PostgreSQL Source Code  git master
parse_clause.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_clause.c
4  * handle clauses in parser
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_clause.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include "access/htup_details.h"
19 #include "access/nbtree.h"
20 #include "access/table.h"
21 #include "access/tsmapi.h"
22 #include "catalog/catalog.h"
23 #include "catalog/heap.h"
24 #include "catalog/pg_am.h"
25 #include "catalog/pg_amproc.h"
26 #include "catalog/pg_collation.h"
27 #include "catalog/pg_constraint.h"
28 #include "catalog/pg_type.h"
29 #include "commands/defrem.h"
30 #include "miscadmin.h"
31 #include "nodes/makefuncs.h"
32 #include "nodes/nodeFuncs.h"
33 #include "optimizer/optimizer.h"
34 #include "parser/analyze.h"
35 #include "parser/parse_clause.h"
36 #include "parser/parse_coerce.h"
37 #include "parser/parse_collate.h"
38 #include "parser/parse_expr.h"
39 #include "parser/parse_func.h"
40 #include "parser/parse_oper.h"
41 #include "parser/parse_relation.h"
42 #include "parser/parse_target.h"
43 #include "parser/parse_type.h"
44 #include "parser/parser.h"
45 #include "parser/parsetree.h"
46 #include "rewrite/rewriteManip.h"
47 #include "utils/builtins.h"
48 #include "utils/catcache.h"
49 #include "utils/guc.h"
50 #include "utils/lsyscache.h"
51 #include "utils/rel.h"
52 #include "utils/syscache.h"
53 
54 
55 static int extractRemainingColumns(ParseNamespaceColumn *src_nscolumns,
56  List *src_colnames,
57  List **src_colnos,
58  List **res_colnames, List **res_colvars,
59  ParseNamespaceColumn *res_nscolumns);
61  List *leftVars, List *rightVars);
62 static Node *transformJoinOnClause(ParseState *pstate, JoinExpr *j,
63  List *namespace);
66  RangeSubselect *r);
68  RangeFunction *r);
70  RangeTableFunc *t);
72  RangeTableSample *rts);
74  RangeVar *rv);
75 static Node *transformFromClauseItem(ParseState *pstate, Node *n,
76  ParseNamespaceItem **top_nsitem,
77  List **namespace);
79 static Node *buildMergedJoinVar(ParseState *pstate, JoinType jointype,
80  Var *l_colvar, Var *r_colvar);
81 static void setNamespaceColumnVisibility(List *namespace, bool cols_visible);
82 static void setNamespaceLateralState(List *namespace,
83  bool lateral_only, bool lateral_ok);
84 static void checkExprIsVarFree(ParseState *pstate, Node *n,
85  const char *constructName);
87  List **tlist, ParseExprKind exprKind);
89  List **tlist, ParseExprKind exprKind);
90 static int get_matching_location(int sortgroupref,
91  List *sortgrouprefs, List *exprs);
93  Relation heapRel);
94 static List *addTargetToGroupList(ParseState *pstate, TargetEntry *tle,
95  List *grouplist, List *targetlist, int location);
96 static WindowClause *findWindowClause(List *wclist, const char *name);
97 static Node *transformFrameOffset(ParseState *pstate, int frameOptions,
98  Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc,
99  Node *clause);
100 
101 
102 /*
103  * transformFromClause -
104  * Process the FROM clause and add items to the query's range table,
105  * joinlist, and namespace.
106  *
107  * Note: we assume that the pstate's p_rtable, p_joinlist, and p_namespace
108  * lists were initialized to NIL when the pstate was created.
109  * We will add onto any entries already present --- this is needed for rule
110  * processing, as well as for UPDATE and DELETE.
111  */
112 void
114 {
115  ListCell *fl;
116 
117  /*
118  * The grammar will have produced a list of RangeVars, RangeSubselects,
119  * RangeFunctions, and/or JoinExprs. Transform each one (possibly adding
120  * entries to the rtable), check for duplicate refnames, and then add it
121  * to the joinlist and namespace.
122  *
123  * Note we must process the items left-to-right for proper handling of
124  * LATERAL references.
125  */
126  foreach(fl, frmList)
127  {
128  Node *n = lfirst(fl);
129  ParseNamespaceItem *nsitem;
130  List *namespace;
131 
132  n = transformFromClauseItem(pstate, n,
133  &nsitem,
134  &namespace);
135 
136  checkNameSpaceConflicts(pstate, pstate->p_namespace, namespace);
137 
138  /* Mark the new namespace items as visible only to LATERAL */
139  setNamespaceLateralState(namespace, true, true);
140 
141  pstate->p_joinlist = lappend(pstate->p_joinlist, n);
142  pstate->p_namespace = list_concat(pstate->p_namespace, namespace);
143  }
144 
145  /*
146  * We're done parsing the FROM list, so make all namespace items
147  * unconditionally visible. Note that this will also reset lateral_only
148  * for any namespace items that were already present when we were called;
149  * but those should have been that way already.
150  */
151  setNamespaceLateralState(pstate->p_namespace, false, true);
152 }
153 
154 /*
155  * setTargetTable
156  * Add the target relation of INSERT/UPDATE/DELETE to the range table,
157  * and make the special links to it in the ParseState.
158  *
159  * We also open the target relation and acquire a write lock on it.
160  * This must be done before processing the FROM list, in case the target
161  * is also mentioned as a source relation --- we want to be sure to grab
162  * the write lock before any read lock.
163  *
164  * If alsoSource is true, add the target to the query's joinlist and
165  * namespace. For INSERT, we don't want the target to be joined to;
166  * it's a destination of tuples, not a source. For UPDATE/DELETE,
167  * we do need to scan or join the target. (NOTE: we do not bother
168  * to check for namespace conflict; we assume that the namespace was
169  * initially empty in these cases.)
170  *
171  * Finally, we mark the relation as requiring the permissions specified
172  * by requiredPerms.
173  *
174  * Returns the rangetable index of the target relation.
175  */
176 int
177 setTargetTable(ParseState *pstate, RangeVar *relation,
178  bool inh, bool alsoSource, AclMode requiredPerms)
179 {
180  ParseNamespaceItem *nsitem;
181 
182  /*
183  * ENRs hide tables of the same name, so we need to check for them first.
184  * In contrast, CTEs don't hide tables (for this purpose).
185  */
186  if (relation->schemaname == NULL &&
187  scanNameSpaceForENR(pstate, relation->relname))
188  ereport(ERROR,
189  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
190  errmsg("relation \"%s\" cannot be the target of a modifying statement",
191  relation->relname)));
192 
193  /* Close old target; this could only happen for multi-action rules */
194  if (pstate->p_target_relation != NULL)
196 
197  /*
198  * Open target rel and grab suitable lock (which we will hold till end of
199  * transaction).
200  *
201  * free_parsestate() will eventually do the corresponding table_close(),
202  * but *not* release the lock.
203  */
204  pstate->p_target_relation = parserOpenTable(pstate, relation,
206 
207  /*
208  * Now build an RTE and a ParseNamespaceItem.
209  */
210  nsitem = addRangeTableEntryForRelation(pstate, pstate->p_target_relation,
212  relation->alias, inh, false);
213 
214  /* remember the RTE/nsitem as being the query target */
215  pstate->p_target_nsitem = nsitem;
216 
217  /*
218  * Override addRangeTableEntry's default ACL_SELECT permissions check, and
219  * instead mark target table as requiring exactly the specified
220  * permissions.
221  *
222  * If we find an explicit reference to the rel later during parse
223  * analysis, we will add the ACL_SELECT bit back again; see
224  * markVarForSelectPriv and its callers.
225  */
226  nsitem->p_rte->requiredPerms = requiredPerms;
227 
228  /*
229  * If UPDATE/DELETE, add table to joinlist and namespace.
230  */
231  if (alsoSource)
232  addNSItemToQuery(pstate, nsitem, true, true, true);
233 
234  return nsitem->p_rtindex;
235 }
236 
237 /*
238  * Extract all not-in-common columns from column lists of a source table
239  *
240  * src_nscolumns and src_colnames describe the source table.
241  *
242  * *src_colnos initially contains the column numbers of the already-merged
243  * columns. We add to it the column number of each additional column.
244  * Also append to *res_colnames the name of each additional column,
245  * append to *res_colvars a Var for each additional column, and copy the
246  * columns' nscolumns data into res_nscolumns[] (which is caller-allocated
247  * space that had better be big enough).
248  *
249  * Returns the number of columns added.
250  */
251 static int
253  List *src_colnames,
254  List **src_colnos,
255  List **res_colnames, List **res_colvars,
256  ParseNamespaceColumn *res_nscolumns)
257 {
258  int colcount = 0;
259  Bitmapset *prevcols;
260  int attnum;
261  ListCell *lc;
262 
263  /*
264  * While we could just test "list_member_int(*src_colnos, attnum)" to
265  * detect already-merged columns in the loop below, that would be O(N^2)
266  * for a wide input table. Instead build a bitmapset of just the merged
267  * USING columns, which we won't add to within the main loop.
268  */
269  prevcols = NULL;
270  foreach(lc, *src_colnos)
271  {
272  prevcols = bms_add_member(prevcols, lfirst_int(lc));
273  }
274 
275  attnum = 0;
276  foreach(lc, src_colnames)
277  {
278  char *colname = strVal(lfirst(lc));
279 
280  attnum++;
281  /* Non-dropped and not already merged? */
282  if (colname[0] != '\0' && !bms_is_member(attnum, prevcols))
283  {
284  /* Yes, so emit it as next output column */
285  *src_colnos = lappend_int(*src_colnos, attnum);
286  *res_colnames = lappend(*res_colnames, lfirst(lc));
287  *res_colvars = lappend(*res_colvars,
288  buildVarFromNSColumn(src_nscolumns + attnum - 1));
289  /* Copy the input relation's nscolumn data for this column */
290  res_nscolumns[colcount] = src_nscolumns[attnum - 1];
291  colcount++;
292  }
293  }
294  return colcount;
295 }
296 
297 /* transformJoinUsingClause()
298  * Build a complete ON clause from a partially-transformed USING list.
299  * We are given lists of nodes representing left and right match columns.
300  * Result is a transformed qualification expression.
301  */
302 static Node *
304  List *leftVars, List *rightVars)
305 {
306  Node *result;
307  List *andargs = NIL;
308  ListCell *lvars,
309  *rvars;
310 
311  /*
312  * We cheat a little bit here by building an untransformed operator tree
313  * whose leaves are the already-transformed Vars. This requires collusion
314  * from transformExpr(), which normally could be expected to complain
315  * about already-transformed subnodes. However, this does mean that we
316  * have to mark the columns as requiring SELECT privilege for ourselves;
317  * transformExpr() won't do it.
318  */
319  forboth(lvars, leftVars, rvars, rightVars)
320  {
321  Var *lvar = (Var *) lfirst(lvars);
322  Var *rvar = (Var *) lfirst(rvars);
323  A_Expr *e;
324 
325  /* Require read access to the join variables */
326  markVarForSelectPriv(pstate, lvar);
327  markVarForSelectPriv(pstate, rvar);
328 
329  /* Now create the lvar = rvar join condition */
330  e = makeSimpleA_Expr(AEXPR_OP, "=",
331  (Node *) copyObject(lvar), (Node *) copyObject(rvar),
332  -1);
333 
334  /* Prepare to combine into an AND clause, if multiple join columns */
335  andargs = lappend(andargs, e);
336  }
337 
338  /* Only need an AND if there's more than one join column */
339  if (list_length(andargs) == 1)
340  result = (Node *) linitial(andargs);
341  else
342  result = (Node *) makeBoolExpr(AND_EXPR, andargs, -1);
343 
344  /*
345  * Since the references are already Vars, and are certainly from the input
346  * relations, we don't have to go through the same pushups that
347  * transformJoinOnClause() does. Just invoke transformExpr() to fix up
348  * the operators, and we're done.
349  */
350  result = transformExpr(pstate, result, EXPR_KIND_JOIN_USING);
351 
352  result = coerce_to_boolean(pstate, result, "JOIN/USING");
353 
354  return result;
355 }
356 
357 /* transformJoinOnClause()
358  * Transform the qual conditions for JOIN/ON.
359  * Result is a transformed qualification expression.
360  */
361 static Node *
363 {
364  Node *result;
365  List *save_namespace;
366 
367  /*
368  * The namespace that the join expression should see is just the two
369  * subtrees of the JOIN plus any outer references from upper pstate
370  * levels. Temporarily set this pstate's namespace accordingly. (We need
371  * not check for refname conflicts, because transformFromClauseItem()
372  * already did.) All namespace items are marked visible regardless of
373  * LATERAL state.
374  */
375  setNamespaceLateralState(namespace, false, true);
376 
377  save_namespace = pstate->p_namespace;
378  pstate->p_namespace = namespace;
379 
380  result = transformWhereClause(pstate, j->quals,
381  EXPR_KIND_JOIN_ON, "JOIN/ON");
382 
383  pstate->p_namespace = save_namespace;
384 
385  return result;
386 }
387 
388 /*
389  * transformTableEntry --- transform a RangeVar (simple relation reference)
390  */
391 static ParseNamespaceItem *
393 {
394  /* addRangeTableEntry does all the work */
395  return addRangeTableEntry(pstate, r, r->alias, r->inh, true);
396 }
397 
398 /*
399  * transformRangeSubselect --- transform a sub-SELECT appearing in FROM
400  */
401 static ParseNamespaceItem *
403 {
404  Query *query;
405 
406  /*
407  * We require user to supply an alias for a subselect, per SQL92. To relax
408  * this, we'd have to be prepared to gin up a unique alias for an
409  * unlabeled subselect. (This is just elog, not ereport, because the
410  * grammar should have enforced it already. It'd probably be better to
411  * report the error here, but we don't have a good error location here.)
412  */
413  if (r->alias == NULL)
414  elog(ERROR, "subquery in FROM must have an alias");
415 
416  /*
417  * Set p_expr_kind to show this parse level is recursing to a subselect.
418  * We can't be nested within any expression, so don't need save-restore
419  * logic here.
420  */
421  Assert(pstate->p_expr_kind == EXPR_KIND_NONE);
423 
424  /*
425  * If the subselect is LATERAL, make lateral_only names of this level
426  * visible to it. (LATERAL can't nest within a single pstate level, so we
427  * don't need save/restore logic here.)
428  */
429  Assert(!pstate->p_lateral_active);
430  pstate->p_lateral_active = r->lateral;
431 
432  /*
433  * Analyze and transform the subquery.
434  */
435  query = parse_sub_analyze(r->subquery, pstate, NULL,
436  isLockedRefname(pstate, r->alias->aliasname),
437  true);
438 
439  /* Restore state */
440  pstate->p_lateral_active = false;
441  pstate->p_expr_kind = EXPR_KIND_NONE;
442 
443  /*
444  * Check that we got a SELECT. Anything else should be impossible given
445  * restrictions of the grammar, but check anyway.
446  */
447  if (!IsA(query, Query) ||
448  query->commandType != CMD_SELECT)
449  elog(ERROR, "unexpected non-SELECT command in subquery in FROM");
450 
451  /*
452  * OK, build an RTE and nsitem for the subquery.
453  */
454  return addRangeTableEntryForSubquery(pstate,
455  query,
456  r->alias,
457  r->lateral,
458  true);
459 }
460 
461 
462 /*
463  * transformRangeFunction --- transform a function call appearing in FROM
464  */
465 static ParseNamespaceItem *
467 {
468  List *funcexprs = NIL;
469  List *funcnames = NIL;
470  List *coldeflists = NIL;
471  bool is_lateral;
472  ListCell *lc;
473 
474  /*
475  * We make lateral_only names of this level visible, whether or not the
476  * RangeFunction is explicitly marked LATERAL. This is needed for SQL
477  * spec compliance in the case of UNNEST(), and seems useful on
478  * convenience grounds for all functions in FROM.
479  *
480  * (LATERAL can't nest within a single pstate level, so we don't need
481  * save/restore logic here.)
482  */
483  Assert(!pstate->p_lateral_active);
484  pstate->p_lateral_active = true;
485 
486  /*
487  * Transform the raw expressions.
488  *
489  * While transforming, also save function names for possible use as alias
490  * and column names. We use the same transformation rules as for a SELECT
491  * output expression. For a FuncCall node, the result will be the
492  * function name, but it is possible for the grammar to hand back other
493  * node types.
494  *
495  * We have to get this info now, because FigureColname only works on raw
496  * parsetrees. Actually deciding what to do with the names is left up to
497  * addRangeTableEntryForFunction.
498  *
499  * Likewise, collect column definition lists if there were any. But
500  * complain if we find one here and the RangeFunction has one too.
501  */
502  foreach(lc, r->functions)
503  {
504  List *pair = (List *) lfirst(lc);
505  Node *fexpr;
506  List *coldeflist;
507  Node *newfexpr;
508  Node *last_srf;
509 
510  /* Disassemble the function-call/column-def-list pairs */
511  Assert(list_length(pair) == 2);
512  fexpr = (Node *) linitial(pair);
513  coldeflist = (List *) lsecond(pair);
514 
515  /*
516  * If we find a function call unnest() with more than one argument and
517  * no special decoration, transform it into separate unnest() calls on
518  * each argument. This is a kluge, for sure, but it's less nasty than
519  * other ways of implementing the SQL-standard UNNEST() syntax.
520  *
521  * If there is any decoration (including a coldeflist), we don't
522  * transform, which probably means a no-such-function error later. We
523  * could alternatively throw an error right now, but that doesn't seem
524  * tremendously helpful. If someone is using any such decoration,
525  * then they're not using the SQL-standard syntax, and they're more
526  * likely expecting an un-tweaked function call.
527  *
528  * Note: the transformation changes a non-schema-qualified unnest()
529  * function name into schema-qualified pg_catalog.unnest(). This
530  * choice is also a bit debatable, but it seems reasonable to force
531  * use of built-in unnest() when we make this transformation.
