PostgreSQL Source Code  git master
plancat.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * plancat.c
4  * routines for accessing the system catalogs
5  *
6  *
7  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  *
11  * IDENTIFICATION
12  * src/backend/optimizer/util/plancat.c
13  *
14  *-------------------------------------------------------------------------
15  */
16 #include "postgres.h"
17 
18 #include <math.h>
19 
20 #include "access/genam.h"
21 #include "access/htup_details.h"
22 #include "access/nbtree.h"
23 #include "access/sysattr.h"
24 #include "access/table.h"
25 #include "access/tableam.h"
26 #include "access/transam.h"
27 #include "access/xlog.h"
28 #include "catalog/catalog.h"
29 #include "catalog/heap.h"
30 #include "catalog/pg_am.h"
31 #include "catalog/pg_proc.h"
34 #include "foreign/fdwapi.h"
35 #include "miscadmin.h"
36 #include "nodes/makefuncs.h"
37 #include "nodes/nodeFuncs.h"
38 #include "nodes/supportnodes.h"
39 #include "optimizer/cost.h"
40 #include "optimizer/optimizer.h"
41 #include "optimizer/plancat.h"
42 #include "parser/parse_relation.h"
43 #include "parser/parsetree.h"
44 #include "partitioning/partdesc.h"
45 #include "rewrite/rewriteManip.h"
46 #include "statistics/statistics.h"
47 #include "storage/bufmgr.h"
48 #include "tcop/tcopprot.h"
49 #include "utils/builtins.h"
50 #include "utils/lsyscache.h"
51 #include "utils/partcache.h"
52 #include "utils/rel.h"
53 #include "utils/snapmgr.h"
54 #include "utils/syscache.h"
55 
56 /* GUC parameter */
58 
59 /* Hook for plugins to get control in get_relation_info() */
61 
62 
64  Relation relation, bool inhparent);
65 static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
66  List *idxExprs);
68  Oid relationObjectId, RelOptInfo *rel,
69  bool include_noinherit,
70  bool include_notnull,
71  bool include_partition);
73  Relation heapRelation);
74 static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
76  Relation relation);
78  Relation relation);
79 static void set_baserel_partition_key_exprs(Relation relation,
80  RelOptInfo *rel);
81 static void set_baserel_partition_constraint(Relation relation,
82  RelOptInfo *rel);
83 
84 
85 /*
86  * get_relation_info -
87  * Retrieves catalog information for a given relation.
88  *
89  * Given the Oid of the relation, return the following info into fields
90  * of the RelOptInfo struct:
91  *
92  * min_attr lowest valid AttrNumber
93  * max_attr highest valid AttrNumber
94  * indexlist list of IndexOptInfos for relation's indexes
95  * statlist list of StatisticExtInfo for relation's statistic objects
96  * serverid if it's a foreign table, the server OID
97  * fdwroutine if it's a foreign table, the FDW function pointers
98  * pages number of pages
99  * tuples number of tuples
100  * rel_parallel_workers user-defined number of parallel workers
101  *
102  * Also, add information about the relation's foreign keys to root->fkey_list.
103  *
104  * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
105  * cases these are left as zeroes, but sometimes we need to compute attr
106  * widths here, and we may as well cache the results for costsize.c.
107  *
108  * If inhparent is true, all we need to do is set up the attr arrays:
109  * the RelOptInfo actually represents the appendrel formed by an inheritance
110  * tree, and so the parent rel's physical size and index information isn't
111  * important for it, however, for partitioned tables, we do populate the
112  * indexlist as the planner uses unique indexes as unique proofs for certain
113  * optimizations.
114  */
115 void
116 get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
117  RelOptInfo *rel)
118 {
119  Index varno = rel->relid;
120  Relation relation;
121  bool hasindex;
122  List *indexinfos = NIL;
123 
124  /*
125  * We need not lock the relation since it was already locked, either by
126  * the rewriter or when expand_inherited_rtentry() added it to the query's
127  * rangetable.
128  */
129  relation = table_open(relationObjectId, NoLock);
130 
131  /*
132  * Relations without a table AM can be used in a query only if they are of
133  * special-cased relkinds. This check prevents us from crashing later if,
134  * for example, a view's ON SELECT rule has gone missing. Note that
135  * table_open() already rejected indexes and composite types; spell the
136  * error the same way it does.
137  */
138  if (!relation->rd_tableam)
139  {
140  if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
141  relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
142  ereport(ERROR,
143  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
144  errmsg("cannot open relation \"%s\"",
145  RelationGetRelationName(relation)),
146  errdetail_relkind_not_supported(relation->rd_rel->relkind)));
147  }
148 
149  /* Temporary and unlogged relations are inaccessible during recovery. */
150  if (!RelationIsPermanent(relation) && RecoveryInProgress())
151  ereport(ERROR,
152  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
153  errmsg("cannot access temporary or unlogged relations during recovery")));
154 
156  rel->max_attr = RelationGetNumberOfAttributes(relation);
157  rel->reltablespace = RelationGetForm(relation)->reltablespace;
158 
159  Assert(rel->max_attr >= rel->min_attr);
160  rel->attr_needed = (Relids *)
161  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
162  rel->attr_widths = (int32 *)
163  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
164 
165  /*
166  * Record which columns are defined as NOT NULL. We leave this
167  * unpopulated for non-partitioned inheritance parent relations as it's
168  * ambiguous as to what it means. Some child tables may have a NOT NULL
169  * constraint for a column while others may not. We could work harder and
170  * build a unioned set of all child relations notnullattnums, but there's
171  * currently no need. The RelOptInfo corresponding to the !inh
172  * RangeTblEntry does get populated.
173  */
174  if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
175  {
176  for (int i = 0; i < relation->rd_att->natts; i++)
177  {
178  Form_pg_attribute attr = TupleDescAttr(relation->rd_att, i);
179 
180  if (attr->attnotnull)
181  {
183  attr->attnum);
184 
185  /*
186  * Per RemoveAttributeById(), dropped columns will have their
187  * attnotnull unset, so we needn't check for dropped columns
188  * in the above condition.
189  */
190  Assert(!attr->attisdropped);
191  }
192  }
193  }
194 
195  /*
196  * Estimate relation size --- unless it's an inheritance parent, in which
197  * case the size we want is not the rel's own size but the size of its
198  * inheritance tree. That will be computed in set_append_rel_size().
199  */
200  if (!inhparent)
201  estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
202  &rel->pages, &rel->tuples, &rel->allvisfrac);
203 
204  /* Retrieve the parallel_workers reloption, or -1 if not set. */
206 
207  /*
208  * Make list of indexes. Ignore indexes on system catalogs if told to.
209  * Don't bother with indexes from traditional inheritance parents. For
210  * partitioned tables, we need a list of at least unique indexes as these
211  * serve as unique proofs for certain planner optimizations. However,
212  * let's not discriminate here and just record all partitioned indexes
213  * whether they're unique indexes or not.
214  */
215  if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
216  || (IgnoreSystemIndexes && IsSystemRelation(relation)))
217  hasindex = false;
218  else
219  hasindex = relation->rd_rel->relhasindex;
220 
221  if (hasindex)
222  {
223  List *indexoidlist;
224  LOCKMODE lmode;
225  ListCell *l;
226 
227  indexoidlist = RelationGetIndexList(relation);
228 
229  /*
230  * For each index, we get the same type of lock that the executor will
231  * need, and do not release it. This saves a couple of trips to the
232  * shared lock manager while not creating any real loss of
233  * concurrency, because no schema changes could be happening on the
234  * index while we hold lock on the parent rel, and no lock type used
235  * for queries blocks any other kind of index operation.
236  */
237  lmode = root->simple_rte_array[varno]->rellockmode;
238 
239  foreach(l, indexoidlist)
240  {
241  Oid indexoid = lfirst_oid(l);
242  Relation indexRelation;
244  IndexAmRoutine *amroutine = NULL;
245  IndexOptInfo *info;
246  int ncolumns,
247  nkeycolumns;
248  int i;
249 
250  /*
251  * Extract info from the relation descriptor for the index.
252  */
253  indexRelation = index_open(indexoid, lmode);
254  index = indexRelation->rd_index;
255 
256  /*
257  * Ignore invalid indexes, since they can't safely be used for
258  * queries. Note that this is OK because the data structure we
259  * are constructing is only used by the planner --- the executor
260  * still needs to insert into "invalid" indexes, if they're marked
261  * indisready.
262  */
263  if (!index->indisvalid)
264  {
265  index_close(indexRelation, NoLock);
266  continue;
267  }
268 
269  /*
270  * If the index is valid, but cannot yet be used, ignore it; but
271  * mark the plan we are generating as transient. See
272  * src/backend/access/heap/README.HOT for discussion.
273  */
274  if (index->indcheckxmin &&
277  {
278  root->glob->transientPlan = true;
279  index_close(indexRelation, NoLock);
280  continue;
281  }
282 
283  info = makeNode(IndexOptInfo);
284 
285  info->indexoid = index->indexrelid;
286  info->reltablespace =
287  RelationGetForm(indexRelation)->reltablespace;
288  info->rel = rel;
289  info->ncolumns = ncolumns = index->indnatts;
290  info->nkeycolumns = nkeycolumns = index->indnkeyatts;
291 
292  info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
293  info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
294  info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
295  info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
296  info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
297 
298  for (i = 0; i < ncolumns; i++)
299  {
300  info->indexkeys[i] = index->indkey.values[i];
301  info->canreturn[i] = index_can_return(indexRelation, i + 1);
302  }
303 
304  for (i = 0; i < nkeycolumns; i++)
305  {
306  info->opfamily[i] = indexRelation->rd_opfamily[i];
307  info->opcintype[i] = indexRelation->rd_opcintype[i];
308  info->indexcollations[i] = indexRelation->rd_indcollation[i];
309  }
310 
311  info->relam = indexRelation->rd_rel->relam;
312 
313  /*
314  * We don't have an AM for partitioned indexes, so we'll just
315  * NULLify the AM related fields for those.
316  */
317  if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
318  {
319  /* We copy just the fields we need, not all of rd_indam */
320  amroutine = indexRelation->rd_indam;
321  info->amcanorderbyop = amroutine->amcanorderbyop;
322  info->amoptionalkey = amroutine->amoptionalkey;
323  info->amsearcharray = amroutine->amsearcharray;
324  info->amsearchnulls = amroutine->amsearchnulls;
325  info->amcanparallel = amroutine->amcanparallel;
326  info->amhasgettuple = (amroutine->amgettuple != NULL);
327  info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
328  relation->rd_tableam->scan_bitmap_next_block != NULL;
329  info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
330  amroutine->amrestrpos != NULL);
331  info->amcostestimate = amroutine->amcostestimate;
332  Assert(info->amcostestimate != NULL);
333 
334  /* Fetch index opclass options */
335  info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
336 
337  /*
338  * Fetch the ordering information for the index, if any.
339  */
340  if (info->relam == BTREE_AM_OID)
341  {
342  /*
343  * If it's a btree index, we can use its opfamily OIDs
344  * directly as the sort ordering opfamily OIDs.
345  */
346  Assert(amroutine->amcanorder);
347 
348  info->sortopfamily = info->opfamily;
349  info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350  info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351 
352  for (i = 0; i < nkeycolumns; i++)
353  {
354  int16 opt = indexRelation->rd_indoption[i];
355 
356  info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
357  info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
358  }
359  }
360  else if (amroutine->amcanorder)
361  {
362  /*
363  * Otherwise, identify the corresponding btree opfamilies
364  * by trying to map this index's "<" operators into btree.
