PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
varlena.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * varlena.c
4  * Functions for the variable-length built-in types.
5  *
6  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/varlena.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <ctype.h>
18 #include <limits.h>
19 
20 #include "access/hash.h"
21 #include "access/tuptoaster.h"
22 #include "catalog/pg_collation.h"
23 #include "catalog/pg_type.h"
24 #include "common/md5.h"
25 #include "lib/hyperloglog.h"
26 #include "libpq/pqformat.h"
27 #include "miscadmin.h"
28 #include "parser/scansup.h"
29 #include "port/pg_bswap.h"
30 #include "regex/regex.h"
31 #include "utils/builtins.h"
32 #include "utils/bytea.h"
33 #include "utils/lsyscache.h"
34 #include "utils/memutils.h"
35 #include "utils/pg_locale.h"
36 #include "utils/sortsupport.h"
37 #include "utils/varlena.h"
38 
39 
40 /* GUC variable */
42 
43 typedef struct varlena unknown;
44 typedef struct varlena VarString;
45 
46 typedef struct
47 {
48  bool use_wchar; /* T if multibyte encoding */
49  char *str1; /* use these if not use_wchar */
50  char *str2; /* note: these point to original texts */
51  pg_wchar *wstr1; /* use these if use_wchar */
52  pg_wchar *wstr2; /* note: these are palloc'd */
53  int len1; /* string lengths in logical characters */
54  int len2;
55  /* Skip table for Boyer-Moore-Horspool search algorithm: */
56  int skiptablemask; /* mask for ANDing with skiptable subscripts */
57  int skiptable[256]; /* skip distance for given mismatched char */
59 
60 typedef struct
61 {
62  char *buf1; /* 1st string, or abbreviation original string
63  * buf */
64  char *buf2; /* 2nd string, or abbreviation strxfrm() buf */
65  int buflen1;
66  int buflen2;
67  int last_len1; /* Length of last buf1 string/strxfrm() input */
68  int last_len2; /* Length of last buf2 string/strxfrm() blob */
69  int last_returned; /* Last comparison result (cache) */
70  bool cache_blob; /* Does buf2 contain strxfrm() blob, etc? */
71  bool collate_c;
72  bool bpchar; /* Sorting bpchar, not varchar/text/bytea? */
73  hyperLogLogState abbr_card; /* Abbreviated key cardinality state */
74  hyperLogLogState full_card; /* Full key cardinality state */
75  double prop_card; /* Required cardinality proportion */
78 
79 /*
80  * This should be large enough that most strings will fit, but small enough
81  * that we feel comfortable putting it on the stack
82  */
83 #define TEXTBUFLEN 1024
84 
85 #define DatumGetUnknownP(X) ((unknown *) PG_DETOAST_DATUM(X))
86 #define DatumGetUnknownPCopy(X) ((unknown *) PG_DETOAST_DATUM_COPY(X))
87 #define PG_GETARG_UNKNOWN_P(n) DatumGetUnknownP(PG_GETARG_DATUM(n))
88 #define PG_GETARG_UNKNOWN_P_COPY(n) DatumGetUnknownPCopy(PG_GETARG_DATUM(n))
89 #define PG_RETURN_UNKNOWN_P(x) PG_RETURN_POINTER(x)
90 
91 #define DatumGetVarStringP(X) ((VarString *) PG_DETOAST_DATUM(X))
92 #define DatumGetVarStringPP(X) ((VarString *) PG_DETOAST_DATUM_PACKED(X))
93 
94 static int varstrfastcmp_c(Datum x, Datum y, SortSupport ssup);
95 static int bpcharfastcmp_c(Datum x, Datum y, SortSupport ssup);
96 static int varstrfastcmp_locale(Datum x, Datum y, SortSupport ssup);
97 static int varstrcmp_abbrev(Datum x, Datum y, SortSupport ssup);
98 static Datum varstr_abbrev_convert(Datum original, SortSupport ssup);
99 static bool varstr_abbrev_abort(int memtupcount, SortSupport ssup);
100 static int32 text_length(Datum str);
101 static text *text_catenate(text *t1, text *t2);
102 static text *text_substring(Datum str,
103  int32 start,
104  int32 length,
105  bool length_not_specified);
106 static text *text_overlay(text *t1, text *t2, int sp, int sl);
107 static int text_position(text *t1, text *t2);
108 static void text_position_setup(text *t1, text *t2, TextPositionState *state);
109 static int text_position_next(int start_pos, TextPositionState *state);
111 static int text_cmp(text *arg1, text *arg2, Oid collid);
112 static bytea *bytea_catenate(bytea *t1, bytea *t2);
113 static bytea *bytea_substring(Datum str,
114  int S,
115  int L,
116  bool length_not_specified);
117 static bytea *bytea_overlay(bytea *t1, bytea *t2, int sp, int sl);
118 static void appendStringInfoText(StringInfo str, const text *t);
121  const char *fldsep, const char *null_string);
123 static bool text_format_parse_digits(const char **ptr, const char *end_ptr,
124  int *value);
125 static const char *text_format_parse_format(const char *start_ptr,
126  const char *end_ptr,
127  int *argpos, int *widthpos,
128  int *flags, int *width);
129 static void text_format_string_conversion(StringInfo buf, char conversion,
130  FmgrInfo *typOutputInfo,
131  Datum value, bool isNull,
132  int flags, int width);
133 static void text_format_append_string(StringInfo buf, const char *str,
134  int flags, int width);
135 
136 
137 /*****************************************************************************
138  * CONVERSION ROUTINES EXPORTED FOR USE BY C CODE *
139  *****************************************************************************/
140 
141 /*
142  * cstring_to_text
143  *
144  * Create a text value from a null-terminated C string.
145  *
146  * The new text value is freshly palloc'd with a full-size VARHDR.
147  */
148 text *
149 cstring_to_text(const char *s)
150 {
151  return cstring_to_text_with_len(s, strlen(s));
152 }
153 
154 /*
155  * cstring_to_text_with_len
156  *
157  * Same as cstring_to_text except the caller specifies the string length;
158  * the string need not be null_terminated.
159  */
160 text *
161 cstring_to_text_with_len(const char *s, int len)
162 {
163  text *result = (text *) palloc(len + VARHDRSZ);
164 
165  SET_VARSIZE(result, len + VARHDRSZ);
166  memcpy(VARDATA(result), s, len);
167 
168  return result;
169 }
170 
171 /*
172  * text_to_cstring
173  *
174  * Create a palloc'd, null-terminated C string from a text value.
175  *
176  * We support being passed a compressed or toasted text value.
177  * This is a bit bogus since such values shouldn't really be referred to as
178  * "text *", but it seems useful for robustness. If we didn't handle that
179  * case here, we'd need another routine that did, anyway.
180  */
181 char *
183 {
184  /* must cast away the const, unfortunately */
185  text *tunpacked = pg_detoast_datum_packed((struct varlena *) t);
186  int len = VARSIZE_ANY_EXHDR(tunpacked);
187  char *result;
188 
189  result = (char *) palloc(len + 1);
190  memcpy(result, VARDATA_ANY(tunpacked), len);
191  result[len] = '\0';
192 
193  if (tunpacked != t)
194  pfree(tunpacked);
195 
196  return result;
197 }
198 
199 /*
200  * text_to_cstring_buffer
201  *
202  * Copy a text value into a caller-supplied buffer of size dst_len.
203  *
204  * The text string is truncated if necessary to fit. The result is
205  * guaranteed null-terminated (unless dst_len == 0).
206  *
207  * We support being passed a compressed or toasted text value.
208  * This is a bit bogus since such values shouldn't really be referred to as
209  * "text *", but it seems useful for robustness. If we didn't handle that
210  * case here, we'd need another routine that did, anyway.
211  */
212 void
213 text_to_cstring_buffer(const text *src, char *dst, size_t dst_len)
214 {
215  /* must cast away the const, unfortunately */
216  text *srcunpacked = pg_detoast_datum_packed((struct varlena *) src);
217  size_t src_len = VARSIZE_ANY_EXHDR(srcunpacked);
218 
219  if (dst_len > 0)
220  {
221  dst_len--;
222  if (dst_len >= src_len)
223  dst_len = src_len;
224  else /* ensure truncation is encoding-safe */
225  dst_len = pg_mbcliplen(VARDATA_ANY(srcunpacked), src_len, dst_len);
226  memcpy(dst, VARDATA_ANY(srcunpacked), dst_len);
227  dst[dst_len] = '\0';
228  }
229 
230  if (srcunpacked != src)
231  pfree(srcunpacked);
232 }
233 
234 
235 /*****************************************************************************
236  * USER I/O ROUTINES *
237  *****************************************************************************/
238 
239 
240 #define VAL(CH) ((CH) - '0')
241 #define DIG(VAL) ((VAL) + '0')
242 
243 /*
244  * byteain - converts from printable representation of byte array
245  *
246  * Non-printable characters must be passed as '\nnn' (octal) and are
247  * converted to internal form. '\' must be passed as '\\'.
248  * ereport(ERROR, ...) if bad form.
249  *
250  * BUGS:
251  * The input is scanned twice.
252  * The error checking of input is minimal.
253  */
254 Datum
256 {
257  char *inputText = PG_GETARG_CSTRING(0);
258  char *tp;
259  char *rp;
260  int bc;
261  bytea *result;
262 
263  /* Recognize hex input */
264  if (inputText[0] == '\\' && inputText[1] == 'x')
265  {
266  size_t len = strlen(inputText);
267 
268  bc = (len - 2) / 2 + VARHDRSZ; /* maximum possible length */
269  result = palloc(bc);
270  bc = hex_decode(inputText + 2, len - 2, VARDATA(result));
271  SET_VARSIZE(result, bc + VARHDRSZ); /* actual length */
272 
273  PG_RETURN_BYTEA_P(result);
274  }
275 
276  /* Else, it's the traditional escaped style */
277  for (bc = 0, tp = inputText; *tp != '\0'; bc++)
278  {
279  if (tp[0] != '\\')
280  tp++;
281  else if ((tp[0] == '\\') &&
282  (tp[1] >= '0' && tp[1] <= '3') &&
283  (tp[2] >= '0' && tp[2] <= '7') &&
284  (tp[3] >= '0' && tp[3] <= '7'))
285  tp += 4;
286  else if ((tp[0] == '\\') &&
287  (tp[1] == '\\'))
288  tp += 2;
289  else
290  {
291  /*
292  * one backslash, not followed by another or ### valid octal
293  */
294  ereport(ERROR,
295  (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
296  errmsg("invalid input syntax for type %s", "bytea")));
297  }
298  }
299 
300  bc += VARHDRSZ;
301 
302  result = (bytea *) palloc(bc);
303  SET_VARSIZE(result, bc);
304 
305  tp = inputText;
306  rp = VARDATA(result);
307  while (*tp != '\0')
308  {
309  if (tp[0] != '\\')
310  *rp++ = *tp++;
311  else if ((tp[0] == '\\') &&
312  (tp[1] >= '0' && tp[1] <= '3') &&
313  (tp[2] >= '0' && tp[2] <= '7') &&
314  (tp[3] >= '0' && tp[3] <= '7'))
315  {
316  bc = VAL(tp[1]);
317  bc <<= 3;
318  bc += VAL(tp[2]);
319  bc <<= 3;
320  *rp++ = bc + VAL(tp[3]);
321 
322  tp += 4;
323  }
324  else if ((tp[0] == '\\') &&
325  (tp[1] == '\\'))
326  {
327  *rp++ = '\\';
328  tp += 2;
329  }
330  else
331  {
332  /*
333  * We should never get here. The first pass should not allow it.
334  */
335  ereport(ERROR,
336  (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
337  errmsg("invalid input syntax for type %s", "bytea")));
338  }
339  }
340 
341  PG_RETURN_BYTEA_P(result);
342 }
343 
344 /*
345  * byteaout - converts to printable representation of byte array
346  *
347  * In the traditional escaped format, non-printable characters are
348  * printed as '\nnn' (octal) and '\' as '\\'.
349  */
350 Datum
352 {
353  bytea *vlena = PG_GETARG_BYTEA_PP(0);
354  char *result;
355  char *rp;
356 
358  {
359  /* Print hex format */
360  rp = result = palloc(VARSIZE_ANY_EXHDR(vlena) * 2 + 2 + 1);
361  *rp++ = '\\';
362  *rp++ = 'x';
363  rp += hex_encode(VARDATA_ANY(vlena), VARSIZE_ANY_EXHDR(vlena), rp);
364  }
365  else if (bytea_output == BYTEA_OUTPUT_ESCAPE)
366  {
367  /* Print traditional escaped format */
368  char *vp;
369  int len;
370  int i;
371 
372  len = 1; /* empty string has 1 char */
373  vp = VARDATA_ANY(vlena);
374  for (i = VARSIZE_ANY_EXHDR(vlena); i != 0; i--, vp++)
375  {
376  if (*vp == '\\')
377  len += 2;
378  else if ((unsigned char) *vp < 0x20 || (unsigned char) *vp > 0x7e)
379  len += 4;
380  else
381  len++;
382  }
383  rp = result = (char *) palloc(len);
384  vp = VARDATA_ANY(vlena);
385  for (i = VARSIZE_ANY_EXHDR(vlena); i != 0; i--, vp++)
386  {
387  if (*vp == '\\')
388  {
389  *rp++ = '\\';
390  *rp++ = '\\';
391  }
392  else if ((unsigned char) *vp < 0x20 || (unsigned char) *vp > 0x7e)
393  {
394  int val; /* holds unprintable chars */
395 
396  val = *vp;
397  rp[0] = '\\';
398  rp[3] = DIG(val & 07);
399  val >>= 3;
400  rp[2] = DIG(val & 07);
401  val >>= 3;
402  rp[1] = DIG(val & 03);
403  rp += 4;
404  }
405  else
406  *rp++ = *vp;
407  }
408  }
409  else
410  {
411  elog(ERROR, "unrecognized bytea_output setting: %d",
412  bytea_output);
413  rp = result = NULL; /* keep compiler quiet */
414  }
415  *rp = '\0';
416  PG_RETURN_CSTRING(result);
417 }
418 
419 /*
420  * bytearecv - converts external binary format to bytea
421  */
422 Datum
424 {
426  bytea *result;
427  int nbytes;
428 
429  nbytes = buf->len - buf->cursor;
430  result = (bytea *) palloc(nbytes + VARHDRSZ);
431  SET_VARSIZE(result, nbytes + VARHDRSZ);
432  pq_copymsgbytes(buf, VARDATA(result), nbytes);
433  PG_RETURN_BYTEA_P(result);
434 }
435 
436 /*
437  * byteasend - converts bytea to binary format
438  *
439  * This is a special case: just copy the input...
440  */
441 Datum
443 {
444  bytea *vlena = PG_GETARG_BYTEA_P_COPY(0);
445 
446  PG_RETURN_BYTEA_P(vlena);
447 }
448 
449 Datum
451 {
453 
454  state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0);
455 
456  /* Append the value unless null. */
457  if (!PG_ARGISNULL(1))
458  {
460 
461  /* On the first time through, we ignore the delimiter. */
462  if (state == NULL)
463  state = makeStringAggState(fcinfo);
464  else if (!PG_ARGISNULL(2))
465  {
466  bytea *delim = PG_GETARG_BYTEA_PP(2);
467 
469  }
470 
472  }
473 
474  /*
475  * The transition type for string_agg() is declared to be "internal",
476  * which is a pass-by-value type the same size as a pointer.
477  */
478  PG_RETURN_POINTER(state);
479 }
480 
481 Datum
483 {
485 
486  /* cannot be called directly because of internal-type argument */
487  Assert(AggCheckCallContext(fcinfo, NULL));
488 
489  state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0);
490 
491  if (state != NULL)
492  {
493  bytea *result;
494 
495  result = (bytea *) palloc(state->len + VARHDRSZ);
496  SET_VARSIZE(result, state->len + VARHDRSZ);
497  memcpy(VARDATA(result), state->data, state->len);
498  PG_RETURN_BYTEA_P(result);
499  }
500  else
501  PG_RETURN_NULL();
502 }
503 
504 /*
505  * textin - converts "..." to internal representation
506  */
507 Datum
509 {
510  char *inputText = PG_GETARG_CSTRING(0);
511 
512  PG_RETURN_TEXT_P(cstring_to_text(inputText));
513 }
514 
515 /*
516  * textout - converts internal representation to "..."
517  */
518 Datum
520 {
521  Datum txt = PG_GETARG_DATUM(0);
522 
524 }
525 
526 /*
527  * textrecv - converts external binary format to text
528  */
529 Datum
531 {
533  text *result;
534  char *str;
535  int nbytes;
536 
537  str = pq_getmsgtext(buf, buf->len - buf->cursor, &nbytes);
538 
539  result = cstring_to_text_with_len(str, nbytes);
540  pfree(str);
541  PG_RETURN_TEXT_P(result);
542 }
543 
544 /*
545  * textsend - converts text to binary format
546  */
547 Datum
549 {
550  text *t = PG_GETARG_TEXT_PP(0);
552 
553  pq_begintypsend(&buf);
556 }
557 
558 
559 /*
560  * unknownin - converts "..." to internal representation
561  */
562 Datum
564 {
565  char *str = PG_GETARG_CSTRING(0);
566 
567  /* representation is same as cstring */
569 }
570 
571 /*
572  * unknownout - converts internal representation to "..."
573  */
574 Datum
576 {
577  /* representation is same as cstring */
578  char *str = PG_GETARG_CSTRING(0);
579 
581 }
582 
583 /*
584  * unknownrecv - converts external binary format to unknown
585  */
586 Datum
588 {
590  char *str;
591  int nbytes;
592 
593  str = pq_getmsgtext(buf, buf->len - buf->cursor, &nbytes);
594  /* representation is same as cstring */
595  PG_RETURN_CSTRING(str);
596 }
597 
598 /*
599  * unknownsend - converts unknown to binary format
600  */
601 Datum
603 {
604  /* representation is same as cstring */
605  char *str = PG_GETARG_CSTRING(0);
607 
608  pq_begintypsend(&buf);
609  pq_sendtext(&buf, str, strlen(str));
611 }
612 
613 
614 /* ========== PUBLIC ROUTINES ========== */
615 
616 /*
617  * textlen -
618  * returns the logical length of a text*
619  * (which is less than the VARSIZE of the text*)
620  */
621 Datum
623 {
624  Datum str = PG_GETARG_DATUM(0);
625 
626  /* try to avoid decompressing argument */
628 }
629 
630 /*
631  * text_length -
632  * Does the real work for textlen()
633  *
634  * This is broken out so it can be called directly by other string processing
635  * functions. Note that the argument is passed as a Datum, to indicate that
636  * it may still be in compressed form. We can avoid decompressing it at all
637  * in some cases.
638  */
639 static int32
641 {
642  /* fastpath when max encoding length is one */
645  else
646  {
647  text *t = DatumGetTextPP(str);
648 
650  VARSIZE_ANY_EXHDR(t)));
651  }
652 }
653 
654 /*
655  * textoctetlen -
656  * returns the physical length of a text*
657  * (which is less than the VARSIZE of the text*)
658  */
659 Datum
661 {
662  Datum str = PG_GETARG_DATUM(0);
663 
664  /* We need not detoast the input at all */
666 }
667 
668 /*
669  * textcat -
670  * takes two text* and returns a text* that is the concatenation of
671  * the two.
672  *
673  * Rewritten by Sapa, sapa@hq.icb.chel.su. 8-Jul-96.
674  * Updated by Thomas, Thomas.Lockhart@jpl.nasa.gov 1997-07-10.
675  * Allocate space for output in all cases.
676  * XXX - thomas 1997-07-10
677  */
678 Datum
680 {
681  text *t1 = PG_GETARG_TEXT_PP(0);
682  text *t2 = PG_GETARG_TEXT_PP(1);
683 
685 }
686 
687 /*
688  * text_catenate
689  * Guts of textcat(), broken out so it can be used by other functions
690  *
691  * Arguments can be in short-header form, but not compressed or out-of-line
692  */
693 static text *
695 {
696  text *result;
697  int len1,
698  len2,
699  len;
700  char *ptr;
701 
702  len1 = VARSIZE_ANY_EXHDR(t1);
703  len2 = VARSIZE_ANY_EXHDR(t2);
704 
705  /* paranoia ... probably should throw error instead? */
706  if (len1 < 0)
707  len1 = 0;
708  if (len2 < 0)
709  len2 = 0;
710 
711  len = len1 + len2 + VARHDRSZ;
712  result = (text *) palloc(len);
713 
714  /* Set size of result string... */
715  SET_VARSIZE(result, len);
716 
717  /* Fill data field of result string... */
718  ptr = VARDATA(result);
719  if (len1 > 0)
720  memcpy(ptr, VARDATA_ANY(t1), len1);
721  if (len2 > 0)
722  memcpy(ptr + len1, VARDATA_ANY(t2), len2);
723 
724  return result;
725 }
726 
727 /*
728  * charlen_to_bytelen()
729  * Compute the number of bytes occupied by n characters starting at *p
730  *
731  * It is caller's responsibility that there actually are n characters;
732  * the string need not be null-terminated.
733  */
734 static int
735 charlen_to_bytelen(const char *p, int n)
736 {
738  {
739  /* Optimization for single-byte encodings */
740  return n;
741  }
742  else
743  {
744  const char *s;
745 
746  for (s = p; n > 0; n--)
747  s += pg_mblen(s);
748 
749  return s - p;
750  }
751 }
752 
753 /*
754  * text_substr()
755  * Return a substring starting at the specified position.
756  * - thomas 1997-12-31
757  *
758  * Input:
759  * - string
760  * - starting position (is one-based)
761  * - string length
762  *
763  * If the starting position is zero or less, then return from the start of the string
764  * adjusting the length to be consistent with the "negative start" per SQL.
765  * If the length is less than zero, return the remaining string.
766  *
767  * Added multibyte support.
768  * - Tatsuo Ishii 1998-4-21
769  * Changed behavior if starting position is less than one to conform to SQL behavior.
770  * Formerly returned the entire string; now returns a portion.
771  * - Thomas Lockhart 1998-12-10
772  * Now uses faster TOAST-slicing interface
773  * - John Gray 2002-02-22
774  * Remove "#ifdef MULTIBYTE" and test for encoding_max_length instead. Change
775  * behaviors conflicting with SQL to meet SQL (if E = S + L < S throw
776  * error; if E < 1, return '', not entire string). Fixed MB related bug when
777  * S > LC and < LC + 4 sometimes garbage characters are returned.
778  * - Joe Conway 2002-08-10
779  */
780 Datum
782 {
784  PG_GETARG_INT32(1),
785  PG_GETARG_INT32(2),
786  false));
787 }
788 
789 /*
790  * text_substr_no_len -
791  * Wrapper to avoid opr_sanity failure due to
792  * one function accepting a different number of args.
793  */
794 Datum
796 {
798  PG_GETARG_INT32(1),
799  -1, true));
800 }
801 
802 /*
803  * text_substring -
804  * Does the real work for text_substr() and text_substr_no_len()
805  *
806  * This is broken out so it can be called directly by other string processing
807  * functions. Note that the argument is passed as a Datum, to indicate that
808  * it may still be in compressed/toasted form. We can avoid detoasting all
809  * of it in some cases.
810  *
811  * The result is always a freshly palloc'd datum.
812  */
813 static text *
814 text_substring(Datum str, int32 start, int32 length, bool length_not_specified)
815 {
817  int32 S = start; /* start position */
818  int32 S1; /* adjusted start position */
819  int32 L1; /* adjusted substring length */
820 
821  /* life is easy if the encoding max length is 1 */
822  if (eml == 1)
823  {
824  S1 = Max(S, 1);
825 
826  if (length_not_specified) /* special case - get length to end of
827  * string */
828  L1 = -1;
829  else
830  {
831  /* end position */
832  int E = S + length;
833 
834  /*
835  * A negative value for L is the only way for the end position to
836  * be before the start. SQL99 says to throw an error.
837  */
838  if (E < S)
839  ereport(ERROR,
840  (errcode(ERRCODE_SUBSTRING_ERROR),
841  errmsg("negative substring length not allowed")));
842 
843  /*
844  * A zero or negative value for the end position can happen if the
845  * start was negative or one. SQL99 says to return a zero-length
846  * string.
