PostgreSQL Source Code git master
clauses.c File Reference
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_class.h"
#include "catalog/pg_language.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/functions.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/multibitmapset.h"
#include "nodes/nodeFuncs.h"
#include "nodes/subscripting.h"
#include "nodes/supportnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "parser/analyze.h"
#include "parser/parse_coerce.h"
#include "parser/parse_collate.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteHandler.h"
#include "rewrite/rewriteManip.h"
#include "tcop/tcopprot.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/json.h"
#include "utils/jsonb.h"
#include "utils/jsonpath.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
Include dependency graph for clauses.c:

Go to the source code of this file.

Data Structures

struct  eval_const_expressions_context
 
struct  substitute_actual_parameters_context
 
struct  substitute_actual_parameters_in_from_context
 
struct  inline_error_callback_arg
 
struct  max_parallel_hazard_context
 

Macros

#define CCDN_CASETESTEXPR_OK   0x0001 /* CaseTestExpr okay here? */
 
#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP   9
 
#define ece_generic_processing(node)
 
#define ece_all_arguments_const(node)    (!expression_tree_walker((Node *) (node), contain_non_const_walker, NULL))
 
#define ece_evaluate_expr(node)
 

Functions

static bool contain_agg_clause_walker (Node *node, void *context)
 
static bool find_window_functions_walker (Node *node, WindowFuncLists *lists)
 
static bool contain_subplans_walker (Node *node, void *context)
 
static bool contain_mutable_functions_walker (Node *node, void *context)
 
static bool contain_volatile_functions_walker (Node *node, void *context)
 
static bool contain_volatile_functions_not_nextval_walker (Node *node, void *context)
 
static bool max_parallel_hazard_walker (Node *node, max_parallel_hazard_context *context)
 
static bool contain_nonstrict_functions_walker (Node *node, void *context)
 
static bool contain_exec_param_walker (Node *node, List *param_ids)
 
static bool contain_context_dependent_node (Node *clause)
 
static bool contain_context_dependent_node_walker (Node *node, int *flags)
 
static bool contain_leaked_vars_walker (Node *node, void *context)
 
static Relids find_nonnullable_rels_walker (Node *node, bool top_level)
 
static Listfind_nonnullable_vars_walker (Node *node, bool top_level)
 
static bool is_strict_saop (ScalarArrayOpExpr *expr, bool falseOK)
 
static bool convert_saop_to_hashed_saop_walker (Node *node, void *context)
 
static Nodeeval_const_expressions_mutator (Node *node, eval_const_expressions_context *context)
 
static bool contain_non_const_walker (Node *node, void *context)
 
static bool ece_function_is_safe (Oid funcid, eval_const_expressions_context *context)
 
static Listsimplify_or_arguments (List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceTrue)
 
static Listsimplify_and_arguments (List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceFalse)
 
static Nodesimplify_boolean_equality (Oid opno, List *args)
 
static Exprsimplify_function (Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List **args_p, bool funcvariadic, bool process_args, bool allow_non_const, eval_const_expressions_context *context)
 
static Nodesimplify_aggref (Aggref *aggref, eval_const_expressions_context *context)
 
static Listreorder_function_arguments (List *args, int pronargs, HeapTuple func_tuple)
 
static Listadd_function_defaults (List *args, int pronargs, HeapTuple func_tuple)
 
static Listfetch_function_defaults (HeapTuple func_tuple)
 
static void recheck_cast_function_args (List *args, Oid result_type, Oid *proargtypes, int pronargs, HeapTuple func_tuple)
 
static Exprevaluate_function (Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
 
static Exprinline_function (Oid funcid, Oid result_type, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
 
static Nodesubstitute_actual_parameters (Node *expr, int nargs, List *args, int *usecounts)
 
static Nodesubstitute_actual_parameters_mutator (Node *node, substitute_actual_parameters_context *context)
 
static void sql_inline_error_callback (void *arg)
 
static Queryinline_sql_function_in_from (PlannerInfo *root, RangeTblFunction *rtfunc, FuncExpr *fexpr, HeapTuple func_tuple, Form_pg_proc funcform, const char *src)
 
static Querysubstitute_actual_parameters_in_from (Query *expr, int nargs, List *args)
 
static Nodesubstitute_actual_parameters_in_from_mutator (Node *node, substitute_actual_parameters_in_from_context *context)
 
static bool pull_paramids_walker (Node *node, Bitmapset **context)
 
bool contain_agg_clause (Node *clause)
 
bool contain_window_function (Node *clause)
 
WindowFuncListsfind_window_functions (Node *clause, Index maxWinRef)
 
double expression_returns_set_rows (PlannerInfo *root, Node *clause)
 
bool contain_subplans (Node *clause)
 
bool contain_mutable_functions (Node *clause)
 
static bool contain_mutable_functions_checker (Oid func_id, void *context)
 
bool contain_mutable_functions_after_planning (Expr *expr)
 
bool contain_volatile_functions (Node *clause)
 
static bool contain_volatile_functions_checker (Oid func_id, void *context)
 
bool contain_volatile_functions_after_planning (Expr *expr)
 
bool contain_volatile_functions_not_nextval (Node *clause)
 
static bool contain_volatile_functions_not_nextval_checker (Oid func_id, void *context)
 
char max_parallel_hazard (Query *parse)
 
bool is_parallel_safe (PlannerInfo *root, Node *node)
 
static bool max_parallel_hazard_test (char proparallel, max_parallel_hazard_context *context)
 
static bool max_parallel_hazard_checker (Oid func_id, void *context)
 
bool contain_nonstrict_functions (Node *clause)
 
static bool contain_nonstrict_functions_checker (Oid func_id, void *context)
 
bool contain_exec_param (Node *clause, List *param_ids)
 
bool contain_leaked_vars (Node *clause)
 
static bool contain_leaked_vars_checker (Oid func_id, void *context)
 
Relids find_nonnullable_rels (Node *clause)
 
Listfind_nonnullable_vars (Node *clause)
 
Listfind_forced_null_vars (Node *node)
 
Varfind_forced_null_var (Node *node)
 
bool is_pseudo_constant_clause (Node *clause)
 
bool is_pseudo_constant_clause_relids (Node *clause, Relids relids)
 
int NumRelids (PlannerInfo *root, Node *clause)
 
void CommuteOpExpr (OpExpr *clause)
 
static bool rowtype_field_matches (Oid rowtypeid, int fieldnum, Oid expectedtype, int32 expectedtypmod, Oid expectedcollation)
 
Nodeeval_const_expressions (PlannerInfo *root, Node *node)
 
void convert_saop_to_hashed_saop (Node *node)
 
Nodeestimate_expression_value (PlannerInfo *root, Node *node)
 
bool var_is_nonnullable (PlannerInfo *root, Var *var, bool use_rel_info)
 
bool expr_is_nonnullable (PlannerInfo *root, Expr *expr, bool use_rel_info)
 
Listexpand_function_arguments (List *args, bool include_out_arguments, Oid result_type, HeapTuple func_tuple)
 
Exprevaluate_expr (Expr *expr, Oid result_type, int32 result_typmod, Oid result_collation)
 
Queryinline_function_in_from (PlannerInfo *root, RangeTblEntry *rte)
 
Bitmapsetpull_paramids (Expr *expr)
 
ScalarArrayOpExprmake_SAOP_expr (Oid oper, Node *leftexpr, Oid coltype, Oid arraycollid, Oid inputcollid, List *exprs, bool haveNonConst)
 

Macro Definition Documentation

◆ CCDN_CASETESTEXPR_OK

#define CCDN_CASETESTEXPR_OK   0x0001 /* CaseTestExpr okay here? */

Definition at line 1200 of file clauses.c.

◆ ece_all_arguments_const

#define ece_all_arguments_const (   node)     (!expression_tree_walker((Node *) (node), contain_non_const_walker, NULL))

Definition at line 2442 of file clauses.c.

◆ ece_evaluate_expr

#define ece_evaluate_expr (   node)
Value:
((Node *) evaluate_expr((Expr *) (node), \
exprType((Node *) (node)), \
exprTypmod((Node *) (node)), \
exprCollation((Node *) (node))))
Expr * evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod, Oid result_collation)
Definition: clauses.c:5287
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
Definition: nodes.h:135

Definition at line 2446 of file clauses.c.

◆ ece_generic_processing

#define ece_generic_processing (   node)
Value:
context)
static Node * eval_const_expressions_mutator(Node *node, eval_const_expressions_context *context)
Definition: clauses.c:2456
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155

Definition at line 2433 of file clauses.c.

◆ MIN_ARRAY_SIZE_FOR_HASHED_SAOP

#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP   9

Definition at line 2285 of file clauses.c.

Function Documentation

◆ add_function_defaults()

static List * add_function_defaults ( List args,
int  pronargs,
HeapTuple  func_tuple 
)
static

Definition at line 4641 of file clauses.c.

4642{
4643 int nargsprovided = list_length(args);
4644 List *defaults;
4645 int ndelete;
4646
4647 /* Get all the default expressions from the pg_proc tuple */
4648 defaults = fetch_function_defaults(func_tuple);
4649
4650 /* Delete any unused defaults from the list */
4651 ndelete = nargsprovided + list_length(defaults) - pronargs;
4652 if (ndelete < 0)
4653 elog(ERROR, "not enough default arguments");
4654 if (ndelete > 0)
4655 defaults = list_delete_first_n(defaults, ndelete);
4656
4657 /* And form the combined argument list, not modifying the input list */
4658 return list_concat_copy(args, defaults);
4659}
static List * fetch_function_defaults(HeapTuple func_tuple)
Definition: clauses.c:4665
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
List * list_concat_copy(const List *list1, const List *list2)
Definition: list.c:598
List * list_delete_first_n(List *list, int n)
Definition: list.c:983
static int list_length(const List *l)
Definition: pg_list.h:152
int16 pronargs
Definition: pg_proc.h:81
Definition: pg_list.h:54

References generate_unaccent_rules::args, elog, ERROR, fetch_function_defaults(), list_concat_copy(), list_delete_first_n(), list_length(), and pronargs.

Referenced by expand_function_arguments().

◆ CommuteOpExpr()

void CommuteOpExpr ( OpExpr clause)

Definition at line 2162 of file clauses.c.

2163{
2164 Oid opoid;
2165 Node *temp;
2166
2167 /* Sanity checks: caller is at fault if these fail */
2168 if (!is_opclause(clause) ||
2169 list_length(clause->args) != 2)
2170 elog(ERROR, "cannot commute non-binary-operator clause");
2171
2172 opoid = get_commutator(clause->opno);
2173
2174 if (!OidIsValid(opoid))
2175 elog(ERROR, "could not find commutator for operator %u",
2176 clause->opno);
2177
2178 /*
2179 * modify the clause in-place!
2180 */
2181 clause->opno = opoid;
2182 clause->opfuncid = InvalidOid;
2183 /* opresulttype, opretset, opcollid, inputcollid need not change */
2184
2185 temp = linitial(clause->args);
2186 linitial(clause->args) = lsecond(clause->args);
2187 lsecond(clause->args) = temp;
2188}
#define OidIsValid(objectId)
Definition: c.h:794
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1659
static bool is_opclause(const void *clause)
Definition: nodeFuncs.h:76
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
Oid opno
Definition: primnodes.h:850
List * args
Definition: primnodes.h:868

References OpExpr::args, elog, ERROR, get_commutator(), InvalidOid, is_opclause(), linitial, list_length(), lsecond, OidIsValid, and OpExpr::opno.

Referenced by get_switched_clauses().

◆ contain_agg_clause()

bool contain_agg_clause ( Node clause)

Definition at line 190 of file clauses.c.

191{
192 return contain_agg_clause_walker(clause, NULL);
193}
static bool contain_agg_clause_walker(Node *node, void *context)
Definition: clauses.c:196

References contain_agg_clause_walker().

Referenced by get_eclass_for_sort_expr(), mark_nullable_by_grouping(), and subquery_planner().

◆ contain_agg_clause_walker()

static bool contain_agg_clause_walker ( Node node,
void *  context 
)
static

Definition at line 196 of file clauses.c.

197{
198 if (node == NULL)
199 return false;
200 if (IsA(node, Aggref))
201 {
202 Assert(((Aggref *) node)->agglevelsup == 0);
203 return true; /* abort the tree traversal and return true */
204 }
205 if (IsA(node, GroupingFunc))
206 {
207 Assert(((GroupingFunc *) node)->agglevelsup == 0);
208 return true; /* abort the tree traversal and return true */
209 }
210 Assert(!IsA(node, SubLink));
212}
Assert(PointerIsAligned(start, uint64))
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define IsA(nodeptr, _type_)
Definition: nodes.h:164

References Assert(), contain_agg_clause_walker(), expression_tree_walker, and IsA.

Referenced by contain_agg_clause(), and contain_agg_clause_walker().

◆ contain_context_dependent_node()

static bool contain_context_dependent_node ( Node clause)
static

Definition at line 1193 of file clauses.c.

1194{
1195 int flags = 0;
1196
1197 return contain_context_dependent_node_walker(clause, &flags);
1198}
static bool contain_context_dependent_node_walker(Node *node, int *flags)
Definition: clauses.c:1203

References contain_context_dependent_node_walker().

Referenced by inline_function().

◆ contain_context_dependent_node_walker()

static bool contain_context_dependent_node_walker ( Node node,
int *  flags 
)
static

Definition at line 1203 of file clauses.c.

1204{
1205 if (node == NULL)
1206 return false;
1207 if (IsA(node, CaseTestExpr))
1208 return !(*flags & CCDN_CASETESTEXPR_OK);
1209 else if (IsA(node, CaseExpr))
1210 {
1211 CaseExpr *caseexpr = (CaseExpr *) node;
1212
1213 /*
1214 * If this CASE doesn't have a test expression, then it doesn't create
1215 * a context in which CaseTestExprs should appear, so just fall
1216 * through and treat it as a generic expression node.
1217 */
1218 if (caseexpr->arg)
1219 {
1220 int save_flags = *flags;
1221 bool res;
1222
1223 /*
1224 * Note: in principle, we could distinguish the various sub-parts
1225 * of a CASE construct and set the flag bit only for some of them,
1226 * since we are only expecting CaseTestExprs to appear in the
1227 * "expr" subtree of the CaseWhen nodes. But it doesn't really
1228 * seem worth any extra code. If there are any bare CaseTestExprs
1229 * elsewhere in the CASE, something's wrong already.
1230 */
1231 *flags |= CCDN_CASETESTEXPR_OK;
1232 res = expression_tree_walker(node,
1234 flags);
1235 *flags = save_flags;
1236 return res;
1237 }
1238 }
1239 else if (IsA(node, ArrayCoerceExpr))
1240 {
1241 ArrayCoerceExpr *ac = (ArrayCoerceExpr *) node;
1242 int save_flags;
1243 bool res;
1244
1245 /* Check the array expression */
1247 return true;
1248
1249 /* Check the elemexpr, which is allowed to contain CaseTestExpr */
1250 save_flags = *flags;
1251 *flags |= CCDN_CASETESTEXPR_OK;
1253 flags);
1254 *flags = save_flags;
1255 return res;
1256 }
1258 flags);
1259}
#define CCDN_CASETESTEXPR_OK
Definition: clauses.c:1200
Expr * arg
Definition: primnodes.h:1346

References ArrayCoerceExpr::arg, CaseExpr::arg, CCDN_CASETESTEXPR_OK, contain_context_dependent_node_walker(), ArrayCoerceExpr::elemexpr, expression_tree_walker, and IsA.

Referenced by contain_context_dependent_node(), and contain_context_dependent_node_walker().

◆ contain_exec_param()

bool contain_exec_param ( Node clause,
List param_ids 
)

Definition at line 1151 of file clauses.c.

1152{
1153 return contain_exec_param_walker(clause, param_ids);
1154}
static bool contain_exec_param_walker(Node *node, List *param_ids)
Definition: clauses.c:1157

References contain_exec_param_walker().

Referenced by test_opexpr_is_hashable().

◆ contain_exec_param_walker()

static bool contain_exec_param_walker ( Node node,
List param_ids 
)
static

Definition at line 1157 of file clauses.c.

1158{
1159 if (node == NULL)
1160 return false;
1161 if (IsA(node, Param))
1162 {
1163 Param *p = (Param *) node;
1164
1165 if (p->paramkind == PARAM_EXEC &&
1166 list_member_int(param_ids, p->paramid))
1167 return true;
1168 }
1169 return expression_tree_walker(node, contain_exec_param_walker, param_ids);
1170}
bool list_member_int(const List *list, int datum)
Definition: list.c:702
@ PARAM_EXEC
Definition: primnodes.h:385
int paramid
Definition: primnodes.h:396
ParamKind paramkind
Definition: primnodes.h:395

References contain_exec_param_walker(), expression_tree_walker, IsA, list_member_int(), PARAM_EXEC, Param::paramid, and Param::paramkind.

Referenced by contain_exec_param(), and contain_exec_param_walker().

◆ contain_leaked_vars()

bool contain_leaked_vars ( Node clause)

Definition at line 1277 of file clauses.c.

1278{
1279 return contain_leaked_vars_walker(clause, NULL);
1280}
static bool contain_leaked_vars_walker(Node *node, void *context)
Definition: clauses.c:1289

References contain_leaked_vars_walker().

Referenced by make_plain_restrictinfo(), and qual_is_pushdown_safe().

◆ contain_leaked_vars_checker()

static bool contain_leaked_vars_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 1283 of file clauses.c.

1284{
1285 return !get_func_leakproof(func_id);
1286}
bool get_func_leakproof(Oid funcid)
Definition: lsyscache.c:1987

References get_func_leakproof().

Referenced by contain_leaked_vars_walker().

◆ contain_leaked_vars_walker()

static bool contain_leaked_vars_walker ( Node node,
void *  context 
)
static

Definition at line 1289 of file clauses.c.

1290{
1291 if (node == NULL)
1292 return false;
1293
1294 switch (nodeTag(node))
1295 {
1296 case T_Var:
1297 case T_Const:
1298 case T_Param:
1299 case T_ArrayExpr:
1300 case T_FieldSelect:
1301 case T_FieldStore:
1302 case T_NamedArgExpr:
1303 case T_BoolExpr:
1304 case T_RelabelType:
1305 case T_CollateExpr:
1306 case T_CaseExpr:
1307 case T_CaseTestExpr:
1308 case T_RowExpr:
1309 case T_SQLValueFunction:
1310 case T_NullTest:
1311 case T_BooleanTest:
1312 case T_NextValueExpr:
1313 case T_ReturningExpr:
1314 case T_List:
1315
1316 /*
1317 * We know these node types don't contain function calls; but
1318 * something further down in the node tree might.
1319 */
1320 break;
1321
1322 case T_FuncExpr:
1323 case T_OpExpr:
1324 case T_DistinctExpr:
1325 case T_NullIfExpr:
1326 case T_ScalarArrayOpExpr:
1327 case T_CoerceViaIO:
1328 case T_ArrayCoerceExpr:
1329
1330 /*
1331 * If node contains a leaky function call, and there's any Var
1332 * underneath it, reject.
1333 */
1335 context) &&
1336 contain_var_clause(node))
1337 return true;
1338 break;
1339
1340 case T_SubscriptingRef:
1341 {
1342 SubscriptingRef *sbsref = (SubscriptingRef *) node;
1343 const SubscriptRoutines *sbsroutines;
1344
1345 /* Consult the subscripting support method info */
1346 sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype,
1347 NULL);
1348 if (!sbsroutines ||
1349 !(sbsref->refassgnexpr != NULL ?
1350 sbsroutines->store_leakproof :
1351 sbsroutines->fetch_leakproof))
1352 {
1353 /* Node is leaky, so reject if it contains Vars */
1354 if (contain_var_clause(node))
1355 return true;
1356 }
1357 }
1358 break;
1359
1360 case T_RowCompareExpr:
1361 {
1362 /*
1363 * It's worth special-casing this because a leaky comparison
1364 * function only compromises one pair of row elements, which
1365 * might not contain Vars while others do.
1366 */
1367 RowCompareExpr *rcexpr = (RowCompareExpr *) node;
1368 ListCell *opid;
1369 ListCell *larg;
1370 ListCell *rarg;
1371
1372 forthree(opid, rcexpr->opnos,
1373 larg, rcexpr->largs,
1374 rarg, rcexpr->rargs)
1375 {
1376 Oid funcid = get_opcode(lfirst_oid(opid));
1377
1378 if (!get_func_leakproof(funcid) &&
1379 (contain_var_clause((Node *) lfirst(larg)) ||
1380 contain_var_clause((Node *) lfirst(rarg))))
1381 return true;
1382 }
1383 }
1384 break;
1385
1386 case T_MinMaxExpr:
1387 {
1388 /*
1389 * MinMaxExpr is leakproof if the comparison function it calls
1390 * is leakproof.
1391 */
1392 MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
1393 TypeCacheEntry *typentry;
1394 bool leakproof;
1395
1396 /* Look up the btree comparison function for the datatype */
1397 typentry = lookup_type_cache(minmaxexpr->minmaxtype,
1399 if (OidIsValid(typentry->cmp_proc))
1400 leakproof = get_func_leakproof(typentry->cmp_proc);
1401 else
1402 {
1403 /*
1404 * The executor will throw an error, but here we just
1405 * treat the missing function as leaky.
1406 */
1407 leakproof = false;
1408 }
1409
1410 if (!leakproof &&
1411 contain_var_clause((Node *) minmaxexpr->args))
1412 return true;
1413 }
1414 break;
1415
1416 case T_CurrentOfExpr:
1417
1418 /*
1419 * WHERE CURRENT OF doesn't contain leaky function calls.
1420 * Moreover, it is essential that this is considered non-leaky,
1421 * since the planner must always generate a TID scan when CURRENT
1422 * OF is present -- cf. cost_tidscan.
1423 */
1424 return false;
1425
1426 default:
1427
1428 /*
1429 * If we don't recognize the node tag, assume it might be leaky.
1430 * This prevents an unexpected security hole if someone adds a new
1431 * node type that can call a function.
1432 */
1433 return true;
1434 }
1436 context);
1437}
static bool contain_leaked_vars_checker(Oid func_id, void *context)
Definition: clauses.c:1283
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1435
const struct SubscriptRoutines * getSubscriptingRoutines(Oid typid, Oid *typelemp)
Definition: lsyscache.c:3280
bool check_functions_in_node(Node *node, check_function_callback checker, void *context)
Definition: nodeFuncs.c:1909
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define lfirst(lc)
Definition: pg_list.h:172
#define forthree(cell1, list1, cell2, list2, cell3, list3)
Definition: pg_list.h:563
#define lfirst_oid(lc)
Definition: pg_list.h:174
List * args
Definition: primnodes.h:1543
Expr * refassgnexpr
Definition: primnodes.h:735
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
#define TYPECACHE_CMP_PROC
Definition: typcache.h:141
bool contain_var_clause(Node *node)
Definition: var.c:406

References MinMaxExpr::args, check_functions_in_node(), TypeCacheEntry::cmp_proc, contain_leaked_vars_checker(), contain_leaked_vars_walker(), contain_var_clause(), expression_tree_walker, SubscriptRoutines::fetch_leakproof, forthree, get_func_leakproof(), get_opcode(), getSubscriptingRoutines(), RowCompareExpr::largs, lfirst, lfirst_oid, lookup_type_cache(), nodeTag, OidIsValid, RowCompareExpr::rargs, SubscriptingRef::refassgnexpr, SubscriptRoutines::store_leakproof, and TYPECACHE_CMP_PROC.

Referenced by contain_leaked_vars(), and contain_leaked_vars_walker().

◆ contain_mutable_functions()

◆ contain_mutable_functions_after_planning()

bool contain_mutable_functions_after_planning ( Expr expr)

Definition at line 502 of file clauses.c.

503{
504 /* We assume here that expression_planner() won't scribble on its input */
505 expr = expression_planner(expr);
506
507 /* Now we can search for non-immutable functions */
508 return contain_mutable_functions((Node *) expr);
509}
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:382
Expr * expression_planner(Expr *expr)
Definition: planner.c:6764

References contain_mutable_functions(), and expression_planner().

Referenced by CheckPredicate(), ComputeIndexAttrs(), and cookDefault().

◆ contain_mutable_functions_checker()

static bool contain_mutable_functions_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 388 of file clauses.c.

389{
390 return (func_volatile(func_id) != PROVOLATILE_IMMUTABLE);
391}
char func_volatile(Oid funcid)
Definition: lsyscache.c:1930

References func_volatile().

Referenced by contain_mutable_functions_walker().

◆ contain_mutable_functions_walker()

static bool contain_mutable_functions_walker ( Node node,
void *  context 
)
static

Definition at line 394 of file clauses.c.

395{
396 if (node == NULL)
397 return false;
398 /* Check for mutable functions in node itself */
400 context))
401 return true;
402
403 if (IsA(node, JsonConstructorExpr))
404 {
405 const JsonConstructorExpr *ctor = (JsonConstructorExpr *) node;
406 ListCell *lc;
407 bool is_jsonb;
408
409 is_jsonb = ctor->returning->format->format_type == JS_FORMAT_JSONB;
410
411 /*
412 * Check argument_type => json[b] conversions specifically. We still
413 * recurse to check 'args' below, but here we want to specifically
414 * check whether or not the emitted clause would fail to be immutable
415 * because of TimeZone, for example.
416 */
417 foreach(lc, ctor->args)
418 {
419 Oid typid = exprType(lfirst(lc));
420
421 if (is_jsonb ?
422 !to_jsonb_is_immutable(typid) :
423 !to_json_is_immutable(typid))
424 return true;
425 }
426
427 /* Check all subnodes */
428 }
429
430 if (IsA(node, JsonExpr))
431 {
432 JsonExpr *jexpr = castNode(JsonExpr, node);
433 Const *cnst;
434
435 if (!IsA(jexpr->path_spec, Const))
436 return true;
437
438 cnst = castNode(Const, jexpr->path_spec);
439
440 Assert(cnst->consttype == JSONPATHOID);
441 if (cnst->constisnull)
442 return false;
443
444 if (jspIsMutable(DatumGetJsonPathP(cnst->constvalue),
445 jexpr->passing_names, jexpr->passing_values))
446 return true;
447 }
448
449 if (IsA(node, SQLValueFunction))
450 {
451 /* all variants of SQLValueFunction are stable */
452 return true;
453 }
454
455 if (IsA(node, NextValueExpr))
456 {
457 /* NextValueExpr is volatile */
458 return true;
459 }
460
461 /*
462 * It should be safe to treat MinMaxExpr as immutable, because it will
463 * depend on a non-cross-type btree comparison function, and those should
464 * always be immutable. Treating XmlExpr as immutable is more dubious,
465 * and treating CoerceToDomain as immutable is outright dangerous. But we
466 * have done so historically, and changing this would probably cause more
467 * problems than it would fix. In practice, if you have a non-immutable
468 * domain constraint you are in for pain anyhow.
469 */
470
471 /* Recurse to check arguments */
472 if (IsA(node, Query))
473 {
474 /* Recurse into subselects */
475 return query_tree_walker((Query *) node,
477 context, 0);
478 }
480 context);
481}
static bool contain_mutable_functions_checker(Oid func_id, void *context)
Definition: clauses.c:388
bool to_json_is_immutable(Oid typoid)
Definition: json.c:701
bool to_jsonb_is_immutable(Oid typoid)
Definition: jsonb.c:1086
bool jspIsMutable(JsonPath *path, List *varnames, List *varexprs)
Definition: jsonpath.c:1280
static JsonPath * DatumGetJsonPathP(Datum d)
Definition: jsonpath.h:35
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define castNode(_type_, nodeptr)
Definition: nodes.h:182
@ JS_FORMAT_JSONB
Definition: primnodes.h:1665
Oid consttype
Definition: primnodes.h:329
JsonReturning * returning
Definition: primnodes.h:1735
List * passing_values
Definition: primnodes.h:1861
List * passing_names
Definition: primnodes.h:1860
Node * path_spec
Definition: primnodes.h:1854
JsonFormatType format_type
Definition: primnodes.h:1676
JsonFormat * format
Definition: primnodes.h:1688

References JsonConstructorExpr::args, Assert(), castNode, check_functions_in_node(), Const::consttype, contain_mutable_functions_checker(), contain_mutable_functions_walker(), DatumGetJsonPathP(), expression_tree_walker, exprType(), JsonReturning::format, JsonFormat::format_type, IsA, JS_FORMAT_JSONB, jspIsMutable(), lfirst, JsonExpr::passing_names, JsonExpr::passing_values, JsonExpr::path_spec, query_tree_walker, JsonConstructorExpr::returning, to_json_is_immutable(), and to_jsonb_is_immutable().

