PostgreSQL Source Code  git master
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings). In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
85  List *ns_uris; /* list of namespace URI expressions */
86  List *ns_names; /* list of namespace names or NULL */
87  Node *docexpr; /* input document expression */
88  Node *rowexpr; /* row filter expression */
89  List *colnames; /* column names (list of String) */
90  List *coltypes; /* OID list of column type OIDs */
91  List *coltypmods; /* integer list of column typmods */
92  List *colcollations; /* OID list of column collation OIDs */
93  List *colexprs; /* list of column filter expressions */
94  List *coldefexprs; /* list of column default expressions */
95  Bitmapset *notnulls; /* nullability flag for each output column */
96  int ordinalitycol; /* counts from 0; -1 if none specified */
97  int location; /* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
111 
112  RangeVar *rel; /* target relation name */
113  List *colNames; /* column names to assign, or NIL */
114  char *accessMethod; /* table access method */
115  List *options; /* options from WITH clause */
116  OnCommitAction onCommit; /* what do we do at COMMIT? */
117  char *tableSpaceName; /* table space to use, or NULL */
118  Node *viewQuery; /* materialized view's SELECT query */
119  bool skipData; /* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  * node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field). Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation. See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE. (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list. Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column. (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * In the parser, varnosyn and varattnosyn are either identical to
162  * varno/varattno, or they specify the column's position in an aliased JOIN
163  * RTE that hides the semantic referent RTE's refname. This is a syntactic
164  * identifier as opposed to the semantic identifier; it tells ruleutils.c
165  * how to print the Var properly. varnosyn/varattnosyn retain their values
166  * throughout planning and execution, so they are particularly helpful to
167  * identify Vars when debugging. Note, however, that a Var that is generated
168  * in the planner and doesn't correspond to any simple relation column may
169  * have varnosyn = varattnosyn = 0.
170  */
171 #define INNER_VAR 65000 /* reference to inner subplan */
172 #define OUTER_VAR 65001 /* reference to outer subplan */
173 #define INDEX_VAR 65002 /* reference to index column */
174 
175 #define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
176 
177 /* Symbols for the indexes of the special RTE entries in rules */
178 #define PRS2_OLD_VARNO 1
179 #define PRS2_NEW_VARNO 2
180 
181 typedef struct Var
182 {
184  Index varno; /* index of this var's relation in the range
185  * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
186  AttrNumber varattno; /* attribute number of this var, or zero for
187  * all attrs ("whole-row Var") */
188  Oid vartype; /* pg_type OID for the type of this var */
189  int32 vartypmod; /* pg_attribute typmod value */
190  Oid varcollid; /* OID of collation, or InvalidOid if none */
191  Index varlevelsup; /* for subquery variables referencing outer
192  * relations; 0 in a normal var, >0 means N
193  * levels up */
194  Index varnosyn; /* syntactic relation index (0 if unknown) */
195  AttrNumber varattnosyn; /* syntactic attribute number */
196  int location; /* token location, or -1 if unknown */
197 } Var;
198 
199 /*
200  * Const
201  *
202  * Note: for varlena data types, we make a rule that a Const node's value
203  * must be in non-extended form (4-byte header, no compression or external
204  * references). This ensures that the Const node is self-contained and makes
205  * it more likely that equal() will see logically identical values as equal.
206  */
207 typedef struct Const
208 {
210  Oid consttype; /* pg_type OID of the constant's datatype */
211  int32 consttypmod; /* typmod value, if any */
212  Oid constcollid; /* OID of collation, or InvalidOid if none */
213  int constlen; /* typlen of the constant's datatype */
214  Datum constvalue; /* the constant's value */
215  bool constisnull; /* whether the constant is null (if true,
216  * constvalue is undefined) */
217  bool constbyval; /* whether this datatype is passed by value.
218  * If true, then all the information is stored
219  * in the Datum. If false, then the Datum
220  * contains a pointer to the information. */
221  int location; /* token location, or -1 if unknown */
222 } Const;
223 
224 /*
225  * Param
226  *
227  * paramkind specifies the kind of parameter. The possible values
228  * for this field are:
229  *
230  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
231  * Such parameters are numbered from 1 to n.
232  *
233  * PARAM_EXEC: The parameter is an internal executor parameter, used
234  * for passing values into and out of sub-queries or from
235  * nestloop joins to their inner scans.
236  * For historical reasons, such parameters are numbered from 0.
237  * These numbers are independent of PARAM_EXTERN numbers.
238  *
239  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
240  * node's sub-select. The column number is contained in the
241  * `paramid' field. (This type of Param is converted to
242  * PARAM_EXEC during planning.)
243  *
244  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
245  * output column of a SubLink node's sub-select, but here, the
246  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
247  * of the `paramid' field contain the SubLink's subLinkId, and
248  * the low-order 16 bits contain the column number. (This type
249  * of Param is also converted to PARAM_EXEC during planning.)
250  */
251 typedef enum ParamKind
252 {
257 } ParamKind;
258 
259 typedef struct Param
260 {
262  ParamKind paramkind; /* kind of parameter. See above */
263  int paramid; /* numeric ID for parameter */
264  Oid paramtype; /* pg_type OID of parameter's datatype */
265  int32 paramtypmod; /* typmod value, if known */
266  Oid paramcollid; /* OID of collation, or InvalidOid if none */
267  int location; /* token location, or -1 if unknown */
268 } Param;
269 
270 /*
271  * Aggref
272  *
273  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
274  *
275  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
276  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
277  * be added at the end to represent ORDER BY expressions that are not also
278  * arguments. As in a top-level Query, the TLEs can be marked with
279  * ressortgroupref indexes to let them be referenced by SortGroupClause
280  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
281  * and DISTINCT operations to be applied to the aggregate input rows before
282  * they are passed to the transition function. The grammar only allows a
283  * simple "DISTINCT" specifier for the arguments, but we use the full
284  * query-level representation to allow more code sharing.
285  *
286  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
287  * (aggregated) arguments, all of which will be listed in the aggorder list.
288  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
289  * The direct arguments appear in aggdirectargs (as a list of plain
290  * expressions, not TargetEntry nodes).
291  *
292  * aggtranstype is the data type of the state transition values for this
293  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
294  * This is determined during planning and is InvalidOid before that.
295  *
296  * aggargtypes is an OID list of the data types of the direct and regular
297  * arguments. Normally it's redundant with the aggdirectargs and args lists,
298  * but in a combining aggregate, it's not because the args list has been
299  * replaced with a single argument representing the partial-aggregate
300  * transition values.
301  *
302  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
303  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
304  * the planner might change it to something else. We use this mainly as
305  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
306  * indicates a non-final mode, aggtype reflects the transition data type
307  * not the SQL-level output type of the aggregate.
308  */
309 typedef struct Aggref
310 {
312  Oid aggfnoid; /* pg_proc Oid of the aggregate */
313  Oid aggtype; /* type Oid of result of the aggregate */
314  Oid aggcollid; /* OID of collation of result */
315  Oid inputcollid; /* OID of collation that function should use */
316  Oid aggtranstype; /* type Oid of aggregate's transition value */
317  List *aggargtypes; /* type Oids of direct and aggregated args */
318  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
319  List *args; /* aggregated arguments and sort expressions */
320  List *aggorder; /* ORDER BY (list of SortGroupClause) */
321  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
322  Expr *aggfilter; /* FILTER expression, if any */
323  bool aggstar; /* true if argument list was really '*' */
324  bool aggvariadic; /* true if variadic arguments have been
325  * combined into an array last argument */
326  char aggkind; /* aggregate kind (see pg_aggregate.h) */
327  Index agglevelsup; /* > 0 if agg belongs to outer query */
328  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
329  int location; /* token location, or -1 if unknown */
330 } Aggref;
331 
332 /*
333  * GroupingFunc
334  *
335  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
336  * like an aggregate function (e.g. it "belongs" to a specific query level,
337  * which might not be the one immediately containing it), but also differs in
338  * an important respect: it never evaluates its arguments, they merely
339  * designate expressions from the GROUP BY clause of the query level to which
340  * it belongs.