365  * Since "<" uniquely defines the behavior of a sort
366  * order, this is a sufficient test.
367  *
368  * XXX This method is rather slow and also requires the
369  * undesirable assumption that the other index AM numbers
370  * its strategies the same as btree. It'd be better to
371  * have a way to explicitly declare the corresponding
372  * btree opfamily for each opfamily of the other index
373  * type. But given the lack of current or foreseeable
374  * amcanorder index types, it's not worth expending more
375  * effort on now.
376  */
377  info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
378  info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
379  info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
380 
381  for (i = 0; i < nkeycolumns; i++)
382  {
383  int16 opt = indexRelation->rd_indoption[i];
384  Oid ltopr;
385  Oid btopfamily;
386  Oid btopcintype;
387  int16 btstrategy;
388 
389  info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
390  info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
391 
392  ltopr = get_opfamily_member(info->opfamily[i],
393  info->opcintype[i],
394  info->opcintype[i],
396  if (OidIsValid(ltopr) &&
398  &btopfamily,
399  &btopcintype,
400  &btstrategy) &&
401  btopcintype == info->opcintype[i] &&
402  btstrategy == BTLessStrategyNumber)
403  {
404  /* Successful mapping */
405  info->sortopfamily[i] = btopfamily;
406  }
407  else
408  {
409  /* Fail ... quietly treat index as unordered */
410  info->sortopfamily = NULL;
411  info->reverse_sort = NULL;
412  info->nulls_first = NULL;
413  break;
414  }
415  }
416  }
417  else
418  {
419  info->sortopfamily = NULL;
420  info->reverse_sort = NULL;
421  info->nulls_first = NULL;
422  }
423  }
424  else
425  {
426  info->amcanorderbyop = false;
427  info->amoptionalkey = false;
428  info->amsearcharray = false;
429  info->amsearchnulls = false;
430  info->amcanparallel = false;
431  info->amhasgettuple = false;
432  info->amhasgetbitmap = false;
433  info->amcanmarkpos = false;
434  info->amcostestimate = NULL;
435 
436  info->sortopfamily = NULL;
437  info->reverse_sort = NULL;
438  info->nulls_first = NULL;
439  }
440 
441  /*
442  * Fetch the index expressions and predicate, if any. We must
443  * modify the copies we obtain from the relcache to have the
444  * correct varno for the parent relation, so that they match up
445  * correctly against qual clauses.
446  */
447  info->indexprs = RelationGetIndexExpressions(indexRelation);
448  info->indpred = RelationGetIndexPredicate(indexRelation);
449  if (info->indexprs && varno != 1)
450  ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
451  if (info->indpred && varno != 1)
452  ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
453 
454  /* Build targetlist using the completed indexprs data */
455  info->indextlist = build_index_tlist(root, info, relation);
456 
457  info->indrestrictinfo = NIL; /* set later, in indxpath.c */
458  info->predOK = false; /* set later, in indxpath.c */
459  info->unique = index->indisunique;
460  info->immediate = index->indimmediate;
461  info->hypothetical = false;
462 
463  /*
464  * Estimate the index size. If it's not a partial index, we lock
465  * the number-of-tuples estimate to equal the parent table; if it
466  * is partial then we have to use the same methods as we would for
467  * a table, except we can be sure that the index is not larger
468  * than the table. We must ignore partitioned indexes here as
469  * there are not physical indexes.
470  */
471  if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
472  {
473  if (info->indpred == NIL)
474  {
475  info->pages = RelationGetNumberOfBlocks(indexRelation);
476  info->tuples = rel->tuples;
477  }
478  else
479  {
480  double allvisfrac; /* dummy */
481 
482  estimate_rel_size(indexRelation, NULL,
483  &info->pages, &info->tuples, &allvisfrac);
484  if (info->tuples > rel->tuples)
485  info->tuples = rel->tuples;
486  }
487 
488  /*
489  * Get tree height while we have the index open
490  */
491  if (amroutine->amgettreeheight)
492  {
493  info->tree_height = amroutine->amgettreeheight(indexRelation);
494  }
495  else
496  {
497  /* For other index types, just set it to "unknown" for now */
498  info->tree_height = -1;
499  }
500  }
501  else
502  {
503  /* Zero these out for partitioned indexes */
504  info->pages = 0;
505  info->tuples = 0.0;
506  info->tree_height = -1;
507  }
508 
509  index_close(indexRelation, NoLock);
510 
511  /*
512  * We've historically used lcons() here. It'd make more sense to
513  * use lappend(), but that causes the planner to change behavior
514  * in cases where two indexes seem equally attractive. For now,
515  * stick with lcons() --- few tables should have so many indexes
516  * that the O(N^2) behavior of lcons() is really a problem.
517  */
518  indexinfos = lcons(info, indexinfos);
519  }
520 
521  list_free(indexoidlist);
522  }
523 
524  rel->indexlist = indexinfos;
525 
526  rel->statlist = get_relation_statistics(rel, relation);
527 
528  /* Grab foreign-table info using the relcache, while we have it */
529  if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
530  {
531  /* Check if the access to foreign tables is restricted */
533  {
534  /* there must not be built-in foreign tables */
536 
537  ereport(ERROR,
538  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
539  errmsg("access to non-system foreign table is restricted")));
540  }
541 
543  rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
544  }
545  else
546  {
547  rel->serverid = InvalidOid;
548  rel->fdwroutine = NULL;
549  }
550 
551  /* Collect info about relation's foreign keys, if relevant */
552  get_relation_foreign_keys(root, rel, relation, inhparent);
553 
554  /* Collect info about functions implemented by the rel's table AM. */
555  if (relation->rd_tableam &&
556  relation->rd_tableam->scan_set_tidrange != NULL &&
557  relation->rd_tableam->scan_getnextslot_tidrange != NULL)
559 
560  /*
561  * Collect info about relation's partitioning scheme, if any. Only
562  * inheritance parents may be partitioned.
563  */
564  if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
565  set_relation_partition_info(root, rel, relation);
566 
567  table_close(relation, NoLock);
568 
569  /*
570  * Allow a plugin to editorialize on the info we obtained from the
571  * catalogs. Actions might include altering the assumed relation size,
572  * removing an index, or adding a hypothetical index to the indexlist.
573  */
575  (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
576 }
577 
578 /*
579  * get_relation_foreign_keys -
580  * Retrieves foreign key information for a given relation.
581  *
582  * ForeignKeyOptInfos for relevant foreign keys are created and added to
583  * root->fkey_list. We do this now while we have the relcache entry open.
584  * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
585  * until all RelOptInfos have been built, but the cost of re-opening the
586  * relcache entries would probably exceed any savings.
587  */
588 static void
590  Relation relation, bool inhparent)
591 {
592  List *rtable = root->parse->rtable;
593  List *cachedfkeys;
594  ListCell *lc;
595 
596  /*
597  * If it's not a baserel, we don't care about its FKs. Also, if the query
598  * references only a single relation, we can skip the lookup since no FKs
599  * could satisfy the requirements below.
600  */
601  if (rel->reloptkind != RELOPT_BASEREL ||
602  list_length(rtable) < 2)
603  return;
604 
605  /*
606  * If it's the parent of an inheritance tree, ignore its FKs. We could
607  * make useful FK-based deductions if we found that all members of the
608  * inheritance tree have equivalent FK constraints, but detecting that
609  * would require code that hasn't been written.
610  */
611  if (inhparent)
612  return;
613 
614  /*
615  * Extract data about relation's FKs from the relcache. Note that this
616  * list belongs to the relcache and might disappear in a cache flush, so
617  * we must not do any further catalog access within this function.
618  */
619  cachedfkeys = RelationGetFKeyList(relation);
620 
621  /*
622  * Figure out which FKs are of interest for this query, and create
623  * ForeignKeyOptInfos for them. We want only FKs that reference some
624  * other RTE of the current query. In queries containing self-joins,
625  * there might be more than one other RTE for a referenced table, and we
626  * should make a ForeignKeyOptInfo for each occurrence.
627  *
628  * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
629  * too hard to identify those here, so we might end up making some useless
630  * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
631  * them again.
632  */
633  foreach(lc, cachedfkeys)
634  {
635  ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
636  Index rti;
637  ListCell *lc2;
638 
639  /* conrelid should always be that of the table we're considering */
640  Assert(cachedfk->conrelid == RelationGetRelid(relation));
641 
642  /* Scan to find other RTEs matching confrelid */
643  rti = 0;
644  foreach(lc2, rtable)
645  {
646  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
647  ForeignKeyOptInfo *info;
648 
649  rti++;
650  /* Ignore if not the correct table */
651  if (rte->rtekind != RTE_RELATION ||
652  rte->relid != cachedfk->confrelid)
653  continue;
654  /* Ignore if it's an inheritance parent; doesn't really match */
655  if (rte->inh)
656  continue;
657  /* Ignore self-referential FKs; we only care about joins */
658  if (rti == rel->relid)
659  continue;
660 
661  /* OK, let's make an entry */
662  info = makeNode(ForeignKeyOptInfo);
663  info->con_relid = rel->relid;
664  info->ref_relid = rti;
665  info->nkeys = cachedfk->nkeys;
666  memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
667  memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
668  memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
669  /* zero out fields to be filled by match_foreign_keys_to_quals */
670  info->nmatched_ec = 0;
671  info->nconst_ec = 0;
672  info->nmatched_rcols = 0;
673  info->nmatched_ri = 0;
674  memset(info->eclass, 0, sizeof(info->eclass));
675  memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
676  memset(info->rinfos, 0, sizeof(info->rinfos));
677 
678  root->fkey_list = lappend(root->fkey_list, info);
679  }
680  }
681 }
682 
683 /*
684  * infer_arbiter_indexes -
685  * Determine the unique indexes used to arbitrate speculative insertion.
686  *
687  * Uses user-supplied inference clause expressions and predicate to match a
688  * unique index from those defined and ready on the heap relation (target).
689  * An exact match is required on columns/expressions (although they can appear
690  * in any order). However, the predicate given by the user need only restrict
691  * insertion to a subset of some part of the table covered by some particular
692  * unique index (in particular, a partial unique index) in order to be
693  * inferred.
694  *
695  * The implementation does not consider which B-Tree operator class any
696  * particular available unique index attribute uses, unless one was specified
697  * in the inference specification. The same is true of collations. In
698  * particular, there is no system dependency on the default operator class for
699  * the purposes of inference. If no opclass (or collation) is specified, then
700  * all matching indexes (that may or may not match the default in terms of
701  * each attribute opclass/collation) are used for inference.
702  */
703 List *
705 {
706  OnConflictExpr *onconflict = root->parse->onConflict;
707 
708  /* Iteration state */
709  Index varno;
710  RangeTblEntry *rte;
711  Relation relation;
712  Oid indexOidFromConstraint = InvalidOid;
713  List *indexList;
714  ListCell *l;
715 
716  /* Normalized inference attributes and inference expressions: */
717  Bitmapset *inferAttrs = NULL;
718  List *inferElems = NIL;
719 
720  /* Results */
721  List *results = NIL;
722 
723  /*
724  * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
725  * specification or named constraint. ON CONFLICT DO UPDATE statements
726  * must always provide one or the other (but parser ought to have caught
727  * that already).
728  */
729  if (onconflict->arbiterElems == NIL &&
730  onconflict->constraint == InvalidOid)
731  return NIL;
732 
733  /*
734  * We need not lock the relation since it was already locked, either by
735  * the rewriter or when expand_inherited_rtentry() added it to the query's
736  * rangetable.
