PostgreSQL Source Code  git master
s_lock.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * s_lock.h
4  * Hardware-dependent implementation of spinlocks.
5  *
6  * NOTE: none of the macros in this file are intended to be called directly.
7  * Call them through the hardware-independent macros in spin.h.
8  *
9  * The following hardware-dependent macros must be provided for each
10  * supported platform:
11  *
12  * void S_INIT_LOCK(slock_t *lock)
13  * Initialize a spinlock (to the unlocked state).
14  *
15  * int S_LOCK(slock_t *lock)
16  * Acquire a spinlock, waiting if necessary.
17  * Time out and abort() if unable to acquire the lock in a
18  * "reasonable" amount of time --- typically ~ 1 minute.
19  * Should return number of "delays"; see s_lock.c
20  *
21  * void S_UNLOCK(slock_t *lock)
22  * Unlock a previously acquired lock.
23  *
24  * bool S_LOCK_FREE(slock_t *lock)
25  * Tests if the lock is free. Returns true if free, false if locked.
26  * This does *not* change the state of the lock.
27  *
28  * void SPIN_DELAY(void)
29  * Delay operation to occur inside spinlock wait loop.
30  *
31  * Note to implementors: there are default implementations for all these
32  * macros at the bottom of the file. Check if your platform can use
33  * these or needs to override them.
34  *
35  * Usually, S_LOCK() is implemented in terms of even lower-level macros
36  * TAS() and TAS_SPIN():
37  *
38  * int TAS(slock_t *lock)
39  * Atomic test-and-set instruction. Attempt to acquire the lock,
40  * but do *not* wait. Returns 0 if successful, nonzero if unable
41  * to acquire the lock.
42  *
43  * int TAS_SPIN(slock_t *lock)
44  * Like TAS(), but this version is used when waiting for a lock
45  * previously found to be contended. By default, this is the
46  * same as TAS(), but on some architectures it's better to poll a
47  * contended lock using an unlocked instruction and retry the
48  * atomic test-and-set only when it appears free.
49  *
50  * TAS() and TAS_SPIN() are NOT part of the API, and should never be called
51  * directly.
52  *
53  * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report
54  * failure to acquire a lock even when the lock is not locked. For example,
55  * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must
56  * always be used, even if you are certain the lock is free.
57  *
58  * It is the responsibility of these macros to make sure that the compiler
59  * does not re-order accesses to shared memory to precede the actual lock
60  * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this
61  * was the caller's responsibility, which meant that callers had to use
62  * volatile-qualified pointers to refer to both the spinlock itself and the
63  * shared data being accessed within the spinlocked critical section. This
64  * was notationally awkward, easy to forget (and thus error-prone), and
65  * prevented some useful compiler optimizations. For these reasons, we
66  * now require that the macros themselves prevent compiler re-ordering,
67  * so that the caller doesn't need to take special precautions.
68  *
69  * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and
70  * S_UNLOCK() macros must further include hardware-level memory fence
71  * instructions to prevent similar re-ordering at the hardware level.
72  * TAS() and TAS_SPIN() must guarantee that loads and stores issued after
73  * the macro are not executed until the lock has been obtained. Conversely,
74  * S_UNLOCK() must guarantee that loads and stores issued before the macro
75  * have been executed before the lock is released.
76  *
77  * On most supported platforms, TAS() uses a tas() function written
78  * in assembly language to execute a hardware atomic-test-and-set
79  * instruction. Equivalent OS-supplied mutex routines could be used too.
80  *
81  * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not
82  * defined), then we fall back on an emulation that uses SysV semaphores
83  * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS()
84  * implementation, because of the cost of a kernel call per lock or unlock.
85  * An old report is that Postgres spends around 40% of its time in semop(2)
86  * when using the SysV semaphore code.
87  *
88  *
89  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
90  * Portions Copyright (c) 1994, Regents of the University of California
91  *
92  * src/include/storage/s_lock.h
93  *
94  *-------------------------------------------------------------------------
95  */
96 #ifndef S_LOCK_H
97 #define S_LOCK_H
98 
99 #ifdef FRONTEND
100 #error "s_lock.h may not be included from frontend code"
101 #endif
102 
103 #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */
104 
105 #if defined(__GNUC__) || defined(__INTEL_COMPILER)
106 /*************************************************************************
107  * All the gcc inlines
108  * Gcc consistently defines the CPU as __cpu__.
