PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
typcache.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * typcache.c
4 * POSTGRES type cache code
5 *
6 * The type cache exists to speed lookup of certain information about data
7 * types that is not directly available from a type's pg_type row. For
8 * example, we use a type's default btree opclass, or the default hash
9 * opclass if no btree opclass exists, to determine which operators should
10 * be used for grouping and sorting the type (GROUP BY, ORDER BY ASC/DESC).
11 *
12 * Several seemingly-odd choices have been made to support use of the type
13 * cache by generic array and record handling routines, such as array_eq(),
14 * record_cmp(), and hash_array(). Because those routines are used as index
15 * support operations, they cannot leak memory. To allow them to execute
16 * efficiently, all information that they would like to re-use across calls
17 * is kept in the type cache.
18 *
19 * Once created, a type cache entry lives as long as the backend does, so
20 * there is no need for a call to release a cache entry. If the type is
21 * dropped, the cache entry simply becomes wasted storage. This is not
22 * expected to happen often, and assuming that typcache entries are good
23 * permanently allows caching pointers to them in long-lived places.
24 *
25 * We have some provisions for updating cache entries if the stored data
26 * becomes obsolete. Core data extracted from the pg_type row is updated
27 * when we detect updates to pg_type. Information dependent on opclasses is
28 * cleared if we detect updates to pg_opclass. We also support clearing the
29 * tuple descriptor and operator/function parts of a rowtype's cache entry,
30 * since those may need to change as a consequence of ALTER TABLE. Domain
31 * constraint changes are also tracked properly.
32 *
33 *
34 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
35 * Portions Copyright (c) 1994, Regents of the University of California
36 *
37 * IDENTIFICATION
38 * src/backend/utils/cache/typcache.c
39 *
40 *-------------------------------------------------------------------------
41 */
42#include "postgres.h"
43
44#include <limits.h>
45
46#include "access/hash.h"
47#include "access/htup_details.h"
48#include "access/nbtree.h"
49#include "access/parallel.h"
50#include "access/relation.h"
51#include "access/session.h"
52#include "access/table.h"
53#include "catalog/pg_am.h"
55#include "catalog/pg_enum.h"
56#include "catalog/pg_operator.h"
57#include "catalog/pg_range.h"
58#include "catalog/pg_type.h"
59#include "commands/defrem.h"
60#include "common/int.h"
61#include "executor/executor.h"
62#include "lib/dshash.h"
63#include "optimizer/optimizer.h"
64#include "port/pg_bitutils.h"
65#include "storage/lwlock.h"
66#include "utils/builtins.h"
67#include "utils/catcache.h"
68#include "utils/fmgroids.h"
70#include "utils/inval.h"
71#include "utils/lsyscache.h"
72#include "utils/memutils.h"
73#include "utils/rel.h"
74#include "utils/syscache.h"
75#include "utils/typcache.h"
76
77
78/* The main type cache hashtable searched by lookup_type_cache */
79static HTAB *TypeCacheHash = NULL;
80
81/*
82 * The mapping of relation's OID to the corresponding composite type OID.
83 * We're keeping the map entry when the corresponding typentry has something
84 * to clear i.e it has either TCFLAGS_HAVE_PG_TYPE_DATA, or
85 * TCFLAGS_OPERATOR_FLAGS, or tupdesc.
86 */
88
90{
91 Oid relid; /* OID of the relation */
92 Oid composite_typid; /* OID of the relation's composite type */
94
95/* List of type cache entries for domain types */
97
98/* Private flag bits in the TypeCacheEntry.flags field */
99#define TCFLAGS_HAVE_PG_TYPE_DATA 0x000001
100#define TCFLAGS_CHECKED_BTREE_OPCLASS 0x000002
101#define TCFLAGS_CHECKED_HASH_OPCLASS 0x000004
102#define TCFLAGS_CHECKED_EQ_OPR 0x000008
103#define TCFLAGS_CHECKED_LT_OPR 0x000010
104#define TCFLAGS_CHECKED_GT_OPR 0x000020
105#define TCFLAGS_CHECKED_CMP_PROC 0x000040
106#define TCFLAGS_CHECKED_HASH_PROC 0x000080
107#define TCFLAGS_CHECKED_HASH_EXTENDED_PROC 0x000100
108#define TCFLAGS_CHECKED_ELEM_PROPERTIES 0x000200
109#define TCFLAGS_HAVE_ELEM_EQUALITY 0x000400
110#define TCFLAGS_HAVE_ELEM_COMPARE 0x000800
111#define TCFLAGS_HAVE_ELEM_HASHING 0x001000
112#define TCFLAGS_HAVE_ELEM_EXTENDED_HASHING 0x002000
113#define TCFLAGS_CHECKED_FIELD_PROPERTIES 0x004000
114#define TCFLAGS_HAVE_FIELD_EQUALITY 0x008000
115#define TCFLAGS_HAVE_FIELD_COMPARE 0x010000
116#define TCFLAGS_HAVE_FIELD_HASHING 0x020000
117#define TCFLAGS_HAVE_FIELD_EXTENDED_HASHING 0x040000
118#define TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS 0x080000
119#define TCFLAGS_DOMAIN_BASE_IS_COMPOSITE 0x100000
120
121/* The flags associated with equality/comparison/hashing are all but these: */
122#define TCFLAGS_OPERATOR_FLAGS \
123 (~(TCFLAGS_HAVE_PG_TYPE_DATA | \
124 TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS | \
125 TCFLAGS_DOMAIN_BASE_IS_COMPOSITE))
126
127/*
128 * Data stored about a domain type's constraints. Note that we do not create
129 * this struct for the common case of a constraint-less domain; we just set
130 * domainData to NULL to indicate that.
131 *
132 * Within a DomainConstraintCache, we store expression plan trees, but the
133 * check_exprstate fields of the DomainConstraintState nodes are just NULL.
134 * When needed, expression evaluation nodes are built by flat-copying the
135 * DomainConstraintState nodes and applying ExecInitExpr to check_expr.
136 * Such a node tree is not part of the DomainConstraintCache, but is
137 * considered to belong to a DomainConstraintRef.
138 */
140{
141 List *constraints; /* list of DomainConstraintState nodes */
142 MemoryContext dccContext; /* memory context holding all associated data */
143 long dccRefCount; /* number of references to this struct */
144};
145
146/* Private information to support comparisons of enum values */
147typedef struct
148{
149 Oid enum_oid; /* OID of one enum value */
150 float4 sort_order; /* its sort position */
151} EnumItem;
152
153typedef struct TypeCacheEnumData
154{
155 Oid bitmap_base; /* OID corresponding to bit 0 of bitmapset */
156 Bitmapset *sorted_values; /* Set of OIDs known to be in order */
157 int num_values; /* total number of values in enum */
160
161/*
162 * We use a separate table for storing the definitions of non-anonymous
163 * record types. Once defined, a record type will be remembered for the
164 * life of the backend. Subsequent uses of the "same" record type (where
165 * sameness means equalRowTypes) will refer to the existing table entry.
166 *
167 * Stored record types are remembered in a linear array of TupleDescs,
168 * which can be indexed quickly with the assigned typmod. There is also
169 * a hash table to speed searches for matching TupleDescs.
170 */
171
172typedef struct RecordCacheEntry
173{
176
177/*
178 * To deal with non-anonymous record types that are exchanged by backends
179 * involved in a parallel query, we also need a shared version of the above.
180 */
182{
183 /* A hash table for finding a matching TupleDesc. */
185 /* A hash table for finding a TupleDesc by typmod. */
187 /* A source of new record typmod numbers. */
189};
190
191/*
192 * When using shared tuple descriptors as hash table keys we need a way to be
193 * able to search for an equal shared TupleDesc using a backend-local
194 * TupleDesc. So we use this type which can hold either, and hash and compare
195 * functions that know how to handle both.
196 */
198{
199 union
200 {
203 } u;
204 bool shared;
206
207/*
208 * The shared version of RecordCacheEntry. This lets us look up a typmod
209 * using a TupleDesc which may be in local or shared memory.
210 */
212{
215
216/*
217 * An entry in SharedRecordTypmodRegistry's typmod table. This lets us look
218 * up a TupleDesc in shared memory using a typmod.
219 */
221{
225
229
230/*
231 * A comparator function for SharedRecordTableKey.
232 */
233static int
234shared_record_table_compare(const void *a, const void *b, size_t size,
235 void *arg)
236{
237 dsa_area *area = (dsa_area *) arg;
240 TupleDesc t1;
241 TupleDesc t2;
242
243 if (k1->shared)
244 t1 = (TupleDesc) dsa_get_address(area, k1->u.shared_tupdesc);
245 else
246 t1 = k1->u.local_tupdesc;
247
248 if (k2->shared)
249 t2 = (TupleDesc) dsa_get_address(area, k2->u.shared_tupdesc);
250 else
251 t2 = k2->u.local_tupdesc;
252
253 return equalRowTypes(t1, t2) ? 0 : 1;
254}
255
256/*
257 * A hash function for SharedRecordTableKey.
258 */
259static uint32
260shared_record_table_hash(const void *a, size_t size, void *arg)
261{
262 dsa_area *area = (dsa_area *) arg;
264 TupleDesc t;
265
266 if (k->shared)
268 else
269 t = k->u.local_tupdesc;
270
271 return hashRowType(t);
272}
273
274/* Parameters for SharedRecordTypmodRegistry's TupleDesc table. */
276 sizeof(SharedRecordTableKey), /* unused */
282};
283
284/* Parameters for SharedRecordTypmodRegistry's typmod hash table. */
286 sizeof(uint32),
292};
293
294/* hashtable for recognizing registered record types */
295static HTAB *RecordCacheHash = NULL;
296
298{
302
303/* array of info about registered record types, indexed by assigned typmod */
305static int32 RecordCacheArrayLen = 0; /* allocated length of above array */
306static int32 NextRecordTypmod = 0; /* number of entries used */
307
308/*
309 * Process-wide counter for generating unique tupledesc identifiers.
310 * Zero and one (INVALID_TUPLEDESC_IDENTIFIER) aren't allowed to be chosen
311 * as identifiers, so we start the counter at INVALID_TUPLEDESC_IDENTIFIER.
312 */
314
315static void load_typcache_tupdesc(TypeCacheEntry *typentry);
316static void load_rangetype_info(TypeCacheEntry *typentry);
317static void load_multirangetype_info(TypeCacheEntry *typentry);
318static void load_domaintype_info(TypeCacheEntry *typentry);
319static int dcs_cmp(const void *a, const void *b);
321static void dccref_deletion_callback(void *arg);
322static List *prep_domain_constraints(List *constraints, MemoryContext execctx);
323static bool array_element_has_equality(TypeCacheEntry *typentry);
324static bool array_element_has_compare(TypeCacheEntry *typentry);
325static bool array_element_has_hashing(TypeCacheEntry *typentry);
328static bool record_fields_have_equality(TypeCacheEntry *typentry);
329static bool record_fields_have_compare(TypeCacheEntry *typentry);
330static bool record_fields_have_hashing(TypeCacheEntry *typentry);
332static void cache_record_field_properties(TypeCacheEntry *typentry);
333static bool range_element_has_hashing(TypeCacheEntry *typentry);
339static void TypeCacheRelCallback(Datum arg, Oid relid);
340static void TypeCacheTypCallback(Datum arg, int cacheid, uint32 hashvalue);
341static void TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue);
342static void TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue);
343static void load_enum_cache_data(TypeCacheEntry *tcache);
345static int enum_oid_cmp(const void *left, const void *right);
347 Datum datum);
349static dsa_pointer share_tupledesc(dsa_area *area, TupleDesc tupdesc,
350 uint32 typmod);
353
354
355/*
356 * Hash function compatible with one-arg system cache hash function.
357 */
358static uint32
359type_cache_syshash(const void *key, Size keysize)
360{
361 Assert(keysize == sizeof(Oid));
362 return GetSysCacheHashValue1(TYPEOID, ObjectIdGetDatum(*(const Oid *) key));
363}
364
365/*
366 * lookup_type_cache
367 *
368 * Fetch the type cache entry for the specified datatype, and make sure that
369 * all the fields requested by bits in 'flags' are valid.
370 *
371 * The result is never NULL --- we will ereport() if the passed type OID is
372 * invalid. Note however that we may fail to find one or more of the
373 * values requested by 'flags'; the caller needs to check whether the fields
374 * are InvalidOid or not.
375 *
376 * Note that while filling TypeCacheEntry we might process concurrent
377 * invalidation messages, causing our not-yet-filled TypeCacheEntry to be
378 * invalidated. In this case, we typically only clear flags while values are
379 * still available for the caller. It's expected that the caller holds
380 * enough locks on type-depending objects that the values are still relevant.
381 * It's also important that the tupdesc is filled after all other
382 * TypeCacheEntry items for TYPTYPE_COMPOSITE. So, tupdesc can't get
383 * invalidated during the lookup_type_cache() call.
384 */
386lookup_type_cache(Oid type_id, int flags)
387{
388 TypeCacheEntry *typentry;
389 bool found;
390 int in_progress_offset;
391
392 if (TypeCacheHash == NULL)
393 {
394 /* First time through: initialize the hash table */
395 HASHCTL ctl;
396 int allocsize;
397
398 ctl.keysize = sizeof(Oid);
399 ctl.entrysize = sizeof(TypeCacheEntry);
400
401 /*
402 * TypeCacheEntry takes hash value from the system cache. For
403 * TypeCacheHash we use the same hash in order to speedup search by
404 * hash value. This is used by hash_seq_init_with_hash_value().
405 */
406 ctl.hash = type_cache_syshash;
407
408 TypeCacheHash = hash_create("Type information cache", 64,
410
412
413 ctl.keysize = sizeof(Oid);
414 ctl.entrysize = sizeof(RelIdToTypeIdCacheEntry);
415 RelIdToTypeIdCacheHash = hash_create("Map from relid to OID of cached composite type", 64,
417
418 /* Also set up callbacks for SI invalidations */
423
424 /* Also make sure CacheMemoryContext exists */
427
428 /*
429 * reserve enough in_progress_list slots for many cases
430 */
431 allocsize = 4;
434 allocsize * sizeof(*in_progress_list));
435 in_progress_list_maxlen = allocsize;
436 }
437
438 Assert(TypeCacheHash != NULL && RelIdToTypeIdCacheHash != NULL);
439
440 /* Register to catch invalidation messages */
442 {
443 int allocsize;
444
445 allocsize = in_progress_list_maxlen * 2;
447 allocsize * sizeof(*in_progress_list));
448 in_progress_list_maxlen = allocsize;
449 }
450 in_progress_offset = in_progress_list_len++;
451 in_progress_list[in_progress_offset] = type_id;
452
453 /* Try to look up an existing entry */
455 &type_id,
456 HASH_FIND, NULL);
457 if (typentry == NULL)
458 {
459 /*
460 * If we didn't find one, we want to make one. But first look up the
461 * pg_type row, just to make sure we don't make a cache entry for an
462 * invalid type OID. If the type OID is not valid, present a
463 * user-facing error, since some code paths such as domain_in() allow
464 * this function to be reached with a user-supplied OID.