Referenced by contain_mutable_functions(), and contain_mutable_functions_walker().

◆ contain_non_const_walker()

static bool contain_non_const_walker ( Node node,
void *  context 
)
static

Definition at line 3811 of file clauses.c.

3812{
3813 if (node == NULL)
3814 return false;
3815 if (IsA(node, Const))
3816 return false;
3817 if (IsA(node, List))
3818 return expression_tree_walker(node, contain_non_const_walker, context);
3819 /* Otherwise, abort the tree traversal and return true */
3820 return true;
3821}
static bool contain_non_const_walker(Node *node, void *context)
Definition: clauses.c:3811

References contain_non_const_walker(), expression_tree_walker, and IsA.

Referenced by contain_non_const_walker().

◆ contain_nonstrict_functions()

bool contain_nonstrict_functions ( Node clause)

Definition at line 1005 of file clauses.c.

1006{
1007 return contain_nonstrict_functions_walker(clause, NULL);
1008}
static bool contain_nonstrict_functions_walker(Node *node, void *context)
Definition: clauses.c:1017

References contain_nonstrict_functions_walker().

Referenced by inline_function(), and pullup_replace_vars_callback().

◆ contain_nonstrict_functions_checker()

static bool contain_nonstrict_functions_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 1011 of file clauses.c.

1012{
1013 return !func_strict(func_id);
1014}
bool func_strict(Oid funcid)
Definition: lsyscache.c:1911

References func_strict().

Referenced by contain_nonstrict_functions_walker().

◆ contain_nonstrict_functions_walker()

static bool contain_nonstrict_functions_walker ( Node node,
void *  context 
)
static

Definition at line 1017 of file clauses.c.

1018{
1019 if (node == NULL)
1020 return false;
1021 if (IsA(node, Aggref))
1022 {
1023 /* an aggregate could return non-null with null input */
1024 return true;
1025 }
1026 if (IsA(node, GroupingFunc))
1027 {
1028 /*
1029 * A GroupingFunc doesn't evaluate its arguments, and therefore must
1030 * be treated as nonstrict.
1031 */
1032 return true;
1033 }
1034 if (IsA(node, WindowFunc))
1035 {
1036 /* a window function could return non-null with null input */
1037 return true;
1038 }
1039 if (IsA(node, SubscriptingRef))
1040 {
1041 SubscriptingRef *sbsref = (SubscriptingRef *) node;
1042 const SubscriptRoutines *sbsroutines;
1043
1044 /* Subscripting assignment is always presumed nonstrict */
1045 if (sbsref->refassgnexpr != NULL)
1046 return true;
1047 /* Otherwise we must look up the subscripting support methods */
1048 sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype, NULL);
1049 if (!(sbsroutines && sbsroutines->fetch_strict))
1050 return true;
1051 /* else fall through to check args */
1052 }
1053 if (IsA(node, DistinctExpr))
1054 {
1055 /* IS DISTINCT FROM is inherently non-strict */
1056 return true;
1057 }
1058 if (IsA(node, NullIfExpr))
1059 {
1060 /* NULLIF is inherently non-strict */
1061 return true;
1062 }
1063 if (IsA(node, BoolExpr))
1064 {
1065 BoolExpr *expr = (BoolExpr *) node;
1066
1067 switch (expr->boolop)
1068 {
1069 case AND_EXPR:
1070 case OR_EXPR:
1071 /* AND, OR are inherently non-strict */
1072 return true;
1073 default:
1074 break;
1075 }
1076 }
1077 if (IsA(node, SubLink))
1078 {
1079 /* In some cases a sublink might be strict, but in general not */
1080 return true;
1081 }
1082 if (IsA(node, SubPlan))
1083 return true;
1084 if (IsA(node, AlternativeSubPlan))
1085 return true;
1086 if (IsA(node, FieldStore))
1087 return true;
1088 if (IsA(node, CoerceViaIO))
1089 {
1090 /*
1091 * CoerceViaIO is strict regardless of whether the I/O functions are,
1092 * so just go look at its argument; asking check_functions_in_node is
1093 * useless expense and could deliver the wrong answer.
1094 */
1096 context);
1097 }
1098 if (IsA(node, ArrayCoerceExpr))
1099 {
1100 /*
1101 * ArrayCoerceExpr is strict at the array level, regardless of what
1102 * the per-element expression is; so we should ignore elemexpr and
1103 * recurse only into the arg.
1104 */
1106 context);
1107 }
1108 if (IsA(node, CaseExpr))
1109 return true;
1110 if (IsA(node, ArrayExpr))
1111 return true;
1112 if (IsA(node, RowExpr))
1113 return true;
1114 if (IsA(node, RowCompareExpr))
1115 return true;
1116 if (IsA(node, CoalesceExpr))
1117 return true;
1118 if (IsA(node, MinMaxExpr))
1119 return true;
1120 if (IsA(node, XmlExpr))
1121 return true;
1122 if (IsA(node, NullTest))
1123 return true;
1124 if (IsA(node, BooleanTest))
1125 return true;
1126 if (IsA(node, JsonConstructorExpr))
1127 return true;
1128
1129 /* Check other function-containing nodes */
1131 context))
1132 return true;
1133
1135 context);
1136}
static bool contain_nonstrict_functions_checker(Oid func_id, void *context)
Definition: clauses.c:1011
void * arg
@ AND_EXPR
Definition: primnodes.h:963
@ OR_EXPR
Definition: primnodes.h:963
BoolExprType boolop
Definition: primnodes.h:971

References AND_EXPR, arg, BoolExpr::boolop, check_functions_in_node(), contain_nonstrict_functions_checker(), contain_nonstrict_functions_walker(), expression_tree_walker, SubscriptRoutines::fetch_strict, getSubscriptingRoutines(), IsA, OR_EXPR, and SubscriptingRef::refassgnexpr.

Referenced by contain_nonstrict_functions(), and contain_nonstrict_functions_walker().

◆ contain_subplans()

bool contain_subplans ( Node clause)

◆ contain_subplans_walker()

static bool contain_subplans_walker ( Node node,
void *  context 
)
static

Definition at line 348 of file clauses.c.

349{
350 if (node == NULL)
351 return false;
352 if (IsA(node, SubPlan) ||
353 IsA(node, AlternativeSubPlan) ||
354 IsA(node, SubLink))
355 return true; /* abort the tree traversal and return true */
356 return expression_tree_walker(node, contain_subplans_walker, context);
357}

References contain_subplans_walker(), expression_tree_walker, and IsA.

Referenced by contain_subplans(), and contain_subplans_walker().

◆ contain_volatile_functions()

bool contain_volatile_functions ( Node clause)

Definition at line 550 of file clauses.c.

551{
552 return contain_volatile_functions_walker(clause, NULL);
553}
static bool contain_volatile_functions_walker(Node *node, void *context)
Definition: clauses.c:562

References contain_volatile_functions_walker().

Referenced by apply_child_basequals(), ATExecAddColumn(), check_hashjoinable(), check_mergejoinable(), check_output_expressions(), compute_semijoin_info(), contain_volatile_functions_after_planning(), convert_ANY_sublink_to_join(), convert_EXISTS_sublink_to_join(), convert_EXISTS_to_ANY(), convert_VALUES_to_ANY(), CopyFrom(), distribute_qual_to_rels(), estimate_num_groups(), ExecInitWindowAgg(), expand_indexqual_rowcompare(), find_compatible_agg(), find_simplified_clause(), get_eclass_for_sort_expr(), get_memoize_path(), group_similar_or_args(), initialize_peragg(), inline_function(), inline_function_in_from(), is_pseudo_constant_clause(), is_pseudo_constant_clause_relids(), is_pseudo_constant_for_index(), is_safe_restriction_clause_for(), is_simple_subquery(), is_simple_values(), IsBinaryTidClause(), IsTidEqualAnyClause(), make_sort_input_target(), mark_nullable_by_grouping(), match_clause_to_ordering_op(), match_clause_to_partition_key(), match_opclause_to_indexcol(), match_orclause_to_indexcol(), match_rowcompare_to_indexcol(), match_saopclause_to_indexcol(), paraminfo_get_equal_hashops(), qual_is_pushdown_safe(), remove_unused_subquery_outputs(), SS_process_ctes(), and subquery_planner().

◆ contain_volatile_functions_after_planning()

bool contain_volatile_functions_after_planning ( Expr expr)

Definition at line 671 of file clauses.c.

672{
673 /* We assume here that expression_planner() won't scribble on its input */
674 expr = expression_planner(expr);
675
676 /* Now we can search for volatile functions */
677 return contain_volatile_functions((Node *) expr);
678}
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:550

References contain_volatile_functions(), and expression_planner().

◆ contain_volatile_functions_checker()

static bool contain_volatile_functions_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 556 of file clauses.c.

557{
558 return (func_volatile(func_id) == PROVOLATILE_VOLATILE);
559}

References func_volatile().

Referenced by contain_volatile_functions_walker().

◆ contain_volatile_functions_not_nextval()

bool contain_volatile_functions_not_nextval ( Node clause)

Definition at line 685 of file clauses.c.

686{
688}
static bool contain_volatile_functions_not_nextval_walker(Node *node, void *context)
Definition: clauses.c:698

References contain_volatile_functions_not_nextval_walker().

Referenced by BeginCopyFrom().

◆ contain_volatile_functions_not_nextval_checker()

static bool contain_volatile_functions_not_nextval_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 691 of file clauses.c.

692{
693 return (func_id != F_NEXTVAL &&
694 func_volatile(func_id) == PROVOLATILE_VOLATILE);
695}

References func_volatile().

Referenced by contain_volatile_functions_not_nextval_walker().

◆ contain_volatile_functions_not_nextval_walker()

static bool contain_volatile_functions_not_nextval_walker ( Node node,
void *  context 
)
static

Definition at line 698 of file clauses.c.

699{
700 if (node == NULL)
701 return false;
702 /* Check for volatile functions in node itself */
705 context))
706 return true;
707
708 /*
709 * See notes in contain_mutable_functions_walker about why we treat
710 * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
711 * SQLValueFunction is stable. Hence, none of them are of interest here.
712 * Also, since we're intentionally ignoring nextval(), presumably we
713 * should ignore NextValueExpr.
714 */
715
716 /* Recurse to check arguments */
717 if (IsA(node, Query))
718 {
719 /* Recurse into subselects */
720 return query_tree_walker((Query *) node,
722 context, 0);
723 }
724 return expression_tree_walker(node,
726 context);
727}
static bool contain_volatile_functions_not_nextval_checker(Oid func_id, void *context)
Definition: clauses.c:691

References check_functions_in_node(), contain_volatile_functions_not_nextval_checker(), contain_volatile_functions_not_nextval_walker(), expression_tree_walker, IsA, and query_tree_walker.

Referenced by contain_volatile_functions_not_nextval(), and contain_volatile_functions_not_nextval_walker().

◆ contain_volatile_functions_walker()

static bool contain_volatile_functions_walker ( Node node,
void *  context 
)
static

Definition at line 562 of file clauses.c.

563{
564 if (node == NULL)
565 return false;
566 /* Check for volatile functions in node itself */
568 context))
569 return true;
570
571 if (IsA(node, NextValueExpr))
572 {
573 /* NextValueExpr is volatile */
574 return true;
575 }
576
577 if (IsA(node, RestrictInfo))
578 {
579 RestrictInfo *rinfo = (RestrictInfo *) node;
580
581 /*
582 * For RestrictInfo, check if we've checked the volatility of it
583 * before. If so, we can just use the cached value and not bother
584 * checking it again. Otherwise, check it and cache if whether we
585 * found any volatile functions.
586 */
587 if (rinfo->has_volatile == VOLATILITY_NOVOLATILE)
588 return false;
589 else if (rinfo->has_volatile == VOLATILITY_VOLATILE)
590 return true;
591 else
592 {
593 bool hasvolatile;
594
595 hasvolatile = contain_volatile_functions_walker((Node *) rinfo->clause,
596 context);
597 if (hasvolatile)
598 rinfo->has_volatile = VOLATILITY_VOLATILE;
599 else
600 rinfo->has_volatile = VOLATILITY_NOVOLATILE;
601
602 return hasvolatile;
603 }
604 }
605
606 if (IsA(node, PathTarget))
607 {
608 PathTarget *target = (PathTarget *) node;
609
610 /*
611 * We also do caching for PathTarget the same as we do above for
612 * RestrictInfos.
613 */
615 return false;
616 else if (target->has_volatile_expr == VOLATILITY_VOLATILE)
617 return true;
618 else
619 {
620 bool hasvolatile;
621
622 hasvolatile = contain_volatile_functions_walker((Node *) target->exprs,
623 context);
624
625 if (hasvolatile)
627 else
629
630 return hasvolatile;
631 }
632 }
633
634 /*
635 * See notes in contain_mutable_functions_walker about why we treat
636 * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
637 * SQLValueFunction is stable. Hence, none of them are of interest here.
638 */
639
640 /* Recurse to check arguments */
641 if (IsA(node, Query))
642 {
643 /* Recurse into subselects */
644 return query_tree_walker((Query *) node,
646 context, 0);
647 }
649 context);
650}
static bool contain_volatile_functions_checker(Oid func_id, void *context)
Definition: clauses.c:556
@ VOLATILITY_NOVOLATILE
Definition: pathnodes.h:1747
@ VOLATILITY_VOLATILE
Definition: pathnodes.h:1746
VolatileFunctionStatus has_volatile_expr
Definition: pathnodes.h:1792
List * exprs
Definition: pathnodes.h:1780
Expr * clause
Definition: pathnodes.h:2792

References check_functions_in_node(), RestrictInfo::clause, contain_volatile_functions_checker(), contain_volatile_functions_walker(), expression_tree_walker, PathTarget::exprs, PathTarget::has_volatile_expr, IsA, query_tree_walker, VOLATILITY_NOVOLATILE, and VOLATILITY_VOLATILE.

Referenced by contain_volatile_functions(), and contain_volatile_functions_walker().

◆ contain_window_function()

bool contain_window_function ( Node clause)

Definition at line 227 of file clauses.c.

228{
229 return contain_windowfuncs(clause);
230}
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:214

References contain_windowfuncs().

Referenced by get_eclass_for_sort_expr(), and mark_nullable_by_grouping().

◆ convert_saop_to_hashed_saop()

void convert_saop_to_hashed_saop ( Node node)

Definition at line 2303 of file clauses.c.

2304{
2305 (void) convert_saop_to_hashed_saop_walker(node, NULL);
2306}
static bool convert_saop_to_hashed_saop_walker(Node *node, void *context)
Definition: clauses.c:2309

References convert_saop_to_hashed_saop_walker().

Referenced by preprocess_expression().

◆ convert_saop_to_hashed_saop_walker()

static bool convert_saop_to_hashed_saop_walker ( Node node,
void *  context 
)
static

Definition at line 2309 of file clauses.c.

2310{
2311 if (node == NULL)
2312 return false;
2313
2314 if (IsA(node, ScalarArrayOpExpr))
2315 {
2316 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2317 Expr *arrayarg = (Expr *) lsecond(saop->args);
2318 Oid lefthashfunc;
2319 Oid righthashfunc;
2320
2321 if (arrayarg && IsA(arrayarg, Const) &&
2322 !((Const *) arrayarg)->constisnull)
2323 {
2324 if (saop->useOr)
2325 {
2326 if (get_op_hash_functions(saop->opno, &lefthashfunc, &righthashfunc) &&
2327 lefthashfunc == righthashfunc)
2328 {
2329 Datum arrdatum = ((Const *) arrayarg)->constvalue;
2330 ArrayType *arr = (ArrayType *) DatumGetPointer(arrdatum);
2331 int nitems;
2332
2333 /*
2334 * Only fill in the hash functions if the array looks
2335 * large enough for it to be worth hashing instead of
2336 * doing a linear search.
2337 */
2338 nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
2339
2341 {
2342 /* Looks good. Fill in the hash functions */
2343 saop->hashfuncid = lefthashfunc;
2344 }
2345 return false;
2346 }
2347 }
2348 else /* !saop->useOr */
2349 {
2350 Oid negator = get_negator(saop->opno);
2351
2352 /*
2353 * Check if this is a NOT IN using an operator whose negator
2354 * is hashable. If so we can still build a hash table and
2355 * just ensure the lookup items are not in the hash table.
2356 */
2357 if (OidIsValid(negator) &&
2358 get_op_hash_functions(negator, &lefthashfunc, &righthashfunc) &&
2359 lefthashfunc == righthashfunc)
2360 {
2361 Datum arrdatum = ((Const *) arrayarg)->constvalue;
2362 ArrayType *arr = (ArrayType *) DatumGetPointer(arrdatum);
2363 int nitems;
2364
2365 /*
2366 * Only fill in the hash functions if the array looks
2367 * large enough for it to be worth hashing instead of
2368 * doing a linear search.
2369 */
2370 nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
2371
2373 {
2374 /* Looks good. Fill in the hash functions */
2375 saop->hashfuncid = lefthashfunc;
2376
2377 /*
2378 * Also set the negfuncid. The executor will need
2379 * that to perform hashtable lookups.
2380 */
2381 saop->negfuncid = get_opcode(negator);
2382 }
2383 return false;
2384 }
2385 }
2386 }
2387 }
2388
2390}
#define ARR_NDIM(a)
Definition: array.h:290
#define ARR_DIMS(a)
Definition: array.h:294
int ArrayGetNItems(int ndim, const int *dims)
Definition: arrayutils.c:57
#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP
Definition: clauses.c:2285
#define nitems(x)
Definition: indent.h:31
bool get_op_hash_functions(Oid opno, RegProcedure *lhs_procno, RegProcedure *rhs_procno)
Definition: lsyscache.c:575
Oid get_negator(Oid opno)
Definition: lsyscache.c:1683
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:342

References ScalarArrayOpExpr::args, ARR_DIMS, ARR_NDIM, ArrayGetNItems(), convert_saop_to_hashed_saop_walker(), DatumGetPointer(), expression_tree_walker, get_negator(), get_op_hash_functions(), get_opcode(), IsA, lsecond, MIN_ARRAY_SIZE_FOR_HASHED_SAOP, nitems, OidIsValid, ScalarArrayOpExpr::opno, and ScalarArrayOpExpr::useOr.

Referenced by convert_saop_to_hashed_saop(), and convert_saop_to_hashed_saop_walker().

◆ ece_function_is_safe()

static bool ece_function_is_safe ( Oid  funcid,
eval_const_expressions_context context 
)
static

Definition at line 3827 of file clauses.c.

3828{
3829 char provolatile = func_volatile(funcid);
3830
3831 /*
3832 * Ordinarily we are only allowed to simplify immutable functions. But for
3833 * purposes of estimation, we consider it okay to simplify functions that
3834 * are merely stable; the risk that the result might change from planning
3835 * time to execution time is worth taking in preference to not being able
3836 * to estimate the value at all.
3837 */
3838 if (provolatile == PROVOLATILE_IMMUTABLE)
3839 return true;
3840 if (context->estimate && provolatile == PROVOLATILE_STABLE)
3841 return true;
3842 return false;
3843}

References eval_const_expressions_context::estimate, and func_volatile().

Referenced by eval_const_expressions_mutator().

◆ estimate_expression_value()

Node * estimate_expression_value ( PlannerInfo root,
Node node 
)

Definition at line 2411 of file clauses.c.

2412{
2414
2415 context.boundParams = root->glob->boundParams; /* bound Params */
2416 /* we do not need to mark the plan as depending on inlined functions */
2417 context.root = NULL;
2418 context.active_fns = NIL; /* nothing being recursively simplified */
2419 context.case_val = NULL; /* no CASE being examined */
2420 context.estimate = true; /* unsafe transformations OK */
2421 return eval_const_expressions_mutator(node, &context);
2422}
#define NIL
Definition: pg_list.h:68
tree ctl root
Definition: radixtree.h:1857
ParamListInfo boundParams
Definition: clauses.c:66

References eval_const_expressions_context::active_fns, eval_const_expressions_context::boundParams, eval_const_expressions_context::case_val, eval_const_expressions_context::estimate, eval_const_expressions_mutator(), NIL, eval_const_expressions_context::root, and root.

Referenced by array_unnest_support(), bernoulli_samplescangetsamplesize(), clause_selectivity_ext(), generate_series_int4_support(), generate_series_int8_support(), generate_series_numeric_support(), generate_series_timestamp_support(), get_restriction_variable(), gincost_opexpr(), gincost_scalararrayopexpr(), preprocess_limit(), scalararraysel(), system_rows_samplescangetsamplesize(), system_samplescangetsamplesize(), and system_time_samplescangetsamplesize().

◆ eval_const_expressions()

Node * eval_const_expressions ( PlannerInfo root,
Node node 
)

◆ eval_const_expressions_mutator()

static Node * eval_const_expressions_mutator ( Node node,
eval_const_expressions_context context 
)
static

Definition at line 2456 of file clauses.c.

