PostgreSQL Source Code  git master
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings). In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
85  List *ns_uris; /* list of namespace URI expressions */
86  List *ns_names; /* list of namespace names or NULL */
87  Node *docexpr; /* input document expression */
88  Node *rowexpr; /* row filter expression */
89  List *colnames; /* column names (list of String) */
90  List *coltypes; /* OID list of column type OIDs */
91  List *coltypmods; /* integer list of column typmods */
92  List *colcollations; /* OID list of column collation OIDs */
93  List *colexprs; /* list of column filter expressions */
94  List *coldefexprs; /* list of column default expressions */
95  Bitmapset *notnulls; /* nullability flag for each output column */
96  int ordinalitycol; /* counts from 0; -1 if none specified */
97  int location; /* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
111 
112  RangeVar *rel; /* target relation name */
113  List *colNames; /* column names to assign, or NIL */
114  char *accessMethod; /* table access method */
115  List *options; /* options from WITH clause */
116  OnCommitAction onCommit; /* what do we do at COMMIT? */
117  char *tableSpaceName; /* table space to use, or NULL */
118  Node *viewQuery; /* materialized view's SELECT query */
119  bool skipData; /* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  * node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field). Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation. See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE. (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list. Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column. (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * In the parser, varnosyn and varattnosyn are either identical to
162  * varno/varattno, or they specify the column's position in an aliased JOIN
163  * RTE that hides the semantic referent RTE's refname. This is a syntactic
164  * identifier as opposed to the semantic identifier; it tells ruleutils.c
165  * how to print the Var properly. varnosyn/varattnosyn retain their values
166  * throughout planning and execution, so they are particularly helpful to
167  * identify Vars when debugging. Note, however, that a Var that is generated
168  * in the planner and doesn't correspond to any simple relation column may
169  * have varnosyn = varattnosyn = 0.
170  */
171 #define INNER_VAR 65000 /* reference to inner subplan */
172 #define OUTER_VAR 65001 /* reference to outer subplan */
173 #define INDEX_VAR 65002 /* reference to index column */
174 
175 #define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
176 
177 /* Symbols for the indexes of the special RTE entries in rules */
178 #define PRS2_OLD_VARNO 1
179 #define PRS2_NEW_VARNO 2
180 
181 typedef struct Var
182 {
184  Index varno; /* index of this var's relation in the range
185  * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
186  AttrNumber varattno; /* attribute number of this var, or zero for
187  * all attrs ("whole-row Var") */
188  Oid vartype; /* pg_type OID for the type of this var */
189  int32 vartypmod; /* pg_attribute typmod value */
190  Oid varcollid; /* OID of collation, or InvalidOid if none */
191  Index varlevelsup; /* for subquery variables referencing outer
192  * relations; 0 in a normal var, >0 means N
193  * levels up */
194  Index varnosyn; /* syntactic relation index (0 if unknown) */
195  AttrNumber varattnosyn; /* syntactic attribute number */
196  int location; /* token location, or -1 if unknown */
197 } Var;
198 
199 /*
200  * Const
201  *
202  * Note: for varlena data types, we make a rule that a Const node's value
203  * must be in non-extended form (4-byte header, no compression or external
204  * references). This ensures that the Const node is self-contained and makes
205  * it more likely that equal() will see logically identical values as equal.
206  */
207 typedef struct Const
208 {
210  Oid consttype; /* pg_type OID of the constant's datatype */
211  int32 consttypmod; /* typmod value, if any */
212  Oid constcollid; /* OID of collation, or InvalidOid if none */
213  int constlen; /* typlen of the constant's datatype */
214  Datum constvalue; /* the constant's value */
215  bool constisnull; /* whether the constant is null (if true,
216  * constvalue is undefined) */
217  bool constbyval; /* whether this datatype is passed by value.
218  * If true, then all the information is stored
219  * in the Datum. If false, then the Datum
220  * contains a pointer to the information. */
221  int location; /* token location, or -1 if unknown */
222 } Const;
223 
224 /*
225  * Param
226  *
227  * paramkind specifies the kind of parameter. The possible values
228  * for this field are:
229  *
230  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
231  * Such parameters are numbered from 1 to n.
232  *
233  * PARAM_EXEC: The parameter is an internal executor parameter, used
234  * for passing values into and out of sub-queries or from
235  * nestloop joins to their inner scans.
236  * For historical reasons, such parameters are numbered from 0.
237  * These numbers are independent of PARAM_EXTERN numbers.
238  *
239  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
240  * node's sub-select. The column number is contained in the
241  * `paramid' field. (This type of Param is converted to
242  * PARAM_EXEC during planning.)
243  *
244  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
245  * output column of a SubLink node's sub-select, but here, the
246  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
247  * of the `paramid' field contain the SubLink's subLinkId, and
248  * the low-order 16 bits contain the column number. (This type
249  * of Param is also converted to PARAM_EXEC during planning.)
250  */
251 typedef enum ParamKind
252 {
257 } ParamKind;
258 
259 typedef struct Param
260 {
262  ParamKind paramkind; /* kind of parameter. See above */
263  int paramid; /* numeric ID for parameter */
264  Oid paramtype; /* pg_type OID of parameter's datatype */
265  int32 paramtypmod; /* typmod value, if known */
266  Oid paramcollid; /* OID of collation, or InvalidOid if none */
267  int location; /* token location, or -1 if unknown */
268 } Param;
269 
270 /*
271  * Aggref
272  *
273  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
274  *
275  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
276  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
277  * be added at the end to represent ORDER BY expressions that are not also
278  * arguments. As in a top-level Query, the TLEs can be marked with
279  * ressortgroupref indexes to let them be referenced by SortGroupClause
280  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
281  * and DISTINCT operations to be applied to the aggregate input rows before
282  * they are passed to the transition function. The grammar only allows a
283  * simple "DISTINCT" specifier for the arguments, but we use the full
284  * query-level representation to allow more code sharing.
285  *
286  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
287  * (aggregated) arguments, all of which will be listed in the aggorder list.
288  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
289  * The direct arguments appear in aggdirectargs (as a list of plain
290  * expressions, not TargetEntry nodes).
291  *
292  * aggtranstype is the data type of the state transition values for this
293  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
294  * This is determined during planning and is InvalidOid before that.
295  *
296  * aggargtypes is an OID list of the data types of the direct and regular
297  * arguments. Normally it's redundant with the aggdirectargs and args lists,
298  * but in a combining aggregate, it's not because the args list has been
299  * replaced with a single argument representing the partial-aggregate
300  * transition values.
301  *
302  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
303  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
304  * the planner might change it to something else. We use this mainly as
305  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
306  * indicates a non-final mode, aggtype reflects the transition data type
307  * not the SQL-level output type of the aggregate.
308  *
309  * aggno and aggtransno are -1 in the parse stage, and are set in planning.
310  * Aggregates with the same 'aggno' represent the same aggregate expression,
311  * and can share the result. Aggregates with same 'transno' but different
312  * 'aggno' can share the same transition state, only the final function needs
313  * to be called separately.
314  */
315 typedef struct Aggref
316 {
318  Oid aggfnoid; /* pg_proc Oid of the aggregate */
319  Oid aggtype; /* type Oid of result of the aggregate */
320  Oid aggcollid; /* OID of collation of result */
321  Oid inputcollid; /* OID of collation that function should use */
322  Oid aggtranstype; /* type Oid of aggregate's transition value */
323  List *aggargtypes; /* type Oids of direct and aggregated args */
324  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
325  List *args; /* aggregated arguments and sort expressions */
326  List *aggorder; /* ORDER BY (list of SortGroupClause) */
327  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
328  Expr *aggfilter; /* FILTER expression, if any */
329  bool aggstar; /* true if argument list was really '*' */
330  bool aggvariadic; /* true if variadic arguments have been
331  * combined into an array last argument */
332  char aggkind; /* aggregate kind (see pg_aggregate.h) */
333  Index agglevelsup; /* > 0 if agg belongs to outer query */
334  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
335  int aggno; /* unique ID within the Agg node */
336  int aggtransno; /* unique ID of transition state in the Agg */
337  int location; /* token location, or -1 if unknown */
338 } Aggref;
339 
340 /*
341  * GroupingFunc
342  *
343  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
344  * like an aggregate function (e.g. it "belongs" to a specific query level,
345  * which might not be the one immediately containing it), but also differs in
346  * an important respect: it never evaluates its arguments, they merely
347  * designate expressions from the GROUP BY clause of the query level to which
348  * it belongs.
