PostgreSQL Source Code  git master
planner.c File Reference
#include "postgres.h"
#include <limits.h>
#include <math.h>
#include "access/genam.h"
#include "access/htup_details.h"
#include "access/parallel.h"
#include "access/sysattr.h"
#include "access/table.h"
#include "access/xact.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "foreign/fdwapi.h"
#include "jit/jit.h"
#include "lib/bipartite_match.h"
#include "lib/knapsack.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/appendinfo.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/inherit.h"
#include "optimizer/optimizer.h"
#include "optimizer/paramassign.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/analyze.h"
#include "parser/parse_agg.h"
#include "parser/parsetree.h"
#include "partitioning/partdesc.h"
#include "rewrite/rewriteManip.h"
#include "storage/dsm_impl.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
Include dependency graph for planner.c:

Go to the source code of this file.

Data Structures

struct  standard_qp_extra
 
struct  grouping_sets_data
 
struct  WindowClauseSortData
 

Macros

#define EXPRKIND_QUAL   0
 
#define EXPRKIND_TARGET   1
 
#define EXPRKIND_RTFUNC   2
 
#define EXPRKIND_RTFUNC_LATERAL   3
 
#define EXPRKIND_VALUES   4
 
#define EXPRKIND_VALUES_LATERAL   5
 
#define EXPRKIND_LIMIT   6
 
#define EXPRKIND_APPINFO   7
 
#define EXPRKIND_PHV   8
 
#define EXPRKIND_TABLESAMPLE   9
 
#define EXPRKIND_ARBITER_ELEM   10
 
#define EXPRKIND_TABLEFUNC   11
 
#define EXPRKIND_TABLEFUNC_LATERAL   12
 

Functions

static Nodepreprocess_expression (PlannerInfo *root, Node *expr, int kind)
 
static void preprocess_qual_conditions (PlannerInfo *root, Node *jtnode)
 
static void inheritance_planner (PlannerInfo *root)
 
static void grouping_planner (PlannerInfo *root, bool inheritance_update, double tuple_fraction)
 
static grouping_sets_datapreprocess_grouping_sets (PlannerInfo *root)
 
static Listremap_to_groupclause_idx (List *groupClause, List *gsets, int *tleref_to_colnum_map)
 
static void preprocess_rowmarks (PlannerInfo *root)
 
static double preprocess_limit (PlannerInfo *root, double tuple_fraction, int64 *offset_est, int64 *count_est)
 
static void remove_useless_groupby_columns (PlannerInfo *root)
 
static Listpreprocess_groupclause (PlannerInfo *root, List *force)
 
static Listextract_rollup_sets (List *groupingSets)
 
static Listreorder_grouping_sets (List *groupingSets, List *sortclause)
 
static void standard_qp_callback (PlannerInfo *root, void *extra)
 
static double get_number_of_groups (PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
 
static RelOptInfocreate_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, const AggClauseCosts *agg_costs, grouping_sets_data *gd)
 
static bool is_degenerate_grouping (PlannerInfo *root)
 
static void create_degenerate_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel)
 
static RelOptInfomake_grouping_rel (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
 
static void create_ordinary_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
 
static void consider_groupingsets_paths (PlannerInfo *root, RelOptInfo *grouped_rel, Path *path, bool is_sorted, bool can_hash, grouping_sets_data *gd, const AggClauseCosts *agg_costs, double dNumGroups)
 
static RelOptInfocreate_window_paths (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *input_target, PathTarget *output_target, bool output_target_parallel_safe, WindowFuncLists *wflists, List *activeWindows)
 
static void create_one_window_path (PlannerInfo *root, RelOptInfo *window_rel, Path *path, PathTarget *input_target, PathTarget *output_target, WindowFuncLists *wflists, List *activeWindows)
 
static RelOptInfocreate_distinct_paths (PlannerInfo *root, RelOptInfo *input_rel)
 
static RelOptInfocreate_ordered_paths (PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, double limit_tuples)
 
static PathTargetmake_group_input_target (PlannerInfo *root, PathTarget *final_target)
 
static PathTargetmake_partial_grouping_target (PlannerInfo *root, PathTarget *grouping_target, Node *havingQual)
 
static Listpostprocess_setop_tlist (List *new_tlist, List *orig_tlist)
 
static Listselect_active_windows (PlannerInfo *root, WindowFuncLists *wflists)
 
static PathTargetmake_window_input_target (PlannerInfo *root, PathTarget *final_target, List *activeWindows)
 
static Listmake_pathkeys_for_window (PlannerInfo *root, WindowClause *wc, List *tlist)
 
static PathTargetmake_sort_input_target (PlannerInfo *root, PathTarget *final_target, bool *have_postponed_srfs)
 
static void adjust_paths_for_srfs (PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
 
static void add_paths_to_grouping_rel (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, double dNumGroups, GroupPathExtraData *extra)
 
static RelOptInfocreate_partial_grouping_paths (PlannerInfo *root, RelOptInfo *grouped_rel, RelOptInfo *input_rel, grouping_sets_data *gd, GroupPathExtraData *extra, bool force_rel_creation)
 
static void gather_grouping_paths (PlannerInfo *root, RelOptInfo *rel)
 
static bool can_partial_agg (PlannerInfo *root, const AggClauseCosts *agg_costs)
 
static void apply_scanjoin_target_to_paths (PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
 
static void create_partitionwise_grouping_paths (PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, PartitionwiseAggregateType patype, GroupPathExtraData *extra)
 
static bool group_by_has_partkey (RelOptInfo *input_rel, List *targetList, List *groupClause)
 
static int common_prefix_cmp (const void *a, const void *b)
 
PlannedStmtplanner (Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
 
PlannedStmtstandard_planner (Query *parse, const char *query_string, int cursorOptions, ParamListInfo boundParams)
 
PlannerInfosubquery_planner (PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction)
 
Exprpreprocess_phv_expression (PlannerInfo *root, Expr *expr)
 
RowMarkType select_rowmark_type (RangeTblEntry *rte, LockClauseStrength strength)
 
bool limit_needed (Query *parse)
 
void mark_partial_aggref (Aggref *agg, AggSplit aggsplit)
 
Pathget_cheapest_fractional_path (RelOptInfo *rel, double tuple_fraction)
 
Exprexpression_planner (Expr *expr)
 
Exprexpression_planner_with_deps (Expr *expr, List **relationOids, List **invalItems)
 
bool plan_cluster_use_sort (Oid tableOid, Oid indexOid)
 
int plan_create_index_workers (Oid tableOid, Oid indexOid)
 

Variables

double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION
 
int force_parallel_mode = FORCE_PARALLEL_OFF
 
bool parallel_leader_participation = true
 
planner_hook_type planner_hook = NULL
 
create_upper_paths_hook_type create_upper_paths_hook = NULL
 

Macro Definition Documentation

◆ EXPRKIND_APPINFO

#define EXPRKIND_APPINFO   7

Definition at line 88 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_ARBITER_ELEM

#define EXPRKIND_ARBITER_ELEM   10

Definition at line 91 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_LIMIT

#define EXPRKIND_LIMIT   6

Definition at line 87 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_PHV

#define EXPRKIND_PHV   8

Definition at line 89 of file planner.c.

Referenced by preprocess_phv_expression().

◆ EXPRKIND_QUAL

#define EXPRKIND_QUAL   0

Definition at line 81 of file planner.c.

Referenced by preprocess_expression(), preprocess_qual_conditions(), and subquery_planner().

◆ EXPRKIND_RTFUNC

#define EXPRKIND_RTFUNC   2

Definition at line 83 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_RTFUNC_LATERAL

#define EXPRKIND_RTFUNC_LATERAL   3

Definition at line 84 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_TABLEFUNC

#define EXPRKIND_TABLEFUNC   11

Definition at line 92 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_TABLEFUNC_LATERAL

#define EXPRKIND_TABLEFUNC_LATERAL   12

Definition at line 93 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_TABLESAMPLE

#define EXPRKIND_TABLESAMPLE   9

Definition at line 90 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_TARGET

#define EXPRKIND_TARGET   1

Definition at line 82 of file planner.c.

Referenced by subquery_planner().

◆ EXPRKIND_VALUES

#define EXPRKIND_VALUES   4

Definition at line 85 of file planner.c.

Referenced by preprocess_expression(), and subquery_planner().

◆ EXPRKIND_VALUES_LATERAL

#define EXPRKIND_VALUES_LATERAL   5

Definition at line 86 of file planner.c.

Referenced by subquery_planner().

Function Documentation

◆ add_paths_to_grouping_rel()

static void add_paths_to_grouping_rel ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel,
RelOptInfo partially_grouped_rel,
const AggClauseCosts agg_costs,
grouping_sets_data gd,
double  dNumGroups,
GroupPathExtraData extra 
)
static

Definition at line 6486 of file planner.c.

References add_path(), GroupPathExtraData::agg_final_costs, AGG_HASHED, AGG_PLAIN, AGG_SORTED, AGGSPLIT_FINAL_DESERIAL, AGGSPLIT_SIMPLE, Assert, RelOptInfo::cheapest_total_path, consider_groupingsets_paths(), create_agg_path(), create_group_path(), create_incremental_sort_path(), create_sort_path(), enable_hashagg_disk, enable_incrementalsort, estimate_hashagg_tablesize(), GroupPathExtraData::flags, gather_grouping_paths(), PlannerInfo::group_pathkeys, Query::groupClause, GROUPING_CAN_USE_HASH, GROUPING_CAN_USE_SORT, Query::groupingSets, Query::hasAggs, GroupPathExtraData::havingQual, lfirst, list_length(), NIL, parse(), PlannerInfo::parse, RelOptInfo::partial_pathlist, Path::pathkeys, pathkeys_count_contained_in(), RelOptInfo::pathlist, RelOptInfo::reltarget, and work_mem.

Referenced by create_ordinary_grouping_paths().

6492 {
6493  Query *parse = root->parse;
6494  Path *cheapest_path = input_rel->cheapest_total_path;
6495  ListCell *lc;
6496  bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
6497  bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
6498  List *havingQual = (List *) extra->havingQual;
6499  AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
6500 
6501  if (can_sort)
6502  {
6503  /*
6504  * Use any available suitably-sorted path as input, and also consider
6505  * sorting the cheapest-total path.
6506  */
6507  foreach(lc, input_rel->pathlist)
6508  {
6509  Path *path = (Path *) lfirst(lc);
6510  Path *path_original = path;
6511  bool is_sorted;
6512  int presorted_keys;
6513 
6514  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
6515  path->pathkeys,
6516  &presorted_keys);
6517 
6518  if (path == cheapest_path || is_sorted)
6519  {
6520  /* Sort the cheapest-total path if it isn't already sorted */
6521  if (!is_sorted)
6522  path = (Path *) create_sort_path(root,
6523  grouped_rel,
6524  path,
6525  root->group_pathkeys,
6526  -1.0);
6527 
6528  /* Now decide what to stick atop it */
6529  if (parse->groupingSets)
6530  {
6531  consider_groupingsets_paths(root, grouped_rel,
6532  path, true, can_hash,
6533  gd, agg_costs, dNumGroups);
6534  }
6535  else if (parse->hasAggs)
6536  {
6537  /*
6538  * We have aggregation, possibly with plain GROUP BY. Make
6539  * an AggPath.
6540  */
6541  add_path(grouped_rel, (Path *)
6542  create_agg_path(root,
6543  grouped_rel,
6544  path,
6545  grouped_rel->reltarget,
6546  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6548  parse->groupClause,
6549  havingQual,
6550  agg_costs,
6551  dNumGroups));
6552  }
6553  else if (parse->groupClause)
6554  {
6555  /*
6556  * We have GROUP BY without aggregation or grouping sets.
6557  * Make a GroupPath.
6558  */
6559  add_path(grouped_rel, (Path *)
6560  create_group_path(root,
6561  grouped_rel,
6562  path,
6563  parse->groupClause,
6564  havingQual,
6565  dNumGroups));
6566  }
6567  else
6568  {
6569  /* Other cases should have been handled above */
6570  Assert(false);
6571  }
6572  }
6573 
6574  /*
6575  * Now we may consider incremental sort on this path, but only
6576  * when the path is not already sorted and when incremental sort
6577  * is enabled.
6578  */
6579  if (is_sorted || !enable_incrementalsort)
6580  continue;
6581 
6582  /* Restore the input path (we might have added Sort on top). */
6583  path = path_original;
6584 
6585  /* no shared prefix, no point in building incremental sort */
6586  if (presorted_keys == 0)
6587  continue;
6588 
6589  /*
6590  * We should have already excluded pathkeys of length 1 because
6591  * then presorted_keys > 0 would imply is_sorted was true.
6592  */
6593  Assert(list_length(root->group_pathkeys) != 1);
6594 
6595  path = (Path *) create_incremental_sort_path(root,
6596  grouped_rel,
6597  path,
6598  root->group_pathkeys,
6599  presorted_keys,
6600  -1.0);
6601 
6602  /* Now decide what to stick atop it */
6603  if (parse->groupingSets)
6604  {
6605  consider_groupingsets_paths(root, grouped_rel,
6606  path, true, can_hash,
6607  gd, agg_costs, dNumGroups);
6608  }
6609  else if (parse->hasAggs)
6610  {
6611  /*
6612  * We have aggregation, possibly with plain GROUP BY. Make
6613  * an AggPath.
6614  */
6615  add_path(grouped_rel, (Path *)
6616  create_agg_path(root,
6617  grouped_rel,
6618  path,
6619  grouped_rel->reltarget,
6620  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6622  parse->groupClause,
6623  havingQual,
6624  agg_costs,
6625  dNumGroups));
6626  }
6627  else if (parse->groupClause)
6628  {
6629  /*
6630  * We have GROUP BY without aggregation or grouping sets.
6631  * Make a GroupPath.
6632  */
6633  add_path(grouped_rel, (Path *)
6634  create_group_path(root,
6635  grouped_rel,
6636  path,
6637  parse->groupClause,
6638  havingQual,
6639  dNumGroups));
6640  }
6641  else
6642  {
6643  /* Other cases should have been handled above */
6644  Assert(false);
6645  }
6646  }
6647 
6648  /*
6649  * Instead of operating directly on the input relation, we can
6650  * consider finalizing a partially aggregated path.
6651  */
6652  if (partially_grouped_rel != NULL)
6653  {
6654  foreach(lc, partially_grouped_rel->pathlist)
6655  {
6656  Path *path = (Path *) lfirst(lc);
6657  Path *path_original = path;
6658  bool is_sorted;
6659  int presorted_keys;
6660 
6661  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
6662  path->pathkeys,
6663  &presorted_keys);
6664 
6665  /*
6666  * Insert a Sort node, if required. But there's no point in
6667  * sorting anything but the cheapest path.
6668  */
6669  if (!is_sorted)
6670  {
6671  if (path != partially_grouped_rel->cheapest_total_path)
6672  continue;
6673  path = (Path *) create_sort_path(root,
6674  grouped_rel,
6675  path,
6676  root->group_pathkeys,
6677  -1.0);
6678  }
6679 
6680  if (parse->hasAggs)
6681  add_path(grouped_rel, (Path *)
6682  create_agg_path(root,
6683  grouped_rel,
6684  path,
6685  grouped_rel->reltarget,
6686  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6688  parse->groupClause,
6689  havingQual,
6690  agg_final_costs,
6691  dNumGroups));
6692  else
6693  add_path(grouped_rel, (Path *)
6694  create_group_path(root,
6695  grouped_rel,
6696  path,
6697  parse->groupClause,
6698  havingQual,
6699  dNumGroups));
6700 
6701  /*
6702  * Now we may consider incremental sort on this path, but only
6703  * when the path is not already sorted and when incremental
6704  * sort is enabled.
6705  */
6706  if (is_sorted || !enable_incrementalsort)
6707  continue;
6708 
6709  /* Restore the input path (we might have added Sort on top). */
6710  path = path_original;
6711 
6712  /* no shared prefix, not point in building incremental sort */
6713  if (presorted_keys == 0)
6714  continue;
6715 
6716  /*
6717  * We should have already excluded pathkeys of length 1 because
6718  * then presorted_keys > 0 would imply is_sorted was true.
6719  */
6720  Assert(list_length(root->group_pathkeys) != 1);
6721 
6722  path = (Path *) create_incremental_sort_path(root,
6723  grouped_rel,
6724  path,
6725  root->group_pathkeys,
6726  presorted_keys,
6727  -1.0);
6728 
6729  if (parse->hasAggs)
6730  add_path(grouped_rel, (Path *)
6731  create_agg_path(root,
6732  grouped_rel,
6733  path,
6734  grouped_rel->reltarget,
6735  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
6737  parse->groupClause,
6738  havingQual,
6739  agg_final_costs,
6740  dNumGroups));
6741  else
6742  add_path(grouped_rel, (Path *)
6743  create_group_path(root,
6744  grouped_rel,
6745  path,
6746  parse->groupClause,
6747  havingQual,
6748  dNumGroups));
6749  }
6750  }
6751  }
6752 
6753  if (can_hash)
6754  {
6755  double hashaggtablesize;
6756 
6757  if (parse->groupingSets)
6758  {
6759  /*
6760  * Try for a hash-only groupingsets path over unsorted input.
6761  */
6762  consider_groupingsets_paths(root, grouped_rel,
6763  cheapest_path, false, true,
6764  gd, agg_costs, dNumGroups);
6765  }
6766  else
6767  {
6768  hashaggtablesize = estimate_hashagg_tablesize(cheapest_path,
6769  agg_costs,
6770  dNumGroups);
6771 
6772  /*
6773  * Provided that the estimated size of the hashtable does not
6774  * exceed work_mem, we'll generate a HashAgg Path, although if we
6775  * were unable to sort above, then we'd better generate a Path, so
6776  * that we at least have one.
6777  */
6778  if (enable_hashagg_disk ||
6779  hashaggtablesize < work_mem * 1024L ||
6780  grouped_rel->pathlist == NIL)
6781  {
6782  /*
6783  * We just need an Agg over the cheapest-total input path,
6784  * since input order won't matter.
6785  */
6786  add_path(grouped_rel, (Path *)
6787  create_agg_path(root, grouped_rel,
6788  cheapest_path,
6789  grouped_rel->reltarget,
6790  AGG_HASHED,
6792  parse->groupClause,
6793  havingQual,
6794  agg_costs,
6795  dNumGroups));
6796  }
6797  }
6798 
6799  /*
6800  * Generate a Finalize HashAgg Path atop of the cheapest partially
6801  * grouped path, assuming there is one. Once again, we'll only do this
6802  * if it looks as though the hash table won't exceed work_mem.
6803  */
6804  if (partially_grouped_rel && partially_grouped_rel->pathlist)
6805  {
6806  Path *path = partially_grouped_rel->cheapest_total_path;
6807 
6808  hashaggtablesize = estimate_hashagg_tablesize(path,
6809  agg_final_costs,
6810  dNumGroups);
6811 
6812  if (enable_hashagg_disk ||
6813  hashaggtablesize < work_mem * 1024L)
6814  add_path(grouped_rel, (Path *)
6815  create_agg_path(root,
6816  grouped_rel,
6817  path,
6818  grouped_rel->reltarget,
6819  AGG_HASHED,
6821  parse->groupClause,
6822  havingQual,
6823  agg_final_costs,
6824  dNumGroups));
6825  }
6826  }
6827 
6828  /*
6829  * When partitionwise aggregate is used, we might have fully aggregated
6830  * paths in the partial pathlist, because add_paths_to_append_rel() will
6831  * consider a path for grouped_rel consisting of a Parallel Append of
6832  * non-partial paths from each child.
6833  */
6834  if (grouped_rel->partial_pathlist != NIL)
6835  gather_grouping_paths(root, grouped_rel);
6836 }
List * group_pathkeys
Definition: pathnodes.h:300
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
static void consider_groupingsets_paths(PlannerInfo *root, RelOptInfo *grouped_rel, Path *path, bool is_sorted, bool can_hash, grouping_sets_data *gd, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: planner.c:4191
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2769
static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
Definition: planner.c:7269
bool hasAggs
Definition: parsenodes.h:125
List * groupingSets
Definition: parsenodes.h:150
bool enable_hashagg_disk
Definition: costsize.c:133
List * partial_pathlist
Definition: pathnodes.h:681
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:2447
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:2973
struct Path * cheapest_total_path
Definition: pathnodes.h:683
double estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: selfuncs.c:3687
int work_mem
Definition: globals.c:121
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2818
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:2448
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
static int list_length(const List *l)
Definition: pg_list.h:169
bool enable_incrementalsort
Definition: costsize.c:131
List * groupClause
Definition: parsenodes.h:148
List * pathlist
Definition: pathnodes.h:679
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:2862
AggClauseCosts agg_final_costs
Definition: pathnodes.h:2488
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ adjust_paths_for_srfs()

static void adjust_paths_for_srfs ( PlannerInfo root,
RelOptInfo rel,
List targets,
List targets_contain_srfs 
)
static

Definition at line 6044 of file planner.c.

References apply_projection_to_path(), Assert, RelOptInfo::cheapest_startup_path, RelOptInfo::cheapest_total_path, create_projection_path(), create_set_projection_path(), forboth, lfirst, lfirst_int, lfirst_node, linitial_int, list_length(), Path::param_info, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, and subpath().

Referenced by apply_scanjoin_target_to_paths(), and grouping_planner().

