PostgreSQL Source Code  git master
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings). In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  *
79  * Entries in the ns_names list are either string Value nodes containing
80  * literal namespace names, or NULL pointers to represent DEFAULT.
81  */
82 typedef struct TableFunc
83 {
85  List *ns_uris; /* list of namespace URI expressions */
86  List *ns_names; /* list of namespace names or NULL */
87  Node *docexpr; /* input document expression */
88  Node *rowexpr; /* row filter expression */
89  List *colnames; /* column names (list of String) */
90  List *coltypes; /* OID list of column type OIDs */
91  List *coltypmods; /* integer list of column typmods */
92  List *colcollations; /* OID list of column collation OIDs */
93  List *colexprs; /* list of column filter expressions */
94  List *coldefexprs; /* list of column default expressions */
95  Bitmapset *notnulls; /* nullability flag for each output column */
96  int ordinalitycol; /* counts from 0; -1 if none specified */
97  int location; /* token location, or -1 if unknown */
98 } TableFunc;
99 
100 /*
101  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
102  * CREATE MATERIALIZED VIEW
103  *
104  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
105  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
106  * Query*, we declare it as Node* to avoid a forward reference.)
107  */
108 typedef struct IntoClause
109 {
111 
112  RangeVar *rel; /* target relation name */
113  List *colNames; /* column names to assign, or NIL */
114  char *accessMethod; /* table access method */
115  List *options; /* options from WITH clause */
116  OnCommitAction onCommit; /* what do we do at COMMIT? */
117  char *tableSpaceName; /* table space to use, or NULL */
118  Node *viewQuery; /* materialized view's SELECT query */
119  bool skipData; /* true for WITH NO DATA */
120 } IntoClause;
121 
122 
123 /* ----------------------------------------------------------------
124  * node types for executable expressions
125  * ----------------------------------------------------------------
126  */
127 
128 /*
129  * Expr - generic superclass for executable-expression nodes
130  *
131  * All node types that are used in executable expression trees should derive
132  * from Expr (that is, have Expr as their first field). Since Expr only
133  * contains NodeTag, this is a formality, but it is an easy form of
134  * documentation. See also the ExprState node types in execnodes.h.
135  */
136 typedef struct Expr
137 {
139 } Expr;
140 
141 /*
142  * Var - expression node representing a variable (ie, a table column)
143  *
144  * In the parser and planner, varno and varattno identify the semantic
145  * referent, which is a base-relation column unless the reference is to a join
146  * USING column that isn't semantically equivalent to either join input column
147  * (because it is a FULL join or the input column requires a type coercion).
148  * In those cases varno and varattno refer to the JOIN RTE. (Early in the
149  * planner, we replace such join references by the implied expression; but up
150  * till then we want join reference Vars to keep their original identity for
151  * query-printing purposes.)
152  *
153  * At the end of planning, Var nodes appearing in upper-level plan nodes are
154  * reassigned to point to the outputs of their subplans; for example, in a
155  * join node varno becomes INNER_VAR or OUTER_VAR and varattno becomes the
156  * index of the proper element of that subplan's target list. Similarly,
157  * INDEX_VAR is used to identify Vars that reference an index column rather
158  * than a heap column. (In ForeignScan and CustomScan plan nodes, INDEX_VAR
159  * is abused to signify references to columns of a custom scan tuple type.)
160  *
161  * ROWID_VAR is used in the planner to identify nonce variables that carry
162  * row identity information during UPDATE/DELETE. This value should never
163  * be seen outside the planner.
164  *
165  * In the parser, varnosyn and varattnosyn are either identical to
166  * varno/varattno, or they specify the column's position in an aliased JOIN
167  * RTE that hides the semantic referent RTE's refname. This is a syntactic
168  * identifier as opposed to the semantic identifier; it tells ruleutils.c
169  * how to print the Var properly. varnosyn/varattnosyn retain their values
170  * throughout planning and execution, so they are particularly helpful to
171  * identify Vars when debugging. Note, however, that a Var that is generated
172  * in the planner and doesn't correspond to any simple relation column may
173  * have varnosyn = varattnosyn = 0.
174  */
175 #define INNER_VAR 65000 /* reference to inner subplan */
176 #define OUTER_VAR 65001 /* reference to outer subplan */
177 #define INDEX_VAR 65002 /* reference to index column */
178 #define ROWID_VAR 65003 /* row identity column during planning */
179 
180 #define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
181 
182 /* Symbols for the indexes of the special RTE entries in rules */
183 #define PRS2_OLD_VARNO 1
184 #define PRS2_NEW_VARNO 2
185 
186 typedef struct Var
187 {
189  Index varno; /* index of this var's relation in the range
190  * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
191  AttrNumber varattno; /* attribute number of this var, or zero for
192  * all attrs ("whole-row Var") */
193  Oid vartype; /* pg_type OID for the type of this var */
194  int32 vartypmod; /* pg_attribute typmod value */
195  Oid varcollid; /* OID of collation, or InvalidOid if none */
196  Index varlevelsup; /* for subquery variables referencing outer
197  * relations; 0 in a normal var, >0 means N
198  * levels up */
199  Index varnosyn; /* syntactic relation index (0 if unknown) */
200  AttrNumber varattnosyn; /* syntactic attribute number */
201  int location; /* token location, or -1 if unknown */
202 } Var;
203 
204 /*
205  * Const
206  *
207  * Note: for varlena data types, we make a rule that a Const node's value
208  * must be in non-extended form (4-byte header, no compression or external
209  * references). This ensures that the Const node is self-contained and makes
210  * it more likely that equal() will see logically identical values as equal.
211  */
212 typedef struct Const
213 {
215  Oid consttype; /* pg_type OID of the constant's datatype */
216  int32 consttypmod; /* typmod value, if any */
217  Oid constcollid; /* OID of collation, or InvalidOid if none */
218  int constlen; /* typlen of the constant's datatype */
219  Datum constvalue; /* the constant's value */
220  bool constisnull; /* whether the constant is null (if true,
221  * constvalue is undefined) */
222  bool constbyval; /* whether this datatype is passed by value.
223  * If true, then all the information is stored
224  * in the Datum. If false, then the Datum
225  * contains a pointer to the information. */
226  int location; /* token location, or -1 if unknown */
227 } Const;
228 
229 /*
230  * Param
231  *
232  * paramkind specifies the kind of parameter. The possible values
233  * for this field are:
234  *
235  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
236  * Such parameters are numbered from 1 to n.
237  *
238  * PARAM_EXEC: The parameter is an internal executor parameter, used
239  * for passing values into and out of sub-queries or from
240  * nestloop joins to their inner scans.
241  * For historical reasons, such parameters are numbered from 0.
242  * These numbers are independent of PARAM_EXTERN numbers.
243  *
244  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
245  * node's sub-select. The column number is contained in the
246  * `paramid' field. (This type of Param is converted to
247  * PARAM_EXEC during planning.)
248  *
249  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
250  * output column of a SubLink node's sub-select, but here, the
251  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
252  * of the `paramid' field contain the SubLink's subLinkId, and
253  * the low-order 16 bits contain the column number. (This type
254  * of Param is also converted to PARAM_EXEC during planning.)
255  */
256 typedef enum ParamKind
257 {
262 } ParamKind;
263 
264 typedef struct Param
265 {
267  ParamKind paramkind; /* kind of parameter. See above */
268  int paramid; /* numeric ID for parameter */
269  Oid paramtype; /* pg_type OID of parameter's datatype */
270  int32 paramtypmod; /* typmod value, if known */
271  Oid paramcollid; /* OID of collation, or InvalidOid if none */
272  int location; /* token location, or -1 if unknown */
273 } Param;
274 
275 /*
276  * Aggref
277  *
278  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
279  *
280  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
281  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
282  * be added at the end to represent ORDER BY expressions that are not also
283  * arguments. As in a top-level Query, the TLEs can be marked with
284  * ressortgroupref indexes to let them be referenced by SortGroupClause
285  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
286  * and DISTINCT operations to be applied to the aggregate input rows before
287  * they are passed to the transition function. The grammar only allows a
288  * simple "DISTINCT" specifier for the arguments, but we use the full
289  * query-level representation to allow more code sharing.
290  *
291  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
292  * (aggregated) arguments, all of which will be listed in the aggorder list.
293  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
294  * The direct arguments appear in aggdirectargs (as a list of plain
295  * expressions, not TargetEntry nodes).
296  *
297  * aggtranstype is the data type of the state transition values for this
298  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
299  * This is determined during planning and is InvalidOid before that.
