PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
primnodes.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * primnodes.h
4  * Definitions for "primitive" node types, those that are used in more
5  * than one of the parse/plan/execute stages of the query pipeline.
6  * Currently, these are mostly nodes for executable expressions
7  * and join trees.
8  *
9  *
10  * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1994, Regents of the University of California
12  *
13  * src/include/nodes/primnodes.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 #ifndef PRIMNODES_H
18 #define PRIMNODES_H
19 
20 #include "access/attnum.h"
21 #include "nodes/bitmapset.h"
22 #include "nodes/pg_list.h"
23 
24 
25 /* ----------------------------------------------------------------
26  * node definitions
27  * ----------------------------------------------------------------
28  */
29 
30 /*
31  * Alias -
32  * specifies an alias for a range variable; the alias might also
33  * specify renaming of columns within the table.
34  *
35  * Note: colnames is a list of Value nodes (always strings). In Alias structs
36  * associated with RTEs, there may be entries corresponding to dropped
37  * columns; these are normally empty strings (""). See parsenodes.h for info.
38  */
39 typedef struct Alias
40 {
42  char *aliasname; /* aliased rel name (never qualified) */
43  List *colnames; /* optional list of column aliases */
44 } Alias;
45 
46 /* What to do at commit time for temporary relations */
47 typedef enum OnCommitAction
48 {
49  ONCOMMIT_NOOP, /* No ON COMMIT clause (do nothing) */
50  ONCOMMIT_PRESERVE_ROWS, /* ON COMMIT PRESERVE ROWS (do nothing) */
51  ONCOMMIT_DELETE_ROWS, /* ON COMMIT DELETE ROWS */
52  ONCOMMIT_DROP /* ON COMMIT DROP */
54 
55 /*
56  * RangeVar - range variable, used in FROM clauses
57  *
58  * Also used to represent table names in utility statements; there, the alias
59  * field is not used, and inh tells whether to apply the operation
60  * recursively to child tables. In some contexts it is also useful to carry
61  * a TEMP table indication here.
62  */
63 typedef struct RangeVar
64 {
66  char *catalogname; /* the catalog (database) name, or NULL */
67  char *schemaname; /* the schema name, or NULL */
68  char *relname; /* the relation/sequence name */
69  bool inh; /* expand rel by inheritance? recursively act
70  * on children? */
71  char relpersistence; /* see RELPERSISTENCE_* in pg_class.h */
72  Alias *alias; /* table alias & optional column aliases */
73  int location; /* token location, or -1 if unknown */
74 } RangeVar;
75 
76 /*
77  * TableFunc - node for a table function, such as XMLTABLE.
78  */
79 typedef struct TableFunc
80 {
82  List *ns_uris; /* list of namespace uri */
83  List *ns_names; /* list of namespace names */
84  Node *docexpr; /* input document expression */
85  Node *rowexpr; /* row filter expression */
86  List *colnames; /* column names (list of String) */
87  List *coltypes; /* OID list of column type OIDs */
88  List *coltypmods; /* integer list of column typmods */
89  List *colcollations; /* OID list of column collation OIDs */
90  List *colexprs; /* list of column filter expressions */
91  List *coldefexprs; /* list of column default expressions */
92  Bitmapset *notnulls; /* nullability flag for each output column */
93  int ordinalitycol; /* counts from 0; -1 if none specified */
94  int location; /* token location, or -1 if unknown */
95 } TableFunc;
96 
97 /*
98  * IntoClause - target information for SELECT INTO, CREATE TABLE AS, and
99  * CREATE MATERIALIZED VIEW
100  *
101  * For CREATE MATERIALIZED VIEW, viewQuery is the parsed-but-not-rewritten
102  * SELECT Query for the view; otherwise it's NULL. (Although it's actually
103  * Query*, we declare it as Node* to avoid a forward reference.)
104  */
105 typedef struct IntoClause
106 {
108 
109  RangeVar *rel; /* target relation name */
110  List *colNames; /* column names to assign, or NIL */
111  List *options; /* options from WITH clause */
112  OnCommitAction onCommit; /* what do we do at COMMIT? */
113  char *tableSpaceName; /* table space to use, or NULL */
114  Node *viewQuery; /* materialized view's SELECT query */
115  bool skipData; /* true for WITH NO DATA */
116 } IntoClause;
117 
118 
119 /* ----------------------------------------------------------------
120  * node types for executable expressions
121  * ----------------------------------------------------------------
122  */
123 
124 /*
125  * Expr - generic superclass for executable-expression nodes
126  *
127  * All node types that are used in executable expression trees should derive
128  * from Expr (that is, have Expr as their first field). Since Expr only
129  * contains NodeTag, this is a formality, but it is an easy form of
130  * documentation. See also the ExprState node types in execnodes.h.
131  */
132 typedef struct Expr
133 {
135 } Expr;
136 
137 /*
138  * Var - expression node representing a variable (ie, a table column)
139  *
140  * Note: during parsing/planning, varnoold/varoattno are always just copies
141  * of varno/varattno. At the tail end of planning, Var nodes appearing in
142  * upper-level plan nodes are reassigned to point to the outputs of their
143  * subplans; for example, in a join node varno becomes INNER_VAR or OUTER_VAR
144  * and varattno becomes the index of the proper element of that subplan's
145  * target list. Similarly, INDEX_VAR is used to identify Vars that reference
146  * an index column rather than a heap column. (In ForeignScan and CustomScan
147  * plan nodes, INDEX_VAR is abused to signify references to columns of a
148  * custom scan tuple type.) In all these cases, varnoold/varoattno hold the
149  * original values. The code doesn't really need varnoold/varoattno, but they
150  * are very useful for debugging and interpreting completed plans, so we keep
151  * them around.
152  */
153 #define INNER_VAR 65000 /* reference to inner subplan */
154 #define OUTER_VAR 65001 /* reference to outer subplan */
155 #define INDEX_VAR 65002 /* reference to index column */
156 
157 #define IS_SPECIAL_VARNO(varno) ((varno) >= INNER_VAR)
158 
159 /* Symbols for the indexes of the special RTE entries in rules */
160 #define PRS2_OLD_VARNO 1
161 #define PRS2_NEW_VARNO 2
162 
163 typedef struct Var
164 {
166  Index varno; /* index of this var's relation in the range
167  * table, or INNER_VAR/OUTER_VAR/INDEX_VAR */
168  AttrNumber varattno; /* attribute number of this var, or zero for
169  * all */
170  Oid vartype; /* pg_type OID for the type of this var */
171  int32 vartypmod; /* pg_attribute typmod value */
172  Oid varcollid; /* OID of collation, or InvalidOid if none */
173  Index varlevelsup; /* for subquery variables referencing outer
174  * relations; 0 in a normal var, >0 means N
175  * levels up */
176  Index varnoold; /* original value of varno, for debugging */
177  AttrNumber varoattno; /* original value of varattno */
178  int location; /* token location, or -1 if unknown */
179 } Var;
180 
181 /*
182  * Const
183  *
184  * Note: for varlena data types, we make a rule that a Const node's value
185  * must be in non-extended form (4-byte header, no compression or external
186  * references). This ensures that the Const node is self-contained and makes
187  * it more likely that equal() will see logically identical values as equal.
188  */
189 typedef struct Const
190 {
192  Oid consttype; /* pg_type OID of the constant's datatype */
193  int32 consttypmod; /* typmod value, if any */
194  Oid constcollid; /* OID of collation, or InvalidOid if none */
195  int constlen; /* typlen of the constant's datatype */
196  Datum constvalue; /* the constant's value */
197  bool constisnull; /* whether the constant is null (if true,
198  * constvalue is undefined) */
199  bool constbyval; /* whether this datatype is passed by value.
200  * If true, then all the information is stored
201  * in the Datum. If false, then the Datum
202  * contains a pointer to the information. */
203  int location; /* token location, or -1 if unknown */
204 } Const;
205 
206 /*
207  * Param
208  *
209  * paramkind specifies the kind of parameter. The possible values
210  * for this field are:
211  *
212  * PARAM_EXTERN: The parameter value is supplied from outside the plan.
213  * Such parameters are numbered from 1 to n.
214  *
215  * PARAM_EXEC: The parameter is an internal executor parameter, used
216  * for passing values into and out of sub-queries or from
217  * nestloop joins to their inner scans.