2458{
2459
2460 /* since this function recurses, it could be driven to stack overflow */
2462
2463 if (node == NULL)
2464 return NULL;
2465 switch (nodeTag(node))
2466 {
2467 case T_Param:
2468 {
2469 Param *param = (Param *) node;
2470 ParamListInfo paramLI = context->boundParams;
2471
2472 /* Look to see if we've been given a value for this Param */
2473 if (param->paramkind == PARAM_EXTERN &&
2474 paramLI != NULL &&
2475 param->paramid > 0 &&
2476 param->paramid <= paramLI->numParams)
2477 {
2478 ParamExternData *prm;
2479 ParamExternData prmdata;
2480
2481 /*
2482 * Give hook a chance in case parameter is dynamic. Tell
2483 * it that this fetch is speculative, so it should avoid
2484 * erroring out if parameter is unavailable.
2485 */
2486 if (paramLI->paramFetch != NULL)
2487 prm = paramLI->paramFetch(paramLI, param->paramid,
2488 true, &prmdata);
2489 else
2490 prm = &paramLI->params[param->paramid - 1];
2491
2492 /*
2493 * We don't just check OidIsValid, but insist that the
2494 * fetched type match the Param, just in case the hook did
2495 * something unexpected. No need to throw an error here
2496 * though; leave that for runtime.
2497 */
2498 if (OidIsValid(prm->ptype) &&
2499 prm->ptype == param->paramtype)
2500 {
2501 /* OK to substitute parameter value? */
2502 if (context->estimate ||
2503 (prm->pflags & PARAM_FLAG_CONST))
2504 {
2505 /*
2506 * Return a Const representing the param value.
2507 * Must copy pass-by-ref datatypes, since the
2508 * Param might be in a memory context
2509 * shorter-lived than our output plan should be.
2510 */
2511 int16 typLen;
2512 bool typByVal;
2513 Datum pval;
2514 Const *con;
2515
2517 &typLen, &typByVal);
2518 if (prm->isnull || typByVal)
2519 pval = prm->value;
2520 else
2521 pval = datumCopy(prm->value, typByVal, typLen);
2522 con = makeConst(param->paramtype,
2523 param->paramtypmod,
2524 param->paramcollid,
2525 (int) typLen,
2526 pval,
2527 prm->isnull,
2528 typByVal);
2529 con->location = param->location;
2530 return (Node *) con;
2531 }
2532 }
2533 }
2534
2535 /*
2536 * Not replaceable, so just copy the Param (no need to
2537 * recurse)
2538 */
2539 return (Node *) copyObject(param);
2540 }
2541 case T_WindowFunc:
2542 {
2543 WindowFunc *expr = (WindowFunc *) node;
2544 Oid funcid = expr->winfnoid;
2545 List *args;
2546 Expr *aggfilter;
2547 HeapTuple func_tuple;
2548 WindowFunc *newexpr;
2549
2550 /*
2551 * We can't really simplify a WindowFunc node, but we mustn't
2552 * just fall through to the default processing, because we
2553 * have to apply expand_function_arguments to its argument
2554 * list. That takes care of inserting default arguments and
2555 * expanding named-argument notation.
2556 */
2557 func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2558 if (!HeapTupleIsValid(func_tuple))
2559 elog(ERROR, "cache lookup failed for function %u", funcid);
2560
2562 false, expr->wintype,
2563 func_tuple);
2564
2565 ReleaseSysCache(func_tuple);
2566
2567 /* Now, recursively simplify the args (which are a List) */
2568 args = (List *)
2571 context);
2572 /* ... and the filter expression, which isn't */
2573 aggfilter = (Expr *)
2575 context);
2576
2577 /* And build the replacement WindowFunc node */
2578 newexpr = makeNode(WindowFunc);
2579 newexpr->winfnoid = expr->winfnoid;
2580 newexpr->wintype = expr->wintype;
2581 newexpr->wincollid = expr->wincollid;
2582 newexpr->inputcollid = expr->inputcollid;
2583 newexpr->args = args;
2584 newexpr->aggfilter = aggfilter;
2585 newexpr->runCondition = expr->runCondition;
2586 newexpr->winref = expr->winref;
2587 newexpr->winstar = expr->winstar;
2588 newexpr->winagg = expr->winagg;
2589 newexpr->ignore_nulls = expr->ignore_nulls;
2590 newexpr->location = expr->location;
2591
2592 return (Node *) newexpr;
2593 }
2594 case T_FuncExpr:
2595 {
2596 FuncExpr *expr = (FuncExpr *) node;
2597 List *args = expr->args;
2598 Expr *simple;
2599 FuncExpr *newexpr;
2600
2601 /*
2602 * Code for op/func reduction is pretty bulky, so split it out
2603 * as a separate function. Note: exprTypmod normally returns
2604 * -1 for a FuncExpr, but not when the node is recognizably a
2605 * length coercion; we want to preserve the typmod in the
2606 * eventual Const if so.
2607 */
2608 simple = simplify_function(expr->funcid,
2609 expr->funcresulttype,
2610 exprTypmod(node),
2611 expr->funccollid,
2612 expr->inputcollid,
2613 &args,
2614 expr->funcvariadic,
2615 true,
2616 true,
2617 context);
2618 if (simple) /* successfully simplified it */
2619 return (Node *) simple;
2620
2621 /*
2622 * The expression cannot be simplified any further, so build
2623 * and return a replacement FuncExpr node using the
2624 * possibly-simplified arguments. Note that we have also
2625 * converted the argument list to positional notation.
2626 */
2627 newexpr = makeNode(FuncExpr);
2628 newexpr->funcid = expr->funcid;
2629 newexpr->funcresulttype = expr->funcresulttype;
2630 newexpr->funcretset = expr->funcretset;
2631 newexpr->funcvariadic = expr->funcvariadic;
2632 newexpr->funcformat = expr->funcformat;
2633 newexpr->funccollid = expr->funccollid;
2634 newexpr->inputcollid = expr->inputcollid;
2635 newexpr->args = args;
2636 newexpr->location = expr->location;
2637 return (Node *) newexpr;
2638 }
2639 case T_Aggref:
2640 node = ece_generic_processing(node);
2641 if (context->root != NULL)
2642 return simplify_aggref((Aggref *) node, context);
2643 return node;
2644 case T_OpExpr:
2645 {
2646 OpExpr *expr = (OpExpr *) node;
2647 List *args = expr->args;
2648 Expr *simple;
2649 OpExpr *newexpr;
2650
2651 /*
2652 * Need to get OID of underlying function. Okay to scribble
2653 * on input to this extent.
2654 */
2655 set_opfuncid(expr);
2656
2657 /*
2658 * Code for op/func reduction is pretty bulky, so split it out
2659 * as a separate function.
2660 */
2661 simple = simplify_function(expr->opfuncid,
2662 expr->opresulttype, -1,
2663 expr->opcollid,
2664 expr->inputcollid,
2665 &args,
2666 false,
2667 true,
2668 true,
2669 context);
2670 if (simple) /* successfully simplified it */
2671 return (Node *) simple;
2672
2673 /*
2674 * If the operator is boolean equality or inequality, we know
2675 * how to simplify cases involving one constant and one
2676 * non-constant argument.
2677 */
2678 if (expr->opno == BooleanEqualOperator ||
2679 expr->opno == BooleanNotEqualOperator)
2680 {
2681 simple = (Expr *) simplify_boolean_equality(expr->opno,
2682 args);
2683 if (simple) /* successfully simplified it */
2684 return (Node *) simple;
2685 }
2686
2687 /*
2688 * The expression cannot be simplified any further, so build
2689 * and return a replacement OpExpr node using the
2690 * possibly-simplified arguments.
2691 */
2692 newexpr = makeNode(OpExpr);
2693 newexpr->opno = expr->opno;
2694 newexpr->opfuncid = expr->opfuncid;
2695 newexpr->opresulttype = expr->opresulttype;
2696 newexpr->opretset = expr->opretset;
2697 newexpr->opcollid = expr->opcollid;
2698 newexpr->inputcollid = expr->inputcollid;
2699 newexpr->args = args;
2700 newexpr->location = expr->location;
2701 return (Node *) newexpr;
2702 }
2703 case T_DistinctExpr:
2704 {
2705 DistinctExpr *expr = (DistinctExpr *) node;
2706 List *args;
2707 ListCell *arg;
2708 bool has_null_input = false;
2709 bool all_null_input = true;
2710 bool has_nonconst_input = false;
2711 Expr *simple;
2712 DistinctExpr *newexpr;
2713
2714 /*
2715 * Reduce constants in the DistinctExpr's arguments. We know
2716 * args is either NIL or a List node, so we can call
2717 * expression_tree_mutator directly rather than recursing to
2718 * self.
2719 */
2720 args = (List *) expression_tree_mutator((Node *) expr->args,
2722 context);
2723
2724 /*
2725 * We must do our own check for NULLs because DistinctExpr has
2726 * different results for NULL input than the underlying
2727 * operator does.
2728 */
2729 foreach(arg, args)
2730 {
2731 if (IsA(lfirst(arg), Const))
2732 {
2733 has_null_input |= ((Const *) lfirst(arg))->constisnull;
2734 all_null_input &= ((Const *) lfirst(arg))->constisnull;
2735 }
2736 else
2737 has_nonconst_input = true;
2738 }
2739
2740 /* all constants? then can optimize this out */
2741 if (!has_nonconst_input)
2742 {
2743 /* all nulls? then not distinct */
2744 if (all_null_input)
2745 return makeBoolConst(false, false);
2746
2747 /* one null? then distinct */
2748 if (has_null_input)
2749 return makeBoolConst(true, false);
2750
2751 /* otherwise try to evaluate the '=' operator */
2752 /* (NOT okay to try to inline it, though!) */
2753
2754 /*
2755 * Need to get OID of underlying function. Okay to
2756 * scribble on input to this extent.
2757 */
2758 set_opfuncid((OpExpr *) expr); /* rely on struct
2759 * equivalence */
2760
2761 /*
2762 * Code for op/func reduction is pretty bulky, so split it
2763 * out as a separate function.
2764 */
2765 simple = simplify_function(expr->opfuncid,
2766 expr->opresulttype, -1,
2767 expr->opcollid,
2768 expr->inputcollid,
2769 &args,
2770 false,
2771 false,
2772 false,
2773 context);
2774 if (simple) /* successfully simplified it */
2775 {
2776 /*
2777 * Since the underlying operator is "=", must negate
2778 * its result
2779 */
2780 Const *csimple = castNode(Const, simple);
2781
2782 csimple->constvalue =
2783 BoolGetDatum(!DatumGetBool(csimple->constvalue));
2784 return (Node *) csimple;
2785 }
2786 }
2787
2788 /*
2789 * The expression cannot be simplified any further, so build
2790 * and return a replacement DistinctExpr node using the
2791 * possibly-simplified arguments.
2792 */
2793 newexpr = makeNode(DistinctExpr);
2794 newexpr->opno = expr->opno;
2795 newexpr->opfuncid = expr->opfuncid;
2796 newexpr->opresulttype = expr->opresulttype;
2797 newexpr->opretset = expr->opretset;
2798 newexpr->opcollid = expr->opcollid;
2799 newexpr->inputcollid = expr->inputcollid;
2800 newexpr->args = args;
2801 newexpr->location = expr->location;
2802 return (Node *) newexpr;
2803 }
2804 case T_NullIfExpr:
2805 {
2806 NullIfExpr *expr;
2807 ListCell *arg;
2808 bool has_nonconst_input = false;
2809
2810 /* Copy the node and const-simplify its arguments */
2811 expr = (NullIfExpr *) ece_generic_processing(node);
2812
2813 /* If either argument is NULL they can't be equal */
2814 foreach(arg, expr->args)
2815 {
2816 if (!IsA(lfirst(arg), Const))
2817 has_nonconst_input = true;
2818 else if (((Const *) lfirst(arg))->constisnull)
2819 return (Node *) linitial(expr->args);
2820 }
2821
2822 /*
2823 * Need to get OID of underlying function before checking if
2824 * the function is OK to evaluate.
2825 */
2826 set_opfuncid((OpExpr *) expr);
2827
2828 if (!has_nonconst_input &&
2829 ece_function_is_safe(expr->opfuncid, context))
2830 return ece_evaluate_expr(expr);
2831
2832 return (Node *) expr;
2833 }
2834 case T_ScalarArrayOpExpr:
2835 {
2836 ScalarArrayOpExpr *saop;
2837
2838 /* Copy the node and const-simplify its arguments */
2840
2841 /* Make sure we know underlying function */
2842 set_sa_opfuncid(saop);
2843
2844 /*
2845 * If all arguments are Consts, and it's a safe function, we
2846 * can fold to a constant
2847 */
2848 if (ece_all_arguments_const(saop) &&
2849 ece_function_is_safe(saop->opfuncid, context))
2850 return ece_evaluate_expr(saop);
2851 return (Node *) saop;
2852 }
2853 case T_BoolExpr:
2854 {
2855 BoolExpr *expr = (BoolExpr *) node;
2856
2857 switch (expr->boolop)
2858 {
2859 case OR_EXPR:
2860 {
2861 List *newargs;
2862 bool haveNull = false;
2863 bool forceTrue = false;
2864
2865 newargs = simplify_or_arguments(expr->args,
2866 context,
2867 &haveNull,
2868 &forceTrue);
2869 if (forceTrue)
2870 return makeBoolConst(true, false);
2871 if (haveNull)
2872 newargs = lappend(newargs,
2873 makeBoolConst(false, true));
2874 /* If all the inputs are FALSE, result is FALSE */
2875 if (newargs == NIL)
2876 return makeBoolConst(false, false);
2877
2878 /*
2879 * If only one nonconst-or-NULL input, it's the
2880 * result
2881 */
2882 if (list_length(newargs) == 1)
2883 return (Node *) linitial(newargs);
2884 /* Else we still need an OR node */
2885 return (Node *) make_orclause(newargs);
2886 }
2887 case AND_EXPR:
2888 {
2889 List *newargs;
2890 bool haveNull = false;
2891 bool forceFalse = false;
2892
2893 newargs = simplify_and_arguments(expr->args,
2894 context,
2895 &haveNull,
2896 &forceFalse);
2897 if (forceFalse)
2898 return makeBoolConst(false, false);
2899 if (haveNull)
2900 newargs = lappend(newargs,
2901 makeBoolConst(false, true));
2902 /* If all the inputs are TRUE, result is TRUE */
2903 if (newargs == NIL)
2904 return makeBoolConst(true, false);
2905
2906 /*
2907 * If only one nonconst-or-NULL input, it's the
2908 * result
2909 */
2910 if (list_length(newargs) == 1)
2911 return (Node *) linitial(newargs);
2912 /* Else we still need an AND node */
2913 return (Node *) make_andclause(newargs);
2914 }
2915 case NOT_EXPR:
2916 {
2917 Node *arg;
2918
2919 Assert(list_length(expr->args) == 1);
2921 context);
2922
2923 /*
2924 * Use negate_clause() to see if we can simplify
2925 * away the NOT.
2926 */
2927 return negate_clause(arg);
2928 }
2929 default:
2930 elog(ERROR, "unrecognized boolop: %d",
2931 (int) expr->boolop);
2932 break;
2933 }
2934 break;
2935 }
2936
2937 case T_JsonValueExpr:
2938 {
2939 JsonValueExpr *jve = (JsonValueExpr *) node;
2940 Node *raw_expr = (Node *) jve->raw_expr;
2941 Node *formatted_expr = (Node *) jve->formatted_expr;
2942
2943 /*
2944 * If we can fold formatted_expr to a constant, we can elide
2945 * the JsonValueExpr altogether. Otherwise we must process
2946 * raw_expr too. But JsonFormat is a flat node and requires
2947 * no simplification, only copying.
2948 */
2949 formatted_expr = eval_const_expressions_mutator(formatted_expr,
2950 context);
2951 if (formatted_expr && IsA(formatted_expr, Const))
2952 return formatted_expr;
2953
2954 raw_expr = eval_const_expressions_mutator(raw_expr, context);
2955
2956 return (Node *) makeJsonValueExpr((Expr *) raw_expr,
2957 (Expr *) formatted_expr,
2958 copyObject(jve->format));
2959 }
2960
2961 case T_SubPlan:
2962 case T_AlternativeSubPlan:
2963
2964 /*
2965 * Return a SubPlan unchanged --- too late to do anything with it.
2966 *
2967 * XXX should we ereport() here instead? Probably this routine
2968 * should never be invoked after SubPlan creation.
2969 */
2970 return node;
2971 case T_RelabelType:
2972 {
2973 RelabelType *relabel = (RelabelType *) node;
2974 Node *arg;
2975
2976 /* Simplify the input ... */
2978 context);
2979 /* ... and attach a new RelabelType node, if needed */
2980 return applyRelabelType(arg,
2981 relabel->resulttype,
2982 relabel->resulttypmod,
2983 relabel->resultcollid,
2984 relabel->relabelformat,
2985 relabel->location,
2986 true);
2987 }
2988 case T_CoerceViaIO:
2989 {
2990 CoerceViaIO *expr = (CoerceViaIO *) node;
2991 List *args;
2992 Oid outfunc;
2993 bool outtypisvarlena;
2994 Oid infunc;
2995 Oid intypioparam;
2996 Expr *simple;
2997 CoerceViaIO *newexpr;
2998
2999 /* Make a List so we can use simplify_function */
3000 args = list_make1(expr->arg);
3001
3002 /*
3003 * CoerceViaIO represents calling the source type's output
3004 * function then the result type's input function. So, try to
3005 * simplify it as though it were a stack of two such function
3006 * calls. First we need to know what the functions are.
3007 *
3008 * Note that the coercion functions are assumed not to care
3009 * about input collation, so we just pass InvalidOid for that.
3010 */
3012 &outfunc, &outtypisvarlena);
3014 &infunc, &intypioparam);
3015
3016 simple = simplify_function(outfunc,
3017 CSTRINGOID, -1,
3018 InvalidOid,
3019 InvalidOid,
3020 &args,
3021 false,
3022 true,
3023 true,
3024 context);
3025 if (simple) /* successfully simplified output fn */
3026 {
3027 /*
3028 * Input functions may want 1 to 3 arguments. We always
3029 * supply all three, trusting that nothing downstream will
3030 * complain.
3031 */
3032 args = list_make3(simple,
3033 makeConst(OIDOID,
3034 -1,
3035 InvalidOid,
3036 sizeof(Oid),
3037 ObjectIdGetDatum(intypioparam),
3038 false,
3039 true),
3040 makeConst(INT4OID,
3041 -1,
3042 InvalidOid,
3043 sizeof(int32),
3044 Int32GetDatum(-1),
3045 false,
3046 true));
3047
3048 simple = simplify_function(infunc,
3049 expr->resulttype, -1,
3050 expr->resultcollid,
3051 InvalidOid,
3052 &args,
3053 false,
3054 false,
3055 true,
3056 context);
3057 if (simple) /* successfully simplified input fn */
3058 return (Node *) simple;
3059 }
3060
3061 /*
3062 * The expression cannot be simplified any further, so build
3063 * and return a replacement CoerceViaIO node using the
3064 * possibly-simplified argument.
3065 */
3066 newexpr = makeNode(CoerceViaIO);
3067 newexpr->arg = (Expr *) linitial(args);
3068 newexpr->resulttype = expr->resulttype;
3069 newexpr->resultcollid = expr->resultcollid;
3070 newexpr->coerceformat = expr->coerceformat;
3071 newexpr->location = expr->location;
3072 return (Node *) newexpr;
3073 }
3074 case T_ArrayCoerceExpr:
3075 {
3077 Node *save_case_val;
3078
3079 /*
3080 * Copy the node and const-simplify its arguments. We can't
3081 * use ece_generic_processing() here because we need to mess
3082 * with case_val only while processing the elemexpr.
3083 */
3084 memcpy(ac, node, sizeof(ArrayCoerceExpr));
3085 ac->arg = (Expr *)
3087 context);
3088
3089 /*
3090 * Set up for the CaseTestExpr node contained in the elemexpr.
3091 * We must prevent it from absorbing any outer CASE value.
3092 */
3093 save_case_val = context->case_val;
3094 context->case_val = NULL;
3095
3096 ac->elemexpr = (Expr *)
3098 context);
3099
3100 context->case_val = save_case_val;
3101
3102 /*
3103 * If constant argument and the per-element expression is
3104 * immutable, we can simplify the whole thing to a constant.
3105 * Exception: although contain_mutable_functions considers
3106 * CoerceToDomain immutable for historical reasons, let's not
3107 * do so here; this ensures coercion to an array-over-domain
3108 * does not apply the domain's constraints until runtime.
3109 */
3110 if (ac->arg && IsA(ac->arg, Const) &&
3111 ac->elemexpr && !IsA(ac->elemexpr, CoerceToDomain) &&
3113 return ece_evaluate_expr(ac);
3114
3115 return (Node *) ac;
3116 }
3117 case T_CollateExpr:
3118 {
3119 /*
3120 * We replace CollateExpr with RelabelType, so as to improve
3121 * uniformity of expression representation and thus simplify
3122 * comparison of expressions. Hence this looks very nearly
3123 * the same as the RelabelType case, and we can apply the same
3124 * optimizations to avoid unnecessary RelabelTypes.
3125 */
3126 CollateExpr *collate = (CollateExpr *) node;
3127 Node *arg;
3128
3129 /* Simplify the input ... */
3131 context);
3132 /* ... and attach a new RelabelType node, if needed */
3133 return applyRelabelType(arg,
3134 exprType(arg),
3135 exprTypmod(arg),
3136 collate->collOid,
3138 collate->location,
3139 true);
3140 }
3141 case T_CaseExpr:
3142 {
3143 /*----------
3144 * CASE expressions can be simplified if there are constant
3145 * condition clauses:
3146 * FALSE (or NULL): drop the alternative
3147 * TRUE: drop all remaining alternatives
3148 * If the first non-FALSE alternative is a constant TRUE,
3149 * we can simplify the entire CASE to that alternative's
3150 * expression. If there are no non-FALSE alternatives,
3151 * we simplify the entire CASE to the default result (ELSE).
3152 *
3153 * If we have a simple-form CASE with constant test
3154 * expression, we substitute the constant value for contained
3155 * CaseTestExpr placeholder nodes, so that we have the
3156 * opportunity to reduce constant test conditions. For
3157 * example this allows
3158 * CASE 0 WHEN 0 THEN 1 ELSE 1/0 END
3159 * to reduce to 1 rather than drawing a divide-by-0 error.
3160 * Note that when the test expression is constant, we don't
3161 * have to include it in the resulting CASE; for example
3162 * CASE 0 WHEN x THEN y ELSE z END
3163 * is transformed by the parser to
3164 * CASE 0 WHEN CaseTestExpr = x THEN y ELSE z END
3165 * which we can simplify to
3166 * CASE WHEN 0 = x THEN y ELSE z END
3167 * It is not necessary for the executor to evaluate the "arg"
3168 * expression when executing the CASE, since any contained
3169 * CaseTestExprs that might have referred to it will have been
3170 * replaced by the constant.
3171 *----------
3172 */
3173 CaseExpr *caseexpr = (CaseExpr *) node;
3174 CaseExpr *newcase;
3175 Node *save_case_val;
3176 Node *newarg;
3177 List *newargs;
3178 bool const_true_cond;
3179 Node *defresult = NULL;
3180 ListCell *arg;
3181
3182 /* Simplify the test expression, if any */
3183 newarg = eval_const_expressions_mutator((Node *) caseexpr->arg,
3184 context);
3185
3186 /* Set up for contained CaseTestExpr nodes */
3187 save_case_val = context->case_val;
3188 if (newarg && IsA(newarg, Const))
3189 {
3190 context->case_val = newarg;
3191 newarg = NULL; /* not needed anymore, see above */
3192 }
3193 else
3194 context->case_val = NULL;
3195
3196 /* Simplify the WHEN clauses */
3197 newargs = NIL;
3198 const_true_cond = false;
3199 foreach(arg, caseexpr->args)
3200 {
3201 CaseWhen *oldcasewhen = lfirst_node(CaseWhen, arg);
3202 Node *casecond;
3203 Node *caseresult;
3204
3205 /* Simplify this alternative's test condition */
3206 casecond = eval_const_expressions_mutator((Node *) oldcasewhen->expr,
3207 context);
3208
3209 /*
3210 * If the test condition is constant FALSE (or NULL), then
3211 * drop this WHEN clause completely, without processing
3212 * the result.
3213 */
3214 if (casecond && IsA(casecond, Const))
3215 {
3216 Const *const_input = (Const *) casecond;
3217
3218 if (const_input->constisnull ||
3219 !DatumGetBool(const_input->constvalue))
3220 continue; /* drop alternative with FALSE cond */
3221 /* Else it's constant TRUE */
3222 const_true_cond = true;
3223 }
3224
3225 /* Simplify this alternative's result value */
3226 caseresult = eval_const_expressions_mutator((Node *) oldcasewhen->result,
3227 context);
3228
3229 /* If non-constant test condition, emit a new WHEN node */
3230 if (!const_true_cond)
3231 {
3232 CaseWhen *newcasewhen = makeNode(CaseWhen);
3233
3234 newcasewhen->expr = (Expr *) casecond;
3235 newcasewhen->result = (Expr *) caseresult;
3236 newcasewhen->location = oldcasewhen->location;
3237 newargs = lappend(newargs, newcasewhen);
3238 continue;
3239 }
3240
3241 /*
3242 * Found a TRUE condition, so none of the remaining
3243 * alternatives can be reached. We treat the result as
3244 * the default result.
3245 */
3246 defresult = caseresult;
3247 break;
3248 }
3249
3250 /* Simplify the default result, unless we replaced it above */
3251 if (!const_true_cond)
3252 defresult = eval_const_expressions_mutator((Node *) caseexpr->defresult,
3253 context);
3254
3255 context->case_val = save_case_val;
3256
3257 /*
3258 * If no non-FALSE alternatives, CASE reduces to the default
3259 * result
3260 */
3261 if (newargs == NIL)
3262 return defresult;
3263 /* Otherwise we need a new CASE node */
3264 newcase = makeNode(CaseExpr);
3265 newcase->casetype = caseexpr->casetype;
3266 newcase->casecollid = caseexpr->casecollid;
3267 newcase->arg = (Expr *) newarg;
3268 newcase->args = newargs;
3269 newcase->defresult = (Expr *) defresult;
3270 newcase->location = caseexpr->location;
3271 return (Node *) newcase;
3272 }
3273 case T_CaseTestExpr:
3274 {
3275 /*
3276 * If we know a constant test value for the current CASE
3277 * construct, substitute it for the placeholder. Else just
3278 * return the placeholder as-is.
3279 */
3280 if (context->case_val)
3281 return copyObject(context->case_val);
3282 else
3283 return copyObject(node);
3284 }
3285 case T_SubscriptingRef:
3286 case T_ArrayExpr:
3287 case T_RowExpr:
3288 case T_MinMaxExpr:
3289 {
3290 /*
3291 * Generic handling for node types whose own processing is
3292 * known to be immutable, and for which we need no smarts
3293 * beyond "simplify if all inputs are constants".
3294 *
3295 * Treating SubscriptingRef this way assumes that subscripting
3296 * fetch and assignment are both immutable. This constrains
3297 * type-specific subscripting implementations; maybe we should
3298 * relax it someday.
3299 *
3300 * Treating MinMaxExpr this way amounts to assuming that the
3301 * btree comparison function it calls is immutable; see the
3302 * reasoning in contain_mutable_functions_walker.
3303 */
3304
3305 /* Copy the node and const-simplify its arguments */
3306 node = ece_generic_processing(node);
3307 /* If all arguments are Consts, we can fold to a constant */
3308 if (ece_all_arguments_const(node))
3309 return ece_evaluate_expr(node);
3310 return node;
3311 }
3312 case T_CoalesceExpr:
3313 {
3314 CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
3315 CoalesceExpr *newcoalesce;
3316 List *newargs;
3317 ListCell *arg;
3318
3319 newargs = NIL;
3320 foreach(arg, coalesceexpr->args)
3321 {
3322 Node *e;
3323
3325 context);
3326
3327 /*
3328 * We can remove null constants from the list. For a
3329 * nonnullable expression, if it has not been preceded by
3330 * any non-null-constant expressions then it is the
3331 * result. Otherwise, it's the next argument, but we can
3332 * drop following arguments since they will never be
3333 * reached.
3334 */
3335 if (IsA(e, Const))
3336 {
3337 if (((Const *) e)->constisnull)
3338 continue; /* drop null constant */
3339 if (newargs == NIL)
3340 return e; /* first expr */
3341 newargs = lappend(newargs, e);
3342 break;
3343 }
3344 if (expr_is_nonnullable(context->root, (Expr *) e, false))
3345 {
3346 if (newargs == NIL)
3347 return e; /* first expr */
3348 newargs = lappend(newargs, e);
3349 break;
3350 }
3351
3352 newargs = lappend(newargs, e);
3353 }
3354
3355 /*
3356 * If all the arguments were constant null, the result is just
3357 * null
3358 */
3359 if (newargs == NIL)
3360 return (Node *) makeNullConst(coalesceexpr->coalescetype,
3361 -1,
3362 coalesceexpr->coalescecollid);
3363
3364 /*
3365 * If there's exactly one surviving argument, we no longer
3366 * need COALESCE at all: the result is that argument
3367 */
3368 if (list_length(newargs) == 1)
3369 return (Node *) linitial(newargs);
3370
3371 newcoalesce = makeNode(CoalesceExpr);
3372 newcoalesce->coalescetype = coalesceexpr->coalescetype;
3373 newcoalesce->coalescecollid = coalesceexpr->coalescecollid;
3374 newcoalesce->args = newargs;
3375 newcoalesce->location = coalesceexpr->location;
3376 return (Node *) newcoalesce;
3377 }
3378 case T_SQLValueFunction:
3379 {
3380 /*
3381 * All variants of SQLValueFunction are stable, so if we are
3382 * estimating the expression's value, we should evaluate the
3383 * current function value. Otherwise just copy.
3384 */
3385 SQLValueFunction *svf = (SQLValueFunction *) node;
3386
3387 if (context->estimate)
3388 return (Node *) evaluate_expr((Expr *) svf,
3389 svf->type,
3390 svf->typmod,
3391 InvalidOid);
3392 else
3393 return copyObject((Node *) svf);
3394 }
3395 case T_FieldSelect:
3396 {
3397 /*
3398 * We can optimize field selection from a whole-row Var into a
3399 * simple Var. (This case won't be generated directly by the
3400 * parser, because ParseComplexProjection short-circuits it.
3401 * But it can arise while simplifying functions.) Also, we
3402 * can optimize field selection from a RowExpr construct, or
3403 * of course from a constant.
3404 *
3405 * However, replacing a whole-row Var in this way has a
3406 * pitfall: if we've already built the rel targetlist for the
3407 * source relation, then the whole-row Var is scheduled to be
3408 * produced by the relation scan, but the simple Var probably
3409 * isn't, which will lead to a failure in setrefs.c. This is
3410 * not a problem when handling simple single-level queries, in
3411 * which expression simplification always happens first. It
3412 * is a risk for lateral references from subqueries, though.
3413 * To avoid such failures, don't optimize uplevel references.
3414 *
3415 * We must also check that the declared type of the field is
3416 * still the same as when the FieldSelect was created --- this
3417 * can change if someone did ALTER COLUMN TYPE on the rowtype.
3418 * If it isn't, we skip the optimization; the case will
3419 * probably fail at runtime, but that's not our problem here.
3420 */
3421 FieldSelect *fselect = (FieldSelect *) node;
3422 FieldSelect *newfselect;
3423 Node *arg;
3424
3426 context);
3427 if (arg && IsA(arg, Var) &&
3428 ((Var *) arg)->varattno == InvalidAttrNumber &&
3429 ((Var *) arg)->varlevelsup == 0)
3430 {
3431 if (rowtype_field_matches(((Var *) arg)->vartype,
3432 fselect->fieldnum,
3433 fselect->resulttype,
3434 fselect->resulttypmod,
3435 fselect->resultcollid))
3436 {
3437 Var *newvar;
3438
3439 newvar = makeVar(((Var *) arg)->varno,
3440 fselect->fieldnum,
3441 fselect->resulttype,
3442 fselect->resulttypmod,
3443 fselect->resultcollid,
3444 ((Var *) arg)->varlevelsup);
3445 /* New Var has same OLD/NEW returning as old one */
3446 newvar->varreturningtype = ((Var *) arg)->varreturningtype;
3447 /* New Var is nullable by same rels as the old one */
3448 newvar->varnullingrels = ((Var *) arg)->varnullingrels;
3449 return (Node *) newvar;
3450 }
3451 }
3452 if (arg && IsA(arg, RowExpr))
3453 {
3454 RowExpr *rowexpr = (RowExpr *) arg;
3455
3456 if (fselect->fieldnum > 0 &&
3457 fselect->fieldnum <= list_length(rowexpr->args))
3458 {
3459 Node *fld = (Node *) list_nth(rowexpr->args,
3460 fselect->fieldnum - 1);
3461
3462 if (rowtype_field_matches(rowexpr->row_typeid,
3463 fselect->fieldnum,
3464 fselect->resulttype,
3465 fselect->resulttypmod,
3466 fselect->resultcollid) &&
3467 fselect->resulttype == exprType(fld) &&
3468 fselect->resulttypmod == exprTypmod(fld) &&
3469 fselect->resultcollid == exprCollation(fld))
3470 return fld;
3471 }
3472 }
3473 newfselect = makeNode(FieldSelect);
3474 newfselect->arg = (Expr *) arg;
3475 newfselect->fieldnum = fselect->fieldnum;
3476 newfselect->resulttype = fselect->resulttype;
3477 newfselect->resulttypmod = fselect->resulttypmod;
3478 newfselect->resultcollid = fselect->resultcollid;
3479 if (arg && IsA(arg, Const))
3480 {
3481 Const *con = (Const *) arg;
3482
3484 newfselect->fieldnum,
3485 newfselect->resulttype,
3486 newfselect->resulttypmod,
3487 newfselect->resultcollid))
3488 return ece_evaluate_expr(newfselect);
3489 }
3490 return (Node *) newfselect;
3491 }
3492 case T_NullTest:
3493 {
3494 NullTest *ntest = (NullTest *) node;
3495 NullTest *newntest;
3496 Node *arg;
3497
3499 context);
3500 if (ntest->argisrow && arg && IsA(arg, RowExpr))
3501 {
3502 /*
3503 * We break ROW(...) IS [NOT] NULL into separate tests on
3504 * its component fields. This form is usually more
3505 * efficient to evaluate, as well as being more amenable
3506 * to optimization.
3507 */
3508 RowExpr *rarg = (RowExpr *) arg;
3509 List *newargs = NIL;
3510 ListCell *l;
3511
3512 foreach(l, rarg->args)
3513 {
3514 Node *relem = (Node *) lfirst(l);
3515
3516 /*
3517 * A constant field refutes the whole NullTest if it's
3518 * of the wrong nullness; else we can discard it.
3519 */
3520 if (relem && IsA(relem, Const))
3521 {
3522 Const *carg = (Const *) relem;
3523
3524 if (carg->constisnull ?
3525 (ntest->nulltesttype == IS_NOT_NULL) :
3526 (ntest->nulltesttype == IS_NULL))
3527 return makeBoolConst(false, false);
3528 continue;
3529 }
3530
3531 /*
3532 * A proven non-nullable field refutes the whole
3533 * NullTest if the test is IS NULL; else we can
3534 * discard it.
3535 */
3536 if (relem &&
3537 expr_is_nonnullable(context->root, (Expr *) relem,
3538 false))
3539 {
3540 if (ntest->nulltesttype == IS_NULL)
3541 return makeBoolConst(false, false);
3542 continue;
3543 }
3544
3545 /*
3546 * Else, make a scalar (argisrow == false) NullTest
3547 * for this field. Scalar semantics are required
3548 * because IS [NOT] NULL doesn't recurse; see comments
3549 * in ExecEvalRowNullInt().
3550 */
3551 newntest = makeNode(NullTest);
3552 newntest->arg = (Expr *) relem;
3553 newntest->nulltesttype = ntest->nulltesttype;
3554 newntest->argisrow = false;
3555 newntest->location = ntest->location;
3556 newargs = lappend(newargs, newntest);
3557 }
3558 /* If all the inputs were constants, result is TRUE */
3559 if (newargs == NIL)
3560 return makeBoolConst(true, false);
3561 /* If only one nonconst input, it's the result */
3562 if (list_length(newargs) == 1)
3563 return (Node *) linitial(newargs);
3564 /* Else we need an AND node */
3565 return (Node *) make_andclause(newargs);
3566 }
3567 if (!ntest->argisrow && arg && IsA(arg, Const))
3568 {
3569 Const *carg = (Const *) arg;
3570 bool result;
3571
3572 switch (ntest->nulltesttype)
3573 {
3574 case IS_NULL:
3575 result = carg->constisnull;
3576 break;
3577 case IS_NOT_NULL:
3578 result = !carg->constisnull;
3579 break;
3580 default:
3581 elog(ERROR, "unrecognized nulltesttype: %d",
3582 (int) ntest->nulltesttype);
3583 result = false; /* keep compiler quiet */
3584 break;
3585 }
3586
3587 return makeBoolConst(result, false);
3588 }
3589 if (!ntest->argisrow && arg &&
3590 expr_is_nonnullable(context->root, (Expr *) arg, false))
3591 {
3592 bool result;
3593
3594 switch (ntest->nulltesttype)
3595 {
3596 case IS_NULL:
3597 result = false;
3598 break;
3599 case IS_NOT_NULL:
3600 result = true;
3601 break;
3602 default:
3603 elog(ERROR, "unrecognized nulltesttype: %d",
3604 (int) ntest->nulltesttype);
3605 result = false; /* keep compiler quiet */
3606 break;
3607 }
3608
3609 return makeBoolConst(result, false);
3610 }
3611
3612 newntest = makeNode(NullTest);
3613 newntest->arg = (Expr *) arg;
3614 newntest->nulltesttype = ntest->nulltesttype;
3615 newntest->argisrow = ntest->argisrow;
3616 newntest->location = ntest->location;
3617 return (Node *) newntest;
3618 }
3619 case T_BooleanTest:
3620 {
3621 /*
3622 * This case could be folded into the generic handling used
3623 * for ArrayExpr etc. But because the simplification logic is
3624 * so trivial, applying evaluate_expr() to perform it would be
3625 * a heavy overhead. BooleanTest is probably common enough to
3626 * justify keeping this bespoke implementation.
3627 */
3628 BooleanTest *btest = (BooleanTest *) node;
3629 BooleanTest *newbtest;
3630 Node *arg;
3631
3633 context);
3634 if (arg && IsA(arg, Const))
3635 {
3636 Const *carg = (Const *) arg;
3637 bool result;
3638
3639 switch (btest->booltesttype)
3640 {
3641 case IS_TRUE:
3642 result = (!carg->constisnull &&
3643 DatumGetBool(carg->constvalue));
3644 break;
3645 case IS_NOT_TRUE:
3646 result = (carg->constisnull ||
3647 !DatumGetBool(carg->constvalue));
3648 break;
3649 case IS_FALSE:
3650 result = (!carg->constisnull &&
3651 !DatumGetBool(carg->constvalue));
3652 break;
3653 case IS_NOT_FALSE:
3654 result = (carg->constisnull ||
3655 DatumGetBool(carg->constvalue));
3656 break;
3657 case IS_UNKNOWN:
3658 result = carg->constisnull;
3659 break;
3660 case IS_NOT_UNKNOWN:
3661 result = !carg->constisnull;
3662 break;
3663 default:
3664 elog(ERROR, "unrecognized booltesttype: %d",
3665 (int) btest->booltesttype);
3666 result = false; /* keep compiler quiet */
3667 break;
3668 }
3669
3670 return makeBoolConst(result, false);
3671 }
3672
3673 newbtest = makeNode(BooleanTest);
3674 newbtest->arg = (Expr *) arg;
3675 newbtest->booltesttype = btest->booltesttype;
3676 newbtest->location = btest->location;
3677 return (Node *) newbtest;
3678 }
3679 case T_CoerceToDomain:
3680 {
3681 /*
3682 * If the domain currently has no constraints, we replace the
3683 * CoerceToDomain node with a simple RelabelType, which is
3684 * both far faster to execute and more amenable to later
3685 * optimization. We must then mark the plan as needing to be
3686 * rebuilt if the domain's constraints change.
3687 *
3688 * Also, in estimation mode, always replace CoerceToDomain
3689 * nodes, effectively assuming that the coercion will succeed.
3690 */
3691 CoerceToDomain *cdomain = (CoerceToDomain *) node;
3692 CoerceToDomain *newcdomain;
3693 Node *arg;
3694
3696 context);
3697 if (context->estimate ||
3699 {
3700 /* Record dependency, if this isn't estimation mode */
3701 if (context->root && !context->estimate)
3703 cdomain->resulttype);
3704
3705 /* Generate RelabelType to substitute for CoerceToDomain */
3706 return applyRelabelType(arg,
3707 cdomain->resulttype,
3708 cdomain->resulttypmod,
3709 cdomain->resultcollid,
3710 cdomain->coercionformat,
3711 cdomain->location,
3712 true);
3713 }
3714
3715 newcdomain = makeNode(CoerceToDomain);
3716 newcdomain->arg = (Expr *) arg;
3717 newcdomain->resulttype = cdomain->resulttype;
3718 newcdomain->resulttypmod = cdomain->resulttypmod;
3719 newcdomain->resultcollid = cdomain->resultcollid;
3720 newcdomain->coercionformat = cdomain->coercionformat;
3721 newcdomain->location = cdomain->location;
3722 return (Node *) newcdomain;
3723 }
3724 case T_PlaceHolderVar:
3725
3726 /*
3727 * In estimation mode, just strip the PlaceHolderVar node
3728 * altogether; this amounts to estimating that the contained value
3729 * won't be forced to null by an outer join. In regular mode we
3730 * just use the default behavior (ie, simplify the expression but
3731 * leave the PlaceHolderVar node intact).
3732 */
3733 if (context->estimate)
3734 {
3735 PlaceHolderVar *phv = (PlaceHolderVar *) node;
3736
3737 return eval_const_expressions_mutator((Node *) phv->phexpr,
3738 context);
3739 }
3740 break;
3741 case T_ConvertRowtypeExpr:
3742 {
3744 Node *arg;
3745 ConvertRowtypeExpr *newcre;
3746
3748 context);
3749
3750 newcre = makeNode(ConvertRowtypeExpr);
3751 newcre->resulttype = cre->resulttype;
3752 newcre->convertformat = cre->convertformat;
3753 newcre->location = cre->location;
3754
3755 /*
3756 * In case of a nested ConvertRowtypeExpr, we can convert the
3757 * leaf row directly to the topmost row format without any
3758 * intermediate conversions. (This works because
3759 * ConvertRowtypeExpr is used only for child->parent
3760 * conversion in inheritance trees, which works by exact match
3761 * of column name, and a column absent in an intermediate
3762 * result can't be present in the final result.)
3763 *
3764 * No need to check more than one level deep, because the
3765 * above recursion will have flattened anything else.
3766 */
3767 if (arg != NULL && IsA(arg, ConvertRowtypeExpr))
3768 {
3770
3771 arg = (Node *) argcre->arg;
3772
3773 /*
3774 * Make sure an outer implicit conversion can't hide an
3775 * inner explicit one.
3776 */
3777 if (newcre->convertformat == COERCE_IMPLICIT_CAST)
3778 newcre->convertformat = argcre->convertformat;
3779 }
3780
3781 newcre->arg = (Expr *) arg;
3782
3783 if (arg != NULL && IsA(arg, Const))
3784 return ece_evaluate_expr((Node *) newcre);
3785 return (Node *) newcre;
3786 }
3787 default:
3788 break;
3789 }
3790
3791 /*
3792 * For any node type not handled above, copy the node unchanged but
3793 * const-simplify its subexpressions. This is the correct thing for node
3794 * types whose behavior might change between planning and execution, such
3795 * as CurrentOfExpr. It's also a safe default for new node types not
3796 * known to this routine.
3797 */
3798 return ece_generic_processing(node);
3799}
#define InvalidAttrNumber
Definition: attnum.h:23
int16_t int16
Definition: c.h:547
int32_t int32
Definition: c.h:548
static List * simplify_or_arguments(List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceTrue)
Definition: clauses.c:3865
static bool rowtype_field_matches(Oid rowtypeid, int fieldnum, Oid expectedtype, int32 expectedtypmod, Oid expectedcollation)
Definition: clauses.c:2201
#define ece_all_arguments_const(node)
Definition: clauses.c:2442
#define ece_evaluate_expr(node)
Definition: clauses.c:2446
#define ece_generic_processing(node)
Definition: clauses.c:2433
static bool ece_function_is_safe(Oid funcid, eval_const_expressions_context *context)
Definition: clauses.c:3827
static List * simplify_and_arguments(List *args, eval_const_expressions_context *context, bool *haveNull, bool *forceFalse)
Definition: clauses.c:3971
static Expr * simplify_function(Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List **args_p, bool funcvariadic, bool process_args, bool allow_non_const, eval_const_expressions_context *context)
Definition: clauses.c:4134
static Node * simplify_aggref(Aggref *aggref, eval_const_expressions_context *context)
Definition: clauses.c:4240
List * expand_function_arguments(List *args, bool include_out_arguments, Oid result_type, HeapTuple func_tuple)
Definition: clauses.c:4490
static Node * simplify_boolean_equality(Oid opno, List *args)
Definition: clauses.c:4065
bool expr_is_nonnullable(PlannerInfo *root, Expr *expr, bool use_rel_info)
Definition: clauses.c:4348
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
void getTypeOutputInfo(Oid type, Oid *typOutput, bool *typIsVarlena)
Definition: lsyscache.c:3057
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2401
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:3024
Expr * make_orclause(List *orclauses)
Definition: makefuncs.c:743
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:388
Node * makeBoolConst(bool value, bool isnull)
Definition: makefuncs.c:408
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:727
JsonValueExpr * makeJsonValueExpr(Expr *raw_expr, Expr *formatted_expr, JsonFormat *format)
Definition: makefuncs.c:938
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:350
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
Node * applyRelabelType(Node *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat, int rlocation, bool overwrite_ok)
Definition: nodeFuncs.c:636
void set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
Definition: nodeFuncs.c:1882
void set_opfuncid(OpExpr *opexpr)
Definition: nodeFuncs.c:1871
#define copyObject(obj)
Definition: nodes.h:232
#define makeNode(_type_)
Definition: nodes.h:161
#define PARAM_FLAG_CONST
Definition: params.h:87
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define list_make3(x1, x2, x3)
Definition: pg_list.h:216
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
Node * negate_clause(Node *node)
Definition: prepqual.c:73
e
Definition: preproc-init.c:82
@ IS_NOT_TRUE
Definition: primnodes.h:2001
@ IS_NOT_FALSE
Definition: primnodes.h:2001
@ IS_NOT_UNKNOWN
Definition: primnodes.h:2001
@ IS_TRUE
Definition: primnodes.h:2001
@ IS_UNKNOWN
Definition: primnodes.h:2001
@ IS_FALSE
Definition: primnodes.h:2001
@ NOT_EXPR
Definition: primnodes.h:963
@ PARAM_EXTERN
Definition: primnodes.h:384
@ COERCE_IMPLICIT_CAST
Definition: primnodes.h:768
@ IS_NULL
Definition: primnodes.h:1977
@ IS_NOT_NULL
Definition: primnodes.h:1977
struct Const Const
void record_plan_type_dependency(PlannerInfo *root, Oid typid)
Definition: setrefs.c:3615
void check_stack_depth(void)
Definition: stack_depth.c:95
List * args
Definition: primnodes.h:972
ParseLoc location
Definition: primnodes.h:2009
BoolTestType booltesttype
Definition: primnodes.h:2008
Expr * arg
Definition: primnodes.h:2007
ParseLoc location
Definition: primnodes.h:1349
Expr * defresult
Definition: primnodes.h:1348
List * args
Definition: primnodes.h:1347
Expr * result
Definition: primnodes.h:1359
Expr * expr
Definition: primnodes.h:1358
ParseLoc location
Definition: primnodes.h:1360
List * args
Definition: primnodes.h:1517
ParseLoc location
Definition: primnodes.h:1519
ParseLoc location
Definition: primnodes.h:2061
Expr * arg
Definition: primnodes.h:1240
ParseLoc location
Definition: primnodes.h:1247
Oid resulttype
Definition: primnodes.h:1241
Expr * arg
Definition: primnodes.h:1312
ParseLoc location
Definition: primnodes.h:1314
AttrNumber fieldnum
Definition: primnodes.h:1162
Expr * arg
Definition: primnodes.h:1161
ParseLoc location
Definition: primnodes.h:802
Oid funcid
Definition: primnodes.h:782
List * args
Definition: primnodes.h:800
Expr * formatted_expr
Definition: primnodes.h:1709
JsonFormat * format
Definition: primnodes.h:1710
Expr * raw_expr
Definition: primnodes.h:1708
NullTestType nulltesttype
Definition: primnodes.h:1984
ParseLoc location
Definition: primnodes.h:1987
Expr * arg
Definition: primnodes.h:1983
ParseLoc location
Definition: primnodes.h:871
bool isnull
Definition: params.h:92
uint16 pflags
Definition: params.h:93
Datum value
Definition: params.h:91
ParamExternData params[FLEXIBLE_ARRAY_MEMBER]
Definition: params.h:124
ParamFetchHook paramFetch
Definition: params.h:111
ParseLoc location
Definition: primnodes.h:403
int32 paramtypmod
Definition: primnodes.h:399
Oid paramtype
Definition: primnodes.h:397
Oid paramcollid
Definition: primnodes.h:401
Oid resulttype
Definition: primnodes.h:1218
ParseLoc location
Definition: primnodes.h:1225
Expr * arg
Definition: primnodes.h:1217
List * args
Definition: primnodes.h:1448
Definition: primnodes.h:262
VarReturningType varreturningtype
Definition: primnodes.h:297
List * args
Definition: primnodes.h:605
Index winref
Definition: primnodes.h:611
Expr * aggfilter
Definition: primnodes.h:607
ParseLoc location
Definition: primnodes.h:619
int ignore_nulls
Definition: primnodes.h:617
Oid winfnoid
Definition: primnodes.h:597
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
bool DomainHasConstraints(Oid type_id)
Definition: typcache.c:1488