300  *
301  * aggargtypes is an OID list of the data types of the direct and regular
302  * arguments. Normally it's redundant with the aggdirectargs and args lists,
303  * but in a combining aggregate, it's not because the args list has been
304  * replaced with a single argument representing the partial-aggregate
305  * transition values.
306  *
307  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
308  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
309  * the planner might change it to something else. We use this mainly as
310  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
311  * indicates a non-final mode, aggtype reflects the transition data type
312  * not the SQL-level output type of the aggregate.
313  *
314  * aggno and aggtransno are -1 in the parse stage, and are set in planning.
315  * Aggregates with the same 'aggno' represent the same aggregate expression,
316  * and can share the result. Aggregates with same 'transno' but different
317  * 'aggno' can share the same transition state, only the final function needs
318  * to be called separately.
319  */
320 typedef struct Aggref
321 {
323  Oid aggfnoid; /* pg_proc Oid of the aggregate */
324  Oid aggtype; /* type Oid of result of the aggregate */
325  Oid aggcollid; /* OID of collation of result */
326  Oid inputcollid; /* OID of collation that function should use */
327  Oid aggtranstype; /* type Oid of aggregate's transition value */
328  List *aggargtypes; /* type Oids of direct and aggregated args */
329  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
330  List *args; /* aggregated arguments and sort expressions */
331  List *aggorder; /* ORDER BY (list of SortGroupClause) */
332  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
333  Expr *aggfilter; /* FILTER expression, if any */
334  bool aggstar; /* true if argument list was really '*' */
335  bool aggvariadic; /* true if variadic arguments have been
336  * combined into an array last argument */
337  char aggkind; /* aggregate kind (see pg_aggregate.h) */
338  Index agglevelsup; /* > 0 if agg belongs to outer query */
339  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
340  int aggno; /* unique ID within the Agg node */
341  int aggtransno; /* unique ID of transition state in the Agg */
342  int location; /* token location, or -1 if unknown */
343 } Aggref;
344 
345 /*
346  * GroupingFunc
347  *
348  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
349  * like an aggregate function (e.g. it "belongs" to a specific query level,
350  * which might not be the one immediately containing it), but also differs in
351  * an important respect: it never evaluates its arguments, they merely
352  * designate expressions from the GROUP BY clause of the query level to which
353  * it belongs.
354  *
355  * The spec defines the evaluation of GROUPING() purely by syntactic
356  * replacement, but we make it a real expression for optimization purposes so
357  * that one Agg node can handle multiple grouping sets at once. Evaluating the
358  * result only needs the column positions to check against the grouping set
359  * being projected. However, for EXPLAIN to produce meaningful output, we have
360  * to keep the original expressions around, since expression deparse does not
361  * give us any feasible way to get at the GROUP BY clause.
362  *
363  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
364  * lists and agglevelsup, without comparing the refs and cols annotations.
365  *
366  * In raw parse output we have only the args list; parse analysis fills in the
367  * refs list, and the planner fills in the cols list.
368  */
369 typedef struct GroupingFunc
370 {
372  List *args; /* arguments, not evaluated but kept for
373  * benefit of EXPLAIN etc. */
374  List *refs; /* ressortgrouprefs of arguments */
375  List *cols; /* actual column positions set by planner */
376  Index agglevelsup; /* same as Aggref.agglevelsup */
377  int location; /* token location */
378 } GroupingFunc;
379 
380 /*
381  * WindowFunc
382  */
383 typedef struct WindowFunc
384 {
386  Oid winfnoid; /* pg_proc Oid of the function */
387  Oid wintype; /* type Oid of result of the window function */
388  Oid wincollid; /* OID of collation of result */
389  Oid inputcollid; /* OID of collation that function should use */
390  List *args; /* arguments to the window function */
391  Expr *aggfilter; /* FILTER expression, if any */
392  Index winref; /* index of associated WindowClause */
393  bool winstar; /* true if argument list was really '*' */
394  bool winagg; /* is function a simple aggregate? */
395  int location; /* token location, or -1 if unknown */
396 } WindowFunc;
397 
398 /*
399  * SubscriptingRef: describes a subscripting operation over a container
400  * (array, etc).
401  *
402  * A SubscriptingRef can describe fetching a single element from a container,
403  * fetching a part of a container (e.g. an array slice), storing a single
404  * element into a container, or storing a slice. The "store" cases work with
405  * an initial container value and a source value that is inserted into the
406  * appropriate part of the container; the result of the operation is an
407  * entire new modified container value.
408  *
409  * If reflowerindexpr = NIL, then we are fetching or storing a single container
410  * element at the subscripts given by refupperindexpr. Otherwise we are
411  * fetching or storing a container slice, that is a rectangular subcontainer
412  * with lower and upper bounds given by the index expressions.
413  * reflowerindexpr must be the same length as refupperindexpr when it
414  * is not NIL.
415  *
416  * In the slice case, individual expressions in the subscript lists can be
417  * NULL, meaning "substitute the array's current lower or upper bound".
418  * (Non-array containers may or may not support this.)
419  *
420  * refcontainertype is the actual container type that determines the
421  * subscripting semantics. (This will generally be either the exposed type of
422  * refexpr, or the base type if that is a domain.) refelemtype is the type of
423  * the container's elements; this is saved for the use of the subscripting
424  * functions, but is not used by the core code. refrestype, reftypmod, and
425  * refcollid describe the type of the SubscriptingRef's result. In a store
426  * expression, refrestype will always match refcontainertype; in a fetch,
427  * it could be refelemtype for an element fetch, or refcontainertype for a
428  * slice fetch, or possibly something else as determined by type-specific
429  * subscripting logic. Likewise, reftypmod and refcollid will match the
430  * container's properties in a store, but could be different in a fetch.
431  *
432  * Note: for the cases where a container is returned, if refexpr yields a R/W
433  * expanded container, then the implementation is allowed to modify that
434  * object in-place and return the same object.
435  */
436 typedef struct SubscriptingRef
437 {
439  Oid refcontainertype; /* type of the container proper */
440  Oid refelemtype; /* the container type's pg_type.typelem */
441  Oid refrestype; /* type of the SubscriptingRef's result */
442  int32 reftypmod; /* typmod of the result */
443  Oid refcollid; /* collation of result, or InvalidOid if none */
444  List *refupperindexpr; /* expressions that evaluate to upper
445  * container indexes */
446  List *reflowerindexpr; /* expressions that evaluate to lower
447  * container indexes, or NIL for single
448  * container element */
449  Expr *refexpr; /* the expression that evaluates to a
450  * container value */
451  Expr *refassgnexpr; /* expression for the source value, or NULL if
452  * fetch */
454 
455 /*
456  * CoercionContext - distinguishes the allowed set of type casts
457  *
458  * NB: ordering of the alternatives is significant; later (larger) values
459  * allow more casts than earlier ones.
460  */
461 typedef enum CoercionContext
462 {
463  COERCION_IMPLICIT, /* coercion in context of expression */
464  COERCION_ASSIGNMENT, /* coercion in context of assignment */
465  COERCION_PLPGSQL, /* if no assignment cast, use CoerceViaIO */
466  COERCION_EXPLICIT /* explicit cast operation */
468 
469 /*
470  * CoercionForm - how to display a FuncExpr or related node
471  *
472  * "Coercion" is a bit of a misnomer, since this value records other
473  * special syntaxes besides casts, but for now we'll keep this naming.
474  *
475  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
476  * any semantically significant information. We need that behavior so that
477  * the planner will consider equivalent implicit and explicit casts to be
478  * equivalent. In cases where those actually behave differently, the coercion
479  * function's arguments will be different.
480  */
481 typedef enum CoercionForm
482 {
483  COERCE_EXPLICIT_CALL, /* display as a function call */
484  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
485  COERCE_IMPLICIT_CAST, /* implicit cast, so hide it */
486  COERCE_SQL_SYNTAX /* display with SQL-mandated special syntax */
487 } CoercionForm;
488 
489 /*
490  * FuncExpr - expression node for a function call
491  */
492 typedef struct FuncExpr
493 {
495  Oid funcid; /* PG_PROC OID of the function */
496  Oid funcresulttype; /* PG_TYPE OID of result value */
497  bool funcretset; /* true if function returns set */
498  bool funcvariadic; /* true if variadic arguments have been
499  * combined into an array last argument */
500  CoercionForm funcformat; /* how to display this function call */
501  Oid funccollid; /* OID of collation of result */
502  Oid inputcollid; /* OID of collation that function should use */
503  List *args; /* arguments to the function */
504  int location; /* token location, or -1 if unknown */
505 } FuncExpr;
506 
507 /*
508  * NamedArgExpr - a named argument of a function
509  *
510  * This node type can only appear in the args list of a FuncCall or FuncExpr
511  * node. We support pure positional call notation (no named arguments),
512  * named notation (all arguments are named), and mixed notation (unnamed
513  * arguments followed by named ones).
