PostgreSQL Source Code  git master
parse_coerce.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_coerce.c
4  * handle type coercions/conversions for parser
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_coerce.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "access/htup_details.h"
18 #include "catalog/pg_cast.h"
19 #include "catalog/pg_class.h"
20 #include "catalog/pg_inherits.h"
21 #include "catalog/pg_proc.h"
22 #include "catalog/pg_type.h"
23 #include "nodes/makefuncs.h"
24 #include "nodes/nodeFuncs.h"
25 #include "parser/parse_coerce.h"
26 #include "parser/parse_relation.h"
27 #include "parser/parse_type.h"
28 #include "utils/builtins.h"
29 #include "utils/datum.h"
30 #include "utils/lsyscache.h"
31 #include "utils/syscache.h"
32 #include "utils/typcache.h"
33 
34 
35 static Node *coerce_type_typmod(Node *node,
36  Oid targetTypeId, int32 targetTypMod,
37  CoercionContext ccontext, CoercionForm cformat,
38  int location,
39  bool hideInputCoercion);
40 static void hide_coercion_node(Node *node);
41 static Node *build_coercion_expression(Node *node,
42  CoercionPathType pathtype,
43  Oid funcId,
44  Oid targetTypeId, int32 targetTypMod,
45  CoercionContext ccontext, CoercionForm cformat,
46  int location);
47 static Node *coerce_record_to_complex(ParseState *pstate, Node *node,
48  Oid targetTypeId,
49  CoercionContext ccontext,
50  CoercionForm cformat,
51  int location);
52 static bool is_complex_array(Oid typid);
53 static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId);
54 
55 
56 /*
57  * coerce_to_target_type()
58  * Convert an expression to a target type and typmod.
59  *
60  * This is the general-purpose entry point for arbitrary type coercion
61  * operations. Direct use of the component operations can_coerce_type,
62  * coerce_type, and coerce_type_typmod should be restricted to special
63  * cases (eg, when the conversion is expected to succeed).
64  *
65  * Returns the possibly-transformed expression tree, or NULL if the type
66  * conversion is not possible. (We do this, rather than ereport'ing directly,
67  * so that callers can generate custom error messages indicating context.)
68  *
69  * pstate - parse state (can be NULL, see coerce_type)
70  * expr - input expression tree (already transformed by transformExpr)
71  * exprtype - result type of expr
72  * targettype - desired result type
73  * targettypmod - desired result typmod
74  * ccontext, cformat - context indicators to control coercions
75  * location - parse location of the coercion request, or -1 if unknown/implicit
76  */
77 Node *
78 coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype,
79  Oid targettype, int32 targettypmod,
80  CoercionContext ccontext,
81  CoercionForm cformat,
82  int location)
83 {
84  Node *result;
85  Node *origexpr;
86 
87  if (!can_coerce_type(1, &exprtype, &targettype, ccontext))
88  return NULL;
89 
90  /*
91  * If the input has a CollateExpr at the top, strip it off, perform the
92  * coercion, and put a new one back on. This is annoying since it
93  * duplicates logic in coerce_type, but if we don't do this then it's too
94  * hard to tell whether coerce_type actually changed anything, and we
95  * *must* know that to avoid possibly calling hide_coercion_node on
96  * something that wasn't generated by coerce_type. Note that if there are
97  * multiple stacked CollateExprs, we just discard all but the topmost.
98  */
99  origexpr = expr;
100  while (expr && IsA(expr, CollateExpr))
101  expr = (Node *) ((CollateExpr *) expr)->arg;
102 
103  result = coerce_type(pstate, expr, exprtype,
104  targettype, targettypmod,
105  ccontext, cformat, location);
106 
107  /*
108  * If the target is a fixed-length type, it may need a length coercion as
109  * well as a type coercion. If we find ourselves adding both, force the
110  * inner coercion node to implicit display form.
111  */
112  result = coerce_type_typmod(result,
113  targettype, targettypmod,
114  ccontext, cformat, location,
115  (result != expr && !IsA(result, Const)));
116 
117  if (expr != origexpr)
118  {
119  /* Reinstall top CollateExpr */
120  CollateExpr *coll = (CollateExpr *) origexpr;
121  CollateExpr *newcoll = makeNode(CollateExpr);
122 
123  newcoll->arg = (Expr *) result;
124  newcoll->collOid = coll->collOid;
125  newcoll->location = coll->location;
126  result = (Node *) newcoll;
127  }
128 
129  return result;
130 }
131 
132 
133 /*
134  * coerce_type()
135  * Convert an expression to a different type.
136  *
137  * The caller should already have determined that the coercion is possible;
138  * see can_coerce_type.
139  *
140  * Normally, no coercion to a typmod (length) is performed here. The caller
141  * must call coerce_type_typmod as well, if a typmod constraint is wanted.
142  * (But if the target type is a domain, it may internally contain a
143  * typmod constraint, which will be applied inside coerce_to_domain.)
144  * In some cases pg_cast specifies a type coercion function that also
145  * applies length conversion, and in those cases only, the result will
146  * already be properly coerced to the specified typmod.
147  *
148  * pstate is only used in the case that we are able to resolve the type of
149  * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the
150  * caller does not want type information updated for Params.
151  *
152  * Note: this function must not modify the given expression tree, only add
153  * decoration on top of it. See transformSetOperationTree, for example.
154  */
155 Node *
156 coerce_type(ParseState *pstate, Node *node,
157  Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
158  CoercionContext ccontext, CoercionForm cformat, int location)
159 {
160  Node *result;
161  CoercionPathType pathtype;
162  Oid funcId;
163 
164  if (targetTypeId == inputTypeId ||
165  node == NULL)
166  {
167  /* no conversion needed */
168  return node;
169  }
170  if (targetTypeId == ANYOID ||
171  targetTypeId == ANYELEMENTOID ||
172  targetTypeId == ANYNONARRAYOID)
173  {
174  /*
175  * Assume can_coerce_type verified that implicit coercion is okay.
176  *
177  * Note: by returning the unmodified node here, we are saying that
178  * it's OK to treat an UNKNOWN constant as a valid input for a
179  * function accepting ANY, ANYELEMENT, or ANYNONARRAY. This should be
180  * all right, since an UNKNOWN value is still a perfectly valid Datum.
181  *
182  * NB: we do NOT want a RelabelType here: the exposed type of the
183  * function argument must be its actual type, not the polymorphic
184  * pseudotype.
185  */
186  return node;
187  }
188  if (targetTypeId == ANYARRAYOID ||
189  targetTypeId == ANYENUMOID ||
190  targetTypeId == ANYRANGEOID)
191  {
192  /*
193  * Assume can_coerce_type verified that implicit coercion is okay.
194  *
195  * These cases are unlike the ones above because the exposed type of
196  * the argument must be an actual array, enum, or range type. In
197  * particular the argument must *not* be an UNKNOWN constant. If it
198  * is, we just fall through; below, we'll call anyarray_in,
199  * anyenum_in, or anyrange_in, which will produce an error. Also, if
200  * what we have is a domain over array, enum, or range, we have to
201  * relabel it to its base type.
202  *
203  * Note: currently, we can't actually see a domain-over-enum here,
204  * since the other functions in this file will not match such a
205  * parameter to ANYENUM. But that should get changed eventually.
206  */
207  if (inputTypeId != UNKNOWNOID)
208  {
209  Oid baseTypeId = getBaseType(inputTypeId);
210 
211  if (baseTypeId != inputTypeId)
212  {
213  RelabelType *r = makeRelabelType((Expr *) node,
214  baseTypeId, -1,
215  InvalidOid,
216  cformat);
217 
218  r->location = location;
219  return (Node *) r;
220  }
221  /* Not a domain type, so return it as-is */
222  return node;
223  }
224  }
225  if (inputTypeId == UNKNOWNOID && IsA(node, Const))
226  {
227  /*
228  * Input is a string constant with previously undetermined type. Apply
229  * the target type's typinput function to it to produce a constant of
230  * the target type.
231  *
232  * NOTE: this case cannot be folded together with the other
233  * constant-input case, since the typinput function does not
234  * necessarily behave the same as a type conversion function. For
235  * example, int4's typinput function will reject "1.2", whereas
236  * float-to-int type conversion will round to integer.
237  *
238  * XXX if the typinput function is not immutable, we really ought to
239  * postpone evaluation of the function call until runtime. But there
240  * is no way to represent a typinput function call as an expression
241  * tree, because C-string values are not Datums. (XXX This *is*
242  * possible as of 7.3, do we want to do it?)
243  */
244  Const *con = (Const *) node;
245  Const *newcon = makeNode(Const);
246  Oid baseTypeId;
247  int32 baseTypeMod;
248  int32 inputTypeMod;
249  Type baseType;
250  ParseCallbackState pcbstate;
251 
252  /*
253  * If the target type is a domain, we want to call its base type's
254  * input routine, not domain_in(). This is to avoid premature failure
255  * when the domain applies a typmod: existing input routines follow
256  * implicit-coercion semantics for length checks, which is not always
257  * what we want here. The needed check will be applied properly
258  * inside coerce_to_domain().
259  */
260  baseTypeMod = targetTypeMod;
261  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
262 
263  /*
264  * For most types we pass typmod -1 to the input routine, because
265  * existing input routines follow implicit-coercion semantics for
266  * length checks, which is not always what we want here. Any length
267  * constraint will be applied later by our caller. An exception
268  * however is the INTERVAL type, for which we *must* pass the typmod
269  * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly
270  * as sin, but so is this part of the spec...)
271  */
272  if (baseTypeId == INTERVALOID)
273  inputTypeMod = baseTypeMod;
274  else
275  inputTypeMod = -1;
276 
277  baseType = typeidType(baseTypeId);
278 
279  newcon->consttype = baseTypeId;
280  newcon->consttypmod = inputTypeMod;
281  newcon->constcollid = typeTypeCollation(baseType);
282  newcon->constlen = typeLen(baseType);
283  newcon->constbyval = typeByVal(baseType);
284  newcon->constisnull = con->constisnull;
285 
286  /*
287  * We use the original literal's location regardless of the position
288  * of the coercion. This is a change from pre-9.2 behavior, meant to
289  * simplify life for pg_stat_statements.
290  */
291  newcon->location = con->location;
292 
293  /*
294  * Set up to point at the constant's text if the input routine throws
295  * an error.
296  */
297  setup_parser_errposition_callback(&pcbstate, pstate, con->location);
298 
299  /*
300  * We assume here that UNKNOWN's internal representation is the same
301  * as CSTRING.
302  */
303  if (!con->constisnull)
304  newcon->constvalue = stringTypeDatum(baseType,
306  inputTypeMod);
307  else
308  newcon->constvalue = stringTypeDatum(baseType,
309  NULL,
310  inputTypeMod);
311 
312  /*
313  * If it's a varlena value, force it to be in non-expanded
314  * (non-toasted) format; this avoids any possible dependency on
315  * external values and improves consistency of representation.
316  */
317  if (!con->constisnull && newcon->constlen == -1)
318  newcon->constvalue =
320 
321 #ifdef RANDOMIZE_ALLOCATED_MEMORY
322 
323  /*
324  * For pass-by-reference data types, repeat the conversion to see if
325  * the input function leaves any uninitialized bytes in the result. We
326  * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is
327  * enabled, so we don't bother testing otherwise. The reason we don't
328  * want any instability in the input function is that comparison of
329  * Const nodes relies on bytewise comparison of the datums, so if the
330  * input function leaves garbage then subexpressions that should be
331  * identical may not get recognized as such. See pgsql-hackers
332  * discussion of 2008-04-04.
