr;
6397
6398 /* We should not see any upper-level Vars here */
6399 Assert(var->varlevelsup == 0);
6400
6401 /* Try to get data from RelOptInfo cache */
6402 if (!IS_SPECIAL_VARNO(var->varno) &&
6403 var->varno < root->simple_rel_array_size)
6404 {
6405 RelOptInfo *rel = root->simple_rel_array[var->varno];
6406
6407 if (rel != NULL &&
6408 var->varattno >= rel->min_attr &&
6409 var->varattno <= rel->max_attr)
6410 {
6411 int ndx = var->varattno - rel->min_attr;
6412
6413 if (rel->attr_widths[ndx] > 0)
6414 return rel->attr_widths[ndx];
6415 }
6416 }
6417
6418 /*
6419 * No cached data available, so estimate using just the type info.
6420 */
6421 width = get_typavgwidth(var->vartype, var->vartypmod);
6422 Assert(width > 0);
6423
6424 return width;
6425 }
6426
6427 width = get_typavgwidth(exprType(expr), exprTypmod(expr));
6428 Assert(width > 0);
6429 return width;
6430}
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2718
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
#define IS_SPECIAL_VARNO(varno)
Definition: primnodes.h:247
AttrNumber max_attr
Definition: pathnodes.h:953
AttrNumber min_attr
Definition: pathnodes.h:951
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
Index varlevelsup
Definition: primnodes.h:294

References Assert(), exprType(), exprTypmod(), get_typavgwidth(), IS_SPECIAL_VARNO, IsA, RelOptInfo::max_attr, RelOptInfo::min_attr, root, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by cost_memoize_rescan(), and set_pathtarget_cost_width().

◆ get_foreign_key_join_selectivity()

static Selectivity get_foreign_key_join_selectivity ( PlannerInfo root,
Relids  outer_relids,
Relids  inner_relids,
SpecialJoinInfo sjinfo,
List **  restrictlist 
)
static

Definition at line 5636 of file costsize.c.

5641{
5642 Selectivity fkselec = 1.0;
5643 JoinType jointype = sjinfo->jointype;
5644 List *worklist = *restrictlist;
5645 ListCell *lc;
5646
5647 /* Consider each FK constraint that is known to match the query */
5648 foreach(lc, root->fkey_list)
5649 {
5650 ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
5651 bool ref_is_outer;
5652 List *removedlist;
5653 ListCell *cell;
5654
5655 /*
5656 * This FK is not relevant unless it connects a baserel on one side of
5657 * this join to a baserel on the other side.
5658 */
5659 if (bms_is_member(fkinfo->con_relid, outer_relids) &&
5660 bms_is_member(fkinfo->ref_relid, inner_relids))
5661 ref_is_outer = false;
5662 else if (bms_is_member(fkinfo->ref_relid, outer_relids) &&
5663 bms_is_member(fkinfo->con_relid, inner_relids))
5664 ref_is_outer = true;
5665 else
5666 continue;
5667
5668 /*
5669 * If we're dealing with a semi/anti join, and the FK's referenced
5670 * relation is on the outside, then knowledge of the FK doesn't help
5671 * us figure out what we need to know (which is the fraction of outer
5672 * rows that have matches). On the other hand, if the referenced rel
5673 * is on the inside, then all outer rows must have matches in the
5674 * referenced table (ignoring nulls). But any restriction or join
5675 * clauses that filter that table will reduce the fraction of matches.
5676 * We can account for restriction clauses, but it's too hard to guess
5677 * how many table rows would get through a join that's inside the RHS.
5678 * Hence, if either case applies, punt and ignore the FK.
5679 */
5680 if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
5681 (ref_is_outer || bms_membership(inner_relids) != BMS_SINGLETON))
5682 continue;
5683
5684 /*
5685 * Modify the restrictlist by removing clauses that match the FK (and
5686 * putting them into removedlist instead). It seems unsafe to modify
5687 * the originally-passed List structure, so we make a shallow copy the
5688 * first time through.
5689 */
5690 if (worklist == *restrictlist)
5691 worklist = list_copy(worklist);
5692
5693 removedlist = NIL;
5694 foreach(cell, worklist)
5695 {
5696 RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
5697 bool remove_it = false;
5698 int i;
5699
5700 /* Drop this clause if it matches any column of the FK */
5701 for (i = 0; i < fkinfo->nkeys; i++)
5702 {
5703 if (rinfo->parent_ec)
5704 {
5705 /*
5706 * EC-derived clauses can only match by EC. It is okay to
5707 * consider any clause derived from the same EC as
5708 * matching the FK: even if equivclass.c chose to generate
5709 * a clause equating some other pair of Vars, it could
5710 * have generated one equating the FK's Vars. So for
5711 * purposes of estimation, we can act as though it did so.
5712 *
5713 * Note: checking parent_ec is a bit of a cheat because
5714 * there are EC-derived clauses that don't have parent_ec
5715 * set; but such clauses must compare expressions that
5716 * aren't just Vars, so they cannot match the FK anyway.
5717 */
5718 if (fkinfo->eclass[i] == rinfo->parent_ec)
5719 {
5720 remove_it = true;
5721 break;
5722 }
5723 }
5724 else
5725 {
5726 /*
5727 * Otherwise, see if rinfo was previously matched to FK as
5728 * a "loose" clause.
5729 */
5730 if (list_member_ptr(fkinfo->rinfos[i], rinfo))
5731 {
5732 remove_it = true;
5733 break;
5734 }
5735 }
5736 }
5737 if (remove_it)
5738 {
5739 worklist = foreach_delete_current(worklist, cell);
5740 removedlist = lappend(removedlist, rinfo);
5741 }
5742 }
5743
5744 /*
5745 * If we failed to remove all the matching clauses we expected to
5746 * find, chicken out and ignore this FK; applying its selectivity
5747 * might result in double-counting. Put any clauses we did manage to
5748 * remove back into the worklist.
5749 *
5750 * Since the matching clauses are known not outerjoin-delayed, they
5751 * would normally have appeared in the initial joinclause list. If we
5752 * didn't find them, there are two possibilities:
5753 *
5754 * 1. If the FK match is based on an EC that is ec_has_const, it won't
5755 * have generated any join clauses at all. We discount such ECs while
5756 * checking to see if we have "all" the clauses. (Below, we'll adjust
5757 * the selectivity estimate for this case.)
5758 *
5759 * 2. The clauses were matched to some other FK in a previous
5760 * iteration of this loop, and thus removed from worklist. (A likely
5761 * case is that two FKs are matched to the same EC; there will be only
5762 * one EC-derived clause in the initial list, so the first FK will
5763 * consume it.) Applying both FKs' selectivity independently risks
5764 * underestimating the join size; in particular, this would undo one
5765 * of the main things that ECs were invented for, namely to avoid
5766 * double-counting the selectivity of redundant equality conditions.
5767 * Later we might think of a reasonable way to combine the estimates,
5768 * but for now, just punt, since this is a fairly uncommon situation.
5769 */
5770 if (removedlist == NIL ||
5771 list_length(removedlist) !=
5772 (fkinfo->nmatched_ec - fkinfo->nconst_ec + fkinfo->nmatched_ri))
5773 {
5774 worklist = list_concat(worklist, removedlist);
5775 continue;
5776 }
5777
5778 /*
5779 * Finally we get to the payoff: estimate selectivity using the
5780 * knowledge that each referencing row will match exactly one row in
5781 * the referenced table.
5782 *
5783 * XXX that's not true in the presence of nulls in the referencing
5784 * column(s), so in principle we should derate the estimate for those.
5785 * However (1) if there are any strict restriction clauses for the
5786 * referencing column(s) elsewhere in the query, derating here would
5787 * be double-counting the null fraction, and (2) it's not very clear
5788 * how to combine null fractions for multiple referencing columns. So
5789 * we do nothing for now about correcting for nulls.
5790 *
5791 * XXX another point here is that if either side of an FK constraint
5792 * is an inheritance parent, we estimate as though the constraint
5793 * covers all its children as well. This is not an unreasonable
5794 * assumption for a referencing table, ie the user probably applied
5795 * identical constraints to all child tables (though perhaps we ought
5796 * to check that). But it's not possible to have done that for a
5797 * referenced table. Fortunately, precisely because that doesn't
5798 * work, it is uncommon in practice to have an FK referencing a parent
5799 * table. So, at least for now, disregard inheritance here.
5800 */
5801 if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
5802 {
5803 /*
5804 * For JOIN_SEMI and JOIN_ANTI, we only get here when the FK's
5805 * referenced table is exactly the inside of the join. The join
5806 * selectivity is defined as the fraction of LHS rows that have
5807 * matches. The FK implies that every LHS row has a match *in the
5808 * referenced table*; but any restriction clauses on it will
5809 * reduce the number of matches. Hence we take the join
5810 * selectivity as equal to the selectivity of the table's
5811 * restriction clauses, which is rows / tuples; but we must guard
5812 * against tuples == 0.
5813 */
5814 RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
5815 double ref_tuples = Max(ref_rel->tuples, 1.0);
5816
5817 fkselec *= ref_rel->rows / ref_tuples;
5818 }
5819 else
5820 {
5821 /*
5822 * Otherwise, selectivity is exactly 1/referenced-table-size; but
5823 * guard against tuples == 0. Note we should use the raw table
5824 * tuple count, not any estimate of its filtered or joined size.
5825 */
5826 RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
5827 double ref_tuples = Max(ref_rel->tuples, 1.0);
5828
5829 fkselec *= 1.0 / ref_tuples;
5830 }
5831
5832 /*
5833 * If any of the FK columns participated in ec_has_const ECs, then
5834 * equivclass.c will have generated "var = const" restrictions for
5835 * each side of the join, thus reducing the sizes of both input
5836 * relations. Taking the fkselec at face value would amount to
5837 * double-counting the selectivity of the constant restriction for the
5838 * referencing Var. Hence, look for the restriction clause(s) that
5839 * were applied to the referencing Var(s), and divide out their
5840 * selectivity to correct for this.
5841 */
5842 if (fkinfo->nconst_ec > 0)
5843 {
5844 for (int i = 0; i < fkinfo->nkeys; i++)
5845 {
5846 EquivalenceClass *ec = fkinfo->eclass[i];
5847
5848 if (ec && ec->ec_has_const)
5849 {
5850 EquivalenceMember *em = fkinfo->fk_eclass_member[i];
5852 ec,
5853 em);
5854
5855 if (rinfo)
5856 {
5857 Selectivity s0;
5858
5860 (Node *) rinfo,
5861 0,
5862 jointype,
5863 sjinfo);
5864 if (s0 > 0)
5865 fkselec /= s0;
5866 }
5867 }
5868 }
5869 }
5870 }
5871
5872 *restrictlist = worklist;
5873 CLAMP_PROBABILITY(fkselec);
5874 return fkselec;
5875}
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:781
@ BMS_SINGLETON
Definition: bitmapset.h:72
RestrictInfo * find_derived_clause_for_ec_member(PlannerInfo *root, EquivalenceClass *ec, EquivalenceMember *em)
Definition: equivclass.c:2804
List * list_copy(const List *oldlist)
Definition: list.c:1573
bool list_member_ptr(const List *list, const void *datum)
Definition: list.c:682
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
#define CLAMP_PROBABILITY(p)
Definition: selfuncs.h:63
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1287
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1291
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1289