341  *
342  * The spec defines the evaluation of GROUPING() purely by syntactic
343  * replacement, but we make it a real expression for optimization purposes so
344  * that one Agg node can handle multiple grouping sets at once. Evaluating the
345  * result only needs the column positions to check against the grouping set
346  * being projected. However, for EXPLAIN to produce meaningful output, we have
347  * to keep the original expressions around, since expression deparse does not
348  * give us any feasible way to get at the GROUP BY clause.
349  *
350  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
351  * lists and agglevelsup, without comparing the refs and cols annotations.
352  *
353  * In raw parse output we have only the args list; parse analysis fills in the
354  * refs list, and the planner fills in the cols list.
355  */
356 typedef struct GroupingFunc
357 {
359  List *args; /* arguments, not evaluated but kept for
360  * benefit of EXPLAIN etc. */
361  List *refs; /* ressortgrouprefs of arguments */
362  List *cols; /* actual column positions set by planner */
363  Index agglevelsup; /* same as Aggref.agglevelsup */
364  int location; /* token location */
365 } GroupingFunc;
366 
367 /*
368  * WindowFunc
369  */
370 typedef struct WindowFunc
371 {
373  Oid winfnoid; /* pg_proc Oid of the function */
374  Oid wintype; /* type Oid of result of the window function */
375  Oid wincollid; /* OID of collation of result */
376  Oid inputcollid; /* OID of collation that function should use */
377  List *args; /* arguments to the window function */
378  Expr *aggfilter; /* FILTER expression, if any */
379  Index winref; /* index of associated WindowClause */
380  bool winstar; /* true if argument list was really '*' */
381  bool winagg; /* is function a simple aggregate? */
382  int location; /* token location, or -1 if unknown */
383 } WindowFunc;
384 
385 /* ----------------
386  * SubscriptingRef: describes a subscripting operation over a container
387  * (array, etc).
388  *
389  * A SubscriptingRef can describe fetching a single element from a container,
390  * fetching a part of container (e.g. array slice), storing a single element into
391  * a container, or storing a slice. The "store" cases work with an
392  * initial container value and a source value that is inserted into the
393  * appropriate part of the container; the result of the operation is an
394  * entire new modified container value.
395  *
396  * If reflowerindexpr = NIL, then we are fetching or storing a single container
397  * element at the subscripts given by refupperindexpr. Otherwise we are
398  * fetching or storing a container slice, that is a rectangular subcontainer
399  * with lower and upper bounds given by the index expressions.
400  * reflowerindexpr must be the same length as refupperindexpr when it
401  * is not NIL.
402  *
403  * In the slice case, individual expressions in the subscript lists can be
404  * NULL, meaning "substitute the array's current lower or upper bound".
405  *
406  * Note: the result datatype is the element type when fetching a single
407  * element; but it is the array type when doing subarray fetch or either
408  * type of store.
409  *
410  * Note: for the cases where a container is returned, if refexpr yields a R/W
411  * expanded container, then the implementation is allowed to modify that object
412  * in-place and return the same object.)
413  * ----------------
414  */
415 typedef struct SubscriptingRef
416 {
418  Oid refcontainertype; /* type of the container proper */
419  Oid refelemtype; /* type of the container elements */
420  int32 reftypmod; /* typmod of the container (and elements too) */
421  Oid refcollid; /* OID of collation, or InvalidOid if none */
422  List *refupperindexpr; /* expressions that evaluate to upper
423  * container indexes */
424  List *reflowerindexpr; /* expressions that evaluate to lower
425  * container indexes, or NIL for single
426  * container element */
427  Expr *refexpr; /* the expression that evaluates to a
428  * container value */
429 
430  Expr *refassgnexpr; /* expression for the source value, or NULL if
431  * fetch */
433 
434 /*
435  * CoercionContext - distinguishes the allowed set of type casts
436  *
437  * NB: ordering of the alternatives is significant; later (larger) values
438  * allow more casts than earlier ones.
439  */
440 typedef enum CoercionContext
441 {
442  COERCION_IMPLICIT, /* coercion in context of expression */
443  COERCION_ASSIGNMENT, /* coercion in context of assignment */
444  COERCION_EXPLICIT /* explicit cast operation */
446 
447 /*
448  * CoercionForm - how to display a node that could have come from a cast
449  *
450  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
451  * any semantically significant information. We need that behavior so that
452  * the planner will consider equivalent implicit and explicit casts to be
453  * equivalent. In cases where those actually behave differently, the coercion
454  * function's arguments will be different.
455  */
456 typedef enum CoercionForm
457 {
458  COERCE_EXPLICIT_CALL, /* display as a function call */
459  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
460  COERCE_IMPLICIT_CAST /* implicit cast, so hide it */
461 } CoercionForm;
462 
463 /*
464  * FuncExpr - expression node for a function call
465  */
466 typedef struct FuncExpr
467 {
469  Oid funcid; /* PG_PROC OID of the function */
470  Oid funcresulttype; /* PG_TYPE OID of result value */
471  bool funcretset; /* true if function returns set */
472  bool funcvariadic; /* true if variadic arguments have been
473  * combined into an array last argument */
474  CoercionForm funcformat; /* how to display this function call */
475  Oid funccollid; /* OID of collation of result */
476  Oid inputcollid; /* OID of collation that function should use */
477  List *args; /* arguments to the function */
478  int location; /* token location, or -1 if unknown */
479 } FuncExpr;
480 
481 /*
482  * NamedArgExpr - a named argument of a function
483  *
484  * This node type can only appear in the args list of a FuncCall or FuncExpr
485  * node. We support pure positional call notation (no named arguments),
486  * named notation (all arguments are named), and mixed notation (unnamed
487  * arguments followed by named ones).
488  *
489  * Parse analysis sets argnumber to the positional index of the argument,
490  * but doesn't rearrange the argument list.
491  *
492  * The planner will convert argument lists to pure positional notation
493  * during expression preprocessing, so execution never sees a NamedArgExpr.
494  */
495 typedef struct NamedArgExpr
496 {
498  Expr *arg; /* the argument expression */
499  char *name; /* the name */
500  int argnumber; /* argument's number in positional notation */
501  int location; /* argument name location, or -1 if unknown */
502 } NamedArgExpr;
503 
504 /*
505  * OpExpr - expression node for an operator invocation
506  *
507  * Semantically, this is essentially the same as a function call.
508  *
509  * Note that opfuncid is not necessarily filled in immediately on creation
510  * of the node. The planner makes sure it is valid before passing the node
511  * tree to the executor, but during parsing/planning opfuncid can be 0.
512  */
513 typedef struct OpExpr
514 {
516  Oid opno; /* PG_OPERATOR OID of the operator */
517  Oid opfuncid; /* PG_PROC OID of underlying function */
518  Oid opresulttype; /* PG_TYPE OID of result value */
519  bool opretset; /* true if operator returns set */
520  Oid opcollid; /* OID of collation of result */
521  Oid inputcollid; /* OID of collation that operator should use */
522  List *args; /* arguments to the operator (1 or 2) */
523  int location; /* token location, or -1 if unknown */
524 } OpExpr;
525 
526 /*
527  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
528  *
529  * Except for the nodetag, this is represented identically to an OpExpr
530  * referencing the "=" operator for x and y.
531  * We use "=", not the more obvious "<>", because more datatypes have "="
532  * than "<>". This means the executor must invert the operator result.
533  * Note that the operator function won't be called at all if either input
534  * is NULL, since then the result can be determined directly.
535  */
537 
538 /*
539  * NullIfExpr - a NULLIF expression
540  *
541  * Like DistinctExpr, this is represented the same as an OpExpr referencing
542  * the "=" operator for x and y.
