PostgreSQL Source Code  git master
planner.c File Reference
#include "postgres.h"
#include <limits.h>
#include <math.h>
#include "access/genam.h"
#include "access/htup_details.h"
#include "access/parallel.h"
#include "access/sysattr.h"
#include "access/table.h"
#include "access/xact.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "foreign/fdwapi.h"
#include "jit/jit.h"
#include "lib/bipartite_match.h"
#include "lib/knapsack.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/appendinfo.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/inherit.h"
#include "optimizer/optimizer.h"
#include "optimizer/paramassign.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/analyze.h"
#include "parser/parse_agg.h"
#include "parser/parsetree.h"
#include "partitioning/partdesc.h"
#include "rewrite/rewriteManip.h"
#include "storage/dsm_impl.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
Include dependency graph for planner.c:

Go to the source code of this file.

Data Structures

struct  standard_qp_extra
 
struct  grouping_sets_data
 
struct  WindowClauseSortData
 

Macros

#define EXPRKIND_QUAL   0
 
#define EXPRKIND_TARGET   1
 
#define EXPRKIND_RTFUNC   2
 
#define EXPRKIND_RTFUNC_LATERAL   3
 
#define EXPRKIND_VALUES   4
 
#define EXPRKIND_VALUES_LATERAL   5
 
#define EXPRKIND_LIMIT   6
 
#define EXPRKIND_APPINFO   7
 
#define EXPRKIND_PHV   8
 
#define EXPRKIND_TABLESAMPLE   9
 
#define EXPRKIND_ARBITER_ELEM   10
 
#define EXPRKIND_TABLEFUNC   11
 
#define EXPRKIND_TABLEFUNC_LATERAL   12
 

Functions

static Nodepreprocess_expression (PlannerInfo *root, Node *expr, int kind)
 
static void preprocess_qual_conditions (PlannerInfo *root, Node *jtnode)
 
static void inheritance_planner (PlannerInfo *root)
 
static void grouping_planner (PlannerInfo *root, bool inheritance_update, double tuple_fraction)
 
static grouping_sets_datapreprocess_grouping_sets (PlannerInfo *root)
 
static Listremap_to_groupclause_idx (List *groupClause, List *gsets, int *tleref_to_colnum_map)
 
static void preprocess_rowmarks (PlannerInfo *root)
 
static double preprocess_limit (PlannerInfo *root, double tuple_fraction, int64 *offset_est, int64 *count_est)
 
static void remove_useless_groupby_columns (PlannerInfo *root)
 
static Listpreprocess_groupclause (PlannerInfo *root, List *force)
 
static Listextract_rollup_sets (List *groupingSets)
 
static Listreorder_grouping_sets (List *groupingSets, List *sortclause)
 
static void standard_qp_callback (PlannerInfo *root, void *extra)
 
static double get_number_of_groups (PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
 
static RelOptInfocreate_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, const AggClauseCosts *agg_costs, grouping_sets_data *gd)
 
static bool is_degenerate_grouping (PlannerInfo *root)
 
static void create_degenerate_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel)
 
static RelOptInfomake_grouping_rel (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
 
static void create_ordinary_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
 
static void consider_groupingsets_paths (PlannerInfo *root, RelOptInfo *grouped_rel, Path *path, bool is_sorted, bool can_hash, grouping_sets_data *gd, const AggClauseCosts *agg_costs, double dNumGroups)
 
static RelOptInfocreate_window_paths (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *input_target, PathTarget *output_target, bool output_target_parallel_safe, WindowFuncLists *wflists, List *activeWindows)
 
static void create_one_window_path (PlannerInfo *root, RelOptInfo *window_rel, Path *path, PathTarget *input_target, PathTarget *output_target, WindowFuncLists *wflists, List *activeWindows)
 
static RelOptInfocreate_distinct_paths (PlannerInfo *root, RelOptInfo *input_rel)
 
static RelOptInfocreate_ordered_paths (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, double limit_tuples)
 
static PathTargetmake_group_input_target (PlannerInfo *root, PathTarget *final_target)
 
static PathTargetmake_partial_grouping_target (PlannerInfo *root, PathTarget *grouping_target, Node *havingQual)
 
static Listpostprocess_setop_tlist (List *new_tlist, List *orig_tlist)
 
static Listselect_active_windows (PlannerInfo *root, WindowFuncLists *wflists)
 
static PathTargetmake_window_input_target (PlannerInfo *root, PathTarget *final_target, List *activeWindows)
 
static Listmake_pathkeys_for_window (PlannerInfo *root, WindowClause *wc, List *tlist)
 
static PathTargetmake_sort_input_target (PlannerInfo *root, PathTarget *final_target, bool *have_postponed_srfs)
 
static void adjust_paths_for_srfs (PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
 
static void add_paths_to_grouping_rel (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, double dNumGroups, GroupPathExtraData *extra)
 
static RelOptInfocreate_partial_grouping_paths (PlannerInfo *root, RelOptInfo *grouped_rel, RelOptInfo *input_rel, grouping_sets_data *gd, GroupPathExtraData *extra, bool force_rel_creation)
 
static void gather_grouping_paths (PlannerInfo *root, RelOptInfo *rel)
 
static bool can_partial_agg (PlannerInfo *root, const AggClauseCosts *agg_costs)
 
static void apply_scanjoin_target_to_paths (PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
 
static void create_partitionwise_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, PartitionwiseAggregateType patype, GroupPathExtraData *extra)
 
static bool group_by_has_partkey (RelOptInfo *input_rel, List *targetList, List *groupClause)
 
static int common_prefix_cmp (const void *a, const void *b)
 
PlannedStmtplanner (Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
 
PlannedStmtstandard_planner (Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
 
PlannerInfosubquery_planner (PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction)
 
Exprpreprocess_phv_expression (PlannerInfo *root, Expr *expr)
 
RowMarkType select_rowmark_type (RangeTblEntry *rte, LockClauseStrength strength)
 
bool limit_needed (Query *parse)
 
void mark_partial_aggref (Aggref *agg, AggSplit aggsplit)
 
Pathget_cheapest_fractional_path (RelOptInfo *rel, double tuple_fraction)
 
Exprexpression_planner (Expr *expr)
 
Exprexpression_planner_with_deps (Expr *expr, List **relationOids, List **invalItems)
 
bool plan_cluster_use_sort (Oid tableOid, Oid indexOid)
 
int plan_create_index_workers (Oid tableOid, Oid indexOid)
 

Variables

double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION
 
int force_parallel_mode = FORCE_PARALLEL_OFF
 
bool parallel_leader_participation = true
 
planner_hook_type planner_hook = NULL
 
create_upper_paths_hook_type create_upper_paths_hook = NULL
 

Macro Definition Documentation

◆ EXPRKIND_APPINFO

#define EXPRKIND_APPINFO   7

Definition at line 88 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_ARBITER_ELEM

#define EXPRKIND_ARBITER_ELEM   10

Definition at line 91 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_LIMIT

#define EXPRKIND_LIMIT   6

Definition at line 87 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_PHV

#define EXPRKIND_PHV   8

Definition at line 89 of file planner.c.

Referenced by preprocess_phv_expression().

◆ EXPRKIND_QUAL

#define EXPRKIND_QUAL   0

Definition at line 81 of file planner.c.

Referenced by preprocess_expression(), preprocess_qual_conditions(), and subquery_planner().

◆ EXPRKIND_RTFUNC

#define EXPRKIND_RTFUNC   2

Definition at line 83 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_RTFUNC_LATERAL

#define EXPRKIND_RTFUNC_LATERAL   3

Definition at line 84 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_TABLEFUNC

#define EXPRKIND_TABLEFUNC   11

Definition at line 92 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_TABLEFUNC_LATERAL

#define EXPRKIND_TABLEFUNC_LATERAL   12

Definition at line 93 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_TABLESAMPLE

#define EXPRKIND_TABLESAMPLE   9

Definition at line 90 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_TARGET

#define EXPRKIND_TARGET   1

Definition at line 82 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_VALUES

#define EXPRKIND_VALUES   4

Definition at line 85 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_VALUES_LATERAL

#define EXPRKIND_VALUES_LATERAL   5

Definition at line 86 of file planner.c.

Referenced by subquery_planner().

Function Documentation

◆ add_paths_to_grouping_rel()

static void add_paths_to_grouping_rel ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel,
RelOptInfo partially_grouped_rel,
const AggClauseCosts agg_costs,
grouping_sets_data gd,
double  dNumGroups,
GroupPathExtraData extra 
)
static

Definition at line 6504 of file planner.c.

References add_path(), GroupPathExtraData::agg_final_costs, AGG_HASHED, AGG_PLAIN, AGG_SORTED, AGGSPLIT_FINAL_DESERIAL, AGGSPLIT_SIMPLE, Assert, RelOptInfo::cheapest_total_path, consider_groupingsets_paths(), create_agg_path(), create_group_path(), create_incremental_sort_path(), create_sort_path(), enable_incremental_sort, GroupPathExtraData::flags, gather_grouping_paths(), PlannerInfo::group_pathkeys, Query::groupClause, GROUPING_CAN_USE_HASH, GROUPING_CAN_USE_SORT, Query::groupingSets, Query::hasAggs, GroupPathExtraData::havingQual, lfirst, list_length(), NIL, parse(), PlannerInfo::parse, RelOptInfo::partial_pathlist, Path::pathkeys, pathkeys_count_contained_in(), RelOptInfo::pathlist, and RelOptInfo::reltarget.

Referenced by create_ordinary_grouping_paths().

6510 {
6511  Query *parse = root->parse;
6512  Path *cheapest_path = input_rel->cheapest_total_path;
6513  ListCell *lc;
6514  bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
6515  bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
6516  List *havingQual = (List *) extra->havingQual;
6517  AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
6518 
6519  if (can_sort)
6520  {
6521  /*
6522  * Use any available suitably-sorted path as input, and also consider
6523  * sorting the cheapest-total path.
6524  */
6525  foreach(lc, input_rel->pathlist)
6526  {
6527  Path *path = (Path *) lfirst(lc);
6528  Path *path_original = path;
6529  bool is_sorted;
6530  int presorted_keys;
6531 
6532  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
6533  path->pathkeys,
6534  &presorted_keys);
6535 
6536  if (path == cheapest_path || is_sorted)
6537  {
6538  /* Sort the cheapest-total path if it isn't already sorted */
6539  if (!is_sorted)
6540  path = (Path *) create_sort_path(root,
6541  grouped_rel,
6542  path,
6543  root->group_pathkeys,
6544  -1.0);
6545 
6546  /* Now decide what to stick atop it */
6547  if (parse->groupingSets)
6548  {
6549  consider_groupingsets_paths(root, grouped_rel,
6550  path, true, can_hash,
6551  gd, agg_costs, dNumGroups);
6552  }
6553  else if (parse->hasAggs)
6554  {
6555  /*
6556  * We have aggregation, possibly with plain GROUP BY. Make
6557  * an AggPath.
6558  */
6559  add_path(grouped_rel, (Path *)
6560  create_agg_path(root,
6561  grouped_rel,
6562  path,
6563  grouped_rel->reltarget,
6564  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6566  parse->groupClause,
6567  havingQual,
6568  agg_costs,
6569  dNumGroups));
6570  }
6571  else if (parse->groupClause)
6572  {
6573  /*
6574  * We have GROUP BY without aggregation or grouping sets.
6575  * Make a GroupPath.
6576  */
6577  add_path(grouped_rel, (Path *)
6578  create_group_path(root,
6579  grouped_rel,
6580  path,
6581  parse->groupClause,
6582  havingQual,
6583  dNumGroups));
6584  }
6585  else
6586  {
6587  /* Other cases should have been handled above */
6588  Assert(false);
6589  }
6590  }
6591 
6592  /*
6593  * Now we may consider incremental sort on this path, but only
6594  * when the path is not already sorted and when incremental sort
6595  * is enabled.
6596  */
6597  if (is_sorted || !enable_incremental_sort)
6598  continue;
6599 
6600  /* Restore the input path (we might have added Sort on top). */
6601  path = path_original;
6602 
6603  /* no shared prefix, no point in building incremental sort */
6604  if (presorted_keys == 0)
6605  continue;
6606 
6607  /*
6608  * We should have already excluded pathkeys of length 1 because
6609  * then presorted_keys > 0 would imply is_sorted was true.
6610  */
6611  Assert(list_length(root->group_pathkeys) != 1);
6612 
6613  path = (Path *) create_incremental_sort_path(root,
6614  grouped_rel,
6615  path,
6616  root->group_pathkeys,
6617  presorted_keys,
6618  -1.0);
6619 
6620  /* Now decide what to stick atop it */
6621  if (parse->groupingSets)
6622  {
6623  consider_groupingsets_paths(root, grouped_rel,
6624  path, true, can_hash,
6625  gd, agg_costs, dNumGroups);
6626  }
6627  else if (parse->hasAggs)
6628  {
6629  /*
6630  * We have aggregation, possibly with plain GROUP BY. Make an
6631  * AggPath.
6632  */
6633  add_path(grouped_rel, (Path *)
6634  create_agg_path(root,
6635  grouped_rel,
6636  path,
6637  grouped_rel->reltarget,
6638  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6640  parse->groupClause,
6641  havingQual,
6642  agg_costs,
6643  dNumGroups));
6644  }
6645  else if (parse->groupClause)
6646  {
6647  /*
6648  * We have GROUP BY without aggregation or grouping sets. Make
6649  * a GroupPath.
6650  */
6651  add_path(grouped_rel, (Path *)
6652  create_group_path(root,
6653  grouped_rel,
6654  path,
6655  parse->groupClause,
6656  havingQual,
6657  dNumGroups));
6658  }
6659  else
6660  {
6661  /* Other cases should have been handled above */
6662  Assert(false);
6663  }
6664  }
6665 
6666  /*
6667  * Instead of operating directly on the input relation, we can
6668  * consider finalizing a partially aggregated path.
6669  */
6670  if (partially_grouped_rel != NULL)
6671  {
6672  foreach(lc, partially_grouped_rel->pathlist)
6673  {
6674  Path *path = (Path *) lfirst(lc);
6675  Path *path_original = path;
6676  bool is_sorted;
6677  int presorted_keys;
6678 
6679  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
6680  path->pathkeys,
6681  &presorted_keys);
6682 
6683  /*
6684  * Insert a Sort node, if required. But there's no point in
6685  * sorting anything but the cheapest path.
6686  */
6687  if (!is_sorted)
6688  {
6689  if (path != partially_grouped_rel->cheapest_total_path)
6690  continue;
6691  path = (Path *) create_sort_path(root,
6692  grouped_rel,
6693  path,
6694  root->group_pathkeys,
6695  -1.0);
6696  }
6697 
6698  if (parse->hasAggs)
6699  add_path(grouped_rel, (Path *)
6700  create_agg_path(root,
6701  grouped_rel,
6702  path,
6703  grouped_rel->reltarget,
6704  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6706  parse->groupClause,
6707  havingQual,
6708  agg_final_costs,
6709  dNumGroups));
6710  else
6711  add_path(grouped_rel, (Path *)
6712  create_group_path(root,
6713  grouped_rel,
6714  path,
6715  parse->groupClause,
6716  havingQual,
6717  dNumGroups));
6718 
6719  /*
6720  * Now we may consider incremental sort on this path, but only
6721  * when the path is not already sorted and when incremental
6722  * sort is enabled.
6723  */
6724  if (is_sorted || !enable_incremental_sort)
6725  continue;
6726 
6727  /* Restore the input path (we might have added Sort on top). */
6728  path = path_original;
6729 
6730  /* no shared prefix, not point in building incremental sort */
6731  if (presorted_keys == 0)
6732  continue;
6733 
6734  /*
6735  * We should have already excluded pathkeys of length 1
6736  * because then presorted_keys > 0 would imply is_sorted was
6737  * true.
6738  */
6739  Assert(list_length(root->group_pathkeys) != 1);
6740 
6741  path = (Path *) create_incremental_sort_path(root,
6742  grouped_rel,
6743  path,
6744  root->group_pathkeys,
6745  presorted_keys,
6746  -1.0);
6747 
6748  if (parse->hasAggs)
6749  add_path(grouped_rel, (Path *)
6750  create_agg_path(root,
6751  grouped_rel,
6752  path,
6753  grouped_rel->reltarget,
6754  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6756  parse->groupClause,
6757  havingQual,
6758  agg_final_costs,
6759  dNumGroups));
6760  else
6761  add_path(grouped_rel, (Path *)
6762  create_group_path(root,
6763  grouped_rel,
6764  path,
6765  parse->groupClause,
6766  havingQual,
6767  dNumGroups));
6768  }
6769  }
6770  }
6771 
6772  if (can_hash)
6773  {
6774  if (parse->groupingSets)
6775  {
6776  /*
6777  * Try for a hash-only groupingsets path over unsorted input.
6778  */
6779  consider_groupingsets_paths(root, grouped_rel,
6780  cheapest_path, false, true,
6781  gd, agg_costs, dNumGroups);
6782  }
6783  else
6784  {
6785  /*
6786  * Generate a HashAgg Path. We just need an Agg over the
6787  * cheapest-total input path, since input order won't matter.
6788  */
6789  add_path(grouped_rel, (Path *)
6790  create_agg_path(root, grouped_rel,
6791  cheapest_path,
6792  grouped_rel->reltarget,
6793  AGG_HASHED,
6795  parse->groupClause,
6796  havingQual,
6797  agg_costs,
6798  dNumGroups));
6799  }
6800 
6801  /*
6802  * Generate a Finalize HashAgg Path atop of the cheapest partially
6803  * grouped path, assuming there is one
6804  */
6805  if (partially_grouped_rel && partially_grouped_rel->pathlist)
6806  {
6807  Path *path = partially_grouped_rel->cheapest_total_path;
6808 
6809  add_path(grouped_rel, (Path *)
6810  create_agg_path(root,
6811  grouped_rel,
6812  path,
6813  grouped_rel->reltarget,
6814  AGG_HASHED,
6816  parse->groupClause,
6817  havingQual,
6818  agg_final_costs,
6819  dNumGroups));
6820  }
6821  }
6822 
6823  /*
6824  * When partitionwise aggregate is used, we might have fully aggregated
6825  * paths in the partial pathlist, because add_paths_to_append_rel() will
6826  * consider a path for grouped_rel consisting of a Parallel Append of
6827  * non-partial paths from each child.
6828  */
6829  if (grouped_rel->partial_pathlist != NIL)
6830  gather_grouping_paths(root, grouped_rel);
6831 }
List * group_pathkeys
Definition: pathnodes.h:300
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
bool enable_incremental_sort
Definition: costsize.c:131
static void consider_groupingsets_paths(PlannerInfo *root, RelOptInfo *grouped_rel, Path *path, bool is_sorted, bool can_hash, grouping_sets_data *gd, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: planner.c:4189
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2802
static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
Definition: planner.c:7243
bool hasAggs
Definition: parsenodes.h:125
List * groupingSets
Definition: parsenodes.h:150
List * partial_pathlist
Definition: pathnodes.h:681
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:2447
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:3006
struct Path * cheapest_total_path
Definition: pathnodes.h:683
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2851
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:2448
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
static int list_length(const List *l)
Definition: pg_list.h:169
List * groupClause
Definition: parsenodes.h:148
List * pathlist
Definition: pathnodes.h:679
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:2895
AggClauseCosts agg_final_costs
Definition: pathnodes.h:2488
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ adjust_paths_for_srfs()

static void adjust_paths_for_srfs ( PlannerInfo root,
RelOptInfo rel,
List targets,
List targets_contain_srfs 
)
static

Definition at line 6062 of file planner.c.

References apply_projection_to_path(), Assert, RelOptInfo::cheapest_startup_path, RelOptInfo::cheapest_total_path, create_projection_path(), create_set_projection_path(), forboth, lfirst, lfirst_int, lfirst_node, linitial_int, list_length(), Path::param_info, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, and subpath().

Referenced by apply_scanjoin_target_to_paths(), and grouping_planner().

6064 {
6065  ListCell *lc;
6066 
6067  Assert(list_length(targets) == list_length(targets_contain_srfs));
6068  Assert(!linitial_int(targets_contain_srfs));
6069 
6070  /* If no SRFs appear at this plan level, nothing to do */
6071  if (list_length(targets) == 1)
6072  return;
6073 
6074  /*
6075  * Stack SRF-evaluation nodes atop each path for the rel.
6076  *
6077  * In principle we should re-run set_cheapest() here to identify the
6078  * cheapest path, but it seems unlikely that adding the same tlist eval
6079  * costs to all the paths would change that, so we don't bother. Instead,
6080  * just assume that the cheapest-startup and cheapest-total paths remain
6081  * so. (There should be no parameterized paths anymore, so we needn't
6082  * worry about updating cheapest_parameterized_paths.)
6083  */
6084  foreach(lc, rel->pathlist)
6085  {
6086  Path *subpath = (Path *) lfirst(lc);
6087  Path *newpath = subpath;
6088  ListCell *lc1,
6089  *lc2;
6090 
6091  Assert(subpath->param_info == NULL);
6092  forboth(lc1, targets, lc2, targets_contain_srfs)
6093  {
6094  PathTarget *thistarget = lfirst_node(PathTarget, lc1);
6095  bool contains_srfs = (bool) lfirst_int(lc2);
6096 
6097  /* If this level doesn't contain SRFs, do regular projection */
6098  if (contains_srfs)
6099  newpath = (Path *) create_set_projection_path(root,
6100  rel,
6101  newpath,
6102  thistarget);
6103  else
6104  newpath = (Path *) apply_projection_to_path(root,
6105  rel,
6106  newpath,
6107  thistarget);
6108  }
6109  lfirst(lc) = newpath;
6110  if (subpath == rel->cheapest_startup_path)
6111  rel->cheapest_startup_path = newpath;
6112  if (subpath == rel->cheapest_total_path)
6113  rel->cheapest_total_path = newpath;
6114  }
6115 
6116  /* Likewise for partial paths, if any */
6117  foreach(lc, rel->partial_pathlist)
6118  {
6119  Path *subpath = (Path *) lfirst(lc);
6120  Path *newpath = subpath;
6121  ListCell *lc1,
6122  *lc2;
6123 
6124  Assert(subpath->param_info == NULL);
6125  forboth(lc1, targets, lc2, targets_contain_srfs)
6126  {
6127  PathTarget *thistarget = lfirst_node(PathTarget, lc1);
6128  bool contains_srfs = (bool) lfirst_int(lc2);
6129 
6130  /* If this level doesn't contain SRFs, do regular projection */
6131  if (contains_srfs)
6132  newpath = (Path *) create_set_projection_path(root,
6133  rel,
6134  newpath,
6135  thistarget);
6136  else
6137  {
6138  /* avoid apply_projection_to_path, in case of multiple refs */
6139  newpath = (Path *) create_projection_path(root,
6140  rel,
6141  newpath,
6142  thistarget);
6143  }
6144  }
6145  lfirst(lc) = newpath;
6146  }
6147 }
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2644
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
struct Path * cheapest_startup_path
Definition: pathnodes.h:682
ParamPathInfo * param_info
Definition: pathnodes.h:1147
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2553
List * partial_pathlist
Definition: pathnodes.h:681
#define linitial_int(l)
Definition: pg_list.h:196
#define lfirst_int(lc)
Definition: pg_list.h:191
#define lfirst_node(type, lc)
Definition: pg_list.h:193
struct Path * cheapest_total_path
Definition: pathnodes.h:683
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2733
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
static int list_length(const List *l)
Definition: pg_list.h:169
List * pathlist
Definition: pathnodes.h:679
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:241
unsigned char bool
Definition: c.h:324

◆ apply_scanjoin_target_to_paths()

static void apply_scanjoin_target_to_paths ( PlannerInfo root,
RelOptInfo rel,
List scanjoin_targets,
List scanjoin_targets_contain_srfs,
bool  scanjoin_target_parallel_safe,
bool  tlist_same_exprs 
)
static

Definition at line 7373 of file planner.c.

