PostgreSQL Source Code git master
planner.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * planner.c
4 * The query optimizer external interface.
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/plan/planner.c
12 *
13 *-------------------------------------------------------------------------
14 */
15
16#include "postgres.h"
17
18#include <limits.h>
19#include <math.h>
20
21#include "access/genam.h"
22#include "access/parallel.h"
23#include "access/sysattr.h"
24#include "access/table.h"
26#include "catalog/pg_inherits.h"
27#include "catalog/pg_proc.h"
28#include "catalog/pg_type.h"
29#include "executor/executor.h"
30#include "foreign/fdwapi.h"
31#include "jit/jit.h"
32#include "lib/bipartite_match.h"
33#include "lib/knapsack.h"
34#include "miscadmin.h"
35#include "nodes/makefuncs.h"
36#include "nodes/nodeFuncs.h"
37#ifdef OPTIMIZER_DEBUG
38#include "nodes/print.h"
39#endif
40#include "nodes/supportnodes.h"
42#include "optimizer/clauses.h"
43#include "optimizer/cost.h"
44#include "optimizer/optimizer.h"
46#include "optimizer/pathnode.h"
47#include "optimizer/paths.h"
48#include "optimizer/plancat.h"
49#include "optimizer/planmain.h"
50#include "optimizer/planner.h"
51#include "optimizer/prep.h"
52#include "optimizer/subselect.h"
53#include "optimizer/tlist.h"
54#include "parser/analyze.h"
55#include "parser/parse_agg.h"
56#include "parser/parse_clause.h"
58#include "parser/parsetree.h"
62#include "utils/lsyscache.h"
63#include "utils/rel.h"
64#include "utils/selfuncs.h"
65
66/* GUC parameters */
71
72/* Hook for plugins to get control in planner() */
74
75/* Hook for plugins to get control when grouping_planner() plans upper rels */
77
78
79/* Expression kind codes for preprocess_expression */
80#define EXPRKIND_QUAL 0
81#define EXPRKIND_TARGET 1
82#define EXPRKIND_RTFUNC 2
83#define EXPRKIND_RTFUNC_LATERAL 3
84#define EXPRKIND_VALUES 4
85#define EXPRKIND_VALUES_LATERAL 5
86#define EXPRKIND_LIMIT 6
87#define EXPRKIND_APPINFO 7
88#define EXPRKIND_PHV 8
89#define EXPRKIND_TABLESAMPLE 9
90#define EXPRKIND_ARBITER_ELEM 10
91#define EXPRKIND_TABLEFUNC 11
92#define EXPRKIND_TABLEFUNC_LATERAL 12
93#define EXPRKIND_GROUPEXPR 13
94
95/*
96 * Data specific to grouping sets
97 */
98typedef struct
99{
109
110/*
111 * Temporary structure for use during WindowClause reordering in order to be
112 * able to sort WindowClauses on partitioning/ordering prefix.
113 */
114typedef struct
115{
117 List *uniqueOrder; /* A List of unique ordering/partitioning
118 * clauses per Window */
120
121/* Passthrough data for standard_qp_callback */
122typedef struct
123{
124 List *activeWindows; /* active windows, if any */
125 grouping_sets_data *gset_data; /* grouping sets data, if any */
126 SetOperationStmt *setop; /* parent set operation or NULL if not a
127 * subquery belonging to a set operation */
129
130/* Local functions */
131static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
132static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
133static void grouping_planner(PlannerInfo *root, double tuple_fraction,
134 SetOperationStmt *setops);
136static List *remap_to_groupclause_idx(List *groupClause, List *gsets,
137 int *tleref_to_colnum_map);
139static double preprocess_limit(PlannerInfo *root,
140 double tuple_fraction,
141 int64 *offset_est, int64 *count_est);
143static List *extract_rollup_sets(List *groupingSets);
144static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
145static void standard_qp_callback(PlannerInfo *root, void *extra);
147 double path_rows,
149 List *target_list);
151 RelOptInfo *input_rel,
152 PathTarget *target,
153 bool target_parallel_safe,
157 RelOptInfo *input_rel,
158 RelOptInfo *grouped_rel);
160 PathTarget *target, bool target_parallel_safe,
161 Node *havingQual);
163 RelOptInfo *input_rel,
164 RelOptInfo *grouped_rel,
165 const AggClauseCosts *agg_costs,
167 GroupPathExtraData *extra,
168 RelOptInfo **partially_grouped_rel_p);
170 RelOptInfo *grouped_rel,
171 Path *path,
172 bool is_sorted,
173 bool can_hash,
175 const AggClauseCosts *agg_costs,
176 double dNumGroups);
178 RelOptInfo *input_rel,
179 PathTarget *input_target,
180 PathTarget *output_target,
181 bool output_target_parallel_safe,
182 WindowFuncLists *wflists,
183 List *activeWindows);
185 RelOptInfo *window_rel,
186 Path *path,
187 PathTarget *input_target,
188 PathTarget *output_target,
189 WindowFuncLists *wflists,
190 List *activeWindows);
192 RelOptInfo *input_rel,
193 PathTarget *target);
195 RelOptInfo *input_rel,
196 RelOptInfo *final_distinct_rel,
197 PathTarget *target);
199 RelOptInfo *input_rel,
200 RelOptInfo *distinct_rel);
202 List *needed_pathkeys,
203 List *path_pathkeys);
205 RelOptInfo *input_rel,
206 PathTarget *target,
207 bool target_parallel_safe,
208 double limit_tuples);
210 PathTarget *final_target);
212 PathTarget *grouping_target,
213 Node *havingQual);
214static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
216 WindowFuncLists *wflists);
218static void name_active_windows(List *activeWindows);
220 PathTarget *final_target,
221 List *activeWindows);
223 List *tlist);
225 PathTarget *final_target,
226 bool *have_postponed_srfs);
228 List *targets, List *targets_contain_srfs);
230 RelOptInfo *grouped_rel,
231 RelOptInfo *partially_grouped_rel,
232 const AggClauseCosts *agg_costs,
234 double dNumGroups,
235 GroupPathExtraData *extra);
237 RelOptInfo *grouped_rel,
238 RelOptInfo *input_rel,
240 GroupPathExtraData *extra,
241 bool force_rel_creation);
243 RelOptInfo *rel,
244 Path *path,
245 Path *cheapest_path,
246 List *pathkeys,
247 double limit_tuples);
249static bool can_partial_agg(PlannerInfo *root);
251 RelOptInfo *rel,
252 List *scanjoin_targets,
253 List *scanjoin_targets_contain_srfs,
254 bool scanjoin_target_parallel_safe,
255 bool tlist_same_exprs);
257 RelOptInfo *input_rel,
258 RelOptInfo *grouped_rel,
259 RelOptInfo *partially_grouped_rel,
260 const AggClauseCosts *agg_costs,
263 GroupPathExtraData *extra);
264static bool group_by_has_partkey(RelOptInfo *input_rel,
265 List *targetList,
266 List *groupClause);
267static int common_prefix_cmp(const void *a, const void *b);
269 List *targetlist);
270
271
272/*****************************************************************************
273 *
274 * Query optimizer entry point
275 *
276 * To support loadable plugins that monitor or modify planner behavior,
277 * we provide a hook variable that lets a plugin get control before and
278 * after the standard planning process. The plugin would normally call
279 * standard_planner().
280 *
281 * Note to plugin authors: standard_planner() scribbles on its Query input,
282 * so you'd better copy that data structure if you want to plan more than once.
283 *
284 *****************************************************************************/
286planner(Query *parse, const char *query_string, int cursorOptions,
287 ParamListInfo boundParams)
288{
289 PlannedStmt *result;
290
291 if (planner_hook)
292 result = (*planner_hook) (parse, query_string, cursorOptions, boundParams);
293 else
294 result = standard_planner(parse, query_string, cursorOptions, boundParams);
295
296 pgstat_report_plan_id(result->planId, false);
297
298 return result;
299}
300
302standard_planner(Query *parse, const char *query_string, int cursorOptions,
303 ParamListInfo boundParams)
304{
305 PlannedStmt *result;
306 PlannerGlobal *glob;
307 double tuple_fraction;
309 RelOptInfo *final_rel;
310 Path *best_path;
311 Plan *top_plan;
312 ListCell *lp,
313 *lr;
314
315 /*
316 * Set up global state for this planner invocation. This data is needed
317 * across all levels of sub-Query that might exist in the given command,
318 * so we keep it in a separate struct that's linked to by each per-Query
319 * PlannerInfo.
320 */
321 glob = makeNode(PlannerGlobal);
322
323 glob->boundParams = boundParams;
324 glob->subplans = NIL;
325 glob->subpaths = NIL;
326 glob->subroots = NIL;
327 glob->rewindPlanIDs = NULL;
328 glob->finalrtable = NIL;
329 glob->finalrteperminfos = NIL;
330 glob->finalrowmarks = NIL;
331 glob->resultRelations = NIL;
332 glob->appendRelations = NIL;
333 glob->relationOids = NIL;
334 glob->invalItems = NIL;
335 glob->paramExecTypes = NIL;
336 glob->lastPHId = 0;
337 glob->lastRowMarkId = 0;
338 glob->lastPlanNodeId = 0;
339 glob->transientPlan = false;
340 glob->dependsOnRole = false;
341
342 /*
343 * Assess whether it's feasible to use parallel mode for this query. We
344 * can't do this in a standalone backend, or if the command will try to
345 * modify any data, or if this is a cursor operation, or if GUCs are set
346 * to values that don't permit parallelism, or if parallel-unsafe
347 * functions are present in the query tree.
348 *
349 * (Note that we do allow CREATE TABLE AS, SELECT INTO, and CREATE
350 * MATERIALIZED VIEW to use parallel plans, but this is safe only because
351 * the command is writing into a completely new table which workers won't
352 * be able to see. If the workers could see the table, the fact that
353 * group locking would cause them to ignore the leader's heavyweight GIN
354 * page locks would make this unsafe. We'll have to fix that somehow if
355 * we want to allow parallel inserts in general; updates and deletes have
356 * additional problems especially around combo CIDs.)
357 *
358 * For now, we don't try to use parallel mode if we're running inside a
359 * parallel worker. We might eventually be able to relax this
360 * restriction, but for now it seems best not to have parallel workers
361 * trying to create their own parallel workers.
362 */
363 if ((cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 &&
365 parse->commandType == CMD_SELECT &&
366 !parse->hasModifyingCTE &&
369 {
370 /* all the cheap tests pass, so scan the query tree */
372 glob->parallelModeOK = (glob->maxParallelHazard != PROPARALLEL_UNSAFE);
373 }
374 else
375 {
376 /* skip the query tree scan, just assume it's unsafe */
377 glob->maxParallelHazard = PROPARALLEL_UNSAFE;
378 glob->parallelModeOK = false;
379 }
380
381 /*
382 * glob->parallelModeNeeded is normally set to false here and changed to
383 * true during plan creation if a Gather or Gather Merge plan is actually
384 * created (cf. create_gather_plan, create_gather_merge_plan).
385 *
386 * However, if debug_parallel_query = on or debug_parallel_query =
387 * regress, then we impose parallel mode whenever it's safe to do so, even
388 * if the final plan doesn't use parallelism. It's not safe to do so if
389 * the query contains anything parallel-unsafe; parallelModeOK will be
390 * false in that case. Note that parallelModeOK can't change after this
391 * point. Otherwise, everything in the query is either parallel-safe or
392 * parallel-restricted, and in either case it should be OK to impose
393 * parallel-mode restrictions. If that ends up breaking something, then
394 * either some function the user included in the query is incorrectly
395 * labeled as parallel-safe or parallel-restricted when in reality it's
396 * parallel-unsafe, or else the query planner itself has a bug.
397 */
398 glob->parallelModeNeeded = glob->parallelModeOK &&
400
401 /* Determine what fraction of the plan is likely to be scanned */
402 if (cursorOptions & CURSOR_OPT_FAST_PLAN)
403 {
404 /*
405 * We have no real idea how many tuples the user will ultimately FETCH
406 * from a cursor, but it is often the case that he doesn't want 'em
407 * all, or would prefer a fast-start plan anyway so that he can
408 * process some of the tuples sooner. Use a GUC parameter to decide
409 * what fraction to optimize for.
410 */
411 tuple_fraction = cursor_tuple_fraction;
412
413 /*
414 * We document cursor_tuple_fraction as simply being a fraction, which
415 * means the edge cases 0 and 1 have to be treated specially here. We
416 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
417 */
418 if (tuple_fraction >= 1.0)
419 tuple_fraction = 0.0;
420 else if (tuple_fraction <= 0.0)
421 tuple_fraction = 1e-10;
422 }
423 else
424 {
425 /* Default assumption is we need all the tuples */
426 tuple_fraction = 0.0;
427 }
428
429 /* primary planning entry point (may recurse for subqueries) */
430 root = subquery_planner(glob, parse, NULL, false, tuple_fraction, NULL);
431
432 /* Select best Path and turn it into a Plan */
433 final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
434 best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
435
436 top_plan = create_plan(root, best_path);
437
438 /*
439 * If creating a plan for a scrollable cursor, make sure it can run
440 * backwards on demand. Add a Material node at the top at need.
441 */
442 if (cursorOptions & CURSOR_OPT_SCROLL)
443 {
444 if (!ExecSupportsBackwardScan(top_plan))
445 top_plan = materialize_finished_plan(top_plan);
446 }
447
448 /*
449 * Optionally add a Gather node for testing purposes, provided this is
450 * actually a safe thing to do.
451 *
452 * We can add Gather even when top_plan has parallel-safe initPlans, but
453 * then we have to move the initPlans to the Gather node because of
454 * SS_finalize_plan's limitations. That would cause cosmetic breakage of
455 * regression tests when debug_parallel_query = regress, because initPlans
456 * that would normally appear on the top_plan move to the Gather, causing
457 * them to disappear from EXPLAIN output. That doesn't seem worth kluging
458 * EXPLAIN to hide, so skip it when debug_parallel_query = regress.
459 */
461 top_plan->parallel_safe &&
462 (top_plan->initPlan == NIL ||
464 {
465 Gather *gather = makeNode(Gather);
466 Cost initplan_cost;
467 bool unsafe_initplans;
468
469 gather->plan.targetlist = top_plan->targetlist;
470 gather->plan.qual = NIL;
471 gather->plan.lefttree = top_plan;
472 gather->plan.righttree = NULL;
473 gather->num_workers = 1;
474 gather->single_copy = true;
476
477 /* Transfer any initPlans to the new top node */
478 gather->plan.initPlan = top_plan->initPlan;
479 top_plan->initPlan = NIL;
480
481 /*
482 * Since this Gather has no parallel-aware descendants to signal to,
483 * we don't need a rescan Param.
484 */
485 gather->rescan_param = -1;
486
487 /*
488 * Ideally we'd use cost_gather here, but setting up dummy path data
489 * to satisfy it doesn't seem much cleaner than knowing what it does.
490 */
491 gather->plan.startup_cost = top_plan->startup_cost +
493 gather->plan.total_cost = top_plan->total_cost +
495 gather->plan.plan_rows = top_plan->plan_rows;
496 gather->plan.plan_width = top_plan->plan_width;
497 gather->plan.parallel_aware = false;
498 gather->plan.parallel_safe = false;
499
500 /*
501 * Delete the initplans' cost from top_plan. We needn't add it to the
502 * Gather node, since the above coding already included it there.
503 */
505 &initplan_cost, &unsafe_initplans);
506 top_plan->startup_cost -= initplan_cost;
507 top_plan->total_cost -= initplan_cost;
508
509 /* use parallel mode for parallel plans. */
510 root->glob->parallelModeNeeded = true;
511
512 top_plan = &gather->plan;
513 }
514
515 /*
516 * If any Params were generated, run through the plan tree and compute
517 * each plan node's extParam/allParam sets. Ideally we'd merge this into
518 * set_plan_references' tree traversal, but for now it has to be separate
519 * because we need to visit subplans before not after main plan.
520 */
521 if (glob->paramExecTypes != NIL)
522 {
523 Assert(list_length(glob->subplans) == list_length(glob->subroots));
524 forboth(lp, glob->subplans, lr, glob->subroots)
525 {
526 Plan *subplan = (Plan *) lfirst(lp);
527 PlannerInfo *subroot = lfirst_node(PlannerInfo, lr);
528
529 SS_finalize_plan(subroot, subplan);
530 }
531 SS_finalize_plan(root, top_plan);
532 }
533
534 /* final cleanup of the plan */
535 Assert(glob->finalrtable == NIL);
536 Assert(glob->finalrteperminfos == NIL);
537 Assert(glob->finalrowmarks == NIL);
538 Assert(glob->resultRelations == NIL);
539 Assert(glob->appendRelations == NIL);
540 top_plan = set_plan_references(root, top_plan);
541 /* ... and the subplans (both regular subplans and initplans) */
542 Assert(list_length(glob->subplans) == list_length(glob->subroots));
543 forboth(lp, glob->subplans, lr, glob->subroots)
544 {
545 Plan *subplan = (Plan *) lfirst(lp);
546 PlannerInfo *subroot = lfirst_node(PlannerInfo, lr);
547
548 lfirst(lp) = set_plan_references(subroot, subplan);
549 }
550
551 /* build the PlannedStmt result */
552 result = makeNode(PlannedStmt);
553
554 result->commandType = parse->commandType;
555 result->queryId = parse->queryId;
556 result->hasReturning = (parse->returningList != NIL);
557 result->hasModifyingCTE = parse->hasModifyingCTE;
558 result->canSetTag = parse->canSetTag;
559 result->transientPlan = glob->transientPlan;
560 result->dependsOnRole = glob->dependsOnRole;
562 result->planTree = top_plan;
563 result->partPruneInfos = glob->partPruneInfos;
564 result->rtable = glob->finalrtable;
566 glob->prunableRelids);
567 result->permInfos = glob->finalrteperminfos;
568 result->resultRelations = glob->resultRelations;
569 result->firstResultRels = glob->firstResultRels;
570 result->appendRelations = glob->appendRelations;
571 result->subplans = glob->subplans;
572 result->rewindPlanIDs = glob->rewindPlanIDs;
573 result->rowMarks = glob->finalrowmarks;
574 result->relationOids = glob->relationOids;
575 result->invalItems = glob->invalItems;
576 result->paramExecTypes = glob->paramExecTypes;
577 /* utilityStmt should be null, but we might as well copy it */
578 result->utilityStmt = parse->utilityStmt;
579 result->stmt_location = parse->stmt_location;
580 result->stmt_len = parse->stmt_len;
581
582 result->jitFlags = PGJIT_NONE;
583 if (jit_enabled && jit_above_cost >= 0 &&
584 top_plan->total_cost > jit_above_cost)
585 {
586 result->jitFlags |= PGJIT_PERFORM;
587
588 /*
589 * Decide how much effort should be put into generating better code.
590 */
591 if (jit_optimize_above_cost >= 0 &&
593 result->jitFlags |= PGJIT_OPT3;
594 if (jit_inline_above_cost >= 0 &&
596 result->jitFlags |= PGJIT_INLINE;
597
598 /*
599 * Decide which operations should be JITed.
600 */
601 if (jit_expressions)
602 result->jitFlags |= PGJIT_EXPR;
604 result->jitFlags |= PGJIT_DEFORM;
605 }
606
607 if (glob->partition_directory != NULL)
608 DestroyPartitionDirectory(glob->partition_directory);
609
610 return result;
611}
612
613
614/*--------------------
615 * subquery_planner
616 * Invokes the planner on a subquery. We recurse to here for each
617 * sub-SELECT found in the query tree.
618 *
619 * glob is the global state for the current planner run.
620 * parse is the querytree produced by the parser & rewriter.
621 * parent_root is the immediate parent Query's info (NULL at the top level).
622 * hasRecursion is true if this is a recursive WITH query.
623 * tuple_fraction is the fraction of tuples we expect will be retrieved.
624 * tuple_fraction is interpreted as explained for grouping_planner, below.
625 * setops is used for set operation subqueries to provide the subquery with
626 * the context in which it's being used so that Paths correctly sorted for the
627 * set operation can be generated. NULL when not planning a set operation
628 * child, or when a child of a set op that isn't interested in sorted input.
629 *
630 * Basically, this routine does the stuff that should only be done once
631 * per Query object. It then calls grouping_planner. At one time,
632 * grouping_planner could be invoked recursively on the same Query object;
633 * that's not currently true, but we keep the separation between the two
634 * routines anyway, in case we need it again someday.
635 *
636 * subquery_planner will be called recursively to handle sub-Query nodes
637 * found within the query's expressions and rangetable.
638 *
639 * Returns the PlannerInfo struct ("root") that contains all data generated
640 * while planning the subquery. In particular, the Path(s) attached to
641 * the (UPPERREL_FINAL, NULL) upperrel represent our conclusions about the
642 * cheapest way(s) to implement the query. The top level will select the
643 * best Path and pass it through createplan.c to produce a finished Plan.
644 *--------------------
645 */
648 bool hasRecursion, double tuple_fraction,
649 SetOperationStmt *setops)
650{
652 List *newWithCheckOptions;
653 List *newHaving;
654 bool hasOuterJoins;
655 bool hasResultRTEs;
656 RelOptInfo *final_rel;
657 ListCell *l;
658
659 /* Create a PlannerInfo data structure for this subquery */
661 root->parse = parse;
662 root->glob = glob;
663 root->query_level = parent_root ? parent_root->query_level + 1 : 1;
664 root->parent_root = parent_root;
665 root->plan_params = NIL;
666 root->outer_params = NULL;
667 root->planner_cxt = CurrentMemoryContext;
668 root->init_plans = NIL;
669 root->cte_plan_ids = NIL;
670 root->multiexpr_params = NIL;
671 root->join_domains = NIL;
672 root->eq_classes = NIL;
673 root->ec_merging_done = false;
674 root->last_rinfo_serial = 0;
675 root->all_result_relids =
676 parse->resultRelation ? bms_make_singleton(parse->resultRelation) : NULL;
677 root->leaf_result_relids = NULL; /* we'll find out leaf-ness later */
678 root->append_rel_list = NIL;
679 root->row_identity_vars = NIL;
680 root->rowMarks = NIL;
681 memset(root->upper_rels, 0, sizeof(root->upper_rels));
682 memset(root->upper_targets, 0, sizeof(root->upper_targets));
683 root->processed_groupClause = NIL;
684 root->processed_distinctClause = NIL;
685 root->processed_tlist = NIL;
686 root->update_colnos = NIL;
687 root->grouping_map = NULL;
688 root->minmax_aggs = NIL;
689 root->qual_security_level = 0;
690 root->hasPseudoConstantQuals = false;
691 root->hasAlternativeSubPlans = false;
692 root->placeholdersFrozen = false;
693 root->hasRecursion = hasRecursion;
694 if (hasRecursion)
695 root->wt_param_id = assign_special_exec_param(root);
696 else
697 root->wt_param_id = -1;
698 root->non_recursive_path = NULL;
699 root->partColsUpdated = false;
700
701 /*
702 * Create the top-level join domain. This won't have valid contents until
703 * deconstruct_jointree fills it in, but the node needs to exist before
704 * that so we can build EquivalenceClasses referencing it.
705 */
706 root->join_domains = list_make1(makeNode(JoinDomain));
707
708 /*
709 * If there is a WITH list, process each WITH query and either convert it
710 * to RTE_SUBQUERY RTE(s) or build an initplan SubPlan structure for it.
711 */
712 if (parse->cteList)
714
715 /*
716 * If it's a MERGE command, transform the joinlist as appropriate.
717 */
719
720 /*
721 * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so
722 * that we don't need so many special cases to deal with that situation.
723 */
725
726 /*
727 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
728 * to transform them into joins. Note that this step does not descend
729 * into subqueries; if we pull up any subqueries below, their SubLinks are
730 * processed just before pulling them up.
731 */
732 if (parse->hasSubLinks)
734
735 /*
736 * Scan the rangetable for function RTEs, do const-simplification on them,
737 * and then inline them if possible (producing subqueries that might get
738 * pulled up next). Recursion issues here are handled in the same way as
739 * for SubLinks.
740 */
742
743 /*
744 * Scan the rangetable for relations with virtual generated columns, and
745 * replace all Var nodes in the query that reference these columns with
746 * the generation expressions. Recursion issues here are handled in the
747 * same way as for SubLinks.
748 */
750
751 /*
752 * Check to see if any subqueries in the jointree can be merged into this
753 * query.
754 */
756
757 /*
758 * If this is a simple UNION ALL query, flatten it into an appendrel. We
759 * do this now because it requires applying pull_up_subqueries to the leaf
760 * queries of the UNION ALL, which weren't touched above because they
761 * weren't referenced by the jointree (they will be after we do this).
762 */
763 if (parse->setOperations)
765
766 /*
767 * Survey the rangetable to see what kinds of entries are present. We can
768 * skip some later processing if relevant SQL features are not used; for
769 * example if there are no JOIN RTEs we can avoid the expense of doing
770 * flatten_join_alias_vars(). This must be done after we have finished
771 * adding rangetable entries, of course. (Note: actually, processing of
772 * inherited or partitioned rels can cause RTEs for their child tables to
773 * get added later; but those must all be RTE_RELATION entries, so they
774 * don't invalidate the conclusions drawn here.)
775 */
776 root->hasJoinRTEs = false;
777 root->hasLateralRTEs = false;
778 root->group_rtindex = 0;
779 hasOuterJoins = false;
780 hasResultRTEs = false;
781 foreach(l, parse->rtable)
782 {
784
785 switch (rte->rtekind)
786 {
787 case RTE_RELATION:
788 if (rte->inh)
789 {
790 /*
791 * Check to see if the relation actually has any children;
792 * if not, clear the inh flag so we can treat it as a
793 * plain base relation.
794 *
795 * Note: this could give a false-positive result, if the
796 * rel once had children but no longer does. We used to
797 * be able to clear rte->inh later on when we discovered
798 * that, but no more; we have to handle such cases as
799 * full-fledged inheritance.
800 */
801 rte->inh = has_subclass(rte->relid);
802 }
803 break;
804 case RTE_JOIN:
805 root->hasJoinRTEs = true;
806 if (IS_OUTER_JOIN(rte->jointype))
807 hasOuterJoins = true;
808 break;
809 case RTE_RESULT:
810 hasResultRTEs = true;
811 break;
812 case RTE_GROUP:
813 Assert(parse->hasGroupRTE);
814 root->group_rtindex = list_cell_number(parse->rtable, l) + 1;
815 break;
816 default:
817 /* No work here for other RTE types */
818 break;
819 }
820
821 if (rte->lateral)
822 root->hasLateralRTEs = true;
823
824 /*
825 * We can also determine the maximum security level required for any
826 * securityQuals now. Addition of inheritance-child RTEs won't affect
827 * this, because child tables don't have their own securityQuals; see
828 * expand_single_inheritance_child().
829 */
830 if (rte->securityQuals)
831 root->qual_security_level = Max(root->qual_security_level,
832 list_length(rte->securityQuals));
833 }
834
835 /*
836 * If we have now verified that the query target relation is
837 * non-inheriting, mark it as a leaf target.
838 */
839 if (parse->resultRelation)
840 {
841 RangeTblEntry *rte = rt_fetch(parse->resultRelation, parse->rtable);
842
843 if (!rte->inh)
844 root->leaf_result_relids =
845 bms_make_singleton(parse->resultRelation);
846 }
847
848 /*
849 * Preprocess RowMark information. We need to do this after subquery
850 * pullup, so that all base relations are present.
851 */
853
854 /*
855 * Set hasHavingQual to remember if HAVING clause is present. Needed
856 * because preprocess_expression will reduce a constant-true condition to
857 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
858 */
859 root->hasHavingQual = (parse->havingQual != NULL);
860
861 /*
862 * Do expression preprocessing on targetlist and quals, as well as other
863 * random expressions in the querytree. Note that we do not need to
864 * handle sort/group expressions explicitly, because they are actually
865 * part of the targetlist.
866 */
867 parse->targetList = (List *)
868 preprocess_expression(root, (Node *) parse->targetList,
870
871 newWithCheckOptions = NIL;
872 foreach(l, parse->withCheckOptions)
873 {
875
876 wco->qual = preprocess_expression(root, wco->qual,
878 if (wco->qual != NULL)
879 newWithCheckOptions = lappend(newWithCheckOptions, wco);
880 }
881 parse->withCheckOptions = newWithCheckOptions;
882
883 parse->returningList = (List *)
884 preprocess_expression(root, (Node *) parse->returningList,
886
888
889 parse->havingQual = preprocess_expression(root, parse->havingQual,
891
892 foreach(l, parse->windowClause)
893 {
895
896 /* partitionClause/orderClause are sort/group expressions */
901 }
902
903 parse->limitOffset = preprocess_expression(root, parse->limitOffset,
905 parse->limitCount = preprocess_expression(root, parse->limitCount,
907
908 if (parse->onConflict)
909 {
910 parse->onConflict->arbiterElems = (List *)
912 (Node *) parse->onConflict->arbiterElems,
914 parse->onConflict->arbiterWhere =
916 parse->onConflict->arbiterWhere,
918 parse->onConflict->onConflictSet = (List *)
920 (Node *) parse->onConflict->onConflictSet,
922 parse->onConflict->onConflictWhere =
924 parse->onConflict->onConflictWhere,
926 /* exclRelTlist contains only Vars, so no preprocessing needed */
927 }
928
929 foreach(l, parse->mergeActionList)
930 {
932
933 action->targetList = (List *)
935 (Node *) action->targetList,
937 action->qual =
939 (Node *) action->qual,
941 }
942
943 parse->mergeJoinCondition =
944 preprocess_expression(root, parse->mergeJoinCondition, EXPRKIND_QUAL);
945
946 root->append_rel_list = (List *)
947 preprocess_expression(root, (Node *) root->append_rel_list,
949
950 /* Also need to preprocess expressions within RTEs */
951 foreach(l, parse->rtable)
952 {
954 int kind;
955 ListCell *lcsq;
956
957 if (rte->rtekind == RTE_RELATION)
958 {
959 if (rte->tablesample)
962 (Node *) rte->tablesample,
964 }
965 else if (rte->rtekind == RTE_SUBQUERY)
966 {
967 /*
968 * We don't want to do all preprocessing yet on the subquery's
969 * expressions, since that will happen when we plan it. But if it
970 * contains any join aliases of our level, those have to get
971 * expanded now, because planning of the subquery won't do it.
972 * That's only possible if the subquery is LATERAL.
973 */
974 if (rte->lateral && root->hasJoinRTEs)
975 rte->subquery = (Query *)
977 (Node *) rte->subquery);
978 }
979 else if (rte->rtekind == RTE_FUNCTION)
980 {
981 /* Preprocess the function expression(s) fully */
982 kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
983 rte->functions = (List *)
984 preprocess_expression(root, (Node *) rte->functions, kind);
985 }
986 else if (rte->rtekind == RTE_TABLEFUNC)
987 {
988 /* Preprocess the function expression(s) fully */
989 kind = rte->lateral ? EXPRKIND_TABLEFUNC_LATERAL : EXPRKIND_TABLEFUNC;
990 rte->tablefunc = (TableFunc *)
991 preprocess_expression(root, (Node *) rte->tablefunc, kind);
992 }
993 else if (rte->rtekind == RTE_VALUES)
994 {
995 /* Preprocess the values lists fully */
996 kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
997 rte->values_lists = (List *)
999 }
1000 else if (rte->rtekind == RTE_GROUP)
1001 {
1002 /* Preprocess the groupexprs list fully */
1003 rte->groupexprs = (List *)
1004 preprocess_expression(root, (Node *) rte->groupexprs,
1006 }
1007
1008 /*
1009 * Process each element of the securityQuals list as if it were a
1010 * separate qual expression (as indeed it is). We need to do it this
1011 * way to get proper canonicalization of AND/OR structure. Note that
1012 * this converts each element into an implicit-AND sublist.
1013 */
1014 foreach(lcsq, rte->securityQuals)
1015 {
1017 (Node *) lfirst(lcsq),
1019 }
1020 }
1021
1022 /*
1023 * Now that we are done preprocessing expressions, and in particular done
1024 * flattening join alias variables, get rid of the joinaliasvars lists.
1025 * They no longer match what expressions in the rest of the tree look
1026 * like, because we have not preprocessed expressions in those lists (and
1027 * do not want to; for example, expanding a SubLink there would result in
1028 * a useless unreferenced subplan). Leaving them in place simply creates
1029 * a hazard for later scans of the tree. We could try to prevent that by
1030 * using QTW_IGNORE_JOINALIASES in every tree scan done after this point,
1031 * but that doesn't sound very reliable.
1032 */
1033 if (root->hasJoinRTEs)
1034 {
1035 foreach(l, parse->rtable)
1036 {
1038
1039 rte->joinaliasvars = NIL;
1040 }
1041 }
1042
1043 /*
1044 * Replace any Vars in the subquery's targetlist and havingQual that
1045 * reference GROUP outputs with the underlying grouping expressions.
1046 *
1047 * Note that we need to perform this replacement after we've preprocessed
1048 * the grouping expressions. This is to ensure that there is only one
1049 * instance of SubPlan for each SubLink contained within the grouping
1050 * expressions.
1051 */
1052 if (parse->hasGroupRTE)
1053 {
1054 parse->targetList = (List *)
1055 flatten_group_exprs(root, root->parse, (Node *) parse->targetList);
1056 parse->havingQual =
1057 flatten_group_exprs(root, root->parse, parse->havingQual);
1058 }
1059
1060 /* Constant-folding might have removed all set-returning functions */
1061 if (parse->hasTargetSRFs)
1062 parse->hasTargetSRFs = expression_returns_set((Node *) parse->targetList);
1063
1064 /*
1065 * In some cases we may want to transfer a HAVING clause into WHERE. We
1066 * cannot do so if the HAVING clause contains aggregates (obviously) or
1067 * volatile functions (since a HAVING clause is supposed to be executed
1068 * only once per group). We also can't do this if there are any nonempty
1069 * grouping sets and the clause references any columns that are nullable
1070 * by the grouping sets; moving such a clause into WHERE would potentially
1071 * change the results. (If there are only empty grouping sets, then the
1072 * HAVING clause must be degenerate as discussed below.)
1073 *
1074 * Also, it may be that the clause is so expensive to execute that we're
1075 * better off doing it only once per group, despite the loss of
1076 * selectivity. This is hard to estimate short of doing the entire
1077 * planning process twice, so we use a heuristic: clauses containing
1078 * subplans are left in HAVING. Otherwise, we move or copy the HAVING
1079 * clause into WHERE, in hopes of eliminating tuples before aggregation
1080 * instead of after.
1081 *
1082 * If the query has explicit grouping then we can simply move such a
1083 * clause into WHERE; any group that fails the clause will not be in the
1084 * output because none of its tuples will reach the grouping or
1085 * aggregation stage. Otherwise we must have a degenerate (variable-free)
1086 * HAVING clause, which we put in WHERE so that query_planner() can use it
1087 * in a gating Result node, but also keep in HAVING to ensure that we
1088 * don't emit a bogus aggregated row. (This could be done better, but it
1089 * seems not worth optimizing.)
1090 *
1091 * Note that a HAVING clause may contain expressions that are not fully
1092 * preprocessed. This can happen if these expressions are part of
1093 * grouping items. In such cases, they are replaced with GROUP Vars in
1094 * the parser and then replaced back after we've done with expression
1095 * preprocessing on havingQual. This is not an issue if the clause
1096 * remains in HAVING, because these expressions will be matched to lower
1097 * target items in setrefs.c. However, if the clause is moved or copied
1098 * into WHERE, we need to ensure that these expressions are fully
1099 * preprocessed.
1100 *
1101 * Note that both havingQual and parse->jointree->quals are in
1102 * implicitly-ANDed-list form at this point, even though they are declared
1103 * as Node *.
1104 */
1105 newHaving = NIL;
1106 foreach(l, (List *) parse->havingQual)
1107 {
1108 Node *havingclause = (Node *) lfirst(l);
1109
1110 if (contain_agg_clause(havingclause) ||
1111 contain_volatile_functions(havingclause) ||
1112 contain_subplans(havingclause) ||
1113 (parse->groupClause && parse->groupingSets &&
1114 bms_is_member(root->group_rtindex, pull_varnos(root, havingclause))))
1115 {
1116 /* keep it in HAVING */
1117 newHaving = lappend(newHaving, havingclause);
1118 }
1119 else if (parse->groupClause)
1120 {
1121 Node *whereclause;
1122
1123 /* Preprocess the HAVING clause fully */
1124 whereclause = preprocess_expression(root, havingclause,
1126 /* ... and move it to WHERE */
1127 parse->jointree->quals = (Node *)
1128 list_concat((List *) parse->jointree->quals,
1129 (List *) whereclause);
1130 }
1131 else
1132 {
1133 Node *whereclause;
1134
1135 /* Preprocess the HAVING clause fully */
1136 whereclause = preprocess_expression(root, copyObject(havingclause),
1138 /* ... and put a copy in WHERE */
1139 parse->jointree->quals = (Node *)
1140 list_concat((List *) parse->jointree->quals,
1141 (List *) whereclause);
1142 /* ... and also keep it in HAVING */
1143 newHaving = lappend(newHaving, havingclause);
1144 }
1145 }
1146 parse->havingQual = (Node *) newHaving;
1147
1148 /*
1149 * If we have any outer joins, try to reduce them to plain inner joins.
1150 * This step is most easily done after we've done expression
1151 * preprocessing.
1152 */
1153 if (hasOuterJoins)
1155
1156 /*
1157 * If we have any RTE_RESULT relations, see if they can be deleted from
1158 * the jointree. We also rely on this processing to flatten single-child
1159 * FromExprs underneath outer joins. This step is most effectively done
1160 * after we've done expression preprocessing and outer join reduction.
1161 */
1162 if (hasResultRTEs || hasOuterJoins)
1164
1165 /*
1166 * Do the main planning.
1167 */
1168 grouping_planner(root, tuple_fraction, setops);
1169
1170 /*
1171 * Capture the set of outer-level param IDs we have access to, for use in
1172 * extParam/allParam calculations later.
1173 */
1175
1176 /*
1177 * If any initPlans were created in this query level, adjust the surviving
1178 * Paths' costs and parallel-safety flags to account for them. The
1179 * initPlans won't actually get attached to the plan tree till
1180 * create_plan() runs, but we must include their effects now.
1181 */
1182 final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
1183 SS_charge_for_initplans(root, final_rel);
1184
1185 /*
1186 * Make sure we've identified the cheapest Path for the final rel. (By
1187 * doing this here not in grouping_planner, we include initPlan costs in
1188 * the decision, though it's unlikely that will change anything.)
1189 */
1190 set_cheapest(final_rel);
1191
1192 return root;
1193}
1194
1195/*
1196 * preprocess_expression
1197 * Do subquery_planner's preprocessing work for an expression,
1198 * which can be a targetlist, a WHERE clause (including JOIN/ON
1199 * conditions), a HAVING clause, or a few other things.
