PostgreSQL Source Code  git master
plancat.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * plancat.c
4  * routines for accessing the system catalogs
5  *
6  *
7  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  *
11  * IDENTIFICATION
12  * src/backend/optimizer/util/plancat.c
13  *
14  *-------------------------------------------------------------------------
15  */
16 #include "postgres.h"
17 
18 #include <math.h>
19 
20 #include "access/genam.h"
21 #include "access/htup_details.h"
22 #include "access/nbtree.h"
23 #include "access/sysattr.h"
24 #include "access/table.h"
25 #include "access/tableam.h"
26 #include "access/transam.h"
27 #include "access/xlog.h"
28 #include "catalog/catalog.h"
29 #include "catalog/heap.h"
30 #include "catalog/pg_am.h"
31 #include "catalog/pg_proc.h"
34 #include "foreign/fdwapi.h"
35 #include "miscadmin.h"
36 #include "nodes/makefuncs.h"
37 #include "nodes/nodeFuncs.h"
38 #include "nodes/supportnodes.h"
39 #include "optimizer/cost.h"
40 #include "optimizer/optimizer.h"
41 #include "optimizer/plancat.h"
42 #include "parser/parse_relation.h"
43 #include "parser/parsetree.h"
44 #include "partitioning/partdesc.h"
45 #include "rewrite/rewriteManip.h"
46 #include "statistics/statistics.h"
47 #include "storage/bufmgr.h"
48 #include "utils/builtins.h"
49 #include "utils/lsyscache.h"
50 #include "utils/partcache.h"
51 #include "utils/rel.h"
52 #include "utils/snapmgr.h"
53 #include "utils/syscache.h"
54 
55 /* GUC parameter */
57 
58 /* Hook for plugins to get control in get_relation_info() */
60 
61 
63  Relation relation, bool inhparent);
64 static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
65  List *idxExprs);
67  Oid relationObjectId, RelOptInfo *rel,
68  bool include_noinherit,
69  bool include_notnull,
70  bool include_partition);
72  Relation heapRelation);
73 static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
75  Relation relation);
77  Relation relation);
78 static void set_baserel_partition_key_exprs(Relation relation,
79  RelOptInfo *rel);
80 static void set_baserel_partition_constraint(Relation relation,
81  RelOptInfo *rel);
82 
83 
84 /*
85  * get_relation_info -
86  * Retrieves catalog information for a given relation.
87  *
88  * Given the Oid of the relation, return the following info into fields
89  * of the RelOptInfo struct:
90  *
91  * min_attr lowest valid AttrNumber
92  * max_attr highest valid AttrNumber
93  * indexlist list of IndexOptInfos for relation's indexes
94  * statlist list of StatisticExtInfo for relation's statistic objects
95  * serverid if it's a foreign table, the server OID
96  * fdwroutine if it's a foreign table, the FDW function pointers
97  * pages number of pages
98  * tuples number of tuples
99  * rel_parallel_workers user-defined number of parallel workers
100  *
101  * Also, add information about the relation's foreign keys to root->fkey_list.
102  *
103  * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
104  * cases these are left as zeroes, but sometimes we need to compute attr
105  * widths here, and we may as well cache the results for costsize.c.
106  *
107  * If inhparent is true, all we need to do is set up the attr arrays:
108  * the RelOptInfo actually represents the appendrel formed by an inheritance
109  * tree, and so the parent rel's physical size and index information isn't
110  * important for it, however, for partitioned tables, we do populate the
111  * indexlist as the planner uses unique indexes as unique proofs for certain
112  * optimizations.
113  */
114 void
115 get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
116  RelOptInfo *rel)
117 {
118  Index varno = rel->relid;
119  Relation relation;
120  bool hasindex;
121  List *indexinfos = NIL;
122 
123  /*
124  * We need not lock the relation since it was already locked, either by
125  * the rewriter or when expand_inherited_rtentry() added it to the query's
126  * rangetable.
127  */
128  relation = table_open(relationObjectId, NoLock);
129 
130  /*
131  * Relations without a table AM can be used in a query only if they are of
132  * special-cased relkinds. This check prevents us from crashing later if,
133  * for example, a view's ON SELECT rule has gone missing. Note that
134  * table_open() already rejected indexes and composite types; spell the
135  * error the same way it does.
136  */
137  if (!relation->rd_tableam)
138  {
139  if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
140  relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
141  ereport(ERROR,
142  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
143  errmsg("cannot open relation \"%s\"",
144  RelationGetRelationName(relation)),
145  errdetail_relkind_not_supported(relation->rd_rel->relkind)));
146  }
147 
148  /* Temporary and unlogged relations are inaccessible during recovery. */
149  if (!RelationIsPermanent(relation) && RecoveryInProgress())
150  ereport(ERROR,
151  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
152  errmsg("cannot access temporary or unlogged relations during recovery")));
153 
155  rel->max_attr = RelationGetNumberOfAttributes(relation);
156  rel->reltablespace = RelationGetForm(relation)->reltablespace;
157 
158  Assert(rel->max_attr >= rel->min_attr);
159  rel->attr_needed = (Relids *)
160  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
161  rel->attr_widths = (int32 *)
162  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
163 
164  /*
165  * Record which columns are defined as NOT NULL. We leave this
166  * unpopulated for non-partitioned inheritance parent relations as it's
167  * ambiguous as to what it means. Some child tables may have a NOT NULL
168  * constraint for a column while others may not. We could work harder and
169  * build a unioned set of all child relations notnullattnums, but there's
170  * currently no need. The RelOptInfo corresponding to the !inh
171  * RangeTblEntry does get populated.
172  */
173  if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
174  {
175  for (int i = 0; i < relation->rd_att->natts; i++)
176  {
177  FormData_pg_attribute *attr = &relation->rd_att->attrs[i];
178 
179  if (attr->attnotnull)
180  {
182  attr->attnum);
183 
184  /*
185  * Per RemoveAttributeById(), dropped columns will have their
186  * attnotnull unset, so we needn't check for dropped columns
187  * in the above condition.
188  */
189  Assert(!attr->attisdropped);
190  }
191  }
192  }
193 
194  /*
195  * Estimate relation size --- unless it's an inheritance parent, in which
196  * case the size we want is not the rel's own size but the size of its
197  * inheritance tree. That will be computed in set_append_rel_size().
198  */
199  if (!inhparent)
200  estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
201  &rel->pages, &rel->tuples, &rel->allvisfrac);
202 
203  /* Retrieve the parallel_workers reloption, or -1 if not set. */
205 
206  /*
207  * Make list of indexes. Ignore indexes on system catalogs if told to.
208  * Don't bother with indexes from traditional inheritance parents. For
209  * partitioned tables, we need a list of at least unique indexes as these
210  * serve as unique proofs for certain planner optimizations. However,
211  * let's not discriminate here and just record all partitioned indexes
212  * whether they're unique indexes or not.
213  */
214  if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
215  || (IgnoreSystemIndexes && IsSystemRelation(relation)))
216  hasindex = false;
217  else
218  hasindex = relation->rd_rel->relhasindex;
219 
220  if (hasindex)
221  {
222  List *indexoidlist;
223  LOCKMODE lmode;
224  ListCell *l;
225 
226  indexoidlist = RelationGetIndexList(relation);
227 
228  /*
229  * For each index, we get the same type of lock that the executor will
230  * need, and do not release it. This saves a couple of trips to the
231  * shared lock manager while not creating any real loss of
232  * concurrency, because no schema changes could be happening on the
233  * index while we hold lock on the parent rel, and no lock type used
234  * for queries blocks any other kind of index operation.
235  */
236  lmode = root->simple_rte_array[varno]->rellockmode;
237 
238  foreach(l, indexoidlist)
239  {
240  Oid indexoid = lfirst_oid(l);
241  Relation indexRelation;
243  IndexAmRoutine *amroutine;
244  IndexOptInfo *info;
245  int ncolumns,
246  nkeycolumns;
247  int i;
248 
249  /*
250  * Extract info from the relation descriptor for the index.
251  */
252  indexRelation = index_open(indexoid, lmode);
253  index = indexRelation->rd_index;
254 
255  /*
256  * Ignore invalid indexes, since they can't safely be used for
257  * queries. Note that this is OK because the data structure we
258  * are constructing is only used by the planner --- the executor
259  * still needs to insert into "invalid" indexes, if they're marked
260  * indisready.
261  */
262  if (!index->indisvalid)
263  {
264  index_close(indexRelation, NoLock);
265  continue;
266  }
267 
268  /*
269  * If the index is valid, but cannot yet be used, ignore it; but
270  * mark the plan we are generating as transient. See
271  * src/backend/access/heap/README.HOT for discussion.
272  */
273  if (index->indcheckxmin &&
276  {
277  root->glob->transientPlan = true;
278  index_close(indexRelation, NoLock);
279  continue;
280  }
281 
282  info = makeNode(IndexOptInfo);
283 
284  info->indexoid = index->indexrelid;
285  info->reltablespace =
286  RelationGetForm(indexRelation)->reltablespace;
287  info->rel = rel;
288  info->ncolumns = ncolumns = index->indnatts;
289  info->nkeycolumns = nkeycolumns = index->indnkeyatts;
290 
291  info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
292  info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
293  info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
294  info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
295  info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
296 
297  for (i = 0; i < ncolumns; i++)
298  {
299  info->indexkeys[i] = index->indkey.values[i];
300  info->canreturn[i] = index_can_return(indexRelation, i + 1);
301  }
302 
303  for (i = 0; i < nkeycolumns; i++)
304  {
305  info->opfamily[i] = indexRelation->rd_opfamily[i];
306  info->opcintype[i] = indexRelation->rd_opcintype[i];
307  info->indexcollations[i] = indexRelation->rd_indcollation[i];
308  }
309 
310  info->relam = indexRelation->rd_rel->relam;
311 
312  /*
313  * We don't have an AM for partitioned indexes, so we'll just
314  * NULLify the AM related fields for those.
315  */
316  if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
317  {
318  /* We copy just the fields we need, not all of rd_indam */
319  amroutine = indexRelation->rd_indam;
320  info->amcanorderbyop = amroutine->amcanorderbyop;
321  info->amoptionalkey = amroutine->amoptionalkey;
322  info->amsearcharray = amroutine->amsearcharray;
323  info->amsearchnulls = amroutine->amsearchnulls;
324  info->amcanparallel = amroutine->amcanparallel;
325  info->amhasgettuple = (amroutine->amgettuple != NULL);
326  info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
327  relation->rd_tableam->scan_bitmap_next_block != NULL;
328  info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
329  amroutine->amrestrpos != NULL);
330  info->amcostestimate = amroutine->amcostestimate;
331  Assert(info->amcostestimate != NULL);
332 
333  /* Fetch index opclass options */
334  info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
335 
336  /*
337  * Fetch the ordering information for the index, if any.
338  */
339  if (info->relam == BTREE_AM_OID)
340  {
341  /*
342  * If it's a btree index, we can use its opfamily OIDs
343  * directly as the sort ordering opfamily OIDs.
344  */
345  Assert(amroutine->amcanorder);
346 
347  info->sortopfamily = info->opfamily;
348  info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
349  info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
350 
351  for (i = 0; i < nkeycolumns; i++)
352  {
353  int16 opt = indexRelation->rd_indoption[i];
354 
355  info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
356  info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
357  }
358  }
359  else if (amroutine->amcanorder)
360  {
361  /*
362  * Otherwise, identify the corresponding btree opfamilies
363  * by trying to map this index's "<" operators into btree.