465 */
466 HeapTuple tp;
467 Form_pg_type typtup;
468
469 tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type_id));
470 if (!HeapTupleIsValid(tp))
472 (errcode(ERRCODE_UNDEFINED_OBJECT),
473 errmsg("type with OID %u does not exist", type_id)));
474 typtup = (Form_pg_type) GETSTRUCT(tp);
475 if (!typtup->typisdefined)
477 (errcode(ERRCODE_UNDEFINED_OBJECT),
478 errmsg("type \"%s\" is only a shell",
479 NameStr(typtup->typname))));
480
481 /* Now make the typcache entry */
483 &type_id,
484 HASH_ENTER, &found);
485 Assert(!found); /* it wasn't there a moment ago */
486
487 MemSet(typentry, 0, sizeof(TypeCacheEntry));
488
489 /* These fields can never change, by definition */
490 typentry->type_id = type_id;
491 typentry->type_id_hash = get_hash_value(TypeCacheHash, &type_id);
492
493 /* Keep this part in sync with the code below */
494 typentry->typlen = typtup->typlen;
495 typentry->typbyval = typtup->typbyval;
496 typentry->typalign = typtup->typalign;
497 typentry->typstorage = typtup->typstorage;
498 typentry->typtype = typtup->typtype;
499 typentry->typrelid = typtup->typrelid;
500 typentry->typsubscript = typtup->typsubscript;
501 typentry->typelem = typtup->typelem;
502 typentry->typcollation = typtup->typcollation;
503 typentry->flags |= TCFLAGS_HAVE_PG_TYPE_DATA;
504
505 /* If it's a domain, immediately thread it into the domain cache list */
506 if (typentry->typtype == TYPTYPE_DOMAIN)
507 {
509 firstDomainTypeEntry = typentry;
510 }
511
512 ReleaseSysCache(tp);
513 }
514 else if (!(typentry->flags & TCFLAGS_HAVE_PG_TYPE_DATA))
515 {
516 /*
517 * We have an entry, but its pg_type row got changed, so reload the
518 * data obtained directly from pg_type.
519 */
520 HeapTuple tp;
521 Form_pg_type typtup;
522
523 tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type_id));
524 if (!HeapTupleIsValid(tp))
526 (errcode(ERRCODE_UNDEFINED_OBJECT),
527 errmsg("type with OID %u does not exist", type_id)));
528 typtup = (Form_pg_type) GETSTRUCT(tp);
529 if (!typtup->typisdefined)
531 (errcode(ERRCODE_UNDEFINED_OBJECT),
532 errmsg("type \"%s\" is only a shell",
533 NameStr(typtup->typname))));
534
535 /*
536 * Keep this part in sync with the code above. Many of these fields
537 * shouldn't ever change, particularly typtype, but copy 'em anyway.
538 */
539 typentry->typlen = typtup->typlen;
540 typentry->typbyval = typtup->typbyval;
541 typentry->typalign = typtup->typalign;
542 typentry->typstorage = typtup->typstorage;
543 typentry->typtype = typtup->typtype;
544 typentry->typrelid = typtup->typrelid;
545 typentry->typsubscript = typtup->typsubscript;
546 typentry->typelem = typtup->typelem;
547 typentry->typcollation = typtup->typcollation;
548 typentry->flags |= TCFLAGS_HAVE_PG_TYPE_DATA;
549
550 ReleaseSysCache(tp);
551 }
552
553 /*
554 * Look up opclasses if we haven't already and any dependent info is
555 * requested.
556 */
562 {
563 Oid opclass;
564
565 opclass = GetDefaultOpClass(type_id, BTREE_AM_OID);
566 if (OidIsValid(opclass))
567 {
568 typentry->btree_opf = get_opclass_family(opclass);
569 typentry->btree_opintype = get_opclass_input_type(opclass);
570 }
571 else
572 {
573 typentry->btree_opf = typentry->btree_opintype = InvalidOid;
574 }
575
576 /*
577 * Reset information derived from btree opclass. Note in particular
578 * that we'll redetermine the eq_opr even if we previously found one;
579 * this matters in case a btree opclass has been added to a type that
580 * previously had only a hash opclass.
581 */
582 typentry->flags &= ~(TCFLAGS_CHECKED_EQ_OPR |
587 }
588
589 /*
590 * If we need to look up equality operator, and there's no btree opclass,
591 * force lookup of hash opclass.
592 */
593 if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) &&
594 !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR) &&
595 typentry->btree_opf == InvalidOid)
597
602 !(typentry->flags & TCFLAGS_CHECKED_HASH_OPCLASS))
603 {
604 Oid opclass;
605
606 opclass = GetDefaultOpClass(type_id, HASH_AM_OID);
607 if (OidIsValid(opclass))
608 {
609 typentry->hash_opf = get_opclass_family(opclass);
610 typentry->hash_opintype = get_opclass_input_type(opclass);
611 }
612 else
613 {
614 typentry->hash_opf = typentry->hash_opintype = InvalidOid;
615 }
616
617 /*
618 * Reset information derived from hash opclass. We do *not* reset the
619 * eq_opr; if we already found one from the btree opclass, that
620 * decision is still good.
621 */
622 typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC |
625 }
626
627 /*
628 * Look for requested operators and functions, if we haven't already.
629 */
630 if ((flags & (TYPECACHE_EQ_OPR | TYPECACHE_EQ_OPR_FINFO)) &&
631 !(typentry->flags & TCFLAGS_CHECKED_EQ_OPR))
632 {
633 Oid eq_opr = InvalidOid;
634
635 if (typentry->btree_opf != InvalidOid)
636 eq_opr = get_opfamily_member(typentry->btree_opf,
637 typentry->btree_opintype,
638 typentry->btree_opintype,
640 if (eq_opr == InvalidOid &&
641 typentry->hash_opf != InvalidOid)
642 eq_opr = get_opfamily_member(typentry->hash_opf,
643 typentry->hash_opintype,
644 typentry->hash_opintype,
646
647 /*
648 * If the proposed equality operator is array_eq or record_eq, check
649 * to see if the element type or column types support equality. If
650 * not, array_eq or record_eq would fail at runtime, so we don't want
651 * to report that the type has equality. (We can omit similar
652 * checking for ranges and multiranges because ranges can't be created
653 * in the first place unless their subtypes support equality.)
654 */
655 if (eq_opr == ARRAY_EQ_OP &&
657 eq_opr = InvalidOid;
658 else if (eq_opr == RECORD_EQ_OP &&
660 eq_opr = InvalidOid;
661
662 /* Force update of eq_opr_finfo only if we're changing state */
663 if (typentry->eq_opr != eq_opr)
664 typentry->eq_opr_finfo.fn_oid = InvalidOid;
665
666 typentry->eq_opr = eq_opr;
667
668 /*
669 * Reset info about hash functions whenever we pick up new info about
670 * equality operator. This is so we can ensure that the hash
671 * functions match the operator.
672 */
673 typentry->flags &= ~(TCFLAGS_CHECKED_HASH_PROC |
675 typentry->flags |= TCFLAGS_CHECKED_EQ_OPR;
676 }
677 if ((flags & TYPECACHE_LT_OPR) &&
678 !(typentry->flags & TCFLAGS_CHECKED_LT_OPR))
679 {
680 Oid lt_opr = InvalidOid;
681
682 if (typentry->btree_opf != InvalidOid)
683 lt_opr = get_opfamily_member(typentry->btree_opf,
684 typentry->btree_opintype,
685 typentry->btree_opintype,
687
688 /*
689 * As above, make sure array_cmp or record_cmp will succeed; but again
690 * we need no special check for ranges or multiranges.
691 */
692 if (lt_opr == ARRAY_LT_OP &&
693 !array_element_has_compare(typentry))
694 lt_opr = InvalidOid;
695 else if (lt_opr == RECORD_LT_OP &&
697 lt_opr = InvalidOid;
698
699 typentry->lt_opr = lt_opr;
700 typentry->flags |= TCFLAGS_CHECKED_LT_OPR;
701 }
702 if ((flags & TYPECACHE_GT_OPR) &&
703 !(typentry->flags & TCFLAGS_CHECKED_GT_OPR))
704 {
705 Oid gt_opr = InvalidOid;
706
707 if (typentry->btree_opf != InvalidOid)
708 gt_opr = get_opfamily_member(typentry->btree_opf,
709 typentry->btree_opintype,
710 typentry->btree_opintype,
712
713 /*
714 * As above, make sure array_cmp or record_cmp will succeed; but again
715 * we need no special check for ranges or multiranges.
716 */
717 if (gt_opr == ARRAY_GT_OP &&
718 !array_element_has_compare(typentry))
719 gt_opr = InvalidOid;
720 else if (gt_opr == RECORD_GT_OP &&
722 gt_opr = InvalidOid;
723
724 typentry->gt_opr = gt_opr;
725 typentry->flags |= TCFLAGS_CHECKED_GT_OPR;
726 }
728 !(typentry->flags & TCFLAGS_CHECKED_CMP_PROC))
729 {
730 Oid cmp_proc = InvalidOid;
731
732 if (typentry->btree_opf != InvalidOid)
733 cmp_proc = get_opfamily_proc(typentry->btree_opf,
734 typentry->btree_opintype,
735 typentry->btree_opintype,
737
738 /*
739 * As above, make sure array_cmp or record_cmp will succeed; but again
740 * we need no special check for ranges or multiranges.
741 */
742 if (cmp_proc == F_BTARRAYCMP &&
743 !array_element_has_compare(typentry))
744 cmp_proc = InvalidOid;
745 else if (cmp_proc == F_BTRECORDCMP &&
747 cmp_proc = InvalidOid;
748
749 /* Force update of cmp_proc_finfo only if we're changing state */
750 if (typentry->cmp_proc != cmp_proc)
751 typentry->cmp_proc_finfo.fn_oid = InvalidOid;
752
753 typentry->cmp_proc = cmp_proc;
754 typentry->flags |= TCFLAGS_CHECKED_CMP_PROC;
755 }
757 !(typentry->flags & TCFLAGS_CHECKED_HASH_PROC))
758 {
759 Oid hash_proc = InvalidOid;
760
761 /*
762 * We insist that the eq_opr, if one has been determined, match the
763 * hash opclass; else report there is no hash function.
764 */
765 if (typentry->hash_opf != InvalidOid &&
766 (!OidIsValid(typentry->eq_opr) ||
767 typentry->eq_opr == get_opfamily_member(typentry->hash_opf,
768 typentry->hash_opintype,
769 typentry->hash_opintype,
771 hash_proc = get_opfamily_proc(typentry->hash_opf,
772 typentry->hash_opintype,
773 typentry->hash_opintype,
775
776 /*
777 * As above, make sure hash_array, hash_record, or hash_range will
778 * succeed.
779 */
780 if (hash_proc == F_HASH_ARRAY &&
781 !array_element_has_hashing(typentry))
782 hash_proc = InvalidOid;
783 else if (hash_proc == F_HASH_RECORD &&
785 hash_proc = InvalidOid;
786 else if (hash_proc == F_HASH_RANGE &&
787 !range_element_has_hashing(typentry))
788 hash_proc = InvalidOid;
789
790 /*
791 * Likewise for hash_multirange.
792 */
793 if (hash_proc == F_HASH_MULTIRANGE &&
795 hash_proc = InvalidOid;
796
797 /* Force update of hash_proc_finfo only if we're changing state */
798 if (typentry->hash_proc != hash_proc)
800
801 typentry->hash_proc = hash_proc;
802 typentry->flags |= TCFLAGS_CHECKED_HASH_PROC;
803 }
804 if ((flags & (TYPECACHE_HASH_EXTENDED_PROC |
807 {
808 Oid hash_extended_proc = InvalidOid;
809
810 /*
811 * We insist that the eq_opr, if one has been determined, match the
812 * hash opclass; else report there is no hash function.
813 */
814 if (typentry->hash_opf != InvalidOid &&
815 (!OidIsValid(typentry->eq_opr) ||
816 typentry->eq_opr == get_opfamily_member(typentry->hash_opf,
817 typentry->hash_opintype,
818 typentry->hash_opintype,
820 hash_extended_proc = get_opfamily_proc(typentry->hash_opf,
821 typentry->hash_opintype,
822 typentry->hash_opintype,
824
825 /*
826 * As above, make sure hash_array_extended, hash_record_extended, or
827 * hash_range_extended will succeed.
828 */
829 if (hash_extended_proc == F_HASH_ARRAY_EXTENDED &&
831 hash_extended_proc = InvalidOid;
832 else if (hash_extended_proc == F_HASH_RECORD_EXTENDED &&
834 hash_extended_proc = InvalidOid;
835 else if (hash_extended_proc == F_HASH_RANGE_EXTENDED &&
837 hash_extended_proc = InvalidOid;
838
839 /*
840 * Likewise for hash_multirange_extended.
841 */
842 if (hash_extended_proc == F_HASH_MULTIRANGE_EXTENDED &&
844 hash_extended_proc = InvalidOid;
845
846 /* Force update of proc finfo only if we're changing state */
847 if (typentry->hash_extended_proc != hash_extended_proc)
849
850 typentry->hash_extended_proc = hash_extended_proc;
852 }
853
854 /*
855 * Set up fmgr lookup info as requested
856 *
857 * Note: we tell fmgr the finfo structures live in CacheMemoryContext,
858 * which is not quite right (they're really in the hash table's private
859 * memory context) but this will do for our purposes.
860 *
861 * Note: the code above avoids invalidating the finfo structs unless the
862 * referenced operator/function OID actually changes. This is to prevent
863 * unnecessary leakage of any subsidiary data attached to an finfo, since
864 * that would cause session-lifespan memory leaks.
865 */
866 if ((flags & TYPECACHE_EQ_OPR_FINFO) &&
867 typentry->eq_opr_finfo.fn_oid == InvalidOid &&
868 typentry->eq_opr != InvalidOid)
869 {
870 Oid eq_opr_func;
871
872 eq_opr_func = get_opcode(typentry->eq_opr);
873 if (eq_opr_func != InvalidOid)
874 fmgr_info_cxt(eq_opr_func, &typentry->eq_opr_finfo,
876 }
877 if ((flags & TYPECACHE_CMP_PROC_FINFO) &&
878 typentry->cmp_proc_finfo.fn_oid == InvalidOid &&
879 typentry->cmp_proc != InvalidOid)
880 {
881 fmgr_info_cxt(typentry->cmp_proc, &typentry->cmp_proc_finfo,
883 }
884 if ((flags & TYPECACHE_HASH_PROC_FINFO) &&
885 typentry->hash_proc_finfo.fn_oid == InvalidOid &&
886 typentry->hash_proc != InvalidOid)
887 {
888 fmgr_info_cxt(typentry->hash_proc, &typentry->hash_proc_finfo,
890 }
893 typentry->hash_extended_proc != InvalidOid)
894 {
896 &typentry->hash_extended_proc_finfo,
898 }
899
900 /*
901 * If it's a composite type (row type), get tupdesc if requested
902 */
903 if ((flags & TYPECACHE_TUPDESC) &&
904 typentry->tupDesc == NULL &&
905 typentry->typtype == TYPTYPE_COMPOSITE)
906 {
907 load_typcache_tupdesc(typentry);
908 }
909
910 /*
911 * If requested, get information about a range type
912 *
913 * This includes making sure that the basic info about the range element
914 * type is up-to-date.
