PostgreSQL Source Code  git master
prepagg.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * prepagg.c
4  * Routines to preprocess aggregate function calls
5  *
6  * If there are identical aggregate calls in the query, they only need to
7  * be computed once. Also, some aggregate functions can share the same
8  * transition state, so that we only need to call the final function for
9  * them separately. These optimizations are independent of how the
10  * aggregates are executed.
11  *
12  * preprocess_aggrefs() detects those cases, creates AggInfo and
13  * AggTransInfo structs for each aggregate and transition state that needs
14  * to be computed, and sets the 'aggno' and 'transno' fields in the Aggrefs
15  * accordingly. It also resolves polymorphic transition types, and sets
16  * the 'aggtranstype' fields accordingly.
17  *
18  * XXX: The AggInfo and AggTransInfo structs are thrown away after
19  * planning, so executor startup has to perform some of the same lookups
20  * of transition functions and initial values that we do here. One day, we
21  * might want to carry that information to the Agg nodes to save the effort
22  * at executor startup. The Agg nodes are constructed much later in the
23  * planning, however, so it's not trivial.
24  *
25  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
26  * Portions Copyright (c) 1994, Regents of the University of California
27  *
28  *
29  * IDENTIFICATION
30  * src/backend/optimizer/prep/prepagg.c
31  *
32  *-------------------------------------------------------------------------
33  */
34 
35 #include "postgres.h"
36 
37 #include "access/htup_details.h"
38 #include "catalog/pg_aggregate.h"
39 #include "catalog/pg_type.h"
40 #include "nodes/nodeFuncs.h"
41 #include "nodes/pathnodes.h"
42 #include "optimizer/clauses.h"
43 #include "optimizer/cost.h"
44 #include "optimizer/optimizer.h"
45 #include "optimizer/plancat.h"
46 #include "optimizer/prep.h"
47 #include "parser/parse_agg.h"
48 #include "utils/builtins.h"
49 #include "utils/datum.h"
50 #include "utils/fmgroids.h"
51 #include "utils/lsyscache.h"
52 #include "utils/memutils.h"
53 #include "utils/syscache.h"
54 
55 static bool preprocess_aggrefs_walker(Node *node, PlannerInfo *root);
56 static int find_compatible_agg(PlannerInfo *root, Aggref *newagg,
57  List **same_input_transnos);
58 static int find_compatible_trans(PlannerInfo *root, Aggref *newagg,
59  bool shareable,
60  Oid aggtransfn, Oid aggtranstype,
61  int transtypeLen, bool transtypeByVal,
62  Oid aggcombinefn,
63  Oid aggserialfn, Oid aggdeserialfn,
64  Datum initValue, bool initValueIsNull,
65  List *transnos);
66 static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
67 
68 /* -----------------
69  * Resolve the transition type of all Aggrefs, and determine which Aggrefs
70  * can share aggregate or transition state.
71  *
72  * Information about the aggregates and transition functions are collected
73  * in the root->agginfos and root->aggtransinfos lists. The 'aggtranstype',
74  * 'aggno', and 'aggtransno' fields of each Aggref are filled in.
75  *
76  * NOTE: This modifies the Aggrefs in the input expression in-place!
77  *
78  * We try to optimize by detecting duplicate aggregate functions so that
79  * their state and final values are re-used, rather than needlessly being
80  * re-calculated independently. We also detect aggregates that are not
81  * the same, but which can share the same transition state.
82  *
83  * Scenarios:
84  *
85  * 1. Identical aggregate function calls appear in the query:
86  *
87  * SELECT SUM(x) FROM ... HAVING SUM(x) > 0
88  *
89  * Since these aggregates are identical, we only need to calculate
90  * the value once. Both aggregates will share the same 'aggno' value.
91  *
92  * 2. Two different aggregate functions appear in the query, but the
93  * aggregates have the same arguments, transition functions and
94  * initial values (and, presumably, different final functions):
95  *
96  * SELECT AVG(x), STDDEV(x) FROM ...