737  */
738  varno = root->parse->resultRelation;
739  rte = rt_fetch(varno, root->parse->rtable);
740 
741  relation = table_open(rte->relid, NoLock);
742 
743  /*
744  * Build normalized/BMS representation of plain indexed attributes, as
745  * well as a separate list of expression items. This simplifies matching
746  * the cataloged definition of indexes.
747  */
748  foreach(l, onconflict->arbiterElems)
749  {
750  InferenceElem *elem = (InferenceElem *) lfirst(l);
751  Var *var;
752  int attno;
753 
754  if (!IsA(elem->expr, Var))
755  {
756  /* If not a plain Var, just shove it in inferElems for now */
757  inferElems = lappend(inferElems, elem->expr);
758  continue;
759  }
760 
761  var = (Var *) elem->expr;
762  attno = var->varattno;
763 
764  if (attno == 0)
765  ereport(ERROR,
766  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
767  errmsg("whole row unique index inference specifications are not supported")));
768 
769  inferAttrs = bms_add_member(inferAttrs,
771  }
772 
773  /*
774  * Lookup named constraint's index. This is not immediately returned
775  * because some additional sanity checks are required.
776  */
777  if (onconflict->constraint != InvalidOid)
778  {
779  indexOidFromConstraint = get_constraint_index(onconflict->constraint);
780 
781  if (indexOidFromConstraint == InvalidOid)
782  ereport(ERROR,
783  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
784  errmsg("constraint in ON CONFLICT clause has no associated index")));
785  }
786 
787  /*
788  * Using that representation, iterate through the list of indexes on the
789  * target relation to try and find a match
790  */
791  indexList = RelationGetIndexList(relation);
792 
793  foreach(l, indexList)
794  {
795  Oid indexoid = lfirst_oid(l);
796  Relation idxRel;
797  Form_pg_index idxForm;
798  Bitmapset *indexedAttrs;
799  List *idxExprs;
800  List *predExprs;
801  AttrNumber natt;
802  ListCell *el;
803 
804  /*
805  * Extract info from the relation descriptor for the index. Obtain
806  * the same lock type that the executor will ultimately use.
807  *
808  * Let executor complain about !indimmediate case directly, because
809  * enforcement needs to occur there anyway when an inference clause is
810  * omitted.
811  */
812  idxRel = index_open(indexoid, rte->rellockmode);
813  idxForm = idxRel->rd_index;
814 
815  if (!idxForm->indisvalid)
816  goto next;
817 
818  /*
819  * Note that we do not perform a check against indcheckxmin (like e.g.
820  * get_relation_info()) here to eliminate candidates, because
821  * uniqueness checking only cares about the most recently committed
822  * tuple versions.
823  */
824 
825  /*
826  * Look for match on "ON constraint_name" variant, which may not be
827  * unique constraint. This can only be a constraint name.
828  */
829  if (indexOidFromConstraint == idxForm->indexrelid)
830  {
831  if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
832  ereport(ERROR,
833  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
834  errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
835 
836  results = lappend_oid(results, idxForm->indexrelid);
837  list_free(indexList);
838  index_close(idxRel, NoLock);
839  table_close(relation, NoLock);
840  return results;
841  }
842  else if (indexOidFromConstraint != InvalidOid)
843  {
844  /* No point in further work for index in named constraint case */
845  goto next;
846  }
847 
848  /*
849  * Only considering conventional inference at this point (not named
850  * constraints), so index under consideration can be immediately
851  * skipped if it's not unique
852  */
853  if (!idxForm->indisunique)
854  goto next;
855 
856  /*
857  * So-called unique constraints with WITHOUT OVERLAPS are really
858  * exclusion constraints, so skip those too.
859  */
860  if (idxForm->indisexclusion)
861  goto next;
862 
863  /* Build BMS representation of plain (non expression) index attrs */
864  indexedAttrs = NULL;
865  for (natt = 0; natt < idxForm->indnkeyatts; natt++)
866  {
867  int attno = idxRel->rd_index->indkey.values[natt];
868 
869  if (attno != 0)
870  indexedAttrs = bms_add_member(indexedAttrs,
872  }
873 
874  /* Non-expression attributes (if any) must match */
875  if (!bms_equal(indexedAttrs, inferAttrs))
876  goto next;
877 
878  /* Expression attributes (if any) must match */
879  idxExprs = RelationGetIndexExpressions(idxRel);
880  if (idxExprs && varno != 1)
881  ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
882 
883  foreach(el, onconflict->arbiterElems)
884  {
885  InferenceElem *elem = (InferenceElem *) lfirst(el);
886 
887  /*
888  * Ensure that collation/opclass aspects of inference expression
889  * element match. Even though this loop is primarily concerned
890  * with matching expressions, it is a convenient point to check
891  * this for both expressions and ordinary (non-expression)
892  * attributes appearing as inference elements.
893  */
894  if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
895  goto next;
896 
897  /*
898  * Plain Vars don't factor into count of expression elements, and
899  * the question of whether or not they satisfy the index
900  * definition has already been considered (they must).
901  */
902  if (IsA(elem->expr, Var))
903  continue;
904 
905  /*
906  * Might as well avoid redundant check in the rare cases where
907  * infer_collation_opclass_match() is required to do real work.
908  * Otherwise, check that element expression appears in cataloged
909  * index definition.
910  */
911  if (elem->infercollid != InvalidOid ||
912  elem->inferopclass != InvalidOid ||
913  list_member(idxExprs, elem->expr))
914  continue;
915 
916  goto next;
917  }
918 
919  /*
920  * Now that all inference elements were matched, ensure that the
921  * expression elements from inference clause are not missing any
922  * cataloged expressions. This does the right thing when unique
923  * indexes redundantly repeat the same attribute, or if attributes
924  * redundantly appear multiple times within an inference clause.
925  */
926  if (list_difference(idxExprs, inferElems) != NIL)
927  goto next;
928 
929  /*
930  * If it's a partial index, its predicate must be implied by the ON
931  * CONFLICT's WHERE clause.
932  */
933  predExprs = RelationGetIndexPredicate(idxRel);
934  if (predExprs && varno != 1)
935  ChangeVarNodes((Node *) predExprs, 1, varno, 0);
936 
937  if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
938  goto next;
939 
940  results = lappend_oid(results, idxForm->indexrelid);
941 next:
942  index_close(idxRel, NoLock);
943  }
944 
945  list_free(indexList);
946  table_close(relation, NoLock);
947 
948  if (results == NIL)
949  ereport(ERROR,
950  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
951  errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
952 
953  return results;
954 }
955 
956 /*
957  * infer_collation_opclass_match - ensure infer element opclass/collation match
958  *
959  * Given unique index inference element from inference specification, if
960  * collation was specified, or if opclass was specified, verify that there is
961  * at least one matching indexed attribute (occasionally, there may be more).
962  * Skip this in the common case where inference specification does not include
963  * collation or opclass (instead matching everything, regardless of cataloged
964  * collation/opclass of indexed attribute).
965  *
966  * At least historically, Postgres has not offered collations or opclasses
967  * with alternative-to-default notions of equality, so these additional
968  * criteria should only be required infrequently.
969  *
970  * Don't give up immediately when an inference element matches some attribute
971  * cataloged as indexed but not matching additional opclass/collation
972  * criteria. This is done so that the implementation is as forgiving as
973  * possible of redundancy within cataloged index attributes (or, less
974  * usefully, within inference specification elements). If collations actually
975  * differ between apparently redundantly indexed attributes (redundant within
976  * or across indexes), then there really is no redundancy as such.
977  *
978  * Note that if an inference element specifies an opclass and a collation at
979  * once, both must match in at least one particular attribute within index
980  * catalog definition in order for that inference element to be considered
981  * inferred/satisfied.
982  */
983 static bool
985  List *idxExprs)
986 {
987  AttrNumber natt;
988  Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
989  Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
990  int nplain = 0; /* # plain attrs observed */
991 
992  /*
993  * If inference specification element lacks collation/opclass, then no
994  * need to check for exact match.
995  */
996  if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
997  return true;
998 
999  /*
1000  * Lookup opfamily and input type, for matching indexes
1001  */
1002  if (elem->inferopclass)
1003  {
1004  inferopfamily = get_opclass_family(elem->inferopclass);
1005  inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1006  }
1007 
1008  for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1009  {
1010  Oid opfamily = idxRel->rd_opfamily[natt - 1];
1011  Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1012  Oid collation = idxRel->rd_indcollation[natt - 1];
1013  int attno = idxRel->rd_index->indkey.values[natt - 1];
1014 
1015  if (attno != 0)
1016  nplain++;
1017 
1018  if (elem->inferopclass != InvalidOid &&
1019  (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1020  {
1021  /* Attribute needed to match opclass, but didn't */
1022  continue;
1023  }
1024 
1025  if (elem->infercollid != InvalidOid &&
1026  elem->infercollid != collation)
1027  {
1028  /* Attribute needed to match collation, but didn't */
1029  continue;
1030  }
1031 
1032  /* If one matching index att found, good enough -- return true */
1033  if (IsA(elem->expr, Var))
1034  {
1035  if (((Var *) elem->expr)->varattno == attno)
1036  return true;
1037  }
1038  else if (attno == 0)
1039  {
1040  Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1041 
1042  /*
1043  * Note that unlike routines like match_index_to_operand() we
1044  * don't need to care about RelabelType. Neither the index
1045  * definition nor the inference clause should contain them.
1046  */
1047  if (equal(elem->expr, nattExpr))
1048  return true;
1049  }
1050  }
1051 
1052  return false;
1053 }
1054 
1055 /*
1056  * estimate_rel_size - estimate # pages and # tuples in a table or index
1057  *
1058  * We also estimate the fraction of the pages that are marked all-visible in
1059  * the visibility map, for use in estimation of index-only scans.
1060  *
1061  * If attr_widths isn't NULL, it points to the zero-index entry of the
1062  * relation's attr_widths[] cache; we fill this in if we have need to compute
1063  * the attribute widths for estimation purposes.
1064  */
1065 void
1067  BlockNumber *pages, double *tuples, double *allvisfrac)
1068 {
1069  BlockNumber curpages;
1070  BlockNumber relpages;
1071  double reltuples;
1072  BlockNumber relallvisible;
1073  double density;
1074 
1075  if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1076  {
1077  table_relation_estimate_size(rel, attr_widths, pages, tuples,
1078  allvisfrac);
1079  }
1080  else if (rel->rd_rel->relkind == RELKIND_INDEX)
1081  {
1082  /*
1083  * XXX: It'd probably be good to move this into a callback, individual
1084  * index types e.g. know if they have a metapage.
1085  */
1086 
1087  /* it has storage, ok to call the smgr */
1088  curpages = RelationGetNumberOfBlocks(rel);
1089 
1090  /* report estimated # pages */
1091  *pages = curpages;
1092  /* quick exit if rel is clearly empty */
1093  if (curpages == 0)
1094  {
1095  *tuples = 0;
1096  *allvisfrac = 0;
1097  return;
1098  }
1099 
1100  /* coerce values in pg_class to more desirable types */
1101  relpages = (BlockNumber) rel->rd_rel->relpages;
1102  reltuples = (double) rel->rd_rel->reltuples;
1103  relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1104 
1105  /*
1106  * Discount the metapage while estimating the number of tuples. This
1107  * is a kluge because it assumes more than it ought to about index
1108  * structure. Currently it's OK for btree, hash, and GIN indexes but
1109  * suspect for GiST indexes.