364  * Since "<" uniquely defines the behavior of a sort
365  * order, this is a sufficient test.
366  *
367  * XXX This method is rather slow and also requires the
368  * undesirable assumption that the other index AM numbers
369  * its strategies the same as btree. It'd be better to
370  * have a way to explicitly declare the corresponding
371  * btree opfamily for each opfamily of the other index
372  * type. But given the lack of current or foreseeable
373  * amcanorder index types, it's not worth expending more
374  * effort on now.
375  */
376  info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
377  info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
378  info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
379 
380  for (i = 0; i < nkeycolumns; i++)
381  {
382  int16 opt = indexRelation->rd_indoption[i];
383  Oid ltopr;
384  Oid btopfamily;
385  Oid btopcintype;
386  int16 btstrategy;
387 
388  info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
389  info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
390 
391  ltopr = get_opfamily_member(info->opfamily[i],
392  info->opcintype[i],
393  info->opcintype[i],
395  if (OidIsValid(ltopr) &&
397  &btopfamily,
398  &btopcintype,
399  &btstrategy) &&
400  btopcintype == info->opcintype[i] &&
401  btstrategy == BTLessStrategyNumber)
402  {
403  /* Successful mapping */
404  info->sortopfamily[i] = btopfamily;
405  }
406  else
407  {
408  /* Fail ... quietly treat index as unordered */
409  info->sortopfamily = NULL;
410  info->reverse_sort = NULL;
411  info->nulls_first = NULL;
412  break;
413  }
414  }
415  }
416  else
417  {
418  info->sortopfamily = NULL;
419  info->reverse_sort = NULL;
420  info->nulls_first = NULL;
421  }
422  }
423  else
424  {
425  info->amcanorderbyop = false;
426  info->amoptionalkey = false;
427  info->amsearcharray = false;
428  info->amsearchnulls = false;
429  info->amcanparallel = false;
430  info->amhasgettuple = false;
431  info->amhasgetbitmap = false;
432  info->amcanmarkpos = false;
433  info->amcostestimate = NULL;
434 
435  info->sortopfamily = NULL;
436  info->reverse_sort = NULL;
437  info->nulls_first = NULL;
438  }
439 
440  /*
441  * Fetch the index expressions and predicate, if any. We must
442  * modify the copies we obtain from the relcache to have the
443  * correct varno for the parent relation, so that they match up
444  * correctly against qual clauses.
445  */
446  info->indexprs = RelationGetIndexExpressions(indexRelation);
447  info->indpred = RelationGetIndexPredicate(indexRelation);
448  if (info->indexprs && varno != 1)
449  ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
450  if (info->indpred && varno != 1)
451  ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
452 
453  /* Build targetlist using the completed indexprs data */
454  info->indextlist = build_index_tlist(root, info, relation);
455 
456  info->indrestrictinfo = NIL; /* set later, in indxpath.c */
457  info->predOK = false; /* set later, in indxpath.c */
458  info->unique = index->indisunique;
459  info->immediate = index->indimmediate;
460  info->hypothetical = false;
461 
462  /*
463  * Estimate the index size. If it's not a partial index, we lock
464  * the number-of-tuples estimate to equal the parent table; if it
465  * is partial then we have to use the same methods as we would for
466  * a table, except we can be sure that the index is not larger
467  * than the table. We must ignore partitioned indexes here as
468  * there are not physical indexes.
469  */
470  if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
471  {
472  if (info->indpred == NIL)
473  {
474  info->pages = RelationGetNumberOfBlocks(indexRelation);
475  info->tuples = rel->tuples;
476  }
477  else
478  {
479  double allvisfrac; /* dummy */
480 
481  estimate_rel_size(indexRelation, NULL,
482  &info->pages, &info->tuples, &allvisfrac);
483  if (info->tuples > rel->tuples)
484  info->tuples = rel->tuples;
485  }
486 
487  if (info->relam == BTREE_AM_OID)
488  {
489  /*
490  * For btrees, get tree height while we have the index
491  * open
492  */
493  info->tree_height = _bt_getrootheight(indexRelation);
494  }
495  else
496  {
497  /* For other index types, just set it to "unknown" for now */
498  info->tree_height = -1;
499  }
500  }
501  else
502  {
503  /* Zero these out for partitioned indexes */
504  info->pages = 0;
505  info->tuples = 0.0;
506  info->tree_height = -1;
507  }
508 
509  index_close(indexRelation, NoLock);
510 
511  /*
512  * We've historically used lcons() here. It'd make more sense to
513  * use lappend(), but that causes the planner to change behavior
514  * in cases where two indexes seem equally attractive. For now,
515  * stick with lcons() --- few tables should have so many indexes
516  * that the O(N^2) behavior of lcons() is really a problem.
517  */
518  indexinfos = lcons(info, indexinfos);
519  }
520 
521  list_free(indexoidlist);
522  }
523 
524  rel->indexlist = indexinfos;
525 
526  rel->statlist = get_relation_statistics(rel, relation);
527 
528  /* Grab foreign-table info using the relcache, while we have it */
529  if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
530  {
532  rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
533  }
534  else
535  {
536  rel->serverid = InvalidOid;
537  rel->fdwroutine = NULL;
538  }
539 
540  /* Collect info about relation's foreign keys, if relevant */
541  get_relation_foreign_keys(root, rel, relation, inhparent);
542 
543  /* Collect info about functions implemented by the rel's table AM. */
544  if (relation->rd_tableam &&
545  relation->rd_tableam->scan_set_tidrange != NULL &&
546  relation->rd_tableam->scan_getnextslot_tidrange != NULL)
548 
549  /*
550  * Collect info about relation's partitioning scheme, if any. Only
551  * inheritance parents may be partitioned.
552  */
553  if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
554  set_relation_partition_info(root, rel, relation);
555 
556  table_close(relation, NoLock);
557 
558  /*
559  * Allow a plugin to editorialize on the info we obtained from the
560  * catalogs. Actions might include altering the assumed relation size,
561  * removing an index, or adding a hypothetical index to the indexlist.
562  */
564  (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
565 }
566 
567 /*
568  * get_relation_foreign_keys -
569  * Retrieves foreign key information for a given relation.
570  *
571  * ForeignKeyOptInfos for relevant foreign keys are created and added to
572  * root->fkey_list. We do this now while we have the relcache entry open.
573  * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
574  * until all RelOptInfos have been built, but the cost of re-opening the
575  * relcache entries would probably exceed any savings.
576  */
577 static void
579  Relation relation, bool inhparent)
580 {
581  List *rtable = root->parse->rtable;
582  List *cachedfkeys;
583  ListCell *lc;
584 
585  /*
586  * If it's not a baserel, we don't care about its FKs. Also, if the query
587  * references only a single relation, we can skip the lookup since no FKs
588  * could satisfy the requirements below.
589  */
590  if (rel->reloptkind != RELOPT_BASEREL ||
591  list_length(rtable) < 2)
592  return;
593 
594  /*
595  * If it's the parent of an inheritance tree, ignore its FKs. We could
596  * make useful FK-based deductions if we found that all members of the
597  * inheritance tree have equivalent FK constraints, but detecting that
598  * would require code that hasn't been written.
599  */
600  if (inhparent)
601  return;
602 
603  /*
604  * Extract data about relation's FKs from the relcache. Note that this
605  * list belongs to the relcache and might disappear in a cache flush, so
606  * we must not do any further catalog access within this function.
607  */
608  cachedfkeys = RelationGetFKeyList(relation);
609 
610  /*
611  * Figure out which FKs are of interest for this query, and create
612  * ForeignKeyOptInfos for them. We want only FKs that reference some
613  * other RTE of the current query. In queries containing self-joins,
614  * there might be more than one other RTE for a referenced table, and we
615  * should make a ForeignKeyOptInfo for each occurrence.
616  *
617  * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
618  * too hard to identify those here, so we might end up making some useless
619  * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
620  * them again.
621  */
622  foreach(lc, cachedfkeys)
623  {
624  ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
625  Index rti;
626  ListCell *lc2;
627 
628  /* conrelid should always be that of the table we're considering */
629  Assert(cachedfk->conrelid == RelationGetRelid(relation));
630 
631  /* Scan to find other RTEs matching confrelid */
632  rti = 0;
633  foreach(lc2, rtable)
634  {
635  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
636  ForeignKeyOptInfo *info;
637 
638  rti++;
639  /* Ignore if not the correct table */
640  if (rte->rtekind != RTE_RELATION ||
641  rte->relid != cachedfk->confrelid)
642  continue;
643  /* Ignore if it's an inheritance parent; doesn't really match */
644  if (rte->inh)
645  continue;
646  /* Ignore self-referential FKs; we only care about joins */
647  if (rti == rel->relid)
648  continue;
649 
650  /* OK, let's make an entry */
651  info = makeNode(ForeignKeyOptInfo);
652  info->con_relid = rel->relid;
653  info->ref_relid = rti;
654  info->nkeys = cachedfk->nkeys;
655  memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
656  memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
657  memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
658  /* zero out fields to be filled by match_foreign_keys_to_quals */
659  info->nmatched_ec = 0;
660  info->nconst_ec = 0;
661  info->nmatched_rcols = 0;
662  info->nmatched_ri = 0;
663  memset(info->eclass, 0, sizeof(info->eclass));
664  memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
665  memset(info->rinfos, 0, sizeof(info->rinfos));
666 
667  root->fkey_list = lappend(root->fkey_list, info);
668  }
669  }
670 }
671 
672 /*
673  * infer_arbiter_indexes -
674  * Determine the unique indexes used to arbitrate speculative insertion.
675  *
676  * Uses user-supplied inference clause expressions and predicate to match a
677  * unique index from those defined and ready on the heap relation (target).
678  * An exact match is required on columns/expressions (although they can appear
679  * in any order). However, the predicate given by the user need only restrict
680  * insertion to a subset of some part of the table covered by some particular
681  * unique index (in particular, a partial unique index) in order to be
682  * inferred.
683  *
684  * The implementation does not consider which B-Tree operator class any
685  * particular available unique index attribute uses, unless one was specified
686  * in the inference specification. The same is true of collations. In
687  * particular, there is no system dependency on the default operator class for
688  * the purposes of inference. If no opclass (or collation) is specified, then
689  * all matching indexes (that may or may not match the default in terms of
690  * each attribute opclass/collation) are used for inference.
691  */
692 List *
694 {
695  OnConflictExpr *onconflict = root->parse->onConflict;
696 
697  /* Iteration state */
698  RangeTblEntry *rte;
699  Relation relation;
700  Oid indexOidFromConstraint = InvalidOid;
701  List *indexList;
702  ListCell *l;
703 
704  /* Normalized inference attributes and inference expressions: */
705  Bitmapset *inferAttrs = NULL;
706  List *inferElems = NIL;
707 
708  /* Results */
709  List *results = NIL;
710 
711  /*
712  * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
713  * specification or named constraint. ON CONFLICT DO UPDATE statements
714  * must always provide one or the other (but parser ought to have caught
715  * that already).
716  */
717  if (onconflict->arbiterElems == NIL &&
718  onconflict->constraint == InvalidOid)
719  return NIL;
720 
721  /*
722  * We need not lock the relation since it was already locked, either by
723  * the rewriter or when expand_inherited_rtentry() added it to the query's
724  * rangetable.