915 */
916 if ((flags & TYPECACHE_RANGE_INFO) &&
917 typentry->typtype == TYPTYPE_RANGE)
918 {
919 if (typentry->rngelemtype == NULL)
920 load_rangetype_info(typentry);
921 else if (!(typentry->rngelemtype->flags & TCFLAGS_HAVE_PG_TYPE_DATA))
922 (void) lookup_type_cache(typentry->rngelemtype->type_id, 0);
923 }
924
925 /*
926 * If requested, get information about a multirange type
927 */
928 if ((flags & TYPECACHE_MULTIRANGE_INFO) &&
929 typentry->rngtype == NULL &&
930 typentry->typtype == TYPTYPE_MULTIRANGE)
931 {
932 load_multirangetype_info(typentry);
933 }
934
935 /*
936 * If requested, get information about a domain type
937 */
938 if ((flags & TYPECACHE_DOMAIN_BASE_INFO) &&
939 typentry->domainBaseType == InvalidOid &&
940 typentry->typtype == TYPTYPE_DOMAIN)
941 {
942 typentry->domainBaseTypmod = -1;
943 typentry->domainBaseType =
944 getBaseTypeAndTypmod(type_id, &typentry->domainBaseTypmod);
945 }
946 if ((flags & TYPECACHE_DOMAIN_CONSTR_INFO) &&
947 (typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 &&
948 typentry->typtype == TYPTYPE_DOMAIN)
949 {
950 load_domaintype_info(typentry);
951 }
952
953 INJECTION_POINT("typecache-before-rel-type-cache-insert");
954
955 Assert(in_progress_offset + 1 == in_progress_list_len);
957
959
960 return typentry;
961}
962
963/*
964 * load_typcache_tupdesc --- helper routine to set up composite type's tupDesc
965 */
966static void
968{
969 Relation rel;
970
971 if (!OidIsValid(typentry->typrelid)) /* should not happen */
972 elog(ERROR, "invalid typrelid for composite type %u",
973 typentry->type_id);
974 rel = relation_open(typentry->typrelid, AccessShareLock);
975 Assert(rel->rd_rel->reltype == typentry->type_id);
976
977 /*
978 * Link to the tupdesc and increment its refcount (we assert it's a
979 * refcounted descriptor). We don't use IncrTupleDescRefCount() for this,
980 * because the reference mustn't be entered in the current resource owner;
981 * it can outlive the current query.
982 */
983 typentry->tupDesc = RelationGetDescr(rel);
984
985 Assert(typentry->tupDesc->tdrefcount > 0);
986 typentry->tupDesc->tdrefcount++;
987
988 /*
989 * In future, we could take some pains to not change tupDesc_identifier if
990 * the tupdesc didn't really change; but for now it's not worth it.
991 */
993
995}
996
997/*
998 * load_rangetype_info --- helper routine to set up range type information
999 */
1000static void
1002{
1003 Form_pg_range pg_range;
1004 HeapTuple tup;
1005 Oid subtypeOid;
1006 Oid opclassOid;
1007 Oid canonicalOid;
1008 Oid subdiffOid;
1009 Oid opfamilyOid;
1010 Oid opcintype;
1011 Oid cmpFnOid;
1012
1013 /* get information from pg_range */
1014 tup = SearchSysCache1(RANGETYPE, ObjectIdGetDatum(typentry->type_id));
1015 /* should not fail, since we already checked typtype ... */
1016 if (!HeapTupleIsValid(tup))
1017 elog(ERROR, "cache lookup failed for range type %u",
1018 typentry->type_id);
1019 pg_range = (Form_pg_range) GETSTRUCT(tup);
1020
1021 subtypeOid = pg_range->rngsubtype;
1022 typentry->rng_collation = pg_range->rngcollation;
1023 opclassOid = pg_range->rngsubopc;
1024 canonicalOid = pg_range->rngcanonical;
1025 subdiffOid = pg_range->rngsubdiff;
1026
1027 ReleaseSysCache(tup);
1028
1029 /* get opclass properties and look up the comparison function */
1030 opfamilyOid = get_opclass_family(opclassOid);
1031 opcintype = get_opclass_input_type(opclassOid);
1032 typentry->rng_opfamily = opfamilyOid;
1033
1034 cmpFnOid = get_opfamily_proc(opfamilyOid, opcintype, opcintype,
1035 BTORDER_PROC);
1036 if (!RegProcedureIsValid(cmpFnOid))
1037 elog(ERROR, "missing support function %d(%u,%u) in opfamily %u",
1038 BTORDER_PROC, opcintype, opcintype, opfamilyOid);
1039
1040 /* set up cached fmgrinfo structs */
1041 fmgr_info_cxt(cmpFnOid, &typentry->rng_cmp_proc_finfo,
1043 if (OidIsValid(canonicalOid))
1044 fmgr_info_cxt(canonicalOid, &typentry->rng_canonical_finfo,
1046 if (OidIsValid(subdiffOid))
1047 fmgr_info_cxt(subdiffOid, &typentry->rng_subdiff_finfo,
1049
1050 /* Lastly, set up link to the element type --- this marks data valid */
1051 typentry->rngelemtype = lookup_type_cache(subtypeOid, 0);
1052}
1053
1054/*
1055 * load_multirangetype_info --- helper routine to set up multirange type
1056 * information
1057 */
1058static void
1060{
1061 Oid rangetypeOid;
1062
1063 rangetypeOid = get_multirange_range(typentry->type_id);
1064 if (!OidIsValid(rangetypeOid))
1065 elog(ERROR, "cache lookup failed for multirange type %u",
1066 typentry->type_id);
1067
1068 typentry->rngtype = lookup_type_cache(rangetypeOid, TYPECACHE_RANGE_INFO);
1069}
1070
1071/*
1072 * load_domaintype_info --- helper routine to set up domain constraint info
1073 *
1074 * Note: we assume we're called in a relatively short-lived context, so it's
1075 * okay to leak data into the current context while scanning pg_constraint.
1076 * We build the new DomainConstraintCache data in a context underneath
1077 * CurrentMemoryContext, and reparent it under CacheMemoryContext when
1078 * complete.
1079 */
1080static void
1082{
1083 Oid typeOid = typentry->type_id;
1085 bool notNull = false;
1086 DomainConstraintState **ccons;
1087 int cconslen;
1088 Relation conRel;
1089 MemoryContext oldcxt;
1090
1091 /*
1092 * If we're here, any existing constraint info is stale, so release it.
1093 * For safety, be sure to null the link before trying to delete the data.
1094 */
1095 if (typentry->domainData)
1096 {
1097 dcc = typentry->domainData;
1098 typentry->domainData = NULL;
1099 decr_dcc_refcount(dcc);
1100 }
1101
1102 /*
1103 * We try to optimize the common case of no domain constraints, so don't
1104 * create the dcc object and context until we find a constraint. Likewise
1105 * for the temp sorting array.
1106 */
1107 dcc = NULL;
1108 ccons = NULL;
1109 cconslen = 0;
1110
1111 /*
1112 * Scan pg_constraint for relevant constraints. We want to find
1113 * constraints for not just this domain, but any ancestor domains, so the
1114 * outer loop crawls up the domain stack.
1115 */
1116 conRel = table_open(ConstraintRelationId, AccessShareLock);
1117
1118 for (;;)
1119 {
1120 HeapTuple tup;
1121 HeapTuple conTup;
1122 Form_pg_type typTup;
1123 int nccons = 0;
1124 ScanKeyData key[1];
1125 SysScanDesc scan;
1126
1127 tup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typeOid));
1128 if (!HeapTupleIsValid(tup))
1129 elog(ERROR, "cache lookup failed for type %u", typeOid);
1130 typTup = (Form_pg_type) GETSTRUCT(tup);
1131
1132 if (typTup->typtype != TYPTYPE_DOMAIN)
1133 {
1134 /* Not a domain, so done */
1135 ReleaseSysCache(tup);
1136 break;
1137 }
1138
1139 /* Test for NOT NULL Constraint */
1140 if (typTup->typnotnull)
1141 notNull = true;
1142
1143 /* Look for CHECK Constraints on this domain */
1144 ScanKeyInit(&key[0],
1145 Anum_pg_constraint_contypid,
1146 BTEqualStrategyNumber, F_OIDEQ,
1147 ObjectIdGetDatum(typeOid));
1148
1149 scan = systable_beginscan(conRel, ConstraintTypidIndexId, true,
1150 NULL, 1, key);
1151
1152 while (HeapTupleIsValid(conTup = systable_getnext(scan)))
1153 {
1155 Datum val;
1156 bool isNull;
1157 char *constring;
1158 Expr *check_expr;
1160
1161 /* Ignore non-CHECK constraints */
1162 if (c->contype != CONSTRAINT_CHECK)
1163 continue;
1164
1165 /* Not expecting conbin to be NULL, but we'll test for it anyway */
1166 val = fastgetattr(conTup, Anum_pg_constraint_conbin,
1167 conRel->rd_att, &isNull);
1168 if (isNull)
1169 elog(ERROR, "domain \"%s\" constraint \"%s\" has NULL conbin",
1170 NameStr(typTup->typname), NameStr(c->conname));
1171
1172 /* Convert conbin to C string in caller context */
1173 constring = TextDatumGetCString(val);
1174
1175 /* Create the DomainConstraintCache object and context if needed */
1176 if (dcc == NULL)
1177 {
1178 MemoryContext cxt;
1179
1181 "Domain constraints",
1183 dcc = (DomainConstraintCache *)
1185 dcc->constraints = NIL;
1186 dcc->dccContext = cxt;
1187 dcc->dccRefCount = 0;
1188 }
1189
1190 /* Create node trees in DomainConstraintCache's context */
1191 oldcxt = MemoryContextSwitchTo(dcc->dccContext);
1192
1193 check_expr = (Expr *) stringToNode(constring);
1194
1195 /*
1196 * Plan the expression, since ExecInitExpr will expect that.
1197 *
1198 * Note: caching the result of expression_planner() is not very
1199 * good practice. Ideally we'd use a CachedExpression here so
1200 * that we would react promptly to, eg, changes in inlined
1201 * functions. However, because we don't support mutable domain
1202 * CHECK constraints, it's not really clear that it's worth the
1203 * extra overhead to do that.
1204 */
1205 check_expr = expression_planner(check_expr);
1206
1209 r->name = pstrdup(NameStr(c->conname));
1210 r->check_expr = check_expr;
1211 r->check_exprstate = NULL;
1212
1213 MemoryContextSwitchTo(oldcxt);
1214
1215 /* Accumulate constraints in an array, for sorting below */
1216 if (ccons == NULL)
1217 {
1218 cconslen = 8;
1219 ccons = (DomainConstraintState **)
1220 palloc(cconslen * sizeof(DomainConstraintState *));
1221 }
1222 else if (nccons >= cconslen)
1223 {
1224 cconslen *= 2;
1225 ccons = (DomainConstraintState **)
1226 repalloc(ccons, cconslen * sizeof(DomainConstraintState *));
1227 }
1228 ccons[nccons++] = r;
1229 }
1230
1231 systable_endscan(scan);
1232
1233 if (nccons > 0)
1234 {
1235 /*
1236 * Sort the items for this domain, so that CHECKs are applied in a
1237 * deterministic order.
1238 */
1239 if (nccons > 1)
1240 qsort(ccons, nccons, sizeof(DomainConstraintState *), dcs_cmp);
1241
1242 /*
1243 * Now attach them to the overall list. Use lcons() here because
1244 * constraints of parent domains should be applied earlier.
1245 */
1246 oldcxt = MemoryContextSwitchTo(dcc->dccContext);
1247 while (nccons > 0)
1248 dcc->constraints = lcons(ccons[--nccons], dcc->constraints);
1249 MemoryContextSwitchTo(oldcxt);
1250 }
1251
1252 /* loop to next domain in stack */
1253 typeOid = typTup->typbasetype;
1254 ReleaseSysCache(tup);
1255 }
1256
1258
1259 /*
1260 * Only need to add one NOT NULL check regardless of how many domains in
1261 * the stack request it.
1262 */
1263 if (notNull)
1264 {
1266
1267 /* Create the DomainConstraintCache object and context if needed */
1268 if (dcc == NULL)
1269 {
1270 MemoryContext cxt;
1271
1273 "Domain constraints",
1275 dcc = (DomainConstraintCache *)
1277 dcc->constraints = NIL;
1278 dcc->dccContext = cxt;
1279 dcc->dccRefCount = 0;
1280 }
1281
1282 /* Create node trees in DomainConstraintCache's context */
1283 oldcxt = MemoryContextSwitchTo(dcc->dccContext);
1284
1286
1288 r->name = pstrdup("NOT NULL");
1289 r->check_expr = NULL;
1290 r->check_exprstate = NULL;
1291
1292 /* lcons to apply the nullness check FIRST */
1293 dcc->constraints = lcons(r, dcc->constraints);
1294
1295 MemoryContextSwitchTo(oldcxt);
1296 }
1297
1298 /*
1299 * If we made a constraint object, move it into CacheMemoryContext and
1300 * attach it to the typcache entry.
1301 */
1302 if (dcc)
1303 {
1305 typentry->domainData = dcc;
1306 dcc->dccRefCount++; /* count the typcache's reference */
1307 }
1308
1309 /* Either way, the typcache entry's domain data is now valid. */
1311}
1312
1313/*
1314 * qsort comparator to sort DomainConstraintState pointers by name
1315 */
1316static int
1317dcs_cmp(const void *a, const void *b)
1318{
1319 const DomainConstraintState *const *ca = (const DomainConstraintState *const *) a;
1320 const DomainConstraintState *const *cb = (const DomainConstraintState *const *) b;
1321
1322 return strcmp((*ca)->name, (*cb)->name);
1323}
1324
1325/*
1326 * decr_dcc_refcount --- decrement a DomainConstraintCache's refcount,
1327 * and free it if no references remain
1328 */
1329static void
1331{
1332 Assert(dcc->dccRefCount > 0);
1333 if (--(dcc->dccRefCount) <= 0)
1335}
1336
1337/*
1338 * Context reset/delete callback for a DomainConstraintRef
1339 */
1340static void
1342{
1344 DomainConstraintCache *dcc = ref->dcc;
1345
1346 /* Paranoia --- be sure link is nulled before trying to release */
1347 if (dcc)
1348 {
1349 ref->constraints = NIL;
1350 ref->dcc = NULL;
1351 decr_dcc_refcount(dcc);
1352 }
1353}
1354
1355/*
1356 * prep_domain_constraints --- prepare domain constraints for execution
1357 *
1358 * The expression trees stored in the DomainConstraintCache's list are
1359 * converted to executable expression state trees stored in execctx.
1360 */
1361static List *
1363{
1364 List *result = NIL;
1365 MemoryContext oldcxt;
1366 ListCell *lc;
1367
1368 oldcxt = MemoryContextSwitchTo(execctx);
1369
1370 foreach(lc, constraints)
1371 {
1374
1376 newr->constrainttype = r->constrainttype;
1377 newr->name = r->name;
1378 newr->check_expr = r->check_expr;
1379 newr->check_exprstate = ExecInitExpr(r->check_expr, NULL);
1380
1381 result = lappend(result, newr);
1382 }
1383
1384 MemoryContextSwitchTo(oldcxt);
1385
1386 return result;
1387}
1388
1389/*
1390 * InitDomainConstraintRef --- initialize a DomainConstraintRef struct
1391 *
1392 * Caller must tell us the MemoryContext in which the DomainConstraintRef
1393 * lives. The ref will be cleaned up when that context is reset/deleted.
1394 *
1395 * Caller must also tell us whether it wants check_exprstate fields to be
1396 * computed in the DomainConstraintState nodes attached to this ref.
1397 * If it doesn't, we need not make a copy of the DomainConstraintState list.