218  * For historical reasons, such parameters are numbered from 0.
219  * These numbers are independent of PARAM_EXTERN numbers.
220  *
221  * PARAM_SUBLINK: The parameter represents an output column of a SubLink
222  * node's sub-select. The column number is contained in the
223  * `paramid' field. (This type of Param is converted to
224  * PARAM_EXEC during planning.)
225  *
226  * PARAM_MULTIEXPR: Like PARAM_SUBLINK, the parameter represents an
227  * output column of a SubLink node's sub-select, but here, the
228  * SubLink is always a MULTIEXPR SubLink. The high-order 16 bits
229  * of the `paramid' field contain the SubLink's subLinkId, and
230  * the low-order 16 bits contain the column number. (This type
231  * of Param is also converted to PARAM_EXEC during planning.)
232  */
233 typedef enum ParamKind
234 {
239 } ParamKind;
240 
241 typedef struct Param
242 {
244  ParamKind paramkind; /* kind of parameter. See above */
245  int paramid; /* numeric ID for parameter */
246  Oid paramtype; /* pg_type OID of parameter's datatype */
247  int32 paramtypmod; /* typmod value, if known */
248  Oid paramcollid; /* OID of collation, or InvalidOid if none */
249  int location; /* token location, or -1 if unknown */
250 } Param;
251 
252 /*
253  * Aggref
254  *
255  * The aggregate's args list is a targetlist, ie, a list of TargetEntry nodes.
256  *
257  * For a normal (non-ordered-set) aggregate, the non-resjunk TargetEntries
258  * represent the aggregate's regular arguments (if any) and resjunk TLEs can
259  * be added at the end to represent ORDER BY expressions that are not also
260  * arguments. As in a top-level Query, the TLEs can be marked with
261  * ressortgroupref indexes to let them be referenced by SortGroupClause
262  * entries in the aggorder and/or aggdistinct lists. This represents ORDER BY
263  * and DISTINCT operations to be applied to the aggregate input rows before
264  * they are passed to the transition function. The grammar only allows a
265  * simple "DISTINCT" specifier for the arguments, but we use the full
266  * query-level representation to allow more code sharing.
267  *
268  * For an ordered-set aggregate, the args list represents the WITHIN GROUP
269  * (aggregated) arguments, all of which will be listed in the aggorder list.
270  * DISTINCT is not supported in this case, so aggdistinct will be NIL.
271  * The direct arguments appear in aggdirectargs (as a list of plain
272  * expressions, not TargetEntry nodes).
273  *
274  * aggtranstype is the data type of the state transition values for this
275  * aggregate (resolved to an actual type, if agg's transtype is polymorphic).
276  * This is determined during planning and is InvalidOid before that.
277  *
278  * aggargtypes is an OID list of the data types of the direct and regular
279  * arguments. Normally it's redundant with the aggdirectargs and args lists,
280  * but in a combining aggregate, it's not because the args list has been
281  * replaced with a single argument representing the partial-aggregate
282  * transition values.
283  *
284  * aggsplit indicates the expected partial-aggregation mode for the Aggref's
285  * parent plan node. It's always set to AGGSPLIT_SIMPLE in the parser, but
286  * the planner might change it to something else. We use this mainly as
287  * a crosscheck that the Aggrefs match the plan; but note that when aggsplit
288  * indicates a non-final mode, aggtype reflects the transition data type
289  * not the SQL-level output type of the aggregate.
290  */
291 typedef struct Aggref
292 {
294  Oid aggfnoid; /* pg_proc Oid of the aggregate */
295  Oid aggtype; /* type Oid of result of the aggregate */
296  Oid aggcollid; /* OID of collation of result */
297  Oid inputcollid; /* OID of collation that function should use */
298  Oid aggtranstype; /* type Oid of aggregate's transition value */
299  List *aggargtypes; /* type Oids of direct and aggregated args */
300  List *aggdirectargs; /* direct arguments, if an ordered-set agg */
301  List *args; /* aggregated arguments and sort expressions */
302  List *aggorder; /* ORDER BY (list of SortGroupClause) */
303  List *aggdistinct; /* DISTINCT (list of SortGroupClause) */
304  Expr *aggfilter; /* FILTER expression, if any */
305  bool aggstar; /* TRUE if argument list was really '*' */
306  bool aggvariadic; /* true if variadic arguments have been
307  * combined into an array last argument */
308  char aggkind; /* aggregate kind (see pg_aggregate.h) */
309  Index agglevelsup; /* > 0 if agg belongs to outer query */
310  AggSplit aggsplit; /* expected agg-splitting mode of parent Agg */
311  int location; /* token location, or -1 if unknown */
312 } Aggref;
313 
314 /*
315  * GroupingFunc
316  *
317  * A GroupingFunc is a GROUPING(...) expression, which behaves in many ways
318  * like an aggregate function (e.g. it "belongs" to a specific query level,
319  * which might not be the one immediately containing it), but also differs in
320  * an important respect: it never evaluates its arguments, they merely
321  * designate expressions from the GROUP BY clause of the query level to which
322  * it belongs.
323  *
324  * The spec defines the evaluation of GROUPING() purely by syntactic
325  * replacement, but we make it a real expression for optimization purposes so
326  * that one Agg node can handle multiple grouping sets at once. Evaluating the
327  * result only needs the column positions to check against the grouping set
328  * being projected. However, for EXPLAIN to produce meaningful output, we have
329  * to keep the original expressions around, since expression deparse does not
330  * give us any feasible way to get at the GROUP BY clause.
331  *
332  * Also, we treat two GroupingFunc nodes as equal if they have equal arguments
333  * lists and agglevelsup, without comparing the refs and cols annotations.
334  *
335  * In raw parse output we have only the args list; parse analysis fills in the
336  * refs list, and the planner fills in the cols list.
337  */
338 typedef struct GroupingFunc
339 {
341  List *args; /* arguments, not evaluated but kept for
342  * benefit of EXPLAIN etc. */
343  List *refs; /* ressortgrouprefs of arguments */
344  List *cols; /* actual column positions set by planner */
345  Index agglevelsup; /* same as Aggref.agglevelsup */
346  int location; /* token location */
347 } GroupingFunc;
348 
349 /*
350  * WindowFunc
351  */
352 typedef struct WindowFunc
353 {
355  Oid winfnoid; /* pg_proc Oid of the function */
356  Oid wintype; /* type Oid of result of the window function */
357  Oid wincollid; /* OID of collation of result */
358  Oid inputcollid; /* OID of collation that function should use */
359  List *args; /* arguments to the window function */
360  Expr *aggfilter; /* FILTER expression, if any */
361  Index winref; /* index of associated WindowClause */
362  bool winstar; /* TRUE if argument list was really '*' */
363  bool winagg; /* is function a simple aggregate? */
364  int location; /* token location, or -1 if unknown */
365 } WindowFunc;
366 
367 /* ----------------
368  * ArrayRef: describes an array subscripting operation
369  *
370  * An ArrayRef can describe fetching a single element from an array,
371  * fetching a subarray (array slice), storing a single element into
372  * an array, or storing a slice. The "store" cases work with an
373  * initial array value and a source value that is inserted into the
374  * appropriate part of the array; the result of the operation is an
375  * entire new modified array value.
376  *
377  * If reflowerindexpr = NIL, then we are fetching or storing a single array
378  * element at the subscripts given by refupperindexpr. Otherwise we are
379  * fetching or storing an array slice, that is a rectangular subarray
380  * with lower and upper bounds given by the index expressions.
381  * reflowerindexpr must be the same length as refupperindexpr when it
382  * is not NIL.
383  *
384  * In the slice case, individual expressions in the subscript lists can be
385  * NULL, meaning "substitute the array's current lower or upper bound".
386  *
387  * Note: the result datatype is the element type when fetching a single
388  * element; but it is the array type when doing subarray fetch or either
389  * type of store.
390  *
391  * Note: for the cases where an array is returned, if refexpr yields a R/W
392  * expanded array, then the implementation is allowed to modify that object
393  * in-place and return the same object.)