References bms_is_member(), bms_membership(), BMS_SINGLETON, CLAMP_PROBABILITY, clause_selectivity(), ForeignKeyOptInfo::con_relid, EquivalenceClass::ec_has_const, ForeignKeyOptInfo::eclass, find_base_rel(), find_derived_clause_for_ec_member(), ForeignKeyOptInfo::fk_eclass_member, foreach_delete_current, i, JOIN_ANTI, JOIN_SEMI, SpecialJoinInfo::jointype, lappend(), lfirst, list_concat(), list_copy(), list_length(), list_member_ptr(), Max, ForeignKeyOptInfo::nconst_ec, NIL, ForeignKeyOptInfo::nkeys, ForeignKeyOptInfo::nmatched_ec, ForeignKeyOptInfo::nmatched_ri, ForeignKeyOptInfo::ref_relid, ForeignKeyOptInfo::rinfos, root, RelOptInfo::rows, and RelOptInfo::tuples.

Referenced by calc_joinrel_size_estimate().

◆ get_indexpath_pages()

static double get_indexpath_pages ( Path bitmapqual)
static

Definition at line 973 of file costsize.c.

974{
975 double result = 0;
976 ListCell *l;
977
978 if (IsA(bitmapqual, BitmapAndPath))
979 {
980 BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
981
982 foreach(l, apath->bitmapquals)
983 {
984 result += get_indexpath_pages((Path *) lfirst(l));
985 }
986 }
987 else if (IsA(bitmapqual, BitmapOrPath))
988 {
989 BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
990
991 foreach(l, opath->bitmapquals)
992 {
993 result += get_indexpath_pages((Path *) lfirst(l));
994 }
995 }
996 else if (IsA(bitmapqual, IndexPath))
997 {
998 IndexPath *ipath = (IndexPath *) bitmapqual;
999
1000 result = (double) ipath->indexinfo->pages;
1001 }
1002 else
1003 elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
1004
1005 return result;
1006}
BlockNumber pages
Definition: pathnodes.h:1156

References BitmapAndPath::bitmapquals, BitmapOrPath::bitmapquals, elog, ERROR, get_indexpath_pages(), IndexPath::indexinfo, IsA, lfirst, nodeTag, and IndexOptInfo::pages.

Referenced by compute_bitmap_pages(), and get_indexpath_pages().

◆ get_parallel_divisor()

static double get_parallel_divisor ( Path path)
static

Definition at line 6459 of file costsize.c.

6460{
6461 double parallel_divisor = path->parallel_workers;
6462
6463 /*
6464 * Early experience with parallel query suggests that when there is only
6465 * one worker, the leader often makes a very substantial contribution to
6466 * executing the parallel portion of the plan, but as more workers are
6467 * added, it does less and less, because it's busy reading tuples from the
6468 * workers and doing whatever non-parallel post-processing is needed. By
6469 * the time we reach 4 workers, the leader no longer makes a meaningful
6470 * contribution. Thus, for now, estimate that the leader spends 30% of
6471 * its time servicing each worker, and the remainder executing the
6472 * parallel plan.
6473 */
6475 {
6476 double leader_contribution;
6477
6478 leader_contribution = 1.0 - (0.3 * path->parallel_workers);
6479 if (leader_contribution > 0)
6480 parallel_divisor += leader_contribution;
6481 }
6482
6483 return parallel_divisor;
6484}
bool parallel_leader_participation
Definition: planner.c:69

References parallel_leader_participation, and Path::parallel_workers.

Referenced by compute_gather_rows(), cost_append(), cost_bitmap_heap_scan(), cost_index(), cost_seqscan(), final_cost_hashjoin(), final_cost_mergejoin(), final_cost_nestloop(), and initial_cost_hashjoin().

◆ get_parameterized_baserel_size()

double get_parameterized_baserel_size ( PlannerInfo root,
RelOptInfo rel,
List param_clauses 
)

Definition at line 5364 of file costsize.c.

5366{
5367 List *allclauses;
5368 double nrows;
5369
5370 /*
5371 * Estimate the number of rows returned by the parameterized scan, knowing
5372 * that it will apply all the extra join clauses as well as the rel's own
5373 * restriction clauses. Note that we force the clauses to be treated as
5374 * non-join clauses during selectivity estimation.
5375 */
5376 allclauses = list_concat_copy(param_clauses, rel->baserestrictinfo);
5377 nrows = rel->tuples *
5379 allclauses,
5380 rel->relid, /* do not use 0! */
5381 JOIN_INNER,
5382 NULL);
5383 nrows = clamp_row_est(nrows);
5384 /* For safety, make sure result is not more than the base estimate */
5385 if (nrows > rel->rows)
5386 nrows = rel->rows;
5387 return nrows;
5388}

References RelOptInfo::baserestrictinfo, clamp_row_est(), clauselist_selectivity(), JOIN_INNER, list_concat_copy(), RelOptInfo::relid, root, RelOptInfo::rows, and RelOptInfo::tuples.

Referenced by get_baserel_parampathinfo().

◆ get_parameterized_joinrel_size()

double get_parameterized_joinrel_size ( PlannerInfo root,
RelOptInfo rel,
Path outer_path,
Path inner_path,
SpecialJoinInfo sjinfo,
List restrict_clauses 
)

Definition at line 5445 of file costsize.c.

5450{
5451 double nrows;
5452
5453 /*
5454 * Estimate the number of rows returned by the parameterized join as the
5455 * sizes of the input paths times the selectivity of the clauses that have
5456 * ended up at this join node.
5457 *
5458 * As with set_joinrel_size_estimates, the rowcount estimate could depend
5459 * on the pair of input paths provided, though ideally we'd get the same
5460 * estimate for any pair with the same parameterization.
5461 */
5463 rel,
5464 outer_path->parent,
5465 inner_path->parent,
5466 outer_path->rows,
5467 inner_path->rows,
5468 sjinfo,
5469 restrict_clauses);
5470 /* For safety, make sure result is not more than the base estimate */
5471 if (nrows > rel->rows)
5472 nrows = rel->rows;
5473 return nrows;
5474}
static double calc_joinrel_size_estimate(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, double outer_rows, double inner_rows, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: costsize.c:5486

References calc_joinrel_size_estimate(), root, RelOptInfo::rows, and Path::rows.

Referenced by get_joinrel_parampathinfo().

◆ get_restriction_qual_cost()

static void get_restriction_qual_cost ( PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info,
QualCost qpqual_cost 
)
static

Definition at line 5057 of file costsize.c.

5060{
5061 if (param_info)
5062 {
5063 /* Include costs of pushed-down clauses */
5064 cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);
5065
5066 qpqual_cost->startup += baserel->baserestrictcost.startup;
5067 qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple;
5068 }
5069 else
5070 *qpqual_cost = baserel->baserestrictcost;
5071}
QualCost baserestrictcost
Definition: pathnodes.h:1014

References RelOptInfo::baserestrictcost, cost_qual_eval(), QualCost::per_tuple, ParamPathInfo::ppi_clauses, root, and QualCost::startup.

