PostgreSQL Source Code  git master
plancat.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * plancat.c
4  * routines for accessing the system catalogs
5  *
6  *
7  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
8  * Portions Copyright (c) 1994, Regents of the University of California
9  *
10  *
11  * IDENTIFICATION
12  * src/backend/optimizer/util/plancat.c
13  *
14  *-------------------------------------------------------------------------
15  */
16 #include "postgres.h"
17 
18 #include <math.h>
19 
20 #include "access/genam.h"
21 #include "access/htup_details.h"
22 #include "access/nbtree.h"
23 #include "access/sysattr.h"
24 #include "access/table.h"
25 #include "access/tableam.h"
26 #include "access/transam.h"
27 #include "access/xlog.h"
28 #include "catalog/catalog.h"
29 #include "catalog/heap.h"
30 #include "catalog/pg_am.h"
31 #include "catalog/pg_proc.h"
34 #include "foreign/fdwapi.h"
35 #include "miscadmin.h"
36 #include "nodes/makefuncs.h"
37 #include "nodes/nodeFuncs.h"
38 #include "nodes/supportnodes.h"
39 #include "optimizer/clauses.h"
40 #include "optimizer/cost.h"
41 #include "optimizer/optimizer.h"
42 #include "optimizer/plancat.h"
43 #include "optimizer/prep.h"
44 #include "parser/parse_relation.h"
45 #include "parser/parsetree.h"
46 #include "partitioning/partdesc.h"
47 #include "rewrite/rewriteManip.h"
48 #include "statistics/statistics.h"
49 #include "storage/bufmgr.h"
50 #include "utils/builtins.h"
51 #include "utils/lsyscache.h"
52 #include "utils/partcache.h"
53 #include "utils/rel.h"
54 #include "utils/snapmgr.h"
55 #include "utils/syscache.h"
56 
57 /* GUC parameter */
59 
60 /* Hook for plugins to get control in get_relation_info() */
62 
63 
64 static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
65  Relation relation, bool inhparent);
66 static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
67  List *idxExprs);
69  Oid relationObjectId, RelOptInfo *rel,
70  bool include_noinherit,
71  bool include_notnull,
72  bool include_partition);
74  Relation heapRelation);
75 static List *get_relation_statistics(RelOptInfo *rel, Relation relation);
76 static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
77  Relation relation);
79  Relation relation);
80 static void set_baserel_partition_key_exprs(Relation relation,
81  RelOptInfo *rel);
82 static void set_baserel_partition_constraint(Relation relation,
83  RelOptInfo *rel);
84 
85 
86 /*
87  * get_relation_info -
88  * Retrieves catalog information for a given relation.
89  *
90  * Given the Oid of the relation, return the following info into fields
91  * of the RelOptInfo struct:
92  *
93  * min_attr lowest valid AttrNumber
94  * max_attr highest valid AttrNumber
95  * indexlist list of IndexOptInfos for relation's indexes
96  * statlist list of StatisticExtInfo for relation's statistic objects
97  * serverid if it's a foreign table, the server OID
98  * fdwroutine if it's a foreign table, the FDW function pointers
99  * pages number of pages
100  * tuples number of tuples
101  * rel_parallel_workers user-defined number of parallel workers
102  *
103  * Also, add information about the relation's foreign keys to root->fkey_list.
104  *
105  * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
106  * cases these are left as zeroes, but sometimes we need to compute attr
107  * widths here, and we may as well cache the results for costsize.c.
108  *
109  * If inhparent is true, all we need to do is set up the attr arrays:
110  * the RelOptInfo actually represents the appendrel formed by an inheritance
111  * tree, and so the parent rel's physical size and index information isn't
112  * important for it, however, for partitioned tables, we do populate the
113  * indexlist as the planner uses unique indexes as unique proofs for certain
114  * optimizations.
115  */
116 void
117 get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
118  RelOptInfo *rel)
119 {
120  Index varno = rel->relid;
121  Relation relation;
122  bool hasindex;
123  List *indexinfos = NIL;
124 
125  /*
126  * We need not lock the relation since it was already locked, either by
127  * the rewriter or when expand_inherited_rtentry() added it to the query's
128  * rangetable.
129  */
130  relation = table_open(relationObjectId, NoLock);
131 
132  /*
133  * Relations without a table AM can be used in a query only if they are of
134  * special-cased relkinds. This check prevents us from crashing later if,
135  * for example, a view's ON SELECT rule has gone missing. Note that
136  * table_open() already rejected indexes and composite types; spell the
137  * error the same way it does.
138  */
139  if (!relation->rd_tableam)
140  {
141  if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
142  relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
143  ereport(ERROR,
144  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
145  errmsg("cannot open relation \"%s\"",
146  RelationGetRelationName(relation)),
147  errdetail_relkind_not_supported(relation->rd_rel->relkind)));
148  }
149 
150  /* Temporary and unlogged relations are inaccessible during recovery. */
151  if (!RelationIsPermanent(relation) && RecoveryInProgress())
152  ereport(ERROR,
153  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
154  errmsg("cannot access temporary or unlogged relations during recovery")));
155 
157  rel->max_attr = RelationGetNumberOfAttributes(relation);
158  rel->reltablespace = RelationGetForm(relation)->reltablespace;
159 
160  Assert(rel->max_attr >= rel->min_attr);
161  rel->attr_needed = (Relids *)
162  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
163  rel->attr_widths = (int32 *)
164  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
165 
166  /*
167  * Estimate relation size --- unless it's an inheritance parent, in which
168  * case the size we want is not the rel's own size but the size of its
169  * inheritance tree. That will be computed in set_append_rel_size().
170  */
171  if (!inhparent)
172  estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
173  &rel->pages, &rel->tuples, &rel->allvisfrac);
174 
175  /* Retrieve the parallel_workers reloption, or -1 if not set. */
177 
178  /*
179  * Make list of indexes. Ignore indexes on system catalogs if told to.
180  * Don't bother with indexes from traditional inheritance parents. For
181  * partitioned tables, we need a list of at least unique indexes as these
182  * serve as unique proofs for certain planner optimizations. However,
183  * let's not discriminate here and just record all partitioned indexes
184  * whether they're unique indexes or not.
185  */
186  if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
187  || (IgnoreSystemIndexes && IsSystemRelation(relation)))
188  hasindex = false;
189  else
190  hasindex = relation->rd_rel->relhasindex;
191 
192  if (hasindex)
193  {
194  List *indexoidlist;
195  LOCKMODE lmode;
196  ListCell *l;
197 
198  indexoidlist = RelationGetIndexList(relation);
199 
200  /*
201  * For each index, we get the same type of lock that the executor will
202  * need, and do not release it. This saves a couple of trips to the
203  * shared lock manager while not creating any real loss of
204  * concurrency, because no schema changes could be happening on the
205  * index while we hold lock on the parent rel, and no lock type used
206  * for queries blocks any other kind of index operation.
207  */
208  lmode = root->simple_rte_array[varno]->rellockmode;
209 
210  foreach(l, indexoidlist)
211  {
212  Oid indexoid = lfirst_oid(l);
213  Relation indexRelation;
215  IndexAmRoutine *amroutine;
216  IndexOptInfo *info;
217  int ncolumns,
218  nkeycolumns;
219  int i;
220 
221  /*
222  * Extract info from the relation descriptor for the index.
223  */
224  indexRelation = index_open(indexoid, lmode);
225  index = indexRelation->rd_index;
226 
227  /*
228  * Ignore invalid indexes, since they can't safely be used for
229  * queries. Note that this is OK because the data structure we
230  * are constructing is only used by the planner --- the executor
231  * still needs to insert into "invalid" indexes, if they're marked
232  * indisready.
233  */
234  if (!index->indisvalid)
235  {
236  index_close(indexRelation, NoLock);
237  continue;
238  }
239 
240  /*
241  * If the index is valid, but cannot yet be used, ignore it; but
242  * mark the plan we are generating as transient. See
243  * src/backend/access/heap/README.HOT for discussion.
244  */
245  if (index->indcheckxmin &&
248  {
249  root->glob->transientPlan = true;
250  index_close(indexRelation, NoLock);
251  continue;
252  }
253 
254  info = makeNode(IndexOptInfo);
255 
256  info->indexoid = index->indexrelid;
257  info->reltablespace =
258  RelationGetForm(indexRelation)->reltablespace;
259  info->rel = rel;
260  info->ncolumns = ncolumns = index->indnatts;
261  info->nkeycolumns = nkeycolumns = index->indnkeyatts;
262 
263  info->indexkeys = (int *) palloc(sizeof(int) * ncolumns);
264  info->indexcollations = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
265  info->opfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
266  info->opcintype = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
267  info->canreturn = (bool *) palloc(sizeof(bool) * ncolumns);
268 
269  for (i = 0; i < ncolumns; i++)
270  {
271  info->indexkeys[i] = index->indkey.values[i];
272  info->canreturn[i] = index_can_return(indexRelation, i + 1);
273  }
274 
275  for (i = 0; i < nkeycolumns; i++)
276  {
277  info->opfamily[i] = indexRelation->rd_opfamily[i];
278  info->opcintype[i] = indexRelation->rd_opcintype[i];
279  info->indexcollations[i] = indexRelation->rd_indcollation[i];
280  }
281 
282  info->relam = indexRelation->rd_rel->relam;
283 
284  /*
285  * We don't have an AM for partitioned indexes, so we'll just
286  * NULLify the AM related fields for those.
287  */
288  if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
289  {
290  /* We copy just the fields we need, not all of rd_indam */
291  amroutine = indexRelation->rd_indam;
292  info->amcanorderbyop = amroutine->amcanorderbyop;
293  info->amoptionalkey = amroutine->amoptionalkey;
294  info->amsearcharray = amroutine->amsearcharray;
295  info->amsearchnulls = amroutine->amsearchnulls;
296  info->amcanparallel = amroutine->amcanparallel;
297  info->amhasgettuple = (amroutine->amgettuple != NULL);
298  info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
299  relation->rd_tableam->scan_bitmap_next_block != NULL;
300  info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
301  amroutine->amrestrpos != NULL);
302  info->amcostestimate = amroutine->amcostestimate;
303  Assert(info->amcostestimate != NULL);
304 
305  /* Fetch index opclass options */
306  info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
307 
308  /*
309  * Fetch the ordering information for the index, if any.
310  */
311  if (info->relam == BTREE_AM_OID)
312  {
313  /*
314  * If it's a btree index, we can use its opfamily OIDs
315  * directly as the sort ordering opfamily OIDs.
316  */
317  Assert(amroutine->amcanorder);
318 
319  info->sortopfamily = info->opfamily;
320  info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
321  info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
322 
323  for (i = 0; i < nkeycolumns; i++)
324  {
325  int16 opt = indexRelation->rd_indoption[i];
326 
327  info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
328  info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
329  }
330  }
331  else if (amroutine->amcanorder)
332  {
333  /*
334  * Otherwise, identify the corresponding btree opfamilies
335  * by trying to map this index's "<" operators into btree.
336  * Since "<" uniquely defines the behavior of a sort
337  * order, this is a sufficient test.
338  *
339  * XXX This method is rather slow and also requires the
340  * undesirable assumption that the other index AM numbers
341  * its strategies the same as btree. It'd be better to
342  * have a way to explicitly declare the corresponding
343  * btree opfamily for each opfamily of the other index
344  * type. But given the lack of current or foreseeable
345  * amcanorder index types, it's not worth expending more
346  * effort on now.