514  *
515  * Parse analysis sets argnumber to the positional index of the argument,
516  * but doesn't rearrange the argument list.
517  *
518  * The planner will convert argument lists to pure positional notation
519  * during expression preprocessing, so execution never sees a NamedArgExpr.
520  */
521 typedef struct NamedArgExpr
522 {
524  Expr *arg; /* the argument expression */
525  char *name; /* the name */
526  int argnumber; /* argument's number in positional notation */
527  int location; /* argument name location, or -1 if unknown */
528 } NamedArgExpr;
529 
530 /*
531  * OpExpr - expression node for an operator invocation
532  *
533  * Semantically, this is essentially the same as a function call.
534  *
535  * Note that opfuncid is not necessarily filled in immediately on creation
536  * of the node. The planner makes sure it is valid before passing the node
537  * tree to the executor, but during parsing/planning opfuncid can be 0.
538  */
539 typedef struct OpExpr
540 {
542  Oid opno; /* PG_OPERATOR OID of the operator */
543  Oid opfuncid; /* PG_PROC OID of underlying function */
544  Oid opresulttype; /* PG_TYPE OID of result value */
545  bool opretset; /* true if operator returns set */
546  Oid opcollid; /* OID of collation of result */
547  Oid inputcollid; /* OID of collation that operator should use */
548  List *args; /* arguments to the operator (1 or 2) */
549  int location; /* token location, or -1 if unknown */
550 } OpExpr;
551 
552 /*
553  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
554  *
555  * Except for the nodetag, this is represented identically to an OpExpr
556  * referencing the "=" operator for x and y.
557  * We use "=", not the more obvious "<>", because more datatypes have "="
558  * than "<>". This means the executor must invert the operator result.
559  * Note that the operator function won't be called at all if either input
560  * is NULL, since then the result can be determined directly.
561  */
563 
564 /*
565  * NullIfExpr - a NULLIF expression
566  *
567  * Like DistinctExpr, this is represented the same as an OpExpr referencing
568  * the "=" operator for x and y.
569  */
571 
572 /*
573  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
574  *
575  * The operator must yield boolean. It is applied to the left operand
576  * and each element of the righthand array, and the results are combined
577  * with OR or AND (for ANY or ALL respectively). The node representation
578  * is almost the same as for the underlying operator, but we need a useOr
579  * flag to remember whether it's ANY or ALL, and we don't have to store
580  * the result type (or the collation) because it must be boolean.
581  *
582  * A ScalarArrayOpExpr with a valid hashfuncid is evaluated during execution
583  * by building a hash table containing the Const values from the rhs arg.
584  * This table is probed during expression evaluation. Only useOr=true
585  * ScalarArrayOpExpr with Const arrays on the rhs can have the hashfuncid
586  * field set. See convert_saop_to_hashed_saop().
587  */
588 typedef struct ScalarArrayOpExpr
589 {
591  Oid opno; /* PG_OPERATOR OID of the operator */
592  Oid opfuncid; /* PG_PROC OID of comparison function */
593  Oid hashfuncid; /* PG_PROC OID of hash func or InvalidOid */
594  bool useOr; /* true for ANY, false for ALL */
595  Oid inputcollid; /* OID of collation that operator should use */
596  List *args; /* the scalar and array operands */
597  int location; /* token location, or -1 if unknown */
599 
600 /*
601  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
602  *
603  * Notice the arguments are given as a List. For NOT, of course the list
604  * must always have exactly one element. For AND and OR, there can be two
605  * or more arguments.
606  */
607 typedef enum BoolExprType
608 {
610 } BoolExprType;
611 
612 typedef struct BoolExpr
613 {
616  List *args; /* arguments to this expression */
617  int location; /* token location, or -1 if unknown */
618 } BoolExpr;
619 
620 /*
621  * SubLink
622  *
623  * A SubLink represents a subselect appearing in an expression, and in some
624  * cases also the combining operator(s) just above it. The subLinkType
625  * indicates the form of the expression represented:
626  * EXISTS_SUBLINK EXISTS(SELECT ...)
627  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
628  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
629  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
630  * EXPR_SUBLINK (SELECT with single targetlist item ...)
631  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
632  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
633  * CTE_SUBLINK WITH query (never actually part of an expression)
634  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
635  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
636  * a list with more than one entry; if the subselect has just one target
637  * then the parser will create an EXPR_SUBLINK instead (and any operator
638  * above the subselect will be represented separately).
639  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
640  * one row (if it returns no rows, the result is NULL).
641  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
642  * results. ALL and ANY combine the per-row results using AND and OR
643  * semantics respectively.
644  * ARRAY requires just one target column, and creates an array of the target
645  * column's type using any number of rows resulting from the subselect.
646  *
647  * SubLink is classed as an Expr node, but it is not actually executable;
648  * it must be replaced in the expression tree by a SubPlan node during
649  * planning.
650  *
651  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
652  * of the lefthand expression (if any), and operName is the String name of
653  * the combining operator. Also, subselect is a raw parsetree. During parse
654  * analysis, the parser transforms testexpr into a complete boolean expression
655  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
656  * output columns of the subselect. And subselect is transformed to a Query.
657  * This is the representation seen in saved rules and in the rewriter.
658  *
659  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
660  * are unused and are always null.
661  *
662  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
663  * other SubLinks. This number identifies different multiple-assignment
664  * subqueries within an UPDATE statement's SET list. It is unique only
665  * within a particular targetlist. The output column(s) of the MULTIEXPR
666  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
667  *
668  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
669  * in SubPlans generated for WITH subqueries.
670  */
671 typedef enum SubLinkType
672 {
680  CTE_SUBLINK /* for SubPlans only */
681 } SubLinkType;
682 
683 
684 typedef struct SubLink
685 {
687  SubLinkType subLinkType; /* see above */
688  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
689  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
690  List *operName; /* originally specified operator name */
691  Node *subselect; /* subselect as Query* or raw parsetree */
692  int location; /* token location, or -1 if unknown */
693 } SubLink;
694 
695 /*
696  * SubPlan - executable expression node for a subplan (sub-SELECT)
697  *
698  * The planner replaces SubLink nodes in expression trees with SubPlan
699  * nodes after it has finished planning the subquery. SubPlan references
700  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
701  * (We avoid a direct link to make it easier to copy expression trees
702  * without causing multiple processing of the subplan.)
703  *
704  * In an ordinary subplan, testexpr points to an executable expression
705  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
706  * operator(s); the left-hand arguments are the original lefthand expressions,
707  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
708  * outputs of the sub-select. (NOTE: runtime coercion functions may be
709  * inserted as well.) This is just the same expression tree as testexpr in
710  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
711  * suitably numbered PARAM_EXEC nodes.
712  *
713  * If the sub-select becomes an initplan rather than a subplan, the executable
714  * expression is part of the outer plan's expression tree (and the SubPlan
715  * node itself is not, but rather is found in the outer plan's initPlan
716  * list). In this case testexpr is NULL to avoid duplication.
717  *
718  * The planner also derives lists of the values that need to be passed into
719  * and out of the subplan. Input values are represented as a list "args" of
720  * expressions to be evaluated in the outer-query context (currently these
721  * args are always just Vars, but in principle they could be any expression).
722  * The values are assigned to the global PARAM_EXEC params indexed by parParam
723  * (the parParam and args lists must have the same ordering). setParam is a
724  * list of the PARAM_EXEC params that are computed by the sub-select, if it
725  * is an initplan; they are listed in order by sub-select output column
726  * position. (parParam and setParam are integer Lists, not Bitmapsets,
727  * because their ordering is significant.)
728  *
729  * Also, the planner computes startup and per-call costs for use of the
730  * SubPlan. Note that these include the cost of the subquery proper,
731  * evaluation of the testexpr if any, and any hashtable management overhead.
