PostgreSQL Source Code git master
Loading...
Searching...
No Matches
plancat.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * plancat.c
4 * routines for accessing the system catalogs
5 *
6 *
7 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 *
11 * IDENTIFICATION
12 * src/backend/optimizer/util/plancat.c
13 *
14 *-------------------------------------------------------------------------
15 */
16#include "postgres.h"
17
18#include <math.h>
19
20#include "access/genam.h"
21#include "access/htup_details.h"
22#include "access/nbtree.h"
23#include "access/sysattr.h"
24#include "access/table.h"
25#include "access/tableam.h"
26#include "access/transam.h"
27#include "access/xlog.h"
28#include "catalog/catalog.h"
29#include "catalog/heap.h"
30#include "catalog/pg_am.h"
31#include "catalog/pg_proc.h"
34#include "foreign/fdwapi.h"
35#include "miscadmin.h"
36#include "nodes/makefuncs.h"
37#include "nodes/nodeFuncs.h"
38#include "nodes/supportnodes.h"
39#include "optimizer/cost.h"
40#include "optimizer/optimizer.h"
41#include "optimizer/plancat.h"
43#include "parser/parsetree.h"
48#include "storage/bufmgr.h"
49#include "tcop/tcopprot.h"
50#include "utils/builtins.h"
51#include "utils/lsyscache.h"
52#include "utils/partcache.h"
53#include "utils/rel.h"
54#include "utils/snapmgr.h"
55#include "utils/syscache.h"
56
57/* GUC parameter */
59
60/* Hook for plugins to get control in get_relation_info() */
62
63typedef struct NotnullHashEntry
64{
65 Oid relid; /* OID of the relation */
66 Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
68
69
71 Relation relation, bool inhparent);
73 List *idxExprs);
77 bool include_notnull,
80 Relation heapRelation);
82 Relation relation);
84 Relation relation);
86 Relation relation);
87static void set_baserel_partition_key_exprs(Relation relation,
88 RelOptInfo *rel);
90 RelOptInfo *rel);
91
92
93/*
94 * get_relation_info -
95 * Retrieves catalog information for a given relation.
96 *
97 * Given the Oid of the relation, return the following info into fields
98 * of the RelOptInfo struct:
99 *
100 * min_attr lowest valid AttrNumber
101 * max_attr highest valid AttrNumber
102 * indexlist list of IndexOptInfos for relation's indexes
103 * statlist list of StatisticExtInfo for relation's statistic objects
104 * serverid if it's a foreign table, the server OID
105 * fdwroutine if it's a foreign table, the FDW function pointers
106 * pages number of pages
107 * tuples number of tuples
108 * rel_parallel_workers user-defined number of parallel workers
109 *
110 * Also, add information about the relation's foreign keys to root->fkey_list.
111 *
112 * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 * cases these are left as zeroes, but sometimes we need to compute attr
114 * widths here, and we may as well cache the results for costsize.c.
115 *
116 * If inhparent is true, all we need to do is set up the attr arrays:
117 * the RelOptInfo actually represents the appendrel formed by an inheritance
118 * tree, and so the parent rel's physical size and index information isn't
119 * important for it, however, for partitioned tables, we do populate the
120 * indexlist as the planner uses unique indexes as unique proofs for certain
121 * optimizations.
122 */
123void
125 RelOptInfo *rel)
126{
127 Index varno = rel->relid;
128 Relation relation;
129 bool hasindex;
131
132 /*
133 * We need not lock the relation since it was already locked, either by
134 * the rewriter or when expand_inherited_rtentry() added it to the query's
135 * rangetable.
136 */
138
139 /*
140 * Relations without a table AM can be used in a query only if they are of
141 * special-cased relkinds. This check prevents us from crashing later if,
142 * for example, a view's ON SELECT rule has gone missing. Note that
143 * table_open() already rejected indexes and composite types; spell the
144 * error the same way it does.
145 */
146 if (!relation->rd_tableam)
147 {
148 if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
152 errmsg("cannot open relation \"%s\"",
153 RelationGetRelationName(relation)),
154 errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 }
156
157 /* Temporary and unlogged relations are inaccessible during recovery. */
158 if (!RelationIsPermanent(relation) && RecoveryInProgress())
161 errmsg("cannot access temporary or unlogged relations during recovery")));
162
165 rel->reltablespace = RelationGetForm(relation)->reltablespace;
166
167 Assert(rel->max_attr >= rel->min_attr);
168 rel->attr_needed = (Relids *)
169 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 rel->attr_widths = (int32 *)
171 palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172
173 /*
174 * Record which columns are defined as NOT NULL. We leave this
175 * unpopulated for non-partitioned inheritance parent relations as it's
176 * ambiguous as to what it means. Some child tables may have a NOT NULL
177 * constraint for a column while others may not. We could work harder and
178 * build a unioned set of all child relations notnullattnums, but there's
179 * currently no need. The RelOptInfo corresponding to the !inh
180 * RangeTblEntry does get populated.
181 */
182 if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
184
185 /*
186 * Estimate relation size --- unless it's an inheritance parent, in which
187 * case the size we want is not the rel's own size but the size of its
188 * inheritance tree. That will be computed in set_append_rel_size().
189 */
190 if (!inhparent)
191 estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 &rel->pages, &rel->tuples, &rel->allvisfrac);
193
194 /* Retrieve the parallel_workers reloption, or -1 if not set. */
196
197 /*
198 * Make list of indexes. Ignore indexes on system catalogs if told to.
199 * Don't bother with indexes from traditional inheritance parents. For
200 * partitioned tables, we need a list of at least unique indexes as these
201 * serve as unique proofs for certain planner optimizations. However,
202 * let's not discriminate here and just record all partitioned indexes
203 * whether they're unique indexes or not.
204 */
205 if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 hasindex = false;
208 else
209 hasindex = relation->rd_rel->relhasindex;
210
211 if (hasindex)
212 {
215 ListCell *l;
216
218
219 /*
220 * For each index, we get the same type of lock that the executor will
221 * need, and do not release it. This saves a couple of trips to the
222 * shared lock manager while not creating any real loss of
223 * concurrency, because no schema changes could be happening on the
224 * index while we hold lock on the parent rel, and no lock type used
225 * for queries blocks any other kind of index operation.
226 */
227 lmode = root->simple_rte_array[varno]->rellockmode;
228
229 foreach(l, indexoidlist)
230 {
231 Oid indexoid = lfirst_oid(l);
232 Relation indexRelation;
235 IndexOptInfo *info;
236 int ncolumns,
237 nkeycolumns;
238 int i;
239
240 /*
241 * Extract info from the relation descriptor for the index.
242 */
243 indexRelation = index_open(indexoid, lmode);
244 index = indexRelation->rd_index;
245
246 /*
247 * Ignore invalid indexes, since they can't safely be used for
248 * queries. Note that this is OK because the data structure we
249 * are constructing is only used by the planner --- the executor
250 * still needs to insert into "invalid" indexes, if they're marked
251 * indisready.
252 */
253 if (!index->indisvalid)
254 {
255 index_close(indexRelation, NoLock);
256 continue;
257 }
258
259 /*
260 * If the index is valid, but cannot yet be used, ignore it; but
261 * mark the plan we are generating as transient. See
262 * src/backend/access/heap/README.HOT for discussion.
263 */
264 if (index->indcheckxmin &&
267 {
268 root->glob->transientPlan = true;
269 index_close(indexRelation, NoLock);
270 continue;
271 }
272
273 info = makeNode(IndexOptInfo);
274
275 info->indexoid = index->indexrelid;
276 info->reltablespace =
277 RelationGetForm(indexRelation)->reltablespace;
278 info->rel = rel;
279 info->ncolumns = ncolumns = index->indnatts;
280 info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281
282 info->indexkeys = palloc_array(int, ncolumns);
283 info->indexcollations = palloc_array(Oid, nkeycolumns);
284 info->opfamily = palloc_array(Oid, nkeycolumns);
285 info->opcintype = palloc_array(Oid, nkeycolumns);
286 info->canreturn = palloc_array(bool, ncolumns);
287
288 for (i = 0; i < ncolumns; i++)
289 {
290 info->indexkeys[i] = index->indkey.values[i];
291 info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 }
293
294 for (i = 0; i < nkeycolumns; i++)
295 {
296 info->opfamily[i] = indexRelation->rd_opfamily[i];
297 info->opcintype[i] = indexRelation->rd_opcintype[i];
298 info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 }
300
301 info->relam = indexRelation->rd_rel->relam;
302
303 /*
304 * We don't have an AM for partitioned indexes, so we'll just
305 * NULLify the AM related fields for those.
306 */
307 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 {
309 /* We copy just the fields we need, not all of rd_indam */
310 amroutine = indexRelation->rd_indam;
311 info->amcanorderbyop = amroutine->amcanorderbyop;
312 info->amoptionalkey = amroutine->amoptionalkey;
313 info->amsearcharray = amroutine->amsearcharray;
314 info->amsearchnulls = amroutine->amsearchnulls;
315 info->amcanparallel = amroutine->amcanparallel;
316 info->amhasgettuple = (amroutine->amgettuple != NULL);
317 info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
319 info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 amroutine->amrestrpos != NULL);
321 info->amcostestimate = amroutine->amcostestimate;
322 Assert(info->amcostestimate != NULL);
323
324 /* Fetch index opclass options */
325 info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326
327 /*
328 * Fetch the ordering information for the index, if any.
329 */
330 if (info->relam == BTREE_AM_OID)
331 {
332 /*
333 * If it's a btree index, we can use its opfamily OIDs
334 * directly as the sort ordering opfamily OIDs.
335 */
336 Assert(amroutine->amcanorder);
337
338 info->sortopfamily = info->opfamily;
339 info->reverse_sort = palloc_array(bool, nkeycolumns);
340 info->nulls_first = palloc_array(bool, nkeycolumns);
341
342 for (i = 0; i < nkeycolumns; i++)
343 {
344 int16 opt = indexRelation->rd_indoption[i];
345
346 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 }
349 }
350 else if (amroutine->amcanorder)
351 {
352 /*
353 * Otherwise, identify the corresponding btree opfamilies
354 * by trying to map this index's "<" operators into btree.
355 * Since "<" uniquely defines the behavior of a sort
356 * order, this is a sufficient test.
357 *
358 * XXX This method is rather slow and complicated. It'd
359 * be better to have a way to explicitly declare the
360 * corresponding btree opfamily for each opfamily of the
361 * other index type.
362 */
363 info->sortopfamily = palloc_array(Oid, nkeycolumns);
364 info->reverse_sort = palloc_array(bool, nkeycolumns);
365 info->nulls_first = palloc_array(bool, nkeycolumns);
366
367 for (i = 0; i < nkeycolumns; i++)
368 {
369 int16 opt = indexRelation->rd_indoption[i];
370 Oid ltopr;
371 Oid opfamily;
372 Oid opcintype;
373 CompareType cmptype;
374
375 info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377
378 ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 info->opcintype[i],
380 info->opcintype[i],
381 COMPARE_LT);
382 if (OidIsValid(ltopr) &&
384 &opfamily,
385 &opcintype,
386 &cmptype) &&
387 opcintype == info->opcintype[i] &&
388 cmptype == COMPARE_LT)
389 {
390 /* Successful mapping */
391 info->sortopfamily[i] = opfamily;
392 }
393 else
394 {
395 /* Fail ... quietly treat index as unordered */
396 info->sortopfamily = NULL;
397 info->reverse_sort = NULL;
398 info->nulls_first = NULL;
399 break;
400 }
401 }
402 }
403 else
404 {
405 info->sortopfamily = NULL;
406 info->reverse_sort = NULL;
407 info->nulls_first = NULL;
408 }
409 }
410 else
411 {
412 info->amcanorderbyop = false;
413 info->amoptionalkey = false;
414 info->amsearcharray = false;
415 info->amsearchnulls = false;
416 info->amcanparallel = false;
417 info->amhasgettuple = false;
418 info->amhasgetbitmap = false;
419 info->amcanmarkpos = false;
420 info->amcostestimate = NULL;
421
422 info->sortopfamily = NULL;
423 info->reverse_sort = NULL;
424 info->nulls_first = NULL;
425 }
426
427 /*
428 * Fetch the index expressions and predicate, if any. We must
429 * modify the copies we obtain from the relcache to have the
430 * correct varno for the parent relation, so that they match up
431 * correctly against qual clauses.