333  */
334  if (!con->constisnull && !newcon->constbyval)
335  {
336  Datum val2;
337 
338  val2 = stringTypeDatum(baseType,
340  inputTypeMod);
341  if (newcon->constlen == -1)
342  val2 = PointerGetDatum(PG_DETOAST_DATUM(val2));
343  if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen))
344  elog(WARNING, "type %s has unstable input conversion for \"%s\"",
345  typeTypeName(baseType), DatumGetCString(con->constvalue));
346  }
347 #endif
348 
350 
351  result = (Node *) newcon;
352 
353  /* If target is a domain, apply constraints. */
354  if (baseTypeId != targetTypeId)
355  result = coerce_to_domain(result,
356  baseTypeId, baseTypeMod,
357  targetTypeId,
358  ccontext, cformat, location,
359  false);
360 
361  ReleaseSysCache(baseType);
362 
363  return result;
364  }
365  if (IsA(node, Param) &&
366  pstate != NULL && pstate->p_coerce_param_hook != NULL)
367  {
368  /*
369  * Allow the CoerceParamHook to decide what happens. It can return a
370  * transformed node (very possibly the same Param node), or return
371  * NULL to indicate we should proceed with normal coercion.
372  */
373  result = pstate->p_coerce_param_hook(pstate,
374  (Param *) node,
375  targetTypeId,
376  targetTypeMod,
377  location);
378  if (result)
379  return result;
380  }
381  if (IsA(node, CollateExpr))
382  {
383  /*
384  * If we have a COLLATE clause, we have to push the coercion
385  * underneath the COLLATE. This is really ugly, but there is little
386  * choice because the above hacks on Consts and Params wouldn't happen
387  * otherwise. This kluge has consequences in coerce_to_target_type.
388  */
389  CollateExpr *coll = (CollateExpr *) node;
390  CollateExpr *newcoll = makeNode(CollateExpr);
391 
392  newcoll->arg = (Expr *)
393  coerce_type(pstate, (Node *) coll->arg,
394  inputTypeId, targetTypeId, targetTypeMod,
395  ccontext, cformat, location);
396  newcoll->collOid = coll->collOid;
397  newcoll->location = coll->location;
398  return (Node *) newcoll;
399  }
400  pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
401  &funcId);
402  if (pathtype != COERCION_PATH_NONE)
403  {
404  if (pathtype != COERCION_PATH_RELABELTYPE)
405  {
406  /*
407  * Generate an expression tree representing run-time application
408  * of the conversion function. If we are dealing with a domain
409  * target type, the conversion function will yield the base type,
410  * and we need to extract the correct typmod to use from the
411  * domain's typtypmod.
412  */
413  Oid baseTypeId;
414  int32 baseTypeMod;
415 
416  baseTypeMod = targetTypeMod;
417  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
418 
419  result = build_coercion_expression(node, pathtype, funcId,
420  baseTypeId, baseTypeMod,
421  ccontext, cformat, location);
422 
423  /*
424  * If domain, coerce to the domain type and relabel with domain
425  * type ID, hiding the previous coercion node.
426  */
427  if (targetTypeId != baseTypeId)
428  result = coerce_to_domain(result, baseTypeId, baseTypeMod,
429  targetTypeId,
430  ccontext, cformat, location,
431  true);
432  }
433  else
434  {
435  /*
436  * We don't need to do a physical conversion, but we do need to
437  * attach a RelabelType node so that the expression will be seen
438  * to have the intended type when inspected by higher-level code.
439  *
440  * Also, domains may have value restrictions beyond the base type
441  * that must be accounted for. If the destination is a domain
442  * then we won't need a RelabelType node.
443  */
444  result = coerce_to_domain(node, InvalidOid, -1, targetTypeId,
445  ccontext, cformat, location,
446  false);
447  if (result == node)
448  {
449  /*
450  * XXX could we label result with exprTypmod(node) instead of
451  * default -1 typmod, to save a possible length-coercion
452  * later? Would work if both types have same interpretation of
453  * typmod, which is likely but not certain.
454  */
455  RelabelType *r = makeRelabelType((Expr *) result,
456  targetTypeId, -1,
457  InvalidOid,
458  cformat);
459 
460  r->location = location;
461  result = (Node *) r;
462  }
463  }
464  return result;
465  }
466  if (inputTypeId == RECORDOID &&
467  ISCOMPLEX(targetTypeId))
468  {
469  /* Coerce a RECORD to a specific complex type */
470  return coerce_record_to_complex(pstate, node, targetTypeId,
471  ccontext, cformat, location);
472  }
473  if (targetTypeId == RECORDOID &&
474  ISCOMPLEX(inputTypeId))
475  {
476  /* Coerce a specific complex type to RECORD */
477  /* NB: we do NOT want a RelabelType here */
478  return node;
479  }
480 #ifdef NOT_USED
481  if (inputTypeId == RECORDARRAYOID &&
482  is_complex_array(targetTypeId))
483  {
484  /* Coerce record[] to a specific complex array type */
485  /* not implemented yet ... */
486  }
487 #endif
488  if (targetTypeId == RECORDARRAYOID &&
489  is_complex_array(inputTypeId))
490  {
491  /* Coerce a specific complex array type to record[] */
492  /* NB: we do NOT want a RelabelType here */
493  return node;
494  }
495  if (typeInheritsFrom(inputTypeId, targetTypeId)
496  || typeIsOfTypedTable(inputTypeId, targetTypeId))
497  {
498  /*
499  * Input class type is a subclass of target, so generate an
500  * appropriate runtime conversion (removing unneeded columns and
501  * possibly rearranging the ones that are wanted).
502  *
503  * We will also get here when the input is a domain over a subclass of
504  * the target type. To keep life simple for the executor, we define
505  * ConvertRowtypeExpr as only working between regular composite types;
506  * therefore, in such cases insert a RelabelType to smash the input
507  * expression down to its base type.
508  */
509  Oid baseTypeId = getBaseType(inputTypeId);
511 
512  if (baseTypeId != inputTypeId)
513  {
514  RelabelType *rt = makeRelabelType((Expr *) node,
515  baseTypeId, -1,
516  InvalidOid,
518 
519  rt->location = location;
520  node = (Node *) rt;
521  }
522  r->arg = (Expr *) node;
523  r->resulttype = targetTypeId;
524  r->convertformat = cformat;
525  r->location = location;
526  return (Node *) r;
527  }
528  /* If we get here, caller blew it */
529  elog(ERROR, "failed to find conversion function from %s to %s",
530  format_type_be(inputTypeId), format_type_be(targetTypeId));
531  return NULL; /* keep compiler quiet */
532 }
533 
534 
535 /*
536  * can_coerce_type()
537  * Can input_typeids be coerced to target_typeids?
538  *
539  * We must be told the context (CAST construct, assignment, implicit coercion)
540  * as this determines the set of available casts.
541  */
542 bool
543 can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids,
544  CoercionContext ccontext)
545 {
546  bool have_generics = false;
547  int i;
548 
549  /* run through argument list... */
550  for (i = 0; i < nargs; i++)
551  {
552  Oid inputTypeId = input_typeids[i];
553  Oid targetTypeId = target_typeids[i];
554  CoercionPathType pathtype;
555  Oid funcId;
556 
557  /* no problem if same type */
558  if (inputTypeId == targetTypeId)
559  continue;
560 
561  /* accept if target is ANY */
562  if (targetTypeId == ANYOID)
563  continue;
564 
565  /* accept if target is polymorphic, for now */
566  if (IsPolymorphicType(targetTypeId))
567  {
568  have_generics = true; /* do more checking later */
569  continue;
570  }
571 
572  /*
573  * If input is an untyped string constant, assume we can convert it to
574  * anything.
575  */
576  if (inputTypeId == UNKNOWNOID)
577  continue;
578 
579  /*
580  * If pg_cast shows that we can coerce, accept. This test now covers
581  * both binary-compatible and coercion-function cases.
582  */
583  pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
584  &funcId);
585  if (pathtype != COERCION_PATH_NONE)
586  continue;
587 
588  /*
589  * If input is RECORD and target is a composite type, assume we can
590  * coerce (may need tighter checking here)
591  */
592  if (inputTypeId == RECORDOID &&
593  ISCOMPLEX(targetTypeId))
594  continue;
595 
596  /*
597  * If input is a composite type and target is RECORD, accept
598  */
599  if (targetTypeId == RECORDOID &&
600  ISCOMPLEX(inputTypeId))
601  continue;
602 
603 #ifdef NOT_USED /* not implemented yet */
604 
605  /*
606  * If input is record[] and target is a composite array type, assume
607  * we can coerce (may need tighter checking here)
608  */
609  if (inputTypeId == RECORDARRAYOID &&
610  is_complex_array(targetTypeId))
611  continue;
612 #endif
613 
614  /*
615  * If input is a composite array type and target is record[], accept
616  */
617  if (targetTypeId == RECORDARRAYOID &&
618  is_complex_array(inputTypeId))
619  continue;
620 
621  /*
622  * If input is a class type that inherits from target, accept
623  */
624  if (typeInheritsFrom(inputTypeId, targetTypeId)
625  || typeIsOfTypedTable(inputTypeId, targetTypeId))
626  continue;
627 
628  /*
629  * Else, cannot coerce at this argument position
630  */
631  return false;
632  }
633 
634  /* If we found any generic argument types, cross-check them */
635  if (have_generics)
636  {
637  if (!check_generic_type_consistency(input_typeids, target_typeids,
638  nargs))
639  return false;
640  }
641 
642  return true;
643 }
644 
645 
646 /*
647  * Create an expression tree to represent coercion to a domain type.
648  *
649  * 'arg': input expression
650  * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
651  * has not bothered to look this up)
652  * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
653  * has not bothered to look this up)
654  * 'typeId': target type to coerce to
655  * 'ccontext': context indicator to control coercions
656  * 'cformat': coercion display format
657  * 'location': coercion request location
658  * 'hideInputCoercion': if true, hide the input coercion under this one.
659  *
660  * If the target type isn't a domain, the given 'arg' is returned as-is.
661  */
662 Node *
663 coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId,
664  CoercionContext ccontext, CoercionForm cformat, int location,
665  bool hideInputCoercion)
666 {
667  CoerceToDomain *result;
668 
669  /* Get the base type if it hasn't been supplied */
670  if (baseTypeId == InvalidOid)
671  baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);
672 
673  /* If it isn't a domain, return the node as it was passed in */
674  if (baseTypeId == typeId)
675  return arg;
676 
677  /* Suppress display of nested coercion steps */
678  if (hideInputCoercion)
679  hide_coercion_node(arg);
680 
681  /*
682  * If the domain applies a typmod to its base type, build the appropriate
683  * coercion step. Mark it implicit for display purposes, because we don't
684  * want it shown separately by ruleutils.c; but the isExplicit flag passed
685  * to the conversion function depends on the manner in which the domain
686  * coercion is invoked, so that the semantics of implicit and explicit
687  * coercion differ. (Is that really the behavior we want?)
688  *
689  * NOTE: because we apply this as part of the fixed expression structure,
690  * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that
691  * would be safe to do anyway, without lots of knowledge about what the
692  * base type thinks the typmod means.
693  */
694  arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod,
695  ccontext, COERCE_IMPLICIT_CAST, location,
696  false);
697 
698  /*
699  * Now build the domain coercion node. This represents run-time checking
700  * of any constraints currently attached to the domain. This also ensures
701  * that the expression is properly labeled as to result type.
702  */
703  result = makeNode(CoerceToDomain);
704  result->arg = (Expr *) arg;
705  result->resulttype = typeId;
706  result->resulttypmod = -1; /* currently, always -1 for domains */
707  /* resultcollid will be set by parse_collate.c */
708  result->coercionformat = cformat;
709  result->location = location;
710 
711  return (Node *) result;
712 }
713 
714 
715 /*
716  * coerce_type_typmod()
717  * Force a value to a particular typmod, if meaningful and possible.
