PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings). In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  */
79 typedef struct TableFunc
80 {
82  List *ns_uris; /* list of namespace uri */
83  List *ns_names; /* list of namespace names */
84  Node *docexpr; /* input document expression */
85  Node *rowexpr; /* row filter expression */
86  List *colnames; /* column names (list of String) */
87  List *coltypes; /* OID list of column type OIDs */
88  List *coltypmods; /* integer list of column typmods */
89  List *colcollations; /* OID list of column collation OIDs */
90  List *colexprs; /* list of column filter expressions */
91  List *coldefexprs; /* list of column default expressions */
92  Bitmapset *notnulls; /* nullability flag for each output column */
93  int ordinalitycol; /* counts from 0; -1 if none specified */
94  int location; /* token location, or -1 if unknown */
95 } TableFunc;
96 
97 /*
98  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
99  * CREATE MATERIALIZED VIEW
100  *
101  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
102  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
103  * Query*, we declare it as Node* to avoid a forward reference.)
104  */
105 typedef struct IntoClause
106 {
108 
109  RangeVar *rel; /* target relation name */
110  List *colNames; /* column names to assign, or NIL */
111  List *options; /* options from WITH clause */
112  OnCommitAction onCommit; /* what do we do at COMMIT? */
113  char *tableSpaceName; /* table space to use, or NULL */
114  Node *viewQuery; /* materialized view's SELECT query */
115  bool skipData; /* true for WITH NO DATA */
116 } IntoClause;
117 
118 
119 /* ----------------------------------------------------------------
120  * node types for executable expressions
121  * ----------------------------------------------------------------
122  */
123 
124 /*
125  * Expr - generic superclass for executable-expression nodes
126  *
127  * All node types that are used in executable expression trees should derive
128  * from Expr (that is, have Expr as their first field). Since Expr only
129  * contains NodeTag, this is a formality, but it is an easy form of
130  * documentation. See also the ExprState node types in execnodes.h.
131  */
132 typedef struct Expr
133 {
135 } Expr;
136 
137 /*
138  * Var - expression node representing a variable (ie, a table column)
139  *
140  * Note: during parsing/planning, varnoold/varoattno are always just copies
141  * of varno/varattno. At the tail end of planning, Var nodes appearing in
142  * upper-level plan nodes are reassigned to point to the outputs of their
143  * subplans; for example, in a join node varno becomes INNER_VAR or OUTER_VAR
144  * and varattno becomes the index of the proper element of that subplan's
145  * target list. Similarly, INDEX_VAR is used to identify Vars that reference
146  * an index column rather than a heap column. (In ForeignScan and CustomScan
147  * plan nodes, INDEX_VAR is abused to signify references to columns of a
148  * custom scan tuple type.) In all these cases, varnoold/varoattno hold the
149  * original values. The code doesn't really need varnoold/varoattno, but they
150  * are very useful for debugging and interpreting completed plans, so we keep
151  * them around.
152  */
153 #define INNER_VAR 65000 /* reference to inner subplan */
154 #define OUTER_VAR 65001 /* reference to outer subplan */
155 #define INDEX_VAR 65002 /* reference to index column */
156 
157 #define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
158 
159 /* Symbols for the indexes of the special RTE entries in rules */
160 #define PRS2_OLD_VARNO 1
161 #define PRS2_NEW_VARNO 2
162 
163 typedef struct Var
164 {
166  Index varno; /* index of this var's relation in the range
167  * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
168  AttrNumber varattno; /* attribute number of this var, or zero for
169  * all */
170  Oid vartype; /* pg_type OID for the type of this var */
171  int32 vartypmod; /* pg_attribute typmod value */
172  Oid varcollid; /* OID of collation, or InvalidOid if none */
173  Index varlevelsup; /* for subquery variables referencing outer
174  * relations; 0 in a normal var, >0 means N
175  * levels up */
176  Index varnoold; /* original value of varno, for debugging */
177  AttrNumber varoattno; /* original value of varattno */
178  int location; /* token location, or -1 if unknown */
179 } Var;
180 
181 /*
182  * Const
183  *
184  * Note: for varlena data types, we make a rule that a Const node's value
185  * must be in non-extended form (4-byte header, no compression or external
186  * references). This ensures that the Const node is self-contained and makes
187  * it more likely that equal() will see logically identical values as equal.
188  */
189 typedef struct Const
190 {
192  Oid consttype; /* pg_type OID of the constant's datatype */
193  int32 consttypmod; /* typmod value, if any */
194  Oid constcollid; /* OID of collation, or InvalidOid if none */
195  int constlen; /* typlen of the constant's datatype */
196  Datum constvalue; /* the constant's value */
197  bool constisnull; /* whether the constant is null (if true,
198  * constvalue is undefined) */
199  bool constbyval; /* whether this datatype is passed by value.
200  * If true, then all the information is stored
201  * in the Datum. If false, then the Datum
202  * contains a pointer to the information. */
203  int location; /* token location, or -1 if unknown */
204 } Const;
205 
206 /*
207  * Param
208  *
209  * paramkind specifies the kind of parameter. The possible values
210  * for this field are:
211  *
212  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
213  * Such parameters are numbered from 1 to n.
214  *
215  * PARAM_EXEC: The parameter is an internal executor parameter, used
216  * for passing values into and out of sub-queries or from
217  * nestloop joins to their inner scans.
218  * For historical reasons, such parameters are numbered from 0.
219  * These numbers are independent of PARAM_EXTERN numbers.
220  *
221  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
222  * node's sub-select. The column number is contained in the
223  * `paramid' field. (This type of Param is converted to
224  * PARAM_EXEC during planning.)
225  *
226  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
227  * output column of a SubLink node's sub-select, but here, the
228  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
229  * of the `paramid' field contain the SubLink's subLinkId, and
230  * the low-order 16 bits contain the column number. (This type
231  * of Param is also converted to PARAM_EXEC during planning.)
232  */
233 typedef enum ParamKind
234 {
239 } ParamKind;
240 
241 typedef struct Param
242 {
244  ParamKind paramkind; /* kind of parameter. See above */
245  int paramid; /* numeric ID for parameter */
246  Oid paramtype; /* pg_type OID of parameter's datatype */
247  int32 paramtypmod; /* typmod value, if known */
248  Oid paramcollid; /* OID of collation, or InvalidOid if none */
249  int location; /* token location, or -1 if unknown */
250 } Param;
251 
252 /*
253  * Aggref
254  *
255  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
256  *
257  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
258  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
259  * be added at the end to represent ORDER BY expressions that are not also
260  * arguments. As in a top-level Query, the TLEs can be marked with
261  * ressortgroupref indexes to let them be referenced by SortGroupClause
262  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
263  * and DISTINCT operations to be applied to the aggregate input rows before
264  * they are passed to the transition function. The grammar only allows a
265  * simple "DISTINCT" specifier for the arguments, but we use the full
266  * query-level representation to allow more code sharing.
267  *
268  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
269  * (aggregated) arguments, all of which will be listed in the aggorder list.
270  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
271  * The direct arguments appear in aggdirectargs (as a list of plain
272  * expressions, not TargetEntry nodes).
273  *
274  * aggtranstype is the data type of the state transition values for this
275  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
276  * This is determined during planning and is InvalidOid before that.
277  *
278  * aggargtypes is an OID list of the data types of the direct and regular
279  * arguments. Normally it's redundant with the aggdirectargs and args lists,
280  * but in a combining aggregate, it's not because the args list has been
281  * replaced with a single argument representing the partial-aggregate
282  * transition values.
283  *
284  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
285  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
286  * the planner might change it to something else. We use this mainly as
287  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
288  * indicates a non-final mode, aggtype reflects the transition data type
289  * not the SQL-level output type of the aggregate.