432 *
433 * After fixing the varnos, we need to run the index expressions
434 * and predicate through const-simplification again, using a valid
435 * "root". This ensures that NullTest quals for Vars can be
436 * properly reduced.
437 */
438 info->indexprs = RelationGetIndexExpressions(indexRelation);
439 info->indpred = RelationGetIndexPredicate(indexRelation);
440 if (info->indexprs)
441 {
442 if (varno != 1)
443 ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
444
445 info->indexprs = (List *)
446 eval_const_expressions(root, (Node *) info->indexprs);
447 }
448 if (info->indpred)
449 {
450 if (varno != 1)
451 ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
452
453 info->indpred = (List *)
455 (Node *) make_ands_explicit(info->indpred));
456 info->indpred = make_ands_implicit((Expr *) info->indpred);
457 }
458
459 /* Build targetlist using the completed indexprs data */
460 info->indextlist = build_index_tlist(root, info, relation);
461
462 info->indrestrictinfo = NIL; /* set later, in indxpath.c */
463 info->predOK = false; /* set later, in indxpath.c */
464 info->unique = index->indisunique;
465 info->nullsnotdistinct = index->indnullsnotdistinct;
466 info->immediate = index->indimmediate;
467 info->hypothetical = false;
468
469 /*
470 * Estimate the index size. If it's not a partial index, we lock
471 * the number-of-tuples estimate to equal the parent table; if it
472 * is partial then we have to use the same methods as we would for
473 * a table, except we can be sure that the index is not larger
474 * than the table. We must ignore partitioned indexes here as
475 * there are not physical indexes.
476 */
477 if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
478 {
479 if (info->indpred == NIL)
480 {
481 info->pages = RelationGetNumberOfBlocks(indexRelation);
482 info->tuples = rel->tuples;
483 }
484 else
485 {
486 double allvisfrac; /* dummy */
487
488 estimate_rel_size(indexRelation, NULL,
489 &info->pages, &info->tuples, &allvisfrac);
490 if (info->tuples > rel->tuples)
491 info->tuples = rel->tuples;
492 }
493
494 /*
495 * Get tree height while we have the index open
496 */
497 if (amroutine->amgettreeheight)
498 {
499 info->tree_height = amroutine->amgettreeheight(indexRelation);
500 }
501 else
502 {
503 /* For other index types, just set it to "unknown" for now */
504 info->tree_height = -1;
505 }
506 }
507 else
508 {
509 /* Zero these out for partitioned indexes */
510 info->pages = 0;
511 info->tuples = 0.0;
512 info->tree_height = -1;
513 }
514
515 index_close(indexRelation, NoLock);
516
517 /*
518 * We've historically used lcons() here. It'd make more sense to
519 * use lappend(), but that causes the planner to change behavior
520 * in cases where two indexes seem equally attractive. For now,
521 * stick with lcons() --- few tables should have so many indexes
522 * that the O(N^2) behavior of lcons() is really a problem.
523 */
524 indexinfos = lcons(info, indexinfos);
525 }
526
528 }
529
530 rel->indexlist = indexinfos;
531
532 rel->statlist = get_relation_statistics(root, rel, relation);
533
534 /* Grab foreign-table info using the relcache, while we have it */
535 if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
536 {
537 /* Check if the access to foreign tables is restricted */
539 {
540 /* there must not be built-in foreign tables */
542
545 errmsg("access to non-system foreign table is restricted")));
546 }
547
549 rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
550 }
551 else
552 {
553 rel->serverid = InvalidOid;
554 rel->fdwroutine = NULL;
555 }
556
557 /* Collect info about relation's foreign keys, if relevant */
558 get_relation_foreign_keys(root, rel, relation, inhparent);
559
560 /* Collect info about functions implemented by the rel's table AM. */
561 if (relation->rd_tableam &&
562 relation->rd_tableam->scan_set_tidrange != NULL &&
565
566 /*
567 * Collect info about relation's partitioning scheme, if any. Only
568 * inheritance parents may be partitioned.
569 */
570 if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
571 set_relation_partition_info(root, rel, relation);
572
573 table_close(relation, NoLock);
574
575 /*
576 * Allow a plugin to editorialize on the info we obtained from the
577 * catalogs. Actions might include altering the assumed relation size,
578 * removing an index, or adding a hypothetical index to the indexlist.
579 *
580 * An extension can also modify rel->pgs_mask here to control path
581 * generation.
582 */
584 (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
585}
586
587/*
588 * get_relation_foreign_keys -
589 * Retrieves foreign key information for a given relation.
590 *
591 * ForeignKeyOptInfos for relevant foreign keys are created and added to
592 * root->fkey_list. We do this now while we have the relcache entry open.
593 * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
594 * until all RelOptInfos have been built, but the cost of re-opening the
595 * relcache entries would probably exceed any savings.
596 */
597static void
599 Relation relation, bool inhparent)
600{
601 List *rtable = root->parse->rtable;
603 ListCell *lc;
604
605 /*
606 * If it's not a baserel, we don't care about its FKs. Also, if the query
607 * references only a single relation, we can skip the lookup since no FKs
608 * could satisfy the requirements below.
609 */
610 if (rel->reloptkind != RELOPT_BASEREL ||
611 list_length(rtable) < 2)
612 return;
613
614 /*
615 * If it's the parent of an inheritance tree, ignore its FKs. We could
616 * make useful FK-based deductions if we found that all members of the
617 * inheritance tree have equivalent FK constraints, but detecting that
618 * would require code that hasn't been written.
619 */
620 if (inhparent)
621 return;
622
623 /*
624 * Extract data about relation's FKs from the relcache. Note that this
625 * list belongs to the relcache and might disappear in a cache flush, so
626 * we must not do any further catalog access within this function.
627 */
629
630 /*
631 * Figure out which FKs are of interest for this query, and create
632 * ForeignKeyOptInfos for them. We want only FKs that reference some
633 * other RTE of the current query. In queries containing self-joins,
634 * there might be more than one other RTE for a referenced table, and we
635 * should make a ForeignKeyOptInfo for each occurrence.
636 *
637 * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
638 * too hard to identify those here, so we might end up making some useless
639 * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
640 * them again.
641 */
642 foreach(lc, cachedfkeys)
643 {
645 Index rti;
646 ListCell *lc2;
647
648 /* conrelid should always be that of the table we're considering */
649 Assert(cachedfk->conrelid == RelationGetRelid(relation));
650
651 /* skip constraints currently not enforced */
652 if (!cachedfk->conenforced)
653 continue;
654
655 /* Scan to find other RTEs matching confrelid */
656 rti = 0;
657 foreach(lc2, rtable)
658 {
660 ForeignKeyOptInfo *info;
661
662 rti++;
663 /* Ignore if not the correct table */
664 if (rte->rtekind != RTE_RELATION ||
665 rte->relid != cachedfk->confrelid)
666 continue;
667 /* Ignore if it's an inheritance parent; doesn't really match */
668 if (rte->inh)
669 continue;
670 /* Ignore self-referential FKs; we only care about joins */
671 if (rti == rel->relid)
672 continue;
673
674 /* OK, let's make an entry */
676 info->con_relid = rel->relid;
677 info->ref_relid = rti;
678 info->nkeys = cachedfk->nkeys;
679 memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
680 memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
681 memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
682 /* zero out fields to be filled by match_foreign_keys_to_quals */
683 info->nmatched_ec = 0;
684 info->nconst_ec = 0;
685 info->nmatched_rcols = 0;
686 info->nmatched_ri = 0;
687 memset(info->eclass, 0, sizeof(info->eclass));
688 memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
689 memset(info->rinfos, 0, sizeof(info->rinfos));
690
691 root->fkey_list = lappend(root->fkey_list, info);
692 }
693 }
694}
695
696/*
697 * get_relation_notnullatts -
698 * Retrieves column not-null constraint information for a given relation.
699 *
700 * We do this while we have the relcache entry open, and store the column
701 * not-null constraint information in a hash table based on the relation OID.
702 */
703void
705{
706 Oid relid = RelationGetRelid(relation);
708 bool found;
709 Bitmapset *notnullattnums = NULL;
710
711 /* bail out if the relation has no not-null constraints */
712 if (relation->rd_att->constr == NULL ||
713 !relation->rd_att->constr->has_not_null)
714 return;
715
716 /* create the hash table if it hasn't been created yet */
717 if (root->glob->rel_notnullatts_hash == NULL)
718 {
719 HTAB *hashtab;
721
722 hash_ctl.keysize = sizeof(Oid);
723 hash_ctl.entrysize = sizeof(NotnullHashEntry);
725
726 hashtab = hash_create("Relation NOT NULL attnums",
727 64L, /* arbitrary initial size */
728 &hash_ctl,
730
731 root->glob->rel_notnullatts_hash = hashtab;
732 }
733
734 /*
735 * Create a hash entry for this relation OID, if we don't have one
736 * already.
737 */
738 hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
739 &relid,
741 &found);
742
743 /* bail out if a hash entry already exists for this relation OID */
744 if (found)
745 return;
746
747 /* collect the column not-null constraint information for this relation */
748 for (int i = 0; i < relation->rd_att->natts; i++)
749 {
750 CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
751
753
755 {
756 notnullattnums = bms_add_member(notnullattnums, i + 1);
757
758 /*
759 * Per RemoveAttributeById(), dropped columns will have their
760 * attnotnull unset, so we needn't check for dropped columns in
761 * the above condition.
762 */
763 Assert(!attr->attisdropped);
764 }
765 }
766
767 /* ... and initialize the new hash entry */
768 hentry->notnullattnums = notnullattnums;
769}
770
771/*
772 * find_relation_notnullatts -
773 * Searches the hash table and returns the column not-null constraint
774 * information for a given relation.
775 */
776Bitmapset *
778{
780 bool found;
781
782 if (root->glob->rel_notnullatts_hash == NULL)
783 return NULL;
784
785 hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
786 &relid,
787 HASH_FIND,
788 &found);
789 if (!found)
790 return NULL;
791
792 return hentry->notnullattnums;
793}
794
795/*
796 * infer_arbiter_indexes -
797 * Determine the unique indexes used to arbitrate speculative insertion.
798 *
799 * Uses user-supplied inference clause expressions and predicate to match a
800 * unique index from those defined and ready on the heap relation (target).
801 * An exact match is required on columns/expressions (although they can appear
802 * in any order). However, the predicate given by the user need only restrict
803 * insertion to a subset of some part of the table covered by some particular
804 * unique index (in particular, a partial unique index) in order to be
805 * inferred.
806 *
807 * The implementation does not consider which B-Tree operator class any
808 * particular available unique index attribute uses, unless one was specified
809 * in the inference specification. The same is true of collations. In
810 * particular, there is no system dependency on the default operator class for
811 * the purposes of inference. If no opclass (or collation) is specified, then
812 * all matching indexes (that may or may not match the default in terms of
813 * each attribute opclass/collation) are used for inference.
814 */
815List *
817{
818 OnConflictExpr *onconflict = root->parse->onConflict;
819
820 /* Iteration state */
821 Index varno;
823 Relation relation;
827
828 /*
829 * Required attributes and expressions used to match indexes to the clause
830 * given by the user. In the ON CONFLICT ON CONSTRAINT case, we compute
831 * these from that constraint's index to match all other indexes, to
832 * account for the case where that index is being concurrently reindexed.
833 */
834 List *inferIndexExprs = (List *) onconflict->arbiterWhere;
837
838 /* Results */
839 List *results = NIL;
840 bool foundValid = false;
841
842 /*
843 * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
844 * specification or named constraint. ON CONFLICT DO UPDATE statements
845 * must always provide one or the other (but parser ought to have caught
846 * that already).