6046 {
6047  ListCell *lc;
6048 
6049  Assert(list_length(targets) == list_length(targets_contain_srfs));
6050  Assert(!linitial_int(targets_contain_srfs));
6051 
6052  /* If no SRFs appear at this plan level, nothing to do */
6053  if (list_length(targets) == 1)
6054  return;
6055 
6056  /*
6057  * Stack SRF-evaluation nodes atop each path for the rel.
6058  *
6059  * In principle we should re-run set_cheapest() here to identify the
6060  * cheapest path, but it seems unlikely that adding the same tlist eval
6061  * costs to all the paths would change that, so we don't bother. Instead,
6062  * just assume that the cheapest-startup and cheapest-total paths remain
6063  * so. (There should be no parameterized paths anymore, so we needn't
6064  * worry about updating cheapest_parameterized_paths.)
6065  */
6066  foreach(lc, rel->pathlist)
6067  {
6068  Path *subpath = (Path *) lfirst(lc);
6069  Path *newpath = subpath;
6070  ListCell *lc1,
6071  *lc2;
6072 
6073  Assert(subpath->param_info == NULL);
6074  forboth(lc1, targets, lc2, targets_contain_srfs)
6075  {
6076  PathTarget *thistarget = lfirst_node(PathTarget, lc1);
6077  bool contains_srfs = (bool) lfirst_int(lc2);
6078 
6079  /* If this level doesn't contain SRFs, do regular projection */
6080  if (contains_srfs)
6081  newpath = (Path *) create_set_projection_path(root,
6082  rel,
6083  newpath,
6084  thistarget);
6085  else
6086  newpath = (Path *) apply_projection_to_path(root,
6087  rel,
6088  newpath,
6089  thistarget);
6090  }
6091  lfirst(lc) = newpath;
6092  if (subpath == rel->cheapest_startup_path)
6093  rel->cheapest_startup_path = newpath;
6094  if (subpath == rel->cheapest_total_path)
6095  rel->cheapest_total_path = newpath;
6096  }
6097 
6098  /* Likewise for partial paths, if any */
6099  foreach(lc, rel->partial_pathlist)
6100  {
6101  Path *subpath = (Path *) lfirst(lc);
6102  Path *newpath = subpath;
6103  ListCell *lc1,
6104  *lc2;
6105 
6106  Assert(subpath->param_info == NULL);
6107  forboth(lc1, targets, lc2, targets_contain_srfs)
6108  {
6109  PathTarget *thistarget = lfirst_node(PathTarget, lc1);
6110  bool contains_srfs = (bool) lfirst_int(lc2);
6111 
6112  /* If this level doesn't contain SRFs, do regular projection */
6113  if (contains_srfs)
6114  newpath = (Path *) create_set_projection_path(root,
6115  rel,
6116  newpath,
6117  thistarget);
6118  else
6119  {
6120  /* avoid apply_projection_to_path, in case of multiple refs */
6121  newpath = (Path *) create_projection_path(root,
6122  rel,
6123  newpath,
6124  thistarget);
6125  }
6126  }
6127  lfirst(lc) = newpath;
6128  }
6129 }
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2611
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
struct Path * cheapest_startup_path
Definition: pathnodes.h:682
ParamPathInfo * param_info
Definition: pathnodes.h:1147
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2520
List * partial_pathlist
Definition: pathnodes.h:681
#define linitial_int(l)
Definition: pg_list.h:196
#define lfirst_int(lc)
Definition: pg_list.h:191
#define lfirst_node(type, lc)
Definition: pg_list.h:193
struct Path * cheapest_total_path
Definition: pathnodes.h:683
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2700
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
static int list_length(const List *l)
Definition: pg_list.h:169
List * pathlist
Definition: pathnodes.h:679
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:241
unsigned char bool
Definition: c.h:317

◆ apply_scanjoin_target_to_paths()

static void apply_scanjoin_target_to_paths ( PlannerInfo root,
RelOptInfo rel,
List scanjoin_targets,
List scanjoin_targets_contain_srfs,
bool  scanjoin_target_parallel_safe,
bool  tlist_same_exprs 
)
static

Definition at line 7399 of file planner.c.

References add_paths_to_append_rel(), adjust_appendrel_attrs(), adjust_paths_for_srfs(), Assert, check_stack_depth(), RelOptInfo::consider_parallel, copy_pathtarget(), create_projection_path(), PathTarget::exprs, find_appinfos_by_relids(), generate_useful_gather_paths(), Query::hasTargetSRFs, IS_DUMMY_REL, IS_OTHER_REL, IS_PARTITIONED_REL, lappend(), lfirst, lfirst_node, linitial_node, llast_node, NIL, RelOptInfo::nparts, Path::param_info, PlannerInfo::parse, RelOptInfo::part_rels, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, Path::pathtarget, pfree(), RelOptInfo::relids, RelOptInfo::reltarget, set_cheapest(), PathTarget::sortgrouprefs, and subpath().

Referenced by grouping_planner().

7405 {
7406  bool rel_is_partitioned = IS_PARTITIONED_REL(rel);
7407  PathTarget *scanjoin_target;
7408  ListCell *lc;
7409 
7410  /* This recurses, so be paranoid. */
7412 
7413  /*
7414  * If the rel is partitioned, we want to drop its existing paths and
7415  * generate new ones. This function would still be correct if we kept the
7416  * existing paths: we'd modify them to generate the correct target above
7417  * the partitioning Append, and then they'd compete on cost with paths
7418  * generating the target below the Append. However, in our current cost
7419  * model the latter way is always the same or cheaper cost, so modifying
7420  * the existing paths would just be useless work. Moreover, when the cost
7421  * is the same, varying roundoff errors might sometimes allow an existing
7422  * path to be picked, resulting in undesirable cross-platform plan
7423  * variations. So we drop old paths and thereby force the work to be done
7424  * below the Append, except in the case of a non-parallel-safe target.
7425  *
7426  * Some care is needed, because we have to allow generate_gather_paths to
7427  * see the old partial paths in the next stanza. Hence, zap the main
7428  * pathlist here, then allow generate_gather_paths to add path(s) to the
7429  * main list, and finally zap the partial pathlist.
7430  */
7431  if (rel_is_partitioned)
7432  rel->pathlist = NIL;
7433 
7434  /*
7435  * If the scan/join target is not parallel-safe, partial paths cannot
7436  * generate it.
7437  */
7438  if (!scanjoin_target_parallel_safe)
7439  {
7440  /*
7441  * Since we can't generate the final scan/join target in parallel
7442  * workers, this is our last opportunity to use any partial paths that
7443  * exist; so build Gather path(s) that use them and emit whatever the
7444  * current reltarget is. We don't do this in the case where the
7445  * target is parallel-safe, since we will be able to generate superior
7446  * paths by doing it after the final scan/join target has been
7447  * applied.
7448  */
7449  generate_useful_gather_paths(root, rel, false);
7450 
7451  /* Can't use parallel query above this level. */
7452  rel->partial_pathlist = NIL;
7453  rel->consider_parallel = false;
7454  }
7455 
7456  /* Finish dropping old paths for a partitioned rel, per comment above */
7457  if (rel_is_partitioned)
7458  rel->partial_pathlist = NIL;
7459 
7460  /* Extract SRF-free scan/join target. */
7461  scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
7462 
7463  /*
7464  * Apply the SRF-free scan/join target to each existing path.
7465  *
7466  * If the tlist exprs are the same, we can just inject the sortgroupref
7467  * information into the existing pathtargets. Otherwise, replace each
7468  * path with a projection path that generates the SRF-free scan/join
7469  * target. This can't change the ordering of paths within rel->pathlist,
7470  * so we just modify the list in place.
7471  */
7472  foreach(lc, rel->pathlist)
7473  {
7474  Path *subpath = (Path *) lfirst(lc);
7475 
7476  /* Shouldn't have any parameterized paths anymore */
7477  Assert(subpath->param_info == NULL);
7478 
7479  if (tlist_same_exprs)
7480  subpath->pathtarget->sortgrouprefs =
7481  scanjoin_target->sortgrouprefs;
7482  else
7483  {
7484  Path *newpath;
7485 
7486  newpath = (Path *) create_projection_path(root, rel, subpath,
7487  scanjoin_target);
7488  lfirst(lc) = newpath;
7489  }
7490  }
7491 
7492  /* Likewise adjust the targets for any partial paths. */
7493  foreach(lc, rel->partial_pathlist)
7494  {
7495  Path *subpath = (Path *) lfirst(lc);
7496 
7497  /* Shouldn't have any parameterized paths anymore */
7498  Assert(subpath->param_info == NULL);
7499 
7500  if (tlist_same_exprs)
7501  subpath->pathtarget->sortgrouprefs =
7502  scanjoin_target->sortgrouprefs;
7503  else
7504  {
7505  Path *newpath;
7506 
7507  newpath = (Path *) create_projection_path(root, rel, subpath,
7508  scanjoin_target);
7509  lfirst(lc) = newpath;
7510  }
7511  }
7512 
7513  /*
7514  * Now, if final scan/join target contains SRFs, insert ProjectSetPath(s)
7515  * atop each existing path. (Note that this function doesn't look at the
7516  * cheapest-path fields, which is a good thing because they're bogus right
7517  * now.)
7518  */
7519  if (root->parse->hasTargetSRFs)
7520  adjust_paths_for_srfs(root, rel,
7521  scanjoin_targets,
7522  scanjoin_targets_contain_srfs);
7523 
7524  /*
7525  * Update the rel's target to be the final (with SRFs) scan/join target.
7526  * This now matches the actual output of all the paths, and we might get
7527  * confused in createplan.c if they don't agree. We must do this now so
7528  * that any append paths made in the next part will use the correct
7529  * pathtarget (cf. create_append_path).
7530  *
7531  * Note that this is also necessary if GetForeignUpperPaths() gets called
7532  * on the final scan/join relation or on any of its children, since the
7533  * FDW might look at the rel's target to create ForeignPaths.
7534  */
7535  rel->reltarget = llast_node(PathTarget, scanjoin_targets);
7536 
7537  /*
7538  * If the relation is partitioned, recursively apply the scan/join target
7539  * to all partitions, and generate brand-new Append paths in which the
7540  * scan/join target is computed below the Append rather than above it.
7541  * Since Append is not projection-capable, that might save a separate
7542  * Result node, and it also is important for partitionwise aggregate.
7543  */
7544  if (rel_is_partitioned)
7545  {
7546  List *live_children = NIL;
7547  int partition_idx;
7548 
7549  /* Adjust each partition. */
7550  for (partition_idx = 0; partition_idx < rel->nparts; partition_idx++)
7551  {
7552  RelOptInfo *child_rel = rel->part_rels[partition_idx];
7553  AppendRelInfo **appinfos;
7554  int nappinfos;
7555  List *child_scanjoin_targets = NIL;
7556  ListCell *lc;
7557 
7558  /* Pruned or dummy children can be ignored. */
7559  if (child_rel == NULL || IS_DUMMY_REL(child_rel))
7560  continue;
7561 
7562  /* Translate scan/join targets for this child. */
7563  appinfos = find_appinfos_by_relids(root, child_rel->relids,
7564  &nappinfos);
7565  foreach(lc, scanjoin_targets)
7566  {
7567  PathTarget *target = lfirst_node(PathTarget, lc);
7568 
7569  target = copy_pathtarget(target);
7570  target->exprs = (List *)
7572  (Node *) target->exprs,
7573  nappinfos, appinfos);
7574  child_scanjoin_targets = lappend(child_scanjoin_targets,
7575  target);
7576  }
7577  pfree(appinfos);
7578 
7579  /* Recursion does the real work. */
7580  apply_scanjoin_target_to_paths(root, child_rel,
7581  child_scanjoin_targets,
7582  scanjoin_targets_contain_srfs,
7583  scanjoin_target_parallel_safe,
7585 
7586  /* Save non-dummy children for Append paths. */
7587  if (!IS_DUMMY_REL(child_rel))
7588  live_children = lappend(live_children, child_rel);
7589  }
7590 
7591  /* Build new paths for this relation by appending child paths. */
7592  add_paths_to_append_rel(root, rel, live_children);
7593  }
7594 
7595  /*
7596  * Consider generating Gather or Gather Merge paths. We must only do this
7597  * if the relation is parallel safe, and we don't do it for child rels to
7598  * avoid creating multiple Gather nodes within the same plan. We must do
7599  * this after all paths have been generated and before set_cheapest, since
7600  * one of the generated paths may turn out to be the cheapest one.
7601  */
7602  if (rel->consider_parallel && !IS_OTHER_REL(rel))
7603  generate_useful_gather_paths(root, rel, false);
7604 
7605  /*
7606  * Reassess which paths are the cheapest, now that we've potentially added
7607  * new Gather (or Gather Merge) and/or Append (or MergeAppend) paths to
7608  * this relation.
7609  */
7610  set_cheapest(rel);
7611 }
#define NIL
Definition: pg_list.h:65
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:672
static void apply_scanjoin_target_to_paths(PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
Definition: planner.c:7399
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
#define IS_OTHER_REL(rel)
Definition: pathnodes.h:653
void add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel, List *live_childrels)
Definition: allpaths.c:1294
ParamPathInfo * param_info
Definition: pathnodes.h:1147
Definition: nodes.h:529
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2520
List * partial_pathlist
Definition: pathnodes.h:681
#define linitial_node(type, l)
Definition: pg_list.h:198
static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
Definition: planner.c:6044
void pfree(void *pointer)
Definition: mcxt.c:1056
void generate_useful_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
Definition: allpaths.c:2812
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:1418
#define lfirst_node(type, lc)
Definition: pg_list.h:193
void check_stack_depth(void)
Definition: postgres.c:3312
int nparts
Definition: pathnodes.h:743
Index * sortgrouprefs
Definition: pathnodes.h:1075
Relids relids
Definition: pathnodes.h:665
List * lappend(List *list, void *datum)
Definition: list.c:321
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:728
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
List * exprs
Definition: pathnodes.h:1074
#define llast_node(type, l)
Definition: pg_list.h:218
bool hasTargetSRFs
Definition: parsenodes.h:127
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
struct RelOptInfo ** part_rels
Definition: pathnodes.h:750
bool consider_parallel
Definition: pathnodes.h:673
bool tlist_same_exprs(List *tlist1, List *tlist2)
Definition: tlist.c:240
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:766
List * pathlist
Definition: pathnodes.h:679
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:241
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:194

◆ can_partial_agg()

static bool can_partial_agg ( PlannerInfo root,
const AggClauseCosts agg_costs 
)
static

Definition at line 7357 of file planner.c.

References Query::groupClause, Query::groupingSets, Query::hasAggs, AggClauseCosts::hasNonPartial, AggClauseCosts::hasNonSerial, NIL, parse(), and PlannerInfo::parse.

Referenced by create_grouping_paths().

7358 {
7359  Query *parse = root->parse;
7360 
7361  if (!parse->hasAggs && parse->groupClause == NIL)
7362  {
7363  /*
7364  * We don't know how to do parallel aggregation unless we have either
7365  * some aggregates or a grouping clause.
7366  */
7367  return false;
7368  }
7369  else if (parse->groupingSets)
7370  {
7371  /* We don't know how to do grouping sets in parallel. */
7372  return false;
7373  }
7374  else if (agg_costs->hasNonPartial || agg_costs->hasNonSerial)
7375  {
7376  /* Insufficient support for partial mode. */
7377  return false;
7378  }
7379 
7380  /* Everything looks good. */
7381  return true;
7382 }
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
bool hasAggs
Definition: parsenodes.h:125
List * groupingSets
Definition: parsenodes.h:150
bool hasNonSerial
Definition: pathnodes.h:61
bool hasNonPartial
Definition: pathnodes.h:60
List * groupClause
Definition: parsenodes.h:148
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ common_prefix_cmp()

static int common_prefix_cmp ( const void *  a,
const void *  b 
)
static

Definition at line 5549 of file planner.c.

References forboth, lfirst_node, list_length(), SortGroupClause::nulls_first, SortGroupClause::sortop, SortGroupClause::tleSortGroupRef, and WindowClauseSortData::uniqueOrder.

Referenced by select_active_windows().

5550 {
5551  const WindowClauseSortData *wcsa = a;
5552  const WindowClauseSortData *wcsb = b;
5553  ListCell *item_a;
5554  ListCell *item_b;
5555 
5556  forboth(item_a, wcsa->uniqueOrder, item_b, wcsb->uniqueOrder)
5557  {
5560 
5561  if (sca->tleSortGroupRef > scb->tleSortGroupRef)
5562  return -1;
5563  else if (sca->tleSortGroupRef < scb->tleSortGroupRef)
5564  return 1;
5565  else if (sca->sortop > scb->sortop)
5566  return -1;
5567  else if (sca->sortop < scb->sortop)
5568  return 1;
5569  else if (sca->nulls_first && !scb->nulls_first)
5570  return -1;
5571  else if (!sca->nulls_first && scb->nulls_first)
5572  return 1;
5573  /* no need to compare eqop, since it is fully determined by sortop */
5574  }
5575 
5576  if (list_length(wcsa->uniqueOrder) > list_length(wcsb->uniqueOrder))
5577  return -1;
5578  else if (list_length(wcsa->uniqueOrder) < list_length(wcsb->uniqueOrder))
5579  return 1;
5580 
5581  return 0;
5582 }
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
Index tleSortGroupRef
Definition: parsenodes.h:1257
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static int list_length(const List *l)
Definition: pg_list.h:169

◆ consider_groupingsets_paths()

static void consider_groupingsets_paths ( PlannerInfo root,
RelOptInfo grouped_rel,
Path path,
bool  is_sorted,
bool  can_hash,
grouping_sets_data gd,
const AggClauseCosts agg_costs,
double  dNumGroups 
)
static

Definition at line 4191 of file planner.c.

References add_path(), AGG_HASHED, AGG_MIXED, AGG_SORTED, grouping_sets_data::any_hashable, Assert, bms_is_empty(), bms_is_member(), create_groupingsets_path(), DiscreteKnapsack(), grouping_sets_data::dNumHashGroups, enable_groupingsets_hash_disk, estimate_hashagg_tablesize(), for_each_cell, PlannerInfo::group_pathkeys, RollupData::groupClause, RollupData::gsets, RollupData::gsets_data, RollupData::hashable, Query::havingQual, i, RollupData::is_hashed, lappend(), lcons(), lfirst_node, linitial, list_concat(), list_copy(), list_head(), list_length(), list_make1, list_second_cell(), lnext(), makeNode, Max, Min, NIL, GroupingSetData::numGroups, RollupData::numGroups, palloc(), parse(), PlannerInfo::parse, Path::pathkeys, pathkeys_contained_in(), preprocess_groupclause(), remap_to_groupclause_idx(), grouping_sets_data::rollups, scale, GroupingSetData::set, grouping_sets_data::tleref_to_colnum_map, grouping_sets_data::unsortable_sets, and work_mem.

Referenced by add_paths_to_grouping_rel().