725  */
726  rte = rt_fetch(root->parse->resultRelation, root->parse->rtable);
727 
728  relation = table_open(rte->relid, NoLock);
729 
730  /*
731  * Build normalized/BMS representation of plain indexed attributes, as
732  * well as a separate list of expression items. This simplifies matching
733  * the cataloged definition of indexes.
734  */
735  foreach(l, onconflict->arbiterElems)
736  {
737  InferenceElem *elem = (InferenceElem *) lfirst(l);
738  Var *var;
739  int attno;
740 
741  if (!IsA(elem->expr, Var))
742  {
743  /* If not a plain Var, just shove it in inferElems for now */
744  inferElems = lappend(inferElems, elem->expr);
745  continue;
746  }
747 
748  var = (Var *) elem->expr;
749  attno = var->varattno;
750 
751  if (attno == 0)
752  ereport(ERROR,
753  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
754  errmsg("whole row unique index inference specifications are not supported")));
755 
756  inferAttrs = bms_add_member(inferAttrs,
758  }
759 
760  /*
761  * Lookup named constraint's index. This is not immediately returned
762  * because some additional sanity checks are required.
763  */
764  if (onconflict->constraint != InvalidOid)
765  {
766  indexOidFromConstraint = get_constraint_index(onconflict->constraint);
767 
768  if (indexOidFromConstraint == InvalidOid)
769  ereport(ERROR,
770  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
771  errmsg("constraint in ON CONFLICT clause has no associated index")));
772  }
773 
774  /*
775  * Using that representation, iterate through the list of indexes on the
776  * target relation to try and find a match
777  */
778  indexList = RelationGetIndexList(relation);
779 
780  foreach(l, indexList)
781  {
782  Oid indexoid = lfirst_oid(l);
783  Relation idxRel;
784  Form_pg_index idxForm;
785  Bitmapset *indexedAttrs;
786  List *idxExprs;
787  List *predExprs;
788  AttrNumber natt;
789  ListCell *el;
790 
791  /*
792  * Extract info from the relation descriptor for the index. Obtain
793  * the same lock type that the executor will ultimately use.
794  *
795  * Let executor complain about !indimmediate case directly, because
796  * enforcement needs to occur there anyway when an inference clause is
797  * omitted.
798  */
799  idxRel = index_open(indexoid, rte->rellockmode);
800  idxForm = idxRel->rd_index;
801 
802  if (!idxForm->indisvalid)
803  goto next;
804 
805  /*
806  * Note that we do not perform a check against indcheckxmin (like e.g.
807  * get_relation_info()) here to eliminate candidates, because
808  * uniqueness checking only cares about the most recently committed
809  * tuple versions.
810  */
811 
812  /*
813  * Look for match on "ON constraint_name" variant, which may not be
814  * unique constraint. This can only be a constraint name.
815  */
816  if (indexOidFromConstraint == idxForm->indexrelid)
817  {
818  if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
819  ereport(ERROR,
820  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
821  errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
822 
823  results = lappend_oid(results, idxForm->indexrelid);
824  list_free(indexList);
825  index_close(idxRel, NoLock);
826  table_close(relation, NoLock);
827  return results;
828  }
829  else if (indexOidFromConstraint != InvalidOid)
830  {
831  /* No point in further work for index in named constraint case */
832  goto next;
833  }
834 
835  /*
836  * Only considering conventional inference at this point (not named
837  * constraints), so index under consideration can be immediately
838  * skipped if it's not unique
839  */
840  if (!idxForm->indisunique)
841  goto next;
842 
843  /* Build BMS representation of plain (non expression) index attrs */
844  indexedAttrs = NULL;
845  for (natt = 0; natt < idxForm->indnkeyatts; natt++)
846  {
847  int attno = idxRel->rd_index->indkey.values[natt];
848 
849  if (attno != 0)
850  indexedAttrs = bms_add_member(indexedAttrs,
852  }
853 
854  /* Non-expression attributes (if any) must match */
855  if (!bms_equal(indexedAttrs, inferAttrs))
856  goto next;
857 
858  /* Expression attributes (if any) must match */
859  idxExprs = RelationGetIndexExpressions(idxRel);
860  foreach(el, onconflict->arbiterElems)
861  {
862  InferenceElem *elem = (InferenceElem *) lfirst(el);
863 
864  /*
865  * Ensure that collation/opclass aspects of inference expression
866  * element match. Even though this loop is primarily concerned
867  * with matching expressions, it is a convenient point to check
868  * this for both expressions and ordinary (non-expression)
869  * attributes appearing as inference elements.
870  */
871  if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
872  goto next;
873 
874  /*
875  * Plain Vars don't factor into count of expression elements, and
876  * the question of whether or not they satisfy the index
877  * definition has already been considered (they must).
878  */
879  if (IsA(elem->expr, Var))
880  continue;
881 
882  /*
883  * Might as well avoid redundant check in the rare cases where
884  * infer_collation_opclass_match() is required to do real work.
885  * Otherwise, check that element expression appears in cataloged
886  * index definition.
887  */
888  if (elem->infercollid != InvalidOid ||
889  elem->inferopclass != InvalidOid ||
890  list_member(idxExprs, elem->expr))
891  continue;
892 
893  goto next;
894  }
895 
896  /*
897  * Now that all inference elements were matched, ensure that the
898  * expression elements from inference clause are not missing any
899  * cataloged expressions. This does the right thing when unique
900  * indexes redundantly repeat the same attribute, or if attributes
901  * redundantly appear multiple times within an inference clause.
902  */
903  if (list_difference(idxExprs, inferElems) != NIL)
904  goto next;
905 
906  /*
907  * If it's a partial index, its predicate must be implied by the ON
908  * CONFLICT's WHERE clause.
909  */
910  predExprs = RelationGetIndexPredicate(idxRel);
911 
912  if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
913  goto next;
914 
915  results = lappend_oid(results, idxForm->indexrelid);
916 next:
917  index_close(idxRel, NoLock);
918  }
919 
920  list_free(indexList);
921  table_close(relation, NoLock);
922 
923  if (results == NIL)
924  ereport(ERROR,
925  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
926  errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
927 
928  return results;
929 }
930 
931 /*
932  * infer_collation_opclass_match - ensure infer element opclass/collation match
933  *
934  * Given unique index inference element from inference specification, if
935  * collation was specified, or if opclass was specified, verify that there is
936  * at least one matching indexed attribute (occasionally, there may be more).
937  * Skip this in the common case where inference specification does not include
938  * collation or opclass (instead matching everything, regardless of cataloged
939  * collation/opclass of indexed attribute).
940  *
941  * At least historically, Postgres has not offered collations or opclasses
942  * with alternative-to-default notions of equality, so these additional
943  * criteria should only be required infrequently.
944  *
945  * Don't give up immediately when an inference element matches some attribute
946  * cataloged as indexed but not matching additional opclass/collation
947  * criteria. This is done so that the implementation is as forgiving as
948  * possible of redundancy within cataloged index attributes (or, less
949  * usefully, within inference specification elements). If collations actually
950  * differ between apparently redundantly indexed attributes (redundant within
951  * or across indexes), then there really is no redundancy as such.
952  *
953  * Note that if an inference element specifies an opclass and a collation at
954  * once, both must match in at least one particular attribute within index
955  * catalog definition in order for that inference element to be considered
956  * inferred/satisfied.
957  */
958 static bool
960  List *idxExprs)
961 {
962  AttrNumber natt;
963  Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
964  Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
965  int nplain = 0; /* # plain attrs observed */
966 
967  /*
968  * If inference specification element lacks collation/opclass, then no
969  * need to check for exact match.
970  */
971  if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
972  return true;
973 
974  /*
975  * Lookup opfamily and input type, for matching indexes
976  */
977  if (elem->inferopclass)
978  {
979  inferopfamily = get_opclass_family(elem->inferopclass);
980  inferopcinputtype = get_opclass_input_type(elem->inferopclass);
981  }
982 
983  for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
984  {
985  Oid opfamily = idxRel->rd_opfamily[natt - 1];
986  Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
987  Oid collation = idxRel->rd_indcollation[natt - 1];
988  int attno = idxRel->rd_index->indkey.values[natt - 1];
989 
990  if (attno != 0)
991  nplain++;
992 
993  if (elem->inferopclass != InvalidOid &&
994  (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
995  {
996  /* Attribute needed to match opclass, but didn't */
997  continue;
998  }
999 
1000  if (elem->infercollid != InvalidOid &&
1001  elem->infercollid != collation)
1002  {
1003  /* Attribute needed to match collation, but didn't */
1004  continue;
1005  }
1006 
1007  /* If one matching index att found, good enough -- return true */
1008  if (IsA(elem->expr, Var))
1009  {
1010  if (((Var *) elem->expr)->varattno == attno)
1011  return true;
1012  }
1013  else if (attno == 0)
1014  {
1015  Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1016 
1017  /*
1018  * Note that unlike routines like match_index_to_operand() we
1019  * don't need to care about RelabelType. Neither the index
1020  * definition nor the inference clause should contain them.
1021  */
1022  if (equal(elem->expr, nattExpr))
1023  return true;
1024  }
1025  }
1026 
1027  return false;
1028 }
1029 
1030 /*
1031  * estimate_rel_size - estimate # pages and # tuples in a table or index
1032  *
1033  * We also estimate the fraction of the pages that are marked all-visible in
1034  * the visibility map, for use in estimation of index-only scans.
1035  *
1036  * If attr_widths isn't NULL, it points to the zero-index entry of the
1037  * relation's attr_widths[] cache; we fill this in if we have need to compute
1038  * the attribute widths for estimation purposes.
1039  */
1040 void
1042  BlockNumber *pages, double *tuples, double *allvisfrac)
1043 {
1044  BlockNumber curpages;
1045  BlockNumber relpages;
1046  double reltuples;
1047  BlockNumber relallvisible;
1048  double density;
1049 
1050  if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1051  {
1052  table_relation_estimate_size(rel, attr_widths, pages, tuples,
1053  allvisfrac);
1054  }
1055  else if (rel->rd_rel->relkind == RELKIND_INDEX)
1056  {
1057  /*
1058  * XXX: It'd probably be good to move this into a callback, individual
1059  * index types e.g. know if they have a metapage.
1060  */
1061 
1062  /* it has storage, ok to call the smgr */
1063  curpages = RelationGetNumberOfBlocks(rel);
1064 
1065  /* report estimated # pages */
1066  *pages = curpages;
1067  /* quick exit if rel is clearly empty */
1068  if (curpages == 0)
1069  {
1070  *tuples = 0;
1071  *allvisfrac = 0;
1072  return;
1073  }
1074 
1075  /* coerce values in pg_class to more desirable types */
1076  relpages = (BlockNumber) rel->rd_rel->relpages;
1077  reltuples = (double) rel->rd_rel->reltuples;
1078  relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1079 
1080  /*
1081  * Discount the metapage while estimating the number of tuples. This
1082  * is a kluge because it assumes more than it ought to about index
1083  * structure. Currently it's OK for btree, hash, and GIN indexes but
1084  * suspect for GiST indexes.
