PostgreSQL Source Code  git master
parse_clause.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_clause.c
4  * handle clauses in parser
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_clause.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include "access/htup_details.h"
19 #include "access/nbtree.h"
20 #include "access/table.h"
21 #include "access/tsmapi.h"
22 #include "catalog/catalog.h"
23 #include "catalog/heap.h"
24 #include "catalog/pg_am.h"
25 #include "catalog/pg_amproc.h"
26 #include "catalog/pg_collation.h"
27 #include "catalog/pg_constraint.h"
28 #include "catalog/pg_type.h"
29 #include "commands/defrem.h"
30 #include "miscadmin.h"
31 #include "nodes/makefuncs.h"
32 #include "nodes/nodeFuncs.h"
33 #include "optimizer/optimizer.h"
34 #include "parser/analyze.h"
35 #include "parser/parse_clause.h"
36 #include "parser/parse_coerce.h"
37 #include "parser/parse_collate.h"
38 #include "parser/parse_expr.h"
39 #include "parser/parse_func.h"
40 #include "parser/parse_oper.h"
41 #include "parser/parse_relation.h"
42 #include "parser/parse_target.h"
43 #include "parser/parse_type.h"
44 #include "parser/parser.h"
45 #include "parser/parsetree.h"
46 #include "rewrite/rewriteManip.h"
47 #include "utils/builtins.h"
48 #include "utils/catcache.h"
49 #include "utils/guc.h"
50 #include "utils/lsyscache.h"
51 #include "utils/rel.h"
52 #include "utils/syscache.h"
53 
54 
55 static int extractRemainingColumns(ParseNamespaceColumn *src_nscolumns,
56  List *src_colnames,
57  List **src_colnos,
58  List **res_colnames, List **res_colvars,
59  ParseNamespaceColumn *res_nscolumns);
61  RangeTblEntry *leftRTE, RangeTblEntry *rightRTE,
62  List *leftVars, List *rightVars);
63 static Node *transformJoinOnClause(ParseState *pstate, JoinExpr *j,
64  List *namespace);
67  RangeSubselect *r);
69  RangeFunction *r);
71  RangeTableFunc *t);
73  RangeTableSample *rts);
75  RangeVar *rv);
76 static Node *transformFromClauseItem(ParseState *pstate, Node *n,
77  ParseNamespaceItem **top_nsitem,
78  List **namespace);
80 static Node *buildMergedJoinVar(ParseState *pstate, JoinType jointype,
81  Var *l_colvar, Var *r_colvar);
82 static void setNamespaceColumnVisibility(List *namespace, bool cols_visible);
83 static void setNamespaceLateralState(List *namespace,
84  bool lateral_only, bool lateral_ok);
85 static void checkExprIsVarFree(ParseState *pstate, Node *n,
86  const char *constructName);
88  List **tlist, ParseExprKind exprKind);
90  List **tlist, ParseExprKind exprKind);
91 static int get_matching_location(int sortgroupref,
92  List *sortgrouprefs, List *exprs);
94  Relation heapRel);
95 static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
96  List *grouplist, List *targetlist, int location);
97 static WindowClause *findWindowClause(List *wclist, const char *name);
98 static Node *transformFrameOffset(ParseState *pstate, int frameOptions,
99  Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc,
100  Node *clause);
101 
102 
103 /*
104  * transformFromClause -
105  * Process the FROM clause and add items to the query's range table,
106  * joinlist, and namespace.
107  *
108  * Note: we assume that the pstate's p_rtable, p_joinlist, and p_namespace
109  * lists were initialized to NIL when the pstate was created.
110  * We will add onto any entries already present --- this is needed for rule
111  * processing, as well as for UPDATE and DELETE.
112  */
113 void
115 {
116  ListCell *fl;
117 
118  /*
119  * The grammar will have produced a list of RangeVars, RangeSubselects,
120  * RangeFunctions, and/or JoinExprs. Transform each one (possibly adding
121  * entries to the rtable), check for duplicate refnames, and then add it
122  * to the joinlist and namespace.
123  *
124  * Note we must process the items left-to-right for proper handling of
125  * LATERAL references.
126  */
127  foreach(fl, frmList)
128  {
129  Node *n = lfirst(fl);
130  ParseNamespaceItem *nsitem;
131  List *namespace;
132 
133  n = transformFromClauseItem(pstate, n,
134  &nsitem,
135  &namespace);
136 
137  checkNameSpaceConflicts(pstate, pstate->p_namespace, namespace);
138 
139  /* Mark the new namespace items as visible only to LATERAL */
140  setNamespaceLateralState(namespace, true, true);
141 
142  pstate->p_joinlist = lappend(pstate->p_joinlist, n);
143  pstate->p_namespace = list_concat(pstate->p_namespace, namespace);
144  }
145 
146  /*
147  * We're done parsing the FROM list, so make all namespace items
148  * unconditionally visible. Note that this will also reset lateral_only
149  * for any namespace items that were already present when we were called;
150  * but those should have been that way already.
151  */
152  setNamespaceLateralState(pstate->p_namespace, false, true);
153 }
154 
155 /*
156  * setTargetTable
157  * Add the target relation of INSERT/UPDATE/DELETE to the range table,
158  * and make the special links to it in the ParseState.
159  *
160  * We also open the target relation and acquire a write lock on it.
161  * This must be done before processing the FROM list, in case the target
162  * is also mentioned as a source relation --- we want to be sure to grab
163  * the write lock before any read lock.
164  *
165  * If alsoSource is true, add the target to the query's joinlist and
166  * namespace. For INSERT, we don't want the target to be joined to;
167  * it's a destination of tuples, not a source. For UPDATE/DELETE,
168  * we do need to scan or join the target. (NOTE: we do not bother
169  * to check for namespace conflict; we assume that the namespace was
170  * initially empty in these cases.)
171  *
172  * Finally, we mark the relation as requiring the permissions specified
173  * by requiredPerms.
174  *
175  * Returns the rangetable index of the target relation.
176  */
177 int
178 setTargetTable(ParseState *pstate, RangeVar *relation,
179  bool inh, bool alsoSource, AclMode requiredPerms)
180 {
181  ParseNamespaceItem *nsitem;
182 
183  /*
184  * ENRs hide tables of the same name, so we need to check for them first.
185  * In contrast, CTEs don't hide tables (for this purpose).
186  */
187  if (relation->schemaname == NULL &&
188  scanNameSpaceForENR(pstate, relation->relname))
189  ereport(ERROR,
190  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
191  errmsg("relation \"%s\" cannot be the target of a modifying statement",
192  relation->relname)));
193 
194  /* Close old target; this could only happen for multi-action rules */
195  if (pstate->p_target_relation != NULL)
197 
198  /*
199  * Open target rel and grab suitable lock (which we will hold till end of
200  * transaction).
201  *
202  * free_parsestate() will eventually do the corresponding table_close(),
203  * but *not* release the lock.
204  */
205  pstate->p_target_relation = parserOpenTable(pstate, relation,
207 
208  /*
209  * Now build an RTE and a ParseNamespaceItem.
210  */
211  nsitem = addRangeTableEntryForRelation(pstate, pstate->p_target_relation,
213  relation->alias, inh, false);
214 
215  /* remember the RTE/nsitem as being the query target */
216  pstate->p_target_nsitem = nsitem;
217 
218  /*
219  * Override addRangeTableEntry's default ACL_SELECT permissions check, and
220  * instead mark target table as requiring exactly the specified
221  * permissions.
222  *
223  * If we find an explicit reference to the rel later during parse
224  * analysis, we will add the ACL_SELECT bit back again; see
225  * markVarForSelectPriv and its callers.
226  */
227  nsitem->p_rte->requiredPerms = requiredPerms;
228 
229  /*
230  * If UPDATE/DELETE, add table to joinlist and namespace.
231  */
232  if (alsoSource)
233  addNSItemToQuery(pstate, nsitem, true, true, true);
234 
235  return nsitem->p_rtindex;
236 }
237 
238 /*
239  * Extract all not-in-common columns from column lists of a source table
240  *
241  * src_nscolumns and src_colnames describe the source table.
242  *
243  * *src_colnos initially contains the column numbers of the already-merged
244  * columns. We add to it the column number of each additional column.
245  * Also append to *res_colnames the name of each additional column,
246  * append to *res_colvars a Var for each additional column, and copy the
247  * columns' nscolumns data into res_nscolumns[] (which is caller-allocated
248  * space that had better be big enough).
249  *
250  * Returns the number of columns added.
251  */
252 static int
254  List *src_colnames,
255  List **src_colnos,
256  List **res_colnames, List **res_colvars,
257  ParseNamespaceColumn *res_nscolumns)
258 {
259  int colcount = 0;
260  Bitmapset *prevcols;
261  int attnum;
262  ListCell *lc;
263 
264  /*
265  * While we could just test "list_member_int(*src_colnos, attnum)" to
266  * detect already-merged columns in the loop below, that would be O(N^2)
267  * for a wide input table. Instead build a bitmapset of just the merged
268  * USING columns, which we won't add to within the main loop.
269  */
270  prevcols = NULL;
271  foreach(lc, *src_colnos)
272  {
273  prevcols = bms_add_member(prevcols, lfirst_int(lc));
274  }
275 
276  attnum = 0;
277  foreach(lc, src_colnames)
278  {
279  char *colname = strVal(lfirst(lc));
280 
281  attnum++;
282  /* Non-dropped and not already merged? */
283  if (colname[0] != '\0' && !bms_is_member(attnum, prevcols))
284  {
285  /* Yes, so emit it as next output column */
286  *src_colnos = lappend_int(*src_colnos, attnum);
287  *res_colnames = lappend(*res_colnames, lfirst(lc));
288  *res_colvars = lappend(*res_colvars,
289  buildVarFromNSColumn(src_nscolumns + attnum - 1));
290  /* Copy the input relation's nscolumn data for this column */
291  res_nscolumns[colcount] = src_nscolumns[attnum - 1];
292  colcount++;
293  }
294  }
295  return colcount;
296 }
297 
298 /* transformJoinUsingClause()
299  * Build a complete ON clause from a partially-transformed USING list.
300  * We are given lists of nodes representing left and right match columns.
301  * Result is a transformed qualification expression.
302  */
303 static Node *
305  RangeTblEntry *leftRTE, RangeTblEntry *rightRTE,
306  List *leftVars, List *rightVars)
307 {
308  Node *result;
309  List *andargs = NIL;
310  ListCell *lvars,
311  *rvars;
312 
313  /*
314  * We cheat a little bit here by building an untransformed operator tree
315  * whose leaves are the already-transformed Vars. This requires collusion
316  * from transformExpr(), which normally could be expected to complain
317  * about already-transformed subnodes. However, this does mean that we
318  * have to mark the columns as requiring SELECT privilege for ourselves;
319  * transformExpr() won't do it.
320  */
321  forboth(lvars, leftVars, rvars, rightVars)
322  {
323  Var *lvar = (Var *) lfirst(lvars);
324  Var *rvar = (Var *) lfirst(rvars);
325  A_Expr *e;
326 
327  /* Require read access to the join variables */
328  markVarForSelectPriv(pstate, lvar, leftRTE);
329  markVarForSelectPriv(pstate, rvar, rightRTE);
330 
331  /* Now create the lvar = rvar join condition */
332  e = makeSimpleA_Expr(AEXPR_OP, "=",
333  (Node *) copyObject(lvar), (Node *) copyObject(rvar),
334  -1);
335 
336  /* Prepare to combine into an AND clause, if multiple join columns */
337  andargs = lappend(andargs, e);
338  }
339 
340  /* Only need an AND if there's more than one join column */
341  if (list_length(andargs) == 1)
342  result = (Node *) linitial(andargs);
343  else
344  result = (Node *) makeBoolExpr(AND_EXPR, andargs, -1);
345 
346  /*
347  * Since the references are already Vars, and are certainly from the input
348  * relations, we don't have to go through the same pushups that
349  * transformJoinOnClause() does. Just invoke transformExpr() to fix up
350  * the operators, and we're done.
351  */
352  result = transformExpr(pstate, result, EXPR_KIND_JOIN_USING);
353 
354  result = coerce_to_boolean(pstate, result, "JOIN/USING");
355 
356  return result;
357 }
358 
359 /* transformJoinOnClause()
360  * Transform the qual conditions for JOIN/ON.
361  * Result is a transformed qualification expression.
362  */
363 static Node *
365 {
366  Node *result;
367  List *save_namespace;
368 
369  /*
370  * The namespace that the join expression should see is just the two
371  * subtrees of the JOIN plus any outer references from upper pstate
372  * levels. Temporarily set this pstate's namespace accordingly. (We need
373  * not check for refname conflicts, because transformFromClauseItem()
374  * already did.) All namespace items are marked visible regardless of
375  * LATERAL state.
376  */
377  setNamespaceLateralState(namespace, false, true);
378 
379  save_namespace = pstate->p_namespace;
380  pstate->p_namespace = namespace;
381 
382  result = transformWhereClause(pstate, j->quals,
383  EXPR_KIND_JOIN_ON, "JOIN/ON");
384 
385  pstate->p_namespace = save_namespace;
386 
387  return result;
388 }
389 
390 /*
391  * transformTableEntry --- transform a RangeVar (simple relation reference)
392  */
393 static ParseNamespaceItem *
395 {
396  /* addRangeTableEntry does all the work */
397  return addRangeTableEntry(pstate, r, r->alias, r->inh, true);
398 }
399 
400 /*
401  * transformRangeSubselect --- transform a sub-SELECT appearing in FROM
402  */
403 static ParseNamespaceItem *
405 {
406  Query *query;
407 
408  /*
409  * We require user to supply an alias for a subselect, per SQL92. To relax
410  * this, we'd have to be prepared to gin up a unique alias for an
411  * unlabeled subselect. (This is just elog, not ereport, because the
412  * grammar should have enforced it already. It'd probably be better to
413  * report the error here, but we don't have a good error location here.)
414  */
415  if (r->alias == NULL)
416  elog(ERROR, "subquery in FROM must have an alias");
417 
418  /*
419  * Set p_expr_kind to show this parse level is recursing to a subselect.
420  * We can't be nested within any expression, so don't need save-restore
421  * logic here.
422  */
423  Assert(pstate->p_expr_kind == EXPR_KIND_NONE);
425 
426  /*
427  * If the subselect is LATERAL, make lateral_only names of this level
428  * visible to it. (LATERAL can't nest within a single pstate level, so we
429  * don't need save/restore logic here.)
430  */
431  Assert(!pstate->p_lateral_active);
432  pstate->p_lateral_active = r->lateral;
433 
434  /*
435  * Analyze and transform the subquery.
436  */
437  query = parse_sub_analyze(r->subquery, pstate, NULL,
438  isLockedRefname(pstate, r->alias->aliasname),
439  true);
440 
441  /* Restore state */
442  pstate->p_lateral_active = false;
443  pstate->p_expr_kind = EXPR_KIND_NONE;
444 
445  /*
446  * Check that we got a SELECT. Anything else should be impossible given
447  * restrictions of the grammar, but check anyway.
448  */
449  if (!IsA(query, Query) ||
450  query->commandType != CMD_SELECT)
451  elog(ERROR, "unexpected non-SELECT command in subquery in FROM");
452 
453  /*
454  * OK, build an RTE and nsitem for the subquery.
455  */
456  return addRangeTableEntryForSubquery(pstate,
457  query,
458  r->alias,
459  r->lateral,
460  true);
461 }
462 
463 
464 /*
465  * transformRangeFunction --- transform a function call appearing in FROM
466  */
467 static ParseNamespaceItem *
469 {
470  List *funcexprs = NIL;
471  List *funcnames = NIL;
472  List *coldeflists = NIL;
473  bool is_lateral;
474  ListCell *lc;
475 
476  /*
477  * We make lateral_only names of this level visible, whether or not the
478  * RangeFunction is explicitly marked LATERAL. This is needed for SQL
479  * spec compliance in the case of UNNEST(), and seems useful on
480  * convenience grounds for all functions in FROM.
481  *
482  * (LATERAL can't nest within a single pstate level, so we don't need
483  * save/restore logic here.)
484  */
485  Assert(!pstate->p_lateral_active);
486  pstate->p_lateral_active = true;
487 
488  /*
489  * Transform the raw expressions.
490  *
491  * While transforming, also save function names for possible use as alias
492  * and column names. We use the same transformation rules as for a SELECT
493  * output expression. For a FuncCall node, the result will be the
494  * function name, but it is possible for the grammar to hand back other
495  * node types.
496  *
497  * We have to get this info now, because FigureColname only works on raw
498  * parsetrees. Actually deciding what to do with the names is left up to
499  * addRangeTableEntryForFunction.
500  *
501  * Likewise, collect column definition lists if there were any. But
502  * complain if we find one here and the RangeFunction has one too.
503  */
504  foreach(lc, r->functions)
505  {
506  List *pair = (List *) lfirst(lc);
507  Node *fexpr;
508  List *coldeflist;
509  Node *newfexpr;
510  Node *last_srf;
511 
512  /* Disassemble the function-call/column-def-list pairs */
513  Assert(list_length(pair) == 2);
514  fexpr = (Node *) linitial(pair);
515  coldeflist = (List *) lsecond(pair);
516 
517  /*
518  * If we find a function call unnest() with more than one argument and
519  * no special decoration, transform it into separate unnest() calls on
520  * each argument. This is a kluge, for sure, but it's less nasty than
521  * other ways of implementing the SQL-standard UNNEST() syntax.
522  *
523  * If there is any decoration (including a coldeflist), we don't
524  * transform, which probably means a no-such-function error later. We
525  * could alternatively throw an error right now, but that doesn't seem
526  * tremendously helpful. If someone is using any such decoration,
527  * then they're not using the SQL-standard syntax, and they're more
528  * likely expecting an un-tweaked function call.
529  *
530  * Note: the transformation changes a non-schema-qualified unnest()
531  * function name into schema-qualified pg_catalog.unnest(). This
532  * choice is also a bit debatable, but it seems reasonable to force
533  * use of built-in unnest() when we make this transformation.