347  */
348  info->sortopfamily = (Oid *) palloc(sizeof(Oid) * nkeycolumns);
349  info->reverse_sort = (bool *) palloc(sizeof(bool) * nkeycolumns);
350  info->nulls_first = (bool *) palloc(sizeof(bool) * nkeycolumns);
351 
352  for (i = 0; i < nkeycolumns; i++)
353  {
354  int16 opt = indexRelation->rd_indoption[i];
355  Oid ltopr;
356  Oid btopfamily;
357  Oid btopcintype;
358  int16 btstrategy;
359 
360  info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
361  info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
362 
363  ltopr = get_opfamily_member(info->opfamily[i],
364  info->opcintype[i],
365  info->opcintype[i],
367  if (OidIsValid(ltopr) &&
369  &btopfamily,
370  &btopcintype,
371  &btstrategy) &&
372  btopcintype == info->opcintype[i] &&
373  btstrategy == BTLessStrategyNumber)
374  {
375  /* Successful mapping */
376  info->sortopfamily[i] = btopfamily;
377  }
378  else
379  {
380  /* Fail ... quietly treat index as unordered */
381  info->sortopfamily = NULL;
382  info->reverse_sort = NULL;
383  info->nulls_first = NULL;
384  break;
385  }
386  }
387  }
388  else
389  {
390  info->sortopfamily = NULL;
391  info->reverse_sort = NULL;
392  info->nulls_first = NULL;
393  }
394  }
395  else
396  {
397  info->amcanorderbyop = false;
398  info->amoptionalkey = false;
399  info->amsearcharray = false;
400  info->amsearchnulls = false;
401  info->amcanparallel = false;
402  info->amhasgettuple = false;
403  info->amhasgetbitmap = false;
404  info->amcanmarkpos = false;
405  info->amcostestimate = NULL;
406 
407  info->sortopfamily = NULL;
408  info->reverse_sort = NULL;
409  info->nulls_first = NULL;
410  }
411 
412  /*
413  * Fetch the index expressions and predicate, if any. We must
414  * modify the copies we obtain from the relcache to have the
415  * correct varno for the parent relation, so that they match up
416  * correctly against qual clauses.
417  */
418  info->indexprs = RelationGetIndexExpressions(indexRelation);
419  info->indpred = RelationGetIndexPredicate(indexRelation);
420  if (info->indexprs && varno != 1)
421  ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
422  if (info->indpred && varno != 1)
423  ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
424 
425  /* Build targetlist using the completed indexprs data */
426  info->indextlist = build_index_tlist(root, info, relation);
427 
428  info->indrestrictinfo = NIL; /* set later, in indxpath.c */
429  info->predOK = false; /* set later, in indxpath.c */
430  info->unique = index->indisunique;
431  info->immediate = index->indimmediate;
432  info->hypothetical = false;
433 
434  /*
435  * Estimate the index size. If it's not a partial index, we lock
436  * the number-of-tuples estimate to equal the parent table; if it
437  * is partial then we have to use the same methods as we would for
438  * a table, except we can be sure that the index is not larger
439  * than the table. We must ignore partitioned indexes here as as
440  * there are not physical indexes.
441  */
442  if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
443  {
444  if (info->indpred == NIL)
445  {
446  info->pages = RelationGetNumberOfBlocks(indexRelation);
447  info->tuples = rel->tuples;
448  }
449  else
450  {
451  double allvisfrac; /* dummy */
452 
453  estimate_rel_size(indexRelation, NULL,
454  &info->pages, &info->tuples, &allvisfrac);
455  if (info->tuples > rel->tuples)
456  info->tuples = rel->tuples;
457  }
458 
459  if (info->relam == BTREE_AM_OID)
460  {
461  /*
462  * For btrees, get tree height while we have the index
463  * open
464  */
465  info->tree_height = _bt_getrootheight(indexRelation);
466  }
467  else
468  {
469  /* For other index types, just set it to "unknown" for now */
470  info->tree_height = -1;
471  }
472  }
473  else
474  {
475  /* Zero these out for partitioned indexes */
476  info->pages = 0;
477  info->tuples = 0.0;
478  info->tree_height = -1;
479  }
480 
481  index_close(indexRelation, NoLock);
482 
483  /*
484  * We've historically used lcons() here. It'd make more sense to
485  * use lappend(), but that causes the planner to change behavior
486  * in cases where two indexes seem equally attractive. For now,
487  * stick with lcons() --- few tables should have so many indexes
488  * that the O(N^2) behavior of lcons() is really a problem.
489  */
490  indexinfos = lcons(info, indexinfos);
491  }
492 
493  list_free(indexoidlist);
494  }
495 
496  rel->indexlist = indexinfos;
497 
498  rel->statlist = get_relation_statistics(rel, relation);
499 
500  /* Grab foreign-table info using the relcache, while we have it */
501  if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
502  {
504  rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
505  }
506  else
507  {
508  rel->serverid = InvalidOid;
509  rel->fdwroutine = NULL;
510  }
511 
512  /* Collect info about relation's foreign keys, if relevant */
513  get_relation_foreign_keys(root, rel, relation, inhparent);
514 
515  /* Collect info about functions implemented by the rel's table AM. */
516  if (relation->rd_tableam &&
517  relation->rd_tableam->scan_set_tidrange != NULL &&
518  relation->rd_tableam->scan_getnextslot_tidrange != NULL)
520 
521  /*
522  * Collect info about relation's partitioning scheme, if any. Only
523  * inheritance parents may be partitioned.
524  */
525  if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
526  set_relation_partition_info(root, rel, relation);
527 
528  table_close(relation, NoLock);
529 
530  /*
531  * Allow a plugin to editorialize on the info we obtained from the
532  * catalogs. Actions might include altering the assumed relation size,
533  * removing an index, or adding a hypothetical index to the indexlist.
534  */
536  (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
537 }
538 
539 /*
540  * get_relation_foreign_keys -
541  * Retrieves foreign key information for a given relation.
542  *
543  * ForeignKeyOptInfos for relevant foreign keys are created and added to
544  * root->fkey_list. We do this now while we have the relcache entry open.
545  * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
546  * until all RelOptInfos have been built, but the cost of re-opening the
547  * relcache entries would probably exceed any savings.
548  */
549 static void
551  Relation relation, bool inhparent)
552 {
553  List *rtable = root->parse->rtable;
554  List *cachedfkeys;
555  ListCell *lc;
556 
557  /*
558  * If it's not a baserel, we don't care about its FKs. Also, if the query
559  * references only a single relation, we can skip the lookup since no FKs
560  * could satisfy the requirements below.
561  */
562  if (rel->reloptkind != RELOPT_BASEREL ||
563  list_length(rtable) < 2)
564  return;
565 
566  /*
567  * If it's the parent of an inheritance tree, ignore its FKs. We could
568  * make useful FK-based deductions if we found that all members of the
569  * inheritance tree have equivalent FK constraints, but detecting that
570  * would require code that hasn't been written.
571  */
572  if (inhparent)
573  return;
574 
575  /*
576  * Extract data about relation's FKs from the relcache. Note that this
577  * list belongs to the relcache and might disappear in a cache flush, so
578  * we must not do any further catalog access within this function.
579  */
580  cachedfkeys = RelationGetFKeyList(relation);
581 
582  /*
583  * Figure out which FKs are of interest for this query, and create
584  * ForeignKeyOptInfos for them. We want only FKs that reference some
585  * other RTE of the current query. In queries containing self-joins,
586  * there might be more than one other RTE for a referenced table, and we
587  * should make a ForeignKeyOptInfo for each occurrence.
588  *
589  * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
590  * too hard to identify those here, so we might end up making some useless
591  * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
592  * them again.
593  */
594  foreach(lc, cachedfkeys)
595  {
596  ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
597  Index rti;
598  ListCell *lc2;
599 
600  /* conrelid should always be that of the table we're considering */
601  Assert(cachedfk->conrelid == RelationGetRelid(relation));
602 
603  /* Scan to find other RTEs matching confrelid */
604  rti = 0;
605  foreach(lc2, rtable)
606  {
607  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
608  ForeignKeyOptInfo *info;
609 
610  rti++;
611  /* Ignore if not the correct table */
612  if (rte->rtekind != RTE_RELATION ||
613  rte->relid != cachedfk->confrelid)
614  continue;
615  /* Ignore if it's an inheritance parent; doesn't really match */
616  if (rte->inh)
617  continue;
618  /* Ignore self-referential FKs; we only care about joins */
619  if (rti == rel->relid)
620  continue;
621 
622  /* OK, let's make an entry */
623  info = makeNode(ForeignKeyOptInfo);
624  info->con_relid = rel->relid;
625  info->ref_relid = rti;
626  info->nkeys = cachedfk->nkeys;
627  memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
628  memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
629  memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
630  /* zero out fields to be filled by match_foreign_keys_to_quals */
631  info->nmatched_ec = 0;
632  info->nconst_ec = 0;
633  info->nmatched_rcols = 0;
634  info->nmatched_ri = 0;
635  memset(info->eclass, 0, sizeof(info->eclass));
636  memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
637  memset(info->rinfos, 0, sizeof(info->rinfos));
638 
639  root->fkey_list = lappend(root->fkey_list, info);
640  }
641  }
642 }
643 
644 /*
645  * infer_arbiter_indexes -
646  * Determine the unique indexes used to arbitrate speculative insertion.
647  *
648  * Uses user-supplied inference clause expressions and predicate to match a
649  * unique index from those defined and ready on the heap relation (target).
650  * An exact match is required on columns/expressions (although they can appear
651  * in any order). However, the predicate given by the user need only restrict
652  * insertion to a subset of some part of the table covered by some particular
653  * unique index (in particular, a partial unique index) in order to be
654  * inferred.
655  *
656  * The implementation does not consider which B-Tree operator class any
657  * particular available unique index attribute uses, unless one was specified
658  * in the inference specification. The same is true of collations. In
659  * particular, there is no system dependency on the default operator class for
660  * the purposes of inference. If no opclass (or collation) is specified, then
661  * all matching indexes (that may or may not match the default in terms of
662  * each attribute opclass/collation) are used for inference.
663  */
664 List *
666 {
667  OnConflictExpr *onconflict = root->parse->onConflict;
668 
669  /* Iteration state */
670  RangeTblEntry *rte;
671  Relation relation;
672  Oid indexOidFromConstraint = InvalidOid;
673  List *indexList;
674  ListCell *l;
675 
676  /* Normalized inference attributes and inference expressions: */
677  Bitmapset *inferAttrs = NULL;
678  List *inferElems = NIL;
679 
680  /* Results */
681  List *results = NIL;
682 
683  /*
684  * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
685  * specification or named constraint. ON CONFLICT DO UPDATE statements
686  * must always provide one or the other (but parser ought to have caught
687  * that already).
688  */
689  if (onconflict->arbiterElems == NIL &&
690  onconflict->constraint == InvalidOid)
691  return NIL;
692 
693  /*
694  * We need not lock the relation since it was already locked, either by
695  * the rewriter or when expand_inherited_rtentry() added it to the query's
696  * rangetable.
697  */
698  rte = rt_fetch(root->parse->resultRelation, root->parse->rtable);
699 
700  relation = table_open(rte->relid, NoLock);
701 
702  /*
703  * Build normalized/BMS representation of plain indexed attributes, as
704  * well as a separate list of expression items. This simplifies matching
705  * the cataloged definition of indexes.
706  */
707  foreach(l, onconflict->arbiterElems)
708  {
709  InferenceElem *elem = (InferenceElem *) lfirst(l);
710  Var *var;
711  int attno;
712 
713  if (!IsA(elem->expr, Var))
714  {
715  /* If not a plain Var, just shove it in inferElems for now */
716  inferElems = lappend(inferElems, elem->expr);
717  continue;
718  }
719 
720  var = (Var *) elem->expr;
721  attno = var->varattno;
722 
723  if (attno == 0)
724  ereport(ERROR,
725  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
726  errmsg("whole row unique index inference specifications are not supported")));
727 
728  inferAttrs = bms_add_member(inferAttrs,
730  }
731 
732  /*
733  * Lookup named constraint's index. This is not immediately returned
734  * because some additional sanity checks are required.
735  */
736  if (onconflict->constraint != InvalidOid)
737  {
738  indexOidFromConstraint = get_constraint_index(onconflict->constraint);
739 
740  if (indexOidFromConstraint == InvalidOid)
741  ereport(ERROR,
742  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
743  errmsg("constraint in ON CONFLICT clause has no associated index")));
744  }
745 
746  /*
747  * Using that representation, iterate through the list of indexes on the
748  * target relation to try and find a match
749  */
750  indexList = RelationGetIndexList(relation);
751 
752  foreach(l, indexList)
753  {
754  Oid indexoid = lfirst_oid(l);
755  Relation idxRel;
756  Form_pg_index idxForm;
757  Bitmapset *indexedAttrs;
758  List *idxExprs;
759  List *predExprs;
760  AttrNumber natt;
761  ListCell *el;
762 
763  /*
764  * Extract info from the relation descriptor for the index. Obtain
765  * the same lock type that the executor will ultimately use.
