PostgreSQL Source Code  git master
costsize.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * costsize.c
4  * Routines to compute (and set) relation sizes and path costs
5  *
6  * Path costs are measured in arbitrary units established by these basic
7  * parameters:
8  *
9  * seq_page_cost Cost of a sequential page fetch
10  * random_page_cost Cost of a non-sequential page fetch
11  * cpu_tuple_cost Cost of typical CPU time to process a tuple
12  * cpu_index_tuple_cost Cost of typical CPU time to process an index tuple
13  * cpu_operator_cost Cost of CPU time to execute an operator or function
14  * parallel_tuple_cost Cost of CPU time to pass a tuple from worker to leader backend
15  * parallel_setup_cost Cost of setting up shared memory for parallelism
16  *
17  * We expect that the kernel will typically do some amount of read-ahead
18  * optimization; this in conjunction with seek costs means that seq_page_cost
19  * is normally considerably less than random_page_cost. (However, if the
20  * database is fully cached in RAM, it is reasonable to set them equal.)
21  *
22  * We also use a rough estimate "effective_cache_size" of the number of
23  * disk pages in Postgres + OS-level disk cache. (We can't simply use
24  * NBuffers for this purpose because that would ignore the effects of
25  * the kernel's disk cache.)
26  *
27  * Obviously, taking constants for these values is an oversimplification,
28  * but it's tough enough to get any useful estimates even at this level of
29  * detail. Note that all of these parameters are user-settable, in case
30  * the default values are drastically off for a particular platform.
31  *
32  * seq_page_cost and random_page_cost can also be overridden for an individual
33  * tablespace, in case some data is on a fast disk and other data is on a slow
34  * disk. Per-tablespace overrides never apply to temporary work files such as
35  * an external sort or a materialize node that overflows work_mem.
36  *
37  * We compute two separate costs for each path:
38  * total_cost: total estimated cost to fetch all tuples
39  * startup_cost: cost that is expended before first tuple is fetched
40  * In some scenarios, such as when there is a LIMIT or we are implementing
41  * an EXISTS(...) sub-select, it is not necessary to fetch all tuples of the
42  * path's result. A caller can estimate the cost of fetching a partial
43  * result by interpolating between startup_cost and total_cost. In detail:
44  * actual_cost = startup_cost +
45  * (total_cost - startup_cost) * tuples_to_fetch / path->rows;
46  * Note that a base relation's rows count (and, by extension, plan_rows for
47  * plan nodes below the LIMIT node) are set without regard to any LIMIT, so
48  * that this equation works properly. (Note: while path->rows is never zero
49  * for ordinary relations, it is zero for paths for provably-empty relations,
50  * so beware of division-by-zero.) The LIMIT is applied as a top-level
51  * plan node.
52  *
53  * For largely historical reasons, most of the routines in this module use
54  * the passed result Path only to store their results (rows, startup_cost and
55  * total_cost) into. All the input data they need is passed as separate
56  * parameters, even though much of it could be extracted from the Path.
57  * An exception is made for the cost_XXXjoin() routines, which expect all
58  * the other fields of the passed XXXPath to be filled in, and similarly
59  * cost_index() assumes the passed IndexPath is valid except for its output
60  * values.
61  *
62  *
63  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
64  * Portions Copyright (c) 1994, Regents of the University of California
65  *
66  * IDENTIFICATION
67  * src/backend/optimizer/path/costsize.c
68  *
69  *-------------------------------------------------------------------------
70  */
71 
72 #include "postgres.h"
73 
74 #include <limits.h>
75 #include <math.h>
76 
77 #include "access/amapi.h"
78 #include "access/htup_details.h"
79 #include "access/tsmapi.h"
80 #include "executor/executor.h"
81 #include "executor/nodeAgg.h"
82 #include "executor/nodeHash.h"
83 #include "executor/nodeMemoize.h"
84 #include "miscadmin.h"
85 #include "nodes/makefuncs.h"
86 #include "nodes/nodeFuncs.h"
87 #include "optimizer/clauses.h"
88 #include "optimizer/cost.h"
89 #include "optimizer/optimizer.h"
90 #include "optimizer/pathnode.h"
91 #include "optimizer/paths.h"
92 #include "optimizer/placeholder.h"
93 #include "optimizer/plancat.h"
94 #include "optimizer/planmain.h"
95 #include "optimizer/restrictinfo.h"
96 #include "parser/parsetree.h"
97 #include "utils/lsyscache.h"
98 #include "utils/selfuncs.h"
99 #include "utils/spccache.h"
100 #include "utils/tuplesort.h"
101 
102 
103 #define LOG2(x) (log(x) / 0.693147180559945)
104 
105 /*
106  * Append and MergeAppend nodes are less expensive than some other operations
107  * which use cpu_tuple_cost; instead of adding a separate GUC, estimate the
108  * per-tuple cost as cpu_tuple_cost multiplied by this value.
109  */
110 #define APPEND_CPU_COST_MULTIPLIER 0.5
111 
112 /*
113  * Maximum value for row estimates. We cap row estimates to this to help
114  * ensure that costs based on these estimates remain within the range of what
115  * double can represent. add_path() wouldn't act sanely given infinite or NaN
116  * cost values.
117  */
118 #define MAXIMUM_ROWCOUNT 1e100
119 
128 
130 
132 
134 
135 bool enable_seqscan = true;
136 bool enable_indexscan = true;
138 bool enable_bitmapscan = true;
139 bool enable_tidscan = true;
140 bool enable_sort = true;
142 bool enable_hashagg = true;
143 bool enable_nestloop = true;
144 bool enable_material = true;
145 bool enable_memoize = true;
146 bool enable_mergejoin = true;
147 bool enable_hashjoin = true;
148 bool enable_gathermerge = true;
156 
157 typedef struct
158 {
162 
163 static List *extract_nonindex_conditions(List *qual_clauses, List *indexclauses);
165  RestrictInfo *rinfo,
166  PathKey *pathkey);
167 static void cost_rescan(PlannerInfo *root, Path *path,
168  Cost *rescan_startup_cost, Cost *rescan_total_cost);
169 static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context);
170 static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
171  ParamPathInfo *param_info,
172  QualCost *qpqual_cost);
173 static bool has_indexed_join_quals(NestPath *path);
174 static double approx_tuple_count(PlannerInfo *root, JoinPath *path,
175  List *quals);
176 static double calc_joinrel_size_estimate(PlannerInfo *root,
177  RelOptInfo *joinrel,
178  RelOptInfo *outer_rel,
179  RelOptInfo *inner_rel,
180  double outer_rows,
181  double inner_rows,
182  SpecialJoinInfo *sjinfo,
183  List *restrictlist);
185  Relids outer_relids,
186  Relids inner_relids,
187  SpecialJoinInfo *sjinfo,
188  List **restrictlist);
189 static Cost append_nonpartial_cost(List *subpaths, int numpaths,
190  int parallel_workers);
191 static void set_rel_width(PlannerInfo *root, RelOptInfo *rel);
192 static int32 get_expr_width(PlannerInfo *root, const Node *expr);
193 static double relation_byte_size(double tuples, int width);
194 static double page_size(double tuples, int width);
195 static double get_parallel_divisor(Path *path);
196 
197 
198 /*
199  * clamp_row_est
200  * Force a row-count estimate to a sane value.
201  */
202 double
203 clamp_row_est(double nrows)
204 {
205  /*
206  * Avoid infinite and NaN row estimates. Costs derived from such values
207  * are going to be useless. Also force the estimate to be at least one
208  * row, to make explain output look better and to avoid possible
209  * divide-by-zero when interpolating costs. Make it an integer, too.
210  */
211  if (nrows > MAXIMUM_ROWCOUNT || isnan(nrows))
212  nrows = MAXIMUM_ROWCOUNT;
213  else if (nrows <= 1.0)
214  nrows = 1.0;
215  else
216  nrows = rint(nrows);
217 
218  return nrows;
219 }
220 
221 /*
222  * clamp_cardinality_to_long
223  * Cast a Cardinality value to a sane long value.
224  */
225 long
227 {
228  /*
229  * Just for paranoia's sake, ensure we do something sane with negative or
230  * NaN values.
231  */
232  if (isnan(x))
233  return LONG_MAX;
234  if (x <= 0)
235  return 0;
236 
237  /*
238  * If "long" is 64 bits, then LONG_MAX cannot be represented exactly as a
239  * double. Casting it to double and back may well result in overflow due
240  * to rounding, so avoid doing that. We trust that any double value that
241  * compares strictly less than "(double) LONG_MAX" will cast to a
242  * representable "long" value.
243  */
244  return (x < (double) LONG_MAX) ? (long) x : LONG_MAX;
245 }
246 
247 
248 /*
249  * cost_seqscan
250  * Determines and returns the cost of scanning a relation sequentially.
251  *
252  * 'baserel' is the relation to be scanned
253  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
254  */
255 void
257  RelOptInfo *baserel, ParamPathInfo *param_info)
258 {
259  Cost startup_cost = 0;
260  Cost cpu_run_cost;
261  Cost disk_run_cost;
262  double spc_seq_page_cost;
263  QualCost qpqual_cost;
264  Cost cpu_per_tuple;
265 
266  /* Should only be applied to base relations */
267  Assert(baserel->relid > 0);
268  Assert(baserel->rtekind == RTE_RELATION);
269 
270  /* Mark the path with the correct row estimate */
271  if (param_info)
272  path->rows = param_info->ppi_rows;
273  else
274  path->rows = baserel->rows;
275 
276  if (!enable_seqscan)
277  startup_cost += disable_cost;
278 
279  /* fetch estimated page cost for tablespace containing table */
281  NULL,
282  &spc_seq_page_cost);
283 
284  /*
285  * disk costs
286  */
287  disk_run_cost = spc_seq_page_cost * baserel->pages;
288 
289  /* CPU costs */
290  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
291 
292  startup_cost += qpqual_cost.startup;
293  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
294  cpu_run_cost = cpu_per_tuple * baserel->tuples;
295  /* tlist eval costs are paid per output row, not per tuple scanned */
296  startup_cost += path->pathtarget->cost.startup;
297  cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
298 
299  /* Adjust costing for parallelism, if used. */
300  if (path->parallel_workers > 0)
301  {
302  double parallel_divisor = get_parallel_divisor(path);
303 
304  /* The CPU cost is divided among all the workers. */
305  cpu_run_cost /= parallel_divisor;
306 
307  /*
308  * It may be possible to amortize some of the I/O cost, but probably
309  * not very much, because most operating systems already do aggressive
310  * prefetching. For now, we assume that the disk run cost can't be
311  * amortized at all.
312  */
313 
314  /*
315  * In the case of a parallel plan, the row count needs to represent
316  * the number of tuples processed per worker.
317  */
318  path->rows = clamp_row_est(path->rows / parallel_divisor);
319  }
320 
321  path->startup_cost = startup_cost;
322  path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
323 }
324 
325 /*
326  * cost_samplescan
327  * Determines and returns the cost of scanning a relation using sampling.
328  *
329  * 'baserel' is the relation to be scanned
330  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
331  */
332 void
334  RelOptInfo *baserel, ParamPathInfo *param_info)
335 {
336  Cost startup_cost = 0;
337  Cost run_cost = 0;
338  RangeTblEntry *rte;
339  TableSampleClause *tsc;
340  TsmRoutine *tsm;
341  double spc_seq_page_cost,
342  spc_random_page_cost,
343  spc_page_cost;
344  QualCost qpqual_cost;
345  Cost cpu_per_tuple;
346 
347  /* Should only be applied to base relations with tablesample clauses */
348  Assert(baserel->relid > 0);
349  rte = planner_rt_fetch(baserel->relid, root);
350  Assert(rte->rtekind == RTE_RELATION);
351  tsc = rte->tablesample;
352  Assert(tsc != NULL);
353  tsm = GetTsmRoutine(tsc->tsmhandler);
354 
355  /* Mark the path with the correct row estimate */
356  if (param_info)
357  path->rows = param_info->ppi_rows;
358  else
359  path->rows = baserel->rows;
360 
361  /* fetch estimated page cost for tablespace containing table */
363  &spc_random_page_cost,
364  &spc_seq_page_cost);
365 
366  /* if NextSampleBlock is used, assume random access, else sequential */
367  spc_page_cost = (tsm->NextSampleBlock != NULL) ?
368  spc_random_page_cost : spc_seq_page_cost;
369 
370  /*
371  * disk costs (recall that baserel->pages has already been set to the
372  * number of pages the sampling method will visit)
373  */
374  run_cost += spc_page_cost * baserel->pages;
375 
376  /*
377  * CPU costs (recall that baserel->tuples has already been set to the
378  * number of tuples the sampling method will select). Note that we ignore
379  * execution cost of the TABLESAMPLE parameter expressions; they will be
380  * evaluated only once per scan, and in most usages they'll likely be
381  * simple constants anyway. We also don't charge anything for the
382  * calculations the sampling method might do internally.
383  */
384  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
385 
386  startup_cost += qpqual_cost.startup;
387  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
388  run_cost += cpu_per_tuple * baserel->tuples;
389  /* tlist eval costs are paid per output row, not per tuple scanned */
390  startup_cost += path->pathtarget->cost.startup;
391  run_cost += path->pathtarget->cost.per_tuple * path->rows;
392 
393  path->startup_cost = startup_cost;
394  path->total_cost = startup_cost + run_cost;
395 }
396 
397 /*
398  * cost_gather
399  * Determines and returns the cost of gather path.
400  *
401  * 'rel' is the relation to be operated upon
402  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
403  * 'rows' may be used to point to a row estimate; if non-NULL, it overrides
404  * both 'rel' and 'param_info'. This is useful when the path doesn't exactly
405  * correspond to any particular RelOptInfo.
406  */
407 void
409  RelOptInfo *rel, ParamPathInfo *param_info,
410  double *rows)
411 {
412  Cost startup_cost = 0;
413  Cost run_cost = 0;
414 
415  /* Mark the path with the correct row estimate */
416  if (rows)
417  path->path.rows = *rows;
418  else if (param_info)
419  path->path.rows = param_info->ppi_rows;
420  else
421  path->path.rows = rel->rows;
422 
423  startup_cost = path->subpath->startup_cost;
424 
425  run_cost = path->subpath->total_cost - path->subpath->startup_cost;
426 
427  /* Parallel setup and communication cost. */
428  startup_cost += parallel_setup_cost;
429  run_cost += parallel_tuple_cost * path->path.rows;
430 
431  path->path.startup_cost = startup_cost;
432  path->path.total_cost = (startup_cost + run_cost);
433 }
434 
435 /*
436  * cost_gather_merge
437  * Determines and returns the cost of gather merge path.
438  *
439  * GatherMerge merges several pre-sorted input streams, using a heap that at
440  * any given instant holds the next tuple from each stream. If there are N
441  * streams, we need about N*log2(N) tuple comparisons to construct the heap at
442  * startup, and then for each output tuple, about log2(N) comparisons to
443  * replace the top heap entry with the next tuple from the same stream.
444  */
445 void
447  RelOptInfo *rel, ParamPathInfo *param_info,
448  Cost input_startup_cost, Cost input_total_cost,
449  double *rows)
450 {
451  Cost startup_cost = 0;
452  Cost run_cost = 0;
453  Cost comparison_cost;
454  double N;
455  double logN;
456 
457  /* Mark the path with the correct row estimate */
458  if (rows)
459  path->path.rows = *rows;
460  else if (param_info)
461  path->path.rows = param_info->ppi_rows;
462  else
463  path->path.rows = rel->rows;
464 
465  if (!enable_gathermerge)
466  startup_cost += disable_cost;
467 
468  /*
469  * Add one to the number of workers to account for the leader. This might
470  * be overgenerous since the leader will do less work than other workers
471  * in typical cases, but we'll go with it for now.
472  */
473  Assert(path->num_workers > 0);
474  N = (double) path->num_workers + 1;
475  logN = LOG2(N);
476 
477  /* Assumed cost per tuple comparison */
478  comparison_cost = 2.0 * cpu_operator_cost;
479 
480  /* Heap creation cost */
481  startup_cost += comparison_cost * N * logN;
482 
483  /* Per-tuple heap maintenance cost */
484  run_cost += path->path.rows * comparison_cost * logN;
485 
486  /* small cost for heap management, like cost_merge_append */
487  run_cost += cpu_operator_cost * path->path.rows;
488 
489  /*
490  * Parallel setup and communication cost. Since Gather Merge, unlike
491  * Gather, requires us to block until a tuple is available from every
492  * worker, we bump the IPC cost up a little bit as compared with Gather.
493  * For lack of a better idea, charge an extra 5%.
494  */
495  startup_cost += parallel_setup_cost;
496  run_cost += parallel_tuple_cost * path->path.rows * 1.05;
497 
498  path->path.startup_cost = startup_cost + input_startup_cost;
499  path->path.total_cost = (startup_cost + run_cost + input_total_cost);
500 }
501 
502 /*
503  * cost_index
504  * Determines and returns the cost of scanning a relation using an index.
505  *
506  * 'path' describes the indexscan under consideration, and is complete
507  * except for the fields to be set by this routine
508  * 'loop_count' is the number of repetitions of the indexscan to factor into
509  * estimates of caching behavior
510  *
511  * In addition to rows, startup_cost and total_cost, cost_index() sets the
512  * path's indextotalcost and indexselectivity fields. These values will be
513  * needed if the IndexPath is used in a BitmapIndexScan.
514  *
515  * NOTE: path->indexquals must contain only clauses usable as index
516  * restrictions. Any additional quals evaluated as qpquals may reduce the
517  * number of returned tuples, but they won't reduce the number of tuples
518  * we have to fetch from the table, so they don't reduce the scan cost.
519  */
520 void
521 cost_index(IndexPath *path, PlannerInfo *root, double loop_count,
522  bool partial_path)
523 {
524  IndexOptInfo *index = path->indexinfo;
525  RelOptInfo *baserel = index->rel;
526  bool indexonly = (path->path.pathtype == T_IndexOnlyScan);
527  amcostestimate_function amcostestimate;
528  List *qpquals;
529  Cost startup_cost = 0;
530  Cost run_cost = 0;
531  Cost cpu_run_cost = 0;
532  Cost indexStartupCost;
533  Cost indexTotalCost;
534  Selectivity indexSelectivity;
535  double indexCorrelation,
536  csquared;
537  double spc_seq_page_cost,
538  spc_random_page_cost;
539  Cost min_IO_cost,
540  max_IO_cost;
541  QualCost qpqual_cost;
542  Cost cpu_per_tuple;
543  double tuples_fetched;
544  double pages_fetched;
545  double rand_heap_pages;
546  double index_pages;
547 
548  /* Should only be applied to base relations */
549  Assert(IsA(baserel, RelOptInfo) &&
551  Assert(baserel->relid > 0);
552  Assert(baserel->rtekind == RTE_RELATION);
553 
554  /*
555  * Mark the path with the correct row estimate, and identify which quals
556  * will need to be enforced as qpquals. We need not check any quals that
557  * are implied by the index's predicate, so we can use indrestrictinfo not
558  * baserestrictinfo as the list of relevant restriction clauses for the
559  * rel.
560  */
561  if (path->path.param_info)
562  {
563  path->path.rows = path->path.param_info->ppi_rows;
564  /* qpquals come from the rel's restriction clauses and ppi_clauses */
566  path->indexclauses),
567  extract_nonindex_conditions(path->path.param_info->ppi_clauses,
568  path->indexclauses));
569  }
570  else
571  {
572  path->path.rows = baserel->rows;
573  /* qpquals come from just the rel's restriction clauses */
575  path->indexclauses);
576  }
577 
578  if (!enable_indexscan)
579  startup_cost += disable_cost;
580  /* we don't need to check enable_indexonlyscan; indxpath.c does that */
581 
582  /*
583  * Call index-access-method-specific code to estimate the processing cost
584  * for scanning the index, as well as the selectivity of the index (ie,
585  * the fraction of main-table tuples we will have to retrieve) and its
586  * correlation to the main-table tuple order. We need a cast here because
587  * pathnodes.h uses a weak function type to avoid including amapi.h.
588  */
589  amcostestimate = (amcostestimate_function) index->amcostestimate;
590  amcostestimate(root, path, loop_count,
591  &indexStartupCost, &indexTotalCost,
592  &indexSelectivity, &indexCorrelation,
593  &index_pages);
594 
595  /*
596  * Save amcostestimate's results for possible use in bitmap scan planning.
597  * We don't bother to save indexStartupCost or indexCorrelation, because a
598  * bitmap scan doesn't care about either.
599  */
600  path->indextotalcost = indexTotalCost;
601  path->indexselectivity = indexSelectivity;
602 
603  /* all costs for touching index itself included here */
604  startup_cost += indexStartupCost;
605  run_cost += indexTotalCost - indexStartupCost;
606 
607  /* estimate number of main-table tuples fetched */
608  tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
609 
610  /* fetch estimated page costs for tablespace containing table */
612  &spc_random_page_cost,
613  &spc_seq_page_cost);
614 
615  /*----------
616  * Estimate number of main-table pages fetched, and compute I/O cost.
617  *
618  * When the index ordering is uncorrelated with the table ordering,
619  * we use an approximation proposed by Mackert and Lohman (see
620  * index_pages_fetched() for details) to compute the number of pages
621  * fetched, and then charge spc_random_page_cost per page fetched.
622  *
623  * When the index ordering is exactly correlated with the table ordering
624  * (just after a CLUSTER, for example), the number of pages fetched should
625  * be exactly selectivity * table_size. What's more, all but the first
626  * will be sequential fetches, not the random fetches that occur in the
627  * uncorrelated case. So if the number of pages is more than 1, we
628  * ought to charge
629  * spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
630  * For partially-correlated indexes, we ought to charge somewhere between
631  * these two estimates. We currently interpolate linearly between the
632  * estimates based on the correlation squared (XXX is that appropriate?).
633  *
634  * If it's an index-only scan, then we will not need to fetch any heap
635  * pages for which the visibility map shows all tuples are visible.
636  * Hence, reduce the estimated number of heap fetches accordingly.
637  * We use the measured fraction of the entire heap that is all-visible,
638  * which might not be particularly relevant to the subset of the heap
639  * that this query will fetch; but it's not clear how to do better.
640  *----------
641  */
642  if (loop_count > 1)
643  {
644  /*
645  * For repeated indexscans, the appropriate estimate for the
646  * uncorrelated case is to scale up the number of tuples fetched in
647  * the Mackert and Lohman formula by the number of scans, so that we
648  * estimate the number of pages fetched by all the scans; then
649  * pro-rate the costs for one scan. In this case we assume all the
650  * fetches are random accesses.
651  */
652  pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
653  baserel->pages,
654  (double) index->pages,
655  root);
656 
657  if (indexonly)
658  pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
659 
660  rand_heap_pages = pages_fetched;
661 
662  max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
663 
664  /*
665  * In the perfectly correlated case, the number of pages touched by
666  * each scan is selectivity * table_size, and we can use the Mackert
667  * and Lohman formula at the page level to estimate how much work is
668  * saved by caching across scans. We still assume all the fetches are
669  * random, though, which is an overestimate that's hard to correct for
670  * without double-counting the cache effects. (But in most cases
671  * where such a plan is actually interesting, only one page would get
672  * fetched per scan anyway, so it shouldn't matter much.)
673  */
674  pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
675 
676  pages_fetched = index_pages_fetched(pages_fetched * loop_count,
677  baserel->pages,
678  (double) index->pages,
679  root);
680 
681  if (indexonly)
682  pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
683 
684  min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
685  }
686  else
687  {
688  /*
689  * Normal case: apply the Mackert and Lohman formula, and then
690  * interpolate between that and the correlation-derived result.
691  */
692  pages_fetched = index_pages_fetched(tuples_fetched,
693  baserel->pages,
694  (double) index->pages,
695  root);
696 
697  if (indexonly)
698  pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
699 
700  rand_heap_pages = pages_fetched;
701 
702  /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
703  max_IO_cost = pages_fetched * spc_random_page_cost;
704 
705  /* min_IO_cost is for the perfectly correlated case (csquared=1) */
706  pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
707 
708  if (indexonly)
709  pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
710 
711  if (pages_fetched > 0)
712  {
713  min_IO_cost = spc_random_page_cost;
714  if (pages_fetched > 1)
715  min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
716  }
717  else
718  min_IO_cost = 0;
719  }
720 
721  if (partial_path)
722  {
723  /*
724  * For index only scans compute workers based on number of index pages
725  * fetched; the number of heap pages we fetch might be so small as to
726  * effectively rule out parallelism, which we don't want to do.
727  */
728  if (indexonly)
729  rand_heap_pages = -1;
730 
731  /*
732  * Estimate the number of parallel workers required to scan index. Use
733  * the number of heap pages computed considering heap fetches won't be
734  * sequential as for parallel scans the pages are accessed in random
735  * order.
736  */
738  rand_heap_pages,
739  index_pages,
741 
742  /*
743  * Fall out if workers can't be assigned for parallel scan, because in
744  * such a case this path will be rejected. So there is no benefit in
745  * doing extra computation.
746  */
747  if (path->path.parallel_workers <= 0)
748  return;
749 
750  path->path.parallel_aware = true;
751  }
752 
753  /*
754  * Now interpolate based on estimated index order correlation to get total
755  * disk I/O cost for main table accesses.
756  */
757  csquared = indexCorrelation * indexCorrelation;
758 
759  run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
760 
761  /*
762  * Estimate CPU costs per tuple.
763  *
764  * What we want here is cpu_tuple_cost plus the evaluation costs of any
765  * qual clauses that we have to evaluate as qpquals.
766  */
767  cost_qual_eval(&qpqual_cost, qpquals, root);
768 
769  startup_cost += qpqual_cost.startup;
770  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
771 
772  cpu_run_cost += cpu_per_tuple * tuples_fetched;
773 
774  /* tlist eval costs are paid per output row, not per tuple scanned */
775  startup_cost += path->path.pathtarget->cost.startup;
776  cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
777 
778  /* Adjust costing for parallelism, if used. */
779  if (path->path.parallel_workers > 0)
780  {
781  double parallel_divisor = get_parallel_divisor(&path->path);
782 
783  path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
784 
785  /* The CPU cost is divided among all the workers. */
786  cpu_run_cost /= parallel_divisor;
787  }
788 
789  run_cost += cpu_run_cost;
790 
791  path->path.startup_cost = startup_cost;
792  path->path.total_cost = startup_cost + run_cost;
793 }
794 
795 /*
796  * extract_nonindex_conditions
797  *
798  * Given a list of quals to be enforced in an indexscan, extract the ones that
799  * will have to be applied as qpquals (ie, the index machinery won't handle
800  * them). Here we detect only whether a qual clause is directly redundant
801  * with some indexclause. If the index path is chosen for use, createplan.c
802  * will try a bit harder to get rid of redundant qual conditions; specifically
803  * it will see if quals can be proven to be implied by the indexquals. But
804  * it does not seem worth the cycles to try to factor that in at this stage,
805  * since we're only trying to estimate qual eval costs. Otherwise this must
806  * match the logic in create_indexscan_plan().