290  */
291 typedef struct Aggref
292 {
294  Oid aggfnoid; /* pg_proc Oid of the aggregate */
295  Oid aggtype; /* type Oid of result of the aggregate */
296  Oid aggcollid; /* OID of collation of result */
297  Oid inputcollid; /* OID of collation that function should use */
298  Oid aggtranstype; /* type Oid of aggregate's transition value */
299  List *aggargtypes; /* type Oids of direct and aggregated args */
300  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
301  List *args; /* aggregated arguments and sort expressions */
302  List *aggorder; /* ORDER BY (list of SortGroupClause) */
303  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
304  Expr *aggfilter; /* FILTER expression, if any */
305  bool aggstar; /* TRUE if argument list was really '*' */
306  bool aggvariadic; /* true if variadic arguments have been
307  * combined into an array last argument */
308  char aggkind; /* aggregate kind (see pg_aggregate.h) */
309  Index agglevelsup; /* > 0 if agg belongs to outer query */
310  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
311  int location; /* token location, or -1 if unknown */
312 } Aggref;
313 
314 /*
315  * GroupingFunc
316  *
317  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
318  * like an aggregate function (e.g. it "belongs" to a specific query level,
319  * which might not be the one immediately containing it), but also differs in
320  * an important respect: it never evaluates its arguments, they merely
321  * designate expressions from the GROUP BY clause of the query level to which
322  * it belongs.
323  *
324  * The spec defines the evaluation of GROUPING() purely by syntactic
325  * replacement, but we make it a real expression for optimization purposes so
326  * that one Agg node can handle multiple grouping sets at once. Evaluating the
327  * result only needs the column positions to check against the grouping set
328  * being projected. However, for EXPLAIN to produce meaningful output, we have
329  * to keep the original expressions around, since expression deparse does not
330  * give us any feasible way to get at the GROUP BY clause.
331  *
332  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
333  * lists and agglevelsup, without comparing the refs and cols annotations.
334  *
335  * In raw parse output we have only the args list; parse analysis fills in the
336  * refs list, and the planner fills in the cols list.
337  */
338 typedef struct GroupingFunc
339 {
341  List *args; /* arguments, not evaluated but kept for
342  * benefit of EXPLAIN etc. */
343  List *refs; /* ressortgrouprefs of arguments */
344  List *cols; /* actual column positions set by planner */
345  Index agglevelsup; /* same as Aggref.agglevelsup */
346  int location; /* token location */
347 } GroupingFunc;
348 
349 /*
350  * WindowFunc
351  */
352 typedef struct WindowFunc
353 {
355  Oid winfnoid; /* pg_proc Oid of the function */
356  Oid wintype; /* type Oid of result of the window function */
357  Oid wincollid; /* OID of collation of result */
358  Oid inputcollid; /* OID of collation that function should use */
359  List *args; /* arguments to the window function */
360  Expr *aggfilter; /* FILTER expression, if any */
361  Index winref; /* index of associated WindowClause */
362  bool winstar; /* TRUE if argument list was really '*' */
363  bool winagg; /* is function a simple aggregate? */
364  int location; /* token location, or -1 if unknown */
365 } WindowFunc;
366 
367 /* ----------------
368  * ArrayRef: describes an array subscripting operation
369  *
370  * An ArrayRef can describe fetching a single element from an array,
371  * fetching a subarray (array slice), storing a single element into
372  * an array, or storing a slice. The "store" cases work with an
373  * initial array value and a source value that is inserted into the
374  * appropriate part of the array; the result of the operation is an
375  * entire new modified array value.
376  *
377  * If reflowerindexpr = NIL, then we are fetching or storing a single array
378  * element at the subscripts given by refupperindexpr. Otherwise we are
379  * fetching or storing an array slice, that is a rectangular subarray
380  * with lower and upper bounds given by the index expressions.
381  * reflowerindexpr must be the same length as refupperindexpr when it
382  * is not NIL.
383  *
384  * In the slice case, individual expressions in the subscript lists can be
385  * NULL, meaning "substitute the array's current lower or upper bound".
386  *
387  * Note: the result datatype is the element type when fetching a single
388  * element; but it is the array type when doing subarray fetch or either
389  * type of store.
390  *
391  * Note: for the cases where an array is returned, if refexpr yields a R/W
392  * expanded array, then the implementation is allowed to modify that object
393  * in-place and return the same object.)
394  * ----------------
395  */
396 typedef struct ArrayRef
397 {
399  Oid refarraytype; /* type of the array proper */
400  Oid refelemtype; /* type of the array elements */
401  int32 reftypmod; /* typmod of the array (and elements too) */
402  Oid refcollid; /* OID of collation, or InvalidOid if none */
403  List *refupperindexpr; /* expressions that evaluate to upper
404  * array indexes */
405  List *reflowerindexpr; /* expressions that evaluate to lower
406  * array indexes, or NIL for single array
407  * element */
408  Expr *refexpr; /* the expression that evaluates to an array
409  * value */
410  Expr *refassgnexpr; /* expression for the source value, or NULL if
411  * fetch */
412 } ArrayRef;
413 
414 /*
415  * CoercionContext - distinguishes the allowed set of type casts
416  *
417  * NB: ordering of the alternatives is significant; later (larger) values
418  * allow more casts than earlier ones.
419  */
420 typedef enum CoercionContext
421 {
422  COERCION_IMPLICIT, /* coercion in context of expression */
423  COERCION_ASSIGNMENT, /* coercion in context of assignment */
424  COERCION_EXPLICIT /* explicit cast operation */
426 
427 /*
428  * CoercionForm - how to display a node that could have come from a cast
429  *
430  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
431  * any semantically significant information. We need that behavior so that
432  * the planner will consider equivalent implicit and explicit casts to be
433  * equivalent. In cases where those actually behave differently, the coercion
434  * function's arguments will be different.
435  */
436 typedef enum CoercionForm
437 {
438  COERCE_EXPLICIT_CALL, /* display as a function call */
439  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
440  COERCE_IMPLICIT_CAST /* implicit cast, so hide it */
441 } CoercionForm;
442 
443 /*
444  * FuncExpr - expression node for a function call
445  */
446 typedef struct FuncExpr
447 {
449  Oid funcid; /* PG_PROC OID of the function */
450  Oid funcresulttype; /* PG_TYPE OID of result value */
451  bool funcretset; /* true if function returns set */
452  bool funcvariadic; /* true if variadic arguments have been
453  * combined into an array last argument */
454  CoercionForm funcformat; /* how to display this function call */
455  Oid funccollid; /* OID of collation of result */
456  Oid inputcollid; /* OID of collation that function should use */
457  List *args; /* arguments to the function */
458  int location; /* token location, or -1 if unknown */
459 } FuncExpr;
460 
461 /*
462  * NamedArgExpr - a named argument of a function
463  *
464  * This node type can only appear in the args list of a FuncCall or FuncExpr
465  * node. We support pure positional call notation (no named arguments),
466  * named notation (all arguments are named), and mixed notation (unnamed
467  * arguments followed by named ones).
468  *
469  * Parse analysis sets argnumber to the positional index of the argument,
470  * but doesn't rearrange the argument list.
471  *
472  * The planner will convert argument lists to pure positional notation
473  * during expression preprocessing, so execution never sees a NamedArgExpr.
474  */
475 typedef struct NamedArgExpr
476 {
478  Expr *arg; /* the argument expression */
479  char *name; /* the name */
480  int argnumber; /* argument's number in positional notation */
481  int location; /* argument name location, or -1 if unknown */
482 } NamedArgExpr;
483 
484 /*
485  * OpExpr - expression node for an operator invocation
486  *
487  * Semantically, this is essentially the same as a function call.
488  *
489  * Note that opfuncid is not necessarily filled in immediately on creation
490  * of the node. The planner makes sure it is valid before passing the node
491  * tree to the executor, but during parsing/planning opfuncid can be 0.
