PostgreSQL Source Code  git master
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of String nodes. In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either String nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
85  List *ns_uris; /* list of namespace URI expressions */
86  List *ns_names; /* list of namespace names or NULL */
87  Node *docexpr; /* input document expression */
88  Node *rowexpr; /* row filter expression */
89  List *colnames; /* column names (list of String) */
90  List *coltypes; /* OID list of column type OIDs */
91  List *coltypmods; /* integer list of column typmods */
92  List *colcollations; /* OID list of column collation OIDs */
93  List *colexprs; /* list of column filter expressions */
94  List *coldefexprs; /* list of column default expressions */
95  Bitmapset *notnulls; /* nullability flag for each output column */
96  int ordinalitycol; /* counts from 0; -1 if none specified */
97  int location; /* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
111 
112  RangeVar *rel; /* target relation name */
113  List *colNames; /* column names to assign, or NIL */
114  char *accessMethod; /* table access method */
115  List *options; /* options from WITH clause */
116  OnCommitAction onCommit; /* what do we do at COMMIT? */
117  char *tableSpaceName; /* table space to use, or NULL */
118  Node *viewQuery; /* materialized view's SELECT query */
119  bool skipData; /* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  * node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field). Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation. See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE. (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list. Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column. (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * ROWID_VAR is used in the planner to identify nonce variables that carry
162  * row identity information during UPDATE/DELETE. This value should never
163  * be seen outside the planner.
164  *
165  * In the parser, varnosyn and varattnosyn are either identical to
166  * varno/varattno, or they specify the column's position in an aliased JOIN
167  * RTE that hides the semantic referent RTE's refname. This is a syntactic
168  * identifier as opposed to the semantic identifier; it tells ruleutils.c
169  * how to print the Var properly. varnosyn/varattnosyn retain their values
170  * throughout planning and execution, so they are particularly helpful to
171  * identify Vars when debugging. Note, however, that a Var that is generated
172  * in the planner and doesn't correspond to any simple relation column may
173  * have varnosyn = varattnosyn = 0.
174  */
175 #define INNER_VAR (-1) /* reference to inner subplan */
176 #define OUTER_VAR (-2) /* reference to outer subplan */
177 #define INDEX_VAR (-3) /* reference to index column */
178 #define ROWID_VAR (-4) /* row identity column during planning */
179 
180 #define IS_SPECIAL_VARNO(varno) ((int) (varno) < 0)
181 
182 /* Symbols for the indexes of the special RTE entries in rules */
183 #define PRS2_OLD_VARNO 1
184 #define PRS2_NEW_VARNO 2
185 
186 typedef struct Var
187 {
189  int varno; /* index of this var's relation in the range
190  * table, or INNER_VAR/OUTER_VAR/etc */
191  AttrNumber varattno; /* attribute number of this var, or zero for
192  * all attrs ("whole-row Var") */
193  Oid vartype; /* pg_type OID for the type of this var */
194  int32 vartypmod; /* pg_attribute typmod value */
195  Oid varcollid; /* OID of collation, or InvalidOid if none */
196  Index varlevelsup; /* for subquery variables referencing outer
197  * relations; 0 in a normal var, >0 means N
198  * levels up */
199  Index varnosyn; /* syntactic relation index (0 if unknown) */
200  AttrNumber varattnosyn; /* syntactic attribute number */
201  int location; /* token location, or -1 if unknown */
202 } Var;
203 
204 /*
205  * Const
206  *
207  * Note: for varlena data types, we make a rule that a Const node's value
208  * must be in non-extended form (4-byte header, no compression or external
209  * references). This ensures that the Const node is self-contained and makes
210  * it more likely that equal() will see logically identical values as equal.
211  */
212 typedef struct Const
213 {
215  Oid consttype; /* pg_type OID of the constant's datatype */
216  int32 consttypmod; /* typmod value, if any */
217  Oid constcollid; /* OID of collation, or InvalidOid if none */
218  int constlen; /* typlen of the constant's datatype */
219  Datum constvalue; /* the constant's value */
220  bool constisnull; /* whether the constant is null (if true,
221  * constvalue is undefined) */
222  bool constbyval; /* whether this datatype is passed by value.
223  * If true, then all the information is stored
224  * in the Datum. If false, then the Datum
225  * contains a pointer to the information. */
226  int location; /* token location, or -1 if unknown */
227 } Const;
228 
229 /*
230  * Param
231  *
232  * paramkind specifies the kind of parameter. The possible values
233  * for this field are:
234  *
235  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
236  * Such parameters are numbered from 1 to n.
237  *
238  * PARAM_EXEC: The parameter is an internal executor parameter, used
239  * for passing values into and out of sub-queries or from
240  * nestloop joins to their inner scans.
241  * For historical reasons, such parameters are numbered from 0.
242  * These numbers are independent of PARAM_EXTERN numbers.
243  *
244  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
245  * node's sub-select. The column number is contained in the
246  * `paramid' field. (This type of Param is converted to
247  * PARAM_EXEC during planning.)
248  *
249  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
250  * output column of a SubLink node's sub-select, but here, the
251  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
252  * of the `paramid' field contain the SubLink's subLinkId, and
253  * the low-order 16 bits contain the column number. (This type
254  * of Param is also converted to PARAM_EXEC during planning.)
255  */
256 typedef enum ParamKind
257 {
262 } ParamKind;
263 
264 typedef struct Param
265 {
267  ParamKind paramkind; /* kind of parameter. See above */
268  int paramid; /* numeric ID for parameter */
269  Oid paramtype; /* pg_type OID of parameter's datatype */
270  int32 paramtypmod; /* typmod value, if known */
271  Oid paramcollid; /* OID of collation, or InvalidOid if none */
272  int location; /* token location, or -1 if unknown */
273 } Param;
274 
275 /*
276  * Aggref
277  *
278  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
279  *
280  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
281  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
282  * be added at the end to represent ORDER BY expressions that are not also
283  * arguments. As in a top-level Query, the TLEs can be marked with
284  * ressortgroupref indexes to let them be referenced by SortGroupClause
285  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
286  * and DISTINCT operations to be applied to the aggregate input rows before
287  * they are passed to the transition function. The grammar only allows a
288  * simple "DISTINCT" specifier for the arguments, but we use the full
289  * query-level representation to allow more code sharing.
290  *
291  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
292  * (aggregated) arguments, all of which will be listed in the aggorder list.
293  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
294  * The direct arguments appear in aggdirectargs (as a list of plain
295  * expressions, not TargetEntry nodes).
296  *
297  * aggtranstype is the data type of the state transition values for this
298  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
299  * This is determined during planning and is InvalidOid before that.
300  *
301  * aggargtypes is an OID list of the data types of the direct and regular
302  * arguments. Normally it's redundant with the aggdirectargs and args lists,
303  * but in a combining aggregate, it's not because the args list has been
304  * replaced with a single argument representing the partial-aggregate
305  * transition values.
306  *
307  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
308  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
309  * the planner might change it to something else. We use this mainly as
310  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
311  * indicates a non-final mode, aggtype reflects the transition data type
312  * not the SQL-level output type of the aggregate.
313  *
314  * aggno and aggtransno are -1 in the parse stage, and are set in planning.
315  * Aggregates with the same 'aggno' represent the same aggregate expression,
316  * and can share the result. Aggregates with same 'transno' but different
317  * 'aggno' can share the same transition state, only the final function needs
318  * to be called separately.
319  */
320 typedef struct Aggref
321 {
323  Oid aggfnoid; /* pg_proc Oid of the aggregate */
324  Oid aggtype; /* type Oid of result of the aggregate */
325  Oid aggcollid; /* OID of collation of result */
326  Oid inputcollid; /* OID of collation that function should use */
327  Oid aggtranstype; /* type Oid of aggregate's transition value */
328  List *aggargtypes; /* type Oids of direct and aggregated args */
329  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
330  List *args; /* aggregated arguments and sort expressions */
331  List *aggorder; /* ORDER BY (list of SortGroupClause) */
332  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
333  Expr *aggfilter; /* FILTER expression, if any */
334  bool aggstar; /* true if argument list was really '*' */
335  bool aggvariadic; /* true if variadic arguments have been
336  * combined into an array last argument */
337  char aggkind; /* aggregate kind (see pg_aggregate.h) */
338  Index agglevelsup; /* > 0 if agg belongs to outer query */
339  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
340  int aggno; /* unique ID within the Agg node */
341  int aggtransno; /* unique ID of transition state in the Agg */
342  int location; /* token location, or -1 if unknown */
343 } Aggref;
344 
345 /*
346  * GroupingFunc
347  *
348  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
349  * like an aggregate function (e.g. it "belongs" to a specific query level,
350  * which might not be the one immediately containing it), but also differs in
351  * an important respect: it never evaluates its arguments, they merely
352  * designate expressions from the GROUP BY clause of the query level to which
353  * it belongs.