1110  */
1111  if (relpages > 0)
1112  {
1113  curpages--;
1114  relpages--;
1115  }
1116 
1117  /* estimate number of tuples from previous tuple density */
1118  if (reltuples >= 0 && relpages > 0)
1119  density = reltuples / (double) relpages;
1120  else
1121  {
1122  /*
1123  * If we have no data because the relation was never vacuumed,
1124  * estimate tuple width from attribute datatypes. We assume here
1125  * that the pages are completely full, which is OK for tables
1126  * (since they've presumably not been VACUUMed yet) but is
1127  * probably an overestimate for indexes. Fortunately
1128  * get_relation_info() can clamp the overestimate to the parent
1129  * table's size.
1130  *
1131  * Note: this code intentionally disregards alignment
1132  * considerations, because (a) that would be gilding the lily
1133  * considering how crude the estimate is, and (b) it creates
1134  * platform dependencies in the default plans which are kind of a
1135  * headache for regression testing.
1136  *
1137  * XXX: Should this logic be more index specific?
1138  */
1139  int32 tuple_width;
1140 
1141  tuple_width = get_rel_data_width(rel, attr_widths);
1142  tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1143  tuple_width += sizeof(ItemIdData);
1144  /* note: integer division is intentional here */
1145  density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1146  }
1147  *tuples = rint(density * (double) curpages);
1148 
1149  /*
1150  * We use relallvisible as-is, rather than scaling it up like we do
1151  * for the pages and tuples counts, on the theory that any pages added
1152  * since the last VACUUM are most likely not marked all-visible. But
1153  * costsize.c wants it converted to a fraction.
1154  */
1155  if (relallvisible == 0 || curpages <= 0)
1156  *allvisfrac = 0;
1157  else if ((double) relallvisible >= curpages)
1158  *allvisfrac = 1;
1159  else
1160  *allvisfrac = (double) relallvisible / curpages;
1161  }
1162  else
1163  {
1164  /*
1165  * Just use whatever's in pg_class. This covers foreign tables,
1166  * sequences, and also relkinds without storage (shouldn't get here?);
1167  * see initializations in AddNewRelationTuple(). Note that FDW must
1168  * cope if reltuples is -1!
1169  */
1170  *pages = rel->rd_rel->relpages;
1171  *tuples = rel->rd_rel->reltuples;
1172  *allvisfrac = 0;
1173  }
1174 }
1175 
1176 
1177 /*
1178  * get_rel_data_width
1179  *
1180  * Estimate the average width of (the data part of) the relation's tuples.
1181  *
1182  * If attr_widths isn't NULL, it points to the zero-index entry of the
1183  * relation's attr_widths[] cache; use and update that cache as appropriate.
1184  *
1185  * Currently we ignore dropped columns. Ideally those should be included
1186  * in the result, but we haven't got any way to get info about them; and
1187  * since they might be mostly NULLs, treating them as zero-width is not
1188  * necessarily the wrong thing anyway.
1189  */
1190 int32
1192 {
1193  int64 tuple_width = 0;
1194  int i;
1195 
1196  for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1197  {
1198  Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1199  int32 item_width;
1200 
1201  if (att->attisdropped)
1202  continue;
1203 
1204  /* use previously cached data, if any */
1205  if (attr_widths != NULL && attr_widths[i] > 0)
1206  {
1207  tuple_width += attr_widths[i];
1208  continue;
1209  }
1210 
1211  /* This should match set_rel_width() in costsize.c */
1212  item_width = get_attavgwidth(RelationGetRelid(rel), i);
1213  if (item_width <= 0)
1214  {
1215  item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1216  Assert(item_width > 0);
1217  }
1218  if (attr_widths != NULL)
1219  attr_widths[i] = item_width;
1220  tuple_width += item_width;
1221  }
1222 
1223  return clamp_width_est(tuple_width);
1224 }
1225 
1226 /*
1227  * get_relation_data_width
1228  *
1229  * External API for get_rel_data_width: same behavior except we have to
1230  * open the relcache entry.
1231  */
1232 int32
1233 get_relation_data_width(Oid relid, int32 *attr_widths)
1234 {
1235  int32 result;
1236  Relation relation;
1237 
1238  /* As above, assume relation is already locked */
1239  relation = table_open(relid, NoLock);
1240 
1241  result = get_rel_data_width(relation, attr_widths);
1242 
1243  table_close(relation, NoLock);
1244 
1245  return result;
1246 }
1247 
1248 
1249 /*
1250  * get_relation_constraints
1251  *
1252  * Retrieve the applicable constraint expressions of the given relation.
1253  *
1254  * Returns a List (possibly empty) of constraint expressions. Each one
1255  * has been canonicalized, and its Vars are changed to have the varno
1256  * indicated by rel->relid. This allows the expressions to be easily
1257  * compared to expressions taken from WHERE.
1258  *
1259  * If include_noinherit is true, it's okay to include constraints that
1260  * are marked NO INHERIT.
1261  *
1262  * If include_notnull is true, "col IS NOT NULL" expressions are generated
1263  * and added to the result for each column that's marked attnotnull.
1264  *
1265  * If include_partition is true, and the relation is a partition,
1266  * also include the partitioning constraints.
1267  *
1268  * Note: at present this is invoked at most once per relation per planner
1269  * run, and in many cases it won't be invoked at all, so there seems no
1270  * point in caching the data in RelOptInfo.
1271  */
1272 static List *
1274  Oid relationObjectId, RelOptInfo *rel,
1275  bool include_noinherit,
1276  bool include_notnull,
1277  bool include_partition)
1278 {
1279  List *result = NIL;
1280  Index varno = rel->relid;
1281  Relation relation;
1282  TupleConstr *constr;
1283 
1284  /*
1285  * We assume the relation has already been safely locked.
1286  */
1287  relation = table_open(relationObjectId, NoLock);
1288 
1289  constr = relation->rd_att->constr;
1290  if (constr != NULL)
1291  {
1292  int num_check = constr->num_check;
1293  int i;
1294 
1295  for (i = 0; i < num_check; i++)
1296  {
1297  Node *cexpr;
1298 
1299  /*
1300  * If this constraint hasn't been fully validated yet, we must
1301  * ignore it here. Also ignore if NO INHERIT and we weren't told
1302  * that that's safe.
1303  */
1304  if (!constr->check[i].ccvalid)
1305  continue;
1306  if (constr->check[i].ccnoinherit && !include_noinherit)
1307  continue;
1308 
1309  cexpr = stringToNode(constr->check[i].ccbin);
1310 
1311  /*
1312  * Run each expression through const-simplification and
1313  * canonicalization. This is not just an optimization, but is
1314  * necessary, because we will be comparing it to
1315  * similarly-processed qual clauses, and may fail to detect valid
1316  * matches without this. This must match the processing done to
1317  * qual clauses in preprocess_expression()! (We can skip the
1318  * stuff involving subqueries, however, since we don't allow any
1319  * in check constraints.)
1320  */
1321  cexpr = eval_const_expressions(root, cexpr);
1322 
1323  cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1324 
1325  /* Fix Vars to have the desired varno */
1326  if (varno != 1)
1327  ChangeVarNodes(cexpr, 1, varno, 0);
1328 
1329  /*
1330  * Finally, convert to implicit-AND format (that is, a List) and
1331  * append the resulting item(s) to our output list.
1332  */
1333  result = list_concat(result,
1334  make_ands_implicit((Expr *) cexpr));
1335  }
1336 
1337  /* Add NOT NULL constraints in expression form, if requested */
1338  if (include_notnull && constr->has_not_null)
1339  {
1340  int natts = relation->rd_att->natts;
1341 
1342  for (i = 1; i <= natts; i++)
1343  {
1344  Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1345 
1346  if (att->attnotnull && !att->attisdropped)
1347  {
1348  NullTest *ntest = makeNode(NullTest);
1349 
1350  ntest->arg = (Expr *) makeVar(varno,
1351  i,
1352  att->atttypid,
1353  att->atttypmod,
1354  att->attcollation,
1355  0);
1356  ntest->nulltesttype = IS_NOT_NULL;
1357 
1358  /*
1359  * argisrow=false is correct even for a composite column,
1360  * because attnotnull does not represent a SQL-spec IS NOT
1361  * NULL test in such a case, just IS DISTINCT FROM NULL.
1362  */
1363  ntest->argisrow = false;
1364  ntest->location = -1;
1365  result = lappend(result, ntest);
1366  }
1367  }
1368  }
1369  }
1370 
1371  /*
1372  * Add partitioning constraints, if requested.
1373  */
1374  if (include_partition && relation->rd_rel->relispartition)
1375  {
1376  /* make sure rel->partition_qual is set */
1377  set_baserel_partition_constraint(relation, rel);
1378  result = list_concat(result, rel->partition_qual);
1379  }
1380 
1381  table_close(relation, NoLock);
1382 
1383  return result;
1384 }
1385 
1386 /*
1387  * Try loading data for the statistics object.
1388  *
1389  * We don't know if the data (specified by statOid and inh value) exist.
1390  * The result is stored in stainfos list.
1391  */
1392 static void
1394  Oid statOid, bool inh,
1395  Bitmapset *keys, List *exprs)
1396 {
1397  Form_pg_statistic_ext_data dataForm;
1398  HeapTuple dtup;
1399 
1400  dtup = SearchSysCache2(STATEXTDATASTXOID,
1401  ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1402  if (!HeapTupleIsValid(dtup))
1403  return;
1404 
1405  dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1406 
1407  /* add one StatisticExtInfo for each kind built */
1408  if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1409  {
1411 
1412  info->statOid = statOid;
1413  info->inherit = dataForm->stxdinherit;
1414  info->rel = rel;
1415  info->kind = STATS_EXT_NDISTINCT;
1416  info->keys = bms_copy(keys);
1417  info->exprs = exprs;
1418 
1419  *stainfos = lappend(*stainfos, info);
1420  }
1421 
1422  if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1423  {
1425 
1426  info->statOid = statOid;
1427  info->inherit = dataForm->stxdinherit;
1428  info->rel = rel;
1429  info->kind = STATS_EXT_DEPENDENCIES;
1430  info->keys = bms_copy(keys);
1431  info->exprs = exprs;
1432 
1433  *stainfos = lappend(*stainfos, info);
1434  }
1435 
1436  if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1437  {
1439 
1440  info->statOid = statOid;
1441  info->inherit = dataForm->stxdinherit;
1442  info->rel = rel;
1443  info->kind = STATS_EXT_MCV;
1444  info->keys = bms_copy(keys);
1445  info->exprs = exprs;
1446 
1447  *stainfos = lappend(*stainfos, info);
1448  }
1449 
1450  if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1451  {
1453 
1454  info->statOid = statOid;
1455  info->inherit = dataForm->stxdinherit;
1456  info->rel = rel;
1457  info->kind = STATS_EXT_EXPRESSIONS;
1458  info->keys = bms_copy(keys);
1459  info->exprs = exprs;
1460 
1461  *stainfos = lappend(*stainfos, info);
1462  }
1463 
1464  ReleaseSysCache(dtup);
1465 }
1466 
1467 /*
1468  * get_relation_statistics
1469  * Retrieve extended statistics defined on the table.
1470  *
1471  * Returns a List (possibly empty) of StatisticExtInfo objects describing
1472  * the statistics. Note that this doesn't load the actual statistics data,
1473  * just the identifying metadata. Only stats actually built are considered.