492  */
493 typedef struct OpExpr
494 {
496  Oid opno; /* PG_OPERATOR OID of the operator */
497  Oid opfuncid; /* PG_PROC OID of underlying function */
498  Oid opresulttype; /* PG_TYPE OID of result value */
499  bool opretset; /* true if operator returns set */
500  Oid opcollid; /* OID of collation of result */
501  Oid inputcollid; /* OID of collation that operator should use */
502  List *args; /* arguments to the operator (1 or 2) */
503  int location; /* token location, or -1 if unknown */
504 } OpExpr;
505 
506 /*
507  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
508  *
509  * Except for the nodetag, this is represented identically to an OpExpr
510  * referencing the "=" operator for x and y.
511  * We use "=", not the more obvious "<>", because more datatypes have "="
512  * than "<>". This means the executor must invert the operator result.
513  * Note that the operator function won't be called at all if either input
514  * is NULL, since then the result can be determined directly.
515  */
517 
518 /*
519  * NullIfExpr - a NULLIF expression
520  *
521  * Like DistinctExpr, this is represented the same as an OpExpr referencing
522  * the "=" operator for x and y.
523  */
525 
526 /*
527  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
528  *
529  * The operator must yield boolean. It is applied to the left operand
530  * and each element of the righthand array, and the results are combined
531  * with OR or AND (for ANY or ALL respectively). The node representation
532  * is almost the same as for the underlying operator, but we need a useOr
533  * flag to remember whether it's ANY or ALL, and we don't have to store
534  * the result type (or the collation) because it must be boolean.
535  */
536 typedef struct ScalarArrayOpExpr
537 {
539  Oid opno; /* PG_OPERATOR OID of the operator */
540  Oid opfuncid; /* PG_PROC OID of underlying function */
541  bool useOr; /* true for ANY, false for ALL */
542  Oid inputcollid; /* OID of collation that operator should use */
543  List *args; /* the scalar and array operands */
544  int location; /* token location, or -1 if unknown */
546 
547 /*
548  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
549  *
550  * Notice the arguments are given as a List. For NOT, of course the list
551  * must always have exactly one element. For AND and OR, there can be two
552  * or more arguments.
553  */
554 typedef enum BoolExprType
555 {
557 } BoolExprType;
558 
559 typedef struct BoolExpr
560 {
563  List *args; /* arguments to this expression */
564  int location; /* token location, or -1 if unknown */
565 } BoolExpr;
566 
567 /*
568  * SubLink
569  *
570  * A SubLink represents a subselect appearing in an expression, and in some
571  * cases also the combining operator(s) just above it. The subLinkType
572  * indicates the form of the expression represented:
573  * EXISTS_SUBLINK EXISTS(SELECT ...)
574  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
575  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
576  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
577  * EXPR_SUBLINK (SELECT with single targetlist item ...)
578  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
579  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
580  * CTE_SUBLINK WITH query (never actually part of an expression)
581  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
582  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
583  * a list with more than one entry; if the subselect has just one target
584  * then the parser will create an EXPR_SUBLINK instead (and any operator
585  * above the subselect will be represented separately).
586  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
587  * one row (if it returns no rows, the result is NULL).
588  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
589  * results. ALL and ANY combine the per-row results using AND and OR
590  * semantics respectively.
591  * ARRAY requires just one target column, and creates an array of the target
592  * column's type using any number of rows resulting from the subselect.
593  *
594  * SubLink is classed as an Expr node, but it is not actually executable;
595  * it must be replaced in the expression tree by a SubPlan node during
596  * planning.
597  *
598  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
599  * of the lefthand expression (if any), and operName is the String name of
600  * the combining operator. Also, subselect is a raw parsetree. During parse
601  * analysis, the parser transforms testexpr into a complete boolean expression
602  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
603  * output columns of the subselect. And subselect is transformed to a Query.
604  * This is the representation seen in saved rules and in the rewriter.
605  *
606  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
607  * are unused and are always null.
608  *
609  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
610  * other SubLinks. This number identifies different multiple-assignment
611  * subqueries within an UPDATE statement's SET list. It is unique only
612  * within a particular targetlist. The output column(s) of the MULTIEXPR
613  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
614  *
615  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
616  * in SubPlans generated for WITH subqueries.
617  */
618 typedef enum SubLinkType
619 {
627  CTE_SUBLINK /* for SubPlans only */
628 } SubLinkType;
629 
630 
631 typedef struct SubLink
632 {
634  SubLinkType subLinkType; /* see above */
635  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
636  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
637  List *operName; /* originally specified operator name */
638  Node *subselect; /* subselect as Query* or raw parsetree */
639  int location; /* token location, or -1 if unknown */
640 } SubLink;
641 
642 /*
643  * SubPlan - executable expression node for a subplan (sub-SELECT)
644  *
645  * The planner replaces SubLink nodes in expression trees with SubPlan
646  * nodes after it has finished planning the subquery. SubPlan references
647  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
648  * (We avoid a direct link to make it easier to copy expression trees
649  * without causing multiple processing of the subplan.)
650  *
651  * In an ordinary subplan, testexpr points to an executable expression
652  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
653  * operator(s); the left-hand arguments are the original lefthand expressions,
654  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
655  * outputs of the sub-select. (NOTE: runtime coercion functions may be
656  * inserted as well.) This is just the same expression tree as testexpr in
657  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
658  * suitably numbered PARAM_EXEC nodes.
659  *
660  * If the sub-select becomes an initplan rather than a subplan, the executable
661  * expression is part of the outer plan's expression tree (and the SubPlan
662  * node itself is not, but rather is found in the outer plan's initPlan
663  * list). In this case testexpr is NULL to avoid duplication.
664  *
665  * The planner also derives lists of the values that need to be passed into
666  * and out of the subplan. Input values are represented as a list "args" of
667  * expressions to be evaluated in the outer-query context (currently these
668  * args are always just Vars, but in principle they could be any expression).
669  * The values are assigned to the global PARAM_EXEC params indexed by parParam
670  * (the parParam and args lists must have the same ordering). setParam is a
671  * list of the PARAM_EXEC params that are computed by the sub-select, if it
672  * is an initplan; they are listed in order by sub-select output column
673  * position. (parParam and setParam are integer Lists, not Bitmapsets,
674  * because their ordering is significant.)
675  *
676  * Also, the planner computes startup and per-call costs for use of the
677  * SubPlan. Note that these include the cost of the subquery proper,
678  * evaluation of the testexpr if any, and any hashtable management overhead.
679  */
680 typedef struct SubPlan
681 {
683  /* Fields copied from original SubLink: */
684  SubLinkType subLinkType; /* see above */
685  /* The combining operators, transformed to an executable expression: */
686  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
687  List *paramIds; /* IDs of Params embedded in the above */
688  /* Identification of the Plan tree to use: */
689  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
690  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
691  char *plan_name; /* A name assigned during planning */
692  /* Extra data useful for determining subplan's output type: */
693  Oid firstColType; /* Type of first column of subplan result */
694  int32 firstColTypmod; /* Typmod of first column of subplan result */
695  Oid firstColCollation; /* Collation of first column of subplan
696  * result */
697  /* Information about execution strategy: */
698  bool useHashTable; /* TRUE to store subselect output in a hash
699  * table (implies we are doing "IN") */
700  bool unknownEqFalse; /* TRUE if it's okay to return FALSE when the
701  * spec result is UNKNOWN; this allows much
702  * simpler handling of null values */
703  bool parallel_safe; /* is the subplan parallel-safe? */
704  /* Note: parallel_safe does not consider contents of testexpr or args */
705  /* Information for passing params into and out of the subselect: */
706  /* setParam and parParam are lists of integers (param IDs) */
707  List *setParam; /* initplan subqueries have to set these
708  * Params for parent plan */
709  List *parParam; /* indices of input Params from parent plan */
710  List *args; /* exprs to pass as parParam values */
711  /* Estimated execution costs: */
712  Cost startup_cost; /* one-time setup cost */
713  Cost per_call_cost; /* cost for each subplan evaluation */
714 } SubPlan;
715 
716 /*
717  * AlternativeSubPlan - expression node for a choice among SubPlans
718  *
719  * The subplans are given as a List so that the node definition need not
720  * change if there's ever more than two alternatives. For the moment,
721  * though, there are always exactly two; and the first one is the fast-start
722  * plan.