807  *
808  * qual_clauses, and the result, are lists of RestrictInfos.
809  * indexclauses is a list of IndexClauses.
810  */
811 static List *
812 extract_nonindex_conditions(List *qual_clauses, List *indexclauses)
813 {
814  List *result = NIL;
815  ListCell *lc;
816 
817  foreach(lc, qual_clauses)
818  {
819  RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
820 
821  if (rinfo->pseudoconstant)
822  continue; /* we may drop pseudoconstants here */
823  if (is_redundant_with_indexclauses(rinfo, indexclauses))
824  continue; /* dup or derived from same EquivalenceClass */
825  /* ... skip the predicate proof attempt createplan.c will try ... */
826  result = lappend(result, rinfo);
827  }
828  return result;
829 }
830 
831 /*
832  * index_pages_fetched
833  * Estimate the number of pages actually fetched after accounting for
834  * cache effects.
835  *
836  * We use an approximation proposed by Mackert and Lohman, "Index Scans
837  * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
838  * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
839  * The Mackert and Lohman approximation is that the number of pages
840  * fetched is
841  * PF =
842  * min(2TNs/(2T+Ns), T) when T <= b
843  * 2TNs/(2T+Ns) when T > b and Ns <= 2Tb/(2T-b)
844  * b + (Ns - 2Tb/(2T-b))*(T-b)/T when T > b and Ns > 2Tb/(2T-b)
845  * where
846  * T = # pages in table
847  * N = # tuples in table
848  * s = selectivity = fraction of table to be scanned
849  * b = # buffer pages available (we include kernel space here)
850  *
851  * We assume that effective_cache_size is the total number of buffer pages
852  * available for the whole query, and pro-rate that space across all the
853  * tables in the query and the index currently under consideration. (This
854  * ignores space needed for other indexes used by the query, but since we
855  * don't know which indexes will get used, we can't estimate that very well;
856  * and in any case counting all the tables may well be an overestimate, since
857  * depending on the join plan not all the tables may be scanned concurrently.)
858  *
859  * The product Ns is the number of tuples fetched; we pass in that
860  * product rather than calculating it here. "pages" is the number of pages
861  * in the object under consideration (either an index or a table).
862  * "index_pages" is the amount to add to the total table space, which was
863  * computed for us by make_one_rel.
864  *
865  * Caller is expected to have ensured that tuples_fetched is greater than zero
866  * and rounded to integer (see clamp_row_est). The result will likewise be
867  * greater than zero and integral.
868  */
869 double
870 index_pages_fetched(double tuples_fetched, BlockNumber pages,
871  double index_pages, PlannerInfo *root)
872 {
873  double pages_fetched;
874  double total_pages;
875  double T,
876  b;
877 
878  /* T is # pages in table, but don't allow it to be zero */
879  T = (pages > 1) ? (double) pages : 1.0;
880 
881  /* Compute number of pages assumed to be competing for cache space */
882  total_pages = root->total_table_pages + index_pages;
883  total_pages = Max(total_pages, 1.0);
884  Assert(T <= total_pages);
885 
886  /* b is pro-rated share of effective_cache_size */
887  b = (double) effective_cache_size * T / total_pages;
888 
889  /* force it positive and integral */
890  if (b <= 1.0)
891  b = 1.0;
892  else
893  b = ceil(b);
894 
895  /* This part is the Mackert and Lohman formula */
896  if (T <= b)
897  {
898  pages_fetched =
899  (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
900  if (pages_fetched >= T)
901  pages_fetched = T;
902  else
903  pages_fetched = ceil(pages_fetched);
904  }
905  else
906  {
907  double lim;
908 
909  lim = (2.0 * T * b) / (2.0 * T - b);
910  if (tuples_fetched <= lim)
911  {
912  pages_fetched =
913  (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
914  }
915  else
916  {
917  pages_fetched =
918  b + (tuples_fetched - lim) * (T - b) / T;
919  }
920  pages_fetched = ceil(pages_fetched);
921  }
922  return pages_fetched;
923 }
924 
925 /*
926  * get_indexpath_pages
927  * Determine the total size of the indexes used in a bitmap index path.
928  *
929  * Note: if the same index is used more than once in a bitmap tree, we will
930  * count it multiple times, which perhaps is the wrong thing ... but it's
931  * not completely clear, and detecting duplicates is difficult, so ignore it
932  * for now.
933  */
934 static double
936 {
937  double result = 0;
938  ListCell *l;
939 
940  if (IsA(bitmapqual, BitmapAndPath))
941  {
942  BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
943 
944  foreach(l, apath->bitmapquals)
945  {
946  result += get_indexpath_pages((Path *) lfirst(l));
947  }
948  }
949  else if (IsA(bitmapqual, BitmapOrPath))
950  {
951  BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
952 
953  foreach(l, opath->bitmapquals)
954  {
955  result += get_indexpath_pages((Path *) lfirst(l));
956  }
957  }
958  else if (IsA(bitmapqual, IndexPath))
959  {
960  IndexPath *ipath = (IndexPath *) bitmapqual;
961 
962  result = (double) ipath->indexinfo->pages;
963  }
964  else
965  elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
966 
967  return result;
968 }
969 
970 /*
971  * cost_bitmap_heap_scan
972  * Determines and returns the cost of scanning a relation using a bitmap
973  * index-then-heap plan.
974  *
975  * 'baserel' is the relation to be scanned
976  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
977  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
978  * 'loop_count' is the number of repetitions of the indexscan to factor into
979  * estimates of caching behavior
980  *
981  * Note: the component IndexPaths in bitmapqual should have been costed
982  * using the same loop_count.
983  */
984 void
986  ParamPathInfo *param_info,
987  Path *bitmapqual, double loop_count)
988 {
989  Cost startup_cost = 0;
990  Cost run_cost = 0;
991  Cost indexTotalCost;
992  QualCost qpqual_cost;
993  Cost cpu_per_tuple;
994  Cost cost_per_page;
995  Cost cpu_run_cost;
996  double tuples_fetched;
997  double pages_fetched;
998  double spc_seq_page_cost,
999  spc_random_page_cost;
1000  double T;
1001 
1002  /* Should only be applied to base relations */
1003  Assert(IsA(baserel, RelOptInfo));
1004  Assert(baserel->relid > 0);
1005  Assert(baserel->rtekind == RTE_RELATION);
1006 
1007  /* Mark the path with the correct row estimate */
1008  if (param_info)
1009  path->rows = param_info->ppi_rows;
1010  else
1011  path->rows = baserel->rows;
1012 
1013  if (!enable_bitmapscan)
1014  startup_cost += disable_cost;
1015 
1016  pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
1017  loop_count, &indexTotalCost,
1018  &tuples_fetched);
1019 
1020  startup_cost += indexTotalCost;
1021  T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
1022 
1023  /* Fetch estimated page costs for tablespace containing table. */
1025  &spc_random_page_cost,
1026  &spc_seq_page_cost);
1027 
1028  /*
1029  * For small numbers of pages we should charge spc_random_page_cost
1030  * apiece, while if nearly all the table's pages are being read, it's more
1031  * appropriate to charge spc_seq_page_cost apiece. The effect is
1032  * nonlinear, too. For lack of a better idea, interpolate like this to
1033  * determine the cost per page.
1034  */
1035  if (pages_fetched >= 2.0)
1036  cost_per_page = spc_random_page_cost -
1037  (spc_random_page_cost - spc_seq_page_cost)
1038  * sqrt(pages_fetched / T);
1039  else
1040  cost_per_page = spc_random_page_cost;
1041 
1042  run_cost += pages_fetched * cost_per_page;
1043 
1044  /*
1045  * Estimate CPU costs per tuple.
1046  *
1047  * Often the indexquals don't need to be rechecked at each tuple ... but
1048  * not always, especially not if there are enough tuples involved that the
1049  * bitmaps become lossy. For the moment, just assume they will be
1050  * rechecked always. This means we charge the full freight for all the
1051  * scan clauses.
1052  */
1053  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1054 
1055  startup_cost += qpqual_cost.startup;
1056  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1057  cpu_run_cost = cpu_per_tuple * tuples_fetched;
1058 
1059  /* Adjust costing for parallelism, if used. */
1060  if (path->parallel_workers > 0)
1061  {
1062  double parallel_divisor = get_parallel_divisor(path);
1063 
1064  /* The CPU cost is divided among all the workers. */
1065  cpu_run_cost /= parallel_divisor;
1066 
1067  path->rows = clamp_row_est(path->rows / parallel_divisor);
1068  }
1069 
1070 
1071  run_cost += cpu_run_cost;
1072 
1073  /* tlist eval costs are paid per output row, not per tuple scanned */
1074  startup_cost += path->pathtarget->cost.startup;
1075  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1076 
1077  path->startup_cost = startup_cost;
1078  path->total_cost = startup_cost + run_cost;
1079 }
1080 
1081 /*
1082  * cost_bitmap_tree_node
1083  * Extract cost and selectivity from a bitmap tree node (index/and/or)
1084  */
1085 void
1087 {
1088  if (IsA(path, IndexPath))
1089  {
1090  *cost = ((IndexPath *) path)->indextotalcost;
1091  *selec = ((IndexPath *) path)->indexselectivity;
1092 
1093  /*
1094  * Charge a small amount per retrieved tuple to reflect the costs of
1095  * manipulating the bitmap. This is mostly to make sure that a bitmap
1096  * scan doesn't look to be the same cost as an indexscan to retrieve a
1097  * single tuple.
1098  */
1099  *cost += 0.1 * cpu_operator_cost * path->rows;
1100  }
1101  else if (IsA(path, BitmapAndPath))
1102  {
1103  *cost = path->total_cost;
1104  *selec = ((BitmapAndPath *) path)->bitmapselectivity;
1105  }
1106  else if (IsA(path, BitmapOrPath))
1107  {
1108  *cost = path->total_cost;
1109  *selec = ((BitmapOrPath *) path)->bitmapselectivity;
1110  }
1111  else
1112  {
1113  elog(ERROR, "unrecognized node type: %d", nodeTag(path));
1114  *cost = *selec = 0; /* keep compiler quiet */
1115  }
1116 }
1117 
1118 /*
1119  * cost_bitmap_and_node
1120  * Estimate the cost of a BitmapAnd node
1121  *
1122  * Note that this considers only the costs of index scanning and bitmap
1123  * creation, not the eventual heap access. In that sense the object isn't
1124  * truly a Path, but it has enough path-like properties (costs in particular)
1125  * to warrant treating it as one. We don't bother to set the path rows field,
1126  * however.
1127  */
1128 void
1130 {
1131  Cost totalCost;
1132  Selectivity selec;
1133  ListCell *l;
1134 
1135  /*
1136  * We estimate AND selectivity on the assumption that the inputs are
1137  * independent. This is probably often wrong, but we don't have the info
1138  * to do better.
1139  *
1140  * The runtime cost of the BitmapAnd itself is estimated at 100x
1141  * cpu_operator_cost for each tbm_intersect needed. Probably too small,
1142  * definitely too simplistic?
1143  */
1144  totalCost = 0.0;
1145  selec = 1.0;
1146  foreach(l, path->bitmapquals)
1147  {
1148  Path *subpath = (Path *) lfirst(l);
1149  Cost subCost;
1150  Selectivity subselec;
1151 
1152  cost_bitmap_tree_node(subpath, &subCost, &subselec);
1153 
1154  selec *= subselec;
1155 
1156  totalCost += subCost;
1157  if (l != list_head(path->bitmapquals))
1158  totalCost += 100.0 * cpu_operator_cost;
1159  }
1160  path->bitmapselectivity = selec;
1161  path->path.rows = 0; /* per above, not used */
1162  path->path.startup_cost = totalCost;
1163  path->path.total_cost = totalCost;
1164 }
1165 
1166 /*
1167  * cost_bitmap_or_node
1168  * Estimate the cost of a BitmapOr node
1169  *
1170  * See comments for cost_bitmap_and_node.
1171  */
1172 void
1174 {
1175  Cost totalCost;
1176  Selectivity selec;
1177  ListCell *l;
1178 
1179  /*
1180  * We estimate OR selectivity on the assumption that the inputs are
1181  * non-overlapping, since that's often the case in "x IN (list)" type
1182  * situations. Of course, we clamp to 1.0 at the end.
1183  *
1184  * The runtime cost of the BitmapOr itself is estimated at 100x
1185  * cpu_operator_cost for each tbm_union needed. Probably too small,
1186  * definitely too simplistic? We are aware that the tbm_unions are
1187  * optimized out when the inputs are BitmapIndexScans.
1188  */
1189  totalCost = 0.0;
1190  selec = 0.0;
1191  foreach(l, path->bitmapquals)
1192  {
1193  Path *subpath = (Path *) lfirst(l);
1194  Cost subCost;
1195  Selectivity subselec;
1196 
1197  cost_bitmap_tree_node(subpath, &subCost, &subselec);
1198 
1199  selec += subselec;
1200 
1201  totalCost += subCost;
1202  if (l != list_head(path->bitmapquals) &&
1203  !IsA(subpath, IndexPath))
1204  totalCost += 100.0 * cpu_operator_cost;
1205  }
1206  path->bitmapselectivity = Min(selec, 1.0);
1207  path->path.rows = 0; /* per above, not used */
1208  path->path.startup_cost = totalCost;
1209  path->path.total_cost = totalCost;
1210 }
1211 
1212 /*
1213  * cost_tidscan
1214  * Determines and returns the cost of scanning a relation using TIDs.
1215  *
1216  * 'baserel' is the relation to be scanned
1217  * 'tidquals' is the list of TID-checkable quals
1218  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
1219  */
1220 void
1222  RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
1223 {
1224  Cost startup_cost = 0;
1225  Cost run_cost = 0;
1226  bool isCurrentOf = false;
1227  QualCost qpqual_cost;
1228  Cost cpu_per_tuple;
1229  QualCost tid_qual_cost;
1230  int ntuples;
1231  ListCell *l;
1232  double spc_random_page_cost;
1233 
1234  /* Should only be applied to base relations */
1235  Assert(baserel->relid > 0);
1236  Assert(baserel->rtekind == RTE_RELATION);
1237 
1238  /* Mark the path with the correct row estimate */
1239  if (param_info)
1240  path->rows = param_info->ppi_rows;
1241  else
1242  path->rows = baserel->rows;
1243 
1244  /* Count how many tuples we expect to retrieve */
1245  ntuples = 0;
1246  foreach(l, tidquals)
1247  {
1248  RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
1249  Expr *qual = rinfo->clause;
1250 
1251  if (IsA(qual, ScalarArrayOpExpr))
1252  {
1253  /* Each element of the array yields 1 tuple */
1254  ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) qual;
1255  Node *arraynode = (Node *) lsecond(saop->args);
1256 
1257  ntuples += estimate_array_length(arraynode);
1258  }
1259  else if (IsA(qual, CurrentOfExpr))
1260  {
1261  /* CURRENT OF yields 1 tuple */
1262  isCurrentOf = true;
1263  ntuples++;
1264  }
1265  else
1266  {
1267  /* It's just CTID = something, count 1 tuple */
1268  ntuples++;
1269  }
1270  }
1271 
1272  /*
1273  * We must force TID scan for WHERE CURRENT OF, because only nodeTidscan.c
1274  * understands how to do it correctly. Therefore, honor enable_tidscan
1275  * only when CURRENT OF isn't present. Also note that cost_qual_eval
1276  * counts a CurrentOfExpr as having startup cost disable_cost, which we
1277  * subtract off here; that's to prevent other plan types such as seqscan
1278  * from winning.
1279  */
1280  if (isCurrentOf)
1281  {
1283  startup_cost -= disable_cost;
1284  }
1285  else if (!enable_tidscan)
1286  startup_cost += disable_cost;
1287 
1288  /*
1289  * The TID qual expressions will be computed once, any other baserestrict
1290  * quals once per retrieved tuple.
1291  */
1292  cost_qual_eval(&tid_qual_cost, tidquals, root);
1293 
1294  /* fetch estimated page cost for tablespace containing table */
1296  &spc_random_page_cost,
1297  NULL);
1298 
1299  /* disk costs --- assume each tuple on a different page */
1300  run_cost += spc_random_page_cost * ntuples;
1301 
1302  /* Add scanning CPU costs */
1303  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1304 
1305  /* XXX currently we assume TID quals are a subset of qpquals */
1306  startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
1307  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
1308  tid_qual_cost.per_tuple;
1309  run_cost += cpu_per_tuple * ntuples;
1310 
1311  /* tlist eval costs are paid per output row, not per tuple scanned */
1312  startup_cost += path->pathtarget->cost.startup;
1313  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1314 
1315  path->startup_cost = startup_cost;
1316  path->total_cost = startup_cost + run_cost;
1317 }
1318 
1319 /*
1320  * cost_tidrangescan
1321  * Determines and sets the costs of scanning a relation using a range of
1322  * TIDs for 'path'
1323  *
1324  * 'baserel' is the relation to be scanned
1325  * 'tidrangequals' is the list of TID-checkable range quals
1326  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
1327  */
1328 void
1330  RelOptInfo *baserel, List *tidrangequals,
1331  ParamPathInfo *param_info)
1332 {
1333  Selectivity selectivity;
1334  double pages;
1335  Cost startup_cost = 0;
1336  Cost run_cost = 0;
1337  QualCost qpqual_cost;
1338  Cost cpu_per_tuple;
1339  QualCost tid_qual_cost;
1340  double ntuples;
1341  double nseqpages;
1342  double spc_random_page_cost;
1343  double spc_seq_page_cost;
1344 
1345  /* Should only be applied to base relations */
1346  Assert(baserel->relid > 0);
1347  Assert(baserel->rtekind == RTE_RELATION);
1348 
1349  /* Mark the path with the correct row estimate */
1350  if (param_info)
1351  path->rows = param_info->ppi_rows;
1352  else
1353  path->rows = baserel->rows;
1354 
1355  /* Count how many tuples and pages we expect to scan */
1356  selectivity = clauselist_selectivity(root, tidrangequals, baserel->relid,
1357  JOIN_INNER, NULL);
1358  pages = ceil(selectivity * baserel->pages);
1359 
1360  if (pages <= 0.0)
1361  pages = 1.0;
1362 
1363  /*
1364  * The first page in a range requires a random seek, but each subsequent
1365  * page is just a normal sequential page read. NOTE: it's desirable for
1366  * TID Range Scans to cost more than the equivalent Sequential Scans,
1367  * because Seq Scans have some performance advantages such as scan
1368  * synchronization and parallelizability, and we'd prefer one of them to
1369  * be picked unless a TID Range Scan really is better.
1370  */
1371  ntuples = selectivity * baserel->tuples;
1372  nseqpages = pages - 1.0;
1373 
1374  if (!enable_tidscan)
1375  startup_cost += disable_cost;
1376 
1377  /*
1378  * The TID qual expressions will be computed once, any other baserestrict
1379  * quals once per retrieved tuple.
1380  */
1381  cost_qual_eval(&tid_qual_cost, tidrangequals, root);
1382 
1383  /* fetch estimated page cost for tablespace containing table */
1385  &spc_random_page_cost,
1386  &spc_seq_page_cost);
1387 
1388  /* disk costs; 1 random page and the remainder as seq pages */
1389  run_cost += spc_random_page_cost + spc_seq_page_cost * nseqpages;
1390 
1391  /* Add scanning CPU costs */
1392  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1393 
1394  /*
1395  * XXX currently we assume TID quals are a subset of qpquals at this
1396  * point; they will be removed (if possible) when we create the plan, so
1397  * we subtract their cost from the total qpqual cost. (If the TID quals
1398  * can't be removed, this is a mistake and we're going to underestimate
1399  * the CPU cost a bit.)
1400  */
1401  startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
1402  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
1403  tid_qual_cost.per_tuple;
1404  run_cost += cpu_per_tuple * ntuples;
1405 
1406  /* tlist eval costs are paid per output row, not per tuple scanned */
1407  startup_cost += path->pathtarget->cost.startup;
1408  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1409 
1410  path->startup_cost = startup_cost;
1411  path->total_cost = startup_cost + run_cost;
1412 }
1413 
1414 /*
1415  * cost_subqueryscan
1416  * Determines and returns the cost of scanning a subquery RTE.
1417  *
1418  * 'baserel' is the relation to be scanned
1419  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
1420  * 'trivial_pathtarget' is true if the pathtarget is believed to be trivial.
1421  */
1422 void
1424  RelOptInfo *baserel, ParamPathInfo *param_info,
1425  bool trivial_pathtarget)
1426 {
1427  Cost startup_cost;
1428  Cost run_cost;
1429  List *qpquals;
1430  QualCost qpqual_cost;
1431  Cost cpu_per_tuple;
1432 
1433  /* Should only be applied to base relations that are subqueries */
1434  Assert(baserel->relid > 0);
1435  Assert(baserel->rtekind == RTE_SUBQUERY);
1436 
1437  /*
1438  * We compute the rowcount estimate as the subplan's estimate times the
1439  * selectivity of relevant restriction clauses. In simple cases this will
1440  * come out the same as baserel->rows; but when dealing with parallelized
1441  * paths we must do it like this to get the right answer.
1442  */
1443  if (param_info)
1444  qpquals = list_concat_copy(param_info->ppi_clauses,
1445  baserel->baserestrictinfo);
1446  else
1447  qpquals = baserel->baserestrictinfo;
1448 
1449  path->path.rows = clamp_row_est(path->subpath->rows *
1451  qpquals,
1452  0,
1453  JOIN_INNER,
1454  NULL));
1455 
1456  /*
1457  * Cost of path is cost of evaluating the subplan, plus cost of evaluating
1458  * any restriction clauses and tlist that will be attached to the
1459  * SubqueryScan node, plus cpu_tuple_cost to account for selection and
1460  * projection overhead.
1461  */
1462  path->path.startup_cost = path->subpath->startup_cost;
1463  path->path.total_cost = path->subpath->total_cost;
1464 
1465  /*
1466  * However, if there are no relevant restriction clauses and the
1467  * pathtarget is trivial, then we expect that setrefs.c will optimize away
1468  * the SubqueryScan plan node altogether, so we should just make its cost
1469  * and rowcount equal to the input path's.
1470  *
1471  * Note: there are some edge cases where createplan.c will apply a
1472  * different targetlist to the SubqueryScan node, thus falsifying our
1473  * current estimate of whether the target is trivial, and making the cost
1474  * estimate (though not the rowcount) wrong. It does not seem worth the
1475  * extra complication to try to account for that exactly, especially since
1476  * that behavior falsifies other cost estimates as well.
1477  */
1478  if (qpquals == NIL && trivial_pathtarget)
1479  return;
1480 
1481  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1482 
1483  startup_cost = qpqual_cost.startup;
1484  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1485  run_cost = cpu_per_tuple * path->subpath->rows;
1486 
1487  /* tlist eval costs are paid per output row, not per tuple scanned */
1488  startup_cost += path->path.pathtarget->cost.startup;
1489  run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
1490 
1491  path->path.startup_cost += startup_cost;
1492  path->path.total_cost += startup_cost + run_cost;
1493 }
1494 
1495 /*
1496  * cost_functionscan
1497  * Determines and returns the cost of scanning a function RTE.
1498  *
1499  * 'baserel' is the relation to be scanned
1500  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
1501  */
1502 void
1504  RelOptInfo *baserel, ParamPathInfo *param_info)
1505 {
1506  Cost startup_cost = 0;
1507  Cost run_cost = 0;
1508  QualCost qpqual_cost;
1509  Cost cpu_per_tuple;
1510  RangeTblEntry *rte;
1511  QualCost exprcost;
1512 
1513  /* Should only be applied to base relations that are functions */
1514  Assert(baserel->relid > 0);
1515  rte = planner_rt_fetch(baserel->relid, root);
1516  Assert(rte->rtekind == RTE_FUNCTION);
1517 
1518  /* Mark the path with the correct row estimate */
1519  if (param_info)
1520  path->rows = param_info->ppi_rows;
1521  else
1522  path->rows = baserel->rows;
1523 
1524  /*
1525  * Estimate costs of executing the function expression(s).
1526  *
1527  * Currently, nodeFunctionscan.c always executes the functions to
1528  * completion before returning any rows, and caches the results in a
1529  * tuplestore. So the function eval cost is all startup cost, and per-row
1530  * costs are minimal.
1531  *
1532  * XXX in principle we ought to charge tuplestore spill costs if the
1533  * number of rows is large. However, given how phony our rowcount
1534  * estimates for functions tend to be, there's not a lot of point in that
1535  * refinement right now.
1536  */
1537  cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
1538 
1539  startup_cost += exprcost.startup + exprcost.per_tuple;
1540 
1541  /* Add scanning CPU costs */
1542  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1543 
1544  startup_cost += qpqual_cost.startup;
1545  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1546  run_cost += cpu_per_tuple * baserel->tuples;
1547 
1548  /* tlist eval costs are paid per output row, not per tuple scanned */
1549  startup_cost += path->pathtarget->cost.startup;
1550  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1551 
1552  path->startup_cost = startup_cost;
1553  path->total_cost = startup_cost + run_cost;
1554 }
1555 
1556 /*
1557  * cost_tablefuncscan
1558  * Determines and returns the cost of scanning a table function.
1559  *
1560  * 'baserel' is the relation to be scanned
1561  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
1562  */
1563 void
1565  RelOptInfo *baserel, ParamPathInfo *param_info)
1566 {
1567  Cost startup_cost = 0;
1568  Cost run_cost = 0;
1569  QualCost qpqual_cost;
1570  Cost cpu_per_tuple;
1571  RangeTblEntry *rte;
1572  QualCost exprcost;
1573 
1574  /* Should only be applied to base relations that are functions */
1575  Assert(baserel->relid > 0);
1576  rte = planner_rt_fetch(baserel->relid, root);
1577  Assert(rte->rtekind == RTE_TABLEFUNC);
1578 
1579  /* Mark the path with the correct row estimate */
1580  if (param_info)
1581  path->rows = param_info->ppi_rows;
1582  else
1583  path->rows = baserel->rows;
1584 
1585  /*
1586  * Estimate costs of executing the table func expression(s).
1587  *
1588  * XXX in principle we ought to charge tuplestore spill costs if the
1589  * number of rows is large. However, given how phony our rowcount
1590  * estimates for tablefuncs tend to be, there's not a lot of point in that
1591  * refinement right now.
1592  */
1593  cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
1594 
1595  startup_cost += exprcost.startup + exprcost.per_tuple;
1596 
1597  /* Add scanning CPU costs */
1598  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1599 
1600  startup_cost += qpqual_cost.startup;
1601  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1602  run_cost += cpu_per_tuple * baserel->tuples;
1603 
1604  /* tlist eval costs are paid per output row, not per tuple scanned */
1605  startup_cost += path->pathtarget->cost.startup;
1606  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1607 
1608  path->startup_cost = startup_cost;
1609  path->total_cost = startup_cost + run_cost;
1610 }
1611 
1612 /*
1613  * cost_valuesscan
1614  * Determines and returns the cost of scanning a VALUES RTE.