847  */
848  if (E < 1)
849  return cstring_to_text("");
850 
851  L1 = E - S1;
852  }
853 
854  /*
855  * If the start position is past the end of the string, SQL99 says to
856  * return a zero-length string -- PG_GETARG_TEXT_P_SLICE() will do
857  * that for us. Convert to zero-based starting position
858  */
859  return DatumGetTextPSlice(str, S1 - 1, L1);
860  }
861  else if (eml > 1)
862  {
863  /*
864  * When encoding max length is > 1, we can't get LC without
865  * detoasting, so we'll grab a conservatively large slice now and go
866  * back later to do the right thing
867  */
868  int32 slice_start;
869  int32 slice_size;
870  int32 slice_strlen;
871  text *slice;
872  int32 E1;
873  int32 i;
874  char *p;
875  char *s;
876  text *ret;
877 
878  /*
879  * if S is past the end of the string, the tuple toaster will return a
880  * zero-length string to us
881  */
882  S1 = Max(S, 1);
883 
884  /*
885  * We need to start at position zero because there is no way to know
886  * in advance which byte offset corresponds to the supplied start
887  * position.
888  */
889  slice_start = 0;
890 
891  if (length_not_specified) /* special case - get length to end of
892  * string */
893  slice_size = L1 = -1;
894  else
895  {
896  int E = S + length;
897 
898  /*
899  * A negative value for L is the only way for the end position to
900  * be before the start. SQL99 says to throw an error.
901  */
902  if (E < S)
903  ereport(ERROR,
904  (errcode(ERRCODE_SUBSTRING_ERROR),
905  errmsg("negative substring length not allowed")));
906 
907  /*
908  * A zero or negative value for the end position can happen if the
909  * start was negative or one. SQL99 says to return a zero-length
910  * string.
911  */
912  if (E < 1)
913  return cstring_to_text("");
914 
915  /*
916  * if E is past the end of the string, the tuple toaster will
917  * truncate the length for us
918  */
919  L1 = E - S1;
920 
921  /*
922  * Total slice size in bytes can't be any longer than the start
923  * position plus substring length times the encoding max length.
924  */
925  slice_size = (S1 + L1) * eml;
926  }
927 
928  /*
929  * If we're working with an untoasted source, no need to do an extra
930  * copying step.
931  */
934  slice = DatumGetTextPSlice(str, slice_start, slice_size);
935  else
936  slice = (text *) DatumGetPointer(str);
937 
938  /* see if we got back an empty string */
939  if (VARSIZE_ANY_EXHDR(slice) == 0)
940  {
941  if (slice != (text *) DatumGetPointer(str))
942  pfree(slice);
943  return cstring_to_text("");
944  }
945 
946  /* Now we can get the actual length of the slice in MB characters */
947  slice_strlen = pg_mbstrlen_with_len(VARDATA_ANY(slice),
948  VARSIZE_ANY_EXHDR(slice));
949 
950  /*
951  * Check that the start position wasn't > slice_strlen. If so, SQL99
952  * says to return a zero-length string.
953  */
954  if (S1 > slice_strlen)
955  {
956  if (slice != (text *) DatumGetPointer(str))
957  pfree(slice);
958  return cstring_to_text("");
959  }
960 
961  /*
962  * Adjust L1 and E1 now that we know the slice string length. Again
963  * remember that S1 is one based, and slice_start is zero based.
964  */
965  if (L1 > -1)
966  E1 = Min(S1 + L1, slice_start + 1 + slice_strlen);
967  else
968  E1 = slice_start + 1 + slice_strlen;
969 
970  /*
971  * Find the start position in the slice; remember S1 is not zero based
972  */
973  p = VARDATA_ANY(slice);
974  for (i = 0; i < S1 - 1; i++)
975  p += pg_mblen(p);
976 
977  /* hang onto a pointer to our start position */
978  s = p;
979 
980  /*
981  * Count the actual bytes used by the substring of the requested
982  * length.
983  */
984  for (i = S1; i < E1; i++)
985  p += pg_mblen(p);
986 
987  ret = (text *) palloc(VARHDRSZ + (p - s));
988  SET_VARSIZE(ret, VARHDRSZ + (p - s));
989  memcpy(VARDATA(ret), s, (p - s));
990 
991  if (slice != (text *) DatumGetPointer(str))
992  pfree(slice);
993 
994  return ret;
995  }
996  else
997  elog(ERROR, "invalid backend encoding: encoding max length < 1");
998 
999  /* not reached: suppress compiler warning */
1000  return NULL;
1001 }
1002 
1003 /*
1004  * textoverlay
1005  * Replace specified substring of first string with second
1006  *
1007  * The SQL standard defines OVERLAY() in terms of substring and concatenation.
1008  * This code is a direct implementation of what the standard says.
1009  */
1010 Datum
1012 {
1013  text *t1 = PG_GETARG_TEXT_PP(0);
1014  text *t2 = PG_GETARG_TEXT_PP(1);
1015  int sp = PG_GETARG_INT32(2); /* substring start position */
1016  int sl = PG_GETARG_INT32(3); /* substring length */
1017 
1018  PG_RETURN_TEXT_P(text_overlay(t1, t2, sp, sl));
1019 }
1020 
1021 Datum
1023 {
1024  text *t1 = PG_GETARG_TEXT_PP(0);
1025  text *t2 = PG_GETARG_TEXT_PP(1);
1026  int sp = PG_GETARG_INT32(2); /* substring start position */
1027  int sl;
1028 
1029  sl = text_length(PointerGetDatum(t2)); /* defaults to length(t2) */
1030  PG_RETURN_TEXT_P(text_overlay(t1, t2, sp, sl));
1031 }
1032 
1033 static text *
1034 text_overlay(text *t1, text *t2, int sp, int sl)
1035 {
1036  text *result;
1037  text *s1;
1038  text *s2;
1039  int sp_pl_sl;
1040 
1041  /*
1042  * Check for possible integer-overflow cases. For negative sp, throw a
1043  * "substring length" error because that's what should be expected
1044  * according to the spec's definition of OVERLAY().
1045  */
1046  if (sp <= 0)
1047  ereport(ERROR,
1048  (errcode(ERRCODE_SUBSTRING_ERROR),
1049  errmsg("negative substring length not allowed")));
1050  sp_pl_sl = sp + sl;
1051  if (sp_pl_sl <= sl)
1052  ereport(ERROR,
1053  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1054  errmsg("integer out of range")));
1055 
1056  s1 = text_substring(PointerGetDatum(t1), 1, sp - 1, false);
1057  s2 = text_substring(PointerGetDatum(t1), sp_pl_sl, -1, true);
1058  result = text_catenate(s1, t2);
1059  result = text_catenate(result, s2);
1060 
1061  return result;
1062 }
1063 
1064 /*
1065  * textpos -
1066  * Return the position of the specified substring.
1067  * Implements the SQL POSITION() function.
1068  * Ref: A Guide To The SQL Standard, Date & Darwen, 1997
1069  * - thomas 1997-07-27
1070  */
1071 Datum
1073 {
1074  text *str = PG_GETARG_TEXT_PP(0);
1075  text *search_str = PG_GETARG_TEXT_PP(1);
1076 
1077  PG_RETURN_INT32((int32) text_position(str, search_str));
1078 }
1079 
1080 /*
1081  * text_position -
1082  * Does the real work for textpos()
1083  *
1084  * Inputs:
1085  * t1 - string to be searched
1086  * t2 - pattern to match within t1
1087  * Result:
1088  * Character index of the first matched char, starting from 1,
1089  * or 0 if no match.
1090  *
1091  * This is broken out so it can be called directly by other string processing
1092  * functions.
1093  */
1094 static int
1096 {
1098  int result;
1099 
1100  text_position_setup(t1, t2, &state);
1101  result = text_position_next(1, &state);
1102  text_position_cleanup(&state);
1103  return result;
1104 }
1105 
1106 
1107 /*
1108  * text_position_setup, text_position_next, text_position_cleanup -
1109  * Component steps of text_position()
1110  *
1111  * These are broken out so that a string can be efficiently searched for
1112  * multiple occurrences of the same pattern. text_position_next may be
1113  * called multiple times with increasing values of start_pos, which is
1114  * the 1-based character position to start the search from. The "state"
1115  * variable is normally just a local variable in the caller.
1116  */
1117 
1118 static void
1120 {
1121  int len1 = VARSIZE_ANY_EXHDR(t1);
1122  int len2 = VARSIZE_ANY_EXHDR(t2);
1123 
1125  {
1126  /* simple case - single byte encoding */
1127  state->use_wchar = false;
1128  state->str1 = VARDATA_ANY(t1);
1129  state->str2 = VARDATA_ANY(t2);
1130  state->len1 = len1;
1131  state->len2 = len2;
1132  }
1133  else
1134  {
1135  /* not as simple - multibyte encoding */
1136  pg_wchar *p1,
1137  *p2;
1138 
1139  p1 = (pg_wchar *) palloc((len1 + 1) * sizeof(pg_wchar));
1140  len1 = pg_mb2wchar_with_len(VARDATA_ANY(t1), p1, len1);
1141  p2 = (pg_wchar *) palloc((len2 + 1) * sizeof(pg_wchar));
1142  len2 = pg_mb2wchar_with_len(VARDATA_ANY(t2), p2, len2);
1143 
1144  state->use_wchar = true;
1145  state->wstr1 = p1;
1146  state->wstr2 = p2;
1147  state->len1 = len1;
1148  state->len2 = len2;
1149  }
1150 
1151  /*
1152  * Prepare the skip table for Boyer-Moore-Horspool searching. In these
1153  * notes we use the terminology that the "haystack" is the string to be
1154  * searched (t1) and the "needle" is the pattern being sought (t2).
1155  *
1156  * If the needle is empty or bigger than the haystack then there is no
1157  * point in wasting cycles initializing the table. We also choose not to
1158  * use B-M-H for needles of length 1, since the skip table can't possibly
1159  * save anything in that case.
1160  */
1161  if (len1 >= len2 && len2 > 1)
1162  {
1163  int searchlength = len1 - len2;
1164  int skiptablemask;
1165  int last;
1166  int i;
1167 
1168  /*
1169  * First we must determine how much of the skip table to use. The
1170  * declaration of TextPositionState allows up to 256 elements, but for
1171  * short search problems we don't really want to have to initialize so
1172  * many elements --- it would take too long in comparison to the
1173  * actual search time. So we choose a useful skip table size based on
1174  * the haystack length minus the needle length. The closer the needle
1175  * length is to the haystack length the less useful skipping becomes.
1176  *
1177  * Note: since we use bit-masking to select table elements, the skip
1178  * table size MUST be a power of 2, and so the mask must be 2^N-1.
1179  */
1180  if (searchlength < 16)
1181  skiptablemask = 3;
1182  else if (searchlength < 64)
1183  skiptablemask = 7;
1184  else if (searchlength < 128)
1185  skiptablemask = 15;
1186  else if (searchlength < 512)
1187  skiptablemask = 31;
1188  else if (searchlength < 2048)
1189  skiptablemask = 63;
1190  else if (searchlength < 4096)
1191  skiptablemask = 127;
1192  else
1193  skiptablemask = 255;
1194  state->skiptablemask = skiptablemask;
1195 
1196  /*
1197  * Initialize the skip table. We set all elements to the needle
1198  * length, since this is the correct skip distance for any character
1199  * not found in the needle.
1200  */
1201  for (i = 0; i <= skiptablemask; i++)
1202  state->skiptable[i] = len2;
1203 
1204  /*
1205  * Now examine the needle. For each character except the last one,
1206  * set the corresponding table element to the appropriate skip
1207  * distance. Note that when two characters share the same skip table
1208  * entry, the one later in the needle must determine the skip
1209  * distance.
1210  */
1211  last = len2 - 1;
1212 
1213  if (!state->use_wchar)
1214  {
1215  const char *str2 = state->str2;
1216 
1217  for (i = 0; i < last; i++)
1218  state->skiptable[(unsigned char) str2[i] & skiptablemask] = last - i;
1219  }
1220  else
1221  {
1222  const pg_wchar *wstr2 = state->wstr2;
1223 
1224  for (i = 0; i < last; i++)
1225  state->skiptable[wstr2[i] & skiptablemask] = last - i;
1226  }
1227  }
1228 }
1229 
1230 static int
1232 {
1233  int haystack_len = state->len1;
1234  int needle_len = state->len2;
1235  int skiptablemask = state->skiptablemask;
1236 
1237  Assert(start_pos > 0); /* else caller error */
1238 
1239  if (needle_len <= 0)
1240  return start_pos; /* result for empty pattern */
1241 
1242  start_pos--; /* adjust for zero based arrays */
1243 
1244  /* Done if the needle can't possibly fit */
1245  if (haystack_len < start_pos + needle_len)
1246  return 0;
1247 
1248  if (!state->use_wchar)
1249  {
1250  /* simple case - single byte encoding */
1251  const char *haystack = state->str1;
1252  const char *needle = state->str2;
1253  const char *haystack_end = &haystack[haystack_len];
1254  const char *hptr;
1255 
1256  if (needle_len == 1)
1257  {
1258  /* No point in using B-M-H for a one-character needle */
1259  char nchar = *needle;
1260 
1261  hptr = &haystack[start_pos];
1262  while (hptr < haystack_end)
1263  {
1264  if (*hptr == nchar)
1265  return hptr - haystack + 1;
1266  hptr++;
1267  }
1268  }
1269  else
1270  {
1271  const char *needle_last = &needle[needle_len - 1];
1272 
1273  /* Start at startpos plus the length of the needle */
1274  hptr = &haystack[start_pos + needle_len - 1];
1275  while (hptr < haystack_end)
1276  {
1277  /* Match the needle scanning *backward* */
1278  const char *nptr;
1279  const char *p;
1280 
1281  nptr = needle_last;
1282  p = hptr;
1283  while (*nptr == *p)
1284  {
1285  /* Matched it all? If so, return 1-based position */
1286  if (nptr == needle)
1287  return p - haystack + 1;
1288  nptr--, p--;
1289  }
1290 
1291  /*
1292  * No match, so use the haystack char at hptr to decide how
1293  * far to advance. If the needle had any occurrence of that
1294  * character (or more precisely, one sharing the same
1295  * skiptable entry) before its last character, then we advance
1296  * far enough to align the last such needle character with
1297  * that haystack position. Otherwise we can advance by the
1298  * whole needle length.
1299  */
1300  hptr += state->skiptable[(unsigned char) *hptr & skiptablemask];
1301  }
1302  }
1303  }
1304  else
1305  {
1306  /* The multibyte char version. This works exactly the same way. */
1307  const pg_wchar *haystack = state->wstr1;
1308  const pg_wchar *needle = state->wstr2;
1309  const pg_wchar *haystack_end = &haystack[haystack_len];
1310  const pg_wchar *hptr;
1311 
1312  if (needle_len == 1)
1313  {
1314  /* No point in using B-M-H for a one-character needle */
1315  pg_wchar nchar = *needle;
1316 
1317  hptr = &haystack[start_pos];
1318  while (hptr < haystack_end)
1319  {
1320  if (*hptr == nchar)
1321  return hptr - haystack + 1;
1322  hptr++;
1323  }
1324  }
1325  else
1326  {
1327  const pg_wchar *needle_last = &needle[needle_len - 1];
1328 
1329  /* Start at startpos plus the length of the needle */
1330  hptr = &haystack[start_pos + needle_len - 1];
1331  while (hptr < haystack_end)
1332  {
1333  /* Match the needle scanning *backward* */
1334  const pg_wchar *nptr;
1335  const pg_wchar *p;
1336 
1337  nptr = needle_last;
1338  p = hptr;
1339  while (*nptr == *p)
1340  {
1341  /* Matched it all? If so, return 1-based position */
1342  if (nptr == needle)
1343  return p - haystack + 1;
1344  nptr--, p--;
1345  }
1346 
1347  /*
1348  * No match, so use the haystack char at hptr to decide how
1349  * far to advance. If the needle had any occurrence of that
1350  * character (or more precisely, one sharing the same
1351  * skiptable entry) before its last character, then we advance
1352  * far enough to align the last such needle character with
1353  * that haystack position. Otherwise we can advance by the
1354  * whole needle length.
1355  */
1356  hptr += state->skiptable[*hptr & skiptablemask];
1357  }
1358  }
1359  }
1360 
1361  return 0; /* not found */
1362 }
1363 
1364 static void
1366 {
1367  if (state->use_wchar)
1368  {
1369  pfree(state->wstr1);
1370  pfree(state->wstr2);
1371  }
1372 }
1373 
1374 /* varstr_cmp()
1375  * Comparison function for text strings with given lengths.
1376  * Includes locale support, but must copy strings to temporary memory
1377  * to allow null-termination for inputs to strcoll().
1378  * Returns an integer less than, equal to, or greater than zero, indicating
1379  * whether arg1 is less than, equal to, or greater than arg2.
1380  */
1381 int
1382 varstr_cmp(char *arg1, int len1, char *arg2, int len2, Oid collid)
1383 {
1384  int result;
1385 
1386  /*
1387  * Unfortunately, there is no strncoll(), so in the non-C locale case we
1388  * have to do some memory copying. This turns out to be significantly
1389  * slower, so we optimize the case where LC_COLLATE is C. We also try to
1390  * optimize relatively-short strings by avoiding palloc/pfree overhead.
1391  */
1392  if (lc_collate_is_c(collid))
1393  {
1394  result = memcmp(arg1, arg2, Min(len1, len2));
1395  if ((result == 0) && (len1 != len2))
1396  result = (len1 < len2) ? -1 : 1;
1397  }
1398  else
1399  {
1400  char a1buf[TEXTBUFLEN];
1401  char a2buf[TEXTBUFLEN];
1402  char *a1p,
1403  *a2p;
1404  pg_locale_t mylocale = 0;
1405 
1406  if (collid != DEFAULT_COLLATION_OID)
1407  {
1408  if (!OidIsValid(collid))
1409  {
1410  /*
1411  * This typically means that the parser could not resolve a
1412  * conflict of implicit collations, so report it that way.
1413  */
1414  ereport(ERROR,
1415  (errcode(ERRCODE_INDETERMINATE_COLLATION),
1416  errmsg("could not determine which collation to use for string comparison"),
1417  errhint("Use the COLLATE clause to set the collation explicitly.")));
1418  }
1419  mylocale = pg_newlocale_from_collation(collid);
1420  }
1421 
1422  /*
1423  * memcmp() can't tell us which of two unequal strings sorts first,
1424  * but it's a cheap way to tell if they're equal. Testing shows that
1425  * memcmp() followed by strcoll() is only trivially slower than
1426  * strcoll() by itself, so we don't lose much if this doesn't work out
1427  * very often, and if it does - for example, because there are many
1428  * equal strings in the input - then we win big by avoiding expensive
1429  * collation-aware comparisons.
1430  */
1431  if (len1 == len2 && memcmp(arg1, arg2, len1) == 0)
1432  return 0;
1433 
1434 #ifdef WIN32
1435  /* Win32 does not have UTF-8, so we need to map to UTF-16 */
1436  if (GetDatabaseEncoding() == PG_UTF8
1437  && (!mylocale || mylocale->provider == COLLPROVIDER_LIBC))
1438  {
1439  int a1len;
1440  int a2len;
1441  int r;
1442 
1443  if (len1 >= TEXTBUFLEN / 2)
1444  {
1445  a1len = len1 * 2 + 2;
1446  a1p = palloc(a1len);
1447  }
1448  else
1449  {
1450  a1len = TEXTBUFLEN;
1451  a1p = a1buf;
1452  }
1453  if (len2 >= TEXTBUFLEN / 2)
1454  {
1455  a2len = len2 * 2 + 2;
1456  a2p = palloc(a2len);
1457  }
1458  else
1459  {
1460  a2len = TEXTBUFLEN;
1461  a2p = a2buf;
1462  }
1463 
1464  /* stupid Microsloth API does not work for zero-length input */
1465  if (len1 == 0)
1466  r = 0;
1467  else
1468  {
1469  r = MultiByteToWideChar(CP_UTF8, 0, arg1, len1,
1470  (LPWSTR) a1p, a1len / 2);
1471  if (!r)
1472  ereport(ERROR,
1473  (errmsg("could not convert string to UTF-16: error code %lu",
1474  GetLastError())));
1475  }
1476  ((LPWSTR) a1p)[r] = 0;
1477 
1478  if (len2 == 0)
1479  r = 0;
1480  else
1481  {
1482  r = MultiByteToWideChar(CP_UTF8, 0, arg2, len2,
1483  (LPWSTR) a2p, a2len / 2);
1484  if (!r)
1485  ereport(ERROR,
1486  (errmsg("could not convert string to UTF-16: error code %lu",
1487  GetLastError())));
1488  }
1489  ((LPWSTR) a2p)[r] = 0;
1490 
1491  errno = 0;
1492 #ifdef HAVE_LOCALE_T
1493  if (mylocale)
1494  result = wcscoll_l((LPWSTR) a1p, (LPWSTR) a2p, mylocale->info.lt);
1495  else
1496 #endif
1497  result = wcscoll((LPWSTR) a1p, (LPWSTR) a2p);
1498  if (result == 2147483647) /* _NLSCMPERROR; missing from mingw
1499  * headers */
1500  ereport(ERROR,
1501  (errmsg("could not compare Unicode strings: %m")));
1502 
1503  /*
1504  * In some locales wcscoll() can claim that nonidentical strings
1505  * are equal. Believing that would be bad news for a number of
1506  * reasons, so we follow Perl's lead and sort "equal" strings
1507  * according to strcmp (on the UTF-8 representation).
1508  */
1509  if (result == 0)
1510  {
1511  result = memcmp(arg1, arg2, Min(len1, len2));
1512  if ((result == 0) && (len1 != len2))
1513  result = (len1 < len2) ? -1 : 1;
1514  }
1515 
1516  if (a1p != a1buf)
1517  pfree(a1p);
1518  if (a2p != a2buf)
1519  pfree(a2p);
1520 
1521  return result;
1522  }
1523 #endif /* WIN32 */
1524 
1525  if (len1 >= TEXTBUFLEN)
1526  a1p = (char *) palloc(len1 + 1);
1527  else
1528  a1p = a1buf;
1529  if (len2 >= TEXTBUFLEN)
1530  a2p = (char *) palloc(len2 + 1);
1531  else
1532  a2p = a2buf;
1533 
1534  memcpy(a1p, arg1, len1);
1535  a1p[len1] = '\0';
1536  memcpy(a2p, arg2, len2);
1537  a2p[len2] = '\0';
1538 
1539  if (mylocale)
1540  {
1541  if (mylocale->provider == COLLPROVIDER_ICU)
1542  {
1543 #ifdef USE_ICU
1544 #ifdef HAVE_UCOL_STRCOLLUTF8
1545  if (GetDatabaseEncoding() == PG_UTF8)
1546  {
1547  UErrorCode status;
1548 
1549  status = U_ZERO_ERROR;
1550  result = ucol_strcollUTF8(mylocale->info.icu.ucol,
1551  arg1, len1,
1552  arg2, len2,
1553  &status);
1554  if (U_FAILURE(status))
1555  ereport(ERROR,
1556  (errmsg("collation failed: %s", u_errorName(status))));
1557  }
1558  else
1559 #endif
1560  {
1561  int32_t ulen1,
1562  ulen2;
1563  UChar *uchar1,
1564  *uchar2;
1565 
1566  ulen1 = icu_to_uchar(&uchar1, arg1, len1);
1567  ulen2 = icu_to_uchar(&uchar2, arg2, len2);
1568 
1569  result = ucol_strcoll(mylocale->info.icu.ucol,
1570  uchar1, ulen1,
1571  uchar2, ulen2);
1572 
1573  pfree(uchar1);
1574  pfree(uchar2);
1575  }
1576 #else /* not USE_ICU */
1577  /* shouldn't happen */
1578  elog(ERROR, "unsupported collprovider: %c", mylocale->provider);
1579 #endif /* not USE_ICU */
1580  }
1581  else
1582  {
1583 #ifdef HAVE_LOCALE_T
1584  result = strcoll_l(a1p, a2p, mylocale->info.lt);
1585 #else
1586  /* shouldn't happen */
1587  elog(ERROR, "unsupported collprovider: %c", mylocale->provider);
1588 #endif
1589  }
1590  }
1591  else
1592  result = strcoll(a1p, a2p);
1593 
1594  /*
1595  * In some locales strcoll() can claim that nonidentical strings are
1596  * equal. Believing that would be bad news for a number of reasons,
1597  * so we follow Perl's lead and sort "equal" strings according to
1598  * strcmp().
1599  */
1600  if (result == 0)
1601  result = strcmp(a1p, a2p);
1602 
1603  if (a1p != a1buf)
1604  pfree(a1p);
1605  if (a2p != a2buf)
1606  pfree(a2p);
1607  }
1608 
1609  return result;
1610 }
1611 
1612 /* text_cmp()
1613  * Internal comparison function for text strings.