723  */
724 typedef struct AlternativeSubPlan
725 {
727  List *subplans; /* SubPlan(s) with equivalent results */
729 
730 /* ----------------
731  * FieldSelect
732  *
733  * FieldSelect represents the operation of extracting one field from a tuple
734  * value. At runtime, the input expression is expected to yield a rowtype
735  * Datum. The specified field number is extracted and returned as a Datum.
736  * ----------------
737  */
738 
739 typedef struct FieldSelect
740 {
742  Expr *arg; /* input expression */
743  AttrNumber fieldnum; /* attribute number of field to extract */
744  Oid resulttype; /* type of the field (result type of this
745  * node) */
746  int32 resulttypmod; /* output typmod (usually -1) */
747  Oid resultcollid; /* OID of collation of the field */
748 } FieldSelect;
749 
750 /* ----------------
751  * FieldStore
752  *
753  * FieldStore represents the operation of modifying one field in a tuple
754  * value, yielding a new tuple value (the input is not touched!). Like
755  * the assign case of ArrayRef, this is used to implement UPDATE of a
756  * portion of a column.
757  *
758  * A single FieldStore can actually represent updates of several different
759  * fields. The parser only generates FieldStores with single-element lists,
760  * but the planner will collapse multiple updates of the same base column
761  * into one FieldStore.
762  * ----------------
763  */
764 
765 typedef struct FieldStore
766 {
768  Expr *arg; /* input tuple value */
769  List *newvals; /* new value(s) for field(s) */
770  List *fieldnums; /* integer list of field attnums */
771  Oid resulttype; /* type of result (same as type of arg) */
772  /* Like RowExpr, we deliberately omit a typmod and collation here */
773 } FieldStore;
774 
775 /* ----------------
776  * RelabelType
777  *
778  * RelabelType represents a "dummy" type coercion between two binary-
779  * compatible datatypes, such as reinterpreting the result of an OID
780  * expression as an int4. It is a no-op at runtime; we only need it
781  * to provide a place to store the correct type to be attributed to
782  * the expression result during type resolution. (We can't get away
783  * with just overwriting the type field of the input expression node,
784  * so we need a separate node to show the coercion's result type.)
785  * ----------------
786  */
787 
788 typedef struct RelabelType
789 {
791  Expr *arg; /* input expression */
792  Oid resulttype; /* output type of coercion expression */
793  int32 resulttypmod; /* output typmod (usually -1) */
794  Oid resultcollid; /* OID of collation, or InvalidOid if none */
795  CoercionForm relabelformat; /* how to display this node */
796  int location; /* token location, or -1 if unknown */
797 } RelabelType;
798 
799 /* ----------------
800  * CoerceViaIO
801  *
802  * CoerceViaIO represents a type coercion between two types whose textual
803  * representations are compatible, implemented by invoking the source type's
804  * typoutput function then the destination type's typinput function.
805  * ----------------
806  */
807 
808 typedef struct CoerceViaIO
809 {
811  Expr *arg; /* input expression */
812  Oid resulttype; /* output type of coercion */
813  /* output typmod is not stored, but is presumed -1 */
814  Oid resultcollid; /* OID of collation, or InvalidOid if none */
815  CoercionForm coerceformat; /* how to display this node */
816  int location; /* token location, or -1 if unknown */
817 } CoerceViaIO;
818 
819 /* ----------------
820  * ArrayCoerceExpr
821  *
822  * ArrayCoerceExpr represents a type coercion from one array type to another,
823  * which is implemented by applying the indicated element-type coercion
824  * function to each element of the source array. If elemfuncid is InvalidOid
825  * then the element types are binary-compatible, but the coercion still
826  * requires some effort (we have to fix the element type ID stored in the
827  * array header).
828  * ----------------
829  */
830 
831 typedef struct ArrayCoerceExpr
832 {
834  Expr *arg; /* input expression (yields an array) */
835  Oid elemfuncid; /* OID of element coercion function, or 0 */
836  Oid resulttype; /* output type of coercion (an array type) */
837  int32 resulttypmod; /* output typmod (also element typmod) */
838  Oid resultcollid; /* OID of collation, or InvalidOid if none */
839  bool isExplicit; /* conversion semantics flag to pass to func */
840  CoercionForm coerceformat; /* how to display this node */
841  int location; /* token location, or -1 if unknown */
843 
844 /* ----------------
845  * ConvertRowtypeExpr
846  *
847  * ConvertRowtypeExpr represents a type coercion from one composite type
848  * to another, where the source type is guaranteed to contain all the columns
849  * needed for the destination type plus possibly others; the columns need not
850  * be in the same positions, but are matched up by name. This is primarily
851  * used to convert a whole-row value of an inheritance child table into a
852  * valid whole-row value of its parent table's rowtype.
853  * ----------------
854  */
855 
856 typedef struct ConvertRowtypeExpr
857 {
859  Expr *arg; /* input expression */
860  Oid resulttype; /* output type (always a composite type) */
861  /* Like RowExpr, we deliberately omit a typmod and collation here */
862  CoercionForm convertformat; /* how to display this node */
863  int location; /* token location, or -1 if unknown */
865 
866 /*----------
867  * CollateExpr - COLLATE
868  *
869  * The planner replaces CollateExpr with RelabelType during expression
870  * preprocessing, so execution never sees a CollateExpr.
871  *----------
872  */
873 typedef struct CollateExpr
874 {
876  Expr *arg; /* input expression */
877  Oid collOid; /* collation's OID */
878  int location; /* token location, or -1 if unknown */
879 } CollateExpr;
880 
881 /*----------
882  * CaseExpr - a CASE expression
883  *
884  * We support two distinct forms of CASE expression:
885  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
886  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
887  * These are distinguishable by the "arg" field being NULL in the first case
888  * and the testexpr in the second case.
889  *
890  * In the raw grammar output for the second form, the condition expressions
891  * of the WHEN clauses are just the comparison values. Parse analysis
892  * converts these to valid boolean expressions of the form
893  * CaseTestExpr '=' compexpr
894  * where the CaseTestExpr node is a placeholder that emits the correct
895  * value at runtime. This structure is used so that the testexpr need be
896  * evaluated only once. Note that after parse analysis, the condition
897  * expressions always yield boolean.
898  *
899  * Note: we can test whether a CaseExpr has been through parse analysis
900  * yet by checking whether casetype is InvalidOid or not.
901  *----------
902  */
903 typedef struct CaseExpr
904 {
906  Oid casetype; /* type of expression result */
907  Oid casecollid; /* OID of collation, or InvalidOid if none */
908  Expr *arg; /* implicit equality comparison argument */
909  List *args; /* the arguments (list of WHEN clauses) */
910  Expr *defresult; /* the default result (ELSE clause) */
911  int location; /* token location, or -1 if unknown */
912 } CaseExpr;
913 
914 /*
915  * CaseWhen - one arm of a CASE expression
916  */
917 typedef struct CaseWhen
918 {
920  Expr *expr; /* condition expression */
921  Expr *result; /* substitution result */
922  int location; /* token location, or -1 if unknown */
923 } CaseWhen;
924 
925 /*
926  * Placeholder node for the test value to be processed by a CASE expression.
927  * This is effectively like a Param, but can be implemented more simply
928  * since we need only one replacement value at a time.
929  *
930  * We also use this in nested UPDATE expressions.
931  * See transformAssignmentIndirection().
932  */
933 typedef struct CaseTestExpr
934 {
936  Oid typeId; /* type for substituted value */
937  int32 typeMod; /* typemod for substituted value */
938  Oid collation; /* collation for the substituted value */
939 } CaseTestExpr;
940 
941 /*
942  * ArrayExpr - an ARRAY[] expression
943  *
944  * Note: if multidims is false, the constituent expressions all yield the
945  * scalar type identified by element_typeid. If multidims is true, the
946  * constituent expressions all yield arrays of element_typeid (ie, the same
947  * type as array_typeid); at runtime we must check for compatible subscripts.