1085  */
1086  if (relpages > 0)
1087  {
1088  curpages--;
1089  relpages--;
1090  }
1091 
1092  /* estimate number of tuples from previous tuple density */
1093  if (reltuples >= 0 && relpages > 0)
1094  density = reltuples / (double) relpages;
1095  else
1096  {
1097  /*
1098  * If we have no data because the relation was never vacuumed,
1099  * estimate tuple width from attribute datatypes. We assume here
1100  * that the pages are completely full, which is OK for tables
1101  * (since they've presumably not been VACUUMed yet) but is
1102  * probably an overestimate for indexes. Fortunately
1103  * get_relation_info() can clamp the overestimate to the parent
1104  * table's size.
1105  *
1106  * Note: this code intentionally disregards alignment
1107  * considerations, because (a) that would be gilding the lily
1108  * considering how crude the estimate is, and (b) it creates
1109  * platform dependencies in the default plans which are kind of a
1110  * headache for regression testing.
1111  *
1112  * XXX: Should this logic be more index specific?
1113  */
1114  int32 tuple_width;
1115 
1116  tuple_width = get_rel_data_width(rel, attr_widths);
1117  tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1118  tuple_width += sizeof(ItemIdData);
1119  /* note: integer division is intentional here */
1120  density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1121  }
1122  *tuples = rint(density * (double) curpages);
1123 
1124  /*
1125  * We use relallvisible as-is, rather than scaling it up like we do
1126  * for the pages and tuples counts, on the theory that any pages added
1127  * since the last VACUUM are most likely not marked all-visible. But
1128  * costsize.c wants it converted to a fraction.
1129  */
1130  if (relallvisible == 0 || curpages <= 0)
1131  *allvisfrac = 0;
1132  else if ((double) relallvisible >= curpages)
1133  *allvisfrac = 1;
1134  else
1135  *allvisfrac = (double) relallvisible / curpages;
1136  }
1137  else
1138  {
1139  /*
1140  * Just use whatever's in pg_class. This covers foreign tables,
1141  * sequences, and also relkinds without storage (shouldn't get here?);
1142  * see initializations in AddNewRelationTuple(). Note that FDW must
1143  * cope if reltuples is -1!
1144  */
1145  *pages = rel->rd_rel->relpages;
1146  *tuples = rel->rd_rel->reltuples;
1147  *allvisfrac = 0;
1148  }
1149 }
1150 
1151 
1152 /*
1153  * get_rel_data_width
1154  *
1155  * Estimate the average width of (the data part of) the relation's tuples.
1156  *
1157  * If attr_widths isn't NULL, it points to the zero-index entry of the
1158  * relation's attr_widths[] cache; use and update that cache as appropriate.
1159  *
1160  * Currently we ignore dropped columns. Ideally those should be included
1161  * in the result, but we haven't got any way to get info about them; and
1162  * since they might be mostly NULLs, treating them as zero-width is not
1163  * necessarily the wrong thing anyway.
1164  */
1165 int32
1167 {
1168  int64 tuple_width = 0;
1169  int i;
1170 
1171  for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1172  {
1173  Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1174  int32 item_width;
1175 
1176  if (att->attisdropped)
1177  continue;
1178 
1179  /* use previously cached data, if any */
1180  if (attr_widths != NULL && attr_widths[i] > 0)
1181  {
1182  tuple_width += attr_widths[i];
1183  continue;
1184  }
1185 
1186  /* This should match set_rel_width() in costsize.c */
1187  item_width = get_attavgwidth(RelationGetRelid(rel), i);
1188  if (item_width <= 0)
1189  {
1190  item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1191  Assert(item_width > 0);
1192  }
1193  if (attr_widths != NULL)
1194  attr_widths[i] = item_width;
1195  tuple_width += item_width;
1196  }
1197 
1198  return clamp_width_est(tuple_width);
1199 }
1200 
1201 /*
1202  * get_relation_data_width
1203  *
1204  * External API for get_rel_data_width: same behavior except we have to
1205  * open the relcache entry.
1206  */
1207 int32
1208 get_relation_data_width(Oid relid, int32 *attr_widths)
1209 {
1210  int32 result;
1211  Relation relation;
1212 
1213  /* As above, assume relation is already locked */
1214  relation = table_open(relid, NoLock);
1215 
1216  result = get_rel_data_width(relation, attr_widths);
1217 
1218  table_close(relation, NoLock);
1219 
1220  return result;
1221 }
1222 
1223 
1224 /*
1225  * get_relation_constraints
1226  *
1227  * Retrieve the applicable constraint expressions of the given relation.
1228  *
1229  * Returns a List (possibly empty) of constraint expressions. Each one
1230  * has been canonicalized, and its Vars are changed to have the varno
1231  * indicated by rel->relid. This allows the expressions to be easily
1232  * compared to expressions taken from WHERE.
1233  *
1234  * If include_noinherit is true, it's okay to include constraints that
1235  * are marked NO INHERIT.
1236  *
1237  * If include_notnull is true, "col IS NOT NULL" expressions are generated
1238  * and added to the result for each column that's marked attnotnull.
1239  *
1240  * If include_partition is true, and the relation is a partition,
1241  * also include the partitioning constraints.
1242  *
1243  * Note: at present this is invoked at most once per relation per planner
1244  * run, and in many cases it won't be invoked at all, so there seems no
1245  * point in caching the data in RelOptInfo.
1246  */
1247 static List *
1249  Oid relationObjectId, RelOptInfo *rel,
1250  bool include_noinherit,
1251  bool include_notnull,
1252  bool include_partition)
1253 {
1254  List *result = NIL;
1255  Index varno = rel->relid;
1256  Relation relation;
1257  TupleConstr *constr;
1258 
1259  /*
1260  * We assume the relation has already been safely locked.
1261  */
1262  relation = table_open(relationObjectId, NoLock);
1263 
1264  constr = relation->rd_att->constr;
1265  if (constr != NULL)
1266  {
1267  int num_check = constr->num_check;
1268  int i;
1269 
1270  for (i = 0; i < num_check; i++)
1271  {
1272  Node *cexpr;
1273 
1274  /*
1275  * If this constraint hasn't been fully validated yet, we must
1276  * ignore it here. Also ignore if NO INHERIT and we weren't told
1277  * that that's safe.
1278  */
1279  if (!constr->check[i].ccvalid)
1280  continue;
1281  if (constr->check[i].ccnoinherit && !include_noinherit)
1282  continue;
1283 
1284  cexpr = stringToNode(constr->check[i].ccbin);
1285 
1286  /*
1287  * Run each expression through const-simplification and
1288  * canonicalization. This is not just an optimization, but is
1289  * necessary, because we will be comparing it to
1290  * similarly-processed qual clauses, and may fail to detect valid
1291  * matches without this. This must match the processing done to
1292  * qual clauses in preprocess_expression()! (We can skip the
1293  * stuff involving subqueries, however, since we don't allow any
1294  * in check constraints.)
1295  */
1296  cexpr = eval_const_expressions(root, cexpr);
1297 
1298  cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1299 
1300  /* Fix Vars to have the desired varno */
1301  if (varno != 1)
1302  ChangeVarNodes(cexpr, 1, varno, 0);
1303 
1304  /*
1305  * Finally, convert to implicit-AND format (that is, a List) and
1306  * append the resulting item(s) to our output list.
1307  */
1308  result = list_concat(result,
1309  make_ands_implicit((Expr *) cexpr));
1310  }
1311 
1312  /* Add NOT NULL constraints in expression form, if requested */
1313  if (include_notnull && constr->has_not_null)
1314  {
1315  int natts = relation->rd_att->natts;
1316 
1317  for (i = 1; i <= natts; i++)
1318  {
1319  Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1320 
1321  if (att->attnotnull && !att->attisdropped)
1322  {
1323  NullTest *ntest = makeNode(NullTest);
1324 
1325  ntest->arg = (Expr *) makeVar(varno,
1326  i,
1327  att->atttypid,
1328  att->atttypmod,
1329  att->attcollation,
1330  0);
1331  ntest->nulltesttype = IS_NOT_NULL;
1332 
1333  /*
1334  * argisrow=false is correct even for a composite column,
1335  * because attnotnull does not represent a SQL-spec IS NOT
1336  * NULL test in such a case, just IS DISTINCT FROM NULL.
1337  */
1338  ntest->argisrow = false;
1339  ntest->location = -1;
1340  result = lappend(result, ntest);
1341  }
1342  }
1343  }
1344  }
1345 
1346  /*
1347  * Add partitioning constraints, if requested.
1348  */
1349  if (include_partition && relation->rd_rel->relispartition)
1350  {
1351  /* make sure rel->partition_qual is set */
1352  set_baserel_partition_constraint(relation, rel);
1353  result = list_concat(result, rel->partition_qual);
1354  }
1355 
1356  table_close(relation, NoLock);
1357 
1358  return result;
1359 }
1360 
1361 /*
1362  * Try loading data for the statistics object.
1363  *
1364  * We don't know if the data (specified by statOid and inh value) exist.
1365  * The result is stored in stainfos list.
1366  */
1367 static void
1369  Oid statOid, bool inh,
1370  Bitmapset *keys, List *exprs)
1371 {
1372  Form_pg_statistic_ext_data dataForm;
1373  HeapTuple dtup;
1374 
1375  dtup = SearchSysCache2(STATEXTDATASTXOID,
1376  ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1377  if (!HeapTupleIsValid(dtup))
1378  return;
1379 
1380  dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1381 
1382  /* add one StatisticExtInfo for each kind built */
1383  if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1384  {
1386 
1387  info->statOid = statOid;
1388  info->inherit = dataForm->stxdinherit;
1389  info->rel = rel;
1390  info->kind = STATS_EXT_NDISTINCT;
1391  info->keys = bms_copy(keys);
1392  info->exprs = exprs;
1393 
1394  *stainfos = lappend(*stainfos, info);
1395  }
1396 
1397  if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1398  {
1400 
1401  info->statOid = statOid;
1402  info->inherit = dataForm->stxdinherit;
1403  info->rel = rel;
1404  info->kind = STATS_EXT_DEPENDENCIES;
1405  info->keys = bms_copy(keys);
1406  info->exprs = exprs;
1407 
1408  *stainfos = lappend(*stainfos, info);
1409  }
1410 
1411  if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1412  {
1414 
1415  info->statOid = statOid;
1416  info->inherit = dataForm->stxdinherit;
1417  info->rel = rel;
1418  info->kind = STATS_EXT_MCV;
1419  info->keys = bms_copy(keys);
1420  info->exprs = exprs;
1421 
1422  *stainfos = lappend(*stainfos, info);
1423  }
1424 
1425  if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1426  {
1428 
1429  info->statOid = statOid;
1430  info->inherit = dataForm->stxdinherit;
1431  info->rel = rel;
1432  info->kind = STATS_EXT_EXPRESSIONS;
1433  info->keys = bms_copy(keys);
1434  info->exprs = exprs;
1435 
1436  *stainfos = lappend(*stainfos, info);
1437  }
1438 
1439  ReleaseSysCache(dtup);
1440 }
1441 
1442 /*
1443  * get_relation_statistics
1444  * Retrieve extended statistics defined on the table.
1445  *
1446  * Returns a List (possibly empty) of StatisticExtInfo objects describing
1447  * the statistics. Note that this doesn't load the actual statistics data,
1448  * just the identifying metadata. Only stats actually built are considered.