349  *
350  * The spec defines the evaluation of GROUPING() purely by syntactic
351  * replacement, but we make it a real expression for optimization purposes so
352  * that one Agg node can handle multiple grouping sets at once. Evaluating the
353  * result only needs the column positions to check against the grouping set
354  * being projected. However, for EXPLAIN to produce meaningful output, we have
355  * to keep the original expressions around, since expression deparse does not
356  * give us any feasible way to get at the GROUP BY clause.
357  *
358  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
359  * lists and agglevelsup, without comparing the refs and cols annotations.
360  *
361  * In raw parse output we have only the args list; parse analysis fills in the
362  * refs list, and the planner fills in the cols list.
363  */
364 typedef struct GroupingFunc
365 {
367  List *args; /* arguments, not evaluated but kept for
368  * benefit of EXPLAIN etc. */
369  List *refs; /* ressortgrouprefs of arguments */
370  List *cols; /* actual column positions set by planner */
371  Index agglevelsup; /* same as Aggref.agglevelsup */
372  int location; /* token location */
373 } GroupingFunc;
374 
375 /*
376  * WindowFunc
377  */
378 typedef struct WindowFunc
379 {
381  Oid winfnoid; /* pg_proc Oid of the function */
382  Oid wintype; /* type Oid of result of the window function */
383  Oid wincollid; /* OID of collation of result */
384  Oid inputcollid; /* OID of collation that function should use */
385  List *args; /* arguments to the window function */
386  Expr *aggfilter; /* FILTER expression, if any */
387  Index winref; /* index of associated WindowClause */
388  bool winstar; /* true if argument list was really '*' */
389  bool winagg; /* is function a simple aggregate? */
390  int location; /* token location, or -1 if unknown */
391 } WindowFunc;
392 
393 /* ----------------
394  * SubscriptingRef: describes a subscripting operation over a container
395  * (array, etc).
396  *
397  * A SubscriptingRef can describe fetching a single element from a container,
398  * fetching a part of container (e.g. array slice), storing a single element into
399  * a container, or storing a slice. The "store" cases work with an
400  * initial container value and a source value that is inserted into the
401  * appropriate part of the container; the result of the operation is an
402  * entire new modified container value.
403  *
404  * If reflowerindexpr = NIL, then we are fetching or storing a single container
405  * element at the subscripts given by refupperindexpr. Otherwise we are
406  * fetching or storing a container slice, that is a rectangular subcontainer
407  * with lower and upper bounds given by the index expressions.
408  * reflowerindexpr must be the same length as refupperindexpr when it
409  * is not NIL.
410  *
411  * In the slice case, individual expressions in the subscript lists can be
412  * NULL, meaning "substitute the array's current lower or upper bound".
413  *
414  * Note: the result datatype is the element type when fetching a single
415  * element; but it is the array type when doing subarray fetch or either
416  * type of store.
417  *
418  * Note: for the cases where a container is returned, if refexpr yields a R/W
419  * expanded container, then the implementation is allowed to modify that object
420  * in-place and return the same object.)
421  * ----------------
422  */
423 typedef struct SubscriptingRef
424 {
426  Oid refcontainertype; /* type of the container proper */
427  Oid refelemtype; /* type of the container elements */
428  int32 reftypmod; /* typmod of the container (and elements too) */
429  Oid refcollid; /* OID of collation, or InvalidOid if none */
430  List *refupperindexpr; /* expressions that evaluate to upper
431  * container indexes */
432  List *reflowerindexpr; /* expressions that evaluate to lower
433  * container indexes, or NIL for single
434  * container element */
435  Expr *refexpr; /* the expression that evaluates to a
436  * container value */
437 
438  Expr *refassgnexpr; /* expression for the source value, or NULL if
439  * fetch */
441 
442 /*
443  * CoercionContext - distinguishes the allowed set of type casts
444  *
445  * NB: ordering of the alternatives is significant; later (larger) values
446  * allow more casts than earlier ones.
447  */
448 typedef enum CoercionContext
449 {
450  COERCION_IMPLICIT, /* coercion in context of expression */
451  COERCION_ASSIGNMENT, /* coercion in context of assignment */
452  COERCION_EXPLICIT /* explicit cast operation */
454 
455 /*
456  * CoercionForm - how to display a FuncExpr or related node
457  *
458  * "Coercion" is a bit of a misnomer, since this value records other
459  * special syntaxes besides casts, but for now we'll keep this naming.
460  *
461  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
462  * any semantically significant information. We need that behavior so that
463  * the planner will consider equivalent implicit and explicit casts to be
464  * equivalent. In cases where those actually behave differently, the coercion
465  * function's arguments will be different.
466  */
467 typedef enum CoercionForm
468 {
469  COERCE_EXPLICIT_CALL, /* display as a function call */
470  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
471  COERCE_IMPLICIT_CAST, /* implicit cast, so hide it */
472  COERCE_SQL_SYNTAX /* display with SQL-mandated special syntax */
473 } CoercionForm;
474 
475 /*
476  * FuncExpr - expression node for a function call
477  */
478 typedef struct FuncExpr
479 {
481  Oid funcid; /* PG_PROC OID of the function */
482  Oid funcresulttype; /* PG_TYPE OID of result value */
483  bool funcretset; /* true if function returns set */
484  bool funcvariadic; /* true if variadic arguments have been
485  * combined into an array last argument */
486  CoercionForm funcformat; /* how to display this function call */
487  Oid funccollid; /* OID of collation of result */
488  Oid inputcollid; /* OID of collation that function should use */
489  List *args; /* arguments to the function */
490  int location; /* token location, or -1 if unknown */
491 } FuncExpr;
492 
493 /*
494  * NamedArgExpr - a named argument of a function
495  *
496  * This node type can only appear in the args list of a FuncCall or FuncExpr
497  * node. We support pure positional call notation (no named arguments),
498  * named notation (all arguments are named), and mixed notation (unnamed
499  * arguments followed by named ones).
500  *
501  * Parse analysis sets argnumber to the positional index of the argument,
502  * but doesn't rearrange the argument list.
503  *
504  * The planner will convert argument lists to pure positional notation
505  * during expression preprocessing, so execution never sees a NamedArgExpr.
506  */
507 typedef struct NamedArgExpr
508 {
510  Expr *arg; /* the argument expression */
511  char *name; /* the name */
512  int argnumber; /* argument's number in positional notation */
513  int location; /* argument name location, or -1 if unknown */
514 } NamedArgExpr;
515 
516 /*
517  * OpExpr - expression node for an operator invocation
518  *
519  * Semantically, this is essentially the same as a function call.
520  *
521  * Note that opfuncid is not necessarily filled in immediately on creation
522  * of the node. The planner makes sure it is valid before passing the node
523  * tree to the executor, but during parsing/planning opfuncid can be 0.
524  */
525 typedef struct OpExpr
526 {
528  Oid opno; /* PG_OPERATOR OID of the operator */
529  Oid opfuncid; /* PG_PROC OID of underlying function */
530  Oid opresulttype; /* PG_TYPE OID of result value */
531  bool opretset; /* true if operator returns set */
532  Oid opcollid; /* OID of collation of result */
533  Oid inputcollid; /* OID of collation that operator should use */
534  List *args; /* arguments to the operator (1 or 2) */
535  int location; /* token location, or -1 if unknown */
536 } OpExpr;
537 
538 /*
539  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
540  *
541  * Except for the nodetag, this is represented identically to an OpExpr
542  * referencing the "=" operator for x and y.
