PostgreSQL Source Code  git master
prepagg.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * prepagg.c
4  * Routines to preprocess aggregate function calls
5  *
6  * If there are identical aggregate calls in the query, they only need to
7  * be computed once. Also, some aggregate functions can share the same
8  * transition state, so that we only need to call the final function for
9  * them separately. These optimizations are independent of how the
10  * aggregates are executed.
11  *
12  * preprocess_aggrefs() detects those cases, creates AggInfo and
13  * AggTransInfo structs for each aggregate and transition state that needs
14  * to be computed, and sets the 'aggno' and 'transno' fields in the Aggrefs
15  * accordingly. It also resolves polymorphic transition types, and sets
16  * the 'aggtranstype' fields accordingly.
17  *
18  * XXX: The AggInfo and AggTransInfo structs are thrown away after
19  * planning, so executor startup has to perform some of the same lookups
20  * of transition functions and initial values that we do here. One day, we
21  * might want to carry that information to the Agg nodes to save the effort
22  * at executor startup. The Agg nodes are constructed much later in the
23  * planning, however, so it's not trivial.
24  *
25  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
26  * Portions Copyright (c) 1994, Regents of the University of California
27  *
28  *
29  * IDENTIFICATION
30  * src/backend/optimizer/prep/prepagg.c
31  *
32  *-------------------------------------------------------------------------
33  */
34 
35 #include "postgres.h"
36 
37 #include "access/htup_details.h"
38 #include "catalog/pg_aggregate.h"
39 #include "catalog/pg_type.h"
40 #include "nodes/nodeFuncs.h"
41 #include "nodes/pathnodes.h"
42 #include "optimizer/cost.h"
43 #include "optimizer/optimizer.h"
44 #include "optimizer/plancat.h"
45 #include "optimizer/prep.h"
46 #include "parser/parse_agg.h"
47 #include "utils/builtins.h"
48 #include "utils/datum.h"
49 #include "utils/fmgroids.h"
50 #include "utils/lsyscache.h"
51 #include "utils/memutils.h"
52 #include "utils/syscache.h"
53 
54 static bool preprocess_aggrefs_walker(Node *node, PlannerInfo *root);
55 static int find_compatible_agg(PlannerInfo *root, Aggref *newagg,
56  List **same_input_transnos);
57 static int find_compatible_trans(PlannerInfo *root, Aggref *newagg,
58  bool shareable,
59  Oid aggtransfn, Oid aggtranstype,
60  int transtypeLen, bool transtypeByVal,
61  Oid aggcombinefn,
62  Oid aggserialfn, Oid aggdeserialfn,
63  Datum initValue, bool initValueIsNull,
64  List *transnos);
65 static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
66 
67 /* -----------------
68  * Resolve the transition type of all Aggrefs, and determine which Aggrefs
69  * can share aggregate or transition state.
70  *
71  * Information about the aggregates and transition functions are collected
72  * in the root->agginfos and root->aggtransinfos lists. The 'aggtranstype',
73  * 'aggno', and 'aggtransno' fields of each Aggref are filled in.
74  *
75  * NOTE: This modifies the Aggrefs in the input expression in-place!
76  *
77  * We try to optimize by detecting duplicate aggregate functions so that
78  * their state and final values are re-used, rather than needlessly being
79  * re-calculated independently. We also detect aggregates that are not
80  * the same, but which can share the same transition state.
81  *
82  * Scenarios:
83  *
84  * 1. Identical aggregate function calls appear in the query:
85  *
86  * SELECT SUM(x) FROM ... HAVING SUM(x) > 0
87  *
88  * Since these aggregates are identical, we only need to calculate
89  * the value once. Both aggregates will share the same 'aggno' value.
90  *
91  * 2. Two different aggregate functions appear in the query, but the
92  * aggregates have the same arguments, transition functions and
93  * initial values (and, presumably, different final functions):
94  *
95  * SELECT AVG(x), STDDEV(x) FROM ...
96  *
97  * In this case we must create a new AggInfo for the varying aggregate,
98  * and we need to call the final functions separately, but we need
99  * only run the transition function once. (This requires that the
100  * final functions be nondestructive of the transition state, but
101  * that's required anyway for other reasons.)