109  * Other compilers use __cpu or __cpu__ so we test for both in those cases.
110  */
111 
112 /*----------
113  * Standard gcc asm format (assuming "volatile slock_t *lock"):
114 
115  __asm__ __volatile__(
116  " instruction \n"
117  " instruction \n"
118  " instruction \n"
119 : "=r"(_res), "+m"(*lock) // return register, in/out lock value
120 : "r"(lock) // lock pointer, in input register
121 : "memory", "cc"); // show clobbered registers here
122 
123  * The output-operands list (after first colon) should always include
124  * "+m"(*lock), whether or not the asm code actually refers to this
125  * operand directly. This ensures that gcc believes the value in the
126  * lock variable is used and set by the asm code. Also, the clobbers
127  * list (after third colon) should always include "memory"; this prevents
128  * gcc from thinking it can cache the values of shared-memory fields
129  * across the asm code. Add "cc" if your asm code changes the condition
130  * code register, and also list any temp registers the code uses.
131  *----------
132  */
133 
134 
135 #ifdef __i386__ /* 32-bit i386 */
136 #define HAS_TEST_AND_SET
137 
138 typedef unsigned char slock_t;
139 
140 #define TAS(lock) tas(lock)
141 
142 static __inline__ int
143 tas(volatile slock_t *lock)
144 {
145  slock_t _res = 1;
146 
147  /*
148  * Use a non-locking test before asserting the bus lock. Note that the
149  * extra test appears to be a small loss on some x86 platforms and a small
150  * win on others; it's by no means clear that we should keep it.
151  *
152  * When this was last tested, we didn't have separate TAS() and TAS_SPIN()
153  * macros. Nowadays it probably would be better to do a non-locking test
154  * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the
155  * testing to verify that. Without some empirical evidence, better to
156  * leave it alone.
157  */
158  __asm__ __volatile__(
159  " cmpb $0,%1 \n"
160  " jne 1f \n"
161  " lock \n"
162  " xchgb %0,%1 \n"
163  "1: \n"
164 : "+q"(_res), "+m"(*lock)
165 : /* no inputs */
166 : "memory", "cc");
167  return (int) _res;
168 }
169 
170 #define SPIN_DELAY() spin_delay()
171 
172 static __inline__ void
173 spin_delay(void)
174 {
175  /*
176  * This sequence is equivalent to the PAUSE instruction ("rep" is
177  * ignored by old IA32 processors if the following instruction is
178  * not a string operation); the IA-32 Architecture Software
179  * Developer's Manual, Vol. 3, Section 7.7.2 describes why using
180  * PAUSE in the inner loop of a spin lock is necessary for good
181  * performance:
182  *
183  * The PAUSE instruction improves the performance of IA-32
184  * processors supporting Hyper-Threading Technology when
185  * executing spin-wait loops and other routines where one
186  * thread is accessing a shared lock or semaphore in a tight
187  * polling loop. When executing a spin-wait loop, the
188  * processor can suffer a severe performance penalty when
189  * exiting the loop because it detects a possible memory order
190  * violation and flushes the core processor's pipeline. The
191  * PAUSE instruction provides a hint to the processor that the
192  * code sequence is a spin-wait loop. The processor uses this
193  * hint to avoid the memory order violation and prevent the
194  * pipeline flush. In addition, the PAUSE instruction
195  * de-pipelines the spin-wait loop to prevent it from
196  * consuming execution resources excessively.
197  */
198  __asm__ __volatile__(
199  " rep; nop \n");
200 }
201 
202 #endif /* __i386__ */
203 
204 
205 #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */
206 #define HAS_TEST_AND_SET
207 
208 typedef unsigned char slock_t;
209 
210 #define TAS(lock) tas(lock)
211 
212 /*
213  * On Intel EM64T, it's a win to use a non-locking test before the xchg proper,
214  * but only when spinning.
