PostgreSQL Source Code  git master
parse_coerce.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_coerce.c
4  * handle type coercions/conversions for parser
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_coerce.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/htup_details.h"
18 #include "catalog/pg_cast.h"
19 #include "catalog/pg_class.h"
20 #include "catalog/pg_inherits.h"
21 #include "catalog/pg_proc.h"
22 #include "catalog/pg_type.h"
23 #include "nodes/makefuncs.h"
24 #include "nodes/nodeFuncs.h"
25 #include "parser/parse_coerce.h"
26 #include "parser/parse_relation.h"
27 #include "parser/parse_type.h"
28 #include "utils/builtins.h"
29 #include "utils/datum.h"
30 #include "utils/lsyscache.h"
31 #include "utils/syscache.h"
32 #include "utils/typcache.h"
33 
34 
35 static Node *coerce_type_typmod(Node *node,
36  Oid targetTypeId, int32 targetTypMod,
37  CoercionContext ccontext, CoercionForm cformat,
38  int location,
39  bool hideInputCoercion);
40 static void hide_coercion_node(Node *node);
41 static Node *build_coercion_expression(Node *node,
42  CoercionPathType pathtype,
43  Oid funcId,
44  Oid targetTypeId, int32 targetTypMod,
45  CoercionContext ccontext, CoercionForm cformat,
46  int location);
47 static Node *coerce_record_to_complex(ParseState *pstate, Node *node,
48  Oid targetTypeId,
49  CoercionContext ccontext,
50  CoercionForm cformat,
51  int location);
52 static bool is_complex_array(Oid typid);
53 static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId);
54 
55 
56 /*
57  * coerce_to_target_type()
58  * Convert an expression to a target type and typmod.
59  *
60  * This is the general-purpose entry point for arbitrary type coercion
61  * operations. Direct use of the component operations can_coerce_type,
62  * coerce_type, and coerce_type_typmod should be restricted to special
63  * cases (eg, when the conversion is expected to succeed).
64  *
65  * Returns the possibly-transformed expression tree, or NULL if the type
66  * conversion is not possible. (We do this, rather than ereport'ing directly,
67  * so that callers can generate custom error messages indicating context.)
68  *
69  * pstate - parse state (can be NULL, see coerce_type)
70  * expr - input expression tree (already transformed by transformExpr)
71  * exprtype - result type of expr
72  * targettype - desired result type
73  * targettypmod - desired result typmod
74  * ccontext, cformat - context indicators to control coercions
75  * location - parse location of the coercion request, or -1 if unknown/implicit
76  */
77 Node *
78 coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype,
79  Oid targettype, int32 targettypmod,
80  CoercionContext ccontext,
81  CoercionForm cformat,
82  int location)
83 {
84  Node *result;
85  Node *origexpr;
86 
87  if (!can_coerce_type(1, &exprtype, &targettype, ccontext))
88  return NULL;
89 
90  /*
91  * If the input has a CollateExpr at the top, strip it off, perform the
92  * coercion, and put a new one back on. This is annoying since it
93  * duplicates logic in coerce_type, but if we don't do this then it's too
94  * hard to tell whether coerce_type actually changed anything, and we
95  * *must* know that to avoid possibly calling hide_coercion_node on
96  * something that wasn't generated by coerce_type. Note that if there are
97  * multiple stacked CollateExprs, we just discard all but the topmost.
98  */
99  origexpr = expr;
100  while (expr && IsA(expr, CollateExpr))
101  expr = (Node *) ((CollateExpr *) expr)->arg;
102 
103  result = coerce_type(pstate, expr, exprtype,
104  targettype, targettypmod,
105  ccontext, cformat, location);
106 
107  /*
108  * If the target is a fixed-length type, it may need a length coercion as
109  * well as a type coercion. If we find ourselves adding both, force the
110  * inner coercion node to implicit display form.
111  */
112  result = coerce_type_typmod(result,
113  targettype, targettypmod,
114  ccontext, cformat, location,
115  (result != expr && !IsA(result, Const)));
116 
117  if (expr != origexpr)
118  {
119  /* Reinstall top CollateExpr */
120  CollateExpr *coll = (CollateExpr *) origexpr;
121  CollateExpr *newcoll = makeNode(CollateExpr);
122 
123  newcoll->arg = (Expr *) result;
124  newcoll->collOid = coll->collOid;
125  newcoll->location = coll->location;
126  result = (Node *) newcoll;
127  }
128 
129  return result;
130 }
131 
132 
133 /*
134  * coerce_type()
135  * Convert an expression to a different type.
136  *
137  * The caller should already have determined that the coercion is possible;
138  * see can_coerce_type.
139  *
140  * Normally, no coercion to a typmod (length) is performed here. The caller
141  * must call coerce_type_typmod as well, if a typmod constraint is wanted.
142  * (But if the target type is a domain, it may internally contain a
143  * typmod constraint, which will be applied inside coerce_to_domain.)
144  * In some cases pg_cast specifies a type coercion function that also
145  * applies length conversion, and in those cases only, the result will
146  * already be properly coerced to the specified typmod.
147  *
148  * pstate is only used in the case that we are able to resolve the type of
149  * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the
150  * caller does not want type information updated for Params.
151  *
152  * Note: this function must not modify the given expression tree, only add
153  * decoration on top of it. See transformSetOperationTree, for example.
154  */
155 Node *
156 coerce_type(ParseState *pstate, Node *node,
157  Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
158  CoercionContext ccontext, CoercionForm cformat, int location)
159 {
160  Node *result;
161  CoercionPathType pathtype;
162  Oid funcId;
163 
164  if (targetTypeId == inputTypeId ||
165  node == NULL)
166  {
167  /* no conversion needed */
168  return node;
169  }
170  if (targetTypeId == ANYOID ||
171  targetTypeId == ANYELEMENTOID ||
172  targetTypeId == ANYNONARRAYOID)
173  {
174  /*
175  * Assume can_coerce_type verified that implicit coercion is okay.
176  *
177  * Note: by returning the unmodified node here, we are saying that
178  * it's OK to treat an UNKNOWN constant as a valid input for a
179  * function accepting ANY, ANYELEMENT, or ANYNONARRAY. This should be
180  * all right, since an UNKNOWN value is still a perfectly valid Datum.
181  *
182  * NB: we do NOT want a RelabelType here: the exposed type of the
183  * function argument must be its actual type, not the polymorphic
184  * pseudotype.
185  */
186  return node;
187  }
188  if (targetTypeId == ANYARRAYOID ||
189  targetTypeId == ANYENUMOID ||
190  targetTypeId == ANYRANGEOID)
191  {
192  /*
193  * Assume can_coerce_type verified that implicit coercion is okay.
194  *
195  * These cases are unlike the ones above because the exposed type of
196  * the argument must be an actual array, enum, or range type. In
197  * particular the argument must *not* be an UNKNOWN constant. If it
198  * is, we just fall through; below, we'll call anyarray_in,
199  * anyenum_in, or anyrange_in, which will produce an error. Also, if
200  * what we have is a domain over array, enum, or range, we have to
201  * relabel it to its base type.
202  *
203  * Note: currently, we can't actually see a domain-over-enum here,
204  * since the other functions in this file will not match such a
205  * parameter to ANYENUM. But that should get changed eventually.
206  */
207  if (inputTypeId != UNKNOWNOID)
208  {
209  Oid baseTypeId = getBaseType(inputTypeId);
210 
211  if (baseTypeId != inputTypeId)
212  {
213  RelabelType *r = makeRelabelType((Expr *) node,
214  baseTypeId, -1,
215  InvalidOid,
216  cformat);
217 
218  r->location = location;
219  return (Node *) r;
220  }
221  /* Not a domain type, so return it as-is */
222  return node;
223  }
224  }
225  if (inputTypeId == UNKNOWNOID && IsA(node, Const))
226  {
227  /*
228  * Input is a string constant with previously undetermined type. Apply
229  * the target type's typinput function to it to produce a constant of
230  * the target type.
231  *
232  * NOTE: this case cannot be folded together with the other
233  * constant-input case, since the typinput function does not
234  * necessarily behave the same as a type conversion function. For
235  * example, int4's typinput function will reject "1.2", whereas
236  * float-to-int type conversion will round to integer.
237  *
238  * XXX if the typinput function is not immutable, we really ought to
239  * postpone evaluation of the function call until runtime. But there
240  * is no way to represent a typinput function call as an expression
241  * tree, because C-string values are not Datums. (XXX This *is*
242  * possible as of 7.3, do we want to do it?)
243  */
244  Const *con = (Const *) node;
245  Const *newcon = makeNode(Const);
246  Oid baseTypeId;
247  int32 baseTypeMod;
248  int32 inputTypeMod;
249  Type baseType;
250  ParseCallbackState pcbstate;
251 
252  /*
253  * If the target type is a domain, we want to call its base type's
254  * input routine, not domain_in(). This is to avoid premature failure
255  * when the domain applies a typmod: existing input routines follow
256  * implicit-coercion semantics for length checks, which is not always
257  * what we want here. The needed check will be applied properly
258  * inside coerce_to_domain().
259  */
260  baseTypeMod = targetTypeMod;
261  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
262 
263  /*
264  * For most types we pass typmod -1 to the input routine, because
265  * existing input routines follow implicit-coercion semantics for
266  * length checks, which is not always what we want here. Any length
267  * constraint will be applied later by our caller. An exception
268  * however is the INTERVAL type, for which we *must* pass the typmod
269  * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly
270  * as sin, but so is this part of the spec...)
271  */
272  if (baseTypeId == INTERVALOID)
273  inputTypeMod = baseTypeMod;
274  else
275  inputTypeMod = -1;
276 
277  baseType = typeidType(baseTypeId);
278 
279  newcon->consttype = baseTypeId;
280  newcon->consttypmod = inputTypeMod;
281  newcon->constcollid = typeTypeCollation(baseType);
282  newcon->constlen = typeLen(baseType);
283  newcon->constbyval = typeByVal(baseType);
284  newcon->constisnull = con->constisnull;
285 
286  /*
287  * We use the original literal's location regardless of the position
288  * of the coercion. This is a change from pre-9.2 behavior, meant to
289  * simplify life for pg_stat_statements.
290  */
291  newcon->location = con->location;
292 
293  /*
294  * Set up to point at the constant's text if the input routine throws
295  * an error.
296  */
297  setup_parser_errposition_callback(&pcbstate, pstate, con->location);
298 
299  /*
300  * We assume here that UNKNOWN's internal representation is the same
301  * as CSTRING.
302  */
303  if (!con->constisnull)
304  newcon->constvalue = stringTypeDatum(baseType,
306  inputTypeMod);
307  else
308  newcon->constvalue = stringTypeDatum(baseType,
309  NULL,
310  inputTypeMod);
311 
312  /*
313  * If it's a varlena value, force it to be in non-expanded
314  * (non-toasted) format; this avoids any possible dependency on
315  * external values and improves consistency of representation.
316  */
317  if (!con->constisnull && newcon->constlen == -1)
318  newcon->constvalue =
320 
321 #ifdef RANDOMIZE_ALLOCATED_MEMORY
322 
323  /*
324  * For pass-by-reference data types, repeat the conversion to see if
325  * the input function leaves any uninitialized bytes in the result. We
326  * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is
327  * enabled, so we don't bother testing otherwise. The reason we don't
328  * want any instability in the input function is that comparison of
329  * Const nodes relies on bytewise comparison of the datums, so if the
330  * input function leaves garbage then subexpressions that should be
331  * identical may not get recognized as such. See pgsql-hackers
332  * discussion of 2008-04-04.