543  */
545 
546 /*
547  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
548  *
549  * The operator must yield boolean. It is applied to the left operand
550  * and each element of the righthand array, and the results are combined
551  * with OR or AND (for ANY or ALL respectively). The node representation
552  * is almost the same as for the underlying operator, but we need a useOr
553  * flag to remember whether it's ANY or ALL, and we don't have to store
554  * the result type (or the collation) because it must be boolean.
555  */
556 typedef struct ScalarArrayOpExpr
557 {
559  Oid opno; /* PG_OPERATOR OID of the operator */
560  Oid opfuncid; /* PG_PROC OID of underlying function */
561  bool useOr; /* true for ANY, false for ALL */
562  Oid inputcollid; /* OID of collation that operator should use */
563  List *args; /* the scalar and array operands */
564  int location; /* token location, or -1 if unknown */
566 
567 /*
568  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
569  *
570  * Notice the arguments are given as a List. For NOT, of course the list
571  * must always have exactly one element. For AND and OR, there can be two
572  * or more arguments.
573  */
574 typedef enum BoolExprType
575 {
577 } BoolExprType;
578 
579 typedef struct BoolExpr
580 {
583  List *args; /* arguments to this expression */
584  int location; /* token location, or -1 if unknown */
585 } BoolExpr;
586 
587 /*
588  * SubLink
589  *
590  * A SubLink represents a subselect appearing in an expression, and in some
591  * cases also the combining operator(s) just above it. The subLinkType
592  * indicates the form of the expression represented:
593  * EXISTS_SUBLINK EXISTS(SELECT ...)
594  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
595  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
596  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
597  * EXPR_SUBLINK (SELECT with single targetlist item ...)
598  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
599  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
600  * CTE_SUBLINK WITH query (never actually part of an expression)
601  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
602  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
603  * a list with more than one entry; if the subselect has just one target
604  * then the parser will create an EXPR_SUBLINK instead (and any operator
605  * above the subselect will be represented separately).
606  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
607  * one row (if it returns no rows, the result is NULL).
608  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
609  * results. ALL and ANY combine the per-row results using AND and OR
610  * semantics respectively.
611  * ARRAY requires just one target column, and creates an array of the target
612  * column's type using any number of rows resulting from the subselect.
613  *
614  * SubLink is classed as an Expr node, but it is not actually executable;
615  * it must be replaced in the expression tree by a SubPlan node during
616  * planning.
617  *
618  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
619  * of the lefthand expression (if any), and operName is the String name of
620  * the combining operator. Also, subselect is a raw parsetree. During parse
621  * analysis, the parser transforms testexpr into a complete boolean expression
622  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
623  * output columns of the subselect. And subselect is transformed to a Query.
624  * This is the representation seen in saved rules and in the rewriter.
625  *
626  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
627  * are unused and are always null.
628  *
629  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
630  * other SubLinks. This number identifies different multiple-assignment
631  * subqueries within an UPDATE statement's SET list. It is unique only
632  * within a particular targetlist. The output column(s) of the MULTIEXPR
633  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
634  *
635  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
636  * in SubPlans generated for WITH subqueries.
637  */
638 typedef enum SubLinkType
639 {
647  CTE_SUBLINK /* for SubPlans only */
648 } SubLinkType;
649 
650 
651 typedef struct SubLink
652 {
654  SubLinkType subLinkType; /* see above */
655  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
656  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
657  List *operName; /* originally specified operator name */
658  Node *subselect; /* subselect as Query* or raw parsetree */
659  int location; /* token location, or -1 if unknown */
660 } SubLink;
661 
662 /*
663  * SubPlan - executable expression node for a subplan (sub-SELECT)
664  *
665  * The planner replaces SubLink nodes in expression trees with SubPlan
666  * nodes after it has finished planning the subquery. SubPlan references
667  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
668  * (We avoid a direct link to make it easier to copy expression trees
669  * without causing multiple processing of the subplan.)
670  *
671  * In an ordinary subplan, testexpr points to an executable expression
672  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
673  * operator(s); the left-hand arguments are the original lefthand expressions,
674  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
675  * outputs of the sub-select. (NOTE: runtime coercion functions may be
676  * inserted as well.) This is just the same expression tree as testexpr in
677  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
678  * suitably numbered PARAM_EXEC nodes.
679  *
680  * If the sub-select becomes an initplan rather than a subplan, the executable
681  * expression is part of the outer plan's expression tree (and the SubPlan
682  * node itself is not, but rather is found in the outer plan's initPlan
683  * list). In this case testexpr is NULL to avoid duplication.
684  *
685  * The planner also derives lists of the values that need to be passed into
686  * and out of the subplan. Input values are represented as a list "args" of
687  * expressions to be evaluated in the outer-query context (currently these
688  * args are always just Vars, but in principle they could be any expression).
689  * The values are assigned to the global PARAM_EXEC params indexed by parParam
690  * (the parParam and args lists must have the same ordering). setParam is a
691  * list of the PARAM_EXEC params that are computed by the sub-select, if it
692  * is an initplan; they are listed in order by sub-select output column
693  * position. (parParam and setParam are integer Lists, not Bitmapsets,
694  * because their ordering is significant.)
695  *
696  * Also, the planner computes startup and per-call costs for use of the
697  * SubPlan. Note that these include the cost of the subquery proper,
698  * evaluation of the testexpr if any, and any hashtable management overhead.
699  */
700 typedef struct SubPlan
701 {
703  /* Fields copied from original SubLink: */
704  SubLinkType subLinkType; /* see above */
705  /* The combining operators, transformed to an executable expression: */
706  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
707  List *paramIds; /* IDs of Params embedded in the above */
708  /* Identification of the Plan tree to use: */
709  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
710  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
711  char *plan_name; /* A name assigned during planning */
712  /* Extra data useful for determining subplan's output type: */
713  Oid firstColType; /* Type of first column of subplan result */
714  int32 firstColTypmod; /* Typmod of first column of subplan result */
715  Oid firstColCollation; /* Collation of first column of subplan
716  * result */
717  /* Information about execution strategy: */
718  bool useHashTable; /* true to store subselect output in a hash
719  * table (implies we are doing "IN") */
720  bool unknownEqFalse; /* true if it's okay to return FALSE when the
721  * spec result is UNKNOWN; this allows much
722  * simpler handling of null values */
723  bool parallel_safe; /* is the subplan parallel-safe? */
724  /* Note: parallel_safe does not consider contents of testexpr or args */
725  /* Information for passing params into and out of the subselect: */
726  /* setParam and parParam are lists of integers (param IDs) */
727  List *setParam; /* initplan subqueries have to set these
728  * Params for parent plan */
729  List *parParam; /* indices of input Params from parent plan */
730  List *args; /* exprs to pass as parParam values */
731  /* Estimated execution costs: */
732  Cost startup_cost; /* one-time setup cost */
733  Cost per_call_cost; /* cost for each subplan evaluation */
734 } SubPlan;
735 
736 /*
737  * AlternativeSubPlan - expression node for a choice among SubPlans
738  *
739  * The subplans are given as a List so that the node definition need not
740  * change if there's ever more than two alternatives. For the moment,
741  * though, there are always exactly two; and the first one is the fast-start
742  * plan.
743  */
744 typedef struct AlternativeSubPlan
745 {
747  List *subplans; /* SubPlan(s) with equivalent results */
749 
750 /* ----------------
751  * FieldSelect
752  *
753  * FieldSelect represents the operation of extracting one field from a tuple
754  * value. At runtime, the input expression is expected to yield a rowtype
755  * Datum. The specified field number is extracted and returned as a Datum.