1615  *
1616  * 'baserel' is the relation to be scanned
1617  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
1618  */
1619 void
1621  RelOptInfo *baserel, ParamPathInfo *param_info)
1622 {
1623  Cost startup_cost = 0;
1624  Cost run_cost = 0;
1625  QualCost qpqual_cost;
1626  Cost cpu_per_tuple;
1627 
1628  /* Should only be applied to base relations that are values lists */
1629  Assert(baserel->relid > 0);
1630  Assert(baserel->rtekind == RTE_VALUES);
1631 
1632  /* Mark the path with the correct row estimate */
1633  if (param_info)
1634  path->rows = param_info->ppi_rows;
1635  else
1636  path->rows = baserel->rows;
1637 
1638  /*
1639  * For now, estimate list evaluation cost at one operator eval per list
1640  * (probably pretty bogus, but is it worth being smarter?)
1641  */
1642  cpu_per_tuple = cpu_operator_cost;
1643 
1644  /* Add scanning CPU costs */
1645  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1646 
1647  startup_cost += qpqual_cost.startup;
1648  cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1649  run_cost += cpu_per_tuple * baserel->tuples;
1650 
1651  /* tlist eval costs are paid per output row, not per tuple scanned */
1652  startup_cost += path->pathtarget->cost.startup;
1653  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1654 
1655  path->startup_cost = startup_cost;
1656  path->total_cost = startup_cost + run_cost;
1657 }
1658 
1659 /*
1660  * cost_ctescan
1661  * Determines and returns the cost of scanning a CTE RTE.
1662  *
1663  * Note: this is used for both self-reference and regular CTEs; the
1664  * possible cost differences are below the threshold of what we could
1665  * estimate accurately anyway. Note that the costs of evaluating the
1666  * referenced CTE query are added into the final plan as initplan costs,
1667  * and should NOT be counted here.
1668  */
1669 void
1671  RelOptInfo *baserel, ParamPathInfo *param_info)
1672 {
1673  Cost startup_cost = 0;
1674  Cost run_cost = 0;
1675  QualCost qpqual_cost;
1676  Cost cpu_per_tuple;
1677 
1678  /* Should only be applied to base relations that are CTEs */
1679  Assert(baserel->relid > 0);
1680  Assert(baserel->rtekind == RTE_CTE);
1681 
1682  /* Mark the path with the correct row estimate */
1683  if (param_info)
1684  path->rows = param_info->ppi_rows;
1685  else
1686  path->rows = baserel->rows;
1687 
1688  /* Charge one CPU tuple cost per row for tuplestore manipulation */
1689  cpu_per_tuple = cpu_tuple_cost;
1690 
1691  /* Add scanning CPU costs */
1692  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1693 
1694  startup_cost += qpqual_cost.startup;
1695  cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1696  run_cost += cpu_per_tuple * baserel->tuples;
1697 
1698  /* tlist eval costs are paid per output row, not per tuple scanned */
1699  startup_cost += path->pathtarget->cost.startup;
1700  run_cost += path->pathtarget->cost.per_tuple * path->rows;
1701 
1702  path->startup_cost = startup_cost;
1703  path->total_cost = startup_cost + run_cost;
1704 }
1705 
1706 /*
1707  * cost_namedtuplestorescan
1708  * Determines and returns the cost of scanning a named tuplestore.
1709  */
1710 void
1712  RelOptInfo *baserel, ParamPathInfo *param_info)
1713 {
1714  Cost startup_cost = 0;
1715  Cost run_cost = 0;
1716  QualCost qpqual_cost;
1717  Cost cpu_per_tuple;
1718 
1719  /* Should only be applied to base relations that are Tuplestores */
1720  Assert(baserel->relid > 0);
1721  Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
1722 
1723  /* Mark the path with the correct row estimate */
1724  if (param_info)
1725  path->rows = param_info->ppi_rows;
1726  else
1727  path->rows = baserel->rows;
1728 
1729  /* Charge one CPU tuple cost per row for tuplestore manipulation */
1730  cpu_per_tuple = cpu_tuple_cost;
1731 
1732  /* Add scanning CPU costs */
1733  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1734 
1735  startup_cost += qpqual_cost.startup;
1736  cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
1737  run_cost += cpu_per_tuple * baserel->tuples;
1738 
1739  path->startup_cost = startup_cost;
1740  path->total_cost = startup_cost + run_cost;
1741 }
1742 
1743 /*
1744  * cost_resultscan
1745  * Determines and returns the cost of scanning an RTE_RESULT relation.
1746  */
1747 void
1749  RelOptInfo *baserel, ParamPathInfo *param_info)
1750 {
1751  Cost startup_cost = 0;
1752  Cost run_cost = 0;
1753  QualCost qpqual_cost;
1754  Cost cpu_per_tuple;
1755 
1756  /* Should only be applied to RTE_RESULT base relations */
1757  Assert(baserel->relid > 0);
1758  Assert(baserel->rtekind == RTE_RESULT);
1759 
1760  /* Mark the path with the correct row estimate */
1761  if (param_info)
1762  path->rows = param_info->ppi_rows;
1763  else
1764  path->rows = baserel->rows;
1765 
1766  /* We charge qual cost plus cpu_tuple_cost */
1767  get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
1768 
1769  startup_cost += qpqual_cost.startup;
1770  cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
1771  run_cost += cpu_per_tuple * baserel->tuples;
1772 
1773  path->startup_cost = startup_cost;
1774  path->total_cost = startup_cost + run_cost;
1775 }
1776 
1777 /*
1778  * cost_recursive_union
1779  * Determines and returns the cost of performing a recursive union,
1780  * and also the estimated output size.
1781  *
1782  * We are given Paths for the nonrecursive and recursive terms.
1783  */
1784 void
1785 cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
1786 {
1787  Cost startup_cost;
1788  Cost total_cost;
1789  double total_rows;
1790 
1791  /* We probably have decent estimates for the non-recursive term */
1792  startup_cost = nrterm->startup_cost;
1793  total_cost = nrterm->total_cost;
1794  total_rows = nrterm->rows;
1795 
1796  /*
1797  * We arbitrarily assume that about 10 recursive iterations will be
1798  * needed, and that we've managed to get a good fix on the cost and output
1799  * size of each one of them. These are mighty shaky assumptions but it's
1800  * hard to see how to do better.
1801  */
1802  total_cost += 10 * rterm->total_cost;
1803  total_rows += 10 * rterm->rows;
1804 
1805  /*
1806  * Also charge cpu_tuple_cost per row to account for the costs of
1807  * manipulating the tuplestores. (We don't worry about possible
1808  * spill-to-disk costs.)
1809  */
1810  total_cost += cpu_tuple_cost * total_rows;
1811 
1812  runion->startup_cost = startup_cost;
1813  runion->total_cost = total_cost;
1814  runion->rows = total_rows;
1815  runion->pathtarget->width = Max(nrterm->pathtarget->width,
1816  rterm->pathtarget->width);
1817 }
1818 
1819 /*
1820  * cost_tuplesort
1821  * Determines and returns the cost of sorting a relation using tuplesort,
1822  * not including the cost of reading the input data.
1823  *
1824  * If the total volume of data to sort is less than sort_mem, we will do
1825  * an in-memory sort, which requires no I/O and about t*log2(t) tuple
1826  * comparisons for t tuples.
1827  *
1828  * If the total volume exceeds sort_mem, we switch to a tape-style merge
1829  * algorithm. There will still be about t*log2(t) tuple comparisons in
1830  * total, but we will also need to write and read each tuple once per
1831  * merge pass. We expect about ceil(logM(r)) merge passes where r is the
1832  * number of initial runs formed and M is the merge order used by tuplesort.c.
1833  * Since the average initial run should be about sort_mem, we have
1834  * disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
1835  * cpu = comparison_cost * t * log2(t)
1836  *
1837  * If the sort is bounded (i.e., only the first k result tuples are needed)
1838  * and k tuples can fit into sort_mem, we use a heap method that keeps only
1839  * k tuples in the heap; this will require about t*log2(k) tuple comparisons.
1840  *
1841  * The disk traffic is assumed to be 3/4ths sequential and 1/4th random
1842  * accesses (XXX can't we refine that guess?)
1843  *
1844  * By default, we charge two operator evals per tuple comparison, which should
1845  * be in the right ballpark in most cases. The caller can tweak this by
1846  * specifying nonzero comparison_cost; typically that's used for any extra
1847  * work that has to be done to prepare the inputs to the comparison operators.
1848  *
1849  * 'tuples' is the number of tuples in the relation
1850  * 'width' is the average tuple width in bytes
1851  * 'comparison_cost' is the extra cost per comparison, if any
1852  * 'sort_mem' is the number of kilobytes of work memory allowed for the sort
1853  * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
1854  */
1855 static void
1856 cost_tuplesort(Cost *startup_cost, Cost *run_cost,
1857  double tuples, int width,
1858  Cost comparison_cost, int sort_mem,
1859  double limit_tuples)
1860 {
1861  double input_bytes = relation_byte_size(tuples, width);
1862  double output_bytes;
1863  double output_tuples;
1864  long sort_mem_bytes = sort_mem * 1024L;
1865 
1866  /*
1867  * We want to be sure the cost of a sort is never estimated as zero, even
1868  * if passed-in tuple count is zero. Besides, mustn't do log(0)...
1869  */
1870  if (tuples < 2.0)
1871  tuples = 2.0;
1872 
1873  /* Include the default cost-per-comparison */
1874  comparison_cost += 2.0 * cpu_operator_cost;
1875 
1876  /* Do we have a useful LIMIT? */
1877  if (limit_tuples > 0 && limit_tuples < tuples)
1878  {
1879  output_tuples = limit_tuples;
1880  output_bytes = relation_byte_size(output_tuples, width);
1881  }
1882  else
1883  {
1884  output_tuples = tuples;
1885  output_bytes = input_bytes;
1886  }
1887 
1888  if (output_bytes > sort_mem_bytes)
1889  {
1890  /*
1891  * We'll have to use a disk-based sort of all the tuples
1892  */
1893  double npages = ceil(input_bytes / BLCKSZ);
1894  double nruns = input_bytes / sort_mem_bytes;
1895  double mergeorder = tuplesort_merge_order(sort_mem_bytes);
1896  double log_runs;
1897  double npageaccesses;
1898 
1899  /*
1900  * CPU costs
1901  *
1902  * Assume about N log2 N comparisons
1903  */
1904  *startup_cost = comparison_cost * tuples * LOG2(tuples);
1905 
1906  /* Disk costs */
1907 
1908  /* Compute logM(r) as log(r) / log(M) */
1909  if (nruns > mergeorder)
1910  log_runs = ceil(log(nruns) / log(mergeorder));
1911  else
1912  log_runs = 1.0;
1913  npageaccesses = 2.0 * npages * log_runs;
1914  /* Assume 3/4ths of accesses are sequential, 1/4th are not */
1915  *startup_cost += npageaccesses *
1916  (seq_page_cost * 0.75 + random_page_cost * 0.25);
1917  }
1918  else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
1919  {
1920  /*
1921  * We'll use a bounded heap-sort keeping just K tuples in memory, for
1922  * a total number of tuple comparisons of N log2 K; but the constant
1923  * factor is a bit higher than for quicksort. Tweak it so that the
1924  * cost curve is continuous at the crossover point.
1925  */
1926  *startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
1927  }
1928  else
1929  {
1930  /* We'll use plain quicksort on all the input tuples */
1931  *startup_cost = comparison_cost * tuples * LOG2(tuples);
1932  }
1933 
1934  /*
1935  * Also charge a small amount (arbitrarily set equal to operator cost) per
1936  * extracted tuple. We don't charge cpu_tuple_cost because a Sort node
1937  * doesn't do qual-checking or projection, so it has less overhead than
1938  * most plan nodes. Note it's correct to use tuples not output_tuples
1939  * here --- the upper LIMIT will pro-rate the run cost so we'd be double
1940  * counting the LIMIT otherwise.
1941  */
1942  *run_cost = cpu_operator_cost * tuples;
1943 }
1944 
1945 /*
1946  * cost_incremental_sort
1947  * Determines and returns the cost of sorting a relation incrementally, when
1948  * the input path is presorted by a prefix of the pathkeys.
1949  *
1950  * 'presorted_keys' is the number of leading pathkeys by which the input path
1951  * is sorted.
1952  *
1953  * We estimate the number of groups into which the relation is divided by the
1954  * leading pathkeys, and then calculate the cost of sorting a single group
1955  * with tuplesort using cost_tuplesort().
1956  */
1957 void
1959  PlannerInfo *root, List *pathkeys, int presorted_keys,
1960  Cost input_startup_cost, Cost input_total_cost,
1961  double input_tuples, int width, Cost comparison_cost, int sort_mem,
1962  double limit_tuples)
1963 {
1964  Cost startup_cost,
1965  run_cost,
1966  input_run_cost = input_total_cost - input_startup_cost;
1967  double group_tuples,
1968  input_groups;
1969  Cost group_startup_cost,
1970  group_run_cost,
1971  group_input_run_cost;
1972  List *presortedExprs = NIL;
1973  ListCell *l;
1974  bool unknown_varno = false;
1975 
1976  Assert(presorted_keys > 0 && presorted_keys < list_length(pathkeys));
1977 
1978  /*
1979  * We want to be sure the cost of a sort is never estimated as zero, even
1980  * if passed-in tuple count is zero. Besides, mustn't do log(0)...
1981  */
1982  if (input_tuples < 2.0)
1983  input_tuples = 2.0;
1984 
1985  /* Default estimate of number of groups, capped to one group per row. */
1986  input_groups = Min(input_tuples, DEFAULT_NUM_DISTINCT);
1987 
1988  /*
1989  * Extract presorted keys as list of expressions.
1990  *
1991  * We need to be careful about Vars containing "varno 0" which might have
1992  * been introduced by generate_append_tlist, which would confuse
1993  * estimate_num_groups (in fact it'd fail for such expressions). See
1994  * recurse_set_operations which has to deal with the same issue.
1995  *
1996  * Unlike recurse_set_operations we can't access the original target list
1997  * here, and even if we could it's not very clear how useful would that be
1998  * for a set operation combining multiple tables. So we simply detect if
1999  * there are any expressions with "varno 0" and use the default
2000  * DEFAULT_NUM_DISTINCT in that case.
2001  *
2002  * We might also use either 1.0 (a single group) or input_tuples (each row
2003  * being a separate group), pretty much the worst and best case for
2004  * incremental sort. But those are extreme cases and using something in
2005  * between seems reasonable. Furthermore, generate_append_tlist is used
2006  * for set operations, which are likely to produce mostly unique output
2007  * anyway - from that standpoint the DEFAULT_NUM_DISTINCT is defensive
2008  * while maintaining lower startup cost.
2009  */
2010  foreach(l, pathkeys)
2011  {
2012  PathKey *key = (PathKey *) lfirst(l);
2013  EquivalenceMember *member = (EquivalenceMember *)
2014  linitial(key->pk_eclass->ec_members);
2015 
2016  /*
2017  * Check if the expression contains Var with "varno 0" so that we
2018  * don't call estimate_num_groups in that case.
2019  */
2020  if (bms_is_member(0, pull_varnos(root, (Node *) member->em_expr)))
2021  {
2022  unknown_varno = true;
2023  break;
2024  }
2025 
2026  /* expression not containing any Vars with "varno 0" */
2027  presortedExprs = lappend(presortedExprs, member->em_expr);
2028 
2029  if (foreach_current_index(l) + 1 >= presorted_keys)
2030  break;
2031  }
2032 
2033  /* Estimate the number of groups with equal presorted keys. */
2034  if (!unknown_varno)
2035  input_groups = estimate_num_groups(root, presortedExprs, input_tuples,
2036  NULL, NULL);
2037 
2038  group_tuples = input_tuples / input_groups;
2039  group_input_run_cost = input_run_cost / input_groups;
2040 
2041  /*
2042  * Estimate the average cost of sorting of one group where presorted keys
2043  * are equal.
2044  */
2045  cost_tuplesort(&group_startup_cost, &group_run_cost,
2046  group_tuples, width, comparison_cost, sort_mem,
2047  limit_tuples);
2048 
2049  /*
2050  * Startup cost of incremental sort is the startup cost of its first group
2051  * plus the cost of its input.
2052  */
2053  startup_cost = group_startup_cost + input_startup_cost +
2054  group_input_run_cost;
2055 
2056  /*
2057  * After we started producing tuples from the first group, the cost of
2058  * producing all the tuples is given by the cost to finish processing this
2059  * group, plus the total cost to process the remaining groups, plus the
2060  * remaining cost of input.
2061  */
2062  run_cost = group_run_cost + (group_run_cost + group_startup_cost) *
2063  (input_groups - 1) + group_input_run_cost * (input_groups - 1);
2064 
2065  /*
2066  * Incremental sort adds some overhead by itself. Firstly, it has to
2067  * detect the sort groups. This is roughly equal to one extra copy and
2068  * comparison per tuple.
2069  */
2070  run_cost += (cpu_tuple_cost + comparison_cost) * input_tuples;
2071 
2072  /*
2073  * Additionally, we charge double cpu_tuple_cost for each input group to
2074  * account for the tuplesort_reset that's performed after each group.
2075  */
2076  run_cost += 2.0 * cpu_tuple_cost * input_groups;
2077 
2078  path->rows = input_tuples;
2079  path->startup_cost = startup_cost;
2080  path->total_cost = startup_cost + run_cost;
2081 }
2082 
2083 /*
2084  * cost_sort
2085  * Determines and returns the cost of sorting a relation, including
2086  * the cost of reading the input data.
2087  *
2088  * NOTE: some callers currently pass NIL for pathkeys because they
2089  * can't conveniently supply the sort keys. Since this routine doesn't
2090  * currently do anything with pathkeys anyway, that doesn't matter...
2091  * but if it ever does, it should react gracefully to lack of key data.
2092  * (Actually, the thing we'd most likely be interested in is just the number
2093  * of sort keys, which all callers *could* supply.)
2094  */
2095 void
2097  List *pathkeys, Cost input_cost, double tuples, int width,
2098  Cost comparison_cost, int sort_mem,
2099  double limit_tuples)
2100 
2101 {
2102  Cost startup_cost;
2103  Cost run_cost;
2104 
2105  cost_tuplesort(&startup_cost, &run_cost,
2106  tuples, width,
2107  comparison_cost, sort_mem,
2108  limit_tuples);
2109 
2110  if (!enable_sort)
2111  startup_cost += disable_cost;
2112 
2113  startup_cost += input_cost;
2114 
2115  path->rows = tuples;
2116  path->startup_cost = startup_cost;
2117  path->total_cost = startup_cost + run_cost;
2118 }
2119 
2120 /*
2121  * append_nonpartial_cost
2122  * Estimate the cost of the non-partial paths in a Parallel Append.
2123  * The non-partial paths are assumed to be the first "numpaths" paths
2124  * from the subpaths list, and to be in order of decreasing cost.
2125  */
2126 static Cost
2127 append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
2128 {
2129  Cost *costarr;
2130  int arrlen;
2131  ListCell *l;
2132  ListCell *cell;
2133  int path_index;
2134  int min_index;
2135  int max_index;
2136 
2137  if (numpaths == 0)
2138  return 0;
2139 
2140  /*
2141  * Array length is number of workers or number of relevant paths,
2142  * whichever is less.
2143  */
2144  arrlen = Min(parallel_workers, numpaths);
2145  costarr = (Cost *) palloc(sizeof(Cost) * arrlen);
2146 
2147  /* The first few paths will each be claimed by a different worker. */
2148  path_index = 0;
2149  foreach(cell, subpaths)
2150  {
2151  Path *subpath = (Path *) lfirst(cell);
2152 
2153  if (path_index == arrlen)
2154  break;
2155  costarr[path_index++] = subpath->total_cost;
2156  }
2157 
2158  /*
2159  * Since subpaths are sorted by decreasing cost, the last one will have
2160  * the minimum cost.
2161  */
2162  min_index = arrlen - 1;
2163 
2164  /*
2165  * For each of the remaining subpaths, add its cost to the array element
2166  * with minimum cost.
2167  */
2168  for_each_cell(l, subpaths, cell)
2169  {
2170  Path *subpath = (Path *) lfirst(l);
2171 
2172  /* Consider only the non-partial paths */
2173  if (path_index++ == numpaths)
2174  break;
2175 
2176  costarr[min_index] += subpath->total_cost;
2177 
2178  /* Update the new min cost array index */
2179  min_index = 0;
2180  for (int i = 0; i < arrlen; i++)
2181  {
2182  if (costarr[i] < costarr[min_index])
2183  min_index = i;
2184  }
2185  }
2186 
2187  /* Return the highest cost from the array */
2188  max_index = 0;
2189  for (int i = 0; i < arrlen; i++)
2190  {
2191  if (costarr[i] > costarr[max_index])
2192  max_index = i;
2193  }
2194 
2195  return costarr[max_index];
2196 }
2197 
2198 /*
2199  * cost_append
2200  * Determines and returns the cost of an Append node.
2201  */
2202 void
2204 {
2205  ListCell *l;
2206 
2207  apath->path.startup_cost = 0;
2208  apath->path.total_cost = 0;
2209  apath->path.rows = 0;
2210 
2211  if (apath->subpaths == NIL)
2212  return;
2213 
2214  if (!apath->path.parallel_aware)
2215  {
2216  List *pathkeys = apath->path.pathkeys;
2217 
2218  if (pathkeys == NIL)
2219  {
2220  Path *firstsubpath = (Path *) linitial(apath->subpaths);
2221 
2222  /*
2223  * For an unordered, non-parallel-aware Append we take the startup
2224  * cost as the startup cost of the first subpath.
2225  */
2226  apath->path.startup_cost = firstsubpath->startup_cost;
2227 
2228  /* Compute rows and costs as sums of subplan rows and costs. */
2229  foreach(l, apath->subpaths)
2230  {
2231  Path *subpath = (Path *) lfirst(l);
2232 
2233  apath->path.rows += subpath->rows;
2234  apath->path.total_cost += subpath->total_cost;
2235  }
2236  }
2237  else
2238  {
2239  /*
2240  * For an ordered, non-parallel-aware Append we take the startup
2241  * cost as the sum of the subpath startup costs. This ensures
2242  * that we don't underestimate the startup cost when a query's
2243  * LIMIT is such that several of the children have to be run to
2244  * satisfy it. This might be overkill --- another plausible hack
2245  * would be to take the Append's startup cost as the maximum of
2246  * the child startup costs. But we don't want to risk believing
2247  * that an ORDER BY LIMIT query can be satisfied at small cost
2248  * when the first child has small startup cost but later ones
2249  * don't. (If we had the ability to deal with nonlinear cost
2250  * interpolation for partial retrievals, we would not need to be
2251  * so conservative about this.)
2252  *
2253  * This case is also different from the above in that we have to
2254  * account for possibly injecting sorts into subpaths that aren't
2255  * natively ordered.
2256  */
2257  foreach(l, apath->subpaths)
2258  {
2259  Path *subpath = (Path *) lfirst(l);
2260  Path sort_path; /* dummy for result of cost_sort */
2261 
2262  if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
2263  {
2264  /*
2265  * We'll need to insert a Sort node, so include costs for
2266  * that. We can use the parent's LIMIT if any, since we
2267  * certainly won't pull more than that many tuples from
2268  * any child.
2269  */
2270  cost_sort(&sort_path,
2271  NULL, /* doesn't currently need root */
2272  pathkeys,
2273  subpath->total_cost,
2274  subpath->rows,
2275  subpath->pathtarget->width,
2276  0.0,
2277  work_mem,
2278  apath->limit_tuples);
2279  subpath = &sort_path;
2280  }
2281 
2282  apath->path.rows += subpath->rows;
2283  apath->path.startup_cost += subpath->startup_cost;
2284  apath->path.total_cost += subpath->total_cost;
2285  }
2286  }
2287  }
2288  else /* parallel-aware */
2289  {
2290  int i = 0;
2291  double parallel_divisor = get_parallel_divisor(&apath->path);
2292 
2293  /* Parallel-aware Append never produces ordered output. */
2294  Assert(apath->path.pathkeys == NIL);
2295 
2296  /* Calculate startup cost. */
2297  foreach(l, apath->subpaths)
2298  {
2299  Path *subpath = (Path *) lfirst(l);
2300 
2301  /*
2302  * Append will start returning tuples when the child node having
2303  * lowest startup cost is done setting up. We consider only the
2304  * first few subplans that immediately get a worker assigned.
2305  */
2306  if (i == 0)
2307  apath->path.startup_cost = subpath->startup_cost;
2308  else if (i < apath->path.parallel_workers)
2309  apath->path.startup_cost = Min(apath->path.startup_cost,
2310  subpath->startup_cost);
2311 
2312  /*
2313  * Apply parallel divisor to subpaths. Scale the number of rows
2314  * for each partial subpath based on the ratio of the parallel
2315  * divisor originally used for the subpath to the one we adopted.
2316  * Also add the cost of partial paths to the total cost, but
2317  * ignore non-partial paths for now.
2318  */
2319  if (i < apath->first_partial_path)
2320  apath->path.rows += subpath->rows / parallel_divisor;
2321  else
2322  {
2323  double subpath_parallel_divisor;
2324 
2325  subpath_parallel_divisor = get_parallel_divisor(subpath);
2326  apath->path.rows += subpath->rows * (subpath_parallel_divisor /
2327  parallel_divisor);
2328  apath->path.total_cost += subpath->total_cost;
2329  }
2330 
2331  apath->path.rows = clamp_row_est(apath->path.rows);
2332 
2333  i++;
2334  }
2335 
2336  /* Add cost for non-partial subpaths. */
2337  apath->path.total_cost +=
2339  apath->first_partial_path,
2340  apath->path.parallel_workers);
2341  }
2342 
2343  /*
2344  * Although Append does not do any selection or projection, it's not free;
2345  * add a small per-tuple overhead.
2346  */
2347  apath->path.total_cost +=
2349 }
2350 
2351 /*
2352  * cost_merge_append
2353  * Determines and returns the cost of a MergeAppend node.
2354  *
2355  * MergeAppend merges several pre-sorted input streams, using a heap that
2356  * at any given instant holds the next tuple from each stream. If there
2357  * are N streams, we need about N*log2(N) tuple comparisons to construct
2358  * the heap at startup, and then for each output tuple, about log2(N)
2359  * comparisons to replace the top entry.
2360  *
2361  * (The effective value of N will drop once some of the input streams are
2362  * exhausted, but it seems unlikely to be worth trying to account for that.)
2363  *
2364  * The heap is never spilled to disk, since we assume N is not very large.
2365  * So this is much simpler than cost_sort.
2366  *
2367  * As in cost_sort, we charge two operator evals per tuple comparison.