References add_paths_to_append_rel(), adjust_appendrel_attrs(), adjust_paths_for_srfs(), Assert, check_stack_depth(), RelOptInfo::consider_parallel, copy_pathtarget(), create_projection_path(), PathTarget::exprs, find_appinfos_by_relids(), generate_useful_gather_paths(), Query::hasTargetSRFs, IS_DUMMY_REL, IS_OTHER_REL, IS_PARTITIONED_REL, lappend(), lfirst, lfirst_node, linitial_node, llast_node, NIL, RelOptInfo::nparts, Path::param_info, PlannerInfo::parse, RelOptInfo::part_rels, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, Path::pathtarget, pfree(), RelOptInfo::relids, RelOptInfo::reltarget, set_cheapest(), PathTarget::sortgrouprefs, and subpath().

Referenced by grouping_planner().

7379 {
7380  bool rel_is_partitioned = IS_PARTITIONED_REL(rel);
7381  PathTarget *scanjoin_target;
7382  ListCell *lc;
7383 
7384  /* This recurses, so be paranoid. */
7386 
7387  /*
7388  * If the rel is partitioned, we want to drop its existing paths and
7389  * generate new ones. This function would still be correct if we kept the
7390  * existing paths: we'd modify them to generate the correct target above
7391  * the partitioning Append, and then they'd compete on cost with paths
7392  * generating the target below the Append. However, in our current cost
7393  * model the latter way is always the same or cheaper cost, so modifying
7394  * the existing paths would just be useless work. Moreover, when the cost
7395  * is the same, varying roundoff errors might sometimes allow an existing
7396  * path to be picked, resulting in undesirable cross-platform plan
7397  * variations. So we drop old paths and thereby force the work to be done
7398  * below the Append, except in the case of a non-parallel-safe target.
7399  *
7400  * Some care is needed, because we have to allow generate_gather_paths to
7401  * see the old partial paths in the next stanza. Hence, zap the main
7402  * pathlist here, then allow generate_gather_paths to add path(s) to the
7403  * main list, and finally zap the partial pathlist.
7404  */
7405  if (rel_is_partitioned)
7406  rel->pathlist = NIL;
7407 
7408  /*
7409  * If the scan/join target is not parallel-safe, partial paths cannot
7410  * generate it.
7411  */
7412  if (!scanjoin_target_parallel_safe)
7413  {
7414  /*
7415  * Since we can't generate the final scan/join target in parallel
7416  * workers, this is our last opportunity to use any partial paths that
7417  * exist; so build Gather path(s) that use them and emit whatever the
7418  * current reltarget is. We don't do this in the case where the
7419  * target is parallel-safe, since we will be able to generate superior
7420  * paths by doing it after the final scan/join target has been
7421  * applied.
7422  */
7423  generate_useful_gather_paths(root, rel, false);
7424 
7425  /* Can't use parallel query above this level. */
7426  rel->partial_pathlist = NIL;
7427  rel->consider_parallel = false;
7428  }
7429 
7430  /* Finish dropping old paths for a partitioned rel, per comment above */
7431  if (rel_is_partitioned)
7432  rel->partial_pathlist = NIL;
7433 
7434  /* Extract SRF-free scan/join target. */
7435  scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
7436 
7437  /*
7438  * Apply the SRF-free scan/join target to each existing path.
7439  *
7440  * If the tlist exprs are the same, we can just inject the sortgroupref
7441  * information into the existing pathtargets. Otherwise, replace each
7442  * path with a projection path that generates the SRF-free scan/join
7443  * target. This can't change the ordering of paths within rel->pathlist,
7444  * so we just modify the list in place.
7445  */
7446  foreach(lc, rel->pathlist)
7447  {
7448  Path *subpath = (Path *) lfirst(lc);
7449 
7450  /* Shouldn't have any parameterized paths anymore */
7451  Assert(subpath->param_info == NULL);
7452 
7453  if (tlist_same_exprs)
7454  subpath->pathtarget->sortgrouprefs =
7455  scanjoin_target->sortgrouprefs;
7456  else
7457  {
7458  Path *newpath;
7459 
7460  newpath = (Path *) create_projection_path(root, rel, subpath,
7461  scanjoin_target);
7462  lfirst(lc) = newpath;
7463  }
7464  }
7465 
7466  /* Likewise adjust the targets for any partial paths. */
7467  foreach(lc, rel->partial_pathlist)
7468  {
7469  Path *subpath = (Path *) lfirst(lc);
7470 
7471  /* Shouldn't have any parameterized paths anymore */
7472  Assert(subpath->param_info == NULL);
7473 
7474  if (tlist_same_exprs)
7475  subpath->pathtarget->sortgrouprefs =
7476  scanjoin_target->sortgrouprefs;
7477  else
7478  {
7479  Path *newpath;
7480 
7481  newpath = (Path *) create_projection_path(root, rel, subpath,
7482  scanjoin_target);
7483  lfirst(lc) = newpath;
7484  }
7485  }
7486 
7487  /*
7488  * Now, if final scan/join target contains SRFs, insert ProjectSetPath(s)
7489  * atop each existing path. (Note that this function doesn't look at the
7490  * cheapest-path fields, which is a good thing because they're bogus right
7491  * now.)
7492  */
7493  if (root->parse->hasTargetSRFs)
7494  adjust_paths_for_srfs(root, rel,
7495  scanjoin_targets,
7496  scanjoin_targets_contain_srfs);
7497 
7498  /*
7499  * Update the rel's target to be the final (with SRFs) scan/join target.
7500  * This now matches the actual output of all the paths, and we might get
7501  * confused in createplan.c if they don't agree. We must do this now so
7502  * that any append paths made in the next part will use the correct
7503  * pathtarget (cf. create_append_path).
7504  *
7505  * Note that this is also necessary if GetForeignUpperPaths() gets called
7506  * on the final scan/join relation or on any of its children, since the
7507  * FDW might look at the rel's target to create ForeignPaths.
7508  */
7509  rel->reltarget = llast_node(PathTarget, scanjoin_targets);
7510 
7511  /*
7512  * If the relation is partitioned, recursively apply the scan/join target
7513  * to all partitions, and generate brand-new Append paths in which the
7514  * scan/join target is computed below the Append rather than above it.
7515  * Since Append is not projection-capable, that might save a separate
7516  * Result node, and it also is important for partitionwise aggregate.
7517  */
7518  if (rel_is_partitioned)
7519  {
7520  List *live_children = NIL;
7521  int partition_idx;
7522 
7523  /* Adjust each partition. */
7524  for (partition_idx = 0; partition_idx < rel->nparts; partition_idx++)
7525  {
7526  RelOptInfo *child_rel = rel->part_rels[partition_idx];
7527  AppendRelInfo **appinfos;
7528  int nappinfos;
7529  List *child_scanjoin_targets = NIL;
7530  ListCell *lc;
7531 
7532  /* Pruned or dummy children can be ignored. */
7533  if (child_rel == NULL || IS_DUMMY_REL(child_rel))
7534  continue;
7535 
7536  /* Translate scan/join targets for this child. */
7537  appinfos = find_appinfos_by_relids(root, child_rel->relids,
7538  &nappinfos);
7539  foreach(lc, scanjoin_targets)
7540  {
7541  PathTarget *target = lfirst_node(PathTarget, lc);
7542 
7543  target = copy_pathtarget(target);
7544  target->exprs = (List *)
7546  (Node *) target->exprs,
7547  nappinfos, appinfos);
7548  child_scanjoin_targets = lappend(child_scanjoin_targets,
7549  target);
7550  }
7551  pfree(appinfos);
7552 
7553  /* Recursion does the real work. */
7554  apply_scanjoin_target_to_paths(root, child_rel,
7555  child_scanjoin_targets,
7556  scanjoin_targets_contain_srfs,
7557  scanjoin_target_parallel_safe,
7559 
7560  /* Save non-dummy children for Append paths. */
7561  if (!IS_DUMMY_REL(child_rel))
7562  live_children = lappend(live_children, child_rel);
7563  }
7564 
7565  /* Build new paths for this relation by appending child paths. */
7566  add_paths_to_append_rel(root, rel, live_children);
7567  }
7568 
7569  /*
7570  * Consider generating Gather or Gather Merge paths. We must only do this
7571  * if the relation is parallel safe, and we don't do it for child rels to
7572  * avoid creating multiple Gather nodes within the same plan. We must do
7573  * this after all paths have been generated and before set_cheapest, since
7574  * one of the generated paths may turn out to be the cheapest one.
7575  */
7576  if (rel->consider_parallel && !IS_OTHER_REL(rel))
7577  generate_useful_gather_paths(root, rel, false);
7578 
7579  /*
7580  * Reassess which paths are the cheapest, now that we've potentially added
7581  * new Gather (or Gather Merge) and/or Append (or MergeAppend) paths to
7582  * this relation.
7583  */
7584  set_cheapest(rel);
7585 }
#define NIL
Definition: pg_list.h:65
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:672
static void apply_scanjoin_target_to_paths(PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
Definition: planner.c:7373
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
#define IS_OTHER_REL(rel)
Definition: pathnodes.h:653
void add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel, List *live_childrels)
Definition: allpaths.c:1301
ParamPathInfo * param_info
Definition: pathnodes.h:1147
Definition: nodes.h:529
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2553
List * partial_pathlist
Definition: pathnodes.h:681
#define linitial_node(type, l)
Definition: pg_list.h:198
static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
Definition: planner.c:6062
void pfree(void *pointer)
Definition: mcxt.c:1057
void generate_useful_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
Definition: allpaths.c:2820
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:1418
#define lfirst_node(type, lc)
Definition: pg_list.h:193
void check_stack_depth(void)
Definition: postgres.c:3312
int nparts
Definition: pathnodes.h:743
Index * sortgrouprefs
Definition: pathnodes.h:1075
Relids relids
Definition: pathnodes.h:665
List * lappend(List *list, void *datum)
Definition: list.c:321
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:728
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
List * exprs
Definition: pathnodes.h:1074
#define llast_node(type, l)
Definition: pg_list.h:218
bool hasTargetSRFs
Definition: parsenodes.h:127
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
struct RelOptInfo ** part_rels
Definition: pathnodes.h:750
bool consider_parallel
Definition: pathnodes.h:673
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:240
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:766
List * pathlist
Definition: pathnodes.h:679
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:241
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:194

◆ can_partial_agg()

static bool can_partial_agg ( PlannerInfo root,
const AggClauseCosts agg_costs 
)
static

Definition at line 7331 of file planner.c.

References Query::groupClause, Query::groupingSets, Query::hasAggs, AggClauseCosts::hasNonPartial, AggClauseCosts::hasNonSerial, NIL, parse(), and PlannerInfo::parse.

Referenced by create_grouping_paths().

7332 {
7333  Query *parse = root->parse;
7334 
7335  if (!parse->hasAggs && parse->groupClause == NIL)
7336  {
7337  /*
7338  * We don't know how to do parallel aggregation unless we have either
7339  * some aggregates or a grouping clause.
7340  */
7341  return false;
7342  }
7343  else if (parse->groupingSets)
7344  {
7345  /* We don't know how to do grouping sets in parallel. */
7346  return false;
7347  }
7348  else if (agg_costs->hasNonPartial || agg_costs->hasNonSerial)
7349  {
7350  /* Insufficient support for partial mode. */
7351  return false;
7352  }
7353 
7354  /* Everything looks good. */
7355  return true;
7356 }
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
bool hasAggs
Definition: parsenodes.h:125
List * groupingSets
Definition: parsenodes.h:150
bool hasNonSerial
Definition: pathnodes.h:61
bool hasNonPartial
Definition: pathnodes.h:60
List * groupClause
Definition: parsenodes.h:148
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ common_prefix_cmp()

static int common_prefix_cmp ( const void *  a,
const void *  b 
)
static

Definition at line 5567 of file planner.c.

References forboth, lfirst_node, list_length(), SortGroupClause::nulls_first, SortGroupClause::sortop, SortGroupClause::tleSortGroupRef, and WindowClauseSortData::uniqueOrder.

Referenced by select_active_windows().

5568 {
5569  const WindowClauseSortData *wcsa = a;
5570  const WindowClauseSortData *wcsb = b;
5571  ListCell *item_a;
5572  ListCell *item_b;
5573 
5574  forboth(item_a, wcsa->uniqueOrder, item_b, wcsb->uniqueOrder)
5575  {
5578 
5579  if (sca->tleSortGroupRef > scb->tleSortGroupRef)
5580  return -1;
5581  else if (sca->tleSortGroupRef < scb->tleSortGroupRef)
5582  return 1;
5583  else if (sca->sortop > scb->sortop)
5584  return -1;
5585  else if (sca->sortop < scb->sortop)
5586  return 1;
5587  else if (sca->nulls_first && !scb->nulls_first)
5588  return -1;
5589  else if (!sca->nulls_first && scb->nulls_first)
5590  return 1;
5591  /* no need to compare eqop, since it is fully determined by sortop */
5592  }
5593 
5594  if (list_length(wcsa->uniqueOrder) > list_length(wcsb->uniqueOrder))
5595  return -1;
5596  else if (list_length(wcsa->uniqueOrder) < list_length(wcsb->uniqueOrder))
5597  return 1;
5598 
5599  return 0;
5600 }
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
Index tleSortGroupRef
Definition: parsenodes.h:1258
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static int list_length(const List *l)
Definition: pg_list.h:169

◆ consider_groupingsets_paths()

static void consider_groupingsets_paths ( PlannerInfo root,
RelOptInfo grouped_rel,
Path path,
bool  is_sorted,
bool  can_hash,
grouping_sets_data gd,
const AggClauseCosts agg_costs,
double  dNumGroups 
)
static

Definition at line 4189 of file planner.c.

References add_path(), AGG_HASHED, AGG_MIXED, AGG_SORTED, grouping_sets_data::any_hashable, Assert, bms_is_empty(), bms_is_member(), create_groupingsets_path(), DiscreteKnapsack(), grouping_sets_data::dNumHashGroups, estimate_hashagg_tablesize(), for_each_cell, get_hash_mem(), PlannerInfo::group_pathkeys, RollupData::groupClause, RollupData::gsets, RollupData::gsets_data, RollupData::hashable, Query::havingQual, i, RollupData::is_hashed, lappend(), lcons(), lfirst_node, linitial, list_concat(), list_copy(), list_head(), list_length(), list_make1, list_second_cell(), lnext(), makeNode, Max, Min, NIL, GroupingSetData::numGroups, RollupData::numGroups, palloc(), parse(), PlannerInfo::parse, Path::pathkeys, pathkeys_contained_in(), preprocess_groupclause(), remap_to_groupclause_idx(), grouping_sets_data::rollups, scale, GroupingSetData::set, grouping_sets_data::tleref_to_colnum_map, and grouping_sets_data::unsortable_sets.

Referenced by add_paths_to_grouping_rel().