1200 */
1201static Node *
1203{
1204 /*
1205 * Fall out quickly if expression is empty. This occurs often enough to
1206 * be worth checking. Note that null->null is the correct conversion for
1207 * implicit-AND result format, too.
1208 */
1209 if (expr == NULL)
1210 return NULL;
1211
1212 /*
1213 * If the query has any join RTEs, replace join alias variables with
1214 * base-relation variables. We must do this first, since any expressions
1215 * we may extract from the joinaliasvars lists have not been preprocessed.
1216 * For example, if we did this after sublink processing, sublinks expanded
1217 * out from join aliases would not get processed. But we can skip this in
1218 * non-lateral RTE functions, VALUES lists, and TABLESAMPLE clauses, since
1219 * they can't contain any Vars of the current query level.
1220 */
1221 if (root->hasJoinRTEs &&
1222 !(kind == EXPRKIND_RTFUNC ||
1223 kind == EXPRKIND_VALUES ||
1224 kind == EXPRKIND_TABLESAMPLE ||
1225 kind == EXPRKIND_TABLEFUNC))
1226 expr = flatten_join_alias_vars(root, root->parse, expr);
1227
1228 /*
1229 * Simplify constant expressions. For function RTEs, this was already
1230 * done by preprocess_function_rtes. (But note we must do it again for
1231 * EXPRKIND_RTFUNC_LATERAL, because those might by now contain
1232 * un-simplified subexpressions inserted by flattening of subqueries or
1233 * join alias variables.)
1234 *
1235 * Note: an essential effect of this is to convert named-argument function
1236 * calls to positional notation and insert the current actual values of
1237 * any default arguments for functions. To ensure that happens, we *must*
1238 * process all expressions here. Previous PG versions sometimes skipped
1239 * const-simplification if it didn't seem worth the trouble, but we can't
1240 * do that anymore.
1241 *
1242 * Note: this also flattens nested AND and OR expressions into N-argument
1243 * form. All processing of a qual expression after this point must be
1244 * careful to maintain AND/OR flatness --- that is, do not generate a tree
1245 * with AND directly under AND, nor OR directly under OR.
1246 */
1247 if (kind != EXPRKIND_RTFUNC)
1248 expr = eval_const_expressions(root, expr);
1249
1250 /*
1251 * If it's a qual or havingQual, canonicalize it.
1252 */
1253 if (kind == EXPRKIND_QUAL)
1254 {
1255 expr = (Node *) canonicalize_qual((Expr *) expr, false);
1256
1257#ifdef OPTIMIZER_DEBUG
1258 printf("After canonicalize_qual()\n");
1259 pprint(expr);
1260#endif
1261 }
1262
1263 /*
1264 * Check for ANY ScalarArrayOpExpr with Const arrays and set the
1265 * hashfuncid of any that might execute more quickly by using hash lookups
1266 * instead of a linear search.
1267 */
1268 if (kind == EXPRKIND_QUAL || kind == EXPRKIND_TARGET)
1269 {
1271 }
1272
1273 /* Expand SubLinks to SubPlans */
1274 if (root->parse->hasSubLinks)
1275 expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
1276
1277 /*
1278 * XXX do not insert anything here unless you have grokked the comments in
1279 * SS_replace_correlation_vars ...
1280 */
1281
1282 /* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
1283 if (root->query_level > 1)
1284 expr = SS_replace_correlation_vars(root, expr);
1285
1286 /*
1287 * If it's a qual or havingQual, convert it to implicit-AND format. (We
1288 * don't want to do this before eval_const_expressions, since the latter
1289 * would be unable to simplify a top-level AND correctly. Also,
1290 * SS_process_sublinks expects explicit-AND format.)
1291 */
1292 if (kind == EXPRKIND_QUAL)
1293 expr = (Node *) make_ands_implicit((Expr *) expr);
1294
1295 return expr;
1296}
1297
1298/*
1299 * preprocess_qual_conditions
1300 * Recursively scan the query's jointree and do subquery_planner's
1301 * preprocessing work on each qual condition found therein.
1302 */
1303static void
1305{
1306 if (jtnode == NULL)
1307 return;
1308 if (IsA(jtnode, RangeTblRef))
1309 {
1310 /* nothing to do here */
1311 }
1312 else if (IsA(jtnode, FromExpr))
1313 {
1314 FromExpr *f = (FromExpr *) jtnode;
1315 ListCell *l;
1316
1317 foreach(l, f->fromlist)
1319
1321 }
1322 else if (IsA(jtnode, JoinExpr))
1323 {
1324 JoinExpr *j = (JoinExpr *) jtnode;
1325
1328
1329 j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
1330 }
1331 else
1332 elog(ERROR, "unrecognized node type: %d",
1333 (int) nodeTag(jtnode));
1334}
1335
1336/*
1337 * preprocess_phv_expression
1338 * Do preprocessing on a PlaceHolderVar expression that's been pulled up.
1339 *
1340 * If a LATERAL subquery references an output of another subquery, and that
1341 * output must be wrapped in a PlaceHolderVar because of an intermediate outer
1342 * join, then we'll push the PlaceHolderVar expression down into the subquery
1343 * and later pull it back up during find_lateral_references, which runs after
1344 * subquery_planner has preprocessed all the expressions that were in the
1345 * current query level to start with. So we need to preprocess it then.
1346 */
1347Expr *
1349{
1350 return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
1351}
1352
1353/*--------------------
1354 * grouping_planner
1355 * Perform planning steps related to grouping, aggregation, etc.
1356 *
1357 * This function adds all required top-level processing to the scan/join
1358 * Path(s) produced by query_planner.
1359 *
1360 * tuple_fraction is the fraction of tuples we expect will be retrieved.
1361 * tuple_fraction is interpreted as follows:
1362 * 0: expect all tuples to be retrieved (normal case)
1363 * 0 < tuple_fraction < 1: expect the given fraction of tuples available
1364 * from the plan to be retrieved
1365 * tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
1366 * expected to be retrieved (ie, a LIMIT specification).
1367 * setops is used for set operation subqueries to provide the subquery with
1368 * the context in which it's being used so that Paths correctly sorted for the
1369 * set operation can be generated. NULL when not planning a set operation
1370 * child, or when a child of a set op that isn't interested in sorted input.
1371 *
1372 * Returns nothing; the useful output is in the Paths we attach to the
1373 * (UPPERREL_FINAL, NULL) upperrel in *root. In addition,
1374 * root->processed_tlist contains the final processed targetlist.
1375 *
1376 * Note that we have not done set_cheapest() on the final rel; it's convenient
1377 * to leave this to the caller.
1378 *--------------------
1379 */
1380static void
1381grouping_planner(PlannerInfo *root, double tuple_fraction,
1382 SetOperationStmt *setops)
1383{
1384 Query *parse = root->parse;
1385 int64 offset_est = 0;
1386 int64 count_est = 0;
1387 double limit_tuples = -1.0;
1388 bool have_postponed_srfs = false;
1389 PathTarget *final_target;
1390 List *final_targets;
1391 List *final_targets_contain_srfs;
1392 bool final_target_parallel_safe;
1393 RelOptInfo *current_rel;
1394 RelOptInfo *final_rel;
1395 FinalPathExtraData extra;
1396 ListCell *lc;
1397
1398 /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
1399 if (parse->limitCount || parse->limitOffset)
1400 {
1401 tuple_fraction = preprocess_limit(root, tuple_fraction,
1402 &offset_est, &count_est);
1403
1404 /*
1405 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
1406 * estimate the effects of using a bounded sort.
1407 */
1408 if (count_est > 0 && offset_est >= 0)
1409 limit_tuples = (double) count_est + (double) offset_est;
1410 }
1411
1412 /* Make tuple_fraction accessible to lower-level routines */
1413 root->tuple_fraction = tuple_fraction;
1414
1415 if (parse->setOperations)
1416 {
1417 /*
1418 * Construct Paths for set operations. The results will not need any
1419 * work except perhaps a top-level sort and/or LIMIT. Note that any
1420 * special work for recursive unions is the responsibility of
1421 * plan_set_operations.
1422 */
1423 current_rel = plan_set_operations(root);
1424
1425 /*
1426 * We should not need to call preprocess_targetlist, since we must be
1427 * in a SELECT query node. Instead, use the processed_tlist returned
1428 * by plan_set_operations (since this tells whether it returned any
1429 * resjunk columns!), and transfer any sort key information from the
1430 * original tlist.
1431 */
1432 Assert(parse->commandType == CMD_SELECT);
1433
1434 /* for safety, copy processed_tlist instead of modifying in-place */
1435 root->processed_tlist =
1436 postprocess_setop_tlist(copyObject(root->processed_tlist),
1437 parse->targetList);
1438
1439 /* Also extract the PathTarget form of the setop result tlist */
1440 final_target = current_rel->cheapest_total_path->pathtarget;
1441
1442 /* And check whether it's parallel safe */
1443 final_target_parallel_safe =
1444 is_parallel_safe(root, (Node *) final_target->exprs);
1445
1446 /* The setop result tlist couldn't contain any SRFs */
1447 Assert(!parse->hasTargetSRFs);
1448 final_targets = final_targets_contain_srfs = NIL;
1449
1450 /*
1451 * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
1452 * checked already, but let's make sure).
1453 */
1454 if (parse->rowMarks)
1455 ereport(ERROR,
1456 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1457 /*------
1458 translator: %s is a SQL row locking clause such as FOR UPDATE */
1459 errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
1461 parse->rowMarks)->strength))));
1462
1463 /*
1464 * Calculate pathkeys that represent result ordering requirements
1465 */
1466 Assert(parse->distinctClause == NIL);
1467 root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
1468 parse->sortClause,
1469 root->processed_tlist);
1470 }
1471 else
1472 {
1473 /* No set operations, do regular planning */
1474 PathTarget *sort_input_target;
1475 List *sort_input_targets;
1476 List *sort_input_targets_contain_srfs;
1477 bool sort_input_target_parallel_safe;
1478 PathTarget *grouping_target;
1479 List *grouping_targets;
1480 List *grouping_targets_contain_srfs;
1481 bool grouping_target_parallel_safe;
1482 PathTarget *scanjoin_target;
1483 List *scanjoin_targets;
1484 List *scanjoin_targets_contain_srfs;
1485 bool scanjoin_target_parallel_safe;
1486 bool scanjoin_target_same_exprs;
1487 bool have_grouping;
1488 WindowFuncLists *wflists = NULL;
1489 List *activeWindows = NIL;
1490 grouping_sets_data *gset_data = NULL;
1491 standard_qp_extra qp_extra;
1492
1493 /* A recursive query should always have setOperations */
1494 Assert(!root->hasRecursion);
1495
1496 /* Preprocess grouping sets and GROUP BY clause, if any */
1497 if (parse->groupingSets)
1498 {
1499 gset_data = preprocess_grouping_sets(root);
1500 }
1501 else if (parse->groupClause)
1502 {
1503 /* Preprocess regular GROUP BY clause, if any */
1504 root->processed_groupClause = preprocess_groupclause(root, NIL);
1505 }
1506
1507 /*
1508 * Preprocess targetlist. Note that much of the remaining planning
1509 * work will be done with the PathTarget representation of tlists, but
1510 * we must also maintain the full representation of the final tlist so
1511 * that we can transfer its decoration (resnames etc) to the topmost
1512 * tlist of the finished Plan. This is kept in processed_tlist.
1513 */
1515
1516 /*
1517 * Mark all the aggregates with resolved aggtranstypes, and detect
1518 * aggregates that are duplicates or can share transition state. We
1519 * must do this before slicing and dicing the tlist into various
1520 * pathtargets, else some copies of the Aggref nodes might escape
1521 * being marked.
1522 */
1523 if (parse->hasAggs)
1524 {
1525 preprocess_aggrefs(root, (Node *) root->processed_tlist);
1526 preprocess_aggrefs(root, (Node *) parse->havingQual);
1527 }
1528
1529 /*
1530 * Locate any window functions in the tlist. (We don't need to look
1531 * anywhere else, since expressions used in ORDER BY will be in there
1532 * too.) Note that they could all have been eliminated by constant
1533 * folding, in which case we don't need to do any more work.
1534 */
1535 if (parse->hasWindowFuncs)
1536 {
1537 wflists = find_window_functions((Node *) root->processed_tlist,
1538 list_length(parse->windowClause));
1539 if (wflists->numWindowFuncs > 0)
1540 {
1541 /*
1542 * See if any modifications can be made to each WindowClause
1543 * to allow the executor to execute the WindowFuncs more
1544 * quickly.
1545 */
1546 optimize_window_clauses(root, wflists);
1547
1548 /* Extract the list of windows actually in use. */
1549 activeWindows = select_active_windows(root, wflists);
1550
1551 /* Make sure they all have names, for EXPLAIN's use. */
1552 name_active_windows(activeWindows);
1553 }
1554 else
1555 parse->hasWindowFuncs = false;
1556 }
1557
1558 /*
1559 * Preprocess MIN/MAX aggregates, if any. Note: be careful about
1560 * adding logic between here and the query_planner() call. Anything
1561 * that is needed in MIN/MAX-optimizable cases will have to be
1562 * duplicated in planagg.c.
1563 */
1564 if (parse->hasAggs)
1566
1567 /*
1568 * Figure out whether there's a hard limit on the number of rows that
1569 * query_planner's result subplan needs to return. Even if we know a
1570 * hard limit overall, it doesn't apply if the query has any
1571 * grouping/aggregation operations, or SRFs in the tlist.
1572 */
1573 if (parse->groupClause ||
1574 parse->groupingSets ||
1575 parse->distinctClause ||
1576 parse->hasAggs ||
1577 parse->hasWindowFuncs ||
1578 parse->hasTargetSRFs ||
1579 root->hasHavingQual)
1580 root->limit_tuples = -1.0;
1581 else
1582 root->limit_tuples = limit_tuples;
1583
1584 /* Set up data needed by standard_qp_callback */
1585 qp_extra.activeWindows = activeWindows;
1586 qp_extra.gset_data = gset_data;
1587
1588 /*
1589 * If we're a subquery for a set operation, store the SetOperationStmt
1590 * in qp_extra.
1591 */
1592 qp_extra.setop = setops;
1593
1594 /*
1595 * Generate the best unsorted and presorted paths for the scan/join
1596 * portion of this Query, ie the processing represented by the
1597 * FROM/WHERE clauses. (Note there may not be any presorted paths.)
1598 * We also generate (in standard_qp_callback) pathkey representations
1599 * of the query's sort clause, distinct clause, etc.
1600 */
1601 current_rel = query_planner(root, standard_qp_callback, &qp_extra);
1602
1603 /*
1604 * Convert the query's result tlist into PathTarget format.
1605 *
1606 * Note: this cannot be done before query_planner() has performed
1607 * appendrel expansion, because that might add resjunk entries to
1608 * root->processed_tlist. Waiting till afterwards is also helpful
1609 * because the target width estimates can use per-Var width numbers
1610 * that were obtained within query_planner().
1611 */
1612 final_target = create_pathtarget(root, root->processed_tlist);
1613 final_target_parallel_safe =
1614 is_parallel_safe(root, (Node *) final_target->exprs);
1615
1616 /*
1617 * If ORDER BY was given, consider whether we should use a post-sort
1618 * projection, and compute the adjusted target for preceding steps if
1619 * so.
1620 */
1621 if (parse->sortClause)
1622 {
1623 sort_input_target = make_sort_input_target(root,
1624 final_target,
1625 &have_postponed_srfs);
1626 sort_input_target_parallel_safe =
1627 is_parallel_safe(root, (Node *) sort_input_target->exprs);
1628 }
1629 else
1630 {
1631 sort_input_target = final_target;
1632 sort_input_target_parallel_safe = final_target_parallel_safe;
1633 }
1634
1635 /*
1636 * If we have window functions to deal with, the output from any
1637 * grouping step needs to be what the window functions want;
1638 * otherwise, it should be sort_input_target.
1639 */
1640 if (activeWindows)
1641 {
1642 grouping_target = make_window_input_target(root,
1643 final_target,
1644 activeWindows);
1645 grouping_target_parallel_safe =
1646 is_parallel_safe(root, (Node *) grouping_target->exprs);
1647 }
1648 else
1649 {
1650 grouping_target = sort_input_target;
1651 grouping_target_parallel_safe = sort_input_target_parallel_safe;
1652 }
1653
1654 /*
1655 * If we have grouping or aggregation to do, the topmost scan/join
1656 * plan node must emit what the grouping step wants; otherwise, it
1657 * should emit grouping_target.
1658 */
1659 have_grouping = (parse->groupClause || parse->groupingSets ||
1660 parse->hasAggs || root->hasHavingQual);
1661 if (have_grouping)
1662 {
1663 scanjoin_target = make_group_input_target(root, final_target);
1664 scanjoin_target_parallel_safe =
1665 is_parallel_safe(root, (Node *) scanjoin_target->exprs);
1666 }
1667 else
1668 {
1669 scanjoin_target = grouping_target;
1670 scanjoin_target_parallel_safe = grouping_target_parallel_safe;
1671 }
1672
1673 /*
1674 * If there are any SRFs in the targetlist, we must separate each of
1675 * these PathTargets into SRF-computing and SRF-free targets. Replace
1676 * each of the named targets with a SRF-free version, and remember the
1677 * list of additional projection steps we need to add afterwards.
1678 */
1679 if (parse->hasTargetSRFs)
1680 {
1681 /* final_target doesn't recompute any SRFs in sort_input_target */
1682 split_pathtarget_at_srfs(root, final_target, sort_input_target,
1683 &final_targets,
1684 &final_targets_contain_srfs);
1685 final_target = linitial_node(PathTarget, final_targets);
1686 Assert(!linitial_int(final_targets_contain_srfs));
1687 /* likewise for sort_input_target vs. grouping_target */
1688 split_pathtarget_at_srfs(root, sort_input_target, grouping_target,
1689 &sort_input_targets,
1690 &sort_input_targets_contain_srfs);
1691 sort_input_target = linitial_node(PathTarget, sort_input_targets);
1692 Assert(!linitial_int(sort_input_targets_contain_srfs));
1693 /* likewise for grouping_target vs. scanjoin_target */
1694 split_pathtarget_at_srfs(root, grouping_target, scanjoin_target,
1695 &grouping_targets,
1696 &grouping_targets_contain_srfs);
1697 grouping_target = linitial_node(PathTarget, grouping_targets);
1698 Assert(!linitial_int(grouping_targets_contain_srfs));
1699 /* scanjoin_target will not have any SRFs precomputed for it */
1700 split_pathtarget_at_srfs(root, scanjoin_target, NULL,
1701 &scanjoin_targets,
1702 &scanjoin_targets_contain_srfs);
1703 scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
1704 Assert(!linitial_int(scanjoin_targets_contain_srfs));
1705 }
1706 else
1707 {
1708 /* initialize lists; for most of these, dummy values are OK */
1709 final_targets = final_targets_contain_srfs = NIL;
1710 sort_input_targets = sort_input_targets_contain_srfs = NIL;
1711 grouping_targets = grouping_targets_contain_srfs = NIL;
1712 scanjoin_targets = list_make1(scanjoin_target);
1713 scanjoin_targets_contain_srfs = NIL;
1714 }
1715
1716 /* Apply scan/join target. */
1717 scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
1718 && equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
1719 apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
1720 scanjoin_targets_contain_srfs,
1721 scanjoin_target_parallel_safe,
1722 scanjoin_target_same_exprs);
1723
1724 /*
1725 * Save the various upper-rel PathTargets we just computed into
1726 * root->upper_targets[]. The core code doesn't use this, but it
1727 * provides a convenient place for extensions to get at the info. For
1728 * consistency, we save all the intermediate targets, even though some
1729 * of the corresponding upperrels might not be needed for this query.
1730 */
1731 root->upper_targets[UPPERREL_FINAL] = final_target;
1732 root->upper_targets[UPPERREL_ORDERED] = final_target;
1733 root->upper_targets[UPPERREL_DISTINCT] = sort_input_target;
1734 root->upper_targets[UPPERREL_PARTIAL_DISTINCT] = sort_input_target;
1735 root->upper_targets[UPPERREL_WINDOW] = sort_input_target;
1736 root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target;
1737
1738 /*
1739 * If we have grouping and/or aggregation, consider ways to implement
1740 * that. We build a new upperrel representing the output of this
1741 * phase.
1742 */
1743 if (have_grouping)
1744 {
1745 current_rel = create_grouping_paths(root,
1746 current_rel,
1747 grouping_target,
1748 grouping_target_parallel_safe,
1749 gset_data);
1750 /* Fix things up if grouping_target contains SRFs */
1751 if (parse->hasTargetSRFs)
1752 adjust_paths_for_srfs(root, current_rel,
1753 grouping_targets,
1754 grouping_targets_contain_srfs);
1755 }
1756
1757 /*
1758 * If we have window functions, consider ways to implement those. We
1759 * build a new upperrel representing the output of this phase.
1760 */
1761 if (activeWindows)
1762 {
1763 current_rel = create_window_paths(root,
1764 current_rel,
1765 grouping_target,
1766 sort_input_target,
1767 sort_input_target_parallel_safe,
1768 wflists,
1769 activeWindows);
1770 /* Fix things up if sort_input_target contains SRFs */
1771 if (parse->hasTargetSRFs)
1772 adjust_paths_for_srfs(root, current_rel,
1773 sort_input_targets,
1774 sort_input_targets_contain_srfs);
1775 }
1776
1777 /*
1778 * If there is a DISTINCT clause, consider ways to implement that. We
1779 * build a new upperrel representing the output of this phase.
1780 */
1781 if (parse->distinctClause)
1782 {
1783 current_rel = create_distinct_paths(root,
1784 current_rel,
1785 sort_input_target);
1786 }
1787 } /* end of if (setOperations) */
1788
1789 /*
1790 * If ORDER BY was given, consider ways to implement that, and generate a
1791 * new upperrel containing only paths that emit the correct ordering and
1792 * project the correct final_target. We can apply the original
1793 * limit_tuples limit in sort costing here, but only if there are no
1794 * postponed SRFs.
1795 */
1796 if (parse->sortClause)
1797 {
1798 current_rel = create_ordered_paths(root,
1799 current_rel,
1800 final_target,
1801 final_target_parallel_safe,
1802 have_postponed_srfs ? -1.0 :
1803 limit_tuples);
1804 /* Fix things up if final_target contains SRFs */
1805 if (parse->hasTargetSRFs)
1806 adjust_paths_for_srfs(root, current_rel,
1807 final_targets,
1808 final_targets_contain_srfs);
1809 }
1810
1811 /*
1812 * Now we are prepared to build the final-output upperrel.
1813 */
1814 final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
1815
1816 /*
1817 * If the input rel is marked consider_parallel and there's nothing that's
1818 * not parallel-safe in the LIMIT clause, then the final_rel can be marked
1819 * consider_parallel as well. Note that if the query has rowMarks or is
1820 * not a SELECT, consider_parallel will be false for every relation in the
1821 * query.
1822 */
1823 if (current_rel->consider_parallel &&
1824 is_parallel_safe(root, parse->limitOffset) &&
1825 is_parallel_safe(root, parse->limitCount))
1826 final_rel->consider_parallel = true;
1827
1828 /*
1829 * If the current_rel belongs to a single FDW, so does the final_rel.
1830 */
1831 final_rel->serverid = current_rel->serverid;
1832 final_rel->userid = current_rel->userid;
1833 final_rel->useridiscurrent = current_rel->useridiscurrent;
1834 final_rel->fdwroutine = current_rel->fdwroutine;
1835
1836 /*
1837 * Generate paths for the final_rel. Insert all surviving paths, with
1838 * LockRows, Limit, and/or ModifyTable steps added if needed.
1839 */
1840 foreach(lc, current_rel->pathlist)
1841 {
1842 Path *path = (Path *) lfirst(lc);
1843
1844 /*
1845 * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
1846 * (Note: we intentionally test parse->rowMarks not root->rowMarks
1847 * here. If there are only non-locking rowmarks, they should be
1848 * handled by the ModifyTable node instead. However, root->rowMarks
1849 * is what goes into the LockRows node.)
1850 */
1851 if (parse->rowMarks)
1852 {
1853 path = (Path *) create_lockrows_path(root, final_rel, path,
1854 root->rowMarks,
1856 }
1857
1858 /*
1859 * If there is a LIMIT/OFFSET clause, add the LIMIT node.
1860 */
1861 if (limit_needed(parse))
1862 {
1863 path = (Path *) create_limit_path(root, final_rel, path,
1864 parse->limitOffset,
1865 parse->limitCount,
1866 parse->limitOption,
1867 offset_est, count_est);
1868 }
1869
1870 /*
1871 * If this is an INSERT/UPDATE/DELETE/MERGE, add the ModifyTable node.
1872 */
1873 if (parse->commandType != CMD_SELECT)
1874 {
1875 Index rootRelation;
1876 List *resultRelations = NIL;
1877 List *updateColnosLists = NIL;
1878 List *withCheckOptionLists = NIL;
1879 List *returningLists = NIL;
1880 List *mergeActionLists = NIL;
1881 List *mergeJoinConditions = NIL;
1882 List *rowMarks;
1883
1884 if (bms_membership(root->all_result_relids) == BMS_MULTIPLE)
1885 {
1886 /* Inherited UPDATE/DELETE/MERGE */
1887 RelOptInfo *top_result_rel = find_base_rel(root,
1888 parse->resultRelation);
1889 int resultRelation = -1;
1890
1891 /* Pass the root result rel forward to the executor. */
1892 rootRelation = parse->resultRelation;
1893
1894 /* Add only leaf children to ModifyTable. */
1895 while ((resultRelation = bms_next_member(root->leaf_result_relids,
1896 resultRelation)) >= 0)
1897 {
1898 RelOptInfo *this_result_rel = find_base_rel(root,
1899 resultRelation);
1900
1901 /*
1902 * Also exclude any leaf rels that have turned dummy since
1903 * being added to the list, for example, by being excluded
1904 * by constraint exclusion.
1905 */
1906 if (IS_DUMMY_REL(this_result_rel))
1907 continue;
1908
1909 /* Build per-target-rel lists needed by ModifyTable */
1910 resultRelations = lappend_int(resultRelations,
1911 resultRelation);
1912 if (parse->commandType == CMD_UPDATE)
1913 {
1914 List *update_colnos = root->update_colnos;
1915
1916 if (this_result_rel != top_result_rel)
1917 update_colnos =
1919 update_colnos,
1920 this_result_rel->relid,
1921 top_result_rel->relid);
1922 updateColnosLists = lappend(updateColnosLists,
1923 update_colnos);
1924 }
1925 if (parse->withCheckOptions)
1926 {
1927 List *withCheckOptions = parse->withCheckOptions;
1928
1929 if (this_result_rel != top_result_rel)
1930 withCheckOptions = (List *)
1932 (Node *) withCheckOptions,
1933 this_result_rel,
1934 top_result_rel);
1935 withCheckOptionLists = lappend(withCheckOptionLists,
1936 withCheckOptions);
1937 }
1938 if (parse->returningList)
1939 {
1940 List *returningList = parse->returningList;
1941
1942 if (this_result_rel != top_result_rel)
1943 returningList = (List *)
1945 (Node *) returningList,
1946 this_result_rel,
1947 top_result_rel);
1948 returningLists = lappend(returningLists,
1949 returningList);
1950 }
1951 if (parse->mergeActionList)
1952 {
1953 ListCell *l;
1954 List *mergeActionList = NIL;
1955
1956 /*
1957 * Copy MergeActions and translate stuff that
1958 * references attribute numbers.
1959 */
1960 foreach(l, parse->mergeActionList)
1961 {
1963 *leaf_action = copyObject(action);
1964
1965 leaf_action->qual =
1967 (Node *) action->qual,
1968 this_result_rel,
1969 top_result_rel);
1970 leaf_action->targetList = (List *)
1972 (Node *) action->targetList,
1973 this_result_rel,
1974 top_result_rel);
1975 if (leaf_action->commandType == CMD_UPDATE)
1976 leaf_action->updateColnos =
1978 action->updateColnos,
1979 this_result_rel->relid,
1980 top_result_rel->relid);
1981 mergeActionList = lappend(mergeActionList,
1982 leaf_action);
1983 }
1984
1985 mergeActionLists = lappend(mergeActionLists,
1986 mergeActionList);
1987 }
1988 if (parse->commandType == CMD_MERGE)
1989 {
1990 Node *mergeJoinCondition = parse->mergeJoinCondition;
1991
1992 if (this_result_rel != top_result_rel)
1993 mergeJoinCondition =
1995 mergeJoinCondition,
1996 this_result_rel,
1997 top_result_rel);
1998 mergeJoinConditions = lappend(mergeJoinConditions,
1999 mergeJoinCondition);
2000 }
2001 }
2002
2003 if (resultRelations == NIL)
2004 {
2005 /*
2006 * We managed to exclude every child rel, so generate a
2007 * dummy one-relation plan using info for the top target
2008 * rel (even though that may not be a leaf target).
2009 * Although it's clear that no data will be updated or
2010 * deleted, we still need to have a ModifyTable node so
2011 * that any statement triggers will be executed. (This
2012 * could be cleaner if we fixed nodeModifyTable.c to allow
2013 * zero target relations, but that probably wouldn't be a
2014 * net win.)
2015 */
2016 resultRelations = list_make1_int(parse->resultRelation);
2017 if (parse->commandType == CMD_UPDATE)
2018 updateColnosLists = list_make1(root->update_colnos);
2019 if (parse->withCheckOptions)
2020 withCheckOptionLists = list_make1(parse->withCheckOptions);
2021 if (parse->returningList)
2022 returningLists = list_make1(parse->returningList);
2023 if (parse->mergeActionList)
2024 mergeActionLists = list_make1(parse->mergeActionList);
2025 if (parse->commandType == CMD_MERGE)
2026 mergeJoinConditions = list_make1(parse->mergeJoinCondition);
2027 }
2028 }
2029 else
2030 {
2031 /* Single-relation INSERT/UPDATE/DELETE/MERGE. */
2032 rootRelation = 0; /* there's no separate root rel */
2033 resultRelations = list_make1_int(parse->resultRelation);
2034 if (parse->commandType == CMD_UPDATE)
2035 updateColnosLists = list_make1(root->update_colnos);
2036 if (parse->withCheckOptions)
2037 withCheckOptionLists = list_make1(parse->withCheckOptions);
2038 if (parse->returningList)
2039 returningLists = list_make1(parse->returningList);
2040 if (parse->mergeActionList)
2041 mergeActionLists = list_make1(parse->mergeActionList);
2042 if (parse->commandType == CMD_MERGE)
2043 mergeJoinConditions = list_make1(parse->mergeJoinCondition);
2044 }
2045
2046 /*
2047 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
2048 * will have dealt with fetching non-locked marked rows, else we
2049 * need to have ModifyTable do that.
2050 */
2051 if (parse->rowMarks)
2052 rowMarks = NIL;
2053 else
2054 rowMarks = root->rowMarks;
2055
2056 path = (Path *)
2057 create_modifytable_path(root, final_rel,
2058 path,
2059 parse->commandType,
2060 parse->canSetTag,
2061 parse->resultRelation,
2062 rootRelation,
2063 root->partColsUpdated,
2064 resultRelations,
2065 updateColnosLists,
2066 withCheckOptionLists,
2067 returningLists,
2068 rowMarks,
2069 parse->onConflict,
2070 mergeActionLists,
2071 mergeJoinConditions,
2073 }
2074
2075 /* And shove it into final_rel */
2076 add_path(final_rel, path);
2077 }
2078
2079 /*
2080 * Generate partial paths for final_rel, too, if outer query levels might
2081 * be able to make use of them.
2082 */
2083 if (final_rel->consider_parallel && root->query_level > 1 &&
2085 {
2086 Assert(!parse->rowMarks && parse->commandType == CMD_SELECT);
2087 foreach(lc, current_rel->partial_pathlist)
2088 {
2089 Path *partial_path = (Path *) lfirst(lc);
2090
2091 add_partial_path(final_rel, partial_path);
2092 }
2093 }
2094
2096 extra.limit_tuples = limit_tuples;
2097 extra.count_est = count_est;
2098 extra.offset_est = offset_est;
2099
2100 /*
2101 * If there is an FDW that's responsible for all baserels of the query,
2102 * let it consider adding ForeignPaths.
2103 */
2104 if (final_rel->fdwroutine &&
2105 final_rel->fdwroutine->GetForeignUpperPaths)
2106 final_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_FINAL,
2107 current_rel, final_rel,
2108 &extra);
2109
2110 /* Let extensions possibly add some more paths */
2112 (*create_upper_paths_hook) (root, UPPERREL_FINAL,
2113 current_rel, final_rel, &extra);
2114
2115 /* Note: currently, we leave it to callers to do set_cheapest() */
2116}
2117
2118/*
2119 * Do preprocessing for groupingSets clause and related data. This handles the
2120 * preliminary steps of expanding the grouping sets, organizing them into lists
2121 * of rollups, and preparing annotations which will later be filled in with
2122 * size estimates.
2123 */
2124static grouping_sets_data *
2126{
2127 Query *parse = root->parse;
2128 List *sets;
2129 int maxref = 0;
2130 ListCell *lc_set;
2132
2133 parse->groupingSets = expand_grouping_sets(parse->groupingSets, parse->groupDistinct, -1);
2134
2135 gd->any_hashable = false;
2136 gd->unhashable_refs = NULL;
2137 gd->unsortable_refs = NULL;
2138 gd->unsortable_sets = NIL;
2139
2140 /*
2141 * We don't currently make any attempt to optimize the groupClause when
2142 * there are grouping sets, so just duplicate it in processed_groupClause.
2143 */
2144 root->processed_groupClause = parse->groupClause;
2145
2146 if (parse->groupClause)
2147 {
2148 ListCell *lc;
2149
2150 foreach(lc, parse->groupClause)
2151 {
2153 Index ref = gc->tleSortGroupRef;
2154
2155 if (ref > maxref)
2156 maxref = ref;
2157
2158 if (!gc->hashable)
2160
2161 if (!OidIsValid(gc->sortop))
2163 }
2164 }
2165
2166 /* Allocate workspace array for remapping */
2167 gd->tleref_to_colnum_map = (int *) palloc((maxref + 1) * sizeof(int));
2168
2169 /*
2170 * If we have any unsortable sets, we must extract them before trying to
2171 * prepare rollups. Unsortable sets don't go through
2172 * reorder_grouping_sets, so we must apply the GroupingSetData annotation
2173 * here.
2174 */
2175 if (!bms_is_empty(gd->unsortable_refs))
2176 {
2177 List *sortable_sets = NIL;
2178 ListCell *lc;
2179
2180 foreach(lc, parse->groupingSets)
2181 {
2182 List *gset = (List *) lfirst(lc);
2183
2184 if (bms_overlap_list(gd->unsortable_refs, gset))
2185 {
2187
2188 gs->set = gset;
2190
2191 /*
2192 * We must enforce here that an unsortable set is hashable;
2193 * later code assumes this. Parse analysis only checks that
2194 * every individual column is either hashable or sortable.
2195 *
2196 * Note that passing this test doesn't guarantee we can
2197 * generate a plan; there might be other showstoppers.
2198 */
2199 if (bms_overlap_list(gd->unhashable_refs, gset))
2200 ereport(ERROR,
2201 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2202 errmsg("could not implement GROUP BY"),
2203 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
2204 }
2205 else
2206 sortable_sets = lappend(sortable_sets, gset);
2207 }
2208
2209 if (sortable_sets)
2210 sets = extract_rollup_sets(sortable_sets);
2211 else
2212 sets = NIL;
2213 }
2214 else
2215 sets = extract_rollup_sets(parse->groupingSets);
2216
2217 foreach(lc_set, sets)
2218 {
2219 List *current_sets = (List *) lfirst(lc_set);
2220 RollupData *rollup = makeNode(RollupData);
2221 GroupingSetData *gs;
2222
2223 /*
2224 * Reorder the current list of grouping sets into correct prefix
2225 * order. If only one aggregation pass is needed, try to make the
2226 * list match the ORDER BY clause; if more than one pass is needed, we
2227 * don't bother with that.
2228 *
2229 * Note that this reorders the sets from smallest-member-first to
2230 * largest-member-first, and applies the GroupingSetData annotations,
2231 * though the data will be filled in later.
2232 */
2233 current_sets = reorder_grouping_sets(current_sets,
2234 (list_length(sets) == 1
2235 ? parse->sortClause
2236 : NIL));
2237
2238 /*
2239 * Get the initial (and therefore largest) grouping set.
2240 */
2241 gs = linitial_node(GroupingSetData, current_sets);
2242
2243 /*
2244 * Order the groupClause appropriately. If the first grouping set is
2245 * empty, then the groupClause must also be empty; otherwise we have
2246 * to force the groupClause to match that grouping set's order.
2247 *
2248 * (The first grouping set can be empty even though parse->groupClause
2249 * is not empty only if all non-empty grouping sets are unsortable.
2250 * The groupClauses for hashed grouping sets are built later on.)
2251 */
2252 if (gs->set)
2254 else
2255 rollup->groupClause = NIL;
2256
2257 /*
2258 * Is it hashable? We pretend empty sets are hashable even though we
2259 * actually force them not to be hashed later. But don't bother if
2260 * there's nothing but empty sets (since in that case we can't hash
2261 * anything).
2262 */
2263 if (gs->set &&
2265 {
2266 rollup->hashable = true;
2267 gd->any_hashable = true;
2268 }
2269
2270 /*
2271 * Now that we've pinned down an order for the groupClause for this
2272 * list of grouping sets, we need to remap the entries in the grouping
2273 * sets from sortgrouprefs to plain indices (0-based) into the
2274 * groupClause for this collection of grouping sets. We keep the
2275 * original form for later use, though.
2276 */
2277 rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
2278 current_sets,
2280 rollup->gsets_data = current_sets;
2281
2282 gd->rollups = lappend(gd->rollups, rollup);
2283 }
2284
2285 if (gd->unsortable_sets)
2286 {
2287 /*
2288 * We have not yet pinned down a groupclause for this, but we will
2289 * need index-based lists for estimation purposes. Construct
2290 * hash_sets_idx based on the entire original groupclause for now.
2291 */
2292 gd->hash_sets_idx = remap_to_groupclause_idx(parse->groupClause,
2293 gd->unsortable_sets,
2295 gd->any_hashable = true;
2296 }
2297
2298 return gd;
2299}
2300
2301/*
2302 * Given a groupclause and a list of GroupingSetData, return equivalent sets
2303 * (without annotation) mapped to indexes into the given groupclause.