2368  *
2369  * 'pathkeys' is a list of sort keys
2370  * 'n_streams' is the number of input streams
2371  * 'input_startup_cost' is the sum of the input streams' startup costs
2372  * 'input_total_cost' is the sum of the input streams' total costs
2373  * 'tuples' is the number of tuples in all the streams
2374  */
2375 void
2377  List *pathkeys, int n_streams,
2378  Cost input_startup_cost, Cost input_total_cost,
2379  double tuples)
2380 {
2381  Cost startup_cost = 0;
2382  Cost run_cost = 0;
2383  Cost comparison_cost;
2384  double N;
2385  double logN;
2386 
2387  /*
2388  * Avoid log(0)...
2389  */
2390  N = (n_streams < 2) ? 2.0 : (double) n_streams;
2391  logN = LOG2(N);
2392 
2393  /* Assumed cost per tuple comparison */
2394  comparison_cost = 2.0 * cpu_operator_cost;
2395 
2396  /* Heap creation cost */
2397  startup_cost += comparison_cost * N * logN;
2398 
2399  /* Per-tuple heap maintenance cost */
2400  run_cost += tuples * comparison_cost * logN;
2401 
2402  /*
2403  * Although MergeAppend does not do any selection or projection, it's not
2404  * free; add a small per-tuple overhead.
2405  */
2406  run_cost += cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * tuples;
2407 
2408  path->startup_cost = startup_cost + input_startup_cost;
2409  path->total_cost = startup_cost + run_cost + input_total_cost;
2410 }
2411 
2412 /*
2413  * cost_material
2414  * Determines and returns the cost of materializing a relation, including
2415  * the cost of reading the input data.
2416  *
2417  * If the total volume of data to materialize exceeds work_mem, we will need
2418  * to write it to disk, so the cost is much higher in that case.
2419  *
2420  * Note that here we are estimating the costs for the first scan of the
2421  * relation, so the materialization is all overhead --- any savings will
2422  * occur only on rescan, which is estimated in cost_rescan.
2423  */
2424 void
2426  Cost input_startup_cost, Cost input_total_cost,
2427  double tuples, int width)
2428 {
2429  Cost startup_cost = input_startup_cost;
2430  Cost run_cost = input_total_cost - input_startup_cost;
2431  double nbytes = relation_byte_size(tuples, width);
2432  long work_mem_bytes = work_mem * 1024L;
2433 
2434  path->rows = tuples;
2435 
2436  /*
2437  * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
2438  * reflect bookkeeping overhead. (This rate must be more than what
2439  * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
2440  * if it is exactly the same then there will be a cost tie between
2441  * nestloop with A outer, materialized B inner and nestloop with B outer,
2442  * materialized A inner. The extra cost ensures we'll prefer
2443  * materializing the smaller rel.) Note that this is normally a good deal
2444  * less than cpu_tuple_cost; which is OK because a Material plan node
2445  * doesn't do qual-checking or projection, so it's got less overhead than
2446  * most plan nodes.
2447  */
2448  run_cost += 2 * cpu_operator_cost * tuples;
2449 
2450  /*
2451  * If we will spill to disk, charge at the rate of seq_page_cost per page.
2452  * This cost is assumed to be evenly spread through the plan run phase,
2453  * which isn't exactly accurate but our cost model doesn't allow for
2454  * nonuniform costs within the run phase.
2455  */
2456  if (nbytes > work_mem_bytes)
2457  {
2458  double npages = ceil(nbytes / BLCKSZ);
2459 
2460  run_cost += seq_page_cost * npages;
2461  }
2462 
2463  path->startup_cost = startup_cost;
2464  path->total_cost = startup_cost + run_cost;
2465 }
2466 
2467 /*
2468  * cost_memoize_rescan
2469  * Determines the estimated cost of rescanning a Memoize node.
2470  *
2471  * In order to estimate this, we must gain knowledge of how often we expect to
2472  * be called and how many distinct sets of parameters we are likely to be
2473  * called with. If we expect a good cache hit ratio, then we can set our
2474  * costs to account for that hit ratio, plus a little bit of cost for the
2475  * caching itself. Caching will not work out well if we expect to be called
2476  * with too many distinct parameter values. The worst-case here is that we
2477  * never see any parameter value twice, in which case we'd never get a cache
2478  * hit and caching would be a complete waste of effort.
2479  */
2480 static void
2482  Cost *rescan_startup_cost, Cost *rescan_total_cost)
2483 {
2484  EstimationInfo estinfo;
2485  ListCell *lc;
2486  Cost input_startup_cost = mpath->subpath->startup_cost;
2487  Cost input_total_cost = mpath->subpath->total_cost;
2488  double tuples = mpath->subpath->rows;
2489  double calls = mpath->calls;
2490  int width = mpath->subpath->pathtarget->width;
2491 
2492  double hash_mem_bytes;
2493  double est_entry_bytes;
2494  double est_cache_entries;
2495  double ndistinct;
2496  double evict_ratio;
2497  double hit_ratio;
2498  Cost startup_cost;
2499  Cost total_cost;
2500 
2501  /* available cache space */
2502  hash_mem_bytes = get_hash_memory_limit();
2503 
2504  /*
2505  * Set the number of bytes each cache entry should consume in the cache.
2506  * To provide us with better estimations on how many cache entries we can
2507  * store at once, we make a call to the executor here to ask it what
2508  * memory overheads there are for a single cache entry.
2509  */
2510  est_entry_bytes = relation_byte_size(tuples, width) +
2512 
2513  /* include the estimated width for the cache keys */
2514  foreach(lc, mpath->param_exprs)
2515  est_entry_bytes += get_expr_width(root, (Node *) lfirst(lc));
2516 
2517  /* estimate on the upper limit of cache entries we can hold at once */
2518  est_cache_entries = floor(hash_mem_bytes / est_entry_bytes);
2519 
2520  /* estimate on the distinct number of parameter values */
2521  ndistinct = estimate_num_groups(root, mpath->param_exprs, calls, NULL,
2522  &estinfo);
2523 
2524  /*
2525  * When the estimation fell back on using a default value, it's a bit too
2526  * risky to assume that it's ok to use a Memoize node. The use of a
2527  * default could cause us to use a Memoize node when it's really
2528  * inappropriate to do so. If we see that this has been done, then we'll
2529  * assume that every call will have unique parameters, which will almost
2530  * certainly mean a MemoizePath will never survive add_path().
2531  */
2532  if ((estinfo.flags & SELFLAG_USED_DEFAULT) != 0)
2533  ndistinct = calls;
2534 
2535  /*
2536  * Since we've already estimated the maximum number of entries we can
2537  * store at once and know the estimated number of distinct values we'll be
2538  * called with, we'll take this opportunity to set the path's est_entries.
2539  * This will ultimately determine the hash table size that the executor
2540  * will use. If we leave this at zero, the executor will just choose the
2541  * size itself. Really this is not the right place to do this, but it's
2542  * convenient since everything is already calculated.
2543  */
2544  mpath->est_entries = Min(Min(ndistinct, est_cache_entries),
2545  PG_UINT32_MAX);
2546 
2547  /*
2548  * When the number of distinct parameter values is above the amount we can
2549  * store in the cache, then we'll have to evict some entries from the
2550  * cache. This is not free. Here we estimate how often we'll incur the
2551  * cost of that eviction.
2552  */
2553  evict_ratio = 1.0 - Min(est_cache_entries, ndistinct) / ndistinct;
2554 
2555  /*
2556  * In order to estimate how costly a single scan will be, we need to
2557  * attempt to estimate what the cache hit ratio will be. To do that we
2558  * must look at how many scans are estimated in total for this node and
2559  * how many of those scans we expect to get a cache hit.
2560  */
2561  hit_ratio = ((calls - ndistinct) / calls) *
2562  (est_cache_entries / Max(ndistinct, est_cache_entries));
2563 
2564  Assert(hit_ratio >= 0 && hit_ratio <= 1.0);
2565 
2566  /*
2567  * Set the total_cost accounting for the expected cache hit ratio. We
2568  * also add on a cpu_operator_cost to account for a cache lookup. This
2569  * will happen regardless of whether it's a cache hit or not.
2570  */
2571  total_cost = input_total_cost * (1.0 - hit_ratio) + cpu_operator_cost;
2572 
2573  /* Now adjust the total cost to account for cache evictions */
2574 
2575  /* Charge a cpu_tuple_cost for evicting the actual cache entry */
2576  total_cost += cpu_tuple_cost * evict_ratio;
2577 
2578  /*
2579  * Charge a 10th of cpu_operator_cost to evict every tuple in that entry.
2580  * The per-tuple eviction is really just a pfree, so charging a whole
2581  * cpu_operator_cost seems a little excessive.
2582  */
2583  total_cost += cpu_operator_cost / 10.0 * evict_ratio * tuples;
2584 
2585  /*
2586  * Now adjust for storing things in the cache, since that's not free
2587  * either. Everything must go in the cache. We don't proportion this
2588  * over any ratio, just apply it once for the scan. We charge a
2589  * cpu_tuple_cost for the creation of the cache entry and also a
2590  * cpu_operator_cost for each tuple we expect to cache.
2591  */
2592  total_cost += cpu_tuple_cost + cpu_operator_cost * tuples;
2593 
2594  /*
2595  * Getting the first row must be also be proportioned according to the
2596  * expected cache hit ratio.
2597  */
2598  startup_cost = input_startup_cost * (1.0 - hit_ratio);
2599 
2600  /*
2601  * Additionally we charge a cpu_tuple_cost to account for cache lookups,
2602  * which we'll do regardless of whether it was a cache hit or not.
2603  */
2604  startup_cost += cpu_tuple_cost;
2605 
2606  *rescan_startup_cost = startup_cost;
2607  *rescan_total_cost = total_cost;
2608 }
2609 
2610 /*
2611  * cost_agg
2612  * Determines and returns the cost of performing an Agg plan node,
2613  * including the cost of its input.
2614  *
2615  * aggcosts can be NULL when there are no actual aggregate functions (i.e.,
2616  * we are using a hashed Agg node just to do grouping).
2617  *
2618  * Note: when aggstrategy == AGG_SORTED, caller must ensure that input costs
2619  * are for appropriately-sorted input.
2620  */
2621 void
2623  AggStrategy aggstrategy, const AggClauseCosts *aggcosts,
2624  int numGroupCols, double numGroups,
2625  List *quals,
2626  Cost input_startup_cost, Cost input_total_cost,
2627  double input_tuples, double input_width)
2628 {
2629  double output_tuples;
2630  Cost startup_cost;
2631  Cost total_cost;
2632  AggClauseCosts dummy_aggcosts;
2633 
2634  /* Use all-zero per-aggregate costs if NULL is passed */
2635  if (aggcosts == NULL)
2636  {
2637  Assert(aggstrategy == AGG_HASHED);
2638  MemSet(&dummy_aggcosts, 0, sizeof(AggClauseCosts));
2639  aggcosts = &dummy_aggcosts;
2640  }
2641 
2642  /*
2643  * The transCost.per_tuple component of aggcosts should be charged once
2644  * per input tuple, corresponding to the costs of evaluating the aggregate
2645  * transfns and their input expressions. The finalCost.per_tuple component
2646  * is charged once per output tuple, corresponding to the costs of
2647  * evaluating the finalfns. Startup costs are of course charged but once.
2648  *
2649  * If we are grouping, we charge an additional cpu_operator_cost per
2650  * grouping column per input tuple for grouping comparisons.
2651  *
2652  * We will produce a single output tuple if not grouping, and a tuple per
2653  * group otherwise. We charge cpu_tuple_cost for each output tuple.
2654  *
2655  * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
2656  * same total CPU cost, but AGG_SORTED has lower startup cost. If the
2657  * input path is already sorted appropriately, AGG_SORTED should be
2658  * preferred (since it has no risk of memory overflow). This will happen
2659  * as long as the computed total costs are indeed exactly equal --- but if
2660  * there's roundoff error we might do the wrong thing. So be sure that
2661  * the computations below form the same intermediate values in the same
2662  * order.
2663  */
2664  if (aggstrategy == AGG_PLAIN)
2665  {
2666  startup_cost = input_total_cost;
2667  startup_cost += aggcosts->transCost.startup;
2668  startup_cost += aggcosts->transCost.per_tuple * input_tuples;
2669  startup_cost += aggcosts->finalCost.startup;
2670  startup_cost += aggcosts->finalCost.per_tuple;
2671  /* we aren't grouping */
2672  total_cost = startup_cost + cpu_tuple_cost;
2673  output_tuples = 1;
2674  }
2675  else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
2676  {
2677  /* Here we are able to deliver output on-the-fly */
2678  startup_cost = input_startup_cost;
2679  total_cost = input_total_cost;
2680  if (aggstrategy == AGG_MIXED && !enable_hashagg)
2681  {
2682  startup_cost += disable_cost;
2683  total_cost += disable_cost;
2684  }
2685  /* calcs phrased this way to match HASHED case, see note above */
2686  total_cost += aggcosts->transCost.startup;
2687  total_cost += aggcosts->transCost.per_tuple * input_tuples;
2688  total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
2689  total_cost += aggcosts->finalCost.startup;
2690  total_cost += aggcosts->finalCost.per_tuple * numGroups;
2691  total_cost += cpu_tuple_cost * numGroups;
2692  output_tuples = numGroups;
2693  }
2694  else
2695  {
2696  /* must be AGG_HASHED */
2697  startup_cost = input_total_cost;
2698  if (!enable_hashagg)
2699  startup_cost += disable_cost;
2700  startup_cost += aggcosts->transCost.startup;
2701  startup_cost += aggcosts->transCost.per_tuple * input_tuples;
2702  /* cost of computing hash value */
2703  startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
2704  startup_cost += aggcosts->finalCost.startup;
2705 
2706  total_cost = startup_cost;
2707  total_cost += aggcosts->finalCost.per_tuple * numGroups;
2708  /* cost of retrieving from hash table */
2709  total_cost += cpu_tuple_cost * numGroups;
2710  output_tuples = numGroups;
2711  }
2712 
2713  /*
2714  * Add the disk costs of hash aggregation that spills to disk.
2715  *
2716  * Groups that go into the hash table stay in memory until finalized, so
2717  * spilling and reprocessing tuples doesn't incur additional invocations
2718  * of transCost or finalCost. Furthermore, the computed hash value is
2719  * stored with the spilled tuples, so we don't incur extra invocations of
2720  * the hash function.
2721  *
2722  * Hash Agg begins returning tuples after the first batch is complete.
2723  * Accrue writes (spilled tuples) to startup_cost and to total_cost;
2724  * accrue reads only to total_cost.
2725  */
2726  if (aggstrategy == AGG_HASHED || aggstrategy == AGG_MIXED)
2727  {
2728  double pages;
2729  double pages_written = 0.0;
2730  double pages_read = 0.0;
2731  double spill_cost;
2732  double hashentrysize;
2733  double nbatches;
2734  Size mem_limit;
2735  uint64 ngroups_limit;
2736  int num_partitions;
2737  int depth;
2738 
2739  /*
2740  * Estimate number of batches based on the computed limits. If less
2741  * than or equal to one, all groups are expected to fit in memory;
2742  * otherwise we expect to spill.
2743  */
2744  hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
2745  input_width,
2746  aggcosts->transitionSpace);
2747  hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
2748  &ngroups_limit, &num_partitions);
2749 
2750  nbatches = Max((numGroups * hashentrysize) / mem_limit,
2751  numGroups / ngroups_limit);
2752 
2753  nbatches = Max(ceil(nbatches), 1.0);
2754  num_partitions = Max(num_partitions, 2);
2755 
2756  /*
2757  * The number of partitions can change at different levels of
2758  * recursion; but for the purposes of this calculation assume it stays
2759  * constant.
2760  */
2761  depth = ceil(log(nbatches) / log(num_partitions));
2762 
2763  /*
2764  * Estimate number of pages read and written. For each level of
2765  * recursion, a tuple must be written and then later read.
2766  */
2767  pages = relation_byte_size(input_tuples, input_width) / BLCKSZ;
2768  pages_written = pages_read = pages * depth;
2769 
2770  /*
2771  * HashAgg has somewhat worse IO behavior than Sort on typical
2772  * hardware/OS combinations. Account for this with a generic penalty.
2773  */
2774  pages_read *= 2.0;
2775  pages_written *= 2.0;
2776 
2777  startup_cost += pages_written * random_page_cost;
2778  total_cost += pages_written * random_page_cost;
2779  total_cost += pages_read * seq_page_cost;
2780 
2781  /* account for CPU cost of spilling a tuple and reading it back */
2782  spill_cost = depth * input_tuples * 2.0 * cpu_tuple_cost;
2783  startup_cost += spill_cost;
2784  total_cost += spill_cost;
2785  }
2786 
2787  /*
2788  * If there are quals (HAVING quals), account for their cost and
2789  * selectivity.
2790  */
2791  if (quals)
2792  {
2793  QualCost qual_cost;
2794 
2795  cost_qual_eval(&qual_cost, quals, root);
2796  startup_cost += qual_cost.startup;
2797  total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
2798 
2799  output_tuples = clamp_row_est(output_tuples *
2801  quals,
2802  0,
2803  JOIN_INNER,
2804  NULL));
2805  }
2806 
2807  path->rows = output_tuples;
2808  path->startup_cost = startup_cost;
2809  path->total_cost = total_cost;
2810 }
2811 
2812 /*
2813  * get_windowclause_startup_tuples
2814  * Estimate how many tuples we'll need to fetch from a WindowAgg's
2815  * subnode before we can output the first WindowAgg tuple.
2816  *
2817  * How many tuples need to be read depends on the WindowClause. For example,
2818  * a WindowClause with no PARTITION BY and no ORDER BY requires that all
2819  * subnode tuples are read and aggregated before the WindowAgg can output
2820  * anything. If there's a PARTITION BY, then we only need to look at tuples
2821  * in the first partition. Here we attempt to estimate just how many
2822  * 'input_tuples' the WindowAgg will need to read for the given WindowClause
2823  * before the first tuple can be output.
2824  */
2825 static double
2827  double input_tuples)
2828 {
2829  int frameOptions = wc->frameOptions;
2830  double partition_tuples;
2831  double return_tuples;
2832  double peer_tuples;
2833 
2834  /*
2835  * First, figure out how many partitions there are likely to be and set
2836  * partition_tuples according to that estimate.
2837  */
2838  if (wc->partitionClause != NIL)
2839  {
2840  double num_partitions;
2841  List *partexprs = get_sortgrouplist_exprs(wc->partitionClause,
2842  root->parse->targetList);
2843 
2844  num_partitions = estimate_num_groups(root, partexprs, input_tuples,
2845  NULL, NULL);
2846  list_free(partexprs);
2847 
2848  partition_tuples = input_tuples / num_partitions;
2849  }
2850  else
2851  {
2852  /* all tuples belong to the same partition */
2853  partition_tuples = input_tuples;
2854  }
2855 
2856  /* estimate the number of tuples in each peer group */
2857  if (wc->orderClause != NIL)
2858  {
2859  double num_groups;
2860  List *orderexprs;
2861 
2862  orderexprs = get_sortgrouplist_exprs(wc->orderClause,
2863  root->parse->targetList);
2864 
2865  /* estimate out how many peer groups there are in the partition */
2866  num_groups = estimate_num_groups(root, orderexprs,
2867  partition_tuples, NULL,
2868  NULL);
2869  list_free(orderexprs);
2870  peer_tuples = partition_tuples / num_groups;
2871  }
2872  else
2873  {
2874  /* no ORDER BY so only 1 tuple belongs in each peer group */
2875  peer_tuples = 1.0;
2876  }
2877 
2878  if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
2879  {
2880  /* include all partition rows */
2881  return_tuples = partition_tuples;
2882  }
2883  else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
2884  {
2885  if (frameOptions & FRAMEOPTION_ROWS)
2886  {
2887  /* just count the current row */
2888  return_tuples = 1.0;
2889  }
2890  else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
2891  {
2892  /*
2893  * When in RANGE/GROUPS mode, it's more complex. If there's no
2894  * ORDER BY, then all rows in the partition are peers, otherwise
2895  * we'll need to read the first group of peers.
2896  */
2897  if (wc->orderClause == NIL)
2898  return_tuples = partition_tuples;
2899  else
2900  return_tuples = peer_tuples;
2901  }
2902  else
2903  {
2904  /*
2905  * Something new we don't support yet? This needs attention.
2906  * We'll just return 1.0 in the meantime.
2907  */
2908  Assert(false);
2909  return_tuples = 1.0;
2910  }
2911  }
2912  else if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
2913  {
2914  /*
2915  * BETWEEN ... AND N PRECEDING will only need to read the WindowAgg's
2916  * subnode after N ROWS/RANGES/GROUPS. N can be 0, but not negative,
2917  * so we'll just assume only the current row needs to be read to fetch
2918  * the first WindowAgg row.
2919  */
2920  return_tuples = 1.0;
2921  }
2922  else if (frameOptions & FRAMEOPTION_END_OFFSET_FOLLOWING)
2923  {
2924  Const *endOffset = (Const *) wc->endOffset;
2925  double end_offset_value;
2926 
2927  /* try and figure out the value specified in the endOffset. */
2928  if (IsA(endOffset, Const))
2929  {
2930  if (endOffset->constisnull)
2931  {
2932  /*
2933  * NULLs are not allowed, but currently, there's no code to
2934  * error out if there's a NULL Const. We'll only discover
2935  * this during execution. For now, just pretend everything is
2936  * fine and assume that just the first row/range/group will be
2937  * needed.
2938  */
2939  end_offset_value = 1.0;
2940  }
2941  else
2942  {
2943  switch (endOffset->consttype)
2944  {
2945  case INT2OID:
2946  end_offset_value =
2947  (double) DatumGetInt16(endOffset->constvalue);
2948  break;
2949  case INT4OID:
2950  end_offset_value =
2951  (double) DatumGetInt32(endOffset->constvalue);
2952  break;
2953  case INT8OID:
2954  end_offset_value =
2955  (double) DatumGetInt64(endOffset->constvalue);
2956  break;
2957  default:
2958  end_offset_value =
2959  partition_tuples / peer_tuples *
2961  break;
2962  }
2963  }
2964  }
2965  else
2966  {
2967  /*
2968  * When the end bound is not a Const, we'll just need to guess. We
2969  * just make use of DEFAULT_INEQ_SEL.
2970  */
2971  end_offset_value =
2972  partition_tuples / peer_tuples * DEFAULT_INEQ_SEL;
2973  }
2974 
2975  if (frameOptions & FRAMEOPTION_ROWS)
2976  {
2977  /* include the N FOLLOWING and the current row */
2978  return_tuples = end_offset_value + 1.0;
2979  }
2980  else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
2981  {
2982  /* include N FOLLOWING ranges/group and the initial range/group */
2983  return_tuples = peer_tuples * (end_offset_value + 1.0);
2984  }
2985  else
2986  {
2987  /*
2988  * Something new we don't support yet? This needs attention.
2989  * We'll just return 1.0 in the meantime.
2990  */
2991  Assert(false);
2992  return_tuples = 1.0;
2993  }
2994  }
2995  else
2996  {
2997  /*
2998  * Something new we don't support yet? This needs attention. We'll
2999  * just return 1.0 in the meantime.
3000  */
3001  Assert(false);
3002  return_tuples = 1.0;
3003  }
3004 
3005  if (wc->partitionClause != NIL || wc->orderClause != NIL)
3006  {
3007  /*
3008  * Cap the return value to the estimated partition tuples and account
3009  * for the extra tuple WindowAgg will need to read to confirm the next
3010  * tuple does not belong to the same partition or peer group.
3011  */
3012  return_tuples = Min(return_tuples + 1.0, partition_tuples);
3013  }
3014  else
3015  {
3016  /*
3017  * Cap the return value so it's never higher than the expected tuples
3018  * in the partition.
3019  */
3020  return_tuples = Min(return_tuples, partition_tuples);
3021  }
3022 
3023  /*
3024  * We needn't worry about any EXCLUDE options as those only exclude rows
3025  * from being aggregated, not from being read from the WindowAgg's
3026  * subnode.
3027  */
3028 
3029  return clamp_row_est(return_tuples);
3030 }
3031 
3032 /*
3033  * cost_windowagg
3034  * Determines and returns the cost of performing a WindowAgg plan node,
3035  * including the cost of its input.
3036  *
3037  * Input is assumed already properly sorted.
3038  */
3039 void
3041  List *windowFuncs, WindowClause *winclause,
3042  Cost input_startup_cost, Cost input_total_cost,
3043  double input_tuples)
3044 {
3045  Cost startup_cost;
3046  Cost total_cost;
3047  double startup_tuples;
3048  int numPartCols;
3049  int numOrderCols;
3050  ListCell *lc;
3051 
3052  numPartCols = list_length(winclause->partitionClause);
3053  numOrderCols = list_length(winclause->orderClause);
3054 
3055  startup_cost = input_startup_cost;
3056  total_cost = input_total_cost;
3057 
3058  /*
3059  * Window functions are assumed to cost their stated execution cost, plus
3060  * the cost of evaluating their input expressions, per tuple. Since they
3061  * may in fact evaluate their inputs at multiple rows during each cycle,
3062  * this could be a drastic underestimate; but without a way to know how
3063  * many rows the window function will fetch, it's hard to do better. In
3064  * any case, it's a good estimate for all the built-in window functions,
3065  * so we'll just do this for now.
3066  */
3067  foreach(lc, windowFuncs)
3068  {
3069  WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
3070  Cost wfunccost;
3071  QualCost argcosts;
3072 
3073  argcosts.startup = argcosts.per_tuple = 0;
3074  add_function_cost(root, wfunc->winfnoid, (Node *) wfunc,
3075  &argcosts);
3076  startup_cost += argcosts.startup;
3077  wfunccost = argcosts.per_tuple;
3078 
3079  /* also add the input expressions' cost to per-input-row costs */
3080  cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
3081  startup_cost += argcosts.startup;
3082  wfunccost += argcosts.per_tuple;
3083 
3084  /*
3085  * Add the filter's cost to per-input-row costs. XXX We should reduce
3086  * input expression costs according to filter selectivity.
3087  */
3088  cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
3089  startup_cost += argcosts.startup;
3090  wfunccost += argcosts.per_tuple;
3091 
3092  total_cost += wfunccost * input_tuples;
3093  }
3094 
3095  /*
3096  * We also charge cpu_operator_cost per grouping column per tuple for
3097  * grouping comparisons, plus cpu_tuple_cost per tuple for general
3098  * overhead.
3099  *
3100  * XXX this neglects costs of spooling the data to disk when it overflows
3101  * work_mem. Sooner or later that should get accounted for.
3102  */
3103  total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
3104  total_cost += cpu_tuple_cost * input_tuples;
3105 
3106  path->rows = input_tuples;
3107  path->startup_cost = startup_cost;
3108  path->total_cost = total_cost;
3109 
3110  /*
3111  * Also, take into account how many tuples we need to read from the
3112  * subnode in order to produce the first tuple from the WindowAgg. To do
3113  * this we proportion the run cost (total cost not including startup cost)
3114  * over the estimated startup tuples. We already included the startup
3115  * cost of the subnode, so we only need to do this when the estimated
3116  * startup tuples is above 1.0.