948  */
949 typedef struct ArrayExpr
950 {
952  Oid array_typeid; /* type of expression result */
953  Oid array_collid; /* OID of collation, or InvalidOid if none */
954  Oid element_typeid; /* common type of array elements */
955  List *elements; /* the array elements or sub-arrays */
956  bool multidims; /* true if elements are sub-arrays */
957  int location; /* token location, or -1 if unknown */
958 } ArrayExpr;
959 
960 /*
961  * RowExpr - a ROW() expression
962  *
963  * Note: the list of fields must have a one-for-one correspondence with
964  * physical fields of the associated rowtype, although it is okay for it
965  * to be shorter than the rowtype. That is, the N'th list element must
966  * match up with the N'th physical field. When the N'th physical field
967  * is a dropped column (attisdropped) then the N'th list element can just
968  * be a NULL constant. (This case can only occur for named composite types,
969  * not RECORD types, since those are built from the RowExpr itself rather
970  * than vice versa.) It is important not to assume that length(args) is
971  * the same as the number of columns logically present in the rowtype.
972  *
973  * colnames provides field names in cases where the names can't easily be
974  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
975  * If row_typeid identifies a known composite type, colnames can be NIL to
976  * indicate the type's cataloged field names apply. Note that colnames can
977  * be non-NIL even for a composite type, and typically is when the RowExpr
978  * was created by expanding a whole-row Var. This is so that we can retain
979  * the column alias names of the RTE that the Var referenced (which would
980  * otherwise be very difficult to extract from the parsetree). Like the
981  * args list, colnames is one-for-one with physical fields of the rowtype.
982  */
983 typedef struct RowExpr
984 {
986  List *args; /* the fields */
987  Oid row_typeid; /* RECORDOID or a composite type's ID */
988 
989  /*
990  * Note: we deliberately do NOT store a typmod. Although a typmod will be
991  * associated with specific RECORD types at runtime, it will differ for
992  * different backends, and so cannot safely be stored in stored
993  * parsetrees. We must assume typmod -1 for a RowExpr node.
994  *
995  * We don't need to store a collation either. The result type is
996  * necessarily composite, and composite types never have a collation.
997  */
998  CoercionForm row_format; /* how to display this node */
999  List *colnames; /* list of String, or NIL */
1000  int location; /* token location, or -1 if unknown */
1001 } RowExpr;
1002 
1003 /*
1004  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1005  *
1006  * We support row comparison for any operator that can be determined to
1007  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1008  * operator in btree opfamilies). Note that the same operator name might
1009  * map to a different operator for each pair of row elements, since the
1010  * element datatypes can vary.
1011  *
1012  * A RowCompareExpr node is only generated for the < <= > >= cases;
1013  * the = and <> cases are translated to simple AND or OR combinations
1014  * of the pairwise comparisons. However, we include = and <> in the
1015  * RowCompareType enum for the convenience of parser logic.
1016  */
1017 typedef enum RowCompareType
1018 {
1019  /* Values of this enum are chosen to match btree strategy numbers */
1020  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1021  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1022  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1023  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1024  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1025  ROWCOMPARE_NE = 6 /* no such btree strategy */
1026 } RowCompareType;
1027 
1028 typedef struct RowCompareExpr
1029 {
1031  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1032  List *opnos; /* OID list of pairwise comparison ops */
1033  List *opfamilies; /* OID list of containing operator families */
1034  List *inputcollids; /* OID list of collations for comparisons */
1035  List *largs; /* the left-hand input arguments */
1036  List *rargs; /* the right-hand input arguments */
1037 } RowCompareExpr;
1038 
1039 /*
1040  * CoalesceExpr - a COALESCE expression
1041  */
1042 typedef struct CoalesceExpr
1043 {
1045  Oid coalescetype; /* type of expression result */
1046  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1047  List *args; /* the arguments */
1048  int location; /* token location, or -1 if unknown */
1049 } CoalesceExpr;
1050 
1051 /*
1052  * MinMaxExpr - a GREATEST or LEAST function
1053  */
1054 typedef enum MinMaxOp
1055 {
1058 } MinMaxOp;
1059 
1060 typedef struct MinMaxExpr
1061 {
1063  Oid minmaxtype; /* common type of arguments and result */
1064  Oid minmaxcollid; /* OID of collation of result */
1065  Oid inputcollid; /* OID of collation that function should use */
1066  MinMaxOp op; /* function to execute */
1067  List *args; /* the arguments */
1068  int location; /* token location, or -1 if unknown */
1069 } MinMaxExpr;
1070 
1071 /*
1072  * SQLValueFunction - parameterless functions with special grammar productions
1073  *
1074  * The SQL standard categorizes some of these as <datetime value function>
1075  * and others as <general value specification>. We call 'em SQLValueFunctions
1076  * for lack of a better term. We store type and typmod of the result so that
1077  * some code doesn't need to know each function individually, and because
1078  * we would need to store typmod anyway for some of the datetime functions.
1079  * Note that currently, all variants return non-collating datatypes, so we do
1080  * not need a collation field; also, all these functions are stable.
1081  */
1083 {
1100 
1101 typedef struct SQLValueFunction
1102 {
1104  SQLValueFunctionOp op; /* which function this is */
1105  Oid type; /* result type/typmod */
1107  int location; /* token location, or -1 if unknown */
1109 
1110 /*
1111  * XmlExpr - various SQL/XML functions requiring special grammar productions
1112  *
1113  * 'name' carries the "NAME foo" argument (already XML-escaped).
1114  * 'named_args' and 'arg_names' represent an xml_attribute list.
1115  * 'args' carries all other arguments.
1116  *
1117  * Note: result type/typmod/collation are not stored, but can be deduced
1118  * from the XmlExprOp. The type/typmod fields are just used for display
1119  * purposes, and are NOT necessarily the true result type of the node.
1120  */
1121 typedef enum XmlExprOp
1122 {
1123  IS_XMLCONCAT, /* XMLCONCAT(args) */
1124  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1125  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1126  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1127  IS_XMLPI, /* XMLPI(name [, args]) */
1128  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1129  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1130  IS_DOCUMENT /* xmlval IS DOCUMENT */
1131 } XmlExprOp;
1132 
1133 typedef enum
1134 {
1137 } XmlOptionType;
1138 
1139 typedef struct XmlExpr
1140 {
1142  XmlExprOp op; /* xml function ID */
1143  char *name; /* name in xml(NAME foo ...) syntaxes */
1144  List *named_args; /* non-XML expressions for xml_attributes */
1145  List *arg_names; /* parallel list of Value strings */
1146  List *args; /* list of expressions */
1147  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1148  Oid type; /* target type/typmod for XMLSERIALIZE */
1150  int location; /* token location, or -1 if unknown */
1151 } XmlExpr;
1152 
1153 /* ----------------
1154  * NullTest
1155  *
1156  * NullTest represents the operation of testing a value for NULLness.
1157  * The appropriate test is performed and returned as a boolean Datum.
1158  *
1159  * When argisrow is false, this simply represents a test for the null value.
1160  *
1161  * When argisrow is true, the input expression must yield a rowtype, and
1162  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1163  * includes checking individual fields for NULLness when the row datum
1164  * itself isn't NULL.
1165  *
1166  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1167  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1168  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1169  * ----------------
1170  */
1171 
1172 typedef enum NullTestType
1173 {
1175 } NullTestType;
1176 
1177 typedef struct NullTest
1178 {
1180  Expr *arg; /* input expression */
1181  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1182  bool argisrow; /* T to perform field-by-field null checks */
1183  int location; /* token location, or -1 if unknown */
1184 } NullTest;
1185 
1186 /*
1187  * BooleanTest
1188  *
1189  * BooleanTest represents the operation of determining whether a boolean
1190  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1191  * are supported. Note that a NULL input does *not* cause a NULL result.