1614  * Returns -1, 0 or 1
1615  */
1616 static int
1617 text_cmp(text *arg1, text *arg2, Oid collid)
1618 {
1619  char *a1p,
1620  *a2p;
1621  int len1,
1622  len2;
1623 
1624  a1p = VARDATA_ANY(arg1);
1625  a2p = VARDATA_ANY(arg2);
1626 
1627  len1 = VARSIZE_ANY_EXHDR(arg1);
1628  len2 = VARSIZE_ANY_EXHDR(arg2);
1629 
1630  return varstr_cmp(a1p, len1, a2p, len2, collid);
1631 }
1632 
1633 /*
1634  * Comparison functions for text strings.
1635  *
1636  * Note: btree indexes need these routines not to leak memory; therefore,
1637  * be careful to free working copies of toasted datums. Most places don't
1638  * need to be so careful.
1639  */
1640 
1641 Datum
1643 {
1644  Datum arg1 = PG_GETARG_DATUM(0);
1645  Datum arg2 = PG_GETARG_DATUM(1);
1646  bool result;
1647  Size len1,
1648  len2;
1649 
1650  /*
1651  * Since we only care about equality or not-equality, we can avoid all the
1652  * expense of strcoll() here, and just do bitwise comparison. In fact, we
1653  * don't even have to do a bitwise comparison if we can show the lengths
1654  * of the strings are unequal; which might save us from having to detoast
1655  * one or both values.
1656  */
1657  len1 = toast_raw_datum_size(arg1);
1658  len2 = toast_raw_datum_size(arg2);
1659  if (len1 != len2)
1660  result = false;
1661  else
1662  {
1663  text *targ1 = DatumGetTextPP(arg1);
1664  text *targ2 = DatumGetTextPP(arg2);
1665 
1666  result = (memcmp(VARDATA_ANY(targ1), VARDATA_ANY(targ2),
1667  len1 - VARHDRSZ) == 0);
1668 
1669  PG_FREE_IF_COPY(targ1, 0);
1670  PG_FREE_IF_COPY(targ2, 1);
1671  }
1672 
1673  PG_RETURN_BOOL(result);
1674 }
1675 
1676 Datum
1678 {
1679  Datum arg1 = PG_GETARG_DATUM(0);
1680  Datum arg2 = PG_GETARG_DATUM(1);
1681  bool result;
1682  Size len1,
1683  len2;
1684 
1685  /* See comment in texteq() */
1686  len1 = toast_raw_datum_size(arg1);
1687  len2 = toast_raw_datum_size(arg2);
1688  if (len1 != len2)
1689  result = true;
1690  else
1691  {
1692  text *targ1 = DatumGetTextPP(arg1);
1693  text *targ2 = DatumGetTextPP(arg2);
1694 
1695  result = (memcmp(VARDATA_ANY(targ1), VARDATA_ANY(targ2),
1696  len1 - VARHDRSZ) != 0);
1697 
1698  PG_FREE_IF_COPY(targ1, 0);
1699  PG_FREE_IF_COPY(targ2, 1);
1700  }
1701 
1702  PG_RETURN_BOOL(result);
1703 }
1704 
1705 Datum
1707 {
1708  text *arg1 = PG_GETARG_TEXT_PP(0);
1709  text *arg2 = PG_GETARG_TEXT_PP(1);
1710  bool result;
1711 
1712  result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) < 0);
1713 
1714  PG_FREE_IF_COPY(arg1, 0);
1715  PG_FREE_IF_COPY(arg2, 1);
1716 
1717  PG_RETURN_BOOL(result);
1718 }
1719 
1720 Datum
1722 {
1723  text *arg1 = PG_GETARG_TEXT_PP(0);
1724  text *arg2 = PG_GETARG_TEXT_PP(1);
1725  bool result;
1726 
1727  result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) <= 0);
1728 
1729  PG_FREE_IF_COPY(arg1, 0);
1730  PG_FREE_IF_COPY(arg2, 1);
1731 
1732  PG_RETURN_BOOL(result);
1733 }
1734 
1735 Datum
1737 {
1738  text *arg1 = PG_GETARG_TEXT_PP(0);
1739  text *arg2 = PG_GETARG_TEXT_PP(1);
1740  bool result;
1741 
1742  result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) > 0);
1743 
1744  PG_FREE_IF_COPY(arg1, 0);
1745  PG_FREE_IF_COPY(arg2, 1);
1746 
1747  PG_RETURN_BOOL(result);
1748 }
1749 
1750 Datum
1752 {
1753  text *arg1 = PG_GETARG_TEXT_PP(0);
1754  text *arg2 = PG_GETARG_TEXT_PP(1);
1755  bool result;
1756 
1757  result = (text_cmp(arg1, arg2, PG_GET_COLLATION()) >= 0);
1758 
1759  PG_FREE_IF_COPY(arg1, 0);
1760  PG_FREE_IF_COPY(arg2, 1);
1761 
1762  PG_RETURN_BOOL(result);
1763 }
1764 
1765 Datum
1767 {
1768  text *arg1 = PG_GETARG_TEXT_PP(0);
1769  text *arg2 = PG_GETARG_TEXT_PP(1);
1770  int32 result;
1771 
1772  result = text_cmp(arg1, arg2, PG_GET_COLLATION());
1773 
1774  PG_FREE_IF_COPY(arg1, 0);
1775  PG_FREE_IF_COPY(arg2, 1);
1776 
1777  PG_RETURN_INT32(result);
1778 }
1779 
1780 Datum
1782 {
1784  Oid collid = ssup->ssup_collation;
1785  MemoryContext oldcontext;
1786 
1787  oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt);
1788 
1789  /* Use generic string SortSupport */
1790  varstr_sortsupport(ssup, collid, false);
1791 
1792  MemoryContextSwitchTo(oldcontext);
1793 
1794  PG_RETURN_VOID();
1795 }
1796 
1797 /*
1798  * Generic sortsupport interface for character type's operator classes.
1799  * Includes locale support, and support for BpChar semantics (i.e. removing
1800  * trailing spaces before comparison).
1801  *
1802  * Relies on the assumption that text, VarChar, BpChar, and bytea all have the
1803  * same representation. Callers that always use the C collation (e.g.
1804  * non-collatable type callers like bytea) may have NUL bytes in their strings;
1805  * this will not work with any other collation, though.
1806  */
1807 void
1809 {
1810  bool abbreviate = ssup->abbreviate;
1811  bool collate_c = false;
1812  VarStringSortSupport *sss;
1813  pg_locale_t locale = 0;
1814 
1815  /*
1816  * If possible, set ssup->comparator to a function which can be used to
1817  * directly compare two datums. If we can do this, we'll avoid the
1818  * overhead of a trip through the fmgr layer for every comparison, which
1819  * can be substantial.
1820  *
1821  * Most typically, we'll set the comparator to varstrfastcmp_locale, which
1822  * uses strcoll() to perform comparisons and knows about the special
1823  * requirements of BpChar callers. However, if LC_COLLATE = C, we can
1824  * make things quite a bit faster with varstrfastcmp_c or bpcharfastcmp_c,
1825  * both of which use memcmp() rather than strcoll().
1826  *
1827  * There is a further exception on Windows. When the database encoding is
1828  * UTF-8 and we are not using the C collation, complex hacks are required.
1829  * We don't currently have a comparator that handles that case, so we fall
1830  * back on the slow method of having the sort code invoke bttextcmp() (in
1831  * the case of text) via the fmgr trampoline.
1832  */
1833  if (lc_collate_is_c(collid))
1834  {
1835  if (!bpchar)
1836  ssup->comparator = varstrfastcmp_c;
1837  else
1838  ssup->comparator = bpcharfastcmp_c;
1839 
1840  collate_c = true;
1841  }
1842 #ifdef WIN32
1843  else if (GetDatabaseEncoding() == PG_UTF8)
1844  return;
1845 #endif
1846  else
1847  {
1849 
1850  /*
1851  * We need a collation-sensitive comparison. To make things faster,
1852  * we'll figure out the collation based on the locale id and cache the
1853  * result.
1854  */
1855  if (collid != DEFAULT_COLLATION_OID)
1856  {
1857  if (!OidIsValid(collid))
1858  {
1859  /*
1860  * This typically means that the parser could not resolve a
1861  * conflict of implicit collations, so report it that way.
1862  */
1863  ereport(ERROR,
1864  (errcode(ERRCODE_INDETERMINATE_COLLATION),
1865  errmsg("could not determine which collation to use for string comparison"),
1866  errhint("Use the COLLATE clause to set the collation explicitly.")));
1867  }
1868  locale = pg_newlocale_from_collation(collid);
1869  }
1870  }
1871 
1872  /*
1873  * Unfortunately, it seems that abbreviation for non-C collations is
1874  * broken on many common platforms; testing of multiple versions of glibc
1875  * reveals that, for many locales, strcoll() and strxfrm() do not return
1876  * consistent results, which is fatal to this optimization. While no
1877  * other libc other than Cygwin has so far been shown to have a problem,
1878  * we take the conservative course of action for right now and disable
1879  * this categorically. (Users who are certain this isn't a problem on
1880  * their system can define TRUST_STRXFRM.)
1881  *
1882  * Even apart from the risk of broken locales, it's possible that there
1883  * are platforms where the use of abbreviated keys should be disabled at
1884  * compile time. Having only 4 byte datums could make worst-case
1885  * performance drastically more likely, for example. Moreover, macOS's
1886  * strxfrm() implementation is known to not effectively concentrate a
1887  * significant amount of entropy from the original string in earlier
1888  * transformed blobs. It's possible that other supported platforms are
1889  * similarly encumbered. So, if we ever get past disabling this
1890  * categorically, we may still want or need to disable it for particular
1891  * platforms.
1892  */
1893 #ifndef TRUST_STRXFRM
1894  if (!collate_c && !(locale && locale->provider == COLLPROVIDER_ICU))
1895  abbreviate = false;
1896 #endif
1897 
1898  /*
1899  * If we're using abbreviated keys, or if we're using a locale-aware
1900  * comparison, we need to initialize a StringSortSupport object. Both
1901  * cases will make use of the temporary buffers we initialize here for
1902  * scratch space (and to detect requirement for BpChar semantics from
1903  * caller), and the abbreviation case requires additional state.
1904  */
1905  if (abbreviate || !collate_c)
1906  {
1907  sss = palloc(sizeof(VarStringSortSupport));
1908  sss->buf1 = palloc(TEXTBUFLEN);
1909  sss->buflen1 = TEXTBUFLEN;
1910  sss->buf2 = palloc(TEXTBUFLEN);
1911  sss->buflen2 = TEXTBUFLEN;
1912  /* Start with invalid values */
1913  sss->last_len1 = -1;
1914  sss->last_len2 = -1;
1915  /* Initialize */
1916  sss->last_returned = 0;
1917  sss->locale = locale;
1918 
1919  /*
1920  * To avoid somehow confusing a strxfrm() blob and an original string,
1921  * constantly keep track of the variety of data that buf1 and buf2
1922  * currently contain.
1923  *
1924  * Comparisons may be interleaved with conversion calls. Frequently,
1925  * conversions and comparisons are batched into two distinct phases,
1926  * but the correctness of caching cannot hinge upon this. For
1927  * comparison caching, buffer state is only trusted if cache_blob is
1928  * found set to false, whereas strxfrm() caching only trusts the state
1929  * when cache_blob is found set to true.
1930  *
1931  * Arbitrarily initialize cache_blob to true.
1932  */
1933  sss->cache_blob = true;
1934  sss->collate_c = collate_c;
1935  sss->bpchar = bpchar;
1936  ssup->ssup_extra = sss;
1937 
1938  /*
1939  * If possible, plan to use the abbreviated keys optimization. The
1940  * core code may switch back to authoritative comparator should
1941  * abbreviation be aborted.
1942  */
1943  if (abbreviate)
1944  {
1945  sss->prop_card = 0.20;
1946  initHyperLogLog(&sss->abbr_card, 10);
1947  initHyperLogLog(&sss->full_card, 10);
1948  ssup->abbrev_full_comparator = ssup->comparator;
1949  ssup->comparator = varstrcmp_abbrev;
1952  }
1953  }
1954 }
1955 
1956 /*
1957  * sortsupport comparison func (for C locale case)
1958  */
1959 static int
1961 {
1962  VarString *arg1 = DatumGetVarStringPP(x);
1963  VarString *arg2 = DatumGetVarStringPP(y);
1964  char *a1p,
1965  *a2p;
1966  int len1,
1967  len2,
1968  result;
1969 
1970  a1p = VARDATA_ANY(arg1);
1971  a2p = VARDATA_ANY(arg2);
1972 
1973  len1 = VARSIZE_ANY_EXHDR(arg1);
1974  len2 = VARSIZE_ANY_EXHDR(arg2);
1975 
1976  result = memcmp(a1p, a2p, Min(len1, len2));
1977  if ((result == 0) && (len1 != len2))
1978  result = (len1 < len2) ? -1 : 1;
1979 
1980  /* We can't afford to leak memory here. */
1981  if (PointerGetDatum(arg1) != x)
1982  pfree(arg1);
1983  if (PointerGetDatum(arg2) != y)
1984  pfree(arg2);
1985 
1986  return result;
1987 }
1988 
1989 /*
1990  * sortsupport comparison func (for BpChar C locale case)
1991  *
1992  * BpChar outsources its sortsupport to this module. Specialization for the
1993  * varstr_sortsupport BpChar case, modeled on
1994  * internal_bpchar_pattern_compare().
1995  */
1996 static int
1998 {
1999  BpChar *arg1 = DatumGetBpCharPP(x);
2000  BpChar *arg2 = DatumGetBpCharPP(y);
2001  char *a1p,
2002  *a2p;
2003  int len1,
2004  len2,
2005  result;
2006 
2007  a1p = VARDATA_ANY(arg1);
2008  a2p = VARDATA_ANY(arg2);
2009 
2010  len1 = bpchartruelen(a1p, VARSIZE_ANY_EXHDR(arg1));
2011  len2 = bpchartruelen(a2p, VARSIZE_ANY_EXHDR(arg2));
2012 
2013  result = memcmp(a1p, a2p, Min(len1, len2));
2014  if ((result == 0) && (len1 != len2))
2015  result = (len1 < len2) ? -1 : 1;
2016 
2017  /* We can't afford to leak memory here. */
2018  if (PointerGetDatum(arg1) != x)
2019  pfree(arg1);
2020  if (PointerGetDatum(arg2) != y)
2021  pfree(arg2);
2022 
2023  return result;
2024 }
2025 
2026 /*
2027  * sortsupport comparison func (for locale case)
2028  */
2029 static int
2031 {
2032  VarString *arg1 = DatumGetVarStringPP(x);
2033  VarString *arg2 = DatumGetVarStringPP(y);
2034  bool arg1_match;
2036 
2037  /* working state */
2038  char *a1p,
2039  *a2p;
2040  int len1,
2041  len2,
2042  result;
2043 
2044  a1p = VARDATA_ANY(arg1);
2045  a2p = VARDATA_ANY(arg2);
2046 
2047  len1 = VARSIZE_ANY_EXHDR(arg1);
2048  len2 = VARSIZE_ANY_EXHDR(arg2);
2049 
2050  /* Fast pre-check for equality, as discussed in varstr_cmp() */
2051  if (len1 == len2 && memcmp(a1p, a2p, len1) == 0)
2052  {
2053  /*
2054  * No change in buf1 or buf2 contents, so avoid changing last_len1 or
2055  * last_len2. Existing contents of buffers might still be used by
2056  * next call.
2057  *
2058  * It's fine to allow the comparison of BpChar padding bytes here,
2059  * even though that implies that the memcmp() will usually be
2060  * performed for BpChar callers (though multibyte characters could
2061  * still prevent that from occurring). The memcmp() is still very
2062  * cheap, and BpChar's funny semantics have us remove trailing spaces
2063  * (not limited to padding), so we need make no distinction between
2064  * padding space characters and "real" space characters.
2065  */
2066  result = 0;
2067  goto done;
2068  }
2069 
2070  if (sss->bpchar)
2071  {
2072  /* Get true number of bytes, ignoring trailing spaces */
2073  len1 = bpchartruelen(a1p, len1);
2074  len2 = bpchartruelen(a2p, len2);
2075  }
2076 
2077  if (len1 >= sss->buflen1)
2078  {
2079  pfree(sss->buf1);
2080  sss->buflen1 = Max(len1 + 1, Min(sss->buflen1 * 2, MaxAllocSize));
2081  sss->buf1 = MemoryContextAlloc(ssup->ssup_cxt, sss->buflen1);
2082  }
2083  if (len2 >= sss->buflen2)
2084  {
2085  pfree(sss->buf2);
2086  sss->buflen2 = Max(len2 + 1, Min(sss->buflen2 * 2, MaxAllocSize));
2087  sss->buf2 = MemoryContextAlloc(ssup->ssup_cxt, sss->buflen2);
2088  }
2089 
2090  /*
2091  * We're likely to be asked to compare the same strings repeatedly, and
2092  * memcmp() is so much cheaper than strcoll() that it pays to try to cache
2093  * comparisons, even though in general there is no reason to think that
2094  * that will work out (every string datum may be unique). Caching does
2095  * not slow things down measurably when it doesn't work out, and can speed
2096  * things up by rather a lot when it does. In part, this is because the
2097  * memcmp() compares data from cachelines that are needed in L1 cache even
2098  * when the last comparison's result cannot be reused.
2099  */
2100  arg1_match = true;
2101  if (len1 != sss->last_len1 || memcmp(sss->buf1, a1p, len1) != 0)
2102  {
2103  arg1_match = false;
2104  memcpy(sss->buf1, a1p, len1);
2105  sss->buf1[len1] = '\0';
2106  sss->last_len1 = len1;
2107  }
2108 
2109  /*
2110  * If we're comparing the same two strings as last time, we can return the
2111  * same answer without calling strcoll() again. This is more likely than
2112  * it seems (at least with moderate to low cardinality sets), because
2113  * quicksort compares the same pivot against many values.
2114  */
2115  if (len2 != sss->last_len2 || memcmp(sss->buf2, a2p, len2) != 0)
2116  {
2117  memcpy(sss->buf2, a2p, len2);
2118  sss->buf2[len2] = '\0';
2119  sss->last_len2 = len2;
2120  }
2121  else if (arg1_match && !sss->cache_blob)
2122  {
2123  /* Use result cached following last actual strcoll() call */
2124  result = sss->last_returned;
2125  goto done;
2126  }
2127 
2128  if (sss->locale)
2129  {
2130  if (sss->locale->provider == COLLPROVIDER_ICU)
2131  {
2132 #ifdef USE_ICU
2133 #ifdef HAVE_UCOL_STRCOLLUTF8
2134  if (GetDatabaseEncoding() == PG_UTF8)
2135  {
2136  UErrorCode status;
2137 
2138  status = U_ZERO_ERROR;
2139  result = ucol_strcollUTF8(sss->locale->info.icu.ucol,
2140  a1p, len1,
2141  a2p, len2,
2142  &status);
2143  if (U_FAILURE(status))
2144  ereport(ERROR,
2145  (errmsg("collation failed: %s", u_errorName(status))));
2146  }
2147  else
2148 #endif
2149  {
2150  int32_t ulen1,
2151  ulen2;
2152  UChar *uchar1,
2153  *uchar2;
2154 
2155  ulen1 = icu_to_uchar(&uchar1, a1p, len1);
2156  ulen2 = icu_to_uchar(&uchar2, a2p, len2);
2157 
2158  result = ucol_strcoll(sss->locale->info.icu.ucol,
2159  uchar1, ulen1,
2160  uchar2, ulen2);
2161 
2162  pfree(uchar1);
2163  pfree(uchar2);
2164  }
2165 #else /* not USE_ICU */
2166  /* shouldn't happen */
2167  elog(ERROR, "unsupported collprovider: %c", sss->locale->provider);
2168 #endif /* not USE_ICU */
2169  }
2170  else
2171  {
2172 #ifdef HAVE_LOCALE_T
2173  result = strcoll_l(sss->buf1, sss->buf2, sss->locale->info.lt);
2174 #else
2175  /* shouldn't happen */
2176  elog(ERROR, "unsupported collprovider: %c", sss->locale->provider);
2177 #endif
2178  }
2179  }
2180  else
2181  result = strcoll(sss->buf1, sss->buf2);
2182 
2183  /*
2184  * In some locales strcoll() can claim that nonidentical strings are
2185  * equal. Believing that would be bad news for a number of reasons, so we
2186  * follow Perl's lead and sort "equal" strings according to strcmp().
2187  */
2188  if (result == 0)
2189  result = strcmp(sss->buf1, sss->buf2);
2190 
2191  /* Cache result, perhaps saving an expensive strcoll() call next time */
2192  sss->cache_blob = false;
2193  sss->last_returned = result;
2194 done:
2195  /* We can't afford to leak memory here. */
2196  if (PointerGetDatum(arg1) != x)
2197  pfree(arg1);
2198  if (PointerGetDatum(arg2) != y)
2199  pfree(arg2);
2200 
2201  return result;
2202 }
2203 
2204 /*
2205  * Abbreviated key comparison func
2206  */
2207 static int
2209 {
2210  /*
2211  * When 0 is returned, the core system will call varstrfastcmp_c()
2212  * (bpcharfastcmp_c() in BpChar case) or varstrfastcmp_locale(). Even a
2213  * strcmp() on two non-truncated strxfrm() blobs cannot indicate *equality*
2214  * authoritatively, for the same reason that there is a strcoll()
2215  * tie-breaker call to strcmp() in varstr_cmp().
2216  */
2217  if (x > y)
2218  return 1;
2219  else if (x == y)
2220  return 0;
2221  else
2222  return -1;
2223 }
2224 
2225 /*
2226  * Conversion routine for sortsupport. Converts original to abbreviated key
2227  * representation. Our encoding strategy is simple -- pack the first 8 bytes
2228  * of a strxfrm() blob into a Datum (on little-endian machines, the 8 bytes are
2229  * stored in reverse order), and treat it as an unsigned integer. When the "C"
2230  * locale is used, or in case of bytea, just memcpy() from original instead.
2231  */
2232 static Datum
2234 {
2236  VarString *authoritative = DatumGetVarStringPP(original);
2237  char *authoritative_data = VARDATA_ANY(authoritative);
2238 
2239  /* working state */
2240  Datum res;
2241  char *pres;
2242  int len;
2243  uint32 hash;
2244 
2245  pres = (char *) &res;
2246  /* memset(), so any non-overwritten bytes are NUL */
2247  memset(pres, 0, sizeof(Datum));
2248  len = VARSIZE_ANY_EXHDR(authoritative);
2249 
2250  /* Get number of bytes, ignoring trailing spaces */
2251  if (sss->bpchar)
2252  len = bpchartruelen(authoritative_data, len);
2253 
2254  /*
2255  * If we're using the C collation, use memcpy(), rather than strxfrm(), to
2256  * abbreviate keys. The full comparator for the C locale is always
2257  * memcmp(). It would be incorrect to allow bytea callers (callers that
2258  * always force the C collation -- bytea isn't a collatable type, but this
2259  * approach is convenient) to use strxfrm(). This is because bytea
2260  * strings may contain NUL bytes. Besides, this should be faster, too.
2261  *
2262  * More generally, it's okay that bytea callers can have NUL bytes in
2263  * strings because varstrcmp_abbrev() need not make a distinction between
2264  * terminating NUL bytes, and NUL bytes representing actual NULs in the
2265  * authoritative representation. Hopefully a comparison at or past one
2266  * abbreviated key's terminating NUL byte will resolve the comparison
2267  * without consulting the authoritative representation; specifically, some
2268  * later non-NUL byte in the longer string can resolve the comparison
2269  * against a subsequent terminating NUL in the shorter string. There will
2270  * usually be what is effectively a "length-wise" resolution there and
2271  * then.
2272  *
2273  * If that doesn't work out -- if all bytes in the longer string
2274  * positioned at or past the offset of the smaller string's (first)
2275  * terminating NUL are actually representative of NUL bytes in the
2276  * authoritative binary string (perhaps with some *terminating* NUL bytes
2277  * towards the end of the longer string iff it happens to still be small)
2278  * -- then an authoritative tie-breaker will happen, and do the right
2279  * thing: explicitly consider string length.
2280  */
2281  if (sss->collate_c)
2282  memcpy(pres, authoritative_data, Min(len, sizeof(Datum)));
2283  else
2284  {
2285  Size bsize;
2286 #ifdef USE_ICU
2287  int32_t ulen = -1;
2288  UChar *uchar = NULL;
2289 #endif
2290 
2291  /*
2292  * We're not using the C collation, so fall back on strxfrm or ICU
2293  * analogs.