756  * ----------------
757  */
758 
759 typedef struct FieldSelect
760 {
762  Expr *arg; /* input expression */
763  AttrNumber fieldnum; /* attribute number of field to extract */
764  Oid resulttype; /* type of the field (result type of this
765  * node) */
766  int32 resulttypmod; /* output typmod (usually -1) */
767  Oid resultcollid; /* OID of collation of the field */
768 } FieldSelect;
769 
770 /* ----------------
771  * FieldStore
772  *
773  * FieldStore represents the operation of modifying one field in a tuple
774  * value, yielding a new tuple value (the input is not touched!). Like
775  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
776  * portion of a column.
777  *
778  * resulttype is always a named composite type (not a domain). To update
779  * a composite domain value, apply CoerceToDomain to the FieldStore.
780  *
781  * A single FieldStore can actually represent updates of several different
782  * fields. The parser only generates FieldStores with single-element lists,
783  * but the planner will collapse multiple updates of the same base column
784  * into one FieldStore.
785  * ----------------
786  */
787 
788 typedef struct FieldStore
789 {
791  Expr *arg; /* input tuple value */
792  List *newvals; /* new value(s) for field(s) */
793  List *fieldnums; /* integer list of field attnums */
794  Oid resulttype; /* type of result (same as type of arg) */
795  /* Like RowExpr, we deliberately omit a typmod and collation here */
796 } FieldStore;
797 
798 /* ----------------
799  * RelabelType
800  *
801  * RelabelType represents a "dummy" type coercion between two binary-
802  * compatible datatypes, such as reinterpreting the result of an OID
803  * expression as an int4. It is a no-op at runtime; we only need it
804  * to provide a place to store the correct type to be attributed to
805  * the expression result during type resolution. (We can't get away
806  * with just overwriting the type field of the input expression node,
807  * so we need a separate node to show the coercion's result type.)
808  * ----------------
809  */
810 
811 typedef struct RelabelType
812 {
814  Expr *arg; /* input expression */
815  Oid resulttype; /* output type of coercion expression */
816  int32 resulttypmod; /* output typmod (usually -1) */
817  Oid resultcollid; /* OID of collation, or InvalidOid if none */
818  CoercionForm relabelformat; /* how to display this node */
819  int location; /* token location, or -1 if unknown */
820 } RelabelType;
821 
822 /* ----------------
823  * CoerceViaIO
824  *
825  * CoerceViaIO represents a type coercion between two types whose textual
826  * representations are compatible, implemented by invoking the source type's
827  * typoutput function then the destination type's typinput function.
828  * ----------------
829  */
830 
831 typedef struct CoerceViaIO
832 {
834  Expr *arg; /* input expression */
835  Oid resulttype; /* output type of coercion */
836  /* output typmod is not stored, but is presumed -1 */
837  Oid resultcollid; /* OID of collation, or InvalidOid if none */
838  CoercionForm coerceformat; /* how to display this node */
839  int location; /* token location, or -1 if unknown */
840 } CoerceViaIO;
841 
842 /* ----------------
843  * ArrayCoerceExpr
844  *
845  * ArrayCoerceExpr represents a type coercion from one array type to another,
846  * which is implemented by applying the per-element coercion expression
847  * "elemexpr" to each element of the source array. Within elemexpr, the
848  * source element is represented by a CaseTestExpr node. Note that even if
849  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
850  * coercion still requires some effort: we have to fix the element type OID
851  * stored in the array header.
852  * ----------------
853  */
854 
855 typedef struct ArrayCoerceExpr
856 {
858  Expr *arg; /* input expression (yields an array) */
859  Expr *elemexpr; /* expression representing per-element work */
860  Oid resulttype; /* output type of coercion (an array type) */
861  int32 resulttypmod; /* output typmod (also element typmod) */
862  Oid resultcollid; /* OID of collation, or InvalidOid if none */
863  CoercionForm coerceformat; /* how to display this node */
864  int location; /* token location, or -1 if unknown */
866 
867 /* ----------------
868  * ConvertRowtypeExpr
869  *
870  * ConvertRowtypeExpr represents a type coercion from one composite type
871  * to another, where the source type is guaranteed to contain all the columns
872  * needed for the destination type plus possibly others; the columns need not
873  * be in the same positions, but are matched up by name. This is primarily
874  * used to convert a whole-row value of an inheritance child table into a
875  * valid whole-row value of its parent table's rowtype. Both resulttype
876  * and the exposed type of "arg" must be named composite types (not domains).
877  * ----------------
878  */
879 
880 typedef struct ConvertRowtypeExpr
881 {
883  Expr *arg; /* input expression */
884  Oid resulttype; /* output type (always a composite type) */
885  /* Like RowExpr, we deliberately omit a typmod and collation here */
886  CoercionForm convertformat; /* how to display this node */
887  int location; /* token location, or -1 if unknown */
889 
890 /*----------
891  * CollateExpr - COLLATE
892  *
893  * The planner replaces CollateExpr with RelabelType during expression
894  * preprocessing, so execution never sees a CollateExpr.
895  *----------
896  */
897 typedef struct CollateExpr
898 {
900  Expr *arg; /* input expression */
901  Oid collOid; /* collation's OID */
902  int location; /* token location, or -1 if unknown */
903 } CollateExpr;
904 
905 /*----------
906  * CaseExpr - a CASE expression
907  *
908  * We support two distinct forms of CASE expression:
909  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
910  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
911  * These are distinguishable by the "arg" field being NULL in the first case
912  * and the testexpr in the second case.
913  *
914  * In the raw grammar output for the second form, the condition expressions
915  * of the WHEN clauses are just the comparison values. Parse analysis
916  * converts these to valid boolean expressions of the form
917  * CaseTestExpr '=' compexpr
918  * where the CaseTestExpr node is a placeholder that emits the correct
919  * value at runtime. This structure is used so that the testexpr need be
920  * evaluated only once. Note that after parse analysis, the condition
921  * expressions always yield boolean.
922  *
923  * Note: we can test whether a CaseExpr has been through parse analysis
924  * yet by checking whether casetype is InvalidOid or not.
925  *----------
926  */
927 typedef struct CaseExpr
928 {
930  Oid casetype; /* type of expression result */
931  Oid casecollid; /* OID of collation, or InvalidOid if none */
932  Expr *arg; /* implicit equality comparison argument */
933  List *args; /* the arguments (list of WHEN clauses) */
934  Expr *defresult; /* the default result (ELSE clause) */
935  int location; /* token location, or -1 if unknown */
936 } CaseExpr;
937 
938 /*
939  * CaseWhen - one arm of a CASE expression
940  */
941 typedef struct CaseWhen
942 {
944  Expr *expr; /* condition expression */
945  Expr *result; /* substitution result */
946  int location; /* token location, or -1 if unknown */
947 } CaseWhen;
948 
949 /*
950  * Placeholder node for the test value to be processed by a CASE expression.
951  * This is effectively like a Param, but can be implemented more simply
952  * since we need only one replacement value at a time.
953  *
954  * We also abuse this node type for some other purposes, including:
955  * * Placeholder for the current array element value in ArrayCoerceExpr;
956  * see build_coercion_expression().
957  * * Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
958  * see transformAssignmentIndirection().
959  *
960  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
961  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
962  * node and its child CaseTestExpr(s). This is true in the parse analysis
963  * output, but the planner's function-inlining logic has to be careful not to
964  * break it.
965  *
966  * The nested-assignment-expression case is safe because the only node types
967  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
968  */
969 typedef struct CaseTestExpr
970 {
972  Oid typeId; /* type for substituted value */
973  int32 typeMod; /* typemod for substituted value */
974  Oid collation; /* collation for the substituted value */
975 } CaseTestExpr;
976 
977 /*
978  * ArrayExpr - an ARRAY[] expression
979  *
980  * Note: if multidims is false, the constituent expressions all yield the
981  * scalar type identified by element_typeid. If multidims is true, the
982  * constituent expressions all yield arrays of element_typeid (ie, the same
983  * type as array_typeid); at runtime we must check for compatible subscripts.