333  */
334  if (!con->constisnull && !newcon->constbyval)
335  {
336  Datum val2;
337 
338  val2 = stringTypeDatum(baseType,
340  inputTypeMod);
341  if (newcon->constlen == -1)
342  val2 = PointerGetDatum(PG_DETOAST_DATUM(val2));
343  if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen))
344  elog(WARNING, "type %s has unstable input conversion for \"%s\"",
345  typeTypeName(baseType), DatumGetCString(con->constvalue));
346  }
347 #endif
348 
350 
351  result = (Node *) newcon;
352 
353  /* If target is a domain, apply constraints. */
354  if (baseTypeId != targetTypeId)
355  result = coerce_to_domain(result,
356  baseTypeId, baseTypeMod,
357  targetTypeId,
358  ccontext, cformat, location,
359  false);
360 
361  ReleaseSysCache(baseType);
362 
363  return result;
364  }
365  if (IsA(node, Param) &&
366  pstate != NULL && pstate->p_coerce_param_hook != NULL)
367  {
368  /*
369  * Allow the CoerceParamHook to decide what happens. It can return a
370  * transformed node (very possibly the same Param node), or return
371  * NULL to indicate we should proceed with normal coercion.
372  */
373  result = pstate->p_coerce_param_hook(pstate,
374  (Param *) node,
375  targetTypeId,
376  targetTypeMod,
377  location);
378  if (result)
379  return result;
380  }
381  if (IsA(node, CollateExpr))
382  {
383  /*
384  * If we have a COLLATE clause, we have to push the coercion
385  * underneath the COLLATE. This is really ugly, but there is little
386  * choice because the above hacks on Consts and Params wouldn't happen
387  * otherwise. This kluge has consequences in coerce_to_target_type.
388  */
389  CollateExpr *coll = (CollateExpr *) node;
390  CollateExpr *newcoll = makeNode(CollateExpr);
391 
392  newcoll->arg = (Expr *)
393  coerce_type(pstate, (Node *) coll->arg,
394  inputTypeId, targetTypeId, targetTypeMod,
395  ccontext, cformat, location);
396  newcoll->collOid = coll->collOid;
397  newcoll->location = coll->location;
398  return (Node *) newcoll;
399  }
400  pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
401  &funcId);
402  if (pathtype != COERCION_PATH_NONE)
403  {
404  if (pathtype != COERCION_PATH_RELABELTYPE)
405  {
406  /*
407  * Generate an expression tree representing run-time application
408  * of the conversion function. If we are dealing with a domain
409  * target type, the conversion function will yield the base type,
410  * and we need to extract the correct typmod to use from the
411  * domain's typtypmod.
412  */
413  Oid baseTypeId;
414  int32 baseTypeMod;
415 
416  baseTypeMod = targetTypeMod;
417  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
418 
419  result = build_coercion_expression(node, pathtype, funcId,
420  baseTypeId, baseTypeMod,
421  ccontext, cformat, location);
422 
423  /*
424  * If domain, coerce to the domain type and relabel with domain
425  * type ID, hiding the previous coercion node.
426  */
427  if (targetTypeId != baseTypeId)
428  result = coerce_to_domain(result, baseTypeId, baseTypeMod,
429  targetTypeId,
430  ccontext, cformat, location,
431  true);
432  }
433  else
434  {
435  /*
436  * We don't need to do a physical conversion, but we do need to
437  * attach a RelabelType node so that the expression will be seen
438  * to have the intended type when inspected by higher-level code.
439  *
440  * Also, domains may have value restrictions beyond the base type
441  * that must be accounted for. If the destination is a domain
442  * then we won't need a RelabelType node.
443  */
444  result = coerce_to_domain(node, InvalidOid, -1, targetTypeId,
445  ccontext, cformat, location,
446  false);
447  if (result == node)
448  {
449  /*
450  * XXX could we label result with exprTypmod(node) instead of
451  * default -1 typmod, to save a possible length-coercion
452  * later? Would work if both types have same interpretation of
453  * typmod, which is likely but not certain.
454  */
455  RelabelType *r = makeRelabelType((Expr *) result,
456  targetTypeId, -1,
457  InvalidOid,
458  cformat);
459 
460  r->location = location;
461  result = (Node *) r;
462  }
463  }
464  return result;
465  }
466  if (inputTypeId == RECORDOID &&
467  ISCOMPLEX(targetTypeId))
468  {
469  /* Coerce a RECORD to a specific complex type */
470  return coerce_record_to_complex(pstate, node, targetTypeId,
471  ccontext, cformat, location);
472  }
473  if (targetTypeId == RECORDOID &&
474  ISCOMPLEX(inputTypeId))
475  {
476  /* Coerce a specific complex type to RECORD */
477  /* NB: we do NOT want a RelabelType here */
478  return node;
479  }
480 #ifdef NOT_USED
481  if (inputTypeId == RECORDARRAYOID &&
482  is_complex_array(targetTypeId))
483  {
484  /* Coerce record[] to a specific complex array type */
485  /* not implemented yet ... */
486  }
487 #endif
488  if (targetTypeId == RECORDARRAYOID &&
489  is_complex_array(inputTypeId))
490  {
491  /* Coerce a specific complex array type to record[] */
492  /* NB: we do NOT want a RelabelType here */
493  return node;
494  }
495  if (typeInheritsFrom(inputTypeId, targetTypeId)
496  || typeIsOfTypedTable(inputTypeId, targetTypeId))
497  {
498  /*
499  * Input class type is a subclass of target, so generate an
500  * appropriate runtime conversion (removing unneeded columns and
501  * possibly rearranging the ones that are wanted).
502  *
503  * We will also get here when the input is a domain over a subclass of
504  * the target type. To keep life simple for the executor, we define
505  * ConvertRowtypeExpr as only working between regular composite types;
506  * therefore, in such cases insert a RelabelType to smash the input
507  * expression down to its base type.
508  */
509  Oid baseTypeId = getBaseType(inputTypeId);
511 
512  if (baseTypeId != inputTypeId)
513  {
514  RelabelType *rt = makeRelabelType((Expr *) node,
515  baseTypeId, -1,
516  InvalidOid,
518 
519  rt->location = location;
520  node = (Node *) rt;
521  }
522  r->arg = (Expr *) node;
523  r->resulttype = targetTypeId;
524  r->convertformat = cformat;
525  r->location = location;
526  return (Node *) r;
527  }
528  /* If we get here, caller blew it */
529  elog(ERROR, "failed to find conversion function from %s to %s",
530  format_type_be(inputTypeId), format_type_be(targetTypeId));
531  return NULL; /* keep compiler quiet */
532 }
533 
534 
535 /*
536  * can_coerce_type()
537  * Can input_typeids be coerced to target_typeids?
538  *
539  * We must be told the context (CAST construct, assignment, implicit coercion)
540  * as this determines the set of available casts.
541  */
542 bool
543 can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids,
544  CoercionContext ccontext)
545 {
546  bool have_generics = false;
547  int i;
548 
549  /* run through argument list... */
550  for (i = 0; i < nargs; i++)
551  {
552  Oid inputTypeId = input_typeids[i];
553  Oid targetTypeId = target_typeids[i];
554  CoercionPathType pathtype;
555  Oid funcId;
556 
557  /* no problem if same type */
558  if (inputTypeId == targetTypeId)
559  continue;
560 
561  /* accept if target is ANY */
562  if (targetTypeId == ANYOID)
563  continue;
564 
565  /* accept if target is polymorphic, for now */
566  if (IsPolymorphicType(targetTypeId))
567  {
568  have_generics = true; /* do more checking later */
569  continue;
570  }
571 
572  /*
573  * If input is an untyped string constant, assume we can convert it to
574  * anything.
575  */
576  if (inputTypeId == UNKNOWNOID)
577  continue;
578 
579  /*
580  * If pg_cast shows that we can coerce, accept. This test now covers
581  * both binary-compatible and coercion-function cases.
582  */
583  pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
584  &funcId);
585  if (pathtype != COERCION_PATH_NONE)
586  continue;
587 
588  /*
589  * If input is RECORD and target is a composite type, assume we can
590  * coerce (may need tighter checking here)
591  */
592  if (inputTypeId == RECORDOID &&
593  ISCOMPLEX(targetTypeId))
594  continue;
595 
596  /*
597  * If input is a composite type and target is RECORD, accept
598  */
599  if (targetTypeId == RECORDOID &&
600  ISCOMPLEX(inputTypeId))
601  continue;
602 
603 #ifdef NOT_USED /* not implemented yet */
604 
605  /*
606  * If input is record[] and target is a composite array type, assume
607  * we can coerce (may need tighter checking here)
608  */
609  if (inputTypeId == RECORDARRAYOID &&
610  is_complex_array(targetTypeId))
611  continue;
612 #endif
613 
614  /*
615  * If input is a composite array type and target is record[], accept
616  */
617  if (targetTypeId == RECORDARRAYOID &&
618  is_complex_array(inputTypeId))
619  continue;
620 
621  /*
622  * If input is a class type that inherits from target, accept
623  */
624  if (typeInheritsFrom(inputTypeId, targetTypeId)
625  || typeIsOfTypedTable(inputTypeId, targetTypeId))
626  continue;
627 
628  /*
629  * Else, cannot coerce at this argument position
630  */
631  return false;
632  }
633 
634  /* If we found any generic argument types, cross-check them */
635  if (have_generics)
636  {
637  if (!check_generic_type_consistency(input_typeids, target_typeids,
638  nargs))
639  return false;
640  }
641 
642  return true;
643 }
644 
645 
646 /*
647  * Create an expression tree to represent coercion to a domain type.
648  *
649  * 'arg': input expression
650  * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
651  * has not bothered to look this up)
652  * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
653  * has not bothered to look this up)
654  * 'typeId': target type to coerce to
655  * 'ccontext': context indicator to control coercions
656  * 'cformat': coercion display format
657  * 'location': coercion request location
658  * 'hideInputCoercion': if true, hide the input coercion under this one.
659  *
660  * If the target type isn't a domain, the given 'arg' is returned as-is.
661  */
662 Node *
663 coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId,
664  CoercionContext ccontext, CoercionForm cformat, int location,
665  bool hideInputCoercion)
666 {
667  CoerceToDomain *result;
668 
669  /* Get the base type if it hasn't been supplied */
670  if (baseTypeId == InvalidOid)
671  baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);
672 
673  /* If it isn't a domain, return the node as it was passed in */
674  if (baseTypeId == typeId)
675  return arg;
676 
677  /* Suppress display of nested coercion steps */
678  if (hideInputCoercion)
679  hide_coercion_node(arg);
680 
681  /*
682  * If the domain applies a typmod to its base type, build the appropriate
683  * coercion step. Mark it implicit for display purposes, because we don't
684  * want it shown separately by ruleutils.c; but the isExplicit flag passed
685  * to the conversion function depends on the manner in which the domain
686  * coercion is invoked, so that the semantics of implicit and explicit
687  * coercion differ. (Is that really the behavior we want?)
688  *
689  * NOTE: because we apply this as part of the fixed expression structure,
690  * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that
691  * would be safe to do anyway, without lots of knowledge about what the
692  * base type thinks the typmod means.
693  */
694  arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod,
695  ccontext, COERCE_IMPLICIT_CAST, location,
696  false);
697 
698  /*
699  * Now build the domain coercion node. This represents run-time checking
700  * of any constraints currently attached to the domain. This also ensures
701  * that the expression is properly labeled as to result type.
702  */
703  result = makeNode(CoerceToDomain);
704  result->arg = (Expr *) arg;
705  result->resulttype = typeId;
706  result->resulttypmod = -1; /* currently, always -1 for domains */
707  /* resultcollid will be set by parse_collate.c */
708  result->coercionformat = cformat;
709  result->location = location;
710 
711  return (Node *) result;
712 }
713 
714 
715 /*
716  * coerce_type_typmod()
717  * Force a value to a particular typmod, if meaningful and possible.