3117  */
3118  startup_tuples = get_windowclause_startup_tuples(root, winclause,
3119  input_tuples);
3120 
3121  if (startup_tuples > 1.0)
3122  path->startup_cost += (total_cost - startup_cost) / input_tuples *
3123  (startup_tuples - 1.0);
3124 }
3125 
3126 /*
3127  * cost_group
3128  * Determines and returns the cost of performing a Group plan node,
3129  * including the cost of its input.
3130  *
3131  * Note: caller must ensure that input costs are for appropriately-sorted
3132  * input.
3133  */
3134 void
3136  int numGroupCols, double numGroups,
3137  List *quals,
3138  Cost input_startup_cost, Cost input_total_cost,
3139  double input_tuples)
3140 {
3141  double output_tuples;
3142  Cost startup_cost;
3143  Cost total_cost;
3144 
3145  output_tuples = numGroups;
3146  startup_cost = input_startup_cost;
3147  total_cost = input_total_cost;
3148 
3149  /*
3150  * Charge one cpu_operator_cost per comparison per input tuple. We assume
3151  * all columns get compared at most of the tuples.
3152  */
3153  total_cost += cpu_operator_cost * input_tuples * numGroupCols;
3154 
3155  /*
3156  * If there are quals (HAVING quals), account for their cost and
3157  * selectivity.
3158  */
3159  if (quals)
3160  {
3161  QualCost qual_cost;
3162 
3163  cost_qual_eval(&qual_cost, quals, root);
3164  startup_cost += qual_cost.startup;
3165  total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
3166 
3167  output_tuples = clamp_row_est(output_tuples *
3169  quals,
3170  0,
3171  JOIN_INNER,
3172  NULL));
3173  }
3174 
3175  path->rows = output_tuples;
3176  path->startup_cost = startup_cost;
3177  path->total_cost = total_cost;
3178 }
3179 
3180 /*
3181  * initial_cost_nestloop
3182  * Preliminary estimate of the cost of a nestloop join path.
3183  *
3184  * This must quickly produce lower-bound estimates of the path's startup and
3185  * total costs. If we are unable to eliminate the proposed path from
3186  * consideration using the lower bounds, final_cost_nestloop will be called
3187  * to obtain the final estimates.
3188  *
3189  * The exact division of labor between this function and final_cost_nestloop
3190  * is private to them, and represents a tradeoff between speed of the initial
3191  * estimate and getting a tight lower bound. We choose to not examine the
3192  * join quals here, since that's by far the most expensive part of the
3193  * calculations. The end result is that CPU-cost considerations must be
3194  * left for the second phase; and for SEMI/ANTI joins, we must also postpone
3195  * incorporation of the inner path's run cost.
3196  *
3197  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
3198  * other data to be used by final_cost_nestloop
3199  * 'jointype' is the type of join to be performed
3200  * 'outer_path' is the outer input to the join
3201  * 'inner_path' is the inner input to the join
3202  * 'extra' contains miscellaneous information about the join
3203  */
3204 void
3206  JoinType jointype,
3207  Path *outer_path, Path *inner_path,
3208  JoinPathExtraData *extra)
3209 {
3210  Cost startup_cost = 0;
3211  Cost run_cost = 0;
3212  double outer_path_rows = outer_path->rows;
3213  Cost inner_rescan_start_cost;
3214  Cost inner_rescan_total_cost;
3215  Cost inner_run_cost;
3216  Cost inner_rescan_run_cost;
3217 
3218  /* estimate costs to rescan the inner relation */
3219  cost_rescan(root, inner_path,
3220  &inner_rescan_start_cost,
3221  &inner_rescan_total_cost);
3222 
3223  /* cost of source data */
3224 
3225  /*
3226  * NOTE: clearly, we must pay both outer and inner paths' startup_cost
3227  * before we can start returning tuples, so the join's startup cost is
3228  * their sum. We'll also pay the inner path's rescan startup cost
3229  * multiple times.
3230  */
3231  startup_cost += outer_path->startup_cost + inner_path->startup_cost;
3232  run_cost += outer_path->total_cost - outer_path->startup_cost;
3233  if (outer_path_rows > 1)
3234  run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
3235 
3236  inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
3237  inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
3238 
3239  if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
3240  extra->inner_unique)
3241  {
3242  /*
3243  * With a SEMI or ANTI join, or if the innerrel is known unique, the
3244  * executor will stop after the first match.
3245  *
3246  * Getting decent estimates requires inspection of the join quals,
3247  * which we choose to postpone to final_cost_nestloop.
3248  */
3249 
3250  /* Save private data for final_cost_nestloop */
3251  workspace->inner_run_cost = inner_run_cost;
3252  workspace->inner_rescan_run_cost = inner_rescan_run_cost;
3253  }
3254  else
3255  {
3256  /* Normal case; we'll scan whole input rel for each outer row */
3257  run_cost += inner_run_cost;
3258  if (outer_path_rows > 1)
3259  run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
3260  }
3261 
3262  /* CPU costs left for later */
3263 
3264  /* Public result fields */
3265  workspace->startup_cost = startup_cost;
3266  workspace->total_cost = startup_cost + run_cost;
3267  /* Save private data for final_cost_nestloop */
3268  workspace->run_cost = run_cost;
3269 }
3270 
3271 /*
3272  * final_cost_nestloop
3273  * Final estimate of the cost and result size of a nestloop join path.
3274  *
3275  * 'path' is already filled in except for the rows and cost fields
3276  * 'workspace' is the result from initial_cost_nestloop
3277  * 'extra' contains miscellaneous information about the join
3278  */
3279 void
3281  JoinCostWorkspace *workspace,
3282  JoinPathExtraData *extra)
3283 {
3284  Path *outer_path = path->jpath.outerjoinpath;
3285  Path *inner_path = path->jpath.innerjoinpath;
3286  double outer_path_rows = outer_path->rows;
3287  double inner_path_rows = inner_path->rows;
3288  Cost startup_cost = workspace->startup_cost;
3289  Cost run_cost = workspace->run_cost;
3290  Cost cpu_per_tuple;
3291  QualCost restrict_qual_cost;
3292  double ntuples;
3293 
3294  /* Protect some assumptions below that rowcounts aren't zero */
3295  if (outer_path_rows <= 0)
3296  outer_path_rows = 1;
3297  if (inner_path_rows <= 0)
3298  inner_path_rows = 1;
3299  /* Mark the path with the correct row estimate */
3300  if (path->jpath.path.param_info)
3301  path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
3302  else
3303  path->jpath.path.rows = path->jpath.path.parent->rows;
3304 
3305  /* For partial paths, scale row estimate. */
3306  if (path->jpath.path.parallel_workers > 0)
3307  {
3308  double parallel_divisor = get_parallel_divisor(&path->jpath.path);
3309 
3310  path->jpath.path.rows =
3311  clamp_row_est(path->jpath.path.rows / parallel_divisor);
3312  }
3313 
3314  /*
3315  * We could include disable_cost in the preliminary estimate, but that
3316  * would amount to optimizing for the case where the join method is
3317  * disabled, which doesn't seem like the way to bet.
3318  */
3319  if (!enable_nestloop)
3320  startup_cost += disable_cost;
3321 
3322  /* cost of inner-relation source data (we already dealt with outer rel) */
3323 
3324  if (path->jpath.jointype == JOIN_SEMI || path->jpath.jointype == JOIN_ANTI ||
3325  extra->inner_unique)
3326  {
3327  /*
3328  * With a SEMI or ANTI join, or if the innerrel is known unique, the
3329  * executor will stop after the first match.
3330  */
3331  Cost inner_run_cost = workspace->inner_run_cost;
3332  Cost inner_rescan_run_cost = workspace->inner_rescan_run_cost;
3333  double outer_matched_rows;
3334  double outer_unmatched_rows;
3335  Selectivity inner_scan_frac;
3336 
3337  /*
3338  * For an outer-rel row that has at least one match, we can expect the
3339  * inner scan to stop after a fraction 1/(match_count+1) of the inner
3340  * rows, if the matches are evenly distributed. Since they probably
3341  * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
3342  * that fraction. (If we used a larger fuzz factor, we'd have to
3343  * clamp inner_scan_frac to at most 1.0; but since match_count is at
3344  * least 1, no such clamp is needed now.)
3345  */
3346  outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
3347  outer_unmatched_rows = outer_path_rows - outer_matched_rows;
3348  inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
3349 
3350  /*
3351  * Compute number of tuples processed (not number emitted!). First,
3352  * account for successfully-matched outer rows.
3353  */
3354  ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
3355 
3356  /*
3357  * Now we need to estimate the actual costs of scanning the inner
3358  * relation, which may be quite a bit less than N times inner_run_cost
3359  * due to early scan stops. We consider two cases. If the inner path
3360  * is an indexscan using all the joinquals as indexquals, then an
3361  * unmatched outer row results in an indexscan returning no rows,
3362  * which is probably quite cheap. Otherwise, the executor will have
3363  * to scan the whole inner rel for an unmatched row; not so cheap.
3364  */
3365  if (has_indexed_join_quals(path))
3366  {
3367  /*
3368  * Successfully-matched outer rows will only require scanning
3369  * inner_scan_frac of the inner relation. In this case, we don't
3370  * need to charge the full inner_run_cost even when that's more
3371  * than inner_rescan_run_cost, because we can assume that none of
3372  * the inner scans ever scan the whole inner relation. So it's
3373  * okay to assume that all the inner scan executions can be
3374  * fractions of the full cost, even if materialization is reducing
3375  * the rescan cost. At this writing, it's impossible to get here
3376  * for a materialized inner scan, so inner_run_cost and
3377  * inner_rescan_run_cost will be the same anyway; but just in
3378  * case, use inner_run_cost for the first matched tuple and
3379  * inner_rescan_run_cost for additional ones.
3380  */
3381  run_cost += inner_run_cost * inner_scan_frac;
3382  if (outer_matched_rows > 1)
3383  run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
3384 
3385  /*
3386  * Add the cost of inner-scan executions for unmatched outer rows.
3387  * We estimate this as the same cost as returning the first tuple
3388  * of a nonempty scan. We consider that these are all rescans,
3389  * since we used inner_run_cost once already.
3390  */
3391  run_cost += outer_unmatched_rows *
3392  inner_rescan_run_cost / inner_path_rows;
3393 
3394  /*
3395  * We won't be evaluating any quals at all for unmatched rows, so
3396  * don't add them to ntuples.
3397  */
3398  }
3399  else
3400  {
3401  /*
3402  * Here, a complicating factor is that rescans may be cheaper than
3403  * first scans. If we never scan all the way to the end of the
3404  * inner rel, it might be (depending on the plan type) that we'd
3405  * never pay the whole inner first-scan run cost. However it is
3406  * difficult to estimate whether that will happen (and it could
3407  * not happen if there are any unmatched outer rows!), so be
3408  * conservative and always charge the whole first-scan cost once.
3409  * We consider this charge to correspond to the first unmatched
3410  * outer row, unless there isn't one in our estimate, in which
3411  * case blame it on the first matched row.
3412  */
3413 
3414  /* First, count all unmatched join tuples as being processed */
3415  ntuples += outer_unmatched_rows * inner_path_rows;
3416 
3417  /* Now add the forced full scan, and decrement appropriate count */
3418  run_cost += inner_run_cost;
3419  if (outer_unmatched_rows >= 1)
3420  outer_unmatched_rows -= 1;
3421  else
3422  outer_matched_rows -= 1;
3423 
3424  /* Add inner run cost for additional outer tuples having matches */
3425  if (outer_matched_rows > 0)
3426  run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
3427 
3428  /* Add inner run cost for additional unmatched outer tuples */
3429  if (outer_unmatched_rows > 0)
3430  run_cost += outer_unmatched_rows * inner_rescan_run_cost;
3431  }
3432  }
3433  else
3434  {
3435  /* Normal-case source costs were included in preliminary estimate */
3436 
3437  /* Compute number of tuples processed (not number emitted!) */
3438  ntuples = outer_path_rows * inner_path_rows;
3439  }
3440 
3441  /* CPU costs */
3442  cost_qual_eval(&restrict_qual_cost, path->jpath.joinrestrictinfo, root);
3443  startup_cost += restrict_qual_cost.startup;
3444  cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
3445  run_cost += cpu_per_tuple * ntuples;
3446 
3447  /* tlist eval costs are paid per output row, not per tuple scanned */
3448  startup_cost += path->jpath.path.pathtarget->cost.startup;
3449  run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
3450 
3451  path->jpath.path.startup_cost = startup_cost;
3452  path->jpath.path.total_cost = startup_cost + run_cost;
3453 }
3454 
3455 /*
3456  * initial_cost_mergejoin
3457  * Preliminary estimate of the cost of a mergejoin path.
3458  *
3459  * This must quickly produce lower-bound estimates of the path's startup and
3460  * total costs. If we are unable to eliminate the proposed path from
3461  * consideration using the lower bounds, final_cost_mergejoin will be called
3462  * to obtain the final estimates.
3463  *
3464  * The exact division of labor between this function and final_cost_mergejoin
3465  * is private to them, and represents a tradeoff between speed of the initial
3466  * estimate and getting a tight lower bound. We choose to not examine the
3467  * join quals here, except for obtaining the scan selectivity estimate which
3468  * is really essential (but fortunately, use of caching keeps the cost of
3469  * getting that down to something reasonable).
3470  * We also assume that cost_sort is cheap enough to use here.
3471  *
3472  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
3473  * other data to be used by final_cost_mergejoin
3474  * 'jointype' is the type of join to be performed
3475  * 'mergeclauses' is the list of joinclauses to be used as merge clauses
3476  * 'outer_path' is the outer input to the join
3477  * 'inner_path' is the inner input to the join
3478  * 'outersortkeys' is the list of sort keys for the outer path
3479  * 'innersortkeys' is the list of sort keys for the inner path
3480  * 'extra' contains miscellaneous information about the join
3481  *
3482  * Note: outersortkeys and innersortkeys should be NIL if no explicit
3483  * sort is needed because the respective source path is already ordered.
3484  */
3485 void
3487  JoinType jointype,
3488  List *mergeclauses,
3489  Path *outer_path, Path *inner_path,
3490  List *outersortkeys, List *innersortkeys,
3491  JoinPathExtraData *extra)
3492 {
3493  Cost startup_cost = 0;
3494  Cost run_cost = 0;
3495  double outer_path_rows = outer_path->rows;
3496  double inner_path_rows = inner_path->rows;
3497  Cost inner_run_cost;
3498  double outer_rows,
3499  inner_rows,
3500  outer_skip_rows,
3501  inner_skip_rows;
3502  Selectivity outerstartsel,
3503  outerendsel,
3504  innerstartsel,
3505  innerendsel;
3506  Path sort_path; /* dummy for result of cost_sort */
3507 
3508  /* Protect some assumptions below that rowcounts aren't zero */
3509  if (outer_path_rows <= 0)
3510  outer_path_rows = 1;
3511  if (inner_path_rows <= 0)
3512  inner_path_rows = 1;
3513 
3514  /*
3515  * A merge join will stop as soon as it exhausts either input stream
3516  * (unless it's an outer join, in which case the outer side has to be
3517  * scanned all the way anyway). Estimate fraction of the left and right
3518  * inputs that will actually need to be scanned. Likewise, we can
3519  * estimate the number of rows that will be skipped before the first join
3520  * pair is found, which should be factored into startup cost. We use only
3521  * the first (most significant) merge clause for this purpose. Since
3522  * mergejoinscansel() is a fairly expensive computation, we cache the
3523  * results in the merge clause RestrictInfo.
3524  */
3525  if (mergeclauses && jointype != JOIN_FULL)
3526  {
3527  RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
3528  List *opathkeys;
3529  List *ipathkeys;
3530  PathKey *opathkey;
3531  PathKey *ipathkey;
3532  MergeScanSelCache *cache;
3533 
3534  /* Get the input pathkeys to determine the sort-order details */
3535  opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
3536  ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
3537  Assert(opathkeys);
3538  Assert(ipathkeys);
3539  opathkey = (PathKey *) linitial(opathkeys);
3540  ipathkey = (PathKey *) linitial(ipathkeys);
3541  /* debugging check */
3542  if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
3543  opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
3544  opathkey->pk_strategy != ipathkey->pk_strategy ||
3545  opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
3546  elog(ERROR, "left and right pathkeys do not match in mergejoin");
3547 
3548  /* Get the selectivity with caching */
3549  cache = cached_scansel(root, firstclause, opathkey);
3550 
3551  if (bms_is_subset(firstclause->left_relids,
3552  outer_path->parent->relids))
3553  {
3554  /* left side of clause is outer */
3555  outerstartsel = cache->leftstartsel;
3556  outerendsel = cache->leftendsel;
3557  innerstartsel = cache->rightstartsel;
3558  innerendsel = cache->rightendsel;
3559  }
3560  else
3561  {
3562  /* left side of clause is inner */
3563  outerstartsel = cache->rightstartsel;
3564  outerendsel = cache->rightendsel;
3565  innerstartsel = cache->leftstartsel;
3566  innerendsel = cache->leftendsel;
3567  }
3568  if (jointype == JOIN_LEFT ||
3569  jointype == JOIN_ANTI)
3570  {
3571  outerstartsel = 0.0;
3572  outerendsel = 1.0;
3573  }
3574  else if (jointype == JOIN_RIGHT ||
3575  jointype == JOIN_RIGHT_ANTI)
3576  {
3577  innerstartsel = 0.0;
3578  innerendsel = 1.0;
3579  }
3580  }
3581  else
3582  {
3583  /* cope with clauseless or full mergejoin */
3584  outerstartsel = innerstartsel = 0.0;
3585  outerendsel = innerendsel = 1.0;
3586  }
3587 
3588  /*
3589  * Convert selectivities to row counts. We force outer_rows and
3590  * inner_rows to be at least 1, but the skip_rows estimates can be zero.
3591  */
3592  outer_skip_rows = rint(outer_path_rows * outerstartsel);
3593  inner_skip_rows = rint(inner_path_rows * innerstartsel);
3594  outer_rows = clamp_row_est(outer_path_rows * outerendsel);
3595  inner_rows = clamp_row_est(inner_path_rows * innerendsel);
3596 
3597  Assert(outer_skip_rows <= outer_rows);
3598  Assert(inner_skip_rows <= inner_rows);
3599 
3600  /*
3601  * Readjust scan selectivities to account for above rounding. This is
3602  * normally an insignificant effect, but when there are only a few rows in
3603  * the inputs, failing to do this makes for a large percentage error.
3604  */
3605  outerstartsel = outer_skip_rows / outer_path_rows;
3606  innerstartsel = inner_skip_rows / inner_path_rows;
3607  outerendsel = outer_rows / outer_path_rows;
3608  innerendsel = inner_rows / inner_path_rows;
3609 
3610  Assert(outerstartsel <= outerendsel);
3611  Assert(innerstartsel <= innerendsel);
3612 
3613  /* cost of source data */
3614 
3615  if (outersortkeys) /* do we need to sort outer? */
3616  {
3617  cost_sort(&sort_path,
3618  root,
3619  outersortkeys,
3620  outer_path->total_cost,
3621  outer_path_rows,
3622  outer_path->pathtarget->width,
3623  0.0,
3624  work_mem,
3625  -1.0);
3626  startup_cost += sort_path.startup_cost;
3627  startup_cost += (sort_path.total_cost - sort_path.startup_cost)
3628  * outerstartsel;
3629  run_cost += (sort_path.total_cost - sort_path.startup_cost)
3630  * (outerendsel - outerstartsel);
3631  }
3632  else
3633  {
3634  startup_cost += outer_path->startup_cost;
3635  startup_cost += (outer_path->total_cost - outer_path->startup_cost)
3636  * outerstartsel;
3637  run_cost += (outer_path->total_cost - outer_path->startup_cost)
3638  * (outerendsel - outerstartsel);
3639  }
3640 
3641  if (innersortkeys) /* do we need to sort inner? */
3642  {
3643  cost_sort(&sort_path,
3644  root,
3645  innersortkeys,
3646  inner_path->total_cost,
3647  inner_path_rows,
3648  inner_path->pathtarget->width,
3649  0.0,
3650  work_mem,
3651  -1.0);
3652  startup_cost += sort_path.startup_cost;
3653  startup_cost += (sort_path.total_cost - sort_path.startup_cost)
3654  * innerstartsel;
3655  inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
3656  * (innerendsel - innerstartsel);
3657  }
3658  else
3659  {
3660  startup_cost += inner_path->startup_cost;
3661  startup_cost += (inner_path->total_cost - inner_path->startup_cost)
3662  * innerstartsel;
3663  inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
3664  * (innerendsel - innerstartsel);
3665  }
3666 
3667  /*
3668  * We can't yet determine whether rescanning occurs, or whether
3669  * materialization of the inner input should be done. The minimum
3670  * possible inner input cost, regardless of rescan and materialization
3671  * considerations, is inner_run_cost. We include that in
3672  * workspace->total_cost, but not yet in run_cost.
3673  */
3674 
3675  /* CPU costs left for later */
3676 
3677  /* Public result fields */
3678  workspace->startup_cost = startup_cost;
3679  workspace->total_cost = startup_cost + run_cost + inner_run_cost;
3680  /* Save private data for final_cost_mergejoin */
3681  workspace->run_cost = run_cost;
3682  workspace->inner_run_cost = inner_run_cost;
3683  workspace->outer_rows = outer_rows;
3684  workspace->inner_rows = inner_rows;
3685  workspace->outer_skip_rows = outer_skip_rows;
3686  workspace->inner_skip_rows = inner_skip_rows;
3687 }
3688 
3689 /*
3690  * final_cost_mergejoin
3691  * Final estimate of the cost and result size of a mergejoin path.
3692  *
3693  * Unlike other costsize functions, this routine makes two actual decisions:
3694  * whether the executor will need to do mark/restore, and whether we should
3695  * materialize the inner path. It would be logically cleaner to build
3696  * separate paths testing these alternatives, but that would require repeating
3697  * most of the cost calculations, which are not all that cheap. Since the
3698  * choice will not affect output pathkeys or startup cost, only total cost,
3699  * there is no possibility of wanting to keep more than one path. So it seems
3700  * best to make the decisions here and record them in the path's
3701  * skip_mark_restore and materialize_inner fields.
3702  *
3703  * Mark/restore overhead is usually required, but can be skipped if we know
3704  * that the executor need find only one match per outer tuple, and that the
3705  * mergeclauses are sufficient to identify a match.
3706  *
3707  * We materialize the inner path if we need mark/restore and either the inner
3708  * path can't support mark/restore, or it's cheaper to use an interposed
3709  * Material node to handle mark/restore.
3710  *
3711  * 'path' is already filled in except for the rows and cost fields and
3712  * skip_mark_restore and materialize_inner
3713  * 'workspace' is the result from initial_cost_mergejoin
3714  * 'extra' contains miscellaneous information about the join
3715  */
3716 void
3718  JoinCostWorkspace *workspace,
3719  JoinPathExtraData *extra)
3720 {
3721  Path *outer_path = path->jpath.outerjoinpath;
3722  Path *inner_path = path->jpath.innerjoinpath;
3723  double inner_path_rows = inner_path->rows;
3724  List *mergeclauses = path->path_mergeclauses;
3725  List *innersortkeys = path->innersortkeys;
3726  Cost startup_cost = workspace->startup_cost;
3727  Cost run_cost = workspace->run_cost;
3728  Cost inner_run_cost = workspace->inner_run_cost;
3729  double outer_rows = workspace->outer_rows;
3730  double inner_rows = workspace->inner_rows;
3731  double outer_skip_rows = workspace->outer_skip_rows;
3732  double inner_skip_rows = workspace->inner_skip_rows;
3733  Cost cpu_per_tuple,
3734  bare_inner_cost,
3735  mat_inner_cost;
3736  QualCost merge_qual_cost;
3737  QualCost qp_qual_cost;
3738  double mergejointuples,
3739  rescannedtuples;
3740  double rescanratio;
3741 
3742  /* Protect some assumptions below that rowcounts aren't zero */
3743  if (inner_path_rows <= 0)
3744  inner_path_rows = 1;
3745 
3746  /* Mark the path with the correct row estimate */
3747  if (path->jpath.path.param_info)
3748  path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
3749  else
3750  path->jpath.path.rows = path->jpath.path.parent->rows;
3751 
3752  /* For partial paths, scale row estimate. */
3753  if (path->jpath.path.parallel_workers > 0)
3754  {
3755  double parallel_divisor = get_parallel_divisor(&path->jpath.path);
3756 
3757  path->jpath.path.rows =
3758  clamp_row_est(path->jpath.path.rows / parallel_divisor);
3759  }
3760 
3761  /*
3762  * We could include disable_cost in the preliminary estimate, but that
3763  * would amount to optimizing for the case where the join method is
3764  * disabled, which doesn't seem like the way to bet.
3765  */
3766  if (!enable_mergejoin)
3767  startup_cost += disable_cost;
3768 
3769  /*
3770  * Compute cost of the mergequals and qpquals (other restriction clauses)
3771  * separately.
3772  */
3773  cost_qual_eval(&merge_qual_cost, mergeclauses, root);
3774  cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
3775  qp_qual_cost.startup -= merge_qual_cost.startup;
3776  qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
3777 
3778  /*
3779  * With a SEMI or ANTI join, or if the innerrel is known unique, the
3780  * executor will stop scanning for matches after the first match. When
3781  * all the joinclauses are merge clauses, this means we don't ever need to
3782  * back up the merge, and so we can skip mark/restore overhead.
3783  */
3784  if ((path->jpath.jointype == JOIN_SEMI ||
3785  path->jpath.jointype == JOIN_ANTI ||
3786  extra->inner_unique) &&
3789  path->skip_mark_restore = true;
3790  else
3791  path->skip_mark_restore = false;
3792 
3793  /*
3794  * Get approx # tuples passing the mergequals. We use approx_tuple_count
3795  * here because we need an estimate done with JOIN_INNER semantics.
3796  */
3797  mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
3798 
3799  /*
3800  * When there are equal merge keys in the outer relation, the mergejoin
3801  * must rescan any matching tuples in the inner relation. This means
3802  * re-fetching inner tuples; we have to estimate how often that happens.
3803  *
3804  * For regular inner and outer joins, the number of re-fetches can be
3805  * estimated approximately as size of merge join output minus size of
3806  * inner relation. Assume that the distinct key values are 1, 2, ..., and
3807  * denote the number of values of each key in the outer relation as m1,
3808  * m2, ...; in the inner relation, n1, n2, ... Then we have
3809  *
3810  * size of join = m1 * n1 + m2 * n2 + ...
3811  *
3812  * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
3813  * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
3814  * relation
3815  *
3816  * This equation works correctly for outer tuples having no inner match
3817  * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
3818  * are effectively subtracting those from the number of rescanned tuples,
3819  * when we should not. Can we do better without expensive selectivity
3820  * computations?
3821  *
3822  * The whole issue is moot if we are working from a unique-ified outer
3823  * input, or if we know we don't need to mark/restore at all.