984  */
985 typedef struct ArrayExpr
986 {
988  Oid array_typeid; /* type of expression result */
989  Oid array_collid; /* OID of collation, or InvalidOid if none */
990  Oid element_typeid; /* common type of array elements */
991  List *elements; /* the array elements or sub-arrays */
992  bool multidims; /* true if elements are sub-arrays */
993  int location; /* token location, or -1 if unknown */
994 } ArrayExpr;
995 
996 /*
997  * RowExpr - a ROW() expression
998  *
999  * Note: the list of fields must have a one-for-one correspondence with
1000  * physical fields of the associated rowtype, although it is okay for it
1001  * to be shorter than the rowtype. That is, the N'th list element must
1002  * match up with the N'th physical field. When the N'th physical field
1003  * is a dropped column (attisdropped) then the N'th list element can just
1004  * be a NULL constant. (This case can only occur for named composite types,
1005  * not RECORD types, since those are built from the RowExpr itself rather
1006  * than vice versa.) It is important not to assume that length(args) is
1007  * the same as the number of columns logically present in the rowtype.
1008  *
1009  * colnames provides field names in cases where the names can't easily be
1010  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
1011  * If row_typeid identifies a known composite type, colnames can be NIL to
1012  * indicate the type's cataloged field names apply. Note that colnames can
1013  * be non-NIL even for a composite type, and typically is when the RowExpr
1014  * was created by expanding a whole-row Var. This is so that we can retain
1015  * the column alias names of the RTE that the Var referenced (which would
1016  * otherwise be very difficult to extract from the parsetree). Like the
1017  * args list, colnames is one-for-one with physical fields of the rowtype.
1018  */
1019 typedef struct RowExpr
1020 {
1022  List *args; /* the fields */
1023  Oid row_typeid; /* RECORDOID or a composite type's ID */
1024 
1025  /*
1026  * row_typeid cannot be a domain over composite, only plain composite. To
1027  * create a composite domain value, apply CoerceToDomain to the RowExpr.
1028  *
1029  * Note: we deliberately do NOT store a typmod. Although a typmod will be
1030  * associated with specific RECORD types at runtime, it will differ for
1031  * different backends, and so cannot safely be stored in stored
1032  * parsetrees. We must assume typmod -1 for a RowExpr node.
1033  *
1034  * We don't need to store a collation either. The result type is
1035  * necessarily composite, and composite types never have a collation.
1036  */
1037  CoercionForm row_format; /* how to display this node */
1038  List *colnames; /* list of String, or NIL */
1039  int location; /* token location, or -1 if unknown */
1040 } RowExpr;
1041 
1042 /*
1043  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1044  *
1045  * We support row comparison for any operator that can be determined to
1046  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1047  * operator in btree opfamilies). Note that the same operator name might
1048  * map to a different operator for each pair of row elements, since the
1049  * element datatypes can vary.
1050  *
1051  * A RowCompareExpr node is only generated for the < <= > >= cases;
1052  * the = and <> cases are translated to simple AND or OR combinations
1053  * of the pairwise comparisons. However, we include = and <> in the
1054  * RowCompareType enum for the convenience of parser logic.
1055  */
1056 typedef enum RowCompareType
1057 {
1058  /* Values of this enum are chosen to match btree strategy numbers */
1059  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1060  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1061  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1062  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1063  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1064  ROWCOMPARE_NE = 6 /* no such btree strategy */
1065 } RowCompareType;
1066 
1067 typedef struct RowCompareExpr
1068 {
1070  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1071  List *opnos; /* OID list of pairwise comparison ops */
1072  List *opfamilies; /* OID list of containing operator families */
1073  List *inputcollids; /* OID list of collations for comparisons */
1074  List *largs; /* the left-hand input arguments */
1075  List *rargs; /* the right-hand input arguments */
1076 } RowCompareExpr;
1077 
1078 /*
1079  * CoalesceExpr - a COALESCE expression
1080  */
1081 typedef struct CoalesceExpr
1082 {
1084  Oid coalescetype; /* type of expression result */
1085  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1086  List *args; /* the arguments */
1087  int location; /* token location, or -1 if unknown */
1088 } CoalesceExpr;
1089 
1090 /*
1091  * MinMaxExpr - a GREATEST or LEAST function
1092  */
1093 typedef enum MinMaxOp
1094 {
1097 } MinMaxOp;
1098 
1099 typedef struct MinMaxExpr
1100 {
1102  Oid minmaxtype; /* common type of arguments and result */
1103  Oid minmaxcollid; /* OID of collation of result */
1104  Oid inputcollid; /* OID of collation that function should use */
1105  MinMaxOp op; /* function to execute */
1106  List *args; /* the arguments */
1107  int location; /* token location, or -1 if unknown */
1108 } MinMaxExpr;
1109 
1110 /*
1111  * SQLValueFunction - parameterless functions with special grammar productions
1112  *
1113  * The SQL standard categorizes some of these as <datetime value function>
1114  * and others as <general value specification>. We call 'em SQLValueFunctions
1115  * for lack of a better term. We store type and typmod of the result so that
1116  * some code doesn't need to know each function individually, and because
1117  * we would need to store typmod anyway for some of the datetime functions.
1118  * Note that currently, all variants return non-collating datatypes, so we do
1119  * not need a collation field; also, all these functions are stable.
1120  */
1122 {
1139 
1140 typedef struct SQLValueFunction
1141 {
1143  SQLValueFunctionOp op; /* which function this is */
1144  Oid type; /* result type/typmod */
1146  int location; /* token location, or -1 if unknown */
1148 
1149 /*
1150  * XmlExpr - various SQL/XML functions requiring special grammar productions
1151  *
1152  * 'name' carries the "NAME foo" argument (already XML-escaped).
1153  * 'named_args' and 'arg_names' represent an xml_attribute list.
1154  * 'args' carries all other arguments.
1155  *
1156  * Note: result type/typmod/collation are not stored, but can be deduced
1157  * from the XmlExprOp. The type/typmod fields are just used for display
1158  * purposes, and are NOT necessarily the true result type of the node.
1159  */
1160 typedef enum XmlExprOp
1161 {
1162  IS_XMLCONCAT, /* XMLCONCAT(args) */
1163  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1164  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1165  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1166  IS_XMLPI, /* XMLPI(name [, args]) */
1167  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1168  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1169  IS_DOCUMENT /* xmlval IS DOCUMENT */
1170 } XmlExprOp;
1171 
1172 typedef enum
1173 {
1176 } XmlOptionType;
1177 
1178 typedef struct XmlExpr
1179 {
1181  XmlExprOp op; /* xml function ID */
1182  char *name; /* name in xml(NAME foo ...) syntaxes */
1183  List *named_args; /* non-XML expressions for xml_attributes */
1184  List *arg_names; /* parallel list of Value strings */
1185  List *args; /* list of expressions */
1186  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1187  Oid type; /* target type/typmod for XMLSERIALIZE */
1189  int location; /* token location, or -1 if unknown */
1190 } XmlExpr;
1191 
1192 /* ----------------
1193  * NullTest
1194  *
1195  * NullTest represents the operation of testing a value for NULLness.
1196  * The appropriate test is performed and returned as a boolean Datum.
1197  *
1198  * When argisrow is false, this simply represents a test for the null value.
1199  *
1200  * When argisrow is true, the input expression must yield a rowtype, and
1201  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1202  * includes checking individual fields for NULLness when the row datum
1203  * itself isn't NULL.
1204  *
1205  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1206  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1207  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1208  * ----------------
1209  */
1210 
1211 typedef enum NullTestType
1212 {
1214 } NullTestType;
1215 
1216 typedef struct NullTest
1217 {
1219  Expr *arg; /* input expression */
1220  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1221  bool argisrow; /* T to perform field-by-field null checks */
1222  int location; /* token location, or -1 if unknown */
1223 } NullTest;
1224 
1225 /*
1226  * BooleanTest
1227  *
1228  * BooleanTest represents the operation of determining whether a boolean
1229  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1230  * are supported. Note that a NULL input does *not* cause a NULL result.