1449  */
1450 static List *
1452 {
1453  Index varno = rel->relid;
1454  List *statoidlist;
1455  List *stainfos = NIL;
1456  ListCell *l;
1457 
1458  statoidlist = RelationGetStatExtList(relation);
1459 
1460  foreach(l, statoidlist)
1461  {
1462  Oid statOid = lfirst_oid(l);
1463  Form_pg_statistic_ext staForm;
1464  HeapTuple htup;
1465  Bitmapset *keys = NULL;
1466  List *exprs = NIL;
1467  int i;
1468 
1469  htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1470  if (!HeapTupleIsValid(htup))
1471  elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1472  staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1473 
1474  /*
1475  * First, build the array of columns covered. This is ultimately
1476  * wasted if no stats within the object have actually been built, but
1477  * it doesn't seem worth troubling over that case.
1478  */
1479  for (i = 0; i < staForm->stxkeys.dim1; i++)
1480  keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1481 
1482  /*
1483  * Preprocess expressions (if any). We read the expressions, run them
1484  * through eval_const_expressions, and fix the varnos.
1485  *
1486  * XXX We don't know yet if there are any data for this stats object,
1487  * with either stxdinherit value. But it's reasonable to assume there
1488  * is at least one of those, possibly both. So it's better to process
1489  * keys and expressions here.
1490  */
1491  {
1492  bool isnull;
1493  Datum datum;
1494 
1495  /* decode expression (if any) */
1496  datum = SysCacheGetAttr(STATEXTOID, htup,
1497  Anum_pg_statistic_ext_stxexprs, &isnull);
1498 
1499  if (!isnull)
1500  {
1501  char *exprsString;
1502 
1503  exprsString = TextDatumGetCString(datum);
1504  exprs = (List *) stringToNode(exprsString);
1505  pfree(exprsString);
1506 
1507  /*
1508  * Run the expressions through eval_const_expressions. This is
1509  * not just an optimization, but is necessary, because the
1510  * planner will be comparing them to similarly-processed qual
1511  * clauses, and may fail to detect valid matches without this.
1512  * We must not use canonicalize_qual, however, since these
1513  * aren't qual expressions.
1514  */
1515  exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1516 
1517  /* May as well fix opfuncids too */
1518  fix_opfuncids((Node *) exprs);
1519 
1520  /*
1521  * Modify the copies we obtain from the relcache to have the
1522  * correct varno for the parent relation, so that they match
1523  * up correctly against qual clauses.
1524  */
1525  if (varno != 1)
1526  ChangeVarNodes((Node *) exprs, 1, varno, 0);
1527  }
1528  }
1529 
1530  /* extract statistics for possible values of stxdinherit flag */
1531 
1532  get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1533 
1534  get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1535 
1536  ReleaseSysCache(htup);
1537  bms_free(keys);
1538  }
1539 
1540  list_free(statoidlist);
1541 
1542  return stainfos;
1543 }
1544 
1545 /*
1546  * relation_excluded_by_constraints
1547  *
1548  * Detect whether the relation need not be scanned because it has either
1549  * self-inconsistent restrictions, or restrictions inconsistent with the
1550  * relation's applicable constraints.
1551  *
1552  * Note: this examines only rel->relid, rel->reloptkind, and
1553  * rel->baserestrictinfo; therefore it can be called before filling in
1554  * other fields of the RelOptInfo.
1555  */
1556 bool
1558  RelOptInfo *rel, RangeTblEntry *rte)
1559 {
1560  bool include_noinherit;
1561  bool include_notnull;
1562  bool include_partition = false;
1563  List *safe_restrictions;
1564  List *constraint_pred;
1565  List *safe_constraints;
1566  ListCell *lc;
1567 
1568  /* As of now, constraint exclusion works only with simple relations. */
1569  Assert(IS_SIMPLE_REL(rel));
1570 
1571  /*
1572  * If there are no base restriction clauses, we have no hope of proving
1573  * anything below, so fall out quickly.
1574  */
1575  if (rel->baserestrictinfo == NIL)
1576  return false;
1577 
1578  /*
1579  * Regardless of the setting of constraint_exclusion, detect
1580  * constant-FALSE-or-NULL restriction clauses. Although const-folding
1581  * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1582  * list can still have other members besides the FALSE constant, due to
1583  * qual pushdown and other mechanisms; so check them all. This doesn't
1584  * fire very often, but it seems cheap enough to be worth doing anyway.
1585  * (Without this, we'd miss some optimizations that 9.5 and earlier found
1586  * via much more roundabout methods.)
1587  */
1588  foreach(lc, rel->baserestrictinfo)
1589  {
1590  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1591  Expr *clause = rinfo->clause;
1592 
1593  if (clause && IsA(clause, Const) &&
1594  (((Const *) clause)->constisnull ||
1595  !DatumGetBool(((Const *) clause)->constvalue)))
1596  return true;
1597  }
1598 
1599  /*
1600  * Skip further tests, depending on constraint_exclusion.
1601  */
1602  switch (constraint_exclusion)
1603  {
1605  /* In 'off' mode, never make any further tests */
1606  return false;
1607 
1609 
1610  /*
1611  * When constraint_exclusion is set to 'partition' we only handle
1612  * appendrel members. Partition pruning has already been applied,
1613  * so there is no need to consider the rel's partition constraints
1614  * here.
1615  */
1616  if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1617  break; /* appendrel member, so process it */
1618  return false;
1619 
1621 
1622  /*
1623  * In 'on' mode, always apply constraint exclusion. If we are
1624  * considering a baserel that is a partition (i.e., it was
1625  * directly named rather than expanded from a parent table), then
1626  * its partition constraints haven't been considered yet, so
1627  * include them in the processing here.
1628  */
1629  if (rel->reloptkind == RELOPT_BASEREL)
1630  include_partition = true;
1631  break; /* always try to exclude */
1632  }
1633 
1634  /*
1635  * Check for self-contradictory restriction clauses. We dare not make
1636  * deductions with non-immutable functions, but any immutable clauses that
1637  * are self-contradictory allow us to conclude the scan is unnecessary.
1638  *
1639  * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1640  * expecting to see any in its predicate argument.
1641  */
1642  safe_restrictions = NIL;
1643  foreach(lc, rel->baserestrictinfo)
1644  {
1645  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1646 
1647  if (!contain_mutable_functions((Node *) rinfo->clause))
1648  safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1649  }
1650 
1651  /*
1652  * We can use weak refutation here, since we're comparing restriction
1653  * clauses with restriction clauses.
1654  */
1655  if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1656  return true;
1657 
1658  /*
1659  * Only plain relations have constraints, so stop here for other rtekinds.
1660  */
1661  if (rte->rtekind != RTE_RELATION)
1662  return false;
1663 
1664  /*
1665  * If we are scanning just this table, we can use NO INHERIT constraints,
1666  * but not if we're scanning its children too. (Note that partitioned
1667  * tables should never have NO INHERIT constraints; but it's not necessary
1668  * for us to assume that here.)
1669  */
1670  include_noinherit = !rte->inh;
1671 
1672  /*
1673  * Currently, attnotnull constraints must be treated as NO INHERIT unless
1674  * this is a partitioned table. In future we might track their
1675  * inheritance status more accurately, allowing this to be refined.
1676  *
1677  * XXX do we need/want to change this?
1678  */
1679  include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1680 
1681  /*
1682  * Fetch the appropriate set of constraint expressions.
1683  */
1684  constraint_pred = get_relation_constraints(root, rte->relid, rel,
1685  include_noinherit,
1686  include_notnull,
1687  include_partition);
1688 
1689  /*
1690  * We do not currently enforce that CHECK constraints contain only
1691  * immutable functions, so it's necessary to check here. We daren't draw
1692  * conclusions from plan-time evaluation of non-immutable functions. Since
1693  * they're ANDed, we can just ignore any mutable constraints in the list,
1694  * and reason about the rest.
1695  */
1696  safe_constraints = NIL;
1697  foreach(lc, constraint_pred)
1698  {
1699  Node *pred = (Node *) lfirst(lc);
1700 
1701  if (!contain_mutable_functions(pred))
1702  safe_constraints = lappend(safe_constraints, pred);
1703  }
1704 
1705  /*
1706  * The constraints are effectively ANDed together, so we can just try to
1707  * refute the entire collection at once. This may allow us to make proofs
1708  * that would fail if we took them individually.
1709  *
1710  * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1711  * an obvious optimization. Some of the clauses might be OR clauses that
1712  * have volatile and nonvolatile subclauses, and it's OK to make
1713  * deductions with the nonvolatile parts.
1714  *
1715  * We need strong refutation because we have to prove that the constraints
1716  * would yield false, not just NULL.
1717  */
1718  if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1719  return true;
1720 
1721  return false;
1722 }
1723 
1724 
1725 /*
1726  * build_physical_tlist
1727  *
1728  * Build a targetlist consisting of exactly the relation's user attributes,
1729  * in order. The executor can special-case such tlists to avoid a projection
1730  * step at runtime, so we use such tlists preferentially for scan nodes.
1731  *
1732  * Exception: if there are any dropped or missing columns, we punt and return
1733  * NIL. Ideally we would like to handle these cases too. However this
1734  * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1735  * for a tlist that includes vars of no-longer-existent types. In theory we
1736  * could dig out the required info from the pg_attribute entries of the
1737  * relation, but that data is not readily available to ExecTypeFromTL.
1738  * For now, we don't apply the physical-tlist optimization when there are
1739  * dropped cols.
1740  *
1741  * We also support building a "physical" tlist for subqueries, functions,
1742  * values lists, table expressions, and CTEs, since the same optimization can
1743  * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1744  * NamedTuplestoreScan, and WorkTableScan nodes.
1745  */
1746 List *
1748 {
1749  List *tlist = NIL;
1750  Index varno = rel->relid;
1751  RangeTblEntry *rte = planner_rt_fetch(varno, root);
1752  Relation relation;
1753  Query *subquery;
1754  Var *var;
1755  ListCell *l;
1756  int attrno,
1757  numattrs;
1758  List *colvars;
1759 
1760  switch (rte->rtekind)
1761  {
1762  case RTE_RELATION:
1763  /* Assume we already have adequate lock */
1764  relation = table_open(rte->relid, NoLock);
1765 
1766  numattrs = RelationGetNumberOfAttributes(relation);
1767  for (attrno = 1; attrno <= numattrs; attrno++)
1768  {
1769  Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1770  attrno - 1);
1771 
1772  if (att_tup->attisdropped || att_tup->atthasmissing)
1773  {
1774  /* found a dropped or missing col, so punt */
1775  tlist = NIL;
1776  break;
1777  }
1778 
1779  var = makeVar(varno,
1780  attrno,
1781  att_tup->atttypid,
1782  att_tup->atttypmod,
1783  att_tup->attcollation,
1784  0);
1785 
1786  tlist = lappend(tlist,
1787  makeTargetEntry((Expr *) var,
1788  attrno,
1789  NULL,
1790  false));
1791  }
1792 
1793  table_close(relation, NoLock);
1794  break;
1795 
1796  case RTE_SUBQUERY:
1797  subquery = rte->subquery;
1798  foreach(l, subquery->targetList)
1799  {
1800  TargetEntry *tle = (TargetEntry *) lfirst(l);
1801 
1802  /*
1803  * A resjunk column of the subquery can be reflected as
1804  * resjunk in the physical tlist; we need not punt.