2294  */
2295 
2296  /* By convention, we use buffer 1 to store and NUL-terminate */
2297  if (len >= sss->buflen1)
2298  {
2299  pfree(sss->buf1);
2300  sss->buflen1 = Max(len + 1, Min(sss->buflen1 * 2, MaxAllocSize));
2301  sss->buf1 = palloc(sss->buflen1);
2302  }
2303 
2304  /* Might be able to reuse strxfrm() blob from last call */
2305  if (sss->last_len1 == len && sss->cache_blob &&
2306  memcmp(sss->buf1, authoritative_data, len) == 0)
2307  {
2308  memcpy(pres, sss->buf2, Min(sizeof(Datum), sss->last_len2));
2309  /* No change affecting cardinality, so no hashing required */
2310  goto done;
2311  }
2312 
2313  memcpy(sss->buf1, authoritative_data, len);
2314 
2315  /*
2316  * Just like strcoll(), strxfrm() expects a NUL-terminated string. Not
2317  * necessary for ICU, but doesn't hurt.
2318  */
2319  sss->buf1[len] = '\0';
2320  sss->last_len1 = len;
2321 
2322 #ifdef USE_ICU
2323  /* When using ICU and not UTF8, convert string to UChar. */
2324  if (sss->locale && sss->locale->provider == COLLPROVIDER_ICU &&
2326  ulen = icu_to_uchar(&uchar, sss->buf1, len);
2327 #endif
2328 
2329  /*
2330  * Loop: Call strxfrm() or ucol_getSortKey(), possibly enlarge buffer,
2331  * and try again. Both of these functions have the result buffer
2332  * content undefined if the result did not fit, so we need to retry
2333  * until everything fits, even though we only need the first few bytes
2334  * in the end. When using ucol_nextSortKeyPart(), however, we only
2335  * ask for as many bytes as we actually need.
2336  */
2337  for (;;)
2338  {
2339 #ifdef USE_ICU
2340  if (sss->locale && sss->locale->provider == COLLPROVIDER_ICU)
2341  {
2342  /*
2343  * When using UTF8, use the iteration interface so we only
2344  * need to produce as many bytes as we actually need.
2345  */
2346  if (GetDatabaseEncoding() == PG_UTF8)
2347  {
2348  UCharIterator iter;
2349  uint32_t state[2];
2350  UErrorCode status;
2351 
2352  uiter_setUTF8(&iter, sss->buf1, len);
2353  state[0] = state[1] = 0; /* won't need that again */
2354  status = U_ZERO_ERROR;
2355  bsize = ucol_nextSortKeyPart(sss->locale->info.icu.ucol,
2356  &iter,
2357  state,
2358  (uint8_t *) sss->buf2,
2359  Min(sizeof(Datum), sss->buflen2),
2360  &status);
2361  if (U_FAILURE(status))
2362  ereport(ERROR,
2363  (errmsg("sort key generation failed: %s",
2364  u_errorName(status))));
2365  }
2366  else
2367  bsize = ucol_getSortKey(sss->locale->info.icu.ucol,
2368  uchar, ulen,
2369  (uint8_t *) sss->buf2, sss->buflen2);
2370  }
2371  else
2372 #endif
2373 #ifdef HAVE_LOCALE_T
2374  if (sss->locale && sss->locale->provider == COLLPROVIDER_LIBC)
2375  bsize = strxfrm_l(sss->buf2, sss->buf1,
2376  sss->buflen2, sss->locale->info.lt);
2377  else
2378 #endif
2379  bsize = strxfrm(sss->buf2, sss->buf1, sss->buflen2);
2380 
2381  sss->last_len2 = bsize;
2382  if (bsize < sss->buflen2)
2383  break;
2384 
2385  /*
2386  * Grow buffer and retry.
2387  */
2388  pfree(sss->buf2);
2389  sss->buflen2 = Max(bsize + 1,
2390  Min(sss->buflen2 * 2, MaxAllocSize));
2391  sss->buf2 = palloc(sss->buflen2);
2392  }
2393 
2394  /*
2395  * Every Datum byte is always compared. This is safe because the
2396  * strxfrm() blob is itself NUL terminated, leaving no danger of
2397  * misinterpreting any NUL bytes not intended to be interpreted as
2398  * logically representing termination.
2399  *
2400  * (Actually, even if there were NUL bytes in the blob it would be
2401  * okay. See remarks on bytea case above.)
2402  */
2403  memcpy(pres, sss->buf2, Min(sizeof(Datum), bsize));
2404 
2405 #ifdef USE_ICU
2406  if (uchar)
2407  pfree(uchar);
2408 #endif
2409  }
2410 
2411  /*
2412  * Maintain approximate cardinality of both abbreviated keys and original,
2413  * authoritative keys using HyperLogLog. Used as cheap insurance against
2414  * the worst case, where we do many string transformations for no saving
2415  * in full strcoll()-based comparisons. These statistics are used by
2416  * varstr_abbrev_abort().
2417  *
2418  * First, Hash key proper, or a significant fraction of it. Mix in length
2419  * in order to compensate for cases where differences are past
2420  * PG_CACHE_LINE_SIZE bytes, so as to limit the overhead of hashing.
2421  */
2422  hash = DatumGetUInt32(hash_any((unsigned char *) authoritative_data,
2423  Min(len, PG_CACHE_LINE_SIZE)));
2424 
2425  if (len > PG_CACHE_LINE_SIZE)
2426  hash ^= DatumGetUInt32(hash_uint32((uint32) len));
2427 
2428  addHyperLogLog(&sss->full_card, hash);
2429 
2430  /* Hash abbreviated key */
2431 #if SIZEOF_DATUM == 8
2432  {
2433  uint32 lohalf,
2434  hihalf;
2435 
2436  lohalf = (uint32) res;
2437  hihalf = (uint32) (res >> 32);
2438  hash = DatumGetUInt32(hash_uint32(lohalf ^ hihalf));
2439  }
2440 #else /* SIZEOF_DATUM != 8 */
2441  hash = DatumGetUInt32(hash_uint32((uint32) res));
2442 #endif
2443 
2444  addHyperLogLog(&sss->abbr_card, hash);
2445 
2446  /* Cache result, perhaps saving an expensive strxfrm() call next time */
2447  sss->cache_blob = true;
2448 done:
2449 
2450  /*
2451  * Byteswap on little-endian machines.
2452  *
2453  * This is needed so that varstrcmp_abbrev() (an unsigned integer 3-way
2454  * comparator) works correctly on all platforms. If we didn't do this,
2455  * the comparator would have to call memcmp() with a pair of pointers to
2456  * the first byte of each abbreviated key, which is slower.
2457  */
2458  res = DatumBigEndianToNative(res);
2459 
2460  /* Don't leak memory here */
2461  if (PointerGetDatum(authoritative) != original)
2462  pfree(authoritative);
2463 
2464  return res;
2465 }
2466 
2467 /*
2468  * Callback for estimating effectiveness of abbreviated key optimization, using
2469  * heuristic rules. Returns value indicating if the abbreviation optimization
2470  * should be aborted, based on its projected effectiveness.
2471  */
2472 static bool
2473 varstr_abbrev_abort(int memtupcount, SortSupport ssup)
2474 {
2476  double abbrev_distinct,
2477  key_distinct;
2478 
2479  Assert(ssup->abbreviate);
2480 
2481  /* Have a little patience */
2482  if (memtupcount < 100)
2483  return false;
2484 
2485  abbrev_distinct = estimateHyperLogLog(&sss->abbr_card);
2486  key_distinct = estimateHyperLogLog(&sss->full_card);
2487 
2488  /*
2489  * Clamp cardinality estimates to at least one distinct value. While
2490  * NULLs are generally disregarded, if only NULL values were seen so far,
2491  * that might misrepresent costs if we failed to clamp.
2492  */
2493  if (abbrev_distinct <= 1.0)
2494  abbrev_distinct = 1.0;
2495 
2496  if (key_distinct <= 1.0)
2497  key_distinct = 1.0;
2498 
2499  /*
2500  * In the worst case all abbreviated keys are identical, while at the same
2501  * time there are differences within full key strings not captured in
2502  * abbreviations.
2503  */
2504 #ifdef TRACE_SORT
2505  if (trace_sort)
2506  {
2507  double norm_abbrev_card = abbrev_distinct / (double) memtupcount;
2508 
2509  elog(LOG, "varstr_abbrev: abbrev_distinct after %d: %f "
2510  "(key_distinct: %f, norm_abbrev_card: %f, prop_card: %f)",
2511  memtupcount, abbrev_distinct, key_distinct, norm_abbrev_card,
2512  sss->prop_card);
2513  }
2514 #endif
2515 
2516  /*
2517  * If the number of distinct abbreviated keys approximately matches the
2518  * number of distinct authoritative original keys, that's reason enough to
2519  * proceed. We can win even with a very low cardinality set if most
2520  * tie-breakers only memcmp(). This is by far the most important
2521  * consideration.
2522  *
2523  * While comparisons that are resolved at the abbreviated key level are
2524  * considerably cheaper than tie-breakers resolved with memcmp(), both of
2525  * those two outcomes are so much cheaper than a full strcoll() once
2526  * sorting is underway that it doesn't seem worth it to weigh abbreviated
2527  * cardinality against the overall size of the set in order to more
2528  * accurately model costs. Assume that an abbreviated comparison, and an
2529  * abbreviated comparison with a cheap memcmp()-based authoritative
2530  * resolution are equivalent.
2531  */
2532  if (abbrev_distinct > key_distinct * sss->prop_card)
2533  {
2534  /*
2535  * When we have exceeded 10,000 tuples, decay required cardinality
2536  * aggressively for next call.
2537  *
2538  * This is useful because the number of comparisons required on
2539  * average increases at a linearithmic rate, and at roughly 10,000
2540  * tuples that factor will start to dominate over the linear costs of
2541  * string transformation (this is a conservative estimate). The decay
2542  * rate is chosen to be a little less aggressive than halving -- which
2543  * (since we're called at points at which memtupcount has doubled)
2544  * would never see the cost model actually abort past the first call
2545  * following a decay. This decay rate is mostly a precaution against
2546  * a sudden, violent swing in how well abbreviated cardinality tracks
2547  * full key cardinality. The decay also serves to prevent a marginal
2548  * case from being aborted too late, when too much has already been
2549  * invested in string transformation.
2550  *
2551  * It's possible for sets of several million distinct strings with
2552  * mere tens of thousands of distinct abbreviated keys to still
2553  * benefit very significantly. This will generally occur provided
2554  * each abbreviated key is a proxy for a roughly uniform number of the
2555  * set's full keys. If it isn't so, we hope to catch that early and
2556  * abort. If it isn't caught early, by the time the problem is
2557  * apparent it's probably not worth aborting.
2558  */
2559  if (memtupcount > 10000)
2560  sss->prop_card *= 0.65;
2561 
2562  return false;
2563  }
2564 
2565  /*
2566  * Abort abbreviation strategy.
2567  *
2568  * The worst case, where all abbreviated keys are identical while all
2569  * original strings differ will typically only see a regression of about
2570  * 10% in execution time for small to medium sized lists of strings.
2571  * Whereas on modern CPUs where cache stalls are the dominant cost, we can
2572  * often expect very large improvements, particularly with sets of strings
2573  * of moderately high to high abbreviated cardinality. There is little to
2574  * lose but much to gain, which our strategy reflects.
2575  */
2576 #ifdef TRACE_SORT
2577  if (trace_sort)
2578  elog(LOG, "varstr_abbrev: aborted abbreviation at %d "
2579  "(abbrev_distinct: %f, key_distinct: %f, prop_card: %f)",
2580  memtupcount, abbrev_distinct, key_distinct, sss->prop_card);
2581 #endif
2582 
2583  return true;
2584 }
2585 
2586 Datum
2588 {
2589  text *arg1 = PG_GETARG_TEXT_PP(0);
2590  text *arg2 = PG_GETARG_TEXT_PP(1);
2591  text *result;
2592 
2593  result = ((text_cmp(arg1, arg2, PG_GET_COLLATION()) > 0) ? arg1 : arg2);
2594 
2595  PG_RETURN_TEXT_P(result);
2596 }
2597 
2598 Datum
2600 {
2601  text *arg1 = PG_GETARG_TEXT_PP(0);
2602  text *arg2 = PG_GETARG_TEXT_PP(1);
2603  text *result;
2604 
2605  result = ((text_cmp(arg1, arg2, PG_GET_COLLATION()) < 0) ? arg1 : arg2);
2606 
2607  PG_RETURN_TEXT_P(result);
2608 }
2609 
2610 
2611 /*
2612  * The following operators support character-by-character comparison
2613  * of text datums, to allow building indexes suitable for LIKE clauses.
2614  * Note that the regular texteq/textne comparison operators, and regular
2615  * support functions 1 and 2 with "C" collation are assumed to be
2616  * compatible with these!
2617  */
2618 
2619 static int
2621 {
2622  int result;
2623  int len1,
2624  len2;
2625 
2626  len1 = VARSIZE_ANY_EXHDR(arg1);
2627  len2 = VARSIZE_ANY_EXHDR(arg2);
2628 
2629  result = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2));
2630  if (result != 0)
2631  return result;
2632  else if (len1 < len2)
2633  return -1;
2634  else if (len1 > len2)
2635  return 1;
2636  else
2637  return 0;
2638 }
2639 
2640 
2641 Datum
2643 {
2644  text *arg1 = PG_GETARG_TEXT_PP(0);
2645  text *arg2 = PG_GETARG_TEXT_PP(1);
2646  int result;
2647 
2648  result = internal_text_pattern_compare(arg1, arg2);
2649 
2650  PG_FREE_IF_COPY(arg1, 0);
2651  PG_FREE_IF_COPY(arg2, 1);
2652 
2653  PG_RETURN_BOOL(result < 0);
2654 }
2655 
2656 
2657 Datum
2659 {
2660  text *arg1 = PG_GETARG_TEXT_PP(0);
2661  text *arg2 = PG_GETARG_TEXT_PP(1);
2662  int result;
2663 
2664  result = internal_text_pattern_compare(arg1, arg2);
2665 
2666  PG_FREE_IF_COPY(arg1, 0);
2667  PG_FREE_IF_COPY(arg2, 1);
2668 
2669  PG_RETURN_BOOL(result <= 0);
2670 }
2671 
2672 
2673 Datum
2675 {
2676  text *arg1 = PG_GETARG_TEXT_PP(0);
2677  text *arg2 = PG_GETARG_TEXT_PP(1);
2678  int result;
2679 
2680  result = internal_text_pattern_compare(arg1, arg2);
2681 
2682  PG_FREE_IF_COPY(arg1, 0);
2683  PG_FREE_IF_COPY(arg2, 1);
2684 
2685  PG_RETURN_BOOL(result >= 0);
2686 }
2687 
2688 
2689 Datum
2691 {
2692  text *arg1 = PG_GETARG_TEXT_PP(0);
2693  text *arg2 = PG_GETARG_TEXT_PP(1);
2694  int result;
2695 
2696  result = internal_text_pattern_compare(arg1, arg2);
2697 
2698  PG_FREE_IF_COPY(arg1, 0);
2699  PG_FREE_IF_COPY(arg2, 1);
2700 
2701  PG_RETURN_BOOL(result > 0);
2702 }
2703 
2704 
2705 Datum
2707 {
2708  text *arg1 = PG_GETARG_TEXT_PP(0);
2709  text *arg2 = PG_GETARG_TEXT_PP(1);
2710  int result;
2711 
2712  result = internal_text_pattern_compare(arg1, arg2);
2713 
2714  PG_FREE_IF_COPY(arg1, 0);
2715  PG_FREE_IF_COPY(arg2, 1);
2716 
2717  PG_RETURN_INT32(result);
2718 }
2719 
2720 
2721 Datum
2723 {
2725  MemoryContext oldcontext;
2726 
2727  oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt);
2728 
2729  /* Use generic string SortSupport, forcing "C" collation */
2730  varstr_sortsupport(ssup, C_COLLATION_OID, false);
2731 
2732  MemoryContextSwitchTo(oldcontext);
2733 
2734  PG_RETURN_VOID();
2735 }
2736 
2737 
2738 /*-------------------------------------------------------------
2739  * byteaoctetlen
2740  *
2741  * get the number of bytes contained in an instance of type 'bytea'
2742  *-------------------------------------------------------------
2743  */
2744 Datum
2746 {
2747  Datum str = PG_GETARG_DATUM(0);
2748 
2749  /* We need not detoast the input at all */
2751 }
2752 
2753 /*
2754  * byteacat -
2755  * takes two bytea* and returns a bytea* that is the concatenation of
2756  * the two.
2757  *
2758  * Cloned from textcat and modified as required.
2759  */
2760 Datum
2762 {
2763  bytea *t1 = PG_GETARG_BYTEA_PP(0);
2764  bytea *t2 = PG_GETARG_BYTEA_PP(1);
2765 
2767 }
2768 
2769 /*
2770  * bytea_catenate
2771  * Guts of byteacat(), broken out so it can be used by other functions
2772  *
2773  * Arguments can be in short-header form, but not compressed or out-of-line
2774  */
2775 static bytea *
2777 {
2778  bytea *result;
2779  int len1,
2780  len2,
2781  len;
2782  char *ptr;
2783 
2784  len1 = VARSIZE_ANY_EXHDR(t1);
2785  len2 = VARSIZE_ANY_EXHDR(t2);
2786 
2787  /* paranoia ... probably should throw error instead? */
2788  if (len1 < 0)
2789  len1 = 0;
2790  if (len2 < 0)
2791  len2 = 0;
2792 
2793  len = len1 + len2 + VARHDRSZ;
2794  result = (bytea *) palloc(len);
2795 
2796  /* Set size of result string... */
2797  SET_VARSIZE(result, len);
2798 
2799  /* Fill data field of result string... */
2800  ptr = VARDATA(result);
2801  if (len1 > 0)
2802  memcpy(ptr, VARDATA_ANY(t1), len1);
2803  if (len2 > 0)
2804  memcpy(ptr + len1, VARDATA_ANY(t2), len2);
2805 
2806  return result;
2807 }
2808 
2809 #define PG_STR_GET_BYTEA(str_) \
2810  DatumGetByteaPP(DirectFunctionCall1(byteain, CStringGetDatum(str_)))
2811 
2812 /*
2813  * bytea_substr()
2814  * Return a substring starting at the specified position.
2815  * Cloned from text_substr and modified as required.
2816  *
2817  * Input:
2818  * - string
2819  * - starting position (is one-based)
2820  * - string length (optional)
2821  *
2822  * If the starting position is zero or less, then return from the start of the string
2823  * adjusting the length to be consistent with the "negative start" per SQL.
2824  * If the length is less than zero, an ERROR is thrown. If no third argument
2825  * (length) is provided, the length to the end of the string is assumed.
2826  */
2827 Datum
2829 {
2831  PG_GETARG_INT32(1),
2832  PG_GETARG_INT32(2),
2833  false));
2834 }
2835 
2836 /*
2837  * bytea_substr_no_len -
2838  * Wrapper to avoid opr_sanity failure due to
2839  * one function accepting a different number of args.
2840  */
2841 Datum
2843 {
2845  PG_GETARG_INT32(1),
2846  -1,
2847  true));
2848 }
2849 
2850 static bytea *
2852  int S,
2853  int L,
2854  bool length_not_specified)
2855 {
2856  int S1; /* adjusted start position */
2857  int L1; /* adjusted substring length */
2858 
2859  S1 = Max(S, 1);
2860 
2861  if (length_not_specified)
2862  {
2863  /*
2864  * Not passed a length - DatumGetByteaPSlice() grabs everything to the
2865  * end of the string if we pass it a negative value for length.
2866  */
2867  L1 = -1;
2868  }
2869  else
2870  {
2871  /* end position */
2872  int E = S + L;
2873 
2874  /*
2875  * A negative value for L is the only way for the end position to be
2876  * before the start. SQL99 says to throw an error.
2877  */
2878  if (E < S)
2879  ereport(ERROR,
2880  (errcode(ERRCODE_SUBSTRING_ERROR),
2881  errmsg("negative substring length not allowed")));
2882 
2883  /*
2884  * A zero or negative value for the end position can happen if the
2885  * start was negative or one. SQL99 says to return a zero-length
2886  * string.
2887  */
2888  if (E < 1)
2889  return PG_STR_GET_BYTEA("");
2890 
2891  L1 = E - S1;
2892  }
2893 
2894  /*
2895  * If the start position is past the end of the string, SQL99 says to
2896  * return a zero-length string -- DatumGetByteaPSlice() will do that for
2897  * us. Convert to zero-based starting position
2898  */
2899  return DatumGetByteaPSlice(str, S1 - 1, L1);
2900 }
2901 
2902 /*
2903  * byteaoverlay
2904  * Replace specified substring of first string with second
2905  *
2906  * The SQL standard defines OVERLAY() in terms of substring and concatenation.
2907  * This code is a direct implementation of what the standard says.
2908  */
2909 Datum
2911 {
2912  bytea *t1 = PG_GETARG_BYTEA_PP(0);
2913  bytea *t2 = PG_GETARG_BYTEA_PP(1);
2914  int sp = PG_GETARG_INT32(2); /* substring start position */
2915  int sl = PG_GETARG_INT32(3); /* substring length */
2916 
2917  PG_RETURN_BYTEA_P(bytea_overlay(t1, t2, sp, sl));
2918 }
2919 
2920 Datum
2922 {
2923  bytea *t1 = PG_GETARG_BYTEA_PP(0);
2924  bytea *t2 = PG_GETARG_BYTEA_PP(1);
2925  int sp = PG_GETARG_INT32(2); /* substring start position */
2926  int sl;
2927 
2928  sl = VARSIZE_ANY_EXHDR(t2); /* defaults to length(t2) */
2929  PG_RETURN_BYTEA_P(bytea_overlay(t1, t2, sp, sl));
2930 }
2931 
2932 static bytea *
2933 bytea_overlay(bytea *t1, bytea *t2, int sp, int sl)
2934 {
2935  bytea *result;
2936  bytea *s1;
2937  bytea *s2;
2938  int sp_pl_sl;
2939 
2940  /*
2941  * Check for possible integer-overflow cases. For negative sp, throw a
2942  * "substring length" error because that's what should be expected
2943  * according to the spec's definition of OVERLAY().
2944  */
2945  if (sp <= 0)
2946  ereport(ERROR,
2947  (errcode(ERRCODE_SUBSTRING_ERROR),
2948  errmsg("negative substring length not allowed")));
2949  sp_pl_sl = sp + sl;
2950  if (sp_pl_sl <= sl)
2951  ereport(ERROR,
2952  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
2953  errmsg("integer out of range")));
2954 
2955  s1 = bytea_substring(PointerGetDatum(t1), 1, sp - 1, false);
2956  s2 = bytea_substring(PointerGetDatum(t1), sp_pl_sl, -1, true);
2957  result = bytea_catenate(s1, t2);
2958  result = bytea_catenate(result, s2);
2959 
2960  return result;
2961 }
2962 
2963 /*
2964  * byteapos -
2965  * Return the position of the specified substring.
2966  * Implements the SQL POSITION() function.
2967  * Cloned from textpos and modified as required.
2968  */
2969 Datum
2971 {
2972  bytea *t1 = PG_GETARG_BYTEA_PP(0);
2973  bytea *t2 = PG_GETARG_BYTEA_PP(1);
2974  int pos;
2975  int px,
2976  p;
2977  int len1,
2978  len2;
2979  char *p1,
2980  *p2;
2981 
2982  len1 = VARSIZE_ANY_EXHDR(t1);
2983  len2 = VARSIZE_ANY_EXHDR(t2);
2984 
2985  if (len2 <= 0)
2986  PG_RETURN_INT32(1); /* result for empty pattern */
2987 
2988  p1 = VARDATA_ANY(t1);
2989  p2 = VARDATA_ANY(t2);
2990 
2991  pos = 0;
2992  px = (len1 - len2);
2993  for (p = 0; p <= px; p++)
2994  {
2995  if ((*p2 == *p1) && (memcmp(p1, p2, len2) == 0))
2996  {
2997  pos = p + 1;
2998  break;
2999  };
3000  p1++;
3001  };
3002 
3003  PG_RETURN_INT32(pos);
3004 }
3005 
3006 /*-------------------------------------------------------------
3007  * byteaGetByte
3008  *
3009  * this routine treats "bytea" as an array of bytes.
3010  * It returns the Nth byte (a number between 0 and 255).
3011  *-------------------------------------------------------------
3012  */
3013 Datum
3015 {
3016  bytea *v = PG_GETARG_BYTEA_PP(0);
3017  int32 n = PG_GETARG_INT32(1);
3018  int len;
3019  int byte;
3020 
3021  len = VARSIZE_ANY_EXHDR(v);
3022 
3023  if (n < 0 || n >= len)
3024  ereport(ERROR,
3025  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
3026  errmsg("index %d out of valid range, 0..%d",
3027  n, len - 1)));
3028 
3029  byte = ((unsigned char *) VARDATA_ANY(v))[n];
3030 
3031  PG_RETURN_INT32(byte);
3032 }
3033 
3034 /*-------------------------------------------------------------
3035  * byteaGetBit
3036  *
3037  * This routine treats a "bytea" type like an array of bits.