1231  * The appropriate test is performed and returned as a boolean Datum.
1232  */
1233 
1234 typedef enum BoolTestType
1235 {
1237 } BoolTestType;
1238 
1239 typedef struct BooleanTest
1240 {
1242  Expr *arg; /* input expression */
1243  BoolTestType booltesttype; /* test type */
1244  int location; /* token location, or -1 if unknown */
1245 } BooleanTest;
1246 
1247 /*
1248  * CoerceToDomain
1249  *
1250  * CoerceToDomain represents the operation of coercing a value to a domain
1251  * type. At runtime (and not before) the precise set of constraints to be
1252  * checked will be determined. If the value passes, it is returned as the
1253  * result; if not, an error is raised. Note that this is equivalent to
1254  * RelabelType in the scenario where no constraints are applied.
1255  */
1256 typedef struct CoerceToDomain
1257 {
1259  Expr *arg; /* input expression */
1260  Oid resulttype; /* domain type ID (result type) */
1261  int32 resulttypmod; /* output typmod (currently always -1) */
1262  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1263  CoercionForm coercionformat; /* how to display this node */
1264  int location; /* token location, or -1 if unknown */
1265 } CoerceToDomain;
1266 
1267 /*
1268  * Placeholder node for the value to be processed by a domain's check
1269  * constraint. This is effectively like a Param, but can be implemented more
1270  * simply since we need only one replacement value at a time.
1271  *
1272  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1273  * not the domain itself. This is because we shouldn't consider the value
1274  * to be a member of the domain if we haven't yet checked its constraints.
1275  */
1276 typedef struct CoerceToDomainValue
1277 {
1279  Oid typeId; /* type for substituted value */
1280  int32 typeMod; /* typemod for substituted value */
1281  Oid collation; /* collation for the substituted value */
1282  int location; /* token location, or -1 if unknown */
1284 
1285 /*
1286  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1287  *
1288  * This is not an executable expression: it must be replaced by the actual
1289  * column default expression during rewriting. But it is convenient to
1290  * treat it as an expression node during parsing and rewriting.
1291  */
1292 typedef struct SetToDefault
1293 {
1295  Oid typeId; /* type for substituted value */
1296  int32 typeMod; /* typemod for substituted value */
1297  Oid collation; /* collation for the substituted value */
1298  int location; /* token location, or -1 if unknown */
1299 } SetToDefault;
1300 
1301 /*
1302  * Node representing [WHERE] CURRENT OF cursor_name
1303  *
1304  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1305  * of the target relation being constrained; this aids placing the expression
1306  * correctly during planning. We can assume however that its "levelsup" is
1307  * always zero, due to the syntactic constraints on where it can appear.
1308  *
1309  * The referenced cursor can be represented either as a hardwired string
1310  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1311  * case is for the convenience of plpgsql.
1312  */
1313 typedef struct CurrentOfExpr
1314 {
1316  Index cvarno; /* RT index of target relation */
1317  char *cursor_name; /* name of referenced cursor, or NULL */
1318  int cursor_param; /* refcursor parameter number, or 0 */
1319 } CurrentOfExpr;
1320 
1321 /*
1322  * NextValueExpr - get next value from sequence
1323  *
1324  * This has the same effect as calling the nextval() function, but it does not
1325  * check permissions on the sequence. This is used for identity columns,
1326  * where the sequence is an implicit dependency without its own permissions.
1327  */
1328 typedef struct NextValueExpr
1329 {
1333 } NextValueExpr;
1334 
1335 /*
1336  * InferenceElem - an element of a unique index inference specification
1337  *
1338  * This mostly matches the structure of IndexElems, but having a dedicated
1339  * primnode allows for a clean separation between the use of index parameters
1340  * by utility commands, and this node.
1341  */
1342 typedef struct InferenceElem
1343 {
1345  Node *expr; /* expression to infer from, or NULL */
1346  Oid infercollid; /* OID of collation, or InvalidOid */
1347  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1348 } InferenceElem;
1349 
1350 /*--------------------
1351  * TargetEntry -
1352  * a target entry (used in query target lists)
1353  *
1354  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1355  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1356  * very many places it's convenient to process a whole query targetlist as a
1357  * single expression tree.
1358  *
1359  * In a SELECT's targetlist, resno should always be equal to the item's
1360  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1361  * targetlist, resno represents the attribute number of the destination
1362  * column for the item; so there may be missing or out-of-order resnos.
1363  * It is even legal to have duplicated resnos; consider
1364  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1365  * The two meanings come together in the executor, because the planner
1366  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1367  * one entry for each column of the destination table. Before that's
1368  * happened, however, it is risky to assume that resno == position.
1369  * Generally get_tle_by_resno() should be used rather than list_nth()
1370  * to fetch tlist entries by resno, and only in SELECT should you assume
1371  * that resno is a unique identifier.
1372  *
1373  * resname is required to represent the correct column name in non-resjunk
1374  * entries of top-level SELECT targetlists, since it will be used as the
1375  * column title sent to the frontend. In most other contexts it is only
1376  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1377  * be wrong in a tlist from a stored rule, if the referenced column has been
1378  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1379  * to store NULL rather than look up a valid name for tlist entries in
1380  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1381  * a specific system-generated name (such as "ctid") or NULL; anything else
1382  * risks confusing ExecGetJunkAttribute!
1383  *
1384  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1385  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1386  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1387  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1388  * may have the same nonzero ressortgroupref --- but there is no particular
1389  * meaning to the nonzero values, except as tags. (For example, one must
1390  * not assume that lower ressortgroupref means a more significant sort key.)
1391  * The order of the associated SortGroupClause lists determine the semantics.
1392  *
1393  * resorigtbl/resorigcol identify the source of the column, if it is a
1394  * simple reference to a column of a base table (or view). If it is not
1395  * a simple reference, these fields are zeroes.
1396  *
1397  * If resjunk is true then the column is a working column (such as a sort key)
1398  * that should be removed from the final output of the query. Resjunk columns
1399  * must have resnos that cannot duplicate any regular column's resno. Also
1400  * note that there are places that assume resjunk columns come after non-junk
1401  * columns.
1402  *--------------------
1403  */
1404 typedef struct TargetEntry
1405 {
1407  Expr *expr; /* expression to evaluate */
1408  AttrNumber resno; /* attribute number (see notes above) */
1409  char *resname; /* name of the column (could be NULL) */
1410  Index ressortgroupref; /* nonzero if referenced by a sort/group
1411  * clause */
1412  Oid resorigtbl; /* OID of column's source table */
1413  AttrNumber resorigcol; /* column's number in source table */
1414  bool resjunk; /* set to true to eliminate the attribute from
1415  * final target list */
1416 } TargetEntry;
1417 
1418 
1419 /* ----------------------------------------------------------------
1420  * node types for join trees
1421  *
1422  * The leaves of a join tree structure are RangeTblRef nodes. Above
1423  * these, JoinExpr nodes can appear to denote a specific kind of join
1424  * or qualified join. Also, FromExpr nodes can appear to denote an
1425  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1426  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1427  * may have any number of child nodes, not just two.
1428  *
1429  * NOTE: the top level of a Query's jointree is always a FromExpr.
1430  * Even if the jointree contains no rels, there will be a FromExpr.
1431  *
1432  * NOTE: the qualification expressions present in JoinExpr nodes are
1433  * *in addition to* the query's main WHERE clause, which appears as the
1434  * qual of the top-level FromExpr. The reason for associating quals with
1435  * specific nodes in the jointree is that the position of a qual is critical
1436  * when outer joins are present. (If we enforce a qual too soon or too late,
1437  * that may cause the outer join to produce the wrong set of NULL-extended
1438  * rows.) If all joins are inner joins then all the qual positions are
1439  * semantically interchangeable.