2304 */
2305static List *
2307 List *gsets,
2308 int *tleref_to_colnum_map)
2309{
2310 int ref = 0;
2311 List *result = NIL;
2312 ListCell *lc;
2313
2314 foreach(lc, groupClause)
2315 {
2317
2318 tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
2319 }
2320
2321 foreach(lc, gsets)
2322 {
2323 List *set = NIL;
2324 ListCell *lc2;
2326
2327 foreach(lc2, gs->set)
2328 {
2329 set = lappend_int(set, tleref_to_colnum_map[lfirst_int(lc2)]);
2330 }
2331
2332 result = lappend(result, set);
2333 }
2334
2335 return result;
2336}
2337
2338
2339/*
2340 * preprocess_rowmarks - set up PlanRowMarks if needed
2341 */
2342static void
2344{
2345 Query *parse = root->parse;
2346 Bitmapset *rels;
2347 List *prowmarks;
2348 ListCell *l;
2349 int i;
2350
2351 if (parse->rowMarks)
2352 {
2353 /*
2354 * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
2355 * grouping, since grouping renders a reference to individual tuple
2356 * CTIDs invalid. This is also checked at parse time, but that's
2357 * insufficient because of rule substitution, query pullup, etc.
2358 */
2360 parse->rowMarks)->strength);
2361 }
2362 else
2363 {
2364 /*
2365 * We only need rowmarks for UPDATE, DELETE, MERGE, or FOR [KEY]
2366 * UPDATE/SHARE.
2367 */
2368 if (parse->commandType != CMD_UPDATE &&
2369 parse->commandType != CMD_DELETE &&
2370 parse->commandType != CMD_MERGE)
2371 return;
2372 }
2373
2374 /*
2375 * We need to have rowmarks for all base relations except the target. We
2376 * make a bitmapset of all base rels and then remove the items we don't
2377 * need or have FOR [KEY] UPDATE/SHARE marks for.
2378 */
2379 rels = get_relids_in_jointree((Node *) parse->jointree, false, false);
2380 if (parse->resultRelation)
2381 rels = bms_del_member(rels, parse->resultRelation);
2382
2383 /*
2384 * Convert RowMarkClauses to PlanRowMark representation.
2385 */
2386 prowmarks = NIL;
2387 foreach(l, parse->rowMarks)
2388 {
2390 RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
2391 PlanRowMark *newrc;
2392
2393 /*
2394 * Currently, it is syntactically impossible to have FOR UPDATE et al
2395 * applied to an update/delete target rel. If that ever becomes
2396 * possible, we should drop the target from the PlanRowMark list.
2397 */
2398 Assert(rc->rti != parse->resultRelation);
2399
2400 /*
2401 * Ignore RowMarkClauses for subqueries; they aren't real tables and
2402 * can't support true locking. Subqueries that got flattened into the
2403 * main query should be ignored completely. Any that didn't will get
2404 * ROW_MARK_COPY items in the next loop.
2405 */
2406 if (rte->rtekind != RTE_RELATION)
2407 continue;
2408
2409 rels = bms_del_member(rels, rc->rti);
2410
2411 newrc = makeNode(PlanRowMark);
2412 newrc->rti = newrc->prti = rc->rti;
2413 newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2414 newrc->markType = select_rowmark_type(rte, rc->strength);
2415 newrc->allMarkTypes = (1 << newrc->markType);
2416 newrc->strength = rc->strength;
2417 newrc->waitPolicy = rc->waitPolicy;
2418 newrc->isParent = false;
2419
2420 prowmarks = lappend(prowmarks, newrc);
2421 }
2422
2423 /*
2424 * Now, add rowmarks for any non-target, non-locked base relations.
2425 */
2426 i = 0;
2427 foreach(l, parse->rtable)
2428 {
2430 PlanRowMark *newrc;
2431
2432 i++;
2433 if (!bms_is_member(i, rels))
2434 continue;
2435
2436 newrc = makeNode(PlanRowMark);
2437 newrc->rti = newrc->prti = i;
2438 newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2439 newrc->markType = select_rowmark_type(rte, LCS_NONE);
2440 newrc->allMarkTypes = (1 << newrc->markType);
2441 newrc->strength = LCS_NONE;
2442 newrc->waitPolicy = LockWaitBlock; /* doesn't matter */
2443 newrc->isParent = false;
2444
2445 prowmarks = lappend(prowmarks, newrc);
2446 }
2447
2448 root->rowMarks = prowmarks;
2449}
2450
2451/*
2452 * Select RowMarkType to use for a given table
2453 */
2456{
2457 if (rte->rtekind != RTE_RELATION)
2458 {
2459 /* If it's not a table at all, use ROW_MARK_COPY */
2460 return ROW_MARK_COPY;
2461 }
2462 else if (rte->relkind == RELKIND_FOREIGN_TABLE)
2463 {
2464 /* Let the FDW select the rowmark type, if it wants to */
2465 FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);
2466
2467 if (fdwroutine->GetForeignRowMarkType != NULL)
2468 return fdwroutine->GetForeignRowMarkType(rte, strength);
2469 /* Otherwise, use ROW_MARK_COPY by default */
2470 return ROW_MARK_COPY;
2471 }
2472 else
2473 {
2474 /* Regular table, apply the appropriate lock type */
2475 switch (strength)
2476 {
2477 case LCS_NONE:
2478
2479 /*
2480 * We don't need a tuple lock, only the ability to re-fetch
2481 * the row.
2482 */
2483 return ROW_MARK_REFERENCE;
2484 break;
2485 case LCS_FORKEYSHARE:
2486 return ROW_MARK_KEYSHARE;
2487 break;
2488 case LCS_FORSHARE:
2489 return ROW_MARK_SHARE;
2490 break;
2491 case LCS_FORNOKEYUPDATE:
2493 break;
2494 case LCS_FORUPDATE:
2495 return ROW_MARK_EXCLUSIVE;
2496 break;
2497 }
2498 elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
2499 return ROW_MARK_EXCLUSIVE; /* keep compiler quiet */
2500 }
2501}
2502
2503/*
2504 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2505 *
2506 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
2507 * results back in *count_est and *offset_est. These variables are set to
2508 * 0 if the corresponding clause is not present, and -1 if it's present
2509 * but we couldn't estimate the value for it. (The "0" convention is OK
2510 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
2511 * LIMIT 0 as though it were LIMIT 1. But this is in line with the planner's
2512 * usual practice of never estimating less than one row.) These values will
2513 * be passed to create_limit_path, which see if you change this code.
2514 *
2515 * The return value is the suitably adjusted tuple_fraction to use for
2516 * planning the query. This adjustment is not overridable, since it reflects
2517 * plan actions that grouping_planner() will certainly take, not assumptions
2518 * about context.
2519 */
2520static double
2521preprocess_limit(PlannerInfo *root, double tuple_fraction,
2522 int64 *offset_est, int64 *count_est)
2523{
2524 Query *parse = root->parse;
2525 Node *est;
2526 double limit_fraction;
2527
2528 /* Should not be called unless LIMIT or OFFSET */
2529 Assert(parse->limitCount || parse->limitOffset);
2530
2531 /*
2532 * Try to obtain the clause values. We use estimate_expression_value
2533 * primarily because it can sometimes do something useful with Params.
2534 */
2535 if (parse->limitCount)
2536 {
2537 est = estimate_expression_value(root, parse->limitCount);
2538 if (est && IsA(est, Const))
2539 {
2540 if (((Const *) est)->constisnull)
2541 {
2542 /* NULL indicates LIMIT ALL, ie, no limit */
2543 *count_est = 0; /* treat as not present */
2544 }
2545 else
2546 {
2547 *count_est = DatumGetInt64(((Const *) est)->constvalue);
2548 if (*count_est <= 0)
2549 *count_est = 1; /* force to at least 1 */
2550 }
2551 }
2552 else
2553 *count_est = -1; /* can't estimate */
2554 }
2555 else
2556 *count_est = 0; /* not present */
2557
2558 if (parse->limitOffset)
2559 {
2560 est = estimate_expression_value(root, parse->limitOffset);
2561 if (est && IsA(est, Const))
2562 {
2563 if (((Const *) est)->constisnull)
2564 {
2565 /* Treat NULL as no offset; the executor will too */
2566 *offset_est = 0; /* treat as not present */
2567 }
2568 else
2569 {
2570 *offset_est = DatumGetInt64(((Const *) est)->constvalue);
2571 if (*offset_est < 0)
2572 *offset_est = 0; /* treat as not present */
2573 }
2574 }
2575 else
2576 *offset_est = -1; /* can't estimate */
2577 }
2578 else
2579 *offset_est = 0; /* not present */
2580
2581 if (*count_est != 0)
2582 {
2583 /*
2584 * A LIMIT clause limits the absolute number of tuples returned.
2585 * However, if it's not a constant LIMIT then we have to guess; for
2586 * lack of a better idea, assume 10% of the plan's result is wanted.
2587 */
2588 if (*count_est < 0 || *offset_est < 0)
2589 {
2590 /* LIMIT or OFFSET is an expression ... punt ... */
2591 limit_fraction = 0.10;
2592 }
2593 else
2594 {
2595 /* LIMIT (plus OFFSET, if any) is max number of tuples needed */
2596 limit_fraction = (double) *count_est + (double) *offset_est;
2597 }
2598
2599 /*
2600 * If we have absolute limits from both caller and LIMIT, use the
2601 * smaller value; likewise if they are both fractional. If one is
2602 * fractional and the other absolute, we can't easily determine which
2603 * is smaller, but we use the heuristic that the absolute will usually
2604 * be smaller.
2605 */
2606 if (tuple_fraction >= 1.0)
2607 {
2608 if (limit_fraction >= 1.0)
2609 {
2610 /* both absolute */
2611 tuple_fraction = Min(tuple_fraction, limit_fraction);
2612 }
2613 else
2614 {
2615 /* caller absolute, limit fractional; use caller's value */
2616 }
2617 }
2618 else if (tuple_fraction > 0.0)
2619 {
2620 if (limit_fraction >= 1.0)
2621 {
2622 /* caller fractional, limit absolute; use limit */
2623 tuple_fraction = limit_fraction;
2624 }
2625 else
2626 {
2627 /* both fractional */
2628 tuple_fraction = Min(tuple_fraction, limit_fraction);
2629 }
2630 }
2631 else
2632 {
2633 /* no info from caller, just use limit */
2634 tuple_fraction = limit_fraction;
2635 }
2636 }
2637 else if (*offset_est != 0 && tuple_fraction > 0.0)
2638 {
2639 /*
2640 * We have an OFFSET but no LIMIT. This acts entirely differently
2641 * from the LIMIT case: here, we need to increase rather than decrease
2642 * the caller's tuple_fraction, because the OFFSET acts to cause more
2643 * tuples to be fetched instead of fewer. This only matters if we got
2644 * a tuple_fraction > 0, however.
2645 *
2646 * As above, use 10% if OFFSET is present but unestimatable.
2647 */
2648 if (*offset_est < 0)
2649 limit_fraction = 0.10;
2650 else
2651 limit_fraction = (double) *offset_est;
2652
2653 /*
2654 * If we have absolute counts from both caller and OFFSET, add them
2655 * together; likewise if they are both fractional. If one is
2656 * fractional and the other absolute, we want to take the larger, and
2657 * we heuristically assume that's the fractional one.
2658 */
2659 if (tuple_fraction >= 1.0)
2660 {
2661 if (limit_fraction >= 1.0)
2662 {
2663 /* both absolute, so add them together */
2664 tuple_fraction += limit_fraction;
2665 }
2666 else
2667 {
2668 /* caller absolute, limit fractional; use limit */
2669 tuple_fraction = limit_fraction;
2670 }
2671 }
2672 else
2673 {
2674 if (limit_fraction >= 1.0)
2675 {
2676 /* caller fractional, limit absolute; use caller's value */
2677 }
2678 else
2679 {
2680 /* both fractional, so add them together */
2681 tuple_fraction += limit_fraction;
2682 if (tuple_fraction >= 1.0)
2683 tuple_fraction = 0.0; /* assume fetch all */
2684 }
2685 }
2686 }
2687
2688 return tuple_fraction;
2689}
2690
2691/*
2692 * limit_needed - do we actually need a Limit plan node?
2693 *
2694 * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
2695 * a Limit node. This is worth checking for because "OFFSET 0" is a common
2696 * locution for an optimization fence. (Because other places in the planner
2697 * merely check whether parse->limitOffset isn't NULL, it will still work as
2698 * an optimization fence --- we're just suppressing unnecessary run-time
2699 * overhead.)
2700 *
2701 * This might look like it could be merged into preprocess_limit, but there's
2702 * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
2703 * in preprocess_limit it's good enough to consider estimated values.
2704 */
2705bool
2707{
2708 Node *node;
2709
2710 node = parse->limitCount;
2711 if (node)
2712 {
2713 if (IsA(node, Const))
2714 {
2715 /* NULL indicates LIMIT ALL, ie, no limit */
2716 if (!((Const *) node)->constisnull)
2717 return true; /* LIMIT with a constant value */
2718 }
2719 else
2720 return true; /* non-constant LIMIT */
2721 }
2722
2723 node = parse->limitOffset;
2724 if (node)
2725 {
2726 if (IsA(node, Const))
2727 {
2728 /* Treat NULL as no offset; the executor would too */
2729 if (!((Const *) node)->constisnull)
2730 {
2731 int64 offset = DatumGetInt64(((Const *) node)->constvalue);
2732
2733 if (offset != 0)
2734 return true; /* OFFSET with a nonzero value */
2735 }
2736 }
2737 else
2738 return true; /* non-constant OFFSET */
2739 }
2740
2741 return false; /* don't need a Limit plan node */
2742}
2743
2744/*
2745 * preprocess_groupclause - do preparatory work on GROUP BY clause
2746 *
2747 * The idea here is to adjust the ordering of the GROUP BY elements
2748 * (which in itself is semantically insignificant) to match ORDER BY,
2749 * thereby allowing a single sort operation to both implement the ORDER BY
2750 * requirement and set up for a Unique step that implements GROUP BY.
2751 * We also consider partial match between GROUP BY and ORDER BY elements,
2752 * which could allow to implement ORDER BY using the incremental sort.
2753 *
2754 * We also consider other orderings of the GROUP BY elements, which could
2755 * match the sort ordering of other possible plans (eg an indexscan) and
2756 * thereby reduce cost. This is implemented during the generation of grouping
2757 * paths. See get_useful_group_keys_orderings() for details.
2758 *
2759 * Note: we need no comparable processing of the distinctClause because
2760 * the parser already enforced that that matches ORDER BY.
2761 *
2762 * Note: we return a fresh List, but its elements are the same
2763 * SortGroupClauses appearing in parse->groupClause. This is important
2764 * because later processing may modify the processed_groupClause list.
2765 *
2766 * For grouping sets, the order of items is instead forced to agree with that
2767 * of the grouping set (and items not in the grouping set are skipped). The
2768 * work of sorting the order of grouping set elements to match the ORDER BY if
2769 * possible is done elsewhere.
2770 */
2771static List *
2773{
2774 Query *parse = root->parse;
2775 List *new_groupclause = NIL;
2776 ListCell *sl;
2777 ListCell *gl;
2778
2779 /* For grouping sets, we need to force the ordering */
2780 if (force)
2781 {
2782 foreach(sl, force)
2783 {
2784 Index ref = lfirst_int(sl);
2785 SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);
2786
2787 new_groupclause = lappend(new_groupclause, cl);
2788 }
2789
2790 return new_groupclause;
2791 }
2792
2793 /* If no ORDER BY, nothing useful to do here */
2794 if (parse->sortClause == NIL)
2795 return list_copy(parse->groupClause);
2796
2797 /*
2798 * Scan the ORDER BY clause and construct a list of matching GROUP BY
2799 * items, but only as far as we can make a matching prefix.
2800 *
2801 * This code assumes that the sortClause contains no duplicate items.
2802 */
2803 foreach(sl, parse->sortClause)
2804 {
2806
2807 foreach(gl, parse->groupClause)
2808 {
2810
2811 if (equal(gc, sc))
2812 {
2813 new_groupclause = lappend(new_groupclause, gc);
2814 break;
2815 }
2816 }
2817 if (gl == NULL)
2818 break; /* no match, so stop scanning */
2819 }
2820
2821
2822 /* If no match at all, no point in reordering GROUP BY */
2823 if (new_groupclause == NIL)
2824 return list_copy(parse->groupClause);
2825
2826 /*
2827 * Add any remaining GROUP BY items to the new list. We don't require a
2828 * complete match, because even partial match allows ORDER BY to be
2829 * implemented using incremental sort. Also, give up if there are any
2830 * non-sortable GROUP BY items, since then there's no hope anyway.
2831 */
2832 foreach(gl, parse->groupClause)
2833 {
2835
2836 if (list_member_ptr(new_groupclause, gc))
2837 continue; /* it matched an ORDER BY item */
2838 if (!OidIsValid(gc->sortop)) /* give up, GROUP BY can't be sorted */
2839 return list_copy(parse->groupClause);
2840 new_groupclause = lappend(new_groupclause, gc);
2841 }
2842
2843 /* Success --- install the rearranged GROUP BY list */
2844 Assert(list_length(parse->groupClause) == list_length(new_groupclause));
2845 return new_groupclause;
2846}
2847
2848/*
2849 * Extract lists of grouping sets that can be implemented using a single
2850 * rollup-type aggregate pass each. Returns a list of lists of grouping sets.
2851 *
2852 * Input must be sorted with smallest sets first. Result has each sublist
2853 * sorted with smallest sets first.
2854 *
2855 * We want to produce the absolute minimum possible number of lists here to
2856 * avoid excess sorts. Fortunately, there is an algorithm for this; the problem
2857 * of finding the minimal partition of a partially-ordered set into chains
2858 * (which is what we need, taking the list of grouping sets as a poset ordered
2859 * by set inclusion) can be mapped to the problem of finding the maximum
2860 * cardinality matching on a bipartite graph, which is solvable in polynomial
2861 * time with a worst case of no worse than O(n^2.5) and usually much
2862 * better. Since our N is at most 4096, we don't need to consider fallbacks to
2863 * heuristic or approximate methods. (Planning time for a 12-d cube is under
2864 * half a second on my modest system even with optimization off and assertions
2865 * on.)
2866 */
2867static List *
2869{
2870 int num_sets_raw = list_length(groupingSets);
2871 int num_empty = 0;
2872 int num_sets = 0; /* distinct sets */
2873 int num_chains = 0;
2874 List *result = NIL;
2875 List **results;
2876 List **orig_sets;
2877 Bitmapset **set_masks;
2878 int *chains;
2879 short **adjacency;
2880 short *adjacency_buf;
2882 int i;
2883 int j;
2884 int j_size;
2885 ListCell *lc1 = list_head(groupingSets);
2886 ListCell *lc;
2887
2888 /*
2889 * Start by stripping out empty sets. The algorithm doesn't require this,
2890 * but the planner currently needs all empty sets to be returned in the
2891 * first list, so we strip them here and add them back after.
2892 */
2893 while (lc1 && lfirst(lc1) == NIL)
2894 {
2895 ++num_empty;
2896 lc1 = lnext(groupingSets, lc1);
2897 }
2898
2899 /* bail out now if it turns out that all we had were empty sets. */
2900 if (!lc1)
2901 return list_make1(groupingSets);
2902
2903 /*----------
2904 * We don't strictly need to remove duplicate sets here, but if we don't,
2905 * they tend to become scattered through the result, which is a bit
2906 * confusing (and irritating if we ever decide to optimize them out).
2907 * So we remove them here and add them back after.
2908 *
2909 * For each non-duplicate set, we fill in the following:
2910 *
2911 * orig_sets[i] = list of the original set lists
2912 * set_masks[i] = bitmapset for testing inclusion
2913 * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
2914 *
2915 * chains[i] will be the result group this set is assigned to.
2916 *
2917 * We index all of these from 1 rather than 0 because it is convenient
2918 * to leave 0 free for the NIL node in the graph algorithm.
2919 *----------
2920 */
2921 orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
2922 set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
2923 adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
2924 adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));
2925
2926 j_size = 0;
2927 j = 0;
2928 i = 1;
2929
2930 for_each_cell(lc, groupingSets, lc1)
2931 {
2932 List *candidate = (List *) lfirst(lc);
2933 Bitmapset *candidate_set = NULL;
2934 ListCell *lc2;
2935 int dup_of = 0;
2936
2937 foreach(lc2, candidate)
2938 {
2939 candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
2940 }
2941
2942 /* we can only be a dup if we're the same length as a previous set */
2943 if (j_size == list_length(candidate))
2944 {
2945 int k;
2946
2947 for (k = j; k < i; ++k)
2948 {
2949 if (bms_equal(set_masks[k], candidate_set))
2950 {
2951 dup_of = k;
2952 break;
2953 }
2954 }
2955 }
2956 else if (j_size < list_length(candidate))
2957 {
2958 j_size = list_length(candidate);
2959 j = i;
2960 }
2961
2962 if (dup_of > 0)
2963 {
2964 orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
2965 bms_free(candidate_set);
2966 }
2967 else
2968 {
2969 int k;
2970 int n_adj = 0;
2971
2972 orig_sets[i] = list_make1(candidate);
2973 set_masks[i] = candidate_set;
2974
2975 /* fill in adjacency list; no need to compare equal-size sets */
2976
2977 for (k = j - 1; k > 0; --k)
2978 {
2979 if (bms_is_subset(set_masks[k], candidate_set))
2980 adjacency_buf[++n_adj] = k;
2981 }
2982
2983 if (n_adj > 0)
2984 {
2985 adjacency_buf[0] = n_adj;
2986 adjacency[i] = palloc((n_adj + 1) * sizeof(short));
2987 memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
2988 }
2989 else
2990 adjacency[i] = NULL;
2991
2992 ++i;
2993 }
2994 }
2995
2996 num_sets = i - 1;
2997
2998 /*
2999 * Apply the graph matching algorithm to do the work.
3000 */
3001 state = BipartiteMatch(num_sets, num_sets, adjacency);
3002
3003 /*
3004 * Now, the state->pair* fields have the info we need to assign sets to
3005 * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
3006 * pair_vu[v] = u (both will be true, but we check both so that we can do
3007 * it in one pass)
3008 */
3009 chains = palloc0((num_sets + 1) * sizeof(int));
3010
3011 for (i = 1; i <= num_sets; ++i)
3012 {
3013 int u = state->pair_vu[i];
3014 int v = state->pair_uv[i];
3015
3016 if (u > 0 && u < i)
3017 chains[i] = chains[u];
3018 else if (v > 0 && v < i)
3019 chains[i] = chains[v];
3020 else
3021 chains[i] = ++num_chains;
3022 }
3023
3024 /* build result lists. */
3025 results = palloc0((num_chains + 1) * sizeof(List *));
3026
3027 for (i = 1; i <= num_sets; ++i)
3028 {
3029 int c = chains[i];
3030
3031 Assert(c > 0);
3032
3033 results[c] = list_concat(results[c], orig_sets[i]);
3034 }
3035
3036 /* push any empty sets back on the first list. */
3037 while (num_empty-- > 0)
3038 results[1] = lcons(NIL, results[1]);
3039
3040 /* make result list */
3041 for (i = 1; i <= num_chains; ++i)
3042 result = lappend(result, results[i]);
3043
3044 /*
3045 * Free all the things.
3046 *
3047 * (This is over-fussy for small sets but for large sets we could have
3048 * tied up a nontrivial amount of memory.)
3049 */
3051 pfree(results);
3052 pfree(chains);
3053 for (i = 1; i <= num_sets; ++i)
3054 if (adjacency[i])
3055 pfree(adjacency[i]);
3056 pfree(adjacency);
3057 pfree(adjacency_buf);
3058 pfree(orig_sets);
3059 for (i = 1; i <= num_sets; ++i)
3060 bms_free(set_masks[i]);
3061 pfree(set_masks);
3062
3063 return result;
3064}
3065
3066/*
3067 * Reorder the elements of a list of grouping sets such that they have correct
3068 * prefix relationships. Also inserts the GroupingSetData annotations.
3069 *
3070 * The input must be ordered with smallest sets first; the result is returned
3071 * with largest sets first. Note that the result shares no list substructure
3072 * with the input, so it's safe for the caller to modify it later.
3073 *
3074 * If we're passed in a sortclause, we follow its order of columns to the
3075 * extent possible, to minimize the chance that we add unnecessary sorts.
3076 * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
3077 * gets implemented in one pass.)
3078 */
3079static List *
3080reorder_grouping_sets(List *groupingSets, List *sortclause)
3081{
3082 ListCell *lc;
3083 List *previous = NIL;
3084 List *result = NIL;
3085
3086 foreach(lc, groupingSets)
3087 {
3088 List *candidate = (List *) lfirst(lc);
3089 List *new_elems = list_difference_int(candidate, previous);
3091
3092 while (list_length(sortclause) > list_length(previous) &&
3093 new_elems != NIL)
3094 {
3095 SortGroupClause *sc = list_nth(sortclause, list_length(previous));
3096 int ref = sc->tleSortGroupRef;
3097
3098 if (list_member_int(new_elems, ref))
3099 {
3100 previous = lappend_int(previous, ref);
3101 new_elems = list_delete_int(new_elems, ref);
3102 }
3103 else
3104 {
3105 /* diverged from the sortclause; give up on it */
3106 sortclause = NIL;
3107 break;
3108 }
3109 }
3110
3111 previous = list_concat(previous, new_elems);
3112
3113 gs->set = list_copy(previous);
3114 result = lcons(gs, result);
3115 }
3116
3117 list_free(previous);
3118
3119 return result;
3120}
3121
3122/*
3123 * has_volatile_pathkey
3124 * Returns true if any PathKey in 'keys' has an EquivalenceClass
3125 * containing a volatile function. Otherwise returns false.
3126 */
3127static bool
3129{
3130 ListCell *lc;
3131
3132 foreach(lc, keys)
3133 {
3134 PathKey *pathkey = lfirst_node(PathKey, lc);
3135
3136 if (pathkey->pk_eclass->ec_has_volatile)
3137 return true;
3138 }
3139
3140 return false;
3141}
3142
3143/*
3144 * adjust_group_pathkeys_for_groupagg
3145 * Add pathkeys to root->group_pathkeys to reflect the best set of
3146 * pre-ordered input for ordered aggregates.
3147 *
3148 * We define "best" as the pathkeys that suit the largest number of
3149 * aggregate functions. We find these by looking at the first ORDER BY /
3150 * DISTINCT aggregate and take the pathkeys for that before searching for
3151 * other aggregates that require the same or a more strict variation of the
3152 * same pathkeys. We then repeat that process for any remaining aggregates
3153 * with different pathkeys and if we find another set of pathkeys that suits a
3154 * larger number of aggregates then we select those pathkeys instead.
3155 *
3156 * When the best pathkeys are found we also mark each Aggref that can use
3157 * those pathkeys as aggpresorted = true.
3158 *
3159 * Note: When an aggregate function's ORDER BY / DISTINCT clause contains any
3160 * volatile functions, we never make use of these pathkeys. We want to ensure
3161 * that sorts using volatile functions are done independently in each Aggref
3162 * rather than once at the query level. If we were to allow this then Aggrefs
3163 * with compatible sort orders would all transition their rows in the same
3164 * order if those pathkeys were deemed to be the best pathkeys to sort on.
3165 * Whereas, if some other set of Aggref's pathkeys happened to be deemed
3166 * better pathkeys to sort on, then the volatile function Aggrefs would be
3167 * left to perform their sorts individually. To avoid this inconsistent
3168 * behavior which could make Aggref results depend on what other Aggrefs the
3169 * query contains, we always force Aggrefs with volatile functions to perform
3170 * their own sorts.
3171 */
3172static void
3174{
3175 List *grouppathkeys = root->group_pathkeys;
3176 List *bestpathkeys;
3177 Bitmapset *bestaggs;
3178 Bitmapset *unprocessed_aggs;
3179 ListCell *lc;
3180 int i;
3181
3182 /* Shouldn't be here if there are grouping sets */
3183 Assert(root->parse->groupingSets == NIL);
3184 /* Shouldn't be here unless there are some ordered aggregates */
3185 Assert(root->numOrderedAggs > 0);
3186
3187 /* Do nothing if disabled */
3189 return;
3190
3191 /*
3192 * Make a first pass over all AggInfos to collect a Bitmapset containing
3193 * the indexes of all AggInfos to be processed below.
3194 */
3195 unprocessed_aggs = NULL;
3196 foreach(lc, root->agginfos)
3197 {
3198 AggInfo *agginfo = lfirst_node(AggInfo, lc);
3199 Aggref *aggref = linitial_node(Aggref, agginfo->aggrefs);
3200
3201 if (AGGKIND_IS_ORDERED_SET(aggref->aggkind))
3202 continue;
3203
3204 /* Skip unless there's a DISTINCT or ORDER BY clause */
3205 if (aggref->aggdistinct == NIL && aggref->aggorder == NIL)
3206 continue;
3207
3208 /* Additional safety checks are needed if there's a FILTER clause */
3209 if (aggref->aggfilter != NULL)
3210 {
3211 ListCell *lc2;
3212 bool allow_presort = true;
3213
3214 /*
3215 * When the Aggref has a FILTER clause, it's possible that the
3216 * filter removes rows that cannot be sorted because the
3217 * expression to sort by results in an error during its
3218 * evaluation. This is a problem for presorting as that happens
3219 * before the FILTER, whereas without presorting, the Aggregate
3220 * node will apply the FILTER *before* sorting. So that we never
3221 * try to sort anything that might error, here we aim to skip over
3222 * any Aggrefs with arguments with expressions which, when
3223 * evaluated, could cause an ERROR. Vars and Consts are ok. There
3224 * may be more cases that should be allowed, but more thought
3225 * needs to be given. Err on the side of caution.
3226 */
3227 foreach(lc2, aggref->args)
3228 {
3229 TargetEntry *tle = (TargetEntry *) lfirst(lc2);
3230 Expr *expr = tle->expr;
3231
3232 while (IsA(expr, RelabelType))
3233 expr = (Expr *) (castNode(RelabelType, expr))->arg;
3234
3235 /* Common case, Vars and Consts are ok */
3236 if (IsA(expr, Var) || IsA(expr, Const))
3237 continue;
3238
3239 /* Unsupported. Don't try to presort for this Aggref */
3240 allow_presort = false;
3241 break;
3242 }
3243
3244 /* Skip unsupported Aggrefs */
3245 if (!allow_presort)
3246 continue;
3247 }
3248
3249 unprocessed_aggs = bms_add_member(unprocessed_aggs,
3251 }
3252
3253 /*
3254 * Now process all the unprocessed_aggs to find the best set of pathkeys
3255 * for the given set of aggregates.
3256 *
3257 * On the first outer loop here 'bestaggs' will be empty. We'll populate
3258 * this during the first loop using the pathkeys for the very first
3259 * AggInfo then taking any stronger pathkeys from any other AggInfos with
3260 * a more strict set of compatible pathkeys. Once the outer loop is
3261 * complete, we mark off all the aggregates with compatible pathkeys then
3262 * remove those from the unprocessed_aggs and repeat the process to try to
3263 * find another set of pathkeys that are suitable for a larger number of
3264 * aggregates. The outer loop will stop when there are not enough
3265 * unprocessed aggregates for it to be possible to find a set of pathkeys
3266 * to suit a larger number of aggregates.
3267 */
3268 bestpathkeys = NIL;
3269 bestaggs = NULL;
3270 while (bms_num_members(unprocessed_aggs) > bms_num_members(bestaggs))
3271 {
3272 Bitmapset *aggindexes = NULL;
3273 List *currpathkeys = NIL;
3274
3275 i = -1;
3276 while ((i = bms_next_member(unprocessed_aggs, i)) >= 0)
3277 {
3278 AggInfo *agginfo = list_nth_node(AggInfo, root->agginfos, i);
3279 Aggref *aggref = linitial_node(Aggref, agginfo->aggrefs);
3280 List *sortlist;
3281 List *pathkeys;
3282
3283 if (aggref->aggdistinct != NIL)
3284 sortlist = aggref->aggdistinct;
3285 else
3286 sortlist = aggref->aggorder;
3287
3288 pathkeys = make_pathkeys_for_sortclauses(root, sortlist,
3289 aggref->args);
3290
3291 /*
3292 * Ignore Aggrefs which have volatile functions in their ORDER BY
3293 * or DISTINCT clause.
3294 */
3295 if (has_volatile_pathkey(pathkeys))
3296 {
3297 unprocessed_aggs = bms_del_member(unprocessed_aggs, i);
3298 continue;
3299 }
3300
3301 /*
3302 * When not set yet, take the pathkeys from the first unprocessed
3303 * aggregate.
3304 */
3305 if (currpathkeys == NIL)
3306 {
3307 currpathkeys = pathkeys;
3308
3309 /* include the GROUP BY pathkeys, if they exist */
3310 if (grouppathkeys != NIL)
3311 currpathkeys = append_pathkeys(list_copy(grouppathkeys),
3312 currpathkeys);
3313
3314 /* record that we found pathkeys for this aggregate */
3315 aggindexes = bms_add_member(aggindexes, i);
3316 }
3317 else
3318 {
3319 /* now look for a stronger set of matching pathkeys */
3320
3321 /* include the GROUP BY pathkeys, if they exist */
3322 if (grouppathkeys != NIL)
3323 pathkeys = append_pathkeys(list_copy(grouppathkeys),
3324 pathkeys);
3325
3326 /* are 'pathkeys' compatible or better than 'currpathkeys'? */
3327 switch (compare_pathkeys(currpathkeys, pathkeys))
3328 {
3329 case PATHKEYS_BETTER2:
3330 /* 'pathkeys' are stronger, use these ones instead */
3331 currpathkeys = pathkeys;
3332 /* FALLTHROUGH */
3333
3334 case PATHKEYS_BETTER1:
3335 /* 'pathkeys' are less strict */
3336 /* FALLTHROUGH */
3337
3338 case PATHKEYS_EQUAL:
3339 /* mark this aggregate as covered by 'currpathkeys' */
3340 aggindexes = bms_add_member(aggindexes, i);
3341 break;
3342
3343 case PATHKEYS_DIFFERENT:
3344 break;
3345 }
3346 }
3347 }
3348
3349 /* remove the aggregates that we've just processed */
3350 unprocessed_aggs = bms_del_members(unprocessed_aggs, aggindexes);
3351
3352 /*
3353 * If this pass included more aggregates than the previous best then
3354 * use these ones as the best set.
3355 */
3356 if (bms_num_members(aggindexes) > bms_num_members(bestaggs))
3357 {
3358 bestaggs = aggindexes;
3359 bestpathkeys = currpathkeys;
3360 }
3361 }
3362
3363 /*
3364 * If we found any ordered aggregates, update root->group_pathkeys to add
3365 * the best set of aggregate pathkeys. Note that bestpathkeys includes
3366 * the original GROUP BY pathkeys already.
3367 */
3368 if (bestpathkeys != NIL)
3369 root->group_pathkeys = bestpathkeys;
3370
3371 /*
3372 * Now that we've found the best set of aggregates we can set the
3373 * presorted flag to indicate to the executor that it needn't bother
3374 * performing a sort for these Aggrefs. We're able to do this now as
3375 * there's no chance of a Hash Aggregate plan as create_grouping_paths
3376 * will not mark the GROUP BY as GROUPING_CAN_USE_HASH due to the presence
3377 * of ordered aggregates.
3378 */
3379 i = -1;
3380 while ((i = bms_next_member(bestaggs, i)) >= 0)
3381 {
3382 AggInfo *agginfo = list_nth_node(AggInfo, root->agginfos, i);
3383
3384 foreach(lc, agginfo->aggrefs)
3385 {
3386 Aggref *aggref = lfirst_node(Aggref, lc);
3387
3388 aggref->aggpresorted = true;
3389 }
3390 }
3391}
3392
3393/*
3394 * Compute query_pathkeys and other pathkeys during plan generation
3395 */
3396static void
3398{
3399 Query *parse = root->parse;
3400 standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
3401 List *tlist = root->processed_tlist;
3402 List *activeWindows = qp_extra->activeWindows;
3403
3404 /*
3405 * Calculate pathkeys that represent grouping/ordering and/or ordered
3406 * aggregate requirements.
3407 */
3408 if (qp_extra->gset_data)
3409 {
3410 /*
3411 * With grouping sets, just use the first RollupData's groupClause. We
3412 * don't make any effort to optimize grouping clauses when there are
3413 * grouping sets, nor can we combine aggregate ordering keys with
3414 * grouping.
3415 */
3416 List *rollups = qp_extra->gset_data->rollups;
3417 List *groupClause = (rollups ? linitial_node(RollupData, rollups)->groupClause : NIL);
3418
3419 if (grouping_is_sortable(groupClause))
3420 {
3421 bool sortable;
3422
3423 /*
3424 * The groupClause is logically below the grouping step. So if
3425 * there is an RTE entry for the grouping step, we need to remove
3426 * its RT index from the sort expressions before we make PathKeys
3427 * for them.
3428 */
3429 root->group_pathkeys =
3431 &groupClause,
3432 tlist,
3433 false,
3434 parse->hasGroupRTE,
3435 &sortable,
3436 false);
3437 Assert(sortable);
3438 root->num_groupby_pathkeys = list_length(root->group_pathkeys);
3439 }
3440 else
3441 {
3442 root->group_pathkeys = NIL;
3443 root->num_groupby_pathkeys = 0;
3444 }
3445 }
3446 else if (parse->groupClause || root->numOrderedAggs > 0)
3447 {
3448 /*
3449 * With a plain GROUP BY list, we can remove any grouping items that
3450 * are proven redundant by EquivalenceClass processing. For example,
3451 * we can remove y given "WHERE x = y GROUP BY x, y". These aren't
3452 * especially common cases, but they're nearly free to detect. Note
3453 * that we remove redundant items from processed_groupClause but not
3454 * the original parse->groupClause.
3455 */
3456 bool sortable;
3457
3458 /*
3459 * Convert group clauses into pathkeys. Set the ec_sortref field of
3460 * EquivalenceClass'es if it's not set yet.
3461 */
3462 root->group_pathkeys =
3464 &root->processed_groupClause,
3465 tlist,
3466 true,
3467 false,
3468 &sortable,
3469 true);
3470 if (!sortable)
3471 {
3472 /* Can't sort; no point in considering aggregate ordering either */
3473 root->group_pathkeys = NIL;
3474 root->num_groupby_pathkeys = 0;
3475 }
3476 else
3477 {
3478 root->num_groupby_pathkeys = list_length(root->group_pathkeys);
3479 /* If we have ordered aggs, consider adding onto group_pathkeys */
3480 if (root->numOrderedAggs > 0)
3482 }
3483 }
3484 else
3485 {
3486 root->group_pathkeys = NIL;
3487 root->num_groupby_pathkeys = 0;
3488 }
3489
3490 /* We consider only the first (bottom) window in pathkeys logic */
3491 if (activeWindows != NIL)
3492 {
3493 WindowClause *wc = linitial_node(WindowClause, activeWindows);
3494
3495 root->window_pathkeys = make_pathkeys_for_window(root,
3496 wc,
3497 tlist);
3498 }
3499 else
3500 root->window_pathkeys = NIL;
3501
3502 /*
3503 * As with GROUP BY, we can discard any DISTINCT items that are proven
3504 * redundant by EquivalenceClass processing. The non-redundant list is
3505 * kept in root->processed_distinctClause, leaving the original
3506 * parse->distinctClause alone.