354  *
355  * The spec defines the evaluation of GROUPING() purely by syntactic
356  * replacement, but we make it a real expression for optimization purposes so
357  * that one Agg node can handle multiple grouping sets at once. Evaluating the
358  * result only needs the column positions to check against the grouping set
359  * being projected. However, for EXPLAIN to produce meaningful output, we have
360  * to keep the original expressions around, since expression deparse does not
361  * give us any feasible way to get at the GROUP BY clause.
362  *
363  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
364  * lists and agglevelsup, without comparing the refs and cols annotations.
365  *
366  * In raw parse output we have only the args list; parse analysis fills in the
367  * refs list, and the planner fills in the cols list.
368  */
369 typedef struct GroupingFunc
370 {
372  List *args; /* arguments, not evaluated but kept for
373  * benefit of EXPLAIN etc. */
374  List *refs; /* ressortgrouprefs of arguments */
375  List *cols; /* actual column positions set by planner */
376  Index agglevelsup; /* same as Aggref.agglevelsup */
377  int location; /* token location */
378 } GroupingFunc;
379 
380 /*
381  * WindowFunc
382  */
383 typedef struct WindowFunc
384 {
386  Oid winfnoid; /* pg_proc Oid of the function */
387  Oid wintype; /* type Oid of result of the window function */
388  Oid wincollid; /* OID of collation of result */
389  Oid inputcollid; /* OID of collation that function should use */
390  List *args; /* arguments to the window function */
391  Expr *aggfilter; /* FILTER expression, if any */
392  Index winref; /* index of associated WindowClause */
393  bool winstar; /* true if argument list was really '*' */
394  bool winagg; /* is function a simple aggregate? */
395  int location; /* token location, or -1 if unknown */
396 } WindowFunc;
397 
398 /*
399  * SubscriptingRef: describes a subscripting operation over a container
400  * (array, etc).
401  *
402  * A SubscriptingRef can describe fetching a single element from a container,
403  * fetching a part of a container (e.g. an array slice), storing a single
404  * element into a container, or storing a slice. The "store" cases work with
405  * an initial container value and a source value that is inserted into the
406  * appropriate part of the container; the result of the operation is an
407  * entire new modified container value.
408  *
409  * If reflowerindexpr = NIL, then we are fetching or storing a single container
410  * element at the subscripts given by refupperindexpr. Otherwise we are
411  * fetching or storing a container slice, that is a rectangular subcontainer
412  * with lower and upper bounds given by the index expressions.
413  * reflowerindexpr must be the same length as refupperindexpr when it
414  * is not NIL.
415  *
416  * In the slice case, individual expressions in the subscript lists can be
417  * NULL, meaning "substitute the array's current lower or upper bound".
418  * (Non-array containers may or may not support this.)
419  *
420  * refcontainertype is the actual container type that determines the
421  * subscripting semantics. (This will generally be either the exposed type of
422  * refexpr, or the base type if that is a domain.) refelemtype is the type of
423  * the container's elements; this is saved for the use of the subscripting
424  * functions, but is not used by the core code. refrestype, reftypmod, and
425  * refcollid describe the type of the SubscriptingRef's result. In a store
426  * expression, refrestype will always match refcontainertype; in a fetch,
427  * it could be refelemtype for an element fetch, or refcontainertype for a
428  * slice fetch, or possibly something else as determined by type-specific
429  * subscripting logic. Likewise, reftypmod and refcollid will match the
430  * container's properties in a store, but could be different in a fetch.
431  *
432  * Note: for the cases where a container is returned, if refexpr yields a R/W
433  * expanded container, then the implementation is allowed to modify that
434  * object in-place and return the same object.
435  */
436 typedef struct SubscriptingRef
437 {
439  Oid refcontainertype; /* type of the container proper */
440  Oid refelemtype; /* the container type's pg_type.typelem */
441  Oid refrestype; /* type of the SubscriptingRef's result */
442  int32 reftypmod; /* typmod of the result */
443  Oid refcollid; /* collation of result, or InvalidOid if none */
444  List *refupperindexpr; /* expressions that evaluate to upper
445  * container indexes */
446  List *reflowerindexpr; /* expressions that evaluate to lower
447  * container indexes, or NIL for single
448  * container element */
449  Expr *refexpr; /* the expression that evaluates to a
450  * container value */
451  Expr *refassgnexpr; /* expression for the source value, or NULL if
452  * fetch */
454 
455 /*
456  * CoercionContext - distinguishes the allowed set of type casts
457  *
458  * NB: ordering of the alternatives is significant; later (larger) values
459  * allow more casts than earlier ones.
460  */
461 typedef enum CoercionContext
462 {
463  COERCION_IMPLICIT, /* coercion in context of expression */
464  COERCION_ASSIGNMENT, /* coercion in context of assignment */
465  COERCION_PLPGSQL, /* if no assignment cast, use CoerceViaIO */
466  COERCION_EXPLICIT /* explicit cast operation */
468 
469 /*
470  * CoercionForm - how to display a FuncExpr or related node
471  *
472  * "Coercion" is a bit of a misnomer, since this value records other
473  * special syntaxes besides casts, but for now we'll keep this naming.
474  *
475  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
476  * any semantically significant information. We need that behavior so that
477  * the planner will consider equivalent implicit and explicit casts to be
478  * equivalent. In cases where those actually behave differently, the coercion
479  * function's arguments will be different.
480  */
481 typedef enum CoercionForm
482 {
483  COERCE_EXPLICIT_CALL, /* display as a function call */
484  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
485  COERCE_IMPLICIT_CAST, /* implicit cast, so hide it */
486  COERCE_SQL_SYNTAX /* display with SQL-mandated special syntax */
487 } CoercionForm;
488 
489 /*
490  * FuncExpr - expression node for a function call
491  */
492 typedef struct FuncExpr
493 {
495  Oid funcid; /* PG_PROC OID of the function */
496  Oid funcresulttype; /* PG_TYPE OID of result value */
497  bool funcretset; /* true if function returns set */
498  bool funcvariadic; /* true if variadic arguments have been
499  * combined into an array last argument */
500  CoercionForm funcformat; /* how to display this function call */
501  Oid funccollid; /* OID of collation of result */
502  Oid inputcollid; /* OID of collation that function should use */
503  List *args; /* arguments to the function */
504  int location; /* token location, or -1 if unknown */
505 } FuncExpr;
506 
507 /*
508  * NamedArgExpr - a named argument of a function
509  *
510  * This node type can only appear in the args list of a FuncCall or FuncExpr
511  * node. We support pure positional call notation (no named arguments),
512  * named notation (all arguments are named), and mixed notation (unnamed
513  * arguments followed by named ones).
514  *
515  * Parse analysis sets argnumber to the positional index of the argument,
516  * but doesn't rearrange the argument list.
517  *
518  * The planner will convert argument lists to pure positional notation
519  * during expression preprocessing, so execution never sees a NamedArgExpr.
520  */
521 typedef struct NamedArgExpr
522 {
524  Expr *arg; /* the argument expression */
525  char *name; /* the name */
526  int argnumber; /* argument's number in positional notation */
527  int location; /* argument name location, or -1 if unknown */
528 } NamedArgExpr;
529 
530 /*
531  * OpExpr - expression node for an operator invocation
532  *
533  * Semantically, this is essentially the same as a function call.
534  *
535  * Note that opfuncid is not necessarily filled in immediately on creation
536  * of the node. The planner makes sure it is valid before passing the node
537  * tree to the executor, but during parsing/planning opfuncid can be 0.