References WindowFunc::aggfilter, AND_EXPR, applyRelabelType(), arg, FieldSelect::arg, RelabelType::arg, CoerceViaIO::arg, ArrayCoerceExpr::arg, ConvertRowtypeExpr::arg, CollateExpr::arg, CaseExpr::arg, NullTest::arg, BooleanTest::arg, CoerceToDomain::arg, generate_unaccent_rules::args, WindowFunc::args, FuncExpr::args, OpExpr::args, BoolExpr::args, CaseExpr::args, RowExpr::args, CoalesceExpr::args, Assert(), BoolGetDatum(), BoolExpr::boolop, BooleanTest::booltesttype, eval_const_expressions_context::boundParams, eval_const_expressions_context::case_val, castNode, check_stack_depth(), COERCE_IMPLICIT_CAST, CollateExpr::collOid, Const::consttype, contain_mutable_functions(), copyObject, datumCopy(), DatumGetBool(), CaseExpr::defresult, DomainHasConstraints(), ece_all_arguments_const, ece_evaluate_expr, ece_function_is_safe(), ece_generic_processing, ArrayCoerceExpr::elemexpr, elog, ERROR, eval_const_expressions_context::estimate, eval_const_expressions_mutator(), evaluate_expr(), expand_function_arguments(), CaseWhen::expr, expr_is_nonnullable(), exprCollation(), expression_tree_mutator, exprType(), exprTypmod(), FieldSelect::fieldnum, JsonValueExpr::format, JsonValueExpr::formatted_expr, FuncExpr::funcid, get_typlenbyval(), getTypeInputInfo(), getTypeOutputInfo(), HeapTupleIsValid, if(), WindowFunc::ignore_nulls, Int32GetDatum(), InvalidAttrNumber, InvalidOid, IS_FALSE, IS_NOT_FALSE, IS_NOT_NULL, IS_NOT_TRUE, IS_NOT_UNKNOWN, IS_NULL, IS_TRUE, IS_UNKNOWN, IsA, ParamExternData::isnull, lappend(), lfirst, lfirst_node, linitial, list_length(), list_make1, list_make3, list_nth(), Param::location, WindowFunc::location, FuncExpr::location, OpExpr::location, RelabelType::location, CoerceViaIO::location, ConvertRowtypeExpr::location, CollateExpr::location, CaseExpr::location, CaseWhen::location, CoalesceExpr::location, NullTest::location, BooleanTest::location, CoerceToDomain::location, make_andclause(), make_orclause(), makeBoolConst(), makeConst(), makeJsonValueExpr(), makeNode, makeNullConst(), makeVar(), negate_clause(), NIL, nodeTag, NOT_EXPR, NullTest::nulltesttype, ParamListInfoData::numParams, ObjectIdGetDatum(), OidIsValid, OpExpr::opno, OR_EXPR, PARAM_EXTERN, PARAM_FLAG_CONST, Param::paramcollid, ParamListInfoData::paramFetch, Param::paramid, Param::paramkind, ParamListInfoData::params, Param::paramtype, Param::paramtypmod, ParamExternData::pflags, ParamExternData::ptype, JsonValueExpr::raw_expr, record_plan_type_dependency(), ReleaseSysCache(), CaseWhen::result, RelabelType::resulttype, CoerceViaIO::resulttype, ConvertRowtypeExpr::resulttype, CoerceToDomain::resulttype, eval_const_expressions_context::root, rowtype_field_matches(), SearchSysCache1(), set_opfuncid(), set_sa_opfuncid(), simplify_aggref(), simplify_and_arguments(), simplify_boolean_equality(), simplify_function(), simplify_or_arguments(), SQLValueFunction::typmod, ParamExternData::value, Var::varreturningtype, WindowFunc::winfnoid, and WindowFunc::winref.

Referenced by estimate_expression_value(), eval_const_expressions(), eval_const_expressions_mutator(), inline_function(), simplify_and_arguments(), simplify_function(), and simplify_or_arguments().

◆ evaluate_expr()

Expr * evaluate_expr ( Expr expr,
Oid  result_type,
int32  result_typmod,
Oid  result_collation 
)

Definition at line 5287 of file clauses.c.

5289{
5290 EState *estate;
5291 ExprState *exprstate;
5292 MemoryContext oldcontext;
5293 Datum const_val;
5294 bool const_is_null;
5295 int16 resultTypLen;
5296 bool resultTypByVal;
5297
5298 /*
5299 * To use the executor, we need an EState.
5300 */
5301 estate = CreateExecutorState();
5302
5303 /* We can use the estate's working context to avoid memory leaks. */
5304 oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
5305
5306 /* Make sure any opfuncids are filled in. */
5307 fix_opfuncids((Node *) expr);
5308
5309 /*
5310 * Prepare expr for execution. (Note: we can't use ExecPrepareExpr
5311 * because it'd result in recursively invoking eval_const_expressions.)
5312 */
5313 exprstate = ExecInitExpr(expr, NULL);
5314
5315 /*
5316 * And evaluate it.
5317 *
5318 * It is OK to use a default econtext because none of the ExecEvalExpr()
5319 * code used in this situation will use econtext. That might seem
5320 * fortuitous, but it's not so unreasonable --- a constant expression does
5321 * not depend on context, by definition, n'est ce pas?
5322 */
5323 const_val = ExecEvalExprSwitchContext(exprstate,
5324 GetPerTupleExprContext(estate),
5325 &const_is_null);
5326
5327 /* Get info needed about result datatype */
5328 get_typlenbyval(result_type, &resultTypLen, &resultTypByVal);
5329
5330 /* Get back to outer memory context */
5331 MemoryContextSwitchTo(oldcontext);
5332
5333 /*
5334 * Must copy result out of sub-context used by expression eval.
5335 *
5336 * Also, if it's varlena, forcibly detoast it. This protects us against
5337 * storing TOAST pointers into plans that might outlive the referenced
5338 * data. (makeConst would handle detoasting anyway, but it's worth a few
5339 * extra lines here so that we can do the copy and detoast in one step.)
5340 */
5341 if (!const_is_null)
5342 {
5343 if (resultTypLen == -1)
5344 const_val = PointerGetDatum(PG_DETOAST_DATUM_COPY(const_val));
5345 else
5346 const_val = datumCopy(const_val, resultTypByVal, resultTypLen);
5347 }
5348
5349 /* Release all the junk we just created */
5350 FreeExecutorState(estate);
5351
5352 /*
5353 * Make the constant result node.
5354 */
5355 return (Expr *) makeConst(result_type, result_typmod, result_collation,
5356 resultTypLen,
5357 const_val, const_is_null,
5358 resultTypByVal);
5359}
ExprState * ExecInitExpr(Expr *node, PlanState *parent)
Definition: execExpr.c:143
void FreeExecutorState(EState *estate)
Definition: execUtils.c:192
EState * CreateExecutorState(void)
Definition: execUtils.c:88
#define GetPerTupleExprContext(estate)
Definition: executor.h:656
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:436
#define PG_DETOAST_DATUM_COPY(datum)
Definition: fmgr.h:242
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1840
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:352
MemoryContext es_query_cxt
Definition: execnodes.h:710

References CreateExecutorState(), datumCopy(), EState::es_query_cxt, ExecEvalExprSwitchContext(), ExecInitExpr(), fix_opfuncids(), FreeExecutorState(), get_typlenbyval(), GetPerTupleExprContext, makeConst(), MemoryContextSwitchTo(), PG_DETOAST_DATUM_COPY, and PointerGetDatum().

Referenced by eval_const_expressions_mutator(), evaluate_function(), and transformPartitionBoundValue().

◆ evaluate_function()

static Expr * evaluate_function ( Oid  funcid,
Oid  result_type,
int32  result_typmod,
Oid  result_collid,
Oid  input_collid,
List args,
bool  funcvariadic,
HeapTuple  func_tuple,
eval_const_expressions_context context 
)
static

Definition at line 4740 of file clauses.c.

4745{
4746 Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4747 bool has_nonconst_input = false;
4748 bool has_null_input = false;
4749 ListCell *arg;
4750 FuncExpr *newexpr;
4751
4752 /*
4753 * Can't simplify if it returns a set.
4754 */
4755 if (funcform->proretset)
4756 return NULL;
4757
4758 /*
4759 * Can't simplify if it returns RECORD. The immediate problem is that it
4760 * will be needing an expected tupdesc which we can't supply here.
4761 *
4762 * In the case where it has OUT parameters, we could build an expected
4763 * tupdesc from those, but there may be other gotchas lurking. In
4764 * particular, if the function were to return NULL, we would produce a
4765 * null constant with no remaining indication of which concrete record
4766 * type it is. For now, seems best to leave the function call unreduced.
4767 */
4768 if (funcform->prorettype == RECORDOID)
4769 return NULL;
4770
4771 /*
4772 * Check for constant inputs and especially constant-NULL inputs.
4773 */
4774 foreach(arg, args)
4775 {
4776 if (IsA(lfirst(arg), Const))
4777 has_null_input |= ((Const *) lfirst(arg))->constisnull;
4778 else
4779 has_nonconst_input = true;
4780 }
4781
4782 /*
4783 * If the function is strict and has a constant-NULL input, it will never
4784 * be called at all, so we can replace the call by a NULL constant, even
4785 * if there are other inputs that aren't constant, and even if the
4786 * function is not otherwise immutable.
4787 */
4788 if (funcform->proisstrict && has_null_input)
4789 return (Expr *) makeNullConst(result_type, result_typmod,
4790 result_collid);
4791
4792 /*
4793 * Otherwise, can simplify only if all inputs are constants. (For a
4794 * non-strict function, constant NULL inputs are treated the same as
4795 * constant non-NULL inputs.)
4796 */
4797 if (has_nonconst_input)
4798 return NULL;
4799
4800 /*
4801 * Ordinarily we are only allowed to simplify immutable functions. But for
4802 * purposes of estimation, we consider it okay to simplify functions that
4803 * are merely stable; the risk that the result might change from planning
4804 * time to execution time is worth taking in preference to not being able
4805 * to estimate the value at all.
4806 */
4807 if (funcform->provolatile == PROVOLATILE_IMMUTABLE)
4808 /* okay */ ;
4809 else if (context->estimate && funcform->provolatile == PROVOLATILE_STABLE)
4810 /* okay */ ;
4811 else
4812 return NULL;
4813
4814 /*
4815 * OK, looks like we can simplify this operator/function.
4816 *
4817 * Build a new FuncExpr node containing the already-simplified arguments.
4818 */
4819 newexpr = makeNode(FuncExpr);
4820 newexpr->funcid = funcid;
4821 newexpr->funcresulttype = result_type;
4822 newexpr->funcretset = false;
4823 newexpr->funcvariadic = funcvariadic;
4824 newexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
4825 newexpr->funccollid = result_collid; /* doesn't matter */
4826 newexpr->inputcollid = input_collid;
4827 newexpr->args = args;
4828 newexpr->location = -1;
4829
4830 return evaluate_expr((Expr *) newexpr, result_type, result_typmod,
4831 result_collid);
4832}
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
@ COERCE_EXPLICIT_CALL
Definition: primnodes.h:766

References arg, generate_unaccent_rules::args, FuncExpr::args, COERCE_EXPLICIT_CALL, eval_const_expressions_context::estimate, evaluate_expr(), FuncExpr::funcid, GETSTRUCT(), IsA, lfirst, FuncExpr::location, makeNode, and makeNullConst().

Referenced by simplify_function().

◆ expand_function_arguments()

List * expand_function_arguments ( List args,
bool  include_out_arguments,
Oid  result_type,
HeapTuple  func_tuple 
)

Definition at line 4490 of file clauses.c.