215  *
216  * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T
217  * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is
218  * available at:
219  * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures
220  */
221 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
222 
223 static __inline__ int
224 tas(volatile slock_t *lock)
225 {
226  slock_t _res = 1;
227 
228  __asm__ __volatile__(
229  " lock \n"
230  " xchgb %0,%1 \n"
231 : "+q"(_res), "+m"(*lock)
232 : /* no inputs */
233 : "memory", "cc");
234  return (int) _res;
235 }
236 
237 #define SPIN_DELAY() spin_delay()
238 
239 static __inline__ void
240 spin_delay(void)
241 {
242  /*
243  * Adding a PAUSE in the spin delay loop is demonstrably a no-op on
244  * Opteron, but it may be of some use on EM64T, so we keep it.
245  */
246  __asm__ __volatile__(
247  " rep; nop \n");
248 }
249 
250 #endif /* __x86_64__ */
251 
252 
253 /*
254  * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available.
255  *
256  * We use the int-width variant of the builtin because it works on more chips
257  * than other widths.
258  */
259 #if defined(__arm__) || defined(__arm) || defined(__aarch64__)
260 #ifdef HAVE_GCC__SYNC_INT32_TAS
261 #define HAS_TEST_AND_SET
262 
263 #define TAS(lock) tas(lock)
264 
265 typedef int slock_t;
266 
267 static __inline__ int
268 tas(volatile slock_t *lock)
269 {
270  return __sync_lock_test_and_set(lock, 1);
271 }
272 
273 #define S_UNLOCK(lock) __sync_lock_release(lock)
274 
275 /*
276  * Using an ISB instruction to delay in spinlock loops appears beneficial on
277  * high-core-count ARM64 processors. It seems mostly a wash for smaller gear,
278  * and ISB doesn't exist at all on pre-v7 ARM chips.
279  */
280 #if defined(__aarch64__)
281 
282 #define SPIN_DELAY() spin_delay()
283 
284 static __inline__ void
285 spin_delay(void)
286 {
287  __asm__ __volatile__(
288  " isb; \n");
289 }
290 
291 #endif /* __aarch64__ */
292 #endif /* HAVE_GCC__SYNC_INT32_TAS */
293 #endif /* __arm__ || __arm || __aarch64__ */
294 
295 
296 /* S/390 and S/390x Linux (32- and 64-bit zSeries) */
297 #if defined(__s390__) || defined(__s390x__)
298 #define HAS_TEST_AND_SET
299 
300 typedef unsigned int slock_t;
301 
302 #define TAS(lock) tas(lock)
303 
304 static __inline__ int
305 tas(volatile slock_t *lock)
306 {
307  int _res = 0;
308 
309  __asm__ __volatile__(
310  " cs %0,%3,0(%2) \n"
311 : "+d"(_res), "+m"(*lock)
312 : "a"(lock), "d"(1)
313 : "memory", "cc");
314  return _res;
315 }
316 
317 #endif /* __s390__ || __s390x__ */
318 
319 
320 #if defined(__sparc__) /* Sparc */
321 /*
322  * Solaris has always run sparc processors in TSO (total store) mode, but
323  * linux didn't use to and the *BSDs still don't. So, be careful about
324  * acquire/release semantics. The CPU will treat superfluous members as
325  * NOPs, so it's just code space.
326  */
327 #define HAS_TEST_AND_SET
328 
329 typedef unsigned char slock_t;
330 
331 #define TAS(lock) tas(lock)
332 
333 static __inline__ int
334 tas(volatile slock_t *lock)
335 {
336  slock_t _res;
337 
338  /*
339  * See comment in src/backend/port/tas/sunstudio_sparc.s for why this
340  * uses "ldstub", and that file uses "cas". gcc currently generates
341  * sparcv7-targeted binaries, so "cas" use isn't possible.
342  */
343  __asm__ __volatile__(
344  " ldstub [%2], %0 \n"
345 : "=r"(_res), "+m"(*lock)
346 : "r"(lock)
347 : "memory");
348 #if defined(__sparcv7) || defined(__sparc_v7__)
349  /*
350  * No stbar or membar available, luckily no actually produced hardware
351  * requires a barrier.
352  */
353 #elif defined(__sparcv8) || defined(__sparc_v8__)
354  /* stbar is available (and required for both PSO, RMO), membar isn't */
355  __asm__ __volatile__ ("stbar \n":::"memory");
356 #else
357  /*
358  * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire
359  * barrier for sparcv8+ upwards.