102  *
103  * For either of these optimizations to be valid, all aggregate properties
104  * used in the transition phase must be the same, including any modifiers
105  * such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't
106  * contain any volatile functions.
107  * -----------------
108  */
109 void
111 {
112  (void) preprocess_aggrefs_walker(clause, root);
113 }
114 
115 static void
117 {
118  HeapTuple aggTuple;
119  Form_pg_aggregate aggform;
120  Oid aggtransfn;
121  Oid aggfinalfn;
122  Oid aggcombinefn;
123  Oid aggserialfn;
124  Oid aggdeserialfn;
125  Oid aggtranstype;
126  int32 aggtranstypmod;
127  int32 aggtransspace;
128  bool shareable;
129  int aggno;
130  int transno;
131  List *same_input_transnos;
132  int16 resulttypeLen;
133  bool resulttypeByVal;
134  Datum textInitVal;
136  bool initValueIsNull;
137  bool transtypeByVal;
138  int16 transtypeLen;
139  Oid inputTypes[FUNC_MAX_ARGS];
140  int numArguments;
141 
142  Assert(aggref->agglevelsup == 0);
143 
144  /*
145  * Fetch info about the aggregate from pg_aggregate. Note it's correct to
146  * ignore the moving-aggregate variant, since what we're concerned with
147  * here is aggregates not window functions.
148  */
149  aggTuple = SearchSysCache1(AGGFNOID,
150  ObjectIdGetDatum(aggref->aggfnoid));
151  if (!HeapTupleIsValid(aggTuple))
152  elog(ERROR, "cache lookup failed for aggregate %u",
153  aggref->aggfnoid);
154  aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
155  aggtransfn = aggform->aggtransfn;
156  aggfinalfn = aggform->aggfinalfn;
157  aggcombinefn = aggform->aggcombinefn;
158  aggserialfn = aggform->aggserialfn;
159  aggdeserialfn = aggform->aggdeserialfn;
160  aggtranstype = aggform->aggtranstype;
161  aggtransspace = aggform->aggtransspace;
162 
163  /*
164  * Resolve the possibly-polymorphic aggregate transition type.
165  */
166 
167  /* extract argument types (ignoring any ORDER BY expressions) */
168  numArguments = get_aggregate_argtypes(aggref, inputTypes);
169 
170  /* resolve actual type of transition state, if polymorphic */
171  aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
172  aggtranstype,
173  inputTypes,
174  numArguments);
175  aggref->aggtranstype = aggtranstype;
176 
177  /*
178  * If transition state is of same type as first aggregated input, assume
179  * it's the same typmod (same width) as well. This works for cases like
180  * MAX/MIN and is probably somewhat reasonable otherwise.
181  */
182  aggtranstypmod = -1;
183  if (aggref->args)
184  {
185  TargetEntry *tle = (TargetEntry *) linitial(aggref->args);
186 
187  if (aggtranstype == exprType((Node *) tle->expr))
188  aggtranstypmod = exprTypmod((Node *) tle->expr);
189  }
190 
191  /*
192  * If finalfn is marked read-write, we can't share transition states; but
193  * it is okay to share states for AGGMODIFY_SHAREABLE aggs.
194  *
195  * In principle, in a partial aggregate, we could share the transition
196  * state even if the final function is marked as read-write, because the
197  * partial aggregate doesn't execute the final function. But it's too
198  * early to know whether we're going perform a partial aggregate.
199  */
200  shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE);
201 
202  /* get info about the output value's datatype */
203  get_typlenbyval(aggref->aggtype,
204  &resulttypeLen,
205  &resulttypeByVal);
206 
207  /* get initial value */
208  textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
209  Anum_pg_aggregate_agginitval,
210  &initValueIsNull);
211  if (initValueIsNull)
212  initValue = (Datum) 0;
213  else
214  initValue = GetAggInitVal(textInitVal, aggtranstype);
215 
216  ReleaseSysCache(aggTuple);
217 
218  /*
219  * 1. See if this is identical to another aggregate function call that
220  * we've seen already.