538  */
539 typedef struct OpExpr
540 {
542  Oid opno; /* PG_OPERATOR OID of the operator */
543  Oid opfuncid; /* PG_PROC OID of underlying function */
544  Oid opresulttype; /* PG_TYPE OID of result value */
545  bool opretset; /* true if operator returns set */
546  Oid opcollid; /* OID of collation of result */
547  Oid inputcollid; /* OID of collation that operator should use */
548  List *args; /* arguments to the operator (1 or 2) */
549  int location; /* token location, or -1 if unknown */
550 } OpExpr;
551 
552 /*
553  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
554  *
555  * Except for the nodetag, this is represented identically to an OpExpr
556  * referencing the "=" operator for x and y.
557  * We use "=", not the more obvious "<>", because more datatypes have "="
558  * than "<>". This means the executor must invert the operator result.
559  * Note that the operator function won't be called at all if either input
560  * is NULL, since then the result can be determined directly.
561  */
563 
564 /*
565  * NullIfExpr - a NULLIF expression
566  *
567  * Like DistinctExpr, this is represented the same as an OpExpr referencing
568  * the "=" operator for x and y.
569  */
571 
572 /*
573  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
574  *
575  * The operator must yield boolean. It is applied to the left operand
576  * and each element of the righthand array, and the results are combined
577  * with OR or AND (for ANY or ALL respectively). The node representation
578  * is almost the same as for the underlying operator, but we need a useOr
579  * flag to remember whether it's ANY or ALL, and we don't have to store
580  * the result type (or the collation) because it must be boolean.
581  *
582  * A ScalarArrayOpExpr with a valid hashfuncid is evaluated during execution
583  * by building a hash table containing the Const values from the RHS arg.
584  * This table is probed during expression evaluation. The planner will set
585  * hashfuncid to the hash function which must be used to build and probe the
586  * hash table. The executor determines if it should use hash-based checks or
587  * the more traditional means based on if the hashfuncid is set or not.
588  *
589  * When performing hashed NOT IN, the negfuncid will also be set to the
590  * equality function which the hash table must use to build and probe the hash
591  * table. opno and opfuncid will remain set to the <> operator and its
592  * corresponding function and won't be used during execution. For
593  * non-hashtable based NOT INs, negfuncid will be set to InvalidOid. See
594  * convert_saop_to_hashed_saop().
595  */
596 typedef struct ScalarArrayOpExpr
597 {
599  Oid opno; /* PG_OPERATOR OID of the operator */
600  Oid opfuncid; /* PG_PROC OID of comparison function */
601  Oid hashfuncid; /* PG_PROC OID of hash func or InvalidOid */
602  Oid negfuncid; /* PG_PROC OID of negator of opfuncid function
603  * or InvalidOid. See above */
604  bool useOr; /* true for ANY, false for ALL */
605  Oid inputcollid; /* OID of collation that operator should use */
606  List *args; /* the scalar and array operands */
607  int location; /* token location, or -1 if unknown */
609 
610 /*
611  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
612  *
613  * Notice the arguments are given as a List. For NOT, of course the list
614  * must always have exactly one element. For AND and OR, there can be two
615  * or more arguments.
616  */
617 typedef enum BoolExprType
618 {
620 } BoolExprType;
621 
622 typedef struct BoolExpr
623 {
626  List *args; /* arguments to this expression */
627  int location; /* token location, or -1 if unknown */
628 } BoolExpr;
629 
630 /*
631  * SubLink
632  *
633  * A SubLink represents a subselect appearing in an expression, and in some
634  * cases also the combining operator(s) just above it. The subLinkType
635  * indicates the form of the expression represented:
636  * EXISTS_SUBLINK EXISTS(SELECT ...)
637  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
638  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
639  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
640  * EXPR_SUBLINK (SELECT with single targetlist item ...)
641  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
642  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
643  * CTE_SUBLINK WITH query (never actually part of an expression)
644  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
645  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
646  * a list with more than one entry; if the subselect has just one target
647  * then the parser will create an EXPR_SUBLINK instead (and any operator
648  * above the subselect will be represented separately).
649  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
650  * one row (if it returns no rows, the result is NULL).
651  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
652  * results. ALL and ANY combine the per-row results using AND and OR
653  * semantics respectively.
654  * ARRAY requires just one target column, and creates an array of the target
655  * column's type using any number of rows resulting from the subselect.
656  *
657  * SubLink is classed as an Expr node, but it is not actually executable;
658  * it must be replaced in the expression tree by a SubPlan node during
659  * planning.
660  *
661  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
662  * of the lefthand expression (if any), and operName is the String name of
663  * the combining operator. Also, subselect is a raw parsetree. During parse
664  * analysis, the parser transforms testexpr into a complete boolean expression
665  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
666  * output columns of the subselect. And subselect is transformed to a Query.
667  * This is the representation seen in saved rules and in the rewriter.
668  *
669  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
670  * are unused and are always null.
671  *
672  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
673  * other SubLinks. This number identifies different multiple-assignment
674  * subqueries within an UPDATE statement's SET list. It is unique only
675  * within a particular targetlist. The output column(s) of the MULTIEXPR
676  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
677  *
678  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
679  * in SubPlans generated for WITH subqueries.
680  */
681 typedef enum SubLinkType
682 {
690  CTE_SUBLINK /* for SubPlans only */
691 } SubLinkType;
692 
693 
694 typedef struct SubLink
695 {
697  SubLinkType subLinkType; /* see above */
698  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
699  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
700  List *operName; /* originally specified operator name */
701  Node *subselect; /* subselect as Query* or raw parsetree */
702  int location; /* token location, or -1 if unknown */
703 } SubLink;
704 
705 /*
706  * SubPlan - executable expression node for a subplan (sub-SELECT)
707  *
708  * The planner replaces SubLink nodes in expression trees with SubPlan
709  * nodes after it has finished planning the subquery. SubPlan references
710  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
711  * (We avoid a direct link to make it easier to copy expression trees
712  * without causing multiple processing of the subplan.)
713  *
714  * In an ordinary subplan, testexpr points to an executable expression
715  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
716  * operator(s); the left-hand arguments are the original lefthand expressions,
717  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
718  * outputs of the sub-select. (NOTE: runtime coercion functions may be
719  * inserted as well.) This is just the same expression tree as testexpr in
720  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
721  * suitably numbered PARAM_EXEC nodes.
722  *
723  * If the sub-select becomes an initplan rather than a subplan, the executable
724  * expression is part of the outer plan's expression tree (and the SubPlan
725  * node itself is not, but rather is found in the outer plan's initPlan
726  * list). In this case testexpr is NULL to avoid duplication.
727  *
728  * The planner also derives lists of the values that need to be passed into
729  * and out of the subplan. Input values are represented as a list "args" of
730  * expressions to be evaluated in the outer-query context (currently these
731  * args are always just Vars, but in principle they could be any expression).
732  * The values are assigned to the global PARAM_EXEC params indexed by parParam
733  * (the parParam and args lists must have the same ordering). setParam is a
734  * list of the PARAM_EXEC params that are computed by the sub-select, if it
735  * is an initplan; they are listed in order by sub-select output column
736  * position. (parParam and setParam are integer Lists, not Bitmapsets,
737  * because their ordering is significant.)
738  *
739  * Also, the planner computes startup and per-call costs for use of the
740  * SubPlan. Note that these include the cost of the subquery proper,
741  * evaluation of the testexpr if any, and any hashtable management overhead.
742  */
743 typedef struct SubPlan
744 {
746  /* Fields copied from original SubLink: */
747  SubLinkType subLinkType; /* see above */
748  /* The combining operators, transformed to an executable expression: */
749  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
750  List *paramIds; /* IDs of Params embedded in the above */
751  /* Identification of the Plan tree to use: */
752  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
753  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
754  char *plan_name; /* A name assigned during planning */
755  /* Extra data useful for determining subplan's output type: */
756  Oid firstColType; /* Type of first column of subplan result */
757  int32 firstColTypmod; /* Typmod of first column of subplan result */
758  Oid firstColCollation; /* Collation of first column of subplan
759  * result */
760  /* Information about execution strategy: */
761  bool useHashTable; /* true to store subselect output in a hash
762  * table (implies we are doing "IN") */
763  bool unknownEqFalse; /* true if it's okay to return FALSE when the
764  * spec result is UNKNOWN; this allows much
765  * simpler handling of null values */
766  bool parallel_safe; /* is the subplan parallel-safe? */
767  /* Note: parallel_safe does not consider contents of testexpr or args */
768  /* Information for passing params into and out of the subselect: */
769  /* setParam and parParam are lists of integers (param IDs) */
770  List *setParam; /* initplan subqueries have to set these
771  * Params for parent plan */
772  List *parParam; /* indices of input Params from parent plan */
773  List *args; /* exprs to pass as parParam values */
774  /* Estimated execution costs: */
775  Cost startup_cost; /* one-time setup cost */
776  Cost per_call_cost; /* cost for each subplan evaluation */
777 } SubPlan;
778 
779 /*
780  * AlternativeSubPlan - expression node for a choice among SubPlans
781  *
782  * This is used only transiently during planning: by the time the plan
783  * reaches the executor, all AlternativeSubPlan nodes have been removed.
