PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
cost.h File Reference
#include "nodes/pathnodes.h"
#include "nodes/plannodes.h"
Include dependency graph for cost.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define DEFAULT_SEQ_PAGE_COST   1.0
 
#define DEFAULT_RANDOM_PAGE_COST   4.0
 
#define DEFAULT_CPU_TUPLE_COST   0.01
 
#define DEFAULT_CPU_INDEX_TUPLE_COST   0.005
 
#define DEFAULT_CPU_OPERATOR_COST   0.0025
 
#define DEFAULT_PARALLEL_TUPLE_COST   0.1
 
#define DEFAULT_PARALLEL_SETUP_COST   1000.0
 
#define DEFAULT_RECURSIVE_WORKTABLE_FACTOR   10.0
 
#define DEFAULT_EFFECTIVE_CACHE_SIZE   524288 /* measured in pages */
 

Enumerations

enum  ConstraintExclusionType { CONSTRAINT_EXCLUSION_OFF , CONSTRAINT_EXCLUSION_ON , CONSTRAINT_EXCLUSION_PARTITION }
 

Functions

double index_pages_fetched (double tuples_fetched, BlockNumber pages, double index_pages, PlannerInfo *root)
 
void cost_seqscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_samplescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_index (IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
 
void cost_bitmap_heap_scan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
 
void cost_bitmap_and_node (BitmapAndPath *path, PlannerInfo *root)
 
void cost_bitmap_or_node (BitmapOrPath *path, PlannerInfo *root)
 
void cost_bitmap_tree_node (Path *path, Cost *cost, Selectivity *selec)
 
void cost_tidscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
 
void cost_tidrangescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
 
void cost_subqueryscan (SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
 
void cost_functionscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_valuesscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_tablefuncscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_ctescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_namedtuplestorescan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_resultscan (Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
 
void cost_recursive_union (Path *runion, Path *nrterm, Path *rterm)
 
void cost_sort (Path *path, PlannerInfo *root, List *pathkeys, int disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
 
void cost_incremental_sort (Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
 
void cost_append (AppendPath *apath)
 
void cost_merge_append (Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
 
void cost_material (Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
 
void cost_agg (Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
 
void cost_windowagg (Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
 
void cost_group (Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
 
void initial_cost_nestloop (PlannerInfo *root, JoinCostWorkspace *workspace, JoinType jointype, Path *outer_path, Path *inner_path, JoinPathExtraData *extra)
 
void final_cost_nestloop (PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
 
void initial_cost_mergejoin (PlannerInfo *root, JoinCostWorkspace *workspace, JoinType jointype, List *mergeclauses, Path *outer_path, Path *inner_path, List *outersortkeys, List *innersortkeys, JoinPathExtraData *extra)
 
void final_cost_mergejoin (PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
 
void initial_cost_hashjoin (PlannerInfo *root, JoinCostWorkspace *workspace, JoinType jointype, List *hashclauses, Path *outer_path, Path *inner_path, JoinPathExtraData *extra, bool parallel_hash)
 
void final_cost_hashjoin (PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
 
void cost_gather (GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
 
void cost_gather_merge (GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
 
void cost_subplan (PlannerInfo *root, SubPlan *subplan, Plan *plan)
 
void cost_qual_eval (QualCost *cost, List *quals, PlannerInfo *root)
 
void cost_qual_eval_node (QualCost *cost, Node *qual, PlannerInfo *root)
 
void compute_semi_anti_join_factors (PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel, JoinType jointype, SpecialJoinInfo *sjinfo, List *restrictlist, SemiAntiJoinFactors *semifactors)
 
void set_baserel_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
double get_parameterized_baserel_size (PlannerInfo *root, RelOptInfo *rel, List *param_clauses)
 
double get_parameterized_joinrel_size (PlannerInfo *root, RelOptInfo *rel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, List *restrict_clauses)
 
void set_joinrel_size_estimates (PlannerInfo *root, RelOptInfo *rel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *restrictlist)
 
void set_subquery_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_function_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_values_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_cte_size_estimates (PlannerInfo *root, RelOptInfo *rel, double cte_rows)
 
void set_tablefunc_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_namedtuplestore_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_result_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
void set_foreign_size_estimates (PlannerInfo *root, RelOptInfo *rel)
 
PathTargetset_pathtarget_cost_width (PlannerInfo *root, PathTarget *target)
 
double compute_bitmap_pages (PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual, double loop_count, Cost *cost_p, double *tuples_p)
 
double compute_gather_rows (Path *path)
 

Variables

PGDLLIMPORT Cost disable_cost
 
PGDLLIMPORT int max_parallel_workers_per_gather
 
PGDLLIMPORT bool enable_seqscan
 
PGDLLIMPORT bool enable_indexscan
 
PGDLLIMPORT bool enable_indexonlyscan
 
PGDLLIMPORT bool enable_bitmapscan
 
PGDLLIMPORT bool enable_tidscan
 
PGDLLIMPORT bool enable_sort
 
PGDLLIMPORT bool enable_incremental_sort
 
PGDLLIMPORT bool enable_hashagg
 
PGDLLIMPORT bool enable_nestloop
 
PGDLLIMPORT bool enable_material
 
PGDLLIMPORT bool enable_memoize
 
PGDLLIMPORT bool enable_mergejoin
 
PGDLLIMPORT bool enable_hashjoin
 
PGDLLIMPORT bool enable_gathermerge
 
PGDLLIMPORT bool enable_partitionwise_join
 
PGDLLIMPORT bool enable_partitionwise_aggregate
 
PGDLLIMPORT bool enable_parallel_append
 
PGDLLIMPORT bool enable_parallel_hash
 
PGDLLIMPORT bool enable_partition_pruning
 
PGDLLIMPORT bool enable_presorted_aggregate
 
PGDLLIMPORT bool enable_async_append
 
PGDLLIMPORT int constraint_exclusion
 

Macro Definition Documentation

◆ DEFAULT_CPU_INDEX_TUPLE_COST

#define DEFAULT_CPU_INDEX_TUPLE_COST   0.005

Definition at line 27 of file cost.h.

◆ DEFAULT_CPU_OPERATOR_COST

#define DEFAULT_CPU_OPERATOR_COST   0.0025

Definition at line 28 of file cost.h.

◆ DEFAULT_CPU_TUPLE_COST

#define DEFAULT_CPU_TUPLE_COST   0.01

Definition at line 26 of file cost.h.

◆ DEFAULT_EFFECTIVE_CACHE_SIZE

#define DEFAULT_EFFECTIVE_CACHE_SIZE   524288 /* measured in pages */

Definition at line 34 of file cost.h.

◆ DEFAULT_PARALLEL_SETUP_COST

#define DEFAULT_PARALLEL_SETUP_COST   1000.0

Definition at line 30 of file cost.h.

◆ DEFAULT_PARALLEL_TUPLE_COST

#define DEFAULT_PARALLEL_TUPLE_COST   0.1

Definition at line 29 of file cost.h.

◆ DEFAULT_RANDOM_PAGE_COST

#define DEFAULT_RANDOM_PAGE_COST   4.0

Definition at line 25 of file cost.h.

◆ DEFAULT_RECURSIVE_WORKTABLE_FACTOR

#define DEFAULT_RECURSIVE_WORKTABLE_FACTOR   10.0

Definition at line 33 of file cost.h.

◆ DEFAULT_SEQ_PAGE_COST

#define DEFAULT_SEQ_PAGE_COST   1.0

Definition at line 24 of file cost.h.

Enumeration Type Documentation

◆ ConstraintExclusionType

Enumerator
CONSTRAINT_EXCLUSION_OFF 
CONSTRAINT_EXCLUSION_ON 
CONSTRAINT_EXCLUSION_PARTITION 

Definition at line 36 of file cost.h.

37{
38 CONSTRAINT_EXCLUSION_OFF, /* do not use c_e */
39 CONSTRAINT_EXCLUSION_ON, /* apply c_e to all rels */
40 CONSTRAINT_EXCLUSION_PARTITION, /* apply c_e to otherrels only */
ConstraintExclusionType
Definition: cost.h:37
@ CONSTRAINT_EXCLUSION_OFF
Definition: cost.h:38
@ CONSTRAINT_EXCLUSION_PARTITION
Definition: cost.h:40
@ CONSTRAINT_EXCLUSION_ON
Definition: cost.h:39

Function Documentation

◆ compute_bitmap_pages()

double compute_bitmap_pages ( PlannerInfo root,
RelOptInfo baserel,
Path bitmapqual,
double  loop_count,
Cost cost_p,
double *  tuples_p 
)

Definition at line 6498 of file costsize.c.

6501{
6502 Cost indexTotalCost;
6503 Selectivity indexSelectivity;
6504 double T;
6505 double pages_fetched;
6506 double tuples_fetched;
6507 double heap_pages;
6508 double maxentries;
6509
6510 /*
6511 * Fetch total cost of obtaining the bitmap, as well as its total
6512 * selectivity.
6513 */
6514 cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
6515
6516 /*
6517 * Estimate number of main-table pages fetched.
6518 */
6519 tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
6520
6521 T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
6522
6523 /*
6524 * For a single scan, the number of heap pages that need to be fetched is
6525 * the same as the Mackert and Lohman formula for the case T <= b (ie, no
6526 * re-reads needed).
6527 */
6528 pages_fetched = (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
6529
6530 /*
6531 * Calculate the number of pages fetched from the heap. Then based on
6532 * current work_mem estimate get the estimated maxentries in the bitmap.
6533 * (Note that we always do this calculation based on the number of pages
6534 * that would be fetched in a single iteration, even if loop_count > 1.
6535 * That's correct, because only that number of entries will be stored in
6536 * the bitmap at one time.)
6537 */
6538 heap_pages = Min(pages_fetched, baserel->pages);
6539 maxentries = tbm_calculate_entries(work_mem * (Size) 1024);
6540
6541 if (loop_count > 1)
6542 {
6543 /*
6544 * For repeated bitmap scans, scale up the number of tuples fetched in
6545 * the Mackert and Lohman formula by the number of scans, so that we
6546 * estimate the number of pages fetched by all the scans. Then
6547 * pro-rate for one scan.
6548 */
6549 pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
6550 baserel->pages,
6551 get_indexpath_pages(bitmapqual),
6552 root);
6553 pages_fetched /= loop_count;
6554 }
6555
6556 if (pages_fetched >= T)
6557 pages_fetched = T;
6558 else
6559 pages_fetched = ceil(pages_fetched);
6560
6561 if (maxentries < heap_pages)
6562 {
6563 double exact_pages;
6564 double lossy_pages;
6565
6566 /*
6567 * Crude approximation of the number of lossy pages. Because of the
6568 * way tbm_lossify() is coded, the number of lossy pages increases
6569 * very sharply as soon as we run short of memory; this formula has
6570 * that property and seems to perform adequately in testing, but it's
6571 * possible we could do better somehow.
6572 */
6573 lossy_pages = Max(0, heap_pages - maxentries / 2);
6574 exact_pages = heap_pages - lossy_pages;
6575
6576 /*
6577 * If there are lossy pages then recompute the number of tuples
6578 * processed by the bitmap heap node. We assume here that the chance
6579 * of a given tuple coming from an exact page is the same as the
6580 * chance that a given page is exact. This might not be true, but
6581 * it's not clear how we can do any better.
6582 */
6583 if (lossy_pages > 0)
6584 tuples_fetched =
6585 clamp_row_est(indexSelectivity *
6586 (exact_pages / heap_pages) * baserel->tuples +
6587 (lossy_pages / heap_pages) * baserel->tuples);
6588 }
6589
6590 if (cost_p)
6591 *cost_p = indexTotalCost;
6592 if (tuples_p)
6593 *tuples_p = tuples_fetched;
6594
6595 return pages_fetched;
6596}
#define Min(x, y)
Definition: c.h:975
#define Max(x, y)
Definition: c.h:969
size_t Size
Definition: c.h:576
double index_pages_fetched(double tuples_fetched, BlockNumber pages, double index_pages, PlannerInfo *root)
Definition: costsize.c:908
void cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
Definition: costsize.c:1122
static double get_indexpath_pages(Path *bitmapqual)
Definition: costsize.c:973
double clamp_row_est(double nrows)
Definition: costsize.c:213
int work_mem
Definition: globals.c:130
static const uint32 T[65]
Definition: md5.c:119
double Cost
Definition: nodes.h:257
double Selectivity
Definition: nodes.h:256
tree ctl root
Definition: radixtree.h:1857
Cardinality tuples
Definition: pathnodes.h:976
BlockNumber pages
Definition: pathnodes.h:975
int tbm_calculate_entries(Size maxbytes)
Definition: tidbitmap.c:1545

References clamp_row_est(), cost_bitmap_tree_node(), get_indexpath_pages(), index_pages_fetched(), Max, Min, RelOptInfo::pages, root, T, tbm_calculate_entries(), RelOptInfo::tuples, and work_mem.

Referenced by cost_bitmap_heap_scan(), and create_partial_bitmap_paths().

◆ compute_gather_rows()

double compute_gather_rows ( Path path)

Definition at line 6609 of file costsize.c.

6610{
6611 Assert(path->parallel_workers > 0);
6612
6613 return clamp_row_est(path->rows * get_parallel_divisor(path));
6614}
static double get_parallel_divisor(Path *path)
Definition: costsize.c:6458
Assert(PointerIsAligned(start, uint64))
Cardinality rows
Definition: pathnodes.h:1698
int parallel_workers
Definition: pathnodes.h:1695

References Assert(), clamp_row_est(), get_parallel_divisor(), Path::parallel_workers, and Path::rows.

Referenced by create_ordered_paths(), gather_grouping_paths(), generate_gather_paths(), and generate_useful_gather_paths().

◆ compute_semi_anti_join_factors()

void compute_semi_anti_join_factors ( PlannerInfo root,
RelOptInfo joinrel,
RelOptInfo outerrel,
RelOptInfo innerrel,
JoinType  jointype,
SpecialJoinInfo sjinfo,
List restrictlist,
SemiAntiJoinFactors semifactors 
)

Definition at line 5099 of file costsize.c.

5107{
5108 Selectivity jselec;
5109 Selectivity nselec;
5110 Selectivity avgmatch;
5111 SpecialJoinInfo norm_sjinfo;
5112 List *joinquals;
5113 ListCell *l;
5114
5115 /*
5116 * In an ANTI join, we must ignore clauses that are "pushed down", since
5117 * those won't affect the match logic. In a SEMI join, we do not
5118 * distinguish joinquals from "pushed down" quals, so just use the whole
5119 * restrictinfo list. For other outer join types, we should consider only
5120 * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
5121 */
5122 if (IS_OUTER_JOIN(jointype))
5123 {
5124 joinquals = NIL;
5125 foreach(l, restrictlist)
5126 {
5128
5129 if (!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
5130 joinquals = lappend(joinquals, rinfo);
5131 }
5132 }
5133 else
5134 joinquals = restrictlist;
5135
5136 /*
5137 * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
5138 */
5140 joinquals,
5141 0,
5142 (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
5143 sjinfo);
5144
5145 /*
5146 * Also get the normal inner-join selectivity of the join clauses.
5147 */
5148 init_dummy_sjinfo(&norm_sjinfo, outerrel->relids, innerrel->relids);
5149
5151 joinquals,
5152 0,
5153 JOIN_INNER,
5154 &norm_sjinfo);
5155
5156 /* Avoid leaking a lot of ListCells */
5157 if (IS_OUTER_JOIN(jointype))
5158 list_free(joinquals);
5159
5160 /*
5161 * jselec can be interpreted as the fraction of outer-rel rows that have
5162 * any matches (this is true for both SEMI and ANTI cases). And nselec is
5163 * the fraction of the Cartesian product that matches. So, the average
5164 * number of matches for each outer-rel row that has at least one match is
5165 * nselec * inner_rows / jselec.
5166 *
5167 * Note: it is correct to use the inner rel's "rows" count here, even
5168 * though we might later be considering a parameterized inner path with
5169 * fewer rows. This is because we have included all the join clauses in
5170 * the selectivity estimate.
5171 */
5172 if (jselec > 0) /* protect against zero divide */
5173 {
5174 avgmatch = nselec * innerrel->rows / jselec;
5175 /* Clamp to sane range */
5176 avgmatch = Max(1.0, avgmatch);
5177 }
5178 else
5179 avgmatch = 1.0;
5180
5181 semifactors->outer_match_frac = jselec;
5182 semifactors->match_count = avgmatch;
5183}
Selectivity clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
Definition: clausesel.c:100
void init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:670
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_free(List *list)
Definition: list.c:1546
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:344
@ JOIN_SEMI
Definition: nodes.h:313
@ JOIN_INNER
Definition: nodes.h:299
@ JOIN_ANTI
Definition: nodes.h:314
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2759
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define NIL
Definition: pg_list.h:68
Definition: pg_list.h:54
Relids relids
Definition: pathnodes.h:898
Cardinality rows
Definition: pathnodes.h:904
Selectivity outer_match_frac
Definition: pathnodes.h:3249
Selectivity match_count
Definition: pathnodes.h:3250

References clauselist_selectivity(), init_dummy_sjinfo(), IS_OUTER_JOIN, JOIN_ANTI, JOIN_INNER, JOIN_SEMI, lappend(), lfirst_node, list_free(), SemiAntiJoinFactors::match_count, Max, NIL, SemiAntiJoinFactors::outer_match_frac, RelOptInfo::relids, RINFO_IS_PUSHED_DOWN, root, and RelOptInfo::rows.

Referenced by add_paths_to_joinrel().

◆ cost_agg()

void cost_agg ( Path path,
PlannerInfo root,
AggStrategy  aggstrategy,
const AggClauseCosts aggcosts,
int  numGroupCols,
double  numGroups,
List quals,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples,
double  input_width 
)

Definition at line 2682 of file costsize.c.

2689{
2690 double output_tuples;
2691 Cost startup_cost;
2692 Cost total_cost;
2693 const AggClauseCosts dummy_aggcosts = {0};
2694
2695 /* Use all-zero per-aggregate costs if NULL is passed */
2696 if (aggcosts == NULL)
2697 {
2698 Assert(aggstrategy == AGG_HASHED);
2699 aggcosts = &dummy_aggcosts;
2700 }
2701
2702 /*
2703 * The transCost.per_tuple component of aggcosts should be charged once
2704 * per input tuple, corresponding to the costs of evaluating the aggregate
2705 * transfns and their input expressions. The finalCost.per_tuple component
2706 * is charged once per output tuple, corresponding to the costs of
2707 * evaluating the finalfns. Startup costs are of course charged but once.
2708 *
2709 * If we are grouping, we charge an additional cpu_operator_cost per
2710 * grouping column per input tuple for grouping comparisons.
2711 *
2712 * We will produce a single output tuple if not grouping, and a tuple per
2713 * group otherwise. We charge cpu_tuple_cost for each output tuple.
2714 *
2715 * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
2716 * same total CPU cost, but AGG_SORTED has lower startup cost. If the
2717 * input path is already sorted appropriately, AGG_SORTED should be
2718 * preferred (since it has no risk of memory overflow). This will happen
2719 * as long as the computed total costs are indeed exactly equal --- but if
2720 * there's roundoff error we might do the wrong thing. So be sure that
2721 * the computations below form the same intermediate values in the same
2722 * order.
2723 */
2724 if (aggstrategy == AGG_PLAIN)
2725 {
2726 startup_cost = input_total_cost;
2727 startup_cost += aggcosts->transCost.startup;
2728 startup_cost += aggcosts->transCost.per_tuple * input_tuples;
2729 startup_cost += aggcosts->finalCost.startup;
2730 startup_cost += aggcosts->finalCost.per_tuple;
2731 /* we aren't grouping */
2732 total_cost = startup_cost + cpu_tuple_cost;
2733 output_tuples = 1;
2734 }
2735 else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
2736 {
2737 /* Here we are able to deliver output on-the-fly */
2738 startup_cost = input_startup_cost;
2739 total_cost = input_total_cost;
2740 if (aggstrategy == AGG_MIXED && !enable_hashagg)
2741 ++disabled_nodes;
2742 /* calcs phrased this way to match HASHED case, see note above */
2743 total_cost += aggcosts->transCost.startup;
2744 total_cost += aggcosts->transCost.per_tuple * input_tuples;
2745 total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
2746 total_cost += aggcosts->finalCost.startup;
2747 total_cost += aggcosts->finalCost.per_tuple * numGroups;
2748 total_cost += cpu_tuple_cost * numGroups;
2749 output_tuples = numGroups;
2750 }
2751 else
2752 {
2753 /* must be AGG_HASHED */
2754 startup_cost = input_total_cost;
2755 if (!enable_hashagg)
2756 ++disabled_nodes;
2757 startup_cost += aggcosts->transCost.startup;
2758 startup_cost += aggcosts->transCost.per_tuple * input_tuples;
2759 /* cost of computing hash value */
2760 startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
2761 startup_cost += aggcosts->finalCost.startup;
2762
2763 total_cost = startup_cost;
2764 total_cost += aggcosts->finalCost.per_tuple * numGroups;
2765 /* cost of retrieving from hash table */
2766 total_cost += cpu_tuple_cost * numGroups;
2767 output_tuples = numGroups;
2768 }
2769
2770 /*
2771 * Add the disk costs of hash aggregation that spills to disk.
2772 *
2773 * Groups that go into the hash table stay in memory until finalized, so
2774 * spilling and reprocessing tuples doesn't incur additional invocations
2775 * of transCost or finalCost. Furthermore, the computed hash value is
2776 * stored with the spilled tuples, so we don't incur extra invocations of
2777 * the hash function.
2778 *
2779 * Hash Agg begins returning tuples after the first batch is complete.
2780 * Accrue writes (spilled tuples) to startup_cost and to total_cost;
2781 * accrue reads only to total_cost.
2782 */
2783 if (aggstrategy == AGG_HASHED || aggstrategy == AGG_MIXED)
2784 {
2785 double pages;
2786 double pages_written = 0.0;
2787 double pages_read = 0.0;
2788 double spill_cost;
2789 double hashentrysize;
2790 double nbatches;
2791 Size mem_limit;
2792 uint64 ngroups_limit;
2793 int num_partitions;
2794 int depth;
2795
2796 /*
2797 * Estimate number of batches based on the computed limits. If less
2798 * than or equal to one, all groups are expected to fit in memory;
2799 * otherwise we expect to spill.
2800 */
2801 hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
2802 input_width,
2803 aggcosts->transitionSpace);
2804 hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
2805 &ngroups_limit, &num_partitions);
2806
2807 nbatches = Max((numGroups * hashentrysize) / mem_limit,
2808 numGroups / ngroups_limit);
2809
2810 nbatches = Max(ceil(nbatches), 1.0);
2811 num_partitions = Max(num_partitions, 2);
2812
2813 /*
2814 * The number of partitions can change at different levels of
2815 * recursion; but for the purposes of this calculation assume it stays
2816 * constant.
2817 */
2818 depth = ceil(log(nbatches) / log(num_partitions));
2819
2820 /*
2821 * Estimate number of pages read and written. For each level of
2822 * recursion, a tuple must be written and then later read.
2823 */
2824 pages = relation_byte_size(input_tuples, input_width) / BLCKSZ;
2825 pages_written = pages_read = pages * depth;
2826
2827 /*
2828 * HashAgg has somewhat worse IO behavior than Sort on typical
2829 * hardware/OS combinations. Account for this with a generic penalty.
2830 */
2831 pages_read *= 2.0;
2832 pages_written *= 2.0;
2833
2834 startup_cost += pages_written * random_page_cost;
2835 total_cost += pages_written * random_page_cost;
2836 total_cost += pages_read * seq_page_cost;
2837
2838 /* account for CPU cost of spilling a tuple and reading it back */
2839 spill_cost = depth * input_tuples * 2.0 * cpu_tuple_cost;
2840 startup_cost += spill_cost;
2841 total_cost += spill_cost;
2842 }
2843
2844 /*
2845 * If there are quals (HAVING quals), account for their cost and
2846 * selectivity.
2847 */
2848 if (quals)
2849 {
2850 QualCost qual_cost;
2851
2852 cost_qual_eval(&qual_cost, quals, root);
2853 startup_cost += qual_cost.startup;
2854 total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
2855
2856 output_tuples = clamp_row_est(output_tuples *
2858 quals,
2859 0,
2860 JOIN_INNER,
2861 NULL));
2862 }
2863
2864 path->rows = output_tuples;
2865 path->disabled_nodes = disabled_nodes;
2866 path->startup_cost = startup_cost;
2867 path->total_cost = total_cost;
2868}
uint64_t uint64
Definition: c.h:503
double random_page_cost
Definition: costsize.c:131
double cpu_operator_cost
Definition: costsize.c:134
static double relation_byte_size(double tuples, int width)
Definition: costsize.c:6437
double cpu_tuple_cost
Definition: costsize.c:132
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4741
double seq_page_cost
Definition: costsize.c:130
bool enable_hashagg
Definition: costsize.c:152
Size hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
Definition: nodeAgg.c:1701
void hash_agg_set_limits(double hashentrysize, double input_groups, int used_bits, Size *mem_limit, uint64 *ngroups_limit, int *num_partitions)
Definition: nodeAgg.c:1809
@ AGG_SORTED
Definition: nodes.h:361
@ AGG_HASHED
Definition: nodes.h:362
@ AGG_MIXED
Definition: nodes.h:363
@ AGG_PLAIN
Definition: nodes.h:360
static int list_length(const List *l)
Definition: pg_list.h:152
QualCost finalCost
Definition: pathnodes.h:61
Size transitionSpace
Definition: pathnodes.h:62
QualCost transCost
Definition: pathnodes.h:60
Cost startup_cost
Definition: pathnodes.h:1700
int disabled_nodes
Definition: pathnodes.h:1699
Cost total_cost
Definition: pathnodes.h:1701
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47