394  * ----------------
395  */
396 typedef struct ArrayRef
397 {
399  Oid refarraytype; /* type of the array proper */
400  Oid refelemtype; /* type of the array elements */
401  int32 reftypmod; /* typmod of the array (and elements too) */
402  Oid refcollid; /* OID of collation, or InvalidOid if none */
403  List *refupperindexpr;/* expressions that evaluate to upper array
404  * indexes */
405  List *reflowerindexpr;/* expressions that evaluate to lower array
406  * indexes, or NIL for single array element */
407  Expr *refexpr; /* the expression that evaluates to an array
408  * value */
409  Expr *refassgnexpr; /* expression for the source value, or NULL if
410  * fetch */
411 } ArrayRef;
412 
413 /*
414  * CoercionContext - distinguishes the allowed set of type casts
415  *
416  * NB: ordering of the alternatives is significant; later (larger) values
417  * allow more casts than earlier ones.
418  */
419 typedef enum CoercionContext
420 {
421  COERCION_IMPLICIT, /* coercion in context of expression */
422  COERCION_ASSIGNMENT, /* coercion in context of assignment */
423  COERCION_EXPLICIT /* explicit cast operation */
425 
426 /*
427  * CoercionForm - how to display a node that could have come from a cast
428  *
429  * NB: equal() ignores CoercionForm fields, therefore this *must* not carry
430  * any semantically significant information. We need that behavior so that
431  * the planner will consider equivalent implicit and explicit casts to be
432  * equivalent. In cases where those actually behave differently, the coercion
433  * function's arguments will be different.
434  */
435 typedef enum CoercionForm
436 {
437  COERCE_EXPLICIT_CALL, /* display as a function call */
438  COERCE_EXPLICIT_CAST, /* display as an explicit cast */
439  COERCE_IMPLICIT_CAST /* implicit cast, so hide it */
440 } CoercionForm;
441 
442 /*
443  * FuncExpr - expression node for a function call
444  */
445 typedef struct FuncExpr
446 {
448  Oid funcid; /* PG_PROC OID of the function */
449  Oid funcresulttype; /* PG_TYPE OID of result value */
450  bool funcretset; /* true if function returns set */
451  bool funcvariadic; /* true if variadic arguments have been
452  * combined into an array last argument */
453  CoercionForm funcformat; /* how to display this function call */
454  Oid funccollid; /* OID of collation of result */
455  Oid inputcollid; /* OID of collation that function should use */
456  List *args; /* arguments to the function */
457  int location; /* token location, or -1 if unknown */
458 } FuncExpr;
459 
460 /*
461  * NamedArgExpr - a named argument of a function
462  *
463  * This node type can only appear in the args list of a FuncCall or FuncExpr
464  * node. We support pure positional call notation (no named arguments),
465  * named notation (all arguments are named), and mixed notation (unnamed
466  * arguments followed by named ones).
467  *
468  * Parse analysis sets argnumber to the positional index of the argument,
469  * but doesn't rearrange the argument list.
470  *
471  * The planner will convert argument lists to pure positional notation
472  * during expression preprocessing, so execution never sees a NamedArgExpr.
473  */
474 typedef struct NamedArgExpr
475 {
477  Expr *arg; /* the argument expression */
478  char *name; /* the name */
479  int argnumber; /* argument's number in positional notation */
480  int location; /* argument name location, or -1 if unknown */
481 } NamedArgExpr;
482 
483 /*
484  * OpExpr - expression node for an operator invocation
485  *
486  * Semantically, this is essentially the same as a function call.
487  *
488  * Note that opfuncid is not necessarily filled in immediately on creation
489  * of the node. The planner makes sure it is valid before passing the node
490  * tree to the executor, but during parsing/planning opfuncid can be 0.
491  */
492 typedef struct OpExpr
493 {
495  Oid opno; /* PG_OPERATOR OID of the operator */
496  Oid opfuncid; /* PG_PROC OID of underlying function */
497  Oid opresulttype; /* PG_TYPE OID of result value */
498  bool opretset; /* true if operator returns set */
499  Oid opcollid; /* OID of collation of result */
500  Oid inputcollid; /* OID of collation that operator should use */
501  List *args; /* arguments to the operator (1 or 2) */
502  int location; /* token location, or -1 if unknown */
503 } OpExpr;
504 
505 /*
506  * DistinctExpr - expression node for "x IS DISTINCT FROM y"
507  *
508  * Except for the nodetag, this is represented identically to an OpExpr
509  * referencing the "=" operator for x and y.
510  * We use "=", not the more obvious "<>", because more datatypes have "="
511  * than "<>". This means the executor must invert the operator result.
512  * Note that the operator function won't be called at all if either input
513  * is NULL, since then the result can be determined directly.
514  */
516 
517 /*
518  * NullIfExpr - a NULLIF expression
519  *
520  * Like DistinctExpr, this is represented the same as an OpExpr referencing
521  * the "=" operator for x and y.
522  */
524 
525 /*
526  * ScalarArrayOpExpr - expression node for "scalar op ANY/ALL (array)"
527  *
528  * The operator must yield boolean. It is applied to the left operand
529  * and each element of the righthand array, and the results are combined
530  * with OR or AND (for ANY or ALL respectively). The node representation
531  * is almost the same as for the underlying operator, but we need a useOr
532  * flag to remember whether it's ANY or ALL, and we don't have to store
533  * the result type (or the collation) because it must be boolean.
534  */
535 typedef struct ScalarArrayOpExpr
536 {
538  Oid opno; /* PG_OPERATOR OID of the operator */
539  Oid opfuncid; /* PG_PROC OID of underlying function */
540  bool useOr; /* true for ANY, false for ALL */
541  Oid inputcollid; /* OID of collation that operator should use */
542  List *args; /* the scalar and array operands */
543  int location; /* token location, or -1 if unknown */
545 
546 /*
547  * BoolExpr - expression node for the basic Boolean operators AND, OR, NOT
548  *
549  * Notice the arguments are given as a List. For NOT, of course the list
550  * must always have exactly one element. For AND and OR, there can be two
551  * or more arguments.
552  */
553 typedef enum BoolExprType
554 {
556 } BoolExprType;
557 
558 typedef struct BoolExpr
559 {
562  List *args; /* arguments to this expression */
563  int location; /* token location, or -1 if unknown */
564 } BoolExpr;
565 
566 /*
567  * SubLink
568  *
569  * A SubLink represents a subselect appearing in an expression, and in some
570  * cases also the combining operator(s) just above it. The subLinkType
571  * indicates the form of the expression represented:
572  * EXISTS_SUBLINK EXISTS(SELECT ...)
573  * ALL_SUBLINK (lefthand) op ALL (SELECT ...)
574  * ANY_SUBLINK (lefthand) op ANY (SELECT ...)
575  * ROWCOMPARE_SUBLINK (lefthand) op (SELECT ...)
576  * EXPR_SUBLINK (SELECT with single targetlist item ...)
577  * MULTIEXPR_SUBLINK (SELECT with multiple targetlist items ...)
578  * ARRAY_SUBLINK ARRAY(SELECT with single targetlist item ...)
579  * CTE_SUBLINK WITH query (never actually part of an expression)
580  * For ALL, ANY, and ROWCOMPARE, the lefthand is a list of expressions of the
581  * same length as the subselect's targetlist. ROWCOMPARE will *always* have
582  * a list with more than one entry; if the subselect has just one target
583  * then the parser will create an EXPR_SUBLINK instead (and any operator
584  * above the subselect will be represented separately).
585  * ROWCOMPARE, EXPR, and MULTIEXPR require the subselect to deliver at most
586  * one row (if it returns no rows, the result is NULL).
587  * ALL, ANY, and ROWCOMPARE require the combining operators to deliver boolean
588  * results. ALL and ANY combine the per-row results using AND and OR
589  * semantics respectively.
590  * ARRAY requires just one target column, and creates an array of the target
591  * column's type using any number of rows resulting from the subselect.
592  *
593  * SubLink is classed as an Expr node, but it is not actually executable;
594  * it must be replaced in the expression tree by a SubPlan node during
595  * planning.
596  *
597  * NOTE: in the raw output of gram.y, testexpr contains just the raw form
598  * of the lefthand expression (if any), and operName is the String name of
599  * the combining operator. Also, subselect is a raw parsetree. During parse
600  * analysis, the parser transforms testexpr into a complete boolean expression
601  * that compares the lefthand value(s) to PARAM_SUBLINK nodes representing the
602  * output columns of the subselect. And subselect is transformed to a Query.