732  */
733 typedef struct SubPlan
734 {
736  /* Fields copied from original SubLink: */
737  SubLinkType subLinkType; /* see above */
738  /* The combining operators, transformed to an executable expression: */
739  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
740  List *paramIds; /* IDs of Params embedded in the above */
741  /* Identification of the Plan tree to use: */
742  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
743  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
744  char *plan_name; /* A name assigned during planning */
745  /* Extra data useful for determining subplan's output type: */
746  Oid firstColType; /* Type of first column of subplan result */
747  int32 firstColTypmod; /* Typmod of first column of subplan result */
748  Oid firstColCollation; /* Collation of first column of subplan
749  * result */
750  /* Information about execution strategy: */
751  bool useHashTable; /* true to store subselect output in a hash
752  * table (implies we are doing "IN") */
753  bool unknownEqFalse; /* true if it's okay to return FALSE when the
754  * spec result is UNKNOWN; this allows much
755  * simpler handling of null values */
756  bool parallel_safe; /* is the subplan parallel-safe? */
757  /* Note: parallel_safe does not consider contents of testexpr or args */
758  /* Information for passing params into and out of the subselect: */
759  /* setParam and parParam are lists of integers (param IDs) */
760  List *setParam; /* initplan subqueries have to set these
761  * Params for parent plan */
762  List *parParam; /* indices of input Params from parent plan */
763  List *args; /* exprs to pass as parParam values */
764  /* Estimated execution costs: */
765  Cost startup_cost; /* one-time setup cost */
766  Cost per_call_cost; /* cost for each subplan evaluation */
767 } SubPlan;
768 
769 /*
770  * AlternativeSubPlan - expression node for a choice among SubPlans
771  *
772  * This is used only transiently during planning: by the time the plan
773  * reaches the executor, all AlternativeSubPlan nodes have been removed.
774  *
775  * The subplans are given as a List so that the node definition need not
776  * change if there's ever more than two alternatives. For the moment,
777  * though, there are always exactly two; and the first one is the fast-start
778  * plan.
779  */
780 typedef struct AlternativeSubPlan
781 {
783  List *subplans; /* SubPlan(s) with equivalent results */
785 
786 /* ----------------
787  * FieldSelect
788  *
789  * FieldSelect represents the operation of extracting one field from a tuple
790  * value. At runtime, the input expression is expected to yield a rowtype
791  * Datum. The specified field number is extracted and returned as a Datum.
792  * ----------------
793  */
794 
795 typedef struct FieldSelect
796 {
798  Expr *arg; /* input expression */
799  AttrNumber fieldnum; /* attribute number of field to extract */
800  Oid resulttype; /* type of the field (result type of this
801  * node) */
802  int32 resulttypmod; /* output typmod (usually -1) */
803  Oid resultcollid; /* OID of collation of the field */
804 } FieldSelect;
805 
806 /* ----------------
807  * FieldStore
808  *
809  * FieldStore represents the operation of modifying one field in a tuple
810  * value, yielding a new tuple value (the input is not touched!). Like
811  * the assign case of SubscriptingRef, this is used to implement UPDATE of a
812  * portion of a column.
813  *
814  * resulttype is always a named composite type (not a domain). To update
815  * a composite domain value, apply CoerceToDomain to the FieldStore.
816  *
817  * A single FieldStore can actually represent updates of several different
818  * fields. The parser only generates FieldStores with single-element lists,
819  * but the planner will collapse multiple updates of the same base column
820  * into one FieldStore.
821  * ----------------
822  */
823 
824 typedef struct FieldStore
825 {
827  Expr *arg; /* input tuple value */
828  List *newvals; /* new value(s) for field(s) */
829  List *fieldnums; /* integer list of field attnums */
830  Oid resulttype; /* type of result (same as type of arg) */
831  /* Like RowExpr, we deliberately omit a typmod and collation here */
832 } FieldStore;
833 
834 /* ----------------
835  * RelabelType
836  *
837  * RelabelType represents a "dummy" type coercion between two binary-
838  * compatible datatypes, such as reinterpreting the result of an OID
839  * expression as an int4. It is a no-op at runtime; we only need it
840  * to provide a place to store the correct type to be attributed to
841  * the expression result during type resolution. (We can't get away
842  * with just overwriting the type field of the input expression node,
843  * so we need a separate node to show the coercion's result type.)
844  * ----------------
845  */
846 
847 typedef struct RelabelType
848 {
850  Expr *arg; /* input expression */
851  Oid resulttype; /* output type of coercion expression */
852  int32 resulttypmod; /* output typmod (usually -1) */
853  Oid resultcollid; /* OID of collation, or InvalidOid if none */
854  CoercionForm relabelformat; /* how to display this node */
855  int location; /* token location, or -1 if unknown */
856 } RelabelType;
857 
858 /* ----------------
859  * CoerceViaIO
860  *
861  * CoerceViaIO represents a type coercion between two types whose textual
862  * representations are compatible, implemented by invoking the source type's
863  * typoutput function then the destination type's typinput function.
864  * ----------------
865  */
866 
867 typedef struct CoerceViaIO
868 {
870  Expr *arg; /* input expression */
871  Oid resulttype; /* output type of coercion */
872  /* output typmod is not stored, but is presumed -1 */
873  Oid resultcollid; /* OID of collation, or InvalidOid if none */
874  CoercionForm coerceformat; /* how to display this node */
875  int location; /* token location, or -1 if unknown */
876 } CoerceViaIO;
877 
878 /* ----------------
879  * ArrayCoerceExpr
880  *
881  * ArrayCoerceExpr represents a type coercion from one array type to another,
882  * which is implemented by applying the per-element coercion expression
883  * "elemexpr" to each element of the source array. Within elemexpr, the
884  * source element is represented by a CaseTestExpr node. Note that even if
885  * elemexpr is a no-op (that is, just CaseTestExpr + RelabelType), the
886  * coercion still requires some effort: we have to fix the element type OID
887  * stored in the array header.
888  * ----------------
889  */
890 
891 typedef struct ArrayCoerceExpr
892 {
894  Expr *arg; /* input expression (yields an array) */
895  Expr *elemexpr; /* expression representing per-element work */
896  Oid resulttype; /* output type of coercion (an array type) */
897  int32 resulttypmod; /* output typmod (also element typmod) */
898  Oid resultcollid; /* OID of collation, or InvalidOid if none */
899  CoercionForm coerceformat; /* how to display this node */
900  int location; /* token location, or -1 if unknown */
902 
903 /* ----------------
904  * ConvertRowtypeExpr
905  *
906  * ConvertRowtypeExpr represents a type coercion from one composite type
907  * to another, where the source type is guaranteed to contain all the columns
908  * needed for the destination type plus possibly others; the columns need not
909  * be in the same positions, but are matched up by name. This is primarily
910  * used to convert a whole-row value of an inheritance child table into a
911  * valid whole-row value of its parent table's rowtype. Both resulttype
912  * and the exposed type of "arg" must be named composite types (not domains).
913  * ----------------
914  */
915 
916 typedef struct ConvertRowtypeExpr
917 {
919  Expr *arg; /* input expression */
920  Oid resulttype; /* output type (always a composite type) */
921  /* Like RowExpr, we deliberately omit a typmod and collation here */
922  CoercionForm convertformat; /* how to display this node */
923  int location; /* token location, or -1 if unknown */
925 
926 /*----------
927  * CollateExpr - COLLATE
928  *
929  * The planner replaces CollateExpr with RelabelType during expression
930  * preprocessing, so execution never sees a CollateExpr.
931  *----------
932  */
933 typedef struct CollateExpr
934 {
936  Expr *arg; /* input expression */
937  Oid collOid; /* collation's OID */
938  int location; /* token location, or -1 if unknown */
939 } CollateExpr;
940 
941 /*----------
942  * CaseExpr - a CASE expression
943  *
944  * We support two distinct forms of CASE expression:
945  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
946  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
947  * These are distinguishable by the "arg" field being NULL in the first case
948  * and the testexpr in the second case.
949  *
950  * In the raw grammar output for the second form, the condition expressions
951  * of the WHEN clauses are just the comparison values. Parse analysis
952  * converts these to valid boolean expressions of the form
953  * CaseTestExpr '=' compexpr
954  * where the CaseTestExpr node is a placeholder that emits the correct
955  * value at runtime. This structure is used so that the testexpr need be
956  * evaluated only once. Note that after parse analysis, the condition
957  * expressions always yield boolean.
958  *
959  * Note: we can test whether a CaseExpr has been through parse analysis
960  * yet by checking whether casetype is InvalidOid or not.
961  *----------
962  */
963 typedef struct CaseExpr
964 {
966  Oid casetype; /* type of expression result */
967  Oid casecollid; /* OID of collation, or InvalidOid if none */
968  Expr *arg; /* implicit equality comparison argument */
969  List *args; /* the arguments (list of WHEN clauses) */
970  Expr *defresult; /* the default result (ELSE clause) */
971  int location; /* token location, or -1 if unknown */
972 } CaseExpr;
973 
974 /*
975  * CaseWhen - one arm of a CASE expression
976  */
977 typedef struct CaseWhen
978 {
980  Expr *expr; /* condition expression */
981  Expr *result; /* substitution result */
982  int location; /* token location, or -1 if unknown */
983 } CaseWhen;
984 
985 /*
986  * Placeholder node for the test value to be processed by a CASE expression.