543  * We use "=", not the more obvious "<>", because more datatypes have "="
544  * than "<>". This means the executor must invert the operator result.
545  * Note that the operator function won't be called at all if either input
546  * is NULL, since then the result can be determined directly.
547  */
549 
550 /*
551  * NullIfExpr - a NULLIF expression
552  *
553  * Like DistinctExpr, this is represented the same as an OpExpr referencing
554  * the "=" operator for x and y.
555  */
557 
558 /*
559  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
560  *
561  * The operator must yield boolean. It is applied to the left operand
562  * and each element of the righthand array, and the results are combined
563  * with OR or AND (for ANY or ALL respectively). The node representation
564  * is almost the same as for the underlying operator, but we need a useOr
565  * flag to remember whether it's ANY or ALL, and we don't have to store
566  * the result type (or the collation) because it must be boolean.
567  */
568 typedef struct ScalarArrayOpExpr
569 {
571  Oid opno; /* PG_OPERATOR OID of the operator */
572  Oid opfuncid; /* PG_PROC OID of underlying function */
573  bool useOr; /* true for ANY, false for ALL */
574  Oid inputcollid; /* OID of collation that operator should use */
575  List *args; /* the scalar and array operands */
576  int location; /* token location, or -1 if unknown */
578 
579 /*
580  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
581  *
582  * Notice the arguments are given as a List. For NOT, of course the list
583  * must always have exactly one element. For AND and OR, there can be two
584  * or more arguments.
585  */
586 typedef enum BoolExprType
587 {
589 } BoolExprType;
590 
591 typedef struct BoolExpr
592 {
595  List *args; /* arguments to this expression */
596  int location; /* token location, or -1 if unknown */
597 } BoolExpr;
598 
599 /*
600  * SubLink
601  *
602  * A SubLink represents a subselect appearing in an expression, and in some
603  * cases also the combining operator(s) just above it. The subLinkType
604  * indicates the form of the expression represented:
605  * EXISTS_SUBLINK EXISTS(SELECT ...)
606  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
607  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
608  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
609  * EXPR_SUBLINK (SELECT with single targetlist item ...)
610  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
611  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
612  * CTE_SUBLINK WITH query (never actually part of an expression)
613  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
614  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
615  * a list with more than one entry; if the subselect has just one target
616  * then the parser will create an EXPR_SUBLINK instead (and any operator
617  * above the subselect will be represented separately).
618  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
619  * one row (if it returns no rows, the result is NULL).
620  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
621  * results. ALL and ANY combine the per-row results using AND and OR
622  * semantics respectively.
623  * ARRAY requires just one target column, and creates an array of the target
624  * column's type using any number of rows resulting from the subselect.
625  *
626  * SubLink is classed as an Expr node, but it is not actually executable;
627  * it must be replaced in the expression tree by a SubPlan node during
628  * planning.
629  *
630  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
631  * of the lefthand expression (if any), and operName is the String name of
632  * the combining operator. Also, subselect is a raw parsetree. During parse
633  * analysis, the parser transforms testexpr into a complete boolean expression
634  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
635  * output columns of the subselect. And subselect is transformed to a Query.
636  * This is the representation seen in saved rules and in the rewriter.
637  *
638  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
639  * are unused and are always null.
640  *
641  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
642  * other SubLinks. This number identifies different multiple-assignment
643  * subqueries within an UPDATE statement's SET list. It is unique only
644  * within a particular targetlist. The output column(s) of the MULTIEXPR
645  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
646  *
647  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
648  * in SubPlans generated for WITH subqueries.
649  */
650 typedef enum SubLinkType
651 {
659  CTE_SUBLINK /* for SubPlans only */
660 } SubLinkType;
661 
662 
663 typedef struct SubLink
664 {
666  SubLinkType subLinkType; /* see above */
667  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
668  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
669  List *operName; /* originally specified operator name */
670  Node *subselect; /* subselect as Query* or raw parsetree */
671  int location; /* token location, or -1 if unknown */
672 } SubLink;
673 
674 /*
675  * SubPlan - executable expression node for a subplan (sub-SELECT)
676  *
677  * The planner replaces SubLink nodes in expression trees with SubPlan
678  * nodes after it has finished planning the subquery. SubPlan references
679  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
680  * (We avoid a direct link to make it easier to copy expression trees
681  * without causing multiple processing of the subplan.)
682  *
683  * In an ordinary subplan, testexpr points to an executable expression
684  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
685  * operator(s); the left-hand arguments are the original lefthand expressions,
686  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
687  * outputs of the sub-select. (NOTE: runtime coercion functions may be
688  * inserted as well.) This is just the same expression tree as testexpr in
689  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
690  * suitably numbered PARAM_EXEC nodes.
691  *
692  * If the sub-select becomes an initplan rather than a subplan, the executable
693  * expression is part of the outer plan's expression tree (and the SubPlan
694  * node itself is not, but rather is found in the outer plan's initPlan
695  * list). In this case testexpr is NULL to avoid duplication.
696  *
697  * The planner also derives lists of the values that need to be passed into
698  * and out of the subplan. Input values are represented as a list "args" of
699  * expressions to be evaluated in the outer-query context (currently these
700  * args are always just Vars, but in principle they could be any expression).
701  * The values are assigned to the global PARAM_EXEC params indexed by parParam
702  * (the parParam and args lists must have the same ordering). setParam is a
703  * list of the PARAM_EXEC params that are computed by the sub-select, if it
704  * is an initplan; they are listed in order by sub-select output column
705  * position. (parParam and setParam are integer Lists, not Bitmapsets,
706  * because their ordering is significant.)
707  *
708  * Also, the planner computes startup and per-call costs for use of the
709  * SubPlan. Note that these include the cost of the subquery proper,
710  * evaluation of the testexpr if any, and any hashtable management overhead.
711  */
712 typedef struct SubPlan
713 {
715  /* Fields copied from original SubLink: */
716  SubLinkType subLinkType; /* see above */
717  /* The combining operators, transformed to an executable expression: */
718  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
719  List *paramIds; /* IDs of Params embedded in the above */
720  /* Identification of the Plan tree to use: */
721  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
722  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
723  char *plan_name; /* A name assigned during planning */
724  /* Extra data useful for determining subplan's output type: */
725  Oid firstColType; /* Type of first column of subplan result */
726  int32 firstColTypmod; /* Typmod of first column of subplan result */
727  Oid firstColCollation; /* Collation of first column of subplan
728  * result */
729  /* Information about execution strategy: */
730  bool useHashTable; /* true to store subselect output in a hash
731  * table (implies we are doing "IN") */
732  bool unknownEqFalse; /* true if it's okay to return FALSE when the
733  * spec result is UNKNOWN; this allows much
734  * simpler handling of null values */
735  bool parallel_safe; /* is the subplan parallel-safe? */
736  /* Note: parallel_safe does not consider contents of testexpr or args */
737  /* Information for passing params into and out of the subselect: */
738  /* setParam and parParam are lists of integers (param IDs) */
739  List *setParam; /* initplan subqueries have to set these
740  * Params for parent plan */
741  List *parParam; /* indices of input Params from parent plan */
742  List *args; /* exprs to pass as parParam values */
743  /* Estimated execution costs: */
744  Cost startup_cost; /* one-time setup cost */
745  Cost per_call_cost; /* cost for each subplan evaluation */
746 } SubPlan;
747 
748 /*
749  * AlternativeSubPlan - expression node for a choice among SubPlans
750  *
751  * This is used only transiently during planning: by the time the plan
752  * reaches the executor, all AlternativeSubPlan nodes have been removed.
753  *
754  * The subplans are given as a List so that the node definition need not
755  * change if there's ever more than two alternatives. For the moment,
756  * though, there are always exactly two; and the first one is the fast-start
757  * plan.
758  */
759 typedef struct AlternativeSubPlan
760 {
762  List *subplans; /* SubPlan(s) with equivalent results */
764 
765 /* ----------------
766  * FieldSelect
767  *
768  * FieldSelect represents the operation of extracting one field from a tuple
769  * value. At runtime, the input expression is expected to yield a rowtype
770  * Datum. The specified field number is extracted and returned as a Datum.
