PostgreSQL Source Code  git master
int.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * int.c
4  * Functions for the built-in integer types (except int8).
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/int.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 /*
16  * OLD COMMENTS
17  * I/O routines:
18  * int2in, int2out, int2recv, int2send
19  * int4in, int4out, int4recv, int4send
20  * int2vectorin, int2vectorout, int2vectorrecv, int2vectorsend
21  * Boolean operators:
22  * inteq, intne, intlt, intle, intgt, intge
23  * Arithmetic operators:
24  * intpl, intmi, int4mul, intdiv
25  *
26  * Arithmetic operators:
27  * intmod
28  */
29 #include "postgres.h"
30 
31 #include <ctype.h>
32 #include <limits.h>
33 #include <math.h>
34 
35 #include "catalog/pg_type.h"
36 #include "common/int.h"
37 #include "funcapi.h"
38 #include "libpq/pqformat.h"
39 #include "nodes/nodeFuncs.h"
40 #include "nodes/supportnodes.h"
41 #include "optimizer/optimizer.h"
42 #include "utils/array.h"
43 #include "utils/builtins.h"
44 
45 #define Int2VectorSize(n) (offsetof(int2vector, values) + (n) * sizeof(int16))
46 
47 typedef struct
48 {
53 
54 
55 /*****************************************************************************
56  * USER I/O ROUTINES *
57  *****************************************************************************/
58 
59 /*
60  * int2in - converts "num" to short
61  */
62 Datum
64 {
65  char *num = PG_GETARG_CSTRING(0);
66 
68 }
69 
70 /*
71  * int2out - converts short to "num"
72  */
73 Datum
75 {
76  int16 arg1 = PG_GETARG_INT16(0);
77  char *result = (char *) palloc(7); /* sign, 5 digits, '\0' */
78 
79  pg_itoa(arg1, result);
80  PG_RETURN_CSTRING(result);
81 }
82 
83 /*
84  * int2recv - converts external binary format to int2
85  */
86 Datum
88 {
90 
91  PG_RETURN_INT16((int16) pq_getmsgint(buf, sizeof(int16)));
92 }
93 
94 /*
95  * int2send - converts int2 to binary format
96  */
97 Datum
99 {
100  int16 arg1 = PG_GETARG_INT16(0);
102 
103  pq_begintypsend(&buf);
104  pq_sendint16(&buf, arg1);
106 }
107 
108 /*
109  * construct int2vector given a raw array of int2s
110  *
111  * If int2s is NULL then caller must fill values[] afterward
112  */
113 int2vector *
114 buildint2vector(const int16 *int2s, int n)
115 {
116  int2vector *result;
117 
118  result = (int2vector *) palloc0(Int2VectorSize(n));
119 
120  if (n > 0 && int2s)
121  memcpy(result->values, int2s, n * sizeof(int16));
122 
123  /*
124  * Attach standard array header. For historical reasons, we set the index
125  * lower bound to 0 not 1.
126  */
127  SET_VARSIZE(result, Int2VectorSize(n));
128  result->ndim = 1;
129  result->dataoffset = 0; /* never any nulls */
130  result->elemtype = INT2OID;
131  result->dim1 = n;
132  result->lbound1 = 0;
133 
134  return result;
135 }
136 
137 /*
138  * int2vectorin - converts "num num ..." to internal form
139  */
140 Datum
142 {
143  char *intString = PG_GETARG_CSTRING(0);
144  int2vector *result;
145  int n;
146 
148 
149  for (n = 0; *intString && n < FUNC_MAX_ARGS; n++)
150  {
151  while (*intString && isspace((unsigned char) *intString))
152  intString++;
153  if (*intString == '\0')
154  break;
155  result->values[n] = pg_atoi(intString, sizeof(int16), ' ');
156  while (*intString && !isspace((unsigned char) *intString))
157  intString++;
158  }
159  while (*intString && isspace((unsigned char) *intString))
160  intString++;
161  if (*intString)
162  ereport(ERROR,
163  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
164  errmsg("int2vector has too many elements")));
165 
166  SET_VARSIZE(result, Int2VectorSize(n));
167  result->ndim = 1;
168  result->dataoffset = 0; /* never any nulls */
169  result->elemtype = INT2OID;
170  result->dim1 = n;
171  result->lbound1 = 0;
172 
173  PG_RETURN_POINTER(result);
174 }
175 
176 /*
177  * int2vectorout - converts internal form to "num num ..."
178  */
179 Datum
181 {
182  int2vector *int2Array = (int2vector *) PG_GETARG_POINTER(0);
183  int num,
184  nnums = int2Array->dim1;
185  char *rp;
186  char *result;
187 
188  /* assumes sign, 5 digits, ' ' */
189  rp = result = (char *) palloc(nnums * 7 + 1);
190  for (num = 0; num < nnums; num++)
191  {
192  if (num != 0)
193  *rp++ = ' ';
194  rp += pg_itoa(int2Array->values[num], rp);
195  }
196  *rp = '\0';
197  PG_RETURN_CSTRING(result);
198 }
199 
200 /*
201  * int2vectorrecv - converts external binary format to int2vector
202  */
203 Datum
205 {
206  LOCAL_FCINFO(locfcinfo, 3);
208  int2vector *result;
209 
210  /*
211  * Normally one would call array_recv() using DirectFunctionCall3, but
212  * that does not work since array_recv wants to cache some data using
213  * fcinfo->flinfo->fn_extra. So we need to pass it our own flinfo
214  * parameter.