1398 */
1399void
1401 MemoryContext refctx, bool need_exprstate)
1402{
1403 /* Look up the typcache entry --- we assume it survives indefinitely */
1405 ref->need_exprstate = need_exprstate;
1406 /* For safety, establish the callback before acquiring a refcount */
1407 ref->refctx = refctx;
1408 ref->dcc = NULL;
1410 ref->callback.arg = ref;
1412 /* Acquire refcount if there are constraints, and set up exported list */
1413 if (ref->tcache->domainData)
1414 {
1415 ref->dcc = ref->tcache->domainData;
1416 ref->dcc->dccRefCount++;
1417 if (ref->need_exprstate)
1419 ref->refctx);
1420 else
1421 ref->constraints = ref->dcc->constraints;
1422 }
1423 else
1424 ref->constraints = NIL;
1425}
1426
1427/*
1428 * UpdateDomainConstraintRef --- recheck validity of domain constraint info
1429 *
1430 * If the domain's constraint set changed, ref->constraints is updated to
1431 * point at a new list of cached constraints.
1432 *
1433 * In the normal case where nothing happened to the domain, this is cheap
1434 * enough that it's reasonable (and expected) to check before *each* use
1435 * of the constraint info.
1436 */
1437void
1439{
1440 TypeCacheEntry *typentry = ref->tcache;
1441
1442 /* Make sure typcache entry's data is up to date */
1443 if ((typentry->flags & TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS) == 0 &&
1444 typentry->typtype == TYPTYPE_DOMAIN)
1445 load_domaintype_info(typentry);
1446
1447 /* Transfer to ref object if there's new info, adjusting refcounts */
1448 if (ref->dcc != typentry->domainData)
1449 {
1450 /* Paranoia --- be sure link is nulled before trying to release */
1451 DomainConstraintCache *dcc = ref->dcc;
1452
1453 if (dcc)
1454 {
1455 /*
1456 * Note: we just leak the previous list of executable domain
1457 * constraints. Alternatively, we could keep those in a child
1458 * context of ref->refctx and free that context at this point.
1459 * However, in practice this code path will be taken so seldom
1460 * that the extra bookkeeping for a child context doesn't seem
1461 * worthwhile; we'll just allow a leak for the lifespan of refctx.
1462 */
1463 ref->constraints = NIL;
1464 ref->dcc = NULL;
1465 decr_dcc_refcount(dcc);
1466 }
1467 dcc = typentry->domainData;
1468 if (dcc)
1469 {
1470 ref->dcc = dcc;
1471 dcc->dccRefCount++;
1472 if (ref->need_exprstate)
1474 ref->refctx);
1475 else
1476 ref->constraints = dcc->constraints;
1477 }
1478 }
1479}
1480
1481/*
1482 * DomainHasConstraints --- utility routine to check if a domain has constraints
1483 *
1484 * This is defined to return false, not fail, if type is not a domain.
1485 */
1486bool
1488{
1489 TypeCacheEntry *typentry;
1490
1491 /*
1492 * Note: a side effect is to cause the typcache's domain data to become
1493 * valid. This is fine since we'll likely need it soon if there is any.
1494 */
1496
1497 return (typentry->domainData != NULL);
1498}
1499
1500
1501/*
1502 * array_element_has_equality and friends are helper routines to check
1503 * whether we should believe that array_eq and related functions will work
1504 * on the given array type or composite type.
1505 *
1506 * The logic above may call these repeatedly on the same type entry, so we
1507 * make use of the typentry->flags field to cache the results once known.
1508 * Also, we assume that we'll probably want all these facts about the type
1509 * if we want any, so we cache them all using only one lookup of the
1510 * component datatype(s).
1511 */
1512
1513static bool
1515{
1516 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1518 return (typentry->flags & TCFLAGS_HAVE_ELEM_EQUALITY) != 0;
1519}
1520
1521static bool
1523{
1524 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1526 return (typentry->flags & TCFLAGS_HAVE_ELEM_COMPARE) != 0;
1527}
1528
1529static bool
1531{
1532 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1534 return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1535}
1536
1537static bool
1539{
1540 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1542 return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0;
1543}
1544
1545static void
1547{
1548 Oid elem_type = get_base_element_type(typentry->type_id);
1549
1550 if (OidIsValid(elem_type))
1551 {
1552 TypeCacheEntry *elementry;
1553
1554 elementry = lookup_type_cache(elem_type,
1559 if (OidIsValid(elementry->eq_opr))
1560 typentry->flags |= TCFLAGS_HAVE_ELEM_EQUALITY;
1561 if (OidIsValid(elementry->cmp_proc))
1562 typentry->flags |= TCFLAGS_HAVE_ELEM_COMPARE;
1563 if (OidIsValid(elementry->hash_proc))
1564 typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1565 if (OidIsValid(elementry->hash_extended_proc))
1567 }
1569}
1570
1571/*
1572 * Likewise, some helper functions for composite types.
1573 */
1574
1575static bool
1577{
1578 if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1580 return (typentry->flags & TCFLAGS_HAVE_FIELD_EQUALITY) != 0;
1581}
1582
1583static bool
1585{
1586 if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1588 return (typentry->flags & TCFLAGS_HAVE_FIELD_COMPARE) != 0;
1589}
1590
1591static bool
1593{
1594 if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1596 return (typentry->flags & TCFLAGS_HAVE_FIELD_HASHING) != 0;
1597}
1598
1599static bool
1601{
1602 if (!(typentry->flags & TCFLAGS_CHECKED_FIELD_PROPERTIES))
1604 return (typentry->flags & TCFLAGS_HAVE_FIELD_EXTENDED_HASHING) != 0;
1605}
1606
1607static void
1609{
1610 /*
1611 * For type RECORD, we can't really tell what will work, since we don't
1612 * have access here to the specific anonymous type. Just assume that
1613 * equality and comparison will (we may get a failure at runtime). We
1614 * could also claim that hashing works, but then if code that has the
1615 * option between a comparison-based (sort-based) and a hash-based plan
1616 * chooses hashing, stuff could fail that would otherwise work if it chose
1617 * a comparison-based plan. In practice more types support comparison
1618 * than hashing.
1619 */
1620 if (typentry->type_id == RECORDOID)
1621 {
1622 typentry->flags |= (TCFLAGS_HAVE_FIELD_EQUALITY |
1624 }
1625 else if (typentry->typtype == TYPTYPE_COMPOSITE)
1626 {
1627 TupleDesc tupdesc;
1628 int newflags;
1629 int i;
1630
1631 /* Fetch composite type's tupdesc if we don't have it already */
1632 if (typentry->tupDesc == NULL)
1633 load_typcache_tupdesc(typentry);
1634 tupdesc = typentry->tupDesc;
1635
1636 /* Must bump the refcount while we do additional catalog lookups */
1637 IncrTupleDescRefCount(tupdesc);
1638
1639 /* Have each property if all non-dropped fields have the property */
1640 newflags = (TCFLAGS_HAVE_FIELD_EQUALITY |
1644 for (i = 0; i < tupdesc->natts; i++)
1645 {
1646 TypeCacheEntry *fieldentry;
1647 Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
1648
1649 if (attr->attisdropped)
1650 continue;
1651
1652 fieldentry = lookup_type_cache(attr->atttypid,
1657 if (!OidIsValid(fieldentry->eq_opr))
1658 newflags &= ~TCFLAGS_HAVE_FIELD_EQUALITY;
1659 if (!OidIsValid(fieldentry->cmp_proc))
1660 newflags &= ~TCFLAGS_HAVE_FIELD_COMPARE;
1661 if (!OidIsValid(fieldentry->hash_proc))
1662 newflags &= ~TCFLAGS_HAVE_FIELD_HASHING;
1663 if (!OidIsValid(fieldentry->hash_extended_proc))
1664 newflags &= ~TCFLAGS_HAVE_FIELD_EXTENDED_HASHING;
1665
1666 /* We can drop out of the loop once we disprove all bits */
1667 if (newflags == 0)
1668 break;
1669 }
1670 typentry->flags |= newflags;
1671
1672 DecrTupleDescRefCount(tupdesc);
1673 }
1674 else if (typentry->typtype == TYPTYPE_DOMAIN)
1675 {
1676 /* If it's domain over composite, copy base type's properties */
1677 TypeCacheEntry *baseentry;
1678
1679 /* load up basetype info if we didn't already */
1680 if (typentry->domainBaseType == InvalidOid)
1681 {
1682 typentry->domainBaseTypmod = -1;
1683 typentry->domainBaseType =
1684 getBaseTypeAndTypmod(typentry->type_id,
1685 &typentry->domainBaseTypmod);
1686 }
1687 baseentry = lookup_type_cache(typentry->domainBaseType,
1692 if (baseentry->typtype == TYPTYPE_COMPOSITE)
1693 {
1695 typentry->flags |= baseentry->flags & (TCFLAGS_HAVE_FIELD_EQUALITY |
1699 }
1700 }
1702}
1703
1704/*
1705 * Likewise, some helper functions for range and multirange types.
1706 *
1707 * We can borrow the flag bits for array element properties to use for range
1708 * element properties, since those flag bits otherwise have no use in a
1709 * range or multirange type's typcache entry.
1710 */
1711
1712static bool
1714{
1715 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1717 return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1718}
1719
1720static bool
1722{
1723 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1725 return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0;
1726}
1727
1728static void
1730{
1731 /* load up subtype link if we didn't already */
1732 if (typentry->rngelemtype == NULL &&
1733 typentry->typtype == TYPTYPE_RANGE)
1734 load_rangetype_info(typentry);
1735
1736 if (typentry->rngelemtype != NULL)
1737 {
1738 TypeCacheEntry *elementry;
1739
1740 /* might need to calculate subtype's hash function properties */
1741 elementry = lookup_type_cache(typentry->rngelemtype->type_id,
1744 if (OidIsValid(elementry->hash_proc))
1745 typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1746 if (OidIsValid(elementry->hash_extended_proc))
1748 }
1750}
1751
1752static bool
1754{
1755 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1757 return (typentry->flags & TCFLAGS_HAVE_ELEM_HASHING) != 0;
1758}
1759
1760static bool
1762{
1763 if (!(typentry->flags & TCFLAGS_CHECKED_ELEM_PROPERTIES))
1765 return (typentry->flags & TCFLAGS_HAVE_ELEM_EXTENDED_HASHING) != 0;
1766}
1767
1768static void
1770{
1771 /* load up range link if we didn't already */
1772 if (typentry->rngtype == NULL &&
1773 typentry->typtype == TYPTYPE_MULTIRANGE)
1774 load_multirangetype_info(typentry);
1775
1776 if (typentry->rngtype != NULL && typentry->rngtype->rngelemtype != NULL)
1777 {
1778 TypeCacheEntry *elementry;
1779
1780 /* might need to calculate subtype's hash function properties */
1781 elementry = lookup_type_cache(typentry->rngtype->rngelemtype->type_id,
1784 if (OidIsValid(elementry->hash_proc))
1785 typentry->flags |= TCFLAGS_HAVE_ELEM_HASHING;
1786 if (OidIsValid(elementry->hash_extended_proc))
1788 }
1790}
1791
1792/*
1793 * Make sure that RecordCacheArray and RecordIdentifierArray are large enough
1794 * to store 'typmod'.
1795 */
1796static void
1798{
1799 if (RecordCacheArray == NULL)
1800 {
1803 64 * sizeof(RecordCacheArrayEntry));
1805 }
1806
1807 if (typmod >= RecordCacheArrayLen)
1808 {
1809 int32 newlen = pg_nextpower2_32(typmod + 1);
1810
1814 newlen);
1815 RecordCacheArrayLen = newlen;
1816 }
1817}
1818
1819/*
1820 * lookup_rowtype_tupdesc_internal --- internal routine to lookup a rowtype
1821 *
1822 * Same API as lookup_rowtype_tupdesc_noerror, but the returned tupdesc
1823 * hasn't had its refcount bumped.
1824 */
1825static TupleDesc
1826lookup_rowtype_tupdesc_internal(Oid type_id, int32 typmod, bool noError)
1827{
1828 if (type_id != RECORDOID)
1829 {
1830 /*
1831 * It's a named composite type, so use the regular typcache.
1832 */
1833 TypeCacheEntry *typentry;
1834
1835 typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC);
1836 if (typentry->tupDesc == NULL && !noError)
1837 ereport(ERROR,
1838 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1839 errmsg("type %s is not composite",
1840 format_type_be(type_id))));
1841 return typentry->tupDesc;
1842 }
1843 else
1844 {
1845 /*
1846 * It's a transient record type, so look in our record-type table.
1847 */
1848 if (typmod >= 0)
1849 {
1850 /* It is already in our local cache? */
1851 if (typmod < RecordCacheArrayLen &&
1852 RecordCacheArray[typmod].tupdesc != NULL)
1853 return RecordCacheArray[typmod].tupdesc;
1854
1855 /* Are we attached to a shared record typmod registry? */
1857 {
1859
1860 /* Try to find it in the shared typmod index. */
1862 &typmod, false);
1863 if (entry != NULL)
1864 {
1865 TupleDesc tupdesc;
1866
1867 tupdesc = (TupleDesc)
1869 entry->shared_tupdesc);
1870 Assert(typmod == tupdesc->tdtypmod);
1871
1872 /* We may need to extend the local RecordCacheArray. */
1874
1875 /*
1876 * Our local array can now point directly to the TupleDesc
1877 * in shared memory, which is non-reference-counted.
1878 */
1879 RecordCacheArray[typmod].tupdesc = tupdesc;
1880 Assert(tupdesc->tdrefcount == -1);
1881
1882 /*
1883 * We don't share tupdesc identifiers across processes, so
1884 * assign one locally.
1885 */
1887
1889 entry);
1890
1891 return RecordCacheArray[typmod].tupdesc;
1892 }
1893 }
1894 }
1895
1896 if (!noError)
1897 ereport(ERROR,
1898 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1899 errmsg("record type has not been registered")));
1900 return NULL;
1901 }
1902}
1903
1904/*
1905 * lookup_rowtype_tupdesc
1906 *
1907 * Given a typeid/typmod that should describe a known composite type,
1908 * return the tuple descriptor for the type. Will ereport on failure.
1909 * (Use ereport because this is reachable with user-specified OIDs,
1910 * for example from record_in().)
1911 *
1912 * Note: on success, we increment the refcount of the returned TupleDesc,
1913 * and log the reference in CurrentResourceOwner. Caller must call
1914 * ReleaseTupleDesc when done using the tupdesc. (There are some
1915 * cases in which the returned tupdesc is not refcounted, in which
1916 * case PinTupleDesc/ReleaseTupleDesc are no-ops; but in these cases
1917 * the tupdesc is guaranteed to live till process exit.)
1918 */
1921{
1922 TupleDesc tupDesc;
1923
1924 tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, false);
1925 PinTupleDesc(tupDesc);
1926 return tupDesc;
1927}
1928
1929/*
1930 * lookup_rowtype_tupdesc_noerror
1931 *
1932 * As above, but if the type is not a known composite type and noError
1933 * is true, returns NULL instead of ereport'ing. (Note that if a bogus
1934 * type_id is passed, you'll get an ereport anyway.)
1935 */
1937lookup_rowtype_tupdesc_noerror(Oid type_id, int32 typmod, bool noError)
1938{
1939 TupleDesc tupDesc;
1940
1941 tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError);
1942 if (tupDesc != NULL)
1943 PinTupleDesc(tupDesc);
1944 return tupDesc;
1945}
1946
1947/*
1948 * lookup_rowtype_tupdesc_copy
1949 *
1950 * Like lookup_rowtype_tupdesc(), but the returned TupleDesc has been
1951 * copied into the CurrentMemoryContext and is not reference-counted.