97  *
98  * In this case we must create a new AggInfo for the varying aggregate,
99  * and we need to call the final functions separately, but we need
100  * only run the transition function once. (This requires that the
101  * final functions be nondestructive of the transition state, but
102  * that's required anyway for other reasons.)
103  *
104  * For either of these optimizations to be valid, all aggregate properties
105  * used in the transition phase must be the same, including any modifiers
106  * such as ORDER BY, DISTINCT and FILTER, and the arguments mustn't
107  * contain any volatile functions.
108  * -----------------
109  */
110 void
112 {
113  (void) preprocess_aggrefs_walker(clause, root);
114 }
115 
116 static void
118 {
119  HeapTuple aggTuple;
120  Form_pg_aggregate aggform;
121  Oid aggtransfn;
122  Oid aggfinalfn;
123  Oid aggcombinefn;
124  Oid aggserialfn;
125  Oid aggdeserialfn;
126  Oid aggtranstype;
127  int32 aggtranstypmod;
128  int32 aggtransspace;
129  bool shareable;
130  int aggno;
131  int transno;
132  List *same_input_transnos;
133  int16 resulttypeLen;
134  bool resulttypeByVal;
135  Datum textInitVal;
137  bool initValueIsNull;
138  bool transtypeByVal;
139  int16 transtypeLen;
140  Oid inputTypes[FUNC_MAX_ARGS];
141  int numArguments;
142 
143  Assert(aggref->agglevelsup == 0);
144 
145  /*
146  * Fetch info about the aggregate from pg_aggregate. Note it's correct to
147  * ignore the moving-aggregate variant, since what we're concerned with
148  * here is aggregates not window functions.
149  */
150  aggTuple = SearchSysCache1(AGGFNOID,
151  ObjectIdGetDatum(aggref->aggfnoid));
152  if (!HeapTupleIsValid(aggTuple))
153  elog(ERROR, "cache lookup failed for aggregate %u",
154  aggref->aggfnoid);
155  aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
156  aggtransfn = aggform->aggtransfn;
157  aggfinalfn = aggform->aggfinalfn;
158  aggcombinefn = aggform->aggcombinefn;
159  aggserialfn = aggform->aggserialfn;
160  aggdeserialfn = aggform->aggdeserialfn;
161  aggtranstype = aggform->aggtranstype;
162  aggtransspace = aggform->aggtransspace;
163 
164  /*
165  * Resolve the possibly-polymorphic aggregate transition type.
166  */
167 
168  /* extract argument types (ignoring any ORDER BY expressions) */
169  numArguments = get_aggregate_argtypes(aggref, inputTypes);
170 
171  /* resolve actual type of transition state, if polymorphic */
172  aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid,
173  aggtranstype,
174  inputTypes,
175  numArguments);
176  aggref->aggtranstype = aggtranstype;
177 
178  /*
179  * If transition state is of same type as first aggregated input, assume
180  * it's the same typmod (same width) as well. This works for cases like
181  * MAX/MIN and is probably somewhat reasonable otherwise.
182  */
183  aggtranstypmod = -1;
184  if (aggref->args)
185  {
186  TargetEntry *tle = (TargetEntry *) linitial(aggref->args);
187 
188  if (aggtranstype == exprType((Node *) tle->expr))
189  aggtranstypmod = exprTypmod((Node *) tle->expr);
190  }
191 
192  /*
193  * If finalfn is marked read-write, we can't share transition states; but
194  * it is okay to share states for AGGMODIFY_SHAREABLE aggs.
195  *
196  * In principle, in a partial aggregate, we could share the transition
197  * state even if the final function is marked as read-write, because the
198  * partial aggregate doesn't execute the final function. But it's too
199  * early to know whether we're going perform a partial aggregate.