784  *
785  * The subplans are given as a List so that the node definition need not
786  * change if there's ever more than two alternatives. For the moment,
787  * though, there are always exactly two; and the first one is the fast-start
788  * plan.
789  */
790 typedef struct AlternativeSubPlan
791 {
793  List *subplans; /* SubPlan(s) with equivalent results */
795 
796 /* ----------------
797  * FieldSelect
798  *
799  * FieldSelect represents the operation of extracting one field from a tuple
800  * value. At runtime, the input expression is expected to yield a rowtype
801  * Datum. The specified field number is extracted and returned as a Datum.
802  * ----------------
803  */
804 
805 typedef struct FieldSelect
806 {
808  Expr *arg; /* input expression */
809  AttrNumber fieldnum; /* attribute number of field to extract */
810  Oid resulttype; /* type of the field (result type of this
811  * node) */
812  int32 resulttypmod; /* output typmod (usually -1) */
813  Oid resultcollid; /* OID of collation of the field */
814 } FieldSelect;
815 
816 /* ----------------
817  * FieldStore
818  *
819  * FieldStore represents the operation of modifying one field in a tuple
820  * value, yielding a new tuple value (the input is not touched!). Like
821  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
822  * portion of a column.
823  *
824  * resulttype is always a named composite type (not a domain). To update
825  * a composite domain value, apply CoerceToDomain to the FieldStore.
826  *
827  * A single FieldStore can actually represent updates of several different
828  * fields. The parser only generates FieldStores with single-element lists,
829  * but the planner will collapse multiple updates of the same base column
830  * into one FieldStore.
831  * ----------------
832  */
833 
834 typedef struct FieldStore
835 {
837  Expr *arg; /* input tuple value */
838  List *newvals; /* new value(s) for field(s) */
839  List *fieldnums; /* integer list of field attnums */
840  Oid resulttype; /* type of result (same as type of arg) */
841  /* Like RowExpr, we deliberately omit a typmod and collation here */
842 } FieldStore;
843 
844 /* ----------------
845  * RelabelType
846  *
847  * RelabelType represents a "dummy" type coercion between two binary-
848  * compatible datatypes, such as reinterpreting the result of an OID
849  * expression as an int4. It is a no-op at runtime; we only need it
850  * to provide a place to store the correct type to be attributed to
851  * the expression result during type resolution. (We can't get away
852  * with just overwriting the type field of the input expression node,
853  * so we need a separate node to show the coercion's result type.)
854  * ----------------
855  */
856 
857 typedef struct RelabelType
858 {
860  Expr *arg; /* input expression */
861  Oid resulttype; /* output type of coercion expression */
862  int32 resulttypmod; /* output typmod (usually -1) */
863  Oid resultcollid; /* OID of collation, or InvalidOid if none */
864  CoercionForm relabelformat; /* how to display this node */
865  int location; /* token location, or -1 if unknown */
866 } RelabelType;
867 
868 /* ----------------
869  * CoerceViaIO
870  *
871  * CoerceViaIO represents a type coercion between two types whose textual
872  * representations are compatible, implemented by invoking the source type's
873  * typoutput function then the destination type's typinput function.
874  * ----------------
875  */
876 
877 typedef struct CoerceViaIO
878 {
880  Expr *arg; /* input expression */
881  Oid resulttype; /* output type of coercion */
882  /* output typmod is not stored, but is presumed -1 */
883  Oid resultcollid; /* OID of collation, or InvalidOid if none */
884  CoercionForm coerceformat; /* how to display this node */
885  int location; /* token location, or -1 if unknown */
886 } CoerceViaIO;
887 
888 /* ----------------
889  * ArrayCoerceExpr
890  *
891  * ArrayCoerceExpr represents a type coercion from one array type to another,
892  * which is implemented by applying the per-element coercion expression
893  * "elemexpr" to each element of the source array. Within elemexpr, the
894  * source element is represented by a CaseTestExpr node. Note that even if
895  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
896  * coercion still requires some effort: we have to fix the element type OID
897  * stored in the array header.
898  * ----------------
899  */
900 
901 typedef struct ArrayCoerceExpr
902 {
904  Expr *arg; /* input expression (yields an array) */
905  Expr *elemexpr; /* expression representing per-element work */
906  Oid resulttype; /* output type of coercion (an array type) */
907  int32 resulttypmod; /* output typmod (also element typmod) */
908  Oid resultcollid; /* OID of collation, or InvalidOid if none */
909  CoercionForm coerceformat; /* how to display this node */
910  int location; /* token location, or -1 if unknown */
912 
913 /* ----------------
914  * ConvertRowtypeExpr
915  *
916  * ConvertRowtypeExpr represents a type coercion from one composite type
917  * to another, where the source type is guaranteed to contain all the columns
918  * needed for the destination type plus possibly others; the columns need not
919  * be in the same positions, but are matched up by name. This is primarily
920  * used to convert a whole-row value of an inheritance child table into a
921  * valid whole-row value of its parent table's rowtype. Both resulttype
922  * and the exposed type of "arg" must be named composite types (not domains).
923  * ----------------
924  */
925 
926 typedef struct ConvertRowtypeExpr
927 {
929  Expr *arg; /* input expression */
930  Oid resulttype; /* output type (always a composite type) */
931  /* Like RowExpr, we deliberately omit a typmod and collation here */
932  CoercionForm convertformat; /* how to display this node */
933  int location; /* token location, or -1 if unknown */
935 
936 /*----------
937  * CollateExpr - COLLATE
938  *
939  * The planner replaces CollateExpr with RelabelType during expression
940  * preprocessing, so execution never sees a CollateExpr.
941  *----------
942  */
943 typedef struct CollateExpr
944 {
946  Expr *arg; /* input expression */
947  Oid collOid; /* collation's OID */
948  int location; /* token location, or -1 if unknown */
949 } CollateExpr;
950 
951 /*----------
952  * CaseExpr - a CASE expression
953  *
954  * We support two distinct forms of CASE expression:
955  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
956  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
957  * These are distinguishable by the "arg" field being NULL in the first case
958  * and the testexpr in the second case.
959  *
960  * In the raw grammar output for the second form, the condition expressions
961  * of the WHEN clauses are just the comparison values. Parse analysis
962  * converts these to valid boolean expressions of the form
963  * CaseTestExpr '=' compexpr
964  * where the CaseTestExpr node is a placeholder that emits the correct
965  * value at runtime. This structure is used so that the testexpr need be
966  * evaluated only once. Note that after parse analysis, the condition
967  * expressions always yield boolean.
968  *
969  * Note: we can test whether a CaseExpr has been through parse analysis
970  * yet by checking whether casetype is InvalidOid or not.
971  *----------
972  */
973 typedef struct CaseExpr
974 {
976  Oid casetype; /* type of expression result */
977  Oid casecollid; /* OID of collation, or InvalidOid if none */
978  Expr *arg; /* implicit equality comparison argument */
979  List *args; /* the arguments (list of WHEN clauses) */
980  Expr *defresult; /* the default result (ELSE clause) */
981  int location; /* token location, or -1 if unknown */
982 } CaseExpr;
983 
984 /*
985  * CaseWhen - one arm of a CASE expression
986  */
987 typedef struct CaseWhen
988 {
990  Expr *expr; /* condition expression */
991  Expr *result; /* substitution result */
992  int location; /* token location, or -1 if unknown */
993 } CaseWhen;
994 
995 /*
996  * Placeholder node for the test value to be processed by a CASE expression.
997  * This is effectively like a Param, but can be implemented more simply
998  * since we need only one replacement value at a time.
999  *
1000  * We also abuse this node type for some other purposes, including:
1001  * * Placeholder for the current array element value in ArrayCoerceExpr;
1002  * see build_coercion_expression().