1474  */
1475 static List *
1477 {
1478  Index varno = rel->relid;
1479  List *statoidlist;
1480  List *stainfos = NIL;
1481  ListCell *l;
1482 
1483  statoidlist = RelationGetStatExtList(relation);
1484 
1485  foreach(l, statoidlist)
1486  {
1487  Oid statOid = lfirst_oid(l);
1488  Form_pg_statistic_ext staForm;
1489  HeapTuple htup;
1490  Bitmapset *keys = NULL;
1491  List *exprs = NIL;
1492  int i;
1493 
1494  htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1495  if (!HeapTupleIsValid(htup))
1496  elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1497  staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1498 
1499  /*
1500  * First, build the array of columns covered. This is ultimately
1501  * wasted if no stats within the object have actually been built, but
1502  * it doesn't seem worth troubling over that case.
1503  */
1504  for (i = 0; i < staForm->stxkeys.dim1; i++)
1505  keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1506 
1507  /*
1508  * Preprocess expressions (if any). We read the expressions, run them
1509  * through eval_const_expressions, and fix the varnos.
1510  *
1511  * XXX We don't know yet if there are any data for this stats object,
1512  * with either stxdinherit value. But it's reasonable to assume there
1513  * is at least one of those, possibly both. So it's better to process
1514  * keys and expressions here.
1515  */
1516  {
1517  bool isnull;
1518  Datum datum;
1519 
1520  /* decode expression (if any) */
1521  datum = SysCacheGetAttr(STATEXTOID, htup,
1522  Anum_pg_statistic_ext_stxexprs, &isnull);
1523 
1524  if (!isnull)
1525  {
1526  char *exprsString;
1527 
1528  exprsString = TextDatumGetCString(datum);
1529  exprs = (List *) stringToNode(exprsString);
1530  pfree(exprsString);
1531 
1532  /*
1533  * Run the expressions through eval_const_expressions. This is
1534  * not just an optimization, but is necessary, because the
1535  * planner will be comparing them to similarly-processed qual
1536  * clauses, and may fail to detect valid matches without this.
1537  * We must not use canonicalize_qual, however, since these
1538  * aren't qual expressions.
1539  */
1540  exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1541 
1542  /* May as well fix opfuncids too */
1543  fix_opfuncids((Node *) exprs);
1544 
1545  /*
1546  * Modify the copies we obtain from the relcache to have the
1547  * correct varno for the parent relation, so that they match
1548  * up correctly against qual clauses.
1549  */
1550  if (varno != 1)
1551  ChangeVarNodes((Node *) exprs, 1, varno, 0);
1552  }
1553  }
1554 
1555  /* extract statistics for possible values of stxdinherit flag */
1556 
1557  get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1558 
1559  get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1560 
1561  ReleaseSysCache(htup);
1562  bms_free(keys);
1563  }
1564 
1565  list_free(statoidlist);
1566 
1567  return stainfos;
1568 }
1569 
1570 /*
1571  * relation_excluded_by_constraints
1572  *
1573  * Detect whether the relation need not be scanned because it has either
1574  * self-inconsistent restrictions, or restrictions inconsistent with the
1575  * relation's applicable constraints.
1576  *
1577  * Note: this examines only rel->relid, rel->reloptkind, and
1578  * rel->baserestrictinfo; therefore it can be called before filling in
1579  * other fields of the RelOptInfo.
1580  */
1581 bool
1583  RelOptInfo *rel, RangeTblEntry *rte)
1584 {
1585  bool include_noinherit;
1586  bool include_notnull;
1587  bool include_partition = false;
1588  List *safe_restrictions;
1589  List *constraint_pred;
1590  List *safe_constraints;
1591  ListCell *lc;
1592 
1593  /* As of now, constraint exclusion works only with simple relations. */
1594  Assert(IS_SIMPLE_REL(rel));
1595 
1596  /*
1597  * If there are no base restriction clauses, we have no hope of proving
1598  * anything below, so fall out quickly.
1599  */
1600  if (rel->baserestrictinfo == NIL)
1601  return false;
1602 
1603  /*
1604  * Regardless of the setting of constraint_exclusion, detect
1605  * constant-FALSE-or-NULL restriction clauses. Although const-folding
1606  * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1607  * list can still have other members besides the FALSE constant, due to
1608  * qual pushdown and other mechanisms; so check them all. This doesn't
1609  * fire very often, but it seems cheap enough to be worth doing anyway.
1610  * (Without this, we'd miss some optimizations that 9.5 and earlier found
1611  * via much more roundabout methods.)
1612  */
1613  foreach(lc, rel->baserestrictinfo)
1614  {
1615  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1616  Expr *clause = rinfo->clause;
1617 
1618  if (clause && IsA(clause, Const) &&
1619  (((Const *) clause)->constisnull ||
1620  !DatumGetBool(((Const *) clause)->constvalue)))
1621  return true;
1622  }
1623 
1624  /*
1625  * Skip further tests, depending on constraint_exclusion.
1626  */
1627  switch (constraint_exclusion)
1628  {
1630  /* In 'off' mode, never make any further tests */
1631  return false;
1632 
1634 
1635  /*
1636  * When constraint_exclusion is set to 'partition' we only handle
1637  * appendrel members. Partition pruning has already been applied,
1638  * so there is no need to consider the rel's partition constraints
1639  * here.
1640  */
1641  if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1642  break; /* appendrel member, so process it */
1643  return false;
1644 
1646 
1647  /*
1648  * In 'on' mode, always apply constraint exclusion. If we are
1649  * considering a baserel that is a partition (i.e., it was
1650  * directly named rather than expanded from a parent table), then
1651  * its partition constraints haven't been considered yet, so
1652  * include them in the processing here.
1653  */
1654  if (rel->reloptkind == RELOPT_BASEREL)
1655  include_partition = true;
1656  break; /* always try to exclude */
1657  }
1658 
1659  /*
1660  * Check for self-contradictory restriction clauses. We dare not make
1661  * deductions with non-immutable functions, but any immutable clauses that
1662  * are self-contradictory allow us to conclude the scan is unnecessary.
1663  *
1664  * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1665  * expecting to see any in its predicate argument.
1666  */
1667  safe_restrictions = NIL;
1668  foreach(lc, rel->baserestrictinfo)
1669  {
1670  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1671 
1672  if (!contain_mutable_functions((Node *) rinfo->clause))
1673  safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1674  }
1675 
1676  /*
1677  * We can use weak refutation here, since we're comparing restriction
1678  * clauses with restriction clauses.
1679  */
1680  if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1681  return true;
1682 
1683  /*
1684  * Only plain relations have constraints, so stop here for other rtekinds.
1685  */
1686  if (rte->rtekind != RTE_RELATION)
1687  return false;
1688 
1689  /*
1690  * If we are scanning just this table, we can use NO INHERIT constraints,
1691  * but not if we're scanning its children too. (Note that partitioned
1692  * tables should never have NO INHERIT constraints; but it's not necessary
1693  * for us to assume that here.)
1694  */
1695  include_noinherit = !rte->inh;
1696 
1697  /*
1698  * Currently, attnotnull constraints must be treated as NO INHERIT unless
1699  * this is a partitioned table. In future we might track their
1700  * inheritance status more accurately, allowing this to be refined.
1701  *
1702  * XXX do we need/want to change this?
1703  */
1704  include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1705 
1706  /*
1707  * Fetch the appropriate set of constraint expressions.
1708  */
1709  constraint_pred = get_relation_constraints(root, rte->relid, rel,
1710  include_noinherit,
1711  include_notnull,
1712  include_partition);
1713 
1714  /*
1715  * We do not currently enforce that CHECK constraints contain only
1716  * immutable functions, so it's necessary to check here. We daren't draw
1717  * conclusions from plan-time evaluation of non-immutable functions. Since
1718  * they're ANDed, we can just ignore any mutable constraints in the list,
1719  * and reason about the rest.
1720  */
1721  safe_constraints = NIL;
1722  foreach(lc, constraint_pred)
1723  {
1724  Node *pred = (Node *) lfirst(lc);
1725 
1726  if (!contain_mutable_functions(pred))
1727  safe_constraints = lappend(safe_constraints, pred);
1728  }
1729 
1730  /*
1731  * The constraints are effectively ANDed together, so we can just try to
1732  * refute the entire collection at once. This may allow us to make proofs
1733  * that would fail if we took them individually.
1734  *
1735  * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1736  * an obvious optimization. Some of the clauses might be OR clauses that
1737  * have volatile and nonvolatile subclauses, and it's OK to make
1738  * deductions with the nonvolatile parts.
1739  *
1740  * We need strong refutation because we have to prove that the constraints
1741  * would yield false, not just NULL.
1742  */
1743  if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1744  return true;
1745 
1746  return false;
1747 }
1748 
1749 
1750 /*
1751  * build_physical_tlist
1752  *
1753  * Build a targetlist consisting of exactly the relation's user attributes,
1754  * in order. The executor can special-case such tlists to avoid a projection
1755  * step at runtime, so we use such tlists preferentially for scan nodes.
1756  *
1757  * Exception: if there are any dropped or missing columns, we punt and return
1758  * NIL. Ideally we would like to handle these cases too. However this
1759  * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1760  * for a tlist that includes vars of no-longer-existent types. In theory we
1761  * could dig out the required info from the pg_attribute entries of the
1762  * relation, but that data is not readily available to ExecTypeFromTL.
1763  * For now, we don't apply the physical-tlist optimization when there are
1764  * dropped cols.
1765  *
1766  * We also support building a "physical" tlist for subqueries, functions,
1767  * values lists, table expressions, and CTEs, since the same optimization can
1768  * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1769  * NamedTuplestoreScan, and WorkTableScan nodes.
1770  */
1771 List *
1773 {
1774  List *tlist = NIL;
1775  Index varno = rel->relid;
1776  RangeTblEntry *rte = planner_rt_fetch(varno, root);
1777  Relation relation;
1778  Query *subquery;
1779  Var *var;
1780  ListCell *l;
1781  int attrno,
1782  numattrs;
1783  List *colvars;
1784 
1785  switch (rte->rtekind)
1786  {
1787  case RTE_RELATION:
1788  /* Assume we already have adequate lock */
1789  relation = table_open(rte->relid, NoLock);
1790 
1791  numattrs = RelationGetNumberOfAttributes(relation);
1792  for (attrno = 1; attrno <= numattrs; attrno++)
1793  {
1794  Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1795  attrno - 1);
1796 
1797  if (att_tup->attisdropped || att_tup->atthasmissing)
1798  {
1799  /* found a dropped or missing col, so punt */
1800  tlist = NIL;
1801  break;
1802  }
1803 
1804  var = makeVar(varno,
1805  attrno,
1806  att_tup->atttypid,
1807  att_tup->atttypmod,
1808  att_tup->attcollation,
1809  0);
1810 
1811  tlist = lappend(tlist,
1812  makeTargetEntry((Expr *) var,
1813  attrno,
1814  NULL,
1815  false));
1816  }
1817 
1818  table_close(relation, NoLock);
1819  break;
1820 
1821  case RTE_SUBQUERY:
1822  subquery = rte->subquery;
1823  foreach(l, subquery->targetList)
1824  {
1825  TargetEntry *tle = (TargetEntry *) lfirst(l);
1826 
1827  /*
1828  * A resjunk column of the subquery can be reflected as
1829  * resjunk in the physical tlist; we need not punt.