Referenced by cost_bitmap_heap_scan(), cost_ctescan(), cost_functionscan(), cost_namedtuplestorescan(), cost_resultscan(), cost_samplescan(), cost_seqscan(), cost_subqueryscan(), cost_tablefuncscan(), cost_tidrangescan(), cost_tidscan(), and cost_valuesscan().

◆ get_windowclause_startup_tuples()

static double get_windowclause_startup_tuples ( PlannerInfo root,
WindowClause wc,
double  input_tuples 
)
static

Definition at line 2884 of file costsize.c.

2886{
2887 int frameOptions = wc->frameOptions;
2888 double partition_tuples;
2889 double return_tuples;
2890 double peer_tuples;
2891
2892 /*
2893 * First, figure out how many partitions there are likely to be and set
2894 * partition_tuples according to that estimate.
2895 */
2896 if (wc->partitionClause != NIL)
2897 {
2898 double num_partitions;
2900 root->parse->targetList);
2901
2902 num_partitions = estimate_num_groups(root, partexprs, input_tuples,
2903 NULL, NULL);
2904 list_free(partexprs);
2905
2906 partition_tuples = input_tuples / num_partitions;
2907 }
2908 else
2909 {
2910 /* all tuples belong to the same partition */
2911 partition_tuples = input_tuples;
2912 }
2913
2914 /* estimate the number of tuples in each peer group */
2915 if (wc->orderClause != NIL)
2916 {
2917 double num_groups;
2918 List *orderexprs;
2919
2920 orderexprs = get_sortgrouplist_exprs(wc->orderClause,
2921 root->parse->targetList);
2922
2923 /* estimate out how many peer groups there are in the partition */
2924 num_groups = estimate_num_groups(root, orderexprs,
2925 partition_tuples, NULL,
2926 NULL);
2927 list_free(orderexprs);
2928 peer_tuples = partition_tuples / num_groups;
2929 }
2930 else
2931 {
2932 /* no ORDER BY so only 1 tuple belongs in each peer group */
2933 peer_tuples = 1.0;
2934 }
2935
2936 if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
2937 {
2938 /* include all partition rows */
2939 return_tuples = partition_tuples;
2940 }
2941 else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
2942 {
2943 if (frameOptions & FRAMEOPTION_ROWS)
2944 {
2945 /* just count the current row */
2946 return_tuples = 1.0;
2947 }
2948 else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
2949 {
2950 /*
2951 * When in RANGE/GROUPS mode, it's more complex. If there's no
2952 * ORDER BY, then all rows in the partition are peers, otherwise
2953 * we'll need to read the first group of peers.
2954 */
2955 if (wc->orderClause == NIL)
2956 return_tuples = partition_tuples;
2957 else
2958 return_tuples = peer_tuples;
2959 }
2960 else
2961 {
2962 /*
2963 * Something new we don't support yet? This needs attention.
2964 * We'll just return 1.0 in the meantime.
2965 */
2966 Assert(false);
2967 return_tuples = 1.0;
2968 }
2969 }
2970 else if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
2971 {
2972 /*
2973 * BETWEEN ... AND N PRECEDING will only need to read the WindowAgg's
2974 * subnode after N ROWS/RANGES/GROUPS. N can be 0, but not negative,
2975 * so we'll just assume only the current row needs to be read to fetch
2976 * the first WindowAgg row.
2977 */
2978 return_tuples = 1.0;
2979 }
2980 else if (frameOptions & FRAMEOPTION_END_OFFSET_FOLLOWING)
2981 {
2982 Const *endOffset = (Const *) wc->endOffset;
2983 double end_offset_value;
2984
2985 /* try and figure out the value specified in the endOffset. */
2986 if (IsA(endOffset, Const))
2987 {
2988 if (endOffset->constisnull)
2989 {
2990 /*
2991 * NULLs are not allowed, but currently, there's no code to
2992 * error out if there's a NULL Const. We'll only discover
2993 * this during execution. For now, just pretend everything is
2994 * fine and assume that just the first row/range/group will be
2995 * needed.
2996 */
2997 end_offset_value = 1.0;
2998 }
2999 else
3000 {
3001 switch (endOffset->consttype)
3002 {
3003 case INT2OID:
3004 end_offset_value =
3005 (double) DatumGetInt16(endOffset->constvalue);
3006 break;
3007 case INT4OID:
3008 end_offset_value =
3009 (double) DatumGetInt32(endOffset->constvalue);
3010 break;
3011 case INT8OID:
3012 end_offset_value =
3013 (double) DatumGetInt64(endOffset->constvalue);
3014 break;
3015 default:
3016 end_offset_value =
3017 partition_tuples / peer_tuples *
3019 break;
3020 }
3021 }
3022 }
3023 else
3024 {
3025 /*
3026 * When the end bound is not a Const, we'll just need to guess. We
3027 * just make use of DEFAULT_INEQ_SEL.
3028 */
3029 end_offset_value =
3030 partition_tuples / peer_tuples * DEFAULT_INEQ_SEL;
3031 }
3032
3033 if (frameOptions & FRAMEOPTION_ROWS)
3034 {
3035 /* include the N FOLLOWING and the current row */
3036 return_tuples = end_offset_value + 1.0;
3037 }
3038 else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
3039 {
3040 /* include N FOLLOWING ranges/group and the initial range/group */
3041 return_tuples = peer_tuples * (end_offset_value + 1.0);
3042 }
3043 else
3044 {
3045 /*
3046 * Something new we don't support yet? This needs attention.
3047 * We'll just return 1.0 in the meantime.
3048 */
3049 Assert(false);
3050 return_tuples = 1.0;
3051 }
3052 }
3053 else
3054 {
3055 /*
3056 * Something new we don't support yet? This needs attention. We'll
3057 * just return 1.0 in the meantime.
3058 */
3059 Assert(false);
3060 return_tuples = 1.0;
3061 }
3062
3063 if (wc->partitionClause != NIL || wc->orderClause != NIL)
3064 {
3065 /*
3066 * Cap the return value to the estimated partition tuples and account
3067 * for the extra tuple WindowAgg will need to read to confirm the next
3068 * tuple does not belong to the same partition or peer group.
3069 */
3070 return_tuples = Min(return_tuples + 1.0, partition_tuples);
3071 }
3072 else
3073 {
3074 /*
3075 * Cap the return value so it's never higher than the expected tuples
3076 * in the partition.
3077 */
3078 return_tuples = Min(return_tuples, partition_tuples);
3079 }
3080
3081 /*
3082 * We needn't worry about any EXCLUDE options as those only exclude rows
3083 * from being aggregated, not from being read from the WindowAgg's
3084 * subnode.
3085 */
3086
3087 return clamp_row_est(return_tuples);
3088}
#define FRAMEOPTION_END_CURRENT_ROW
Definition: parsenodes.h:602
#define FRAMEOPTION_END_OFFSET_PRECEDING
Definition: parsenodes.h:604
#define FRAMEOPTION_END_OFFSET_FOLLOWING
Definition: parsenodes.h:606
#define FRAMEOPTION_RANGE
Definition: parsenodes.h:593
#define FRAMEOPTION_GROUPS
Definition: parsenodes.h:595
#define FRAMEOPTION_END_UNBOUNDED_FOLLOWING
Definition: parsenodes.h:600
#define FRAMEOPTION_ROWS
Definition: parsenodes.h:594
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:390
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:167
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:207
#define DEFAULT_INEQ_SEL
Definition: selfuncs.h:37
Oid consttype
Definition: primnodes.h:329
Node * endOffset
Definition: parsenodes.h:1562
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:392

References Assert(), clamp_row_est(), Const::consttype, DatumGetInt16(), DatumGetInt32(), DatumGetInt64(), DEFAULT_INEQ_SEL, WindowClause::endOffset, estimate_num_groups(), FRAMEOPTION_END_CURRENT_ROW, FRAMEOPTION_END_OFFSET_FOLLOWING, FRAMEOPTION_END_OFFSET_PRECEDING, FRAMEOPTION_END_UNBOUNDED_FOLLOWING, FRAMEOPTION_GROUPS, FRAMEOPTION_RANGE, FRAMEOPTION_ROWS, WindowClause::frameOptions, get_sortgrouplist_exprs(), if(), IsA, list_free(), Min, NIL, WindowClause::orderClause, WindowClause::partitionClause, and root.

Referenced by cost_windowagg().

◆ has_indexed_join_quals()

static bool has_indexed_join_quals ( NestPath path)
static

Definition at line 5196 of file costsize.c.