3507 */
3508 if (parse->distinctClause)
3509 {
3510 bool sortable;
3511
3512 /* Make a copy since pathkey processing can modify the list */
3513 root->processed_distinctClause = list_copy(parse->distinctClause);
3514 root->distinct_pathkeys =
3516 &root->processed_distinctClause,
3517 tlist,
3518 true,
3519 false,
3520 &sortable,
3521 false);
3522 if (!sortable)
3523 root->distinct_pathkeys = NIL;
3524 }
3525 else
3526 root->distinct_pathkeys = NIL;
3527
3528 root->sort_pathkeys =
3530 parse->sortClause,
3531 tlist);
3532
3533 /* setting setop_pathkeys might be useful to the union planner */
3534 if (qp_extra->setop != NULL)
3535 {
3536 List *groupClauses;
3537 bool sortable;
3538
3539 groupClauses = generate_setop_child_grouplist(qp_extra->setop, tlist);
3540
3541 root->setop_pathkeys =
3543 &groupClauses,
3544 tlist,
3545 false,
3546 false,
3547 &sortable,
3548 false);
3549 if (!sortable)
3550 root->setop_pathkeys = NIL;
3551 }
3552 else
3553 root->setop_pathkeys = NIL;
3554
3555 /*
3556 * Figure out whether we want a sorted result from query_planner.
3557 *
3558 * If we have a sortable GROUP BY clause, then we want a result sorted
3559 * properly for grouping. Otherwise, if we have window functions to
3560 * evaluate, we try to sort for the first window. Otherwise, if there's a
3561 * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
3562 * we try to produce output that's sufficiently well sorted for the
3563 * DISTINCT. Otherwise, if there is an ORDER BY clause, we want to sort
3564 * by the ORDER BY clause. Otherwise, if we're a subquery being planned
3565 * for a set operation which can benefit from presorted results and have a
3566 * sortable targetlist, we want to sort by the target list.
3567 *
3568 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
3569 * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
3570 * that might just leave us failing to exploit an available sort order at
3571 * all. Needs more thought. The choice for DISTINCT versus ORDER BY is
3572 * much easier, since we know that the parser ensured that one is a
3573 * superset of the other.
3574 */
3575 if (root->group_pathkeys)
3576 root->query_pathkeys = root->group_pathkeys;
3577 else if (root->window_pathkeys)
3578 root->query_pathkeys = root->window_pathkeys;
3579 else if (list_length(root->distinct_pathkeys) >
3580 list_length(root->sort_pathkeys))
3581 root->query_pathkeys = root->distinct_pathkeys;
3582 else if (root->sort_pathkeys)
3583 root->query_pathkeys = root->sort_pathkeys;
3584 else if (root->setop_pathkeys != NIL)
3585 root->query_pathkeys = root->setop_pathkeys;
3586 else
3587 root->query_pathkeys = NIL;
3588}
3589
3590/*
3591 * Estimate number of groups produced by grouping clauses (1 if not grouping)
3592 *
3593 * path_rows: number of output rows from scan/join step
3594 * gd: grouping sets data including list of grouping sets and their clauses
3595 * target_list: target list containing group clause references
3596 *
3597 * If doing grouping sets, we also annotate the gsets data with the estimates
3598 * for each set and each individual rollup list, with a view to later
3599 * determining whether some combination of them could be hashed instead.
3600 */
3601static double
3603 double path_rows,
3605 List *target_list)
3606{
3607 Query *parse = root->parse;
3608 double dNumGroups;
3609
3610 if (parse->groupClause)
3611 {
3612 List *groupExprs;
3613
3614 if (parse->groupingSets)
3615 {
3616 /* Add up the estimates for each grouping set */
3617 ListCell *lc;
3618
3619 Assert(gd); /* keep Coverity happy */
3620
3621 dNumGroups = 0;
3622
3623 foreach(lc, gd->rollups)
3624 {
3625 RollupData *rollup = lfirst_node(RollupData, lc);
3626 ListCell *lc2;
3627 ListCell *lc3;
3628
3629 groupExprs = get_sortgrouplist_exprs(rollup->groupClause,
3630 target_list);
3631
3632 rollup->numGroups = 0.0;
3633
3634 forboth(lc2, rollup->gsets, lc3, rollup->gsets_data)
3635 {
3636 List *gset = (List *) lfirst(lc2);
3638 double numGroups = estimate_num_groups(root,
3639 groupExprs,
3640 path_rows,
3641 &gset,
3642 NULL);
3643
3644 gs->numGroups = numGroups;
3645 rollup->numGroups += numGroups;
3646 }
3647
3648 dNumGroups += rollup->numGroups;
3649 }
3650
3651 if (gd->hash_sets_idx)
3652 {
3653 ListCell *lc2;
3654
3655 gd->dNumHashGroups = 0;
3656
3657 groupExprs = get_sortgrouplist_exprs(parse->groupClause,
3658 target_list);
3659
3660 forboth(lc, gd->hash_sets_idx, lc2, gd->unsortable_sets)
3661 {
3662 List *gset = (List *) lfirst(lc);
3664 double numGroups = estimate_num_groups(root,
3665 groupExprs,
3666 path_rows,
3667 &gset,
3668 NULL);
3669
3670 gs->numGroups = numGroups;
3671 gd->dNumHashGroups += numGroups;
3672 }
3673
3674 dNumGroups += gd->dNumHashGroups;
3675 }
3676 }
3677 else
3678 {
3679 /* Plain GROUP BY -- estimate based on optimized groupClause */
3680 groupExprs = get_sortgrouplist_exprs(root->processed_groupClause,
3681 target_list);
3682
3683 dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
3684 NULL, NULL);
3685 }
3686 }
3687 else if (parse->groupingSets)
3688 {
3689 /* Empty grouping sets ... one result row for each one */
3690 dNumGroups = list_length(parse->groupingSets);
3691 }
3692 else if (parse->hasAggs || root->hasHavingQual)
3693 {
3694 /* Plain aggregation, one result row */
3695 dNumGroups = 1;
3696 }
3697 else
3698 {
3699 /* Not grouping */
3700 dNumGroups = 1;
3701 }
3702
3703 return dNumGroups;
3704}
3705
3706/*
3707 * create_grouping_paths
3708 *
3709 * Build a new upperrel containing Paths for grouping and/or aggregation.
3710 * Along the way, we also build an upperrel for Paths which are partially
3711 * grouped and/or aggregated. A partially grouped and/or aggregated path
3712 * needs a FinalizeAggregate node to complete the aggregation. Currently,
3713 * the only partially grouped paths we build are also partial paths; that
3714 * is, they need a Gather and then a FinalizeAggregate.
3715 *
3716 * input_rel: contains the source-data Paths
3717 * target: the pathtarget for the result Paths to compute
3718 * gd: grouping sets data including list of grouping sets and their clauses
3719 *
3720 * Note: all Paths in input_rel are expected to return the target computed
3721 * by make_group_input_target.
3722 */
3723static RelOptInfo *
3725 RelOptInfo *input_rel,
3726 PathTarget *target,
3727 bool target_parallel_safe,
3729{
3730 Query *parse = root->parse;
3731 RelOptInfo *grouped_rel;
3732 RelOptInfo *partially_grouped_rel;
3733 AggClauseCosts agg_costs;
3734
3735 MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
3737
3738 /*
3739 * Create grouping relation to hold fully aggregated grouping and/or
3740 * aggregation paths.
3741 */
3742 grouped_rel = make_grouping_rel(root, input_rel, target,
3743 target_parallel_safe, parse->havingQual);
3744
3745 /*
3746 * Create either paths for a degenerate grouping or paths for ordinary
3747 * grouping, as appropriate.
3748 */
3750 create_degenerate_grouping_paths(root, input_rel, grouped_rel);
3751 else
3752 {
3753 int flags = 0;
3754 GroupPathExtraData extra;
3755
3756 /*
3757 * Determine whether it's possible to perform sort-based
3758 * implementations of grouping. (Note that if processed_groupClause
3759 * is empty, grouping_is_sortable() is trivially true, and all the
3760 * pathkeys_contained_in() tests will succeed too, so that we'll
3761 * consider every surviving input path.)
3762 *
3763 * If we have grouping sets, we might be able to sort some but not all
3764 * of them; in this case, we need can_sort to be true as long as we
3765 * must consider any sorted-input plan.
3766 */
3767 if ((gd && gd->rollups != NIL)
3768 || grouping_is_sortable(root->processed_groupClause))
3769 flags |= GROUPING_CAN_USE_SORT;
3770
3771 /*
3772 * Determine whether we should consider hash-based implementations of
3773 * grouping.
3774 *
3775 * Hashed aggregation only applies if we're grouping. If we have
3776 * grouping sets, some groups might be hashable but others not; in
3777 * this case we set can_hash true as long as there is nothing globally
3778 * preventing us from hashing (and we should therefore consider plans
3779 * with hashes).
3780 *
3781 * Executor doesn't support hashed aggregation with DISTINCT or ORDER
3782 * BY aggregates. (Doing so would imply storing *all* the input
3783 * values in the hash table, and/or running many sorts in parallel,
3784 * either of which seems like a certain loser.) We similarly don't
3785 * support ordered-set aggregates in hashed aggregation, but that case
3786 * is also included in the numOrderedAggs count.
3787 *
3788 * Note: grouping_is_hashable() is much more expensive to check than
3789 * the other gating conditions, so we want to do it last.
3790 */
3791 if ((parse->groupClause != NIL &&
3792 root->numOrderedAggs == 0 &&
3793 (gd ? gd->any_hashable : grouping_is_hashable(root->processed_groupClause))))
3794 flags |= GROUPING_CAN_USE_HASH;
3795
3796 /*
3797 * Determine whether partial aggregation is possible.
3798 */
3799 if (can_partial_agg(root))
3800 flags |= GROUPING_CAN_PARTIAL_AGG;
3801
3802 extra.flags = flags;
3803 extra.target_parallel_safe = target_parallel_safe;
3804 extra.havingQual = parse->havingQual;
3805 extra.targetList = parse->targetList;
3806 extra.partial_costs_set = false;
3807
3808 /*
3809 * Determine whether partitionwise aggregation is in theory possible.
3810 * It can be disabled by the user, and for now, we don't try to
3811 * support grouping sets. create_ordinary_grouping_paths() will check
3812 * additional conditions, such as whether input_rel is partitioned.
3813 */
3814 if (enable_partitionwise_aggregate && !parse->groupingSets)
3816 else
3818
3819 create_ordinary_grouping_paths(root, input_rel, grouped_rel,
3820 &agg_costs, gd, &extra,
3821 &partially_grouped_rel);
3822 }
3823
3824 set_cheapest(grouped_rel);
3825 return grouped_rel;
3826}
3827
3828/*
3829 * make_grouping_rel
3830 *
3831 * Create a new grouping rel and set basic properties.
3832 *
3833 * input_rel represents the underlying scan/join relation.
3834 * target is the output expected from the grouping relation.
3835 */
3836static RelOptInfo *
3838 PathTarget *target, bool target_parallel_safe,
3839 Node *havingQual)
3840{
3841 RelOptInfo *grouped_rel;
3842
3843 if (IS_OTHER_REL(input_rel))
3844 {
3846 input_rel->relids);
3847 grouped_rel->reloptkind = RELOPT_OTHER_UPPER_REL;
3848 }
3849 else
3850 {
3851 /*
3852 * By tradition, the relids set for the main grouping relation is
3853 * NULL. (This could be changed, but might require adjustments
3854 * elsewhere.)
3855 */
3856 grouped_rel = fetch_upper_rel(root, UPPERREL_GROUP_AGG, NULL);
3857 }
3858
3859 /* Set target. */
3860 grouped_rel->reltarget = target;
3861
3862 /*
3863 * If the input relation is not parallel-safe, then the grouped relation
3864 * can't be parallel-safe, either. Otherwise, it's parallel-safe if the
3865 * target list and HAVING quals are parallel-safe.
3866 */
3867 if (input_rel->consider_parallel && target_parallel_safe &&
3868 is_parallel_safe(root, (Node *) havingQual))
3869 grouped_rel->consider_parallel = true;
3870
3871 /*
3872 * If the input rel belongs to a single FDW, so does the grouped rel.
3873 */
3874 grouped_rel->serverid = input_rel->serverid;
3875 grouped_rel->userid = input_rel->userid;
3876 grouped_rel->useridiscurrent = input_rel->useridiscurrent;
3877 grouped_rel->fdwroutine = input_rel->fdwroutine;
3878
3879 return grouped_rel;
3880}
3881
3882/*
3883 * is_degenerate_grouping
3884 *
3885 * A degenerate grouping is one in which the query has a HAVING qual and/or
3886 * grouping sets, but no aggregates and no GROUP BY (which implies that the
3887 * grouping sets are all empty).
3888 */
3889static bool
3891{
3892 Query *parse = root->parse;
3893
3894 return (root->hasHavingQual || parse->groupingSets) &&
3895 !parse->hasAggs && parse->groupClause == NIL;
3896}
3897
3898/*
3899 * create_degenerate_grouping_paths
3900 *
3901 * When the grouping is degenerate (see is_degenerate_grouping), we are
3902 * supposed to emit either zero or one row for each grouping set depending on
3903 * whether HAVING succeeds. Furthermore, there cannot be any variables in
3904 * either HAVING or the targetlist, so we actually do not need the FROM table
3905 * at all! We can just throw away the plan-so-far and generate a Result node.
3906 * This is a sufficiently unusual corner case that it's not worth contorting
3907 * the structure of this module to avoid having to generate the earlier paths
3908 * in the first place.
3909 */
3910static void
3912 RelOptInfo *grouped_rel)
3913{
3914 Query *parse = root->parse;
3915 int nrows;
3916 Path *path;
3917
3918 nrows = list_length(parse->groupingSets);
3919 if (nrows > 1)
3920 {
3921 /*
3922 * Doesn't seem worthwhile writing code to cons up a generate_series
3923 * or a values scan to emit multiple rows. Instead just make N clones
3924 * and append them. (With a volatile HAVING clause, this means you
3925 * might get between 0 and N output rows. Offhand I think that's
3926 * desired.)
3927 */
3928 List *paths = NIL;
3929
3930 while (--nrows >= 0)
3931 {
3932 path = (Path *)
3933 create_group_result_path(root, grouped_rel,
3934 grouped_rel->reltarget,
3935 (List *) parse->havingQual);
3936 paths = lappend(paths, path);
3937 }
3938 path = (Path *)
3940 grouped_rel,
3941 paths,
3942 NIL,
3943 NIL,
3944 NULL,
3945 0,
3946 false,
3947 -1);
3948 }
3949 else
3950 {
3951 /* No grouping sets, or just one, so one output row */
3952 path = (Path *)
3953 create_group_result_path(root, grouped_rel,
3954 grouped_rel->reltarget,
3955 (List *) parse->havingQual);
3956 }
3957
3958 add_path(grouped_rel, path);
3959}
3960
3961/*
3962 * create_ordinary_grouping_paths
3963 *
3964 * Create grouping paths for the ordinary (that is, non-degenerate) case.
3965 *
3966 * We need to consider sorted and hashed aggregation in the same function,
3967 * because otherwise (1) it would be harder to throw an appropriate error
3968 * message if neither way works, and (2) we should not allow hashtable size
3969 * considerations to dissuade us from using hashing if sorting is not possible.
3970 *
3971 * *partially_grouped_rel_p will be set to the partially grouped rel which this
3972 * function creates, or to NULL if it doesn't create one.
3973 */
3974static void
3976 RelOptInfo *grouped_rel,
3977 const AggClauseCosts *agg_costs,
3979 GroupPathExtraData *extra,
3980 RelOptInfo **partially_grouped_rel_p)
3981{
3982 Path *cheapest_path = input_rel->cheapest_total_path;
3983 RelOptInfo *partially_grouped_rel = NULL;
3984 double dNumGroups;
3986
3987 /*
3988 * If this is the topmost grouping relation or if the parent relation is
3989 * doing some form of partitionwise aggregation, then we may be able to do
3990 * it at this level also. However, if the input relation is not
3991 * partitioned, partitionwise aggregate is impossible.
3992 */
3993 if (extra->patype != PARTITIONWISE_AGGREGATE_NONE &&
3994 IS_PARTITIONED_REL(input_rel))
3995 {
3996 /*
3997 * If this is the topmost relation or if the parent relation is doing
3998 * full partitionwise aggregation, then we can do full partitionwise
3999 * aggregation provided that the GROUP BY clause contains all of the
4000 * partitioning columns at this level and the collation used by GROUP
4001 * BY matches the partitioning collation. Otherwise, we can do at
4002 * most partial partitionwise aggregation. But if partial aggregation
4003 * is not supported in general then we can't use it for partitionwise
4004 * aggregation either.
4005 *
4006 * Check parse->groupClause not processed_groupClause, because it's
4007 * okay if some of the partitioning columns were proved redundant.
4008 */
4009 if (extra->patype == PARTITIONWISE_AGGREGATE_FULL &&
4010 group_by_has_partkey(input_rel, extra->targetList,
4011 root->parse->groupClause))
4013 else if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
4015 else
4017 }
4018
4019 /*
4020 * Before generating paths for grouped_rel, we first generate any possible
4021 * partially grouped paths; that way, later code can easily consider both
4022 * parallel and non-parallel approaches to grouping.
4023 */
4024 if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
4025 {
4026 bool force_rel_creation;
4027
4028 /*
4029 * If we're doing partitionwise aggregation at this level, force
4030 * creation of a partially_grouped_rel so we can add partitionwise
4031 * paths to it.
4032 */
4033 force_rel_creation = (patype == PARTITIONWISE_AGGREGATE_PARTIAL);
4034
4035 partially_grouped_rel =
4037 grouped_rel,
4038 input_rel,
4039 gd,
4040 extra,
4041 force_rel_creation);
4042 }
4043
4044 /* Set out parameter. */
4045 *partially_grouped_rel_p = partially_grouped_rel;
4046
4047 /* Apply partitionwise aggregation technique, if possible. */
4048 if (patype != PARTITIONWISE_AGGREGATE_NONE)
4049 create_partitionwise_grouping_paths(root, input_rel, grouped_rel,
4050 partially_grouped_rel, agg_costs,
4051 gd, patype, extra);
4052
4053 /* If we are doing partial aggregation only, return. */
4055 {
4056 Assert(partially_grouped_rel);
4057
4058 if (partially_grouped_rel->pathlist)
4059 set_cheapest(partially_grouped_rel);
4060
4061 return;
4062 }
4063
4064 /* Gather any partially grouped partial paths. */
4065 if (partially_grouped_rel && partially_grouped_rel->partial_pathlist)
4066 {
4067 gather_grouping_paths(root, partially_grouped_rel);
4068 set_cheapest(partially_grouped_rel);
4069 }
4070
4071 /*
4072 * Estimate number of groups.
4073 */
4074 dNumGroups = get_number_of_groups(root,
4075 cheapest_path->rows,
4076 gd,
4077 extra->targetList);
4078
4079 /* Build final grouping paths */
4080 add_paths_to_grouping_rel(root, input_rel, grouped_rel,
4081 partially_grouped_rel, agg_costs, gd,
4082 dNumGroups, extra);
4083
4084 /* Give a helpful error if we failed to find any implementation */
4085 if (grouped_rel->pathlist == NIL)
4086 ereport(ERROR,
4087 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4088 errmsg("could not implement GROUP BY"),
4089 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
4090
4091 /*
4092 * If there is an FDW that's responsible for all baserels of the query,
4093 * let it consider adding ForeignPaths.
4094 */
4095 if (grouped_rel->fdwroutine &&
4096 grouped_rel->fdwroutine->GetForeignUpperPaths)
4097 grouped_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_GROUP_AGG,
4098 input_rel, grouped_rel,
4099 extra);
4100
4101 /* Let extensions possibly add some more paths */
4103 (*create_upper_paths_hook) (root, UPPERREL_GROUP_AGG,
4104 input_rel, grouped_rel,
4105 extra);
4106}
4107
4108/*
4109 * For a given input path, consider the possible ways of doing grouping sets on
4110 * it, by combinations of hashing and sorting. This can be called multiple
4111 * times, so it's important that it not scribble on input. No result is
4112 * returned, but any generated paths are added to grouped_rel.
4113 */
4114static void
4116 RelOptInfo *grouped_rel,
4117 Path *path,
4118 bool is_sorted,
4119 bool can_hash,
4121 const AggClauseCosts *agg_costs,
4122 double dNumGroups)
4123{
4124 Query *parse = root->parse;
4125 Size hash_mem_limit = get_hash_memory_limit();
4126
4127 /*
4128 * If we're not being offered sorted input, then only consider plans that
4129 * can be done entirely by hashing.
4130 *
4131 * We can hash everything if it looks like it'll fit in hash_mem. But if
4132 * the input is actually sorted despite not being advertised as such, we
4133 * prefer to make use of that in order to use less memory.
4134 *
4135 * If none of the grouping sets are sortable, then ignore the hash_mem
4136 * limit and generate a path anyway, since otherwise we'll just fail.
4137 */
4138 if (!is_sorted)
4139 {
4140 List *new_rollups = NIL;
4141 RollupData *unhashed_rollup = NULL;
4142 List *sets_data;
4143 List *empty_sets_data = NIL;
4144 List *empty_sets = NIL;
4145 ListCell *lc;
4146 ListCell *l_start = list_head(gd->rollups);
4147 AggStrategy strat = AGG_HASHED;
4148 double hashsize;
4149 double exclude_groups = 0.0;
4150
4151 Assert(can_hash);
4152
4153 /*
4154 * If the input is coincidentally sorted usefully (which can happen
4155 * even if is_sorted is false, since that only means that our caller
4156 * has set up the sorting for us), then save some hashtable space by
4157 * making use of that. But we need to watch out for degenerate cases:
4158 *
4159 * 1) If there are any empty grouping sets, then group_pathkeys might
4160 * be NIL if all non-empty grouping sets are unsortable. In this case,
4161 * there will be a rollup containing only empty groups, and the
4162 * pathkeys_contained_in test is vacuously true; this is ok.
4163 *
4164 * XXX: the above relies on the fact that group_pathkeys is generated
4165 * from the first rollup. If we add the ability to consider multiple
4166 * sort orders for grouping input, this assumption might fail.
4167 *
4168 * 2) If there are no empty sets and only unsortable sets, then the
4169 * rollups list will be empty (and thus l_start == NULL), and
4170 * group_pathkeys will be NIL; we must ensure that the vacuously-true
4171 * pathkeys_contained_in test doesn't cause us to crash.
4172 */
4173 if (l_start != NULL &&
4174 pathkeys_contained_in(root->group_pathkeys, path->pathkeys))
4175 {
4176 unhashed_rollup = lfirst_node(RollupData, l_start);
4177 exclude_groups = unhashed_rollup->numGroups;
4178 l_start = lnext(gd->rollups, l_start);
4179 }
4180
4182 path,
4183 agg_costs,
4184 dNumGroups - exclude_groups);
4185
4186 /*
4187 * gd->rollups is empty if we have only unsortable columns to work
4188 * with. Override hash_mem in that case; otherwise, we'll rely on the
4189 * sorted-input case to generate usable mixed paths.
4190 */
4191 if (hashsize > hash_mem_limit && gd->rollups)
4192 return; /* nope, won't fit */
4193
4194 /*
4195 * We need to burst the existing rollups list into individual grouping
4196 * sets and recompute a groupClause for each set.
4197 */
4198 sets_data = list_copy(gd->unsortable_sets);
4199
4200 for_each_cell(lc, gd->rollups, l_start)
4201 {
4202 RollupData *rollup = lfirst_node(RollupData, lc);
4203
4204 /*
4205 * If we find an unhashable rollup that's not been skipped by the
4206 * "actually sorted" check above, we can't cope; we'd need sorted
4207 * input (with a different sort order) but we can't get that here.
4208 * So bail out; we'll get a valid path from the is_sorted case
4209 * instead.
4210 *
4211 * The mere presence of empty grouping sets doesn't make a rollup
4212 * unhashable (see preprocess_grouping_sets), we handle those
4213 * specially below.
4214 */
4215 if (!rollup->hashable)
4216 return;
4217
4218 sets_data = list_concat(sets_data, rollup->gsets_data);
4219 }
4220 foreach(lc, sets_data)
4221 {
4223 List *gset = gs->set;
4224 RollupData *rollup;
4225
4226 if (gset == NIL)
4227 {
4228 /* Empty grouping sets can't be hashed. */
4229 empty_sets_data = lappend(empty_sets_data, gs);
4230 empty_sets = lappend(empty_sets, NIL);
4231 }
4232 else
4233 {
4234 rollup = makeNode(RollupData);
4235
4236 rollup->groupClause = preprocess_groupclause(root, gset);
4237 rollup->gsets_data = list_make1(gs);
4238 rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
4239 rollup->gsets_data,
4241 rollup->numGroups = gs->numGroups;
4242 rollup->hashable = true;
4243 rollup->is_hashed = true;
4244 new_rollups = lappend(new_rollups, rollup);
4245 }
4246 }
4247
4248 /*
4249 * If we didn't find anything nonempty to hash, then bail. We'll
4250 * generate a path from the is_sorted case.
4251 */
4252 if (new_rollups == NIL)
4253 return;
4254
4255 /*
4256 * If there were empty grouping sets they should have been in the
4257 * first rollup.
4258 */
4259 Assert(!unhashed_rollup || !empty_sets);
4260
4261 if (unhashed_rollup)
4262 {
4263 new_rollups = lappend(new_rollups, unhashed_rollup);
4264 strat = AGG_MIXED;
4265 }
4266 else if (empty_sets)
4267 {
4268 RollupData *rollup = makeNode(RollupData);
4269
4270 rollup->groupClause = NIL;
4271 rollup->gsets_data = empty_sets_data;
4272 rollup->gsets = empty_sets;
4273 rollup->numGroups = list_length(empty_sets);
4274 rollup->hashable = false;
4275 rollup->is_hashed = false;
4276 new_rollups = lappend(new_rollups, rollup);
4277 strat = AGG_MIXED;
4278 }
4279
4280 add_path(grouped_rel, (Path *)
4282 grouped_rel,
4283 path,
4284 (List *) parse->havingQual,
4285 strat,
4286 new_rollups,
4287 agg_costs));
4288 return;
4289 }
4290
4291 /*
4292 * If we have sorted input but nothing we can do with it, bail.
4293 */
4294 if (gd->rollups == NIL)
4295 return;
4296
4297 /*
4298 * Given sorted input, we try and make two paths: one sorted and one mixed
4299 * sort/hash. (We need to try both because hashagg might be disabled, or
4300 * some columns might not be sortable.)
4301 *
4302 * can_hash is passed in as false if some obstacle elsewhere (such as
4303 * ordered aggs) means that we shouldn't consider hashing at all.
4304 */
4305 if (can_hash && gd->any_hashable)
4306 {
4307 List *rollups = NIL;
4308 List *hash_sets = list_copy(gd->unsortable_sets);
4309 double availspace = hash_mem_limit;
4310 ListCell *lc;
4311
4312 /*
4313 * Account first for space needed for groups we can't sort at all.
4314 */
4315 availspace -= estimate_hashagg_tablesize(root,
4316 path,
4317 agg_costs,
4318 gd->dNumHashGroups);
4319
4320 if (availspace > 0 && list_length(gd->rollups) > 1)
4321 {
4322 double scale;
4323 int num_rollups = list_length(gd->rollups);
4324 int k_capacity;
4325 int *k_weights = palloc(num_rollups * sizeof(int));
4326 Bitmapset *hash_items = NULL;
4327 int i;
4328
4329 /*
4330 * We treat this as a knapsack problem: the knapsack capacity
4331 * represents hash_mem, the item weights are the estimated memory
4332 * usage of the hashtables needed to implement a single rollup,
4333 * and we really ought to use the cost saving as the item value;
4334 * however, currently the costs assigned to sort nodes don't
4335 * reflect the comparison costs well, and so we treat all items as
4336 * of equal value (each rollup we hash instead saves us one sort).
4337 *
4338 * To use the discrete knapsack, we need to scale the values to a
4339 * reasonably small bounded range. We choose to allow a 5% error
4340 * margin; we have no more than 4096 rollups in the worst possible
4341 * case, which with a 5% error margin will require a bit over 42MB
4342 * of workspace. (Anyone wanting to plan queries that complex had
4343 * better have the memory for it. In more reasonable cases, with
4344 * no more than a couple of dozen rollups, the memory usage will
4345 * be negligible.)
4346 *
4347 * k_capacity is naturally bounded, but we clamp the values for
4348 * scale and weight (below) to avoid overflows or underflows (or
4349 * uselessly trying to use a scale factor less than 1 byte).
4350 */
4351 scale = Max(availspace / (20.0 * num_rollups), 1.0);
4352 k_capacity = (int) floor(availspace / scale);
4353
4354 /*
4355 * We leave the first rollup out of consideration since it's the
4356 * one that matches the input sort order. We assign indexes "i"
4357 * to only those entries considered for hashing; the second loop,
4358 * below, must use the same condition.
4359 */
4360 i = 0;
4361 for_each_from(lc, gd->rollups, 1)
4362 {
4363 RollupData *rollup = lfirst_node(RollupData, lc);
4364
4365 if (rollup->hashable)
4366 {
4367 double sz = estimate_hashagg_tablesize(root,
4368 path,
4369 agg_costs,
4370 rollup->numGroups);
4371
4372 /*
4373 * If sz is enormous, but hash_mem (and hence scale) is
4374 * small, avoid integer overflow here.
4375 */
4376 k_weights[i] = (int) Min(floor(sz / scale),
4377 k_capacity + 1.0);
4378 ++i;
4379 }
4380 }
4381
4382 /*
4383 * Apply knapsack algorithm; compute the set of items which
4384 * maximizes the value stored (in this case the number of sorts
4385 * saved) while keeping the total size (approximately) within
4386 * capacity.
4387 */
4388 if (i > 0)
4389 hash_items = DiscreteKnapsack(k_capacity, i, k_weights, NULL);
4390
4391 if (!bms_is_empty(hash_items))
4392 {
4393 rollups = list_make1(linitial(gd->rollups));
4394
4395 i = 0;
4396 for_each_from(lc, gd->rollups, 1)
4397 {
4398 RollupData *rollup = lfirst_node(RollupData, lc);
4399
4400 if (rollup->hashable)
4401 {
4402 if (bms_is_member(i, hash_items))
4403 hash_sets = list_concat(hash_sets,
4404 rollup->gsets_data);
4405 else
4406 rollups = lappend(rollups, rollup);
4407 ++i;
4408 }
4409 else
4410 rollups = lappend(rollups, rollup);
4411 }
4412 }
4413 }
4414
4415 if (!rollups && hash_sets)
4416 rollups = list_copy(gd->rollups);
4417
4418 foreach(lc, hash_sets)
4419 {
4421 RollupData *rollup = makeNode(RollupData);
4422
4423 Assert(gs->set != NIL);
4424
4426 rollup->gsets_data = list_make1(gs);
4427 rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
4428 rollup->gsets_data,
4430 rollup->numGroups = gs->numGroups;
4431 rollup->hashable = true;
4432 rollup->is_hashed = true;
4433 rollups = lcons(rollup, rollups);
4434 }
4435
4436 if (rollups)
4437 {
4438 add_path(grouped_rel, (Path *)
4440 grouped_rel,
4441 path,
4442 (List *) parse->havingQual,
4443 AGG_MIXED,
4444 rollups,
4445 agg_costs));
4446 }
4447 }
4448
4449 /*
4450 * Now try the simple sorted case.
4451 */
4452 if (!gd->unsortable_sets)
4453 add_path(grouped_rel, (Path *)
4455 grouped_rel,
4456 path,
4457 (List *) parse->havingQual,
4458 AGG_SORTED,
4459 gd->rollups,
4460 agg_costs));
4461}
4462
4463/*
4464 * create_window_paths
4465 *
4466 * Build a new upperrel containing Paths for window-function evaluation.
4467 *
4468 * input_rel: contains the source-data Paths
4469 * input_target: result of make_window_input_target
4470 * output_target: what the topmost WindowAggPath should return
4471 * wflists: result of find_window_functions
4472 * activeWindows: result of select_active_windows
4473 *
4474 * Note: all Paths in input_rel are expected to return input_target.
4475 */
4476static RelOptInfo *
4478 RelOptInfo *input_rel,
4479 PathTarget *input_target,
4480 PathTarget *output_target,
4481 bool output_target_parallel_safe,
4482 WindowFuncLists *wflists,
4483 List *activeWindows)
4484{
4485 RelOptInfo *window_rel;
4486 ListCell *lc;
4487
4488 /* For now, do all work in the (WINDOW, NULL) upperrel */
4489 window_rel = fetch_upper_rel(root, UPPERREL_WINDOW, NULL);
4490
4491 /*
4492 * If the input relation is not parallel-safe, then the window relation
4493 * can't be parallel-safe, either. Otherwise, we need to examine the
4494 * target list and active windows for non-parallel-safe constructs.
4495 */
4496 if (input_rel->consider_parallel && output_target_parallel_safe &&
4497 is_parallel_safe(root, (Node *) activeWindows))
4498 window_rel->consider_parallel = true;
4499
4500 /*
4501 * If the input rel belongs to a single FDW, so does the window rel.
4502 */
4503 window_rel->serverid = input_rel->serverid;
4504 window_rel->userid = input_rel->userid;
4505 window_rel->useridiscurrent = input_rel->useridiscurrent;
4506 window_rel->fdwroutine = input_rel->fdwroutine;
4507
4508 /*
4509 * Consider computing window functions starting from the existing
4510 * cheapest-total path (which will likely require a sort) as well as any
4511 * existing paths that satisfy or partially satisfy root->window_pathkeys.
4512 */
4513 foreach(lc, input_rel->pathlist)
4514 {
4515 Path *path = (Path *) lfirst(lc);
4516 int presorted_keys;
4517
4518 if (path == input_rel->cheapest_total_path ||
4519 pathkeys_count_contained_in(root->window_pathkeys, path->pathkeys,
4520 &presorted_keys) ||
4521 presorted_keys > 0)
4523 window_rel,
4524 path,
4525 input_target,
4526 output_target,
4527 wflists,
4528 activeWindows);
4529 }
4530
4531 /*
4532 * If there is an FDW that's responsible for all baserels of the query,
4533 * let it consider adding ForeignPaths.
4534 */
4535 if (window_rel->fdwroutine &&
4536 window_rel->fdwroutine->GetForeignUpperPaths)
4537 window_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_WINDOW,
4538 input_rel, window_rel,
4539 NULL);
4540
4541 /* Let extensions possibly add some more paths */
4543 (*create_upper_paths_hook) (root, UPPERREL_WINDOW,
4544 input_rel, window_rel, NULL);
4545
4546 /* Now choose the best path(s) */
4547 set_cheapest(window_rel);
4548
4549 return window_rel;
4550}
4551
4552/*
4553 * Stack window-function implementation steps atop the given Path, and
4554 * add the result to window_rel.
4555 *
4556 * window_rel: upperrel to contain result
4557 * path: input Path to use (must return input_target)
4558 * input_target: result of make_window_input_target
4559 * output_target: what the topmost WindowAggPath should return
4560 * wflists: result of find_window_functions
4561 * activeWindows: result of select_active_windows
4562 */
4563static void
4565 RelOptInfo *window_rel,
4566 Path *path,
4567 PathTarget *input_target,
4568 PathTarget *output_target,
4569 WindowFuncLists *wflists,
4570 List *activeWindows)
4571{
4572 PathTarget *window_target;
4573 ListCell *l;
4574 List *topqual = NIL;
4575
4576 /*
4577 * Since each window clause could require a different sort order, we stack
4578 * up a WindowAgg node for each clause, with sort steps between them as
4579 * needed. (We assume that select_active_windows chose a good order for
4580 * executing the clauses in.)
4581 *
4582 * input_target should contain all Vars and Aggs needed for the result.
4583 * (In some cases we wouldn't need to propagate all of these all the way
4584 * to the top, since they might only be needed as inputs to WindowFuncs.
4585 * It's probably not worth trying to optimize that though.) It must also
4586 * contain all window partitioning and sorting expressions, to ensure
4587 * they're computed only once at the bottom of the stack (that's critical
4588 * for volatile functions). As we climb up the stack, we'll add outputs
4589 * for the WindowFuncs computed at each level.
4590 */
4591 window_target = input_target;
4592
4593 foreach(l, activeWindows)
4594 {
4596 List *window_pathkeys;
4597 List *runcondition = NIL;
4598 int presorted_keys;
4599 bool is_sorted;
4600 bool topwindow;
4601 ListCell *lc2;
4602
4603 window_pathkeys = make_pathkeys_for_window(root,
4604 wc,
4605 root->processed_tlist);
4606
4607 is_sorted = pathkeys_count_contained_in(window_pathkeys,
4608 path->pathkeys,
4609 &presorted_keys);
4610
4611 /* Sort if necessary */
4612 if (!is_sorted)
4613 {
4614 /*
4615 * No presorted keys or incremental sort disabled, just perform a
4616 * complete sort.
4617 */
4618 if (presorted_keys == 0 || !enable_incremental_sort)
4619 path = (Path *) create_sort_path(root, window_rel,
4620 path,
4621 window_pathkeys,
4622 -1.0);
4623 else
4624 {
4625 /*
4626 * Since we have presorted keys and incremental sort is
4627 * enabled, just use incremental sort.
4628 */
4630 window_rel,
4631 path,
4632 window_pathkeys,
4633 presorted_keys,
4634 -1.0);
4635 }
4636 }
4637
4638 if (lnext(activeWindows, l))
4639 {
4640 /*
4641 * Add the current WindowFuncs to the output target for this
4642 * intermediate WindowAggPath. We must copy window_target to
4643 * avoid changing the previous path's target.
4644 *
4645 * Note: a WindowFunc adds nothing to the target's eval costs; but
4646 * we do need to account for the increase in tlist width.