1440  *
1441  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1442  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1443  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1444  * FromExpr is added during parse analysis; the grammar regards FROM and
1445  * WHERE as separate.
1446  * ----------------------------------------------------------------
1447  */
1448 
1449 /*
1450  * RangeTblRef - reference to an entry in the query's rangetable
1451  *
1452  * We could use direct pointers to the RT entries and skip having these
1453  * nodes, but multiple pointers to the same node in a querytree cause
1454  * lots of headaches, so it seems better to store an index into the RT.
1455  */
1456 typedef struct RangeTblRef
1457 {
1459  int rtindex;
1460 } RangeTblRef;
1461 
1462 /*----------
1463  * JoinExpr - for SQL JOIN expressions
1464  *
1465  * isNatural, usingClause, and quals are interdependent. The user can write
1466  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1467  * If he writes NATURAL then parse analysis generates the equivalent USING()
1468  * list, and from that fills in "quals" with the right equality comparisons.
1469  * If he writes USING() then "quals" is filled with equality comparisons.
1470  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1471  * are not equivalent to ON() since they also affect the output column list.
1472  *
1473  * alias is an Alias node representing the AS alias-clause attached to the
1474  * join expression, or NULL if no clause. NB: presence or absence of the
1475  * alias has a critical impact on semantics, because a join with an alias
1476  * restricts visibility of the tables/columns inside it.
1477  *
1478  * During parse analysis, an RTE is created for the Join, and its index
1479  * is filled into rtindex. This RTE is present mainly so that Vars can
1480  * be created that refer to the outputs of the join. The planner sometimes
1481  * generates JoinExprs internally; these can have rtindex = 0 if there are
1482  * no join alias variables referencing such joins.
1483  *----------
1484  */
1485 typedef struct JoinExpr
1486 {
1488  JoinType jointype; /* type of join */
1489  bool isNatural; /* Natural join? Will need to shape table */
1490  Node *larg; /* left subtree */
1491  Node *rarg; /* right subtree */
1492  List *usingClause; /* USING clause, if any (list of String) */
1493  Node *quals; /* qualifiers on join, if any */
1494  Alias *alias; /* user-written alias clause, if any */
1495  int rtindex; /* RT index assigned for join, or 0 */
1496 } JoinExpr;
1497 
1498 /*----------
1499  * FromExpr - represents a FROM ... WHERE ... construct
1500  *
1501  * This is both more flexible than a JoinExpr (it can have any number of
1502  * children, including zero) and less so --- we don't need to deal with
1503  * aliases and so on. The output column set is implicitly just the union
1504  * of the outputs of the children.
1505  *----------
1506  */
1507 typedef struct FromExpr
1508 {
1510  List *fromlist; /* List of join subtrees */
1511  Node *quals; /* qualifiers on join, if any */
1512 } FromExpr;
1513 
1514 /*----------
1515  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1516  *
1517  * The optimizer requires a list of inference elements, and optionally a WHERE
1518  * clause to infer a unique index. The unique index (or, occasionally,
1519  * indexes) inferred are used to arbitrate whether or not the alternative ON
1520  * CONFLICT path is taken.
1521  *----------
1522  */
1523 typedef struct OnConflictExpr
1524 {
1526  OnConflictAction action; /* DO NOTHING or UPDATE? */
1527 
1528  /* Arbiter */
1529  List *arbiterElems; /* unique index arbiter list (of
1530  * InferenceElem's) */
1531  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1532  Oid constraint; /* pg_constraint OID for arbiter */
1533 
1534  /* ON CONFLICT UPDATE */
1535  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1536  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1537  int exclRelIndex; /* RT index of 'excluded' relation */
1538  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1539 } OnConflictExpr;
1540 
1541 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:214
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:321
Oid funcresulttype
Definition: primnodes.h:470
Oid minmaxtype
Definition: primnodes.h:1102
bool multidims
Definition: primnodes.h:992
Expr xpr
Definition: primnodes.h:372
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:713
struct FieldSelect FieldSelect
List * args
Definition: primnodes.h:1106
Expr xpr
Definition: primnodes.h:929
bool aggvariadic
Definition: primnodes.h:324
List * args
Definition: primnodes.h:1022
Expr xpr
Definition: primnodes.h:1218
Node * docexpr
Definition: primnodes.h:87
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1525
Expr * arg
Definition: primnodes.h:791
Index varlevelsup
Definition: primnodes.h:191
OnCommitAction onCommit
Definition: primnodes.h:116
int plan_id
Definition: primnodes.h:709
List * args
Definition: primnodes.h:359
ParamKind
Definition: primnodes.h:251
char * name
Definition: primnodes.h:1182
List * refs
Definition: primnodes.h:361
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:217
List * args
Definition: primnodes.h:377
List * args
Definition: primnodes.h:477
Oid wincollid
Definition: primnodes.h:375
int32 resulttypmod
Definition: primnodes.h:1261
List * colnames
Definition: primnodes.h:89
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:764
char * tableSpaceName
Definition: primnodes.h:117
List * coltypmods
Definition: primnodes.h:91
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1234
Oid funccollid
Definition: primnodes.h:475
int location
Definition: primnodes.h:1189
Oid resulttype
Definition: primnodes.h:835
XmlExprOp
Definition: primnodes.h:1160
OpExpr NullIfExpr
Definition: primnodes.h:544
RowCompareType rctype
Definition: primnodes.h:1070
List * opfamilies
Definition: primnodes.h:1072
NodeTag type
Definition: primnodes.h:84
Oid type
Definition: primnodes.h:1187
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:931
SubLinkType subLinkType
Definition: primnodes.h:704
Expr * arg
Definition: primnodes.h:814
Oid inputcollid
Definition: primnodes.h:315
ParamKind paramkind
Definition: primnodes.h:262
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:525
CoercionForm coercionformat
Definition: primnodes.h:1263
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1412
List * args
Definition: primnodes.h:319
AttrNumber varattno
Definition: primnodes.h:186
Oid array_typeid
Definition: primnodes.h:988
Expr * arg
Definition: primnodes.h:762
List * paramIds
Definition: primnodes.h:707
struct SubscriptingRef SubscriptingRef
bool funcretset
Definition: primnodes.h:471
struct SubPlan SubPlan
struct Expr Expr
List * fromlist
Definition: primnodes.h:1510
Expr xpr
Definition: primnodes.h:1180
NullTestType
Definition: primnodes.h:1211
bool skipData
Definition: primnodes.h:119
Oid casetype
Definition: primnodes.h:930
bool aggstar
Definition: primnodes.h:323
Expr xpr
Definition: primnodes.h:1021
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:183
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:379
char * resname
Definition: primnodes.h:1409
List * arg_names
Definition: primnodes.h:1184
Definition: primnodes.h:181
List * refupperindexpr
Definition: primnodes.h:422
CoercionContext
Definition: primnodes.h:440
Node * quals
Definition: primnodes.h:1511
struct Var Var
int32 typeMod
Definition: primnodes.h:973
int location
Definition: primnodes.h:584
int location
Definition: primnodes.h:946
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1143
NodeTag type
Definition: primnodes.h:1509
List * colcollations
Definition: primnodes.h:92
signed int int32
Definition: c.h:347
struct RelabelType RelabelType
JoinType
Definition: nodes.h:692
List * arbiterElems
Definition: primnodes.h:1529
Expr xpr
Definition: primnodes.h:261
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1490
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:213
Expr xpr
Definition: primnodes.h:515
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:210
List * aggargtypes
Definition: primnodes.h:317
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:474
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Oid opresulttype
Definition: primnodes.h:518
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1093
