PostgreSQL Source Code git master
Loading...
Searching...
No Matches
s_lock.h
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * s_lock.h
4 * Implementation of spinlocks.
5 *
6 * NOTE: none of the macros in this file are intended to be called directly.
7 * Call them through the macros in spin.h.
8 *
9 * The following hardware-dependent macros must be provided for each
10 * supported platform:
11 *
12 * void S_INIT_LOCK(slock_t *lock)
13 * Initialize a spinlock (to the unlocked state).
14 *
15 * int S_LOCK(slock_t *lock)
16 * Acquire a spinlock, waiting if necessary.
17 * Time out and abort() if unable to acquire the lock in a
18 * "reasonable" amount of time --- typically ~ 1 minute.
19 * Should return number of "delays"; see s_lock.c
20 *
21 * void S_UNLOCK(slock_t *lock)
22 * Unlock a previously acquired lock.
23 *
24 * bool S_LOCK_FREE(slock_t *lock)
25 * Tests if the lock is free. Returns true if free, false if locked.
26 * This does *not* change the state of the lock.
27 *
28 * void SPIN_DELAY(void)
29 * Delay operation to occur inside spinlock wait loop.
30 *
31 * Note to implementors: there are default implementations for all these
32 * macros at the bottom of the file. Check if your platform can use
33 * these or needs to override them.
34 *
35 * Usually, S_LOCK() is implemented in terms of even lower-level macros
36 * TAS() and TAS_SPIN():
37 *
38 * int TAS(slock_t *lock)
39 * Atomic test-and-set instruction. Attempt to acquire the lock,
40 * but do *not* wait. Returns 0 if successful, nonzero if unable
41 * to acquire the lock.
42 *
43 * int TAS_SPIN(slock_t *lock)
44 * Like TAS(), but this version is used when waiting for a lock
45 * previously found to be contended. By default, this is the
46 * same as TAS(), but on some architectures it's better to poll a
47 * contended lock using an unlocked instruction and retry the
48 * atomic test-and-set only when it appears free.
49 *
50 * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
51 * directly.
52 *
53 * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
54 * failure to acquire a lock even when the lock is not locked. For example,
55 * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
56 * always be used, even if you are certain the lock is free.
57 *
58 * It is the responsibility of these macros to make sure that the compiler
59 * does not re-order accesses to shared memory to precede the actual lock
60 * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
61 * was the caller's responsibility, which meant that callers had to use
62 * volatile-qualified pointers to refer to both the spinlock itself and the
63 * shared data being accessed within the spinlocked critical section. This
64 * was notationally awkward, easy to forget (and thus error-prone), and
65 * prevented some useful compiler optimizations. For these reasons, we
66 * now require that the macros themselves prevent compiler re-ordering,
67 * so that the caller doesn't need to take special precautions.
68 *
69 * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
70 * S_UNLOCK() macros must further include hardware-level memory fence
71 * instructions to prevent similar re-ordering at the hardware level.
72 * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
73 * the macro are not executed until the lock has been obtained. Conversely,
74 * S_UNLOCK() must guarantee that loads and stores issued before the macro
75 * have been executed before the lock is released.
76 *
77 * On most supported platforms, TAS() uses a tas() function written
78 * in assembly language to execute a hardware atomic-test-and-set
79 * instruction. Equivalent OS-supplied mutex routines could be used too.
80 *
81 *
82 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
83 * Portions Copyright (c) 1994, Regents of the University of California
84 *
85 * src/include/storage/s_lock.h
86 *
87 *-------------------------------------------------------------------------
88 */
89#ifndef S_LOCK_H
90#define S_LOCK_H
91
92#ifdef FRONTEND
93#error "s_lock.h may not be included from frontend code"
94#endif
95
96#if defined(__GNUC__) || defined(__INTEL_COMPILER)
97/*************************************************************************
98 * All the gcc inlines
99 * Gcc consistently defines the CPU as __cpu__.
100 * Other compilers use __cpu or __cpu__ so we test for both in those cases.