1952 */
1955{
1956 TupleDesc tmp;
1957
1958 tmp = lookup_rowtype_tupdesc_internal(type_id, typmod, false);
1959 return CreateTupleDescCopyConstr(tmp);
1960}
1961
1962/*
1963 * lookup_rowtype_tupdesc_domain
1964 *
1965 * Same as lookup_rowtype_tupdesc_noerror(), except that the type can also be
1966 * a domain over a named composite type; so this is effectively equivalent to
1967 * lookup_rowtype_tupdesc_noerror(getBaseType(type_id), typmod, noError)
1968 * except for being a tad faster.
1969 *
1970 * Note: the reason we don't fold the look-through-domain behavior into plain
1971 * lookup_rowtype_tupdesc() is that we want callers to know they might be
1972 * dealing with a domain. Otherwise they might construct a tuple that should
1973 * be of the domain type, but not apply domain constraints.
1974 */
1976lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError)
1977{
1978 TupleDesc tupDesc;
1979
1980 if (type_id != RECORDOID)
1981 {
1982 /*
1983 * Check for domain or named composite type. We might as well load
1984 * whichever data is needed.
1985 */
1986 TypeCacheEntry *typentry;
1987
1988 typentry = lookup_type_cache(type_id,
1991 if (typentry->typtype == TYPTYPE_DOMAIN)
1993 typentry->domainBaseTypmod,
1994 noError);
1995 if (typentry->tupDesc == NULL && !noError)
1996 ereport(ERROR,
1997 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1998 errmsg("type %s is not composite",
1999 format_type_be(type_id))));
2000 tupDesc = typentry->tupDesc;
2001 }
2002 else
2003 tupDesc = lookup_rowtype_tupdesc_internal(type_id, typmod, noError);
2004 if (tupDesc != NULL)
2005 PinTupleDesc(tupDesc);
2006 return tupDesc;
2007}
2008
2009/*
2010 * Hash function for the hash table of RecordCacheEntry.
2011 */
2012static uint32
2014{
2016
2017 return hashRowType(entry->tupdesc);
2018}
2019
2020/*
2021 * Match function for the hash table of RecordCacheEntry.
2022 */
2023static int
2024record_type_typmod_compare(const void *a, const void *b, size_t size)
2025{
2027 RecordCacheEntry *right = (RecordCacheEntry *) b;
2028
2029 return equalRowTypes(left->tupdesc, right->tupdesc) ? 0 : 1;
2030}
2031
2032/*
2033 * assign_record_type_typmod
2034 *
2035 * Given a tuple descriptor for a RECORD type, find or create a cache entry
2036 * for the type, and set the tupdesc's tdtypmod field to a value that will
2037 * identify this cache entry to lookup_rowtype_tupdesc.
2038 */
2039void
2041{
2042 RecordCacheEntry *recentry;
2043 TupleDesc entDesc;
2044 bool found;
2045 MemoryContext oldcxt;
2046
2047 Assert(tupDesc->tdtypeid == RECORDOID);
2048
2049 if (RecordCacheHash == NULL)
2050 {
2051 /* First time through: initialize the hash table */
2052 HASHCTL ctl;
2053
2054 ctl.keysize = sizeof(TupleDesc); /* just the pointer */
2055 ctl.entrysize = sizeof(RecordCacheEntry);
2058 RecordCacheHash = hash_create("Record information cache", 64,
2059 &ctl,
2061
2062 /* Also make sure CacheMemoryContext exists */
2063 if (!CacheMemoryContext)
2065 }
2066
2067 /*
2068 * Find a hashtable entry for this tuple descriptor. We don't use
2069 * HASH_ENTER yet, because if it's missing, we need to make sure that all
2070 * the allocations succeed before we create the new entry.
2071 */
2073 &tupDesc,
2074 HASH_FIND, &found);
2075 if (found && recentry->tupdesc != NULL)
2076 {
2077 tupDesc->tdtypmod = recentry->tupdesc->tdtypmod;
2078 return;
2079 }
2080
2081 /* Not present, so need to manufacture an entry */
2083
2084 /* Look in the SharedRecordTypmodRegistry, if attached */
2085 entDesc = find_or_make_matching_shared_tupledesc(tupDesc);
2086 if (entDesc == NULL)
2087 {
2088 /*
2089 * Make sure we have room before we CreateTupleDescCopy() or advance
2090 * NextRecordTypmod.
2091 */
2093
2094 /* Reference-counted local cache only. */
2095 entDesc = CreateTupleDescCopy(tupDesc);
2096 entDesc->tdrefcount = 1;
2097 entDesc->tdtypmod = NextRecordTypmod++;
2098 }
2099 else
2100 {
2102 }
2103
2104 RecordCacheArray[entDesc->tdtypmod].tupdesc = entDesc;
2105
2106 /* Assign a unique tupdesc identifier, too. */
2108
2109 /* Fully initialized; create the hash table entry */
2111 &tupDesc,
2112 HASH_ENTER, NULL);
2113 recentry->tupdesc = entDesc;
2114
2115 /* Update the caller's tuple descriptor. */
2116 tupDesc->tdtypmod = entDesc->tdtypmod;
2117
2118 MemoryContextSwitchTo(oldcxt);
2119}
2120
2121/*
2122 * assign_record_type_identifier
2123 *
2124 * Get an identifier, which will be unique over the lifespan of this backend
2125 * process, for the current tuple descriptor of the specified composite type.
2126 * For named composite types, the value is guaranteed to change if the type's
2127 * definition does. For registered RECORD types, the value will not change
2128 * once assigned, since the registered type won't either. If an anonymous
2129 * RECORD type is specified, we return a new identifier on each call.
2130 */
2131uint64
2133{
2134 if (type_id != RECORDOID)
2135 {
2136 /*
2137 * It's a named composite type, so use the regular typcache.
2138 */
2139 TypeCacheEntry *typentry;
2140
2141 typentry = lookup_type_cache(type_id, TYPECACHE_TUPDESC);
2142 if (typentry->tupDesc == NULL)
2143 ereport(ERROR,
2144 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
2145 errmsg("type %s is not composite",
2146 format_type_be(type_id))));
2147 Assert(typentry->tupDesc_identifier != 0);
2148 return typentry->tupDesc_identifier;
2149 }
2150 else
2151 {
2152 /*
2153 * It's a transient record type, so look in our record-type table.
2154 */
2155 if (typmod >= 0 && typmod < RecordCacheArrayLen &&
2156 RecordCacheArray[typmod].tupdesc != NULL)
2157 {
2158 Assert(RecordCacheArray[typmod].id != 0);
2159 return RecordCacheArray[typmod].id;
2160 }
2161
2162 /* For anonymous or unrecognized record type, generate a new ID */
2163 return ++tupledesc_id_counter;
2164 }
2165}
2166
2167/*
2168 * Return the amount of shmem required to hold a SharedRecordTypmodRegistry.
2169 * This exists only to avoid exposing private innards of
2170 * SharedRecordTypmodRegistry in a header.
2171 */
2172size_t
2174{
2175 return sizeof(SharedRecordTypmodRegistry);
2176}
2177
2178/*
2179 * Initialize 'registry' in a pre-existing shared memory region, which must be
2180 * maximally aligned and have space for SharedRecordTypmodRegistryEstimate()
2181 * bytes.
2182 *
2183 * 'area' will be used to allocate shared memory space as required for the
2184 * typemod registration. The current process, expected to be a leader process
2185 * in a parallel query, will be attached automatically and its current record
2186 * types will be loaded into *registry. While attached, all calls to
2187 * assign_record_type_typmod will use the shared registry. Worker backends
2188 * will need to attach explicitly.
2189 *
2190 * Note that this function takes 'area' and 'segment' as arguments rather than
2191 * accessing them via CurrentSession, because they aren't installed there
2192 * until after this function runs.
2193 */
2194void
2196 dsm_segment *segment,
2197 dsa_area *area)
2198{
2199 MemoryContext old_context;
2200 dshash_table *record_table;
2201 dshash_table *typmod_table;
2202 int32 typmod;
2203
2205
2206 /* We can't already be attached to a shared registry. */
2210
2212
2213 /* Create the hash table of tuple descriptors indexed by themselves. */
2214 record_table = dshash_create(area, &srtr_record_table_params, area);
2215
2216 /* Create the hash table of tuple descriptors indexed by typmod. */
2217 typmod_table = dshash_create(area, &srtr_typmod_table_params, NULL);
2218
2219 MemoryContextSwitchTo(old_context);
2220
2221 /* Initialize the SharedRecordTypmodRegistry. */
2222 registry->record_table_handle = dshash_get_hash_table_handle(record_table);
2223 registry->typmod_table_handle = dshash_get_hash_table_handle(typmod_table);
2225
2226 /*
2227 * Copy all entries from this backend's private registry into the shared
2228 * registry.
2229 */
2230 for (typmod = 0; typmod < NextRecordTypmod; ++typmod)
2231 {
2232 SharedTypmodTableEntry *typmod_table_entry;
2233 SharedRecordTableEntry *record_table_entry;
2234 SharedRecordTableKey record_table_key;
2235 dsa_pointer shared_dp;
2236 TupleDesc tupdesc;
2237 bool found;
2238
2239 tupdesc = RecordCacheArray[typmod].tupdesc;
2240 if (tupdesc == NULL)
2241 continue;
2242
2243 /* Copy the TupleDesc into shared memory. */
2244 shared_dp = share_tupledesc(area, tupdesc, typmod);
2245
2246 /* Insert into the typmod table. */
2247 typmod_table_entry = dshash_find_or_insert(typmod_table,
2248 &tupdesc->tdtypmod,
2249 &found);
2250 if (found)
2251 elog(ERROR, "cannot create duplicate shared record typmod");
2252 typmod_table_entry->typmod = tupdesc->tdtypmod;
2253 typmod_table_entry->shared_tupdesc = shared_dp;
2254 dshash_release_lock(typmod_table, typmod_table_entry);
2255
2256 /* Insert into the record table. */
2257 record_table_key.shared = false;
2258 record_table_key.u.local_tupdesc = tupdesc;
2259 record_table_entry = dshash_find_or_insert(record_table,
2260 &record_table_key,
2261 &found);
2262 if (!found)
2263 {
2264 record_table_entry->key.shared = true;
2265 record_table_entry->key.u.shared_tupdesc = shared_dp;
2266 }
2267 dshash_release_lock(record_table, record_table_entry);
2268 }
2269
2270 /*
2271 * Set up the global state that will tell assign_record_type_typmod and
2272 * lookup_rowtype_tupdesc_internal about the shared registry.
2273 */
2274 CurrentSession->shared_record_table = record_table;
2275 CurrentSession->shared_typmod_table = typmod_table;
2277
2278 /*
2279 * We install a detach hook in the leader, but only to handle cleanup on
2280 * failure during GetSessionDsmHandle(). Once GetSessionDsmHandle() pins
2281 * the memory, the leader process will use a shared registry until it
2282 * exits.
2283 */
2285}
2286
2287/*
2288 * Attach to 'registry', which must have been initialized already by another
2289 * backend. Future calls to assign_record_type_typmod and
2290 * lookup_rowtype_tupdesc_internal will use the shared registry until the
2291 * current session is detached.
2292 */
2293void
2295{
2296 MemoryContext old_context;
2297 dshash_table *record_table;
2298 dshash_table *typmod_table;
2299
2301
2302 /* We can't already be attached to a shared registry. */
2303 Assert(CurrentSession != NULL);
2304 Assert(CurrentSession->segment != NULL);
2305 Assert(CurrentSession->area != NULL);
2309
2310 /*
2311 * We can't already have typmods in our local cache, because they'd clash
2312 * with those imported by SharedRecordTypmodRegistryInit. This should be
2313 * a freshly started parallel worker. If we ever support worker
2314 * recycling, a worker would need to zap its local cache in between
2315 * servicing different queries, in order to be able to call this and
2316 * synchronize typmods with a new leader; but that's problematic because
2317 * we can't be very sure that record-typmod-related state hasn't escaped
2318 * to anywhere else in the process.
2319 */
2321
2323
2324 /* Attach to the two hash tables. */
2325 record_table = dshash_attach(CurrentSession->area,
2327 registry->record_table_handle,
2329 typmod_table = dshash_attach(CurrentSession->area,
2331 registry->typmod_table_handle,
2332 NULL);
2333
2334 MemoryContextSwitchTo(old_context);
2335
2336 /*
2337 * Set up detach hook to run at worker exit. Currently this is the same
2338 * as the leader's detach hook, but in future they might need to be
2339 * different.
2340 */
2343 PointerGetDatum(registry));
2344
2345 /*
2346 * Set up the session state that will tell assign_record_type_typmod and
2347 * lookup_rowtype_tupdesc_internal about the shared registry.
2348 */
2350 CurrentSession->shared_record_table = record_table;
2351 CurrentSession->shared_typmod_table = typmod_table;
2352}
2353
2354/*
2355 * InvalidateCompositeTypeCacheEntry
2356 * Invalidate particular TypeCacheEntry on Relcache inval callback
2357 *
2358 * Delete the cached tuple descriptor (if any) for the given composite
2359 * type, and reset whatever info we have cached about the composite type's
2360 * comparability.
2361 */
2362static void
2364{
2365 bool hadTupDescOrOpclass;
2366
2367 Assert(typentry->typtype == TYPTYPE_COMPOSITE &&
2368 OidIsValid(typentry->typrelid));
2369
2370 hadTupDescOrOpclass = (typentry->tupDesc != NULL) ||
2371 (typentry->flags & TCFLAGS_OPERATOR_FLAGS);
2372
2373 /* Delete tupdesc if we have it */
2374 if (typentry->tupDesc != NULL)
2375 {
2376 /*
2377 * Release our refcount and free the tupdesc if none remain. We can't
2378 * use DecrTupleDescRefCount here because this reference is not logged
2379 * by the current resource owner.
2380 */
2381 Assert(typentry->tupDesc->tdrefcount > 0);
2382 if (--typentry->tupDesc->tdrefcount == 0)
2383 FreeTupleDesc(typentry->tupDesc);
2384 typentry->tupDesc = NULL;
2385
2386 /*
2387 * Also clear tupDesc_identifier, so that anyone watching it will
2388 * realize that the tupdesc has changed.
2389 */
2390 typentry->tupDesc_identifier = 0;
2391 }
2392
2393 /* Reset equality/comparison/hashing validity information */
2394 typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2395
2396 /* Call delete_rel_type_cache() if we actually cleared something */
2397 if (hadTupDescOrOpclass)
2399}
2400
2401/*
2402 * TypeCacheRelCallback
2403 * Relcache inval callback function
2404 *
2405 * Delete the cached tuple descriptor (if any) for the given rel's composite
2406 * type, or for all composite types if relid == InvalidOid. Also reset
2407 * whatever info we have cached about the composite type's comparability.
2408 *
2409 * This is called when a relcache invalidation event occurs for the given
2410 * relid. We can't use syscache to find a type corresponding to the given
2411 * relation because the code can be called outside of transaction. Thus, we
2412 * use the RelIdToTypeIdCacheHash map to locate appropriate typcache entry.
2413 */
2414static void
2416{
2417 TypeCacheEntry *typentry;
2418
2419 /*
2420 * RelIdToTypeIdCacheHash and TypeCacheHash should exist, otherwise this
2421 * callback wouldn't be registered
2422 */
2423 if (OidIsValid(relid))
2424 {
2425 RelIdToTypeIdCacheEntry *relentry;
2426
2427 /*
2428 * Find an RelIdToTypeIdCacheHash entry, which should exist as soon as
2429 * corresponding typcache entry has something to clean.