3824  */
3825  if (IsA(outer_path, UniquePath) || path->skip_mark_restore)
3826  rescannedtuples = 0;
3827  else
3828  {
3829  rescannedtuples = mergejointuples - inner_path_rows;
3830  /* Must clamp because of possible underestimate */
3831  if (rescannedtuples < 0)
3832  rescannedtuples = 0;
3833  }
3834 
3835  /*
3836  * We'll inflate various costs this much to account for rescanning. Note
3837  * that this is to be multiplied by something involving inner_rows, or
3838  * another number related to the portion of the inner rel we'll scan.
3839  */
3840  rescanratio = 1.0 + (rescannedtuples / inner_rows);
3841 
3842  /*
3843  * Decide whether we want to materialize the inner input to shield it from
3844  * mark/restore and performing re-fetches. Our cost model for regular
3845  * re-fetches is that a re-fetch costs the same as an original fetch,
3846  * which is probably an overestimate; but on the other hand we ignore the
3847  * bookkeeping costs of mark/restore. Not clear if it's worth developing
3848  * a more refined model. So we just need to inflate the inner run cost by
3849  * rescanratio.
3850  */
3851  bare_inner_cost = inner_run_cost * rescanratio;
3852 
3853  /*
3854  * When we interpose a Material node the re-fetch cost is assumed to be
3855  * just cpu_operator_cost per tuple, independently of the underlying
3856  * plan's cost; and we charge an extra cpu_operator_cost per original
3857  * fetch as well. Note that we're assuming the materialize node will
3858  * never spill to disk, since it only has to remember tuples back to the
3859  * last mark. (If there are a huge number of duplicates, our other cost
3860  * factors will make the path so expensive that it probably won't get
3861  * chosen anyway.) So we don't use cost_rescan here.
3862  *
3863  * Note: keep this estimate in sync with create_mergejoin_plan's labeling
3864  * of the generated Material node.
3865  */
3866  mat_inner_cost = inner_run_cost +
3867  cpu_operator_cost * inner_rows * rescanratio;
3868 
3869  /*
3870  * If we don't need mark/restore at all, we don't need materialization.
3871  */
3872  if (path->skip_mark_restore)
3873  path->materialize_inner = false;
3874 
3875  /*
3876  * Prefer materializing if it looks cheaper, unless the user has asked to
3877  * suppress materialization.
3878  */
3879  else if (enable_material && mat_inner_cost < bare_inner_cost)
3880  path->materialize_inner = true;
3881 
3882  /*
3883  * Even if materializing doesn't look cheaper, we *must* do it if the
3884  * inner path is to be used directly (without sorting) and it doesn't
3885  * support mark/restore.
3886  *
3887  * Since the inner side must be ordered, and only Sorts and IndexScans can
3888  * create order to begin with, and they both support mark/restore, you
3889  * might think there's no problem --- but you'd be wrong. Nestloop and
3890  * merge joins can *preserve* the order of their inputs, so they can be
3891  * selected as the input of a mergejoin, and they don't support
3892  * mark/restore at present.
3893  *
3894  * We don't test the value of enable_material here, because
3895  * materialization is required for correctness in this case, and turning
3896  * it off does not entitle us to deliver an invalid plan.
3897  */
3898  else if (innersortkeys == NIL &&
3899  !ExecSupportsMarkRestore(inner_path))
3900  path->materialize_inner = true;
3901 
3902  /*
3903  * Also, force materializing if the inner path is to be sorted and the
3904  * sort is expected to spill to disk. This is because the final merge
3905  * pass can be done on-the-fly if it doesn't have to support mark/restore.
3906  * We don't try to adjust the cost estimates for this consideration,
3907  * though.
3908  *
3909  * Since materialization is a performance optimization in this case,
3910  * rather than necessary for correctness, we skip it if enable_material is
3911  * off.
3912  */
3913  else if (enable_material && innersortkeys != NIL &&
3914  relation_byte_size(inner_path_rows,
3915  inner_path->pathtarget->width) >
3916  (work_mem * 1024L))
3917  path->materialize_inner = true;
3918  else
3919  path->materialize_inner = false;
3920 
3921  /* Charge the right incremental cost for the chosen case */
3922  if (path->materialize_inner)
3923  run_cost += mat_inner_cost;
3924  else
3925  run_cost += bare_inner_cost;
3926 
3927  /* CPU costs */
3928 
3929  /*
3930  * The number of tuple comparisons needed is approximately number of outer
3931  * rows plus number of inner rows plus number of rescanned tuples (can we
3932  * refine this?). At each one, we need to evaluate the mergejoin quals.
3933  */
3934  startup_cost += merge_qual_cost.startup;
3935  startup_cost += merge_qual_cost.per_tuple *
3936  (outer_skip_rows + inner_skip_rows * rescanratio);
3937  run_cost += merge_qual_cost.per_tuple *
3938  ((outer_rows - outer_skip_rows) +
3939  (inner_rows - inner_skip_rows) * rescanratio);
3940 
3941  /*
3942  * For each tuple that gets through the mergejoin proper, we charge
3943  * cpu_tuple_cost plus the cost of evaluating additional restriction
3944  * clauses that are to be applied at the join. (This is pessimistic since
3945  * not all of the quals may get evaluated at each tuple.)
3946  *
3947  * Note: we could adjust for SEMI/ANTI joins skipping some qual
3948  * evaluations here, but it's probably not worth the trouble.
3949  */
3950  startup_cost += qp_qual_cost.startup;
3951  cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
3952  run_cost += cpu_per_tuple * mergejointuples;
3953 
3954  /* tlist eval costs are paid per output row, not per tuple scanned */
3955  startup_cost += path->jpath.path.pathtarget->cost.startup;
3956  run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
3957 
3958  path->jpath.path.startup_cost = startup_cost;
3959  path->jpath.path.total_cost = startup_cost + run_cost;
3960 }
3961 
3962 /*
3963  * run mergejoinscansel() with caching
3964  */
3965 static MergeScanSelCache *
3967 {
3968  MergeScanSelCache *cache;
3969  ListCell *lc;
3970  Selectivity leftstartsel,
3971  leftendsel,
3972  rightstartsel,
3973  rightendsel;
3974  MemoryContext oldcontext;
3975 
3976  /* Do we have this result already? */
3977  foreach(lc, rinfo->scansel_cache)
3978  {
3979  cache = (MergeScanSelCache *) lfirst(lc);
3980  if (cache->opfamily == pathkey->pk_opfamily &&
3981  cache->collation == pathkey->pk_eclass->ec_collation &&
3982  cache->strategy == pathkey->pk_strategy &&
3983  cache->nulls_first == pathkey->pk_nulls_first)
3984  return cache;
3985  }
3986 
3987  /* Nope, do the computation */
3988  mergejoinscansel(root,
3989  (Node *) rinfo->clause,
3990  pathkey->pk_opfamily,
3991  pathkey->pk_strategy,
3992  pathkey->pk_nulls_first,
3993  &leftstartsel,
3994  &leftendsel,
3995  &rightstartsel,
3996  &rightendsel);
3997 
3998  /* Cache the result in suitably long-lived workspace */
3999  oldcontext = MemoryContextSwitchTo(root->planner_cxt);
4000 
4001  cache = (MergeScanSelCache *) palloc(sizeof(MergeScanSelCache));
4002  cache->opfamily = pathkey->pk_opfamily;
4003  cache->collation = pathkey->pk_eclass->ec_collation;
4004  cache->strategy = pathkey->pk_strategy;
4005  cache->nulls_first = pathkey->pk_nulls_first;
4006  cache->leftstartsel = leftstartsel;
4007  cache->leftendsel = leftendsel;
4008  cache->rightstartsel = rightstartsel;
4009  cache->rightendsel = rightendsel;
4010 
4011  rinfo->scansel_cache = lappend(rinfo->scansel_cache, cache);
4012 
4013  MemoryContextSwitchTo(oldcontext);
4014 
4015  return cache;
4016 }
4017 
4018 /*
4019  * initial_cost_hashjoin
4020  * Preliminary estimate of the cost of a hashjoin path.
4021  *
4022  * This must quickly produce lower-bound estimates of the path's startup and
4023  * total costs. If we are unable to eliminate the proposed path from
4024  * consideration using the lower bounds, final_cost_hashjoin will be called
4025  * to obtain the final estimates.
4026  *
4027  * The exact division of labor between this function and final_cost_hashjoin
4028  * is private to them, and represents a tradeoff between speed of the initial
4029  * estimate and getting a tight lower bound. We choose to not examine the
4030  * join quals here (other than by counting the number of hash clauses),
4031  * so we can't do much with CPU costs. We do assume that
4032  * ExecChooseHashTableSize is cheap enough to use here.
4033  *
4034  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
4035  * other data to be used by final_cost_hashjoin
4036  * 'jointype' is the type of join to be performed
4037  * 'hashclauses' is the list of joinclauses to be used as hash clauses
4038  * 'outer_path' is the outer input to the join
4039  * 'inner_path' is the inner input to the join
4040  * 'extra' contains miscellaneous information about the join
4041  * 'parallel_hash' indicates that inner_path is partial and that a shared
4042  * hash table will be built in parallel
4043  */
4044 void
4046  JoinType jointype,
4047  List *hashclauses,
4048  Path *outer_path, Path *inner_path,
4049  JoinPathExtraData *extra,
4050  bool parallel_hash)
4051 {
4052  Cost startup_cost = 0;
4053  Cost run_cost = 0;
4054  double outer_path_rows = outer_path->rows;
4055  double inner_path_rows = inner_path->rows;
4056  double inner_path_rows_total = inner_path_rows;
4057  int num_hashclauses = list_length(hashclauses);
4058  int numbuckets;
4059  int numbatches;
4060  int num_skew_mcvs;
4061  size_t space_allowed; /* unused */
4062 
4063  /* cost of source data */
4064  startup_cost += outer_path->startup_cost;
4065  run_cost += outer_path->total_cost - outer_path->startup_cost;
4066  startup_cost += inner_path->total_cost;
4067 
4068  /*
4069  * Cost of computing hash function: must do it once per input tuple. We
4070  * charge one cpu_operator_cost for each column's hash function. Also,
4071  * tack on one cpu_tuple_cost per inner row, to model the costs of
4072  * inserting the row into the hashtable.
4073  *
4074  * XXX when a hashclause is more complex than a single operator, we really
4075  * should charge the extra eval costs of the left or right side, as
4076  * appropriate, here. This seems more work than it's worth at the moment.
4077  */
4078  startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
4079  * inner_path_rows;
4080  run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
4081 
4082  /*
4083  * If this is a parallel hash build, then the value we have for
4084  * inner_rows_total currently refers only to the rows returned by each
4085  * participant. For shared hash table size estimation, we need the total
4086  * number, so we need to undo the division.
4087  */
4088  if (parallel_hash)
4089  inner_path_rows_total *= get_parallel_divisor(inner_path);
4090 
4091  /*
4092  * Get hash table size that executor would use for inner relation.
4093  *
4094  * XXX for the moment, always assume that skew optimization will be
4095  * performed. As long as SKEW_HASH_MEM_PERCENT is small, it's not worth
4096  * trying to determine that for sure.
4097  *
4098  * XXX at some point it might be interesting to try to account for skew
4099  * optimization in the cost estimate, but for now, we don't.
4100  */
4101  ExecChooseHashTableSize(inner_path_rows_total,
4102  inner_path->pathtarget->width,
4103  true, /* useskew */
4104  parallel_hash, /* try_combined_hash_mem */
4105  outer_path->parallel_workers,
4106  &space_allowed,
4107  &numbuckets,
4108  &numbatches,
4109  &num_skew_mcvs);
4110 
4111  /*
4112  * If inner relation is too big then we will need to "batch" the join,
4113  * which implies writing and reading most of the tuples to disk an extra
4114  * time. Charge seq_page_cost per page, since the I/O should be nice and
4115  * sequential. Writing the inner rel counts as startup cost, all the rest
4116  * as run cost.
4117  */
4118  if (numbatches > 1)
4119  {
4120  double outerpages = page_size(outer_path_rows,
4121  outer_path->pathtarget->width);
4122  double innerpages = page_size(inner_path_rows,
4123  inner_path->pathtarget->width);
4124 
4125  startup_cost += seq_page_cost * innerpages;
4126  run_cost += seq_page_cost * (innerpages + 2 * outerpages);
4127  }
4128 
4129  /* CPU costs left for later */
4130 
4131  /* Public result fields */
4132  workspace->startup_cost = startup_cost;
4133  workspace->total_cost = startup_cost + run_cost;
4134  /* Save private data for final_cost_hashjoin */
4135  workspace->run_cost = run_cost;
4136  workspace->numbuckets = numbuckets;
4137  workspace->numbatches = numbatches;
4138  workspace->inner_rows_total = inner_path_rows_total;
4139 }
4140 
4141 /*
4142  * final_cost_hashjoin
4143  * Final estimate of the cost and result size of a hashjoin path.
4144  *
4145  * Note: the numbatches estimate is also saved into 'path' for use later
4146  *
4147  * 'path' is already filled in except for the rows and cost fields and
4148  * num_batches
4149  * 'workspace' is the result from initial_cost_hashjoin
4150  * 'extra' contains miscellaneous information about the join
4151  */
4152 void
4154  JoinCostWorkspace *workspace,
4155  JoinPathExtraData *extra)
4156 {
4157  Path *outer_path = path->jpath.outerjoinpath;
4158  Path *inner_path = path->jpath.innerjoinpath;
4159  double outer_path_rows = outer_path->rows;
4160  double inner_path_rows = inner_path->rows;
4161  double inner_path_rows_total = workspace->inner_rows_total;
4162  List *hashclauses = path->path_hashclauses;
4163  Cost startup_cost = workspace->startup_cost;
4164  Cost run_cost = workspace->run_cost;
4165  int numbuckets = workspace->numbuckets;
4166  int numbatches = workspace->numbatches;
4167  Cost cpu_per_tuple;
4168  QualCost hash_qual_cost;
4169  QualCost qp_qual_cost;
4170  double hashjointuples;
4171  double virtualbuckets;
4172  Selectivity innerbucketsize;
4173  Selectivity innermcvfreq;
4174  ListCell *hcl;
4175 
4176  /* Mark the path with the correct row estimate */
4177  if (path->jpath.path.param_info)
4178  path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
4179  else
4180  path->jpath.path.rows = path->jpath.path.parent->rows;
4181 
4182  /* For partial paths, scale row estimate. */
4183  if (path->jpath.path.parallel_workers > 0)
4184  {
4185  double parallel_divisor = get_parallel_divisor(&path->jpath.path);
4186 
4187  path->jpath.path.rows =
4188  clamp_row_est(path->jpath.path.rows / parallel_divisor);
4189  }
4190 
4191  /*
4192  * We could include disable_cost in the preliminary estimate, but that
4193  * would amount to optimizing for the case where the join method is
4194  * disabled, which doesn't seem like the way to bet.
4195  */
4196  if (!enable_hashjoin)
4197  startup_cost += disable_cost;
4198 
4199  /* mark the path with estimated # of batches */
4200  path->num_batches = numbatches;
4201 
4202  /* store the total number of tuples (sum of partial row estimates) */
4203  path->inner_rows_total = inner_path_rows_total;
4204 
4205  /* and compute the number of "virtual" buckets in the whole join */
4206  virtualbuckets = (double) numbuckets * (double) numbatches;
4207 
4208  /*
4209  * Determine bucketsize fraction and MCV frequency for the inner relation.
4210  * We use the smallest bucketsize or MCV frequency estimated for any
4211  * individual hashclause; this is undoubtedly conservative.
4212  *
4213  * BUT: if inner relation has been unique-ified, we can assume it's good
4214  * for hashing. This is important both because it's the right answer, and
4215  * because we avoid contaminating the cache with a value that's wrong for
4216  * non-unique-ified paths.
4217  */
4218  if (IsA(inner_path, UniquePath))
4219  {
4220  innerbucketsize = 1.0 / virtualbuckets;
4221  innermcvfreq = 0.0;
4222  }
4223  else
4224  {
4225  innerbucketsize = 1.0;
4226  innermcvfreq = 1.0;
4227  foreach(hcl, hashclauses)
4228  {
4229  RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
4230  Selectivity thisbucketsize;
4231  Selectivity thismcvfreq;
4232 
4233  /*
4234  * First we have to figure out which side of the hashjoin clause
4235  * is the inner side.
4236  *
4237  * Since we tend to visit the same clauses over and over when
4238  * planning a large query, we cache the bucket stats estimates in
4239  * the RestrictInfo node to avoid repeated lookups of statistics.
4240  */
4241  if (bms_is_subset(restrictinfo->right_relids,
4242  inner_path->parent->relids))
4243  {
4244  /* righthand side is inner */
4245  thisbucketsize = restrictinfo->right_bucketsize;
4246  if (thisbucketsize < 0)
4247  {
4248  /* not cached yet */
4250  get_rightop(restrictinfo->clause),
4251  virtualbuckets,
4252  &restrictinfo->right_mcvfreq,
4253  &restrictinfo->right_bucketsize);
4254  thisbucketsize = restrictinfo->right_bucketsize;
4255  }
4256  thismcvfreq = restrictinfo->right_mcvfreq;
4257  }
4258  else
4259  {
4260  Assert(bms_is_subset(restrictinfo->left_relids,
4261  inner_path->parent->relids));
4262  /* lefthand side is inner */
4263  thisbucketsize = restrictinfo->left_bucketsize;
4264  if (thisbucketsize < 0)
4265  {
4266  /* not cached yet */
4268  get_leftop(restrictinfo->clause),
4269  virtualbuckets,
4270  &restrictinfo->left_mcvfreq,
4271  &restrictinfo->left_bucketsize);
4272  thisbucketsize = restrictinfo->left_bucketsize;
4273  }
4274  thismcvfreq = restrictinfo->left_mcvfreq;
4275  }
4276 
4277  if (innerbucketsize > thisbucketsize)
4278  innerbucketsize = thisbucketsize;
4279  if (innermcvfreq > thismcvfreq)
4280  innermcvfreq = thismcvfreq;
4281  }
4282  }
4283 
4284  /*
4285  * If the bucket holding the inner MCV would exceed hash_mem, we don't
4286  * want to hash unless there is really no other alternative, so apply
4287  * disable_cost. (The executor normally copes with excessive memory usage
4288  * by splitting batches, but obviously it cannot separate equal values
4289  * that way, so it will be unable to drive the batch size below hash_mem
4290  * when this is true.)
4291  */
4292  if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
4293  inner_path->pathtarget->width) > get_hash_memory_limit())
4294  startup_cost += disable_cost;
4295 
4296  /*
4297  * Compute cost of the hashquals and qpquals (other restriction clauses)
4298  * separately.
4299  */
4300  cost_qual_eval(&hash_qual_cost, hashclauses, root);
4301  cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
4302  qp_qual_cost.startup -= hash_qual_cost.startup;
4303  qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
4304 
4305  /* CPU costs */
4306 
4307  if (path->jpath.jointype == JOIN_SEMI ||
4308  path->jpath.jointype == JOIN_ANTI ||
4309  extra->inner_unique)
4310  {
4311  double outer_matched_rows;
4312  Selectivity inner_scan_frac;
4313 
4314  /*
4315  * With a SEMI or ANTI join, or if the innerrel is known unique, the
4316  * executor will stop after the first match.
4317  *
4318  * For an outer-rel row that has at least one match, we can expect the
4319  * bucket scan to stop after a fraction 1/(match_count+1) of the
4320  * bucket's rows, if the matches are evenly distributed. Since they
4321  * probably aren't quite evenly distributed, we apply a fuzz factor of
4322  * 2.0 to that fraction. (If we used a larger fuzz factor, we'd have
4323  * to clamp inner_scan_frac to at most 1.0; but since match_count is
4324  * at least 1, no such clamp is needed now.)
4325  */
4326  outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
4327  inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
4328 
4329  startup_cost += hash_qual_cost.startup;
4330  run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
4331  clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
4332 
4333  /*
4334  * For unmatched outer-rel rows, the picture is quite a lot different.
4335  * In the first place, there is no reason to assume that these rows
4336  * preferentially hit heavily-populated buckets; instead assume they
4337  * are uncorrelated with the inner distribution and so they see an
4338  * average bucket size of inner_path_rows / virtualbuckets. In the
4339  * second place, it seems likely that they will have few if any exact
4340  * hash-code matches and so very few of the tuples in the bucket will
4341  * actually require eval of the hash quals. We don't have any good
4342  * way to estimate how many will, but for the moment assume that the
4343  * effective cost per bucket entry is one-tenth what it is for
4344  * matchable tuples.
4345  */
4346  run_cost += hash_qual_cost.per_tuple *
4347  (outer_path_rows - outer_matched_rows) *
4348  clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
4349 
4350  /* Get # of tuples that will pass the basic join */
4351  if (path->jpath.jointype == JOIN_ANTI)
4352  hashjointuples = outer_path_rows - outer_matched_rows;
4353  else
4354  hashjointuples = outer_matched_rows;
4355  }
4356  else
4357  {
4358  /*
4359  * The number of tuple comparisons needed is the number of outer
4360  * tuples times the typical number of tuples in a hash bucket, which
4361  * is the inner relation size times its bucketsize fraction. At each
4362  * one, we need to evaluate the hashjoin quals. But actually,
4363  * charging the full qual eval cost at each tuple is pessimistic,
4364  * since we don't evaluate the quals unless the hash values match
4365  * exactly. For lack of a better idea, halve the cost estimate to
4366  * allow for that.
4367  */
4368  startup_cost += hash_qual_cost.startup;
4369  run_cost += hash_qual_cost.per_tuple * outer_path_rows *
4370  clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
4371 
4372  /*
4373  * Get approx # tuples passing the hashquals. We use
4374  * approx_tuple_count here because we need an estimate done with
4375  * JOIN_INNER semantics.
4376  */
4377  hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
4378  }
4379 
4380  /*
4381  * For each tuple that gets through the hashjoin proper, we charge
4382  * cpu_tuple_cost plus the cost of evaluating additional restriction
4383  * clauses that are to be applied at the join. (This is pessimistic since
4384  * not all of the quals may get evaluated at each tuple.)
4385  */
4386  startup_cost += qp_qual_cost.startup;
4387  cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
4388  run_cost += cpu_per_tuple * hashjointuples;
4389 
4390  /* tlist eval costs are paid per output row, not per tuple scanned */
4391  startup_cost += path->jpath.path.pathtarget->cost.startup;
4392  run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
4393 
4394  path->jpath.path.startup_cost = startup_cost;
4395  path->jpath.path.total_cost = startup_cost + run_cost;
4396 }
4397 
4398 
4399 /*
4400  * cost_subplan
4401  * Figure the costs for a SubPlan (or initplan).
4402  *
4403  * Note: we could dig the subplan's Plan out of the root list, but in practice
4404  * all callers have it handy already, so we make them pass it.
4405  */
4406 void
4408 {
4409  QualCost sp_cost;
4410 
4411  /* Figure any cost for evaluating the testexpr */
4412  cost_qual_eval(&sp_cost,
4413  make_ands_implicit((Expr *) subplan->testexpr),
4414  root);
4415 
4416  if (subplan->useHashTable)
4417  {
4418  /*
4419  * If we are using a hash table for the subquery outputs, then the
4420  * cost of evaluating the query is a one-time cost. We charge one
4421  * cpu_operator_cost per tuple for the work of loading the hashtable,
4422  * too.
4423  */
4424  sp_cost.startup += plan->total_cost +
4425  cpu_operator_cost * plan->plan_rows;
4426 
4427  /*
4428  * The per-tuple costs include the cost of evaluating the lefthand
4429  * expressions, plus the cost of probing the hashtable. We already
4430  * accounted for the lefthand expressions as part of the testexpr, and
4431  * will also have counted one cpu_operator_cost for each comparison
4432  * operator. That is probably too low for the probing cost, but it's
4433  * hard to make a better estimate, so live with it for now.
4434  */
4435  }
4436  else
4437  {
4438  /*
4439  * Otherwise we will be rescanning the subplan output on each
4440  * evaluation. We need to estimate how much of the output we will
4441  * actually need to scan. NOTE: this logic should agree with the
4442  * tuple_fraction estimates used by make_subplan() in
4443  * plan/subselect.c.
4444  */
4445  Cost plan_run_cost = plan->total_cost - plan->startup_cost;
4446 
4447  if (subplan->subLinkType == EXISTS_SUBLINK)
4448  {
4449  /* we only need to fetch 1 tuple; clamp to avoid zero divide */
4450  sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
4451  }
4452  else if (subplan->subLinkType == ALL_SUBLINK ||
4453  subplan->subLinkType == ANY_SUBLINK)
4454  {
4455  /* assume we need 50% of the tuples */
4456  sp_cost.per_tuple += 0.50 * plan_run_cost;
4457  /* also charge a cpu_operator_cost per row examined */
4458  sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
4459  }
4460  else
4461  {
4462  /* assume we need all tuples */
4463  sp_cost.per_tuple += plan_run_cost;
4464  }
4465 
4466  /*
4467  * Also account for subplan's startup cost. If the subplan is
4468  * uncorrelated or undirect correlated, AND its topmost node is one
4469  * that materializes its output, assume that we'll only need to pay
4470  * its startup cost once; otherwise assume we pay the startup cost
4471  * every time.
4472  */
4473  if (subplan->parParam == NIL &&
4475  sp_cost.startup += plan->startup_cost;
4476  else
4477  sp_cost.per_tuple += plan->startup_cost;
4478  }
4479 
4480  subplan->startup_cost = sp_cost.startup;
4481  subplan->per_call_cost = sp_cost.per_tuple;
4482 }
4483 
4484 
4485 /*
4486  * cost_rescan
4487  * Given a finished Path, estimate the costs of rescanning it after
4488  * having done so the first time. For some Path types a rescan is
4489  * cheaper than an original scan (if no parameters change), and this
4490  * function embodies knowledge about that. The default is to return
4491  * the same costs stored in the Path. (Note that the cost estimates
4492  * actually stored in Paths are always for first scans.)
4493  *
4494  * This function is not currently intended to model effects such as rescans
4495  * being cheaper due to disk block caching; what we are concerned with is
4496  * plan types wherein the executor caches results explicitly, or doesn't
4497  * redo startup calculations, etc.
4498  */
4499 static void
4501  Cost *rescan_startup_cost, /* output parameters */
4502  Cost *rescan_total_cost)
4503 {
4504  switch (path->pathtype)
4505  {
4506  case T_FunctionScan:
4507 
4508  /*
4509  * Currently, nodeFunctionscan.c always executes the function to
4510  * completion before returning any rows, and caches the results in
4511  * a tuplestore. So the function eval cost is all startup cost
4512  * and isn't paid over again on rescans. However, all run costs
4513  * will be paid over again.
4514  */
4515  *rescan_startup_cost = 0;
4516  *rescan_total_cost = path->total_cost - path->startup_cost;
4517  break;
4518  case T_HashJoin:
4519 
4520  /*
4521  * If it's a single-batch join, we don't need to rebuild the hash
4522  * table during a rescan.