766  *
767  * Let executor complain about !indimmediate case directly, because
768  * enforcement needs to occur there anyway when an inference clause is
769  * omitted.
770  */
771  idxRel = index_open(indexoid, rte->rellockmode);
772  idxForm = idxRel->rd_index;
773 
774  if (!idxForm->indisvalid)
775  goto next;
776 
777  /*
778  * Note that we do not perform a check against indcheckxmin (like e.g.
779  * get_relation_info()) here to eliminate candidates, because
780  * uniqueness checking only cares about the most recently committed
781  * tuple versions.
782  */
783 
784  /*
785  * Look for match on "ON constraint_name" variant, which may not be
786  * unique constraint. This can only be a constraint name.
787  */
788  if (indexOidFromConstraint == idxForm->indexrelid)
789  {
790  if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
791  ereport(ERROR,
792  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
793  errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
794 
795  results = lappend_oid(results, idxForm->indexrelid);
796  list_free(indexList);
797  index_close(idxRel, NoLock);
798  table_close(relation, NoLock);
799  return results;
800  }
801  else if (indexOidFromConstraint != InvalidOid)
802  {
803  /* No point in further work for index in named constraint case */
804  goto next;
805  }
806 
807  /*
808  * Only considering conventional inference at this point (not named
809  * constraints), so index under consideration can be immediately
810  * skipped if it's not unique
811  */
812  if (!idxForm->indisunique)
813  goto next;
814 
815  /* Build BMS representation of plain (non expression) index attrs */
816  indexedAttrs = NULL;
817  for (natt = 0; natt < idxForm->indnkeyatts; natt++)
818  {
819  int attno = idxRel->rd_index->indkey.values[natt];
820 
821  if (attno != 0)
822  indexedAttrs = bms_add_member(indexedAttrs,
824  }
825 
826  /* Non-expression attributes (if any) must match */
827  if (!bms_equal(indexedAttrs, inferAttrs))
828  goto next;
829 
830  /* Expression attributes (if any) must match */
831  idxExprs = RelationGetIndexExpressions(idxRel);
832  foreach(el, onconflict->arbiterElems)
833  {
834  InferenceElem *elem = (InferenceElem *) lfirst(el);
835 
836  /*
837  * Ensure that collation/opclass aspects of inference expression
838  * element match. Even though this loop is primarily concerned
839  * with matching expressions, it is a convenient point to check
840  * this for both expressions and ordinary (non-expression)
841  * attributes appearing as inference elements.
842  */
843  if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
844  goto next;
845 
846  /*
847  * Plain Vars don't factor into count of expression elements, and
848  * the question of whether or not they satisfy the index
849  * definition has already been considered (they must).
850  */
851  if (IsA(elem->expr, Var))
852  continue;
853 
854  /*
855  * Might as well avoid redundant check in the rare cases where
856  * infer_collation_opclass_match() is required to do real work.
857  * Otherwise, check that element expression appears in cataloged
858  * index definition.
859  */
860  if (elem->infercollid != InvalidOid ||
861  elem->inferopclass != InvalidOid ||
862  list_member(idxExprs, elem->expr))
863  continue;
864 
865  goto next;
866  }
867 
868  /*
869  * Now that all inference elements were matched, ensure that the
870  * expression elements from inference clause are not missing any
871  * cataloged expressions. This does the right thing when unique
872  * indexes redundantly repeat the same attribute, or if attributes
873  * redundantly appear multiple times within an inference clause.
874  */
875  if (list_difference(idxExprs, inferElems) != NIL)
876  goto next;
877 
878  /*
879  * If it's a partial index, its predicate must be implied by the ON
880  * CONFLICT's WHERE clause.
881  */
882  predExprs = RelationGetIndexPredicate(idxRel);
883 
884  if (!predicate_implied_by(predExprs, (List *) onconflict->arbiterWhere, false))
885  goto next;
886 
887  results = lappend_oid(results, idxForm->indexrelid);
888 next:
889  index_close(idxRel, NoLock);
890  }
891 
892  list_free(indexList);
893  table_close(relation, NoLock);
894 
895  if (results == NIL)
896  ereport(ERROR,
897  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
898  errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
899 
900  return results;
901 }
902 
903 /*
904  * infer_collation_opclass_match - ensure infer element opclass/collation match
905  *
906  * Given unique index inference element from inference specification, if
907  * collation was specified, or if opclass was specified, verify that there is
908  * at least one matching indexed attribute (occasionally, there may be more).
909  * Skip this in the common case where inference specification does not include
910  * collation or opclass (instead matching everything, regardless of cataloged
911  * collation/opclass of indexed attribute).
912  *
913  * At least historically, Postgres has not offered collations or opclasses
914  * with alternative-to-default notions of equality, so these additional
915  * criteria should only be required infrequently.
916  *
917  * Don't give up immediately when an inference element matches some attribute
918  * cataloged as indexed but not matching additional opclass/collation
919  * criteria. This is done so that the implementation is as forgiving as
920  * possible of redundancy within cataloged index attributes (or, less
921  * usefully, within inference specification elements). If collations actually
922  * differ between apparently redundantly indexed attributes (redundant within
923  * or across indexes), then there really is no redundancy as such.
924  *
925  * Note that if an inference element specifies an opclass and a collation at
926  * once, both must match in at least one particular attribute within index
927  * catalog definition in order for that inference element to be considered
928  * inferred/satisfied.
929  */
930 static bool
932  List *idxExprs)
933 {
934  AttrNumber natt;
935  Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
936  Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
937  int nplain = 0; /* # plain attrs observed */
938 
939  /*
940  * If inference specification element lacks collation/opclass, then no
941  * need to check for exact match.
942  */
943  if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
944  return true;
945 
946  /*
947  * Lookup opfamily and input type, for matching indexes
948  */
949  if (elem->inferopclass)
950  {
951  inferopfamily = get_opclass_family(elem->inferopclass);
952  inferopcinputtype = get_opclass_input_type(elem->inferopclass);
953  }
954 
955  for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
956  {
957  Oid opfamily = idxRel->rd_opfamily[natt - 1];
958  Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
959  Oid collation = idxRel->rd_indcollation[natt - 1];
960  int attno = idxRel->rd_index->indkey.values[natt - 1];
961 
962  if (attno != 0)
963  nplain++;
964 
965  if (elem->inferopclass != InvalidOid &&
966  (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
967  {
968  /* Attribute needed to match opclass, but didn't */
969  continue;
970  }
971 
972  if (elem->infercollid != InvalidOid &&
973  elem->infercollid != collation)
974  {
975  /* Attribute needed to match collation, but didn't */
976  continue;
977  }
978 
979  /* If one matching index att found, good enough -- return true */
980  if (IsA(elem->expr, Var))
981  {
982  if (((Var *) elem->expr)->varattno == attno)
983  return true;
984  }
985  else if (attno == 0)
986  {
987  Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
988 
989  /*
990  * Note that unlike routines like match_index_to_operand() we
991  * don't need to care about RelabelType. Neither the index
992  * definition nor the inference clause should contain them.
993  */
994  if (equal(elem->expr, nattExpr))
995  return true;
996  }
997  }
998 
999  return false;
1000 }
1001 
1002 /*
1003  * estimate_rel_size - estimate # pages and # tuples in a table or index
1004  *
1005  * We also estimate the fraction of the pages that are marked all-visible in
1006  * the visibility map, for use in estimation of index-only scans.
1007  *
1008  * If attr_widths isn't NULL, it points to the zero-index entry of the
1009  * relation's attr_widths[] cache; we fill this in if we have need to compute
1010  * the attribute widths for estimation purposes.
1011  */
1012 void
1014  BlockNumber *pages, double *tuples, double *allvisfrac)
1015 {
1016  BlockNumber curpages;
1017  BlockNumber relpages;
1018  double reltuples;
1019  BlockNumber relallvisible;
1020  double density;
1021 
1022  if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
1023  {
1024  table_relation_estimate_size(rel, attr_widths, pages, tuples,
1025  allvisfrac);
1026  }
1027  else if (rel->rd_rel->relkind == RELKIND_INDEX)
1028  {
1029  /*
1030  * XXX: It'd probably be good to move this into a callback, individual
1031  * index types e.g. know if they have a metapage.
1032  */
1033 
1034  /* it has storage, ok to call the smgr */
1035  curpages = RelationGetNumberOfBlocks(rel);
1036 
1037  /* report estimated # pages */
1038  *pages = curpages;
1039  /* quick exit if rel is clearly empty */
1040  if (curpages == 0)
1041  {
1042  *tuples = 0;
1043  *allvisfrac = 0;
1044  return;
1045  }
1046 
1047  /* coerce values in pg_class to more desirable types */
1048  relpages = (BlockNumber) rel->rd_rel->relpages;
1049  reltuples = (double) rel->rd_rel->reltuples;
1050  relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1051 
1052  /*
1053  * Discount the metapage while estimating the number of tuples. This
1054  * is a kluge because it assumes more than it ought to about index
1055  * structure. Currently it's OK for btree, hash, and GIN indexes but
1056  * suspect for GiST indexes.
1057  */
1058  if (relpages > 0)
1059  {
1060  curpages--;
1061  relpages--;
1062  }
1063 
1064  /* estimate number of tuples from previous tuple density */
1065  if (reltuples >= 0 && relpages > 0)
1066  density = reltuples / (double) relpages;
1067  else
1068  {
1069  /*
1070  * If we have no data because the relation was never vacuumed,
1071  * estimate tuple width from attribute datatypes. We assume here
1072  * that the pages are completely full, which is OK for tables
1073  * (since they've presumably not been VACUUMed yet) but is
1074  * probably an overestimate for indexes. Fortunately
1075  * get_relation_info() can clamp the overestimate to the parent
1076  * table's size.
1077  *
1078  * Note: this code intentionally disregards alignment
1079  * considerations, because (a) that would be gilding the lily
1080  * considering how crude the estimate is, and (b) it creates
1081  * platform dependencies in the default plans which are kind of a
1082  * headache for regression testing.
1083  *
1084  * XXX: Should this logic be more index specific?
1085  */
1086  int32 tuple_width;
1087 
1088  tuple_width = get_rel_data_width(rel, attr_widths);
1089  tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1090  tuple_width += sizeof(ItemIdData);
1091  /* note: integer division is intentional here */
1092  density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1093  }
1094  *tuples = rint(density * (double) curpages);
1095 
1096  /*
1097  * We use relallvisible as-is, rather than scaling it up like we do
1098  * for the pages and tuples counts, on the theory that any pages added
1099  * since the last VACUUM are most likely not marked all-visible. But
1100  * costsize.c wants it converted to a fraction.
1101  */
1102  if (relallvisible == 0 || curpages <= 0)
1103  *allvisfrac = 0;
1104  else if ((double) relallvisible >= curpages)
1105  *allvisfrac = 1;
1106  else
1107  *allvisfrac = (double) relallvisible / curpages;
1108  }
1109  else
1110  {
1111  /*
1112  * Just use whatever's in pg_class. This covers foreign tables,
1113  * sequences, and also relkinds without storage (shouldn't get here?);
1114  * see initializations in AddNewRelationTuple(). Note that FDW must
1115  * cope if reltuples is -1!
1116  */
1117  *pages = rel->rd_rel->relpages;
1118  *tuples = rel->rd_rel->reltuples;
1119  *allvisfrac = 0;
1120  }
1121 }
1122 
1123 
1124 /*
1125  * get_rel_data_width
1126  *
1127  * Estimate the average width of (the data part of) the relation's tuples.
1128  *
1129  * If attr_widths isn't NULL, it points to the zero-index entry of the
1130  * relation's attr_widths[] cache; use and update that cache as appropriate.
1131  *
1132  * Currently we ignore dropped columns. Ideally those should be included
1133  * in the result, but we haven't got any way to get info about them; and
1134  * since they might be mostly NULLs, treating them as zero-width is not
1135  * necessarily the wrong thing anyway.