1192  * The appropriate test is performed and returned as a boolean Datum.
1193  */
1194 
1195 typedef enum BoolTestType
1196 {
1198 } BoolTestType;
1199 
1200 typedef struct BooleanTest
1201 {
1203  Expr *arg; /* input expression */
1204  BoolTestType booltesttype; /* test type */
1205  int location; /* token location, or -1 if unknown */
1206 } BooleanTest;
1207 
1208 /*
1209  * CoerceToDomain
1210  *
1211  * CoerceToDomain represents the operation of coercing a value to a domain
1212  * type. At runtime (and not before) the precise set of constraints to be
1213  * checked will be determined. If the value passes, it is returned as the
1214  * result; if not, an error is raised. Note that this is equivalent to
1215  * RelabelType in the scenario where no constraints are applied.
1216  */
1217 typedef struct CoerceToDomain
1218 {
1220  Expr *arg; /* input expression */
1221  Oid resulttype; /* domain type ID (result type) */
1222  int32 resulttypmod; /* output typmod (currently always -1) */
1223  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1224  CoercionForm coercionformat; /* how to display this node */
1225  int location; /* token location, or -1 if unknown */
1226 } CoerceToDomain;
1227 
1228 /*
1229  * Placeholder node for the value to be processed by a domain's check
1230  * constraint. This is effectively like a Param, but can be implemented more
1231  * simply since we need only one replacement value at a time.
1232  *
1233  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1234  * not the domain itself. This is because we shouldn't consider the value
1235  * to be a member of the domain if we haven't yet checked its constraints.
1236  */
1237 typedef struct CoerceToDomainValue
1238 {
1240  Oid typeId; /* type for substituted value */
1241  int32 typeMod; /* typemod for substituted value */
1242  Oid collation; /* collation for the substituted value */
1243  int location; /* token location, or -1 if unknown */
1245 
1246 /*
1247  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1248  *
1249  * This is not an executable expression: it must be replaced by the actual
1250  * column default expression during rewriting. But it is convenient to
1251  * treat it as an expression node during parsing and rewriting.
1252  */
1253 typedef struct SetToDefault
1254 {
1256  Oid typeId; /* type for substituted value */
1257  int32 typeMod; /* typemod for substituted value */
1258  Oid collation; /* collation for the substituted value */
1259  int location; /* token location, or -1 if unknown */
1260 } SetToDefault;
1261 
1262 /*
1263  * Node representing [WHERE] CURRENT OF cursor_name
1264  *
1265  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1266  * of the target relation being constrained; this aids placing the expression
1267  * correctly during planning. We can assume however that its "levelsup" is
1268  * always zero, due to the syntactic constraints on where it can appear.
1269  *
1270  * The referenced cursor can be represented either as a hardwired string
1271  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1272  * case is for the convenience of plpgsql.
1273  */
1274 typedef struct CurrentOfExpr
1275 {
1277  Index cvarno; /* RT index of target relation */
1278  char *cursor_name; /* name of referenced cursor, or NULL */
1279  int cursor_param; /* refcursor parameter number, or 0 */
1280 } CurrentOfExpr;
1281 
1282 /*
1283  * NextValueExpr - get next value from sequence
1284  *
1285  * This has the same effect as calling the nextval() function, but it does not
1286  * check permissions on the sequence. This is used for identity columns,
1287  * where the sequence is an implicit dependency without its own permissions.
1288  */
1289 typedef struct NextValueExpr
1290 {
1294 } NextValueExpr;
1295 
1296 /*
1297  * InferenceElem - an element of a unique index inference specification
1298  *
1299  * This mostly matches the structure of IndexElems, but having a dedicated
1300  * primnode allows for a clean separation between the use of index parameters
1301  * by utility commands, and this node.
1302  */
1303 typedef struct InferenceElem
1304 {
1306  Node *expr; /* expression to infer from, or NULL */
1307  Oid infercollid; /* OID of collation, or InvalidOid */
1308  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1309 } InferenceElem;
1310 
1311 /*--------------------
1312  * TargetEntry -
1313  * a target entry (used in query target lists)
1314  *
1315  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1316  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1317  * very many places it's convenient to process a whole query targetlist as a
1318  * single expression tree.
1319  *
1320  * In a SELECT's targetlist, resno should always be equal to the item's
1321  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1322  * targetlist, resno represents the attribute number of the destination
1323  * column for the item; so there may be missing or out-of-order resnos.
1324  * It is even legal to have duplicated resnos; consider
1325  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1326  * The two meanings come together in the executor, because the planner
1327  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1328  * one entry for each column of the destination table. Before that's
1329  * happened, however, it is risky to assume that resno == position.
1330  * Generally get_tle_by_resno() should be used rather than list_nth()
1331  * to fetch tlist entries by resno, and only in SELECT should you assume
1332  * that resno is a unique identifier.
1333  *
1334  * resname is required to represent the correct column name in non-resjunk
1335  * entries of top-level SELECT targetlists, since it will be used as the
1336  * column title sent to the frontend. In most other contexts it is only
1337  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1338  * be wrong in a tlist from a stored rule, if the referenced column has been
1339  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1340  * to store NULL rather than look up a valid name for tlist entries in
1341  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1342  * a specific system-generated name (such as "ctid") or NULL; anything else
1343  * risks confusing ExecGetJunkAttribute!
1344  *
1345  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1346  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1347  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1348  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1349  * may have the same nonzero ressortgroupref --- but there is no particular
1350  * meaning to the nonzero values, except as tags. (For example, one must
1351  * not assume that lower ressortgroupref means a more significant sort key.)
1352  * The order of the associated SortGroupClause lists determine the semantics.
1353  *
1354  * resorigtbl/resorigcol identify the source of the column, if it is a
1355  * simple reference to a column of a base table (or view). If it is not
1356  * a simple reference, these fields are zeroes.
1357  *
1358  * If resjunk is true then the column is a working column (such as a sort key)
1359  * that should be removed from the final output of the query. Resjunk columns
1360  * must have resnos that cannot duplicate any regular column's resno. Also
1361  * note that there are places that assume resjunk columns come after non-junk
1362  * columns.
1363  *--------------------
1364  */
1365 typedef struct TargetEntry
1366 {
1368  Expr *expr; /* expression to evaluate */
1369  AttrNumber resno; /* attribute number (see notes above) */
1370  char *resname; /* name of the column (could be NULL) */
1371  Index ressortgroupref; /* nonzero if referenced by a sort/group
1372  * clause */
1373  Oid resorigtbl; /* OID of column's source table */
1374  AttrNumber resorigcol; /* column's number in source table */
1375  bool resjunk; /* set to true to eliminate the attribute from
1376  * final target list */
1377 } TargetEntry;
1378 
1379 
1380 /* ----------------------------------------------------------------
1381  * node types for join trees
1382  *
1383  * The leaves of a join tree structure are RangeTblRef nodes. Above
1384  * these, JoinExpr nodes can appear to denote a specific kind of join
1385  * or qualified join. Also, FromExpr nodes can appear to denote an
1386  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1387  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1388  * may have any number of child nodes, not just two.
1389  *
1390  * NOTE: the top level of a Query's jointree is always a FromExpr.
1391  * Even if the jointree contains no rels, there will be a FromExpr.
1392  *
1393  * NOTE: the qualification expressions present in JoinExpr nodes are
1394  * *in addition to* the query's main WHERE clause, which appears as the
1395  * qual of the top-level FromExpr. The reason for associating quals with
1396  * specific nodes in the jointree is that the position of a qual is critical
1397  * when outer joins are present. (If we enforce a qual too soon or too late,
1398  * that may cause the outer join to produce the wrong set of NULL-extended
1399  * rows.) If all joins are inner joins then all the qual positions are
1400  * semantically interchangeable.
