PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
levenshtein.c File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define MAX_LEVENSHTEIN_STRLEN   255
 
#define START_COLUMN   0
 
#define STOP_COLUMN   m
 

Functions

int varstr_levenshtein (const char *source, int slen, const char *target, int tlen, int ins_c, int del_c, int sub_c, bool trusted)
 

Macro Definition Documentation

◆ MAX_LEVENSHTEIN_STRLEN

#define MAX_LEVENSHTEIN_STRLEN   255

Definition at line 26 of file levenshtein.c.

◆ START_COLUMN

#define START_COLUMN   0

◆ STOP_COLUMN

#define STOP_COLUMN   m

Function Documentation

◆ varstr_levenshtein()

int varstr_levenshtein ( const char *  source,
int  slen,
const char *  target,
int  tlen,
int  ins_c,
int  del_c,
int  sub_c,
bool  trusted 
)

Definition at line 73 of file levenshtein.c.

78{
79 int m,
80 n;
81 int *prev;
82 int *curr;
83 int *s_char_len = NULL;
84 int j;
85 const char *y;
86
87 /*
88 * For varstr_levenshtein_less_equal, we have real variables called
89 * start_column and stop_column; otherwise it's just short-hand for 0 and
90 * m.
91 */
92#ifdef LEVENSHTEIN_LESS_EQUAL
93 int start_column,
94 stop_column;
95
96#undef START_COLUMN
97#undef STOP_COLUMN
98#define START_COLUMN start_column
99#define STOP_COLUMN stop_column
100#else
101#undef START_COLUMN
102#undef STOP_COLUMN
103#define START_COLUMN 0
104#define STOP_COLUMN m
105#endif
106
107 /* Convert string lengths (in bytes) to lengths in characters */
108 m = pg_mbstrlen_with_len(source, slen);
109 n = pg_mbstrlen_with_len(target, tlen);
110
111 /*
112 * We can transform an empty s into t with n insertions, or a non-empty t
113 * into an empty s with m deletions.
114 */
115 if (!m)
116 return n * ins_c;
117 if (!n)
118 return m * del_c;
119
120 /*
121 * For security concerns, restrict excessive CPU+RAM usage. (This
122 * implementation uses O(m) memory and has O(mn) complexity.) If
123 * "trusted" is true, caller is responsible for not making excessive
124 * requests, typically by using a small max_d along with strings that are
125 * bounded, though not necessarily to MAX_LEVENSHTEIN_STRLEN exactly.
126 */
127 if (!trusted &&
131 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
132 errmsg("levenshtein argument exceeds maximum length of %d characters",
134
135#ifdef LEVENSHTEIN_LESS_EQUAL
136 /* Initialize start and stop columns. */
137 start_column = 0;
138 stop_column = m + 1;
139
140 /*
141 * If max_d >= 0, determine whether the bound is impossibly tight. If so,
142 * return max_d + 1 immediately. Otherwise, determine whether it's tight
143 * enough to limit the computation we must perform. If so, figure out
144 * initial stop column.
145 */
146 if (max_d >= 0)
147 {
148 int min_theo_d; /* Theoretical minimum distance. */
149 int max_theo_d; /* Theoretical maximum distance. */
150 int net_inserts = n - m;
151
152 min_theo_d = net_inserts < 0 ?
153 -net_inserts * del_c : net_inserts * ins_c;
154 if (min_theo_d > max_d)
155 return max_d + 1;
156 if (ins_c + del_c < sub_c)
157 sub_c = ins_c + del_c;
158 max_theo_d = min_theo_d + sub_c * Min(m, n);
159 if (max_d >= max_theo_d)
160 max_d = -1;
161 else if (ins_c + del_c > 0)
162 {
163 /*
164 * Figure out how much of the first row of the notional matrix we
165 * need to fill in. If the string is growing, the theoretical
166 * minimum distance already incorporates the cost of deleting the
167 * number of characters necessary to make the two strings equal in
168 * length. Each additional deletion forces another insertion, so
169 * the best-case total cost increases by ins_c + del_c. If the
170 * string is shrinking, the minimum theoretical cost assumes no
171 * excess deletions; that is, we're starting no further right than