4199 {
4200  Query *parse = root->parse;
4201 
4202  /*
4203  * If we're not being offered sorted input, then only consider plans that
4204  * can be done entirely by hashing.
4205  *
4206  * We can hash everything if it looks like it'll fit in work_mem. But if
4207  * the input is actually sorted despite not being advertised as such, we
4208  * prefer to make use of that in order to use less memory.
4209  *
4210  * If none of the grouping sets are sortable, then ignore the work_mem
4211  * limit and generate a path anyway, since otherwise we'll just fail.
4212  */
4213  if (!is_sorted)
4214  {
4215  List *new_rollups = NIL;
4216  RollupData *unhashed_rollup = NULL;
4217  List *sets_data;
4218  List *empty_sets_data = NIL;
4219  List *empty_sets = NIL;
4220  ListCell *lc;
4221  ListCell *l_start = list_head(gd->rollups);
4222  AggStrategy strat = AGG_HASHED;
4223  double hashsize;
4224  double exclude_groups = 0.0;
4225 
4226  Assert(can_hash);
4227 
4228  /*
4229  * If the input is coincidentally sorted usefully (which can happen
4230  * even if is_sorted is false, since that only means that our caller
4231  * has set up the sorting for us), then save some hashtable space by
4232  * making use of that. But we need to watch out for degenerate cases:
4233  *
4234  * 1) If there are any empty grouping sets, then group_pathkeys might
4235  * be NIL if all non-empty grouping sets are unsortable. In this case,
4236  * there will be a rollup containing only empty groups, and the
4237  * pathkeys_contained_in test is vacuously true; this is ok.
4238  *
4239  * XXX: the above relies on the fact that group_pathkeys is generated
4240  * from the first rollup. If we add the ability to consider multiple
4241  * sort orders for grouping input, this assumption might fail.
4242  *
4243  * 2) If there are no empty sets and only unsortable sets, then the
4244  * rollups list will be empty (and thus l_start == NULL), and
4245  * group_pathkeys will be NIL; we must ensure that the vacuously-true
4246  * pathkeys_contained_in test doesn't cause us to crash.
4247  */
4248  if (l_start != NULL &&
4250  {
4251  unhashed_rollup = lfirst_node(RollupData, l_start);
4252  exclude_groups = unhashed_rollup->numGroups;
4253  l_start = lnext(gd->rollups, l_start);
4254  }
4255 
4256  hashsize = estimate_hashagg_tablesize(path,
4257  agg_costs,
4258  dNumGroups - exclude_groups);
4259 
4260  /*
4261  * If we have sortable columns to work with (gd->rollups is non-empty)
4262  * and enable_groupingsets_hash_disk is disabled, don't generate
4263  * hash-based paths that will exceed work_mem.
4264  */
4266  hashsize > work_mem * 1024L && gd->rollups)
4267  return; /* nope, won't fit */
4268 
4269  /*
4270  * We need to burst the existing rollups list into individual grouping
4271  * sets and recompute a groupClause for each set.
4272  */
4273  sets_data = list_copy(gd->unsortable_sets);
4274 
4275  for_each_cell(lc, gd->rollups, l_start)
4276  {
4277  RollupData *rollup = lfirst_node(RollupData, lc);
4278 
4279  /*
4280  * If we find an unhashable rollup that's not been skipped by the
4281  * "actually sorted" check above, we can't cope; we'd need sorted
4282  * input (with a different sort order) but we can't get that here.
4283  * So bail out; we'll get a valid path from the is_sorted case
4284  * instead.
4285  *
4286  * The mere presence of empty grouping sets doesn't make a rollup
4287  * unhashable (see preprocess_grouping_sets), we handle those
4288  * specially below.
4289  */
4290  if (!rollup->hashable)
4291  return;
4292 
4293  sets_data = list_concat(sets_data, rollup->gsets_data);
4294  }
4295  foreach(lc, sets_data)
4296  {
4298  List *gset = gs->set;
4299  RollupData *rollup;
4300 
4301  if (gset == NIL)
4302  {
4303  /* Empty grouping sets can't be hashed. */
4304  empty_sets_data = lappend(empty_sets_data, gs);
4305  empty_sets = lappend(empty_sets, NIL);
4306  }
4307  else
4308  {
4309  rollup = makeNode(RollupData);
4310 
4311  rollup->groupClause = preprocess_groupclause(root, gset);
4312  rollup->gsets_data = list_make1(gs);
4313  rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
4314  rollup->gsets_data,
4315  gd->tleref_to_colnum_map);
4316  rollup->numGroups = gs->numGroups;
4317  rollup->hashable = true;
4318  rollup->is_hashed = true;
4319  new_rollups = lappend(new_rollups, rollup);
4320  }
4321  }
4322 
4323  /*
4324  * If we didn't find anything nonempty to hash, then bail. We'll
4325  * generate a path from the is_sorted case.
4326  */
4327  if (new_rollups == NIL)
4328  return;
4329 
4330  /*
4331  * If there were empty grouping sets they should have been in the
4332  * first rollup.
4333  */
4334  Assert(!unhashed_rollup || !empty_sets);
4335 
4336  if (unhashed_rollup)
4337  {
4338  new_rollups = lappend(new_rollups, unhashed_rollup);
4339  strat = AGG_MIXED;
4340  }
4341  else if (empty_sets)
4342  {
4343  RollupData *rollup = makeNode(RollupData);
4344 
4345  rollup->groupClause = NIL;
4346  rollup->gsets_data = empty_sets_data;
4347  rollup->gsets = empty_sets;
4348  rollup->numGroups = list_length(empty_sets);
4349  rollup->hashable = false;
4350  rollup->is_hashed = false;
4351  new_rollups = lappend(new_rollups, rollup);
4352  strat = AGG_MIXED;
4353  }
4354 
4355  add_path(grouped_rel, (Path *)
4357  grouped_rel,
4358  path,
4359  (List *) parse->havingQual,
4360  strat,
4361  new_rollups,
4362  agg_costs,
4363  dNumGroups));
4364  return;
4365  }
4366 
4367  /*
4368  * If we have sorted input but nothing we can do with it, bail.
4369  */
4370  if (list_length(gd->rollups) == 0)
4371  return;
4372 
4373  /*
4374  * Given sorted input, we try and make two paths: one sorted and one mixed
4375  * sort/hash. (We need to try both because hashagg might be disabled, or
4376  * some columns might not be sortable.)
4377  *
4378  * can_hash is passed in as false if some obstacle elsewhere (such as
4379  * ordered aggs) means that we shouldn't consider hashing at all.
4380  */
4381  if (can_hash && gd->any_hashable)
4382  {
4383  List *rollups = NIL;
4384  List *hash_sets = list_copy(gd->unsortable_sets);
4385  double availspace = (work_mem * 1024.0);
4386  ListCell *lc;
4387 
4388  /*
4389  * Account first for space needed for groups we can't sort at all.
4390  */
4391  availspace -= estimate_hashagg_tablesize(path,
4392  agg_costs,
4393  gd->dNumHashGroups);
4394 
4395  if (availspace > 0 && list_length(gd->rollups) > 1)
4396  {
4397  double scale;
4398  int num_rollups = list_length(gd->rollups);
4399  int k_capacity;
4400  int *k_weights = palloc(num_rollups * sizeof(int));
4401  Bitmapset *hash_items = NULL;
4402  int i;
4403 
4404  /*
4405  * We treat this as a knapsack problem: the knapsack capacity
4406  * represents work_mem, the item weights are the estimated memory
4407  * usage of the hashtables needed to implement a single rollup,
4408  * and we really ought to use the cost saving as the item value;
4409  * however, currently the costs assigned to sort nodes don't
4410  * reflect the comparison costs well, and so we treat all items as
4411  * of equal value (each rollup we hash instead saves us one sort).
4412  *
4413  * To use the discrete knapsack, we need to scale the values to a
4414  * reasonably small bounded range. We choose to allow a 5% error
4415  * margin; we have no more than 4096 rollups in the worst possible
4416  * case, which with a 5% error margin will require a bit over 42MB
4417  * of workspace. (Anyone wanting to plan queries that complex had
4418  * better have the memory for it. In more reasonable cases, with
4419  * no more than a couple of dozen rollups, the memory usage will
4420  * be negligible.)
4421  *
4422  * k_capacity is naturally bounded, but we clamp the values for
4423  * scale and weight (below) to avoid overflows or underflows (or
4424  * uselessly trying to use a scale factor less than 1 byte).
4425  */
4426  scale = Max(availspace / (20.0 * num_rollups), 1.0);
4427  k_capacity = (int) floor(availspace / scale);
4428 
4429  /*
4430  * We leave the first rollup out of consideration since it's the
4431  * one that matches the input sort order. We assign indexes "i"
4432  * to only those entries considered for hashing; the second loop,
4433  * below, must use the same condition.
4434  */
4435  i = 0;
4437  {
4438  RollupData *rollup = lfirst_node(RollupData, lc);
4439 
4440  if (rollup->hashable)
4441  {
4442  double sz = estimate_hashagg_tablesize(path,
4443  agg_costs,
4444  rollup->numGroups);
4445 
4446  /*
4447  * If sz is enormous, but work_mem (and hence scale) is
4448  * small, avoid integer overflow here.
4449  */
4450  k_weights[i] = (int) Min(floor(sz / scale),
4451  k_capacity + 1.0);
4452  ++i;
4453  }
4454  }
4455 
4456  /*
4457  * Apply knapsack algorithm; compute the set of items which
4458  * maximizes the value stored (in this case the number of sorts
4459  * saved) while keeping the total size (approximately) within
4460  * capacity.
4461  */
4462  if (i > 0)
4463  hash_items = DiscreteKnapsack(k_capacity, i, k_weights, NULL);
4464 
4465  if (!bms_is_empty(hash_items))
4466  {
4467  rollups = list_make1(linitial(gd->rollups));
4468 
4469  i = 0;
4471  {
4472  RollupData *rollup = lfirst_node(RollupData, lc);
4473 
4474  if (rollup->hashable)
4475  {
4476  if (bms_is_member(i, hash_items))
4477  hash_sets = list_concat(hash_sets,
4478  rollup->gsets_data);
4479  else
4480  rollups = lappend(rollups, rollup);
4481  ++i;
4482  }
4483  else
4484  rollups = lappend(rollups, rollup);
4485  }
4486  }
4487  }
4488 
4489  if (!rollups && hash_sets)
4490  rollups = list_copy(gd->rollups);
4491 
4492  foreach(lc, hash_sets)
4493  {
4495  RollupData *rollup = makeNode(RollupData);
4496 
4497  Assert(gs->set != NIL);
4498 
4499  rollup->groupClause = preprocess_groupclause(root, gs->set);
4500  rollup->gsets_data = list_make1(gs);
4501  rollup->gsets = remap_to_groupclause_idx(rollup->groupClause,
4502  rollup->gsets_data,
4503  gd->tleref_to_colnum_map);
4504  rollup->numGroups = gs->numGroups;
4505  rollup->hashable = true;
4506  rollup->is_hashed = true;
4507  rollups = lcons(rollup, rollups);
4508  }
4509 
4510  if (rollups)
4511  {
4512  add_path(grouped_rel, (Path *)
4514  grouped_rel,
4515  path,
4516  (List *) parse->havingQual,
4517  AGG_MIXED,
4518  rollups,
4519  agg_costs,
4520  dNumGroups));
4521  }
4522  }
4523 
4524  /*
4525  * Now try the simple sorted case.
4526  */
4527  if (!gd->unsortable_sets)
4528  add_path(grouped_rel, (Path *)
4530  grouped_rel,
4531  path,
4532  (List *) parse->havingQual,
4533  AGG_SORTED,
4534  gd->rollups,
4535  agg_costs,
4536  dNumGroups));
4537 }
List * group_pathkeys
Definition: pathnodes.h:300
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
List * groupClause
Definition: pathnodes.h:1722
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
bool enable_groupingsets_hash_disk
Definition: costsize.c:134
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
static List * preprocess_groupclause(PlannerInfo *root, List *force)
Definition: planner.c:3234
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:390
#define Min(x, y)
Definition: c.h:920
bool is_hashed
Definition: pathnodes.h:1727
List * list_copy(const List *oldlist)
Definition: list.c:1403
List * list_concat(List *list1, const List *list2)
Definition: list.c:515
int scale
Definition: pgbench.c:153
double dNumHashGroups
Definition: planner.c:110
double numGroups
Definition: pathnodes.h:1725
#define list_make1(x1)
Definition: pg_list.h:227
#define linitial(l)
Definition: pg_list.h:195
int * tleref_to_colnum_map
Definition: planner.c:115
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static ListCell * list_second_cell(const List *l)
Definition: pg_list.h:139
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
double estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: selfuncs.c:3687
List * lappend(List *list, void *datum)
Definition: list.c:321
bool bms_is_empty(const Bitmapset *a)
Definition: bitmapset.c:701
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
static List * remap_to_groupclause_idx(List *groupClause, List *gsets, int *tleref_to_colnum_map)
Definition: planner.c:2613
int work_mem
Definition: globals.c:121
List * lcons(void *datum, List *list)
Definition: list.c:453
List * pathkeys
Definition: pathnodes.h:1158
#define Max(x, y)
Definition: c.h:914
#define makeNode(_type_)
Definition: nodes.h:577
#define Assert(condition)
Definition: c.h:738
static int list_length(const List *l)
Definition: pg_list.h:169
List * unsortable_sets
Definition: planner.c:114
AggStrategy
Definition: nodes.h:758
void * palloc(Size size)
Definition: mcxt.c:949
int i
double numGroups
Definition: pathnodes.h:1716
bool hashable
Definition: pathnodes.h:1726
Node * havingQual
Definition: parsenodes.h:152
Definition: pg_list.h:50
Bitmapset * DiscreteKnapsack(int max_weight, int num_items, int *item_weights, double *item_values)
Definition: knapsack.c:54
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:427
List * gsets_data
Definition: pathnodes.h:1724
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs, double numGroups)
Definition: pathnode.c:3040
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
List * gsets
Definition: pathnodes.h:1723

◆ create_degenerate_grouping_paths()

static void create_degenerate_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel 
)
static

Definition at line 3990 of file planner.c.

References add_path(), create_append_path(), create_group_result_path(), Query::groupingSets, Query::havingQual, lappend(), list_length(), NIL, parse(), PlannerInfo::parse, and RelOptInfo::reltarget.

Referenced by create_grouping_paths().

3992 {
3993  Query *parse = root->parse;
3994  int nrows;
3995  Path *path;
3996 
3997  nrows = list_length(parse->groupingSets);
3998  if (nrows > 1)
3999  {
4000  /*
4001  * Doesn't seem worthwhile writing code to cons up a generate_series
4002  * or a values scan to emit multiple rows. Instead just make N clones
4003  * and append them. (With a volatile HAVING clause, this means you
4004  * might get between 0 and N output rows. Offhand I think that's
4005  * desired.)
4006  */
4007  List *paths = NIL;
4008 
4009  while (--nrows >= 0)
4010  {
4011  path = (Path *)
4012  create_group_result_path(root, grouped_rel,
4013  grouped_rel->reltarget,
4014  (List *) parse->havingQual);
4015  paths = lappend(paths, path);
4016  }
4017  path = (Path *)
4018  create_append_path(root,
4019  grouped_rel,
4020  paths,
4021  NIL,
4022  NIL,
4023  NULL,
4024  0,
4025  false,
4026  NIL,
4027  -1);
4028  }
4029  else
4030  {
4031  /* No grouping sets, or just one, so one output row */
4032  path = (Path *)
4033  create_group_result_path(root, grouped_rel,
4034  grouped_rel->reltarget,
4035  (List *) parse->havingQual);
4036  }
4037 
4038  add_path(grouped_rel, path);
4039 }
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
List * groupingSets
Definition: parsenodes.h:150
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, List *partitioned_rels, double rows)
Definition: pathnode.c:1183
List * lappend(List *list, void *datum)
Definition: list.c:321
static int list_length(const List *l)
Definition: pg_list.h:169
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1447
Node * havingQual
Definition: parsenodes.h:152
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_distinct_paths()

static RelOptInfo * create_distinct_paths ( PlannerInfo root,
RelOptInfo input_rel 
)
static

Definition at line 4730 of file planner.c.

References add_path(), AGG_HASHED, AGGSPLIT_SIMPLE, Assert, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_agg_path(), create_sort_path(), create_upper_paths_hook, create_upper_unique_path(), PlannerInfo::distinct_pathkeys, Query::distinctClause, enable_hashagg, enable_hashagg_disk, ereport, errcode(), errdetail(), errmsg(), ERROR, estimate_num_groups(), RelOptInfo::fdwroutine, fetch_upper_rel(), get_sortgrouplist_exprs(), FdwRoutine::GetForeignUpperPaths, Query::groupClause, grouping_is_hashable(), grouping_is_sortable(), Query::groupingSets, Query::hasAggs, Query::hasDistinctOn, hash_agg_entry_size(), PlannerInfo::hasHavingQual, lfirst, list_length(), NIL, parse(), PlannerInfo::parse, Path::pathkeys, pathkeys_contained_in(), RelOptInfo::pathlist, Path::pathtarget, Path::rows, RelOptInfo::serverid, set_cheapest(), PlannerInfo::sort_pathkeys, Query::targetList, UPPERREL_DISTINCT, RelOptInfo::userid, RelOptInfo::useridiscurrent, PathTarget::width, and work_mem.

Referenced by grouping_planner().

4732 {
4733  Query *parse = root->parse;
4734  Path *cheapest_input_path = input_rel->cheapest_total_path;
4735  RelOptInfo *distinct_rel;
4736  double numDistinctRows;
4737  bool allow_hash;
4738  Path *path;
4739  ListCell *lc;
4740 
4741  /* For now, do all work in the (DISTINCT, NULL) upperrel */
4742  distinct_rel = fetch_upper_rel(root, UPPERREL_DISTINCT, NULL);
4743 
4744  /*
4745  * We don't compute anything at this level, so distinct_rel will be
4746  * parallel-safe if the input rel is parallel-safe. In particular, if
4747  * there is a DISTINCT ON (...) clause, any path for the input_rel will
4748  * output those expressions, and will not be parallel-safe unless those
4749  * expressions are parallel-safe.
4750  */
4751  distinct_rel->consider_parallel = input_rel->consider_parallel;
4752 
4753  /*
4754  * If the input rel belongs to a single FDW, so does the distinct_rel.
4755  */
4756  distinct_rel->serverid = input_rel->serverid;
4757  distinct_rel->userid = input_rel->userid;
4758  distinct_rel->useridiscurrent = input_rel->useridiscurrent;
4759  distinct_rel->fdwroutine = input_rel->fdwroutine;
4760 
4761  /* Estimate number of distinct rows there will be */
4762  if (parse->groupClause || parse->groupingSets || parse->hasAggs ||
4763  root->hasHavingQual)
4764  {
4765  /*
4766  * If there was grouping or aggregation, use the number of input rows
4767  * as the estimated number of DISTINCT rows (ie, assume the input is
4768  * already mostly unique).
4769  */
4770  numDistinctRows = cheapest_input_path->rows;
4771  }
4772  else
4773  {
4774  /*
4775  * Otherwise, the UNIQUE filter has effects comparable to GROUP BY.
4776  */
4777  List *distinctExprs;
4778 
4779  distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
4780  parse->targetList);
4781  numDistinctRows = estimate_num_groups(root, distinctExprs,
4782  cheapest_input_path->rows,
4783  NULL);
4784  }
4785 
4786  /*
4787  * Consider sort-based implementations of DISTINCT, if possible.
4788  */
4790  {
4791  /*
4792  * First, if we have any adequately-presorted paths, just stick a
4793  * Unique node on those. Then consider doing an explicit sort of the
4794  * cheapest input path and Unique'ing that.
4795  *
4796  * When we have DISTINCT ON, we must sort by the more rigorous of
4797  * DISTINCT and ORDER BY, else it won't have the desired behavior.
4798  * Also, if we do have to do an explicit sort, we might as well use
4799  * the more rigorous ordering to avoid a second sort later. (Note
4800  * that the parser will have ensured that one clause is a prefix of
4801  * the other.)
4802  */
4803  List *needed_pathkeys;
4804 
4805  if (parse->hasDistinctOn &&
4807  list_length(root->sort_pathkeys))
4808  needed_pathkeys = root->sort_pathkeys;
4809  else
4810  needed_pathkeys = root->distinct_pathkeys;
4811 
4812  foreach(lc, input_rel->pathlist)
4813  {
4814  Path *path = (Path *) lfirst(lc);
4815 
4816  if (pathkeys_contained_in(needed_pathkeys, path->pathkeys))
4817  {
4818  add_path(distinct_rel, (Path *)
4819  create_upper_unique_path(root, distinct_rel,
4820  path,
4822  numDistinctRows));
4823  }
4824  }
4825 
4826  /* For explicit-sort case, always use the more rigorous clause */
4827  if (list_length(root->distinct_pathkeys) <
4828  list_length(root->sort_pathkeys))
4829  {
4830  needed_pathkeys = root->sort_pathkeys;
4831  /* Assert checks that parser didn't mess up... */
4833  needed_pathkeys));
4834  }
4835  else
4836  needed_pathkeys = root->distinct_pathkeys;
4837 
4838  path = cheapest_input_path;
4839  if (!pathkeys_contained_in(needed_pathkeys, path->pathkeys))
4840  path = (Path *) create_sort_path(root, distinct_rel,
4841  path,
4842  needed_pathkeys,
4843  -1.0);
4844 
4845  add_path(distinct_rel, (Path *)
4846  create_upper_unique_path(root, distinct_rel,
4847  path,
4849  numDistinctRows));
4850  }
4851 
4852  /*
4853  * Consider hash-based implementations of DISTINCT, if possible.
4854  *
4855  * If we were not able to make any other types of path, we *must* hash or
4856  * die trying. If we do have other choices, there are several things that
4857  * should prevent selection of hashing: if the query uses DISTINCT ON
4858  * (because it won't really have the expected behavior if we hash), or if
4859  * enable_hashagg is off, or if it looks like the hashtable will exceed
4860  * work_mem.
4861  *
4862  * Note: grouping_is_hashable() is much more expensive to check than the
4863  * other gating conditions, so we want to do it last.
4864  */
4865  if (distinct_rel->pathlist == NIL)
4866  allow_hash = true; /* we have no alternatives */
4867  else if (parse->hasDistinctOn || !enable_hashagg)
4868  allow_hash = false; /* policy-based decision not to hash */
4869  else
4870  {
4871  Size hashentrysize = hash_agg_entry_size(
4872  0, cheapest_input_path->pathtarget->width, 0);
4873 
4874  allow_hash = enable_hashagg_disk ||
4875  (hashentrysize * numDistinctRows <= work_mem * 1024L);
4876  }
4877 
4878  if (allow_hash && grouping_is_hashable(parse->distinctClause))
4879  {
4880  /* Generate hashed aggregate path --- no sort needed */
4881  add_path(distinct_rel, (Path *)
4882  create_agg_path(root,
4883  distinct_rel,
4884  cheapest_input_path,
4885  cheapest_input_path->pathtarget,
4886  AGG_HASHED,
4888  parse->distinctClause,
4889  NIL,
4890  NULL,
4891  numDistinctRows));
4892  }
4893 
4894  /* Give a helpful error if we failed to find any implementation */
4895  if (distinct_rel->pathlist == NIL)
4896  ereport(ERROR,
4897  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4898  errmsg("could not implement DISTINCT"),
4899  errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
4900 
4901  /*
4902  * If there is an FDW that's responsible for all baserels of the query,
4903  * let it consider adding ForeignPaths.
4904  */
4905  if (distinct_rel->fdwroutine &&
4906  distinct_rel->fdwroutine->GetForeignUpperPaths)
4907  distinct_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_DISTINCT,
4908  input_rel, distinct_rel,
4909  NULL);
4910 
4911  /* Let extensions possibly add some more paths */
4913  (*create_upper_paths_hook) (root, UPPERREL_DISTINCT,
4914  input_rel, distinct_rel, NULL);
4915 
4916  /* Now choose the best path(s) */
4917  set_cheapest(distinct_rel);
4918 
4919  return distinct_rel;
4920 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
#define NIL
Definition: pg_list.h:65
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset)
Definition: selfuncs.c:3205
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
UpperUniquePath * create_upper_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:2921
Oid userid
Definition: pathnodes.h:715
bool hasAggs
Definition: parsenodes.h:125
List * groupingSets
Definition: parsenodes.h:150
bool enable_hashagg_disk
Definition: costsize.c:133
int errcode(int sqlerrcode)
Definition: elog.c:610
bool grouping_is_hashable(List *groupClause)
Definition: tlist.c:582
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
bool useridiscurrent
Definition: pathnodes.h:716
bool hasDistinctOn
Definition: parsenodes.h:129
List * targetList
Definition: parsenodes.h:140
Size hash_agg_entry_size(int numTrans, Size tupleWidth, Size transitionSpace)
Definition: nodeAgg.c:1648
List * distinctClause
Definition: parsenodes.h:156
#define ERROR
Definition: elog.h:43
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1193
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:2973
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
int errdetail(const char *fmt,...)
Definition: elog.c:957
List * sort_pathkeys
Definition: pathnodes.h:303
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
Oid serverid
Definition: pathnodes.h:714
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
int work_mem
Definition: globals.c:121
List * distinct_pathkeys
Definition: pathnodes.h:302
#define ereport(elevel,...)
Definition: elog.h:144
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2818
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
size_t Size
Definition: c.h:466
static int list_length(const List *l)
Definition: pg_list.h:169
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:414
bool consider_parallel
Definition: pathnodes.h:673
bool enable_hashagg
Definition: costsize.c:132
List * groupClause
Definition: parsenodes.h:148
int errmsg(const char *fmt,...)
Definition: elog.c:824
bool grouping_is_sortable(List *groupClause)
Definition: tlist.c:562
bool hasHavingQual
Definition: pathnodes.h:347
List * pathlist
Definition: pathnodes.h:679
Definition: pg_list.h:50
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_grouping_paths()

static RelOptInfo * create_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
PathTarget target,
bool  target_parallel_safe,
const AggClauseCosts agg_costs,
grouping_sets_data gd 
)
static

Definition at line 3806 of file planner.c.

References grouping_sets_data::any_hashable, can_partial_agg(), create_degenerate_grouping_paths(), create_ordinary_grouping_paths(), enable_partitionwise_aggregate, GroupPathExtraData::flags, Query::groupClause, GROUPING_CAN_PARTIAL_AGG, GROUPING_CAN_USE_HASH, GROUPING_CAN_USE_SORT, grouping_is_hashable(), grouping_is_sortable(), Query::groupingSets, Query::havingQual, GroupPathExtraData::havingQual, is_degenerate_grouping(), make_grouping_rel(), NIL, AggClauseCosts::numOrderedAggs, parse(), PlannerInfo::parse, GroupPathExtraData::partial_costs_set, PARTITIONWISE_AGGREGATE_FULL, PARTITIONWISE_AGGREGATE_NONE, GroupPathExtraData::patype, grouping_sets_data::rollups, set_cheapest(), GroupPathExtraData::target_parallel_safe, Query::targetList, and GroupPathExtraData::targetList.

Referenced by grouping_planner().