603  * This is the representation seen in saved rules and in the rewriter.
604  *
605  * In EXISTS, EXPR, MULTIEXPR, and ARRAY SubLinks, testexpr and operName
606  * are unused and are always null.
607  *
608  * subLinkId is currently used only for MULTIEXPR SubLinks, and is zero in
609  * other SubLinks. This number identifies different multiple-assignment
610  * subqueries within an UPDATE statement's SET list. It is unique only
611  * within a particular targetlist. The output column(s) of the MULTIEXPR
612  * are referenced by PARAM_MULTIEXPR Params appearing elsewhere in the tlist.
613  *
614  * The CTE_SUBLINK case never occurs in actual SubLink nodes, but it is used
615  * in SubPlans generated for WITH subqueries.
616  */
617 typedef enum SubLinkType
618 {
626  CTE_SUBLINK /* for SubPlans only */
627 } SubLinkType;
628 
629 
630 typedef struct SubLink
631 {
633  SubLinkType subLinkType; /* see above */
634  int subLinkId; /* ID (1..n); 0 if not MULTIEXPR */
635  Node *testexpr; /* outer-query test for ALL/ANY/ROWCOMPARE */
636  List *operName; /* originally specified operator name */
637  Node *subselect; /* subselect as Query* or raw parsetree */
638  int location; /* token location, or -1 if unknown */
639 } SubLink;
640 
641 /*
642  * SubPlan - executable expression node for a subplan (sub-SELECT)
643  *
644  * The planner replaces SubLink nodes in expression trees with SubPlan
645  * nodes after it has finished planning the subquery. SubPlan references
646  * a sub-plantree stored in the subplans list of the toplevel PlannedStmt.
647  * (We avoid a direct link to make it easier to copy expression trees
648  * without causing multiple processing of the subplan.)
649  *
650  * In an ordinary subplan, testexpr points to an executable expression
651  * (OpExpr, an AND/OR tree of OpExprs, or RowCompareExpr) for the combining
652  * operator(s); the left-hand arguments are the original lefthand expressions,
653  * and the right-hand arguments are PARAM_EXEC Param nodes representing the
654  * outputs of the sub-select. (NOTE: runtime coercion functions may be
655  * inserted as well.) This is just the same expression tree as testexpr in
656  * the original SubLink node, but the PARAM_SUBLINK nodes are replaced by
657  * suitably numbered PARAM_EXEC nodes.
658  *
659  * If the sub-select becomes an initplan rather than a subplan, the executable
660  * expression is part of the outer plan's expression tree (and the SubPlan
661  * node itself is not, but rather is found in the outer plan's initPlan
662  * list). In this case testexpr is NULL to avoid duplication.
663  *
664  * The planner also derives lists of the values that need to be passed into
665  * and out of the subplan. Input values are represented as a list "args" of
666  * expressions to be evaluated in the outer-query context (currently these
667  * args are always just Vars, but in principle they could be any expression).
668  * The values are assigned to the global PARAM_EXEC params indexed by parParam
669  * (the parParam and args lists must have the same ordering). setParam is a
670  * list of the PARAM_EXEC params that are computed by the sub-select, if it
671  * is an initplan; they are listed in order by sub-select output column
672  * position. (parParam and setParam are integer Lists, not Bitmapsets,
673  * because their ordering is significant.)
674  *
675  * Also, the planner computes startup and per-call costs for use of the
676  * SubPlan. Note that these include the cost of the subquery proper,
677  * evaluation of the testexpr if any, and any hashtable management overhead.
678  */
679 typedef struct SubPlan
680 {
682  /* Fields copied from original SubLink: */
683  SubLinkType subLinkType; /* see above */
684  /* The combining operators, transformed to an executable expression: */
685  Node *testexpr; /* OpExpr or RowCompareExpr expression tree */
686  List *paramIds; /* IDs of Params embedded in the above */
687  /* Identification of the Plan tree to use: */
688  int plan_id; /* Index (from 1) in PlannedStmt.subplans */
689  /* Identification of the SubPlan for EXPLAIN and debugging purposes: */
690  char *plan_name; /* A name assigned during planning */
691  /* Extra data useful for determining subplan's output type: */
692  Oid firstColType; /* Type of first column of subplan result */
693  int32 firstColTypmod; /* Typmod of first column of subplan result */
694  Oid firstColCollation; /* Collation of first column of
695  * subplan result */
696  /* Information about execution strategy: */
697  bool useHashTable; /* TRUE to store subselect output in a hash
698  * table (implies we are doing "IN") */
699  bool unknownEqFalse; /* TRUE if it's okay to return FALSE when the
700  * spec result is UNKNOWN; this allows much
701  * simpler handling of null values */
702  bool parallel_safe; /* is the subplan parallel-safe? */
703  /* Note: parallel_safe does not consider contents of testexpr or args */
704  /* Information for passing params into and out of the subselect: */
705  /* setParam and parParam are lists of integers (param IDs) */
706  List *setParam; /* initplan subqueries have to set these
707  * Params for parent plan */
708  List *parParam; /* indices of input Params from parent plan */
709  List *args; /* exprs to pass as parParam values */
710  /* Estimated execution costs: */
711  Cost startup_cost; /* one-time setup cost */
712  Cost per_call_cost; /* cost for each subplan evaluation */
713 } SubPlan;
714 
715 /*
716  * AlternativeSubPlan - expression node for a choice among SubPlans
717  *
718  * The subplans are given as a List so that the node definition need not
719  * change if there's ever more than two alternatives. For the moment,
720  * though, there are always exactly two; and the first one is the fast-start
721  * plan.
722  */
723 typedef struct AlternativeSubPlan
724 {
726  List *subplans; /* SubPlan(s) with equivalent results */
728 
729 /* ----------------
730  * FieldSelect
731  *
732  * FieldSelect represents the operation of extracting one field from a tuple
733  * value. At runtime, the input expression is expected to yield a rowtype
734  * Datum. The specified field number is extracted and returned as a Datum.
735  * ----------------
736  */
737 
738 typedef struct FieldSelect
739 {
741  Expr *arg; /* input expression */
742  AttrNumber fieldnum; /* attribute number of field to extract */
743  Oid resulttype; /* type of the field (result type of this
744  * node) */
745  int32 resulttypmod; /* output typmod (usually -1) */
746  Oid resultcollid; /* OID of collation of the field */
747 } FieldSelect;
748 
749 /* ----------------
750  * FieldStore
751  *
752  * FieldStore represents the operation of modifying one field in a tuple
753  * value, yielding a new tuple value (the input is not touched!). Like
754  * the assign case of ArrayRef, this is used to implement UPDATE of a
755  * portion of a column.
756  *
757  * A single FieldStore can actually represent updates of several different
758  * fields. The parser only generates FieldStores with single-element lists,
759  * but the planner will collapse multiple updates of the same base column
760  * into one FieldStore.
761  * ----------------
762  */
763 
764 typedef struct FieldStore
765 {
767  Expr *arg; /* input tuple value */
768  List *newvals; /* new value(s) for field(s) */
769  List *fieldnums; /* integer list of field attnums */
770  Oid resulttype; /* type of result (same as type of arg) */
771  /* Like RowExpr, we deliberately omit a typmod and collation here */
772 } FieldStore;
773 
774 /* ----------------
775  * RelabelType
776  *
777  * RelabelType represents a "dummy" type coercion between two binary-
778  * compatible datatypes, such as reinterpreting the result of an OID
779  * expression as an int4. It is a no-op at runtime; we only need it
780  * to provide a place to store the correct type to be attributed to
781  * the expression result during type resolution. (We can't get away
782  * with just overwriting the type field of the input expression node,
783  * so we need a separate node to show the coercion's result type.)
784  * ----------------
785  */
786 
787 typedef struct RelabelType
788 {
790  Expr *arg; /* input expression */
791  Oid resulttype; /* output type of coercion expression */
792  int32 resulttypmod; /* output typmod (usually -1) */
793  Oid resultcollid; /* OID of collation, or InvalidOid if none */
794  CoercionForm relabelformat; /* how to display this node */
795  int location; /* token location, or -1 if unknown */
796 } RelabelType;
797 
798 /* ----------------
799  * CoerceViaIO
800  *
801  * CoerceViaIO represents a type coercion between two types whose textual
802  * representations are compatible, implemented by invoking the source type's
803  * typoutput function then the destination type's typinput function.