1136  */
1137 int32
1139 {
1140  int32 tuple_width = 0;
1141  int i;
1142 
1143  for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1144  {
1145  Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1146  int32 item_width;
1147 
1148  if (att->attisdropped)
1149  continue;
1150 
1151  /* use previously cached data, if any */
1152  if (attr_widths != NULL && attr_widths[i] > 0)
1153  {
1154  tuple_width += attr_widths[i];
1155  continue;
1156  }
1157 
1158  /* This should match set_rel_width() in costsize.c */
1159  item_width = get_attavgwidth(RelationGetRelid(rel), i);
1160  if (item_width <= 0)
1161  {
1162  item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1163  Assert(item_width > 0);
1164  }
1165  if (attr_widths != NULL)
1166  attr_widths[i] = item_width;
1167  tuple_width += item_width;
1168  }
1169 
1170  return tuple_width;
1171 }
1172 
1173 /*
1174  * get_relation_data_width
1175  *
1176  * External API for get_rel_data_width: same behavior except we have to
1177  * open the relcache entry.
1178  */
1179 int32
1180 get_relation_data_width(Oid relid, int32 *attr_widths)
1181 {
1182  int32 result;
1183  Relation relation;
1184 
1185  /* As above, assume relation is already locked */
1186  relation = table_open(relid, NoLock);
1187 
1188  result = get_rel_data_width(relation, attr_widths);
1189 
1190  table_close(relation, NoLock);
1191 
1192  return result;
1193 }
1194 
1195 
1196 /*
1197  * get_relation_constraints
1198  *
1199  * Retrieve the applicable constraint expressions of the given relation.
1200  *
1201  * Returns a List (possibly empty) of constraint expressions. Each one
1202  * has been canonicalized, and its Vars are changed to have the varno
1203  * indicated by rel->relid. This allows the expressions to be easily
1204  * compared to expressions taken from WHERE.
1205  *
1206  * If include_noinherit is true, it's okay to include constraints that
1207  * are marked NO INHERIT.
1208  *
1209  * If include_notnull is true, "col IS NOT NULL" expressions are generated
1210  * and added to the result for each column that's marked attnotnull.
1211  *
1212  * If include_partition is true, and the relation is a partition,
1213  * also include the partitioning constraints.
1214  *
1215  * Note: at present this is invoked at most once per relation per planner
1216  * run, and in many cases it won't be invoked at all, so there seems no
1217  * point in caching the data in RelOptInfo.
1218  */
1219 static List *
1221  Oid relationObjectId, RelOptInfo *rel,
1222  bool include_noinherit,
1223  bool include_notnull,
1224  bool include_partition)
1225 {
1226  List *result = NIL;
1227  Index varno = rel->relid;
1228  Relation relation;
1229  TupleConstr *constr;
1230 
1231  /*
1232  * We assume the relation has already been safely locked.
1233  */
1234  relation = table_open(relationObjectId, NoLock);
1235 
1236  constr = relation->rd_att->constr;
1237  if (constr != NULL)
1238  {
1239  int num_check = constr->num_check;
1240  int i;
1241 
1242  for (i = 0; i < num_check; i++)
1243  {
1244  Node *cexpr;
1245 
1246  /*
1247  * If this constraint hasn't been fully validated yet, we must
1248  * ignore it here. Also ignore if NO INHERIT and we weren't told
1249  * that that's safe.
1250  */
1251  if (!constr->check[i].ccvalid)
1252  continue;
1253  if (constr->check[i].ccnoinherit && !include_noinherit)
1254  continue;
1255 
1256  cexpr = stringToNode(constr->check[i].ccbin);
1257 
1258  /*
1259  * Run each expression through const-simplification and
1260  * canonicalization. This is not just an optimization, but is
1261  * necessary, because we will be comparing it to
1262  * similarly-processed qual clauses, and may fail to detect valid
1263  * matches without this. This must match the processing done to
1264  * qual clauses in preprocess_expression()! (We can skip the
1265  * stuff involving subqueries, however, since we don't allow any
1266  * in check constraints.)
1267  */
1268  cexpr = eval_const_expressions(root, cexpr);
1269 
1270  cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1271 
1272  /* Fix Vars to have the desired varno */
1273  if (varno != 1)
1274  ChangeVarNodes(cexpr, 1, varno, 0);
1275 
1276  /*
1277  * Finally, convert to implicit-AND format (that is, a List) and
1278  * append the resulting item(s) to our output list.
1279  */
1280  result = list_concat(result,
1281  make_ands_implicit((Expr *) cexpr));
1282  }
1283 
1284  /* Add NOT NULL constraints in expression form, if requested */
1285  if (include_notnull && constr->has_not_null)
1286  {
1287  int natts = relation->rd_att->natts;
1288 
1289  for (i = 1; i <= natts; i++)
1290  {
1291  Form_pg_attribute att = TupleDescAttr(relation->rd_att, i - 1);
1292 
1293  if (att->attnotnull && !att->attisdropped)
1294  {
1295  NullTest *ntest = makeNode(NullTest);
1296 
1297  ntest->arg = (Expr *) makeVar(varno,
1298  i,
1299  att->atttypid,
1300  att->atttypmod,
1301  att->attcollation,
1302  0);
1303  ntest->nulltesttype = IS_NOT_NULL;
1304 
1305  /*
1306  * argisrow=false is correct even for a composite column,
1307  * because attnotnull does not represent a SQL-spec IS NOT
1308  * NULL test in such a case, just IS DISTINCT FROM NULL.
1309  */
1310  ntest->argisrow = false;
1311  ntest->location = -1;
1312  result = lappend(result, ntest);
1313  }
1314  }
1315  }
1316  }
1317 
1318  /*
1319  * Add partitioning constraints, if requested.
1320  */
1321  if (include_partition && relation->rd_rel->relispartition)
1322  {
1323  /* make sure rel->partition_qual is set */
1324  set_baserel_partition_constraint(relation, rel);
1325  result = list_concat(result, rel->partition_qual);
1326  }
1327 
1328  table_close(relation, NoLock);
1329 
1330  return result;
1331 }
1332 
1333 /*
1334  * Try loading data for the statistics object.
1335  *
1336  * We don't know if the data (specified by statOid and inh value) exist.
1337  * The result is stored in stainfos list.
1338  */
1339 static void
1341  Oid statOid, bool inh,
1342  Bitmapset *keys, List *exprs)
1343 {
1344  Form_pg_statistic_ext_data dataForm;
1345  HeapTuple dtup;
1346 
1348  ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1349  if (!HeapTupleIsValid(dtup))
1350  return;
1351 
1352  dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1353 
1354  /* add one StatisticExtInfo for each kind built */
1355  if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1356  {
1358 
1359  info->statOid = statOid;
1360  info->inherit = dataForm->stxdinherit;
1361  info->rel = rel;
1362  info->kind = STATS_EXT_NDISTINCT;
1363  info->keys = bms_copy(keys);
1364  info->exprs = exprs;
1365 
1366  *stainfos = lappend(*stainfos, info);
1367  }
1368 
1369  if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1370  {
1372 
1373  info->statOid = statOid;
1374  info->inherit = dataForm->stxdinherit;
1375  info->rel = rel;
1376  info->kind = STATS_EXT_DEPENDENCIES;
1377  info->keys = bms_copy(keys);
1378  info->exprs = exprs;
1379 
1380  *stainfos = lappend(*stainfos, info);
1381  }
1382 
1383  if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1384  {
1386 
1387  info->statOid = statOid;
1388  info->inherit = dataForm->stxdinherit;
1389  info->rel = rel;
1390  info->kind = STATS_EXT_MCV;
1391  info->keys = bms_copy(keys);
1392  info->exprs = exprs;
1393 
1394  *stainfos = lappend(*stainfos, info);
1395  }
1396 
1397  if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1398  {
1400 
1401  info->statOid = statOid;
1402  info->inherit = dataForm->stxdinherit;
1403  info->rel = rel;
1404  info->kind = STATS_EXT_EXPRESSIONS;
1405  info->keys = bms_copy(keys);
1406  info->exprs = exprs;
1407 
1408  *stainfos = lappend(*stainfos, info);
1409  }
1410 
1411  ReleaseSysCache(dtup);
1412 }
1413 
1414 /*
1415  * get_relation_statistics
1416  * Retrieve extended statistics defined on the table.
1417  *
1418  * Returns a List (possibly empty) of StatisticExtInfo objects describing
1419  * the statistics. Note that this doesn't load the actual statistics data,
1420  * just the identifying metadata. Only stats actually built are considered.
1421  */
1422 static List *
1424 {
1425  Index varno = rel->relid;
1426  List *statoidlist;
1427  List *stainfos = NIL;
1428  ListCell *l;
1429 
1430  statoidlist = RelationGetStatExtList(relation);
1431 
1432  foreach(l, statoidlist)
1433  {
1434  Oid statOid = lfirst_oid(l);
1435  Form_pg_statistic_ext staForm;
1436  HeapTuple htup;
1437  Bitmapset *keys = NULL;
1438  List *exprs = NIL;
1439  int i;
1440 
1441  htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1442  if (!HeapTupleIsValid(htup))
1443  elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1444  staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1445 
1446  /*
1447  * First, build the array of columns covered. This is ultimately
1448  * wasted if no stats within the object have actually been built, but
1449  * it doesn't seem worth troubling over that case.
1450  */
1451  for (i = 0; i < staForm->stxkeys.dim1; i++)
1452  keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1453 
1454  /*
1455  * Preprocess expressions (if any). We read the expressions, run them
1456  * through eval_const_expressions, and fix the varnos.
1457  *
1458  * XXX We don't know yet if there are any data for this stats object,
1459  * with either stxdinherit value. But it's reasonable to assume there
1460  * is at least one of those, possibly both. So it's better to process
1461  * keys and expressions here.
1462  */
1463  {
1464  bool isnull;
1465  Datum datum;
1466 
1467  /* decode expression (if any) */
1468  datum = SysCacheGetAttr(STATEXTOID, htup,
1469  Anum_pg_statistic_ext_stxexprs, &isnull);
1470 
1471  if (!isnull)
1472  {
1473  char *exprsString;
1474 
1475  exprsString = TextDatumGetCString(datum);
1476  exprs = (List *) stringToNode(exprsString);
1477  pfree(exprsString);
1478 
1479  /*
1480  * Run the expressions through eval_const_expressions. This is
1481  * not just an optimization, but is necessary, because the
1482  * planner will be comparing them to similarly-processed qual
1483  * clauses, and may fail to detect valid matches without this.
1484  * We must not use canonicalize_qual, however, since these
1485  * aren't qual expressions.
1486  */
1487  exprs = (List *) eval_const_expressions(NULL, (Node *) exprs);
1488 
1489  /* May as well fix opfuncids too */
1490  fix_opfuncids((Node *) exprs);
1491 
1492  /*
1493  * Modify the copies we obtain from the relcache to have the
1494  * correct varno for the parent relation, so that they match
1495  * up correctly against qual clauses.
1496  */
1497  if (varno != 1)
1498  ChangeVarNodes((Node *) exprs, 1, varno, 0);
1499  }
1500  }
1501 
1502  /* extract statistics for possible values of stxdinherit flag */
1503 
1504  get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1505 
1506  get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1507 
1508  ReleaseSysCache(htup);
1509  bms_free(keys);
1510  }
1511 
1512  list_free(statoidlist);
1513 
1514  return stainfos;
1515 }
1516 
1517 /*
1518  * relation_excluded_by_constraints
1519  *
1520  * Detect whether the relation need not be scanned because it has either
1521  * self-inconsistent restrictions, or restrictions inconsistent with the
1522  * relation's applicable constraints.
1523  *
1524  * Note: this examines only rel->relid, rel->reloptkind, and
1525  * rel->baserestrictinfo; therefore it can be called before filling in
1526  * other fields of the RelOptInfo.
1527  */
1528 bool
1530  RelOptInfo *rel, RangeTblEntry *rte)
1531 {
1532  bool include_noinherit;
1533  bool include_notnull;
1534  bool include_partition = false;
1535  List *safe_restrictions;
1536  List *constraint_pred;
1537  List *safe_constraints;
1538  ListCell *lc;
1539 
1540  /* As of now, constraint exclusion works only with simple relations. */
1541  Assert(IS_SIMPLE_REL(rel));
1542 
1543  /*
1544  * If there are no base restriction clauses, we have no hope of proving
1545  * anything below, so fall out quickly.