532  */
533  if (IsA(fexpr, FuncCall))
534  {
535  FuncCall *fc = (FuncCall *) fexpr;
536 
537  if (list_length(fc->funcname) == 1 &&
538  strcmp(strVal(linitial(fc->funcname)), "unnest") == 0 &&
539  list_length(fc->args) > 1 &&
540  fc->agg_order == NIL &&
541  fc->agg_filter == NULL &&
542  fc->over == NULL &&
543  !fc->agg_star &&
544  !fc->agg_distinct &&
545  !fc->func_variadic &&
546  coldeflist == NIL)
547  {
548  ListCell *lc;
549 
550  foreach(lc, fc->args)
551  {
552  Node *arg = (Node *) lfirst(lc);
553  FuncCall *newfc;
554 
555  last_srf = pstate->p_last_srf;
556 
557  newfc = makeFuncCall(SystemFuncName("unnest"),
558  list_make1(arg),
560  fc->location);
561 
562  newfexpr = transformExpr(pstate, (Node *) newfc,
564 
565  /* nodeFunctionscan.c requires SRFs to be at top level */
566  if (pstate->p_last_srf != last_srf &&
567  pstate->p_last_srf != newfexpr)
568  ereport(ERROR,
569  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
570  errmsg("set-returning functions must appear at top level of FROM"),
571  parser_errposition(pstate,
572  exprLocation(pstate->p_last_srf))));
573 
574  funcexprs = lappend(funcexprs, newfexpr);
575 
576  funcnames = lappend(funcnames,
577  FigureColname((Node *) newfc));
578 
579  /* coldeflist is empty, so no error is possible */
580 
581  coldeflists = lappend(coldeflists, coldeflist);
582  }
583  continue; /* done with this function item */
584  }
585  }
586 
587  /* normal case ... */
588  last_srf = pstate->p_last_srf;
589 
590  newfexpr = transformExpr(pstate, fexpr,
592 
593  /* nodeFunctionscan.c requires SRFs to be at top level */
594  if (pstate->p_last_srf != last_srf &&
595  pstate->p_last_srf != newfexpr)
596  ereport(ERROR,
597  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
598  errmsg("set-returning functions must appear at top level of FROM"),
599  parser_errposition(pstate,
600  exprLocation(pstate->p_last_srf))));
601 
602  funcexprs = lappend(funcexprs, newfexpr);
603 
604  funcnames = lappend(funcnames,
605  FigureColname(fexpr));
606 
607  if (coldeflist && r->coldeflist)
608  ereport(ERROR,
609  (errcode(ERRCODE_SYNTAX_ERROR),
610  errmsg("multiple column definition lists are not allowed for the same function"),
611  parser_errposition(pstate,
612  exprLocation((Node *) r->coldeflist))));
613 
614  coldeflists = lappend(coldeflists, coldeflist);
615  }
616 
617  pstate->p_lateral_active = false;
618 
619  /*
620  * We must assign collations now so that the RTE exposes correct collation
621  * info for Vars created from it.
622  */
623  assign_list_collations(pstate, funcexprs);
624 
625  /*
626  * Install the top-level coldeflist if there was one (we already checked
627  * that there was no conflicting per-function coldeflist).
628  *
629  * We only allow this when there's a single function (even after UNNEST
630  * expansion) and no WITH ORDINALITY. The reason for the latter
631  * restriction is that it's not real clear whether the ordinality column
632  * should be in the coldeflist, and users are too likely to make mistakes
633  * in one direction or the other. Putting the coldeflist inside ROWS
634  * FROM() is much clearer in this case.
635  */
636  if (r->coldeflist)
637  {
638  if (list_length(funcexprs) != 1)
639  {
640  if (r->is_rowsfrom)
641  ereport(ERROR,
642  (errcode(ERRCODE_SYNTAX_ERROR),
643  errmsg("ROWS FROM() with multiple functions cannot have a column definition list"),
644  errhint("Put a separate column definition list for each function inside ROWS FROM()."),
645  parser_errposition(pstate,
646  exprLocation((Node *) r->coldeflist))));
647  else
648  ereport(ERROR,
649  (errcode(ERRCODE_SYNTAX_ERROR),
650  errmsg("UNNEST() with multiple arguments cannot have a column definition list"),
651  errhint("Use separate UNNEST() calls inside ROWS FROM(), and attach a column definition list to each one."),
652  parser_errposition(pstate,
653  exprLocation((Node *) r->coldeflist))));
654  }
655  if (r->ordinality)
656  ereport(ERROR,
657  (errcode(ERRCODE_SYNTAX_ERROR),
658  errmsg("WITH ORDINALITY cannot be used with a column definition list"),
659  errhint("Put the column definition list inside ROWS FROM()."),
660  parser_errposition(pstate,
661  exprLocation((Node *) r->coldeflist))));
662 
663  coldeflists = list_make1(r->coldeflist);
664  }
665 
666  /*
667  * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
668  * there are any lateral cross-references in it.
669  */
670  is_lateral = r->lateral || contain_vars_of_level((Node *) funcexprs, 0);
671 
672  /*
673  * OK, build an RTE and nsitem for the function.
674  */
675  return addRangeTableEntryForFunction(pstate,
676  funcnames, funcexprs, coldeflists,
677  r, is_lateral, true);
678 }
679 
680 /*
681  * transformRangeTableFunc -
682  * Transform a raw RangeTableFunc into TableFunc.
683  *
684  * Transform the namespace clauses, the document-generating expression, the
685  * row-generating expression, the column-generating expressions, and the
686  * default value expressions.
687  */
688 static ParseNamespaceItem *
690 {
692  const char *constructName;
693  Oid docType;
694  bool is_lateral;
695  ListCell *col;
696  char **names;
697  int colno;
698 
699  /* Currently only XMLTABLE is supported */
700  constructName = "XMLTABLE";
701  docType = XMLOID;
702 
703  /*
704  * We make lateral_only names of this level visible, whether or not the
705  * RangeTableFunc is explicitly marked LATERAL. This is needed for SQL
706  * spec compliance and seems useful on convenience grounds for all
707  * functions in FROM.
708  *
709  * (LATERAL can't nest within a single pstate level, so we don't need
710  * save/restore logic here.)
711  */
712  Assert(!pstate->p_lateral_active);
713  pstate->p_lateral_active = true;
714 
715  /* Transform and apply typecast to the row-generating expression ... */
716  Assert(rtf->rowexpr != NULL);
717  tf->rowexpr = coerce_to_specific_type(pstate,
719  TEXTOID,
720  constructName);
721  assign_expr_collations(pstate, tf->rowexpr);
722 
723  /* ... and to the document itself */
724  Assert(rtf->docexpr != NULL);
725  tf->docexpr = coerce_to_specific_type(pstate,
727  docType,
728  constructName);
729  assign_expr_collations(pstate, tf->docexpr);
730 
731  /* undef ordinality column number */
732  tf->ordinalitycol = -1;
733 
734  /* Process column specs */
735  names = palloc(sizeof(char *) * list_length(rtf->columns));
736 
737  colno = 0;
738  foreach(col, rtf->columns)
739  {
740  RangeTableFuncCol *rawc = (RangeTableFuncCol *) lfirst(col);
741  Oid typid;
742  int32 typmod;
743  Node *colexpr;
744  Node *coldefexpr;
745  int j;
746 
747  tf->colnames = lappend(tf->colnames,
748  makeString(pstrdup(rawc->colname)));
749 
750  /*
751  * Determine the type and typmod for the new column. FOR ORDINALITY
752  * columns are INTEGER per spec; the others are user-specified.
753  */
754  if (rawc->for_ordinality)
755  {
756  if (tf->ordinalitycol != -1)
757  ereport(ERROR,
758  (errcode(ERRCODE_SYNTAX_ERROR),
759  errmsg("only one FOR ORDINALITY column is allowed"),
760  parser_errposition(pstate, rawc->location)));
761 
762  typid = INT4OID;
763  typmod = -1;
764  tf->ordinalitycol = colno;
765  }
766  else
767  {
768  if (rawc->typeName->setof)
769  ereport(ERROR,
770  (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
771  errmsg("column \"%s\" cannot be declared SETOF",
772  rawc->colname),
773  parser_errposition(pstate, rawc->location)));
774 
775  typenameTypeIdAndMod(pstate, rawc->typeName,
776  &typid, &typmod);
777  }
778 
779  tf->coltypes = lappend_oid(tf->coltypes, typid);
780  tf->coltypmods = lappend_int(tf->coltypmods, typmod);
782  get_typcollation(typid));
783 
784  /* Transform the PATH and DEFAULT expressions */
785  if (rawc->colexpr)
786  {
787  colexpr = coerce_to_specific_type(pstate,
788  transformExpr(pstate, rawc->colexpr,
790  TEXTOID,
791  constructName);
792  assign_expr_collations(pstate, colexpr);
793  }
794  else
795  colexpr = NULL;
796 
797  if (rawc->coldefexpr)
798  {
799  coldefexpr = coerce_to_specific_type_typmod(pstate,
800  transformExpr(pstate, rawc->coldefexpr,
802  typid, typmod,
803  constructName);
804  assign_expr_collations(pstate, coldefexpr);
805  }
806  else
807  coldefexpr = NULL;
808 
809  tf->colexprs = lappend(tf->colexprs, colexpr);
810  tf->coldefexprs = lappend(tf->coldefexprs, coldefexpr);
811 
812  if (rawc->is_not_null)
813  tf->notnulls = bms_add_member(tf->notnulls, colno);
814 
815  /* make sure column names are unique */
816  for (j = 0; j < colno; j++)
817  if (strcmp(names[j], rawc->colname) == 0)
818  ereport(ERROR,
819  (errcode(ERRCODE_SYNTAX_ERROR),
820  errmsg("column name \"%s\" is not unique",
821  rawc->colname),
822  parser_errposition(pstate, rawc->location)));
823  names[colno] = rawc->colname;
824 
825  colno++;
826  }
827  pfree(names);
828 
829  /* Namespaces, if any, also need to be transformed */
830  if (rtf->namespaces != NIL)
831  {
832  ListCell *ns;
833  ListCell *lc2;
834  List *ns_uris = NIL;
835  List *ns_names = NIL;
836  bool default_ns_seen = false;
837 
838  foreach(ns, rtf->namespaces)
839  {
840  ResTarget *r = (ResTarget *) lfirst(ns);
841  Node *ns_uri;
842 
843  Assert(IsA(r, ResTarget));
844  ns_uri = transformExpr(pstate, r->val, EXPR_KIND_FROM_FUNCTION);
845  ns_uri = coerce_to_specific_type(pstate, ns_uri,
846  TEXTOID, constructName);
847  assign_expr_collations(pstate, ns_uri);
848  ns_uris = lappend(ns_uris, ns_uri);
849 
850  /* Verify consistency of name list: no dupes, only one DEFAULT */
851  if (r->name != NULL)
852  {
853  foreach(lc2, ns_names)
854  {
855  String *ns_node = lfirst_node(String, lc2);
856 
857  if (ns_node == NULL)
858  continue;
859  if (strcmp(strVal(ns_node), r->name) == 0)
860  ereport(ERROR,
861  (errcode(ERRCODE_SYNTAX_ERROR),
862  errmsg("namespace name \"%s\" is not unique",
863  r->name),
864  parser_errposition(pstate, r->location)));
865  }
866  }
867  else
868  {
869  if (default_ns_seen)
870  ereport(ERROR,
871  (errcode(ERRCODE_SYNTAX_ERROR),
872  errmsg("only one default namespace is allowed"),
873  parser_errposition(pstate, r->location)));
874  default_ns_seen = true;
875  }
876 
877  /* We represent DEFAULT by a null pointer */
878  ns_names = lappend(ns_names,
879  r->name ? makeString(r->name) : NULL);
880  }
881 
882  tf->ns_uris = ns_uris;
883  tf->ns_names = ns_names;
884  }
885 
886  tf->location = rtf->location;
887 
888  pstate->p_lateral_active = false;
889 
890  /*
891  * Mark the RTE as LATERAL if the user said LATERAL explicitly, or if
892  * there are any lateral cross-references in it.
893  */
894  is_lateral = rtf->lateral || contain_vars_of_level((Node *) tf, 0);
895 
896  return addRangeTableEntryForTableFunc(pstate,
897  tf, rtf->alias, is_lateral, true);
898 }
899 
900 /*
901  * transformRangeTableSample --- transform a TABLESAMPLE clause
902  *
903  * Caller has already transformed rts->relation, we just have to validate
904  * the remaining fields and create a TableSampleClause node.
905  */
906 static TableSampleClause *
908 {
909  TableSampleClause *tablesample;
910  Oid handlerOid;
911  Oid funcargtypes[1];
912  TsmRoutine *tsm;
913  List *fargs;
914  ListCell *larg,
915  *ltyp;
916 
917  /*
918  * To validate the sample method name, look up the handler function, which
919  * has the same name, one dummy INTERNAL argument, and a result type of
920  * tsm_handler. (Note: tablesample method names are not schema-qualified
921  * in the SQL standard; but since they are just functions to us, we allow
922  * schema qualification to resolve any potential ambiguity.)
923  */
924  funcargtypes[0] = INTERNALOID;
925 
926  handlerOid = LookupFuncName(rts->method, 1, funcargtypes, true);
927 
928  /* we want error to complain about no-such-method, not no-such-function */
929  if (!OidIsValid(handlerOid))
930  ereport(ERROR,
931  (errcode(ERRCODE_UNDEFINED_OBJECT),
932  errmsg("tablesample method %s does not exist",
933  NameListToString(rts->method)),
934  parser_errposition(pstate, rts->location)));
935 
936  /* check that handler has correct return type */
937  if (get_func_rettype(handlerOid) != TSM_HANDLEROID)
938  ereport(ERROR,
939  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
940  errmsg("function %s must return type %s",
941  NameListToString(rts->method), "tsm_handler"),
942  parser_errposition(pstate, rts->location)));
943 
944  /* OK, run the handler to get TsmRoutine, for argument type info */
945  tsm = GetTsmRoutine(handlerOid);
946 
947  tablesample = makeNode(TableSampleClause);
948  tablesample->tsmhandler = handlerOid;
949 
950  /* check user provided the expected number of arguments */
951  if (list_length(rts->args) != list_length(tsm->parameterTypes))
952  ereport(ERROR,
953  (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
954  errmsg_plural("tablesample method %s requires %d argument, not %d",
955  "tablesample method %s requires %d arguments, not %d",
957  NameListToString(rts->method),
959  list_length(rts->args)),
960  parser_errposition(pstate, rts->location)));
961 
962  /*
963  * Transform the arguments, typecasting them as needed. Note we must also
964  * assign collations now, because assign_query_collations() doesn't
965  * examine any substructure of RTEs.
966  */
967  fargs = NIL;
968  forboth(larg, rts->args, ltyp, tsm->parameterTypes)
969  {
970  Node *arg = (Node *) lfirst(larg);
971  Oid argtype = lfirst_oid(ltyp);
972 
973  arg = transformExpr(pstate, arg, EXPR_KIND_FROM_FUNCTION);
974  arg = coerce_to_specific_type(pstate, arg, argtype, "TABLESAMPLE");
975  assign_expr_collations(pstate, arg);
976  fargs = lappend(fargs, arg);
977  }
978  tablesample->args = fargs;
979 
980  /* Process REPEATABLE (seed) */
981  if (rts->repeatable != NULL)
982  {
983  Node *arg;
984 
985  if (!tsm->repeatable_across_queries)
986  ereport(ERROR,
987  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
988  errmsg("tablesample method %s does not support REPEATABLE",
989  NameListToString(rts->method)),
990  parser_errposition(pstate, rts->location)));
991 
992  arg = transformExpr(pstate, rts->repeatable, EXPR_KIND_FROM_FUNCTION);
993  arg = coerce_to_specific_type(pstate, arg, FLOAT8OID, "REPEATABLE");
994  assign_expr_collations(pstate, arg);
995  tablesample->repeatable = (Expr *) arg;
996  }
997  else
998  tablesample->repeatable = NULL;
999 
1000  return tablesample;
1001 }
1002 
1003 /*
1004  * getNSItemForSpecialRelationTypes
1005  *
1006  * If given RangeVar refers to a CTE or an EphemeralNamedRelation,
1007  * build and return an appropriate ParseNamespaceItem, otherwise return NULL
1008  */
1009 static ParseNamespaceItem *
1011 {
1012  ParseNamespaceItem *nsitem;
1013  CommonTableExpr *cte;
1014  Index levelsup;
1015 
1016  /*
1017  * if it is a qualified name, it can't be a CTE or tuplestore reference
1018  */
1019  if (rv->schemaname)
1020  return NULL;
1021 
1022  cte = scanNameSpaceForCTE(pstate, rv->relname, &levelsup);
1023  if (cte)
1024  nsitem = addRangeTableEntryForCTE(pstate, cte, levelsup, rv, true);
1025  else if (scanNameSpaceForENR(pstate, rv->relname))
1026  nsitem = addRangeTableEntryForENR(pstate, rv, true);
1027  else
1028  nsitem = NULL;
1029 
1030  return nsitem;
1031 }
1032 
1033 /*
1034  * transformFromClauseItem -
1035  * Transform a FROM-clause item, adding any required entries to the
1036  * range table list being built in the ParseState, and return the
1037  * transformed item ready to include in the joinlist. Also build a
1038  * ParseNamespaceItem list describing the names exposed by this item.
1039  * This routine can recurse to handle SQL92 JOIN expressions.
1040  *
1041  * The function return value is the node to add to the jointree (a
1042  * RangeTblRef or JoinExpr). Additional output parameters are:
1043  *
1044  * *top_nsitem: receives the ParseNamespaceItem directly corresponding to the
1045  * jointree item. (This is only used during internal recursion, not by
1046  * outside callers.)
1047  *
1048  * *namespace: receives a List of ParseNamespaceItems for the RTEs exposed
1049  * as table/column names by this item. (The lateral_only flags in these items
1050  * are indeterminate and should be explicitly set by the caller before use.)
1051  */
1052 static Node *
1054  ParseNamespaceItem **top_nsitem,
1055  List **namespace)
1056 {
1057  if (IsA(n, RangeVar))
1058  {
1059  /* Plain relation reference, or perhaps a CTE reference */
1060  RangeVar *rv = (RangeVar *) n;
1061  RangeTblRef *rtr;
1062  ParseNamespaceItem *nsitem;
1063 
1064  /* Check if it's a CTE or tuplestore reference */
1065  nsitem = getNSItemForSpecialRelationTypes(pstate, rv);
1066 
1067  /* if not found above, must be a table reference */
1068  if (!nsitem)
1069  nsitem = transformTableEntry(pstate, rv);
1070 
1071  *top_nsitem = nsitem;
1072  *namespace = list_make1(nsitem);
1073  rtr = makeNode(RangeTblRef);
1074  rtr->rtindex = nsitem->p_rtindex;
1075  return (Node *) rtr;
1076  }
1077  else if (IsA(n, RangeSubselect))
1078  {
1079  /* sub-SELECT is like a plain relation */
1080  RangeTblRef *rtr;
1081  ParseNamespaceItem *nsitem;
1082 
1083  nsitem = transformRangeSubselect(pstate, (RangeSubselect *) n);
1084  *top_nsitem = nsitem;
1085  *namespace = list_make1(nsitem);
1086  rtr = makeNode(RangeTblRef);
1087  rtr->rtindex = nsitem->p_rtindex;
1088  return (Node *) rtr;
1089  }
1090  else if (IsA(n, RangeFunction))
1091  {
1092  /* function is like a plain relation */
1093  RangeTblRef *rtr;
1094  ParseNamespaceItem *nsitem;
1095 
1096  nsitem = transformRangeFunction(pstate, (RangeFunction *) n);
1097  *top_nsitem = nsitem;
1098  *namespace = list_make1(nsitem);
1099  rtr = makeNode(RangeTblRef);
1100  rtr->rtindex = nsitem->p_rtindex;
1101  return (Node *) rtr;
1102  }
1103  else if (IsA(n, RangeTableFunc))
1104  {
1105  /* table function is like a plain relation */
1106  RangeTblRef *rtr;
1107  ParseNamespaceItem *nsitem;
1108 
1109  nsitem = transformRangeTableFunc(pstate, (RangeTableFunc *) n);
1110  *top_nsitem = nsitem;
1111  *namespace = list_make1(nsitem);
1112  rtr = makeNode(RangeTblRef);
1113  rtr->rtindex = nsitem->p_rtindex;
1114  return (Node *) rtr;
1115  }
1116  else if (IsA(n, RangeTableSample))
1117  {
1118  /* TABLESAMPLE clause (wrapping some other valid FROM node) */
1119  RangeTableSample *rts = (RangeTableSample *) n;
1120  Node *rel;
1121  RangeTblEntry *rte;
1122 
1123  /* Recursively transform the contained relation */
1124  rel = transformFromClauseItem(pstate, rts->relation,
1125  top_nsitem, namespace);
1126  rte = (*top_nsitem)->p_rte;
1127  /* We only support this on plain relations and matviews */
1128  if (rte->rtekind != RTE_RELATION ||
1129  (rte->relkind != RELKIND_RELATION &&
1130  rte->relkind != RELKIND_MATVIEW &&
1131  rte->relkind != RELKIND_PARTITIONED_TABLE))
1132  ereport(ERROR,
1133  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1134  errmsg("TABLESAMPLE clause can only be applied to tables and materialized views"),
1135  parser_errposition(pstate, exprLocation(rts->relation))));
1136 
1137  /* Transform TABLESAMPLE details and attach to the RTE */
1138  rte->tablesample = transformRangeTableSample(pstate, rts);
1139  return rel;
1140  }
1141  else if (IsA(n, JoinExpr))
1142  {
1143  /* A newfangled join expression */
1144  JoinExpr *j = (JoinExpr *) n;
1145  ParseNamespaceItem *nsitem;
1146  ParseNamespaceItem *l_nsitem;
1147  ParseNamespaceItem *r_nsitem;
1148  List *l_namespace,
1149  *r_namespace,
1150  *my_namespace,
1151  *l_colnames,
1152  *r_colnames,
1153  *res_colnames,
1154  *l_colnos,
1155  *r_colnos,
1156  *res_colvars;
1157  ParseNamespaceColumn *l_nscolumns,
1158  *r_nscolumns,
1159  *res_nscolumns;
1160  int res_colindex;
1161  bool lateral_ok;
1162  int sv_namespace_length;
1163  int k;
1164 
1165  /*
1166  * Recursively process the left subtree, then the right. We must do
1167  * it in this order for correct visibility of LATERAL references.