718  *
719  * This is applied to values that are going to be stored in a relation
720  * (where we have an atttypmod for the column) as well as values being
721  * explicitly CASTed (where the typmod comes from the target type spec).
722  *
723  * The caller must have already ensured that the value is of the correct
724  * type, typically by applying coerce_type.
725  *
726  * ccontext may affect semantics, depending on whether the length coercion
727  * function pays attention to the isExplicit flag it's passed.
728  *
729  * cformat determines the display properties of the generated node (if any).
730  *
731  * If hideInputCoercion is true *and* we generate a node, the input node is
732  * forced to IMPLICIT display form, so that only the typmod coercion node will
733  * be visible when displaying the expression.
734  *
735  * NOTE: this does not need to work on domain types, because any typmod
736  * coercion for a domain is considered to be part of the type coercion
737  * needed to produce the domain value in the first place. So, no getBaseType.
738  */
739 static Node *
740 coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod,
741  CoercionContext ccontext, CoercionForm cformat,
742  int location,
743  bool hideInputCoercion)
744 {
745  CoercionPathType pathtype;
746  Oid funcId;
747 
748  /*
749  * A negative typmod is assumed to mean that no coercion is wanted. Also,
750  * skip coercion if already done.
751  */
752  if (targetTypMod < 0 || targetTypMod == exprTypmod(node))
753  return node;
754 
755  pathtype = find_typmod_coercion_function(targetTypeId, &funcId);
756 
757  if (pathtype != COERCION_PATH_NONE)
758  {
759  /* Suppress display of nested coercion steps */
760  if (hideInputCoercion)
761  hide_coercion_node(node);
762 
763  node = build_coercion_expression(node, pathtype, funcId,
764  targetTypeId, targetTypMod,
765  ccontext, cformat, location);
766  }
767 
768  return node;
769 }
770 
771 /*
772  * Mark a coercion node as IMPLICIT so it will never be displayed by
773  * ruleutils.c. We use this when we generate a nest of coercion nodes
774  * to implement what is logically one conversion; the inner nodes are
775  * forced to IMPLICIT_CAST format. This does not change their semantics,
776  * only display behavior.
777  *
778  * It is caller error to call this on something that doesn't have a
779  * CoercionForm field.
780  */
781 static void
783 {
784  if (IsA(node, FuncExpr))
785  ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST;
786  else if (IsA(node, RelabelType))
787  ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST;
788  else if (IsA(node, CoerceViaIO))
789  ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST;
790  else if (IsA(node, ArrayCoerceExpr))
791  ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST;
792  else if (IsA(node, ConvertRowtypeExpr))
793  ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST;
794  else if (IsA(node, RowExpr))
795  ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST;
796  else if (IsA(node, CoerceToDomain))
797  ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST;
798  else
799  elog(ERROR, "unsupported node type: %d", (int) nodeTag(node));
800 }
801 
802 /*
803  * build_coercion_expression()
804  * Construct an expression tree for applying a pg_cast entry.
805  *
806  * This is used for both type-coercion and length-coercion operations,
807  * since there is no difference in terms of the calling convention.
808  */
809 static Node *
811  CoercionPathType pathtype,
812  Oid funcId,
813  Oid targetTypeId, int32 targetTypMod,
814  CoercionContext ccontext, CoercionForm cformat,
815  int location)
816 {
817  int nargs = 0;
818 
819  if (OidIsValid(funcId))
820  {
821  HeapTuple tp;
822  Form_pg_proc procstruct;
823 
825  if (!HeapTupleIsValid(tp))
826  elog(ERROR, "cache lookup failed for function %u", funcId);
827  procstruct = (Form_pg_proc) GETSTRUCT(tp);
828 
829  /*
830  * These Asserts essentially check that function is a legal coercion
831  * function. We can't make the seemingly obvious tests on prorettype
832  * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of
833  * various binary-compatibility cases.
834  */
835  /* Assert(targetTypeId == procstruct->prorettype); */
836  Assert(!procstruct->proretset);
837  Assert(procstruct->prokind == PROKIND_FUNCTION);
838  nargs = procstruct->pronargs;
839  Assert(nargs >= 1 && nargs <= 3);
840  /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */
841  Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID);
842  Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID);
843 
844  ReleaseSysCache(tp);
845  }
846 
847  if (pathtype == COERCION_PATH_FUNC)
848  {
849  /* We build an ordinary FuncExpr with special arguments */
850  FuncExpr *fexpr;
851  List *args;
852  Const *cons;
853 
854  Assert(OidIsValid(funcId));
855 
856  args = list_make1(node);
857 
858  if (nargs >= 2)
859  {
860  /* Pass target typmod as an int4 constant */
861  cons = makeConst(INT4OID,
862  -1,
863  InvalidOid,
864  sizeof(int32),
865  Int32GetDatum(targetTypMod),
866  false,
867  true);
868 
869  args = lappend(args, cons);
870  }
871 
872  if (nargs == 3)
873  {
874  /* Pass it a boolean isExplicit parameter, too */
875  cons = makeConst(BOOLOID,
876  -1,
877  InvalidOid,
878  sizeof(bool),
879  BoolGetDatum(ccontext == COERCION_EXPLICIT),
880  false,
881  true);
882 
883  args = lappend(args, cons);
884  }
885 
886  fexpr = makeFuncExpr(funcId, targetTypeId, args,
887  InvalidOid, InvalidOid, cformat);
888  fexpr->location = location;
889  return (Node *) fexpr;
890  }
891  else if (pathtype == COERCION_PATH_ARRAYCOERCE)
892  {
893  /* We need to build an ArrayCoerceExpr */
896  Oid sourceBaseTypeId;
897  int32 sourceBaseTypeMod;
898  Oid targetElementType;
899  Node *elemexpr;
900 
901  /*
902  * Look through any domain over the source array type. Note we don't
903  * expect that the target type is a domain; it must be a plain array.
904  * (To get to a domain target type, we'll do coerce_to_domain later.)
905  */
906  sourceBaseTypeMod = exprTypmod(node);
907  sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node),
908  &sourceBaseTypeMod);
909 
910  /*
911  * Set up a CaseTestExpr representing one element of the source array.
912  * This is an abuse of CaseTestExpr, but it's OK as long as there
913  * can't be any CaseExpr or ArrayCoerceExpr within the completed
914  * elemexpr.
915  */
916  ctest->typeId = get_element_type(sourceBaseTypeId);
917  Assert(OidIsValid(ctest->typeId));
918  ctest->typeMod = sourceBaseTypeMod;
919  ctest->collation = InvalidOid; /* Assume coercions don't care */
920 
921  /* And coerce it to the target element type */
922  targetElementType = get_element_type(targetTypeId);
923  Assert(OidIsValid(targetElementType));
924 
925  elemexpr = coerce_to_target_type(NULL,
926  (Node *) ctest,
927  ctest->typeId,
928  targetElementType,
929  targetTypMod,
930  ccontext,
931  cformat,
932  location);
933  if (elemexpr == NULL) /* shouldn't happen */
934  elog(ERROR, "failed to coerce array element type as expected");
935 
936  acoerce->arg = (Expr *) node;
937  acoerce->elemexpr = (Expr *) elemexpr;
938  acoerce->resulttype = targetTypeId;
939 
940  /*
941  * Label the output as having a particular element typmod only if we
942  * ended up with a per-element expression that is labeled that way.
943  */
944  acoerce->resulttypmod = exprTypmod(elemexpr);
945  /* resultcollid will be set by parse_collate.c */
946  acoerce->coerceformat = cformat;
947  acoerce->location = location;
948 
949  return (Node *) acoerce;
950  }
951  else if (pathtype == COERCION_PATH_COERCEVIAIO)
952  {
953  /* We need to build a CoerceViaIO node */
954  CoerceViaIO *iocoerce = makeNode(CoerceViaIO);
955 
956  Assert(!OidIsValid(funcId));
957 
958  iocoerce->arg = (Expr *) node;
959  iocoerce->resulttype = targetTypeId;
960  /* resultcollid will be set by parse_collate.c */
961  iocoerce->coerceformat = cformat;
962  iocoerce->location = location;
963 
964  return (Node *) iocoerce;
965  }
966  else
967  {
968  elog(ERROR, "unsupported pathtype %d in build_coercion_expression",
969  (int) pathtype);
970  return NULL; /* keep compiler quiet */
971  }
972 }
973 
974 
975 /*
976  * coerce_record_to_complex
977  * Coerce a RECORD to a specific composite type.
978  *
979  * Currently we only support this for inputs that are RowExprs or whole-row
980  * Vars.
981  */
982 static Node *
984  Oid targetTypeId,
985  CoercionContext ccontext,
986  CoercionForm cformat,
987  int location)
988 {
989  RowExpr *rowexpr;
990  Oid baseTypeId;
991  int32 baseTypeMod = -1;
992  TupleDesc tupdesc;
993  List *args = NIL;
994  List *newargs;
995  int i;
996  int ucolno;
997  ListCell *arg;
998 
999  if (node && IsA(node, RowExpr))
1000  {
1001  /*
1002  * Since the RowExpr must be of type RECORD, we needn't worry about it
1003  * containing any dropped columns.
1004  */
1005  args = ((RowExpr *) node)->args;
1006  }
1007  else if (node && IsA(node, Var) &&
1008  ((Var *) node)->varattno == InvalidAttrNumber)
1009  {
1010  int rtindex = ((Var *) node)->varno;
1011  int sublevels_up = ((Var *) node)->varlevelsup;
1012  int vlocation = ((Var *) node)->location;
1013  RangeTblEntry *rte;
1014 
1015  rte = GetRTEByRangeTablePosn(pstate, rtindex, sublevels_up);
1016  expandRTE(rte, rtindex, sublevels_up, vlocation, false,
1017  NULL, &args);
1018  }
1019  else
1020  ereport(ERROR,
1021  (errcode(ERRCODE_CANNOT_COERCE),
1022  errmsg("cannot cast type %s to %s",
1023  format_type_be(RECORDOID),
1024  format_type_be(targetTypeId)),
1025  parser_coercion_errposition(pstate, location, node)));
1026 
1027  /*
1028  * Look up the composite type, accounting for possibility that what we are
1029  * given is a domain over composite.
1030  */
1031  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
1032  tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod);
1033 
1034  /* Process the fields */
1035  newargs = NIL;
1036  ucolno = 1;
1037  arg = list_head(args);
1038  for (i = 0; i < tupdesc->natts; i++)
1039  {
1040  Node *expr;
1041  Node *cexpr;
1042  Oid exprtype;
1043  Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
1044 
1045  /* Fill in NULLs for dropped columns in rowtype */
1046  if (attr->attisdropped)
1047  {
1048  /*
1049  * can't use atttypid here, but it doesn't really matter what type
1050  * the Const claims to be.