1805  */
1806  var = makeVarFromTargetEntry(varno, tle);
1807 
1808  tlist = lappend(tlist,
1809  makeTargetEntry((Expr *) var,
1810  tle->resno,
1811  NULL,
1812  tle->resjunk));
1813  }
1814  break;
1815 
1816  case RTE_FUNCTION:
1817  case RTE_TABLEFUNC:
1818  case RTE_VALUES:
1819  case RTE_CTE:
1820  case RTE_NAMEDTUPLESTORE:
1821  case RTE_RESULT:
1822  /* Not all of these can have dropped cols, but share code anyway */
1823  expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
1824  NULL, &colvars);
1825  foreach(l, colvars)
1826  {
1827  var = (Var *) lfirst(l);
1828 
1829  /*
1830  * A non-Var in expandRTE's output means a dropped column;
1831  * must punt.
1832  */
1833  if (!IsA(var, Var))
1834  {
1835  tlist = NIL;
1836  break;
1837  }
1838 
1839  tlist = lappend(tlist,
1840  makeTargetEntry((Expr *) var,
1841  var->varattno,
1842  NULL,
1843  false));
1844  }
1845  break;
1846 
1847  default:
1848  /* caller error */
1849  elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1850  (int) rte->rtekind);
1851  break;
1852  }
1853 
1854  return tlist;
1855 }
1856 
1857 /*
1858  * build_index_tlist
1859  *
1860  * Build a targetlist representing the columns of the specified index.
1861  * Each column is represented by a Var for the corresponding base-relation
1862  * column, or an expression in base-relation Vars, as appropriate.
1863  *
1864  * There are never any dropped columns in indexes, so unlike
1865  * build_physical_tlist, we need no failure case.
1866  */
1867 static List *
1869  Relation heapRelation)
1870 {
1871  List *tlist = NIL;
1872  Index varno = index->rel->relid;
1873  ListCell *indexpr_item;
1874  int i;
1875 
1876  indexpr_item = list_head(index->indexprs);
1877  for (i = 0; i < index->ncolumns; i++)
1878  {
1879  int indexkey = index->indexkeys[i];
1880  Expr *indexvar;
1881 
1882  if (indexkey != 0)
1883  {
1884  /* simple column */
1885  const FormData_pg_attribute *att_tup;
1886 
1887  if (indexkey < 0)
1888  att_tup = SystemAttributeDefinition(indexkey);
1889  else
1890  att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1891 
1892  indexvar = (Expr *) makeVar(varno,
1893  indexkey,
1894  att_tup->atttypid,
1895  att_tup->atttypmod,
1896  att_tup->attcollation,
1897  0);
1898  }
1899  else
1900  {
1901  /* expression column */
1902  if (indexpr_item == NULL)
1903  elog(ERROR, "wrong number of index expressions");
1904  indexvar = (Expr *) lfirst(indexpr_item);
1905  indexpr_item = lnext(index->indexprs, indexpr_item);
1906  }
1907 
1908  tlist = lappend(tlist,
1909  makeTargetEntry(indexvar,
1910  i + 1,
1911  NULL,
1912  false));
1913  }
1914  if (indexpr_item != NULL)
1915  elog(ERROR, "wrong number of index expressions");
1916 
1917  return tlist;
1918 }
1919 
1920 /*
1921  * restriction_selectivity
1922  *
1923  * Returns the selectivity of a specified restriction operator clause.
1924  * This code executes registered procedures stored in the
1925  * operator relation, by calling the function manager.
1926  *
1927  * See clause_selectivity() for the meaning of the additional parameters.
1928  */
1931  Oid operatorid,
1932  List *args,
1933  Oid inputcollid,
1934  int varRelid)
1935 {
1936  RegProcedure oprrest = get_oprrest(operatorid);
1937  float8 result;
1938 
1939  /*
1940  * if the oprrest procedure is missing for whatever reason, use a
1941  * selectivity of 0.5
1942  */
1943  if (!oprrest)
1944  return (Selectivity) 0.5;
1945 
1946  result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1947  inputcollid,
1949  ObjectIdGetDatum(operatorid),
1951  Int32GetDatum(varRelid)));
1952 
1953  if (result < 0.0 || result > 1.0)
1954  elog(ERROR, "invalid restriction selectivity: %f", result);
1955 
1956  return (Selectivity) result;
1957 }
1958 
1959 /*
1960  * join_selectivity
1961  *
1962  * Returns the selectivity of a specified join operator clause.
1963  * This code executes registered procedures stored in the
1964  * operator relation, by calling the function manager.
1965  *
1966  * See clause_selectivity() for the meaning of the additional parameters.
1967  */
1970  Oid operatorid,
1971  List *args,
1972  Oid inputcollid,
1973  JoinType jointype,
1974  SpecialJoinInfo *sjinfo)
1975 {
1976  RegProcedure oprjoin = get_oprjoin(operatorid);
1977  float8 result;
1978 
1979  /*
1980  * if the oprjoin procedure is missing for whatever reason, use a
1981  * selectivity of 0.5
1982  */
1983  if (!oprjoin)
1984  return (Selectivity) 0.5;
1985 
1986  result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
1987  inputcollid,
1989  ObjectIdGetDatum(operatorid),
1991  Int16GetDatum(jointype),
1992  PointerGetDatum(sjinfo)));
1993 
1994  if (result < 0.0 || result > 1.0)
1995  elog(ERROR, "invalid join selectivity: %f", result);
1996 
1997  return (Selectivity) result;
1998 }
1999 
2000 /*
2001  * function_selectivity
2002  *
2003  * Returns the selectivity of a specified boolean function clause.
2004  * This code executes registered procedures stored in the
2005  * pg_proc relation, by calling the function manager.
2006  *
2007  * See clause_selectivity() for the meaning of the additional parameters.
2008  */
2011  Oid funcid,
2012  List *args,
2013  Oid inputcollid,
2014  bool is_join,
2015  int varRelid,
2016  JoinType jointype,
2017  SpecialJoinInfo *sjinfo)
2018 {
2019  RegProcedure prosupport = get_func_support(funcid);
2021  SupportRequestSelectivity *sresult;
2022 
2023  /*
2024  * If no support function is provided, use our historical default
2025  * estimate, 0.3333333. This seems a pretty unprincipled choice, but
2026  * Postgres has been using that estimate for function calls since 1992.
2027  * The hoariness of this behavior suggests that we should not be in too
2028  * much hurry to use another value.
2029  */
2030  if (!prosupport)
2031  return (Selectivity) 0.3333333;
2032 
2033  req.type = T_SupportRequestSelectivity;
2034  req.root = root;
2035  req.funcid = funcid;
2036  req.args = args;
2037  req.inputcollid = inputcollid;
2038  req.is_join = is_join;
2039  req.varRelid = varRelid;
2040  req.jointype = jointype;
2041  req.sjinfo = sjinfo;
2042  req.selectivity = -1; /* to catch failure to set the value */
2043 
2044  sresult = (SupportRequestSelectivity *)
2045  DatumGetPointer(OidFunctionCall1(prosupport,
2046  PointerGetDatum(&req)));
2047 
2048  /* If support function fails, use default */
2049  if (sresult != &req)
2050  return (Selectivity) 0.3333333;
2051 
2052  if (req.selectivity < 0.0 || req.selectivity > 1.0)
2053  elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2054 
2055  return (Selectivity) req.selectivity;
2056 }
2057 
2058 /*
2059  * add_function_cost
2060  *
2061  * Get an estimate of the execution cost of a function, and *add* it to
2062  * the contents of *cost. The estimate may include both one-time and
2063  * per-tuple components, since QualCost does.
2064  *
2065  * The funcid must always be supplied. If it is being called as the
2066  * implementation of a specific parsetree node (FuncExpr, OpExpr,
2067  * WindowFunc, etc), pass that as "node", else pass NULL.
2068  *
2069  * In some usages root might be NULL, too.
2070  */
2071 void
2073  QualCost *cost)
2074 {
2075  HeapTuple proctup;
2076  Form_pg_proc procform;
2077 
2078  proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2079  if (!HeapTupleIsValid(proctup))
2080  elog(ERROR, "cache lookup failed for function %u", funcid);
2081  procform = (Form_pg_proc) GETSTRUCT(proctup);
2082 
2083  if (OidIsValid(procform->prosupport))
2084  {
2085  SupportRequestCost req;
2086  SupportRequestCost *sresult;
2087 
2088  req.type = T_SupportRequestCost;
2089  req.root = root;
2090  req.funcid = funcid;
2091  req.node = node;
2092 
2093  /* Initialize cost fields so that support function doesn't have to */
2094  req.startup = 0;
2095  req.per_tuple = 0;
2096 
2097  sresult = (SupportRequestCost *)
2098  DatumGetPointer(OidFunctionCall1(procform->prosupport,
2099  PointerGetDatum(&req)));
2100 
2101  if (sresult == &req)
2102  {
2103  /* Success, so accumulate support function's estimate into *cost */
2104  cost->startup += req.startup;
2105  cost->per_tuple += req.per_tuple;
2106  ReleaseSysCache(proctup);
2107  return;
2108  }
2109  }
2110 
2111  /* No support function, or it failed, so rely on procost */
2112  cost->per_tuple += procform->procost * cpu_operator_cost;
2113 
2114  ReleaseSysCache(proctup);
2115 }
2116 
2117 /*
2118  * get_function_rows
2119  *
2120  * Get an estimate of the number of rows returned by a set-returning function.
2121  *
2122  * The funcid must always be supplied. In current usage, the calling node
2123  * will always be supplied, and will be either a FuncExpr or OpExpr.
2124  * But it's a good idea to not fail if it's NULL.
2125  *
2126  * In some usages root might be NULL, too.
2127  *
2128  * Note: this returns the unfiltered result of the support function, if any.
2129  * It's usually a good idea to apply clamp_row_est() to the result, but we
2130  * leave it to the caller to do so.
2131  */
2132 double
2134 {
2135  HeapTuple proctup;
2136  Form_pg_proc procform;
2137  double result;
2138 
2139  proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2140  if (!HeapTupleIsValid(proctup))
2141  elog(ERROR, "cache lookup failed for function %u", funcid);
2142  procform = (Form_pg_proc) GETSTRUCT(proctup);
2143 
2144  Assert(procform->proretset); /* else caller error */
2145 
2146  if (OidIsValid(procform->prosupport))
2147  {
2148  SupportRequestRows req;
2149  SupportRequestRows *sresult;
2150 
2151  req.type = T_SupportRequestRows;
2152  req.root = root;
2153  req.funcid = funcid;
2154  req.node = node;
2155 
2156  req.rows = 0; /* just for sanity */
2157 
2158  sresult = (SupportRequestRows *)
2159  DatumGetPointer(OidFunctionCall1(procform->prosupport,
2160  PointerGetDatum(&req)));
2161 
2162  if (sresult == &req)
2163  {
2164  /* Success */
2165  ReleaseSysCache(proctup);
2166  return req.rows;
2167  }
2168  }
2169 
2170  /* No support function, or it failed, so rely on prorows */
2171  result = procform->prorows;
2172 
2173  ReleaseSysCache(proctup);
2174 
2175  return result;
2176 }
2177 
2178 /*
2179  * has_unique_index
2180  *
2181  * Detect whether there is a unique index on the specified attribute
2182  * of the specified relation, thus allowing us to conclude that all
2183  * the (non-null) values of the attribute are distinct.
2184  *
2185  * This function does not check the index's indimmediate property, which
2186  * means that uniqueness may transiently fail to hold intra-transaction.