221  */
222  aggno = find_compatible_agg(root, aggref, &same_input_transnos);
223  if (aggno != -1)
224  {
225  AggInfo *agginfo = list_nth_node(AggInfo, root->agginfos, aggno);
226 
227  agginfo->aggrefs = lappend(agginfo->aggrefs, aggref);
228  transno = agginfo->transno;
229  }
230  else
231  {
232  AggInfo *agginfo = makeNode(AggInfo);
233 
234  agginfo->finalfn_oid = aggfinalfn;
235  agginfo->aggrefs = list_make1(aggref);
236  agginfo->shareable = shareable;
237 
238  aggno = list_length(root->agginfos);
239  root->agginfos = lappend(root->agginfos, agginfo);
240 
241  /*
242  * Count it, and check for cases requiring ordered input. Note that
243  * ordered-set aggs always have nonempty aggorder. Any ordered-input
244  * case also defeats partial aggregation.
245  */
246  if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
247  {
248  root->numOrderedAggs++;
249  root->hasNonPartialAggs = true;
250  }
251 
252  get_typlenbyval(aggtranstype,
253  &transtypeLen,
254  &transtypeByVal);
255 
256  /*
257  * 2. See if this aggregate can share transition state with another
258  * aggregate that we've initialized already.
259  */
260  transno = find_compatible_trans(root, aggref, shareable,
261  aggtransfn, aggtranstype,
262  transtypeLen, transtypeByVal,
263  aggcombinefn,
264  aggserialfn, aggdeserialfn,
265  initValue, initValueIsNull,
266  same_input_transnos);
267  if (transno == -1)
268  {
269  AggTransInfo *transinfo = makeNode(AggTransInfo);
270 
271  transinfo->args = aggref->args;
272  transinfo->aggfilter = aggref->aggfilter;
273  transinfo->transfn_oid = aggtransfn;
274  transinfo->combinefn_oid = aggcombinefn;
275  transinfo->serialfn_oid = aggserialfn;
276  transinfo->deserialfn_oid = aggdeserialfn;
277  transinfo->aggtranstype = aggtranstype;
278  transinfo->aggtranstypmod = aggtranstypmod;
279  transinfo->transtypeLen = transtypeLen;
280  transinfo->transtypeByVal = transtypeByVal;
281  transinfo->aggtransspace = aggtransspace;
282  transinfo->initValue = initValue;
283  transinfo->initValueIsNull = initValueIsNull;
284 
285  transno = list_length(root->aggtransinfos);
286  root->aggtransinfos = lappend(root->aggtransinfos, transinfo);
287 
288  /*
289  * Check whether partial aggregation is feasible, unless we
290  * already found out that we can't do it.
291  */
292  if (!root->hasNonPartialAggs)
293  {
294  /*
295  * If there is no combine function, then partial aggregation
296  * is not possible.
297  */
298  if (!OidIsValid(transinfo->combinefn_oid))
299  root->hasNonPartialAggs = true;
300 
301  /*
302  * If we have any aggs with transtype INTERNAL then we must
303  * check whether they have serialization/deserialization
304  * functions; if not, we can't serialize partial-aggregation
305  * results.
306  */
307  else if (transinfo->aggtranstype == INTERNALOID)
308  {
309 
310  if (!OidIsValid(transinfo->serialfn_oid) ||
311  !OidIsValid(transinfo->deserialfn_oid))
312  root->hasNonSerialAggs = true;
313 
314  /*
315  * array_agg_serialize and array_agg_deserialize make use
316  * of the aggregate non-byval input type's send and
317  * receive functions. There's a chance that the type
318  * being aggregated has one or both of these functions
319  * missing. In this case we must not allow the
320  * aggregate's serial and deserial functions to be used.
321  * It would be nice not to have special case this and
322  * instead provide some sort of supporting function within
323  * the aggregate to do this, but for now, that seems like
324  * overkill for this one case.
325  */
326  if ((transinfo->serialfn_oid == F_ARRAY_AGG_SERIALIZE ||
327  transinfo->deserialfn_oid == F_ARRAY_AGG_DESERIALIZE) &&
329  root->hasNonSerialAggs = true;
330  }
331  }
332  }
333  agginfo->transno = transno;
334  }
335 
336  /*
337  * Fill in the fields in the Aggref (aggtranstype was set above already)
338  */
339  aggref->aggno = aggno;
340  aggref->aggtransno = transno;
341 }
342 
343 static bool
345 {
346  if (node == NULL)
347  return false;
348  if (IsA(node, Aggref))
349  {
350  Aggref *aggref = (Aggref *) node;
351 
352  preprocess_aggref(aggref, root);
353 
354  /*
355  * We assume that the parser checked that there are no aggregates (of
356  * this level anyway) in the aggregated arguments, direct arguments,
357  * or filter clause. Hence, we need not recurse into any of them.