847 */
848 if (onconflict->arbiterElems == NIL &&
849 onconflict->constraint == InvalidOid)
850 return NIL;
851
852 /*
853 * We need not lock the relation since it was already locked, either by
854 * the rewriter or when expand_inherited_rtentry() added it to the query's
855 * rangetable.
856 */
857 varno = root->parse->resultRelation;
858 rte = rt_fetch(varno, root->parse->rtable);
859
860 relation = table_open(rte->relid, NoLock);
861
862 /*
863 * Build normalized/BMS representation of plain indexed attributes, as
864 * well as a separate list of expression items. This simplifies matching
865 * the cataloged definition of indexes.
866 */
867 foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
868 {
869 Var *var;
870 int attno;
871
872 /* we cannot also have a constraint name, per grammar */
873 Assert(!OidIsValid(onconflict->constraint));
874
875 if (!IsA(elem->expr, Var))
876 {
877 /* If not a plain Var, just shove it in inferElems for now */
878 inferElems = lappend(inferElems, elem->expr);
879 continue;
880 }
881
882 var = (Var *) elem->expr;
883 attno = var->varattno;
884
885 if (attno == 0)
888 errmsg("whole row unique index inference specifications are not supported")));
889
892 }
893
894 /*
895 * Next, open all the indexes. We need this list for two things: first,
896 * if an ON CONSTRAINT clause was given, and that constraint's index is
897 * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
898 * for that index. Second, if an attribute list was specified in the ON
899 * CONFLICT clause, we use the list to find the indexes whose attributes
900 * match that list.
901 */
903 foreach_oid(indexoid, indexList)
904 {
906
907 /* obtain the same lock type that the executor will ultimately use */
908 idxRel = index_open(indexoid, rte->rellockmode);
910 }
911
912 /*
913 * If a constraint was named in the command, look up its index. We don't
914 * return it immediately because we need some additional sanity checks,
915 * and also because we need to include other indexes as arbiters to
916 * account for REINDEX CONCURRENTLY processing it.
917 */
918 if (onconflict->constraint != InvalidOid)
919 {
920 /* we cannot also have an explicit list of elements, per grammar */
921 Assert(onconflict->arbiterElems == NIL);
922
927 errmsg("constraint in ON CONFLICT clause has no associated index")));
928
929 /*
930 * Find the named constraint index to extract its attributes and
931 * predicates.
932 */
934 {
935 Form_pg_index idxForm = idxRel->rd_index;
936
937 if (indexOidFromConstraint == idxForm->indexrelid)
938 {
939 /* Found it. */
940 Assert(idxForm->indisready);
941
942 /*
943 * Set up inferElems and inferIndexExprs to match the
944 * constraint index, so that we can match them in the loop
945 * below.
946 */
947 for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
948 {
949 int attno;
950
951 attno = idxRel->rd_index->indkey.values[natt];
952 if (attno != InvalidAttrNumber)
953 inferAttrs =
956 }
957
960 break;
961 }
962 }
963 }
964
965 /*
966 * Using that representation, iterate through the list of indexes on the
967 * target relation to find matches.
968 */
970 {
973 List *idxExprs;
976 bool match;
977
978 /*
979 * Extract info from the relation descriptor for the index.
980 *
981 * Let executor complain about !indimmediate case directly, because
982 * enforcement needs to occur there anyway when an inference clause is
983 * omitted.
984 */
985 idxForm = idxRel->rd_index;
986
987 /*
988 * Ignore indexes that aren't indisready, because we cannot trust
989 * their catalog structure yet. However, if any indexes are marked
990 * indisready but not yet indisvalid, we still consider them, because
991 * they might turn valid while we're running. Doing it this way
992 * allows a concurrent transaction with a slightly later catalog
993 * snapshot infer the same set of indexes, which is critical to
994 * prevent spurious 'duplicate key' errors.
995 *
996 * However, another critical aspect is that a unique index that isn't
997 * yet marked indisvalid=true might not be complete yet, meaning it
998 * wouldn't detect possible duplicate rows. In order to prevent false
999 * negatives, we require that we include in the set of inferred
1000 * indexes at least one index that is marked valid.
1001 */
1002 if (!idxForm->indisready)
1003 continue;
1004
1005 /*
1006 * Ignore invalid indexes for partitioned tables. It's possible that
1007 * some partitions don't have the index (yet), and then we would not
1008 * find a match during ExecInitPartitionInfo.
1009 */
1010 if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
1011 !idxForm->indisvalid)
1012 continue;
1013
1014 /*
1015 * Note that we do not perform a check against indcheckxmin (like e.g.
1016 * get_relation_info()) here to eliminate candidates, because
1017 * uniqueness checking only cares about the most recently committed
1018 * tuple versions.
1019 */
1020
1021 /*
1022 * Look for match for "ON constraint_name" variant, which may not be a
1023 * unique constraint. This can only be a constraint name.
1024 */
1025 if (indexOidFromConstraint == idxForm->indexrelid)
1026 {
1027 if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
1028 ereport(ERROR,
1030 errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
1031
1032 /* Consider this one a match already */
1033 results = lappend_oid(results, idxForm->indexrelid);
1034 foundValid |= idxForm->indisvalid;
1035 continue;
1036 }
1038 {
1039 /*
1040 * In the case of "ON constraint_name DO UPDATE" we need to skip
1041 * non-unique candidates.
1042 */
1043 if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
1044 continue;
1045 }
1046 else
1047 {
1048 /*
1049 * Only considering conventional inference at this point (not
1050 * named constraints), so index under consideration can be
1051 * immediately skipped if it's not unique.
1052 */
1053 if (!idxForm->indisunique)
1054 continue;
1055 }
1056
1057 /*
1058 * So-called unique constraints with WITHOUT OVERLAPS are really
1059 * exclusion constraints, so skip those too.
1060 */
1061 if (idxForm->indisexclusion)
1062 continue;
1063
1064 /* Build BMS representation of plain (non expression) index attrs */
1066 for (natt = 0; natt < idxForm->indnkeyatts; natt++)
1067 {
1068 int attno = idxRel->rd_index->indkey.values[natt];
1069
1070 if (attno != 0)
1073 }
1074
1075 /* Non-expression attributes (if any) must match */
1077 continue;
1078
1079 /* Expression attributes (if any) must match */
1081 if (idxExprs)
1082 {
1083 if (varno != 1)
1084 ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
1085
1087 }
1088
1089 /*
1090 * If arbiterElems are present, check them. (Note that if a
1091 * constraint name was given in the command line, this list is NIL.)
1092 */
1093 match = true;
1094 foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
1095 {
1096 /*
1097 * Ensure that collation/opclass aspects of inference expression
1098 * element match. Even though this loop is primarily concerned
1099 * with matching expressions, it is a convenient point to check
1100 * this for both expressions and ordinary (non-expression)
1101 * attributes appearing as inference elements.
1102 */
1104 {
1105 match = false;
1106 break;
1107 }
1108
1109 /*
1110 * Plain Vars don't factor into count of expression elements, and
1111 * the question of whether or not they satisfy the index
1112 * definition has already been considered (they must).
1113 */
1114 if (IsA(elem->expr, Var))
1115 continue;
1116
1117 /*
1118 * Might as well avoid redundant check in the rare cases where
1119 * infer_collation_opclass_match() is required to do real work.
1120 * Otherwise, check that element expression appears in cataloged
1121 * index definition.
1122 */
1123 if (elem->infercollid != InvalidOid ||
1124 elem->inferopclass != InvalidOid ||
1125 list_member(idxExprs, elem->expr))
1126 continue;
1127
1128 match = false;
1129 break;
1130 }
1131 if (!match)
1132 continue;
1133
1134 /*
1135 * In case of inference from an attribute list, ensure that the
1136 * expression elements from inference clause are not missing any
1137 * cataloged expressions. This does the right thing when unique
1138 * indexes redundantly repeat the same attribute, or if attributes
1139 * redundantly appear multiple times within an inference clause.
1140 *
1141 * In case a constraint was named, ensure the candidate has an equal
1142 * set of expressions as the named constraint's index.
1143 */
1145 continue;
1146
1148 if (predExprs)
1149 {
1150 if (varno != 1)
1151 ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1152
1153 predExprs = (List *)
1157 }
1158
1159 /*
1160 * Partial indexes affect each form of ON CONFLICT differently: if a
1161 * constraint was named, then the predicates must be identical. In
1162 * conventional inference, the index's predicate must be implied by
1163 * the WHERE clause.
1164 */
1166 {
1168 continue;
1169 }
1170 else
1171 {
1173 continue;
1174 }
1175
1176 /* All good -- consider this index a match */
1177 results = lappend_oid(results, idxForm->indexrelid);
1178 foundValid |= idxForm->indisvalid;
1179 }
1180
1181 /* Close all indexes */
1183 {
1185 }
1186
1189 table_close(relation, NoLock);
1190
1191 /* We require at least one indisvalid index */
1192 if (results == NIL || !foundValid)
1193 ereport(ERROR,
1195 errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1196
1197 return results;
1198}
1199
1200/*
1201 * infer_collation_opclass_match - ensure infer element opclass/collation match
1202 *
1203 * Given unique index inference element from inference specification, if
1204 * collation was specified, or if opclass was specified, verify that there is
1205 * at least one matching indexed attribute (occasionally, there may be more).
1206 * Skip this in the common case where inference specification does not include
1207 * collation or opclass (instead matching everything, regardless of cataloged
1208 * collation/opclass of indexed attribute).
1209 *
1210 * At least historically, Postgres has not offered collations or opclasses
1211 * with alternative-to-default notions of equality, so these additional
1212 * criteria should only be required infrequently.
1213 *
1214 * Don't give up immediately when an inference element matches some attribute
1215 * cataloged as indexed but not matching additional opclass/collation
1216 * criteria. This is done so that the implementation is as forgiving as
1217 * possible of redundancy within cataloged index attributes (or, less
1218 * usefully, within inference specification elements). If collations actually
1219 * differ between apparently redundantly indexed attributes (redundant within
1220 * or across indexes), then there really is no redundancy as such.
1221 *
1222 * Note that if an inference element specifies an opclass and a collation at
1223 * once, both must match in at least one particular attribute within index
1224 * catalog definition in order for that inference element to be considered
1225 * inferred/satisfied.
1226 */
1227static bool
1229 List *idxExprs)
1230{
1232 Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1233 Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1234 int nplain = 0; /* # plain attrs observed */
1235
1236 /*
1237 * If inference specification element lacks collation/opclass, then no
1238 * need to check for exact match.
1239 */
1240 if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1241 return true;
1242
1243 /*
1244 * Lookup opfamily and input type, for matching indexes
1245 */
1246 if (elem->inferopclass)
1247 {
1250 }
1251
1252 for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1253 {
1254 Oid opfamily = idxRel->rd_opfamily[natt - 1];
1255 Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1256 Oid collation = idxRel->rd_indcollation[natt - 1];
1257 int attno = idxRel->rd_index->indkey.values[natt - 1];
1258
1259 if (attno != 0)
1260 nplain++;
1261
1262 if (elem->inferopclass != InvalidOid &&
1263 (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1264 {
1265 /* Attribute needed to match opclass, but didn't */
1266 continue;
1267 }
1268
1269 if (elem->infercollid != InvalidOid &&
1270 elem->infercollid != collation)
1271 {
1272 /* Attribute needed to match collation, but didn't */
1273 continue;
1274 }
1275
1276 /* If one matching index att found, good enough -- return true */
1277 if (IsA(elem->expr, Var))
1278 {
1279 if (((Var *) elem->expr)->varattno == attno)
1280 return true;
1281 }
1282 else if (attno == 0)
1283 {
1285
1286 /*
1287 * Note that unlike routines like match_index_to_operand() we
1288 * don't need to care about RelabelType. Neither the index
1289 * definition nor the inference clause should contain them.
1290 */
1291 if (equal(elem->expr, nattExpr))
1292 return true;
1293 }
1294 }
1295
1296 return false;
1297}
1298
1299/*
1300 * estimate_rel_size - estimate # pages and # tuples in a table or index
1301 *
1302 * We also estimate the fraction of the pages that are marked all-visible in
1303 * the visibility map, for use in estimation of index-only scans.