200  */
201  shareable = (aggform->aggfinalmodify != AGGMODIFY_READ_WRITE);
202 
203  /* get info about the output value's datatype */
204  get_typlenbyval(aggref->aggtype,
205  &resulttypeLen,
206  &resulttypeByVal);
207 
208  /* get initial value */
209  textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
210  Anum_pg_aggregate_agginitval,
211  &initValueIsNull);
212  if (initValueIsNull)
213  initValue = (Datum) 0;
214  else
215  initValue = GetAggInitVal(textInitVal, aggtranstype);
216 
217  ReleaseSysCache(aggTuple);
218 
219  /*
220  * 1. See if this is identical to another aggregate function call that
221  * we've seen already.
222  */
223  aggno = find_compatible_agg(root, aggref, &same_input_transnos);
224  if (aggno != -1)
225  {
226  AggInfo *agginfo = list_nth(root->agginfos, aggno);
227 
228  transno = agginfo->transno;
229  }
230  else
231  {
232  AggInfo *agginfo = palloc(sizeof(AggInfo));
233 
234  agginfo->finalfn_oid = aggfinalfn;
235  agginfo->representative_aggref = aggref;
236  agginfo->shareable = shareable;
237 
238  aggno = list_length(root->agginfos);
239  root->agginfos = lappend(root->agginfos, agginfo);
240 
241  /*
242  * Count it, and check for cases requiring ordered input. Note that
243  * ordered-set aggs always have nonempty aggorder. Any ordered-input
244  * case also defeats partial aggregation.
245  */
246  if (aggref->aggorder != NIL || aggref->aggdistinct != NIL)
247  {
248  root->numOrderedAggs++;
249  root->hasNonPartialAggs = true;
250  }
251 
252  get_typlenbyval(aggtranstype,
253  &transtypeLen,
254  &transtypeByVal);
255 
256  /*
257  * 2. See if this aggregate can share transition state with another
258  * aggregate that we've initialized already.
259  */
260  transno = find_compatible_trans(root, aggref, shareable,
261  aggtransfn, aggtranstype,
262  transtypeLen, transtypeByVal,
263  aggcombinefn,
264  aggserialfn, aggdeserialfn,
265  initValue, initValueIsNull,
266  same_input_transnos);
267  if (transno == -1)
268  {
269  AggTransInfo *transinfo = palloc(sizeof(AggTransInfo));
270 
271  transinfo->args = aggref->args;
272  transinfo->aggfilter = aggref->aggfilter;
273  transinfo->transfn_oid = aggtransfn;
274  transinfo->combinefn_oid = aggcombinefn;
275  transinfo->serialfn_oid = aggserialfn;
276  transinfo->deserialfn_oid = aggdeserialfn;
277  transinfo->aggtranstype = aggtranstype;
278  transinfo->aggtranstypmod = aggtranstypmod;
279  transinfo->transtypeLen = transtypeLen;
280  transinfo->transtypeByVal = transtypeByVal;
281  transinfo->aggtransspace = aggtransspace;
282  transinfo->initValue = initValue;
283  transinfo->initValueIsNull = initValueIsNull;
284 
285  transno = list_length(root->aggtransinfos);
286  root->aggtransinfos = lappend(root->aggtransinfos, transinfo);
287 
288  /*
289  * Check whether partial aggregation is feasible, unless we
290  * already found out that we can't do it.
291  */
292  if (!root->hasNonPartialAggs)
293  {
294  /*
295  * If there is no combine function, then partial aggregation
296  * is not possible.
297  */
298  if (!OidIsValid(transinfo->combinefn_oid))
299  root->hasNonPartialAggs = true;
300 
301  /*
302  * If we have any aggs with transtype INTERNAL then we must
303  * check whether they have serialization/deserialization
304  * functions; if not, we can't serialize partial-aggregation
305  * results.