804  * ----------------
805  */
806 
807 typedef struct CoerceViaIO
808 {
810  Expr *arg; /* input expression */
811  Oid resulttype; /* output type of coercion */
812  /* output typmod is not stored, but is presumed -1 */
813  Oid resultcollid; /* OID of collation, or InvalidOid if none */
814  CoercionForm coerceformat; /* how to display this node */
815  int location; /* token location, or -1 if unknown */
816 } CoerceViaIO;
817 
818 /* ----------------
819  * ArrayCoerceExpr
820  *
821  * ArrayCoerceExpr represents a type coercion from one array type to another,
822  * which is implemented by applying the indicated element-type coercion
823  * function to each element of the source array. If elemfuncid is InvalidOid
824  * then the element types are binary-compatible, but the coercion still
825  * requires some effort (we have to fix the element type ID stored in the
826  * array header).
827  * ----------------
828  */
829 
830 typedef struct ArrayCoerceExpr
831 {
833  Expr *arg; /* input expression (yields an array) */
834  Oid elemfuncid; /* OID of element coercion function, or 0 */
835  Oid resulttype; /* output type of coercion (an array type) */
836  int32 resulttypmod; /* output typmod (also element typmod) */
837  Oid resultcollid; /* OID of collation, or InvalidOid if none */
838  bool isExplicit; /* conversion semantics flag to pass to func */
839  CoercionForm coerceformat; /* how to display this node */
840  int location; /* token location, or -1 if unknown */
842 
843 /* ----------------
844  * ConvertRowtypeExpr
845  *
846  * ConvertRowtypeExpr represents a type coercion from one composite type
847  * to another, where the source type is guaranteed to contain all the columns
848  * needed for the destination type plus possibly others; the columns need not
849  * be in the same positions, but are matched up by name. This is primarily
850  * used to convert a whole-row value of an inheritance child table into a
851  * valid whole-row value of its parent table's rowtype.
852  * ----------------
853  */
854 
855 typedef struct ConvertRowtypeExpr
856 {
858  Expr *arg; /* input expression */
859  Oid resulttype; /* output type (always a composite type) */
860  /* Like RowExpr, we deliberately omit a typmod and collation here */
861  CoercionForm convertformat; /* how to display this node */
862  int location; /* token location, or -1 if unknown */
864 
865 /*----------
866  * CollateExpr - COLLATE
867  *
868  * The planner replaces CollateExpr with RelabelType during expression
869  * preprocessing, so execution never sees a CollateExpr.
870  *----------
871  */
872 typedef struct CollateExpr
873 {
875  Expr *arg; /* input expression */
876  Oid collOid; /* collation's OID */
877  int location; /* token location, or -1 if unknown */
878 } CollateExpr;
879 
880 /*----------
881  * CaseExpr - a CASE expression
882  *
883  * We support two distinct forms of CASE expression:
884  * CASE WHEN boolexpr THEN expr [ WHEN boolexpr THEN expr ... ]
885  * CASE testexpr WHEN compexpr THEN expr [ WHEN compexpr THEN expr ... ]
886  * These are distinguishable by the "arg" field being NULL in the first case
887  * and the testexpr in the second case.
888  *
889  * In the raw grammar output for the second form, the condition expressions
890  * of the WHEN clauses are just the comparison values. Parse analysis
891  * converts these to valid boolean expressions of the form
892  * CaseTestExpr '=' compexpr
893  * where the CaseTestExpr node is a placeholder that emits the correct
894  * value at runtime. This structure is used so that the testexpr need be
895  * evaluated only once. Note that after parse analysis, the condition
896  * expressions always yield boolean.
897  *
898  * Note: we can test whether a CaseExpr has been through parse analysis
899  * yet by checking whether casetype is InvalidOid or not.
900  *----------
901  */
902 typedef struct CaseExpr
903 {
905  Oid casetype; /* type of expression result */
906  Oid casecollid; /* OID of collation, or InvalidOid if none */
907  Expr *arg; /* implicit equality comparison argument */
908  List *args; /* the arguments (list of WHEN clauses) */
909  Expr *defresult; /* the default result (ELSE clause) */
910  int location; /* token location, or -1 if unknown */
911 } CaseExpr;
912 
913 /*
914  * CaseWhen - one arm of a CASE expression
915  */
916 typedef struct CaseWhen
917 {
919  Expr *expr; /* condition expression */
920  Expr *result; /* substitution result */
921  int location; /* token location, or -1 if unknown */
922 } CaseWhen;
923 
924 /*
925  * Placeholder node for the test value to be processed by a CASE expression.
926  * This is effectively like a Param, but can be implemented more simply
927  * since we need only one replacement value at a time.
928  *
929  * We also use this in nested UPDATE expressions.
930  * See transformAssignmentIndirection().
931  */
932 typedef struct CaseTestExpr
933 {
935  Oid typeId; /* type for substituted value */
936  int32 typeMod; /* typemod for substituted value */
937  Oid collation; /* collation for the substituted value */
938 } CaseTestExpr;
939 
940 /*
941  * ArrayExpr - an ARRAY[] expression
942  *
943  * Note: if multidims is false, the constituent expressions all yield the
944  * scalar type identified by element_typeid. If multidims is true, the
945  * constituent expressions all yield arrays of element_typeid (ie, the same
946  * type as array_typeid); at runtime we must check for compatible subscripts.
947  */
948 typedef struct ArrayExpr
949 {
951  Oid array_typeid; /* type of expression result */
952  Oid array_collid; /* OID of collation, or InvalidOid if none */
953  Oid element_typeid; /* common type of array elements */
954  List *elements; /* the array elements or sub-arrays */
955  bool multidims; /* true if elements are sub-arrays */
956  int location; /* token location, or -1 if unknown */
957 } ArrayExpr;
958 
959 /*
960  * RowExpr - a ROW() expression
961  *
962  * Note: the list of fields must have a one-for-one correspondence with
963  * physical fields of the associated rowtype, although it is okay for it
964  * to be shorter than the rowtype. That is, the N'th list element must
965  * match up with the N'th physical field. When the N'th physical field
966  * is a dropped column (attisdropped) then the N'th list element can just
967  * be a NULL constant. (This case can only occur for named composite types,
968  * not RECORD types, since those are built from the RowExpr itself rather
969  * than vice versa.) It is important not to assume that length(args) is
970  * the same as the number of columns logically present in the rowtype.
971  *
972  * colnames provides field names in cases where the names can't easily be
973  * obtained otherwise. Names *must* be provided if row_typeid is RECORDOID.
974  * If row_typeid identifies a known composite type, colnames can be NIL to
975  * indicate the type's cataloged field names apply. Note that colnames can
976  * be non-NIL even for a composite type, and typically is when the RowExpr
977  * was created by expanding a whole-row Var. This is so that we can retain
978  * the column alias names of the RTE that the Var referenced (which would
979  * otherwise be very difficult to extract from the parsetree). Like the
980  * args list, colnames is one-for-one with physical fields of the rowtype.
981  */
982 typedef struct RowExpr
983 {
985  List *args; /* the fields */
986  Oid row_typeid; /* RECORDOID or a composite type's ID */
987 
988  /*
989  * Note: we deliberately do NOT store a typmod. Although a typmod will be
990  * associated with specific RECORD types at runtime, it will differ for
991  * different backends, and so cannot safely be stored in stored
992  * parsetrees. We must assume typmod -1 for a RowExpr node.
993  *
994  * We don't need to store a collation either. The result type is
995  * necessarily composite, and composite types never have a collation.
996  */
997  CoercionForm row_format; /* how to display this node */
998  List *colnames; /* list of String, or NIL */
999  int location; /* token location, or -1 if unknown */
1000 } RowExpr;
1001 
1002 /*
1003  * RowCompareExpr - row-wise comparison, such as (a, b) <= (1, 2)
1004  *
1005  * We support row comparison for any operator that can be determined to
1006  * act like =, <>, <, <=, >, or >= (we determine this by looking for the
1007  * operator in btree opfamilies). Note that the same operator name might
1008  * map to a different operator for each pair of row elements, since the
1009  * element datatypes can vary.