1304 *
1305 * If attr_widths isn't NULL, it points to the zero-index entry of the
1306 * relation's attr_widths[] cache; we fill this in if we have need to compute
1307 * the attribute widths for estimation purposes.
1308 */
1309void
1311 BlockNumber *pages, double *tuples, double *allvisfrac)
1312{
1314 BlockNumber relpages;
1315 double reltuples;
1316 BlockNumber relallvisible;
1317 double density;
1318
1319 if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1320 {
1321 table_relation_estimate_size(rel, attr_widths, pages, tuples,
1322 allvisfrac);
1323 }
1324 else if (rel->rd_rel->relkind == RELKIND_INDEX)
1325 {
1326 /*
1327 * XXX: It'd probably be good to move this into a callback, individual
1328 * index types e.g. know if they have a metapage.
1329 */
1330
1331 /* it has storage, ok to call the smgr */
1333
1334 /* report estimated # pages */
1335 *pages = curpages;
1336 /* quick exit if rel is clearly empty */
1337 if (curpages == 0)
1338 {
1339 *tuples = 0;
1340 *allvisfrac = 0;
1341 return;
1342 }
1343
1344 /* coerce values in pg_class to more desirable types */
1345 relpages = (BlockNumber) rel->rd_rel->relpages;
1346 reltuples = (double) rel->rd_rel->reltuples;
1347 relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1348
1349 /*
1350 * Discount the metapage while estimating the number of tuples. This
1351 * is a kluge because it assumes more than it ought to about index
1352 * structure. Currently it's OK for btree, hash, and GIN indexes but
1353 * suspect for GiST indexes.
1354 */
1355 if (relpages > 0)
1356 {
1357 curpages--;
1358 relpages--;
1359 }
1360
1361 /* estimate number of tuples from previous tuple density */
1362 if (reltuples >= 0 && relpages > 0)
1363 density = reltuples / (double) relpages;
1364 else
1365 {
1366 /*
1367 * If we have no data because the relation was never vacuumed,
1368 * estimate tuple width from attribute datatypes. We assume here
1369 * that the pages are completely full, which is OK for tables
1370 * (since they've presumably not been VACUUMed yet) but is
1371 * probably an overestimate for indexes. Fortunately
1372 * get_relation_info() can clamp the overestimate to the parent
1373 * table's size.
1374 *
1375 * Note: this code intentionally disregards alignment
1376 * considerations, because (a) that would be gilding the lily
1377 * considering how crude the estimate is, and (b) it creates
1378 * platform dependencies in the default plans which are kind of a
1379 * headache for regression testing.
1380 *
1381 * XXX: Should this logic be more index specific?
1382 */
1384
1387 tuple_width += sizeof(ItemIdData);
1388 /* note: integer division is intentional here */
1390 }
1391 *tuples = rint(density * (double) curpages);
1392
1393 /*
1394 * We use relallvisible as-is, rather than scaling it up like we do
1395 * for the pages and tuples counts, on the theory that any pages added
1396 * since the last VACUUM are most likely not marked all-visible. But
1397 * costsize.c wants it converted to a fraction.
1398 */
1399 if (relallvisible == 0 || curpages <= 0)
1400 *allvisfrac = 0;
1401 else if ((double) relallvisible >= curpages)
1402 *allvisfrac = 1;
1403 else
1404 *allvisfrac = (double) relallvisible / curpages;
1405 }
1406 else
1407 {
1408 /*
1409 * Just use whatever's in pg_class. This covers foreign tables,
1410 * sequences, and also relkinds without storage (shouldn't get here?);
1411 * see initializations in AddNewRelationTuple(). Note that FDW must
1412 * cope if reltuples is -1!
1413 */
1414 *pages = rel->rd_rel->relpages;
1415 *tuples = rel->rd_rel->reltuples;
1416 *allvisfrac = 0;
1417 }
1418}
1419
1420
1421/*
1422 * get_rel_data_width
1423 *
1424 * Estimate the average width of (the data part of) the relation's tuples.
1425 *
1426 * If attr_widths isn't NULL, it points to the zero-index entry of the
1427 * relation's attr_widths[] cache; use and update that cache as appropriate.
1428 *
1429 * Currently we ignore dropped columns. Ideally those should be included
1430 * in the result, but we haven't got any way to get info about them; and
1431 * since they might be mostly NULLs, treating them as zero-width is not
1432 * necessarily the wrong thing anyway.
1433 */
1434int32
1436{
1437 int64 tuple_width = 0;
1438 int i;
1439
1440 for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1441 {
1444
1445 if (att->attisdropped)
1446 continue;
1447
1448 /* use previously cached data, if any */
1449 if (attr_widths != NULL && attr_widths[i] > 0)
1450 {
1452 continue;
1453 }
1454
1455 /* This should match set_rel_width() in costsize.c */
1457 if (item_width <= 0)
1458 {
1459 item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1460 Assert(item_width > 0);
1461 }
1462 if (attr_widths != NULL)
1465 }
1466
1468}
1469
1470/*
1471 * get_relation_data_width
1472 *
1473 * External API for get_rel_data_width: same behavior except we have to
1474 * open the relcache entry.
1475 */
1476int32
1478{
1479 int32 result;
1480 Relation relation;
1481
1482 /* As above, assume relation is already locked */
1483 relation = table_open(relid, NoLock);
1484
1485 result = get_rel_data_width(relation, attr_widths);
1486
1487 table_close(relation, NoLock);
1488
1489 return result;
1490}
1491
1492
1493/*
1494 * get_relation_constraints
1495 *
1496 * Retrieve the applicable constraint expressions of the given relation.
1497 * Only constraints that have been validated are considered.
1498 *
1499 * Returns a List (possibly empty) of constraint expressions. Each one
1500 * has been canonicalized, and its Vars are changed to have the varno
1501 * indicated by rel->relid. This allows the expressions to be easily
1502 * compared to expressions taken from WHERE.
1503 *
1504 * If include_noinherit is true, it's okay to include constraints that
1505 * are marked NO INHERIT.
1506 *
1507 * If include_notnull is true, "col IS NOT NULL" expressions are generated
1508 * and added to the result for each column that's marked attnotnull.
1509 *
1510 * If include_partition is true, and the relation is a partition,
1511 * also include the partitioning constraints.
1512 *
1513 * Note: at present this is invoked at most once per relation per planner
1514 * run, and in many cases it won't be invoked at all, so there seems no
1515 * point in caching the data in RelOptInfo.
1516 */
1517static List *
1520 bool include_noinherit,
1521 bool include_notnull,
1522 bool include_partition)
1523{
1524 List *result = NIL;
1525 Index varno = rel->relid;
1526 Relation relation;
1527 TupleConstr *constr;
1528
1529 /*
1530 * We assume the relation has already been safely locked.
1531 */
1532 relation = table_open(relationObjectId, NoLock);
1533
1534 constr = relation->rd_att->constr;
1535 if (constr != NULL)
1536 {
1537 int num_check = constr->num_check;
1538 int i;
1539
1540 for (i = 0; i < num_check; i++)
1541 {
1542 Node *cexpr;
1543
1544 /*
1545 * If this constraint hasn't been fully validated yet, we must
1546 * ignore it here.
1547 */
1548 if (!constr->check[i].ccvalid)
1549 continue;
1550
1551 /*
1552 * NOT ENFORCED constraints are always marked as invalid, which
1553 * should have been ignored.
1554 */
1555 Assert(constr->check[i].ccenforced);
1556
1557 /*
1558 * Also ignore if NO INHERIT and we weren't told that that's safe.
1559 */
1560 if (constr->check[i].ccnoinherit && !include_noinherit)
1561 continue;
1562
1563 cexpr = stringToNode(constr->check[i].ccbin);
1564
1565 /*
1566 * Fix Vars to have the desired varno. This must be done before
1567 * const-simplification because eval_const_expressions reduces
1568 * NullTest for Vars based on varno.
1569 */
1570 if (varno != 1)
1571 ChangeVarNodes(cexpr, 1, varno, 0);
1572
1573 /*
1574 * Run each expression through const-simplification and
1575 * canonicalization. This is not just an optimization, but is
1576 * necessary, because we will be comparing it to
1577 * similarly-processed qual clauses, and may fail to detect valid
1578 * matches without this. This must match the processing done to
1579 * qual clauses in preprocess_expression()! (We can skip the
1580 * stuff involving subqueries, however, since we don't allow any
1581 * in check constraints.)
1582 */
1583 cexpr = eval_const_expressions(root, cexpr);
1584
1585 cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1586
1587 /*
1588 * Finally, convert to implicit-AND format (that is, a List) and
1589 * append the resulting item(s) to our output list.
1590 */
1591 result = list_concat(result,
1592 make_ands_implicit((Expr *) cexpr));
1593 }
1594
1595 /* Add NOT NULL constraints in expression form, if requested */
1596 if (include_notnull && constr->has_not_null)
1597 {
1598 int natts = relation->rd_att->natts;
1599
1600 for (i = 1; i <= natts; i++)
1601 {
1603
1604 if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1605 {
1608
1609 ntest->arg = (Expr *) makeVar(varno,
1610 i,
1611 wholeatt->atttypid,
1612 wholeatt->atttypmod,
1613 wholeatt->attcollation,
1614 0);
1615 ntest->nulltesttype = IS_NOT_NULL;
1616
1617 /*
1618 * argisrow=false is correct even for a composite column,
1619 * because attnotnull does not represent a SQL-spec IS NOT
1620 * NULL test in such a case, just IS DISTINCT FROM NULL.
1621 */
1622 ntest->argisrow = false;
1623 ntest->location = -1;
1624 result = lappend(result, ntest);
1625 }
1626 }
1627 }
1628 }
1629
1630 /*
1631 * Add partitioning constraints, if requested.
1632 */
1633 if (include_partition && relation->rd_rel->relispartition)
1634 {
1635 /* make sure rel->partition_qual is set */
1636 set_baserel_partition_constraint(relation, rel);
1637 result = list_concat(result, rel->partition_qual);
1638 }
1639
1640 /*
1641 * Expand virtual generated columns in the constraint expressions.
1642 */
1643 if (result)
1644 result = (List *) expand_generated_columns_in_expr((Node *) result,
1645 relation,
1646 varno);
1647
1648 table_close(relation, NoLock);
1649
1650 return result;
1651}
1652
1653/*
1654 * Try loading data for the statistics object.
1655 *
1656 * We don't know if the data (specified by statOid and inh value) exist.
1657 * The result is stored in stainfos list.
1658 */
1659static void
1661 Oid statOid, bool inh,
1662 Bitmapset *keys, List *exprs)
1663{
1666
1668 ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1669 if (!HeapTupleIsValid(dtup))
1670 return;
1671
1673
1674 /* add one StatisticExtInfo for each kind built */
1676 {
1678
1679 info->statOid = statOid;
1680 info->inherit = dataForm->stxdinherit;
1681 info->rel = rel;
1682 info->kind = STATS_EXT_NDISTINCT;
1683 info->keys = bms_copy(keys);
1684 info->exprs = exprs;
1685
1686 *stainfos = lappend(*stainfos, info);
1687 }
1688
1690 {
1692
1693 info->statOid = statOid;
1694 info->inherit = dataForm->stxdinherit;
1695 info->rel = rel;
1697 info->keys = bms_copy(keys);
1698 info->exprs = exprs;
1699
1700 *stainfos = lappend(*stainfos, info);
1701 }
1702
1704 {
1706
1707 info->statOid = statOid;
1708 info->inherit = dataForm->stxdinherit;
1709 info->rel = rel;
1710 info->kind = STATS_EXT_MCV;
1711 info->keys = bms_copy(keys);
1712 info->exprs = exprs;
1713
1714 *stainfos = lappend(*stainfos, info);
1715 }
1716
1718 {
1720
1721 info->statOid = statOid;
1722 info->inherit = dataForm->stxdinherit;
1723 info->rel = rel;
1725 info->keys = bms_copy(keys);
1726 info->exprs = exprs;
1727
1728 *stainfos = lappend(*stainfos, info);
1729 }
1730
1732}
1733
1734/*
1735 * get_relation_statistics
1736 * Retrieve extended statistics defined on the table.