718  *
719  * This is applied to values that are going to be stored in a relation
720  * (where we have an atttypmod for the column) as well as values being
721  * explicitly CASTed (where the typmod comes from the target type spec).
722  *
723  * The caller must have already ensured that the value is of the correct
724  * type, typically by applying coerce_type.
725  *
726  * ccontext may affect semantics, depending on whether the length coercion
727  * function pays attention to the isExplicit flag it's passed.
728  *
729  * cformat determines the display properties of the generated node (if any).
730  *
731  * If hideInputCoercion is true *and* we generate a node, the input node is
732  * forced to IMPLICIT display form, so that only the typmod coercion node will
733  * be visible when displaying the expression.
734  *
735  * NOTE: this does not need to work on domain types, because any typmod
736  * coercion for a domain is considered to be part of the type coercion
737  * needed to produce the domain value in the first place. So, no getBaseType.
738  */
739 static Node *
740 coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod,
741  CoercionContext ccontext, CoercionForm cformat,
742  int location,
743  bool hideInputCoercion)
744 {
745  CoercionPathType pathtype;
746  Oid funcId;
747 
748  /*
749  * A negative typmod is assumed to mean that no coercion is wanted. Also,
750  * skip coercion if already done.
751  */
752  if (targetTypMod < 0 || targetTypMod == exprTypmod(node))
753  return node;
754 
755  pathtype = find_typmod_coercion_function(targetTypeId, &funcId);
756 
757  if (pathtype != COERCION_PATH_NONE)
758  {
759  /* Suppress display of nested coercion steps */
760  if (hideInputCoercion)
761  hide_coercion_node(node);
762 
763  node = build_coercion_expression(node, pathtype, funcId,
764  targetTypeId, targetTypMod,
765  ccontext, cformat, location);
766  }
767 
768  return node;
769 }
770 
771 /*
772  * Mark a coercion node as IMPLICIT so it will never be displayed by
773  * ruleutils.c. We use this when we generate a nest of coercion nodes
774  * to implement what is logically one conversion; the inner nodes are
775  * forced to IMPLICIT_CAST format. This does not change their semantics,
776  * only display behavior.
777  *
778  * It is caller error to call this on something that doesn't have a
779  * CoercionForm field.
780  */
781 static void
783 {
784  if (IsA(node, FuncExpr))
785  ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST;
786  else if (IsA(node, RelabelType))
787  ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST;
788  else if (IsA(node, CoerceViaIO))
789  ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST;
790  else if (IsA(node, ArrayCoerceExpr))
791  ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST;
792  else if (IsA(node, ConvertRowtypeExpr))
793  ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST;
794  else if (IsA(node, RowExpr))
795  ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST;
796  else if (IsA(node, CoerceToDomain))
797  ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST;
798  else
799  elog(ERROR, "unsupported node type: %d", (int) nodeTag(node));
800 }
801 
802 /*
803  * build_coercion_expression()
804  * Construct an expression tree for applying a pg_cast entry.
805  *
806  * This is used for both type-coercion and length-coercion operations,
807  * since there is no difference in terms of the calling convention.
808  */
809 static Node *
811  CoercionPathType pathtype,
812  Oid funcId,
813  Oid targetTypeId, int32 targetTypMod,
814  CoercionContext ccontext, CoercionForm cformat,
815  int location)
816 {
817  int nargs = 0;
818 
819  if (OidIsValid(funcId))
820  {
821  HeapTuple tp;
822  Form_pg_proc procstruct;
823 
825  if (!HeapTupleIsValid(tp))
826  elog(ERROR, "cache lookup failed for function %u", funcId);
827  procstruct = (Form_pg_proc) GETSTRUCT(tp);
828 
829  /*
830  * These Asserts essentially check that function is a legal coercion
831  * function. We can't make the seemingly obvious tests on prorettype
832  * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of
833  * various binary-compatibility cases.
834  */
835  /* Assert(targetTypeId == procstruct->prorettype); */
836  Assert(!procstruct->proretset);
837  Assert(procstruct->prokind == PROKIND_FUNCTION);
838  nargs = procstruct->pronargs;
839  Assert(nargs >= 1 && nargs <= 3);
840  /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */
841  Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID);
842  Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID);
843 
844  ReleaseSysCache(tp);
845  }
846 
847  if (pathtype == COERCION_PATH_FUNC)
848  {
849  /* We build an ordinary FuncExpr with special arguments */
850  FuncExpr *fexpr;
851  List *args;
852  Const *cons;
853 
854  Assert(OidIsValid(funcId));
855 
856  args = list_make1(node);
857 
858  if (nargs >= 2)
859  {
860  /* Pass target typmod as an int4 constant */
861  cons = makeConst(INT4OID,
862  -1,
863  InvalidOid,
864  sizeof(int32),
865  Int32GetDatum(targetTypMod),
866  false,
867  true);
868 
869  args = lappend(args, cons);
870  }
871 
872  if (nargs == 3)
873  {
874  /* Pass it a boolean isExplicit parameter, too */
875  cons = makeConst(BOOLOID,
876  -1,
877  InvalidOid,
878  sizeof(bool),
879  BoolGetDatum(ccontext == COERCION_EXPLICIT),
880  false,
881  true);
882 
883  args = lappend(args, cons);
884  }
885 
886  fexpr = makeFuncExpr(funcId, targetTypeId, args,
887  InvalidOid, InvalidOid, cformat);
888  fexpr->location = location;
889  return (Node *) fexpr;
890  }
891  else if (pathtype == COERCION_PATH_ARRAYCOERCE)
892  {
893  /* We need to build an ArrayCoerceExpr */
896  Oid sourceBaseTypeId;
897  int32 sourceBaseTypeMod;
898  Oid targetElementType;
899  Node *elemexpr;
900 
901  /*
902  * Look through any domain over the source array type. Note we don't
903  * expect that the target type is a domain; it must be a plain array.
904  * (To get to a domain target type, we'll do coerce_to_domain later.)
905  */
906  sourceBaseTypeMod = exprTypmod(node);
907  sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node),
908  &sourceBaseTypeMod);
909 
910  /*
911  * Set up a CaseTestExpr representing one element of the source array.
912  * This is an abuse of CaseTestExpr, but it's OK as long as there
913  * can't be any CaseExpr or ArrayCoerceExpr within the completed
914  * elemexpr.
915  */
916  ctest->typeId = get_element_type(sourceBaseTypeId);
917  Assert(OidIsValid(ctest->typeId));
918  ctest->typeMod = sourceBaseTypeMod;
919  ctest->collation = InvalidOid; /* Assume coercions don't care */
920 
921  /* And coerce it to the target element type */
922  targetElementType = get_element_type(targetTypeId);
923  Assert(OidIsValid(targetElementType));
924 
925  elemexpr = coerce_to_target_type(NULL,
926  (Node *) ctest,
927  ctest->typeId,
928  targetElementType,
929  targetTypMod,
930  ccontext,
931  cformat,
932  location);
933  if (elemexpr == NULL) /* shouldn't happen */
934  elog(ERROR, "failed to coerce array element type as expected");
935 
936  acoerce->arg = (Expr *) node;
937  acoerce->elemexpr = (Expr *) elemexpr;
938  acoerce->resulttype = targetTypeId;
939 
940  /*
941  * Label the output as having a particular element typmod only if we
942  * ended up with a per-element expression that is labeled that way.
943  */
944  acoerce->resulttypmod = exprTypmod(elemexpr);
945  /* resultcollid will be set by parse_collate.c */
946  acoerce->coerceformat = cformat;
947  acoerce->location = location;
948 
949  return (Node *) acoerce;
950  }
951  else if (pathtype == COERCION_PATH_COERCEVIAIO)
952  {
953  /* We need to build a CoerceViaIO node */
954  CoerceViaIO *iocoerce = makeNode(CoerceViaIO);
955 
956  Assert(!OidIsValid(funcId));
957 
958  iocoerce->arg = (Expr *) node;
959  iocoerce->resulttype = targetTypeId;
960  /* resultcollid will be set by parse_collate.c */
961  iocoerce->coerceformat = cformat;
962  iocoerce->location = location;
963 
964  return (Node *) iocoerce;
965  }
966  else
967  {
968  elog(ERROR, "unsupported pathtype %d in build_coercion_expression",
969  (int) pathtype);
970  return NULL; /* keep compiler quiet */
971  }
972 }
973 
974 
975 /*
976  * coerce_record_to_complex
977  * Coerce a RECORD to a specific composite type.
978  *
979  * Currently we only support this for inputs that are RowExprs or whole-row
980  * Vars.
981  */
982 static Node *
984  Oid targetTypeId,
985  CoercionContext ccontext,
986  CoercionForm cformat,
987  int location)
988 {
989  RowExpr *rowexpr;
990  Oid baseTypeId;
991  int32 baseTypeMod = -1;
992  TupleDesc tupdesc;
993  List *args = NIL;
994  List *newargs;
995  int i;
996  int ucolno;
997  ListCell *arg;
998 
999  if (node && IsA(node, RowExpr))
1000  {
1001  /*
1002  * Since the RowExpr must be of type RECORD, we needn't worry about it
1003  * containing any dropped columns.
1004  */
1005  args = ((RowExpr *) node)->args;
1006  }
1007  else if (node && IsA(node, Var) &&
1008  ((Var *) node)->varattno == InvalidAttrNumber)
1009  {
1010  int rtindex = ((Var *) node)->varno;
1011  int sublevels_up = ((Var *) node)->varlevelsup;
1012  int vlocation = ((Var *) node)->location;
1013  ParseNamespaceItem *nsitem;
1014 
1015  nsitem = GetNSItemByRangeTablePosn(pstate, rtindex, sublevels_up);
1016  args = expandNSItemVars(nsitem, sublevels_up, vlocation, NULL);
1017  }
1018  else
1019  ereport(ERROR,
1020  (errcode(ERRCODE_CANNOT_COERCE),
1021  errmsg("cannot cast type %s to %s",
1022  format_type_be(RECORDOID),
1023  format_type_be(targetTypeId)),
1024  parser_coercion_errposition(pstate, location, node)));
1025 
1026  /*
1027  * Look up the composite type, accounting for possibility that what we are
1028  * given is a domain over composite.
1029  */
1030  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
1031  tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod);
1032 
1033  /* Process the fields */
1034  newargs = NIL;
1035  ucolno = 1;
1036  arg = list_head(args);
1037  for (i = 0; i < tupdesc->natts; i++)
1038  {
1039  Node *expr;
1040  Node *cexpr;
1041  Oid exprtype;
1042  Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
1043 
1044  /* Fill in NULLs for dropped columns in rowtype */
1045  if (attr->attisdropped)
1046  {
1047  /*
1048  * can't use atttypid here, but it doesn't really matter what type
1049  * the Const claims to be.