1401  *
1402  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1403  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1404  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1405  * FromExpr is added during parse analysis; the grammar regards FROM and
1406  * WHERE as separate.
1407  * ----------------------------------------------------------------
1408  */
1409 
1410 /*
1411  * RangeTblRef - reference to an entry in the query's rangetable
1412  *
1413  * We could use direct pointers to the RT entries and skip having these
1414  * nodes, but multiple pointers to the same node in a querytree cause
1415  * lots of headaches, so it seems better to store an index into the RT.
1416  */
1417 typedef struct RangeTblRef
1418 {
1420  int rtindex;
1421 } RangeTblRef;
1422 
1423 /*----------
1424  * JoinExpr - for SQL JOIN expressions
1425  *
1426  * isNatural, usingClause, and quals are interdependent. The user can write
1427  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1428  * If he writes NATURAL then parse analysis generates the equivalent USING()
1429  * list, and from that fills in "quals" with the right equality comparisons.
1430  * If he writes USING() then "quals" is filled with equality comparisons.
1431  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1432  * are not equivalent to ON() since they also affect the output column list.
1433  *
1434  * alias is an Alias node representing the AS alias-clause attached to the
1435  * join expression, or NULL if no clause. NB: presence or absence of the
1436  * alias has a critical impact on semantics, because a join with an alias
1437  * restricts visibility of the tables/columns inside it.
1438  *
1439  * During parse analysis, an RTE is created for the Join, and its index
1440  * is filled into rtindex. This RTE is present mainly so that Vars can
1441  * be created that refer to the outputs of the join. The planner sometimes
1442  * generates JoinExprs internally; these can have rtindex = 0 if there are
1443  * no join alias variables referencing such joins.
1444  *----------
1445  */
1446 typedef struct JoinExpr
1447 {
1449  JoinType jointype; /* type of join */
1450  bool isNatural; /* Natural join? Will need to shape table */
1451  Node *larg; /* left subtree */
1452  Node *rarg; /* right subtree */
1453  List *usingClause; /* USING clause, if any (list of String) */
1454  Node *quals; /* qualifiers on join, if any */
1455  Alias *alias; /* user-written alias clause, if any */
1456  int rtindex; /* RT index assigned for join, or 0 */
1457 } JoinExpr;
1458 
1459 /*----------
1460  * FromExpr - represents a FROM ... WHERE ... construct
1461  *
1462  * This is both more flexible than a JoinExpr (it can have any number of
1463  * children, including zero) and less so --- we don't need to deal with
1464  * aliases and so on. The output column set is implicitly just the union
1465  * of the outputs of the children.
1466  *----------
1467  */
1468 typedef struct FromExpr
1469 {
1471  List *fromlist; /* List of join subtrees */
1472  Node *quals; /* qualifiers on join, if any */
1473 } FromExpr;
1474 
1475 /*----------
1476  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1477  *
1478  * The optimizer requires a list of inference elements, and optionally a WHERE
1479  * clause to infer a unique index. The unique index (or, occasionally,
1480  * indexes) inferred are used to arbitrate whether or not the alternative ON
1481  * CONFLICT path is taken.
1482  *----------
1483  */
1484 typedef struct OnConflictExpr
1485 {
1487  OnConflictAction action; /* DO NOTHING or UPDATE? */
1488 
1489  /* Arbiter */
1490  List *arbiterElems; /* unique index arbiter list (of
1491  * InferenceElem's) */
1492  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1493  Oid constraint; /* pg_constraint OID for arbiter */
1494 
1495  /* ON CONFLICT UPDATE */
1496  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1497  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1498  int exclRelIndex; /* RT index of 'excluded' relation */
1499  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1500 } OnConflictExpr;
1501 
1502 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:196
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:303
Oid funcresulttype
Definition: primnodes.h:450
Oid minmaxtype
Definition: primnodes.h:1063
bool multidims
Definition: primnodes.h:956
Expr xpr
Definition: primnodes.h:354
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:693
struct FieldSelect FieldSelect
Expr * refassgnexpr
Definition: primnodes.h:410
List * args
Definition: primnodes.h:1067
Expr xpr
Definition: primnodes.h:905
bool aggvariadic
Definition: primnodes.h:306
List * args
Definition: primnodes.h:986
Expr xpr
Definition: primnodes.h:1179
Node * docexpr
Definition: primnodes.h:84
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1486
Expr * arg
Definition: primnodes.h:768
Index varlevelsup
Definition: primnodes.h:173
OnCommitAction onCommit
Definition: primnodes.h:112
int plan_id
Definition: primnodes.h:689
List * args
Definition: primnodes.h:341
ParamKind
Definition: primnodes.h:233
char * name
Definition: primnodes.h:1143
List * refs
Definition: primnodes.h:343
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:199
List * args
Definition: primnodes.h:359
List * args
Definition: primnodes.h:457
Oid wincollid
Definition: primnodes.h:357
int32 resulttypmod
Definition: primnodes.h:1222
List * colnames
Definition: primnodes.h:86
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:744
char * tableSpaceName
Definition: primnodes.h:113
List * coltypmods
Definition: primnodes.h:88
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1195
Expr xpr
Definition: primnodes.h:398
Oid funccollid
Definition: primnodes.h:455
int location
Definition: primnodes.h:1150
Oid resulttype
Definition: primnodes.h:812
XmlExprOp
Definition: primnodes.h:1121
OpExpr NullIfExpr
Definition: primnodes.h:524
RowCompareType rctype
Definition: primnodes.h:1031
List * opfamilies
Definition: primnodes.h:1033
NodeTag type
Definition: primnodes.h:81
Oid type
Definition: primnodes.h:1148
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:907
SubLinkType subLinkType
Definition: primnodes.h:684
Expr * arg
Definition: primnodes.h:791
Oid inputcollid
Definition: primnodes.h:297
ParamKind paramkind
Definition: primnodes.h:244
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:509
CoercionForm coercionformat
Definition: primnodes.h:1224
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1373
List * args
Definition: primnodes.h:301
AttrNumber varattno
Definition: primnodes.h:168
Oid array_typeid
Definition: primnodes.h:952
Expr * arg
Definition: primnodes.h:742
List * paramIds
Definition: primnodes.h:687
bool funcretset
Definition: primnodes.h:451
struct SubPlan SubPlan
struct Expr Expr
struct ArrayRef ArrayRef
List * fromlist
Definition: primnodes.h:1471
Expr xpr
Definition: primnodes.h:1141
NullTestType
Definition: primnodes.h:1172
bool skipData
Definition: primnodes.h:115
Oid casetype
Definition: primnodes.h:906
bool aggstar
Definition: primnodes.h:305
Expr xpr
Definition: primnodes.h:985
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:165
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:361
char * resname
Definition: primnodes.h:1370
List * arg_names
Definition: primnodes.h:1145
Definition: primnodes.h:163
CoercionContext
Definition: primnodes.h:420
Node * quals
Definition: primnodes.h:1472
struct Var Var
int32 typeMod
Definition: primnodes.h:937
int location
Definition: primnodes.h:564
int location
Definition: primnodes.h:922
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1104
NodeTag type
Definition: primnodes.h:1470
List * colcollations
Definition: primnodes.h:89
signed int int32
Definition: c.h:246
struct RelabelType RelabelType
JoinType
Definition: nodes.h:673
List * arbiterElems
Definition: primnodes.h:1490
Expr xpr
Definition: primnodes.h:243
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1451
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:195
Expr xpr
Definition: primnodes.h:495
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:192
List * aggargtypes
Definition: primnodes.h:299
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:454
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Index varnoold
Definition: primnodes.h:176
Oid opresulttype
Definition: primnodes.h:498