bool resjunk
Definition: primnodes.h:1414
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:469
List * colnames
Definition: primnodes.h:1038
Node * viewQuery
Definition: primnodes.h:118
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:266
int location
Definition: primnodes.h:267
Oid vartype
Definition: primnodes.h:188
List * args
Definition: primnodes.h:1086
BoolExprType boolop
Definition: primnodes.h:582
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1219
int location
Definition: primnodes.h:329
List * coldefexprs
Definition: primnodes.h:94
Oid constcollid
Definition: primnodes.h:212
Oid resultcollid
Definition: primnodes.h:767
List * ns_names
Definition: primnodes.h:86
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:88
int location
Definition: primnodes.h:196
int location
Definition: primnodes.h:1039
struct Const Const
int32 typeMod
Definition: primnodes.h:1296
int location
Definition: primnodes.h:1107
List * exclRelTlist
Definition: primnodes.h:1538
int location
Definition: primnodes.h:523
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:320
Expr * arg
Definition: primnodes.h:1242
AttrNumber resno
Definition: primnodes.h:1408
Bitmapset * notnulls
Definition: primnodes.h:95
Index agglevelsup
Definition: primnodes.h:327
char * name
Definition: primnodes.h:499
Expr xpr
Definition: primnodes.h:209
char * cursor_name
Definition: primnodes.h:1317
List * aggdirectargs
Definition: primnodes.h:318
Oid resulttype
Definition: primnodes.h:794
Oid winfnoid
Definition: primnodes.h:373
Expr * arg
Definition: primnodes.h:834
List * elements
Definition: primnodes.h:991
struct BooleanTest BooleanTest
Expr * elemexpr
Definition: primnodes.h:859
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:987
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:520
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1121
List * options
Definition: primnodes.h:115
List * newvals
Definition: primnodes.h:792
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:362
Index varnosyn
Definition: primnodes.h:194
SubLinkType
Definition: primnodes.h:638
OnConflictAction action
Definition: primnodes.h:1526
bool isNatural
Definition: primnodes.h:1489
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1492
Expr xpr
Definition: primnodes.h:702
Index varno
Definition: primnodes.h:184
int ordinalitycol
Definition: primnodes.h:96
XmlExprOp op
Definition: primnodes.h:1181
List * args
Definition: primnodes.h:933
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:863
int location
Definition: primnodes.h:221
Node * quals
Definition: primnodes.h:1493
int location
Definition: primnodes.h:993
BoolTestType booltesttype
Definition: primnodes.h:1243
Index agglevelsup
Definition: primnodes.h:363
AttrNumber varattnosyn
Definition: primnodes.h:195
uintptr_t Datum
Definition: postgres.h:367
CoercionForm convertformat
Definition: primnodes.h:886
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:837
Oid opfuncid
Definition: primnodes.h:517
Oid resulttype
Definition: primnodes.h:815
Node * testexpr
Definition: primnodes.h:706
unsigned int Index
Definition: c.h:476
List * coltypes
Definition: primnodes.h:90
NullTestType nulltesttype
Definition: primnodes.h:1220
int32 typmod
Definition: primnodes.h:1188
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:733
Oid resultcollid
Definition: primnodes.h:817
Oid aggfnoid
Definition: primnodes.h:312
List * colexprs
Definition: primnodes.h:93
List * named_args
Definition: primnodes.h:1183
int32 firstColTypmod
Definition: primnodes.h:714
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1056
List * args
Definition: primnodes.h:1185
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:265
char * plan_name
Definition: primnodes.h:711
int location
Definition: primnodes.h:839
Node * rarg
Definition: primnodes.h:1491
Alias * alias
Definition: primnodes.h:1494
Expr * arg
Definition: primnodes.h:498
struct NullTest NullTest
int location
Definition: primnodes.h:382
Oid inputcollid
Definition: primnodes.h:476
JoinType jointype
Definition: primnodes.h:1488
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1458
NodeTag type
Definition: primnodes.h:1487
List * setParam
Definition: primnodes.h:727
List * ns_uris
Definition: primnodes.h:85
Expr * aggfilter
Definition: primnodes.h:378
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1407
AggSplit aggsplit
Definition: primnodes.h:328
XmlOptionType xmloption
Definition: primnodes.h:1186
int paramid
Definition: primnodes.h:263
XmlOptionType
Definition: primnodes.h:1172
Oid array_collid
Definition: primnodes.h:989
bool unknownEqFalse
Definition: primnodes.h:720
int location
Definition: primnodes.h:1222
AggSplit
Definition: nodes.h:776
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:1023
struct RowCompareExpr RowCompareExpr
Oid inputcollid
Definition: primnodes.h:1104
Expr * arg
Definition: primnodes.h:900
Expr xpr
Definition: primnodes.h:581
Expr * aggfilter
Definition: primnodes.h:322
int location
Definition: primnodes.h:935
List * parParam
Definition: primnodes.h:729
Oid inputcollid
Definition: primnodes.h:521
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:376
List * args
Definition: primnodes.h:583
Expr xpr
Definition: primnodes.h:311
bool parallel_safe
Definition: primnodes.h:723
struct Param Param
NodeTag type
Definition: primnodes.h:110
int32 consttypmod
Definition: primnodes.h:211
Oid element_typeid
Definition: primnodes.h:990
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:374
CoercionForm coerceformat
Definition: primnodes.h:838
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1531
Expr * refassgnexpr
Definition: primnodes.h:430
Expr xpr
Definition: primnodes.h:943
AttrNumber resorigcol
Definition: primnodes.h:1413
Oid aggcollid
Definition: primnodes.h:314
Expr xpr
Definition: primnodes.h:468
RangeVar * rel
Definition: primnodes.h:112
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:793
List * reflowerindexpr
Definition: primnodes.h:424
bool winagg
Definition: primnodes.h:381
Oid coalescetype
Definition: primnodes.h:1084
Expr xpr
Definition: primnodes.h:790
Oid aggtranstype
Definition: primnodes.h:316
List * onConflictSet
Definition: primnodes.h:1535
Oid varcollid
Definition: primnodes.h:190
Index ressortgroupref
Definition: primnodes.h:1410
Oid aggtype
Definition: primnodes.h:313
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:536
NodeTag type
Definition: primnodes.h:138
bool useHashTable
Definition: primnodes.h:718
Oid refcontainertype
Definition: primnodes.h:418
bool argisrow
Definition: primnodes.h:1221
MinMaxOp op
Definition: primnodes.h:1105
Oid minmaxcollid
Definition: primnodes.h:1103
Oid firstColCollation
Definition: primnodes.h:715
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:326
Cost startup_cost
Definition: primnodes.h:732
Expr * refexpr
Definition: primnodes.h:427
int32 resulttypmod
Definition: primnodes.h:816
Expr * arg
Definition: primnodes.h:932
int location
Definition: primnodes.h:478
Oid opno
Definition: primnodes.h:516
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:861
Expr * result
Definition: primnodes.h:945
List * colNames
Definition: primnodes.h:113
List * args
Definition: primnodes.h:522
List * inputcollids
Definition: primnodes.h:1073
int location
Definition: primnodes.h:97
CoercionForm relabelformat
Definition: primnodes.h:818
Expr * defresult
Definition: primnodes.h:934
Expr * expr
Definition: primnodes.h:944
int location
Definition: primnodes.h:902
CoercionForm row_format
Definition: primnodes.h:1037
CoercionForm
Definition: primnodes.h:456
Node * onConflictWhere
Definition: primnodes.h:1536
int rtindex
Definition: primnodes.h:1495
Definition: pg_list.h:50
OnConflictAction
Definition: nodes.h:818
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:264
int location
Definition: primnodes.h:819
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:215
Oid coalescecollid
Definition: primnodes.h:1085
bool funcvariadic
Definition: primnodes.h:472
char * accessMethod
Definition: primnodes.h:114
double Cost
Definition: nodes.h:659
struct CaseExpr CaseExpr
bool opretset
Definition: primnodes.h:519
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:766
bool winstar
Definition: primnodes.h:380
AttrNumber fieldnum
Definition: primnodes.h:763
BoolExprType
Definition: primnodes.h:574
int32 vartypmod
Definition: primnodes.h:189
List * args
Definition: primnodes.h:730