1010  *
1011  * A RowCompareExpr node is only generated for the < <= > >= cases;
1012  * the = and <> cases are translated to simple AND or OR combinations
1013  * of the pairwise comparisons. However, we include = and <> in the
1014  * RowCompareType enum for the convenience of parser logic.
1015  */
1016 typedef enum RowCompareType
1017 {
1018  /* Values of this enum are chosen to match btree strategy numbers */
1019  ROWCOMPARE_LT = 1, /* BTLessStrategyNumber */
1020  ROWCOMPARE_LE = 2, /* BTLessEqualStrategyNumber */
1021  ROWCOMPARE_EQ = 3, /* BTEqualStrategyNumber */
1022  ROWCOMPARE_GE = 4, /* BTGreaterEqualStrategyNumber */
1023  ROWCOMPARE_GT = 5, /* BTGreaterStrategyNumber */
1024  ROWCOMPARE_NE = 6 /* no such btree strategy */
1025 } RowCompareType;
1026 
1027 typedef struct RowCompareExpr
1028 {
1030  RowCompareType rctype; /* LT LE GE or GT, never EQ or NE */
1031  List *opnos; /* OID list of pairwise comparison ops */
1032  List *opfamilies; /* OID list of containing operator families */
1033  List *inputcollids; /* OID list of collations for comparisons */
1034  List *largs; /* the left-hand input arguments */
1035  List *rargs; /* the right-hand input arguments */
1036 } RowCompareExpr;
1037 
1038 /*
1039  * CoalesceExpr - a COALESCE expression
1040  */
1041 typedef struct CoalesceExpr
1042 {
1044  Oid coalescetype; /* type of expression result */
1045  Oid coalescecollid; /* OID of collation, or InvalidOid if none */
1046  List *args; /* the arguments */
1047  int location; /* token location, or -1 if unknown */
1048 } CoalesceExpr;
1049 
1050 /*
1051  * MinMaxExpr - a GREATEST or LEAST function
1052  */
1053 typedef enum MinMaxOp
1054 {
1057 } MinMaxOp;
1058 
1059 typedef struct MinMaxExpr
1060 {
1062  Oid minmaxtype; /* common type of arguments and result */
1063  Oid minmaxcollid; /* OID of collation of result */
1064  Oid inputcollid; /* OID of collation that function should use */
1065  MinMaxOp op; /* function to execute */
1066  List *args; /* the arguments */
1067  int location; /* token location, or -1 if unknown */
1068 } MinMaxExpr;
1069 
1070 /*
1071  * SQLValueFunction - parameterless functions with special grammar productions
1072  *
1073  * The SQL standard categorizes some of these as <datetime value function>
1074  * and others as <general value specification>. We call 'em SQLValueFunctions
1075  * for lack of a better term. We store type and typmod of the result so that
1076  * some code doesn't need to know each function individually, and because
1077  * we would need to store typmod anyway for some of the datetime functions.
1078  * Note that currently, all variants return non-collating datatypes, so we do
1079  * not need a collation field; also, all these functions are stable.
1080  */
1082 {
1099 
1100 typedef struct SQLValueFunction
1101 {
1103  SQLValueFunctionOp op; /* which function this is */
1104  Oid type; /* result type/typmod */
1106  int location; /* token location, or -1 if unknown */
1108 
1109 /*
1110  * XmlExpr - various SQL/XML functions requiring special grammar productions
1111  *
1112  * 'name' carries the "NAME foo" argument (already XML-escaped).
1113  * 'named_args' and 'arg_names' represent an xml_attribute list.
1114  * 'args' carries all other arguments.
1115  *
1116  * Note: result type/typmod/collation are not stored, but can be deduced
1117  * from the XmlExprOp. The type/typmod fields are just used for display
1118  * purposes, and are NOT necessarily the true result type of the node.
1119  */
1120 typedef enum XmlExprOp
1121 {
1122  IS_XMLCONCAT, /* XMLCONCAT(args) */
1123  IS_XMLELEMENT, /* XMLELEMENT(name, xml_attributes, args) */
1124  IS_XMLFOREST, /* XMLFOREST(xml_attributes) */
1125  IS_XMLPARSE, /* XMLPARSE(text, is_doc, preserve_ws) */
1126  IS_XMLPI, /* XMLPI(name [, args]) */
1127  IS_XMLROOT, /* XMLROOT(xml, version, standalone) */
1128  IS_XMLSERIALIZE, /* XMLSERIALIZE(is_document, xmlval) */
1129  IS_DOCUMENT /* xmlval IS DOCUMENT */
1130 } XmlExprOp;
1131 
1132 typedef enum
1133 {
1136 } XmlOptionType;
1137 
1138 typedef struct XmlExpr
1139 {
1141  XmlExprOp op; /* xml function ID */
1142  char *name; /* name in xml(NAME foo ...) syntaxes */
1143  List *named_args; /* non-XML expressions for xml_attributes */
1144  List *arg_names; /* parallel list of Value strings */
1145  List *args; /* list of expressions */
1146  XmlOptionType xmloption; /* DOCUMENT or CONTENT */
1147  Oid type; /* target type/typmod for XMLSERIALIZE */
1149  int location; /* token location, or -1 if unknown */
1150 } XmlExpr;
1151 
1152 /* ----------------
1153  * NullTest
1154  *
1155  * NullTest represents the operation of testing a value for NULLness.
1156  * The appropriate test is performed and returned as a boolean Datum.
1157  *
1158  * When argisrow is false, this simply represents a test for the null value.
1159  *
1160  * When argisrow is true, the input expression must yield a rowtype, and
1161  * the node implements "row IS [NOT] NULL" per the SQL standard. This
1162  * includes checking individual fields for NULLness when the row datum
1163  * itself isn't NULL.
1164  *
1165  * NOTE: the combination of a rowtype input and argisrow==false does NOT
1166  * correspond to the SQL notation "row IS [NOT] NULL"; instead, this case
1167  * represents the SQL notation "row IS [NOT] DISTINCT FROM NULL".
1168  * ----------------
1169  */
1170 
1171 typedef enum NullTestType
1172 {
1174 } NullTestType;
1175 
1176 typedef struct NullTest
1177 {
1179  Expr *arg; /* input expression */
1180  NullTestType nulltesttype; /* IS NULL, IS NOT NULL */
1181  bool argisrow; /* T to perform field-by-field null checks */
1182  int location; /* token location, or -1 if unknown */
1183 } NullTest;
1184 
1185 /*
1186  * BooleanTest
1187  *
1188  * BooleanTest represents the operation of determining whether a boolean
1189  * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations
1190  * are supported. Note that a NULL input does *not* cause a NULL result.
1191  * The appropriate test is performed and returned as a boolean Datum.
1192  */
1193 
1194 typedef enum BoolTestType
1195 {
1197 } BoolTestType;
1198 
1199 typedef struct BooleanTest
1200 {
1202  Expr *arg; /* input expression */
1203  BoolTestType booltesttype; /* test type */
1204  int location; /* token location, or -1 if unknown */
1205 } BooleanTest;
1206 
1207 /*
1208  * CoerceToDomain
1209  *
1210  * CoerceToDomain represents the operation of coercing a value to a domain
1211  * type. At runtime (and not before) the precise set of constraints to be
1212  * checked will be determined. If the value passes, it is returned as the
1213  * result; if not, an error is raised. Note that this is equivalent to
1214  * RelabelType in the scenario where no constraints are applied.
1215  */
1216 typedef struct CoerceToDomain
1217 {
1219  Expr *arg; /* input expression */
1220  Oid resulttype; /* domain type ID (result type) */
1221  int32 resulttypmod; /* output typmod (currently always -1) */
1222  Oid resultcollid; /* OID of collation, or InvalidOid if none */
1223  CoercionForm coercionformat; /* how to display this node */
1224  int location; /* token location, or -1 if unknown */
1225 } CoerceToDomain;
1226 
1227 /*
1228  * Placeholder node for the value to be processed by a domain's check
1229  * constraint. This is effectively like a Param, but can be implemented more
1230  * simply since we need only one replacement value at a time.
1231  *
1232  * Note: the typeId/typeMod/collation will be set from the domain's base type,
1233  * not the domain itself. This is because we shouldn't consider the value
1234  * to be a member of the domain if we haven't yet checked its constraints.