360  */
361  __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory");
362 #endif
363  return (int) _res;
364 }
365 
366 #if defined(__sparcv7) || defined(__sparc_v7__)
367 /*
368  * No stbar or membar available, luckily no actually produced hardware
369  * requires a barrier. We fall through to the default gcc definition of
370  * S_UNLOCK in this case.
371  */
372 #elif defined(__sparcv8) || defined(__sparc_v8__)
373 /* stbar is available (and required for both PSO, RMO), membar isn't */
374 #define S_UNLOCK(lock) \
375 do \
376 { \
377  __asm__ __volatile__ ("stbar \n":::"memory"); \
378  *((volatile slock_t *) (lock)) = 0; \
379 } while (0)
380 #else
381 /*
382  * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate
383  * release barrier for sparcv8+ upwards.
384  */
385 #define S_UNLOCK(lock) \
386 do \
387 { \
388  __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \
389  *((volatile slock_t *) (lock)) = 0; \
390 } while (0)
391 #endif
392 
393 #endif /* __sparc__ */
394 
395 
396 /* PowerPC */
397 #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
398 #define HAS_TEST_AND_SET
399 
400 typedef unsigned int slock_t;
401 
402 #define TAS(lock) tas(lock)
403 
404 /* On PPC, it's a win to use a non-locking test before the lwarx */
405 #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock))
406 
407 /*
408  * The second operand of addi can hold a constant zero or a register number,
409  * hence constraint "=&b" to avoid allocating r0. "b" stands for "address
410  * base register"; most operands having this register-or-zero property are
411  * address bases, e.g. the second operand of lwax.
412  *
413  * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002,
414  * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop.
415  * But if the spinlock is in ordinary memory, we can use lwsync instead for
416  * better performance.
417  *
418  * Ordinarily, we'd code the branches here using GNU-style local symbols, that
419  * is "1f" referencing "1:" and so on. But some people run gcc on AIX with
420  * IBM's assembler as backend, and IBM's assembler doesn't do local symbols.
421  * So hand-code the branch offsets; fortunately, all PPC instructions are
422  * exactly 4 bytes each, so it's not too hard to count.
423  */
424 static __inline__ int
425 tas(volatile slock_t *lock)
426 {
427  slock_t _t;
428  int _res;
429 
430  __asm__ __volatile__(
431 " lwarx %0,0,%3,1 \n"
432 " cmpwi %0,0 \n"
433 " bne $+16 \n" /* branch to li %1,1 */
434 " addi %0,%0,1 \n"
435 " stwcx. %0,0,%3 \n"
436 " beq $+12 \n" /* branch to lwsync */
437 " li %1,1 \n"
438 " b $+12 \n" /* branch to end of asm sequence */
439 " lwsync \n"
440 " li %1,0 \n"
441 
442 : "=&b"(_t), "=r"(_res), "+m"(*lock)
443 : "r"(lock)
444 : "memory", "cc");
445  return _res;
446 }
447 
448 /*
449  * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction.
450  * But we can use lwsync instead for better performance.
451  */
452 #define S_UNLOCK(lock) \
453 do \
454 { \
455  __asm__ __volatile__ (" lwsync \n" ::: "memory"); \
456  *((volatile slock_t *) (lock)) = 0; \
457 } while (0)
458 
459 #endif /* powerpc */
460 
461 
462 #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */
463 #define HAS_TEST_AND_SET
464 
465 typedef unsigned int slock_t;
466 
467 #define TAS(lock) tas(lock)
468 
469 /*
470  * Original MIPS-I processors lacked the LL/SC instructions, but if we are
471  * so unfortunate as to be running on one of those, we expect that the kernel
472  * will handle the illegal-instruction traps and emulate them for us. On
473  * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane
474  * choice because any other synchronization method must involve a kernel
475  * call. Unfortunately, many toolchains still default to MIPS-I as the
476  * codegen target; if the symbol __mips shows that that's the case, we
477  * have to force the assembler to accept LL/SC.
478  *
479  * R10000 and up processors require a separate SYNC, which has the same
480  * issues as LL/SC.