1168  */
1169  j->larg = transformFromClauseItem(pstate, j->larg,
1170  &l_nsitem,
1171  &l_namespace);
1172 
1173  /*
1174  * Make the left-side RTEs available for LATERAL access within the
1175  * right side, by temporarily adding them to the pstate's namespace
1176  * list. Per SQL:2008, if the join type is not INNER or LEFT then the
1177  * left-side names must still be exposed, but it's an error to
1178  * reference them. (Stupid design, but that's what it says.) Hence,
1179  * we always push them into the namespace, but mark them as not
1180  * lateral_ok if the jointype is wrong.
1181  *
1182  * Notice that we don't require the merged namespace list to be
1183  * conflict-free. See the comments for scanNameSpaceForRefname().
1184  */
1185  lateral_ok = (j->jointype == JOIN_INNER || j->jointype == JOIN_LEFT);
1186  setNamespaceLateralState(l_namespace, true, lateral_ok);
1187 
1188  sv_namespace_length = list_length(pstate->p_namespace);
1189  pstate->p_namespace = list_concat(pstate->p_namespace, l_namespace);
1190 
1191  /* And now we can process the RHS */
1192  j->rarg = transformFromClauseItem(pstate, j->rarg,
1193  &r_nsitem,
1194  &r_namespace);
1195 
1196  /* Remove the left-side RTEs from the namespace list again */
1197  pstate->p_namespace = list_truncate(pstate->p_namespace,
1198  sv_namespace_length);
1199 
1200  /*
1201  * Check for conflicting refnames in left and right subtrees. Must do
1202  * this because higher levels will assume I hand back a self-
1203  * consistent namespace list.
1204  */
1205  checkNameSpaceConflicts(pstate, l_namespace, r_namespace);
1206 
1207  /*
1208  * Generate combined namespace info for possible use below.
1209  */
1210  my_namespace = list_concat(l_namespace, r_namespace);
1211 
1212  /*
1213  * We'll work from the nscolumns data and eref alias column names for
1214  * each of the input nsitems. Note that these include dropped
1215  * columns, which is helpful because we can keep track of physical
1216  * input column numbers more easily.
1217  */
1218  l_nscolumns = l_nsitem->p_nscolumns;
1219  l_colnames = l_nsitem->p_names->colnames;
1220  r_nscolumns = r_nsitem->p_nscolumns;
1221  r_colnames = r_nsitem->p_names->colnames;
1222 
1223  /*
1224  * Natural join does not explicitly specify columns; must generate
1225  * columns to join. Need to run through the list of columns from each
1226  * table or join result and match up the column names. Use the first
1227  * table, and check every column in the second table for a match.
1228  * (We'll check that the matches were unique later on.) The result of
1229  * this step is a list of column names just like an explicitly-written
1230  * USING list.
1231  */
1232  if (j->isNatural)
1233  {
1234  List *rlist = NIL;
1235  ListCell *lx,
1236  *rx;
1237 
1238  Assert(j->usingClause == NIL); /* shouldn't have USING() too */
1239 
1240  foreach(lx, l_colnames)
1241  {
1242  char *l_colname = strVal(lfirst(lx));
1243  String *m_name = NULL;
1244 
1245  if (l_colname[0] == '\0')
1246  continue; /* ignore dropped columns */
1247 
1248  foreach(rx, r_colnames)
1249  {
1250  char *r_colname = strVal(lfirst(rx));
1251 
1252  if (strcmp(l_colname, r_colname) == 0)
1253  {
1254  m_name = makeString(l_colname);
1255  break;
1256  }
1257  }
1258 
1259  /* matched a right column? then keep as join column... */
1260  if (m_name != NULL)
1261  rlist = lappend(rlist, m_name);
1262  }
1263 
1264  j->usingClause = rlist;
1265  }
1266 
1267  /*
1268  * If a USING clause alias was specified, save the USING columns as
1269  * its column list.
1270  */
1271  if (j->join_using_alias)
1273 
1274  /*
1275  * Now transform the join qualifications, if any.
1276  */
1277  l_colnos = NIL;
1278  r_colnos = NIL;
1279  res_colnames = NIL;
1280  res_colvars = NIL;
1281 
1282  /* this may be larger than needed, but it's not worth being exact */
1283  res_nscolumns = (ParseNamespaceColumn *)
1284  palloc0((list_length(l_colnames) + list_length(r_colnames)) *
1285  sizeof(ParseNamespaceColumn));
1286  res_colindex = 0;
1287 
1288  if (j->usingClause)
1289  {
1290  /*
1291  * JOIN/USING (or NATURAL JOIN, as transformed above). Transform
1292  * the list into an explicit ON-condition, and generate a list of
1293  * merged result columns.
1294  */
1295  List *ucols = j->usingClause;
1296  List *l_usingvars = NIL;
1297  List *r_usingvars = NIL;
1298  ListCell *ucol;
1299 
1300  Assert(j->quals == NULL); /* shouldn't have ON() too */
1301 
1302  foreach(ucol, ucols)
1303  {
1304  char *u_colname = strVal(lfirst(ucol));
1305  ListCell *col;
1306  int ndx;
1307  int l_index = -1;
1308  int r_index = -1;
1309  Var *l_colvar,
1310  *r_colvar;
1311  Node *u_colvar;
1312  ParseNamespaceColumn *res_nscolumn;
1313 
1314  Assert(u_colname[0] != '\0');
1315 
1316  /* Check for USING(foo,foo) */
1317  foreach(col, res_colnames)
1318  {
1319  char *res_colname = strVal(lfirst(col));
1320 
1321  if (strcmp(res_colname, u_colname) == 0)
1322  ereport(ERROR,
1323  (errcode(ERRCODE_DUPLICATE_COLUMN),
1324  errmsg("column name \"%s\" appears more than once in USING clause",
1325  u_colname)));
1326  }
1327 
1328  /* Find it in left input */
1329  ndx = 0;
1330  foreach(col, l_colnames)
1331  {
1332  char *l_colname = strVal(lfirst(col));
1333 
1334  if (strcmp(l_colname, u_colname) == 0)
1335  {
1336  if (l_index >= 0)
1337  ereport(ERROR,
1338  (errcode(ERRCODE_AMBIGUOUS_COLUMN),
1339  errmsg("common column name \"%s\" appears more than once in left table",
1340  u_colname)));
1341  l_index = ndx;
1342  }
1343  ndx++;
1344  }
1345  if (l_index < 0)
1346  ereport(ERROR,
1347  (errcode(ERRCODE_UNDEFINED_COLUMN),
1348  errmsg("column \"%s\" specified in USING clause does not exist in left table",
1349  u_colname)));
1350  l_colnos = lappend_int(l_colnos, l_index + 1);
1351 
1352  /* Find it in right input */
1353  ndx = 0;
1354  foreach(col, r_colnames)
1355  {
1356  char *r_colname = strVal(lfirst(col));
1357 
1358  if (strcmp(r_colname, u_colname) == 0)
1359  {
1360  if (r_index >= 0)
1361  ereport(ERROR,
1362  (errcode(ERRCODE_AMBIGUOUS_COLUMN),
1363  errmsg("common column name \"%s\" appears more than once in right table",
1364  u_colname)));
1365  r_index = ndx;
1366  }
1367  ndx++;
1368  }
1369  if (r_index < 0)
1370  ereport(ERROR,
1371  (errcode(ERRCODE_UNDEFINED_COLUMN),
1372  errmsg("column \"%s\" specified in USING clause does not exist in right table",
1373  u_colname)));
1374  r_colnos = lappend_int(r_colnos, r_index + 1);
1375 
1376  l_colvar = buildVarFromNSColumn(l_nscolumns + l_index);
1377  l_usingvars = lappend(l_usingvars, l_colvar);
1378  r_colvar = buildVarFromNSColumn(r_nscolumns + r_index);
1379  r_usingvars = lappend(r_usingvars, r_colvar);
1380 
1381  res_colnames = lappend(res_colnames, lfirst(ucol));
1382  u_colvar = buildMergedJoinVar(pstate,
1383  j->jointype,
1384  l_colvar,
1385  r_colvar);
1386  res_colvars = lappend(res_colvars, u_colvar);
1387  res_nscolumn = res_nscolumns + res_colindex;
1388  res_colindex++;
1389  if (u_colvar == (Node *) l_colvar)
1390  {
1391  /* Merged column is equivalent to left input */
1392  *res_nscolumn = l_nscolumns[l_index];
1393  }
1394  else if (u_colvar == (Node *) r_colvar)
1395  {
1396  /* Merged column is equivalent to right input */
1397  *res_nscolumn = r_nscolumns[r_index];
1398  }
1399  else
1400  {
1401  /*
1402  * Merged column is not semantically equivalent to either
1403  * input, so it needs to be referenced as the join output
1404  * column. We don't know the join's varno yet, so we'll
1405  * replace these zeroes below.
1406  */
1407  res_nscolumn->p_varno = 0;
1408  res_nscolumn->p_varattno = res_colindex;
1409  res_nscolumn->p_vartype = exprType(u_colvar);
1410  res_nscolumn->p_vartypmod = exprTypmod(u_colvar);
1411  res_nscolumn->p_varcollid = exprCollation(u_colvar);
1412  res_nscolumn->p_varnosyn = 0;
1413  res_nscolumn->p_varattnosyn = res_colindex;
1414  }
1415  }
1416 
1417  j->quals = transformJoinUsingClause(pstate,
1418  l_usingvars,
1419  r_usingvars);
1420  }
1421  else if (j->quals)
1422  {
1423  /* User-written ON-condition; transform it */
1424  j->quals = transformJoinOnClause(pstate, j, my_namespace);
1425  }
1426  else
1427  {
1428  /* CROSS JOIN: no quals */
1429  }
1430 
1431  /* Add remaining columns from each side to the output columns */
1432  res_colindex +=
1433  extractRemainingColumns(l_nscolumns, l_colnames, &l_colnos,
1434  &res_colnames, &res_colvars,
1435  res_nscolumns + res_colindex);
1436  res_colindex +=
1437  extractRemainingColumns(r_nscolumns, r_colnames, &r_colnos,
1438  &res_colnames, &res_colvars,
1439  res_nscolumns + res_colindex);
1440 
1441  /*
1442  * Check alias (AS clause), if any.
1443  */
1444  if (j->alias)
1445  {
1446  if (j->alias->colnames != NIL)
1447  {
1448  if (list_length(j->alias->colnames) > list_length(res_colnames))
1449  ereport(ERROR,
1450  (errcode(ERRCODE_SYNTAX_ERROR),
1451  errmsg("column alias list for \"%s\" has too many entries",
1452  j->alias->aliasname)));
1453  }
1454  }
1455 
1456  /*
1457  * Now build an RTE and nsitem for the result of the join.
1458  * res_nscolumns isn't totally done yet, but that's OK because
1459  * addRangeTableEntryForJoin doesn't examine it, only store a pointer.
1460  */
1461  nsitem = addRangeTableEntryForJoin(pstate,
1462  res_colnames,
1463  res_nscolumns,
1464  j->jointype,
1466  res_colvars,
1467  l_colnos,
1468  r_colnos,
1469  j->join_using_alias,
1470  j->alias,
1471  true);
1472 
1473  j->rtindex = nsitem->p_rtindex;
1474 
1475  /*
1476  * Now that we know the join RTE's rangetable index, we can fix up the
1477  * res_nscolumns data in places where it should contain that.
1478  */
1479  Assert(res_colindex == list_length(nsitem->p_names->colnames));
1480  for (k = 0; k < res_colindex; k++)
1481  {
1482  ParseNamespaceColumn *nscol = res_nscolumns + k;
1483 
1484  /* fill in join RTI for merged columns */
1485  if (nscol->p_varno == 0)
1486  nscol->p_varno = j->rtindex;
1487  if (nscol->p_varnosyn == 0)
1488  nscol->p_varnosyn = j->rtindex;
1489  /* if join has an alias, it syntactically hides all inputs */
1490  if (j->alias)
1491  {
1492  nscol->p_varnosyn = j->rtindex;
1493  nscol->p_varattnosyn = k + 1;
1494  }
1495  }
1496 
1497  /* make a matching link to the JoinExpr for later use */
1498  for (k = list_length(pstate->p_joinexprs) + 1; k < j->rtindex; k++)
1499  pstate->p_joinexprs = lappend(pstate->p_joinexprs, NULL);
1500  pstate->p_joinexprs = lappend(pstate->p_joinexprs, j);
1501  Assert(list_length(pstate->p_joinexprs) == j->rtindex);
1502 
1503  /*
1504  * If the join has a USING alias, build a ParseNamespaceItem for that
1505  * and add it to the list of nsitems in the join's input.
1506  */
1507  if (j->join_using_alias)
1508  {
1509  ParseNamespaceItem *jnsitem;
1510 
1511  jnsitem = (ParseNamespaceItem *) palloc(sizeof(ParseNamespaceItem));
1512  jnsitem->p_names = j->join_using_alias;
1513  jnsitem->p_rte = nsitem->p_rte;
1514  jnsitem->p_rtindex = nsitem->p_rtindex;
1515  /* no need to copy the first N columns, just use res_nscolumns */
1516  jnsitem->p_nscolumns = res_nscolumns;
1517  /* set default visibility flags; might get changed later */
1518  jnsitem->p_rel_visible = true;
1519  jnsitem->p_cols_visible = true;
1520  jnsitem->p_lateral_only = false;
1521  jnsitem->p_lateral_ok = true;
1522  /* Per SQL, we must check for alias conflicts */
1523  checkNameSpaceConflicts(pstate, list_make1(jnsitem), my_namespace);
1524  my_namespace = lappend(my_namespace, jnsitem);
1525  }
1526 
1527  /*
1528  * Prepare returned namespace list. If the JOIN has an alias then it
1529  * hides the contained RTEs completely; otherwise, the contained RTEs
1530  * are still visible as table names, but are not visible for
1531  * unqualified column-name access.
1532  *
1533  * Note: if there are nested alias-less JOINs, the lower-level ones
1534  * will remain in the list although they have neither p_rel_visible
1535  * nor p_cols_visible set. We could delete such list items, but it's
1536  * unclear that it's worth expending cycles to do so.
1537  */
1538  if (j->alias != NULL)
1539  my_namespace = NIL;
1540  else
1541  setNamespaceColumnVisibility(my_namespace, false);
1542 
1543  /*
1544  * The join RTE itself is always made visible for unqualified column
1545  * names. It's visible as a relation name only if it has an alias.
1546  */
1547  nsitem->p_rel_visible = (j->alias != NULL);
1548  nsitem->p_cols_visible = true;
1549  nsitem->p_lateral_only = false;
1550  nsitem->p_lateral_ok = true;
1551 
1552  *top_nsitem = nsitem;
1553  *namespace = lappend(my_namespace, nsitem);
1554 
1555  return (Node *) j;
1556  }
1557  else
1558  elog(ERROR, "unrecognized node type: %d", (int) nodeTag(n));
1559  return NULL; /* can't get here, keep compiler quiet */
1560 }
1561 
1562 /*
1563  * buildVarFromNSColumn -
1564  * build a Var node using ParseNamespaceColumn data
1565  *
1566  * We assume varlevelsup should be 0, and no location is specified
1567  */
1568 static Var *
1570 {
1571  Var *var;
1572 
1573  Assert(nscol->p_varno > 0); /* i.e., not deleted column */
1574  var = makeVar(nscol->p_varno,
1575  nscol->p_varattno,
1576  nscol->p_vartype,
1577  nscol->p_vartypmod,
1578  nscol->p_varcollid,
1579  0);
1580  /* makeVar doesn't offer parameters for these, so set by hand: */
1581  var->varnosyn = nscol->p_varnosyn;
1582  var->varattnosyn = nscol->p_varattnosyn;
1583  return var;
1584 }
1585 
1586 /*
1587  * buildMergedJoinVar -
1588  * generate a suitable replacement expression for a merged join column
1589  */
1590 static Node *
1592  Var *l_colvar, Var *r_colvar)
1593 {
1594  Oid outcoltype;
1595  int32 outcoltypmod;
1596  Node *l_node,
1597  *r_node,
1598  *res_node;
1599 
1600  outcoltype = select_common_type(pstate,
1601  list_make2(l_colvar, r_colvar),
1602  "JOIN/USING",
1603  NULL);
1604  outcoltypmod = select_common_typmod(pstate,
1605  list_make2(l_colvar, r_colvar),
1606  outcoltype);
1607 
1608  /*
1609  * Insert coercion functions if needed. Note that a difference in typmod
1610  * can only happen if input has typmod but outcoltypmod is -1. In that
1611  * case we insert a RelabelType to clearly mark that result's typmod is
1612  * not same as input. We never need coerce_type_typmod.
1613  */
1614  if (l_colvar->vartype != outcoltype)
1615  l_node = coerce_type(pstate, (Node *) l_colvar, l_colvar->vartype,
1616  outcoltype, outcoltypmod,
1618  else if (l_colvar->vartypmod != outcoltypmod)
1619  l_node = (Node *) makeRelabelType((Expr *) l_colvar,
1620  outcoltype, outcoltypmod,
1621  InvalidOid, /* fixed below */
1623  else
1624  l_node = (Node *) l_colvar;
1625 
1626  if (r_colvar->vartype != outcoltype)
1627  r_node = coerce_type(pstate, (Node *) r_colvar, r_colvar->vartype,
1628  outcoltype, outcoltypmod,
1630  else if (r_colvar->vartypmod != outcoltypmod)
1631  r_node = (Node *) makeRelabelType((Expr *) r_colvar,
1632  outcoltype, outcoltypmod,
1633  InvalidOid, /* fixed below */
1635  else
1636  r_node = (Node *) r_colvar;
1637 
1638  /*
1639  * Choose what to emit
1640  */
1641  switch (jointype)
1642  {
1643  case JOIN_INNER:
1644 
1645  /*
1646  * We can use either var; prefer non-coerced one if available.