1051  */
1052  newargs = lappend(newargs,
1053  makeNullConst(INT4OID, -1, InvalidOid));
1054  continue;
1055  }
1056 
1057  if (arg == NULL)
1058  ereport(ERROR,
1059  (errcode(ERRCODE_CANNOT_COERCE),
1060  errmsg("cannot cast type %s to %s",
1061  format_type_be(RECORDOID),
1062  format_type_be(targetTypeId)),
1063  errdetail("Input has too few columns."),
1064  parser_coercion_errposition(pstate, location, node)));
1065  expr = (Node *) lfirst(arg);
1066  exprtype = exprType(expr);
1067 
1068  cexpr = coerce_to_target_type(pstate,
1069  expr, exprtype,
1070  attr->atttypid,
1071  attr->atttypmod,
1072  ccontext,
1074  -1);
1075  if (cexpr == NULL)
1076  ereport(ERROR,
1077  (errcode(ERRCODE_CANNOT_COERCE),
1078  errmsg("cannot cast type %s to %s",
1079  format_type_be(RECORDOID),
1080  format_type_be(targetTypeId)),
1081  errdetail("Cannot cast type %s to %s in column %d.",
1082  format_type_be(exprtype),
1083  format_type_be(attr->atttypid),
1084  ucolno),
1085  parser_coercion_errposition(pstate, location, expr)));
1086  newargs = lappend(newargs, cexpr);
1087  ucolno++;
1088  arg = lnext(args, arg);
1089  }
1090  if (arg != NULL)
1091  ereport(ERROR,
1092  (errcode(ERRCODE_CANNOT_COERCE),
1093  errmsg("cannot cast type %s to %s",
1094  format_type_be(RECORDOID),
1095  format_type_be(targetTypeId)),
1096  errdetail("Input has too many columns."),
1097  parser_coercion_errposition(pstate, location, node)));
1098 
1099  ReleaseTupleDesc(tupdesc);
1100 
1101  rowexpr = makeNode(RowExpr);
1102  rowexpr->args = newargs;
1103  rowexpr->row_typeid = baseTypeId;
1104  rowexpr->row_format = cformat;
1105  rowexpr->colnames = NIL; /* not needed for named target type */
1106  rowexpr->location = location;
1107 
1108  /* If target is a domain, apply constraints */
1109  if (baseTypeId != targetTypeId)
1110  {
1111  rowexpr->row_format = COERCE_IMPLICIT_CAST;
1112  return coerce_to_domain((Node *) rowexpr,
1113  baseTypeId, baseTypeMod,
1114  targetTypeId,
1115  ccontext, cformat, location,
1116  false);
1117  }
1118 
1119  return (Node *) rowexpr;
1120 }
1121 
1122 /*
1123  * coerce_to_boolean()
1124  * Coerce an argument of a construct that requires boolean input
1125  * (AND, OR, NOT, etc). Also check that input is not a set.
1126  *
1127  * Returns the possibly-transformed node tree.
1128  *
1129  * As with coerce_type, pstate may be NULL if no special unknown-Param
1130  * processing is wanted.
1131  */
1132 Node *
1134  const char *constructName)
1135 {
1136  Oid inputTypeId = exprType(node);
1137 
1138  if (inputTypeId != BOOLOID)
1139  {
1140  Node *newnode;
1141 
1142  newnode = coerce_to_target_type(pstate, node, inputTypeId,
1143  BOOLOID, -1,
1146  -1);
1147  if (newnode == NULL)
1148  ereport(ERROR,
1149  (errcode(ERRCODE_DATATYPE_MISMATCH),
1150  /* translator: first %s is name of a SQL construct, eg WHERE */
1151  errmsg("argument of %s must be type %s, not type %s",
1152  constructName, "boolean",
1153  format_type_be(inputTypeId)),
1154  parser_errposition(pstate, exprLocation(node))));
1155  node = newnode;
1156  }
1157 
1158  if (expression_returns_set(node))
1159  ereport(ERROR,
1160  (errcode(ERRCODE_DATATYPE_MISMATCH),
1161  /* translator: %s is name of a SQL construct, eg WHERE */
1162  errmsg("argument of %s must not return a set",
1163  constructName),
1164  parser_errposition(pstate, exprLocation(node))));
1165 
1166  return node;
1167 }
1168 
1169 /*
1170  * coerce_to_specific_type_typmod()
1171  * Coerce an argument of a construct that requires a specific data type,
1172  * with a specific typmod. Also check that input is not a set.
1173  *
1174  * Returns the possibly-transformed node tree.
1175  *
1176  * As with coerce_type, pstate may be NULL if no special unknown-Param
1177  * processing is wanted.
1178  */
1179 Node *
1181  Oid targetTypeId, int32 targetTypmod,
1182  const char *constructName)
1183 {
1184  Oid inputTypeId = exprType(node);
1185 
1186  if (inputTypeId != targetTypeId)
1187  {
1188  Node *newnode;
1189 
1190  newnode = coerce_to_target_type(pstate, node, inputTypeId,
1191  targetTypeId, targetTypmod,
1194  -1);
1195  if (newnode == NULL)
1196  ereport(ERROR,
1197  (errcode(ERRCODE_DATATYPE_MISMATCH),
1198  /* translator: first %s is name of a SQL construct, eg LIMIT */
1199  errmsg("argument of %s must be type %s, not type %s",
1200  constructName,
1201  format_type_be(targetTypeId),
1202  format_type_be(inputTypeId)),
1203  parser_errposition(pstate, exprLocation(node))));
1204  node = newnode;
1205  }
1206 
1207  if (expression_returns_set(node))
1208  ereport(ERROR,
1209  (errcode(ERRCODE_DATATYPE_MISMATCH),
1210  /* translator: %s is name of a SQL construct, eg LIMIT */
1211  errmsg("argument of %s must not return a set",
1212  constructName),
1213  parser_errposition(pstate, exprLocation(node))));
1214 
1215  return node;
1216 }
1217 
1218 /*
1219  * coerce_to_specific_type()
1220  * Coerce an argument of a construct that requires a specific data type.
1221  * Also check that input is not a set.
1222  *
1223  * Returns the possibly-transformed node tree.
1224  *
1225  * As with coerce_type, pstate may be NULL if no special unknown-Param
1226  * processing is wanted.
1227  */
1228 Node *
1230  Oid targetTypeId,
1231  const char *constructName)
1232 {
1233  return coerce_to_specific_type_typmod(pstate, node,
1234  targetTypeId, -1,
1235  constructName);
1236 }
1237 
1238 /*
1239  * parser_coercion_errposition - report coercion error location, if possible
1240  *
1241  * We prefer to point at the coercion request (CAST, ::, etc) if possible;
1242  * but there may be no such location in the case of an implicit coercion.
1243  * In that case point at the input expression.
1244  *
1245  * XXX possibly this is more generally useful than coercion errors;
1246  * if so, should rename and place with parser_errposition.
1247  */
1248 int
1250  int coerce_location,
1251  Node *input_expr)
1252 {
1253  if (coerce_location >= 0)
1254  return parser_errposition(pstate, coerce_location);
1255  else
1256  return parser_errposition(pstate, exprLocation(input_expr));
1257 }
1258 
1259 
1260 /*
1261  * select_common_type()
1262  * Determine the common supertype of a list of input expressions.
1263  * This is used for determining the output type of CASE, UNION,
1264  * and similar constructs.
1265  *
1266  * 'exprs' is a *nonempty* list of expressions. Note that earlier items
1267  * in the list will be preferred if there is doubt.
1268  * 'context' is a phrase to use in the error message if we fail to select
1269  * a usable type. Pass NULL to have the routine return InvalidOid
1270  * rather than throwing an error on failure.
1271  * 'which_expr': if not NULL, receives a pointer to the particular input
1272  * expression from which the result type was taken.
1273  */
1274 Oid
1275 select_common_type(ParseState *pstate, List *exprs, const char *context,
1276  Node **which_expr)
1277 {
1278  Node *pexpr;
1279  Oid ptype;
1280  TYPCATEGORY pcategory;
1281  bool pispreferred;
1282  ListCell *lc;
1283 
1284  Assert(exprs != NIL);
1285  pexpr = (Node *) linitial(exprs);
1286  lc = list_second_cell(exprs);
1287  ptype = exprType(pexpr);
1288 
1289  /*
1290  * If all input types are valid and exactly the same, just pick that type.
1291  * This is the only way that we will resolve the result as being a domain
1292  * type; otherwise domains are smashed to their base types for comparison.
1293  */
1294  if (ptype != UNKNOWNOID)
1295  {
1296  for_each_cell(lc, exprs, lc)
1297  {
1298  Node *nexpr = (Node *) lfirst(lc);
1299  Oid ntype = exprType(nexpr);
1300 
1301  if (ntype != ptype)
1302  break;
1303  }
1304  if (lc == NULL) /* got to the end of the list? */
1305  {
1306  if (which_expr)
1307  *which_expr = pexpr;
1308  return ptype;
1309  }
1310  }
1311 
1312  /*
1313  * Nope, so set up for the full algorithm. Note that at this point, lc
1314  * points to the first list item with type different from pexpr's; we need
1315  * not re-examine any items the previous loop advanced over.
1316  */
1317  ptype = getBaseType(ptype);
1318  get_type_category_preferred(ptype, &pcategory, &pispreferred);
1319 
1320  for_each_cell(lc, exprs, lc)
1321  {
1322  Node *nexpr = (Node *) lfirst(lc);
1323  Oid ntype = getBaseType(exprType(nexpr));
1324 
1325  /* move on to next one if no new information... */
1326  if (ntype != UNKNOWNOID && ntype != ptype)
1327  {
1328  TYPCATEGORY ncategory;
1329  bool nispreferred;
1330 
1331  get_type_category_preferred(ntype, &ncategory, &nispreferred);
1332  if (ptype == UNKNOWNOID)
1333  {
1334  /* so far, only unknowns so take anything... */
1335  pexpr = nexpr;
1336  ptype = ntype;
1337  pcategory = ncategory;
1338  pispreferred = nispreferred;
1339  }
1340  else if (ncategory != pcategory)
1341  {
1342  /*
1343  * both types in different categories? then not much hope...
1344  */
1345  if (context == NULL)
1346  return InvalidOid;
1347  ereport(ERROR,
1348  (errcode(ERRCODE_DATATYPE_MISMATCH),
1349  /*------
1350  translator: first %s is name of a SQL construct, eg CASE */
1351  errmsg("%s types %s and %s cannot be matched",
1352  context,
1353  format_type_be(ptype),
1354  format_type_be(ntype)),
1355  parser_errposition(pstate, exprLocation(nexpr))));
1356  }
1357  else if (!pispreferred &&
1358  can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
1359  !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
1360  {
1361  /*
1362  * take new type if can coerce to it implicitly but not the
1363  * other way; but if we have a preferred type, stay on it.
1364  */
1365  pexpr = nexpr;
1366  ptype = ntype;
1367  pcategory = ncategory;
1368  pispreferred = nispreferred;
1369  }
1370  }
1371  }
1372 
1373  /*
1374  * If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
1375  * then resolve as type TEXT. This situation comes up with constructs
1376  * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
1377  * UNION SELECT 'bar'; It might seem desirable to leave the construct's
1378  * output type as UNKNOWN, but that really doesn't work, because we'd
1379  * probably end up needing a runtime coercion from UNKNOWN to something
1380  * else, and we usually won't have it. We need to coerce the unknown
1381  * literals while they are still literals, so a decision has to be made
1382  * now.
1383  */
1384  if (ptype == UNKNOWNOID)
1385  ptype = TEXTOID;
1386 
1387  if (which_expr)
1388  *which_expr = pexpr;
1389  return ptype;
1390 }
1391 
1392 /*
1393  * coerce_to_common_type()
1394  * Coerce an expression to the given type.
1395  *
1396  * This is used following select_common_type() to coerce the individual
1397  * expressions to the desired type. 'context' is a phrase to use in the
1398  * error message if we fail to coerce.
1399  *
1400  * As with coerce_type, pstate may be NULL if no special unknown-Param
1401  * processing is wanted.
1402  */
1403 Node *
1405  Oid targetTypeId, const char *context)
1406 {
1407  Oid inputTypeId = exprType(node);
1408 
1409  if (inputTypeId == targetTypeId)
1410  return node; /* no work */
1411  if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT))
1412  node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1,
1414  else
1415  ereport(ERROR,
1416  (errcode(ERRCODE_CANNOT_COERCE),
1417  /* translator: first %s is name of a SQL construct, eg CASE */
1418  errmsg("%s could not convert type %s to %s",
1419  context,
1420  format_type_be(inputTypeId),
1421  format_type_be(targetTypeId)),
1422  parser_errposition(pstate, exprLocation(node))));
1423  return node;
1424 }
1425 
1426 /*
1427  * check_generic_type_consistency()
1428  * Are the actual arguments potentially compatible with a
1429  * polymorphic function?