5197{
5198 JoinPath *joinpath = &path->jpath;
5199 Relids joinrelids = joinpath->path.parent->relids;
5200 Path *innerpath = joinpath->innerjoinpath;
5201 List *indexclauses;
5202 bool found_one;
5203 ListCell *lc;
5204
5205 /* If join still has quals to evaluate, it's not fast */
5206 if (joinpath->joinrestrictinfo != NIL)
5207 return false;
5208 /* Nor if the inner path isn't parameterized at all */
5209 if (innerpath->param_info == NULL)
5210 return false;
5211
5212 /* Find the indexclauses list for the inner scan */
5213 switch (innerpath->pathtype)
5214 {
5215 case T_IndexScan:
5216 case T_IndexOnlyScan:
5217 indexclauses = ((IndexPath *) innerpath)->indexclauses;
5218 break;
5219 case T_BitmapHeapScan:
5220 {
5221 /* Accept only a simple bitmap scan, not AND/OR cases */
5222 Path *bmqual = ((BitmapHeapPath *) innerpath)->bitmapqual;
5223
5224 if (IsA(bmqual, IndexPath))
5225 indexclauses = ((IndexPath *) bmqual)->indexclauses;
5226 else
5227 return false;
5228 break;
5229 }
5230 default:
5231
5232 /*
5233 * If it's not a simple indexscan, it probably doesn't run quickly
5234 * for zero rows out, even if it's a parameterized path using all
5235 * the joinquals.
5236 */
5237 return false;
5238 }
5239
5240 /*
5241 * Examine the inner path's param clauses. Any that are from the outer
5242 * path must be found in the indexclauses list, either exactly or in an
5243 * equivalent form generated by equivclass.c. Also, we must find at least
5244 * one such clause, else it's a clauseless join which isn't fast.
5245 */
5246 found_one = false;
5247 foreach(lc, innerpath->param_info->ppi_clauses)
5248 {
5249 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
5250
5252 innerpath->parent->relids,
5253 joinrelids))
5254 {
5255 if (!is_redundant_with_indexclauses(rinfo, indexclauses))
5256 return false;
5257 found_one = true;
5258 }
5259 }
5260 return found_one;
5261}
bool join_clause_is_movable_into(RestrictInfo *rinfo, Relids currentrelids, Relids current_and_outer)
Definition: restrictinfo.c:661

References JoinPath::innerjoinpath, is_redundant_with_indexclauses(), IsA, join_clause_is_movable_into(), JoinPath::joinrestrictinfo, NestPath::jpath, lfirst, NIL, and Path::pathtype.

Referenced by final_cost_nestloop().

◆ index_pages_fetched()

double index_pages_fetched ( double  tuples_fetched,
BlockNumber  pages,
double  index_pages,
PlannerInfo root 
)

Definition at line 908 of file costsize.c.

910{
911 double pages_fetched;
912 double total_pages;
913 double T,
914 b;
915
916 /* T is # pages in table, but don't allow it to be zero */
917 T = (pages > 1) ? (double) pages : 1.0;
918
919 /* Compute number of pages assumed to be competing for cache space */
920 total_pages = root->total_table_pages + index_pages;
921 total_pages = Max(total_pages, 1.0);
922 Assert(T <= total_pages);
923
924 /* b is pro-rated share of effective_cache_size */
925 b = (double) effective_cache_size * T / total_pages;
926
927 /* force it positive and integral */
928 if (b <= 1.0)
929 b = 1.0;
930 else
931 b = ceil(b);
932
933 /* This part is the Mackert and Lohman formula */
934 if (T <= b)
935 {
936 pages_fetched =
937 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
938 if (pages_fetched >= T)
939 pages_fetched = T;
940 else
941 pages_fetched = ceil(pages_fetched);
942 }
943 else
944 {
945 double lim;
946
947 lim = (2.0 * T * b) / (2.0 * T - b);
948 if (tuples_fetched <= lim)
949 {
950 pages_fetched =
951 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
952 }
953 else
954 {
955 pages_fetched =
956 b + (tuples_fetched - lim) * (T - b) / T;
957 }
958 pages_fetched = ceil(pages_fetched);
959 }
960 return pages_fetched;
961}
int effective_cache_size
Definition: costsize.c:139
int b
Definition: isn.c:74

References Assert(), b, effective_cache_size, Max, root, and T.

Referenced by compute_bitmap_pages(), cost_index(), genericcostestimate(), and gincostestimate().

◆ initial_cost_hashjoin()

void initial_cost_hashjoin ( PlannerInfo root,
JoinCostWorkspace workspace,
JoinType  jointype,
List hashclauses,
Path outer_path,
Path inner_path,
JoinPathExtraData extra,
bool  parallel_hash 
)

Definition at line 4159 of file costsize.c.

4165{
4166 int disabled_nodes;
4167 Cost startup_cost = 0;
4168 Cost run_cost = 0;
4169 double outer_path_rows = outer_path->rows;
4170 double inner_path_rows = inner_path->rows;
4171 double inner_path_rows_total = inner_path_rows;
4172 int num_hashclauses = list_length(hashclauses);
4173 int numbuckets;
4174 int numbatches;
4175 int num_skew_mcvs;
4176 size_t space_allowed; /* unused */
4177
4178 /* Count up disabled nodes. */
4179 disabled_nodes = enable_hashjoin ? 0 : 1;
4180 disabled_nodes += inner_path->disabled_nodes;
4181 disabled_nodes += outer_path->disabled_nodes;
4182
4183 /* cost of source data */
4184 startup_cost += outer_path->startup_cost;
4185 run_cost += outer_path->total_cost - outer_path->startup_cost;
4186 startup_cost += inner_path->total_cost;
4187
4188 /*
4189 * Cost of computing hash function: must do it once per input tuple. We
4190 * charge one cpu_operator_cost for each column's hash function. Also,
4191 * tack on one cpu_tuple_cost per inner row, to model the costs of
4192 * inserting the row into the hashtable.
4193 *
4194 * XXX when a hashclause is more complex than a single operator, we really
4195 * should charge the extra eval costs of the left or right side, as
4196 * appropriate, here. This seems more work than it's worth at the moment.
4197 */
4198 startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
4199 * inner_path_rows;
4200 run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
4201
4202 /*
4203 * If this is a parallel hash build, then the value we have for
4204 * inner_rows_total currently refers only to the rows returned by each
4205 * participant. For shared hash table size estimation, we need the total
4206 * number, so we need to undo the division.
4207 */
4208 if (parallel_hash)
4209 inner_path_rows_total *= get_parallel_divisor(inner_path);
4210
4211 /*
4212 * Get hash table size that executor would use for inner relation.
4213 *
4214 * XXX for the moment, always assume that skew optimization will be
4215 * performed. As long as SKEW_HASH_MEM_PERCENT is small, it's not worth
4216 * trying to determine that for sure.
4217 *
4218 * XXX at some point it might be interesting to try to account for skew
4219 * optimization in the cost estimate, but for now, we don't.
4220 */
4221 ExecChooseHashTableSize(inner_path_rows_total,
4222 inner_path->pathtarget->width,
4223 true, /* useskew */
4224 parallel_hash, /* try_combined_hash_mem */
4225 outer_path->parallel_workers,
4226 &space_allowed,
4227 &numbuckets,
4228 &numbatches,
4229 &num_skew_mcvs);
4230
4231 /*
4232 * If inner relation is too big then we will need to "batch" the join,
4233 * which implies writing and reading most of the tuples to disk an extra
4234 * time. Charge seq_page_cost per page, since the I/O should be nice and
4235 * sequential. Writing the inner rel counts as startup cost, all the rest
4236 * as run cost.
4237 */
4238 if (numbatches > 1)
4239 {
4240 double outerpages = page_size(outer_path_rows,
4241 outer_path->pathtarget->width);
4242 double innerpages = page_size(inner_path_rows,
4243 inner_path->pathtarget->width);
4244
4245 startup_cost += seq_page_cost * innerpages;
4246 run_cost += seq_page_cost * (innerpages + 2 * outerpages);
4247 }
4248
4249 /* CPU costs left for later */
4250
4251 /* Public result fields */
4252 workspace->disabled_nodes = disabled_nodes;
4253 workspace->startup_cost = startup_cost;
4254 workspace->total_cost = startup_cost + run_cost;
4255 /* Save private data for final_cost_hashjoin */
4256 workspace->run_cost = run_cost;
4257 workspace->numbuckets = numbuckets;
4258 workspace->numbatches = numbatches;
4259 workspace->inner_rows_total = inner_path_rows_total;
4260}
static double page_size(double tuples, int width)
Definition: costsize.c:6449
bool enable_hashjoin
Definition: costsize.c:157
void ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, bool try_combined_hash_mem, int parallel_workers, size_t *space_allowed, int *numbuckets, int *numbatches, int *num_skew_mcvs)
Definition: nodeHash.c:658

References cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, JoinCostWorkspace::disabled_nodes, enable_hashjoin, ExecChooseHashTableSize(), get_parallel_divisor(), JoinCostWorkspace::inner_rows_total, list_length(), JoinCostWorkspace::numbatches, JoinCostWorkspace::numbuckets, page_size(), Path::parallel_workers, Path::rows, JoinCostWorkspace::run_cost, seq_page_cost, Path::startup_cost, JoinCostWorkspace::startup_cost, Path::total_cost, and JoinCostWorkspace::total_cost.

Referenced by try_hashjoin_path(), and try_partial_hashjoin_path().

◆ initial_cost_mergejoin()

void initial_cost_mergejoin ( PlannerInfo root,
JoinCostWorkspace workspace,
JoinType  jointype,
List mergeclauses,
Path outer_path,
Path inner_path,
List outersortkeys,
List innersortkeys,
JoinPathExtraData extra 
)

Definition at line 3551 of file costsize.c.