1647  */
1648  if (IsA(l_node, Var))
1649  res_node = l_node;
1650  else if (IsA(r_node, Var))
1651  res_node = r_node;
1652  else
1653  res_node = l_node;
1654  break;
1655  case JOIN_LEFT:
1656  /* Always use left var */
1657  res_node = l_node;
1658  break;
1659  case JOIN_RIGHT:
1660  /* Always use right var */
1661  res_node = r_node;
1662  break;
1663  case JOIN_FULL:
1664  {
1665  /*
1666  * Here we must build a COALESCE expression to ensure that the
1667  * join output is non-null if either input is.
1668  */
1670 
1671  c->coalescetype = outcoltype;
1672  /* coalescecollid will get set below */
1673  c->args = list_make2(l_node, r_node);
1674  c->location = -1;
1675  res_node = (Node *) c;
1676  break;
1677  }
1678  default:
1679  elog(ERROR, "unrecognized join type: %d", (int) jointype);
1680  res_node = NULL; /* keep compiler quiet */
1681  break;
1682  }
1683 
1684  /*
1685  * Apply assign_expr_collations to fix up the collation info in the
1686  * coercion and CoalesceExpr nodes, if we made any. This must be done now
1687  * so that the join node's alias vars show correct collation info.
1688  */
1689  assign_expr_collations(pstate, res_node);
1690 
1691  return res_node;
1692 }
1693 
1694 /*
1695  * setNamespaceColumnVisibility -
1696  * Convenience subroutine to update cols_visible flags in a namespace list.
1697  */
1698 static void
1699 setNamespaceColumnVisibility(List *namespace, bool cols_visible)
1700 {
1701  ListCell *lc;
1702 
1703  foreach(lc, namespace)
1704  {
1705  ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1706 
1707  nsitem->p_cols_visible = cols_visible;
1708  }
1709 }
1710 
1711 /*
1712  * setNamespaceLateralState -
1713  * Convenience subroutine to update LATERAL flags in a namespace list.
1714  */
1715 static void
1716 setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok)
1717 {
1718  ListCell *lc;
1719 
1720  foreach(lc, namespace)
1721  {
1722  ParseNamespaceItem *nsitem = (ParseNamespaceItem *) lfirst(lc);
1723 
1724  nsitem->p_lateral_only = lateral_only;
1725  nsitem->p_lateral_ok = lateral_ok;
1726  }
1727 }
1728 
1729 
1730 /*
1731  * transformWhereClause -
1732  * Transform the qualification and make sure it is of type boolean.
1733  * Used for WHERE and allied clauses.
1734  *
1735  * constructName does not affect the semantics, but is used in error messages
1736  */
1737 Node *
1739  ParseExprKind exprKind, const char *constructName)
1740 {
1741  Node *qual;
1742 
1743  if (clause == NULL)
1744  return NULL;
1745 
1746  qual = transformExpr(pstate, clause, exprKind);
1747 
1748  qual = coerce_to_boolean(pstate, qual, constructName);
1749 
1750  return qual;
1751 }
1752 
1753 
1754 /*
1755  * transformLimitClause -
1756  * Transform the expression and make sure it is of type bigint.
1757  * Used for LIMIT and allied clauses.
1758  *
1759  * Note: as of Postgres 8.2, LIMIT expressions are expected to yield int8,
1760  * rather than int4 as before.
1761  *
1762  * constructName does not affect the semantics, but is used in error messages
1763  */
1764 Node *
1766  ParseExprKind exprKind, const char *constructName,
1767  LimitOption limitOption)
1768 {
1769  Node *qual;
1770 
1771  if (clause == NULL)
1772  return NULL;
1773 
1774  qual = transformExpr(pstate, clause, exprKind);
1775 
1776  qual = coerce_to_specific_type(pstate, qual, INT8OID, constructName);
1777 
1778  /* LIMIT can't refer to any variables of the current query */
1779  checkExprIsVarFree(pstate, qual, constructName);
1780 
1781  /*
1782  * Don't allow NULLs in FETCH FIRST .. WITH TIES. This test is ugly and
1783  * extremely simplistic, in that you can pass a NULL anyway by hiding it
1784  * inside an expression -- but this protects ruleutils against emitting an
1785  * unadorned NULL that's not accepted back by the grammar.
1786  */
1787  if (exprKind == EXPR_KIND_LIMIT && limitOption == LIMIT_OPTION_WITH_TIES &&
1788  IsA(clause, A_Const) && castNode(A_Const, clause)->isnull)
1789  ereport(ERROR,
1790  (errcode(ERRCODE_INVALID_ROW_COUNT_IN_LIMIT_CLAUSE),
1791  errmsg("row count cannot be null in FETCH FIRST ... WITH TIES clause")));
1792 
1793  return qual;
1794 }
1795 
1796 /*
1797  * checkExprIsVarFree
1798  * Check that given expr has no Vars of the current query level
1799  * (aggregates and window functions should have been rejected already).
1800  *
1801  * This is used to check expressions that have to have a consistent value
1802  * across all rows of the query, such as a LIMIT. Arguably it should reject
1803  * volatile functions, too, but we don't do that --- whatever value the
1804  * function gives on first execution is what you get.
1805  *
1806  * constructName does not affect the semantics, but is used in error messages
1807  */
1808 static void
1809 checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName)
1810 {
1811  if (contain_vars_of_level(n, 0))
1812  {
1813  ereport(ERROR,
1814  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1815  /* translator: %s is name of a SQL construct, eg LIMIT */
1816  errmsg("argument of %s must not contain variables",
1817  constructName),
1818  parser_errposition(pstate,
1819  locate_var_of_level(n, 0))));
1820  }
1821 }
1822 
1823 
1824 /*
1825  * checkTargetlistEntrySQL92 -
1826  * Validate a targetlist entry found by findTargetlistEntrySQL92
1827  *
1828  * When we select a pre-existing tlist entry as a result of syntax such
1829  * as "GROUP BY 1", we have to make sure it is acceptable for use in the
1830  * indicated clause type; transformExpr() will have treated it as a regular
1831  * targetlist item.
1832  */
1833 static void
1835  ParseExprKind exprKind)
1836 {
1837  switch (exprKind)
1838  {
1839  case EXPR_KIND_GROUP_BY:
1840  /* reject aggregates and window functions */
1841  if (pstate->p_hasAggs &&
1842  contain_aggs_of_level((Node *) tle->expr, 0))
1843  ereport(ERROR,
1844  (errcode(ERRCODE_GROUPING_ERROR),
1845  /* translator: %s is name of a SQL construct, eg GROUP BY */
1846  errmsg("aggregate functions are not allowed in %s",
1847  ParseExprKindName(exprKind)),
1848  parser_errposition(pstate,
1849  locate_agg_of_level((Node *) tle->expr, 0))));
1850  if (pstate->p_hasWindowFuncs &&
1851  contain_windowfuncs((Node *) tle->expr))
1852  ereport(ERROR,
1853  (errcode(ERRCODE_WINDOWING_ERROR),
1854  /* translator: %s is name of a SQL construct, eg GROUP BY */
1855  errmsg("window functions are not allowed in %s",
1856  ParseExprKindName(exprKind)),
1857  parser_errposition(pstate,
1858  locate_windowfunc((Node *) tle->expr))));
1859  break;
1860  case EXPR_KIND_ORDER_BY:
1861  /* no extra checks needed */
1862  break;
1863  case EXPR_KIND_DISTINCT_ON:
1864  /* no extra checks needed */
1865  break;
1866  default:
1867  elog(ERROR, "unexpected exprKind in checkTargetlistEntrySQL92");
1868  break;
1869  }
1870 }
1871 
1872 /*
1873  * findTargetlistEntrySQL92 -
1874  * Returns the targetlist entry matching the given (untransformed) node.
1875  * If no matching entry exists, one is created and appended to the target
1876  * list as a "resjunk" node.
1877  *
1878  * This function supports the old SQL92 ORDER BY interpretation, where the
1879  * expression is an output column name or number. If we fail to find a
1880  * match of that sort, we fall through to the SQL99 rules. For historical
1881  * reasons, Postgres also allows this interpretation for GROUP BY, though
1882  * the standard never did. However, for GROUP BY we prefer a SQL99 match.
1883  * This function is *not* used for WINDOW definitions.
1884  *
1885  * node the ORDER BY, GROUP BY, or DISTINCT ON expression to be matched
1886  * tlist the target list (passed by reference so we can append to it)
1887  * exprKind identifies clause type being processed
1888  */
1889 static TargetEntry *
1891  ParseExprKind exprKind)
1892 {
1893  ListCell *tl;
1894 
1895  /*----------
1896  * Handle two special cases as mandated by the SQL92 spec:
1897  *
1898  * 1. Bare ColumnName (no qualifier or subscripts)
1899  * For a bare identifier, we search for a matching column name
1900  * in the existing target list. Multiple matches are an error
1901  * unless they refer to identical values; for example,
1902  * we allow SELECT a, a FROM table ORDER BY a
1903  * but not SELECT a AS b, b FROM table ORDER BY b
1904  * If no match is found, we fall through and treat the identifier
1905  * as an expression.
1906  * For GROUP BY, it is incorrect to match the grouping item against
1907  * targetlist entries: according to SQL92, an identifier in GROUP BY
1908  * is a reference to a column name exposed by FROM, not to a target
1909  * list column. However, many implementations (including pre-7.0
1910  * PostgreSQL) accept this anyway. So for GROUP BY, we look first
1911  * to see if the identifier matches any FROM column name, and only
1912  * try for a targetlist name if it doesn't. This ensures that we
1913  * adhere to the spec in the case where the name could be both.
1914  * DISTINCT ON isn't in the standard, so we can do what we like there;
1915  * we choose to make it work like ORDER BY, on the rather flimsy
1916  * grounds that ordinary DISTINCT works on targetlist entries.
1917  *
1918  * 2. IntegerConstant
1919  * This means to use the n'th item in the existing target list.
1920  * Note that it would make no sense to order/group/distinct by an
1921  * actual constant, so this does not create a conflict with SQL99.
1922  * GROUP BY column-number is not allowed by SQL92, but since
1923  * the standard has no other behavior defined for this syntax,
1924  * we may as well accept this common extension.
1925  *
1926  * Note that pre-existing resjunk targets must not be used in either case,
1927  * since the user didn't write them in his SELECT list.
1928  *
1929  * If neither special case applies, fall through to treat the item as
1930  * an expression per SQL99.
1931  *----------
1932  */
1933  if (IsA(node, ColumnRef) &&
1934  list_length(((ColumnRef *) node)->fields) == 1 &&
1935  IsA(linitial(((ColumnRef *) node)->fields), String))
1936  {
1937  char *name = strVal(linitial(((ColumnRef *) node)->fields));
1938  int location = ((ColumnRef *) node)->location;
1939 
1940  if (exprKind == EXPR_KIND_GROUP_BY)
1941  {
1942  /*
1943  * In GROUP BY, we must prefer a match against a FROM-clause
1944  * column to one against the targetlist. Look to see if there is
1945  * a matching column. If so, fall through to use SQL99 rules.
1946  * NOTE: if name could refer ambiguously to more than one column
1947  * name exposed by FROM, colNameToVar will ereport(ERROR). That's
1948  * just what we want here.
1949  *
1950  * Small tweak for 7.4.3: ignore matches in upper query levels.
1951  * This effectively changes the search order for bare names to (1)
1952  * local FROM variables, (2) local targetlist aliases, (3) outer
1953  * FROM variables, whereas before it was (1) (3) (2). SQL92 and
1954  * SQL99 do not allow GROUPing BY an outer reference, so this
1955  * breaks no cases that are legal per spec, and it seems a more
1956  * self-consistent behavior.
1957  */
1958  if (colNameToVar(pstate, name, true, location) != NULL)
1959  name = NULL;
1960  }
1961 
1962  if (name != NULL)
1963  {
1964  TargetEntry *target_result = NULL;
1965 
1966  foreach(tl, *tlist)
1967  {
1968  TargetEntry *tle = (TargetEntry *) lfirst(tl);
1969 
1970  if (!tle->resjunk &&
1971  strcmp(tle->resname, name) == 0)
1972  {
1973  if (target_result != NULL)
1974  {
1975  if (!equal(target_result->expr, tle->expr))
1976  ereport(ERROR,
1977  (errcode(ERRCODE_AMBIGUOUS_COLUMN),
1978 
1979  /*------
1980  translator: first %s is name of a SQL construct, eg ORDER BY */
1981  errmsg("%s \"%s\" is ambiguous",
1982  ParseExprKindName(exprKind),
1983  name),
1984  parser_errposition(pstate, location)));
1985  }
1986  else
1987  target_result = tle;
1988  /* Stay in loop to check for ambiguity */
1989  }
1990  }
1991  if (target_result != NULL)
1992  {
1993  /* return the first match, after suitable validation */
1994  checkTargetlistEntrySQL92(pstate, target_result, exprKind);
1995  return target_result;
1996  }
1997  }
1998  }
1999  if (IsA(node, A_Const))
2000  {
2001  A_Const *aconst = castNode(A_Const, node);
2002  int targetlist_pos = 0;
2003  int target_pos;
2004 
2005  if (!IsA(&aconst->val, Integer))
2006  ereport(ERROR,
2007  (errcode(ERRCODE_SYNTAX_ERROR),
2008  /* translator: %s is name of a SQL construct, eg ORDER BY */
2009  errmsg("non-integer constant in %s",
2010  ParseExprKindName(exprKind)),
2011  parser_errposition(pstate, aconst->location)));
2012 
2013  target_pos = intVal(&aconst->val);
2014  foreach(tl, *tlist)
2015  {
2016  TargetEntry *tle = (TargetEntry *) lfirst(tl);
2017 
2018  if (!tle->resjunk)
2019  {
2020  if (++targetlist_pos == target_pos)
2021  {
2022  /* return the unique match, after suitable validation */
2023  checkTargetlistEntrySQL92(pstate, tle, exprKind);
2024  return tle;
2025  }
2026  }
2027  }
2028  ereport(ERROR,
2029  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2030  /* translator: %s is name of a SQL construct, eg ORDER BY */
2031  errmsg("%s position %d is not in select list",
2032  ParseExprKindName(exprKind), target_pos),
2033  parser_errposition(pstate, aconst->location)));
2034  }
2035 
2036  /*
2037  * Otherwise, we have an expression, so process it per SQL99 rules.
2038  */
2039  return findTargetlistEntrySQL99(pstate, node, tlist, exprKind);
2040 }
2041 
2042 /*
2043  * findTargetlistEntrySQL99 -
2044  * Returns the targetlist entry matching the given (untransformed) node.
2045  * If no matching entry exists, one is created and appended to the target
2046  * list as a "resjunk" node.
2047  *
2048  * This function supports the SQL99 interpretation, wherein the expression
2049  * is just an ordinary expression referencing input column names.
2050  *
2051  * node the ORDER BY, GROUP BY, etc expression to be matched
2052  * tlist the target list (passed by reference so we can append to it)
2053  * exprKind identifies clause type being processed
2054  */
2055 static TargetEntry *
2057  ParseExprKind exprKind)
2058 {
2059  TargetEntry *target_result;
2060  ListCell *tl;
2061  Node *expr;
2062 
2063  /*
2064  * Convert the untransformed node to a transformed expression, and search
2065  * for a match in the tlist. NOTE: it doesn't really matter whether there
2066  * is more than one match. Also, we are willing to match an existing
2067  * resjunk target here, though the SQL92 cases above must ignore resjunk
2068  * targets.
2069  */
2070  expr = transformExpr(pstate, node, exprKind);
2071 
2072  foreach(tl, *tlist)
2073  {
2074  TargetEntry *tle = (TargetEntry *) lfirst(tl);
2075  Node *texpr;
2076 
2077  /*
2078  * Ignore any implicit cast on the existing tlist expression.
2079  *
2080  * This essentially allows the ORDER/GROUP/etc item to adopt the same
2081  * datatype previously selected for a textually-equivalent tlist item.
2082  * There can't be any implicit cast at top level in an ordinary SELECT
2083  * tlist at this stage, but the case does arise with ORDER BY in an
2084  * aggregate function.
2085  */
2086  texpr = strip_implicit_coercions((Node *) tle->expr);
2087 
2088  if (equal(expr, texpr))
2089  return tle;
2090  }
2091 
2092  /*
2093  * If no matches, construct a new target entry which is appended to the
2094  * end of the target list. This target is given resjunk = true so that it
2095  * will not be projected into the final tuple.
2096  */
2097  target_result = transformTargetEntry(pstate, node, expr, exprKind,
2098  NULL, true);
2099 
2100  *tlist = lappend(*tlist, target_result);
2101 
2102  return target_result;
2103 }
2104 
2105 /*-------------------------------------------------------------------------
2106  * Flatten out parenthesized sublists in grouping lists, and some cases
2107  * of nested grouping sets.
2108  *
2109  * Inside a grouping set (ROLLUP, CUBE, or GROUPING SETS), we expect the
2110  * content to be nested no more than 2 deep: i.e. ROLLUP((a,b),(c,d)) is
2111  * ok, but ROLLUP((a,(b,c)),d) is flattened to ((a,b,c),d), which we then
2112  * (later) normalize to ((a,b,c),(d)).
2113  *
2114  * CUBE or ROLLUP can be nested inside GROUPING SETS (but not the reverse),
2115  * and we leave that alone if we find it. But if we see GROUPING SETS inside
2116  * GROUPING SETS, we can flatten and normalize as follows:
2117  * GROUPING SETS (a, (b,c), GROUPING SETS ((c,d),(e)), (f,g))
2118  * becomes
2119  * GROUPING SETS ((a), (b,c), (c,d), (e), (f,g))
2120  *
2121  * This is per the spec's syntax transformations, but these are the only such
2122  * transformations we do in parse analysis, so that queries retain the
2123  * originally specified grouping set syntax for CUBE and ROLLUP as much as
2124  * possible when deparsed. (Full expansion of the result into a list of
2125  * grouping sets is left to the planner.)
2126  *
2127  * When we're done, the resulting list should contain only these possible
2128  * elements:
2129  * - an expression
2130  * - a CUBE or ROLLUP with a list of expressions nested 2 deep
2131  * - a GROUPING SET containing any of:
2132  * - expression lists
2133  * - empty grouping sets
2134  * - CUBE or ROLLUP nodes with lists nested 2 deep
2135  * The return is a new list, but doesn't deep-copy the old nodes except for
2136  * GroupingSet nodes.
2137  *
2138  * As a side effect, flag whether the list has any GroupingSet nodes.