References AGG_HASHED, AGG_MIXED, AGG_PLAIN, AGG_SORTED, Assert(), clamp_row_est(), clauselist_selectivity(), cost_qual_eval(), cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, enable_hashagg, AggClauseCosts::finalCost, hash_agg_entry_size(), hash_agg_set_limits(), JOIN_INNER, list_length(), Max, QualCost::per_tuple, random_page_cost, relation_byte_size(), root, Path::rows, seq_page_cost, QualCost::startup, Path::startup_cost, Path::total_cost, AggClauseCosts::transCost, and AggClauseCosts::transitionSpace.

Referenced by create_agg_path(), create_groupingsets_path(), and create_unique_path().

◆ cost_append()

void cost_append ( AppendPath apath)

Definition at line 2250 of file costsize.c.

2251{
2252 ListCell *l;
2253
2254 apath->path.disabled_nodes = 0;
2255 apath->path.startup_cost = 0;
2256 apath->path.total_cost = 0;
2257 apath->path.rows = 0;
2258
2259 if (apath->subpaths == NIL)
2260 return;
2261
2262 if (!apath->path.parallel_aware)
2263 {
2264 List *pathkeys = apath->path.pathkeys;
2265
2266 if (pathkeys == NIL)
2267 {
2268 Path *firstsubpath = (Path *) linitial(apath->subpaths);
2269
2270 /*
2271 * For an unordered, non-parallel-aware Append we take the startup
2272 * cost as the startup cost of the first subpath.
2273 */
2274 apath->path.startup_cost = firstsubpath->startup_cost;
2275
2276 /*
2277 * Compute rows, number of disabled nodes, and total cost as sums
2278 * of underlying subplan values.
2279 */
2280 foreach(l, apath->subpaths)
2281 {
2282 Path *subpath = (Path *) lfirst(l);
2283
2284 apath->path.rows += subpath->rows;
2285 apath->path.disabled_nodes += subpath->disabled_nodes;
2286 apath->path.total_cost += subpath->total_cost;
2287 }
2288 }
2289 else
2290 {
2291 /*
2292 * For an ordered, non-parallel-aware Append we take the startup
2293 * cost as the sum of the subpath startup costs. This ensures
2294 * that we don't underestimate the startup cost when a query's
2295 * LIMIT is such that several of the children have to be run to
2296 * satisfy it. This might be overkill --- another plausible hack
2297 * would be to take the Append's startup cost as the maximum of
2298 * the child startup costs. But we don't want to risk believing
2299 * that an ORDER BY LIMIT query can be satisfied at small cost
2300 * when the first child has small startup cost but later ones
2301 * don't. (If we had the ability to deal with nonlinear cost
2302 * interpolation for partial retrievals, we would not need to be
2303 * so conservative about this.)
2304 *
2305 * This case is also different from the above in that we have to
2306 * account for possibly injecting sorts into subpaths that aren't
2307 * natively ordered.
2308 */
2309 foreach(l, apath->subpaths)
2310 {
2311 Path *subpath = (Path *) lfirst(l);
2312 Path sort_path; /* dummy for result of cost_sort */
2313
2314 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
2315 {
2316 /*
2317 * We'll need to insert a Sort node, so include costs for
2318 * that. We can use the parent's LIMIT if any, since we
2319 * certainly won't pull more than that many tuples from
2320 * any child.
2321 */
2322 cost_sort(&sort_path,
2323 NULL, /* doesn't currently need root */
2324 pathkeys,
2325 subpath->disabled_nodes,
2326 subpath->total_cost,
2327 subpath->rows,
2328 subpath->pathtarget->width,
2329 0.0,
2330 work_mem,
2331 apath->limit_tuples);
2332 subpath = &sort_path;
2333 }
2334
2335 apath->path.rows += subpath->rows;
2336 apath->path.disabled_nodes += subpath->disabled_nodes;
2337 apath->path.startup_cost += subpath->startup_cost;
2338 apath->path.total_cost += subpath->total_cost;
2339 }
2340 }
2341 }
2342 else /* parallel-aware */
2343 {
2344 int i = 0;
2345 double parallel_divisor = get_parallel_divisor(&apath->path);
2346
2347 /* Parallel-aware Append never produces ordered output. */
2348 Assert(apath->path.pathkeys == NIL);
2349
2350 /* Calculate startup cost. */
2351 foreach(l, apath->subpaths)
2352 {
2353 Path *subpath = (Path *) lfirst(l);
2354
2355 /*
2356 * Append will start returning tuples when the child node having
2357 * lowest startup cost is done setting up. We consider only the
2358 * first few subplans that immediately get a worker assigned.
2359 */
2360 if (i == 0)
2361 apath->path.startup_cost = subpath->startup_cost;
2362 else if (i < apath->path.parallel_workers)
2363 apath->path.startup_cost = Min(apath->path.startup_cost,
2364 subpath->startup_cost);
2365
2366 /*
2367 * Apply parallel divisor to subpaths. Scale the number of rows
2368 * for each partial subpath based on the ratio of the parallel
2369 * divisor originally used for the subpath to the one we adopted.
2370 * Also add the cost of partial paths to the total cost, but
2371 * ignore non-partial paths for now.
2372 */
2373 if (i < apath->first_partial_path)
2374 apath->path.rows += subpath->rows / parallel_divisor;
2375 else
2376 {
2377 double subpath_parallel_divisor;
2378
2379 subpath_parallel_divisor = get_parallel_divisor(subpath);
2380 apath->path.rows += subpath->rows * (subpath_parallel_divisor /
2381 parallel_divisor);
2382 apath->path.total_cost += subpath->total_cost;
2383 }
2384
2385 apath->path.disabled_nodes += subpath->disabled_nodes;
2386 apath->path.rows = clamp_row_est(apath->path.rows);
2387
2388 i++;
2389 }
2390
2391 /* Add cost for non-partial subpaths. */
2392 apath->path.total_cost +=
2394 apath->first_partial_path,
2395 apath->path.parallel_workers);
2396 }
2397
2398 /*
2399 * Although Append does not do any selection or projection, it's not free;
2400 * add a small per-tuple overhead.
2401 */
2402 apath->path.total_cost +=
2404}
#define APPEND_CPU_COST_MULTIPLIER
Definition: costsize.c:120
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2144
static Cost append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
Definition: costsize.c:2174
int i
Definition: isn.c:74
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:308
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
#define lfirst(lc)
Definition: pg_list.h:172
#define linitial(l)
Definition: pg_list.h:178
int first_partial_path
Definition: pathnodes.h:1973
Cardinality limit_tuples
Definition: pathnodes.h:1974
List * subpaths
Definition: pathnodes.h:1971
List * pathkeys
Definition: pathnodes.h:1704
bool parallel_aware
Definition: pathnodes.h:1691

References APPEND_CPU_COST_MULTIPLIER, append_nonpartial_cost(), Assert(), clamp_row_est(), cost_sort(), cpu_tuple_cost, Path::disabled_nodes, AppendPath::first_partial_path, get_parallel_divisor(), i, lfirst, AppendPath::limit_tuples, linitial, Min, NIL, Path::parallel_aware, Path::parallel_workers, AppendPath::path, Path::pathkeys, pathkeys_contained_in(), Path::rows, Path::startup_cost, subpath(), AppendPath::subpaths, Path::total_cost, and work_mem.

Referenced by create_append_path().

◆ cost_bitmap_and_node()

void cost_bitmap_and_node ( BitmapAndPath path,
PlannerInfo root 
)

Definition at line 1165 of file costsize.c.

1166{
1167 Cost totalCost;
1168 Selectivity selec;
1169 ListCell *l;
1170
1171 /*
1172 * We estimate AND selectivity on the assumption that the inputs are
1173 * independent. This is probably often wrong, but we don't have the info
1174 * to do better.
1175 *
1176 * The runtime cost of the BitmapAnd itself is estimated at 100x
1177 * cpu_operator_cost for each tbm_intersect needed. Probably too small,
1178 * definitely too simplistic?
1179 */
1180 totalCost = 0.0;
1181 selec = 1.0;
1182 foreach(l, path->bitmapquals)
1183 {
1184 Path *subpath = (Path *) lfirst(l);
1185 Cost subCost;
1186 Selectivity subselec;
1187
1188 cost_bitmap_tree_node(subpath, &subCost, &subselec);
1189
1190 selec *= subselec;
1191
1192 totalCost += subCost;
1193 if (l != list_head(path->bitmapquals))
1194 totalCost += 100.0 * cpu_operator_cost;
1195 }
1196 path->bitmapselectivity = selec;
1197 path->path.rows = 0; /* per above, not used */
1198 path->path.disabled_nodes = 0;
1199 path->path.startup_cost = totalCost;
1200 path->path.total_cost = totalCost;
1201}
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
Selectivity bitmapselectivity
Definition: pathnodes.h:1837
List * bitmapquals
Definition: pathnodes.h:1836

References BitmapAndPath::bitmapquals, BitmapAndPath::bitmapselectivity, cost_bitmap_tree_node(), cpu_operator_cost, Path::disabled_nodes, lfirst, list_head(), BitmapAndPath::path, Path::rows, Path::startup_cost, subpath(), and Path::total_cost.

Referenced by create_bitmap_and_path().

◆ cost_bitmap_heap_scan()

void cost_bitmap_heap_scan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info,
Path bitmapqual,
double  loop_count 
)

Definition at line 1023 of file costsize.c.

1026{
1027 Cost startup_cost = 0;
1028 Cost run_cost = 0;
1029 Cost indexTotalCost;
1030 QualCost qpqual_cost;
1031 Cost cpu_per_tuple;
1032 Cost cost_per_page;
1033 Cost cpu_run_cost;
1034 double tuples_fetched;
1035 double pages_fetched;
1036 double spc_seq_page_cost,
1037 spc_random_page_cost;
1038 double T;
1039
1040 /* Should only be applied to base relations */
1041 Assert(IsA(baserel, RelOptInfo));
1042 Assert(baserel->relid > 0);
1043 Assert(baserel->rtekind == RTE_RELATION);
1044
1045 /* Mark the path with the correct row estimate */
1046 if (param_info)
1047 path->rows = param_info->ppi_rows;
1048 else
1049 path->rows = baserel->rows;
1050
1051 pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
1052 loop_count, &indexTotalCost,
1053 &tuples_fetched);
1054
1055 startup_cost += indexTotalCost;
1056 T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
1057
1058 /* Fetch estimated page costs for tablespace containing table. */
1060 &spc_random_page_cost,
1061 &spc_seq_page_cost);
1062
1063 /*
1064 * For small numbers of pages we should charge spc_random_page_cost
1065 * apiece, while if nearly all the table's pages are being read, it's more
1066 * appropriate to charge spc_seq_page_cost apiece. The effect is
1067 * nonlinear, too. For lack of a better idea, interpolate like this to
1068 * determine the cost per page.
1069 */
1070 if (pages_fetched >= 2.0)
1071 cost_per_page = spc_random_page_cost -
1072 (spc_random_page_cost - spc_seq_page_cost)
1073 * sqrt(pages_fetched / T);
1074 else
1075 cost_per_page = spc_random_page_cost;
1076
1077 run_cost += pages_fetched * cost_per_page;
1078
1079 /*
1080 * Estimate CPU costs per tuple.
1081 *
1082 * Often the indexquals don't need to be rechecked at each tuple ... but
1083 * not always, especially not if there are enough tuples involved that the
1084 * bitmaps become lossy. For the moment, just assume they will be
1085 * rechecked always. This means we charge the full freight for all the
1086 * scan clauses.
1087 */
1088 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1089
1090 startup_cost += qpqual_cost.startup;
1091 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1092 cpu_run_cost = cpu_per_tuple * tuples_fetched;
1093
1094 /* Adjust costing for parallelism, if used. */
1095 if (path->parallel_workers > 0)
1096 {
1097 double parallel_divisor = get_parallel_divisor(path);
1098
1099 /* The CPU cost is divided among all the workers. */
1100 cpu_run_cost /= parallel_divisor;
1101
1102 path->rows = clamp_row_est(path->rows / parallel_divisor);
1103 }
1104
1105
1106 run_cost += cpu_run_cost;
1107
1108 /* tlist eval costs are paid per output row, not per tuple scanned */
1109 startup_cost += path->pathtarget->cost.startup;
1110 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1111
1112 path->disabled_nodes = enable_bitmapscan ? 0 : 1;
1113 path->startup_cost = startup_cost;
1114 path->total_cost = startup_cost + run_cost;
1115}
static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, QualCost *qpqual_cost)
Definition: costsize.c:5057
double compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual, double loop_count, Cost *cost_p, double *tuples_p)
Definition: costsize.c:6498
bool enable_bitmapscan
Definition: costsize.c:148
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
@ RTE_RELATION
Definition: parsenodes.h:1026
void get_tablespace_page_costs(Oid spcid, double *spc_random_page_cost, double *spc_seq_page_cost)
Definition: spccache.c:182
Cardinality ppi_rows
Definition: pathnodes.h:1618
Index relid
Definition: pathnodes.h:945
Oid reltablespace
Definition: pathnodes.h:947
RTEKind rtekind
Definition: pathnodes.h:949

References Assert(), clamp_row_est(), compute_bitmap_pages(), cpu_tuple_cost, Path::disabled_nodes, enable_bitmapscan, get_parallel_divisor(), get_restriction_qual_cost(), get_tablespace_page_costs(), IsA, RelOptInfo::pages, Path::parallel_workers, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, T, and Path::total_cost.

Referenced by bitmap_scan_cost_est(), and create_bitmap_heap_path().

◆ cost_bitmap_or_node()

void cost_bitmap_or_node ( BitmapOrPath path,
PlannerInfo root 
)

Definition at line 1210 of file costsize.c.

1211{
1212 Cost totalCost;
1213 Selectivity selec;
1214 ListCell *l;
1215
1216 /*
1217 * We estimate OR selectivity on the assumption that the inputs are
1218 * non-overlapping, since that's often the case in "x IN (list)" type
1219 * situations. Of course, we clamp to 1.0 at the end.
1220 *
1221 * The runtime cost of the BitmapOr itself is estimated at 100x
1222 * cpu_operator_cost for each tbm_union needed. Probably too small,
1223 * definitely too simplistic? We are aware that the tbm_unions are
1224 * optimized out when the inputs are BitmapIndexScans.
1225 */
1226 totalCost = 0.0;
1227 selec = 0.0;
1228 foreach(l, path->bitmapquals)
1229 {
1230 Path *subpath = (Path *) lfirst(l);
1231 Cost subCost;
1232 Selectivity subselec;
1233
1234 cost_bitmap_tree_node(subpath, &subCost, &subselec);
1235
1236 selec += subselec;
1237
1238 totalCost += subCost;
1239 if (l != list_head(path->bitmapquals) &&
1241 totalCost += 100.0 * cpu_operator_cost;
1242 }
1243 path->bitmapselectivity = Min(selec, 1.0);
1244 path->path.rows = 0; /* per above, not used */
1245 path->path.startup_cost = totalCost;
1246 path->path.total_cost = totalCost;
1247}
Selectivity bitmapselectivity
Definition: pathnodes.h:1850
List * bitmapquals
Definition: pathnodes.h:1849

References BitmapOrPath::bitmapquals, BitmapOrPath::bitmapselectivity, cost_bitmap_tree_node(), cpu_operator_cost, IsA, lfirst, list_head(), Min, BitmapOrPath::path, Path::rows, Path::startup_cost, subpath(), and Path::total_cost.

Referenced by create_bitmap_or_path().

◆ cost_bitmap_tree_node()

void cost_bitmap_tree_node ( Path path,
Cost cost,
Selectivity selec 
)

Definition at line 1122 of file costsize.c.

1123{
1124 if (IsA(path, IndexPath))
1125 {
1126 *cost = ((IndexPath *) path)->indextotalcost;
1127 *selec = ((IndexPath *) path)->indexselectivity;
1128
1129 /*
1130 * Charge a small amount per retrieved tuple to reflect the costs of
1131 * manipulating the bitmap. This is mostly to make sure that a bitmap
1132 * scan doesn't look to be the same cost as an indexscan to retrieve a
1133 * single tuple.
1134 */
1135 *cost += 0.1 * cpu_operator_cost * path->rows;
1136 }
1137 else if (IsA(path, BitmapAndPath))
1138 {
1139 *cost = path->total_cost;
1140 *selec = ((BitmapAndPath *) path)->bitmapselectivity;
1141 }
1142 else if (IsA(path, BitmapOrPath))
1143 {
1144 *cost = path->total_cost;
1145 *selec = ((BitmapOrPath *) path)->bitmapselectivity;
1146 }
1147 else
1148 {
1149 elog(ERROR, "unrecognized node type: %d", nodeTag(path));
1150 *cost = *selec = 0; /* keep compiler quiet */
1151 }
1152}
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define nodeTag(nodeptr)
Definition: nodes.h:139

References cpu_operator_cost, elog, ERROR, IsA, nodeTag, Path::rows, and Path::total_cost.

Referenced by choose_bitmap_and(), compute_bitmap_pages(), cost_bitmap_and_node(), cost_bitmap_or_node(), and path_usage_comparator().

◆ cost_ctescan()

void cost_ctescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1708 of file costsize.c.

1710{
1711 Cost startup_cost = 0;
1712 Cost run_cost = 0;
1713 QualCost qpqual_cost;
1714 Cost cpu_per_tuple;
1715
1716 /* Should only be applied to base relations that are CTEs */
1717 Assert(baserel->relid > 0);
1718 Assert(baserel->rtekind == RTE_CTE);
1719
1720 /* Mark the path with the correct row estimate */
1721 if (param_info)
1722 path->rows = param_info->ppi_rows;
1723 else
1724 path->rows = baserel->rows;
1725
1726 /* Charge one CPU tuple cost per row for tuplestore manipulation */
1727 cpu_per_tuple = cpu_tuple_cost;
1728
1729 /* Add scanning CPU costs */
1730 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1731
1732 startup_cost += qpqual_cost.startup;
1733 cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1734 run_cost += cpu_per_tuple * baserel->tuples;
1735
1736 /* tlist eval costs are paid per output row, not per tuple scanned */
1737 startup_cost += path->pathtarget->cost.startup;
1738 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1739
1740 path->disabled_nodes = 0;
1741 path->startup_cost = startup_cost;
1742 path->total_cost = startup_cost + run_cost;
1743}
@ RTE_CTE
Definition: parsenodes.h:1032

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_CTE, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_ctescan_path(), and create_worktablescan_path().

◆ cost_functionscan()

void cost_functionscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1538 of file costsize.c.