1430  *
1431  * The argument consistency rules are:
1432  *
1433  * 1) All arguments declared ANYELEMENT must have the same datatype.
1434  * 2) All arguments declared ANYARRAY must have the same datatype,
1435  * which must be a varlena array type.
1436  * 3) All arguments declared ANYRANGE must have the same datatype,
1437  * which must be a range type.
1438  * 4) If there are arguments of both ANYELEMENT and ANYARRAY, make sure the
1439  * actual ANYELEMENT datatype is in fact the element type for the actual
1440  * ANYARRAY datatype.
1441  * 5) Similarly, if there are arguments of both ANYELEMENT and ANYRANGE,
1442  * make sure the actual ANYELEMENT datatype is in fact the subtype for
1443  * the actual ANYRANGE type.
1444  * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
1445  * (alone or in combination with plain ANYELEMENT), we add the extra
1446  * condition that the ANYELEMENT type must be an enum.
1447  * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
1448  * we add the extra condition that the ANYELEMENT type must not be an array.
1449  * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
1450  * is an extra restriction if not.)
1451  *
1452  * Domains over arrays match ANYARRAY, and are immediately flattened to their
1453  * base type. (Thus, for example, we will consider it a match if one ANYARRAY
1454  * argument is a domain over int4[] while another one is just int4[].) Also
1455  * notice that such a domain does *not* match ANYNONARRAY.
1456  *
1457  * Similarly, domains over ranges match ANYRANGE, and are immediately
1458  * flattened to their base type.
1459  *
1460  * Note that domains aren't currently considered to match ANYENUM,
1461  * even if their base type would match.
1462  *
1463  * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
1464  * argument, assume it is okay.
1465  *
1466  * If an input is of type ANYARRAY (ie, we know it's an array, but not
1467  * what element type), we will accept it as a match to an argument declared
1468  * ANYARRAY, so long as we don't have to determine an element type ---
1469  * that is, so long as there is no use of ANYELEMENT. This is mostly for
1470  * backwards compatibility with the pre-7.4 behavior of ANYARRAY.
1471  *
1472  * We do not ereport here, but just return false if a rule is violated.
1473  */
1474 bool
1475 check_generic_type_consistency(const Oid *actual_arg_types,
1476  const Oid *declared_arg_types,
1477  int nargs)
1478 {
1479  int j;
1480  Oid elem_typeid = InvalidOid;
1481  Oid array_typeid = InvalidOid;
1482  Oid array_typelem;
1483  Oid range_typeid = InvalidOid;
1484  Oid range_typelem;
1485  bool have_anyelement = false;
1486  bool have_anynonarray = false;
1487  bool have_anyenum = false;
1488 
1489  /*
1490  * Loop through the arguments to see if we have any that are polymorphic.
1491  * If so, require the actual types to be consistent.
1492  */
1493  for (j = 0; j < nargs; j++)
1494  {
1495  Oid decl_type = declared_arg_types[j];
1496  Oid actual_type = actual_arg_types[j];
1497 
1498  if (decl_type == ANYELEMENTOID ||
1499  decl_type == ANYNONARRAYOID ||
1500  decl_type == ANYENUMOID)
1501  {
1502  have_anyelement = true;
1503  if (decl_type == ANYNONARRAYOID)
1504  have_anynonarray = true;
1505  else if (decl_type == ANYENUMOID)
1506  have_anyenum = true;
1507  if (actual_type == UNKNOWNOID)
1508  continue;
1509  if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
1510  return false;
1511  elem_typeid = actual_type;
1512  }
1513  else if (decl_type == ANYARRAYOID)
1514  {
1515  if (actual_type == UNKNOWNOID)
1516  continue;
1517  actual_type = getBaseType(actual_type); /* flatten domains */
1518  if (OidIsValid(array_typeid) && actual_type != array_typeid)
1519  return false;
1520  array_typeid = actual_type;
1521  }
1522  else if (decl_type == ANYRANGEOID)
1523  {
1524  if (actual_type == UNKNOWNOID)
1525  continue;
1526  actual_type = getBaseType(actual_type); /* flatten domains */
1527  if (OidIsValid(range_typeid) && actual_type != range_typeid)
1528  return false;
1529  range_typeid = actual_type;
1530  }
1531  }
1532 
1533  /* Get the element type based on the array type, if we have one */
1534  if (OidIsValid(array_typeid))
1535  {
1536  if (array_typeid == ANYARRAYOID)
1537  {
1538  /* Special case for ANYARRAY input: okay iff no ANYELEMENT */
1539  if (have_anyelement)
1540  return false;
1541  return true;
1542  }
1543 
1544  array_typelem = get_element_type(array_typeid);
1545  if (!OidIsValid(array_typelem))
1546  return false; /* should be an array, but isn't */
1547 
1548  if (!OidIsValid(elem_typeid))
1549  {
1550  /*
1551  * if we don't have an element type yet, use the one we just got
1552  */
1553  elem_typeid = array_typelem;
1554  }
1555  else if (array_typelem != elem_typeid)
1556  {
1557  /* otherwise, they better match */
1558  return false;
1559  }
1560  }
1561 
1562  /* Get the element type based on the range type, if we have one */
1563  if (OidIsValid(range_typeid))
1564  {
1565  range_typelem = get_range_subtype(range_typeid);
1566  if (!OidIsValid(range_typelem))
1567  return false; /* should be a range, but isn't */
1568 
1569  if (!OidIsValid(elem_typeid))
1570  {
1571  /*
1572  * if we don't have an element type yet, use the one we just got
1573  */
1574  elem_typeid = range_typelem;
1575  }
1576  else if (range_typelem != elem_typeid)
1577  {
1578  /* otherwise, they better match */
1579  return false;
1580  }
1581  }
1582 
1583  if (have_anynonarray)
1584  {
1585  /* require the element type to not be an array or domain over array */
1586  if (type_is_array_domain(elem_typeid))
1587  return false;
1588  }
1589 
1590  if (have_anyenum)
1591  {
1592  /* require the element type to be an enum */
1593  if (!type_is_enum(elem_typeid))
1594  return false;
1595  }
1596 
1597  /* Looks valid */
1598  return true;
1599 }
1600 
1601 /*
1602  * enforce_generic_type_consistency()
1603  * Make sure a polymorphic function is legally callable, and
1604  * deduce actual argument and result types.
1605  *
1606  * If any polymorphic pseudotype is used in a function's arguments or
1607  * return type, we make sure the actual data types are consistent with
1608  * each other. The argument consistency rules are shown above for
1609  * check_generic_type_consistency().
1610  *
1611  * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
1612  * argument, we attempt to deduce the actual type it should have. If
1613  * successful, we alter that position of declared_arg_types[] so that
1614  * make_fn_arguments will coerce the literal to the right thing.
1615  *
1616  * Rules are applied to the function's return type (possibly altering it)
1617  * if it is declared as a polymorphic type:
1618  *
1619  * 1) If return type is ANYARRAY, and any argument is ANYARRAY, use the
1620  * argument's actual type as the function's return type.
1621  * 2) Similarly, if return type is ANYRANGE, and any argument is ANYRANGE,
1622  * use the argument's actual type as the function's return type.
1623  * 3) If return type is ANYARRAY, no argument is ANYARRAY, but any argument is
1624  * ANYELEMENT, use the actual type of the argument to determine the
1625  * function's return type, i.e. the element type's corresponding array
1626  * type. (Note: similar behavior does not exist for ANYRANGE, because it's
1627  * impossible to determine the range type from the subtype alone.)
1628  * 4) If return type is ANYARRAY, but no argument is ANYARRAY or ANYELEMENT,
1629  * generate an error. Similarly, if return type is ANYRANGE, but no
1630  * argument is ANYRANGE, generate an error. (These conditions are
1631  * prevented by CREATE FUNCTION and therefore are not expected here.)
1632  * 5) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
1633  * argument's actual type as the function's return type.
1634  * 6) If return type is ANYELEMENT, no argument is ANYELEMENT, but any argument
1635  * is ANYARRAY or ANYRANGE, use the actual type of the argument to determine
1636  * the function's return type, i.e. the array type's corresponding element
1637  * type or the range type's corresponding subtype (or both, in which case
1638  * they must match).
1639  * 7) If return type is ANYELEMENT, no argument is ANYELEMENT, ANYARRAY, or
1640  * ANYRANGE, generate an error. (This condition is prevented by CREATE
1641  * FUNCTION and therefore is not expected here.)
1642  * 8) ANYENUM is treated the same as ANYELEMENT except that if it is used
1643  * (alone or in combination with plain ANYELEMENT), we add the extra
1644  * condition that the ANYELEMENT type must be an enum.
1645  * 9) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
1646  * we add the extra condition that the ANYELEMENT type must not be an array.
1647  * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
1648  * is an extra restriction if not.)
1649  *
1650  * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
1651  * respectively, and are immediately flattened to their base type. (In
1652  * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set it
1653  * to the base type not the domain type.)
1654  *
1655  * When allow_poly is false, we are not expecting any of the actual_arg_types
1656  * to be polymorphic, and we should not return a polymorphic result type
1657  * either. When allow_poly is true, it is okay to have polymorphic "actual"
1658  * arg types, and we can return ANYARRAY, ANYRANGE, or ANYELEMENT as the
1659  * result. (This case is currently used only to check compatibility of an
1660  * aggregate's declaration with the underlying transfn.)
1661  *
1662  * A special case is that we could see ANYARRAY as an actual_arg_type even
1663  * when allow_poly is false (this is possible only because pg_statistic has
1664  * columns shown as anyarray in the catalogs). We allow this to match a
1665  * declared ANYARRAY argument, but only if there is no ANYELEMENT argument
1666  * or result (since we can't determine a specific element type to match to
1667  * ANYELEMENT). Note this means that functions taking ANYARRAY had better
1668  * behave sanely if applied to the pg_statistic columns; they can't just
1669  * assume that successive inputs are of the same actual element type.
1670  */
1671 Oid
1672 enforce_generic_type_consistency(const Oid *actual_arg_types,
1673  Oid *declared_arg_types,
1674  int nargs,
1675  Oid rettype,
1676  bool allow_poly)
1677 {
1678  int j;
1679  bool have_generics = false;
1680  bool have_unknowns = false;
1681  Oid elem_typeid = InvalidOid;
1682  Oid array_typeid = InvalidOid;
1683  Oid range_typeid = InvalidOid;
1684  Oid array_typelem;
1685  Oid range_typelem;
1686  bool have_anyelement = (rettype == ANYELEMENTOID ||
1687  rettype == ANYNONARRAYOID ||
1688  rettype == ANYENUMOID);
1689  bool have_anynonarray = (rettype == ANYNONARRAYOID);
1690  bool have_anyenum = (rettype == ANYENUMOID);
1691 
1692  /*
1693  * Loop through the arguments to see if we have any that are polymorphic.
1694  * If so, require the actual types to be consistent.