306  */
307  else if (transinfo->aggtranstype == INTERNALOID &&
308  (!OidIsValid(transinfo->serialfn_oid) ||
309  !OidIsValid(transinfo->deserialfn_oid)))
310  root->hasNonSerialAggs = true;
311  }
312  }
313  agginfo->transno = transno;
314  }
315 
316  /*
317  * Fill in the fields in the Aggref (aggtranstype was set above already)
318  */
319  aggref->aggno = aggno;
320  aggref->aggtransno = transno;
321 }
322 
323 static bool
325 {
326  if (node == NULL)
327  return false;
328  if (IsA(node, Aggref))
329  {
330  Aggref *aggref = (Aggref *) node;
331 
332  preprocess_aggref(aggref, root);
333 
334  /*
335  * We assume that the parser checked that there are no aggregates (of
336  * this level anyway) in the aggregated arguments, direct arguments,
337  * or filter clause. Hence, we need not recurse into any of them.
338  */
339  return false;
340  }
341  Assert(!IsA(node, SubLink));
343  (void *) root);
344 }
345 
346 
347 /*
348  * find_compatible_agg - search for a previously initialized per-Agg struct
349  *
350  * Searches the previously looked at aggregates to find one which is compatible
351  * with this one, with the same input parameters. If no compatible aggregate
352  * can be found, returns -1.
353  *
354  * As a side-effect, this also collects a list of existing, shareable per-Trans
355  * structs with matching inputs. If no identical Aggref is found, the list is
356  * passed later to find_compatible_trans, to see if we can at least reuse
357  * the state value of another aggregate.
358  */
359 static int
361  List **same_input_transnos)
362 {
363  ListCell *lc;
364  int aggno;
365 
366  *same_input_transnos = NIL;
367 
368  /* we mustn't reuse the aggref if it contains volatile function calls */
369  if (contain_volatile_functions((Node *) newagg))
370  return -1;
371 
372  /*
373  * Search through the list of already seen aggregates. If we find an
374  * existing identical aggregate call, then we can re-use that one. While
375  * searching, we'll also collect a list of Aggrefs with the same input
376  * parameters. If no matching Aggref is found, the caller can potentially
377  * still re-use the transition state of one of them. (At this stage we
378  * just compare the parsetrees; whether different aggregates share the
379  * same transition function will be checked later.)
380  */
381  aggno = -1;
382  foreach(lc, root->agginfos)
383  {
384  AggInfo *agginfo = (AggInfo *) lfirst(lc);
385  Aggref *existingRef;
386 
387  aggno++;
388 
389  existingRef = agginfo->representative_aggref;
390 
391  /* all of the following must be the same or it's no match */
392  if (newagg->inputcollid != existingRef->inputcollid ||
393  newagg->aggtranstype != existingRef->aggtranstype ||
394  newagg->aggstar != existingRef->aggstar ||
395  newagg->aggvariadic != existingRef->aggvariadic ||
396  newagg->aggkind != existingRef->aggkind ||
397  !equal(newagg->args, existingRef->args) ||
398  !equal(newagg->aggorder, existingRef->aggorder) ||
399  !equal(newagg->aggdistinct, existingRef->aggdistinct) ||
400  !equal(newagg->aggfilter, existingRef->aggfilter))
401  continue;
402 
403  /* if it's the same aggregate function then report exact match */
404  if (newagg->aggfnoid == existingRef->aggfnoid &&
405  newagg->aggtype == existingRef->aggtype &&
406  newagg->aggcollid == existingRef->aggcollid &&
407  equal(newagg->aggdirectargs, existingRef->aggdirectargs))
408  {
409  list_free(*same_input_transnos);
410  *same_input_transnos = NIL;
411  return aggno;
412  }
413 
414  /*
415  * Not identical, but it had the same inputs. If the final function
416  * permits sharing, return its transno to the caller, in case we can
417  * re-use its per-trans state. (If there's already sharing going on,
418  * we might report a transno more than once. find_compatible_trans is
419  * cheap enough that it's not worth spending cycles to avoid that.)