771  * ----------------
772  */
773 
774 typedef struct FieldSelect
775 {
777  Expr *arg; /* input expression */
778  AttrNumber fieldnum; /* attribute number of field to extract */
779  Oid resulttype; /* type of the field (result type of this
780  * node) */
781  int32 resulttypmod; /* output typmod (usually -1) */
782  Oid resultcollid; /* OID of collation of the field */
783 } FieldSelect;
784 
785 /* ----------------
786  * FieldStore
787  *
788  * FieldStore represents the operation of modifying one field in a tuple
789  * value, yielding a new tuple value (the input is not touched!). Like
790  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
791  * portion of a column.
792  *
793  * resulttype is always a named composite type (not a domain). To update
794  * a composite domain value, apply CoerceToDomain to the FieldStore.
795  *
796  * A single FieldStore can actually represent updates of several different
797  * fields. The parser only generates FieldStores with single-element lists,
798  * but the planner will collapse multiple updates of the same base column
799  * into one FieldStore.
800  * ----------------
801  */
802 
803 typedef struct FieldStore
804 {
806  Expr *arg; /* input tuple value */
807  List *newvals; /* new value(s) for field(s) */
808  List *fieldnums; /* integer list of field attnums */
809  Oid resulttype; /* type of result (same as type of arg) */
810  /* Like RowExpr, we deliberately omit a typmod and collation here */
811 } FieldStore;
812 
813 /* ----------------
814  * RelabelType
815  *
816  * RelabelType represents a "dummy" type coercion between two binary-
817  * compatible datatypes, such as reinterpreting the result of an OID
818  * expression as an int4. It is a no-op at runtime; we only need it
819  * to provide a place to store the correct type to be attributed to
820  * the expression result during type resolution. (We can't get away
821  * with just overwriting the type field of the input expression node,
822  * so we need a separate node to show the coercion's result type.)
823  * ----------------
824  */
825 
826 typedef struct RelabelType
827 {
829  Expr *arg; /* input expression */
830  Oid resulttype; /* output type of coercion expression */
831  int32 resulttypmod; /* output typmod (usually -1) */
832  Oid resultcollid; /* OID of collation, or InvalidOid if none */
833  CoercionForm relabelformat; /* how to display this node */
834  int location; /* token location, or -1 if unknown */
835 } RelabelType;
836 
837 /* ----------------
838  * CoerceViaIO
839  *
840  * CoerceViaIO represents a type coercion between two types whose textual
841  * representations are compatible, implemented by invoking the source type's
842  * typoutput function then the destination type's typinput function.
843  * ----------------
844  */
845 
846 typedef struct CoerceViaIO
847 {
849  Expr *arg; /* input expression */
850  Oid resulttype; /* output type of coercion */
851  /* output typmod is not stored, but is presumed -1 */
852  Oid resultcollid; /* OID of collation, or InvalidOid if none */
853  CoercionForm coerceformat; /* how to display this node */
854  int location; /* token location, or -1 if unknown */
855 } CoerceViaIO;
856 
857 /* ----------------
858  * ArrayCoerceExpr
859  *
860  * ArrayCoerceExpr represents a type coercion from one array type to another,
861  * which is implemented by applying the per-element coercion expression
862  * "elemexpr" to each element of the source array. Within elemexpr, the
863  * source element is represented by a CaseTestExpr node. Note that even if
864  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
865  * coercion still requires some effort: we have to fix the element type OID
866  * stored in the array header.
867  * ----------------
868  */
869 
870 typedef struct ArrayCoerceExpr
871 {
873  Expr *arg; /* input expression (yields an array) */
874  Expr *elemexpr; /* expression representing per-element work */
875  Oid resulttype; /* output type of coercion (an array type) */
876  int32 resulttypmod; /* output typmod (also element typmod) */
877  Oid resultcollid; /* OID of collation, or InvalidOid if none */
878  CoercionForm coerceformat; /* how to display this node */
879  int location; /* token location, or -1 if unknown */
881 
882 /* ----------------
883  * ConvertRowtypeExpr
884  *
885  * ConvertRowtypeExpr represents a type coercion from one composite type
886  * to another, where the source type is guaranteed to contain all the columns
887  * needed for the destination type plus possibly others; the columns need not
888  * be in the same positions, but are matched up by name. This is primarily
889  * used to convert a whole-row value of an inheritance child table into a
890  * valid whole-row value of its parent table's rowtype. Both resulttype
891  * and the exposed type of "arg" must be named composite types (not domains).
892  * ----------------
893  */
894 
895 typedef struct ConvertRowtypeExpr
896 {
898  Expr *arg; /* input expression */
899  Oid resulttype; /* output type (always a composite type) */
900  /* Like RowExpr, we deliberately omit a typmod and collation here */
901  CoercionForm convertformat; /* how to display this node */
902  int location; /* token location, or -1 if unknown */
904 
905 /*----------
906  * CollateExpr - COLLATE
907  *
908  * The planner replaces CollateExpr with RelabelType during expression
909  * preprocessing, so execution never sees a CollateExpr.
910  *----------
911  */
912 typedef struct CollateExpr
913 {
915  Expr *arg; /* input expression */
916  Oid collOid; /* collation's OID */
917  int location; /* token location, or -1 if unknown */
918 } CollateExpr;
919 
920 /*----------
921  * CaseExpr - a CASE expression
922  *
923  * We support two distinct forms of CASE expression:
924  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
925  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
926  * These are distinguishable by the "arg" field being NULL in the first case
927  * and the testexpr in the second case.
928  *
929  * In the raw grammar output for the second form, the condition expressions
930  * of the WHEN clauses are just the comparison values. Parse analysis
931  * converts these to valid boolean expressions of the form
932  * CaseTestExpr '=' compexpr
933  * where the CaseTestExpr node is a placeholder that emits the correct
934  * value at runtime. This structure is used so that the testexpr need be
935  * evaluated only once. Note that after parse analysis, the condition
936  * expressions always yield boolean.
937  *
938  * Note: we can test whether a CaseExpr has been through parse analysis
939  * yet by checking whether casetype is InvalidOid or not.
940  *----------
941  */
942 typedef struct CaseExpr
943 {
945  Oid casetype; /* type of expression result */
946  Oid casecollid; /* OID of collation, or InvalidOid if none */
947  Expr *arg; /* implicit equality comparison argument */
948  List *args; /* the arguments (list of WHEN clauses) */
949  Expr *defresult; /* the default result (ELSE clause) */
950  int location; /* token location, or -1 if unknown */
951 } CaseExpr;
952 
953 /*
954  * CaseWhen - one arm of a CASE expression
955  */
956 typedef struct CaseWhen
957 {
959  Expr *expr; /* condition expression */
960  Expr *result; /* substitution result */
961  int location; /* token location, or -1 if unknown */
962 } CaseWhen;
963 
964 /*
965  * Placeholder node for the test value to be processed by a CASE expression.
966  * This is effectively like a Param, but can be implemented more simply
967  * since we need only one replacement value at a time.
968  *
969  * We also abuse this node type for some other purposes, including:
970  * * Placeholder for the current array element value in ArrayCoerceExpr;
971  * see build_coercion_expression().
972  * * Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
973  * see transformAssignmentIndirection().
974  *
975  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
976  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
977  * node and its child CaseTestExpr(s). This is true in the parse analysis
978  * output, but the planner's function-inlining logic has to be careful not to
979  * break it.
980  *
981  * The nested-assignment-expression case is safe because the only node types
982  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
983  */
984 typedef struct CaseTestExpr
985 {
987  Oid typeId; /* type for substituted value */
988  int32 typeMod; /* typemod for substituted value */
989  Oid collation; /* collation for the substituted value */
990 } CaseTestExpr;
991 
992 /*
993  * ArrayExpr - an ARRAY[] expression
994  *
995  * Note: if multidims is false, the constituent expressions all yield the
996  * scalar type identified by element_typeid. If multidims is true, the
997  * constituent expressions all yield arrays of element_typeid (ie, the same
998  * type as array_typeid); at runtime we must check for compatible subscripts.