3557{
3558 int disabled_nodes;
3559 Cost startup_cost = 0;
3560 Cost run_cost = 0;
3561 double outer_path_rows = outer_path->rows;
3562 double inner_path_rows = inner_path->rows;
3563 Cost inner_run_cost;
3564 double outer_rows,
3565 inner_rows,
3566 outer_skip_rows,
3567 inner_skip_rows;
3568 Selectivity outerstartsel,
3569 outerendsel,
3570 innerstartsel,
3571 innerendsel;
3572 Path sort_path; /* dummy for result of
3573 * cost_sort/cost_incremental_sort */
3574
3575 /* Protect some assumptions below that rowcounts aren't zero */
3576 if (outer_path_rows <= 0)
3577 outer_path_rows = 1;
3578 if (inner_path_rows <= 0)
3579 inner_path_rows = 1;
3580
3581 /*
3582 * A merge join will stop as soon as it exhausts either input stream
3583 * (unless it's an outer join, in which case the outer side has to be
3584 * scanned all the way anyway). Estimate fraction of the left and right
3585 * inputs that will actually need to be scanned. Likewise, we can
3586 * estimate the number of rows that will be skipped before the first join
3587 * pair is found, which should be factored into startup cost. We use only
3588 * the first (most significant) merge clause for this purpose. Since
3589 * mergejoinscansel() is a fairly expensive computation, we cache the
3590 * results in the merge clause RestrictInfo.
3591 */
3592 if (mergeclauses && jointype != JOIN_FULL)
3593 {
3594 RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
3595 List *opathkeys;
3596 List *ipathkeys;
3597 PathKey *opathkey;
3598 PathKey *ipathkey;
3599 MergeScanSelCache *cache;
3600
3601 /* Get the input pathkeys to determine the sort-order details */
3602 opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
3603 ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
3604 Assert(opathkeys);
3605 Assert(ipathkeys);
3606 opathkey = (PathKey *) linitial(opathkeys);
3607 ipathkey = (PathKey *) linitial(ipathkeys);
3608 /* debugging check */
3609 if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
3610 opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
3611 opathkey->pk_cmptype != ipathkey->pk_cmptype ||
3612 opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
3613 elog(ERROR, "left and right pathkeys do not match in mergejoin");
3614
3615 /* Get the selectivity with caching */
3616 cache = cached_scansel(root, firstclause, opathkey);
3617
3618 if (bms_is_subset(firstclause->left_relids,
3619 outer_path->parent->relids))
3620 {
3621 /* left side of clause is outer */
3622 outerstartsel = cache->leftstartsel;
3623 outerendsel = cache->leftendsel;
3624 innerstartsel = cache->rightstartsel;
3625 innerendsel = cache->rightendsel;
3626 }
3627 else
3628 {
3629 /* left side of clause is inner */
3630 outerstartsel = cache->rightstartsel;
3631 outerendsel = cache->rightendsel;
3632 innerstartsel = cache->leftstartsel;
3633 innerendsel = cache->leftendsel;
3634 }
3635 if (jointype == JOIN_LEFT ||
3636 jointype == JOIN_ANTI)
3637 {
3638 outerstartsel = 0.0;
3639 outerendsel = 1.0;
3640 }
3641 else if (jointype == JOIN_RIGHT ||
3642 jointype == JOIN_RIGHT_ANTI)
3643 {
3644 innerstartsel = 0.0;
3645 innerendsel = 1.0;
3646 }
3647 }
3648 else
3649 {
3650 /* cope with clauseless or full mergejoin */
3651 outerstartsel = innerstartsel = 0.0;
3652 outerendsel = innerendsel = 1.0;
3653 }
3654
3655 /*
3656 * Convert selectivities to row counts. We force outer_rows and
3657 * inner_rows to be at least 1, but the skip_rows estimates can be zero.
3658 */
3659 outer_skip_rows = rint(outer_path_rows * outerstartsel);
3660 inner_skip_rows = rint(inner_path_rows * innerstartsel);
3661 outer_rows = clamp_row_est(outer_path_rows * outerendsel);
3662 inner_rows = clamp_row_est(inner_path_rows * innerendsel);
3663
3664 Assert(outer_skip_rows <= outer_rows);
3665 Assert(inner_skip_rows <= inner_rows);
3666
3667 /*
3668 * Readjust scan selectivities to account for above rounding. This is
3669 * normally an insignificant effect, but when there are only a few rows in
3670 * the inputs, failing to do this makes for a large percentage error.
3671 */
3672 outerstartsel = outer_skip_rows / outer_path_rows;
3673 innerstartsel = inner_skip_rows / inner_path_rows;
3674 outerendsel = outer_rows / outer_path_rows;
3675 innerendsel = inner_rows / inner_path_rows;
3676
3677 Assert(outerstartsel <= outerendsel);
3678 Assert(innerstartsel <= innerendsel);
3679
3680 disabled_nodes = enable_mergejoin ? 0 : 1;
3681
3682 /* cost of source data */
3683
3684 if (outersortkeys) /* do we need to sort outer? */
3685 {
3686 bool use_incremental_sort = false;
3687 int presorted_keys;
3688
3689 /*
3690 * We choose to use incremental sort if it is enabled and there are
3691 * presorted keys; otherwise we use full sort.
3692 */
3694 {
3695 bool is_sorted PG_USED_FOR_ASSERTS_ONLY;
3696
3697 is_sorted = pathkeys_count_contained_in(outersortkeys,
3698 outer_path->pathkeys,
3699 &presorted_keys);
3700 Assert(!is_sorted);
3701
3702 if (presorted_keys > 0)
3703 use_incremental_sort = true;
3704 }
3705
3706 if (!use_incremental_sort)
3707 {
3708 cost_sort(&sort_path,
3709 root,
3710 outersortkeys,
3711 outer_path->disabled_nodes,
3712 outer_path->total_cost,
3713 outer_path_rows,
3714 outer_path->pathtarget->width,
3715 0.0,
3716 work_mem,
3717 -1.0);
3718 }
3719 else
3720 {
3721 cost_incremental_sort(&sort_path,
3722 root,
3723 outersortkeys,
3724 presorted_keys,
3725 outer_path->disabled_nodes,
3726 outer_path->startup_cost,
3727 outer_path->total_cost,
3728 outer_path_rows,
3729 outer_path->pathtarget->width,
3730 0.0,
3731 work_mem,
3732 -1.0);
3733 }
3734 disabled_nodes += sort_path.disabled_nodes;
3735 startup_cost += sort_path.startup_cost;
3736 startup_cost += (sort_path.total_cost - sort_path.startup_cost)
3737 * outerstartsel;
3738 run_cost += (sort_path.total_cost - sort_path.startup_cost)
3739 * (outerendsel - outerstartsel);
3740 }
3741 else
3742 {
3743 disabled_nodes += outer_path->disabled_nodes;
3744 startup_cost += outer_path->startup_cost;
3745 startup_cost += (outer_path->total_cost - outer_path->startup_cost)
3746 * outerstartsel;
3747 run_cost += (outer_path->total_cost - outer_path->startup_cost)
3748 * (outerendsel - outerstartsel);
3749 }
3750
3751 if (innersortkeys) /* do we need to sort inner? */
3752 {
3753 /*
3754 * We do not consider incremental sort for inner path, because
3755 * incremental sort does not support mark/restore.
3756 */
3757
3758 cost_sort(&sort_path,
3759 root,
3760 innersortkeys,
3761 inner_path->disabled_nodes,
3762 inner_path->total_cost,
3763 inner_path_rows,
3764 inner_path->pathtarget->width,
3765 0.0,
3766 work_mem,
3767 -1.0);
3768 disabled_nodes += sort_path.disabled_nodes;
3769 startup_cost += sort_path.startup_cost;
3770 startup_cost += (sort_path.total_cost - sort_path.startup_cost)
3771 * innerstartsel;
3772 inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
3773 * (innerendsel - innerstartsel);
3774 }
3775 else
3776 {
3777 disabled_nodes += inner_path->disabled_nodes;
3778 startup_cost += inner_path->startup_cost;
3779 startup_cost += (inner_path->total_cost - inner_path->startup_cost)
3780 * innerstartsel;
3781 inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
3782 * (innerendsel - innerstartsel);
3783 }
3784
3785 /*
3786 * We can't yet determine whether rescanning occurs, or whether
3787 * materialization of the inner input should be done. The minimum
3788 * possible inner input cost, regardless of rescan and materialization
3789 * considerations, is inner_run_cost. We include that in
3790 * workspace->total_cost, but not yet in run_cost.
3791 */
3792
3793 /* CPU costs left for later */
3794
3795 /* Public result fields */
3796 workspace->disabled_nodes = disabled_nodes;
3797 workspace->startup_cost = startup_cost;
3798 workspace->total_cost = startup_cost + run_cost + inner_run_cost;
3799 /* Save private data for final_cost_mergejoin */
3800 workspace->run_cost = run_cost;
3801 workspace->inner_run_cost = inner_run_cost;
3802 workspace->outer_rows = outer_rows;
3803 workspace->inner_rows = inner_rows;
3804 workspace->outer_skip_rows = outer_skip_rows;
3805 workspace->inner_skip_rows = inner_skip_rows;
3806}
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:224
static MergeScanSelCache * cached_scansel(PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
Definition: costsize.c:4080
bool enable_mergejoin
Definition: costsize.c:156
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2000
@ JOIN_RIGHT
Definition: nodes.h:302
@ JOIN_RIGHT_ANTI
Definition: nodes.h:316
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:558

References Assert(), bms_is_subset(), cached_scansel(), clamp_row_est(), cost_incremental_sort(), cost_sort(), Path::disabled_nodes, JoinCostWorkspace::disabled_nodes, elog, enable_incremental_sort, enable_mergejoin, ERROR, JoinCostWorkspace::inner_rows, JoinCostWorkspace::inner_run_cost, JoinCostWorkspace::inner_skip_rows, JOIN_ANTI, JOIN_FULL, JOIN_LEFT, JOIN_RIGHT, JOIN_RIGHT_ANTI, MergeScanSelCache::leftendsel, MergeScanSelCache::leftstartsel, linitial, JoinCostWorkspace::outer_rows, JoinCostWorkspace::outer_skip_rows, Path::pathkeys, pathkeys_count_contained_in(), PG_USED_FOR_ASSERTS_ONLY, PathKey::pk_cmptype, PathKey::pk_nulls_first, PathKey::pk_opfamily, MergeScanSelCache::rightendsel, MergeScanSelCache::rightstartsel, root, Path::rows, JoinCostWorkspace::run_cost, Path::startup_cost, JoinCostWorkspace::startup_cost, Path::total_cost, JoinCostWorkspace::total_cost, and work_mem.