4197 {
4198  Query *parse = root->parse;
4199  int hash_mem = get_hash_mem();
4200 
4201  /*
4202  * If we're not being offered sorted input, then only consider plans that
4203  * can be done entirely by hashing.
4204  *
4205  * We can hash everything if it looks like it'll fit in hash_mem. But if
4206  * the input is actually sorted despite not being advertised as such, we
4207  * prefer to make use of that in order to use less memory.
4208  *
4209  * If none of the grouping sets are sortable, then ignore the hash_mem
4210  * limit and generate a path anyway, since otherwise we'll just fail.
4211  */
4212  if (!is_sorted)
4213  {
4214  List *new_rollups = NIL;
4215  RollupData *unhashed_rollup = NULL;
4216  List *sets_data;
4217  List *empty_sets_data = NIL;
4218  List *empty_sets = NIL;
4219  ListCell *lc;
4220  ListCell *l_start = list_head(gd->rollups);
4221  AggStrategy strat = AGG_HASHED;
4222  double hashsize;
4223  double exclude_groups = 0.0;
4224 
4225  Assert(can_hash);
4226 
4227  /*
4228  * If the input is coincidentally sorted usefully (which can happen
4229  * even if is_sorted is false, since that only means that our caller
4230  * has set up the sorting for us), then save some hashtable space by
4231  * making use of that. But we need to watch out for degenerate cases:
4232  *
4233  * 1) If there are any empty grouping sets, then group_pathkeys might
4234  * be NIL if all non-empty grouping sets are unsortable. In this case,
4235  * there will be a rollup containing only empty groups, and the
4236  * pathkeys_contained_in test is vacuously true; this is ok.
4237  *
4238  * XXX: the above relies on the fact that group_pathkeys is generated
4239  * from the first rollup. If we add the ability to consider multiple
4240  * sort orders for grouping input, this assumption might fail.
4241  *
4242  * 2) If there are no empty sets and only unsortable sets, then the
4243  * rollups list will be empty (and thus l_start == NULL), and
4244  * group_pathkeys will be NIL; we must ensure that the vacuously-true
4245  * pathkeys_contained_in test doesn't cause us to crash.
4246  */
4247  if (l_start != NULL &&
4249  {
4250  unhashed_rollup = lfirst_node(RollupData, l_start);
4251  exclude_groups = unhashed_rollup->numGroups;
4252  l_start = lnext(gd->rollups, l_start);
4253  }
4254 
4255  hashsize = estimate_hashagg_tablesize(path,
4256  agg_costs,
4257  dNumGroups - exclude_groups);
4258 
4259  /*
4260  * gd->rollups is empty if we have only unsortable columns to work
4261  * with. Override hash_mem in that case; otherwise, we'll rely on the
4262  * sorted-input case to generate usable mixed paths.
4263  */
4264  if (hashsize > hash_mem * 1024L && gd->rollups)
4265  return; /* nope, won't fit */
4266 
4267  /*
4268  * We need to burst the existing rollups list into individual grouping
4269  * sets and recompute a groupClause for each set.
4270  */
4271  sets_data = list_copy(gd->unsortable_sets);
4272 
4273  for_each_cell(lc, gd->rollups, l_start)
4274  {
4275  RollupData *rollup = lfirst_node(RollupData, lc);
4276 
4277  /*
4278  * If we find an unhashable rollup that's not been skipped by the
4279  * "actually sorted" check above, we can't cope; we'd need sorted
4280  * input (with a different sort order) but we can't get that here.
4281  * So bail out; we'll get a valid path from the is_sorted case
4282  * instead.
4283  *
4284  * The mere presence of empty grouping sets doesn't make a rollup
4285  * unhashable (see preprocess_grouping_sets), we handle those
4286  * specially below.
4287  */
4288  if (!rollup->hashable)
4289  return;
4290 
4291  sets_data = list_concat(sets_data, rollup->gsets_data);
4292  }
4293  foreach(lc, sets_data)
4294  {
4296  List *gset = gs->set;
4297  RollupData *rollup;
4298 
4299  if (gset == NIL)
4300  {
4301  /* Empty grouping sets can't be hashed. */
4302  empty_sets_data = lappend(empty_sets_data, gs);
4303  empty_sets = lappend(empty_sets, NIL);
4304  }
4305  else
4306  {
4307  rollup = makeNode(RollupData);
4308 
4309  rollup->groupClause = preprocess_groupclause(root, gset);
4310  rollup->gsets_data = list_make1(gs);
4311  rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
4312  rollup->gsets_data,
4313  gd->tleref_to_colnum_map);
4314  rollup->numGroups = gs->numGroups;
4315  rollup->hashable = true;
4316  rollup->is_hashed = true;
4317  new_rollups = lappend(new_rollups, rollup);
4318  }
4319  }
4320 
4321  /*
4322  * If we didn't find anything nonempty to hash, then bail. We'll
4323  * generate a path from the is_sorted case.
4324  */
4325  if (new_rollups == NIL)
4326  return;
4327 
4328  /*
4329  * If there were empty grouping sets they should have been in the
4330  * first rollup.
4331  */
4332  Assert(!unhashed_rollup || !empty_sets);
4333 
4334  if (unhashed_rollup)
4335  {
4336  new_rollups = lappend(new_rollups, unhashed_rollup);
4337  strat = AGG_MIXED;
4338  }
4339  else if (empty_sets)
4340  {
4341  RollupData *rollup = makeNode(RollupData);
4342 
4343  rollup->groupClause = NIL;
4344  rollup->gsets_data = empty_sets_data;
4345  rollup->gsets = empty_sets;
4346  rollup->numGroups = list_length(empty_sets);
4347  rollup->hashable = false;
4348  rollup->is_hashed = false;
4349  new_rollups = lappend(new_rollups, rollup);
4350  strat = AGG_MIXED;
4351  }
4352 
4353  add_path(grouped_rel, (Path *)
4355  grouped_rel,
4356  path,
4357  (List *) parse->havingQual,
4358  strat,
4359  new_rollups,
4360  agg_costs,
4361  dNumGroups));
4362  return;
4363  }
4364 
4365  /*
4366  * If we have sorted input but nothing we can do with it, bail.
4367  */
4368  if (list_length(gd->rollups) == 0)
4369  return;
4370 
4371  /*
4372  * Given sorted input, we try and make two paths: one sorted and one mixed
4373  * sort/hash. (We need to try both because hashagg might be disabled, or
4374  * some columns might not be sortable.)
4375  *
4376  * can_hash is passed in as false if some obstacle elsewhere (such as
4377  * ordered aggs) means that we shouldn't consider hashing at all.
4378  */
4379  if (can_hash && gd->any_hashable)
4380  {
4381  List *rollups = NIL;
4382  List *hash_sets = list_copy(gd->unsortable_sets);
4383  double availspace = (hash_mem * 1024.0);
4384  ListCell *lc;
4385 
4386  /*
4387  * Account first for space needed for groups we can't sort at all.
4388  */
4389  availspace -= estimate_hashagg_tablesize(path,
4390  agg_costs,
4391  gd->dNumHashGroups);
4392 
4393  if (availspace > 0 && list_length(gd->rollups) > 1)
4394  {
4395  double scale;
4396  int num_rollups = list_length(gd->rollups);
4397  int k_capacity;
4398  int *k_weights = palloc(num_rollups * sizeof(int));
4399  Bitmapset *hash_items = NULL;
4400  int i;
4401 
4402  /*
4403  * We treat this as a knapsack problem: the knapsack capacity
4404  * represents hash_mem, the item weights are the estimated memory
4405  * usage of the hashtables needed to implement a single rollup,
4406  * and we really ought to use the cost saving as the item value;
4407  * however, currently the costs assigned to sort nodes don't
4408  * reflect the comparison costs well, and so we treat all items as
4409  * of equal value (each rollup we hash instead saves us one sort).
4410  *
4411  * To use the discrete knapsack, we need to scale the values to a
4412  * reasonably small bounded range. We choose to allow a 5% error
4413  * margin; we have no more than 4096 rollups in the worst possible
4414  * case, which with a 5% error margin will require a bit over 42MB
4415  * of workspace. (Anyone wanting to plan queries that complex had
4416  * better have the memory for it. In more reasonable cases, with
4417  * no more than a couple of dozen rollups, the memory usage will
4418  * be negligible.)
4419  *
4420  * k_capacity is naturally bounded, but we clamp the values for
4421  * scale and weight (below) to avoid overflows or underflows (or
4422  * uselessly trying to use a scale factor less than 1 byte).
4423  */
4424  scale = Max(availspace / (20.0 * num_rollups), 1.0);
4425  k_capacity = (int) floor(availspace / scale);
4426 
4427  /*
4428  * We leave the first rollup out of consideration since it's the
4429  * one that matches the input sort order. We assign indexes "i"
4430  * to only those entries considered for hashing; the second loop,
4431  * below, must use the same condition.
4432  */
4433  i = 0;
4435  {
4436  RollupData *rollup = lfirst_node(RollupData, lc);
4437 
4438  if (rollup->hashable)
4439  {
4440  double sz = estimate_hashagg_tablesize(path,
4441  agg_costs,
4442  rollup->numGroups);
4443 
4444  /*
4445  * If sz is enormous, but hash_mem (and hence scale) is
4446  * small, avoid integer overflow here.
4447  */
4448  k_weights[i] = (int) Min(floor(sz / scale),
4449  k_capacity + 1.0);
4450  ++i;
4451  }
4452  }
4453 
4454  /*
4455  * Apply knapsack algorithm; compute the set of items which
4456  * maximizes the value stored (in this case the number of sorts
4457  * saved) while keeping the total size (approximately) within
4458  * capacity.
4459  */
4460  if (i > 0)
4461  hash_items = DiscreteKnapsack(k_capacity, i, k_weights, NULL);
4462 
4463  if (!bms_is_empty(hash_items))
4464  {
4465  rollups = list_make1(linitial(gd->rollups));
4466 
4467  i = 0;
4469  {
4470  RollupData *rollup = lfirst_node(RollupData, lc);
4471 
4472  if (rollup->hashable)
4473  {
4474  if (bms_is_member(i, hash_items))
4475  hash_sets = list_concat(hash_sets,
4476  rollup->gsets_data);
4477  else
4478  rollups = lappend(rollups, rollup);
4479  ++i;
4480  }
4481  else
4482  rollups = lappend(rollups, rollup);
4483  }
4484  }
4485  }
4486 
4487  if (!rollups && hash_sets)
4488  rollups = list_copy(gd->rollups);
4489 
4490  foreach(lc, hash_sets)
4491  {
4493  RollupData *rollup = makeNode(RollupData);
4494 
4495  Assert(gs->set != NIL);
4496 
4497  rollup->groupClause = preprocess_groupclause(root, gs->set);
4498  rollup->gsets_data = list_make1(gs);
4499  rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
4500  rollup->gsets_data,
4501  gd->tleref_to_colnum_map);
4502  rollup->numGroups = gs->numGroups;
4503  rollup->hashable = true;
4504  rollup->is_hashed = true;
4505  rollups = lcons(rollup, rollups);
4506  }
4507 
4508  if (rollups)
4509  {
4510  add_path(grouped_rel, (Path *)
4512  grouped_rel,
4513  path,
4514  (List *) parse->havingQual,
4515  AGG_MIXED,
4516  rollups,
4517  agg_costs,
4518  dNumGroups));
4519  }
4520  }
4521 
4522  /*
4523  * Now try the simple sorted case.
4524  */
4525  if (!gd->unsortable_sets)
4526  add_path(grouped_rel, (Path *)
4528  grouped_rel,
4529  path,
4530  (List *) parse->havingQual,
4531  AGG_SORTED,
4532  gd->rollups,
4533  agg_costs,
4534  dNumGroups));
4535 }
List * group_pathkeys
Definition: pathnodes.h:300
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
List * groupClause
Definition: pathnodes.h:1722
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
static List * preprocess_groupclause(PlannerInfo *root, List *force)
Definition: planner.c:3232
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:390
#define Min(x, y)
Definition: c.h:927
bool is_hashed
Definition: pathnodes.h:1727
List * list_copy(const List *oldlist)
Definition: list.c:1403
List * list_concat(List *list1, const List *list2)
Definition: list.c:515
int scale
Definition: pgbench.c:154
double dNumHashGroups
Definition: planner.c:110
double numGroups
Definition: pathnodes.h:1725
#define list_make1(x1)
Definition: pg_list.h:227
#define linitial(l)
Definition: pg_list.h:195
int * tleref_to_colnum_map
Definition: planner.c:115
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static ListCell * list_second_cell(const List *l)
Definition: pg_list.h:139
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
double estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: selfuncs.c:3842
List * lappend(List *list, void *datum)
Definition: list.c:321
bool bms_is_empty(const Bitmapset *a)
Definition: bitmapset.c:701
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
static List * remap_to_groupclause_idx(List *groupClause, List *gsets, int *tleref_to_colnum_map)
Definition: planner.c:2613
List * lcons(void *datum, List *list)
Definition: list.c:453
List * pathkeys
Definition: pathnodes.h:1158
#define Max(x, y)
Definition: c.h:921
#define makeNode(_type_)
Definition: nodes.h:577
#define Assert(condition)
Definition: c.h:745
static int list_length(const List *l)
Definition: pg_list.h:169
List * unsortable_sets
Definition: planner.c:114
AggStrategy
Definition: nodes.h:758
void * palloc(Size size)
Definition: mcxt.c:950
int i
double numGroups
Definition: pathnodes.h:1716
bool hashable
Definition: pathnodes.h:1726
Node * havingQual
Definition: parsenodes.h:152
Definition: pg_list.h:50
Bitmapset * DiscreteKnapsack(int max_weight, int num_items, int *item_weights, double *item_values)
Definition: knapsack.c:54
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:427
List * gsets_data
Definition: pathnodes.h:1724
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs, double numGroups)
Definition: pathnode.c:3073
int get_hash_mem(void)
Definition: nodeHash.c:3389
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
List * gsets
Definition: pathnodes.h:1723

◆ create_degenerate_grouping_paths()

static void create_degenerate_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel 
)
static

Definition at line 3988 of file planner.c.

References add_path(), create_append_path(), create_group_result_path(), Query::groupingSets, Query::havingQual, lappend(), list_length(), NIL, parse(), PlannerInfo::parse, and RelOptInfo::reltarget.

Referenced by create_grouping_paths().

3990 {
3991  Query *parse = root->parse;
3992  int nrows;
3993  Path *path;
3994 
3995  nrows = list_length(parse->groupingSets);
3996  if (nrows > 1)
3997  {
3998  /*
3999  * Doesn't seem worthwhile writing code to cons up a generate_series
4000  * or a values scan to emit multiple rows. Instead just make N clones
4001  * and append them. (With a volatile HAVING clause, this means you
4002  * might get between 0 and N output rows. Offhand I think that's
4003  * desired.)
4004  */
4005  List *paths = NIL;
4006 
4007  while (--nrows >= 0)
4008  {
4009  path = (Path *)
4010  create_group_result_path(root, grouped_rel,
4011  grouped_rel->reltarget,
4012  (List *) parse->havingQual);
4013  paths = lappend(paths, path);
4014  }
4015  path = (Path *)
4016  create_append_path(root,
4017  grouped_rel,
4018  paths,
4019  NIL,
4020  NIL,
4021  NULL,
4022  0,
4023  false,
4024  NIL,
4025  -1);
4026  }
4027  else
4028  {
4029  /* No grouping sets, or just one, so one output row */
4030  path = (Path *)
4031  create_group_result_path(root, grouped_rel,
4032  grouped_rel->reltarget,
4033  (List *) parse->havingQual);
4034  }
4035 
4036  add_path(grouped_rel, path);
4037 }
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
List * groupingSets
Definition: parsenodes.h:150
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, List *partitioned_rels, double rows)
Definition: pathnode.c:1215
List * lappend(List *list, void *datum)
Definition: list.c:321
static int list_length(const List *l)
Definition: pg_list.h:169
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1479
Node * havingQual
Definition: parsenodes.h:152
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_distinct_paths()

static RelOptInfo * create_distinct_paths ( PlannerInfo root,
RelOptInfo input_rel 
)
static

Definition at line 4755 of file planner.c.

References add_path(), AGG_HASHED, AGGSPLIT_SIMPLE, Assert, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_agg_path(), create_sort_path(), create_upper_paths_hook, create_upper_unique_path(), PlannerInfo::distinct_pathkeys, Query::distinctClause, enable_hashagg, ereport, errcode(), errdetail(), errmsg(), ERROR, estimate_num_groups(), RelOptInfo::fdwroutine, fetch_upper_rel(), get_sortgrouplist_exprs(), FdwRoutine::GetForeignUpperPaths, Query::groupClause, grouping_is_hashable(), grouping_is_sortable(), Query::groupingSets, Query::hasAggs, Query::hasDistinctOn, PlannerInfo::hasHavingQual, lfirst, list_length(), NIL, parse(), PlannerInfo::parse, Path::pathkeys, pathkeys_contained_in(), RelOptInfo::pathlist, Path::pathtarget, Path::rows, RelOptInfo::serverid, set_cheapest(), PlannerInfo::sort_pathkeys, Query::targetList, UPPERREL_DISTINCT, RelOptInfo::userid, and RelOptInfo::useridiscurrent.

Referenced by grouping_planner().

4757 {
4758  Query *parse = root->parse;
4759  Path *cheapest_input_path = input_rel->cheapest_total_path;
4760  RelOptInfo *distinct_rel;
4761  double numDistinctRows;
4762  bool allow_hash;
4763  Path *path;
4764  ListCell *lc;
4765 
4766  /* For now, do all work in the (DISTINCT, NULL) upperrel */
4767  distinct_rel = fetch_upper_rel(root, UPPERREL_DISTINCT, NULL);
4768 
4769  /*
4770  * We don't compute anything at this level, so distinct_rel will be
4771  * parallel-safe if the input rel is parallel-safe. In particular, if
4772  * there is a DISTINCT ON (...) clause, any path for the input_rel will
4773  * output those expressions, and will not be parallel-safe unless those
4774  * expressions are parallel-safe.
4775  */
4776  distinct_rel->consider_parallel = input_rel->consider_parallel;
4777 
4778  /*
4779  * If the input rel belongs to a single FDW, so does the distinct_rel.
4780  */
4781  distinct_rel->serverid = input_rel->serverid;
4782  distinct_rel->userid = input_rel->userid;
4783  distinct_rel->useridiscurrent = input_rel->useridiscurrent;
4784  distinct_rel->fdwroutine = input_rel->fdwroutine;
4785 
4786  /* Estimate number of distinct rows there will be */
4787  if (parse->groupClause || parse->groupingSets || parse->hasAggs ||
4788  root->hasHavingQual)
4789  {
4790  /*
4791  * If there was grouping or aggregation, use the number of input rows
4792  * as the estimated number of DISTINCT rows (ie, assume the input is
4793  * already mostly unique).
4794  */
4795  numDistinctRows = cheapest_input_path->rows;
4796  }
4797  else
4798  {
4799  /*
4800  * Otherwise, the UNIQUE filter has effects comparable to GROUP BY.
4801  */
4802  List *distinctExprs;
4803 
4804  distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
4805  parse->targetList);
4806  numDistinctRows = estimate_num_groups(root, distinctExprs,
4807  cheapest_input_path->rows,
4808  NULL);
4809  }
4810 
4811  /*
4812  * Consider sort-based implementations of DISTINCT, if possible.
4813  */
4815  {
4816  /*
4817  * First, if we have any adequately-presorted paths, just stick a
4818  * Unique node on those. Then consider doing an explicit sort of the
4819  * cheapest input path and Unique'ing that.
4820  *
4821  * When we have DISTINCT ON, we must sort by the more rigorous of
4822  * DISTINCT and ORDER BY, else it won't have the desired behavior.
4823  * Also, if we do have to do an explicit sort, we might as well use
4824  * the more rigorous ordering to avoid a second sort later. (Note
4825  * that the parser will have ensured that one clause is a prefix of
4826  * the other.)
4827  */
4828  List *needed_pathkeys;
4829 
4830  if (parse->hasDistinctOn &&
4832  list_length(root->sort_pathkeys))
4833  needed_pathkeys = root->sort_pathkeys;
4834  else
4835  needed_pathkeys = root->distinct_pathkeys;
4836 
4837  foreach(lc, input_rel->pathlist)
4838  {
4839  Path *path = (Path *) lfirst(lc);
4840 
4841  if (pathkeys_contained_in(needed_pathkeys, path->pathkeys))
4842  {
4843  add_path(distinct_rel, (Path *)
4844  create_upper_unique_path(root, distinct_rel,
4845  path,
4847  numDistinctRows));
4848  }
4849  }
4850 
4851  /* For explicit-sort case, always use the more rigorous clause */
4852  if (list_length(root->distinct_pathkeys) <
4853  list_length(root->sort_pathkeys))
4854  {
4855  needed_pathkeys = root->sort_pathkeys;
4856  /* Assert checks that parser didn't mess up... */
4858  needed_pathkeys));
4859  }
4860  else
4861  needed_pathkeys = root->distinct_pathkeys;
4862 
4863  path = cheapest_input_path;
4864  if (!pathkeys_contained_in(needed_pathkeys, path->pathkeys))
4865  path = (Path *) create_sort_path(root, distinct_rel,
4866  path,
4867  needed_pathkeys,
4868  -1.0);
4869 
4870  add_path(distinct_rel, (Path *)
4871  create_upper_unique_path(root, distinct_rel,
4872  path,
4874  numDistinctRows));
4875  }
4876 
4877  /*
4878  * Consider hash-based implementations of DISTINCT, if possible.
4879  *
4880  * If we were not able to make any other types of path, we *must* hash or
4881  * die trying. If we do have other choices, there are two things that
4882  * should prevent selection of hashing: if the query uses DISTINCT ON
4883  * (because it won't really have the expected behavior if we hash), or if
4884  * enable_hashagg is off.
4885  *
4886  * Note: grouping_is_hashable() is much more expensive to check than the
4887  * other gating conditions, so we want to do it last.
4888  */
4889  if (distinct_rel->pathlist == NIL)
4890  allow_hash = true; /* we have no alternatives */
4891  else if (parse->hasDistinctOn || !enable_hashagg)
4892  allow_hash = false; /* policy-based decision not to hash */
4893  else
4894  allow_hash = true; /* default */
4895 
4896  if (allow_hash && grouping_is_hashable(parse->distinctClause))
4897  {
4898  /* Generate hashed aggregate path --- no sort needed */
4899  add_path(distinct_rel, (Path *)
4900  create_agg_path(root,
4901  distinct_rel,
4902  cheapest_input_path,
4903  cheapest_input_path->pathtarget,
4904  AGG_HASHED,
4906  parse->distinctClause,
4907  NIL,
4908  NULL,
4909  numDistinctRows));
4910  }
4911 
4912  /* Give a helpful error if we failed to find any implementation */
4913  if (distinct_rel->pathlist == NIL)
4914  ereport(ERROR,
4915  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4916  errmsg("could not implement DISTINCT"),
4917  errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
4918 
4919  /*
4920  * If there is an FDW that's responsible for all baserels of the query,
4921  * let it consider adding ForeignPaths.
4922  */
4923  if (distinct_rel->fdwroutine &&
4924  distinct_rel->fdwroutine->GetForeignUpperPaths)
4925  distinct_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_DISTINCT,
4926  input_rel, distinct_rel,
4927  NULL);
4928 
4929  /* Let extensions possibly add some more paths */
4931  (*create_upper_paths_hook) (root, UPPERREL_DISTINCT,
4932  input_rel, distinct_rel, NULL);
4933 
4934  /* Now choose the best path(s) */
4935  set_cheapest(distinct_rel);
4936 
4937  return distinct_rel;
4938 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
#define NIL
Definition: pg_list.h:65
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset)
Definition: selfuncs.c:3360
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
UpperUniquePath * create_upper_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:2954
Oid userid
Definition: pathnodes.h:715
bool hasAggs
Definition: parsenodes.h:125
List * groupingSets
Definition: parsenodes.h:150
int errcode(int sqlerrcode)
Definition: elog.c:610
bool grouping_is_hashable(List *groupClause)
Definition: tlist.c:582
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
bool useridiscurrent
Definition: pathnodes.h:716
bool hasDistinctOn
Definition: parsenodes.h:129
List * targetList
Definition: parsenodes.h:140
List * distinctClause
Definition: parsenodes.h:156
#define ERROR
Definition: elog.h:43
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1192
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:3006
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
int errdetail(const char *fmt,...)
Definition: elog.c:957
List * sort_pathkeys
Definition: pathnodes.h:303
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
Oid serverid
Definition: pathnodes.h:714
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
List * distinct_pathkeys
Definition: pathnodes.h:302
#define ereport(elevel,...)
Definition: elog.h:144
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2851
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static int list_length(const List *l)
Definition: pg_list.h:169
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:414
bool consider_parallel
Definition: pathnodes.h:673
bool enable_hashagg
Definition: costsize.c:132
List * groupClause
Definition: parsenodes.h:148
int errmsg(const char *fmt,...)
Definition: elog.c:824
bool grouping_is_sortable(List *groupClause)
Definition: tlist.c:562
bool hasHavingQual
Definition: pathnodes.h:347
List * pathlist
Definition: pathnodes.h:679
Definition: pg_list.h:50
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_grouping_paths()

static RelOptInfo * create_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
PathTarget target,
bool  target_parallel_safe,
const AggClauseCosts agg_costs,
grouping_sets_data gd 
)
static

Definition at line 3804 of file planner.c.

References grouping_sets_data::any_hashable, can_partial_agg(), create_degenerate_grouping_paths(), create_ordinary_grouping_paths(), enable_partitionwise_aggregate, GroupPathExtraData::flags, Query::groupClause, GROUPING_CAN_PARTIAL_AGG, GROUPING_CAN_USE_HASH, GROUPING_CAN_USE_SORT, grouping_is_hashable(), grouping_is_sortable(), Query::groupingSets, Query::havingQual, GroupPathExtraData::havingQual, is_degenerate_grouping(), make_grouping_rel(), NIL, AggClauseCosts::numOrderedAggs, parse(), PlannerInfo::parse, GroupPathExtraData::partial_costs_set, PARTITIONWISE_AGGREGATE_FULL, PARTITIONWISE_AGGREGATE_NONE, GroupPathExtraData::patype, grouping_sets_data::rollups, set_cheapest(), GroupPathExtraData::target_parallel_safe, Query::targetList, and GroupPathExtraData::targetList.

Referenced by grouping_planner().