534  */
535  if (IsA(fexpr, FuncCall))
536  {
537  FuncCall *fc = (FuncCall *) fexpr;
538 
539  if (list_length(fc->funcname) == 1 &&
540  strcmp(strVal(linitial(fc->funcname)), "unnest") == 0 &&
541  list_length(fc->args) > 1 &&
542  fc->agg_order == NIL &&
543  fc->agg_filter == NULL &&
544  !fc->agg_star &&
545  !fc->agg_distinct &&
546  !fc->func_variadic &&
547  fc->over == NULL &&
548  coldeflist == NIL)
549  {
550  ListCell *lc;
551 
552  foreach(lc, fc->args)
553  {
554  Node *arg = (Node *) lfirst(lc);
555  FuncCall *newfc;
556 
557  last_srf = pstate->p_last_srf;
558 
559  newfc = makeFuncCall(SystemFuncName("unnest"),
560  list_make1(arg),
561  fc->location);
562 
563  newfexpr = transformExpr(pstate, (Node *) newfc,
565 
566  /* nodeFunctionscan.c requires SRFs to be at top level */
567  if (pstate->p_last_srf != last_srf &&
568  pstate->p_last_srf != newfexpr)
569  ereport(ERROR,
570  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
571  errmsg("set-returning functions must appear at top level of FROM"),
572  parser_errposition(pstate,
573  exprLocation(pstate->p_last_srf))));
574 
575  funcexprs = lappend(funcexprs, newfexpr);
576 
577  funcnames = lappend(funcnames,
578  FigureColname((Node *) newfc));
579 
580  /* coldeflist is empty, so no error is possible */
581 
582  coldeflists = lappend(coldeflists, coldeflist);
583  }
584  continue; /* done with this function item */
585  }
586  }
587 
588  /* normal case ... */
589  last_srf = pstate->p_last_srf;
590 
591  newfexpr = transformExpr(pstate, fexpr,
593 
594  /* nodeFunctionscan.c requires SRFs to be at top level */
595  if (pstate->p_last_srf != last_srf &&
596  pstate->p_last_srf != newfexpr)
597  ereport(ERROR,
598  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
599  errmsg("set-returning functions must appear at top level of FROM"),
600  parser_errposition(pstate,
601  exprLocation(pstate->p_last_srf))));
602 
603  funcexprs = lappend(funcexprs, newfexpr);
604 
605  funcnames = lappend(funcnames,
606  FigureColname(fexpr));
607 
608  if (coldeflist && r->coldeflist)
609  ereport(ERROR,
610  (errcode(ERRCODE_SYNTAX_ERROR),
611  errmsg("multiple column definition lists are not allowed for the same function"),
612  parser_errposition(pstate,
613  exprLocation((Node *) r->coldeflist))));
614 
615  coldeflists = lappend(coldeflists, coldeflist);
616  }
617 
618  pstate->p_lateral_active = false;
619 
620  /*
621  * We must assign collations now so that the RTE exposes correct collation
622  * info for Vars created from it.
623  */
624  assign_list_collations(pstate, funcexprs);
625 
626  /*
627  * Install the top-level coldeflist if there was one (we already checked
628  * that there was no conflicting per-function coldeflist).
629  *
630  * We only allow this when there's a single function (even after UNNEST
631  * expansion) and no WITH ORDINALITY. The reason for the latter
632  * restriction is that it's not real clear whether the ordinality column
633  * should be in the coldeflist, and users are too likely to make mistakes
634  * in one direction or the other. Putting the coldeflist inside ROWS
635  * FROM() is much clearer in this case.
636  */
637  if (r->coldeflist)
638  {
639  if (list_length(funcexprs) != 1)
640  {
641  if (r->is_rowsfrom)
642  ereport(ERROR,
643  (errcode(ERRCODE_SYNTAX_ERROR),
644  errmsg("ROWS FROM() with multiple functions cannot have a column definition list"),
645  errhint("Put a separate column definition list for each function inside ROWS FROM()."),
646  parser_errposition(pstate,
647  exprLocation((Node *) r->coldeflist))));
648  else
649  ereport(ERROR,
650  (errcode(ERRCODE_SYNTAX_ERROR),
651  errmsg("UNNEST() with multiple arguments cannot have a column definition list"),
652  errhint("Use separate UNNEST() calls inside ROWS FROM(), and attach a column definition list to each one."),
653  parser_errposition(pstate,
654  exprLocation((Node *) r->coldeflist))));
655  }
656  if (r->ordinality)
657  ereport(ERROR,
658  (errcode(ERRCODE_SYNTAX_ERROR),
659  errmsg("WITH ORDINALITY cannot be used with a column definition list"),
660  errhint("Put the column definition list inside ROWS FROM()."),
661  parser_errposition(pstate,
662  exprLocation((Node *) r->coldeflist))));
663 
664  coldeflists = list_make1(r->coldeflist);
665  }
666 
667  /*
668  * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
669  * there are any lateral cross-references in it.
670  */
671  is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0);
672 
673  /*
674  * OK, build an RTE and nsitem for the function.
675  */
676  return addRangeTableEntryForFunction(pstate,
677  funcnames, funcexprs, coldeflists,
678  r, is_lateral, true);
679 }
680 
681 /*
682  * transformRangeTableFunc -
683  * Transform a raw RangeTableFunc into TableFunc.
684  *
685  * Transform the namespace clauses, the document-generating expression, the
686  * row-generating expression, the column-generating expressions, and the
687  * default value expressions.
688  */
689 static ParseNamespaceItem *
691 {
693  const char *constructName;
694  Oid docType;
695  bool is_lateral;
696  ListCell *col;
697  char **names;
698  int colno;
699 
700  /* Currently only XMLTABLE is supported */
701  constructName = "XMLTABLE";
702  docType = XMLOID;
703 
704  /*
705  * We make lateral_only names of this level visible, whether or not the
706  * RangeTableFunc is explicitly marked LATERAL. This is needed for SQL
707  * spec compliance and seems useful on convenience grounds for all
708  * functions in FROM.
709  *
710  * (LATERAL can't nest within a single pstate level, so we don't need
711  * save/restore logic here.)
712  */
713  Assert(!pstate->p_lateral_active);
714  pstate->p_lateral_active = true;
715 
716  /* Transform and apply typecast to the row-generating expression ... */
717  Assert(rtf->rowexpr != NULL);
718  tf->rowexpr = coerce_to_specific_type(pstate,
720  TEXTOID,
721  constructName);
722  assign_expr_collations(pstate, tf->rowexpr);
723 
724  /* ... and to the document itself */
725  Assert(rtf->docexpr != NULL);
726  tf->docexpr = coerce_to_specific_type(pstate,
728  docType,
729  constructName);
730  assign_expr_collations(pstate, tf->docexpr);
731 
732  /* undef ordinality column number */
733  tf->ordinalitycol = -1;
734 
735  /* Process column specs */
736  names = palloc(sizeof(char *) * list_length(rtf->columns));
737 
738  colno = 0;
739  foreach(col, rtf->columns)
740  {
741  RangeTableFuncCol *rawc = (RangeTableFuncCol *) lfirst(col);
742  Oid typid;
743  int32 typmod;
744  Node *colexpr;
745  Node *coldefexpr;
746  int j;
747 
748  tf->colnames = lappend(tf->colnames,
749  makeString(pstrdup(rawc->colname)));
750 
751  /*
752  * Determine the type and typmod for the new column. FOR ORDINALITY
753  * columns are INTEGER per spec; the others are user-specified.
754  */
755  if (rawc->for_ordinality)
756  {
757  if (tf->ordinalitycol != -1)
758  ereport(ERROR,
759  (errcode(ERRCODE_SYNTAX_ERROR),
760  errmsg("only one FOR ORDINALITY column is allowed"),
761  parser_errposition(pstate, rawc->location)));
762 
763  typid = INT4OID;
764  typmod = -1;
765  tf->ordinalitycol = colno;
766  }
767  else
768  {
769  if (rawc->typeName->setof)
770  ereport(ERROR,
771  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
772  errmsg("column \"%s\" cannot be declared SETOF",
773  rawc->colname),
774  parser_errposition(pstate, rawc->location)));
775 
776  typenameTypeIdAndMod(pstate, rawc->typeName,
777  &typid, &typmod);
778  }
779 
780  tf->coltypes = lappend_oid(tf->coltypes, typid);
781  tf->coltypmods = lappend_int(tf->coltypmods, typmod);
783  get_typcollation(typid));
784 
785  /* Transform the PATH and DEFAULT expressions */
786  if (rawc->colexpr)
787  {
788  colexpr = coerce_to_specific_type(pstate,
789  transformExpr(pstate, rawc->colexpr,
791  TEXTOID,
792  constructName);
793  assign_expr_collations(pstate, colexpr);
794  }
795  else
796  colexpr = NULL;
797 
798  if (rawc->coldefexpr)
799  {
800  coldefexpr = coerce_to_specific_type_typmod(pstate,
801  transformExpr(pstate, rawc->coldefexpr,
803  typid, typmod,
804  constructName);
805  assign_expr_collations(pstate, coldefexpr);
806  }
807  else
808  coldefexpr = NULL;
809 
810  tf->colexprs = lappend(tf->colexprs, colexpr);
811  tf->coldefexprs = lappend(tf->coldefexprs, coldefexpr);
812 
813  if (rawc->is_not_null)
814  tf->notnulls = bms_add_member(tf->notnulls, colno);
815 
816  /* make sure column names are unique */
817  for (j = 0; j < colno; j++)
818  if (strcmp(names[j], rawc->colname) == 0)
819  ereport(ERROR,
820  (errcode(ERRCODE_SYNTAX_ERROR),
821  errmsg("column name \"%s\" is not unique",
822  rawc->colname),
823  parser_errposition(pstate, rawc->location)));
824  names[colno] = rawc->colname;
825 
826  colno++;
827  }
828  pfree(names);
829 
830  /* Namespaces, if any, also need to be transformed */
831  if (rtf->namespaces != NIL)
832  {
833  ListCell *ns;
834  ListCell *lc2;
835  List *ns_uris = NIL;
836  List *ns_names = NIL;
837  bool default_ns_seen = false;
838 
839  foreach(ns, rtf->namespaces)
840  {
841  ResTarget *r = (ResTarget *) lfirst(ns);
842  Node *ns_uri;
843 
844  Assert(IsA(r, ResTarget));
845  ns_uri = transformExpr(pstate, r->val, EXPR_KIND_FROM_FUNCTION);
846  ns_uri = coerce_to_specific_type(pstate, ns_uri,
847  TEXTOID, constructName);
848  assign_expr_collations(pstate, ns_uri);
849  ns_uris = lappend(ns_uris, ns_uri);
850 
851  /* Verify consistency of name list: no dupes, only one DEFAULT */
852  if (r->name != NULL)
853  {
854  foreach(lc2, ns_names)
855  {
856  Value *ns_node = (Value *) lfirst(lc2);
857 
858  if (ns_node == NULL)
859  continue;
860  if (strcmp(strVal(ns_node), r->name) == 0)
861  ereport(ERROR,
862  (errcode(ERRCODE_SYNTAX_ERROR),
863  errmsg("namespace name \"%s\" is not unique",
864  r->name),
865  parser_errposition(pstate, r->location)));
866  }
867  }
868  else
869  {
870  if (default_ns_seen)
871  ereport(ERROR,
872  (errcode(ERRCODE_SYNTAX_ERROR),
873  errmsg("only one default namespace is allowed"),
874  parser_errposition(pstate, r->location)));
875  default_ns_seen = true;
876  }
877 
878  /* We represent DEFAULT by a null pointer */
879  ns_names = lappend(ns_names,
880  r->name ? makeString(r->name) : NULL);
881  }
882 
883  tf->ns_uris = ns_uris;
884  tf->ns_names = ns_names;
885  }
886 
887  tf->location = rtf->location;
888 
889  pstate->p_lateral_active = false;
890 
891  /*
892  * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
893  * there are any lateral cross-references in it.
894  */
895  is_lateral = rtf->lateral || contain_vars_of_level((Node *) tf, 0);
896 
897  return addRangeTableEntryForTableFunc(pstate,
898  tf, rtf->alias, is_lateral, true);
899 }
900 
901 /*
902  * transformRangeTableSample --- transform a TABLESAMPLE clause
903  *
904  * Caller has already transformed rts->relation, we just have to validate
905  * the remaining fields and create a TableSampleClause node.
906  */
907 static TableSampleClause *
909 {
910  TableSampleClause *tablesample;
911  Oid handlerOid;
912  Oid funcargtypes[1];
913  TsmRoutine *tsm;
914  List *fargs;
915  ListCell *larg,
916  *ltyp;
917 
918  /*
919  * To validate the sample method name, look up the handler function, which
920  * has the same name, one dummy INTERNAL argument, and a result type of
921  * tsm_handler. (Note: tablesample method names are not schema-qualified
922  * in the SQL standard; but since they are just functions to us, we allow
923  * schema qualification to resolve any potential ambiguity.)
924  */
925  funcargtypes[0] = INTERNALOID;
926 
927  handlerOid = LookupFuncName(rts->method, 1, funcargtypes, true);
928 
929  /* we want error to complain about no-such-method, not no-such-function */
930  if (!OidIsValid(handlerOid))
931  ereport(ERROR,
932  (errcode(ERRCODE_UNDEFINED_OBJECT),
933  errmsg("tablesample method %s does not exist",
934  NameListToString(rts->method)),
935  parser_errposition(pstate, rts->location)));
936 
937  /* check that handler has correct return type */
938  if (get_func_rettype(handlerOid) != TSM_HANDLEROID)
939  ereport(ERROR,
940  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
941  errmsg("function %s must return type %s",
942  NameListToString(rts->method), "tsm_handler"),
943  parser_errposition(pstate, rts->location)));
944 
945  /* OK, run the handler to get TsmRoutine, for argument type info */
946  tsm = GetTsmRoutine(handlerOid);
947 
948  tablesample = makeNode(TableSampleClause);
949  tablesample->tsmhandler = handlerOid;
950 
951  /* check user provided the expected number of arguments */
952  if (list_length(rts->args) != list_length(tsm->parameterTypes))
953  ereport(ERROR,
954  (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
955  errmsg_plural("tablesample method %s requires %d argument, not %d",
956  "tablesample method %s requires %d arguments, not %d",
958  NameListToString(rts->method),
960  list_length(rts->args)),
961  parser_errposition(pstate, rts->location)));
962 
963  /*
964  * Transform the arguments, typecasting them as needed. Note we must also
965  * assign collations now, because assign_query_collations() doesn't
966  * examine any substructure of RTEs.
967  */
968  fargs = NIL;
969  forboth(larg, rts->args, ltyp, tsm->parameterTypes)
970  {
971  Node *arg = (Node *) lfirst(larg);
972  Oid argtype = lfirst_oid(ltyp);
973 
974  arg = transformExpr(pstate, arg, EXPR_KIND_FROM_FUNCTION);
975  arg = coerce_to_specific_type(pstate, arg, argtype, "TABLESAMPLE");
976  assign_expr_collations(pstate, arg);
977  fargs = lappend(fargs, arg);
978  }
979  tablesample->args = fargs;
980 
981  /* Process REPEATABLE (seed) */
982  if (rts->repeatable != NULL)
983  {
984  Node *arg;
985 
986  if (!tsm->repeatable_across_queries)
987  ereport(ERROR,
988  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
989  errmsg("tablesample method %s does not support REPEATABLE",
990  NameListToString(rts->method)),
991  parser_errposition(pstate, rts->location)));
992 
993  arg = transformExpr(pstate, rts->repeatable, EXPR_KIND_FROM_FUNCTION);
994  arg = coerce_to_specific_type(pstate, arg, FLOAT8OID, "REPEATABLE");
995  assign_expr_collations(pstate, arg);
996  tablesample->repeatable = (Expr *) arg;
997  }
998  else
999  tablesample->repeatable = NULL;
1000 
1001  return tablesample;
1002 }
1003 
1004 /*
1005  * getNSItemForSpecialRelationTypes
1006  *
1007  * If given RangeVar refers to a CTE or an EphemeralNamedRelation,
1008  * build and return an appropriate ParseNamespaceItem, otherwise return NULL
1009  */
1010 static ParseNamespaceItem *
1012 {
1013  ParseNamespaceItem *nsitem;
1014  CommonTableExpr *cte;
1015  Index levelsup;
1016 
1017  /*
1018  * if it is a qualified name, it can't be a CTE or tuplestore reference
1019  */
1020  if (rv->schemaname)
1021  return NULL;
1022 
1023  cte = scanNameSpaceForCTE(pstate, rv->relname, &levelsup);
1024  if (cte)
1025  nsitem = addRangeTableEntryForCTE(pstate, cte, levelsup, rv, true);
1026  else if (scanNameSpaceForENR(pstate, rv->relname))
1027  nsitem = addRangeTableEntryForENR(pstate, rv, true);
1028  else
1029  nsitem = NULL;
1030 
1031  return nsitem;
1032 }
1033 
1034 /*
1035  * transformFromClauseItem -
1036  * Transform a FROM-clause item, adding any required entries to the
1037  * range table list being built in the ParseState, and return the
1038  * transformed item ready to include in the joinlist. Also build a
1039  * ParseNamespaceItem list describing the names exposed by this item.
1040  * This routine can recurse to handle SQL92 JOIN expressions.
1041  *
1042  * The function return value is the node to add to the jointree (a
1043  * RangeTblRef or JoinExpr). Additional output parameters are:
1044  *
1045  * *top_nsitem: receives the ParseNamespaceItem directly corresponding to the
1046  * jointree item. (This is only used during internal recursion, not by
1047  * outside callers.)
1048  *
1049  * *namespace: receives a List of ParseNamespaceItems for the RTEs exposed
1050  * as table/column names by this item. (The lateral_only flags in these items
1051  * are indeterminate and should be explicitly set by the caller before use.)