481  */
482 #if __mips < 2
483 #define MIPS_SET_MIPS2 " .set mips2 \n"
484 #else
485 #define MIPS_SET_MIPS2
486 #endif
487 
488 static __inline__ int
489 tas(volatile slock_t *lock)
490 {
491  volatile slock_t *_l = lock;
492  int _res;
493  int _tmp;
494 
495  __asm__ __volatile__(
496  " .set push \n"
497  MIPS_SET_MIPS2
498  " .set noreorder \n"
499  " .set nomacro \n"
500  " ll %0, %2 \n"
501  " or %1, %0, 1 \n"
502  " sc %1, %2 \n"
503  " xori %1, 1 \n"
504  " or %0, %0, %1 \n"
505  " sync \n"
506  " .set pop "
507 : "=&r" (_res), "=&r" (_tmp), "+R" (*_l)
508 : /* no inputs */
509 : "memory");
510  return _res;
511 }
512 
513 /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */
514 #define S_UNLOCK(lock) \
515 do \
516 { \
517  __asm__ __volatile__( \
518  " .set push \n" \
519  MIPS_SET_MIPS2 \
520  " .set noreorder \n" \
521  " .set nomacro \n" \
522  " sync \n" \
523  " .set pop " \
524 : /* no outputs */ \
525 : /* no inputs */ \
526 : "memory"); \
527  *((volatile slock_t *) (lock)) = 0; \
528 } while (0)
529 
530 #endif /* __mips__ && !__sgi */
531 
532 
533 #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC */
534 /*
535  * HP's PA-RISC
536  *
537  * Because LDCWX requires a 16-byte-aligned address, we declare slock_t as a
538  * 16-byte struct. The active word in the struct is whichever has the aligned
539  * address; the other three words just sit at -1.
540  */
541 #define HAS_TEST_AND_SET
542 
543 typedef struct
544 {
545  int sema[4];
546 } slock_t;
547 
548 #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15))
549 
550 static __inline__ int
551 tas(volatile slock_t *lock)
552 {
553  volatile int *lockword = TAS_ACTIVE_WORD(lock);
554  int lockval;
555 
556  /*
557  * The LDCWX instruction atomically clears the target word and
558  * returns the previous value. Hence, if the instruction returns
559  * 0, someone else has already acquired the lock before we tested
560  * it (i.e., we have failed).
561  *
562  * Notice that this means that we actually clear the word to set
563  * the lock and set the word to clear the lock. This is the
564  * opposite behavior from the SPARC LDSTUB instruction. For some
565  * reason everything that H-P does is rather baroque...
566  *
567  * For details about the LDCWX instruction, see the "Precision
568  * Architecture and Instruction Reference Manual" (09740-90014 of June
569  * 1987), p. 5-38.
570  */
571  __asm__ __volatile__(
572  " ldcwx 0(0,%2),%0 \n"
573 : "=r"(lockval), "+m"(*lockword)
574 : "r"(lockword)
575 : "memory");
576  return (lockval == 0);
577 }
578 
579 #define S_UNLOCK(lock) \
580  do { \
581  __asm__ __volatile__("" : : : "memory"); \
582  *TAS_ACTIVE_WORD(lock) = -1; \
583  } while (0)
584 
585 #define S_INIT_LOCK(lock) \
586  do { \
587  volatile slock_t *lock_ = (lock); \
588  lock_->sema[0] = -1; \
589  lock_->sema[1] = -1; \
590  lock_->sema[2] = -1; \
591  lock_->sema[3] = -1; \
592  } while (0)
593 
594 #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0)
595 
596 #endif /* __hppa || __hppa__ */
597 
598 
599 /*
600  * If we have no platform-specific knowledge, but we found that the compiler
601  * provides __sync_lock_test_and_set(), use that. Prefer the int-width
602  * version over the char-width version if we have both, on the rather dubious
603  * grounds that that's known to be more likely to work in the ARM ecosystem.
604  * (But we dealt with ARM above.)