2187  * That's appropriate when we are making statistical estimates, but beware
2188  * of using this for any correctness proofs.
2189  */
2190 bool
2192 {
2193  ListCell *ilist;
2194 
2195  foreach(ilist, rel->indexlist)
2196  {
2197  IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2198 
2199  /*
2200  * Note: ignore partial indexes, since they don't allow us to conclude
2201  * that all attr values are distinct, *unless* they are marked predOK
2202  * which means we know the index's predicate is satisfied by the
2203  * query. We don't take any interest in expressional indexes either.
2204  * Also, a multicolumn unique index doesn't allow us to conclude that
2205  * just the specified attr is unique.
2206  */
2207  if (index->unique &&
2208  index->nkeycolumns == 1 &&
2209  index->indexkeys[0] == attno &&
2210  (index->indpred == NIL || index->predOK))
2211  return true;
2212  }
2213  return false;
2214 }
2215 
2216 
2217 /*
2218  * has_row_triggers
2219  *
2220  * Detect whether the specified relation has any row-level triggers for event.
2221  */
2222 bool
2224 {
2225  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2226  Relation relation;
2227  TriggerDesc *trigDesc;
2228  bool result = false;
2229 
2230  /* Assume we already have adequate lock */
2231  relation = table_open(rte->relid, NoLock);
2232 
2233  trigDesc = relation->trigdesc;
2234  switch (event)
2235  {
2236  case CMD_INSERT:
2237  if (trigDesc &&
2238  (trigDesc->trig_insert_after_row ||
2239  trigDesc->trig_insert_before_row))
2240  result = true;
2241  break;
2242  case CMD_UPDATE:
2243  if (trigDesc &&
2244  (trigDesc->trig_update_after_row ||
2245  trigDesc->trig_update_before_row))
2246  result = true;
2247  break;
2248  case CMD_DELETE:
2249  if (trigDesc &&
2250  (trigDesc->trig_delete_after_row ||
2251  trigDesc->trig_delete_before_row))
2252  result = true;
2253  break;
2254  /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2255  case CMD_MERGE:
2256  result = false;
2257  break;
2258  default:
2259  elog(ERROR, "unrecognized CmdType: %d", (int) event);
2260  break;
2261  }
2262 
2263  table_close(relation, NoLock);
2264  return result;
2265 }
2266 
2267 /*
2268  * has_stored_generated_columns
2269  *
2270  * Does table identified by RTI have any STORED GENERATED columns?
2271  */
2272 bool
2274 {
2275  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2276  Relation relation;
2277  TupleDesc tupdesc;
2278  bool result = false;
2279 
2280  /* Assume we already have adequate lock */
2281  relation = table_open(rte->relid, NoLock);
2282 
2283  tupdesc = RelationGetDescr(relation);
2284  result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2285 
2286  table_close(relation, NoLock);
2287 
2288  return result;
2289 }
2290 
2291 /*
2292  * get_dependent_generated_columns
2293  *
2294  * Get the column numbers of any STORED GENERATED columns of the relation
2295  * that depend on any column listed in target_cols. Both the input and
2296  * result bitmapsets contain column numbers offset by
2297  * FirstLowInvalidHeapAttributeNumber.
2298  */
2299 Bitmapset *
2301  Bitmapset *target_cols)
2302 {
2303  Bitmapset *dependentCols = NULL;
2304  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2305  Relation relation;
2306  TupleDesc tupdesc;
2307  TupleConstr *constr;
2308 
2309  /* Assume we already have adequate lock */
2310  relation = table_open(rte->relid, NoLock);
2311 
2312  tupdesc = RelationGetDescr(relation);
2313  constr = tupdesc->constr;
2314 
2315  if (constr && constr->has_generated_stored)
2316  {
2317  for (int i = 0; i < constr->num_defval; i++)
2318  {
2319  AttrDefault *defval = &constr->defval[i];
2320  Node *expr;
2321  Bitmapset *attrs_used = NULL;
2322 
2323  /* skip if not generated column */
2324  if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2325  continue;
2326 
2327  /* identify columns this generated column depends on */
2328  expr = stringToNode(defval->adbin);
2329  pull_varattnos(expr, 1, &attrs_used);
2330 
2331  if (bms_overlap(target_cols, attrs_used))
2332  dependentCols = bms_add_member(dependentCols,
2334  }
2335  }
2336 
2337  table_close(relation, NoLock);
2338 
2339  return dependentCols;
2340 }
2341 
2342 /*
2343  * set_relation_partition_info
2344  *
2345  * Set partitioning scheme and related information for a partitioned table.
2346  */
2347 static void
2349  Relation relation)
2350 {
2351  PartitionDesc partdesc;
2352 
2353  /*
2354  * Create the PartitionDirectory infrastructure if we didn't already.
2355  */
2356  if (root->glob->partition_directory == NULL)
2357  {
2358  root->glob->partition_directory =
2360  }
2361 
2362  partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2363  relation);
2364  rel->part_scheme = find_partition_scheme(root, relation);
2365  Assert(partdesc != NULL && rel->part_scheme != NULL);
2366  rel->boundinfo = partdesc->boundinfo;
2367  rel->nparts = partdesc->nparts;
2368  set_baserel_partition_key_exprs(relation, rel);
2369  set_baserel_partition_constraint(relation, rel);
2370 }
2371 
2372 /*
2373  * find_partition_scheme
2374  *
2375  * Find or create a PartitionScheme for this Relation.
2376  */
2377 static PartitionScheme
2379 {
2380  PartitionKey partkey = RelationGetPartitionKey(relation);
2381  ListCell *lc;
2382  int partnatts,
2383  i;
2384  PartitionScheme part_scheme;
2385 
2386  /* A partitioned table should have a partition key. */
2387  Assert(partkey != NULL);
2388 
2389  partnatts = partkey->partnatts;
2390 
2391  /* Search for a matching partition scheme and return if found one. */
2392  foreach(lc, root->part_schemes)
2393  {
2394  part_scheme = lfirst(lc);
2395 
2396  /* Match partitioning strategy and number of keys. */
2397  if (partkey->strategy != part_scheme->strategy ||
2398  partnatts != part_scheme->partnatts)
2399  continue;
2400 
2401  /* Match partition key type properties. */
2402  if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2403  sizeof(Oid) * partnatts) != 0 ||
2404  memcmp(partkey->partopcintype, part_scheme->partopcintype,
2405  sizeof(Oid) * partnatts) != 0 ||
2406  memcmp(partkey->partcollation, part_scheme->partcollation,
2407  sizeof(Oid) * partnatts) != 0)
2408  continue;
2409 
2410  /*
2411  * Length and byval information should match when partopcintype
2412  * matches.
2413  */
2414  Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2415  sizeof(int16) * partnatts) == 0);
2416  Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2417  sizeof(bool) * partnatts) == 0);
2418 
2419  /*
2420  * If partopfamily and partopcintype matched, must have the same
2421  * partition comparison functions. Note that we cannot reliably
2422  * Assert the equality of function structs themselves for they might
2423  * be different across PartitionKey's, so just Assert for the function
2424  * OIDs.
2425  */
2426 #ifdef USE_ASSERT_CHECKING
2427  for (i = 0; i < partkey->partnatts; i++)
2428  Assert(partkey->partsupfunc[i].fn_oid ==
2429  part_scheme->partsupfunc[i].fn_oid);
2430 #endif
2431 
2432  /* Found matching partition scheme. */
2433  return part_scheme;
2434  }
2435 
2436  /*
2437  * Did not find matching partition scheme. Create one copying relevant
2438  * information from the relcache. We need to copy the contents of the
2439  * array since the relcache entry may not survive after we have closed the
2440  * relation.
2441  */
2442  part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2443  part_scheme->strategy = partkey->strategy;
2444  part_scheme->partnatts = partkey->partnatts;
2445 
2446  part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2447  memcpy(part_scheme->partopfamily, partkey->partopfamily,
2448  sizeof(Oid) * partnatts);
2449 
2450  part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2451  memcpy(part_scheme->partopcintype, partkey->partopcintype,
2452  sizeof(Oid) * partnatts);
2453 
2454  part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2455  memcpy(part_scheme->partcollation, partkey->partcollation,
2456  sizeof(Oid) * partnatts);
2457 
2458  part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2459  memcpy(part_scheme->parttyplen, partkey->parttyplen,
2460  sizeof(int16) * partnatts);
2461 
2462  part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2463  memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2464  sizeof(bool) * partnatts);
2465 
2466  part_scheme->partsupfunc = (FmgrInfo *)
2467  palloc(sizeof(FmgrInfo) * partnatts);
2468  for (i = 0; i < partnatts; i++)
2469  fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2471 
2472  /* Add the partitioning scheme to PlannerInfo. */
2473  root->part_schemes = lappend(root->part_schemes, part_scheme);
2474 
2475  return part_scheme;
2476 }
2477 
2478 /*
2479  * set_baserel_partition_key_exprs
2480  *
2481  * Builds partition key expressions for the given base relation and fills
2482  * rel->partexprs.
2483  */
2484 static void
2486  RelOptInfo *rel)
2487 {
2488  PartitionKey partkey = RelationGetPartitionKey(relation);
2489  int partnatts;
2490  int cnt;
2491  List **partexprs;
2492  ListCell *lc;
2493  Index varno = rel->relid;
2494 
2495  Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2496 
2497  /* A partitioned table should have a partition key. */
2498  Assert(partkey != NULL);
2499 
2500  partnatts = partkey->partnatts;
2501  partexprs = (List **) palloc(sizeof(List *) * partnatts);
2502  lc = list_head(partkey->partexprs);
2503 
2504  for (cnt = 0; cnt < partnatts; cnt++)
2505  {
2506  Expr *partexpr;
2507  AttrNumber attno = partkey->partattrs[cnt];
2508 
2509  if (attno != InvalidAttrNumber)
2510  {
2511  /* Single column partition key is stored as a Var node. */
2512  Assert(attno > 0);
2513 
2514  partexpr = (Expr *) makeVar(varno, attno,
2515  partkey->parttypid[cnt],
2516  partkey->parttypmod[cnt],
2517  partkey->parttypcoll[cnt], 0);
2518  }
2519  else
2520  {
2521  if (lc == NULL)
2522  elog(ERROR, "wrong number of partition key expressions");
2523 
2524  /* Re-stamp the expression with given varno. */
2525  partexpr = (Expr *) copyObject(lfirst(lc));
2526  ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2527  lc = lnext(partkey->partexprs, lc);
2528  }
2529 
2530  /* Base relations have a single expression per key. */
2531  partexprs[cnt] = list_make1(partexpr);
2532  }
2533 
2534  rel->partexprs = partexprs;
2535 
2536  /*
2537  * A base relation does not have nullable partition key expressions, since
2538  * no outer join is involved. We still allocate an array of empty
2539  * expression lists to keep partition key expression handling code simple.
2540  * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2541  */
2542  rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2543 }
2544 
2545 /*
2546  * set_baserel_partition_constraint
2547  *
2548  * Builds the partition constraint for the given base relation and sets it
2549  * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2550  * given relation.
2551  */
2552 static void
2554 {
2555  List *partconstr;
2556 
2557  if (rel->partition_qual) /* already done */
2558  return;
2559 
2560  /*
2561  * Run the partition quals through const-simplification similar to check
2562  * constraints. We skip canonicalize_qual, though, because partition
2563  * quals should be in canonical form already; also, since the qual is in
2564  * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2565  * format and back again.