1050  */
1051  newargs = lappend(newargs,
1052  makeNullConst(INT4OID, -1, InvalidOid));
1053  continue;
1054  }
1055 
1056  if (arg == NULL)
1057  ereport(ERROR,
1058  (errcode(ERRCODE_CANNOT_COERCE),
1059  errmsg("cannot cast type %s to %s",
1060  format_type_be(RECORDOID),
1061  format_type_be(targetTypeId)),
1062  errdetail("Input has too few columns."),
1063  parser_coercion_errposition(pstate, location, node)));
1064  expr = (Node *) lfirst(arg);
1065  exprtype = exprType(expr);
1066 
1067  cexpr = coerce_to_target_type(pstate,
1068  expr, exprtype,
1069  attr->atttypid,
1070  attr->atttypmod,
1071  ccontext,
1073  -1);
1074  if (cexpr == NULL)
1075  ereport(ERROR,
1076  (errcode(ERRCODE_CANNOT_COERCE),
1077  errmsg("cannot cast type %s to %s",
1078  format_type_be(RECORDOID),
1079  format_type_be(targetTypeId)),
1080  errdetail("Cannot cast type %s to %s in column %d.",
1081  format_type_be(exprtype),
1082  format_type_be(attr->atttypid),
1083  ucolno),
1084  parser_coercion_errposition(pstate, location, expr)));
1085  newargs = lappend(newargs, cexpr);
1086  ucolno++;
1087  arg = lnext(args, arg);
1088  }
1089  if (arg != NULL)
1090  ereport(ERROR,
1091  (errcode(ERRCODE_CANNOT_COERCE),
1092  errmsg("cannot cast type %s to %s",
1093  format_type_be(RECORDOID),
1094  format_type_be(targetTypeId)),
1095  errdetail("Input has too many columns."),
1096  parser_coercion_errposition(pstate, location, node)));
1097 
1098  ReleaseTupleDesc(tupdesc);
1099 
1100  rowexpr = makeNode(RowExpr);
1101  rowexpr->args = newargs;
1102  rowexpr->row_typeid = baseTypeId;
1103  rowexpr->row_format = cformat;
1104  rowexpr->colnames = NIL; /* not needed for named target type */
1105  rowexpr->location = location;
1106 
1107  /* If target is a domain, apply constraints */
1108  if (baseTypeId != targetTypeId)
1109  {
1110  rowexpr->row_format = COERCE_IMPLICIT_CAST;
1111  return coerce_to_domain((Node *) rowexpr,
1112  baseTypeId, baseTypeMod,
1113  targetTypeId,
1114  ccontext, cformat, location,
1115  false);
1116  }
1117 
1118  return (Node *) rowexpr;
1119 }
1120 
1121 /*
1122  * coerce_to_boolean()
1123  * Coerce an argument of a construct that requires boolean input
1124  * (AND, OR, NOT, etc). Also check that input is not a set.
1125  *
1126  * Returns the possibly-transformed node tree.
1127  *
1128  * As with coerce_type, pstate may be NULL if no special unknown-Param
1129  * processing is wanted.
1130  */
1131 Node *
1133  const char *constructName)
1134 {
1135  Oid inputTypeId = exprType(node);
1136 
1137  if (inputTypeId != BOOLOID)
1138  {
1139  Node *newnode;
1140 
1141  newnode = coerce_to_target_type(pstate, node, inputTypeId,
1142  BOOLOID, -1,
1145  -1);
1146  if (newnode == NULL)
1147  ereport(ERROR,
1148  (errcode(ERRCODE_DATATYPE_MISMATCH),
1149  /* translator: first %s is name of a SQL construct, eg WHERE */
1150  errmsg("argument of %s must be type %s, not type %s",
1151  constructName, "boolean",
1152  format_type_be(inputTypeId)),
1153  parser_errposition(pstate, exprLocation(node))));
1154  node = newnode;
1155  }
1156 
1157  if (expression_returns_set(node))
1158  ereport(ERROR,
1159  (errcode(ERRCODE_DATATYPE_MISMATCH),
1160  /* translator: %s is name of a SQL construct, eg WHERE */
1161  errmsg("argument of %s must not return a set",
1162  constructName),
1163  parser_errposition(pstate, exprLocation(node))));
1164 
1165  return node;
1166 }
1167 
1168 /*
1169  * coerce_to_specific_type_typmod()
1170  * Coerce an argument of a construct that requires a specific data type,
1171  * with a specific typmod. Also check that input is not a set.
1172  *
1173  * Returns the possibly-transformed node tree.
1174  *
1175  * As with coerce_type, pstate may be NULL if no special unknown-Param
1176  * processing is wanted.
1177  */
1178 Node *
1180  Oid targetTypeId, int32 targetTypmod,
1181  const char *constructName)
1182 {
1183  Oid inputTypeId = exprType(node);
1184 
1185  if (inputTypeId != targetTypeId)
1186  {
1187  Node *newnode;
1188 
1189  newnode = coerce_to_target_type(pstate, node, inputTypeId,
1190  targetTypeId, targetTypmod,
1193  -1);
1194  if (newnode == NULL)
1195  ereport(ERROR,
1196  (errcode(ERRCODE_DATATYPE_MISMATCH),
1197  /* translator: first %s is name of a SQL construct, eg LIMIT */
1198  errmsg("argument of %s must be type %s, not type %s",
1199  constructName,
1200  format_type_be(targetTypeId),
1201  format_type_be(inputTypeId)),
1202  parser_errposition(pstate, exprLocation(node))));
1203  node = newnode;
1204  }
1205 
1206  if (expression_returns_set(node))
1207  ereport(ERROR,
1208  (errcode(ERRCODE_DATATYPE_MISMATCH),
1209  /* translator: %s is name of a SQL construct, eg LIMIT */
1210  errmsg("argument of %s must not return a set",
1211  constructName),
1212  parser_errposition(pstate, exprLocation(node))));
1213 
1214  return node;
1215 }
1216 
1217 /*
1218  * coerce_to_specific_type()
1219  * Coerce an argument of a construct that requires a specific data type.
1220  * Also check that input is not a set.
1221  *
1222  * Returns the possibly-transformed node tree.
1223  *
1224  * As with coerce_type, pstate may be NULL if no special unknown-Param
1225  * processing is wanted.
1226  */
1227 Node *
1229  Oid targetTypeId,
1230  const char *constructName)
1231 {
1232  return coerce_to_specific_type_typmod(pstate, node,
1233  targetTypeId, -1,
1234  constructName);
1235 }
1236 
1237 /*
1238  * parser_coercion_errposition - report coercion error location, if possible
1239  *
1240  * We prefer to point at the coercion request (CAST, ::, etc) if possible;
1241  * but there may be no such location in the case of an implicit coercion.
1242  * In that case point at the input expression.
1243  *
1244  * XXX possibly this is more generally useful than coercion errors;
1245  * if so, should rename and place with parser_errposition.
1246  */
1247 int
1249  int coerce_location,
1250  Node *input_expr)
1251 {
1252  if (coerce_location >= 0)
1253  return parser_errposition(pstate, coerce_location);
1254  else
1255  return parser_errposition(pstate, exprLocation(input_expr));
1256 }
1257 
1258 
1259 /*
1260  * select_common_type()
1261  * Determine the common supertype of a list of input expressions.
1262  * This is used for determining the output type of CASE, UNION,
1263  * and similar constructs.
1264  *
1265  * 'exprs' is a *nonempty* list of expressions. Note that earlier items
1266  * in the list will be preferred if there is doubt.
1267  * 'context' is a phrase to use in the error message if we fail to select
1268  * a usable type. Pass NULL to have the routine return InvalidOid
1269  * rather than throwing an error on failure.
1270  * 'which_expr': if not NULL, receives a pointer to the particular input
1271  * expression from which the result type was taken.
1272  */
1273 Oid
1274 select_common_type(ParseState *pstate, List *exprs, const char *context,
1275  Node **which_expr)
1276 {
1277  Node *pexpr;
1278  Oid ptype;
1279  TYPCATEGORY pcategory;
1280  bool pispreferred;
1281  ListCell *lc;
1282 
1283  Assert(exprs != NIL);
1284  pexpr = (Node *) linitial(exprs);
1285  lc = list_second_cell(exprs);
1286  ptype = exprType(pexpr);
1287 
1288  /*
1289  * If all input types are valid and exactly the same, just pick that type.
1290  * This is the only way that we will resolve the result as being a domain
1291  * type; otherwise domains are smashed to their base types for comparison.
1292  */
1293  if (ptype != UNKNOWNOID)
1294  {
1295  for_each_cell(lc, exprs, lc)
1296  {
1297  Node *nexpr = (Node *) lfirst(lc);
1298  Oid ntype = exprType(nexpr);
1299 
1300  if (ntype != ptype)
1301  break;
1302  }
1303  if (lc == NULL) /* got to the end of the list? */
1304  {
1305  if (which_expr)
1306  *which_expr = pexpr;
1307  return ptype;
1308  }
1309  }
1310 
1311  /*
1312  * Nope, so set up for the full algorithm. Note that at this point, lc
1313  * points to the first list item with type different from pexpr's; we need
1314  * not re-examine any items the previous loop advanced over.
1315  */
1316  ptype = getBaseType(ptype);
1317  get_type_category_preferred(ptype, &pcategory, &pispreferred);
1318 
1319  for_each_cell(lc, exprs, lc)
1320  {
1321  Node *nexpr = (Node *) lfirst(lc);
1322  Oid ntype = getBaseType(exprType(nexpr));
1323 
1324  /* move on to next one if no new information... */
1325  if (ntype != UNKNOWNOID && ntype != ptype)
1326  {
1327  TYPCATEGORY ncategory;
1328  bool nispreferred;
1329 
1330  get_type_category_preferred(ntype, &ncategory, &nispreferred);
1331  if (ptype == UNKNOWNOID)
1332  {
1333  /* so far, only unknowns so take anything... */
1334  pexpr = nexpr;
1335  ptype = ntype;
1336  pcategory = ncategory;
1337  pispreferred = nispreferred;
1338  }
1339  else if (ncategory != pcategory)
1340  {
1341  /*
1342  * both types in different categories? then not much hope...
1343  */
1344  if (context == NULL)
1345  return InvalidOid;
1346  ereport(ERROR,
1347  (errcode(ERRCODE_DATATYPE_MISMATCH),
1348  /*------
1349  translator: first %s is name of a SQL construct, eg CASE */
1350  errmsg("%s types %s and %s cannot be matched",
1351  context,
1352  format_type_be(ptype),
1353  format_type_be(ntype)),
1354  parser_errposition(pstate, exprLocation(nexpr))));
1355  }
1356  else if (!pispreferred &&
1357  can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
1358  !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
1359  {
1360  /*
1361  * take new type if can coerce to it implicitly but not the
1362  * other way; but if we have a preferred type, stay on it.
1363  */
1364  pexpr = nexpr;
1365  ptype = ntype;
1366  pcategory = ncategory;
1367  pispreferred = nispreferred;
1368  }
1369  }
1370  }
1371 
1372  /*
1373  * If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
1374  * then resolve as type TEXT. This situation comes up with constructs
1375  * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
1376  * UNION SELECT 'bar'; It might seem desirable to leave the construct's
1377  * output type as UNKNOWN, but that really doesn't work, because we'd
1378  * probably end up needing a runtime coercion from UNKNOWN to something
1379  * else, and we usually won't have it. We need to coerce the unknown
1380  * literals while they are still literals, so a decision has to be made
1381  * now.
1382  */
1383  if (ptype == UNKNOWNOID)
1384  ptype = TEXTOID;
1385 
1386  if (which_expr)
1387  *which_expr = pexpr;
1388  return ptype;
1389 }
1390 
1391 /*
1392  * coerce_to_common_type()
1393  * Coerce an expression to the given type.
1394  *
1395  * This is used following select_common_type() to coerce the individual
1396  * expressions to the desired type. 'context' is a phrase to use in the
1397  * error message if we fail to coerce.
1398  *
1399  * As with coerce_type, pstate may be NULL if no special unknown-Param
1400  * processing is wanted.
1401  */
1402 Node *
1404  Oid targetTypeId, const char *context)
1405 {
1406  Oid inputTypeId = exprType(node);
1407 
1408  if (inputTypeId == targetTypeId)
1409  return node; /* no work */
1410  if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT))
1411  node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1,
1413  else
1414  ereport(ERROR,
1415  (errcode(ERRCODE_CANNOT_COERCE),
1416  /* translator: first %s is name of a SQL construct, eg CASE */
1417  errmsg("%s could not convert type %s to %s",
1418  context,
1419  format_type_be(inputTypeId),
1420  format_type_be(targetTypeId)),
1421  parser_errposition(pstate, exprLocation(node))));
1422  return node;
1423 }
1424 
1425 /*
1426  * check_generic_type_consistency()
1427  * Are the actual arguments potentially compatible with a
1428  * polymorphic function?