605  */
606 #if !defined(HAS_TEST_AND_SET)
607 
608 #if defined(HAVE_GCC__SYNC_INT32_TAS)
609 #define HAS_TEST_AND_SET
610 
611 #define TAS(lock) tas(lock)
612 
613 typedef int slock_t;
614 
615 static __inline__ int
616 tas(volatile slock_t *lock)
617 {
618  return __sync_lock_test_and_set(lock, 1);
619 }
620 
621 #define S_UNLOCK(lock) __sync_lock_release(lock)
622 
623 #elif defined(HAVE_GCC__SYNC_CHAR_TAS)
624 #define HAS_TEST_AND_SET
625 
626 #define TAS(lock) tas(lock)
627 
628 typedef char slock_t;
629 
630 static __inline__ int
631 tas(volatile slock_t *lock)
632 {
633  return __sync_lock_test_and_set(lock, 1);
634 }
635 
636 #define S_UNLOCK(lock) __sync_lock_release(lock)
637 
638 #endif /* HAVE_GCC__SYNC_INT32_TAS */
639 
640 #endif /* !defined(HAS_TEST_AND_SET) */
641 
642 
643 /*
644  * Default implementation of S_UNLOCK() for gcc/icc.
645  *
646  * Note that this implementation is unsafe for any platform that can reorder
647  * a memory access (either load or store) after a following store. That
648  * happens not to be possible on x86 and most legacy architectures (some are
649  * single-processor!), but many modern systems have weaker memory ordering.
650  * Those that do must define their own version of S_UNLOCK() rather than
651  * relying on this one.
652  */
653 #if !defined(S_UNLOCK)
654 #define S_UNLOCK(lock) \
655  do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0)
656 #endif
657 
658 #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */
659 
660 
661 /*
662  * ---------------------------------------------------------------------
663  * Platforms that use non-gcc inline assembly:
664  * ---------------------------------------------------------------------
665  */
666 
667 #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */
668 
669 #if defined(_AIX) /* AIX */
670 /*
671  * AIX (POWER)
672  */
673 #define HAS_TEST_AND_SET
674 
675 #include <sys/atomic_op.h>
676 
677 typedef int slock_t;
678 
679 #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1)
680 #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0)
681 #endif /* _AIX */
682 
683 
684 /* These are in sunstudio_(sparc|x86).s */
685 
686 #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc))
687 #define HAS_TEST_AND_SET
688 
689 #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus)
690 typedef unsigned int slock_t;
691 #else
692 typedef unsigned char slock_t;
693 #endif
694 
695 extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with,
696  slock_t cmp);
697 
698 #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0)
699 #endif
700 
701 
702 #ifdef _MSC_VER
703 typedef LONG slock_t;
704 
705 #define HAS_TEST_AND_SET
706 #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0))
707 
708 #define SPIN_DELAY() spin_delay()
709 
710 /* If using Visual C++ on Win64, inline assembly is unavailable.
711  * Use a _mm_pause intrinsic instead of rep nop.
712  */
713 #if defined(_WIN64)
714 static __forceinline void
715 spin_delay(void)
716 {
717  _mm_pause();
718 }
719 #else
720 static __forceinline void
721 spin_delay(void)
722 {
723  /* See comment for gcc code. Same code, MASM syntax */
724  __asm rep nop;
725 }
726 #endif
727 
728 #include <intrin.h>
729 #pragma intrinsic(_ReadWriteBarrier)
730 
731 #define S_UNLOCK(lock) \
732  do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0)
733 
734 #endif
735 
736 
737 #endif /* !defined(HAS_TEST_AND_SET) */
738 
739 
740 /* Blow up if we didn't have any way to do spinlocks */
741 #ifndef HAS_TEST_AND_SET
742 #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@lists.postgresql.org.
743 #endif
744 
745 
746 #else /* !HAVE_SPINLOCKS */
747 
748 
749 /*
750  * Fake spinlock implementation using semaphores --- slow and prone
751  * to fall foul of kernel limits on number of semaphores, so don't use this
752  * unless you must! The subroutines appear in spin.c.
753  */
754 typedef int slock_t;
755 
756 extern bool s_lock_free_sema(volatile slock_t *lock);
757 extern void s_unlock_sema(volatile slock_t *lock);
758 extern void s_init_lock_sema(volatile slock_t *lock, bool nested);
759 extern int tas_sema(volatile slock_t *lock);
760 
761 #define S_LOCK_FREE(lock) s_lock_free_sema(lock)
762 #define S_UNLOCK(lock) s_unlock_sema(lock)
763 #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false)
764 #define TAS(lock) tas_sema(lock)
765 
766 
767 #endif /* HAVE_SPINLOCKS */
768 
769 
770 /*
771  * Default Definitions - override these above as needed.