358  */
359  return false;
360  }
361  Assert(!IsA(node, SubLink));
363 }
364 
365 
366 /*
367  * find_compatible_agg - search for a previously initialized per-Agg struct
368  *
369  * Searches the previously looked at aggregates to find one which is compatible
370  * with this one, with the same input parameters. If no compatible aggregate
371  * can be found, returns -1.
372  *
373  * As a side-effect, this also collects a list of existing, shareable per-Trans
374  * structs with matching inputs. If no identical Aggref is found, the list is
375  * passed later to find_compatible_trans, to see if we can at least reuse
376  * the state value of another aggregate.
377  */
378 static int
380  List **same_input_transnos)
381 {
382  ListCell *lc;
383  int aggno;
384 
385  *same_input_transnos = NIL;
386 
387  /* we mustn't reuse the aggref if it contains volatile function calls */
388  if (contain_volatile_functions((Node *) newagg))
389  return -1;
390 
391  /*
392  * Search through the list of already seen aggregates. If we find an
393  * existing identical aggregate call, then we can re-use that one. While
394  * searching, we'll also collect a list of Aggrefs with the same input
395  * parameters. If no matching Aggref is found, the caller can potentially
396  * still re-use the transition state of one of them. (At this stage we
397  * just compare the parsetrees; whether different aggregates share the
398  * same transition function will be checked later.)
399  */
400  aggno = -1;
401  foreach(lc, root->agginfos)
402  {
403  AggInfo *agginfo = lfirst_node(AggInfo, lc);
404  Aggref *existingRef;
405 
406  aggno++;
407 
408  existingRef = linitial_node(Aggref, agginfo->aggrefs);
409 
410  /* all of the following must be the same or it's no match */
411  if (newagg->inputcollid != existingRef->inputcollid ||
412  newagg->aggtranstype != existingRef->aggtranstype ||
413  newagg->aggstar != existingRef->aggstar ||
414  newagg->aggvariadic != existingRef->aggvariadic ||
415  newagg->aggkind != existingRef->aggkind ||
416  !equal(newagg->args, existingRef->args) ||
417  !equal(newagg->aggorder, existingRef->aggorder) ||
418  !equal(newagg->aggdistinct, existingRef->aggdistinct) ||
419  !equal(newagg->aggfilter, existingRef->aggfilter))
420  continue;
421 
422  /* if it's the same aggregate function then report exact match */
423  if (newagg->aggfnoid == existingRef->aggfnoid &&
424  newagg->aggtype == existingRef->aggtype &&
425  newagg->aggcollid == existingRef->aggcollid &&
426  equal(newagg->aggdirectargs, existingRef->aggdirectargs))
427  {
428  list_free(*same_input_transnos);
429  *same_input_transnos = NIL;
430  return aggno;
431  }
432 
433  /*
434  * Not identical, but it had the same inputs. If the final function
435  * permits sharing, return its transno to the caller, in case we can
436  * re-use its per-trans state. (If there's already sharing going on,
437  * we might report a transno more than once. find_compatible_trans is
438  * cheap enough that it's not worth spending cycles to avoid that.)
439  */
440  if (agginfo->shareable)
441  *same_input_transnos = lappend_int(*same_input_transnos,
442  agginfo->transno);
443  }
444 
445  return -1;
446 }
447 
448 /*
449  * find_compatible_trans - search for a previously initialized per-Trans
450  * struct
451  *
452  * Searches the list of transnos for a per-Trans struct with the same
453  * transition function and initial condition. (The inputs have already been
454  * verified to match.)