1429  *
1430  * The argument consistency rules are:
1431  *
1432  * 1) All arguments declared ANYELEMENT must have the same datatype.
1433  * 2) All arguments declared ANYARRAY must have the same datatype,
1434  * which must be a varlena array type.
1435  * 3) All arguments declared ANYRANGE must have the same datatype,
1436  * which must be a range type.
1437  * 4) If there are arguments of both ANYELEMENT and ANYARRAY, make sure the
1438  * actual ANYELEMENT datatype is in fact the element type for the actual
1439  * ANYARRAY datatype.
1440  * 5) Similarly, if there are arguments of both ANYELEMENT and ANYRANGE,
1441  * make sure the actual ANYELEMENT datatype is in fact the subtype for
1442  * the actual ANYRANGE type.
1443  * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
1444  * (alone or in combination with plain ANYELEMENT), we add the extra
1445  * condition that the ANYELEMENT type must be an enum.
1446  * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
1447  * we add the extra condition that the ANYELEMENT type must not be an array.
1448  * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
1449  * is an extra restriction if not.)
1450  *
1451  * Domains over arrays match ANYARRAY, and are immediately flattened to their
1452  * base type. (Thus, for example, we will consider it a match if one ANYARRAY
1453  * argument is a domain over int4[] while another one is just int4[].) Also
1454  * notice that such a domain does *not* match ANYNONARRAY.
1455  *
1456  * Similarly, domains over ranges match ANYRANGE, and are immediately
1457  * flattened to their base type.
1458  *
1459  * Note that domains aren't currently considered to match ANYENUM,
1460  * even if their base type would match.
1461  *
1462  * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
1463  * argument, assume it is okay.
1464  *
1465  * If an input is of type ANYARRAY (ie, we know it's an array, but not
1466  * what element type), we will accept it as a match to an argument declared
1467  * ANYARRAY, so long as we don't have to determine an element type ---
1468  * that is, so long as there is no use of ANYELEMENT. This is mostly for
1469  * backwards compatibility with the pre-7.4 behavior of ANYARRAY.
1470  *
1471  * We do not ereport here, but just return false if a rule is violated.
1472  */
1473 bool
1474 check_generic_type_consistency(const Oid *actual_arg_types,
1475  const Oid *declared_arg_types,
1476  int nargs)
1477 {
1478  int j;
1479  Oid elem_typeid = InvalidOid;
1480  Oid array_typeid = InvalidOid;
1481  Oid array_typelem;
1482  Oid range_typeid = InvalidOid;
1483  Oid range_typelem;
1484  bool have_anyelement = false;
1485  bool have_anynonarray = false;
1486  bool have_anyenum = false;
1487 
1488  /*
1489  * Loop through the arguments to see if we have any that are polymorphic.
1490  * If so, require the actual types to be consistent.
1491  */
1492  for (j = 0; j < nargs; j++)
1493  {
1494  Oid decl_type = declared_arg_types[j];
1495  Oid actual_type = actual_arg_types[j];
1496 
1497  if (decl_type == ANYELEMENTOID ||
1498  decl_type == ANYNONARRAYOID ||
1499  decl_type == ANYENUMOID)
1500  {
1501  have_anyelement = true;
1502  if (decl_type == ANYNONARRAYOID)
1503  have_anynonarray = true;
1504  else if (decl_type == ANYENUMOID)
1505  have_anyenum = true;
1506  if (actual_type == UNKNOWNOID)
1507  continue;
1508  if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
1509  return false;
1510  elem_typeid = actual_type;
1511  }
1512  else if (decl_type == ANYARRAYOID)
1513  {
1514  if (actual_type == UNKNOWNOID)
1515  continue;
1516  actual_type = getBaseType(actual_type); /* flatten domains */
1517  if (OidIsValid(array_typeid) && actual_type != array_typeid)
1518  return false;
1519  array_typeid = actual_type;
1520  }
1521  else if (decl_type == ANYRANGEOID)
1522  {
1523  if (actual_type == UNKNOWNOID)
1524  continue;
1525  actual_type = getBaseType(actual_type); /* flatten domains */
1526  if (OidIsValid(range_typeid) && actual_type != range_typeid)
1527  return false;
1528  range_typeid = actual_type;
1529  }
1530  }
1531 
1532  /* Get the element type based on the array type, if we have one */
1533  if (OidIsValid(array_typeid))
1534  {
1535  if (array_typeid == ANYARRAYOID)
1536  {
1537  /* Special case for ANYARRAY input: okay iff no ANYELEMENT */
1538  if (have_anyelement)
1539  return false;
1540  return true;
1541  }
1542 
1543  array_typelem = get_element_type(array_typeid);
1544  if (!OidIsValid(array_typelem))
1545  return false; /* should be an array, but isn't */
1546 
1547  if (!OidIsValid(elem_typeid))
1548  {
1549  /*
1550  * if we don't have an element type yet, use the one we just got
1551  */
1552  elem_typeid = array_typelem;
1553  }
1554  else if (array_typelem != elem_typeid)
1555  {
1556  /* otherwise, they better match */
1557  return false;
1558  }
1559  }
1560 
1561  /* Get the element type based on the range type, if we have one */
1562  if (OidIsValid(range_typeid))
1563  {
1564  range_typelem = get_range_subtype(range_typeid);
1565  if (!OidIsValid(range_typelem))
1566  return false; /* should be a range, but isn't */
1567 
1568  if (!OidIsValid(elem_typeid))
1569  {
1570  /*
1571  * if we don't have an element type yet, use the one we just got
1572  */
1573  elem_typeid = range_typelem;
1574  }
1575  else if (range_typelem != elem_typeid)
1576  {
1577  /* otherwise, they better match */
1578  return false;
1579  }
1580  }
1581 
1582  if (have_anynonarray)
1583  {
1584  /* require the element type to not be an array or domain over array */
1585  if (type_is_array_domain(elem_typeid))
1586  return false;
1587  }
1588 
1589  if (have_anyenum)
1590  {
1591  /* require the element type to be an enum */
1592  if (!type_is_enum(elem_typeid))
1593  return false;
1594  }
1595 
1596  /* Looks valid */
1597  return true;
1598 }
1599 
1600 /*
1601  * enforce_generic_type_consistency()
1602  * Make sure a polymorphic function is legally callable, and
1603  * deduce actual argument and result types.
1604  *
1605  * If any polymorphic pseudotype is used in a function's arguments or
1606  * return type, we make sure the actual data types are consistent with
1607  * each other. The argument consistency rules are shown above for
1608  * check_generic_type_consistency().
1609  *
1610  * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
1611  * argument, we attempt to deduce the actual type it should have. If
1612  * successful, we alter that position of declared_arg_types[] so that
1613  * make_fn_arguments will coerce the literal to the right thing.
1614  *
1615  * Rules are applied to the function's return type (possibly altering it)
1616  * if it is declared as a polymorphic type:
1617  *
1618  * 1) If return type is ANYARRAY, and any argument is ANYARRAY, use the
1619  * argument's actual type as the function's return type.
1620  * 2) Similarly, if return type is ANYRANGE, and any argument is ANYRANGE,
1621  * use the argument's actual type as the function's return type.
1622  * 3) If return type is ANYARRAY, no argument is ANYARRAY, but any argument is
1623  * ANYELEMENT, use the actual type of the argument to determine the
1624  * function's return type, i.e. the element type's corresponding array
1625  * type. (Note: similar behavior does not exist for ANYRANGE, because it's
1626  * impossible to determine the range type from the subtype alone.)
1627  * 4) If return type is ANYARRAY, but no argument is ANYARRAY or ANYELEMENT,
1628  * generate an error. Similarly, if return type is ANYRANGE, but no
1629  * argument is ANYRANGE, generate an error. (These conditions are
1630  * prevented by CREATE FUNCTION and therefore are not expected here.)
1631  * 5) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
1632  * argument's actual type as the function's return type.
1633  * 6) If return type is ANYELEMENT, no argument is ANYELEMENT, but any argument
1634  * is ANYARRAY or ANYRANGE, use the actual type of the argument to determine
1635  * the function's return type, i.e. the array type's corresponding element
1636  * type or the range type's corresponding subtype (or both, in which case
1637  * they must match).
1638  * 7) If return type is ANYELEMENT, no argument is ANYELEMENT, ANYARRAY, or
1639  * ANYRANGE, generate an error. (This condition is prevented by CREATE
1640  * FUNCTION and therefore is not expected here.)
1641  * 8) ANYENUM is treated the same as ANYELEMENT except that if it is used
1642  * (alone or in combination with plain ANYELEMENT), we add the extra
1643  * condition that the ANYELEMENT type must be an enum.
1644  * 9) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
1645  * we add the extra condition that the ANYELEMENT type must not be an array.
1646  * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
1647  * is an extra restriction if not.)
1648  *
1649  * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
1650  * respectively, and are immediately flattened to their base type. (In
1651  * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set it
1652  * to the base type not the domain type.)
1653  *
1654  * When allow_poly is false, we are not expecting any of the actual_arg_types
1655  * to be polymorphic, and we should not return a polymorphic result type
1656  * either. When allow_poly is true, it is okay to have polymorphic "actual"
1657  * arg types, and we can return ANYARRAY, ANYRANGE, or ANYELEMENT as the
1658  * result. (This case is currently used only to check compatibility of an
1659  * aggregate's declaration with the underlying transfn.)
1660  *
1661  * A special case is that we could see ANYARRAY as an actual_arg_type even
1662  * when allow_poly is false (this is possible only because pg_statistic has
1663  * columns shown as anyarray in the catalogs). We allow this to match a
1664  * declared ANYARRAY argument, but only if there is no ANYELEMENT argument
1665  * or result (since we can't determine a specific element type to match to
1666  * ANYELEMENT). Note this means that functions taking ANYARRAY had better
1667  * behave sanely if applied to the pg_statistic columns; they can't just
1668  * assume that successive inputs are of the same actual element type.
1669  */
1670 Oid
1671 enforce_generic_type_consistency(const Oid *actual_arg_types,
1672  Oid *declared_arg_types,
1673  int nargs,
1674  Oid rettype,
1675  bool allow_poly)
1676 {
1677  int j;
1678  bool have_generics = false;
1679  bool have_unknowns = false;
1680  Oid elem_typeid = InvalidOid;
1681  Oid array_typeid = InvalidOid;
1682  Oid range_typeid = InvalidOid;
1683  Oid array_typelem;
1684  Oid range_typelem;
1685  bool have_anyelement = (rettype == ANYELEMENTOID ||
1686  rettype == ANYNONARRAYOID ||
1687  rettype == ANYENUMOID);
1688  bool have_anynonarray = (rettype == ANYNONARRAYOID);
1689  bool have_anyenum = (rettype == ANYENUMOID);
1690 
1691  /*
1692  * Loop through the arguments to see if we have any that are polymorphic.
1693  * If so, require the actual types to be consistent.