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1054
bool resjunk
Definition: primnodes.h:1375
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:449
List * colnames
Definition: primnodes.h:999
Node * viewQuery
Definition: primnodes.h:114
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:248
int location
Definition: primnodes.h:249
Oid vartype
Definition: primnodes.h:170
List * args
Definition: primnodes.h:1047
BoolExprType boolop
Definition: primnodes.h:562
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1180
int location
Definition: primnodes.h:311
List * coldefexprs
Definition: primnodes.h:91
Oid constcollid
Definition: primnodes.h:194
Oid resultcollid
Definition: primnodes.h:747
List * ns_names
Definition: primnodes.h:83
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:85
int location
Definition: primnodes.h:178
int location
Definition: primnodes.h:1000
struct Const Const
int32 typeMod
Definition: primnodes.h:1257
int location
Definition: primnodes.h:1068
List * exclRelTlist
Definition: primnodes.h:1499
List * refupperindexpr
Definition: primnodes.h:403
int location
Definition: primnodes.h:503
List * reflowerindexpr
Definition: primnodes.h:405
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:302
Expr * arg
Definition: primnodes.h:1203
AttrNumber resno
Definition: primnodes.h:1369
Bitmapset * notnulls
Definition: primnodes.h:92
Index agglevelsup
Definition: primnodes.h:309
char * name
Definition: primnodes.h:479
Expr xpr
Definition: primnodes.h:191
char * cursor_name
Definition: primnodes.h:1278
List * aggdirectargs
Definition: primnodes.h:300
Oid resulttype
Definition: primnodes.h:771
Oid winfnoid
Definition: primnodes.h:355
Expr * arg
Definition: primnodes.h:811
List * elements
Definition: primnodes.h:955
struct BooleanTest BooleanTest
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:951
int32 reftypmod
Definition: primnodes.h:401
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:500
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1082
List * options
Definition: primnodes.h:111
List * newvals
Definition: primnodes.h:769
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:344
SubLinkType
Definition: primnodes.h:618
OnConflictAction action
Definition: primnodes.h:1487
bool isNatural
Definition: primnodes.h:1450
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1453
Expr xpr
Definition: primnodes.h:682
Index varno
Definition: primnodes.h:166
int ordinalitycol
Definition: primnodes.h:93
XmlExprOp op
Definition: primnodes.h:1142
List * args
Definition: primnodes.h:909
Oid refelemtype
Definition: primnodes.h:400
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:840
int location
Definition: primnodes.h:203
Node * quals
Definition: primnodes.h:1454
int location
Definition: primnodes.h:957
BoolTestType booltesttype
Definition: primnodes.h:1204
Index agglevelsup
Definition: primnodes.h:345
uintptr_t Datum
Definition: postgres.h:372
CoercionForm convertformat
Definition: primnodes.h:862
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:814
Oid opfuncid
Definition: primnodes.h:497
Oid resulttype
Definition: primnodes.h:792
Node * testexpr
Definition: primnodes.h:686
unsigned int Index
Definition: c.h:359
List * coltypes
Definition: primnodes.h:87
NullTestType nulltesttype
Definition: primnodes.h:1181
int32 typmod
Definition: primnodes.h:1149
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:713
Oid resultcollid
Definition: primnodes.h:794
Oid aggfnoid
Definition: primnodes.h:294
List * colexprs
Definition: primnodes.h:90
List * named_args
Definition: primnodes.h:1144
int32 firstColTypmod
Definition: primnodes.h:694
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1017
List * args
Definition: primnodes.h:1146
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:247
char * plan_name
Definition: primnodes.h:691
int location
Definition: primnodes.h:816
Node * rarg
Definition: primnodes.h:1452
Alias * alias
Definition: primnodes.h:1455
Expr * arg
Definition: primnodes.h:478
struct NullTest NullTest
int location
Definition: primnodes.h:364
Oid inputcollid
Definition: primnodes.h:456
JoinType jointype
Definition: primnodes.h:1449
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1419
NodeTag type
Definition: primnodes.h:1448
List * setParam
Definition: primnodes.h:707
List * ns_uris
Definition: primnodes.h:82
Expr * aggfilter
Definition: primnodes.h:360
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1368
AggSplit aggsplit
Definition: primnodes.h:310
XmlOptionType xmloption
Definition: primnodes.h:1147
int paramid
Definition: primnodes.h:245
XmlOptionType
Definition: primnodes.h:1133
Oid array_collid
Definition: primnodes.h:953
bool unknownEqFalse
Definition: primnodes.h:700
int location
Definition: primnodes.h:1183
AggSplit
Definition: nodes.h:757
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:987
struct RowCompareExpr RowCompareExpr
Oid refcollid
Definition: primnodes.h:402
Oid inputcollid
Definition: primnodes.h:1065
Expr * arg
Definition: primnodes.h:876
Expr xpr
Definition: primnodes.h:561
Expr * aggfilter
Definition: primnodes.h:304
int location
Definition: primnodes.h:911
List * parParam
Definition: primnodes.h:709
Oid inputcollid
Definition: primnodes.h:501
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:358
List * args
Definition: primnodes.h:563
Expr xpr
Definition: primnodes.h:293
bool parallel_safe
Definition: primnodes.h:703
struct Param Param
NodeTag type
Definition: primnodes.h:107
int32 consttypmod
Definition: primnodes.h:193
Oid element_typeid
Definition: primnodes.h:954
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:356
CoercionForm coerceformat
Definition: primnodes.h:815
AttrNumber varoattno
Definition: primnodes.h:177
Oid refarraytype
Definition: primnodes.h:399
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1492
Expr xpr
Definition: primnodes.h:919
AttrNumber resorigcol
Definition: primnodes.h:1374
Oid aggcollid
Definition: primnodes.h:296
Expr xpr
Definition: primnodes.h:448
RangeVar * rel
Definition: primnodes.h:109
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:770
bool winagg
Definition: primnodes.h:363
Oid coalescetype
Definition: primnodes.h:1045
Expr xpr
Definition: primnodes.h:767
Oid aggtranstype
Definition: primnodes.h:298
List * onConflictSet
Definition: primnodes.h:1496
Oid varcollid
Definition: primnodes.h:172
Index ressortgroupref
Definition: primnodes.h:1371
Oid aggtype
Definition: primnodes.h:295
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:516
NodeTag type
Definition: primnodes.h:134
bool useHashTable
Definition: primnodes.h:698
bool argisrow
Definition: primnodes.h:1182
MinMaxOp op
Definition: primnodes.h:1066
Oid minmaxcollid
Definition: primnodes.h:1064
Oid firstColCollation
Definition: primnodes.h:695
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:308
Cost startup_cost
Definition: primnodes.h:712
int32 resulttypmod
Definition: primnodes.h:793
Expr * arg
Definition: primnodes.h:908
int location
Definition: primnodes.h:458
Oid opno
Definition: primnodes.h:496
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:837
Expr * result
Definition: primnodes.h:921
List * colNames
Definition: primnodes.h:110
List * args
Definition: primnodes.h:502
List * inputcollids
Definition: primnodes.h:1034
int location
Definition: primnodes.h:94
CoercionForm relabelformat
Definition: primnodes.h:795
Expr * defresult
Definition: primnodes.h:910
Expr * expr
Definition: primnodes.h:920
int location
Definition: primnodes.h:878
CoercionForm row_format
Definition: primnodes.h:998
CoercionForm
Definition: primnodes.h:436
Node * onConflictWhere
Definition: primnodes.h:1497
int rtindex
Definition: primnodes.h:1456
Definition: pg_list.h:45
OnConflictAction
Definition: nodes.h:799
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:246
int location
Definition: primnodes.h:796
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:197
Oid coalescecollid
Definition: primnodes.h:1046
bool funcvariadic
Definition: primnodes.h:452
double Cost
Definition: nodes.h:640
struct CaseExpr CaseExpr
Expr * refexpr
Definition: primnodes.h:408
bool opretset
Definition: primnodes.h:499
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:746
bool winstar
Definition: primnodes.h:362
AttrNumber fieldnum
Definition: primnodes.h:743
BoolExprType
Definition: primnodes.h:554
int32 vartypmod
Definition: primnodes.h:171
List * args
Definition: primnodes.h:710