3810 {
3811  Query *parse = root->parse;
3812  RelOptInfo *grouped_rel;
3813  RelOptInfo *partially_grouped_rel;
3814 
3815  /*
3816  * Create grouping relation to hold fully aggregated grouping and/or
3817  * aggregation paths.
3818  */
3819  grouped_rel = make_grouping_rel(root, input_rel, target,
3820  target_parallel_safe, parse->havingQual);
3821 
3822  /*
3823  * Create either paths for a degenerate grouping or paths for ordinary
3824  * grouping, as appropriate.
3825  */
3826  if (is_degenerate_grouping(root))
3827  create_degenerate_grouping_paths(root, input_rel, grouped_rel);
3828  else
3829  {
3830  int flags = 0;
3831  GroupPathExtraData extra;
3832 
3833  /*
3834  * Determine whether it's possible to perform sort-based
3835  * implementations of grouping. (Note that if groupClause is empty,
3836  * grouping_is_sortable() is trivially true, and all the
3837  * pathkeys_contained_in() tests will succeed too, so that we'll
3838  * consider every surviving input path.)
3839  *
3840  * If we have grouping sets, we might be able to sort some but not all
3841  * of them; in this case, we need can_sort to be true as long as we
3842  * must consider any sorted-input plan.
3843  */
3844  if ((gd && gd->rollups != NIL)
3845  || grouping_is_sortable(parse->groupClause))
3846  flags |= GROUPING_CAN_USE_SORT;
3847 
3848  /*
3849  * Determine whether we should consider hash-based implementations of
3850  * grouping.
3851  *
3852  * Hashed aggregation only applies if we're grouping. If we have
3853  * grouping sets, some groups might be hashable but others not; in
3854  * this case we set can_hash true as long as there is nothing globally
3855  * preventing us from hashing (and we should therefore consider plans
3856  * with hashes).
3857  *
3858  * Executor doesn't support hashed aggregation with DISTINCT or ORDER
3859  * BY aggregates. (Doing so would imply storing *all* the input
3860  * values in the hash table, and/or running many sorts in parallel,
3861  * either of which seems like a certain loser.) We similarly don't
3862  * support ordered-set aggregates in hashed aggregation, but that case
3863  * is also included in the numOrderedAggs count.
3864  *
3865  * Note: grouping_is_hashable() is much more expensive to check than
3866  * the other gating conditions, so we want to do it last.
3867  */
3868  if ((parse->groupClause != NIL &&
3869  agg_costs->numOrderedAggs == 0 &&
3870  (gd ? gd->any_hashable : grouping_is_hashable(parse->groupClause))))
3871  flags |= GROUPING_CAN_USE_HASH;
3872 
3873  /*
3874  * Determine whether partial aggregation is possible.
3875  */
3876  if (can_partial_agg(root, agg_costs))
3877  flags |= GROUPING_CAN_PARTIAL_AGG;
3878 
3879  extra.flags = flags;
3880  extra.target_parallel_safe = target_parallel_safe;
3881  extra.havingQual = parse->havingQual;
3882  extra.targetList = parse->targetList;
3883  extra.partial_costs_set = false;
3884 
3885  /*
3886  * Determine whether partitionwise aggregation is in theory possible.
3887  * It can be disabled by the user, and for now, we don't try to
3888  * support grouping sets. create_ordinary_grouping_paths() will check
3889  * additional conditions, such as whether input_rel is partitioned.
3890  */
3893  else
3895 
3896  create_ordinary_grouping_paths(root, input_rel, grouped_rel,
3897  agg_costs, gd, &extra,
3898  &partially_grouped_rel);
3899  }
3900 
3901  set_cheapest(grouped_rel);
3902  return grouped_rel;
3903 }
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
static RelOptInfo * make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
Definition: planner.c:3914
static void create_degenerate_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel)
Definition: planner.c:3988
List * groupingSets
Definition: parsenodes.h:150
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
bool grouping_is_hashable(List *groupClause)
Definition: tlist.c:582
bool enable_partitionwise_aggregate
Definition: costsize.c:139
List * targetList
Definition: parsenodes.h:140
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:2447
static bool is_degenerate_grouping(PlannerInfo *root)
Definition: planner.c:3967
int numOrderedAggs
Definition: pathnodes.h:59
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
#define GROUPING_CAN_PARTIAL_AGG
Definition: pathnodes.h:2449
static bool can_partial_agg(PlannerInfo *root, const AggClauseCosts *agg_costs)
Definition: planner.c:7331
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:2448
static void create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
Definition: planner.c:4053
List * groupClause
Definition: parsenodes.h:148
bool grouping_is_sortable(List *groupClause)
Definition: tlist.c:562
Node * havingQual
Definition: parsenodes.h:152
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_one_window_path()

static void create_one_window_path ( PlannerInfo root,
RelOptInfo window_rel,
Path path,
PathTarget input_target,
PathTarget output_target,
WindowFuncLists wflists,
List activeWindows 
)
static

Definition at line 4638 of file planner.c.

References add_column_to_pathtarget(), add_path(), copy_pathtarget(), create_incremental_sort_path(), create_sort_path(), create_windowagg_path(), enable_incremental_sort, get_typavgwidth(), lfirst_node, lnext(), make_pathkeys_for_window(), Path::pathkeys, pathkeys_count_contained_in(), PlannerInfo::processed_tlist, PathTarget::width, WindowFuncLists::windowFuncs, and WindowClause::winref.

Referenced by create_window_paths().

4645 {
4646  PathTarget *window_target;
4647  ListCell *l;
4648 
4649  /*
4650  * Since each window clause could require a different sort order, we stack
4651  * up a WindowAgg node for each clause, with sort steps between them as
4652  * needed. (We assume that select_active_windows chose a good order for
4653  * executing the clauses in.)
4654  *
4655  * input_target should contain all Vars and Aggs needed for the result.
4656  * (In some cases we wouldn't need to propagate all of these all the way
4657  * to the top, since they might only be needed as inputs to WindowFuncs.
4658  * It's probably not worth trying to optimize that though.) It must also
4659  * contain all window partitioning and sorting expressions, to ensure
4660  * they're computed only once at the bottom of the stack (that's critical
4661  * for volatile functions). As we climb up the stack, we'll add outputs
4662  * for the WindowFuncs computed at each level.
4663  */
4664  window_target = input_target;
4665 
4666  foreach(l, activeWindows)
4667  {
4669  List *window_pathkeys;
4670  int presorted_keys;
4671  bool is_sorted;
4672 
4673  window_pathkeys = make_pathkeys_for_window(root,
4674  wc,
4675  root->processed_tlist);
4676 
4677  is_sorted = pathkeys_count_contained_in(window_pathkeys,
4678  path->pathkeys,
4679  &presorted_keys);
4680 
4681  /* Sort if necessary */
4682  if (!is_sorted)
4683  {
4684  /*
4685  * No presorted keys or incremental sort disabled, just perform a
4686  * complete sort.
4687  */
4688  if (presorted_keys == 0 || !enable_incremental_sort)
4689  path = (Path *) create_sort_path(root, window_rel,
4690  path,
4691  window_pathkeys,
4692  -1.0);
4693  else
4694  {
4695  /*
4696  * Since we have presorted keys and incremental sort is
4697  * enabled, just use incremental sort.
4698  */
4699  path = (Path *) create_incremental_sort_path(root,
4700  window_rel,
4701  path,
4702  window_pathkeys,
4703  presorted_keys,
4704  -1.0);
4705  }
4706  }
4707 
4708  if (lnext(activeWindows, l))
4709  {
4710  /*
4711  * Add the current WindowFuncs to the output target for this
4712  * intermediate WindowAggPath. We must copy window_target to
4713  * avoid changing the previous path's target.
4714  *
4715  * Note: a WindowFunc adds nothing to the target's eval costs; but
4716  * we do need to account for the increase in tlist width.
4717  */
4718  ListCell *lc2;
4719 
4720  window_target = copy_pathtarget(window_target);
4721  foreach(lc2, wflists->windowFuncs[wc->winref])
4722  {
4723  WindowFunc *wfunc = lfirst_node(WindowFunc, lc2);
4724 
4725  add_column_to_pathtarget(window_target, (Expr *) wfunc, 0);
4726  window_target->width += get_typavgwidth(wfunc->wintype, -1);
4727  }
4728  }
4729  else
4730  {
4731  /* Install the goal target in the topmost WindowAgg */
4732  window_target = output_target;
4733  }
4734 
4735  path = (Path *)
4736  create_windowagg_path(root, window_rel, path, window_target,
4737  wflists->windowFuncs[wc->winref],
4738  wc);
4739  }
4740 
4741  add_path(window_rel, path);
4742 }
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:672
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
bool enable_incremental_sort
Definition: costsize.c:131
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2802
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
void add_column_to_pathtarget(PathTarget *target, Expr *expr, Index sortgroupref)
Definition: tlist.c:710
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static List * make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, List *tlist)
Definition: planner.c:5754
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2466
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2851
List * pathkeys
Definition: pathnodes.h:1158
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, WindowClause *winclause)
Definition: pathnode.c:3305
Oid wintype
Definition: primnodes.h:374
List * processed_tlist
Definition: pathnodes.h:325
Definition: pg_list.h:50
List ** windowFuncs
Definition: clauses.h:24

◆ create_ordered_paths()

static RelOptInfo * create_ordered_paths ( PlannerInfo root,
RelOptInfo input_rel,
PathTarget target,
bool  target_parallel_safe,
double  limit_tuples 
)
static

Definition at line 4958 of file planner.c.

References add_path(), apply_projection_to_path(), Assert, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_gather_merge_path(), create_incremental_sort_path(), create_sort_path(), create_upper_paths_hook, enable_incremental_sort, RelOptInfo::fdwroutine, fetch_upper_rel(), FdwRoutine::GetForeignUpperPaths, lfirst, linitial, list_length(), NIL, Path::parallel_workers, RelOptInfo::partial_pathlist, Path::pathkeys, pathkeys_contained_in(), pathkeys_count_contained_in(), RelOptInfo::pathlist, Path::pathtarget, Path::rows, RelOptInfo::serverid, PlannerInfo::sort_pathkeys, UPPERREL_ORDERED, RelOptInfo::userid, and RelOptInfo::useridiscurrent.

Referenced by grouping_planner().

4963 {
4964  Path *cheapest_input_path = input_rel->cheapest_total_path;
4965  RelOptInfo *ordered_rel;
4966  ListCell *lc;
4967 
4968  /* For now, do all work in the (ORDERED, NULL) upperrel */
4969  ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
4970 
4971  /*
4972  * If the input relation is not parallel-safe, then the ordered relation
4973  * can't be parallel-safe, either. Otherwise, it's parallel-safe if the
4974  * target list is parallel-safe.
4975  */
4976  if (input_rel->consider_parallel && target_parallel_safe)
4977  ordered_rel->consider_parallel = true;
4978 
4979  /*
4980  * If the input rel belongs to a single FDW, so does the ordered_rel.
4981  */
4982  ordered_rel->serverid = input_rel->serverid;
4983  ordered_rel->userid = input_rel->userid;
4984  ordered_rel->useridiscurrent = input_rel->useridiscurrent;
4985  ordered_rel->fdwroutine = input_rel->fdwroutine;
4986 
4987  foreach(lc, input_rel->pathlist)
4988  {
4989  Path *input_path = (Path *) lfirst(lc);
4990  Path *sorted_path = input_path;
4991  bool is_sorted;
4992  int presorted_keys;
4993 
4994  is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
4995  input_path->pathkeys, &presorted_keys);
4996 
4997  if (is_sorted)
4998  {
4999  /* Use the input path as is, but add a projection step if needed */
5000  if (sorted_path->pathtarget != target)
5001  sorted_path = apply_projection_to_path(root, ordered_rel,
5002  sorted_path, target);
5003 
5004  add_path(ordered_rel, sorted_path);
5005  }
5006  else
5007  {
5008  /*
5009  * Try adding an explicit sort, but only to the cheapest total
5010  * path since a full sort should generally add the same cost to
5011  * all paths.
5012  */
5013  if (input_path == cheapest_input_path)
5014  {
5015  /*
5016  * Sort the cheapest input path. An explicit sort here can
5017  * take advantage of LIMIT.
5018  */
5019  sorted_path = (Path *) create_sort_path(root,
5020  ordered_rel,
5021  input_path,
5022  root->sort_pathkeys,
5023  limit_tuples);
5024  /* Add projection step if needed */
5025  if (sorted_path->pathtarget != target)
5026  sorted_path = apply_projection_to_path(root, ordered_rel,
5027  sorted_path, target);
5028 
5029  add_path(ordered_rel, sorted_path);
5030  }
5031 
5032  /*
5033  * If incremental sort is enabled, then try it as well. Unlike
5034  * with regular sorts, we can't just look at the cheapest path,
5035  * because the cost of incremental sort depends on how well
5036  * presorted the path is. Additionally incremental sort may enable
5037  * a cheaper startup path to win out despite higher total cost.
5038  */
5040  continue;
5041 
5042  /* Likewise, if the path can't be used for incremental sort. */
5043  if (!presorted_keys)
5044  continue;
5045 
5046  /* Also consider incremental sort. */
5047  sorted_path = (Path *) create_incremental_sort_path(root,
5048  ordered_rel,
5049  input_path,
5050  root->sort_pathkeys,
5051  presorted_keys,
5052  limit_tuples);
5053 
5054  /* Add projection step if needed */
5055  if (sorted_path->pathtarget != target)
5056  sorted_path = apply_projection_to_path(root, ordered_rel,
5057  sorted_path, target);
5058 
5059  add_path(ordered_rel, sorted_path);
5060  }
5061  }
5062 
5063  /*
5064  * generate_gather_paths() will have already generated a simple Gather
5065  * path for the best parallel path, if any, and the loop above will have
5066  * considered sorting it. Similarly, generate_gather_paths() will also
5067  * have generated order-preserving Gather Merge plans which can be used
5068  * without sorting if they happen to match the sort_pathkeys, and the loop
5069  * above will have handled those as well. However, there's one more
5070  * possibility: it may make sense to sort the cheapest partial path
5071  * according to the required output order and then use Gather Merge.
5072  */
5073  if (ordered_rel->consider_parallel && root->sort_pathkeys != NIL &&
5074  input_rel->partial_pathlist != NIL)
5075  {
5076  Path *cheapest_partial_path;
5077 
5078  cheapest_partial_path = linitial(input_rel->partial_pathlist);
5079 
5080  /*
5081  * If cheapest partial path doesn't need a sort, this is redundant
5082  * with what's already been tried.
5083  */
5085  cheapest_partial_path->pathkeys))
5086  {
5087  Path *path;
5088  double total_groups;
5089 
5090  path = (Path *) create_sort_path(root,
5091  ordered_rel,
5092  cheapest_partial_path,
5093  root->sort_pathkeys,
5094  limit_tuples);
5095 
5096  total_groups = cheapest_partial_path->rows *
5097  cheapest_partial_path->parallel_workers;
5098  path = (Path *)
5099  create_gather_merge_path(root, ordered_rel,
5100  path,
5101  path->pathtarget,
5102  root->sort_pathkeys, NULL,
5103  &total_groups);
5104 
5105  /* Add projection step if needed */
5106  if (path->pathtarget != target)
5107  path = apply_projection_to_path(root, ordered_rel,
5108  path, target);
5109 
5110  add_path(ordered_rel, path);
5111  }
5112 
5113  /*
5114  * Consider incremental sort with a gather merge on partial paths.
5115  *
5116  * We can also skip the entire loop when we only have a single-item
5117  * sort_pathkeys because then we can't possibly have a presorted
5118  * prefix of the list without having the list be fully sorted.
5119  */
5121  {
5122  ListCell *lc;
5123 
5124  foreach(lc, input_rel->partial_pathlist)
5125  {
5126  Path *input_path = (Path *) lfirst(lc);
5127  Path *sorted_path;
5128  bool is_sorted;
5129  int presorted_keys;
5130  double total_groups;
5131 
5132  /*
5133  * We don't care if this is the cheapest partial path - we
5134  * can't simply skip it, because it may be partially sorted in
5135  * which case we want to consider adding incremental sort
5136  * (instead of full sort, which is what happens above).
5137  */
5138 
5139  is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
5140  input_path->pathkeys,
5141  &presorted_keys);
5142 
5143  /* No point in adding incremental sort on fully sorted paths. */
5144  if (is_sorted)
5145  continue;
5146 
5147  if (presorted_keys == 0)
5148  continue;
5149 
5150  /* Since we have presorted keys, consider incremental sort. */
5151  sorted_path = (Path *) create_incremental_sort_path(root,
5152  ordered_rel,
5153  input_path,
5154  root->sort_pathkeys,
5155  presorted_keys,
5156  limit_tuples);
5157  total_groups = input_path->rows *
5158  input_path->parallel_workers;
5159  sorted_path = (Path *)
5160  create_gather_merge_path(root, ordered_rel,
5161  sorted_path,
5162  sorted_path->pathtarget,
5163  root->sort_pathkeys, NULL,
5164  &total_groups);
5165 
5166  /* Add projection step if needed */
5167  if (sorted_path->pathtarget != target)
5168  sorted_path = apply_projection_to_path(root, ordered_rel,
5169  sorted_path, target);
5170 
5171  add_path(ordered_rel, sorted_path);
5172  }
5173  }
5174  }
5175 
5176  /*
5177  * If there is an FDW that's responsible for all baserels of the query,
5178  * let it consider adding ForeignPaths.
5179  */
5180  if (ordered_rel->fdwroutine &&
5181  ordered_rel->fdwroutine->GetForeignUpperPaths)
5182  ordered_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_ORDERED,
5183  input_rel, ordered_rel,
5184  NULL);
5185 
5186  /* Let extensions possibly add some more paths */
5188  (*create_upper_paths_hook) (root, UPPERREL_ORDERED,
5189  input_rel, ordered_rel, NULL);
5190 
5191  /*
5192  * No need to bother with set_cheapest here; grouping_planner does not
5193  * need us to do it.
5194  */
5195  Assert(ordered_rel->pathlist != NIL);
5196 
5197  return ordered_rel;
5198 }
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2644
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
#define NIL
Definition: pg_list.h:65
PathTarget * pathtarget
Definition: pathnodes.h:1145
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
bool enable_incremental_sort
Definition: costsize.c:131
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2802
Oid userid
Definition: pathnodes.h:715
int parallel_workers
Definition: pathnodes.h:1151
List * partial_pathlist
Definition: pathnodes.h:681
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
bool useridiscurrent
Definition: pathnodes.h:716
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define linitial(l)
Definition: pg_list.h:195
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1192
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
List * sort_pathkeys
Definition: pathnodes.h:303
Oid serverid
Definition: pathnodes.h:714
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1787
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2851
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static int list_length(const List *l)
Definition: pg_list.h:169
bool consider_parallel
Definition: pathnodes.h:673
List * pathlist
Definition: pathnodes.h:679

◆ create_ordinary_grouping_paths()

static void create_ordinary_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel,
const AggClauseCosts agg_costs,
grouping_sets_data gd,
GroupPathExtraData extra,
RelOptInfo **  partially_grouped_rel_p 
)
static

Definition at line 4053 of file planner.c.

References add_paths_to_grouping_rel(), Assert, RelOptInfo::cheapest_total_path, create_partial_grouping_paths(), create_partitionwise_grouping_paths(), create_upper_paths_hook, ereport, errcode(), errdetail(), errmsg(), ERROR, RelOptInfo::fdwroutine, GroupPathExtraData::flags, gather_grouping_paths(), get_number_of_groups(), FdwRoutine::GetForeignUpperPaths, group_by_has_partkey(), Query::groupClause, GROUPING_CAN_PARTIAL_AGG, IS_PARTITIONED_REL, NIL, PlannerInfo::parse, RelOptInfo::partial_pathlist, PARTITIONWISE_AGGREGATE_FULL, PARTITIONWISE_AGGREGATE_NONE, PARTITIONWISE_AGGREGATE_PARTIAL, RelOptInfo::pathlist, GroupPathExtraData::patype, Path::rows, set_cheapest(), GroupPathExtraData::targetList, and UPPERREL_GROUP_AGG.

Referenced by create_grouping_paths(), and create_partitionwise_grouping_paths().