1003  * * Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
1004  * see transformAssignmentIndirection().
1005  *
1006  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
1007  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
1008  * node and its child CaseTestExpr(s). This is true in the parse analysis
1009  * output, but the planner's function-inlining logic has to be careful not to
1010  * break it.
1011  *
1012  * The nested-assignment-expression case is safe because the only node types
1013  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
1014  */
1015 typedef struct CaseTestExpr
1016 {
1018  Oid typeId; /* type for substituted value */
1019  int32 typeMod; /* typemod for substituted value */
1020  Oid collation; /* collation for the substituted value */
1021 } CaseTestExpr;
1022 
1023 /*
1024  * ArrayExpr - an ARRAY[] expression
1025  *
1026  * Note: if multidims is false, the constituent expressions all yield the
1027  * scalar type identified by element_typeid. If multidims is true, the
1028  * constituent expressions all yield arrays of element_typeid (ie, the same
1029  * type as array_typeid); at runtime we must check for compatible subscripts.
1030  */
1031 typedef struct ArrayExpr
1032 {
1034  Oid array_typeid; /* type of expression result */
1035  Oid array_collid; /* OID of collation, or InvalidOid if none */
1036  Oid element_typeid; /* common type of array elements */
1037  List *elements; /* the array elements or sub-arrays */
1038  bool multidims; /* true if elements are sub-arrays */
1039  int location; /* token location, or -1 if unknown */
1040 } ArrayExpr;
1041 
1042 /*
1043  * RowExpr - a ROW() expression
1044  *
1045  * Note: the list of fields must have a one-for-one correspondence with
1046  * physical fields of the associated rowtype, although it is okay for it
1047  * to be shorter than the rowtype. That is, the N'th list element must
1048  * match up with the N'th physical field. When the N'th physical field
1049  * is a dropped column (attisdropped) then the N'th list element can just
1050  * be a NULL constant. (This case can only occur for named composite types,
1051  * not RECORD types, since those are built from the RowExpr itself rather
1052  * than vice versa.) It is important not to assume that length(args) is
1053  * the same as the number of columns logically present in the rowtype.
1054  *
1055  * colnames provides field names in cases where the names can't easily be
1056  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
1057  * If row_typeid identifies a known composite type, colnames can be NIL to
1058  * indicate the type's cataloged field names apply. Note that colnames can
1059  * be non-NIL even for a composite type, and typically is when the RowExpr
1060  * was created by expanding a whole-row Var. This is so that we can retain
1061  * the column alias names of the RTE that the Var referenced (which would
1062  * otherwise be very difficult to extract from the parsetree). Like the
1063  * args list, colnames is one-for-one with physical fields of the rowtype.
1064  */
1065 typedef struct RowExpr
1066 {
1068  List *args; /* the fields */
1069  Oid row_typeid; /* RECORDOID or a composite type's ID */
1070 
1071  /*
1072  * row_typeid cannot be a domain over composite, only plain composite. To
1073  * create a composite domain value, apply CoerceToDomain to the RowExpr.
1074  *
1075  * Note: we deliberately do NOT store a typmod. Although a typmod will be
1076  * associated with specific RECORD types at runtime, it will differ for
1077  * different backends, and so cannot safely be stored in stored
1078  * parsetrees. We must assume typmod -1 for a RowExpr node.
1079  *
1080  * We don't need to store a collation either. The result type is
1081  * necessarily composite, and composite types never have a collation.
1082  */
1083  CoercionForm row_format; /* how to display this node */
1084  List *colnames; /* list of String, or NIL */
1085  int location; /* token location, or -1 if unknown */
1086 } RowExpr;
1087 
1088 /*
1089  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1090  *
1091  * We support row comparison for any operator that can be determined to
1092  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1093  * operator in btree opfamilies). Note that the same operator name might
1094  * map to a different operator for each pair of row elements, since the
1095  * element datatypes can vary.
1096  *
1097  * A RowCompareExpr node is only generated for the < <= > >= cases;
1098  * the = and <> cases are translated to simple AND or OR combinations
1099  * of the pairwise comparisons. However, we include = and <> in the
1100  * RowCompareType enum for the convenience of parser logic.
1101  */
1102 typedef enum RowCompareType
1103 {
1104  /* Values of this enum are chosen to match btree strategy numbers */
1105  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1106  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1107  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1108  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1109  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1110  ROWCOMPARE_NE = 6 /* no such btree strategy */
1111 } RowCompareType;
1112 
1113 typedef struct RowCompareExpr
1114 {
1116  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1117  List *opnos; /* OID list of pairwise comparison ops */
1118  List *opfamilies; /* OID list of containing operator families */
1119  List *inputcollids; /* OID list of collations for comparisons */
1120  List *largs; /* the left-hand input arguments */
1121  List *rargs; /* the right-hand input arguments */
1122 } RowCompareExpr;
1123 
1124 /*
1125  * CoalesceExpr - a COALESCE expression
1126  */
1127 typedef struct CoalesceExpr
1128 {
1130  Oid coalescetype; /* type of expression result */
1131  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1132  List *args; /* the arguments */
1133  int location; /* token location, or -1 if unknown */
1134 } CoalesceExpr;
1135 
1136 /*
1137  * MinMaxExpr - a GREATEST or LEAST function
1138  */
1139 typedef enum MinMaxOp
1140 {
1143 } MinMaxOp;
1144 
1145 typedef struct MinMaxExpr
1146 {
1148  Oid minmaxtype; /* common type of arguments and result */
1149  Oid minmaxcollid; /* OID of collation of result */
1150  Oid inputcollid; /* OID of collation that function should use */
1151  MinMaxOp op; /* function to execute */
1152  List *args; /* the arguments */
1153  int location; /* token location, or -1 if unknown */
1154 } MinMaxExpr;
1155 
1156 /*
1157  * SQLValueFunction - parameterless functions with special grammar productions
1158  *
1159  * The SQL standard categorizes some of these as <datetime value function>
1160  * and others as <general value specification>. We call 'em SQLValueFunctions
1161  * for lack of a better term. We store type and typmod of the result so that
1162  * some code doesn't need to know each function individually, and because
1163  * we would need to store typmod anyway for some of the datetime functions.
1164  * Note that currently, all variants return non-collating datatypes, so we do
1165  * not need a collation field; also, all these functions are stable.
1166  */
1168 {
1185 
1186 typedef struct SQLValueFunction
1187 {
1189  SQLValueFunctionOp op; /* which function this is */
1190  Oid type; /* result type/typmod */
1192  int location; /* token location, or -1 if unknown */
1194 
1195 /*
1196  * XmlExpr - various SQL/XML functions requiring special grammar productions
1197  *
1198  * 'name' carries the "NAME foo" argument (already XML-escaped).
1199  * 'named_args' and 'arg_names' represent an xml_attribute list.
1200  * 'args' carries all other arguments.
1201  *
1202  * Note: result type/typmod/collation are not stored, but can be deduced
1203  * from the XmlExprOp. The type/typmod fields are just used for display
1204  * purposes, and are NOT necessarily the true result type of the node.
1205  */
1206 typedef enum XmlExprOp
1207 {
1208  IS_XMLCONCAT, /* XMLCONCAT(args) */
1209  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1210  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1211  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1212  IS_XMLPI, /* XMLPI(name [, args]) */
1213  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1214  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1215  IS_DOCUMENT /* xmlval IS DOCUMENT */
1216 } XmlExprOp;
1217 
1218 typedef enum XmlOptionType
1219 {
1222 } XmlOptionType;
1223 
1224 typedef struct XmlExpr
1225 {
1227  XmlExprOp op; /* xml function ID */
1228  char *name; /* name in xml(NAME foo ...) syntaxes */
1229  List *named_args; /* non-XML expressions for xml_attributes */
1230  List *arg_names; /* parallel list of String values */
1231  List *args; /* list of expressions */
1232  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1233  Oid type; /* target type/typmod for XMLSERIALIZE */
1235  int location; /* token location, or -1 if unknown */
1236 } XmlExpr;
1237 
1238 /* ----------------
1239  * NullTest
1240  *
1241  * NullTest represents the operation of testing a value for NULLness.
1242  * The appropriate test is performed and returned as a boolean Datum.
1243  *
1244  * When argisrow is false, this simply represents a test for the null value.