4523  */
4524  if (((HashPath *) path)->num_batches == 1)
4525  {
4526  /* Startup cost is exactly the cost of hash table building */
4527  *rescan_startup_cost = 0;
4528  *rescan_total_cost = path->total_cost - path->startup_cost;
4529  }
4530  else
4531  {
4532  /* Otherwise, no special treatment */
4533  *rescan_startup_cost = path->startup_cost;
4534  *rescan_total_cost = path->total_cost;
4535  }
4536  break;
4537  case T_CteScan:
4538  case T_WorkTableScan:
4539  {
4540  /*
4541  * These plan types materialize their final result in a
4542  * tuplestore or tuplesort object. So the rescan cost is only
4543  * cpu_tuple_cost per tuple, unless the result is large enough
4544  * to spill to disk.
4545  */
4546  Cost run_cost = cpu_tuple_cost * path->rows;
4547  double nbytes = relation_byte_size(path->rows,
4548  path->pathtarget->width);
4549  long work_mem_bytes = work_mem * 1024L;
4550 
4551  if (nbytes > work_mem_bytes)
4552  {
4553  /* It will spill, so account for re-read cost */
4554  double npages = ceil(nbytes / BLCKSZ);
4555 
4556  run_cost += seq_page_cost * npages;
4557  }
4558  *rescan_startup_cost = 0;
4559  *rescan_total_cost = run_cost;
4560  }
4561  break;
4562  case T_Material:
4563  case T_Sort:
4564  {
4565  /*
4566  * These plan types not only materialize their results, but do
4567  * not implement qual filtering or projection. So they are
4568  * even cheaper to rescan than the ones above. We charge only
4569  * cpu_operator_cost per tuple. (Note: keep that in sync with
4570  * the run_cost charge in cost_sort, and also see comments in
4571  * cost_material before you change it.)
4572  */
4573  Cost run_cost = cpu_operator_cost * path->rows;
4574  double nbytes = relation_byte_size(path->rows,
4575  path->pathtarget->width);
4576  long work_mem_bytes = work_mem * 1024L;
4577 
4578  if (nbytes > work_mem_bytes)
4579  {
4580  /* It will spill, so account for re-read cost */
4581  double npages = ceil(nbytes / BLCKSZ);
4582 
4583  run_cost += seq_page_cost * npages;
4584  }
4585  *rescan_startup_cost = 0;
4586  *rescan_total_cost = run_cost;
4587  }
4588  break;
4589  case T_Memoize:
4590  /* All the hard work is done by cost_memoize_rescan */
4591  cost_memoize_rescan(root, (MemoizePath *) path,
4592  rescan_startup_cost, rescan_total_cost);
4593  break;
4594  default:
4595  *rescan_startup_cost = path->startup_cost;
4596  *rescan_total_cost = path->total_cost;
4597  break;
4598  }
4599 }
4600 
4601 
4602 /*
4603  * cost_qual_eval
4604  * Estimate the CPU costs of evaluating a WHERE clause.
4605  * The input can be either an implicitly-ANDed list of boolean
4606  * expressions, or a list of RestrictInfo nodes. (The latter is
4607  * preferred since it allows caching of the results.)
4608  * The result includes both a one-time (startup) component,
4609  * and a per-evaluation component.
4610  */
4611 void
4613 {
4614  cost_qual_eval_context context;
4615  ListCell *l;
4616 
4617  context.root = root;
4618  context.total.startup = 0;
4619  context.total.per_tuple = 0;
4620 
4621  /* We don't charge any cost for the implicit ANDing at top level ... */
4622 
4623  foreach(l, quals)
4624  {
4625  Node *qual = (Node *) lfirst(l);
4626 
4627  cost_qual_eval_walker(qual, &context);
4628  }
4629 
4630  *cost = context.total;
4631 }
4632 
4633 /*
4634  * cost_qual_eval_node
4635  * As above, for a single RestrictInfo or expression.
4636  */
4637 void
4639 {
4640  cost_qual_eval_context context;
4641 
4642  context.root = root;
4643  context.total.startup = 0;
4644  context.total.per_tuple = 0;
4645 
4646  cost_qual_eval_walker(qual, &context);
4647 
4648  *cost = context.total;
4649 }
4650 
4651 static bool
4653 {
4654  if (node == NULL)
4655  return false;
4656 
4657  /*
4658  * RestrictInfo nodes contain an eval_cost field reserved for this
4659  * routine's use, so that it's not necessary to evaluate the qual clause's
4660  * cost more than once. If the clause's cost hasn't been computed yet,
4661  * the field's startup value will contain -1.
4662  */
4663  if (IsA(node, RestrictInfo))
4664  {
4665  RestrictInfo *rinfo = (RestrictInfo *) node;
4666 
4667  if (rinfo->eval_cost.startup < 0)
4668  {
4669  cost_qual_eval_context locContext;
4670 
4671  locContext.root = context->root;
4672  locContext.total.startup = 0;
4673  locContext.total.per_tuple = 0;
4674 
4675  /*
4676  * For an OR clause, recurse into the marked-up tree so that we
4677  * set the eval_cost for contained RestrictInfos too.
4678  */
4679  if (rinfo->orclause)
4680  cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);
4681  else
4682  cost_qual_eval_walker((Node *) rinfo->clause, &locContext);
4683 
4684  /*
4685  * If the RestrictInfo is marked pseudoconstant, it will be tested
4686  * only once, so treat its cost as all startup cost.
4687  */
4688  if (rinfo->pseudoconstant)
4689  {
4690  /* count one execution during startup */
4691  locContext.total.startup += locContext.total.per_tuple;
4692  locContext.total.per_tuple = 0;
4693  }
4694  rinfo->eval_cost = locContext.total;
4695  }
4696  context->total.startup += rinfo->eval_cost.startup;
4697  context->total.per_tuple += rinfo->eval_cost.per_tuple;
4698  /* do NOT recurse into children */
4699  return false;
4700  }
4701 
4702  /*
4703  * For each operator or function node in the given tree, we charge the
4704  * estimated execution cost given by pg_proc.procost (remember to multiply
4705  * this by cpu_operator_cost).
4706  *
4707  * Vars and Consts are charged zero, and so are boolean operators (AND,
4708  * OR, NOT). Simplistic, but a lot better than no model at all.
4709  *
4710  * Should we try to account for the possibility of short-circuit
4711  * evaluation of AND/OR? Probably *not*, because that would make the
4712  * results depend on the clause ordering, and we are not in any position
4713  * to expect that the current ordering of the clauses is the one that's
4714  * going to end up being used. The above per-RestrictInfo caching would
4715  * not mix well with trying to re-order clauses anyway.
4716  *
4717  * Another issue that is entirely ignored here is that if a set-returning
4718  * function is below top level in the tree, the functions/operators above
4719  * it will need to be evaluated multiple times. In practical use, such
4720  * cases arise so seldom as to not be worth the added complexity needed;
4721  * moreover, since our rowcount estimates for functions tend to be pretty
4722  * phony, the results would also be pretty phony.
4723  */
4724  if (IsA(node, FuncExpr))
4725  {
4726  add_function_cost(context->root, ((FuncExpr *) node)->funcid, node,
4727  &context->total);
4728  }
4729  else if (IsA(node, OpExpr) ||
4730  IsA(node, DistinctExpr) ||
4731  IsA(node, NullIfExpr))
4732  {
4733  /* rely on struct equivalence to treat these all alike */
4734  set_opfuncid((OpExpr *) node);
4735  add_function_cost(context->root, ((OpExpr *) node)->opfuncid, node,
4736  &context->total);
4737  }
4738  else if (IsA(node, ScalarArrayOpExpr))
4739  {
4740  ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
4741  Node *arraynode = (Node *) lsecond(saop->args);
4742  QualCost sacosts;
4743  QualCost hcosts;
4744  int estarraylen = estimate_array_length(arraynode);
4745 
4746  set_sa_opfuncid(saop);
4747  sacosts.startup = sacosts.per_tuple = 0;
4748  add_function_cost(context->root, saop->opfuncid, NULL,
4749  &sacosts);
4750 
4751  if (OidIsValid(saop->hashfuncid))
4752  {
4753  /* Handle costs for hashed ScalarArrayOpExpr */
4754  hcosts.startup = hcosts.per_tuple = 0;
4755 
4756  add_function_cost(context->root, saop->hashfuncid, NULL, &hcosts);
4757  context->total.startup += sacosts.startup + hcosts.startup;
4758 
4759  /* Estimate the cost of building the hashtable. */
4760  context->total.startup += estarraylen * hcosts.per_tuple;
4761 
4762  /*
4763  * XXX should we charge a little bit for sacosts.per_tuple when
4764  * building the table, or is it ok to assume there will be zero
4765  * hash collision?
4766  */
4767 
4768  /*
4769  * Charge for hashtable lookups. Charge a single hash and a
4770  * single comparison.
4771  */
4772  context->total.per_tuple += hcosts.per_tuple + sacosts.per_tuple;
4773  }
4774  else
4775  {
4776  /*
4777  * Estimate that the operator will be applied to about half of the
4778  * array elements before the answer is determined.
4779  */
4780  context->total.startup += sacosts.startup;
4781  context->total.per_tuple += sacosts.per_tuple *
4782  estimate_array_length(arraynode) * 0.5;
4783  }
4784  }
4785  else if (IsA(node, Aggref) ||
4786  IsA(node, WindowFunc))
4787  {
4788  /*
4789  * Aggref and WindowFunc nodes are (and should be) treated like Vars,
4790  * ie, zero execution cost in the current model, because they behave
4791  * essentially like Vars at execution. We disregard the costs of
4792  * their input expressions for the same reason. The actual execution
4793  * costs of the aggregate/window functions and their arguments have to
4794  * be factored into plan-node-specific costing of the Agg or WindowAgg
4795  * plan node.
4796  */
4797  return false; /* don't recurse into children */
4798  }
4799  else if (IsA(node, GroupingFunc))
4800  {
4801  /* Treat this as having cost 1 */
4802  context->total.per_tuple += cpu_operator_cost;
4803  return false; /* don't recurse into children */
4804  }
4805  else if (IsA(node, CoerceViaIO))
4806  {
4807  CoerceViaIO *iocoerce = (CoerceViaIO *) node;
4808  Oid iofunc;
4809  Oid typioparam;
4810  bool typisvarlena;
4811 
4812  /* check the result type's input function */
4813  getTypeInputInfo(iocoerce->resulttype,
4814  &iofunc, &typioparam);
4815  add_function_cost(context->root, iofunc, NULL,
4816  &context->total);
4817  /* check the input type's output function */
4818  getTypeOutputInfo(exprType((Node *) iocoerce->arg),
4819  &iofunc, &typisvarlena);
4820  add_function_cost(context->root, iofunc, NULL,
4821  &context->total);
4822  }
4823  else if (IsA(node, ArrayCoerceExpr))
4824  {
4825  ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
4826  QualCost perelemcost;
4827 
4828  cost_qual_eval_node(&perelemcost, (Node *) acoerce->elemexpr,
4829  context->root);
4830  context->total.startup += perelemcost.startup;
4831  if (perelemcost.per_tuple > 0)
4832  context->total.per_tuple += perelemcost.per_tuple *
4833  estimate_array_length((Node *) acoerce->arg);
4834  }
4835  else if (IsA(node, RowCompareExpr))
4836  {
4837  /* Conservatively assume we will check all the columns */
4838  RowCompareExpr *rcexpr = (RowCompareExpr *) node;
4839  ListCell *lc;
4840 
4841  foreach(lc, rcexpr->opnos)
4842  {
4843  Oid opid = lfirst_oid(lc);
4844 
4845  add_function_cost(context->root, get_opcode(opid), NULL,
4846  &context->total);
4847  }
4848  }
4849  else if (IsA(node, MinMaxExpr) ||
4850  IsA(node, SQLValueFunction) ||
4851  IsA(node, XmlExpr) ||
4852  IsA(node, CoerceToDomain) ||
4853  IsA(node, NextValueExpr))
4854  {
4855  /* Treat all these as having cost 1 */
4856  context->total.per_tuple += cpu_operator_cost;
4857  }
4858  else if (IsA(node, CurrentOfExpr))
4859  {
4860  /* Report high cost to prevent selection of anything but TID scan */
4861  context->total.startup += disable_cost;
4862  }
4863  else if (IsA(node, SubLink))
4864  {
4865  /* This routine should not be applied to un-planned expressions */
4866  elog(ERROR, "cannot handle unplanned sub-select");
4867  }
4868  else if (IsA(node, SubPlan))
4869  {
4870  /*
4871  * A subplan node in an expression typically indicates that the
4872  * subplan will be executed on each evaluation, so charge accordingly.
4873  * (Sub-selects that can be executed as InitPlans have already been
4874  * removed from the expression.)
4875  */
4876  SubPlan *subplan = (SubPlan *) node;
4877 
4878  context->total.startup += subplan->startup_cost;
4879  context->total.per_tuple += subplan->per_call_cost;
4880 
4881  /*
4882  * We don't want to recurse into the testexpr, because it was already
4883  * counted in the SubPlan node's costs. So we're done.
4884  */
4885  return false;
4886  }
4887  else if (IsA(node, AlternativeSubPlan))
4888  {
4889  /*
4890  * Arbitrarily use the first alternative plan for costing. (We should
4891  * certainly only include one alternative, and we don't yet have
4892  * enough information to know which one the executor is most likely to
4893  * use.)
4894  */
4895  AlternativeSubPlan *asplan = (AlternativeSubPlan *) node;
4896 
4897  return cost_qual_eval_walker((Node *) linitial(asplan->subplans),
4898  context);
4899  }
4900  else if (IsA(node, PlaceHolderVar))
4901  {
4902  /*
4903  * A PlaceHolderVar should be given cost zero when considering general
4904  * expression evaluation costs. The expense of doing the contained
4905  * expression is charged as part of the tlist eval costs of the scan
4906  * or join where the PHV is first computed (see set_rel_width and
4907  * add_placeholders_to_joinrel). If we charged it again here, we'd be
4908  * double-counting the cost for each level of plan that the PHV
4909  * bubbles up through. Hence, return without recursing into the
4910  * phexpr.
4911  */
4912  return false;
4913  }
4914 
4915  /* recurse into children */
4917  (void *) context);
4918 }
4919 
4920 /*
4921  * get_restriction_qual_cost
4922  * Compute evaluation costs of a baserel's restriction quals, plus any
4923  * movable join quals that have been pushed down to the scan.
4924  * Results are returned into *qpqual_cost.
4925  *
4926  * This is a convenience subroutine that works for seqscans and other cases
4927  * where all the given quals will be evaluated the hard way. It's not useful
4928  * for cost_index(), for example, where the index machinery takes care of
4929  * some of the quals. We assume baserestrictcost was previously set by
4930  * set_baserel_size_estimates().
4931  */
4932 static void
4934  ParamPathInfo *param_info,
4935  QualCost *qpqual_cost)
4936 {
4937  if (param_info)
4938  {
4939  /* Include costs of pushed-down clauses */
4940  cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);
4941 
4942  qpqual_cost->startup += baserel->baserestrictcost.startup;
4943  qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple;
4944  }
4945  else
4946  *qpqual_cost = baserel->baserestrictcost;
4947 }
4948 
4949 
4950 /*
4951  * compute_semi_anti_join_factors
4952  * Estimate how much of the inner input a SEMI, ANTI, or inner_unique join
4953  * can be expected to scan.
4954  *
4955  * In a hash or nestloop SEMI/ANTI join, the executor will stop scanning
4956  * inner rows as soon as it finds a match to the current outer row.
4957  * The same happens if we have detected the inner rel is unique.
4958  * We should therefore adjust some of the cost components for this effect.
4959  * This function computes some estimates needed for these adjustments.
4960  * These estimates will be the same regardless of the particular paths used
4961  * for the outer and inner relation, so we compute these once and then pass
4962  * them to all the join cost estimation functions.
4963  *
4964  * Input parameters:
4965  * joinrel: join relation under consideration
4966  * outerrel: outer relation under consideration
4967  * innerrel: inner relation under consideration
4968  * jointype: if not JOIN_SEMI or JOIN_ANTI, we assume it's inner_unique
4969  * sjinfo: SpecialJoinInfo relevant to this join
4970  * restrictlist: join quals
4971  * Output parameters:
4972  * *semifactors is filled in (see pathnodes.h for field definitions)
4973  */
4974 void
4976  RelOptInfo *joinrel,
4977  RelOptInfo *outerrel,
4978  RelOptInfo *innerrel,
4979  JoinType jointype,
4980  SpecialJoinInfo *sjinfo,
4981  List *restrictlist,
4982  SemiAntiJoinFactors *semifactors)
4983 {
4984  Selectivity jselec;
4985  Selectivity nselec;
4986  Selectivity avgmatch;
4987  SpecialJoinInfo norm_sjinfo;
4988  List *joinquals;
4989  ListCell *l;
4990 
4991  /*
4992  * In an ANTI join, we must ignore clauses that are "pushed down", since
4993  * those won't affect the match logic. In a SEMI join, we do not
4994  * distinguish joinquals from "pushed down" quals, so just use the whole
4995  * restrictinfo list. For other outer join types, we should consider only
4996  * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
4997  */
4998  if (IS_OUTER_JOIN(jointype))
4999  {
5000  joinquals = NIL;
5001  foreach(l, restrictlist)
5002  {
5003  RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
5004 
5005  if (!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
5006  joinquals = lappend(joinquals, rinfo);
5007  }
5008  }
5009  else
5010  joinquals = restrictlist;
5011 
5012  /*
5013  * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
5014  */
5015  jselec = clauselist_selectivity(root,
5016  joinquals,
5017  0,
5018  (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
5019  sjinfo);
5020 
5021  /*
5022  * Also get the normal inner-join selectivity of the join clauses.
5023  */
5024  norm_sjinfo.type = T_SpecialJoinInfo;
5025  norm_sjinfo.min_lefthand = outerrel->relids;
5026  norm_sjinfo.min_righthand = innerrel->relids;
5027  norm_sjinfo.syn_lefthand = outerrel->relids;
5028  norm_sjinfo.syn_righthand = innerrel->relids;
5029  norm_sjinfo.jointype = JOIN_INNER;
5030  norm_sjinfo.ojrelid = 0;
5031  norm_sjinfo.commute_above_l = NULL;
5032  norm_sjinfo.commute_above_r = NULL;
5033  norm_sjinfo.commute_below_l = NULL;
5034  norm_sjinfo.commute_below_r = NULL;
5035  /* we don't bother trying to make the remaining fields valid */
5036  norm_sjinfo.lhs_strict = false;
5037  norm_sjinfo.semi_can_btree = false;
5038  norm_sjinfo.semi_can_hash = false;
5039  norm_sjinfo.semi_operators = NIL;
5040  norm_sjinfo.semi_rhs_exprs = NIL;
5041 
5042  nselec = clauselist_selectivity(root,
5043  joinquals,
5044  0,
5045  JOIN_INNER,
5046  &norm_sjinfo);
5047 
5048  /* Avoid leaking a lot of ListCells */
5049  if (IS_OUTER_JOIN(jointype))
5050  list_free(joinquals);
5051 
5052  /*
5053  * jselec can be interpreted as the fraction of outer-rel rows that have
5054  * any matches (this is true for both SEMI and ANTI cases). And nselec is
5055  * the fraction of the Cartesian product that matches. So, the average
5056  * number of matches for each outer-rel row that has at least one match is
5057  * nselec * inner_rows / jselec.
5058  *
5059  * Note: it is correct to use the inner rel's "rows" count here, even
5060  * though we might later be considering a parameterized inner path with
5061  * fewer rows. This is because we have included all the join clauses in
5062  * the selectivity estimate.
5063  */
5064  if (jselec > 0) /* protect against zero divide */
5065  {
5066  avgmatch = nselec * innerrel->rows / jselec;
5067  /* Clamp to sane range */
5068  avgmatch = Max(1.0, avgmatch);
5069  }
5070  else
5071  avgmatch = 1.0;
5072 
5073  semifactors->outer_match_frac = jselec;
5074  semifactors->match_count = avgmatch;
5075 }
5076 
5077 /*
5078  * has_indexed_join_quals
5079  * Check whether all the joinquals of a nestloop join are used as
5080  * inner index quals.
5081  *
5082  * If the inner path of a SEMI/ANTI join is an indexscan (including bitmap
5083  * indexscan) that uses all the joinquals as indexquals, we can assume that an
5084  * unmatched outer tuple is cheap to process, whereas otherwise it's probably
5085  * expensive.
5086  */
5087 static bool
5089 {
5090  JoinPath *joinpath = &path->jpath;
5091  Relids joinrelids = joinpath->path.parent->relids;
5092  Path *innerpath = joinpath->innerjoinpath;
5093  List *indexclauses;
5094  bool found_one;
5095  ListCell *lc;
5096 
5097  /* If join still has quals to evaluate, it's not fast */
5098  if (joinpath->joinrestrictinfo != NIL)
5099  return false;
5100  /* Nor if the inner path isn't parameterized at all */
5101  if (innerpath->param_info == NULL)
5102  return false;
5103 
5104  /* Find the indexclauses list for the inner scan */
5105  switch (innerpath->pathtype)
5106  {
5107  case T_IndexScan:
5108  case T_IndexOnlyScan:
5109  indexclauses = ((IndexPath *) innerpath)->indexclauses;
5110  break;
5111  case T_BitmapHeapScan:
5112  {
5113  /* Accept only a simple bitmap scan, not AND/OR cases */
5114  Path *bmqual = ((BitmapHeapPath *) innerpath)->bitmapqual;
5115 
5116  if (IsA(bmqual, IndexPath))
5117  indexclauses = ((IndexPath *) bmqual)->indexclauses;
5118  else
5119  return false;
5120  break;
5121  }
5122  default:
5123 
5124  /*
5125  * If it's not a simple indexscan, it probably doesn't run quickly
5126  * for zero rows out, even if it's a parameterized path using all
5127  * the joinquals.
5128  */
5129  return false;
5130  }
5131 
5132  /*
5133  * Examine the inner path's param clauses. Any that are from the outer
5134  * path must be found in the indexclauses list, either exactly or in an
5135  * equivalent form generated by equivclass.c. Also, we must find at least
5136  * one such clause, else it's a clauseless join which isn't fast.
5137  */
5138  found_one = false;
5139  foreach(lc, innerpath->param_info->ppi_clauses)
5140  {
5141  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
5142 
5143  if (join_clause_is_movable_into(rinfo,
5144  innerpath->parent->relids,
5145  joinrelids))
5146  {
5147  if (!is_redundant_with_indexclauses(rinfo, indexclauses))
5148  return false;
5149  found_one = true;
5150  }
5151  }
5152  return found_one;
5153 }
5154 
5155 
5156 /*
5157  * approx_tuple_count
5158  * Quick-and-dirty estimation of the number of join rows passing
5159  * a set of qual conditions.
5160  *
5161  * The quals can be either an implicitly-ANDed list of boolean expressions,
5162  * or a list of RestrictInfo nodes (typically the latter).
5163  *
5164  * We intentionally compute the selectivity under JOIN_INNER rules, even
5165  * if it's some type of outer join. This is appropriate because we are
5166  * trying to figure out how many tuples pass the initial merge or hash
5167  * join step.
5168  *
5169  * This is quick-and-dirty because we bypass clauselist_selectivity, and
5170  * simply multiply the independent clause selectivities together. Now
5171  * clauselist_selectivity often can't do any better than that anyhow, but
5172  * for some situations (such as range constraints) it is smarter. However,
5173  * we can't effectively cache the results of clauselist_selectivity, whereas
5174  * the individual clause selectivities can be and are cached.
5175  *
5176  * Since we are only using the results to estimate how many potential
5177  * output tuples are generated and passed through qpqual checking, it
5178  * seems OK to live with the approximation.
5179  */
5180 static double
5182 {
5183  double tuples;
5184  double outer_tuples = path->outerjoinpath->rows;
5185  double inner_tuples = path->innerjoinpath->rows;
5186  SpecialJoinInfo sjinfo;
5187  Selectivity selec = 1.0;
5188  ListCell *l;
5189 
5190  /*
5191  * Make up a SpecialJoinInfo for JOIN_INNER semantics.
5192  */
5193  sjinfo.type = T_SpecialJoinInfo;
5194  sjinfo.min_lefthand = path->outerjoinpath->parent->relids;
5195  sjinfo.min_righthand = path->innerjoinpath->parent->relids;
5196  sjinfo.syn_lefthand = path->outerjoinpath->parent->relids;
5197  sjinfo.syn_righthand = path->innerjoinpath->parent->relids;
5198  sjinfo.jointype = JOIN_INNER;
5199  sjinfo.ojrelid = 0;
5200  sjinfo.commute_above_l = NULL;
5201  sjinfo.commute_above_r = NULL;
5202  sjinfo.commute_below_l = NULL;
5203  sjinfo.commute_below_r = NULL;
5204  /* we don't bother trying to make the remaining fields valid */
5205  sjinfo.lhs_strict = false;
5206  sjinfo.semi_can_btree = false;
5207  sjinfo.semi_can_hash = false;
5208  sjinfo.semi_operators = NIL;
5209  sjinfo.semi_rhs_exprs = NIL;
5210 
5211  /* Get the approximate selectivity */
5212  foreach(l, quals)
5213  {
5214  Node *qual = (Node *) lfirst(l);
5215 
5216  /* Note that clause_selectivity will be able to cache its result */
5217  selec *= clause_selectivity(root, qual, 0, JOIN_INNER, &sjinfo);
5218  }
5219 
5220  /* Apply it to the input relation sizes */
5221  tuples = selec * outer_tuples * inner_tuples;
5222 
5223  return clamp_row_est(tuples);
5224 }
5225 
5226 
5227 /*
5228  * set_baserel_size_estimates
5229  * Set the size estimates for the given base relation.
5230  *
5231  * The rel's targetlist and restrictinfo list must have been constructed
5232  * already, and rel->tuples must be set.
5233  *
5234  * We set the following fields of the rel node:
5235  * rows: the estimated number of output tuples (after applying
5236  * restriction clauses).
5237  * width: the estimated average output tuple width in bytes.
5238  * baserestrictcost: estimated cost of evaluating baserestrictinfo clauses.
5239  */
5240 void
5242 {
5243  double nrows;
5244 
5245  /* Should only be applied to base relations */
5246  Assert(rel->relid > 0);
5247 
5248  nrows = rel->tuples *
5250  rel->baserestrictinfo,
5251  0,
5252  JOIN_INNER,
5253  NULL);
5254 
5255  rel->rows = clamp_row_est(nrows);
5256 
5258 
5259  set_rel_width(root, rel);
5260 }
5261 
5262 /*
5263  * get_parameterized_baserel_size
5264  * Make a size estimate for a parameterized scan of a base relation.
5265  *
5266  * 'param_clauses' lists the additional join clauses to be used.
5267  *
5268  * set_baserel_size_estimates must have been applied already.
5269  */
5270 double
5272  List *param_clauses)
5273 {
5274  List *allclauses;
5275  double nrows;
5276 
5277  /*
5278  * Estimate the number of rows returned by the parameterized scan, knowing
5279  * that it will apply all the extra join clauses as well as the rel's own
5280  * restriction clauses. Note that we force the clauses to be treated as
5281  * non-join clauses during selectivity estimation.