999  */
1000 typedef struct ArrayExpr
1001 {
1003  Oid array_typeid; /* type of expression result */
1004  Oid array_collid; /* OID of collation, or InvalidOid if none */
1005  Oid element_typeid; /* common type of array elements */
1006  List *elements; /* the array elements or sub-arrays */
1007  bool multidims; /* true if elements are sub-arrays */
1008  int location; /* token location, or -1 if unknown */
1009 } ArrayExpr;
1010 
1011 /*
1012  * RowExpr - a ROW() expression
1013  *
1014  * Note: the list of fields must have a one-for-one correspondence with
1015  * physical fields of the associated rowtype, although it is okay for it
1016  * to be shorter than the rowtype. That is, the N'th list element must
1017  * match up with the N'th physical field. When the N'th physical field
1018  * is a dropped column (attisdropped) then the N'th list element can just
1019  * be a NULL constant. (This case can only occur for named composite types,
1020  * not RECORD types, since those are built from the RowExpr itself rather
1021  * than vice versa.) It is important not to assume that length(args) is
1022  * the same as the number of columns logically present in the rowtype.
1023  *
1024  * colnames provides field names in cases where the names can't easily be
1025  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
1026  * If row_typeid identifies a known composite type, colnames can be NIL to
1027  * indicate the type's cataloged field names apply. Note that colnames can
1028  * be non-NIL even for a composite type, and typically is when the RowExpr
1029  * was created by expanding a whole-row Var. This is so that we can retain
1030  * the column alias names of the RTE that the Var referenced (which would
1031  * otherwise be very difficult to extract from the parsetree). Like the
1032  * args list, colnames is one-for-one with physical fields of the rowtype.
1033  */
1034 typedef struct RowExpr
1035 {
1037  List *args; /* the fields */
1038  Oid row_typeid; /* RECORDOID or a composite type's ID */
1039 
1040  /*
1041  * row_typeid cannot be a domain over composite, only plain composite. To
1042  * create a composite domain value, apply CoerceToDomain to the RowExpr.
1043  *
1044  * Note: we deliberately do NOT store a typmod. Although a typmod will be
1045  * associated with specific RECORD types at runtime, it will differ for
1046  * different backends, and so cannot safely be stored in stored
1047  * parsetrees. We must assume typmod -1 for a RowExpr node.
1048  *
1049  * We don't need to store a collation either. The result type is
1050  * necessarily composite, and composite types never have a collation.
1051  */
1052  CoercionForm row_format; /* how to display this node */
1053  List *colnames; /* list of String, or NIL */
1054  int location; /* token location, or -1 if unknown */
1055 } RowExpr;
1056 
1057 /*
1058  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1059  *
1060  * We support row comparison for any operator that can be determined to
1061  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1062  * operator in btree opfamilies). Note that the same operator name might
1063  * map to a different operator for each pair of row elements, since the
1064  * element datatypes can vary.
1065  *
1066  * A RowCompareExpr node is only generated for the < <= > >= cases;
1067  * the = and <> cases are translated to simple AND or OR combinations
1068  * of the pairwise comparisons. However, we include = and <> in the
1069  * RowCompareType enum for the convenience of parser logic.
1070  */
1071 typedef enum RowCompareType
1072 {
1073  /* Values of this enum are chosen to match btree strategy numbers */
1074  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1075  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1076  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1077  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1078  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1079  ROWCOMPARE_NE = 6 /* no such btree strategy */
1080 } RowCompareType;
1081 
1082 typedef struct RowCompareExpr
1083 {
1085  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1086  List *opnos; /* OID list of pairwise comparison ops */
1087  List *opfamilies; /* OID list of containing operator families */
1088  List *inputcollids; /* OID list of collations for comparisons */
1089  List *largs; /* the left-hand input arguments */
1090  List *rargs; /* the right-hand input arguments */
1091 } RowCompareExpr;
1092 
1093 /*
1094  * CoalesceExpr - a COALESCE expression
1095  */
1096 typedef struct CoalesceExpr
1097 {
1099  Oid coalescetype; /* type of expression result */
1100  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1101  List *args; /* the arguments */
1102  int location; /* token location, or -1 if unknown */
1103 } CoalesceExpr;
1104 
1105 /*
1106  * MinMaxExpr - a GREATEST or LEAST function
1107  */
1108 typedef enum MinMaxOp
1109 {
1112 } MinMaxOp;
1113 
1114 typedef struct MinMaxExpr
1115 {
1117  Oid minmaxtype; /* common type of arguments and result */
1118  Oid minmaxcollid; /* OID of collation of result */
1119  Oid inputcollid; /* OID of collation that function should use */
1120  MinMaxOp op; /* function to execute */
1121  List *args; /* the arguments */
1122  int location; /* token location, or -1 if unknown */
1123 } MinMaxExpr;
1124 
1125 /*
1126  * SQLValueFunction - parameterless functions with special grammar productions
1127  *
1128  * The SQL standard categorizes some of these as <datetime value function>
1129  * and others as <general value specification>. We call 'em SQLValueFunctions
1130  * for lack of a better term. We store type and typmod of the result so that
1131  * some code doesn't need to know each function individually, and because
1132  * we would need to store typmod anyway for some of the datetime functions.
1133  * Note that currently, all variants return non-collating datatypes, so we do
1134  * not need a collation field; also, all these functions are stable.
1135  */
1137 {
1154 
1155 typedef struct SQLValueFunction
1156 {
1158  SQLValueFunctionOp op; /* which function this is */
1159  Oid type; /* result type/typmod */
1161  int location; /* token location, or -1 if unknown */
1163 
1164 /*
1165  * XmlExpr - various SQL/XML functions requiring special grammar productions
1166  *
1167  * 'name' carries the "NAME foo" argument (already XML-escaped).
1168  * 'named_args' and 'arg_names' represent an xml_attribute list.
1169  * 'args' carries all other arguments.
1170  *
1171  * Note: result type/typmod/collation are not stored, but can be deduced
1172  * from the XmlExprOp. The type/typmod fields are just used for display
1173  * purposes, and are NOT necessarily the true result type of the node.
1174  */
1175 typedef enum XmlExprOp
1176 {
1177  IS_XMLCONCAT, /* XMLCONCAT(args) */
1178  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1179  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1180  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1181  IS_XMLPI, /* XMLPI(name [, args]) */
1182  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1183  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1184  IS_DOCUMENT /* xmlval IS DOCUMENT */
1185 } XmlExprOp;
1186 
1187 typedef enum
1188 {
1191 } XmlOptionType;
1192 
1193 typedef struct XmlExpr
1194 {
1196  XmlExprOp op; /* xml function ID */
1197  char *name; /* name in xml(NAME foo ...) syntaxes */
1198  List *named_args; /* non-XML expressions for xml_attributes */
1199  List *arg_names; /* parallel list of Value strings */
1200  List *args; /* list of expressions */
1201  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1202  Oid type; /* target type/typmod for XMLSERIALIZE */
1204  int location; /* token location, or -1 if unknown */
1205 } XmlExpr;
1206 
1207 /* ----------------
1208  * NullTest
1209  *
1210  * NullTest represents the operation of testing a value for NULLness.
1211  * The appropriate test is performed and returned as a boolean Datum.
1212  *
1213  * When argisrow is false, this simply represents a test for the null value.
1214  *
1215  * When argisrow is true, the input expression must yield a rowtype, and
1216  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1217  * includes checking individual fields for NULLness when the row datum
1218  * itself isn't NULL.
1219  *
1220  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1221  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1222  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1223  * ----------------
1224  */
1225 
1226 typedef enum NullTestType
1227 {
1229 } NullTestType;
1230 
1231 typedef struct NullTest
1232 {
1234  Expr *arg; /* input expression */
1235  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1236  bool argisrow; /* T to perform field-by-field null checks */
1237  int location; /* token location, or -1 if unknown */
1238 } NullTest;
1239 
1240 /*
1241  * BooleanTest
1242  *
1243  * BooleanTest represents the operation of determining whether a boolean
1244  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1245  * are supported. Note that a NULL input does *not* cause a NULL result.