4492{
4493 Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4494 Oid *proargtypes = funcform->proargtypes.values;
4495 int pronargs = funcform->pronargs;
4496 bool has_named_args = false;
4497 ListCell *lc;
4498
4499 /*
4500 * If we are asked to match to OUT arguments, then use the proallargtypes
4501 * array (which includes those); otherwise use proargtypes (which
4502 * doesn't). Of course, if proallargtypes is null, we always use
4503 * proargtypes. (Fetching proallargtypes is annoyingly expensive
4504 * considering that we may have nothing to do here, but fortunately the
4505 * common case is include_out_arguments == false.)
4506 */
4507 if (include_out_arguments)
4508 {
4509 Datum proallargtypes;
4510 bool isNull;
4511
4512 proallargtypes = SysCacheGetAttr(PROCOID, func_tuple,
4513 Anum_pg_proc_proallargtypes,
4514 &isNull);
4515 if (!isNull)
4516 {
4517 ArrayType *arr = DatumGetArrayTypeP(proallargtypes);
4518
4519 pronargs = ARR_DIMS(arr)[0];
4520 if (ARR_NDIM(arr) != 1 ||
4521 pronargs < 0 ||
4522 ARR_HASNULL(arr) ||
4523 ARR_ELEMTYPE(arr) != OIDOID)
4524 elog(ERROR, "proallargtypes is not a 1-D Oid array or it contains nulls");
4525 Assert(pronargs >= funcform->pronargs);
4526 proargtypes = (Oid *) ARR_DATA_PTR(arr);
4527 }
4528 }
4529
4530 /* Do we have any named arguments? */
4531 foreach(lc, args)
4532 {
4533 Node *arg = (Node *) lfirst(lc);
4534
4535 if (IsA(arg, NamedArgExpr))
4536 {
4537 has_named_args = true;
4538 break;
4539 }
4540 }
4541
4542 /* If so, we must apply reorder_function_arguments */
4543 if (has_named_args)
4544 {
4546 /* Recheck argument types and add casts if needed */
4547 recheck_cast_function_args(args, result_type,
4548 proargtypes, pronargs,
4549 func_tuple);
4550 }
4551 else if (list_length(args) < pronargs)
4552 {
4553 /* No named args, but we seem to be short some defaults */
4554 args = add_function_defaults(args, pronargs, func_tuple);
4555 /* Recheck argument types and add casts if needed */
4556 recheck_cast_function_args(args, result_type,
4557 proargtypes, pronargs,
4558 func_tuple);
4559 }
4560
4561 return args;
4562}
#define ARR_DATA_PTR(a)
Definition: array.h:322
#define DatumGetArrayTypeP(X)
Definition: array.h:261
#define ARR_ELEMTYPE(a)
Definition: array.h:292
#define ARR_HASNULL(a)
Definition: array.h:291
static List * add_function_defaults(List *args, int pronargs, HeapTuple func_tuple)
Definition: clauses.c:4641
static List * reorder_function_arguments(List *args, int pronargs, HeapTuple func_tuple)
Definition: clauses.c:4571
static void recheck_cast_function_args(List *args, Oid result_type, Oid *proargtypes, int pronargs, HeapTuple func_tuple)
Definition: clauses.c:4695
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:595

References add_function_defaults(), arg, generate_unaccent_rules::args, ARR_DATA_PTR, ARR_DIMS, ARR_ELEMTYPE, ARR_HASNULL, ARR_NDIM, Assert(), DatumGetArrayTypeP, elog, ERROR, GETSTRUCT(), IsA, lfirst, list_length(), pronargs, recheck_cast_function_args(), reorder_function_arguments(), and SysCacheGetAttr().

Referenced by eval_const_expressions_mutator(), simplify_function(), and transformCallStmt().

◆ expr_is_nonnullable()

bool expr_is_nonnullable ( PlannerInfo root,
Expr expr,
bool  use_rel_info 
)

Definition at line 4348 of file clauses.c.

4349{
4350 /* since this function recurses, it could be driven to stack overflow */
4352
4353 switch (nodeTag(expr))
4354 {
4355 case T_Var:
4356 {
4357 if (root)
4358 return var_is_nonnullable(root, (Var *) expr, use_rel_info);
4359 }
4360 break;
4361 case T_Const:
4362 return !((Const *) expr)->constisnull;
4363 case T_CoalesceExpr:
4364 {
4365 /*
4366 * A CoalesceExpr returns NULL if and only if all its
4367 * arguments are NULL. Therefore, we can determine that a
4368 * CoalesceExpr cannot be NULL if at least one of its
4369 * arguments can be proven non-nullable.
4370 */
4371 CoalesceExpr *coalesceexpr = (CoalesceExpr *) expr;
4372
4373 foreach_ptr(Expr, arg, coalesceexpr->args)
4374 {
4375 if (expr_is_nonnullable(root, arg, use_rel_info))
4376 return true;
4377 }
4378 }
4379 break;
4380 case T_MinMaxExpr:
4381 {
4382 /*
4383 * Like CoalesceExpr, a MinMaxExpr returns NULL only if all
4384 * its arguments evaluate to NULL.
4385 */
4386 MinMaxExpr *minmaxexpr = (MinMaxExpr *) expr;
4387
4388 foreach_ptr(Expr, arg, minmaxexpr->args)
4389 {
4390 if (expr_is_nonnullable(root, arg, use_rel_info))
4391 return true;
4392 }
4393 }
4394 break;
4395 case T_CaseExpr:
4396 {
4397 /*
4398 * A CASE expression is non-nullable if all branch results are
4399 * non-nullable. We must also verify that the default result
4400 * (ELSE) exists and is non-nullable.
4401 */
4402 CaseExpr *caseexpr = (CaseExpr *) expr;
4403
4404 /* The default result must be present and non-nullable */
4405 if (caseexpr->defresult == NULL ||
4406 !expr_is_nonnullable(root, caseexpr->defresult, use_rel_info))
4407 return false;
4408
4409 /* All branch results must be non-nullable */
4410 foreach_ptr(CaseWhen, casewhen, caseexpr->args)
4411 {
4412 if (!expr_is_nonnullable(root, casewhen->result, use_rel_info))
4413 return false;
4414 }
4415
4416 return true;
4417 }
4418 break;
4419 case T_ArrayExpr:
4420 {
4421 /*
4422 * An ARRAY[] expression always returns a valid Array object,
4423 * even if it is empty (ARRAY[]) or contains NULLs
4424 * (ARRAY[NULL]). It never evaluates to a SQL NULL.
4425 */
4426 return true;
4427 }
4428 case T_NullTest:
4429 {
4430 /*
4431 * An IS NULL / IS NOT NULL expression always returns a
4432 * boolean value. It never returns SQL NULL.
4433 */
4434 return true;
4435 }
4436 case T_BooleanTest:
4437 {
4438 /*
4439 * A BooleanTest expression always evaluates to a boolean
4440 * value. It never returns SQL NULL.
4441 */
4442 return true;
4443 }
4444 case T_DistinctExpr:
4445 {
4446 /*
4447 * IS DISTINCT FROM never returns NULL, effectively acting as
4448 * though NULL were a normal data value.
4449 */
4450 return true;
4451 }
4452 case T_RelabelType:
4453 {
4454 /*
4455 * RelabelType does not change the nullability of the data.
4456 * The result is non-nullable if and only if the argument is
4457 * non-nullable.
4458 */
4459 return expr_is_nonnullable(root, ((RelabelType *) expr)->arg,
4460 use_rel_info);
4461 }
4462 default:
4463 break;
4464 }
4465
4466 return false;
4467}
bool var_is_nonnullable(PlannerInfo *root, Var *var, bool use_rel_info)
Definition: clauses.c:4283
#define foreach_ptr(type, var, lst)
Definition: pg_list.h:469

References arg, CaseExpr::args, CoalesceExpr::args, MinMaxExpr::args, check_stack_depth(), CaseExpr::defresult, expr_is_nonnullable(), foreach_ptr, nodeTag, root, and var_is_nonnullable().

Referenced by eval_const_expressions_mutator(), expr_is_nonnullable(), int8inc_support(), restriction_is_always_false(), and restriction_is_always_true().

◆ expression_returns_set_rows()

double expression_returns_set_rows ( PlannerInfo root,
Node clause 
)

Definition at line 301 of file clauses.c.

302{
303 if (clause == NULL)
304 return 1.0;
305 if (IsA(clause, FuncExpr))
306 {
307 FuncExpr *expr = (FuncExpr *) clause;
308
309 if (expr->funcretset)
310 return clamp_row_est(get_function_rows(root, expr->funcid, clause));
311 }
312 if (IsA(clause, OpExpr))
313 {
314 OpExpr *expr = (OpExpr *) clause;
315
316 if (expr->opretset)
317 {
318 set_opfuncid(expr);
319 return clamp_row_est(get_function_rows(root, expr->opfuncid, clause));
320 }
321 }
322 return 1.0;
323}
double clamp_row_est(double nrows)
Definition: costsize.c:213
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2418

References clamp_row_est(), FuncExpr::funcid, get_function_rows(), IsA, root, and set_opfuncid().

Referenced by create_set_projection_path(), estimate_num_groups(), and set_function_size_estimates().

◆ fetch_function_defaults()

static List * fetch_function_defaults ( HeapTuple  func_tuple)
static

Definition at line 4665 of file clauses.c.

4666{
4667 List *defaults;
4668 Datum proargdefaults;
4669 char *str;
4670
4671 proargdefaults = SysCacheGetAttrNotNull(PROCOID, func_tuple,
4672 Anum_pg_proc_proargdefaults);
4673 str = TextDatumGetCString(proargdefaults);
4674 defaults = castNode(List, stringToNode(str));
4675 pfree(str);
4676 return defaults;
4677}
#define TextDatumGetCString(d)
Definition: builtins.h:98
const char * str
void pfree(void *pointer)
Definition: mcxt.c:1616
void * stringToNode(const char *str)
Definition: read.c:90
Datum SysCacheGetAttrNotNull(int cacheId, HeapTuple tup, AttrNumber attributeNumber)
Definition: syscache.c:625

References castNode, pfree(), str, stringToNode(), SysCacheGetAttrNotNull(), and TextDatumGetCString.

Referenced by add_function_defaults(), and reorder_function_arguments().

◆ find_forced_null_var()

Var * find_forced_null_var ( Node node)

Definition at line 1992 of file clauses.c.

1993{
1994 if (node == NULL)
1995 return NULL;
1996 if (IsA(node, NullTest))
1997 {
1998 /* check for var IS NULL */
1999 NullTest *expr = (NullTest *) node;
2000
2001 if (expr->nulltesttype == IS_NULL && !expr->argisrow)
2002 {
2003 Var *var = (Var *) expr->arg;
2004
2005 if (var && IsA(var, Var) &&
2006 var->varlevelsup == 0)
2007 return var;
2008 }
2009 }
2010 else if (IsA(node, BooleanTest))
2011 {
2012 /* var IS UNKNOWN is equivalent to var IS NULL */
2013 BooleanTest *expr = (BooleanTest *) node;
2014
2015 if (expr->booltesttype == IS_UNKNOWN)
2016 {
2017 Var *var = (Var *) expr->arg;
2018
2019 if (var && IsA(var, Var) &&
2020 var->varlevelsup == 0)
2021 return var;
2022 }
2023 }
2024 return NULL;
2025}
Index varlevelsup
Definition: primnodes.h:294

References NullTest::arg, BooleanTest::arg, BooleanTest::booltesttype, if(), IS_NULL, IS_UNKNOWN, IsA, NullTest::nulltesttype, and Var::varlevelsup.

Referenced by check_redundant_nullability_qual(), and find_forced_null_vars().

◆ find_forced_null_vars()

List * find_forced_null_vars ( Node node)

Definition at line 1931 of file clauses.c.

1932{
1933 List *result = NIL;
1934 Var *var;
1935 ListCell *l;
1936
1937 if (node == NULL)
1938 return NIL;
1939 /* Check single-clause cases using subroutine */
1940 var = find_forced_null_var(node);
1941 if (var)
1942 {
1943 result = mbms_add_member(result,
1944 var->varno,
1946 }
1947 /* Otherwise, handle AND-conditions */
1948 else if (IsA(node, List))
1949 {
1950 /*
1951 * At top level, we are examining an implicit-AND list: if any of the
1952 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL.
1953 */
1954 foreach(l, (List *) node)
1955 {
1956 result = mbms_add_members(result,
1958 }
1959 }
1960 else if (IsA(node, BoolExpr))
1961 {
1962 BoolExpr *expr = (BoolExpr *) node;
1963
1964 /*
1965 * We don't bother considering the OR case, because it's fairly
1966 * unlikely anyone would write "v1 IS NULL OR v1 IS NULL". Likewise,
1967 * the NOT case isn't worth expending code on.
1968 */
1969 if (expr->boolop == AND_EXPR)
1970 {
1971 /* At top level we can just recurse (to the List case) */
1972 result = find_forced_null_vars((Node *) expr->args);
1973 }
1974 }
1975 return result;
1976}
List * find_forced_null_vars(Node *node)
Definition: clauses.c:1931
Var * find_forced_null_var(Node *node)
Definition: clauses.c:1992
List * mbms_add_members(List *a, const List *b)
List * mbms_add_member(List *a, int listidx, int bitidx)
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27

References AND_EXPR, BoolExpr::args, BoolExpr::boolop, find_forced_null_var(), find_forced_null_vars(), FirstLowInvalidHeapAttributeNumber, IsA, lfirst, mbms_add_member(), mbms_add_members(), NIL, Var::varattno, and Var::varno.

Referenced by find_forced_null_vars(), and reduce_outer_joins_pass2().

◆ find_nonnullable_rels()

Relids find_nonnullable_rels ( Node clause)

Definition at line 1471 of file clauses.c.

1472{
1473 return find_nonnullable_rels_walker(clause, true);
1474}
static Relids find_nonnullable_rels_walker(Node *node, bool top_level)
Definition: clauses.c:1477

References find_nonnullable_rels_walker().

Referenced by make_outerjoininfo(), and reduce_outer_joins_pass2().

◆ find_nonnullable_rels_walker()

static Relids find_nonnullable_rels_walker ( Node node,
bool  top_level 
)
static

Definition at line 1477 of file clauses.c.

1478{
1479 Relids result = NULL;
1480 ListCell *l;
1481
1482 if (node == NULL)
1483 return NULL;
1484 if (IsA(node, Var))
1485 {
1486 Var *var = (Var *) node;
1487
1488 if (var->varlevelsup == 0)
1489 result = bms_make_singleton(var->varno);
1490 }
1491 else if (IsA(node, List))
1492 {
1493 /*
1494 * At top level, we are examining an implicit-AND list: if any of the
1495 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
1496 * not at top level, we are examining the arguments of a strict
1497 * function: if any of them produce NULL then the result of the
1498 * function must be NULL. So in both cases, the set of nonnullable
1499 * rels is the union of those found in the arms, and we pass down the
1500 * top_level flag unmodified.
1501 */
1502 foreach(l, (List *) node)
1503 {
1504 result = bms_join(result,
1506 top_level));
1507 }
1508 }
1509 else if (IsA(node, FuncExpr))
1510 {
1511 FuncExpr *expr = (FuncExpr *) node;
1512
1513 if (func_strict(expr->funcid))
1514 result = find_nonnullable_rels_walker((Node *) expr->args, false);
1515 }
1516 else if (IsA(node, OpExpr))
1517 {
1518 OpExpr *expr = (OpExpr *) node;
1519
1520 set_opfuncid(expr);
1521 if (func_strict(expr->opfuncid))
1522 result = find_nonnullable_rels_walker((Node *) expr->args, false);
1523 }
1524 else if (IsA(node, ScalarArrayOpExpr))
1525 {
1526 ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
1527
1528 if (is_strict_saop(expr, true))
1529 result = find_nonnullable_rels_walker((Node *) expr->args, false);
1530 }
1531 else if (IsA(node, BoolExpr))
1532 {
1533 BoolExpr *expr = (BoolExpr *) node;
1534
1535 switch (expr->boolop)
1536 {
1537 case AND_EXPR:
1538 /* At top level we can just recurse (to the List case) */
1539 if (top_level)
1540 {
1541 result = find_nonnullable_rels_walker((Node *) expr->args,
1542 top_level);
1543 break;
1544 }
1545
1546 /*
1547 * Below top level, even if one arm produces NULL, the result
1548 * could be FALSE (hence not NULL). However, if *all* the
1549 * arms produce NULL then the result is NULL, so we can take
1550 * the intersection of the sets of nonnullable rels, just as
1551 * for OR. Fall through to share code.
1552 */
1553 /* FALL THRU */
1554 case OR_EXPR:
1555
1556 /*
1557 * OR is strict if all of its arms are, so we can take the
1558 * intersection of the sets of nonnullable rels for each arm.
1559 * This works for both values of top_level.
1560 */
1561 foreach(l, expr->args)
1562 {
1563 Relids subresult;
1564
1565 subresult = find_nonnullable_rels_walker(lfirst(l),
1566 top_level);
1567 if (result == NULL) /* first subresult? */
1568 result = subresult;
1569 else
1570 result = bms_int_members(result, subresult);
1571
1572 /*
1573 * If the intersection is empty, we can stop looking. This
1574 * also justifies the test for first-subresult above.
1575 */
1576 if (bms_is_empty(result))
1577 break;
1578 }
1579 break;
1580 case NOT_EXPR:
1581 /* NOT will return null if its arg is null */
1582 result = find_nonnullable_rels_walker((Node *) expr->args,
1583 false);
1584 break;
1585 default:
1586 elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
1587 break;
1588 }
1589 }
1590 else if (IsA(node, RelabelType))
1591 {
1592 RelabelType *expr = (RelabelType *) node;
1593
1594 result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1595 }
1596 else if (IsA(node, CoerceViaIO))
1597 {
1598 /* not clear this is useful, but it can't hurt */
1599 CoerceViaIO *expr = (CoerceViaIO *) node;
1600
1601 result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1602 }
1603 else if (IsA(node, ArrayCoerceExpr))
1604 {
1605 /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
1606 ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
1607
1608 result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1609 }
1610 else if (IsA(node, ConvertRowtypeExpr))
1611 {
1612 /* not clear this is useful, but it can't hurt */
1613 ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
1614
1615 result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1616 }
1617 else if (IsA(node, CollateExpr))
1618 {
1619 CollateExpr *expr = (CollateExpr *) node;
1620
1621 result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
1622 }
1623 else if (IsA(node, NullTest))
1624 {
1625 /* IS NOT NULL can be considered strict, but only at top level */
1626 NullTest *expr = (NullTest *) node;
1627
1628 if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
1629 result = find_nonnullable_rels_walker((Node *) expr->arg, false);
1630 }
1631 else if (IsA(node, BooleanTest))
1632 {
1633 /* Boolean tests that reject NULL are strict at top level */
1634 BooleanTest *expr = (BooleanTest *) node;
1635
1636 if (top_level &&
1637 (expr->booltesttype == IS_TRUE ||
1638 expr->booltesttype == IS_FALSE ||
1639 expr->booltesttype == IS_NOT_UNKNOWN))
1640 result = find_nonnullable_rels_walker((Node *) expr->arg, false);
1641 }
1642 else if (IsA(node, SubPlan))
1643 {
1644 SubPlan *splan = (SubPlan *) node;
1645
1646 /*
1647 * For some types of SubPlan, we can infer strictness from Vars in the
1648 * testexpr (the LHS of the original SubLink).
1649 *
1650 * For ANY_SUBLINK, if the subquery produces zero rows, the result is
1651 * always FALSE. If the subquery produces more than one row, the
1652 * per-row results of the testexpr are combined using OR semantics.
1653 * Hence ANY_SUBLINK can be strict only at top level, but there it's
1654 * as strict as the testexpr is.
1655 *
1656 * For ROWCOMPARE_SUBLINK, if the subquery produces zero rows, the
1657 * result is always NULL. Otherwise, the result is as strict as the
1658 * testexpr is. So we can check regardless of top_level.
1659 *
1660 * We can't prove anything for other sublink types (in particular,
1661 * note that ALL_SUBLINK will return TRUE if the subquery is empty).
1662 */
1663 if ((top_level && splan->subLinkType == ANY_SUBLINK) ||
1665 result = find_nonnullable_rels_walker(splan->testexpr, top_level);
1666 }
1667 else if (IsA(node, PlaceHolderVar))
1668 {
1669 PlaceHolderVar *phv = (PlaceHolderVar *) node;
1670
1671 /*
1672 * If the contained expression forces any rels non-nullable, so does
1673 * the PHV.
1674 */
1675 result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);
1676
1677 /*
1678 * If the PHV's syntactic scope is exactly one rel, it will be forced
1679 * to be evaluated at that rel, and so it will behave like a Var of
1680 * that rel: if the rel's entire output goes to null, so will the PHV.
1681 * (If the syntactic scope is a join, we know that the PHV will go to
1682 * null if the whole join does; but that is AND semantics while we
1683 * need OR semantics for find_nonnullable_rels' result, so we can't do
1684 * anything with the knowledge.)
1685 */
1686 if (phv->phlevelsup == 0 &&
1687 bms_membership(phv->phrels) == BMS_SINGLETON)
1688 result = bms_add_members(result, phv->phrels);
1689 }
1690 return result;
1691}
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_int_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1108
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:916
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:780
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1229
#define bms_is_empty(a)
Definition: bitmapset.h:118
@ BMS_SINGLETON
Definition: bitmapset.h:72
static bool is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK)
Definition: clauses.c:2041
@ ANY_SUBLINK
Definition: primnodes.h:1031
@ ROWCOMPARE_SUBLINK
Definition: primnodes.h:1032
Index phlevelsup
Definition: pathnodes.h:3025
Node * testexpr
Definition: primnodes.h:1099
SubLinkType subLinkType
Definition: primnodes.h:1097

References AND_EXPR, ANY_SUBLINK, RelabelType::arg, CoerceViaIO::arg, ArrayCoerceExpr::arg, ConvertRowtypeExpr::arg, CollateExpr::arg, NullTest::arg, BooleanTest::arg, FuncExpr::args, OpExpr::args, ScalarArrayOpExpr::args, BoolExpr::args, bms_add_members(), bms_int_members(), bms_is_empty, bms_join(), bms_make_singleton(), bms_membership(), BMS_SINGLETON, BoolExpr::boolop, BooleanTest::booltesttype, elog, ERROR, find_nonnullable_rels_walker(), func_strict(), FuncExpr::funcid, IS_FALSE, IS_NOT_NULL, IS_NOT_UNKNOWN, is_strict_saop(), IS_TRUE, IsA, lfirst, NOT_EXPR, NullTest::nulltesttype, OR_EXPR, PlaceHolderVar::phlevelsup, ROWCOMPARE_SUBLINK, set_opfuncid(), SubPlan::subLinkType, SubPlan::testexpr, Var::varlevelsup, and Var::varno.

Referenced by find_nonnullable_rels(), and find_nonnullable_rels_walker().

◆ find_nonnullable_vars()

List * find_nonnullable_vars ( Node clause)

Definition at line 1722 of file clauses.c.

1723{
1724 return find_nonnullable_vars_walker(clause, true);
1725}
static List * find_nonnullable_vars_walker(Node *node, bool top_level)
Definition: clauses.c:1728

References find_nonnullable_vars_walker().

Referenced by reduce_outer_joins_pass2().

◆ find_nonnullable_vars_walker()

static List * find_nonnullable_vars_walker ( Node node,
bool  top_level 
)
static

Definition at line 1728 of file clauses.c.

1729{
1730 List *result = NIL;
1731 ListCell *l;
1732
1733 if (node == NULL)
1734 return NIL;
1735 if (IsA(node, Var))
1736 {
1737 Var *var = (Var *) node;
1738
1739 if (var->varlevelsup == 0)
1740 result = mbms_add_member(result,
1741 var->varno,
1743 }
1744 else if (IsA(node, List))
1745 {
1746 /*
1747 * At top level, we are examining an implicit-AND list: if any of the
1748 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
1749 * not at top level, we are examining the arguments of a strict
1750 * function: if any of them produce NULL then the result of the
1751 * function must be NULL. So in both cases, the set of nonnullable
1752 * vars is the union of those found in the arms, and we pass down the
1753 * top_level flag unmodified.
1754 */
1755 foreach(l, (List *) node)
1756 {
1757 result = mbms_add_members(result,
1759 top_level));
1760 }
1761 }
1762 else if (IsA(node, FuncExpr))
1763 {
1764 FuncExpr *expr = (FuncExpr *) node;
1765
1766 if (func_strict(expr->funcid))
1767 result = find_nonnullable_vars_walker((Node *) expr->args, false);
1768 }
1769 else if (IsA(node, OpExpr))
1770 {
1771 OpExpr *expr = (OpExpr *) node;
1772
1773 set_opfuncid(expr);
1774 if (func_strict(expr->opfuncid))
1775 result = find_nonnullable_vars_walker((Node *) expr->args, false);
1776 }
1777 else if (IsA(node, ScalarArrayOpExpr))
1778 {
1779 ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
1780
1781 if (is_strict_saop(expr, true))
1782 result = find_nonnullable_vars_walker((Node *) expr->args, false);
1783 }
1784 else if (IsA(node, BoolExpr))
1785 {
1786 BoolExpr *expr = (BoolExpr *) node;
1787
1788 switch (expr->boolop)
1789 {
1790 case AND_EXPR:
1791
1792 /*
1793 * At top level we can just recurse (to the List case), since
1794 * the result should be the union of what we can prove in each
1795 * arm.
1796 */
1797 if (top_level)
1798 {
1799 result = find_nonnullable_vars_walker((Node *) expr->args,
1800 top_level);
1801 break;
1802 }
1803
1804 /*
1805 * Below top level, even if one arm produces NULL, the result
1806 * could be FALSE (hence not NULL). However, if *all* the
1807 * arms produce NULL then the result is NULL, so we can take
1808 * the intersection of the sets of nonnullable vars, just as
1809 * for OR. Fall through to share code.
1810 */
1811 /* FALL THRU */
1812 case OR_EXPR:
1813
1814 /*
1815 * OR is strict if all of its arms are, so we can take the
1816 * intersection of the sets of nonnullable vars for each arm.
1817 * This works for both values of top_level.
1818 */
1819 foreach(l, expr->args)
1820 {
1821 List *subresult;
1822
1823 subresult = find_nonnullable_vars_walker(lfirst(l),
1824 top_level);
1825 if (result == NIL) /* first subresult? */
1826 result = subresult;
1827 else
1828 result = mbms_int_members(result, subresult);
1829
1830 /*
1831 * If the intersection is empty, we can stop looking. This
1832 * also justifies the test for first-subresult above.
1833 */
1834 if (result == NIL)
1835 break;
1836 }
1837 break;
1838 case NOT_EXPR:
1839 /* NOT will return null if its arg is null */
1840 result = find_nonnullable_vars_walker((Node *) expr->args,
1841 false);
1842 break;
1843 default:
1844 elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
1845 break;
1846 }
1847 }
1848 else if (IsA(node, RelabelType))
1849 {
1850 RelabelType *expr = (RelabelType *) node;
1851
1852 result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1853 }
1854 else if (IsA(node, CoerceViaIO))
1855 {
1856 /* not clear this is useful, but it can't hurt */
1857 CoerceViaIO *expr = (CoerceViaIO *) node;
1858
1859 result = find_nonnullable_vars_walker((Node *) expr->arg, false);
1860 }
1861 else if (IsA(node, ArrayCoerceExpr))
1862 {
1863 /* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
1864 ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
1865
1866 result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1867 }
1868 else if (IsA(node, ConvertRowtypeExpr))
1869 {
1870 /* not clear this is useful, but it can't hurt */
1871 ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
1872
1873 result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1874 }
1875 else if (IsA(node, CollateExpr))
1876 {
1877 CollateExpr *expr = (CollateExpr *) node;
1878
1879 result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
1880 }
1881 else if (IsA(node, NullTest))
1882 {
1883 /* IS NOT NULL can be considered strict, but only at top level */
1884 NullTest *expr = (NullTest *) node;
1885
1886 if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
1887 result = find_nonnullable_vars_walker((Node *) expr->arg, false);
1888 }
1889 else if (IsA(node, BooleanTest))
1890 {
1891 /* Boolean tests that reject NULL are strict at top level */
1892 BooleanTest *expr = (BooleanTest *) node;
1893
1894 if (top_level &&
1895 (expr->booltesttype == IS_TRUE ||
1896 expr->booltesttype == IS_FALSE ||
1897 expr->booltesttype == IS_NOT_UNKNOWN))
1898 result = find_nonnullable_vars_walker((Node *) expr->arg, false);
1899 }
1900 else if (IsA(node, SubPlan))
1901 {
1902 SubPlan *splan = (SubPlan *) node;
1903
1904 /* See analysis in find_nonnullable_rels_walker */
1905 if ((top_level && splan->subLinkType == ANY_SUBLINK) ||
1907 result = find_nonnullable_vars_walker(splan->testexpr, top_level);
1908 }
1909 else if (IsA(node, PlaceHolderVar))
1910 {
1911 PlaceHolderVar *phv = (PlaceHolderVar *) node;
1912
1913 result = find_nonnullable_vars_walker((Node *) phv->phexpr, top_level);
1914 }
1915 return result;
1916}
List * mbms_int_members(List *a, const List *b)

References AND_EXPR, ANY_SUBLINK, RelabelType::arg, CoerceViaIO::arg, ArrayCoerceExpr::arg, ConvertRowtypeExpr::arg, CollateExpr::arg, NullTest::arg, BooleanTest::arg, FuncExpr::args, OpExpr::args, ScalarArrayOpExpr::args, BoolExpr::args, BoolExpr::boolop, BooleanTest::booltesttype, elog, ERROR, find_nonnullable_vars_walker(), FirstLowInvalidHeapAttributeNumber, func_strict(), FuncExpr::funcid, IS_FALSE, IS_NOT_NULL, IS_NOT_UNKNOWN, is_strict_saop(), IS_TRUE, IsA, lfirst, mbms_add_member(), mbms_add_members(), mbms_int_members(), NIL, NOT_EXPR, NullTest::nulltesttype, OR_EXPR, ROWCOMPARE_SUBLINK, set_opfuncid(), SubPlan::subLinkType, SubPlan::testexpr, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by find_nonnullable_vars(), and find_nonnullable_vars_walker().