3812 {
3813  Query *parse = root->parse;
3814  RelOptInfo *grouped_rel;
3815  RelOptInfo *partially_grouped_rel;
3816 
3817  /*
3818  * Create grouping relation to hold fully aggregated grouping and/or
3819  * aggregation paths.
3820  */
3821  grouped_rel = make_grouping_rel(root, input_rel, target,
3822  target_parallel_safe, parse->havingQual);
3823 
3824  /*
3825  * Create either paths for a degenerate grouping or paths for ordinary
3826  * grouping, as appropriate.
3827  */
3828  if (is_degenerate_grouping(root))
3829  create_degenerate_grouping_paths(root, input_rel, grouped_rel);
3830  else
3831  {
3832  int flags = 0;
3833  GroupPathExtraData extra;
3834 
3835  /*
3836  * Determine whether it's possible to perform sort-based
3837  * implementations of grouping. (Note that if groupClause is empty,
3838  * grouping_is_sortable() is trivially true, and all the
3839  * pathkeys_contained_in() tests will succeed too, so that we'll
3840  * consider every surviving input path.)
3841  *
3842  * If we have grouping sets, we might be able to sort some but not all
3843  * of them; in this case, we need can_sort to be true as long as we
3844  * must consider any sorted-input plan.
3845  */
3846  if ((gd && gd->rollups != NIL)
3847  || grouping_is_sortable(parse->groupClause))
3848  flags |= GROUPING_CAN_USE_SORT;
3849 
3850  /*
3851  * Determine whether we should consider hash-based implementations of
3852  * grouping.
3853  *
3854  * Hashed aggregation only applies if we're grouping. If we have
3855  * grouping sets, some groups might be hashable but others not; in
3856  * this case we set can_hash true as long as there is nothing globally
3857  * preventing us from hashing (and we should therefore consider plans
3858  * with hashes).
3859  *
3860  * Executor doesn't support hashed aggregation with DISTINCT or ORDER
3861  * BY aggregates. (Doing so would imply storing *all* the input
3862  * values in the hash table, and/or running many sorts in parallel,
3863  * either of which seems like a certain loser.) We similarly don't
3864  * support ordered-set aggregates in hashed aggregation, but that case
3865  * is also included in the numOrderedAggs count.
3866  *
3867  * Note: grouping_is_hashable() is much more expensive to check than
3868  * the other gating conditions, so we want to do it last.
3869  */
3870  if ((parse->groupClause != NIL &&
3871  agg_costs->numOrderedAggs == 0 &&
3872  (gd ? gd->any_hashable : grouping_is_hashable(parse->groupClause))))
3873  flags |= GROUPING_CAN_USE_HASH;
3874 
3875  /*
3876  * Determine whether partial aggregation is possible.
3877  */
3878  if (can_partial_agg(root, agg_costs))
3879  flags |= GROUPING_CAN_PARTIAL_AGG;
3880 
3881  extra.flags = flags;
3882  extra.target_parallel_safe = target_parallel_safe;
3883  extra.havingQual = parse->havingQual;
3884  extra.targetList = parse->targetList;
3885  extra.partial_costs_set = false;
3886 
3887  /*
3888  * Determine whether partitionwise aggregation is in theory possible.
3889  * It can be disabled by the user, and for now, we don't try to
3890  * support grouping sets. create_ordinary_grouping_paths() will check
3891  * additional conditions, such as whether input_rel is partitioned.
3892  */
3895  else
3897 
3898  create_ordinary_grouping_paths(root, input_rel, grouped_rel,
3899  agg_costs, gd, &extra,
3900  &partially_grouped_rel);
3901  }
3902 
3903  set_cheapest(grouped_rel);
3904  return grouped_rel;
3905 }
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
static RelOptInfo * make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
Definition: planner.c:3916
static void create_degenerate_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel)
Definition: planner.c:3990
List * groupingSets
Definition: parsenodes.h:150
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
bool grouping_is_hashable(List *groupClause)
Definition: tlist.c:582
bool enable_partitionwise_aggregate
Definition: costsize.c:141
List * targetList
Definition: parsenodes.h:140
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:2447
static bool is_degenerate_grouping(PlannerInfo *root)
Definition: planner.c:3969
int numOrderedAggs
Definition: pathnodes.h:59
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
#define GROUPING_CAN_PARTIAL_AGG
Definition: pathnodes.h:2449
static bool can_partial_agg(PlannerInfo *root, const AggClauseCosts *agg_costs)
Definition: planner.c:7357
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:2448
static void create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
Definition: planner.c:4055
List * groupClause
Definition: parsenodes.h:148
bool grouping_is_sortable(List *groupClause)
Definition: tlist.c:562
Node * havingQual
Definition: parsenodes.h:152
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_one_window_path()

static void create_one_window_path ( PlannerInfo root,
RelOptInfo window_rel,
Path path,
PathTarget input_target,
PathTarget output_target,
WindowFuncLists wflists,
List activeWindows 
)
static

Definition at line 4637 of file planner.c.

References add_column_to_pathtarget(), add_path(), copy_pathtarget(), create_sort_path(), create_windowagg_path(), get_typavgwidth(), lfirst_node, lnext(), make_pathkeys_for_window(), Path::pathkeys, pathkeys_contained_in(), PlannerInfo::processed_tlist, PathTarget::width, WindowFuncLists::windowFuncs, and WindowClause::winref.

Referenced by create_window_paths().

4644 {
4645  PathTarget *window_target;
4646  ListCell *l;
4647 
4648  /*
4649  * Since each window clause could require a different sort order, we stack
4650  * up a WindowAgg node for each clause, with sort steps between them as
4651  * needed. (We assume that select_active_windows chose a good order for
4652  * executing the clauses in.)
4653  *
4654  * input_target should contain all Vars and Aggs needed for the result.
4655  * (In some cases we wouldn't need to propagate all of these all the way
4656  * to the top, since they might only be needed as inputs to WindowFuncs.
4657  * It's probably not worth trying to optimize that though.) It must also
4658  * contain all window partitioning and sorting expressions, to ensure
4659  * they're computed only once at the bottom of the stack (that's critical
4660  * for volatile functions). As we climb up the stack, we'll add outputs
4661  * for the WindowFuncs computed at each level.
4662  */
4663  window_target = input_target;
4664 
4665  foreach(l, activeWindows)
4666  {
4668  List *window_pathkeys;
4669 
4670  window_pathkeys = make_pathkeys_for_window(root,
4671  wc,
4672  root->processed_tlist);
4673 
4674  /* Sort if necessary */
4675  if (!pathkeys_contained_in(window_pathkeys, path->pathkeys))
4676  {
4677  path = (Path *) create_sort_path(root, window_rel,
4678  path,
4679  window_pathkeys,
4680  -1.0);
4681  }
4682 
4683  if (lnext(activeWindows, l))
4684  {
4685  /*
4686  * Add the current WindowFuncs to the output target for this
4687  * intermediate WindowAggPath. We must copy window_target to
4688  * avoid changing the previous path's target.
4689  *
4690  * Note: a WindowFunc adds nothing to the target's eval costs; but
4691  * we do need to account for the increase in tlist width.
4692  */
4693  ListCell *lc2;
4694 
4695  window_target = copy_pathtarget(window_target);
4696  foreach(lc2, wflists->windowFuncs[wc->winref])
4697  {
4698  WindowFunc *wfunc = lfirst_node(WindowFunc, lc2);
4699 
4700  add_column_to_pathtarget(window_target, (Expr *) wfunc, 0);
4701  window_target->width += get_typavgwidth(wfunc->wintype, -1);
4702  }
4703  }
4704  else
4705  {
4706  /* Install the goal target in the topmost WindowAgg */
4707  window_target = output_target;
4708  }
4709 
4710  path = (Path *)
4711  create_windowagg_path(root, window_rel, path, window_target,
4712  wflists->windowFuncs[wc->winref],
4713  wc);
4714  }
4715 
4716  add_path(window_rel, path);
4717 }
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:672
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
void add_column_to_pathtarget(PathTarget *target, Expr *expr, Index sortgroupref)
Definition: tlist.c:710
#define lfirst_node(type, lc)
Definition: pg_list.h:193
static List * make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc, List *tlist)
Definition: planner.c:5736
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
int32 get_typavgwidth(Oid typid, int32 typmod)
Definition: lsyscache.c:2417
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2818
List * pathkeys
Definition: pathnodes.h:1158
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, WindowClause *winclause)
Definition: pathnode.c:3272
Oid wintype
Definition: primnodes.h:374
List * processed_tlist
Definition: pathnodes.h:325
Definition: pg_list.h:50
List ** windowFuncs
Definition: clauses.h:24

◆ create_ordered_paths()

static RelOptInfo * create_ordered_paths ( PlannerInfo root,
RelOptInfo input_rel,
PathTarget target,
bool  target_parallel_safe,
double  limit_tuples 
)
static

Definition at line 4940 of file planner.c.

References add_path(), apply_projection_to_path(), Assert, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_gather_merge_path(), create_incremental_sort_path(), create_sort_path(), create_upper_paths_hook, enable_incrementalsort, RelOptInfo::fdwroutine, fetch_upper_rel(), FdwRoutine::GetForeignUpperPaths, lfirst, linitial, list_length(), NIL, Path::parallel_workers, RelOptInfo::partial_pathlist, Path::pathkeys, pathkeys_contained_in(), pathkeys_count_contained_in(), RelOptInfo::pathlist, Path::pathtarget, Path::rows, RelOptInfo::serverid, PlannerInfo::sort_pathkeys, UPPERREL_ORDERED, RelOptInfo::userid, and RelOptInfo::useridiscurrent.

Referenced by grouping_planner().

4945 {
4946  Path *cheapest_input_path = input_rel->cheapest_total_path;
4947  RelOptInfo *ordered_rel;
4948  ListCell *lc;
4949 
4950  /* For now, do all work in the (ORDERED, NULL) upperrel */
4951  ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
4952 
4953  /*
4954  * If the input relation is not parallel-safe, then the ordered relation
4955  * can't be parallel-safe, either. Otherwise, it's parallel-safe if the
4956  * target list is parallel-safe.
4957  */
4958  if (input_rel->consider_parallel && target_parallel_safe)
4959  ordered_rel->consider_parallel = true;
4960 
4961  /*
4962  * If the input rel belongs to a single FDW, so does the ordered_rel.
4963  */
4964  ordered_rel->serverid = input_rel->serverid;
4965  ordered_rel->userid = input_rel->userid;
4966  ordered_rel->useridiscurrent = input_rel->useridiscurrent;
4967  ordered_rel->fdwroutine = input_rel->fdwroutine;
4968 
4969  foreach(lc, input_rel->pathlist)
4970  {
4971  Path *input_path = (Path *) lfirst(lc);
4972  Path *sorted_path = input_path;
4973  bool is_sorted;
4974  int presorted_keys;
4975 
4976  is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
4977  input_path->pathkeys, &presorted_keys);
4978 
4979  if (is_sorted)
4980  {
4981  /* Use the input path as is, but add a projection step if needed */
4982  if (sorted_path->pathtarget != target)
4983  sorted_path = apply_projection_to_path(root, ordered_rel,
4984  sorted_path, target);
4985 
4986  add_path(ordered_rel, sorted_path);
4987  }
4988  else
4989  {
4990  /*
4991  * Try adding an explicit sort, but only to the cheapest total path
4992  * since a full sort should generally add the same cost to all
4993  * paths.
4994  */
4995  if (input_path == cheapest_input_path)
4996  {
4997  /*
4998  * Sort the cheapest input path. An explicit sort here can
4999  * take advantage of LIMIT.
5000  */
5001  sorted_path = (Path *) create_sort_path(root,
5002  ordered_rel,
5003  input_path,
5004  root->sort_pathkeys,
5005  limit_tuples);
5006  /* Add projection step if needed */
5007  if (sorted_path->pathtarget != target)
5008  sorted_path = apply_projection_to_path(root, ordered_rel,
5009  sorted_path, target);
5010 
5011  add_path(ordered_rel, sorted_path);
5012  }
5013 
5014  /*
5015  * If incremental sort is enabled, then try it as well. Unlike with
5016  * regular sorts, we can't just look at the cheapest path, because
5017  * the cost of incremental sort depends on how well presorted the
5018  * path is. Additionally incremental sort may enable a cheaper
5019  * startup path to win out despite higher total cost.
5020  */
5022  continue;
5023 
5024  /* Likewise, if the path can't be used for incremental sort. */
5025  if (!presorted_keys)
5026  continue;
5027 
5028  /* Also consider incremental sort. */
5029  sorted_path = (Path *) create_incremental_sort_path(root,
5030  ordered_rel,
5031  input_path,
5032  root->sort_pathkeys,
5033  presorted_keys,
5034  limit_tuples);
5035 
5036  /* Add projection step if needed */
5037  if (sorted_path->pathtarget != target)
5038  sorted_path = apply_projection_to_path(root, ordered_rel,
5039  sorted_path, target);
5040 
5041  add_path(ordered_rel, sorted_path);
5042  }
5043  }
5044 
5045  /*
5046  * generate_gather_paths() will have already generated a simple Gather
5047  * path for the best parallel path, if any, and the loop above will have
5048  * considered sorting it. Similarly, generate_gather_paths() will also
5049  * have generated order-preserving Gather Merge plans which can be used
5050  * without sorting if they happen to match the sort_pathkeys, and the loop
5051  * above will have handled those as well. However, there's one more
5052  * possibility: it may make sense to sort the cheapest partial path
5053  * according to the required output order and then use Gather Merge.
5054  */
5055  if (ordered_rel->consider_parallel && root->sort_pathkeys != NIL &&
5056  input_rel->partial_pathlist != NIL)
5057  {
5058  Path *cheapest_partial_path;
5059 
5060  cheapest_partial_path = linitial(input_rel->partial_pathlist);
5061 
5062  /*
5063  * If cheapest partial path doesn't need a sort, this is redundant
5064  * with what's already been tried.
5065  */
5067  cheapest_partial_path->pathkeys))
5068  {
5069  Path *path;
5070  double total_groups;
5071 
5072  path = (Path *) create_sort_path(root,
5073  ordered_rel,
5074  cheapest_partial_path,
5075  root->sort_pathkeys,
5076  limit_tuples);
5077 
5078  total_groups = cheapest_partial_path->rows *
5079  cheapest_partial_path->parallel_workers;
5080  path = (Path *)
5081  create_gather_merge_path(root, ordered_rel,
5082  path,
5083  path->pathtarget,
5084  root->sort_pathkeys, NULL,
5085  &total_groups);
5086 
5087  /* Add projection step if needed */
5088  if (path->pathtarget != target)
5089  path = apply_projection_to_path(root, ordered_rel,
5090  path, target);
5091 
5092  add_path(ordered_rel, path);
5093  }
5094 
5095  /*
5096  * Consider incremental sort with a gather merge on partial paths.
5097  *
5098  * We can also skip the entire loop when we only have a single-item
5099  * sort_pathkeys because then we can't possibly have a presorted
5100  * prefix of the list without having the list be fully sorted.
5101  */
5103  {
5104  ListCell *lc;
5105 
5106  foreach(lc, input_rel->partial_pathlist)
5107  {
5108  Path *input_path = (Path *) lfirst(lc);
5109  Path *sorted_path = input_path;
5110  bool is_sorted;
5111  int presorted_keys;
5112  double total_groups;
5113 
5114  /*
5115  * We don't care if this is the cheapest partial path - we can't
5116  * simply skip it, because it may be partially sorted in which
5117  * case we want to consider adding incremental sort (instead of
5118  * full sort, which is what happens above).
5119  */
5120 
5121  is_sorted = pathkeys_count_contained_in(root->sort_pathkeys,
5122  input_path->pathkeys,
5123  &presorted_keys);
5124 
5125  /* No point in adding incremental sort on fully sorted paths. */
5126  if (is_sorted)
5127  continue;
5128 
5129  if (presorted_keys == 0)
5130  continue;
5131 
5132  /* Since we have presorted keys, consider incremental sort. */
5133  sorted_path = (Path *) create_incremental_sort_path(root,
5134  ordered_rel,
5135  input_path,
5136  root->sort_pathkeys,
5137  presorted_keys,
5138  limit_tuples);
5139  total_groups = input_path->rows *
5140  input_path->parallel_workers;
5141  sorted_path = (Path *)
5142  create_gather_merge_path(root, ordered_rel,
5143  sorted_path,
5144  sorted_path->pathtarget,
5145  root->sort_pathkeys, NULL,
5146  &total_groups);
5147 
5148  /* Add projection step if needed */
5149  if (sorted_path->pathtarget != target)
5150  sorted_path = apply_projection_to_path(root, ordered_rel,
5151  sorted_path, target);
5152 
5153  add_path(ordered_rel, sorted_path);
5154  }
5155  }
5156  }
5157 
5158  /*
5159  * If there is an FDW that's responsible for all baserels of the query,
5160  * let it consider adding ForeignPaths.
5161  */
5162  if (ordered_rel->fdwroutine &&
5163  ordered_rel->fdwroutine->GetForeignUpperPaths)
5164  ordered_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_ORDERED,
5165  input_rel, ordered_rel,
5166  NULL);
5167 
5168  /* Let extensions possibly add some more paths */
5170  (*create_upper_paths_hook) (root, UPPERREL_ORDERED,
5171  input_rel, ordered_rel, NULL);
5172 
5173  /*
5174  * No need to bother with set_cheapest here; grouping_planner does not
5175  * need us to do it.
5176  */
5177  Assert(ordered_rel->pathlist != NIL);
5178 
5179  return ordered_rel;
5180 }
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2611
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
#define NIL
Definition: pg_list.h:65
PathTarget * pathtarget
Definition: pathnodes.h:1145
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2769
Oid userid
Definition: pathnodes.h:715
int parallel_workers
Definition: pathnodes.h:1151
List * partial_pathlist
Definition: pathnodes.h:681
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
bool useridiscurrent
Definition: pathnodes.h:716
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define linitial(l)
Definition: pg_list.h:195
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1193
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
List * sort_pathkeys
Definition: pathnodes.h:303
Oid serverid
Definition: pathnodes.h:714
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1754
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2818
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static int list_length(const List *l)
Definition: pg_list.h:169
bool enable_incrementalsort
Definition: costsize.c:131
bool consider_parallel
Definition: pathnodes.h:673
List * pathlist
Definition: pathnodes.h:679

◆ create_ordinary_grouping_paths()

static void create_ordinary_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel,
const AggClauseCosts agg_costs,
grouping_sets_data gd,
GroupPathExtraData extra,
RelOptInfo **  partially_grouped_rel_p 
)
static

Definition at line 4055 of file planner.c.

References add_paths_to_grouping_rel(), Assert, RelOptInfo::cheapest_total_path, create_partial_grouping_paths(), create_partitionwise_grouping_paths(), create_upper_paths_hook, ereport, errcode(), errdetail(), errmsg(), ERROR, RelOptInfo::fdwroutine, GroupPathExtraData::flags, gather_grouping_paths(), get_number_of_groups(), FdwRoutine::GetForeignUpperPaths, group_by_has_partkey(), Query::groupClause, GROUPING_CAN_PARTIAL_AGG, IS_PARTITIONED_REL, NIL, PlannerInfo::parse, RelOptInfo::partial_pathlist, PARTITIONWISE_AGGREGATE_FULL, PARTITIONWISE_AGGREGATE_NONE, PARTITIONWISE_AGGREGATE_PARTIAL, RelOptInfo::pathlist, GroupPathExtraData::patype, Path::rows, set_cheapest(), GroupPathExtraData::targetList, and UPPERREL_GROUP_AGG.

Referenced by create_grouping_paths(), and create_partitionwise_grouping_paths().