772  */
773 
774 #if !defined(S_LOCK)
775 #define S_LOCK(lock) \
776  (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, __func__) : 0)
777 #endif /* S_LOCK */
778 
779 #if !defined(S_LOCK_FREE)
780 #define S_LOCK_FREE(lock) (*(lock) == 0)
781 #endif /* S_LOCK_FREE */
782 
783 #if !defined(S_UNLOCK)
784 /*
785  * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This
786  * is unsafe if the platform can reorder a memory access (either load or
787  * store) after a following store; platforms where this is possible must
788  * define their own S_UNLOCK. But CPU reordering is not the only concern:
789  * if we simply defined S_UNLOCK() as an inline macro, the compiler might
790  * reorder instructions from inside the critical section to occur after the
791  * lock release. Since the compiler probably can't know what the external
792  * function s_unlock is doing, putting the same logic there should be adequate.
793  * A sufficiently-smart globally optimizing compiler could break that
794  * assumption, though, and the cost of a function call for every spinlock
795  * release may hurt performance significantly, so we use this implementation
796  * only for platforms where we don't know of a suitable intrinsic. For the
797  * most part, those are relatively obscure platform/compiler combinations to
798  * which the PostgreSQL project does not have access.
799  */
800 #define USE_DEFAULT_S_UNLOCK
801 extern void s_unlock(volatile slock_t *lock);
802 #define S_UNLOCK(lock) s_unlock(lock)
803 #endif /* S_UNLOCK */
804 
805 #if !defined(S_INIT_LOCK)
806 #define S_INIT_LOCK(lock) S_UNLOCK(lock)
807 #endif /* S_INIT_LOCK */
808 
809 #if !defined(SPIN_DELAY)
810 #define SPIN_DELAY() ((void) 0)
811 #endif /* SPIN_DELAY */
812 
813 #if !defined(TAS)
814 extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or
815  * s_lock.c */
816 
817 #define TAS(lock) tas(lock)
818 #endif /* TAS */
819 
820 #if !defined(TAS_SPIN)
821 #define TAS_SPIN(lock) TAS(lock)
822 #endif /* TAS_SPIN */
823 
825 
826 /*
827  * Platform-independent out-of-line support routines
828  */
829 extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func);
830 
831 /* Support for dynamic adjustment of spins_per_delay */
832 #define DEFAULT_SPINS_PER_DELAY 100
833 
834 extern void set_spins_per_delay(int shared_spins_per_delay);
835 extern int update_spins_per_delay(int shared_spins_per_delay);
836 
837 /*
838  * Support for spin delay which is useful in various places where
839  * spinlock-like procedures take place.
840  */
841 typedef struct
842 {
843  int spins;
844  int delays;
846  const char *file;
847  int line;
848  const char *func;
850 
851 static inline void
853  const char *file, int line, const char *func)
854 {
855  status->spins = 0;
856  status->delays = 0;
857  status->cur_delay = 0;
858  status->file = file;
859  status->line = line;
860  status->func = func;
861 }
862 
863 #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, __func__)
864 extern void perform_spin_delay(SpinDelayStatus *status);
865 extern void finish_spin_delay(SpinDelayStatus *status);
866 
867 #endif /* S_LOCK_H */
#define PGDLLIMPORT
Definition: c.h:1321
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
void set_spins_per_delay(int shared_spins_per_delay)
Definition: s_lock.c:207
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:126
int tas_sema(volatile slock_t *lock)
Definition: spin.c:170
void s_unlock_sema(volatile slock_t *lock)
Definition: spin.c:152
static void init_spin_delay(SpinDelayStatus *status, const char *file, int line, const char *func)
Definition: s_lock.h:852
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:186
int slock_t
Definition: s_lock.h:754
int s_lock(volatile slock_t *lock, const char *file, int line, const char *func)
Definition: s_lock.c:93
PGDLLIMPORT slock_t dummy_spinlock
Definition: s_lock.c:65
void s_init_lock_sema(volatile slock_t *lock, bool nested)
Definition: spin.c:121
int update_spins_per_delay(int shared_spins_per_delay)
Definition: s_lock.c:218
bool s_lock_free_sema(volatile slock_t *lock)
Definition: spin.c:162
const char * file
Definition: s_lock.h:846
const char * func
Definition: s_lock.h:848