Referenced by try_mergejoin_path(), and try_partial_mergejoin_path().

◆ initial_cost_nestloop()

void initial_cost_nestloop ( PlannerInfo root,
JoinCostWorkspace workspace,
JoinType  jointype,
Path outer_path,
Path inner_path,
JoinPathExtraData extra 
)

Definition at line 3267 of file costsize.c.

3271{
3272 int disabled_nodes;
3273 Cost startup_cost = 0;
3274 Cost run_cost = 0;
3275 double outer_path_rows = outer_path->rows;
3276 Cost inner_rescan_start_cost;
3277 Cost inner_rescan_total_cost;
3278 Cost inner_run_cost;
3279 Cost inner_rescan_run_cost;
3280
3281 /* Count up disabled nodes. */
3282 disabled_nodes = enable_nestloop ? 0 : 1;
3283 disabled_nodes += inner_path->disabled_nodes;
3284 disabled_nodes += outer_path->disabled_nodes;
3285
3286 /* estimate costs to rescan the inner relation */
3287 cost_rescan(root, inner_path,
3288 &inner_rescan_start_cost,
3289 &inner_rescan_total_cost);
3290
3291 /* cost of source data */
3292
3293 /*
3294 * NOTE: clearly, we must pay both outer and inner paths' startup_cost
3295 * before we can start returning tuples, so the join's startup cost is
3296 * their sum. We'll also pay the inner path's rescan startup cost
3297 * multiple times.
3298 */
3299 startup_cost += outer_path->startup_cost + inner_path->startup_cost;
3300 run_cost += outer_path->total_cost - outer_path->startup_cost;
3301 if (outer_path_rows > 1)
3302 run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
3303
3304 inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
3305 inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
3306
3307 if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
3308 extra->inner_unique)
3309 {
3310 /*
3311 * With a SEMI or ANTI join, or if the innerrel is known unique, the
3312 * executor will stop after the first match.
3313 *
3314 * Getting decent estimates requires inspection of the join quals,
3315 * which we choose to postpone to final_cost_nestloop.
3316 */
3317
3318 /* Save private data for final_cost_nestloop */
3319 workspace->inner_run_cost = inner_run_cost;
3320 workspace->inner_rescan_run_cost = inner_rescan_run_cost;
3321 }
3322 else
3323 {
3324 /* Normal case; we'll scan whole input rel for each outer row */
3325 run_cost += inner_run_cost;
3326 if (outer_path_rows > 1)
3327 run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
3328 }
3329
3330 /* CPU costs left for later */
3331
3332 /* Public result fields */
3333 workspace->disabled_nodes = disabled_nodes;
3334 workspace->startup_cost = startup_cost;
3335 workspace->total_cost = startup_cost + run_cost;
3336 /* Save private data for final_cost_nestloop */
3337 workspace->run_cost = run_cost;
3338}
static void cost_rescan(PlannerInfo *root, Path *path, Cost *rescan_startup_cost, Cost *rescan_total_cost)
Definition: costsize.c:4626
bool enable_nestloop
Definition: costsize.c:153

References cost_rescan(), Path::disabled_nodes, JoinCostWorkspace::disabled_nodes, enable_nestloop, JoinCostWorkspace::inner_rescan_run_cost, JoinCostWorkspace::inner_run_cost, JoinPathExtraData::inner_unique, JOIN_ANTI, JOIN_SEMI, root, Path::rows, JoinCostWorkspace::run_cost, Path::startup_cost, JoinCostWorkspace::startup_cost, Path::total_cost, and JoinCostWorkspace::total_cost.

Referenced by try_nestloop_path(), and try_partial_nestloop_path().

◆ page_size()

static double page_size ( double  tuples,
int  width 
)
static

Definition at line 6449 of file costsize.c.

6450{
6451 return ceil(relation_byte_size(tuples, width) / BLCKSZ);
6452}

References relation_byte_size().

Referenced by initial_cost_hashjoin().

◆ relation_byte_size()

static double relation_byte_size ( double  tuples,
int  width 
)
static

Definition at line 6438 of file costsize.c.

6439{
6440 return tuples * (MAXALIGN(width) + MAXALIGN(SizeofHeapTupleHeader));
6441}
#define MAXALIGN(LEN)
Definition: c.h:782
#define SizeofHeapTupleHeader
Definition: htup_details.h:185

References MAXALIGN, and SizeofHeapTupleHeader.

Referenced by cost_agg(), cost_material(), cost_memoize_rescan(), cost_rescan(), cost_tuplesort(), final_cost_hashjoin(), final_cost_mergejoin(), and page_size().

◆ set_baserel_size_estimates()

void set_baserel_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

◆ set_cte_size_estimates()

void set_cte_size_estimates ( PlannerInfo root,
RelOptInfo rel,
double  cte_rows 
)

Definition at line 6060 of file costsize.c.

6061{
6062 RangeTblEntry *rte;
6063
6064 /* Should only be applied to base relations that are CTE references */
6065 Assert(rel->relid > 0);
6066 rte = planner_rt_fetch(rel->relid, root);
6067 Assert(rte->rtekind == RTE_CTE);
6068
6069 if (rte->self_reference)
6070 {
6071 /*
6072 * In a self-reference, we assume the average worktable size is a
6073 * multiple of the nonrecursive term's size. The best multiplier will
6074 * vary depending on query "fan-out", so make its value adjustable.
6075 */
6077 }
6078 else
6079 {
6080 /* Otherwise just believe the CTE's rowcount estimate */
6081 rel->tuples = cte_rows;
6082 }
6083
6084 /* Now estimate number of output rows, etc */
6086}
void set_baserel_size_estimates(PlannerInfo *root, RelOptInfo *rel)
Definition: costsize.c:5334
double recursive_worktable_factor
Definition: costsize.c:137

References Assert(), clamp_row_est(), planner_rt_fetch, recursive_worktable_factor, RelOptInfo::relid, root, RTE_CTE, RangeTblEntry::rtekind, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_cte_pathlist(), and set_worktable_pathlist().

◆ set_foreign_size_estimates()

void set_foreign_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6160 of file costsize.c.

6161{
6162 /* Should only be applied to base relations */
6163 Assert(rel->relid > 0);
6164
6165 rel->rows = 1000; /* entirely bogus default estimate */
6166
6168
6169 set_rel_width(root, rel);
6170}

References Assert(), RelOptInfo::baserestrictcost, RelOptInfo::baserestrictinfo, cost_qual_eval(), RelOptInfo::relid, root, RelOptInfo::rows, and set_rel_width().

Referenced by set_foreign_size().

◆ set_function_size_estimates()

void set_function_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 5968 of file costsize.c.

5969{
5970 RangeTblEntry *rte;
5971 ListCell *lc;
5972
5973 /* Should only be applied to base relations that are functions */
5974 Assert(rel->relid > 0);
5975 rte = planner_rt_fetch(rel->relid, root);
5976 Assert(rte->rtekind == RTE_FUNCTION);
5977
5978 /*
5979 * Estimate number of rows the functions will return. The rowcount of the
5980 * node is that of the largest function result.
5981 */
5982 rel->tuples = 0;
5983 foreach(lc, rte->functions)
5984 {
5985 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
5986 double ntup = expression_returns_set_rows(root, rtfunc->funcexpr);
5987
5988 if (ntup > rel->tuples)
5989 rel->tuples = ntup;
5990 }
5991
5992 /* Now estimate number of output rows, etc */
5994}
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:290

References Assert(), expression_returns_set_rows(), RangeTblFunction::funcexpr, RangeTblEntry::functions, lfirst, planner_rt_fetch, RelOptInfo::relid, root, RTE_FUNCTION, RangeTblEntry::rtekind, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_rel_size().

◆ set_joinrel_size_estimates()

void set_joinrel_size_estimates ( PlannerInfo root,
RelOptInfo rel,
RelOptInfo outer_rel,
RelOptInfo inner_rel,
SpecialJoinInfo sjinfo,
List restrictlist 
)

Definition at line 5413 of file costsize.c.

5418{
5420 rel,
5421 outer_rel,
5422 inner_rel,
5423 outer_rel->rows,
5424 inner_rel->rows,
5425 sjinfo,
5426 restrictlist);
5427}

References calc_joinrel_size_estimate(), root, and RelOptInfo::rows.