1540{
1541 Cost startup_cost = 0;
1542 Cost run_cost = 0;
1543 QualCost qpqual_cost;
1544 Cost cpu_per_tuple;
1545 RangeTblEntry *rte;
1546 QualCost exprcost;
1547
1548 /* Should only be applied to base relations that are functions */
1549 Assert(baserel->relid > 0);
1550 rte = planner_rt_fetch(baserel->relid, root);
1551 Assert(rte->rtekind == RTE_FUNCTION);
1552
1553 /* Mark the path with the correct row estimate */
1554 if (param_info)
1555 path->rows = param_info->ppi_rows;
1556 else
1557 path->rows = baserel->rows;
1558
1559 /*
1560 * Estimate costs of executing the function expression(s).
1561 *
1562 * Currently, nodeFunctionscan.c always executes the functions to
1563 * completion before returning any rows, and caches the results in a
1564 * tuplestore. So the function eval cost is all startup cost, and per-row
1565 * costs are minimal.
1566 *
1567 * XXX in principle we ought to charge tuplestore spill costs if the
1568 * number of rows is large. However, given how phony our rowcount
1569 * estimates for functions tend to be, there's not a lot of point in that
1570 * refinement right now.
1571 */
1572 cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
1573
1574 startup_cost += exprcost.startup + exprcost.per_tuple;
1575
1576 /* Add scanning CPU costs */
1577 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1578
1579 startup_cost += qpqual_cost.startup;
1580 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1581 run_cost += cpu_per_tuple * baserel->tuples;
1582
1583 /* tlist eval costs are paid per output row, not per tuple scanned */
1584 startup_cost += path->pathtarget->cost.startup;
1585 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1586
1587 path->disabled_nodes = 0;
1588 path->startup_cost = startup_cost;
1589 path->total_cost = startup_cost + run_cost;
1590}
void cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
Definition: costsize.c:4767
@ RTE_FUNCTION
Definition: parsenodes.h:1029
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:597
Definition: nodes.h:135
List * functions
Definition: parsenodes.h:1191
RTEKind rtekind
Definition: parsenodes.h:1061

References Assert(), cost_qual_eval_node(), cpu_tuple_cost, Path::disabled_nodes, RangeTblEntry::functions, get_restriction_qual_cost(), QualCost::per_tuple, planner_rt_fetch, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_FUNCTION, RangeTblEntry::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_functionscan_path().

◆ cost_gather()

void cost_gather ( GatherPath path,
PlannerInfo root,
RelOptInfo rel,
ParamPathInfo param_info,
double *  rows 
)

Definition at line 446 of file costsize.c.

449{
450 Cost startup_cost = 0;
451 Cost run_cost = 0;
452
453 /* Mark the path with the correct row estimate */
454 if (rows)
455 path->path.rows = *rows;
456 else if (param_info)
457 path->path.rows = param_info->ppi_rows;
458 else
459 path->path.rows = rel->rows;
460
461 startup_cost = path->subpath->startup_cost;
462
463 run_cost = path->subpath->total_cost - path->subpath->startup_cost;
464
465 /* Parallel setup and communication cost. */
466 startup_cost += parallel_setup_cost;
467 run_cost += parallel_tuple_cost * path->path.rows;
468
470 path->path.startup_cost = startup_cost;
471 path->path.total_cost = (startup_cost + run_cost);
472}
double parallel_setup_cost
Definition: costsize.c:136
double parallel_tuple_cost
Definition: costsize.c:135
Path * subpath
Definition: pathnodes.h:2081

References Path::disabled_nodes, parallel_setup_cost, parallel_tuple_cost, GatherPath::path, ParamPathInfo::ppi_rows, RelOptInfo::rows, Path::rows, Path::startup_cost, GatherPath::subpath, and Path::total_cost.

Referenced by create_gather_path().

◆ cost_gather_merge()

void cost_gather_merge ( GatherMergePath path,
PlannerInfo root,
RelOptInfo rel,
ParamPathInfo param_info,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double *  rows 
)

Definition at line 485 of file costsize.c.

490{
491 Cost startup_cost = 0;
492 Cost run_cost = 0;
493 Cost comparison_cost;
494 double N;
495 double logN;
496
497 /* Mark the path with the correct row estimate */
498 if (rows)
499 path->path.rows = *rows;
500 else if (param_info)
501 path->path.rows = param_info->ppi_rows;
502 else
503 path->path.rows = rel->rows;
504
505 /*
506 * Add one to the number of workers to account for the leader. This might
507 * be overgenerous since the leader will do less work than other workers
508 * in typical cases, but we'll go with it for now.
509 */
510 Assert(path->num_workers > 0);
511 N = (double) path->num_workers + 1;
512 logN = LOG2(N);
513
514 /* Assumed cost per tuple comparison */
515 comparison_cost = 2.0 * cpu_operator_cost;
516
517 /* Heap creation cost */
518 startup_cost += comparison_cost * N * logN;
519
520 /* Per-tuple heap maintenance cost */
521 run_cost += path->path.rows * comparison_cost * logN;
522
523 /* small cost for heap management, like cost_merge_append */
524 run_cost += cpu_operator_cost * path->path.rows;
525
526 /*
527 * Parallel setup and communication cost. Since Gather Merge, unlike
528 * Gather, requires us to block until a tuple is available from every
529 * worker, we bump the IPC cost up a little bit as compared with Gather.
530 * For lack of a better idea, charge an extra 5%.
531 */
532 startup_cost += parallel_setup_cost;
533 run_cost += parallel_tuple_cost * path->path.rows * 1.05;
534
535 path->path.disabled_nodes = input_disabled_nodes
536 + (enable_gathermerge ? 0 : 1);
537 path->path.startup_cost = startup_cost + input_startup_cost;
538 path->path.total_cost = (startup_cost + run_cost + input_total_cost);
539}
#define LOG2(x)
Definition: costsize.c:113
bool enable_gathermerge
Definition: costsize.c:158

References Assert(), cpu_operator_cost, Path::disabled_nodes, enable_gathermerge, LOG2, GatherMergePath::num_workers, parallel_setup_cost, parallel_tuple_cost, GatherMergePath::path, ParamPathInfo::ppi_rows, RelOptInfo::rows, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by create_gather_merge_path().

◆ cost_group()

void cost_group ( Path path,
PlannerInfo root,
int  numGroupCols,
double  numGroups,
List quals,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples 
)

Definition at line 3195 of file costsize.c.

3201{
3202 double output_tuples;
3203 Cost startup_cost;
3204 Cost total_cost;
3205
3206 output_tuples = numGroups;
3207 startup_cost = input_startup_cost;
3208 total_cost = input_total_cost;
3209
3210 /*
3211 * Charge one cpu_operator_cost per comparison per input tuple. We assume
3212 * all columns get compared at most of the tuples.
3213 */
3214 total_cost += cpu_operator_cost * input_tuples * numGroupCols;
3215
3216 /*
3217 * If there are quals (HAVING quals), account for their cost and
3218 * selectivity.
3219 */
3220 if (quals)
3221 {
3222 QualCost qual_cost;
3223
3224 cost_qual_eval(&qual_cost, quals, root);
3225 startup_cost += qual_cost.startup;
3226 total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
3227
3228 output_tuples = clamp_row_est(output_tuples *
3230 quals,
3231 0,
3232 JOIN_INNER,
3233 NULL));
3234 }
3235
3236 path->rows = output_tuples;
3237 path->disabled_nodes = input_disabled_nodes;
3238 path->startup_cost = startup_cost;
3239 path->total_cost = total_cost;
3240}

References clamp_row_est(), clauselist_selectivity(), cost_qual_eval(), cpu_operator_cost, Path::disabled_nodes, JOIN_INNER, QualCost::per_tuple, root, Path::rows, QualCost::startup, Path::startup_cost, and Path::total_cost.

Referenced by create_group_path().

◆ cost_incremental_sort()

void cost_incremental_sort ( Path path,
PlannerInfo root,
List pathkeys,
int  presorted_keys,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples,
int  width,
Cost  comparison_cost,
int  sort_mem,
double  limit_tuples 
)

Definition at line 2000 of file costsize.c.

2006{
2007 Cost startup_cost,
2008 run_cost,
2009 input_run_cost = input_total_cost - input_startup_cost;
2010 double group_tuples,
2011 input_groups;
2012 Cost group_startup_cost,
2013 group_run_cost,
2014 group_input_run_cost;
2015 List *presortedExprs = NIL;
2016 ListCell *l;
2017 bool unknown_varno = false;
2018
2019 Assert(presorted_keys > 0 && presorted_keys < list_length(pathkeys));
2020
2021 /*
2022 * We want to be sure the cost of a sort is never estimated as zero, even
2023 * if passed-in tuple count is zero. Besides, mustn't do log(0)...
2024 */
2025 if (input_tuples < 2.0)
2026 input_tuples = 2.0;
2027
2028 /* Default estimate of number of groups, capped to one group per row. */
2029 input_groups = Min(input_tuples, DEFAULT_NUM_DISTINCT);
2030
2031 /*
2032 * Extract presorted keys as list of expressions.
2033 *
2034 * We need to be careful about Vars containing "varno 0" which might have
2035 * been introduced by generate_append_tlist, which would confuse
2036 * estimate_num_groups (in fact it'd fail for such expressions). See
2037 * recurse_set_operations which has to deal with the same issue.
2038 *
2039 * Unlike recurse_set_operations we can't access the original target list
2040 * here, and even if we could it's not very clear how useful would that be
2041 * for a set operation combining multiple tables. So we simply detect if
2042 * there are any expressions with "varno 0" and use the default
2043 * DEFAULT_NUM_DISTINCT in that case.
2044 *
2045 * We might also use either 1.0 (a single group) or input_tuples (each row
2046 * being a separate group), pretty much the worst and best case for
2047 * incremental sort. But those are extreme cases and using something in
2048 * between seems reasonable. Furthermore, generate_append_tlist is used
2049 * for set operations, which are likely to produce mostly unique output
2050 * anyway - from that standpoint the DEFAULT_NUM_DISTINCT is defensive
2051 * while maintaining lower startup cost.
2052 */
2053 foreach(l, pathkeys)
2054 {
2055 PathKey *key = (PathKey *) lfirst(l);
2057 linitial(key->pk_eclass->ec_members);
2058
2059 /*
2060 * Check if the expression contains Var with "varno 0" so that we
2061 * don't call estimate_num_groups in that case.
2062 */
2063 if (bms_is_member(0, pull_varnos(root, (Node *) member->em_expr)))
2064 {
2065 unknown_varno = true;
2066 break;
2067 }
2068
2069 /* expression not containing any Vars with "varno 0" */
2070 presortedExprs = lappend(presortedExprs, member->em_expr);
2071
2072 if (foreach_current_index(l) + 1 >= presorted_keys)
2073 break;
2074 }
2075
2076 /* Estimate the number of groups with equal presorted keys. */
2077 if (!unknown_varno)
2078 input_groups = estimate_num_groups(root, presortedExprs, input_tuples,
2079 NULL, NULL);
2080
2081 group_tuples = input_tuples / input_groups;
2082 group_input_run_cost = input_run_cost / input_groups;
2083
2084 /*
2085 * Estimate the average cost of sorting of one group where presorted keys
2086 * are equal.
2087 */
2088 cost_tuplesort(&group_startup_cost, &group_run_cost,
2089 group_tuples, width, comparison_cost, sort_mem,
2090 limit_tuples);
2091
2092 /*
2093 * Startup cost of incremental sort is the startup cost of its first group
2094 * plus the cost of its input.
2095 */
2096 startup_cost = group_startup_cost + input_startup_cost +
2097 group_input_run_cost;
2098
2099 /*
2100 * After we started producing tuples from the first group, the cost of
2101 * producing all the tuples is given by the cost to finish processing this
2102 * group, plus the total cost to process the remaining groups, plus the
2103 * remaining cost of input.
2104 */
2105 run_cost = group_run_cost + (group_run_cost + group_startup_cost) *
2106 (input_groups - 1) + group_input_run_cost * (input_groups - 1);
2107
2108 /*
2109 * Incremental sort adds some overhead by itself. Firstly, it has to
2110 * detect the sort groups. This is roughly equal to one extra copy and
2111 * comparison per tuple.
2112 */
2113 run_cost += (cpu_tuple_cost + comparison_cost) * input_tuples;
2114
2115 /*
2116 * Additionally, we charge double cpu_tuple_cost for each input group to
2117 * account for the tuplesort_reset that's performed after each group.
2118 */
2119 run_cost += 2.0 * cpu_tuple_cost * input_groups;
2120
2121 path->rows = input_tuples;
2122
2123 /* should not generate these paths when enable_incremental_sort=false */
2125 path->disabled_nodes = input_disabled_nodes;
2126
2127 path->startup_cost = startup_cost;
2128 path->total_cost = startup_cost + run_cost;
2129}
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
static void cost_tuplesort(Cost *startup_cost, Cost *run_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:1898
bool enable_incremental_sort
Definition: costsize.c:151
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset, EstimationInfo *estinfo)
Definition: selfuncs.c:3430
#define DEFAULT_NUM_DISTINCT
Definition: selfuncs.h:52
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114

References Assert(), bms_is_member(), cost_tuplesort(), cpu_tuple_cost, DEFAULT_NUM_DISTINCT, Path::disabled_nodes, EquivalenceMember::em_expr, enable_incremental_sort, estimate_num_groups(), foreach_current_index, sort-test::key, lappend(), lfirst, linitial, list_length(), Min, NIL, pull_varnos(), root, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by create_incremental_sort_path(), initial_cost_mergejoin(), and label_incrementalsort_with_costsize().

◆ cost_index()

void cost_index ( IndexPath path,
PlannerInfo root,
double  loop_count,
bool  partial_path 
)

Definition at line 560 of file costsize.c.

562{
564 RelOptInfo *baserel = index->rel;
565 bool indexonly = (path->path.pathtype == T_IndexOnlyScan);
566 amcostestimate_function amcostestimate;
567 List *qpquals;
568 Cost startup_cost = 0;
569 Cost run_cost = 0;
570 Cost cpu_run_cost = 0;
571 Cost indexStartupCost;
572 Cost indexTotalCost;
573 Selectivity indexSelectivity;
574 double indexCorrelation,
575 csquared;
576 double spc_seq_page_cost,
577 spc_random_page_cost;
578 Cost min_IO_cost,
579 max_IO_cost;
580 QualCost qpqual_cost;
581 Cost cpu_per_tuple;
582 double tuples_fetched;
583 double pages_fetched;
584 double rand_heap_pages;
585 double index_pages;
586
587 /* Should only be applied to base relations */
588 Assert(IsA(baserel, RelOptInfo) &&
590 Assert(baserel->relid > 0);
591 Assert(baserel->rtekind == RTE_RELATION);
592
593 /*
594 * Mark the path with the correct row estimate, and identify which quals
595 * will need to be enforced as qpquals. We need not check any quals that
596 * are implied by the index's predicate, so we can use indrestrictinfo not
597 * baserestrictinfo as the list of relevant restriction clauses for the
598 * rel.
599 */
600 if (path->path.param_info)
601 {
602 path->path.rows = path->path.param_info->ppi_rows;
603 /* qpquals come from the rel's restriction clauses and ppi_clauses */
605 path->indexclauses),
606 extract_nonindex_conditions(path->path.param_info->ppi_clauses,
607 path->indexclauses));
608 }
609 else
610 {
611 path->path.rows = baserel->rows;
612 /* qpquals come from just the rel's restriction clauses */
614 path->indexclauses);
615 }
616
617 /* we don't need to check enable_indexonlyscan; indxpath.c does that */
618 path->path.disabled_nodes = enable_indexscan ? 0 : 1;
619
620 /*
621 * Call index-access-method-specific code to estimate the processing cost
622 * for scanning the index, as well as the selectivity of the index (ie,
623 * the fraction of main-table tuples we will have to retrieve) and its
624 * correlation to the main-table tuple order. We need a cast here because
625 * pathnodes.h uses a weak function type to avoid including amapi.h.
626 */
627 amcostestimate = (amcostestimate_function) index->amcostestimate;
628 amcostestimate(root, path, loop_count,
629 &indexStartupCost, &indexTotalCost,
630 &indexSelectivity, &indexCorrelation,
631 &index_pages);
632
633 /*
634 * Save amcostestimate's results for possible use in bitmap scan planning.
635 * We don't bother to save indexStartupCost or indexCorrelation, because a
636 * bitmap scan doesn't care about either.
637 */
638 path->indextotalcost = indexTotalCost;
639 path->indexselectivity = indexSelectivity;
640
641 /* all costs for touching index itself included here */
642 startup_cost += indexStartupCost;
643 run_cost += indexTotalCost - indexStartupCost;
644
645 /* estimate number of main-table tuples fetched */
646 tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
647
648 /* fetch estimated page costs for tablespace containing table */
650 &spc_random_page_cost,
651 &spc_seq_page_cost);
652
653 /*----------
654 * Estimate number of main-table pages fetched, and compute I/O cost.
655 *
656 * When the index ordering is uncorrelated with the table ordering,
657 * we use an approximation proposed by Mackert and Lohman (see
658 * index_pages_fetched() for details) to compute the number of pages
659 * fetched, and then charge spc_random_page_cost per page fetched.
660 *
661 * When the index ordering is exactly correlated with the table ordering
662 * (just after a CLUSTER, for example), the number of pages fetched should
663 * be exactly selectivity * table_size. What's more, all but the first
664 * will be sequential fetches, not the random fetches that occur in the
665 * uncorrelated case. So if the number of pages is more than 1, we
666 * ought to charge
667 * spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
668 * For partially-correlated indexes, we ought to charge somewhere between
669 * these two estimates. We currently interpolate linearly between the
670 * estimates based on the correlation squared (XXX is that appropriate?).
671 *
672 * If it's an index-only scan, then we will not need to fetch any heap
673 * pages for which the visibility map shows all tuples are visible.
674 * Hence, reduce the estimated number of heap fetches accordingly.
675 * We use the measured fraction of the entire heap that is all-visible,
676 * which might not be particularly relevant to the subset of the heap
677 * that this query will fetch; but it's not clear how to do better.
678 *----------
679 */
680 if (loop_count > 1)
681 {
682 /*
683 * For repeated indexscans, the appropriate estimate for the
684 * uncorrelated case is to scale up the number of tuples fetched in
685 * the Mackert and Lohman formula by the number of scans, so that we
686 * estimate the number of pages fetched by all the scans; then
687 * pro-rate the costs for one scan. In this case we assume all the
688 * fetches are random accesses.
689 */
690 pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
691 baserel->pages,
692 (double) index->pages,
693 root);
694
695 if (indexonly)
696 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
697
698 rand_heap_pages = pages_fetched;
699
700 max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
701
702 /*
703 * In the perfectly correlated case, the number of pages touched by
704 * each scan is selectivity * table_size, and we can use the Mackert
705 * and Lohman formula at the page level to estimate how much work is
706 * saved by caching across scans. We still assume all the fetches are
707 * random, though, which is an overestimate that's hard to correct for
708 * without double-counting the cache effects. (But in most cases
709 * where such a plan is actually interesting, only one page would get
710 * fetched per scan anyway, so it shouldn't matter much.)
711 */
712 pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
713
714 pages_fetched = index_pages_fetched(pages_fetched * loop_count,
715 baserel->pages,
716 (double) index->pages,
717 root);
718
719 if (indexonly)
720 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
721
722 min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
723 }
724 else
725 {
726 /*
727 * Normal case: apply the Mackert and Lohman formula, and then
728 * interpolate between that and the correlation-derived result.
729 */
730 pages_fetched = index_pages_fetched(tuples_fetched,
731 baserel->pages,
732 (double) index->pages,
733 root);
734
735 if (indexonly)
736 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
737
738 rand_heap_pages = pages_fetched;
739
740 /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
741 max_IO_cost = pages_fetched * spc_random_page_cost;
742
743 /* min_IO_cost is for the perfectly correlated case (csquared=1) */
744 pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
745
746 if (indexonly)
747 pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
748
749 if (pages_fetched > 0)
750 {
751 min_IO_cost = spc_random_page_cost;
752 if (pages_fetched > 1)
753 min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
754 }
755 else
756 min_IO_cost = 0;
757 }
758
759 if (partial_path)
760 {
761 /*
762 * For index only scans compute workers based on number of index pages
763 * fetched; the number of heap pages we fetch might be so small as to
764 * effectively rule out parallelism, which we don't want to do.
765 */
766 if (indexonly)
767 rand_heap_pages = -1;
768
769 /*
770 * Estimate the number of parallel workers required to scan index. Use
771 * the number of heap pages computed considering heap fetches won't be
772 * sequential as for parallel scans the pages are accessed in random
773 * order.
774 */
776 rand_heap_pages,
777 index_pages,
779
780 /*
781 * Fall out if workers can't be assigned for parallel scan, because in
782 * such a case this path will be rejected. So there is no benefit in
783 * doing extra computation.
784 */
785 if (path->path.parallel_workers <= 0)
786 return;
787
788 path->path.parallel_aware = true;
789 }
790
791 /*
792 * Now interpolate based on estimated index order correlation to get total
793 * disk I/O cost for main table accesses.
794 */
795 csquared = indexCorrelation * indexCorrelation;
796
797 run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
798
799 /*
800 * Estimate CPU costs per tuple.
801 *
802 * What we want here is cpu_tuple_cost plus the evaluation costs of any
803 * qual clauses that we have to evaluate as qpquals.
804 */
805 cost_qual_eval(&qpqual_cost, qpquals, root);
806
807 startup_cost += qpqual_cost.startup;
808 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
809
810 cpu_run_cost += cpu_per_tuple * tuples_fetched;
811
812 /* tlist eval costs are paid per output row, not per tuple scanned */
813 startup_cost += path->path.pathtarget->cost.startup;
814 cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
815
816 /* Adjust costing for parallelism, if used. */
817 if (path->path.parallel_workers > 0)
818 {
819 double parallel_divisor = get_parallel_divisor(&path->path);
820
821 path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
822
823 /* The CPU cost is divided among all the workers. */
824 cpu_run_cost /= parallel_divisor;
825 }
826
827 run_cost += cpu_run_cost;
828
829 path->path.startup_cost = startup_cost;
830 path->path.total_cost = startup_cost + run_cost;
831}
int compute_parallel_worker(RelOptInfo *rel, double heap_pages, double index_pages, int max_workers)
Definition: allpaths.c:4236
void(* amcostestimate_function)(struct PlannerInfo *root, struct IndexPath *path, double loop_count, Cost *indexStartupCost, Cost *indexTotalCost, Selectivity *indexSelectivity, double *indexCorrelation, double *indexPages)
Definition: amapi.h:146
int max_parallel_workers_per_gather
Definition: costsize.c:143
static List * extract_nonindex_conditions(List *qual_clauses, List *indexclauses)
Definition: costsize.c:850
bool enable_indexscan
Definition: costsize.c:146
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * indrestrictinfo
Definition: pathnodes.h:1211
List * indexclauses
Definition: pathnodes.h:1750
Path path
Definition: pathnodes.h:1748
Selectivity indexselectivity
Definition: pathnodes.h:1755
Cost indextotalcost
Definition: pathnodes.h:1754
IndexOptInfo * indexinfo
Definition: pathnodes.h:1749
NodeTag pathtype
Definition: pathnodes.h:1664
double allvisfrac
Definition: pathnodes.h:977
Definition: type.h:96

References RelOptInfo::allvisfrac, Assert(), clamp_row_est(), compute_parallel_worker(), cost_qual_eval(), cpu_tuple_cost, Path::disabled_nodes, enable_indexscan, extract_nonindex_conditions(), get_parallel_divisor(), get_tablespace_page_costs(), index_pages_fetched(), IndexPath::indexclauses, IndexPath::indexinfo, IndexPath::indexselectivity, IndexPath::indextotalcost, IndexOptInfo::indrestrictinfo, IsA, list_concat(), max_parallel_workers_per_gather, RelOptInfo::pages, Path::parallel_aware, Path::parallel_workers, IndexPath::path, Path::pathtype, QualCost::per_tuple, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_index_path(), and reparameterize_path().