1695  */
1696  for (j = 0; j < nargs; j++)
1697  {
1698  Oid decl_type = declared_arg_types[j];
1699  Oid actual_type = actual_arg_types[j];
1700 
1701  if (decl_type == ANYELEMENTOID ||
1702  decl_type == ANYNONARRAYOID ||
1703  decl_type == ANYENUMOID)
1704  {
1705  have_generics = have_anyelement = true;
1706  if (decl_type == ANYNONARRAYOID)
1707  have_anynonarray = true;
1708  else if (decl_type == ANYENUMOID)
1709  have_anyenum = true;
1710  if (actual_type == UNKNOWNOID)
1711  {
1712  have_unknowns = true;
1713  continue;
1714  }
1715  if (allow_poly && decl_type == actual_type)
1716  continue; /* no new information here */
1717  if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
1718  ereport(ERROR,
1719  (errcode(ERRCODE_DATATYPE_MISMATCH),
1720  errmsg("arguments declared \"anyelement\" are not all alike"),
1721  errdetail("%s versus %s",
1722  format_type_be(elem_typeid),
1723  format_type_be(actual_type))));
1724  elem_typeid = actual_type;
1725  }
1726  else if (decl_type == ANYARRAYOID)
1727  {
1728  have_generics = true;
1729  if (actual_type == UNKNOWNOID)
1730  {
1731  have_unknowns = true;
1732  continue;
1733  }
1734  if (allow_poly && decl_type == actual_type)
1735  continue; /* no new information here */
1736  actual_type = getBaseType(actual_type); /* flatten domains */
1737  if (OidIsValid(array_typeid) && actual_type != array_typeid)
1738  ereport(ERROR,
1739  (errcode(ERRCODE_DATATYPE_MISMATCH),
1740  errmsg("arguments declared \"anyarray\" are not all alike"),
1741  errdetail("%s versus %s",
1742  format_type_be(array_typeid),
1743  format_type_be(actual_type))));
1744  array_typeid = actual_type;
1745  }
1746  else if (decl_type == ANYRANGEOID)
1747  {
1748  have_generics = true;
1749  if (actual_type == UNKNOWNOID)
1750  {
1751  have_unknowns = true;
1752  continue;
1753  }
1754  if (allow_poly && decl_type == actual_type)
1755  continue; /* no new information here */
1756  actual_type = getBaseType(actual_type); /* flatten domains */
1757  if (OidIsValid(range_typeid) && actual_type != range_typeid)
1758  ereport(ERROR,
1759  (errcode(ERRCODE_DATATYPE_MISMATCH),
1760  errmsg("arguments declared \"anyrange\" are not all alike"),
1761  errdetail("%s versus %s",
1762  format_type_be(range_typeid),
1763  format_type_be(actual_type))));
1764  range_typeid = actual_type;
1765  }
1766  }
1767 
1768  /*
1769  * Fast Track: if none of the arguments are polymorphic, return the
1770  * unmodified rettype. We assume it can't be polymorphic either.
1771  */
1772  if (!have_generics)
1773  return rettype;
1774 
1775  /* Get the element type based on the array type, if we have one */
1776  if (OidIsValid(array_typeid))
1777  {
1778  if (array_typeid == ANYARRAYOID && !have_anyelement)
1779  {
1780  /* Special case for ANYARRAY input: okay iff no ANYELEMENT */
1781  array_typelem = ANYELEMENTOID;
1782  }
1783  else
1784  {
1785  array_typelem = get_element_type(array_typeid);
1786  if (!OidIsValid(array_typelem))
1787  ereport(ERROR,
1788  (errcode(ERRCODE_DATATYPE_MISMATCH),
1789  errmsg("argument declared %s is not an array but type %s",
1790  "anyarray", format_type_be(array_typeid))));
1791  }
1792 
1793  if (!OidIsValid(elem_typeid))
1794  {
1795  /*
1796  * if we don't have an element type yet, use the one we just got
1797  */
1798  elem_typeid = array_typelem;
1799  }
1800  else if (array_typelem != elem_typeid)
1801  {
1802  /* otherwise, they better match */
1803  ereport(ERROR,
1804  (errcode(ERRCODE_DATATYPE_MISMATCH),
1805  errmsg("argument declared %s is not consistent with argument declared %s",
1806  "anyarray", "anyelement"),
1807  errdetail("%s versus %s",
1808  format_type_be(array_typeid),
1809  format_type_be(elem_typeid))));
1810  }
1811  }
1812 
1813  /* Get the element type based on the range type, if we have one */
1814  if (OidIsValid(range_typeid))
1815  {
1816  if (range_typeid == ANYRANGEOID && !have_anyelement)
1817  {
1818  /* Special case for ANYRANGE input: okay iff no ANYELEMENT */
1819  range_typelem = ANYELEMENTOID;
1820  }
1821  else
1822  {
1823  range_typelem = get_range_subtype(range_typeid);
1824  if (!OidIsValid(range_typelem))
1825  ereport(ERROR,
1826  (errcode(ERRCODE_DATATYPE_MISMATCH),
1827  errmsg("argument declared %s is not a range type but type %s",
1828  "anyrange",
1829  format_type_be(range_typeid))));
1830  }
1831 
1832  if (!OidIsValid(elem_typeid))
1833  {
1834  /*
1835  * if we don't have an element type yet, use the one we just got
1836  */
1837  elem_typeid = range_typelem;
1838  }
1839  else if (range_typelem != elem_typeid)
1840  {
1841  /* otherwise, they better match */
1842  ereport(ERROR,
1843  (errcode(ERRCODE_DATATYPE_MISMATCH),
1844  errmsg("argument declared %s is not consistent with argument declared %s",
1845  "anyrange", "anyelement"),
1846  errdetail("%s versus %s",
1847  format_type_be(range_typeid),
1848  format_type_be(elem_typeid))));
1849  }
1850  }
1851 
1852  if (!OidIsValid(elem_typeid))
1853  {
1854  if (allow_poly)
1855  {
1856  elem_typeid = ANYELEMENTOID;
1857  array_typeid = ANYARRAYOID;
1858  range_typeid = ANYRANGEOID;
1859  }
1860  else
1861  {
1862  /* Only way to get here is if all the generic args are UNKNOWN */
1863  ereport(ERROR,
1864  (errcode(ERRCODE_DATATYPE_MISMATCH),
1865  errmsg("could not determine polymorphic type because input has type %s",
1866  "unknown")));
1867  }
1868  }
1869 
1870  if (have_anynonarray && elem_typeid != ANYELEMENTOID)
1871  {
1872  /* require the element type to not be an array or domain over array */
1873  if (type_is_array_domain(elem_typeid))
1874  ereport(ERROR,
1875  (errcode(ERRCODE_DATATYPE_MISMATCH),
1876  errmsg("type matched to anynonarray is an array type: %s",
1877  format_type_be(elem_typeid))));
1878  }
1879 
1880  if (have_anyenum && elem_typeid != ANYELEMENTOID)
1881  {
1882  /* require the element type to be an enum */
1883  if (!type_is_enum(elem_typeid))
1884  ereport(ERROR,
1885  (errcode(ERRCODE_DATATYPE_MISMATCH),
1886  errmsg("type matched to anyenum is not an enum type: %s",
1887  format_type_be(elem_typeid))));
1888  }
1889 
1890  /*
1891  * If we had any unknown inputs, re-scan to assign correct types
1892  */
1893  if (have_unknowns)
1894  {
1895  for (j = 0; j < nargs; j++)
1896  {
1897  Oid decl_type = declared_arg_types[j];
1898  Oid actual_type = actual_arg_types[j];
1899 
1900  if (actual_type != UNKNOWNOID)
1901  continue;
1902 
1903  if (decl_type == ANYELEMENTOID ||
1904  decl_type == ANYNONARRAYOID ||
1905  decl_type == ANYENUMOID)
1906  declared_arg_types[j] = elem_typeid;
1907  else if (decl_type == ANYARRAYOID)
1908  {
1909  if (!OidIsValid(array_typeid))
1910  {
1911  array_typeid = get_array_type(elem_typeid);
1912  if (!OidIsValid(array_typeid))
1913  ereport(ERROR,
1914  (errcode(ERRCODE_UNDEFINED_OBJECT),
1915  errmsg("could not find array type for data type %s",
1916  format_type_be(elem_typeid))));
1917  }
1918  declared_arg_types[j] = array_typeid;
1919  }
1920  else if (decl_type == ANYRANGEOID)
1921  {
1922  if (!OidIsValid(range_typeid))
1923  {
1924  ereport(ERROR,
1925  (errcode(ERRCODE_UNDEFINED_OBJECT),
1926  errmsg("could not find range type for data type %s",
1927  format_type_be(elem_typeid))));
1928  }
1929  declared_arg_types[j] = range_typeid;
1930  }
1931  }
1932  }
1933 
1934  /* if we return ANYARRAY use the appropriate argument type */
1935  if (rettype == ANYARRAYOID)
1936  {
1937  if (!OidIsValid(array_typeid))
1938  {
1939  array_typeid = get_array_type(elem_typeid);
1940  if (!OidIsValid(array_typeid))
1941  ereport(ERROR,
1942  (errcode(ERRCODE_UNDEFINED_OBJECT),
1943  errmsg("could not find array type for data type %s",
1944  format_type_be(elem_typeid))));
1945  }
1946  return array_typeid;
1947  }
1948 
1949  /* if we return ANYRANGE use the appropriate argument type */
1950  if (rettype == ANYRANGEOID)
1951  {
1952  if (!OidIsValid(range_typeid))
1953  {
1954  ereport(ERROR,
1955  (errcode(ERRCODE_UNDEFINED_OBJECT),
1956  errmsg("could not find range type for data type %s",
1957  format_type_be(elem_typeid))));
1958  }
1959  return range_typeid;
1960  }
1961 
1962  /* if we return ANYELEMENT use the appropriate argument type */
1963  if (rettype == ANYELEMENTOID ||
1964  rettype == ANYNONARRAYOID ||
1965  rettype == ANYENUMOID)
1966  return elem_typeid;
1967 
1968  /* we don't return a generic type; send back the original return type */
1969  return rettype;
1970 }
1971 
1972 /*
1973  * resolve_generic_type()
1974  * Deduce an individual actual datatype on the assumption that
1975  * the rules for polymorphic types are being followed.
1976  *
1977  * declared_type is the declared datatype we want to resolve.
1978  * context_actual_type is the actual input datatype to some argument
1979  * that has declared datatype context_declared_type.
1980  *
1981  * If declared_type isn't polymorphic, we just return it. Otherwise,
1982  * context_declared_type must be polymorphic, and we deduce the correct
1983  * return type based on the relationship of the two polymorphic types.
1984  */
1985 Oid
1987  Oid context_actual_type,
1988  Oid context_declared_type)
1989 {
1990  if (declared_type == ANYARRAYOID)
1991  {
1992  if (context_declared_type == ANYARRAYOID)
1993  {
1994  /*
1995  * Use actual type, but it must be an array; or if it's a domain
1996  * over array, use the base array type.