1052  */
1053 static Node *
1055  ParseNamespaceItem **top_nsitem,
1056  List **namespace)
1057 {
1058  if (IsA(n, RangeVar))
1059  {
1060  /* Plain relation reference, or perhaps a CTE reference */
1061  RangeVar *rv = (RangeVar *) n;
1062  RangeTblRef *rtr;
1063  ParseNamespaceItem *nsitem;
1064 
1065  /* Check if it's a CTE or tuplestore reference */
1066  nsitem = getNSItemForSpecialRelationTypes(pstate, rv);
1067 
1068  /* if not found above, must be a table reference */
1069  if (!nsitem)
1070  nsitem = transformTableEntry(pstate, rv);
1071 
1072  *top_nsitem = nsitem;
1073  *namespace = list_make1(nsitem);
1074  rtr = makeNode(RangeTblRef);
1075  rtr->rtindex = nsitem->p_rtindex;
1076  return (Node *) rtr;
1077  }
1078  else if (IsA(n, RangeSubselect))
1079  {
1080  /* sub-SELECT is like a plain relation */
1081  RangeTblRef *rtr;
1082  ParseNamespaceItem *nsitem;
1083 
1084  nsitem = transformRangeSubselect(pstate, (RangeSubselect *) n);
1085  *top_nsitem = nsitem;
1086  *namespace = list_make1(nsitem);
1087  rtr = makeNode(RangeTblRef);
1088  rtr->rtindex = nsitem->p_rtindex;
1089  return (Node *) rtr;
1090  }
1091  else if (IsA(n, RangeFunction))
1092  {
1093  /* function is like a plain relation */
1094  RangeTblRef *rtr;
1095  ParseNamespaceItem *nsitem;
1096 
1097  nsitem = transformRangeFunction(pstate, (RangeFunction *) n);
1098  *top_nsitem = nsitem;
1099  *namespace = list_make1(nsitem);
1100  rtr = makeNode(RangeTblRef);
1101  rtr->rtindex = nsitem->p_rtindex;
1102  return (Node *) rtr;
1103  }
1104  else if (IsA(n, RangeTableFunc))
1105  {
1106  /* table function is like a plain relation */
1107  RangeTblRef *rtr;
1108  ParseNamespaceItem *nsitem;
1109 
1110  nsitem = transformRangeTableFunc(pstate, (RangeTableFunc *) n);
1111  *top_nsitem = nsitem;
1112  *namespace = list_make1(nsitem);
1113  rtr = makeNode(RangeTblRef);
1114  rtr->rtindex = nsitem->p_rtindex;
1115  return (Node *) rtr;
1116  }
1117  else if (IsA(n, RangeTableSample))
1118  {
1119  /* TABLESAMPLE clause (wrapping some other valid FROM node) */
1120  RangeTableSample *rts = (RangeTableSample *) n;
1121  Node *rel;
1122  RangeTblEntry *rte;
1123 
1124  /* Recursively transform the contained relation */
1125  rel = transformFromClauseItem(pstate, rts->relation,
1126  top_nsitem, namespace);
1127  rte = (*top_nsitem)->p_rte;
1128  /* We only support this on plain relations and matviews */
1129  if (rte->rtekind != RTE_RELATION ||
1130  (rte->relkind != RELKIND_RELATION &&
1131  rte->relkind != RELKIND_MATVIEW &&
1132  rte->relkind != RELKIND_PARTITIONED_TABLE))
1133  ereport(ERROR,
1134  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1135  errmsg("TABLESAMPLE clause can only be applied to tables and materialized views"),
1136  parser_errposition(pstate, exprLocation(rts->relation))));
1137 
1138  /* Transform TABLESAMPLE details and attach to the RTE */
1139  rte->tablesample = transformRangeTableSample(pstate, rts);
1140  return rel;
1141  }
1142  else if (IsA(n, JoinExpr))
1143  {
1144  /* A newfangled join expression */
1145  JoinExpr *j = (JoinExpr *) n;
1146  ParseNamespaceItem *nsitem;
1147  ParseNamespaceItem *l_nsitem;
1148  ParseNamespaceItem *r_nsitem;
1149  List *l_namespace,
1150  *r_namespace,
1151  *my_namespace,
1152  *l_colnames,
1153  *r_colnames,
1154  *res_colnames,
1155  *l_colnos,
1156  *r_colnos,
1157  *res_colvars;
1158  ParseNamespaceColumn *l_nscolumns,
1159  *r_nscolumns,
1160  *res_nscolumns;
1161  int res_colindex;
1162  bool lateral_ok;
1163  int sv_namespace_length;
1164  int k;
1165 
1166  /*
1167  * Recursively process the left subtree, then the right. We must do
1168  * it in this order for correct visibility of LATERAL references.
1169  */
1170  j->larg = transformFromClauseItem(pstate, j->larg,
1171  &l_nsitem,
1172  &l_namespace);
1173 
1174  /*
1175  * Make the left-side RTEs available for LATERAL access within the
1176  * right side, by temporarily adding them to the pstate's namespace
1177  * list. Per SQL:2008, if the join type is not INNER or LEFT then the
1178  * left-side names must still be exposed, but it's an error to
1179  * reference them. (Stupid design, but that's what it says.) Hence,
1180  * we always push them into the namespace, but mark them as not
1181  * lateral_ok if the jointype is wrong.
1182  *
1183  * Notice that we don't require the merged namespace list to be
1184  * conflict-free. See the comments for scanNameSpaceForRefname().
1185  */
1186  lateral_ok = (j->jointype == JOIN_INNER || j->jointype == JOIN_LEFT);
1187  setNamespaceLateralState(l_namespace, true, lateral_ok);
1188 
1189  sv_namespace_length = list_length(pstate->p_namespace);
1190  pstate->p_namespace = list_concat(pstate->p_namespace, l_namespace);
1191 
1192  /* And now we can process the RHS */
1193  j->rarg = transformFromClauseItem(pstate, j->rarg,
1194  &r_nsitem,
1195  &r_namespace);
1196 
1197  /* Remove the left-side RTEs from the namespace list again */
1198  pstate->p_namespace = list_truncate(pstate->p_namespace,
1199  sv_namespace_length);
1200 
1201  /*
1202  * Check for conflicting refnames in left and right subtrees. Must do
1203  * this because higher levels will assume I hand back a self-
1204  * consistent namespace list.
1205  */
1206  checkNameSpaceConflicts(pstate, l_namespace, r_namespace);
1207 
1208  /*
1209  * Generate combined namespace info for possible use below.
1210  */
1211  my_namespace = list_concat(l_namespace, r_namespace);
1212 
1213  /*
1214  * We'll work from the nscolumns data and eref alias column names for
1215  * each of the input nsitems. Note that these include dropped
1216  * columns, which is helpful because we can keep track of physical
1217  * input column numbers more easily.
1218  */
1219  l_nscolumns = l_nsitem->p_nscolumns;
1220  l_colnames = l_nsitem->p_rte->eref->colnames;
1221  r_nscolumns = r_nsitem->p_nscolumns;
1222  r_colnames = r_nsitem->p_rte->eref->colnames;
1223 
1224  /*
1225  * Natural join does not explicitly specify columns; must generate
1226  * columns to join. Need to run through the list of columns from each
1227  * table or join result and match up the column names. Use the first
1228  * table, and check every column in the second table for a match.
1229  * (We'll check that the matches were unique later on.) The result of
1230  * this step is a list of column names just like an explicitly-written
1231  * USING list.
1232  */
1233  if (j->isNatural)
1234  {
1235  List *rlist = NIL;
1236  ListCell *lx,
1237  *rx;
1238 
1239  Assert(j->usingClause == NIL); /* shouldn't have USING() too */
1240 
1241  foreach(lx, l_colnames)
1242  {
1243  char *l_colname = strVal(lfirst(lx));
1244  Value *m_name = NULL;
1245 
1246  if (l_colname[0] == '\0')
1247  continue; /* ignore dropped columns */
1248 
1249  foreach(rx, r_colnames)
1250  {
1251  char *r_colname = strVal(lfirst(rx));
1252 
1253  if (strcmp(l_colname, r_colname) == 0)
1254  {
1255  m_name = makeString(l_colname);
1256  break;
1257  }
1258  }
1259 
1260  /* matched a right column? then keep as join column... */
1261  if (m_name != NULL)
1262  rlist = lappend(rlist, m_name);
1263  }
1264 
1265  j->usingClause = rlist;
1266  }
1267 
1268  /*
1269  * Now transform the join qualifications, if any.
1270  */
1271  l_colnos = NIL;
1272  r_colnos = NIL;
1273  res_colnames = NIL;
1274  res_colvars = NIL;
1275 
1276  /* this may be larger than needed, but it's not worth being exact */
1277  res_nscolumns = (ParseNamespaceColumn *)
1278  palloc0((list_length(l_colnames) + list_length(r_colnames)) *
1279  sizeof(ParseNamespaceColumn));
1280  res_colindex = 0;
1281 
1282  if (j->usingClause)
1283  {
1284  /*
1285  * JOIN/USING (or NATURAL JOIN, as transformed above). Transform
1286  * the list into an explicit ON-condition, and generate a list of
1287  * merged result columns.
1288  */
1289  List *ucols = j->usingClause;
1290  List *l_usingvars = NIL;
1291  List *r_usingvars = NIL;
1292  ListCell *ucol;
1293 
1294  Assert(j->quals == NULL); /* shouldn't have ON() too */
1295 
1296  foreach(ucol, ucols)
1297  {
1298  char *u_colname = strVal(lfirst(ucol));
1299  ListCell *col;
1300  int ndx;
1301  int l_index = -1;
1302  int r_index = -1;
1303  Var *l_colvar,
1304  *r_colvar;
1305  Node *u_colvar;
1306  ParseNamespaceColumn *res_nscolumn;
1307 
1308  Assert(u_colname[0] != '\0');
1309 
1310  /* Check for USING(foo,foo) */
1311  foreach(col, res_colnames)
1312  {
1313  char *res_colname = strVal(lfirst(col));
1314 
1315  if (strcmp(res_colname, u_colname) == 0)
1316  ereport(ERROR,
1317  (errcode(ERRCODE_DUPLICATE_COLUMN),
1318  errmsg("column name \"%s\" appears more than once in USING clause",
1319  u_colname)));
1320  }
1321 
1322  /* Find it in left input */
1323  ndx = 0;
1324  foreach(col, l_colnames)
1325  {
1326  char *l_colname = strVal(lfirst(col));
1327 
1328  if (strcmp(l_colname, u_colname) == 0)
1329  {
1330  if (l_index >= 0)
1331  ereport(ERROR,
1332  (errcode(ERRCODE_AMBIGUOUS_COLUMN),
1333  errmsg("common column name \"%s\" appears more than once in left table",
1334  u_colname)));
1335  l_index = ndx;
1336  }
1337  ndx++;
1338  }
1339  if (l_index < 0)
1340  ereport(ERROR,
1341  (errcode(ERRCODE_UNDEFINED_COLUMN),
1342  errmsg("column \"%s\" specified in USING clause does not exist in left table",
1343  u_colname)));
1344  l_colnos = lappend_int(l_colnos, l_index + 1);
1345 
1346  /* Find it in right input */
1347  ndx = 0;
1348  foreach(col, r_colnames)
1349  {
1350  char *r_colname = strVal(lfirst(col));
1351 
1352  if (strcmp(r_colname, u_colname) == 0)
1353  {
1354  if (r_index >= 0)
1355  ereport(ERROR,
1356  (errcode(ERRCODE_AMBIGUOUS_COLUMN),
1357  errmsg("common column name \"%s\" appears more than once in right table",
1358  u_colname)));
1359  r_index = ndx;
1360  }
1361  ndx++;
1362  }
1363  if (r_index < 0)
1364  ereport(ERROR,
1365  (errcode(ERRCODE_UNDEFINED_COLUMN),
1366  errmsg("column \"%s\" specified in USING clause does not exist in right table",
1367  u_colname)));
1368  r_colnos = lappend_int(r_colnos, r_index + 1);
1369 
1370  l_colvar = buildVarFromNSColumn(l_nscolumns + l_index);
1371  l_usingvars = lappend(l_usingvars, l_colvar);
1372  r_colvar = buildVarFromNSColumn(r_nscolumns + r_index);
1373  r_usingvars = lappend(r_usingvars, r_colvar);
1374 
1375  res_colnames = lappend(res_colnames, lfirst(ucol));
1376  u_colvar = buildMergedJoinVar(pstate,
1377  j->jointype,
1378  l_colvar,
1379  r_colvar);
1380  res_colvars = lappend(res_colvars, u_colvar);
1381  res_nscolumn = res_nscolumns + res_colindex;
1382  res_colindex++;
1383  if (u_colvar == (Node *) l_colvar)
1384  {
1385  /* Merged column is equivalent to left input */
1386  *res_nscolumn = l_nscolumns[l_index];
1387  }
1388  else if (u_colvar == (Node *) r_colvar)
1389  {
1390  /* Merged column is equivalent to right input */
1391  *res_nscolumn = r_nscolumns[r_index];
1392  }
1393  else
1394  {
1395  /*
1396  * Merged column is not semantically equivalent to either
1397  * input, so it needs to be referenced as the join output
1398  * column. We don't know the join's varno yet, so we'll
1399  * replace these zeroes below.
1400  */
1401  res_nscolumn->p_varno = 0;
1402  res_nscolumn->p_varattno = res_colindex;
1403  res_nscolumn->p_vartype = exprType(u_colvar);
1404  res_nscolumn->p_vartypmod = exprTypmod(u_colvar);
1405  res_nscolumn->p_varcollid = exprCollation(u_colvar);
1406  res_nscolumn->p_varnosyn = 0;
1407  res_nscolumn->p_varattnosyn = res_colindex;
1408  }
1409  }
1410 
1411  j->quals = transformJoinUsingClause(pstate,
1412  l_nsitem->p_rte,
1413  r_nsitem->p_rte,
1414  l_usingvars,
1415  r_usingvars);
1416  }
1417  else if (j->quals)
1418  {
1419  /* User-written ON-condition; transform it */
1420  j->quals = transformJoinOnClause(pstate, j, my_namespace);
1421  }
1422  else
1423  {
1424  /* CROSS JOIN: no quals */
1425  }
1426 
1427  /* Add remaining columns from each side to the output columns */
1428  res_colindex +=
1429  extractRemainingColumns(l_nscolumns, l_colnames, &l_colnos,
1430  &res_colnames, &res_colvars,
1431  res_nscolumns + res_colindex);
1432  res_colindex +=
1433  extractRemainingColumns(r_nscolumns, r_colnames, &r_colnos,
1434  &res_colnames, &res_colvars,
1435  res_nscolumns + res_colindex);
1436 
1437  /*
1438  * Check alias (AS clause), if any.
1439  */
1440  if (j->alias)
1441  {
1442  if (j->alias->colnames != NIL)
1443  {
1444  if (list_length(j->alias->colnames) > list_length(res_colnames))
1445  ereport(ERROR,
1446  (errcode(ERRCODE_SYNTAX_ERROR),
1447  errmsg("column alias list for \"%s\" has too many entries",
1448  j->alias->aliasname)));
1449  }
1450  }
1451 
1452  /*
1453  * Now build an RTE and nsitem for the result of the join.
1454  * res_nscolumns isn't totally done yet, but that's OK because
1455  * addRangeTableEntryForJoin doesn't examine it, only store a pointer.
1456  */
1457  nsitem = addRangeTableEntryForJoin(pstate,
1458  res_colnames,
1459  res_nscolumns,
1460  j->jointype,
1462  res_colvars,
1463  l_colnos,
1464  r_colnos,
1465  j->alias,
1466  true);
1467 
1468  j->rtindex = nsitem->p_rtindex;
1469 
1470  /*
1471  * Now that we know the join RTE's rangetable index, we can fix up the
1472  * res_nscolumns data in places where it should contain that.
1473  */
1474  Assert(res_colindex == list_length(nsitem->p_rte->eref->colnames));
1475  for (k = 0; k < res_colindex; k++)
1476  {
1477  ParseNamespaceColumn *nscol = res_nscolumns + k;
1478 
1479  /* fill in join RTI for merged columns */
1480  if (nscol->p_varno == 0)
1481  nscol->p_varno = j->rtindex;
1482  if (nscol->p_varnosyn == 0)
1483  nscol->p_varnosyn = j->rtindex;
1484  /* if join has an alias, it syntactically hides all inputs */
1485  if (j->alias)
1486  {
1487  nscol->p_varnosyn = j->rtindex;
1488  nscol->p_varattnosyn = k + 1;
1489  }
1490  }
1491 
1492  /* make a matching link to the JoinExpr for later use */
1493  for (k = list_length(pstate->p_joinexprs) + 1; k < j->rtindex; k++)
1494  pstate->p_joinexprs = lappend(pstate->p_joinexprs, NULL);
1495  pstate->p_joinexprs = lappend(pstate->p_joinexprs, j);
1496  Assert(list_length(pstate->p_joinexprs) == j->rtindex);
1497 
1498  /*
1499  * Prepare returned namespace list. If the JOIN has an alias then it
1500  * hides the contained RTEs completely; otherwise, the contained RTEs
1501  * are still visible as table names, but are not visible for
1502  * unqualified column-name access.
1503  *
1504  * Note: if there are nested alias-less JOINs, the lower-level ones
1505  * will remain in the list although they have neither p_rel_visible
1506  * nor p_cols_visible set. We could delete such list items, but it's
1507  * unclear that it's worth expending cycles to do so.
1508  */
1509  if (j->alias != NULL)
1510  my_namespace = NIL;
1511  else
1512  setNamespaceColumnVisibility(my_namespace, false);
1513 
1514  /*
1515  * The join RTE itself is always made visible for unqualified column
1516  * names. It's visible as a relation name only if it has an alias.
1517  */
1518  nsitem->p_rel_visible = (j->alias != NULL);
1519  nsitem->p_cols_visible = true;
1520  nsitem->p_lateral_only = false;
1521  nsitem->p_lateral_ok = true;
1522 
1523  *top_nsitem = nsitem;
1524  *namespace = lappend(my_namespace, nsitem);
1525 
1526  return (Node *) j;
1527  }
1528  else
1529  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(n));
1530  return NULL; /* can't get here, keep compiler quiet */
1531 }
1532 
1533 /*
1534  * buildVarFromNSColumn -
1535  * build a Var node using ParseNamespaceColumn data
1536  *
1537  * We assume varlevelsup should be 0, and no location is specified
1538  */
1539 static Var *
1541 {
1542  Var *var;
1543 
1544  Assert(nscol->p_varno > 0); /* i.e., not deleted column */
1545  var = makeVar(nscol->p_varno,
1546  nscol->p_varattno,
1547  nscol->p_vartype,
1548  nscol->p_vartypmod,
1549  nscol->p_varcollid,
1550  0);
1551  /* makeVar doesn't offer parameters for these, so set by hand: */
1552  var->varnosyn = nscol->p_varnosyn;
1553  var->varattnosyn = nscol->p_varattnosyn;
1554  return var;
1555 }
1556 
1557 /*
1558  * buildMergedJoinVar -
1559  * generate a suitable replacement expression for a merged join column
1560  */
1561 static Node *
1563  Var *l_colvar, Var *r_colvar)
1564 {
1565  Oid outcoltype;
1566  int32 outcoltypmod;
1567  Node *l_node,
1568  *r_node,
1569  *res_node;
1570 
1571  /*
1572  * Choose output type if input types are dissimilar.
1573  */
1574  outcoltype = l_colvar->vartype;
1575  outcoltypmod = l_colvar->vartypmod;
1576  if (outcoltype != r_colvar->vartype)
1577  {
1578  outcoltype = select_common_type(pstate,
1579  list_make2(l_colvar, r_colvar),
1580  "JOIN/USING",
1581  NULL);
1582  outcoltypmod = -1; /* ie, unknown */
1583  }
1584  else if (outcoltypmod != r_colvar->vartypmod)
1585  {
1586  /* same type, but not same typmod */
1587  outcoltypmod = -1; /* ie, unknown */
1588  }
1589 
1590  /*
1591  * Insert coercion functions if needed. Note that a difference in typmod
1592  * can only happen if input has typmod but outcoltypmod is -1. In that
1593  * case we insert a RelabelType to clearly mark that result's typmod is
1594  * not same as input. We never need coerce_type_typmod.
1595  */
1596  if (l_colvar->vartype != outcoltype)
1597  l_node = coerce_type(pstate, (Node *) l_colvar, l_colvar->vartype,
1598  outcoltype, outcoltypmod,
1600  else if (l_colvar->vartypmod != outcoltypmod)
1601  l_node = (Node *) makeRelabelType((Expr *) l_colvar,
1602  outcoltype, outcoltypmod,
1603  InvalidOid, /* fixed below */
1605  else
1606  l_node = (Node *) l_colvar;
1607 
1608  if (r_colvar->vartype != outcoltype)
1609  r_node = coerce_type(pstate, (Node *) r_colvar, r_colvar->vartype,
1610  outcoltype, outcoltypmod,
1612  else if (r_colvar->vartypmod != outcoltypmod)
1613  r_node = (Node *) makeRelabelType((Expr *) r_colvar,
1614  outcoltype, outcoltypmod,
1615  InvalidOid, /* fixed below */
1617  else
1618  r_node = (Node *) r_colvar;
1619 
1620  /*
1621  * Choose what to emit
1622  */
1623  switch (jointype)
1624  {
1625  case JOIN_INNER:
1626 
1627  /*
1628  * We can use either var; prefer non-coerced one if available.