1546  */
1547  if (rel->baserestrictinfo == NIL)
1548  return false;
1549 
1550  /*
1551  * Regardless of the setting of constraint_exclusion, detect
1552  * constant-FALSE-or-NULL restriction clauses. Because const-folding will
1553  * reduce "anything AND FALSE" to just "FALSE", any such case should
1554  * result in exactly one baserestrictinfo entry. This doesn't fire very
1555  * often, but it seems cheap enough to be worth doing anyway. (Without
1556  * this, we'd miss some optimizations that 9.5 and earlier found via much
1557  * more roundabout methods.)
1558  */
1559  if (list_length(rel->baserestrictinfo) == 1)
1560  {
1562  Expr *clause = rinfo->clause;
1563 
1564  if (clause && IsA(clause, Const) &&
1565  (((Const *) clause)->constisnull ||
1566  !DatumGetBool(((Const *) clause)->constvalue)))
1567  return true;
1568  }
1569 
1570  /*
1571  * Skip further tests, depending on constraint_exclusion.
1572  */
1573  switch (constraint_exclusion)
1574  {
1576  /* In 'off' mode, never make any further tests */
1577  return false;
1578 
1580 
1581  /*
1582  * When constraint_exclusion is set to 'partition' we only handle
1583  * appendrel members. Partition pruning has already been applied,
1584  * so there is no need to consider the rel's partition constraints
1585  * here.
1586  */
1587  if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1588  break; /* appendrel member, so process it */
1589  return false;
1590 
1592 
1593  /*
1594  * In 'on' mode, always apply constraint exclusion. If we are
1595  * considering a baserel that is a partition (i.e., it was
1596  * directly named rather than expanded from a parent table), then
1597  * its partition constraints haven't been considered yet, so
1598  * include them in the processing here.
1599  */
1600  if (rel->reloptkind == RELOPT_BASEREL)
1601  include_partition = true;
1602  break; /* always try to exclude */
1603  }
1604 
1605  /*
1606  * Check for self-contradictory restriction clauses. We dare not make
1607  * deductions with non-immutable functions, but any immutable clauses that
1608  * are self-contradictory allow us to conclude the scan is unnecessary.
1609  *
1610  * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1611  * expecting to see any in its predicate argument.
1612  */
1613  safe_restrictions = NIL;
1614  foreach(lc, rel->baserestrictinfo)
1615  {
1616  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1617 
1618  if (!contain_mutable_functions((Node *) rinfo->clause))
1619  safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1620  }
1621 
1622  /*
1623  * We can use weak refutation here, since we're comparing restriction
1624  * clauses with restriction clauses.
1625  */
1626  if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1627  return true;
1628 
1629  /*
1630  * Only plain relations have constraints, so stop here for other rtekinds.
1631  */
1632  if (rte->rtekind != RTE_RELATION)
1633  return false;
1634 
1635  /*
1636  * If we are scanning just this table, we can use NO INHERIT constraints,
1637  * but not if we're scanning its children too. (Note that partitioned
1638  * tables should never have NO INHERIT constraints; but it's not necessary
1639  * for us to assume that here.)
1640  */
1641  include_noinherit = !rte->inh;
1642 
1643  /*
1644  * Currently, attnotnull constraints must be treated as NO INHERIT unless
1645  * this is a partitioned table. In future we might track their
1646  * inheritance status more accurately, allowing this to be refined.
1647  */
1648  include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1649 
1650  /*
1651  * Fetch the appropriate set of constraint expressions.
1652  */
1653  constraint_pred = get_relation_constraints(root, rte->relid, rel,
1654  include_noinherit,
1655  include_notnull,
1656  include_partition);
1657 
1658  /*
1659  * We do not currently enforce that CHECK constraints contain only
1660  * immutable functions, so it's necessary to check here. We daren't draw
1661  * conclusions from plan-time evaluation of non-immutable functions. Since
1662  * they're ANDed, we can just ignore any mutable constraints in the list,
1663  * and reason about the rest.
1664  */
1665  safe_constraints = NIL;
1666  foreach(lc, constraint_pred)
1667  {
1668  Node *pred = (Node *) lfirst(lc);
1669 
1670  if (!contain_mutable_functions(pred))
1671  safe_constraints = lappend(safe_constraints, pred);
1672  }
1673 
1674  /*
1675  * The constraints are effectively ANDed together, so we can just try to
1676  * refute the entire collection at once. This may allow us to make proofs
1677  * that would fail if we took them individually.
1678  *
1679  * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
1680  * an obvious optimization. Some of the clauses might be OR clauses that
1681  * have volatile and nonvolatile subclauses, and it's OK to make
1682  * deductions with the nonvolatile parts.
1683  *
1684  * We need strong refutation because we have to prove that the constraints
1685  * would yield false, not just NULL.
1686  */
1687  if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
1688  return true;
1689 
1690  return false;
1691 }
1692 
1693 
1694 /*
1695  * build_physical_tlist
1696  *
1697  * Build a targetlist consisting of exactly the relation's user attributes,
1698  * in order. The executor can special-case such tlists to avoid a projection
1699  * step at runtime, so we use such tlists preferentially for scan nodes.
1700  *
1701  * Exception: if there are any dropped or missing columns, we punt and return
1702  * NIL. Ideally we would like to handle these cases too. However this
1703  * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
1704  * for a tlist that includes vars of no-longer-existent types. In theory we
1705  * could dig out the required info from the pg_attribute entries of the
1706  * relation, but that data is not readily available to ExecTypeFromTL.
1707  * For now, we don't apply the physical-tlist optimization when there are
1708  * dropped cols.
1709  *
1710  * We also support building a "physical" tlist for subqueries, functions,
1711  * values lists, table expressions, and CTEs, since the same optimization can
1712  * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
1713  * NamedTuplestoreScan, and WorkTableScan nodes.
1714  */
1715 List *
1717 {
1718  List *tlist = NIL;
1719  Index varno = rel->relid;
1720  RangeTblEntry *rte = planner_rt_fetch(varno, root);
1721  Relation relation;
1722  Query *subquery;
1723  Var *var;
1724  ListCell *l;
1725  int attrno,
1726  numattrs;
1727  List *colvars;
1728 
1729  switch (rte->rtekind)
1730  {
1731  case RTE_RELATION:
1732  /* Assume we already have adequate lock */
1733  relation = table_open(rte->relid, NoLock);
1734 
1735  numattrs = RelationGetNumberOfAttributes(relation);
1736  for (attrno = 1; attrno <= numattrs; attrno++)
1737  {
1738  Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
1739  attrno - 1);
1740 
1741  if (att_tup->attisdropped || att_tup->atthasmissing)
1742  {
1743  /* found a dropped or missing col, so punt */
1744  tlist = NIL;
1745  break;
1746  }
1747 
1748  var = makeVar(varno,
1749  attrno,
1750  att_tup->atttypid,
1751  att_tup->atttypmod,
1752  att_tup->attcollation,
1753  0);
1754 
1755  tlist = lappend(tlist,
1756  makeTargetEntry((Expr *) var,
1757  attrno,
1758  NULL,
1759  false));
1760  }
1761 
1762  table_close(relation, NoLock);
1763  break;
1764 
1765  case RTE_SUBQUERY:
1766  subquery = rte->subquery;
1767  foreach(l, subquery->targetList)
1768  {
1769  TargetEntry *tle = (TargetEntry *) lfirst(l);
1770 
1771  /*
1772  * A resjunk column of the subquery can be reflected as
1773  * resjunk in the physical tlist; we need not punt.
1774  */
1775  var = makeVarFromTargetEntry(varno, tle);
1776 
1777  tlist = lappend(tlist,
1778  makeTargetEntry((Expr *) var,
1779  tle->resno,
1780  NULL,
1781  tle->resjunk));
1782  }
1783  break;
1784 
1785  case RTE_FUNCTION:
1786  case RTE_TABLEFUNC:
1787  case RTE_VALUES:
1788  case RTE_CTE:
1789  case RTE_NAMEDTUPLESTORE:
1790  case RTE_RESULT:
1791  /* Not all of these can have dropped cols, but share code anyway */
1792  expandRTE(rte, varno, 0, -1, true /* include dropped */ ,
1793  NULL, &colvars);
1794  foreach(l, colvars)
1795  {
1796  var = (Var *) lfirst(l);
1797 
1798  /*
1799  * A non-Var in expandRTE's output means a dropped column;
1800  * must punt.
1801  */
1802  if (!IsA(var, Var))
1803  {
1804  tlist = NIL;
1805  break;
1806  }
1807 
1808  tlist = lappend(tlist,
1809  makeTargetEntry((Expr *) var,
1810  var->varattno,
1811  NULL,
1812  false));
1813  }
1814  break;
1815 
1816  default:
1817  /* caller error */
1818  elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
1819  (int) rte->rtekind);
1820  break;
1821  }
1822 
1823  return tlist;
1824 }
1825 
1826 /*
1827  * build_index_tlist
1828  *
1829  * Build a targetlist representing the columns of the specified index.
1830  * Each column is represented by a Var for the corresponding base-relation
1831  * column, or an expression in base-relation Vars, as appropriate.
1832  *
1833  * There are never any dropped columns in indexes, so unlike
1834  * build_physical_tlist, we need no failure case.
1835  */
1836 static List *
1838  Relation heapRelation)
1839 {
1840  List *tlist = NIL;
1841  Index varno = index->rel->relid;
1842  ListCell *indexpr_item;
1843  int i;
1844 
1845  indexpr_item = list_head(index->indexprs);
1846  for (i = 0; i < index->ncolumns; i++)
1847  {
1848  int indexkey = index->indexkeys[i];
1849  Expr *indexvar;
1850 
1851  if (indexkey != 0)
1852  {
1853  /* simple column */
1854  const FormData_pg_attribute *att_tup;
1855 
1856  if (indexkey < 0)
1857  att_tup = SystemAttributeDefinition(indexkey);
1858  else
1859  att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
1860 
1861  indexvar = (Expr *) makeVar(varno,
1862  indexkey,
1863  att_tup->atttypid,
1864  att_tup->atttypmod,
1865  att_tup->attcollation,
1866  0);
1867  }
1868  else
1869  {
1870  /* expression column */
1871  if (indexpr_item == NULL)
1872  elog(ERROR, "wrong number of index expressions");
1873  indexvar = (Expr *) lfirst(indexpr_item);
1874  indexpr_item = lnext(index->indexprs, indexpr_item);
1875  }
1876 
1877  tlist = lappend(tlist,
1878  makeTargetEntry(indexvar,
1879  i + 1,
1880  NULL,
1881  false));
1882  }
1883  if (indexpr_item != NULL)
1884  elog(ERROR, "wrong number of index expressions");
1885 
1886  return tlist;
1887 }
1888 
1889 /*
1890  * restriction_selectivity
1891  *
1892  * Returns the selectivity of a specified restriction operator clause.
1893  * This code executes registered procedures stored in the
1894  * operator relation, by calling the function manager.
1895  *
1896  * See clause_selectivity() for the meaning of the additional parameters.
1897  */
1900  Oid operatorid,
1901  List *args,
1902  Oid inputcollid,
1903  int varRelid)
1904 {
1905  RegProcedure oprrest = get_oprrest(operatorid);
1906  float8 result;
1907 
1908  /*
1909  * if the oprrest procedure is missing for whatever reason, use a
1910  * selectivity of 0.5
1911  */
1912  if (!oprrest)
1913  return (Selectivity) 0.5;
1914 
1915  result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
1916  inputcollid,
1917  PointerGetDatum(root),
1918  ObjectIdGetDatum(operatorid),
1920  Int32GetDatum(varRelid)));
1921 
1922  if (result < 0.0 || result > 1.0)
1923  elog(ERROR, "invalid restriction selectivity: %f", result);
1924 
1925  return (Selectivity) result;
1926 }
1927 
1928 /*
1929  * join_selectivity
1930  *
1931  * Returns the selectivity of a specified join operator clause.
1932  * This code executes registered procedures stored in the
1933  * operator relation, by calling the function manager.
1934  *
1935  * See clause_selectivity() for the meaning of the additional parameters.