4647 */
4648 int64 tuple_width = window_target->width;
4649
4650 window_target = copy_pathtarget(window_target);
4651 foreach(lc2, wflists->windowFuncs[wc->winref])
4652 {
4653 WindowFunc *wfunc = lfirst_node(WindowFunc, lc2);
4654
4655 add_column_to_pathtarget(window_target, (Expr *) wfunc, 0);
4656 tuple_width += get_typavgwidth(wfunc->wintype, -1);
4657 }
4658 window_target->width = clamp_width_est(tuple_width);
4659 }
4660 else
4661 {
4662 /* Install the goal target in the topmost WindowAgg */
4663 window_target = output_target;
4664 }
4665
4666 /* mark the final item in the list as the top-level window */
4667 topwindow = foreach_current_index(l) == list_length(activeWindows) - 1;
4668
4669 /*
4670 * Collect the WindowFuncRunConditions from each WindowFunc and
4671 * convert them into OpExprs
4672 */
4673 foreach(lc2, wflists->windowFuncs[wc->winref])
4674 {
4675 ListCell *lc3;
4676 WindowFunc *wfunc = lfirst_node(WindowFunc, lc2);
4677
4678 foreach(lc3, wfunc->runCondition)
4679 {
4680 WindowFuncRunCondition *wfuncrc =
4682 Expr *opexpr;
4683 Expr *leftop;
4684 Expr *rightop;
4685
4686 if (wfuncrc->wfunc_left)
4687 {
4688 leftop = (Expr *) copyObject(wfunc);
4689 rightop = copyObject(wfuncrc->arg);
4690 }
4691 else
4692 {
4693 leftop = copyObject(wfuncrc->arg);
4694 rightop = (Expr *) copyObject(wfunc);
4695 }
4696
4697 opexpr = make_opclause(wfuncrc->opno,
4698 BOOLOID,
4699 false,
4700 leftop,
4701 rightop,
4702 InvalidOid,
4703 wfuncrc->inputcollid);
4704
4705 runcondition = lappend(runcondition, opexpr);
4706
4707 if (!topwindow)
4708 topqual = lappend(topqual, opexpr);
4709 }
4710 }
4711
4712 path = (Path *)
4713 create_windowagg_path(root, window_rel, path, window_target,
4714 wflists->windowFuncs[wc->winref],
4715 runcondition, wc,
4716 topwindow ? topqual : NIL, topwindow);
4717 }
4718
4719 add_path(window_rel, path);
4720}
4721
4722/*
4723 * create_distinct_paths
4724 *
4725 * Build a new upperrel containing Paths for SELECT DISTINCT evaluation.
4726 *
4727 * input_rel: contains the source-data Paths
4728 * target: the pathtarget for the result Paths to compute
4729 *
4730 * Note: input paths should already compute the desired pathtarget, since
4731 * Sort/Unique won't project anything.
4732 */
4733static RelOptInfo *
4735 PathTarget *target)
4736{
4737 RelOptInfo *distinct_rel;
4738
4739 /* For now, do all work in the (DISTINCT, NULL) upperrel */
4740 distinct_rel = fetch_upper_rel(root, UPPERREL_DISTINCT, NULL);
4741
4742 /*
4743 * We don't compute anything at this level, so distinct_rel will be
4744 * parallel-safe if the input rel is parallel-safe. In particular, if
4745 * there is a DISTINCT ON (...) clause, any path for the input_rel will
4746 * output those expressions, and will not be parallel-safe unless those
4747 * expressions are parallel-safe.
4748 */
4749 distinct_rel->consider_parallel = input_rel->consider_parallel;
4750
4751 /*
4752 * If the input rel belongs to a single FDW, so does the distinct_rel.
4753 */
4754 distinct_rel->serverid = input_rel->serverid;
4755 distinct_rel->userid = input_rel->userid;
4756 distinct_rel->useridiscurrent = input_rel->useridiscurrent;
4757 distinct_rel->fdwroutine = input_rel->fdwroutine;
4758
4759 /* build distinct paths based on input_rel's pathlist */
4760 create_final_distinct_paths(root, input_rel, distinct_rel);
4761
4762 /* now build distinct paths based on input_rel's partial_pathlist */
4763 create_partial_distinct_paths(root, input_rel, distinct_rel, target);
4764
4765 /* Give a helpful error if we failed to create any paths */
4766 if (distinct_rel->pathlist == NIL)
4767 ereport(ERROR,
4768 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4769 errmsg("could not implement DISTINCT"),
4770 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
4771
4772 /*
4773 * If there is an FDW that's responsible for all baserels of the query,
4774 * let it consider adding ForeignPaths.
4775 */
4776 if (distinct_rel->fdwroutine &&
4777 distinct_rel->fdwroutine->GetForeignUpperPaths)
4778 distinct_rel->fdwroutine->GetForeignUpperPaths(root,
4780 input_rel,
4781 distinct_rel,
4782 NULL);
4783
4784 /* Let extensions possibly add some more paths */
4786 (*create_upper_paths_hook) (root, UPPERREL_DISTINCT, input_rel,
4787 distinct_rel, NULL);
4788
4789 /* Now choose the best path(s) */
4790 set_cheapest(distinct_rel);
4791
4792 return distinct_rel;
4793}
4794
4795/*
4796 * create_partial_distinct_paths
4797 *
4798 * Process 'input_rel' partial paths and add unique/aggregate paths to the
4799 * UPPERREL_PARTIAL_DISTINCT rel. For paths created, add Gather/GatherMerge
4800 * paths on top and add a final unique/aggregate path to remove any duplicate
4801 * produced from combining rows from parallel workers.
4802 */
4803static void
4805 RelOptInfo *final_distinct_rel,
4806 PathTarget *target)
4807{
4808 RelOptInfo *partial_distinct_rel;
4809 Query *parse;
4810 List *distinctExprs;
4811 double numDistinctRows;
4812 Path *cheapest_partial_path;
4813 ListCell *lc;
4814
4815 /* nothing to do when there are no partial paths in the input rel */
4816 if (!input_rel->consider_parallel || input_rel->partial_pathlist == NIL)
4817 return;
4818
4819 parse = root->parse;
4820
4821 /* can't do parallel DISTINCT ON */
4822 if (parse->hasDistinctOn)
4823 return;
4824
4825 partial_distinct_rel = fetch_upper_rel(root, UPPERREL_PARTIAL_DISTINCT,
4826 NULL);
4827 partial_distinct_rel->reltarget = target;
4828 partial_distinct_rel->consider_parallel = input_rel->consider_parallel;
4829
4830 /*
4831 * If input_rel belongs to a single FDW, so does the partial_distinct_rel.
4832 */
4833 partial_distinct_rel->serverid = input_rel->serverid;
4834 partial_distinct_rel->userid = input_rel->userid;
4835 partial_distinct_rel->useridiscurrent = input_rel->useridiscurrent;
4836 partial_distinct_rel->fdwroutine = input_rel->fdwroutine;
4837
4838 cheapest_partial_path = linitial(input_rel->partial_pathlist);
4839
4840 distinctExprs = get_sortgrouplist_exprs(root->processed_distinctClause,
4841 parse->targetList);
4842
4843 /* estimate how many distinct rows we'll get from each worker */
4844 numDistinctRows = estimate_num_groups(root, distinctExprs,
4845 cheapest_partial_path->rows,
4846 NULL, NULL);
4847
4848 /*
4849 * Try sorting the cheapest path and incrementally sorting any paths with
4850 * presorted keys and put a unique paths atop of those. We'll also
4851 * attempt to reorder the required pathkeys to match the input path's
4852 * pathkeys as much as possible, in hopes of avoiding a possible need to
4853 * re-sort.
4854 */
4855 if (grouping_is_sortable(root->processed_distinctClause))
4856 {
4857 foreach(lc, input_rel->partial_pathlist)
4858 {
4859 Path *input_path = (Path *) lfirst(lc);
4860 Path *sorted_path;
4861 List *useful_pathkeys_list = NIL;
4862
4863 useful_pathkeys_list =
4865 root->distinct_pathkeys,
4866 input_path->pathkeys);
4867 Assert(list_length(useful_pathkeys_list) > 0);
4868
4869 foreach_node(List, useful_pathkeys, useful_pathkeys_list)
4870 {
4871 sorted_path = make_ordered_path(root,
4872 partial_distinct_rel,
4873 input_path,
4874 cheapest_partial_path,
4875 useful_pathkeys,
4876 -1.0);
4877
4878 if (sorted_path == NULL)
4879 continue;
4880
4881 /*
4882 * An empty distinct_pathkeys means all tuples have the same
4883 * value for the DISTINCT clause. See
4884 * create_final_distinct_paths()
4885 */
4886 if (root->distinct_pathkeys == NIL)
4887 {
4888 Node *limitCount;
4889
4890 limitCount = (Node *) makeConst(INT8OID, -1, InvalidOid,
4891 sizeof(int64),
4892 Int64GetDatum(1), false,
4894
4895 /*
4896 * Apply a LimitPath onto the partial path to restrict the
4897 * tuples from each worker to 1.
4898 * create_final_distinct_paths will need to apply an
4899 * additional LimitPath to restrict this to a single row
4900 * after the Gather node. If the query already has a
4901 * LIMIT clause, then we could end up with three Limit
4902 * nodes in the final plan. Consolidating the top two of
4903 * these could be done, but does not seem worth troubling
4904 * over.
4905 */
4906 add_partial_path(partial_distinct_rel, (Path *)
4907 create_limit_path(root, partial_distinct_rel,
4908 sorted_path,
4909 NULL,
4910 limitCount,
4912 0, 1));
4913 }
4914 else
4915 {
4916 add_partial_path(partial_distinct_rel, (Path *)
4917 create_upper_unique_path(root, partial_distinct_rel,
4918 sorted_path,
4919 list_length(root->distinct_pathkeys),
4920 numDistinctRows));
4921 }
4922 }
4923 }
4924 }
4925
4926 /*
4927 * Now try hash aggregate paths, if enabled and hashing is possible. Since
4928 * we're not on the hook to ensure we do our best to create at least one
4929 * path here, we treat enable_hashagg as a hard off-switch rather than the
4930 * slightly softer variant in create_final_distinct_paths.
4931 */
4932 if (enable_hashagg && grouping_is_hashable(root->processed_distinctClause))
4933 {
4934 add_partial_path(partial_distinct_rel, (Path *)
4936 partial_distinct_rel,
4937 cheapest_partial_path,
4938 cheapest_partial_path->pathtarget,
4939 AGG_HASHED,
4941 root->processed_distinctClause,
4942 NIL,
4943 NULL,
4944 numDistinctRows));
4945 }
4946
4947 /*
4948 * If there is an FDW that's responsible for all baserels of the query,
4949 * let it consider adding ForeignPaths.
4950 */
4951 if (partial_distinct_rel->fdwroutine &&
4952 partial_distinct_rel->fdwroutine->GetForeignUpperPaths)
4953 partial_distinct_rel->fdwroutine->GetForeignUpperPaths(root,
4955 input_rel,
4956 partial_distinct_rel,
4957 NULL);
4958
4959 /* Let extensions possibly add some more partial paths */
4961 (*create_upper_paths_hook) (root, UPPERREL_PARTIAL_DISTINCT,
4962 input_rel, partial_distinct_rel, NULL);
4963
4964 if (partial_distinct_rel->partial_pathlist != NIL)
4965 {
4966 generate_useful_gather_paths(root, partial_distinct_rel, true);
4967 set_cheapest(partial_distinct_rel);
4968
4969 /*
4970 * Finally, create paths to distinctify the final result. This step
4971 * is needed to remove any duplicates due to combining rows from
4972 * parallel workers.
4973 */
4974 create_final_distinct_paths(root, partial_distinct_rel,
4975 final_distinct_rel);
4976 }
4977}
4978
4979/*
4980 * create_final_distinct_paths
4981 * Create distinct paths in 'distinct_rel' based on 'input_rel' pathlist
4982 *
4983 * input_rel: contains the source-data paths
4984 * distinct_rel: destination relation for storing created paths
4985 */
4986static RelOptInfo *
4988 RelOptInfo *distinct_rel)
4989{
4990 Query *parse = root->parse;
4991 Path *cheapest_input_path = input_rel->cheapest_total_path;
4992 double numDistinctRows;
4993 bool allow_hash;
4994
4995 /* Estimate number of distinct rows there will be */
4996 if (parse->groupClause || parse->groupingSets || parse->hasAggs ||
4997 root->hasHavingQual)
4998 {
4999 /*
5000 * If there was grouping or aggregation, use the number of input rows
5001 * as the estimated number of DISTINCT rows (ie, assume the input is
5002 * already mostly unique).
5003 */
5004 numDistinctRows = cheapest_input_path->rows;
5005 }
5006 else
5007 {
5008 /*
5009 * Otherwise, the UNIQUE filter has effects comparable to GROUP BY.
5010 */
5011 List *distinctExprs;
5012
5013 distinctExprs = get_sortgrouplist_exprs(root->processed_distinctClause,
5014 parse->targetList);
5015 numDistinctRows = estimate_num_groups(root, distinctExprs,
5016 cheapest_input_path->rows,
5017 NULL, NULL);
5018 }
5019
5020 /*
5021 * Consider sort-based implementations of DISTINCT, if possible.
5022 */
5023 if (grouping_is_sortable(root->processed_distinctClause))
5024 {
5025 /*
5026 * Firstly, if we have any adequately-presorted paths, just stick a
5027 * Unique node on those. We also, consider doing an explicit sort of
5028 * the cheapest input path and Unique'ing that. If any paths have
5029 * presorted keys then we'll create an incremental sort atop of those
5030 * before adding a unique node on the top. We'll also attempt to
5031 * reorder the required pathkeys to match the input path's pathkeys as
5032 * much as possible, in hopes of avoiding a possible need to re-sort.
5033 *
5034 * When we have DISTINCT ON, we must sort by the more rigorous of
5035 * DISTINCT and ORDER BY, else it won't have the desired behavior.
5036 * Also, if we do have to do an explicit sort, we might as well use
5037 * the more rigorous ordering to avoid a second sort later. (Note
5038 * that the parser will have ensured that one clause is a prefix of
5039 * the other.)
5040 */
5041 List *needed_pathkeys;
5042 ListCell *lc;
5043 double limittuples = root->distinct_pathkeys == NIL ? 1.0 : -1.0;
5044
5045 if (parse->hasDistinctOn &&
5046 list_length(root->distinct_pathkeys) <
5047 list_length(root->sort_pathkeys))
5048 needed_pathkeys = root->sort_pathkeys;
5049 else
5050 needed_pathkeys = root->distinct_pathkeys;
5051
5052 foreach(lc, input_rel->pathlist)
5053 {
5054 Path *input_path = (Path *) lfirst(lc);
5055 Path *sorted_path;
5056 List *useful_pathkeys_list = NIL;
5057
5058 useful_pathkeys_list =
5060 needed_pathkeys,
5061 input_path->pathkeys);
5062 Assert(list_length(useful_pathkeys_list) > 0);
5063
5064 foreach_node(List, useful_pathkeys, useful_pathkeys_list)
5065 {
5066 sorted_path = make_ordered_path(root,
5067 distinct_rel,
5068 input_path,
5069 cheapest_input_path,
5070 useful_pathkeys,
5071 limittuples);
5072
5073 if (sorted_path == NULL)
5074 continue;
5075
5076 /*
5077 * distinct_pathkeys may have become empty if all of the
5078 * pathkeys were determined to be redundant. If all of the
5079 * pathkeys are redundant then each DISTINCT target must only
5080 * allow a single value, therefore all resulting tuples must
5081 * be identical (or at least indistinguishable by an equality
5082 * check). We can uniquify these tuples simply by just taking
5083 * the first tuple. All we do here is add a path to do "LIMIT
5084 * 1" atop of 'sorted_path'. When doing a DISTINCT ON we may
5085 * still have a non-NIL sort_pathkeys list, so we must still
5086 * only do this with paths which are correctly sorted by
5087 * sort_pathkeys.
5088 */
5089 if (root->distinct_pathkeys == NIL)
5090 {
5091 Node *limitCount;
5092
5093 limitCount = (Node *) makeConst(INT8OID, -1, InvalidOid,
5094 sizeof(int64),
5095 Int64GetDatum(1), false,
5097
5098 /*
5099 * If the query already has a LIMIT clause, then we could
5100 * end up with a duplicate LimitPath in the final plan.
5101 * That does not seem worth troubling over too much.
5102 */
5103 add_path(distinct_rel, (Path *)
5104 create_limit_path(root, distinct_rel, sorted_path,
5105 NULL, limitCount,
5106 LIMIT_OPTION_COUNT, 0, 1));
5107 }
5108 else
5109 {
5110 add_path(distinct_rel, (Path *)
5111 create_upper_unique_path(root, distinct_rel,
5112 sorted_path,
5113 list_length(root->distinct_pathkeys),
5114 numDistinctRows));
5115 }
5116 }
5117 }
5118 }
5119
5120 /*
5121 * Consider hash-based implementations of DISTINCT, if possible.
5122 *
5123 * If we were not able to make any other types of path, we *must* hash or
5124 * die trying. If we do have other choices, there are two things that
5125 * should prevent selection of hashing: if the query uses DISTINCT ON
5126 * (because it won't really have the expected behavior if we hash), or if
5127 * enable_hashagg is off.
5128 *
5129 * Note: grouping_is_hashable() is much more expensive to check than the
5130 * other gating conditions, so we want to do it last.
5131 */
5132 if (distinct_rel->pathlist == NIL)
5133 allow_hash = true; /* we have no alternatives */
5134 else if (parse->hasDistinctOn || !enable_hashagg)
5135 allow_hash = false; /* policy-based decision not to hash */
5136 else
5137 allow_hash = true; /* default */
5138
5139 if (allow_hash && grouping_is_hashable(root->processed_distinctClause))
5140 {
5141 /* Generate hashed aggregate path --- no sort needed */
5142 add_path(distinct_rel, (Path *)
5144 distinct_rel,
5145 cheapest_input_path,
5146 cheapest_input_path->pathtarget,
5147 AGG_HASHED,
5149 root->processed_distinctClause,
5150 NIL,
5151 NULL,
5152 numDistinctRows));
5153 }
5154
5155 return distinct_rel;
5156}
5157
5158/*
5159 * get_useful_pathkeys_for_distinct
5160 * Get useful orderings of pathkeys for distinctClause by reordering
5161 * 'needed_pathkeys' to match the given 'path_pathkeys' as much as possible.
5162 *
5163 * This returns a list of pathkeys that can be useful for DISTINCT or DISTINCT
5164 * ON clause. For convenience, it always includes the given 'needed_pathkeys'.
5165 */
5166static List *
5168 List *path_pathkeys)
5169{
5170 List *useful_pathkeys_list = NIL;
5171 List *useful_pathkeys = NIL;
5172
5173 /* always include the given 'needed_pathkeys' */
5174 useful_pathkeys_list = lappend(useful_pathkeys_list,
5175 needed_pathkeys);
5176
5178 return useful_pathkeys_list;
5179
5180 /*
5181 * Scan the given 'path_pathkeys' and construct a list of PathKey nodes
5182 * that match 'needed_pathkeys', but only up to the longest matching
5183 * prefix.
5184 *
5185 * When we have DISTINCT ON, we must ensure that the resulting pathkey
5186 * list matches initial distinctClause pathkeys; otherwise, it won't have
5187 * the desired behavior.
5188 */
5189 foreach_node(PathKey, pathkey, path_pathkeys)
5190 {
5191 /*
5192 * The PathKey nodes are canonical, so they can be checked for
5193 * equality by simple pointer comparison.
5194 */
5195 if (!list_member_ptr(needed_pathkeys, pathkey))
5196 break;
5197 if (root->parse->hasDistinctOn &&
5198 !list_member_ptr(root->distinct_pathkeys, pathkey))
5199 break;
5200
5201 useful_pathkeys = lappend(useful_pathkeys, pathkey);
5202 }
5203
5204 /* If no match at all, no point in reordering needed_pathkeys */
5205 if (useful_pathkeys == NIL)
5206 return useful_pathkeys_list;
5207
5208 /*
5209 * If not full match, the resulting pathkey list is not useful without
5210 * incremental sort.
5211 */
5212 if (list_length(useful_pathkeys) < list_length(needed_pathkeys) &&
5214 return useful_pathkeys_list;
5215
5216 /* Append the remaining PathKey nodes in needed_pathkeys */
5217 useful_pathkeys = list_concat_unique_ptr(useful_pathkeys,
5218 needed_pathkeys);
5219
5220 /*
5221 * If the resulting pathkey list is the same as the 'needed_pathkeys',
5222 * just drop it.
5223 */
5224 if (compare_pathkeys(needed_pathkeys,
5225 useful_pathkeys) == PATHKEYS_EQUAL)
5226 return useful_pathkeys_list;
5227
5228 useful_pathkeys_list = lappend(useful_pathkeys_list,
5229 useful_pathkeys);
5230
5231 return useful_pathkeys_list;
5232}
5233
5234/*
5235 * create_ordered_paths
5236 *
5237 * Build a new upperrel containing Paths for ORDER BY evaluation.
5238 *
5239 * All paths in the result must satisfy the ORDER BY ordering.
5240 * The only new paths we need consider are an explicit full sort
5241 * and incremental sort on the cheapest-total existing path.
5242 *
5243 * input_rel: contains the source-data Paths
5244 * target: the output tlist the result Paths must emit
5245 * limit_tuples: estimated bound on the number of output tuples,
5246 * or -1 if no LIMIT or couldn't estimate
5247 *
5248 * XXX This only looks at sort_pathkeys. I wonder if it needs to look at the
5249 * other pathkeys (grouping, ...) like generate_useful_gather_paths.
5250 */
5251static RelOptInfo *
5253 RelOptInfo *input_rel,
5254 PathTarget *target,
5255 bool target_parallel_safe,
5256 double limit_tuples)
5257{
5258 Path *cheapest_input_path = input_rel->cheapest_total_path;
5259 RelOptInfo *ordered_rel;
5260 ListCell *lc;
5261
5262 /* For now, do all work in the (ORDERED, NULL) upperrel */
5263 ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
5264
5265 /*
5266 * If the input relation is not parallel-safe, then the ordered relation
5267 * can't be parallel-safe, either. Otherwise, it's parallel-safe if the
5268 * target list is parallel-safe.
5269 */
5270 if (input_rel->consider_parallel && target_parallel_safe)
5271 ordered_rel->consider_parallel = true;
5272
5273 /*
5274 * If the input rel belongs to a single FDW, so does the ordered_rel.
5275 */
5276 ordered_rel->serverid = input_rel->serverid;
5277 ordered_rel->userid = input_rel->userid;
5278 ordered_rel->useridiscurrent = input_rel->useridiscurrent;
5279 ordered_rel->fdwroutine = input_rel->fdwroutine;
5280
5281 foreach(lc, input_rel->pathlist)
5282 {
5283 Path *input_path = (Path *) lfirst(lc);
5284 Path *sorted_path;
5285 bool is_sorted;
5286 int presorted_keys;
5287
5288 is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
5289 input_path->pathkeys, &presorted_keys);
5290
5291 if (is_sorted)
5292 sorted_path = input_path;
5293 else
5294 {
5295 /*
5296 * Try at least sorting the cheapest path and also try
5297 * incrementally sorting any path which is partially sorted
5298 * already (no need to deal with paths which have presorted keys
5299 * when incremental sort is disabled unless it's the cheapest
5300 * input path).
5301 */
5302 if (input_path != cheapest_input_path &&
5303 (presorted_keys == 0 || !enable_incremental_sort))
5304 continue;
5305
5306 /*
5307 * We've no need to consider both a sort and incremental sort.
5308 * We'll just do a sort if there are no presorted keys and an
5309 * incremental sort when there are presorted keys.
5310 */
5311 if (presorted_keys == 0 || !enable_incremental_sort)
5312 sorted_path = (Path *) create_sort_path(root,
5313 ordered_rel,
5314 input_path,
5315 root->sort_pathkeys,
5316 limit_tuples);
5317 else
5318 sorted_path = (Path *) create_incremental_sort_path(root,
5319 ordered_rel,
5320 input_path,
5321 root->sort_pathkeys,
5322 presorted_keys,
5323 limit_tuples);
5324 }
5325
5326 /*
5327 * If the pathtarget of the result path has different expressions from
5328 * the target to be applied, a projection step is needed.
5329 */
5330 if (!equal(sorted_path->pathtarget->exprs, target->exprs))
5331 sorted_path = apply_projection_to_path(root, ordered_rel,
5332 sorted_path, target);
5333
5334 add_path(ordered_rel, sorted_path);
5335 }
5336
5337 /*
5338 * generate_gather_paths() will have already generated a simple Gather
5339 * path for the best parallel path, if any, and the loop above will have
5340 * considered sorting it. Similarly, generate_gather_paths() will also
5341 * have generated order-preserving Gather Merge plans which can be used
5342 * without sorting if they happen to match the sort_pathkeys, and the loop
5343 * above will have handled those as well. However, there's one more
5344 * possibility: it may make sense to sort the cheapest partial path or
5345 * incrementally sort any partial path that is partially sorted according
5346 * to the required output order and then use Gather Merge.
5347 */
5348 if (ordered_rel->consider_parallel && root->sort_pathkeys != NIL &&
5349 input_rel->partial_pathlist != NIL)
5350 {
5351 Path *cheapest_partial_path;
5352
5353 cheapest_partial_path = linitial(input_rel->partial_pathlist);
5354
5355 foreach(lc, input_rel->partial_pathlist)
5356 {
5357 Path *input_path = (Path *) lfirst(lc);
5358 Path *sorted_path;
5359 bool is_sorted;
5360 int presorted_keys;
5361 double total_groups;
5362
5363 is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
5364 input_path->pathkeys,
5365 &presorted_keys);
5366
5367 if (is_sorted)
5368 continue;
5369
5370 /*
5371 * Try at least sorting the cheapest path and also try
5372 * incrementally sorting any path which is partially sorted
5373 * already (no need to deal with paths which have presorted keys
5374 * when incremental sort is disabled unless it's the cheapest
5375 * partial path).
5376 */
5377 if (input_path != cheapest_partial_path &&
5378 (presorted_keys == 0 || !enable_incremental_sort))
5379 continue;
5380
5381 /*
5382 * We've no need to consider both a sort and incremental sort.
5383 * We'll just do a sort if there are no presorted keys and an
5384 * incremental sort when there are presorted keys.
5385 */
5386 if (presorted_keys == 0 || !enable_incremental_sort)
5387 sorted_path = (Path *) create_sort_path(root,
5388 ordered_rel,
5389 input_path,
5390 root->sort_pathkeys,
5391 limit_tuples);
5392 else
5393 sorted_path = (Path *) create_incremental_sort_path(root,
5394 ordered_rel,
5395 input_path,
5396 root->sort_pathkeys,
5397 presorted_keys,
5398 limit_tuples);
5399 total_groups = compute_gather_rows(sorted_path);
5400 sorted_path = (Path *)
5401 create_gather_merge_path(root, ordered_rel,
5402 sorted_path,
5403 sorted_path->pathtarget,
5404 root->sort_pathkeys, NULL,
5405 &total_groups);
5406
5407 /*
5408 * If the pathtarget of the result path has different expressions
5409 * from the target to be applied, a projection step is needed.
5410 */
5411 if (!equal(sorted_path->pathtarget->exprs, target->exprs))
5412 sorted_path = apply_projection_to_path(root, ordered_rel,
5413 sorted_path, target);
5414
5415 add_path(ordered_rel, sorted_path);
5416 }
5417 }
5418
5419 /*
5420 * If there is an FDW that's responsible for all baserels of the query,
5421 * let it consider adding ForeignPaths.
5422 */
5423 if (ordered_rel->fdwroutine &&
5424 ordered_rel->fdwroutine->GetForeignUpperPaths)
5425 ordered_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_ORDERED,
5426 input_rel, ordered_rel,
5427 NULL);
5428
5429 /* Let extensions possibly add some more paths */
5431 (*create_upper_paths_hook) (root, UPPERREL_ORDERED,
5432 input_rel, ordered_rel, NULL);
5433
5434 /*
5435 * No need to bother with set_cheapest here; grouping_planner does not
5436 * need us to do it.
5437 */
5438 Assert(ordered_rel->pathlist != NIL);
5439
5440 return ordered_rel;
5441}
5442
5443
5444/*
5445 * make_group_input_target
5446 * Generate appropriate PathTarget for initial input to grouping nodes.
5447 *
5448 * If there is grouping or aggregation, the scan/join subplan cannot emit
5449 * the query's final targetlist; for example, it certainly can't emit any
5450 * aggregate function calls. This routine generates the correct target
5451 * for the scan/join subplan.
5452 *
5453 * The query target list passed from the parser already contains entries
5454 * for all ORDER BY and GROUP BY expressions, but it will not have entries
5455 * for variables used only in HAVING clauses; so we need to add those
5456 * variables to the subplan target list. Also, we flatten all expressions
5457 * except GROUP BY items into their component variables; other expressions
5458 * will be computed by the upper plan nodes rather than by the subplan.
5459 * For example, given a query like
5460 * SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
5461 * we want to pass this targetlist to the subplan:
5462 * a+b,c,d
5463 * where the a+b target will be used by the Sort/Group steps, and the
5464 * other targets will be used for computing the final results.
5465 *
5466 * 'final_target' is the query's final target list (in PathTarget form)
5467 *
5468 * The result is the PathTarget to be computed by the Paths returned from
5469 * query_planner().
5470 */
5471static PathTarget *
5473{
5474 Query *parse = root->parse;
5475 PathTarget *input_target;
5476 List *non_group_cols;
5477 List *non_group_vars;
5478 int i;
5479 ListCell *lc;
5480
5481 /*
5482 * We must build a target containing all grouping columns, plus any other
5483 * Vars mentioned in the query's targetlist and HAVING qual.
5484 */
5485 input_target = create_empty_pathtarget();
5486 non_group_cols = NIL;
5487
5488 i = 0;
5489 foreach(lc, final_target->exprs)
5490 {
5491 Expr *expr = (Expr *) lfirst(lc);
5492 Index sgref = get_pathtarget_sortgroupref(final_target, i);
5493
5494 if (sgref && root->processed_groupClause &&
5496 root->processed_groupClause) != NULL)
5497 {
5498 /*
5499 * It's a grouping column, so add it to the input target as-is.
5500 *
5501 * Note that the target is logically below the grouping step. So
5502 * with grouping sets we need to remove the RT index of the
5503 * grouping step if there is any from the target expression.
5504 */
5505 if (parse->hasGroupRTE && parse->groupingSets != NIL)
5506 {
5507 Assert(root->group_rtindex > 0);
5508 expr = (Expr *)
5509 remove_nulling_relids((Node *) expr,
5510 bms_make_singleton(root->group_rtindex),
5511 NULL);
5512 }
5513 add_column_to_pathtarget(input_target, expr, sgref);
5514 }
5515 else
5516 {
5517 /*
5518 * Non-grouping column, so just remember the expression for later
5519 * call to pull_var_clause.
5520 */
5521 non_group_cols = lappend(non_group_cols, expr);
5522 }
5523
5524 i++;
5525 }
5526
5527 /*
5528 * If there's a HAVING clause, we'll need the Vars it uses, too.
5529 */
5530 if (parse->havingQual)
5531 non_group_cols = lappend(non_group_cols, parse->havingQual);
5532
5533 /*
5534 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
5535 * add them to the input target if not already present. (A Var used
5536 * directly as a GROUP BY item will be present already.) Note this
5537 * includes Vars used in resjunk items, so we are covering the needs of
5538 * ORDER BY and window specifications. Vars used within Aggrefs and
5539 * WindowFuncs will be pulled out here, too.
5540 *
5541 * Note that the target is logically below the grouping step. So with
5542 * grouping sets we need to remove the RT index of the grouping step if
5543 * there is any from the non-group Vars.
5544 */
5545 non_group_vars = pull_var_clause((Node *) non_group_cols,
5549 if (parse->hasGroupRTE && parse->groupingSets != NIL)
5550 {
5551 Assert(root->group_rtindex > 0);
5552 non_group_vars = (List *)
5553 remove_nulling_relids((Node *) non_group_vars,
5554 bms_make_singleton(root->group_rtindex),
5555 NULL);
5556 }
5557 add_new_columns_to_pathtarget(input_target, non_group_vars);
5558
5559 /* clean up cruft */
5560 list_free(non_group_vars);
5561 list_free(non_group_cols);
5562
5563 /* XXX this causes some redundant cost calculation ... */
5564 return set_pathtarget_cost_width(root, input_target);
5565}
5566
5567/*
5568 * make_partial_grouping_target
5569 * Generate appropriate PathTarget for output of partial aggregate
5570 * (or partial grouping, if there are no aggregates) nodes.
5571 *
5572 * A partial aggregation node needs to emit all the same aggregates that
5573 * a regular aggregation node would, plus any aggregates used in HAVING;
5574 * except that the Aggref nodes should be marked as partial aggregates.
5575 *
5576 * In addition, we'd better emit any Vars and PlaceHolderVars that are
5577 * used outside of Aggrefs in the aggregation tlist and HAVING. (Presumably,
5578 * these would be Vars that are grouped by or used in grouping expressions.)
5579 *
5580 * grouping_target is the tlist to be emitted by the topmost aggregation step.
5581 * havingQual represents the HAVING clause.
5582 */
5583static PathTarget *
5585 PathTarget *grouping_target,
5586 Node *havingQual)
5587{
5588 PathTarget *partial_target;
5589 List *non_group_cols;
5590 List *non_group_exprs;
5591 int i;
5592 ListCell *lc;
5593
5594 partial_target = create_empty_pathtarget();
5595 non_group_cols = NIL;
5596
5597 i = 0;
5598 foreach(lc, grouping_target->exprs)
5599 {
5600 Expr *expr = (Expr *) lfirst(lc);
5601 Index sgref = get_pathtarget_sortgroupref(grouping_target, i);
5602
5603 if (sgref && root->processed_groupClause &&
5605 root->processed_groupClause) != NULL)
5606 {
5607 /*
5608 * It's a grouping column, so add it to the partial_target as-is.
5609 * (This allows the upper agg step to repeat the grouping calcs.)
5610 */
5611 add_column_to_pathtarget(partial_target, expr, sgref);
5612 }
5613 else
5614 {
5615 /*
5616 * Non-grouping column, so just remember the expression for later
5617 * call to pull_var_clause.
5618 */
5619 non_group_cols = lappend(non_group_cols, expr);
5620 }
5621
5622 i++;
5623 }
5624
5625 /*
5626 * If there's a HAVING clause, we'll need the Vars/Aggrefs it uses, too.
5627 */
5628 if (havingQual)
5629 non_group_cols = lappend(non_group_cols, havingQual);
5630
5631 /*
5632 * Pull out all the Vars, PlaceHolderVars, and Aggrefs mentioned in
5633 * non-group cols (plus HAVING), and add them to the partial_target if not
5634 * already present. (An expression used directly as a GROUP BY item will
5635 * be present already.) Note this includes Vars used in resjunk items, so
5636 * we are covering the needs of ORDER BY and window specifications.
5637 */
5638 non_group_exprs = pull_var_clause((Node *) non_group_cols,
5642
5643 add_new_columns_to_pathtarget(partial_target, non_group_exprs);
5644
5645 /*
5646 * Adjust Aggrefs to put them in partial mode. At this point all Aggrefs
5647 * are at the top level of the target list, so we can just scan the list
5648 * rather than recursing through the expression trees.
5649 */
5650 foreach(lc, partial_target->exprs)
5651 {
5652 Aggref *aggref = (Aggref *) lfirst(lc);
5653
5654 if (IsA(aggref, Aggref))
5655 {
5656 Aggref *newaggref;
5657
5658 /*
5659 * We shouldn't need to copy the substructure of the Aggref node,
5660 * but flat-copy the node itself to avoid damaging other trees.
5661 */
5662 newaggref = makeNode(Aggref);
5663 memcpy(newaggref, aggref, sizeof(Aggref));
5664
5665 /* For now, assume serialization is required */
5667
5668 lfirst(lc) = newaggref;
5669 }
5670 }
5671
5672 /* clean up cruft */
5673 list_free(non_group_exprs);
5674 list_free(non_group_cols);
5675
5676 /* XXX this causes some redundant cost calculation ... */
5677 return set_pathtarget_cost_width(root, partial_target);
5678}
5679
5680/*
5681 * mark_partial_aggref
5682 * Adjust an Aggref to make it represent a partial-aggregation step.
5683 *
5684 * The Aggref node is modified in-place; caller must do any copying required.
5685 */
5686void
5688{
5689 /* aggtranstype should be computed by this point */
5690 Assert(OidIsValid(agg->aggtranstype));
5691 /* ... but aggsplit should still be as the parser left it */
5692 Assert(agg->aggsplit == AGGSPLIT_SIMPLE);
5693
5694 /* Mark the Aggref with the intended partial-aggregation mode */
5695 agg->aggsplit = aggsplit;
5696
5697 /*
5698 * Adjust result type if needed. Normally, a partial aggregate returns
5699 * the aggregate's transition type; but if that's INTERNAL and we're
5700 * serializing, it returns BYTEA instead.
5701 */
5702 if (DO_AGGSPLIT_SKIPFINAL(aggsplit))
5703 {
5704 if (agg->aggtranstype == INTERNALOID && DO_AGGSPLIT_SERIALIZE(aggsplit))
5705 agg->aggtype = BYTEAOID;
5706 else
5707 agg->aggtype = agg->aggtranstype;
5708 }
5709}
5710
5711/*
5712 * postprocess_setop_tlist
5713 * Fix up targetlist returned by plan_set_operations().
5714 *
5715 * We need to transpose sort key info from the orig_tlist into new_tlist.
5716 * NOTE: this would not be good enough if we supported resjunk sort keys
5717 * for results of set operations --- then, we'd need to project a whole
5718 * new tlist to evaluate the resjunk columns. For now, just ereport if we
5719 * find any resjunk columns in orig_tlist.
5720 */
5721static List *
5722postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
5723{
5724 ListCell *l;
5725 ListCell *orig_tlist_item = list_head(orig_tlist);
5726
5727 foreach(l, new_tlist)
5728 {
5729 TargetEntry *new_tle = lfirst_node(TargetEntry, l);
5730 TargetEntry *orig_tle;
5731
5732 /* ignore resjunk columns in setop result */
5733 if (new_tle->resjunk)
5734 continue;
5735
5736 Assert(orig_tlist_item != NULL);
5737 orig_tle = lfirst_node(TargetEntry, orig_tlist_item);
5738 orig_tlist_item = lnext(orig_tlist, orig_tlist_item);
5739 if (orig_tle->resjunk) /* should not happen */
5740 elog(ERROR, "resjunk output columns are not implemented");
5741 Assert(new_tle->resno == orig_tle->resno);
5742 new_tle->ressortgroupref = orig_tle->ressortgroupref;
5743 }
5744 if (orig_tlist_item != NULL)
5745 elog(ERROR, "resjunk output columns are not implemented");
5746 return new_tlist;
5747}
5748
5749/*
5750 * optimize_window_clauses
5751 * Call each WindowFunc's prosupport function to see if we're able to
5752 * make any adjustments to any of the WindowClause's so that the executor
5753 * can execute the window functions in a more optimal way.
5754 *
5755 * Currently we only allow adjustments to the WindowClause's frameOptions. We
5756 * may allow more things to be done here in the future.