1629  */
1630  if (IsA(l_node, Var))
1631  res_node = l_node;
1632  else if (IsA(r_node, Var))
1633  res_node = r_node;
1634  else
1635  res_node = l_node;
1636  break;
1637  case JOIN_LEFT:
1638  /* Always use left var */
1639  res_node = l_node;
1640  break;
1641  case JOIN_RIGHT:
1642  /* Always use right var */
1643  res_node = r_node;
1644  break;
1645  case JOIN_FULL:
1646  {
1647  /*
1648  * Here we must build a COALESCE expression to ensure that the
1649  * join output is non-null if either input is.
1650  */
1652 
1653  c->coalescetype = outcoltype;
1654  /* coalescecollid will get set below */
1655  c->args = list_make2(l_node, r_node);
1656  c->location = -1;
1657  res_node = (Node *) c;
1658  break;
1659  }
1660  default:
1661  elog(ERROR, "unrecognized join type: %d", (int) jointype);
1662  res_node = NULL; /* keep compiler quiet */
1663  break;
1664  }
1665 
1666  /*
1667  * Apply assign_expr_collations to fix up the collation info in the
1668  * coercion and CoalesceExpr nodes, if we made any. This must be done now
1669  * so that the join node's alias vars show correct collation info.
1670  */
1671  assign_expr_collations(pstate, res_node);
1672 
1673  return res_node;
1674 }
1675 
1676 /*
1677  * setNamespaceColumnVisibility -
1678  * Convenience subroutine to update cols_visible flags in a namespace list.
1679  */
1680 static void
1681 setNamespaceColumnVisibility(List *namespace, bool cols_visible)
1682 {
1683  ListCell *lc;
1684 
1685  foreach(lc, namespace)
1686  {
1687  ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1688 
1689  nsitem->p_cols_visible = cols_visible;
1690  }
1691 }
1692 
1693 /*
1694  * setNamespaceLateralState -
1695  * Convenience subroutine to update LATERAL flags in a namespace list.
1696  */
1697 static void
1698 setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok)
1699 {
1700  ListCell *lc;
1701 
1702  foreach(lc, namespace)
1703  {
1704  ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1705 
1706  nsitem->p_lateral_only = lateral_only;
1707  nsitem->p_lateral_ok = lateral_ok;
1708  }
1709 }
1710 
1711 
1712 /*
1713  * transformWhereClause -
1714  * Transform the qualification and make sure it is of type boolean.
1715  * Used for WHERE and allied clauses.
1716  *
1717  * constructName does not affect the semantics, but is used in error messages
1718  */
1719 Node *
1721  ParseExprKind exprKind, const char *constructName)
1722 {
1723  Node *qual;
1724 
1725  if (clause == NULL)
1726  return NULL;
1727 
1728  qual = transformExpr(pstate, clause, exprKind);
1729 
1730  qual = coerce_to_boolean(pstate, qual, constructName);
1731 
1732  return qual;
1733 }
1734 
1735 
1736 /*
1737  * transformLimitClause -
1738  * Transform the expression and make sure it is of type bigint.
1739  * Used for LIMIT and allied clauses.
1740  *
1741  * Note: as of Postgres 8.2, LIMIT expressions are expected to yield int8,
1742  * rather than int4 as before.
1743  *
1744  * constructName does not affect the semantics, but is used in error messages
1745  */
1746 Node *
1748  ParseExprKind exprKind, const char *constructName,
1749  LimitOption limitOption)
1750 {
1751  Node *qual;
1752 
1753  if (clause == NULL)
1754  return NULL;
1755 
1756  qual = transformExpr(pstate, clause, exprKind);
1757 
1758  qual = coerce_to_specific_type(pstate, qual, INT8OID, constructName);
1759 
1760  /* LIMIT can't refer to any variables of the current query */
1761  checkExprIsVarFree(pstate, qual, constructName);
1762 
1763  /*
1764  * Don't allow NULLs in FETCH FIRST .. WITH TIES. This test is ugly and
1765  * extremely simplistic, in that you can pass a NULL anyway by hiding it
1766  * inside an expression -- but this protects ruleutils against emitting an
1767  * unadorned NULL that's not accepted back by the grammar.
1768  */
1769  if (exprKind == EXPR_KIND_LIMIT && limitOption == LIMIT_OPTION_WITH_TIES &&
1770  IsA(clause, A_Const) && ((A_Const *) clause)->val.type == T_Null)
1771  ereport(ERROR,
1772  (errcode(ERRCODE_INVALID_ROW_COUNT_IN_LIMIT_CLAUSE),
1773  errmsg("row count cannot be null in FETCH FIRST ... WITH TIES clause")));
1774 
1775  return qual;
1776 }
1777 
1778 /*
1779  * checkExprIsVarFree
1780  * Check that given expr has no Vars of the current query level
1781  * (aggregates and window functions should have been rejected already).
1782  *
1783  * This is used to check expressions that have to have a consistent value
1784  * across all rows of the query, such as a LIMIT. Arguably it should reject
1785  * volatile functions, too, but we don't do that --- whatever value the
1786  * function gives on first execution is what you get.
1787  *
1788  * constructName does not affect the semantics, but is used in error messages
1789  */
1790 static void
1791 checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName)
1792 {
1793  if (contain_vars_of_level(n, 0))
1794  {
1795  ereport(ERROR,
1796  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1797  /* translator: %s is name of a SQL construct, eg LIMIT */
1798  errmsg("argument of %s must not contain variables",
1799  constructName),
1800  parser_errposition(pstate,
1801  locate_var_of_level(n, 0))));
1802  }
1803 }
1804 
1805 
1806 /*
1807  * checkTargetlistEntrySQL92 -
1808  * Validate a targetlist entry found by findTargetlistEntrySQL92
1809  *
1810  * When we select a pre-existing tlist entry as a result of syntax such
1811  * as "GROUP BY 1", we have to make sure it is acceptable for use in the
1812  * indicated clause type; transformExpr() will have treated it as a regular
1813  * targetlist item.
1814  */
1815 static void
1817  ParseExprKind exprKind)
1818 {
1819  switch (exprKind)
1820  {
1821  case EXPR_KIND_GROUP_BY:
1822  /* reject aggregates and window functions */
1823  if (pstate->p_hasAggs &&
1824  contain_aggs_of_level((Node *) tle->expr, 0))
1825  ereport(ERROR,
1826  (errcode(ERRCODE_GROUPING_ERROR),
1827  /* translator: %s is name of a SQL construct, eg GROUP BY */
1828  errmsg("aggregate functions are not allowed in %s",
1829  ParseExprKindName(exprKind)),
1830  parser_errposition(pstate,
1831  locate_agg_of_level((Node *) tle->expr, 0))));
1832  if (pstate->p_hasWindowFuncs &&
1833  contain_windowfuncs((Node *) tle->expr))
1834  ereport(ERROR,
1835  (errcode(ERRCODE_WINDOWING_ERROR),
1836  /* translator: %s is name of a SQL construct, eg GROUP BY */
1837  errmsg("window functions are not allowed in %s",
1838  ParseExprKindName(exprKind)),
1839  parser_errposition(pstate,
1840  locate_windowfunc((Node *) tle->expr))));
1841  break;
1842  case EXPR_KIND_ORDER_BY:
1843  /* no extra checks needed */
1844  break;
1845  case EXPR_KIND_DISTINCT_ON:
1846  /* no extra checks needed */
1847  break;
1848  default:
1849  elog(ERROR, "unexpected exprKind in checkTargetlistEntrySQL92");
1850  break;
1851  }
1852 }
1853 
1854 /*
1855  * findTargetlistEntrySQL92 -
1856  * Returns the targetlist entry matching the given (untransformed) node.
1857  * If no matching entry exists, one is created and appended to the target
1858  * list as a "resjunk" node.
1859  *
1860  * This function supports the old SQL92 ORDER BY interpretation, where the
1861  * expression is an output column name or number. If we fail to find a
1862  * match of that sort, we fall through to the SQL99 rules. For historical
1863  * reasons, Postgres also allows this interpretation for GROUP BY, though
1864  * the standard never did. However, for GROUP BY we prefer a SQL99 match.
1865  * This function is *not* used for WINDOW definitions.
1866  *
1867  * node the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched
1868  * tlist the target list (passed by reference so we can append to it)
1869  * exprKind identifies clause type being processed
1870  */
1871 static TargetEntry *
1873  ParseExprKind exprKind)
1874 {
1875  ListCell *tl;
1876 
1877  /*----------
1878  * Handle two special cases as mandated by the SQL92 spec:
1879  *
1880  * 1. Bare ColumnName (no qualifier or subscripts)
1881  * For a bare identifier, we search for a matching column name
1882  * in the existing target list. Multiple matches are an error
1883  * unless they refer to identical values; for example,
1884  * we allow SELECT a, a FROM table ORDER BY a
1885  * but not SELECT a AS b, b FROM table ORDER BY b
1886  * If no match is found, we fall through and treat the identifier
1887  * as an expression.
1888  * For GROUP BY, it is incorrect to match the grouping item against
1889  * targetlist entries: according to SQL92, an identifier in GROUP BY
1890  * is a reference to a column name exposed by FROM, not to a target
1891  * list column. However, many implementations (including pre-7.0
1892  * PostgreSQL) accept this anyway. So for GROUP BY, we look first
1893  * to see if the identifier matches any FROM column name, and only
1894  * try for a targetlist name if it doesn't. This ensures that we
1895  * adhere to the spec in the case where the name could be both.
1896  * DISTINCT ON isn't in the standard, so we can do what we like there;
1897  * we choose to make it work like ORDER BY, on the rather flimsy
1898  * grounds that ordinary DISTINCT works on targetlist entries.
1899  *
1900  * 2. IntegerConstant
1901  * This means to use the n'th item in the existing target list.
1902  * Note that it would make no sense to order/group/distinct by an
1903  * actual constant, so this does not create a conflict with SQL99.
1904  * GROUP BY column-number is not allowed by SQL92, but since
1905  * the standard has no other behavior defined for this syntax,
1906  * we may as well accept this common extension.
1907  *
1908  * Note that pre-existing resjunk targets must not be used in either case,
1909  * since the user didn't write them in his SELECT list.
1910  *
1911  * If neither special case applies, fall through to treat the item as
1912  * an expression per SQL99.
1913  *----------
1914  */
1915  if (IsA(node, ColumnRef) &&
1916  list_length(((ColumnRef *) node)->fields) == 1 &&
1917  IsA(linitial(((ColumnRef *) node)->fields), String))
1918  {
1919  char *name = strVal(linitial(((ColumnRef *) node)->fields));
1920  int location = ((ColumnRef *) node)->location;
1921 
1922  if (exprKind == EXPR_KIND_GROUP_BY)
1923  {
1924  /*
1925  * In GROUP BY, we must prefer a match against a FROM-clause
1926  * column to one against the targetlist. Look to see if there is
1927  * a matching column. If so, fall through to use SQL99 rules.
1928  * NOTE: if name could refer ambiguously to more than one column
1929  * name exposed by FROM, colNameToVar will ereport(ERROR). That's
1930  * just what we want here.
1931  *
1932  * Small tweak for 7.4.3: ignore matches in upper query levels.
1933  * This effectively changes the search order for bare names to (1)
1934  * local FROM variables, (2) local targetlist aliases, (3) outer
1935  * FROM variables, whereas before it was (1) (3) (2). SQL92 and
1936  * SQL99 do not allow GROUPing BY an outer reference, so this
1937  * breaks no cases that are legal per spec, and it seems a more
1938  * self-consistent behavior.
1939  */
1940  if (colNameToVar(pstate, name, true, location) != NULL)
1941  name = NULL;
1942  }
1943 
1944  if (name != NULL)
1945  {
1946  TargetEntry *target_result = NULL;
1947 
1948  foreach(tl, *tlist)
1949  {
1950  TargetEntry *tle = (TargetEntry *) lfirst(tl);
1951 
1952  if (!tle->resjunk &&
1953  strcmp(tle->resname, name) == 0)
1954  {
1955  if (target_result != NULL)
1956  {
1957  if (!equal(target_result->expr, tle->expr))
1958  ereport(ERROR,
1959  (errcode(ERRCODE_AMBIGUOUS_COLUMN),
1960 
1961  /*------
1962  translator: first %s is name of a SQL construct, eg ORDER BY */
1963  errmsg("%s \"%s\" is ambiguous",
1964  ParseExprKindName(exprKind),
1965  name),
1966  parser_errposition(pstate, location)));
1967  }
1968  else
1969  target_result = tle;
1970  /* Stay in loop to check for ambiguity */
1971  }
1972  }
1973  if (target_result != NULL)
1974  {
1975  /* return the first match, after suitable validation */
1976  checkTargetlistEntrySQL92(pstate, target_result, exprKind);
1977  return target_result;
1978  }
1979  }
1980  }
1981  if (IsA(node, A_Const))
1982  {
1983  Value *val = &((A_Const *) node)->val;
1984  int location = ((A_Const *) node)->location;
1985  int targetlist_pos = 0;
1986  int target_pos;
1987 
1988  if (!IsA(val, Integer))
1989  ereport(ERROR,
1990  (errcode(ERRCODE_SYNTAX_ERROR),
1991  /* translator: %s is name of a SQL construct, eg ORDER BY */
1992  errmsg("non-integer constant in %s",
1993  ParseExprKindName(exprKind)),
1994  parser_errposition(pstate, location)));
1995 
1996  target_pos = intVal(val);
1997  foreach(tl, *tlist)
1998  {
1999  TargetEntry *tle = (TargetEntry *) lfirst(tl);
2000 
2001  if (!tle->resjunk)
2002  {
2003  if (++targetlist_pos == target_pos)
2004  {
2005  /* return the unique match, after suitable validation */
2006  checkTargetlistEntrySQL92(pstate, tle, exprKind);
2007  return tle;
2008  }
2009  }
2010  }
2011  ereport(ERROR,
2012  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2013  /* translator: %s is name of a SQL construct, eg ORDER BY */
2014  errmsg("%s position %d is not in select list",
2015  ParseExprKindName(exprKind), target_pos),
2016  parser_errposition(pstate, location)));
2017  }
2018 
2019  /*
2020  * Otherwise, we have an expression, so process it per SQL99 rules.
2021  */
2022  return findTargetlistEntrySQL99(pstate, node, tlist, exprKind);
2023 }
2024 
2025 /*
2026  * findTargetlistEntrySQL99 -
2027  * Returns the targetlist entry matching the given (untransformed) node.
2028  * If no matching entry exists, one is created and appended to the target
2029  * list as a "resjunk" node.
2030  *
2031  * This function supports the SQL99 interpretation, wherein the expression
2032  * is just an ordinary expression referencing input column names.
2033  *
2034  * node the ORDER BY, GROUP BY, etc expression to be matched
2035  * tlist the target list (passed by reference so we can append to it)
2036  * exprKind identifies clause type being processed
2037  */
2038 static TargetEntry *
2040  ParseExprKind exprKind)
2041 {
2042  TargetEntry *target_result;
2043  ListCell *tl;
2044  Node *expr;
2045 
2046  /*
2047  * Convert the untransformed node to a transformed expression, and search
2048  * for a match in the tlist. NOTE: it doesn't really matter whether there
2049  * is more than one match. Also, we are willing to match an existing
2050  * resjunk target here, though the SQL92 cases above must ignore resjunk
2051  * targets.
2052  */
2053  expr = transformExpr(pstate, node, exprKind);
2054 
2055  foreach(tl, *tlist)
2056  {
2057  TargetEntry *tle = (TargetEntry *) lfirst(tl);
2058  Node *texpr;
2059 
2060  /*
2061  * Ignore any implicit cast on the existing tlist expression.
2062  *
2063  * This essentially allows the ORDER/GROUP/etc item to adopt the same
2064  * datatype previously selected for a textually-equivalent tlist item.
2065  * There can't be any implicit cast at top level in an ordinary SELECT
2066  * tlist at this stage, but the case does arise with ORDER BY in an
2067  * aggregate function.
2068  */
2069  texpr = strip_implicit_coercions((Node *) tle->expr);
2070 
2071  if (equal(expr, texpr))
2072  return tle;
2073  }
2074 
2075  /*
2076  * If no matches, construct a new target entry which is appended to the
2077  * end of the target list. This target is given resjunk = true so that it
2078  * will not be projected into the final tuple.
2079  */
2080  target_result = transformTargetEntry(pstate, node, expr, exprKind,
2081  NULL, true);
2082 
2083  *tlist = lappend(*tlist, target_result);
2084 
2085  return target_result;
2086 }
2087 
2088 /*-------------------------------------------------------------------------
2089  * Flatten out parenthesized sublists in grouping lists, and some cases
2090  * of nested grouping sets.
2091  *
2092  * Inside a grouping set (ROLLUP, CUBE, or GROUPING SETS), we expect the
2093  * content to be nested no more than 2 deep: i.e. ROLLUP((a,b),(c,d)) is
2094  * ok, but ROLLUP((a,(b,c)),d) is flattened to ((a,b,c),d), which we then
2095  * (later) normalize to ((a,b,c),(d)).
2096  *
2097  * CUBE or ROLLUP can be nested inside GROUPING SETS (but not the reverse),
2098  * and we leave that alone if we find it. But if we see GROUPING SETS inside
2099  * GROUPING SETS, we can flatten and normalize as follows:
2100  * GROUPING SETS (a, (b,c), GROUPING SETS ((c,d),(e)), (f,g))
2101  * becomes
2102  * GROUPING SETS ((a), (b,c), (c,d), (e), (f,g))
2103  *
2104  * This is per the spec's syntax transformations, but these are the only such
2105  * transformations we do in parse analysis, so that queries retain the
2106  * originally specified grouping set syntax for CUBE and ROLLUP as much as
2107  * possible when deparsed. (Full expansion of the result into a list of
2108  * grouping sets is left to the planner.)
2109  *
2110  * When we're done, the resulting list should contain only these possible
2111  * elements:
2112  * - an expression
2113  * - a CUBE or ROLLUP with a list of expressions nested 2 deep
2114  * - a GROUPING SET containing any of:
2115  * - expression lists
2116  * - empty grouping sets
2117  * - CUBE or ROLLUP nodes with lists nested 2 deep
2118  * The return is a new list, but doesn't deep-copy the old nodes except for
2119  * GroupingSet nodes.
2120  *
2121  * As a side effect, flag whether the list has any GroupingSet nodes.