4059 {
4060  Path *cheapest_path = input_rel->cheapest_total_path;
4061  RelOptInfo *partially_grouped_rel = NULL;
4062  double dNumGroups;
4064 
4065  /*
4066  * If this is the topmost grouping relation or if the parent relation is
4067  * doing some form of partitionwise aggregation, then we may be able to do
4068  * it at this level also. However, if the input relation is not
4069  * partitioned, partitionwise aggregate is impossible.
4070  */
4071  if (extra->patype != PARTITIONWISE_AGGREGATE_NONE &&
4072  IS_PARTITIONED_REL(input_rel))
4073  {
4074  /*
4075  * If this is the topmost relation or if the parent relation is doing
4076  * full partitionwise aggregation, then we can do full partitionwise
4077  * aggregation provided that the GROUP BY clause contains all of the
4078  * partitioning columns at this level. Otherwise, we can do at most
4079  * partial partitionwise aggregation. But if partial aggregation is
4080  * not supported in general then we can't use it for partitionwise
4081  * aggregation either.
4082  */
4083  if (extra->patype == PARTITIONWISE_AGGREGATE_FULL &&
4084  group_by_has_partkey(input_rel, extra->targetList,
4085  root->parse->groupClause))
4087  else if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
4089  else
4091  }
4092 
4093  /*
4094  * Before generating paths for grouped_rel, we first generate any possible
4095  * partially grouped paths; that way, later code can easily consider both
4096  * parallel and non-parallel approaches to grouping.
4097  */
4098  if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
4099  {
4100  bool force_rel_creation;
4101 
4102  /*
4103  * If we're doing partitionwise aggregation at this level, force
4104  * creation of a partially_grouped_rel so we can add partitionwise
4105  * paths to it.
4106  */
4107  force_rel_creation = (patype == PARTITIONWISE_AGGREGATE_PARTIAL);
4108 
4109  partially_grouped_rel =
4111  grouped_rel,
4112  input_rel,
4113  gd,
4114  extra,
4115  force_rel_creation);
4116  }
4117 
4118  /* Set out parameter. */
4119  *partially_grouped_rel_p = partially_grouped_rel;
4120 
4121  /* Apply partitionwise aggregation technique, if possible. */
4122  if (patype != PARTITIONWISE_AGGREGATE_NONE)
4123  create_partitionwise_grouping_paths(root, input_rel, grouped_rel,
4124  partially_grouped_rel, agg_costs,
4125  gd, patype, extra);
4126 
4127  /* If we are doing partial aggregation only, return. */
4129  {
4130  Assert(partially_grouped_rel);
4131 
4132  if (partially_grouped_rel->pathlist)
4133  set_cheapest(partially_grouped_rel);
4134 
4135  return;
4136  }
4137 
4138  /* Gather any partially grouped partial paths. */
4139  if (partially_grouped_rel && partially_grouped_rel->partial_pathlist)
4140  {
4141  gather_grouping_paths(root, partially_grouped_rel);
4142  set_cheapest(partially_grouped_rel);
4143  }
4144 
4145  /*
4146  * Estimate number of groups.
4147  */
4148  dNumGroups = get_number_of_groups(root,
4149  cheapest_path->rows,
4150  gd,
4151  extra->targetList);
4152 
4153  /* Build final grouping paths */
4154  add_paths_to_grouping_rel(root, input_rel, grouped_rel,
4155  partially_grouped_rel, agg_costs, gd,
4156  dNumGroups, extra);
4157 
4158  /* Give a helpful error if we failed to find any implementation */
4159  if (grouped_rel->pathlist == NIL)
4160  ereport(ERROR,
4161  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4162  errmsg("could not implement GROUP BY"),
4163  errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
4164 
4165  /*
4166  * If there is an FDW that's responsible for all baserels of the query,
4167  * let it consider adding ForeignPaths.
4168  */
4169  if (grouped_rel->fdwroutine &&
4170  grouped_rel->fdwroutine->GetForeignUpperPaths)
4172  input_rel, grouped_rel,
4173  extra);
4174 
4175  /* Let extensions possibly add some more paths */
4177  (*create_upper_paths_hook) (root, UPPERREL_GROUP_AGG,
4178  input_rel, grouped_rel,
4179  extra);
4180 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
PartitionwiseAggregateType
Definition: pathnodes.h:2462
static double get_number_of_groups(PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
Definition: planner.c:3683
static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
Definition: planner.c:7243
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
int errcode(int sqlerrcode)
Definition: elog.c:610
List * partial_pathlist
Definition: pathnodes.h:681
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
static RelOptInfo * create_partial_grouping_paths(PlannerInfo *root, RelOptInfo *grouped_rel, RelOptInfo *input_rel, grouping_sets_data *gd, GroupPathExtraData *extra, bool force_rel_creation)
Definition: planner.c:6850
#define ERROR
Definition: elog.h:43
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
int errdetail(const char *fmt,...)
Definition: elog.c:957
static void add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, double dNumGroups, GroupPathExtraData *extra)
Definition: planner.c:6504
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
#define GROUPING_CAN_PARTIAL_AGG
Definition: pathnodes.h:2449
static void create_partitionwise_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, PartitionwiseAggregateType patype, GroupPathExtraData *extra)
Definition: planner.c:7605
#define ereport(elevel,...)
Definition: elog.h:144
#define Assert(condition)
Definition: c.h:745
double rows
Definition: pathnodes.h:1154
List * groupClause
Definition: parsenodes.h:148
int errmsg(const char *fmt,...)
Definition: elog.c:824
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:766
List * pathlist
Definition: pathnodes.h:679
static bool group_by_has_partkey(RelOptInfo *input_rel, List *targetList, List *groupClause)
Definition: planner.c:7745

◆ create_partial_grouping_paths()

static RelOptInfo * create_partial_grouping_paths ( PlannerInfo root,
RelOptInfo grouped_rel,
RelOptInfo input_rel,
grouping_sets_data gd,
GroupPathExtraData extra,
bool  force_rel_creation 
)
static

Definition at line 6850 of file planner.c.

References add_partial_path(), add_path(), GroupPathExtraData::agg_final_costs, AGG_HASHED, GroupPathExtraData::agg_partial_costs, AGG_PLAIN, AGG_SORTED, AGGSPLIT_FINAL_DESERIAL, AGGSPLIT_INITIAL_SERIAL, Assert, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_agg_path(), create_group_path(), create_incremental_sort_path(), create_sort_path(), enable_incremental_sort, PathTarget::exprs, RelOptInfo::fdwroutine, fetch_upper_rel(), GroupPathExtraData::flags, get_agg_clause_costs(), get_number_of_groups(), FdwRoutine::GetForeignUpperPaths, PlannerInfo::group_pathkeys, Query::groupClause, GROUPING_CAN_USE_HASH, GROUPING_CAN_USE_SORT, Query::hasAggs, GroupPathExtraData::havingQual, lfirst, linitial, list_length(), make_partial_grouping_target(), MemSet, NIL, parse(), PlannerInfo::parse, GroupPathExtraData::partial_costs_set, RelOptInfo::partial_pathlist, PARTITIONWISE_AGGREGATE_PARTIAL, Path::pathkeys, pathkeys_contained_in(), pathkeys_count_contained_in(), RelOptInfo::pathlist, GroupPathExtraData::patype, RelOptInfo::relids, RelOptInfo::reloptkind, RelOptInfo::reltarget, Path::rows, RelOptInfo::serverid, GroupPathExtraData::targetList, UPPERREL_PARTIAL_GROUP_AGG, RelOptInfo::userid, and RelOptInfo::useridiscurrent.

Referenced by create_ordinary_grouping_paths().

6856 {
6857  Query *parse = root->parse;
6858  RelOptInfo *partially_grouped_rel;
6859  AggClauseCosts *agg_partial_costs = &extra->agg_partial_costs;
6860  AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
6861  Path *cheapest_partial_path = NULL;
6862  Path *cheapest_total_path = NULL;
6863  double dNumPartialGroups = 0;
6864  double dNumPartialPartialGroups = 0;
6865  ListCell *lc;
6866  bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
6867  bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
6868 
6869  /*
6870  * Consider whether we should generate partially aggregated non-partial
6871  * paths. We can only do this if we have a non-partial path, and only if
6872  * the parent of the input rel is performing partial partitionwise
6873  * aggregation. (Note that extra->patype is the type of partitionwise
6874  * aggregation being used at the parent level, not this level.)
6875  */
6876  if (input_rel->pathlist != NIL &&
6878  cheapest_total_path = input_rel->cheapest_total_path;
6879 
6880  /*
6881  * If parallelism is possible for grouped_rel, then we should consider
6882  * generating partially-grouped partial paths. However, if the input rel
6883  * has no partial paths, then we can't.
6884  */
6885  if (grouped_rel->consider_parallel && input_rel->partial_pathlist != NIL)
6886  cheapest_partial_path = linitial(input_rel->partial_pathlist);
6887 
6888  /*
6889  * If we can't partially aggregate partial paths, and we can't partially
6890  * aggregate non-partial paths, then don't bother creating the new
6891  * RelOptInfo at all, unless the caller specified force_rel_creation.
6892  */
6893  if (cheapest_total_path == NULL &&
6894  cheapest_partial_path == NULL &&
6895  !force_rel_creation)
6896  return NULL;
6897 
6898  /*
6899  * Build a new upper relation to represent the result of partially
6900  * aggregating the rows from the input relation.
6901  */
6902  partially_grouped_rel = fetch_upper_rel(root,
6904  grouped_rel->relids);
6905  partially_grouped_rel->consider_parallel =
6906  grouped_rel->consider_parallel;
6907  partially_grouped_rel->reloptkind = grouped_rel->reloptkind;
6908  partially_grouped_rel->serverid = grouped_rel->serverid;
6909  partially_grouped_rel->userid = grouped_rel->userid;
6910  partially_grouped_rel->useridiscurrent = grouped_rel->useridiscurrent;
6911  partially_grouped_rel->fdwroutine = grouped_rel->fdwroutine;
6912 
6913  /*
6914  * Build target list for partial aggregate paths. These paths cannot just
6915  * emit the same tlist as regular aggregate paths, because (1) we must
6916  * include Vars and Aggrefs needed in HAVING, which might not appear in
6917  * the result tlist, and (2) the Aggrefs must be set in partial mode.
6918  */
6919  partially_grouped_rel->reltarget =
6920  make_partial_grouping_target(root, grouped_rel->reltarget,
6921  extra->havingQual);
6922 
6923  if (!extra->partial_costs_set)
6924  {
6925  /*
6926  * Collect statistics about aggregates for estimating costs of
6927  * performing aggregation in parallel.
6928  */
6929  MemSet(agg_partial_costs, 0, sizeof(AggClauseCosts));
6930  MemSet(agg_final_costs, 0, sizeof(AggClauseCosts));
6931  if (parse->hasAggs)
6932  {
6933  List *partial_target_exprs;
6934 
6935  /* partial phase */
6936  partial_target_exprs = partially_grouped_rel->reltarget->exprs;
6937  get_agg_clause_costs(root, (Node *) partial_target_exprs,
6939  agg_partial_costs);
6940 
6941  /* final phase */
6942  get_agg_clause_costs(root, (Node *) grouped_rel->reltarget->exprs,
6944  agg_final_costs);
6945  get_agg_clause_costs(root, extra->havingQual,
6947  agg_final_costs);
6948  }
6949 
6950  extra->partial_costs_set = true;
6951  }
6952 
6953  /* Estimate number of partial groups. */
6954  if (cheapest_total_path != NULL)
6955  dNumPartialGroups =
6956  get_number_of_groups(root,
6957  cheapest_total_path->rows,
6958  gd,
6959  extra->targetList);
6960  if (cheapest_partial_path != NULL)
6961  dNumPartialPartialGroups =
6962  get_number_of_groups(root,
6963  cheapest_partial_path->rows,
6964  gd,
6965  extra->targetList);
6966 
6967  if (can_sort && cheapest_total_path != NULL)
6968  {
6969  /* This should have been checked previously */
6970  Assert(parse->hasAggs || parse->groupClause);
6971 
6972  /*
6973  * Use any available suitably-sorted path as input, and also consider
6974  * sorting the cheapest partial path.
6975  */
6976  foreach(lc, input_rel->pathlist)
6977  {
6978  Path *path = (Path *) lfirst(lc);
6979  bool is_sorted;
6980 
6981  is_sorted = pathkeys_contained_in(root->group_pathkeys,
6982  path->pathkeys);
6983  if (path == cheapest_total_path || is_sorted)
6984  {
6985  /* Sort the cheapest partial path, if it isn't already */
6986  if (!is_sorted)
6987  path = (Path *) create_sort_path(root,
6988  partially_grouped_rel,
6989  path,
6990  root->group_pathkeys,
6991  -1.0);
6992 
6993  if (parse->hasAggs)
6994  add_path(partially_grouped_rel, (Path *)
6995  create_agg_path(root,
6996  partially_grouped_rel,
6997  path,
6998  partially_grouped_rel->reltarget,
6999  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7001  parse->groupClause,
7002  NIL,
7003  agg_partial_costs,
7004  dNumPartialGroups));
7005  else
7006  add_path(partially_grouped_rel, (Path *)
7007  create_group_path(root,
7008  partially_grouped_rel,
7009  path,
7010  parse->groupClause,
7011  NIL,
7012  dNumPartialGroups));
7013  }
7014  }
7015 
7016  /*
7017  * Consider incremental sort on all partial paths, if enabled.
7018  *
7019  * We can also skip the entire loop when we only have a single-item
7020  * group_pathkeys because then we can't possibly have a presorted
7021  * prefix of the list without having the list be fully sorted.
7022  */
7024  {
7025  foreach(lc, input_rel->pathlist)
7026  {
7027  Path *path = (Path *) lfirst(lc);
7028  bool is_sorted;
7029  int presorted_keys;
7030 
7031  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
7032  path->pathkeys,
7033  &presorted_keys);
7034 
7035  /* Ignore already sorted paths */
7036  if (is_sorted)
7037  continue;
7038 
7039  if (presorted_keys == 0)
7040  continue;
7041 
7042  /* Since we have presorted keys, consider incremental sort. */
7043  path = (Path *) create_incremental_sort_path(root,
7044  partially_grouped_rel,
7045  path,
7046  root->group_pathkeys,
7047  presorted_keys,
7048  -1.0);
7049 
7050  if (parse->hasAggs)
7051  add_path(partially_grouped_rel, (Path *)
7052  create_agg_path(root,
7053  partially_grouped_rel,
7054  path,
7055  partially_grouped_rel->reltarget,
7056  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7058  parse->groupClause,
7059  NIL,
7060  agg_partial_costs,
7061  dNumPartialGroups));
7062  else
7063  add_path(partially_grouped_rel, (Path *)
7064  create_group_path(root,
7065  partially_grouped_rel,
7066  path,
7067  parse->groupClause,
7068  NIL,
7069  dNumPartialGroups));
7070  }
7071  }
7072 
7073  }
7074 
7075  if (can_sort && cheapest_partial_path != NULL)
7076  {
7077  /* Similar to above logic, but for partial paths. */
7078  foreach(lc, input_rel->partial_pathlist)
7079  {
7080  Path *path = (Path *) lfirst(lc);
7081  Path *path_original = path;
7082  bool is_sorted;
7083  int presorted_keys;
7084 
7085  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
7086  path->pathkeys,
7087  &presorted_keys);
7088 
7089  if (path == cheapest_partial_path || is_sorted)
7090  {
7091  /* Sort the cheapest partial path, if it isn't already */
7092  if (!is_sorted)
7093  path = (Path *) create_sort_path(root,
7094  partially_grouped_rel,
7095  path,
7096  root->group_pathkeys,
7097  -1.0);
7098 
7099  if (parse->hasAggs)
7100  add_partial_path(partially_grouped_rel, (Path *)
7101  create_agg_path(root,
7102  partially_grouped_rel,
7103  path,
7104  partially_grouped_rel->reltarget,
7105  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7107  parse->groupClause,
7108  NIL,
7109  agg_partial_costs,
7110  dNumPartialPartialGroups));
7111  else
7112  add_partial_path(partially_grouped_rel, (Path *)
7113  create_group_path(root,
7114  partially_grouped_rel,
7115  path,
7116  parse->groupClause,
7117  NIL,
7118  dNumPartialPartialGroups));
7119  }
7120 
7121  /*
7122  * Now we may consider incremental sort on this path, but only
7123  * when the path is not already sorted and when incremental sort
7124  * is enabled.
7125  */
7126  if (is_sorted || !enable_incremental_sort)
7127  continue;
7128 
7129  /* Restore the input path (we might have added Sort on top). */
7130  path = path_original;
7131 
7132  /* no shared prefix, not point in building incremental sort */
7133  if (presorted_keys == 0)
7134  continue;
7135 
7136  /*
7137  * We should have already excluded pathkeys of length 1 because
7138  * then presorted_keys > 0 would imply is_sorted was true.
7139  */
7140  Assert(list_length(root->group_pathkeys) != 1);
7141 
7142  path = (Path *) create_incremental_sort_path(root,
7143  partially_grouped_rel,
7144  path,
7145  root->group_pathkeys,
7146  presorted_keys,
7147  -1.0);
7148 
7149  if (parse->hasAggs)
7150  add_partial_path(partially_grouped_rel, (Path *)
7151  create_agg_path(root,
7152  partially_grouped_rel,
7153  path,
7154  partially_grouped_rel->reltarget,
7155  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7157  parse->groupClause,
7158  NIL,
7159  agg_partial_costs,
7160  dNumPartialPartialGroups));
7161  else
7162  add_partial_path(partially_grouped_rel, (Path *)
7163  create_group_path(root,
7164  partially_grouped_rel,
7165  path,
7166  parse->groupClause,
7167  NIL,
7168  dNumPartialPartialGroups));
7169  }
7170  }
7171 
7172  /*
7173  * Add a partially-grouped HashAgg Path where possible
7174  */
7175  if (can_hash && cheapest_total_path != NULL)
7176  {
7177  /* Checked above */
7178  Assert(parse->hasAggs || parse->groupClause);
7179 
7180  add_path(partially_grouped_rel, (Path *)
7181  create_agg_path(root,
7182  partially_grouped_rel,
7183  cheapest_total_path,
7184  partially_grouped_rel->reltarget,
7185  AGG_HASHED,
7187  parse->groupClause,
7188  NIL,
7189  agg_partial_costs,
7190  dNumPartialGroups));
7191  }
7192 
7193  /*
7194  * Now add a partially-grouped HashAgg partial Path where possible
7195  */
7196  if (can_hash && cheapest_partial_path != NULL)
7197  {
7198  add_partial_path(partially_grouped_rel, (Path *)
7199  create_agg_path(root,
7200  partially_grouped_rel,
7201  cheapest_partial_path,
7202  partially_grouped_rel->reltarget,
7203  AGG_HASHED,
7205  parse->groupClause,
7206  NIL,
7207  agg_partial_costs,
7208  dNumPartialPartialGroups));
7209  }
7210 
7211  /*
7212  * If there is an FDW that's responsible for all baserels of the query,
7213  * let it consider adding partially grouped ForeignPaths.
7214  */
7215  if (partially_grouped_rel->fdwroutine &&
7216  partially_grouped_rel->fdwroutine->GetForeignUpperPaths)
7217  {
7218  FdwRoutine *fdwroutine = partially_grouped_rel->fdwroutine;
7219 
7220  fdwroutine->GetForeignUpperPaths(root,
7222  input_rel, partially_grouped_rel,
7223  extra);
7224  }
7225 
7226  return partially_grouped_rel;
7227 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
List * group_pathkeys
Definition: pathnodes.h:300
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
bool enable_incremental_sort
Definition: costsize.c:131
RelOptKind reloptkind
Definition: pathnodes.h:662
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2802
static double get_number_of_groups(PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
Definition: planner.c:3683
Oid userid
Definition: pathnodes.h:715
AggClauseCosts agg_partial_costs
Definition: pathnodes.h:2487
void get_agg_clause_costs(PlannerInfo *root, Node *clause, AggSplit aggsplit, AggClauseCosts *costs)
Definition: clauses.c:229
bool hasAggs
Definition: parsenodes.h:125
Definition: nodes.h:529
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
List * partial_pathlist
Definition: pathnodes.h:681
#define MemSet(start, val, len)
Definition: c.h:949
bool useridiscurrent
Definition: pathnodes.h:716
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:2447
#define linitial(l)
Definition: pg_list.h:195
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1192
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:3006
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
Relids relids
Definition: pathnodes.h:665
Oid serverid
Definition: pathnodes.h:714
List * exprs
Definition: pathnodes.h:1074
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2851
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:2448
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static PathTarget * make_partial_grouping_target(PlannerInfo *root, PathTarget *grouping_target, Node *havingQual)
Definition: planner.c:5316
static int list_length(const List *l)
Definition: pg_list.h:169
bool consider_parallel
Definition: pathnodes.h:673
List * groupClause
Definition: parsenodes.h:148
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:749
List * pathlist
Definition: pathnodes.h:679
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:2895
AggClauseCosts agg_final_costs
Definition: pathnodes.h:2488
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_partitionwise_grouping_paths()

static void create_partitionwise_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel,
RelOptInfo partially_grouped_rel,
const AggClauseCosts agg_costs,
grouping_sets_data gd,
PartitionwiseAggregateType  patype,
GroupPathExtraData extra 
)
static

Definition at line 7605 of file planner.c.

References add_paths_to_append_rel(), adjust_appendrel_attrs(), Assert, copy_pathtarget(), create_ordinary_grouping_paths(), PathTarget::exprs, find_appinfos_by_relids(), GroupPathExtraData::havingQual, IS_DUMMY_REL, lappend(), make_grouping_rel(), NIL, RelOptInfo::nparts, RelOptInfo::part_rels, PARTITIONWISE_AGGREGATE_FULL, PARTITIONWISE_AGGREGATE_NONE, PARTITIONWISE_AGGREGATE_PARTIAL, RelOptInfo::pathlist, GroupPathExtraData::patype, pfree(), RelOptInfo::relids, RelOptInfo::reltarget, set_cheapest(), GroupPathExtraData::target_parallel_safe, and GroupPathExtraData::targetList.

Referenced by create_ordinary_grouping_paths().

7613 {
7614  int nparts = input_rel->nparts;
7615  int cnt_parts;
7616  List *grouped_live_children = NIL;
7617  List *partially_grouped_live_children = NIL;
7618  PathTarget *target = grouped_rel->reltarget;
7619  bool partial_grouping_valid = true;
7620 
7623  partially_grouped_rel != NULL);
7624 
7625  /* Add paths for partitionwise aggregation/grouping. */
7626  for (cnt_parts = 0; cnt_parts < nparts; cnt_parts++)
7627  {
7628  RelOptInfo *child_input_rel = input_rel->part_rels[cnt_parts];
7629  PathTarget *child_target = copy_pathtarget(target);
7630  AppendRelInfo **appinfos;
7631  int nappinfos;
7632  GroupPathExtraData child_extra;
7633  RelOptInfo *child_grouped_rel;
7634  RelOptInfo *child_partially_grouped_rel;
7635 
7636  /* Pruned or dummy children can be ignored. */
7637  if (child_input_rel == NULL || IS_DUMMY_REL(child_input_rel))
7638  continue;
7639 
7640  /*
7641  * Copy the given "extra" structure as is and then override the
7642  * members specific to this child.
7643  */
7644  memcpy(&child_extra, extra, sizeof(child_extra));
7645 
7646  appinfos = find_appinfos_by_relids(root, child_input_rel->relids,
7647  &nappinfos);
7648 
7649  child_target->exprs = (List *)
7651  (Node *) target->exprs,
7652  nappinfos, appinfos);
7653 
7654  /* Translate havingQual and targetList. */
7655  child_extra.havingQual = (Node *)
7657  extra->havingQual,
7658  nappinfos, appinfos);
7659  child_extra.targetList = (List *)
7661  (Node *) extra->targetList,
7662  nappinfos, appinfos);
7663 
7664  /*
7665  * extra->patype was the value computed for our parent rel; patype is
7666  * the value for this relation. For the child, our value is its
7667  * parent rel's value.
7668  */
7669  child_extra.patype = patype;
7670 
7671  /*
7672  * Create grouping relation to hold fully aggregated grouping and/or
7673  * aggregation paths for the child.
7674  */
7675  child_grouped_rel = make_grouping_rel(root, child_input_rel,
7676  child_target,
7677  extra->target_parallel_safe,
7678  child_extra.havingQual);
7679 
7680  /* Create grouping paths for this child relation. */
7681  create_ordinary_grouping_paths(root, child_input_rel,
7682  child_grouped_rel,
7683  agg_costs, gd, &child_extra,
7684  &child_partially_grouped_rel);
7685 
7686  if (child_partially_grouped_rel)
7687  {
7688  partially_grouped_live_children =
7689  lappend(partially_grouped_live_children,
7690  child_partially_grouped_rel);
7691  }
7692  else
7693  partial_grouping_valid = false;
7694 
7695  if (patype == PARTITIONWISE_AGGREGATE_FULL)
7696  {
7697  set_cheapest(child_grouped_rel);
7698  grouped_live_children = lappend(grouped_live_children,
7699  child_grouped_rel);
7700  }
7701 
7702  pfree(appinfos);
7703  }
7704 
7705  /*
7706  * Try to create append paths for partially grouped children. For full
7707  * partitionwise aggregation, we might have paths in the partial_pathlist
7708  * if parallel aggregation is possible. For partial partitionwise
7709  * aggregation, we may have paths in both pathlist and partial_pathlist.
7710  *
7711  * NB: We must have a partially grouped path for every child in order to
7712  * generate a partially grouped path for this relation.
7713  */
7714  if (partially_grouped_rel && partial_grouping_valid)
7715  {
7716  Assert(partially_grouped_live_children != NIL);
7717 
7718  add_paths_to_append_rel(root, partially_grouped_rel,
7719  partially_grouped_live_children);
7720 
7721  /*
7722  * We need call set_cheapest, since the finalization step will use the
7723  * cheapest path from the rel.
7724  */
7725  if (partially_grouped_rel->pathlist)
7726  set_cheapest(partially_grouped_rel);
7727  }
7728 
7729  /* If possible, create append paths for fully grouped children. */
7730  if (patype == PARTITIONWISE_AGGREGATE_FULL)
7731  {
7732  Assert(grouped_live_children != NIL);
7733 
7734  add_paths_to_append_rel(root, grouped_rel, grouped_live_children);
7735  }
7736 }
#define NIL
Definition: pg_list.h:65
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:672
static RelOptInfo * make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
Definition: planner.c:3914
void add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel, List *live_childrels)
Definition: allpaths.c:1301
Definition: nodes.h:529
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
void pfree(void *pointer)
Definition: mcxt.c:1057
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:1418
int nparts
Definition: pathnodes.h:743
Relids relids
Definition: pathnodes.h:665
List * lappend(List *list, void *datum)
Definition: list.c:321
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:728
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
List * exprs
Definition: pathnodes.h:1074
#define Assert(condition)
Definition: c.h:745
struct RelOptInfo ** part_rels
Definition: pathnodes.h:750
static void create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
Definition: planner.c:4053
List * pathlist
Definition: pathnodes.h:679
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:194

◆ create_window_paths()

static RelOptInfo * create_window_paths ( PlannerInfo root,
RelOptInfo input_rel,
PathTarget input_target,
PathTarget output_target,
bool  output_target_parallel_safe,
WindowFuncLists wflists,
List activeWindows 
)
static

Definition at line 4551 of file planner.c.

References RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_one_window_path(), create_upper_paths_hook, RelOptInfo::fdwroutine, fetch_upper_rel(), FdwRoutine::GetForeignUpperPaths, is_parallel_safe(), lfirst, Path::pathkeys, pathkeys_count_contained_in(), RelOptInfo::pathlist, RelOptInfo::serverid, set_cheapest(), UPPERREL_WINDOW, RelOptInfo::userid, RelOptInfo::useridiscurrent, and PlannerInfo::window_pathkeys.

Referenced by grouping_planner().

4558 {
4559  RelOptInfo *window_rel;
4560  ListCell *lc;
4561 
4562  /* For now, do all work in the (WINDOW, NULL) upperrel */
4563  window_rel = fetch_upper_rel(root, UPPERREL_WINDOW, NULL);
4564 
4565  /*
4566  * If the input relation is not parallel-safe, then the window relation
4567  * can't be parallel-safe, either. Otherwise, we need to examine the
4568  * target list and active windows for non-parallel-safe constructs.
4569  */
4570  if (input_rel->consider_parallel && output_target_parallel_safe &&
4571  is_parallel_safe(root, (Node *) activeWindows))
4572  window_rel->consider_parallel = true;
4573 
4574  /*
4575  * If the input rel belongs to a single FDW, so does the window rel.
4576  */
4577  window_rel->serverid = input_rel->serverid;
4578  window_rel->userid = input_rel->userid;
4579  window_rel->useridiscurrent = input_rel->useridiscurrent;
4580  window_rel->fdwroutine = input_rel->fdwroutine;
4581 
4582  /*
4583  * Consider computing window functions starting from the existing
4584  * cheapest-total path (which will likely require a sort) as well as any
4585  * existing paths that satisfy or partially satisfy root->window_pathkeys.
4586  */
4587  foreach(lc, input_rel->pathlist)
4588  {
4589  Path *path = (Path *) lfirst(lc);
4590  int presorted_keys;
4591 
4592  if (path == input_rel->cheapest_total_path ||
4594  &presorted_keys) ||
4595  presorted_keys > 0)
4597  window_rel,
4598  path,
4599  input_target,
4600  output_target,
4601  wflists,
4602  activeWindows);
4603  }
4604 
4605  /*
4606  * If there is an FDW that's responsible for all baserels of the query,
4607  * let it consider adding ForeignPaths.
4608  */
4609  if (window_rel->fdwroutine &&
4610  window_rel->fdwroutine->GetForeignUpperPaths)
4611  window_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_WINDOW,
4612  input_rel, window_rel,
4613  NULL);
4614 
4615  /* Let extensions possibly add some more paths */
4617  (*create_upper_paths_hook) (root, UPPERREL_WINDOW,
4618  input_rel, window_rel, NULL);
4619 
4620  /* Now choose the best path(s) */
4621  set_cheapest(window_rel);
4622 
4623  return window_rel;
4624 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
static void create_one_window_path(PlannerInfo *root, RelOptInfo *window_rel, Path *path, PathTarget *input_target, PathTarget *output_target, WindowFuncLists *wflists, List *activeWindows)
Definition: planner.c:4638
Oid userid
Definition: pathnodes.h:715
Definition: nodes.h:529
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
bool useridiscurrent
Definition: pathnodes.h:716
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:854
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1192
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
Oid serverid
Definition: pathnodes.h:714
List * window_pathkeys
Definition: pathnodes.h:301
List * pathkeys
Definition: pathnodes.h:1158
#define lfirst(lc)
Definition: pg_list.h:190
bool consider_parallel
Definition: pathnodes.h:673
List * pathlist
Definition: pathnodes.h:679

◆ expression_planner()

Expr* expression_planner ( Expr expr)

Definition at line 6178 of file planner.c.

References eval_const_expressions(), and fix_opfuncids().

Referenced by ATExecAddColumn(), ATPrepAlterColumnType(), BeginCopyFrom(), CheckMutability(), ComputePartitionAttrs(), ExecPrepareCheck(), ExecPrepareExpr(), ExecPrepareQual(), load_domaintype_info(), set_baserel_partition_constraint(), slot_fill_defaults(), StoreAttrDefault(), and transformPartitionBoundValue().

6179 {
6180  Node *result;
6181 
6182  /*
6183  * Convert named-argument function calls, insert default arguments and
6184  * simplify constant subexprs
6185  */
6186  result = eval_const_expressions(NULL, (Node *) expr);
6187 
6188  /* Fill in opfuncid values if missing */
6189  fix_opfuncids(result);
6190 
6191  return (Expr *) result;
6192 }
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1636
Definition: nodes.h:529
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2287

◆ expression_planner_with_deps()

Expr* expression_planner_with_deps ( Expr expr,
List **  relationOids,
List **  invalItems 
)

Definition at line 6205 of file planner.c.

References eval_const_expressions(), extract_query_dependencies_walker(), fix_opfuncids(), PlannerInfo::glob, PlannerGlobal::invalItems, MemSet, NIL, PlannerGlobal::relationOids, T_PlannerGlobal, T_PlannerInfo, PlannerGlobal::type, and PlannerInfo::type.

Referenced by GetCachedExpression().

6208 {
6209  Node *result;
6210  PlannerGlobal glob;
6211  PlannerInfo root;
6212 
6213  /* Make up dummy planner state so we can use setrefs machinery */
6214  MemSet(&glob, 0, sizeof(glob));
6215  glob.type = T_PlannerGlobal;
6216  glob.relationOids = NIL;
6217  glob.invalItems = NIL;
6218 
6219  MemSet(&root, 0, sizeof(root));
6220  root.type = T_PlannerInfo;
6221  root.glob = &glob;
6222 
6223  /*
6224  * Convert named-argument function calls, insert default arguments and
6225  * simplify constant subexprs. Collect identities of inlined functions
6226  * and elided domains, too.
6227  */
6228  result = eval_const_expressions(&root, (Node *) expr);
6229 
6230  /* Fill in opfuncid values if missing */
6231  fix_opfuncids(result);
6232 
6233  /*
6234  * Now walk the finished expression to find anything else we ought to
6235  * record as an expression dependency.
6236  */
6237  (void) extract_query_dependencies_walker(result, &root);
6238 
6239  *relationOids = glob.relationOids;
6240  *invalItems = glob.invalItems;
6241 
6242  return (Expr *) result;
6243 }
#define NIL
Definition: pg_list.h:65
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1636
Definition: nodes.h:529
#define MemSet(start, val, len)
Definition: c.h:949
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2287
PlannerGlobal * glob
Definition: pathnodes.h:181
List * invalItems
Definition: pathnodes.h:129
NodeTag type
Definition: pathnodes.h:177
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:2827
NodeTag type
Definition: pathnodes.h:107
List * relationOids
Definition: pathnodes.h:127

◆ extract_rollup_sets()

static List * extract_rollup_sets ( List groupingSets)
static

Definition at line 3335 of file planner.c.

References Assert, BipartiteMatch(), BipartiteMatchFree(), bms_add_member(), bms_equal(), bms_free(), bms_is_subset(), for_each_cell, i, lappend(), lcons(), lfirst, lfirst_int, list_concat(), list_head(), list_length(), list_make1, lnext(), NIL, BipartiteMatchState::pair_uv, BipartiteMatchState::pair_vu, palloc(), palloc0(), and pfree().

Referenced by preprocess_grouping_sets().

3336 {
3337  int num_sets_raw = list_length(groupingSets);
3338  int num_empty = 0;
3339  int num_sets = 0; /* distinct sets */
3340  int num_chains = 0;
3341  List *result = NIL;
3342  List **results;
3343  List **orig_sets;
3344  Bitmapset **set_masks;
3345  int *chains;
3346  short **adjacency;
3347  short *adjacency_buf;
3349  int i;
3350  int j;
3351  int j_size;
3352  ListCell *lc1 = list_head(groupingSets);
3353  ListCell *lc;
3354 
3355  /*
3356  * Start by stripping out empty sets. The algorithm doesn't require this,
3357  * but the planner currently needs all empty sets to be returned in the
3358  * first list, so we strip them here and add them back after.
3359  */
3360  while (lc1 && lfirst(lc1) == NIL)
3361  {
3362  ++num_empty;
3363  lc1 = lnext(groupingSets, lc1);
3364  }
3365 
3366  /* bail out now if it turns out that all we had were empty sets. */
3367  if (!lc1)
3368  return list_make1(groupingSets);
3369 
3370  /*----------
3371  * We don't strictly need to remove duplicate sets here, but if we don't,
3372  * they tend to become scattered through the result, which is a bit
3373  * confusing (and irritating if we ever decide to optimize them out).
3374  * So we remove them here and add them back after.
3375  *
3376  * For each non-duplicate set, we fill in the following:
3377  *
3378  * orig_sets[i] = list of the original set lists
3379  * set_masks[i] = bitmapset for testing inclusion
3380  * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
3381  *
3382  * chains[i] will be the result group this set is assigned to.
3383  *
3384  * We index all of these from 1 rather than 0 because it is convenient
3385  * to leave 0 free for the NIL node in the graph algorithm.
3386  *----------
3387  */
3388  orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
3389  set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
3390  adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
3391  adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));
3392 
3393  j_size = 0;
3394  j = 0;
3395  i = 1;
3396 
3397  for_each_cell(lc, groupingSets, lc1)
3398  {
3399  List *candidate = (List *) lfirst(lc);
3400  Bitmapset *candidate_set = NULL;
3401  ListCell *lc2;
3402  int dup_of = 0;
3403 
3404  foreach(lc2, candidate)
3405  {
3406  candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
3407  }
3408 
3409  /* we can only be a dup if we're the same length as a previous set */
3410  if (j_size == list_length(candidate))
3411  {
3412  int k;
3413 
3414  for (k = j; k < i; ++k)
3415  {
3416  if (bms_equal(set_masks[k], candidate_set))
3417  {
3418  dup_of = k;
3419  break;
3420  }
3421  }
3422  }
3423  else if (j_size < list_length(candidate))
3424  {
3425  j_size = list_length(candidate);
3426  j = i;
3427  }
3428 
3429  if (dup_of > 0)
3430  {
3431  orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
3432  bms_free(candidate_set);
3433  }
3434  else
3435  {
3436  int k;
3437  int n_adj = 0;
3438 
3439  orig_sets[i] = list_make1(candidate);
3440  set_masks[i] = candidate_set;
3441 
3442  /* fill in adjacency list; no need to compare equal-size sets */
3443 
3444  for (k = j - 1; k > 0; --k)
3445  {
3446  if (bms_is_subset(set_masks[k], candidate_set))
3447  adjacency_buf[++n_adj] = k;
3448  }
3449 
3450  if (n_adj > 0)
3451  {
3452  adjacency_buf[0] = n_adj;
3453  adjacency[i] = palloc((n_adj + 1) * sizeof(short));
3454  memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
3455  }
3456  else
3457  adjacency[i] = NULL;
3458 
3459  ++i;
3460  }
3461  }
3462 
3463  num_sets = i - 1;
3464 
3465  /*
3466  * Apply the graph matching algorithm to do the work.
3467  */
3468  state = BipartiteMatch(num_sets, num_sets, adjacency);
3469 
3470  /*
3471  * Now, the state->pair* fields have the info we need to assign sets to
3472  * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
3473  * pair_vu[v] = u (both will be true, but we check both so that we can do
3474  * it in one pass)
3475  */
3476  chains = palloc0((num_sets + 1) * sizeof(int));
3477 
3478  for (i = 1; i <= num_sets; ++i)
3479  {
3480  int u = state->pair_vu[i];
3481  int v = state->pair_uv[i];
3482 
3483  if (u > 0 && u < i)
3484  chains[i] = chains[u];
3485  else if (v > 0 && v < i)
3486  chains[i] = chains[v];
3487  else
3488  chains[i] = ++num_chains;
3489  }
3490 
3491  /* build result lists. */
3492  results = palloc0((num_chains + 1) * sizeof(List *));
3493 
3494  for (i = 1; i <= num_sets; ++i)
3495  {
3496  int c = chains[i];
3497 
3498  Assert(c > 0);
3499 
3500  results[c] = list_concat(results[c], orig_sets[i]);
3501  }
3502 
3503  /* push any empty sets back on the first list. */
3504  while (num_empty-- > 0)
3505  results[1] = lcons(NIL, results[1]);
3506 
3507  /* make result list */
3508  for (i = 1; i <= num_chains; ++i)
3509  result = lappend(result, results[i]);
3510 
3511  /*
3512  * Free all the things.
3513  *
3514  * (This is over-fussy for small sets but for large sets we could have
3515  * tied up a nontrivial amount of memory.)
3516  */
3517  BipartiteMatchFree(state);
3518  pfree(results);
3519  pfree(chains);
3520  for (i = 1; i <= num_sets; ++i)
3521  if (adjacency[i])
3522  pfree(adjacency[i]);
3523  pfree(adjacency);
3524  pfree(adjacency_buf);
3525  pfree(orig_sets);
3526  for (i = 1; i <= num_sets; ++i)
3527  bms_free(set_masks[i]);
3528  pfree(set_masks);
3529 
3530  return result;
3531 }
#define NIL
Definition: pg_list.h:65
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:390
List * list_concat(List *list1, const List *list2)
Definition: list.c:515
void BipartiteMatchFree(BipartiteMatchState *state)
#define list_make1(x1)
Definition: pg_list.h:227
void pfree(void *pointer)
Definition: mcxt.c:1057
#define lfirst_int(lc)
Definition: pg_list.h:191
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:315
char * c
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
List * lappend(List *list, void *datum)
Definition: list.c:321
void * palloc0(Size size)
Definition: mcxt.c:981
BipartiteMatchState * BipartiteMatch(int u_size, int v_size, short **adjacency)
List * lcons(void *datum, List *list)
Definition: list.c:453
void bms_free(Bitmapset *a)
Definition: bitmapset.c:208
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
Definition: regguts.h:298
static int list_length(const List *l)
Definition: pg_list.h:169
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
void * palloc(Size size)
Definition: mcxt.c:950
int i
Definition: pg_list.h:50
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:94

◆ gather_grouping_paths()

static void gather_grouping_paths ( PlannerInfo root,
RelOptInfo rel 
)
static

Definition at line 7243 of file planner.c.

References add_path(), create_gather_merge_path(), create_incremental_sort_path(), create_sort_path(), enable_incremental_sort, generate_useful_gather_paths(), PlannerInfo::group_pathkeys, lfirst, linitial, list_length(), Path::parallel_workers, RelOptInfo::partial_pathlist, Path::pathkeys, pathkeys_contained_in(), pathkeys_count_contained_in(), RelOptInfo::reltarget, and Path::rows.

Referenced by add_paths_to_grouping_rel(), and create_ordinary_grouping_paths().

7244 {
7245  ListCell *lc;
7246  Path *cheapest_partial_path;
7247 
7248  /* Try Gather for unordered paths and Gather Merge for ordered ones. */
7249  generate_useful_gather_paths(root, rel, true);
7250 
7251  /* Try cheapest partial path + explicit Sort + Gather Merge. */
7252  cheapest_partial_path = linitial(rel->partial_pathlist);
7254  cheapest_partial_path->pathkeys))
7255  {
7256  Path *path;
7257  double total_groups;
7258 
7259  total_groups =
7260  cheapest_partial_path->rows * cheapest_partial_path->parallel_workers;
7261  path = (Path *) create_sort_path(root, rel, cheapest_partial_path,
7262  root->group_pathkeys,
7263  -1.0);
7264  path = (Path *)
7266  rel,
7267  path,
7268  rel->reltarget,
7269  root->group_pathkeys,
7270  NULL,
7271  &total_groups);
7272 
7273  add_path(rel, path);
7274  }
7275 
7276  /*
7277  * Consider incremental sort on all partial paths, if enabled.
7278  *
7279  * We can also skip the entire loop when we only have a single-item
7280  * group_pathkeys because then we can't possibly have a presorted prefix
7281  * of the list without having the list be fully sorted.
7282  */
7284  return;
7285 
7286  /* also consider incremental sort on partial paths, if enabled */
7287  foreach(lc, rel->partial_pathlist)
7288  {
7289  Path *path = (Path *) lfirst(lc);
7290  bool is_sorted;
7291  int presorted_keys;
7292  double total_groups;
7293 
7294  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
7295  path->pathkeys,
7296  &presorted_keys);
7297 
7298  if (is_sorted)
7299  continue;
7300 
7301  if (presorted_keys == 0)
7302  continue;
7303 
7304  path = (Path *) create_incremental_sort_path(root,
7305  rel,
7306  path,
7307  root->group_pathkeys,
7308  presorted_keys,
7309  -1.0);
7310 
7311  path = (Path *)
7313  rel,
7314  path,
7315  rel->reltarget,
7316  root->group_pathkeys,
7317  NULL,
7318  &total_groups);
7319 
7320  add_path(rel, path);
7321  }
7322 }
List * group_pathkeys
Definition: pathnodes.h:300
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
bool enable_incremental_sort
Definition: costsize.c:131
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2802
int parallel_workers
Definition: pathnodes.h:1151
List * partial_pathlist
Definition: pathnodes.h:681
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define linitial(l)
Definition: pg_list.h:195
void generate_useful_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
Definition: allpaths.c:2820
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1787
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2851
List * pathkeys
Definition: pathnodes.h:1158
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static int list_length(const List *l)
Definition: pg_list.h:169
struct PathTarget * reltarget
Definition: pathnodes.h:676

◆ get_cheapest_fractional_path()

Path* get_cheapest_fractional_path ( RelOptInfo rel,
double  tuple_fraction 
)

Definition at line 6019 of file planner.c.

References RelOptInfo::cheapest_total_path, compare_fractional_path_costs(), lfirst, RelOptInfo::pathlist, and Path::rows.

Referenced by make_subplan(), recurse_set_operations(), and standard_planner().

6020 {
6021  Path *best_path = rel->cheapest_total_path;
6022  ListCell *l;
6023 
6024  /* If all tuples will be retrieved, just return the cheapest-total path */
6025  if (tuple_fraction <= 0.0)
6026  return best_path;
6027 
6028  /* Convert absolute # of tuples to a fraction; no need to clamp to 0..1 */
6029  if (tuple_fraction >= 1.0 && best_path->rows > 0)
6030  tuple_fraction /= best_path->rows;
6031 
6032  foreach(l, rel->pathlist)
6033  {
6034  Path *path = (Path *) lfirst(l);
6035 
6036  if (path == rel->cheapest_total_path ||
6037  compare_fractional_path_costs(best_path, path, tuple_fraction) <= 0)
6038  continue;
6039 
6040  best_path = path;
6041  }
6042 
6043  return best_path;
6044 }
struct Path * cheapest_total_path
Definition: pathnodes.h:683
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:117
List * pathlist
Definition: pathnodes.h:679

◆ get_number_of_groups()

static double get_number_of_groups ( PlannerInfo root,
double  path_rows,
grouping_sets_data gd,
List target_list 
)
static

Definition at line 3683 of file planner.c.

References Assert, grouping_sets_data::dNumHashGroups, estimate_num_groups(), forboth, get_sortgrouplist_exprs(), Query::groupClause, RollupData::groupClause, Query::groupingSets, RollupData::gsets, RollupData::gsets_data, Query::hasAggs, grouping_sets_data::hash_sets_idx, PlannerInfo::hasHavingQual, lfirst, lfirst_node, list_length(), GroupingSetData::numGroups, RollupData::numGroups, parse(), PlannerInfo::parse, grouping_sets_data::rollups, and grouping_sets_data::unsortable_sets.