987  * This is effectively like a Param, but can be implemented more simply
988  * since we need only one replacement value at a time.
989  *
990  * We also abuse this node type for some other purposes, including:
991  * * Placeholder for the current array element value in ArrayCoerceExpr;
992  * see build_coercion_expression().
993  * * Nested FieldStore/SubscriptingRef assignment expressions in INSERT/UPDATE;
994  * see transformAssignmentIndirection().
995  *
996  * The uses in CaseExpr and ArrayCoerceExpr are safe only to the extent that
997  * there is not any other CaseExpr or ArrayCoerceExpr between the value source
998  * node and its child CaseTestExpr(s). This is true in the parse analysis
999  * output, but the planner's function-inlining logic has to be careful not to
1000  * break it.
1001  *
1002  * The nested-assignment-expression case is safe because the only node types
1003  * that can be above such CaseTestExprs are FieldStore and SubscriptingRef.
1004  */
1005 typedef struct CaseTestExpr
1006 {
1008  Oid typeId; /* type for substituted value */
1009  int32 typeMod; /* typemod for substituted value */
1010  Oid collation; /* collation for the substituted value */
1011 } CaseTestExpr;
1012 
1013 /*
1014  * ArrayExpr - an ARRAY[] expression
1015  *
1016  * Note: if multidims is false, the constituent expressions all yield the
1017  * scalar type identified by element_typeid. If multidims is true, the
1018  * constituent expressions all yield arrays of element_typeid (ie, the same
1019  * type as array_typeid); at runtime we must check for compatible subscripts.
1020  */
1021 typedef struct ArrayExpr
1022 {
1024  Oid array_typeid; /* type of expression result */
1025  Oid array_collid; /* OID of collation, or InvalidOid if none */
1026  Oid element_typeid; /* common type of array elements */
1027  List *elements; /* the array elements or sub-arrays */
1028  bool multidims; /* true if elements are sub-arrays */
1029  int location; /* token location, or -1 if unknown */
1030 } ArrayExpr;
1031 
1032 /*
1033  * RowExpr - a ROW() expression
1034  *
1035  * Note: the list of fields must have a one-for-one correspondence with
1036  * physical fields of the associated rowtype, although it is okay for it
1037  * to be shorter than the rowtype. That is, the N'th list element must
1038  * match up with the N'th physical field. When the N'th physical field
1039  * is a dropped column (attisdropped) then the N'th list element can just
1040  * be a NULL constant. (This case can only occur for named composite types,
1041  * not RECORD types, since those are built from the RowExpr itself rather
1042  * than vice versa.) It is important not to assume that length(args) is
1043  * the same as the number of columns logically present in the rowtype.
1044  *
1045  * colnames provides field names in cases where the names can't easily be
1046  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
1047  * If row_typeid identifies a known composite type, colnames can be NIL to
1048  * indicate the type's cataloged field names apply. Note that colnames can
1049  * be non-NIL even for a composite type, and typically is when the RowExpr
1050  * was created by expanding a whole-row Var. This is so that we can retain
1051  * the column alias names of the RTE that the Var referenced (which would
1052  * otherwise be very difficult to extract from the parsetree). Like the
1053  * args list, colnames is one-for-one with physical fields of the rowtype.
1054  */
1055 typedef struct RowExpr
1056 {
1058  List *args; /* the fields */
1059  Oid row_typeid; /* RECORDOID or a composite type's ID */
1060 
1061  /*
1062  * row_typeid cannot be a domain over composite, only plain composite. To
1063  * create a composite domain value, apply CoerceToDomain to the RowExpr.
1064  *
1065  * Note: we deliberately do NOT store a typmod. Although a typmod will be
1066  * associated with specific RECORD types at runtime, it will differ for
1067  * different backends, and so cannot safely be stored in stored
1068  * parsetrees. We must assume typmod -1 for a RowExpr node.
1069  *
1070  * We don't need to store a collation either. The result type is
1071  * necessarily composite, and composite types never have a collation.
1072  */
1073  CoercionForm row_format; /* how to display this node */
1074  List *colnames; /* list of String, or NIL */
1075  int location; /* token location, or -1 if unknown */
1076 } RowExpr;
1077 
1078 /*
1079  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1080  *
1081  * We support row comparison for any operator that can be determined to
1082  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1083  * operator in btree opfamilies). Note that the same operator name might
1084  * map to a different operator for each pair of row elements, since the
1085  * element datatypes can vary.
1086  *
1087  * A RowCompareExpr node is only generated for the < <= > >= cases;
1088  * the = and <> cases are translated to simple AND or OR combinations
1089  * of the pairwise comparisons. However, we include = and <> in the
1090  * RowCompareType enum for the convenience of parser logic.
1091  */
1092 typedef enum RowCompareType
1093 {
1094  /* Values of this enum are chosen to match btree strategy numbers */
1095  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1096  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1097  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1098  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1099  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1100  ROWCOMPARE_NE = 6 /* no such btree strategy */
1101 } RowCompareType;
1102 
1103 typedef struct RowCompareExpr
1104 {
1106  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1107  List *opnos; /* OID list of pairwise comparison ops */
1108  List *opfamilies; /* OID list of containing operator families */
1109  List *inputcollids; /* OID list of collations for comparisons */
1110  List *largs; /* the left-hand input arguments */
1111  List *rargs; /* the right-hand input arguments */
1112 } RowCompareExpr;
1113 
1114 /*
1115  * CoalesceExpr - a COALESCE expression
1116  */
1117 typedef struct CoalesceExpr
1118 {
1120  Oid coalescetype; /* type of expression result */
1121  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1122  List *args; /* the arguments */
1123  int location; /* token location, or -1 if unknown */
1124 } CoalesceExpr;
1125 
1126 /*
1127  * MinMaxExpr - a GREATEST or LEAST function
1128  */
1129 typedef enum MinMaxOp
1130 {
1133 } MinMaxOp;
1134 
1135 typedef struct MinMaxExpr
1136 {
1138  Oid minmaxtype; /* common type of arguments and result */
1139  Oid minmaxcollid; /* OID of collation of result */
1140  Oid inputcollid; /* OID of collation that function should use */
1141  MinMaxOp op; /* function to execute */
1142  List *args; /* the arguments */
1143  int location; /* token location, or -1 if unknown */
1144 } MinMaxExpr;
1145 
1146 /*
1147  * SQLValueFunction - parameterless functions with special grammar productions
1148  *
1149  * The SQL standard categorizes some of these as <datetime value function>
1150  * and others as <general value specification>. We call 'em SQLValueFunctions
1151  * for lack of a better term. We store type and typmod of the result so that
1152  * some code doesn't need to know each function individually, and because
1153  * we would need to store typmod anyway for some of the datetime functions.
1154  * Note that currently, all variants return non-collating datatypes, so we do
1155  * not need a collation field; also, all these functions are stable.
1156  */
1158 {
1175 
1176 typedef struct SQLValueFunction
1177 {
1179  SQLValueFunctionOp op; /* which function this is */
1180  Oid type; /* result type/typmod */
1182  int location; /* token location, or -1 if unknown */
1184 
1185 /*
1186  * XmlExpr - various SQL/XML functions requiring special grammar productions
1187  *
1188  * 'name' carries the "NAME foo" argument (already XML-escaped).
1189  * 'named_args' and 'arg_names' represent an xml_attribute list.
1190  * 'args' carries all other arguments.
1191  *
1192  * Note: result type/typmod/collation are not stored, but can be deduced
1193  * from the XmlExprOp. The type/typmod fields are just used for display
1194  * purposes, and are NOT necessarily the true result type of the node.
1195  */
1196 typedef enum XmlExprOp
1197 {
1198  IS_XMLCONCAT, /* XMLCONCAT(args) */
1199  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1200  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1201  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1202  IS_XMLPI, /* XMLPI(name [, args]) */
1203  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1204  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1205  IS_DOCUMENT /* xmlval IS DOCUMENT */
1206 } XmlExprOp;
1207 
1208 typedef enum
1209 {
1212 } XmlOptionType;
1213 
1214 typedef struct XmlExpr
1215 {
1217  XmlExprOp op; /* xml function ID */
1218  char *name; /* name in xml(NAME foo ...) syntaxes */
1219  List *named_args; /* non-XML expressions for xml_attributes */
1220  List *arg_names; /* parallel list of Value strings */
1221  List *args; /* list of expressions */
1222  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1223  Oid type; /* target type/typmod for XMLSERIALIZE */
1225  int location; /* token location, or -1 if unknown */
1226 } XmlExpr;
1227 
1228 /* ----------------
1229  * NullTest
1230  *
1231  * NullTest represents the operation of testing a value for NULLness.