1997  */
1998  Oid context_base_type = getBaseType(context_actual_type);
1999  Oid array_typelem = get_element_type(context_base_type);
2000 
2001  if (!OidIsValid(array_typelem))
2002  ereport(ERROR,
2003  (errcode(ERRCODE_DATATYPE_MISMATCH),
2004  errmsg("argument declared %s is not an array but type %s",
2005  "anyarray", format_type_be(context_base_type))));
2006  return context_base_type;
2007  }
2008  else if (context_declared_type == ANYELEMENTOID ||
2009  context_declared_type == ANYNONARRAYOID ||
2010  context_declared_type == ANYENUMOID ||
2011  context_declared_type == ANYRANGEOID)
2012  {
2013  /* Use the array type corresponding to actual type */
2014  Oid array_typeid = get_array_type(context_actual_type);
2015 
2016  if (!OidIsValid(array_typeid))
2017  ereport(ERROR,
2018  (errcode(ERRCODE_UNDEFINED_OBJECT),
2019  errmsg("could not find array type for data type %s",
2020  format_type_be(context_actual_type))));
2021  return array_typeid;
2022  }
2023  }
2024  else if (declared_type == ANYELEMENTOID ||
2025  declared_type == ANYNONARRAYOID ||
2026  declared_type == ANYENUMOID ||
2027  declared_type == ANYRANGEOID)
2028  {
2029  if (context_declared_type == ANYARRAYOID)
2030  {
2031  /* Use the element type corresponding to actual type */
2032  Oid context_base_type = getBaseType(context_actual_type);
2033  Oid array_typelem = get_element_type(context_base_type);
2034 
2035  if (!OidIsValid(array_typelem))
2036  ereport(ERROR,
2037  (errcode(ERRCODE_DATATYPE_MISMATCH),
2038  errmsg("argument declared %s is not an array but type %s",
2039  "anyarray", format_type_be(context_base_type))));
2040  return array_typelem;
2041  }
2042  else if (context_declared_type == ANYRANGEOID)
2043  {
2044  /* Use the element type corresponding to actual type */
2045  Oid context_base_type = getBaseType(context_actual_type);
2046  Oid range_typelem = get_range_subtype(context_base_type);
2047 
2048  if (!OidIsValid(range_typelem))
2049  ereport(ERROR,
2050  (errcode(ERRCODE_DATATYPE_MISMATCH),
2051  errmsg("argument declared %s is not a range type but type %s",
2052  "anyrange", format_type_be(context_base_type))));
2053  return range_typelem;
2054  }
2055  else if (context_declared_type == ANYELEMENTOID ||
2056  context_declared_type == ANYNONARRAYOID ||
2057  context_declared_type == ANYENUMOID)
2058  {
2059  /* Use the actual type; it doesn't matter if array or not */
2060  return context_actual_type;
2061  }
2062  }
2063  else
2064  {
2065  /* declared_type isn't polymorphic, so return it as-is */
2066  return declared_type;
2067  }
2068  /* If we get here, declared_type is polymorphic and context isn't */
2069  /* NB: this is a calling-code logic error, not a user error */
2070  elog(ERROR, "could not determine polymorphic type because context isn't polymorphic");
2071  return InvalidOid; /* keep compiler quiet */
2072 }
2073 
2074 
2075 /* TypeCategory()
2076  * Assign a category to the specified type OID.
2077  *
2078  * NB: this must not return TYPCATEGORY_INVALID.
2079  */
2082 {
2083  char typcategory;
2084  bool typispreferred;
2085 
2086  get_type_category_preferred(type, &typcategory, &typispreferred);
2087  Assert(typcategory != TYPCATEGORY_INVALID);
2088  return (TYPCATEGORY) typcategory;
2089 }
2090 
2091 
2092 /* IsPreferredType()
2093  * Check if this type is a preferred type for the given category.
2094  *
2095  * If category is TYPCATEGORY_INVALID, then we'll return true for preferred
2096  * types of any category; otherwise, only for preferred types of that
2097  * category.
2098  */
2099 bool
2101 {
2102  char typcategory;
2103  bool typispreferred;
2104 
2105  get_type_category_preferred(type, &typcategory, &typispreferred);
2106  if (category == typcategory || category == TYPCATEGORY_INVALID)
2107  return typispreferred;
2108  else
2109  return false;
2110 }
2111 
2112 
2113 /* IsBinaryCoercible()
2114  * Check if srctype is binary-coercible to targettype.
2115  *
2116  * This notion allows us to cheat and directly exchange values without
2117  * going through the trouble of calling a conversion function. Note that
2118  * in general, this should only be an implementation shortcut. Before 7.4,
2119  * this was also used as a heuristic for resolving overloaded functions and
2120  * operators, but that's basically a bad idea.
2121  *
2122  * As of 7.3, binary coercibility isn't hardwired into the code anymore.
2123  * We consider two types binary-coercible if there is an implicitly
2124  * invokable, no-function-needed pg_cast entry. Also, a domain is always
2125  * binary-coercible to its base type, though *not* vice versa (in the other
2126  * direction, one must apply domain constraint checks before accepting the
2127  * value as legitimate). We also need to special-case various polymorphic
2128  * types.
2129  *
2130  * This function replaces IsBinaryCompatible(), which was an inherently
2131  * symmetric test. Since the pg_cast entries aren't necessarily symmetric,
2132  * the order of the operands is now significant.
2133  */
2134 bool
2135 IsBinaryCoercible(Oid srctype, Oid targettype)
2136 {
2137  HeapTuple tuple;
2138  Form_pg_cast castForm;
2139  bool result;
2140 
2141  /* Fast path if same type */
2142  if (srctype == targettype)
2143  return true;
2144 
2145  /* Anything is coercible to ANY or ANYELEMENT */
2146  if (targettype == ANYOID || targettype == ANYELEMENTOID)
2147  return true;
2148 
2149  /* If srctype is a domain, reduce to its base type */
2150  if (OidIsValid(srctype))
2151  srctype = getBaseType(srctype);
2152 
2153  /* Somewhat-fast path for domain -> base type case */
2154  if (srctype == targettype)
2155  return true;
2156 
2157  /* Also accept any array type as coercible to ANYARRAY */
2158  if (targettype == ANYARRAYOID)
2159  if (type_is_array(srctype))
2160  return true;
2161 
2162  /* Also accept any non-array type as coercible to ANYNONARRAY */
2163  if (targettype == ANYNONARRAYOID)
2164  if (!type_is_array(srctype))
2165  return true;
2166 
2167  /* Also accept any enum type as coercible to ANYENUM */
2168  if (targettype == ANYENUMOID)
2169  if (type_is_enum(srctype))
2170  return true;
2171 
2172  /* Also accept any range type as coercible to ANYRANGE */
2173  if (targettype == ANYRANGEOID)
2174  if (type_is_range(srctype))
2175  return true;
2176 
2177  /* Also accept any composite type as coercible to RECORD */
2178  if (targettype == RECORDOID)
2179  if (ISCOMPLEX(srctype))
2180  return true;
2181 
2182  /* Also accept any composite array type as coercible to RECORD[] */
2183  if (targettype == RECORDARRAYOID)
2184  if (is_complex_array(srctype))
2185  return true;
2186 
2187  /* Else look in pg_cast */
2189  ObjectIdGetDatum(srctype),
2190  ObjectIdGetDatum(targettype));
2191  if (!HeapTupleIsValid(tuple))
2192  return false; /* no cast */
2193  castForm = (Form_pg_cast) GETSTRUCT(tuple);
2194 
2195  result = (castForm->castmethod == COERCION_METHOD_BINARY &&
2196  castForm->castcontext == COERCION_CODE_IMPLICIT);
2197 
2198  ReleaseSysCache(tuple);
2199 
2200  return result;
2201 }
2202 
2203 
2204 /*
2205  * find_coercion_pathway
2206  * Look for a coercion pathway between two types.
2207  *
2208  * Currently, this deals only with scalar-type cases; it does not consider
2209  * polymorphic types nor casts between composite types. (Perhaps fold
2210  * those in someday?)
2211  *
2212  * ccontext determines the set of available casts.
2213  *
2214  * The possible result codes are:
2215  * COERCION_PATH_NONE: failed to find any coercion pathway
2216  * *funcid is set to InvalidOid
2217  * COERCION_PATH_FUNC: apply the coercion function returned in *funcid
2218  * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed
2219  * *funcid is set to InvalidOid
2220  * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node
2221  * *funcid is set to InvalidOid
2222  * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node
2223  * *funcid is set to InvalidOid
2224  *
2225  * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is
2226  * needed to do the coercion; if the target is a domain then we may need to
2227  * apply domain constraint checking. If you want to check for a zero-effort
2228  * conversion then use IsBinaryCoercible().
2229  */
2231 find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId,
2232  CoercionContext ccontext,
2233  Oid *funcid)
2234 {
2236  HeapTuple tuple;
2237 
2238  *funcid = InvalidOid;
2239 
2240  /* Perhaps the types are domains; if so, look at their base types */
2241  if (OidIsValid(sourceTypeId))
2242  sourceTypeId = getBaseType(sourceTypeId);
2243  if (OidIsValid(targetTypeId))
2244  targetTypeId = getBaseType(targetTypeId);
2245 
2246  /* Domains are always coercible to and from their base type */
2247  if (sourceTypeId == targetTypeId)
2249 
2250  /* Look in pg_cast */
2252  ObjectIdGetDatum(sourceTypeId),
2253  ObjectIdGetDatum(targetTypeId));
2254 
2255  if (HeapTupleIsValid(tuple))
2256  {
2257  Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
2258  CoercionContext castcontext;
2259 
2260  /* convert char value for castcontext to CoercionContext enum */
2261  switch (castForm->castcontext)
2262  {
2263  case COERCION_CODE_IMPLICIT:
2264  castcontext = COERCION_IMPLICIT;
2265  break;
2266  case COERCION_CODE_ASSIGNMENT:
2267  castcontext = COERCION_ASSIGNMENT;
2268  break;
2269  case COERCION_CODE_EXPLICIT:
2270  castcontext = COERCION_EXPLICIT;
2271  break;
2272  default:
2273  elog(ERROR, "unrecognized castcontext: %d",
2274  (int) castForm->castcontext);
2275  castcontext = 0; /* keep compiler quiet */
2276  break;
2277  }
2278 
2279  /* Rely on ordering of enum for correct behavior here */
2280  if (ccontext >= castcontext)
2281  {
2282  switch (castForm->castmethod)
2283  {
2284  case COERCION_METHOD_FUNCTION:
2285  result = COERCION_PATH_FUNC;
2286  *funcid = castForm->castfunc;
2287  break;
2288  case COERCION_METHOD_INOUT:
2289  result = COERCION_PATH_COERCEVIAIO;
2290  break;
2291  case COERCION_METHOD_BINARY:
2292  result = COERCION_PATH_RELABELTYPE;
2293  break;
2294  default:
2295  elog(ERROR, "unrecognized castmethod: %d",
2296  (int) castForm->castmethod);
2297  break;
2298  }
2299  }
2300 
2301  ReleaseSysCache(tuple);
2302  }
2303  else
2304  {
2305  /*
2306  * If there's no pg_cast entry, perhaps we are dealing with a pair of
2307  * array types. If so, and if their element types have a conversion
2308  * pathway, report that we can coerce with an ArrayCoerceExpr.
2309  *
2310  * Hack: disallow coercions to oidvector and int2vector, which
2311  * otherwise tend to capture coercions that should go to "real" array
2312  * types. We want those types to be considered "real" arrays for many
2313  * purposes, but not this one. (Also, ArrayCoerceExpr isn't
2314  * guaranteed to produce an output that meets the restrictions of
2315  * these datatypes, such as being 1-dimensional.)
2316  */
2317  if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID)
2318  {
2319  Oid targetElem;
2320  Oid sourceElem;
2321 
2322  if ((targetElem = get_element_type(targetTypeId)) != InvalidOid &&
2323  (sourceElem = get_element_type(sourceTypeId)) != InvalidOid)
2324  {
2325  CoercionPathType elempathtype;
2326  Oid elemfuncid;
2327 
2328  elempathtype = find_coercion_pathway(targetElem,
2329  sourceElem,
2330  ccontext,
2331  &elemfuncid);
2332  if (elempathtype != COERCION_PATH_NONE)
2333  {
2334  result = COERCION_PATH_ARRAYCOERCE;
2335  }
2336  }
2337  }
2338 
2339  /*
2340  * If we still haven't found a possibility, consider automatic casting
2341  * using I/O functions. We allow assignment casts to string types and
2342  * explicit casts from string types to be handled this way. (The
2343  * CoerceViaIO mechanism is a lot more general than that, but this is
2344  * all we want to allow in the absence of a pg_cast entry.) It would
2345  * probably be better to insist on explicit casts in both directions,
2346  * but this is a compromise to preserve something of the pre-8.3
2347  * behavior that many types had implicit (yipes!) casts to text.