2139  *-------------------------------------------------------------------------
2140  */
2141 static Node *
2142 flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets)
2143 {
2144  /* just in case of pathological input */
2146 
2147  if (expr == (Node *) NIL)
2148  return (Node *) NIL;
2149 
2150  switch (expr->type)
2151  {
2152  case T_RowExpr:
2153  {
2154  RowExpr *r = (RowExpr *) expr;
2155 
2156  if (r->row_format == COERCE_IMPLICIT_CAST)
2157  return flatten_grouping_sets((Node *) r->args,
2158  false, NULL);
2159  }
2160  break;
2161  case T_GroupingSet:
2162  {
2163  GroupingSet *gset = (GroupingSet *) expr;
2164  ListCell *l2;
2165  List *result_set = NIL;
2166 
2167  if (hasGroupingSets)
2168  *hasGroupingSets = true;
2169 
2170  /*
2171  * at the top level, we skip over all empty grouping sets; the
2172  * caller can supply the canonical GROUP BY () if nothing is
2173  * left.
2174  */
2175 
2176  if (toplevel && gset->kind == GROUPING_SET_EMPTY)
2177  return (Node *) NIL;
2178 
2179  foreach(l2, gset->content)
2180  {
2181  Node *n1 = lfirst(l2);
2182  Node *n2 = flatten_grouping_sets(n1, false, NULL);
2183 
2184  if (IsA(n1, GroupingSet) &&
2185  ((GroupingSet *) n1)->kind == GROUPING_SET_SETS)
2186  result_set = list_concat(result_set, (List *) n2);
2187  else
2188  result_set = lappend(result_set, n2);
2189  }
2190 
2191  /*
2192  * At top level, keep the grouping set node; but if we're in a
2193  * nested grouping set, then we need to concat the flattened
2194  * result into the outer list if it's simply nested.
2195  */
2196 
2197  if (toplevel || (gset->kind != GROUPING_SET_SETS))
2198  {
2199  return (Node *) makeGroupingSet(gset->kind, result_set, gset->location);
2200  }
2201  else
2202  return (Node *) result_set;
2203  }
2204  case T_List:
2205  {
2206  List *result = NIL;
2207  ListCell *l;
2208 
2209  foreach(l, (List *) expr)
2210  {
2211  Node *n = flatten_grouping_sets(lfirst(l), toplevel, hasGroupingSets);
2212 
2213  if (n != (Node *) NIL)
2214  {
2215  if (IsA(n, List))
2216  result = list_concat(result, (List *) n);
2217  else
2218  result = lappend(result, n);
2219  }
2220  }
2221 
2222  return (Node *) result;
2223  }
2224  default:
2225  break;
2226  }
2227 
2228  return expr;
2229 }
2230 
2231 /*
2232  * Transform a single expression within a GROUP BY clause or grouping set.
2233  *
2234  * The expression is added to the targetlist if not already present, and to the
2235  * flatresult list (which will become the groupClause) if not already present
2236  * there. The sortClause is consulted for operator and sort order hints.
2237  *
2238  * Returns the ressortgroupref of the expression.
2239  *
2240  * flatresult reference to flat list of SortGroupClause nodes
2241  * seen_local bitmapset of sortgrouprefs already seen at the local level
2242  * pstate ParseState
2243  * gexpr node to transform
2244  * targetlist reference to TargetEntry list
2245  * sortClause ORDER BY clause (SortGroupClause nodes)
2246  * exprKind expression kind
2247  * useSQL99 SQL99 rather than SQL92 syntax
2248  * toplevel false if within any grouping set
2249  */
2250 static Index
2251 transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local,
2252  ParseState *pstate, Node *gexpr,
2253  List **targetlist, List *sortClause,
2254  ParseExprKind exprKind, bool useSQL99, bool toplevel)
2255 {
2256  TargetEntry *tle;
2257  bool found = false;
2258 
2259  if (useSQL99)
2260  tle = findTargetlistEntrySQL99(pstate, gexpr,
2261  targetlist, exprKind);
2262  else
2263  tle = findTargetlistEntrySQL92(pstate, gexpr,
2264  targetlist, exprKind);
2265 
2266  if (tle->ressortgroupref > 0)
2267  {
2268  ListCell *sl;
2269 
2270  /*
2271  * Eliminate duplicates (GROUP BY x, x) but only at local level.
2272  * (Duplicates in grouping sets can affect the number of returned
2273  * rows, so can't be dropped indiscriminately.)
2274  *
2275  * Since we don't care about anything except the sortgroupref, we can
2276  * use a bitmapset rather than scanning lists.
2277  */
2278  if (bms_is_member(tle->ressortgroupref, seen_local))
2279  return 0;
2280 
2281  /*
2282  * If we're already in the flat clause list, we don't need to consider
2283  * adding ourselves again.
2284  */
2285  found = targetIsInSortList(tle, InvalidOid, *flatresult);
2286  if (found)
2287  return tle->ressortgroupref;
2288 
2289  /*
2290  * If the GROUP BY tlist entry also appears in ORDER BY, copy operator
2291  * info from the (first) matching ORDER BY item. This means that if
2292  * you write something like "GROUP BY foo ORDER BY foo USING <<<", the
2293  * GROUP BY operation silently takes on the equality semantics implied
2294  * by the ORDER BY. There are two reasons to do this: it improves the
2295  * odds that we can implement both GROUP BY and ORDER BY with a single
2296  * sort step, and it allows the user to choose the equality semantics
2297  * used by GROUP BY, should she be working with a datatype that has
2298  * more than one equality operator.
2299  *
2300  * If we're in a grouping set, though, we force our requested ordering
2301  * to be NULLS LAST, because if we have any hope of using a sorted agg
2302  * for the job, we're going to be tacking on generated NULL values
2303  * after the corresponding groups. If the user demands nulls first,
2304  * another sort step is going to be inevitable, but that's the
2305  * planner's problem.
2306  */
2307 
2308  foreach(sl, sortClause)
2309  {
2310  SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
2311 
2312  if (sc->tleSortGroupRef == tle->ressortgroupref)
2313  {
2314  SortGroupClause *grpc = copyObject(sc);
2315 
2316  if (!toplevel)
2317  grpc->nulls_first = false;
2318  *flatresult = lappend(*flatresult, grpc);
2319  found = true;
2320  break;
2321  }
2322  }
2323  }
2324 
2325  /*
2326  * If no match in ORDER BY, just add it to the result using default
2327  * sort/group semantics.
2328  */
2329  if (!found)
2330  *flatresult = addTargetToGroupList(pstate, tle,
2331  *flatresult, *targetlist,
2332  exprLocation(gexpr));
2333 
2334  /*
2335  * _something_ must have assigned us a sortgroupref by now...
2336  */
2337 
2338  return tle->ressortgroupref;
2339 }
2340 
2341 /*
2342  * Transform a list of expressions within a GROUP BY clause or grouping set.
2343  *
2344  * The list of expressions belongs to a single clause within which duplicates
2345  * can be safely eliminated.
2346  *
2347  * Returns an integer list of ressortgroupref values.
2348  *
2349  * flatresult reference to flat list of SortGroupClause nodes
2350  * pstate ParseState
2351  * list nodes to transform
2352  * targetlist reference to TargetEntry list
2353  * sortClause ORDER BY clause (SortGroupClause nodes)
2354  * exprKind expression kind
2355  * useSQL99 SQL99 rather than SQL92 syntax
2356  * toplevel false if within any grouping set
2357  */
2358 static List *
2360  ParseState *pstate, List *list,
2361  List **targetlist, List *sortClause,
2362  ParseExprKind exprKind, bool useSQL99, bool toplevel)
2363 {
2364  Bitmapset *seen_local = NULL;
2365  List *result = NIL;
2366  ListCell *gl;
2367 
2368  foreach(gl, list)
2369  {
2370  Node *gexpr = (Node *) lfirst(gl);
2371 
2372  Index ref = transformGroupClauseExpr(flatresult,
2373  seen_local,
2374  pstate,
2375  gexpr,
2376  targetlist,
2377  sortClause,
2378  exprKind,
2379  useSQL99,
2380  toplevel);
2381 
2382  if (ref > 0)
2383  {
2384  seen_local = bms_add_member(seen_local, ref);
2385  result = lappend_int(result, ref);
2386  }
2387  }
2388 
2389  return result;
2390 }
2391 
2392 /*
2393  * Transform a grouping set and (recursively) its content.
2394  *
2395  * The grouping set might be a GROUPING SETS node with other grouping sets
2396  * inside it, but SETS within SETS have already been flattened out before
2397  * reaching here.
2398  *
2399  * Returns the transformed node, which now contains SIMPLE nodes with lists
2400  * of ressortgrouprefs rather than expressions.
2401  *
2402  * flatresult reference to flat list of SortGroupClause nodes
2403  * pstate ParseState
2404  * gset grouping set to transform
2405  * targetlist reference to TargetEntry list
2406  * sortClause ORDER BY clause (SortGroupClause nodes)
2407  * exprKind expression kind
2408  * useSQL99 SQL99 rather than SQL92 syntax
2409  * toplevel false if within any grouping set
2410  */
2411 static Node *
2413  ParseState *pstate, GroupingSet *gset,
2414  List **targetlist, List *sortClause,
2415  ParseExprKind exprKind, bool useSQL99, bool toplevel)
2416 {
2417  ListCell *gl;
2418  List *content = NIL;
2419 
2420  Assert(toplevel || gset->kind != GROUPING_SET_SETS);
2421 
2422  foreach(gl, gset->content)
2423  {
2424  Node *n = lfirst(gl);
2425 
2426  if (IsA(n, List))
2427  {
2428  List *l = transformGroupClauseList(flatresult,
2429  pstate, (List *) n,
2430  targetlist, sortClause,
2431  exprKind, useSQL99, false);
2432 
2433  content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2434  l,
2435  exprLocation(n)));
2436  }
2437  else if (IsA(n, GroupingSet))
2438  {
2439  GroupingSet *gset2 = (GroupingSet *) lfirst(gl);
2440 
2441  content = lappend(content, transformGroupingSet(flatresult,
2442  pstate, gset2,
2443  targetlist, sortClause,
2444  exprKind, useSQL99, false));
2445  }
2446  else
2447  {
2448  Index ref = transformGroupClauseExpr(flatresult,
2449  NULL,
2450  pstate,
2451  n,
2452  targetlist,
2453  sortClause,
2454  exprKind,
2455  useSQL99,
2456  false);
2457 
2458  content = lappend(content, makeGroupingSet(GROUPING_SET_SIMPLE,
2459  list_make1_int(ref),
2460  exprLocation(n)));
2461  }
2462  }
2463 
2464  /* Arbitrarily cap the size of CUBE, which has exponential growth */
2465  if (gset->kind == GROUPING_SET_CUBE)
2466  {
2467  if (list_length(content) > 12)
2468  ereport(ERROR,
2469  (errcode(ERRCODE_TOO_MANY_COLUMNS),
2470  errmsg("CUBE is limited to 12 elements"),
2471  parser_errposition(pstate, gset->location)));
2472  }
2473 
2474  return (Node *) makeGroupingSet(gset->kind, content, gset->location);
2475 }
2476 
2477 
2478 /*
2479  * transformGroupClause -
2480  * transform a GROUP BY clause
2481  *
2482  * GROUP BY items will be added to the targetlist (as resjunk columns)
2483  * if not already present, so the targetlist must be passed by reference.
2484  *
2485  * This is also used for window PARTITION BY clauses (which act almost the
2486  * same, but are always interpreted per SQL99 rules).
2487  *
2488  * Grouping sets make this a lot more complex than it was. Our goal here is
2489  * twofold: we make a flat list of SortGroupClause nodes referencing each
2490  * distinct expression used for grouping, with those expressions added to the
2491  * targetlist if needed. At the same time, we build the groupingSets tree,
2492  * which stores only ressortgrouprefs as integer lists inside GroupingSet nodes
2493  * (possibly nested, but limited in depth: a GROUPING_SET_SETS node can contain
2494  * nested SIMPLE, CUBE or ROLLUP nodes, but not more sets - we flatten that
2495  * out; while CUBE and ROLLUP can contain only SIMPLE nodes).
2496  *
2497  * We skip much of the hard work if there are no grouping sets.
2498  *
2499  * One subtlety is that the groupClause list can end up empty while the
2500  * groupingSets list is not; this happens if there are only empty grouping
2501  * sets, or an explicit GROUP BY (). This has the same effect as specifying
2502  * aggregates or a HAVING clause with no GROUP BY; the output is one row per
2503  * grouping set even if the input is empty.
2504  *
2505  * Returns the transformed (flat) groupClause.
2506  *
2507  * pstate ParseState
2508  * grouplist clause to transform
2509  * groupingSets reference to list to contain the grouping set tree
2510  * targetlist reference to TargetEntry list
2511  * sortClause ORDER BY clause (SortGroupClause nodes)
2512  * exprKind expression kind
2513  * useSQL99 SQL99 rather than SQL92 syntax
2514  */
2515 List *
2516 transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets,
2517  List **targetlist, List *sortClause,
2518  ParseExprKind exprKind, bool useSQL99)
2519 {
2520  List *result = NIL;
2521  List *flat_grouplist;
2522  List *gsets = NIL;
2523  ListCell *gl;
2524  bool hasGroupingSets = false;
2525  Bitmapset *seen_local = NULL;
2526 
2527  /*
2528  * Recursively flatten implicit RowExprs. (Technically this is only needed
2529  * for GROUP BY, per the syntax rules for grouping sets, but we do it
2530  * anyway.)
2531  */
2532  flat_grouplist = (List *) flatten_grouping_sets((Node *) grouplist,
2533  true,
2534  &hasGroupingSets);
2535 
2536  /*
2537  * If the list is now empty, but hasGroupingSets is true, it's because we
2538  * elided redundant empty grouping sets. Restore a single empty grouping
2539  * set to leave a canonical form: GROUP BY ()
2540  */
2541 
2542  if (flat_grouplist == NIL && hasGroupingSets)
2543  {
2545  NIL,
2546  exprLocation((Node *) grouplist)));
2547  }
2548 
2549  foreach(gl, flat_grouplist)
2550  {
2551  Node *gexpr = (Node *) lfirst(gl);
2552 
2553  if (IsA(gexpr, GroupingSet))
2554  {
2555  GroupingSet *gset = (GroupingSet *) gexpr;
2556 
2557  switch (gset->kind)
2558  {
2559  case GROUPING_SET_EMPTY:
2560  gsets = lappend(gsets, gset);
2561  break;
2562  case GROUPING_SET_SIMPLE:
2563  /* can't happen */
2564  Assert(false);
2565  break;
2566  case GROUPING_SET_SETS:
2567  case GROUPING_SET_CUBE:
2568  case GROUPING_SET_ROLLUP:
2569  gsets = lappend(gsets,
2570  transformGroupingSet(&result,
2571  pstate, gset,
2572  targetlist, sortClause,
2573  exprKind, useSQL99, true));
2574  break;
2575  }
2576  }
2577  else
2578  {
2579  Index ref = transformGroupClauseExpr(&result, seen_local,
2580  pstate, gexpr,
2581  targetlist, sortClause,
2582  exprKind, useSQL99, true);
2583 
2584  if (ref > 0)
2585  {
2586  seen_local = bms_add_member(seen_local, ref);
2587  if (hasGroupingSets)
2588  gsets = lappend(gsets,
2590  list_make1_int(ref),
2591  exprLocation(gexpr)));
2592  }
2593  }
2594  }
2595 
2596  /* parser should prevent this */
2597  Assert(gsets == NIL || groupingSets != NULL);
2598 
2599  if (groupingSets)
2600  *groupingSets = gsets;
2601 
2602  return result;
2603 }
2604 
2605 /*
2606  * transformSortClause -
2607  * transform an ORDER BY clause
2608  *
2609  * ORDER BY items will be added to the targetlist (as resjunk columns)
2610  * if not already present, so the targetlist must be passed by reference.
2611  *
2612  * This is also used for window and aggregate ORDER BY clauses (which act
2613  * almost the same, but are always interpreted per SQL99 rules).
2614  */
2615 List *
2617  List *orderlist,
2618  List **targetlist,
2619  ParseExprKind exprKind,
2620  bool useSQL99)
2621 {
2622  List *sortlist = NIL;
2623  ListCell *olitem;
2624 
2625  foreach(olitem, orderlist)
2626  {
2627  SortBy *sortby = (SortBy *) lfirst(olitem);
2628  TargetEntry *tle;
2629 
2630  if (useSQL99)
2631  tle = findTargetlistEntrySQL99(pstate, sortby->node,
2632  targetlist, exprKind);
2633  else
2634  tle = findTargetlistEntrySQL92(pstate, sortby->node,
2635  targetlist, exprKind);
2636 
2637  sortlist = addTargetToSortList(pstate, tle,
2638  sortlist, *targetlist, sortby);
2639  }
2640 
2641  return sortlist;
2642 }
2643 
2644 /*
2645  * transformWindowDefinitions -
2646  * transform window definitions (WindowDef to WindowClause)
2647  */
2648 List *
2650  List *windowdefs,
2651  List **targetlist)
2652 {
2653  List *result = NIL;
2654  Index winref = 0;
2655  ListCell *lc;
2656 
2657  foreach(lc, windowdefs)
2658  {
2659  WindowDef *windef = (WindowDef *) lfirst(lc);
2660  WindowClause *refwc = NULL;
2661  List *partitionClause;
2662  List *orderClause;
2663  Oid rangeopfamily = InvalidOid;
2664  Oid rangeopcintype = InvalidOid;
2665  WindowClause *wc;
2666 
2667  winref++;
2668 
2669  /*
2670  * Check for duplicate window names.
2671  */
2672  if (windef->name &&
2673  findWindowClause(result, windef->name) != NULL)
2674  ereport(ERROR,
2675  (errcode(ERRCODE_WINDOWING_ERROR),
2676  errmsg("window \"%s\" is already defined", windef->name),
2677  parser_errposition(pstate, windef->location)));
2678 
2679  /*
2680  * If it references a previous window, look that up.
2681  */
2682  if (windef->refname)
2683  {
2684  refwc = findWindowClause(result, windef->refname);
2685  if (refwc == NULL)
2686  ereport(ERROR,
2687  (errcode(ERRCODE_UNDEFINED_OBJECT),
2688  errmsg("window \"%s\" does not exist",
2689  windef->refname),
2690  parser_errposition(pstate, windef->location)));
2691  }
2692 
2693  /*
2694  * Transform PARTITION and ORDER specs, if any. These are treated
2695  * almost exactly like top-level GROUP BY and ORDER BY clauses,
2696  * including the special handling of nondefault operator semantics.
2697  */
2698  orderClause = transformSortClause(pstate,
2699  windef->orderClause,
2700  targetlist,
2702  true /* force SQL99 rules */ );
2703  partitionClause = transformGroupClause(pstate,
2704  windef->partitionClause,
2705  NULL,
2706  targetlist,
2707  orderClause,
2709  true /* force SQL99 rules */ );
2710 
2711  /*
2712  * And prepare the new WindowClause.
2713  */
2714  wc = makeNode(WindowClause);
2715  wc->name = windef->name;
2716  wc->refname = windef->refname;
2717 
2718  /*
2719  * Per spec, a windowdef that references a previous one copies the
2720  * previous partition clause (and mustn't specify its own). It can
2721  * specify its own ordering clause, but only if the previous one had
2722  * none. It always specifies its own frame clause, and the previous
2723  * one must not have a frame clause. Yeah, it's bizarre that each of
2724  * these cases works differently, but SQL:2008 says so; see 7.11
2725  * <window clause> syntax rule 10 and general rule 1. The frame
2726  * clause rule is especially bizarre because it makes "OVER foo"
2727  * different from "OVER (foo)", and requires the latter to throw an
2728  * error if foo has a nondefault frame clause. Well, ours not to
2729  * reason why, but we do go out of our way to throw a useful error
2730  * message for such cases.