◆ cost_material()

void cost_material ( Path path,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  tuples,
int  width 
)

Definition at line 2483 of file costsize.c.

2487{
2488 Cost startup_cost = input_startup_cost;
2489 Cost run_cost = input_total_cost - input_startup_cost;
2490 double nbytes = relation_byte_size(tuples, width);
2491 double work_mem_bytes = work_mem * (Size) 1024;
2492
2493 path->rows = tuples;
2494
2495 /*
2496 * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
2497 * reflect bookkeeping overhead. (This rate must be more than what
2498 * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
2499 * if it is exactly the same then there will be a cost tie between
2500 * nestloop with A outer, materialized B inner and nestloop with B outer,
2501 * materialized A inner. The extra cost ensures we'll prefer
2502 * materializing the smaller rel.) Note that this is normally a good deal
2503 * less than cpu_tuple_cost; which is OK because a Material plan node
2504 * doesn't do qual-checking or projection, so it's got less overhead than
2505 * most plan nodes.
2506 */
2507 run_cost += 2 * cpu_operator_cost * tuples;
2508
2509 /*
2510 * If we will spill to disk, charge at the rate of seq_page_cost per page.
2511 * This cost is assumed to be evenly spread through the plan run phase,
2512 * which isn't exactly accurate but our cost model doesn't allow for
2513 * nonuniform costs within the run phase.
2514 */
2515 if (nbytes > work_mem_bytes)
2516 {
2517 double npages = ceil(nbytes / BLCKSZ);
2518
2519 run_cost += seq_page_cost * npages;
2520 }
2521
2522 path->disabled_nodes = input_disabled_nodes + (enable_material ? 0 : 1);
2523 path->startup_cost = startup_cost;
2524 path->total_cost = startup_cost + run_cost;
2525}
bool enable_material
Definition: costsize.c:154

References cpu_operator_cost, Path::disabled_nodes, enable_material, relation_byte_size(), Path::rows, seq_page_cost, Path::startup_cost, Path::total_cost, and work_mem.

Referenced by create_material_path(), and materialize_finished_plan().

◆ cost_merge_append()

void cost_merge_append ( Path path,
PlannerInfo root,
List pathkeys,
int  n_streams,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  tuples 
)

Definition at line 2432 of file costsize.c.

2437{
2438 Cost startup_cost = 0;
2439 Cost run_cost = 0;
2440 Cost comparison_cost;
2441 double N;
2442 double logN;
2443
2444 /*
2445 * Avoid log(0)...
2446 */
2447 N = (n_streams < 2) ? 2.0 : (double) n_streams;
2448 logN = LOG2(N);
2449
2450 /* Assumed cost per tuple comparison */
2451 comparison_cost = 2.0 * cpu_operator_cost;
2452
2453 /* Heap creation cost */
2454 startup_cost += comparison_cost * N * logN;
2455
2456 /* Per-tuple heap maintenance cost */
2457 run_cost += tuples * comparison_cost * logN;
2458
2459 /*
2460 * Although MergeAppend does not do any selection or projection, it's not
2461 * free; add a small per-tuple overhead.
2462 */
2463 run_cost += cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * tuples;
2464
2465 path->disabled_nodes = input_disabled_nodes;
2466 path->startup_cost = startup_cost + input_startup_cost;
2467 path->total_cost = startup_cost + run_cost + input_total_cost;
2468}

References APPEND_CPU_COST_MULTIPLIER, cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, LOG2, Path::startup_cost, and Path::total_cost.

Referenced by create_merge_append_path().

◆ cost_namedtuplestorescan()

void cost_namedtuplestorescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1750 of file costsize.c.

1752{
1753 Cost startup_cost = 0;
1754 Cost run_cost = 0;
1755 QualCost qpqual_cost;
1756 Cost cpu_per_tuple;
1757
1758 /* Should only be applied to base relations that are Tuplestores */
1759 Assert(baserel->relid > 0);
1760 Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
1761
1762 /* Mark the path with the correct row estimate */
1763 if (param_info)
1764 path->rows = param_info->ppi_rows;
1765 else
1766 path->rows = baserel->rows;
1767
1768 /* Charge one CPU tuple cost per row for tuplestore manipulation */
1769 cpu_per_tuple = cpu_tuple_cost;
1770
1771 /* Add scanning CPU costs */
1772 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1773
1774 startup_cost += qpqual_cost.startup;
1775 cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1776 run_cost += cpu_per_tuple * baserel->tuples;
1777
1778 path->disabled_nodes = 0;
1779 path->startup_cost = startup_cost;
1780 path->total_cost = startup_cost + run_cost;
1781}
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1033

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_NAMEDTUPLESTORE, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_namedtuplestorescan_path().

◆ cost_qual_eval()

void cost_qual_eval ( QualCost cost,
List quals,
PlannerInfo root 
)

Definition at line 4741 of file costsize.c.

4742{
4743 cost_qual_eval_context context;
4744 ListCell *l;
4745
4746 context.root = root;
4747 context.total.startup = 0;
4748 context.total.per_tuple = 0;
4749
4750 /* We don't charge any cost for the implicit ANDing at top level ... */
4751
4752 foreach(l, quals)
4753 {
4754 Node *qual = (Node *) lfirst(l);
4755
4756 cost_qual_eval_walker(qual, &context);
4757 }
4758
4759 *cost = context.total;
4760}
static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)
Definition: costsize.c:4781
PlannerInfo * root
Definition: costsize.c:169

References cost_qual_eval_walker(), lfirst, QualCost::per_tuple, cost_qual_eval_context::root, root, QualCost::startup, and cost_qual_eval_context::total.

Referenced by add_foreign_grouping_paths(), cost_agg(), cost_group(), cost_index(), cost_subplan(), cost_tidrangescan(), cost_tidscan(), create_group_result_path(), create_minmaxagg_path(), estimate_path_cost_size(), final_cost_hashjoin(), final_cost_mergejoin(), final_cost_nestloop(), get_restriction_qual_cost(), inline_function(), plan_cluster_use_sort(), postgresGetForeignJoinPaths(), postgresGetForeignRelSize(), set_baserel_size_estimates(), and set_foreign_size_estimates().

◆ cost_qual_eval_node()

◆ cost_recursive_union()

void cost_recursive_union ( Path runion,
Path nrterm,
Path rterm 
)

Definition at line 1826 of file costsize.c.

1827{
1828 Cost startup_cost;
1829 Cost total_cost;
1830 double total_rows;
1831
1832 /* We probably have decent estimates for the non-recursive term */
1833 startup_cost = nrterm->startup_cost;
1834 total_cost = nrterm->total_cost;
1835 total_rows = nrterm->rows;
1836
1837 /*
1838 * We arbitrarily assume that about 10 recursive iterations will be
1839 * needed, and that we've managed to get a good fix on the cost and output
1840 * size of each one of them. These are mighty shaky assumptions but it's
1841 * hard to see how to do better.
1842 */
1843 total_cost += 10 * rterm->total_cost;
1844 total_rows += 10 * rterm->rows;
1845
1846 /*
1847 * Also charge cpu_tuple_cost per row to account for the costs of
1848 * manipulating the tuplestores. (We don't worry about possible
1849 * spill-to-disk costs.)
1850 */
1851 total_cost += cpu_tuple_cost * total_rows;
1852
1853 runion->disabled_nodes = nrterm->disabled_nodes + rterm->disabled_nodes;
1854 runion->startup_cost = startup_cost;
1855 runion->total_cost = total_cost;
1856 runion->rows = total_rows;
1857 runion->pathtarget->width = Max(nrterm->pathtarget->width,
1858 rterm->pathtarget->width);
1859}

References cpu_tuple_cost, Path::disabled_nodes, Max, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by create_recursiveunion_path().

◆ cost_resultscan()

void cost_resultscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1788 of file costsize.c.

1790{
1791 Cost startup_cost = 0;
1792 Cost run_cost = 0;
1793 QualCost qpqual_cost;
1794 Cost cpu_per_tuple;
1795
1796 /* Should only be applied to RTE_RESULT base relations */
1797 Assert(baserel->relid > 0);
1798 Assert(baserel->rtekind == RTE_RESULT);
1799
1800 /* Mark the path with the correct row estimate */
1801 if (param_info)
1802 path->rows = param_info->ppi_rows;
1803 else
1804 path->rows = baserel->rows;
1805
1806 /* We charge qual cost plus cpu_tuple_cost */
1807 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1808
1809 startup_cost += qpqual_cost.startup;
1810 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1811 run_cost += cpu_per_tuple * baserel->tuples;
1812
1813 path->disabled_nodes = 0;
1814 path->startup_cost = startup_cost;
1815 path->total_cost = startup_cost + run_cost;
1816}
@ RTE_RESULT
Definition: parsenodes.h:1034

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_RESULT, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_resultscan_path().

◆ cost_samplescan()

void cost_samplescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 370 of file costsize.c.

372{
373 Cost startup_cost = 0;
374 Cost run_cost = 0;
375 RangeTblEntry *rte;
377 TsmRoutine *tsm;
378 double spc_seq_page_cost,
379 spc_random_page_cost,
380 spc_page_cost;
381 QualCost qpqual_cost;
382 Cost cpu_per_tuple;
383
384 /* Should only be applied to base relations with tablesample clauses */
385 Assert(baserel->relid > 0);
386 rte = planner_rt_fetch(baserel->relid, root);
387 Assert(rte->rtekind == RTE_RELATION);
388 tsc = rte->tablesample;
389 Assert(tsc != NULL);
390 tsm = GetTsmRoutine(tsc->tsmhandler);
391
392 /* Mark the path with the correct row estimate */
393 if (param_info)
394 path->rows = param_info->ppi_rows;
395 else
396 path->rows = baserel->rows;
397
398 /* fetch estimated page cost for tablespace containing table */
400 &spc_random_page_cost,
401 &spc_seq_page_cost);
402
403 /* if NextSampleBlock is used, assume random access, else sequential */
404 spc_page_cost = (tsm->NextSampleBlock != NULL) ?
405 spc_random_page_cost : spc_seq_page_cost;
406
407 /*
408 * disk costs (recall that baserel->pages has already been set to the
409 * number of pages the sampling method will visit)
410 */
411 run_cost += spc_page_cost * baserel->pages;
412
413 /*
414 * CPU costs (recall that baserel->tuples has already been set to the
415 * number of tuples the sampling method will select). Note that we ignore
416 * execution cost of the TABLESAMPLE parameter expressions; they will be
417 * evaluated only once per scan, and in most usages they'll likely be
418 * simple constants anyway. We also don't charge anything for the
419 * calculations the sampling method might do internally.
420 */
421 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
422
423 startup_cost += qpqual_cost.startup;
424 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
425 run_cost += cpu_per_tuple * baserel->tuples;
426 /* tlist eval costs are paid per output row, not per tuple scanned */
427 startup_cost += path->pathtarget->cost.startup;
428 run_cost += path->pathtarget->cost.per_tuple * path->rows;
429
430 path->disabled_nodes = 0;
431 path->startup_cost = startup_cost;
432 path->total_cost = startup_cost + run_cost;
433}
struct TableSampleClause * tablesample
Definition: parsenodes.h:1112
NextSampleBlock_function NextSampleBlock
Definition: tsmapi.h:73
TsmRoutine * GetTsmRoutine(Oid tsmhandler)
Definition: tablesample.c:27

References Assert(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), get_tablespace_page_costs(), GetTsmRoutine(), TsmRoutine::NextSampleBlock, RelOptInfo::pages, QualCost::per_tuple, planner_rt_fetch, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RangeTblEntry::rtekind, QualCost::startup, Path::startup_cost, RangeTblEntry::tablesample, Path::total_cost, TableSampleClause::tsmhandler, and RelOptInfo::tuples.

Referenced by create_samplescan_path().

◆ cost_seqscan()

void cost_seqscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 295 of file costsize.c.

297{
298 Cost startup_cost = 0;
299 Cost cpu_run_cost;
300 Cost disk_run_cost;
301 double spc_seq_page_cost;
302 QualCost qpqual_cost;
303 Cost cpu_per_tuple;
304
305 /* Should only be applied to base relations */
306 Assert(baserel->relid > 0);
307 Assert(baserel->rtekind == RTE_RELATION);
308
309 /* Mark the path with the correct row estimate */
310 if (param_info)
311 path->rows = param_info->ppi_rows;
312 else
313 path->rows = baserel->rows;
314
315 /* fetch estimated page cost for tablespace containing table */
317 NULL,
318 &spc_seq_page_cost);
319
320 /*
321 * disk costs
322 */
323 disk_run_cost = spc_seq_page_cost * baserel->pages;
324
325 /* CPU costs */
326 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
327
328 startup_cost += qpqual_cost.startup;
329 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
330 cpu_run_cost = cpu_per_tuple * baserel->tuples;
331 /* tlist eval costs are paid per output row, not per tuple scanned */
332 startup_cost += path->pathtarget->cost.startup;
333 cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
334
335 /* Adjust costing for parallelism, if used. */
336 if (path->parallel_workers > 0)
337 {
338 double parallel_divisor = get_parallel_divisor(path);
339
340 /* The CPU cost is divided among all the workers. */
341 cpu_run_cost /= parallel_divisor;
342
343 /*
344 * It may be possible to amortize some of the I/O cost, but probably
345 * not very much, because most operating systems already do aggressive
346 * prefetching. For now, we assume that the disk run cost can't be
347 * amortized at all.
348 */
349
350 /*
351 * In the case of a parallel plan, the row count needs to represent
352 * the number of tuples processed per worker.
353 */
354 path->rows = clamp_row_est(path->rows / parallel_divisor);
355 }
356
357 path->disabled_nodes = enable_seqscan ? 0 : 1;
358 path->startup_cost = startup_cost;
359 path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
360}
bool enable_seqscan
Definition: costsize.c:145

References Assert(), clamp_row_est(), cpu_tuple_cost, Path::disabled_nodes, enable_seqscan, get_parallel_divisor(), get_restriction_qual_cost(), get_tablespace_page_costs(), RelOptInfo::pages, Path::parallel_workers, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_seqscan_path().

◆ cost_sort()

void cost_sort ( Path path,
PlannerInfo root,
List pathkeys,
int  disabled_nodes,
Cost  input_cost,
double  tuples,
int  width,
Cost  comparison_cost,
int  sort_mem,
double  limit_tuples 
)

Definition at line 2144 of file costsize.c.

2150{
2151 Cost startup_cost;
2152 Cost run_cost;
2153
2154 cost_tuplesort(&startup_cost, &run_cost,
2155 tuples, width,
2156 comparison_cost, sort_mem,
2157 limit_tuples);
2158
2159 startup_cost += input_cost;
2160
2161 path->rows = tuples;
2162 path->disabled_nodes = input_disabled_nodes + (enable_sort ? 0 : 1);
2163 path->startup_cost = startup_cost;
2164 path->total_cost = startup_cost + run_cost;
2165}
bool enable_sort
Definition: costsize.c:150

References cost_tuplesort(), Path::disabled_nodes, enable_sort, Path::rows, Path::startup_cost, and Path::total_cost.

Referenced by adjust_foreign_grouping_path_cost(), cost_append(), create_groupingsets_path(), create_merge_append_path(), create_sort_path(), create_unique_path(), initial_cost_mergejoin(), label_sort_with_costsize(), and plan_cluster_use_sort().

◆ cost_subplan()

void cost_subplan ( PlannerInfo root,
SubPlan subplan,
Plan plan 
)

Definition at line 4533 of file costsize.c.

4534{
4535 QualCost sp_cost;
4536
4537 /* Figure any cost for evaluating the testexpr */
4538 cost_qual_eval(&sp_cost,
4539 make_ands_implicit((Expr *) subplan->testexpr),
4540 root);
4541
4542 if (subplan->useHashTable)
4543 {
4544 /*
4545 * If we are using a hash table for the subquery outputs, then the
4546 * cost of evaluating the query is a one-time cost. We charge one
4547 * cpu_operator_cost per tuple for the work of loading the hashtable,
4548 * too.
4549 */
4550 sp_cost.startup += plan->total_cost +
4551 cpu_operator_cost * plan->plan_rows;
4552
4553 /*
4554 * The per-tuple costs include the cost of evaluating the lefthand
4555 * expressions, plus the cost of probing the hashtable. We already
4556 * accounted for the lefthand expressions as part of the testexpr, and
4557 * will also have counted one cpu_operator_cost for each comparison
4558 * operator. That is probably too low for the probing cost, but it's
4559 * hard to make a better estimate, so live with it for now.
4560 */
4561 }
4562 else
4563 {
4564 /*
4565 * Otherwise we will be rescanning the subplan output on each
4566 * evaluation. We need to estimate how much of the output we will
4567 * actually need to scan. NOTE: this logic should agree with the
4568 * tuple_fraction estimates used by make_subplan() in
4569 * plan/subselect.c.
4570 */
4571 Cost plan_run_cost = plan->total_cost - plan->startup_cost;
4572
4573 if (subplan->subLinkType == EXISTS_SUBLINK)
4574 {
4575 /* we only need to fetch 1 tuple; clamp to avoid zero divide */
4576 sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
4577 }
4578 else if (subplan->subLinkType == ALL_SUBLINK ||
4579 subplan->subLinkType == ANY_SUBLINK)
4580 {
4581 /* assume we need 50% of the tuples */
4582 sp_cost.per_tuple += 0.50 * plan_run_cost;
4583 /* also charge a cpu_operator_cost per row examined */
4584 sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
4585 }
4586 else
4587 {
4588 /* assume we need all tuples */
4589 sp_cost.per_tuple += plan_run_cost;
4590 }
4591
4592 /*
4593 * Also account for subplan's startup cost. If the subplan is
4594 * uncorrelated or undirect correlated, AND its topmost node is one
4595 * that materializes its output, assume that we'll only need to pay
4596 * its startup cost once; otherwise assume we pay the startup cost
4597 * every time.
4598 */
4599 if (subplan->parParam == NIL &&
4601 sp_cost.startup += plan->startup_cost;
4602 else
4603 sp_cost.per_tuple += plan->startup_cost;
4604 }
4605
4606 subplan->startup_cost = sp_cost.startup;
4607 subplan->per_call_cost = sp_cost.per_tuple;
4608}
bool ExecMaterializesOutput(NodeTag plantype)
Definition: execAmi.c:636
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
#define plan(x)
Definition: pg_regress.c:161
@ ANY_SUBLINK
Definition: primnodes.h:1016
@ ALL_SUBLINK
Definition: primnodes.h:1015
@ EXISTS_SUBLINK
Definition: primnodes.h:1014
bool useHashTable
Definition: primnodes.h:1096
Node * testexpr
Definition: primnodes.h:1084
List * parParam
Definition: primnodes.h:1107
Cost startup_cost
Definition: primnodes.h:1110
Cost per_call_cost
Definition: primnodes.h:1111
SubLinkType subLinkType
Definition: primnodes.h:1082

References ALL_SUBLINK, ANY_SUBLINK, clamp_row_est(), cost_qual_eval(), cpu_operator_cost, ExecMaterializesOutput(), EXISTS_SUBLINK, make_ands_implicit(), NIL, nodeTag, SubPlan::parParam, SubPlan::per_call_cost, QualCost::per_tuple, plan, root, QualCost::startup, SubPlan::startup_cost, SubPlan::subLinkType, SubPlan::testexpr, and SubPlan::useHashTable.

Referenced by build_subplan(), SS_make_initplan_from_plan(), and SS_process_ctes().

◆ cost_subqueryscan()

void cost_subqueryscan ( SubqueryScanPath path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info,
bool  trivial_pathtarget 
)

Definition at line 1457 of file costsize.c.