1936  */
1939  Oid operatorid,
1940  List *args,
1941  Oid inputcollid,
1942  JoinType jointype,
1943  SpecialJoinInfo *sjinfo)
1944 {
1945  RegProcedure oprjoin = get_oprjoin(operatorid);
1946  float8 result;
1947 
1948  /*
1949  * if the oprjoin procedure is missing for whatever reason, use a
1950  * selectivity of 0.5
1951  */
1952  if (!oprjoin)
1953  return (Selectivity) 0.5;
1954 
1955  result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
1956  inputcollid,
1957  PointerGetDatum(root),
1958  ObjectIdGetDatum(operatorid),
1960  Int16GetDatum(jointype),
1961  PointerGetDatum(sjinfo)));
1962 
1963  if (result < 0.0 || result > 1.0)
1964  elog(ERROR, "invalid join selectivity: %f", result);
1965 
1966  return (Selectivity) result;
1967 }
1968 
1969 /*
1970  * function_selectivity
1971  *
1972  * Returns the selectivity of a specified boolean function clause.
1973  * This code executes registered procedures stored in the
1974  * pg_proc relation, by calling the function manager.
1975  *
1976  * See clause_selectivity() for the meaning of the additional parameters.
1977  */
1980  Oid funcid,
1981  List *args,
1982  Oid inputcollid,
1983  bool is_join,
1984  int varRelid,
1985  JoinType jointype,
1986  SpecialJoinInfo *sjinfo)
1987 {
1988  RegProcedure prosupport = get_func_support(funcid);
1990  SupportRequestSelectivity *sresult;
1991 
1992  /*
1993  * If no support function is provided, use our historical default
1994  * estimate, 0.3333333. This seems a pretty unprincipled choice, but
1995  * Postgres has been using that estimate for function calls since 1992.
1996  * The hoariness of this behavior suggests that we should not be in too
1997  * much hurry to use another value.
1998  */
1999  if (!prosupport)
2000  return (Selectivity) 0.3333333;
2001 
2002  req.type = T_SupportRequestSelectivity;
2003  req.root = root;
2004  req.funcid = funcid;
2005  req.args = args;
2006  req.inputcollid = inputcollid;
2007  req.is_join = is_join;
2008  req.varRelid = varRelid;
2009  req.jointype = jointype;
2010  req.sjinfo = sjinfo;
2011  req.selectivity = -1; /* to catch failure to set the value */
2012 
2013  sresult = (SupportRequestSelectivity *)
2014  DatumGetPointer(OidFunctionCall1(prosupport,
2015  PointerGetDatum(&req)));
2016 
2017  /* If support function fails, use default */
2018  if (sresult != &req)
2019  return (Selectivity) 0.3333333;
2020 
2021  if (req.selectivity < 0.0 || req.selectivity > 1.0)
2022  elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2023 
2024  return (Selectivity) req.selectivity;
2025 }
2026 
2027 /*
2028  * add_function_cost
2029  *
2030  * Get an estimate of the execution cost of a function, and *add* it to
2031  * the contents of *cost. The estimate may include both one-time and
2032  * per-tuple components, since QualCost does.
2033  *
2034  * The funcid must always be supplied. If it is being called as the
2035  * implementation of a specific parsetree node (FuncExpr, OpExpr,
2036  * WindowFunc, etc), pass that as "node", else pass NULL.
2037  *
2038  * In some usages root might be NULL, too.
2039  */
2040 void
2041 add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2042  QualCost *cost)
2043 {
2044  HeapTuple proctup;
2045  Form_pg_proc procform;
2046 
2047  proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2048  if (!HeapTupleIsValid(proctup))
2049  elog(ERROR, "cache lookup failed for function %u", funcid);
2050  procform = (Form_pg_proc) GETSTRUCT(proctup);
2051 
2052  if (OidIsValid(procform->prosupport))
2053  {
2054  SupportRequestCost req;
2055  SupportRequestCost *sresult;
2056 
2057  req.type = T_SupportRequestCost;
2058  req.root = root;
2059  req.funcid = funcid;
2060  req.node = node;
2061 
2062  /* Initialize cost fields so that support function doesn't have to */
2063  req.startup = 0;
2064  req.per_tuple = 0;
2065 
2066  sresult = (SupportRequestCost *)
2067  DatumGetPointer(OidFunctionCall1(procform->prosupport,
2068  PointerGetDatum(&req)));
2069 
2070  if (sresult == &req)
2071  {
2072  /* Success, so accumulate support function's estimate into *cost */
2073  cost->startup += req.startup;
2074  cost->per_tuple += req.per_tuple;
2075  ReleaseSysCache(proctup);
2076  return;
2077  }
2078  }
2079 
2080  /* No support function, or it failed, so rely on procost */
2081  cost->per_tuple += procform->procost * cpu_operator_cost;
2082 
2083  ReleaseSysCache(proctup);
2084 }
2085 
2086 /*
2087  * get_function_rows
2088  *
2089  * Get an estimate of the number of rows returned by a set-returning function.
2090  *
2091  * The funcid must always be supplied. In current usage, the calling node
2092  * will always be supplied, and will be either a FuncExpr or OpExpr.
2093  * But it's a good idea to not fail if it's NULL.
2094  *
2095  * In some usages root might be NULL, too.
2096  *
2097  * Note: this returns the unfiltered result of the support function, if any.
2098  * It's usually a good idea to apply clamp_row_est() to the result, but we
2099  * leave it to the caller to do so.
2100  */
2101 double
2102 get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2103 {
2104  HeapTuple proctup;
2105  Form_pg_proc procform;
2106  double result;
2107 
2108  proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2109  if (!HeapTupleIsValid(proctup))
2110  elog(ERROR, "cache lookup failed for function %u", funcid);
2111  procform = (Form_pg_proc) GETSTRUCT(proctup);
2112 
2113  Assert(procform->proretset); /* else caller error */
2114 
2115  if (OidIsValid(procform->prosupport))
2116  {
2117  SupportRequestRows req;
2118  SupportRequestRows *sresult;
2119 
2120  req.type = T_SupportRequestRows;
2121  req.root = root;
2122  req.funcid = funcid;
2123  req.node = node;
2124 
2125  req.rows = 0; /* just for sanity */
2126 
2127  sresult = (SupportRequestRows *)
2128  DatumGetPointer(OidFunctionCall1(procform->prosupport,
2129  PointerGetDatum(&req)));
2130 
2131  if (sresult == &req)
2132  {
2133  /* Success */
2134  ReleaseSysCache(proctup);
2135  return req.rows;
2136  }
2137  }
2138 
2139  /* No support function, or it failed, so rely on prorows */
2140  result = procform->prorows;
2141 
2142  ReleaseSysCache(proctup);
2143 
2144  return result;
2145 }
2146 
2147 /*
2148  * has_unique_index
2149  *
2150  * Detect whether there is a unique index on the specified attribute
2151  * of the specified relation, thus allowing us to conclude that all
2152  * the (non-null) values of the attribute are distinct.
2153  *
2154  * This function does not check the index's indimmediate property, which
2155  * means that uniqueness may transiently fail to hold intra-transaction.
2156  * That's appropriate when we are making statistical estimates, but beware
2157  * of using this for any correctness proofs.
2158  */
2159 bool
2161 {
2162  ListCell *ilist;
2163 
2164  foreach(ilist, rel->indexlist)
2165  {
2166  IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2167 
2168  /*
2169  * Note: ignore partial indexes, since they don't allow us to conclude
2170  * that all attr values are distinct, *unless* they are marked predOK
2171  * which means we know the index's predicate is satisfied by the
2172  * query. We don't take any interest in expressional indexes either.
2173  * Also, a multicolumn unique index doesn't allow us to conclude that
2174  * just the specified attr is unique.
2175  */
2176  if (index->unique &&
2177  index->nkeycolumns == 1 &&
2178  index->indexkeys[0] == attno &&
2179  (index->indpred == NIL || index->predOK))
2180  return true;
2181  }
2182  return false;
2183 }
2184 
2185 
2186 /*
2187  * has_row_triggers
2188  *
2189  * Detect whether the specified relation has any row-level triggers for event.
2190  */
2191 bool
2193 {
2194  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2195  Relation relation;
2196  TriggerDesc *trigDesc;
2197  bool result = false;
2198 
2199  /* Assume we already have adequate lock */
2200  relation = table_open(rte->relid, NoLock);
2201 
2202  trigDesc = relation->trigdesc;
2203  switch (event)
2204  {
2205  case CMD_INSERT:
2206  if (trigDesc &&
2207  (trigDesc->trig_insert_after_row ||
2208  trigDesc->trig_insert_before_row))
2209  result = true;
2210  break;
2211  case CMD_UPDATE:
2212  if (trigDesc &&
2213  (trigDesc->trig_update_after_row ||
2214  trigDesc->trig_update_before_row))
2215  result = true;
2216  break;
2217  case CMD_DELETE:
2218  if (trigDesc &&
2219  (trigDesc->trig_delete_after_row ||
2220  trigDesc->trig_delete_before_row))
2221  result = true;
2222  break;
2223  /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2224  case CMD_MERGE:
2225  result = false;
2226  break;
2227  default:
2228  elog(ERROR, "unrecognized CmdType: %d", (int) event);
2229  break;
2230  }
2231 
2232  table_close(relation, NoLock);
2233  return result;
2234 }
2235 
2236 /*
2237  * has_stored_generated_columns
2238  *
2239  * Does table identified by RTI have any STORED GENERATED columns?
2240  */
2241 bool
2243 {
2244  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2245  Relation relation;
2246  TupleDesc tupdesc;
2247  bool result = false;
2248 
2249  /* Assume we already have adequate lock */
2250  relation = table_open(rte->relid, NoLock);
2251 
2252  tupdesc = RelationGetDescr(relation);
2253  result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2254 
2255  table_close(relation, NoLock);
2256 
2257  return result;
2258 }
2259 
2260 /*
2261  * get_dependent_generated_columns
2262  *
2263  * Get the column numbers of any STORED GENERATED columns of the relation
2264  * that depend on any column listed in target_cols. Both the input and
2265  * result bitmapsets contain column numbers offset by
2266  * FirstLowInvalidHeapAttributeNumber.
2267  */
2268 Bitmapset *
2270  Bitmapset *target_cols)
2271 {
2272  Bitmapset *dependentCols = NULL;
2273  RangeTblEntry *rte = planner_rt_fetch(rti, root);
2274  Relation relation;
2275  TupleDesc tupdesc;
2276  TupleConstr *constr;
2277 
2278  /* Assume we already have adequate lock */
2279  relation = table_open(rte->relid, NoLock);
2280 
2281  tupdesc = RelationGetDescr(relation);
2282  constr = tupdesc->constr;
2283 
2284  if (constr && constr->has_generated_stored)
2285  {
2286  for (int i = 0; i < constr->num_defval; i++)
2287  {
2288  AttrDefault *defval = &constr->defval[i];
2289  Node *expr;
2290  Bitmapset *attrs_used = NULL;
2291 
2292  /* skip if not generated column */
2293  if (!TupleDescAttr(tupdesc, defval->adnum - 1)->attgenerated)
2294  continue;
2295 
2296  /* identify columns this generated column depends on */
2297  expr = stringToNode(defval->adbin);
2298  pull_varattnos(expr, 1, &attrs_used);
2299 
2300  if (bms_overlap(target_cols, attrs_used))
2301  dependentCols = bms_add_member(dependentCols,
2303  }
2304  }
2305 
2306  table_close(relation, NoLock);
2307 
2308  return dependentCols;
2309 }
2310 
2311 /*
2312  * set_relation_partition_info
2313  *
2314  * Set partitioning scheme and related information for a partitioned table.
2315  */
2316 static void
2318  Relation relation)
2319 {
2320  PartitionDesc partdesc;
2321 
2322  /*
2323  * Create the PartitionDirectory infrastructure if we didn't already.
2324  */
2325  if (root->glob->partition_directory == NULL)
2326  {
2327  root->glob->partition_directory =
2329  }
2330 
2331  partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2332  relation);
2333  rel->part_scheme = find_partition_scheme(root, relation);
2334  Assert(partdesc != NULL && rel->part_scheme != NULL);
2335  rel->boundinfo = partdesc->boundinfo;
2336  rel->nparts = partdesc->nparts;
2337  set_baserel_partition_key_exprs(relation, rel);
2338  set_baserel_partition_constraint(relation, rel);
2339 }
2340 
2341 /*
2342  * find_partition_scheme
2343  *
2344  * Find or create a PartitionScheme for this Relation.