Referenced by create_ordinary_grouping_paths(), and create_partial_grouping_paths().

3687 {
3688  Query *parse = root->parse;
3689  double dNumGroups;
3690 
3691  if (parse->groupClause)
3692  {
3693  List *groupExprs;
3694 
3695  if (parse->groupingSets)
3696  {
3697  /* Add up the estimates for each grouping set */
3698  ListCell *lc;
3699  ListCell *lc2;
3700 
3701  Assert(gd); /* keep Coverity happy */
3702 
3703  dNumGroups = 0;
3704 
3705  foreach(lc, gd->rollups)
3706  {
3707  RollupData *rollup = lfirst_node(RollupData, lc);
3708  ListCell *lc;
3709 
3710  groupExprs = get_sortgrouplist_exprs(rollup->groupClause,
3711  target_list);
3712 
3713  rollup->numGroups = 0.0;
3714 
3715  forboth(lc, rollup->gsets, lc2, rollup->gsets_data)
3716  {
3717  List *gset = (List *) lfirst(lc);
3719  double numGroups = estimate_num_groups(root,
3720  groupExprs,
3721  path_rows,
3722  &gset);
3723 
3724  gs->numGroups = numGroups;
3725  rollup->numGroups += numGroups;
3726  }
3727 
3728  dNumGroups += rollup->numGroups;
3729  }
3730 
3731  if (gd->hash_sets_idx)
3732  {
3733  ListCell *lc;
3734 
3735  gd->dNumHashGroups = 0;
3736 
3737  groupExprs = get_sortgrouplist_exprs(parse->groupClause,
3738  target_list);
3739 
3740  forboth(lc, gd->hash_sets_idx, lc2, gd->unsortable_sets)
3741  {
3742  List *gset = (List *) lfirst(lc);
3744  double numGroups = estimate_num_groups(root,
3745  groupExprs,
3746  path_rows,
3747  &gset);
3748 
3749  gs->numGroups = numGroups;
3750  gd->dNumHashGroups += numGroups;
3751  }
3752 
3753  dNumGroups += gd->dNumHashGroups;
3754  }
3755  }
3756  else
3757  {
3758  /* Plain GROUP BY */
3759  groupExprs = get_sortgrouplist_exprs(parse->groupClause,
3760  target_list);
3761 
3762  dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
3763  NULL);
3764  }
3765  }
3766  else if (parse->groupingSets)
3767  {
3768  /* Empty grouping sets ... one result row for each one */
3769  dNumGroups = list_length(parse->groupingSets);
3770  }
3771  else if (parse->hasAggs || root->hasHavingQual)
3772  {
3773  /* Plain aggregation, one result row */
3774  dNumGroups = 1;
3775  }
3776  else
3777  {
3778  /* Not grouping */
3779  dNumGroups = 1;
3780  }
3781 
3782  return dNumGroups;
3783 }
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset)
Definition: selfuncs.c:3360
Query * parse
Definition: pathnodes.h:179
List * groupClause
Definition: pathnodes.h:1722
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
bool hasAggs
Definition: parsenodes.h:125
List * hash_sets_idx
Definition: planner.c:109
List * groupingSets
Definition: parsenodes.h:150
double dNumHashGroups
Definition: planner.c:110
double numGroups
Definition: pathnodes.h:1725
#define lfirst_node(type, lc)
Definition: pg_list.h:193
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
static int list_length(const List *l)
Definition: pg_list.h:169
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:414
List * unsortable_sets
Definition: planner.c:114
List * groupClause
Definition: parsenodes.h:148
double numGroups
Definition: pathnodes.h:1716
bool hasHavingQual
Definition: pathnodes.h:347
Definition: pg_list.h:50
List * gsets_data
Definition: pathnodes.h:1724
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
List * gsets
Definition: pathnodes.h:1723

◆ group_by_has_partkey()

static bool group_by_has_partkey ( RelOptInfo input_rel,
List targetList,
List groupClause 
)
static

Definition at line 7745 of file planner.c.

References Assert, get_sortgrouplist_exprs(), lfirst, list_member(), RelOptInfo::part_scheme, RelOptInfo::partexprs, and PartitionSchemeData::partnatts.

Referenced by create_ordinary_grouping_paths().

7748 {
7749  List *groupexprs = get_sortgrouplist_exprs(groupClause, targetList);
7750  int cnt = 0;
7751  int partnatts;
7752 
7753  /* Input relation should be partitioned. */
7754  Assert(input_rel->part_scheme);
7755 
7756  /* Rule out early, if there are no partition keys present. */
7757  if (!input_rel->partexprs)
7758  return false;
7759 
7760  partnatts = input_rel->part_scheme->partnatts;
7761 
7762  for (cnt = 0; cnt < partnatts; cnt++)
7763  {
7764  List *partexprs = input_rel->partexprs[cnt];
7765  ListCell *lc;
7766  bool found = false;
7767 
7768  foreach(lc, partexprs)
7769  {
7770  Expr *partexpr = lfirst(lc);
7771 
7772  if (list_member(groupexprs, partexpr))
7773  {
7774  found = true;
7775  break;
7776  }
7777  }
7778 
7779  /*
7780  * If none of the partition key expressions match with any of the
7781  * GROUP BY expression, return false.
7782  */
7783  if (!found)
7784  return false;
7785  }
7786 
7787  return true;
7788 }
List ** partexprs
Definition: pathnodes.h:753
bool list_member(const List *list, const void *datum)
Definition: list.c:613
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:414
PartitionScheme part_scheme
Definition: pathnodes.h:742
Definition: pg_list.h:50

◆ grouping_planner()

static void grouping_planner ( PlannerInfo root,
bool  inheritance_update,
double  tuple_fraction 
)
static

Definition at line 1833 of file planner.c.

References standard_qp_extra::activeWindows, add_partial_path(), add_path(), adjust_paths_for_srfs(), AGGSPLIT_SIMPLE, apply_scanjoin_target_to_paths(), Assert, assign_special_exec_param(), Query::canSetTag, RelOptInfo::cheapest_total_path, CMD_SELECT, Query::commandType, RelOptInfo::consider_parallel, copyObject, FinalPathExtraData::count_est, create_distinct_paths(), create_grouping_paths(), create_limit_path(), create_lockrows_path(), create_modifytable_path(), create_ordered_paths(), create_pathtarget, create_upper_paths_hook, create_window_paths(), Query::distinctClause, equal(), ereport, errcode(), errmsg(), ERROR, PathTarget::exprs, RelOptInfo::fdwroutine, fetch_upper_rel(), find_window_functions(), get_agg_clause_costs(), FdwRoutine::GetForeignUpperPaths, standard_qp_extra::groupClause, Query::groupClause, Query::groupingSets, Query::hasAggs, PlannerInfo::hasHavingQual, PlannerInfo::hasRecursion, Query::hasTargetSRFs, Query::hasWindowFuncs, Query::havingQual, is_parallel_safe(), LCS_asString(), lfirst, FinalPathExtraData::limit_needed, limit_needed(), PlannerInfo::limit_tuples, FinalPathExtraData::limit_tuples, Query::limitCount, Query::limitOffset, Query::limitOption, linitial_int, linitial_node, list_length(), list_make1, list_make1_int, make_group_input_target(), make_pathkeys_for_sortclauses(), make_sort_input_target(), make_window_input_target(), MemSet, NIL, WindowFuncLists::numWindowFuncs, FinalPathExtraData::offset_est, Query::onConflict, parse(), PlannerInfo::parse, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, Path::pathtarget, plan_set_operations(), postprocess_setop_tlist(), preprocess_groupclause(), preprocess_grouping_sets(), preprocess_limit(), preprocess_minmax_aggregates(), preprocess_targetlist(), PlannerInfo::processed_tlist, PlannerInfo::query_level, query_planner(), RelOptInfo::reltarget, Query::resultRelation, Query::returningList, grouping_sets_data::rollups, Query::rowMarks, PlannerInfo::rowMarks, rt_fetch, Query::rtable, select_active_windows(), RelOptInfo::serverid, Query::setOperations, PlannerInfo::sort_pathkeys, Query::sortClause, split_pathtarget_at_srfs(), standard_qp_callback(), Query::targetList, PlannerInfo::tuple_fraction, PlannerInfo::upper_targets, UPPERREL_DISTINCT, UPPERREL_FINAL, UPPERREL_GROUP_AGG, UPPERREL_ORDERED, UPPERREL_WINDOW, RelOptInfo::userid, RelOptInfo::useridiscurrent, Query::windowClause, and Query::withCheckOptions.

Referenced by inheritance_planner(), and subquery_planner().