◆ find_window_functions()

WindowFuncLists * find_window_functions ( Node clause,
Index  maxWinRef 
)

Definition at line 240 of file clauses.c.

241{
243
244 lists->numWindowFuncs = 0;
245 lists->maxWinRef = maxWinRef;
246 lists->windowFuncs = (List **) palloc0((maxWinRef + 1) * sizeof(List *));
247 (void) find_window_functions_walker(clause, lists);
248 return lists;
249}
static bool find_window_functions_walker(Node *node, WindowFuncLists *lists)
Definition: clauses.c:252
#define palloc_object(type)
Definition: fe_memutils.h:74
void * palloc0(Size size)
Definition: mcxt.c:1417
List ** windowFuncs
Definition: clauses.h:23
Index maxWinRef
Definition: clauses.h:22
int numWindowFuncs
Definition: clauses.h:21

References find_window_functions_walker(), WindowFuncLists::maxWinRef, WindowFuncLists::numWindowFuncs, palloc0(), palloc_object, and WindowFuncLists::windowFuncs.

Referenced by grouping_planner().

◆ find_window_functions_walker()

static bool find_window_functions_walker ( Node node,
WindowFuncLists lists 
)
static

Definition at line 252 of file clauses.c.

253{
254 if (node == NULL)
255 return false;
256 if (IsA(node, WindowFunc))
257 {
258 WindowFunc *wfunc = (WindowFunc *) node;
259
260 /* winref is unsigned, so one-sided test is OK */
261 if (wfunc->winref > lists->maxWinRef)
262 elog(ERROR, "WindowFunc contains out-of-range winref %u",
263 wfunc->winref);
264 /* eliminate duplicates, so that we avoid repeated computation */
265 if (!list_member(lists->windowFuncs[wfunc->winref], wfunc))
266 {
267 lists->windowFuncs[wfunc->winref] =
268 lappend(lists->windowFuncs[wfunc->winref], wfunc);
269 lists->numWindowFuncs++;
270 }
271
272 /*
273 * We assume that the parser checked that there are no window
274 * functions in the arguments or filter clause. Hence, we need not
275 * recurse into them. (If either the parser or the planner screws up
276 * on this point, the executor will still catch it; see ExecInitExpr.)
277 */
278 return false;
279 }
280 Assert(!IsA(node, SubLink));
282}
bool list_member(const List *list, const void *datum)
Definition: list.c:661

References Assert(), elog, ERROR, expression_tree_walker, find_window_functions_walker(), IsA, lappend(), list_member(), WindowFuncLists::maxWinRef, WindowFuncLists::numWindowFuncs, WindowFuncLists::windowFuncs, and WindowFunc::winref.

Referenced by find_window_functions(), and find_window_functions_walker().

◆ inline_function()

static Expr * inline_function ( Oid  funcid,
Oid  result_type,
Oid  result_collid,
Oid  input_collid,
List args,
bool  funcvariadic,
HeapTuple  func_tuple,
eval_const_expressions_context context 
)
static

Definition at line 4866 of file clauses.c.

4871{
4872 Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4873 char *src;
4874 Datum tmp;
4875 bool isNull;
4876 MemoryContext oldcxt;
4877 MemoryContext mycxt;
4878 inline_error_callback_arg callback_arg;
4879 ErrorContextCallback sqlerrcontext;
4880 FuncExpr *fexpr;
4882 TupleDesc rettupdesc;
4883 ParseState *pstate;
4884 List *raw_parsetree_list;
4885 List *querytree_list;
4887 Node *newexpr;
4888 int *usecounts;
4889 ListCell *arg;
4890 int i;
4891
4892 /*
4893 * Forget it if the function is not SQL-language or has other showstopper
4894 * properties. (The prokind and nargs checks are just paranoia.)
4895 */
4896 if (funcform->prolang != SQLlanguageId ||
4897 funcform->prokind != PROKIND_FUNCTION ||
4898 funcform->prosecdef ||
4899 funcform->proretset ||
4900 funcform->prorettype == RECORDOID ||
4901 !heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL) ||
4902 funcform->pronargs != list_length(args))
4903 return NULL;
4904
4905 /* Check for recursive function, and give up trying to expand if so */
4906 if (list_member_oid(context->active_fns, funcid))
4907 return NULL;
4908
4909 /* Check permission to call function (fail later, if not) */
4910 if (object_aclcheck(ProcedureRelationId, funcid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
4911 return NULL;
4912
4913 /* Check whether a plugin wants to hook function entry/exit */
4914 if (FmgrHookIsNeeded(funcid))
4915 return NULL;
4916
4917 /*
4918 * Make a temporary memory context, so that we don't leak all the stuff
4919 * that parsing might create.
4920 */
4922 "inline_function",
4924 oldcxt = MemoryContextSwitchTo(mycxt);
4925
4926 /*
4927 * We need a dummy FuncExpr node containing the already-simplified
4928 * arguments. (In some cases we don't really need it, but building it is
4929 * cheap enough that it's not worth contortions to avoid.)
4930 */
4931 fexpr = makeNode(FuncExpr);
4932 fexpr->funcid = funcid;
4933 fexpr->funcresulttype = result_type;
4934 fexpr->funcretset = false;
4935 fexpr->funcvariadic = funcvariadic;
4936 fexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
4937 fexpr->funccollid = result_collid; /* doesn't matter */
4938 fexpr->inputcollid = input_collid;
4939 fexpr->args = args;
4940 fexpr->location = -1;
4941
4942 /* Fetch the function body */
4943 tmp = SysCacheGetAttrNotNull(PROCOID, func_tuple, Anum_pg_proc_prosrc);
4944 src = TextDatumGetCString(tmp);
4945
4946 /*
4947 * Setup error traceback support for ereport(). This is so that we can
4948 * finger the function that bad information came from.
4949 */
4950 callback_arg.proname = NameStr(funcform->proname);
4951 callback_arg.prosrc = src;
4952
4953 sqlerrcontext.callback = sql_inline_error_callback;
4954 sqlerrcontext.arg = &callback_arg;
4955 sqlerrcontext.previous = error_context_stack;
4956 error_context_stack = &sqlerrcontext;
4957
4958 /* If we have prosqlbody, pay attention to that not prosrc */
4959 tmp = SysCacheGetAttr(PROCOID,
4960 func_tuple,
4961 Anum_pg_proc_prosqlbody,
4962 &isNull);
4963 if (!isNull)
4964 {
4965 Node *n;
4966 List *query_list;
4967
4969 if (IsA(n, List))
4970 query_list = linitial_node(List, castNode(List, n));
4971 else
4972 query_list = list_make1(n);
4973 if (list_length(query_list) != 1)
4974 goto fail;
4975 querytree = linitial(query_list);
4976
4977 /*
4978 * Because we'll insist below that the querytree have an empty rtable
4979 * and no sublinks, it cannot have any relation references that need
4980 * to be locked or rewritten. So we can omit those steps.
4981 */
4982 }
4983 else
4984 {
4985 /* Set up to handle parameters while parsing the function body. */
4986 pinfo = prepare_sql_fn_parse_info(func_tuple,
4987 (Node *) fexpr,
4988 input_collid);
4989
4990 /*
4991 * We just do parsing and parse analysis, not rewriting, because
4992 * rewriting will not affect table-free-SELECT-only queries, which is
4993 * all that we care about. Also, we can punt as soon as we detect
4994 * more than one command in the function body.
4995 */
4996 raw_parsetree_list = pg_parse_query(src);
4997 if (list_length(raw_parsetree_list) != 1)
4998 goto fail;
4999
5000 pstate = make_parsestate(NULL);
5001 pstate->p_sourcetext = src;
5002 sql_fn_parser_setup(pstate, pinfo);
5003
5004 querytree = transformTopLevelStmt(pstate, linitial(raw_parsetree_list));
5005
5006 free_parsestate(pstate);
5007 }
5008
5009 /*
5010 * The single command must be a simple "SELECT expression".
5011 *
5012 * Note: if you change the tests involved in this, see also plpgsql's
5013 * exec_simple_check_plan(). That generally needs to have the same idea
5014 * of what's a "simple expression", so that inlining a function that
5015 * previously wasn't inlined won't change plpgsql's conclusion.
5016 */
5017 if (!IsA(querytree, Query) ||
5018 querytree->commandType != CMD_SELECT ||
5019 querytree->hasAggs ||
5020 querytree->hasWindowFuncs ||
5021 querytree->hasTargetSRFs ||
5022 querytree->hasSubLinks ||
5023 querytree->cteList ||
5024 querytree->rtable ||
5025 querytree->jointree->fromlist ||
5026 querytree->jointree->quals ||
5027 querytree->groupClause ||
5028 querytree->groupingSets ||
5029 querytree->havingQual ||
5030 querytree->windowClause ||
5031 querytree->distinctClause ||
5032 querytree->sortClause ||
5033 querytree->limitOffset ||
5034 querytree->limitCount ||
5035 querytree->setOperations ||
5036 list_length(querytree->targetList) != 1)
5037 goto fail;
5038
5039 /* If the function result is composite, resolve it */
5040 (void) get_expr_result_type((Node *) fexpr,
5041 NULL,
5042 &rettupdesc);
5043
5044 /*
5045 * Make sure the function (still) returns what it's declared to. This
5046 * will raise an error if wrong, but that's okay since the function would
5047 * fail at runtime anyway. Note that check_sql_fn_retval will also insert
5048 * a coercion if needed to make the tlist expression match the declared
5049 * type of the function.
5050 *
5051 * Note: we do not try this until we have verified that no rewriting was
5052 * needed; that's probably not important, but let's be careful.
5053 */
5054 querytree_list = list_make1(querytree);
5055 if (check_sql_fn_retval(list_make1(querytree_list),
5056 result_type, rettupdesc,
5057 funcform->prokind,
5058 false))
5059 goto fail; /* reject whole-tuple-result cases */
5060
5061 /*
5062 * Given the tests above, check_sql_fn_retval shouldn't have decided to
5063 * inject a projection step, but let's just make sure.
5064 */
5065 if (querytree != linitial(querytree_list))
5066 goto fail;
5067
5068 /* Now we can grab the tlist expression */
5069 newexpr = (Node *) ((TargetEntry *) linitial(querytree->targetList))->expr;
5070
5071 /*
5072 * If the SQL function returns VOID, we can only inline it if it is a
5073 * SELECT of an expression returning VOID (ie, it's just a redirection to
5074 * another VOID-returning function). In all non-VOID-returning cases,
5075 * check_sql_fn_retval should ensure that newexpr returns the function's
5076 * declared result type, so this test shouldn't fail otherwise; but we may
5077 * as well cope gracefully if it does.
5078 */
5079 if (exprType(newexpr) != result_type)
5080 goto fail;
5081
5082 /*
5083 * Additional validity checks on the expression. It mustn't be more
5084 * volatile than the surrounding function (this is to avoid breaking hacks
5085 * that involve pretending a function is immutable when it really ain't).
5086 * If the surrounding function is declared strict, then the expression
5087 * must contain only strict constructs and must use all of the function
5088 * parameters (this is overkill, but an exact analysis is hard).
5089 */
5090 if (funcform->provolatile == PROVOLATILE_IMMUTABLE &&
5092 goto fail;
5093 else if (funcform->provolatile == PROVOLATILE_STABLE &&
5095 goto fail;
5096
5097 if (funcform->proisstrict &&
5099 goto fail;
5100
5101 /*
5102 * If any parameter expression contains a context-dependent node, we can't
5103 * inline, for fear of putting such a node into the wrong context.
5104 */
5106 goto fail;
5107
5108 /*
5109 * We may be able to do it; there are still checks on parameter usage to
5110 * make, but those are most easily done in combination with the actual
5111 * substitution of the inputs. So start building expression with inputs
5112 * substituted.
5113 */
5114 usecounts = (int *) palloc0(funcform->pronargs * sizeof(int));
5115 newexpr = substitute_actual_parameters(newexpr, funcform->pronargs,
5116 args, usecounts);
5117
5118 /* Now check for parameter usage */
5119 i = 0;
5120 foreach(arg, args)
5121 {
5122 Node *param = lfirst(arg);
5123
5124 if (usecounts[i] == 0)
5125 {
5126 /* Param not used at all: uncool if func is strict */
5127 if (funcform->proisstrict)
5128 goto fail;
5129 }
5130 else if (usecounts[i] != 1)
5131 {
5132 /* Param used multiple times: uncool if expensive or volatile */
5133 QualCost eval_cost;
5134
5135 /*
5136 * We define "expensive" as "contains any subplan or more than 10
5137 * operators". Note that the subplan search has to be done
5138 * explicitly, since cost_qual_eval() will barf on unplanned
5139 * subselects.
5140 */
5141 if (contain_subplans(param))
5142 goto fail;
5143 cost_qual_eval(&eval_cost, list_make1(param), NULL);
5144 if (eval_cost.startup + eval_cost.per_tuple >
5145 10 * cpu_operator_cost)
5146 goto fail;
5147
5148 /*
5149 * Check volatility last since this is more expensive than the
5150 * above tests
5151 */
5152 if (contain_volatile_functions(param))
5153 goto fail;
5154 }
5155 i++;
5156 }
5157
5158 /*
5159 * Whew --- we can make the substitution. Copy the modified expression
5160 * out of the temporary memory context, and clean up.
5161 */
5162 MemoryContextSwitchTo(oldcxt);
5163
5164 newexpr = copyObject(newexpr);
5165
5166 MemoryContextDelete(mycxt);
5167
5168 /*
5169 * If the result is of a collatable type, force the result to expose the
5170 * correct collation. In most cases this does not matter, but it's
5171 * possible that the function result is used directly as a sort key or in
5172 * other places where we expect exprCollation() to tell the truth.
5173 */
5174 if (OidIsValid(result_collid))
5175 {
5176 Oid exprcoll = exprCollation(newexpr);
5177
5178 if (OidIsValid(exprcoll) && exprcoll != result_collid)
5179 {
5180 CollateExpr *newnode = makeNode(CollateExpr);
5181
5182 newnode->arg = (Expr *) newexpr;
5183 newnode->collOid = result_collid;
5184 newnode->location = -1;
5185
5186 newexpr = (Node *) newnode;
5187 }
5188 }
5189
5190 /*
5191 * Since there is now no trace of the function in the plan tree, we must
5192 * explicitly record the plan's dependency on the function.
5193 */
5194 if (context->root)
5195 record_plan_function_dependency(context->root, funcid);
5196
5197 /*
5198 * Recursively try to simplify the modified expression. Here we must add
5199 * the current function to the context list of active functions.
5200 */
5201 context->active_fns = lappend_oid(context->active_fns, funcid);
5202 newexpr = eval_const_expressions_mutator(newexpr, context);
5203 context->active_fns = list_delete_last(context->active_fns);
5204
5205 error_context_stack = sqlerrcontext.previous;
5206
5207 return (Expr *) newexpr;
5208
5209 /* Here if func is not inlinable: release temp memory and return NULL */
5210fail:
5211 MemoryContextSwitchTo(oldcxt);
5212 MemoryContextDelete(mycxt);
5213 error_context_stack = sqlerrcontext.previous;
5214
5215 return NULL;
5216}
Datum querytree(PG_FUNCTION_ARGS)
Definition: _int_bool.c:665
@ ACLCHECK_OK
Definition: acl.h:183
AclResult object_aclcheck(Oid classid, Oid objectid, Oid roleid, AclMode mode)
Definition: aclchk.c:3836
#define NameStr(name)
Definition: c.h:771
static Node * substitute_actual_parameters(Node *expr, int nargs, List *args, int *usecounts)
Definition: clauses.c:5222
static void sql_inline_error_callback(void *arg)
Definition: clauses.c:5263
static bool contain_context_dependent_node(Node *clause)
Definition: clauses.c:1193
bool contain_nonstrict_functions(Node *clause)
Definition: clauses.c:1005
bool contain_subplans(Node *clause)
Definition: clauses.c:342
double cpu_operator_cost
Definition: costsize.c:134
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4782
ErrorContextCallback * error_context_stack
Definition: elog.c:95
#define FmgrHookIsNeeded(fn_oid)
Definition: fmgr.h:850
TypeFuncClass get_expr_result_type(Node *expr, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:299
bool check_sql_fn_retval(List *queryTreeLists, Oid rettype, TupleDesc rettupdesc, char prokind, bool insertDroppedCols)
Definition: functions.c:2116
void sql_fn_parser_setup(struct ParseState *pstate, SQLFunctionParseInfoPtr pinfo)
Definition: functions.c:340
SQLFunctionParseInfoPtr prepare_sql_fn_parse_info(HeapTuple procedureTuple, Node *call_expr, Oid inputCollation)
Definition: functions.c:251
bool heap_attisnull(HeapTuple tup, int attnum, TupleDesc tupleDesc)
Definition: heaptuple.c:456
int i
Definition: isn.c:77
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
List * list_delete_last(List *list)
Definition: list.c:957
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:722
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:472
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
Oid GetUserId(void)
Definition: miscinit.c:469
@ CMD_SELECT
Definition: nodes.h:275
void free_parsestate(ParseState *pstate)
Definition: parse_node.c:72
ParseState * make_parsestate(ParseState *parentParseState)
Definition: parse_node.c:39
#define ACL_EXECUTE
Definition: parsenodes.h:83
Query * transformTopLevelStmt(ParseState *pstate, RawStmt *parseTree)
Definition: analyze.c:261
#define linitial_node(type, l)
Definition: pg_list.h:181
List * pg_parse_query(const char *query_string)
Definition: postgres.c:604
void record_plan_function_dependency(PlannerInfo *root, Oid funcid)
Definition: setrefs.c:3575
struct ErrorContextCallback * previous
Definition: elog.h:297
void(* callback)(void *arg)
Definition: elog.h:298
const char * p_sourcetext
Definition: parse_node.h:195
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47

References ACL_EXECUTE, ACLCHECK_OK, eval_const_expressions_context::active_fns, ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, arg, CollateExpr::arg, ErrorContextCallback::arg, generate_unaccent_rules::args, FuncExpr::args, ErrorContextCallback::callback, castNode, check_sql_fn_retval(), CMD_SELECT, COERCE_EXPLICIT_CALL, CollateExpr::collOid, contain_context_dependent_node(), contain_mutable_functions(), contain_nonstrict_functions(), contain_subplans(), contain_volatile_functions(), copyObject, cost_qual_eval(), cpu_operator_cost, CurrentMemoryContext, error_context_stack, eval_const_expressions_mutator(), exprCollation(), exprType(), FmgrHookIsNeeded, free_parsestate(), FuncExpr::funcid, get_expr_result_type(), GETSTRUCT(), GetUserId(), heap_attisnull(), i, IsA, lappend_oid(), lfirst, linitial, linitial_node, list_delete_last(), list_length(), list_make1, list_member_oid(), FuncExpr::location, CollateExpr::location, make_parsestate(), makeNode, MemoryContextDelete(), MemoryContextSwitchTo(), NameStr, object_aclcheck(), OidIsValid, ParseState::p_sourcetext, palloc0(), QualCost::per_tuple, pg_parse_query(), prepare_sql_fn_parse_info(), ErrorContextCallback::previous, inline_error_callback_arg::proname, inline_error_callback_arg::prosrc, querytree(), record_plan_function_dependency(), eval_const_expressions_context::root, sql_fn_parser_setup(), sql_inline_error_callback(), QualCost::startup, stringToNode(), substitute_actual_parameters(), SysCacheGetAttr(), SysCacheGetAttrNotNull(), TextDatumGetCString, and transformTopLevelStmt().

Referenced by simplify_function().

◆ inline_function_in_from()

Query * inline_function_in_from ( PlannerInfo root,
RangeTblEntry rte 
)

Definition at line 5379 of file clauses.c.

5380{
5381 RangeTblFunction *rtfunc;
5382 FuncExpr *fexpr;
5383 Oid func_oid;
5384 HeapTuple func_tuple;
5385 Form_pg_proc funcform;
5386 MemoryContext oldcxt;
5387 MemoryContext mycxt;
5388 Datum tmp;
5389 char *src;
5390 inline_error_callback_arg callback_arg;
5391 ErrorContextCallback sqlerrcontext;
5392 Query *querytree = NULL;
5393
5394 Assert(rte->rtekind == RTE_FUNCTION);
5395
5396 /*
5397 * Guard against infinite recursion during expansion by checking for stack
5398 * overflow. (There's no need to do more.)
5399 */
5401
5402 /* Fail if the RTE has ORDINALITY - we don't implement that here. */
5403 if (rte->funcordinality)
5404 return NULL;
5405
5406 /* Fail if RTE isn't a single, simple FuncExpr */
5407 if (list_length(rte->functions) != 1)
5408 return NULL;
5409 rtfunc = (RangeTblFunction *) linitial(rte->functions);
5410
5411 if (!IsA(rtfunc->funcexpr, FuncExpr))
5412 return NULL;
5413 fexpr = (FuncExpr *) rtfunc->funcexpr;
5414
5415 func_oid = fexpr->funcid;
5416
5417 /*
5418 * Refuse to inline if the arguments contain any volatile functions or
5419 * sub-selects. Volatile functions are rejected because inlining may
5420 * result in the arguments being evaluated multiple times, risking a
5421 * change in behavior. Sub-selects are rejected partly for implementation
5422 * reasons (pushing them down another level might change their behavior)
5423 * and partly because they're likely to be expensive and so multiple
5424 * evaluation would be bad.
5425 */
5426 if (contain_volatile_functions((Node *) fexpr->args) ||
5427 contain_subplans((Node *) fexpr->args))
5428 return NULL;
5429
5430 /* Check permission to call function (fail later, if not) */
5431 if (object_aclcheck(ProcedureRelationId, func_oid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
5432 return NULL;
5433
5434 /* Check whether a plugin wants to hook function entry/exit */
5435 if (FmgrHookIsNeeded(func_oid))
5436 return NULL;
5437
5438 /*
5439 * OK, let's take a look at the function's pg_proc entry.
5440 */
5441 func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(func_oid));
5442 if (!HeapTupleIsValid(func_tuple))
5443 elog(ERROR, "cache lookup failed for function %u", func_oid);
5444 funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
5445
5446 /*
5447 * If the function SETs any configuration parameters, inlining would cause
5448 * us to miss making those changes.
5449 */
5450 if (!heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL))
5451 {
5452 ReleaseSysCache(func_tuple);
5453 return NULL;
5454 }
5455
5456 /*
5457 * Make a temporary memory context, so that we don't leak all the stuff
5458 * that parsing and rewriting might create. If we succeed, we'll copy
5459 * just the finished query tree back up to the caller's context.
5460 */
5462 "inline_function_in_from",
5464 oldcxt = MemoryContextSwitchTo(mycxt);
5465
5466 /* Fetch the function body */
5467 tmp = SysCacheGetAttrNotNull(PROCOID, func_tuple, Anum_pg_proc_prosrc);
5468 src = TextDatumGetCString(tmp);
5469
5470 /*
5471 * If the function has an attached support function that can handle
5472 * SupportRequestInlineInFrom, then attempt to inline with that.
5473 */
5474 if (funcform->prosupport)
5475 {
5477
5478 req.type = T_SupportRequestInlineInFrom;
5479 req.root = root;
5480 req.rtfunc = rtfunc;
5481 req.proc = func_tuple;
5482
5483 querytree = (Query *)
5484 DatumGetPointer(OidFunctionCall1(funcform->prosupport,
5485 PointerGetDatum(&req)));
5486 }
5487
5488 /*
5489 * Setup error traceback support for ereport(). This is so that we can
5490 * finger the function that bad information came from. We don't install
5491 * this while running the support function, since it'd be likely to do the
5492 * wrong thing: any parse errors reported during that are very likely not
5493 * against the raw function source text.
5494 */
5495 callback_arg.proname = NameStr(funcform->proname);
5496 callback_arg.prosrc = src;
5497
5498 sqlerrcontext.callback = sql_inline_error_callback;
5499 sqlerrcontext.arg = &callback_arg;
5500 sqlerrcontext.previous = error_context_stack;
5501 error_context_stack = &sqlerrcontext;
5502
5503 /*
5504 * If SupportRequestInlineInFrom didn't work, try our built-in inlining
5505 * mechanism.
5506 */
5507 if (!querytree)
5509 func_tuple, funcform, src);
5510
5511 if (!querytree)
5512 goto fail; /* no luck there either, fail */
5513
5514 /*
5515 * The result had better be a SELECT Query.
5516 */
5518 Assert(querytree->commandType == CMD_SELECT);
5519
5520 /*
5521 * Looks good --- substitute parameters into the query.
5522 */
5524 funcform->pronargs,
5525 fexpr->args);
5526
5527 /*
5528 * Copy the modified query out of the temporary memory context, and clean
5529 * up.
5530 */
5531 MemoryContextSwitchTo(oldcxt);
5532
5534
5535 MemoryContextDelete(mycxt);
5536 error_context_stack = sqlerrcontext.previous;
5537 ReleaseSysCache(func_tuple);
5538
5539 /*
5540 * We don't have to fix collations here because the upper query is already
5541 * parsed, ie, the collations in the RTE are what count.
5542 */
5543
5544 /*
5545 * Since there is now no trace of the function in the plan tree, we must
5546 * explicitly record the plan's dependency on the function.
5547 */
5549
5550 /*
5551 * We must also notice if the inserted query adds a dependency on the
5552 * calling role due to RLS quals.
5553 */
5554 if (querytree->hasRowSecurity)
5555 root->glob->dependsOnRole = true;
5556
5557 return querytree;
5558
5559 /* Here if func is not inlinable: release temp memory and return NULL */
5560fail:
5561 MemoryContextSwitchTo(oldcxt);
5562 MemoryContextDelete(mycxt);
5563 error_context_stack = sqlerrcontext.previous;
5564 ReleaseSysCache(func_tuple);
5565
5566 return NULL;
5567}
static Query * substitute_actual_parameters_in_from(Query *expr, int nargs, List *args)
Definition: clauses.c:5743
static Query * inline_sql_function_in_from(PlannerInfo *root, RangeTblFunction *rtfunc, FuncExpr *fexpr, HeapTuple func_tuple, Form_pg_proc funcform, const char *src)
Definition: clauses.c:5583
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:722
@ RTE_FUNCTION
Definition: parsenodes.h:1073
bool funcordinality
Definition: parsenodes.h:1237
List * functions
Definition: parsenodes.h:1235
RTEKind rtekind
Definition: parsenodes.h:1105
RangeTblFunction * rtfunc
Definition: supportnodes.h:123

References ACL_EXECUTE, ACLCHECK_OK, ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, ErrorContextCallback::arg, FuncExpr::args, Assert(), ErrorContextCallback::callback, check_stack_depth(), CMD_SELECT, contain_subplans(), contain_volatile_functions(), copyObject, CurrentMemoryContext, DatumGetPointer(), elog, ERROR, error_context_stack, FmgrHookIsNeeded, RangeTblFunction::funcexpr, FuncExpr::funcid, RangeTblEntry::funcordinality, RangeTblEntry::functions, GETSTRUCT(), GetUserId(), heap_attisnull(), HeapTupleIsValid, if(), inline_sql_function_in_from(), IsA, linitial, list_length(), MemoryContextDelete(), MemoryContextSwitchTo(), NameStr, object_aclcheck(), ObjectIdGetDatum(), OidFunctionCall1, PointerGetDatum(), ErrorContextCallback::previous, SupportRequestInlineInFrom::proc, inline_error_callback_arg::proname, inline_error_callback_arg::prosrc, querytree(), record_plan_function_dependency(), ReleaseSysCache(), root, SupportRequestInlineInFrom::root, RTE_FUNCTION, RangeTblEntry::rtekind, SupportRequestInlineInFrom::rtfunc, SearchSysCache1(), sql_inline_error_callback(), substitute_actual_parameters_in_from(), SysCacheGetAttrNotNull(), TextDatumGetCString, and SupportRequestInlineInFrom::type.