1460{
1461 Cost startup_cost;
1462 Cost run_cost;
1463 List *qpquals;
1464 QualCost qpqual_cost;
1465 Cost cpu_per_tuple;
1466
1467 /* Should only be applied to base relations that are subqueries */
1468 Assert(baserel->relid > 0);
1469 Assert(baserel->rtekind == RTE_SUBQUERY);
1470
1471 /*
1472 * We compute the rowcount estimate as the subplan's estimate times the
1473 * selectivity of relevant restriction clauses. In simple cases this will
1474 * come out the same as baserel->rows; but when dealing with parallelized
1475 * paths we must do it like this to get the right answer.
1476 */
1477 if (param_info)
1478 qpquals = list_concat_copy(param_info->ppi_clauses,
1479 baserel->baserestrictinfo);
1480 else
1481 qpquals = baserel->baserestrictinfo;
1482
1483 path->path.rows = clamp_row_est(path->subpath->rows *
1485 qpquals,
1486 0,
1487 JOIN_INNER,
1488 NULL));
1489
1490 /*
1491 * Cost of path is cost of evaluating the subplan, plus cost of evaluating
1492 * any restriction clauses and tlist that will be attached to the
1493 * SubqueryScan node, plus cpu_tuple_cost to account for selection and
1494 * projection overhead.
1495 */
1497 path->path.startup_cost = path->subpath->startup_cost;
1498 path->path.total_cost = path->subpath->total_cost;
1499
1500 /*
1501 * However, if there are no relevant restriction clauses and the
1502 * pathtarget is trivial, then we expect that setrefs.c will optimize away
1503 * the SubqueryScan plan node altogether, so we should just make its cost
1504 * and rowcount equal to the input path's.
1505 *
1506 * Note: there are some edge cases where createplan.c will apply a
1507 * different targetlist to the SubqueryScan node, thus falsifying our
1508 * current estimate of whether the target is trivial, and making the cost
1509 * estimate (though not the rowcount) wrong. It does not seem worth the
1510 * extra complication to try to account for that exactly, especially since
1511 * that behavior falsifies other cost estimates as well.
1512 */
1513 if (qpquals == NIL && trivial_pathtarget)
1514 return;
1515
1516 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1517
1518 startup_cost = qpqual_cost.startup;
1519 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1520 run_cost = cpu_per_tuple * path->subpath->rows;
1521
1522 /* tlist eval costs are paid per output row, not per tuple scanned */
1523 startup_cost += path->path.pathtarget->cost.startup;
1524 run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
1525
1526 path->path.startup_cost += startup_cost;
1527 path->path.total_cost += startup_cost + run_cost;
1528}
List * list_concat_copy(const List *list1, const List *list2)
Definition: list.c:598
@ RTE_SUBQUERY
Definition: parsenodes.h:1027
List * ppi_clauses
Definition: pathnodes.h:1619
List * baserestrictinfo
Definition: pathnodes.h:1012

References Assert(), RelOptInfo::baserestrictinfo, clamp_row_est(), clauselist_selectivity(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), JOIN_INNER, list_concat_copy(), NIL, SubqueryScanPath::path, QualCost::per_tuple, ParamPathInfo::ppi_clauses, RelOptInfo::relid, root, Path::rows, RTE_SUBQUERY, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, SubqueryScanPath::subpath, and Path::total_cost.

Referenced by create_subqueryscan_path().

◆ cost_tablefuncscan()

void cost_tablefuncscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1600 of file costsize.c.

1602{
1603 Cost startup_cost = 0;
1604 Cost run_cost = 0;
1605 QualCost qpqual_cost;
1606 Cost cpu_per_tuple;
1607 RangeTblEntry *rte;
1608 QualCost exprcost;
1609
1610 /* Should only be applied to base relations that are functions */
1611 Assert(baserel->relid > 0);
1612 rte = planner_rt_fetch(baserel->relid, root);
1613 Assert(rte->rtekind == RTE_TABLEFUNC);
1614
1615 /* Mark the path with the correct row estimate */
1616 if (param_info)
1617 path->rows = param_info->ppi_rows;
1618 else
1619 path->rows = baserel->rows;
1620
1621 /*
1622 * Estimate costs of executing the table func expression(s).
1623 *
1624 * XXX in principle we ought to charge tuplestore spill costs if the
1625 * number of rows is large. However, given how phony our rowcount
1626 * estimates for tablefuncs tend to be, there's not a lot of point in that
1627 * refinement right now.
1628 */
1629 cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
1630
1631 startup_cost += exprcost.startup + exprcost.per_tuple;
1632
1633 /* Add scanning CPU costs */
1634 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1635
1636 startup_cost += qpqual_cost.startup;
1637 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1638 run_cost += cpu_per_tuple * baserel->tuples;
1639
1640 /* tlist eval costs are paid per output row, not per tuple scanned */
1641 startup_cost += path->pathtarget->cost.startup;
1642 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1643
1644 path->disabled_nodes = 0;
1645 path->startup_cost = startup_cost;
1646 path->total_cost = startup_cost + run_cost;
1647}
@ RTE_TABLEFUNC
Definition: parsenodes.h:1030
TableFunc * tablefunc
Definition: parsenodes.h:1198

References Assert(), cost_qual_eval_node(), cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, planner_rt_fetch, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_TABLEFUNC, RangeTblEntry::rtekind, QualCost::startup, Path::startup_cost, RangeTblEntry::tablefunc, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_tablefuncscan_path().

◆ cost_tidrangescan()

void cost_tidrangescan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
List tidrangequals,
ParamPathInfo param_info 
)

Definition at line 1363 of file costsize.c.

1366{
1367 Selectivity selectivity;
1368 double pages;
1369 Cost startup_cost = 0;
1370 Cost run_cost = 0;
1371 QualCost qpqual_cost;
1372 Cost cpu_per_tuple;
1373 QualCost tid_qual_cost;
1374 double ntuples;
1375 double nseqpages;
1376 double spc_random_page_cost;
1377 double spc_seq_page_cost;
1378
1379 /* Should only be applied to base relations */
1380 Assert(baserel->relid > 0);
1381 Assert(baserel->rtekind == RTE_RELATION);
1382
1383 /* Mark the path with the correct row estimate */
1384 if (param_info)
1385 path->rows = param_info->ppi_rows;
1386 else
1387 path->rows = baserel->rows;
1388
1389 /* Count how many tuples and pages we expect to scan */
1390 selectivity = clauselist_selectivity(root, tidrangequals, baserel->relid,
1391 JOIN_INNER, NULL);
1392 pages = ceil(selectivity * baserel->pages);
1393
1394 if (pages <= 0.0)
1395 pages = 1.0;
1396
1397 /*
1398 * The first page in a range requires a random seek, but each subsequent
1399 * page is just a normal sequential page read. NOTE: it's desirable for
1400 * TID Range Scans to cost more than the equivalent Sequential Scans,
1401 * because Seq Scans have some performance advantages such as scan
1402 * synchronization and parallelizability, and we'd prefer one of them to
1403 * be picked unless a TID Range Scan really is better.
1404 */
1405 ntuples = selectivity * baserel->tuples;
1406 nseqpages = pages - 1.0;
1407
1408 /*
1409 * The TID qual expressions will be computed once, any other baserestrict
1410 * quals once per retrieved tuple.
1411 */
1412 cost_qual_eval(&tid_qual_cost, tidrangequals, root);
1413
1414 /* fetch estimated page cost for tablespace containing table */
1416 &spc_random_page_cost,
1417 &spc_seq_page_cost);
1418
1419 /* disk costs; 1 random page and the remainder as seq pages */
1420 run_cost += spc_random_page_cost + spc_seq_page_cost * nseqpages;
1421
1422 /* Add scanning CPU costs */
1423 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1424
1425 /*
1426 * XXX currently we assume TID quals are a subset of qpquals at this
1427 * point; they will be removed (if possible) when we create the plan, so
1428 * we subtract their cost from the total qpqual cost. (If the TID quals
1429 * can't be removed, this is a mistake and we're going to underestimate
1430 * the CPU cost a bit.)
1431 */
1432 startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
1433 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
1434 tid_qual_cost.per_tuple;
1435 run_cost += cpu_per_tuple * ntuples;
1436
1437 /* tlist eval costs are paid per output row, not per tuple scanned */
1438 startup_cost += path->pathtarget->cost.startup;
1439 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1440
1441 /* we should not generate this path type when enable_tidscan=false */
1443 path->disabled_nodes = 0;
1444 path->startup_cost = startup_cost;
1445 path->total_cost = startup_cost + run_cost;
1446}
bool enable_tidscan
Definition: costsize.c:149

References Assert(), clauselist_selectivity(), cost_qual_eval(), cpu_tuple_cost, Path::disabled_nodes, enable_tidscan, get_restriction_qual_cost(), get_tablespace_page_costs(), JOIN_INNER, RelOptInfo::pages, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_tidrangescan_path().

◆ cost_tidscan()

void cost_tidscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
List tidquals,
ParamPathInfo param_info 
)

Definition at line 1258 of file costsize.c.

1260{
1261 Cost startup_cost = 0;
1262 Cost run_cost = 0;
1263 QualCost qpqual_cost;
1264 Cost cpu_per_tuple;
1265 QualCost tid_qual_cost;
1266 double ntuples;
1267 ListCell *l;
1268 double spc_random_page_cost;
1269
1270 /* Should only be applied to base relations */
1271 Assert(baserel->relid > 0);
1272 Assert(baserel->rtekind == RTE_RELATION);
1273 Assert(tidquals != NIL);
1274
1275 /* Mark the path with the correct row estimate */
1276 if (param_info)
1277 path->rows = param_info->ppi_rows;
1278 else
1279 path->rows = baserel->rows;
1280
1281 /* Count how many tuples we expect to retrieve */
1282 ntuples = 0;
1283 foreach(l, tidquals)
1284 {
1286 Expr *qual = rinfo->clause;
1287
1288 /*
1289 * We must use a TID scan for CurrentOfExpr; in any other case, we
1290 * should be generating a TID scan only if enable_tidscan=true. Also,
1291 * if CurrentOfExpr is the qual, there should be only one.
1292 */
1294 Assert(list_length(tidquals) == 1 || !IsA(qual, CurrentOfExpr));
1295
1296 if (IsA(qual, ScalarArrayOpExpr))
1297 {
1298 /* Each element of the array yields 1 tuple */
1299 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) qual;
1300 Node *arraynode = (Node *) lsecond(saop->args);
1301
1302 ntuples += estimate_array_length(root, arraynode);
1303 }
1304 else if (IsA(qual, CurrentOfExpr))
1305 {
1306 /* CURRENT OF yields 1 tuple */
1307 ntuples++;
1308 }
1309 else
1310 {
1311 /* It's just CTID = something, count 1 tuple */
1312 ntuples++;
1313 }
1314 }
1315
1316 /*
1317 * The TID qual expressions will be computed once, any other baserestrict
1318 * quals once per retrieved tuple.
1319 */
1320 cost_qual_eval(&tid_qual_cost, tidquals, root);
1321
1322 /* fetch estimated page cost for tablespace containing table */
1324 &spc_random_page_cost,
1325 NULL);
1326
1327 /* disk costs --- assume each tuple on a different page */
1328 run_cost += spc_random_page_cost * ntuples;
1329
1330 /* Add scanning CPU costs */
1331 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1332
1333 /* XXX currently we assume TID quals are a subset of qpquals */
1334 startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
1335 cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
1336 tid_qual_cost.per_tuple;
1337 run_cost += cpu_per_tuple * ntuples;
1338
1339 /* tlist eval costs are paid per output row, not per tuple scanned */
1340 startup_cost += path->pathtarget->cost.startup;
1341 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1342
1343 /*
1344 * There are assertions above verifying that we only reach this function
1345 * either when enable_tidscan=true or when the TID scan is the only legal
1346 * path, so it's safe to set disabled_nodes to zero here.
1347 */
1348 path->disabled_nodes = 0;
1349 path->startup_cost = startup_cost;
1350 path->total_cost = startup_cost + run_cost;
1351}
#define lsecond(l)
Definition: pg_list.h:183
double estimate_array_length(PlannerInfo *root, Node *arrayexpr)
Definition: selfuncs.c:2140
Expr * clause
Definition: pathnodes.h:2602

References ScalarArrayOpExpr::args, Assert(), RestrictInfo::clause, cost_qual_eval(), cpu_tuple_cost, Path::disabled_nodes, enable_tidscan, estimate_array_length(), get_restriction_qual_cost(), get_tablespace_page_costs(), IsA, lfirst_node, list_length(), lsecond, NIL, QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, RelOptInfo::reltablespace, root, RelOptInfo::rows, Path::rows, RTE_RELATION, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, and Path::total_cost.

Referenced by create_tidscan_path().

◆ cost_valuesscan()

void cost_valuesscan ( Path path,
PlannerInfo root,
RelOptInfo baserel,
ParamPathInfo param_info 
)

Definition at line 1657 of file costsize.c.

1659{
1660 Cost startup_cost = 0;
1661 Cost run_cost = 0;
1662 QualCost qpqual_cost;
1663 Cost cpu_per_tuple;
1664
1665 /* Should only be applied to base relations that are values lists */
1666 Assert(baserel->relid > 0);
1667 Assert(baserel->rtekind == RTE_VALUES);
1668
1669 /* Mark the path with the correct row estimate */
1670 if (param_info)
1671 path->rows = param_info->ppi_rows;
1672 else
1673 path->rows = baserel->rows;
1674
1675 /*
1676 * For now, estimate list evaluation cost at one operator eval per list
1677 * (probably pretty bogus, but is it worth being smarter?)
1678 */
1679 cpu_per_tuple = cpu_operator_cost;
1680
1681 /* Add scanning CPU costs */
1682 get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1683
1684 startup_cost += qpqual_cost.startup;
1685 cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1686 run_cost += cpu_per_tuple * baserel->tuples;
1687
1688 /* tlist eval costs are paid per output row, not per tuple scanned */
1689 startup_cost += path->pathtarget->cost.startup;
1690 run_cost += path->pathtarget->cost.per_tuple * path->rows;
1691
1692 path->disabled_nodes = 0;
1693 path->startup_cost = startup_cost;
1694 path->total_cost = startup_cost + run_cost;
1695}
@ RTE_VALUES
Definition: parsenodes.h:1031

References Assert(), cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, get_restriction_qual_cost(), QualCost::per_tuple, ParamPathInfo::ppi_rows, RelOptInfo::relid, root, RelOptInfo::rows, Path::rows, RTE_VALUES, RelOptInfo::rtekind, QualCost::startup, Path::startup_cost, Path::total_cost, and RelOptInfo::tuples.

Referenced by create_valuesscan_path().

◆ cost_windowagg()

void cost_windowagg ( Path path,
PlannerInfo root,
List windowFuncs,
WindowClause winclause,
int  input_disabled_nodes,
Cost  input_startup_cost,
Cost  input_total_cost,
double  input_tuples 
)

Definition at line 3098 of file costsize.c.

3103{
3104 Cost startup_cost;
3105 Cost total_cost;
3106 double startup_tuples;
3107 int numPartCols;
3108 int numOrderCols;
3109 ListCell *lc;
3110
3111 numPartCols = list_length(winclause->partitionClause);
3112 numOrderCols = list_length(winclause->orderClause);
3113
3114 startup_cost = input_startup_cost;
3115 total_cost = input_total_cost;
3116
3117 /*
3118 * Window functions are assumed to cost their stated execution cost, plus
3119 * the cost of evaluating their input expressions, per tuple. Since they
3120 * may in fact evaluate their inputs at multiple rows during each cycle,
3121 * this could be a drastic underestimate; but without a way to know how
3122 * many rows the window function will fetch, it's hard to do better. In
3123 * any case, it's a good estimate for all the built-in window functions,
3124 * so we'll just do this for now.
3125 */
3126 foreach(lc, windowFuncs)
3127 {
3128 WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
3129 Cost wfunccost;
3130 QualCost argcosts;
3131
3132 argcosts.startup = argcosts.per_tuple = 0;
3133 add_function_cost(root, wfunc->winfnoid, (Node *) wfunc,
3134 &argcosts);
3135 startup_cost += argcosts.startup;
3136 wfunccost = argcosts.per_tuple;
3137
3138 /* also add the input expressions' cost to per-input-row costs */
3139 cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
3140 startup_cost += argcosts.startup;
3141 wfunccost += argcosts.per_tuple;
3142
3143 /*
3144 * Add the filter's cost to per-input-row costs. XXX We should reduce
3145 * input expression costs according to filter selectivity.
3146 */
3147 cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
3148 startup_cost += argcosts.startup;
3149 wfunccost += argcosts.per_tuple;
3150
3151 total_cost += wfunccost * input_tuples;
3152 }
3153
3154 /*
3155 * We also charge cpu_operator_cost per grouping column per tuple for
3156 * grouping comparisons, plus cpu_tuple_cost per tuple for general
3157 * overhead.
3158 *
3159 * XXX this neglects costs of spooling the data to disk when it overflows
3160 * work_mem. Sooner or later that should get accounted for.
3161 */
3162 total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
3163 total_cost += cpu_tuple_cost * input_tuples;
3164
3165 path->rows = input_tuples;
3166 path->disabled_nodes = input_disabled_nodes;
3167 path->startup_cost = startup_cost;
3168 path->total_cost = total_cost;
3169
3170 /*
3171 * Also, take into account how many tuples we need to read from the
3172 * subnode in order to produce the first tuple from the WindowAgg. To do
3173 * this we proportion the run cost (total cost not including startup cost)
3174 * over the estimated startup tuples. We already included the startup
3175 * cost of the subnode, so we only need to do this when the estimated
3176 * startup tuples is above 1.0.
3177 */
3178 startup_tuples = get_windowclause_startup_tuples(root, winclause,
3179 input_tuples);
3180
3181 if (startup_tuples > 1.0)
3182 path->startup_cost += (total_cost - startup_cost) / input_tuples *
3183 (startup_tuples - 1.0);
3184}
static double get_windowclause_startup_tuples(PlannerInfo *root, WindowClause *wc, double input_tuples)
Definition: costsize.c:2884
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2109
List * partitionClause
Definition: parsenodes.h:1557
List * orderClause
Definition: parsenodes.h:1559
List * args
Definition: primnodes.h:592
Expr * aggfilter
Definition: primnodes.h:594
Oid winfnoid
Definition: primnodes.h:584

References add_function_cost(), WindowFunc::aggfilter, WindowFunc::args, cost_qual_eval_node(), cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, get_windowclause_startup_tuples(), lfirst_node, list_length(), WindowClause::orderClause, WindowClause::partitionClause, QualCost::per_tuple, root, Path::rows, QualCost::startup, Path::startup_cost, Path::total_cost, and WindowFunc::winfnoid.

Referenced by create_windowagg_path().

◆ final_cost_hashjoin()

void final_cost_hashjoin ( PlannerInfo root,
HashPath path,
JoinCostWorkspace workspace,
JoinPathExtraData extra 
)

Definition at line 4274 of file costsize.c.