3038  * It returns the value of the Nth bit (0 or 1).
3039  *
3040  *-------------------------------------------------------------
3041  */
3042 Datum
3044 {
3045  bytea *v = PG_GETARG_BYTEA_PP(0);
3046  int32 n = PG_GETARG_INT32(1);
3047  int byteNo,
3048  bitNo;
3049  int len;
3050  int byte;
3051 
3052  len = VARSIZE_ANY_EXHDR(v);
3053 
3054  if (n < 0 || n >= len * 8)
3055  ereport(ERROR,
3056  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
3057  errmsg("index %d out of valid range, 0..%d",
3058  n, len * 8 - 1)));
3059 
3060  byteNo = n / 8;
3061  bitNo = n % 8;
3062 
3063  byte = ((unsigned char *) VARDATA_ANY(v))[byteNo];
3064 
3065  if (byte & (1 << bitNo))
3066  PG_RETURN_INT32(1);
3067  else
3068  PG_RETURN_INT32(0);
3069 }
3070 
3071 /*-------------------------------------------------------------
3072  * byteaSetByte
3073  *
3074  * Given an instance of type 'bytea' creates a new one with
3075  * the Nth byte set to the given value.
3076  *
3077  *-------------------------------------------------------------
3078  */
3079 Datum
3081 {
3082  bytea *res = PG_GETARG_BYTEA_P_COPY(0);
3083  int32 n = PG_GETARG_INT32(1);
3084  int32 newByte = PG_GETARG_INT32(2);
3085  int len;
3086 
3087  len = VARSIZE(res) - VARHDRSZ;
3088 
3089  if (n < 0 || n >= len)
3090  ereport(ERROR,
3091  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
3092  errmsg("index %d out of valid range, 0..%d",
3093  n, len - 1)));
3094 
3095  /*
3096  * Now set the byte.
3097  */
3098  ((unsigned char *) VARDATA(res))[n] = newByte;
3099 
3100  PG_RETURN_BYTEA_P(res);
3101 }
3102 
3103 /*-------------------------------------------------------------
3104  * byteaSetBit
3105  *
3106  * Given an instance of type 'bytea' creates a new one with
3107  * the Nth bit set to the given value.
3108  *
3109  *-------------------------------------------------------------
3110  */
3111 Datum
3113 {
3114  bytea *res = PG_GETARG_BYTEA_P_COPY(0);
3115  int32 n = PG_GETARG_INT32(1);
3116  int32 newBit = PG_GETARG_INT32(2);
3117  int len;
3118  int oldByte,
3119  newByte;
3120  int byteNo,
3121  bitNo;
3122 
3123  len = VARSIZE(res) - VARHDRSZ;
3124 
3125  if (n < 0 || n >= len * 8)
3126  ereport(ERROR,
3127  (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
3128  errmsg("index %d out of valid range, 0..%d",
3129  n, len * 8 - 1)));
3130 
3131  byteNo = n / 8;
3132  bitNo = n % 8;
3133 
3134  /*
3135  * sanity check!
3136  */
3137  if (newBit != 0 && newBit != 1)
3138  ereport(ERROR,
3139  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3140  errmsg("new bit must be 0 or 1")));
3141 
3142  /*
3143  * Update the byte.
3144  */
3145  oldByte = ((unsigned char *) VARDATA(res))[byteNo];
3146 
3147  if (newBit == 0)
3148  newByte = oldByte & (~(1 << bitNo));
3149  else
3150  newByte = oldByte | (1 << bitNo);
3151 
3152  ((unsigned char *) VARDATA(res))[byteNo] = newByte;
3153 
3154  PG_RETURN_BYTEA_P(res);
3155 }
3156 
3157 
3158 /* text_name()
3159  * Converts a text type to a Name type.
3160  */
3161 Datum
3163 {
3164  text *s = PG_GETARG_TEXT_PP(0);
3165  Name result;
3166  int len;
3167 
3168  len = VARSIZE_ANY_EXHDR(s);
3169 
3170  /* Truncate oversize input */
3171  if (len >= NAMEDATALEN)
3172  len = pg_mbcliplen(VARDATA_ANY(s), len, NAMEDATALEN - 1);
3173 
3174  /* We use palloc0 here to ensure result is zero-padded */
3175  result = (Name) palloc0(NAMEDATALEN);
3176  memcpy(NameStr(*result), VARDATA_ANY(s), len);
3177 
3178  PG_RETURN_NAME(result);
3179 }
3180 
3181 /* name_text()
3182  * Converts a Name type to a text type.
3183  */
3184 Datum
3186 {
3187  Name s = PG_GETARG_NAME(0);
3188 
3190 }
3191 
3192 
3193 /*
3194  * textToQualifiedNameList - convert a text object to list of names
3195  *
3196  * This implements the input parsing needed by nextval() and other
3197  * functions that take a text parameter representing a qualified name.
3198  * We split the name at dots, downcase if not double-quoted, and
3199  * truncate names if they're too long.
3200  */
3201 List *
3203 {
3204  char *rawname;
3205  List *result = NIL;
3206  List *namelist;
3207  ListCell *l;
3208 
3209  /* Convert to C string (handles possible detoasting). */
3210  /* Note we rely on being able to modify rawname below. */
3211  rawname = text_to_cstring(textval);
3212 
3213  if (!SplitIdentifierString(rawname, '.', &namelist))
3214  ereport(ERROR,
3215  (errcode(ERRCODE_INVALID_NAME),
3216  errmsg("invalid name syntax")));
3217 
3218  if (namelist == NIL)
3219  ereport(ERROR,
3220  (errcode(ERRCODE_INVALID_NAME),
3221  errmsg("invalid name syntax")));
3222 
3223  foreach(l, namelist)
3224  {
3225  char *curname = (char *) lfirst(l);
3226 
3227  result = lappend(result, makeString(pstrdup(curname)));
3228  }
3229 
3230  pfree(rawname);
3231  list_free(namelist);
3232 
3233  return result;
3234 }
3235 
3236 /*
3237  * SplitIdentifierString --- parse a string containing identifiers
3238  *
3239  * This is the guts of textToQualifiedNameList, and is exported for use in
3240  * other situations such as parsing GUC variables. In the GUC case, it's
3241  * important to avoid memory leaks, so the API is designed to minimize the
3242  * amount of stuff that needs to be allocated and freed.
3243  *
3244  * Inputs:
3245  * rawstring: the input string; must be overwritable! On return, it's
3246  * been modified to contain the separated identifiers.
3247  * separator: the separator punctuation expected between identifiers
3248  * (typically '.' or ','). Whitespace may also appear around
3249  * identifiers.
3250  * Outputs:
3251  * namelist: filled with a palloc'd list of pointers to identifiers within
3252  * rawstring. Caller should list_free() this even on error return.
3253  *
3254  * Returns TRUE if okay, FALSE if there is a syntax error in the string.
3255  *
3256  * Note that an empty string is considered okay here, though not in
3257  * textToQualifiedNameList.
3258  */
3259 bool
3260 SplitIdentifierString(char *rawstring, char separator,
3261  List **namelist)
3262 {
3263  char *nextp = rawstring;
3264  bool done = false;
3265 
3266  *namelist = NIL;
3267 
3268  while (scanner_isspace(*nextp))
3269  nextp++; /* skip leading whitespace */
3270 
3271  if (*nextp == '\0')
3272  return true; /* allow empty string */
3273 
3274  /* At the top of the loop, we are at start of a new identifier. */
3275  do
3276  {
3277  char *curname;
3278  char *endp;
3279 
3280  if (*nextp == '"')
3281  {
3282  /* Quoted name --- collapse quote-quote pairs, no downcasing */
3283  curname = nextp + 1;
3284  for (;;)
3285  {
3286  endp = strchr(nextp + 1, '"');
3287  if (endp == NULL)
3288  return false; /* mismatched quotes */
3289  if (endp[1] != '"')
3290  break; /* found end of quoted name */
3291  /* Collapse adjacent quotes into one quote, and look again */
3292  memmove(endp, endp + 1, strlen(endp));
3293  nextp = endp;
3294  }
3295  /* endp now points at the terminating quote */
3296  nextp = endp + 1;
3297  }
3298  else
3299  {
3300  /* Unquoted name --- extends to separator or whitespace */
3301  char *downname;
3302  int len;
3303 
3304  curname = nextp;
3305  while (*nextp && *nextp != separator &&
3306  !scanner_isspace(*nextp))
3307  nextp++;
3308  endp = nextp;
3309  if (curname == nextp)
3310  return false; /* empty unquoted name not allowed */
3311 
3312  /*
3313  * Downcase the identifier, using same code as main lexer does.
3314  *
3315  * XXX because we want to overwrite the input in-place, we cannot
3316  * support a downcasing transformation that increases the string
3317  * length. This is not a problem given the current implementation
3318  * of downcase_truncate_identifier, but we'll probably have to do
3319  * something about this someday.
3320  */
3321  len = endp - curname;
3322  downname = downcase_truncate_identifier(curname, len, false);
3323  Assert(strlen(downname) <= len);
3324  strncpy(curname, downname, len); /* strncpy is required here */
3325  pfree(downname);
3326  }
3327 
3328  while (scanner_isspace(*nextp))
3329  nextp++; /* skip trailing whitespace */
3330 
3331  if (*nextp == separator)
3332  {
3333  nextp++;
3334  while (scanner_isspace(*nextp))
3335  nextp++; /* skip leading whitespace for next */
3336  /* we expect another name, so done remains false */
3337  }
3338  else if (*nextp == '\0')
3339  done = true;
3340  else
3341  return false; /* invalid syntax */
3342 
3343  /* Now safe to overwrite separator with a null */
3344  *endp = '\0';
3345 
3346  /* Truncate name if it's overlength */
3347  truncate_identifier(curname, strlen(curname), false);
3348 
3349  /*
3350  * Finished isolating current name --- add it to list
3351  */
3352  *namelist = lappend(*namelist, curname);
3353 
3354  /* Loop back if we didn't reach end of string */
3355  } while (!done);
3356 
3357  return true;
3358 }
3359 
3360 
3361 /*
3362  * SplitDirectoriesString --- parse a string containing file/directory names
3363  *
3364  * This works fine on file names too; the function name is historical.
3365  *
3366  * This is similar to SplitIdentifierString, except that the parsing
3367  * rules are meant to handle pathnames instead of identifiers: there is
3368  * no downcasing, embedded spaces are allowed, the max length is MAXPGPATH-1,
3369  * and we apply canonicalize_path() to each extracted string. Because of the
3370  * last, the returned strings are separately palloc'd rather than being
3371  * pointers into rawstring --- but we still scribble on rawstring.
3372  *
3373  * Inputs:
3374  * rawstring: the input string; must be modifiable!
3375  * separator: the separator punctuation expected between directories
3376  * (typically ',' or ';'). Whitespace may also appear around
3377  * directories.
3378  * Outputs:
3379  * namelist: filled with a palloc'd list of directory names.
3380  * Caller should list_free_deep() this even on error return.
3381  *
3382  * Returns TRUE if okay, FALSE if there is a syntax error in the string.
3383  *
3384  * Note that an empty string is considered okay here.
3385  */
3386 bool
3387 SplitDirectoriesString(char *rawstring, char separator,
3388  List **namelist)
3389 {
3390  char *nextp = rawstring;
3391  bool done = false;
3392 
3393  *namelist = NIL;
3394 
3395  while (scanner_isspace(*nextp))
3396  nextp++; /* skip leading whitespace */
3397 
3398  if (*nextp == '\0')
3399  return true; /* allow empty string */
3400 
3401  /* At the top of the loop, we are at start of a new directory. */
3402  do
3403  {
3404  char *curname;
3405  char *endp;
3406 
3407  if (*nextp == '"')
3408  {
3409  /* Quoted name --- collapse quote-quote pairs */
3410  curname = nextp + 1;
3411  for (;;)
3412  {
3413  endp = strchr(nextp + 1, '"');
3414  if (endp == NULL)
3415  return false; /* mismatched quotes */
3416  if (endp[1] != '"')
3417  break; /* found end of quoted name */
3418  /* Collapse adjacent quotes into one quote, and look again */
3419  memmove(endp, endp + 1, strlen(endp));
3420  nextp = endp;
3421  }
3422  /* endp now points at the terminating quote */
3423  nextp = endp + 1;
3424  }
3425  else
3426  {
3427  /* Unquoted name --- extends to separator or end of string */
3428  curname = endp = nextp;
3429  while (*nextp && *nextp != separator)
3430  {
3431  /* trailing whitespace should not be included in name */
3432  if (!scanner_isspace(*nextp))
3433  endp = nextp + 1;
3434  nextp++;
3435  }
3436  if (curname == endp)
3437  return false; /* empty unquoted name not allowed */
3438  }
3439 
3440  while (scanner_isspace(*nextp))
3441  nextp++; /* skip trailing whitespace */
3442 
3443  if (*nextp == separator)
3444  {
3445  nextp++;
3446  while (scanner_isspace(*nextp))
3447  nextp++; /* skip leading whitespace for next */
3448  /* we expect another name, so done remains false */
3449  }
3450  else if (*nextp == '\0')
3451  done = true;
3452  else
3453  return false; /* invalid syntax */
3454 
3455  /* Now safe to overwrite separator with a null */
3456  *endp = '\0';
3457 
3458  /* Truncate path if it's overlength */
3459  if (strlen(curname) >= MAXPGPATH)
3460  curname[MAXPGPATH - 1] = '\0';
3461 
3462  /*
3463  * Finished isolating current name --- add it to list
3464  */
3465  curname = pstrdup(curname);
3466  canonicalize_path(curname);
3467  *namelist = lappend(*namelist, curname);
3468 
3469  /* Loop back if we didn't reach end of string */
3470  } while (!done);
3471 
3472  return true;
3473 }
3474 
3475 
3476 /*****************************************************************************
3477  * Comparison Functions used for bytea
3478  *
3479  * Note: btree indexes need these routines not to leak memory; therefore,
3480  * be careful to free working copies of toasted datums. Most places don't
3481  * need to be so careful.
3482  *****************************************************************************/
3483 
3484 Datum
3486 {
3487  Datum arg1 = PG_GETARG_DATUM(0);
3488  Datum arg2 = PG_GETARG_DATUM(1);
3489  bool result;
3490  Size len1,
3491  len2;
3492 
3493  /*
3494  * We can use a fast path for unequal lengths, which might save us from
3495  * having to detoast one or both values.
3496  */
3497  len1 = toast_raw_datum_size(arg1);
3498  len2 = toast_raw_datum_size(arg2);
3499  if (len1 != len2)
3500  result = false;
3501  else
3502  {
3503  bytea *barg1 = DatumGetByteaPP(arg1);
3504  bytea *barg2 = DatumGetByteaPP(arg2);
3505 
3506  result = (memcmp(VARDATA_ANY(barg1), VARDATA_ANY(barg2),
3507  len1 - VARHDRSZ) == 0);
3508 
3509  PG_FREE_IF_COPY(barg1, 0);
3510  PG_FREE_IF_COPY(barg2, 1);
3511  }
3512 
3513  PG_RETURN_BOOL(result);
3514 }
3515 
3516 Datum
3518 {
3519  Datum arg1 = PG_GETARG_DATUM(0);
3520  Datum arg2 = PG_GETARG_DATUM(1);
3521  bool result;
3522  Size len1,
3523  len2;
3524 
3525  /*
3526  * We can use a fast path for unequal lengths, which might save us from
3527  * having to detoast one or both values.
3528  */
3529  len1 = toast_raw_datum_size(arg1);
3530  len2 = toast_raw_datum_size(arg2);
3531  if (len1 != len2)
3532  result = true;
3533  else
3534  {
3535  bytea *barg1 = DatumGetByteaPP(arg1);
3536  bytea *barg2 = DatumGetByteaPP(arg2);
3537 
3538  result = (memcmp(VARDATA_ANY(barg1), VARDATA_ANY(barg2),
3539  len1 - VARHDRSZ) != 0);
3540 
3541  PG_FREE_IF_COPY(barg1, 0);
3542  PG_FREE_IF_COPY(barg2, 1);
3543  }
3544 
3545  PG_RETURN_BOOL(result);
3546 }
3547 
3548 Datum
3550 {
3551  bytea *arg1 = PG_GETARG_BYTEA_PP(0);
3552  bytea *arg2 = PG_GETARG_BYTEA_PP(1);
3553  int len1,
3554  len2;
3555  int cmp;
3556 
3557  len1 = VARSIZE_ANY_EXHDR(arg1);
3558  len2 = VARSIZE_ANY_EXHDR(arg2);
3559 
3560  cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2));
3561 
3562  PG_FREE_IF_COPY(arg1, 0);
3563  PG_FREE_IF_COPY(arg2, 1);
3564 
3565  PG_RETURN_BOOL((cmp < 0) || ((cmp == 0) && (len1 < len2)));
3566 }
3567 
3568 Datum
3570 {
3571  bytea *arg1 = PG_GETARG_BYTEA_PP(0);
3572  bytea *arg2 = PG_GETARG_BYTEA_PP(1);
3573  int len1,
3574  len2;
3575  int cmp;
3576 
3577  len1 = VARSIZE_ANY_EXHDR(arg1);
3578  len2 = VARSIZE_ANY_EXHDR(arg2);
3579 
3580  cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2));
3581 
3582  PG_FREE_IF_COPY(arg1, 0);
3583  PG_FREE_IF_COPY(arg2, 1);
3584 
3585  PG_RETURN_BOOL((cmp < 0) || ((cmp == 0) && (len1 <= len2)));
3586 }
3587 
3588 Datum
3590 {
3591  bytea *arg1 = PG_GETARG_BYTEA_PP(0);
3592  bytea *arg2 = PG_GETARG_BYTEA_PP(1);
3593  int len1,
3594  len2;
3595  int cmp;
3596 
3597  len1 = VARSIZE_ANY_EXHDR(arg1);
3598  len2 = VARSIZE_ANY_EXHDR(arg2);
3599 
3600  cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2));
3601 
3602  PG_FREE_IF_COPY(arg1, 0);
3603  PG_FREE_IF_COPY(arg2, 1);
3604 
3605  PG_RETURN_BOOL((cmp > 0) || ((cmp == 0) && (len1 > len2)));
3606 }
3607 
3608 Datum
3610 {
3611  bytea *arg1 = PG_GETARG_BYTEA_PP(0);
3612  bytea *arg2 = PG_GETARG_BYTEA_PP(1);
3613  int len1,
3614  len2;
3615  int cmp;
3616 
3617  len1 = VARSIZE_ANY_EXHDR(arg1);
3618  len2 = VARSIZE_ANY_EXHDR(arg2);
3619 
3620  cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2));
3621 
3622  PG_FREE_IF_COPY(arg1, 0);
3623  PG_FREE_IF_COPY(arg2, 1);
3624 
3625  PG_RETURN_BOOL((cmp > 0) || ((cmp == 0) && (len1 >= len2)));
3626 }
3627 
3628 Datum
3630 {
3631  bytea *arg1 = PG_GETARG_BYTEA_PP(0);
3632  bytea *arg2 = PG_GETARG_BYTEA_PP(1);
3633  int len1,
3634  len2;
3635  int cmp;
3636 
3637  len1 = VARSIZE_ANY_EXHDR(arg1);
3638  len2 = VARSIZE_ANY_EXHDR(arg2);
3639 
3640  cmp = memcmp(VARDATA_ANY(arg1), VARDATA_ANY(arg2), Min(len1, len2));
3641  if ((cmp == 0) && (len1 != len2))
3642  cmp = (len1 < len2) ? -1 : 1;
3643 
3644  PG_FREE_IF_COPY(arg1, 0);
3645  PG_FREE_IF_COPY(arg2, 1);
3646 
3647  PG_RETURN_INT32(cmp);
3648 }
3649 
3650 Datum
3652 {
3654  MemoryContext oldcontext;
3655 
3656  oldcontext = MemoryContextSwitchTo(ssup->ssup_cxt);
3657 
3658  /* Use generic string SortSupport, forcing "C" collation */
3659  varstr_sortsupport(ssup, C_COLLATION_OID, false);
3660 
3661  MemoryContextSwitchTo(oldcontext);
3662 
3663  PG_RETURN_VOID();
3664 }
3665 
3666 /*
3667  * appendStringInfoText
3668  *
3669  * Append a text to str.
3670  * Like appendStringInfoString(str, text_to_cstring(t)) but faster.
3671  */
3672 static void
3674 {
3676 }
3677 
3678 /*
3679  * replace_text
3680  * replace all occurrences of 'old_sub_str' in 'orig_str'
3681  * with 'new_sub_str' to form 'new_str'
3682  *
3683  * returns 'orig_str' if 'old_sub_str' == '' or 'orig_str' == ''
3684  * otherwise returns 'new_str'
3685  */
3686 Datum
3688 {
3689  text *src_text = PG_GETARG_TEXT_PP(0);
3690  text *from_sub_text = PG_GETARG_TEXT_PP(1);
3691  text *to_sub_text = PG_GETARG_TEXT_PP(2);
3692  int src_text_len;
3693  int from_sub_text_len;
3695  text *ret_text;
3696  int start_posn;
3697  int curr_posn;
3698  int chunk_len;
3699  char *start_ptr;
3700  StringInfoData str;
3701 
3702  text_position_setup(src_text, from_sub_text, &state);
3703 
3704  /*
3705  * Note: we check the converted string length, not the original, because
3706  * they could be different if the input contained invalid encoding.
3707  */
3708  src_text_len = state.len1;
3709  from_sub_text_len = state.len2;
3710 
3711  /* Return unmodified source string if empty source or pattern */
3712  if (src_text_len < 1 || from_sub_text_len < 1)
3713  {
3714  text_position_cleanup(&state);
3715  PG_RETURN_TEXT_P(src_text);
3716  }
3717 
3718  start_posn = 1;
3719  curr_posn = text_position_next(1, &state);
3720 
3721  /* When the from_sub_text is not found, there is nothing to do. */
3722  if (curr_posn == 0)
3723  {
3724  text_position_cleanup(&state);
3725  PG_RETURN_TEXT_P(src_text);
3726  }
3727 
3728  /* start_ptr points to the start_posn'th character of src_text */
3729  start_ptr = VARDATA_ANY(src_text);
3730 
3731  initStringInfo(&str);
3732 
3733  do
3734  {
3736 
3737  /* copy the data skipped over by last text_position_next() */
3738  chunk_len = charlen_to_bytelen(start_ptr, curr_posn - start_posn);
3739  appendBinaryStringInfo(&str, start_ptr, chunk_len);
3740 
3741  appendStringInfoText(&str, to_sub_text);
3742 
3743  start_posn = curr_posn;
3744  start_ptr += chunk_len;
3745  start_posn += from_sub_text_len;
3746  start_ptr += charlen_to_bytelen(start_ptr, from_sub_text_len);
3747 
3748  curr_posn = text_position_next(start_posn, &state);
3749  }
3750  while (curr_posn > 0);
3751 
3752  /* copy trailing data */
3753  chunk_len = ((char *) src_text + VARSIZE_ANY(src_text)) - start_ptr;
3754  appendBinaryStringInfo(&str, start_ptr, chunk_len);
3755 
3756  text_position_cleanup(&state);
3757 
3758  ret_text = cstring_to_text_with_len(str.data, str.len);
3759  pfree(str.data);
3760 
3761  PG_RETURN_TEXT_P(ret_text);
3762 }
3763 
3764 /*
3765  * check_replace_text_has_escape_char
3766  *
3767  * check whether replace_text contains escape char.
3768  */
3769 static bool
3771 {
3772  const char *p = VARDATA_ANY(replace_text);
3773  const char *p_end = p + VARSIZE_ANY_EXHDR(replace_text);
3774 
3776  {
3777  for (; p < p_end; p++)
3778  {
3779  if (*p == '\\')
3780  return true;
3781  }
3782  }
3783  else
3784  {
3785  for (; p < p_end; p += pg_mblen(p))
3786  {
3787  if (*p == '\\')
3788  return true;
3789  }
3790  }
3791 
3792  return false;
3793 }
3794 
3795 /*
3796  * appendStringInfoRegexpSubstr
3797  *
3798  * Append replace_text to str, substituting regexp back references for
3799  * \n escapes. start_ptr is the start of the match in the source string,
3800  * at logical character position data_pos.