1737 *
1738 * Returns a List (possibly empty) of StatisticExtInfo objects describing
1739 * the statistics. Note that this doesn't load the actual statistics data,
1740 * just the identifying metadata. Only stats actually built are considered.
1741 */
1742static List *
1744 Relation relation)
1745{
1746 Index varno = rel->relid;
1748 List *stainfos = NIL;
1749 ListCell *l;
1750
1752
1753 foreach(l, statoidlist)
1754 {
1755 Oid statOid = lfirst_oid(l);
1757 HeapTuple htup;
1758 Bitmapset *keys = NULL;
1759 List *exprs = NIL;
1760 int i;
1761
1763 if (!HeapTupleIsValid(htup))
1764 elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1766
1767 /*
1768 * First, build the array of columns covered. This is ultimately
1769 * wasted if no stats within the object have actually been built, but
1770 * it doesn't seem worth troubling over that case.
1771 */
1772 for (i = 0; i < staForm->stxkeys.dim1; i++)
1773 keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1774
1775 /*
1776 * Preprocess expressions (if any). We read the expressions, fix the
1777 * varnos, and run them through eval_const_expressions.
1778 *
1779 * XXX We don't know yet if there are any data for this stats object,
1780 * with either stxdinherit value. But it's reasonable to assume there
1781 * is at least one of those, possibly both. So it's better to process
1782 * keys and expressions here.
1783 */
1784 {
1785 bool isnull;
1786 Datum datum;
1787
1788 /* decode expression (if any) */
1789 datum = SysCacheGetAttr(STATEXTOID, htup,
1791
1792 if (!isnull)
1793 {
1794 char *exprsString;
1795
1797 exprs = (List *) stringToNode(exprsString);
1799
1800 /*
1801 * Modify the copies we obtain from the relcache to have the
1802 * correct varno for the parent relation, so that they match
1803 * up correctly against qual clauses.
1804 *
1805 * This must be done before const-simplification because
1806 * eval_const_expressions reduces NullTest for Vars based on
1807 * varno.
1808 */
1809 if (varno != 1)
1810 ChangeVarNodes((Node *) exprs, 1, varno, 0);
1811
1812 /*
1813 * Run the expressions through eval_const_expressions. This is
1814 * not just an optimization, but is necessary, because the
1815 * planner will be comparing them to similarly-processed qual
1816 * clauses, and may fail to detect valid matches without this.
1817 * We must not use canonicalize_qual, however, since these
1818 * aren't qual expressions.
1819 */
1820 exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1821
1822 /* May as well fix opfuncids too */
1823 fix_opfuncids((Node *) exprs);
1824 }
1825 }
1826
1827 /* extract statistics for possible values of stxdinherit flag */
1828
1829 get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1830
1831 get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1832
1833 ReleaseSysCache(htup);
1834 bms_free(keys);
1835 }
1836
1838
1839 return stainfos;
1840}
1841
1842/*
1843 * relation_excluded_by_constraints
1844 *
1845 * Detect whether the relation need not be scanned because it has either
1846 * self-inconsistent restrictions, or restrictions inconsistent with the
1847 * relation's applicable constraints.
1848 *
1849 * Note: this examines only rel->relid, rel->reloptkind, and
1850 * rel->baserestrictinfo; therefore it can be called before filling in
1851 * other fields of the RelOptInfo.
1852 */
1853bool
1856{
1857 bool include_noinherit;
1858 bool include_notnull;
1859 bool include_partition = false;
1863 ListCell *lc;
1864
1865 /* As of now, constraint exclusion works only with simple relations. */
1866 Assert(IS_SIMPLE_REL(rel));
1867
1868 /*
1869 * If there are no base restriction clauses, we have no hope of proving
1870 * anything below, so fall out quickly.
1871 */
1872 if (rel->baserestrictinfo == NIL)
1873 return false;
1874
1875 /*
1876 * Regardless of the setting of constraint_exclusion, detect
1877 * constant-FALSE-or-NULL restriction clauses. Although const-folding
1878 * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1879 * list can still have other members besides the FALSE constant, due to
1880 * qual pushdown and other mechanisms; so check them all. This doesn't
1881 * fire very often, but it seems cheap enough to be worth doing anyway.
1882 * (Without this, we'd miss some optimizations that 9.5 and earlier found
1883 * via much more roundabout methods.)
1884 */
1885 foreach(lc, rel->baserestrictinfo)
1886 {
1887 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1888 Expr *clause = rinfo->clause;
1889
1890 if (clause && IsA(clause, Const) &&
1891 (((Const *) clause)->constisnull ||
1892 !DatumGetBool(((Const *) clause)->constvalue)))
1893 return true;
1894 }
1895
1896 /*
1897 * Skip further tests, depending on constraint_exclusion.
1898 */
1899 switch (constraint_exclusion)
1900 {
1902 /* In 'off' mode, never make any further tests */
1903 return false;
1904
1906
1907 /*
1908 * When constraint_exclusion is set to 'partition' we only handle
1909 * appendrel members. Partition pruning has already been applied,
1910 * so there is no need to consider the rel's partition constraints
1911 * here.
1912 */
1914 break; /* appendrel member, so process it */
1915 return false;
1916
1918
1919 /*
1920 * In 'on' mode, always apply constraint exclusion. If we are
1921 * considering a baserel that is a partition (i.e., it was
1922 * directly named rather than expanded from a parent table), then
1923 * its partition constraints haven't been considered yet, so
1924 * include them in the processing here.
1925 */
1926 if (rel->reloptkind == RELOPT_BASEREL)
1927 include_partition = true;
1928 break; /* always try to exclude */
1929 }
1930
1931 /*
1932 * Check for self-contradictory restriction clauses. We dare not make
1933 * deductions with non-immutable functions, but any immutable clauses that
1934 * are self-contradictory allow us to conclude the scan is unnecessary.
1935 *
1936 * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1937 * expecting to see any in its predicate argument.
1938 */
1940 foreach(lc, rel->baserestrictinfo)
1941 {
1942 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1943
1944 if (!contain_mutable_functions((Node *) rinfo->clause))
1946 }
1947
1948 /*
1949 * We can use weak refutation here, since we're comparing restriction
1950 * clauses with restriction clauses.
1951 */
1953 return true;
1954
1955 /*
1956 * Only plain relations have constraints, so stop here for other rtekinds.
1957 */
1958 if (rte->rtekind != RTE_RELATION)
1959 return false;
1960
1961 /*
1962 * If we are scanning just this table, we can use NO INHERIT constraints,
1963 * but not if we're scanning its children too. (Note that partitioned
1964 * tables should never have NO INHERIT constraints; but it's not necessary
1965 * for us to assume that here.)
1966 */
1967 include_noinherit = !rte->inh;
1968
1969 /*
1970 * Currently, attnotnull constraints must be treated as NO INHERIT unless
1971 * this is a partitioned table. In future we might track their
1972 * inheritance status more accurately, allowing this to be refined.
1973 *
1974 * XXX do we need/want to change this?
1975 */
1976 include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1977
1978 /*
1979 * Fetch the appropriate set of constraint expressions.
1980 */
1985
1986 /*
1987 * We do not currently enforce that CHECK constraints contain only
1988 * immutable functions, so it's necessary to check here. We daren't draw
1989 * conclusions from plan-time evaluation of non-immutable functions. Since
1990 * they're ANDed, we can just ignore any mutable constraints in the list,
1991 * and reason about the rest.
1992 */
1994 foreach(lc, constraint_pred)
1995 {
1996 Node *pred = (Node *) lfirst(lc);
1997
1998 if (!contain_mutable_functions(pred))
2000 }
2001
2002 /*
2003 * The constraints are effectively ANDed together, so we can just try to
2004 * refute the entire collection at once. This may allow us to make proofs
2005 * that would fail if we took them individually.
2006 *
2007 * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
2008 * an obvious optimization. Some of the clauses might be OR clauses that
2009 * have volatile and nonvolatile subclauses, and it's OK to make
2010 * deductions with the nonvolatile parts.
2011 *
2012 * We need strong refutation because we have to prove that the constraints
2013 * would yield false, not just NULL.
2014 */
2016 return true;
2017
2018 return false;
2019}
2020
2021
2022/*
2023 * build_physical_tlist
2024 *
2025 * Build a targetlist consisting of exactly the relation's user attributes,
2026 * in order. The executor can special-case such tlists to avoid a projection
2027 * step at runtime, so we use such tlists preferentially for scan nodes.
2028 *
2029 * Exception: if there are any dropped or missing columns, we punt and return
2030 * NIL. Ideally we would like to handle these cases too. However this
2031 * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
2032 * for a tlist that includes vars of no-longer-existent types. In theory we
2033 * could dig out the required info from the pg_attribute entries of the
2034 * relation, but that data is not readily available to ExecTypeFromTL.
2035 * For now, we don't apply the physical-tlist optimization when there are
2036 * dropped cols.
2037 *
2038 * We also support building a "physical" tlist for subqueries, functions,
2039 * values lists, table expressions, and CTEs, since the same optimization can
2040 * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
2041 * NamedTuplestoreScan, and WorkTableScan nodes.
2042 */
2043List *
2045{
2046 List *tlist = NIL;
2047 Index varno = rel->relid;
2049 Relation relation;
2050 Query *subquery;
2051 Var *var;
2052 ListCell *l;
2053 int attrno,
2054 numattrs;
2055 List *colvars;
2056
2057 switch (rte->rtekind)
2058 {
2059 case RTE_RELATION:
2060 /* Assume we already have adequate lock */
2061 relation = table_open(rte->relid, NoLock);
2062
2064 for (attrno = 1; attrno <= numattrs; attrno++)
2065 {
2067 attrno - 1);
2068
2069 if (att_tup->attisdropped || att_tup->atthasmissing)
2070 {
2071 /* found a dropped or missing col, so punt */
2072 tlist = NIL;
2073 break;
2074 }
2075
2076 var = makeVar(varno,
2077 attrno,
2078 att_tup->atttypid,
2079 att_tup->atttypmod,
2080 att_tup->attcollation,
2081 0);
2082
2083 tlist = lappend(tlist,
2084 makeTargetEntry((Expr *) var,
2085 attrno,
2086 NULL,
2087 false));
2088 }
2089
2090 table_close(relation, NoLock);
2091 break;
2092
2093 case RTE_SUBQUERY:
2094 subquery = rte->subquery;
2095 foreach(l, subquery->targetList)
2096 {
2098
2099 /*
2100 * A resjunk column of the subquery can be reflected as
2101 * resjunk in the physical tlist; we need not punt.
2102 */
2103 var = makeVarFromTargetEntry(varno, tle);
2104
2105 tlist = lappend(tlist,
2106 makeTargetEntry((Expr *) var,
2107 tle->resno,
2108 NULL,
2109 tle->resjunk));
2110 }
2111 break;
2112
2113 case RTE_FUNCTION:
2114 case RTE_TABLEFUNC:
2115 case RTE_VALUES:
2116 case RTE_CTE:
2118 case RTE_RESULT:
2119 /* Not all of these can have dropped cols, but share code anyway */
2120 expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
2121 true /* include dropped */ , NULL, &colvars);
2122 foreach(l, colvars)
2123 {
2124 var = (Var *) lfirst(l);
2125
2126 /*
2127 * A non-Var in expandRTE's output means a dropped column;
2128 * must punt.
2129 */
2130 if (!IsA(var, Var))
2131 {
2132 tlist = NIL;
2133 break;
2134 }
2135
2136 tlist = lappend(tlist,
2137 makeTargetEntry((Expr *) var,
2138 var->varattno,
2139 NULL,
2140 false));
2141 }
2142 break;
2143
2144 default:
2145 /* caller error */
2146 elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
2147 (int) rte->rtekind);
2148 break;
2149 }
2150
2151 return tlist;
2152}
2153
2154/*
2155 * build_index_tlist
2156 *
2157 * Build a targetlist representing the columns of the specified index.