4277{
4278 Path *outer_path = path->jpath.outerjoinpath;
4279 Path *inner_path = path->jpath.innerjoinpath;
4280 double outer_path_rows = outer_path->rows;
4281 double inner_path_rows = inner_path->rows;
4282 double inner_path_rows_total = workspace->inner_rows_total;
4283 List *hashclauses = path->path_hashclauses;
4284 Cost startup_cost = workspace->startup_cost;
4285 Cost run_cost = workspace->run_cost;
4286 int numbuckets = workspace->numbuckets;
4287 int numbatches = workspace->numbatches;
4288 Cost cpu_per_tuple;
4289 QualCost hash_qual_cost;
4290 QualCost qp_qual_cost;
4291 double hashjointuples;
4292 double virtualbuckets;
4293 Selectivity innerbucketsize;
4294 Selectivity innermcvfreq;
4295 ListCell *hcl;
4296
4297 /* Set the number of disabled nodes. */
4298 path->jpath.path.disabled_nodes = workspace->disabled_nodes;
4299
4300 /* Mark the path with the correct row estimate */
4301 if (path->jpath.path.param_info)
4302 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
4303 else
4304 path->jpath.path.rows = path->jpath.path.parent->rows;
4305
4306 /* For partial paths, scale row estimate. */
4307 if (path->jpath.path.parallel_workers > 0)
4308 {
4309 double parallel_divisor = get_parallel_divisor(&path->jpath.path);
4310
4311 path->jpath.path.rows =
4312 clamp_row_est(path->jpath.path.rows / parallel_divisor);
4313 }
4314
4315 /* mark the path with estimated # of batches */
4316 path->num_batches = numbatches;
4317
4318 /* store the total number of tuples (sum of partial row estimates) */
4319 path->inner_rows_total = inner_path_rows_total;
4320
4321 /* and compute the number of "virtual" buckets in the whole join */
4322 virtualbuckets = (double) numbuckets * (double) numbatches;
4323
4324 /*
4325 * Determine bucketsize fraction and MCV frequency for the inner relation.
4326 * We use the smallest bucketsize or MCV frequency estimated for any
4327 * individual hashclause; this is undoubtedly conservative.
4328 *
4329 * BUT: if inner relation has been unique-ified, we can assume it's good
4330 * for hashing. This is important both because it's the right answer, and
4331 * because we avoid contaminating the cache with a value that's wrong for
4332 * non-unique-ified paths.
4333 */
4334 if (IsA(inner_path, UniquePath))
4335 {
4336 innerbucketsize = 1.0 / virtualbuckets;
4337 innermcvfreq = 0.0;
4338 }
4339 else
4340 {
4341 List *otherclauses;
4342
4343 innerbucketsize = 1.0;
4344 innermcvfreq = 1.0;
4345
4346 /* At first, try to estimate bucket size using extended statistics. */
4348 inner_path->parent,
4349 hashclauses,
4350 &innerbucketsize);
4351
4352 /* Pass through the remaining clauses */
4353 foreach(hcl, otherclauses)
4354 {
4355 RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
4356 Selectivity thisbucketsize;
4357 Selectivity thismcvfreq;
4358
4359 /*
4360 * First we have to figure out which side of the hashjoin clause
4361 * is the inner side.
4362 *
4363 * Since we tend to visit the same clauses over and over when
4364 * planning a large query, we cache the bucket stats estimates in
4365 * the RestrictInfo node to avoid repeated lookups of statistics.
4366 */
4367 if (bms_is_subset(restrictinfo->right_relids,
4368 inner_path->parent->relids))
4369 {
4370 /* righthand side is inner */
4371 thisbucketsize = restrictinfo->right_bucketsize;
4372 if (thisbucketsize < 0)
4373 {
4374 /* not cached yet */
4376 get_rightop(restrictinfo->clause),
4377 virtualbuckets,
4378 &restrictinfo->right_mcvfreq,
4379 &restrictinfo->right_bucketsize);
4380 thisbucketsize = restrictinfo->right_bucketsize;
4381 }
4382 thismcvfreq = restrictinfo->right_mcvfreq;
4383 }
4384 else
4385 {
4386 Assert(bms_is_subset(restrictinfo->left_relids,
4387 inner_path->parent->relids));
4388 /* lefthand side is inner */
4389 thisbucketsize = restrictinfo->left_bucketsize;
4390 if (thisbucketsize < 0)
4391 {
4392 /* not cached yet */
4394 get_leftop(restrictinfo->clause),
4395 virtualbuckets,
4396 &restrictinfo->left_mcvfreq,
4397 &restrictinfo->left_bucketsize);
4398 thisbucketsize = restrictinfo->left_bucketsize;
4399 }
4400 thismcvfreq = restrictinfo->left_mcvfreq;
4401 }
4402
4403 if (innerbucketsize > thisbucketsize)
4404 innerbucketsize = thisbucketsize;
4405 if (innermcvfreq > thismcvfreq)
4406 innermcvfreq = thismcvfreq;
4407 }
4408 }
4409
4410 /*
4411 * If the bucket holding the inner MCV would exceed hash_mem, we don't
4412 * want to hash unless there is really no other alternative, so apply
4413 * disable_cost. (The executor normally copes with excessive memory usage
4414 * by splitting batches, but obviously it cannot separate equal values
4415 * that way, so it will be unable to drive the batch size below hash_mem
4416 * when this is true.)
4417 */
4418 if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
4419 inner_path->pathtarget->width) > get_hash_memory_limit())
4420 startup_cost += disable_cost;
4421
4422 /*
4423 * Compute cost of the hashquals and qpquals (other restriction clauses)
4424 * separately.
4425 */
4426 cost_qual_eval(&hash_qual_cost, hashclauses, root);
4427 cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
4428 qp_qual_cost.startup -= hash_qual_cost.startup;
4429 qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
4430
4431 /* CPU costs */
4432
4433 if (path->jpath.jointype == JOIN_SEMI ||
4434 path->jpath.jointype == JOIN_ANTI ||
4435 extra->inner_unique)
4436 {
4437 double outer_matched_rows;
4438 Selectivity inner_scan_frac;
4439
4440 /*
4441 * With a SEMI or ANTI join, or if the innerrel is known unique, the
4442 * executor will stop after the first match.
4443 *
4444 * For an outer-rel row that has at least one match, we can expect the
4445 * bucket scan to stop after a fraction 1/(match_count+1) of the
4446 * bucket's rows, if the matches are evenly distributed. Since they
4447 * probably aren't quite evenly distributed, we apply a fuzz factor of
4448 * 2.0 to that fraction. (If we used a larger fuzz factor, we'd have
4449 * to clamp inner_scan_frac to at most 1.0; but since match_count is
4450 * at least 1, no such clamp is needed now.)
4451 */
4452 outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
4453 inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
4454
4455 startup_cost += hash_qual_cost.startup;
4456 run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
4457 clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
4458
4459 /*
4460 * For unmatched outer-rel rows, the picture is quite a lot different.
4461 * In the first place, there is no reason to assume that these rows
4462 * preferentially hit heavily-populated buckets; instead assume they
4463 * are uncorrelated with the inner distribution and so they see an
4464 * average bucket size of inner_path_rows / virtualbuckets. In the
4465 * second place, it seems likely that they will have few if any exact
4466 * hash-code matches and so very few of the tuples in the bucket will
4467 * actually require eval of the hash quals. We don't have any good
4468 * way to estimate how many will, but for the moment assume that the
4469 * effective cost per bucket entry is one-tenth what it is for
4470 * matchable tuples.
4471 */
4472 run_cost += hash_qual_cost.per_tuple *
4473 (outer_path_rows - outer_matched_rows) *
4474 clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
4475
4476 /* Get # of tuples that will pass the basic join */
4477 if (path->jpath.jointype == JOIN_ANTI)
4478 hashjointuples = outer_path_rows - outer_matched_rows;
4479 else
4480 hashjointuples = outer_matched_rows;
4481 }
4482 else
4483 {
4484 /*
4485 * The number of tuple comparisons needed is the number of outer
4486 * tuples times the typical number of tuples in a hash bucket, which
4487 * is the inner relation size times its bucketsize fraction. At each
4488 * one, we need to evaluate the hashjoin quals. But actually,
4489 * charging the full qual eval cost at each tuple is pessimistic,
4490 * since we don't evaluate the quals unless the hash values match
4491 * exactly. For lack of a better idea, halve the cost estimate to
4492 * allow for that.
4493 */
4494 startup_cost += hash_qual_cost.startup;
4495 run_cost += hash_qual_cost.per_tuple * outer_path_rows *
4496 clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
4497
4498 /*
4499 * Get approx # tuples passing the hashquals. We use
4500 * approx_tuple_count here because we need an estimate done with
4501 * JOIN_INNER semantics.
4502 */
4503 hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
4504 }
4505
4506 /*
4507 * For each tuple that gets through the hashjoin proper, we charge
4508 * cpu_tuple_cost plus the cost of evaluating additional restriction
4509 * clauses that are to be applied at the join. (This is pessimistic since
4510 * not all of the quals may get evaluated at each tuple.)
4511 */
4512 startup_cost += qp_qual_cost.startup;
4513 cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
4514 run_cost += cpu_per_tuple * hashjointuples;
4515
4516 /* tlist eval costs are paid per output row, not per tuple scanned */
4517 startup_cost += path->jpath.path.pathtarget->cost.startup;
4518 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
4519
4520 path->jpath.path.startup_cost = startup_cost;
4521 path->jpath.path.total_cost = startup_cost + run_cost;
4522}
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
static double approx_tuple_count(PlannerInfo *root, JoinPath *path, List *quals)
Definition: costsize.c:5289
Cost disable_cost
Definition: costsize.c:141
static Node * get_rightop(const void *clause)
Definition: nodeFuncs.h:95
static Node * get_leftop(const void *clause)
Definition: nodeFuncs.h:83
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3616
List * estimate_multivariate_bucketsize(PlannerInfo *root, RelOptInfo *inner, List *hashclauses, Selectivity *innerbucketsize)
Definition: selfuncs.c:3782
void estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets, Selectivity *mcv_freq, Selectivity *bucketsize_frac)
Definition: selfuncs.c:3987
List * path_hashclauses
Definition: pathnodes.h:2191
Cardinality inner_rows_total
Definition: pathnodes.h:2193
int num_batches
Definition: pathnodes.h:2192
JoinPath jpath
Definition: pathnodes.h:2190
Cardinality inner_rows_total
Definition: pathnodes.h:3394
SemiAntiJoinFactors semifactors
Definition: pathnodes.h:3272
Path * outerjoinpath
Definition: pathnodes.h:2113
Path * innerjoinpath
Definition: pathnodes.h:2114
JoinType jointype
Definition: pathnodes.h:2108
List * joinrestrictinfo
Definition: pathnodes.h:2116

References approx_tuple_count(), Assert(), bms_is_subset(), clamp_row_est(), RestrictInfo::clause, cost_qual_eval(), cpu_tuple_cost, disable_cost, JoinCostWorkspace::disabled_nodes, estimate_hash_bucket_stats(), estimate_multivariate_bucketsize(), get_hash_memory_limit(), get_leftop(), get_parallel_divisor(), get_rightop(), HashPath::inner_rows_total, JoinCostWorkspace::inner_rows_total, JoinPathExtraData::inner_unique, JoinPath::innerjoinpath, IsA, JOIN_ANTI, JOIN_SEMI, JoinPath::joinrestrictinfo, JoinPath::jointype, HashPath::jpath, lfirst_node, SemiAntiJoinFactors::match_count, HashPath::num_batches, JoinCostWorkspace::numbatches, JoinCostWorkspace::numbuckets, SemiAntiJoinFactors::outer_match_frac, JoinPath::outerjoinpath, HashPath::path_hashclauses, QualCost::per_tuple, relation_byte_size(), root, Path::rows, JoinCostWorkspace::run_cost, JoinPathExtraData::semifactors, QualCost::startup, and JoinCostWorkspace::startup_cost.

Referenced by create_hashjoin_path().

◆ final_cost_mergejoin()

void final_cost_mergejoin ( PlannerInfo root,
MergePath path,
JoinCostWorkspace workspace,
JoinPathExtraData extra 
)

Definition at line 3836 of file costsize.c.

3839{
3840 Path *outer_path = path->jpath.outerjoinpath;
3841 Path *inner_path = path->jpath.innerjoinpath;
3842 double inner_path_rows = inner_path->rows;
3843 List *mergeclauses = path->path_mergeclauses;
3844 List *innersortkeys = path->innersortkeys;
3845 Cost startup_cost = workspace->startup_cost;
3846 Cost run_cost = workspace->run_cost;
3847 Cost inner_run_cost = workspace->inner_run_cost;
3848 double outer_rows = workspace->outer_rows;
3849 double inner_rows = workspace->inner_rows;
3850 double outer_skip_rows = workspace->outer_skip_rows;
3851 double inner_skip_rows = workspace->inner_skip_rows;
3852 Cost cpu_per_tuple,
3853 bare_inner_cost,
3854 mat_inner_cost;
3855 QualCost merge_qual_cost;
3856 QualCost qp_qual_cost;
3857 double mergejointuples,
3858 rescannedtuples;
3859 double rescanratio;
3860
3861 /* Set the number of disabled nodes. */
3862 path->jpath.path.disabled_nodes = workspace->disabled_nodes;
3863
3864 /* Protect some assumptions below that rowcounts aren't zero */
3865 if (inner_path_rows <= 0)
3866 inner_path_rows = 1;
3867
3868 /* Mark the path with the correct row estimate */
3869 if (path->jpath.path.param_info)
3870 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
3871 else
3872 path->jpath.path.rows = path->jpath.path.parent->rows;
3873
3874 /* For partial paths, scale row estimate. */
3875 if (path->jpath.path.parallel_workers > 0)
3876 {
3877 double parallel_divisor = get_parallel_divisor(&path->jpath.path);
3878
3879 path->jpath.path.rows =
3880 clamp_row_est(path->jpath.path.rows / parallel_divisor);
3881 }
3882
3883 /*
3884 * Compute cost of the mergequals and qpquals (other restriction clauses)
3885 * separately.
3886 */
3887 cost_qual_eval(&merge_qual_cost, mergeclauses, root);
3888 cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
3889 qp_qual_cost.startup -= merge_qual_cost.startup;
3890 qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
3891
3892 /*
3893 * With a SEMI or ANTI join, or if the innerrel is known unique, the
3894 * executor will stop scanning for matches after the first match. When
3895 * all the joinclauses are merge clauses, this means we don't ever need to
3896 * back up the merge, and so we can skip mark/restore overhead.
3897 */
3898 if ((path->jpath.jointype == JOIN_SEMI ||
3899 path->jpath.jointype == JOIN_ANTI ||
3900 extra->inner_unique) &&
3903 path->skip_mark_restore = true;
3904 else
3905 path->skip_mark_restore = false;
3906
3907 /*
3908 * Get approx # tuples passing the mergequals. We use approx_tuple_count
3909 * here because we need an estimate done with JOIN_INNER semantics.
3910 */
3911 mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
3912
3913 /*
3914 * When there are equal merge keys in the outer relation, the mergejoin
3915 * must rescan any matching tuples in the inner relation. This means
3916 * re-fetching inner tuples; we have to estimate how often that happens.
3917 *
3918 * For regular inner and outer joins, the number of re-fetches can be
3919 * estimated approximately as size of merge join output minus size of
3920 * inner relation. Assume that the distinct key values are 1, 2, ..., and
3921 * denote the number of values of each key in the outer relation as m1,
3922 * m2, ...; in the inner relation, n1, n2, ... Then we have
3923 *
3924 * size of join = m1 * n1 + m2 * n2 + ...
3925 *
3926 * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
3927 * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
3928 * relation
3929 *
3930 * This equation works correctly for outer tuples having no inner match
3931 * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
3932 * are effectively subtracting those from the number of rescanned tuples,
3933 * when we should not. Can we do better without expensive selectivity
3934 * computations?
3935 *
3936 * The whole issue is moot if we are working from a unique-ified outer
3937 * input, or if we know we don't need to mark/restore at all.
3938 */
3939 if (IsA(outer_path, UniquePath) || path->skip_mark_restore)
3940 rescannedtuples = 0;
3941 else
3942 {
3943 rescannedtuples = mergejointuples - inner_path_rows;
3944 /* Must clamp because of possible underestimate */
3945 if (rescannedtuples < 0)
3946 rescannedtuples = 0;
3947 }
3948
3949 /*
3950 * We'll inflate various costs this much to account for rescanning. Note
3951 * that this is to be multiplied by something involving inner_rows, or
3952 * another number related to the portion of the inner rel we'll scan.
3953 */
3954 rescanratio = 1.0 + (rescannedtuples / inner_rows);
3955
3956 /*
3957 * Decide whether we want to materialize the inner input to shield it from
3958 * mark/restore and performing re-fetches. Our cost model for regular
3959 * re-fetches is that a re-fetch costs the same as an original fetch,
3960 * which is probably an overestimate; but on the other hand we ignore the
3961 * bookkeeping costs of mark/restore. Not clear if it's worth developing
3962 * a more refined model. So we just need to inflate the inner run cost by
3963 * rescanratio.
3964 */
3965 bare_inner_cost = inner_run_cost * rescanratio;
3966
3967 /*
3968 * When we interpose a Material node the re-fetch cost is assumed to be
3969 * just cpu_operator_cost per tuple, independently of the underlying
3970 * plan's cost; and we charge an extra cpu_operator_cost per original
3971 * fetch as well. Note that we're assuming the materialize node will
3972 * never spill to disk, since it only has to remember tuples back to the
3973 * last mark. (If there are a huge number of duplicates, our other cost
3974 * factors will make the path so expensive that it probably won't get
3975 * chosen anyway.) So we don't use cost_rescan here.
3976 *
3977 * Note: keep this estimate in sync with create_mergejoin_plan's labeling
3978 * of the generated Material node.
3979 */
3980 mat_inner_cost = inner_run_cost +
3981 cpu_operator_cost * inner_rows * rescanratio;
3982
3983 /*
3984 * If we don't need mark/restore at all, we don't need materialization.
3985 */
3986 if (path->skip_mark_restore)
3987 path->materialize_inner = false;
3988
3989 /*
3990 * Prefer materializing if it looks cheaper, unless the user has asked to
3991 * suppress materialization.
3992 */
3993 else if (enable_material && mat_inner_cost < bare_inner_cost)
3994 path->materialize_inner = true;
3995
3996 /*
3997 * Even if materializing doesn't look cheaper, we *must* do it if the
3998 * inner path is to be used directly (without sorting) and it doesn't
3999 * support mark/restore.
4000 *
4001 * Since the inner side must be ordered, and only Sorts and IndexScans can
4002 * create order to begin with, and they both support mark/restore, you
4003 * might think there's no problem --- but you'd be wrong. Nestloop and
4004 * merge joins can *preserve* the order of their inputs, so they can be
4005 * selected as the input of a mergejoin, and they don't support
4006 * mark/restore at present.
4007 *
4008 * We don't test the value of enable_material here, because
4009 * materialization is required for correctness in this case, and turning
4010 * it off does not entitle us to deliver an invalid plan.
4011 */
4012 else if (innersortkeys == NIL &&
4013 !ExecSupportsMarkRestore(inner_path))
4014 path->materialize_inner = true;
4015
4016 /*
4017 * Also, force materializing if the inner path is to be sorted and the
4018 * sort is expected to spill to disk. This is because the final merge
4019 * pass can be done on-the-fly if it doesn't have to support mark/restore.
4020 * We don't try to adjust the cost estimates for this consideration,
4021 * though.
4022 *
4023 * Since materialization is a performance optimization in this case,
4024 * rather than necessary for correctness, we skip it if enable_material is
4025 * off.
4026 */
4027 else if (enable_material && innersortkeys != NIL &&
4028 relation_byte_size(inner_path_rows,
4029 inner_path->pathtarget->width) >
4030 work_mem * (Size) 1024)
4031 path->materialize_inner = true;
4032 else
4033 path->materialize_inner = false;
4034
4035 /* Charge the right incremental cost for the chosen case */
4036 if (path->materialize_inner)
4037 run_cost += mat_inner_cost;
4038 else
4039 run_cost += bare_inner_cost;
4040
4041 /* CPU costs */
4042
4043 /*
4044 * The number of tuple comparisons needed is approximately number of outer
4045 * rows plus number of inner rows plus number of rescanned tuples (can we
4046 * refine this?). At each one, we need to evaluate the mergejoin quals.
4047 */
4048 startup_cost += merge_qual_cost.startup;
4049 startup_cost += merge_qual_cost.per_tuple *
4050 (outer_skip_rows + inner_skip_rows * rescanratio);
4051 run_cost += merge_qual_cost.per_tuple *
4052 ((outer_rows - outer_skip_rows) +
4053 (inner_rows - inner_skip_rows) * rescanratio);
4054
4055 /*
4056 * For each tuple that gets through the mergejoin proper, we charge
4057 * cpu_tuple_cost plus the cost of evaluating additional restriction
4058 * clauses that are to be applied at the join. (This is pessimistic since
4059 * not all of the quals may get evaluated at each tuple.)
4060 *
4061 * Note: we could adjust for SEMI/ANTI joins skipping some qual
4062 * evaluations here, but it's probably not worth the trouble.
4063 */
4064 startup_cost += qp_qual_cost.startup;
4065 cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
4066 run_cost += cpu_per_tuple * mergejointuples;
4067
4068 /* tlist eval costs are paid per output row, not per tuple scanned */
4069 startup_cost += path->jpath.path.pathtarget->cost.startup;
4070 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
4071
4072 path->jpath.path.startup_cost = startup_cost;
4073 path->jpath.path.total_cost = startup_cost + run_cost;
4074}
bool ExecSupportsMarkRestore(Path *pathnode)
Definition: execAmi.c:418
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:78
Cardinality inner_rows
Definition: pathnodes.h:3387
Cardinality outer_rows
Definition: pathnodes.h:3386
Cardinality inner_skip_rows
Definition: pathnodes.h:3389
Cardinality outer_skip_rows
Definition: pathnodes.h:3388
bool skip_mark_restore
Definition: pathnodes.h:2175
List * innersortkeys
Definition: pathnodes.h:2174
JoinPath jpath
Definition: pathnodes.h:2171
bool materialize_inner
Definition: pathnodes.h:2176
List * path_mergeclauses
Definition: pathnodes.h:2172

References approx_tuple_count(), clamp_row_est(), cost_qual_eval(), cpu_operator_cost, cpu_tuple_cost, JoinCostWorkspace::disabled_nodes, enable_material, ExecSupportsMarkRestore(), get_parallel_divisor(), if(), JoinCostWorkspace::inner_rows, JoinCostWorkspace::inner_run_cost, JoinCostWorkspace::inner_skip_rows, JoinPathExtraData::inner_unique, JoinPath::innerjoinpath, MergePath::innersortkeys, IsA, JOIN_ANTI, JOIN_SEMI, JoinPath::joinrestrictinfo, JoinPath::jointype, MergePath::jpath, list_length(), MergePath::materialize_inner, NIL, JoinCostWorkspace::outer_rows, JoinCostWorkspace::outer_skip_rows, JoinPath::outerjoinpath, MergePath::path_mergeclauses, QualCost::per_tuple, relation_byte_size(), root, Path::rows, JoinCostWorkspace::run_cost, MergePath::skip_mark_restore, QualCost::startup, JoinCostWorkspace::startup_cost, and work_mem.

Referenced by create_mergejoin_path().

◆ final_cost_nestloop()

void final_cost_nestloop ( PlannerInfo root,
NestPath path,
JoinCostWorkspace workspace,
JoinPathExtraData extra 
)

Definition at line 3349 of file costsize.c.