2348  */
2349  if (result == COERCION_PATH_NONE)
2350  {
2351  if (ccontext >= COERCION_ASSIGNMENT &&
2352  TypeCategory(targetTypeId) == TYPCATEGORY_STRING)
2353  result = COERCION_PATH_COERCEVIAIO;
2354  else if (ccontext >= COERCION_EXPLICIT &&
2355  TypeCategory(sourceTypeId) == TYPCATEGORY_STRING)
2356  result = COERCION_PATH_COERCEVIAIO;
2357  }
2358  }
2359 
2360  return result;
2361 }
2362 
2363 
2364 /*
2365  * find_typmod_coercion_function -- does the given type need length coercion?
2366  *
2367  * If the target type possesses a pg_cast function from itself to itself,
2368  * it must need length coercion.
2369  *
2370  * "bpchar" (ie, char(N)) and "numeric" are examples of such types.
2371  *
2372  * If the given type is a varlena array type, we do not look for a coercion
2373  * function associated directly with the array type, but instead look for
2374  * one associated with the element type. An ArrayCoerceExpr node must be
2375  * used to apply such a function. (Note: currently, it's pointless to
2376  * return the funcid in this case, because it'll just get looked up again
2377  * in the recursive construction of the ArrayCoerceExpr's elemexpr.)
2378  *
2379  * We use the same result enum as find_coercion_pathway, but the only possible
2380  * result codes are:
2381  * COERCION_PATH_NONE: no length coercion needed
2382  * COERCION_PATH_FUNC: apply the function returned in *funcid
2383  * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr
2384  */
2387  Oid *funcid)
2388 {
2389  CoercionPathType result;
2390  Type targetType;
2391  Form_pg_type typeForm;
2392  HeapTuple tuple;
2393 
2394  *funcid = InvalidOid;
2395  result = COERCION_PATH_FUNC;
2396 
2397  targetType = typeidType(typeId);
2398  typeForm = (Form_pg_type) GETSTRUCT(targetType);
2399 
2400  /* Check for a varlena array type */
2401  if (typeForm->typelem != InvalidOid && typeForm->typlen == -1)
2402  {
2403  /* Yes, switch our attention to the element type */
2404  typeId = typeForm->typelem;
2405  result = COERCION_PATH_ARRAYCOERCE;
2406  }
2407  ReleaseSysCache(targetType);
2408 
2409  /* Look in pg_cast */
2411  ObjectIdGetDatum(typeId),
2412  ObjectIdGetDatum(typeId));
2413 
2414  if (HeapTupleIsValid(tuple))
2415  {
2416  Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
2417 
2418  *funcid = castForm->castfunc;
2419  ReleaseSysCache(tuple);
2420  }
2421 
2422  if (!OidIsValid(*funcid))
2423  result = COERCION_PATH_NONE;
2424 
2425  return result;
2426 }
2427 
2428 /*
2429  * is_complex_array
2430  * Is this type an array of composite?
2431  *
2432  * Note: this will not return true for record[]; check for RECORDARRAYOID
2433  * separately if needed.
2434  */
2435 static bool
2437 {
2438  Oid elemtype = get_element_type(typid);
2439 
2440  return (OidIsValid(elemtype) && ISCOMPLEX(elemtype));
2441 }
2442 
2443 
2444 /*
2445  * Check whether reltypeId is the row type of a typed table of type
2446  * reloftypeId, or is a domain over such a row type. (This is conceptually
2447  * similar to the subtype relationship checked by typeInheritsFrom().)
2448  */
2449 static bool
2450 typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
2451 {
2452  Oid relid = typeOrDomainTypeRelid(reltypeId);
2453  bool result = false;
2454 
2455  if (relid)
2456  {
2457  HeapTuple tp;
2458  Form_pg_class reltup;
2459 
2460  tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
2461  if (!HeapTupleIsValid(tp))
2462  elog(ERROR, "cache lookup failed for relation %u", relid);
2463 
2464  reltup = (Form_pg_class) GETSTRUCT(tp);
2465  if (reltup->reloftype == reloftypeId)
2466  result = true;
2467 
2468  ReleaseSysCache(tp);
2469  }
2470 
2471  return result;
2472 }
Datum constvalue
Definition: primnodes.h:200
bool check_generic_type_consistency(const Oid *actual_arg_types, const Oid *declared_arg_types, int nargs)
#define NIL
Definition: pg_list.h:65
Oid getBaseTypeAndTypmod(Oid typid, int32 *typmod)
Definition: lsyscache.c:2316
List * args
Definition: primnodes.h:1008
Oid typeTypeCollation(Type typ)
Definition: parse_type.c:638
#define IsA(nodeptr, _type_)
Definition: nodes.h:576
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
#define type_is_array_domain(typid)
Definition: lsyscache.h:186
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
Oid typeOrDomainTypeRelid(Oid type_id)
Definition: parse_type.c:687
Oid resolve_generic_type(Oid declared_type, Oid context_actual_type, Oid context_declared_type)
bool constbyval
Definition: primnodes.h:203
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1191
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1652
int32 resulttypmod
Definition: primnodes.h:1247
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
int16 typeLen(Type t)
Definition: parse_type.c:597
Oid get_element_type(Oid typid)
Definition: lsyscache.c:2526
#define PointerGetDatum(X)
Definition: postgres.h:556
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Oid get_array_type(Oid typid)
Definition: lsyscache.c:2554
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:390
bool can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, CoercionContext ccontext)
Definition: parse_coerce.c:543
Oid resulttype
Definition: primnodes.h:821
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:669
bool datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:221
CoerceParamHook p_coerce_param_hook
Definition: parse_node.h:218
Node * coerce_type(ParseState *pstate, Node *node, Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:156
Definition: nodes.h:525
CoercionForm coercionformat
Definition: primnodes.h:1249
int errcode(int sqlerrcode)
Definition: elog.c:608
char * format_type_be(Oid type_oid)
Definition: format_type.c:326
bool type_is_range(Oid typid)
Definition: lsyscache.c:2466
unsigned int Oid
Definition: postgres_ext.h:31
Definition: primnodes.h:167
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:297
#define OidIsValid(objectId)
Definition: c.h:645
CoercionContext
Definition: primnodes.h:426
bool IsPreferredType(TYPCATEGORY category, Oid type)
int32 typeMod
Definition: primnodes.h:959
CoercionPathType
Definition: parse_coerce.h:24
signed int int32
Definition: c.h:347
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:335
static void hide_coercion_node(Node *node)
Definition: parse_coerce.c:782
#define list_make1(x1)
Definition: pg_list.h:227
int constlen
Definition: primnodes.h:199
Oid consttype
Definition: primnodes.h:196
char TYPCATEGORY
Definition: parse_coerce.h:21
void cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
Definition: parse_node.c:160
bool typeByVal(Type t)
Definition: parse_type.c:607
#define linitial(l)
Definition: pg_list.h:195
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
List * colnames
Definition: primnodes.h:1024
#define DatumGetCString(X)
Definition: postgres.h:566
Node * coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype, Oid targettype, int32 targettypmod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:78
char * typeTypeName(Type t)
Definition: parse_type.c:617
Datum stringTypeDatum(Type tp, char *string, int32 atttypmod)
Definition: parse_type.c:652
Node * coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, CoercionContext ccontext, CoercionForm cformat, int location, bool hideInputCoercion)
Definition: parse_coerce.c:663
Oid constcollid
Definition: primnodes.h:198
int location
Definition: primnodes.h:1025
RelabelType * makeRelabelType(Expr *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat)
Definition: makefuncs.c:400
static ListCell * list_second_cell(const List *l)
Definition: pg_list.h:139
int errdetail(const char *fmt,...)
Definition: elog.c:955
static Node * build_coercion_expression(Node *node, CoercionPathType pathtype, Oid funcId, Oid targetTypeId, int32 targetTypMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:810
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
static Node * coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod, CoercionContext ccontext, CoercionForm cformat, int location, bool hideInputCoercion)
Definition: parse_coerce.c:740
Expr * arg
Definition: primnodes.h:820
Expr * elemexpr
Definition: primnodes.h:845
FormData_pg_cast * Form_pg_cast
Definition: pg_cast.h:56
#define ereport(elevel, rest)
Definition: elog.h:141
void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location)
Definition: parse_node.c:144
Node * coerce_to_common_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *context)
bool IsBinaryCoercible(Oid srctype, Oid targettype)
CoercionPathType find_typmod_coercion_function(Oid typeId, Oid *funcid)
List * lappend(List *list, void *datum)
Definition: list.c:322
#define WARNING
Definition: elog.h:40
void expandRTE(RangeTblEntry *rte, int rtindex, int sublevels_up, int location, bool include_dropped, List **colnames, List **colvars)
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1116
CoercionForm coerceformat
Definition: primnodes.h:849
int location
Definition: primnodes.h:207
uintptr_t Datum
Definition: postgres.h:367
CoercionForm convertformat
Definition: primnodes.h:872
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1164
RangeTblEntry * GetRTEByRangeTablePosn(ParseState *pstate, int varno, int sublevels_up)
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:133
#define BoolGetDatum(X)
Definition: postgres.h:402
#define InvalidOid
Definition: postgres_ext.h:36
TYPCATEGORY TypeCategory(Oid type)
#define makeNode(_type_)
Definition: nodes.h:573
int location
Definition: primnodes.h:825
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define Assert(condition)
Definition: c.h:739
#define lfirst(lc)
Definition: pg_list.h:190
bool typeInheritsFrom(Oid subclassTypeId, Oid superclassTypeId)
Definition: pg_inherits.c:315
#define ISCOMPLEX(typeid)
Definition: parse_type.h:58
static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
bool type_is_enum(Oid typid)
Definition: lsyscache.c:2456
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
FormData_pg_type * Form_pg_type
Definition: pg_type.h:250
Oid row_typeid
Definition: primnodes.h:1009
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:110
Expr * arg
Definition: primnodes.h:886
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1127
#define type_is_array(typid)
Definition: lsyscache.h:184
#define InvalidAttrNumber
Definition: attnum.h:23
static Node * coerce_record_to_complex(ParseState *pstate, Node *node, Oid targetTypeId, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:983
#define nodeTag(nodeptr)
Definition: nodes.h:530
int32 consttypmod
Definition: primnodes.h:197
CoercionForm coerceformat
Definition: primnodes.h:824
FormData_pg_class * Form_pg_class
Definition: pg_class.h:150
#define Int32GetDatum(X)
Definition: postgres.h:479
int errmsg(const char *fmt,...)
Definition: elog.c:822
CoercionPathType find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, CoercionContext ccontext, Oid *funcid)
int parser_coercion_errposition(ParseState *pstate, int coerce_location, Node *input_expr)
#define elog(elevel,...)
Definition: elog.h:228
int i
Node * coerce_to_specific_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *constructName)
void * arg
Oid select_common_type(ParseState *pstate, List *exprs, const char *context, Node **which_expr)
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:235
int location
Definition: primnodes.h:464
int32 resulttypmod
Definition: primnodes.h:847
static bool is_complex_array(Oid typid)
Type typeidType(Oid id)
Definition: parse_type.c:576
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
int location
Definition: primnodes.h:888
CoercionForm row_format
Definition: primnodes.h:1023
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2299
CoercionForm
Definition: primnodes.h:442
void get_type_category_preferred(Oid typid, char *typcategory, bool *typispreferred)
Definition: lsyscache.c:2478
Definition: pg_list.h:50
Node * coerce_to_specific_type_typmod(ParseState *pstate, Node *node, Oid targetTypeId, int32 targetTypmod, const char *constructName)
Oid get_range_subtype(Oid rangeOid)
Definition: lsyscache.c:3135
int location
Definition: primnodes.h:805
bool constisnull
Definition: primnodes.h:201
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:517
Node * coerce_to_boolean(ParseState *pstate, Node *node, const char *constructName)