1245  *
1246  * When argisrow is true, the input expression must yield a rowtype, and
1247  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1248  * includes checking individual fields for NULLness when the row datum
1249  * itself isn't NULL.
1250  *
1251  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1252  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1253  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1254  * ----------------
1255  */
1256 
1257 typedef enum NullTestType
1258 {
1260 } NullTestType;
1261 
1262 typedef struct NullTest
1263 {
1265  Expr *arg; /* input expression */
1266  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1267  bool argisrow; /* T to perform field-by-field null checks */
1268  int location; /* token location, or -1 if unknown */
1269 } NullTest;
1270 
1271 /*
1272  * BooleanTest
1273  *
1274  * BooleanTest represents the operation of determining whether a boolean
1275  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1276  * are supported. Note that a NULL input does *not* cause a NULL result.
1277  * The appropriate test is performed and returned as a boolean Datum.
1278  */
1279 
1280 typedef enum BoolTestType
1281 {
1283 } BoolTestType;
1284 
1285 typedef struct BooleanTest
1286 {
1288  Expr *arg; /* input expression */
1289  BoolTestType booltesttype; /* test type */
1290  int location; /* token location, or -1 if unknown */
1291 } BooleanTest;
1292 
1293 /*
1294  * CoerceToDomain
1295  *
1296  * CoerceToDomain represents the operation of coercing a value to a domain
1297  * type. At runtime (and not before) the precise set of constraints to be
1298  * checked will be determined. If the value passes, it is returned as the
1299  * result; if not, an error is raised. Note that this is equivalent to
1300  * RelabelType in the scenario where no constraints are applied.
1301  */
1302 typedef struct CoerceToDomain
1303 {
1305  Expr *arg; /* input expression */
1306  Oid resulttype; /* domain type ID (result type) */
1307  int32 resulttypmod; /* output typmod (currently always -1) */
1308  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1309  CoercionForm coercionformat; /* how to display this node */
1310  int location; /* token location, or -1 if unknown */
1311 } CoerceToDomain;
1312 
1313 /*
1314  * Placeholder node for the value to be processed by a domain's check
1315  * constraint. This is effectively like a Param, but can be implemented more
1316  * simply since we need only one replacement value at a time.
1317  *
1318  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1319  * not the domain itself. This is because we shouldn't consider the value
1320  * to be a member of the domain if we haven't yet checked its constraints.
1321  */
1322 typedef struct CoerceToDomainValue
1323 {
1325  Oid typeId; /* type for substituted value */
1326  int32 typeMod; /* typemod for substituted value */
1327  Oid collation; /* collation for the substituted value */
1328  int location; /* token location, or -1 if unknown */
1330 
1331 /*
1332  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1333  *
1334  * This is not an executable expression: it must be replaced by the actual
1335  * column default expression during rewriting. But it is convenient to
1336  * treat it as an expression node during parsing and rewriting.
1337  */
1338 typedef struct SetToDefault
1339 {
1341  Oid typeId; /* type for substituted value */
1342  int32 typeMod; /* typemod for substituted value */
1343  Oid collation; /* collation for the substituted value */
1344  int location; /* token location, or -1 if unknown */
1345 } SetToDefault;
1346 
1347 /*
1348  * Node representing [WHERE] CURRENT OF cursor_name
1349  *
1350  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1351  * of the target relation being constrained; this aids placing the expression
1352  * correctly during planning. We can assume however that its "levelsup" is
1353  * always zero, due to the syntactic constraints on where it can appear.
1354  * Also, cvarno will always be a true RT index, never INNER_VAR etc.
1355  *
1356  * The referenced cursor can be represented either as a hardwired string
1357  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1358  * case is for the convenience of plpgsql.
1359  */
1360 typedef struct CurrentOfExpr
1361 {
1363  Index cvarno; /* RT index of target relation */
1364  char *cursor_name; /* name of referenced cursor, or NULL */
1365  int cursor_param; /* refcursor parameter number, or 0 */
1366 } CurrentOfExpr;
1367 
1368 /*
1369  * NextValueExpr - get next value from sequence
1370  *
1371  * This has the same effect as calling the nextval() function, but it does not
1372  * check permissions on the sequence. This is used for identity columns,
1373  * where the sequence is an implicit dependency without its own permissions.
1374  */
1375 typedef struct NextValueExpr
1376 {
1380 } NextValueExpr;
1381 
1382 /*
1383  * InferenceElem - an element of a unique index inference specification
1384  *
1385  * This mostly matches the structure of IndexElems, but having a dedicated
1386  * primnode allows for a clean separation between the use of index parameters
1387  * by utility commands, and this node.
1388  */
1389 typedef struct InferenceElem
1390 {
1392  Node *expr; /* expression to infer from, or NULL */
1393  Oid infercollid; /* OID of collation, or InvalidOid */
1394  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1395 } InferenceElem;
1396 
1397 /*--------------------
1398  * TargetEntry -
1399  * a target entry (used in query target lists)
1400  *
1401  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1402  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1403  * very many places it's convenient to process a whole query targetlist as a
1404  * single expression tree.
1405  *
1406  * In a SELECT's targetlist, resno should always be equal to the item's
1407  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1408  * targetlist, resno represents the attribute number of the destination
1409  * column for the item; so there may be missing or out-of-order resnos.
1410  * It is even legal to have duplicated resnos; consider
1411  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1412  * In an INSERT, the rewriter and planner will normalize the tlist by
1413  * reordering it into physical column order and filling in default values
1414  * for any columns not assigned values by the original query. In an UPDATE,
1415  * after the rewriter merges multiple assignments for the same column, the
1416  * planner extracts the target-column numbers into a separate "update_colnos"
1417  * list, and then renumbers the tlist elements serially. Thus, tlist resnos
1418  * match ordinal position in all tlists seen by the executor; but it is wrong
1419  * to assume that before planning has happened.
1420  *
1421  * resname is required to represent the correct column name in non-resjunk
1422  * entries of top-level SELECT targetlists, since it will be used as the
1423  * column title sent to the frontend. In most other contexts it is only
1424  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1425  * be wrong in a tlist from a stored rule, if the referenced column has been
1426  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1427  * to store NULL rather than look up a valid name for tlist entries in
1428  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1429  * a specific system-generated name (such as "ctid") or NULL; anything else
1430  * risks confusing ExecGetJunkAttribute!
1431  *
1432  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1433  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1434  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1435  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1436  * may have the same nonzero ressortgroupref --- but there is no particular
1437  * meaning to the nonzero values, except as tags. (For example, one must
1438  * not assume that lower ressortgroupref means a more significant sort key.)
1439  * The order of the associated SortGroupClause lists determine the semantics.
1440  *
1441  * resorigtbl/resorigcol identify the source of the column, if it is a
1442  * simple reference to a column of a base table (or view). If it is not
1443  * a simple reference, these fields are zeroes.
1444  *
1445  * If resjunk is true then the column is a working column (such as a sort key)
1446  * that should be removed from the final output of the query. Resjunk columns
1447  * must have resnos that cannot duplicate any regular column's resno. Also
1448  * note that there are places that assume resjunk columns come after non-junk
1449  * columns.
1450  *--------------------
1451  */
1452 typedef struct TargetEntry
1453 {
1455  Expr *expr; /* expression to evaluate */
1456  AttrNumber resno; /* attribute number (see notes above) */
1457  char *resname; /* name of the column (could be NULL) */
1458  Index ressortgroupref; /* nonzero if referenced by a sort/group
1459  * clause */
1460  Oid resorigtbl; /* OID of column's source table */
1461  AttrNumber resorigcol; /* column's number in source table */
1462  bool resjunk; /* set to true to eliminate the attribute from
1463  * final target list */
1464 } TargetEntry;
1465 
1466 
1467 /* ----------------------------------------------------------------
1468  * node types for join trees
1469  *
1470  * The leaves of a join tree structure are RangeTblRef nodes. Above
1471  * these, JoinExpr nodes can appear to denote a specific kind of join
1472  * or qualified join. Also, FromExpr nodes can appear to denote an
1473  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1474  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1475  * may have any number of child nodes, not just two.
1476  *
1477  * NOTE: the top level of a Query's jointree is always a FromExpr.
1478  * Even if the jointree contains no rels, there will be a FromExpr.