1694  */
1695  for (j = 0; j < nargs; j++)
1696  {
1697  Oid decl_type = declared_arg_types[j];
1698  Oid actual_type = actual_arg_types[j];
1699 
1700  if (decl_type == ANYELEMENTOID ||
1701  decl_type == ANYNONARRAYOID ||
1702  decl_type == ANYENUMOID)
1703  {
1704  have_generics = have_anyelement = true;
1705  if (decl_type == ANYNONARRAYOID)
1706  have_anynonarray = true;
1707  else if (decl_type == ANYENUMOID)
1708  have_anyenum = true;
1709  if (actual_type == UNKNOWNOID)
1710  {
1711  have_unknowns = true;
1712  continue;
1713  }
1714  if (allow_poly && decl_type == actual_type)
1715  continue; /* no new information here */
1716  if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
1717  ereport(ERROR,
1718  (errcode(ERRCODE_DATATYPE_MISMATCH),
1719  errmsg("arguments declared \"anyelement\" are not all alike"),
1720  errdetail("%s versus %s",
1721  format_type_be(elem_typeid),
1722  format_type_be(actual_type))));
1723  elem_typeid = actual_type;
1724  }
1725  else if (decl_type == ANYARRAYOID)
1726  {
1727  have_generics = true;
1728  if (actual_type == UNKNOWNOID)
1729  {
1730  have_unknowns = true;
1731  continue;
1732  }
1733  if (allow_poly && decl_type == actual_type)
1734  continue; /* no new information here */
1735  actual_type = getBaseType(actual_type); /* flatten domains */
1736  if (OidIsValid(array_typeid) && actual_type != array_typeid)
1737  ereport(ERROR,
1738  (errcode(ERRCODE_DATATYPE_MISMATCH),
1739  errmsg("arguments declared \"anyarray\" are not all alike"),
1740  errdetail("%s versus %s",
1741  format_type_be(array_typeid),
1742  format_type_be(actual_type))));
1743  array_typeid = actual_type;
1744  }
1745  else if (decl_type == ANYRANGEOID)
1746  {
1747  have_generics = true;
1748  if (actual_type == UNKNOWNOID)
1749  {
1750  have_unknowns = true;
1751  continue;
1752  }
1753  if (allow_poly && decl_type == actual_type)
1754  continue; /* no new information here */
1755  actual_type = getBaseType(actual_type); /* flatten domains */
1756  if (OidIsValid(range_typeid) && actual_type != range_typeid)
1757  ereport(ERROR,
1758  (errcode(ERRCODE_DATATYPE_MISMATCH),
1759  errmsg("arguments declared \"anyrange\" are not all alike"),
1760  errdetail("%s versus %s",
1761  format_type_be(range_typeid),
1762  format_type_be(actual_type))));
1763  range_typeid = actual_type;
1764  }
1765  }
1766 
1767  /*
1768  * Fast Track: if none of the arguments are polymorphic, return the
1769  * unmodified rettype. We assume it can't be polymorphic either.
1770  */
1771  if (!have_generics)
1772  return rettype;
1773 
1774  /* Get the element type based on the array type, if we have one */
1775  if (OidIsValid(array_typeid))
1776  {
1777  if (array_typeid == ANYARRAYOID && !have_anyelement)
1778  {
1779  /* Special case for ANYARRAY input: okay iff no ANYELEMENT */
1780  array_typelem = ANYELEMENTOID;
1781  }
1782  else
1783  {
1784  array_typelem = get_element_type(array_typeid);
1785  if (!OidIsValid(array_typelem))
1786  ereport(ERROR,
1787  (errcode(ERRCODE_DATATYPE_MISMATCH),
1788  errmsg("argument declared %s is not an array but type %s",
1789  "anyarray", format_type_be(array_typeid))));
1790  }
1791 
1792  if (!OidIsValid(elem_typeid))
1793  {
1794  /*
1795  * if we don't have an element type yet, use the one we just got
1796  */
1797  elem_typeid = array_typelem;
1798  }
1799  else if (array_typelem != elem_typeid)
1800  {
1801  /* otherwise, they better match */
1802  ereport(ERROR,
1803  (errcode(ERRCODE_DATATYPE_MISMATCH),
1804  errmsg("argument declared %s is not consistent with argument declared %s",
1805  "anyarray", "anyelement"),
1806  errdetail("%s versus %s",
1807  format_type_be(array_typeid),
1808  format_type_be(elem_typeid))));
1809  }
1810  }
1811 
1812  /* Get the element type based on the range type, if we have one */
1813  if (OidIsValid(range_typeid))
1814  {
1815  if (range_typeid == ANYRANGEOID && !have_anyelement)
1816  {
1817  /* Special case for ANYRANGE input: okay iff no ANYELEMENT */
1818  range_typelem = ANYELEMENTOID;
1819  }
1820  else
1821  {
1822  range_typelem = get_range_subtype(range_typeid);
1823  if (!OidIsValid(range_typelem))
1824  ereport(ERROR,
1825  (errcode(ERRCODE_DATATYPE_MISMATCH),
1826  errmsg("argument declared %s is not a range type but type %s",
1827  "anyrange",
1828  format_type_be(range_typeid))));
1829  }
1830 
1831  if (!OidIsValid(elem_typeid))
1832  {
1833  /*
1834  * if we don't have an element type yet, use the one we just got
1835  */
1836  elem_typeid = range_typelem;
1837  }
1838  else if (range_typelem != elem_typeid)
1839  {
1840  /* otherwise, they better match */
1841  ereport(ERROR,
1842  (errcode(ERRCODE_DATATYPE_MISMATCH),
1843  errmsg("argument declared %s is not consistent with argument declared %s",
1844  "anyrange", "anyelement"),
1845  errdetail("%s versus %s",
1846  format_type_be(range_typeid),
1847  format_type_be(elem_typeid))));
1848  }
1849  }
1850 
1851  if (!OidIsValid(elem_typeid))
1852  {
1853  if (allow_poly)
1854  {
1855  elem_typeid = ANYELEMENTOID;
1856  array_typeid = ANYARRAYOID;
1857  range_typeid = ANYRANGEOID;
1858  }
1859  else
1860  {
1861  /* Only way to get here is if all the generic args are UNKNOWN */
1862  ereport(ERROR,
1863  (errcode(ERRCODE_DATATYPE_MISMATCH),
1864  errmsg("could not determine polymorphic type because input has type %s",
1865  "unknown")));
1866  }
1867  }
1868 
1869  if (have_anynonarray && elem_typeid != ANYELEMENTOID)
1870  {
1871  /* require the element type to not be an array or domain over array */
1872  if (type_is_array_domain(elem_typeid))
1873  ereport(ERROR,
1874  (errcode(ERRCODE_DATATYPE_MISMATCH),
1875  errmsg("type matched to anynonarray is an array type: %s",
1876  format_type_be(elem_typeid))));
1877  }
1878 
1879  if (have_anyenum && elem_typeid != ANYELEMENTOID)
1880  {
1881  /* require the element type to be an enum */
1882  if (!type_is_enum(elem_typeid))
1883  ereport(ERROR,
1884  (errcode(ERRCODE_DATATYPE_MISMATCH),
1885  errmsg("type matched to anyenum is not an enum type: %s",
1886  format_type_be(elem_typeid))));
1887  }
1888 
1889  /*
1890  * If we had any unknown inputs, re-scan to assign correct types
1891  */
1892  if (have_unknowns)
1893  {
1894  for (j = 0; j < nargs; j++)
1895  {
1896  Oid decl_type = declared_arg_types[j];
1897  Oid actual_type = actual_arg_types[j];
1898 
1899  if (actual_type != UNKNOWNOID)
1900  continue;
1901 
1902  if (decl_type == ANYELEMENTOID ||
1903  decl_type == ANYNONARRAYOID ||
1904  decl_type == ANYENUMOID)
1905  declared_arg_types[j] = elem_typeid;
1906  else if (decl_type == ANYARRAYOID)
1907  {
1908  if (!OidIsValid(array_typeid))
1909  {
1910  array_typeid = get_array_type(elem_typeid);
1911  if (!OidIsValid(array_typeid))
1912  ereport(ERROR,
1913  (errcode(ERRCODE_UNDEFINED_OBJECT),
1914  errmsg("could not find array type for data type %s",
1915  format_type_be(elem_typeid))));
1916  }
1917  declared_arg_types[j] = array_typeid;
1918  }
1919  else if (decl_type == ANYRANGEOID)
1920  {
1921  if (!OidIsValid(range_typeid))
1922  {
1923  ereport(ERROR,
1924  (errcode(ERRCODE_UNDEFINED_OBJECT),
1925  errmsg("could not find range type for data type %s",
1926  format_type_be(elem_typeid))));
1927  }
1928  declared_arg_types[j] = range_typeid;
1929  }
1930  }
1931  }
1932 
1933  /* if we return ANYARRAY use the appropriate argument type */
1934  if (rettype == ANYARRAYOID)
1935  {
1936  if (!OidIsValid(array_typeid))
1937  {
1938  array_typeid = get_array_type(elem_typeid);
1939  if (!OidIsValid(array_typeid))
1940  ereport(ERROR,
1941  (errcode(ERRCODE_UNDEFINED_OBJECT),
1942  errmsg("could not find array type for data type %s",
1943  format_type_be(elem_typeid))));
1944  }
1945  return array_typeid;
1946  }
1947 
1948  /* if we return ANYRANGE use the appropriate argument type */
1949  if (rettype == ANYRANGEOID)
1950  {
1951  if (!OidIsValid(range_typeid))
1952  {
1953  ereport(ERROR,
1954  (errcode(ERRCODE_UNDEFINED_OBJECT),
1955  errmsg("could not find range type for data type %s",
1956  format_type_be(elem_typeid))));
1957  }
1958  return range_typeid;
1959  }
1960 
1961  /* if we return ANYELEMENT use the appropriate argument type */
1962  if (rettype == ANYELEMENTOID ||
1963  rettype == ANYNONARRAYOID ||
1964  rettype == ANYENUMOID)
1965  return elem_typeid;
1966 
1967  /* we don't return a generic type; send back the original return type */
1968  return rettype;
1969 }
1970 
1971 /*
1972  * resolve_generic_type()
1973  * Deduce an individual actual datatype on the assumption that
1974  * the rules for polymorphic types are being followed.
1975  *
1976  * declared_type is the declared datatype we want to resolve.
1977  * context_actual_type is the actual input datatype to some argument
1978  * that has declared datatype context_declared_type.
1979  *
1980  * If declared_type isn't polymorphic, we just return it. Otherwise,
1981  * context_declared_type must be polymorphic, and we deduce the correct
1982  * return type based on the relationship of the two polymorphic types.
1983  */
1984 Oid
1986  Oid context_actual_type,
1987  Oid context_declared_type)
1988 {
1989  if (declared_type == ANYARRAYOID)
1990  {
1991  if (context_declared_type == ANYARRAYOID)
1992  {
1993  /*
1994  * Use actual type, but it must be an array; or if it's a domain
1995  * over array, use the base array type.