Referenced by build_child_join_rel(), and build_join_rel().

◆ set_namedtuplestore_size_estimates()

void set_namedtuplestore_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6098 of file costsize.c.

6099{
6100 RangeTblEntry *rte;
6101
6102 /* Should only be applied to base relations that are tuplestore references */
6103 Assert(rel->relid > 0);
6104 rte = planner_rt_fetch(rel->relid, root);
6106
6107 /*
6108 * Use the estimate provided by the code which is generating the named
6109 * tuplestore. In some cases, the actual number might be available; in
6110 * others the same plan will be re-used, so a "typical" value might be
6111 * estimated and used.
6112 */
6113 rel->tuples = rte->enrtuples;
6114 if (rel->tuples < 0)
6115 rel->tuples = 1000;
6116
6117 /* Now estimate number of output rows, etc */
6119}

References Assert(), planner_rt_fetch, RelOptInfo::relid, root, RTE_NAMEDTUPLESTORE, RangeTblEntry::rtekind, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_namedtuplestore_pathlist().

◆ set_pathtarget_cost_width()

PathTarget * set_pathtarget_cost_width ( PlannerInfo root,
PathTarget target 
)

Definition at line 6352 of file costsize.c.

6353{
6354 int64 tuple_width = 0;
6355 ListCell *lc;
6356
6357 /* Vars are assumed to have cost zero, but other exprs do not */
6358 target->cost.startup = 0;
6359 target->cost.per_tuple = 0;
6360
6361 foreach(lc, target->exprs)
6362 {
6363 Node *node = (Node *) lfirst(lc);
6364
6365 tuple_width += get_expr_width(root, node);
6366
6367 /* For non-Vars, account for evaluation cost */
6368 if (!IsA(node, Var))
6369 {
6370 QualCost cost;
6371
6372 cost_qual_eval_node(&cost, node, root);
6373 target->cost.startup += cost.startup;
6374 target->cost.per_tuple += cost.per_tuple;
6375 }
6376 }
6377
6378 target->width = clamp_width_est(tuple_width);
6379
6380 return target;
6381}
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
List * exprs
Definition: pathnodes.h:1669
QualCost cost
Definition: pathnodes.h:1675

References clamp_width_est(), PathTarget::cost, cost_qual_eval_node(), PathTarget::exprs, get_expr_width(), IsA, lfirst, QualCost::per_tuple, root, QualCost::startup, and PathTarget::width.

Referenced by make_group_input_target(), make_partial_grouping_target(), make_sort_input_target(), make_window_input_target(), and split_pathtarget_at_srfs().

◆ set_rel_width()

static void set_rel_width ( PlannerInfo root,
RelOptInfo rel 
)
static

Definition at line 6195 of file costsize.c.

6196{
6197 Oid reloid = planner_rt_fetch(rel->relid, root)->relid;
6198 int64 tuple_width = 0;
6199 bool have_wholerow_var = false;
6200 ListCell *lc;
6201
6202 /* Vars are assumed to have cost zero, but other exprs do not */
6203 rel->reltarget->cost.startup = 0;
6204 rel->reltarget->cost.per_tuple = 0;
6205
6206 foreach(lc, rel->reltarget->exprs)
6207 {
6208 Node *node = (Node *) lfirst(lc);
6209
6210 /*
6211 * Ordinarily, a Var in a rel's targetlist must belong to that rel;
6212 * but there are corner cases involving LATERAL references where that
6213 * isn't so. If the Var has the wrong varno, fall through to the
6214 * generic case (it doesn't seem worth the trouble to be any smarter).
6215 */
6216 if (IsA(node, Var) &&
6217 ((Var *) node)->varno == rel->relid)
6218 {
6219 Var *var = (Var *) node;
6220 int ndx;
6221 int32 item_width;
6222
6223 Assert(var->varattno >= rel->min_attr);
6224 Assert(var->varattno <= rel->max_attr);
6225
6226 ndx = var->varattno - rel->min_attr;
6227
6228 /*
6229 * If it's a whole-row Var, we'll deal with it below after we have
6230 * already cached as many attr widths as possible.
6231 */
6232 if (var->varattno == 0)
6233 {
6234 have_wholerow_var = true;
6235 continue;
6236 }
6237
6238 /*
6239 * The width may have been cached already (especially if it's a
6240 * subquery), so don't duplicate effort.
6241 */
6242 if (rel->attr_widths[ndx] > 0)
6243 {
6244 tuple_width += rel->attr_widths[ndx];
6245 continue;
6246 }
6247
6248 /* Try to get column width from statistics */
6249 if (reloid != InvalidOid && var->varattno > 0)
6250 {
6251 item_width = get_attavgwidth(reloid, var->varattno);
6252 if (item_width > 0)
6253 {
6254 rel->attr_widths[ndx] = item_width;
6255 tuple_width += item_width;
6256 continue;
6257 }
6258 }
6259
6260 /*
6261 * Not a plain relation, or can't find statistics for it. Estimate
6262 * using just the type info.
6263 */
6264 item_width = get_typavgwidth(var->vartype, var->vartypmod);
6265 Assert(item_width > 0);
6266 rel->attr_widths[ndx] = item_width;
6267 tuple_width += item_width;
6268 }
6269 else if (IsA(node, PlaceHolderVar))
6270 {
6271 /*
6272 * We will need to evaluate the PHV's contained expression while
6273 * scanning this rel, so be sure to include it in reltarget->cost.
6274 */
6275 PlaceHolderVar *phv = (PlaceHolderVar *) node;
6277 QualCost cost;
6278
6279 tuple_width += phinfo->ph_width;
6280 cost_qual_eval_node(&cost, (Node *) phv->phexpr, root);
6281 rel->reltarget->cost.startup += cost.startup;
6282 rel->reltarget->cost.per_tuple += cost.per_tuple;
6283 }
6284 else
6285 {
6286 /*
6287 * We could be looking at an expression pulled up from a subquery,
6288 * or a ROW() representing a whole-row child Var, etc. Do what we
6289 * can using the expression type information.
6290 */
6291 int32 item_width;
6292 QualCost cost;
6293
6294 item_width = get_typavgwidth(exprType(node), exprTypmod(node));
6295 Assert(item_width > 0);
6296 tuple_width += item_width;
6297 /* Not entirely clear if we need to account for cost, but do so */
6298 cost_qual_eval_node(&cost, node, root);
6299 rel->reltarget->cost.startup += cost.startup;
6300 rel->reltarget->cost.per_tuple += cost.per_tuple;
6301 }
6302 }
6303
6304 /*
6305 * If we have a whole-row reference, estimate its width as the sum of
6306 * per-column widths plus heap tuple header overhead.
6307 */
6308 if (have_wholerow_var)
6309 {
6310 int64 wholerow_width = MAXALIGN(SizeofHeapTupleHeader);
6311
6312 if (reloid != InvalidOid)
6313 {
6314 /* Real relation, so estimate true tuple width */
6315 wholerow_width += get_relation_data_width(reloid,
6316 rel->attr_widths - rel->min_attr);
6317 }
6318 else
6319 {
6320 /* Do what we can with info for a phony rel */
6321 AttrNumber i;
6322
6323 for (i = 1; i <= rel->max_attr; i++)
6324 wholerow_width += rel->attr_widths[i - rel->min_attr];
6325 }
6326
6327 rel->attr_widths[0 - rel->min_attr] = clamp_width_est(wholerow_width);
6328
6329 /*
6330 * Include the whole-row Var as part of the output tuple. Yes, that
6331 * really is what happens at runtime.
6332 */
6333 tuple_width += wholerow_width;
6334 }
6335
6336 rel->reltarget->width = clamp_width_est(tuple_width);
6337}
int16 AttrNumber
Definition: attnum.h:21
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3298
PlaceHolderInfo * find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv)
Definition: placeholder.c:83
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1236
#define InvalidOid
Definition: postgres_ext.h:35
struct PathTarget * reltarget
Definition: pathnodes.h:920

References Assert(), clamp_width_est(), PathTarget::cost, cost_qual_eval_node(), PathTarget::exprs, exprType(), exprTypmod(), find_placeholder_info(), get_attavgwidth(), get_relation_data_width(), get_typavgwidth(), i, InvalidOid, IsA, lfirst, RelOptInfo::max_attr, MAXALIGN, RelOptInfo::min_attr, QualCost::per_tuple, PlaceHolderInfo::ph_width, planner_rt_fetch, RelOptInfo::relid, RelOptInfo::reltarget, root, SizeofHeapTupleHeader, QualCost::startup, Var::varattno, and PathTarget::width.

Referenced by set_baserel_size_estimates(), and set_foreign_size_estimates().

◆ set_result_size_estimates()

void set_result_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6131 of file costsize.c.

6132{
6133 /* Should only be applied to RTE_RESULT base relations */
6134 Assert(rel->relid > 0);
6135 Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_RESULT);
6136
6137 /* RTE_RESULT always generates a single row, natively */
6138 rel->tuples = 1;
6139
6140 /* Now estimate number of output rows, etc */
6142}

References Assert(), planner_rt_fetch, RelOptInfo::relid, root, RTE_RESULT, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_result_pathlist().

◆ set_subquery_size_estimates()

void set_subquery_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 5888 of file costsize.c.