215  */
216  InitFunctionCallInfoData(*locfcinfo, fcinfo->flinfo, 3,
217  InvalidOid, NULL, NULL);
218 
219  locfcinfo->args[0].value = PointerGetDatum(buf);
220  locfcinfo->args[0].isnull = false;
221  locfcinfo->args[1].value = ObjectIdGetDatum(INT2OID);
222  locfcinfo->args[1].isnull = false;
223  locfcinfo->args[2].value = Int32GetDatum(-1);
224  locfcinfo->args[2].isnull = false;
225 
226  result = (int2vector *) DatumGetPointer(array_recv(locfcinfo));
227 
228  Assert(!locfcinfo->isnull);
229 
230  /* sanity checks: int2vector must be 1-D, 0-based, no nulls */
231  if (ARR_NDIM(result) != 1 ||
232  ARR_HASNULL(result) ||
233  ARR_ELEMTYPE(result) != INT2OID ||
234  ARR_LBOUND(result)[0] != 0)
235  ereport(ERROR,
236  (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
237  errmsg("invalid int2vector data")));
238 
239  /* check length for consistency with int2vectorin() */
240  if (ARR_DIMS(result)[0] > FUNC_MAX_ARGS)
241  ereport(ERROR,
242  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
243  errmsg("oidvector has too many elements")));
244 
245  PG_RETURN_POINTER(result);
246 }
247 
248 /*
249  * int2vectorsend - converts int2vector to binary format
250  */
251 Datum
253 {
254  return array_send(fcinfo);
255 }
256 
257 
258 /*****************************************************************************
259  * PUBLIC ROUTINES *
260  *****************************************************************************/
261 
262 /*
263  * int4in - converts "num" to int4
264  */
265 Datum
267 {
268  char *num = PG_GETARG_CSTRING(0);
269 
271 }
272 
273 /*
274  * int4out - converts int4 to "num"
275  */
276 Datum
278 {
279  int32 arg1 = PG_GETARG_INT32(0);
280  char *result = (char *) palloc(12); /* sign, 10 digits, '\0' */
281 
282  pg_ltoa(arg1, result);
283  PG_RETURN_CSTRING(result);
284 }
285 
286 /*
287  * int4recv - converts external binary format to int4
288  */
289 Datum
291 {
293 
294  PG_RETURN_INT32((int32) pq_getmsgint(buf, sizeof(int32)));
295 }
296 
297 /*
298  * int4send - converts int4 to binary format
299  */
300 Datum
302 {
303  int32 arg1 = PG_GETARG_INT32(0);
305 
306  pq_begintypsend(&buf);
307  pq_sendint32(&buf, arg1);
309 }
310 
311 
312 /*
313  * ===================
314  * CONVERSION ROUTINES
315  * ===================
316  */
317 
318 Datum
320 {
321  int16 arg1 = PG_GETARG_INT16(0);
322 
323  PG_RETURN_INT32((int32) arg1);
324 }
325 
326 Datum
328 {
329  int32 arg1 = PG_GETARG_INT32(0);
330 
331  if (unlikely(arg1 < SHRT_MIN) || unlikely(arg1 > SHRT_MAX))
332  ereport(ERROR,
333  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
334  errmsg("smallint out of range")));
335 
336  PG_RETURN_INT16((int16) arg1);
337 }
338 
339 /* Cast int4 -> bool */
340 Datum
342 {
343  if (PG_GETARG_INT32(0) == 0)
344  PG_RETURN_BOOL(false);
345  else
346  PG_RETURN_BOOL(true);
347 }
348 
349 /* Cast bool -> int4 */
350 Datum
352 {
353  if (PG_GETARG_BOOL(0) == false)
354  PG_RETURN_INT32(0);
355  else
356  PG_RETURN_INT32(1);
357 }
358 
359 /*
360  * ============================
361  * COMPARISON OPERATOR ROUTINES
362  * ============================
363  */
364 
365 /*
366  * inteq - returns 1 iff arg1 == arg2
367  * intne - returns 1 iff arg1 != arg2
368  * intlt - returns 1 iff arg1 < arg2
369  * intle - returns 1 iff arg1 <= arg2
370  * intgt - returns 1 iff arg1 > arg2
371  * intge - returns 1 iff arg1 >= arg2
372  */
373 
374 Datum
376 {
377  int32 arg1 = PG_GETARG_INT32(0);
378  int32 arg2 = PG_GETARG_INT32(1);
379 
380  PG_RETURN_BOOL(arg1 == arg2);
381 }
382 
383 Datum
385 {
386  int32 arg1 = PG_GETARG_INT32(0);
387  int32 arg2 = PG_GETARG_INT32(1);
388 
389  PG_RETURN_BOOL(arg1 != arg2);
390 }
391 
392 Datum
394 {
395  int32 arg1 = PG_GETARG_INT32(0);
396  int32 arg2 = PG_GETARG_INT32(1);
397 
398  PG_RETURN_BOOL(arg1 < arg2);
399 }
400 
401 Datum
403 {
404  int32 arg1 = PG_GETARG_INT32(0);
405  int32 arg2 = PG_GETARG_INT32(1);
406 
407  PG_RETURN_BOOL(arg1 <= arg2);
408 }
409 
410 Datum
412 {
413  int32 arg1 = PG_GETARG_INT32(0);
414  int32 arg2 = PG_GETARG_INT32(1);
415 
416  PG_RETURN_BOOL(arg1 > arg2);
417 }
418 
419 Datum
421 {
422  int32 arg1 = PG_GETARG_INT32(0);
423  int32 arg2 = PG_GETARG_INT32(1);
424 
425  PG_RETURN_BOOL(arg1 >= arg2);
426 }
427 
428 Datum
430 {
431  int16 arg1 = PG_GETARG_INT16(0);
432  int16 arg2 = PG_GETARG_INT16(1);
433 
434  PG_RETURN_BOOL(arg1 == arg2);
435 }
436 
437 Datum
439 {
440  int16 arg1 = PG_GETARG_INT16(0);
441  int16 arg2 = PG_GETARG_INT16(1);
442 
443  PG_RETURN_BOOL(arg1 != arg2);
444 }
445 
446 Datum
448 {
449  int16 arg1 = PG_GETARG_INT16(0);
450  int16 arg2 = PG_GETARG_INT16(1);
451 
452  PG_RETURN_BOOL(arg1 < arg2);
453 }
454 
455 Datum
457 {
458  int16 arg1 = PG_GETARG_INT16(0);
459  int16 arg2 = PG_GETARG_INT16(1);
460 
461  PG_RETURN_BOOL(arg1 <= arg2);
462 }
463 
464 Datum
466 {
467  int16 arg1 = PG_GETARG_INT16(0);
468  int16 arg2 = PG_GETARG_INT16(1);
469 
470  PG_RETURN_BOOL(arg1 > arg2);
471 }
472 
473 Datum
475 {
476  int16 arg1 = PG_GETARG_INT16(0);
477  int16 arg2 = PG_GETARG_INT16(1);
478 
479  PG_RETURN_BOOL(arg1 >= arg2);
480 }
481 
482 Datum
484 {
485  int16 arg1 = PG_GETARG_INT16(0);
486  int32 arg2 = PG_GETARG_INT32(1);
487 
488  PG_RETURN_BOOL(arg1 == arg2);
489 }
490 
491 Datum
493 {
494  int16 arg1 = PG_GETARG_INT16(0);
495  int32 arg2 = PG_GETARG_INT32(1);
496 
497  PG_RETURN_BOOL(arg1 != arg2);
498 }
499 
500 Datum
502 {
503  int16 arg1 = PG_GETARG_INT16(0);
504  int32 arg2 = PG_GETARG_INT32(1);
505 
506  PG_RETURN_BOOL(arg1 < arg2);
507 }
508 
509 Datum
511 {
512  int16 arg1 = PG_GETARG_INT16(0);
513  int32 arg2 = PG_GETARG_INT32(1);
514 
515  PG_RETURN_BOOL(arg1 <= arg2);
516 }
517 
518 Datum
520 {
521  int16 arg1 = PG_GETARG_INT16(0);
522  int32 arg2 = PG_GETARG_INT32(1);
523 
524  PG_RETURN_BOOL(arg1 > arg2);
525 }
526 
527 Datum
529 {
530  int16 arg1 = PG_GETARG_INT16(0);
531  int32 arg2 = PG_GETARG_INT32(1);
532 
533  PG_RETURN_BOOL(arg1 >= arg2);
534 }
535 
536 Datum
538 {
539  int32 arg1 = PG_GETARG_INT32(0);
540  int16 arg2 = PG_GETARG_INT16(1);
541 
542  PG_RETURN_BOOL(arg1 == arg2);
543 }
544 
545 Datum
547 {
548  int32 arg1 = PG_GETARG_INT32(0);
549  int16 arg2 = PG_GETARG_INT16(1);
550 
551  PG_RETURN_BOOL(arg1 != arg2);
552 }
553 
554 Datum
556 {
557  int32 arg1 = PG_GETARG_INT32(0);
558  int16 arg2 = PG_GETARG_INT16(1);
559 
560  PG_RETURN_BOOL(arg1 < arg2);
561 }
562 
563 Datum
565 {
566  int32 arg1 = PG_GETARG_INT32(0);
567  int16 arg2 = PG_GETARG_INT16(1);
568 
569  PG_RETURN_BOOL(arg1 <= arg2);
570 }
571 
572 Datum
574 {
575  int32 arg1 = PG_GETARG_INT32(0);
576  int16 arg2 = PG_GETARG_INT16(1);
577 
578  PG_RETURN_BOOL(arg1 > arg2);
579 }
580 
581 Datum
583 {
584  int32 arg1 = PG_GETARG_INT32(0);
585  int16 arg2 = PG_GETARG_INT16(1);
586 
587  PG_RETURN_BOOL(arg1 >= arg2);
588 }
589 
590 
591 /*----------------------------------------------------------
592  * in_range functions for int4 and int2,
593  * including cross-data-type comparisons.