455  */
456 static int
457 find_compatible_trans(PlannerInfo *root, Aggref *newagg, bool shareable,
458  Oid aggtransfn, Oid aggtranstype,
459  int transtypeLen, bool transtypeByVal,
460  Oid aggcombinefn,
461  Oid aggserialfn, Oid aggdeserialfn,
462  Datum initValue, bool initValueIsNull,
463  List *transnos)
464 {
465  ListCell *lc;
466 
467  /* If this aggregate can't share transition states, give up */
468  if (!shareable)
469  return -1;
470 
471  foreach(lc, transnos)
472  {
473  int transno = lfirst_int(lc);
475  root->aggtransinfos,
476  transno);
477 
478  /*
479  * if the transfns or transition state types are not the same then the
480  * state can't be shared.
481  */
482  if (aggtransfn != pertrans->transfn_oid ||
483  aggtranstype != pertrans->aggtranstype)
484  continue;
485 
486  /*
487  * The serialization and deserialization functions must match, if
488  * present, as we're unable to share the trans state for aggregates
489  * which will serialize or deserialize into different formats.
490  * Remember that these will be InvalidOid if they're not required for
491  * this agg node.
492  */
493  if (aggserialfn != pertrans->serialfn_oid ||
494  aggdeserialfn != pertrans->deserialfn_oid)
495  continue;
496 
497  /*
498  * Combine function must also match. We only care about the combine
499  * function with partial aggregates, but it's too early in the
500  * planning to know if we will do partial aggregation, so be
501  * conservative.
502  */
503  if (aggcombinefn != pertrans->combinefn_oid)
504  continue;
505 
506  /*
507  * Check that the initial condition matches, too.
508  */
509  if (initValueIsNull && pertrans->initValueIsNull)
510  return transno;
511 
512  if (!initValueIsNull && !pertrans->initValueIsNull &&
513  datumIsEqual(initValue, pertrans->initValue,
514  transtypeByVal, transtypeLen))
515  return transno;
516  }
517  return -1;
518 }
519 
520 static Datum
521 GetAggInitVal(Datum textInitVal, Oid transtype)
522 {
523  Oid typinput,
524  typioparam;
525  char *strInitVal;
526  Datum initVal;
527 
528  getTypeInputInfo(transtype, &typinput, &typioparam);
529  strInitVal = TextDatumGetCString(textInitVal);
530  initVal = OidInputFunctionCall(typinput, strInitVal,
531  typioparam, -1);
532  pfree(strInitVal);
533  return initVal;
534 }
535 
536 
537 /*
538  * get_agg_clause_costs
539  * Process the PlannerInfo's 'aggtransinfos' and 'agginfos' lists
540  * accumulating the cost information about them.
541  *
542  * 'aggsplit' tells us the expected partial-aggregation mode, which affects
543  * the cost estimates.
544  *
545  * NOTE that the costs are ADDED to those already in *costs ... so the caller
546  * is responsible for zeroing the struct initially.
547  *
548  * For each AggTransInfo, we add the cost of an aggregate transition using
549  * either the transfn or combinefn depending on the 'aggsplit' value. We also
550  * account for the costs of any aggfilters and any serializations and
551  * deserializations of the transition state and also estimate the total space
552  * needed for the transition states as if each aggregate's state was stored in
553  * memory concurrently (as would be done in a HashAgg plan).
554  *
555  * For each AggInfo in the 'agginfos' list we add the cost of running the
556  * final function and the direct args, if any.
557  */
558 void
560 {
561  ListCell *lc;
562 
563  foreach(lc, root->aggtransinfos)
564  {
565  AggTransInfo *transinfo = lfirst_node(AggTransInfo, lc);
566 
567  /*
568  * Add the appropriate component function execution costs to
569  * appropriate totals.
570  */
571  if (DO_AGGSPLIT_COMBINE(aggsplit))
572  {
573  /* charge for combining previously aggregated states */
574  add_function_cost(root, transinfo->combinefn_oid, NULL,
575  &costs->transCost);
576  }
577  else
578  add_function_cost(root, transinfo->transfn_oid, NULL,
579  &costs->transCost);
580  if (DO_AGGSPLIT_DESERIALIZE(aggsplit) &&
581  OidIsValid(transinfo->deserialfn_oid))
582  add_function_cost(root, transinfo->deserialfn_oid, NULL,
583  &costs->transCost);
584  if (DO_AGGSPLIT_SERIALIZE(aggsplit) &&
585  OidIsValid(transinfo->serialfn_oid))
586  add_function_cost(root, transinfo->serialfn_oid, NULL,
587  &costs->finalCost);
588 
589  /*
590  * These costs are incurred only by the initial aggregate node, so we
591  * mustn't include them again at upper levels.
