PostgreSQL Source Code  git master
parse_coerce.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * parse_coerce.c
4  * handle type coercions/conversions for parser
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/parser/parse_coerce.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "catalog/pg_cast.h"
18 #include "catalog/pg_class.h"
19 #include "catalog/pg_inherits.h"
20 #include "catalog/pg_proc.h"
21 #include "catalog/pg_type.h"
22 #include "nodes/makefuncs.h"
23 #include "nodes/nodeFuncs.h"
24 #include "parser/parse_coerce.h"
25 #include "parser/parse_relation.h"
26 #include "parser/parse_type.h"
27 #include "utils/builtins.h"
28 #include "utils/datum.h" /* needed for datumIsEqual() */
29 #include "utils/fmgroids.h"
30 #include "utils/lsyscache.h"
31 #include "utils/syscache.h"
32 #include "utils/typcache.h"
33 
34 
35 static Node *coerce_type_typmod(Node *node,
36  Oid targetTypeId, int32 targetTypMod,
37  CoercionContext ccontext, CoercionForm cformat,
38  int location,
39  bool hideInputCoercion);
40 static void hide_coercion_node(Node *node);
41 static Node *build_coercion_expression(Node *node,
42  CoercionPathType pathtype,
43  Oid funcId,
44  Oid targetTypeId, int32 targetTypMod,
45  CoercionContext ccontext, CoercionForm cformat,
46  int location);
47 static Node *coerce_record_to_complex(ParseState *pstate, Node *node,
48  Oid targetTypeId,
49  CoercionContext ccontext,
50  CoercionForm cformat,
51  int location);
52 static bool is_complex_array(Oid typid);
53 static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId);
54 
55 
56 /*
57  * coerce_to_target_type()
58  * Convert an expression to a target type and typmod.
59  *
60  * This is the general-purpose entry point for arbitrary type coercion
61  * operations. Direct use of the component operations can_coerce_type,
62  * coerce_type, and coerce_type_typmod should be restricted to special
63  * cases (eg, when the conversion is expected to succeed).
64  *
65  * Returns the possibly-transformed expression tree, or NULL if the type
66  * conversion is not possible. (We do this, rather than ereport'ing directly,
67  * so that callers can generate custom error messages indicating context.)
68  *
69  * pstate - parse state (can be NULL, see coerce_type)
70  * expr - input expression tree (already transformed by transformExpr)
71  * exprtype - result type of expr
72  * targettype - desired result type
73  * targettypmod - desired result typmod
74  * ccontext, cformat - context indicators to control coercions
75  * location - parse location of the coercion request, or -1 if unknown/implicit
76  */
77 Node *
78 coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype,
79  Oid targettype, int32 targettypmod,
80  CoercionContext ccontext,
81  CoercionForm cformat,
82  int location)
83 {
84  Node *result;
85  Node *origexpr;
86 
87  if (!can_coerce_type(1, &exprtype, &targettype, ccontext))
88  return NULL;
89 
90  /*
91  * If the input has a CollateExpr at the top, strip it off, perform the
92  * coercion, and put a new one back on. This is annoying since it
93  * duplicates logic in coerce_type, but if we don't do this then it's too
94  * hard to tell whether coerce_type actually changed anything, and we
95  * *must* know that to avoid possibly calling hide_coercion_node on
96  * something that wasn't generated by coerce_type. Note that if there are
97  * multiple stacked CollateExprs, we just discard all but the topmost.
98  * Also, if the target type isn't collatable, we discard the CollateExpr.
99  */
100  origexpr = expr;
101  while (expr && IsA(expr, CollateExpr))
102  expr = (Node *) ((CollateExpr *) expr)->arg;
103 
104  result = coerce_type(pstate, expr, exprtype,
105  targettype, targettypmod,
106  ccontext, cformat, location);
107 
108  /*
109  * If the target is a fixed-length type, it may need a length coercion as
110  * well as a type coercion. If we find ourselves adding both, force the
111  * inner coercion node to implicit display form.
112  */
113  result = coerce_type_typmod(result,
114  targettype, targettypmod,
115  ccontext, cformat, location,
116  (result != expr && !IsA(result, Const)));
117 
118  if (expr != origexpr && type_is_collatable(targettype))
119  {
120  /* Reinstall top CollateExpr */
121  CollateExpr *coll = (CollateExpr *) origexpr;
122  CollateExpr *newcoll = makeNode(CollateExpr);
123 
124  newcoll->arg = (Expr *) result;
125  newcoll->collOid = coll->collOid;
126  newcoll->location = coll->location;
127  result = (Node *) newcoll;
128  }
129 
130  return result;
131 }
132 
133 
134 /*
135  * coerce_type()
136  * Convert an expression to a different type.
137  *
138  * The caller should already have determined that the coercion is possible;
139  * see can_coerce_type.
140  *
141  * Normally, no coercion to a typmod (length) is performed here. The caller
142  * must call coerce_type_typmod as well, if a typmod constraint is wanted.
143  * (But if the target type is a domain, it may internally contain a
144  * typmod constraint, which will be applied inside coerce_to_domain.)
145  * In some cases pg_cast specifies a type coercion function that also
146  * applies length conversion, and in those cases only, the result will
147  * already be properly coerced to the specified typmod.
148  *
149  * pstate is only used in the case that we are able to resolve the type of
150  * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the
151  * caller does not want type information updated for Params.
152  *
153  * Note: this function must not modify the given expression tree, only add
154  * decoration on top of it. See transformSetOperationTree, for example.
155  */
156 Node *
157 coerce_type(ParseState *pstate, Node *node,
158  Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
159  CoercionContext ccontext, CoercionForm cformat, int location)
160 {
161  Node *result;
162  CoercionPathType pathtype;
163  Oid funcId;
164 
165  if (targetTypeId == inputTypeId ||
166  node == NULL)
167  {
168  /* no conversion needed */
169  return node;
170  }
171  if (targetTypeId == ANYOID ||
172  targetTypeId == ANYELEMENTOID ||
173  targetTypeId == ANYNONARRAYOID ||
174  targetTypeId == ANYCOMPATIBLEOID ||
175  targetTypeId == ANYCOMPATIBLENONARRAYOID)
176  {
177  /*
178  * Assume can_coerce_type verified that implicit coercion is okay.
179  *
180  * Note: by returning the unmodified node here, we are saying that
181  * it's OK to treat an UNKNOWN constant as a valid input for a
182  * function accepting one of these pseudotypes. This should be all
183  * right, since an UNKNOWN value is still a perfectly valid Datum.
184  *
185  * NB: we do NOT want a RelabelType here: the exposed type of the
186  * function argument must be its actual type, not the polymorphic
187  * pseudotype.
188  */
189  return node;
190  }
191  if (targetTypeId == ANYARRAYOID ||
192  targetTypeId == ANYENUMOID ||
193  targetTypeId == ANYRANGEOID ||
194  targetTypeId == ANYMULTIRANGEOID ||
195  targetTypeId == ANYCOMPATIBLEARRAYOID ||
196  targetTypeId == ANYCOMPATIBLERANGEOID ||
197  targetTypeId == ANYCOMPATIBLEMULTIRANGEOID)
198  {
199  /*
200  * Assume can_coerce_type verified that implicit coercion is okay.
201  *
202  * These cases are unlike the ones above because the exposed type of
203  * the argument must be an actual array, enum, range, or multirange
204  * type. In particular the argument must *not* be an UNKNOWN
205  * constant. If it is, we just fall through; below, we'll call the
206  * pseudotype's input function, which will produce an error. Also, if
207  * what we have is a domain over array, enum, range, or multirange, we
208  * have to relabel it to its base type.
209  *
210  * Note: currently, we can't actually see a domain-over-enum here,
211  * since the other functions in this file will not match such a
212  * parameter to ANYENUM. But that should get changed eventually.
213  */
214  if (inputTypeId != UNKNOWNOID)
215  {
216  Oid baseTypeId = getBaseType(inputTypeId);
217 
218  if (baseTypeId != inputTypeId)
219  {
220  RelabelType *r = makeRelabelType((Expr *) node,
221  baseTypeId, -1,
222  InvalidOid,
223  cformat);
224 
225  r->location = location;
226  return (Node *) r;
227  }
228  /* Not a domain type, so return it as-is */
229  return node;
230  }
231  }
232  if (inputTypeId == UNKNOWNOID && IsA(node, Const))
233  {
234  /*
235  * Input is a string constant with previously undetermined type. Apply
236  * the target type's typinput function to it to produce a constant of
237  * the target type.
238  *
239  * NOTE: this case cannot be folded together with the other
240  * constant-input case, since the typinput function does not
241  * necessarily behave the same as a type conversion function. For
242  * example, int4's typinput function will reject "1.2", whereas
243  * float-to-int type conversion will round to integer.
244  *
245  * XXX if the typinput function is not immutable, we really ought to
246  * postpone evaluation of the function call until runtime. But there
247  * is no way to represent a typinput function call as an expression
248  * tree, because C-string values are not Datums. (XXX This *is*
249  * possible as of 7.3, do we want to do it?)
250  */
251  Const *con = (Const *) node;
252  Const *newcon = makeNode(Const);
253  Oid baseTypeId;
254  int32 baseTypeMod;
255  int32 inputTypeMod;
256  Type baseType;
257  ParseCallbackState pcbstate;
258 
259  /*
260  * If the target type is a domain, we want to call its base type's
261  * input routine, not domain_in(). This is to avoid premature failure
262  * when the domain applies a typmod: existing input routines follow
263  * implicit-coercion semantics for length checks, which is not always
264  * what we want here. The needed check will be applied properly
265  * inside coerce_to_domain().
266  */
267  baseTypeMod = targetTypeMod;
268  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
269 
270  /*
271  * For most types we pass typmod -1 to the input routine, because
272  * existing input routines follow implicit-coercion semantics for
273  * length checks, which is not always what we want here. Any length
274  * constraint will be applied later by our caller. An exception
275  * however is the INTERVAL type, for which we *must* pass the typmod
276  * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly
277  * as sin, but so is this part of the spec...)
278  */
279  if (baseTypeId == INTERVALOID)
280  inputTypeMod = baseTypeMod;
281  else
282  inputTypeMod = -1;
283 
284  baseType = typeidType(baseTypeId);
285 
286  newcon->consttype = baseTypeId;
287  newcon->consttypmod = inputTypeMod;
288  newcon->constcollid = typeTypeCollation(baseType);
289  newcon->constlen = typeLen(baseType);
290  newcon->constbyval = typeByVal(baseType);
291  newcon->constisnull = con->constisnull;
292 
293  /*
294  * We use the original literal's location regardless of the position
295  * of the coercion. This is a change from pre-9.2 behavior, meant to
296  * simplify life for pg_stat_statements.
297  */
298  newcon->location = con->location;
299 
300  /*
301  * Set up to point at the constant's text if the input routine throws
302  * an error.
303  */
304  setup_parser_errposition_callback(&pcbstate, pstate, con->location);
305 
306  /*
307  * We assume here that UNKNOWN's internal representation is the same
308  * as CSTRING.
309  */
310  if (!con->constisnull)
311  newcon->constvalue = stringTypeDatum(baseType,
313  inputTypeMod);
314  else
315  newcon->constvalue = stringTypeDatum(baseType,
316  NULL,
317  inputTypeMod);
318 
319  /*
320  * If it's a varlena value, force it to be in non-expanded
321  * (non-toasted) format; this avoids any possible dependency on
322  * external values and improves consistency of representation.
323  */
324  if (!con->constisnull && newcon->constlen == -1)
325  newcon->constvalue =
327 
328 #ifdef RANDOMIZE_ALLOCATED_MEMORY
329 
330  /*
331  * For pass-by-reference data types, repeat the conversion to see if
332  * the input function leaves any uninitialized bytes in the result. We
333  * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is
334  * enabled, so we don't bother testing otherwise. The reason we don't
335  * want any instability in the input function is that comparison of
336  * Const nodes relies on bytewise comparison of the datums, so if the
337  * input function leaves garbage then subexpressions that should be
338  * identical may not get recognized as such. See pgsql-hackers
339  * discussion of 2008-04-04.
340  */
341  if (!con->constisnull && !newcon->constbyval)
342  {
343  Datum val2;
344 
345  val2 = stringTypeDatum(baseType,
347  inputTypeMod);
348  if (newcon->constlen == -1)
349  val2 = PointerGetDatum(PG_DETOAST_DATUM(val2));
350  if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen))
351  elog(WARNING, "type %s has unstable input conversion for \"%s\"",
352  typeTypeName(baseType), DatumGetCString(con->constvalue));
353  }
354 #endif
355 
357 
358  result = (Node *) newcon;
359 
360  /* If target is a domain, apply constraints. */
361  if (baseTypeId != targetTypeId)
362  result = coerce_to_domain(result,
363  baseTypeId, baseTypeMod,
364  targetTypeId,
365  ccontext, cformat, location,
366  false);
367 
368  ReleaseSysCache(baseType);
369 
370  return result;
371  }
372  if (IsA(node, Param) &&
373  pstate != NULL && pstate->p_coerce_param_hook != NULL)
374  {
375  /*
376  * Allow the CoerceParamHook to decide what happens. It can return a
377  * transformed node (very possibly the same Param node), or return
378  * NULL to indicate we should proceed with normal coercion.
379  */
380  result = pstate->p_coerce_param_hook(pstate,
381  (Param *) node,
382  targetTypeId,
383  targetTypeMod,
384  location);
385  if (result)
386  return result;
387  }
388  if (IsA(node, CollateExpr))
389  {
390  /*
391  * If we have a COLLATE clause, we have to push the coercion
392  * underneath the COLLATE; or discard the COLLATE if the target type
393  * isn't collatable. This is really ugly, but there is little choice
394  * because the above hacks on Consts and Params wouldn't happen
395  * otherwise. This kluge has consequences in coerce_to_target_type.
396  */
397  CollateExpr *coll = (CollateExpr *) node;
398 
399  result = coerce_type(pstate, (Node *) coll->arg,
400  inputTypeId, targetTypeId, targetTypeMod,
401  ccontext, cformat, location);
402  if (type_is_collatable(targetTypeId))
403  {
404  CollateExpr *newcoll = makeNode(CollateExpr);
405 
406  newcoll->arg = (Expr *) result;
407  newcoll->collOid = coll->collOid;
408  newcoll->location = coll->location;
409  result = (Node *) newcoll;
410  }
411  return result;
412  }
413  pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
414  &funcId);
415  if (pathtype != COERCION_PATH_NONE)
416  {
417  if (pathtype != COERCION_PATH_RELABELTYPE)
418  {
419  /*
420  * Generate an expression tree representing run-time application
421  * of the conversion function. If we are dealing with a domain
422  * target type, the conversion function will yield the base type,
423  * and we need to extract the correct typmod to use from the
424  * domain's typtypmod.
425  */
426  Oid baseTypeId;
427  int32 baseTypeMod;
428 
429  baseTypeMod = targetTypeMod;
430  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
431 
432  result = build_coercion_expression(node, pathtype, funcId,
433  baseTypeId, baseTypeMod,
434  ccontext, cformat, location);
435 
436  /*
437  * If domain, coerce to the domain type and relabel with domain
438  * type ID, hiding the previous coercion node.
439  */
440  if (targetTypeId != baseTypeId)
441  result = coerce_to_domain(result, baseTypeId, baseTypeMod,
442  targetTypeId,
443  ccontext, cformat, location,
444  true);
445  }
446  else
447  {
448  /*
449  * We don't need to do a physical conversion, but we do need to
450  * attach a RelabelType node so that the expression will be seen
451  * to have the intended type when inspected by higher-level code.
452  *
453  * Also, domains may have value restrictions beyond the base type
454  * that must be accounted for. If the destination is a domain
455  * then we won't need a RelabelType node.
456  */
457  result = coerce_to_domain(node, InvalidOid, -1, targetTypeId,
458  ccontext, cformat, location,
459  false);
460  if (result == node)
461  {
462  /*
463  * XXX could we label result with exprTypmod(node) instead of
464  * default -1 typmod, to save a possible length-coercion
465  * later? Would work if both types have same interpretation of
466  * typmod, which is likely but not certain.
467  */
468  RelabelType *r = makeRelabelType((Expr *) result,
469  targetTypeId, -1,
470  InvalidOid,
471  cformat);
472 
473  r->location = location;
474  result = (Node *) r;
475  }
476  }
477  return result;
478  }
479  if (inputTypeId == RECORDOID &&
480  ISCOMPLEX(targetTypeId))
481  {
482  /* Coerce a RECORD to a specific complex type */
483  return coerce_record_to_complex(pstate, node, targetTypeId,
484  ccontext, cformat, location);
485  }
486  if (targetTypeId == RECORDOID &&
487  ISCOMPLEX(inputTypeId))
488  {
489  /* Coerce a specific complex type to RECORD */
490  /* NB: we do NOT want a RelabelType here */
491  return node;
492  }
493 #ifdef NOT_USED
494  if (inputTypeId == RECORDARRAYOID &&
495  is_complex_array(targetTypeId))
496  {
497  /* Coerce record[] to a specific complex array type */
498  /* not implemented yet ... */
499  }
500 #endif
501  if (targetTypeId == RECORDARRAYOID &&
502  is_complex_array(inputTypeId))
503  {
504  /* Coerce a specific complex array type to record[] */
505  /* NB: we do NOT want a RelabelType here */
506  return node;
507  }
508  if (typeInheritsFrom(inputTypeId, targetTypeId)
509  || typeIsOfTypedTable(inputTypeId, targetTypeId))
510  {
511  /*
512  * Input class type is a subclass of target, so generate an
513  * appropriate runtime conversion (removing unneeded columns and
514  * possibly rearranging the ones that are wanted).
515  *
516  * We will also get here when the input is a domain over a subclass of
517  * the target type. To keep life simple for the executor, we define
518  * ConvertRowtypeExpr as only working between regular composite types;
519  * therefore, in such cases insert a RelabelType to smash the input
520  * expression down to its base type.
521  */
522  Oid baseTypeId = getBaseType(inputTypeId);
524 
525  if (baseTypeId != inputTypeId)
526  {
527  RelabelType *rt = makeRelabelType((Expr *) node,
528  baseTypeId, -1,
529  InvalidOid,
531 
532  rt->location = location;
533  node = (Node *) rt;
534  }
535  r->arg = (Expr *) node;
536  r->resulttype = targetTypeId;
537  r->convertformat = cformat;
538  r->location = location;
539  return (Node *) r;
540  }
541  /* If we get here, caller blew it */
542  elog(ERROR, "failed to find conversion function from %s to %s",
543  format_type_be(inputTypeId), format_type_be(targetTypeId));
544  return NULL; /* keep compiler quiet */
545 }
546 
547 
548 /*
549  * can_coerce_type()
550  * Can input_typeids be coerced to target_typeids?
551  *
552  * We must be told the context (CAST construct, assignment, implicit coercion)
553  * as this determines the set of available casts.
554  */
555 bool
556 can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids,
557  CoercionContext ccontext)
558 {
559  bool have_generics = false;
560  int i;
561 
562  /* run through argument list... */
563  for (i = 0; i < nargs; i++)
564  {
565  Oid inputTypeId = input_typeids[i];
566  Oid targetTypeId = target_typeids[i];
567  CoercionPathType pathtype;
568  Oid funcId;
569 
570  /* no problem if same type */
571  if (inputTypeId == targetTypeId)
572  continue;
573 
574  /* accept if target is ANY */
575  if (targetTypeId == ANYOID)
576  continue;
577 
578  /* accept if target is polymorphic, for now */
579  if (IsPolymorphicType(targetTypeId))
580  {
581  have_generics = true; /* do more checking later */
582  continue;
583  }
584 
585  /*
586  * If input is an untyped string constant, assume we can convert it to
587  * anything.
588  */
589  if (inputTypeId == UNKNOWNOID)
590  continue;
591 
592  /*
593  * If pg_cast shows that we can coerce, accept. This test now covers
594  * both binary-compatible and coercion-function cases.
595  */
596  pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
597  &funcId);
598  if (pathtype != COERCION_PATH_NONE)
599  continue;
600 
601  /*
602  * If input is RECORD and target is a composite type, assume we can
603  * coerce (may need tighter checking here)
604  */
605  if (inputTypeId == RECORDOID &&
606  ISCOMPLEX(targetTypeId))
607  continue;
608 
609  /*
610  * If input is a composite type and target is RECORD, accept
611  */
612  if (targetTypeId == RECORDOID &&
613  ISCOMPLEX(inputTypeId))
614  continue;
615 
616 #ifdef NOT_USED /* not implemented yet */
617 
618  /*
619  * If input is record[] and target is a composite array type, assume
620  * we can coerce (may need tighter checking here)
621  */
622  if (inputTypeId == RECORDARRAYOID &&
623  is_complex_array(targetTypeId))
624  continue;
625 #endif
626 
627  /*
628  * If input is a composite array type and target is record[], accept
629  */
630  if (targetTypeId == RECORDARRAYOID &&
631  is_complex_array(inputTypeId))
632  continue;
633 
634  /*
635  * If input is a class type that inherits from target, accept
636  */
637  if (typeInheritsFrom(inputTypeId, targetTypeId)
638  || typeIsOfTypedTable(inputTypeId, targetTypeId))
639  continue;
640 
641  /*
642  * Else, cannot coerce at this argument position
643  */
644  return false;
645  }
646 
647  /* If we found any generic argument types, cross-check them */
648  if (have_generics)
649  {
650  if (!check_generic_type_consistency(input_typeids, target_typeids,
651  nargs))
652  return false;
653  }
654 
655  return true;
656 }
657 
658 
659 /*
660  * Create an expression tree to represent coercion to a domain type.
661  *
662  * 'arg': input expression
663  * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
664  * has not bothered to look this up)
665  * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
666  * has not bothered to look this up)
667  * 'typeId': target type to coerce to
668  * 'ccontext': context indicator to control coercions
669  * 'cformat': coercion display format
670  * 'location': coercion request location
671  * 'hideInputCoercion': if true, hide the input coercion under this one.
672  *
673  * If the target type isn't a domain, the given 'arg' is returned as-is.
674  */
675 Node *
676 coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId,
677  CoercionContext ccontext, CoercionForm cformat, int location,
678  bool hideInputCoercion)
679 {
680  CoerceToDomain *result;
681 
682  /* Get the base type if it hasn't been supplied */
683  if (baseTypeId == InvalidOid)
684  baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);
685 
686  /* If it isn't a domain, return the node as it was passed in */
687  if (baseTypeId == typeId)
688  return arg;
689 
690  /* Suppress display of nested coercion steps */
691  if (hideInputCoercion)
692  hide_coercion_node(arg);
693 
694  /*
695  * If the domain applies a typmod to its base type, build the appropriate
696  * coercion step. Mark it implicit for display purposes, because we don't
697  * want it shown separately by ruleutils.c; but the isExplicit flag passed
698  * to the conversion function depends on the manner in which the domain
699  * coercion is invoked, so that the semantics of implicit and explicit
700  * coercion differ. (Is that really the behavior we want?)
701  *
702  * NOTE: because we apply this as part of the fixed expression structure,
703  * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that
704  * would be safe to do anyway, without lots of knowledge about what the
705  * base type thinks the typmod means.
706  */
707  arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod,
708  ccontext, COERCE_IMPLICIT_CAST, location,
709  false);
710 
711  /*
712  * Now build the domain coercion node. This represents run-time checking
713  * of any constraints currently attached to the domain. This also ensures
714  * that the expression is properly labeled as to result type.
715  */
716  result = makeNode(CoerceToDomain);
717  result->arg = (Expr *) arg;
718  result->resulttype = typeId;
719  result->resulttypmod = -1; /* currently, always -1 for domains */
720  /* resultcollid will be set by parse_collate.c */
721  result->coercionformat = cformat;
722  result->location = location;
723 
724  return (Node *) result;
725 }
726 
727 
728 /*
729  * coerce_type_typmod()
730  * Force a value to a particular typmod, if meaningful and possible.
731  *
732  * This is applied to values that are going to be stored in a relation
733  * (where we have an atttypmod for the column) as well as values being
734  * explicitly CASTed (where the typmod comes from the target type spec).
735  *
736  * The caller must have already ensured that the value is of the correct
737  * type, typically by applying coerce_type.
738  *
739  * ccontext may affect semantics, depending on whether the length coercion
740  * function pays attention to the isExplicit flag it's passed.
741  *
742  * cformat determines the display properties of the generated node (if any).
743  *
744  * If hideInputCoercion is true *and* we generate a node, the input node is
745  * forced to IMPLICIT display form, so that only the typmod coercion node will
746  * be visible when displaying the expression.
747  *
748  * NOTE: this does not need to work on domain types, because any typmod
749  * coercion for a domain is considered to be part of the type coercion
750  * needed to produce the domain value in the first place. So, no getBaseType.
751  */
752 static Node *
753 coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod,
754  CoercionContext ccontext, CoercionForm cformat,
755  int location,
756  bool hideInputCoercion)
757 {
758  CoercionPathType pathtype;
759  Oid funcId;
760 
761  /* Skip coercion if already done */
762  if (targetTypMod == exprTypmod(node))
763  return node;
764 
765  /* Suppress display of nested coercion steps */
766  if (hideInputCoercion)
767  hide_coercion_node(node);
768 
769  pathtype = find_typmod_coercion_function(targetTypeId, &funcId);
770 
771  if (pathtype != COERCION_PATH_NONE)
772  {
773  node = build_coercion_expression(node, pathtype, funcId,
774  targetTypeId, targetTypMod,
775  ccontext, cformat, location);
776  }
777  else
778  {
779  /*
780  * We don't need to perform any actual coercion step, but we should
781  * apply a RelabelType to ensure that the expression exposes the
782  * intended typmod.
783  */
784  node = applyRelabelType(node, targetTypeId, targetTypMod,
785  exprCollation(node),
786  cformat, location, false);
787  }
788 
789  return node;
790 }
791 
792 /*
793  * Mark a coercion node as IMPLICIT so it will never be displayed by
794  * ruleutils.c. We use this when we generate a nest of coercion nodes
795  * to implement what is logically one conversion; the inner nodes are
796  * forced to IMPLICIT_CAST format. This does not change their semantics,
797  * only display behavior.
798  *
799  * It is caller error to call this on something that doesn't have a
800  * CoercionForm field.
801  */
802 static void
804 {
805  if (IsA(node, FuncExpr))
806  ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST;
807  else if (IsA(node, RelabelType))
808  ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST;
809  else if (IsA(node, CoerceViaIO))
810  ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST;
811  else if (IsA(node, ArrayCoerceExpr))
812  ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST;
813  else if (IsA(node, ConvertRowtypeExpr))
814  ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST;
815  else if (IsA(node, RowExpr))
816  ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST;
817  else if (IsA(node, CoerceToDomain))
818  ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST;
819  else
820  elog(ERROR, "unsupported node type: %d", (int) nodeTag(node));
821 }
822 
823 /*
824  * build_coercion_expression()
825  * Construct an expression tree for applying a pg_cast entry.
826  *
827  * This is used for both type-coercion and length-coercion operations,
828  * since there is no difference in terms of the calling convention.
829  */
830 static Node *
832  CoercionPathType pathtype,
833  Oid funcId,
834  Oid targetTypeId, int32 targetTypMod,
835  CoercionContext ccontext, CoercionForm cformat,
836  int location)
837 {
838  int nargs = 0;
839 
840  if (OidIsValid(funcId))
841  {
842  HeapTuple tp;
843  Form_pg_proc procstruct;
844 
846  if (!HeapTupleIsValid(tp))
847  elog(ERROR, "cache lookup failed for function %u", funcId);
848  procstruct = (Form_pg_proc) GETSTRUCT(tp);
849 
850  /*
851  * These Asserts essentially check that function is a legal coercion
852  * function. We can't make the seemingly obvious tests on prorettype
853  * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of
854  * various binary-compatibility cases.
855  */
856  /* Assert(targetTypeId == procstruct->prorettype); */
857  Assert(!procstruct->proretset);
858  Assert(procstruct->prokind == PROKIND_FUNCTION);
859  nargs = procstruct->pronargs;
860  Assert(nargs >= 1 && nargs <= 3);
861  /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */
862  Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID);
863  Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID);
864 
865  ReleaseSysCache(tp);
866  }
867 
868  if (pathtype == COERCION_PATH_FUNC)
869  {
870  /* We build an ordinary FuncExpr with special arguments */
871  FuncExpr *fexpr;
872  List *args;
873  Const *cons;
874 
875  Assert(OidIsValid(funcId));
876 
877  args = list_make1(node);
878 
879  if (nargs >= 2)
880  {
881  /* Pass target typmod as an int4 constant */
882  cons = makeConst(INT4OID,
883  -1,
884  InvalidOid,
885  sizeof(int32),
886  Int32GetDatum(targetTypMod),
887  false,
888  true);
889 
890  args = lappend(args, cons);
891  }
892 
893  if (nargs == 3)
894  {
895  /* Pass it a boolean isExplicit parameter, too */
896  cons = makeConst(BOOLOID,
897  -1,
898  InvalidOid,
899  sizeof(bool),
900  BoolGetDatum(ccontext == COERCION_EXPLICIT),
901  false,
902  true);
903 
904  args = lappend(args, cons);
905  }
906 
907  fexpr = makeFuncExpr(funcId, targetTypeId, args,
908  InvalidOid, InvalidOid, cformat);
909  fexpr->location = location;
910  return (Node *) fexpr;
911  }
912  else if (pathtype == COERCION_PATH_ARRAYCOERCE)
913  {
914  /* We need to build an ArrayCoerceExpr */
917  Oid sourceBaseTypeId;
918  int32 sourceBaseTypeMod;
919  Oid targetElementType;
920  Node *elemexpr;
921 
922  /*
923  * Look through any domain over the source array type. Note we don't
924  * expect that the target type is a domain; it must be a plain array.
925  * (To get to a domain target type, we'll do coerce_to_domain later.)
926  */
927  sourceBaseTypeMod = exprTypmod(node);
928  sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node),
929  &sourceBaseTypeMod);
930 
931  /*
932  * Set up a CaseTestExpr representing one element of the source array.
933  * This is an abuse of CaseTestExpr, but it's OK as long as there
934  * can't be any CaseExpr or ArrayCoerceExpr within the completed
935  * elemexpr.
936  */
937  ctest->typeId = get_element_type(sourceBaseTypeId);
938  Assert(OidIsValid(ctest->typeId));
939  ctest->typeMod = sourceBaseTypeMod;
940  ctest->collation = InvalidOid; /* Assume coercions don't care */
941 
942  /* And coerce it to the target element type */
943  targetElementType = get_element_type(targetTypeId);
944  Assert(OidIsValid(targetElementType));
945 
946  elemexpr = coerce_to_target_type(NULL,
947  (Node *) ctest,
948  ctest->typeId,
949  targetElementType,
950  targetTypMod,
951  ccontext,
952  cformat,
953  location);
954  if (elemexpr == NULL) /* shouldn't happen */
955  elog(ERROR, "failed to coerce array element type as expected");
956 
957  acoerce->arg = (Expr *) node;
958  acoerce->elemexpr = (Expr *) elemexpr;
959  acoerce->resulttype = targetTypeId;
960 
961  /*
962  * Label the output as having a particular element typmod only if we
963  * ended up with a per-element expression that is labeled that way.
964  */
965  acoerce->resulttypmod = exprTypmod(elemexpr);
966  /* resultcollid will be set by parse_collate.c */
967  acoerce->coerceformat = cformat;
968  acoerce->location = location;
969 
970  return (Node *) acoerce;
971  }
972  else if (pathtype == COERCION_PATH_COERCEVIAIO)
973  {
974  /* We need to build a CoerceViaIO node */
975  CoerceViaIO *iocoerce = makeNode(CoerceViaIO);
976 
977  Assert(!OidIsValid(funcId));
978 
979  iocoerce->arg = (Expr *) node;
980  iocoerce->resulttype = targetTypeId;
981  /* resultcollid will be set by parse_collate.c */
982  iocoerce->coerceformat = cformat;
983  iocoerce->location = location;
984 
985  return (Node *) iocoerce;
986  }
987  else
988  {
989  elog(ERROR, "unsupported pathtype %d in build_coercion_expression",
990  (int) pathtype);
991  return NULL; /* keep compiler quiet */
992  }
993 }
994 
995 
996 /*
997  * coerce_record_to_complex
998  * Coerce a RECORD to a specific composite type.
999  *
1000  * Currently we only support this for inputs that are RowExprs or whole-row
1001  * Vars.
1002  */
1003 static Node *
1005  Oid targetTypeId,
1006  CoercionContext ccontext,
1007  CoercionForm cformat,
1008  int location)
1009 {
1010  RowExpr *rowexpr;
1011  Oid baseTypeId;
1012  int32 baseTypeMod = -1;
1013  TupleDesc tupdesc;
1014  List *args = NIL;
1015  List *newargs;
1016  int i;
1017  int ucolno;
1018  ListCell *arg;
1019 
1020  if (node && IsA(node, RowExpr))
1021  {
1022  /*
1023  * Since the RowExpr must be of type RECORD, we needn't worry about it
1024  * containing any dropped columns.
1025  */
1026  args = ((RowExpr *) node)->args;
1027  }
1028  else if (node && IsA(node, Var) &&
1029  ((Var *) node)->varattno == InvalidAttrNumber)
1030  {
1031  int rtindex = ((Var *) node)->varno;
1032  int sublevels_up = ((Var *) node)->varlevelsup;
1033  int vlocation = ((Var *) node)->location;
1034  ParseNamespaceItem *nsitem;
1035 
1036  nsitem = GetNSItemByRangeTablePosn(pstate, rtindex, sublevels_up);
1037  args = expandNSItemVars(nsitem, sublevels_up, vlocation, NULL);
1038  }
1039  else
1040  ereport(ERROR,
1041  (errcode(ERRCODE_CANNOT_COERCE),
1042  errmsg("cannot cast type %s to %s",
1043  format_type_be(RECORDOID),
1044  format_type_be(targetTypeId)),
1045  parser_coercion_errposition(pstate, location, node)));
1046 
1047  /*
1048  * Look up the composite type, accounting for possibility that what we are
1049  * given is a domain over composite.
1050  */
1051  baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
1052  tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod);
1053 
1054  /* Process the fields */
1055  newargs = NIL;
1056  ucolno = 1;
1057  arg = list_head(args);
1058  for (i = 0; i < tupdesc->natts; i++)
1059  {
1060  Node *expr;
1061  Node *cexpr;
1062  Oid exprtype;
1063  Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
1064 
1065  /* Fill in NULLs for dropped columns in rowtype */
1066  if (attr->attisdropped)
1067  {
1068  /*
1069  * can't use atttypid here, but it doesn't really matter what type
1070  * the Const claims to be.
1071  */
1072  newargs = lappend(newargs,
1073  makeNullConst(INT4OID, -1, InvalidOid));
1074  continue;
1075  }
1076 
1077  if (arg == NULL)
1078  ereport(ERROR,
1079  (errcode(ERRCODE_CANNOT_COERCE),
1080  errmsg("cannot cast type %s to %s",
1081  format_type_be(RECORDOID),
1082  format_type_be(targetTypeId)),
1083  errdetail("Input has too few columns."),
1084  parser_coercion_errposition(pstate, location, node)));
1085  expr = (Node *) lfirst(arg);
1086  exprtype = exprType(expr);
1087 
1088  cexpr = coerce_to_target_type(pstate,
1089  expr, exprtype,
1090  attr->atttypid,
1091  attr->atttypmod,
1092  ccontext,
1094  -1);
1095  if (cexpr == NULL)
1096  ereport(ERROR,
1097  (errcode(ERRCODE_CANNOT_COERCE),
1098  errmsg("cannot cast type %s to %s",
1099  format_type_be(RECORDOID),
1100  format_type_be(targetTypeId)),
1101  errdetail("Cannot cast type %s to %s in column %d.",
1102  format_type_be(exprtype),
1103  format_type_be(attr->atttypid),
1104  ucolno),
1105  parser_coercion_errposition(pstate, location, expr)));
1106  newargs = lappend(newargs, cexpr);
1107  ucolno++;
1108  arg = lnext(args, arg);
1109  }
1110  if (arg != NULL)
1111  ereport(ERROR,
1112  (errcode(ERRCODE_CANNOT_COERCE),
1113  errmsg("cannot cast type %s to %s",
1114  format_type_be(RECORDOID),
1115  format_type_be(targetTypeId)),
1116  errdetail("Input has too many columns."),
1117  parser_coercion_errposition(pstate, location, node)));
1118 
1119  ReleaseTupleDesc(tupdesc);
1120 
1121  rowexpr = makeNode(RowExpr);
1122  rowexpr->args = newargs;
1123  rowexpr->row_typeid = baseTypeId;
1124  rowexpr->row_format = cformat;
1125  rowexpr->colnames = NIL; /* not needed for named target type */
1126  rowexpr->location = location;
1127 
1128  /* If target is a domain, apply constraints */
1129  if (baseTypeId != targetTypeId)
1130  {
1131  rowexpr->row_format = COERCE_IMPLICIT_CAST;
1132  return coerce_to_domain((Node *) rowexpr,
1133  baseTypeId, baseTypeMod,
1134  targetTypeId,
1135  ccontext, cformat, location,
1136  false);
1137  }
1138 
1139  return (Node *) rowexpr;
1140 }
1141 
1142 /*
1143  * coerce_to_boolean()
1144  * Coerce an argument of a construct that requires boolean input
1145  * (AND, OR, NOT, etc). Also check that input is not a set.
1146  *
1147  * Returns the possibly-transformed node tree.
1148  *
1149  * As with coerce_type, pstate may be NULL if no special unknown-Param
1150  * processing is wanted.
1151  */
1152 Node *
1154  const char *constructName)
1155 {
1156  Oid inputTypeId = exprType(node);
1157 
1158  if (inputTypeId != BOOLOID)
1159  {
1160  Node *newnode;
1161 
1162  newnode = coerce_to_target_type(pstate, node, inputTypeId,
1163  BOOLOID, -1,
1166  -1);
1167  if (newnode == NULL)
1168  ereport(ERROR,
1169  (errcode(ERRCODE_DATATYPE_MISMATCH),
1170  /* translator: first %s is name of a SQL construct, eg WHERE */
1171  errmsg("argument of %s must be type %s, not type %s",
1172  constructName, "boolean",
1173  format_type_be(inputTypeId)),
1174  parser_errposition(pstate, exprLocation(node))));
1175  node = newnode;
1176  }
1177 
1178  if (expression_returns_set(node))
1179  ereport(ERROR,
1180  (errcode(ERRCODE_DATATYPE_MISMATCH),
1181  /* translator: %s is name of a SQL construct, eg WHERE */
1182  errmsg("argument of %s must not return a set",
1183  constructName),
1184  parser_errposition(pstate, exprLocation(node))));
1185 
1186  return node;
1187 }
1188 
1189 /*
1190  * coerce_to_specific_type_typmod()
1191  * Coerce an argument of a construct that requires a specific data type,
1192  * with a specific typmod. Also check that input is not a set.
1193  *
1194  * Returns the possibly-transformed node tree.
1195  *
1196  * As with coerce_type, pstate may be NULL if no special unknown-Param
1197  * processing is wanted.
1198  */
1199 Node *
1201  Oid targetTypeId, int32 targetTypmod,
1202  const char *constructName)
1203 {
1204  Oid inputTypeId = exprType(node);
1205 
1206  if (inputTypeId != targetTypeId)
1207  {
1208  Node *newnode;
1209 
1210  newnode = coerce_to_target_type(pstate, node, inputTypeId,
1211  targetTypeId, targetTypmod,
1214  -1);
1215  if (newnode == NULL)
1216  ereport(ERROR,
1217  (errcode(ERRCODE_DATATYPE_MISMATCH),
1218  /* translator: first %s is name of a SQL construct, eg LIMIT */
1219  errmsg("argument of %s must be type %s, not type %s",
1220  constructName,
1221  format_type_be(targetTypeId),
1222  format_type_be(inputTypeId)),
1223  parser_errposition(pstate, exprLocation(node))));
1224  node = newnode;
1225  }
1226 
1227  if (expression_returns_set(node))
1228  ereport(ERROR,
1229  (errcode(ERRCODE_DATATYPE_MISMATCH),
1230  /* translator: %s is name of a SQL construct, eg LIMIT */
1231  errmsg("argument of %s must not return a set",
1232  constructName),
1233  parser_errposition(pstate, exprLocation(node))));
1234 
1235  return node;
1236 }
1237 
1238 /*
1239  * coerce_to_specific_type()
1240  * Coerce an argument of a construct that requires a specific data type.
1241  * Also check that input is not a set.
1242  *
1243  * Returns the possibly-transformed node tree.
1244  *
1245  * As with coerce_type, pstate may be NULL if no special unknown-Param
1246  * processing is wanted.
1247  */
1248 Node *
1250  Oid targetTypeId,
1251  const char *constructName)
1252 {
1253  return coerce_to_specific_type_typmod(pstate, node,
1254  targetTypeId, -1,
1255  constructName);
1256 }
1257 
1258 /*
1259  * parser_coercion_errposition - report coercion error location, if possible
1260  *
1261  * We prefer to point at the coercion request (CAST, ::, etc) if possible;
1262  * but there may be no such location in the case of an implicit coercion.
1263  * In that case point at the input expression.
1264  *
1265  * XXX possibly this is more generally useful than coercion errors;
1266  * if so, should rename and place with parser_errposition.
1267  */
1268 int
1270  int coerce_location,
1271  Node *input_expr)
1272 {
1273  if (coerce_location >= 0)
1274  return parser_errposition(pstate, coerce_location);
1275  else
1276  return parser_errposition(pstate, exprLocation(input_expr));
1277 }
1278 
1279 
1280 /*
1281  * select_common_type()
1282  * Determine the common supertype of a list of input expressions.
1283  * This is used for determining the output type of CASE, UNION,
1284  * and similar constructs.
1285  *
1286  * 'exprs' is a *nonempty* list of expressions. Note that earlier items
1287  * in the list will be preferred if there is doubt.
1288  * 'context' is a phrase to use in the error message if we fail to select
1289  * a usable type. Pass NULL to have the routine return InvalidOid
1290  * rather than throwing an error on failure.
1291  * 'which_expr': if not NULL, receives a pointer to the particular input
1292  * expression from which the result type was taken.
1293  */
1294 Oid
1295 select_common_type(ParseState *pstate, List *exprs, const char *context,
1296  Node **which_expr)
1297 {
1298  Node *pexpr;
1299  Oid ptype;
1300  TYPCATEGORY pcategory;
1301  bool pispreferred;
1302  ListCell *lc;
1303 
1304  Assert(exprs != NIL);
1305  pexpr = (Node *) linitial(exprs);
1306  lc = list_second_cell(exprs);
1307  ptype = exprType(pexpr);
1308 
1309  /*
1310  * If all input types are valid and exactly the same, just pick that type.
1311  * This is the only way that we will resolve the result as being a domain
1312  * type; otherwise domains are smashed to their base types for comparison.
1313  */
1314  if (ptype != UNKNOWNOID)
1315  {
1316  for_each_cell(lc, exprs, lc)
1317  {
1318  Node *nexpr = (Node *) lfirst(lc);
1319  Oid ntype = exprType(nexpr);
1320 
1321  if (ntype != ptype)
1322  break;
1323  }
1324  if (lc == NULL) /* got to the end of the list? */
1325  {
1326  if (which_expr)
1327  *which_expr = pexpr;
1328  return ptype;
1329  }
1330  }
1331 
1332  /*
1333  * Nope, so set up for the full algorithm. Note that at this point, lc
1334  * points to the first list item with type different from pexpr's; we need
1335  * not re-examine any items the previous loop advanced over.
1336  */
1337  ptype = getBaseType(ptype);
1338  get_type_category_preferred(ptype, &pcategory, &pispreferred);
1339 
1340  for_each_cell(lc, exprs, lc)
1341  {
1342  Node *nexpr = (Node *) lfirst(lc);
1343  Oid ntype = getBaseType(exprType(nexpr));
1344 
1345  /* move on to next one if no new information... */
1346  if (ntype != UNKNOWNOID && ntype != ptype)
1347  {
1348  TYPCATEGORY ncategory;
1349  bool nispreferred;
1350 
1351  get_type_category_preferred(ntype, &ncategory, &nispreferred);
1352  if (ptype == UNKNOWNOID)
1353  {
1354  /* so far, only unknowns so take anything... */
1355  pexpr = nexpr;
1356  ptype = ntype;
1357  pcategory = ncategory;
1358  pispreferred = nispreferred;
1359  }
1360  else if (ncategory != pcategory)
1361  {
1362  /*
1363  * both types in different categories? then not much hope...
1364  */
1365  if (context == NULL)
1366  return InvalidOid;
1367  ereport(ERROR,
1368  (errcode(ERRCODE_DATATYPE_MISMATCH),
1369  /*------
1370  translator: first %s is name of a SQL construct, eg CASE */
1371  errmsg("%s types %s and %s cannot be matched",
1372  context,
1373  format_type_be(ptype),
1374  format_type_be(ntype)),
1375  parser_errposition(pstate, exprLocation(nexpr))));
1376  }
1377  else if (!pispreferred &&
1378  can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
1379  !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
1380  {
1381  /*
1382  * take new type if can coerce to it implicitly but not the
1383  * other way; but if we have a preferred type, stay on it.
1384  */
1385  pexpr = nexpr;
1386  ptype = ntype;
1387  pcategory = ncategory;
1388  pispreferred = nispreferred;
1389  }
1390  }
1391  }
1392 
1393  /*
1394  * If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
1395  * then resolve as type TEXT. This situation comes up with constructs
1396  * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
1397  * UNION SELECT 'bar'; It might seem desirable to leave the construct's
1398  * output type as UNKNOWN, but that really doesn't work, because we'd
1399  * probably end up needing a runtime coercion from UNKNOWN to something
1400  * else, and we usually won't have it. We need to coerce the unknown
1401  * literals while they are still literals, so a decision has to be made
1402  * now.
1403  */
1404  if (ptype == UNKNOWNOID)
1405  ptype = TEXTOID;
1406 
1407  if (which_expr)
1408  *which_expr = pexpr;
1409  return ptype;
1410 }
1411 
1412 /*
1413  * select_common_type_from_oids()
1414  * Determine the common supertype of an array of type OIDs.
1415  *
1416  * This is the same logic as select_common_type(), but working from
1417  * an array of type OIDs not a list of expressions. As in that function,
1418  * earlier entries in the array have some preference over later ones.
1419  * On failure, return InvalidOid if noerror is true, else throw an error.
1420  *
1421  * Note: neither caller will pass any UNKNOWNOID entries, so the tests
1422  * for that in this function are dead code. However, they don't cost much,
1423  * and it seems better to keep this logic as close to select_common_type()
1424  * as possible.
1425  */
1426 static Oid
1427 select_common_type_from_oids(int nargs, const Oid *typeids, bool noerror)
1428 {
1429  Oid ptype;
1430  TYPCATEGORY pcategory;
1431  bool pispreferred;
1432  int i = 1;
1433 
1434  Assert(nargs > 0);
1435  ptype = typeids[0];
1436 
1437  /* If all input types are valid and exactly the same, pick that type. */
1438  if (ptype != UNKNOWNOID)
1439  {
1440  for (; i < nargs; i++)
1441  {
1442  if (typeids[i] != ptype)
1443  break;
1444  }
1445  if (i == nargs)
1446  return ptype;
1447  }
1448 
1449  /*
1450  * Nope, so set up for the full algorithm. Note that at this point, we
1451  * can skip array entries before "i"; they are all equal to ptype.
1452  */
1453  ptype = getBaseType(ptype);
1454  get_type_category_preferred(ptype, &pcategory, &pispreferred);
1455 
1456  for (; i < nargs; i++)
1457  {
1458  Oid ntype = getBaseType(typeids[i]);
1459 
1460  /* move on to next one if no new information... */
1461  if (ntype != UNKNOWNOID && ntype != ptype)
1462  {
1463  TYPCATEGORY ncategory;
1464  bool nispreferred;
1465 
1466  get_type_category_preferred(ntype, &ncategory, &nispreferred);
1467  if (ptype == UNKNOWNOID)
1468  {
1469  /* so far, only unknowns so take anything... */
1470  ptype = ntype;
1471  pcategory = ncategory;
1472  pispreferred = nispreferred;
1473  }
1474  else if (ncategory != pcategory)
1475  {
1476  /*
1477  * both types in different categories? then not much hope...
1478  */
1479  if (noerror)
1480  return InvalidOid;
1481  ereport(ERROR,
1482  (errcode(ERRCODE_DATATYPE_MISMATCH),
1483  errmsg("argument types %s and %s cannot be matched",
1484  format_type_be(ptype),
1485  format_type_be(ntype))));
1486  }
1487  else if (!pispreferred &&
1488  can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
1489  !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
1490  {
1491  /*
1492  * take new type if can coerce to it implicitly but not the
1493  * other way; but if we have a preferred type, stay on it.
1494  */
1495  ptype = ntype;
1496  pcategory = ncategory;
1497  pispreferred = nispreferred;
1498  }
1499  }
1500  }
1501 
1502  /* Like select_common_type(), choose TEXT if all inputs were UNKNOWN */
1503  if (ptype == UNKNOWNOID)
1504  ptype = TEXTOID;
1505 
1506  return ptype;
1507 }
1508 
1509 /*
1510  * coerce_to_common_type()
1511  * Coerce an expression to the given type.
1512  *
1513  * This is used following select_common_type() to coerce the individual
1514  * expressions to the desired type. 'context' is a phrase to use in the
1515  * error message if we fail to coerce.
1516  *
1517  * As with coerce_type, pstate may be NULL if no special unknown-Param
1518  * processing is wanted.
1519  */
1520 Node *
1522  Oid targetTypeId, const char *context)
1523 {
1524  Oid inputTypeId = exprType(node);
1525 
1526  if (inputTypeId == targetTypeId)
1527  return node; /* no work */
1528  if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT))
1529  node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1,
1531  else
1532  ereport(ERROR,
1533  (errcode(ERRCODE_CANNOT_COERCE),
1534  /* translator: first %s is name of a SQL construct, eg CASE */
1535  errmsg("%s could not convert type %s to %s",
1536  context,
1537  format_type_be(inputTypeId),
1538  format_type_be(targetTypeId)),
1539  parser_errposition(pstate, exprLocation(node))));
1540  return node;
1541 }
1542 
1543 /*
1544  * select_common_typmod()
1545  * Determine the common typmod of a list of input expressions.
1546  *
1547  * common_type is the selected common type of the expressions, typically
1548  * computed using select_common_type().
1549  */
1550 int32
1551 select_common_typmod(ParseState *pstate, List *exprs, Oid common_type)
1552 {
1553  ListCell *lc;
1554  bool first = true;
1555  int32 result = -1;
1556 
1557  foreach(lc, exprs)
1558  {
1559  Node *expr = (Node *) lfirst(lc);
1560 
1561  /* Types must match */
1562  if (exprType(expr) != common_type)
1563  return -1;
1564  else if (first)
1565  {
1566  result = exprTypmod(expr);
1567  first = false;
1568  }
1569  else
1570  {
1571  /* As soon as we see a non-matching typmod, fall back to -1 */
1572  if (result != exprTypmod(expr))
1573  return -1;
1574  }
1575  }
1576 
1577  return result;
1578 }
1579 
1580 /*
1581  * check_generic_type_consistency()
1582  * Are the actual arguments potentially compatible with a
1583  * polymorphic function?
1584  *
1585  * The argument consistency rules are:
1586  *
1587  * 1) All arguments declared ANYELEMENT must have the same datatype.
1588  * 2) All arguments declared ANYARRAY must have the same datatype,
1589  * which must be a varlena array type.
1590  * 3) All arguments declared ANYRANGE must be the same range type.
1591  * Similarly, all arguments declared ANYMULTIRANGE must be the same
1592  * multirange type; and if both of these appear, the ANYRANGE type
1593  * must be the element type of the ANYMULTIRANGE type.
1594  * 4) If there are arguments of more than one of these polymorphic types,
1595  * the array element type and/or range subtype must be the same as each
1596  * other and the same as the ANYELEMENT type.
1597  * 5) ANYENUM is treated the same as ANYELEMENT except that if it is used
1598  * (alone or in combination with plain ANYELEMENT), we add the extra
1599  * condition that the ANYELEMENT type must be an enum.
1600  * 6) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
1601  * we add the extra condition that the ANYELEMENT type must not be an array.
1602  * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
1603  * is an extra restriction if not.)
1604  * 7) All arguments declared ANYCOMPATIBLE must be implicitly castable
1605  * to a common supertype (chosen as per select_common_type's rules).
1606  * ANYCOMPATIBLENONARRAY works like ANYCOMPATIBLE but also requires the
1607  * common supertype to not be an array. If there are ANYCOMPATIBLEARRAY
1608  * or ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE arguments, their element
1609  * types or subtypes are included while making the choice of common supertype.
1610  * 8) The resolved type of ANYCOMPATIBLEARRAY arguments will be the array
1611  * type over the common supertype (which might not be the same array type
1612  * as any of the original arrays).
1613  * 9) All ANYCOMPATIBLERANGE arguments must be the exact same range type
1614  * (after domain flattening), since we have no preference rule that would
1615  * let us choose one over another. Furthermore, that range's subtype
1616  * must exactly match the common supertype chosen by rule 7.
1617  * 10) All ANYCOMPATIBLEMULTIRANGE arguments must be the exact same multirange
1618  * type (after domain flattening), since we have no preference rule that
1619  * would let us choose one over another. Furthermore, if ANYCOMPATIBLERANGE
1620  * also appears, that range type must be the multirange's element type;
1621  * otherwise, the multirange's range's subtype must exactly match the
1622  * common supertype chosen by rule 7.
1623  *
1624  * Domains over arrays match ANYARRAY, and are immediately flattened to their
1625  * base type. (Thus, for example, we will consider it a match if one ANYARRAY
1626  * argument is a domain over int4[] while another one is just int4[].) Also
1627  * notice that such a domain does *not* match ANYNONARRAY. The same goes
1628  * for ANYCOMPATIBLEARRAY and ANYCOMPATIBLENONARRAY.
1629  *
1630  * Similarly, domains over ranges match ANYRANGE or ANYCOMPATIBLERANGE,
1631  * and are immediately flattened to their base type. Likewise, domains
1632  * over multiranges match ANYMULTIRANGE or ANYCOMPATIBLEMULTIRANGE and are
1633  * immediately flattened to their base type.
1634  *
1635  * Note that domains aren't currently considered to match ANYENUM,
1636  * even if their base type would match.
1637  *
1638  * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
1639  * argument, assume it is okay.
1640  *
1641  * We do not ereport here, but just return false if a rule is violated.
1642  */
1643 bool
1644 check_generic_type_consistency(const Oid *actual_arg_types,
1645  const Oid *declared_arg_types,
1646  int nargs)
1647 {
1648  Oid elem_typeid = InvalidOid;
1649  Oid array_typeid = InvalidOid;
1650  Oid range_typeid = InvalidOid;
1651  Oid multirange_typeid = InvalidOid;
1652  Oid anycompatible_range_typeid = InvalidOid;
1653  Oid anycompatible_range_typelem = InvalidOid;
1654  Oid anycompatible_multirange_typeid = InvalidOid;
1655  Oid anycompatible_multirange_typelem = InvalidOid;
1656  Oid range_typelem = InvalidOid;
1657  bool have_anynonarray = false;
1658  bool have_anyenum = false;
1659  bool have_anycompatible_nonarray = false;
1660  int n_anycompatible_args = 0;
1661  Oid anycompatible_actual_types[FUNC_MAX_ARGS];
1662 
1663  /*
1664  * Loop through the arguments to see if we have any that are polymorphic.
1665  * If so, require the actual types to be consistent.
1666  */
1667  Assert(nargs <= FUNC_MAX_ARGS);
1668  for (int j = 0; j < nargs; j++)
1669  {
1670  Oid decl_type = declared_arg_types[j];
1671  Oid actual_type = actual_arg_types[j];
1672 
1673  if (decl_type == ANYELEMENTOID ||
1674  decl_type == ANYNONARRAYOID ||
1675  decl_type == ANYENUMOID)
1676  {
1677  if (decl_type == ANYNONARRAYOID)
1678  have_anynonarray = true;
1679  else if (decl_type == ANYENUMOID)
1680  have_anyenum = true;
1681  if (actual_type == UNKNOWNOID)
1682  continue;
1683  if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
1684  return false;
1685  elem_typeid = actual_type;
1686  }
1687  else if (decl_type == ANYARRAYOID)
1688  {
1689  if (actual_type == UNKNOWNOID)
1690  continue;
1691  actual_type = getBaseType(actual_type); /* flatten domains */
1692  if (OidIsValid(array_typeid) && actual_type != array_typeid)
1693  return false;
1694  array_typeid = actual_type;
1695  }
1696  else if (decl_type == ANYRANGEOID)
1697  {
1698  if (actual_type == UNKNOWNOID)
1699  continue;
1700  actual_type = getBaseType(actual_type); /* flatten domains */
1701  if (OidIsValid(range_typeid) && actual_type != range_typeid)
1702  return false;
1703  range_typeid = actual_type;
1704  }
1705  else if (decl_type == ANYMULTIRANGEOID)
1706  {
1707  if (actual_type == UNKNOWNOID)
1708  continue;
1709  actual_type = getBaseType(actual_type); /* flatten domains */
1710  if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid)
1711  return false;
1712  multirange_typeid = actual_type;
1713  }
1714  else if (decl_type == ANYCOMPATIBLEOID ||
1715  decl_type == ANYCOMPATIBLENONARRAYOID)
1716  {
1717  if (decl_type == ANYCOMPATIBLENONARRAYOID)
1718  have_anycompatible_nonarray = true;
1719  if (actual_type == UNKNOWNOID)
1720  continue;
1721  /* collect the actual types of non-unknown COMPATIBLE args */
1722  anycompatible_actual_types[n_anycompatible_args++] = actual_type;
1723  }
1724  else if (decl_type == ANYCOMPATIBLEARRAYOID)
1725  {
1726  Oid elem_type;
1727 
1728  if (actual_type == UNKNOWNOID)
1729  continue;
1730  actual_type = getBaseType(actual_type); /* flatten domains */
1731  elem_type = get_element_type(actual_type);
1732  if (!OidIsValid(elem_type))
1733  return false; /* not an array */
1734  /* collect the element type for common-supertype choice */
1735  anycompatible_actual_types[n_anycompatible_args++] = elem_type;
1736  }
1737  else if (decl_type == ANYCOMPATIBLERANGEOID)
1738  {
1739  if (actual_type == UNKNOWNOID)
1740  continue;
1741  actual_type = getBaseType(actual_type); /* flatten domains */
1742  if (OidIsValid(anycompatible_range_typeid))
1743  {
1744  /* All ANYCOMPATIBLERANGE arguments must be the same type */
1745  if (anycompatible_range_typeid != actual_type)
1746  return false;
1747  }
1748  else
1749  {
1750  anycompatible_range_typeid = actual_type;
1751  anycompatible_range_typelem = get_range_subtype(actual_type);
1752  if (!OidIsValid(anycompatible_range_typelem))
1753  return false; /* not a range type */
1754  /* collect the subtype for common-supertype choice */
1755  anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem;
1756  }
1757  }
1758  else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
1759  {
1760  if (actual_type == UNKNOWNOID)
1761  continue;
1762  actual_type = getBaseType(actual_type); /* flatten domains */
1763  if (OidIsValid(anycompatible_multirange_typeid))
1764  {
1765  /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */
1766  if (anycompatible_multirange_typeid != actual_type)
1767  return false;
1768  }
1769  else
1770  {
1771  anycompatible_multirange_typeid = actual_type;
1772  anycompatible_multirange_typelem = get_multirange_range(actual_type);
1773  if (!OidIsValid(anycompatible_multirange_typelem))
1774  return false; /* not a multirange type */
1775  /* we'll consider the subtype below */
1776  }
1777  }
1778  }
1779 
1780  /* Get the element type based on the array type, if we have one */
1781  if (OidIsValid(array_typeid))
1782  {
1783  if (array_typeid == ANYARRAYOID)
1784  {
1785  /*
1786  * Special case for matching ANYARRAY input to an ANYARRAY
1787  * argument: allow it for now. enforce_generic_type_consistency()
1788  * might complain later, depending on the presence of other
1789  * polymorphic arguments or results, but it will deliver a less
1790  * surprising error message than "function does not exist".
1791  *
1792  * (If you think to change this, note that can_coerce_type will
1793  * consider such a situation as a match, so that we might not even
1794  * get here.)
1795  */
1796  }
1797  else
1798  {
1799  Oid array_typelem;
1800 
1801  array_typelem = get_element_type(array_typeid);
1802  if (!OidIsValid(array_typelem))
1803  return false; /* should be an array, but isn't */
1804 
1805  if (!OidIsValid(elem_typeid))
1806  {
1807  /*
1808  * if we don't have an element type yet, use the one we just
1809  * got
1810  */
1811  elem_typeid = array_typelem;
1812  }
1813  else if (array_typelem != elem_typeid)
1814  {
1815  /* otherwise, they better match */
1816  return false;
1817  }
1818  }
1819  }
1820 
1821  /* Deduce range type from multirange type, or check that they agree */
1822  if (OidIsValid(multirange_typeid))
1823  {
1824  Oid multirange_typelem;
1825 
1826  multirange_typelem = get_multirange_range(multirange_typeid);
1827  if (!OidIsValid(multirange_typelem))
1828  return false; /* should be a multirange, but isn't */
1829 
1830  if (!OidIsValid(range_typeid))
1831  {
1832  /* If we don't have a range type yet, use the one we just got */
1833  range_typeid = multirange_typelem;
1834  range_typelem = get_range_subtype(multirange_typelem);
1835  if (!OidIsValid(range_typelem))
1836  return false; /* should be a range, but isn't */
1837  }
1838  else if (multirange_typelem != range_typeid)
1839  {
1840  /* otherwise, they better match */
1841  return false;
1842  }
1843  }
1844 
1845  /* Get the element type based on the range type, if we have one */
1846  if (OidIsValid(range_typeid))
1847  {
1848  range_typelem = get_range_subtype(range_typeid);
1849  if (!OidIsValid(range_typelem))
1850  return false; /* should be a range, but isn't */
1851 
1852  if (!OidIsValid(elem_typeid))
1853  {
1854  /*
1855  * If we don't have an element type yet, use the one we just got
1856  */
1857  elem_typeid = range_typelem;
1858  }
1859  else if (range_typelem != elem_typeid)
1860  {
1861  /* otherwise, they better match */
1862  return false;
1863  }
1864  }
1865 
1866  if (have_anynonarray)
1867  {
1868  /* require the element type to not be an array or domain over array */
1869  if (type_is_array_domain(elem_typeid))
1870  return false;
1871  }
1872 
1873  if (have_anyenum)
1874  {
1875  /* require the element type to be an enum */
1876  if (!type_is_enum(elem_typeid))
1877  return false;
1878  }
1879 
1880  /* Deduce range type from multirange type, or check that they agree */
1881  if (OidIsValid(anycompatible_multirange_typeid))
1882  {
1883  if (OidIsValid(anycompatible_range_typeid))
1884  {
1885  if (anycompatible_multirange_typelem !=
1886  anycompatible_range_typeid)
1887  return false;
1888  }
1889  else
1890  {
1891  anycompatible_range_typeid = anycompatible_multirange_typelem;
1892  anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid);
1893  if (!OidIsValid(anycompatible_range_typelem))
1894  return false; /* not a range type */
1895  /* collect the subtype for common-supertype choice */
1896  anycompatible_actual_types[n_anycompatible_args++] =
1897  anycompatible_range_typelem;
1898  }
1899  }
1900 
1901  /* Check matching of ANYCOMPATIBLE-family arguments, if any */
1902  if (n_anycompatible_args > 0)
1903  {
1904  Oid anycompatible_typeid;
1905 
1906  anycompatible_typeid =
1907  select_common_type_from_oids(n_anycompatible_args,
1908  anycompatible_actual_types,
1909  true);
1910 
1911  if (!OidIsValid(anycompatible_typeid))
1912  return false; /* there's no common supertype */
1913 
1914  if (have_anycompatible_nonarray)
1915  {
1916  /*
1917  * require the anycompatible type to not be an array or domain
1918  * over array
1919  */
1920  if (type_is_array_domain(anycompatible_typeid))
1921  return false;
1922  }
1923 
1924  /*
1925  * The anycompatible type must exactly match the range element type,
1926  * if we were able to identify one. This checks compatibility for
1927  * anycompatiblemultirange too since that also sets
1928  * anycompatible_range_typelem above.
1929  */
1930  if (OidIsValid(anycompatible_range_typelem) &&
1931  anycompatible_range_typelem != anycompatible_typeid)
1932  return false;
1933  }
1934 
1935  /* Looks valid */
1936  return true;
1937 }
1938 
1939 /*
1940  * enforce_generic_type_consistency()
1941  * Make sure a polymorphic function is legally callable, and
1942  * deduce actual argument and result types.
1943  *
1944  * If any polymorphic pseudotype is used in a function's arguments or
1945  * return type, we make sure the actual data types are consistent with
1946  * each other. The argument consistency rules are shown above for
1947  * check_generic_type_consistency().
1948  *
1949  * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic
1950  * argument, we attempt to deduce the actual type it should have. If
1951  * successful, we alter that position of declared_arg_types[] so that
1952  * make_fn_arguments will coerce the literal to the right thing.
1953  *
1954  * If we have polymorphic arguments of the ANYCOMPATIBLE family,
1955  * we similarly alter declared_arg_types[] entries to show the resolved
1956  * common supertype, so that make_fn_arguments will coerce the actual
1957  * arguments to the proper type.
1958  *
1959  * Rules are applied to the function's return type (possibly altering it)
1960  * if it is declared as a polymorphic type and there is at least one
1961  * polymorphic argument type:
1962  *
1963  * 1) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
1964  * argument's actual type as the function's return type.
1965  * 2) If return type is ANYARRAY, and any argument is ANYARRAY, use the
1966  * argument's actual type as the function's return type.
1967  * 3) Similarly, if return type is ANYRANGE or ANYMULTIRANGE, and any
1968  * argument is ANYRANGE or ANYMULTIRANGE, use that argument's actual type
1969  * (or the corresponding range or multirange type) as the function's return
1970  * type.
1971  * 4) Otherwise, if return type is ANYELEMENT or ANYARRAY, and there is
1972  * at least one ANYELEMENT, ANYARRAY, ANYRANGE, or ANYMULTIRANGE input,
1973  * deduce the return type from those inputs, or throw error if we can't.
1974  * 5) Otherwise, if return type is ANYRANGE or ANYMULTIRANGE, throw error.
1975  * (We have no way to select a specific range type if the arguments don't
1976  * include ANYRANGE or ANYMULTIRANGE.)
1977  * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used
1978  * (alone or in combination with plain ANYELEMENT), we add the extra
1979  * condition that the ANYELEMENT type must be an enum.
1980  * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used,
1981  * we add the extra condition that the ANYELEMENT type must not be an array.
1982  * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but
1983  * is an extra restriction if not.)
1984  * 8) ANYCOMPATIBLE, ANYCOMPATIBLEARRAY, and ANYCOMPATIBLENONARRAY are handled
1985  * by resolving the common supertype of those arguments (or their element
1986  * types, for array inputs), and then coercing all those arguments to the
1987  * common supertype, or the array type over the common supertype for
1988  * ANYCOMPATIBLEARRAY.
1989  * 9) For ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE, there must be at
1990  * least one non-UNKNOWN input matching those arguments, and all such
1991  * inputs must be the same range type (or its multirange type, as
1992  * appropriate), since we cannot deduce a range type from non-range types.
1993  * Furthermore, the range type's subtype is included while choosing the
1994  * common supertype for ANYCOMPATIBLE et al, and it must exactly match
1995  * that common supertype.
1996  *
1997  * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments,
1998  * respectively, and are immediately flattened to their base type. (In
1999  * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set
2000  * it to the base type not the domain type.) The same is true for
2001  * ANYMULTIRANGE, ANYCOMPATIBLEARRAY, ANYCOMPATIBLERANGE, and
2002  * ANYCOMPATIBLEMULTIRANGE.
2003  *
2004  * When allow_poly is false, we are not expecting any of the actual_arg_types
2005  * to be polymorphic, and we should not return a polymorphic result type
2006  * either. When allow_poly is true, it is okay to have polymorphic "actual"
2007  * arg types, and we can return a matching polymorphic type as the result.
2008  * (This case is currently used only to check compatibility of an aggregate's
2009  * declaration with the underlying transfn.)
2010  *
2011  * A special case is that we could see ANYARRAY as an actual_arg_type even
2012  * when allow_poly is false (this is possible only because pg_statistic has
2013  * columns shown as anyarray in the catalogs). We allow this to match a
2014  * declared ANYARRAY argument, but only if there is no other polymorphic
2015  * argument that we would need to match it with, and no need to determine
2016  * the element type to infer the result type. Note this means that functions
2017  * taking ANYARRAY had better behave sanely if applied to the pg_statistic
2018  * columns; they can't just assume that successive inputs are of the same
2019  * actual element type. There is no similar logic for ANYCOMPATIBLEARRAY;
2020  * there isn't a need for it since there are no catalog columns of that type,
2021  * so we won't see it as input. We could consider matching an actual ANYARRAY
2022  * input to an ANYCOMPATIBLEARRAY argument, but at present that seems useless
2023  * as well, since there's no value in using ANYCOMPATIBLEARRAY unless there's
2024  * at least one other ANYCOMPATIBLE-family argument or result.
2025  *
2026  * Also, if there are no arguments declared to be of polymorphic types,
2027  * we'll return the rettype unmodified even if it's polymorphic. This should
2028  * never occur for user-declared functions, because CREATE FUNCTION prevents
2029  * it. But it does happen for some built-in functions, such as array_in().
2030  */
2031 Oid
2032 enforce_generic_type_consistency(const Oid *actual_arg_types,
2033  Oid *declared_arg_types,
2034  int nargs,
2035  Oid rettype,
2036  bool allow_poly)
2037 {
2038  bool have_poly_anycompatible = false;
2039  bool have_poly_unknowns = false;
2040  Oid elem_typeid = InvalidOid;
2041  Oid array_typeid = InvalidOid;
2042  Oid range_typeid = InvalidOid;
2043  Oid multirange_typeid = InvalidOid;
2044  Oid anycompatible_typeid = InvalidOid;
2045  Oid anycompatible_array_typeid = InvalidOid;
2046  Oid anycompatible_range_typeid = InvalidOid;
2047  Oid anycompatible_range_typelem = InvalidOid;
2048  Oid anycompatible_multirange_typeid = InvalidOid;
2049  Oid anycompatible_multirange_typelem = InvalidOid;
2050  bool have_anynonarray = (rettype == ANYNONARRAYOID);
2051  bool have_anyenum = (rettype == ANYENUMOID);
2052  bool have_anymultirange = (rettype == ANYMULTIRANGEOID);
2053  bool have_anycompatible_nonarray = (rettype == ANYCOMPATIBLENONARRAYOID);
2054  bool have_anycompatible_array = (rettype == ANYCOMPATIBLEARRAYOID);
2055  bool have_anycompatible_range = (rettype == ANYCOMPATIBLERANGEOID);
2056  bool have_anycompatible_multirange = (rettype == ANYCOMPATIBLEMULTIRANGEOID);
2057  int n_poly_args = 0; /* this counts all family-1 arguments */
2058  int n_anycompatible_args = 0; /* this counts only non-unknowns */
2059  Oid anycompatible_actual_types[FUNC_MAX_ARGS];
2060 
2061  /*
2062  * Loop through the arguments to see if we have any that are polymorphic.
2063  * If so, require the actual types to be consistent.
2064  */
2065  Assert(nargs <= FUNC_MAX_ARGS);
2066  for (int j = 0; j < nargs; j++)
2067  {
2068  Oid decl_type = declared_arg_types[j];
2069  Oid actual_type = actual_arg_types[j];
2070 
2071  if (decl_type == ANYELEMENTOID ||
2072  decl_type == ANYNONARRAYOID ||
2073  decl_type == ANYENUMOID)
2074  {
2075  n_poly_args++;
2076  if (decl_type == ANYNONARRAYOID)
2077  have_anynonarray = true;
2078  else if (decl_type == ANYENUMOID)
2079  have_anyenum = true;
2080  if (actual_type == UNKNOWNOID)
2081  {
2082  have_poly_unknowns = true;
2083  continue;
2084  }
2085  if (allow_poly && decl_type == actual_type)
2086  continue; /* no new information here */
2087  if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
2088  ereport(ERROR,
2089  (errcode(ERRCODE_DATATYPE_MISMATCH),
2090  errmsg("arguments declared \"%s\" are not all alike", "anyelement"),
2091  errdetail("%s versus %s",
2092  format_type_be(elem_typeid),
2093  format_type_be(actual_type))));
2094  elem_typeid = actual_type;
2095  }
2096  else if (decl_type == ANYARRAYOID)
2097  {
2098  n_poly_args++;
2099  if (actual_type == UNKNOWNOID)
2100  {
2101  have_poly_unknowns = true;
2102  continue;
2103  }
2104  if (allow_poly && decl_type == actual_type)
2105  continue; /* no new information here */
2106  actual_type = getBaseType(actual_type); /* flatten domains */
2107  if (OidIsValid(array_typeid) && actual_type != array_typeid)
2108  ereport(ERROR,
2109  (errcode(ERRCODE_DATATYPE_MISMATCH),
2110  errmsg("arguments declared \"%s\" are not all alike", "anyarray"),
2111  errdetail("%s versus %s",
2112  format_type_be(array_typeid),
2113  format_type_be(actual_type))));
2114  array_typeid = actual_type;
2115  }
2116  else if (decl_type == ANYRANGEOID)
2117  {
2118  n_poly_args++;
2119  if (actual_type == UNKNOWNOID)
2120  {
2121  have_poly_unknowns = true;
2122  continue;
2123  }
2124  if (allow_poly && decl_type == actual_type)
2125  continue; /* no new information here */
2126  actual_type = getBaseType(actual_type); /* flatten domains */
2127  if (OidIsValid(range_typeid) && actual_type != range_typeid)
2128  ereport(ERROR,
2129  (errcode(ERRCODE_DATATYPE_MISMATCH),
2130  errmsg("arguments declared \"%s\" are not all alike", "anyrange"),
2131  errdetail("%s versus %s",
2132  format_type_be(range_typeid),
2133  format_type_be(actual_type))));
2134  range_typeid = actual_type;
2135  }
2136  else if (decl_type == ANYMULTIRANGEOID)
2137  {
2138  n_poly_args++;
2139  have_anymultirange = true;
2140  if (actual_type == UNKNOWNOID)
2141  {
2142  have_poly_unknowns = true;
2143  continue;
2144  }
2145  if (allow_poly && decl_type == actual_type)
2146  continue; /* no new information here */
2147  actual_type = getBaseType(actual_type); /* flatten domains */
2148  if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid)
2149  ereport(ERROR,
2150  (errcode(ERRCODE_DATATYPE_MISMATCH),
2151  errmsg("arguments declared \"%s\" are not all alike", "anymultirange"),
2152  errdetail("%s versus %s",
2153  format_type_be(multirange_typeid),
2154  format_type_be(actual_type))));
2155  multirange_typeid = actual_type;
2156  }
2157  else if (decl_type == ANYCOMPATIBLEOID ||
2158  decl_type == ANYCOMPATIBLENONARRAYOID)
2159  {
2160  have_poly_anycompatible = true;
2161  if (decl_type == ANYCOMPATIBLENONARRAYOID)
2162  have_anycompatible_nonarray = true;
2163  if (actual_type == UNKNOWNOID)
2164  continue;
2165  if (allow_poly && decl_type == actual_type)
2166  continue; /* no new information here */
2167  /* collect the actual types of non-unknown COMPATIBLE args */
2168  anycompatible_actual_types[n_anycompatible_args++] = actual_type;
2169  }
2170  else if (decl_type == ANYCOMPATIBLEARRAYOID)
2171  {
2172  Oid anycompatible_elem_type;
2173 
2174  have_poly_anycompatible = true;
2175  have_anycompatible_array = true;
2176  if (actual_type == UNKNOWNOID)
2177  continue;
2178  if (allow_poly && decl_type == actual_type)
2179  continue; /* no new information here */
2180  actual_type = getBaseType(actual_type); /* flatten domains */
2181  anycompatible_elem_type = get_element_type(actual_type);
2182  if (!OidIsValid(anycompatible_elem_type))
2183  ereport(ERROR,
2184  (errcode(ERRCODE_DATATYPE_MISMATCH),
2185  errmsg("argument declared %s is not an array but type %s",
2186  "anycompatiblearray",
2187  format_type_be(actual_type))));
2188  /* collect the element type for common-supertype choice */
2189  anycompatible_actual_types[n_anycompatible_args++] = anycompatible_elem_type;
2190  }
2191  else if (decl_type == ANYCOMPATIBLERANGEOID)
2192  {
2193  have_poly_anycompatible = true;
2194  have_anycompatible_range = true;
2195  if (actual_type == UNKNOWNOID)
2196  continue;
2197  if (allow_poly && decl_type == actual_type)
2198  continue; /* no new information here */
2199  actual_type = getBaseType(actual_type); /* flatten domains */
2200  if (OidIsValid(anycompatible_range_typeid))
2201  {
2202  /* All ANYCOMPATIBLERANGE arguments must be the same type */
2203  if (anycompatible_range_typeid != actual_type)
2204  ereport(ERROR,
2205  (errcode(ERRCODE_DATATYPE_MISMATCH),
2206  errmsg("arguments declared \"%s\" are not all alike", "anycompatiblerange"),
2207  errdetail("%s versus %s",
2208  format_type_be(anycompatible_range_typeid),
2209  format_type_be(actual_type))));
2210  }
2211  else
2212  {
2213  anycompatible_range_typeid = actual_type;
2214  anycompatible_range_typelem = get_range_subtype(actual_type);
2215  if (!OidIsValid(anycompatible_range_typelem))
2216  ereport(ERROR,
2217  (errcode(ERRCODE_DATATYPE_MISMATCH),
2218  errmsg("argument declared %s is not a range type but type %s",
2219  "anycompatiblerange",
2220  format_type_be(actual_type))));
2221  /* collect the subtype for common-supertype choice */
2222  anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem;
2223  }
2224  }
2225  else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
2226  {
2227  have_poly_anycompatible = true;
2228  have_anycompatible_multirange = true;
2229  if (actual_type == UNKNOWNOID)
2230  continue;
2231  if (allow_poly && decl_type == actual_type)
2232  continue; /* no new information here */
2233  actual_type = getBaseType(actual_type); /* flatten domains */
2234  if (OidIsValid(anycompatible_multirange_typeid))
2235  {
2236  /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */
2237  if (anycompatible_multirange_typeid != actual_type)
2238  ereport(ERROR,
2239  (errcode(ERRCODE_DATATYPE_MISMATCH),
2240  errmsg("arguments declared \"%s\" are not all alike", "anycompatiblemultirange"),
2241  errdetail("%s versus %s",
2242  format_type_be(anycompatible_multirange_typeid),
2243  format_type_be(actual_type))));
2244  }
2245  else
2246  {
2247  anycompatible_multirange_typeid = actual_type;
2248  anycompatible_multirange_typelem = get_multirange_range(actual_type);
2249  if (!OidIsValid(anycompatible_multirange_typelem))
2250  ereport(ERROR,
2251  (errcode(ERRCODE_DATATYPE_MISMATCH),
2252  errmsg("argument declared %s is not a multirange type but type %s",
2253  "anycompatiblemultirange",
2254  format_type_be(actual_type))));
2255  /* we'll consider the subtype below */
2256  }
2257  }
2258  }
2259 
2260  /*
2261  * Fast Track: if none of the arguments are polymorphic, return the
2262  * unmodified rettype. Not our job to resolve it if it's polymorphic.
2263  */
2264  if (n_poly_args == 0 && !have_poly_anycompatible)
2265  return rettype;
2266 
2267  /* Check matching of family-1 polymorphic arguments, if any */
2268  if (n_poly_args)
2269  {
2270  /* Get the element type based on the array type, if we have one */
2271  if (OidIsValid(array_typeid))
2272  {
2273  Oid array_typelem;
2274 
2275  if (array_typeid == ANYARRAYOID)
2276  {
2277  /*
2278  * Special case for matching ANYARRAY input to an ANYARRAY
2279  * argument: allow it iff no other arguments are family-1
2280  * polymorphics (otherwise we couldn't be sure whether the
2281  * array element type matches up) and the result type doesn't
2282  * require us to infer a specific element type.
2283  */
2284  if (n_poly_args != 1 ||
2285  (rettype != ANYARRAYOID &&
2286  IsPolymorphicTypeFamily1(rettype)))
2287  ereport(ERROR,
2288  (errcode(ERRCODE_DATATYPE_MISMATCH),
2289  errmsg("cannot determine element type of \"anyarray\" argument")));
2290  array_typelem = ANYELEMENTOID;
2291  }
2292  else
2293  {
2294  array_typelem = get_element_type(array_typeid);
2295  if (!OidIsValid(array_typelem))
2296  ereport(ERROR,
2297  (errcode(ERRCODE_DATATYPE_MISMATCH),
2298  errmsg("argument declared %s is not an array but type %s",
2299  "anyarray", format_type_be(array_typeid))));
2300  }
2301 
2302  if (!OidIsValid(elem_typeid))
2303  {
2304  /*
2305  * if we don't have an element type yet, use the one we just
2306  * got
2307  */
2308  elem_typeid = array_typelem;
2309  }
2310  else if (array_typelem != elem_typeid)
2311  {
2312  /* otherwise, they better match */
2313  ereport(ERROR,
2314  (errcode(ERRCODE_DATATYPE_MISMATCH),
2315  errmsg("argument declared %s is not consistent with argument declared %s",
2316  "anyarray", "anyelement"),
2317  errdetail("%s versus %s",
2318  format_type_be(array_typeid),
2319  format_type_be(elem_typeid))));
2320  }
2321  }
2322 
2323  /* Deduce range type from multirange type, or vice versa */
2324  if (OidIsValid(multirange_typeid))
2325  {
2326  Oid multirange_typelem;
2327 
2328  multirange_typelem = get_multirange_range(multirange_typeid);
2329  if (!OidIsValid(multirange_typelem))
2330  ereport(ERROR,
2331  (errcode(ERRCODE_DATATYPE_MISMATCH),
2332  errmsg("argument declared %s is not a multirange type but type %s",
2333  "anymultirange",
2334  format_type_be(multirange_typeid))));
2335 
2336  if (!OidIsValid(range_typeid))
2337  {
2338  /* if we don't have a range type yet, use the one we just got */
2339  range_typeid = multirange_typelem;
2340  }
2341  else if (multirange_typelem != range_typeid)
2342  {
2343  /* otherwise, they better match */
2344  ereport(ERROR,
2345  (errcode(ERRCODE_DATATYPE_MISMATCH),
2346  errmsg("argument declared %s is not consistent with argument declared %s",
2347  "anymultirange", "anyrange"),
2348  errdetail("%s versus %s",
2349  format_type_be(multirange_typeid),
2350  format_type_be(range_typeid))));
2351  }
2352  }
2353  else if (have_anymultirange && OidIsValid(range_typeid))
2354  {
2355  multirange_typeid = get_range_multirange(range_typeid);
2356  /* We'll complain below if that didn't work */
2357  }
2358 
2359  /* Get the element type based on the range type, if we have one */
2360  if (OidIsValid(range_typeid))
2361  {
2362  Oid range_typelem;
2363 
2364  range_typelem = get_range_subtype(range_typeid);
2365  if (!OidIsValid(range_typelem))
2366  ereport(ERROR,
2367  (errcode(ERRCODE_DATATYPE_MISMATCH),
2368  errmsg("argument declared %s is not a range type but type %s",
2369  "anyrange",
2370  format_type_be(range_typeid))));
2371 
2372  if (!OidIsValid(elem_typeid))
2373  {
2374  /*
2375  * if we don't have an element type yet, use the one we just
2376  * got
2377  */
2378  elem_typeid = range_typelem;
2379  }
2380  else if (range_typelem != elem_typeid)
2381  {
2382  /* otherwise, they better match */
2383  ereport(ERROR,
2384  (errcode(ERRCODE_DATATYPE_MISMATCH),
2385  errmsg("argument declared %s is not consistent with argument declared %s",
2386  "anyrange", "anyelement"),
2387  errdetail("%s versus %s",
2388  format_type_be(range_typeid),
2389  format_type_be(elem_typeid))));
2390  }
2391  }
2392 
2393  if (!OidIsValid(elem_typeid))
2394  {
2395  if (allow_poly)
2396  {
2397  elem_typeid = ANYELEMENTOID;
2398  array_typeid = ANYARRAYOID;
2399  range_typeid = ANYRANGEOID;
2400  multirange_typeid = ANYMULTIRANGEOID;
2401  }
2402  else
2403  {
2404  /*
2405  * Only way to get here is if all the family-1 polymorphic
2406  * arguments have UNKNOWN inputs.
2407  */
2408  ereport(ERROR,
2409  (errcode(ERRCODE_DATATYPE_MISMATCH),
2410  errmsg("could not determine polymorphic type because input has type %s",
2411  "unknown")));
2412  }
2413  }
2414 
2415  if (have_anynonarray && elem_typeid != ANYELEMENTOID)
2416  {
2417  /*
2418  * require the element type to not be an array or domain over
2419  * array
2420  */
2421  if (type_is_array_domain(elem_typeid))
2422  ereport(ERROR,
2423  (errcode(ERRCODE_DATATYPE_MISMATCH),
2424  errmsg("type matched to anynonarray is an array type: %s",
2425  format_type_be(elem_typeid))));
2426  }
2427 
2428  if (have_anyenum && elem_typeid != ANYELEMENTOID)
2429  {
2430  /* require the element type to be an enum */
2431  if (!type_is_enum(elem_typeid))
2432  ereport(ERROR,
2433  (errcode(ERRCODE_DATATYPE_MISMATCH),
2434  errmsg("type matched to anyenum is not an enum type: %s",
2435  format_type_be(elem_typeid))));
2436  }
2437  }
2438 
2439  /* Check matching of family-2 polymorphic arguments, if any */
2440  if (have_poly_anycompatible)
2441  {
2442  /* Deduce range type from multirange type, or vice versa */
2443  if (OidIsValid(anycompatible_multirange_typeid))
2444  {
2445  if (OidIsValid(anycompatible_range_typeid))
2446  {
2447  if (anycompatible_multirange_typelem !=
2448  anycompatible_range_typeid)
2449  ereport(ERROR,
2450  (errcode(ERRCODE_DATATYPE_MISMATCH),
2451  errmsg("argument declared %s is not consistent with argument declared %s",
2452  "anycompatiblemultirange",
2453  "anycompatiblerange"),
2454  errdetail("%s versus %s",
2455  format_type_be(anycompatible_multirange_typeid),
2456  format_type_be(anycompatible_range_typeid))));
2457  }
2458  else
2459  {
2460  anycompatible_range_typeid = anycompatible_multirange_typelem;
2461  anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid);
2462  if (!OidIsValid(anycompatible_range_typelem))
2463  ereport(ERROR,
2464  (errcode(ERRCODE_DATATYPE_MISMATCH),
2465  errmsg("argument declared %s is not a multirange type but type %s",
2466  "anycompatiblemultirange",
2467  format_type_be(anycompatible_multirange_typeid))));
2468  /* this enables element type matching check below */
2469  have_anycompatible_range = true;
2470  /* collect the subtype for common-supertype choice */
2471  anycompatible_actual_types[n_anycompatible_args++] =
2472  anycompatible_range_typelem;
2473  }
2474  }
2475  else if (have_anycompatible_multirange &&
2476  OidIsValid(anycompatible_range_typeid))
2477  {
2478  anycompatible_multirange_typeid = get_range_multirange(anycompatible_range_typeid);
2479  /* We'll complain below if that didn't work */
2480  }
2481 
2482  if (n_anycompatible_args > 0)
2483  {
2484  anycompatible_typeid =
2485  select_common_type_from_oids(n_anycompatible_args,
2486  anycompatible_actual_types,
2487  false);
2488 
2489  if (have_anycompatible_array)
2490  {
2491  anycompatible_array_typeid = get_array_type(anycompatible_typeid);
2492  if (!OidIsValid(anycompatible_array_typeid))
2493  ereport(ERROR,
2494  (errcode(ERRCODE_UNDEFINED_OBJECT),
2495  errmsg("could not find array type for data type %s",
2496  format_type_be(anycompatible_typeid))));
2497  }
2498 
2499  if (have_anycompatible_range)
2500  {
2501  /* we can't infer a range type from the others */
2502  if (!OidIsValid(anycompatible_range_typeid))
2503  ereport(ERROR,
2504  (errcode(ERRCODE_DATATYPE_MISMATCH),
2505  errmsg("could not determine polymorphic type %s because input has type %s",
2506  "anycompatiblerange", "unknown")));
2507 
2508  /*
2509  * the anycompatible type must exactly match the range element
2510  * type
2511  */
2512  if (anycompatible_range_typelem != anycompatible_typeid)
2513  ereport(ERROR,
2514  (errcode(ERRCODE_DATATYPE_MISMATCH),
2515  errmsg("anycompatiblerange type %s does not match anycompatible type %s",
2516  format_type_be(anycompatible_range_typeid),
2517  format_type_be(anycompatible_typeid))));
2518  }
2519 
2520  if (have_anycompatible_multirange)
2521  {
2522  /* we can't infer a multirange type from the others */
2523  if (!OidIsValid(anycompatible_multirange_typeid))
2524  ereport(ERROR,
2525  (errcode(ERRCODE_DATATYPE_MISMATCH),
2526  errmsg("could not determine polymorphic type %s because input has type %s",
2527  "anycompatiblemultirange", "unknown")));
2528 
2529  /*
2530  * the anycompatible type must exactly match the multirange
2531  * element type
2532  */
2533  if (anycompatible_range_typelem != anycompatible_typeid)
2534  ereport(ERROR,
2535  (errcode(ERRCODE_DATATYPE_MISMATCH),
2536  errmsg("anycompatiblemultirange type %s does not match anycompatible type %s",
2537  format_type_be(anycompatible_multirange_typeid),
2538  format_type_be(anycompatible_typeid))));
2539  }
2540 
2541  if (have_anycompatible_nonarray)
2542  {
2543  /*
2544  * require the element type to not be an array or domain over
2545  * array
2546  */
2547  if (type_is_array_domain(anycompatible_typeid))
2548  ereport(ERROR,
2549  (errcode(ERRCODE_DATATYPE_MISMATCH),
2550  errmsg("type matched to anycompatiblenonarray is an array type: %s",
2551  format_type_be(anycompatible_typeid))));
2552  }
2553  }
2554  else
2555  {
2556  if (allow_poly)
2557  {
2558  anycompatible_typeid = ANYCOMPATIBLEOID;
2559  anycompatible_array_typeid = ANYCOMPATIBLEARRAYOID;
2560  anycompatible_range_typeid = ANYCOMPATIBLERANGEOID;
2561  anycompatible_multirange_typeid = ANYCOMPATIBLEMULTIRANGEOID;
2562  }
2563  else
2564  {
2565  /*
2566  * Only way to get here is if all the family-2 polymorphic
2567  * arguments have UNKNOWN inputs. Resolve to TEXT as
2568  * select_common_type() would do. That doesn't license us to
2569  * use TEXTRANGE or TEXTMULTIRANGE, though.
2570  */
2571  anycompatible_typeid = TEXTOID;
2572  anycompatible_array_typeid = TEXTARRAYOID;
2573  if (have_anycompatible_range)
2574  ereport(ERROR,
2575  (errcode(ERRCODE_DATATYPE_MISMATCH),
2576  errmsg("could not determine polymorphic type %s because input has type %s",
2577  "anycompatiblerange", "unknown")));
2578  if (have_anycompatible_multirange)
2579  ereport(ERROR,
2580  (errcode(ERRCODE_DATATYPE_MISMATCH),
2581  errmsg("could not determine polymorphic type %s because input has type %s",
2582  "anycompatiblemultirange", "unknown")));
2583  }
2584  }
2585 
2586  /* replace family-2 polymorphic types by selected types */
2587  for (int j = 0; j < nargs; j++)
2588  {
2589  Oid decl_type = declared_arg_types[j];
2590 
2591  if (decl_type == ANYCOMPATIBLEOID ||
2592  decl_type == ANYCOMPATIBLENONARRAYOID)
2593  declared_arg_types[j] = anycompatible_typeid;
2594  else if (decl_type == ANYCOMPATIBLEARRAYOID)
2595  declared_arg_types[j] = anycompatible_array_typeid;
2596  else if (decl_type == ANYCOMPATIBLERANGEOID)
2597  declared_arg_types[j] = anycompatible_range_typeid;
2598  else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID)
2599  declared_arg_types[j] = anycompatible_multirange_typeid;
2600  }
2601  }
2602 
2603  /*
2604  * If we had any UNKNOWN inputs for family-1 polymorphic arguments,
2605  * re-scan to assign correct types to them.
2606  *
2607  * Note: we don't have to consider unknown inputs that were matched to
2608  * family-2 polymorphic arguments, because we forcibly updated their
2609  * declared_arg_types[] positions just above.
2610  */
2611  if (have_poly_unknowns)
2612  {
2613  for (int j = 0; j < nargs; j++)
2614  {
2615  Oid decl_type = declared_arg_types[j];
2616  Oid actual_type = actual_arg_types[j];
2617 
2618  if (actual_type != UNKNOWNOID)
2619  continue;
2620 
2621  if (decl_type == ANYELEMENTOID ||
2622  decl_type == ANYNONARRAYOID ||
2623  decl_type == ANYENUMOID)
2624  declared_arg_types[j] = elem_typeid;
2625  else if (decl_type == ANYARRAYOID)
2626  {
2627  if (!OidIsValid(array_typeid))
2628  {
2629  array_typeid = get_array_type(elem_typeid);
2630  if (!OidIsValid(array_typeid))
2631  ereport(ERROR,
2632  (errcode(ERRCODE_UNDEFINED_OBJECT),
2633  errmsg("could not find array type for data type %s",
2634  format_type_be(elem_typeid))));
2635  }
2636  declared_arg_types[j] = array_typeid;
2637  }
2638  else if (decl_type == ANYRANGEOID)
2639  {
2640  if (!OidIsValid(range_typeid))
2641  {
2642  /* we can't infer a range type from the others */
2643  ereport(ERROR,
2644  (errcode(ERRCODE_DATATYPE_MISMATCH),
2645  errmsg("could not determine polymorphic type %s because input has type %s",
2646  "anyrange", "unknown")));
2647  }
2648  declared_arg_types[j] = range_typeid;
2649  }
2650  else if (decl_type == ANYMULTIRANGEOID)
2651  {
2652  if (!OidIsValid(multirange_typeid))
2653  {
2654  /* we can't infer a multirange type from the others */
2655  ereport(ERROR,
2656  (errcode(ERRCODE_DATATYPE_MISMATCH),
2657  errmsg("could not determine polymorphic type %s because input has type %s",
2658  "anymultirange", "unknown")));
2659  }
2660  declared_arg_types[j] = multirange_typeid;
2661  }
2662  }
2663  }
2664 
2665  /* if we return ANYELEMENT use the appropriate argument type */
2666  if (rettype == ANYELEMENTOID ||
2667  rettype == ANYNONARRAYOID ||
2668  rettype == ANYENUMOID)
2669  return elem_typeid;
2670 
2671  /* if we return ANYARRAY use the appropriate argument type */
2672  if (rettype == ANYARRAYOID)
2673  {
2674  if (!OidIsValid(array_typeid))
2675  {
2676  array_typeid = get_array_type(elem_typeid);
2677  if (!OidIsValid(array_typeid))
2678  ereport(ERROR,
2679  (errcode(ERRCODE_UNDEFINED_OBJECT),
2680  errmsg("could not find array type for data type %s",
2681  format_type_be(elem_typeid))));
2682  }
2683  return array_typeid;
2684  }
2685 
2686  /* if we return ANYRANGE use the appropriate argument type */
2687  if (rettype == ANYRANGEOID)
2688  {
2689  /* this error is unreachable if the function signature is valid: */
2690  if (!OidIsValid(range_typeid))
2691  ereport(ERROR,
2692  (errcode(ERRCODE_DATATYPE_MISMATCH),
2693  errmsg_internal("could not determine polymorphic type %s because input has type %s",
2694  "anyrange", "unknown")));
2695  return range_typeid;
2696  }
2697 
2698  /* if we return ANYMULTIRANGE use the appropriate argument type */
2699  if (rettype == ANYMULTIRANGEOID)
2700  {
2701  /* this error is unreachable if the function signature is valid: */
2702  if (!OidIsValid(multirange_typeid))
2703  ereport(ERROR,
2704  (errcode(ERRCODE_DATATYPE_MISMATCH),
2705  errmsg_internal("could not determine polymorphic type %s because input has type %s",
2706  "anymultirange", "unknown")));
2707  return multirange_typeid;
2708  }
2709 
2710  /* if we return ANYCOMPATIBLE use the appropriate type */
2711  if (rettype == ANYCOMPATIBLEOID ||
2712  rettype == ANYCOMPATIBLENONARRAYOID)
2713  {
2714  /* this error is unreachable if the function signature is valid: */
2715  if (!OidIsValid(anycompatible_typeid))
2716  ereport(ERROR,
2717  (errcode(ERRCODE_DATATYPE_MISMATCH),
2718  errmsg_internal("could not identify anycompatible type")));
2719  return anycompatible_typeid;
2720  }
2721 
2722  /* if we return ANYCOMPATIBLEARRAY use the appropriate type */
2723  if (rettype == ANYCOMPATIBLEARRAYOID)
2724  {
2725  /* this error is unreachable if the function signature is valid: */
2726  if (!OidIsValid(anycompatible_array_typeid))
2727  ereport(ERROR,
2728  (errcode(ERRCODE_DATATYPE_MISMATCH),
2729  errmsg_internal("could not identify anycompatiblearray type")));
2730  return anycompatible_array_typeid;
2731  }
2732 
2733  /* if we return ANYCOMPATIBLERANGE use the appropriate argument type */
2734  if (rettype == ANYCOMPATIBLERANGEOID)
2735  {
2736  /* this error is unreachable if the function signature is valid: */
2737  if (!OidIsValid(anycompatible_range_typeid))
2738  ereport(ERROR,
2739  (errcode(ERRCODE_DATATYPE_MISMATCH),
2740  errmsg_internal("could not identify anycompatiblerange type")));
2741  return anycompatible_range_typeid;
2742  }
2743 
2744  /* if we return ANYCOMPATIBLEMULTIRANGE use the appropriate argument type */
2745  if (rettype == ANYCOMPATIBLEMULTIRANGEOID)
2746  {
2747  /* this error is unreachable if the function signature is valid: */
2748  if (!OidIsValid(anycompatible_multirange_typeid))
2749  ereport(ERROR,
2750  (errcode(ERRCODE_DATATYPE_MISMATCH),
2751  errmsg_internal("could not identify anycompatiblemultirange type")));
2752  return anycompatible_multirange_typeid;
2753  }
2754 
2755  /* we don't return a generic type; send back the original return type */
2756  return rettype;
2757 }
2758 
2759 /*
2760  * check_valid_polymorphic_signature()
2761  * Is a proposed function signature valid per polymorphism rules?
2762  *
2763  * Returns NULL if the signature is valid (either ret_type is not polymorphic,
2764  * or it can be deduced from the given declared argument types). Otherwise,
2765  * returns a palloc'd, already translated errdetail string saying why not.
2766  */
2767 char *
2769  const Oid *declared_arg_types,
2770  int nargs)
2771 {
2772  if (ret_type == ANYRANGEOID || ret_type == ANYMULTIRANGEOID)
2773  {
2774  /*
2775  * ANYRANGE and ANYMULTIRANGE require an ANYRANGE or ANYMULTIRANGE
2776  * input, else we can't tell which of several range types with the
2777  * same element type to use.
2778  */
2779  for (int i = 0; i < nargs; i++)
2780  {
2781  if (declared_arg_types[i] == ANYRANGEOID ||
2782  declared_arg_types[i] == ANYMULTIRANGEOID)
2783  return NULL; /* OK */
2784  }
2785  return psprintf(_("A result of type %s requires at least one input of type anyrange or anymultirange."),
2786  format_type_be(ret_type));
2787  }
2788  else if (ret_type == ANYCOMPATIBLERANGEOID || ret_type == ANYCOMPATIBLEMULTIRANGEOID)
2789  {
2790  /*
2791  * ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE require an
2792  * ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE input, else we can't
2793  * tell which of several range types with the same element type to
2794  * use.
2795  */
2796  for (int i = 0; i < nargs; i++)
2797  {
2798  if (declared_arg_types[i] == ANYCOMPATIBLERANGEOID ||
2799  declared_arg_types[i] == ANYCOMPATIBLEMULTIRANGEOID)
2800  return NULL; /* OK */
2801  }
2802  return psprintf(_("A result of type %s requires at least one input of type anycompatiblerange or anycompatiblemultirange."),
2803  format_type_be(ret_type));
2804  }
2805  else if (IsPolymorphicTypeFamily1(ret_type))
2806  {
2807  /* Otherwise, any family-1 type can be deduced from any other */
2808  for (int i = 0; i < nargs; i++)
2809  {
2810  if (IsPolymorphicTypeFamily1(declared_arg_types[i]))
2811  return NULL; /* OK */
2812  }
2813  /* Keep this list in sync with IsPolymorphicTypeFamily1! */
2814  return psprintf(_("A result of type %s requires at least one input of type anyelement, anyarray, anynonarray, anyenum, anyrange, or anymultirange."),
2815  format_type_be(ret_type));
2816  }
2817  else if (IsPolymorphicTypeFamily2(ret_type))
2818  {
2819  /* Otherwise, any family-2 type can be deduced from any other */
2820  for (int i = 0; i < nargs; i++)
2821  {
2822  if (IsPolymorphicTypeFamily2(declared_arg_types[i]))
2823  return NULL; /* OK */
2824  }
2825  /* Keep this list in sync with IsPolymorphicTypeFamily2! */
2826  return psprintf(_("A result of type %s requires at least one input of type anycompatible, anycompatiblearray, anycompatiblenonarray, anycompatiblerange, or anycompatiblemultirange."),
2827  format_type_be(ret_type));
2828  }
2829  else
2830  return NULL; /* OK, ret_type is not polymorphic */
2831 }
2832 
2833 /*
2834  * check_valid_internal_signature()
2835  * Is a proposed function signature valid per INTERNAL safety rules?
2836  *
2837  * Returns NULL if OK, or a suitable error message if ret_type is INTERNAL but
2838  * none of the declared arg types are. (It's unsafe to create such a function
2839  * since it would allow invocation of INTERNAL-consuming functions directly
2840  * from SQL.) It's overkill to return the error detail message, since there
2841  * is only one possibility, but we do it like this to keep the API similar to
2842  * check_valid_polymorphic_signature().
2843  */
2844 char *
2846  const Oid *declared_arg_types,
2847  int nargs)
2848 {
2849  if (ret_type == INTERNALOID)
2850  {
2851  for (int i = 0; i < nargs; i++)
2852  {
2853  if (declared_arg_types[i] == ret_type)
2854  return NULL; /* OK */
2855  }
2856  return pstrdup(_("A result of type internal requires at least one input of type internal."));
2857  }
2858  else
2859  return NULL; /* OK, ret_type is not INTERNAL */
2860 }
2861 
2862 
2863 /* TypeCategory()
2864  * Assign a category to the specified type OID.
2865  *
2866  * NB: this must not return TYPCATEGORY_INVALID.
2867  */
2870 {
2871  char typcategory;
2872  bool typispreferred;
2873 
2874  get_type_category_preferred(type, &typcategory, &typispreferred);
2875  Assert(typcategory != TYPCATEGORY_INVALID);
2876  return (TYPCATEGORY) typcategory;
2877 }
2878 
2879 
2880 /* IsPreferredType()
2881  * Check if this type is a preferred type for the given category.
2882  *
2883  * If category is TYPCATEGORY_INVALID, then we'll return true for preferred
2884  * types of any category; otherwise, only for preferred types of that
2885  * category.
2886  */
2887 bool
2889 {
2890  char typcategory;
2891  bool typispreferred;
2892 
2893  get_type_category_preferred(type, &typcategory, &typispreferred);
2894  if (category == typcategory || category == TYPCATEGORY_INVALID)
2895  return typispreferred;
2896  else
2897  return false;
2898 }
2899 
2900 
2901 /* IsBinaryCoercible()
2902  * Check if srctype is binary-coercible to targettype.
2903  *
2904  * This notion allows us to cheat and directly exchange values without
2905  * going through the trouble of calling a conversion function. Note that
2906  * in general, this should only be an implementation shortcut. Before 7.4,
2907  * this was also used as a heuristic for resolving overloaded functions and
2908  * operators, but that's basically a bad idea.
2909  *
2910  * As of 7.3, binary coercibility isn't hardwired into the code anymore.
2911  * We consider two types binary-coercible if there is an implicitly
2912  * invokable, no-function-needed pg_cast entry. Also, a domain is always
2913  * binary-coercible to its base type, though *not* vice versa (in the other
2914  * direction, one must apply domain constraint checks before accepting the
2915  * value as legitimate). We also need to special-case various polymorphic
2916  * types.
2917  *
2918  * This function replaces IsBinaryCompatible(), which was an inherently
2919  * symmetric test. Since the pg_cast entries aren't necessarily symmetric,
2920  * the order of the operands is now significant.
2921  */
2922 bool
2923 IsBinaryCoercible(Oid srctype, Oid targettype)
2924 {
2925  HeapTuple tuple;
2926  Form_pg_cast castForm;
2927  bool result;
2928 
2929  /* Fast path if same type */
2930  if (srctype == targettype)
2931  return true;
2932 
2933  /* Anything is coercible to ANY or ANYELEMENT or ANYCOMPATIBLE */
2934  if (targettype == ANYOID || targettype == ANYELEMENTOID ||
2935  targettype == ANYCOMPATIBLEOID)
2936  return true;
2937 
2938  /* If srctype is a domain, reduce to its base type */
2939  if (OidIsValid(srctype))
2940  srctype = getBaseType(srctype);
2941 
2942  /* Somewhat-fast path for domain -> base type case */
2943  if (srctype == targettype)
2944  return true;
2945 
2946  /* Also accept any array type as coercible to ANY[COMPATIBLE]ARRAY */
2947  if (targettype == ANYARRAYOID || targettype == ANYCOMPATIBLEARRAYOID)
2948  if (type_is_array(srctype))
2949  return true;
2950 
2951  /* Also accept any non-array type as coercible to ANY[COMPATIBLE]NONARRAY */
2952  if (targettype == ANYNONARRAYOID || targettype == ANYCOMPATIBLENONARRAYOID)
2953  if (!type_is_array(srctype))
2954  return true;
2955 
2956  /* Also accept any enum type as coercible to ANYENUM */
2957  if (targettype == ANYENUMOID)
2958  if (type_is_enum(srctype))
2959  return true;
2960 
2961  /* Also accept any range type as coercible to ANY[COMPATIBLE]RANGE */
2962  if (targettype == ANYRANGEOID || targettype == ANYCOMPATIBLERANGEOID)
2963  if (type_is_range(srctype))
2964  return true;
2965 
2966  /* Also, any multirange type is coercible to ANY[COMPATIBLE]MULTIRANGE */
2967  if (targettype == ANYMULTIRANGEOID || targettype == ANYCOMPATIBLEMULTIRANGEOID)
2968  if (type_is_multirange(srctype))
2969  return true;
2970 
2971  /* Also accept any composite type as coercible to RECORD */
2972  if (targettype == RECORDOID)
2973  if (ISCOMPLEX(srctype))
2974  return true;
2975 
2976  /* Also accept any composite array type as coercible to RECORD[] */
2977  if (targettype == RECORDARRAYOID)
2978  if (is_complex_array(srctype))
2979  return true;
2980 
2981  /* Else look in pg_cast */
2983  ObjectIdGetDatum(srctype),
2984  ObjectIdGetDatum(targettype));
2985  if (!HeapTupleIsValid(tuple))
2986  return false; /* no cast */
2987  castForm = (Form_pg_cast) GETSTRUCT(tuple);
2988 
2989  result = (castForm->castmethod == COERCION_METHOD_BINARY &&
2990  castForm->castcontext == COERCION_CODE_IMPLICIT);
2991 
2992  ReleaseSysCache(tuple);
2993 
2994  return result;
2995 }
2996 
2997 
2998 /*
2999  * find_coercion_pathway
3000  * Look for a coercion pathway between two types.
3001  *
3002  * Currently, this deals only with scalar-type cases; it does not consider
3003  * polymorphic types nor casts between composite types. (Perhaps fold
3004  * those in someday?)
3005  *
3006  * ccontext determines the set of available casts.
3007  *
3008  * The possible result codes are:
3009  * COERCION_PATH_NONE: failed to find any coercion pathway
3010  * *funcid is set to InvalidOid
3011  * COERCION_PATH_FUNC: apply the coercion function returned in *funcid
3012  * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed
3013  * *funcid is set to InvalidOid
3014  * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node
3015  * *funcid is set to InvalidOid
3016  * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node
3017  * *funcid is set to InvalidOid
3018  *
3019  * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is
3020  * needed to do the coercion; if the target is a domain then we may need to
3021  * apply domain constraint checking. If you want to check for a zero-effort
3022  * conversion then use IsBinaryCoercible().
3023  */
3025 find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId,
3026  CoercionContext ccontext,
3027  Oid *funcid)
3028 {
3030  HeapTuple tuple;
3031 
3032  *funcid = InvalidOid;
3033 
3034  /* Perhaps the types are domains; if so, look at their base types */
3035  if (OidIsValid(sourceTypeId))
3036  sourceTypeId = getBaseType(sourceTypeId);
3037  if (OidIsValid(targetTypeId))
3038  targetTypeId = getBaseType(targetTypeId);
3039 
3040  /* Domains are always coercible to and from their base type */
3041  if (sourceTypeId == targetTypeId)
3043 
3044  /* Look in pg_cast */
3046  ObjectIdGetDatum(sourceTypeId),
3047  ObjectIdGetDatum(targetTypeId));
3048 
3049  if (HeapTupleIsValid(tuple))
3050  {
3051  Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
3052  CoercionContext castcontext;
3053 
3054  /* convert char value for castcontext to CoercionContext enum */
3055  switch (castForm->castcontext)
3056  {
3057  case COERCION_CODE_IMPLICIT:
3058  castcontext = COERCION_IMPLICIT;
3059  break;
3060  case COERCION_CODE_ASSIGNMENT:
3061  castcontext = COERCION_ASSIGNMENT;
3062  break;
3063  case COERCION_CODE_EXPLICIT:
3064  castcontext = COERCION_EXPLICIT;
3065  break;
3066  default:
3067  elog(ERROR, "unrecognized castcontext: %d",
3068  (int) castForm->castcontext);
3069  castcontext = 0; /* keep compiler quiet */
3070  break;
3071  }
3072 
3073  /* Rely on ordering of enum for correct behavior here */
3074  if (ccontext >= castcontext)
3075  {
3076  switch (castForm->castmethod)
3077  {
3078  case COERCION_METHOD_FUNCTION:
3079  result = COERCION_PATH_FUNC;
3080  *funcid = castForm->castfunc;
3081  break;
3082  case COERCION_METHOD_INOUT:
3083  result = COERCION_PATH_COERCEVIAIO;
3084  break;
3085  case COERCION_METHOD_BINARY:
3086  result = COERCION_PATH_RELABELTYPE;
3087  break;
3088  default:
3089  elog(ERROR, "unrecognized castmethod: %d",
3090  (int) castForm->castmethod);
3091  break;
3092  }
3093  }
3094 
3095  ReleaseSysCache(tuple);
3096  }
3097  else
3098  {
3099  /*
3100  * If there's no pg_cast entry, perhaps we are dealing with a pair of
3101  * array types. If so, and if their element types have a conversion
3102  * pathway, report that we can coerce with an ArrayCoerceExpr.
3103  *
3104  * Hack: disallow coercions to oidvector and int2vector, which
3105  * otherwise tend to capture coercions that should go to "real" array
3106  * types. We want those types to be considered "real" arrays for many
3107  * purposes, but not this one. (Also, ArrayCoerceExpr isn't
3108  * guaranteed to produce an output that meets the restrictions of
3109  * these datatypes, such as being 1-dimensional.)
3110  */
3111  if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID)
3112  {
3113  Oid targetElem;
3114  Oid sourceElem;
3115 
3116  if ((targetElem = get_element_type(targetTypeId)) != InvalidOid &&
3117  (sourceElem = get_element_type(sourceTypeId)) != InvalidOid)
3118  {
3119  CoercionPathType elempathtype;
3120  Oid elemfuncid;
3121 
3122  elempathtype = find_coercion_pathway(targetElem,
3123  sourceElem,
3124  ccontext,
3125  &elemfuncid);
3126  if (elempathtype != COERCION_PATH_NONE)
3127  {
3128  result = COERCION_PATH_ARRAYCOERCE;
3129  }
3130  }
3131  }
3132 
3133  /*
3134  * If we still haven't found a possibility, consider automatic casting
3135  * using I/O functions. We allow assignment casts to string types and
3136  * explicit casts from string types to be handled this way. (The
3137  * CoerceViaIO mechanism is a lot more general than that, but this is
3138  * all we want to allow in the absence of a pg_cast entry.) It would
3139  * probably be better to insist on explicit casts in both directions,
3140  * but this is a compromise to preserve something of the pre-8.3
3141  * behavior that many types had implicit (yipes!) casts to text.
3142  */
3143  if (result == COERCION_PATH_NONE)
3144  {
3145  if (ccontext >= COERCION_ASSIGNMENT &&
3146  TypeCategory(targetTypeId) == TYPCATEGORY_STRING)
3147  result = COERCION_PATH_COERCEVIAIO;
3148  else if (ccontext >= COERCION_EXPLICIT &&
3149  TypeCategory(sourceTypeId) == TYPCATEGORY_STRING)
3150  result = COERCION_PATH_COERCEVIAIO;
3151  }
3152  }
3153 
3154  /*
3155  * When parsing PL/pgSQL assignments, allow an I/O cast to be used
3156  * whenever no normal coercion is available.
3157  */
3158  if (result == COERCION_PATH_NONE &&
3159  ccontext == COERCION_PLPGSQL)
3160  result = COERCION_PATH_COERCEVIAIO;
3161 
3162  return result;
3163 }
3164 
3165 
3166 /*
3167  * find_typmod_coercion_function -- does the given type need length coercion?
3168  *
3169  * If the target type possesses a pg_cast function from itself to itself,
3170  * it must need length coercion.
3171  *
3172  * "bpchar" (ie, char(N)) and "numeric" are examples of such types.
3173  *
3174  * If the given type is a varlena array type, we do not look for a coercion
3175  * function associated directly with the array type, but instead look for
3176  * one associated with the element type. An ArrayCoerceExpr node must be
3177  * used to apply such a function. (Note: currently, it's pointless to
3178  * return the funcid in this case, because it'll just get looked up again
3179  * in the recursive construction of the ArrayCoerceExpr's elemexpr.)
3180  *
3181  * We use the same result enum as find_coercion_pathway, but the only possible
3182  * result codes are:
3183  * COERCION_PATH_NONE: no length coercion needed
3184  * COERCION_PATH_FUNC: apply the function returned in *funcid
3185  * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr
3186  */
3189  Oid *funcid)
3190 {
3191  CoercionPathType result;
3192  Type targetType;
3193  Form_pg_type typeForm;
3194  HeapTuple tuple;
3195 
3196  *funcid = InvalidOid;
3197  result = COERCION_PATH_FUNC;
3198 
3199  targetType = typeidType(typeId);
3200  typeForm = (Form_pg_type) GETSTRUCT(targetType);
3201 
3202  /* Check for a "true" array type */
3203  if (IsTrueArrayType(typeForm))
3204  {
3205  /* Yes, switch our attention to the element type */
3206  typeId = typeForm->typelem;
3207  result = COERCION_PATH_ARRAYCOERCE;
3208  }
3209  ReleaseSysCache(targetType);
3210 
3211  /* Look in pg_cast */
3213  ObjectIdGetDatum(typeId),
3214  ObjectIdGetDatum(typeId));
3215 
3216  if (HeapTupleIsValid(tuple))
3217  {
3218  Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
3219 
3220  *funcid = castForm->castfunc;
3221  ReleaseSysCache(tuple);
3222  }
3223 
3224  if (!OidIsValid(*funcid))
3225  result = COERCION_PATH_NONE;
3226 
3227  return result;
3228 }
3229 
3230 /*
3231  * is_complex_array
3232  * Is this type an array of composite?
3233  *
3234  * Note: this will not return true for record[]; check for RECORDARRAYOID
3235  * separately if needed.
3236  */
3237 static bool
3239 {
3240  Oid elemtype = get_element_type(typid);
3241 
3242  return (OidIsValid(elemtype) && ISCOMPLEX(elemtype));
3243 }
3244 
3245 
3246 /*
3247  * Check whether reltypeId is the row type of a typed table of type
3248  * reloftypeId, or is a domain over such a row type. (This is conceptually
3249  * similar to the subtype relationship checked by typeInheritsFrom().)
3250  */
3251 static bool
3252 typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
3253 {
3254  Oid relid = typeOrDomainTypeRelid(reltypeId);
3255  bool result = false;
3256 
3257  if (relid)
3258  {
3259  HeapTuple tp;
3260  Form_pg_class reltup;
3261 
3262  tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
3263  if (!HeapTupleIsValid(tp))
3264  elog(ERROR, "cache lookup failed for relation %u", relid);
3265 
3266  reltup = (Form_pg_class) GETSTRUCT(tp);
3267  if (reltup->reloftype == reloftypeId)
3268  result = true;
3269 
3270  ReleaseSysCache(tp);
3271  }
3272 
3273  return result;
3274 }
Datum constvalue
Definition: primnodes.h:219
bool check_generic_type_consistency(const Oid *actual_arg_types, const Oid *declared_arg_types, int nargs)
#define NIL
Definition: pg_list.h:65
Oid getBaseTypeAndTypmod(Oid typid, int32 *typmod)
Definition: lsyscache.c:2485
List * args
Definition: primnodes.h:1068
Oid typeTypeCollation(Type typ)
Definition: parse_type.c:642
#define IsA(nodeptr, _type_)
Definition: nodes.h:587
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
#define type_is_array_domain(typid)
Definition: lsyscache.h:204
#define GETSTRUCT(TUP)
Definition: htup_details.h:654
Oid typeOrDomainTypeRelid(Oid type_id)
Definition: parse_type.c:691
bool constbyval
Definition: primnodes.h:222
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1250
TupleDesc lookup_rowtype_tupdesc(Oid type_id, int32 typmod)
Definition: typcache.c:1827
int32 resulttypmod
Definition: primnodes.h:1307
char * check_valid_polymorphic_signature(Oid ret_type, const Oid *declared_arg_types, int nargs)
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:322
Node * applyRelabelType(Node *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat, int rlocation, bool overwrite_ok)
Definition: nodeFuncs.c:582
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:267
int16 typeLen(Type t)
Definition: parse_type.c:601
Oid get_element_type(Oid typid)
Definition: lsyscache.c:2706
#define PointerGetDatum(X)
Definition: postgres.h:600
#define TupleDescAttr(tupdesc, i)
Definition: tupdesc.h:92
Oid get_array_type(Oid typid)
Definition: lsyscache.c:2734
#define for_each_cell(cell, lst, initcell)
Definition: pg_list.h:417
int32 select_common_typmod(ParseState *pstate, List *exprs, Oid common_type)
char * pstrdup(const char *in)
Definition: mcxt.c:1299
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
bool can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, CoercionContext ccontext)
Definition: parse_coerce.c:556
Oid resulttype
Definition: primnodes.h:881
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:709
bool datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:222
CoerceParamHook p_coerce_param_hook
Definition: parse_node.h:223
Node * coerce_type(ParseState *pstate, Node *node, Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:157
Definition: nodes.h:536
CoercionForm coercionformat
Definition: primnodes.h:1309
int errcode(int sqlerrcode)
Definition: elog.c:698
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
bool type_is_range(Oid typid)
Definition: lsyscache.c:2635
Oid get_range_multirange(Oid rangeOid)
Definition: lsyscache.c:3408
unsigned int Oid
Definition: postgres_ext.h:31
Definition: primnodes.h:186
Const * makeConst(Oid consttype, int32 consttypmod, Oid constcollid, int constlen, Datum constvalue, bool constisnull, bool constbyval)
Definition: makefuncs.c:299
#define OidIsValid(objectId)
Definition: c.h:710
CoercionContext
Definition: primnodes.h:461
bool IsPreferredType(TYPCATEGORY category, Oid type)
static Oid select_common_type_from_oids(int nargs, const Oid *typeids, bool noerror)
int32 typeMod
Definition: primnodes.h:1019
CoercionPathType
Definition: parse_coerce.h:24
signed int int32
Definition: c.h:429
Oid get_multirange_range(Oid multirangeOid)
Definition: lsyscache.c:3433
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:337
static void hide_coercion_node(Node *node)
Definition: parse_coerce.c:803
#define FUNC_MAX_ARGS
#define list_make1(x1)
Definition: pg_list.h:206
int constlen
Definition: primnodes.h:218
Oid consttype
Definition: primnodes.h:215
char TYPCATEGORY
Definition: parse_coerce.h:21
void cancel_parser_errposition_callback(ParseCallbackState *pcbstate)
Definition: parse_node.c:161
bool typeByVal(Type t)
Definition: parse_type.c:611
#define linitial(l)
Definition: pg_list.h:174
#define ObjectIdGetDatum(X)
Definition: postgres.h:551
#define ERROR
Definition: elog.h:46
List * colnames
Definition: primnodes.h:1084
#define DatumGetCString(X)
Definition: postgres.h:610
Node * coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype, Oid targettype, int32 targettypmod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:78
char * typeTypeName(Type t)
Definition: parse_type.c:621
Datum stringTypeDatum(Type tp, char *string, int32 atttypmod)
Definition: parse_type.c:656
Node * coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, CoercionContext ccontext, CoercionForm cformat, int location, bool hideInputCoercion)
Definition: parse_coerce.c:676
Oid constcollid
Definition: primnodes.h:217
int location
Definition: primnodes.h:1085
RelabelType * makeRelabelType(Expr *arg, Oid rtype, int32 rtypmod, Oid rcollid, CoercionForm rformat)
Definition: makefuncs.c:402
static ListCell * list_second_cell(const List *l)
Definition: pg_list.h:139
int errdetail(const char *fmt,...)
Definition: elog.c:1042
static Node * build_coercion_expression(Node *node, CoercionPathType pathtype, Oid funcId, Oid targetTypeId, int32 targetTypMod, CoercionContext ccontext, CoercionForm cformat, int location)
Definition: parse_coerce.c:831
static ListCell * list_head(const List *l)
Definition: pg_list.h:125
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:207
static Node * coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod, CoercionContext ccontext, CoercionForm cformat, int location, bool hideInputCoercion)
Definition: parse_coerce.c:753
Expr * arg
Definition: primnodes.h:880
Expr * elemexpr
Definition: primnodes.h:905
FormData_pg_cast * Form_pg_cast
Definition: pg_cast.h:57
void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location)
Definition: parse_node.c:145
Node * coerce_to_common_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *context)
bool IsBinaryCoercible(Oid srctype, Oid targettype)
CoercionPathType find_typmod_coercion_function(Oid typeId, Oid *funcid)
List * lappend(List *list, void *datum)
Definition: list.c:336
#define WARNING
Definition: elog.h:40
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1127
CoercionForm coerceformat
Definition: primnodes.h:909
int location
Definition: primnodes.h:226
uintptr_t Datum
Definition: postgres.h:411
CoercionForm convertformat
Definition: primnodes.h:932
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1175
FormData_pg_proc * Form_pg_proc
Definition: pg_proc.h:136
#define BoolGetDatum(X)
Definition: postgres.h:446
#define InvalidOid
Definition: postgres_ext.h:36
TYPCATEGORY TypeCategory(Oid type)
#define ereport(elevel,...)
Definition: elog.h:157
int errmsg_internal(const char *fmt,...)
Definition: elog.c:996
#define makeNode(_type_)
Definition: nodes.h:584
int location
Definition: primnodes.h:885
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define Assert(condition)
Definition: c.h:804
#define lfirst(lc)
Definition: pg_list.h:169
char * check_valid_internal_signature(Oid ret_type, const Oid *declared_arg_types, int nargs)
bool typeInheritsFrom(Oid subclassTypeId, Oid superclassTypeId)
Definition: pg_inherits.c:407
List * expandNSItemVars(ParseNamespaceItem *nsitem, int sublevels_up, int location, List **colnames)
#define ISCOMPLEX(typeid)
Definition: parse_type.h:58
static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId)
bool type_is_multirange(Oid typid)
Definition: lsyscache.c:2645
bool type_is_enum(Oid typid)
Definition: lsyscache.c:2625
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
Oid row_typeid
Definition: primnodes.h:1069
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:111
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:759
Expr * arg
Definition: primnodes.h:946
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:1138
#define type_is_array(typid)
Definition: lsyscache.h:202
#define InvalidAttrNumber
Definition: attnum.h:23
static Node * coerce_record_to_complex(ParseState *pstate, Node *node, Oid targetTypeId, CoercionContext ccontext, CoercionForm cformat, int location)
#define nodeTag(nodeptr)
Definition: nodes.h:541
int32 consttypmod
Definition: primnodes.h:216
CoercionForm coerceformat
Definition: primnodes.h:884
FormData_pg_class * Form_pg_class
Definition: pg_class.h:153
#define Int32GetDatum(X)
Definition: postgres.h:523
ParseNamespaceItem * GetNSItemByRangeTablePosn(ParseState *pstate, int varno, int sublevels_up)
int errmsg(const char *fmt,...)
Definition: elog.c:909
CoercionPathType find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, CoercionContext ccontext, Oid *funcid)
int parser_coercion_errposition(ParseState *pstate, int coerce_location, Node *input_expr)
#define elog(elevel,...)
Definition: elog.h:232
int i
Node * coerce_to_specific_type(ParseState *pstate, Node *node, Oid targetTypeId, const char *constructName)
void * arg
Oid select_common_type(ParseState *pstate, List *exprs, const char *context, Node **which_expr)
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
int location
Definition: primnodes.h:504
int32 resulttypmod
Definition: primnodes.h:907
static bool is_complex_array(Oid typid)
Type typeidType(Oid id)
Definition: parse_type.c:580
#define ReleaseTupleDesc(tupdesc)
Definition: tupdesc.h:122
int location
Definition: primnodes.h:948
CoercionForm row_format
Definition: primnodes.h:1083
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2468
CoercionForm
Definition: primnodes.h:481
bool type_is_collatable(Oid typid)
Definition: lsyscache.c:3028
void get_type_category_preferred(Oid typid, char *typcategory, bool *typispreferred)
Definition: lsyscache.c:2657
Definition: pg_list.h:50
Node * coerce_to_specific_type_typmod(ParseState *pstate, Node *node, Oid targetTypeId, int32 targetTypmod, const char *constructName)
#define _(x)
Definition: elog.c:89
Oid get_range_subtype(Oid rangeOid)
Definition: lsyscache.c:3357
int location
Definition: primnodes.h:865
bool constisnull
Definition: primnodes.h:220
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:519
Node * coerce_to_boolean(ParseState *pstate, Node *node, const char *constructName)