3801  */
3802 static void
3804  regmatch_t *pmatch,
3805  char *start_ptr, int data_pos)
3806 {
3807  const char *p = VARDATA_ANY(replace_text);
3808  const char *p_end = p + VARSIZE_ANY_EXHDR(replace_text);
3809  int eml = pg_database_encoding_max_length();
3810 
3811  for (;;)
3812  {
3813  const char *chunk_start = p;
3814  int so;
3815  int eo;
3816 
3817  /* Find next escape char. */
3818  if (eml == 1)
3819  {
3820  for (; p < p_end && *p != '\\'; p++)
3821  /* nothing */ ;
3822  }
3823  else
3824  {
3825  for (; p < p_end && *p != '\\'; p += pg_mblen(p))
3826  /* nothing */ ;
3827  }
3828 
3829  /* Copy the text we just scanned over, if any. */
3830  if (p > chunk_start)
3831  appendBinaryStringInfo(str, chunk_start, p - chunk_start);
3832 
3833  /* Done if at end of string, else advance over escape char. */
3834  if (p >= p_end)
3835  break;
3836  p++;
3837 
3838  if (p >= p_end)
3839  {
3840  /* Escape at very end of input. Treat same as unexpected char */
3841  appendStringInfoChar(str, '\\');
3842  break;
3843  }
3844 
3845  if (*p >= '1' && *p <= '9')
3846  {
3847  /* Use the back reference of regexp. */
3848  int idx = *p - '0';
3849 
3850  so = pmatch[idx].rm_so;
3851  eo = pmatch[idx].rm_eo;
3852  p++;
3853  }
3854  else if (*p == '&')
3855  {
3856  /* Use the entire matched string. */
3857  so = pmatch[0].rm_so;
3858  eo = pmatch[0].rm_eo;
3859  p++;
3860  }
3861  else if (*p == '\\')
3862  {
3863  /* \\ means transfer one \ to output. */
3864  appendStringInfoChar(str, '\\');
3865  p++;
3866  continue;
3867  }
3868  else
3869  {
3870  /*
3871  * If escape char is not followed by any expected char, just treat
3872  * it as ordinary data to copy. (XXX would it be better to throw
3873  * an error?)
3874  */
3875  appendStringInfoChar(str, '\\');
3876  continue;
3877  }
3878 
3879  if (so != -1 && eo != -1)
3880  {
3881  /*
3882  * Copy the text that is back reference of regexp. Note so and eo
3883  * are counted in characters not bytes.
3884  */
3885  char *chunk_start;
3886  int chunk_len;
3887 
3888  Assert(so >= data_pos);
3889  chunk_start = start_ptr;
3890  chunk_start += charlen_to_bytelen(chunk_start, so - data_pos);
3891  chunk_len = charlen_to_bytelen(chunk_start, eo - so);
3892  appendBinaryStringInfo(str, chunk_start, chunk_len);
3893  }
3894  }
3895 }
3896 
3897 #define REGEXP_REPLACE_BACKREF_CNT 10
3898 
3899 /*
3900  * replace_text_regexp
3901  *
3902  * replace text that matches to regexp in src_text to replace_text.
3903  *
3904  * Note: to avoid having to include regex.h in builtins.h, we declare
3905  * the regexp argument as void *, but really it's regex_t *.
3906  */
3907 text *
3908 replace_text_regexp(text *src_text, void *regexp,
3909  text *replace_text, bool glob)
3910 {
3911  text *ret_text;
3912  regex_t *re = (regex_t *) regexp;
3913  int src_text_len = VARSIZE_ANY_EXHDR(src_text);
3916  pg_wchar *data;
3917  size_t data_len;
3918  int search_start;
3919  int data_pos;
3920  char *start_ptr;
3921  bool have_escape;
3922 
3923  initStringInfo(&buf);
3924 
3925  /* Convert data string to wide characters. */
3926  data = (pg_wchar *) palloc((src_text_len + 1) * sizeof(pg_wchar));
3927  data_len = pg_mb2wchar_with_len(VARDATA_ANY(src_text), data, src_text_len);
3928 
3929  /* Check whether replace_text has escape char. */
3930  have_escape = check_replace_text_has_escape_char(replace_text);
3931 
3932  /* start_ptr points to the data_pos'th character of src_text */
3933  start_ptr = (char *) VARDATA_ANY(src_text);
3934  data_pos = 0;
3935 
3936  search_start = 0;
3937  while (search_start <= data_len)
3938  {
3939  int regexec_result;
3940 
3942 
3943  regexec_result = pg_regexec(re,
3944  data,
3945  data_len,
3946  search_start,
3947  NULL, /* no details */
3949  pmatch,
3950  0);
3951 
3952  if (regexec_result == REG_NOMATCH)
3953  break;
3954 
3955  if (regexec_result != REG_OKAY)
3956  {
3957  char errMsg[100];
3958 
3960  pg_regerror(regexec_result, re, errMsg, sizeof(errMsg));
3961  ereport(ERROR,
3962  (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION),
3963  errmsg("regular expression failed: %s", errMsg)));
3964  }
3965 
3966  /*
3967  * Copy the text to the left of the match position. Note we are given
3968  * character not byte indexes.
3969  */
3970  if (pmatch[0].rm_so - data_pos > 0)
3971  {
3972  int chunk_len;
3973 
3974  chunk_len = charlen_to_bytelen(start_ptr,
3975  pmatch[0].rm_so - data_pos);
3976  appendBinaryStringInfo(&buf, start_ptr, chunk_len);
3977 
3978  /*
3979  * Advance start_ptr over that text, to avoid multiple rescans of
3980  * it if the replace_text contains multiple back-references.
3981  */
3982  start_ptr += chunk_len;
3983  data_pos = pmatch[0].rm_so;
3984  }
3985 
3986  /*
3987  * Copy the replace_text. Process back references when the
3988  * replace_text has escape characters.
3989  */
3990  if (have_escape)
3991  appendStringInfoRegexpSubstr(&buf, replace_text, pmatch,
3992  start_ptr, data_pos);
3993  else
3994  appendStringInfoText(&buf, replace_text);
3995 
3996  /* Advance start_ptr and data_pos over the matched text. */
3997  start_ptr += charlen_to_bytelen(start_ptr,
3998  pmatch[0].rm_eo - data_pos);
3999  data_pos = pmatch[0].rm_eo;
4000 
4001  /*
4002  * When global option is off, replace the first instance only.
4003  */
4004  if (!glob)
4005  break;
4006 
4007  /*
4008  * Advance search position. Normally we start the next search at the
4009  * end of the previous match; but if the match was of zero length, we
4010  * have to advance by one character, or we'd just find the same match
4011  * again.
4012  */
4013  search_start = data_pos;
4014  if (pmatch[0].rm_so == pmatch[0].rm_eo)
4015  search_start++;
4016  }
4017 
4018  /*
4019  * Copy the text to the right of the last match.
4020  */
4021  if (data_pos < data_len)
4022  {
4023  int chunk_len;
4024 
4025  chunk_len = ((char *) src_text + VARSIZE_ANY(src_text)) - start_ptr;
4026  appendBinaryStringInfo(&buf, start_ptr, chunk_len);
4027  }
4028 
4029  ret_text = cstring_to_text_with_len(buf.data, buf.len);
4030  pfree(buf.data);
4031  pfree(data);
4032 
4033  return ret_text;
4034 }
4035 
4036 /*
4037  * split_text
4038  * parse input string
4039  * return ord item (1 based)
4040  * based on provided field separator
4041  */
4042 Datum
4044 {
4045  text *inputstring = PG_GETARG_TEXT_PP(0);
4046  text *fldsep = PG_GETARG_TEXT_PP(1);
4047  int fldnum = PG_GETARG_INT32(2);
4048  int inputstring_len;
4049  int fldsep_len;
4051  int start_posn;
4052  int end_posn;
4053  text *result_text;
4054 
4055  /* field number is 1 based */
4056  if (fldnum < 1)
4057  ereport(ERROR,
4058  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4059  errmsg("field position must be greater than zero")));
4060 
4061  text_position_setup(inputstring, fldsep, &state);
4062 
4063  /*
4064  * Note: we check the converted string length, not the original, because
4065  * they could be different if the input contained invalid encoding.
4066  */
4067  inputstring_len = state.len1;
4068  fldsep_len = state.len2;
4069 
4070  /* return empty string for empty input string */
4071  if (inputstring_len < 1)
4072  {
4073  text_position_cleanup(&state);
4075  }
4076 
4077  /* empty field separator */
4078  if (fldsep_len < 1)
4079  {
4080  text_position_cleanup(&state);
4081  /* if first field, return input string, else empty string */
4082  if (fldnum == 1)
4083  PG_RETURN_TEXT_P(inputstring);
4084  else
4086  }
4087 
4088  /* identify bounds of first field */
4089  start_posn = 1;
4090  end_posn = text_position_next(1, &state);
4091 
4092  /* special case if fldsep not found at all */
4093  if (end_posn == 0)
4094  {
4095  text_position_cleanup(&state);
4096  /* if field 1 requested, return input string, else empty string */
4097  if (fldnum == 1)
4098  PG_RETURN_TEXT_P(inputstring);
4099  else
4101  }
4102 
4103  while (end_posn > 0 && --fldnum > 0)
4104  {
4105  /* identify bounds of next field */
4106  start_posn = end_posn + fldsep_len;
4107  end_posn = text_position_next(start_posn, &state);
4108  }
4109 
4110  text_position_cleanup(&state);
4111 
4112  if (fldnum > 0)
4113  {
4114  /* N'th field separator not found */
4115  /* if last field requested, return it, else empty string */
4116  if (fldnum == 1)
4117  result_text = text_substring(PointerGetDatum(inputstring),
4118  start_posn,
4119  -1,
4120  true);
4121  else
4122  result_text = cstring_to_text("");
4123  }
4124  else
4125  {
4126  /* non-last field requested */
4127  result_text = text_substring(PointerGetDatum(inputstring),
4128  start_posn,
4129  end_posn - start_posn,
4130  false);
4131  }
4132 
4133  PG_RETURN_TEXT_P(result_text);
4134 }
4135 
4136 /*
4137  * Convenience function to return true when two text params are equal.
4138  */
4139 static bool
4140 text_isequal(text *txt1, text *txt2)
4141 {
4143  PointerGetDatum(txt1),
4144  PointerGetDatum(txt2)));
4145 }
4146 
4147 /*
4148  * text_to_array
4149  * parse input string and return text array of elements,
4150  * based on provided field separator
4151  */
4152 Datum
4154 {
4155  return text_to_array_internal(fcinfo);
4156 }
4157 
4158 /*
4159  * text_to_array_null
4160  * parse input string and return text array of elements,
4161  * based on provided field separator and null string
4162  *
4163  * This is a separate entry point only to prevent the regression tests from
4164  * complaining about different argument sets for the same internal function.
4165  */
4166 Datum
4168 {
4169  return text_to_array_internal(fcinfo);
4170 }
4171 
4172 /*
4173  * common code for text_to_array and text_to_array_null functions
4174  *
4175  * These are not strict so we have to test for null inputs explicitly.
4176  */
4177 static Datum
4179 {
4180  text *inputstring;
4181  text *fldsep;
4182  text *null_string;
4183  int inputstring_len;
4184  int fldsep_len;
4185  char *start_ptr;
4186  text *result_text;
4187  bool is_null;
4188  ArrayBuildState *astate = NULL;
4189 
4190  /* when input string is NULL, then result is NULL too */
4191  if (PG_ARGISNULL(0))
4192  PG_RETURN_NULL();
4193 
4194  inputstring = PG_GETARG_TEXT_PP(0);
4195 
4196  /* fldsep can be NULL */
4197  if (!PG_ARGISNULL(1))
4198  fldsep = PG_GETARG_TEXT_PP(1);
4199  else
4200  fldsep = NULL;
4201 
4202  /* null_string can be NULL or omitted */
4203  if (PG_NARGS() > 2 && !PG_ARGISNULL(2))
4204  null_string = PG_GETARG_TEXT_PP(2);
4205  else
4206  null_string = NULL;
4207 
4208  if (fldsep != NULL)
4209  {
4210  /*
4211  * Normal case with non-null fldsep. Use the text_position machinery
4212  * to search for occurrences of fldsep.
4213  */
4215  int fldnum;
4216  int start_posn;
4217  int end_posn;
4218  int chunk_len;
4219 
4220  text_position_setup(inputstring, fldsep, &state);
4221 
4222  /*
4223  * Note: we check the converted string length, not the original,
4224  * because they could be different if the input contained invalid
4225  * encoding.
4226  */
4227  inputstring_len = state.len1;
4228  fldsep_len = state.len2;
4229 
4230  /* return empty array for empty input string */
4231  if (inputstring_len < 1)
4232  {
4233  text_position_cleanup(&state);
4235  }
4236 
4237  /*
4238  * empty field separator: return the input string as a one-element
4239  * array
4240  */
4241  if (fldsep_len < 1)
4242  {
4243  Datum elems[1];
4244  bool nulls[1];
4245  int dims[1];
4246  int lbs[1];
4247 
4248  text_position_cleanup(&state);
4249  /* single element can be a NULL too */
4250  is_null = null_string ? text_isequal(inputstring, null_string) : false;
4251 
4252  elems[0] = PointerGetDatum(inputstring);
4253  nulls[0] = is_null;
4254  dims[0] = 1;
4255  lbs[0] = 1;
4256  /* XXX: this hardcodes assumptions about the text type */
4258  1, dims, lbs,
4259  TEXTOID, -1, false, 'i'));
4260  }
4261 
4262  start_posn = 1;
4263  /* start_ptr points to the start_posn'th character of inputstring */
4264  start_ptr = VARDATA_ANY(inputstring);
4265 
4266  for (fldnum = 1;; fldnum++) /* field number is 1 based */
4267  {
4269 
4270  end_posn = text_position_next(start_posn, &state);
4271 
4272  if (end_posn == 0)
4273  {
4274  /* fetch last field */
4275  chunk_len = ((char *) inputstring + VARSIZE_ANY(inputstring)) - start_ptr;
4276  }
4277  else
4278  {
4279  /* fetch non-last field */
4280  chunk_len = charlen_to_bytelen(start_ptr, end_posn - start_posn);
4281  }
4282 
4283  /* must build a temp text datum to pass to accumArrayResult */
4284  result_text = cstring_to_text_with_len(start_ptr, chunk_len);
4285  is_null = null_string ? text_isequal(result_text, null_string) : false;
4286 
4287  /* stash away this field */
4288  astate = accumArrayResult(astate,
4289  PointerGetDatum(result_text),
4290  is_null,
4291  TEXTOID,
4293 
4294  pfree(result_text);
4295 
4296  if (end_posn == 0)
4297  break;
4298 
4299  start_posn = end_posn;
4300  start_ptr += chunk_len;
4301  start_posn += fldsep_len;
4302  start_ptr += charlen_to_bytelen(start_ptr, fldsep_len);
4303  }
4304 
4305  text_position_cleanup(&state);
4306  }
4307  else
4308  {
4309  /*
4310  * When fldsep is NULL, each character in the inputstring becomes an
4311  * element in the result array. The separator is effectively the
4312  * space between characters.
4313  */
4314  inputstring_len = VARSIZE_ANY_EXHDR(inputstring);
4315 
4316  /* return empty array for empty input string */
4317  if (inputstring_len < 1)
4319 
4320  start_ptr = VARDATA_ANY(inputstring);
4321 
4322  while (inputstring_len > 0)
4323  {
4324  int chunk_len = pg_mblen(start_ptr);
4325 
4327 
4328  /* must build a temp text datum to pass to accumArrayResult */
4329  result_text = cstring_to_text_with_len(start_ptr, chunk_len);
4330  is_null = null_string ? text_isequal(result_text, null_string) : false;
4331 
4332  /* stash away this field */
4333  astate = accumArrayResult(astate,
4334  PointerGetDatum(result_text),
4335  is_null,
4336  TEXTOID,
4338 
4339  pfree(result_text);
4340 
4341  start_ptr += chunk_len;
4342  inputstring_len -= chunk_len;
4343  }
4344  }
4345 
4348 }
4349 
4350 /*
4351  * array_to_text
4352  * concatenate Cstring representation of input array elements
4353  * using provided field separator
4354  */
4355 Datum
4357 {
4359  char *fldsep = text_to_cstring(PG_GETARG_TEXT_PP(1));
4360 
4361  PG_RETURN_TEXT_P(array_to_text_internal(fcinfo, v, fldsep, NULL));
4362 }
4363 
4364 /*
4365  * array_to_text_null
4366  * concatenate Cstring representation of input array elements
4367  * using provided field separator and null string
4368  *
4369  * This version is not strict so we have to test for null inputs explicitly.
4370  */
4371 Datum
4373 {
4374  ArrayType *v;
4375  char *fldsep;
4376  char *null_string;
4377 
4378  /* returns NULL when first or second parameter is NULL */
4379  if (PG_ARGISNULL(0) || PG_ARGISNULL(1))
4380  PG_RETURN_NULL();
4381 
4382  v = PG_GETARG_ARRAYTYPE_P(0);
4383  fldsep = text_to_cstring(PG_GETARG_TEXT_PP(1));
4384 
4385  /* NULL null string is passed through as a null pointer */
4386  if (!PG_ARGISNULL(2))
4387  null_string = text_to_cstring(PG_GETARG_TEXT_PP(2));
4388  else
4389  null_string = NULL;
4390 
4391  PG_RETURN_TEXT_P(array_to_text_internal(fcinfo, v, fldsep, null_string));
4392 }
4393 
4394 /*
4395  * common code for array_to_text and array_to_text_null functions
4396  */
4397 static text *
4399  const char *fldsep, const char *null_string)
4400 {
4401  text *result;
4402  int nitems,
4403  *dims,
4404  ndims;
4405  Oid element_type;
4406  int typlen;
4407  bool typbyval;
4408  char typalign;
4410  bool printed = false;
4411  char *p;
4412  bits8 *bitmap;
4413  int bitmask;
4414  int i;
4415  ArrayMetaState *my_extra;
4416 
4417  ndims = ARR_NDIM(v);
4418  dims = ARR_DIMS(v);
4419  nitems = ArrayGetNItems(ndims, dims);
4420 
4421  /* if there are no elements, return an empty string */
4422  if (nitems == 0)
4423  return cstring_to_text_with_len("", 0);
4424 
4425  element_type = ARR_ELEMTYPE(v);
4426  initStringInfo(&buf);
4427 
4428  /*
4429  * We arrange to look up info about element type, including its output
4430  * conversion proc, only once per series of calls, assuming the element
4431  * type doesn't change underneath us.
4432  */
4433  my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
4434  if (my_extra == NULL)
4435  {
4436  fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
4437  sizeof(ArrayMetaState));
4438  my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra;
4439  my_extra->element_type = ~element_type;
4440  }
4441 
4442  if (my_extra->element_type != element_type)
4443  {
4444  /*
4445  * Get info about element type, including its output conversion proc
4446  */
4447  get_type_io_data(element_type, IOFunc_output,
4448  &my_extra->typlen, &my_extra->typbyval,
4449  &my_extra->typalign, &my_extra->typdelim,
4450  &my_extra->typioparam, &my_extra->typiofunc);
4451  fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc,
4452  fcinfo->flinfo->fn_mcxt);
4453  my_extra->element_type = element_type;
4454  }
4455  typlen = my_extra->typlen;
4456  typbyval = my_extra->typbyval;
4457  typalign = my_extra->typalign;
4458 
4459  p = ARR_DATA_PTR(v);
4460  bitmap = ARR_NULLBITMAP(v);
4461  bitmask = 1;
4462 
4463  for (i = 0; i < nitems; i++)
4464  {
4465  Datum itemvalue;
4466  char *value;
4467 
4468  /* Get source element, checking for NULL */
4469  if (bitmap && (*bitmap & bitmask) == 0)
4470  {
4471  /* if null_string is NULL, we just ignore null elements */
4472  if (null_string != NULL)
4473  {
4474  if (printed)
4475  appendStringInfo(&buf, "%s%s", fldsep, null_string);
4476  else
4477  appendStringInfoString(&buf, null_string);
4478  printed = true;
4479  }
4480  }
4481  else
4482  {
4483  itemvalue = fetch_att(p, typbyval, typlen);
4484 
4485  value = OutputFunctionCall(&my_extra->proc, itemvalue);
4486 
4487  if (printed)
4488  appendStringInfo(&buf, "%s%s", fldsep, value);
4489  else
4490  appendStringInfoString(&buf, value);
4491  printed = true;
4492 
4493  p = att_addlength_pointer(p, typlen, p);
4494  p = (char *) att_align_nominal(p, typalign);
4495  }
4496 
4497  /* advance bitmap pointer if any */
4498  if (bitmap)
4499  {
4500  bitmask <<= 1;
4501  if (bitmask == 0x100)
4502  {
4503  bitmap++;
4504  bitmask = 1;
4505  }
4506  }
4507  }
4508 
4509  result = cstring_to_text_with_len(buf.data, buf.len);
4510  pfree(buf.data);
4511 
4512  return result;
4513 }
4514 
4515 #define HEXBASE 16
4516 /*
4517  * Convert an int32 to a string containing a base 16 (hex) representation of
4518  * the number.
4519  */
4520 Datum
4522 {
4524  char *ptr;
4525  const char *digits = "0123456789abcdef";
4526  char buf[32]; /* bigger than needed, but reasonable */
4527 
4528  ptr = buf + sizeof(buf) - 1;
4529  *ptr = '\0';
4530 
4531  do
4532  {
4533  *--ptr = digits[value % HEXBASE];
4534  value /= HEXBASE;
4535  } while (ptr > buf && value);
4536 
4538 }
4539 
4540 /*
4541  * Convert an int64 to a string containing a base 16 (hex) representation of
4542  * the number.
4543  */
4544 Datum
4546 {
4547  uint64 value = (uint64) PG_GETARG_INT64(0);
4548  char *ptr;
4549  const char *digits = "0123456789abcdef";
4550  char buf[32]; /* bigger than needed, but reasonable */
4551 
4552  ptr = buf + sizeof(buf) - 1;
4553  *ptr = '\0';
4554 
4555  do
4556  {
4557  *--ptr = digits[value % HEXBASE];
4558  value /= HEXBASE;
4559  } while (ptr > buf && value);
4560 
4562 }
4563 
4564 /*
4565  * Create an md5 hash of a text string and return it as hex
4566  *
4567  * md5 produces a 16 byte (128 bit) hash; double it for hex
4568  */
4569 #define MD5_HASH_LEN 32
4570 
4571 Datum
4573 {
4574  text *in_text = PG_GETARG_TEXT_PP(0);
4575  size_t len;
4576  char hexsum[MD5_HASH_LEN + 1];
4577 
4578  /* Calculate the length of the buffer using varlena metadata */
4579  len = VARSIZE_ANY_EXHDR(in_text);
4580 
4581  /* get the hash result */
4582  if (pg_md5_hash(VARDATA_ANY(in_text), len, hexsum) == false)
4583  ereport(ERROR,
4584  (errcode(ERRCODE_OUT_OF_MEMORY),
4585  errmsg("out of memory")));
4586 
4587  /* convert to text and return it */
4589 }
4590 
4591 /*
4592  * Create an md5 hash of a bytea field and return it as a hex string:
4593  * 16-byte md5 digest is represented in 32 hex characters.
4594  */
4595 Datum
4597 {
4598  bytea *in = PG_GETARG_BYTEA_PP(0);
4599  size_t len;
4600  char hexsum[MD5_HASH_LEN + 1];
4601 
4602  len = VARSIZE_ANY_EXHDR(in);
4603  if (pg_md5_hash(VARDATA_ANY(in), len, hexsum) == false)
4604  ereport(ERROR,
4605  (errcode(ERRCODE_OUT_OF_MEMORY),
4606  errmsg("out of memory")));
4607 
4609 }
4610 
4611 /*
4612  * Return the size of a datum, possibly compressed
4613  *
4614  * Works on any data type
4615  */
4616 Datum
4618 {
4620  int32 result;
4621  int typlen;
4622 
4623  /* On first call, get the input type's typlen, and save at *fn_extra */
4624  if (fcinfo->flinfo->fn_extra == NULL)
4625  {
4626  /* Lookup the datatype of the supplied argument */
4627  Oid argtypeid = get_fn_expr_argtype(fcinfo->flinfo, 0);
4628 
4629  typlen = get_typlen(argtypeid);
4630  if (typlen == 0) /* should not happen */
4631  elog(ERROR, "cache lookup failed for type %u", argtypeid);
4632 
4633  fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt,
4634  sizeof(int));
4635  *((int *) fcinfo->flinfo->fn_extra) = typlen;
4636  }
4637  else
4638  typlen = *((int *) fcinfo->flinfo->fn_extra);
4639 
4640  if (typlen == -1)
4641  {
4642  /* varlena type, possibly toasted */
4643  result = toast_datum_size(value);
4644  }
4645  else if (typlen == -2)
4646  {
4647  /* cstring */
4648  result = strlen(DatumGetCString(value)) + 1;
4649  }
4650  else
4651  {
4652  /* ordinary fixed-width type */
4653  result = typlen;
4654  }
4655 
4656  PG_RETURN_INT32(result);
4657 }
4658 
4659 /*
4660  * string_agg - Concatenates values and returns string.