5757 */
5758static void
5760{
5761 List *windowClause = root->parse->windowClause;
5762 ListCell *lc;
5763
5764 foreach(lc, windowClause)
5765 {
5767 ListCell *lc2;
5768 int optimizedFrameOptions = 0;
5769
5770 Assert(wc->winref <= wflists->maxWinRef);
5771
5772 /* skip any WindowClauses that have no WindowFuncs */
5773 if (wflists->windowFuncs[wc->winref] == NIL)
5774 continue;
5775
5776 foreach(lc2, wflists->windowFuncs[wc->winref])
5777 {
5780 WindowFunc *wfunc = lfirst_node(WindowFunc, lc2);
5781 Oid prosupport;
5782
5783 prosupport = get_func_support(wfunc->winfnoid);
5784
5785 /* Check if there's a support function for 'wfunc' */
5786 if (!OidIsValid(prosupport))
5787 break; /* can't optimize this WindowClause */
5788
5789 req.type = T_SupportRequestOptimizeWindowClause;
5790 req.window_clause = wc;
5791 req.window_func = wfunc;
5792 req.frameOptions = wc->frameOptions;
5793
5794 /* call the support function */
5797 PointerGetDatum(&req)));
5798
5799 /*
5800 * Skip to next WindowClause if the support function does not
5801 * support this request type.
5802 */
5803 if (res == NULL)
5804 break;
5805
5806 /*
5807 * Save these frameOptions for the first WindowFunc for this
5808 * WindowClause.
5809 */
5810 if (foreach_current_index(lc2) == 0)
5811 optimizedFrameOptions = res->frameOptions;
5812
5813 /*
5814 * On subsequent WindowFuncs, if the frameOptions are not the same
5815 * then we're unable to optimize the frameOptions for this
5816 * WindowClause.
5817 */
5818 else if (optimizedFrameOptions != res->frameOptions)
5819 break; /* skip to the next WindowClause, if any */
5820 }
5821
5822 /* adjust the frameOptions if all WindowFunc's agree that it's ok */
5823 if (lc2 == NULL && wc->frameOptions != optimizedFrameOptions)
5824 {
5825 ListCell *lc3;
5826
5827 /* apply the new frame options */
5828 wc->frameOptions = optimizedFrameOptions;
5829
5830 /*
5831 * We now check to see if changing the frameOptions has caused
5832 * this WindowClause to be a duplicate of some other WindowClause.
5833 * This can only happen if we have multiple WindowClauses, so
5834 * don't bother if there's only 1.
5835 */
5836 if (list_length(windowClause) == 1)
5837 continue;
5838
5839 /*
5840 * Do the duplicate check and reuse the existing WindowClause if
5841 * we find a duplicate.
5842 */
5843 foreach(lc3, windowClause)
5844 {
5845 WindowClause *existing_wc = lfirst_node(WindowClause, lc3);
5846
5847 /* skip over the WindowClause we're currently editing */
5848 if (existing_wc == wc)
5849 continue;
5850
5851 /*
5852 * Perform the same duplicate check that is done in
5853 * transformWindowFuncCall.
5854 */
5855 if (equal(wc->partitionClause, existing_wc->partitionClause) &&
5856 equal(wc->orderClause, existing_wc->orderClause) &&
5857 wc->frameOptions == existing_wc->frameOptions &&
5858 equal(wc->startOffset, existing_wc->startOffset) &&
5859 equal(wc->endOffset, existing_wc->endOffset))
5860 {
5861 ListCell *lc4;
5862
5863 /*
5864 * Now move each WindowFunc in 'wc' into 'existing_wc'.
5865 * This required adjusting each WindowFunc's winref and
5866 * moving the WindowFuncs in 'wc' to the list of
5867 * WindowFuncs in 'existing_wc'.
5868 */
5869 foreach(lc4, wflists->windowFuncs[wc->winref])
5870 {
5871 WindowFunc *wfunc = lfirst_node(WindowFunc, lc4);
5872
5873 wfunc->winref = existing_wc->winref;
5874 }
5875
5876 /* move list items */
5877 wflists->windowFuncs[existing_wc->winref] = list_concat(wflists->windowFuncs[existing_wc->winref],
5878 wflists->windowFuncs[wc->winref]);
5879 wflists->windowFuncs[wc->winref] = NIL;
5880
5881 /*
5882 * transformWindowFuncCall() should have made sure there
5883 * are no other duplicates, so we needn't bother looking
5884 * any further.
5885 */
5886 break;
5887 }
5888 }
5889 }
5890 }
5891}
5892
5893/*
5894 * select_active_windows
5895 * Create a list of the "active" window clauses (ie, those referenced
5896 * by non-deleted WindowFuncs) in the order they are to be executed.
5897 */
5898static List *
5900{
5901 List *windowClause = root->parse->windowClause;
5902 List *result = NIL;
5903 ListCell *lc;
5904 int nActive = 0;
5906 * list_length(windowClause));
5907
5908 /* First, construct an array of the active windows */
5909 foreach(lc, windowClause)
5910 {
5912
5913 /* It's only active if wflists shows some related WindowFuncs */
5914 Assert(wc->winref <= wflists->maxWinRef);
5915 if (wflists->windowFuncs[wc->winref] == NIL)
5916 continue;
5917
5918 actives[nActive].wc = wc; /* original clause */
5919
5920 /*
5921 * For sorting, we want the list of partition keys followed by the
5922 * list of sort keys. But pathkeys construction will remove duplicates
5923 * between the two, so we can as well (even though we can't detect all
5924 * of the duplicates, since some may come from ECs - that might mean
5925 * we miss optimization chances here). We must, however, ensure that
5926 * the order of entries is preserved with respect to the ones we do
5927 * keep.
5928 *
5929 * partitionClause and orderClause had their own duplicates removed in
5930 * parse analysis, so we're only concerned here with removing
5931 * orderClause entries that also appear in partitionClause.
5932 */
5933 actives[nActive].uniqueOrder =
5935 wc->orderClause);
5936 nActive++;
5937 }
5938
5939 /*
5940 * Sort active windows by their partitioning/ordering clauses, ignoring
5941 * any framing clauses, so that the windows that need the same sorting are
5942 * adjacent in the list. When we come to generate paths, this will avoid
5943 * inserting additional Sort nodes.
5944 *
5945 * This is how we implement a specific requirement from the SQL standard,
5946 * which says that when two or more windows are order-equivalent (i.e.
5947 * have matching partition and order clauses, even if their names or
5948 * framing clauses differ), then all peer rows must be presented in the
5949 * same order in all of them. If we allowed multiple sort nodes for such
5950 * cases, we'd risk having the peer rows end up in different orders in
5951 * equivalent windows due to sort instability. (See General Rule 4 of
5952 * <window clause> in SQL2008 - SQL2016.)
5953 *
5954 * Additionally, if the entire list of clauses of one window is a prefix
5955 * of another, put first the window with stronger sorting requirements.
5956 * This way we will first sort for stronger window, and won't have to sort
5957 * again for the weaker one.
5958 */
5959 qsort(actives, nActive, sizeof(WindowClauseSortData), common_prefix_cmp);
5960
5961 /* build ordered list of the original WindowClause nodes */
5962 for (int i = 0; i < nActive; i++)
5963 result = lappend(result, actives[i].wc);
5964
5965 pfree(actives);
5966
5967 return result;
5968}
5969
5970/*
5971 * name_active_windows
5972 * Ensure all active windows have unique names.
5973 *
5974 * The parser will have checked that user-assigned window names are unique
5975 * within the Query. Here we assign made-up names to any unnamed
5976 * WindowClauses for the benefit of EXPLAIN. (We don't want to do this
5977 * at parse time, because it'd mess up decompilation of views.)
5978 *
5979 * activeWindows: result of select_active_windows
5980 */
5981static void
5983{
5984 int next_n = 1;
5985 char newname[16];
5986 ListCell *lc;
5987
5988 foreach(lc, activeWindows)
5989 {
5991
5992 /* Nothing to do if it has a name already. */
5993 if (wc->name)
5994 continue;
5995
5996 /* Select a name not currently present in the list. */
5997 for (;;)
5998 {
5999 ListCell *lc2;
6000
6001 snprintf(newname, sizeof(newname), "w%d", next_n++);
6002 foreach(lc2, activeWindows)
6003 {
6005
6006 if (wc2->name && strcmp(wc2->name, newname) == 0)
6007 break; /* matched */
6008 }
6009 if (lc2 == NULL)
6010 break; /* reached the end with no match */
6011 }
6012 wc->name = pstrdup(newname);
6013 }
6014}
6015
6016/*
6017 * common_prefix_cmp
6018 * QSort comparison function for WindowClauseSortData
6019 *
6020 * Sort the windows by the required sorting clauses. First, compare the sort
6021 * clauses themselves. Second, if one window's clauses are a prefix of another
6022 * one's clauses, put the window with more sort clauses first.
6023 *
6024 * We purposefully sort by the highest tleSortGroupRef first. Since
6025 * tleSortGroupRefs are assigned for the query's DISTINCT and ORDER BY first
6026 * and because here we sort the lowest tleSortGroupRefs last, if a
6027 * WindowClause is sharing a tleSortGroupRef with the query's DISTINCT or
6028 * ORDER BY clause, this makes it more likely that the final WindowAgg will
6029 * provide presorted input for the query's DISTINCT or ORDER BY clause, thus
6030 * reducing the total number of sorts required for the query.
6031 */
6032static int
6033common_prefix_cmp(const void *a, const void *b)
6034{
6035 const WindowClauseSortData *wcsa = a;
6036 const WindowClauseSortData *wcsb = b;
6037 ListCell *item_a;
6038 ListCell *item_b;
6039
6040 forboth(item_a, wcsa->uniqueOrder, item_b, wcsb->uniqueOrder)
6041 {
6044
6045 if (sca->tleSortGroupRef > scb->tleSortGroupRef)
6046 return -1;
6047 else if (sca->tleSortGroupRef < scb->tleSortGroupRef)
6048 return 1;
6049 else if (sca->sortop > scb->sortop)
6050 return -1;
6051 else if (sca->sortop < scb->sortop)
6052 return 1;
6053 else if (sca->nulls_first && !scb->nulls_first)
6054 return -1;
6055 else if (!sca->nulls_first && scb->nulls_first)
6056 return 1;
6057 /* no need to compare eqop, since it is fully determined by sortop */
6058 }
6059
6060 if (list_length(wcsa->uniqueOrder) > list_length(wcsb->uniqueOrder))
6061 return -1;
6062 else if (list_length(wcsa->uniqueOrder) < list_length(wcsb->uniqueOrder))
6063 return 1;
6064
6065 return 0;
6066}
6067
6068/*
6069 * make_window_input_target
6070 * Generate appropriate PathTarget for initial input to WindowAgg nodes.
6071 *
6072 * When the query has window functions, this function computes the desired
6073 * target to be computed by the node just below the first WindowAgg.
6074 * This tlist must contain all values needed to evaluate the window functions,
6075 * compute the final target list, and perform any required final sort step.
6076 * If multiple WindowAggs are needed, each intermediate one adds its window
6077 * function results onto this base tlist; only the topmost WindowAgg computes
6078 * the actual desired target list.
6079 *
6080 * This function is much like make_group_input_target, though not quite enough
6081 * like it to share code. As in that function, we flatten most expressions
6082 * into their component variables. But we do not want to flatten window
6083 * PARTITION BY/ORDER BY clauses, since that might result in multiple
6084 * evaluations of them, which would be bad (possibly even resulting in
6085 * inconsistent answers, if they contain volatile functions).
6086 * Also, we must not flatten GROUP BY clauses that were left unflattened by
6087 * make_group_input_target, because we may no longer have access to the
6088 * individual Vars in them.
6089 *
6090 * Another key difference from make_group_input_target is that we don't
6091 * flatten Aggref expressions, since those are to be computed below the
6092 * window functions and just referenced like Vars above that.
6093 *
6094 * 'final_target' is the query's final target list (in PathTarget form)
6095 * 'activeWindows' is the list of active windows previously identified by
6096 * select_active_windows.
6097 *
6098 * The result is the PathTarget to be computed by the plan node immediately
6099 * below the first WindowAgg node.
6100 */
6101static PathTarget *
6103 PathTarget *final_target,
6104 List *activeWindows)
6105{
6106 PathTarget *input_target;
6107 Bitmapset *sgrefs;
6108 List *flattenable_cols;
6109 List *flattenable_vars;
6110 int i;
6111 ListCell *lc;
6112
6113 Assert(root->parse->hasWindowFuncs);
6114
6115 /*
6116 * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
6117 * into a bitmapset for convenient reference below.
6118 */
6119 sgrefs = NULL;
6120 foreach(lc, activeWindows)
6121 {
6123 ListCell *lc2;
6124
6125 foreach(lc2, wc->partitionClause)
6126 {
6128
6129 sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
6130 }
6131 foreach(lc2, wc->orderClause)
6132 {
6134
6135 sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
6136 }
6137 }
6138
6139 /* Add in sortgroupref numbers of GROUP BY clauses, too */
6140 foreach(lc, root->processed_groupClause)
6141 {
6143
6144 sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
6145 }
6146
6147 /*
6148 * Construct a target containing all the non-flattenable targetlist items,
6149 * and save aside the others for a moment.
6150 */
6151 input_target = create_empty_pathtarget();
6152 flattenable_cols = NIL;
6153
6154 i = 0;
6155 foreach(lc, final_target->exprs)
6156 {
6157 Expr *expr = (Expr *) lfirst(lc);
6158 Index sgref = get_pathtarget_sortgroupref(final_target, i);
6159
6160 /*
6161 * Don't want to deconstruct window clauses or GROUP BY items. (Note
6162 * that such items can't contain window functions, so it's okay to
6163 * compute them below the WindowAgg nodes.)
6164 */
6165 if (sgref != 0 && bms_is_member(sgref, sgrefs))
6166 {
6167 /*
6168 * Don't want to deconstruct this value, so add it to the input
6169 * target as-is.
6170 */
6171 add_column_to_pathtarget(input_target, expr, sgref);
6172 }
6173 else
6174 {
6175 /*
6176 * Column is to be flattened, so just remember the expression for
6177 * later call to pull_var_clause.
6178 */
6179 flattenable_cols = lappend(flattenable_cols, expr);
6180 }
6181
6182 i++;
6183 }
6184
6185 /*
6186 * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
6187 * add them to the input target if not already present. (Some might be
6188 * there already because they're used directly as window/group clauses.)
6189 *
6190 * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that any
6191 * Aggrefs are placed in the Agg node's tlist and not left to be computed
6192 * at higher levels. On the other hand, we should recurse into
6193 * WindowFuncs to make sure their input expressions are available.
6194 */
6195 flattenable_vars = pull_var_clause((Node *) flattenable_cols,
6199 add_new_columns_to_pathtarget(input_target, flattenable_vars);
6200
6201 /* clean up cruft */
6202 list_free(flattenable_vars);
6203 list_free(flattenable_cols);
6204
6205 /* XXX this causes some redundant cost calculation ... */
6206 return set_pathtarget_cost_width(root, input_target);
6207}
6208
6209/*
6210 * make_pathkeys_for_window
6211 * Create a pathkeys list describing the required input ordering
6212 * for the given WindowClause.
6213 *
6214 * Modifies wc's partitionClause to remove any clauses which are deemed
6215 * redundant by the pathkey logic.
6216 *
6217 * The required ordering is first the PARTITION keys, then the ORDER keys.
6218 * In the future we might try to implement windowing using hashing, in which
6219 * case the ordering could be relaxed, but for now we always sort.
6220 */
6221static List *
6223 List *tlist)
6224{
6225 List *window_pathkeys = NIL;
6226
6227 /* Throw error if can't sort */
6229 ereport(ERROR,
6230 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
6231 errmsg("could not implement window PARTITION BY"),
6232 errdetail("Window partitioning columns must be of sortable datatypes.")));
6234 ereport(ERROR,
6235 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
6236 errmsg("could not implement window ORDER BY"),
6237 errdetail("Window ordering columns must be of sortable datatypes.")));
6238
6239 /*
6240 * First fetch the pathkeys for the PARTITION BY clause. We can safely
6241 * remove any clauses from the wc->partitionClause for redundant pathkeys.
6242 */
6243 if (wc->partitionClause != NIL)
6244 {
6245 bool sortable;
6246
6248 &wc->partitionClause,
6249 tlist,
6250 true,
6251 false,
6252 &sortable,
6253 false);
6254
6255 Assert(sortable);
6256 }
6257
6258 /*
6259 * In principle, we could also consider removing redundant ORDER BY items
6260 * too as doing so does not alter the result of peer row checks done by
6261 * the executor. However, we must *not* remove the ordering column for
6262 * RANGE OFFSET cases, as the executor needs that for in_range tests even
6263 * if it's known to be equal to some partitioning column.
6264 */
6265 if (wc->orderClause != NIL)
6266 {
6267 List *orderby_pathkeys;
6268
6269 orderby_pathkeys = make_pathkeys_for_sortclauses(root,
6270 wc->orderClause,
6271 tlist);
6272
6273 /* Okay, make the combined pathkeys */
6274 if (window_pathkeys != NIL)
6275 window_pathkeys = append_pathkeys(window_pathkeys, orderby_pathkeys);
6276 else
6277 window_pathkeys = orderby_pathkeys;
6278 }
6279
6280 return window_pathkeys;
6281}
6282
6283/*
6284 * make_sort_input_target
6285 * Generate appropriate PathTarget for initial input to Sort step.
6286 *
6287 * If the query has ORDER BY, this function chooses the target to be computed
6288 * by the node just below the Sort (and DISTINCT, if any, since Unique can't
6289 * project) steps. This might or might not be identical to the query's final
6290 * output target.
6291 *
6292 * The main argument for keeping the sort-input tlist the same as the final
6293 * is that we avoid a separate projection node (which will be needed if
6294 * they're different, because Sort can't project). However, there are also
6295 * advantages to postponing tlist evaluation till after the Sort: it ensures
6296 * a consistent order of evaluation for any volatile functions in the tlist,
6297 * and if there's also a LIMIT, we can stop the query without ever computing
6298 * tlist functions for later rows, which is beneficial for both volatile and
6299 * expensive functions.
6300 *
6301 * Our current policy is to postpone volatile expressions till after the sort
6302 * unconditionally (assuming that that's possible, ie they are in plain tlist
6303 * columns and not ORDER BY/GROUP BY/DISTINCT columns). We also prefer to
6304 * postpone set-returning expressions, because running them beforehand would
6305 * bloat the sort dataset, and because it might cause unexpected output order
6306 * if the sort isn't stable. However there's a constraint on that: all SRFs
6307 * in the tlist should be evaluated at the same plan step, so that they can
6308 * run in sync in nodeProjectSet. So if any SRFs are in sort columns, we
6309 * mustn't postpone any SRFs. (Note that in principle that policy should
6310 * probably get applied to the group/window input targetlists too, but we
6311 * have not done that historically.) Lastly, expensive expressions are
6312 * postponed if there is a LIMIT, or if root->tuple_fraction shows that
6313 * partial evaluation of the query is possible (if neither is true, we expect
6314 * to have to evaluate the expressions for every row anyway), or if there are
6315 * any volatile or set-returning expressions (since once we've put in a
6316 * projection at all, it won't cost any more to postpone more stuff).
6317 *
6318 * Another issue that could potentially be considered here is that
6319 * evaluating tlist expressions could result in data that's either wider
6320 * or narrower than the input Vars, thus changing the volume of data that
6321 * has to go through the Sort. However, we usually have only a very bad
6322 * idea of the output width of any expression more complex than a Var,
6323 * so for now it seems too risky to try to optimize on that basis.
6324 *
6325 * Note that if we do produce a modified sort-input target, and then the
6326 * query ends up not using an explicit Sort, no particular harm is done:
6327 * we'll initially use the modified target for the preceding path nodes,
6328 * but then change them to the final target with apply_projection_to_path.
6329 * Moreover, in such a case the guarantees about evaluation order of
6330 * volatile functions still hold, since the rows are sorted already.
6331 *
6332 * This function has some things in common with make_group_input_target and
6333 * make_window_input_target, though the detailed rules for what to do are
6334 * different. We never flatten/postpone any grouping or ordering columns;
6335 * those are needed before the sort. If we do flatten a particular
6336 * expression, we leave Aggref and WindowFunc nodes alone, since those were
6337 * computed earlier.
6338 *
6339 * 'final_target' is the query's final target list (in PathTarget form)
6340 * 'have_postponed_srfs' is an output argument, see below
6341 *
6342 * The result is the PathTarget to be computed by the plan node immediately
6343 * below the Sort step (and the Distinct step, if any). This will be
6344 * exactly final_target if we decide a projection step wouldn't be helpful.
6345 *
6346 * In addition, *have_postponed_srfs is set to true if we choose to postpone
6347 * any set-returning functions to after the Sort.
6348 */
6349static PathTarget *
6351 PathTarget *final_target,
6352 bool *have_postponed_srfs)
6353{
6354 Query *parse = root->parse;
6355 PathTarget *input_target;
6356 int ncols;
6357 bool *col_is_srf;
6358 bool *postpone_col;
6359 bool have_srf;
6360 bool have_volatile;
6361 bool have_expensive;
6362 bool have_srf_sortcols;
6363 bool postpone_srfs;
6364 List *postponable_cols;
6365 List *postponable_vars;
6366 int i;
6367 ListCell *lc;
6368
6369 /* Shouldn't get here unless query has ORDER BY */
6370 Assert(parse->sortClause);
6371
6372 *have_postponed_srfs = false; /* default result */
6373
6374 /* Inspect tlist and collect per-column information */
6375 ncols = list_length(final_target->exprs);
6376 col_is_srf = (bool *) palloc0(ncols * sizeof(bool));
6377 postpone_col = (bool *) palloc0(ncols * sizeof(bool));
6378 have_srf = have_volatile = have_expensive = have_srf_sortcols = false;
6379
6380 i = 0;
6381 foreach(lc, final_target->exprs)
6382 {
6383 Expr *expr = (Expr *) lfirst(lc);
6384
6385 /*
6386 * If the column has a sortgroupref, assume it has to be evaluated
6387 * before sorting. Generally such columns would be ORDER BY, GROUP
6388 * BY, etc targets. One exception is columns that were removed from
6389 * GROUP BY by remove_useless_groupby_columns() ... but those would
6390 * only be Vars anyway. There don't seem to be any cases where it
6391 * would be worth the trouble to double-check.
6392 */
6393 if (get_pathtarget_sortgroupref(final_target, i) == 0)
6394 {
6395 /*
6396 * Check for SRF or volatile functions. Check the SRF case first
6397 * because we must know whether we have any postponed SRFs.
6398 */
6399 if (parse->hasTargetSRFs &&
6400 expression_returns_set((Node *) expr))
6401 {
6402 /* We'll decide below whether these are postponable */
6403 col_is_srf[i] = true;
6404 have_srf = true;
6405 }
6406 else if (contain_volatile_functions((Node *) expr))
6407 {
6408 /* Unconditionally postpone */
6409 postpone_col[i] = true;
6410 have_volatile = true;
6411 }
6412 else
6413 {
6414 /*
6415 * Else check the cost. XXX it's annoying to have to do this
6416 * when set_pathtarget_cost_width() just did it. Refactor to
6417 * allow sharing the work?
6418 */
6419 QualCost cost;
6420
6421 cost_qual_eval_node(&cost, (Node *) expr, root);
6422
6423 /*
6424 * We arbitrarily define "expensive" as "more than 10X
6425 * cpu_operator_cost". Note this will take in any PL function
6426 * with default cost.
6427 */
6428 if (cost.per_tuple > 10 * cpu_operator_cost)
6429 {
6430 postpone_col[i] = true;
6431 have_expensive = true;
6432 }
6433 }
6434 }
6435 else
6436 {
6437 /* For sortgroupref cols, just check if any contain SRFs */
6438 if (!have_srf_sortcols &&
6439 parse->hasTargetSRFs &&
6440 expression_returns_set((Node *) expr))
6441 have_srf_sortcols = true;
6442 }
6443
6444 i++;
6445 }
6446
6447 /*
6448 * We can postpone SRFs if we have some but none are in sortgroupref cols.
6449 */
6450 postpone_srfs = (have_srf && !have_srf_sortcols);
6451
6452 /*
6453 * If we don't need a post-sort projection, just return final_target.
6454 */
6455 if (!(postpone_srfs || have_volatile ||
6456 (have_expensive &&
6457 (parse->limitCount || root->tuple_fraction > 0))))
6458 return final_target;
6459
6460 /*
6461 * Report whether the post-sort projection will contain set-returning
6462 * functions. This is important because it affects whether the Sort can
6463 * rely on the query's LIMIT (if any) to bound the number of rows it needs
6464 * to return.
6465 */
6466 *have_postponed_srfs = postpone_srfs;
6467
6468 /*
6469 * Construct the sort-input target, taking all non-postponable columns and
6470 * then adding Vars, PlaceHolderVars, Aggrefs, and WindowFuncs found in
6471 * the postponable ones.
6472 */
6473 input_target = create_empty_pathtarget();
6474 postponable_cols = NIL;
6475
6476 i = 0;
6477 foreach(lc, final_target->exprs)
6478 {
6479 Expr *expr = (Expr *) lfirst(lc);
6480
6481 if (postpone_col[i] || (postpone_srfs && col_is_srf[i]))
6482 postponable_cols = lappend(postponable_cols, expr);
6483 else
6484 add_column_to_pathtarget(input_target, expr,
6485 get_pathtarget_sortgroupref(final_target, i));
6486
6487 i++;
6488 }
6489
6490 /*
6491 * Pull out all the Vars, Aggrefs, and WindowFuncs mentioned in
6492 * postponable columns, and add them to the sort-input target if not
6493 * already present. (Some might be there already.) We mustn't
6494 * deconstruct Aggrefs or WindowFuncs here, since the projection node
6495 * would be unable to recompute them.
6496 */
6497 postponable_vars = pull_var_clause((Node *) postponable_cols,
6501 add_new_columns_to_pathtarget(input_target, postponable_vars);
6502
6503 /* clean up cruft */
6504 list_free(postponable_vars);
6505 list_free(postponable_cols);
6506
6507 /* XXX this represents even more redundant cost calculation ... */
6508 return set_pathtarget_cost_width(root, input_target);
6509}
6510
6511/*
6512 * get_cheapest_fractional_path
6513 * Find the cheapest path for retrieving a specified fraction of all
6514 * the tuples expected to be returned by the given relation.
6515 *
6516 * Do not consider parameterized paths. If the caller needs a path for upper
6517 * rel, it can't have parameterized paths. If the caller needs an append
6518 * subpath, it could become limited by the treatment of similar
6519 * parameterization of all the subpaths.
6520 *
6521 * We interpret tuple_fraction the same way as grouping_planner.
6522 *
6523 * We assume set_cheapest() has been run on the given rel.
6524 */
6525Path *
6526get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction)
6527{
6528 Path *best_path = rel->cheapest_total_path;
6529 ListCell *l;
6530
6531 /* If all tuples will be retrieved, just return the cheapest-total path */
6532 if (tuple_fraction <= 0.0)
6533 return best_path;
6534
6535 /* Convert absolute # of tuples to a fraction; no need to clamp to 0..1 */
6536 if (tuple_fraction >= 1.0 && best_path->rows > 0)
6537 tuple_fraction /= best_path->rows;
6538
6539 foreach(l, rel->pathlist)
6540 {
6541 Path *path = (Path *) lfirst(l);
6542
6543 if (path->param_info)
6544 continue;
6545
6546 if (path == rel->cheapest_total_path ||
6547 compare_fractional_path_costs(best_path, path, tuple_fraction) <= 0)
6548 continue;
6549
6550 best_path = path;
6551 }
6552
6553 return best_path;
6554}
6555
6556/*
6557 * adjust_paths_for_srfs
6558 * Fix up the Paths of the given upperrel to handle tSRFs properly.
6559 *
6560 * The executor can only handle set-returning functions that appear at the
6561 * top level of the targetlist of a ProjectSet plan node. If we have any SRFs
6562 * that are not at top level, we need to split up the evaluation into multiple
6563 * plan levels in which each level satisfies this constraint. This function
6564 * modifies each Path of an upperrel that (might) compute any SRFs in its
6565 * output tlist to insert appropriate projection steps.
6566 *
6567 * The given targets and targets_contain_srfs lists are from
6568 * split_pathtarget_at_srfs(). We assume the existing Paths emit the first
6569 * target in targets.
6570 */
6571static void
6573 List *targets, List *targets_contain_srfs)
6574{
6575 ListCell *lc;
6576
6577 Assert(list_length(targets) == list_length(targets_contain_srfs));
6578 Assert(!linitial_int(targets_contain_srfs));
6579
6580 /* If no SRFs appear at this plan level, nothing to do */
6581 if (list_length(targets) == 1)
6582 return;
6583
6584 /*
6585 * Stack SRF-evaluation nodes atop each path for the rel.
6586 *
6587 * In principle we should re-run set_cheapest() here to identify the
6588 * cheapest path, but it seems unlikely that adding the same tlist eval
6589 * costs to all the paths would change that, so we don't bother. Instead,
6590 * just assume that the cheapest-startup and cheapest-total paths remain
6591 * so. (There should be no parameterized paths anymore, so we needn't
6592 * worry about updating cheapest_parameterized_paths.)
6593 */
6594 foreach(lc, rel->pathlist)
6595 {
6596 Path *subpath = (Path *) lfirst(lc);
6597 Path *newpath = subpath;
6598 ListCell *lc1,
6599 *lc2;
6600
6601 Assert(subpath->param_info == NULL);
6602 forboth(lc1, targets, lc2, targets_contain_srfs)
6603 {
6604 PathTarget *thistarget = lfirst_node(PathTarget, lc1);
6605 bool contains_srfs = (bool) lfirst_int(lc2);
6606
6607 /* If this level doesn't contain SRFs, do regular projection */
6608 if (contains_srfs)
6609 newpath = (Path *) create_set_projection_path(root,
6610 rel,
6611 newpath,
6612 thistarget);
6613 else
6614 newpath = (Path *) apply_projection_to_path(root,
6615 rel,
6616 newpath,
6617 thistarget);
6618 }
6619 lfirst(lc) = newpath;
6620 if (subpath == rel->cheapest_startup_path)
6621 rel->cheapest_startup_path = newpath;
6622 if (subpath == rel->cheapest_total_path)
6623 rel->cheapest_total_path = newpath;
6624 }
6625
6626 /* Likewise for partial paths, if any */
6627 foreach(lc, rel->partial_pathlist)
6628 {
6629 Path *subpath = (Path *) lfirst(lc);
6630 Path *newpath = subpath;
6631 ListCell *lc1,
6632 *lc2;
6633
6634 Assert(subpath->param_info == NULL);
6635 forboth(lc1, targets, lc2, targets_contain_srfs)
6636 {
6637 PathTarget *thistarget = lfirst_node(PathTarget, lc1);
6638 bool contains_srfs = (bool) lfirst_int(lc2);
6639
6640 /* If this level doesn't contain SRFs, do regular projection */
6641 if (contains_srfs)
6642 newpath = (Path *) create_set_projection_path(root,
6643 rel,
6644 newpath,
6645 thistarget);
6646 else
6647 {
6648 /* avoid apply_projection_to_path, in case of multiple refs */
6649 newpath = (Path *) create_projection_path(root,
6650 rel,
6651 newpath,
6652 thistarget);
6653 }
6654 }
6655 lfirst(lc) = newpath;
6656 }
6657}
6658
6659/*
6660 * expression_planner
6661 * Perform planner's transformations on a standalone expression.
6662 *
6663 * Various utility commands need to evaluate expressions that are not part
6664 * of a plannable query. They can do so using the executor's regular
6665 * expression-execution machinery, but first the expression has to be fed
6666 * through here to transform it from parser output to something executable.
6667 *
6668 * Currently, we disallow sublinks in standalone expressions, so there's no
6669 * real "planning" involved here. (That might not always be true though.)
6670 * What we must do is run eval_const_expressions to ensure that any function
6671 * calls are converted to positional notation and function default arguments
6672 * get inserted. The fact that constant subexpressions get simplified is a
6673 * side-effect that is useful when the expression will get evaluated more than
6674 * once. Also, we must fix operator function IDs.
6675 *
6676 * This does not return any information about dependencies of the expression.
6677 * Hence callers should use the results only for the duration of the current
6678 * query. Callers that would like to cache the results for longer should use
6679 * expression_planner_with_deps, probably via the plancache.
6680 *
6681 * Note: this must not make any damaging changes to the passed-in expression
6682 * tree. (It would actually be okay to apply fix_opfuncids to it, but since
6683 * we first do an expression_tree_mutator-based walk, what is returned will
6684 * be a new node tree.) The result is constructed in the current memory
6685 * context; beware that this can leak a lot of additional stuff there, too.
6686 */
6687Expr *
6689{
6690 Node *result;
6691
6692 /*
6693 * Convert named-argument function calls, insert default arguments and
6694 * simplify constant subexprs
6695 */
6696 result = eval_const_expressions(NULL, (Node *) expr);
6697
6698 /* Fill in opfuncid values if missing */
6699 fix_opfuncids(result);
6700
6701 return (Expr *) result;
6702}
6703
6704/*
6705 * expression_planner_with_deps
6706 * Perform planner's transformations on a standalone expression,
6707 * returning expression dependency information along with the result.
6708 *
6709 * This is identical to expression_planner() except that it also returns
6710 * information about possible dependencies of the expression, ie identities of
6711 * objects whose definitions affect the result. As in a PlannedStmt, these
6712 * are expressed as a list of relation Oids and a list of PlanInvalItems.
6713 */
6714Expr *
6716 List **relationOids,
6717 List **invalItems)
6718{
6719 Node *result;
6720 PlannerGlobal glob;
6722
6723 /* Make up dummy planner state so we can use setrefs machinery */
6724 MemSet(&glob, 0, sizeof(glob));
6725 glob.type = T_PlannerGlobal;
6726 glob.relationOids = NIL;
6727 glob.invalItems = NIL;
6728
6729 MemSet(&root, 0, sizeof(root));
6730 root.type = T_PlannerInfo;
6731 root.glob = &glob;
6732
6733 /*
6734 * Convert named-argument function calls, insert default arguments and
6735 * simplify constant subexprs. Collect identities of inlined functions
6736 * and elided domains, too.
6737 */
6738 result = eval_const_expressions(&root, (Node *) expr);
6739
6740 /* Fill in opfuncid values if missing */
6741 fix_opfuncids(result);
6742
6743 /*
6744 * Now walk the finished expression to find anything else we ought to
6745 * record as an expression dependency.
6746 */
6747 (void) extract_query_dependencies_walker(result, &root);
6748
6749 *relationOids = glob.relationOids;
6750 *invalItems = glob.invalItems;
6751
6752 return (Expr *) result;
6753}
6754
6755
6756/*
6757 * plan_cluster_use_sort
6758 * Use the planner to decide how CLUSTER should implement sorting
6759 *
6760 * tableOid is the OID of a table to be clustered on its index indexOid
6761 * (which is already known to be a btree index). Decide whether it's
6762 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
6763 * Return true to use sorting, false to use an indexscan.
6764 *
6765 * Note: caller had better already hold some type of lock on the table.
6766 */
6767bool
6768plan_cluster_use_sort(Oid tableOid, Oid indexOid)
6769{
6771 Query *query;
6772 PlannerGlobal *glob;
6773 RangeTblEntry *rte;
6774 RelOptInfo *rel;
6775 IndexOptInfo *indexInfo;
6776 QualCost indexExprCost;
6777 Cost comparisonCost;
6778 Path *seqScanPath;
6779 Path seqScanAndSortPath;
6780 IndexPath *indexScanPath;
6781 ListCell *lc;
6782
6783 /* We can short-circuit the cost comparison if indexscans are disabled */
6784 if (!enable_indexscan)
6785 return true; /* use sort */
6786
6787 /* Set up mostly-dummy planner state */
6788 query = makeNode(Query);
6789 query->commandType = CMD_SELECT;
6790
6791 glob = makeNode(PlannerGlobal);
6792
6794 root->parse = query;
6795 root->glob = glob;
6796 root->query_level = 1;
6797 root->planner_cxt = CurrentMemoryContext;
6798 root->wt_param_id = -1;
6799 root->join_domains = list_make1(makeNode(JoinDomain));
6800
6801 /* Build a minimal RTE for the rel */
6802 rte = makeNode(RangeTblEntry);
6803 rte->rtekind = RTE_RELATION;
6804 rte->relid = tableOid;
6805 rte->relkind = RELKIND_RELATION; /* Don't be too picky. */
6806 rte->rellockmode = AccessShareLock;
6807 rte->lateral = false;
6808 rte->inh = false;
6809 rte->inFromCl = true;
6810 query->rtable = list_make1(rte);
6811 addRTEPermissionInfo(&query->rteperminfos, rte);
6812
6813 /* Set up RTE/RelOptInfo arrays */
6815
6816 /* Build RelOptInfo */
6817 rel = build_simple_rel(root, 1, NULL);
6818
6819 /* Locate IndexOptInfo for the target index */
6820 indexInfo = NULL;
6821 foreach(lc, rel->indexlist)
6822 {
6823 indexInfo = lfirst_node(IndexOptInfo, lc);
6824 if (indexInfo->indexoid == indexOid)
6825 break;
6826 }
6827
6828 /*
6829 * It's possible that get_relation_info did not generate an IndexOptInfo
6830 * for the desired index; this could happen if it's not yet reached its
6831 * indcheckxmin usability horizon, or if it's a system index and we're
6832 * ignoring system indexes. In such cases we should tell CLUSTER to not
6833 * trust the index contents but use seqscan-and-sort.
6834 */
6835 if (lc == NULL) /* not in the list? */
6836 return true; /* use sort */
6837
6838 /*
6839 * Rather than doing all the pushups that would be needed to use
6840 * set_baserel_size_estimates, just do a quick hack for rows and width.
6841 */
6842 rel->rows = rel->tuples;
6843 rel->reltarget->width = get_relation_data_width(tableOid, NULL);
6844
6845 root->total_table_pages = rel->pages;
6846
6847 /*
6848 * Determine eval cost of the index expressions, if any. We need to
6849 * charge twice that amount for each tuple comparison that happens during
6850 * the sort, since tuplesort.c will have to re-evaluate the index
6851 * expressions each time. (XXX that's pretty inefficient...)
6852 */
6853 cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
6854 comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);
6855
6856 /* Estimate the cost of seq scan + sort */
6857 seqScanPath = create_seqscan_path(root, rel, NULL, 0);
6858 cost_sort(&seqScanAndSortPath, root, NIL,
6859 seqScanPath->disabled_nodes,
6860 seqScanPath->total_cost, rel->tuples, rel->reltarget->width,
6861 comparisonCost, maintenance_work_mem, -1.0);
6862
6863 /* Estimate the cost of index scan */
6864 indexScanPath = create_index_path(root, indexInfo,
6865 NIL, NIL, NIL, NIL,
6866 ForwardScanDirection, false,
6867 NULL, 1.0, false);
6868
6869 return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
6870}
6871
6872/*
6873 * plan_create_index_workers
6874 * Use the planner to decide how many parallel worker processes
6875 * CREATE INDEX should request for use
6876 *
6877 * tableOid is the table on which the index is to be built. indexOid is the
6878 * OID of an index to be created or reindexed (which must be an index with
6879 * support for parallel builds - currently btree or BRIN).