592  */
593  if (!DO_AGGSPLIT_COMBINE(aggsplit))
594  {
595  /* add the input expressions' cost to per-input-row costs */
596  QualCost argcosts;
597 
598  cost_qual_eval_node(&argcosts, (Node *) transinfo->args, root);
599  costs->transCost.startup += argcosts.startup;
600  costs->transCost.per_tuple += argcosts.per_tuple;
601 
602  /*
603  * Add any filter's cost to per-input-row costs.
604  *
605  * XXX Ideally we should reduce input expression costs according
606  * to filter selectivity, but it's not clear it's worth the
607  * trouble.
608  */
609  if (transinfo->aggfilter)
610  {
611  cost_qual_eval_node(&argcosts, (Node *) transinfo->aggfilter,
612  root);
613  costs->transCost.startup += argcosts.startup;
614  costs->transCost.per_tuple += argcosts.per_tuple;
615  }
616  }
617 
618  /*
619  * If the transition type is pass-by-value then it doesn't add
620  * anything to the required size of the hashtable. If it is
621  * pass-by-reference then we have to add the estimated size of the
622  * value itself, plus palloc overhead.
623  */
624  if (!transinfo->transtypeByVal)
625  {
626  int32 avgwidth;
627 
628  /* Use average width if aggregate definition gave one */
629  if (transinfo->aggtransspace > 0)
630  avgwidth = transinfo->aggtransspace;
631  else if (transinfo->transfn_oid == F_ARRAY_APPEND)
632  {
633  /*
634  * If the transition function is array_append(), it'll use an
635  * expanded array as transvalue, which will occupy at least
636  * ALLOCSET_SMALL_INITSIZE and possibly more. Use that as the
637  * estimate for lack of a better idea.
638  */
639  avgwidth = ALLOCSET_SMALL_INITSIZE;
640  }
641  else
642  {
643  avgwidth = get_typavgwidth(transinfo->aggtranstype, transinfo->aggtranstypmod);
644  }
645 
646  avgwidth = MAXALIGN(avgwidth);
647  costs->transitionSpace += avgwidth + 2 * sizeof(void *);
648  }
649  else if (transinfo->aggtranstype == INTERNALOID)
650  {
651  /*
652  * INTERNAL transition type is a special case: although INTERNAL
653  * is pass-by-value, it's almost certainly being used as a pointer
654  * to some large data structure. The aggregate definition can
655  * provide an estimate of the size. If it doesn't, then we assume
656  * ALLOCSET_DEFAULT_INITSIZE, which is a good guess if the data is
657  * being kept in a private memory context, as is done by
658  * array_agg() for instance.
659  */
660  if (transinfo->aggtransspace > 0)
661  costs->transitionSpace += transinfo->aggtransspace;
662  else
664  }
665  }
666 
667  foreach(lc, root->agginfos)
668  {
669  AggInfo *agginfo = lfirst_node(AggInfo, lc);
670  Aggref *aggref = linitial_node(Aggref, agginfo->aggrefs);
671 
672  /*
673  * Add the appropriate component function execution costs to
674  * appropriate totals.
675  */
676  if (!DO_AGGSPLIT_SKIPFINAL(aggsplit) &&
677  OidIsValid(agginfo->finalfn_oid))
678  add_function_cost(root, agginfo->finalfn_oid, NULL,
679  &costs->finalCost);
680 
681  /*
682  * If there are direct arguments, treat their evaluation cost like the
683  * cost of the finalfn.