2345  */
2346 static PartitionScheme
2348 {
2349  PartitionKey partkey = RelationGetPartitionKey(relation);
2350  ListCell *lc;
2351  int partnatts,
2352  i;
2353  PartitionScheme part_scheme;
2354 
2355  /* A partitioned table should have a partition key. */
2356  Assert(partkey != NULL);
2357 
2358  partnatts = partkey->partnatts;
2359 
2360  /* Search for a matching partition scheme and return if found one. */
2361  foreach(lc, root->part_schemes)
2362  {
2363  part_scheme = lfirst(lc);
2364 
2365  /* Match partitioning strategy and number of keys. */
2366  if (partkey->strategy != part_scheme->strategy ||
2367  partnatts != part_scheme->partnatts)
2368  continue;
2369 
2370  /* Match partition key type properties. */
2371  if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2372  sizeof(Oid) * partnatts) != 0 ||
2373  memcmp(partkey->partopcintype, part_scheme->partopcintype,
2374  sizeof(Oid) * partnatts) != 0 ||
2375  memcmp(partkey->partcollation, part_scheme->partcollation,
2376  sizeof(Oid) * partnatts) != 0)
2377  continue;
2378 
2379  /*
2380  * Length and byval information should match when partopcintype
2381  * matches.
2382  */
2383  Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2384  sizeof(int16) * partnatts) == 0);
2385  Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2386  sizeof(bool) * partnatts) == 0);
2387 
2388  /*
2389  * If partopfamily and partopcintype matched, must have the same
2390  * partition comparison functions. Note that we cannot reliably
2391  * Assert the equality of function structs themselves for they might
2392  * be different across PartitionKey's, so just Assert for the function
2393  * OIDs.
2394  */
2395 #ifdef USE_ASSERT_CHECKING
2396  for (i = 0; i < partkey->partnatts; i++)
2397  Assert(partkey->partsupfunc[i].fn_oid ==
2398  part_scheme->partsupfunc[i].fn_oid);
2399 #endif
2400 
2401  /* Found matching partition scheme. */
2402  return part_scheme;
2403  }
2404 
2405  /*
2406  * Did not find matching partition scheme. Create one copying relevant
2407  * information from the relcache. We need to copy the contents of the
2408  * array since the relcache entry may not survive after we have closed the
2409  * relation.
2410  */
2411  part_scheme = (PartitionScheme) palloc0(sizeof(PartitionSchemeData));
2412  part_scheme->strategy = partkey->strategy;
2413  part_scheme->partnatts = partkey->partnatts;
2414 
2415  part_scheme->partopfamily = (Oid *) palloc(sizeof(Oid) * partnatts);
2416  memcpy(part_scheme->partopfamily, partkey->partopfamily,
2417  sizeof(Oid) * partnatts);
2418 
2419  part_scheme->partopcintype = (Oid *) palloc(sizeof(Oid) * partnatts);
2420  memcpy(part_scheme->partopcintype, partkey->partopcintype,
2421  sizeof(Oid) * partnatts);
2422 
2423  part_scheme->partcollation = (Oid *) palloc(sizeof(Oid) * partnatts);
2424  memcpy(part_scheme->partcollation, partkey->partcollation,
2425  sizeof(Oid) * partnatts);
2426 
2427  part_scheme->parttyplen = (int16 *) palloc(sizeof(int16) * partnatts);
2428  memcpy(part_scheme->parttyplen, partkey->parttyplen,
2429  sizeof(int16) * partnatts);
2430 
2431  part_scheme->parttypbyval = (bool *) palloc(sizeof(bool) * partnatts);
2432  memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2433  sizeof(bool) * partnatts);
2434 
2435  part_scheme->partsupfunc = (FmgrInfo *)
2436  palloc(sizeof(FmgrInfo) * partnatts);
2437  for (i = 0; i < partnatts; i++)
2438  fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2440 
2441  /* Add the partitioning scheme to PlannerInfo. */
2442  root->part_schemes = lappend(root->part_schemes, part_scheme);
2443 
2444  return part_scheme;
2445 }
2446 
2447 /*
2448  * set_baserel_partition_key_exprs
2449  *
2450  * Builds partition key expressions for the given base relation and fills
2451  * rel->partexprs.
2452  */
2453 static void
2455  RelOptInfo *rel)
2456 {
2457  PartitionKey partkey = RelationGetPartitionKey(relation);
2458  int partnatts;
2459  int cnt;
2460  List **partexprs;
2461  ListCell *lc;
2462  Index varno = rel->relid;
2463 
2464  Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2465 
2466  /* A partitioned table should have a partition key. */
2467  Assert(partkey != NULL);
2468 
2469  partnatts = partkey->partnatts;
2470  partexprs = (List **) palloc(sizeof(List *) * partnatts);
2471  lc = list_head(partkey->partexprs);
2472 
2473  for (cnt = 0; cnt < partnatts; cnt++)
2474  {
2475  Expr *partexpr;
2476  AttrNumber attno = partkey->partattrs[cnt];
2477 
2478  if (attno != InvalidAttrNumber)
2479  {
2480  /* Single column partition key is stored as a Var node. */
2481  Assert(attno > 0);
2482 
2483  partexpr = (Expr *) makeVar(varno, attno,
2484  partkey->parttypid[cnt],
2485  partkey->parttypmod[cnt],
2486  partkey->parttypcoll[cnt], 0);
2487  }
2488  else
2489  {
2490  if (lc == NULL)
2491  elog(ERROR, "wrong number of partition key expressions");
2492 
2493  /* Re-stamp the expression with given varno. */
2494  partexpr = (Expr *) copyObject(lfirst(lc));
2495  ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2496  lc = lnext(partkey->partexprs, lc);
2497  }
2498 
2499  /* Base relations have a single expression per key. */
2500  partexprs[cnt] = list_make1(partexpr);
2501  }
2502 
2503  rel->partexprs = partexprs;
2504 
2505  /*
2506  * A base relation does not have nullable partition key expressions, since
2507  * no outer join is involved. We still allocate an array of empty
2508  * expression lists to keep partition key expression handling code simple.
2509  * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2510  */
2511  rel->nullable_partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2512 }
2513 
2514 /*
2515  * set_baserel_partition_constraint
2516  *
2517  * Builds the partition constraint for the given base relation and sets it
2518  * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2519  * given relation.
2520  */
2521 static void
2523 {
2524  List *partconstr;
2525 
2526  if (rel->partition_qual) /* already done */
2527  return;
2528 
2529  /*
2530  * Run the partition quals through const-simplification similar to check
2531  * constraints. We skip canonicalize_qual, though, because partition
2532  * quals should be in canonical form already; also, since the qual is in
2533  * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2534  * format and back again.
2535  */
2536  partconstr = RelationGetPartitionQual(relation);
2537  if (partconstr)
2538  {
2539  partconstr = (List *) expression_planner((Expr *) partconstr);
2540  if (rel->relid != 1)
2541  ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2542  rel->partition_qual = partconstr;
2543  }
2544 }
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:94
void bms_free(Bitmapset *a)
Definition: bitmapset.c:209
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:755
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:511
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:74
uint32 BlockNumber
Definition: block.h:31
static int32 next
Definition: blutils.c:219
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:161
#define SizeOfPageHeaderData
Definition: bufpage.h:213
#define TextDatumGetCString(d)
Definition: builtins.h:95
signed short int16
Definition: c.h:477
#define MAXALIGN(LEN)
Definition: c.h:795
signed int int32
Definition: c.h:478
double float8
Definition: c.h:614
regproc RegProcedure
Definition: c.h:634
unsigned int Index
Definition: c.h:598
#define OidIsValid(objectId)
Definition: c.h:759
bool IsSystemRelation(Relation relation)
Definition: catalog.c:75
bool contain_mutable_functions(Node *clause)
Definition: clauses.c:367
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2163
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39
double cpu_operator_cost
Definition: costsize.c:124
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool statext_is_kind_built(HeapTuple htup, char type)
Datum OidFunctionCall5Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4, Datum arg5)
Definition: fmgr.c:1425
Datum OidFunctionCall4Coll(Oid functionId, Oid collation, Datum arg1, Datum arg2, Datum arg3, Datum arg4)
Definition: fmgr.c:1414
void fmgr_info_copy(FmgrInfo *dstinfo, FmgrInfo *srcinfo, MemoryContext destcxt)
Definition: fmgr.c:580
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:680
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:429
Oid GetForeignServerIdByRelId(Oid relid)
Definition: foreign.c:342
const FormData_pg_attribute * SystemAttributeDefinition(AttrNumber attno)
Definition: heap.c:239
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:158
bool index_can_return(Relation indexRelation, int attno)
Definition: indexam.c:739
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:132
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
struct ItemIdData ItemIdData
Assert(fmt[strlen(fmt) - 1] !='\n')
List * lappend(List *list, void *datum)
Definition: list.c:338
List * lappend_oid(List *list, Oid datum)
Definition: list.c:374
void list_free(List *list)
Definition: list.c:1545
List * list_concat(List *list1, const List *list2)
Definition: list.c:560
bool list_member(const List *list, const void *datum)
Definition: list.c:660
List * lcons(void *datum, List *list)
Definition: list.c:494
List * list_difference(const List *list1, const List *list2)
Definition: list.c:1236
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
RegProcedure get_oprrest(Oid opno)
Definition: lsyscache.c:1539
Oid get_constraint_index(Oid conoid)
Definition: lsyscache.c:1139
Oid get_opclass_input_type(Oid opclass)
Definition: lsyscache.c:1216
Oid get_opclass_family(Oid opclass)
Definition: lsyscache.c:1194
RegProcedure get_func_support(Oid funcid)
Definition: lsyscache.c:1840
int32 get_attavgwidth(Oid relid, AttrNumber attnum)
Definition: lsyscache.c:3116
RegProcedure get_oprjoin(Oid opno)
Definition: lsyscache.c:1563
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:165
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, int16 *strategy)
Definition: lsyscache.c:206
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2536
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:106
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:722
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:241
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:67
void pfree(void *pointer)
Definition: mcxt.c:1436
void * palloc0(Size size)
Definition: mcxt.c:1241
MemoryContext CurrentMemoryContext
Definition: mcxt.c:135
void * palloc(Size size)
Definition: mcxt.c:1210
bool IgnoreSystemIndexes
Definition: miscinit.c:80
int _bt_getrootheight(Relation rel)
Definition: nbtpage.c:672
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1703
#define IsA(nodeptr, _type_)
Definition: nodes.h:179
#define copyObject(obj)
Definition: nodes.h:244
@ ONCONFLICT_UPDATE
Definition: nodes.h:428
CmdType
Definition: nodes.h:274
@ CMD_MERGE
Definition: nodes.h:280
@ CMD_INSERT
Definition: nodes.h:278
@ CMD_DELETE
Definition: nodes.h:279
@ CMD_UPDATE
Definition: nodes.h:277
double Selectivity
Definition: nodes.h:261
#define makeNode(_type_)
Definition: nodes.h:176
JoinType
Definition: nodes.h:299
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, int location, bool include_dropped, List **colnames, List **colvars)
@ RTE_CTE
Definition: parsenodes.h:1020
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1021
@ RTE_VALUES
Definition: parsenodes.h:1019
@ RTE_SUBQUERY
Definition: parsenodes.h:1015
@ RTE_RESULT
Definition: parsenodes.h:1022
@ RTE_FUNCTION
Definition: parsenodes.h:1017
@ RTE_TABLEFUNC
Definition: parsenodes.h:1018
@ RTE_RELATION
Definition: parsenodes.h:1014
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * RelationGetPartitionQual(Relation rel)
Definition: partcache.c:280
PartitionKey RelationGetPartitionKey(Relation rel)
Definition: partcache.c:54
PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt, bool omit_detached)
Definition: partdesc.c:383
PartitionDesc PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
Definition: partdesc.c:416
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:830
Bitmapset * Relids
Definition: pathnodes.h:30
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:561
struct PartitionSchemeData * PartitionScheme
Definition: pathnodes.h:595
@ RELOPT_BASEREL
Definition: pathnodes.h:818