4661  *
4662  * Syntax: string_agg(value text, delimiter text) RETURNS text
4663  *
4664  * Note: Any NULL values are ignored. The first-call delimiter isn't
4665  * actually used at all, and on subsequent calls the delimiter precedes
4666  * the associated value.
4667  */
4668 
4669 /* subroutine to initialize state */
4670 static StringInfo
4672 {
4673  StringInfo state;
4674  MemoryContext aggcontext;
4675  MemoryContext oldcontext;
4676 
4677  if (!AggCheckCallContext(fcinfo, &aggcontext))
4678  {
4679  /* cannot be called directly because of internal-type argument */
4680  elog(ERROR, "string_agg_transfn called in non-aggregate context");
4681  }
4682 
4683  /*
4684  * Create state in aggregate context. It'll stay there across subsequent
4685  * calls.
4686  */
4687  oldcontext = MemoryContextSwitchTo(aggcontext);
4688  state = makeStringInfo();
4689  MemoryContextSwitchTo(oldcontext);
4690 
4691  return state;
4692 }
4693 
4694 Datum
4696 {
4697  StringInfo state;
4698 
4699  state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0);
4700 
4701  /* Append the value unless null. */
4702  if (!PG_ARGISNULL(1))
4703  {
4704  /* On the first time through, we ignore the delimiter. */
4705  if (state == NULL)
4706  state = makeStringAggState(fcinfo);
4707  else if (!PG_ARGISNULL(2))
4708  appendStringInfoText(state, PG_GETARG_TEXT_PP(2)); /* delimiter */
4709 
4710  appendStringInfoText(state, PG_GETARG_TEXT_PP(1)); /* value */
4711  }
4712 
4713  /*
4714  * The transition type for string_agg() is declared to be "internal",
4715  * which is a pass-by-value type the same size as a pointer.
4716  */
4717  PG_RETURN_POINTER(state);
4718 }
4719 
4720 Datum
4722 {
4723  StringInfo state;
4724 
4725  /* cannot be called directly because of internal-type argument */
4726  Assert(AggCheckCallContext(fcinfo, NULL));
4727 
4728  state = PG_ARGISNULL(0) ? NULL : (StringInfo) PG_GETARG_POINTER(0);
4729 
4730  if (state != NULL)
4732  else
4733  PG_RETURN_NULL();
4734 }
4735 
4736 /*
4737  * Implementation of both concat() and concat_ws().
4738  *
4739  * sepstr is the separator string to place between values.
4740  * argidx identifies the first argument to concatenate (counting from zero).
4741  * Returns NULL if result should be NULL, else text value.
4742  */
4743 static text *
4744 concat_internal(const char *sepstr, int argidx,
4745  FunctionCallInfo fcinfo)
4746 {
4747  text *result;
4748  StringInfoData str;
4749  bool first_arg = true;
4750  int i;
4751 
4752  /*
4753  * concat(VARIADIC some-array) is essentially equivalent to
4754  * array_to_text(), ie concat the array elements with the given separator.
4755  * So we just pass the case off to that code.
4756  */
4757  if (get_fn_expr_variadic(fcinfo->flinfo))
4758  {
4759  ArrayType *arr;
4760 
4761  /* Should have just the one argument */
4762  Assert(argidx == PG_NARGS() - 1);
4763 
4764  /* concat(VARIADIC NULL) is defined as NULL */
4765  if (PG_ARGISNULL(argidx))
4766  return NULL;
4767 
4768  /*
4769  * Non-null argument had better be an array. We assume that any call
4770  * context that could let get_fn_expr_variadic return true will have
4771  * checked that a VARIADIC-labeled parameter actually is an array. So
4772  * it should be okay to just Assert that it's an array rather than
4773  * doing a full-fledged error check.
4774  */
4776 
4777  /* OK, safe to fetch the array value */
4778  arr = PG_GETARG_ARRAYTYPE_P(argidx);
4779 
4780  /*
4781  * And serialize the array. We tell array_to_text to ignore null
4782  * elements, which matches the behavior of the loop below.
4783  */
4784  return array_to_text_internal(fcinfo, arr, sepstr, NULL);
4785  }
4786 
4787  /* Normal case without explicit VARIADIC marker */
4788  initStringInfo(&str);
4789 
4790  for (i = argidx; i < PG_NARGS(); i++)
4791  {
4792  if (!PG_ARGISNULL(i))
4793  {
4795  Oid valtype;
4796  Oid typOutput;
4797  bool typIsVarlena;
4798 
4799  /* add separator if appropriate */
4800  if (first_arg)
4801  first_arg = false;
4802  else
4803  appendStringInfoString(&str, sepstr);
4804 
4805  /* call the appropriate type output function, append the result */
4806  valtype = get_fn_expr_argtype(fcinfo->flinfo, i);
4807  if (!OidIsValid(valtype))
4808  elog(ERROR, "could not determine data type of concat() input");
4809  getTypeOutputInfo(valtype, &typOutput, &typIsVarlena);
4811  OidOutputFunctionCall(typOutput, value));
4812  }
4813  }
4814 
4815  result = cstring_to_text_with_len(str.data, str.len);
4816  pfree(str.data);
4817 
4818  return result;
4819 }
4820 
4821 /*
4822  * Concatenate all arguments. NULL arguments are ignored.
4823  */
4824 Datum
4826 {
4827  text *result;
4828 
4829  result = concat_internal("", 0, fcinfo);
4830  if (result == NULL)
4831  PG_RETURN_NULL();
4832  PG_RETURN_TEXT_P(result);
4833 }
4834 
4835 /*
4836  * Concatenate all but first argument value with separators. The first
4837  * parameter is used as the separator. NULL arguments are ignored.
4838  */
4839 Datum
4841 {
4842  char *sep;
4843  text *result;
4844 
4845  /* return NULL when separator is NULL */
4846  if (PG_ARGISNULL(0))
4847  PG_RETURN_NULL();
4849 
4850  result = concat_internal(sep, 1, fcinfo);
4851  if (result == NULL)
4852  PG_RETURN_NULL();
4853  PG_RETURN_TEXT_P(result);
4854 }
4855 
4856 /*
4857  * Return first n characters in the string. When n is negative,
4858  * return all but last |n| characters.
4859  */
4860 Datum
4862 {
4863  text *str = PG_GETARG_TEXT_PP(0);
4864  const char *p = VARDATA_ANY(str);
4865  int len = VARSIZE_ANY_EXHDR(str);
4866  int n = PG_GETARG_INT32(1);
4867  int rlen;
4868 
4869  if (n < 0)
4870  n = pg_mbstrlen_with_len(p, len) + n;
4871  rlen = pg_mbcharcliplen(p, len, n);
4872 
4874 }
4875 
4876 /*
4877  * Return last n characters in the string. When n is negative,
4878  * return all but first |n| characters.
4879  */
4880 Datum
4882 {
4883  text *str = PG_GETARG_TEXT_PP(0);
4884  const char *p = VARDATA_ANY(str);
4885  int len = VARSIZE_ANY_EXHDR(str);
4886  int n = PG_GETARG_INT32(1);
4887  int off;
4888 
4889  if (n < 0)
4890  n = -n;
4891  else
4892  n = pg_mbstrlen_with_len(p, len) - n;
4893  off = pg_mbcharcliplen(p, len, n);
4894 
4895  PG_RETURN_TEXT_P(cstring_to_text_with_len(p + off, len - off));
4896 }
4897 
4898 /*
4899  * Return reversed string
4900  */
4901 Datum
4903 {
4904  text *str = PG_GETARG_TEXT_PP(0);
4905  const char *p = VARDATA_ANY(str);
4906  int len = VARSIZE_ANY_EXHDR(str);
4907  const char *endp = p + len;
4908  text *result;
4909  char *dst;
4910 
4911  result = palloc(len + VARHDRSZ);
4912  dst = (char *) VARDATA(result) + len;
4913  SET_VARSIZE(result, len + VARHDRSZ);
4914 
4916  {
4917  /* multibyte version */
4918  while (p < endp)
4919  {
4920  int sz;
4921 
4922  sz = pg_mblen(p);
4923  dst -= sz;
4924  memcpy(dst, p, sz);
4925  p += sz;
4926  }
4927  }
4928  else
4929  {
4930  /* single byte version */
4931  while (p < endp)
4932  *(--dst) = *p++;
4933  }
4934 
4935  PG_RETURN_TEXT_P(result);
4936 }
4937 
4938 
4939 /*
4940  * Support macros for text_format()
4941  */
4942 #define TEXT_FORMAT_FLAG_MINUS 0x0001 /* is minus flag present? */
4943 
4944 #define ADVANCE_PARSE_POINTER(ptr,end_ptr) \
4945  do { \
4946  if (++(ptr) >= (end_ptr)) \
4947  ereport(ERROR, \
4948  (errcode(ERRCODE_INVALID_PARAMETER_VALUE), \
4949  errmsg("unterminated format() type specifier"), \
4950  errhint("For a single \"%%\" use \"%%%%\"."))); \
4951  } while (0)
4952 
4953 /*
4954  * Returns a formatted string
4955  */
4956 Datum
4958 {
4959  text *fmt;
4960  StringInfoData str;
4961  const char *cp;
4962  const char *start_ptr;
4963  const char *end_ptr;
4964  text *result;
4965  int arg;
4966  bool funcvariadic;
4967  int nargs;
4968  Datum *elements = NULL;
4969  bool *nulls = NULL;
4970  Oid element_type = InvalidOid;
4971  Oid prev_type = InvalidOid;
4972  Oid prev_width_type = InvalidOid;
4973  FmgrInfo typoutputfinfo;
4974  FmgrInfo typoutputinfo_width;
4975 
4976  /* When format string is null, immediately return null */
4977  if (PG_ARGISNULL(0))
4978  PG_RETURN_NULL();
4979 
4980  /* If argument is marked VARIADIC, expand array into elements */
4981  if (get_fn_expr_variadic(fcinfo->flinfo))
4982  {
4983  ArrayType *arr;
4984  int16 elmlen;
4985  bool elmbyval;
4986  char elmalign;
4987  int nitems;
4988 
4989  /* Should have just the one argument */
4990  Assert(PG_NARGS() == 2);
4991 
4992  /* If argument is NULL, we treat it as zero-length array */
4993  if (PG_ARGISNULL(1))
4994  nitems = 0;
4995  else
4996  {
4997  /*
4998  * Non-null argument had better be an array. We assume that any
4999  * call context that could let get_fn_expr_variadic return true
5000  * will have checked that a VARIADIC-labeled parameter actually is
5001  * an array. So it should be okay to just Assert that it's an
5002  * array rather than doing a full-fledged error check.
5003  */
5005 
5006  /* OK, safe to fetch the array value */
5007  arr = PG_GETARG_ARRAYTYPE_P(1);
5008 
5009  /* Get info about array element type */
5010  element_type = ARR_ELEMTYPE(arr);
5011  get_typlenbyvalalign(element_type,
5012  &elmlen, &elmbyval, &elmalign);
5013 
5014  /* Extract all array elements */
5015  deconstruct_array(arr, element_type, elmlen, elmbyval, elmalign,
5016  &elements, &nulls, &nitems);
5017  }
5018 
5019  nargs = nitems + 1;
5020  funcvariadic = true;
5021  }
5022  else
5023  {
5024  /* Non-variadic case, we'll process the arguments individually */
5025  nargs = PG_NARGS();
5026  funcvariadic = false;
5027  }
5028 
5029  /* Setup for main loop. */
5030  fmt = PG_GETARG_TEXT_PP(0);
5031  start_ptr = VARDATA_ANY(fmt);
5032  end_ptr = start_ptr + VARSIZE_ANY_EXHDR(fmt);
5033  initStringInfo(&str);
5034  arg = 1; /* next argument position to print */
5035 
5036  /* Scan format string, looking for conversion specifiers. */
5037  for (cp = start_ptr; cp < end_ptr; cp++)
5038  {
5039  int argpos;
5040  int widthpos;
5041  int flags;
5042  int width;
5043  Datum value;
5044  bool isNull;
5045  Oid typid;
5046 
5047  /*
5048  * If it's not the start of a conversion specifier, just copy it to
5049  * the output buffer.
5050  */
5051  if (*cp != '%')
5052  {
5053  appendStringInfoCharMacro(&str, *cp);
5054  continue;
5055  }
5056 
5057  ADVANCE_PARSE_POINTER(cp, end_ptr);
5058 
5059  /* Easy case: %% outputs a single % */
5060  if (*cp == '%')
5061  {
5062  appendStringInfoCharMacro(&str, *cp);
5063  continue;
5064  }
5065 
5066  /* Parse the optional portions of the format specifier */
5067  cp = text_format_parse_format(cp, end_ptr,
5068  &argpos, &widthpos,
5069  &flags, &width);
5070 
5071  /*
5072  * Next we should see the main conversion specifier. Whether or not
5073  * an argument position was present, it's known that at least one
5074  * character remains in the string at this point. Experience suggests
5075  * that it's worth checking that that character is one of the expected
5076  * ones before we try to fetch arguments, so as to produce the least
5077  * confusing response to a mis-formatted specifier.
5078  */
5079  if (strchr("sIL", *cp) == NULL)
5080  ereport(ERROR,
5081  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5082  errmsg("unrecognized format() type specifier \"%c\"",
5083  *cp),
5084  errhint("For a single \"%%\" use \"%%%%\".")));
5085 
5086  /* If indirect width was specified, get its value */
5087  if (widthpos >= 0)
5088  {
5089  /* Collect the specified or next argument position */
5090  if (widthpos > 0)
5091  arg = widthpos;
5092  if (arg >= nargs)
5093  ereport(ERROR,
5094  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5095  errmsg("too few arguments for format()")));
5096 
5097  /* Get the value and type of the selected argument */
5098  if (!funcvariadic)
5099  {
5100  value = PG_GETARG_DATUM(arg);
5101  isNull = PG_ARGISNULL(arg);
5102  typid = get_fn_expr_argtype(fcinfo->flinfo, arg);
5103  }
5104  else
5105  {
5106  value = elements[arg - 1];
5107  isNull = nulls[arg - 1];
5108  typid = element_type;
5109  }
5110  if (!OidIsValid(typid))
5111  elog(ERROR, "could not determine data type of format() input");
5112 
5113  arg++;
5114 
5115  /* We can treat NULL width the same as zero */
5116  if (isNull)
5117  width = 0;
5118  else if (typid == INT4OID)
5119  width = DatumGetInt32(value);
5120  else if (typid == INT2OID)
5121  width = DatumGetInt16(value);
5122  else
5123  {
5124  /* For less-usual datatypes, convert to text then to int */
5125  char *str;
5126 
5127  if (typid != prev_width_type)
5128  {
5129  Oid typoutputfunc;
5130  bool typIsVarlena;
5131 
5132  getTypeOutputInfo(typid, &typoutputfunc, &typIsVarlena);
5133  fmgr_info(typoutputfunc, &typoutputinfo_width);
5134  prev_width_type = typid;
5135  }
5136 
5137  str = OutputFunctionCall(&typoutputinfo_width, value);
5138 
5139  /* pg_atoi will complain about bad data or overflow */
5140  width = pg_atoi(str, sizeof(int), '\0');
5141 
5142  pfree(str);
5143  }
5144  }
5145 
5146  /* Collect the specified or next argument position */
5147  if (argpos > 0)
5148  arg = argpos;
5149  if (arg >= nargs)
5150  ereport(ERROR,
5151  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5152  errmsg("too few arguments for format()")));
5153 
5154  /* Get the value and type of the selected argument */
5155  if (!funcvariadic)
5156  {
5157  value = PG_GETARG_DATUM(arg);
5158  isNull = PG_ARGISNULL(arg);
5159  typid = get_fn_expr_argtype(fcinfo->flinfo, arg);
5160  }
5161  else
5162  {
5163  value = elements[arg - 1];
5164  isNull = nulls[arg - 1];
5165  typid = element_type;
5166  }
5167  if (!OidIsValid(typid))
5168  elog(ERROR, "could not determine data type of format() input");
5169 
5170  arg++;
5171 
5172  /*
5173  * Get the appropriate typOutput function, reusing previous one if
5174  * same type as previous argument. That's particularly useful in the
5175  * variadic-array case, but often saves work even for ordinary calls.
5176  */
5177  if (typid != prev_type)
5178  {
5179  Oid typoutputfunc;
5180  bool typIsVarlena;
5181 
5182  getTypeOutputInfo(typid, &typoutputfunc, &typIsVarlena);
5183  fmgr_info(typoutputfunc, &typoutputfinfo);
5184  prev_type = typid;
5185  }
5186 
5187  /*
5188  * And now we can format the value.
5189  */
5190  switch (*cp)
5191  {
5192  case 's':
5193  case 'I':
5194  case 'L':
5195  text_format_string_conversion(&str, *cp, &typoutputfinfo,
5196  value, isNull,
5197  flags, width);
5198  break;
5199  default:
5200  /* should not get here, because of previous check */
5201  ereport(ERROR,
5202  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5203  errmsg("unrecognized format() type specifier \"%c\"",
5204  *cp),
5205  errhint("For a single \"%%\" use \"%%%%\".")));
5206  break;
5207  }
5208  }
5209 
5210  /* Don't need deconstruct_array results anymore. */
5211  if (elements != NULL)
5212  pfree(elements);
5213  if (nulls != NULL)
5214  pfree(nulls);
5215 
5216  /* Generate results. */
5217  result = cstring_to_text_with_len(str.data, str.len);
5218  pfree(str.data);
5219 
5220  PG_RETURN_TEXT_P(result);
5221 }
5222 
5223 /*
5224  * Parse contiguous digits as a decimal number.
5225  *
5226  * Returns true if some digits could be parsed.
5227  * The value is returned into *value, and *ptr is advanced to the next
5228  * character to be parsed.
5229  *
5230  * Note parsing invariant: at least one character is known available before
5231  * string end (end_ptr) at entry, and this is still true at exit.
5232  */
5233 static bool
5234 text_format_parse_digits(const char **ptr, const char *end_ptr, int *value)
5235 {
5236  bool found = false;
5237  const char *cp = *ptr;
5238  int val = 0;
5239 
5240  while (*cp >= '0' && *cp <= '9')
5241  {
5242  int newval = val * 10 + (*cp - '0');
5243 
5244  if (newval / 10 != val) /* overflow? */
5245  ereport(ERROR,
5246  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
5247  errmsg("number is out of range")));
5248  val = newval;
5249  ADVANCE_PARSE_POINTER(cp, end_ptr);
5250  found = true;
5251  }
5252 
5253  *ptr = cp;
5254  *value = val;
5255 
5256  return found;
5257 }
5258 
5259 /*
5260  * Parse a format specifier (generally following the SUS printf spec).
5261  *
5262  * We have already advanced over the initial '%', and we are looking for
5263  * [argpos][flags][width]type (but the type character is not consumed here).
5264  *
5265  * Inputs are start_ptr (the position after '%') and end_ptr (string end + 1).
5266  * Output parameters:
5267  * argpos: argument position for value to be printed. -1 means unspecified.
5268  * widthpos: argument position for width. Zero means the argument position
5269  * was unspecified (ie, take the next arg) and -1 means no width
5270  * argument (width was omitted or specified as a constant).
5271  * flags: bitmask of flags.
5272  * width: directly-specified width value. Zero means the width was omitted
5273  * (note it's not necessary to distinguish this case from an explicit
5274  * zero width value).
5275  *
5276  * The function result is the next character position to be parsed, ie, the
5277  * location where the type character is/should be.
5278  *
5279  * Note parsing invariant: at least one character is known available before
5280  * string end (end_ptr) at entry, and this is still true at exit.
5281  */
5282 static const char *
5283 text_format_parse_format(const char *start_ptr, const char *end_ptr,
5284  int *argpos, int *widthpos,
5285  int *flags, int *width)
5286 {
5287  const char *cp = start_ptr;
5288  int n;
5289 
5290  /* set defaults for output parameters */
5291  *argpos = -1;
5292  *widthpos = -1;
5293  *flags = 0;
5294  *width = 0;
5295 
5296  /* try to identify first number */
5297  if (text_format_parse_digits(&cp, end_ptr, &n))
5298  {
5299  if (*cp != '$')
5300  {
5301  /* Must be just a width and a type, so we're done */
5302  *width = n;
5303  return cp;
5304  }
5305  /* The number was argument position */
5306  *argpos = n;
5307  /* Explicit 0 for argument index is immediately refused */
5308  if (n == 0)
5309  ereport(ERROR,
5310  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5311  errmsg("format specifies argument 0, but arguments are numbered from 1")));
5312  ADVANCE_PARSE_POINTER(cp, end_ptr);
5313  }
5314 
5315  /* Handle flags (only minus is supported now) */
5316  while (*cp == '-')
5317  {
5318  *flags |= TEXT_FORMAT_FLAG_MINUS;
5319  ADVANCE_PARSE_POINTER(cp, end_ptr);
5320  }
5321 
5322  if (*cp == '*')
5323  {
5324  /* Handle indirect width */
5325  ADVANCE_PARSE_POINTER(cp, end_ptr);
5326  if (text_format_parse_digits(&cp, end_ptr, &n))
5327  {
5328  /* number in this position must be closed by $ */
5329  if (*cp != '$')
5330  ereport(ERROR,
5331  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5332  errmsg("width argument position must be ended by \"$\"")));
5333  /* The number was width argument position */
5334  *widthpos = n;
5335  /* Explicit 0 for argument index is immediately refused */
5336  if (n == 0)
5337  ereport(ERROR,
5338  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5339  errmsg("format specifies argument 0, but arguments are numbered from 1")));
5340  ADVANCE_PARSE_POINTER(cp, end_ptr);
5341  }
5342  else
5343  *widthpos = 0; /* width's argument position is unspecified */
5344  }
5345  else
5346  {
5347  /* Check for direct width specification */
5348  if (text_format_parse_digits(&cp, end_ptr, &n))
5349  *width = n;
5350  }
5351 
5352  /* cp should now be pointing at type character */
5353  return cp;
5354 }
5355 
5356 /*
5357  * Format a %s, %I, or %L conversion
5358  */
5359 static void
5361  FmgrInfo *typOutputInfo,
5362  Datum value, bool isNull,
5363  int flags, int width)
5364 {
5365  char *str;
5366 
5367  /* Handle NULL arguments before trying to stringify the value. */
5368  if (isNull)
5369  {
5370  if (conversion == 's')
5371  text_format_append_string(buf, "", flags, width);
5372  else if (conversion == 'L')
5373  text_format_append_string(buf, "NULL", flags, width);
5374  else if (conversion == 'I')
5375  ereport(ERROR,
5376  (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
5377  errmsg("null values cannot be formatted as an SQL identifier")));
5378  return;
5379  }
5380 
5381  /* Stringify. */
5382  str = OutputFunctionCall(typOutputInfo, value);
5383 
5384  /* Escape. */
5385  if (conversion == 'I')
5386  {
5387  /* quote_identifier may or may not allocate a new string. */
5388  text_format_append_string(buf, quote_identifier(str), flags, width);
5389  }
5390  else if (conversion == 'L')
5391  {
5392  char *qstr = quote_literal_cstr(str);
5393 
5394  text_format_append_string(buf, qstr, flags, width);
5395  /* quote_literal_cstr() always allocates a new string */
5396  pfree(qstr);
5397  }
5398  else
5399  text_format_append_string(buf, str, flags, width);
5400 
5401  /* Cleanup. */
5402  pfree(str);
5403 }
5404 
5405 /*
5406  * Append str to buf, padding as directed by flags/width
5407  */
5408 static void
5410  int flags, int width)
5411 {
5412  bool align_to_left = false;
5413  int len;
5414 
5415  /* fast path for typical easy case */
5416  if (width == 0)
5417  {
5418  appendStringInfoString(buf, str);
5419  return;
5420  }
5421 
5422  if (width < 0)
5423  {
5424  /* Negative width: implicit '-' flag, then take absolute value */
5425  align_to_left = true;
5426  /* -INT_MIN is undefined */
5427  if (width <= INT_MIN)
5428  ereport(ERROR,
5429  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
5430  errmsg("number is out of range")));
5431  width = -width;
5432  }
5433  else if (flags & TEXT_FORMAT_FLAG_MINUS)
5434  align_to_left = true;
5435 
5436  len = pg_mbstrlen(str);
5437  if (align_to_left)
5438  {
5439  /* left justify */
5440  appendStringInfoString(buf, str);
5441  if (len < width)
5442  appendStringInfoSpaces(buf, width - len);
5443  }
5444  else
5445  {
5446  /* right justify */
5447  if (len < width)
5448  appendStringInfoSpaces(buf, width - len);
5449  appendStringInfoString(buf, str);
5450  }
5451 }
5452 
5453 /*
5454  * text_format_nv - nonvariadic wrapper for text_format function.