6880 *
6881 * Return value is the number of parallel worker processes to request. It
6882 * may be unsafe to proceed if this is 0. Note that this does not include the
6883 * leader participating as a worker (value is always a number of parallel
6884 * worker processes).
6885 *
6886 * Note: caller had better already hold some type of lock on the table and
6887 * index.
6888 */
6889int
6891{
6893 Query *query;
6894 PlannerGlobal *glob;
6895 RangeTblEntry *rte;
6896 Relation heap;
6898 RelOptInfo *rel;
6899 int parallel_workers;
6900 BlockNumber heap_blocks;
6901 double reltuples;
6902 double allvisfrac;
6903
6904 /*
6905 * We don't allow performing parallel operation in standalone backend or
6906 * when parallelism is disabled.
6907 */
6909 return 0;
6910
6911 /* Set up largely-dummy planner state */
6912 query = makeNode(Query);
6913 query->commandType = CMD_SELECT;
6914
6915 glob = makeNode(PlannerGlobal);
6916
6918 root->parse = query;
6919 root->glob = glob;
6920 root->query_level = 1;
6921 root->planner_cxt = CurrentMemoryContext;
6922 root->wt_param_id = -1;
6923 root->join_domains = list_make1(makeNode(JoinDomain));
6924
6925 /*
6926 * Build a minimal RTE.
6927 *
6928 * Mark the RTE with inh = true. This is a kludge to prevent
6929 * get_relation_info() from fetching index info, which is necessary
6930 * because it does not expect that any IndexOptInfo is currently
6931 * undergoing REINDEX.
6932 */
6933 rte = makeNode(RangeTblEntry);
6934 rte->rtekind = RTE_RELATION;
6935 rte->relid = tableOid;
6936 rte->relkind = RELKIND_RELATION; /* Don't be too picky. */
6937 rte->rellockmode = AccessShareLock;
6938 rte->lateral = false;
6939 rte->inh = true;
6940 rte->inFromCl = true;
6941 query->rtable = list_make1(rte);
6942 addRTEPermissionInfo(&query->rteperminfos, rte);
6943
6944 /* Set up RTE/RelOptInfo arrays */
6946
6947 /* Build RelOptInfo */
6948 rel = build_simple_rel(root, 1, NULL);
6949
6950 /* Rels are assumed already locked by the caller */
6951 heap = table_open(tableOid, NoLock);
6952 index = index_open(indexOid, NoLock);
6953
6954 /*
6955 * Determine if it's safe to proceed.
6956 *
6957 * Currently, parallel workers can't access the leader's temporary tables.
6958 * Furthermore, any index predicate or index expressions must be parallel
6959 * safe.
6960 */
6961 if (heap->rd_rel->relpersistence == RELPERSISTENCE_TEMP ||
6964 {
6965 parallel_workers = 0;
6966 goto done;
6967 }
6968
6969 /*
6970 * If parallel_workers storage parameter is set for the table, accept that
6971 * as the number of parallel worker processes to launch (though still cap
6972 * at max_parallel_maintenance_workers). Note that we deliberately do not
6973 * consider any other factor when parallel_workers is set. (e.g., memory
6974 * use by workers.)
6975 */
6976 if (rel->rel_parallel_workers != -1)
6977 {
6978 parallel_workers = Min(rel->rel_parallel_workers,
6980 goto done;
6981 }
6982
6983 /*
6984 * Estimate heap relation size ourselves, since rel->pages cannot be
6985 * trusted (heap RTE was marked as inheritance parent)
6986 */
6987 estimate_rel_size(heap, NULL, &heap_blocks, &reltuples, &allvisfrac);
6988
6989 /*
6990 * Determine number of workers to scan the heap relation using generic
6991 * model
6992 */
6993 parallel_workers = compute_parallel_worker(rel, heap_blocks, -1,
6995
6996 /*
6997 * Cap workers based on available maintenance_work_mem as needed.
6998 *
6999 * Note that each tuplesort participant receives an even share of the
7000 * total maintenance_work_mem budget. Aim to leave participants
7001 * (including the leader as a participant) with no less than 32MB of
7002 * memory. This leaves cases where maintenance_work_mem is set to 64MB
7003 * immediately past the threshold of being capable of launching a single
7004 * parallel worker to sort.
7005 */
7006 while (parallel_workers > 0 &&
7007 maintenance_work_mem / (parallel_workers + 1) < 32 * 1024)
7008 parallel_workers--;
7009
7010done:
7012 table_close(heap, NoLock);
7013
7014 return parallel_workers;
7015}
7016
7017/*
7018 * add_paths_to_grouping_rel
7019 *
7020 * Add non-partial paths to grouping relation.
7021 */
7022static void
7024 RelOptInfo *grouped_rel,
7025 RelOptInfo *partially_grouped_rel,
7026 const AggClauseCosts *agg_costs,
7027 grouping_sets_data *gd, double dNumGroups,
7028 GroupPathExtraData *extra)
7029{
7030 Query *parse = root->parse;
7031 Path *cheapest_path = input_rel->cheapest_total_path;
7032 ListCell *lc;
7033 bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
7034 bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
7035 List *havingQual = (List *) extra->havingQual;
7036 AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
7037
7038 if (can_sort)
7039 {
7040 /*
7041 * Use any available suitably-sorted path as input, and also consider
7042 * sorting the cheapest-total path and incremental sort on any paths
7043 * with presorted keys.
7044 */
7045 foreach(lc, input_rel->pathlist)
7046 {
7047 ListCell *lc2;
7048 Path *path = (Path *) lfirst(lc);
7049 Path *path_save = path;
7050 List *pathkey_orderings = NIL;
7051
7052 /* generate alternative group orderings that might be useful */
7053 pathkey_orderings = get_useful_group_keys_orderings(root, path);
7054
7055 Assert(list_length(pathkey_orderings) > 0);
7056
7057 foreach(lc2, pathkey_orderings)
7058 {
7059 GroupByOrdering *info = (GroupByOrdering *) lfirst(lc2);
7060
7061 /* restore the path (we replace it in the loop) */
7062 path = path_save;
7063
7064 path = make_ordered_path(root,
7065 grouped_rel,
7066 path,
7067 cheapest_path,
7068 info->pathkeys,
7069 -1.0);
7070 if (path == NULL)
7071 continue;
7072
7073 /* Now decide what to stick atop it */
7074 if (parse->groupingSets)
7075 {
7076 consider_groupingsets_paths(root, grouped_rel,
7077 path, true, can_hash,
7078 gd, agg_costs, dNumGroups);
7079 }
7080 else if (parse->hasAggs)
7081 {
7082 /*
7083 * We have aggregation, possibly with plain GROUP BY. Make
7084 * an AggPath.
7085 */
7086 add_path(grouped_rel, (Path *)
7088 grouped_rel,
7089 path,
7090 grouped_rel->reltarget,
7091 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7093 info->clauses,
7094 havingQual,
7095 agg_costs,
7096 dNumGroups));
7097 }
7098 else if (parse->groupClause)
7099 {
7100 /*
7101 * We have GROUP BY without aggregation or grouping sets.
7102 * Make a GroupPath.
7103 */
7104 add_path(grouped_rel, (Path *)
7106 grouped_rel,
7107 path,
7108 info->clauses,
7109 havingQual,
7110 dNumGroups));
7111 }
7112 else
7113 {
7114 /* Other cases should have been handled above */
7115 Assert(false);
7116 }
7117 }
7118 }
7119
7120 /*
7121 * Instead of operating directly on the input relation, we can
7122 * consider finalizing a partially aggregated path.
7123 */
7124 if (partially_grouped_rel != NULL)
7125 {
7126 foreach(lc, partially_grouped_rel->pathlist)
7127 {
7128 ListCell *lc2;
7129 Path *path = (Path *) lfirst(lc);
7130 Path *path_save = path;
7131 List *pathkey_orderings = NIL;
7132
7133 /* generate alternative group orderings that might be useful */
7134 pathkey_orderings = get_useful_group_keys_orderings(root, path);
7135
7136 Assert(list_length(pathkey_orderings) > 0);
7137
7138 /* process all potentially interesting grouping reorderings */
7139 foreach(lc2, pathkey_orderings)
7140 {
7141 GroupByOrdering *info = (GroupByOrdering *) lfirst(lc2);
7142
7143 /* restore the path (we replace it in the loop) */
7144 path = path_save;
7145
7146 path = make_ordered_path(root,
7147 grouped_rel,
7148 path,
7149 partially_grouped_rel->cheapest_total_path,
7150 info->pathkeys,
7151 -1.0);
7152
7153 if (path == NULL)
7154 continue;
7155
7156 if (parse->hasAggs)
7157 add_path(grouped_rel, (Path *)
7159 grouped_rel,
7160 path,
7161 grouped_rel->reltarget,
7162 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7164 info->clauses,
7165 havingQual,
7166 agg_final_costs,
7167 dNumGroups));
7168 else
7169 add_path(grouped_rel, (Path *)
7171 grouped_rel,
7172 path,
7173 info->clauses,
7174 havingQual,
7175 dNumGroups));
7176
7177 }
7178 }
7179 }
7180 }
7181
7182 if (can_hash)
7183 {
7184 if (parse->groupingSets)
7185 {
7186 /*
7187 * Try for a hash-only groupingsets path over unsorted input.
7188 */
7189 consider_groupingsets_paths(root, grouped_rel,
7190 cheapest_path, false, true,
7191 gd, agg_costs, dNumGroups);
7192 }
7193 else
7194 {
7195 /*
7196 * Generate a HashAgg Path. We just need an Agg over the
7197 * cheapest-total input path, since input order won't matter.
7198 */
7199 add_path(grouped_rel, (Path *)
7200 create_agg_path(root, grouped_rel,
7201 cheapest_path,
7202 grouped_rel->reltarget,
7203 AGG_HASHED,
7205 root->processed_groupClause,
7206 havingQual,
7207 agg_costs,
7208 dNumGroups));
7209 }
7210
7211 /*
7212 * Generate a Finalize HashAgg Path atop of the cheapest partially
7213 * grouped path, assuming there is one
7214 */
7215 if (partially_grouped_rel && partially_grouped_rel->pathlist)
7216 {
7217 Path *path = partially_grouped_rel->cheapest_total_path;
7218
7219 add_path(grouped_rel, (Path *)
7221 grouped_rel,
7222 path,
7223 grouped_rel->reltarget,
7224 AGG_HASHED,
7226 root->processed_groupClause,
7227 havingQual,
7228 agg_final_costs,
7229 dNumGroups));
7230 }
7231 }
7232
7233 /*
7234 * When partitionwise aggregate is used, we might have fully aggregated
7235 * paths in the partial pathlist, because add_paths_to_append_rel() will
7236 * consider a path for grouped_rel consisting of a Parallel Append of
7237 * non-partial paths from each child.
7238 */
7239 if (grouped_rel->partial_pathlist != NIL)
7240 gather_grouping_paths(root, grouped_rel);
7241}
7242
7243/*
7244 * create_partial_grouping_paths
7245 *
7246 * Create a new upper relation representing the result of partial aggregation
7247 * and populate it with appropriate paths. Note that we don't finalize the
7248 * lists of paths here, so the caller can add additional partial or non-partial
7249 * paths and must afterward call gather_grouping_paths and set_cheapest on
7250 * the returned upper relation.
7251 *
7252 * All paths for this new upper relation -- both partial and non-partial --
7253 * have been partially aggregated but require a subsequent FinalizeAggregate
7254 * step.
7255 *
7256 * NB: This function is allowed to return NULL if it determines that there is
7257 * no real need to create a new RelOptInfo.
7258 */
7259static RelOptInfo *
7261 RelOptInfo *grouped_rel,
7262 RelOptInfo *input_rel,
7264 GroupPathExtraData *extra,
7265 bool force_rel_creation)
7266{
7267 Query *parse = root->parse;
7268 RelOptInfo *partially_grouped_rel;
7269 AggClauseCosts *agg_partial_costs = &extra->agg_partial_costs;
7270 AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
7271 Path *cheapest_partial_path = NULL;
7272 Path *cheapest_total_path = NULL;
7273 double dNumPartialGroups = 0;
7274 double dNumPartialPartialGroups = 0;
7275 ListCell *lc;
7276 bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
7277 bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
7278
7279 /*
7280 * Consider whether we should generate partially aggregated non-partial
7281 * paths. We can only do this if we have a non-partial path, and only if
7282 * the parent of the input rel is performing partial partitionwise
7283 * aggregation. (Note that extra->patype is the type of partitionwise
7284 * aggregation being used at the parent level, not this level.)
7285 */
7286 if (input_rel->pathlist != NIL &&
7288 cheapest_total_path = input_rel->cheapest_total_path;
7289
7290 /*
7291 * If parallelism is possible for grouped_rel, then we should consider
7292 * generating partially-grouped partial paths. However, if the input rel
7293 * has no partial paths, then we can't.
7294 */
7295 if (grouped_rel->consider_parallel && input_rel->partial_pathlist != NIL)
7296 cheapest_partial_path = linitial(input_rel->partial_pathlist);
7297
7298 /*
7299 * If we can't partially aggregate partial paths, and we can't partially
7300 * aggregate non-partial paths, then don't bother creating the new
7301 * RelOptInfo at all, unless the caller specified force_rel_creation.
7302 */
7303 if (cheapest_total_path == NULL &&
7304 cheapest_partial_path == NULL &&
7305 !force_rel_creation)
7306 return NULL;
7307
7308 /*
7309 * Build a new upper relation to represent the result of partially
7310 * aggregating the rows from the input relation.
7311 */
7312 partially_grouped_rel = fetch_upper_rel(root,
7314 grouped_rel->relids);
7315 partially_grouped_rel->consider_parallel =
7316 grouped_rel->consider_parallel;
7317 partially_grouped_rel->reloptkind = grouped_rel->reloptkind;
7318 partially_grouped_rel->serverid = grouped_rel->serverid;
7319 partially_grouped_rel->userid = grouped_rel->userid;
7320 partially_grouped_rel->useridiscurrent = grouped_rel->useridiscurrent;
7321 partially_grouped_rel->fdwroutine = grouped_rel->fdwroutine;
7322
7323 /*
7324 * Build target list for partial aggregate paths. These paths cannot just
7325 * emit the same tlist as regular aggregate paths, because (1) we must
7326 * include Vars and Aggrefs needed in HAVING, which might not appear in
7327 * the result tlist, and (2) the Aggrefs must be set in partial mode.
7328 */
7329 partially_grouped_rel->reltarget =
7331 extra->havingQual);
7332
7333 if (!extra->partial_costs_set)
7334 {
7335 /*
7336 * Collect statistics about aggregates for estimating costs of
7337 * performing aggregation in parallel.
7338 */
7339 MemSet(agg_partial_costs, 0, sizeof(AggClauseCosts));
7340 MemSet(agg_final_costs, 0, sizeof(AggClauseCosts));
7341 if (parse->hasAggs)
7342 {
7343 /* partial phase */
7345 agg_partial_costs);
7346
7347 /* final phase */
7349 agg_final_costs);
7350 }
7351
7352 extra->partial_costs_set = true;
7353 }
7354
7355 /* Estimate number of partial groups. */
7356 if (cheapest_total_path != NULL)
7357 dNumPartialGroups =
7359 cheapest_total_path->rows,
7360 gd,
7361 extra->targetList);
7362 if (cheapest_partial_path != NULL)
7363 dNumPartialPartialGroups =
7365 cheapest_partial_path->rows,
7366 gd,
7367 extra->targetList);
7368
7369 if (can_sort && cheapest_total_path != NULL)
7370 {
7371 /* This should have been checked previously */
7372 Assert(parse->hasAggs || parse->groupClause);
7373
7374 /*
7375 * Use any available suitably-sorted path as input, and also consider
7376 * sorting the cheapest partial path.
7377 */
7378 foreach(lc, input_rel->pathlist)
7379 {
7380 ListCell *lc2;
7381 Path *path = (Path *) lfirst(lc);
7382 Path *path_save = path;
7383 List *pathkey_orderings = NIL;
7384
7385 /* generate alternative group orderings that might be useful */
7386 pathkey_orderings = get_useful_group_keys_orderings(root, path);
7387
7388 Assert(list_length(pathkey_orderings) > 0);
7389
7390 /* process all potentially interesting grouping reorderings */
7391 foreach(lc2, pathkey_orderings)
7392 {
7393 GroupByOrdering *info = (GroupByOrdering *) lfirst(lc2);
7394
7395 /* restore the path (we replace it in the loop) */
7396 path = path_save;
7397
7398 path = make_ordered_path(root,
7399 partially_grouped_rel,
7400 path,
7401 cheapest_total_path,
7402 info->pathkeys,
7403 -1.0);
7404
7405 if (path == NULL)
7406 continue;
7407
7408 if (parse->hasAggs)
7409 add_path(partially_grouped_rel, (Path *)
7411 partially_grouped_rel,
7412 path,
7413 partially_grouped_rel->reltarget,
7414 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7416 info->clauses,
7417 NIL,
7418 agg_partial_costs,
7419 dNumPartialGroups));
7420 else
7421 add_path(partially_grouped_rel, (Path *)
7423 partially_grouped_rel,
7424 path,
7425 info->clauses,
7426 NIL,
7427 dNumPartialGroups));
7428 }
7429 }
7430 }
7431
7432 if (can_sort && cheapest_partial_path != NULL)
7433 {
7434 /* Similar to above logic, but for partial paths. */
7435 foreach(lc, input_rel->partial_pathlist)
7436 {
7437 ListCell *lc2;
7438 Path *path = (Path *) lfirst(lc);
7439 Path *path_save = path;
7440 List *pathkey_orderings = NIL;
7441
7442 /* generate alternative group orderings that might be useful */
7443 pathkey_orderings = get_useful_group_keys_orderings(root, path);
7444
7445 Assert(list_length(pathkey_orderings) > 0);
7446
7447 /* process all potentially interesting grouping reorderings */
7448 foreach(lc2, pathkey_orderings)
7449 {
7450 GroupByOrdering *info = (GroupByOrdering *) lfirst(lc2);
7451
7452
7453 /* restore the path (we replace it in the loop) */
7454 path = path_save;
7455
7456 path = make_ordered_path(root,
7457 partially_grouped_rel,
7458 path,
7459 cheapest_partial_path,
7460 info->pathkeys,
7461 -1.0);
7462
7463 if (path == NULL)
7464 continue;
7465
7466 if (parse->hasAggs)
7467 add_partial_path(partially_grouped_rel, (Path *)
7469 partially_grouped_rel,
7470 path,
7471 partially_grouped_rel->reltarget,
7472 parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7474 info->clauses,
7475 NIL,
7476 agg_partial_costs,
7477 dNumPartialPartialGroups));
7478 else
7479 add_partial_path(partially_grouped_rel, (Path *)
7481 partially_grouped_rel,
7482 path,
7483 info->clauses,
7484 NIL,
7485 dNumPartialPartialGroups));
7486 }
7487 }
7488 }
7489
7490 /*
7491 * Add a partially-grouped HashAgg Path where possible
7492 */
7493 if (can_hash && cheapest_total_path != NULL)
7494 {
7495 /* Checked above */
7496 Assert(parse->hasAggs || parse->groupClause);
7497
7498 add_path(partially_grouped_rel, (Path *)
7500 partially_grouped_rel,
7501 cheapest_total_path,
7502 partially_grouped_rel->reltarget,
7503 AGG_HASHED,
7505 root->processed_groupClause,
7506 NIL,
7507 agg_partial_costs,
7508 dNumPartialGroups));
7509 }
7510
7511 /*
7512 * Now add a partially-grouped HashAgg partial Path where possible
7513 */
7514 if (can_hash && cheapest_partial_path != NULL)
7515 {
7516 add_partial_path(partially_grouped_rel, (Path *)
7518 partially_grouped_rel,
7519 cheapest_partial_path,
7520 partially_grouped_rel->reltarget,
7521 AGG_HASHED,
7523 root->processed_groupClause,
7524 NIL,
7525 agg_partial_costs,
7526 dNumPartialPartialGroups));
7527 }
7528
7529 /*
7530 * If there is an FDW that's responsible for all baserels of the query,
7531 * let it consider adding partially grouped ForeignPaths.
7532 */
7533 if (partially_grouped_rel->fdwroutine &&
7534 partially_grouped_rel->fdwroutine->GetForeignUpperPaths)
7535 {
7536 FdwRoutine *fdwroutine = partially_grouped_rel->fdwroutine;
7537
7538 fdwroutine->GetForeignUpperPaths(root,
7540 input_rel, partially_grouped_rel,
7541 extra);
7542 }
7543
7544 return partially_grouped_rel;
7545}
7546
7547/*
7548 * make_ordered_path
7549 * Return a path ordered by 'pathkeys' based on the given 'path'. May
7550 * return NULL if it doesn't make sense to generate an ordered path in
7551 * this case.
7552 */
7553static Path *
7555 Path *cheapest_path, List *pathkeys, double limit_tuples)
7556{
7557 bool is_sorted;
7558 int presorted_keys;
7559
7560 is_sorted = pathkeys_count_contained_in(pathkeys,
7561 path->pathkeys,
7562 &presorted_keys);
7563
7564 if (!is_sorted)
7565 {
7566 /*
7567 * Try at least sorting the cheapest path and also try incrementally
7568 * sorting any path which is partially sorted already (no need to deal
7569 * with paths which have presorted keys when incremental sort is
7570 * disabled unless it's the cheapest input path).
7571 */
7572 if (path != cheapest_path &&
7573 (presorted_keys == 0 || !enable_incremental_sort))
7574 return NULL;
7575
7576 /*
7577 * We've no need to consider both a sort and incremental sort. We'll
7578 * just do a sort if there are no presorted keys and an incremental
7579 * sort when there are presorted keys.
7580 */
7581 if (presorted_keys == 0 || !enable_incremental_sort)
7582 path = (Path *) create_sort_path(root,
7583 rel,
7584 path,
7585 pathkeys,
7586 limit_tuples);
7587 else
7589 rel,
7590 path,
7591 pathkeys,
7592 presorted_keys,
7593 limit_tuples);
7594 }
7595
7596 return path;
7597}
7598
7599/*
7600 * Generate Gather and Gather Merge paths for a grouping relation or partial
7601 * grouping relation.
7602 *
7603 * generate_useful_gather_paths does most of the work, but we also consider a
7604 * special case: we could try sorting the data by the group_pathkeys and then
7605 * applying Gather Merge.
7606 *
7607 * NB: This function shouldn't be used for anything other than a grouped or
7608 * partially grouped relation not only because of the fact that it explicitly
7609 * references group_pathkeys but we pass "true" as the third argument to
7610 * generate_useful_gather_paths().
7611 */
7612static void
7614{
7615 ListCell *lc;
7616 Path *cheapest_partial_path;
7617 List *groupby_pathkeys;
7618
7619 /*
7620 * This occurs after any partial aggregation has taken place, so trim off
7621 * any pathkeys added for ORDER BY / DISTINCT aggregates.
7622 */
7623 if (list_length(root->group_pathkeys) > root->num_groupby_pathkeys)
7624 groupby_pathkeys = list_copy_head(root->group_pathkeys,
7625 root->num_groupby_pathkeys);
7626 else
7627 groupby_pathkeys = root->group_pathkeys;
7628
7629 /* Try Gather for unordered paths and Gather Merge for ordered ones. */
7631
7632 cheapest_partial_path = linitial(rel->partial_pathlist);
7633
7634 /* XXX Shouldn't this also consider the group-key-reordering? */
7635 foreach(lc, rel->partial_pathlist)
7636 {
7637 Path *path = (Path *) lfirst(lc);
7638 bool is_sorted;
7639 int presorted_keys;
7640 double total_groups;
7641
7642 is_sorted = pathkeys_count_contained_in(groupby_pathkeys,
7643 path->pathkeys,
7644 &presorted_keys);
7645
7646 if (is_sorted)
7647 continue;
7648
7649 /*
7650 * Try at least sorting the cheapest path and also try incrementally
7651 * sorting any path which is partially sorted already (no need to deal
7652 * with paths which have presorted keys when incremental sort is
7653 * disabled unless it's the cheapest input path).
7654 */
7655 if (path != cheapest_partial_path &&
7656 (presorted_keys == 0 || !enable_incremental_sort))
7657 continue;
7658
7659 /*
7660 * We've no need to consider both a sort and incremental sort. We'll
7661 * just do a sort if there are no presorted keys and an incremental
7662 * sort when there are presorted keys.
7663 */
7664 if (presorted_keys == 0 || !enable_incremental_sort)
7665 path = (Path *) create_sort_path(root, rel, path,
7666 groupby_pathkeys,
7667 -1.0);
7668 else
7670 rel,
7671 path,
7672 groupby_pathkeys,
7673 presorted_keys,
7674 -1.0);
7675 total_groups = compute_gather_rows(path);
7676 path = (Path *)
7678 rel,
7679 path,
7680 rel->reltarget,
7681 groupby_pathkeys,
7682 NULL,
7683 &total_groups);
7684
7685 add_path(rel, path);
7686 }
7687}
7688
7689/*
7690 * can_partial_agg
7691 *
7692 * Determines whether or not partial grouping and/or aggregation is possible.
7693 * Returns true when possible, false otherwise.
7694 */
7695static bool
7697{
7698 Query *parse = root->parse;
7699
7700 if (!parse->hasAggs && parse->groupClause == NIL)
7701 {
7702 /*
7703 * We don't know how to do parallel aggregation unless we have either
7704 * some aggregates or a grouping clause.
7705 */
7706 return false;
7707 }
7708 else if (parse->groupingSets)
7709 {
7710 /* We don't know how to do grouping sets in parallel. */
7711 return false;
7712 }
7713 else if (root->hasNonPartialAggs || root->hasNonSerialAggs)
7714 {
7715 /* Insufficient support for partial mode. */
7716 return false;
7717 }
7718
7719 /* Everything looks good. */
7720 return true;
7721}
7722
7723/*
7724 * apply_scanjoin_target_to_paths
7725 *
7726 * Adjust the final scan/join relation, and recursively all of its children,
7727 * to generate the final scan/join target. It would be more correct to model
7728 * this as a separate planning step with a new RelOptInfo at the toplevel and
7729 * for each child relation, but doing it this way is noticeably cheaper.
7730 * Maybe that problem can be solved at some point, but for now we do this.
7731 *
7732 * If tlist_same_exprs is true, then the scan/join target to be applied has
7733 * the same expressions as the existing reltarget, so we need only insert the
7734 * appropriate sortgroupref information. By avoiding the creation of
7735 * projection paths we save effort both immediately and at plan creation time.
7736 */
7737static void
7739 RelOptInfo *rel,
7740 List *scanjoin_targets,
7741 List *scanjoin_targets_contain_srfs,
7742 bool scanjoin_target_parallel_safe,
7743 bool tlist_same_exprs)
7744{
7745 bool rel_is_partitioned = IS_PARTITIONED_REL(rel);
7746 PathTarget *scanjoin_target;
7747 ListCell *lc;
7748
7749 /* This recurses, so be paranoid. */
7751
7752 /*
7753 * If the rel is partitioned, we want to drop its existing paths and
7754 * generate new ones. This function would still be correct if we kept the
7755 * existing paths: we'd modify them to generate the correct target above
7756 * the partitioning Append, and then they'd compete on cost with paths
7757 * generating the target below the Append. However, in our current cost
7758 * model the latter way is always the same or cheaper cost, so modifying
7759 * the existing paths would just be useless work. Moreover, when the cost
7760 * is the same, varying roundoff errors might sometimes allow an existing
7761 * path to be picked, resulting in undesirable cross-platform plan
7762 * variations. So we drop old paths and thereby force the work to be done
7763 * below the Append, except in the case of a non-parallel-safe target.
7764 *
7765 * Some care is needed, because we have to allow
7766 * generate_useful_gather_paths to see the old partial paths in the next
7767 * stanza. Hence, zap the main pathlist here, then allow
7768 * generate_useful_gather_paths to add path(s) to the main list, and
7769 * finally zap the partial pathlist.
7770 */
7771 if (rel_is_partitioned)
7772 rel->pathlist = NIL;
7773
7774 /*
7775 * If the scan/join target is not parallel-safe, partial paths cannot
7776 * generate it.
7777 */
7778 if (!scanjoin_target_parallel_safe)
7779 {
7780 /*
7781 * Since we can't generate the final scan/join target in parallel
7782 * workers, this is our last opportunity to use any partial paths that
7783 * exist; so build Gather path(s) that use them and emit whatever the
7784 * current reltarget is. We don't do this in the case where the
7785 * target is parallel-safe, since we will be able to generate superior
7786 * paths by doing it after the final scan/join target has been
7787 * applied.
7788 */
7790
7791 /* Can't use parallel query above this level. */
7792 rel->partial_pathlist = NIL;
7793 rel->consider_parallel = false;
7794 }
7795
7796 /* Finish dropping old paths for a partitioned rel, per comment above */
7797 if (rel_is_partitioned)
7798 rel->partial_pathlist = NIL;
7799
7800 /* Extract SRF-free scan/join target. */
7801 scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
7802
7803 /*
7804 * Apply the SRF-free scan/join target to each existing path.
7805 *
7806 * If the tlist exprs are the same, we can just inject the sortgroupref
7807 * information into the existing pathtargets. Otherwise, replace each
7808 * path with a projection path that generates the SRF-free scan/join
7809 * target. This can't change the ordering of paths within rel->pathlist,
7810 * so we just modify the list in place.
7811 */
7812 foreach(lc, rel->pathlist)
7813 {
7814 Path *subpath = (Path *) lfirst(lc);
7815
7816 /* Shouldn't have any parameterized paths anymore */
7817 Assert(subpath->param_info == NULL);
7818
7819 if (tlist_same_exprs)
7820 subpath->pathtarget->sortgrouprefs =
7821 scanjoin_target->sortgrouprefs;
7822 else
7823 {
7824 Path *newpath;
7825
7826 newpath = (Path *) create_projection_path(root, rel, subpath,
7827 scanjoin_target);
7828 lfirst(lc) = newpath;
7829 }
7830 }
7831
7832 /* Likewise adjust the targets for any partial paths. */
7833 foreach(lc, rel->partial_pathlist)
7834 {
7835 Path *subpath = (Path *) lfirst(lc);
7836
7837 /* Shouldn't have any parameterized paths anymore */
7838 Assert(subpath->param_info == NULL);
7839
7840 if (tlist_same_exprs)
7841 subpath->pathtarget->sortgrouprefs =
7842 scanjoin_target->sortgrouprefs;
7843 else
7844 {
7845 Path *newpath;
7846
7847 newpath = (Path *) create_projection_path(root, rel, subpath,
7848 scanjoin_target);
7849 lfirst(lc) = newpath;
7850 }
7851 }
7852
7853 /*
7854 * Now, if final scan/join target contains SRFs, insert ProjectSetPath(s)
7855 * atop each existing path. (Note that this function doesn't look at the
7856 * cheapest-path fields, which is a good thing because they're bogus right
7857 * now.)
7858 */
7859 if (root->parse->hasTargetSRFs)
7861 scanjoin_targets,
7862 scanjoin_targets_contain_srfs);
7863
7864 /*
7865 * Update the rel's target to be the final (with SRFs) scan/join target.
7866 * This now matches the actual output of all the paths, and we might get
7867 * confused in createplan.c if they don't agree. We must do this now so
7868 * that any append paths made in the next part will use the correct
7869 * pathtarget (cf. create_append_path).
7870 *
7871 * Note that this is also necessary if GetForeignUpperPaths() gets called
7872 * on the final scan/join relation or on any of its children, since the
7873 * FDW might look at the rel's target to create ForeignPaths.
7874 */
7875 rel->reltarget = llast_node(PathTarget, scanjoin_targets);
7876
7877 /*
7878 * If the relation is partitioned, recursively apply the scan/join target
7879 * to all partitions, and generate brand-new Append paths in which the
7880 * scan/join target is computed below the Append rather than above it.
7881 * Since Append is not projection-capable, that might save a separate
7882 * Result node, and it also is important for partitionwise aggregate.
7883 */
7884 if (rel_is_partitioned)
7885 {
7886 List *live_children = NIL;
7887 int i;
7888
7889 /* Adjust each partition. */
7890 i = -1;
7891 while ((i = bms_next_member(rel->live_parts, i)) >= 0)
7892 {
7893 RelOptInfo *child_rel = rel->part_rels[i];
7894 AppendRelInfo **appinfos;
7895 int nappinfos;
7896 List *child_scanjoin_targets = NIL;
7897
7898 Assert(child_rel != NULL);
7899
7900 /* Dummy children can be ignored. */
7901 if (IS_DUMMY_REL(child_rel))
7902 continue;
7903
7904 /* Translate scan/join targets for this child. */
7905 appinfos = find_appinfos_by_relids(root, child_rel->relids,
7906 &nappinfos);
7907 foreach(lc, scanjoin_targets)
7908 {
7909 PathTarget *target = lfirst_node(PathTarget, lc);
7910
7911 target = copy_pathtarget(target);
7912 target->exprs = (List *)
7914 (Node *) target->exprs,
7915 nappinfos, appinfos);
7916 child_scanjoin_targets = lappend(child_scanjoin_targets,
7917 target);
7918 }
7919 pfree(appinfos);
7920
7921 /* Recursion does the real work. */
7923 child_scanjoin_targets,
7924 scanjoin_targets_contain_srfs,
7925 scanjoin_target_parallel_safe,
7927
7928 /* Save non-dummy children for Append paths. */
7929 if (!IS_DUMMY_REL(child_rel))
7930 live_children = lappend(live_children, child_rel);
7931 }
7932
7933 /* Build new paths for this relation by appending child paths. */
7934 add_paths_to_append_rel(root, rel, live_children);
7935 }
7936
7937 /*
7938 * Consider generating Gather or Gather Merge paths. We must only do this
7939 * if the relation is parallel safe, and we don't do it for child rels to
7940 * avoid creating multiple Gather nodes within the same plan. We must do
7941 * this after all paths have been generated and before set_cheapest, since
7942 * one of the generated paths may turn out to be the cheapest one.
7943 */
7944 if (rel->consider_parallel && !IS_OTHER_REL(rel))
7946
7947 /*
7948 * Reassess which paths are the cheapest, now that we've potentially added
7949 * new Gather (or Gather Merge) and/or Append (or MergeAppend) paths to
7950 * this relation.
7951 */
7952 set_cheapest(rel);
7953}
7954
7955/*
7956 * create_partitionwise_grouping_paths
7957 *
7958 * If the partition keys of input relation are part of the GROUP BY clause, all
7959 * the rows belonging to a given group come from a single partition. This
7960 * allows aggregation/grouping over a partitioned relation to be broken down
7961 * into aggregation/grouping on each partition. This should be no worse, and
7962 * often better, than the normal approach.
7963 *
7964 * However, if the GROUP BY clause does not contain all the partition keys,
7965 * rows from a given group may be spread across multiple partitions. In that
7966 * case, we perform partial aggregation for each group, append the results,
7967 * and then finalize aggregation. This is less certain to win than the
7968 * previous case. It may win if the PartialAggregate stage greatly reduces
7969 * the number of groups, because fewer rows will pass through the Append node.
7970 * It may lose if we have lots of small groups.
7971 */
7972static void
7974 RelOptInfo *input_rel,
7975 RelOptInfo *grouped_rel,
7976 RelOptInfo *partially_grouped_rel,
7977 const AggClauseCosts *agg_costs,
7980 GroupPathExtraData *extra)
7981{
7982 List *grouped_live_children = NIL;
7983 List *partially_grouped_live_children = NIL;
7984 PathTarget *target = grouped_rel->reltarget;
7985 bool partial_grouping_valid = true;
7986 int i;
7987
7990 partially_grouped_rel != NULL);
7991
7992 /* Add paths for partitionwise aggregation/grouping. */
7993 i = -1;
7994 while ((i = bms_next_member(input_rel->live_parts, i)) >= 0)
7995 {
7996 RelOptInfo *child_input_rel = input_rel->part_rels[i];
7997 PathTarget *child_target;
7998 AppendRelInfo **appinfos;
7999 int nappinfos;
8000 GroupPathExtraData child_extra;
8001 RelOptInfo *child_grouped_rel;
8002 RelOptInfo *child_partially_grouped_rel;
8003
8004 Assert(child_input_rel != NULL);
8005
8006 /* Dummy children can be ignored. */
8007 if (IS_DUMMY_REL(child_input_rel))
8008 continue;
8009
8010 child_target = copy_pathtarget(target);
8011
8012 /*
8013 * Copy the given "extra" structure as is and then override the
8014 * members specific to this child.
8015 */
8016 memcpy(&child_extra, extra, sizeof(child_extra));
8017
8018 appinfos = find_appinfos_by_relids(root, child_input_rel->relids,
8019 &nappinfos);
8020
8021 child_target->exprs = (List *)
8023 (Node *) target->exprs,
8024 nappinfos, appinfos);
8025
8026 /* Translate havingQual and targetList. */
8027 child_extra.havingQual = (Node *)
8029 extra->havingQual,
8030 nappinfos, appinfos);
8031 child_extra.targetList = (List *)
8033 (Node *) extra->targetList,
8034 nappinfos, appinfos);
8035
8036 /*
8037 * extra->patype was the value computed for our parent rel; patype is
8038 * the value for this relation. For the child, our value is its
8039 * parent rel's value.
8040 */
8041 child_extra.patype = patype;
8042
8043 /*
8044 * Create grouping relation to hold fully aggregated grouping and/or
8045 * aggregation paths for the child.
8046 */
8047 child_grouped_rel = make_grouping_rel(root, child_input_rel,
8048 child_target,
8049 extra->target_parallel_safe,
8050 child_extra.havingQual);
8051
8052 /* Create grouping paths for this child relation. */
8053 create_ordinary_grouping_paths(root, child_input_rel,
8054 child_grouped_rel,
8055 agg_costs, gd, &child_extra,
8056 &child_partially_grouped_rel);
8057
8058 if (child_partially_grouped_rel)
8059 {
8060 partially_grouped_live_children =
8061 lappend(partially_grouped_live_children,
8062 child_partially_grouped_rel);
8063 }
8064 else
8065 partial_grouping_valid = false;
8066
8067 if (patype == PARTITIONWISE_AGGREGATE_FULL)
8068 {
8069 set_cheapest(child_grouped_rel);
8070 grouped_live_children = lappend(grouped_live_children,
8071 child_grouped_rel);
8072 }
8073
8074 pfree(appinfos);
8075 }
8076
8077 /*
8078 * Try to create append paths for partially grouped children. For full
8079 * partitionwise aggregation, we might have paths in the partial_pathlist
8080 * if parallel aggregation is possible. For partial partitionwise
8081 * aggregation, we may have paths in both pathlist and partial_pathlist.
8082 *
8083 * NB: We must have a partially grouped path for every child in order to
8084 * generate a partially grouped path for this relation.