594  *
595  * Note: we provide separate intN_int8 functions for performance
596  * reasons. This forces also providing intN_int2, else cases with a
597  * smallint offset value would fail to resolve which function to use.
598  * But that's an unlikely situation, so don't duplicate code for it.
599  *---------------------------------------------------------*/
600 
601 Datum
603 {
605  int32 base = PG_GETARG_INT32(1);
606  int32 offset = PG_GETARG_INT32(2);
607  bool sub = PG_GETARG_BOOL(3);
608  bool less = PG_GETARG_BOOL(4);
609  int32 sum;
610 
611  if (offset < 0)
612  ereport(ERROR,
613  (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
614  errmsg("invalid preceding or following size in window function")));
615 
616  if (sub)
617  offset = -offset; /* cannot overflow */
618 
619  if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
620  {
621  /*
622  * If sub is false, the true sum is surely more than val, so correct
623  * answer is the same as "less". If sub is true, the true sum is
624  * surely less than val, so the answer is "!less".
625  */
626  PG_RETURN_BOOL(sub ? !less : less);
627  }
628 
629  if (less)
630  PG_RETURN_BOOL(val <= sum);
631  else
632  PG_RETURN_BOOL(val >= sum);
633 }
634 
635 Datum
637 {
638  /* Doesn't seem worth duplicating code for, so just invoke int4_int4 */
640  PG_GETARG_DATUM(0),
641  PG_GETARG_DATUM(1),
643  PG_GETARG_DATUM(3),
644  PG_GETARG_DATUM(4));
645 }
646 
647 Datum
649 {
650  /* We must do all the math in int64 */
651  int64 val = (int64) PG_GETARG_INT32(0);
652  int64 base = (int64) PG_GETARG_INT32(1);
653  int64 offset = PG_GETARG_INT64(2);
654  bool sub = PG_GETARG_BOOL(3);
655  bool less = PG_GETARG_BOOL(4);
656  int64 sum;
657 
658  if (offset < 0)
659  ereport(ERROR,
660  (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
661  errmsg("invalid preceding or following size in window function")));
662 
663  if (sub)
664  offset = -offset; /* cannot overflow */
665 
666  if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
667  {
668  /*
669  * If sub is false, the true sum is surely more than val, so correct
670  * answer is the same as "less". If sub is true, the true sum is
671  * surely less than val, so the answer is "!less".
672  */
673  PG_RETURN_BOOL(sub ? !less : less);
674  }
675 
676  if (less)
677  PG_RETURN_BOOL(val <= sum);
678  else
679  PG_RETURN_BOOL(val >= sum);
680 }
681 
682 Datum
684 {
685  /* We must do all the math in int32 */
687  int32 base = (int32) PG_GETARG_INT16(1);
688  int32 offset = PG_GETARG_INT32(2);
689  bool sub = PG_GETARG_BOOL(3);
690  bool less = PG_GETARG_BOOL(4);
691  int32 sum;
692 
693  if (offset < 0)
694  ereport(ERROR,
695  (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
696  errmsg("invalid preceding or following size in window function")));
697 
698  if (sub)
699  offset = -offset; /* cannot overflow */
700 
701  if (unlikely(pg_add_s32_overflow(base, offset, &sum)))
702  {
703  /*
704  * If sub is false, the true sum is surely more than val, so correct
705  * answer is the same as "less". If sub is true, the true sum is
706  * surely less than val, so the answer is "!less".
707  */
708  PG_RETURN_BOOL(sub ? !less : less);
709  }
710 
711  if (less)
712  PG_RETURN_BOOL(val <= sum);
713  else
714  PG_RETURN_BOOL(val >= sum);
715 }
716 
717 Datum
719 {
720  /* Doesn't seem worth duplicating code for, so just invoke int2_int4 */
722  PG_GETARG_DATUM(0),
723  PG_GETARG_DATUM(1),
725  PG_GETARG_DATUM(3),
726  PG_GETARG_DATUM(4));
727 }
728 
729 Datum
731 {
732  /* Doesn't seem worth duplicating code for, so just invoke int4_int8 */
736  PG_GETARG_DATUM(2),
737  PG_GETARG_DATUM(3),
738  PG_GETARG_DATUM(4));
739 }
740 
741 
742 /*
743  * int[24]pl - returns arg1 + arg2
744  * int[24]mi - returns arg1 - arg2
745  * int[24]mul - returns arg1 * arg2
746  * int[24]div - returns arg1 / arg2
747  */
748 
749 Datum
751 {
753 
754  if (unlikely(arg == PG_INT32_MIN))
755  ereport(ERROR,
756  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
757  errmsg("integer out of range")));
758  PG_RETURN_INT32(-arg);
759 }
760 
761 Datum
763 {
765 
766  PG_RETURN_INT32(arg);
767 }
768 
769 Datum
771 {
772  int32 arg1 = PG_GETARG_INT32(0);
773  int32 arg2 = PG_GETARG_INT32(1);
774  int32 result;
775 
776  if (unlikely(pg_add_s32_overflow(arg1, arg2, &result)))
777  ereport(ERROR,
778  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
779  errmsg("integer out of range")));
780  PG_RETURN_INT32(result);
781 }
782 
783 Datum
785 {
786  int32 arg1 = PG_GETARG_INT32(0);
787  int32 arg2 = PG_GETARG_INT32(1);
788  int32 result;
789 
790  if (unlikely(pg_sub_s32_overflow(arg1, arg2, &result)))
791  ereport(ERROR,
792  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
793  errmsg("integer out of range")));
794  PG_RETURN_INT32(result);
795 }
796 
797 Datum
799 {
800  int32 arg1 = PG_GETARG_INT32(0);
801  int32 arg2 = PG_GETARG_INT32(1);
802  int32 result;
803 
804  if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
805  ereport(ERROR,
806  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
807  errmsg("integer out of range")));
808  PG_RETURN_INT32(result);
809 }
810 
811 Datum
813 {
814  int32 arg1 = PG_GETARG_INT32(0);
815  int32 arg2 = PG_GETARG_INT32(1);
816  int32 result;
817 
818  if (arg2 == 0)
819  {
820  ereport(ERROR,
821  (errcode(ERRCODE_DIVISION_BY_ZERO),
822  errmsg("division by zero")));
823  /* ensure compiler realizes we mustn't reach the division (gcc bug) */
824  PG_RETURN_NULL();
825  }
826 
827  /*
828  * INT_MIN / -1 is problematic, since the result can't be represented on a
829  * two's-complement machine. Some machines produce INT_MIN, some produce
830  * zero, some throw an exception. We can dodge the problem by recognizing
831  * that division by -1 is the same as negation.