2430 */
2432 &relid,
2433 HASH_FIND, NULL);
2434
2435 if (relentry != NULL)
2436 {
2438 &relentry->composite_typid,
2439 HASH_FIND, NULL);
2440
2441 if (typentry != NULL)
2442 {
2443 Assert(typentry->typtype == TYPTYPE_COMPOSITE);
2444 Assert(relid == typentry->typrelid);
2445
2447 }
2448 }
2449
2450 /*
2451 * Visit all the domain types sequentially. Typically, this shouldn't
2452 * affect performance since domain types are less tended to bloat.
2453 * Domain types are created manually, unlike composite types which are
2454 * automatically created for every temporary table.
2455 */
2456 for (typentry = firstDomainTypeEntry;
2457 typentry != NULL;
2458 typentry = typentry->nextDomain)
2459 {
2460 /*
2461 * If it's domain over composite, reset flags. (We don't bother
2462 * trying to determine whether the specific base type needs a
2463 * reset.) Note that if we haven't determined whether the base
2464 * type is composite, we don't need to reset anything.
2465 */
2467 typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2468 }
2469 }
2470 else
2471 {
2472 HASH_SEQ_STATUS status;
2473
2474 /*
2475 * Relid is invalid. By convention, we need to reset all composite
2476 * types in cache. Also, we should reset flags for domain types, and
2477 * we loop over all entries in hash, so, do it in a single scan.
2478 */
2479 hash_seq_init(&status, TypeCacheHash);
2480 while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
2481 {
2482 if (typentry->typtype == TYPTYPE_COMPOSITE)
2483 {
2485 }
2486 else if (typentry->typtype == TYPTYPE_DOMAIN)
2487 {
2488 /*
2489 * If it's domain over composite, reset flags. (We don't
2490 * bother trying to determine whether the specific base type
2491 * needs a reset.) Note that if we haven't determined whether
2492 * the base type is composite, we don't need to reset
2493 * anything.
2494 */
2496 typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2497 }
2498 }
2499 }
2500}
2501
2502/*
2503 * TypeCacheTypCallback
2504 * Syscache inval callback function
2505 *
2506 * This is called when a syscache invalidation event occurs for any
2507 * pg_type row. If we have information cached about that type, mark
2508 * it as needing to be reloaded.
2509 */
2510static void
2511TypeCacheTypCallback(Datum arg, int cacheid, uint32 hashvalue)
2512{
2513 HASH_SEQ_STATUS status;
2514 TypeCacheEntry *typentry;
2515
2516 /* TypeCacheHash must exist, else this callback wouldn't be registered */
2517
2518 /*
2519 * By convention, zero hash value is passed to the callback as a sign that
2520 * it's time to invalidate the whole cache. See sinval.c, inval.c and
2521 * InvalidateSystemCachesExtended().
2522 */
2523 if (hashvalue == 0)
2524 hash_seq_init(&status, TypeCacheHash);
2525 else
2526 hash_seq_init_with_hash_value(&status, TypeCacheHash, hashvalue);
2527
2528 while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
2529 {
2530 bool hadPgTypeData = (typentry->flags & TCFLAGS_HAVE_PG_TYPE_DATA);
2531
2532 Assert(hashvalue == 0 || typentry->type_id_hash == hashvalue);
2533
2534 /*
2535 * Mark the data obtained directly from pg_type as invalid. Also, if
2536 * it's a domain, typnotnull might've changed, so we'll need to
2537 * recalculate its constraints.
2538 */
2539 typentry->flags &= ~(TCFLAGS_HAVE_PG_TYPE_DATA |
2541
2542 /*
2543 * Call delete_rel_type_cache() if we cleaned
2544 * TCFLAGS_HAVE_PG_TYPE_DATA flag previously.
2545 */
2546 if (hadPgTypeData)
2548 }
2549}
2550
2551/*
2552 * TypeCacheOpcCallback
2553 * Syscache inval callback function
2554 *
2555 * This is called when a syscache invalidation event occurs for any pg_opclass
2556 * row. In principle we could probably just invalidate data dependent on the
2557 * particular opclass, but since updates on pg_opclass are rare in production
2558 * it doesn't seem worth a lot of complication: we just mark all cached data
2559 * invalid.
2560 *
2561 * Note that we don't bother watching for updates on pg_amop or pg_amproc.
2562 * This should be safe because ALTER OPERATOR FAMILY ADD/DROP OPERATOR/FUNCTION
2563 * is not allowed to be used to add/drop the primary operators and functions
2564 * of an opclass, only cross-type members of a family; and the latter sorts
2565 * of members are not going to get cached here.
2566 */
2567static void
2568TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue)
2569{
2570 HASH_SEQ_STATUS status;
2571 TypeCacheEntry *typentry;
2572
2573 /* TypeCacheHash must exist, else this callback wouldn't be registered */
2574 hash_seq_init(&status, TypeCacheHash);
2575 while ((typentry = (TypeCacheEntry *) hash_seq_search(&status)) != NULL)
2576 {
2577 /* Reset equality/comparison/hashing validity information */
2578 typentry->flags &= ~TCFLAGS_OPERATOR_FLAGS;
2579 }
2580}
2581
2582/*
2583 * TypeCacheConstrCallback
2584 * Syscache inval callback function
2585 *
2586 * This is called when a syscache invalidation event occurs for any
2587 * pg_constraint row. We flush information about domain constraints
2588 * when this happens.
2589 *
2590 * It's slightly annoying that we can't tell whether the inval event was for
2591 * a domain constraint record or not; there's usually more update traffic
2592 * for table constraints than domain constraints, so we'll do a lot of
2593 * useless flushes. Still, this is better than the old no-caching-at-all
2594 * approach to domain constraints.
2595 */
2596static void
2597TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue)
2598{
2599 TypeCacheEntry *typentry;
2600
2601 /*
2602 * Because this is called very frequently, and typically very few of the
2603 * typcache entries are for domains, we don't use hash_seq_search here.
2604 * Instead we thread all the domain-type entries together so that we can
2605 * visit them cheaply.
2606 */
2607 for (typentry = firstDomainTypeEntry;
2608 typentry != NULL;
2609 typentry = typentry->nextDomain)
2610 {
2611 /* Reset domain constraint validity information */
2612 typentry->flags &= ~TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS;
2613 }
2614}
2615
2616
2617/*
2618 * Check if given OID is part of the subset that's sortable by comparisons
2619 */
2620static inline bool
2622{
2623 Oid offset;
2624
2625 if (arg < enumdata->bitmap_base)
2626 return false;
2627 offset = arg - enumdata->bitmap_base;
2628 if (offset > (Oid) INT_MAX)
2629 return false;
2630 return bms_is_member((int) offset, enumdata->sorted_values);
2631}
2632
2633
2634/*
2635 * compare_values_of_enum
2636 * Compare two members of an enum type.
2637 * Return <0, 0, or >0 according as arg1 <, =, or > arg2.
2638 *
2639 * Note: currently, the enumData cache is refreshed only if we are asked
2640 * to compare an enum value that is not already in the cache. This is okay
2641 * because there is no support for re-ordering existing values, so comparisons
2642 * of previously cached values will return the right answer even if other
2643 * values have been added since we last loaded the cache.
2644 *
2645 * Note: the enum logic has a special-case rule about even-numbered versus
2646 * odd-numbered OIDs, but we take no account of that rule here; this
2647 * routine shouldn't even get called when that rule applies.
2648 */
2649int
2651{
2652 TypeCacheEnumData *enumdata;
2653 EnumItem *item1;
2654 EnumItem *item2;
2655
2656 /*
2657 * Equal OIDs are certainly equal --- this case was probably handled by
2658 * our caller, but we may as well check.
2659 */
2660 if (arg1 == arg2)
2661 return 0;
2662
2663 /* Load up the cache if first time through */
2664 if (tcache->enumData == NULL)
2665 load_enum_cache_data(tcache);
2666 enumdata = tcache->enumData;
2667
2668 /*
2669 * If both OIDs are known-sorted, we can just compare them directly.
2670 */
2671 if (enum_known_sorted(enumdata, arg1) &&
2672 enum_known_sorted(enumdata, arg2))
2673 {
2674 if (arg1 < arg2)
2675 return -1;
2676 else
2677 return 1;
2678 }
2679
2680 /*
2681 * Slow path: we have to identify their actual sort-order positions.
2682 */
2683 item1 = find_enumitem(enumdata, arg1);
2684 item2 = find_enumitem(enumdata, arg2);
2685
2686 if (item1 == NULL || item2 == NULL)
2687 {
2688 /*
2689 * We couldn't find one or both values. That means the enum has
2690 * changed under us, so re-initialize the cache and try again. We
2691 * don't bother retrying the known-sorted case in this path.
2692 */
2693 load_enum_cache_data(tcache);
2694 enumdata = tcache->enumData;
2695
2696 item1 = find_enumitem(enumdata, arg1);
2697 item2 = find_enumitem(enumdata, arg2);
2698
2699 /*
2700 * If we still can't find the values, complain: we must have corrupt
2701 * data.
2702 */
2703 if (item1 == NULL)
2704 elog(ERROR, "enum value %u not found in cache for enum %s",
2705 arg1, format_type_be(tcache->type_id));
2706 if (item2 == NULL)
2707 elog(ERROR, "enum value %u not found in cache for enum %s",
2708 arg2, format_type_be(tcache->type_id));
2709 }
2710
2711 if (item1->sort_order < item2->sort_order)
2712 return -1;
2713 else if (item1->sort_order > item2->sort_order)
2714 return 1;
2715 else
2716 return 0;
2717}
2718
2719/*
2720 * Load (or re-load) the enumData member of the typcache entry.
2721 */
2722static void
2724{
2725 TypeCacheEnumData *enumdata;
2726 Relation enum_rel;
2727 SysScanDesc enum_scan;
2728 HeapTuple enum_tuple;
2729 ScanKeyData skey;
2730 EnumItem *items;
2731 int numitems;
2732 int maxitems;
2733 Oid bitmap_base;
2734 Bitmapset *bitmap;
2735 MemoryContext oldcxt;
2736 int bm_size,
2737 start_pos;
2738
2739 /* Check that this is actually an enum */
2740 if (tcache->typtype != TYPTYPE_ENUM)
2741 ereport(ERROR,
2742 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
2743 errmsg("%s is not an enum",
2744 format_type_be(tcache->type_id))));
2745
2746 /*
2747 * Read all the information for members of the enum type. We collect the
2748 * info in working memory in the caller's context, and then transfer it to
2749 * permanent memory in CacheMemoryContext. This minimizes the risk of
2750 * leaking memory from CacheMemoryContext in the event of an error partway
2751 * through.
2752 */
2753 maxitems = 64;
2754 items = (EnumItem *) palloc(sizeof(EnumItem) * maxitems);
2755 numitems = 0;
2756
2757 /* Scan pg_enum for the members of the target enum type. */
2758 ScanKeyInit(&skey,
2759 Anum_pg_enum_enumtypid,
2760 BTEqualStrategyNumber, F_OIDEQ,
2761 ObjectIdGetDatum(tcache->type_id));
2762
2763 enum_rel = table_open(EnumRelationId, AccessShareLock);
2764 enum_scan = systable_beginscan(enum_rel,
2765 EnumTypIdLabelIndexId,
2766 true, NULL,
2767 1, &skey);
2768
2769 while (HeapTupleIsValid(enum_tuple = systable_getnext(enum_scan)))
2770 {
2771 Form_pg_enum en = (Form_pg_enum) GETSTRUCT(enum_tuple);
2772
2773 if (numitems >= maxitems)
2774 {
2775 maxitems *= 2;
2776 items = (EnumItem *) repalloc(items, sizeof(EnumItem) * maxitems);
2777 }
2778 items[numitems].enum_oid = en->oid;
2779 items[numitems].sort_order = en->enumsortorder;
2780 numitems++;
2781 }
2782
2783 systable_endscan(enum_scan);
2784 table_close(enum_rel, AccessShareLock);
2785
2786 /* Sort the items into OID order */
2787 qsort(items, numitems, sizeof(EnumItem), enum_oid_cmp);
2788
2789 /*
2790 * Here, we create a bitmap listing a subset of the enum's OIDs that are
2791 * known to be in order and can thus be compared with just OID comparison.
2792 *
2793 * The point of this is that the enum's initial OIDs were certainly in
2794 * order, so there is some subset that can be compared via OID comparison;
2795 * and we'd rather not do binary searches unnecessarily.
2796 *
2797 * This is somewhat heuristic, and might identify a subset of OIDs that
2798 * isn't exactly what the type started with. That's okay as long as the
2799 * subset is correctly sorted.
2800 */
2801 bitmap_base = InvalidOid;
2802 bitmap = NULL;
2803 bm_size = 1; /* only save sets of at least 2 OIDs */
2804
2805 for (start_pos = 0; start_pos < numitems - 1; start_pos++)
2806 {
2807 /*
2808 * Identify longest sorted subsequence starting at start_pos
2809 */
2810 Bitmapset *this_bitmap = bms_make_singleton(0);
2811 int this_bm_size = 1;
2812 Oid start_oid = items[start_pos].enum_oid;
2813 float4 prev_order = items[start_pos].sort_order;
2814 int i;
2815
2816 for (i = start_pos + 1; i < numitems; i++)
2817 {
2818 Oid offset;
2819
2820 offset = items[i].enum_oid - start_oid;
2821 /* quit if bitmap would be too large; cutoff is arbitrary */
2822 if (offset >= 8192)
2823 break;
2824 /* include the item if it's in-order */
2825 if (items[i].sort_order > prev_order)
2826 {
2827 prev_order = items[i].sort_order;
2828 this_bitmap = bms_add_member(this_bitmap, (int) offset);
2829 this_bm_size++;
2830 }
2831 }
2832
2833 /* Remember it if larger than previous best */
2834 if (this_bm_size > bm_size)
2835 {
2836 bms_free(bitmap);
2837 bitmap_base = start_oid;
2838 bitmap = this_bitmap;
2839 bm_size = this_bm_size;
2840 }
2841 else
2842 bms_free(this_bitmap);
2843
2844 /*
2845 * Done if it's not possible to find a longer sequence in the rest of
2846 * the list. In typical cases this will happen on the first
2847 * iteration, which is why we create the bitmaps on the fly instead of
2848 * doing a second pass over the list.
2849 */
2850 if (bm_size >= (numitems - start_pos - 1))
2851 break;
2852 }
2853
2854 /* OK, copy the data into CacheMemoryContext */
2856 enumdata = (TypeCacheEnumData *)
2857 palloc(offsetof(TypeCacheEnumData, enum_values) +
2858 numitems * sizeof(EnumItem));
2859 enumdata->bitmap_base = bitmap_base;
2860 enumdata->sorted_values = bms_copy(bitmap);
2861 enumdata->num_values = numitems;
2862 memcpy(enumdata->enum_values, items, numitems * sizeof(EnumItem));
2863 MemoryContextSwitchTo(oldcxt);
2864
2865 pfree(items);
2866 bms_free(bitmap);
2867
2868 /* And link the finished cache struct into the typcache */
2869 if (tcache->enumData != NULL)
2870 pfree(tcache->enumData);
2871 tcache->enumData = enumdata;
2872}
2873
2874/*
2875 * Locate the EnumItem with the given OID, if present
2876 */
2877static EnumItem *
2879{
2880 EnumItem srch;
2881
2882 /* On some versions of Solaris, bsearch of zero items dumps core */
2883 if (enumdata->num_values <= 0)
2884 return NULL;
2885
2886 srch.enum_oid = arg;
2887 return bsearch(&srch, enumdata->enum_values, enumdata->num_values,
2888 sizeof(EnumItem), enum_oid_cmp);
2889}
2890
2891/*
2892 * qsort comparison function for OID-ordered EnumItems
2893 */
2894static int
2895enum_oid_cmp(const void *left, const void *right)
2896{
2897 const EnumItem *l = (const EnumItem *) left;
2898 const EnumItem *r = (const EnumItem *) right;
2899
2900 return pg_cmp_u32(l->enum_oid, r->enum_oid);
2901}
2902
2903/*
2904 * Copy 'tupdesc' into newly allocated shared memory in 'area', set its typmod
2905 * to the given value and return a dsa_pointer.