8085 */
8086 if (partially_grouped_rel && partial_grouping_valid)
8087 {
8088 Assert(partially_grouped_live_children != NIL);
8089
8090 add_paths_to_append_rel(root, partially_grouped_rel,
8091 partially_grouped_live_children);
8092
8093 /*
8094 * We need call set_cheapest, since the finalization step will use the
8095 * cheapest path from the rel.
8096 */
8097 if (partially_grouped_rel->pathlist)
8098 set_cheapest(partially_grouped_rel);
8099 }
8100
8101 /* If possible, create append paths for fully grouped children. */
8102 if (patype == PARTITIONWISE_AGGREGATE_FULL)
8103 {
8104 Assert(grouped_live_children != NIL);
8105
8106 add_paths_to_append_rel(root, grouped_rel, grouped_live_children);
8107 }
8108}
8109
8110/*
8111 * group_by_has_partkey
8112 *
8113 * Returns true if all the partition keys of the given relation are part of
8114 * the GROUP BY clauses, including having matching collation, false otherwise.
8115 */
8116static bool
8118 List *targetList,
8119 List *groupClause)
8120{
8121 List *groupexprs = get_sortgrouplist_exprs(groupClause, targetList);
8122 int cnt = 0;
8123 int partnatts;
8124
8125 /* Input relation should be partitioned. */
8126 Assert(input_rel->part_scheme);
8127
8128 /* Rule out early, if there are no partition keys present. */
8129 if (!input_rel->partexprs)
8130 return false;
8131
8132 partnatts = input_rel->part_scheme->partnatts;
8133
8134 for (cnt = 0; cnt < partnatts; cnt++)
8135 {
8136 List *partexprs = input_rel->partexprs[cnt];
8137 ListCell *lc;
8138 bool found = false;
8139
8140 foreach(lc, partexprs)
8141 {
8142 ListCell *lg;
8143 Expr *partexpr = lfirst(lc);
8144 Oid partcoll = input_rel->part_scheme->partcollation[cnt];
8145
8146 foreach(lg, groupexprs)
8147 {
8148 Expr *groupexpr = lfirst(lg);
8149 Oid groupcoll = exprCollation((Node *) groupexpr);
8150
8151 /*
8152 * Note: we can assume there is at most one RelabelType node;
8153 * eval_const_expressions() will have simplified if more than
8154 * one.
8155 */
8156 if (IsA(groupexpr, RelabelType))
8157 groupexpr = ((RelabelType *) groupexpr)->arg;
8158
8159 if (equal(groupexpr, partexpr))
8160 {
8161 /*
8162 * Reject a match if the grouping collation does not match
8163 * the partitioning collation.
8164 */
8165 if (OidIsValid(partcoll) && OidIsValid(groupcoll) &&
8166 partcoll != groupcoll)
8167 return false;
8168
8169 found = true;
8170 break;
8171 }
8172 }
8173
8174 if (found)
8175 break;
8176 }
8177
8178 /*
8179 * If none of the partition key expressions match with any of the
8180 * GROUP BY expression, return false.
8181 */
8182 if (!found)
8183 return false;
8184 }
8185
8186 return true;
8187}
8188
8189/*
8190 * generate_setop_child_grouplist
8191 * Build a SortGroupClause list defining the sort/grouping properties
8192 * of the child of a set operation.
8193 *
8194 * This is similar to generate_setop_grouplist() but differs as the setop
8195 * child query's targetlist entries may already have a tleSortGroupRef
8196 * assigned for other purposes, such as GROUP BYs. Here we keep the
8197 * SortGroupClause list in the same order as 'op' groupClauses and just adjust
8198 * the tleSortGroupRef to reference the TargetEntry's 'ressortgroupref'. If
8199 * any of the columns in the targetlist don't match to the setop's colTypes
8200 * then we return an empty list. This may leave some TLEs with unreferenced
8201 * ressortgroupref markings, but that's harmless.
8202 */
8203static List *
8205{
8206 List *grouplist = copyObject(op->groupClauses);
8207 ListCell *lg;
8208 ListCell *lt;
8209 ListCell *ct;
8210
8211 lg = list_head(grouplist);
8212 ct = list_head(op->colTypes);
8213 foreach(lt, targetlist)
8214 {
8215 TargetEntry *tle = (TargetEntry *) lfirst(lt);
8216 SortGroupClause *sgc;
8217 Oid coltype;
8218
8219 /* resjunk columns could have sortgrouprefs. Leave these alone */
8220 if (tle->resjunk)
8221 continue;
8222
8223 /*
8224 * We expect every non-resjunk target to have a SortGroupClause and
8225 * colTypes.
8226 */
8227 Assert(lg != NULL);
8228 Assert(ct != NULL);
8229 sgc = (SortGroupClause *) lfirst(lg);
8230 coltype = lfirst_oid(ct);
8231
8232 /* reject if target type isn't the same as the setop target type */
8233 if (coltype != exprType((Node *) tle->expr))
8234 return NIL;
8235
8236 lg = lnext(grouplist, lg);
8237 ct = lnext(op->colTypes, ct);
8238
8239 /* assign a tleSortGroupRef, or reuse the existing one */
8240 sgc->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
8241 }
8242
8243 Assert(lg == NULL);
8244 Assert(ct == NULL);
8245
8246 return grouplist;
8247}
int compute_parallel_worker(RelOptInfo *rel, double heap_pages, double index_pages, int max_workers)
Definition: allpaths.c:4234
void generate_useful_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
Definition: allpaths.c:3220
void add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel, List *live_childrels)
Definition: allpaths.c:1321
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:753
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:200
List * adjust_inherited_attnums_multilevel(PlannerInfo *root, List *attnums, Index child_relid, Index top_parent_relid)
Definition: appendinfo.c:682
Node * adjust_appendrel_attrs_multilevel(PlannerInfo *root, Node *node, RelOptInfo *childrel, RelOptInfo *parentrel)
Definition: appendinfo.c:541
void pprint(const void *obj)
Definition: print.c:54
void pgstat_report_plan_id(uint64 plan_id, bool force)
BipartiteMatchState * BipartiteMatch(int u_size, int v_size, short **adjacency)
void BipartiteMatchFree(BipartiteMatchState *state)
Bitmapset * bms_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:346
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:868
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
BMS_Membership bms_membership(const Bitmapset *a)
Definition: bitmapset.c:781
bool bms_overlap_list(const Bitmapset *a, const List *b)
Definition: bitmapset.c:608
#define bms_is_empty(a)
Definition: bitmapset.h:118
@ BMS_MULTIPLE
Definition: bitmapset.h:73
uint32 BlockNumber
Definition: block.h:31
#define Min(x, y)
Definition: c.h:975
#define Max(x, y)
Definition: c.h:969
int64_t int64
Definition: c.h:499
#define FLOAT8PASSBYVAL
Definition: c.h:606
unsigned int Index
Definition: c.h:585
#define MemSet(start, val, len)
Definition: c.h:991
#define OidIsValid(objectId)
Definition: c.h:746
size_t Size
Definition: c.h:576
bool contain_agg_clause(Node *clause)
Definition: clauses.c:179
Node * estimate_expression_value(PlannerInfo *root, Node *node)
Definition: clauses.c:2397
WindowFuncLists * find_window_functions(Node *clause, Index maxWinRef)
Definition: clauses.c:229
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2256
void convert_saop_to_hashed_saop(Node *node)
Definition: clauses.c:2289
char max_parallel_hazard(Query *parse)
Definition: clauses.c:735
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:754
bool contain_subplans(Node *clause)
Definition: clauses.c:331
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:539
double cpu_operator_cost
Definition: costsize.c:134
bool enable_partitionwise_aggregate
Definition: costsize.c:160
int max_parallel_workers_per_gather
Definition: costsize.c:143
double parallel_setup_cost
Definition: costsize.c:136
double parallel_tuple_cost
Definition: costsize.c:135
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2144
double compute_gather_rows(Path *path)
Definition: costsize.c:6610
void cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
Definition: costsize.c:4767
PathTarget * set_pathtarget_cost_width(PlannerInfo *root, PathTarget *target)
Definition: costsize.c:6352
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4741
bool enable_presorted_aggregate
Definition: costsize.c:164
bool enable_hashagg
Definition: costsize.c:152
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
bool enable_indexscan
Definition: costsize.c:146
bool enable_incremental_sort
Definition: costsize.c:151
Plan * materialize_finished_plan(Plan *subplan)
Definition: createplan.c:6594
Plan * create_plan(PlannerInfo *root, Path *best_path)
Definition: createplan.c:337
int errdetail(const char *fmt,...)
Definition: elog.c:1204
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool ExecSupportsBackwardScan(Plan *node)
Definition: execAmi.c:511
Datum Int64GetDatum(int64 X)
Definition: fmgr.c:1807
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:720
FdwRoutine * GetFdwRoutineByRelId(Oid relid)
Definition: foreign.c:419
int max_parallel_maintenance_workers
Definition: globals.c:135
bool IsUnderPostmaster
Definition: globals.c:121
int maintenance_work_mem
Definition: globals.c:134
Assert(PointerIsAligned(start, uint64))
#define IsParallelWorker()
Definition: parallel.h:60
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
double jit_optimize_above_cost
Definition: jit.c:41
bool jit_enabled
Definition: jit.c:32
bool jit_expressions
Definition: jit.c:36
bool jit_tuple_deforming
Definition: jit.c:38
double jit_above_cost
Definition: jit.c:39
double jit_inline_above_cost
Definition: jit.c:40
#define PGJIT_OPT3
Definition: jit.h:21
#define PGJIT_NONE
Definition: jit.h:19
#define PGJIT_EXPR
Definition: jit.h:23
#define PGJIT_DEFORM
Definition: jit.h:24
#define PGJIT_INLINE
Definition: jit.h:22
#define PGJIT_PERFORM
Definition: jit.h:20
Bitmapset * DiscreteKnapsack(int max_weight, int num_items, int *item_weights, double *item_values)
Definition: knapsack.c:52
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_difference_int(const List *list1, const List *list2)
Definition: list.c:1288
List * list_concat_unique_ptr(List *list1, const List *list2)
Definition: list.c:1427
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * lcons(void *datum, List *list)
Definition: list.c:495
List * list_delete_int(List *list, int datum)
Definition: list.c:891
bool list_member_ptr(const List *list, const void *datum)
Definition: list.c:682
void list_free(List *list)
Definition: list.c:1546
bool list_member_int(const List *list, int datum)
Definition: list.c:702
List * list_copy_head(const List *oldlist, int len)
Definition: list.c:1593
List * list_concat_unique(List *list1, const List *list2)
Definition: list.c:1405
#define NoLock
Definition: lockdefs.h:34
#define AccessShareLock
Definition: lockdefs.h:36
@ LockWaitBlock
Definition: lockoptions.h:39
LockClauseStrength
Definition: lockoptions.h:22
@ LCS_FORUPDATE
Definition: lockoptions.h:27
@ LCS_NONE
Definition: lockoptions.h:23
@ LCS_FORSHARE
Definition: lockoptions.h:25
@ LCS_FORKEYSHARE
Definition: lockoptions.h:24
@ LCS_FORNOKEYUPDATE
Definition: lockoptions.h:26
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:1998
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2718
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:311
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:701
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:350
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
char * pstrdup(const char *in)
Definition: mcxt.c:2325
void pfree(void *pointer)
Definition: mcxt.c:2150
void * palloc0(Size size)
Definition: mcxt.c:1973
void * palloc(Size size)
Definition: mcxt.c:1943
MemoryContext CurrentMemoryContext
Definition: mcxt.c:159
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:763
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1841
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3616
#define DO_AGGSPLIT_SKIPFINAL(as)
Definition: nodes.h:392
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:230
double Cost
Definition: nodes.h:257
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:344
@ CMD_MERGE
Definition: nodes.h:275
@ CMD_DELETE
Definition: nodes.h:274
@ CMD_UPDATE
Definition: nodes.h:272
@ CMD_SELECT
Definition: nodes.h:271
AggStrategy
Definition: nodes.h:359
@ AGG_SORTED
Definition: nodes.h:361
@ AGG_HASHED
Definition: nodes.h:362
@ AGG_MIXED
Definition: nodes.h:363
@ AGG_PLAIN
Definition: nodes.h:360
#define DO_AGGSPLIT_SERIALIZE(as)
Definition: nodes.h:393
AggSplit
Definition: nodes.h:381
@ AGGSPLIT_FINAL_DESERIAL
Definition: nodes.h:387
@ AGGSPLIT_SIMPLE
Definition: nodes.h:383
@ AGGSPLIT_INITIAL_SERIAL
Definition: nodes.h:385
@ LIMIT_OPTION_COUNT
Definition: nodes.h:437
#define makeNode(_type_)
Definition: nodes.h:161
#define castNode(_type_, nodeptr)
Definition: nodes.h:182
#define PVC_RECURSE_AGGREGATES
Definition: optimizer.h:193
#define PVC_RECURSE_WINDOWFUNCS
Definition: optimizer.h:195
@ DEBUG_PARALLEL_REGRESS
Definition: optimizer.h:108
@ DEBUG_PARALLEL_OFF
Definition: optimizer.h:106
#define PVC_INCLUDE_WINDOWFUNCS
Definition: optimizer.h:194
#define PVC_INCLUDE_PLACEHOLDERS
Definition: optimizer.h:196
#define PVC_INCLUDE_AGGREGATES
Definition: optimizer.h:192
int assign_special_exec_param(PlannerInfo *root)
Definition: paramassign.c:711
List * expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
Definition: parse_agg.c:1894
Index assignSortGroupRef(TargetEntry *tle, List *tlist)
RTEPermissionInfo * addRTEPermissionInfo(List **rteperminfos, RangeTblEntry *rte)
#define CURSOR_OPT_SCROLL
Definition: parsenodes.h:3376
#define CURSOR_OPT_FAST_PLAN
Definition: parsenodes.h:3382
@ RTE_JOIN
Definition: parsenodes.h:1028
@ RTE_VALUES
Definition: parsenodes.h:1031
@ RTE_SUBQUERY
Definition: parsenodes.h:1027
@ RTE_RESULT
Definition: parsenodes.h:1034
@ RTE_FUNCTION
Definition: parsenodes.h:1029
@ RTE_TABLEFUNC
Definition: parsenodes.h:1030
@ RTE_GROUP
Definition: parsenodes.h:1037
@ RTE_RELATION
Definition: parsenodes.h:1026
#define CURSOR_OPT_PARALLEL_OK
Definition: parsenodes.h:3385
void CheckSelectLocking(Query *qry, LockClauseStrength strength)
Definition: analyze.c:3471
const char * LCS_asString(LockClauseStrength strength)
Definition: analyze.c:3446
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
void DestroyPartitionDirectory(PartitionDirectory pdir)
Definition: partdesc.c:484
List * append_pathkeys(List *target, List *source)
Definition: pathkeys.c:107
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:558
List * make_pathkeys_for_sortclauses(PlannerInfo *root, List *sortclauses, List *tlist)
Definition: pathkeys.c:1336
List * make_pathkeys_for_sortclauses_extended(PlannerInfo *root, List **sortclauses, List *tlist, bool remove_redundant, bool remove_group_rtindex, bool *sortable, bool set_ec_sortref)
Definition: pathkeys.c:1381
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
PathKeysComparison compare_pathkeys(List *keys1, List *keys2)
Definition: pathkeys.c:304
List * get_useful_group_keys_orderings(PlannerInfo *root, Path *path)
Definition: pathkeys.c:467
IndexPath * create_index_path(PlannerInfo *root, IndexOptInfo *index, List *indexclauses, List *indexorderbys, List *indexorderbycols, List *pathkeys, ScanDirection indexscandir, bool indexonly, Relids required_outer, double loop_count, bool partial_path)
Definition: pathnode.c:1049
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2962
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2763
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, List *runCondition, WindowClause *winclause, List *qual, bool topwindow)
Definition: pathnode.c:3577
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3813
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2873
Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers)
Definition: pathnode.c:983
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1962
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:795
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3979
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1300
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:124
IncrementalSortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:3032
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs)
Definition: pathnode.c:3323
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:3082
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:3127
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
UpperUniquePath * create_upper_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:3187
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:3240
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, bool partColsUpdated, List *resultRelations, List *updateColnosLists, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, List *mergeActionLists, List *mergeJoinConditions, int epqParam)
Definition: pathnode.c:3877
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1586
PartitionwiseAggregateType
Definition: pathnodes.h:3405
@ PARTITIONWISE_AGGREGATE_PARTIAL
Definition: pathnodes.h:3408
@ PARTITIONWISE_AGGREGATE_FULL
Definition: pathnodes.h:3407
@ PARTITIONWISE_AGGREGATE_NONE
Definition: pathnodes.h:3406
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:2083
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:3390
#define get_pathtarget_sortgroupref(target, colno)
Definition: pathnodes.h:1685
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:1089
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:3389
#define GROUPING_CAN_PARTIAL_AGG
Definition: pathnodes.h:3391
@ UPPERREL_GROUP_AGG
Definition: pathnodes.h:74
@ UPPERREL_FINAL
Definition: pathnodes.h:79
@ UPPERREL_DISTINCT
Definition: pathnodes.h:77
@ UPPERREL_PARTIAL_GROUP_AGG
Definition: pathnodes.h:72
@ UPPERREL_ORDERED
Definition: pathnodes.h:78
@ UPPERREL_WINDOW
Definition: pathnodes.h:75
@ UPPERREL_PARTIAL_DISTINCT
Definition: pathnodes.h:76
@ RELOPT_OTHER_UPPER_REL
Definition: pathnodes.h:859
#define IS_OTHER_REL(rel)
Definition: pathnodes.h:881
@ PATHKEYS_BETTER2
Definition: paths.h:215
@ PATHKEYS_BETTER1
Definition: paths.h:214
@ PATHKEYS_DIFFERENT
Definition: paths.h:216
@ PATHKEYS_EQUAL
Definition: paths.h:213
void * arg
bool has_subclass(Oid relationId)
Definition: pg_inherits.c:355
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial_node(type, l)
Definition: pg_list.h:181
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial_int(l)
Definition: pg_list.h:179
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:438
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define linitial(l)
Definition: pg_list.h:178
#define foreach_node(type, var, lst)
Definition: pg_list.h:496
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
#define list_nth_node(type, list, n)
Definition: pg_list.h:327
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define list_make1_int(x1)
Definition: pg_list.h:227
#define lfirst_oid(lc)
Definition: pg_list.h:174
static int list_cell_number(const List *l, const ListCell *c)
Definition: pg_list.h:333
#define llast_node(type, l)
Definition: pg_list.h:202
static int scale
Definition: pgbench.c:182
void preprocess_minmax_aggregates(PlannerInfo *root)
Definition: planagg.c:73
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1069
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1236
RelOptInfo * query_planner(PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
Definition: planmain.c:54
#define DEFAULT_CURSOR_TUPLE_FRACTION
Definition: planmain.h:21
#define EXPRKIND_TABLEFUNC_LATERAL
Definition: planner.c:92
static RelOptInfo * create_final_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *distinct_rel)
Definition: planner.c:4987
static List * postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
Definition: planner.c:5722
static PathTarget * make_partial_grouping_target(PlannerInfo *root, PathTarget *grouping_target, Node *havingQual)
Definition: planner.c:5584
Expr * expression_planner_with_deps(Expr *expr, List **relationOids, List **invalItems)
Definition: planner.c:6715
#define EXPRKIND_TARGET
Definition: planner.c:81
#define EXPRKIND_APPINFO
Definition: planner.c:87
static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
Definition: planner.c:7613
static void preprocess_rowmarks(PlannerInfo *root)
Definition: planner.c:2343
#define EXPRKIND_TABLESAMPLE
Definition: planner.c:89
PlannedStmt * planner(Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
Definition: planner.c:286
static void create_degenerate_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel)
Definition: planner.c:3911
#define EXPRKIND_GROUPEXPR
Definition: planner.c:93
planner_hook_type planner_hook
Definition: planner.c:73
double cursor_tuple_fraction
Definition: planner.c:67
static bool is_degenerate_grouping(PlannerInfo *root)
Definition: planner.c:3890
bool plan_cluster_use_sort(Oid tableOid, Oid indexOid)
Definition: planner.c:6768
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
Definition: planner.c:1304
int plan_create_index_workers(Oid tableOid, Oid indexOid)
Definition: planner.c:6890
#define EXPRKIND_PHV
Definition: planner.c:88
#define EXPRKIND_RTFUNC_LATERAL
Definition: planner.c:83
#define EXPRKIND_VALUES_LATERAL
Definition: planner.c:85
static void create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
Definition: planner.c:3975
#define EXPRKIND_LIMIT
Definition: planner.c:86
#define EXPRKIND_VALUES
Definition: planner.c:84
static bool can_partial_agg(PlannerInfo *root)
Definition: planner.c:7696
static double preprocess_limit(PlannerInfo *root, double tuple_fraction, int64 *offset_est, int64 *count_est)
Definition: planner.c:2521
Path * get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction)
Definition: planner.c:6526
Expr * preprocess_phv_expression(PlannerInfo *root, Expr *expr)
Definition: planner.c:1348
static List * get_useful_pathkeys_for_distinct(PlannerInfo *root, List *needed_pathkeys, List *path_pathkeys)
Definition: planner.c:5167
bool parallel_leader_participation
Definition: planner.c:69
static PathTarget * make_window_input_target(PlannerInfo *root, PathTarget *final_target, List *activeWindows)
Definition: planner.c:6102
static void apply_scanjoin_target_to_paths(PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
Definition: planner.c:7738
static RelOptInfo * create_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target)
Definition: planner.c:4734
static void optimize_window_clauses(PlannerInfo *root, WindowFuncLists *wflists)
Definition: planner.c:5759
RowMarkType select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
Definition: planner.c:2455
PlannerInfo * subquery_planner(PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction, SetOperationStmt *setops)
Definition: planner.c:647
static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
Definition: planner.c:6572
static void create_partial_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *final_distinct_rel, PathTarget *target)
Definition: planner.c:4804
#define EXPRKIND_QUAL
Definition: planner.c:80
static List * preprocess_groupclause(PlannerInfo *root, List *force)
Definition: planner.c:2772
static Node * preprocess_expression(PlannerInfo *root, Node *expr, int kind)
Definition: planner.c:1202
static Path * make_ordered_path(PlannerInfo *root, RelOptInfo *rel, Path *path, Path *cheapest_path, List *pathkeys, double limit_tuples)
Definition: planner.c:7554
static bool has_volatile_pathkey(List *keys)
Definition: planner.c:3128
static RelOptInfo * create_partial_grouping_paths(PlannerInfo *root, RelOptInfo *grouped_rel, RelOptInfo *input_rel, grouping_sets_data *gd, GroupPathExtraData *extra, bool force_rel_creation)
Definition: planner.c:7260
static void name_active_windows(List *activeWindows)
Definition: planner.c:5982
static PathTarget * make_sort_input_target(PlannerInfo *root, PathTarget *final_target, bool *have_postponed_srfs)
Definition: planner.c:6350
static void create_one_window_path(PlannerInfo *root, RelOptInfo *window_rel, Path *path, PathTarget *input_target, PathTarget *output_target, WindowFuncLists *wflists, List *activeWindows)
Definition: planner.c:4564
bool enable_distinct_reordering
Definition: planner.c:70
void mark_partial_aggref(Aggref *agg, AggSplit aggsplit)
Definition: planner.c:5687
static grouping_sets_data * preprocess_grouping_sets(PlannerInfo *root)
Definition: planner.c:2125
int debug_parallel_query
Definition: planner.c:68
static List * remap_to_groupclause_idx(List *groupClause, List *gsets, int *tleref_to_colnum_map)
Definition: planner.c:2306
static void adjust_group_pathkeys_for_groupagg(PlannerInfo *root)
Definition: planner.c:3173
static PathTarget * make_group_input_target(PlannerInfo *root, PathTarget *final_target)
Definition: planner.c:5472
static List * reorder_grouping_sets(List *groupingSets, List *sortclause)
Definition: planner.c:3080
static int common_prefix_cmp(const void *a, const void *b)
Definition: planner.c:6033
static void grouping_planner(PlannerInfo *root, double tuple_fraction, SetOperationStmt *setops)
Definition: planner.c:1381
static RelOptInfo * make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
Definition: planner.c:3837
static List * generate_setop_child_grouplist(SetOperationStmt *op, List *targetlist)
Definition: planner.c:8204
static List * select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
Definition: planner.c:5899
Expr * expression_planner(Expr *expr)
Definition: planner.c:6688
bool limit_needed(Query *parse)
Definition: planner.c:2706
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:76
#define EXPRKIND_TABLEFUNC
Definition: planner.c:91
static void consider_groupingsets_paths(PlannerInfo *root, RelOptInfo *grouped_rel, Path *path, bool is_sorted, bool can_hash, grouping_sets_data *gd, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: planner.c:4115
static List * make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, List *tlist)
Definition: planner.c:6222
static void add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, double dNumGroups, GroupPathExtraData *extra)
Definition: planner.c:7023
static RelOptInfo * create_ordered_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, double limit_tuples)
Definition: planner.c:5252
#define EXPRKIND_RTFUNC
Definition: planner.c:82
static double get_number_of_groups(PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
Definition: planner.c:3602
static List * extract_rollup_sets(List *groupingSets)
Definition: planner.c:2868
static RelOptInfo * create_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, grouping_sets_data *gd)
Definition: planner.c:3724
static void create_partitionwise_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, PartitionwiseAggregateType patype, GroupPathExtraData *extra)
Definition: planner.c:7973
#define EXPRKIND_ARBITER_ELEM
Definition: planner.c:90
static bool group_by_has_partkey(RelOptInfo *input_rel, List *targetList, List *groupClause)
Definition: planner.c:8117
PlannedStmt * standard_planner(Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
Definition: planner.c:302
static void standard_qp_callback(PlannerInfo *root, void *extra)
Definition: planner.c:3397
static RelOptInfo * create_window_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *input_target, PathTarget *output_target, bool output_target_parallel_safe, WindowFuncLists *wflists, List *activeWindows)
Definition: planner.c:4477
PlannedStmt *(* planner_hook_type)(Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
Definition: planner.h:26
void(* create_upper_paths_hook_type)(PlannerInfo *root, UpperRelationKind stage, RelOptInfo *input_rel, RelOptInfo *output_rel, void *extra)
Definition: planner.h:33
RowMarkType
Definition: plannodes.h:1485
@ ROW_MARK_COPY
Definition: plannodes.h:1491
@ ROW_MARK_REFERENCE
Definition: plannodes.h:1490
@ ROW_MARK_SHARE
Definition: plannodes.h:1488
@ ROW_MARK_EXCLUSIVE
Definition: plannodes.h:1486
@ ROW_MARK_NOKEYEXCLUSIVE
Definition: plannodes.h:1487
@ ROW_MARK_KEYSHARE
Definition: plannodes.h:1489
#define snprintf
Definition: port.h:239
#define qsort(a, b, c, d)
Definition: port.h:479
#define printf(...)
Definition: port.h:245
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:390
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:327
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:317
#define InvalidOid
Definition: postgres_ext.h:35
unsigned int Oid
Definition: postgres_ext.h:30
void get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit, AggClauseCosts *costs)
Definition: prepagg.c:559
void preprocess_aggrefs(PlannerInfo *root, Node *clause)
Definition: prepagg.c:110
void preprocess_function_rtes(PlannerInfo *root)
Definition: prepjointree.c:914
void flatten_simple_union_all(PlannerInfo *root)
void transform_MERGE_to_join(Query *parse)
Definition: prepjointree.c:183
void remove_useless_result_rtes(PlannerInfo *root)
Query * expand_virtual_generated_columns(PlannerInfo *root)
Definition: prepjointree.c:969
void pull_up_sublinks(PlannerInfo *root)
Definition: prepjointree.c:468
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:410
void pull_up_subqueries(PlannerInfo *root)
Relids get_relids_in_jointree(Node *jtnode, bool include_outer_joins, bool include_inner_joins)
void reduce_outer_joins(PlannerInfo *root)
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
char * c
e
Definition: preproc-init.c:82
void preprocess_targetlist(PlannerInfo *root)
Definition: preptlist.c:64
RelOptInfo * plan_set_operations(PlannerInfo *root)
Definition: prepunion.c:93
tree ctl root
Definition: radixtree.h:1857
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5207
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5094
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:94
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:192
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
@ ForwardScanDirection
Definition: sdir.h:28
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset, EstimationInfo *estinfo)
Definition: selfuncs.c:3446
double estimate_hashagg_tablesize(PlannerInfo *root, Path *path, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: selfuncs.c:4176
Plan * set_plan_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:288
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3669
void check_stack_depth(void)
Definition: stack_depth.c:95
List * aggrefs
Definition: pathnodes.h:3512
List * aggdistinct
Definition: primnodes.h:491
List * args
Definition: primnodes.h:485
Expr * aggfilter
Definition: primnodes.h:494
List * aggorder
Definition: primnodes.h:488
GetForeignRowMarkType_function GetForeignRowMarkType
Definition: fdwapi.h:247
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:226
Cardinality limit_tuples
Definition: pathnodes.h:3452
Node * quals
Definition: primnodes.h:2338
List * fromlist
Definition: primnodes.h:2337
int num_workers
Definition: plannodes.h:1289
bool invisible
Definition: plannodes.h:1295
bool single_copy
Definition: plannodes.h:1293
Plan plan
Definition: plannodes.h:1287
int rescan_param
Definition: plannodes.h:1291
PartitionwiseAggregateType patype
Definition: pathnodes.h:3436
AggClauseCosts agg_final_costs
Definition: pathnodes.h:3430
AggClauseCosts agg_partial_costs
Definition: pathnodes.h:3429
Cardinality numGroups
Definition: pathnodes.h:2410
Path path
Definition: pathnodes.h:1846
Definition: pg_list.h:54
Definition: nodes.h:135
List * exprs
Definition: pathnodes.h:1669
List * pathkeys
Definition: pathnodes.h:1802
Cardinality rows
Definition: pathnodes.h:1796
int disabled_nodes
Definition: pathnodes.h:1797
Cost total_cost
Definition: pathnodes.h:1799
LockClauseStrength strength
Definition: plannodes.h:1550
Index prti
Definition: plannodes.h:1542
RowMarkType markType
Definition: plannodes.h:1546
LockWaitPolicy waitPolicy
Definition: plannodes.h:1552
bool isParent
Definition: plannodes.h:1554
Index rowmarkId
Definition: plannodes.h:1544
int allMarkTypes
Definition: plannodes.h:1548
struct Plan * lefttree
Definition: plannodes.h:213
Cost total_cost
Definition: plannodes.h:179
struct Plan * righttree
Definition: plannodes.h:214
bool parallel_aware
Definition: plannodes.h:193
Cost startup_cost
Definition: plannodes.h:177
List * qual
Definition: plannodes.h:211
int plan_width
Definition: plannodes.h:187
bool parallel_safe
Definition: plannodes.h:195
Cardinality plan_rows
Definition: plannodes.h:185
List * targetlist
Definition: plannodes.h:209
List * initPlan
Definition: plannodes.h:216
struct Plan * planTree
Definition: plannodes.h:83
List * firstResultRels
Definition: plannodes.h:113
bool hasModifyingCTE
Definition: plannodes.h:65
List * appendRelations
Definition: plannodes.h:116
uint64 planId
Definition: plannodes.h:59
List * permInfos
Definition: plannodes.h:102
bool canSetTag
Definition: plannodes.h:68
List * rowMarks
Definition: plannodes.h:127
int jitFlags
Definition: plannodes.h:80
Bitmapset * rewindPlanIDs
Definition: plannodes.h:124
ParseLoc stmt_len
Definition: plannodes.h:145
bool hasReturning
Definition: plannodes.h:62
ParseLoc stmt_location
Definition: plannodes.h:143
List * invalItems
Definition: plannodes.h:133
bool transientPlan
Definition: plannodes.h:71
List * resultRelations
Definition: plannodes.h:106
List * subplans
Definition: plannodes.h:121
List * relationOids
Definition: plannodes.h:130
bool dependsOnRole
Definition: plannodes.h:74
Bitmapset * unprunableRelids
Definition: plannodes.h:97
CmdType commandType
Definition: plannodes.h:53
Node * utilityStmt
Definition: plannodes.h:139
List * rtable
Definition: plannodes.h:91
List * partPruneInfos
Definition: plannodes.h:88
List * paramExecTypes
Definition: plannodes.h:136
bool parallelModeNeeded
Definition: plannodes.h:77
uint64 queryId
Definition: plannodes.h:56
Bitmapset * prunableRelids
Definition: pathnodes.h:130
int lastPlanNodeId
Definition: pathnodes.h:166
char maxParallelHazard
Definition: pathnodes.h:181
List * subplans
Definition: pathnodes.h:105
bool dependsOnRole
Definition: pathnodes.h:172
Bitmapset * allRelids
Definition: pathnodes.h:123
List * appendRelations
Definition: pathnodes.h:145
List * finalrowmarks
Definition: pathnodes.h:136
List * invalItems
Definition: pathnodes.h:154
List * relationOids
Definition: pathnodes.h:151
List * paramExecTypes
Definition: pathnodes.h:157
bool parallelModeOK
Definition: pathnodes.h:175
bool transientPlan
Definition: pathnodes.h:169
Bitmapset * rewindPlanIDs
Definition: pathnodes.h:114
List * finalrteperminfos
Definition: pathnodes.h:133
List * subpaths
Definition: pathnodes.h:108
Index lastPHId
Definition: pathnodes.h:160
Index lastRowMarkId
Definition: pathnodes.h:163
List * resultRelations
Definition: pathnodes.h:139
List * partPruneInfos
Definition: pathnodes.h:148
List * finalrtable
Definition: pathnodes.h:117
List * firstResultRels
Definition: pathnodes.h:142
bool parallelModeNeeded
Definition: pathnodes.h:178
Index query_level
Definition: pathnodes.h:232
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * rtable
Definition: parsenodes.h:170
CmdType commandType
Definition: parsenodes.h:121
TableFunc * tablefunc
Definition: parsenodes.h:1198
struct TableSampleClause * tablesample
Definition: parsenodes.h:1112
Query * subquery
Definition: parsenodes.h:1118
List * values_lists
Definition: parsenodes.h:1204
JoinType jointype
Definition: parsenodes.h:1165
List * functions
Definition: parsenodes.h:1191
RTEKind rtekind
Definition: parsenodes.h:1061
bool useridiscurrent
Definition: pathnodes.h:995
Relids relids
Definition: pathnodes.h:898
struct PathTarget * reltarget
Definition: pathnodes.h:920
Index relid
Definition: pathnodes.h:945
Cardinality tuples
Definition: pathnodes.h:976
bool consider_parallel
Definition: pathnodes.h:914
BlockNumber pages
Definition: pathnodes.h:975
List * pathlist
Definition: pathnodes.h:925
RelOptKind reloptkind
Definition: pathnodes.h:892
List * indexlist
Definition: pathnodes.h:971
struct Path * cheapest_startup_path
Definition: pathnodes.h:928
struct Path * cheapest_total_path
Definition: pathnodes.h:929
Oid userid
Definition: pathnodes.h:993
Oid serverid
Definition: pathnodes.h:991
Bitmapset * live_parts
Definition: pathnodes.h:1066
int rel_parallel_workers
Definition: pathnodes.h:983
List * partial_pathlist
Definition: pathnodes.h:927
Cardinality rows
Definition: pathnodes.h:904
Form_pg_class rd_rel
Definition: rel.h:111
Cardinality numGroups
Definition: pathnodes.h:2421
List * groupClause
Definition: pathnodes.h:2418
List * gsets_data
Definition: pathnodes.h:2420
bool hashable
Definition: pathnodes.h:2422
List * gsets
Definition: pathnodes.h:2419
bool is_hashed
Definition: pathnodes.h:2423
LockClauseStrength strength
Definition: parsenodes.h:1594
LockWaitPolicy waitPolicy
Definition: parsenodes.h:1595
Index tleSortGroupRef
Definition: parsenodes.h:1452
struct WindowClause * window_clause
Definition: supportnodes.h:339
Expr * expr
Definition: primnodes.h:2219
AttrNumber resno
Definition: primnodes.h:2221
Index ressortgroupref
Definition: primnodes.h:2225
Definition: primnodes.h:262
WindowClause * wc
Definition: planner.c:116
Node * startOffset
Definition: parsenodes.h:1561
List * partitionClause
Definition: parsenodes.h:1557
Node * endOffset
Definition: parsenodes.h:1562
List * orderClause
Definition: parsenodes.h:1559
List ** windowFuncs
Definition: clauses.h:23
Index maxWinRef
Definition: clauses.h:22
int numWindowFuncs
Definition: clauses.h:21
Index winref
Definition: primnodes.h:598
Oid winfnoid
Definition: primnodes.h:584
int * tleref_to_colnum_map
Definition: planner.c:107
Bitmapset * unhashable_refs
Definition: planner.c:105
List * unsortable_sets
Definition: planner.c:106
List * hash_sets_idx
Definition: planner.c:101
double dNumHashGroups
Definition: planner.c:102
Bitmapset * unsortable_refs
Definition: planner.c:104
Definition: type.h:96
List * activeWindows
Definition: planner.c:124
grouping_sets_data * gset_data
Definition: planner.c:125
SetOperationStmt * setop
Definition: planner.c:126
Definition: regguts.h:323
Node * SS_process_sublinks(PlannerInfo *root, Node *expr, bool isQual)
Definition: subselect.c:2026
void SS_process_ctes(PlannerInfo *root)
Definition: subselect.c:880
void SS_identify_outer_params(PlannerInfo *root)
Definition: subselect.c:2184
Node * SS_replace_correlation_vars(PlannerInfo *root, Node *expr)
Definition: subselect.c:1971
void SS_finalize_plan(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2368
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2312
void SS_charge_for_initplans(PlannerInfo *root, RelOptInfo *final_rel)
Definition: subselect.c:2248
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:218
SortGroupClause * get_sortgroupref_clause_noerr(Index sortref, List *clauses)
Definition: tlist.c:443
SortGroupClause * get_sortgroupref_clause(Index sortref, List *clauses)
Definition: tlist.c:422
bool grouping_is_sortable(List *groupClause)
Definition: tlist.c:540
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:657
void add_new_columns_to_pathtarget(PathTarget *target, List *exprs)
Definition: tlist.c:752
PathTarget * create_empty_pathtarget(void)
Definition: tlist.c:681
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:392
void split_pathtarget_at_srfs(PlannerInfo *root, PathTarget *target, PathTarget *input_target, List **targets, List **targets_contain_srfs)
Definition: tlist.c:881
bool grouping_is_hashable(List *groupClause)
Definition: tlist.c:560
void add_column_to_pathtarget(PathTarget *target, Expr *expr, Index sortgroupref)
Definition: tlist.c:695
#define create_pathtarget(root, tlist)
Definition: tlist.h:53
Node * flatten_group_exprs(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:968
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114
List * pull_var_clause(Node *node, int flags)
Definition: var.c:653
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789