1830  */
1831  var = makeVarFromTargetEntry(varno, tle);
1832 
1833  tlist = lappend(tlist,
1834  makeTargetEntry((Expr *) var,
1835  tle->resno,
1836  NULL,
1837  tle->resjunk));
1838  }
1839  break;
1840 
1841  case RTE_FUNCTION:
1842  case RTE_TABLEFUNC:
1843  case RTE_VALUES:
1844  case RTE_CTE:
1845  case RTE_NAMEDTUPLESTORE:
1846  case RTE_RESULT:
1847  /* Not all of these can have dropped cols, but share code anyway */
1848  expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
1849  NULL, &colvars);
1850  foreach(l, colvars)
1851  {
1852  var = (Var *) lfirst(l);
1853 
1854  /*
1855  * A non-Var in expandRTE's output means a dropped column;
1856  * must punt.
1857  */
1858  if (!IsA(var, Var))
1859  {
1860  tlist = NIL;
1861  break;
1862  }
1863 
1864  tlist = lappend(tlist,
1865  makeTargetEntry((Expr *) var,
1866  var->varattno,
1867  NULL,
1868  false));
1869  }
1870  break;
1871 
1872  default:
1873  /* caller error */
1874  elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1875  (int) rte->rtekind);
1876  break;
1877  }
1878 
1879  return tlist;
1880 }
1881 
1882 /*
1883  * build_index_tlist
1884  *
1885  * Build a targetlist representing the columns of the specified index.
1886  * Each column is represented by a Var for the corresponding base-relation
1887  * column, or an expression in base-relation Vars, as appropriate.
1888  *
1889  * There are never any dropped columns in indexes, so unlike
1890  * build_physical_tlist, we need no failure case.
1891  */
1892 static List *
1894  Relation heapRelation)
1895 {
1896  List *tlist = NIL;
1897  Index varno = index->rel->relid;
1898  ListCell *indexpr_item;
1899  int i;
1900 
1901  indexpr_item = list_head(index->indexprs);
1902  for (i = 0; i < index->ncolumns; i++)
1903  {
1904  int indexkey = index->indexkeys[i];
1905  Expr *indexvar;
1906 
1907  if (indexkey != 0)
1908  {
1909  /* simple column */
1910  const FormData_pg_attribute *att_tup;
1911 
1912  if (indexkey < 0)
1913  att_tup = SystemAttributeDefinition(indexkey);
1914  else
1915  att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1916 
1917  indexvar = (Expr *) makeVar(varno,
1918  indexkey,
1919  att_tup->atttypid,
1920  att_tup->atttypmod,
1921  att_tup->attcollation,
1922  0);
1923  }
1924  else
1925  {
1926  /* expression column */
1927  if (indexpr_item == NULL)
1928  elog(ERROR, "wrong number of index expressions");
1929  indexvar = (Expr *) lfirst(indexpr_item);
1930  indexpr_item = lnext(index->indexprs, indexpr_item);
1931  }
1932 
1933  tlist = lappend(tlist,
1934  makeTargetEntry(indexvar,
1935  i + 1,
1936  NULL,
1937  false));
1938  }
1939  if (indexpr_item != NULL)
1940  elog(ERROR, "wrong number of index expressions");
1941 
1942  return tlist;
1943 }
1944 
1945 /*
1946  * restriction_selectivity
1947  *
1948  * Returns the selectivity of a specified restriction operator clause.
1949  * This code executes registered procedures stored in the
1950  * operator relation, by calling the function manager.
1951  *
1952  * See clause_selectivity() for the meaning of the additional parameters.
1953  */
1956  Oid operatorid,
1957  List *args,
1958  Oid inputcollid,
1959  int varRelid)
1960 {
1961  RegProcedure oprrest = get_oprrest(operatorid);
1962  float8 result;
1963 
1964  /*
1965  * if the oprrest procedure is missing for whatever reason, use a
1966  * selectivity of 0.5
1967  */
1968  if (!oprrest)
1969  return (Selectivity) 0.5;
1970 
1971  result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1972  inputcollid,
1974  ObjectIdGetDatum(operatorid),
1976  Int32GetDatum(varRelid)));
1977 
1978  if (result < 0.0 || result > 1.0)
1979  elog(ERROR, "invalid restriction selectivity: %f", result);
1980 
1981  return (Selectivity) result;
1982 }
1983 
1984 /*
1985  * join_selectivity
1986  *
1987  * Returns the selectivity of a specified join operator clause.
1988  * This code executes registered procedures stored in the
1989  * operator relation, by calling the function manager.
1990  *
1991  * See clause_selectivity() for the meaning of the additional parameters.
1992  */
1995  Oid operatorid,
1996  List *args,
1997  Oid inputcollid,
1998  JoinType jointype,
1999  SpecialJoinInfo *sjinfo)
2000 {
2001  RegProcedure oprjoin = get_oprjoin(operatorid);
2002  float8 result;
2003 
2004  /*
2005  * if the oprjoin procedure is missing for whatever reason, use a
2006  * selectivity of 0.5
2007  */
2008  if (!oprjoin)
2009  return (Selectivity) 0.5;
2010 
2011  result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2012  inputcollid,
2014  ObjectIdGetDatum(operatorid),
2016  Int16GetDatum(jointype),
2017  PointerGetDatum(sjinfo)));
2018 
2019  if (result < 0.0 || result > 1.0)
2020  elog(ERROR, "invalid join selectivity: %f", result);
2021 
2022  return (Selectivity) result;
2023 }
2024 
2025 /*
2026  * function_selectivity
2027  *
2028  * Returns the selectivity of a specified boolean function clause.
2029  * This code executes registered procedures stored in the
2030  * pg_proc relation, by calling the function manager.
2031  *
2032  * See clause_selectivity() for the meaning of the additional parameters.
2033  */
2036  Oid funcid,
2037  List *args,
2038  Oid inputcollid,
2039  bool is_join,
2040  int varRelid,
2041  JoinType jointype,
2042  SpecialJoinInfo *sjinfo)
2043 {
2044  RegProcedure prosupport = get_func_support(funcid);
2046  SupportRequestSelectivity *sresult;
2047 
2048  /*
2049  * If no support function is provided, use our historical default
2050  * estimate, 0.3333333. This seems a pretty unprincipled choice, but
2051  * Postgres has been using that estimate for function calls since 1992.
2052  * The hoariness of this behavior suggests that we should not be in too
2053  * much hurry to use another value.
2054  */
2055  if (!prosupport)
2056  return (Selectivity) 0.3333333;
2057 
2058  req.type = T_SupportRequestSelectivity;
2059  req.root = root;
2060  req.funcid = funcid;
2061  req.args = args;
2062  req.inputcollid = inputcollid;
2063  req.is_join = is_join;
2064  req.varRelid = varRelid;
2065  req.jointype = jointype;
2066  req.sjinfo = sjinfo;
2067  req.selectivity = -1; /* to catch failure to set the value */
2068 
2069  sresult = (SupportRequestSelectivity *)
2070  DatumGetPointer(OidFunctionCall1(prosupport,
2071  PointerGetDatum(&req)));
2072 
2073  /* If support function fails, use default */
2074  if (sresult != &req)
2075  return (Selectivity) 0.3333333;
2076 
2077  if (req.selectivity < 0.0 || req.selectivity > 1.0)
2078  elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2079 
2080  return (Selectivity) req.selectivity;
2081 }
2082 
2083 /*
2084  * add_function_cost
2085  *
2086  * Get an estimate of the execution cost of a function, and *add* it to
2087  * the contents of *cost. The estimate may include both one-time and
2088  * per-tuple components, since QualCost does.
2089  *
2090  * The funcid must always be supplied. If it is being called as the
2091  * implementation of a specific parsetree node (FuncExpr, OpExpr,
2092  * WindowFunc, etc), pass that as "node", else pass NULL.
2093  *
2094  * In some usages root might be NULL, too.
2095  */
2096 void
2098  QualCost *cost)
2099 {
2100  HeapTuple proctup;
2101  Form_pg_proc procform;
2102 
2103  proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2104  if (!HeapTupleIsValid(proctup))
2105  elog(ERROR, "cache lookup failed for function %u", funcid);
2106  procform = (Form_pg_proc) GETSTRUCT(proctup);
2107 
2108  if (OidIsValid(procform->prosupport))
2109  {
2110  SupportRequestCost req;
2111  SupportRequestCost *sresult;
2112 
2113  req.type = T_SupportRequestCost;
2114  req.root = root;
2115  req.funcid = funcid;
2116  req.node = node;
2117 
2118  /* Initialize cost fields so that support function doesn't have to */
2119  req.startup = 0;
2120  req.per_tuple = 0;
2121 
2122  sresult = (SupportRequestCost *)
2123  DatumGetPointer(OidFunctionCall1(procform->prosupport,
2124  PointerGetDatum(&req)));
2125 
2126  if (sresult == &req)
2127  {
2128  /* Success, so accumulate support function's estimate into *cost */
2129  cost->startup += req.startup;
2130  cost->per_tuple += req.per_tuple;
2131  ReleaseSysCache(proctup);
2132  return;
2133  }
2134  }
2135 
2136  /* No support function, or it failed, so rely on procost */
2137  cost->per_tuple += procform->procost * cpu_operator_cost;
2138 
2139  ReleaseSysCache(proctup);
2140 }
2141 
2142 /*
2143  * get_function_rows
2144  *
2145  * Get an estimate of the number of rows returned by a set-returning function.
2146  *
2147  * The funcid must always be supplied. In current usage, the calling node
2148  * will always be supplied, and will be either a FuncExpr or OpExpr.
2149  * But it's a good idea to not fail if it's NULL.
2150  *
2151  * In some usages root might be NULL, too.
2152  *
2153  * Note: this returns the unfiltered result of the support function, if any.
2154  * It's usually a good idea to apply clamp_row_est() to the result, but we
2155  * leave it to the caller to do so.
2156  */
2157 double
2159 {
2160  HeapTuple proctup;
2161  Form_pg_proc procform;
2162  double result;
2163 
2164  proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2165  if (!HeapTupleIsValid(proctup))
2166  elog(ERROR, "cache lookup failed for function %u", funcid);
2167  procform = (Form_pg_proc) GETSTRUCT(proctup);
2168 
2169  Assert(procform->proretset); /* else caller error */
2170 
2171  if (OidIsValid(procform->prosupport))
2172  {
2173  SupportRequestRows req;
2174  SupportRequestRows *sresult;
2175 
2176  req.type = T_SupportRequestRows;
2177  req.root = root;
2178  req.funcid = funcid;
2179  req.node = node;
2180 
2181  req.rows = 0; /* just for sanity */
2182 
2183  sresult = (SupportRequestRows *)
2184  DatumGetPointer(OidFunctionCall1(procform->prosupport,
2185  PointerGetDatum(&req)));
2186 
2187  if (sresult == &req)
2188  {
2189  /* Success */
2190  ReleaseSysCache(proctup);
2191  return req.rows;
2192  }
2193  }
2194 
2195  /* No support function, or it failed, so rely on prorows */
2196  result = procform->prorows;
2197 
2198  ReleaseSysCache(proctup);
2199 
2200  return result;
2201 }
2202 
2203 /*
2204  * has_unique_index
2205  *
2206  * Detect whether there is a unique index on the specified attribute
2207  * of the specified relation, thus allowing us to conclude that all
2208  * the (non-null) values of the attribute are distinct.
2209  *
2210  * This function does not check the index's indimmediate property, which
2211  * means that uniqueness may transiently fail to hold intra-transaction.
2212  * That's appropriate when we are making statistical estimates, but beware
2213  * of using this for any correctness proofs.
2214  */
2215 bool
2217 {
2218  ListCell *ilist;
2219 
2220  foreach(ilist, rel->indexlist)
2221  {
2222  IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2223 
2224  /*
2225  * Note: ignore partial indexes, since they don't allow us to conclude
2226  * that all attr values are distinct, *unless* they are marked predOK
2227  * which means we know the index's predicate is satisfied by the
2228  * query. We don't take any interest in expressional indexes either.