832  */
833  if (arg2 == -1)
834  {
835  if (unlikely(arg1 == PG_INT32_MIN))
836  ereport(ERROR,
837  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
838  errmsg("integer out of range")));
839  result = -arg1;
840  PG_RETURN_INT32(result);
841  }
842 
843  /* No overflow is possible */
844 
845  result = arg1 / arg2;
846 
847  PG_RETURN_INT32(result);
848 }
849 
850 Datum
852 {
854  int32 result;
855 
856  if (unlikely(pg_add_s32_overflow(arg, 1, &result)))
857  ereport(ERROR,
858  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
859  errmsg("integer out of range")));
860 
861  PG_RETURN_INT32(result);
862 }
863 
864 Datum
866 {
868 
869  if (unlikely(arg == PG_INT16_MIN))
870  ereport(ERROR,
871  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
872  errmsg("smallint out of range")));
873  PG_RETURN_INT16(-arg);
874 }
875 
876 Datum
878 {
880 
881  PG_RETURN_INT16(arg);
882 }
883 
884 Datum
886 {
887  int16 arg1 = PG_GETARG_INT16(0);
888  int16 arg2 = PG_GETARG_INT16(1);
889  int16 result;
890 
891  if (unlikely(pg_add_s16_overflow(arg1, arg2, &result)))
892  ereport(ERROR,
893  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
894  errmsg("smallint out of range")));
895  PG_RETURN_INT16(result);
896 }
897 
898 Datum
900 {
901  int16 arg1 = PG_GETARG_INT16(0);
902  int16 arg2 = PG_GETARG_INT16(1);
903  int16 result;
904 
905  if (unlikely(pg_sub_s16_overflow(arg1, arg2, &result)))
906  ereport(ERROR,
907  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
908  errmsg("smallint out of range")));
909  PG_RETURN_INT16(result);
910 }
911 
912 Datum
914 {
915  int16 arg1 = PG_GETARG_INT16(0);
916  int16 arg2 = PG_GETARG_INT16(1);
917  int16 result;
918 
919  if (unlikely(pg_mul_s16_overflow(arg1, arg2, &result)))
920  ereport(ERROR,
921  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
922  errmsg("smallint out of range")));
923 
924  PG_RETURN_INT16(result);
925 }
926 
927 Datum
929 {
930  int16 arg1 = PG_GETARG_INT16(0);
931  int16 arg2 = PG_GETARG_INT16(1);
932  int16 result;
933 
934  if (arg2 == 0)
935  {
936  ereport(ERROR,
937  (errcode(ERRCODE_DIVISION_BY_ZERO),
938  errmsg("division by zero")));
939  /* ensure compiler realizes we mustn't reach the division (gcc bug) */
940  PG_RETURN_NULL();
941  }
942 
943  /*
944  * SHRT_MIN / -1 is problematic, since the result can't be represented on
945  * a two's-complement machine. Some machines produce SHRT_MIN, some
946  * produce zero, some throw an exception. We can dodge the problem by
947  * recognizing that division by -1 is the same as negation.
948  */
949  if (arg2 == -1)
950  {
951  if (unlikely(arg1 == PG_INT16_MIN))
952  ereport(ERROR,
953  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
954  errmsg("smallint out of range")));
955  result = -arg1;
956  PG_RETURN_INT16(result);
957  }
958 
959  /* No overflow is possible */
960 
961  result = arg1 / arg2;
962 
963  PG_RETURN_INT16(result);
964 }
965 
966 Datum
968 {
969  int16 arg1 = PG_GETARG_INT16(0);
970  int32 arg2 = PG_GETARG_INT32(1);
971  int32 result;
972 
973  if (unlikely(pg_add_s32_overflow((int32) arg1, arg2, &result)))
974  ereport(ERROR,
975  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
976  errmsg("integer out of range")));
977  PG_RETURN_INT32(result);
978 }
979 
980 Datum
982 {
983  int16 arg1 = PG_GETARG_INT16(0);
984  int32 arg2 = PG_GETARG_INT32(1);
985  int32 result;
986 
987  if (unlikely(pg_sub_s32_overflow((int32) arg1, arg2, &result)))
988  ereport(ERROR,
989  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
990  errmsg("integer out of range")));
991  PG_RETURN_INT32(result);
992 }
993 
994 Datum
996 {
997  int16 arg1 = PG_GETARG_INT16(0);
998  int32 arg2 = PG_GETARG_INT32(1);
999  int32 result;
1000 
1001  if (unlikely(pg_mul_s32_overflow((int32) arg1, arg2, &result)))
1002  ereport(ERROR,
1003  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1004  errmsg("integer out of range")));
1005  PG_RETURN_INT32(result);
1006 }
1007 
1008 Datum
1010 {
1011  int16 arg1 = PG_GETARG_INT16(0);
1012  int32 arg2 = PG_GETARG_INT32(1);
1013 
1014  if (unlikely(arg2 == 0))
1015  {
1016  ereport(ERROR,
1017  (errcode(ERRCODE_DIVISION_BY_ZERO),
1018  errmsg("division by zero")));
1019  /* ensure compiler realizes we mustn't reach the division (gcc bug) */
1020  PG_RETURN_NULL();
1021  }
1022 
1023  /* No overflow is possible */
1024  PG_RETURN_INT32((int32) arg1 / arg2);
1025 }
1026 
1027 Datum
1029 {
1030  int32 arg1 = PG_GETARG_INT32(0);
1031  int16 arg2 = PG_GETARG_INT16(1);
1032  int32 result;
1033 
1034  if (unlikely(pg_add_s32_overflow(arg1, (int32) arg2, &result)))
1035  ereport(ERROR,
1036  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1037  errmsg("integer out of range")));
1038  PG_RETURN_INT32(result);
1039 }
1040 
1041 Datum
1043 {
1044  int32 arg1 = PG_GETARG_INT32(0);
1045  int16 arg2 = PG_GETARG_INT16(1);
1046  int32 result;
1047 
1048  if (unlikely(pg_sub_s32_overflow(arg1, (int32) arg2, &result)))
1049  ereport(ERROR,
1050  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1051  errmsg("integer out of range")));
1052  PG_RETURN_INT32(result);
1053 }
1054 
1055 Datum
1057 {
1058  int32 arg1 = PG_GETARG_INT32(0);
1059  int16 arg2 = PG_GETARG_INT16(1);
1060  int32 result;
1061 
1062  if (unlikely(pg_mul_s32_overflow(arg1, (int32) arg2, &result)))
1063  ereport(ERROR,
1064  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1065  errmsg("integer out of range")));
1066  PG_RETURN_INT32(result);
1067 }
1068 
1069 Datum
1071 {
1072  int32 arg1 = PG_GETARG_INT32(0);
1073  int16 arg2 = PG_GETARG_INT16(1);
1074  int32 result;
1075 
1076  if (unlikely(arg2 == 0))
1077  {
1078  ereport(ERROR,
1079  (errcode(ERRCODE_DIVISION_BY_ZERO),
1080  errmsg("division by zero")));
1081  /* ensure compiler realizes we mustn't reach the division (gcc bug) */
1082  PG_RETURN_NULL();
1083  }
1084 
1085  /*
1086  * INT_MIN / -1 is problematic, since the result can't be represented on a
1087  * two's-complement machine. Some machines produce INT_MIN, some produce
1088  * zero, some throw an exception. We can dodge the problem by recognizing
1089  * that division by -1 is the same as negation.
1090  */
1091  if (arg2 == -1)
1092  {
1093  if (unlikely(arg1 == PG_INT32_MIN))
1094  ereport(ERROR,
1095  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1096  errmsg("integer out of range")));
1097  result = -arg1;
1098  PG_RETURN_INT32(result);
1099  }
1100 
1101  /* No overflow is possible */
1102 
1103  result = arg1 / arg2;
1104 
1105  PG_RETURN_INT32(result);
1106 }
1107 
1108 Datum
1110 {
1111  int32 arg1 = PG_GETARG_INT32(0);
1112  int32 arg2 = PG_GETARG_INT32(1);
1113 
1114  if (unlikely(arg2 == 0))
1115  {
1116  ereport(ERROR,
1117  (errcode(ERRCODE_DIVISION_BY_ZERO),
1118  errmsg("division by zero")));
1119  /* ensure compiler realizes we mustn't reach the division (gcc bug) */
1120  PG_RETURN_NULL();
1121  }
1122 
1123  /*
1124  * Some machines throw a floating-point exception for INT_MIN % -1, which
1125  * is a bit silly since the correct answer is perfectly well-defined,
1126  * namely zero.