1835 {
1836  Query *parse = root->parse;
1837  int64 offset_est = 0;
1838  int64 count_est = 0;
1839  double limit_tuples = -1.0;
1840  bool have_postponed_srfs = false;
1841  PathTarget *final_target;
1842  List *final_targets;
1843  List *final_targets_contain_srfs;
1844  bool final_target_parallel_safe;
1845  RelOptInfo *current_rel;
1846  RelOptInfo *final_rel;
1847  FinalPathExtraData extra;
1848  ListCell *lc;
1849 
1850  /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
1851  if (parse->limitCount || parse->limitOffset)
1852  {
1853  tuple_fraction = preprocess_limit(root, tuple_fraction,
1854  &offset_est, &count_est);
1855 
1856  /*
1857  * If we have a known LIMIT, and don't have an unknown OFFSET, we can
1858  * estimate the effects of using a bounded sort.
1859  */
1860  if (count_est > 0 && offset_est >= 0)
1861  limit_tuples = (double) count_est + (double) offset_est;
1862  }
1863 
1864  /* Make tuple_fraction accessible to lower-level routines */
1865  root->tuple_fraction = tuple_fraction;
1866 
1867  if (parse->setOperations)
1868  {
1869  /*
1870  * If there's a top-level ORDER BY, assume we have to fetch all the
1871  * tuples. This might be too simplistic given all the hackery below
1872  * to possibly avoid the sort; but the odds of accurate estimates here
1873  * are pretty low anyway. XXX try to get rid of this in favor of
1874  * letting plan_set_operations generate both fast-start and
1875  * cheapest-total paths.
1876  */
1877  if (parse->sortClause)
1878  root->tuple_fraction = 0.0;
1879 
1880  /*
1881  * Construct Paths for set operations. The results will not need any
1882  * work except perhaps a top-level sort and/or LIMIT. Note that any
1883  * special work for recursive unions is the responsibility of
1884  * plan_set_operations.
1885  */
1886  current_rel = plan_set_operations(root);
1887 
1888  /*
1889  * We should not need to call preprocess_targetlist, since we must be
1890  * in a SELECT query node. Instead, use the processed_tlist returned
1891  * by plan_set_operations (since this tells whether it returned any
1892  * resjunk columns!), and transfer any sort key information from the
1893  * original tlist.
1894  */
1895  Assert(parse->commandType == CMD_SELECT);
1896 
1897  /* for safety, copy processed_tlist instead of modifying in-place */
1898  root->processed_tlist =
1900  parse->targetList);
1901 
1902  /* Also extract the PathTarget form of the setop result tlist */
1903  final_target = current_rel->cheapest_total_path->pathtarget;
1904 
1905  /* And check whether it's parallel safe */
1906  final_target_parallel_safe =
1907  is_parallel_safe(root, (Node *) final_target->exprs);
1908 
1909  /* The setop result tlist couldn't contain any SRFs */
1910  Assert(!parse->hasTargetSRFs);
1911  final_targets = final_targets_contain_srfs = NIL;
1912 
1913  /*
1914  * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
1915  * checked already, but let's make sure).
1916  */
1917  if (parse->rowMarks)
1918  ereport(ERROR,
1919  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1920  /*------
1921  translator: %s is a SQL row locking clause such as FOR UPDATE */
1922  errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
1924  parse->rowMarks)->strength))));
1925 
1926  /*
1927  * Calculate pathkeys that represent result ordering requirements
1928  */
1929  Assert(parse->distinctClause == NIL);
1931  parse->sortClause,
1932  root->processed_tlist);
1933  }
1934  else
1935  {
1936  /* No set operations, do regular planning */
1937  PathTarget *sort_input_target;
1938  List *sort_input_targets;
1939  List *sort_input_targets_contain_srfs;
1940  bool sort_input_target_parallel_safe;
1941  PathTarget *grouping_target;
1942  List *grouping_targets;
1943  List *grouping_targets_contain_srfs;
1944  bool grouping_target_parallel_safe;
1945  PathTarget *scanjoin_target;
1946  List *scanjoin_targets;
1947  List *scanjoin_targets_contain_srfs;
1948  bool scanjoin_target_parallel_safe;
1949  bool scanjoin_target_same_exprs;
1950  bool have_grouping;
1951  AggClauseCosts agg_costs;
1952  WindowFuncLists *wflists = NULL;
1953  List *activeWindows = NIL;
1954  grouping_sets_data *gset_data = NULL;
1955  standard_qp_extra qp_extra;
1956 
1957  /* A recursive query should always have setOperations */
1958  Assert(!root->hasRecursion);
1959 
1960  /* Preprocess grouping sets and GROUP BY clause, if any */
1961  if (parse->groupingSets)
1962  {
1963  gset_data = preprocess_grouping_sets(root);
1964  }
1965  else
1966  {
1967  /* Preprocess regular GROUP BY clause, if any */
1968  if (parse->groupClause)
1969  parse->groupClause = preprocess_groupclause(root, NIL);
1970  }
1971 
1972  /*
1973  * Preprocess targetlist. Note that much of the remaining planning
1974  * work will be done with the PathTarget representation of tlists, but
1975  * we must also maintain the full representation of the final tlist so
1976  * that we can transfer its decoration (resnames etc) to the topmost
1977  * tlist of the finished Plan. This is kept in processed_tlist.
1978  */
1979  root->processed_tlist = preprocess_targetlist(root);
1980 
1981  /*
1982  * Collect statistics about aggregates for estimating costs, and mark
1983  * all the aggregates with resolved aggtranstypes. We must do this
1984  * before slicing and dicing the tlist into various pathtargets, else
1985  * some copies of the Aggref nodes might escape being marked with the
1986  * correct transtypes.
1987  *
1988  * Note: currently, we do not detect duplicate aggregates here. This
1989  * may result in somewhat-overestimated cost, which is fine for our
1990  * purposes since all Paths will get charged the same. But at some
1991  * point we might wish to do that detection in the planner, rather
1992  * than during executor startup.
1993  */
1994  MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1995  if (parse->hasAggs)
1996  {
1997  get_agg_clause_costs(root, (Node *) root->processed_tlist,
1998  AGGSPLIT_SIMPLE, &agg_costs);
2000  &agg_costs);
2001  }
2002 
2003  /*
2004  * Locate any window functions in the tlist. (We don't need to look
2005  * anywhere else, since expressions used in ORDER BY will be in there
2006  * too.) Note that they could all have been eliminated by constant
2007  * folding, in which case we don't need to do any more work.
2008  */
2009  if (parse->hasWindowFuncs)
2010  {
2011  wflists = find_window_functions((Node *) root->processed_tlist,
2012  list_length(parse->windowClause));
2013  if (wflists->numWindowFuncs > 0)
2014  activeWindows = select_active_windows(root, wflists);
2015  else
2016  parse->hasWindowFuncs = false;
2017  }
2018 
2019  /*
2020  * Preprocess MIN/MAX aggregates, if any. Note: be careful about
2021  * adding logic between here and the query_planner() call. Anything
2022  * that is needed in MIN/MAX-optimizable cases will have to be
2023  * duplicated in planagg.c.
2024  */
2025  if (parse->hasAggs)
2027 
2028  /*
2029  * Figure out whether there's a hard limit on the number of rows that
2030  * query_planner's result subplan needs to return. Even if we know a
2031  * hard limit overall, it doesn't apply if the query has any
2032  * grouping/aggregation operations, or SRFs in the tlist.
2033  */
2034  if (parse->groupClause ||
2035  parse->groupingSets ||
2036  parse->distinctClause ||
2037  parse->hasAggs ||
2038  parse->hasWindowFuncs ||
2039  parse->hasTargetSRFs ||
2040  root->hasHavingQual)
2041  root->limit_tuples = -1.0;
2042  else
2043  root->limit_tuples = limit_tuples;
2044 
2045  /* Set up data needed by standard_qp_callback */
2046  qp_extra.activeWindows = activeWindows;
2047  qp_extra.groupClause = (gset_data
2048  ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL)
2049  : parse->groupClause);
2050 
2051  /*
2052  * Generate the best unsorted and presorted paths for the scan/join
2053  * portion of this Query, ie the processing represented by the
2054  * FROM/WHERE clauses. (Note there may not be any presorted paths.)
2055  * We also generate (in standard_qp_callback) pathkey representations
2056  * of the query's sort clause, distinct clause, etc.
2057  */
2058  current_rel = query_planner(root, standard_qp_callback, &qp_extra);
2059 
2060  /*
2061  * Convert the query's result tlist into PathTarget format.
2062  *
2063  * Note: this cannot be done before query_planner() has performed
2064  * appendrel expansion, because that might add resjunk entries to
2065  * root->processed_tlist. Waiting till afterwards is also helpful
2066  * because the target width estimates can use per-Var width numbers
2067  * that were obtained within query_planner().
2068  */
2069  final_target = create_pathtarget(root, root->processed_tlist);
2070  final_target_parallel_safe =
2071  is_parallel_safe(root, (Node *) final_target->exprs);
2072 
2073  /*
2074  * If ORDER BY was given, consider whether we should use a post-sort
2075  * projection, and compute the adjusted target for preceding steps if
2076  * so.
2077  */
2078  if (parse->sortClause)
2079  {
2080  sort_input_target = make_sort_input_target(root,
2081  final_target,
2082  &have_postponed_srfs);
2083  sort_input_target_parallel_safe =
2084  is_parallel_safe(root, (Node *) sort_input_target->exprs);
2085  }
2086  else
2087  {
2088  sort_input_target = final_target;
2089  sort_input_target_parallel_safe = final_target_parallel_safe;
2090  }
2091 
2092  /*
2093  * If we have window functions to deal with, the output from any
2094  * grouping step needs to be what the window functions want;
2095  * otherwise, it should be sort_input_target.
2096  */
2097  if (activeWindows)
2098  {
2099  grouping_target = make_window_input_target(root,
2100  final_target,
2101  activeWindows);
2102  grouping_target_parallel_safe =
2103  is_parallel_safe(root, (Node *) grouping_target->exprs);
2104  }
2105  else
2106  {
2107  grouping_target = sort_input_target;
2108  grouping_target_parallel_safe = sort_input_target_parallel_safe;
2109  }
2110 
2111  /*
2112  * If we have grouping or aggregation to do, the topmost scan/join
2113  * plan node must emit what the grouping step wants; otherwise, it
2114  * should emit grouping_target.
2115  */
2116  have_grouping = (parse->groupClause || parse->groupingSets ||
2117  parse->hasAggs || root->hasHavingQual);
2118  if (have_grouping)
2119  {
2120  scanjoin_target = make_group_input_target(root, final_target);
2121  scanjoin_target_parallel_safe =
2122  is_parallel_safe(root, (Node *) scanjoin_target->exprs);
2123  }
2124  else
2125  {
2126  scanjoin_target = grouping_target;
2127  scanjoin_target_parallel_safe = grouping_target_parallel_safe;
2128  }
2129 
2130  /*
2131  * If there are any SRFs in the targetlist, we must separate each of
2132  * these PathTargets into SRF-computing and SRF-free targets. Replace
2133  * each of the named targets with a SRF-free version, and remember the
2134  * list of additional projection steps we need to add afterwards.
2135  */
2136  if (parse->hasTargetSRFs)
2137  {
2138  /* final_target doesn't recompute any SRFs in sort_input_target */
2139  split_pathtarget_at_srfs(root, final_target, sort_input_target,
2140  &final_targets,
2141  &final_targets_contain_srfs);
2142  final_target = linitial_node(PathTarget, final_targets);
2143  Assert(!linitial_int(final_targets_contain_srfs));
2144  /* likewise for sort_input_target vs. grouping_target */
2145  split_pathtarget_at_srfs(root, sort_input_target, grouping_target,
2146  &sort_input_targets,
2147  &sort_input_targets_contain_srfs);
2148  sort_input_target = linitial_node(PathTarget, sort_input_targets);
2149  Assert(!linitial_int(sort_input_targets_contain_srfs));
2150  /* likewise for grouping_target vs. scanjoin_target */
2151  split_pathtarget_at_srfs(root, grouping_target, scanjoin_target,
2152  &grouping_targets,
2153  &grouping_targets_contain_srfs);
2154  grouping_target = linitial_node(PathTarget, grouping_targets);
2155  Assert(!linitial_int(grouping_targets_contain_srfs));
2156  /* scanjoin_target will not have any SRFs precomputed for it */
2157  split_pathtarget_at_srfs(root, scanjoin_target, NULL,
2158  &scanjoin_targets,
2159  &scanjoin_targets_contain_srfs);
2160  scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
2161  Assert(!linitial_int(scanjoin_targets_contain_srfs));
2162  }
2163  else
2164  {
2165  /* initialize lists; for most of these, dummy values are OK */
2166  final_targets = final_targets_contain_srfs = NIL;
2167  sort_input_targets = sort_input_targets_contain_srfs = NIL;
2168  grouping_targets = grouping_targets_contain_srfs = NIL;
2169  scanjoin_targets = list_make1(scanjoin_target);
2170  scanjoin_targets_contain_srfs = NIL;
2171  }
2172 
2173  /* Apply scan/join target. */
2174  scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
2175  && equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
2176  apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
2177  scanjoin_targets_contain_srfs,
2178  scanjoin_target_parallel_safe,
2179  scanjoin_target_same_exprs);
2180 
2181  /*
2182  * Save the various upper-rel PathTargets we just computed into
2183  * root->upper_targets[]. The core code doesn't use this, but it
2184  * provides a convenient place for extensions to get at the info. For
2185  * consistency, we save all the intermediate targets, even though some
2186  * of the corresponding upperrels might not be needed for this query.
2187  */
2188  root->upper_targets[UPPERREL_FINAL] = final_target;
2189  root->upper_targets[UPPERREL_ORDERED] = final_target;
2190  root->upper_targets[UPPERREL_DISTINCT] = sort_input_target;
2191  root->upper_targets[UPPERREL_WINDOW] = sort_input_target;
2192  root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target;
2193 
2194  /*
2195  * If we have grouping and/or aggregation, consider ways to implement
2196  * that. We build a new upperrel representing the output of this
2197  * phase.
2198  */
2199  if (have_grouping)
2200  {
2201  current_rel = create_grouping_paths(root,
2202  current_rel,
2203  grouping_target,
2204  grouping_target_parallel_safe,
2205  &agg_costs,
2206  gset_data);
2207  /* Fix things up if grouping_target contains SRFs */
2208  if (parse->hasTargetSRFs)
2209  adjust_paths_for_srfs(root, current_rel,
2210  grouping_targets,
2211  grouping_targets_contain_srfs);
2212  }
2213 
2214  /*
2215  * If we have window functions, consider ways to implement those. We
2216  * build a new upperrel representing the output of this phase.
2217  */
2218  if (activeWindows)
2219  {
2220  current_rel = create_window_paths(root,
2221  current_rel,
2222  grouping_target,
2223  sort_input_target,
2224  sort_input_target_parallel_safe,
2225  wflists,
2226  activeWindows);
2227  /* Fix things up if sort_input_target contains SRFs */
2228  if (parse->hasTargetSRFs)
2229  adjust_paths_for_srfs(root, current_rel,
2230  sort_input_targets,
2231  sort_input_targets_contain_srfs);
2232  }
2233 
2234  /*
2235  * If there is a DISTINCT clause, consider ways to implement that. We
2236  * build a new upperrel representing the output of this phase.
2237  */
2238  if (parse->distinctClause)
2239  {
2240  current_rel = create_distinct_paths(root,
2241  current_rel);
2242  }
2243  } /* end of if (setOperations) */
2244 
2245  /*
2246  * If ORDER BY was given, consider ways to implement that, and generate a
2247  * new upperrel containing only paths that emit the correct ordering and
2248  * project the correct final_target. We can apply the original
2249  * limit_tuples limit in sort costing here, but only if there are no
2250  * postponed SRFs.
2251  */
2252  if (parse->sortClause)
2253  {
2254  current_rel = create_ordered_paths(root,
2255  current_rel,
2256  final_target,
2257  final_target_parallel_safe,
2258  have_postponed_srfs ? -1.0 :
2259  limit_tuples);
2260  /* Fix things up if final_target contains SRFs */
2261  if (parse->hasTargetSRFs)
2262  adjust_paths_for_srfs(root, current_rel,
2263  final_targets,
2264  final_targets_contain_srfs);
2265  }
2266 
2267  /*
2268  * Now we are prepared to build the final-output upperrel.
2269  */
2270  final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
2271 
2272  /*
2273  * If the input rel is marked consider_parallel and there's nothing that's
2274  * not parallel-safe in the LIMIT clause, then the final_rel can be marked
2275  * consider_parallel as well. Note that if the query has rowMarks or is
2276  * not a SELECT, consider_parallel will be false for every relation in the
2277  * query.
2278  */
2279  if (current_rel->consider_parallel &&
2280  is_parallel_safe(root, parse->limitOffset) &&
2281  is_parallel_safe(root, parse->limitCount))
2282  final_rel->consider_parallel = true;
2283 
2284  /*
2285  * If the current_rel belongs to a single FDW, so does the final_rel.
2286  */
2287  final_rel->serverid = current_rel->serverid;
2288  final_rel->userid = current_rel->userid;
2289  final_rel->useridiscurrent = current_rel->useridiscurrent;
2290  final_rel->fdwroutine = current_rel->fdwroutine;
2291 
2292  /*
2293  * Generate paths for the final_rel. Insert all surviving paths, with
2294  * LockRows, Limit, and/or ModifyTable steps added if needed.
2295  */
2296  foreach(lc, current_rel->pathlist)
2297  {
2298  Path *path = (Path *) lfirst(lc);
2299 
2300  /*
2301  * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
2302  * (Note: we intentionally test parse->rowMarks not root->rowMarks
2303  * here. If there are only non-locking rowmarks, they should be
2304  * handled by the ModifyTable node instead. However, root->rowMarks
2305  * is what goes into the LockRows node.)
2306  */
2307  if (parse->rowMarks)
2308  {
2309  path = (Path *) create_lockrows_path(root, final_rel, path,
2310  root->rowMarks,
2312  }
2313 
2314  /*
2315  * If there is a LIMIT/OFFSET clause, add the LIMIT node.
2316  */
2317  if (limit_needed(parse))
2318  {
2319  path = (Path *) create_limit_path(root, final_rel, path,
2320  parse->limitOffset,
2321  parse->limitCount,
2322  parse->limitOption,
2323  offset_est, count_est);
2324  }
2325 
2326  /*
2327  * If this is an INSERT/UPDATE/DELETE, and we're not being called from
2328  * inheritance_planner, add the ModifyTable node.
2329  */
2330  if (parse->commandType != CMD_SELECT && !inheritance_update)
2331  {
2332  Index rootRelation;
2333  List *withCheckOptionLists;
2334  List *returningLists;
2335  List *rowMarks;
2336 
2337  /*
2338  * If target is a partition root table, we need to mark the
2339  * ModifyTable node appropriately for that.
2340  */
2341  if (rt_fetch(parse->resultRelation, parse->rtable)->relkind ==
2342  RELKIND_PARTITIONED_TABLE)
2343  rootRelation = parse->resultRelation;
2344  else
2345  rootRelation = 0;
2346 
2347  /*
2348  * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
2349  * needed.
2350  */
2351  if (parse->withCheckOptions)
2352  withCheckOptionLists = list_make1(parse->withCheckOptions);
2353  else
2354  withCheckOptionLists = NIL;
2355 
2356  if (parse->returningList)
2357  returningLists = list_make1(parse->returningList);
2358  else
2359  returningLists = NIL;
2360 
2361  /*
2362  * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
2363  * will have dealt with fetching non-locked marked rows, else we
2364  * need to have ModifyTable do that.
2365  */
2366  if (parse->rowMarks)
2367  rowMarks = NIL;
2368  else
2369  rowMarks = root->rowMarks;
2370 
2371  path = (Path *)
2372  create_modifytable_path(root, final_rel,
2373  parse->commandType,
2374  parse->canSetTag,
2375  parse->resultRelation,
2376  rootRelation,
2377  false,
2379  list_make1(path),
2380  list_make1(root),
2381  withCheckOptionLists,
2382  returningLists,
2383  rowMarks,
2384  parse->onConflict,
2386  }
2387 
2388  /* And shove it into final_rel */
2389  add_path(final_rel, path);
2390  }
2391 
2392  /*
2393  * Generate partial paths for final_rel, too, if outer query levels might
2394  * be able to make use of them.
2395  */
2396  if (final_rel->consider_parallel && root->query_level > 1 &&
2397  !limit_needed(parse))
2398  {
2399  Assert(!parse->rowMarks && parse->commandType == CMD_SELECT);
2400  foreach(lc, current_rel->partial_pathlist)
2401  {
2402  Path *partial_path = (Path *) lfirst(lc);
2403 
2404  add_partial_path(final_rel, partial_path);
2405  }
2406  }
2407 
2408  extra.limit_needed = limit_needed(parse);
2409  extra.limit_tuples = limit_tuples;
2410  extra.count_est = count_est;
2411  extra.offset_est = offset_est;
2412 
2413  /*
2414  * If there is an FDW that's responsible for all baserels of the query,
2415  * let it consider adding ForeignPaths.
2416  */
2417  if (final_rel->fdwroutine &&
2418  final_rel->fdwroutine->GetForeignUpperPaths)
2420  current_rel, final_rel,
2421  &extra);
2422 
2423  /* Let extensions possibly add some more paths */
2425  (*create_upper_paths_hook) (root, UPPERREL_FINAL,
2426  current_rel, final_rel, &extra);
2427 
2428  /* Note: currently, we leave it to callers to do set_cheapest() */
2429 }
RelOptInfo * plan_set_operations(PlannerInfo *root)
Definition: prepunion.c:103
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
Node * limitOffset
Definition: parsenodes.h:160
#define NIL
Definition: pg_list.h:65
List * rowMarks
Definition: pathnodes.h:292
static double preprocess_limit(PlannerInfo *root, double tuple_fraction, int64 *offset_est, int64 *count_est)
Definition: planner.c:2827
static void apply_scanjoin_target_to_paths(PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
Definition: planner.c:7373
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
const char * LCS_asString(LockClauseStrength strength)
Definition: analyze.c:2681
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
List * sortClause
Definition: parsenodes.h:158
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3474
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3032
OnConflictExpr * onConflict
Definition: parsenodes.h:144
List * make_pathkeys_for_sortclauses(PlannerInfo *root, List *sortclauses, List *tlist)
Definition: pathkeys.c:1125
static List * preprocess_groupclause(PlannerInfo *root, List *force)
Definition: planner.c:3232
Oid userid
Definition: pathnodes.h:715
List * withCheckOptions
Definition: parsenodes.h:172
void split_pathtarget_at_srfs(PlannerInfo *root, PathTarget *target, PathTarget *input_target, List **targets, List **targets_contain_srfs)
Definition: tlist.c:886
void get_agg_clause_costs(PlannerInfo *root, Node *clause, AggSplit aggsplit, AggClauseCosts *costs)
Definition: clauses.c:229
bool hasAggs
Definition: parsenodes.h:125
int resultRelation
Definition: parsenodes.h:122
int numWindowFuncs
Definition: clauses.h:22
WindowFuncLists * find_window_functions(Node *clause, Index maxWinRef)
Definition: clauses.c:507
List * groupingSets
Definition: parsenodes.h:150
bool limit_needed(Query *parse)
Definition: planner.c:3012
Definition: nodes.h:529
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3635
RelOptInfo * query_planner(PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
Definition: planmain.c:55
int errcode(int sqlerrcode)
Definition: elog.c:610
List * partial_pathlist
Definition: pathnodes.h:681
static RelOptInfo * create_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel)
Definition: planner.c:4755
#define MemSet(start, val, len)
Definition: c.h:949
static PathTarget * make_group_input_target(PlannerInfo *root, PathTarget *final_target)
Definition: planner.c:5229
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
int assign_special_exec_param(PlannerInfo *root)
Definition: paramassign.c:584
bool useridiscurrent
Definition: pathnodes.h:716
List * rowMarks
Definition: parsenodes.h:164
#define linitial_node(type, l)
Definition: pg_list.h:198
bool hasRecursion
Definition: pathnodes.h:350
static RelOptInfo * create_window_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *input_target, PathTarget *output_target, bool output_target_parallel_safe, WindowFuncLists *wflists, List *activeWindows)
Definition: planner.c:4551
List * windowClause
Definition: parsenodes.h:154
List * targetList
Definition: parsenodes.h:140
static List * postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
Definition: planner.c:5454
static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
Definition: planner.c:6062
void preprocess_minmax_aggregates(PlannerInfo *root)
Definition: planagg.c:72
#define list_make1(x1)
Definition: pg_list.h:227
#define linitial_int(l)
Definition: pg_list.h:196
static RelOptInfo * create_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, const AggClauseCosts *agg_costs, grouping_sets_data *gd)
Definition: planner.c:3804
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:854
double tuple_fraction
Definition: pathnodes.h:336
List * rtable
Definition: parsenodes.h:137
List * distinctClause
Definition: parsenodes.h:156
#define ERROR
Definition: elog.h:43
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, bool partColsUpdated, List *resultRelations, List *subpaths, List *subroots, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, int epqParam)
Definition: pathnode.c:3533
List * preprocess_targetlist(PlannerInfo *root)
Definition: preptlist.c:69
double limit_tuples
Definition: pathnodes.h:337
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1192
struct Path * cheapest_total_path
Definition: pathnodes.h:683
Node * limitCount
Definition: parsenodes.h:161
static PathTarget * make_window_input_target(PlannerInfo *root, PathTarget *final_target, List *activeWindows)
Definition: planner.c:5636
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
static void standard_qp_callback(PlannerInfo *root, void *extra)
Definition: planner.c:3593
#define create_pathtarget(root, tlist)
Definition: tlist.h:54
static grouping_sets_data * preprocess_grouping_sets(PlannerInfo *root)
Definition: planner.c:2438
List * returningList
Definition: parsenodes.h:146
#define list_make1_int(x1)
Definition: pg_list.h:238
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * sort_pathkeys
Definition: pathnodes.h:303
LimitOption limitOption
Definition: parsenodes.h:162
Oid serverid
Definition: pathnodes.h:714
List * exprs
Definition: pathnodes.h:1074
unsigned int Index
Definition: c.h:482
static RelOptInfo * create_ordered_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, double limit_tuples)
Definition: planner.c:4958
#define ereport(elevel,...)
Definition: elog.h:144
CmdType commandType
Definition: parsenodes.h:112
bool hasTargetSRFs
Definition: parsenodes.h:127
List * groupClause
Definition: planner.c:99
#define Assert(condition)
Definition: c.h:745
#define lfirst(lc)
Definition: pg_list.h:190
bool hasWindowFuncs
Definition: parsenodes.h:126
bool canSetTag
Definition: parsenodes.h:118
static int list_length(const List *l)
Definition: pg_list.h:169
bool consider_parallel
Definition: pathnodes.h:673
Index query_level
Definition: pathnodes.h:183
List * activeWindows
Definition: planner.c:98
Node * setOperations
Definition: parsenodes.h:166
List * groupClause
Definition: parsenodes.h:148
int errmsg(const char *fmt,...)
Definition: elog.c:824
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:749
static List * select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
Definition: planner.c:5487
bool hasHavingQual
Definition: pathnodes.h:347
List * pathlist
Definition: pathnodes.h:679
#define copyObject(obj)
Definition: nodes.h:645
Node * havingQual
Definition: parsenodes.h:152
List * processed_tlist
Definition: pathnodes.h:325
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static PathTarget * make_sort_input_target(PlannerInfo *root, PathTarget *final_target, bool *have_postponed_srfs)
Definition: planner.c:5848
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
struct PathTarget * upper_targets[UPPERREL_FINAL+1]
Definition: pathnodes.h:314

◆ inheritance_planner()

static void inheritance_planner ( PlannerInfo root)
static

Definition at line 1209 of file planner.c.

References add_path(), adjust_appendrel_attrs(), PlannerInfo::append_rel_array, PlannerInfo::append_rel_list, Assert, assign_special_exec_param(), bms_add_member(), bms_is_member(), bms_make_singleton(), bms_next_member(), Query::canSetTag, ChangeVarNodes(), RelOptInfo::cheapest_total_path, AppendRelInfo::child_relid, CMD_DELETE, CMD_SELECT, CMD_UPDATE, Query::commandType, copyObject, create_append_path(), create_modifytable_path(), create_pathtarget, fetch_upper_rel(), forboth, grouping_planner(), RangeTblEntry::inh, INHKIND_INHERITED, INHKIND_PARTITIONED, PlannerInfo::inhTargetKind, PlannerInfo::init_plans, IS_DUMMY_REL, PlannerInfo::join_info_list, lappend(), lappend_int(), lfirst, lfirst_int, lfirst_node, list_length(), list_make1, list_make1_int, list_nth_cell(), makeNode, NIL, Query::onConflict, palloc0(), AppendRelInfo::parent_relid, parse(), PlannerInfo::parse, PlannerInfo::partColsUpdated, PlannerInfo::placeholder_list, preprocess_targetlist(), PlannerInfo::processed_tlist, RangeTblEntry::relkind, RelOptInfo::reltarget, Query::resultRelation, Query::returningList, Query::rowMarks, PlannerInfo::rowMarks, rt_fetch, Query::rtable, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblEntry::securityQuals, set_cheapest(), PlannerInfo::simple_rel_array, PlannerInfo::simple_rel_array_size, PlannerInfo::simple_rte_array, subpath(), UPPERREL_FINAL, and Query::withCheckOptions.

Referenced by subquery_planner().

1210 {
1211  Query *parse = root->parse;
1212  int top_parentRTindex = parse->resultRelation;
1213  List *select_rtable;
1214  List *select_appinfos;
1215  List *child_appinfos;
1216  List *old_child_rtis;
1217  List *new_child_rtis;
1218  Bitmapset *subqueryRTindexes;
1219  Index next_subquery_rti;
1220  int nominalRelation = -1;
1221  Index rootRelation = 0;
1222  List *final_rtable = NIL;
1223  List *final_rowmarks = NIL;
1224  List *final_appendrels = NIL;
1225  int save_rel_array_size = 0;
1226  RelOptInfo **save_rel_array = NULL;
1227  AppendRelInfo **save_append_rel_array = NULL;
1228  List *subpaths = NIL;
1229  List *subroots = NIL;
1230  List *resultRelations = NIL;
1231  List *withCheckOptionLists = NIL;
1232  List *returningLists = NIL;
1233  List *rowMarks;
1234  RelOptInfo *final_rel;
1235  ListCell *lc;
1236  ListCell *lc2;
1237  Index rti;
1238  RangeTblEntry *parent_rte;
1239  Bitmapset *parent_relids;
1240  Query **parent_parses;
1241 
1242  /* Should only get here for UPDATE or DELETE */
1243  Assert(parse->commandType == CMD_UPDATE ||
1244  parse->commandType == CMD_DELETE);
1245 
1246  /*
1247  * We generate a modified instance of the original Query for each target
1248  * relation, plan that, and put all the plans into a list that will be
1249  * controlled by a single ModifyTable node. All the instances share the
1250  * same rangetable, but each instance must have its own set of subquery
1251  * RTEs within the finished rangetable because (1) they are likely to get
1252  * scribbled on during planning, and (2) it's not inconceivable that
1253  * subqueries could get planned differently in different cases. We need
1254  * not create duplicate copies of other RTE kinds, in particular not the
1255  * target relations, because they don't have either of those issues. Not
1256  * having to duplicate the target relations is important because doing so
1257  * (1) would result in a rangetable of length O(N^2) for N targets, with
1258  * at least O(N^3) work expended here; and (2) would greatly complicate
1259  * management of the rowMarks list.
1260  *
1261  * To begin with, generate a bitmapset of the relids of the subquery RTEs.
1262  */
1263  subqueryRTindexes = NULL;
1264  rti = 1;
1265  foreach(lc, parse->rtable)
1266  {
1268 
1269  if (rte->rtekind == RTE_SUBQUERY)
1270  subqueryRTindexes = bms_add_member(subqueryRTindexes, rti);
1271  rti++;
1272  }
1273 
1274  /*
1275  * If the parent RTE is a partitioned table, we should use that as the
1276  * nominal target relation, because the RTEs added for partitioned tables
1277  * (including the root parent) as child members of the inheritance set do
1278  * not appear anywhere else in the plan, so the confusion explained below
1279  * for non-partitioning inheritance cases is not possible.
1280  */
1281  parent_rte = rt_fetch(top_parentRTindex, parse->rtable);
1282  Assert(parent_rte->inh);
1283  if (parent_rte->relkind == RELKIND_PARTITIONED_TABLE)
1284  {
1285  nominalRelation = top_parentRTindex;
1286  rootRelation = top_parentRTindex;
1287  }
1288 
1289  /*
1290  * Before generating the real per-child-relation plans, do a cycle of
1291  * planning as though the query were a SELECT. The objective here is to
1292  * find out which child relations need to be processed, using the same
1293  * expansion and pruning logic as for a SELECT. We'll then pull out the
1294  * RangeTblEntry-s generated for the child rels, and make use of the
1295  * AppendRelInfo entries for them to guide the real planning. (This is
1296  * rather inefficient; we could perhaps stop short of making a full Path
1297  * tree. But this whole function is inefficient and slated for
1298  * destruction, so let's not contort query_planner for that.)
1299  */
1300  {
1301  PlannerInfo *subroot;
1302 
1303  /*
1304  * Flat-copy the PlannerInfo to prevent modification of the original.
1305  */
1306  subroot = makeNode(PlannerInfo);
1307  memcpy(subroot, root, sizeof(PlannerInfo));
1308 
1309  /*
1310  * Make a deep copy of the parsetree for this planning cycle to mess
1311  * around with, and change it to look like a SELECT. (Hack alert: the
1312  * target RTE still has updatedCols set if this is an UPDATE, so that
1313  * expand_partitioned_rtentry will correctly update
1314  * subroot->partColsUpdated.)
1315  */
1316  subroot->parse = copyObject(root->parse);
1317 
1318  subroot->parse->commandType = CMD_SELECT;
1319  subroot->parse->resultRelation = 0;
1320 
1321  /*
1322  * Ensure the subroot has its own copy of the original
1323  * append_rel_list, since it'll be scribbled on. (Note that at this
1324  * point, the list only contains AppendRelInfos for flattened UNION
1325  * ALL subqueries.)
1326  */
1327  subroot->append_rel_list = copyObject(root->append_rel_list);
1328 
1329  /*
1330  * Better make a private copy of the rowMarks, too.
1331  */
1332  subroot->rowMarks = copyObject(root->rowMarks);
1333 
1334  /* There shouldn't be any OJ info to translate, as yet */
1335  Assert(subroot->join_info_list == NIL);
1336  /* and we haven't created PlaceHolderInfos, either */
1337  Assert(subroot->placeholder_list == NIL);
1338 
1339  /* Generate Path(s) for accessing this result relation */
1340  grouping_planner(subroot, true, 0.0 /* retrieve all tuples */ );
1341 
1342  /* Extract the info we need. */
1343  select_rtable = subroot->parse->rtable;
1344  select_appinfos = subroot->append_rel_list;
1345 
1346  /*
1347  * We need to propagate partColsUpdated back, too. (The later
1348  * planning cycles will not set this because they won't run
1349  * expand_partitioned_rtentry for the UPDATE target.)
1350  */
1351  root->partColsUpdated = subroot->partColsUpdated;
1352  }
1353 
1354  /*----------
1355  * Since only one rangetable can exist in the final plan, we need to make
1356