3352{
3353 Path *outer_path = path->jpath.outerjoinpath;
3354 Path *inner_path = path->jpath.innerjoinpath;
3355 double outer_path_rows = outer_path->rows;
3356 double inner_path_rows = inner_path->rows;
3357 Cost startup_cost = workspace->startup_cost;
3358 Cost run_cost = workspace->run_cost;
3359 Cost cpu_per_tuple;
3360 QualCost restrict_qual_cost;
3361 double ntuples;
3362
3363 /* Set the number of disabled nodes. */
3364 path->jpath.path.disabled_nodes = workspace->disabled_nodes;
3365
3366 /* Protect some assumptions below that rowcounts aren't zero */
3367 if (outer_path_rows <= 0)
3368 outer_path_rows = 1;
3369 if (inner_path_rows <= 0)
3370 inner_path_rows = 1;
3371 /* Mark the path with the correct row estimate */
3372 if (path->jpath.path.param_info)
3373 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
3374 else
3375 path->jpath.path.rows = path->jpath.path.parent->rows;
3376
3377 /* For partial paths, scale row estimate. */
3378 if (path->jpath.path.parallel_workers > 0)
3379 {
3380 double parallel_divisor = get_parallel_divisor(&path->jpath.path);
3381
3382 path->jpath.path.rows =
3383 clamp_row_est(path->jpath.path.rows / parallel_divisor);
3384 }
3385
3386 /* cost of inner-relation source data (we already dealt with outer rel) */
3387
3388 if (path->jpath.jointype == JOIN_SEMI || path->jpath.jointype == JOIN_ANTI ||
3389 extra->inner_unique)
3390 {
3391 /*
3392 * With a SEMI or ANTI join, or if the innerrel is known unique, the
3393 * executor will stop after the first match.
3394 */
3395 Cost inner_run_cost = workspace->inner_run_cost;
3396 Cost inner_rescan_run_cost = workspace->inner_rescan_run_cost;
3397 double outer_matched_rows;
3398 double outer_unmatched_rows;
3399 Selectivity inner_scan_frac;
3400
3401 /*
3402 * For an outer-rel row that has at least one match, we can expect the
3403 * inner scan to stop after a fraction 1/(match_count+1) of the inner
3404 * rows, if the matches are evenly distributed. Since they probably
3405 * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
3406 * that fraction. (If we used a larger fuzz factor, we'd have to
3407 * clamp inner_scan_frac to at most 1.0; but since match_count is at
3408 * least 1, no such clamp is needed now.)
3409 */
3410 outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
3411 outer_unmatched_rows = outer_path_rows - outer_matched_rows;
3412 inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
3413
3414 /*
3415 * Compute number of tuples processed (not number emitted!). First,
3416 * account for successfully-matched outer rows.
3417 */
3418 ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
3419
3420 /*
3421 * Now we need to estimate the actual costs of scanning the inner
3422 * relation, which may be quite a bit less than N times inner_run_cost
3423 * due to early scan stops. We consider two cases. If the inner path
3424 * is an indexscan using all the joinquals as indexquals, then an
3425 * unmatched outer row results in an indexscan returning no rows,
3426 * which is probably quite cheap. Otherwise, the executor will have
3427 * to scan the whole inner rel for an unmatched row; not so cheap.
3428 */
3429 if (has_indexed_join_quals(path))
3430 {
3431 /*
3432 * Successfully-matched outer rows will only require scanning
3433 * inner_scan_frac of the inner relation. In this case, we don't
3434 * need to charge the full inner_run_cost even when that's more
3435 * than inner_rescan_run_cost, because we can assume that none of
3436 * the inner scans ever scan the whole inner relation. So it's
3437 * okay to assume that all the inner scan executions can be
3438 * fractions of the full cost, even if materialization is reducing
3439 * the rescan cost. At this writing, it's impossible to get here
3440 * for a materialized inner scan, so inner_run_cost and
3441 * inner_rescan_run_cost will be the same anyway; but just in
3442 * case, use inner_run_cost for the first matched tuple and
3443 * inner_rescan_run_cost for additional ones.
3444 */
3445 run_cost += inner_run_cost * inner_scan_frac;
3446 if (outer_matched_rows > 1)
3447 run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
3448
3449 /*
3450 * Add the cost of inner-scan executions for unmatched outer rows.
3451 * We estimate this as the same cost as returning the first tuple
3452 * of a nonempty scan. We consider that these are all rescans,
3453 * since we used inner_run_cost once already.
3454 */
3455 run_cost += outer_unmatched_rows *
3456 inner_rescan_run_cost / inner_path_rows;
3457
3458 /*
3459 * We won't be evaluating any quals at all for unmatched rows, so
3460 * don't add them to ntuples.
3461 */
3462 }
3463 else
3464 {
3465 /*
3466 * Here, a complicating factor is that rescans may be cheaper than
3467 * first scans. If we never scan all the way to the end of the
3468 * inner rel, it might be (depending on the plan type) that we'd
3469 * never pay the whole inner first-scan run cost. However it is
3470 * difficult to estimate whether that will happen (and it could
3471 * not happen if there are any unmatched outer rows!), so be
3472 * conservative and always charge the whole first-scan cost once.
3473 * We consider this charge to correspond to the first unmatched
3474 * outer row, unless there isn't one in our estimate, in which
3475 * case blame it on the first matched row.
3476 */
3477
3478 /* First, count all unmatched join tuples as being processed */
3479 ntuples += outer_unmatched_rows * inner_path_rows;
3480
3481 /* Now add the forced full scan, and decrement appropriate count */
3482 run_cost += inner_run_cost;
3483 if (outer_unmatched_rows >= 1)
3484 outer_unmatched_rows -= 1;
3485 else
3486 outer_matched_rows -= 1;
3487
3488 /* Add inner run cost for additional outer tuples having matches */
3489 if (outer_matched_rows > 0)
3490 run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
3491
3492 /* Add inner run cost for additional unmatched outer tuples */
3493 if (outer_unmatched_rows > 0)
3494 run_cost += outer_unmatched_rows * inner_rescan_run_cost;
3495 }
3496 }
3497 else
3498 {
3499 /* Normal-case source costs were included in preliminary estimate */
3500
3501 /* Compute number of tuples processed (not number emitted!) */
3502 ntuples = outer_path_rows * inner_path_rows;
3503 }
3504
3505 /* CPU costs */
3506 cost_qual_eval(&restrict_qual_cost, path->jpath.joinrestrictinfo, root);
3507 startup_cost += restrict_qual_cost.startup;
3508 cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
3509 run_cost += cpu_per_tuple * ntuples;
3510
3511 /* tlist eval costs are paid per output row, not per tuple scanned */
3512 startup_cost += path->jpath.path.pathtarget->cost.startup;
3513 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
3514
3515 path->jpath.path.startup_cost = startup_cost;
3516 path->jpath.path.total_cost = startup_cost + run_cost;
3517}
static bool has_indexed_join_quals(NestPath *path)
Definition: costsize.c:5196
Cost inner_rescan_run_cost
Definition: pathnodes.h:3383
JoinPath jpath
Definition: pathnodes.h:2131

References clamp_row_est(), cost_qual_eval(), cpu_tuple_cost, JoinCostWorkspace::disabled_nodes, get_parallel_divisor(), has_indexed_join_quals(), JoinCostWorkspace::inner_rescan_run_cost, JoinCostWorkspace::inner_run_cost, JoinPathExtraData::inner_unique, JoinPath::innerjoinpath, JOIN_ANTI, JOIN_SEMI, JoinPath::joinrestrictinfo, JoinPath::jointype, NestPath::jpath, SemiAntiJoinFactors::match_count, SemiAntiJoinFactors::outer_match_frac, JoinPath::outerjoinpath, QualCost::per_tuple, root, Path::rows, JoinCostWorkspace::run_cost, JoinPathExtraData::semifactors, QualCost::startup, and JoinCostWorkspace::startup_cost.

Referenced by create_nestloop_path().

◆ get_parameterized_baserel_size()

double get_parameterized_baserel_size ( PlannerInfo root,
RelOptInfo rel,
List param_clauses 
)

Definition at line 5364 of file costsize.c.

5366{
5367 List *allclauses;
5368 double nrows;
5369
5370 /*
5371 * Estimate the number of rows returned by the parameterized scan, knowing
5372 * that it will apply all the extra join clauses as well as the rel's own
5373 * restriction clauses. Note that we force the clauses to be treated as
5374 * non-join clauses during selectivity estimation.
5375 */
5376 allclauses = list_concat_copy(param_clauses, rel->baserestrictinfo);
5377 nrows = rel->tuples *
5379 allclauses,
5380 rel->relid, /* do not use 0! */
5381 JOIN_INNER,
5382 NULL);
5383 nrows = clamp_row_est(nrows);
5384 /* For safety, make sure result is not more than the base estimate */
5385 if (nrows > rel->rows)
5386 nrows = rel->rows;
5387 return nrows;
5388}

References RelOptInfo::baserestrictinfo, clamp_row_est(), clauselist_selectivity(), JOIN_INNER, list_concat_copy(), RelOptInfo::relid, root, RelOptInfo::rows, and RelOptInfo::tuples.

Referenced by get_baserel_parampathinfo().

◆ get_parameterized_joinrel_size()

double get_parameterized_joinrel_size ( PlannerInfo root,
RelOptInfo rel,
Path outer_path,
Path inner_path,
SpecialJoinInfo sjinfo,
List restrict_clauses 
)

Definition at line 5445 of file costsize.c.

5450{
5451 double nrows;
5452
5453 /*
5454 * Estimate the number of rows returned by the parameterized join as the
5455 * sizes of the input paths times the selectivity of the clauses that have
5456 * ended up at this join node.
5457 *
5458 * As with set_joinrel_size_estimates, the rowcount estimate could depend
5459 * on the pair of input paths provided, though ideally we'd get the same
5460 * estimate for any pair with the same parameterization.
5461 */
5463 rel,
5464 outer_path->parent,
5465 inner_path->parent,
5466 outer_path->rows,
5467 inner_path->rows,
5468 sjinfo,
5469 restrict_clauses);
5470 /* For safety, make sure result is not more than the base estimate */
5471 if (nrows > rel->rows)
5472 nrows = rel->rows;
5473 return nrows;
5474}
static double calc_joinrel_size_estimate(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, double outer_rows, double inner_rows, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: costsize.c:5486

References calc_joinrel_size_estimate(), root, RelOptInfo::rows, and Path::rows.

Referenced by get_joinrel_parampathinfo().

◆ index_pages_fetched()

double index_pages_fetched ( double  tuples_fetched,
BlockNumber  pages,
double  index_pages,
PlannerInfo root 
)

Definition at line 908 of file costsize.c.

910{
911 double pages_fetched;
912 double total_pages;
913 double T,
914 b;
915
916 /* T is # pages in table, but don't allow it to be zero */
917 T = (pages > 1) ? (double) pages : 1.0;
918
919 /* Compute number of pages assumed to be competing for cache space */
920 total_pages = root->total_table_pages + index_pages;
921 total_pages = Max(total_pages, 1.0);
922 Assert(T <= total_pages);
923
924 /* b is pro-rated share of effective_cache_size */
925 b = (double) effective_cache_size * T / total_pages;
926
927 /* force it positive and integral */
928 if (b <= 1.0)
929 b = 1.0;
930 else
931 b = ceil(b);
932
933 /* This part is the Mackert and Lohman formula */
934 if (T <= b)
935 {
936 pages_fetched =
937 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
938 if (pages_fetched >= T)
939 pages_fetched = T;
940 else
941 pages_fetched = ceil(pages_fetched);
942 }
943 else
944 {
945 double lim;
946
947 lim = (2.0 * T * b) / (2.0 * T - b);
948 if (tuples_fetched <= lim)
949 {
950 pages_fetched =
951 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
952 }
953 else
954 {
955 pages_fetched =
956 b + (tuples_fetched - lim) * (T - b) / T;
957 }
958 pages_fetched = ceil(pages_fetched);
959 }
960 return pages_fetched;
961}
int effective_cache_size
Definition: costsize.c:139
int b
Definition: isn.c:71

References Assert(), b, effective_cache_size, Max, root, and T.

Referenced by compute_bitmap_pages(), cost_index(), genericcostestimate(), and gincostestimate().

◆ initial_cost_hashjoin()

void initial_cost_hashjoin ( PlannerInfo root,
JoinCostWorkspace workspace,
JoinType  jointype,
List hashclauses,
Path outer_path,
Path inner_path,
JoinPathExtraData extra,
bool  parallel_hash 
)

Definition at line 4159 of file costsize.c.

4165{
4166 int disabled_nodes;
4167 Cost startup_cost = 0;
4168 Cost run_cost = 0;
4169 double outer_path_rows = outer_path->rows;
4170 double inner_path_rows = inner_path->rows;
4171 double inner_path_rows_total = inner_path_rows;
4172 int num_hashclauses = list_length(hashclauses);
4173 int numbuckets;
4174 int numbatches;
4175 int num_skew_mcvs;
4176 size_t space_allowed; /* unused */
4177
4178 /* Count up disabled nodes. */
4179 disabled_nodes = enable_hashjoin ? 0 : 1;
4180 disabled_nodes += inner_path->disabled_nodes;
4181 disabled_nodes += outer_path->disabled_nodes;
4182
4183 /* cost of source data */
4184 startup_cost += outer_path->startup_cost;
4185 run_cost += outer_path->total_cost - outer_path->startup_cost;
4186 startup_cost += inner_path->total_cost;
4187
4188 /*
4189 * Cost of computing hash function: must do it once per input tuple. We
4190 * charge one cpu_operator_cost for each column's hash function. Also,
4191 * tack on one cpu_tuple_cost per inner row, to model the costs of
4192 * inserting the row into the hashtable.
4193 *
4194 * XXX when a hashclause is more complex than a single operator, we really
4195 * should charge the extra eval costs of the left or right side, as
4196 * appropriate, here. This seems more work than it's worth at the moment.
4197 */
4198 startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
4199 * inner_path_rows;
4200 run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
4201
4202 /*
4203 * If this is a parallel hash build, then the value we have for
4204 * inner_rows_total currently refers only to the rows returned by each
4205 * participant. For shared hash table size estimation, we need the total
4206 * number, so we need to undo the division.
4207 */
4208 if (parallel_hash)
4209 inner_path_rows_total *= get_parallel_divisor(inner_path);
4210
4211 /*
4212 * Get hash table size that executor would use for inner relation.
4213 *
4214 * XXX for the moment, always assume that skew optimization will be
4215 * performed. As long as SKEW_HASH_MEM_PERCENT is small, it's not worth
4216 * trying to determine that for sure.
4217 *
4218 * XXX at some point it might be interesting to try to account for skew
4219 * optimization in the cost estimate, but for now, we don't.
4220 */
4221 ExecChooseHashTableSize(inner_path_rows_total,
4222 inner_path->pathtarget->width,
4223 true, /* useskew */
4224 parallel_hash, /* try_combined_hash_mem */
4225 outer_path->parallel_workers,
4226 &space_allowed,
4227 &numbuckets,
4228 &numbatches,
4229 &num_skew_mcvs);
4230
4231 /*
4232 * If inner relation is too big then we will need to "batch" the join,
4233 * which implies writing and reading most of the tuples to disk an extra
4234 * time. Charge seq_page_cost per page, since the I/O should be nice and
4235 * sequential. Writing the inner rel counts as startup cost, all the rest
4236 * as run cost.
4237 */
4238 if (numbatches > 1)
4239 {
4240 double outerpages = page_size(outer_path_rows,
4241 outer_path->pathtarget->width);
4242 double innerpages = page_size(inner_path_rows,
4243 inner_path->pathtarget->width);
4244
4245 startup_cost += seq_page_cost * innerpages;
4246 run_cost += seq_page_cost * (innerpages + 2 * outerpages);
4247 }
4248
4249 /* CPU costs left for later */
4250
4251 /* Public result fields */
4252 workspace->disabled_nodes = disabled_nodes;
4253 workspace->startup_cost = startup_cost;
4254 workspace->total_cost = startup_cost + run_cost;
4255 /* Save private data for final_cost_hashjoin */
4256 workspace->run_cost = run_cost;
4257 workspace->numbuckets = numbuckets;
4258 workspace->numbatches = numbatches;
4259 workspace->inner_rows_total = inner_path_rows_total;
4260}
static double page_size(double tuples, int width)
Definition: costsize.c:6448
bool enable_hashjoin
Definition: costsize.c:157
void ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, bool try_combined_hash_mem, int parallel_workers, size_t *space_allowed, int *numbuckets, int *numbatches, int *num_skew_mcvs)
Definition: nodeHash.c:658

References cpu_operator_cost, cpu_tuple_cost, Path::disabled_nodes, JoinCostWorkspace::disabled_nodes, enable_hashjoin, ExecChooseHashTableSize(), get_parallel_divisor(), JoinCostWorkspace::inner_rows_total, list_length(), JoinCostWorkspace::numbatches, JoinCostWorkspace::numbuckets, page_size(), Path::parallel_workers, Path::rows, JoinCostWorkspace::run_cost, seq_page_cost, Path::startup_cost, JoinCostWorkspace::startup_cost, Path::total_cost, and JoinCostWorkspace::total_cost.

Referenced by try_hashjoin_path(), and try_partial_hashjoin_path().

◆ initial_cost_mergejoin()

void initial_cost_mergejoin ( PlannerInfo root,
JoinCostWorkspace workspace,
JoinType  jointype,
List mergeclauses,
Path outer_path,
Path inner_path,
List outersortkeys,
List innersortkeys,
JoinPathExtraData extra 
)

Definition at line 3551 of file costsize.c.

3557{
3558 int disabled_nodes;
3559 Cost startup_cost = 0;
3560 Cost run_cost = 0;
3561 double outer_path_rows = outer_path->rows;
3562 double inner_path_rows = inner_path->rows;
3563 Cost inner_run_cost;
3564 double outer_rows,
3565 inner_rows,
3566 outer_skip_rows,
3567 inner_skip_rows;
3568 Selectivity outerstartsel,
3569 outerendsel,
3570 innerstartsel,
3571 innerendsel;
3572 Path sort_path; /* dummy for result of
3573 * cost_sort/cost_incremental_sort */
3574
3575 /* Protect some assumptions below that rowcounts aren't zero */
3576 if (outer_path_rows <= 0)
3577 outer_path_rows = 1;
3578 if (inner_path_rows <= 0)
3579 inner_path_rows = 1;
3580
3581 /*
3582 * A merge join will stop as soon as it exhausts either input stream
3583 * (unless it's an outer join, in which case the outer side has to be
3584 * scanned all the way anyway). Estimate fraction of the left and right
3585 * inputs that will actually need to be scanned. Likewise, we can
3586 * estimate the number of rows that will be skipped before the first join
3587 * pair is found, which should be factored into startup cost. We use only
3588 * the first (most significant) merge clause for this purpose. Since
3589 * mergejoinscansel() is a fairly expensive computation, we cache the
3590 * results in the merge clause RestrictInfo.
3591 */
3592 if (mergeclauses && jointype != JOIN_FULL)
3593 {
3594 RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
3595 List *opathkeys;
3596 List *ipathkeys;
3597 PathKey *opathkey;
3598 PathKey *ipathkey;
3599 MergeScanSelCache *cache;
3600
3601 /* Get the input pathkeys to determine the sort-order details */
3602 opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
3603 ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
3604 Assert(opathkeys);
3605 Assert(ipathkeys);
3606 opathkey = (PathKey *) linitial(opathkeys);
3607 ipathkey = (PathKey *) linitial(ipathkeys);
3608 /* debugging check */
3609 if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
3610 opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
3611 opathkey->pk_strategy != ipathkey->pk_strategy ||
3612 opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
3613 elog(ERROR, "left and right pathkeys do not match in mergejoin");
3614
3615 /* Get the selectivity with caching */
3616 cache = cached_scansel(root, firstclause, opathkey);
3617
3618 if (bms_is_subset(firstclause->left_relids,
3619 outer_path->parent->relids))
3620 {
3621 /* left side of clause is outer */
3622 outerstartsel = cache->leftstartsel;
3623 outerendsel = cache->leftendsel;
3624 innerstartsel = cache->rightstartsel;
3625 innerendsel = cache->rightendsel;
3626 }
3627 else
3628 {
3629 /* left side of clause is inner */
3630 outerstartsel = cache->rightstartsel;
3631 outerendsel = cache->rightendsel;
3632 innerstartsel = cache->leftstartsel;
3633 innerendsel = cache->leftendsel;
3634 }
3635 if (jointype == JOIN_LEFT ||
3636 jointype == JOIN_ANTI)
3637 {
3638 outerstartsel = 0.0;
3639 outerendsel = 1.0;
3640 }
3641 else if (jointype == JOIN_RIGHT ||
3642 jointype == JOIN_RIGHT_ANTI)
3643 {
3644 innerstartsel = 0.0;
3645 innerendsel = 1.0;
3646 }
3647 }
3648 else
3649 {
3650 /* cope with clauseless or full mergejoin */
3651 outerstartsel = innerstartsel = 0.0;
3652 outerendsel = innerendsel = 1.0;
3653 }
3654
3655 /*
3656 * Convert selectivities to row counts. We force outer_rows and
3657 * inner_rows to be at least 1, but the skip_rows estimates can be zero.
3658 */
3659 outer_skip_rows = rint(outer_path_rows * outerstartsel);
3660 inner_skip_rows = rint(inner_path_rows * innerstartsel);
3661 outer_rows = clamp_row_est(outer_path_rows * outerendsel);
3662 inner_rows = clamp_row_est(inner_path_rows * innerendsel);
3663
3664 Assert(outer_skip_rows <= outer_rows);
3665 Assert(inner_skip_rows <= inner_rows);
3666
3667 /*
3668 * Readjust scan selectivities to account for above rounding. This is
3669 * normally an insignificant effect, but when there are only a few rows in
3670 * the inputs, failing to do this makes for a large percentage error.
3671 */
3672 outerstartsel = outer_skip_rows / outer_path_rows;
3673 innerstartsel = inner_skip_rows / inner_path_rows;
3674 outerendsel = outer_rows / outer_path_rows;
3675 innerendsel = inner_rows / inner_path_rows;
3676
3677 Assert(outerstartsel <= outerendsel);
3678 Assert(innerstartsel <= innerendsel);
3679
3680 disabled_nodes = enable_mergejoin ? 0 : 1;
3681
3682 /* cost of source data */
3683
3684 if (outersortkeys) /* do we need to sort outer? */
3685 {
3686 bool use_incremental_sort = false;
3687 int presorted_keys;
3688
3689 /*
3690 * We choose to use incremental sort if it is enabled and there are
3691 * presorted keys; otherwise we use full sort.
3692 */
3694 {
3695 bool is_sorted PG_USED_FOR_ASSERTS_ONLY;
3696
3697 is_sorted = pathkeys_count_contained_in(outersortkeys,
3698 outer_path->pathkeys,
3699 &presorted_keys);
3700 Assert(!is_sorted);
3701
3702 if (presorted_keys > 0)
3703 use_incremental_sort = true;
3704 }
3705
3706 if (!use_incremental_sort)
3707 {
3708 cost_sort(&sort_path,
3709 root,
3710 outersortkeys,
3711 outer_path->disabled_nodes,
3712 outer_path->total_cost,
3713 outer_path_rows,
3714 outer_path->pathtarget->width,
3715 0.0,
3716 work_mem,
3717 -1.0);
3718 }
3719 else
3720 {
3721 cost_incremental_sort(&sort_path,
3722 root,
3723 outersortkeys,
3724 presorted_keys,
3725 outer_path->disabled_nodes,
3726 outer_path->startup_cost,
3727 outer_path->total_cost,
3728 outer_path_rows,
3729 outer_path->pathtarget->width,
3730 0.0,
3731 work_mem,
3732 -1.0);
3733 }
3734 disabled_nodes += sort_path.disabled_nodes;
3735 startup_cost += sort_path.startup_cost;
3736 startup_cost += (sort_path.total_cost - sort_path.startup_cost)
3737 * outerstartsel;
3738 run_cost += (sort_path.total_cost - sort_path.startup_cost)
3739 * (outerendsel - outerstartsel);
3740 }
3741 else
3742 {
3743 disabled_nodes += outer_path->disabled_nodes;
3744 startup_cost += outer_path->startup_cost;
3745 startup_cost += (outer_path->total_cost - outer_path->startup_cost)
3746 * outerstartsel;
3747 run_cost += (outer_path->total_cost - outer_path->startup_cost)
3748 * (outerendsel - outerstartsel);
3749 }
3750
3751 if (innersortkeys) /* do we need to sort inner? */
3752 {
3753 /*
3754 * We do not consider incremental sort for inner path, because
3755 * incremental sort does not support mark/restore.
3756 */
3757
3758 cost_sort(&sort_path,
3759 root,
3760 innersortkeys,
3761 inner_path->disabled_nodes,
3762 inner_path->total_cost,
3763 inner_path_rows,
3764 inner_path->pathtarget->width,
3765 0.0,
3766 work_mem,
3767 -1.0);
3768 disabled_nodes += sort_path.disabled_nodes;
3769 startup_cost += sort_path.startup_cost;
3770 startup_cost += (sort_path.total_cost - sort_path.startup_cost)
3771 * innerstartsel;
3772 inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
3773 * (innerendsel - innerstartsel);
3774 }
3775 else
3776 {
3777 disabled_nodes += inner_path->disabled_nodes;
3778 startup_cost += inner_path->startup_cost;
3779 startup_cost += (inner_path->total_cost - inner_path->startup_cost)
3780 * innerstartsel;
3781 inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
3782 * (innerendsel - innerstartsel);
3783 }
3784
3785 /*
3786 * We can't yet determine whether rescanning occurs, or whether
3787 * materialization of the inner input should be done. The minimum
3788 * possible inner input cost, regardless of rescan and materialization
3789 * considerations, is inner_run_cost. We include that in
3790 * workspace->total_cost, but not yet in run_cost.
3791 */
3792
3793 /* CPU costs left for later */
3794
3795 /* Public result fields */
3796 workspace->disabled_nodes = disabled_nodes;
3797 workspace->startup_cost = startup_cost;
3798 workspace->total_cost = startup_cost + run_cost + inner_run_cost;
3799 /* Save private data for final_cost_mergejoin */
3800 workspace->run_cost = run_cost;
3801 workspace->inner_run_cost = inner_run_cost;
3802 workspace->outer_rows = outer_rows;
3803 workspace->inner_rows = inner_rows;
3804 workspace->outer_skip_rows = outer_skip_rows;
3805 workspace->inner_skip_rows = inner_skip_rows;
3806}
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:224
static MergeScanSelCache * cached_scansel(PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
Definition: costsize.c:4080
bool enable_mergejoin
Definition: costsize.c:156
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2000
@ JOIN_FULL
Definition: nodes.h:301
@ JOIN_RIGHT
Definition: nodes.h:302
@ JOIN_LEFT
Definition: nodes.h:300
@ JOIN_RIGHT_ANTI
Definition: nodes.h:316
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:558
Selectivity leftstartsel
Definition: pathnodes.h:2778
Selectivity leftendsel
Definition: pathnodes.h:2779
Selectivity rightendsel
Definition: pathnodes.h:2781
Selectivity rightstartsel
Definition: pathnodes.h:2780
bool pk_nulls_first
Definition: pathnodes.h:1509
int pk_strategy
Definition: pathnodes.h:1508
Oid pk_opfamily
Definition: pathnodes.h:1507

References Assert(), bms_is_subset(), cached_scansel(), clamp_row_est(), cost_incremental_sort(), cost_sort(), Path::disabled_nodes, JoinCostWorkspace::disabled_nodes, elog, enable_incremental_sort, enable_mergejoin, ERROR, JoinCostWorkspace::inner_rows, JoinCostWorkspace::inner_run_cost, JoinCostWorkspace::inner_skip_rows, JOIN_ANTI, JOIN_FULL, JOIN_LEFT, JOIN_RIGHT, JOIN_RIGHT_ANTI, MergeScanSelCache::leftendsel, MergeScanSelCache::leftstartsel, linitial, JoinCostWorkspace::outer_rows, JoinCostWorkspace::outer_skip_rows, Path::pathkeys, pathkeys_count_contained_in(), PG_USED_FOR_ASSERTS_ONLY, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, MergeScanSelCache::rightendsel, MergeScanSelCache::rightstartsel, root, Path::rows, JoinCostWorkspace::run_cost, Path::startup_cost, JoinCostWorkspace::startup_cost, Path::total_cost, JoinCostWorkspace::total_cost, and work_mem.