2731  */
2732  if (refwc)
2733  {
2734  if (partitionClause)
2735  ereport(ERROR,
2736  (errcode(ERRCODE_WINDOWING_ERROR),
2737  errmsg("cannot override PARTITION BY clause of window \"%s\"",
2738  windef->refname),
2739  parser_errposition(pstate, windef->location)));
2741  }
2742  else
2743  wc->partitionClause = partitionClause;
2744  if (refwc)
2745  {
2746  if (orderClause && refwc->orderClause)
2747  ereport(ERROR,
2748  (errcode(ERRCODE_WINDOWING_ERROR),
2749  errmsg("cannot override ORDER BY clause of window \"%s\"",
2750  windef->refname),
2751  parser_errposition(pstate, windef->location)));
2752  if (orderClause)
2753  {
2754  wc->orderClause = orderClause;
2755  wc->copiedOrder = false;
2756  }
2757  else
2758  {
2759  wc->orderClause = copyObject(refwc->orderClause);
2760  wc->copiedOrder = true;
2761  }
2762  }
2763  else
2764  {
2765  wc->orderClause = orderClause;
2766  wc->copiedOrder = false;
2767  }
2768  if (refwc && refwc->frameOptions != FRAMEOPTION_DEFAULTS)
2769  {
2770  /*
2771  * Use this message if this is a WINDOW clause, or if it's an OVER
2772  * clause that includes ORDER BY or framing clauses. (We already
2773  * rejected PARTITION BY above, so no need to check that.)
2774  */
2775  if (windef->name ||
2776  orderClause || windef->frameOptions != FRAMEOPTION_DEFAULTS)
2777  ereport(ERROR,
2778  (errcode(ERRCODE_WINDOWING_ERROR),
2779  errmsg("cannot copy window \"%s\" because it has a frame clause",
2780  windef->refname),
2781  parser_errposition(pstate, windef->location)));
2782  /* Else this clause is just OVER (foo), so say this: */
2783  ereport(ERROR,
2784  (errcode(ERRCODE_WINDOWING_ERROR),
2785  errmsg("cannot copy window \"%s\" because it has a frame clause",
2786  windef->refname),
2787  errhint("Omit the parentheses in this OVER clause."),
2788  parser_errposition(pstate, windef->location)));
2789  }
2790  wc->frameOptions = windef->frameOptions;
2791 
2792  /*
2793  * RANGE offset PRECEDING/FOLLOWING requires exactly one ORDER BY
2794  * column; check that and get its sort opfamily info.
2795  */
2796  if ((wc->frameOptions & FRAMEOPTION_RANGE) &&
2799  {
2800  SortGroupClause *sortcl;
2801  Node *sortkey;
2802  int16 rangestrategy;
2803 
2804  if (list_length(wc->orderClause) != 1)
2805  ereport(ERROR,
2806  (errcode(ERRCODE_WINDOWING_ERROR),
2807  errmsg("RANGE with offset PRECEDING/FOLLOWING requires exactly one ORDER BY column"),
2808  parser_errposition(pstate, windef->location)));
2809  sortcl = linitial_node(SortGroupClause, wc->orderClause);
2810  sortkey = get_sortgroupclause_expr(sortcl, *targetlist);
2811  /* Find the sort operator in pg_amop */
2812  if (!get_ordering_op_properties(sortcl->sortop,
2813  &rangeopfamily,
2814  &rangeopcintype,
2815  &rangestrategy))
2816  elog(ERROR, "operator %u is not a valid ordering operator",
2817  sortcl->sortop);
2818  /* Record properties of sort ordering */
2819  wc->inRangeColl = exprCollation(sortkey);
2820  wc->inRangeAsc = (rangestrategy == BTLessStrategyNumber);
2821  wc->inRangeNullsFirst = sortcl->nulls_first;
2822  }
2823 
2824  /* Per spec, GROUPS mode requires an ORDER BY clause */
2825  if (wc->frameOptions & FRAMEOPTION_GROUPS)
2826  {
2827  if (wc->orderClause == NIL)
2828  ereport(ERROR,
2829  (errcode(ERRCODE_WINDOWING_ERROR),
2830  errmsg("GROUPS mode requires an ORDER BY clause"),
2831  parser_errposition(pstate, windef->location)));
2832  }
2833 
2834  /* Process frame offset expressions */
2835  wc->startOffset = transformFrameOffset(pstate, wc->frameOptions,
2836  rangeopfamily, rangeopcintype,
2837  &wc->startInRangeFunc,
2838  windef->startOffset);
2839  wc->endOffset = transformFrameOffset(pstate, wc->frameOptions,
2840  rangeopfamily, rangeopcintype,
2841  &wc->endInRangeFunc,
2842  windef->endOffset);
2843  wc->winref = winref;
2844 
2845  result = lappend(result, wc);
2846  }
2847 
2848  return result;
2849 }
2850 
2851 /*
2852  * transformDistinctClause -
2853  * transform a DISTINCT clause
2854  *
2855  * Since we may need to add items to the query's targetlist, that list
2856  * is passed by reference.
2857  *
2858  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2859  * possible into the distinctClause. This avoids a possible need to re-sort,
2860  * and allows the user to choose the equality semantics used by DISTINCT,
2861  * should she be working with a datatype that has more than one equality
2862  * operator.
2863  *
2864  * is_agg is true if we are transforming an aggregate(DISTINCT ...)
2865  * function call. This does not affect any behavior, only the phrasing
2866  * of error messages.
2867  */
2868 List *
2870  List **targetlist, List *sortClause, bool is_agg)
2871 {
2872  List *result = NIL;
2873  ListCell *slitem;
2874  ListCell *tlitem;
2875 
2876  /*
2877  * The distinctClause should consist of all ORDER BY items followed by all
2878  * other non-resjunk targetlist items. There must not be any resjunk
2879  * ORDER BY items --- that would imply that we are sorting by a value that
2880  * isn't necessarily unique within a DISTINCT group, so the results
2881  * wouldn't be well-defined. This construction ensures we follow the rule
2882  * that sortClause and distinctClause match; in fact the sortClause will
2883  * always be a prefix of distinctClause.
2884  *
2885  * Note a corner case: the same TLE could be in the ORDER BY list multiple
2886  * times with different sortops. We have to include it in the
2887  * distinctClause the same way to preserve the prefix property. The net
2888  * effect will be that the TLE value will be made unique according to both
2889  * sortops.
2890  */
2891  foreach(slitem, sortClause)
2892  {
2893  SortGroupClause *scl = (SortGroupClause *) lfirst(slitem);
2894  TargetEntry *tle = get_sortgroupclause_tle(scl, *targetlist);
2895 
2896  if (tle->resjunk)
2897  ereport(ERROR,
2898  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
2899  is_agg ?
2900  errmsg("in an aggregate with DISTINCT, ORDER BY expressions must appear in argument list") :
2901  errmsg("for SELECT DISTINCT, ORDER BY expressions must appear in select list"),
2902  parser_errposition(pstate,
2903  exprLocation((Node *) tle->expr))));
2904  result = lappend(result, copyObject(scl));
2905  }
2906 
2907  /*
2908  * Now add any remaining non-resjunk tlist items, using default sort/group
2909  * semantics for their data types.
2910  */
2911  foreach(tlitem, *targetlist)
2912  {
2913  TargetEntry *tle = (TargetEntry *) lfirst(tlitem);
2914 
2915  if (tle->resjunk)
2916  continue; /* ignore junk */
2917  result = addTargetToGroupList(pstate, tle,
2918  result, *targetlist,
2919  exprLocation((Node *) tle->expr));
2920  }
2921 
2922  /*
2923  * Complain if we found nothing to make DISTINCT. Returning an empty list
2924  * would cause the parsed Query to look like it didn't have DISTINCT, with
2925  * results that would probably surprise the user. Note: this case is
2926  * presently impossible for aggregates because of grammar restrictions,
2927  * but we check anyway.
2928  */
2929  if (result == NIL)
2930  ereport(ERROR,
2931  (errcode(ERRCODE_SYNTAX_ERROR),
2932  is_agg ?
2933  errmsg("an aggregate with DISTINCT must have at least one argument") :
2934  errmsg("SELECT DISTINCT must have at least one column")));
2935 
2936  return result;
2937 }
2938 
2939 /*
2940  * transformDistinctOnClause -
2941  * transform a DISTINCT ON clause
2942  *
2943  * Since we may need to add items to the query's targetlist, that list
2944  * is passed by reference.
2945  *
2946  * As with GROUP BY, we absorb the sorting semantics of ORDER BY as much as
2947  * possible into the distinctClause. This avoids a possible need to re-sort,
2948  * and allows the user to choose the equality semantics used by DISTINCT,
2949  * should she be working with a datatype that has more than one equality
2950  * operator.
2951  */
2952 List *
2954  List **targetlist, List *sortClause)
2955 {
2956  List *result = NIL;
2957  List *sortgrouprefs = NIL;
2958  bool skipped_sortitem;
2959  ListCell *lc;
2960  ListCell *lc2;
2961 
2962  /*
2963  * Add all the DISTINCT ON expressions to the tlist (if not already
2964  * present, they are added as resjunk items). Assign sortgroupref numbers
2965  * to them, and make a list of these numbers. (NB: we rely below on the
2966  * sortgrouprefs list being one-for-one with the original distinctlist.
2967  * Also notice that we could have duplicate DISTINCT ON expressions and
2968  * hence duplicate entries in sortgrouprefs.)
2969  */
2970  foreach(lc, distinctlist)
2971  {
2972  Node *dexpr = (Node *) lfirst(lc);
2973  int sortgroupref;
2974  TargetEntry *tle;
2975 
2976  tle = findTargetlistEntrySQL92(pstate, dexpr, targetlist,
2978  sortgroupref = assignSortGroupRef(tle, *targetlist);
2979  sortgrouprefs = lappend_int(sortgrouprefs, sortgroupref);
2980  }
2981 
2982  /*
2983  * If the user writes both DISTINCT ON and ORDER BY, adopt the sorting
2984  * semantics from ORDER BY items that match DISTINCT ON items, and also
2985  * adopt their column sort order. We insist that the distinctClause and
2986  * sortClause match, so throw error if we find the need to add any more
2987  * distinctClause items after we've skipped an ORDER BY item that wasn't
2988  * in DISTINCT ON.
2989  */
2990  skipped_sortitem = false;
2991  foreach(lc, sortClause)
2992  {
2993  SortGroupClause *scl = (SortGroupClause *) lfirst(lc);
2994 
2995  if (list_member_int(sortgrouprefs, scl->tleSortGroupRef))
2996  {
2997  if (skipped_sortitem)
2998  ereport(ERROR,
2999  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3000  errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
3001  parser_errposition(pstate,
3003  sortgrouprefs,
3004  distinctlist))));
3005  else
3006  result = lappend(result, copyObject(scl));
3007  }
3008  else
3009  skipped_sortitem = true;
3010  }
3011 
3012  /*
3013  * Now add any remaining DISTINCT ON items, using default sort/group
3014  * semantics for their data types. (Note: this is pretty questionable; if
3015  * the ORDER BY list doesn't include all the DISTINCT ON items and more
3016  * besides, you certainly aren't using DISTINCT ON in the intended way,
3017  * and you probably aren't going to get consistent results. It might be
3018  * better to throw an error or warning here. But historically we've
3019  * allowed it, so keep doing so.)
3020  */
3021  forboth(lc, distinctlist, lc2, sortgrouprefs)
3022  {
3023  Node *dexpr = (Node *) lfirst(lc);
3024  int sortgroupref = lfirst_int(lc2);
3025  TargetEntry *tle = get_sortgroupref_tle(sortgroupref, *targetlist);
3026 
3027  if (targetIsInSortList(tle, InvalidOid, result))
3028  continue; /* already in list (with some semantics) */
3029  if (skipped_sortitem)
3030  ereport(ERROR,
3031  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3032  errmsg("SELECT DISTINCT ON expressions must match initial ORDER BY expressions"),
3033  parser_errposition(pstate, exprLocation(dexpr))));
3034  result = addTargetToGroupList(pstate, tle,
3035  result, *targetlist,
3036  exprLocation(dexpr));
3037  }
3038 
3039  /*
3040  * An empty result list is impossible here because of grammar
3041  * restrictions.
3042  */
3043  Assert(result != NIL);
3044 
3045  return result;
3046 }
3047 
3048 /*
3049  * get_matching_location
3050  * Get the exprLocation of the exprs member corresponding to the
3051  * (first) member of sortgrouprefs that equals sortgroupref.
3052  *
3053  * This is used so that we can point at a troublesome DISTINCT ON entry.
3054  * (Note that we need to use the original untransformed DISTINCT ON list
3055  * item, as whatever TLE it corresponds to will very possibly have a
3056  * parse location pointing to some matching entry in the SELECT list
3057  * or ORDER BY list.)
3058  */
3059 static int
3060 get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
3061 {
3062  ListCell *lcs;
3063  ListCell *lce;
3064 
3065  forboth(lcs, sortgrouprefs, lce, exprs)
3066  {
3067  if (lfirst_int(lcs) == sortgroupref)
3068  return exprLocation((Node *) lfirst(lce));
3069  }
3070  /* if no match, caller blew it */
3071  elog(ERROR, "get_matching_location: no matching sortgroupref");
3072  return -1; /* keep compiler quiet */
3073 }
3074 
3075 /*
3076  * resolve_unique_index_expr
3077  * Infer a unique index from a list of indexElems, for ON
3078  * CONFLICT clause
3079  *
3080  * Perform parse analysis of expressions and columns appearing within ON
3081  * CONFLICT clause. During planning, the returned list of expressions is used
3082  * to infer which unique index to use.
3083  */
3084 static List *
3086  Relation heapRel)
3087 {
3088  List *result = NIL;
3089  ListCell *l;
3090 
3091  foreach(l, infer->indexElems)
3092  {
3093  IndexElem *ielem = (IndexElem *) lfirst(l);
3095  Node *parse;
3096 
3097  /*
3098  * Raw grammar re-uses CREATE INDEX infrastructure for unique index
3099  * inference clause, and so will accept opclasses by name and so on.
3100  *
3101  * Make no attempt to match ASC or DESC ordering or NULLS FIRST/NULLS
3102  * LAST ordering, since those are not significant for inference
3103  * purposes (any unique index matching the inference specification in
3104  * other regards is accepted indifferently). Actively reject this as
3105  * wrong-headed.
3106  */
3107  if (ielem->ordering != SORTBY_DEFAULT)
3108  ereport(ERROR,
3109  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3110  errmsg("ASC/DESC is not allowed in ON CONFLICT clause"),
3111  parser_errposition(pstate,
3112  exprLocation((Node *) infer))));
3113  if (ielem->nulls_ordering != SORTBY_NULLS_DEFAULT)
3114  ereport(ERROR,
3115  (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
3116  errmsg("NULLS FIRST/LAST is not allowed in ON CONFLICT clause"),
3117  parser_errposition(pstate,
3118  exprLocation((Node *) infer))));
3119 
3120  if (!ielem->expr)
3121  {
3122  /* Simple index attribute */
3123  ColumnRef *n;
3124 
3125  /*
3126  * Grammar won't have built raw expression for us in event of
3127  * plain column reference. Create one directly, and perform
3128  * expression transformation. Planner expects this, and performs
3129  * its own normalization for the purposes of matching against
3130  * pg_index.
3131  */
3132  n = makeNode(ColumnRef);
3133  n->fields = list_make1(makeString(ielem->name));
3134  /* Location is approximately that of inference specification */
3135  n->location = infer->location;
3136  parse = (Node *) n;
3137  }
3138  else
3139  {
3140  /* Do parse transformation of the raw expression */
3141  parse = (Node *) ielem->expr;
3142  }
3143 
3144  /*
3145  * transformExpr() will reject subqueries, aggregates, window
3146  * functions, and SRFs, based on being passed
3147  * EXPR_KIND_INDEX_EXPRESSION. So we needn't worry about those
3148  * further ... not that they would match any available index
3149  * expression anyway.
3150  */
3151  pInfer->expr = transformExpr(pstate, parse, EXPR_KIND_INDEX_EXPRESSION);
3152 
3153  /* Perform lookup of collation and operator class as required */
3154  if (!ielem->collation)
3155  pInfer->infercollid = InvalidOid;
3156  else
3157  pInfer->infercollid = LookupCollation(pstate, ielem->collation,
3158  exprLocation(pInfer->expr));
3159 
3160  if (!ielem->opclass)
3161  pInfer->inferopclass = InvalidOid;
3162  else
3163  pInfer->inferopclass = get_opclass_oid(BTREE_AM_OID,
3164  ielem->opclass, false);
3165 
3166  result = lappend(result, pInfer);
3167  }
3168 
3169  return result;
3170 }
3171 
3172 /*
3173  * transformOnConflictArbiter -
3174  * transform arbiter expressions in an ON CONFLICT clause.
3175  *
3176  * Transformed expressions used to infer one unique index relation to serve as
3177  * an ON CONFLICT arbiter. Partial unique indexes may be inferred using WHERE
3178  * clause from inference specification clause.
3179  */
3180 void
3182  OnConflictClause *onConflictClause,
3183  List **arbiterExpr, Node **arbiterWhere,
3184  Oid *constraint)
3185 {
3186  InferClause *infer = onConflictClause->infer;
3187 
3188  *arbiterExpr = NIL;
3189  *arbiterWhere = NULL;
3190  *constraint = InvalidOid;
3191 
3192  if (onConflictClause->action == ONCONFLICT_UPDATE && !infer)
3193  ereport(ERROR,
3194  (errcode(ERRCODE_SYNTAX_ERROR),
3195  errmsg("ON CONFLICT DO UPDATE requires inference specification or constraint name"),
3196  errhint("For example, ON CONFLICT (column_name)."),
3197  parser_errposition(pstate,
3198  exprLocation((Node *) onConflictClause))));
3199 
3200  /*
3201  * To simplify certain aspects of its design, speculative insertion into
3202  * system catalogs is disallowed
3203  */
3204  if (IsCatalogRelation(pstate->p_target_relation))
3205  ereport(ERROR,
3206  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3207  errmsg("ON CONFLICT is not supported with system catalog tables"),
3208  parser_errposition(pstate,
3209  exprLocation((Node *) onConflictClause))));
3210 
3211  /* Same applies to table used by logical decoding as catalog table */
3213  ereport(ERROR,
3214  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3215  errmsg("ON CONFLICT is not supported on table \"%s\" used as a catalog table",
3217  parser_errposition(pstate,
3218  exprLocation((Node *) onConflictClause))));
3219 
3220  /* ON CONFLICT DO NOTHING does not require an inference clause */
3221  if (infer)
3222  {
3223  if (infer->indexElems)
3224  *arbiterExpr = resolve_unique_index_expr(pstate, infer,
3225  pstate->p_target_relation);
3226 
3227  /*
3228  * Handling inference WHERE clause (for partial unique index
3229  * inference)
3230  */
3231  if (infer->whereClause)
3232  *arbiterWhere = transformExpr(pstate, infer->whereClause,
3234 
3235  /*
3236  * If the arbiter is specified by constraint name, get the constraint
3237  * OID and mark the constrained columns as requiring SELECT privilege,
3238  * in the same way as would have happened if the arbiter had been
3239  * specified by explicit reference to the constraint's index columns.