2229  * Also, a multicolumn unique index doesn't allow us to conclude that
2230  * just the specified attr is unique.
2231  */
2232  if (index->unique &&
2233  index->nkeycolumns == 1 &&
2234  index->indexkeys[0] == attno &&
2235  (index->indpred == NIL || index->predOK))
2236  return true;
2237  }
2238  return false;
2239 }
2240 
2241 
2242 /*
2243  * has_row_triggers
2244  *
2245  * Detect whether the specified relation has any row-level triggers for event.
2246  */
2247 bool
2249 {
2250  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2251  Relation relation;
2252  TriggerDesc *trigDesc;
2253  bool result = false;
2254 
2255  /* Assume we already have adequate lock */
2256  relation = table_open(rte->relid, NoLock);
2257 
2258  trigDesc = relation->trigdesc;
2259  switch (event)
2260  {
2261  case CMD_INSERT:
2262  if (trigDesc &&
2263  (trigDesc->trig_insert_after_row ||
2264  trigDesc->trig_insert_before_row))
2265  result = true;
2266  break;
2267  case CMD_UPDATE:
2268  if (trigDesc &&
2269  (trigDesc->trig_update_after_row ||
2270  trigDesc->trig_update_before_row))
2271  result = true;
2272  break;
2273  case CMD_DELETE:
2274  if (trigDesc &&
2275  (trigDesc->trig_delete_after_row ||
2276  trigDesc->trig_delete_before_row))
2277  result = true;
2278  break;
2279  /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2280  case CMD_MERGE:
2281  result = false;
2282  break;
2283  default:
2284  elog(ERROR, "unrecognized CmdType: %d", (int) event);
2285  break;
2286  }
2287 
2288  table_close(relation, NoLock);
2289  return result;
2290 }
2291 
2292 /*
2293  * has_stored_generated_columns
2294  *
2295  * Does table identified by RTI have any STORED GENERATED columns?
2296  */
2297 bool
2299 {
2300  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2301  Relation relation;
2302  TupleDesc tupdesc;
2303  bool result = false;
2304 
2305  /* Assume we already have adequate lock */
2306  relation = table_open(rte->relid, NoLock);
2307 
2308  tupdesc = RelationGetDescr(relation);
2309  result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2310 
2311  table_close(relation, NoLock);
2312 
2313  return result;
2314 }
2315 
2316 /*
2317  * get_dependent_generated_columns
2318  *
2319  * Get the column numbers of any STORED GENERATED columns of the relation
2320  * that depend on any column listed in target_cols. Both the input and
2321  * result bitmapsets contain column numbers offset by
2322  * FirstLowInvalidHeapAttributeNumber.
2323  */
2324 Bitmapset *
2326  Bitmapset *target_cols)
2327 {
2328  Bitmapset *dependentCols = NULL;
2329  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2330  Relation relation;
2331  TupleDesc tupdesc;
2332  TupleConstr *constr;
2333 
2334  /* Assume we already have adequate lock */
2335  relation = table_open(rte->relid, NoLock);
2336 
2337  tupdesc = RelationGetDescr(relation);
2338  constr = tupdesc->constr;
2339 
2340  if (constr && constr->has_generated_stored)
2341  {
2342  for (int i = 0; i < constr->num_defval; i++)
2343  {
2344  AttrDefault *defval = &constr->defval[i];
2345  Node *expr;
2346  Bitmapset *attrs_used = NULL;
2347 
2348  /* skip if not generated column */
2349  if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2350  continue;
2351 
2352  /* identify columns this generated column depends on */
2353  expr = stringToNode(defval->adbin);
2354  pull_varattnos(expr, 1, &attrs_used);
2355 
2356  if (bms_overlap(target_cols, attrs_used))
2357  dependentCols = bms_add_member(dependentCols,
2359  }
2360  }
2361 
2362  table_close(relation, NoLock);
2363 
2364  return dependentCols;
2365 }
2366 
2367 /*
2368  * set_relation_partition_info
2369  *
2370  * Set partitioning scheme and related information for a partitioned table.
2371  */
2372 static void
2374  Relation relation)
2375 {
2376  PartitionDesc partdesc;
2377 
2378  /*
2379  * Create the PartitionDirectory infrastructure if we didn't already.
2380  */
2381  if (root->glob->partition_directory == NULL)
2382  {
2383  root->glob->partition_directory =
2385  }
2386 
2387  partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2388  relation);
2389  rel->part_scheme = find_partition_scheme(root, relation);
2390  Assert(partdesc != NULL && rel->part_scheme != NULL);
2391  rel->boundinfo = partdesc->boundinfo;
2392  rel->nparts = partdesc->nparts;
2393  set_baserel_partition_key_exprs(relation, rel);
2394  set_baserel_partition_constraint(relation, rel);
2395 }
2396 
2397 /*
2398  * find_partition_scheme
2399  *
2400  * Find or create a PartitionScheme for this Relation.
2401  */
2402 static PartitionScheme
2404 {
2405  PartitionKey partkey = RelationGetPartitionKey(relation);
2406  ListCell *lc;
2407  int partnatts,
2408  i;
2409  PartitionScheme part_scheme;
2410 
2411  /* A partitioned table should have a partition key. */
2412  Assert(partkey != NULL);
2413 
2414  partnatts = partkey->partnatts;
2415 
2416  /* Search for a matching partition scheme and return if found one. */
2417  foreach(lc, root->part_schemes)
2418  {
2419  part_scheme = lfirst(lc);
2420 
2421  /* Match partitioning strategy and number of keys. */
2422  if (partkey->strategy != part_scheme->strategy ||
2423  partnatts != part_scheme->partnatts)
2424  continue;
2425 
2426  /* Match partition key type properties. */
2427  if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2428  sizeof(Oid) * partnatts) != 0 ||
2429  memcmp(partkey->partopcintype, part_scheme->partopcintype,
2430  sizeof(Oid) * partnatts) != 0 ||
2431  memcmp(partkey->partcollation, part_scheme->partcollation,
2432  sizeof(Oid) * partnatts) != 0)
2433  continue;
2434 
2435  /*
2436  * Length and byval information should match when partopcintype
2437  * matches.
2438  */
2439  Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2440  sizeof(int16) * partnatts) == 0);
2441  Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2442  sizeof(bool) * partnatts) == 0);
2443 
2444  /*
2445  * If partopfamily and partopcintype matched, must have the same
2446  * partition comparison functions. Note that we cannot reliably
2447  * Assert the equality of function structs themselves for they might
2448  * be different across PartitionKey's, so just Assert for the function
2449  * OIDs.
2450  */
2451 #ifdef USE_ASSERT_CHECKING
2452  for (i = 0; i < partkey->partnatts; i++)
2453  Assert(partkey->partsupfunc[i].fn_oid ==
2454  part_scheme->partsupfunc[i].fn_oid);
2455 #endif
2456 
2457  /* Found matching partition scheme. */
2458  return part_scheme;
2459  }
2460 
2461  /*
2462  * Did not find matching partition scheme. Create one copying relevant
2463  * information from the relcache. We need to copy the contents of the
2464  * array since the relcache entry may not survive after we have closed the
2465  * relation.
2466  */
2467  part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2468  part_scheme->strategy = partkey->strategy;
2469  part_scheme->partnatts = partkey->partnatts;
2470 
2471  part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2472  memcpy(part_scheme->partopfamily, partkey->partopfamily,
2473  sizeof(Oid) * partnatts);
2474 
2475  part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2476  memcpy(part_scheme->partopcintype, partkey->partopcintype,
2477  sizeof(Oid) * partnatts);
2478 
2479  part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2480  memcpy(part_scheme->partcollation, partkey->partcollation,
2481  sizeof(Oid) * partnatts);
2482 
2483  part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2484  memcpy(part_scheme->parttyplen, partkey->parttyplen,
2485  sizeof(int16) * partnatts);
2486 
2487  part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2488  memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2489  sizeof(bool) * partnatts);
2490 
2491  part_scheme->partsupfunc = (FmgrInfo *)
2492  palloc(sizeof(FmgrInfo) * partnatts);
2493  for (i = 0; i < partnatts; i++)
2494  fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2496 
2497  /* Add the partitioning scheme to PlannerInfo. */
2498  root->part_schemes = lappend(root->part_schemes, part_scheme);
2499 
2500  return part_scheme;
2501 }
2502 
2503 /*
2504  * set_baserel_partition_key_exprs
2505  *
2506  * Builds partition key expressions for the given base relation and fills
2507  * rel->partexprs.
2508  */
2509 static void
2511  RelOptInfo *rel)
2512 {
2513  PartitionKey partkey = RelationGetPartitionKey(relation);
2514  int partnatts;
2515  int cnt;
2516  List **partexprs;
2517  ListCell *lc;
2518  Index varno = rel->relid;
2519 
2520  Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2521 
2522  /* A partitioned table should have a partition key. */
2523  Assert(partkey != NULL);
2524 
2525  partnatts = partkey->partnatts;
2526  partexprs = (List **) palloc(sizeof(List *) * partnatts);
2527  lc = list_head(partkey->partexprs);
2528 
2529  for (cnt = 0; cnt < partnatts; cnt++)
2530  {
2531  Expr *partexpr;
2532  AttrNumber attno = partkey->partattrs[cnt];
2533 
2534  if (attno != InvalidAttrNumber)
2535  {
2536  /* Single column partition key is stored as a Var node. */
2537  Assert(attno > 0);
2538 
2539  partexpr = (Expr *) makeVar(varno, attno,
2540  partkey->parttypid[cnt],
2541  partkey->parttypmod[cnt],
2542  partkey->parttypcoll[cnt], 0);
2543  }
2544  else
2545  {
2546  if (lc == NULL)
2547  elog(ERROR, "wrong number of partition key expressions");
2548 
2549  /* Re-stamp the expression with given varno. */
2550  partexpr = (Expr *) copyObject(lfirst(lc));
2551  ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2552  lc = lnext(partkey->partexprs, lc);
2553  }
2554 
2555  /* Base relations have a single expression per key. */
2556  partexprs[cnt] = list_make1(partexpr);
2557  }
2558 
2559  rel->partexprs = partexprs;
2560 
2561  /*
2562  * A base relation does not have nullable partition key expressions, since
2563  * no outer join is involved. We still allocate an array of empty
2564  * expression lists to keep partition key expression handling code simple.
2565  * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2566  */
2567  rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2568 }
2569 
2570 /*
2571  * set_baserel_partition_constraint
2572  *
2573  * Builds the partition constraint for the given base relation and sets it
2574  * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2575  * given relation.
2576  */
2577 static void
2579 {
2580  List *partconstr;
2581 
2582  if (rel->partition_qual) /* already done */
2583  return;
2584 
2585  /*
2586  * Run the partition quals through const-simplification similar to check
2587  * constraints. We skip canonicalize_qual, though, because partition
2588  * quals should be in canonical form already; also, since the qual is in
2589  * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2590  * format and back again.