Referenced by preprocess_function_rtes().

◆ inline_sql_function_in_from()

static Query * inline_sql_function_in_from ( PlannerInfo root,
RangeTblFunction rtfunc,
FuncExpr fexpr,
HeapTuple  func_tuple,
Form_pg_proc  funcform,
const char *  src 
)
static

Definition at line 5583 of file clauses.c.

5589{
5590 Datum sqlbody;
5591 bool isNull;
5592 List *querytree_list;
5594 TypeFuncClass functypclass;
5595 TupleDesc rettupdesc;
5596
5597 /*
5598 * The function must be declared to return a set, else inlining would
5599 * change the results if the contained SELECT didn't return exactly one
5600 * row.
5601 */
5602 if (!fexpr->funcretset)
5603 return NULL;
5604
5605 /*
5606 * Forget it if the function is not SQL-language or has other showstopper
5607 * properties. In particular it mustn't be declared STRICT, since we
5608 * couldn't enforce that. It also mustn't be VOLATILE, because that is
5609 * supposed to cause it to be executed with its own snapshot, rather than
5610 * sharing the snapshot of the calling query. We also disallow returning
5611 * SETOF VOID, because inlining would result in exposing the actual result
5612 * of the function's last SELECT, which should not happen in that case.
5613 * (Rechecking prokind, proretset, and pronargs is just paranoia.)
5614 */
5615 if (funcform->prolang != SQLlanguageId ||
5616 funcform->prokind != PROKIND_FUNCTION ||
5617 funcform->proisstrict ||
5618 funcform->provolatile == PROVOLATILE_VOLATILE ||
5619 funcform->prorettype == VOIDOID ||
5620 funcform->prosecdef ||
5621 !funcform->proretset ||
5622 list_length(fexpr->args) != funcform->pronargs)
5623 return NULL;
5624
5625 /* If we have prosqlbody, pay attention to that not prosrc */
5626 sqlbody = SysCacheGetAttr(PROCOID,
5627 func_tuple,
5628 Anum_pg_proc_prosqlbody,
5629 &isNull);
5630 if (!isNull)
5631 {
5632 Node *n;
5633
5634 n = stringToNode(TextDatumGetCString(sqlbody));
5635 if (IsA(n, List))
5636 querytree_list = linitial_node(List, castNode(List, n));
5637 else
5638 querytree_list = list_make1(n);
5639 if (list_length(querytree_list) != 1)
5640 return NULL;
5641 querytree = linitial(querytree_list);
5642
5643 /* Acquire necessary locks, then apply rewriter. */
5644 AcquireRewriteLocks(querytree, true, false);
5645 querytree_list = pg_rewrite_query(querytree);
5646 if (list_length(querytree_list) != 1)
5647 return NULL;
5648 querytree = linitial(querytree_list);
5649 }
5650 else
5651 {
5653 List *raw_parsetree_list;
5654
5655 /*
5656 * Set up to handle parameters while parsing the function body. We
5657 * can use the FuncExpr just created as the input for
5658 * prepare_sql_fn_parse_info.
5659 */
5660 pinfo = prepare_sql_fn_parse_info(func_tuple,
5661 (Node *) fexpr,
5662 fexpr->inputcollid);
5663
5664 /*
5665 * Parse, analyze, and rewrite (unlike inline_function(), we can't
5666 * skip rewriting here). We can fail as soon as we find more than one
5667 * query, though.
5668 */
5669 raw_parsetree_list = pg_parse_query(src);
5670 if (list_length(raw_parsetree_list) != 1)
5671 return NULL;
5672
5673 querytree_list = pg_analyze_and_rewrite_withcb(linitial(raw_parsetree_list),
5674 src,
5676 pinfo, NULL);
5677 if (list_length(querytree_list) != 1)
5678 return NULL;
5679 querytree = linitial(querytree_list);
5680 }
5681
5682 /*
5683 * Also resolve the actual function result tupdesc, if composite. If we
5684 * have a coldeflist, believe that; otherwise use get_expr_result_type.
5685 * (This logic should match ExecInitFunctionScan.)
5686 */
5687 if (rtfunc->funccolnames != NIL)
5688 {
5689 functypclass = TYPEFUNC_RECORD;
5690 rettupdesc = BuildDescFromLists(rtfunc->funccolnames,
5691 rtfunc->funccoltypes,
5692 rtfunc->funccoltypmods,
5693 rtfunc->funccolcollations);
5694 }
5695 else
5696 functypclass = get_expr_result_type((Node *) fexpr, NULL, &rettupdesc);
5697
5698 /*
5699 * The single command must be a plain SELECT.
5700 */
5701 if (!IsA(querytree, Query) ||
5702 querytree->commandType != CMD_SELECT)
5703 return NULL;
5704
5705 /*
5706 * Make sure the function (still) returns what it's declared to. This
5707 * will raise an error if wrong, but that's okay since the function would
5708 * fail at runtime anyway. Note that check_sql_fn_retval will also insert
5709 * coercions if needed to make the tlist expression(s) match the declared
5710 * type of the function. We also ask it to insert dummy NULL columns for
5711 * any dropped columns in rettupdesc, so that the elements of the modified
5712 * tlist match up to the attribute numbers.
5713 *
5714 * If the function returns a composite type, don't inline unless the check
5715 * shows it's returning a whole tuple result; otherwise what it's
5716 * returning is a single composite column which is not what we need.
5717 */
5718 if (!check_sql_fn_retval(list_make1(querytree_list),
5719 fexpr->funcresulttype, rettupdesc,
5720 funcform->prokind,
5721 true) &&
5722 (functypclass == TYPEFUNC_COMPOSITE ||
5723 functypclass == TYPEFUNC_COMPOSITE_DOMAIN ||
5724 functypclass == TYPEFUNC_RECORD))
5725 return NULL; /* reject not-whole-tuple-result cases */
5726
5727 /*
5728 * check_sql_fn_retval might've inserted a projection step, but that's
5729 * fine; just make sure we use the upper Query.
5730 */
5731 querytree = linitial_node(Query, querytree_list);
5732
5733 return querytree;
5734}
TypeFuncClass
Definition: funcapi.h:147
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
@ TYPEFUNC_RECORD
Definition: funcapi.h:151
@ TYPEFUNC_COMPOSITE_DOMAIN
Definition: funcapi.h:150
void(* ParserSetupHook)(ParseState *pstate, void *arg)
Definition: params.h:107
List * pg_analyze_and_rewrite_withcb(RawStmt *parsetree, const char *query_string, ParserSetupHook parserSetup, void *parserSetupArg, QueryEnvironment *queryEnv)
Definition: postgres.c:763
List * pg_rewrite_query(Query *query)
Definition: postgres.c:803
void AcquireRewriteLocks(Query *parsetree, bool forExecute, bool forUpdatePushedDown)
TupleDesc BuildDescFromLists(const List *names, const List *types, const List *typmods, const List *collations)
Definition: tupdesc.c:1051

References AcquireRewriteLocks(), FuncExpr::args, BuildDescFromLists(), castNode, check_sql_fn_retval(), CMD_SELECT, get_expr_result_type(), IsA, linitial, linitial_node, list_length(), list_make1, NIL, pg_analyze_and_rewrite_withcb(), pg_parse_query(), pg_rewrite_query(), prepare_sql_fn_parse_info(), querytree(), sql_fn_parser_setup(), stringToNode(), SysCacheGetAttr(), TextDatumGetCString, TYPEFUNC_COMPOSITE, TYPEFUNC_COMPOSITE_DOMAIN, and TYPEFUNC_RECORD.

Referenced by inline_function_in_from().

◆ is_parallel_safe()

bool is_parallel_safe ( PlannerInfo root,
Node node 
)

Definition at line 765 of file clauses.c.

766{
768 PlannerInfo *proot;
769 ListCell *l;
770
771 /*
772 * Even if the original querytree contained nothing unsafe, we need to
773 * search the expression if we have generated any PARAM_EXEC Params while
774 * planning, because those are parallel-restricted and there might be one
775 * in this expression. But otherwise we don't need to look.
776 */
777 if (root->glob->maxParallelHazard == PROPARALLEL_SAFE &&
778 root->glob->paramExecTypes == NIL)
779 return true;
780 /* Else use max_parallel_hazard's search logic, but stop on RESTRICTED */
781 context.max_hazard = PROPARALLEL_SAFE;
782 context.max_interesting = PROPARALLEL_RESTRICTED;
783 context.safe_param_ids = NIL;
784
785 /*
786 * The params that refer to the same or parent query level are considered
787 * parallel-safe. The idea is that we compute such params at Gather or
788 * Gather Merge node and pass their value to workers.
789 */
790 for (proot = root; proot != NULL; proot = proot->parent_root)
791 {
792 foreach(l, proot->init_plans)
793 {
794 SubPlan *initsubplan = (SubPlan *) lfirst(l);
795
796 context.safe_param_ids = list_concat(context.safe_param_ids,
797 initsubplan->setParam);
798 }
799 }
800
801 return !max_parallel_hazard_walker(node, &context);
802}
static bool max_parallel_hazard_walker(Node *node, max_parallel_hazard_context *context)
Definition: clauses.c:841
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * init_plans
Definition: pathnodes.h:327
List * setParam
Definition: primnodes.h:1121

References PlannerInfo::init_plans, lfirst, list_concat(), max_parallel_hazard_context::max_hazard, max_parallel_hazard_context::max_interesting, max_parallel_hazard_walker(), NIL, root, max_parallel_hazard_context::safe_param_ids, and SubPlan::setParam.

Referenced by apply_projection_to_path(), build_join_rel(), create_minmaxagg_path(), create_nestloop_plan(), create_partial_unique_paths(), create_projection_path(), create_set_projection_path(), create_window_paths(), find_computable_ec_member(), grouping_planner(), make_grouping_rel(), plan_create_index_workers(), query_planner(), relation_can_be_sorted_early(), and set_rel_consider_parallel().

◆ is_pseudo_constant_clause()

bool is_pseudo_constant_clause ( Node clause)

Definition at line 2103 of file clauses.c.

2104{
2105 /*
2106 * We could implement this check in one recursive scan. But since the
2107 * check for volatile functions is both moderately expensive and unlikely
2108 * to fail, it seems better to look for Vars first and only check for
2109 * volatile functions if we find no Vars.
2110 */
2111 if (!contain_var_clause(clause) &&
2113 return true;
2114 return false;
2115}

References contain_var_clause(), and contain_volatile_functions().

Referenced by clauselist_selectivity_ext(), dependency_is_compatible_clause(), dependency_is_compatible_expression(), and find_window_run_conditions().

◆ is_pseudo_constant_clause_relids()

bool is_pseudo_constant_clause_relids ( Node clause,
Relids  relids 
)

Definition at line 2123 of file clauses.c.

2124{
2125 if (bms_is_empty(relids) &&
2127 return true;
2128 return false;
2129}

References bms_is_empty, and contain_volatile_functions().

Referenced by clauselist_selectivity_ext().

◆ is_strict_saop()

static bool is_strict_saop ( ScalarArrayOpExpr expr,
bool  falseOK 
)
static

Definition at line 2041 of file clauses.c.

2042{
2043 Node *rightop;
2044
2045 /* The contained operator must be strict. */
2046 set_sa_opfuncid(expr);
2047 if (!func_strict(expr->opfuncid))
2048 return false;
2049 /* If ANY and falseOK, that's all we need to check. */
2050 if (expr->useOr && falseOK)
2051 return true;
2052 /* Else, we have to see if the array is provably non-empty. */
2053 Assert(list_length(expr->args) == 2);
2054 rightop = (Node *) lsecond(expr->args);
2055 if (rightop && IsA(rightop, Const))
2056 {
2057 Datum arraydatum = ((Const *) rightop)->constvalue;
2058 bool arrayisnull = ((Const *) rightop)->constisnull;
2059 ArrayType *arrayval;
2060 int nitems;
2061
2062 if (arrayisnull)
2063 return false;
2064 arrayval = DatumGetArrayTypeP(arraydatum);
2065 nitems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
2066 if (nitems > 0)
2067 return true;
2068 }
2069 else if (rightop && IsA(rightop, ArrayExpr))
2070 {
2071 ArrayExpr *arrayexpr = (ArrayExpr *) rightop;
2072
2073 if (arrayexpr->elements != NIL && !arrayexpr->multidims)
2074 return true;
2075 }
2076 return false;
2077}

References ScalarArrayOpExpr::args, ARR_DIMS, ARR_NDIM, ArrayGetNItems(), Assert(), DatumGetArrayTypeP, func_strict(), IsA, list_length(), lsecond, NIL, nitems, set_sa_opfuncid(), and ScalarArrayOpExpr::useOr.

Referenced by find_nonnullable_rels_walker(), and find_nonnullable_vars_walker().

◆ make_SAOP_expr()

ScalarArrayOpExpr * make_SAOP_expr ( Oid  oper,
Node leftexpr,
Oid  coltype,
Oid  arraycollid,
Oid  inputcollid,
List exprs,
bool  haveNonConst 
)

Definition at line 5835 of file clauses.c.

5837{
5838 Node *arrayNode = NULL;
5839 ScalarArrayOpExpr *saopexpr = NULL;
5840 Oid arraytype = get_array_type(coltype);
5841
5842 if (!OidIsValid(arraytype))
5843 return NULL;
5844
5845 /*
5846 * Assemble an array from the list of constants. It seems more profitable
5847 * to build a const array. But in the presence of other nodes, we don't
5848 * have a specific value here and must employ an ArrayExpr instead.
5849 */
5850 if (haveNonConst)
5851 {
5852 ArrayExpr *arrayExpr = makeNode(ArrayExpr);
5853
5854 /* array_collid will be set by parse_collate.c */
5855 arrayExpr->element_typeid = coltype;
5856 arrayExpr->array_typeid = arraytype;
5857 arrayExpr->multidims = false;
5858 arrayExpr->elements = exprs;
5859 arrayExpr->location = -1;
5860
5861 arrayNode = (Node *) arrayExpr;
5862 }
5863 else
5864 {
5865 int16 typlen;
5866 bool typbyval;
5867 char typalign;
5868 Datum *elems;
5869 bool *nulls;
5870 int i = 0;
5871 ArrayType *arrayConst;
5872 int dims[1] = {list_length(exprs)};
5873 int lbs[1] = {1};
5874
5875 get_typlenbyvalalign(coltype, &typlen, &typbyval, &typalign);
5876
5877 elems = palloc_array(Datum, list_length(exprs));
5878 nulls = palloc_array(bool, list_length(exprs));
5879 foreach_node(Const, value, exprs)
5880 {
5881 elems[i] = value->constvalue;
5882 nulls[i++] = value->constisnull;
5883 }
5884
5885 arrayConst = construct_md_array(elems, nulls, 1, dims, lbs,
5886 coltype, typlen, typbyval, typalign);
5887 arrayNode = (Node *) makeConst(arraytype, -1, arraycollid,
5888 -1, PointerGetDatum(arrayConst),
5889 false, false);
5890
5891 pfree(elems);
5892 pfree(nulls);
5893 list_free(exprs);
5894 }
5895
5896 /* Build the SAOP expression node */
5897 saopexpr = makeNode(ScalarArrayOpExpr);
5898 saopexpr->opno = oper;
5899 saopexpr->opfuncid = get_opcode(oper);
5900 saopexpr->hashfuncid = InvalidOid;
5901 saopexpr->negfuncid = InvalidOid;
5902 saopexpr->useOr = true;
5903 saopexpr->inputcollid = inputcollid;
5904 saopexpr->args = list_make2(leftexpr, arrayNode);
5905 saopexpr->location = -1;
5906
5907 return saopexpr;
5908}
ArrayType * construct_md_array(Datum *elems, bool *nulls, int ndims, int *dims, int *lbs, Oid elmtype, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:3495
#define palloc_array(type, count)
Definition: fe_memutils.h:76
static struct @171 value
void list_free(List *list)
Definition: list.c:1546
void get_typlenbyvalalign(Oid typid, int16 *typlen, bool *typbyval, char *typalign)
Definition: lsyscache.c:2421
Oid get_array_type(Oid typid)
Definition: lsyscache.c:2937
Operator oper(ParseState *pstate, List *opname, Oid ltypeId, Oid rtypeId, bool noError, int location)
Definition: parse_oper.c:371
#define foreach_node(type, var, lst)
Definition: pg_list.h:496
#define list_make2(x1, x2)
Definition: pg_list.h:214
char typalign
Definition: pg_type.h:176
ParseLoc location
Definition: primnodes.h:1421
ParseLoc location
Definition: primnodes.h:951

References ScalarArrayOpExpr::args, construct_md_array(), foreach_node, get_array_type(), get_opcode(), get_typlenbyvalalign(), i, InvalidOid, list_free(), list_length(), list_make2, ScalarArrayOpExpr::location, ArrayExpr::location, makeConst(), makeNode, OidIsValid, oper(), ScalarArrayOpExpr::opno, palloc_array, pfree(), PointerGetDatum(), typalign, ScalarArrayOpExpr::useOr, and value.

Referenced by convert_VALUES_to_ANY(), and match_orclause_to_indexcol().

◆ max_parallel_hazard()

char max_parallel_hazard ( Query parse)

Definition at line 746 of file clauses.c.

747{
749
750 context.max_hazard = PROPARALLEL_SAFE;
751 context.max_interesting = PROPARALLEL_UNSAFE;
752 context.safe_param_ids = NIL;
753 (void) max_parallel_hazard_walker((Node *) parse, &context);
754 return context.max_hazard;
755}
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717

References max_parallel_hazard_context::max_hazard, max_parallel_hazard_context::max_interesting, max_parallel_hazard_walker(), NIL, parse(), and max_parallel_hazard_context::safe_param_ids.

Referenced by standard_planner().

◆ max_parallel_hazard_checker()

static bool max_parallel_hazard_checker ( Oid  func_id,
void *  context 
)
static

Definition at line 834 of file clauses.c.

835{
837 (max_parallel_hazard_context *) context);
838}
static bool max_parallel_hazard_test(char proparallel, max_parallel_hazard_context *context)
Definition: clauses.c:806
char func_parallel(Oid funcid)
Definition: lsyscache.c:1949

References func_parallel(), and max_parallel_hazard_test().

Referenced by max_parallel_hazard_walker().

◆ max_parallel_hazard_test()

static bool max_parallel_hazard_test ( char  proparallel,
max_parallel_hazard_context context 
)
static

Definition at line 806 of file clauses.c.

807{
808 switch (proparallel)
809 {
810 case PROPARALLEL_SAFE:
811 /* nothing to see here, move along */
812 break;
813 case PROPARALLEL_RESTRICTED:
814 /* increase max_hazard to RESTRICTED */
815 Assert(context->max_hazard != PROPARALLEL_UNSAFE);
816 context->max_hazard = proparallel;
817 /* done if we are not expecting any unsafe functions */
818 if (context->max_interesting == proparallel)
819 return true;
820 break;
821 case PROPARALLEL_UNSAFE:
822 context->max_hazard = proparallel;
823 /* we're always done at the first unsafe construct */
824 return true;
825 default:
826 elog(ERROR, "unrecognized proparallel value \"%c\"", proparallel);
827 break;
828 }
829 return false;
830}

References Assert(), elog, ERROR, max_parallel_hazard_context::max_hazard, and max_parallel_hazard_context::max_interesting.

Referenced by max_parallel_hazard_checker(), and max_parallel_hazard_walker().

◆ max_parallel_hazard_walker()

static bool max_parallel_hazard_walker ( Node node,
max_parallel_hazard_context context 
)
static

Definition at line 841 of file clauses.c.

842{
843 if (node == NULL)
844 return false;
845
846 /* Check for hazardous functions in node itself */
848 context))
849 return true;
850
851 /*
852 * It should be OK to treat MinMaxExpr as parallel-safe, since btree
853 * opclass support functions are generally parallel-safe. XmlExpr is a
854 * bit more dubious but we can probably get away with it. We err on the
855 * side of caution by treating CoerceToDomain as parallel-restricted.
856 * (Note: in principle that's wrong because a domain constraint could
857 * contain a parallel-unsafe function; but useful constraints probably
858 * never would have such, and assuming they do would cripple use of
859 * parallel query in the presence of domain types.) SQLValueFunction
860 * should be safe in all cases. NextValueExpr is parallel-unsafe.
861 */
862 if (IsA(node, CoerceToDomain))
863 {
864 if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
865 return true;
866 }
867
868 else if (IsA(node, NextValueExpr))
869 {
870 if (max_parallel_hazard_test(PROPARALLEL_UNSAFE, context))
871 return true;
872 }
873
874 /*
875 * Treat window functions as parallel-restricted because we aren't sure
876 * whether the input row ordering is fully deterministic, and the output
877 * of window functions might vary across workers if not. (In some cases,
878 * like where the window frame orders by a primary key, we could relax
879 * this restriction. But it doesn't currently seem worth expending extra
880 * effort to do so.)
881 */
882 else if (IsA(node, WindowFunc))
883 {
884 if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
885 return true;
886 }
887
888 /*
889 * As a notational convenience for callers, look through RestrictInfo.
890 */
891 else if (IsA(node, RestrictInfo))
892 {
893 RestrictInfo *rinfo = (RestrictInfo *) node;
894
895 return max_parallel_hazard_walker((Node *) rinfo->clause, context);
896 }
897
898 /*
899 * Really we should not see SubLink during a max_interesting == restricted
900 * scan, but if we do, return true.
901 */
902 else if (IsA(node, SubLink))
903 {
904 if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
905 return true;
906 }
907
908 /*
909 * Only parallel-safe SubPlans can be sent to workers. Within the
910 * testexpr of the SubPlan, Params representing the output columns of the
911 * subplan can be treated as parallel-safe, so temporarily add their IDs
912 * to the safe_param_ids list while examining the testexpr.
913 */
914 else if (IsA(node, SubPlan))
915 {
916 SubPlan *subplan = (SubPlan *) node;
917 List *save_safe_param_ids;
918
919 if (!subplan->parallel_safe &&
920 max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
921 return true;
922 save_safe_param_ids = context->safe_param_ids;
924 subplan->paramIds);
925 if (max_parallel_hazard_walker(subplan->testexpr, context))
926 return true; /* no need to restore safe_param_ids */
927 list_free(context->safe_param_ids);
928 context->safe_param_ids = save_safe_param_ids;
929 /* we must also check args, but no special Param treatment there */
930 if (max_parallel_hazard_walker((Node *) subplan->args, context))
931 return true;
932 /* don't want to recurse normally, so we're done */
933 return false;
934 }
935
936 /*
937 * We can't pass Params to workers at the moment either, so they are also
938 * parallel-restricted, unless they are PARAM_EXTERN Params or are
939 * PARAM_EXEC Params listed in safe_param_ids, meaning they could be
940 * either generated within workers or can be computed by the leader and
941 * then their value can be passed to workers.
942 */
943 else if (IsA(node, Param))
944 {
945 Param *param = (Param *) node;
946
947 if (param->paramkind == PARAM_EXTERN)
948 return false;
949
950 if (param->paramkind != PARAM_EXEC ||
951 !list_member_int(context->safe_param_ids, param->paramid))
952 {
953 if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
954 return true;
955 }
956 return false; /* nothing to recurse to */
957 }
958
959 /*
960 * When we're first invoked on a completely unplanned tree, we must
961 * recurse into subqueries so to as to locate parallel-unsafe constructs
962 * anywhere in the tree.
963 */
964 else if (IsA(node, Query))
965 {
966 Query *query = (Query *) node;
967
968 /* SELECT FOR UPDATE/SHARE must be treated as unsafe */
969 if (query->rowMarks != NULL)
970 {
971 context->max_hazard = PROPARALLEL_UNSAFE;
972 return true;
973 }
974
975 /* Recurse into subselects */
976 return query_tree_walker(query,
978 context, 0);
979 }
980
981 /* Recurse to check arguments */
982 return expression_tree_walker(node,
984 context);
985}
static bool max_parallel_hazard_checker(Oid func_id, void *context)
Definition: clauses.c:834
List * rowMarks
Definition: parsenodes.h:234
List * args
Definition: primnodes.h:1124
List * paramIds
Definition: primnodes.h:1100
bool parallel_safe
Definition: primnodes.h:1117

References SubPlan::args, check_functions_in_node(), RestrictInfo::clause, expression_tree_walker, IsA, list_concat_copy(), list_free(), list_member_int(), max_parallel_hazard_context::max_hazard, max_parallel_hazard_checker(), max_parallel_hazard_test(), max_parallel_hazard_walker(), SubPlan::parallel_safe, PARAM_EXEC, PARAM_EXTERN, Param::paramid, SubPlan::paramIds, Param::paramkind, query_tree_walker, Query::rowMarks, max_parallel_hazard_context::safe_param_ids, and SubPlan::testexpr.

Referenced by is_parallel_safe(), max_parallel_hazard(), and max_parallel_hazard_walker().

◆ NumRelids()

int NumRelids ( PlannerInfo root,
Node clause 
)

Definition at line 2145 of file clauses.c.

2146{
2147 int result;
2148 Relids varnos = pull_varnos(root, clause);
2149
2150 varnos = bms_del_members(varnos, root->outer_join_rels);
2151 result = bms_num_members(varnos);
2152 bms_free(varnos);
2153 return result;
2154}
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1160
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:750
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114

References bms_del_members(), bms_free(), bms_num_members(), pull_varnos(), and root.

Referenced by clauselist_selectivity_ext(), rowcomparesel(), and treat_as_join_clause().

◆ pull_paramids()

Bitmapset * pull_paramids ( Expr expr)

Definition at line 5803 of file clauses.c.