3240  */
3241  if (infer->conname)
3242  {
3243  Oid relid = RelationGetRelid(pstate->p_target_relation);
3244  RangeTblEntry *rte = pstate->p_target_nsitem->p_rte;
3245  Bitmapset *conattnos;
3246 
3247  conattnos = get_relation_constraint_attnos(relid, infer->conname,
3248  false, constraint);
3249 
3250  /* Make sure the rel as a whole is marked for SELECT access */
3251  rte->requiredPerms |= ACL_SELECT;
3252  /* Mark the constrained columns as requiring SELECT access */
3253  rte->selectedCols = bms_add_members(rte->selectedCols, conattnos);
3254  }
3255  }
3256 
3257  /*
3258  * It's convenient to form a list of expressions based on the
3259  * representation used by CREATE INDEX, since the same restrictions are
3260  * appropriate (e.g. on subqueries). However, from here on, a dedicated
3261  * primnode representation is used for inference elements, and so
3262  * assign_query_collations() can be trusted to do the right thing with the
3263  * post parse analysis query tree inference clause representation.
3264  */
3265 }
3266 
3267 /*
3268  * addTargetToSortList
3269  * If the given targetlist entry isn't already in the SortGroupClause
3270  * list, add it to the end of the list, using the given sort ordering
3271  * info.
3272  *
3273  * Returns the updated SortGroupClause list.
3274  */
3275 List *
3277  List *sortlist, List *targetlist, SortBy *sortby)
3278 {
3279  Oid restype = exprType((Node *) tle->expr);
3280  Oid sortop;
3281  Oid eqop;
3282  bool hashable;
3283  bool reverse;
3284  int location;
3285  ParseCallbackState pcbstate;
3286 
3287  /* if tlist item is an UNKNOWN literal, change it to TEXT */
3288  if (restype == UNKNOWNOID)
3289  {
3290  tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3291  restype, TEXTOID, -1,
3294  -1);
3295  restype = TEXTOID;
3296  }
3297 
3298  /*
3299  * Rather than clutter the API of get_sort_group_operators and the other
3300  * functions we're about to use, make use of error context callback to
3301  * mark any error reports with a parse position. We point to the operator
3302  * location if present, else to the expression being sorted. (NB: use the
3303  * original untransformed expression here; the TLE entry might well point
3304  * at a duplicate expression in the regular SELECT list.)
3305  */
3306  location = sortby->location;
3307  if (location < 0)
3308  location = exprLocation(sortby->node);
3309  setup_parser_errposition_callback(&pcbstate, pstate, location);
3310 
3311  /* determine the sortop, eqop, and directionality */
3312  switch (sortby->sortby_dir)
3313  {
3314  case SORTBY_DEFAULT:
3315  case SORTBY_ASC:
3316  get_sort_group_operators(restype,
3317  true, true, false,
3318  &sortop, &eqop, NULL,
3319  &hashable);
3320  reverse = false;
3321  break;
3322  case SORTBY_DESC:
3323  get_sort_group_operators(restype,
3324  false, true, true,
3325  NULL, &eqop, &sortop,
3326  &hashable);
3327  reverse = true;
3328  break;
3329  case SORTBY_USING:
3330  Assert(sortby->useOp != NIL);
3331  sortop = compatible_oper_opid(sortby->useOp,
3332  restype,
3333  restype,
3334  false);
3335 
3336  /*
3337  * Verify it's a valid ordering operator, fetch the corresponding
3338  * equality operator, and determine whether to consider it like
3339  * ASC or DESC.
3340  */
3341  eqop = get_equality_op_for_ordering_op(sortop, &reverse);
3342  if (!OidIsValid(eqop))
3343  ereport(ERROR,
3344  (errcode(ERRCODE_WRONG_OBJECT_TYPE),
3345  errmsg("operator %s is not a valid ordering operator",
3346  strVal(llast(sortby->useOp))),
3347  errhint("Ordering operators must be \"<\" or \">\" members of btree operator families.")));
3348 
3349  /*
3350  * Also see if the equality operator is hashable.
3351  */
3352  hashable = op_hashjoinable(eqop, restype);
3353  break;
3354  default:
3355  elog(ERROR, "unrecognized sortby_dir: %d", sortby->sortby_dir);
3356  sortop = InvalidOid; /* keep compiler quiet */
3357  eqop = InvalidOid;
3358  hashable = false;
3359  reverse = false;
3360  break;
3361  }
3362 
3364 
3365  /* avoid making duplicate sortlist entries */
3366  if (!targetIsInSortList(tle, sortop, sortlist))
3367  {
3369 
3370  sortcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3371 
3372  sortcl->eqop = eqop;
3373  sortcl->sortop = sortop;
3374  sortcl->hashable = hashable;
3375 
3376  switch (sortby->sortby_nulls)
3377  {
3378  case SORTBY_NULLS_DEFAULT:
3379  /* NULLS FIRST is default for DESC; other way for ASC */
3380  sortcl->nulls_first = reverse;
3381  break;
3382  case SORTBY_NULLS_FIRST:
3383  sortcl->nulls_first = true;
3384  break;
3385  case SORTBY_NULLS_LAST:
3386  sortcl->nulls_first = false;
3387  break;
3388  default:
3389  elog(ERROR, "unrecognized sortby_nulls: %d",
3390  sortby->sortby_nulls);
3391  break;
3392  }
3393 
3394  sortlist = lappend(sortlist, sortcl);
3395  }
3396 
3397  return sortlist;
3398 }
3399 
3400 /*
3401  * addTargetToGroupList
3402  * If the given targetlist entry isn't already in the SortGroupClause
3403  * list, add it to the end of the list, using default sort/group
3404  * semantics.
3405  *
3406  * This is very similar to addTargetToSortList, except that we allow the
3407  * case where only a grouping (equality) operator can be found, and that
3408  * the TLE is considered "already in the list" if it appears there with any
3409  * sorting semantics.
3410  *
3411  * location is the parse location to be fingered in event of trouble. Note
3412  * that we can't rely on exprLocation(tle->expr), because that might point
3413  * to a SELECT item that matches the GROUP BY item; it'd be pretty confusing
3414  * to report such a location.
3415  *
3416  * Returns the updated SortGroupClause list.
3417  */
3418 static List *
3420  List *grouplist, List *targetlist, int location)
3421 {
3422  Oid restype = exprType((Node *) tle->expr);
3423 
3424  /* if tlist item is an UNKNOWN literal, change it to TEXT */
3425  if (restype == UNKNOWNOID)
3426  {
3427  tle->expr = (Expr *) coerce_type(pstate, (Node *) tle->expr,
3428  restype, TEXTOID, -1,
3431  -1);
3432  restype = TEXTOID;
3433  }
3434 
3435  /* avoid making duplicate grouplist entries */
3436  if (!targetIsInSortList(tle, InvalidOid, grouplist))
3437  {
3439  Oid sortop;
3440  Oid eqop;
3441  bool hashable;
3442  ParseCallbackState pcbstate;
3443 
3444  setup_parser_errposition_callback(&pcbstate, pstate, location);
3445 
3446  /* determine the eqop and optional sortop */
3447  get_sort_group_operators(restype,
3448  false, true, false,
3449  &sortop, &eqop, NULL,
3450  &hashable);
3451 
3453 
3454  grpcl->tleSortGroupRef = assignSortGroupRef(tle, targetlist);
3455  grpcl->eqop = eqop;
3456  grpcl->sortop = sortop;
3457  grpcl->nulls_first = false; /* OK with or without sortop */
3458  grpcl->hashable = hashable;
3459 
3460  grouplist = lappend(grouplist, grpcl);
3461  }
3462 
3463  return grouplist;
3464 }
3465 
3466 /*
3467  * assignSortGroupRef
3468  * Assign the targetentry an unused ressortgroupref, if it doesn't
3469  * already have one. Return the assigned or pre-existing refnumber.
3470  *
3471  * 'tlist' is the targetlist containing (or to contain) the given targetentry.
3472  */
3473 Index
3475 {
3476  Index maxRef;
3477  ListCell *l;
3478 
3479  if (tle->ressortgroupref) /* already has one? */
3480  return tle->ressortgroupref;
3481 
3482  /* easiest way to pick an unused refnumber: max used + 1 */
3483  maxRef = 0;
3484  foreach(l, tlist)
3485  {
3486  Index ref = ((TargetEntry *) lfirst(l))->ressortgroupref;
3487 
3488  if (ref > maxRef)
3489  maxRef = ref;
3490  }
3491  tle->ressortgroupref = maxRef + 1;
3492  return tle->ressortgroupref;
3493 }
3494 
3495 /*
3496  * targetIsInSortList
3497  * Is the given target item already in the sortlist?
3498  * If sortop is not InvalidOid, also test for a match to the sortop.
3499  *
3500  * It is not an oversight that this function ignores the nulls_first flag.
3501  * We check sortop when determining if an ORDER BY item is redundant with
3502  * earlier ORDER BY items, because it's conceivable that "ORDER BY
3503  * foo USING <, foo USING <<<" is not redundant, if <<< distinguishes
3504  * values that < considers equal. We need not check nulls_first
3505  * however, because a lower-order column with the same sortop but
3506  * opposite nulls direction is redundant. Also, we can consider
3507  * ORDER BY foo ASC, foo DESC redundant, so check for a commutator match.
3508  *
3509  * Works for both ordering and grouping lists (sortop would normally be
3510  * InvalidOid when considering grouping). Note that the main reason we need
3511  * this routine (and not just a quick test for nonzeroness of ressortgroupref)
3512  * is that a TLE might be in only one of the lists.
3513  */
3514 bool
3515 targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
3516 {
3517  Index ref = tle->ressortgroupref;
3518  ListCell *l;
3519 
3520  /* no need to scan list if tle has no marker */
3521  if (ref == 0)
3522  return false;
3523 
3524  foreach(l, sortList)
3525  {
3526  SortGroupClause *scl = (SortGroupClause *) lfirst(l);
3527 
3528  if (scl->tleSortGroupRef == ref &&
3529  (sortop == InvalidOid ||
3530  sortop == scl->sortop ||
3531  sortop == get_commutator(scl->sortop)))
3532  return true;
3533  }
3534  return false;
3535 }
3536 
3537 /*
3538  * findWindowClause
3539  * Find the named WindowClause in the list, or return NULL if not there
3540  */
3541 static WindowClause *
3542 findWindowClause(List *wclist, const char *name)
3543 {
3544  ListCell *l;
3545 
3546  foreach(l, wclist)
3547  {
3548  WindowClause *wc = (WindowClause *) lfirst(l);
3549 
3550  if (wc->name && strcmp(wc->name, name) == 0)
3551  return wc;
3552  }
3553 
3554  return NULL;
3555 }
3556 
3557 /*
3558  * transformFrameOffset
3559  * Process a window frame offset expression
3560  *
3561  * In RANGE mode, rangeopfamily is the sort opfamily for the input ORDER BY
3562  * column, and rangeopcintype is the input data type the sort operator is
3563  * registered with. We expect the in_range function to be registered with
3564  * that same type. (In binary-compatible cases, it might be different from
3565  * the input column's actual type, so we can't use that for the lookups.)
3566  * We'll return the OID of the in_range function to *inRangeFunc.
3567  */
3568 static Node *
3569 transformFrameOffset(ParseState *pstate, int frameOptions,
3570  Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc,
3571  Node *clause)
3572 {
3573  const char *constructName = NULL;
3574  Node *node;
3575 
3576  *inRangeFunc = InvalidOid; /* default result */
3577 
3578  /* Quick exit if no offset expression */
3579  if (clause == NULL)
3580  return NULL;
3581 
3582  if (frameOptions & FRAMEOPTION_ROWS)
3583  {
3584  /* Transform the raw expression tree */
3585  node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_ROWS);
3586 
3587  /*
3588  * Like LIMIT clause, simply coerce to int8
3589  */
3590  constructName = "ROWS";
3591  node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3592  }
3593  else if (frameOptions & FRAMEOPTION_RANGE)
3594  {
3595  /*
3596  * We must look up the in_range support function that's to be used,
3597  * possibly choosing one of several, and coerce the "offset" value to
3598  * the appropriate input type.
3599  */
3600  Oid nodeType;
3601  Oid preferredType;
3602  int nfuncs = 0;
3603  int nmatches = 0;
3604  Oid selectedType = InvalidOid;
3605  Oid selectedFunc = InvalidOid;
3606  CatCList *proclist;
3607  int i;
3608 
3609  /* Transform the raw expression tree */
3610  node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_RANGE);
3611  nodeType = exprType(node);
3612 
3613  /*
3614  * If there are multiple candidates, we'll prefer the one that exactly
3615  * matches nodeType; or if nodeType is as yet unknown, prefer the one
3616  * that exactly matches the sort column type. (The second rule is
3617  * like what we do for "known_type operator unknown".)
3618  */
3619  preferredType = (nodeType != UNKNOWNOID) ? nodeType : rangeopcintype;
3620 
3621  /* Find the in_range support functions applicable to this case */
3622  proclist = SearchSysCacheList2(AMPROCNUM,
3623  ObjectIdGetDatum(rangeopfamily),
3624  ObjectIdGetDatum(rangeopcintype));
3625  for (i = 0; i < proclist->n_members; i++)
3626  {
3627  HeapTuple proctup = &proclist->members[i]->tuple;
3628  Form_pg_amproc procform = (Form_pg_amproc) GETSTRUCT(proctup);
3629 
3630  /* The search will find all support proc types; ignore others */
3631  if (procform->amprocnum != BTINRANGE_PROC)
3632  continue;
3633  nfuncs++;
3634 
3635  /* Ignore function if given value can't be coerced to that type */
3636  if (!can_coerce_type(1, &nodeType, &procform->amprocrighttype,
3638  continue;
3639  nmatches++;
3640 
3641  /* Remember preferred match, or any match if didn't find that */
3642  if (selectedType != preferredType)
3643  {
3644  selectedType = procform->amprocrighttype;
3645  selectedFunc = procform->amproc;
3646  }
3647  }
3648  ReleaseCatCacheList(proclist);
3649 
3650  /*
3651  * Throw error if needed. It seems worth taking the trouble to
3652  * distinguish "no support at all" from "you didn't match any
3653  * available offset type".
3654  */
3655  if (nfuncs == 0)
3656  ereport(ERROR,
3657  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3658  errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s",
3659  format_type_be(rangeopcintype)),
3660  parser_errposition(pstate, exprLocation(node))));
3661  if (nmatches == 0)
3662  ereport(ERROR,
3663  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3664  errmsg("RANGE with offset PRECEDING/FOLLOWING is not supported for column type %s and offset type %s",
3665  format_type_be(rangeopcintype),
3666  format_type_be(nodeType)),
3667  errhint("Cast the offset value to an appropriate type."),
3668  parser_errposition(pstate, exprLocation(node))));
3669  if (nmatches != 1 && selectedType != preferredType)
3670  ereport(ERROR,
3671  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3672  errmsg("RANGE with offset PRECEDING/FOLLOWING has multiple interpretations for column type %s and offset type %s",
3673  format_type_be(rangeopcintype),
3674  format_type_be(nodeType)),
3675  errhint("Cast the offset value to the exact intended type."),
3676  parser_errposition(pstate, exprLocation(node))));
3677 
3678  /* OK, coerce the offset to the right type */
3679  constructName = "RANGE";
3680  node = coerce_to_specific_type(pstate, node,
3681  selectedType, constructName);
3682  *inRangeFunc = selectedFunc;
3683  }
3684  else if (frameOptions & FRAMEOPTION_GROUPS)
3685  {
3686  /* Transform the raw expression tree */
3687  node = transformExpr(pstate, clause, EXPR_KIND_WINDOW_FRAME_GROUPS);
3688 
3689  /*
3690  * Like LIMIT clause, simply coerce to int8
3691  */
3692  constructName = "GROUPS";
3693  node = coerce_to_specific_type(pstate, node, INT8OID, constructName);
3694  }
3695  else
3696  {
3697  Assert(false);
3698  node = NULL;
3699  }
3700 
3701  /* Disallow variables in frame offsets */
3702  checkExprIsVarFree(pstate, node, constructName);
3703 
3704  return node;
3705 }
#define list_make2(x1, x2)
Definition: pg_list.h:208
static void checkExprIsVarFree(ParseState *pstate, Node *n, const char *constructName)
struct ParseNamespaceColumn ParseNamespaceColumn
Definition: parse_node.h:25
signed short int16
Definition: c.h:428
List * partitionClause
Definition: parsenodes.h:513
char * refname
Definition: parsenodes.h:1390
#define NIL
Definition: pg_list.h:65
bool copiedOrder
Definition: parsenodes.h:1402
ParseNamespaceItem * addRangeTableEntryForCTE(ParseState *pstate, CommonTableExpr *cte, Index levelsup, RangeVar *rv, bool inFromCl)
static List * addTargetToGroupList(ParseState *pstate, TargetEntry *tle, List *grouplist, List *targetlist, int location)
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:104
List * SystemFuncName(char *name)
List * args
Definition: primnodes.h:1068
Index assignSortGroupRef(TargetEntry *tle, List *tlist)
#define IsA(nodeptr, _type_)
Definition: nodes.h:587
int n_members
Definition: catcache.h:176
Node * docexpr
Definition: primnodes.h:87
bool repeatable_across_queries
Definition: tsmapi.h:64
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:167
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1480
Node * val
Definition: parsenodes.h:466
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:356
int errhint(const char *fmt,...)