2591  */
2592  partconstr = RelationGetPartitionQual(relation);
2593  if (partconstr)
2594  {
2595  partconstr = (List *) expression_planner((Expr *) partconstr);
2596  if (rel->relid != 1)
2597  ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2598  rel->partition_qual = partconstr;
2599  }
2600 }
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
uint32 BlockNumber
Definition: block.h:31
static int32 next
Definition: blutils.c:219
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
#define SizeOfPageHeaderData
Definition: bufpage.h:216
#define TextDatumGetCString(d)
Definition: builtins.h:98
signed short int16
Definition: c.h:481
#define MAXALIGN(LEN)
Definition: c.h:790
signed int int32
Definition: c.h:482
#define Assert(condition)
Definition: c.h:837
double float8
Definition: c.h:609
regproc RegProcedure
Definition: c.h:629
#define unlikely(x)
Definition: c.h:326
unsigned int Index
Definition: c.h:593
#define OidIsValid(objectId)
Definition: c.h:754
bool IsSystemRelation(Relation relation)
Definition: catalog.c:73
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:369
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2253
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39
double cpu_operator_cost
Definition: costsize.c:134
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1453
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1442
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:679
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:442
Oid GetForeignServerIdByRelId(Oid relid)
Definition: foreign.c:355
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition: heap.c:240
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
bool index_can_return(Relation indexRelation, int attno)
Definition: indexam.c:790
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
struct ItemIdData ItemIdData
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
void list_free(List *list)
Definition: list.c:1546
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
bool list_member(const List *list, const void *datum)
Definition: list.c:661
List * lcons(void *datum, List *list)
Definition: list.c:495
List * list_difference(const List *list1, const List *list2)
Definition: list.c:1237
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1557
Oid get_constraint_index(Oid conoid)
Definition: lsyscache.c:1113
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1212
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1190
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:1858
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3158
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1581
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:166
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, int16 *strategy)
Definition: lsyscache.c:207
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2578
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:105
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:760
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:240
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void * palloc(Size size)
Definition: mcxt.c:1317
bool IgnoreSystemIndexes
Definition: miscinit.c:81
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1830
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
@ ONCONFLICT_UPDATE
Definition: nodes.h:420
CmdType
Definition: nodes.h:263
@ CMD_MERGE
Definition: nodes.h:269
@ CMD_INSERT
Definition: nodes.h:267
@ CMD_DELETE
Definition: nodes.h:268
@ CMD_UPDATE
Definition: nodes.h:266
double Selectivity
Definition: nodes.h:250
#define makeNode(_type_)
Definition: nodes.h:155
JoinType
Definition: nodes.h:288
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
Definition: parsenodes.h:1023
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1024
@ RTE_VALUES
Definition: parsenodes.h:1022
@ RTE_SUBQUERY
Definition: parsenodes.h:1018
@ RTE_RESULT
Definition: parsenodes.h:1025
@ RTE_FUNCTION
Definition: parsenodes.h:1020
@ RTE_TABLEFUNC
Definition: parsenodes.h:1021
@ RTE_RELATION
Definition: parsenodes.h:1017
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition: partcache.c:277
PartitionKey RelationGetPartitionKey(Relation rel)
Definition: partcache.c:51
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition: partdesc.c:423
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition: partdesc.c:456
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:839
Bitmapset * Relids
Definition: pathnodes.h:30
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:570
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:604
@ RELOPT_BASEREL
Definition: pathnodes.h:827
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:829
#define AMFLAG_HAS_TID_RANGE
Definition: pathnodes.h:823
FormData_pg_attribute
Definition: pg_attribute.h:193
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
int errdetail_relkind_not_supported(char relkind)
Definition: pg_class.c:24
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define list_make1(x1)
Definition: pg_list.h:212
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1066
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition: plancat.c:2325
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1191
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition: plancat.c:2298
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition: plancat.c:589
int constraint_exclusion
Definition: plancat.c:57
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition: plancat.c:1582
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2158
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2248
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition: plancat.c:1273
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2097
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition: plancat.c:1772
get_relation_info_hook_type get_relation_info_hook
Definition: plancat.c:60
List * infer_arbiter_indexes(PlannerInfo *root)
Definition: plancat.c:704
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition: plancat.c:1393
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:1955
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1233
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2578
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition: plancat.c:1893
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition: plancat.c:984
static List * get_relation_statistics(RelOptInfo *rel, Relation relation)
Definition: plancat.c:1476
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:2373
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2216
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition: plancat.c:2403
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2510
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:1994
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:2035
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:116
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.h:21
Expr * expression_planner(Expr *expr)
Definition: planner.c:6735
int restrict_nonsystem_relation_kind
Definition: postgres.c:107
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:494
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
@ IS_NOT_NULL
Definition: primnodes.h:1952
tree ctl root
Definition: radixtree.h:1886
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:499
#define RelationGetRelid(relation)
Definition: rel.h:505
#define RelationGetParallelWorkers(relation, defaultpw)
Definition: rel.h:397
#define RelationGetDescr(relation)
Definition: rel.h:531
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:511
#define RelationGetRelationName(relation)
Definition: rel.h:539
#define RelationIsPermanent(relation)
Definition: rel.h:617
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4766
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5140
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4907
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4657
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5885
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:5027
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:668
TransactionId TransactionXmin
Definition: snapmgr.c:98
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
bool ccnoinherit
Definition: tupdesc.h:33
bool ccvalid
Definition: tupdesc.h:32
char * ccbin
Definition: tupdesc.h:31
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1259
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1263
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1261
HeapTupleHeader t_data
Definition: htup.h:68
amrestrpos_function amrestrpos
Definition: amapi.h:294
amcostestimate_function amcostestimate
Definition: amapi.h:281
bool amcanorderbyop
Definition: amapi.h:233
bool amoptionalkey
Definition: amapi.h:241
amgettuple_function amgettuple
Definition: amapi.h:290
amgetbitmap_function amgetbitmap
Definition: amapi.h:291
bool amsearcharray
Definition: amapi.h:243
ammarkpos_function ammarkpos
Definition: amapi.h:293
bool amcanparallel
Definition: amapi.h:253
bool amcanorder
Definition: amapi.h:231
amgettreeheight_function amgettreeheight
Definition: amapi.h:282
bool amsearchnulls
Definition: amapi.h:245
bool amcanparallel
Definition: pathnodes.h:1207
void(* amcostestimate)(struct PlannerInfo *, struct IndexPath *, double, Cost *, Cost *, Selectivity *, double *, double *) pg_node_attr(read_write_ignore)
Definition: pathnodes.h:1212
bool amoptionalkey
Definition: pathnodes.h:1200
Oid reltablespace
Definition: pathnodes.h:1122
bool amcanmarkpos
Definition: pathnodes.h:1209
List * indrestrictinfo
Definition: pathnodes.h:1184
bool amhasgettuple
Definition: pathnodes.h:1204
bool amcanorderbyop
Definition: pathnodes.h:1199
bool hypothetical
Definition: pathnodes.h:1193
List * indpred
Definition: pathnodes.h:1174
Cardinality tuples
Definition: pathnodes.h:1132
bool amsearcharray
Definition: pathnodes.h:1201
BlockNumber pages
Definition: pathnodes.h:1130
bool amsearchnulls
Definition: pathnodes.h:1202
bool amhasgetbitmap
Definition: pathnodes.h:1206
List * indextlist
Definition: pathnodes.h:1177
bool immediate
Definition: pathnodes.h:1191
Definition: pg_list.h:54
Definition: nodes.h:129
NullTestType nulltesttype
Definition: primnodes.h:1959
ParseLoc location
Definition: primnodes.h:1962
Expr * arg
Definition: primnodes.h:1958
List * arbiterElems
Definition: primnodes.h:2327
OnConflictAction action
Definition: primnodes.h:2324
Node * arbiterWhere
Definition: primnodes.h:2329
PartitionBoundInfo boundinfo
Definition: partdesc.h:38
Oid * partcollation
Definition: partcache.h:39
Oid * parttypcoll
Definition: partcache.h:47
int32 * parttypmod
Definition: partcache.h:43
Oid * partopfamily
Definition: partcache.h:34
bool * parttypbyval
Definition: partcache.h:45
PartitionStrategy strategy
Definition: partcache.h:27
List * partexprs
Definition: partcache.h:31
int16 * parttyplen
Definition: partcache.h:44
FmgrInfo * partsupfunc
Definition: partcache.h:36
Oid * partopcintype
Definition: partcache.h:35
AttrNumber * partattrs
Definition: partcache.h:29
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:601
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
List * targetList
Definition: parsenodes.h:193
Query * subquery
Definition: parsenodes.h:1104
RTEKind rtekind
Definition: parsenodes.h:1047
List * baserestrictinfo
Definition: pathnodes.h:985
uint32 amflags
Definition: pathnodes.h:958
Bitmapset * notnullattnums
Definition: pathnodes.h:936
List * partition_qual
Definition: pathnodes.h:1027
Index relid
Definition: pathnodes.h:918
List * statlist
Definition: pathnodes.h:946
Cardinality tuples
Definition: pathnodes.h:949
BlockNumber pages
Definition: pathnodes.h:948
RelOptKind reloptkind
Definition: pathnodes.h:865
List * indexlist
Definition: pathnodes.h:944
Oid reltablespace
Definition: pathnodes.h:920
Oid serverid
Definition: pathnodes.h:964
int rel_parallel_workers
Definition: pathnodes.h:956
AttrNumber max_attr
Definition: pathnodes.h:926
double allvisfrac
Definition: pathnodes.h:950
AttrNumber min_attr
Definition: pathnodes.h:924
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
struct IndexAmRoutine * rd_indam
Definition: rel.h:206
TriggerDesc * trigdesc
Definition: rel.h:117
Oid * rd_opcintype
Definition: rel.h:208
struct HeapTupleData * rd_indextuple
Definition: rel.h:194
int16 * rd_indoption
Definition: rel.h:211
TupleDesc rd_att
Definition: rel.h:112
Form_pg_index rd_index
Definition: rel.h:192
Oid * rd_opfamily
Definition: rel.h:207
Oid * rd_indcollation
Definition: rel.h:217
Form_pg_class rd_rel
Definition: rel.h:111
Expr * clause
Definition: pathnodes.h:2574
Bitmapset * keys
Definition: pathnodes.h:1292
struct PlannerInfo * root
Definition: supportnodes.h:136
struct PlannerInfo * root
Definition: supportnodes.h:163
struct PlannerInfo * root
Definition: supportnodes.h:96
struct SpecialJoinInfo * sjinfo
Definition: supportnodes.h:103
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:379
bool(* scan_bitmap_next_block)(TableScanDesc scan, BlockNumber *blockno, bool *recheck, uint64 *lossy_pages, uint64 *exact_pages)
Definition: tableam.h:819
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition: tableam.h:371
AttrNumber resno
Definition: primnodes.h:2192
bool trig_delete_before_row
Definition: reltrigger.h:66
bool trig_update_after_row
Definition: reltrigger.h:62
bool trig_insert_after_row
Definition: reltrigger.h:57
bool trig_update_before_row
Definition: reltrigger.h:61
bool trig_delete_after_row
Definition: reltrigger.h:67
bool trig_insert_before_row
Definition: reltrigger.h:56
bool has_not_null
Definition: tupdesc.h:44
AttrDefault * defval
Definition: tupdesc.h:39
bool has_generated_stored
Definition: tupdesc.h:45
ConstrCheck * check
Definition: tupdesc.h:40
uint16 num_defval
Definition: tupdesc.h:42
uint16 num_check
Definition: tupdesc.h:43
TupleConstr * constr
Definition: tupdesc.h:85
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
Definition: type.h:96
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:600
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:232
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: tableam.h:1946
#define RESTRICT_RELKIND_FOREIGN_TABLE
Definition: tcopprot.h:48
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define FirstNormalObjectId
Definition: transam.h:197
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:295
bool RecoveryInProgress(void)
Definition: xlog.c:6334