1235  */
1236 typedef struct CoerceToDomainValue
1237 {
1239  Oid typeId; /* type for substituted value */
1240  int32 typeMod; /* typemod for substituted value */
1241  Oid collation; /* collation for the substituted value */
1242  int location; /* token location, or -1 if unknown */
1244 
1245 /*
1246  * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command.
1247  *
1248  * This is not an executable expression: it must be replaced by the actual
1249  * column default expression during rewriting. But it is convenient to
1250  * treat it as an expression node during parsing and rewriting.
1251  */
1252 typedef struct SetToDefault
1253 {
1255  Oid typeId; /* type for substituted value */
1256  int32 typeMod; /* typemod for substituted value */
1257  Oid collation; /* collation for the substituted value */
1258  int location; /* token location, or -1 if unknown */
1259 } SetToDefault;
1260 
1261 /*
1262  * Node representing [WHERE] CURRENT OF cursor_name
1263  *
1264  * CURRENT OF is a bit like a Var, in that it carries the rangetable index
1265  * of the target relation being constrained; this aids placing the expression
1266  * correctly during planning. We can assume however that its "levelsup" is
1267  * always zero, due to the syntactic constraints on where it can appear.
1268  *
1269  * The referenced cursor can be represented either as a hardwired string
1270  * or as a reference to a run-time parameter of type REFCURSOR. The latter
1271  * case is for the convenience of plpgsql.
1272  */
1273 typedef struct CurrentOfExpr
1274 {
1276  Index cvarno; /* RT index of target relation */
1277  char *cursor_name; /* name of referenced cursor, or NULL */
1278  int cursor_param; /* refcursor parameter number, or 0 */
1279 } CurrentOfExpr;
1280 
1281 /*
1282  * InferenceElem - an element of a unique index inference specification
1283  *
1284  * This mostly matches the structure of IndexElems, but having a dedicated
1285  * primnode allows for a clean separation between the use of index parameters
1286  * by utility commands, and this node.
1287  */
1288 typedef struct InferenceElem
1289 {
1291  Node *expr; /* expression to infer from, or NULL */
1292  Oid infercollid; /* OID of collation, or InvalidOid */
1293  Oid inferopclass; /* OID of att opclass, or InvalidOid */
1294 } InferenceElem;
1295 
1296 /*
1297  * NextValueExpr - get next value from sequence
1298  *
1299  * This has the same effect as calling the nextval() function, but it does not
1300  * check permissions on the sequence. This is used for identity columns,
1301  * where the sequence is an implicit dependency without its own permissions.
1302  */
1303 typedef struct NextValueExpr
1304 {
1308 } NextValueExpr;
1309 
1310 /*--------------------
1311  * TargetEntry -
1312  * a target entry (used in query target lists)
1313  *
1314  * Strictly speaking, a TargetEntry isn't an expression node (since it can't
1315  * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in
1316  * very many places it's convenient to process a whole query targetlist as a
1317  * single expression tree.
1318  *
1319  * In a SELECT's targetlist, resno should always be equal to the item's
1320  * ordinal position (counting from 1). However, in an INSERT or UPDATE
1321  * targetlist, resno represents the attribute number of the destination
1322  * column for the item; so there may be missing or out-of-order resnos.
1323  * It is even legal to have duplicated resnos; consider
1324  * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ...
1325  * The two meanings come together in the executor, because the planner
1326  * transforms INSERT/UPDATE tlists into a normalized form with exactly
1327  * one entry for each column of the destination table. Before that's
1328  * happened, however, it is risky to assume that resno == position.
1329  * Generally get_tle_by_resno() should be used rather than list_nth()
1330  * to fetch tlist entries by resno, and only in SELECT should you assume
1331  * that resno is a unique identifier.
1332  *
1333  * resname is required to represent the correct column name in non-resjunk
1334  * entries of top-level SELECT targetlists, since it will be used as the
1335  * column title sent to the frontend. In most other contexts it is only
1336  * a debugging aid, and may be wrong or even NULL. (In particular, it may
1337  * be wrong in a tlist from a stored rule, if the referenced column has been
1338  * renamed by ALTER TABLE since the rule was made. Also, the planner tends
1339  * to store NULL rather than look up a valid name for tlist entries in
1340  * non-toplevel plan nodes.) In resjunk entries, resname should be either
1341  * a specific system-generated name (such as "ctid") or NULL; anything else
1342  * risks confusing ExecGetJunkAttribute!
1343  *
1344  * ressortgroupref is used in the representation of ORDER BY, GROUP BY, and
1345  * DISTINCT items. Targetlist entries with ressortgroupref=0 are not
1346  * sort/group items. If ressortgroupref>0, then this item is an ORDER BY,
1347  * GROUP BY, and/or DISTINCT target value. No two entries in a targetlist
1348  * may have the same nonzero ressortgroupref --- but there is no particular
1349  * meaning to the nonzero values, except as tags. (For example, one must
1350  * not assume that lower ressortgroupref means a more significant sort key.)
1351  * The order of the associated SortGroupClause lists determine the semantics.
1352  *
1353  * resorigtbl/resorigcol identify the source of the column, if it is a
1354  * simple reference to a column of a base table (or view). If it is not
1355  * a simple reference, these fields are zeroes.
1356  *
1357  * If resjunk is true then the column is a working column (such as a sort key)
1358  * that should be removed from the final output of the query. Resjunk columns
1359  * must have resnos that cannot duplicate any regular column's resno. Also
1360  * note that there are places that assume resjunk columns come after non-junk
1361  * columns.
1362  *--------------------
1363  */
1364 typedef struct TargetEntry
1365 {
1367  Expr *expr; /* expression to evaluate */
1368  AttrNumber resno; /* attribute number (see notes above) */
1369  char *resname; /* name of the column (could be NULL) */
1370  Index ressortgroupref;/* nonzero if referenced by a sort/group
1371  * clause */
1372  Oid resorigtbl; /* OID of column's source table */
1373  AttrNumber resorigcol; /* column's number in source table */
1374  bool resjunk; /* set to true to eliminate the attribute from
1375  * final target list */
1376 } TargetEntry;
1377 
1378 
1379 /* ----------------------------------------------------------------
1380  * node types for join trees
1381  *
1382  * The leaves of a join tree structure are RangeTblRef nodes. Above
1383  * these, JoinExpr nodes can appear to denote a specific kind of join
1384  * or qualified join. Also, FromExpr nodes can appear to denote an
1385  * ordinary cross-product join ("FROM foo, bar, baz WHERE ...").
1386  * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it
1387  * may have any number of child nodes, not just two.
1388  *
1389  * NOTE: the top level of a Query's jointree is always a FromExpr.
1390  * Even if the jointree contains no rels, there will be a FromExpr.
1391  *
1392  * NOTE: the qualification expressions present in JoinExpr nodes are
1393  * *in addition to* the query's main WHERE clause, which appears as the
1394  * qual of the top-level FromExpr. The reason for associating quals with
1395  * specific nodes in the jointree is that the position of a qual is critical
1396  * when outer joins are present. (If we enforce a qual too soon or too late,
1397  * that may cause the outer join to produce the wrong set of NULL-extended
1398  * rows.) If all joins are inner joins then all the qual positions are
1399  * semantically interchangeable.
1400  *
1401  * NOTE: in the raw output of gram.y, a join tree contains RangeVar,
1402  * RangeSubselect, and RangeFunction nodes, which are all replaced by
1403  * RangeTblRef nodes during the parse analysis phase. Also, the top-level
1404  * FromExpr is added during parse analysis; the grammar regards FROM and
1405  * WHERE as separate.
1406  * ----------------------------------------------------------------
1407  */
1408 
1409 /*
1410  * RangeTblRef - reference to an entry in the query's rangetable
1411  *
1412  * We could use direct pointers to the RT entries and skip having these
1413  * nodes, but multiple pointers to the same node in a querytree cause
1414  * lots of headaches, so it seems better to store an index into the RT.
1415  */
1416 typedef struct RangeTblRef
1417 {
1419  int rtindex;
1420 } RangeTblRef;
1421 
1422 /*----------
1423  * JoinExpr - for SQL JOIN expressions
1424  *
1425  * isNatural, usingClause, and quals are interdependent. The user can write
1426  * only one of NATURAL, USING(), or ON() (this is enforced by the grammar).
1427  * If he writes NATURAL then parse analysis generates the equivalent USING()
1428  * list, and from that fills in "quals" with the right equality comparisons.