1127  */
1128  if (arg2 == -1)
1129  PG_RETURN_INT32(0);
1130 
1131  /* No overflow is possible */
1132 
1133  PG_RETURN_INT32(arg1 % arg2);
1134 }
1135 
1136 Datum
1138 {
1139  int16 arg1 = PG_GETARG_INT16(0);
1140  int16 arg2 = PG_GETARG_INT16(1);
1141 
1142  if (unlikely(arg2 == 0))
1143  {
1144  ereport(ERROR,
1145  (errcode(ERRCODE_DIVISION_BY_ZERO),
1146  errmsg("division by zero")));
1147  /* ensure compiler realizes we mustn't reach the division (gcc bug) */
1148  PG_RETURN_NULL();
1149  }
1150 
1151  /*
1152  * Some machines throw a floating-point exception for INT_MIN % -1, which
1153  * is a bit silly since the correct answer is perfectly well-defined,
1154  * namely zero. (It's not clear this ever happens when dealing with
1155  * int16, but we might as well have the test for safety.)
1156  */
1157  if (arg2 == -1)
1158  PG_RETURN_INT16(0);
1159 
1160  /* No overflow is possible */
1161 
1162  PG_RETURN_INT16(arg1 % arg2);
1163 }
1164 
1165 
1166 /* int[24]abs()
1167  * Absolute value
1168  */
1169 Datum
1171 {
1172  int32 arg1 = PG_GETARG_INT32(0);
1173  int32 result;
1174 
1175  if (unlikely(arg1 == PG_INT32_MIN))
1176  ereport(ERROR,
1177  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1178  errmsg("integer out of range")));
1179  result = (arg1 < 0) ? -arg1 : arg1;
1180  PG_RETURN_INT32(result);
1181 }
1182 
1183 Datum
1185 {
1186  int16 arg1 = PG_GETARG_INT16(0);
1187  int16 result;
1188 
1189  if (unlikely(arg1 == PG_INT16_MIN))
1190  ereport(ERROR,
1191  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1192  errmsg("smallint out of range")));
1193  result = (arg1 < 0) ? -arg1 : arg1;
1194  PG_RETURN_INT16(result);
1195 }
1196 
1197 /*
1198  * Greatest Common Divisor
1199  *
1200  * Returns the largest positive integer that exactly divides both inputs.
1201  * Special cases:
1202  * - gcd(x, 0) = gcd(0, x) = abs(x)
1203  * because 0 is divisible by anything
1204  * - gcd(0, 0) = 0
1205  * complies with the previous definition and is a common convention
1206  *
1207  * Special care must be taken if either input is INT_MIN --- gcd(0, INT_MIN),
1208  * gcd(INT_MIN, 0) and gcd(INT_MIN, INT_MIN) are all equal to abs(INT_MIN),
1209  * which cannot be represented as a 32-bit signed integer.
1210  */
1211 static int32
1213 {
1214  int32 swap;
1215  int32 a1,
1216  a2;
1217 
1218  /*
1219  * Put the greater absolute value in arg1.
1220  *
1221  * This would happen automatically in the loop below, but avoids an
1222  * expensive modulo operation, and simplifies the special-case handling
1223  * for INT_MIN below.
1224  *
1225  * We do this in negative space in order to handle INT_MIN.
1226  */
1227  a1 = (arg1 < 0) ? arg1 : -arg1;
1228  a2 = (arg2 < 0) ? arg2 : -arg2;
1229  if (a1 > a2)
1230  {
1231  swap = arg1;
1232  arg1 = arg2;
1233  arg2 = swap;
1234  }
1235 
1236  /* Special care needs to be taken with INT_MIN. See comments above. */
1237  if (arg1 == PG_INT32_MIN)
1238  {
1239  if (arg2 == 0 || arg2 == PG_INT32_MIN)
1240  ereport(ERROR,
1241  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1242  errmsg("integer out of range")));
1243 
1244  /*
1245  * Some machines throw a floating-point exception for INT_MIN % -1,
1246  * which is a bit silly since the correct answer is perfectly
1247  * well-defined, namely zero. Guard against this and just return the
1248  * result, gcd(INT_MIN, -1) = 1.
1249  */
1250  if (arg2 == -1)
1251  return 1;
1252  }
1253 
1254  /* Use the Euclidean algorithm to find the GCD */
1255  while (arg2 != 0)
1256  {
1257  swap = arg2;
1258  arg2 = arg1 % arg2;
1259  arg1 = swap;
1260  }
1261 
1262  /*
1263  * Make sure the result is positive. (We know we don't have INT_MIN
1264  * anymore).
1265  */
1266  if (arg1 < 0)
1267  arg1 = -arg1;
1268 
1269  return arg1;
1270 }
1271 
1272 Datum
1274 {
1275  int32 arg1 = PG_GETARG_INT32(0);
1276  int32 arg2 = PG_GETARG_INT32(1);
1277  int32 result;
1278 
1279  result = int4gcd_internal(arg1, arg2);
1280 
1281  PG_RETURN_INT32(result);
1282 }
1283 
1284 /*
1285  * Least Common Multiple
1286  */
1287 Datum
1289 {
1290  int32 arg1 = PG_GETARG_INT32(0);
1291  int32 arg2 = PG_GETARG_INT32(1);
1292  int32 gcd;
1293  int32 result;
1294 
1295  /*
1296  * Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
1297  * division-by-zero error below when x is zero, and an overflow error from
1298  * the GCD computation when x = INT_MIN.