2122  *-------------------------------------------------------------------------
2123  */
2124 static Node *
2125 flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets)
2126 {
2127  /* just in case of pathological input */
2129 
2130  if (expr == (Node *) NIL)
2131  return (Node *) NIL;
2132 
2133  switch (expr->type)
2134  {
2135  case T_RowExpr:
2136  {
2137  RowExpr *r = (RowExpr *) expr;
2138 
2139  if (r->row_format == COERCE_IMPLICIT_CAST)
2140  return flatten_grouping_sets((Node *) r->args,
2141  false, NULL);
2142  }
2143  break;
2144  case T_GroupingSet:
2145  {
2146  GroupingSet *gset = (GroupingSet *) expr;
2147  ListCell *l2;
2148  List *result_set = NIL;
2149 
2150  if (hasGroupingSets)
2151  *hasGroupingSets = true;
2152 
2153  /*
2154  * at the top level, we skip over all empty grouping sets; the
2155  * caller can supply the canonical GROUP BY () if nothing is
2156  * left.
2157  */
2158 
2159  if (toplevel && gset->kind == GROUPING_SET_EMPTY)
2160  return (Node *) NIL;
2161 
2162  foreach(l2, gset->content)
2163  {
2164  Node *n1 = lfirst(l2);
2165  Node *n2 = flatten_grouping_sets(n1, false, NULL);
2166 
2167  if (IsA(n1, GroupingSet) &&
2168  ((GroupingSet *) n1)->kind == GROUPING_SET_SETS)
2169  result_set = list_concat(result_set, (List *) n2);
2170  else
2171  result_set = lappend(result_set, n2);
2172  }
2173 
2174  /*
2175  * At top level, keep the grouping set node; but if we're in a
2176  * nested grouping set, then we need to concat the flattened
2177  * result into the outer list if it's simply nested.
2178  */
2179 
2180  if (toplevel || (gset->kind != GROUPING_SET_SETS))
2181  {
2182  return (Node *) makeGroupingSet(gset->kind, result_set, gset->location);
2183  }
2184  else
2185  return (Node *) result_set;
2186  }
2187  case T_List:
2188  {
2189  List *result = NIL;
2190  ListCell *l;
2191 
2192  foreach(l, (List *) expr)
2193  {
2194  Node *n = flatten_grouping_sets(lfirst(l), toplevel, hasGroupingSets);
2195 
2196  if (n != (Node *) NIL)
2197  {
2198  if (IsA(n, List))
2199  result = list_concat(result, (List *) n);
2200  else
2201  result = lappend(result, n);
2202  }
2203  }
2204 
2205  return (Node *) result;
2206  }
2207  default:
2208  break;
2209  }
2210 
2211  return expr;
2212 }
2213 
2214 /*
2215  * Transform a single expression within a GROUP BY clause or grouping set.
2216  *
2217  * The expression is added to the targetlist if not already present, and to the
2218  * flatresult list (which will become the groupClause) if not already present
2219  * there. The sortClause is consulted for operator and sort order hints.
2220  *
2221  * Returns the ressortgroupref of the expression.
2222  *
2223  * flatresult reference to flat list of SortGroupClause nodes
2224  * seen_local bitmapset of sortgrouprefs already seen at the local level
2225  * pstate ParseState
2226  * gexpr node to transform
2227  * targetlist reference to TargetEntry list
2228  * sortClause ORDER BY clause (SortGroupClause nodes)
2229  * exprKind expression kind
2230  * useSQL99 SQL99 rather than SQL92 syntax
2231  * toplevel false if within any grouping set
2232  */
2233 static Index
2234 transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local,
2235  ParseState *pstate, Node *gexpr,
2236  List **targetlist, List *sortClause,
2237  ParseExprKind exprKind, bool useSQL99, bool toplevel)
2238 {
2239  TargetEntry *tle;
2240  bool found = false;
2241 
2242  if (useSQL99)
2243  tle = findTargetlistEntrySQL99(pstate, gexpr,
2244  targetlist, exprKind);
2245  else
2246  tle = findTargetlistEntrySQL92(pstate, gexpr,
2247  targetlist, exprKind);
2248 
2249  if (tle->ressortgroupref > 0)
2250  {
2251  ListCell *sl;
2252 
2253  /*
2254  * Eliminate duplicates (GROUP BY x, x) but only at local level.
2255  * (Duplicates in grouping sets can affect the number of returned
2256  * rows, so can't be dropped indiscriminately.)
2257  *
2258  * Since we don't care about anything except the sortgroupref, we can
2259  * use a bitmapset rather than scanning lists.
2260  */
2261  if (bms_is_member(tle->ressortgroupref, seen_local))
2262  return 0;
2263 
2264  /*
2265  * If we're already in the flat clause list, we don't need to consider
2266  * adding ourselves again.
2267  */
2268  found = targetIsInSortList(tle, InvalidOid, *flatresult);
2269  if (found)
2270  return tle->ressortgroupref;
2271 
2272  /*
2273  * If the GROUP BY tlist entry also appears in ORDER BY, copy operator
2274  * info from the (first) matching ORDER BY item. This means that if
2275  * you write something like "GROUP BY foo ORDER BY foo USING <<<", the
2276  * GROUP BY operation silently takes on the equality semantics implied
2277  * by the ORDER BY. There are two reasons to do this: it improves the
2278  * odds that we can implement both GROUP BY and ORDER BY with a single
2279  * sort step, and it allows the user to choose the equality semantics
2280  * used by GROUP BY, should she be working with a datatype that has
2281  * more than one equality operator.
2282  *
2283  * If we're in a grouping set, though, we force our requested ordering
2284  * to be NULLS LAST, because if we have any hope of using a sorted agg
2285  * for the job, we're going to be tacking on generated NULL values
2286  * after the corresponding groups. If the user demands nulls first,
2287  * another sort step is going to be inevitable, but that's the
2288  * planner's problem.
2289  */
2290 
2291  foreach(sl, sortClause)
2292  {
2293  SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
2294 
2295  if (sc->tleSortGroupRef == tle->ressortgroupref)
2296  {
2297  SortGroupClause *grpc = copyObject(sc);
2298 
2299  if (!toplevel)
2300  grpc->nulls_first = false;
2301  *flatresult = lappend(*flatresult, grpc);
2302  found = true;
2303  break;
2304  }
2305  }
2306  }
2307 
2308  /*
2309  * If no match in ORDER BY, just add it to the result using default
2310  * sort/group semantics.
2311  */
2312  if (!found)
2313  *flatresult = addTargetToGroupList(pstate, tle,
2314  *flatresult, *targetlist,
2315  exprLocation(gexpr));
2316 
2317  /*
2318  * _something_ must have assigned us a sortgroupref by now...
2319  */
2320 
2321  return tle->ressortgroupref;
2322 }
2323 
2324 /*
2325  * Transform a list of expressions within a GROUP BY clause or grouping set.
2326  *
2327  * The list of expressions belongs to a single clause within which duplicates
2328  * can be safely eliminated.
2329  *
2330  * Returns an integer list of ressortgroupref values.
2331  *
2332  * flatresult reference to flat list of SortGroupClause nodes
2333  * pstate ParseState
2334  * list nodes to transform
2335  * targetlist reference to TargetEntry list
2336  * sortClause ORDER BY clause (SortGroupClause nodes)
2337  * exprKind expression kind
2338  * useSQL99 SQL99 rather than SQL92 syntax
2339  * toplevel false if within any grouping set
2340  */
2341 static List *
2343  ParseState *pstate, List *list,
2344  List **targetlist, List *sortClause,
2345  ParseExprKind exprKind, bool useSQL99, bool toplevel)
2346 {
2347  Bitmapset *seen_local = NULL;
2348  List *result = NIL;
2349  ListCell *gl;
2350 
2351  foreach(gl, list)
2352  {
2353  Node *gexpr = (Node *) lfirst(gl);
2354 
2355  Index ref = transformGroupClauseExpr(flatresult,
2356  seen_local,
2357  pstate,
2358  gexpr,
2359  targetlist,
2360  sortClause,
2361  exprKind,
2362  useSQL99,
2363  toplevel);
2364 
2365  if (ref > 0)
2366  {
2367  seen_local = bms_add_member(seen_local, ref);
2368  result = lappend_int(result, ref);
2369  }
2370  }
2371 
2372  return result;
2373 }
2374 
2375 /*
2376  * Transform a grouping set and (recursively) its content.
2377  *
2378  * The grouping set might be a GROUPING SETS node with other grouping sets
2379  * inside it, but SETS within SETS have already been flattened out before
2380  * reaching here.
2381  *
2382  * Returns the transformed node, which now contains SIMPLE nodes with lists
2383  * of ressortgrouprefs rather than expressions.
2384  *
2385  * flatresult reference to flat list of SortGroupClause nodes
2386  * pstate ParseState
2387  * gset grouping set to transform
2388  * targetlist reference to TargetEntry list
2389  * sortClause ORDER BY clause (SortGroupClause nodes)
2390  * exprKind expression kind
2391  * useSQL99 SQL99 rather than SQL92 syntax
2392  * toplevel false if within any grouping set
2393  */
2394 static Node *
2396  ParseState *pstate, GroupingSet *gset,
2397  List **targetlist, List *sortClause,
2398  ParseExprKind exprKind, bool useSQL99, bool toplevel)
2399 {
2400  ListCell *gl;
2401  List *content = NIL;
2402 
2403  Assert(toplevel || gset->kind != GROUPING_SET_SETS);
2404 
2405  foreach(gl, gset->content)
2406  {
2407  Node *n = lfirst(gl);
2408 
2409  if (IsA(n, List))
2410  {
2411  List *l = transformGroupClauseList(flatresult,
2412  pstate, (List *) n,
2413  targetlist, sortClause,
2414  exprKind, useSQL99, false);
2415 
2416  content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2417  l,
2418  exprLocation(n)));
2419  }
2420  else if (IsA(n, GroupingSet))
2421  {
2422  GroupingSet *gset2 = (GroupingSet *) lfirst(gl);
2423 
2424  content = lappend(content, transformGroupingSet(flatresult,
2425  pstate, gset2,
2426  targetlist, sortClause,
2427  exprKind, useSQL99, false));
2428  }
2429  else
2430  {
2431  Index ref = transformGroupClauseExpr(flatresult,
2432  NULL,
2433  pstate,
2434  n,
2435  targetlist,
2436  sortClause,
2437  exprKind,
2438  useSQL99,
2439  false);
2440 
2441  content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2442  list_make1_int(ref),
2443  exprLocation(n)));
2444  }
2445  }
2446 
2447  /* Arbitrarily cap the size of CUBE, which has exponential growth */
2448  if (gset->kind == GROUPING_SET_CUBE)
2449  {
2450  if (list_length(content) > 12)
2451  ereport(ERROR,
2452  (errcode(ERRCODE_TOO_MANY_COLUMNS),
2453  errmsg("CUBE is limited to 12 elements"),
2454  parser_errposition(pstate, gset->location)));
2455  }
2456 
2457  return (Node *) makeGroupingSet(gset->kind, content, gset->location);
2458 }
2459 
2460 
2461 /*
2462  * transformGroupClause -
2463  * transform a GROUP BY clause
2464  *
2465  * GROUP BY items will be added to the targetlist (as resjunk columns)
2466  * if not already present, so the targetlist must be passed by reference.
2467  *
2468  * This is also used for window PARTITION BY clauses (which act almost the
2469  * same, but are always interpreted per SQL99 rules).
2470  *
2471  * Grouping sets make this a lot more complex than it was. Our goal here is
2472  * twofold: we make a flat list of SortGroupClause nodes referencing each
2473  * distinct expression used for grouping, with those expressions added to the
2474  * targetlist if needed. At the same time, we build the groupingSets tree,
2475  * which stores only ressortgrouprefs as integer lists inside GroupingSet nodes
2476  * (possibly nested, but limited in depth: a GROUPING_SET_SETS node can contain
2477  * nested SIMPLE, CUBE or ROLLUP nodes, but not more sets - we flatten that
2478  * out; while CUBE and ROLLUP can contain only SIMPLE nodes).
2479  *
2480  * We skip much of the hard work if there are no grouping sets.
2481  *
2482  * One subtlety is that the groupClause list can end up empty while the
2483  * groupingSets list is not; this happens if there are only empty grouping
2484  * sets, or an explicit GROUP BY (). This has the same effect as specifying
2485  * aggregates or a HAVING clause with no GROUP BY; the output is one row per
2486  * grouping set even if the input is empty.
2487  *
2488  * Returns the transformed (flat) groupClause.
2489  *
2490  * pstate ParseState
2491  * grouplist clause to transform
2492  * groupingSets reference to list to contain the grouping set tree
2493  * targetlist reference to TargetEntry list
2494  * sortClause ORDER BY clause (SortGroupClause nodes)
2495  * exprKind expression kind
2496  * useSQL99 SQL99 rather than SQL92 syntax
2497  */
2498 List *
2499 transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets,
2500  List **targetlist, List *sortClause,
2501  ParseExprKind exprKind, bool useSQL99)
2502 {
2503  List *result = NIL;
2504  List *flat_grouplist;
2505  List *gsets = NIL;
2506  ListCell *gl;
2507  bool hasGroupingSets = false;
2508  Bitmapset *seen_local = NULL;
2509 
2510  /*
2511  * Recursively flatten implicit RowExprs. (Technically this is only needed
2512  * for GROUP BY, per the syntax rules for grouping sets, but we do it
2513  * anyway.)
2514  */
2515  flat_grouplist = (List *) flatten_grouping_sets((Node *) grouplist,
2516  true,
2517  &hasGroupingSets);
2518 
2519  /*
2520  * If the list is now empty, but hasGroupingSets is true, it's because we
2521  * elided redundant empty grouping sets. Restore a single empty grouping
2522  * set to leave a canonical form: GROUP BY ()
2523  */
2524 
2525  if (flat_grouplist == NIL && hasGroupingSets)
2526  {
2528  NIL,
2529  exprLocation((Node *) grouplist)));
2530  }
2531 
2532  foreach(gl, flat_grouplist)
2533  {
2534  Node *gexpr = (Node *) lfirst(gl);
2535 
2536  if (IsA(gexpr, GroupingSet))
2537  {
2538  GroupingSet *gset = (GroupingSet *) gexpr;
2539 
2540  switch (gset->kind)
2541  {
2542  case GROUPING_SET_EMPTY:
2543  gsets = lappend(gsets, gset);
2544  break;
2545  case GROUPING_SET_SIMPLE:
2546  /* can't happen */
2547  Assert(false);
2548  break;
2549  case GROUPING_SET_SETS:
2550  case GROUPING_SET_CUBE:
2551  case GROUPING_SET_ROLLUP:
2552  gsets = lappend(gsets,
2553  transformGroupingSet(&result,
2554  pstate, gset,
2555  targetlist, sortClause,
2556  exprKind, useSQL99, true));
2557  break;
2558  }
2559  }
2560  else
2561  {
2562  Index ref = transformGroupClauseExpr(&result, seen_local,
2563  pstate, gexpr,
2564  targetlist, sortClause,
2565  exprKind, useSQL99, true);
2566 
2567  if (ref > 0)
2568  {
2569  seen_local = bms_add_member(seen_local, ref);
2570  if (hasGroupingSets)
2571  gsets = lappend(gsets,
2573  list_make1_int(ref),
2574  exprLocation(gexpr)));
2575  }
2576  }
2577  }
2578 
2579  /* parser should prevent this */
2580  Assert(gsets == NIL || groupingSets != NULL);
2581 
2582  if (groupingSets)
2583  *groupingSets = gsets;
2584 
2585  return result;
2586 }
2587 
2588 /*
2589  * transformSortClause -
2590  * transform an ORDER BY clause
2591  *
2592  * ORDER BY items will be added to the targetlist (as resjunk columns)
2593  * if not already present, so the targetlist must be passed by reference.
2594  *
2595  * This is also used for window and aggregate ORDER BY clauses (which act
2596  * almost the same, but are always interpreted per SQL99 rules).
2597  */
2598 List *
2600  List *orderlist,
2601  List **targetlist,
2602  ParseExprKind exprKind,
2603  bool useSQL99)
2604 {
2605  List *sortlist = NIL;
2606  ListCell *olitem;
2607 
2608  foreach(olitem, orderlist)
2609  {
2610  SortBy *sortby = (SortBy *) lfirst(olitem);
2611  TargetEntry *tle;
2612 
2613  if (useSQL99)
2614  tle = findTargetlistEntrySQL99(pstate, sortby->node,
2615  targetlist, exprKind);
2616  else
2617  tle = findTargetlistEntrySQL92(pstate, sortby->node,
2618  targetlist, exprKind);
2619 
2620  sortlist = addTargetToSortList(pstate, tle,
2621  sortlist, *targetlist, sortby);
2622  }
2623 
2624  return sortlist;
2625 }
2626 
2627 /*
2628  * transformWindowDefinitions -
2629  * transform window definitions (WindowDef to WindowClause)
2630  */
2631 List *
2633  List *windowdefs,
2634  List **targetlist)
2635 {
2636  List *result = NIL;
2637  Index winref = 0;
2638  ListCell *lc;
2639 
2640  foreach(lc, windowdefs)
2641  {
2642  WindowDef *windef = (WindowDef *) lfirst(lc);
2643  WindowClause *refwc = NULL;
2644  List *partitionClause;
2645  List *orderClause;
2646  Oid rangeopfamily = InvalidOid;
2647  Oid rangeopcintype = InvalidOid;
2648  WindowClause *wc;
2649 
2650  winref++;
2651 
2652  /*
2653  * Check for duplicate window names.
2654  */
2655  if (windef->name &&
2656  findWindowClause(result, windef->name) != NULL)
2657  ereport(ERROR,
2658  (errcode(ERRCODE_WINDOWING_ERROR),
2659  errmsg("window \"%s\" is already defined", windef->name),
2660  parser_errposition(pstate, windef->location)));
2661 
2662  /*
2663  * If it references a previous window, look that up.
2664  */
2665  if (windef->refname)
2666  {
2667  refwc = findWindowClause(result, windef->refname);
2668  if (refwc == NULL)
2669  ereport(ERROR,
2670  (errcode(ERRCODE_UNDEFINED_OBJECT),
2671  errmsg("window \"%s\" does not exist",
2672  windef->refname),
2673  parser_errposition(pstate, windef->location)));
2674  }
2675 
2676  /*
2677  * Transform PARTITION and ORDER specs, if any. These are treated
2678  * almost exactly like top-level GROUP BY and ORDER BY clauses,
2679  * including the special handling of nondefault operator semantics.
2680  */
2681  orderClause = transformSortClause(pstate,
2682  windef->orderClause,
2683  targetlist,
2685  true /* force SQL99 rules */ );
2686  partitionClause = transformGroupClause(pstate,
2687  windef->partitionClause,
2688  NULL,
2689  targetlist,
2690  orderClause,
2692  true /* force SQL99 rules */ );
2693 
2694  /*
2695  * And prepare the new WindowClause.