101 */
102
103/*----------
104 * Standard gcc asm format (assuming "volatile slock_t *lock"):
105
106 __asm__ __volatile__(
107 " instruction \n"
108 " instruction \n"
109 " instruction \n"
110: "=r"(_res), "+m"(*lock) // return register, in/out lock value
111: "r"(lock) // lock pointer, in input register
112: "memory", "cc"); // show clobbered registers here
113
114 * The output-operands list (after first colon) should always include
115 * "+m"(*lock), whether or not the asm code actually refers to this
116 * operand directly. This ensures that gcc believes the value in the
117 * lock variable is used and set by the asm code. Also, the clobbers
118 * list (after third colon) should always include "memory"; this prevents
119 * gcc from thinking it can cache the values of shared-memory fields
120 * across the asm code. Add "cc" if your asm code changes the condition
121 * code register, and also list any temp registers the code uses.
122 *
123 * If you need branch target labels within the asm block, include "%="
124 * in the label names to make them distinct across multiple asm blocks
125 * within a source file.
126 *----------
127 */
128
129
130#ifdef __i386__ /* 32-bit i386 */
131#define HAS_TEST_AND_SET
132
133typedef unsigned char slock_t;
134
135#define TAS(lock) tas(lock)
136
137static __inline__ int
138tas(volatile slock_t *lock)
139{
140 slock_t _res = 1;
141
142 /*
143 * Use a non-locking test before asserting the bus lock. Note that the
144 * extra test appears to be a small loss on some x86 platforms and a small
145 * win on others; it's by no means clear that we should keep it.
146 *
147 * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
148 * macros. Nowadays it probably would be better to do a non-locking test
149 * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
150 * testing to verify that. Without some empirical evidence, better to
151 * leave it alone.
152 */
154 " cmpb $0,%1 \n"
155 " jne TAS%=_out \n"
156 " lock \n"
157 " xchgb %0,%1 \n"
158 "TAS%=_out: \n"
159: "+q"(_res), "+m"(*lock)
160: /* no inputs */
161: "memory", "cc");
162 return (int) _res;
163}
164
165#define SPIN_DELAY() spin_delay()
166
167static __inline__ void
168spin_delay(void)
169{
170 /*
171 * This sequence is equivalent to the PAUSE instruction ("rep" is
172 * ignored by old IA32 processors if the following instruction is
173 * not a string operation); the IA-32 Architecture Software
174 * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
175 * PAUSE in the inner loop of a spin lock is necessary for good
176 * performance:
177 *
178 * The PAUSE instruction improves the performance of IA-32
179 * processors supporting Hyper-Threading Technology when
180 * executing spin-wait loops and other routines where one
181 * thread is accessing a shared lock or semaphore in a tight
182 * polling loop. When executing a spin-wait loop, the
183 * processor can suffer a severe performance penalty when
184 * exiting the loop because it detects a possible memory order
185 * violation and flushes the core processor's pipeline. The
186 * PAUSE instruction provides a hint to the processor that the
187 * code sequence is a spin-wait loop. The processor uses this
188 * hint to avoid the memory order violation and prevent the
189 * pipeline flush. In addition, the PAUSE instruction
190 * de-pipelines the spin-wait loop to prevent it from
191 * consuming execution resources excessively.
192 */
194 " rep; nop \n");
195}
196
197#endif /* __i386__ */
198
199
200#ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
201#define HAS_TEST_AND_SET
202
203typedef unsigned char slock_t;
204
205#define TAS(lock) tas(lock)
206
207/*
208 * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
209 * but only when spinning.
210 *
211 * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
212 * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
213 * available at:
214 * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
215 */
216#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
217
218static __inline__ int
219tas(volatile slock_t *lock)
220{
221 slock_t _res = 1;
222
224 " lock \n"
225 " xchgb %0,%1 \n"
226: "+q"(_res), "+m"(*lock)
227: /* no inputs */
228: "memory", "cc");
229 return (int) _res;
230}
231
232#define SPIN_DELAY() spin_delay()
233
234static __inline__ void
235spin_delay(void)
236{
237 /*
238 * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
239 * Opteron, but it may be of some use on EM64T, so we keep it.