1246  * The appropriate test is performed and returned as a boolean Datum.
1247  */
1248 
1249 typedef enum BoolTestType
1250 {
1252 } BoolTestType;
1253 
1254 typedef struct BooleanTest
1255 {
1257  Expr *arg; /* input expression */
1258  BoolTestType booltesttype; /* test type */
1259  int location; /* token location, or -1 if unknown */
1260 } BooleanTest;
1261 
1262 /*
1263  * CoerceToDomain
1264  *
1265  * CoerceToDomain represents the operation of coercing a value to a domain
1266  * type. At runtime (and not before) the precise set of constraints to be
1267  * checked will be determined. If the value passes, it is returned as the
1268  * result; if not, an error is raised. Note that this is equivalent to
1269  * RelabelType in the scenario where no constraints are applied.
1270  */
1271 typedef struct CoerceToDomain
1272 {
1274  Expr *arg; /* input expression */
1275  Oid resulttype; /* domain type ID (result type) */
1276  int32 resulttypmod; /* output typmod (currently always -1) */
1277  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1278  CoercionForm coercionformat; /* how to display this node */
1279  int location; /* token location, or -1 if unknown */
1280 } CoerceToDomain;
1281 
1282 /*
1283  * Placeholder node for the value to be processed by a domain's check
1284  * constraint. This is effectively like a Param, but can be implemented more
1285  * simply since we need only one replacement value at a time.
1286  *
1287  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1288  * not the domain itself. This is because we shouldn't consider the value
1289  * to be a member of the domain if we haven't yet checked its constraints.
1290  */
1291 typedef struct CoerceToDomainValue
1292 {
1294  Oid typeId; /* type for substituted value */
1295  int32 typeMod; /* typemod for substituted value */
1296  Oid collation; /* collation for the substituted value */
1297  int location; /* token location, or -1 if unknown */
1299 
1300 /*
1301  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1302  *
1303  * This is not an executable expression: it must be replaced by the actual
1304  * column default expression during rewriting. But it is convenient to
1305  * treat it as an expression node during parsing and rewriting.
1306  */
1307 typedef struct SetToDefault
1308 {
1310  Oid typeId; /* type for substituted value */
1311  int32 typeMod; /* typemod for substituted value */
1312  Oid collation; /* collation for the substituted value */
1313  int location; /* token location, or -1 if unknown */
1314 } SetToDefault;
1315 
1316 /*
1317  * Node representing [WHERE] CURRENT OF cursor_name
1318  *
1319  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1320  * of the target relation being constrained; this aids placing the expression
1321  * correctly during planning. We can assume however that its "levelsup" is
1322  * always zero, due to the syntactic constraints on where it can appear.
1323  *
1324  * The referenced cursor can be represented either as a hardwired string
1325  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1326  * case is for the convenience of plpgsql.
1327  */
1328 typedef struct CurrentOfExpr
1329 {
1331  Index cvarno; /* RT index of target relation */
1332  char *cursor_name; /* name of referenced cursor, or NULL */
1333  int cursor_param; /* refcursor parameter number, or 0 */
1334 } CurrentOfExpr;
1335 
1336 /*
1337  * NextValueExpr - get next value from sequence
1338  *
1339  * This has the same effect as calling the nextval() function, but it does not
1340  * check permissions on the sequence. This is used for identity columns,
1341  * where the sequence is an implicit dependency without its own permissions.
1342  */
1343 typedef struct NextValueExpr
1344 {
1348 } NextValueExpr;
1349 
1350 /*
1351  * InferenceElem - an element of a unique index inference specification
1352  *
1353  * This mostly matches the structure of IndexElems, but having a dedicated
1354  * primnode allows for a clean separation between the use of index parameters
1355  * by utility commands, and this node.
1356  */
1357 typedef struct InferenceElem
1358 {
1360  Node *expr; /* expression to infer from, or NULL */
1361  Oid infercollid; /* OID of collation, or InvalidOid */
1362  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1363 } InferenceElem;
1364 
1365 /*--------------------
1366  * TargetEntry -
1367  * a target entry (used in query target lists)
1368  *
1369  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1370  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1371  * very many places it's convenient to process a whole query targetlist as a
1372  * single expression tree.
1373  *
1374  * In a SELECT's targetlist, resno should always be equal to the item's
1375  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1376  * targetlist, resno represents the attribute number of the destination
1377  * column for the item; so there may be missing or out-of-order resnos.
1378  * It is even legal to have duplicated resnos; consider
1379  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1380  * The two meanings come together in the executor, because the planner
1381  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1382  * one entry for each column of the destination table. Before that's
1383  * happened, however, it is risky to assume that resno == position.
1384  * Generally get_tle_by_resno() should be used rather than list_nth()
1385  * to fetch tlist entries by resno, and only in SELECT should you assume
1386  * that resno is a unique identifier.
1387  *
1388  * resname is required to represent the correct column name in non-resjunk
1389  * entries of top-level SELECT targetlists, since it will be used as the
1390  * column title sent to the frontend. In most other contexts it is only
1391  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1392  * be wrong in a tlist from a stored rule, if the referenced column has been
1393  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1394  * to store NULL rather than look up a valid name for tlist entries in
1395  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1396  * a specific system-generated name (such as "ctid") or NULL; anything else
1397  * risks confusing ExecGetJunkAttribute!
1398  *
1399  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1400  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1401  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1402  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1403  * may have the same nonzero ressortgroupref --- but there is no particular
1404  * meaning to the nonzero values, except as tags. (For example, one must
1405  * not assume that lower ressortgroupref means a more significant sort key.)
1406  * The order of the associated SortGroupClause lists determine the semantics.
1407  *
1408  * resorigtbl/resorigcol identify the source of the column, if it is a
1409  * simple reference to a column of a base table (or view). If it is not
1410  * a simple reference, these fields are zeroes.
1411  *
1412  * If resjunk is true then the column is a working column (such as a sort key)
1413  * that should be removed from the final output of the query. Resjunk columns
1414  * must have resnos that cannot duplicate any regular column's resno. Also
1415  * note that there are places that assume resjunk columns come after non-junk
1416  * columns.
1417  *--------------------
1418  */
1419 typedef struct TargetEntry
1420 {
1422  Expr *expr; /* expression to evaluate */
1423  AttrNumber resno; /* attribute number (see notes above) */
1424  char *resname; /* name of the column (could be NULL) */
1425  Index ressortgroupref; /* nonzero if referenced by a sort/group
1426  * clause */
1427  Oid resorigtbl; /* OID of column's source table */
1428  AttrNumber resorigcol; /* column's number in source table */
1429  bool resjunk; /* set to true to eliminate the attribute from
1430  * final target list */
1431 } TargetEntry;
1432 
1433 
1434 /* ----------------------------------------------------------------
1435  * node types for join trees
1436  *
1437  * The leaves of a join tree structure are RangeTblRef nodes. Above
1438  * these, JoinExpr nodes can appear to denote a specific kind of join
1439  * or qualified join. Also, FromExpr nodes can appear to denote an
1440  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1441  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1442  * may have any number of child nodes, not just two.
1443  *
1444  * NOTE: the top level of a Query's jointree is always a FromExpr.
1445  * Even if the jointree contains no rels, there will be a FromExpr.
1446  *
1447  * NOTE: the qualification expressions present in JoinExpr nodes are
1448  * *in addition to* the query's main WHERE clause, which appears as the
1449  * qual of the top-level FromExpr. The reason for associating quals with
1450  * specific nodes in the jointree is that the position of a qual is critical
1451  * when outer joins are present. (If we enforce a qual too soon or too late,
1452  * that may cause the outer join to produce the wrong set of NULL-extended
1453  * rows.) If all joins are inner joins then all the qual positions are
1454  * semantically interchangeable.