2158 * Each column is represented by a Var for the corresponding base-relation
2159 * column, or an expression in base-relation Vars, as appropriate.
2160 *
2161 * There are never any dropped columns in indexes, so unlike
2162 * build_physical_tlist, we need no failure case.
2163 */
2164static List *
2166 Relation heapRelation)
2167{
2168 List *tlist = NIL;
2169 Index varno = index->rel->relid;
2171 int i;
2172
2173 indexpr_item = list_head(index->indexprs);
2174 for (i = 0; i < index->ncolumns; i++)
2175 {
2176 int indexkey = index->indexkeys[i];
2177 Expr *indexvar;
2178
2179 if (indexkey != 0)
2180 {
2181 /* simple column */
2183
2184 if (indexkey < 0)
2186 else
2187 att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2188
2189 indexvar = (Expr *) makeVar(varno,
2190 indexkey,
2191 att_tup->atttypid,
2192 att_tup->atttypmod,
2193 att_tup->attcollation,
2194 0);
2195 }
2196 else
2197 {
2198 /* expression column */
2199 if (indexpr_item == NULL)
2200 elog(ERROR, "wrong number of index expressions");
2202 indexpr_item = lnext(index->indexprs, indexpr_item);
2203 }
2204
2205 tlist = lappend(tlist,
2207 i + 1,
2208 NULL,
2209 false));
2210 }
2211 if (indexpr_item != NULL)
2212 elog(ERROR, "wrong number of index expressions");
2213
2214 return tlist;
2215}
2216
2217/*
2218 * restriction_selectivity
2219 *
2220 * Returns the selectivity of a specified restriction operator clause.
2221 * This code executes registered procedures stored in the
2222 * operator relation, by calling the function manager.
2223 *
2224 * See clause_selectivity() for the meaning of the additional parameters.
2225 */
2229 List *args,
2230 Oid inputcollid,
2231 int varRelid)
2232{
2234 float8 result;
2235
2236 /*
2237 * if the oprrest procedure is missing for whatever reason, use a
2238 * selectivity of 0.5
2239 */
2240 if (!oprrest)
2241 return (Selectivity) 0.5;
2242
2244 inputcollid,
2247 PointerGetDatum(args),
2248 Int32GetDatum(varRelid)));
2249
2251 elog(ERROR, "invalid restriction selectivity: %f", result);
2252
2253 return (Selectivity) result;
2254}
2255
2256/*
2257 * join_selectivity
2258 *
2259 * Returns the selectivity of a specified join operator clause.
2260 * This code executes registered procedures stored in the
2261 * operator relation, by calling the function manager.
2262 *
2263 * See clause_selectivity() for the meaning of the additional parameters.
2264 */
2268 List *args,
2269 Oid inputcollid,
2270 JoinType jointype,
2271 SpecialJoinInfo *sjinfo)
2272{
2274 float8 result;
2275
2276 /*
2277 * if the oprjoin procedure is missing for whatever reason, use a
2278 * selectivity of 0.5
2279 */
2280 if (!oprjoin)
2281 return (Selectivity) 0.5;
2282
2284 inputcollid,
2287 PointerGetDatum(args),
2288 Int16GetDatum(jointype),
2289 PointerGetDatum(sjinfo)));
2290
2292 elog(ERROR, "invalid join selectivity: %f", result);
2293
2294 return (Selectivity) result;
2295}
2296
2297/*
2298 * function_selectivity
2299 *
2300 * Attempt to estimate the selectivity of a specified boolean function clause
2301 * by asking its support function. If the function lacks support, return -1.
2302 *
2303 * See clause_selectivity() for the meaning of the additional parameters.
2304 */
2307 Oid funcid,
2308 List *args,
2309 Oid inputcollid,
2310 bool is_join,
2311 int varRelid,
2312 JoinType jointype,
2313 SpecialJoinInfo *sjinfo)
2314{
2318
2319 if (!prosupport)
2320 return (Selectivity) -1; /* no support function */
2321
2323 req.root = root;
2324 req.funcid = funcid;
2325 req.args = args;
2326 req.inputcollid = inputcollid;
2327 req.is_join = is_join;
2328 req.varRelid = varRelid;
2329 req.jointype = jointype;
2330 req.sjinfo = sjinfo;
2331 req.selectivity = -1; /* to catch failure to set the value */
2332
2335 PointerGetDatum(&req)));
2336
2337 if (sresult != &req)
2338 return (Selectivity) -1; /* function did not honor request */
2339
2340 if (req.selectivity < 0.0 || req.selectivity > 1.0)
2341 elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2342
2343 return (Selectivity) req.selectivity;
2344}
2345
2346/*
2347 * add_function_cost
2348 *
2349 * Get an estimate of the execution cost of a function, and *add* it to
2350 * the contents of *cost. The estimate may include both one-time and
2351 * per-tuple components, since QualCost does.
2352 *
2353 * The funcid must always be supplied. If it is being called as the
2354 * implementation of a specific parsetree node (FuncExpr, OpExpr,
2355 * WindowFunc, etc), pass that as "node", else pass NULL.
2356 *
2357 * In some usages root might be NULL, too.
2358 */
2359void
2361 QualCost *cost)
2362{
2365
2368 elog(ERROR, "cache lookup failed for function %u", funcid);
2370
2371 if (OidIsValid(procform->prosupport))
2372 {
2375
2377 req.root = root;
2378 req.funcid = funcid;
2379 req.node = node;
2380
2381 /* Initialize cost fields so that support function doesn't have to */
2382 req.startup = 0;
2383 req.per_tuple = 0;
2384
2387 PointerGetDatum(&req)));
2388
2389 if (sresult == &req)
2390 {
2391 /* Success, so accumulate support function's estimate into *cost */
2392 cost->startup += req.startup;
2393 cost->per_tuple += req.per_tuple;
2395 return;
2396 }
2397 }
2398
2399 /* No support function, or it failed, so rely on procost */
2400 cost->per_tuple += procform->procost * cpu_operator_cost;
2401
2403}
2404
2405/*
2406 * get_function_rows
2407 *
2408 * Get an estimate of the number of rows returned by a set-returning function.
2409 *
2410 * The funcid must always be supplied. In current usage, the calling node
2411 * will always be supplied, and will be either a FuncExpr or OpExpr.
2412 * But it's a good idea to not fail if it's NULL.
2413 *
2414 * In some usages root might be NULL, too.
2415 *
2416 * Note: this returns the unfiltered result of the support function, if any.
2417 * It's usually a good idea to apply clamp_row_est() to the result, but we
2418 * leave it to the caller to do so.
2419 */
2420double
2422{
2425 double result;
2426
2429 elog(ERROR, "cache lookup failed for function %u", funcid);
2431
2432 Assert(procform->proretset); /* else caller error */
2433
2434 if (OidIsValid(procform->prosupport))
2435 {
2438
2440 req.root = root;
2441 req.funcid = funcid;
2442 req.node = node;
2443
2444 req.rows = 0; /* just for sanity */
2445
2448 PointerGetDatum(&req)));
2449
2450 if (sresult == &req)
2451 {
2452 /* Success */
2454 return req.rows;
2455 }
2456 }
2457
2458 /* No support function, or it failed, so rely on prorows */
2459 result = procform->prorows;
2460
2462
2463 return result;
2464}
2465
2466/*
2467 * has_unique_index
2468 *
2469 * Detect whether there is a unique index on the specified attribute
2470 * of the specified relation, thus allowing us to conclude that all
2471 * the (non-null) values of the attribute are distinct.
2472 *
2473 * This function does not check the index's indimmediate property, which
2474 * means that uniqueness may transiently fail to hold intra-transaction.
2475 * That's appropriate when we are making statistical estimates, but beware
2476 * of using this for any correctness proofs.
2477 */
2478bool
2480{
2481 ListCell *ilist;
2482
2483 foreach(ilist, rel->indexlist)
2484 {
2486
2487 /*
2488 * Note: ignore partial indexes, since they don't allow us to conclude
2489 * that all attr values are distinct, *unless* they are marked predOK
2490 * which means we know the index's predicate is satisfied by the
2491 * query. We don't take any interest in expressional indexes either.
2492 * Also, a multicolumn unique index doesn't allow us to conclude that
2493 * just the specified attr is unique.
2494 */
2495 if (index->unique &&
2496 index->nkeycolumns == 1 &&
2497 index->indexkeys[0] == attno &&
2498 (index->indpred == NIL || index->predOK))
2499 return true;
2500 }
2501 return false;
2502}
2503
2504
2505/*
2506 * has_row_triggers
2507 *
2508 * Detect whether the specified relation has any row-level triggers for event.
2509 */
2510bool
2512{
2514 Relation relation;
2516 bool result = false;
2517
2518 /* Assume we already have adequate lock */
2519 relation = table_open(rte->relid, NoLock);
2520
2521 trigDesc = relation->trigdesc;
2522 switch (event)
2523 {
2524 case CMD_INSERT:
2525 if (trigDesc &&
2526 (trigDesc->trig_insert_after_row ||
2527 trigDesc->trig_insert_before_row))
2528 result = true;
2529 break;
2530 case CMD_UPDATE:
2531 if (trigDesc &&
2532 (trigDesc->trig_update_after_row ||
2533 trigDesc->trig_update_before_row))
2534 result = true;
2535 break;
2536 case CMD_DELETE:
2537 if (trigDesc &&
2538 (trigDesc->trig_delete_after_row ||
2539 trigDesc->trig_delete_before_row))
2540 result = true;
2541 break;
2542 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2543 case CMD_MERGE:
2544 result = false;
2545 break;
2546 default:
2547 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2548 break;
2549 }
2550
2551 table_close(relation, NoLock);
2552 return result;
2553}
2554
2555/*
2556 * has_transition_tables
2557 *
2558 * Detect whether the specified relation has any transition tables for event.
2559 */
2560bool
2562{
2564 Relation relation;
2566 bool result = false;
2567
2568 Assert(rte->rtekind == RTE_RELATION);
2569
2570 /* Currently foreign tables cannot have transition tables */
2571 if (rte->relkind == RELKIND_FOREIGN_TABLE)
2572 return result;
2573
2574 /* Assume we already have adequate lock */
2575 relation = table_open(rte->relid, NoLock);
2576
2577 trigDesc = relation->trigdesc;
2578 switch (event)
2579 {
2580 case CMD_INSERT:
2581 if (trigDesc &&
2582 trigDesc->trig_insert_new_table)
2583 result = true;
2584 break;
2585 case CMD_UPDATE:
2586 if (trigDesc &&
2587 (trigDesc->trig_update_old_table ||
2588 trigDesc->trig_update_new_table))
2589 result = true;
2590 break;
2591 case CMD_DELETE:
2592 if (trigDesc &&
2593 trigDesc->trig_delete_old_table)
2594 result = true;
2595 break;
2596 /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2597 case CMD_MERGE:
2598 result = false;
2599 break;
2600 default:
2601 elog(ERROR, "unrecognized CmdType: %d", (int) event);
2602 break;
2603 }
2604
2605 table_close(relation, NoLock);
2606 return result;
2607}
2608
2609/*
2610 * has_stored_generated_columns
2611 *
2612 * Does table identified by RTI have any STORED GENERATED columns?
2613 */
2614bool
2616{
2618 Relation relation;
2619 TupleDesc tupdesc;
2620 bool result = false;
2621
2622 /* Assume we already have adequate lock */
2623 relation = table_open(rte->relid, NoLock);
2624
2625 tupdesc = RelationGetDescr(relation);
2626 result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2627
2628 table_close(relation, NoLock);
2629
2630 return result;
2631}
2632
2633/*
2634 * get_dependent_generated_columns
2635 *
2636 * Get the column numbers of any STORED GENERATED columns of the relation
2637 * that depend on any column listed in target_cols. Both the input and
2638 * result bitmapsets contain column numbers offset by
2639 * FirstLowInvalidHeapAttributeNumber.