4061 {
4062  Path *cheapest_path = input_rel->cheapest_total_path;
4063  RelOptInfo *partially_grouped_rel = NULL;
4064  double dNumGroups;
4066 
4067  /*
4068  * If this is the topmost grouping relation or if the parent relation is
4069  * doing some form of partitionwise aggregation, then we may be able to do
4070  * it at this level also. However, if the input relation is not
4071  * partitioned, partitionwise aggregate is impossible.
4072  */
4073  if (extra->patype != PARTITIONWISE_AGGREGATE_NONE &&
4074  IS_PARTITIONED_REL(input_rel))
4075  {
4076  /*
4077  * If this is the topmost relation or if the parent relation is doing
4078  * full partitionwise aggregation, then we can do full partitionwise
4079  * aggregation provided that the GROUP BY clause contains all of the
4080  * partitioning columns at this level. Otherwise, we can do at most
4081  * partial partitionwise aggregation. But if partial aggregation is
4082  * not supported in general then we can't use it for partitionwise
4083  * aggregation either.
4084  */
4085  if (extra->patype == PARTITIONWISE_AGGREGATE_FULL &&
4086  group_by_has_partkey(input_rel, extra->targetList,
4087  root->parse->groupClause))
4089  else if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
4091  else
4093  }
4094 
4095  /*
4096  * Before generating paths for grouped_rel, we first generate any possible
4097  * partially grouped paths; that way, later code can easily consider both
4098  * parallel and non-parallel approaches to grouping.
4099  */
4100  if ((extra->flags & GROUPING_CAN_PARTIAL_AGG) != 0)
4101  {
4102  bool force_rel_creation;
4103 
4104  /*
4105  * If we're doing partitionwise aggregation at this level, force
4106  * creation of a partially_grouped_rel so we can add partitionwise
4107  * paths to it.
4108  */
4109  force_rel_creation = (patype == PARTITIONWISE_AGGREGATE_PARTIAL);
4110 
4111  partially_grouped_rel =
4113  grouped_rel,
4114  input_rel,
4115  gd,
4116  extra,
4117  force_rel_creation);
4118  }
4119 
4120  /* Set out parameter. */
4121  *partially_grouped_rel_p = partially_grouped_rel;
4122 
4123  /* Apply partitionwise aggregation technique, if possible. */
4124  if (patype != PARTITIONWISE_AGGREGATE_NONE)
4125  create_partitionwise_grouping_paths(root, input_rel, grouped_rel,
4126  partially_grouped_rel, agg_costs,
4127  gd, patype, extra);
4128 
4129  /* If we are doing partial aggregation only, return. */
4131  {
4132  Assert(partially_grouped_rel);
4133 
4134  if (partially_grouped_rel->pathlist)
4135  set_cheapest(partially_grouped_rel);
4136 
4137  return;
4138  }
4139 
4140  /* Gather any partially grouped partial paths. */
4141  if (partially_grouped_rel && partially_grouped_rel->partial_pathlist)
4142  {
4143  gather_grouping_paths(root, partially_grouped_rel);
4144  set_cheapest(partially_grouped_rel);
4145  }
4146 
4147  /*
4148  * Estimate number of groups.
4149  */
4150  dNumGroups = get_number_of_groups(root,
4151  cheapest_path->rows,
4152  gd,
4153  extra->targetList);
4154 
4155  /* Build final grouping paths */
4156  add_paths_to_grouping_rel(root, input_rel, grouped_rel,
4157  partially_grouped_rel, agg_costs, gd,
4158  dNumGroups, extra);
4159 
4160  /* Give a helpful error if we failed to find any implementation */
4161  if (grouped_rel->pathlist == NIL)
4162  ereport(ERROR,
4163  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4164  errmsg("could not implement GROUP BY"),
4165  errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
4166 
4167  /*
4168  * If there is an FDW that's responsible for all baserels of the query,
4169  * let it consider adding ForeignPaths.
4170  */
4171  if (grouped_rel->fdwroutine &&
4172  grouped_rel->fdwroutine->GetForeignUpperPaths)
4174  input_rel, grouped_rel,
4175  extra);
4176 
4177  /* Let extensions possibly add some more paths */
4179  (*create_upper_paths_hook) (root, UPPERREL_GROUP_AGG,
4180  input_rel, grouped_rel,
4181  extra);
4182 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
PartitionwiseAggregateType
Definition: pathnodes.h:2462
static double get_number_of_groups(PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
Definition: planner.c:3685
static void gather_grouping_paths(PlannerInfo *root, RelOptInfo *rel)
Definition: planner.c:7269
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
int errcode(int sqlerrcode)
Definition: elog.c:610
List * partial_pathlist
Definition: pathnodes.h:681
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
static RelOptInfo * create_partial_grouping_paths(PlannerInfo *root, RelOptInfo *grouped_rel, RelOptInfo *input_rel, grouping_sets_data *gd, GroupPathExtraData *extra, bool force_rel_creation)
Definition: planner.c:6855
#define ERROR
Definition: elog.h:43
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
int errdetail(const char *fmt,...)
Definition: elog.c:957
static void add_paths_to_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, double dNumGroups, GroupPathExtraData *extra)
Definition: planner.c:6486
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
#define GROUPING_CAN_PARTIAL_AGG
Definition: pathnodes.h:2449
static void create_partitionwise_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, RelOptInfo *partially_grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, PartitionwiseAggregateType patype, GroupPathExtraData *extra)
Definition: planner.c:7631
#define ereport(elevel,...)
Definition: elog.h:144
#define Assert(condition)
Definition: c.h:738
double rows
Definition: pathnodes.h:1154
List * groupClause
Definition: parsenodes.h:148
int errmsg(const char *fmt,...)
Definition: elog.c:824
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:766
List * pathlist
Definition: pathnodes.h:679
static bool group_by_has_partkey(RelOptInfo *input_rel, List *targetList, List *groupClause)
Definition: planner.c:7771

◆ create_partial_grouping_paths()

static RelOptInfo * create_partial_grouping_paths ( PlannerInfo root,
RelOptInfo grouped_rel,
RelOptInfo input_rel,
grouping_sets_data gd,
GroupPathExtraData extra,
bool  force_rel_creation 
)
static

Definition at line 6855 of file planner.c.

References add_partial_path(), add_path(), GroupPathExtraData::agg_final_costs, AGG_HASHED, GroupPathExtraData::agg_partial_costs, AGG_PLAIN, AGG_SORTED, AGGSPLIT_FINAL_DESERIAL, AGGSPLIT_INITIAL_SERIAL, Assert, RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_agg_path(), create_group_path(), create_incremental_sort_path(), create_sort_path(), enable_hashagg_disk, enable_incrementalsort, estimate_hashagg_tablesize(), PathTarget::exprs, RelOptInfo::fdwroutine, fetch_upper_rel(), GroupPathExtraData::flags, get_agg_clause_costs(), get_number_of_groups(), FdwRoutine::GetForeignUpperPaths, PlannerInfo::group_pathkeys, Query::groupClause, GROUPING_CAN_USE_HASH, GROUPING_CAN_USE_SORT, Query::hasAggs, GroupPathExtraData::havingQual, lfirst, linitial, list_length(), make_partial_grouping_target(), MemSet, NIL, parse(), PlannerInfo::parse, GroupPathExtraData::partial_costs_set, RelOptInfo::partial_pathlist, PARTITIONWISE_AGGREGATE_PARTIAL, Path::pathkeys, pathkeys_contained_in(), pathkeys_count_contained_in(), RelOptInfo::pathlist, GroupPathExtraData::patype, RelOptInfo::relids, RelOptInfo::reloptkind, RelOptInfo::reltarget, Path::rows, RelOptInfo::serverid, GroupPathExtraData::targetList, UPPERREL_PARTIAL_GROUP_AGG, RelOptInfo::userid, RelOptInfo::useridiscurrent, and work_mem.

Referenced by create_ordinary_grouping_paths().

6861 {
6862  Query *parse = root->parse;
6863  RelOptInfo *partially_grouped_rel;
6864  AggClauseCosts *agg_partial_costs = &extra->agg_partial_costs;
6865  AggClauseCosts *agg_final_costs = &extra->agg_final_costs;
6866  Path *cheapest_partial_path = NULL;
6867  Path *cheapest_total_path = NULL;
6868  double dNumPartialGroups = 0;
6869  double dNumPartialPartialGroups = 0;
6870  ListCell *lc;
6871  bool can_hash = (extra->flags & GROUPING_CAN_USE_HASH) != 0;
6872  bool can_sort = (extra->flags & GROUPING_CAN_USE_SORT) != 0;
6873 
6874  /*
6875  * Consider whether we should generate partially aggregated non-partial
6876  * paths. We can only do this if we have a non-partial path, and only if
6877  * the parent of the input rel is performing partial partitionwise
6878  * aggregation. (Note that extra->patype is the type of partitionwise
6879  * aggregation being used at the parent level, not this level.)
6880  */
6881  if (input_rel->pathlist != NIL &&
6883  cheapest_total_path = input_rel->cheapest_total_path;
6884 
6885  /*
6886  * If parallelism is possible for grouped_rel, then we should consider
6887  * generating partially-grouped partial paths. However, if the input rel
6888  * has no partial paths, then we can't.
6889  */
6890  if (grouped_rel->consider_parallel && input_rel->partial_pathlist != NIL)
6891  cheapest_partial_path = linitial(input_rel->partial_pathlist);
6892 
6893  /*
6894  * If we can't partially aggregate partial paths, and we can't partially
6895  * aggregate non-partial paths, then don't bother creating the new
6896  * RelOptInfo at all, unless the caller specified force_rel_creation.
6897  */
6898  if (cheapest_total_path == NULL &&
6899  cheapest_partial_path == NULL &&
6900  !force_rel_creation)
6901  return NULL;
6902 
6903  /*
6904  * Build a new upper relation to represent the result of partially
6905  * aggregating the rows from the input relation.
6906  */
6907  partially_grouped_rel = fetch_upper_rel(root,
6909  grouped_rel->relids);
6910  partially_grouped_rel->consider_parallel =
6911  grouped_rel->consider_parallel;
6912  partially_grouped_rel->reloptkind = grouped_rel->reloptkind;
6913  partially_grouped_rel->serverid = grouped_rel->serverid;
6914  partially_grouped_rel->userid = grouped_rel->userid;
6915  partially_grouped_rel->useridiscurrent = grouped_rel->useridiscurrent;
6916  partially_grouped_rel->fdwroutine = grouped_rel->fdwroutine;
6917 
6918  /*
6919  * Build target list for partial aggregate paths. These paths cannot just
6920  * emit the same tlist as regular aggregate paths, because (1) we must
6921  * include Vars and Aggrefs needed in HAVING, which might not appear in
6922  * the result tlist, and (2) the Aggrefs must be set in partial mode.
6923  */
6924  partially_grouped_rel->reltarget =
6925  make_partial_grouping_target(root, grouped_rel->reltarget,
6926  extra->havingQual);
6927 
6928  if (!extra->partial_costs_set)
6929  {
6930  /*
6931  * Collect statistics about aggregates for estimating costs of
6932  * performing aggregation in parallel.
6933  */
6934  MemSet(agg_partial_costs, 0, sizeof(AggClauseCosts));
6935  MemSet(agg_final_costs, 0, sizeof(AggClauseCosts));
6936  if (parse->hasAggs)
6937  {
6938  List *partial_target_exprs;
6939 
6940  /* partial phase */
6941  partial_target_exprs = partially_grouped_rel->reltarget->exprs;
6942  get_agg_clause_costs(root, (Node *) partial_target_exprs,
6944  agg_partial_costs);
6945 
6946  /* final phase */
6947  get_agg_clause_costs(root, (Node *) grouped_rel->reltarget->exprs,
6949  agg_final_costs);
6950  get_agg_clause_costs(root, extra->havingQual,
6952  agg_final_costs);
6953  }
6954 
6955  extra->partial_costs_set = true;
6956  }
6957 
6958  /* Estimate number of partial groups. */
6959  if (cheapest_total_path != NULL)
6960  dNumPartialGroups =
6961  get_number_of_groups(root,
6962  cheapest_total_path->rows,
6963  gd,
6964  extra->targetList);
6965  if (cheapest_partial_path != NULL)
6966  dNumPartialPartialGroups =
6967  get_number_of_groups(root,
6968  cheapest_partial_path->rows,
6969  gd,
6970  extra->targetList);
6971 
6972  if (can_sort && cheapest_total_path != NULL)
6973  {
6974  /* This should have been checked previously */
6975  Assert(parse->hasAggs || parse->groupClause);
6976 
6977  /*
6978  * Use any available suitably-sorted path as input, and also consider
6979  * sorting the cheapest partial path.
6980  */
6981  foreach(lc, input_rel->pathlist)
6982  {
6983  Path *path = (Path *) lfirst(lc);
6984  bool is_sorted;
6985 
6986  is_sorted = pathkeys_contained_in(root->group_pathkeys,
6987  path->pathkeys);
6988  if (path == cheapest_total_path || is_sorted)
6989  {
6990  /* Sort the cheapest partial path, if it isn't already */
6991  if (!is_sorted)
6992  path = (Path *) create_sort_path(root,
6993  partially_grouped_rel,
6994  path,
6995  root->group_pathkeys,
6996  -1.0);
6997 
6998  if (parse->hasAggs)
6999  add_path(partially_grouped_rel, (Path *)
7000  create_agg_path(root,
7001  partially_grouped_rel,
7002  path,
7003  partially_grouped_rel->reltarget,
7004  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7006  parse->groupClause,
7007  NIL,
7008  agg_partial_costs,
7009  dNumPartialGroups));
7010  else
7011  add_path(partially_grouped_rel, (Path *)
7012  create_group_path(root,
7013  partially_grouped_rel,
7014  path,
7015  parse->groupClause,
7016  NIL,
7017  dNumPartialGroups));
7018  }
7019  }
7020 
7021  /*
7022  * Consider incremental sort on all partial paths, if enabled.
7023  *
7024  * We can also skip the entire loop when we only have a single-item
7025  * group_pathkeys because then we can't possibly have a presorted
7026  * prefix of the list without having the list be fully sorted.
7027  */
7029  {
7030  foreach(lc, input_rel->pathlist)
7031  {
7032  Path *path = (Path *) lfirst(lc);
7033  bool is_sorted;
7034  int presorted_keys;
7035 
7036  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
7037  path->pathkeys,
7038  &presorted_keys);
7039 
7040  /* Ignore already sorted paths */
7041  if (is_sorted)
7042  continue;
7043 
7044  if (presorted_keys == 0)
7045  continue;
7046 
7047  /* Since we have presorted keys, consider incremental sort. */
7048  path = (Path *) create_incremental_sort_path(root,
7049  partially_grouped_rel,
7050  path,
7051  root->group_pathkeys,
7052  presorted_keys,
7053  -1.0);
7054 
7055  if (parse->hasAggs)
7056  add_path(partially_grouped_rel, (Path *)
7057  create_agg_path(root,
7058  partially_grouped_rel,
7059  path,
7060  partially_grouped_rel->reltarget,
7061  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7063  parse->groupClause,
7064  NIL,
7065  agg_partial_costs,
7066  dNumPartialGroups));
7067  else
7068  add_path(partially_grouped_rel, (Path *)
7069  create_group_path(root,
7070  partially_grouped_rel,
7071  path,
7072  parse->groupClause,
7073  NIL,
7074  dNumPartialGroups));
7075  }
7076  }
7077 
7078  }
7079 
7080  if (can_sort && cheapest_partial_path != NULL)
7081  {
7082  /* Similar to above logic, but for partial paths. */
7083  foreach(lc, input_rel->partial_pathlist)
7084  {
7085  Path *path = (Path *) lfirst(lc);
7086  Path *path_original = path;
7087  bool is_sorted;
7088  int presorted_keys;
7089 
7090  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
7091  path->pathkeys,
7092  &presorted_keys);
7093 
7094  if (path == cheapest_partial_path || is_sorted)
7095  {
7096  /* Sort the cheapest partial path, if it isn't already */
7097  if (!is_sorted)
7098  path = (Path *) create_sort_path(root,
7099  partially_grouped_rel,
7100  path,
7101  root->group_pathkeys,
7102  -1.0);
7103 
7104  if (parse->hasAggs)
7105  add_partial_path(partially_grouped_rel, (Path *)
7106  create_agg_path(root,
7107  partially_grouped_rel,
7108  path,
7109  partially_grouped_rel->reltarget,
7110  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7112  parse->groupClause,
7113  NIL,
7114  agg_partial_costs,
7115  dNumPartialPartialGroups));
7116  else
7117  add_partial_path(partially_grouped_rel, (Path *)
7118  create_group_path(root,
7119  partially_grouped_rel,
7120  path,
7121  parse->groupClause,
7122  NIL,
7123  dNumPartialPartialGroups));
7124  }
7125 
7126  /*
7127  * Now we may consider incremental sort on this path, but only
7128  * when the path is not already sorted and when incremental sort
7129  * is enabled.
7130  */
7131  if (is_sorted || !enable_incrementalsort)
7132  continue;
7133 
7134  /* Restore the input path (we might have added Sort on top). */
7135  path = path_original;
7136 
7137  /* no shared prefix, not point in building incremental sort */
7138  if (presorted_keys == 0)
7139  continue;
7140 
7141  /*
7142  * We should have already excluded pathkeys of length 1 because
7143  * then presorted_keys > 0 would imply is_sorted was true.
7144  */
7145  Assert(list_length(root->group_pathkeys) != 1);
7146 
7147  path = (Path *) create_incremental_sort_path(root,
7148  partially_grouped_rel,
7149  path,
7150  root->group_pathkeys,
7151  presorted_keys,
7152  -1.0);
7153 
7154  if (parse->hasAggs)
7155  add_partial_path(partially_grouped_rel, (Path *)
7156  create_agg_path(root,
7157  partially_grouped_rel,
7158  path,
7159  partially_grouped_rel->reltarget,
7160  parse->groupClause ? AGG_SORTED : AGG_PLAIN,
7162  parse->groupClause,
7163  NIL,
7164  agg_partial_costs,
7165  dNumPartialPartialGroups));
7166  else
7167  add_partial_path(partially_grouped_rel, (Path *)
7168  create_group_path(root,
7169  partially_grouped_rel,
7170  path,
7171  parse->groupClause,
7172  NIL,
7173  dNumPartialPartialGroups));
7174  }
7175  }
7176 
7177  if (can_hash && cheapest_total_path != NULL)
7178  {
7179  double hashaggtablesize;
7180 
7181  /* Checked above */
7182  Assert(parse->hasAggs || parse->groupClause);
7183 
7184  hashaggtablesize =
7185  estimate_hashagg_tablesize(cheapest_total_path,
7186  agg_partial_costs,
7187  dNumPartialGroups);
7188 
7189  /*
7190  * Tentatively produce a partial HashAgg Path, depending on if it
7191  * looks as if the hash table will fit in work_mem.
7192  */
7193  if ((enable_hashagg_disk || hashaggtablesize < work_mem * 1024L) &&
7194  cheapest_total_path != NULL)
7195  {
7196  add_path(partially_grouped_rel, (Path *)
7197  create_agg_path(root,
7198  partially_grouped_rel,
7199  cheapest_total_path,
7200  partially_grouped_rel->reltarget,
7201  AGG_HASHED,
7203  parse->groupClause,
7204  NIL,
7205  agg_partial_costs,
7206  dNumPartialGroups));
7207  }
7208  }
7209 
7210  if (can_hash && cheapest_partial_path != NULL)
7211  {
7212  double hashaggtablesize;
7213 
7214  hashaggtablesize =
7215  estimate_hashagg_tablesize(cheapest_partial_path,
7216  agg_partial_costs,
7217  dNumPartialPartialGroups);
7218 
7219  /* Do the same for partial paths. */
7220  if ((enable_hashagg_disk || hashaggtablesize < work_mem * 1024L) &&
7221  cheapest_partial_path != NULL)
7222  {
7223  add_partial_path(partially_grouped_rel, (Path *)
7224  create_agg_path(root,
7225  partially_grouped_rel,
7226  cheapest_partial_path,
7227  partially_grouped_rel->reltarget,
7228  AGG_HASHED,
7230  parse->groupClause,
7231  NIL,
7232  agg_partial_costs,
7233  dNumPartialPartialGroups));
7234  }
7235  }
7236 
7237  /*
7238  * If there is an FDW that's responsible for all baserels of the query,
7239  * let it consider adding partially grouped ForeignPaths.
7240  */
7241  if (partially_grouped_rel->fdwroutine &&
7242  partially_grouped_rel->fdwroutine->GetForeignUpperPaths)
7243  {
7244  FdwRoutine *fdwroutine = partially_grouped_rel->fdwroutine;
7245 
7246  fdwroutine->GetForeignUpperPaths(root,
7248  input_rel, partially_grouped_rel,
7249  extra);
7250  }
7251 
7252  return partially_grouped_rel;
7253 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
List * group_pathkeys
Definition: pathnodes.h:300
#define NIL
Definition: pg_list.h:65
Query * parse
Definition: pathnodes.h:179
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
RelOptKind reloptkind
Definition: pathnodes.h:662
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2769
static double get_number_of_groups(PlannerInfo *root, double path_rows, grouping_sets_data *gd, List *target_list)
Definition: planner.c:3685
Oid userid
Definition: pathnodes.h:715
AggClauseCosts agg_partial_costs
Definition: pathnodes.h:2487
void get_agg_clause_costs(PlannerInfo *root, Node *clause, AggSplit aggsplit, AggClauseCosts *costs)
Definition: clauses.c:231
bool hasAggs
Definition: parsenodes.h:125
Definition: nodes.h:529
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
bool enable_hashagg_disk
Definition: costsize.c:133
List * partial_pathlist
Definition: pathnodes.h:681
#define MemSet(start, val, len)
Definition: c.h:971
bool useridiscurrent
Definition: pathnodes.h:716
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define GROUPING_CAN_USE_SORT
Definition: pathnodes.h:2447
#define linitial(l)
Definition: pg_list.h:195
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1193
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:2973
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
Relids relids
Definition: pathnodes.h:665
double estimate_hashagg_tablesize(Path *path, const AggClauseCosts *agg_costs, double dNumGroups)
Definition: selfuncs.c:3687
Oid serverid
Definition: pathnodes.h:714
List * exprs
Definition: pathnodes.h:1074
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
int work_mem
Definition: globals.c:121
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2818
#define GROUPING_CAN_USE_HASH
Definition: pathnodes.h:2448
List * pathkeys
Definition: pathnodes.h:1158
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static PathTarget * make_partial_grouping_target(PlannerInfo *root, PathTarget *grouping_target, Node *havingQual)
Definition: planner.c:5298
static int list_length(const List *l)
Definition: pg_list.h:169
bool enable_incrementalsort
Definition: costsize.c:131
bool consider_parallel
Definition: pathnodes.h:673
List * groupClause
Definition: parsenodes.h:148
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:749
List * pathlist
Definition: pathnodes.h:679
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:2862
AggClauseCosts agg_final_costs
Definition: pathnodes.h:2488
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648

◆ create_partitionwise_grouping_paths()

static void create_partitionwise_grouping_paths ( PlannerInfo root,
RelOptInfo input_rel,
RelOptInfo grouped_rel,
RelOptInfo partially_grouped_rel,
const AggClauseCosts agg_costs,
grouping_sets_data gd,
PartitionwiseAggregateType  patype,
GroupPathExtraData extra 
)
static

Definition at line 7631 of file planner.c.

References add_paths_to_append_rel(), adjust_appendrel_attrs(), Assert, copy_pathtarget(), create_ordinary_grouping_paths(), PathTarget::exprs, find_appinfos_by_relids(), GroupPathExtraData::havingQual, IS_DUMMY_REL, lappend(), make_grouping_rel(), NIL, RelOptInfo::nparts, RelOptInfo::part_rels, PARTITIONWISE_AGGREGATE_FULL, PARTITIONWISE_AGGREGATE_NONE, PARTITIONWISE_AGGREGATE_PARTIAL, RelOptInfo::pathlist, GroupPathExtraData::patype, pfree(), RelOptInfo::relids, RelOptInfo::reltarget, set_cheapest(), GroupPathExtraData::target_parallel_safe, and GroupPathExtraData::targetList.

Referenced by create_ordinary_grouping_paths().