2906 */
2907static dsa_pointer
2909{
2910 dsa_pointer shared_dp;
2911 TupleDesc shared;
2912
2913 shared_dp = dsa_allocate(area, TupleDescSize(tupdesc));
2914 shared = (TupleDesc) dsa_get_address(area, shared_dp);
2915 TupleDescCopy(shared, tupdesc);
2916 shared->tdtypmod = typmod;
2917
2918 return shared_dp;
2919}
2920
2921/*
2922 * If we are attached to a SharedRecordTypmodRegistry, use it to find or
2923 * create a shared TupleDesc that matches 'tupdesc'. Otherwise return NULL.
2924 * Tuple descriptors returned by this function are not reference counted, and
2925 * will exist at least as long as the current backend remained attached to the
2926 * current session.
2927 */
2928static TupleDesc
2930{
2931 TupleDesc result;
2933 SharedRecordTableEntry *record_table_entry;
2934 SharedTypmodTableEntry *typmod_table_entry;
2935 dsa_pointer shared_dp;
2936 bool found;
2937 uint32 typmod;
2938
2939 /* If not even attached, nothing to do. */
2941 return NULL;
2942
2943 /* Try to find a matching tuple descriptor in the record table. */
2944 key.shared = false;
2945 key.u.local_tupdesc = tupdesc;
2946 record_table_entry = (SharedRecordTableEntry *)
2948 if (record_table_entry)
2949 {
2950 Assert(record_table_entry->key.shared);
2952 record_table_entry);
2953 result = (TupleDesc)
2955 record_table_entry->key.u.shared_tupdesc);
2956 Assert(result->tdrefcount == -1);
2957
2958 return result;
2959 }
2960
2961 /* Allocate a new typmod number. This will be wasted if we error out. */
2962 typmod = (int)
2964 1);
2965
2966 /* Copy the TupleDesc into shared memory. */
2967 shared_dp = share_tupledesc(CurrentSession->area, tupdesc, typmod);
2968
2969 /*
2970 * Create an entry in the typmod table so that others will understand this
2971 * typmod number.
2972 */
2973 PG_TRY();
2974 {
2975 typmod_table_entry = (SharedTypmodTableEntry *)
2977 &typmod, &found);
2978 if (found)
2979 elog(ERROR, "cannot create duplicate shared record typmod");
2980 }
2981 PG_CATCH();
2982 {
2983 dsa_free(CurrentSession->area, shared_dp);
2984 PG_RE_THROW();
2985 }
2986 PG_END_TRY();
2987 typmod_table_entry->typmod = typmod;
2988 typmod_table_entry->shared_tupdesc = shared_dp;
2990 typmod_table_entry);
2991
2992 /*
2993 * Finally create an entry in the record table so others with matching
2994 * tuple descriptors can reuse the typmod.
2995 */
2996 record_table_entry = (SharedRecordTableEntry *)
2998 &found);
2999 if (found)
3000 {
3001 /*
3002 * Someone concurrently inserted a matching tuple descriptor since the
3003 * first time we checked. Use that one instead.
3004 */
3006 record_table_entry);
3007
3008 /* Might as well free up the space used by the one we created. */
3010 &typmod);
3011 Assert(found);
3012 dsa_free(CurrentSession->area, shared_dp);
3013
3014 /* Return the one we found. */
3015 Assert(record_table_entry->key.shared);
3016 result = (TupleDesc)
3018 record_table_entry->key.u.shared_tupdesc);
3019 Assert(result->tdrefcount == -1);
3020
3021 return result;
3022 }
3023
3024 /* Store it and return it. */
3025 record_table_entry->key.shared = true;
3026 record_table_entry->key.u.shared_tupdesc = shared_dp;
3028 record_table_entry);
3029 result = (TupleDesc)
3030 dsa_get_address(CurrentSession->area, shared_dp);
3031 Assert(result->tdrefcount == -1);
3032
3033 return result;
3034}
3035
3036/*
3037 * On-DSM-detach hook to forget about the current shared record typmod
3038 * infrastructure. This is currently used by both leader and workers.
3039 */
3040static void
3042{
3043 /* Be cautious here: maybe we didn't finish initializing. */
3045 {
3048 }
3050 {
3053 }
3055}
3056
3057/*
3058 * Insert RelIdToTypeIdCacheHash entry if needed.
3059 */
3060static void
3062{
3063 /* Immediately quit for non-composite types */
3064 if (typentry->typtype != TYPTYPE_COMPOSITE)
3065 return;
3066
3067 /* typrelid should be given for composite types */
3068 Assert(OidIsValid(typentry->typrelid));
3069
3070 /*
3071 * Insert a RelIdToTypeIdCacheHash entry if the typentry have any
3072 * information indicating it should be here.
3073 */
3074 if ((typentry->flags & TCFLAGS_HAVE_PG_TYPE_DATA) ||
3075 (typentry->flags & TCFLAGS_OPERATOR_FLAGS) ||
3076 typentry->tupDesc != NULL)
3077 {
3078 RelIdToTypeIdCacheEntry *relentry;
3079 bool found;
3080
3082 &typentry->typrelid,
3083 HASH_ENTER, &found);
3084 relentry->relid = typentry->typrelid;
3085 relentry->composite_typid = typentry->type_id;
3086 }
3087}
3088
3089/*
3090 * Delete entry RelIdToTypeIdCacheHash if needed after resetting of the
3091 * TCFLAGS_HAVE_PG_TYPE_DATA flag, or any of TCFLAGS_OPERATOR_FLAGS,
3092 * or tupDesc.
3093 */
3094static void
3096{
3097#ifdef USE_ASSERT_CHECKING
3098 int i;
3099 bool is_in_progress = false;
3100
3101 for (i = 0; i < in_progress_list_len; i++)
3102 {
3103 if (in_progress_list[i] == typentry->type_id)
3104 {
3105 is_in_progress = true;
3106 break;
3107 }
3108 }
3109#endif
3110
3111 /* Immediately quit for non-composite types */
3112 if (typentry->typtype != TYPTYPE_COMPOSITE)
3113 return;
3114
3115 /* typrelid should be given for composite types */
3116 Assert(OidIsValid(typentry->typrelid));
3117
3118 /*
3119 * Delete a RelIdToTypeIdCacheHash entry if the typentry doesn't have any
3120 * information indicating entry should be still there.
3121 */
3122 if (!(typentry->flags & TCFLAGS_HAVE_PG_TYPE_DATA) &&
3123 !(typentry->flags & TCFLAGS_OPERATOR_FLAGS) &&
3124 typentry->tupDesc == NULL)
3125 {
3126 bool found;
3127
3129 &typentry->typrelid,
3130 HASH_REMOVE, &found);
3131 Assert(found || is_in_progress);
3132 }
3133 else
3134 {
3135#ifdef USE_ASSERT_CHECKING
3136 /*
3137 * In assert-enabled builds otherwise check for RelIdToTypeIdCacheHash
3138 * entry if it should exist.
3139 */
3140 bool found;
3141
3142 if (!is_in_progress)
3143 {
3145 &typentry->typrelid,
3146 HASH_FIND, &found);
3147 Assert(found);
3148 }
3149#endif
3150 }
3151}
3152
3153/*
3154 * Add possibly missing RelIdToTypeId entries related to TypeCacheHash
3155 * entries, marked as in-progress by lookup_type_cache(). It may happen
3156 * in case of an error or interruption during the lookup_type_cache() call.
3157 */
3158static void
3160{
3161 int i;
3162
3163 for (i = 0; i < in_progress_list_len; i++)
3164 {
3165 TypeCacheEntry *typentry;
3166
3169 HASH_FIND, NULL);
3170 if (typentry)
3172 }
3173
3175}
3176
3177void
3179{
3181}
3182
3183void
3185{
3187}
static void pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:221
static uint32 pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:366
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define TextDatumGetCString(d)
Definition: builtins.h:98
#define NameStr(name)
Definition: c.h:700
#define RegProcedureIsValid(p)
Definition: c.h:731
#define Assert(condition)
Definition: c.h:812
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:417
int32_t int32
Definition: c.h:481
uint64_t uint64
Definition: c.h:486
uint32_t uint32
Definition: c.h:485
float float4
Definition: c.h:583
#define MemSet(start, val, len)
Definition: c.h:974
#define OidIsValid(objectId)
Definition: c.h:729
size_t Size
Definition: c.h:559
void CreateCacheMemoryContext(void)
Definition: catcache.c:680
void * dsa_get_address(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:942
void dsa_free(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:826
uint64 dsa_pointer
Definition: dsa.h:62
#define dsa_allocate(area, size)
Definition: dsa.h:109
bool dshash_delete_key(dshash_table *hash_table, const void *key)
Definition: dshash.c:503
void dshash_memcpy(void *dest, const void *src, size_t size, void *arg)
Definition: dshash.c:590
void dshash_release_lock(dshash_table *hash_table, void *entry)
Definition: dshash.c:558
void dshash_detach(dshash_table *hash_table)
Definition: dshash.c:307
void * dshash_find(dshash_table *hash_table, const void *key, bool exclusive)
Definition: dshash.c:390
dshash_table_handle dshash_get_hash_table_handle(dshash_table *hash_table)
Definition: dshash.c:367
dshash_table * dshash_attach(dsa_area *area, const dshash_parameters *params, dshash_table_handle handle, void *arg)
Definition: dshash.c:270
void * dshash_find_or_insert(dshash_table *hash_table, const void *key, bool *found)
Definition: dshash.c:433
dshash_hash dshash_memhash(const void *v, size_t size, void *arg)
Definition: dshash.c:581
dshash_table * dshash_create(dsa_area *area, const dshash_parameters *params, void *arg)
Definition: dshash.c:206
int dshash_memcmp(const void *a, const void *b, size_t size, void *arg)
Definition: dshash.c:572
dsa_pointer dshash_table_handle
Definition: dshash.h:24
void on_dsm_detach(dsm_segment *seg, on_dsm_detach_callback function, Datum arg)
Definition: dsm.c:1132
void hash_seq_init_with_hash_value(HASH_SEQ_STATUS *status, HTAB *hashp, uint32 hashvalue)
Definition: dynahash.c:1405
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1420
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
uint32 get_hash_value(HTAB *hashp, const void *keyPtr)
Definition: dynahash.c:911
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define PG_RE_THROW()
Definition: elog.h:412
#define PG_TRY(...)
Definition: elog.h:371
#define PG_END_TRY(...)
Definition: elog.h:396
#define ERROR
Definition: elog.h:39
#define PG_CATCH(...)