684  */
685  if (aggref->aggdirectargs)
686  {
687  QualCost argcosts;
688 
689  cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
690  root);
691  costs->finalCost.startup += argcosts.startup;
692  costs->finalCost.per_tuple += argcosts.per_tuple;
693  }
694  }
695 }
#define TextDatumGetCString(d)
Definition: builtins.h:98
signed short int16
Definition: c.h:481
#define MAXALIGN(LEN)
Definition: c.h:790
signed int int32
Definition: c.h:482
#define Assert(condition)
Definition: c.h:837
#define OidIsValid(objectId)
Definition: c.h:754
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:537
void cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
Definition: costsize.c:4758
bool datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:223
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
Datum OidInputFunctionCall(Oid functionId, char *str, Oid typioparam, int32 typmod)
Definition: fmgr.c:1754
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
static int initValue(long lng_val)
Definition: informix.c:702
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lappend_int(List *list, int datum)
Definition: list.c:357
void list_free(List *list)
Definition: list.c:1546
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2251
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:2874
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2578
void pfree(void *pointer)
Definition: mcxt.c:1521
#define ALLOCSET_SMALL_INITSIZE
Definition: memutils.h:168
#define ALLOCSET_DEFAULT_INITSIZE
Definition: memutils.h:158
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define DO_AGGSPLIT_SKIPFINAL(as)
Definition: nodes.h:386
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define DO_AGGSPLIT_DESERIALIZE(as)
Definition: nodes.h:388
#define DO_AGGSPLIT_COMBINE(as)
Definition: nodes.h:385
#define DO_AGGSPLIT_SERIALIZE(as)
Definition: nodes.h:387
AggSplit
Definition: nodes.h:375
#define makeNode(_type_)
Definition: nodes.h:155
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:2023
bool agg_args_support_sendreceive(Aggref *aggref)
Definition: parse_agg.c:2059
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:1997
FormData_pg_aggregate * Form_pg_aggregate
Definition: pg_aggregate.h:109
#define FUNC_MAX_ARGS
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial_node(type, l)
Definition: pg_list.h:181
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial(l)
Definition: pg_list.h:178
#define list_nth_node(type, list, n)
Definition: pg_list.h:327
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:2097
uintptr_t Datum
Definition: postgres.h:64
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
unsigned int Oid
Definition: postgres_ext.h:31
static bool preprocess_aggrefs_walker(Node *node, PlannerInfo *root)
Definition: prepagg.c:344
static Datum GetAggInitVal(Datum textInitVal, Oid transtype)
Definition: prepagg.c:521
void get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit, AggClauseCosts *costs)
Definition: prepagg.c:559
static int find_compatible_agg(PlannerInfo *root, Aggref *newagg, List **same_input_transnos)
Definition: prepagg.c:379
static int find_compatible_trans(PlannerInfo *root, Aggref *newagg, bool shareable, Oid aggtransfn, Oid aggtranstype, int transtypeLen, bool transtypeByVal, Oid aggcombinefn, Oid aggserialfn, Oid aggdeserialfn, Datum initValue, bool initValueIsNull, List *transnos)
Definition: prepagg.c:457
static void preprocess_aggref(Aggref *aggref, PlannerInfo *root)
Definition: prepagg.c:116
void preprocess_aggrefs(PlannerInfo *root, Node *clause)
Definition: prepagg.c:110
tree ctl root
Definition: radixtree.h:1886
QualCost finalCost
Definition: pathnodes.h:61
Size transitionSpace
Definition: pathnodes.h:62
QualCost transCost
Definition: pathnodes.h:60
bool shareable
Definition: pathnodes.h:3395
List * aggrefs
Definition: pathnodes.h:3386
int transno
Definition: pathnodes.h:3389
Oid finalfn_oid
Definition: pathnodes.h:3398
List * args
Definition: pathnodes.h:3415
int32 aggtransspace
Definition: pathnodes.h:3439
bool transtypeByVal
Definition: pathnodes.h:3436
Oid combinefn_oid
Definition: pathnodes.h:3428
Oid deserialfn_oid
Definition: pathnodes.h:3425
int32 aggtranstypmod
Definition: pathnodes.h:3434
int transtypeLen
Definition: pathnodes.h:3435
bool initValueIsNull
Definition: pathnodes.h:3443
Oid serialfn_oid
Definition: pathnodes.h:3422
Oid aggtranstype
Definition: pathnodes.h:3431
Expr * aggfilter
Definition: pathnodes.h:3416
Oid aggfnoid
Definition: primnodes.h:444
List * aggdistinct
Definition: primnodes.h:474
List * aggdirectargs
Definition: primnodes.h:465
List * args
Definition: primnodes.h:468
Expr * aggfilter
Definition: primnodes.h:477
List * aggorder
Definition: primnodes.h:471
Definition: pg_list.h:54
Definition: nodes.h:129
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
Expr * expr
Definition: primnodes.h:2190
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:600