1232  * The appropriate test is performed and returned as a boolean Datum.
1233  *
1234  * When argisrow is false, this simply represents a test for the null value.
1235  *
1236  * When argisrow is true, the input expression must yield a rowtype, and
1237  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1238  * includes checking individual fields for NULLness when the row datum
1239  * itself isn't NULL.
1240  *
1241  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1242  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1243  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1244  * ----------------
1245  */
1246 
1247 typedef enum NullTestType
1248 {
1250 } NullTestType;
1251 
1252 typedef struct NullTest
1253 {
1255  Expr *arg; /* input expression */
1256  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1257  bool argisrow; /* T to perform field-by-field null checks */
1258  int location; /* token location, or -1 if unknown */
1259 } NullTest;
1260 
1261 /*
1262  * BooleanTest
1263  *
1264  * BooleanTest represents the operation of determining whether a boolean
1265  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1266  * are supported. Note that a NULL input does *not* cause a NULL result.
1267  * The appropriate test is performed and returned as a boolean Datum.
1268  */
1269 
1270 typedef enum BoolTestType
1271 {
1273 } BoolTestType;
1274 
1275 typedef struct BooleanTest
1276 {
1278  Expr *arg; /* input expression */
1279  BoolTestType booltesttype; /* test type */
1280  int location; /* token location, or -1 if unknown */
1281 } BooleanTest;
1282 
1283 /*
1284  * CoerceToDomain
1285  *
1286  * CoerceToDomain represents the operation of coercing a value to a domain
1287  * type. At runtime (and not before) the precise set of constraints to be
1288  * checked will be determined. If the value passes, it is returned as the
1289  * result; if not, an error is raised. Note that this is equivalent to
1290  * RelabelType in the scenario where no constraints are applied.
1291  */
1292 typedef struct CoerceToDomain
1293 {
1295  Expr *arg; /* input expression */
1296  Oid resulttype; /* domain type ID (result type) */
1297  int32 resulttypmod; /* output typmod (currently always -1) */
1298  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1299  CoercionForm coercionformat; /* how to display this node */
1300  int location; /* token location, or -1 if unknown */
1301 } CoerceToDomain;
1302 
1303 /*
1304  * Placeholder node for the value to be processed by a domain's check
1305  * constraint. This is effectively like a Param, but can be implemented more
1306  * simply since we need only one replacement value at a time.
1307  *
1308  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1309  * not the domain itself. This is because we shouldn't consider the value
1310  * to be a member of the domain if we haven't yet checked its constraints.
1311  */
1312 typedef struct CoerceToDomainValue
1313 {
1315  Oid typeId; /* type for substituted value */
1316  int32 typeMod; /* typemod for substituted value */
1317  Oid collation; /* collation for the substituted value */
1318  int location; /* token location, or -1 if unknown */
1320 
1321 /*
1322  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1323  *
1324  * This is not an executable expression: it must be replaced by the actual
1325  * column default expression during rewriting. But it is convenient to
1326  * treat it as an expression node during parsing and rewriting.
1327  */
1328 typedef struct SetToDefault
1329 {
1331  Oid typeId; /* type for substituted value */
1332  int32 typeMod; /* typemod for substituted value */
1333  Oid collation; /* collation for the substituted value */
1334  int location; /* token location, or -1 if unknown */
1335 } SetToDefault;
1336 
1337 /*
1338  * Node representing [WHERE] CURRENT OF cursor_name
1339  *
1340  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1341  * of the target relation being constrained; this aids placing the expression
1342  * correctly during planning. We can assume however that its "levelsup" is
1343  * always zero, due to the syntactic constraints on where it can appear.
1344  *
1345  * The referenced cursor can be represented either as a hardwired string
1346  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1347  * case is for the convenience of plpgsql.
1348  */
1349 typedef struct CurrentOfExpr
1350 {
1352  Index cvarno; /* RT index of target relation */
1353  char *cursor_name; /* name of referenced cursor, or NULL */
1354  int cursor_param; /* refcursor parameter number, or 0 */
1355 } CurrentOfExpr;
1356 
1357 /*
1358  * NextValueExpr - get next value from sequence
1359  *
1360  * This has the same effect as calling the nextval() function, but it does not
1361  * check permissions on the sequence. This is used for identity columns,
1362  * where the sequence is an implicit dependency without its own permissions.
1363  */
1364 typedef struct NextValueExpr
1365 {
1369 } NextValueExpr;
1370 
1371 /*
1372  * InferenceElem - an element of a unique index inference specification
1373  *
1374  * This mostly matches the structure of IndexElems, but having a dedicated
1375  * primnode allows for a clean separation between the use of index parameters
1376  * by utility commands, and this node.
1377  */
1378 typedef struct InferenceElem
1379 {
1381  Node *expr; /* expression to infer from, or NULL */
1382  Oid infercollid; /* OID of collation, or InvalidOid */
1383  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1384 } InferenceElem;
1385 
1386 /*--------------------
1387  * TargetEntry -
1388  * a target entry (used in query target lists)
1389  *
1390  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1391  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1392  * very many places it's convenient to process a whole query targetlist as a
1393  * single expression tree.
1394  *
1395  * In a SELECT's targetlist, resno should always be equal to the item's
1396  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1397  * targetlist, resno represents the attribute number of the destination
1398  * column for the item; so there may be missing or out-of-order resnos.
1399  * It is even legal to have duplicated resnos; consider
1400  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1401  * In an INSERT, the rewriter and planner will normalize the tlist by
1402  * reordering it into physical column order and filling in default values
1403  * for any columns not assigned values by the original query. In an UPDATE,
1404  * after the rewriter merges multiple assignments for the same column, the
1405  * planner extracts the target-column numbers into a separate "update_colnos"
1406  * list, and then renumbers the tlist elements serially. Thus, tlist resnos
1407  * match ordinal position in all tlists seen by the executor; but it is wrong
1408  * to assume that before planning has happened.
1409  *
1410  * resname is required to represent the correct column name in non-resjunk
1411  * entries of top-level SELECT targetlists, since it will be used as the
1412  * column title sent to the frontend. In most other contexts it is only
1413  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1414  * be wrong in a tlist from a stored rule, if the referenced column has been
1415  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1416  * to store NULL rather than look up a valid name for tlist entries in
1417  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1418  * a specific system-generated name (such as "ctid") or NULL; anything else
1419  * risks confusing ExecGetJunkAttribute!
1420  *
1421  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1422  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1423  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1424  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1425  * may have the same nonzero ressortgroupref --- but there is no particular
1426  * meaning to the nonzero values, except as tags. (For example, one must
1427  * not assume that lower ressortgroupref means a more significant sort key.)
1428  * The order of the associated SortGroupClause lists determine the semantics.
1429  *
1430  * resorigtbl/resorigcol identify the source of the column, if it is a
1431  * simple reference to a column of a base table (or view). If it is not
1432  * a simple reference, these fields are zeroes.
1433  *
1434  * If resjunk is true then the column is a working column (such as a sort key)
1435  * that should be removed from the final output of the query. Resjunk columns
1436  * must have resnos that cannot duplicate any regular column's resno. Also
1437  * note that there are places that assume resjunk columns come after non-junk
1438  * columns.
1439  *--------------------
1440  */
1441 typedef struct TargetEntry
1442 {
1444  Expr *expr; /* expression to evaluate */
1445  AttrNumber resno; /* attribute number (see notes above) */
1446  char *resname; /* name of the column (could be NULL) */
1447  Index ressortgroupref; /* nonzero if referenced by a sort/group
1448  * clause */
1449  Oid resorigtbl; /* OID of column's source table */
1450  AttrNumber resorigcol; /* column's number in source table */
1451  bool resjunk; /* set to true to eliminate the attribute from
1452  * final target list */
1453 } TargetEntry;
1454 
1455 
1456 /* ----------------------------------------------------------------
1457  * node types for join trees
1458  *
1459  * The leaves of a join tree structure are RangeTblRef nodes. Above
1460  * these, JoinExpr nodes can appear to denote a specific kind of join
1461  * or qualified join. Also, FromExpr nodes can appear to denote an
1462  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1463  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1464  * may have any number of child nodes, not just two.