5889{
5890 PlannerInfo *subroot = rel->subroot;
5891 RelOptInfo *sub_final_rel;
5892 ListCell *lc;
5893
5894 /* Should only be applied to base relations that are subqueries */
5895 Assert(rel->relid > 0);
5896 Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_SUBQUERY);
5897
5898 /*
5899 * Copy raw number of output rows from subquery. All of its paths should
5900 * have the same output rowcount, so just look at cheapest-total.
5901 */
5902 sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
5903 rel->tuples = sub_final_rel->cheapest_total_path->rows;
5904
5905 /*
5906 * Compute per-output-column width estimates by examining the subquery's
5907 * targetlist. For any output that is a plain Var, get the width estimate
5908 * that was made while planning the subquery. Otherwise, we leave it to
5909 * set_rel_width to fill in a datatype-based default estimate.
5910 */
5911 foreach(lc, subroot->parse->targetList)
5912 {
5914 Node *texpr = (Node *) te->expr;
5915 int32 item_width = 0;
5916
5917 /* junk columns aren't visible to upper query */
5918 if (te->resjunk)
5919 continue;
5920
5921 /*
5922 * The subquery could be an expansion of a view that's had columns
5923 * added to it since the current query was parsed, so that there are
5924 * non-junk tlist columns in it that don't correspond to any column
5925 * visible at our query level. Ignore such columns.
5926 */
5927 if (te->resno < rel->min_attr || te->resno > rel->max_attr)
5928 continue;
5929
5930 /*
5931 * XXX This currently doesn't work for subqueries containing set
5932 * operations, because the Vars in their tlists are bogus references
5933 * to the first leaf subquery, which wouldn't give the right answer
5934 * even if we could still get to its PlannerInfo.
5935 *
5936 * Also, the subquery could be an appendrel for which all branches are
5937 * known empty due to constraint exclusion, in which case
5938 * set_append_rel_pathlist will have left the attr_widths set to zero.
5939 *
5940 * In either case, we just leave the width estimate zero until
5941 * set_rel_width fixes it.
5942 */
5943 if (IsA(texpr, Var) &&
5944 subroot->parse->setOperations == NULL)
5945 {
5946 Var *var = (Var *) texpr;
5947 RelOptInfo *subrel = find_base_rel(subroot, var->varno);
5948
5949 item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
5950 }
5951 rel->attr_widths[te->resno - rel->min_attr] = item_width;
5952 }
5953
5954 /* Now estimate number of output rows, etc */
5956}
@ UPPERREL_FINAL
Definition: pathnodes.h:79
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
Query * parse
Definition: pathnodes.h:226
Node * setOperations
Definition: parsenodes.h:230
List * targetList
Definition: parsenodes.h:193
struct Path * cheapest_total_path
Definition: pathnodes.h:929
PlannerInfo * subroot
Definition: pathnodes.h:980
Expr * expr
Definition: primnodes.h:2219
AttrNumber resno
Definition: primnodes.h:2221

References Assert(), RelOptInfo::cheapest_total_path, TargetEntry::expr, fetch_upper_rel(), find_base_rel(), if(), IsA, lfirst_node, RelOptInfo::max_attr, RelOptInfo::min_attr, PlannerInfo::parse, planner_rt_fetch, RelOptInfo::relid, TargetEntry::resno, root, Path::rows, RTE_SUBQUERY, set_baserel_size_estimates(), Query::setOperations, RelOptInfo::subroot, Query::targetList, RelOptInfo::tuples, UPPERREL_FINAL, Var::varattno, and Var::varno.

Referenced by build_setop_child_paths(), and set_subquery_pathlist().

◆ set_tablefunc_size_estimates()

void set_tablefunc_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6006 of file costsize.c.

6007{
6008 /* Should only be applied to base relations that are functions */
6009 Assert(rel->relid > 0);
6010 Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_TABLEFUNC);
6011
6012 rel->tuples = 100;
6013
6014 /* Now estimate number of output rows, etc */
6016}

References Assert(), planner_rt_fetch, RelOptInfo::relid, root, RTE_TABLEFUNC, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_rel_size().

◆ set_values_size_estimates()

void set_values_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6028 of file costsize.c.

6029{
6030 RangeTblEntry *rte;
6031
6032 /* Should only be applied to base relations that are values lists */
6033 Assert(rel->relid > 0);
6034 rte = planner_rt_fetch(rel->relid, root);
6035 Assert(rte->rtekind == RTE_VALUES);
6036
6037 /*
6038 * Estimate number of rows the values list will return. We know this
6039 * precisely based on the list length (well, barring set-returning
6040 * functions in list items, but that's a refinement not catered for
6041 * anywhere else either).
6042 */
6043 rel->tuples = list_length(rte->values_lists);
6044
6045 /* Now estimate number of output rows, etc */
6047}
List * values_lists
Definition: parsenodes.h:1204

References Assert(), list_length(), planner_rt_fetch, RelOptInfo::relid, root, RTE_VALUES, RangeTblEntry::rtekind, set_baserel_size_estimates(), RelOptInfo::tuples, and RangeTblEntry::values_lists.

Referenced by set_rel_size().

Variable Documentation

◆ cpu_index_tuple_cost

double cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST

Definition at line 133 of file costsize.c.

Referenced by genericcostestimate(), and gincostestimate().

◆ cpu_operator_cost

◆ cpu_tuple_cost

◆ disable_cost

Cost disable_cost = 1.0e10

Definition at line 141 of file costsize.c.

Referenced by final_cost_hashjoin().

◆ effective_cache_size

int effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE

Definition at line 139 of file costsize.c.

Referenced by gistBuildCallback(), gistInitBuffering(), and index_pages_fetched().

◆ enable_async_append

bool enable_async_append = true

Definition at line 165 of file costsize.c.

Referenced by create_append_plan().

◆ enable_bitmapscan

bool enable_bitmapscan = true

Definition at line 148 of file costsize.c.

Referenced by cost_bitmap_heap_scan().

◆ enable_gathermerge

bool enable_gathermerge = true

Definition at line 158 of file costsize.c.

Referenced by cost_gather_merge().

◆ enable_hashagg

◆ enable_hashjoin

bool enable_hashjoin = true

Definition at line 157 of file costsize.c.

Referenced by add_paths_to_joinrel(), and initial_cost_hashjoin().

◆ enable_incremental_sort

◆ enable_indexonlyscan

bool enable_indexonlyscan = true

Definition at line 147 of file costsize.c.

Referenced by check_index_only().

◆ enable_indexscan

bool enable_indexscan = true

Definition at line 146 of file costsize.c.

Referenced by cost_index(), and plan_cluster_use_sort().

◆ enable_material

bool enable_material = true

◆ enable_memoize

bool enable_memoize = true

Definition at line 155 of file costsize.c.

Referenced by create_memoize_path(), and get_memoize_path().

◆ enable_mergejoin

bool enable_mergejoin = true

Definition at line 156 of file costsize.c.

Referenced by add_paths_to_joinrel(), and initial_cost_mergejoin().

◆ enable_nestloop

bool enable_nestloop = true

Definition at line 153 of file costsize.c.

Referenced by initial_cost_nestloop().

◆ enable_parallel_append

bool enable_parallel_append = true

Definition at line 161 of file costsize.c.

Referenced by add_paths_to_append_rel(), and generate_union_paths().

◆ enable_parallel_hash

bool enable_parallel_hash = true

Definition at line 162 of file costsize.c.

Referenced by hash_inner_and_outer().

◆ enable_partition_pruning

bool enable_partition_pruning = true

◆ enable_partitionwise_aggregate

bool enable_partitionwise_aggregate = false

Definition at line 160 of file costsize.c.

Referenced by create_grouping_paths().

◆ enable_partitionwise_join

bool enable_partitionwise_join = false

Definition at line 159 of file costsize.c.

Referenced by build_joinrel_partition_info(), and set_append_rel_size().

◆ enable_presorted_aggregate

bool enable_presorted_aggregate = true

Definition at line 164 of file costsize.c.

Referenced by adjust_group_pathkeys_for_groupagg().

◆ enable_seqscan

bool enable_seqscan = true

Definition at line 145 of file costsize.c.

Referenced by cost_seqscan().

◆ enable_sort

bool enable_sort = true

Definition at line 150 of file costsize.c.

Referenced by cost_sort(), and make_sort().

◆ enable_tidscan

bool enable_tidscan = true

Definition at line 149 of file costsize.c.

Referenced by cost_tidrangescan(), cost_tidscan(), and create_tidscan_paths().

◆ max_parallel_workers_per_gather

int max_parallel_workers_per_gather = 2

◆ parallel_setup_cost

double parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST

Definition at line 136 of file costsize.c.

Referenced by cost_gather(), cost_gather_merge(), and standard_planner().

◆ parallel_tuple_cost

double parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST

Definition at line 135 of file costsize.c.

Referenced by cost_gather(), cost_gather_merge(), and standard_planner().

◆ random_page_cost

double random_page_cost = DEFAULT_RANDOM_PAGE_COST

◆ recursive_worktable_factor

double recursive_worktable_factor = DEFAULT_RECURSIVE_WORKTABLE_FACTOR

Definition at line 137 of file costsize.c.

Referenced by set_cte_size_estimates().

◆ seq_page_cost