1455  *
1456  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1457  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1458  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1459  * FromExpr is added during parse analysis; the grammar regards FROM and
1460  * WHERE as separate.
1461  * ----------------------------------------------------------------
1462  */
1463 
1464 /*
1465  * RangeTblRef - reference to an entry in the query's rangetable
1466  *
1467  * We could use direct pointers to the RT entries and skip having these
1468  * nodes, but multiple pointers to the same node in a querytree cause
1469  * lots of headaches, so it seems better to store an index into the RT.
1470  */
1471 typedef struct RangeTblRef
1472 {
1474  int rtindex;
1475 } RangeTblRef;
1476 
1477 /*----------
1478  * JoinExpr - for SQL JOIN expressions
1479  *
1480  * isNatural, usingClause, and quals are interdependent. The user can write
1481  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1482  * If he writes NATURAL then parse analysis generates the equivalent USING()
1483  * list, and from that fills in "quals" with the right equality comparisons.
1484  * If he writes USING() then "quals" is filled with equality comparisons.
1485  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1486  * are not equivalent to ON() since they also affect the output column list.
1487  *
1488  * alias is an Alias node representing the AS alias-clause attached to the
1489  * join expression, or NULL if no clause. NB: presence or absence of the
1490  * alias has a critical impact on semantics, because a join with an alias
1491  * restricts visibility of the tables/columns inside it.
1492  *
1493  * During parse analysis, an RTE is created for the Join, and its index
1494  * is filled into rtindex. This RTE is present mainly so that Vars can
1495  * be created that refer to the outputs of the join. The planner sometimes
1496  * generates JoinExprs internally; these can have rtindex = 0 if there are
1497  * no join alias variables referencing such joins.
1498  *----------
1499  */
1500 typedef struct JoinExpr
1501 {
1503  JoinType jointype; /* type of join */
1504  bool isNatural; /* Natural join? Will need to shape table */
1505  Node *larg; /* left subtree */
1506  Node *rarg; /* right subtree */
1507  List *usingClause; /* USING clause, if any (list of String) */
1508  Node *quals; /* qualifiers on join, if any */
1509  Alias *alias; /* user-written alias clause, if any */
1510  int rtindex; /* RT index assigned for join, or 0 */
1511 } JoinExpr;
1512 
1513 /*----------
1514  * FromExpr - represents a FROM ... WHERE ... construct
1515  *
1516  * This is both more flexible than a JoinExpr (it can have any number of
1517  * children, including zero) and less so --- we don't need to deal with
1518  * aliases and so on. The output column set is implicitly just the union
1519  * of the outputs of the children.
1520  *----------
1521  */
1522 typedef struct FromExpr
1523 {
1525  List *fromlist; /* List of join subtrees */
1526  Node *quals; /* qualifiers on join, if any */
1527 } FromExpr;
1528 
1529 /*----------
1530  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1531  *
1532  * The optimizer requires a list of inference elements, and optionally a WHERE
1533  * clause to infer a unique index. The unique index (or, occasionally,
1534  * indexes) inferred are used to arbitrate whether or not the alternative ON
1535  * CONFLICT path is taken.
1536  *----------
1537  */
1538 typedef struct OnConflictExpr
1539 {
1541  OnConflictAction action; /* DO NOTHING or UPDATE? */
1542 
1543  /* Arbiter */
1544  List *arbiterElems; /* unique index arbiter list (of
1545  * InferenceElem's) */
1546  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1547  Oid constraint; /* pg_constraint OID for arbiter */
1548 
1549  /* ON CONFLICT UPDATE */
1550  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1551  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1552  int exclRelIndex; /* RT index of 'excluded' relation */
1553  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1554 } OnConflictExpr;
1555 
1556 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:214
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:327
Oid funcresulttype
Definition: primnodes.h:482
Oid minmaxtype
Definition: primnodes.h:1117
bool multidims
Definition: primnodes.h:1007
Expr xpr
Definition: primnodes.h:380
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:725
struct FieldSelect FieldSelect
List * args
Definition: primnodes.h:1121
Expr xpr
Definition: primnodes.h:944
bool aggvariadic
Definition: primnodes.h:330
List * args
Definition: primnodes.h:1037
Expr xpr
Definition: primnodes.h:1233
Node * docexpr
Definition: primnodes.h:87
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1540
Expr * arg
Definition: primnodes.h:806
Index varlevelsup
Definition: primnodes.h:191
OnCommitAction onCommit
Definition: primnodes.h:116
int plan_id
Definition: primnodes.h:721
List * args
Definition: primnodes.h:367
ParamKind
Definition: primnodes.h:251
char * name
Definition: primnodes.h:1197
List * refs
Definition: primnodes.h:369
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:217
int aggtransno
Definition: primnodes.h:336
List * args
Definition: primnodes.h:385
List * args
Definition: primnodes.h:489
Oid wincollid
Definition: primnodes.h:383
int32 resulttypmod
Definition: primnodes.h:1276
List * colnames
Definition: primnodes.h:89
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:779
char * tableSpaceName
Definition: primnodes.h:117
List * coltypmods
Definition: primnodes.h:91
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1249
Oid funccollid
Definition: primnodes.h:487
int location
Definition: primnodes.h:1204
Oid resulttype
Definition: primnodes.h:850
XmlExprOp
Definition: primnodes.h:1175
OpExpr NullIfExpr
Definition: primnodes.h:556
RowCompareType rctype
Definition: primnodes.h:1085
List * opfamilies
Definition: primnodes.h:1087
NodeTag type
Definition: primnodes.h:84
Oid type
Definition: primnodes.h:1202
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:946
SubLinkType subLinkType
Definition: primnodes.h:716
Expr * arg
Definition: primnodes.h:829
Oid inputcollid
Definition: primnodes.h:321
ParamKind paramkind
Definition: primnodes.h:262
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:527
CoercionForm coercionformat
Definition: primnodes.h:1278
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1427
List * args
Definition: primnodes.h:325
AttrNumber varattno
Definition: primnodes.h:186
Oid array_typeid
Definition: primnodes.h:1003
Expr * arg
Definition: primnodes.h:777
List * paramIds
Definition: primnodes.h:719
struct SubscriptingRef SubscriptingRef
bool funcretset
Definition: primnodes.h:483
struct SubPlan SubPlan
struct Expr Expr
List * fromlist
Definition: primnodes.h:1525
Expr xpr
Definition: primnodes.h:1195
NullTestType
Definition: primnodes.h:1226
bool skipData
Definition: primnodes.h:119
Oid casetype
Definition: primnodes.h:945
bool aggstar
Definition: primnodes.h:329
Expr xpr
Definition: primnodes.h:1036
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:183
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:387
char * resname
Definition: primnodes.h:1424
List * arg_names
Definition: primnodes.h:1199
Definition: primnodes.h:181
List * refupperindexpr
Definition: primnodes.h:430
CoercionContext
Definition: primnodes.h:448
Node * quals
Definition: primnodes.h:1526
struct Var Var
int32 typeMod
Definition: primnodes.h:988
int location
Definition: primnodes.h:596
int location
Definition: primnodes.h:961
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1158
NodeTag type
Definition: primnodes.h:1524
List * colcollations
Definition: primnodes.h:92
signed int int32
Definition: c.h:417
struct RelabelType RelabelType
JoinType
Definition: nodes.h:694
List * arbiterElems
Definition: primnodes.h:1544
Expr xpr
Definition: primnodes.h:261
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1505
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:213
Expr xpr
Definition: primnodes.h:527
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:210
List * aggargtypes
Definition: primnodes.h:323
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:486
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Oid opresulttype
Definition: primnodes.h:530
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1108