1479  *
1480  * NOTE: the qualification expressions present in JoinExpr nodes are
1481  * *in addition to* the query's main WHERE clause, which appears as the
1482  * qual of the top-level FromExpr. The reason for associating quals with
1483  * specific nodes in the jointree is that the position of a qual is critical
1484  * when outer joins are present. (If we enforce a qual too soon or too late,
1485  * that may cause the outer join to produce the wrong set of NULL-extended
1486  * rows.) If all joins are inner joins then all the qual positions are
1487  * semantically interchangeable.
1488  *
1489  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1490  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1491  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1492  * FromExpr is added during parse analysis; the grammar regards FROM and
1493  * WHERE as separate.
1494  * ----------------------------------------------------------------
1495  */
1496 
1497 /*
1498  * RangeTblRef - reference to an entry in the query's rangetable
1499  *
1500  * We could use direct pointers to the RT entries and skip having these
1501  * nodes, but multiple pointers to the same node in a querytree cause
1502  * lots of headaches, so it seems better to store an index into the RT.
1503  */
1504 typedef struct RangeTblRef
1505 {
1507  int rtindex;
1508 } RangeTblRef;
1509 
1510 /*----------
1511  * JoinExpr - for SQL JOIN expressions
1512  *
1513  * isNatural, usingClause, and quals are interdependent. The user can write
1514  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1515  * If he writes NATURAL then parse analysis generates the equivalent USING()
1516  * list, and from that fills in "quals" with the right equality comparisons.
1517  * If he writes USING() then "quals" is filled with equality comparisons.
1518  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1519  * are not equivalent to ON() since they also affect the output column list.
1520  *
1521  * alias is an Alias node representing the AS alias-clause attached to the
1522  * join expression, or NULL if no clause. NB: presence or absence of the
1523  * alias has a critical impact on semantics, because a join with an alias
1524  * restricts visibility of the tables/columns inside it.
1525  *
1526  * join_using_alias is an Alias node representing the join correlation
1527  * name that SQL:2016 and later allow to be attached to JOIN/USING.
1528  * Its column alias list includes only the common column names from USING,
1529  * and it does not restrict visibility of the join's input tables.
1530  *
1531  * During parse analysis, an RTE is created for the Join, and its index
1532  * is filled into rtindex. This RTE is present mainly so that Vars can
1533  * be created that refer to the outputs of the join. The planner sometimes
1534  * generates JoinExprs internally; these can have rtindex = 0 if there are
1535  * no join alias variables referencing such joins.
1536  *----------
1537  */
1538 typedef struct JoinExpr
1539 {
1541  JoinType jointype; /* type of join */
1542  bool isNatural; /* Natural join? Will need to shape table */
1543  Node *larg; /* left subtree */
1544  Node *rarg; /* right subtree */
1545  List *usingClause; /* USING clause, if any (list of String) */
1546  Alias *join_using_alias; /* alias attached to USING clause, if any */
1547  Node *quals; /* qualifiers on join, if any */
1548  Alias *alias; /* user-written alias clause, if any */
1549  int rtindex; /* RT index assigned for join, or 0 */
1550 } JoinExpr;
1551 
1552 /*----------
1553  * FromExpr - represents a FROM ... WHERE ... construct
1554  *
1555  * This is both more flexible than a JoinExpr (it can have any number of
1556  * children, including zero) and less so --- we don't need to deal with
1557  * aliases and so on. The output column set is implicitly just the union
1558  * of the outputs of the children.
1559  *----------
1560  */
1561 typedef struct FromExpr
1562 {
1564  List *fromlist; /* List of join subtrees */
1565  Node *quals; /* qualifiers on join, if any */
1566 } FromExpr;
1567 
1568 /*----------
1569  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1570  *
1571  * The optimizer requires a list of inference elements, and optionally a WHERE
1572  * clause to infer a unique index. The unique index (or, occasionally,
1573  * indexes) inferred are used to arbitrate whether or not the alternative ON
1574  * CONFLICT path is taken.
1575  *----------
1576  */
1577 typedef struct OnConflictExpr
1578 {
1580  OnConflictAction action; /* DO NOTHING or UPDATE? */
1581 
1582  /* Arbiter */
1583  List *arbiterElems; /* unique index arbiter list (of
1584  * InferenceElem's) */
1585  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1586  Oid constraint; /* pg_constraint OID for arbiter */
1587 
1588  /* ON CONFLICT UPDATE */
1589  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1590  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1591  int exclRelIndex; /* RT index of 'excluded' relation */
1592  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1593 } OnConflictExpr;
1594 
1595 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:219
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:332
Oid funcresulttype
Definition: primnodes.h:496
Oid minmaxtype
Definition: primnodes.h:1148
bool multidims
Definition: primnodes.h:1038
int varno
Definition: primnodes.h:189
Expr xpr
Definition: primnodes.h:385
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:756
struct FieldSelect FieldSelect
List * args
Definition: primnodes.h:1152
Expr xpr
Definition: primnodes.h:975
bool aggvariadic
Definition: primnodes.h:335
List * args
Definition: primnodes.h:1068
Expr xpr
Definition: primnodes.h:1264
Node * docexpr
Definition: primnodes.h:87
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1579
Expr * arg
Definition: primnodes.h:837
Index varlevelsup
Definition: primnodes.h:196
OnCommitAction onCommit
Definition: primnodes.h:116
int plan_id
Definition: primnodes.h:752
List * args
Definition: primnodes.h:372
ParamKind
Definition: primnodes.h:256
char * name
Definition: primnodes.h:1228
List * refs
Definition: primnodes.h:374
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:222
int aggtransno
Definition: primnodes.h:341
List * args
Definition: primnodes.h:390
List * args
Definition: primnodes.h:503
Oid wincollid
Definition: primnodes.h:388
int32 resulttypmod
Definition: primnodes.h:1307
List * colnames
Definition: primnodes.h:89
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:810
char * tableSpaceName
Definition: primnodes.h:117
List * coltypmods
Definition: primnodes.h:91
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1280
Oid funccollid
Definition: primnodes.h:501
int location
Definition: primnodes.h:1235
Oid resulttype
Definition: primnodes.h:881
XmlExprOp
Definition: primnodes.h:1206
OpExpr NullIfExpr
Definition: primnodes.h:570
RowCompareType rctype
Definition: primnodes.h:1116
List * opfamilies
Definition: primnodes.h:1118
NodeTag type
Definition: primnodes.h:84
Oid type
Definition: primnodes.h:1233
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:977
SubLinkType subLinkType
Definition: primnodes.h:747
Expr * arg
Definition: primnodes.h:860
Oid inputcollid
Definition: primnodes.h:326
ParamKind paramkind
Definition: primnodes.h:267
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:536
CoercionForm coercionformat
Definition: primnodes.h:1309
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1460
List * args
Definition: primnodes.h:330
AttrNumber varattno
Definition: primnodes.h:191
Oid array_typeid
Definition: primnodes.h:1034
Expr * arg
Definition: primnodes.h:808
List * paramIds
Definition: primnodes.h:750
struct SubscriptingRef SubscriptingRef
bool funcretset
Definition: primnodes.h:497
struct SubPlan SubPlan
struct Expr Expr
List * fromlist
Definition: primnodes.h:1564
Expr xpr
Definition: primnodes.h:1226
NullTestType
Definition: primnodes.h:1257
bool skipData
Definition: primnodes.h:119
Oid casetype
Definition: primnodes.h:976
bool aggstar
Definition: primnodes.h:334
Expr xpr
Definition: primnodes.h:1067
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:188
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:392
char * resname
Definition: primnodes.h:1457
List * arg_names
Definition: primnodes.h:1230
Definition: primnodes.h:186
List * refupperindexpr
Definition: primnodes.h:444
CoercionContext
Definition: primnodes.h:461
Node * quals
Definition: primnodes.h:1565
struct Var Var
int32 typeMod
Definition: primnodes.h:1019
int location
Definition: primnodes.h:627
int location
Definition: primnodes.h:992
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1189
NodeTag type
Definition: primnodes.h:1563
List * colcollations
Definition: primnodes.h:92
signed int int32
Definition: c.h:429
struct RelabelType RelabelType
JoinType
Definition: nodes.h:704
List * arbiterElems
Definition: primnodes.h:1583