Referenced by try_mergejoin_path(), and try_partial_mergejoin_path().

◆ initial_cost_nestloop()

void initial_cost_nestloop ( PlannerInfo root,
JoinCostWorkspace workspace,
JoinType  jointype,
Path outer_path,
Path inner_path,
JoinPathExtraData extra 
)

Definition at line 3267 of file costsize.c.

3271{
3272 int disabled_nodes;
3273 Cost startup_cost = 0;
3274 Cost run_cost = 0;
3275 double outer_path_rows = outer_path->rows;
3276 Cost inner_rescan_start_cost;
3277 Cost inner_rescan_total_cost;
3278 Cost inner_run_cost;
3279 Cost inner_rescan_run_cost;
3280
3281 /* Count up disabled nodes. */
3282 disabled_nodes = enable_nestloop ? 0 : 1;
3283 disabled_nodes += inner_path->disabled_nodes;
3284 disabled_nodes += outer_path->disabled_nodes;
3285
3286 /* estimate costs to rescan the inner relation */
3287 cost_rescan(root, inner_path,
3288 &inner_rescan_start_cost,
3289 &inner_rescan_total_cost);
3290
3291 /* cost of source data */
3292
3293 /*
3294 * NOTE: clearly, we must pay both outer and inner paths' startup_cost
3295 * before we can start returning tuples, so the join's startup cost is
3296 * their sum. We'll also pay the inner path's rescan startup cost
3297 * multiple times.
3298 */
3299 startup_cost += outer_path->startup_cost + inner_path->startup_cost;
3300 run_cost += outer_path->total_cost - outer_path->startup_cost;
3301 if (outer_path_rows > 1)
3302 run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
3303
3304 inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
3305 inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
3306
3307 if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
3308 extra->inner_unique)
3309 {
3310 /*
3311 * With a SEMI or ANTI join, or if the innerrel is known unique, the
3312 * executor will stop after the first match.
3313 *
3314 * Getting decent estimates requires inspection of the join quals,
3315 * which we choose to postpone to final_cost_nestloop.
3316 */
3317
3318 /* Save private data for final_cost_nestloop */
3319 workspace->inner_run_cost = inner_run_cost;
3320 workspace->inner_rescan_run_cost = inner_rescan_run_cost;
3321 }
3322 else
3323 {
3324 /* Normal case; we'll scan whole input rel for each outer row */
3325 run_cost += inner_run_cost;
3326 if (outer_path_rows > 1)
3327 run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
3328 }
3329
3330 /* CPU costs left for later */
3331
3332 /* Public result fields */
3333 workspace->disabled_nodes = disabled_nodes;
3334 workspace->startup_cost = startup_cost;
3335 workspace->total_cost = startup_cost + run_cost;
3336 /* Save private data for final_cost_nestloop */
3337 workspace->run_cost = run_cost;
3338}
static void cost_rescan(PlannerInfo *root, Path *path, Cost *rescan_startup_cost, Cost *rescan_total_cost)
Definition: costsize.c:4626
bool enable_nestloop
Definition: costsize.c:153

References cost_rescan(), Path::disabled_nodes, JoinCostWorkspace::disabled_nodes, enable_nestloop, JoinCostWorkspace::inner_rescan_run_cost, JoinCostWorkspace::inner_run_cost, JoinPathExtraData::inner_unique, JOIN_ANTI, JOIN_SEMI, root, Path::rows, JoinCostWorkspace::run_cost, Path::startup_cost, JoinCostWorkspace::startup_cost, Path::total_cost, and JoinCostWorkspace::total_cost.

Referenced by try_nestloop_path(), and try_partial_nestloop_path().

◆ set_baserel_size_estimates()

void set_baserel_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

◆ set_cte_size_estimates()

void set_cte_size_estimates ( PlannerInfo root,
RelOptInfo rel,
double  cte_rows 
)

Definition at line 6059 of file costsize.c.

6060{
6061 RangeTblEntry *rte;
6062
6063 /* Should only be applied to base relations that are CTE references */
6064 Assert(rel->relid > 0);
6065 rte = planner_rt_fetch(rel->relid, root);
6066 Assert(rte->rtekind == RTE_CTE);
6067
6068 if (rte->self_reference)
6069 {
6070 /*
6071 * In a self-reference, we assume the average worktable size is a
6072 * multiple of the nonrecursive term's size. The best multiplier will
6073 * vary depending on query "fan-out", so make its value adjustable.
6074 */
6076 }
6077 else
6078 {
6079 /* Otherwise just believe the CTE's rowcount estimate */
6080 rel->tuples = cte_rows;
6081 }
6082
6083 /* Now estimate number of output rows, etc */
6085}
void set_baserel_size_estimates(PlannerInfo *root, RelOptInfo *rel)
Definition: costsize.c:5334
double recursive_worktable_factor
Definition: costsize.c:137

References Assert(), clamp_row_est(), planner_rt_fetch, recursive_worktable_factor, RelOptInfo::relid, root, RTE_CTE, RangeTblEntry::rtekind, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_cte_pathlist(), and set_worktable_pathlist().

◆ set_foreign_size_estimates()

void set_foreign_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6159 of file costsize.c.

6160{
6161 /* Should only be applied to base relations */
6162 Assert(rel->relid > 0);
6163
6164 rel->rows = 1000; /* entirely bogus default estimate */
6165
6167
6168 set_rel_width(root, rel);
6169}

References Assert(), RelOptInfo::baserestrictcost, RelOptInfo::baserestrictinfo, cost_qual_eval(), RelOptInfo::relid, root, RelOptInfo::rows, and set_rel_width().

Referenced by set_foreign_size().

◆ set_function_size_estimates()

void set_function_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 5967 of file costsize.c.

5968{
5969 RangeTblEntry *rte;
5970 ListCell *lc;
5971
5972 /* Should only be applied to base relations that are functions */
5973 Assert(rel->relid > 0);
5974 rte = planner_rt_fetch(rel->relid, root);
5975 Assert(rte->rtekind == RTE_FUNCTION);
5976
5977 /*
5978 * Estimate number of rows the functions will return. The rowcount of the
5979 * node is that of the largest function result.
5980 */
5981 rel->tuples = 0;
5982 foreach(lc, rte->functions)
5983 {
5984 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
5985 double ntup = expression_returns_set_rows(root, rtfunc->funcexpr);
5986
5987 if (ntup > rel->tuples)
5988 rel->tuples = ntup;
5989 }
5990
5991 /* Now estimate number of output rows, etc */
5993}
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:288

References Assert(), expression_returns_set_rows(), RangeTblFunction::funcexpr, RangeTblEntry::functions, lfirst, planner_rt_fetch, RelOptInfo::relid, root, RTE_FUNCTION, RangeTblEntry::rtekind, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_rel_size().

◆ set_joinrel_size_estimates()

void set_joinrel_size_estimates ( PlannerInfo root,
RelOptInfo rel,
RelOptInfo outer_rel,
RelOptInfo inner_rel,
SpecialJoinInfo sjinfo,
List restrictlist 
)

Definition at line 5413 of file costsize.c.

5418{
5420 rel,
5421 outer_rel,
5422 inner_rel,
5423 outer_rel->rows,
5424 inner_rel->rows,
5425 sjinfo,
5426 restrictlist);
5427}

References calc_joinrel_size_estimate(), root, and RelOptInfo::rows.

Referenced by build_child_join_rel(), and build_join_rel().

◆ set_namedtuplestore_size_estimates()

void set_namedtuplestore_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6097 of file costsize.c.

6098{
6099 RangeTblEntry *rte;
6100
6101 /* Should only be applied to base relations that are tuplestore references */
6102 Assert(rel->relid > 0);
6103 rte = planner_rt_fetch(rel->relid, root);
6105
6106 /*
6107 * Use the estimate provided by the code which is generating the named
6108 * tuplestore. In some cases, the actual number might be available; in
6109 * others the same plan will be re-used, so a "typical" value might be
6110 * estimated and used.
6111 */
6112 rel->tuples = rte->enrtuples;
6113 if (rel->tuples < 0)
6114 rel->tuples = 1000;
6115
6116 /* Now estimate number of output rows, etc */
6118}

References Assert(), planner_rt_fetch, RelOptInfo::relid, root, RTE_NAMEDTUPLESTORE, RangeTblEntry::rtekind, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_namedtuplestore_pathlist().

◆ set_pathtarget_cost_width()

PathTarget * set_pathtarget_cost_width ( PlannerInfo root,
PathTarget target 
)

Definition at line 6351 of file costsize.c.

6352{
6353 int64 tuple_width = 0;
6354 ListCell *lc;
6355
6356 /* Vars are assumed to have cost zero, but other exprs do not */
6357 target->cost.startup = 0;
6358 target->cost.per_tuple = 0;
6359
6360 foreach(lc, target->exprs)
6361 {
6362 Node *node = (Node *) lfirst(lc);
6363
6364 tuple_width += get_expr_width(root, node);
6365
6366 /* For non-Vars, account for evaluation cost */
6367 if (!IsA(node, Var))
6368 {
6369 QualCost cost;
6370
6371 cost_qual_eval_node(&cost, node, root);
6372 target->cost.startup += cost.startup;
6373 target->cost.per_tuple += cost.per_tuple;
6374 }
6375 }
6376
6377 target->width = clamp_width_est(tuple_width);
6378
6379 return target;
6380}
int64_t int64
Definition: c.h:499
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
static int32 get_expr_width(PlannerInfo *root, const Node *expr)
Definition: costsize.c:6389
List * exprs
Definition: pathnodes.h:1571
QualCost cost
Definition: pathnodes.h:1577
Definition: primnodes.h:262

References clamp_width_est(), PathTarget::cost, cost_qual_eval_node(), PathTarget::exprs, get_expr_width(), IsA, lfirst, QualCost::per_tuple, root, QualCost::startup, and PathTarget::width.

Referenced by make_group_input_target(), make_partial_grouping_target(), make_sort_input_target(), make_window_input_target(), and split_pathtarget_at_srfs().

◆ set_result_size_estimates()

void set_result_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6130 of file costsize.c.

6131{
6132 /* Should only be applied to RTE_RESULT base relations */
6133 Assert(rel->relid > 0);
6134 Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_RESULT);
6135
6136 /* RTE_RESULT always generates a single row, natively */
6137 rel->tuples = 1;
6138
6139 /* Now estimate number of output rows, etc */
6141}

References Assert(), planner_rt_fetch, RelOptInfo::relid, root, RTE_RESULT, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_result_pathlist().

◆ set_subquery_size_estimates()

void set_subquery_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 5887 of file costsize.c.

5888{
5889 PlannerInfo *subroot = rel->subroot;
5890 RelOptInfo *sub_final_rel;
5891 ListCell *lc;
5892
5893 /* Should only be applied to base relations that are subqueries */
5894 Assert(rel->relid > 0);
5895 Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_SUBQUERY);
5896
5897 /*
5898 * Copy raw number of output rows from subquery. All of its paths should
5899 * have the same output rowcount, so just look at cheapest-total.
5900 */
5901 sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
5902 rel->tuples = sub_final_rel->cheapest_total_path->rows;
5903
5904 /*
5905 * Compute per-output-column width estimates by examining the subquery's
5906 * targetlist. For any output that is a plain Var, get the width estimate
5907 * that was made while planning the subquery. Otherwise, we leave it to
5908 * set_rel_width to fill in a datatype-based default estimate.
5909 */
5910 foreach(lc, subroot->parse->targetList)
5911 {
5913 Node *texpr = (Node *) te->expr;
5914 int32 item_width = 0;
5915
5916 /* junk columns aren't visible to upper query */
5917 if (te->resjunk)
5918 continue;
5919
5920 /*
5921 * The subquery could be an expansion of a view that's had columns
5922 * added to it since the current query was parsed, so that there are
5923 * non-junk tlist columns in it that don't correspond to any column
5924 * visible at our query level. Ignore such columns.
5925 */
5926 if (te->resno < rel->min_attr || te->resno > rel->max_attr)
5927 continue;
5928
5929 /*
5930 * XXX This currently doesn't work for subqueries containing set
5931 * operations, because the Vars in their tlists are bogus references
5932 * to the first leaf subquery, which wouldn't give the right answer
5933 * even if we could still get to its PlannerInfo.
5934 *
5935 * Also, the subquery could be an appendrel for which all branches are
5936 * known empty due to constraint exclusion, in which case
5937 * set_append_rel_pathlist will have left the attr_widths set to zero.
5938 *
5939 * In either case, we just leave the width estimate zero until
5940 * set_rel_width fixes it.
5941 */
5942 if (IsA(texpr, Var) &&
5943 subroot->parse->setOperations == NULL)
5944 {
5945 Var *var = (Var *) texpr;
5946 RelOptInfo *subrel = find_base_rel(subroot, var->varno);
5947
5948 item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
5949 }
5950 rel->attr_widths[te->resno - rel->min_attr] = item_width;
5951 }
5952
5953 /* Now estimate number of output rows, etc */
5955}
int32_t int32
Definition: c.h:498
@ UPPERREL_FINAL
Definition: pathnodes.h:79
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
Query * parse
Definition: pathnodes.h:226
Node * setOperations
Definition: parsenodes.h:230
List * targetList
Definition: parsenodes.h:193
struct Path * cheapest_total_path
Definition: pathnodes.h:929
PlannerInfo * subroot
Definition: pathnodes.h:980
AttrNumber max_attr
Definition: pathnodes.h:953
AttrNumber min_attr
Definition: pathnodes.h:951
Expr * expr
Definition: primnodes.h:2219
AttrNumber resno
Definition: primnodes.h:2221
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269

References Assert(), RelOptInfo::cheapest_total_path, TargetEntry::expr, fetch_upper_rel(), find_base_rel(), if(), IsA, lfirst_node, RelOptInfo::max_attr, RelOptInfo::min_attr, PlannerInfo::parse, planner_rt_fetch, RelOptInfo::relid, TargetEntry::resno, root, Path::rows, RTE_SUBQUERY, set_baserel_size_estimates(), Query::setOperations, RelOptInfo::subroot, Query::targetList, RelOptInfo::tuples, UPPERREL_FINAL, Var::varattno, and Var::varno.

Referenced by build_setop_child_paths(), and set_subquery_pathlist().

◆ set_tablefunc_size_estimates()

void set_tablefunc_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6005 of file costsize.c.

6006{
6007 /* Should only be applied to base relations that are functions */
6008 Assert(rel->relid > 0);
6009 Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_TABLEFUNC);
6010
6011 rel->tuples = 100;
6012
6013 /* Now estimate number of output rows, etc */
6015}

References Assert(), planner_rt_fetch, RelOptInfo::relid, root, RTE_TABLEFUNC, set_baserel_size_estimates(), and RelOptInfo::tuples.

Referenced by set_rel_size().

◆ set_values_size_estimates()

void set_values_size_estimates ( PlannerInfo root,
RelOptInfo rel 
)

Definition at line 6027 of file costsize.c.

6028{
6029 RangeTblEntry *rte;
6030
6031 /* Should only be applied to base relations that are values lists */
6032 Assert(rel->relid > 0);
6033 rte = planner_rt_fetch(rel->relid, root);
6034 Assert(rte->rtekind == RTE_VALUES);
6035
6036 /*
6037 * Estimate number of rows the values list will return. We know this
6038 * precisely based on the list length (well, barring set-returning
6039 * functions in list items, but that's a refinement not catered for
6040 * anywhere else either).
6041 */
6042 rel->tuples = list_length(rte->values_lists);
6043
6044 /* Now estimate number of output rows, etc */
6046}
List * values_lists
Definition: parsenodes.h:1204

References Assert(), list_length(), planner_rt_fetch, RelOptInfo::relid, root, RTE_VALUES, RangeTblEntry::rtekind, set_baserel_size_estimates(), RelOptInfo::tuples, and RangeTblEntry::values_lists.

Referenced by set_rel_size().

Variable Documentation

◆ constraint_exclusion

PGDLLIMPORT int constraint_exclusion
extern

Definition at line 57 of file plancat.c.

Referenced by relation_excluded_by_constraints().

◆ disable_cost

PGDLLIMPORT Cost disable_cost
extern

Definition at line 141 of file costsize.c.

Referenced by final_cost_hashjoin().

◆ enable_async_append

PGDLLIMPORT bool enable_async_append
extern

Definition at line 165 of file costsize.c.

Referenced by create_append_plan().

◆ enable_bitmapscan

PGDLLIMPORT bool enable_bitmapscan
extern

Definition at line 148 of file costsize.c.

Referenced by cost_bitmap_heap_scan().

◆ enable_gathermerge

PGDLLIMPORT bool enable_gathermerge
extern

Definition at line 158 of file costsize.c.

Referenced by cost_gather_merge().

◆ enable_hashagg

◆ enable_hashjoin

PGDLLIMPORT bool enable_hashjoin
extern

Definition at line 157 of file costsize.c.

Referenced by add_paths_to_joinrel(), and initial_cost_hashjoin().

◆ enable_incremental_sort

◆ enable_indexonlyscan

PGDLLIMPORT bool enable_indexonlyscan
extern

Definition at line 147 of file costsize.c.

Referenced by check_index_only().

◆ enable_indexscan

PGDLLIMPORT bool enable_indexscan
extern

Definition at line 146 of file costsize.c.

Referenced by cost_index(), and plan_cluster_use_sort().

◆ enable_material

PGDLLIMPORT bool enable_material
extern

◆ enable_memoize

PGDLLIMPORT bool enable_memoize
extern

Definition at line 155 of file costsize.c.

Referenced by create_memoize_path(), and get_memoize_path().

◆ enable_mergejoin

PGDLLIMPORT bool enable_mergejoin
extern

Definition at line 156 of file costsize.c.

Referenced by add_paths_to_joinrel(), and initial_cost_mergejoin().

◆ enable_nestloop

PGDLLIMPORT bool enable_nestloop
extern

Definition at line 153 of file costsize.c.

Referenced by initial_cost_nestloop().

◆ enable_parallel_append

PGDLLIMPORT bool enable_parallel_append
extern

Definition at line 161 of file costsize.c.

Referenced by add_paths_to_append_rel(), and generate_union_paths().

◆ enable_parallel_hash

PGDLLIMPORT bool enable_parallel_hash
extern

Definition at line 162 of file costsize.c.

Referenced by hash_inner_and_outer().

◆ enable_partition_pruning

PGDLLIMPORT bool enable_partition_pruning
extern

◆ enable_partitionwise_aggregate

PGDLLIMPORT bool enable_partitionwise_aggregate
extern

Definition at line 160 of file costsize.c.

Referenced by create_grouping_paths().

◆ enable_partitionwise_join

PGDLLIMPORT bool enable_partitionwise_join
extern

Definition at line 159 of file costsize.c.

Referenced by build_joinrel_partition_info(), and set_append_rel_size().

◆ enable_presorted_aggregate

PGDLLIMPORT bool enable_presorted_aggregate
extern

Definition at line 164 of file costsize.c.

Referenced by adjust_group_pathkeys_for_groupagg().

◆ enable_seqscan

PGDLLIMPORT bool enable_seqscan
extern

Definition at line 145 of file costsize.c.

Referenced by cost_seqscan().

◆ enable_sort

PGDLLIMPORT bool enable_sort
extern

Definition at line 150 of file costsize.c.

Referenced by cost_sort(), and make_sort().

◆ enable_tidscan

PGDLLIMPORT bool enable_tidscan
extern

Definition at line 149 of file costsize.c.

Referenced by cost_tidrangescan(), cost_tidscan(), and create_tidscan_paths().

◆ max_parallel_workers_per_gather