5455  *
5456  * note: this wrapper is necessary to pass the sanity check in opr_sanity,
5457  * which checks that all built-in functions that share the implementing C
5458  * function take the same number of arguments.
5459  */
5460 Datum
5462 {
5463  return text_format(fcinfo);
5464 }
5465 
5466 /*
5467  * Helper function for Levenshtein distance functions. Faster than memcmp(),
5468  * for this use case.
5469  */
5470 static inline bool
5471 rest_of_char_same(const char *s1, const char *s2, int len)
5472 {
5473  while (len > 0)
5474  {
5475  len--;
5476  if (s1[len] != s2[len])
5477  return false;
5478  }
5479  return true;
5480 }
5481 
5482 /* Expand each Levenshtein distance variant */
5483 #include "levenshtein.c"
5484 #define LEVENSHTEIN_LESS_EQUAL
5485 #include "levenshtein.c"
Datum bttext_pattern_cmp(PG_FUNCTION_ARGS)
Definition: varlena.c:2706
#define PG_CACHE_LINE_SIZE
Datum text_to_array(PG_FUNCTION_ARGS)
Definition: varlena.c:4153
Datum bytea_substr_no_len(PG_FUNCTION_ARGS)
Definition: varlena.c:2842
struct SortSupportData * SortSupport
Definition: sortsupport.h:58
static int varstrfastcmp_locale(Datum x, Datum y, SortSupport ssup)
Definition: varlena.c:2030
Value * makeString(char *str)
Definition: value.c:53
#define COLLPROVIDER_ICU
Definition: pg_collation.h:85
signed short int16
Definition: c.h:255
int(* comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:107
Datum byteaout(PG_FUNCTION_ARGS)
Definition: varlena.c:351
#define PG_RETURN_POINTER(x)
Definition: fmgr.h:321
#define DatumGetUInt32(X)
Definition: postgres.h:492
#define NIL
Definition: pg_list.h:69
Datum text_format(PG_FUNCTION_ARGS)
Definition: varlena.c:4957
static int bpcharfastcmp_c(Datum x, Datum y, SortSupport ssup)
Definition: varlena.c:1997
int length(const List *list)
Definition: list.c:1271
#define PG_GETARG_INT32(n)
Definition: fmgr.h:234
#define ADVANCE_PARSE_POINTER(ptr, end_ptr)
Definition: varlena.c:4944
Definition: fmgr.h:56
text * replace_text_regexp(text *src_text, void *regexp, text *replace_text, bool glob)
Definition: varlena.c:3908
#define VARATT_IS_COMPRESSED(PTR)
Definition: postgres.h:313
Datum byteaSetBit(PG_FUNCTION_ARGS)
Definition: varlena.c:3112
int pg_mbcharcliplen(const char *mbstr, int len, int limit)
Definition: mbutils.c:873
Datum split_text(PG_FUNCTION_ARGS)
Definition: varlena.c:4043
int errhint(const char *fmt,...)
Definition: elog.c:987
Datum textoverlay_no_len(PG_FUNCTION_ARGS)
Definition: varlena.c:1022
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:2632
#define VARDATA_ANY(PTR)
Definition: postgres.h:347
#define VARDATA(PTR)
Definition: postgres.h:303
char * quote_literal_cstr(const char *rawstr)
Definition: quote.c:102
MemoryContext fn_mcxt
Definition: fmgr.h:65
#define att_align_nominal(cur_offset, attalign)
Definition: tupmacs.h:144
#define MD5_HASH_LEN
Definition: varlena.c:4569
const char * quote_identifier(const char *ident)
Definition: ruleutils.c:10419
Datum text_lt(PG_FUNCTION_ARGS)
Definition: varlena.c:1706
Datum text_pattern_le(PG_FUNCTION_ARGS)
Definition: varlena.c:2658
#define DatumGetTextPSlice(X, m, n)
Definition: fmgr.h:268
#define DatumGetInt32(X)
Definition: postgres.h:478
Datum text_pattern_gt(PG_FUNCTION_ARGS)
Definition: varlena.c:2690
#define HEXBASE
Definition: varlena.c:4515
#define TEXTOID
Definition: pg_type.h:324
#define VARSIZE(PTR)
Definition: postgres.h:304
Datum replace_text(PG_FUNCTION_ARGS)
Definition: varlena.c:3687
Datum byteagt(PG_FUNCTION_ARGS)
Definition: varlena.c:3589
static void text_format_string_conversion(StringInfo buf, char conversion, FmgrInfo *typOutputInfo, Datum value, bool isNull, int flags, int width)
Definition: varlena.c:5360
void get_typlenbyvalalign(Oid typid, int16 *typlen, bool *typbyval, char *typalign)
Definition: lsyscache.c:2021
#define PointerGetDatum(X)
Definition: postgres.h:562
char * downcase_truncate_identifier(const char *ident, int len, bool warn)
Definition: scansup.c:131
Datum textrecv(PG_FUNCTION_ARGS)
Definition: varlena.c:530
#define PG_GETARG_DATUM(n)
Definition: fmgr.h:233
static void text_position_setup(text *t1, text *t2, TextPositionState *state)
Definition: varlena.c:1119
void pq_begintypsend(StringInfo buf)
Definition: pqformat.c:359
#define VARHDRSZ
Definition: c.h:445
Datum md5_bytea(PG_FUNCTION_ARGS)
Definition: varlena.c:4596
char * pstrdup(const char *in)
Definition: mcxt.c:1077
Datum textout(PG_FUNCTION_ARGS)
Definition: varlena.c:519
regoff_t rm_so
Definition: regex.h:85
#define DatumGetTextPP(X)
Definition: fmgr.h:256
StringInfo makeStringInfo(void)
Definition: stringinfo.c:28
StringInfoData * StringInfo
Definition: stringinfo.h:43
#define Min(x, y)
Definition: c.h:806
int ArrayGetNItems(int ndim, const int *dims)
Definition: arrayutils.c:75
union pg_locale_struct::@120 info
#define PG_GETARG_BYTEA_P_COPY(n)
Definition: fmgr.h:278
static Datum varstr_abbrev_convert(Datum original, SortSupport ssup)
Definition: varlena.c:2233
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
static int varstrcmp_abbrev(Datum x, Datum y, SortSupport ssup)
Definition: varlena.c:2208
#define PG_RETURN_INT32(x)
Definition: fmgr.h:314
#define DatumGetByteaPSlice(X, m, n)
Definition: fmgr.h:267
static bytea * bytea_catenate(bytea *t1, bytea *t2)
Definition: varlena.c:2776
#define INT4OID
Definition: pg_type.h:316
void canonicalize_path(char *path)
Definition: path.c:254
bool get_fn_expr_variadic(FmgrInfo *flinfo)
Definition: fmgr.c:2051
int errcode(int sqlerrcode)
Definition: elog.c:575
void pq_sendtext(StringInfo buf, const char *str, int slen)
Definition: pqformat.c:163
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:264
return result
Definition: formatting.c:1633
#define DatumGetByteaPP(X)
Definition: fmgr.h:255
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:241
Datum byteaSetByte(PG_FUNCTION_ARGS)
Definition: varlena.c:3080
pg_wchar * wstr2
Definition: varlena.c:52
Datum bytea_string_agg_finalfn(PG_FUNCTION_ARGS)
Definition: varlena.c:482
Datum string_agg_transfn(PG_FUNCTION_ARGS)
Definition: varlena.c:4695
Datum md5_text(PG_FUNCTION_ARGS)
Definition: varlena.c:4572
#define PG_RETURN_BYTEA_P(x)
Definition: fmgr.h:329
ArrayType * construct_empty_array(Oid elmtype)
Definition: arrayfuncs.c:3424
static bytea * bytea_substring(Datum str, int S, int L, bool length_not_specified)
Definition: varlena.c:2851
#define LOG
Definition: elog.h:26
unsigned int Oid
Definition: postgres_ext.h:31
Datum byteaeq(PG_FUNCTION_ARGS)
Definition: varlena.c:3485
Datum textlen(PG_FUNCTION_ARGS)
Definition: varlena.c:622
#define OidIsValid(objectId)
Definition: c.h:538
Datum bttextsortsupport(PG_FUNCTION_ARGS)
Definition: varlena.c:1781
bytea * pq_endtypsend(StringInfo buf)
Definition: pqformat.c:379
unsigned hex_decode(const char *src, unsigned len, char *dst)
Definition: encode.c:156
void text_to_cstring_buffer(const text *src, char *dst, size_t dst_len)
Definition: varlena.c:213
static text * text_overlay(text *t1, text *t2, int sp, int sl)
Definition: varlena.c:1034
bool trace_sort
Definition: tuplesort.c:155
#define PG_GET_COLLATION()
Definition: fmgr.h:163
Datum byteaoverlay_no_len(PG_FUNCTION_ARGS)
Definition: varlena.c:2921
Datum text_concat(PG_FUNCTION_ARGS)
Definition: varlena.c:4825
Datum textoctetlen(PG_FUNCTION_ARGS)
Definition: varlena.c:660
static void text_format_append_string(StringInfo buf, const char *str, int flags, int width)
Definition: varlena.c:5409
Datum array_to_text_null(PG_FUNCTION_ARGS)
Definition: varlena.c:4372
Datum text_concat_ws(PG_FUNCTION_ARGS)
Definition: varlena.c:4840
regoff_t rm_eo
Definition: regex.h:86
signed int int32
Definition: c.h:256
#define PG_STR_GET_BYTEA(str_)
Definition: varlena.c:2809
static int varstrfastcmp_c(Datum x, Datum y, SortSupport ssup)
Definition: varlena.c:1960
#define PG_GETARG_TEXT_PP(n)
Definition: fmgr.h:273
char * OutputFunctionCall(FmgrInfo *flinfo, Datum val)
Definition: fmgr.c:1667
static int32 text_length(Datum str)
Definition: varlena.c:640
int pg_mbstrlen_with_len(const char *mbstr, int limit)
Definition: mbutils.c:805
bool typbyval
Definition: array.h:221
#define NAMEDATALEN
void truncate_identifier(char *ident, int len, bool warn)
Definition: scansup.c:187
Datum to_hex64(PG_FUNCTION_ARGS)
Definition: varlena.c:4545
#define VARATT_IS_EXTERNAL(PTR)
Definition: postgres.h:314
static Datum text_to_array_internal(PG_FUNCTION_ARGS)
Definition: varlena.c:4178
Datum bytealt(PG_FUNCTION_ARGS)
Definition: varlena.c:3549
bool SplitDirectoriesString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:3387
FmgrInfo * flinfo
Definition: fmgr.h:79
#define PG_GETARG_ARRAYTYPE_P(n)
Definition: array.h:244
#define wcscoll_l
Definition: win32.h:348
#define appendStringInfoCharMacro(str, ch)
Definition: stringinfo.h:127
void initHyperLogLog(hyperLogLogState *cState, uint8 bwidth)
Definition: hyperloglog.c:65
unsigned hex_encode(const char *src, unsigned len, char *dst)
Definition: encode.c:126
Datum array_to_text(PG_FUNCTION_ARGS)
Definition: varlena.c:4356
void pfree(void *pointer)
Definition: mcxt.c:950
Size toast_raw_datum_size(Datum value)
Definition: tuptoaster.c:353
#define REG_OKAY
Definition: regex.h:137
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:78
Datum string_agg_finalfn(PG_FUNCTION_ARGS)
Definition: varlena.c:4721
Datum textoverlay(PG_FUNCTION_ARGS)
Definition: varlena.c:1011
#define ERROR
Definition: elog.h:43
char * s1
static bool check_replace_text_has_escape_char(const text *replace_text)
Definition: varlena.c:3770
bool lc_collate_is_c(Oid collation)
Definition: pg_locale.c:1128
#define DatumGetCString(X)
Definition: postgres.h:572
Size toast_datum_size(Datum value)
Definition: tuptoaster.c:409
Oid get_fn_expr_argtype(FmgrInfo *flinfo, int argnum)
Definition: fmgr.c:1909
Datum byteage(PG_FUNCTION_ARGS)
Definition: varlena.c:3609
#define ARR_DIMS(a)
Definition: array.h:275
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:127
MemoryContext ssup_cxt
Definition: sortsupport.h:66
struct varlena * pg_detoast_datum_packed(struct varlena *datum)
Definition: fmgr.c:1863
static int text_position_next(int start_pos, TextPositionState *state)
Definition: varlena.c:1231
Datum text_to_array_null(PG_FUNCTION_ARGS)
Definition: varlena.c:4167
#define MAXPGPATH
static struct @121 value
int pg_mbcliplen(const char *mbstr, int len, int limit)
Definition: mbutils.c:831
Datum byteain(PG_FUNCTION_ARGS)
Definition: varlena.c:255
static int charlen_to_bytelen(const char *p, int n)
Definition: varlena.c:735
static text * text_substring(Datum str, int32 start, int32 length, bool length_not_specified)
Definition: varlena.c:814
Datum unknownrecv(PG_FUNCTION_ARGS)
Definition: varlena.c:587
static text * array_to_text_internal(FunctionCallInfo fcinfo, ArrayType *v, const char *fldsep, const char *null_string)
Definition: varlena.c:4398
Definition: c.h:493
static void appendStringInfoText(StringInfo str, const text *t)
Definition: varlena.c:3673
Datum text_larger(PG_FUNCTION_ARGS)
Definition: varlena.c:2587
#define INT2OID
Definition: pg_type.h:308
Datum texteq(PG_FUNCTION_ARGS)
Definition: varlena.c:1642
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:157
#define ARR_DATA_PTR(a)
Definition: array.h:303
hyperLogLogState abbr_card
Definition: varlena.c:73
Datum text_smaller(PG_FUNCTION_ARGS)
Definition: varlena.c:2599
Datum textne(PG_FUNCTION_ARGS)
Definition: varlena.c:1677
int16 typlen
Definition: array.h:220
pg_locale_t locale
Definition: varlena.c:76
static char * buf
Definition: pg_test_fsync.c:66
#define DatumBigEndianToNative(x)
Definition: pg_bswap.h:65
#define memmove(d, s, c)
Definition: c.h:1058
text * cstring_to_text_with_len(const char *s, int len)
Definition: varlena.c:161
bool SplitIdentifierString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:3260
#define DEFAULT_COLLATION_OID
Definition: pg_collation.h:75
char typdelim
Definition: array.h:223
int pg_database_encoding_max_length(void)
Definition: wchar.c:1833
static bytea * bytea_overlay(bytea *t1, bytea *t2, int sp, int sl)
Definition: varlena.c:2933
Datum text_name(PG_FUNCTION_ARGS)
Definition: varlena.c:3162
static text * text_catenate(text *t1, text *t2)
Definition: varlena.c:694
#define DatumGetInt16(X)
Definition: postgres.h:450
#define DatumGetBool(X)
Definition: postgres.h:399
unsigned int uint32
Definition: c.h:268
int(* abbrev_full_comparator)(Datum x, Datum y, SortSupport ssup)
Definition: sortsupport.h:192
void * ssup_extra
Definition: sortsupport.h:87
Datum textpos(PG_FUNCTION_ARGS)
Definition: varlena.c:1072
size_t pg_regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
Definition: regerror.c:60
MemoryContext CurrentMemoryContext
Definition: mcxt.c:37
Datum text_substr_no_len(PG_FUNCTION_ARGS)
Definition: varlena.c:795
int bytea_output
Definition: varlena.c:41
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:137
static int text_cmp(text *arg1, text *arg2, Oid collid)
Definition: varlena.c:1617
Datum byteaGetByte(PG_FUNCTION_ARGS)
Definition: varlena.c:3014
#define S(n, x)
Definition: sha1.c:55
#define PG_RETURN_ARRAYTYPE_P(x)
Definition: array.h:246
Datum pg_column_size(PG_FUNCTION_ARGS)
Definition: varlena.c:4617
Datum text_gt(PG_FUNCTION_ARGS)
Definition: varlena.c:1736
#define att_addlength_pointer(cur_offset, attlen, attptr)
Definition: tupmacs.h:172
#define ereport(elevel, rest)
Definition: elog.h:122
static int internal_text_pattern_compare(text *arg1, text *arg2)
Definition: varlena.c:2620
Datum makeArrayResult(ArrayBuildState *astate, MemoryContext rcontext)
Definition: arrayfuncs.c:5054
static bool text_format_parse_digits(const char **ptr, const char *end_ptr, int *value)
Definition: varlena.c:5234
unsigned int pg_wchar
Definition: mbprint.c:31
#define DatumGetVarStringPP(X)
Definition: varlena.c:92
List * textToQualifiedNameList(text *textval)
Definition: varlena.c:3202
#define byte(x, n)
Definition: rijndael.c:68
Datum textcat(PG_FUNCTION_ARGS)
Definition: varlena.c:679
List * lappend(List *list, void *datum)
Definition: list.c:128
Datum name_text(PG_FUNCTION_ARGS)
Definition: varlena.c:3185
char * pq_getmsgtext(StringInfo msg, int rawbytes, int *nbytes)
Definition: pqformat.c:588
#define MaxAllocSize
Definition: memutils.h:40
int skiptable[256]
Definition: varlena.c:57
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:169
void initStringInfo(StringInfo str)
Definition: stringinfo.c:46
Datum byteasend(PG_FUNCTION_ARGS)
Definition: varlena.c:442
void varstr_sortsupport(SortSupport ssup, Oid collid, bool bpchar)
Definition: varlena.c:1808
pg_locale_t pg_newlocale_from_collation(Oid collid)
Definition: pg_locale.c:1265
Datum text_le(PG_FUNCTION_ARGS)
Definition: varlena.c:1721
Datum hash_uint32(uint32 k)
Definition: hashfunc.c:512
uint8 bits8
Definition: c.h:275
Datum text_substr(PG_FUNCTION_ARGS)
Definition: varlena.c:781
#define TextDatumGetCString(d)
Definition: builtins.h:92
void * palloc0(Size size)
Definition: mcxt.c:878
Datum text_format_nv(PG_FUNCTION_ARGS)
Definition: varlena.c:5461
char * s2
#define PG_RETURN_BOOL(x)
Definition: fmgr.h:319
uintptr_t Datum
Definition: postgres.h:372
int GetDatabaseEncoding(void)
Definition: mbutils.c:1015
Datum text_reverse(PG_FUNCTION_ARGS)
Definition: varlena.c:4902
Datum bytea_substr(PG_FUNCTION_ARGS)
Definition: varlena.c:2828
int bpchartruelen(char *s, int len)
Definition: varchar.c:660
bool scanner_isspace(char ch)
Definition: scansup.c:221
#define REGEXP_REPLACE_BACKREF_CNT
Definition: varlena.c:3897
void appendStringInfoSpaces(StringInfo str, int count)
Definition: stringinfo.c:187
int pg_mbstrlen(const char *mbstr)
Definition: mbutils.c:785
double estimateHyperLogLog(hyperLogLogState *cState)
Definition: hyperloglog.c:185
Datum text_ge(PG_FUNCTION_ARGS)
Definition: varlena.c:1751
#define VARSIZE_ANY(PTR)
Definition: postgres.h:334
#define strxfrm_l
Definition: win32.h:347
static void text_position_cleanup(TextPositionState *state)
Definition: varlena.c:1365
Datum byteacmp(PG_FUNCTION_ARGS)
Definition: varlena.c:3629
#define InvalidOid
Definition: postgres_ext.h:36
int pg_mb2wchar_with_len(const char *from, pg_wchar *to, int len)
Definition: mbutils.c:734
void px(PlannerInfo *root, Gene *tour1, Gene *tour2, Gene *offspring, int num_gene, City *city_table)
Datum to_hex32(PG_FUNCTION_ARGS)
Definition: varlena.c:4521
hyperLogLogState full_card
Definition: varlena.c:74
#define PG_RETURN_VOID()
Definition: fmgr.h:309
#define PG_RETURN_TEXT_P(x)
Definition: fmgr.h:330
#define Max(x, y)
Definition: c.h:800
text * cstring_to_text(const char *s)
Definition: varlena.c:149
Datum unknownsend(PG_FUNCTION_ARGS)
Definition: varlena.c:602
#define PG_ARGISNULL(n)
Definition: fmgr.h:174
#define NULL
Definition: c.h:229
bool pg_md5_hash(const void *buff, size_t len, char *hexsum)
Definition: md5.c:293
#define Assert(condition)
Definition: c.h:675
#define lfirst(lc)
Definition: pg_list.h:106
Definition: regguts.h:298
Datum hash_any(register const unsigned char *k, register int keylen)
Definition: hashfunc.c:307
void pq_copymsgbytes(StringInfo msg, char *buf, int datalen)
Definition: pqformat.c:570
Datum text_right(PG_FUNCTION_ARGS)
Definition: varlena.c:4881
static text * concat_internal(const char *sepstr, int argidx, FunctionCallInfo fcinfo)
Definition: varlena.c:4744
int varstr_cmp(char *arg1, int len1, char *arg2, int len2, Oid collid)
Definition: varlena.c:1382
Oid typioparam
Definition: array.h:224
#define PG_RETURN_CSTRING(x)
Definition: fmgr.h:322
Datum unknownin(PG_FUNCTION_ARGS)
Definition: varlena.c:563
size_t Size
Definition: c.h:356
static bool varstr_abbrev_abort(int memtupcount, SortSupport ssup)
Definition: varlena.c:2473
static bool rest_of_char_same(const char *s1, const char *s2, int len)
Definition: varlena.c:5471
Datum text_pattern_lt(PG_FUNCTION_ARGS)
Definition: varlena.c:2642
Datum textsend(PG_FUNCTION_ARGS)
Definition: varlena.c:548
#define newval
#define PG_GETARG_BYTEA_PP(n)
Definition: fmgr.h:272
Datum byteane(PG_FUNCTION_ARGS)
Definition: varlena.c:3517
void addHyperLogLog(hyperLogLogState *cState, uint32 hash)
Definition: hyperloglog.c:166
int AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext)
Definition: nodeAgg.c:4017
Datum textin(PG_FUNCTION_ARGS)
Definition: varlena.c:508
#define PG_FREE_IF_COPY(ptr, n)
Definition: fmgr.h:225
#define PG_NARGS()
Definition: fmgr.h:168
#define C_COLLATION_OID
Definition: pg_collation.h:78
void * fn_extra
Definition: fmgr.h:64
int pg_mblen(const char *mbstr)
Definition: mbutils.c:771
static void appendStringInfoRegexpSubstr(StringInfo str, text *replace_text, regmatch_t *pmatch, char *start_ptr, int data_pos)
Definition: varlena.c:3803
#define ARR_NDIM(a)
Definition: array.h:271
Datum byteapos(PG_FUNCTION_ARGS)
Definition: varlena.c:2970
#define TEXTBUFLEN
Definition: varlena.c:83
Oid typiofunc
Definition: array.h:225
#define DatumGetPointer(X)
Definition: postgres.h:555
char typalign
Definition: array.h:222
void deconstruct_array(ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, bool **nullsp, int *nelemsp)
Definition: arrayfuncs.c:3475
char * text_to_cstring(const text *t)
Definition: varlena.c:182
pg_wchar * wstr1
Definition: varlena.c:51
ArrayBuildState * accumArrayResult(ArrayBuildState *astate, Datum dvalue, bool disnull, Oid element_type, MemoryContext rcontext)
Definition: arrayfuncs.c:4990
#define DatumGetBpCharPP(X)
Definition: fmgr.h:257
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2557
Datum bttextcmp(PG_FUNCTION_ARGS)
Definition: varlena.c:1766
Datum unknownout(PG_FUNCTION_ARGS)
Definition: varlena.c:575
int pg_regexec(regex_t *re, const chr *string, size_t len, size_t search_start, rm_detail_t *details, size_t nmatch, regmatch_t pmatch[], int flags)
Definition: regexec.c:172
int16 get_typlen(Oid typid)
Definition: lsyscache.c:1947
char * OidOutputFunctionCall(Oid functionId, Datum val)
Definition: fmgr.c:1747
Datum bytearecv(PG_FUNCTION_ARGS)
Definition: varlena.c:423
#define VARSIZE_ANY_EXHDR(PTR)
Definition: postgres.h:340
void * palloc(Size size)
Definition: mcxt.c:849
int errmsg(const char *fmt,...)
Definition: elog.c:797
#define fetch_att(T, attbyval, attlen)
Definition: tupmacs.h:71
static StringInfo makeStringAggState(FunctionCallInfo fcinfo)
Definition: varlena.c:4671
FmgrInfo proc
Definition: array.h:226
Datum bytea_string_agg_transfn(PG_FUNCTION_ARGS)
Definition: varlena.c:450
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: