PostgreSQL Source Code  git master
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings). In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
85  List *ns_uris; /* list of namespace URI expressions */
86  List *ns_names; /* list of namespace names or NULL */
87  Node *docexpr; /* input document expression */
88  Node *rowexpr; /* row filter expression */
89  List *colnames; /* column names (list of String) */
90  List *coltypes; /* OID list of column type OIDs */
91  List *coltypmods; /* integer list of column typmods */
92  List *colcollations; /* OID list of column collation OIDs */
93  List *colexprs; /* list of column filter expressions */
94  List *coldefexprs; /* list of column default expressions */
95  Bitmapset *notnulls; /* nullability flag for each output column */
96  int ordinalitycol; /* counts from 0; -1 if none specified */
97  int location; /* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
111 
112  RangeVar *rel; /* target relation name */
113  List *colNames; /* column names to assign, or NIL */
114  char *accessMethod; /* table access method */
115  List *options; /* options from WITH clause */
116  OnCommitAction onCommit; /* what do we do at COMMIT? */
117  char *tableSpaceName; /* table space to use, or NULL */
118  Node *viewQuery; /* materialized view's SELECT query */
119  bool skipData; /* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  * node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field). Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation. See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE. (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list. Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column. (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * In the parser, varnosyn and varattnosyn are either identical to
162  * varno/varattno, or they specify the column's position in an aliased JOIN
163  * RTE that hides the semantic referent RTE's refname. This is a syntactic
164  * identifier as opposed to the semantic identifier; it tells ruleutils.c
165  * how to print the Var properly. varnosyn/varattnosyn retain their values
166  * throughout planning and execution, so they are particularly helpful to
167  * identify Vars when debugging. Note, however, that a Var that is generated
168  * in the planner and doesn't correspond to any simple relation column may
169  * have varnosyn = varattnosyn = 0.
170  */
171 #define INNER_VAR 65000 /* reference to inner subplan */
172 #define OUTER_VAR 65001 /* reference to outer subplan */
173 #define INDEX_VAR 65002 /* reference to index column */
174 
175 #define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
176 
177 /* Symbols for the indexes of the special RTE entries in rules */
178 #define PRS2_OLD_VARNO 1
179 #define PRS2_NEW_VARNO 2
180 
181 typedef struct Var
182 {
184  Index varno; /* index of this var's relation in the range
185  * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
186  AttrNumber varattno; /* attribute number of this var, or zero for
187  * all attrs ("whole-row Var") */
188  Oid vartype; /* pg_type OID for the type of this var */
189  int32 vartypmod; /* pg_attribute typmod value */
190  Oid varcollid; /* OID of collation, or InvalidOid if none */
191  Index varlevelsup; /* for subquery variables referencing outer
192  * relations; 0 in a normal var, >0 means N
193  * levels up */
194  Index varnosyn; /* syntactic relation index (0 if unknown) */
195  AttrNumber varattnosyn; /* syntactic attribute number */
196  int location; /* token location, or -1 if unknown */
197 } Var;
198 
199 /*
200  * Const
201  *
202  * Note: for varlena data types, we make a rule that a Const node's value
203  * must be in non-extended form (4-byte header, no compression or external
204  * references). This ensures that the Const node is self-contained and makes
205  * it more likely that equal() will see logically identical values as equal.
206  */
207 typedef struct Const
208 {
210  Oid consttype; /* pg_type OID of the constant's datatype */
211  int32 consttypmod; /* typmod value, if any */
212  Oid constcollid; /* OID of collation, or InvalidOid if none */
213  int constlen; /* typlen of the constant's datatype */
214  Datum constvalue; /* the constant's value */
215  bool constisnull; /* whether the constant is null (if true,
216  * constvalue is undefined) */
217  bool constbyval; /* whether this datatype is passed by value.
218  * If true, then all the information is stored
219  * in the Datum. If false, then the Datum
220  * contains a pointer to the information. */
221  int location; /* token location, or -1 if unknown */
222 } Const;
223 
224 /*
225  * Param
226  *
227  * paramkind specifies the kind of parameter. The possible values
228  * for this field are:
229  *
230  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
231  * Such parameters are numbered from 1 to n.
232  *
233  * PARAM_EXEC: The parameter is an internal executor parameter, used
234  * for passing values into and out of sub-queries or from
235  * nestloop joins to their inner scans.
236  * For historical reasons, such parameters are numbered from 0.
237  * These numbers are independent of PARAM_EXTERN numbers.
238  *
239  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
240  * node's sub-select. The column number is contained in the
241  * `paramid' field. (This type of Param is converted to
242  * PARAM_EXEC during planning.)
243  *
244  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
245  * output column of a SubLink node's sub-select, but here, the
246  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
247  * of the `paramid' field contain the SubLink's subLinkId, and
248  * the low-order 16 bits contain the column number. (This type
249  * of Param is also converted to PARAM_EXEC during planning.)
250  */
251 typedef enum ParamKind
252 {
257 } ParamKind;
258 
259 typedef struct Param
260 {
262  ParamKind paramkind; /* kind of parameter. See above */
263  int paramid; /* numeric ID for parameter */
264  Oid paramtype; /* pg_type OID of parameter's datatype */
265  int32 paramtypmod; /* typmod value, if known */
266  Oid paramcollid; /* OID of collation, or InvalidOid if none */
267  int location; /* token location, or -1 if unknown */
268 } Param;
269 
270 /*
271  * Aggref
272  *
273  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
274  *
275  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
276  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
277  * be added at the end to represent ORDER BY expressions that are not also
278  * arguments. As in a top-level Query, the TLEs can be marked with
279  * ressortgroupref indexes to let them be referenced by SortGroupClause
280  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
281  * and DISTINCT operations to be applied to the aggregate input rows before
282  * they are passed to the transition function. The grammar only allows a
283  * simple "DISTINCT" specifier for the arguments, but we use the full
284  * query-level representation to allow more code sharing.
285  *
286  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
287  * (aggregated) arguments, all of which will be listed in the aggorder list.
288  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
289  * The direct arguments appear in aggdirectargs (as a list of plain
290  * expressions, not TargetEntry nodes).
291  *
292  * aggtranstype is the data type of the state transition values for this
293  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
294  * This is determined during planning and is InvalidOid before that.
295  *
296  * aggargtypes is an OID list of the data types of the direct and regular
297  * arguments. Normally it's redundant with the aggdirectargs and args lists,
298  * but in a combining aggregate, it's not because the args list has been
299  * replaced with a single argument representing the partial-aggregate
300  * transition values.
301  *
302  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
303  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
304  * the planner might change it to something else. We use this mainly as
305  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
306  * indicates a non-final mode, aggtype reflects the transition data type
307  * not the SQL-level output type of the aggregate.
308  *
309  * aggno and aggtransno are -1 in the parse stage, and are set in planning.
310  * Aggregates with the same 'aggno' represent the same aggregate expression,
311  * and can share the result. Aggregates with same 'transno' but different
312  * 'aggno' can share the same transition state, only the final function needs
313  * to be called separately.
314  */
315 typedef struct Aggref
316 {
318  Oid aggfnoid; /* pg_proc Oid of the aggregate */
319  Oid aggtype; /* type Oid of result of the aggregate */
320  Oid aggcollid; /* OID of collation of result */
321  Oid inputcollid; /* OID of collation that function should use */
322  Oid aggtranstype; /* type Oid of aggregate's transition value */
323  List *aggargtypes; /* type Oids of direct and aggregated args */
324  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
325  List *args; /* aggregated arguments and sort expressions */
326  List *aggorder; /* ORDER BY (list of SortGroupClause) */
327  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
328  Expr *aggfilter; /* FILTER expression, if any */
329  bool aggstar; /* true if argument list was really '*' */
330  bool aggvariadic; /* true if variadic arguments have been
331  * combined into an array last argument */
332  char aggkind; /* aggregate kind (see pg_aggregate.h) */
333  Index agglevelsup; /* > 0 if agg belongs to outer query */
334  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
335  int aggno; /* unique ID within the Agg node */
336  int aggtransno; /* unique ID of transition state in the Agg */
337  int location; /* token location, or -1 if unknown */
338 } Aggref;
339 
340 /*
341  * GroupingFunc
342  *
343  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
344  * like an aggregate function (e.g. it "belongs" to a specific query level,
345  * which might not be the one immediately containing it), but also differs in
346  * an important respect: it never evaluates its arguments, they merely
347  * designate expressions from the GROUP BY clause of the query level to which
348  * it belongs.
349  *
350  * The spec defines the evaluation of GROUPING() purely by syntactic
351  * replacement, but we make it a real expression for optimization purposes so
352  * that one Agg node can handle multiple grouping sets at once. Evaluating the
353  * result only needs the column positions to check against the grouping set
354  * being projected. However, for EXPLAIN to produce meaningful output, we have
355  * to keep the original expressions around, since expression deparse does not
356  * give us any feasible way to get at the GROUP BY clause.
357  *
358  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
359  * lists and agglevelsup, without comparing the refs and cols annotations.
360  *
361  * In raw parse output we have only the args list; parse analysis fills in the
362  * refs list, and the planner fills in the cols list.
363  */
364 typedef struct GroupingFunc
365 {
367  List *args; /* arguments, not evaluated but kept for
368  * benefit of EXPLAIN etc. */
369  List *refs; /* ressortgrouprefs of arguments */
370  List *cols; /* actual column positions set by planner */
371  Index agglevelsup; /* same as Aggref.agglevelsup */
372  int location; /* token location */
373 } GroupingFunc;
374 
375 /*
376  * WindowFunc
377  */
378 typedef struct WindowFunc
379 {
381  Oid winfnoid; /* pg_proc Oid of the function */
382  Oid wintype; /* type Oid of result of the window function */
383  Oid wincollid; /* OID of collation of result */
384  Oid inputcollid; /* OID of collation that function should use */
385  List *args; /* arguments to the window function */
386  Expr *aggfilter; /* FILTER expression, if any */
387  Index winref; /* index of associated WindowClause */
388  bool winstar; /* true if argument list was really '*' */
389  bool winagg; /* is function a simple aggregate? */
390  int location; /* token location, or -1 if unknown */
391 } WindowFunc;
392 
393 /*
394  * SubscriptingRef: describes a subscripting operation over a container
395  * (array, etc).
396  *
397  * A SubscriptingRef can describe fetching a single element from a container,
398  * fetching a part of a container (e.g. an array slice), storing a single
399  * element into a container, or storing a slice. The "store" cases work with
400  * an initial container value and a source value that is inserted into the
401  * appropriate part of the container; the result of the operation is an
402  * entire new modified container value.
403  *
404  * If reflowerindexpr = NIL, then we are fetching or storing a single container
405  * element at the subscripts given by refupperindexpr. Otherwise we are
406  * fetching or storing a container slice, that is a rectangular subcontainer
407  * with lower and upper bounds given by the index expressions.
408  * reflowerindexpr must be the same length as refupperindexpr when it
409  * is not NIL.
410  *
411  * In the slice case, individual expressions in the subscript lists can be
412  * NULL, meaning "substitute the array's current lower or upper bound".
413  * (Non-array containers may or may not support this.)
414  *
415  * refcontainertype is the actual container type that determines the
416  * subscripting semantics. (This will generally be either the exposed type of
417  * refexpr, or the base type if that is a domain.) refelemtype is the type of
418  * the container's elements; this is saved for the use of the subscripting
419  * functions, but is not used by the core code. refrestype, reftypmod, and
420  * refcollid describe the type of the SubscriptingRef's result. In a store
421  * expression, refrestype will always match refcontainertype; in a fetch,
422  * it could be refelemtype for an element fetch, or refcontainertype for a
423  * slice fetch, or possibly something else as determined by type-specific
424  * subscripting logic. Likewise, reftypmod and refcollid will match the
425  * container's properties in a store, but could be different in a fetch.
426  *
427  * Note: for the cases where a container is returned, if refexpr yields a R/W
428  * expanded container, then the implementation is allowed to modify that
429  * object in-place and return the same object.
430  */
431 typedef struct SubscriptingRef
432 {
434  Oid refcontainertype; /* type of the container proper */
435  Oid refelemtype; /* the container type's pg_type.typelem */
436  Oid refrestype; /* type of the SubscriptingRef's result */
437  int32 reftypmod; /* typmod of the result */
438  Oid refcollid; /* collation of result, or InvalidOid if none */
439  List *refupperindexpr; /* expressions that evaluate to upper
440  * container indexes */
441  List *reflowerindexpr; /* expressions that evaluate to lower
442  * container indexes, or NIL for single
443  * container element */
444  Expr *refexpr; /* the expression that evaluates to a
445  * container value */
446  Expr *refassgnexpr; /* expression for the source value, or NULL if
447  * fetch */
449 
450 /*
451  * CoercionContext - distinguishes the allowed set of type casts
452  *
453  * NB: ordering of the alternatives is significant; later (larger) values
454  * allow more casts than earlier ones.
455  */
456 typedef enum CoercionContext
457 {
458  COERCION_IMPLICIT, /* coercion in context of expression */
459  COERCION_ASSIGNMENT, /* coercion in context of assignment */
460  COERCION_PLPGSQL, /* if no assignment cast, use CoerceViaIO */
461  COERCION_EXPLICIT /* explicit cast operation */
463 
464 /*
465  * CoercionForm - how to display a FuncExpr or related node
466  *
467  * "Coercion" is a bit of a misnomer, since this value records other
468  * special syntaxes besides casts, but for now we'll keep this naming.
469  *
470  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
471  * any semantically significant information. We need that behavior so that
472  * the planner will consider equivalent implicit and explicit casts to be
473  * equivalent. In cases where those actually behave differently, the coercion
474  * function's arguments will be different.
475  */
476 typedef enum CoercionForm
477 {
478  COERCE_EXPLICIT_CALL, /* display as a function call */
479  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
480  COERCE_IMPLICIT_CAST, /* implicit cast, so hide it */
481  COERCE_SQL_SYNTAX /* display with SQL-mandated special syntax */
482 } CoercionForm;
483 
484 /*
485  * FuncExpr - expression node for a function call
486  */
487 typedef struct FuncExpr
488 {
490  Oid funcid; /* PG_PROC OID of the function */
491  Oid funcresulttype; /* PG_TYPE OID of result value */
492  bool funcretset; /* true if function returns set */
493  bool funcvariadic; /* true if variadic arguments have been
494  * combined into an array last argument */
495  CoercionForm funcformat; /* how to display this function call */
496  Oid funccollid; /* OID of collation of result */
497  Oid inputcollid; /* OID of collation that function should use */
498  List *args; /* arguments to the function */
499  int location; /* token location, or -1 if unknown */
500 } FuncExpr;
501 
502 /*
503  * NamedArgExpr - a named argument of a function
504  *
505  * This node type can only appear in the args list of a FuncCall or FuncExpr
506  * node. We support pure positional call notation (no named arguments),
507  * named notation (all arguments are named), and mixed notation (unnamed
508  * arguments followed by named ones).
509  *
510  * Parse analysis sets argnumber to the positional index of the argument,
511  * but doesn't rearrange the argument list.
512  *
513  * The planner will convert argument lists to pure positional notation
514  * during expression preprocessing, so execution never sees a NamedArgExpr.
515  */
516 typedef struct NamedArgExpr
517 {
519  Expr *arg; /* the argument expression */
520  char *name; /* the name */
521  int argnumber; /* argument's number in positional notation */
522  int location; /* argument name location, or -1 if unknown */
523 } NamedArgExpr;
524 
525 /*
526  * OpExpr - expression node for an operator invocation
527  *
528  * Semantically, this is essentially the same as a function call.
529  *
530  * Note that opfuncid is not necessarily filled in immediately on creation
531  * of the node. The planner makes sure it is valid before passing the node
532  * tree to the executor, but during parsing/planning opfuncid can be 0.
533  */
534 typedef struct OpExpr
535 {
537  Oid opno; /* PG_OPERATOR OID of the operator */
538  Oid opfuncid; /* PG_PROC OID of underlying function */
539  Oid opresulttype; /* PG_TYPE OID of result value */
540  bool opretset; /* true if operator returns set */
541  Oid opcollid; /* OID of collation of result */
542  Oid inputcollid; /* OID of collation that operator should use */
543  List *args; /* arguments to the operator (1 or 2) */
544  int location; /* token location, or -1 if unknown */
545 } OpExpr;
546 
547 /*
548  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
549  *
550  * Except for the nodetag, this is represented identically to an OpExpr
551  * referencing the "=" operator for x and y.
552  * We use "=", not the more obvious "<>", because more datatypes have "="
553  * than "<>". This means the executor must invert the operator result.
554  * Note that the operator function won't be called at all if either input
555  * is NULL, since then the result can be determined directly.
556  */
558 
559 /*
560  * NullIfExpr - a NULLIF expression
561  *
562  * Like DistinctExpr, this is represented the same as an OpExpr referencing
563  * the "=" operator for x and y.
564  */
566 
567 /*
568  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
569  *
570  * The operator must yield boolean. It is applied to the left operand
571  * and each element of the righthand array, and the results are combined
572  * with OR or AND (for ANY or ALL respectively). The node representation
573  * is almost the same as for the underlying operator, but we need a useOr
574  * flag to remember whether it's ANY or ALL, and we don't have to store
575  * the result type (or the collation) because it must be boolean.
576  */
577 typedef struct ScalarArrayOpExpr
578 {
580  Oid opno; /* PG_OPERATOR OID of the operator */
581  Oid opfuncid; /* PG_PROC OID of underlying function */
582  bool useOr; /* true for ANY, false for ALL */
583  Oid inputcollid; /* OID of collation that operator should use */
584  List *args; /* the scalar and array operands */
585  int location; /* token location, or -1 if unknown */
587 
588 /*
589  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
590  *
591  * Notice the arguments are given as a List. For NOT, of course the list
592  * must always have exactly one element. For AND and OR, there can be two
593  * or more arguments.
594  */
595 typedef enum BoolExprType
596 {
598 } BoolExprType;
599 
600 typedef struct BoolExpr
601 {
604  List *args; /* arguments to this expression */
605  int location; /* token location, or -1 if unknown */
606 } BoolExpr;
607 
608 /*
609  * SubLink
610  *
611  * A SubLink represents a subselect appearing in an expression, and in some
612  * cases also the combining operator(s) just above it. The subLinkType
613  * indicates the form of the expression represented:
614  * EXISTS_SUBLINK EXISTS(SELECT ...)
615  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
616  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
617  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
618  * EXPR_SUBLINK (SELECT with single targetlist item ...)
619  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
620  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
621  * CTE_SUBLINK WITH query (never actually part of an expression)
622  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
623  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
624  * a list with more than one entry; if the subselect has just one target
625  * then the parser will create an EXPR_SUBLINK instead (and any operator
626  * above the subselect will be represented separately).
627  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
628  * one row (if it returns no rows, the result is NULL).
629  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
630  * results. ALL and ANY combine the per-row results using AND and OR
631  * semantics respectively.
632  * ARRAY requires just one target column, and creates an array of the target
633  * column's type using any number of rows resulting from the subselect.
634  *
635  * SubLink is classed as an Expr node, but it is not actually executable;
636  * it must be replaced in the expression tree by a SubPlan node during
637  * planning.
638  *
639  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
640  * of the lefthand expression (if any), and operName is the String name of
641  * the combining operator. Also, subselect is a raw parsetree. During parse
642  * analysis, the parser transforms testexpr into a complete boolean expression
643  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
644  * output columns of the subselect. And subselect is transformed to a Query.
645  * This is the representation seen in saved rules and in the rewriter.
646  *
647  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
648  * are unused and are always null.
649  *
650  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
651  * other SubLinks. This number identifies different multiple-assignment
652  * subqueries within an UPDATE statement's SET list. It is unique only
653  * within a particular targetlist. The output column(s) of the MULTIEXPR
654  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
655  *
656  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
657  * in SubPlans generated for WITH subqueries.
658  */
659 typedef enum SubLinkType
660 {
668  CTE_SUBLINK /* for SubPlans only */
669 } SubLinkType;
670 
671 
672 typedef struct SubLink
673 {
675  SubLinkType subLinkType; /* see above */
676  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
677  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
678  List *operName; /* originally specified operator name */
679  Node *subselect; /* subselect as Query* or raw parsetree */
680  int location; /* token location, or -1 if unknown */
681 } SubLink;
682 
683 /*
684  * SubPlan - executable expression node for a subplan (sub-SELECT)
685  *
686  * The planner replaces SubLink nodes in expression trees with SubPlan
687  * nodes after it has finished planning the subquery. SubPlan references
688  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
689  * (We avoid a direct link to make it easier to copy expression trees
690  * without causing multiple processing of the subplan.)
691  *
692  * In an ordinary subplan, testexpr points to an executable expression
693  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
694  * operator(s); the left-hand arguments are the original lefthand expressions,
695  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
696  * outputs of the sub-select. (NOTE: runtime coercion functions may be
697  * inserted as well.) This is just the same expression tree as testexpr in
698  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
699  * suitably numbered PARAM_EXEC nodes.
700  *
701  * If the sub-select becomes an initplan rather than a subplan, the executable
702  * expression is part of the outer plan's expression tree (and the SubPlan
703  * node itself is not, but rather is found in the outer plan's initPlan
704  * list). In this case testexpr is NULL to avoid duplication.
705  *
706  * The planner also derives lists of the values that need to be passed into
707  * and out of the subplan. Input values are represented as a list "args" of
708  * expressions to be evaluated in the outer-query context (currently these
709  * args are always just Vars, but in principle they could be any expression).
710  * The values are assigned to the global PARAM_EXEC params indexed by parParam
711  * (the parParam and args lists must have the same ordering). setParam is a
712  * list of the PARAM_EXEC params that are computed by the sub-select, if it
713  * is an initplan; they are listed in order by sub-select output column
714  * position. (parParam and setParam are integer Lists, not Bitmapsets,
715  * because their ordering is significant.)
716  *
717  * Also, the planner computes startup and per-call costs for use of the
718  * SubPlan. Note that these include the cost of the subquery proper,
719  * evaluation of the testexpr if any, and any hashtable management overhead.
720  */
721 typedef struct SubPlan
722 {
724  /* Fields copied from original SubLink: */
725  SubLinkType subLinkType; /* see above */
726  /* The combining operators, transformed to an executable expression: */
727  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
728  List *paramIds; /* IDs of Params embedded in the above */
729  /* Identification of the Plan tree to use: */
730  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
731  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
732  char *plan_name; /* A name assigned during planning */
733  /* Extra data useful for determining subplan's output type: */
734  Oid firstColType; /* Type of first column of subplan result */
735  int32 firstColTypmod; /* Typmod of first column of subplan result */
736  Oid firstColCollation; /* Collation of first column of subplan
737  * result */
738  /* Information about execution strategy: */
739  bool useHashTable; /* true to store subselect output in a hash
740  * table (implies we are doing "IN") */
741  bool unknownEqFalse; /* true if it's okay to return FALSE when the
742  * spec result is UNKNOWN; this allows much
743  * simpler handling of null values */
744  bool parallel_safe; /* is the subplan parallel-safe? */
745  /* Note: parallel_safe does not consider contents of testexpr or args */
746  /* Information for passing params into and out of the subselect: */
747  /* setParam and parParam are lists of integers (param IDs) */
748  List *setParam; /* initplan subqueries have to set these
749  * Params for parent plan */
750  List *parParam; /* indices of input Params from parent plan */
751  List *args; /* exprs to pass as parParam values */
752  /* Estimated execution costs: */
753  Cost startup_cost; /* one-time setup cost */
754  Cost per_call_cost; /* cost for each subplan evaluation */
755 } SubPlan;
756 
757 /*
758  * AlternativeSubPlan - expression node for a choice among SubPlans
759  *
760  * This is used only transiently during planning: by the time the plan
761  * reaches the executor, all AlternativeSubPlan nodes have been removed.
762  *
763  * The subplans are given as a List so that the node definition need not
764  * change if there's ever more than two alternatives. For the moment,
765  * though, there are always exactly two; and the first one is the fast-start
766  * plan.
767  */
768 typedef struct AlternativeSubPlan
769 {
771  List *subplans; /* SubPlan(s) with equivalent results */
773 
774 /* ----------------
775  * FieldSelect
776  *
777  * FieldSelect represents the operation of extracting one field from a tuple
778  * value. At runtime, the input expression is expected to yield a rowtype
779  * Datum. The specified field number is extracted and returned as a Datum.
780  * ----------------
781  */
782 
783 typedef struct FieldSelect
784 {
786  Expr *arg; /* input expression */
787  AttrNumber fieldnum; /* attribute number of field to extract */
788  Oid resulttype; /* type of the field (result type of this
789  * node) */
790  int32 resulttypmod; /* output typmod (usually -1) */
791  Oid resultcollid; /* OID of collation of the field */
792 } FieldSelect;
793 
794 /* ----------------
795  * FieldStore
796  *
797  * FieldStore represents the operation of modifying one field in a tuple
798  * value, yielding a new tuple value (the input is not touched!). Like
799  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
800  * portion of a column.
801  *
802  * resulttype is always a named composite type (not a domain). To update
803  * a composite domain value, apply CoerceToDomain to the FieldStore.
804  *
805  * A single FieldStore can actually represent updates of several different
806  * fields. The parser only generates FieldStores with single-element lists,
807  * but the planner will collapse multiple updates of the same base column
808  * into one FieldStore.
809  * ----------------
810  */
811 
812 typedef struct FieldStore
813 {
815  Expr *arg; /* input tuple value */
816  List *newvals; /* new value(s) for field(s) */
817  List *fieldnums; /* integer list of field attnums */
818  Oid resulttype; /* type of result (same as type of arg) */
819  /* Like RowExpr, we deliberately omit a typmod and collation here */
820 } FieldStore;
821 
822 /* ----------------
823  * RelabelType
824  *
825  * RelabelType represents a "dummy" type coercion between two binary-
826  * compatible datatypes, such as reinterpreting the result of an OID
827  * expression as an int4. It is a no-op at runtime; we only need it
828  * to provide a place to store the correct type to be attributed to
829  * the expression result during type resolution. (We can't get away
830  * with just overwriting the type field of the input expression node,
831  * so we need a separate node to show the coercion's result type.)
832  * ----------------
833  */
834 
835 typedef struct RelabelType
836 {
838  Expr *arg; /* input expression */
839  Oid resulttype; /* output type of coercion expression */
840  int32 resulttypmod; /* output typmod (usually -1) */
841  Oid resultcollid; /* OID of collation, or InvalidOid if none */
842  CoercionForm relabelformat; /* how to display this node */
843  int location; /* token location, or -1 if unknown */
844 } RelabelType;
845 
846 /* ----------------
847  * CoerceViaIO
848  *
849  * CoerceViaIO represents a type coercion between two types whose textual
850  * representations are compatible, implemented by invoking the source type's
851  * typoutput function then the destination type's typinput function.
852  * ----------------
853  */
854 
855 typedef struct CoerceViaIO
856 {
858  Expr *arg; /* input expression */
859  Oid resulttype; /* output type of coercion */
860  /* output typmod is not stored, but is presumed -1 */
861  Oid resultcollid; /* OID of collation, or InvalidOid if none */
862  CoercionForm coerceformat; /* how to display this node */
863  int location; /* token location, or -1 if unknown */
864 } CoerceViaIO;
865 
866 /* ----------------
867  * ArrayCoerceExpr
868  *
869  * ArrayCoerceExpr represents a type coercion from one array type to another,
870  * which is implemented by applying the per-element coercion expression
871  * "elemexpr" to each element of the source array. Within elemexpr, the
872  * source element is represented by a CaseTestExpr node. Note that even if
873  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
874  * coercion still requires some effort: we have to fix the element type OID
875  * stored in the array header.
876  * ----------------
877  */
878 
879 typedef struct ArrayCoerceExpr
880 {
882  Expr *arg; /* input expression (yields an array) */
883  Expr *elemexpr; /* expression representing per-element work */
884  Oid resulttype; /* output type of coercion (an array type) */
885  int32 resulttypmod; /* output typmod (also element typmod) */
886  Oid resultcollid; /* OID of collation, or InvalidOid if none */
887  CoercionForm coerceformat; /* how to display this node */
888  int location; /* token location, or -1 if unknown */
890 
891 /* ----------------
892  * ConvertRowtypeExpr
893  *
894  * ConvertRowtypeExpr represents a type coercion from one composite type
895  * to another, where the source type is guaranteed to contain all the columns
896  * needed for the destination type plus possibly others; the columns need not
897  * be in the same positions, but are matched up by name. This is primarily
898  * used to convert a whole-row value of an inheritance child table into a
899  * valid whole-row value of its parent table's rowtype. Both resulttype
900  * and the exposed type of "arg" must be named composite types (not domains).
901  * ----------------
902  */
903 
904 typedef struct ConvertRowtypeExpr
905 {
907  Expr *arg; /* input expression */
908  Oid resulttype; /* output type (always a composite type) */
909  /* Like RowExpr, we deliberately omit a typmod and collation here */
910  CoercionForm convertformat; /* how to display this node */
911  int location; /* token location, or -1 if unknown */
913 
914 /*----------
915  * CollateExpr - COLLATE
916  *
917  * The planner replaces CollateExpr with RelabelType during expression
918  * preprocessing, so execution never sees a CollateExpr.
919  *----------
920  */
921 typedef struct CollateExpr
922 {
924  Expr *arg; /* input expression */
925  Oid collOid; /* collation's OID */
926  int location; /* token location, or -1 if unknown */
927 } CollateExpr;
928 
929 /*----------
930  * CaseExpr - a CASE expression
931  *
932  * We support two distinct forms of CASE expression:
933  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
934  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
935  * These are distinguishable by the "arg" field being NULL in the first case
936  * and the testexpr in the second case.
937  *
938  * In the raw grammar output for the second form, the condition expressions
939  * of the WHEN clauses are just the comparison values. Parse analysis
940  * converts these to valid boolean expressions of the form
941  * CaseTestExpr '=' compexpr
942  * where the CaseTestExpr node is a placeholder that emits the correct
943  * value at runtime. This structure is used so that the testexpr need be
944  * evaluated only once. Note that after parse analysis, the condition
945  * expressions always yield boolean.
946  *
947  * Note: we can test whether a CaseExpr has been through parse analysis
948  * yet by checking whether casetype is InvalidOid or not.
949  *----------
950  */
951 typedef struct CaseExpr
952 {
954  Oid casetype; /* type of expression result */
955  Oid casecollid; /* OID of collation, or InvalidOid if none */
956  Expr *arg; /* implicit equality comparison argument */
957  List *args; /* the arguments (list of WHEN clauses) */
958  Expr *defresult; /* the default result (ELSE clause) */
959  int location; /* token location, or -1 if unknown */
960 } CaseExpr;
961 
962 /*
963  * CaseWhen - one arm of a CASE expression
964  */
965 typedef struct CaseWhen
966 {
968  Expr *expr; /* condition expression */
969  Expr *result; /* substitution result */
970  int location; /* token location, or -1 if unknown */
971 } CaseWhen;
972 
973 /*
974  * Placeholder node for the test value to be processed by a CASE expression.
975  * This is effectively like a Param, but can be implemented more simply
976  * since we need only one replacement value at a time.
977  *
978  * We also abuse this node type for some other purposes, including:
979  * * Placeholder for the current array element value in ArrayCoerceExpr;
980  * see build_coercion_expression().
981  * * Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
982  * see transformAssignmentIndirection().
983  *
984  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
985  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
986  * node and its child CaseTestExpr(s). This is true in the parse analysis
987  * output, but the planner's function-inlining logic has to be careful not to
988  * break it.
989  *
990  * The nested-assignment-expression case is safe because the only node types
991  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
992  */
993 typedef struct CaseTestExpr
994 {
996  Oid typeId; /* type for substituted value */
997  int32 typeMod; /* typemod for substituted value */
998  Oid collation; /* collation for the substituted value */
999 } CaseTestExpr;
1000 
1001 /*
1002  * ArrayExpr - an ARRAY[] expression
1003  *
1004  * Note: if multidims is false, the constituent expressions all yield the
1005  * scalar type identified by element_typeid. If multidims is true, the
1006  * constituent expressions all yield arrays of element_typeid (ie, the same
1007  * type as array_typeid); at runtime we must check for compatible subscripts.
1008  */
1009 typedef struct ArrayExpr
1010 {
1012  Oid array_typeid; /* type of expression result */
1013  Oid array_collid; /* OID of collation, or InvalidOid if none */
1014  Oid element_typeid; /* common type of array elements */
1015  List *elements; /* the array elements or sub-arrays */
1016  bool multidims; /* true if elements are sub-arrays */
1017  int location; /* token location, or -1 if unknown */
1018 } ArrayExpr;
1019 
1020 /*
1021  * RowExpr - a ROW() expression
1022  *
1023  * Note: the list of fields must have a one-for-one correspondence with
1024  * physical fields of the associated rowtype, although it is okay for it
1025  * to be shorter than the rowtype. That is, the N'th list element must
1026  * match up with the N'th physical field. When the N'th physical field
1027  * is a dropped column (attisdropped) then the N'th list element can just
1028  * be a NULL constant. (This case can only occur for named composite types,
1029  * not RECORD types, since those are built from the RowExpr itself rather
1030  * than vice versa.) It is important not to assume that length(args) is
1031  * the same as the number of columns logically present in the rowtype.
1032  *
1033  * colnames provides field names in cases where the names can't easily be
1034  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
1035  * If row_typeid identifies a known composite type, colnames can be NIL to
1036  * indicate the type's cataloged field names apply. Note that colnames can
1037  * be non-NIL even for a composite type, and typically is when the RowExpr
1038  * was created by expanding a whole-row Var. This is so that we can retain
1039  * the column alias names of the RTE that the Var referenced (which would
1040  * otherwise be very difficult to extract from the parsetree). Like the
1041  * args list, colnames is one-for-one with physical fields of the rowtype.
1042  */
1043 typedef struct RowExpr
1044 {
1046  List *args; /* the fields */
1047  Oid row_typeid; /* RECORDOID or a composite type's ID */
1048 
1049  /*
1050  * row_typeid cannot be a domain over composite, only plain composite. To
1051  * create a composite domain value, apply CoerceToDomain to the RowExpr.
1052  *
1053  * Note: we deliberately do NOT store a typmod. Although a typmod will be
1054  * associated with specific RECORD types at runtime, it will differ for
1055  * different backends, and so cannot safely be stored in stored
1056  * parsetrees. We must assume typmod -1 for a RowExpr node.
1057  *
1058  * We don't need to store a collation either. The result type is
1059  * necessarily composite, and composite types never have a collation.
1060  */
1061  CoercionForm row_format; /* how to display this node */
1062  List *colnames; /* list of String, or NIL */
1063  int location; /* token location, or -1 if unknown */
1064 } RowExpr;
1065 
1066 /*
1067  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1068  *
1069  * We support row comparison for any operator that can be determined to
1070  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1071  * operator in btree opfamilies). Note that the same operator name might
1072  * map to a different operator for each pair of row elements, since the
1073  * element datatypes can vary.
1074  *
1075  * A RowCompareExpr node is only generated for the < <= > >= cases;
1076  * the = and <> cases are translated to simple AND or OR combinations
1077  * of the pairwise comparisons. However, we include = and <> in the
1078  * RowCompareType enum for the convenience of parser logic.
1079  */
1080 typedef enum RowCompareType
1081 {
1082  /* Values of this enum are chosen to match btree strategy numbers */
1083  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1084  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1085  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1086  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1087  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1088  ROWCOMPARE_NE = 6 /* no such btree strategy */
1089 } RowCompareType;
1090 
1091 typedef struct RowCompareExpr
1092 {
1094  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1095  List *opnos; /* OID list of pairwise comparison ops */
1096  List *opfamilies; /* OID list of containing operator families */
1097  List *inputcollids; /* OID list of collations for comparisons */
1098  List *largs; /* the left-hand input arguments */
1099  List *rargs; /* the right-hand input arguments */
1100 } RowCompareExpr;
1101 
1102 /*
1103  * CoalesceExpr - a COALESCE expression
1104  */
1105 typedef struct CoalesceExpr
1106 {
1108  Oid coalescetype; /* type of expression result */
1109  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1110  List *args; /* the arguments */
1111  int location; /* token location, or -1 if unknown */
1112 } CoalesceExpr;
1113 
1114 /*
1115  * MinMaxExpr - a GREATEST or LEAST function
1116  */
1117 typedef enum MinMaxOp
1118 {
1121 } MinMaxOp;
1122 
1123 typedef struct MinMaxExpr
1124 {
1126  Oid minmaxtype; /* common type of arguments and result */
1127  Oid minmaxcollid; /* OID of collation of result */
1128  Oid inputcollid; /* OID of collation that function should use */
1129  MinMaxOp op; /* function to execute */
1130  List *args; /* the arguments */
1131  int location; /* token location, or -1 if unknown */
1132 } MinMaxExpr;
1133 
1134 /*
1135  * SQLValueFunction - parameterless functions with special grammar productions
1136  *
1137  * The SQL standard categorizes some of these as <datetime value function>
1138  * and others as <general value specification>. We call 'em SQLValueFunctions
1139  * for lack of a better term. We store type and typmod of the result so that
1140  * some code doesn't need to know each function individually, and because
1141  * we would need to store typmod anyway for some of the datetime functions.
1142  * Note that currently, all variants return non-collating datatypes, so we do
1143  * not need a collation field; also, all these functions are stable.
1144  */
1146 {
1163 
1164 typedef struct SQLValueFunction
1165 {
1167  SQLValueFunctionOp op; /* which function this is */
1168  Oid type; /* result type/typmod */
1170  int location; /* token location, or -1 if unknown */
1172 
1173 /*
1174  * XmlExpr - various SQL/XML functions requiring special grammar productions
1175  *
1176  * 'name' carries the "NAME foo" argument (already XML-escaped).
1177  * 'named_args' and 'arg_names' represent an xml_attribute list.
1178  * 'args' carries all other arguments.
1179  *
1180  * Note: result type/typmod/collation are not stored, but can be deduced
1181  * from the XmlExprOp. The type/typmod fields are just used for display
1182  * purposes, and are NOT necessarily the true result type of the node.
1183  */
1184 typedef enum XmlExprOp
1185 {
1186  IS_XMLCONCAT, /* XMLCONCAT(args) */
1187  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1188  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1189  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1190  IS_XMLPI, /* XMLPI(name [, args]) */
1191  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1192  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1193  IS_DOCUMENT /* xmlval IS DOCUMENT */
1194 } XmlExprOp;
1195 
1196 typedef enum
1197 {
1200 } XmlOptionType;
1201 
1202 typedef struct XmlExpr
1203 {
1205  XmlExprOp op; /* xml function ID */
1206  char *name; /* name in xml(NAME foo ...) syntaxes */
1207  List *named_args; /* non-XML expressions for xml_attributes */
1208  List *arg_names; /* parallel list of Value strings */
1209  List *args; /* list of expressions */
1210  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1211  Oid type; /* target type/typmod for XMLSERIALIZE */
1213  int location; /* token location, or -1 if unknown */
1214 } XmlExpr;
1215 
1216 /* ----------------
1217  * NullTest
1218  *
1219  * NullTest represents the operation of testing a value for NULLness.
1220  * The appropriate test is performed and returned as a boolean Datum.
1221  *
1222  * When argisrow is false, this simply represents a test for the null value.
1223  *
1224  * When argisrow is true, the input expression must yield a rowtype, and
1225  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1226  * includes checking individual fields for NULLness when the row datum
1227  * itself isn't NULL.
1228  *
1229  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1230  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1231  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1232  * ----------------
1233  */
1234 
1235 typedef enum NullTestType
1236 {
1238 } NullTestType;
1239 
1240 typedef struct NullTest
1241 {
1243  Expr *arg; /* input expression */
1244  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1245  bool argisrow; /* T to perform field-by-field null checks */
1246  int location; /* token location, or -1 if unknown */
1247 } NullTest;
1248 
1249 /*
1250  * BooleanTest
1251  *
1252  * BooleanTest represents the operation of determining whether a boolean
1253  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1254  * are supported. Note that a NULL input does *not* cause a NULL result.
1255  * The appropriate test is performed and returned as a boolean Datum.
1256  */
1257 
1258 typedef enum BoolTestType
1259 {
1261 } BoolTestType;
1262 
1263 typedef struct BooleanTest
1264 {
1266  Expr *arg; /* input expression */
1267  BoolTestType booltesttype; /* test type */
1268  int location; /* token location, or -1 if unknown */
1269 } BooleanTest;
1270 
1271 /*
1272  * CoerceToDomain
1273  *
1274  * CoerceToDomain represents the operation of coercing a value to a domain
1275  * type. At runtime (and not before) the precise set of constraints to be
1276  * checked will be determined. If the value passes, it is returned as the
1277  * result; if not, an error is raised. Note that this is equivalent to
1278  * RelabelType in the scenario where no constraints are applied.
1279  */
1280 typedef struct CoerceToDomain
1281 {
1283  Expr *arg; /* input expression */
1284  Oid resulttype; /* domain type ID (result type) */
1285  int32 resulttypmod; /* output typmod (currently always -1) */
1286  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1287  CoercionForm coercionformat; /* how to display this node */
1288  int location; /* token location, or -1 if unknown */
1289 } CoerceToDomain;
1290 
1291 /*
1292  * Placeholder node for the value to be processed by a domain's check
1293  * constraint. This is effectively like a Param, but can be implemented more
1294  * simply since we need only one replacement value at a time.
1295  *
1296  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1297  * not the domain itself. This is because we shouldn't consider the value
1298  * to be a member of the domain if we haven't yet checked its constraints.
1299  */
1300 typedef struct CoerceToDomainValue
1301 {
1303  Oid typeId; /* type for substituted value */
1304  int32 typeMod; /* typemod for substituted value */
1305  Oid collation; /* collation for the substituted value */
1306  int location; /* token location, or -1 if unknown */
1308 
1309 /*
1310  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1311  *
1312  * This is not an executable expression: it must be replaced by the actual
1313  * column default expression during rewriting. But it is convenient to
1314  * treat it as an expression node during parsing and rewriting.
1315  */
1316 typedef struct SetToDefault
1317 {
1319  Oid typeId; /* type for substituted value */
1320  int32 typeMod; /* typemod for substituted value */
1321  Oid collation; /* collation for the substituted value */
1322  int location; /* token location, or -1 if unknown */
1323 } SetToDefault;
1324 
1325 /*
1326  * Node representing [WHERE] CURRENT OF cursor_name
1327  *
1328  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1329  * of the target relation being constrained; this aids placing the expression
1330  * correctly during planning. We can assume however that its "levelsup" is
1331  * always zero, due to the syntactic constraints on where it can appear.
1332  *
1333  * The referenced cursor can be represented either as a hardwired string
1334  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1335  * case is for the convenience of plpgsql.
1336  */
1337 typedef struct CurrentOfExpr
1338 {
1340  Index cvarno; /* RT index of target relation */
1341  char *cursor_name; /* name of referenced cursor, or NULL */
1342  int cursor_param; /* refcursor parameter number, or 0 */
1343 } CurrentOfExpr;
1344 
1345 /*
1346  * NextValueExpr - get next value from sequence
1347  *
1348  * This has the same effect as calling the nextval() function, but it does not
1349  * check permissions on the sequence. This is used for identity columns,
1350  * where the sequence is an implicit dependency without its own permissions.
1351  */
1352 typedef struct NextValueExpr
1353 {
1357 } NextValueExpr;
1358 
1359 /*
1360  * InferenceElem - an element of a unique index inference specification
1361  *
1362  * This mostly matches the structure of IndexElems, but having a dedicated
1363  * primnode allows for a clean separation between the use of index parameters
1364  * by utility commands, and this node.
1365  */
1366 typedef struct InferenceElem
1367 {
1369  Node *expr; /* expression to infer from, or NULL */
1370  Oid infercollid; /* OID of collation, or InvalidOid */
1371  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1372 } InferenceElem;
1373 
1374 /*--------------------
1375  * TargetEntry -
1376  * a target entry (used in query target lists)
1377  *
1378  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1379  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1380  * very many places it's convenient to process a whole query targetlist as a
1381  * single expression tree.
1382  *
1383  * In a SELECT's targetlist, resno should always be equal to the item's
1384  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1385  * targetlist, resno represents the attribute number of the destination
1386  * column for the item; so there may be missing or out-of-order resnos.
1387  * It is even legal to have duplicated resnos; consider
1388  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1389  * The two meanings come together in the executor, because the planner
1390  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1391  * one entry for each column of the destination table. Before that's
1392  * happened, however, it is risky to assume that resno == position.
1393  * Generally get_tle_by_resno() should be used rather than list_nth()
1394  * to fetch tlist entries by resno, and only in SELECT should you assume
1395  * that resno is a unique identifier.
1396  *
1397  * resname is required to represent the correct column name in non-resjunk
1398  * entries of top-level SELECT targetlists, since it will be used as the
1399  * column title sent to the frontend. In most other contexts it is only
1400  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1401  * be wrong in a tlist from a stored rule, if the referenced column has been
1402  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1403  * to store NULL rather than look up a valid name for tlist entries in
1404  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1405  * a specific system-generated name (such as "ctid") or NULL; anything else
1406  * risks confusing ExecGetJunkAttribute!
1407  *
1408  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1409  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1410  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1411  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1412  * may have the same nonzero ressortgroupref --- but there is no particular
1413  * meaning to the nonzero values, except as tags. (For example, one must
1414  * not assume that lower ressortgroupref means a more significant sort key.)
1415  * The order of the associated SortGroupClause lists determine the semantics.
1416  *
1417  * resorigtbl/resorigcol identify the source of the column, if it is a
1418  * simple reference to a column of a base table (or view). If it is not
1419  * a simple reference, these fields are zeroes.
1420  *
1421  * If resjunk is true then the column is a working column (such as a sort key)
1422  * that should be removed from the final output of the query. Resjunk columns
1423  * must have resnos that cannot duplicate any regular column's resno. Also
1424  * note that there are places that assume resjunk columns come after non-junk
1425  * columns.
1426  *--------------------
1427  */
1428 typedef struct TargetEntry
1429 {
1431  Expr *expr; /* expression to evaluate */
1432  AttrNumber resno; /* attribute number (see notes above) */
1433  char *resname; /* name of the column (could be NULL) */
1434  Index ressortgroupref; /* nonzero if referenced by a sort/group
1435  * clause */
1436  Oid resorigtbl; /* OID of column's source table */
1437  AttrNumber resorigcol; /* column's number in source table */
1438  bool resjunk; /* set to true to eliminate the attribute from
1439  * final target list */
1440 } TargetEntry;
1441 
1442 
1443 /* ----------------------------------------------------------------
1444  * node types for join trees
1445  *
1446  * The leaves of a join tree structure are RangeTblRef nodes. Above
1447  * these, JoinExpr nodes can appear to denote a specific kind of join
1448  * or qualified join. Also, FromExpr nodes can appear to denote an
1449  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1450  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1451  * may have any number of child nodes, not just two.
1452  *
1453  * NOTE: the top level of a Query's jointree is always a FromExpr.
1454  * Even if the jointree contains no rels, there will be a FromExpr.
1455  *
1456  * NOTE: the qualification expressions present in JoinExpr nodes are
1457  * *in addition to* the query's main WHERE clause, which appears as the
1458  * qual of the top-level FromExpr. The reason for associating quals with
1459  * specific nodes in the jointree is that the position of a qual is critical
1460  * when outer joins are present. (If we enforce a qual too soon or too late,
1461  * that may cause the outer join to produce the wrong set of NULL-extended
1462  * rows.) If all joins are inner joins then all the qual positions are
1463  * semantically interchangeable.
1464  *
1465  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1466  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1467  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1468  * FromExpr is added during parse analysis; the grammar regards FROM and
1469  * WHERE as separate.
1470  * ----------------------------------------------------------------
1471  */
1472 
1473 /*
1474  * RangeTblRef - reference to an entry in the query's rangetable
1475  *
1476  * We could use direct pointers to the RT entries and skip having these
1477  * nodes, but multiple pointers to the same node in a querytree cause
1478  * lots of headaches, so it seems better to store an index into the RT.
1479  */
1480 typedef struct RangeTblRef
1481 {
1483  int rtindex;
1484 } RangeTblRef;
1485 
1486 /*----------
1487  * JoinExpr - for SQL JOIN expressions
1488  *
1489  * isNatural, usingClause, and quals are interdependent. The user can write
1490  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1491  * If he writes NATURAL then parse analysis generates the equivalent USING()
1492  * list, and from that fills in "quals" with the right equality comparisons.
1493  * If he writes USING() then "quals" is filled with equality comparisons.
1494  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1495  * are not equivalent to ON() since they also affect the output column list.
1496  *
1497  * alias is an Alias node representing the AS alias-clause attached to the
1498  * join expression, or NULL if no clause. NB: presence or absence of the
1499  * alias has a critical impact on semantics, because a join with an alias
1500  * restricts visibility of the tables/columns inside it.
1501  *
1502  * During parse analysis, an RTE is created for the Join, and its index
1503  * is filled into rtindex. This RTE is present mainly so that Vars can
1504  * be created that refer to the outputs of the join. The planner sometimes
1505  * generates JoinExprs internally; these can have rtindex = 0 if there are
1506  * no join alias variables referencing such joins.
1507  *----------
1508  */
1509 typedef struct JoinExpr
1510 {
1512  JoinType jointype; /* type of join */
1513  bool isNatural; /* Natural join? Will need to shape table */
1514  Node *larg; /* left subtree */
1515  Node *rarg; /* right subtree */
1516  List *usingClause; /* USING clause, if any (list of String) */
1517  Node *quals; /* qualifiers on join, if any */
1518  Alias *alias; /* user-written alias clause, if any */
1519  int rtindex; /* RT index assigned for join, or 0 */
1520 } JoinExpr;
1521 
1522 /*----------
1523  * FromExpr - represents a FROM ... WHERE ... construct
1524  *
1525  * This is both more flexible than a JoinExpr (it can have any number of
1526  * children, including zero) and less so --- we don't need to deal with
1527  * aliases and so on. The output column set is implicitly just the union
1528  * of the outputs of the children.
1529  *----------
1530  */
1531 typedef struct FromExpr
1532 {
1534  List *fromlist; /* List of join subtrees */
1535  Node *quals; /* qualifiers on join, if any */
1536 } FromExpr;
1537 
1538 /*----------
1539  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1540  *
1541  * The optimizer requires a list of inference elements, and optionally a WHERE
1542  * clause to infer a unique index. The unique index (or, occasionally,
1543  * indexes) inferred are used to arbitrate whether or not the alternative ON
1544  * CONFLICT path is taken.
1545  *----------
1546  */
1547 typedef struct OnConflictExpr
1548 {
1550  OnConflictAction action; /* DO NOTHING or UPDATE? */
1551 
1552  /* Arbiter */
1553  List *arbiterElems; /* unique index arbiter list (of
1554  * InferenceElem's) */
1555  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1556  Oid constraint; /* pg_constraint OID for arbiter */
1557 
1558  /* ON CONFLICT UPDATE */
1559  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1560  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1561  int exclRelIndex; /* RT index of 'excluded' relation */
1562  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1563 } OnConflictExpr;
1564 
1565 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:214
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:327
Oid funcresulttype
Definition: primnodes.h:491
Oid minmaxtype
Definition: primnodes.h:1126
bool multidims
Definition: primnodes.h:1016
Expr xpr
Definition: primnodes.h:380
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:734
struct FieldSelect FieldSelect
List * args
Definition: primnodes.h:1130
Expr xpr
Definition: primnodes.h:953
bool aggvariadic
Definition: primnodes.h:330
List * args
Definition: primnodes.h:1046
Expr xpr
Definition: primnodes.h:1242
Node * docexpr
Definition: primnodes.h:87
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1549
Expr * arg
Definition: primnodes.h:815
Index varlevelsup
Definition: primnodes.h:191
OnCommitAction onCommit
Definition: primnodes.h:116
int plan_id
Definition: primnodes.h:730
List * args
Definition: primnodes.h:367
ParamKind
Definition: primnodes.h:251
char * name
Definition: primnodes.h:1206
List * refs
Definition: primnodes.h:369
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:217
int aggtransno
Definition: primnodes.h:336
List * args
Definition: primnodes.h:385
List * args
Definition: primnodes.h:498
Oid wincollid
Definition: primnodes.h:383
int32 resulttypmod
Definition: primnodes.h:1285
List * colnames
Definition: primnodes.h:89
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:788
char * tableSpaceName
Definition: primnodes.h:117
List * coltypmods
Definition: primnodes.h:91
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1258
Oid funccollid
Definition: primnodes.h:496
int location
Definition: primnodes.h:1213
Oid resulttype
Definition: primnodes.h:859
XmlExprOp
Definition: primnodes.h:1184
OpExpr NullIfExpr
Definition: primnodes.h:565
RowCompareType rctype
Definition: primnodes.h:1094
List * opfamilies
Definition: primnodes.h:1096
NodeTag type
Definition: primnodes.h:84
Oid type
Definition: primnodes.h:1211
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:955
SubLinkType subLinkType
Definition: primnodes.h:725
Expr * arg
Definition: primnodes.h:838
Oid inputcollid
Definition: primnodes.h:321
ParamKind paramkind
Definition: primnodes.h:262
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:530
CoercionForm coercionformat
Definition: primnodes.h:1287
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1436
List * args
Definition: primnodes.h:325
AttrNumber varattno
Definition: primnodes.h:186
Oid array_typeid
Definition: primnodes.h:1012
Expr * arg
Definition: primnodes.h:786
List * paramIds
Definition: primnodes.h:728
struct SubscriptingRef SubscriptingRef
bool funcretset
Definition: primnodes.h:492
struct SubPlan SubPlan
struct Expr Expr
List * fromlist
Definition: primnodes.h:1534
Expr xpr
Definition: primnodes.h:1204
NullTestType
Definition: primnodes.h:1235
bool skipData
Definition: primnodes.h:119
Oid casetype
Definition: primnodes.h:954
bool aggstar
Definition: primnodes.h:329
Expr xpr
Definition: primnodes.h:1045
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:183
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:387
char * resname
Definition: primnodes.h:1433
List * arg_names
Definition: primnodes.h:1208
Definition: primnodes.h:181
List * refupperindexpr
Definition: primnodes.h:439
CoercionContext
Definition: primnodes.h:456
Node * quals
Definition: primnodes.h:1535
struct Var Var
int32 typeMod
Definition: primnodes.h:997
int location
Definition: primnodes.h:605
int location
Definition: primnodes.h:970
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1167
NodeTag type
Definition: primnodes.h:1533
List * colcollations
Definition: primnodes.h:92
signed int int32
Definition: c.h:429
struct RelabelType RelabelType
JoinType
Definition: nodes.h:697
List * arbiterElems
Definition: primnodes.h:1553
Expr xpr
Definition: primnodes.h:261
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1514
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:213
Expr xpr
Definition: primnodes.h:536
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:210
List * aggargtypes
Definition: primnodes.h:323
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:495
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Oid opresulttype
Definition: primnodes.h:539
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1117
bool resjunk
Definition: primnodes.h:1438
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:490
List * colnames
Definition: primnodes.h:1062
Node * viewQuery
Definition: primnodes.h:118
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:266
int location
Definition: primnodes.h:267
Oid vartype
Definition: primnodes.h:188
List * args
Definition: primnodes.h:1110
BoolExprType boolop
Definition: primnodes.h:603
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1243
int location
Definition: primnodes.h:337
List * coldefexprs
Definition: primnodes.h:94
Oid constcollid
Definition: primnodes.h:212
Oid resultcollid
Definition: primnodes.h:791
List * ns_names
Definition: primnodes.h:86
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:88
int location
Definition: primnodes.h:196
int location
Definition: primnodes.h:1063
struct Const Const
int32 typeMod
Definition: primnodes.h:1320
int location
Definition: primnodes.h:1131
List * exclRelTlist
Definition: primnodes.h:1562
int location
Definition: primnodes.h:544
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:326
Expr * arg
Definition: primnodes.h:1266
AttrNumber resno
Definition: primnodes.h:1432
Bitmapset * notnulls
Definition: primnodes.h:95
Index agglevelsup
Definition: primnodes.h:333
char * name
Definition: primnodes.h:520
Expr xpr
Definition: primnodes.h:209
char * cursor_name
Definition: primnodes.h:1341
List * aggdirectargs
Definition: primnodes.h:324
Oid resulttype
Definition: primnodes.h:818
Oid winfnoid
Definition: primnodes.h:381
Expr * arg
Definition: primnodes.h:858
List * elements
Definition: primnodes.h:1015
struct BooleanTest BooleanTest
Expr * elemexpr
Definition: primnodes.h:883
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:1011
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:541
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1145
List * options
Definition: primnodes.h:115
List * newvals
Definition: primnodes.h:816
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:370
Index varnosyn
Definition: primnodes.h:194
SubLinkType
Definition: primnodes.h:659
OnConflictAction action
Definition: primnodes.h:1550
bool isNatural
Definition: primnodes.h:1513
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1516
Expr xpr
Definition: primnodes.h:723
Index varno
Definition: primnodes.h:184
int ordinalitycol
Definition: primnodes.h:96
XmlExprOp op
Definition: primnodes.h:1205
List * args
Definition: primnodes.h:957
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:887
int location
Definition: primnodes.h:221
Node * quals
Definition: primnodes.h:1517
int location
Definition: primnodes.h:1017
BoolTestType booltesttype
Definition: primnodes.h:1267
Index agglevelsup
Definition: primnodes.h:371
AttrNumber varattnosyn
Definition: primnodes.h:195
uintptr_t Datum
Definition: postgres.h:367
CoercionForm convertformat
Definition: primnodes.h:910
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:861
Oid opfuncid
Definition: primnodes.h:538
Oid resulttype
Definition: primnodes.h:839
Node * testexpr
Definition: primnodes.h:727
unsigned int Index
Definition: c.h:549
List * coltypes
Definition: primnodes.h:90
NullTestType nulltesttype
Definition: primnodes.h:1244
int32 typmod
Definition: primnodes.h:1212
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:754
Oid resultcollid
Definition: primnodes.h:841
Oid aggfnoid
Definition: primnodes.h:318
List * colexprs
Definition: primnodes.h:93
List * named_args
Definition: primnodes.h:1207
int32 firstColTypmod
Definition: primnodes.h:735
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1080
List * args
Definition: primnodes.h:1209
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:265
int aggno
Definition: primnodes.h:335
char * plan_name
Definition: primnodes.h:732
int location
Definition: primnodes.h:863
Node * rarg
Definition: primnodes.h:1515
Alias * alias
Definition: primnodes.h:1518
Expr * arg
Definition: primnodes.h:519
struct NullTest NullTest
int location
Definition: primnodes.h:390
Oid inputcollid
Definition: primnodes.h:497
JoinType jointype
Definition: primnodes.h:1512
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1482
NodeTag type
Definition: primnodes.h:1511
List * setParam
Definition: primnodes.h:748
List * ns_uris
Definition: primnodes.h:85
Expr * aggfilter
Definition: primnodes.h:386
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1431
AggSplit aggsplit
Definition: primnodes.h:334
XmlOptionType xmloption
Definition: primnodes.h:1210
int paramid
Definition: primnodes.h:263
XmlOptionType
Definition: primnodes.h:1196
Oid array_collid
Definition: primnodes.h:1013
bool unknownEqFalse
Definition: primnodes.h:741
int location
Definition: primnodes.h:1246
AggSplit
Definition: nodes.h:781
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:1047
struct RowCompareExpr RowCompareExpr
Oid inputcollid
Definition: primnodes.h:1128
Expr * arg
Definition: primnodes.h:924
Expr xpr
Definition: primnodes.h:602
Expr * aggfilter
Definition: primnodes.h:328
int location
Definition: primnodes.h:959
List * parParam
Definition: primnodes.h:750
Oid inputcollid
Definition: primnodes.h:542
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:384
List * args
Definition: primnodes.h:604
Expr xpr
Definition: primnodes.h:317
bool parallel_safe
Definition: primnodes.h:744
struct Param Param
NodeTag type
Definition: primnodes.h:110
int32 consttypmod
Definition: primnodes.h:211
Oid element_typeid
Definition: primnodes.h:1014
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:382
CoercionForm coerceformat
Definition: primnodes.h:862
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1555
Expr * refassgnexpr
Definition: primnodes.h:446
Expr xpr
Definition: primnodes.h:967
AttrNumber resorigcol
Definition: primnodes.h:1437
Oid aggcollid
Definition: primnodes.h:320
Expr xpr
Definition: primnodes.h:489
RangeVar * rel
Definition: primnodes.h:112
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:817
List * reflowerindexpr
Definition: primnodes.h:441
bool winagg
Definition: primnodes.h:389
Oid coalescetype
Definition: primnodes.h:1108
Expr xpr
Definition: primnodes.h:814
Oid aggtranstype
Definition: primnodes.h:322
List * onConflictSet
Definition: primnodes.h:1559
Oid varcollid
Definition: primnodes.h:190
Index ressortgroupref
Definition: primnodes.h:1434
Oid aggtype
Definition: primnodes.h:319
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:557
NodeTag type
Definition: primnodes.h:138
bool useHashTable
Definition: primnodes.h:739
Oid refcontainertype
Definition: primnodes.h:434
bool argisrow
Definition: primnodes.h:1245
MinMaxOp op
Definition: primnodes.h:1129
Oid minmaxcollid
Definition: primnodes.h:1127
Oid firstColCollation
Definition: primnodes.h:736
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:332
Cost startup_cost
Definition: primnodes.h:753
Expr * refexpr
Definition: primnodes.h:444
int32 resulttypmod
Definition: primnodes.h:840
Expr * arg
Definition: primnodes.h:956
int location
Definition: primnodes.h:499
Oid opno
Definition: primnodes.h:537
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:885
Expr * result
Definition: primnodes.h:969
List * colNames
Definition: primnodes.h:113
List * args
Definition: primnodes.h:543
List * inputcollids
Definition: primnodes.h:1097
int location
Definition: primnodes.h:97
CoercionForm relabelformat
Definition: primnodes.h:842
Expr * defresult
Definition: primnodes.h:958
Expr * expr
Definition: primnodes.h:968
int location
Definition: primnodes.h:926
CoercionForm row_format
Definition: primnodes.h:1061
CoercionForm
Definition: primnodes.h:476
Node * onConflictWhere
Definition: primnodes.h:1560
int rtindex
Definition: primnodes.h:1519
Definition: pg_list.h:50
OnConflictAction
Definition: nodes.h:823
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:264
int location
Definition: primnodes.h:843
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:215
Oid coalescecollid
Definition: primnodes.h:1109
bool funcvariadic
Definition: primnodes.h:493
char * accessMethod
Definition: primnodes.h:114
double Cost
Definition: nodes.h:664
struct CaseExpr CaseExpr
bool opretset
Definition: primnodes.h:540
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:790
bool winstar
Definition: primnodes.h:388
AttrNumber fieldnum
Definition: primnodes.h:787
BoolExprType
Definition: primnodes.h:595
int32 vartypmod
Definition: primnodes.h:189
List * args
Definition: primnodes.h:751