240 */
242 " rep; nop \n");
243}
244
245#endif /* __x86_64__ */
246
247
248/*
249 * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
250 *
251 * We use the int-width variant of the builtin because it works on more chips
252 * than other widths.
253 */
254#if defined(__arm__) || defined(__arm) || defined(__aarch64__)
255#ifdef HAVE_GCC__SYNC_INT32_TAS
256#define HAS_TEST_AND_SET
257
258#define TAS(lock) tas(lock)
259
260typedef int slock_t;
261
262static __inline__ int
263tas(volatile slock_t *lock)
264{
265 return __sync_lock_test_and_set(lock, 1);
266}
267
268#define S_UNLOCK(lock) __sync_lock_release(lock)
269
270#if defined(__aarch64__)
271
272/*
273 * On ARM64, it's a win to use a non-locking test before the TAS proper. It
274 * may be a win on 32-bit ARM, too, but nobody's tested it yet.
275 */
276#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
277
278#define SPIN_DELAY() spin_delay()
279
280static __inline__ void
281spin_delay(void)
282{
283 /*
284 * Using an ISB instruction to delay in spinlock loops appears beneficial
285 * on high-core-count ARM64 processors. It seems mostly a wash for smaller
286 * gear, and ISB doesn't exist at all on pre-v7 ARM chips.
287 */
289 " isb; \n");
290}
291
292#endif /* __aarch64__ */
293#endif /* HAVE_GCC__SYNC_INT32_TAS */
294#endif /* __arm__ || __arm || __aarch64__ */
295
296
297/* S/390 and S/390x Linux (32- and 64-bit zSeries) */
298#if defined(__s390__) || defined(__s390x__)
299#define HAS_TEST_AND_SET
300
301typedef unsigned int slock_t;
302
303#define TAS(lock) tas(lock)
304
305static __inline__ int
306tas(volatile slock_t *lock)
307{
308 int _res = 0;
309
311 " cs %0,%3,0(%2) \n"
312: "+d"(_res), "+m"(*lock)
313: "a"(lock), "d"(1)
314: "memory", "cc");
315 return _res;
316}
317
318#endif /* __s390__ || __s390x__ */
319
320
321#if defined(__sparc__) /* Sparc */
322/*
323 * Solaris has always run sparc processors in TSO (total store) mode, but
324 * linux didn't use to and the *BSDs still don't. So, be careful about
325 * acquire/release semantics. The CPU will treat superfluous members as
326 * NOPs, so it's just code space.
327 */
328#define HAS_TEST_AND_SET
329
330typedef unsigned char slock_t;
331
332#define TAS(lock) tas(lock)
333
334static __inline__ int
335tas(volatile slock_t *lock)
336{
338
339 /*
340 * "cas" would be better than "ldstub", but it is only present on
341 * sparcv8plus and later, while some platforms still support sparcv7 or
342 * sparcv8. Also, "cas" requires that the system be running in TSO mode.
343 */
345 " ldstub [%2], %0 \n"
346: "=r"(_res), "+m"(*lock)
347: "r"(lock)
348: "memory");
349#if defined(__sparcv7) || defined(__sparc_v7__)
350 /*
351 * No stbar or membar available, luckily no actually produced hardware
352 * requires a barrier.
353 */
354#elif defined(__sparcv8) || defined(__sparc_v8__)
355 /* stbar is available (and required for both PSO, RMO), membar isn't */
356 __asm__ __volatile__ ("stbar \n":::"memory");
357#else
358 /*
359 * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
360 * barrier for sparcv8+ upwards.
361 */
362 __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
363#endif
364 return (int) _res;
365}
366
367#if defined(__sparcv7) || defined(__sparc_v7__)
368/*
369 * No stbar or membar available, luckily no actually produced hardware
370 * requires a barrier. We fall through to the default gcc definition of
371 * S_UNLOCK in this case.