1299  */
1300  if (arg1 == 0 || arg2 == 0)
1301  PG_RETURN_INT32(0);
1302 
1303  /* lcm(x, y) = abs(x / gcd(x, y) * y) */
1304  gcd = int4gcd_internal(arg1, arg2);
1305  arg1 = arg1 / gcd;
1306 
1307  if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
1308  ereport(ERROR,
1309  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1310  errmsg("integer out of range")));
1311 
1312  /* If the result is INT_MIN, it cannot be represented. */
1313  if (unlikely(result == PG_INT32_MIN))
1314  ereport(ERROR,
1315  (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
1316  errmsg("integer out of range")));
1317 
1318  if (result < 0)
1319  result = -result;
1320 
1321  PG_RETURN_INT32(result);
1322 }
1323 
1324 Datum
1326 {
1327  int16 arg1 = PG_GETARG_INT16(0);
1328  int16 arg2 = PG_GETARG_INT16(1);
1329 
1330  PG_RETURN_INT16((arg1 > arg2) ? arg1 : arg2);
1331 }
1332 
1333 Datum
1335 {
1336  int16 arg1 = PG_GETARG_INT16(0);
1337  int16 arg2 = PG_GETARG_INT16(1);
1338 
1339  PG_RETURN_INT16((arg1 < arg2) ? arg1 : arg2);
1340 }
1341 
1342 Datum
1344 {
1345  int32 arg1 = PG_GETARG_INT32(0);
1346  int32 arg2 = PG_GETARG_INT32(1);
1347 
1348  PG_RETURN_INT32((arg1 > arg2) ? arg1 : arg2);
1349 }
1350 
1351 Datum
1353 {
1354  int32 arg1 = PG_GETARG_INT32(0);
1355  int32 arg2 = PG_GETARG_INT32(1);
1356 
1357  PG_RETURN_INT32((arg1 < arg2) ? arg1 : arg2);
1358 }
1359 
1360 /*
1361  * Bit-pushing operators
1362  *
1363  * int[24]and - returns arg1 & arg2
1364  * int[24]or - returns arg1 | arg2
1365  * int[24]xor - returns arg1 # arg2
1366  * int[24]not - returns ~arg1
1367  * int[24]shl - returns arg1 << arg2
1368  * int[24]shr - returns arg1 >> arg2
1369  */
1370 
1371 Datum
1373 {
1374  int32 arg1 = PG_GETARG_INT32(0);
1375  int32 arg2 = PG_GETARG_INT32(1);
1376 
1377  PG_RETURN_INT32(arg1 & arg2);
1378 }
1379 
1380 Datum
1382 {
1383  int32 arg1 = PG_GETARG_INT32(0);
1384  int32 arg2 = PG_GETARG_INT32(1);
1385 
1386  PG_RETURN_INT32(arg1 | arg2);
1387 }
1388 
1389 Datum
1391 {
1392  int32 arg1 = PG_GETARG_INT32(0);
1393  int32 arg2 = PG_GETARG_INT32(1);
1394 
1395  PG_RETURN_INT32(arg1 ^ arg2);
1396 }
1397 
1398 Datum
1400 {
1401  int32 arg1 = PG_GETARG_INT32(0);
1402  int32 arg2 = PG_GETARG_INT32(1);
1403 
1404  PG_RETURN_INT32(arg1 << arg2);
1405 }
1406 
1407 Datum
1409 {
1410  int32 arg1 = PG_GETARG_INT32(0);
1411  int32 arg2 = PG_GETARG_INT32(1);
1412 
1413  PG_RETURN_INT32(arg1 >> arg2);
1414 }
1415 
1416 Datum
1418 {
1419  int32 arg1 = PG_GETARG_INT32(0);
1420 
1421  PG_RETURN_INT32(~arg1);
1422 }
1423 
1424 Datum
1426 {
1427  int16 arg1 = PG_GETARG_INT16(0);
1428  int16 arg2 = PG_GETARG_INT16(1);
1429 
1430  PG_RETURN_INT16(arg1 & arg2);
1431 }
1432 
1433 Datum
1435 {
1436  int16 arg1 = PG_GETARG_INT16(0);
1437  int16 arg2 = PG_GETARG_INT16(1);
1438 
1439  PG_RETURN_INT16(arg1 | arg2);
1440 }
1441 
1442 Datum
1444 {
1445  int16 arg1 = PG_GETARG_INT16(0);
1446  int16 arg2 = PG_GETARG_INT16(1);
1447 
1448  PG_RETURN_INT16(arg1 ^ arg2);
1449 }
1450 
1451 Datum
1453 {
1454  int16 arg1 = PG_GETARG_INT16(0);
1455 
1456  PG_RETURN_INT16(~arg1);
1457 }
1458 
1459 
1460 Datum
1462 {
1463  int16 arg1 = PG_GETARG_INT16(0);
1464  int32 arg2 = PG_GETARG_INT32(1);
1465 
1466  PG_RETURN_INT16(arg1 << arg2);
1467 }
1468 
1469 Datum
1471 {
1472  int16 arg1 = PG_GETARG_INT16(0);
1473  int32 arg2 = PG_GETARG_INT32(1);
1474 
1475  PG_RETURN_INT16(arg1 >> arg2);
1476 }
1477 
1478 /*
1479  * non-persistent numeric series generator
1480  */
1481 Datum
1483 {
1484  return generate_series_step_int4(fcinfo);
1485 }
1486 
1487 Datum
1489 {
1490  FuncCallContext *funcctx;
1491  generate_series_fctx *fctx;
1492  int32 result;
1493  MemoryContext oldcontext;
1494 
1495  /* stuff done only on the first call of the function */
1496  if (SRF_IS_FIRSTCALL())
1497  {
1498  int32 start = PG_GETARG_INT32(0);
1499  int32 finish = PG_GETARG_INT32(1);
1500  int32 step = 1;
1501 
1502  /* see if we were given an explicit step size */
1503  if (PG_NARGS() == 3)
1504  step = PG_GETARG_INT32(2);
1505  if (step == 0)
1506  ereport(ERROR,
1507  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1508  errmsg("step size cannot equal zero")));
1509 
1510  /* create a function context for cross-call persistence */
1511  funcctx = SRF_FIRSTCALL_INIT();
1512 
1513  /*
1514  * switch to memory context appropriate for multiple function calls
1515  */
1516  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
1517 
1518  /* allocate memory for user context */
1519  fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
1520 
1521  /*
1522  * Use fctx to keep state from call to call. Seed current with the
1523  * original start value
1524  */
1525  fctx->current = start;
1526  fctx->finish = finish;
1527  fctx->step = step;
1528 
1529  funcctx->user_fctx = fctx;
1530  MemoryContextSwitchTo(oldcontext);
1531  }
1532 
1533  /* stuff done on every call of the function */
1534  funcctx = SRF_PERCALL_SETUP();
1535 
1536  /*
1537  * get the saved state and use current as the result for this iteration
1538  */
1539  fctx = funcctx->user_fctx;
1540  result = fctx->current;
1541 
1542  if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
1543  (fctx->step < 0 && fctx->current >= fctx->finish))
1544  {
1545  /*
1546  * Increment current in preparation for next iteration. If next-value
1547  * computation overflows, this is the final result.
1548  */
1549  if (pg_add_s32_overflow(fctx->current, fctx->step, &fctx->current))
1550  fctx->step = 0;
1551 
1552  /* do when there is more left to send */
1553  SRF_RETURN_NEXT(funcctx, Int32GetDatum(result));
1554  }
1555  else
1556  /* do when there is no more left */
1557  SRF_RETURN_DONE(funcctx);
1558 }
1559 
1560 /*
1561  * Planner support function for generate_series(int4, int4 [, int4])
1562  */
1563 Datum
1565 {
1566  Node *rawreq = (Node *) PG_GETARG_POINTER(0);
1567  Node *ret = NULL;
1568 
1569  if (IsA(rawreq, SupportRequestRows))
1570  {
1571  /* Try to estimate the number of rows returned */
1572  SupportRequestRows *req = (SupportRequestRows *) rawreq;
1573 
1574  if (is_funcclause(req->node)) /* be paranoid */
1575  {
1576  List *args = ((FuncExpr *) req->node)->args;
1577  Node *arg1,
1578  *arg2,
1579  *arg3;
1580 
1581  /* We can use estimated argument values here */
1582  arg1 = estimate_expression_value(req->root, linitial(args));
1583  arg2 = estimate_expression_value(req->root, lsecond(args));
1584  if (list_length(args) >= 3)
1585  arg3 = estimate_expression_value(req->root, lthird(args));
1586  else
1587  arg3 = NULL;
1588 
1589  /*
1590  * If any argument is constant NULL, we can safely assume that
1591  * zero rows are returned. Otherwise, if they're all non-NULL
1592  * constants, we can calculate the number of rows that will be
1593  * returned. Use double arithmetic to avoid overflow hazards.