2696  */
2697  wc = makeNode(WindowClause);
2698  wc->name = windef->name;
2699  wc->refname = windef->refname;
2700 
2701  /*
2702  * Per spec, a windowdef that references a previous one copies the
2703  * previous partition clause (and mustn't specify its own). It can
2704  * specify its own ordering clause, but only if the previous one had
2705  * none. It always specifies its own frame clause, and the previous
2706  * one must not have a frame clause. Yeah, it's bizarre that each of
2707  * these cases works differently, but SQL:2008 says so; see 7.11
2708  * <window clause> syntax rule 10 and general rule 1. The frame
2709  * clause rule is especially bizarre because it makes "OVER foo"
2710  * different from "OVER (foo)", and requires the latter to throw an
2711  * error if foo has a nondefault frame clause. Well, ours not to
2712  * reason why, but we do go out of our way to throw a useful error
2713  * message for such cases.
2714  */
2715  if (refwc)
2716  {
2717  if (partitionClause)
2718  ereport(ERROR,
2719  (errcode(ERRCODE_WINDOWING_ERROR),
2720  errmsg("cannot override PARTITION BY clause of window \"%s\"",
2721  windef->refname),
2722  parser_errposition(pstate, windef->location)));
2724  }
2725  else
2726  wc->partitionClause = partitionClause;
2727  if (refwc)
2728  {
2729  if (orderClause && refwc->orderClause)
2730  ereport(ERROR,
2731  (errcode(ERRCODE_WINDOWING_ERROR),
2732  errmsg("cannot override ORDER BY clause of window \"%s\"",
2733  windef->refname),
2734  parser_errposition(pstate, windef->location)));
2735  if (orderClause)
2736  {
2737  wc->orderClause = orderClause;
2738  wc->copiedOrder = false;
2739  }
2740  else
2741  {
2742  wc->orderClause = copyObject(refwc->orderClause);
2743  wc->copiedOrder = true;
2744  }
2745  }
2746  else
2747  {
2748  wc->orderClause = orderClause;
2749  wc->copiedOrder = false;
2750  }
2751  if (refwc && refwc->frameOptions != FRAMEOPTION_DEFAULTS)
2752  {
2753  /*
2754  * Use this message if this is a WINDOW clause, or if it's an OVER
2755  * clause that includes ORDER BY or framing clauses. (We already
2756  * rejected PARTITION BY above, so no need to check that.)
2757  */
2758  if (windef->name ||
2759  orderClause || windef->frameOptions != FRAMEOPTION_DEFAULTS)
2760  ereport(ERROR,
2761  (errcode(ERRCODE_WINDOWING_ERROR),
2762  errmsg("cannot copy window \"%s\" because it has a frame clause",
2763  windef->refname),
2764  parser_errposition(pstate, windef->location)));
2765  /* Else this clause is just OVER (foo), so say this: */
2766  ereport(ERROR,
2767  (errcode(ERRCODE_WINDOWING_ERROR),
2768  errmsg("cannot copy window \"%s\" because it has a frame clause",
2769  windef->refname),
2770  errhint("Omit the parentheses in this OVER clause."),
2771  parser_errposition(pstate, windef->location)));
2772  }
2773  wc->frameOptions = windef->frameOptions;
2774 
2775  /*
2776  * RANGE offset PRECEDING/FOLLOWING requires exactly one ORDER BY
2777  * column; check that and get its sort opfamily info.
2778  */
2779  if ((wc->frameOptions & FRAMEOPTION_RANGE) &&
2782  {
2783  SortGroupClause *sortcl;
2784  Node *sortkey;
2785  int16 rangestrategy;
2786 
2787  if (list_length(wc->orderClause) != 1)
2788  ereport(ERROR,
2789  (errcode(ERRCODE_WINDOWING_ERROR),
2790  errmsg("RANGE with offset PRECEDING/FOLLOWING requires exactly one ORDER BY column"),
2791  parser_errposition(pstate, windef->location)));
2792  sortcl = castNode(SortGroupClause, linitial(wc->orderClause));
2793  sortkey = get_sortgroupclause_expr(sortcl, *targetlist);
2794  /* Find the sort operator in pg_amop */
2795  if (!get_ordering_op_properties(sortcl->sortop,
2796  &rangeopfamily,
2797  &rangeopcintype,
2798  &rangestrategy))
2799  elog(ERROR, "operator %u is not a valid ordering operator",
2800  sortcl->sortop);
2801  /* Record properties of sort ordering */
2802  wc->inRangeColl = exprCollation(sortkey);
2803  wc->inRangeAsc = (rangestrategy == BTLessStrategyNumber);
2804  wc->inRangeNullsFirst = sortcl->nulls_first;
2805  }
2806 
2807  /* Per spec, GROUPS mode requires an ORDER BY clause */
2808  if (wc->frameOptions & FRAMEOPTION_GROUPS)
2809  {
2810  if (wc->orderClause == NIL)
2811  ereport(ERROR,
2812  (errcode(ERRCODE_WINDOWING_ERROR),
2813  errmsg("GROUPS mode requires an ORDER BY clause"),
2814  parser_errposition(pstate, windef->location)));
2815  }
2816 
2817  /* Process frame offset expressions */
2818  wc->startOffset = transformFrameOffset(pstate, wc->frameOptions,
2819  rangeopfamily, rangeopcintype,
2820  &wc->startInRangeFunc,
2821  windef->startOffset);
2822  wc->endOffset = transformFrameOffset(pstate, wc->frameOptions,
2823  rangeopfamily, rangeopcintype,
2824  &wc->endInRangeFunc,
2825  windef->endOffset);
2826  wc->winref = winref;
2827 
2828  result = lappend(result, wc);
2829  }
2830 
2831  return result;
2832 }
2833 
2834 /*
2835  * transformDistinctClause -
2836  * transform a DISTINCT clause
2837  *
2838  * Since we may need to add items to the query's targetlist, that list
2839  * is passed by reference.
2840  *
2841  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2842  * possible into the distinctClause. This avoids a possible need to re-sort,
2843  * and allows the user to choose the equality semantics used by DISTINCT,
2844  * should she be working with a datatype that has more than one equality
2845  * operator.
2846  *
2847  * is_agg is true if we are transforming an aggregate(DISTINCT ...)
2848  * function call. This does not affect any behavior, only the phrasing
2849  * of error messages.
2850  */
2851 List *
2853  List **targetlist, List *sortClause, bool is_agg)
2854 {
2855  List *result = NIL;
2856  ListCell *slitem;
2857  ListCell *tlitem;
2858 
2859  /*
2860  * The distinctClause should consist of all ORDER BY items followed by all
2861  * other non-resjunk targetlist items. There must not be any resjunk
2862  * ORDER BY items --- that would imply that we are sorting by a value that
2863  * isn't necessarily unique within a DISTINCT group, so the results
2864  * wouldn't be well-defined. This construction ensures we follow the rule
2865  * that sortClause and distinctClause match; in fact the sortClause will
2866  * always be a prefix of distinctClause.
2867  *
2868  * Note a corner case: the same TLE could be in the ORDER BY list multiple
2869  * times with different sortops. We have to include it in the
2870  * distinctClause the same way to preserve the prefix property. The net
2871  * effect will be that the TLE value will be made unique according to both
2872  * sortops.
2873  */
2874  foreach(slitem, sortClause)
2875  {
2876  SortGroupClause *scl = (SortGroupClause *) lfirst(slitem);
2877  TargetEntry *tle = get_sortgroupclause_tle(scl, *targetlist);
2878 
2879  if (tle->resjunk)
2880  ereport(ERROR,
2881  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2882  is_agg ?
2883  errmsg("in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list") :
2884  errmsg("for SELECT DISTINCT, ORDER BY expressions must appear in select list"),
2885  parser_errposition(pstate,
2886  exprLocation((Node *) tle->expr))));
2887  result = lappend(result, copyObject(scl));
2888  }
2889 
2890  /*
2891  * Now add any remaining non-resjunk tlist items, using default sort/group
2892  * semantics for their data types.
2893  */
2894  foreach(tlitem, *targetlist)
2895  {
2896  TargetEntry *tle = (TargetEntry *) lfirst(tlitem);
2897 
2898  if (tle->resjunk)
2899  continue; /* ignore junk */
2900  result = addTargetToGroupList(pstate, tle,
2901  result, *targetlist,
2902  exprLocation((Node *) tle->expr));
2903  }
2904 
2905  /*
2906  * Complain if we found nothing to make DISTINCT. Returning an empty list
2907  * would cause the parsed Query to look like it didn't have DISTINCT, with
2908  * results that would probably surprise the user. Note: this case is
2909  * presently impossible for aggregates because of grammar restrictions,
2910  * but we check anyway.
2911  */
2912  if (result == NIL)
2913  ereport(ERROR,
2914  (errcode(ERRCODE_SYNTAX_ERROR),
2915  is_agg ?
2916  errmsg("an aggregate with DISTINCT must have at least one argument") :
2917  errmsg("SELECT DISTINCT must have at least one column")));
2918 
2919  return result;
2920 }
2921 
2922 /*
2923  * transformDistinctOnClause -
2924  * transform a DISTINCT ON clause
2925  *
2926  * Since we may need to add items to the query's targetlist, that list
2927  * is passed by reference.
2928  *
2929  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2930  * possible into the distinctClause. This avoids a possible need to re-sort,
2931  * and allows the user to choose the equality semantics used by DISTINCT,
2932  * should she be working with a datatype that has more than one equality
2933  * operator.
2934  */
2935 List *
2937  List **targetlist, List *sortClause)
2938 {
2939  List *result = NIL;
2940  List *sortgrouprefs = NIL;
2941  bool skipped_sortitem;
2942  ListCell *lc;
2943  ListCell *lc2;
2944 
2945  /*
2946  * Add all the DISTINCT ON expressions to the tlist (if not already
2947  * present, they are added as resjunk items). Assign sortgroupref numbers
2948  * to them, and make a list of these numbers. (NB: we rely below on the
2949  * sortgrouprefs list being one-for-one with the original distinctlist.
2950  * Also notice that we could have duplicate DISTINCT ON expressions and
2951  * hence duplicate entries in sortgrouprefs.)
2952  */
2953  foreach(lc, distinctlist)
2954  {
2955  Node *dexpr = (Node *) lfirst(lc);
2956  int sortgroupref;
2957  TargetEntry *tle;
2958 
2959  tle = findTargetlistEntrySQL92(pstate, dexpr, targetlist,
2961  sortgroupref = assignSortGroupRef(tle, *targetlist);
2962  sortgrouprefs = lappend_int(sortgrouprefs, sortgroupref);
2963  }
2964 
2965  /*
2966  * If the user writes both DISTINCT ON and ORDER BY, adopt the sorting
2967  * semantics from ORDER BY items that match DISTINCT ON items, and also
2968  * adopt their column sort order. We insist that the distinctClause and
2969  * sortClause match, so throw error if we find the need to add any more
2970  * distinctClause items after we've skipped an ORDER BY item that wasn't
2971  * in DISTINCT ON.
2972  */
2973  skipped_sortitem = false;
2974  foreach(lc, sortClause)
2975  {
2976  SortGroupClause *scl = (SortGroupClause *) lfirst(lc);
2977 
2978  if (list_member_int(sortgrouprefs, scl->tleSortGroupRef))
2979  {
2980  if (skipped_sortitem)
2981  ereport(ERROR,
2982  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2983  errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
2984  parser_errposition(pstate,
2986  sortgrouprefs,
2987  distinctlist))));
2988  else
2989  result = lappend(result, copyObject(scl));
2990  }
2991  else
2992  skipped_sortitem = true;
2993  }
2994 
2995  /*
2996  * Now add any remaining DISTINCT ON items, using default sort/group
2997  * semantics for their data types. (Note: this is pretty questionable; if
2998  * the ORDER BY list doesn't include all the DISTINCT ON items and more
2999  * besides, you certainly aren't using DISTINCT ON in the intended way,
3000  * and you probably aren't going to get consistent results. It might be
3001  * better to throw an error or warning here. But historically we've
3002  * allowed it, so keep doing so.)
3003  */
3004  forboth(lc, distinctlist, lc2, sortgrouprefs)
3005  {
3006  Node *dexpr = (Node *) lfirst(lc);
3007  int sortgroupref = lfirst_int(lc2);
3008  TargetEntry *tle = get_sortgroupref_tle(sortgroupref, *targetlist);
3009 
3010  if (targetIsInSortList(tle, InvalidOid, result))
3011  continue; /* already in list (with some semantics) */
3012  if (skipped_sortitem)
3013  ereport(ERROR,
3014  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3015  errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
3016  parser_errposition(pstate, exprLocation(dexpr))));
3017  result = addTargetToGroupList(pstate, tle,
3018  result, *targetlist,
3019  exprLocation(dexpr));
3020  }
3021 
3022  /*
3023  * An empty result list is impossible here because of grammar
3024  * restrictions.
3025  */
3026  Assert(result != NIL);
3027 
3028  return result;
3029 }
3030 
3031 /*
3032  * get_matching_location
3033  * Get the exprLocation of the exprs member corresponding to the
3034  * (first) member of sortgrouprefs that equals sortgroupref.
3035  *
3036  * This is used so that we can point at a troublesome DISTINCT ON entry.
3037  * (Note that we need to use the original untransformed DISTINCT ON list
3038  * item, as whatever TLE it corresponds to will very possibly have a
3039  * parse location pointing to some matching entry in the SELECT list
3040  * or ORDER BY list.)
3041  */
3042 static int
3043 get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
3044 {
3045  ListCell *lcs;
3046  ListCell *lce;
3047 
3048  forboth(lcs, sortgrouprefs, lce, exprs)
3049  {
3050  if (lfirst_int(lcs) == sortgroupref)
3051  return exprLocation((Node *) lfirst(lce));
3052  }
3053  /* if no match, caller blew it */
3054  elog(ERROR, "get_matching_location: no matching sortgroupref");
3055  return -1; /* keep compiler quiet */
3056 }
3057 
3058 /*
3059  * resolve_unique_index_expr
3060  * Infer a unique index from a list of indexElems, for ON
3061  * CONFLICT clause
3062  *
3063  * Perform parse analysis of expressions and columns appearing within ON
3064  * CONFLICT clause. During planning, the returned list of expressions is used
3065  * to infer which unique index to use.
3066  */
3067 static List *
3069  Relation heapRel)
3070 {
3071  List *result = NIL;
3072  ListCell *l;
3073 
3074  foreach(l, infer->indexElems)
3075  {
3076  IndexElem *ielem = (IndexElem *) lfirst(l);
3078  Node *parse;
3079 
3080  /*
3081  * Raw grammar re-uses CREATE INDEX infrastructure for unique index
3082  * inference clause, and so will accept opclasses by name and so on.
3083  *
3084  * Make no attempt to match ASC or DESC ordering or NULLS FIRST/NULLS
3085  * LAST ordering, since those are not significant for inference
3086  * purposes (any unique index matching the inference specification in
3087  * other regards is accepted indifferently). Actively reject this as
3088  * wrong-headed.
3089  */
3090  if (ielem->ordering != SORTBY_DEFAULT)
3091  ereport(ERROR,
3092  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3093  errmsg("ASC/DESC is not allowed in ON CONFLICT clause"),
3094  parser_errposition(pstate,
3095  exprLocation((Node *) infer))));
3096  if (ielem->nulls_ordering != SORTBY_NULLS_DEFAULT)
3097  ereport(ERROR,
3098  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3099  errmsg("NULLS FIRST/LAST is not allowed in ON CONFLICT clause"),
3100  parser_errposition(pstate,
3101  exprLocation((Node *) infer))));
3102 
3103  if (!ielem->expr)
3104  {
3105  /* Simple index attribute */
3106  ColumnRef *n;
3107 
3108  /*
3109  * Grammar won't have built raw expression for us in event of
3110  * plain column reference. Create one directly, and perform
3111  * expression transformation. Planner expects this, and performs
3112  * its own normalization for the purposes of matching against
3113  * pg_index.
3114  */
3115  n = makeNode(ColumnRef);
3116  n->fields = list_make1(makeString(ielem->name));
3117  /* Location is approximately that of inference specification */
3118  n->location = infer->location;
3119  parse = (Node *) n;
3120  }
3121  else
3122  {
3123  /* Do parse transformation of the raw expression */
3124  parse = (Node *) ielem->expr;
3125  }
3126 
3127  /*
3128  * transformExpr() will reject subqueries, aggregates, window
3129  * functions, and SRFs, based on being passed
3130  * EXPR_KIND_INDEX_EXPRESSION. So we needn't worry about those
3131  * further ... not that they would match any available index
3132  * expression anyway.
3133  */
3134  pInfer->expr = transformExpr(pstate, parse, EXPR_KIND_INDEX_EXPRESSION);
3135 
3136  /* Perform lookup of collation and operator class as required */
3137  if (!ielem->collation)
3138  pInfer->infercollid = InvalidOid;
3139  else
3140  pInfer->infercollid = LookupCollation(pstate, ielem->collation,
3141  exprLocation(pInfer->expr));
3142 
3143  if (!ielem->opclass)
3144  pInfer->inferopclass = InvalidOid;
3145  else
3146  pInfer->inferopclass = get_opclass_oid(BTREE_AM_OID,
3147  ielem->opclass, false);
3148 
3149  result = lappend(result, pInfer);
3150  }
3151 
3152  return result;
3153 }
3154 
3155 /*
3156  * transformOnConflictArbiter -
3157  * transform arbiter expressions in an ON CONFLICT clause.
3158  *
3159  * Transformed expressions used to infer one unique index relation to serve as
3160  * an ON CONFLICT arbiter. Partial unique indexes may be inferred using WHERE
3161  * clause from inference specification clause.
3162  */
3163 void
3165  OnConflictClause *onConflictClause,
3166  List **arbiterExpr, Node **arbiterWhere,
3167  Oid *constraint)
3168 {
3169  InferClause *infer = onConflictClause->infer;
3170 
3171  *arbiterExpr = NIL;
3172  *arbiterWhere = NULL;
3173  *constraint = InvalidOid;
3174 
3175  if (onConflictClause->action == ONCONFLICT_UPDATE && !infer)
3176  ereport(ERROR,
3177  (errcode(ERRCODE_SYNTAX_ERROR),
3178  errmsg("ON CONFLICT DO UPDATE requires inference specification or constraint name"),
3179  errhint("For example, ON CONFLICT (column_name)."),
3180  parser_errposition(pstate,
3181  exprLocation((Node *) onConflictClause))));
3182 
3183  /*
3184  * To simplify certain aspects of its design, speculative insertion into
3185  * system catalogs is disallowed
3186  */
3187  if (IsCatalogRelation(pstate->p_target_relation))
3188  ereport(ERROR,
3189  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3190  errmsg("ON CONFLICT is not supported with system catalog tables"),
3191  parser_errposition(pstate,
3192  exprLocation((Node *) onConflictClause))));
3193 
3194  /* Same applies to table used by logical decoding as catalog table */
3196  ereport(ERROR,
3197  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3198  errmsg("ON CONFLICT is not supported on table \"%s\" used as a catalog table",
3200  parser_errposition(pstate,
3201  exprLocation((Node *) onConflictClause))));
3202 
3203  /* ON CONFLICT DO NOTHING does not require an inference clause */
3204  if (infer)
3205  {
3206  List *save_namespace;
3207 
3208  /*
3209  * While we process the arbiter expressions, accept only non-qualified
3210  * references to the target table. Hide any other relations.