Expr xpr
Definition: primnodes.h:266
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1543
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:218
Expr xpr
Definition: primnodes.h:541
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:215
List * aggargtypes
Definition: primnodes.h:328
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:500
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Oid opresulttype
Definition: primnodes.h:544
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1139
bool resjunk
Definition: primnodes.h:1462
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:495
List * colnames
Definition: primnodes.h:1084
Node * viewQuery
Definition: primnodes.h:118
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:271
int location
Definition: primnodes.h:272
Oid vartype
Definition: primnodes.h:193
List * args
Definition: primnodes.h:1132
BoolExprType boolop
Definition: primnodes.h:625
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1265
int location
Definition: primnodes.h:342
List * coldefexprs
Definition: primnodes.h:94
Oid constcollid
Definition: primnodes.h:217
Oid resultcollid
Definition: primnodes.h:813
List * ns_names
Definition: primnodes.h:86
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:88
int location
Definition: primnodes.h:201
Alias * join_using_alias
Definition: primnodes.h:1546
int location
Definition: primnodes.h:1085
struct Const Const
int32 typeMod
Definition: primnodes.h:1342
int location
Definition: primnodes.h:1153
List * exclRelTlist
Definition: primnodes.h:1592
int location
Definition: primnodes.h:549
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:331
Expr * arg
Definition: primnodes.h:1288
AttrNumber resno
Definition: primnodes.h:1456
Bitmapset * notnulls
Definition: primnodes.h:95
Index agglevelsup
Definition: primnodes.h:338
char * name
Definition: primnodes.h:525
Expr xpr
Definition: primnodes.h:214
char * cursor_name
Definition: primnodes.h:1364
List * aggdirectargs
Definition: primnodes.h:329
Oid resulttype
Definition: primnodes.h:840
Oid winfnoid
Definition: primnodes.h:386
Expr * arg
Definition: primnodes.h:880
List * elements
Definition: primnodes.h:1037
struct BooleanTest BooleanTest
Expr * elemexpr
Definition: primnodes.h:905
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:1033
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:546
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1167
List * options
Definition: primnodes.h:115
List * newvals
Definition: primnodes.h:838
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:375
Index varnosyn
Definition: primnodes.h:199
SubLinkType
Definition: primnodes.h:681
OnConflictAction action
Definition: primnodes.h:1580
bool isNatural
Definition: primnodes.h:1542
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1545
Expr xpr
Definition: primnodes.h:745
int ordinalitycol
Definition: primnodes.h:96
XmlExprOp op
Definition: primnodes.h:1227
List * args
Definition: primnodes.h:979
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:909
int location
Definition: primnodes.h:226
Node * quals
Definition: primnodes.h:1547
int location
Definition: primnodes.h:1039
BoolTestType booltesttype
Definition: primnodes.h:1289
Index agglevelsup
Definition: primnodes.h:376
AttrNumber varattnosyn
Definition: primnodes.h:200
uintptr_t Datum
Definition: postgres.h:411
CoercionForm convertformat
Definition: primnodes.h:932
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:883
Oid opfuncid
Definition: primnodes.h:543
Oid resulttype
Definition: primnodes.h:861
Node * testexpr
Definition: primnodes.h:749
unsigned int Index
Definition: c.h:549
List * coltypes
Definition: primnodes.h:90
NullTestType nulltesttype
Definition: primnodes.h:1266
int32 typmod
Definition: primnodes.h:1234
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:776
Oid resultcollid
Definition: primnodes.h:863
Oid aggfnoid
Definition: primnodes.h:323
List * colexprs
Definition: primnodes.h:93
List * named_args
Definition: primnodes.h:1229
int32 firstColTypmod
Definition: primnodes.h:757
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1102
List * args
Definition: primnodes.h:1231
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:270
int aggno
Definition: primnodes.h:340
char * plan_name
Definition: primnodes.h:754
int location
Definition: primnodes.h:885
Node * rarg
Definition: primnodes.h:1544
Alias * alias
Definition: primnodes.h:1548
Expr * arg
Definition: primnodes.h:524
struct NullTest NullTest
int location
Definition: primnodes.h:395
Oid inputcollid
Definition: primnodes.h:502
JoinType jointype
Definition: primnodes.h:1541
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1506
NodeTag type
Definition: primnodes.h:1540
List * setParam
Definition: primnodes.h:770
List * ns_uris
Definition: primnodes.h:85
Expr * aggfilter
Definition: primnodes.h:391
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1455
AggSplit aggsplit
Definition: primnodes.h:339
XmlOptionType xmloption
Definition: primnodes.h:1232
int paramid
Definition: primnodes.h:268
XmlOptionType
Definition: primnodes.h:1218
Oid array_collid
Definition: primnodes.h:1035
bool unknownEqFalse
Definition: primnodes.h:763
int location
Definition: primnodes.h:1268
AggSplit
Definition: nodes.h:788
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:1069
struct RowCompareExpr RowCompareExpr
Oid inputcollid
Definition: primnodes.h:1150
Expr * arg
Definition: primnodes.h:946
Expr xpr
Definition: primnodes.h:624
Expr * aggfilter
Definition: primnodes.h:333
int location
Definition: primnodes.h:981
List * parParam
Definition: primnodes.h:772
Oid inputcollid
Definition: primnodes.h:547
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:389
List * args
Definition: primnodes.h:626
Expr xpr
Definition: primnodes.h:322
bool parallel_safe
Definition: primnodes.h:766
struct Param Param
NodeTag type
Definition: primnodes.h:110
int32 consttypmod
Definition: primnodes.h:216
Oid element_typeid
Definition: primnodes.h:1036
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:387
CoercionForm coerceformat
Definition: primnodes.h:884
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1585
Expr * refassgnexpr
Definition: primnodes.h:451
Expr xpr
Definition: primnodes.h:989
AttrNumber resorigcol
Definition: primnodes.h:1461
Oid aggcollid
Definition: primnodes.h:325
Expr xpr
Definition: primnodes.h:494
RangeVar * rel
Definition: primnodes.h:112
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:839
List * reflowerindexpr
Definition: primnodes.h:446
bool winagg
Definition: primnodes.h:394
Oid coalescetype
Definition: primnodes.h:1130
Expr xpr
Definition: primnodes.h:836
Oid aggtranstype
Definition: primnodes.h:327
List * onConflictSet
Definition: primnodes.h:1589
Oid varcollid
Definition: primnodes.h:195
Index ressortgroupref
Definition: primnodes.h:1458
Oid aggtype
Definition: primnodes.h:324
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:562
NodeTag type
Definition: primnodes.h:138
bool useHashTable
Definition: primnodes.h:761
Oid refcontainertype
Definition: primnodes.h:439
bool argisrow
Definition: primnodes.h:1267
MinMaxOp op
Definition: primnodes.h:1151
Oid minmaxcollid
Definition: primnodes.h:1149
Oid firstColCollation
Definition: primnodes.h:758
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:337
Cost startup_cost
Definition: primnodes.h:775
Expr * refexpr
Definition: primnodes.h:449
int32 resulttypmod
Definition: primnodes.h:862
Expr * arg
Definition: primnodes.h:978
int location
Definition: primnodes.h:504
Oid opno
Definition: primnodes.h:542
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:907
Expr * result
Definition: primnodes.h:991
List * colNames
Definition: primnodes.h:113
List * args
Definition: primnodes.h:548
List * inputcollids
Definition: primnodes.h:1119
int location
Definition: primnodes.h:97
CoercionForm relabelformat
Definition: primnodes.h:864
Expr * defresult
Definition: primnodes.h:980
Expr * expr
Definition: primnodes.h:990
int location
Definition: primnodes.h:948
CoercionForm row_format
Definition: primnodes.h:1083
CoercionForm
Definition: primnodes.h:481
Node * onConflictWhere
Definition: primnodes.h:1590
int rtindex
Definition: primnodes.h:1549
Definition: pg_list.h:50
OnConflictAction
Definition: nodes.h:830
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:269
int location
Definition: primnodes.h:865
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:220
Oid coalescecollid
Definition: primnodes.h:1131
bool funcvariadic
Definition: primnodes.h:498
char * accessMethod
Definition: primnodes.h:114
double Cost
Definition: nodes.h:670
struct CaseExpr CaseExpr
bool opretset
Definition: primnodes.h:545
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:812
bool winstar
Definition: primnodes.h:393
AttrNumber fieldnum
Definition: primnodes.h:809
BoolExprType
Definition: primnodes.h:617
int32 vartypmod
Definition: primnodes.h:194
List * args
Definition: primnodes.h:773