372 */
373#elif defined(__sparcv8) || defined(__sparc_v8__)
374/* stbar is available (and required for both PSO, RMO), membar isn't */
375#define S_UNLOCK(lock) \
376do \
377{ \
378 __asm__ __volatile__ ("stbar \n":::"memory"); \
379 *((volatile slock_t *) (lock)) = 0; \
380} while (0)
381#else
382/*
383 * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
384 * release barrier for sparcv8+ upwards.
385 */
386#define S_UNLOCK(lock) \
387do \
388{ \
389 __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
390 *((volatile slock_t *) (lock)) = 0; \
391} while (0)
392#endif
393
394#endif /* __sparc__ */
395
396
397/* PowerPC */
398#if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
399#define HAS_TEST_AND_SET
400
401typedef unsigned int slock_t;
402
403#define TAS(lock) tas(lock)
404
405/* On PPC, it's a win to use a non-locking test before the lwarx */
406#define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
407
408/*
409 * The second operand of addi can hold a constant zero or a register number,
410 * hence constraint "=&b" to avoid allocating r0. "b" stands for "address
411 * base register"; most operands having this register-or-zero property are
412 * address bases, e.g. the second operand of lwax.
413 *
414 * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
415 * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
416 * But if the spinlock is in ordinary memory, we can use lwsync instead for
417 * better performance.
418 */
419static __inline__ int
420tas(volatile slock_t *lock)
421{
422 slock_t _t;
423 int _res;
424
426" lwarx %0,0,%3,1 \n"
427" cmpwi %0,0 \n"
428" bne TAS%=_fail \n"
429" addi %0,%0,1 \n"
430" stwcx. %0,0,%3 \n"
431" beq TAS%=_ok \n"
432"TAS%=_fail: \n"
433" li %1,1 \n"
434" b TAS%=_out \n"
435"TAS%=_ok: \n"
436" lwsync \n"
437" li %1,0 \n"
438"TAS%=_out: \n"
439: "=&b"(_t), "=r"(_res), "+m"(*lock)
440: "r"(lock)
441: "memory", "cc");
442 return _res;
443}
444
445/*
446 * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
447 * But we can use lwsync instead for better performance.
448 */
449#define S_UNLOCK(lock) \
450do \
451{ \
452 __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
453 *((volatile slock_t *) (lock)) = 0; \
454} while (0)
455
456#endif /* powerpc */
457
458
459#if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
460#define HAS_TEST_AND_SET
461
462typedef unsigned int slock_t;
463
464#define TAS(lock) tas(lock)
465
466/*
467 * Original MIPS-I processors lacked the LL/SC instructions, but if we are
468 * so unfortunate as to be running on one of those, we expect that the kernel
469 * will handle the illegal-instruction traps and emulate them for us. On
470 * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane
471 * choice because any other synchronization method must involve a kernel
472 * call. Unfortunately, many toolchains still default to MIPS-I as the
473 * codegen target; if the symbol __mips shows that that's the case, we
474 * have to force the assembler to accept LL/SC.
475 *
476 * R10000 and up processors require a separate SYNC, which has the same
477 * issues as LL/SC.
478 */
479#if __mips < 2
480#define MIPS_SET_MIPS2 " .set mips2 \n"
481#else
482#define MIPS_SET_MIPS2
483#endif
484
485static __inline__ int
486tas(volatile slock_t *lock)
487{
488 volatile slock_t *_l = lock;
489 int _res;
490 int _tmp;
491
493 " .set push \n"
495 " .set noreorder \n"
496 " .set nomacro \n"
497 " ll %0, %2 \n"
498 " or %1, %0, 1 \n"
499 " sc %1, %2 \n"
500 " xori %1, 1 \n"
501 " or %0, %0, %1 \n"
502 " sync \n"
503 " .set pop "
504: "=&r" (_res), "=&r" (_tmp), "+R" (*_l)
505: /* no inputs */
506: "memory");
507 return _res;
508}
509
510/* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
511#define S_UNLOCK(lock) \
512do \
513{ \
514 __asm__ __volatile__( \
515 " .set push \n" \
516 MIPS_SET_MIPS2 \
517 " .set noreorder \n" \
518 " .set nomacro \n" \
519 " sync \n" \
520 " .set pop " \
521: /* no outputs */ \
522: /* no inputs */ \
523: "memory"); \
524 *((volatile slock_t *) (lock)) = 0; \
525} while (0)
526
527#endif /* __mips__ && !__sgi */
528
529
530
531/*
532 * If we have no platform-specific knowledge, but we found that the compiler
533 * provides __sync_lock_test_and_set(), use that. Prefer the int-width
534 * version over the char-width version if we have both, on the rather dubious
535 * grounds that that's known to be more likely to work in the ARM ecosystem.