420  */
421  if (agginfo->shareable)
422  *same_input_transnos = lappend_int(*same_input_transnos,
423  agginfo->transno);
424  }
425 
426  return -1;
427 }
428 
429 /*
430  * find_compatible_trans - search for a previously initialized per-Trans
431  * struct
432  *
433  * Searches the list of transnos for a per-Trans struct with the same
434  * transition function and initial condition. (The inputs have already been
435  * verified to match.)
436  */
437 static int
438 find_compatible_trans(PlannerInfo *root, Aggref *newagg, bool shareable,
439  Oid aggtransfn, Oid aggtranstype,
440  int transtypeLen, bool transtypeByVal,
441  Oid aggcombinefn,
442  Oid aggserialfn, Oid aggdeserialfn,
443  Datum initValue, bool initValueIsNull,
444  List *transnos)
445 {
446  ListCell *lc;
447 
448  /* If this aggregate can't share transition states, give up */
449  if (!shareable)
450  return -1;
451 
452  foreach(lc, transnos)
453  {
454  int transno = lfirst_int(lc);
455  AggTransInfo *pertrans = (AggTransInfo *) list_nth(root->aggtransinfos, transno);
456 
457  /*
458  * if the transfns or transition state types are not the same then the
459  * state can't be shared.
460  */
461  if (aggtransfn != pertrans->transfn_oid ||
462  aggtranstype != pertrans->aggtranstype)
463  continue;
464 
465  /*
466  * The serialization and deserialization functions must match, if
467  * present, as we're unable to share the trans state for aggregates
468  * which will serialize or deserialize into different formats.
469  * Remember that these will be InvalidOid if they're not required for
470  * this agg node.
471  */
472  if (aggserialfn != pertrans->serialfn_oid ||
473  aggdeserialfn != pertrans->deserialfn_oid)
474  continue;
475 
476  /*
477  * Combine function must also match. We only care about the combine
478  * function with partial aggregates, but it's too early in the
479  * planning to know if we will do partial aggregation, so be
480  * conservative.
481  */
482  if (aggcombinefn != pertrans->combinefn_oid)
483  continue;
484 
485  /*
486  * Check that the initial condition matches, too.
487  */
488  if (initValueIsNull && pertrans->initValueIsNull)
489  return transno;
490 
491  if (!initValueIsNull && !pertrans->initValueIsNull &&
492  datumIsEqual(initValue, pertrans->initValue,
493  transtypeByVal, transtypeLen))
494  return transno;
495  }
496  return -1;
497 }
498 
499 static Datum
500 GetAggInitVal(Datum textInitVal, Oid transtype)
501 {
502  Oid typinput,
503  typioparam;
504  char *strInitVal;
505  Datum initVal;
506 
507  getTypeInputInfo(transtype, &typinput, &typioparam);
508  strInitVal = TextDatumGetCString(textInitVal);
509  initVal = OidInputFunctionCall(typinput, strInitVal,
510  typioparam, -1);
511  pfree(strInitVal);
512  return initVal;
513 }
514 
515 
516 /*
517  * get_agg_clause_costs
518  * Recursively find the Aggref nodes in an expression tree, and
519  * accumulate cost information about them.
520  *
521  * 'aggsplit' tells us the expected partial-aggregation mode, which affects
522  * the cost estimates.
523  *
524  * NOTE that the counts/costs are ADDED to those already in *costs ... so
525  * the caller is responsible for zeroing the struct initially.
526  *
527  * We count the nodes, estimate their execution costs, and estimate the total
528  * space needed for their transition state values if all are evaluated in
529  * parallel (as would be done in a HashAgg plan). Also, we check whether
530  * partial aggregation is feasible. See AggClauseCosts for the exact set
531  * of statistics collected.