1996  */
1997  Oid context_base_type = getBaseType(context_actual_type);
1998  Oid array_typelem = get_element_type(context_base_type);
1999 
2000  if (!OidIsValid(array_typelem))
2001  ereport(ERROR,
2002  (errcode(ERRCODE_DATATYPE_MISMATCH),
2003  errmsg("argument declared %s is not an array but type %s",
2004  "anyarray", format_type_be(context_base_type))));
2005  return context_base_type;
2006  }
2007  else if (context_declared_type == ANYELEMENTOID ||
2008  context_declared_type == ANYNONARRAYOID ||
2009  context_declared_type == ANYENUMOID ||
2010  context_declared_type == ANYRANGEOID)
2011  {
2012  /* Use the array type corresponding to actual type */
2013  Oid array_typeid = get_array_type(context_actual_type);
2014 
2015  if (!OidIsValid(array_typeid))
2016  ereport(ERROR,
2017  (errcode(ERRCODE_UNDEFINED_OBJECT),
2018  errmsg("could not find array type for data type %s",
2019  format_type_be(context_actual_type))));
2020  return array_typeid;
2021  }
2022  }
2023  else if (declared_type == ANYELEMENTOID ||
2024  declared_type == ANYNONARRAYOID ||
2025  declared_type == ANYENUMOID ||
2026  declared_type == ANYRANGEOID)
2027  {
2028  if (context_declared_type == ANYARRAYOID)
2029  {
2030  /* Use the element type corresponding to actual type */
2031  Oid context_base_type = getBaseType(context_actual_type);
2032  Oid array_typelem = get_element_type(context_base_type);
2033 
2034  if (!OidIsValid(array_typelem))
2035  ereport(ERROR,
2036  (errcode(ERRCODE_DATATYPE_MISMATCH),
2037  errmsg("argument declared %s is not an array but type %s",
2038  "anyarray", format_type_be(context_base_type))));
2039  return array_typelem;
2040  }
2041  else if (context_declared_type == ANYRANGEOID)
2042  {
2043  /* Use the element type corresponding to actual type */
2044  Oid context_base_type = getBaseType(context_actual_type);
2045  Oid range_typelem = get_range_subtype(context_base_type);
2046 
2047  if (!OidIsValid(range_typelem))
2048  ereport(ERROR,
2049  (errcode(ERRCODE_DATATYPE_MISMATCH),
2050  errmsg("argument declared %s is not a range type but type %s",
2051  "anyrange", format_type_be(context_base_type))));
2052  return range_typelem;
2053  }
2054  else if (context_declared_type == ANYELEMENTOID ||
2055  context_declared_type == ANYNONARRAYOID ||
2056  context_declared_type == ANYENUMOID)
2057  {
2058  /* Use the actual type; it doesn't matter if array or not */
2059  return context_actual_type;
2060  }
2061  }
2062  else
2063  {
2064  /* declared_type isn't polymorphic, so return it as-is */
2065  return declared_type;
2066  }
2067  /* If we get here, declared_type is polymorphic and context isn't */
2068  /* NB: this is a calling-code logic error, not a user error */
2069  elog(ERROR, "could not determine polymorphic type because context isn't polymorphic");
2070  return InvalidOid; /* keep compiler quiet */
2071 }
2072 
2073 
2074 /* TypeCategory()
2075  * Assign a category to the specified type OID.
2076  *
2077  * NB: this must not return TYPCATEGORY_INVALID.
2078  */
2081 {
2082  char typcategory;
2083  bool typispreferred;
2084 
2085  get_type_category_preferred(type, &typcategory, &typispreferred);
2086  Assert(typcategory != TYPCATEGORY_INVALID);
2087  return (TYPCATEGORY) typcategory;
2088 }
2089 
2090 
2091 /* IsPreferredType()
2092  * Check if this type is a preferred type for the given category.
2093  *
2094  * If category is TYPCATEGORY_INVALID, then we'll return true for preferred
2095  * types of any category; otherwise, only for preferred types of that
2096  * category.
2097  */
2098 bool
2100 {
2101  char typcategory;
2102  bool typispreferred;
2103 
2104  get_type_category_preferred(type, &typcategory, &typispreferred);
2105  if (category == typcategory || category == TYPCATEGORY_INVALID)
2106  return typispreferred;
2107  else
2108  return false;
2109 }
2110 
2111 
2112 /* IsBinaryCoercible()
2113  * Check if srctype is binary-coercible to targettype.
2114  *
2115  * This notion allows us to cheat and directly exchange values without
2116  * going through the trouble of calling a conversion function. Note that
2117  * in general, this should only be an implementation shortcut. Before 7.4,
2118  * this was also used as a heuristic for resolving overloaded functions and
2119  * operators, but that's basically a bad idea.
2120  *
2121  * As of 7.3, binary coercibility isn't hardwired into the code anymore.
2122  * We consider two types binary-coercible if there is an implicitly
2123  * invokable, no-function-needed pg_cast entry. Also, a domain is always
2124  * binary-coercible to its base type, though *not* vice versa (in the other
2125  * direction, one must apply domain constraint checks before accepting the
2126  * value as legitimate). We also need to special-case various polymorphic
2127  * types.
2128  *
2129  * This function replaces IsBinaryCompatible(), which was an inherently
2130  * symmetric test. Since the pg_cast entries aren't necessarily symmetric,
2131  * the order of the operands is now significant.
2132  */
2133 bool
2134 IsBinaryCoercible(Oid srctype, Oid targettype)
2135 {
2136  HeapTuple tuple;
2137  Form_pg_cast castForm;
2138  bool result;
2139 
2140  /* Fast path if same type */
2141  if (srctype == targettype)
2142  return true;
2143 
2144  /* Anything is coercible to ANY or ANYELEMENT */
2145  if (targettype == ANYOID || targettype == ANYELEMENTOID)
2146  return true;
2147 
2148  /* If srctype is a domain, reduce to its base type */
2149  if (OidIsValid(srctype))
2150  srctype = getBaseType(srctype);
2151 
2152  /* Somewhat-fast path for domain -> base type case */
2153  if (srctype == targettype)
2154  return true;
2155 
2156  /* Also accept any array type as coercible to ANYARRAY */
2157  if (targettype == ANYARRAYOID)
2158  if (type_is_array(srctype))
2159  return true;
2160 
2161  /* Also accept any non-array type as coercible to ANYNONARRAY */
2162  if (targettype == ANYNONARRAYOID)
2163  if (!type_is_array(srctype))
2164  return true;
2165 
2166  /* Also accept any enum type as coercible to ANYENUM */
2167  if (targettype == ANYENUMOID)
2168  if (type_is_enum(srctype))
2169  return true;
2170 
2171  /* Also accept any range type as coercible to ANYRANGE */
2172  if (targettype == ANYRANGEOID)
2173  if (type_is_range(srctype))
2174  return true;
2175 
2176  /* Also accept any composite type as coercible to RECORD */
2177  if (targettype == RECORDOID)
2178  if (ISCOMPLEX(srctype))
2179  return true;
2180 
2181  /* Also accept any composite array type as coercible to RECORD[] */
2182  if (targettype == RECORDARRAYOID)
2183  if (is_complex_array(srctype))
2184  return true;
2185 
2186  /* Else look in pg_cast */
2188  ObjectIdGetDatum(srctype),
2189  ObjectIdGetDatum(targettype));
2190  if (!HeapTupleIsValid(tuple))
2191  return false; /* no cast */
2192  castForm = (Form_pg_cast) GETSTRUCT(tuple);
2193 
2194  result = (castForm->castmethod == COERCION_METHOD_BINARY &&
2195  castForm->castcontext == COERCION_CODE_IMPLICIT);
2196 
2197  ReleaseSysCache(tuple);
2198 
2199  return result;
2200 }
2201 
2202 
2203 /*
2204  * find_coercion_pathway
2205  * Look for a coercion pathway between two types.
2206  *
2207  * Currently, this deals only with scalar-type cases; it does not consider
2208  * polymorphic types nor casts between composite types. (Perhaps fold
2209  * those in someday?)
2210  *
2211  * ccontext determines the set of available casts.
2212  *
2213  * The possible result codes are:
2214  * COERCION_PATH_NONE: failed to find any coercion pathway
2215  * *funcid is set to InvalidOid
2216  * COERCION_PATH_FUNC: apply the coercion function returned in *funcid
2217  * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed
2218  * *funcid is set to InvalidOid
2219  * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node
2220  * *funcid is set to InvalidOid
2221  * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node
2222  * *funcid is set to InvalidOid
2223  *
2224  * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is
2225  * needed to do the coercion; if the target is a domain then we may need to
2226  * apply domain constraint checking. If you want to check for a zero-effort
2227  * conversion then use IsBinaryCoercible().
2228  */
2230 find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId,
2231  CoercionContext ccontext,
2232  Oid *funcid)
2233 {
2235  HeapTuple tuple;
2236 
2237  *funcid = InvalidOid;
2238 
2239  /* Perhaps the types are domains; if so, look at their base types */
2240  if (OidIsValid(sourceTypeId))
2241  sourceTypeId = getBaseType(sourceTypeId);
2242  if (OidIsValid(targetTypeId))
2243  targetTypeId = getBaseType(targetTypeId);
2244 
2245  /* Domains are always coercible to and from their base type */
2246  if (sourceTypeId == targetTypeId)
2248 
2249  /* Look in pg_cast */
2251  ObjectIdGetDatum(sourceTypeId),
2252  ObjectIdGetDatum(targetTypeId));
2253 
2254  if (HeapTupleIsValid(tuple))
2255  {
2256  Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
2257  CoercionContext castcontext;
2258 
2259  /* convert char value for castcontext to CoercionContext enum */
2260  switch (castForm->castcontext)
2261  {
2262  case COERCION_CODE_IMPLICIT:
2263  castcontext = COERCION_IMPLICIT;
2264  break;
2265  case COERCION_CODE_ASSIGNMENT:
2266  castcontext = COERCION_ASSIGNMENT;
2267  break;
2268  case COERCION_CODE_EXPLICIT:
2269  castcontext = COERCION_EXPLICIT;
2270  break;
2271  default:
2272  elog(ERROR, "unrecognized castcontext: %d",
2273  (int) castForm->castcontext);
2274  castcontext = 0; /* keep compiler quiet */
2275  break;
2276  }
2277 
2278  /* Rely on ordering of enum for correct behavior here */
2279  if (ccontext >= castcontext)
2280  {
2281  switch (castForm->castmethod)
2282  {
2283  case COERCION_METHOD_FUNCTION:
2284  result = COERCION_PATH_FUNC;
2285  *funcid = castForm->castfunc;
2286  break;
2287  case COERCION_METHOD_INOUT:
2288  result = COERCION_PATH_COERCEVIAIO;
2289  break;
2290  case COERCION_METHOD_BINARY:
2291  result = COERCION_PATH_RELABELTYPE;
2292  break;
2293  default:
2294  elog(ERROR, "unrecognized castmethod: %d",
2295  (int) castForm->castmethod);
2296  break;
2297  }
2298  }
2299 
2300  ReleaseSysCache(tuple);
2301  }
2302  else
2303  {
2304  /*
2305  * If there's no pg_cast entry, perhaps we are dealing with a pair of
2306  * array types. If so, and if their element types have a conversion
2307  * pathway, report that we can coerce with an ArrayCoerceExpr.
2308  *
2309  * Hack: disallow coercions to oidvector and int2vector, which
2310  * otherwise tend to capture coercions that should go to "real" array
2311  * types. We want those types to be considered "real" arrays for many
2312  * purposes, but not this one. (Also, ArrayCoerceExpr isn't
2313  * guaranteed to produce an output that meets the restrictions of
2314  * these datatypes, such as being 1-dimensional.)
2315  */
2316  if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID)
2317  {
2318  Oid targetElem;
2319  Oid sourceElem;
2320 
2321  if ((targetElem = get_element_type(targetTypeId)) != InvalidOid &&
2322  (sourceElem = get_element_type(sourceTypeId)) != InvalidOid)
2323  {
2324  CoercionPathType elempathtype;
2325  Oid elemfuncid;
2326 
2327  elempathtype = find_coercion_pathway(targetElem,
2328  sourceElem,
2329  ccontext,
2330  &elemfuncid);
2331  if (elempathtype != COERCION_PATH_NONE)
2332  {
2333  result = COERCION_PATH_ARRAYCOERCE;
2334  }
2335  }
2336  }
2337 
2338  /*
2339  * If we still haven't found a possibility, consider automatic casting
2340  * using I/O functions. We allow assignment casts to string types and
2341  * explicit casts from string types to be handled this way. (The
2342  * CoerceViaIO mechanism is a lot more general than that, but this is
2343  * all we want to allow in the absence of a pg_cast entry.) It would
2344  * probably be better to insist on explicit casts in both directions,
2345  * but this is a compromise to preserve something of the pre-8.3
2346  * behavior that many types had implicit (yipes!) casts to text.