172 * column n - m. If we do start further right, the best-case
173 * total cost increases by ins_c + del_c for each move right.
174 */
175 int slack_d = max_d - min_theo_d;
176 int best_column = net_inserts < 0 ? -net_inserts : 0;
177
178 stop_column = best_column + (slack_d / (ins_c + del_c)) + 1;
179 if (stop_column > m)
180 stop_column = m + 1;
181 }
182 }
183#endif
184
185 /*
186 * In order to avoid calling pg_mblen() repeatedly on each character in s,
187 * we cache all the lengths before starting the main loop -- but if all
188 * the characters in both strings are single byte, then we skip this and
189 * use a fast-path in the main loop. If only one string contains
190 * multi-byte characters, we still build the array, so that the fast-path
191 * needn't deal with the case where the array hasn't been initialized.
192 */
193 if (m != slen || n != tlen)
194 {
195 int i;
196 const char *cp = source;
197
198 s_char_len = (int *) palloc((m + 1) * sizeof(int));
199 for (i = 0; i < m; ++i)
200 {
201 s_char_len[i] = pg_mblen(cp);
202 cp += s_char_len[i];
203 }
204 s_char_len[i] = 0;
205 }
206
207 /* One more cell for initialization column and row. */
208 ++m;
209 ++n;
210
211 /* Previous and current rows of notional array. */
212 prev = (int *) palloc(2 * m * sizeof(int));
213 curr = prev + m;
214
215 /*
216 * To transform the first i characters of s into the first 0 characters of
217 * t, we must perform i deletions.
218 */
219 for (int i = START_COLUMN; i < STOP_COLUMN; i++)
220 prev[i] = i * del_c;
221
222 /* Loop through rows of the notional array */
223 for (y = target, j = 1; j < n; j++)
224 {
225 int *temp;
226 const char *x = source;
227 int y_char_len = n != tlen + 1 ? pg_mblen(y) : 1;
228 int i;
229
230#ifdef LEVENSHTEIN_LESS_EQUAL
231
232 /*
233 * In the best case, values percolate down the diagonal unchanged, so
234 * we must increment stop_column unless it's already on the right end
235 * of the array. The inner loop will read prev[stop_column], so we
236 * have to initialize it even though it shouldn't affect the result.
237 */
238 if (stop_column < m)
239 {
240 prev[stop_column] = max_d + 1;
241 ++stop_column;
242 }
243
244 /*
245 * The main loop fills in curr, but curr[0] needs a special case: to
246 * transform the first 0 characters of s into the first j characters
247 * of t, we must perform j insertions. However, if start_column > 0,
248 * this special case does not apply.
249 */
250 if (start_column == 0)
251 {
252 curr[0] = j * ins_c;
253 i = 1;
254 }
255 else
256 i = start_column;
257#else
258 curr[0] = j * ins_c;
259 i = 1;
260#endif
261
262 /*
263 * This inner loop is critical to performance, so we include a
264 * fast-path to handle the (fairly common) case where no multibyte
265 * characters are in the mix. The fast-path is entitled to assume
266 * that if s_char_len is not initialized then BOTH strings contain
267 * only single-byte characters.
268 */
269 if (s_char_len != NULL)
270 {
271 for (; i < STOP_COLUMN; i++)
272 {
273 int ins;
274 int del;
275 int sub;
276 int x_char_len = s_char_len[i - 1];
277
278 /*
279 * Calculate costs for insertion, deletion, and substitution.
280 *
281 * When calculating cost for substitution, we compare the last
282 * character of each possibly-multibyte character first,
283 * because that's enough to rule out most mis-matches. If we
284 * get past that test, then we compare the lengths and the
285 * remaining bytes.
286 */
287 ins = prev[i] + ins_c;
288 del = curr[i - 1] + del_c;
289 if (x[x_char_len - 1] == y[y_char_len - 1]
290 && x_char_len == y_char_len &&
291 (x_char_len == 1 || rest_of_char_same(x, y, x_char_len)))
292 sub = prev[i - 1];
293 else
294 sub = prev[i - 1] + sub_c;
295