536 * (But we dealt with ARM above.)
537 */
538#if !defined(HAS_TEST_AND_SET)
539
540#if defined(HAVE_GCC__SYNC_INT32_TAS)
541#define HAS_TEST_AND_SET
542
543#define TAS(lock) tas(lock)
544
545typedef int slock_t;
546
547static __inline__ int
548tas(volatile slock_t *lock)
549{
550 return __sync_lock_test_and_set(lock, 1);
551}
552
553#define S_UNLOCK(lock) __sync_lock_release(lock)
554
555#elif defined(HAVE_GCC__SYNC_CHAR_TAS)
556#define HAS_TEST_AND_SET
557
558#define TAS(lock) tas(lock)
559
560typedef char slock_t;
561
562static __inline__ int
563tas(volatile slock_t *lock)
564{
565 return __sync_lock_test_and_set(lock, 1);
566}
567
568#define S_UNLOCK(lock) __sync_lock_release(lock)
569
570#endif /* HAVE_GCC__SYNC_INT32_TAS */
571
572#endif /* !defined(HAS_TEST_AND_SET) */
573
574
575/*
576 * Default implementation of S_UNLOCK() for gcc/icc.
577 *
578 * Note that this implementation is unsafe for any platform that can reorder
579 * a memory access (either load or store) after a following store. That
580 * happens not to be possible on x86 and most legacy architectures (some are
581 * single-processor!), but many modern systems have weaker memory ordering.
582 * Those that do must define their own version of S_UNLOCK() rather than
583 * relying on this one.
584 */
585#if !defined(S_UNLOCK)
586#define S_UNLOCK(lock) \
587 do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
588#endif
589
590#endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
591
592
593/*
594 * ---------------------------------------------------------------------
595 * Platforms that use non-gcc inline assembly:
596 * ---------------------------------------------------------------------
597 */
598
599#if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
600
601#ifdef _MSC_VER
602typedef LONG slock_t;
603
604#define HAS_TEST_AND_SET
605#define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
606
607#define SPIN_DELAY() spin_delay()
608
609#ifdef _M_ARM64
610static __forceinline void
611spin_delay(void)
612{
613 /*
614 * Research indicates ISB is better than __yield() on AArch64. See
615 * https://postgr.es/m/1c2a29b8-5b1e-44f7-a871-71ec5fefc120%40app.fastmail.com.
616 */
618}
619#elif defined(_WIN64)
620static __forceinline void
621spin_delay(void)
622{
623 /*
624 * If using Visual C++ on Win64, inline assembly is unavailable.
625 * Use a _mm_pause intrinsic instead of rep nop.
626 */
627 _mm_pause();
628}
629#else
630static __forceinline void
631spin_delay(void)
632{
633 /* See comment for gcc code. Same code, MASM syntax */
634 __asm rep nop;
635}
636#endif
637
638#include <intrin.h>
639
640#ifdef _M_ARM64
641
642/* _ReadWriteBarrier() is insufficient on non-TSO architectures. */
643#pragma intrinsic(_InterlockedExchange)
644#define S_UNLOCK(lock) _InterlockedExchange(lock, 0)
645
646#else
647
648#pragma intrinsic(_ReadWriteBarrier)
649#define S_UNLOCK(lock) \
650 do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
651
652#endif
653#endif
654
655
656#endif /* !defined(HAS_TEST_AND_SET) */
657
658
659/* Blow up if we didn't have any way to do spinlocks */
660#ifndef HAS_TEST_AND_SET
661#error PostgreSQL does not have spinlock support on this platform. Please report this to pgsql-bugs@lists.postgresql.org.