Definition: elog.h:381
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
ExprState * ExecInitExpr(Expr *node, PlanState *parent)
Definition: execExpr.c:138
@ DOM_CONSTRAINT_CHECK
Definition: execnodes.h:1011
@ DOM_CONSTRAINT_NOTNULL
Definition: execnodes.h:1010
void fmgr_info_cxt(Oid functionId, FmgrInfo *finfo, MemoryContext mcxt)
Definition: fmgr.c:137
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:606
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:513
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:387
#define HASHSTANDARD_PROC
Definition: hash.h:355
#define HASHEXTENDED_PROC
Definition: hash.h:356
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_COMPARE
Definition: hsearch.h:99
#define HASH_FUNCTION
Definition: hsearch.h:98
#define HASH_BLOBS
Definition: hsearch.h:97
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
static Datum fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:749
#define IsParallelWorker()
Definition: parallel.h:60
Oid GetDefaultOpClass(Oid type_id, Oid am_id)
Definition: indexcmds.c:2338
long val
Definition: informix.c:689
#define INJECTION_POINT(name)
static int pg_cmp_u32(uint32 a, uint32 b)
Definition: int.h:652
void CacheRegisterRelcacheCallback(RelcacheCallbackFunction func, Datum arg)
Definition: inval.c:1746
void CacheRegisterSyscacheCallback(int cacheid, SyscacheCallbackFunction func, Datum arg)
Definition: inval.c:1704
int b
Definition: isn.c:69
int a
Definition: isn.c:68
int i
Definition: isn.c:72
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lcons(void *datum, List *list)
Definition: list.c:495
#define AccessShareLock
Definition: lockdefs.h:36
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1212
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1190
Oid get_multirange_range(Oid multirangeOid)
Definition: lsyscache.c:3483
Oid get_opfamily_proc(Oid opfamily, Oid lefttype, Oid righttype, int16 procnum)
Definition: lsyscache.c:796
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1285
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:166
Oid get_base_element_type(Oid typid)
Definition: lsyscache.c:2832
Oid getBaseTypeAndTypmod(Oid typid, int32 *typmod)
Definition: lsyscache.c:2538
@ LWTRANCHE_PER_SESSION_RECORD_TYPMOD
Definition: lwlock.h:198
@ LWTRANCHE_PER_SESSION_RECORD_TYPE
Definition: lwlock.h:197
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1181
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void MemoryContextRegisterResetCallback(MemoryContext context, MemoryContextCallback *cb)
Definition: mcxt.c:568
void MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
Definition: mcxt.c:637
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1541
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * palloc(Size size)
Definition: mcxt.c:1317
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
MemoryContext CacheMemoryContext
Definition: mcxt.c:152
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_SMALL_SIZES
Definition: memutils.h:170
#define BTORDER_PROC
Definition: nbtree.h:707
#define makeNode(_type_)
Definition: nodes.h:155
#define repalloc0_array(pointer, type, oldcount, count)
Definition: palloc.h:109
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
void * arg
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
FormData_pg_constraint * Form_pg_constraint
const void * data
FormData_pg_enum * Form_pg_enum
Definition: pg_enum.h:44
#define lfirst(lc)
Definition: pg_list.h:172
#define NIL
Definition: pg_list.h:68
FormData_pg_range * Form_pg_range
Definition: pg_range.h:58
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
Expr * expression_planner(Expr *expr)
Definition: planner.c:6570
#define qsort(a, b, c, d)
Definition: port.h:447
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
char * c
MemoryContextSwitchTo(old_ctx)
tree ctl
Definition: radixtree.h:1855
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetDescr(relation)
Definition: rel.h:531
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
Session * CurrentSession
Definition: session.c:48
static pg_noinline void Size size
Definition: slab.c:607
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
Relation relation_open(Oid relationId, LOCKMODE lockmode)
Definition: relation.c:47
#define BTGreaterStrategyNumber
Definition: stratnum.h:33
#define HTEqualStrategyNumber
Definition: stratnum.h:41
#define BTLessStrategyNumber
Definition: stratnum.h:29
#define BTEqualStrategyNumber
Definition: stratnum.h:31
MemoryContext dccContext
Definition: typcache.c:142
DomainConstraintCache * dcc
Definition: typcache.h:172
MemoryContext refctx
Definition: typcache.h:167
MemoryContextCallback callback
Definition: typcache.h:173
TypeCacheEntry * tcache
Definition: typcache.h:168
DomainConstraintType constrainttype
Definition: execnodes.h:1017
ExprState * check_exprstate
Definition: execnodes.h:1020
float4 sort_order
Definition: typcache.c:150
Oid enum_oid
Definition: typcache.c:149
Oid fn_oid
Definition: fmgr.h:59
Definition: dynahash.c:220
Definition: pg_list.h:54
MemoryContextCallbackFunction func
Definition: palloc.h:49
TupleDesc tupdesc
Definition: typcache.c:174
TupleDesc rd_att
Definition: rel.h:112
Form_pg_class rd_rel
Definition: rel.h:111
dsm_segment * segment
Definition: session.h:27
dshash_table * shared_record_table
Definition: session.h:32
struct SharedRecordTypmodRegistry * shared_typmod_registry
Definition: session.h:31
dsa_area * area
Definition: session.h:28
dshash_table * shared_typmod_table
Definition: session.h:33
SharedRecordTableKey key
Definition: typcache.c:213
TupleDesc local_tupdesc
Definition: typcache.c:201
dsa_pointer shared_tupdesc
Definition: typcache.c:202
union SharedRecordTableKey::@31 u
dshash_table_handle typmod_table_handle
Definition: typcache.c:186
pg_atomic_uint32 next_typmod
Definition: typcache.c:188
dshash_table_handle record_table_handle
Definition: typcache.c:184
dsa_pointer shared_tupdesc
Definition: typcache.c:223
int tdrefcount
Definition: tupdesc.h:132
int32 tdtypmod
Definition: tupdesc.h:131
Oid tdtypeid
Definition: tupdesc.h:130
uint32 type_id_hash
Definition: typcache.h:36
uint64 tupDesc_identifier
Definition: typcache.h:90
FmgrInfo hash_proc_finfo
Definition: typcache.h:77
int32 domainBaseTypmod
Definition: typcache.h:115
Oid hash_extended_proc
Definition: typcache.h:66
Oid typsubscript
Definition: typcache.h:45
FmgrInfo rng_cmp_proc_finfo
Definition: typcache.h:101
FmgrInfo cmp_proc_finfo
Definition: typcache.h:76
Oid rng_collation
Definition: typcache.h:100
char typalign
Definition: typcache.h:41
struct TypeCacheEntry * rngelemtype
Definition: typcache.h:98
char typtype
Definition: typcache.h:43
TupleDesc tupDesc
Definition: typcache.h:89
FmgrInfo hash_extended_proc_finfo
Definition: typcache.h:78
DomainConstraintCache * domainData
Definition: typcache.h:121
struct TypeCacheEntry * rngtype
Definition: typcache.h:108
FmgrInfo rng_subdiff_finfo
Definition: typcache.h:103
FmgrInfo eq_opr_finfo
Definition: typcache.h:75
Oid btree_opintype
Definition: typcache.h:58
struct TypeCacheEnumData * enumData
Definition: typcache.h:130
struct TypeCacheEntry * nextDomain
Definition: typcache.h:133
bool typbyval
Definition: typcache.h:40
FmgrInfo rng_canonical_finfo
Definition: typcache.h:102
int16 typlen
Definition: typcache.h:39
Oid hash_opintype
Definition: typcache.h:60
Oid typcollation
Definition: typcache.h:47
Oid domainBaseType
Definition: typcache.h:114
char typstorage
Definition: typcache.h:42
Oid rng_opfamily
Definition: typcache.h:99
Bitmapset * sorted_values
Definition: typcache.c:156
EnumItem enum_values[FLEXIBLE_ARRAY_MEMBER]
Definition: typcache.c:158
Definition: dsa.c:348
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:118
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static ItemArray items
Definition: test_tidstore.c:48
TupleDesc CreateTupleDescCopyConstr(TupleDesc tupdesc)
Definition: tupdesc.c:323
void TupleDescCopy(TupleDesc dst, TupleDesc src)
Definition: tupdesc.c:404
void DecrTupleDescRefCount(TupleDesc tupdesc)
Definition: tupdesc.c:553
void FreeTupleDesc(TupleDesc tupdesc)
Definition: tupdesc.c:478
void IncrTupleDescRefCount(TupleDesc tupdesc)
Definition: tupdesc.c:535
uint32 hashRowType(TupleDesc desc)
Definition: tupdesc.c:768
TupleDesc CreateTupleDescCopy(TupleDesc tupdesc)
Definition: tupdesc.c:235
bool equalRowTypes(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tupdesc.c:732
#define TupleDescSize(src)
Definition: tupdesc.h:192
#define PinTupleDesc(tupdesc)
Definition: tupdesc.h:207
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:152
struct TupleDescData * TupleDesc
Definition: tupdesc.h:137
#define TCFLAGS_CHECKED_BTREE_OPCLASS
Definition: typcache.c:100
#define TCFLAGS_CHECKED_HASH_OPCLASS
Definition: typcache.c:101
static bool range_element_has_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1713
static void insert_rel_type_cache_if_needed(TypeCacheEntry *typentry)
Definition: typcache.c:3061
void InitDomainConstraintRef(Oid type_id, DomainConstraintRef *ref, MemoryContext refctx, bool need_exprstate)
Definition: typcache.c:1400
static TupleDesc lookup_rowtype_tupdesc_internal(Oid type_id, int32 typmod, bool noError)
Definition: typcache.c:1826
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1920
void SharedRecordTypmodRegistryAttach(SharedRecordTypmodRegistry *registry)
Definition: typcache.c:2294
#define TCFLAGS_OPERATOR_FLAGS
Definition: typcache.c:122
#define TCFLAGS_CHECKED_FIELD_PROPERTIES
Definition: typcache.c:113
static void cache_range_element_properties(TypeCacheEntry *typentry)
Definition: typcache.c:1729
#define TCFLAGS_HAVE_FIELD_COMPARE
Definition: typcache.c:115
void AtEOXact_TypeCache(void)
Definition: typcache.c:3178
#define TCFLAGS_DOMAIN_BASE_IS_COMPOSITE
Definition: typcache.c:119
static void load_enum_cache_data(TypeCacheEntry *tcache)
Definition: typcache.c:2723
static bool record_fields_have_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1592
static HTAB * RelIdToTypeIdCacheHash
Definition: typcache.c:87
static EnumItem * find_enumitem(TypeCacheEnumData *enumdata, Oid arg)
Definition: typcache.c:2878
static bool record_fields_have_extended_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1600
static TupleDesc find_or_make_matching_shared_tupledesc(TupleDesc tupdesc)
Definition: typcache.c:2929
static int in_progress_list_maxlen
Definition: typcache.c:228
static int32 NextRecordTypmod
Definition: typcache.c:306
TupleDesc lookup_rowtype_tupdesc_domain(Oid type_id, int32 typmod, bool noError)
Definition: typcache.c:1976
static Oid * in_progress_list
Definition: typcache.c:226
static const dshash_parameters srtr_typmod_table_params
Definition: typcache.c:285
static void delete_rel_type_cache_if_needed(TypeCacheEntry *typentry)
Definition: typcache.c:3095
#define TCFLAGS_CHECKED_GT_OPR
Definition: typcache.c:104
static bool multirange_element_has_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1753
static List * prep_domain_constraints(List *constraints, MemoryContext execctx)
Definition: typcache.c:1362
TupleDesc lookup_rowtype_tupdesc_noerror(Oid type_id, int32 typmod, bool noError)
Definition: typcache.c:1937
static bool record_fields_have_equality(TypeCacheEntry *typentry)
Definition: typcache.c:1576
#define TCFLAGS_CHECKED_LT_OPR
Definition: typcache.c:103
#define TCFLAGS_CHECKED_HASH_PROC
Definition: typcache.c:106
static void dccref_deletion_callback(void *arg)
Definition: typcache.c:1341
#define TCFLAGS_HAVE_FIELD_EQUALITY
Definition: typcache.c:114
static void InvalidateCompositeTypeCacheEntry(TypeCacheEntry *typentry)
Definition: typcache.c:2363
struct SharedRecordTableEntry SharedRecordTableEntry
void SharedRecordTypmodRegistryInit(SharedRecordTypmodRegistry *registry, dsm_segment *segment, dsa_area *area)
Definition: typcache.c:2195
static int dcs_cmp(const void *a, const void *b)
Definition: typcache.c:1317
static bool array_element_has_extended_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1538
static int shared_record_table_compare(const void *a, const void *b, size_t size, void *arg)
Definition: typcache.c:234
static bool array_element_has_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1530
static void load_multirangetype_info(TypeCacheEntry *typentry)
Definition: typcache.c:1059
static uint32 type_cache_syshash(const void *key, Size keysize)
Definition: typcache.c:359
#define TCFLAGS_CHECKED_CMP_PROC
Definition: typcache.c:105
struct SharedTypmodTableEntry SharedTypmodTableEntry
#define TCFLAGS_HAVE_ELEM_EXTENDED_HASHING
Definition: typcache.c:112
static bool multirange_element_has_extended_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1761
static int in_progress_list_len
Definition: typcache.c:227
static bool array_element_has_equality(TypeCacheEntry *typentry)
Definition: typcache.c:1514
static dsa_pointer share_tupledesc(dsa_area *area, TupleDesc tupdesc, uint32 typmod)
Definition: typcache.c:2908
static void load_rangetype_info(TypeCacheEntry *typentry)
Definition: typcache.c:1001
uint64 assign_record_type_identifier(Oid type_id, int32 typmod)
Definition: typcache.c:2132
static RecordCacheArrayEntry * RecordCacheArray
Definition: typcache.c:304
static bool range_element_has_extended_hashing(TypeCacheEntry *typentry)
Definition: typcache.c:1721
static HTAB * RecordCacheHash
Definition: typcache.c:295
static bool enum_known_sorted(TypeCacheEnumData *enumdata, Oid arg)
Definition: typcache.c:2621
static TypeCacheEntry * firstDomainTypeEntry
Definition: typcache.c:96
struct RelIdToTypeIdCacheEntry RelIdToTypeIdCacheEntry
struct RecordCacheEntry RecordCacheEntry
void AtEOSubXact_TypeCache(void)
Definition: typcache.c:3184
static void shared_record_typmod_registry_detach(dsm_segment *segment, Datum datum)
Definition: typcache.c:3041
#define TCFLAGS_HAVE_ELEM_HASHING
Definition: typcache.c:111
struct RecordCacheArrayEntry RecordCacheArrayEntry
#define TCFLAGS_CHECKED_HASH_EXTENDED_PROC
Definition: typcache.c:107
static void TypeCacheTypCallback(Datum arg, int cacheid, uint32 hashvalue)
Definition: typcache.c:2511
struct TypeCacheEnumData TypeCacheEnumData
static void TypeCacheConstrCallback(Datum arg, int cacheid, uint32 hashvalue)
Definition: typcache.c:2597
static void TypeCacheOpcCallback(Datum arg, int cacheid, uint32 hashvalue)
Definition: typcache.c:2568
static void load_domaintype_info(TypeCacheEntry *typentry)
Definition: typcache.c:1081
bool DomainHasConstraints(Oid type_id)
Definition: typcache.c:1487
#define TCFLAGS_HAVE_ELEM_COMPARE
Definition: typcache.c:110
static void TypeCacheRelCallback(Datum arg, Oid relid)
Definition: typcache.c:2415
static void cache_array_element_properties(TypeCacheEntry *typentry)
Definition: typcache.c:1546
size_t SharedRecordTypmodRegistryEstimate(void)
Definition: typcache.c:2173
static void cache_multirange_element_properties(TypeCacheEntry *typentry)
Definition: typcache.c:1769
#define TCFLAGS_CHECKED_ELEM_PROPERTIES
Definition: typcache.c:108
#define TCFLAGS_HAVE_ELEM_EQUALITY
Definition: typcache.c:109
static bool array_element_has_compare(TypeCacheEntry *typentry)
Definition: typcache.c:1522
#define TCFLAGS_HAVE_PG_TYPE_DATA
Definition: typcache.c:99
static uint32 shared_record_table_hash(const void *a, size_t size, void *arg)
Definition: typcache.c:260
int compare_values_of_enum(TypeCacheEntry *tcache, Oid arg1, Oid arg2)
Definition: typcache.c:2650
#define TCFLAGS_CHECKED_DOMAIN_CONSTRAINTS
Definition: typcache.c:118
#define TCFLAGS_HAVE_FIELD_EXTENDED_HASHING
Definition: typcache.c:117
struct SharedRecordTableKey SharedRecordTableKey
static int32 RecordCacheArrayLen
Definition: typcache.c:305
void assign_record_type_typmod(TupleDesc tupDesc)
Definition: typcache.c:2040
static HTAB * TypeCacheHash
Definition: typcache.c:79
static uint64 tupledesc_id_counter
Definition: typcache.c:313
static bool record_fields_have_compare(TypeCacheEntry *typentry)
Definition: typcache.c:1584
#define TCFLAGS_HAVE_FIELD_HASHING
Definition: typcache.c:116
static int record_type_typmod_compare(const void *a, const void *b, size_t size)
Definition: typcache.c:2024
static const dshash_parameters srtr_record_table_params
Definition: typcache.c:275
TupleDesc lookup_rowtype_tupdesc_copy(Oid type_id, int32 typmod)
Definition: typcache.c:1954
static int enum_oid_cmp(const void *left, const void *right)
Definition: typcache.c:2895
static void finalize_in_progress_typentries(void)
Definition: typcache.c:3159
static void decr_dcc_refcount(DomainConstraintCache *dcc)
Definition: typcache.c:1330
#define TCFLAGS_CHECKED_EQ_OPR
Definition: typcache.c:102
void UpdateDomainConstraintRef(DomainConstraintRef *ref)
Definition: typcache.c:1438
TypeCacheEntry * lookup_type_cache(Oid type_id, int flags)
Definition: typcache.c:386
static void ensure_record_cache_typmod_slot_exists(int32 typmod)
Definition: typcache.c:1797
static void cache_record_field_properties(TypeCacheEntry *typentry)
Definition: typcache.c:1608
static uint32 record_type_typmod_hash(const void *data, size_t size)
Definition: typcache.c:2013
static void load_typcache_tupdesc(TypeCacheEntry *typentry)
Definition: typcache.c:967
#define INVALID_TUPLEDESC_IDENTIFIER
Definition: typcache.h:156
#define TYPECACHE_HASH_PROC_FINFO
Definition: typcache.h:144
#define TYPECACHE_EQ_OPR
Definition: typcache.h:137
#define TYPECACHE_HASH_OPFAMILY
Definition: typcache.h:147
#define TYPECACHE_TUPDESC
Definition: typcache.h:145
#define TYPECACHE_MULTIRANGE_INFO
Definition: typcache.h:153
struct SharedRecordTypmodRegistry SharedRecordTypmodRegistry
Definition: typcache.h:176
#define TYPECACHE_EQ_OPR_FINFO
Definition: typcache.h:142
#define TYPECACHE_HASH_EXTENDED_PROC
Definition: typcache.h:151
#define TYPECACHE_BTREE_OPFAMILY
Definition: typcache.h:146
#define TYPECACHE_DOMAIN_BASE_INFO
Definition: typcache.h:149
#define TYPECACHE_DOMAIN_CONSTR_INFO
Definition: typcache.h:150
#define TYPECACHE_RANGE_INFO
Definition: typcache.h:148
#define TYPECACHE_GT_OPR
Definition: typcache.h:139
#define TYPECACHE_CMP_PROC
Definition: typcache.h:140
struct TypeCacheEntry TypeCacheEntry
#define TYPECACHE_LT_OPR
Definition: typcache.h:138
#define TYPECACHE_HASH_EXTENDED_PROC_FINFO
Definition: typcache.h:152
#define TYPECACHE_CMP_PROC_FINFO
Definition: typcache.h:143
#define TYPECACHE_HASH_PROC
Definition: typcache.h:141