7639 {
7640  int nparts = input_rel->nparts;
7641  int cnt_parts;
7642  List *grouped_live_children = NIL;
7643  List *partially_grouped_live_children = NIL;
7644  PathTarget *target = grouped_rel->reltarget;
7645  bool partial_grouping_valid = true;
7646 
7649  partially_grouped_rel != NULL);
7650 
7651  /* Add paths for partitionwise aggregation/grouping. */
7652  for (cnt_parts = 0; cnt_parts < nparts; cnt_parts++)
7653  {
7654  RelOptInfo *child_input_rel = input_rel->part_rels[cnt_parts];
7655  PathTarget *child_target = copy_pathtarget(target);
7656  AppendRelInfo **appinfos;
7657  int nappinfos;
7658  GroupPathExtraData child_extra;
7659  RelOptInfo *child_grouped_rel;
7660  RelOptInfo *child_partially_grouped_rel;
7661 
7662  /* Pruned or dummy children can be ignored. */
7663  if (child_input_rel == NULL || IS_DUMMY_REL(child_input_rel))
7664  continue;
7665 
7666  /*
7667  * Copy the given "extra" structure as is and then override the
7668  * members specific to this child.
7669  */
7670  memcpy(&child_extra, extra, sizeof(child_extra));
7671 
7672  appinfos = find_appinfos_by_relids(root, child_input_rel->relids,
7673  &nappinfos);
7674 
7675  child_target->exprs = (List *)
7677  (Node *) target->exprs,
7678  nappinfos, appinfos);
7679 
7680  /* Translate havingQual and targetList. */
7681  child_extra.havingQual = (Node *)
7683  extra->havingQual,
7684  nappinfos, appinfos);
7685  child_extra.targetList = (List *)
7687  (Node *) extra->targetList,
7688  nappinfos, appinfos);
7689 
7690  /*
7691  * extra->patype was the value computed for our parent rel; patype is
7692  * the value for this relation. For the child, our value is its
7693  * parent rel's value.
7694  */
7695  child_extra.patype = patype;
7696 
7697  /*
7698  * Create grouping relation to hold fully aggregated grouping and/or
7699  * aggregation paths for the child.
7700  */
7701  child_grouped_rel = make_grouping_rel(root, child_input_rel,
7702  child_target,
7703  extra->target_parallel_safe,
7704  child_extra.havingQual);
7705 
7706  /* Create grouping paths for this child relation. */
7707  create_ordinary_grouping_paths(root, child_input_rel,
7708  child_grouped_rel,
7709  agg_costs, gd, &child_extra,
7710  &child_partially_grouped_rel);
7711 
7712  if (child_partially_grouped_rel)
7713  {
7714  partially_grouped_live_children =
7715  lappend(partially_grouped_live_children,
7716  child_partially_grouped_rel);
7717  }
7718  else
7719  partial_grouping_valid = false;
7720 
7721  if (patype == PARTITIONWISE_AGGREGATE_FULL)
7722  {
7723  set_cheapest(child_grouped_rel);
7724  grouped_live_children = lappend(grouped_live_children,
7725  child_grouped_rel);
7726  }
7727 
7728  pfree(appinfos);
7729  }
7730 
7731  /*
7732  * Try to create append paths for partially grouped children. For full
7733  * partitionwise aggregation, we might have paths in the partial_pathlist
7734  * if parallel aggregation is possible. For partial partitionwise
7735  * aggregation, we may have paths in both pathlist and partial_pathlist.
7736  *
7737  * NB: We must have a partially grouped path for every child in order to
7738  * generate a partially grouped path for this relation.
7739  */
7740  if (partially_grouped_rel && partial_grouping_valid)
7741  {
7742  Assert(partially_grouped_live_children != NIL);
7743 
7744  add_paths_to_append_rel(root, partially_grouped_rel,
7745  partially_grouped_live_children);
7746 
7747  /*
7748  * We need call set_cheapest, since the finalization step will use the
7749  * cheapest path from the rel.
7750  */
7751  if (partially_grouped_rel->pathlist)
7752  set_cheapest(partially_grouped_rel);
7753  }
7754 
7755  /* If possible, create append paths for fully grouped children. */
7756  if (patype == PARTITIONWISE_AGGREGATE_FULL)
7757  {
7758  Assert(grouped_live_children != NIL);
7759 
7760  add_paths_to_append_rel(root, grouped_rel, grouped_live_children);
7761  }
7762 }
#define NIL
Definition: pg_list.h:65
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:672
static RelOptInfo * make_grouping_rel(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, Node *havingQual)
Definition: planner.c:3916
void add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel, List *live_childrels)
Definition: allpaths.c:1294
Definition: nodes.h:529
PartitionwiseAggregateType patype
Definition: pathnodes.h:2494
void pfree(void *pointer)
Definition: mcxt.c:1056
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:1418
int nparts
Definition: pathnodes.h:743
Relids relids
Definition: pathnodes.h:665
List * lappend(List *list, void *datum)
Definition: list.c:321
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:728
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
List * exprs
Definition: pathnodes.h:1074
#define Assert(condition)
Definition: c.h:738
struct RelOptInfo ** part_rels
Definition: pathnodes.h:750
static void create_ordinary_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, RelOptInfo *grouped_rel, const AggClauseCosts *agg_costs, grouping_sets_data *gd, GroupPathExtraData *extra, RelOptInfo **partially_grouped_rel_p)
Definition: planner.c:4055
List * pathlist
Definition: pathnodes.h:679
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:194

◆ create_window_paths()

static RelOptInfo * create_window_paths ( PlannerInfo root,
RelOptInfo input_rel,
PathTarget input_target,
PathTarget output_target,
bool  output_target_parallel_safe,
WindowFuncLists wflists,
List activeWindows 
)
static

Definition at line 4553 of file planner.c.

References RelOptInfo::cheapest_total_path, RelOptInfo::consider_parallel, create_one_window_path(), create_upper_paths_hook, RelOptInfo::fdwroutine, fetch_upper_rel(), FdwRoutine::GetForeignUpperPaths, is_parallel_safe(), lfirst, Path::pathkeys, pathkeys_contained_in(), RelOptInfo::pathlist, RelOptInfo::serverid, set_cheapest(), UPPERREL_WINDOW, RelOptInfo::userid, RelOptInfo::useridiscurrent, and PlannerInfo::window_pathkeys.

Referenced by grouping_planner().

4560 {
4561  RelOptInfo *window_rel;
4562  ListCell *lc;
4563 
4564  /* For now, do all work in the (WINDOW, NULL) upperrel */
4565  window_rel = fetch_upper_rel(root, UPPERREL_WINDOW, NULL);
4566 
4567  /*
4568  * If the input relation is not parallel-safe, then the window relation
4569  * can't be parallel-safe, either. Otherwise, we need to examine the
4570  * target list and active windows for non-parallel-safe constructs.
4571  */
4572  if (input_rel->consider_parallel && output_target_parallel_safe &&
4573  is_parallel_safe(root, (Node *) activeWindows))
4574  window_rel->consider_parallel = true;
4575 
4576  /*
4577  * If the input rel belongs to a single FDW, so does the window rel.
4578  */
4579  window_rel->serverid = input_rel->serverid;
4580  window_rel->userid = input_rel->userid;
4581  window_rel->useridiscurrent = input_rel->useridiscurrent;
4582  window_rel->fdwroutine = input_rel->fdwroutine;
4583 
4584  /*
4585  * Consider computing window functions starting from the existing
4586  * cheapest-total path (which will likely require a sort) as well as any
4587  * existing paths that satisfy root->window_pathkeys (which won't).
4588  */
4589  foreach(lc, input_rel->pathlist)
4590  {
4591  Path *path = (Path *) lfirst(lc);
4592 
4593  if (path == input_rel->cheapest_total_path ||
4596  window_rel,
4597  path,
4598  input_target,
4599  output_target,
4600  wflists,
4601  activeWindows);
4602  }
4603 
4604  /*
4605  * If there is an FDW that's responsible for all baserels of the query,
4606  * let it consider adding ForeignPaths.
4607  */
4608  if (window_rel->fdwroutine &&
4609  window_rel->fdwroutine->GetForeignUpperPaths)
4610  window_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_WINDOW,
4611  input_rel, window_rel,
4612  NULL);
4613 
4614  /* Let extensions possibly add some more paths */
4616  (*create_upper_paths_hook) (root, UPPERREL_WINDOW,
4617  input_rel, window_rel, NULL);
4618 
4619  /* Now choose the best path(s) */
4620  set_cheapest(window_rel);
4621 
4622  return window_rel;
4623 }
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
static void create_one_window_path(PlannerInfo *root, RelOptInfo *window_rel, Path *path, PathTarget *input_target, PathTarget *output_target, WindowFuncLists *wflists, List *activeWindows)
Definition: planner.c:4637
Oid userid
Definition: pathnodes.h:715
Definition: nodes.h:529
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
bool useridiscurrent
Definition: pathnodes.h:716
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:856
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1193
struct Path * cheapest_total_path
Definition: pathnodes.h:683
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:244
Oid serverid
Definition: pathnodes.h:714
List * window_pathkeys
Definition: pathnodes.h:301
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
List * pathkeys
Definition: pathnodes.h:1158
#define lfirst(lc)
Definition: pg_list.h:190
bool consider_parallel
Definition: pathnodes.h:673
List * pathlist
Definition: pathnodes.h:679

◆ expression_planner()

Expr* expression_planner ( Expr expr)

Definition at line 6160 of file planner.c.

References eval_const_expressions(), and fix_opfuncids().

Referenced by ATExecAddColumn(), ATPrepAlterColumnType(), BeginCopyFrom(), CheckMutability(), ComputePartitionAttrs(), ExecPrepareCheck(), ExecPrepareExpr(), ExecPrepareQual(), load_domaintype_info(), set_baserel_partition_constraint(), slot_fill_defaults(), StoreAttrDefault(), and transformPartitionBoundValue().

6161 {
6162  Node *result;
6163 
6164  /*
6165  * Convert named-argument function calls, insert default arguments and
6166  * simplify constant subexprs
6167  */
6168  result = eval_const_expressions(NULL, (Node *) expr);
6169 
6170  /* Fill in opfuncid values if missing */
6171  fix_opfuncids(result);
6172 
6173  return (Expr *) result;
6174 }
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1587
Definition: nodes.h:529
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2255

◆ expression_planner_with_deps()

Expr* expression_planner_with_deps ( Expr expr,
List **  relationOids,
List **  invalItems 
)

Definition at line 6187 of file planner.c.

References eval_const_expressions(), extract_query_dependencies_walker(), fix_opfuncids(), PlannerInfo::glob, PlannerGlobal::invalItems, MemSet, NIL, PlannerGlobal::relationOids, T_PlannerGlobal, T_PlannerInfo, PlannerGlobal::type, and PlannerInfo::type.

Referenced by GetCachedExpression().

6190 {
6191  Node *result;
6192  PlannerGlobal glob;
6193  PlannerInfo root;
6194 
6195  /* Make up dummy planner state so we can use setrefs machinery */
6196  MemSet(&glob, 0, sizeof(glob));
6197  glob.type = T_PlannerGlobal;
6198  glob.relationOids = NIL;
6199  glob.invalItems = NIL;
6200 
6201  MemSet(&root, 0, sizeof(root));
6202  root.type = T_PlannerInfo;
6203  root.glob = &glob;
6204 
6205  /*
6206  * Convert named-argument function calls, insert default arguments and
6207  * simplify constant subexprs. Collect identities of inlined functions
6208  * and elided domains, too.
6209  */
6210  result = eval_const_expressions(&root, (Node *) expr);
6211 
6212  /* Fill in opfuncid values if missing */
6213  fix_opfuncids(result);
6214 
6215  /*
6216  * Now walk the finished expression to find anything else we ought to
6217  * record as an expression dependency.
6218  */
6219  (void) extract_query_dependencies_walker(result, &root);
6220 
6221  *relationOids = glob.relationOids;
6222  *invalItems = glob.invalItems;
6223 
6224  return (Expr *) result;
6225 }
#define NIL
Definition: pg_list.h:65
void fix_opfuncids(Node *node)
Definition: nodeFuncs.c:1587
Definition: nodes.h:529
#define MemSet(start, val, len)
Definition: c.h:971
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2255
PlannerGlobal * glob
Definition: pathnodes.h:181
List * invalItems
Definition: pathnodes.h:129
NodeTag type
Definition: pathnodes.h:177
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:2827
NodeTag type
Definition: pathnodes.h:107
List * relationOids
Definition: pathnodes.h:127

◆ extract_rollup_sets()

static List * extract_rollup_sets ( List groupingSets)
static

Definition at line 3337 of file planner.c.

References Assert, BipartiteMatch(), BipartiteMatchFree(), bms_add_member(), bms_equal(), bms_free(), bms_is_subset(), for_each_cell, i, lappend(), lcons(), lfirst, lfirst_int, list_concat(), list_head(), list_length(), list_make1, lnext(), NIL, BipartiteMatchState::pair_uv, BipartiteMatchState::pair_vu, palloc(), palloc0(), and pfree().

Referenced by preprocess_grouping_sets().

3338 {
3339  int num_sets_raw = list_length(groupingSets);
3340  int num_empty = 0;
3341  int num_sets = 0; /* distinct sets */
3342  int num_chains = 0;
3343  List *result = NIL;
3344  List **results;
3345  List **orig_sets;
3346  Bitmapset **set_masks;
3347  int *chains;
3348  short **adjacency;
3349  short *adjacency_buf;
3351  int i;
3352  int j;
3353  int j_size;
3354  ListCell *lc1 = list_head(groupingSets);
3355  ListCell *lc;
3356 
3357  /*
3358  * Start by stripping out empty sets. The algorithm doesn't require this,
3359  * but the planner currently needs all empty sets to be returned in the
3360  * first list, so we strip them here and add them back after.
3361  */
3362  while (lc1 && lfirst(lc1) == NIL)
3363  {
3364  ++num_empty;
3365  lc1 = lnext(groupingSets, lc1);
3366  }
3367 
3368  /* bail out now if it turns out that all we had were empty sets. */
3369  if (!lc1)
3370  return list_make1(groupingSets);
3371 
3372  /*----------
3373  * We don't strictly need to remove duplicate sets here, but if we don't,
3374  * they tend to become scattered through the result, which is a bit
3375  * confusing (and irritating if we ever decide to optimize them out).
3376  * So we remove them here and add them back after.
3377  *
3378  * For each non-duplicate set, we fill in the following:
3379  *
3380  * orig_sets[i] = list of the original set lists
3381  * set_masks[i] = bitmapset for testing inclusion
3382  * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
3383  *
3384  * chains[i] will be the result group this set is assigned to.
3385  *
3386  * We index all of these from 1 rather than 0 because it is convenient
3387  * to leave 0 free for the NIL node in the graph algorithm.
3388  *----------
3389  */
3390  orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
3391  set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
3392  adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
3393  adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));
3394 
3395  j_size = 0;
3396  j = 0;
3397  i = 1;
3398 
3399  for_each_cell(lc, groupingSets, lc1)
3400  {
3401  List *candidate = (List *) lfirst(lc);
3402  Bitmapset *candidate_set = NULL;
3403  ListCell *lc2;
3404  int dup_of = 0;
3405 
3406  foreach(lc2, candidate)
3407  {
3408  candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
3409  }
3410 
3411  /* we can only be a dup if we're the same length as a previous set */
3412  if (j_size == list_length(candidate))
3413  {
3414  int k;
3415 
3416  for (k = j; k < i; ++k)
3417  {
3418  if (bms_equal(set_masks[k], candidate_set))
3419  {
3420  dup_of = k;
3421  break;
3422  }
3423  }
3424  }
3425  else if (j_size < list_length(candidate))
3426  {
3427  j_size = list_length(candidate);
3428  j = i;
3429  }
3430 
3431  if (dup_of > 0)
3432  {
3433  orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
3434  bms_free(candidate_set);
3435  }
3436  else
3437  {
3438  int k;
3439  int n_adj = 0;
3440 
3441  orig_sets[i] = list_make1(candidate);
3442  set_masks[i] = candidate_set;
3443 
3444  /* fill in adjacency list; no need to compare equal-size sets */
3445 
3446  for (k = j - 1; k > 0; --k)
3447  {
3448  if (bms_is_subset(set_masks[k], candidate_set))
3449  adjacency_buf[++n_adj] = k;
3450  }
3451 
3452  if (n_adj > 0)
3453  {
3454  adjacency_buf[0] = n_adj;
3455  adjacency[i] = palloc((n_adj + 1) * sizeof(short));
3456  memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
3457  }
3458  else
3459  adjacency[i] = NULL;
3460 
3461  ++i;
3462  }
3463  }
3464 
3465  num_sets = i - 1;
3466 
3467  /*
3468  * Apply the graph matching algorithm to do the work.
3469  */
3470  state = BipartiteMatch(num_sets, num_sets, adjacency);
3471 
3472  /*
3473  * Now, the state->pair* fields have the info we need to assign sets to
3474  * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
3475  * pair_vu[v] = u (both will be true, but we check both so that we can do
3476  * it in one pass)
3477  */
3478  chains = palloc0((num_sets + 1) * sizeof(int));
3479 
3480  for (i = 1; i <= num_sets; ++i)
3481  {
3482  int u = state->pair_vu[i];
3483  int v = state->pair_uv[i];
3484 
3485  if (u > 0 && u < i)
3486  chains[i] = chains[u];
3487  else if (v > 0 && v < i)
3488  chains[i] = chains[v];
3489  else
3490  chains[i] = ++num_chains;
3491  }
3492 
3493  /* build result lists. */
3494  results = palloc0((num_chains + 1) * sizeof(List *));
3495 
3496  for (i = 1; i <= num_sets; ++i)
3497  {
3498  int c = chains[i];
3499 
3500  Assert(c > 0);
3501 
3502  results[c] = list_concat(results[c], orig_sets[i]);
3503  }
3504 
3505  /* push any empty sets back on the first list. */
3506  while (num_empty-- > 0)
3507  results[1] = lcons(NIL, results[1]);
3508 
3509  /* make result list */
3510  for (i = 1; i <= num_chains; ++i)
3511  result = lappend(result, results[i]);
3512 
3513  /*
3514  * Free all the things.
3515  *
3516  * (This is over-fussy for small sets but for large sets we could have
3517  * tied up a nontrivial amount of memory.)
3518  */
3519  BipartiteMatchFree(state);
3520  pfree(results);
3521  pfree(chains);
3522  for (i = 1; i <= num_sets; ++i)
3523  if (adjacency[i])
3524  pfree(adjacency[i]);
3525  pfree(adjacency);
3526  pfree(adjacency_buf);
3527  pfree(orig_sets);
3528  for (i = 1; i <= num_sets; ++i)
3529  bms_free(set_masks[i]);
3530  pfree(set_masks);
3531 
3532  return result;
3533 }
#define NIL
Definition: pg_list.h:65
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:390
List * list_concat(List *list1, const List *list2)
Definition: list.c:515
void BipartiteMatchFree(BipartiteMatchState *state)
#define list_make1(x1)
Definition: pg_list.h:227
void pfree(void *pointer)
Definition: mcxt.c:1056
#define lfirst_int(lc)
Definition: pg_list.h:191
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:315
char * c
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
List * lappend(List *list, void *datum)
Definition: list.c:321
void * palloc0(Size size)
Definition: mcxt.c:980
BipartiteMatchState * BipartiteMatch(int u_size, int v_size, short **adjacency)
List * lcons(void *datum, List *list)
Definition: list.c:453
void bms_free(Bitmapset *a)
Definition: bitmapset.c:208
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
Definition: regguts.h:298
static int list_length(const List *l)
Definition: pg_list.h:169
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
void * palloc(Size size)
Definition: mcxt.c:949
int i
Definition: pg_list.h:50
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:94

◆ gather_grouping_paths()

static void gather_grouping_paths ( PlannerInfo root,
RelOptInfo rel 
)
static

Definition at line 7269 of file planner.c.

References add_path(), create_gather_merge_path(), create_incremental_sort_path(), create_sort_path(), enable_incrementalsort, generate_useful_gather_paths(), PlannerInfo::group_pathkeys, lfirst, linitial, list_length(), Path::parallel_workers, RelOptInfo::partial_pathlist, Path::pathkeys, pathkeys_contained_in(), pathkeys_count_contained_in(), RelOptInfo::reltarget, and Path::rows.

Referenced by add_paths_to_grouping_rel(), and create_ordinary_grouping_paths().

7270 {
7271  ListCell *lc;
7272  Path *cheapest_partial_path;
7273 
7274  /* Try Gather for unordered paths and Gather Merge for ordered ones. */
7275  generate_useful_gather_paths(root, rel, true);
7276 
7277  /* Try cheapest partial path + explicit Sort + Gather Merge. */
7278  cheapest_partial_path = linitial(rel->partial_pathlist);
7280  cheapest_partial_path->pathkeys))
7281  {
7282  Path *path;
7283  double total_groups;
7284 
7285  total_groups =
7286  cheapest_partial_path->rows * cheapest_partial_path->parallel_workers;
7287  path = (Path *) create_sort_path(root, rel, cheapest_partial_path,
7288  root->group_pathkeys,
7289  -1.0);
7290  path = (Path *)
7292  rel,
7293  path,
7294  rel->reltarget,
7295  root->group_pathkeys,
7296  NULL,
7297  &total_groups);
7298 
7299  add_path(rel, path);
7300  }
7301 
7302  /*
7303  * Consider incremental sort on all partial paths, if enabled.
7304  *
7305  * We can also skip the entire loop when we only have a single-item
7306  * group_pathkeys because then we can't possibly have a presorted
7307  * prefix of the list without having the list be fully sorted.
7308  */
7310  return;
7311 
7312  /* also consider incremental sort on partial paths, if enabled */
7313  foreach(lc, rel->partial_pathlist)
7314  {
7315  Path *path = (Path *) lfirst(lc);
7316  bool is_sorted;
7317  int presorted_keys;
7318  double total_groups;
7319 
7320  is_sorted = pathkeys_count_contained_in(root->group_pathkeys,
7321  path->pathkeys,
7322  &presorted_keys);
7323 
7324  if (is_sorted)
7325  continue;
7326 
7327  if (presorted_keys == 0)
7328  continue;
7329 
7330  path = (Path *) create_incremental_sort_path(root,
7331  rel,
7332  path,
7333  root->group_pathkeys,
7334  presorted_keys,
7335  -1.0);
7336 
7337  path = (Path *)
7339  rel,
7340  path,
7341  rel->reltarget,
7342  root->group_pathkeys,
7343  NULL,
7344  &total_groups);
7345 
7346  add_path(rel, path);
7347  }
7348 }
List * group_pathkeys
Definition: pathnodes.h:300
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
SortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2769
int parallel_workers
Definition: pathnodes.h:1151
List * partial_pathlist
Definition: pathnodes.h:681
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:343
#define linitial(l)
Definition: pg_list.h:195
void generate_useful_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
Definition: allpaths.c:2812
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:324
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1754
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2818
List * pathkeys
Definition: pathnodes.h:1158
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
static int list_length(const List *l)
Definition: pg_list.h:169
bool enable_incrementalsort
Definition: costsize.c:131
struct PathTarget * reltarget
Definition: pathnodes.h:676

◆ get_cheapest_fractional_path()

Path* get_cheapest_fractional_path ( RelOptInfo rel,
double  tuple_fraction 
)

Definition at line 6001 of file planner.c.

References RelOptInfo::cheapest_total_path, compare_fractional_path_costs(), lfirst, RelOptInfo::pathlist, and Path::rows.

Referenced by make_subplan(), recurse_set_operations(), and standard_planner().