296 /* Take the one with minimum cost. */
297 curr[i] = Min(ins, del);
298 curr[i] = Min(curr[i], sub);
299
300 /* Point to next character. */
301 x += x_char_len;
302 }
303 }
304 else
305 {
306 for (; i < STOP_COLUMN; i++)
307 {
308 int ins;
309 int del;
310 int sub;
311
312 /* Calculate costs for insertion, deletion, and substitution. */
313 ins = prev[i] + ins_c;
314 del = curr[i - 1] + del_c;
315 sub = prev[i - 1] + ((*x == *y) ? 0 : sub_c);
316
317 /* Take the one with minimum cost. */
318 curr[i] = Min(ins, del);
319 curr[i] = Min(curr[i], sub);
320
321 /* Point to next character. */
322 x++;
323 }
324 }
325
326 /* Swap current row with previous row. */
327 temp = curr;
328 curr = prev;
329 prev = temp;
330
331 /* Point to next character. */
332 y += y_char_len;
333
334#ifdef LEVENSHTEIN_LESS_EQUAL
335
336 /*
337 * This chunk of code represents a significant performance hit if used
338 * in the case where there is no max_d bound. This is probably not
339 * because the max_d >= 0 test itself is expensive, but rather because
340 * the possibility of needing to execute this code prevents tight
341 * optimization of the loop as a whole.
342 */
343 if (max_d >= 0)
344 {
345 /*
346 * The "zero point" is the column of the current row where the
347 * remaining portions of the strings are of equal length. There
348 * are (n - 1) characters in the target string, of which j have
349 * been transformed. There are (m - 1) characters in the source
350 * string, so we want to find the value for zp where (n - 1) - j =
351 * (m - 1) - zp.
352 */
353 int zp = j - (n - m);
354
355 /* Check whether the stop column can slide left. */
356 while (stop_column > 0)
357 {
358 int ii = stop_column - 1;
359 int net_inserts = ii - zp;
360
361 if (prev[ii] + (net_inserts > 0 ? net_inserts * ins_c :
362 -net_inserts * del_c) <= max_d)
363 break;
364 stop_column--;
365 }
366
367 /* Check whether the start column can slide right. */
368 while (start_column < stop_column)
369 {
370 int net_inserts = start_column - zp;
371
372 if (prev[start_column] +
373 (net_inserts > 0 ? net_inserts * ins_c :
374 -net_inserts * del_c) <= max_d)
375 break;
376
377 /*
378 * We'll never again update these values, so we must make sure
379 * there's nothing here that could confuse any future
380 * iteration of the outer loop.
381 */
382 prev[start_column] = max_d + 1;
383 curr[start_column] = max_d + 1;
384 if (start_column != 0)
385 source += (s_char_len != NULL) ? s_char_len[start_column - 1] : 1;
386 start_column++;
387 }
388
389 /* If they cross, we're going to exceed the bound. */
390 if (start_column >= stop_column)
391 return max_d + 1;
392 }
393#endif
394 }
395
396 /*
397 * Because the final value was swapped from the previous row to the
398 * current row, that's where we'll find it.
399 */
400 return prev[m - 1];
401}
#define Min(x, y)
Definition: c.h:975
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
int y
Definition: isn.c:76
int x
Definition: isn.c:75
int j
Definition: isn.c:78
int i
Definition: isn.c:77
#define START_COLUMN
#define MAX_LEVENSHTEIN_STRLEN
Definition: levenshtein.c:26
#define STOP_COLUMN
int pg_mbstrlen_with_len(const char *mbstr, int limit)
Definition: mbutils.c:1057
int pg_mblen(const char *mbstr)
Definition: mbutils.c:1023
void * palloc(Size size)
Definition: mcxt.c:1943
static rewind_source * source
Definition: pg_rewind.c:89
static bool rest_of_char_same(const char *s1, const char *s2, int len)
Definition: varlena.c:6354

References ereport, errcode(), errmsg(), ERROR, i, j, MAX_LEVENSHTEIN_STRLEN, Min, palloc(), pg_mblen(), pg_mbstrlen_with_len(), rest_of_char_same(), source, START_COLUMN, STOP_COLUMN, x, and y.

Referenced by levenshtein(), and levenshtein_with_costs().