1465  *
1466  * NOTE: the top level of a Query's jointree is always a FromExpr.
1467  * Even if the jointree contains no rels, there will be a FromExpr.
1468  *
1469  * NOTE: the qualification expressions present in JoinExpr nodes are
1470  * *in addition to* the query's main WHERE clause, which appears as the
1471  * qual of the top-level FromExpr. The reason for associating quals with
1472  * specific nodes in the jointree is that the position of a qual is critical
1473  * when outer joins are present. (If we enforce a qual too soon or too late,
1474  * that may cause the outer join to produce the wrong set of NULL-extended
1475  * rows.) If all joins are inner joins then all the qual positions are
1476  * semantically interchangeable.
1477  *
1478  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1479  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1480  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1481  * FromExpr is added during parse analysis; the grammar regards FROM and
1482  * WHERE as separate.
1483  * ----------------------------------------------------------------
1484  */
1485 
1486 /*
1487  * RangeTblRef - reference to an entry in the query's rangetable
1488  *
1489  * We could use direct pointers to the RT entries and skip having these
1490  * nodes, but multiple pointers to the same node in a querytree cause
1491  * lots of headaches, so it seems better to store an index into the RT.
1492  */
1493 typedef struct RangeTblRef
1494 {
1496  int rtindex;
1497 } RangeTblRef;
1498 
1499 /*----------
1500  * JoinExpr - for SQL JOIN expressions
1501  *
1502  * isNatural, usingClause, and quals are interdependent. The user can write
1503  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1504  * If he writes NATURAL then parse analysis generates the equivalent USING()
1505  * list, and from that fills in "quals" with the right equality comparisons.
1506  * If he writes USING() then "quals" is filled with equality comparisons.
1507  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1508  * are not equivalent to ON() since they also affect the output column list.
1509  *
1510  * alias is an Alias node representing the AS alias-clause attached to the
1511  * join expression, or NULL if no clause. NB: presence or absence of the
1512  * alias has a critical impact on semantics, because a join with an alias
1513  * restricts visibility of the tables/columns inside it.
1514  *
1515  * join_using_alias is an Alias node representing the join correlation
1516  * name that SQL:2016 and later allow to be attached to JOIN/USING.
1517  * Its column alias list includes only the common column names from USING,
1518  * and it does not restrict visibility of the join's input tables.
1519  *
1520  * During parse analysis, an RTE is created for the Join, and its index
1521  * is filled into rtindex. This RTE is present mainly so that Vars can
1522  * be created that refer to the outputs of the join. The planner sometimes
1523  * generates JoinExprs internally; these can have rtindex = 0 if there are
1524  * no join alias variables referencing such joins.
1525  *----------
1526  */
1527 typedef struct JoinExpr
1528 {
1530  JoinType jointype; /* type of join */
1531  bool isNatural; /* Natural join? Will need to shape table */
1532  Node *larg; /* left subtree */
1533  Node *rarg; /* right subtree */
1534  List *usingClause; /* USING clause, if any (list of String) */
1535  Alias *join_using_alias; /* alias attached to USING clause, if any */
1536  Node *quals; /* qualifiers on join, if any */
1537  Alias *alias; /* user-written alias clause, if any */
1538  int rtindex; /* RT index assigned for join, or 0 */
1539 } JoinExpr;
1540 
1541 /*----------
1542  * FromExpr - represents a FROM ... WHERE ... construct
1543  *
1544  * This is both more flexible than a JoinExpr (it can have any number of
1545  * children, including zero) and less so --- we don't need to deal with
1546  * aliases and so on. The output column set is implicitly just the union
1547  * of the outputs of the children.
1548  *----------
1549  */
1550 typedef struct FromExpr
1551 {
1553  List *fromlist; /* List of join subtrees */
1554  Node *quals; /* qualifiers on join, if any */
1555 } FromExpr;
1556 
1557 /*----------
1558  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1559  *
1560  * The optimizer requires a list of inference elements, and optionally a WHERE
1561  * clause to infer a unique index. The unique index (or, occasionally,
1562  * indexes) inferred are used to arbitrate whether or not the alternative ON
1563  * CONFLICT path is taken.
1564  *----------
1565  */
1566 typedef struct OnConflictExpr
1567 {
1569  OnConflictAction action; /* DO NOTHING or UPDATE? */
1570 
1571  /* Arbiter */
1572  List *arbiterElems; /* unique index arbiter list (of
1573  * InferenceElem's) */
1574  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1575  Oid constraint; /* pg_constraint OID for arbiter */
1576 
1577  /* ON CONFLICT UPDATE */
1578  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1579  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1580  int exclRelIndex; /* RT index of 'excluded' relation */
1581  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1582 } OnConflictExpr;
1583 
1584 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:219
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:332
Oid funcresulttype
Definition: primnodes.h:496
Oid minmaxtype
Definition: primnodes.h:1138
bool multidims
Definition: primnodes.h:1028
Expr xpr
Definition: primnodes.h:385
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:746
struct FieldSelect FieldSelect
List * args
Definition: primnodes.h:1142
Expr xpr
Definition: primnodes.h:965
bool aggvariadic
Definition: primnodes.h:335
List * args
Definition: primnodes.h:1058
Expr xpr
Definition: primnodes.h:1254
Node * docexpr
Definition: primnodes.h:87
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1568
Expr * arg
Definition: primnodes.h:827
Index varlevelsup
Definition: primnodes.h:196
OnCommitAction onCommit
Definition: primnodes.h:116
int plan_id
Definition: primnodes.h:742
List * args
Definition: primnodes.h:372
ParamKind
Definition: primnodes.h:256
char * name
Definition: primnodes.h:1218
List * refs
Definition: primnodes.h:374
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:222
int aggtransno
Definition: primnodes.h:341
List * args
Definition: primnodes.h:390
List * args
Definition: primnodes.h:503
Oid wincollid
Definition: primnodes.h:388
int32 resulttypmod
Definition: primnodes.h:1297
List * colnames
Definition: primnodes.h:89
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:800
char * tableSpaceName
Definition: primnodes.h:117
List * coltypmods
Definition: primnodes.h:91
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1270
Oid funccollid
Definition: primnodes.h:501
int location
Definition: primnodes.h:1225
Oid resulttype
Definition: primnodes.h:871
XmlExprOp
Definition: primnodes.h:1196
OpExpr NullIfExpr
Definition: primnodes.h:570
RowCompareType rctype
Definition: primnodes.h:1106
List * opfamilies
Definition: primnodes.h:1108
NodeTag type
Definition: primnodes.h:84
Oid type
Definition: primnodes.h:1223
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:967
SubLinkType subLinkType
Definition: primnodes.h:737
Expr * arg
Definition: primnodes.h:850
Oid inputcollid
Definition: primnodes.h:326
ParamKind paramkind
Definition: primnodes.h:267
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:539
CoercionForm coercionformat
Definition: primnodes.h:1299
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1449
List * args
Definition: primnodes.h:330
AttrNumber varattno
Definition: primnodes.h:191
Oid array_typeid
Definition: primnodes.h:1024
Expr * arg
Definition: primnodes.h:798
List * paramIds
Definition: primnodes.h:740
struct SubscriptingRef SubscriptingRef
bool funcretset
Definition: primnodes.h:497
struct SubPlan SubPlan
struct Expr Expr
List * fromlist
Definition: primnodes.h:1553
Expr xpr
Definition: primnodes.h:1216
NullTestType
Definition: primnodes.h:1247
bool skipData
Definition: primnodes.h:119
Oid casetype
Definition: primnodes.h:966
bool aggstar
Definition: primnodes.h:334
Expr xpr
Definition: primnodes.h:1057
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:188
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:392
char * resname
Definition: primnodes.h:1446
List * arg_names
Definition: primnodes.h:1220
Definition: primnodes.h:186
List * refupperindexpr
Definition: primnodes.h:444
CoercionContext
Definition: primnodes.h:461
Node * quals
Definition: primnodes.h:1554
struct Var Var
int32 typeMod
Definition: primnodes.h:1009
int location
Definition: primnodes.h:617
int location
Definition: primnodes.h:982
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1179
NodeTag type
Definition: primnodes.h:1552
List * colcollations
Definition: primnodes.h:92
signed int int32
Definition: c.h:429
struct RelabelType RelabelType
JoinType
Definition: nodes.h:706