532  *
533  * In addition, we mark Aggref nodes with the correct aggtranstype, so
534  * that that doesn't need to be done repeatedly. (That makes this function's
535  * name a bit of a misnomer.)
536  *
537  * This does not descend into subqueries, and so should be used only after
538  * reduction of sublinks to subplans, or in contexts where it's known there
539  * are no subqueries. There mustn't be outer-aggregate references either.
540  */
541 void
543 {
544  ListCell *lc;
545 
546  foreach(lc, root->aggtransinfos)
547  {
548  AggTransInfo *transinfo = (AggTransInfo *) lfirst(lc);
549 
550  /*
551  * Add the appropriate component function execution costs to
552  * appropriate totals.
553  */
554  if (DO_AGGSPLIT_COMBINE(aggsplit))
555  {
556  /* charge for combining previously aggregated states */
557  add_function_cost(root, transinfo->combinefn_oid, NULL,
558  &costs->transCost);
559  }
560  else
561  add_function_cost(root, transinfo->transfn_oid, NULL,
562  &costs->transCost);
563  if (DO_AGGSPLIT_DESERIALIZE(aggsplit) &&
564  OidIsValid(transinfo->deserialfn_oid))
565  add_function_cost(root, transinfo->deserialfn_oid, NULL,
566  &costs->transCost);
567  if (DO_AGGSPLIT_SERIALIZE(aggsplit) &&
568  OidIsValid(transinfo->serialfn_oid))
569  add_function_cost(root, transinfo->serialfn_oid, NULL,
570  &costs->finalCost);
571 
572  /*
573  * These costs are incurred only by the initial aggregate node, so we
574  * mustn't include them again at upper levels.
575  */
576  if (!DO_AGGSPLIT_COMBINE(aggsplit))
577  {
578  /* add the input expressions' cost to per-input-row costs */
579  QualCost argcosts;
580 
581  cost_qual_eval_node(&argcosts, (Node *) transinfo->args, root);
582  costs->transCost.startup += argcosts.startup;
583  costs->transCost.per_tuple += argcosts.per_tuple;
584 
585  /*
586  * Add any filter's cost to per-input-row costs.
587  *
588  * XXX Ideally we should reduce input expression costs according
589  * to filter selectivity, but it's not clear it's worth the
590  * trouble.
591  */
592  if (transinfo->aggfilter)
593  {
594  cost_qual_eval_node(&argcosts, (Node *) transinfo->aggfilter,
595  root);
596  costs->transCost.startup += argcosts.startup;
597  costs->transCost.per_tuple += argcosts.per_tuple;
598  }
599  }
600 
601  /*
602  * If the transition type is pass-by-value then it doesn't add
603  * anything to the required size of the hashtable. If it is
604  * pass-by-reference then we have to add the estimated size of the
605  * value itself, plus palloc overhead.
606  */
607  if (!transinfo->transtypeByVal)
608  {
609  int32 avgwidth;
610 
611  /* Use average width if aggregate definition gave one */
612  if (transinfo->aggtransspace > 0)
613  avgwidth = transinfo->aggtransspace;
614  else if (transinfo->transfn_oid == F_ARRAY_APPEND)
615  {
616  /*
617  * If the transition function is array_append(), it'll use an
618  * expanded array as transvalue, which will occupy at least
619  * ALLOCSET_SMALL_INITSIZE and possibly more. Use that as the
620  * estimate for lack of a better idea.
621  */
622  avgwidth = ALLOCSET_SMALL_INITSIZE;
623  }
624  else
625  {
626  avgwidth = get_typavgwidth(transinfo->aggtranstype, transinfo->aggtranstypmod);
627  }
628 
629  avgwidth = MAXALIGN(avgwidth);
630  costs->transitionSpace += avgwidth + 2 * sizeof(void *);
631  }
632  else if (transinfo->aggtranstype == INTERNALOID)
633  {
634  /*
635  * INTERNAL transition type is a special case: although INTERNAL
636  * is pass-by-value, it's almost certainly being used as a pointer
637  * to some large data structure. The aggregate definition can
638  * provide an estimate of the size. If it doesn't, then we assume
639  * ALLOCSET_DEFAULT_INITSIZE, which is a good guess if the data is
640  * being kept in a private memory context, as is done by
641  * array_agg() for instance.