662#endif
663
664
665/*
666 * Default Definitions - override these above as needed.
667 */
668
669#if !defined(S_LOCK)
670#define S_LOCK(lock) \
671 (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, __func__) : 0)
672#endif /* S_LOCK */
673
674#if !defined(S_LOCK_FREE)
675#define S_LOCK_FREE(lock) (*(lock) == 0)
676#endif /* S_LOCK_FREE */
677
678#if !defined(S_UNLOCK)
679/*
680 * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
681 * is unsafe if the platform can reorder a memory access (either load or
682 * store) after a following store; platforms where this is possible must
683 * define their own S_UNLOCK. But CPU reordering is not the only concern:
684 * if we simply defined S_UNLOCK() as an inline macro, the compiler might
685 * reorder instructions from inside the critical section to occur after the
686 * lock release. Since the compiler probably can't know what the external
687 * function s_unlock is doing, putting the same logic there should be adequate.
688 * A sufficiently-smart globally optimizing compiler could break that
689 * assumption, though, and the cost of a function call for every spinlock
690 * release may hurt performance significantly, so we use this implementation
691 * only for platforms where we don't know of a suitable intrinsic. For the
692 * most part, those are relatively obscure platform/compiler combinations to
693 * which the PostgreSQL project does not have access.
694 */
695#define USE_DEFAULT_S_UNLOCK
696extern void s_unlock(volatile slock_t *lock);
697#define S_UNLOCK(lock) s_unlock(lock)
698#endif /* S_UNLOCK */
699
700#if !defined(S_INIT_LOCK)
701#define S_INIT_LOCK(lock) S_UNLOCK(lock)
702#endif /* S_INIT_LOCK */
703
704#if !defined(SPIN_DELAY)
705#define SPIN_DELAY() ((void) 0)
706#endif /* SPIN_DELAY */
707
708#if !defined(TAS)
709extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or
710 * s_lock.c */
711
712#define TAS(lock) tas(lock)
713#endif /* TAS */
714
715#if !defined(TAS_SPIN)
716#define TAS_SPIN(lock) TAS(lock)
717#endif /* TAS_SPIN */
718
719
720/*
721 * Platform-independent out-of-line support routines
722 */
723extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func);
724
725/* Support for dynamic adjustment of spins_per_delay */
726#define DEFAULT_SPINS_PER_DELAY 100
727
730
731/*
732 * Support for spin delay which is useful in various places where
733 * spinlock-like procedures take place.
734 */
735typedef struct
736{
737 int spins;
740 const char *file;
741 int line;
742 const char *func;
744
745static inline void
747 const char *file, int line, const char *func)
748{
749 status->spins = 0;
750 status->delays = 0;
751 status->cur_delay = 0;
752 status->file = file;
753 status->line = line;
754 status->func = func;
755}
756
757#define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, __func__)
758extern void perform_spin_delay(SpinDelayStatus *status);
759extern void finish_spin_delay(SpinDelayStatus *status);
760
761#endif /* S_LOCK_H */
static int fb(int x)
void set_spins_per_delay(int shared_spins_per_delay)
Definition s_lock.c:207
void perform_spin_delay(SpinDelayStatus *status)
Definition s_lock.c:126
int tas(volatile slock_t *lock)
static void init_spin_delay(SpinDelayStatus *status, const char *file, int line, const char *func)
Definition s_lock.h:746
void finish_spin_delay(SpinDelayStatus *status)
Definition s_lock.c:186
int s_lock(volatile slock_t *lock, const char *file, int line, const char *func)
Definition s_lock.c:98
void s_unlock(volatile slock_t *lock)
Definition s_lock.c:116
int update_spins_per_delay(int shared_spins_per_delay)
Definition s_lock.c:218
const char * file
Definition s_lock.h:740
const char * func
Definition s_lock.h:742