1594  */
1595  if ((IsA(arg1, Const) &&
1596  ((Const *) arg1)->constisnull) ||
1597  (IsA(arg2, Const) &&
1598  ((Const *) arg2)->constisnull) ||
1599  (arg3 != NULL && IsA(arg3, Const) &&
1600  ((Const *) arg3)->constisnull))
1601  {
1602  req->rows = 0;
1603  ret = (Node *) req;
1604  }
1605  else if (IsA(arg1, Const) &&
1606  IsA(arg2, Const) &&
1607  (arg3 == NULL || IsA(arg3, Const)))
1608  {
1609  double start,
1610  finish,
1611  step;
1612 
1613  start = DatumGetInt32(((Const *) arg1)->constvalue);
1614  finish = DatumGetInt32(((Const *) arg2)->constvalue);
1615  step = arg3 ? DatumGetInt32(((Const *) arg3)->constvalue) : 1;
1616 
1617  /* This equation works for either sign of step */
1618  if (step != 0)
1619  {
1620  req->rows = floor((finish - start + step) / step);
1621  ret = (Node *) req;
1622  }
1623  }
1624  }
1625  }
1626 
1627  PG_RETURN_POINTER(ret);
1628 }
Datum int2not(PG_FUNCTION_ARGS)
Definition: int.c:1452
signed short int16
Definition: c.h:361
#define PG_RETURN_POINTER(x)
Definition: fmgr.h:360
static void pq_sendint16(StringInfo buf, uint16 i)
Definition: pqformat.h:137
int lbound1
Definition: c.h:597
#define PG_GETARG_INT32(n)
Definition: fmgr.h:269
#define IsA(nodeptr, _type_)
Definition: nodes.h:580
Datum array_send(PG_FUNCTION_ARGS)
Definition: arrayfuncs.c:1569
Datum int2shr(PG_FUNCTION_ARGS)
Definition: int.c:1470
#define swap(a, b)
Definition: qsort.c:94
Datum int24mi(PG_FUNCTION_ARGS)
Definition: int.c:981
Datum int2mod(PG_FUNCTION_ARGS)
Definition: int.c:1137
Datum int2vectorout(PG_FUNCTION_ARGS)
Definition: int.c:180
Datum int4inc(PG_FUNCTION_ARGS)
Definition: int.c:851
Datum int24gt(PG_FUNCTION_ARGS)
Definition: int.c:519
#define DatumGetInt32(X)
Definition: postgres.h:472
static bool pg_mul_s32_overflow(int32 a, int32 b, int32 *result)
Definition: int.h:140
Node * estimate_expression_value(PlannerInfo *root, Node *node)
Definition: clauses.c:2288
Datum int42eq(PG_FUNCTION_ARGS)
Definition: int.c:537
Datum int24ge(PG_FUNCTION_ARGS)
Definition: int.c:528
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:293
#define PointerGetDatum(X)
Definition: postgres.h:556
#define PG_GETARG_DATUM(n)
Definition: fmgr.h:268
Datum in_range_int4_int8(PG_FUNCTION_ARGS)
Definition: int.c:648
void pq_begintypsend(StringInfo buf)
Definition: pqformat.c:328
Datum int2ge(PG_FUNCTION_ARGS)
Definition: int.c:474
Datum int4mod(PG_FUNCTION_ARGS)
Definition: int.c:1109
Datum int42lt(PG_FUNCTION_ARGS)
Definition: int.c:555
int2vector * buildint2vector(const int16 *int2s, int n)
Definition: int.c:114
Datum int4and(PG_FUNCTION_ARGS)
Definition: int.c:1372
Datum int4in(PG_FUNCTION_ARGS)
Definition: int.c:266
StringInfoData * StringInfo
Definition: stringinfo.h:44
Datum int2and(PG_FUNCTION_ARGS)
Definition: int.c:1425
Datum int24ne(PG_FUNCTION_ARGS)
Definition: int.c:492
Datum int4lcm(PG_FUNCTION_ARGS)
Definition: int.c:1288
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
#define PG_RETURN_INT32(x)
Definition: fmgr.h:353
Datum int24mul(PG_FUNCTION_ARGS)
Definition: int.c:995
Definition: nodes.h:529
#define PG_RETURN_INT16(x)
Definition: fmgr.h:355
Datum generate_series_int4(PG_FUNCTION_ARGS)
Definition: int.c:1482
int errcode(int sqlerrcode)
Definition: elog.c:610
Datum int2xor(PG_FUNCTION_ARGS)
Definition: int.c:1443
Datum int4up(PG_FUNCTION_ARGS)
Definition: int.c:762
Datum int4ne(PG_FUNCTION_ARGS)
Definition: int.c:384
#define PG_GETARG_POINTER(n)
Definition: fmgr.h:276
static bool pg_add_s16_overflow(int16 a, int16 b, int16 *result)
Definition: int.h:47
Oid elemtype
Definition: c.h:595
Datum in_range_int4_int2(PG_FUNCTION_ARGS)
Definition: int.c:636
Datum int2vectorsend(PG_FUNCTION_ARGS)
Definition: int.c:252
Datum array_recv(PG_FUNCTION_ARGS)
Definition: arrayfuncs.c:1268
#define PG_GETARG_BOOL(n)
Definition: fmgr.h:274
#define PG_RETURN_BYTEA_P(x)
Definition: fmgr.h:369
Datum int4gcd(PG_FUNCTION_ARGS)
Definition: int.c:1273
bytea * pq_endtypsend(StringInfo buf)
Definition: pqformat.c:348
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:297
Datum i2toi4(PG_FUNCTION_ARGS)
Definition: int.c:319
Datum int4_bool(PG_FUNCTION_ARGS)
Definition: int.c:341
static bool pg_mul_s16_overflow(int16 a, int16 b, int16 *result)
Definition: int.h:83
Datum int2lt(PG_FUNCTION_ARGS)
Definition: int.c:447
#define lsecond(l)
Definition: pg_list.h:200
Datum int4pl(PG_FUNCTION_ARGS)
Definition: int.c:770
Datum int24div(PG_FUNCTION_ARGS)
Definition: int.c:1009
Datum int4send(PG_FUNCTION_ARGS)
Definition: int.c:301
signed int int32
Definition: c.h:362
static bool is_funcclause(const void *clause)
Definition: nodeFuncs.h:56
Datum int24eq(PG_FUNCTION_ARGS)
Definition: int.c:483
struct PlannerInfo * root
Definition: supportnodes.h:163
#define ARR_LBOUND(a)
Definition: array.h:284
#define FUNC_MAX_ARGS
Datum int2up(PG_FUNCTION_ARGS)
Definition: int.c:877
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:299
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:145
static const FormData_pg_attribute a2
Definition: heap.c:165
#define linitial(l)
Definition: pg_list.h:195
Datum generate_series_int4_support(PG_FUNCTION_ARGS)
Definition: int.c:1564
int32 dataoffset
Definition: c.h:594
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
Datum int2vectorrecv(PG_FUNCTION_ARGS)
Definition: int.c:204
Datum int4abs(PG_FUNCTION_ARGS)
Definition: int.c:1170
#define ARR_DIMS(a)
Definition: array.h:282
Datum int2send(PG_FUNCTION_ARGS)
Definition: int.c:98
Datum int42gt(PG_FUNCTION_ARGS)
Definition: int.c:573
Datum int4ge(PG_FUNCTION_ARGS)
Definition: int.c:420
Datum int4lt(PG_FUNCTION_ARGS)
Definition: int.c:393
Datum int4mi(PG_FUNCTION_ARGS)
Definition: int.c:784
Datum int2smaller(PG_FUNCTION_ARGS)
Definition: int.c:1334
Datum int4larger(PG_FUNCTION_ARGS)