642  */
643  if (transinfo->aggtransspace > 0)
644  costs->transitionSpace += transinfo->aggtransspace;
645  else
647  }
648  }
649 
650  foreach(lc, root->agginfos)
651  {
652  AggInfo *agginfo = (AggInfo *) lfirst(lc);
653  Aggref *aggref = agginfo->representative_aggref;
654 
655  /*
656  * Add the appropriate component function execution costs to
657  * appropriate totals.
658  */
659  if (!DO_AGGSPLIT_SKIPFINAL(aggsplit) &&
660  OidIsValid(agginfo->finalfn_oid))
661  add_function_cost(root, agginfo->finalfn_oid, NULL,
662  &costs->finalCost);
663 
664  /*
665  * If there are direct arguments, treat their evaluation cost like the
666  * cost of the finalfn.
667  */
668  if (aggref->aggdirectargs)
669  {
670  QualCost argcosts;
671 
672  cost_qual_eval_node(&argcosts, (Node *) aggref->aggdirectargs,
673  root);
674  costs->finalCost.startup += argcosts.startup;
675  costs->finalCost.per_tuple += argcosts.per_tuple;
676  }
677  }
678 }
Oid serialfn_oid
Definition: pathnodes.h:2617
List * aggdistinct
Definition: primnodes.h:327
signed short int16
Definition: c.h:428
void cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
Definition: costsize.c:4187
#define NIL
Definition: pg_list.h:65
bool aggvariadic
Definition: primnodes.h:330
#define IsA(nodeptr, _type_)
Definition: nodes.h:584
Oid finalfn_oid
Definition: pathnodes.h:2597
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
int aggtransno
Definition: primnodes.h:336
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3073
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:267
QualCost finalCost
Definition: pathnodes.h:59
bool datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:222
Oid inputcollid
Definition: primnodes.h:321
Definition: nodes.h:533
List * args
Definition: primnodes.h:325
void preprocess_aggrefs(PlannerInfo *root, Node *clause)
Definition: prepagg.c:111
static bool preprocess_aggrefs_walker(Node *node, PlannerInfo *root)
Definition: prepagg.c:324
void add_function_cost(PlannerInfo *root, Oid funcid, Node *node, QualCost *cost)
Definition: plancat.c:1924
bool transtypeByVal
Definition: pathnodes.h:2629
Expr * aggfilter
Definition: pathnodes.h:2611
void get_agg_clause_costs(PlannerInfo *root, AggSplit aggsplit, AggClauseCosts *costs)
Definition: prepagg.c:542
Oid combinefn_oid
Definition: pathnodes.h:2623
List * agginfos
Definition: pathnodes.h:350
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:437
QualCost transCost
Definition: pathnodes.h:58
bool aggstar
Definition: primnodes.h:329
unsigned int Oid
Definition: postgres_ext.h:31
#define OidIsValid(objectId)
Definition: c.h:710
#define DO_AGGSPLIT_COMBINE(as)
Definition: nodes.h:795
Cost startup
Definition: pathnodes.h:45
int transtypeLen
Definition: pathnodes.h:2628
signed int int32
Definition: c.h:429
#define FUNC_MAX_ARGS
Cost per_tuple
Definition: pathnodes.h:46
#define DO_AGGSPLIT_SERIALIZE(as)
Definition: nodes.h:797
void pfree(void *pointer)
Definition: mcxt.c:1057
#define linitial(l)
Definition: pg_list.h:174
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:45
static int find_compatible_agg(PlannerInfo *root, Aggref *newagg, List **same_input_transnos)
Definition: prepagg.c:360
#define lfirst_int(lc)
Definition: pg_list.h:170
static void * list_nth(const List *list, int n)
Definition: pg_list.h:278
List * aggtransinfos
Definition: pathnodes.h:351