5804{
5805 Bitmapset *result = NULL;
5806
5807 (void) pull_paramids_walker((Node *) expr, &result);
5808
5809 return result;
5810}
static bool pull_paramids_walker(Node *node, Bitmapset **context)
Definition: clauses.c:5813

References pull_paramids_walker().

Referenced by create_memoize_plan().

◆ pull_paramids_walker()

static bool pull_paramids_walker ( Node node,
Bitmapset **  context 
)
static

Definition at line 5813 of file clauses.c.

5814{
5815 if (node == NULL)
5816 return false;
5817 if (IsA(node, Param))
5818 {
5819 Param *param = (Param *) node;
5820
5821 *context = bms_add_member(*context, param->paramid);
5822 return false;
5823 }
5824 return expression_tree_walker(node, pull_paramids_walker, context);
5825}
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814

References bms_add_member(), expression_tree_walker, IsA, Param::paramid, and pull_paramids_walker().

Referenced by pull_paramids(), and pull_paramids_walker().

◆ recheck_cast_function_args()

static void recheck_cast_function_args ( List args,
Oid  result_type,
Oid proargtypes,
int  pronargs,
HeapTuple  func_tuple 
)
static

Definition at line 4695 of file clauses.c.

4698{
4699 Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4700 int nargs;
4701 Oid actual_arg_types[FUNC_MAX_ARGS];
4702 Oid declared_arg_types[FUNC_MAX_ARGS];
4703 Oid rettype;
4704 ListCell *lc;
4705
4707 elog(ERROR, "too many function arguments");
4708 nargs = 0;
4709 foreach(lc, args)
4710 {
4711 actual_arg_types[nargs++] = exprType((Node *) lfirst(lc));
4712 }
4713 Assert(nargs == pronargs);
4714 memcpy(declared_arg_types, proargtypes, pronargs * sizeof(Oid));
4715 rettype = enforce_generic_type_consistency(actual_arg_types,
4716 declared_arg_types,
4717 nargs,
4718 funcform->prorettype,
4719 false);
4720 /* let's just check we got the same answer as the parser did ... */
4721 if (rettype != result_type)
4722 elog(ERROR, "function's resolved result type changed during planning");
4723
4724 /* perform any necessary typecasting of arguments */
4725 make_fn_arguments(NULL, args, actual_arg_types, declared_arg_types);
4726}
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
void make_fn_arguments(ParseState *pstate, List *fargs, Oid *actual_arg_types, Oid *declared_arg_types)
Definition: parse_func.c:1948
#define FUNC_MAX_ARGS

References generate_unaccent_rules::args, Assert(), elog, enforce_generic_type_consistency(), ERROR, exprType(), FUNC_MAX_ARGS, GETSTRUCT(), lfirst, list_length(), make_fn_arguments(), and pronargs.

Referenced by expand_function_arguments().

◆ reorder_function_arguments()

static List * reorder_function_arguments ( List args,
int  pronargs,
HeapTuple  func_tuple 
)
static

Definition at line 4571 of file clauses.c.

4572{
4573 Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
4574 int nargsprovided = list_length(args);
4575 Node *argarray[FUNC_MAX_ARGS];
4576 ListCell *lc;
4577 int i;
4578
4579 Assert(nargsprovided <= pronargs);
4580 if (pronargs < 0 || pronargs > FUNC_MAX_ARGS)
4581 elog(ERROR, "too many function arguments");
4582 memset(argarray, 0, pronargs * sizeof(Node *));
4583
4584 /* Deconstruct the argument list into an array indexed by argnumber */
4585 i = 0;
4586 foreach(lc, args)
4587 {
4588 Node *arg = (Node *) lfirst(lc);
4589
4590 if (!IsA(arg, NamedArgExpr))
4591 {
4592 /* positional argument, assumed to precede all named args */
4593 Assert(argarray[i] == NULL);
4594 argarray[i++] = arg;
4595 }
4596 else
4597 {
4598 NamedArgExpr *na = (NamedArgExpr *) arg;
4599
4600 Assert(na->argnumber >= 0 && na->argnumber < pronargs);
4601 Assert(argarray[na->argnumber] == NULL);
4602 argarray[na->argnumber] = (Node *) na->arg;
4603 }
4604 }
4605
4606 /*
4607 * Fetch default expressions, if needed, and insert into array at proper
4608 * locations (they aren't necessarily consecutive or all used)
4609 */
4610 if (nargsprovided < pronargs)
4611 {
4612 List *defaults = fetch_function_defaults(func_tuple);
4613
4614 i = pronargs - funcform->pronargdefaults;
4615 foreach(lc, defaults)
4616 {
4617 if (argarray[i] == NULL)
4618 argarray[i] = (Node *) lfirst(lc);
4619 i++;
4620 }
4621 }
4622
4623 /* Now reconstruct the args list in proper order */
4624 args = NIL;
4625 for (i = 0; i < pronargs; i++)
4626 {
4627 Assert(argarray[i] != NULL);
4628 args = lappend(args, argarray[i]);
4629 }
4630
4631 return args;
4632}
Expr * arg
Definition: primnodes.h:823

References arg, NamedArgExpr::arg, NamedArgExpr::argnumber, generate_unaccent_rules::args, Assert(), elog, ERROR, fetch_function_defaults(), FUNC_MAX_ARGS, GETSTRUCT(), i, IsA, lappend(), lfirst, list_length(), NIL, and pronargs.

Referenced by expand_function_arguments().

◆ rowtype_field_matches()

static bool rowtype_field_matches ( Oid  rowtypeid,
int  fieldnum,
Oid  expectedtype,
int32  expectedtypmod,
Oid  expectedcollation 
)
static

Definition at line 2201 of file clauses.c.

2204{
2205 TupleDesc tupdesc;
2206 Form_pg_attribute attr;
2207
2208 /* No issue for RECORD, since there is no way to ALTER such a type */
2209 if (rowtypeid == RECORDOID)
2210 return true;
2211 tupdesc = lookup_rowtype_tupdesc_domain(rowtypeid, -1, false);
2212 if (fieldnum <= 0 || fieldnum > tupdesc->natts)
2213 {
2214 ReleaseTupleDesc(tupdesc);
2215 return false;
2216 }
2217 attr = TupleDescAttr(tupdesc, fieldnum - 1);
2218 if (attr->attisdropped ||
2219 attr->atttypid != expectedtype ||
2220 attr->atttypmod != expectedtypmod ||
2221 attr->attcollation != expectedcollation)
2222 {
2223 ReleaseTupleDesc(tupdesc);
2224 return false;
2225 }
2226 ReleaseTupleDesc(tupdesc);
2227 return true;
2228}
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:219
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
TupleDesc lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError)
Definition: typcache.c:1977

References lookup_rowtype_tupdesc_domain(), TupleDescData::natts, ReleaseTupleDesc, and TupleDescAttr().

Referenced by eval_const_expressions_mutator().

◆ simplify_aggref()

static Node * simplify_aggref ( Aggref aggref,
eval_const_expressions_context context 
)
static

Definition at line 4240 of file clauses.c.

4241{
4242 Oid prosupport = get_func_support(aggref->aggfnoid);
4243
4244 if (OidIsValid(prosupport))
4245 {
4247 Node *newnode;
4248
4249 /*
4250 * Build a SupportRequestSimplifyAggref node to pass to the support
4251 * function.
4252 */
4253 req.type = T_SupportRequestSimplifyAggref;
4254 req.root = context->root;
4255 req.aggref = aggref;
4256
4257 newnode = (Node *) DatumGetPointer(OidFunctionCall1(prosupport,
4258 PointerGetDatum(&req)));
4259
4260 /*
4261 * We expect the support function to return either a new Node or NULL
4262 * (when simplification isn't possible).
4263 */
4264 Assert(newnode != (Node *) aggref || newnode == NULL);
4265
4266 if (newnode != NULL)
4267 return newnode;
4268 }
4269
4270 return (Node *) aggref;
4271}
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:2008
Oid aggfnoid
Definition: primnodes.h:463

References Aggref::aggfnoid, SupportRequestSimplifyAggref::aggref, Assert(), DatumGetPointer(), get_func_support(), OidFunctionCall1, OidIsValid, PointerGetDatum(), eval_const_expressions_context::root, SupportRequestSimplifyAggref::root, and SupportRequestSimplifyAggref::type.

Referenced by eval_const_expressions_mutator().

◆ simplify_and_arguments()

static List * simplify_and_arguments ( List args,
eval_const_expressions_context context,
bool *  haveNull,
bool *  forceFalse 
)
static

Definition at line 3971 of file clauses.c.

3974{
3975 List *newargs = NIL;
3976 List *unprocessed_args;
3977
3978 /* See comments in simplify_or_arguments */
3979 unprocessed_args = list_copy(args);
3980 while (unprocessed_args)
3981 {
3982 Node *arg = (Node *) linitial(unprocessed_args);
3983
3984 unprocessed_args = list_delete_first(unprocessed_args);
3985
3986 /* flatten nested ANDs as per above comment */
3987 if (is_andclause(arg))
3988 {
3989 List *subargs = ((BoolExpr *) arg)->args;
3990 List *oldlist = unprocessed_args;
3991
3992 unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3993 /* perhaps-overly-tense code to avoid leaking old lists */
3994 list_free(oldlist);
3995 continue;
3996 }
3997
3998 /* If it's not an AND, simplify it */
4000
4001 /*
4002 * It is unlikely but not impossible for simplification of a non-AND
4003 * clause to produce an AND. Recheck, but don't be too tense about it
4004 * since it's not a mainstream case. In particular we don't worry
4005 * about const-simplifying the input twice, nor about list leakage.
4006 */
4007 if (is_andclause(arg))
4008 {
4009 List *subargs = ((BoolExpr *) arg)->args;
4010
4011 unprocessed_args = list_concat_copy(subargs, unprocessed_args);
4012 continue;
4013 }
4014
4015 /*
4016 * OK, we have a const-simplified non-AND argument. Process it per
4017 * comments above.
4018 */
4019 if (IsA(arg, Const))
4020 {
4021 Const *const_input = (Const *) arg;
4022
4023 if (const_input->constisnull)
4024 *haveNull = true;
4025 else if (!DatumGetBool(const_input->constvalue))
4026 {
4027 *forceFalse = true;
4028
4029 /*
4030 * Once we detect a FALSE result we can just exit the loop
4031 * immediately. However, if we ever add a notion of
4032 * non-removable functions, we'd need to keep scanning.
4033 */
4034 return NIL;
4035 }
4036 /* otherwise, we can drop the constant-true input */
4037 continue;
4038 }
4039
4040 /* else emit the simplified arg into the result list */
4041 newargs = lappend(newargs, arg);
4042 }
4043
4044 return newargs;
4045}
List * list_delete_first(List *list)
Definition: list.c:943
List * list_copy(const List *oldlist)
Definition: list.c:1573
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:107

References arg, generate_unaccent_rules::args, DatumGetBool(), eval_const_expressions_mutator(), is_andclause(), IsA, lappend(), linitial, list_concat_copy(), list_copy(), list_delete_first(), list_free(), and NIL.

Referenced by eval_const_expressions_mutator().

◆ simplify_boolean_equality()

static Node * simplify_boolean_equality ( Oid  opno,
List args 
)
static

Definition at line 4065 of file clauses.c.

4066{
4067 Node *leftop;
4068 Node *rightop;
4069
4070 Assert(list_length(args) == 2);
4071 leftop = linitial(args);
4072 rightop = lsecond(args);
4073 if (leftop && IsA(leftop, Const))
4074 {
4075 Assert(!((Const *) leftop)->constisnull);
4076 if (opno == BooleanEqualOperator)
4077 {
4078 if (DatumGetBool(((Const *) leftop)->constvalue))
4079 return rightop; /* true = foo */
4080 else
4081 return negate_clause(rightop); /* false = foo */
4082 }
4083 else
4084 {
4085 if (DatumGetBool(((Const *) leftop)->constvalue))
4086 return negate_clause(rightop); /* true <> foo */
4087 else
4088 return rightop; /* false <> foo */
4089 }
4090 }
4091 if (rightop && IsA(rightop, Const))
4092 {
4093 Assert(!((Const *) rightop)->constisnull);
4094 if (opno == BooleanEqualOperator)
4095 {
4096 if (DatumGetBool(((Const *) rightop)->constvalue))
4097 return leftop; /* foo = true */
4098 else
4099 return negate_clause(leftop); /* foo = false */
4100 }
4101 else
4102 {
4103 if (DatumGetBool(((Const *) rightop)->constvalue))
4104 return negate_clause(leftop); /* foo <> true */
4105 else
4106 return leftop; /* foo <> false */
4107 }
4108 }
4109 return NULL;
4110}

References generate_unaccent_rules::args, Assert(), DatumGetBool(), IsA, linitial, list_length(), lsecond, and negate_clause().

Referenced by eval_const_expressions_mutator().

◆ simplify_function()

static Expr * simplify_function ( Oid  funcid,
Oid  result_type,
int32  result_typmod,
Oid  result_collid,
Oid  input_collid,
List **  args_p,
bool  funcvariadic,
bool  process_args,
bool  allow_non_const,
eval_const_expressions_context context 
)
static

Definition at line 4134 of file clauses.c.

4138{
4139 List *args = *args_p;
4140 HeapTuple func_tuple;
4141 Form_pg_proc func_form;
4142 Expr *newexpr;
4143
4144 /*
4145 * We have three strategies for simplification: execute the function to
4146 * deliver a constant result, use a transform function to generate a
4147 * substitute node tree, or expand in-line the body of the function
4148 * definition (which only works for simple SQL-language functions, but
4149 * that is a common case). Each case needs access to the function's
4150 * pg_proc tuple, so fetch it just once.
4151 *
4152 * Note: the allow_non_const flag suppresses both the second and third
4153 * strategies; so if !allow_non_const, simplify_function can only return a
4154 * Const or NULL. Argument-list rewriting happens anyway, though.
4155 */
4156 func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
4157 if (!HeapTupleIsValid(func_tuple))
4158 elog(ERROR, "cache lookup failed for function %u", funcid);
4159 func_form = (Form_pg_proc) GETSTRUCT(func_tuple);
4160
4161 /*
4162 * Process the function arguments, unless the caller did it already.
4163 *
4164 * Here we must deal with named or defaulted arguments, and then
4165 * recursively apply eval_const_expressions to the whole argument list.
4166 */
4167 if (process_args)
4168 {
4169 args = expand_function_arguments(args, false, result_type, func_tuple);
4172 context);
4173 /* Argument processing done, give it back to the caller */
4174 *args_p = args;
4175 }
4176
4177 /* Now attempt simplification of the function call proper. */
4178
4179 newexpr = evaluate_function(funcid, result_type, result_typmod,
4180 result_collid, input_collid,
4181 args, funcvariadic,
4182 func_tuple, context);
4183
4184 if (!newexpr && allow_non_const && OidIsValid(func_form->prosupport))
4185 {
4186 /*
4187 * Build a SupportRequestSimplify node to pass to the support
4188 * function, pointing to a dummy FuncExpr node containing the
4189 * simplified arg list. We use this approach to present a uniform
4190 * interface to the support function regardless of how the target
4191 * function is actually being invoked.
4192 */
4194 FuncExpr fexpr;
4195
4196 fexpr.xpr.type = T_FuncExpr;
4197 fexpr.funcid = funcid;
4198 fexpr.funcresulttype = result_type;
4199 fexpr.funcretset = func_form->proretset;
4200 fexpr.funcvariadic = funcvariadic;
4201 fexpr.funcformat = COERCE_EXPLICIT_CALL;
4202 fexpr.funccollid = result_collid;
4203 fexpr.inputcollid = input_collid;
4204 fexpr.args = args;
4205 fexpr.location = -1;
4206
4207 req.type = T_SupportRequestSimplify;
4208 req.root = context->root;
4209 req.fcall = &fexpr;
4210
4211 newexpr = (Expr *)
4212 DatumGetPointer(OidFunctionCall1(func_form->prosupport,
4213 PointerGetDatum(&req)));
4214
4215 /* catch a possible API misunderstanding */
4216 Assert(newexpr != (Expr *) &fexpr);
4217 }
4218
4219 if (!newexpr && allow_non_const)
4220 newexpr = inline_function(funcid, result_type, result_collid,
4221 input_collid, args, funcvariadic,
4222 func_tuple, context);
4223
4224 ReleaseSysCache(func_tuple);
4225
4226 return newexpr;
4227}
static Expr * evaluate_function(Oid funcid, Oid result_type, int32 result_typmod, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
Definition: clauses.c:4740
static Expr * inline_function(Oid funcid, Oid result_type, Oid result_collid, Oid input_collid, List *args, bool funcvariadic, HeapTuple func_tuple, eval_const_expressions_context *context)
Definition: clauses.c:4866
Expr xpr
Definition: primnodes.h:780
PlannerInfo * root
Definition: supportnodes.h:70

References generate_unaccent_rules::args, FuncExpr::args, Assert(), COERCE_EXPLICIT_CALL, DatumGetPointer(), elog, ERROR, eval_const_expressions_mutator(), evaluate_function(), expand_function_arguments(), expression_tree_mutator, SupportRequestSimplify::fcall, FuncExpr::funcid, GETSTRUCT(), HeapTupleIsValid, inline_function(), FuncExpr::location, ObjectIdGetDatum(), OidFunctionCall1, OidIsValid, PointerGetDatum(), ReleaseSysCache(), eval_const_expressions_context::root, SupportRequestSimplify::root, SearchSysCache1(), SupportRequestSimplify::type, and FuncExpr::xpr.

Referenced by eval_const_expressions_mutator().

◆ simplify_or_arguments()

static List * simplify_or_arguments ( List args,
eval_const_expressions_context context,
bool *  haveNull,
bool *  forceTrue 
)
static

Definition at line 3865 of file clauses.c.

3868{
3869 List *newargs = NIL;
3870 List *unprocessed_args;
3871
3872 /*
3873 * We want to ensure that any OR immediately beneath another OR gets
3874 * flattened into a single OR-list, so as to simplify later reasoning.
3875 *
3876 * To avoid stack overflow from recursion of eval_const_expressions, we
3877 * resort to some tenseness here: we keep a list of not-yet-processed
3878 * inputs, and handle flattening of nested ORs by prepending to the to-do
3879 * list instead of recursing. Now that the parser generates N-argument
3880 * ORs from simple lists, this complexity is probably less necessary than
3881 * it once was, but we might as well keep the logic.
3882 */
3883 unprocessed_args = list_copy(args);
3884 while (unprocessed_args)
3885 {
3886 Node *arg = (Node *) linitial(unprocessed_args);
3887
3888 unprocessed_args = list_delete_first(unprocessed_args);
3889
3890 /* flatten nested ORs as per above comment */
3891 if (is_orclause(arg))
3892 {
3893 List *subargs = ((BoolExpr *) arg)->args;
3894 List *oldlist = unprocessed_args;
3895
3896 unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3897 /* perhaps-overly-tense code to avoid leaking old lists */
3898 list_free(oldlist);
3899 continue;
3900 }
3901
3902 /* If it's not an OR, simplify it */
3904
3905 /*
3906 * It is unlikely but not impossible for simplification of a non-OR
3907 * clause to produce an OR. Recheck, but don't be too tense about it
3908 * since it's not a mainstream case. In particular we don't worry
3909 * about const-simplifying the input twice, nor about list leakage.
3910 */
3911 if (is_orclause(arg))
3912 {
3913 List *subargs = ((BoolExpr *) arg)->args;
3914
3915 unprocessed_args = list_concat_copy(subargs, unprocessed_args);
3916 continue;
3917 }
3918
3919 /*
3920 * OK, we have a const-simplified non-OR argument. Process it per
3921 * comments above.
3922 */
3923 if (IsA(arg, Const))
3924 {
3925 Const *const_input = (Const *) arg;
3926
3927 if (const_input->constisnull)
3928 *haveNull = true;
3929 else if (DatumGetBool(const_input->constvalue))
3930 {
3931 *forceTrue = true;
3932
3933 /*
3934 * Once we detect a TRUE result we can just exit the loop
3935 * immediately. However, if we ever add a notion of
3936 * non-removable functions, we'd need to keep scanning.
3937 */
3938 return NIL;
3939 }
3940 /* otherwise, we can drop the constant-false input */
3941 continue;
3942 }
3943
3944 /* else emit the simplified arg into the result list */
3945 newargs = lappend(newargs, arg);
3946 }
3947
3948 return newargs;
3949}
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:116

References arg, generate_unaccent_rules::args, DatumGetBool(), eval_const_expressions_mutator(), is_orclause(), IsA, lappend(), linitial, list_concat_copy(), list_copy(), list_delete_first(), list_free(), and NIL.

Referenced by eval_const_expressions_mutator().

◆ sql_inline_error_callback()

static void sql_inline_error_callback ( void *  arg)
static

Definition at line 5263 of file clauses.c.

5264{
5266 int syntaxerrposition;
5267
5268 /* If it's a syntax error, convert to internal syntax error report */
5269 syntaxerrposition = geterrposition();
5270 if (syntaxerrposition > 0)
5271 {
5272 errposition(0);
5273 internalerrposition(syntaxerrposition);
5274 internalerrquery(callback_arg->prosrc);
5275 }
5276
5277 errcontext("SQL function \"%s\" during inlining", callback_arg->proname);
5278}
int internalerrquery(const char *query)
Definition: elog.c:1516
int internalerrposition(int cursorpos)
Definition: elog.c:1496
int geterrposition(void)
Definition: elog.c:1612
int errposition(int cursorpos)
Definition: elog.c:1480
#define errcontext
Definition: elog.h:198

References arg, errcontext, errposition(), geterrposition(), internalerrposition(), internalerrquery(), inline_error_callback_arg::proname, and inline_error_callback_arg::prosrc.

Referenced by inline_function(), and inline_function_in_from().

◆ substitute_actual_parameters()

static Node * substitute_actual_parameters ( Node expr,
int  nargs,
List args,
int *  usecounts 
)
static

Definition at line 5222 of file clauses.c.

5224{
5226
5227 context.nargs = nargs;
5228 context.args = args;
5229 context.usecounts = usecounts;
5230
5231 return substitute_actual_parameters_mutator(expr, &context);
5232}
static Node * substitute_actual_parameters_mutator(Node *node, substitute_actual_parameters_context *context)
Definition: clauses.c:5235

References generate_unaccent_rules::args, substitute_actual_parameters_context::args, substitute_actual_parameters_context::nargs, substitute_actual_parameters_mutator(), and substitute_actual_parameters_context::usecounts.

Referenced by inline_function().

◆ substitute_actual_parameters_in_from()

static Query * substitute_actual_parameters_in_from ( Query expr,
int  nargs,
List args 
)
static

◆ substitute_actual_parameters_in_from_mutator()

static Node * substitute_actual_parameters_in_from_mutator ( Node node,
substitute_actual_parameters_in_from_context context 
)
static

Definition at line 5758 of file clauses.c.

5760{
5761 Node *result;
5762
5763 if (node == NULL)
5764 return NULL;
5765 if (IsA(node, Query))
5766 {
5767 context->sublevels_up++;
5768 result = (Node *) query_tree_mutator((Query *) node,
5770 context,
5771 0);
5772 context->sublevels_up--;
5773 return result;
5774 }
5775 if (IsA(node, Param))
5776 {
5777 Param *param = (Param *) node;
5778
5779 if (param->paramkind == PARAM_EXTERN)
5780 {
5781 if (param->paramid <= 0 || param->paramid > context->nargs)
5782 elog(ERROR, "invalid paramid: %d", param->paramid);
5783
5784 /*
5785 * Since the parameter is being inserted into a subquery, we must
5786 * adjust levels.
5787 */
5788 result = copyObject(list_nth(context->args, param->paramid - 1));
5789 IncrementVarSublevelsUp(result, context->sublevels_up, 0);
5790 return result;
5791 }
5792 }
5793 return expression_tree_mutator(node,
5795 context);
5796}
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:881

References substitute_actual_parameters_in_from_context::args, copyObject, elog, ERROR, expression_tree_mutator, IncrementVarSublevelsUp(), IsA, list_nth(), substitute_actual_parameters_in_from_context::nargs, PARAM_EXTERN, Param::paramid, Param::paramkind, query_tree_mutator, substitute_actual_parameters_in_from_context::sublevels_up, and substitute_actual_parameters_in_from_mutator().

Referenced by substitute_actual_parameters_in_from(), and substitute_actual_parameters_in_from_mutator().

◆ substitute_actual_parameters_mutator()

static Node * substitute_actual_parameters_mutator ( Node node,
substitute_actual_parameters_context context 
)
static

Definition at line 5235 of file clauses.c.

5237{
5238 if (node == NULL)
5239 return NULL;
5240 if (IsA(node, Param))
5241 {
5242 Param *param = (Param *) node;
5243
5244 if (param->paramkind != PARAM_EXTERN)
5245 elog(ERROR, "unexpected paramkind: %d", (int) param->paramkind);
5246 if (param->paramid <= 0 || param->paramid > context->nargs)
5247 elog(ERROR, "invalid paramid: %d", param->paramid);
5248
5249 /* Count usage of parameter */
5250 context->usecounts[param->paramid - 1]++;
5251
5252 /* Select the appropriate actual arg and replace the Param with it */
5253 /* We don't need to copy at this time (it'll get done later) */
5254 return list_nth(context->args, param->paramid - 1);
5255 }
5257}

References substitute_actual_parameters_context::args, elog, ERROR, expression_tree_mutator, IsA, list_nth(), substitute_actual_parameters_context::nargs, PARAM_EXTERN, Param::paramid, Param::paramkind, substitute_actual_parameters_mutator(), and substitute_actual_parameters_context::usecounts.

Referenced by substitute_actual_parameters(), and substitute_actual_parameters_mutator().

◆ var_is_nonnullable()

bool var_is_nonnullable ( PlannerInfo root,
Var var,
bool  use_rel_info 
)

Definition at line 4283 of file clauses.c.

4284{
4285 Bitmapset *notnullattnums = NULL;
4286
4287 Assert(IsA(var, Var));
4288
4289 /* skip upper-level Vars */
4290 if (var->varlevelsup != 0)
4291 return false;
4292
4293 /* could the Var be nulled by any outer joins or grouping sets? */
4294 if (!bms_is_empty(var->varnullingrels))
4295 return false;
4296
4297 /* system columns cannot be NULL */
4298 if (var->varattno < 0)
4299 return true;
4300
4301 /*
4302 * Check if the Var is defined as NOT NULL. We retrieve the column NOT
4303 * NULL constraint information from the corresponding RelOptInfo if it is
4304 * available; otherwise, we search the hash table for this information.
4305 */
4306 if (use_rel_info)
4307 {
4308 RelOptInfo *rel = find_base_rel(root, var->varno);
4309
4310 notnullattnums = rel->notnullattnums;
4311 }
4312 else
4313 {
4315
4316 /*
4317 * We must skip inheritance parent tables, as some child tables may
4318 * have a NOT NULL constraint for a column while others may not. This
4319 * cannot happen with partitioned tables, though.
4320 */
4321 if (rte->inh && rte->relkind != RELKIND_PARTITIONED_TABLE)
4322 return false;
4323
4324 notnullattnums = find_relation_notnullatts(root, rte->relid);
4325 }
4326
4327 if (var->varattno > 0 &&
4328 bms_is_member(var->varattno, notnullattnums))
4329 return true;
4330
4331 return false;
4332}
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:610
Bitmapset * find_relation_notnullatts(PlannerInfo *root, Oid relid)
Definition: plancat.c:774
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:529
Bitmapset * notnullattnums
Definition: pathnodes.h:987

References Assert(), bms_is_empty, bms_is_member(), find_base_rel(), find_relation_notnullatts(), RangeTblEntry::inh, IsA, RelOptInfo::notnullattnums, planner_rt_fetch, root, Var::varattno, Var::varlevelsup, and Var::varno.

Referenced by expr_is_nonnullable().