List * arbiterElems
Definition: primnodes.h:1572
Expr xpr
Definition: primnodes.h:266
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1532
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:218
Expr xpr
Definition: primnodes.h:541
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:215
List * aggargtypes
Definition: primnodes.h:328
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:500
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Oid opresulttype
Definition: primnodes.h:544
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1129
bool resjunk
Definition: primnodes.h:1451
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:495
List * colnames
Definition: primnodes.h:1074
Node * viewQuery
Definition: primnodes.h:118
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:271
int location
Definition: primnodes.h:272
Oid vartype
Definition: primnodes.h:193
List * args
Definition: primnodes.h:1122
BoolExprType boolop
Definition: primnodes.h:615
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1255
int location
Definition: primnodes.h:342
List * coldefexprs
Definition: primnodes.h:94
Oid constcollid
Definition: primnodes.h:217
Oid resultcollid
Definition: primnodes.h:803
List * ns_names
Definition: primnodes.h:86
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:88
int location
Definition: primnodes.h:201
Alias * join_using_alias
Definition: primnodes.h:1535
int location
Definition: primnodes.h:1075
struct Const Const
int32 typeMod
Definition: primnodes.h:1332
int location
Definition: primnodes.h:1143
List * exclRelTlist
Definition: primnodes.h:1581
int location
Definition: primnodes.h:549
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:331
Expr * arg
Definition: primnodes.h:1278
AttrNumber resno
Definition: primnodes.h:1445
Bitmapset * notnulls
Definition: primnodes.h:95
Index agglevelsup
Definition: primnodes.h:338
char * name
Definition: primnodes.h:525
Expr xpr
Definition: primnodes.h:214
char * cursor_name
Definition: primnodes.h:1353
List * aggdirectargs
Definition: primnodes.h:329
Oid resulttype
Definition: primnodes.h:830
Oid winfnoid
Definition: primnodes.h:386
Expr * arg
Definition: primnodes.h:870
List * elements
Definition: primnodes.h:1027
struct BooleanTest BooleanTest
Expr * elemexpr
Definition: primnodes.h:895
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:1023
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:546
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1157
List * options
Definition: primnodes.h:115
List * newvals
Definition: primnodes.h:828
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:375
Index varnosyn
Definition: primnodes.h:199
SubLinkType
Definition: primnodes.h:671
OnConflictAction action
Definition: primnodes.h:1569
bool isNatural
Definition: primnodes.h:1531
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1534
Expr xpr
Definition: primnodes.h:735
Index varno
Definition: primnodes.h:189
int ordinalitycol
Definition: primnodes.h:96
XmlExprOp op
Definition: primnodes.h:1217
List * args
Definition: primnodes.h:969
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:899
int location
Definition: primnodes.h:226
Node * quals
Definition: primnodes.h:1536
int location
Definition: primnodes.h:1029
BoolTestType booltesttype
Definition: primnodes.h:1279
Index agglevelsup
Definition: primnodes.h:376
AttrNumber varattnosyn
Definition: primnodes.h:200
uintptr_t Datum
Definition: postgres.h:411
CoercionForm convertformat
Definition: primnodes.h:922
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:873
Oid opfuncid
Definition: primnodes.h:543
Oid resulttype
Definition: primnodes.h:851
Node * testexpr
Definition: primnodes.h:739
unsigned int Index
Definition: c.h:549
List * coltypes
Definition: primnodes.h:90
NullTestType nulltesttype
Definition: primnodes.h:1256
int32 typmod
Definition: primnodes.h:1224
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:766
Oid resultcollid
Definition: primnodes.h:853
Oid aggfnoid
Definition: primnodes.h:323
List * colexprs
Definition: primnodes.h:93
List * named_args
Definition: primnodes.h:1219
int32 firstColTypmod
Definition: primnodes.h:747
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1092
List * args
Definition: primnodes.h:1221
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:270
int aggno
Definition: primnodes.h:340
char * plan_name
Definition: primnodes.h:744
int location
Definition: primnodes.h:875
Node * rarg
Definition: primnodes.h:1533
Alias * alias
Definition: primnodes.h:1537
Expr * arg
Definition: primnodes.h:524
struct NullTest NullTest
int location
Definition: primnodes.h:395
Oid inputcollid
Definition: primnodes.h:502
JoinType jointype
Definition: primnodes.h:1530
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1495
NodeTag type
Definition: primnodes.h:1529
List * setParam
Definition: primnodes.h:760
List * ns_uris
Definition: primnodes.h:85
Expr * aggfilter
Definition: primnodes.h:391
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1444
AggSplit aggsplit
Definition: primnodes.h:339
XmlOptionType xmloption
Definition: primnodes.h:1222
int paramid
Definition: primnodes.h:268
XmlOptionType
Definition: primnodes.h:1208
Oid array_collid
Definition: primnodes.h:1025
bool unknownEqFalse
Definition: primnodes.h:753
int location
Definition: primnodes.h:1258
AggSplit
Definition: nodes.h:790
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:1059
struct RowCompareExpr RowCompareExpr
Oid inputcollid
Definition: primnodes.h:1140
Expr * arg
Definition: primnodes.h:936
Expr xpr
Definition: primnodes.h:614
Expr * aggfilter
Definition: primnodes.h:333
int location
Definition: primnodes.h:971
List * parParam
Definition: primnodes.h:762
Oid inputcollid
Definition: primnodes.h:547
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:389
List * args
Definition: primnodes.h:616
Expr xpr
Definition: primnodes.h:322
bool parallel_safe
Definition: primnodes.h:756
struct Param Param
NodeTag type
Definition: primnodes.h:110
int32 consttypmod
Definition: primnodes.h:216
Oid element_typeid
Definition: primnodes.h:1026
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:387
CoercionForm coerceformat
Definition: primnodes.h:874
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1574
Expr * refassgnexpr
Definition: primnodes.h:451
Expr xpr
Definition: primnodes.h:979
AttrNumber resorigcol
Definition: primnodes.h:1450
Oid aggcollid
Definition: primnodes.h:325
Expr xpr
Definition: primnodes.h:494
RangeVar * rel
Definition: primnodes.h:112
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:829
List * reflowerindexpr
Definition: primnodes.h:446
bool winagg
Definition: primnodes.h:394
Oid coalescetype
Definition: primnodes.h:1120
Expr xpr
Definition: primnodes.h:826
Oid aggtranstype
Definition: primnodes.h:327
List * onConflictSet
Definition: primnodes.h:1578
Oid varcollid
Definition: primnodes.h:195
Index ressortgroupref
Definition: primnodes.h:1447
Oid aggtype
Definition: primnodes.h:324
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:562
NodeTag type
Definition: primnodes.h:138
bool useHashTable
Definition: primnodes.h:751
Oid refcontainertype
Definition: primnodes.h:439
bool argisrow
Definition: primnodes.h:1257
MinMaxOp op
Definition: primnodes.h:1141
Oid minmaxcollid
Definition: primnodes.h:1139
Oid firstColCollation
Definition: primnodes.h:748
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:337
Cost startup_cost
Definition: primnodes.h:765
Expr * refexpr
Definition: primnodes.h:449
int32 resulttypmod
Definition: primnodes.h:852
Expr * arg
Definition: primnodes.h:968
int location
Definition: primnodes.h:504
Oid opno
Definition: primnodes.h:542
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:897
Expr * result
Definition: primnodes.h:981
List * colNames
Definition: primnodes.h:113
List * args
Definition: primnodes.h:548
List * inputcollids
Definition: primnodes.h:1109
int location
Definition: primnodes.h:97
CoercionForm relabelformat
Definition: primnodes.h:854
Expr * defresult
Definition: primnodes.h:970
Expr * expr
Definition: primnodes.h:980
int location
Definition: primnodes.h:938
CoercionForm row_format
Definition: primnodes.h:1073
CoercionForm
Definition: primnodes.h:481
Node * onConflictWhere
Definition: primnodes.h:1579
int rtindex
Definition: primnodes.h:1538
Definition: pg_list.h:50
OnConflictAction
Definition: nodes.h:832
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:269
int location
Definition: primnodes.h:855
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:220
Oid coalescecollid
Definition: primnodes.h:1121
bool funcvariadic
Definition: primnodes.h:498
char * accessMethod
Definition: primnodes.h:114
double Cost
Definition: nodes.h:673
struct CaseExpr CaseExpr
bool opretset
Definition: primnodes.h:545
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:802
bool winstar
Definition: primnodes.h:393
AttrNumber fieldnum
Definition: primnodes.h:799
BoolExprType
Definition: primnodes.h:607
int32 vartypmod
Definition: primnodes.h:194
List * args
Definition: primnodes.h:763