bool resjunk
Definition: primnodes.h:1429
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:481
List * colnames
Definition: primnodes.h:1053
Node * viewQuery
Definition: primnodes.h:118
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:266
int location
Definition: primnodes.h:267
Oid vartype
Definition: primnodes.h:188
List * args
Definition: primnodes.h:1101
BoolExprType boolop
Definition: primnodes.h:594
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1234
int location
Definition: primnodes.h:337
List * coldefexprs
Definition: primnodes.h:94
Oid constcollid
Definition: primnodes.h:212
Oid resultcollid
Definition: primnodes.h:782
List * ns_names
Definition: primnodes.h:86
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:88
int location
Definition: primnodes.h:196
int location
Definition: primnodes.h:1054
struct Const Const
int32 typeMod
Definition: primnodes.h:1311
int location
Definition: primnodes.h:1122
List * exclRelTlist
Definition: primnodes.h:1553
int location
Definition: primnodes.h:535
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:326
Expr * arg
Definition: primnodes.h:1257
AttrNumber resno
Definition: primnodes.h:1423
Bitmapset * notnulls
Definition: primnodes.h:95
Index agglevelsup
Definition: primnodes.h:333
char * name
Definition: primnodes.h:511
Expr xpr
Definition: primnodes.h:209
char * cursor_name
Definition: primnodes.h:1332
List * aggdirectargs
Definition: primnodes.h:324
Oid resulttype
Definition: primnodes.h:809
Oid winfnoid
Definition: primnodes.h:381
Expr * arg
Definition: primnodes.h:849
List * elements
Definition: primnodes.h:1006
struct BooleanTest BooleanTest
Expr * elemexpr
Definition: primnodes.h:874
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:1002
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:532
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1136
List * options
Definition: primnodes.h:115
List * newvals
Definition: primnodes.h:807
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:370
Index varnosyn
Definition: primnodes.h:194
SubLinkType
Definition: primnodes.h:650
OnConflictAction action
Definition: primnodes.h:1541
bool isNatural
Definition: primnodes.h:1504
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1507
Expr xpr
Definition: primnodes.h:714
Index varno
Definition: primnodes.h:184
int ordinalitycol
Definition: primnodes.h:96
XmlExprOp op
Definition: primnodes.h:1196
List * args
Definition: primnodes.h:948
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:878
int location
Definition: primnodes.h:221
Node * quals
Definition: primnodes.h:1508
int location
Definition: primnodes.h:1008
BoolTestType booltesttype
Definition: primnodes.h:1258
Index agglevelsup
Definition: primnodes.h:371
AttrNumber varattnosyn
Definition: primnodes.h:195
uintptr_t Datum
Definition: postgres.h:367
CoercionForm convertformat
Definition: primnodes.h:901
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:852
Oid opfuncid
Definition: primnodes.h:529
Oid resulttype
Definition: primnodes.h:830
Node * testexpr
Definition: primnodes.h:718
unsigned int Index
Definition: c.h:537
List * coltypes
Definition: primnodes.h:90
NullTestType nulltesttype
Definition: primnodes.h:1235
int32 typmod
Definition: primnodes.h:1203
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:745
Oid resultcollid
Definition: primnodes.h:832
Oid aggfnoid
Definition: primnodes.h:318
List * colexprs
Definition: primnodes.h:93
List * named_args
Definition: primnodes.h:1198
int32 firstColTypmod
Definition: primnodes.h:726
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1071
List * args
Definition: primnodes.h:1200
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:265
int aggno
Definition: primnodes.h:335
char * plan_name
Definition: primnodes.h:723
int location
Definition: primnodes.h:854
Node * rarg
Definition: primnodes.h:1506
Alias * alias
Definition: primnodes.h:1509
Expr * arg
Definition: primnodes.h:510
struct NullTest NullTest
int location
Definition: primnodes.h:390
Oid inputcollid
Definition: primnodes.h:488
JoinType jointype
Definition: primnodes.h:1503
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1473
NodeTag type
Definition: primnodes.h:1502
List * setParam
Definition: primnodes.h:739
List * ns_uris
Definition: primnodes.h:85
Expr * aggfilter
Definition: primnodes.h:386
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1422
AggSplit aggsplit
Definition: primnodes.h:334
XmlOptionType xmloption
Definition: primnodes.h:1201
int paramid
Definition: primnodes.h:263
XmlOptionType
Definition: primnodes.h:1187
Oid array_collid
Definition: primnodes.h:1004
bool unknownEqFalse
Definition: primnodes.h:732
int location
Definition: primnodes.h:1237
AggSplit
Definition: nodes.h:778
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:1038
struct RowCompareExpr RowCompareExpr
Oid inputcollid
Definition: primnodes.h:1119
Expr * arg
Definition: primnodes.h:915
Expr xpr
Definition: primnodes.h:593
Expr * aggfilter
Definition: primnodes.h:328
int location
Definition: primnodes.h:950
List * parParam
Definition: primnodes.h:741
Oid inputcollid
Definition: primnodes.h:533
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:384
List * args
Definition: primnodes.h:595
Expr xpr
Definition: primnodes.h:317
bool parallel_safe
Definition: primnodes.h:735
struct Param Param
NodeTag type
Definition: primnodes.h:110
int32 consttypmod
Definition: primnodes.h:211
Oid element_typeid
Definition: primnodes.h:1005
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:382
CoercionForm coerceformat
Definition: primnodes.h:853
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1546
Expr * refassgnexpr
Definition: primnodes.h:438
Expr xpr
Definition: primnodes.h:958
AttrNumber resorigcol
Definition: primnodes.h:1428
Oid aggcollid
Definition: primnodes.h:320
Expr xpr
Definition: primnodes.h:480
RangeVar * rel
Definition: primnodes.h:112
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:808
List * reflowerindexpr
Definition: primnodes.h:432
bool winagg
Definition: primnodes.h:389
Oid coalescetype
Definition: primnodes.h:1099
Expr xpr
Definition: primnodes.h:805
Oid aggtranstype
Definition: primnodes.h:322
List * onConflictSet
Definition: primnodes.h:1550
Oid varcollid
Definition: primnodes.h:190
Index ressortgroupref
Definition: primnodes.h:1425
Oid aggtype
Definition: primnodes.h:319
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:548
NodeTag type
Definition: primnodes.h:138
bool useHashTable
Definition: primnodes.h:730
Oid refcontainertype
Definition: primnodes.h:426
bool argisrow
Definition: primnodes.h:1236
MinMaxOp op
Definition: primnodes.h:1120
Oid minmaxcollid
Definition: primnodes.h:1118
Oid firstColCollation
Definition: primnodes.h:727
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:332
Cost startup_cost
Definition: primnodes.h:744
Expr * refexpr
Definition: primnodes.h:435
int32 resulttypmod
Definition: primnodes.h:831
Expr * arg
Definition: primnodes.h:947
int location
Definition: primnodes.h:490
Oid opno
Definition: primnodes.h:528
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:876
Expr * result
Definition: primnodes.h:960
List * colNames
Definition: primnodes.h:113
List * args
Definition: primnodes.h:534
List * inputcollids
Definition: primnodes.h:1088
int location
Definition: primnodes.h:97
CoercionForm relabelformat
Definition: primnodes.h:833
Expr * defresult
Definition: primnodes.h:949
Expr * expr
Definition: primnodes.h:959
int location
Definition: primnodes.h:917
CoercionForm row_format
Definition: primnodes.h:1052
CoercionForm
Definition: primnodes.h:467
Node * onConflictWhere
Definition: primnodes.h:1551
int rtindex
Definition: primnodes.h:1510
Definition: pg_list.h:50
OnConflictAction
Definition: nodes.h:820
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:264
int location
Definition: primnodes.h:834
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:215
Oid coalescecollid
Definition: primnodes.h:1100
bool funcvariadic
Definition: primnodes.h:484
char * accessMethod
Definition: primnodes.h:114
double Cost
Definition: nodes.h:661
struct CaseExpr CaseExpr
bool opretset
Definition: primnodes.h:531
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:781
bool winstar
Definition: primnodes.h:388
AttrNumber fieldnum
Definition: primnodes.h:778
BoolExprType
Definition: primnodes.h:586
int32 vartypmod
Definition: primnodes.h:189
List * args
Definition: primnodes.h:742