2640 */
2641Bitmapset *
2644{
2647 Relation relation;
2648 TupleDesc tupdesc;
2649 TupleConstr *constr;
2650
2651 /* Assume we already have adequate lock */
2652 relation = table_open(rte->relid, NoLock);
2653
2654 tupdesc = RelationGetDescr(relation);
2655 constr = tupdesc->constr;
2656
2657 if (constr && constr->has_generated_stored)
2658 {
2659 for (int i = 0; i < constr->num_defval; i++)
2660 {
2661 AttrDefault *defval = &constr->defval[i];
2662 Node *expr;
2663 Bitmapset *attrs_used = NULL;
2664
2665 /* skip if not generated column */
2666 if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2667 continue;
2668
2669 /* identify columns this generated column depends on */
2670 expr = stringToNode(defval->adbin);
2671 pull_varattnos(expr, 1, &attrs_used);
2672
2673 if (bms_overlap(target_cols, attrs_used))
2676 }
2677 }
2678
2679 table_close(relation, NoLock);
2680
2681 return dependentCols;
2682}
2683
2684/*
2685 * set_relation_partition_info
2686 *
2687 * Set partitioning scheme and related information for a partitioned table.
2688 */
2689static void
2691 Relation relation)
2692{
2693 PartitionDesc partdesc;
2694
2695 /*
2696 * Create the PartitionDirectory infrastructure if we didn't already.
2697 */
2698 if (root->glob->partition_directory == NULL)
2699 {
2700 root->glob->partition_directory =
2702 }
2703
2704 partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2705 relation);
2706 rel->part_scheme = find_partition_scheme(root, relation);
2707 Assert(partdesc != NULL && rel->part_scheme != NULL);
2708 rel->boundinfo = partdesc->boundinfo;
2709 rel->nparts = partdesc->nparts;
2710 set_baserel_partition_key_exprs(relation, rel);
2711 set_baserel_partition_constraint(relation, rel);
2712}
2713
2714/*
2715 * find_partition_scheme
2716 *
2717 * Find or create a PartitionScheme for this Relation.
2718 */
2719static PartitionScheme
2721{
2723 ListCell *lc;
2724 int partnatts,
2725 i;
2727
2728 /* A partitioned table should have a partition key. */
2729 Assert(partkey != NULL);
2730
2731 partnatts = partkey->partnatts;
2732
2733 /* Search for a matching partition scheme and return if found one. */
2734 foreach(lc, root->part_schemes)
2735 {
2737
2738 /* Match partitioning strategy and number of keys. */
2739 if (partkey->strategy != part_scheme->strategy ||
2740 partnatts != part_scheme->partnatts)
2741 continue;
2742
2743 /* Match partition key type properties. */
2744 if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2745 sizeof(Oid) * partnatts) != 0 ||
2746 memcmp(partkey->partopcintype, part_scheme->partopcintype,
2747 sizeof(Oid) * partnatts) != 0 ||
2748 memcmp(partkey->partcollation, part_scheme->partcollation,
2749 sizeof(Oid) * partnatts) != 0)
2750 continue;
2751
2752 /*
2753 * Length and byval information should match when partopcintype
2754 * matches.
2755 */
2756 Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2757 sizeof(int16) * partnatts) == 0);
2758 Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2759 sizeof(bool) * partnatts) == 0);
2760
2761 /*
2762 * If partopfamily and partopcintype matched, must have the same
2763 * partition comparison functions. Note that we cannot reliably
2764 * Assert the equality of function structs themselves for they might
2765 * be different across PartitionKey's, so just Assert for the function
2766 * OIDs.
2767 */
2768#ifdef USE_ASSERT_CHECKING
2769 for (i = 0; i < partkey->partnatts; i++)
2770 Assert(partkey->partsupfunc[i].fn_oid ==
2771 part_scheme->partsupfunc[i].fn_oid);
2772#endif
2773
2774 /* Found matching partition scheme. */
2775 return part_scheme;
2776 }
2777
2778 /*
2779 * Did not find matching partition scheme. Create one copying relevant
2780 * information from the relcache. We need to copy the contents of the
2781 * array since the relcache entry may not survive after we have closed the
2782 * relation.
2783 */
2785 part_scheme->strategy = partkey->strategy;
2786 part_scheme->partnatts = partkey->partnatts;
2787
2788 part_scheme->partopfamily = palloc_array(Oid, partnatts);
2789 memcpy(part_scheme->partopfamily, partkey->partopfamily,
2790 sizeof(Oid) * partnatts);
2791
2792 part_scheme->partopcintype = palloc_array(Oid, partnatts);
2793 memcpy(part_scheme->partopcintype, partkey->partopcintype,
2794 sizeof(Oid) * partnatts);
2795
2796 part_scheme->partcollation = palloc_array(Oid, partnatts);
2797 memcpy(part_scheme->partcollation, partkey->partcollation,
2798 sizeof(Oid) * partnatts);
2799
2800 part_scheme->parttyplen = palloc_array(int16, partnatts);
2801 memcpy(part_scheme->parttyplen, partkey->parttyplen,
2802 sizeof(int16) * partnatts);
2803
2804 part_scheme->parttypbyval = palloc_array(bool, partnatts);
2805 memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2806 sizeof(bool) * partnatts);
2807
2808 part_scheme->partsupfunc = palloc_array(FmgrInfo, partnatts);
2809 for (i = 0; i < partnatts; i++)
2810 fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2812
2813 /* Add the partitioning scheme to PlannerInfo. */
2814 root->part_schemes = lappend(root->part_schemes, part_scheme);
2815
2816 return part_scheme;
2817}
2818
2819/*
2820 * set_baserel_partition_key_exprs
2821 *
2822 * Builds partition key expressions for the given base relation and fills
2823 * rel->partexprs.
2824 */
2825static void
2827 RelOptInfo *rel)
2828{
2830 int partnatts;
2831 int cnt;
2832 List **partexprs;
2833 ListCell *lc;
2834 Index varno = rel->relid;
2835
2836 Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2837
2838 /* A partitioned table should have a partition key. */
2839 Assert(partkey != NULL);
2840
2841 partnatts = partkey->partnatts;
2842 partexprs = palloc_array(List *, partnatts);
2843 lc = list_head(partkey->partexprs);
2844
2845 for (cnt = 0; cnt < partnatts; cnt++)
2846 {
2847 Expr *partexpr;
2848 AttrNumber attno = partkey->partattrs[cnt];
2849
2850 if (attno != InvalidAttrNumber)
2851 {
2852 /* Single column partition key is stored as a Var node. */
2853 Assert(attno > 0);
2854
2855 partexpr = (Expr *) makeVar(varno, attno,
2856 partkey->parttypid[cnt],
2857 partkey->parttypmod[cnt],
2858 partkey->parttypcoll[cnt], 0);
2859 }
2860 else
2861 {
2862 if (lc == NULL)
2863 elog(ERROR, "wrong number of partition key expressions");
2864
2865 /* Re-stamp the expression with given varno. */
2867 ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2868 lc = lnext(partkey->partexprs, lc);
2869 }
2870
2871 /* Base relations have a single expression per key. */
2872 partexprs[cnt] = list_make1(partexpr);
2873 }
2874
2875 rel->partexprs = partexprs;
2876
2877 /*
2878 * A base relation does not have nullable partition key expressions, since
2879 * no outer join is involved. We still allocate an array of empty
2880 * expression lists to keep partition key expression handling code simple.
2881 * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2882 */
2883 rel->nullable_partexprs = palloc0_array(List *, partnatts);
2884}
2885
2886/*
2887 * set_baserel_partition_constraint
2888 *
2889 * Builds the partition constraint for the given base relation and sets it
2890 * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2891 * given relation.
2892 */
2893static void
2895{
2897
2898 if (rel->partition_qual) /* already done */
2899 return;
2900
2901 /*
2902 * Run the partition quals through const-simplification similar to check
2903 * constraints. We skip canonicalize_qual, though, because partition
2904 * quals should be in canonical form already; also, since the qual is in
2905 * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2906 * format and back again.
2907 */
2909 if (partconstr)
2910 {
2912 if (rel->relid != 1)
2913 ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2915 }
2916}
int16 AttrNumber
Definition attnum.h:21
#define InvalidAttrNumber
Definition attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:142
void bms_free(Bitmapset *a)
Definition bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition bitmapset.c:814
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:581
Bitmapset * bms_copy(const Bitmapset *a)
Definition bitmapset.c:122
uint32 BlockNumber
Definition block.h:31
#define RelationGetNumberOfBlocks(reln)
Definition bufmgr.h:307
#define SizeOfPageHeaderData
Definition bufpage.h:216
#define TextDatumGetCString(d)
Definition builtins.h:98
#define MAXALIGN(LEN)
Definition c.h:826
#define Assert(condition)
Definition c.h:873
int64_t int64
Definition c.h:543
double float8
Definition c.h:644
int16_t int16
Definition c.h:541
regproc RegProcedure
Definition c.h:664
int32_t int32
Definition c.h:542
#define unlikely(x)
Definition c.h:412
unsigned int Index
Definition c.h:628
#define OidIsValid(objectId)
Definition c.h:788
bool IsSystemRelation(Relation relation)
Definition catalog.c:74
bool contain_mutable_functions(Node *clause)
Definition clauses.c:379
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition clauses.c:2267
CompareType
Definition cmptype.h:32
@ COMPARE_LT
Definition cmptype.h:34
@ CONSTRAINT_EXCLUSION_OFF
Definition cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition cost.h:39
double cpu_operator_cost
Definition costsize.c:134
int32 clamp_width_est(int64 tuple_width)
Definition costsize.c:242
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition dynahash.c:358
int errcode(int sqlerrcode)
Definition elog.c:863
int errmsg(const char *fmt,...)
Definition elog.c:1080
#define ERROR
Definition elog.h:39
#define elog(elevel,...)
Definition elog.h:226
#define ereport(elevel,...)