6002 {
6003  Path *best_path = rel->cheapest_total_path;
6004  ListCell *l;
6005 
6006  /* If all tuples will be retrieved, just return the cheapest-total path */
6007  if (tuple_fraction <= 0.0)
6008  return best_path;
6009 
6010  /* Convert absolute # of tuples to a fraction; no need to clamp to 0..1 */
6011  if (tuple_fraction >= 1.0 && best_path->rows > 0)
6012  tuple_fraction /= best_path->rows;
6013 
6014  foreach(l, rel->pathlist)
6015  {
6016  Path *path = (Path *) lfirst(l);
6017 
6018  if (path == rel->cheapest_total_path ||
6019  compare_fractional_path_costs(best_path, path, tuple_fraction) <= 0)
6020  continue;
6021 
6022  best_path = path;
6023  }
6024 
6025  return best_path;
6026 }
struct Path * cheapest_total_path
Definition: pathnodes.h:683
#define lfirst(lc)
Definition: pg_list.h:190
double rows
Definition: pathnodes.h:1154
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:117
List * pathlist
Definition: pathnodes.h:679

◆ get_number_of_groups()

static double get_number_of_groups ( PlannerInfo root,
double  path_rows,
grouping_sets_data gd,
List target_list 
)
static

Definition at line 3685 of file planner.c.

References Assert, grouping_sets_data::dNumHashGroups, estimate_num_groups(), forboth, get_sortgrouplist_exprs(), Query::groupClause, RollupData::groupClause, Query::groupingSets, RollupData::gsets, RollupData::gsets_data, Query::hasAggs, grouping_sets_data::hash_sets_idx, PlannerInfo::hasHavingQual, lfirst, lfirst_node, list_length(), GroupingSetData::numGroups, RollupData::numGroups, parse(), PlannerInfo::parse, grouping_sets_data::rollups, and grouping_sets_data::unsortable_sets.

Referenced by create_ordinary_grouping_paths(), and create_partial_grouping_paths().

3689 {
3690  Query *parse = root->parse;
3691  double dNumGroups;
3692 
3693  if (parse->groupClause)
3694  {
3695  List *groupExprs;
3696 
3697  if (parse->groupingSets)
3698  {
3699  /* Add up the estimates for each grouping set */
3700  ListCell *lc;
3701  ListCell *lc2;
3702 
3703  Assert(gd); /* keep Coverity happy */
3704 
3705  dNumGroups = 0;
3706 
3707  foreach(lc, gd->rollups)
3708  {
3709  RollupData *rollup = lfirst_node(RollupData, lc);
3710  ListCell *lc;
3711 
3712  groupExprs = get_sortgrouplist_exprs(rollup->groupClause,
3713  target_list);
3714 
3715  rollup->numGroups = 0.0;
3716 
3717  forboth(lc, rollup->gsets, lc2, rollup->gsets_data)
3718  {
3719  List *gset = (List *) lfirst(lc);
3721  double numGroups = estimate_num_groups(root,
3722  groupExprs,
3723  path_rows,
3724  &gset);
3725 
3726  gs->numGroups = numGroups;
3727  rollup->numGroups += numGroups;
3728  }
3729 
3730  dNumGroups += rollup->numGroups;
3731  }
3732 
3733  if (gd->hash_sets_idx)
3734  {
3735  ListCell *lc;
3736 
3737  gd->dNumHashGroups = 0;
3738 
3739  groupExprs = get_sortgrouplist_exprs(parse->groupClause,
3740  target_list);
3741 
3742  forboth(lc, gd->hash_sets_idx, lc2, gd->unsortable_sets)
3743  {
3744  List *gset = (List *) lfirst(lc);
3746  double numGroups = estimate_num_groups(root,
3747  groupExprs,
3748  path_rows,
3749  &gset);
3750 
3751  gs->numGroups = numGroups;
3752  gd->dNumHashGroups += numGroups;
3753  }
3754 
3755  dNumGroups += gd->dNumHashGroups;
3756  }
3757  }
3758  else
3759  {
3760  /* Plain GROUP BY */
3761  groupExprs = get_sortgrouplist_exprs(parse->groupClause,
3762  target_list);
3763 
3764  dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
3765  NULL);
3766  }
3767  }
3768  else if (parse->groupingSets)
3769  {
3770  /* Empty grouping sets ... one result row for each one */
3771  dNumGroups = list_length(parse->groupingSets);
3772  }
3773  else if (parse->hasAggs || root->hasHavingQual)
3774  {
3775  /* Plain aggregation, one result row */
3776  dNumGroups = 1;
3777  }
3778  else
3779  {
3780  /* Not grouping */
3781  dNumGroups = 1;
3782  }
3783 
3784  return dNumGroups;
3785 }
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset)
Definition: selfuncs.c:3205
Query * parse
Definition: pathnodes.h:179
List * groupClause
Definition: pathnodes.h:1722
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:419
bool hasAggs
Definition: parsenodes.h:125
List * hash_sets_idx
Definition: planner.c:109
List * groupingSets
Definition: parsenodes.h:150
double dNumHashGroups
Definition: planner.c:110
double numGroups
Definition: pathnodes.h:1725
#define lfirst_node(type, lc)
Definition: pg_list.h:193
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
static int list_length(const List *l)
Definition: pg_list.h:169
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:414
List * unsortable_sets
Definition: planner.c:114
List * groupClause
Definition: parsenodes.h:148
double numGroups
Definition: pathnodes.h:1716
bool hasHavingQual
Definition: pathnodes.h:347
Definition: pg_list.h:50
List * gsets_data
Definition: pathnodes.h:1724
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
List * gsets
Definition: pathnodes.h:1723

◆ group_by_has_partkey()

static bool group_by_has_partkey ( RelOptInfo input_rel,
List targetList,
List groupClause 
)
static

Definition at line 7771 of file planner.c.

References Assert, get_sortgrouplist_exprs(), lfirst, list_member(), RelOptInfo::part_scheme, RelOptInfo::partexprs, and PartitionSchemeData::partnatts.

Referenced by create_ordinary_grouping_paths().

7774 {
7775  List *groupexprs = get_sortgrouplist_exprs(groupClause, targetList);
7776  int cnt = 0;
7777  int partnatts;
7778 
7779  /* Input relation should be partitioned. */
7780  Assert(input_rel->part_scheme);
7781 
7782  /* Rule out early, if there are no partition keys present. */
7783  if (!input_rel->partexprs)
7784  return false;
7785 
7786  partnatts = input_rel->part_scheme->partnatts;
7787 
7788  for (cnt = 0; cnt < partnatts; cnt++)
7789  {
7790  List *partexprs = input_rel->partexprs[cnt];
7791  ListCell *lc;
7792  bool found = false;
7793 
7794  foreach(lc, partexprs)
7795  {
7796  Expr *partexpr = lfirst(lc);
7797 
7798  if (list_member(groupexprs, partexpr))
7799  {
7800  found = true;
7801  break;
7802  }
7803  }
7804 
7805  /*
7806  * If none of the partition key expressions match with any of the
7807  * GROUP BY expression, return false.
7808  */
7809  if (!found)
7810  return false;
7811  }
7812 
7813  return true;
7814 }
List ** partexprs
Definition: pathnodes.h:753
bool list_member(const List *list, const void *datum)
Definition: list.c:613
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
List * get_sortgrouplist_exprs(List *sgClauses, List *targetList)
Definition: tlist.c:414
PartitionScheme part_scheme
Definition: pathnodes.h:742
Definition: pg_list.h:50

◆ grouping_planner()

static void grouping_planner ( PlannerInfo root,
bool  inheritance_update,
double  tuple_fraction 
)
static

Definition at line 1833 of file planner.c.

References standard_qp_extra::activeWindows, add_partial_path(), add_path(), adjust_paths_for_srfs(), AGGSPLIT_SIMPLE, apply_scanjoin_target_to_paths(), Assert, assign_special_exec_param(), Query::canSetTag, RelOptInfo::cheapest_total_path, CMD_SELECT, Query::commandType, RelOptInfo::consider_parallel, copyObject, FinalPathExtraData::count_est, create_distinct_paths(), create_grouping_paths(), create_limit_path(), create_lockrows_path(), create_modifytable_path(), create_ordered_paths(), create_pathtarget, create_upper_paths_hook, create_window_paths(), Query::distinctClause, equal(), ereport, errcode(), errmsg(), ERROR, PathTarget::exprs, RelOptInfo::fdwroutine, fetch_upper_rel(), find_window_functions(), get_agg_clause_costs(), FdwRoutine::GetForeignUpperPaths, standard_qp_extra::groupClause, Query::groupClause, Query::groupingSets, Query::hasAggs, PlannerInfo::hasHavingQual, PlannerInfo::hasRecursion, Query::hasTargetSRFs, Query::hasWindowFuncs, Query::havingQual, is_parallel_safe(), LCS_asString(), lfirst, FinalPathExtraData::limit_needed, limit_needed(), PlannerInfo::limit_tuples, FinalPathExtraData::limit_tuples, Query::limitCount, Query::limitOffset, Query::limitOption, linitial_int, linitial_node, list_length(), list_make1, list_make1_int, make_group_input_target(), make_pathkeys_for_sortclauses(), make_sort_input_target(), make_window_input_target(), MemSet, NIL, WindowFuncLists::numWindowFuncs, FinalPathExtraData::offset_est, Query::onConflict, parse(), PlannerInfo::parse, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, Path::pathtarget, plan_set_operations(), postprocess_setop_tlist(), preprocess_groupclause(), preprocess_grouping_sets(), preprocess_limit(), preprocess_minmax_aggregates(), preprocess_targetlist(), PlannerInfo::processed_tlist, PlannerInfo::query_level, query_planner(), RelOptInfo::reltarget, Query::resultRelation, Query::returningList, grouping_sets_data::rollups, Query::rowMarks, PlannerInfo::rowMarks, rt_fetch, Query::rtable, select_active_windows(), RelOptInfo::serverid, Query::setOperations, PlannerInfo::sort_pathkeys, Query::sortClause, split_pathtarget_at_srfs(), standard_qp_callback(), Query::targetList, PlannerInfo::tuple_fraction, PlannerInfo::upper_targets, UPPERREL_DISTINCT, UPPERREL_FINAL, UPPERREL_GROUP_AGG, UPPERREL_ORDERED, UPPERREL_WINDOW, RelOptInfo::userid, RelOptInfo::useridiscurrent, Query::windowClause, and Query::withCheckOptions.

Referenced by inheritance_planner(), and subquery_planner().