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:820
#define AMFLAG_HAS_TID_RANGE
Definition: pathnodes.h:814
FormData_pg_attribute
Definition: pg_attribute.h:193
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:209
int errdetail_relkind_not_supported(char relkind)
Definition: pg_class.c:24
FormData_pg_index * Form_pg_index
Definition: pg_index.h:70
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define list_make1(x1)
Definition: pg_list.h:212
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
#define linitial(l)
Definition: pg_list.h:178
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
#define lfirst_oid(lc)
Definition: pg_list.h:174
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
FormData_pg_statistic_ext * Form_pg_statistic_ext
FormData_pg_statistic_ext_data * Form_pg_statistic_ext_data
void estimate_rel_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: plancat.c:1013
Bitmapset * get_dependent_generated_columns(PlannerInfo *root, Index rti, Bitmapset *target_cols)
Definition: plancat.c:2269
int32 get_rel_data_width(Relation rel, int32 *attr_widths)
Definition: plancat.c:1138
bool has_stored_generated_columns(PlannerInfo *root, Index rti)
Definition: plancat.c:2242
static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel, Relation relation, bool inhparent)
Definition: plancat.c:550
int constraint_exclusion
Definition: plancat.c:58
bool relation_excluded_by_constraints(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
Definition: plancat.c:1529
double get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
Definition: plancat.c:2102
bool has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
Definition: plancat.c:2192
static List * get_relation_constraints(PlannerInfo *root, Oid relationObjectId, RelOptInfo *rel, bool include_noinherit, bool include_notnull, bool include_partition)
Definition: plancat.c:1220
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2041
List * build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
Definition: plancat.c:1716
get_relation_info_hook_type get_relation_info_hook
Definition: plancat.c:61
List * infer_arbiter_indexes(PlannerInfo *root)
Definition: plancat.c:665
static void get_relation_statistics_worker(List **stainfos, RelOptInfo *rel, Oid statOid, bool inh, Bitmapset *keys, List *exprs)
Definition: plancat.c:1340
Selectivity restriction_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, int varRelid)
Definition: plancat.c:1899
int32 get_relation_data_width(Oid relid, int32 *attr_widths)
Definition: plancat.c:1180
static void set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2522
static List * build_index_tlist(PlannerInfo *root, IndexOptInfo *index, Relation heapRelation)
Definition: plancat.c:1837
static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel, List *idxExprs)
Definition: plancat.c:931
static List * get_relation_statistics(RelOptInfo *rel, Relation relation)
Definition: plancat.c:1423
static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel, Relation relation)
Definition: plancat.c:2317
bool has_unique_index(RelOptInfo *rel, AttrNumber attno)
Definition: plancat.c:2160
static PartitionScheme find_partition_scheme(PlannerInfo *root, Relation relation)
Definition: plancat.c:2347
static void set_baserel_partition_key_exprs(Relation relation, RelOptInfo *rel)
Definition: plancat.c:2454
Selectivity join_selectivity(PlannerInfo *root, Oid operatorid, List *args, Oid inputcollid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:1938
Selectivity function_selectivity(PlannerInfo *root, Oid funcid, List *args, Oid inputcollid, bool is_join, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: plancat.c:1979
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:117
void(* get_relation_info_hook_type)(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.h:21
Expr * expression_planner(Expr *expr)
Definition: planner.c:6434
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static float8 DatumGetFloat8(Datum X)
Definition: postgres.h:494
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
bool predicate_refuted_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:222
bool predicate_implied_by(List *predicate_list, List *clause_list, bool weak)
Definition: predtest.c:152
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:294
@ IS_NOT_NULL
Definition: primnodes.h:1633
void * stringToNode(const char *str)
Definition: read.c:90
#define RelationGetForm(relation)
Definition: rel.h:497
#define RelationGetRelid(relation)
Definition: rel.h:503
#define RelationGetParallelWorkers(relation, defaultpw)
Definition: rel.h:395
#define RelationGetDescr(relation)
Definition: rel.h:529
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:509
#define RelationGetRelationName(relation)
Definition: rel.h:537
#define RelationIsPermanent(relation)
Definition: rel.h:617
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4739
List * RelationGetIndexPredicate(Relation relation)
Definition: relcache.c:5086
List * RelationGetStatExtList(Relation relation)
Definition: relcache.c:4858
List * RelationGetFKeyList(Relation relation)
Definition: relcache.c:4630
bytea ** RelationGetIndexAttOptions(Relation relation, bool copy)
Definition: relcache.c:5845
List * RelationGetIndexExpressions(Relation relation)
Definition: relcache.c:4973
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:670
TransactionId TransactionXmin
Definition: snapmgr.c:113
#define BTLessStrategyNumber
Definition: stratnum.h:29
AttrNumber adnum
Definition: tupdesc.h:24
char * adbin
Definition: tupdesc.h:25
bool ccnoinherit
Definition: tupdesc.h:33
bool ccvalid
Definition: tupdesc.h:32
char * ccbin
Definition: tupdesc.h:31
Definition: fmgr.h:57
Oid fn_oid
Definition: fmgr.h:59
struct EquivalenceClass * eclass[INDEX_MAX_KEYS]
Definition: pathnodes.h:1241
List * rinfos[INDEX_MAX_KEYS]
Definition: pathnodes.h:1245
struct EquivalenceMember * fk_eclass_member[INDEX_MAX_KEYS]
Definition: pathnodes.h:1243
HeapTupleHeader t_data
Definition: htup.h:68
amrestrpos_function amrestrpos
Definition: amapi.h:279
amcostestimate_function amcostestimate
Definition: amapi.h:267
bool amcanorderbyop
Definition: amapi.h:222
bool amoptionalkey
Definition: amapi.h:230
amgettuple_function amgettuple
Definition: amapi.h:275
amgetbitmap_function amgetbitmap
Definition: amapi.h:276
bool amsearcharray
Definition: amapi.h:232
ammarkpos_function ammarkpos
Definition: amapi.h:278
bool amcanparallel
Definition: amapi.h:242
bool amcanorder
Definition: amapi.h:220
bool amsearchnulls
Definition: amapi.h:234
bool amcanparallel
Definition: pathnodes.h:1189
bool amoptionalkey
Definition: pathnodes.h:1182
Oid reltablespace
Definition: pathnodes.h:1104
bool amcanmarkpos
Definition: pathnodes.h:1191
List * indrestrictinfo
Definition: pathnodes.h:1166
void(* amcostestimate)() pg_node_attr(read_write_ignore)
Definition: pathnodes.h:1194
bool amhasgettuple
Definition: pathnodes.h:1186
bool amcanorderbyop
Definition: pathnodes.h:1181
bool hypothetical
Definition: pathnodes.h:1175
List * indpred
Definition: pathnodes.h:1156
Cardinality tuples
Definition: pathnodes.h:1114
bool amsearcharray
Definition: pathnodes.h:1183
BlockNumber pages
Definition: pathnodes.h:1112
bool amsearchnulls
Definition: pathnodes.h:1184
bool amhasgetbitmap
Definition: pathnodes.h:1188
List * indextlist
Definition: pathnodes.h:1159
bool immediate
Definition: pathnodes.h:1173
Definition: pg_list.h:54
Definition: nodes.h:129
NullTestType nulltesttype
Definition: primnodes.h:1640
int location
Definition: primnodes.h:1643
Expr * arg
Definition: primnodes.h:1639
List * arbiterElems
Definition: primnodes.h:1979
OnConflictAction action
Definition: primnodes.h:1976
Node * arbiterWhere
Definition: primnodes.h:1981
PartitionBoundInfo boundinfo
Definition: partdesc.h:38
Oid * partcollation
Definition: partcache.h:39
Oid * parttypcoll
Definition: partcache.h:47
int32 * parttypmod
Definition: partcache.h:43
Oid * partopfamily
Definition: partcache.h:34
bool * parttypbyval
Definition: partcache.h:45
PartitionStrategy strategy
Definition: partcache.h:27
List * partexprs
Definition: partcache.h:31
int16 * parttyplen
Definition: partcache.h:44
FmgrInfo * partsupfunc
Definition: partcache.h:36
Oid * partopcintype
Definition: partcache.h:35
AttrNumber * partattrs
Definition: partcache.h:29
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:592
bool transientPlan
Definition: pathnodes.h:150
PlannerGlobal * glob
Definition: pathnodes.h:205
List * fkey_list
Definition: pathnodes.h:382
Query * parse
Definition: pathnodes.h:202
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
OnConflictExpr * onConflict
Definition: parsenodes.h:194
List * rtable
Definition: parsenodes.h:175
List * targetList
Definition: parsenodes.h:189
Query * subquery
Definition: parsenodes.h:1081
RTEKind rtekind
Definition: parsenodes.h:1033
List * baserestrictinfo
Definition: pathnodes.h:970
uint32 amflags
Definition: pathnodes.h:943
List * partition_qual
Definition: pathnodes.h:1012
Index relid
Definition: pathnodes.h:909
List * statlist
Definition: pathnodes.h:931
Cardinality tuples
Definition: pathnodes.h:934
BlockNumber pages
Definition: pathnodes.h:933
RelOptKind reloptkind
Definition: pathnodes.h:856
List * indexlist
Definition: pathnodes.h:929
Oid reltablespace
Definition: pathnodes.h:911
Oid serverid
Definition: pathnodes.h:949
int rel_parallel_workers
Definition: pathnodes.h:941
AttrNumber max_attr
Definition: pathnodes.h:917
double allvisfrac
Definition: pathnodes.h:935
AttrNumber min_attr
Definition: pathnodes.h:915
const struct TableAmRoutine * rd_tableam
Definition: rel.h:187
struct IndexAmRoutine * rd_indam
Definition: rel.h:204
TriggerDesc * trigdesc
Definition: rel.h:116
Oid * rd_opcintype
Definition: rel.h:206
struct HeapTupleData * rd_indextuple
Definition: rel.h:192
int16 * rd_indoption
Definition: rel.h:209
TupleDesc rd_att
Definition: rel.h:111
Form_pg_index rd_index
Definition: rel.h:190
Oid * rd_opfamily
Definition: rel.h:205
Oid * rd_indcollation
Definition: rel.h:215
Form_pg_class rd_rel
Definition: rel.h:110
Expr * clause
Definition: pathnodes.h:2513
Bitmapset * keys
Definition: pathnodes.h:1274
struct PlannerInfo * root
Definition: supportnodes.h:136
struct PlannerInfo * root
Definition: supportnodes.h:163
struct PlannerInfo * root
Definition: supportnodes.h:96
struct SpecialJoinInfo * sjinfo
Definition: supportnodes.h:103
bool(* scan_getnextslot_tidrange)(TableScanDesc scan, ScanDirection direction, TupleTableSlot *slot)
Definition: tableam.h:372
void(* scan_set_tidrange)(TableScanDesc scan, ItemPointer mintid, ItemPointer maxtid)
Definition: tableam.h:364
bool(* scan_bitmap_next_block)(TableScanDesc scan, struct TBMIterateResult *tbmres)
Definition: tableam.h:808
AttrNumber resno
Definition: primnodes.h:1844
bool trig_delete_before_row
Definition: reltrigger.h:66
bool trig_update_after_row
Definition: reltrigger.h:62
bool trig_insert_after_row
Definition: reltrigger.h:57
bool trig_update_before_row
Definition: reltrigger.h:61
bool trig_delete_after_row
Definition: reltrigger.h:67
bool trig_insert_before_row
Definition: reltrigger.h:56
bool has_not_null
Definition: tupdesc.h:44
AttrDefault * defval
Definition: tupdesc.h:39
bool has_generated_stored
Definition: tupdesc.h:45
ConstrCheck * check
Definition: tupdesc.h:40
uint16 num_defval
Definition: tupdesc.h:42
uint16 num_check
Definition: tupdesc.h:43
TupleConstr * constr
Definition: tupdesc.h:85
Definition: primnodes.h:226
AttrNumber varattno
Definition: primnodes.h:238
Definition: type.h:95
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:866
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:818
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1079
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:829
@ STATEXTOID
Definition: syscache.h:96
@ PROCOID
Definition: syscache.h:79
@ STATEXTDATASTXOID
Definition: syscache.h:94
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
static void table_relation_estimate_size(Relation rel, int32 *attr_widths, BlockNumber *pages, double *tuples, double *allvisfrac)
Definition: tableam.h:1944
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
void pull_varattnos(Node *node, Index varno, Bitmapset **varattnos)
Definition: var.c:291
bool RecoveryInProgress(void)
Definition: xlog.c:5907