Definition: int.c:1343
Datum int2mul(PG_FUNCTION_ARGS)
Definition: int.c:913
static char * buf
Definition: pg_test_fsync.c:67
int ndim
Definition: c.h:593
int16 pg_strtoint16(const char *s)
Definition: numutils.c:187
#define ARR_HASNULL(a)
Definition: array.h:279
static bool pg_sub_s32_overflow(int32 a, int32 b, int32 *result)
Definition: int.h:122
Datum int2eq(PG_FUNCTION_ARGS)
Definition: int.c:429
Datum int4out(PG_FUNCTION_ARGS)
Definition: int.c:277
Datum int4not(PG_FUNCTION_ARGS)
Definition: int.c:1417
Datum in_range_int4_int4(PG_FUNCTION_ARGS)
Definition: int.c:602
#define PG_INT16_MIN
Definition: c.h:453
#define PG_INT32_MIN
Definition: c.h:456
Datum int2vectorin(PG_FUNCTION_ARGS)
Definition: int.c:141
Datum in_range_int2_int4(PG_FUNCTION_ARGS)
Definition: int.c:683
Datum int42mul(PG_FUNCTION_ARGS)
Definition: int.c:1056
Datum int4shl(PG_FUNCTION_ARGS)
Definition: int.c:1399
#define DirectFunctionCall5(func, arg1, arg2, arg3, arg4, arg5)
Definition: fmgr.h:632
Datum int24lt(PG_FUNCTION_ARGS)
Definition: int.c:501
Datum int4um(PG_FUNCTION_ARGS)
Definition: int.c:750
Definition: c.h:590
void * palloc0(Size size)
Definition: mcxt.c:980
#define PG_RETURN_BOOL(x)
Definition: fmgr.h:358
uintptr_t Datum
Definition: postgres.h:367
Datum int4or(PG_FUNCTION_ARGS)
Definition: int.c:1381
Datum int4le(PG_FUNCTION_ARGS)
Definition: int.c:402
Datum int4xor(PG_FUNCTION_ARGS)
Definition: int.c:1390
#define PG_GETARG_INT16(n)
Definition: fmgr.h:271
int dim1
Definition: c.h:596
Datum bool_int4(PG_FUNCTION_ARGS)
Definition: int.c:351
Datum i4toi2(PG_FUNCTION_ARGS)
Definition: int.c:327
#define InvalidOid
Definition: postgres_ext.h:36
static bool pg_add_s64_overflow(int64 a, int64 b, int64 *result)
Definition: int.h:161
#define ereport(elevel,...)
Definition: elog.h:144
Datum int24le(PG_FUNCTION_ARGS)
Definition: int.c:510
Datum int2larger(PG_FUNCTION_ARGS)
Definition: int.c:1325
int32 current
Definition: int.c:49
int32 finish
Definition: int.c:50
Datum int2out(PG_FUNCTION_ARGS)
Definition: int.c:74
#define LOCAL_FCINFO(name, nargs)
Definition: fmgr.h:110
Datum int4div(PG_FUNCTION_ARGS)
Definition: int.c:812
Datum in_range_int2_int2(PG_FUNCTION_ARGS)
Definition: int.c:718
Datum int2div(PG_FUNCTION_ARGS)
Definition: int.c:928
Datum int42div(PG_FUNCTION_ARGS)
Definition: int.c:1070
#define Assert(condition)
Definition: c.h:745
Datum int2mi(PG_FUNCTION_ARGS)
Definition: int.c:899
Datum int2ne(PG_FUNCTION_ARGS)
Definition: int.c:438
static bool pg_sub_s16_overflow(int16 a, int16 b, int16 *result)
Definition: int.h:65
static bool pg_add_s32_overflow(int32 a, int32 b, int32 *result)
Definition: int.h:104
#define PG_RETURN_CSTRING(x)
Definition: fmgr.h:361
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:101
Datum int2shl(PG_FUNCTION_ARGS)
Definition: int.c:1461
Datum int4mul(PG_FUNCTION_ARGS)
Definition: int.c:798
#define InitFunctionCallInfoData(Fcinfo, Flinfo, Nargs, Collation, Context, Resultinfo)
Definition: fmgr.h:150
Datum int2or(PG_FUNCTION_ARGS)
Definition: int.c:1434
static int list_length(const List *l)
Definition: pg_list.h:169
#define PG_NARGS()
Definition: fmgr.h:203
int16 values[FLEXIBLE_ARRAY_MEMBER]
Definition: c.h:598
#define ARR_NDIM(a)
Definition: array.h:278
Datum int2in(PG_FUNCTION_ARGS)
Definition: int.c:63
#define Int2VectorSize(n)
Definition: int.c:45
int32 pg_strtoint32(const char *s)
Definition: numutils.c:263
#define DatumGetPointer(X)
Definition: postgres.h:549
static int32 int4gcd_internal(int32 arg1, int32 arg2)
Definition: int.c:1212
int pg_ltoa(int32 value, char *a)
Definition: numutils.c:416
Datum int42ne(PG_FUNCTION_ARGS)
Definition: int.c:546
Datum int2recv(PG_FUNCTION_ARGS)
Definition: int.c:87
#define Int32GetDatum(X)
Definition: postgres.h:479
Datum int2um(PG_FUNCTION_ARGS)
Definition: int.c:865
Datum int4gt(PG_FUNCTION_ARGS)
Definition: int.c:411
void * user_fctx
Definition: funcapi.h:82
void * palloc(Size size)
Definition: mcxt.c:949
int errmsg(const char *fmt,...)
Definition: elog.c:824
Datum in_range_int2_int8(PG_FUNCTION_ARGS)
Definition: int.c:730
Datum int2abs(PG_FUNCTION_ARGS)
Definition: int.c:1184
Datum int42ge(PG_FUNCTION_ARGS)
Definition: int.c:582
Datum int2pl(PG_FUNCTION_ARGS)
Definition: int.c:885
void * arg
static uint32 gcd(uint32 a, uint32 b)
#define unlikely(x)
Definition: c.h:206
#define lthird(l)
Definition: pg_list.h:205
#define PG_GETARG_CSTRING(n)
Definition: fmgr.h:277
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
Datum int42pl(PG_FUNCTION_ARGS)
Definition: int.c:1028
unsigned int pq_getmsgint(StringInfo msg, int b)
Definition: pqformat.c:417
#define SET_VARSIZE(PTR, len)
Definition: postgres.h:329
static const FormData_pg_attribute a1
Definition: heap.c:151
Datum int4shr(PG_FUNCTION_ARGS)
Definition: int.c:1408
Datum int4smaller(PG_FUNCTION_ARGS)
Definition: int.c:1352
#define PG_GETARG_INT64(n)
Definition: fmgr.h:282
Datum generate_series_step_int4(PG_FUNCTION_ARGS)
Definition: int.c:1488
Definition: pg_list.h:50
#define ARR_ELEMTYPE(a)
Definition: array.h:280
Datum int4eq(PG_FUNCTION_ARGS)
Definition: int.c:375
Datum int42mi(PG_FUNCTION_ARGS)
Definition: int.c:1042
Datum int24pl(PG_FUNCTION_ARGS)
Definition: int.c:967
long val
Definition: informix.c:664
#define PG_RETURN_NULL()
Definition: fmgr.h:344
Datum int2gt(PG_FUNCTION_ARGS)
Definition: int.c:465
int32 pg_atoi(const char *s, int size, int c)
Definition: numutils.c:102
Datum int42le(PG_FUNCTION_ARGS)
Definition: int.c:564
int pg_itoa(int16 i, char *a)
Definition: numutils.c:338
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:317
Datum int2le(PG_FUNCTION_ARGS)
Definition: int.c:456
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:295
Datum int4recv(PG_FUNCTION_ARGS)
Definition: int.c:290