Definition elog.h:150
bool equal(const void *a, const void *b)
Definition equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
#define palloc_array(type, count)
Definition fe_memutils.h:76
#define palloc0_array(type, count)
Definition fe_memutils.h:77
#define palloc0_object(type)
Definition fe_memutils.h:75
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition fmgr.c:1454
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition fmgr.c:1443
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition fmgr.c:581
#define OidFunctionCall1(functionId, arg1)
Definition fmgr.h:722
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition foreign.c:443
Oid GetForeignServerIdByRelId(Oid relid)
Definition foreign.c:356
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition heap.c:236
@ HASH_FIND
Definition hsearch.h:113
@ HASH_ENTER
Definition hsearch.h:114
#define HASH_CONTEXT
Definition hsearch.h:102
#define HASH_ELEM
Definition hsearch.h:95
#define HASH_BLOBS
Definition hsearch.h:97
#define HeapTupleIsValid(tuple)
Definition htup.h:78
#define SizeofHeapTupleHeader
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
static void * GETSTRUCT(const HeapTupleData *tuple)
void index_close(Relation relation, LOCKMODE lockmode)
Definition indexam.c:177
bool index_can_return(Relation indexRelation, int attno)
Definition indexam.c:845
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition indexam.c:133
int i
Definition isn.c:77
List * list_difference(const List *list1, const List *list2)
Definition list.c:1237
List * lappend(List *list, void *datum)
Definition list.c:339
List * list_concat(List *list1, const List *list2)
Definition list.c:561
List * lappend_oid(List *list, Oid datum)
Definition list.c:375
List * lcons(void *datum, List *list)
Definition list.c:495
void list_free(List *list)
Definition list.c:1546
bool list_member(const List *list, const void *datum)
Definition list.c:661
int LOCKMODE
Definition lockdefs.h:26
#define NoLock
Definition lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition lsyscache.c:1707
Oid get_constraint_index(Oid conoid)
Definition lsyscache.c:1189
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, CompareType *cmptype)
Definition lsyscache.c:259
Oid get_opclass_input_type(Oid opclass)
Definition lsyscache.c:1314
Oid get_opclass_family(Oid opclass)
Definition lsyscache.c:1292
Oid get_opfamily_member_for_cmptype(Oid opfamily, Oid lefttype, Oid righttype, CompareType cmptype)
Definition lsyscache.c:197
RegProcedure get_func_support(Oid funcid)
Definition lsyscache.c:2008
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition lsyscache.c:3308
RegProcedure get_oprjoin(Oid opno)
Definition lsyscache.c:1731
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition lsyscache.c:2728
Expr * make_ands_explicit(List *andclauses)
Definition makefuncs.c:799
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition makefuncs.c:107
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition makefuncs.c:289
List * make_ands_implicit(Expr *clause)
Definition makefuncs.c:810
void pfree(void *pointer)
Definition mcxt.c:1616
void * palloc0(Size size)
Definition mcxt.c:1417
MemoryContext CurrentMemoryContext
Definition mcxt.c:160
bool IgnoreSystemIndexes
Definition miscinit.c:81
void fix_opfuncids(Node *node)
Definition nodeFuncs.c:1840
#define IsA(nodeptr, _type_)
Definition nodes.h:164
#define copyObject(obj)
Definition nodes.h:232
@ ONCONFLICT_UPDATE
Definition nodes.h:430
CmdType
Definition nodes.h:273
@ CMD_MERGE
Definition nodes.h:279
@ CMD_INSERT
Definition nodes.h:277
@ CMD_DELETE
Definition nodes.h:278
@ CMD_UPDATE
Definition nodes.h:276
double Selectivity
Definition nodes.h:260
#define makeNode(_type_)
Definition nodes.h:161
JoinType
Definition nodes.h:298
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, VarReturningType returning_type, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
@ RTE_NAMEDTUPLESTORE
@ RTE_VALUES
@ RTE_SUBQUERY
@ RTE_RESULT
@ RTE_FUNCTION
@ RTE_TABLEFUNC
@ RTE_RELATION
#define rt_fetch(rangetable_index, rangetable)
Definition parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition partcache.c:277
PartitionKey RelationGetPartitionKey(Relation rel)
Definition partcache.c:51
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition partdesc.c:423
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition partdesc.c:456
#define IS_SIMPLE_REL(rel)
Definition pathnodes.h:971
Bitmapset * Relids
Definition pathnodes.h:103
#define planner_rt_fetch(rti, root)
Definition pathnodes.h:686
@ RELOPT_BASEREL
Definition pathnodes.h:959
@ RELOPT_OTHER_MEMBER_REL
Definition pathnodes.h:961
#define AMFLAG_HAS_TID_RANGE
Definition pathnodes.h:955
FormData_pg_attribute
FormData_pg_attribute * Form_pg_attribute
int errdetail_relkind_not_supported(char relkind)
Definition pg_class.c:24
FormData_pg_index * Form_pg_index
Definition pg_index.h:70
#define lfirst(lc)
Definition pg_list.h:172
static int list_length(const List *l)
Definition pg_list.h:152
#define NIL
Definition pg_list.h:68
#define list_make1(x1)
Definition pg_list.h:212
#define foreach_ptr(type, var, lst)
Definition pg_list.h:469
static void * list_nth(const List *list, int n)
Definition pg_list.h:299
static ListCell * list_head(const List *l)
Definition pg_list.h:128
#define foreach_oid(var, lst)
Definition pg_list.h:471
static ListCell * lnext(const List *l, const ListCell *c)
Definition pg_list.h:343
#define lfirst_oid(lc)
Definition pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition plancat.c:1310
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition plancat.c:1435
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition plancat.c:2615
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition plancat.c:598
void get_relation_notnullatts(PlannerInfo *root, Relation relation)
Definition plancat.c:704
int constraint_exclusion
Definition plancat.c:58
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition plancat.c:1854
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition plancat.c:2421
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition plancat.c:2511
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition plancat.c:1518
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition plancat.c:2360
get_relation_info_hook_type get_relation_info_hook
Definition plancat.c:61
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition plancat.c:1660
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition plancat.c:2044
static List * get_relation_statistics(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition plancat.c:1743
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition plancat.c:2227
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition plancat.c:1477
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition plancat.c:2894
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition plancat.c:2165
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition plancat.c:1228
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition plancat.c:2690
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition plancat.c:2479
Bitmapset * find_relation_notnullatts(PlannerInfo *root, Oid relid)
Definition plancat.c:777
bool has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
Definition plancat.c:2561
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition plancat.c:2720
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition plancat.c:2826
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition plancat.c:2266
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition plancat.c:2306
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition plancat.c:2642
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition plancat.c:124
List * infer_arbiter_indexes(PlannerInfo *root)
Definition plancat.c:816
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition plancat.h:21
Expr * expression_planner(Expr *expr)
Definition planner.c:6817
int restrict_nonsystem_relation_kind
Definition postgres.c:106
static bool DatumGetBool(Datum X)
Definition postgres.h:100
static Datum PointerGetDatum(const void *X)
Definition postgres.h:352
static Datum Int16GetDatum(int16 X)
Definition postgres.h:182
static Datum BoolGetDatum(bool X)
Definition postgres.h:112
static float8 DatumGetFloat8(Datum X)
Definition postgres.h:495
static Datum ObjectIdGetDatum(Oid X)
Definition postgres.h:262
uint64_t Datum
Definition postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition postgres.h:342
static Datum Int32GetDatum(int32 X)
Definition postgres.h:222
#define InvalidOid
unsigned int Oid
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition prepqual.c:293
static int fb(int x)
@ VAR_RETURNING_DEFAULT
Definition primnodes.h:256
@ IS_NOT_NULL
Definition primnodes.h:1977
tree ctl root
Definition radixtree.h:1857
void * stringToNode(const char *str)
Definition read.c:90
#define RelationGetForm(relation)
Definition rel.h:508
#define RelationGetRelid(relation)
Definition rel.h:514
#define RelationGetParallelWorkers(relation, defaultpw)
Definition rel.h:408
#define RelationGetDescr(relation)
Definition rel.h:540
#define RelationGetNumberOfAttributes(relation)
Definition rel.h:520
#define RelationGetRelationName(relation)
Definition rel.h:548
#define RelationIsPermanent(relation)
Definition rel.h:626
List * RelationGetIndexList(Relation relation)
Definition relcache.c:4831
List * RelationGetIndexPredicate(Relation relation)
Definition relcache.c:5205
List * RelationGetStatExtList(Relation relation)
Definition relcache.c:4972
List * RelationGetFKeyList(Relation relation)
Definition relcache.c:4726
List * RelationGetIndexExpressions(Relation relation)
Definition relcache.c:5092
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition relcache.c:5983
Node * expand_generated_columns_in_expr(Node *node, Relation rel, int rt_index)
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
TransactionId TransactionXmin
Definition snapmgr.c:159
AttrNumber adnum
Definition tupdesc.h:24
char * adbin
Definition tupdesc.h:25
bool attgenerated
Definition tupdesc.h:78
bool attisdropped
Definition tupdesc.h:77
char attnullability
Definition tupdesc.h:79
bool ccenforced
Definition tupdesc.h:32
bool ccnoinherit
Definition tupdesc.h:34
bool ccvalid
Definition tupdesc.h:33
char * ccbin
Definition tupdesc.h:31
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition pathnodes.h:1476
List * rinfos[INDEX_MAX_KEYS]
Definition pathnodes.h:1480
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition pathnodes.h:1478
Size keysize
Definition hsearch.h:75
HeapTupleHeader t_data
Definition htup.h:68
bool amcanparallel
Definition pathnodes.h:1424
void(* amcostestimate)(struct PlannerInfo *, struct IndexPath *, double, Cost *, Cost *, Selectivity *, double *, double *) pg_node_attr(read_write_ignore)
Definition pathnodes.h:1429
bool amoptionalkey
Definition pathnodes.h:1417
bool amcanmarkpos
Definition pathnodes.h:1426
List * indrestrictinfo
Definition pathnodes.h:1399
bool amhasgettuple
Definition pathnodes.h:1421
bool amcanorderbyop
Definition pathnodes.h:1416
bool hypothetical
Definition pathnodes.h:1410
bool nullsnotdistinct
Definition pathnodes.h:1406
List * indpred
Definition pathnodes.h:1389
Cardinality tuples
Definition pathnodes.h:1347
bool amsearcharray
Definition pathnodes.h:1418
BlockNumber pages
Definition pathnodes.h:1345
bool amsearchnulls
Definition pathnodes.h:1419
bool amhasgetbitmap
Definition pathnodes.h:1423
List * indextlist
Definition pathnodes.h:1392
Definition pg_list.h:54
Definition nodes.h:135
Bitmapset * notnullattnums
Definition plancat.c:66
List * arbiterElems
Definition primnodes.h:2376
OnConflictAction action
Definition primnodes.h:2373
Node * arbiterWhere
Definition primnodes.h:2378
PartitionBoundInfo boundinfo
Definition partdesc.h:38
Cost per_tuple
Definition pathnodes.h:121
Cost startup
Definition pathnodes.h:120
List * targetList
Definition parsenodes.h:198
List * baserestrictinfo
Definition pathnodes.h:1124
uint32 amflags
Definition pathnodes.h:1087
Bitmapset * notnullattnums
Definition pathnodes.h:1065
List * partition_qual
Definition pathnodes.h:1174
Index relid
Definition pathnodes.h:1051
List * statlist
Definition pathnodes.h:1075
Cardinality tuples
Definition pathnodes.h:1078
BlockNumber pages
Definition pathnodes.h:1077
RelOptKind reloptkind
Definition pathnodes.h:997
List * indexlist
Definition pathnodes.h:1073
Oid reltablespace
Definition pathnodes.h:1053
int rel_parallel_workers
Definition pathnodes.h:1085
AttrNumber max_attr
Definition pathnodes.h:1059
double allvisfrac
Definition pathnodes.h:1079
AttrNumber min_attr
Definition pathnodes.h:1057
const struct IndexAmRoutine * rd_indam
Definition rel.h:206
const struct TableAmRoutine * rd_tableam
Definition rel.h:189
TriggerDesc * trigdesc
Definition rel.h:117
Oid * rd_opcintype
Definition rel.h:208
struct HeapTupleData * rd_indextuple
Definition rel.h:194
int16 * rd_indoption
Definition rel.h:211
TupleDesc rd_att
Definition rel.h:112
Form_pg_index rd_index
Definition rel.h:192
Oid * rd_opfamily
Definition rel.h:207
Oid * rd_indcollation
Definition rel.h:217
Form_pg_class rd_rel
Definition rel.h:111
Expr * clause
Definition pathnodes.h:2870
Bitmapset * keys
Definition pathnodes.h:1509
bool(* scan_bitmap_next_tuple)(TableScanDesc scan, TupleTableSlot *slot, bool *recheck, uint64 *lossy_pages, uint64 *exact_pages)
Definition tableam.h:793
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition tableam.h:379
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition tableam.h:371
bool has_not_null
Definition tupdesc.h:45
AttrDefault * defval
Definition tupdesc.h:40
bool has_generated_stored
Definition tupdesc.h:46
ConstrCheck * check
Definition tupdesc.h:41
uint16 num_defval
Definition tupdesc.h:43
uint16 num_check
Definition tupdesc.h:44
TupleConstr * constr
Definition tupdesc.h:141
ParseLoc location
Definition primnodes.h:310
AttrNumber varattno
Definition primnodes.h:274
Definition type.h:96
#define FirstLowInvalidHeapAttributeNumber
Definition sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition syscache.c:220
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition syscache.c:595
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition syscache.c:230
void table_close(Relation relation, LOCKMODE lockmode)
Definition table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition tableam.h:1928
#define RESTRICT_RELKIND_FOREIGN_TABLE
Definition tcopprot.h:45
#define FirstNormalObjectId
Definition transam.h:197
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition transam.h:263
#define ATTNULLABLE_UNKNOWN
Definition tupdesc.h:85
#define ATTNULLABLE_VALID
Definition tupdesc.h:86
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition tupdesc.h:160
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition tupdesc.h:175
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition var.c:296
bool RecoveryInProgress(void)
Definition xlog.c:6460