3211  */
3212  save_namespace = pstate->p_namespace;
3213  pstate->p_namespace = NIL;
3214  addNSItemToQuery(pstate, pstate->p_target_nsitem,
3215  false, false, true);
3216 
3217  if (infer->indexElems)
3218  *arbiterExpr = resolve_unique_index_expr(pstate, infer,
3219  pstate->p_target_relation);
3220 
3221  /*
3222  * Handling inference WHERE clause (for partial unique index
3223  * inference)
3224  */
3225  if (infer->whereClause)
3226  *arbiterWhere = transformExpr(pstate, infer->whereClause,
3228 
3229  pstate->p_namespace = save_namespace;
3230 
3231  /*
3232  * If the arbiter is specified by constraint name, get the constraint
3233  * OID and mark the constrained columns as requiring SELECT privilege,
3234  * in the same way as would have happened if the arbiter had been
3235  * specified by explicit reference to the constraint's index columns.
3236  */
3237  if (infer->conname)
3238  {
3239  Oid relid = RelationGetRelid(pstate->p_target_relation);
3240  RangeTblEntry *rte = pstate->p_target_nsitem->p_rte;
3241  Bitmapset *conattnos;
3242 
3243  conattnos = get_relation_constraint_attnos(relid, infer->conname,
3244  false, constraint);
3245 
3246  /* Make sure the rel as a whole is marked for SELECT access */
3247  rte->requiredPerms |= ACL_SELECT;
3248  /* Mark the constrained columns as requiring SELECT access */
3249  rte->selectedCols = bms_add_members(rte->selectedCols, conattnos);
3250  }
3251  }
3252 
3253  /*
3254  * It's convenient to form a list of expressions based on the
3255  * representation used by CREATE INDEX, since the same restrictions are
3256  * appropriate (e.g. on subqueries). However, from here on, a dedicated
3257  * primnode representation is used for inference elements, and so
3258  * assign_query_collations() can be trusted to do the right thing with the
3259  * post parse analysis query tree inference clause representation.
3260  */
3261 }
3262 
3263 /*
3264  * addTargetToSortList
3265  * If the given targetlist entry isn't already in the SortGroupClause
3266  * list, add it to the end of the list, using the given sort ordering
3267  * info.
3268  *
3269  * Returns the updated SortGroupClause list.
3270  */
3271 List *
3273  List *sortlist, List *targetlist, SortBy *sortby)
3274 {
3275  Oid restype = exprType((Node *) tle->expr);
3276  Oid sortop;
3277  Oid eqop;
3278  bool hashable;
3279  bool reverse;
3280  int location;
3281  ParseCallbackState pcbstate;
3282 
3283  /* if tlist item is an UNKNOWN literal, change it to TEXT */
3284  if (restype == UNKNOWNOID)
3285  {
3286  tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3287  restype, TEXTOID, -1,
3290  -1);
3291  restype = TEXTOID;
3292  }
3293 
3294  /*
3295  * Rather than clutter the API of get_sort_group_operators and the other
3296  * functions we're about to use, make use of error context callback to
3297  * mark any error reports with a parse position. We point to the operator
3298  * location if present, else to the expression being sorted. (NB: use the
3299  * original untransformed expression here; the TLE entry might well point
3300  * at a duplicate expression in the regular SELECT list.)
3301  */
3302  location = sortby->location;
3303  if (location < 0)
3304  location = exprLocation(sortby->node);
3305  setup_parser_errposition_callback(&pcbstate, pstate, location);
3306 
3307  /* determine the sortop, eqop, and directionality */
3308  switch (sortby->sortby_dir)
3309  {
3310  case SORTBY_DEFAULT:
3311  case SORTBY_ASC:
3312  get_sort_group_operators(restype,
3313  true, true, false,
3314  &sortop, &eqop, NULL,
3315  &hashable);
3316  reverse = false;
3317  break;
3318  case SORTBY_DESC:
3319  get_sort_group_operators(restype,
3320  false, true, true,
3321  NULL, &eqop, &sortop,
3322  &hashable);
3323  reverse = true;
3324  break;
3325  case SORTBY_USING:
3326  Assert(sortby->useOp != NIL);
3327  sortop = compatible_oper_opid(sortby->useOp,
3328  restype,
3329  restype,
3330  false);
3331 
3332  /*
3333  * Verify it's a valid ordering operator, fetch the corresponding
3334  * equality operator, and determine whether to consider it like
3335  * ASC or DESC.
3336  */
3337  eqop = get_equality_op_for_ordering_op(sortop, &reverse);
3338  if (!OidIsValid(eqop))
3339  ereport(ERROR,
3340  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
3341  errmsg("operator %s is not a valid ordering operator",
3342  strVal(llast(sortby->useOp))),
3343  errhint("Ordering operators must be \"<\" or \">\" members of btree operator families.")));
3344 
3345  /*
3346  * Also see if the equality operator is hashable.
3347  */
3348  hashable = op_hashjoinable(eqop, restype);
3349  break;
3350  default:
3351  elog(ERROR, "unrecognized sortby_dir: %d", sortby->sortby_dir);
3352  sortop = InvalidOid; /* keep compiler quiet */
3353  eqop = InvalidOid;
3354  hashable = false;
3355  reverse = false;
3356  break;
3357  }
3358 
3360 
3361  /* avoid making duplicate sortlist entries */
3362  if (!targetIsInSortList(tle, sortop, sortlist))
3363  {
3365 
3366  sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3367 
3368  sortcl->eqop = eqop;
3369  sortcl->sortop = sortop;
3370  sortcl->hashable = hashable;
3371 
3372  switch (sortby->sortby_nulls)
3373  {
3374  case SORTBY_NULLS_DEFAULT:
3375  /* NULLS FIRST is default for DESC; other way for ASC */
3376  sortcl->nulls_first = reverse;
3377  break;
3378  case SORTBY_NULLS_FIRST:
3379  sortcl->nulls_first = true;
3380  break;
3381  case SORTBY_NULLS_LAST:
3382  sortcl->nulls_first = false;
3383  break;
3384  default:
3385  elog(ERROR, "unrecognized sortby_nulls: %d",
3386  sortby->sortby_nulls);
3387  break;
3388  }
3389 
3390  sortlist = lappend(sortlist, sortcl);
3391  }
3392 
3393  return sortlist;
3394 }
3395 
3396 /*
3397  * addTargetToGroupList
3398  * If the given targetlist entry isn't already in the SortGroupClause
3399  * list, add it to the end of the list, using default sort/group
3400  * semantics.
3401  *
3402  * This is very similar to addTargetToSortList, except that we allow the
3403  * case where only a grouping (equality) operator can be found, and that
3404  * the TLE is considered "already in the list" if it appears there with any
3405  * sorting semantics.
3406  *
3407  * location is the parse location to be fingered in event of trouble. Note
3408  * that we can't rely on exprLocation(tle->expr), because that might point
3409  * to a SELECT item that matches the GROUP BY item; it'd be pretty confusing
3410  * to report such a location.
3411  *
3412  * Returns the updated SortGroupClause list.
3413  */
3414 static List *
3416  List *grouplist, List *targetlist, int location)
3417 {
3418  Oid restype = exprType((Node *) tle->expr);
3419 
3420  /* if tlist item is an UNKNOWN literal, change it to TEXT */
3421  if (restype == UNKNOWNOID)
3422  {
3423  tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3424  restype, TEXTOID, -1,
3427  -1);
3428  restype = TEXTOID;
3429  }
3430 
3431  /* avoid making duplicate grouplist entries */
3432  if (!targetIsInSortList(tle, InvalidOid, grouplist))
3433  {
3435  Oid sortop;
3436  Oid eqop;
3437  bool hashable;
3438  ParseCallbackState pcbstate;
3439 
3440  setup_parser_errposition_callback(&pcbstate, pstate, location);
3441 
3442  /* determine the eqop and optional sortop */
3443  get_sort_group_operators(restype,
3444  false, true, false,
3445  &sortop, &eqop, NULL,
3446  &hashable);
3447 
3449 
3450  grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3451  grpcl->eqop = eqop;
3452  grpcl->sortop = sortop;
3453  grpcl->nulls_first = false; /* OK with or without sortop */
3454  grpcl->hashable = hashable;
3455 
3456  grouplist = lappend(grouplist, grpcl);
3457  }
3458 
3459  return grouplist;
3460 }
3461 
3462 /*
3463  * assignSortGroupRef
3464  * Assign the targetentry an unused ressortgroupref, if it doesn't
3465  * already have one. Return the assigned or pre-existing refnumber.
3466  *
3467  * 'tlist' is the targetlist containing (or to contain) the given targetentry.
3468  */
3469 Index
3471 {
3472  Index maxRef;
3473  ListCell *l;
3474 
3475  if (tle->ressortgroupref) /* already has one? */
3476  return tle->ressortgroupref;
3477 
3478  /* easiest way to pick an unused refnumber: max used + 1 */
3479  maxRef = 0;
3480  foreach(l, tlist)
3481  {
3482  Index ref = ((TargetEntry *) lfirst(l))->ressortgroupref;
3483 
3484  if (ref > maxRef)
3485  maxRef = ref;
3486  }
3487  tle->ressortgroupref = maxRef + 1;
3488  return tle->ressortgroupref;
3489 }
3490 
3491 /*
3492  * targetIsInSortList
3493  * Is the given target item already in the sortlist?
3494  * If sortop is not InvalidOid, also test for a match to the sortop.
3495  *
3496  * It is not an oversight that this function ignores the nulls_first flag.
3497  * We check sortop when determining if an ORDER BY item is redundant with
3498  * earlier ORDER BY items, because it's conceivable that "ORDER BY
3499  * foo USING <, foo USING <<<" is not redundant, if <<< distinguishes
3500  * values that < considers equal. We need not check nulls_first
3501  * however, because a lower-order column with the same sortop but
3502  * opposite nulls direction is redundant. Also, we can consider
3503  * ORDER BY foo ASC, foo DESC redundant, so check for a commutator match.
3504  *
3505  * Works for both ordering and grouping lists (sortop would normally be
3506  * InvalidOid when considering grouping). Note that the main reason we need
3507  * this routine (and not just a quick test for nonzeroness of ressortgroupref)
3508  * is that a TLE might be in only one of the lists.
3509  */
3510 bool
3511 targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
3512 {
3513  Index ref = tle->ressortgroupref;
3514  ListCell *l;
3515 
3516  /* no need to scan list if tle has no marker */
3517  if (ref == 0)
3518  return false;
3519 
3520  foreach(l, sortList)
3521  {
3522  SortGroupClause *scl = (SortGroupClause *) lfirst(l);
3523 
3524  if (scl->tleSortGroupRef == ref &&
3525  (sortop == InvalidOid ||
3526  sortop == scl->sortop ||
3527  sortop == get_commutator(scl->sortop)))
3528  return true;
3529  }
3530  return false;
3531 }
3532 
3533 /*
3534  * findWindowClause
3535  * Find the named WindowClause in the list, or return NULL if not there
3536  */
3537 static WindowClause *
3538 findWindowClause(List *wclist, const char *name)
3539 {
3540  ListCell *l;
3541 
3542  foreach(l, wclist)
3543  {
3544  WindowClause *wc = (WindowClause *) lfirst(l);
3545 
3546  if (wc->name && strcmp(wc->name, name) == 0)
3547  return wc;
3548  }
3549 
3550  return NULL;
3551 }
3552 
3553 /*
3554  * transformFrameOffset
3555  * Process a window frame offset expression
3556  *
3557  * In RANGE mode, rangeopfamily is the sort opfamily for the input ORDER BY
3558  * column, and rangeopcintype is the input data type the sort operator is
3559  * registered with. We expect the in_range function to be registered with
3560  * that same type. (In binary-compatible cases, it might be different from
3561  * the input column's actual type, so we can't use that for the lookups.)
3562  * We'll return the OID of the in_range function to *inRangeFunc.
3563  */
3564 static Node *
3565 transformFrameOffset(ParseState *pstate, int frameOptions,
3566  Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc,
3567  Node *clause)
3568 {
3569  const char *constructName = NULL;
3570  Node *node;
3571 
3572  *inRangeFunc = InvalidOid; /* default result */
3573 
3574  /* Quick exit if no offset expression */
3575  if (clause == NULL)
3576  return NULL;
3577 
3578  if (frameOptions & FRAMEOPTION_ROWS)
3579  {
3580  /* Transform the raw expression tree */
3581  node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_ROWS);
3582 
3583  /*
3584  * Like LIMIT clause, simply coerce to int8
3585  */
3586  constructName = "ROWS";
3587  node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3588  }
3589  else if (frameOptions & FRAMEOPTION_RANGE)
3590  {
3591  /*
3592  * We must look up the in_range support function that's to be used,
3593  * possibly choosing one of several, and coerce the "offset" value to
3594  * the appropriate input type.
3595  */
3596  Oid nodeType;
3597  Oid preferredType;
3598  int nfuncs = 0;
3599  int nmatches = 0;
3600  Oid selectedType = InvalidOid;
3601  Oid selectedFunc = InvalidOid;
3602  CatCList *proclist;
3603  int i;
3604 
3605  /* Transform the raw expression tree */
3606  node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_RANGE);
3607  nodeType = exprType(node);
3608 
3609  /*
3610  * If there are multiple candidates, we'll prefer the one that exactly
3611  * matches nodeType; or if nodeType is as yet unknown, prefer the one
3612  * that exactly matches the sort column type. (The second rule is
3613  * like what we do for "known_type operator unknown".)
3614  */
3615  preferredType = (nodeType != UNKNOWNOID) ? nodeType : rangeopcintype;
3616 
3617  /* Find the in_range support functions applicable to this case */
3618  proclist = SearchSysCacheList2(AMPROCNUM,
3619  ObjectIdGetDatum(rangeopfamily),
3620  ObjectIdGetDatum(rangeopcintype));
3621  for (i = 0; i < proclist->n_members; i++)
3622  {
3623  HeapTuple proctup = &proclist->members[i]->tuple;
3624  Form_pg_amproc procform = (Form_pg_amproc) GETSTRUCT(proctup);
3625 
3626  /* The search will find all support proc types; ignore others */
3627  if (procform->amprocnum != BTINRANGE_PROC)
3628  continue;
3629  nfuncs++;
3630 
3631  /* Ignore function if given value can't be coerced to that type */
3632  if (!can_coerce_type(1, &nodeType, &procform->amprocrighttype,
3634  continue;
3635  nmatches++;
3636 
3637  /* Remember preferred match, or any match if didn't find that */
3638  if (selectedType != preferredType)
3639  {
3640  selectedType = procform->amprocrighttype;
3641  selectedFunc = procform->amproc;
3642  }
3643  }
3644  ReleaseCatCacheList(proclist);
3645 
3646  /*
3647  * Throw error if needed. It seems worth taking the trouble to
3648  * distinguish "no support at all" from "you didn't match any
3649  * available offset type".
3650  */
3651  if (nfuncs == 0)
3652  ereport(ERROR,
3653  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3654  errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s",
3655  format_type_be(rangeopcintype)),
3656  parser_errposition(pstate, exprLocation(node))));
3657  if (nmatches == 0)
3658  ereport(ERROR,
3659  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3660  errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s and offset type %s",
3661  format_type_be(rangeopcintype),
3662  format_type_be(nodeType)),
3663  errhint("Cast the offset value to an appropriate type."),
3664  parser_errposition(pstate, exprLocation(node))));
3665  if (nmatches != 1 && selectedType != preferredType)
3666  ereport(ERROR,
3667  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3668  errmsg("RANGE with offset PRECEDING/FOLLOWING has multiple interpretations for column type %s and offset type %s",
3669  format_type_be(rangeopcintype),
3670  format_type_be(nodeType)),
3671  errhint("Cast the offset value to the exact intended type."),
3672  parser_errposition(pstate, exprLocation(node))));
3673 
3674  /* OK, coerce the offset to the right type */
3675  constructName = "RANGE";
3676  node = coerce_to_specific_type(pstate, node,
3677  selectedType, constructName);
3678  *inRangeFunc = selectedFunc;
3679  }
3680  else if (frameOptions & FRAMEOPTION_GROUPS)
3681  {
3682  /* Transform the raw expression tree */
3683  node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_GROUPS);
3684 
3685  /*
3686  * Like LIMIT clause, simply coerce to int8
3687  */
3688  constructName = "GROUPS";
3689  node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3690  }
3691  else
3692  {
3693  Assert(false);
3694  node = NULL;
3695  }
3696 
3697  /* Disallow variables in frame offsets */
3698  checkExprIsVarFree(pstate, node, constructName);
3699 
3700  return node;
3701 }
#define list_make2(x1, x2)
Definition: pg_list.h:208
Value * makeString(char *str)
Definition: value.c:53
static void checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName)
struct ParseNamespaceColumn ParseNamespaceColumn
Definition: parse_node.h:25
signed short int16
Definition: c.h:362
List * partitionClause
Definition: parsenodes.h:491
char * refname
Definition: parsenodes.h:1353
#define NIL
Definition: pg_list.h:65
bool copiedOrder
Definition: parsenodes.h:1365
ParseNamespaceItem * addRangeTableEntryForCTE(ParseState *pstate, CommonTableExpr *cte, Index levelsup, RangeVar *rv, bool inFromCl)
static List * addTargetToGroupList(ParseState *pstate, TargetEntry *tle, List *grouplist, List *targetlist, int location)
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:98
List * SystemFuncName(char *name)
List * args
Definition: primnodes.h:1025
Index assignSortGroupRef(TargetEntry *tle, List *tlist)
#define IsA(nodeptr, _type_)
Definition: nodes.h:579
int n_members
Definition: catcache.h:176
Node * docexpr
Definition: primnodes.h:87
bool repeatable_across_queries
Definition: tsmapi.h:64
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:167
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1421
Node * val
Definition: parsenodes.h:444
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:389
int errhint(const char *fmt,...)