1835 {
1836  Query *parse = root->parse;
1837  int64 offset_est = 0;
1838  int64 count_est = 0;
1839  double limit_tuples = -1.0;
1840  bool have_postponed_srfs = false;
1841  PathTarget *final_target;
1842  List *final_targets;
1843  List *final_targets_contain_srfs;
1844  bool final_target_parallel_safe;
1845  RelOptInfo *current_rel;
1846  RelOptInfo *final_rel;
1847  FinalPathExtraData extra;
1848  ListCell *lc;
1849 
1850  /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
1851  if (parse->limitCount || parse->limitOffset)
1852  {
1853  tuple_fraction = preprocess_limit(root, tuple_fraction,
1854  &offset_est, &count_est);
1855 
1856  /*
1857  * If we have a known LIMIT, and don't have an unknown OFFSET, we can
1858  * estimate the effects of using a bounded sort.
1859  */
1860  if (count_est > 0 && offset_est >= 0)
1861  limit_tuples = (double) count_est + (double) offset_est;
1862  }
1863 
1864  /* Make tuple_fraction accessible to lower-level routines */
1865  root->tuple_fraction = tuple_fraction;
1866 
1867  if (parse->setOperations)
1868  {
1869  /*
1870  * If there's a top-level ORDER BY, assume we have to fetch all the
1871  * tuples. This might be too simplistic given all the hackery below
1872  * to possibly avoid the sort; but the odds of accurate estimates here
1873  * are pretty low anyway. XXX try to get rid of this in favor of
1874  * letting plan_set_operations generate both fast-start and
1875  * cheapest-total paths.
1876  */
1877  if (parse->sortClause)
1878  root->tuple_fraction = 0.0;
1879 
1880  /*
1881  * Construct Paths for set operations. The results will not need any
1882  * work except perhaps a top-level sort and/or LIMIT. Note that any
1883  * special work for recursive unions is the responsibility of
1884  * plan_set_operations.
1885  */
1886  current_rel = plan_set_operations(root);
1887 
1888  /*
1889  * We should not need to call preprocess_targetlist, since we must be
1890  * in a SELECT query node. Instead, use the processed_tlist returned
1891  * by plan_set_operations (since this tells whether it returned any
1892  * resjunk columns!), and transfer any sort key information from the
1893  * original tlist.
1894  */
1895  Assert(parse->commandType == CMD_SELECT);
1896 
1897  /* for safety, copy processed_tlist instead of modifying in-place */
1898  root->processed_tlist =
1900  parse->targetList);
1901 
1902  /* Also extract the PathTarget form of the setop result tlist */
1903  final_target = current_rel->cheapest_total_path->pathtarget;
1904 
1905  /* And check whether it's parallel safe */
1906  final_target_parallel_safe =
1907  is_parallel_safe(root, (Node *) final_target->exprs);
1908 
1909  /* The setop result tlist couldn't contain any SRFs */
1910  Assert(!parse->hasTargetSRFs);
1911  final_targets = final_targets_contain_srfs = NIL;
1912 
1913  /*
1914  * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
1915  * checked already, but let's make sure).
1916  */
1917  if (parse->rowMarks)
1918  ereport(ERROR,
1919  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1920  /*------
1921  translator: %s is a SQL row locking clause such as FOR UPDATE */
1922  errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
1924  parse->rowMarks)->strength))));
1925 
1926  /*
1927  * Calculate pathkeys that represent result ordering requirements
1928  */
1929  Assert(parse->distinctClause == NIL);
1931  parse->sortClause,
1932  root->processed_tlist);
1933  }
1934  else
1935  {
1936  /* No set operations, do regular planning */
1937  PathTarget *sort_input_target;
1938  List *sort_input_targets;
1939  List *sort_input_targets_contain_srfs;
1940  bool sort_input_target_parallel_safe;
1941  PathTarget *grouping_target;
1942  List *grouping_targets;
1943  List *grouping_targets_contain_srfs;
1944  bool grouping_target_parallel_safe;
1945  PathTarget *scanjoin_target;
1946  List *scanjoin_targets;
1947  List *scanjoin_targets_contain_srfs;
1948  bool scanjoin_target_parallel_safe;
1949  bool scanjoin_target_same_exprs;
1950  bool have_grouping;
1951  AggClauseCosts agg_costs;
1952  WindowFuncLists *wflists = NULL;
1953  List *activeWindows = NIL;
1954  grouping_sets_data *gset_data = NULL;
1955  standard_qp_extra qp_extra;
1956 
1957  /* A recursive query should always have setOperations */
1958  Assert(!root->hasRecursion);
1959 
1960  /* Preprocess grouping sets and GROUP BY clause, if any */
1961  if (parse->groupingSets)
1962  {
1963  gset_data = preprocess_grouping_sets(root);
1964  }
1965  else
1966  {
1967  /* Preprocess regular GROUP BY clause, if any */
1968  if (parse->groupClause)
1969  parse->groupClause = preprocess_groupclause(root, NIL);
1970  }
1971 
1972  /*
1973  * Preprocess targetlist. Note that much of the remaining planning
1974  * work will be done with the PathTarget representation of tlists, but
1975  * we must also maintain the full representation of the final tlist so
1976  * that we can transfer its decoration (resnames etc) to the topmost
1977  * tlist of the finished Plan. This is kept in processed_tlist.
1978  */
1979  root->processed_tlist = preprocess_targetlist(root);
1980 
1981  /*
1982  * Collect statistics about aggregates for estimating costs, and mark
1983  * all the aggregates with resolved aggtranstypes. We must do this
1984  * before slicing and dicing the tlist into various pathtargets, else
1985  * some copies of the Aggref nodes might escape being marked with the
1986  * correct transtypes.
1987  *
1988  * Note: currently, we do not detect duplicate aggregates here. This
1989  * may result in somewhat-overestimated cost, which is fine for our
1990  * purposes since all Paths will get charged the same. But at some
1991  * point we might wish to do that detection in the planner, rather
1992  * than during executor startup.
1993  */
1994  MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1995  if (parse->hasAggs)
1996  {
1997  get_agg_clause_costs(root, (Node *) root->processed_tlist,
1998  AGGSPLIT_SIMPLE, &agg_costs);
2000  &agg_costs);
2001  }
2002 
2003  /*
2004  * Locate any window functions in the tlist. (We don't need to look
2005  * anywhere else, since expressions used in ORDER BY will be in there
2006  * too.) Note that they could all have been eliminated by constant
2007  * folding, in which case we don't need to do any more work.
2008  */
2009  if (parse->hasWindowFuncs)
2010  {
2011  wflists = find_window_functions((Node *) root->processed_tlist,
2012  list_length(parse->windowClause));
2013  if (wflists->numWindowFuncs > 0)
2014  activeWindows = select_active_windows(root, wflists);
2015  else
2016  parse->hasWindowFuncs = false;
2017  }
2018 
2019  /*
2020  * Preprocess MIN/MAX aggregates, if any. Note: be careful about
2021  * adding logic between here and the query_planner() call. Anything
2022  * that is needed in MIN/MAX-optimizable cases will have to be
2023  * duplicated in planagg.c.
2024  */
2025  if (parse->hasAggs)
2027 
2028  /*
2029  * Figure out whether there's a hard limit on the number of rows that
2030  * query_planner's result subplan needs to return. Even if we know a
2031  * hard limit overall, it doesn't apply if the query has any
2032  * grouping/aggregation operations, or SRFs in the tlist.
2033  */
2034  if (parse->groupClause ||
2035  parse->groupingSets ||
2036  parse->distinctClause ||
2037  parse->hasAggs ||
2038  parse->hasWindowFuncs ||
2039  parse->hasTargetSRFs ||
2040  root->hasHavingQual)
2041  root->limit_tuples = -1.0;
2042  else
2043  root->limit_tuples = limit_tuples;
2044 
2045  /* Set up data needed by standard_qp_callback */
2046  qp_extra.activeWindows = activeWindows;
2047  qp_extra.groupClause = (gset_data
2048  ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL)
2049  : parse->groupClause);
2050 
2051  /*
2052  * Generate the best unsorted and presorted paths for the scan/join
2053  * portion of this Query, ie the processing represented by the
2054  * FROM/WHERE clauses. (Note there may not be any presorted paths.)
2055  * We also generate (in standard_qp_callback) pathkey representations
2056  * of the query's sort clause, distinct clause, etc.
2057  */
2058  current_rel = query_planner(root, standard_qp_callback, &qp_extra);
2059 
2060  /*
2061  * Convert the query's result tlist into PathTarget format.
2062  *
2063  * Note: this cannot be done before query_planner() has performed
2064  * appendrel expansion, because that might add resjunk entries to
2065  * root->processed_tlist. Waiting till afterwards is also helpful
2066  * because the target width estimates can use per-Var width numbers
2067  * that were obtained within query_planner().
2068  */
2069  final_target = create_pathtarget(root, root->processed_tlist);
2070  final_target_parallel_safe =
2071  is_parallel_safe(root, (Node *) final_target->exprs);
2072 
2073  /*
2074  * If ORDER BY was given, consider whether we should use a post-sort
2075  * projection, and compute the adjusted target for preceding steps if
2076  * so.
2077  */
2078  if (parse->sortClause)
2079  {
2080  sort_input_target = make_sort_input_target(root,
2081  final_target,
2082  &have_postponed_srfs);
2083  sort_input_target_parallel_safe =
2084  is_parallel_safe(root, (Node *) sort_input_target->exprs);
2085  }
2086  else
2087  {
2088  sort_input_target = final_target;
2089  sort_input_target_parallel_safe = final_target_parallel_safe;
2090  }
2091 
2092  /*
2093  * If we have window functions to deal with, the output from any
2094  * grouping step needs to be what the window functions want;
2095  * otherwise, it should be sort_input_target.
2096  */
2097  if (activeWindows)
2098  {
2099  grouping_target = make_window_input_target(root,
2100  final_target,
2101  activeWindows);
2102  grouping_target_parallel_safe =
2103  is_parallel_safe(root, (Node *) grouping_target->exprs);
2104  }
2105  else
2106  {
2107  grouping_target = sort_input_target;
2108  grouping_target_parallel_safe = sort_input_target_parallel_safe;
2109  }
2110 
2111  /*
2112  * If we have grouping or aggregation to do, the topmost scan/join
2113  * plan node must emit what the grouping step wants; otherwise, it
2114  * should emit grouping_target.
2115  */
2116  have_grouping = (parse->groupClause || parse->groupingSets ||
2117  parse->hasAggs || root->hasHavingQual);
2118  if (have_grouping)
2119  {
2120  scanjoin_target = make_group_input_target(root, final_target);
2121  scanjoin_target_parallel_safe =
2122  is_parallel_safe(root, (Node *) scanjoin_target->exprs);
2123  }
2124  else
2125  {
2126  scanjoin_target = grouping_target;
2127  scanjoin_target_parallel_safe = grouping_target_parallel_safe;
2128  }
2129 
2130  /*
2131  * If there are any SRFs in the targetlist, we must separate each of
2132  * these PathTargets into SRF-computing and SRF-free targets. Replace
2133  * each of the named targets with a SRF-free version, and remember the
2134  * list of additional projection steps we need to add afterwards.
2135  */
2136  if (parse->hasTargetSRFs)
2137  {
2138  /* final_target doesn't recompute any SRFs in sort_input_target */
2139  split_pathtarget_at_srfs(root, final_target, sort_input_target,
2140  &final_targets,
2141  &final_targets_contain_srfs);
2142  final_target = linitial_node(PathTarget, final_targets);
2143  Assert(!linitial_int(final_targets_contain_srfs));
2144  /* likewise for sort_input_target vs. grouping_target */
2145  split_pathtarget_at_srfs(root, sort_input_target, grouping_target,
2146  &sort_input_targets,
2147  &sort_input_targets_contain_srfs);
2148  sort_input_target = linitial_node(PathTarget, sort_input_targets);
2149  Assert(!linitial_int(sort_input_targets_contain_srfs));
2150  /* likewise for grouping_target vs. scanjoin_target */
2151  split_pathtarget_at_srfs(root, grouping_target, scanjoin_target,
2152  &grouping_targets,
2153  &grouping_targets_contain_srfs);
2154  grouping_target = linitial_node(PathTarget, grouping_targets);
2155  Assert(!linitial_int(grouping_targets_contain_srfs));
2156  /* scanjoin_target will not have any SRFs precomputed for it */
2157  split_pathtarget_at_srfs(root, scanjoin_target, NULL,
2158  &scanjoin_targets,
2159  &scanjoin_targets_contain_srfs);
2160  scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
2161  Assert(!linitial_int(scanjoin_targets_contain_srfs));
2162  }
2163  else
2164  {
2165  /* initialize lists; for most of these, dummy values are OK */
2166  final_targets = final_targets_contain_srfs = NIL;
2167  sort_input_targets = sort_input_targets_contain_srfs = NIL;
2168  grouping_targets = grouping_targets_contain_srfs = NIL;
2169  scanjoin_targets = list_make1(scanjoin_target);
2170  scanjoin_targets_contain_srfs = NIL;
2171  }
2172 
2173  /* Apply scan/join target. */
2174  scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
2175  && equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
2176  apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
2177  scanjoin_targets_contain_srfs,
2178  scanjoin_target_parallel_safe,
2179  scanjoin_target_same_exprs);
2180 
2181  /*
2182  * Save the various upper-rel PathTargets we just computed into
2183  * root->upper_targets[]. The core code doesn't use this, but it
2184  * provides a convenient place for extensions to get at the info. For
2185  * consistency, we save all the intermediate targets, even though some
2186  * of the corresponding upperrels might not be needed for this query.
2187  */
2188  root->upper_targets[UPPERREL_FINAL] = final_target;
2189  root->upper_targets[UPPERREL_ORDERED] = final_target;
2190  root->upper_targets[UPPERREL_DISTINCT] = sort_input_target;
2191  root->upper_targets[UPPERREL_WINDOW] = sort_input_target;
2192  root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target;
2193 
2194  /*
2195  * If we have grouping and/or aggregation, consider ways to implement
2196  * that. We build a new upperrel representing the output of this
2197  * phase.
2198  */
2199  if (have_grouping)
2200  {
2201  current_rel = create_grouping_paths(root,
2202  current_rel,
2203  grouping_target,
2204  grouping_target_parallel_safe,
2205  &agg_costs,
2206  gset_data);
2207  /* Fix things up if grouping_target contains SRFs */
2208  if (parse->hasTargetSRFs)
2209  adjust_paths_for_srfs(root, current_rel,
2210  grouping_targets,
2211  grouping_targets_contain_srfs);
2212  }
2213 
2214  /*
2215  * If we have window functions, consider ways to implement those. We
2216  * build a new upperrel representing the output of this phase.
2217  */
2218  if (activeWindows)
2219  {
2220  current_rel = create_window_paths(root,
2221  current_rel,
2222  grouping_target,
2223  sort_input_target,
2224  sort_input_target_parallel_safe,
2225  wflists,
2226  activeWindows);
2227  /* Fix things up if sort_input_target contains SRFs */
2228  if (parse->hasTargetSRFs)
2229  adjust_paths_for_srfs(root, current_rel,
2230  sort_input_targets,
2231  sort_input_targets_contain_srfs);
2232  }
2233 
2234  /*
2235  * If there is a DISTINCT clause, consider ways to implement that. We
2236  * build a new upperrel representing the output of this phase.
2237  */
2238  if (parse->distinctClause)
2239  {
2240  current_rel = create_distinct_paths(root,
2241  current_rel);
2242  }
2243  } /* end of if (setOperations) */
2244 
2245  /*
2246  * If ORDER BY was given, consider ways to implement that, and generate a
2247  * new upperrel containing only paths that emit the correct ordering and
2248  * project the correct final_target. We can apply the original
2249  * limit_tuples limit in sort costing here, but only if there are no
2250  * postponed SRFs.
2251  */
2252  if (parse->sortClause)
2253  {
2254  current_rel = create_ordered_paths(root,
2255  current_rel,
2256  final_target,
2257  final_target_parallel_safe,
2258  have_postponed_srfs ? -1.0 :
2259  limit_tuples);
2260  /* Fix things up if final_target contains SRFs */
2261  if (parse->hasTargetSRFs)
2262  adjust_paths_for_srfs(root, current_rel,
2263  final_targets,
2264  final_targets_contain_srfs);
2265  }
2266 
2267  /*
2268  * Now we are prepared to build the final-output upperrel.
2269  */
2270  final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
2271 
2272  /*
2273  * If the input rel is marked consider_parallel and there's nothing that's
2274  * not parallel-safe in the LIMIT clause, then the final_rel can be marked
2275  * consider_parallel as well. Note that if the query has rowMarks or is
2276  * not a SELECT, consider_parallel will be false for every relation in the
2277  * query.
2278  */
2279  if (current_rel->consider_parallel &&
2280  is_parallel_safe(root, parse->limitOffset) &&
2281  is_parallel_safe(root, parse->limitCount))
2282  final_rel->consider_parallel = true;
2283 
2284  /*
2285  * If the current_rel belongs to a single FDW, so does the final_rel.
2286  */
2287  final_rel->serverid = current_rel->serverid;
2288  final_rel->userid = current_rel->userid;
2289  final_rel->useridiscurrent = current_rel->useridiscurrent;
2290  final_rel->fdwroutine = current_rel->fdwroutine;
2291 
2292  /*
2293  * Generate paths for the final_rel. Insert all surviving paths, with
2294  * LockRows, Limit, and/or ModifyTable steps added if needed.
2295  */
2296  foreach(lc, current_rel->pathlist)
2297  {
2298  Path *path = (Path *) lfirst(lc);
2299 
2300  /*
2301  * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
2302  * (Note: we intentionally test parse->rowMarks not root->rowMarks
2303  * here. If there are only non-locking rowmarks, they should be
2304  * handled by the ModifyTable node instead. However, root->rowMarks
2305  * is what goes into the LockRows node.)
2306  */
2307  if (parse->rowMarks)
2308  {
2309  path = (Path *) create_lockrows_path(root, final_rel, path,
2310  root->rowMarks,
2312  }
2313 
2314  /*
2315  * If there is a LIMIT/OFFSET clause, add the LIMIT node.
2316  */
2317  if (limit_needed(parse))
2318  {
2319  path = (Path *) create_limit_path(root, final_rel, path,
2320  parse->limitOffset,
2321  parse->limitCount,
2322  parse->limitOption,
2323  offset_est, count_est);
2324  }
2325 
2326  /*
2327  * If this is an INSERT/UPDATE/DELETE, and we're not being called from
2328  * inheritance_planner, add the ModifyTable node.
2329  */
2330  if (parse->commandType != CMD_SELECT && !inheritance_update)
2331  {
2332  Index rootRelation;
2333  List *withCheckOptionLists;
2334  List *returningLists;
2335  List *rowMarks;
2336 
2337  /*
2338  * If target is a partition root table, we need to mark the
2339  * ModifyTable node appropriately for that.
2340  */
2341  if (rt_fetch(parse->resultRelation, parse->rtable)->relkind ==
2342  RELKIND_PARTITIONED_TABLE)
2343  rootRelation = parse->resultRelation;
2344  else
2345  rootRelation = 0;
2346 
2347  /*
2348  * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
2349  * needed.
2350  */
2351  if (parse->withCheckOptions)
2352  withCheckOptionLists = list_make1(parse->withCheckOptions);
2353  else
2354  withCheckOptionLists = NIL;
2355 
2356  if (parse->returningList)
2357  returningLists = list_make1(parse->returningList);
2358  else
2359  returningLists = NIL;
2360 
2361  /*
2362  * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
2363  * will have dealt with fetching non-locked marked rows, else we
2364  * need to have ModifyTable do that.
2365  */
2366  if (parse->rowMarks)
2367  rowMarks = NIL;
2368  else
2369  rowMarks = root->rowMarks;
2370 
2371  path = (Path *)
2372  create_modifytable_path(root, final_rel,
2373  parse->commandType,
2374  parse->canSetTag,
2375  parse->resultRelation,
2376  rootRelation,
2377  false,
2379  list_make1(path),
2380  list_make1(root),
2381  withCheckOptionLists,
2382  returningLists,
2383  rowMarks,
2384  parse->onConflict,
2386  }
2387 
2388  /* And shove it into final_rel */
2389  add_path(final_rel, path);
2390  }
2391 
2392  /*
2393  * Generate partial paths for final_rel, too, if outer query levels might
2394  * be able to make use of them.
2395  */
2396  if (final_rel->consider_parallel && root->query_level > 1 &&
2397  !limit_needed(parse))
2398  {
2399  Assert(!parse->rowMarks && parse->commandType == CMD_SELECT);
2400  foreach(lc, current_rel->partial_pathlist)
2401  {
2402  Path *partial_path = (Path *) lfirst(lc);
2403 
2404  add_partial_path(final_rel, partial_path);
2405  }
2406  }
2407 
2408  extra.limit_needed = limit_needed(parse);
2409  extra.limit_tuples = limit_tuples;
2410  extra.count_est = count_est;
2411  extra.offset_est = offset_est;
2412 
2413  /*
2414  * If there is an FDW that's responsible for all baserels of the query,
2415  * let it consider adding ForeignPaths.
2416  */
2417  if (final_rel->fdwroutine &&
2418  final_rel->fdwroutine->GetForeignUpperPaths)
2420  current_rel, final_rel,
2421  &extra);
2422 
2423  /* Let extensions possibly add some more paths */
2425  (*create_upper_paths_hook) (root, UPPERREL_FINAL,
2426  current_rel, final_rel, &extra);
2427 
2428  /* Note: currently, we leave it to callers to do set_cheapest() */
2429 }
RelOptInfo * plan_set_operations(PlannerInfo *root)
Definition: prepunion.c:103
GetForeignUpperPaths_function GetForeignUpperPaths
Definition: fdwapi.h:205
Node * limitOffset
Definition: parsenodes.h:160
#define NIL
Definition: pg_list.h:65
List * rowMarks
Definition: pathnodes.h:292
static double preprocess_limit(PlannerInfo *root, double tuple_fraction, int64 *offset_est, int64 *count_est)
Definition: planner.c:2827
static void apply_scanjoin_target_to_paths(PlannerInfo *root, RelOptInfo *rel, List *scanjoin_targets, List *scanjoin_targets_contain_srfs, bool scanjoin_target_parallel_safe, bool tlist_same_exprs)
Definition: planner.c:7399
PathTarget * pathtarget
Definition: pathnodes.h:1145
Query * parse
Definition: pathnodes.h:179
const char * LCS_asString(LockClauseStrength strength)
Definition: analyze.c:2681
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:422
List * sortClause
Definition: parsenodes.h:158
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3441
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3032
OnConflictExpr * onConflict
Definition: parsenodes.h:144
List * make_pathkeys_for_sortclauses(PlannerInfo *root, List *sortclauses, List *tlist)
Definition: pathkeys.c:1125
static List * preprocess_groupclause(PlannerInfo *root, List *force)
Definition: planner.c:3234
Oid userid
Definition: pathnodes.h:715
List * withCheckOptions
Definition: parsenodes.h:172
void split_pathtarget_at_srfs(PlannerInfo *root, PathTarget *target, PathTarget *input_target, List **targets, List **targets_contain_srfs)
Definition: tlist.c:886
void get_agg_clause_costs(PlannerInfo *root, Node *clause, AggSplit aggsplit, AggClauseCosts *costs)
Definition: clauses.c:231
bool hasAggs
Definition: parsenodes.h:125
int resultRelation
Definition: parsenodes.h:122
int numWindowFuncs
Definition: clauses.h:22
WindowFuncLists * find_window_functions(Node *clause, Index maxWinRef)
Definition: clauses.c:509
List * groupingSets
Definition: parsenodes.h:150
bool limit_needed(Query *parse)
Definition: planner.c:3012
Definition: nodes.h:529
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3602
RelOptInfo * query_planner(PlannerInfo *root, query_pathkeys_callback qp_callback, void *qp_extra)
Definition: planmain.c:55
int errcode(int sqlerrcode)
Definition: elog.c:610
List * partial_pathlist
Definition: pathnodes.h:681
static RelOptInfo * create_distinct_paths(PlannerInfo *root, RelOptInfo *input_rel)
Definition: planner.c:4730
#define MemSet(start, val, len)
Definition: c.h:971
static PathTarget * make_group_input_target(PlannerInfo *root, PathTarget *final_target)
Definition: planner.c:5211
create_upper_paths_hook_type create_upper_paths_hook
Definition: planner.c:77
int assign_special_exec_param(PlannerInfo *root)
Definition: paramassign.c:584
bool useridiscurrent
Definition: pathnodes.h:716
List * rowMarks
Definition: parsenodes.h:164
#define linitial_node(type, l)
Definition: pg_list.h:198
bool hasRecursion
Definition: pathnodes.h:350
static RelOptInfo * create_window_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *input_target, PathTarget *output_target, bool output_target_parallel_safe, WindowFuncLists *wflists, List *activeWindows)
Definition: planner.c:4553
List * windowClause
Definition: parsenodes.h:154
List * targetList
Definition: parsenodes.h:140
static List * postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
Definition: planner.c:5436
static void adjust_paths_for_srfs(PlannerInfo *root, RelOptInfo *rel, List *targets, List *targets_contain_srfs)
Definition: planner.c:6044
void preprocess_minmax_aggregates(PlannerInfo *root)
Definition: planagg.c:72
#define list_make1(x1)
Definition: pg_list.h:227
#define linitial_int(l)
Definition: pg_list.h:196
static RelOptInfo * create_grouping_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, const AggClauseCosts *agg_costs, grouping_sets_data *gd)
Definition: planner.c:3806
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:856
double tuple_fraction
Definition: pathnodes.h:336
List * rtable
Definition: parsenodes.h:137
List * distinctClause
Definition: parsenodes.h:156
#define ERROR
Definition: elog.h:43
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, bool partColsUpdated, List *resultRelations, List *subpaths, List *subroots, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, int epqParam)
Definition: pathnode.c:3500
List * preprocess_targetlist(PlannerInfo *root)
Definition: preptlist.c:69
double limit_tuples
Definition: pathnodes.h:337
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1193
struct Path * cheapest_total_path
Definition: pathnodes.h:683
Node * limitCount
Definition: parsenodes.h:161
static PathTarget * make_window_input_target(PlannerInfo *root, PathTarget *final_target, List *activeWindows)
Definition: planner.c:5618
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:718
static void standard_qp_callback(PlannerInfo *root, void *extra)
Definition: planner.c:3595
#define create_pathtarget(root, tlist)
Definition: tlist.h:54
static grouping_sets_data * preprocess_grouping_sets(PlannerInfo *root)
Definition: planner.c:2438
List * returningList
Definition: parsenodes.h:146
#define list_make1_int(x1)
Definition: pg_list.h:238
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
List * sort_pathkeys
Definition: pathnodes.h:303
LimitOption limitOption
Definition: parsenodes.h:162
Oid serverid
Definition: pathnodes.h:714
List * exprs
Definition: pathnodes.h:1074
unsigned int Index
Definition: c.h:475
static RelOptInfo * create_ordered_paths(PlannerInfo *root, RelOptInfo *input_rel, PathTarget *target, bool target_parallel_safe, double limit_tuples)
Definition: planner.c:4940
#define ereport(elevel,...)
Definition: elog.h:144
CmdType commandType
Definition: parsenodes.h:112
bool hasTargetSRFs
Definition: parsenodes.h:127
List * groupClause
Definition: planner.c:99
#define Assert(condition)
Definition: c.h:738
#define lfirst(lc)
Definition: pg_list.h:190
bool hasWindowFuncs
Definition: parsenodes.h:126
bool canSetTag
Definition: parsenodes.h:118
static int list_length(const List *l)
Definition: pg_list.h:169
bool consider_parallel
Definition: pathnodes.h:673
Index query_level
Definition: pathnodes.h:183
List * activeWindows
Definition: planner.c:98
Node * setOperations
Definition: parsenodes.h:166
List * groupClause
Definition: parsenodes.h:148
int errmsg(const char *fmt,...)
Definition: elog.c:824
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:749
static List * select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
Definition: planner.c:5469
bool hasHavingQual
Definition: pathnodes.h:347
List * pathlist
Definition: pathnodes.h:679
#define copyObject(obj)
Definition: nodes.h:645
Node * havingQual
Definition: parsenodes.h:152
List * processed_tlist
Definition: pathnodes.h:325
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:676
static PathTarget * make_sort_input_target(PlannerInfo *root, PathTarget *final_target, bool *have_postponed_srfs)
Definition: planner.c:5830
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
struct PathTarget * upper_targets[UPPERREL_FINAL+1]
Definition: pathnodes.h:314

◆ inheritance_planner()

static void inheritance_planner ( PlannerInfo root)
static

Definition at line 1209 of file planner.c.

References add_path(), adjust_appendrel_attrs(), PlannerInfo::append_rel_array, PlannerInfo::append_rel_list, Assert, assign_special_exec_param(), bms_add_member(), bms_is_member(), bms_make_singleton(), bms_next_member(), Query::canSetTag, ChangeVarNodes(), RelOptInfo::cheapest_total_path, AppendRelInfo::child_relid, CMD_DELETE, CMD_SELECT, CMD_UPDATE, Query::commandType, copyObject, create_append_path(), create_modifytable_path(), create_pathtarget, fetch_upper_rel(), forboth, grouping_planner(), RangeTblEntry::inh, INHKIND_INHERITED, INHKIND_PARTITIONED, PlannerInfo::inhTargetKind, PlannerInfo::init_plans, IS_DUMMY_REL, PlannerInfo::join_info_list, lappend(), lappend_int(), lfirst, lfirst_int, lfirst_node, list_length(), list_make1, list_make1_int, list_nth_cell(), makeNode, NIL, Query::onConflict, palloc0(), AppendRelInfo::parent_relid, parse(), PlannerInfo::parse, PlannerInfo::partColsUpdated, PlannerInfo::placeholder_list, preprocess_targetlist(), PlannerInfo::processed_tlist, RangeTblEntry::relkind, RelOptInfo::reltarget, Query::resultRelation, Query::returningList, Query::rowMarks, PlannerInfo::rowMarks, rt_fetch, Query::rtable, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblEntry::securityQuals, set_cheapest(), PlannerInfo::simple_rel_array, PlannerInfo::simple_rel_array_size, PlannerInfo::simple_rte_array, subpath(), UPPERREL_FINAL, and Query::withCheckOptions.

Referenced by subquery_planner().

1210 {
1211  Query *parse = root->parse;
1212  int top_parentRTindex = parse->resultRelation;
1213  List *select_rtable;
1214  List *select_appinfos;
1215  List *child_appinfos;
1216  List *old_child_rtis;
1217  List *new_child_rtis;
1218  Bitmapset *subqueryRTindexes;
1219  Index next_subquery_rti;
1220  int nominalRelation = -1;
1221  Index rootRelation = 0;
1222  List *final_rtable = NIL;
1223  List *final_rowmarks = NIL;
1224  List *final_appendrels = NIL;
1225  int save_rel_array_size = 0;
1226  RelOptInfo **save_rel_array = NULL;
1227  AppendRelInfo **save_append_rel_array = NULL;
1228  List *subpaths = NIL;
1229  List *subroots = NIL;
1230  List *resultRelations = NIL;
1231  List *withCheckOptionLists = NIL;
1232  List *returningLists = NIL;
1233  List *rowMarks;
1234  RelOptInfo *final_rel;
1235  ListCell *lc;
1236  ListCell *lc2;
1237  Index rti;
1238  RangeTblEntry *parent_rte;
1239  Bitmapset *parent_relids;
1240  Query **parent_parses;
1241 
1242  /* Should only get here for UPDATE or DELETE */
1243  Assert(parse->commandType == CMD_UPDATE ||
1244  parse->commandType == CMD_DELETE);
1245 
1246  /*
1247  * We generate a modified instance of the original Query for each target
1248  * relation, plan that, and put all the plans into a list that will be
1249  * controlled by a single ModifyTable node. All the instances share the
1250  * same rangetable, but each instance must have its own set of subquery
1251  * RTEs within the finished rangetable because (1) they are likely to get
1252  * scribbled on during planning, and (2) it's not inconceivable that
1253  * subqueries could get planned differently in different cases. We need
1254  * not create duplicate copies of other RTE kinds, in particular not the
1255  * target relations, because they don't have either of those issues. Not
1256  * having to duplicate the target relations is important because doing so
1257  * (1) would result in a rangetable of length O(N^2) for N targets, with
1258  * at least O(N^3) work expended here; and (2) would greatly complicate
1259  * management of the rowMarks list.
1260  *
1261  * To begin with, generate a bitmapset of the relids of the subquery RTEs.
1262  */
1263  subqueryRTindexes = NULL;
1264  rti = 1;
1265  foreach(lc, parse->rtable)
1266  {
1268 
1269  if (rte->rtekind == RTE_SUBQUERY)
1270  subqueryRTindexes = bms_add_member(subqueryRTindexes, rti);
1271  rti++;
1272  }
1273 
1274  /*
1275  * If the parent RTE is a partitioned table, we should use that as the
1276  * nominal target relation, because the RTEs added for partitioned tables
1277  * (including the root parent) as child members of the inheritance set do
1278  * not appear anywhere else in the plan, so the confusion explained below
1279  * for non-partitioning inheritance cases is not possible.
1280  */
1281  parent_rte = rt_fetch(top_parentRTindex, parse->rtable);
1282  Assert(parent_rte->inh);
1283  if (parent_rte->relkind == RELKIND_PARTITIONED_TABLE)
1284  {
1285  nominalRelation = top_parentRTindex;
1286  rootRelation = top_parentRTindex;
1287  }
1288 
1289  /*
1290  * Before generating the real per-child-relation plans, do a cycle of
1291  * planning as though the query were a SELECT. The objective here is to
1292  * find out which child relations need to be processed, using the same
1293  * expansion and pruning logic as for a SELECT. We'll then pull out the
1294  * RangeTblEntry-s generated for the child rels, and make use of the
1295  * AppendRelInfo entries for them to guide the real planning. (This is
1296  * rather inefficient; we could perhaps stop short of making a full Path
1297  * tree. But this whole function is inefficient and slated for
1298  * destruction, so let's not contort query_planner for that.)
1299  */
1300  {
1301  PlannerInfo *subroot;
1302 
1303  /*
1304  * Flat-copy the PlannerInfo to prevent modification of the original.
1305  */
1306  subroot = makeNode(PlannerInfo);
1307  memcpy(subroot, root, sizeof(PlannerInfo));
1308 
1309