2566  */
2567  partconstr = RelationGetPartitionQual(relation);
2568  if (partconstr)
2569  {
2570  partconstr = (List *) expression_planner((Expr *) partconstr);
2571  if (rel->relid != 1)
2572  ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2573  rel->partition_qual = partconstr;
2574  }
2575 }
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
uint32 BlockNumber
Definition: block.h:31
static int32 next
Definition: blutils.c:221
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:281
#define SizeOfPageHeaderData
Definition: bufpage.h:213
#define TextDatumGetCString(d)
Definition: builtins.h:98
signed short int16
Definition: c.h:493
#define MAXALIGN(LEN)
Definition: c.h:811
signed int int32
Definition: c.h:494
#define Assert(condition)
Definition: c.h:858
double float8
Definition: c.h:630
regproc RegProcedure
Definition: c.h:650
unsigned int Index
Definition: c.h:614
#define OidIsValid(objectId)
Definition: c.h:775
bool IsSystemRelation(Relation relation)
Definition: catalog.c:73
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:370
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2254
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39
double cpu_operator_cost
Definition: costsize.c:123
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:231
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1453
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1442
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:680
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:432
Oid GetForeignServerIdByRelId(Oid relid)
Definition: foreign.c:345
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition: heap.c:240
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
bool index_can_return(Relation indexRelation, int attno)
Definition: indexam.c:789
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
struct ItemIdData ItemIdData
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
void list_free(List *list)
Definition: list.c:1546
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
bool list_member(const List *list, const void *datum)
Definition: list.c:661
List * lcons(void *datum, List *list)
Definition: list.c:495
List * list_difference(const List *list1, const List *list2)
Definition: list.c:1237
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1557
Oid get_constraint_index(Oid conoid)
Definition: lsyscache.c:1113
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1212
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1190
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:1858
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3158
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1581
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:166
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, int16 *strategy)
Definition: lsyscache.c:207
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2578
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:105
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:737
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:240
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
void pfree(void *pointer)
Definition: mcxt.c:1520
void * palloc0(Size size)
Definition: mcxt.c:1346
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void * palloc(Size size)
Definition: mcxt.c:1316
bool IgnoreSystemIndexes
Definition: miscinit.c:80
int _bt_getrootheight(Relation rel)
Definition: nbtpage.c:675
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1837
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
@ ONCONFLICT_UPDATE
Definition: nodes.h:419
CmdType
Definition: nodes.h:263
@ CMD_MERGE
Definition: nodes.h:269
@ CMD_INSERT
Definition: nodes.h:267
@ CMD_DELETE
Definition: nodes.h:268
@ CMD_UPDATE
Definition: nodes.h:266
double Selectivity
Definition: nodes.h:250
#define makeNode(_type_)
Definition: nodes.h:155
JoinType
Definition: nodes.h:288
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
Definition: parsenodes.h:1034
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1035
@ RTE_VALUES
Definition: parsenodes.h:1033
@ RTE_SUBQUERY
Definition: parsenodes.h:1029
@ RTE_RESULT
Definition: parsenodes.h:1036
@ RTE_FUNCTION
Definition: parsenodes.h:1031
@ RTE_TABLEFUNC
Definition: parsenodes.h:1032
@ RTE_RELATION
Definition: parsenodes.h:1028
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition: partcache.c:277
PartitionKey RelationGetPartitionKey(Relation rel)
Definition: partcache.c:51
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition: partdesc.c:381
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition: partdesc.c:414
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:829
Bitmapset * Relids
Definition: pathnodes.h:30
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:560
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:594
@ RELOPT_BASEREL
Definition: pathnodes.h:817
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:819
#define AMFLAG_HAS_TID_RANGE
Definition: pathnodes.h:813
FormData_pg_attribute
Definition: pg_attribute.h:193
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
int errdetail_relkind_not_supported(char relkind)
Definition: pg_class.c:24
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define list_make1(x1)
Definition: pg_list.h:212
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1041
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition: plancat.c:2300
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1166
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition: plancat.c:2273
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition: plancat.c:578
int constraint_exclusion
Definition: plancat.c:56
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition: plancat.c:1557
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2133
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2223
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition: plancat.c:1248
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2072
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition: plancat.c:1747
get_relation_info_hook_type get_relation_info_hook
Definition: plancat.c:59
List * infer_arbiter_indexes(PlannerInfo *root)
Definition: plancat.c:693
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition: plancat.c:1368
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:1930
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1208
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2553
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition: plancat.c:1868
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition: plancat.c:959
static List * get_relation_statistics(RelOptInfo *rel, Relation relation)
Definition: plancat.c:1451
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:2348
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2191
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition: plancat.c:2378
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2485
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:1969
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2010
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:115
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.h:21
Expr * expression_planner(Expr *expr)
Definition: planner.c:6457
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:494
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
@ IS_NOT_NULL
Definition: primnodes.h:1921
tree ctl root
Definition: radixtree.h:1880
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:499
#define RelationGetRelid(relation)
Definition: rel.h:505
#define RelationGetParallelWorkers(relation, defaultpw)
Definition: rel.h:397
#define RelationGetDescr(relation)
Definition: rel.h:531
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:511
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RelationIsPermanent(relation)
Definition: rel.h:617
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4760
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5138
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4909
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4651
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5884
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5025
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:674
TransactionId TransactionXmin
Definition: snapmgr.c:98
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
bool ccnoinherit
Definition: tupdesc.h:33
bool ccvalid
Definition: tupdesc.h:32
char * ccbin
Definition: tupdesc.h:31
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1246
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1250
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1248
HeapTupleHeader t_data
Definition: htup.h:68
amrestrpos_function amrestrpos
Definition: amapi.h:285
amcostestimate_function amcostestimate
Definition: amapi.h:273
bool amcanorderbyop
Definition: amapi.h:225
bool amoptionalkey
Definition: amapi.h:233
amgettuple_function amgettuple
Definition: amapi.h:281
amgetbitmap_function amgetbitmap
Definition: amapi.h:282
bool amsearcharray
Definition: amapi.h:235
ammarkpos_function ammarkpos
Definition: amapi.h:284
bool amcanparallel
Definition: amapi.h:245
bool amcanorder
Definition: amapi.h:223
bool amsearchnulls
Definition: amapi.h:237
bool amcanparallel
Definition: pathnodes.h:1194
bool amoptionalkey
Definition: pathnodes.h:1187
Oid reltablespace
Definition: pathnodes.h:1109
bool amcanmarkpos
Definition: pathnodes.h:1196
List * indrestrictinfo
Definition: pathnodes.h:1171
void(* amcostestimate)() pg_node_attr(read_write_ignore)
Definition: pathnodes.h:1199
bool amhasgettuple
Definition: pathnodes.h:1191
bool amcanorderbyop
Definition: pathnodes.h:1186
bool hypothetical
Definition: pathnodes.h:1180
List * indpred
Definition: pathnodes.h:1161
Cardinality tuples
Definition: pathnodes.h:1119
bool amsearcharray
Definition: pathnodes.h:1188
BlockNumber pages
Definition: pathnodes.h:1117
bool amsearchnulls
Definition: pathnodes.h:1189
bool amhasgetbitmap
Definition: pathnodes.h:1193
List * indextlist
Definition: pathnodes.h:1164
bool immediate
Definition: pathnodes.h:1178
Definition: pg_list.h:54
Definition: nodes.h:129
NullTestType nulltesttype
Definition: primnodes.h:1928
ParseLoc location
Definition: primnodes.h:1931
Expr * arg
Definition: primnodes.h:1927
List * arbiterElems
Definition: primnodes.h:2294
OnConflictAction action
Definition: primnodes.h:2291
Node * arbiterWhere
Definition: primnodes.h:2296
PartitionBoundInfo boundinfo
Definition: partdesc.h:38
Oid * partcollation
Definition: partcache.h:39
Oid * parttypcoll
Definition: partcache.h:47
int32 * parttypmod
Definition: partcache.h:43
Oid * partopfamily
Definition: partcache.h:34
bool * parttypbyval
Definition: partcache.h:45
PartitionStrategy strategy
Definition: partcache.h:27
List * partexprs
Definition: partcache.h:31
int16 * parttyplen
Definition: partcache.h:44
FmgrInfo * partsupfunc
Definition: partcache.h:36
Oid * partopcintype
Definition: partcache.h:35
AttrNumber * partattrs
Definition: partcache.h:29
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:591
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * targetList
Definition: parsenodes.h:191
Query * subquery
Definition: parsenodes.h:1114
RTEKind rtekind
Definition: parsenodes.h:1057
List * baserestrictinfo
Definition: pathnodes.h:975
uint32 amflags
Definition: pathnodes.h:948
Bitmapset * notnullattnums
Definition: pathnodes.h:926
List * partition_qual
Definition: pathnodes.h:1017
Index relid
Definition: pathnodes.h:908
List * statlist
Definition: pathnodes.h:936
Cardinality tuples
Definition: pathnodes.h:939
BlockNumber pages
Definition: pathnodes.h:938
RelOptKind reloptkind
Definition: pathnodes.h:855
List * indexlist
Definition: pathnodes.h:934
Oid reltablespace
Definition: pathnodes.h:910
Oid serverid
Definition: pathnodes.h:954
int rel_parallel_workers
Definition: pathnodes.h:946
AttrNumber max_attr
Definition: pathnodes.h:916
double allvisfrac
Definition: pathnodes.h:940
AttrNumber min_attr
Definition: pathnodes.h:914
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
TriggerDesc * trigdesc
Definition: rel.h:117
Oid * rd_opcintype
Definition: rel.h:208
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
int16 * rd_indoption
Definition: rel.h:211
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Expr * clause
Definition: pathnodes.h:2552
Bitmapset * keys
Definition: pathnodes.h:1279
struct PlannerInfo * root
Definition: supportnodes.h:136
struct PlannerInfo * root
Definition: supportnodes.h:163
struct PlannerInfo * root
Definition: supportnodes.h:96
struct SpecialJoinInfo * sjinfo
Definition: supportnodes.h:103
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:380
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition: tableam.h:372
bool(* scan_bitmap_next_block)(TableScanDesc scan, struct TBMIterateResult *tbmres)
Definition: tableam.h:823
AttrNumber resno
Definition: primnodes.h:2159
bool trig_delete_before_row
Definition: reltrigger.h:66
bool trig_update_after_row
Definition: reltrigger.h:62
bool trig_insert_after_row
Definition: reltrigger.h:57
bool trig_update_before_row
Definition: reltrigger.h:61
bool trig_delete_after_row
Definition: reltrigger.h:67
bool trig_insert_before_row
Definition: reltrigger.h:56
bool has_not_null
Definition: tupdesc.h:44
AttrDefault * defval
Definition: tupdesc.h:39
bool has_generated_stored
Definition: tupdesc.h:45
ConstrCheck * check
Definition: tupdesc.h:40
uint16 num_defval
Definition: tupdesc.h:42
uint16 num_check
Definition: tupdesc.h:43
TupleConstr * constr
Definition: tupdesc.h:85
FormData_pg_attribute attrs[FLEXIBLE_ARRAY_MEMBER]
Definition: tupdesc.h:87
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
Definition: type.h:95
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:218
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:479
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:229
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: tableam.h:1947
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:291
bool RecoveryInProgress(void)
Definition: xlog.c:6290