Definition: elog.c:1068
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:533
ParseNamespaceItem * addRangeTableEntryForTableFunc(ParseState *pstate, TableFunc *tf, Alias *alias, bool lateral, bool inFromCl)
SortByDir ordering
Definition: parsenodes.h:707
Node * subquery
Definition: parsenodes.h:544
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:434
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
static ParseNamespaceItem * getNSItemForSpecialRelationTypes(ParseState *pstate, RangeVar *rv)
List * content
Definition: parsenodes.h:1328
List * transformDistinctOnClause(ParseState *pstate, List *distinctlist, List **targetlist, List *sortClause)
bool inRangeNullsFirst
Definition: parsenodes.h:1363
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1240
SortByDir sortby_dir
Definition: parsenodes.h:472
List * colnames
Definition: primnodes.h:89
List * colnames
Definition: primnodes.h:43
static ParseNamespaceItem * transformRangeFunction(ParseState *pstate, RangeFunction *r)
Definition: parse_clause.c:468
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3032
char * name
Definition: parsenodes.h:442
int frameOptions
Definition: parsenodes.h:493
void markVarForSelectPriv(ParseState *pstate, Var *var, RangeTblEntry *rte)
List * coltypmods
Definition: primnodes.h:91
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:931
#define castNode(_type_, nodeptr)
Definition: nodes.h:597
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
FormData_pg_amproc * Form_pg_amproc
Definition: pg_amproc.h:68
static TargetEntry * findTargetlistEntrySQL99(ParseState *pstate, Node *node, List **tlist, ParseExprKind exprKind)
char * pstrdup(const char *in)
Definition: mcxt.c:1187
Node * agg_filter
Definition: parsenodes.h:355
bool can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, CoercionContext ccontext)
Definition: parse_coerce.c:546
List * useOp
Definition: parsenodes.h:474
char * name
Definition: parsenodes.h:489
Oid get_equality_op_for_ordering_op(Oid opno, bool *reverse)
Definition: lsyscache.c:265
List * columns
Definition: parsenodes.h:584
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:145
#define llast(l)
Definition: pg_list.h:194
List * indexElems
Definition: parsenodes.h:1413
List * list_truncate(List *list, int new_size)
Definition: list.c:585
Index tleSortGroupRef
Definition: parsenodes.h:1258
Oid endInRangeFunc
Definition: parsenodes.h:1360
Node * coerce_type(ParseState *pstate, Node *node, Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:155
static Node * transformJoinUsingClause(ParseState *pstate, RangeTblEntry *leftRTE, RangeTblEntry *rightRTE, List *leftVars, List *rightVars)
Definition: parse_clause.c:304
Relation parserOpenTable(ParseState *pstate, const RangeVar *relation, int lockmode)
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:401
void addNSItemToQuery(ParseState *pstate, ParseNamespaceItem *nsitem, bool addToJoinList, bool addToRelNameSpace, bool addToVarNameSpace)
Definition: nodes.h:528
#define strVal(v)
Definition: value.h:54
List * list_concat(List *list1, const List *list2)
Definition: list.c:515
int errcode(int sqlerrcode)
Definition: elog.c:610
void transformOnConflictArbiter(ParseState *pstate, OnConflictClause *onConflictClause, List **arbiterExpr, Node **arbiterWhere, Oid *constraint)
bool p_hasAggs
Definition: parse_node.h:206
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:235
static ParseNamespaceItem * transformTableEntry(ParseState *pstate, RangeVar *r)
Definition: parse_clause.c:394
static int fc(const char *x)
Definition: preproc-init.c:99
ParseNamespaceItem * p_target_nsitem
Definition: parse_node.h:191
AclMode requiredPerms
Definition: parsenodes.h:1120
Oid get_opclass_oid(Oid amID, List *opclassname, bool missing_ok)
Definition: opclasscmds.c:220
static Node * transformGroupingSet(List **flatresult, ParseState *pstate, GroupingSet *gset, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99, bool toplevel)
int location
Definition: parsenodes.h:361
unsigned int Oid
Definition: postgres_ext.h:31
char * resname
Definition: primnodes.h:1412
A_Expr * makeSimpleA_Expr(A_Expr_Kind kind, char *name, Node *lexpr, Node *rexpr, int location)
Definition: makefuncs.c:48
Definition: primnodes.h:181
List * lappend_oid(List *list, Oid datum)
Definition: list.c:357
#define OidIsValid(objectId)
Definition: c.h:652
ParseExprKind
Definition: parse_node.h:38
List * agg_order
Definition: parsenodes.h:354
#define FRAMEOPTION_START_OFFSET
Definition: parsenodes.h:525
#define lsecond(l)
Definition: pg_list.h:179
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3463
List * colcollations
Definition: primnodes.h:92
Oid get_func_rettype(Oid funcid)
Definition: lsyscache.c:1567
signed int int32
Definition: c.h:363
Expr * makeBoolExpr(BoolExprType boolop, List *args, int location)
Definition: makefuncs.c:369
JoinType
Definition: nodes.h:695
bool p_hasWindowFuncs
Definition: parse_node.h:207
ParseNamespaceItem * addRangeTableEntryForRelation(ParseState *pstate, Relation rel, int lockmode, Alias *alias, bool inh, bool inFromCl)
char * schemaname
Definition: primnodes.h:67
int location
Definition: parsenodes.h:237
static Node * transformFromClauseItem(ParseState *pstate, Node *n, ParseNamespaceItem **top_nsitem, List **namespace)
int location
Definition: parsenodes.h:445
Node * larg
Definition: primnodes.h:1493
GroupingSetKind kind
Definition: parsenodes.h:1327
void ReleaseCatCacheList(CatCList *list)
Definition: catcache.c:1782
CatCTup * members[FLEXIBLE_ARRAY_MEMBER]
Definition: catcache.h:178
#define list_make1(x1)
Definition: pg_list.h:206
void assign_expr_collations(ParseState *pstate, Node *expr)
ParseNamespaceItem * addRangeTableEntryForENR(ParseState *pstate, RangeVar *rv, bool inFromCl)
char * relname
Definition: primnodes.h:68
Node * expr
Definition: parsenodes.h:702
uint32 AclMode
Definition: parsenodes.h:72
static int get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:437
RangeTblEntry * p_rte
Definition: parse_node.h:257
Bitmapset * selectedCols
Definition: parsenodes.h:1122
Node * startOffset
Definition: parsenodes.h:494
void pfree(void *pointer)
Definition: mcxt.c:1057
void cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
Definition: parse_node.c:160
bool op_hashjoinable(Oid opno, Oid inputtype)
Definition: lsyscache.c:1354
bool resjunk
Definition: primnodes.h:1417
#define linitial(l)
Definition: pg_list.h:174
#define BTINRANGE_PROC
Definition: nbtree.h:577
SortByNulls nulls_ordering
Definition: parsenodes.h:708
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
Node * transformLimitClause(ParseState *pstate, Node *clause, ParseExprKind exprKind, const char *constructName, LimitOption limitOption)
struct WindowDef * over
Definition: parsenodes.h:360
#define lfirst_int(lc)
Definition: pg_list.h:170
List * partitionClause
Definition: parsenodes.h:1354
List * coldeflist
Definition: parsenodes.h:570
Oid vartype
Definition: primnodes.h:188
char * FigureColname(Node *node)
List * args
Definition: primnodes.h:1089
int location
Definition: parsenodes.h:496
Oid LookupFuncName(List *funcname, int nargs, const Oid *argtypes, bool missing_ok)
Definition: parse_func.c:2103
bool setof
Definition: parsenodes.h:212
Node * endOffset
Definition: parsenodes.h:495
List * coldefexprs
Definition: primnodes.h:94
static List * transformGroupClauseList(List **flatresult, ParseState *pstate, List *list, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99, bool toplevel)
List * ns_names
Definition: primnodes.h:86
bool list_member_int(const List *list, int datum)
Definition: list.c:654
Node * rowexpr
Definition: primnodes.h:88
void assign_list_collations(ParseState *pstate, List *exprs)
AttrNumber p_varattno
Definition: parse_node.h:291
List * p_namespace
Definition: parse_node.h:184
static void setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok)
char * c
#define NoLock
Definition: lockdefs.h:34
NodeTag type
Definition: nodes.h:530
TypeName * typeName
Definition: parsenodes.h:599
RelabelType * makeRelabelType(Expr *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat)
Definition: makefuncs.c:402
bool scanNameSpaceForENR(ParseState *pstate, const char *refname)
char * conname
Definition: parsenodes.h:1415
void check_stack_depth(void)
Definition: postgres.c:3312
static Node * flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets)
#define RowExclusiveLock
Definition: lockdefs.h:38
List * namespaces
Definition: parsenodes.h:583
SortByNulls sortby_nulls
Definition: parsenodes.h:473
Bitmapset * get_relation_constraint_attnos(Oid relid, const char *conname, bool missing_ok, Oid *constraintOid)
List * functions
Definition: parsenodes.h:568
Bitmapset * notnulls
Definition: primnodes.h:95
List * transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99)
#define RelationGetRelationName(relation)
Definition: rel.h:490
void checkNameSpaceConflicts(ParseState *pstate, List *namespace1, List *namespace2)
#define list_make1_int(x1)
Definition: pg_list.h:217
Node * rowexpr
Definition: parsenodes.h:582
TargetEntry * get_sortgroupref_tle(Index sortref, List *targetList)
Definition: tlist.c:367
Var * makeVar(Index varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location)
Definition: parse_node.c:144
Definition: nodes.h:299
List * lappend_int(List *list, int datum)
Definition: list.c:339
bool inh
Definition: primnodes.h:69
Index varnosyn
Definition: primnodes.h:194
bool is_rowsfrom
Definition: parsenodes.h:567
List * lappend(List *list, void *datum)
Definition: list.c:321
bool isNatural
Definition: primnodes.h:1492
static Node * buildMergedJoinVar(ParseState *pstate, JoinType jointype, Var *l_colvar, Var *r_colvar)
static Var * buildVarFromNSColumn(ParseNamespaceColumn *nscol)
List * usingClause
Definition: primnodes.h:1495
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:131
ParseNamespaceItem * addRangeTableEntryForFunction(ParseState *pstate, List *funcnames, List *funcexprs, List *coldeflists, RangeFunction *rangefunc, bool lateral, bool inFromCl)
int ordinalitycol
Definition: primnodes.h:96
bool func_variadic
Definition: parsenodes.h:359
char * NameListToString(List *names)
Definition: namespace.c:3101
static TableSampleClause * transformRangeTableSample(ParseState *pstate, RangeTableSample *rts)
Definition: parse_clause.c:908
Node * startOffset
Definition: parsenodes.h:1357
static void setNamespaceColumnVisibility(List *namespace, bool cols_visible)
FuncCall * makeFuncCall(List *name, List *args, int location)
Definition: makefuncs.c:585
List * transformWindowDefinitions(ParseState *pstate, List *windowdefs, List **targetlist)
List * orderClause
Definition: parsenodes.h:492
static ParseNamespaceItem * transformRangeTableFunc(ParseState *pstate, RangeTableFunc *t)
Definition: parse_clause.c:690
void * palloc0(Size size)
Definition: mcxt.c:981
Node * quals
Definition: primnodes.h:1496
Node * p_last_srf
Definition: parse_node.h:212
AttrNumber varattnosyn
Definition: primnodes.h:195
#define ACL_SELECT
Definition: parsenodes.h:75
void transformFromClause(ParseState *pstate, List *frmList)
Definition: parse_clause.c:114
unsigned int Index
Definition: c.h:483
InferClause * infer
Definition: parsenodes.h:1429
List * coltypes
Definition: primnodes.h:90
ParseExprKind p_expr_kind
Definition: parse_node.h:194
Alias * alias
Definition: parsenodes.h:585
void typenameTypeIdAndMod(ParseState *pstate, const TypeName *typeName, Oid *typeid_p, int32 *typmod_p)
Definition: parse_type.c:310
Oid LookupCollation(ParseState *pstate, List *collnames, int location)
Definition: parse_type.c:513
#define RelationIsUsedAsCatalogTable(relation)
Definition: rel.h:348
#define InvalidOid
Definition: postgres_ext.h:36
int setTargetTable(ParseState *pstate, RangeVar *relation, bool inh, bool alsoSource, AclMode requiredPerms)
Definition: parse_clause.c:178
bool targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
int16 attnum
Definition: pg_attribute.h:79
List * colexprs
Definition: primnodes.h:93
Query * parse_sub_analyze(Node *parseTree, ParseState *parentParseState, CommonTableExpr *parentCTE, bool locked_from_parent, bool resolve_unknowns)
Definition: analyze.c:164
#define ereport(elevel,...)
Definition: elog.h:144
Oid get_typcollation(Oid typid)
Definition: lsyscache.c:2933
bool p_lateral_active
Definition: parse_node.h:186
List * opclass
Definition: parsenodes.h:705
CmdType commandType
Definition: parsenodes.h:112
TsmRoutine * GetTsmRoutine(Oid tsmhandler)
Definition: tablesample.c:27
CommonTableExpr * scanNameSpaceForCTE(ParseState *pstate, const char *refname, Index *ctelevelsup)
#define makeNode(_type_)
Definition: nodes.h:576
Node * rarg
Definition: primnodes.h:1494
#define SearchSysCacheList2(cacheId, key1, key2)
Definition: syscache.h:212
Alias * alias
Definition: primnodes.h:1497
#define FRAMEOPTION_RANGE
Definition: parsenodes.h:507
JoinType jointype
Definition: primnodes.h:1491
#define Assert(condition)
Definition: c.h:746
static int extractRemainingColumns(ParseNamespaceColumn *src_nscolumns, List *src_colnames, List **src_colnos, List **res_colnames, List **res_colvars, ParseNamespaceColumn *res_nscolumns)
Definition: parse_clause.c:253
#define lfirst(lc)
Definition: pg_list.h:169
char * aliasname
Definition: primnodes.h:42
void get_sort_group_operators(Oid argtype, bool needLT, bool needEQ, bool needGT, Oid *ltOpr, Oid *eqOpr, Oid *gtOpr, bool *isHashable)
Definition: parse_oper.c:192
Definition: value.h:42
List * ns_uris
Definition: primnodes.h:85
Node * transformWhereClause(ParseState *pstate, Node *clause, ParseExprKind exprKind, const char *constructName)
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:369
Expr * expr
Definition: primnodes.h:1410
Node * docexpr
Definition: parsenodes.h:581
Alias * alias
Definition: parsenodes.h:545
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, int16 *strategy)
Definition: lsyscache.c:205
Node * endOffset
Definition: parsenodes.h:1358
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
static TargetEntry * findTargetlistEntrySQL92(ParseState *pstate, Node *node, List **tlist, ParseExprKind exprKind)
List * args
Definition: parsenodes.h:353
static int list_length(const List *l)
Definition: pg_list.h:149
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:110
static void checkTargetlistEntrySQL92(ParseState *pstate, TargetEntry *tle, ParseExprKind exprKind)
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:768
#define FRAMEOPTION_END_OFFSET
Definition: parsenodes.h:527
#define FRAMEOPTION_ROWS
Definition: parsenodes.h:508
Node * whereClause
Definition: parsenodes.h:1414
char * name
Definition: parsenodes.h:701
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
LimitOption
Definition: nodes.h:834
const char * name
Definition: encode.c:561
#define nodeTag(nodeptr)
Definition: nodes.h:533
static ParseNamespaceItem * transformRangeSubselect(ParseState *pstate, RangeSubselect *r)
Definition: parse_clause.c:404
bool contain_aggs_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:67
RTEKind rtekind
Definition: parsenodes.h:977
ParseNamespaceItem * addRangeTableEntry(ParseState *pstate, RangeVar *relation, Alias *alias, bool inh, bool inFromCl)
Definition: nodes.h:294
List * orderClause
Definition: parsenodes.h:1355
e
Definition: preproc-init.c:82
ParseNamespaceColumn * p_nscolumns
Definition: parse_node.h:260
#define intVal(v)
Definition: value.h:52
void * palloc(Size size)
Definition: mcxt.c:950
int errmsg(const char *fmt,...)
Definition: elog.c:821
Oid compatible_oper_opid(List *op, Oid arg1, Oid arg2, bool noError)
Definition: parse_oper.c:499
GroupingSet * makeGroupingSet(GroupingSetKind kind, List *content, int location)
Definition: makefuncs.c:793
static Node * transformJoinOnClause(ParseState *pstate, JoinExpr *j, List *namespace)
Definition: parse_clause.c:364
static Node * transformFrameOffset(ParseState *pstate, int frameOptions, Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc, Node *clause)
Relation p_target_relation
Definition: parse_node.h:190
#define elog(elevel,...)
Definition: elog.h:214
int i
ParseNamespaceItem * addRangeTableEntryForSubquery(ParseState *pstate, Query *subquery, Alias *alias, bool lateral, bool inFromCl)
Oid coalescetype
Definition: primnodes.h:1087
AttrNumber p_varattnosyn
Definition: parse_node.h:296
#define FRAMEOPTION_GROUPS
Definition: parsenodes.h:509
Node * coerce_to_specific_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *constructName)
Index ressortgroupref
Definition: primnodes.h:1413
List * p_joinlist
Definition: parse_node.h:182
void * arg
Oid select_common_type(ParseState *pstate, List *exprs, const char *context, Node **which_expr)
Alias * alias
Definition: primnodes.h:72
ParseNamespaceItem * addRangeTableEntryForJoin(ParseState *pstate, List *colnames, ParseNamespaceColumn *nscolumns, JoinType jointype, int nummergedcols, List *aliasvars, List *leftcols, List *rightcols, Alias *alias, bool inFromCl)
List * collation
Definition: parsenodes.h:704
bool isLockedRefname(ParseState *pstate, const char *refname)
List * parameterTypes
Definition: tsmapi.h:61
HeapTupleData tuple
Definition: catcache.h:121
List * funcname
Definition: parsenodes.h:352
Alias * eref
Definition: parsenodes.h:1116
Node * node
Definition: parsenodes.h:471
char * refname
Definition: parsenodes.h:490
#define copyObject(obj)
Definition: nodes.h:644
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
int location
Definition: primnodes.h:97
CoercionForm row_format
Definition: primnodes.h:1040
#define BTLessStrategyNumber
Definition: stratnum.h:29
bool agg_distinct
Definition: parsenodes.h:358
TargetEntry * transformTargetEntry(ParseState *pstate, Node *node, Node *expr, ParseExprKind exprKind, char *colname, bool resjunk)
Definition: parse_target.c:87
bool agg_star
Definition: parsenodes.h:357
int rtindex
Definition: primnodes.h:1498
OnConflictAction action
Definition: parsenodes.h:1428
Definition: pg_list.h:50
Node * coerce_to_specific_type_typmod(ParseState *pstate, Node *node, Oid targetTypeId, int32 targetTypmod, const char *constructName)
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:427
Oid startInRangeFunc
Definition: parsenodes.h:1359
static WindowClause * findWindowClause(List *wclist, const char *name)
struct TableSampleClause * tablesample
Definition: parsenodes.h:1007
#define RelationGetRelid(relation)
Definition: rel.h:456
long val
Definition: informix.c:664
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:197
int location
Definition: parsenodes.h:475
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:793
List * p_joinexprs
Definition: parse_node.h:181
List * fields
Definition: parsenodes.h:236
#define lfirst_oid(lc)
Definition: pg_list.h:171
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
static Index transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local, ParseState *pstate, Node *gexpr, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99, bool toplevel)
Node * colNameToVar(ParseState *pstate, const char *colname, bool localonly, int location)
static List * resolve_unique_index_expr(ParseState *pstate, InferClause *infer, Relation heapRel)
Node * strip_implicit_coercions(Node *node)
Definition: nodeFuncs.c:660
int32 vartypmod
Definition: primnodes.h:189
Node * coerce_to_boolean(ParseState *pstate, Node *node, const char *constructName)