2347  */
2348  if (result == COERCION_PATH_NONE)
2349  {
2350  if (ccontext >= COERCION_ASSIGNMENT &&
2351  TypeCategory(targetTypeId) == TYPCATEGORY_STRING)
2352  result = COERCION_PATH_COERCEVIAIO;
2353  else if (ccontext >= COERCION_EXPLICIT &&
2354  TypeCategory(sourceTypeId) == TYPCATEGORY_STRING)
2355  result = COERCION_PATH_COERCEVIAIO;
2356  }
2357  }
2358 
2359  return result;
2360 }
2361 
2362 
2363 /*
2364  * find_typmod_coercion_function -- does the given type need length coercion?
2365  *
2366  * If the target type possesses a pg_cast function from itself to itself,
2367  * it must need length coercion.
2368  *
2369  * "bpchar" (ie, char(N)) and "numeric" are examples of such types.
2370  *
2371  * If the given type is a varlena array type, we do not look for a coercion
2372  * function associated directly with the array type, but instead look for
2373  * one associated with the element type. An ArrayCoerceExpr node must be
2374  * used to apply such a function. (Note: currently, it's pointless to
2375  * return the funcid in this case, because it'll just get looked up again
2376  * in the recursive construction of the ArrayCoerceExpr's elemexpr.)
2377  *
2378  * We use the same result enum as find_coercion_pathway, but the only possible
2379  * result codes are:
2380  * COERCION_PATH_NONE: no length coercion needed
2381  * COERCION_PATH_FUNC: apply the function returned in *funcid
2382  * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr
2383  */
2386  Oid *funcid)
2387 {
2388  CoercionPathType result;
2389  Type targetType;
2390  Form_pg_type typeForm;
2391  HeapTuple tuple;
2392 
2393  *funcid = InvalidOid;
2394  result = COERCION_PATH_FUNC;
2395 
2396  targetType = typeidType(typeId);
2397  typeForm = (Form_pg_type) GETSTRUCT(targetType);
2398 
2399  /* Check for a varlena array type */
2400  if (typeForm->typelem != InvalidOid && typeForm->typlen == -1)
2401  {
2402  /* Yes, switch our attention to the element type */
2403  typeId = typeForm->typelem;
2404  result = COERCION_PATH_ARRAYCOERCE;
2405  }
2406  ReleaseSysCache(targetType);
2407 
2408  /* Look in pg_cast */
2410  ObjectIdGetDatum(typeId),
2411  ObjectIdGetDatum(typeId));
2412 
2413  if (HeapTupleIsValid(tuple))
2414  {
2415  Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
2416 
2417  *funcid = castForm->castfunc;
2418  ReleaseSysCache(tuple);
2419  }
2420 
2421  if (!OidIsValid(*funcid))
2422  result = COERCION_PATH_NONE;
2423 
2424  return result;
2425 }
2426 
2427 /*
2428  * is_complex_array
2429  * Is this type an array of composite?
2430  *
2431  * Note: this will not return true for record[]; check for RECORDARRAYOID
2432  * separately if needed.
2433  */
2434 static bool
2436 {
2437  Oid elemtype = get_element_type(typid);
2438 
2439  return (OidIsValid(elemtype) && ISCOMPLEX(elemtype));
2440 }
2441 
2442 
2443 /*
2444  * Check whether reltypeId is the row type of a typed table of type
2445  * reloftypeId, or is a domain over such a row type. (This is conceptually
2446  * similar to the subtype relationship checked by typeInheritsFrom().)
2447  */
2448 static bool
2449 typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
2450 {
2451  Oid relid = typeOrDomainTypeRelid(reltypeId);
2452  bool result = false;
2453 
2454  if (relid)
2455  {
2456  HeapTuple tp;
2457  Form_pg_class reltup;
2458 
2459  tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
2460  if (!HeapTupleIsValid(tp))
2461  elog(ERROR, "cache lookup failed for relation %u", relid);
2462 
2463  reltup = (Form_pg_class) GETSTRUCT(tp);
2464  if (reltup->reloftype == reloftypeId)
2465  result = true;
2466 
2467  ReleaseSysCache(tp);
2468  }
2469 
2470  return result;
2471 }
Datum constvalue
Definition: primnodes.h:214
bool check_generic_type_consistency(const Oid *actual_arg_types, const Oid *declared_arg_types, int nargs)
#define NIL
Definition: pg_list.h:65
Oid getBaseTypeAndTypmod(Oid typid, int32 *typmod)
Definition: lsyscache.c:2316
List * args
Definition: primnodes.h:1022
Oid typeTypeCollation(Type typ)
Definition: parse_type.c:638
#define IsA(nodeptr, _type_)
Definition: nodes.h:576
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
#define type_is_array_domain(typid)
Definition: lsyscache.h:186
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
Oid typeOrDomainTypeRelid(Oid type_id)
Definition: parse_type.c:687
Oid resolve_generic_type(Oid declared_type, Oid context_actual_type, Oid context_declared_type)
bool constbyval
Definition: primnodes.h:217
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1191
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1652
int32 resulttypmod
Definition: primnodes.h:1261
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:321
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
int16 typeLen(Type t)
Definition: parse_type.c:597
Oid get_element_type(Oid typid)
Definition: lsyscache.c:2526
#define PointerGetDatum(X)
Definition: postgres.h:556
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Oid get_array_type(Oid typid)
Definition: lsyscache.c:2554
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:390
bool can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, CoercionContext ccontext)
Definition: parse_coerce.c:543
Oid resulttype
Definition: primnodes.h:835
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:669
bool datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:221
CoerceParamHook p_coerce_param_hook
Definition: parse_node.h:221
Node * coerce_type(ParseState *pstate, Node *node, Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:156
Definition: nodes.h:525
CoercionForm coercionformat
Definition: primnodes.h:1263
int errcode(int sqlerrcode)
Definition: elog.c:608
char * format_type_be(Oid type_oid)
Definition: format_type.c:326
bool type_is_range(Oid typid)
Definition: lsyscache.c:2466
unsigned int Oid
Definition: postgres_ext.h:31
Definition: primnodes.h:181
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:297
#define OidIsValid(objectId)
Definition: c.h:645
CoercionContext
Definition: primnodes.h:440
bool IsPreferredType(TYPCATEGORY category, Oid type)
int32 typeMod
Definition: primnodes.h:973
CoercionPathType
Definition: parse_coerce.h:24
signed int int32
Definition: c.h:347
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:335
static void hide_coercion_node(Node *node)
Definition: parse_coerce.c:782
#define list_make1(x1)
Definition: pg_list.h:227
int constlen
Definition: primnodes.h:213
Oid consttype
Definition: primnodes.h:210
char TYPCATEGORY
Definition: parse_coerce.h:21
void cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
Definition: parse_node.c:160
bool typeByVal(Type t)
Definition: parse_type.c:607
#define linitial(l)
Definition: pg_list.h:195
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
List * colnames
Definition: primnodes.h:1038
#define DatumGetCString(X)
Definition: postgres.h:566
Node * coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype, Oid targettype, int32 targettypmod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:78
char * typeTypeName(Type t)
Definition: parse_type.c:617
Datum stringTypeDatum(Type tp, char *string, int32 atttypmod)
Definition: parse_type.c:652
Node * coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, CoercionContext ccontext, CoercionForm cformat, int location, bool hideInputCoercion)
Definition: parse_coerce.c:663
Oid constcollid
Definition: primnodes.h:212
int location
Definition: primnodes.h:1039
RelabelType * makeRelabelType(Expr *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat)
Definition: makefuncs.c:400
static ListCell * list_second_cell(const List *l)
Definition: pg_list.h:139
int errdetail(const char *fmt,...)
Definition: elog.c:955
static Node * build_coercion_expression(Node *node, CoercionPathType pathtype, Oid funcId, Oid targetTypeId, int32 targetTypMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:810
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:200
static Node * coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod, CoercionContext ccontext, CoercionForm cformat, int location, bool hideInputCoercion)
Definition: parse_coerce.c:740
Expr * arg
Definition: primnodes.h:834
Expr * elemexpr
Definition: primnodes.h:859
FormData_pg_cast * Form_pg_cast
Definition: pg_cast.h:56
#define ereport(elevel, rest)
Definition: elog.h:141
void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location)
Definition: parse_node.c:144
Node * coerce_to_common_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *context)
bool IsBinaryCoercible(Oid srctype, Oid targettype)
CoercionPathType find_typmod_coercion_function(Oid typeId, Oid *funcid)
List * lappend(List *list, void *datum)
Definition: list.c:322
#define WARNING
Definition: elog.h:40
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1116
CoercionForm coerceformat
Definition: primnodes.h:863
int location
Definition: primnodes.h:221
uintptr_t Datum
Definition: postgres.h:367
CoercionForm convertformat
Definition: primnodes.h:886
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1164
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:133
#define BoolGetDatum(X)
Definition: postgres.h:402
#define InvalidOid
Definition: postgres_ext.h:36
TYPCATEGORY TypeCategory(Oid type)
#define makeNode(_type_)
Definition: nodes.h:573
int location
Definition: primnodes.h:839
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define Assert(condition)
Definition: c.h:739
#define lfirst(lc)
Definition: pg_list.h:190
bool typeInheritsFrom(Oid subclassTypeId, Oid superclassTypeId)
Definition: pg_inherits.c:315
List * expandNSItemVars(ParseNamespaceItem *nsitem, int sublevels_up, int location, List **colnames)
#define ISCOMPLEX(typeid)
Definition: parse_type.h:58
static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
bool type_is_enum(Oid typid)
Definition: lsyscache.c:2456
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
FormData_pg_type * Form_pg_type
Definition: pg_type.h:250
Oid row_typeid
Definition: primnodes.h:1023
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:110
Expr * arg
Definition: primnodes.h:900
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1127
#define type_is_array(typid)
Definition: lsyscache.h:184
#define InvalidAttrNumber
Definition: attnum.h:23
static Node * coerce_record_to_complex(ParseState *pstate, Node *node, Oid targetTypeId, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:983
#define nodeTag(nodeptr)
Definition: nodes.h:530
int32 consttypmod
Definition: primnodes.h:211
CoercionForm coerceformat
Definition: primnodes.h:838
FormData_pg_class * Form_pg_class
Definition: pg_class.h:150
#define Int32GetDatum(X)
Definition: postgres.h:479
ParseNamespaceItem * GetNSItemByRangeTablePosn(ParseState *pstate, int varno, int sublevels_up)
int errmsg(const char *fmt,...)
Definition: elog.c:822
CoercionPathType find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, CoercionContext ccontext, Oid *funcid)
int parser_coercion_errposition(ParseState *pstate, int coerce_location, Node *input_expr)
#define elog(elevel,...)
Definition: elog.h:228
int i
Node * coerce_to_specific_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *constructName)
void * arg
Oid select_common_type(ParseState *pstate, List *exprs, const char *context, Node **which_expr)
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:235
int location
Definition: primnodes.h:478
int32 resulttypmod
Definition: primnodes.h:861
static bool is_complex_array(Oid typid)
Type typeidType(Oid id)
Definition: parse_type.c:576
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
int location
Definition: primnodes.h:902
CoercionForm row_format
Definition: primnodes.h:1037
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2299
CoercionForm
Definition: primnodes.h:456
void get_type_category_preferred(Oid typid, char *typcategory, bool *typispreferred)
Definition: lsyscache.c:2478
Definition: pg_list.h:50
Node * coerce_to_specific_type_typmod(ParseState *pstate, Node *node, Oid targetTypeId, int32 targetTypmod, const char *constructName)
Oid get_range_subtype(Oid rangeOid)
Definition: lsyscache.c:3135
int location
Definition: primnodes.h:819
bool constisnull
Definition: primnodes.h:215
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:517
Node * coerce_to_boolean(ParseState *pstate, Node *node, const char *constructName)