Definition: elog.c:1156
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:555
ParseNamespaceItem * addRangeTableEntryForTableFunc(ParseState *pstate, TableFunc *tf, Alias *alias, bool lateral, bool inFromCl)
SortByDir ordering
Definition: parsenodes.h:732
Node * subquery
Definition: parsenodes.h:566
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:446
#define GETSTRUCT(TUP)
Definition: htup_details.h:654
static ParseNamespaceItem * getNSItemForSpecialRelationTypes(ParseState *pstate, RangeVar *rv)
List * content
Definition: parsenodes.h:1365
List * transformDistinctOnClause(ParseState *pstate, List *distinctlist, List **targetlist, List *sortClause)
bool inRangeNullsFirst
Definition: parsenodes.h:1400
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1250
ParseNamespaceItem * addRangeTableEntryForJoin(ParseState *pstate, List *colnames, ParseNamespaceColumn *nscolumns, JoinType jointype, int nummergedcols, List *aliasvars, List *leftcols, List *rightcols, Alias *join_using_alias, Alias *alias, bool inFromCl)
SortByDir sortby_dir
Definition: parsenodes.h:494
List * colnames
Definition: primnodes.h:89
void markVarForSelectPriv(ParseState *pstate, Var *var)
List * colnames
Definition: primnodes.h:43
static ParseNamespaceItem * transformRangeFunction(ParseState *pstate, RangeFunction *r)
Definition: parse_clause.c:466
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3149
char * name
Definition: parsenodes.h:464
int frameOptions
Definition: parsenodes.h:515
List * coltypmods
Definition: primnodes.h:91
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1019
#define castNode(_type_, nodeptr)
Definition: nodes.h:605
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:267
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
FormData_pg_amproc * Form_pg_amproc
Definition: pg_amproc.h:68
static TargetEntry * findTargetlistEntrySQL99(ParseState *pstate, Node *node, List **tlist, ParseExprKind exprKind)
int32 select_common_typmod(ParseState *pstate, List *exprs, Oid common_type)
char * pstrdup(const char *in)
Definition: mcxt.c:1299
Node * agg_filter
Definition: parsenodes.h:376
bool can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, CoercionContext ccontext)
Definition: parse_coerce.c:556
List * useOp
Definition: parsenodes.h:496
char * name
Definition: parsenodes.h:511
Oid get_equality_op_for_ordering_op(Oid opno, bool *reverse)
Definition: lsyscache.c:265
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
List * columns
Definition: parsenodes.h:606
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:94
#define llast(l)
Definition: pg_list.h:194
List * indexElems
Definition: parsenodes.h:1450
List * list_truncate(List *list, int new_size)
Definition: list.c:600
Index tleSortGroupRef
Definition: parsenodes.h:1295
Oid endInRangeFunc
Definition: parsenodes.h:1397
Node * coerce_type(ParseState *pstate, Node *node, Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:157
Relation parserOpenTable(ParseState *pstate, const RangeVar *relation, int lockmode)
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:368
void addNSItemToQuery(ParseState *pstate, ParseNamespaceItem *nsitem, bool addToJoinList, bool addToRelNameSpace, bool addToVarNameSpace)
Definition: nodes.h:536
#define strVal(v)
Definition: value.h:65
List * list_concat(List *list1, const List *list2)
Definition: list.c:530
int errcode(int sqlerrcode)
Definition: elog.c:698
void transformOnConflictArbiter(ParseState *pstate, OnConflictClause *onConflictClause, List **arbiterExpr, Node **arbiterWhere, Oid *constraint)
Definition: value.h:51
bool p_hasAggs
Definition: parse_node.h:208
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:235
String * makeString(char *str)
Definition: value.c:51
static ParseNamespaceItem * transformTableEntry(ParseState *pstate, RangeVar *r)
Definition: parse_clause.c:392
static int fc(const char *x)
Definition: preproc-init.c:99
ParseNamespaceItem * p_target_nsitem
Definition: parse_node.h:193
AclMode requiredPerms
Definition: parsenodes.h:1157
Oid get_opclass_oid(Oid amID, List *opclassname, bool missing_ok)
Definition: opclasscmds.c:220
static Node * transformGroupingSet(List **flatresult, ParseState *pstate, GroupingSet *gset, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99, bool toplevel)
int location
Definition: parsenodes.h:383
unsigned int Oid
Definition: postgres_ext.h:31
char * resname
Definition: primnodes.h:1457
A_Expr * makeSimpleA_Expr(A_Expr_Kind kind, char *name, Node *lexpr, Node *rexpr, int location)
Definition: makefuncs.c:48
Definition: primnodes.h:186
#define linitial_node(type, l)
Definition: pg_list.h:177
List * lappend_oid(List *list, Oid datum)
Definition: list.c:372
#define OidIsValid(objectId)
Definition: c.h:710
ParseExprKind
Definition: parse_node.h:38
List * agg_order
Definition: parsenodes.h:375
#define FRAMEOPTION_START_OFFSET
Definition: parsenodes.h:547
#define lsecond(l)
Definition: pg_list.h:179
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3001
List * colcollations
Definition: primnodes.h:92
Oid get_func_rettype(Oid funcid)
Definition: lsyscache.c:1626
signed int int32
Definition: c.h:429
Expr * makeBoolExpr(BoolExprType boolop, List *args, int location)
Definition: makefuncs.c:369
JoinType
Definition: nodes.h:704
bool p_hasWindowFuncs
Definition: parse_node.h:209
ParseNamespaceItem * addRangeTableEntryForRelation(ParseState *pstate, Relation rel, int lockmode, Alias *alias, bool inh, bool inFromCl)
char * schemaname
Definition: primnodes.h:67
int location
Definition: parsenodes.h:248
static Node * transformFromClauseItem(ParseState *pstate, Node *n, ParseNamespaceItem **top_nsitem, List **namespace)
int location
Definition: parsenodes.h:467
Node * larg
Definition: primnodes.h:1543
GroupingSetKind kind
Definition: parsenodes.h:1364
void ReleaseCatCacheList(CatCList *list)
Definition: catcache.c:1784
CatCTup * members[FLEXIBLE_ARRAY_MEMBER]
Definition: catcache.h:178
#define list_make1(x1)
Definition: pg_list.h:206
void assign_expr_collations(ParseState *pstate, Node *expr)
ParseNamespaceItem * addRangeTableEntryForENR(ParseState *pstate, RangeVar *rv, bool inFromCl)
char * relname
Definition: primnodes.h:68
Node * expr
Definition: parsenodes.h:727
uint32 AclMode
Definition: parsenodes.h:80
static int get_matching_location(int sortgroupref, List *sortgrouprefs, List *exprs)
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:499
RangeTblEntry * p_rte
Definition: parse_node.h:268
Bitmapset * selectedCols
Definition: parsenodes.h:1159
Node * startOffset
Definition: parsenodes.h:516
void pfree(void *pointer)
Definition: mcxt.c:1169
void cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
Definition: parse_node.c:161
bool op_hashjoinable(Oid opno, Oid inputtype)
Definition: lsyscache.c:1408
bool resjunk
Definition: primnodes.h:1462
#define linitial(l)
Definition: pg_list.h:174
#define BTINRANGE_PROC
Definition: nbtree.h:702
SortByNulls nulls_ordering
Definition: parsenodes.h:733
#define ObjectIdGetDatum(X)
Definition: postgres.h:551
#define ERROR
Definition: elog.h:46
Node * transformLimitClause(ParseState *pstate, Node *clause, ParseExprKind exprKind, const char *constructName, LimitOption limitOption)
struct WindowDef * over
Definition: parsenodes.h:377
#define lfirst_int(lc)
Definition: pg_list.h:170
List * partitionClause
Definition: parsenodes.h:1391
List * coldeflist
Definition: parsenodes.h:592
Oid vartype
Definition: primnodes.h:193
char * FigureColname(Node *node)
List * args
Definition: primnodes.h:1132
int location
Definition: parsenodes.h:518
Oid LookupFuncName(List *funcname, int nargs, const Oid *argtypes, bool missing_ok)
Definition: parse_func.c:2145
bool setof
Definition: parsenodes.h:223
Node * endOffset
Definition: parsenodes.h:517
List * coldefexprs
Definition: primnodes.h:94
static List * transformGroupClauseList(List **flatresult, ParseState *pstate, List *list, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99, bool toplevel)
List * ns_names
Definition: primnodes.h:86
#define lfirst_node(type, lc)
Definition: pg_list.h:172
bool list_member_int(const List *list, int datum)
Definition: list.c:669
Definition: value.h:28
Node * rowexpr
Definition: primnodes.h:88
Alias * join_using_alias
Definition: primnodes.h:1546
void assign_list_collations(ParseState *pstate, List *exprs)
AttrNumber p_varattno
Definition: parse_node.h:302
List * p_namespace
Definition: parse_node.h:186
static void setNamespaceLateralState(List *namespace, bool lateral_only, bool lateral_ok)
char * c
#define NoLock
Definition: lockdefs.h:34
NodeTag type
Definition: nodes.h:538
TypeName * typeName
Definition: parsenodes.h:621
RelabelType * makeRelabelType(Expr *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat)
Definition: makefuncs.c:402
bool scanNameSpaceForENR(ParseState *pstate, const char *refname)
char * conname
Definition: parsenodes.h:1452
void check_stack_depth(void)
Definition: postgres.c:3469
static Node * flatten_grouping_sets(Node *expr, bool toplevel, bool *hasGroupingSets)
#define RowExclusiveLock
Definition: lockdefs.h:38
List * namespaces
Definition: parsenodes.h:605
SortByNulls sortby_nulls
Definition: parsenodes.h:495
Bitmapset * get_relation_constraint_attnos(Oid relid, const char *conname, bool missing_ok, Oid *constraintOid)
List * functions
Definition: parsenodes.h:590
Bitmapset * notnulls
Definition: primnodes.h:95
List * transformGroupClause(ParseState *pstate, List *grouplist, List **groupingSets, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99)
#define RelationGetRelationName(relation)
Definition: rel.h:511
void checkNameSpaceConflicts(ParseState *pstate, List *namespace1, List *namespace2)
#define list_make1_int(x1)
Definition: pg_list.h:221
Node * rowexpr
Definition: parsenodes.h:604
TargetEntry * get_sortgroupref_tle(Index sortref, List *targetList)
Definition: tlist.c:334
void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location)
Definition: parse_node.c:145
Definition: nodes.h:301
List * lappend_int(List *list, int datum)
Definition: list.c:354
bool inh
Definition: primnodes.h:69
Index varnosyn
Definition: primnodes.h:199
bool is_rowsfrom
Definition: parsenodes.h:589
List * lappend(List *list, void *datum)
Definition: list.c:336
bool isNatural
Definition: primnodes.h:1542
static Node * buildMergedJoinVar(ParseState *pstate, JoinType jointype, Var *l_colvar, Var *r_colvar)
static Var * buildVarFromNSColumn(ParseNamespaceColumn *nscol)
List * usingClause
Definition: primnodes.h:1545
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:131
ParseNamespaceItem * addRangeTableEntryForFunction(ParseState *pstate, List *funcnames, List *funcexprs, List *coldeflists, RangeFunction *rangefunc, bool lateral, bool inFromCl)
int ordinalitycol
Definition: primnodes.h:96
bool func_variadic
Definition: parsenodes.h:381
char * NameListToString(List *names)
Definition: namespace.c:3147
static TableSampleClause * transformRangeTableSample(ParseState *pstate, RangeTableSample *rts)
Definition: parse_clause.c:907
Node * startOffset
Definition: parsenodes.h:1394
static void setNamespaceColumnVisibility(List *namespace, bool cols_visible)
FuncCall * makeFuncCall(List *name, List *args, CoercionForm funcformat, int location)
Definition: makefuncs.c:585
List * transformWindowDefinitions(ParseState *pstate, List *windowdefs, List **targetlist)
List * orderClause
Definition: parsenodes.h:514
static ParseNamespaceItem * transformRangeTableFunc(ParseState *pstate, RangeTableFunc *t)
Definition: parse_clause.c:689
void * palloc0(Size size)
Definition: mcxt.c:1093
Node * quals
Definition: primnodes.h:1547
Node * p_last_srf
Definition: parse_node.h:214
AttrNumber varattnosyn
Definition: primnodes.h:200
#define ACL_SELECT
Definition: parsenodes.h:83
void transformFromClause(ParseState *pstate, List *frmList)
Definition: parse_clause.c:113
unsigned int Index
Definition: c.h:549
InferClause * infer
Definition: parsenodes.h:1466
List * coltypes
Definition: primnodes.h:90
ParseExprKind p_expr_kind
Definition: parse_node.h:196
Alias * alias
Definition: parsenodes.h:607
void typenameTypeIdAndMod(ParseState *pstate, const TypeName *typeName, Oid *typeid_p, int32 *typmod_p)
Definition: parse_type.c:310
Oid LookupCollation(ParseState *pstate, List *collnames, int location)
Definition: parse_type.c:517
#define RelationIsUsedAsCatalogTable(relation)
Definition: rel.h:369
#define InvalidOid
Definition: postgres_ext.h:36
int setTargetTable(ParseState *pstate, RangeVar *relation, bool inh, bool alsoSource, AclMode requiredPerms)
Definition: parse_clause.c:177
bool targetIsInSortList(TargetEntry *tle, Oid sortop, List *sortList)
union A_Const::ValUnion val
int16 attnum
Definition: pg_attribute.h:83
List * colexprs
Definition: primnodes.h:93
Query * parse_sub_analyze(Node *parseTree, ParseState *parentParseState, CommonTableExpr *parentCTE, bool locked_from_parent, bool resolve_unknowns)
Definition: analyze.c:186
#define ereport(elevel,...)
Definition: elog.h:157
Oid get_typcollation(Oid typid)
Definition: lsyscache.c:3003
bool p_lateral_active
Definition: parse_node.h:188
List * opclass
Definition: parsenodes.h:730
CmdType commandType
Definition: parsenodes.h:120
TsmRoutine * GetTsmRoutine(Oid tsmhandler)
Definition: tablesample.c:27
CommonTableExpr * scanNameSpaceForCTE(ParseState *pstate, const char *refname, Index *ctelevelsup)
#define makeNode(_type_)
Definition: nodes.h:584
Node * rarg
Definition: primnodes.h:1544
#define SearchSysCacheList2(cacheId, key1, key2)
Definition: syscache.h:213
Alias * alias
Definition: primnodes.h:1548
#define FRAMEOPTION_RANGE
Definition: parsenodes.h:529
JoinType jointype
Definition: primnodes.h:1541
#define Assert(condition)
Definition: c.h:804
static int extractRemainingColumns(ParseNamespaceColumn *src_nscolumns, List *src_colnames, List **src_colnos, List **res_colnames, List **res_colvars, ParseNamespaceColumn *res_nscolumns)
Definition: parse_clause.c:252
#define lfirst(lc)
Definition: pg_list.h:169
char * aliasname
Definition: primnodes.h:42
int location
Definition: parsenodes.h:311
void get_sort_group_operators(Oid argtype, bool needLT, bool needEQ, bool needGT, Oid *ltOpr, Oid *eqOpr, Oid *gtOpr, bool *isHashable)
Definition: parse_oper.c:192
List * ns_uris
Definition: primnodes.h:85
Node * transformWhereClause(ParseState *pstate, Node *clause, ParseExprKind exprKind, const char *constructName)
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:431
Expr * expr
Definition: primnodes.h:1455
Node * docexpr
Definition: parsenodes.h:603
Alias * alias
Definition: parsenodes.h:567
bool get_ordering_op_properties(Oid opno, Oid *opfamily, Oid *opcintype, int16 *strategy)
Definition: lsyscache.c:205
Node * endOffset
Definition: parsenodes.h:1395
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
static TargetEntry * findTargetlistEntrySQL92(ParseState *pstate, Node *node, List **tlist, ParseExprKind exprKind)
List * args
Definition: parsenodes.h:374
static int list_length(const List *l)
Definition: pg_list.h:149
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:111
static void checkTargetlistEntrySQL92(ParseState *pstate, TargetEntry *tle, ParseExprKind exprKind)
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:759
#define FRAMEOPTION_END_OFFSET
Definition: parsenodes.h:549
#define FRAMEOPTION_ROWS
Definition: parsenodes.h:530
Node * whereClause
Definition: parsenodes.h:1451
char * name
Definition: parsenodes.h:726
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
LimitOption
Definition: nodes.h:843
const char * name
Definition: encode.c:561
#define nodeTag(nodeptr)
Definition: nodes.h:541
static ParseNamespaceItem * transformRangeSubselect(ParseState *pstate, RangeSubselect *r)
Definition: parse_clause.c:402
bool contain_aggs_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:67
RTEKind rtekind
Definition: parsenodes.h:1007
ParseNamespaceItem * addRangeTableEntry(ParseState *pstate, RangeVar *relation, Alias *alias, bool inh, bool inFromCl)
List * orderClause
Definition: parsenodes.h:1392
e
Definition: preproc-init.c:82
ParseNamespaceColumn * p_nscolumns
Definition: parse_node.h:271
#define intVal(v)
Definition: value.h:63
void * palloc(Size size)
Definition: mcxt.c:1062
int errmsg(const char *fmt,...)
Definition: elog.c:909
Oid compatible_oper_opid(List *op, Oid arg1, Oid arg2, bool noError)
Definition: parse_oper.c:499
GroupingSet * makeGroupingSet(GroupingSetKind kind, List *content, int location)
Definition: makefuncs.c:794
static Node * transformJoinOnClause(ParseState *pstate, JoinExpr *j, List *namespace)
Definition: parse_clause.c:362
static Node * transformFrameOffset(ParseState *pstate, int frameOptions, Oid rangeopfamily, Oid rangeopcintype, Oid *inRangeFunc, Node *clause)
Relation p_target_relation
Definition: parse_node.h:192
#define elog(elevel,...)
Definition: elog.h:232
int i
ParseNamespaceItem * addRangeTableEntryForSubquery(ParseState *pstate, Query *subquery, Alias *alias, bool lateral, bool inFromCl)
Oid coalescetype
Definition: primnodes.h:1130
AttrNumber p_varattnosyn
Definition: parse_node.h:307
#define FRAMEOPTION_GROUPS
Definition: parsenodes.h:531
Node * coerce_to_specific_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *constructName)
Index ressortgroupref
Definition: primnodes.h:1458
List * p_joinlist
Definition: parse_node.h:184
void * arg
Oid select_common_type(ParseState *pstate, List *exprs, const char *context, Node **which_expr)
Alias * alias
Definition: primnodes.h:72
static Node * transformJoinUsingClause(ParseState *pstate, List *leftVars, List *rightVars)
Definition: parse_clause.c:303
List * collation
Definition: parsenodes.h:729
bool isLockedRefname(ParseState *pstate, const char *refname)
List * parameterTypes
Definition: tsmapi.h:61
HeapTupleData tuple
Definition: catcache.h:121
List * funcname
Definition: parsenodes.h:373
Node * node
Definition: parsenodes.h:493
char * refname
Definition: parsenodes.h:512
#define copyObject(obj)
Definition: nodes.h:652
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
int location
Definition: primnodes.h:97
CoercionForm row_format
Definition: primnodes.h:1083
#define BTLessStrategyNumber
Definition: stratnum.h:29
bool agg_distinct
Definition: parsenodes.h:380
TargetEntry * transformTargetEntry(ParseState *pstate, Node *node, Node *expr, ParseExprKind exprKind, char *colname, bool resjunk)
Definition: parse_target.c:77
bool agg_star
Definition: parsenodes.h:379
int rtindex
Definition: primnodes.h:1549
OnConflictAction action
Definition: parsenodes.h:1465
Definition: pg_list.h:50
Node * coerce_to_specific_type_typmod(ParseState *pstate, Node *node, Oid targetTypeId, int32 targetTypmod, const char *constructName)
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:427
Oid startInRangeFunc
Definition: parsenodes.h:1396
static WindowClause * findWindowClause(List *wclist, const char *name)
struct TableSampleClause * tablesample
Definition: parsenodes.h:1037
#define RelationGetRelid(relation)
Definition: rel.h:477
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:197
int location
Definition: parsenodes.h:497
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:793
List * p_joinexprs
Definition: parse_node.h:183
List * fields
Definition: parsenodes.h:247
#define lfirst_oid(lc)
Definition: pg_list.h:171
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:673
static Index transformGroupClauseExpr(List **flatresult, Bitmapset *seen_local, ParseState *pstate, Node *gexpr, List **targetlist, List *sortClause, ParseExprKind exprKind, bool useSQL99, bool toplevel)
Node * colNameToVar(ParseState *pstate, const char *colname, bool localonly, int location)
static List * resolve_unique_index_expr(ParseState *pstate, InferClause *infer, Relation heapRel)
Node * strip_implicit_coercions(Node *node)
Definition: nodeFuncs.c:651
Node * coerce_to_boolean(ParseState *pstate, Node *node, const char *constructName)