5282  */
5283  allclauses = list_concat_copy(param_clauses, rel->baserestrictinfo);
5284  nrows = rel->tuples *
5286  allclauses,
5287  rel->relid, /* do not use 0! */
5288  JOIN_INNER,
5289  NULL);
5290  nrows = clamp_row_est(nrows);
5291  /* For safety, make sure result is not more than the base estimate */
5292  if (nrows > rel->rows)
5293  nrows = rel->rows;
5294  return nrows;
5295 }
5296 
5297 /*
5298  * set_joinrel_size_estimates
5299  * Set the size estimates for the given join relation.
5300  *
5301  * The rel's targetlist must have been constructed already, and a
5302  * restriction clause list that matches the given component rels must
5303  * be provided.
5304  *
5305  * Since there is more than one way to make a joinrel for more than two
5306  * base relations, the results we get here could depend on which component
5307  * rel pair is provided. In theory we should get the same answers no matter
5308  * which pair is provided; in practice, since the selectivity estimation
5309  * routines don't handle all cases equally well, we might not. But there's
5310  * not much to be done about it. (Would it make sense to repeat the
5311  * calculations for each pair of input rels that's encountered, and somehow
5312  * average the results? Probably way more trouble than it's worth, and
5313  * anyway we must keep the rowcount estimate the same for all paths for the
5314  * joinrel.)
5315  *
5316  * We set only the rows field here. The reltarget field was already set by
5317  * build_joinrel_tlist, and baserestrictcost is not used for join rels.
5318  */
5319 void
5321  RelOptInfo *outer_rel,
5322  RelOptInfo *inner_rel,
5323  SpecialJoinInfo *sjinfo,
5324  List *restrictlist)
5325 {
5326  rel->rows = calc_joinrel_size_estimate(root,
5327  rel,
5328  outer_rel,
5329  inner_rel,
5330  outer_rel->rows,
5331  inner_rel->rows,
5332  sjinfo,
5333  restrictlist);
5334 }
5335 
5336 /*
5337  * get_parameterized_joinrel_size
5338  * Make a size estimate for a parameterized scan of a join relation.
5339  *
5340  * 'rel' is the joinrel under consideration.
5341  * 'outer_path', 'inner_path' are (probably also parameterized) Paths that
5342  * produce the relations being joined.
5343  * 'sjinfo' is any SpecialJoinInfo relevant to this join.
5344  * 'restrict_clauses' lists the join clauses that need to be applied at the
5345  * join node (including any movable clauses that were moved down to this join,
5346  * and not including any movable clauses that were pushed down into the
5347  * child paths).
5348  *
5349  * set_joinrel_size_estimates must have been applied already.
5350  */
5351 double
5353  Path *outer_path,
5354  Path *inner_path,
5355  SpecialJoinInfo *sjinfo,
5356  List *restrict_clauses)
5357 {
5358  double nrows;
5359 
5360  /*
5361  * Estimate the number of rows returned by the parameterized join as the
5362  * sizes of the input paths times the selectivity of the clauses that have
5363  * ended up at this join node.
5364  *
5365  * As with set_joinrel_size_estimates, the rowcount estimate could depend
5366  * on the pair of input paths provided, though ideally we'd get the same
5367  * estimate for any pair with the same parameterization.
5368  */
5369  nrows = calc_joinrel_size_estimate(root,
5370  rel,
5371  outer_path->parent,
5372  inner_path->parent,
5373  outer_path->rows,
5374  inner_path->rows,
5375  sjinfo,
5376  restrict_clauses);
5377  /* For safety, make sure result is not more than the base estimate */
5378  if (nrows > rel->rows)
5379  nrows = rel->rows;
5380  return nrows;
5381 }
5382 
5383 /*
5384  * calc_joinrel_size_estimate
5385  * Workhorse for set_joinrel_size_estimates and
5386  * get_parameterized_joinrel_size.
5387  *
5388  * outer_rel/inner_rel are the relations being joined, but they should be
5389  * assumed to have sizes outer_rows/inner_rows; those numbers might be less
5390  * than what rel->rows says, when we are considering parameterized paths.
5391  */
5392 static double
5394  RelOptInfo *joinrel,
5395  RelOptInfo *outer_rel,
5396  RelOptInfo *inner_rel,
5397  double outer_rows,
5398  double inner_rows,
5399  SpecialJoinInfo *sjinfo,
5400  List *restrictlist)
5401 {
5402  JoinType jointype = sjinfo->jointype;
5403  Selectivity fkselec;
5404  Selectivity jselec;
5405  Selectivity pselec;
5406  double nrows;
5407 
5408  /*
5409  * Compute joinclause selectivity. Note that we are only considering
5410  * clauses that become restriction clauses at this join level; we are not
5411  * double-counting them because they were not considered in estimating the
5412  * sizes of the component rels.
5413  *
5414  * First, see whether any of the joinclauses can be matched to known FK
5415  * constraints. If so, drop those clauses from the restrictlist, and
5416  * instead estimate their selectivity using FK semantics. (We do this
5417  * without regard to whether said clauses are local or "pushed down".
5418  * Probably, an FK-matching clause could never be seen as pushed down at
5419  * an outer join, since it would be strict and hence would be grounds for
5420  * join strength reduction.) fkselec gets the net selectivity for
5421  * FK-matching clauses, or 1.0 if there are none.
5422  */
5423  fkselec = get_foreign_key_join_selectivity(root,
5424  outer_rel->relids,
5425  inner_rel->relids,
5426  sjinfo,
5427  &restrictlist);
5428 
5429  /*
5430  * For an outer join, we have to distinguish the selectivity of the join's
5431  * own clauses (JOIN/ON conditions) from any clauses that were "pushed
5432  * down". For inner joins we just count them all as joinclauses.
5433  */
5434  if (IS_OUTER_JOIN(jointype))
5435  {
5436  List *joinquals = NIL;
5437  List *pushedquals = NIL;
5438  ListCell *l;
5439 
5440  /* Grovel through the clauses to separate into two lists */
5441  foreach(l, restrictlist)
5442  {
5443  RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
5444 
5445  if (RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
5446  pushedquals = lappend(pushedquals, rinfo);
5447  else
5448  joinquals = lappend(joinquals, rinfo);
5449  }
5450 
5451  /* Get the separate selectivities */
5452  jselec = clauselist_selectivity(root,
5453  joinquals,
5454  0,
5455  jointype,
5456  sjinfo);
5457  pselec = clauselist_selectivity(root,
5458  pushedquals,
5459  0,
5460  jointype,
5461  sjinfo);
5462 
5463  /* Avoid leaking a lot of ListCells */
5464  list_free(joinquals);
5465  list_free(pushedquals);
5466  }
5467  else
5468  {
5469  jselec = clauselist_selectivity(root,
5470  restrictlist,
5471  0,
5472  jointype,
5473  sjinfo);
5474  pselec = 0.0; /* not used, keep compiler quiet */
5475  }
5476 
5477  /*
5478  * Basically, we multiply size of Cartesian product by selectivity.
5479  *
5480  * If we are doing an outer join, take that into account: the joinqual
5481  * selectivity has to be clamped using the knowledge that the output must
5482  * be at least as large as the non-nullable input. However, any
5483  * pushed-down quals are applied after the outer join, so their
5484  * selectivity applies fully.
5485  *
5486  * For JOIN_SEMI and JOIN_ANTI, the selectivity is defined as the fraction
5487  * of LHS rows that have matches, and we apply that straightforwardly.
5488  */
5489  switch (jointype)
5490  {
5491  case JOIN_INNER:
5492  nrows = outer_rows * inner_rows * fkselec * jselec;
5493  /* pselec not used */
5494  break;
5495  case JOIN_LEFT:
5496  nrows = outer_rows * inner_rows * fkselec * jselec;
5497  if (nrows < outer_rows)
5498  nrows = outer_rows;
5499  nrows *= pselec;
5500  break;
5501  case JOIN_FULL:
5502  nrows = outer_rows * inner_rows * fkselec * jselec;
5503  if (nrows < outer_rows)
5504  nrows = outer_rows;
5505  if (nrows < inner_rows)
5506  nrows = inner_rows;
5507  nrows *= pselec;
5508  break;
5509  case JOIN_SEMI:
5510  nrows = outer_rows * fkselec * jselec;
5511  /* pselec not used */
5512  break;
5513  case JOIN_ANTI:
5514  nrows = outer_rows * (1.0 - fkselec * jselec);
5515  nrows *= pselec;
5516  break;
5517  default:
5518  /* other values not expected here */
5519  elog(ERROR, "unrecognized join type: %d", (int) jointype);
5520  nrows = 0; /* keep compiler quiet */
5521  break;
5522  }
5523 
5524  return clamp_row_est(nrows);
5525 }
5526 
5527 /*
5528  * get_foreign_key_join_selectivity
5529  * Estimate join selectivity for foreign-key-related clauses.
5530  *
5531  * Remove any clauses that can be matched to FK constraints from *restrictlist,
5532  * and return a substitute estimate of their selectivity. 1.0 is returned
5533  * when there are no such clauses.
5534  *
5535  * The reason for treating such clauses specially is that we can get better
5536  * estimates this way than by relying on clauselist_selectivity(), especially
5537  * for multi-column FKs where that function's assumption that the clauses are
5538  * independent falls down badly. But even with single-column FKs, we may be
5539  * able to get a better answer when the pg_statistic stats are missing or out
5540  * of date.
5541  */
5542 static Selectivity
5544  Relids outer_relids,
5545  Relids inner_relids,
5546  SpecialJoinInfo *sjinfo,
5547  List **restrictlist)
5548 {
5549  Selectivity fkselec = 1.0;
5550  JoinType jointype = sjinfo->jointype;
5551  List *worklist = *restrictlist;
5552  ListCell *lc;
5553 
5554  /* Consider each FK constraint that is known to match the query */
5555  foreach(lc, root->fkey_list)
5556  {
5557  ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
5558  bool ref_is_outer;
5559  List *removedlist;
5560  ListCell *cell;
5561 
5562  /*
5563  * This FK is not relevant unless it connects a baserel on one side of
5564  * this join to a baserel on the other side.
5565  */
5566  if (bms_is_member(fkinfo->con_relid, outer_relids) &&
5567  bms_is_member(fkinfo->ref_relid, inner_relids))
5568  ref_is_outer = false;
5569  else if (bms_is_member(fkinfo->ref_relid, outer_relids) &&
5570  bms_is_member(fkinfo->con_relid, inner_relids))
5571  ref_is_outer = true;
5572  else
5573  continue;
5574 
5575  /*
5576  * If we're dealing with a semi/anti join, and the FK's referenced
5577  * relation is on the outside, then knowledge of the FK doesn't help
5578  * us figure out what we need to know (which is the fraction of outer
5579  * rows that have matches). On the other hand, if the referenced rel
5580  * is on the inside, then all outer rows must have matches in the
5581  * referenced table (ignoring nulls). But any restriction or join
5582  * clauses that filter that table will reduce the fraction of matches.
5583  * We can account for restriction clauses, but it's too hard to guess
5584  * how many table rows would get through a join that's inside the RHS.
5585  * Hence, if either case applies, punt and ignore the FK.
5586  */
5587  if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
5588  (ref_is_outer || bms_membership(inner_relids) != BMS_SINGLETON))
5589  continue;
5590 
5591  /*
5592  * Modify the restrictlist by removing clauses that match the FK (and
5593  * putting them into removedlist instead). It seems unsafe to modify
5594  * the originally-passed List structure, so we make a shallow copy the
5595  * first time through.
5596  */
5597  if (worklist == *restrictlist)
5598  worklist = list_copy(worklist);
5599 
5600  removedlist = NIL;
5601  foreach(cell, worklist)
5602  {
5603  RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
5604  bool remove_it = false;
5605  int i;
5606 
5607  /* Drop this clause if it matches any column of the FK */
5608  for (i = 0; i < fkinfo->nkeys; i++)
5609  {
5610  if (rinfo->parent_ec)
5611  {
5612  /*
5613  * EC-derived clauses can only match by EC. It is okay to
5614  * consider any clause derived from the same EC as
5615  * matching the FK: even if equivclass.c chose to generate
5616  * a clause equating some other pair of Vars, it could
5617  * have generated one equating the FK's Vars. So for
5618  * purposes of estimation, we can act as though it did so.
5619  *
5620  * Note: checking parent_ec is a bit of a cheat because
5621  * there are EC-derived clauses that don't have parent_ec
5622  * set; but such clauses must compare expressions that
5623  * aren't just Vars, so they cannot match the FK anyway.
5624  */
5625  if (fkinfo->eclass[i] == rinfo->parent_ec)
5626  {
5627  remove_it = true;
5628  break;
5629  }
5630  }
5631  else
5632  {
5633  /*
5634  * Otherwise, see if rinfo was previously matched to FK as
5635  * a "loose" clause.
5636  */
5637  if (list_member_ptr(fkinfo->rinfos[i], rinfo))
5638  {
5639  remove_it = true;
5640  break;
5641  }
5642  }
5643  }
5644  if (remove_it)
5645  {
5646  worklist = foreach_delete_current(worklist, cell);
5647  removedlist = lappend(removedlist, rinfo);
5648  }
5649  }
5650 
5651  /*
5652  * If we failed to remove all the matching clauses we expected to
5653  * find, chicken out and ignore this FK; applying its selectivity
5654  * might result in double-counting. Put any clauses we did manage to
5655  * remove back into the worklist.
5656  *
5657  * Since the matching clauses are known not outerjoin-delayed, they
5658  * would normally have appeared in the initial joinclause list. If we
5659  * didn't find them, there are two possibilities:
5660  *
5661  * 1. If the FK match is based on an EC that is ec_has_const, it won't
5662  * have generated any join clauses at all. We discount such ECs while
5663  * checking to see if we have "all" the clauses. (Below, we'll adjust
5664  * the selectivity estimate for this case.)
5665  *
5666  * 2. The clauses were matched to some other FK in a previous
5667  * iteration of this loop, and thus removed from worklist. (A likely
5668  * case is that two FKs are matched to the same EC; there will be only
5669  * one EC-derived clause in the initial list, so the first FK will
5670  * consume it.) Applying both FKs' selectivity independently risks
5671  * underestimating the join size; in particular, this would undo one
5672  * of the main things that ECs were invented for, namely to avoid
5673  * double-counting the selectivity of redundant equality conditions.
5674  * Later we might think of a reasonable way to combine the estimates,
5675  * but for now, just punt, since this is a fairly uncommon situation.
5676  */
5677  if (removedlist == NIL ||
5678  list_length(removedlist) !=
5679  (fkinfo->nmatched_ec - fkinfo->nconst_ec + fkinfo->nmatched_ri))
5680  {
5681  worklist = list_concat(worklist, removedlist);
5682  continue;
5683  }
5684 
5685  /*
5686  * Finally we get to the payoff: estimate selectivity using the
5687  * knowledge that each referencing row will match exactly one row in
5688  * the referenced table.
5689  *
5690  * XXX that's not true in the presence of nulls in the referencing
5691  * column(s), so in principle we should derate the estimate for those.
5692  * However (1) if there are any strict restriction clauses for the
5693  * referencing column(s) elsewhere in the query, derating here would
5694  * be double-counting the null fraction, and (2) it's not very clear
5695  * how to combine null fractions for multiple referencing columns. So
5696  * we do nothing for now about correcting for nulls.
5697  *
5698  * XXX another point here is that if either side of an FK constraint
5699  * is an inheritance parent, we estimate as though the constraint
5700  * covers all its children as well. This is not an unreasonable
5701  * assumption for a referencing table, ie the user probably applied
5702  * identical constraints to all child tables (though perhaps we ought
5703  * to check that). But it's not possible to have done that for a
5704  * referenced table. Fortunately, precisely because that doesn't
5705  * work, it is uncommon in practice to have an FK referencing a parent
5706  * table. So, at least for now, disregard inheritance here.
5707  */
5708  if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
5709  {
5710  /*
5711  * For JOIN_SEMI and JOIN_ANTI, we only get here when the FK's
5712  * referenced table is exactly the inside of the join. The join
5713  * selectivity is defined as the fraction of LHS rows that have
5714  * matches. The FK implies that every LHS row has a match *in the
5715  * referenced table*; but any restriction clauses on it will
5716  * reduce the number of matches. Hence we take the join
5717  * selectivity as equal to the selectivity of the table's
5718  * restriction clauses, which is rows / tuples; but we must guard
5719  * against tuples == 0.
5720  */
5721  RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
5722  double ref_tuples = Max(ref_rel->tuples, 1.0);
5723 
5724  fkselec *= ref_rel->rows / ref_tuples;
5725  }
5726  else
5727  {
5728  /*
5729  * Otherwise, selectivity is exactly 1/referenced-table-size; but
5730  * guard against tuples == 0. Note we should use the raw table
5731  * tuple count, not any estimate of its filtered or joined size.
5732  */
5733  RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
5734  double ref_tuples = Max(ref_rel->tuples, 1.0);
5735 
5736  fkselec *= 1.0 / ref_tuples;
5737  }
5738 
5739  /*
5740  * If any of the FK columns participated in ec_has_const ECs, then
5741  * equivclass.c will have generated "var = const" restrictions for
5742  * each side of the join, thus reducing the sizes of both input
5743  * relations. Taking the fkselec at face value would amount to
5744  * double-counting the selectivity of the constant restriction for the
5745  * referencing Var. Hence, look for the restriction clause(s) that
5746  * were applied to the referencing Var(s), and divide out their
5747  * selectivity to correct for this.
5748  */
5749  if (fkinfo->nconst_ec > 0)
5750  {
5751  for (int i = 0; i < fkinfo->nkeys; i++)
5752  {
5753  EquivalenceClass *ec = fkinfo->eclass[i];
5754 
5755  if (ec && ec->ec_has_const)
5756  {
5757  EquivalenceMember *em = fkinfo->fk_eclass_member[i];
5759  em);
5760 
5761  if (rinfo)
5762  {
5763  Selectivity s0;
5764 
5765  s0 = clause_selectivity(root,
5766  (Node *) rinfo,
5767  0,
5768  jointype,
5769  sjinfo);
5770  if (s0 > 0)
5771  fkselec /= s0;
5772  }
5773  }
5774  }
5775  }
5776  }
5777 
5778  *restrictlist = worklist;
5779  CLAMP_PROBABILITY(fkselec);
5780  return fkselec;
5781 }
5782 
5783 /*
5784  * set_subquery_size_estimates
5785  * Set the size estimates for a base relation that is a subquery.
5786  *
5787  * The rel's targetlist and restrictinfo list must have been constructed
5788  * already, and the Paths for the subquery must have been completed.
5789  * We look at the subquery's PlannerInfo to extract data.
5790  *
5791  * We set the same fields as set_baserel_size_estimates.
5792  */
5793 void
5795 {
5796  PlannerInfo *subroot = rel->subroot;
5797  RelOptInfo *sub_final_rel;
5798  ListCell *lc;
5799 
5800  /* Should only be applied to base relations that are subqueries */
5801  Assert(rel->relid > 0);
5802  Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_SUBQUERY);
5803 
5804  /*
5805  * Copy raw number of output rows from subquery. All of its paths should
5806  * have the same output rowcount, so just look at cheapest-total.
5807  */
5808  sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
5809  rel->tuples = sub_final_rel->cheapest_total_path->rows;
5810 
5811  /*
5812  * Compute per-output-column width estimates by examining the subquery's
5813  * targetlist. For any output that is a plain Var, get the width estimate
5814  * that was made while planning the subquery. Otherwise, we leave it to
5815  * set_rel_width to fill in a datatype-based default estimate.
5816  */
5817  foreach(lc, subroot->parse->targetList)
5818  {
5819  TargetEntry *te = lfirst_node(TargetEntry, lc);
5820  Node *texpr = (Node *) te->expr;
5821  int32 item_width = 0;
5822 
5823  /* junk columns aren't visible to upper query */
5824  if (te->resjunk)
5825  continue;
5826 
5827  /*
5828  * The subquery could be an expansion of a view that's had columns
5829  * added to it since the current query was parsed, so that there are
5830  * non-junk tlist columns in it that don't correspond to any column
5831  * visible at our query level. Ignore such columns.
5832  */
5833  if (te->resno < rel->min_attr || te->resno > rel->max_attr)
5834  continue;
5835 
5836  /*
5837  * XXX This currently doesn't work for subqueries containing set
5838  * operations, because the Vars in their tlists are bogus references
5839  * to the first leaf subquery, which wouldn't give the right answer
5840  * even if we could still get to its PlannerInfo.
5841  *
5842  * Also, the subquery could be an appendrel for which all branches are
5843  * known empty due to constraint exclusion, in which case
5844  * set_append_rel_pathlist will have left the attr_widths set to zero.
5845  *
5846  * In either case, we just leave the width estimate zero until
5847  * set_rel_width fixes it.
5848  */
5849  if (IsA(texpr, Var) &&
5850  subroot->parse->setOperations == NULL)
5851  {
5852  Var *var = (Var *) texpr;
5853  RelOptInfo *subrel = find_base_rel(subroot, var->varno);
5854 
5855  item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
5856  }
5857  rel->attr_widths[te->resno - rel->min_attr] = item_width;
5858  }
5859 
5860  /* Now estimate number of output rows, etc */
5861  set_baserel_size_estimates(root, rel);
5862 }
5863 
5864 /*
5865  * set_function_size_estimates
5866  * Set the size estimates for a base relation that is a function call.
5867  *
5868  * The rel's targetlist and restrictinfo list must have been constructed
5869  * already.
5870  *
5871  * We set the same fields as set_baserel_size_estimates.
5872  */
5873 void
5875 {
5876  RangeTblEntry *rte;
5877  ListCell *lc;
5878 
5879  /* Should only be applied to base relations that are functions */
5880  Assert(rel->relid > 0);
5881  rte = planner_rt_fetch(rel->relid, root);
5882  Assert(rte->rtekind == RTE_FUNCTION);
5883 
5884  /*
5885  * Estimate number of rows the functions will return. The rowcount of the
5886  * node is that of the largest function result.
5887  */
5888  rel->tuples = 0;
5889  foreach(lc, rte->functions)
5890  {
5891  RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
5892  double ntup = expression_returns_set_rows(root, rtfunc->funcexpr);
5893 
5894  if (ntup > rel->tuples)
5895  rel->tuples = ntup;
5896  }
5897 
5898  /* Now estimate number of output rows, etc */
5899  set_baserel_size_estimates(root, rel);
5900 }
5901 
5902 /*
5903  * set_function_size_estimates
5904  * Set the size estimates for a base relation that is a function call.
5905  *
5906  * The rel's targetlist and restrictinfo list must have been constructed
5907  * already.
5908  *
5909  * We set the same fields as set_tablefunc_size_estimates.
5910  */
5911 void
5913 {
5914  /* Should only be applied to base relations that are functions */
5915  Assert(rel->relid > 0);
5916  Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_TABLEFUNC);
5917 
5918  rel->tuples = 100;
5919 
5920  /* Now estimate number of output rows, etc */
5921  set_baserel_size_estimates(root, rel);
5922 }
5923 
5924 /*
5925  * set_values_size_estimates
5926  * Set the size estimates for a base relation that is a values list.
5927  *
5928  * The rel's targetlist and restrictinfo list must have been constructed
5929  * already.
5930  *
5931  * We set the same fields as set_baserel_size_estimates.
5932  */
5933 void
5935 {
5936  RangeTblEntry *rte;
5937 
5938  /* Should only be applied to base relations that are values lists */
5939  Assert(rel->relid > 0);
5940  rte = planner_rt_fetch(rel->relid, root);
5941  Assert(rte->rtekind == RTE_VALUES);
5942 
5943  /*
5944  * Estimate number of rows the values list will return. We know this
5945  * precisely based on the list length (well, barring set-returning
5946  * functions in list items, but that's a refinement not catered for
5947  * anywhere else either).
5948  */
5949  rel->tuples = list_length(rte->values_lists);
5950 
5951  /* Now estimate number of output rows, etc */
5952  set_baserel_size_estimates(root, rel);
5953 }
5954 
5955 /*
5956  * set_cte_size_estimates
5957  * Set the size estimates for a base relation that is a CTE reference.
5958  *
5959  * The rel's targetlist and restrictinfo list must have been constructed
5960  * already, and we need an estimate of the number of rows returned by the CTE
5961  * (if a regular CTE) or the non-recursive term (if a self-reference).
5962  *
5963  * We set the same fields as set_baserel_size_estimates.
5964  */
5965 void
5966 set_cte_size_estimates(PlannerInfo *root, RelOptInfo *rel, double cte_rows)
5967 {
5968  RangeTblEntry *rte;
5969 
5970  /* Should only be applied to base relations that are CTE references */
5971  Assert(rel->relid > 0);
5972  rte = planner_rt_fetch(rel->relid, root);
5973  Assert(rte->rtekind == RTE_CTE);
5974 
5975  if (rte->self_reference)
5976  {
5977  /*
5978  * In a self-reference, we assume the average worktable size is a
5979  * multiple of the nonrecursive term's size. The best multiplier will
5980  * vary depending on query "fan-out", so make its value adjustable.
5981  */
5982  rel->tuples = clamp_row_est(recursive_worktable_factor * cte_rows);
5983  }
5984  else
5985  {
5986  /* Otherwise just believe the CTE's rowcount estimate */
5987  rel->tuples = cte_rows;
5988  }
5989 
5990  /* Now estimate number of output rows, etc */
5991  set_baserel_size_estimates(root, rel);
5992 }
5993 
5994 /*
5995  * set_namedtuplestore_size_estimates
5996  * Set the size estimates for a base relation that is a tuplestore reference.
5997  *
5998  * The rel's targetlist and restrictinfo list must have been constructed
5999  * already.
6000  *
6001  * We set the same fields as set_baserel_size_estimates.
6002  */
6003 void
6005 {
6006  RangeTblEntry *rte;
6007 
6008  /* Should only be applied to base relations that are tuplestore references */
6009  Assert(rel->relid > 0);
6010  rte = planner_rt_fetch(rel->relid, root);
6012 
6013  /*
6014  * Use the estimate provided by the code which is generating the named
6015  * tuplestore. In some cases, the actual number might be available; in
6016  * others the same plan will be re-used, so a "typical" value might be
6017  * estimated and used.
6018  */
6019  rel->tuples = rte->enrtuples;
6020  if (rel->tuples < 0)
6021  rel->tuples = 1000;
6022 
6023  /* Now estimate number of output rows, etc */
6024  set_baserel_size_estimates(root, rel);
6025 }
6026 
6027 /*
6028  * set_result_size_estimates
6029  * Set the size estimates for an RTE_RESULT base relation
6030  *
6031  * The rel's targetlist and restrictinfo list must have been constructed
6032  * already.
6033  *
6034  * We set the same fields as set_baserel_size_estimates.
6035  */
6036 void
6038 {
6039  /* Should only be applied to RTE_RESULT base relations */
6040  Assert(rel->relid > 0);
6041