bool initValueIsNull
Definition: pathnodes.h:2636
int numOrderedAggs
Definition: pathnodes.h:352
bool hasNonSerialAggs
Definition: pathnodes.h:354
int32 aggtransspace
Definition: pathnodes.h:2630
static int initValue(long lng_val)
Definition: informix.c:677
List * aggorder
Definition: primnodes.h:326
Index agglevelsup
Definition: primnodes.h:333
List * aggdirectargs
Definition: primnodes.h:324
static Datum GetAggInitVal(Datum textInitVal, Oid transtype)
Definition: prepagg.c:500
bool shareable
Definition: pathnodes.h:2594
Oid aggtranstype
Definition: pathnodes.h:2626
void getTypeInputInfo(Oid type, Oid *typInput, Oid *typIOParam)
Definition: lsyscache.c:2821
List * lappend_int(List *list, int datum)
Definition: list.c:354
List * lappend(List *list, void *datum)
Definition: list.c:336
int32 aggtranstypmod
Definition: pathnodes.h:2627
#define ALLOCSET_SMALL_INITSIZE
Definition: memutils.h:200
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1127
#define TextDatumGetCString(d)
Definition: builtins.h:83
Datum initValue
Definition: pathnodes.h:2635
int transno
Definition: pathnodes.h:2588
uintptr_t Datum
Definition: postgres.h:367
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1175
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:1388
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2525
Oid aggfnoid
Definition: primnodes.h:318
List * args
Definition: pathnodes.h:2610
int aggno
Definition: primnodes.h:335
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define Assert(condition)
Definition: c.h:804
#define lfirst(lc)
Definition: pg_list.h:169
FormData_pg_aggregate * Form_pg_aggregate
Definition: pg_aggregate.h:109
Expr * expr
Definition: primnodes.h:1431
AggSplit
Definition: nodes.h:784
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1885
static int list_length(const List *l)
Definition: pg_list.h:149
#define DO_AGGSPLIT_SKIPFINAL(as)
Definition: nodes.h:796
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2198
Expr * aggfilter
Definition: primnodes.h:328
#define MAXALIGN(LEN)
Definition: c.h:757
Oid deserialfn_oid
Definition: pathnodes.h:2620
#define DO_AGGSPLIT_DESERIALIZE(as)
Definition: nodes.h:798
void * palloc(Size size)
Definition: mcxt.c:950
Oid aggcollid
Definition: primnodes.h:320
static void preprocess_aggref(Aggref *aggref, PlannerInfo *root)
Definition: prepagg.c:117
void list_free(List *list)
Definition: list.c:1391
#define elog(elevel,...)
Definition: elog.h:228
#define ALLOCSET_DEFAULT_INITSIZE
Definition: memutils.h:190
Oid aggtranstype
Definition: primnodes.h:322
Size transitionSpace
Definition: pathnodes.h:60
Oid aggtype
Definition: primnodes.h:319
char aggkind
Definition: primnodes.h:332
bool hasNonPartialAggs
Definition: pathnodes.h:353
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:1826
Definition: pg_list.h:50
Datum OidInputFunctionCall(Oid functionId, char *str, Oid typioparam, int32 typmod)
Definition: fmgr.c:1647
static int find_compatible_trans(PlannerInfo *root, Aggref *newagg, bool shareable, Oid aggtransfn, Oid aggtranstype, int transtypeLen, bool transtypeByVal, Oid aggcombinefn, Oid aggserialfn, Oid aggdeserialfn, Datum initValue, bool initValueIsNull, List *transnos)
Definition: prepagg.c:438
Aggref * representative_aggref
Definition: pathnodes.h:2586
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:1852