1429  * If he writes USING() then "quals" is filled with equality comparisons.
1430  * If he writes ON() then only "quals" is set. Note that NATURAL/USING
1431  * are not equivalent to ON() since they also affect the output column list.
1432  *
1433  * alias is an Alias node representing the AS alias-clause attached to the
1434  * join expression, or NULL if no clause. NB: presence or absence of the
1435  * alias has a critical impact on semantics, because a join with an alias
1436  * restricts visibility of the tables/columns inside it.
1437  *
1438  * During parse analysis, an RTE is created for the Join, and its index
1439  * is filled into rtindex. This RTE is present mainly so that Vars can
1440  * be created that refer to the outputs of the join. The planner sometimes
1441  * generates JoinExprs internally; these can have rtindex = 0 if there are
1442  * no join alias variables referencing such joins.
1443  *----------
1444  */
1445 typedef struct JoinExpr
1446 {
1448  JoinType jointype; /* type of join */
1449  bool isNatural; /* Natural join? Will need to shape table */
1450  Node *larg; /* left subtree */
1451  Node *rarg; /* right subtree */
1452  List *usingClause; /* USING clause, if any (list of String) */
1453  Node *quals; /* qualifiers on join, if any */
1454  Alias *alias; /* user-written alias clause, if any */
1455  int rtindex; /* RT index assigned for join, or 0 */
1456 } JoinExpr;
1457 
1458 /*----------
1459  * FromExpr - represents a FROM ... WHERE ... construct
1460  *
1461  * This is both more flexible than a JoinExpr (it can have any number of
1462  * children, including zero) and less so --- we don't need to deal with
1463  * aliases and so on. The output column set is implicitly just the union
1464  * of the outputs of the children.
1465  *----------
1466  */
1467 typedef struct FromExpr
1468 {
1470  List *fromlist; /* List of join subtrees */
1471  Node *quals; /* qualifiers on join, if any */
1472 } FromExpr;
1473 
1474 /*----------
1475  * OnConflictExpr - represents an ON CONFLICT DO ... expression
1476  *
1477  * The optimizer requires a list of inference elements, and optionally a WHERE
1478  * clause to infer a unique index. The unique index (or, occasionally,
1479  * indexes) inferred are used to arbitrate whether or not the alternative ON
1480  * CONFLICT path is taken.
1481  *----------
1482  */
1483 typedef struct OnConflictExpr
1484 {
1486  OnConflictAction action; /* DO NOTHING or UPDATE? */
1487 
1488  /* Arbiter */
1489  List *arbiterElems; /* unique index arbiter list (of
1490  * InferenceElem's) */
1491  Node *arbiterWhere; /* unique index arbiter WHERE clause */
1492  Oid constraint; /* pg_constraint OID for arbiter */
1493 
1494  /* ON CONFLICT UPDATE */
1495  List *onConflictSet; /* List of ON CONFLICT SET TargetEntrys */
1496  Node *onConflictWhere; /* qualifiers to restrict UPDATE to */
1497  int exclRelIndex; /* RT index of 'excluded' relation */
1498  List *exclRelTlist; /* tlist of the EXCLUDED pseudo relation */
1499 } OnConflictExpr;
1500 
1501 #endif /* PRIMNODES_H */
Datum constvalue
Definition: primnodes.h:196
NodeTag type
Definition: primnodes.h:41
List * aggdistinct
Definition: primnodes.h:303
Oid funcresulttype
Definition: primnodes.h:449
Oid minmaxtype
Definition: primnodes.h:1062
bool multidims
Definition: primnodes.h:955
Expr xpr
Definition: primnodes.h:354
struct CaseWhen CaseWhen
struct OpExpr OpExpr
Oid firstColType
Definition: primnodes.h:692
struct FieldSelect FieldSelect
Expr * refassgnexpr
Definition: primnodes.h:409
List * args
Definition: primnodes.h:1066
Expr xpr
Definition: primnodes.h:904
bool aggvariadic
Definition: primnodes.h:306
List * args
Definition: primnodes.h:985
Expr xpr
Definition: primnodes.h:1178
Node * docexpr
Definition: primnodes.h:84
struct CoerceToDomain CoerceToDomain
NodeTag type
Definition: primnodes.h:1485
Expr * arg
Definition: primnodes.h:767
Index varlevelsup
Definition: primnodes.h:173
OnCommitAction onCommit
Definition: primnodes.h:112
int plan_id
Definition: primnodes.h:688
List * args
Definition: primnodes.h:341
ParamKind
Definition: primnodes.h:233
char * name
Definition: primnodes.h:1142
List * refs
Definition: primnodes.h:343
struct FromExpr FromExpr
bool constbyval
Definition: primnodes.h:199
List * args
Definition: primnodes.h:359
List * args
Definition: primnodes.h:456
Oid wincollid
Definition: primnodes.h:357
int32 resulttypmod
Definition: primnodes.h:1221
List * colnames
Definition: primnodes.h:86
List * colnames
Definition: primnodes.h:43
Oid resulttype
Definition: primnodes.h:743
char * tableSpaceName
Definition: primnodes.h:113
List * coltypmods
Definition: primnodes.h:88
struct CoerceToDomainValue CoerceToDomainValue
struct Alias Alias
BoolTestType
Definition: primnodes.h:1194
Expr xpr
Definition: primnodes.h:398
Oid funccollid
Definition: primnodes.h:454
int location
Definition: primnodes.h:1149
Oid resulttype
Definition: primnodes.h:811
XmlExprOp
Definition: primnodes.h:1120
OpExpr NullIfExpr
Definition: primnodes.h:523
RowCompareType rctype
Definition: primnodes.h:1030
List * opfamilies
Definition: primnodes.h:1032
NodeTag type
Definition: primnodes.h:81
Oid type
Definition: primnodes.h:1147
struct JoinExpr JoinExpr
Oid casecollid
Definition: primnodes.h:906
SubLinkType subLinkType
Definition: primnodes.h:683
Expr * arg
Definition: primnodes.h:790
Oid inputcollid
Definition: primnodes.h:297
ParamKind paramkind
Definition: primnodes.h:244
struct FuncExpr FuncExpr
struct CollateExpr CollateExpr
Definition: nodes.h:509
CoercionForm coercionformat
Definition: primnodes.h:1223
NodeTag type
Definition: primnodes.h:65
struct AlternativeSubPlan AlternativeSubPlan
Oid resorigtbl
Definition: primnodes.h:1372
List * args
Definition: primnodes.h:301
AttrNumber varattno
Definition: primnodes.h:168
Oid array_typeid
Definition: primnodes.h:951
Expr * arg
Definition: primnodes.h:741
List * paramIds
Definition: primnodes.h:686
bool funcretset
Definition: primnodes.h:450
struct SubPlan SubPlan
struct Expr Expr
struct ArrayRef ArrayRef
List * fromlist
Definition: primnodes.h:1470
Expr xpr
Definition: primnodes.h:1140
NullTestType
Definition: primnodes.h:1171
bool skipData
Definition: primnodes.h:115
Oid casetype
Definition: primnodes.h:905
bool aggstar
Definition: primnodes.h:305
Expr xpr
Definition: primnodes.h:984
unsigned int Oid
Definition: postgres_ext.h:31
Expr xpr
Definition: primnodes.h:165
NodeTag
Definition: nodes.h:26
Index winref
Definition: primnodes.h:361
char * resname
Definition: primnodes.h:1369
List * arg_names
Definition: primnodes.h:1144
Definition: primnodes.h:163
CoercionContext
Definition: primnodes.h:419
Node * quals
Definition: primnodes.h:1471
struct Var Var
int32 typeMod
Definition: primnodes.h:936
int location
Definition: primnodes.h:563
int location
Definition: primnodes.h:921
OnCommitAction
Definition: primnodes.h:47
SQLValueFunctionOp op
Definition: primnodes.h:1103
NodeTag type
Definition: primnodes.h:1469
List * colcollations
Definition: primnodes.h:89
signed int int32
Definition: c.h:256
struct RelabelType RelabelType
JoinType
Definition: nodes.h:672
List * arbiterElems
Definition: primnodes.h:1489
Expr xpr
Definition: primnodes.h:243
struct ConvertRowtypeExpr ConvertRowtypeExpr
char * schemaname
Definition: primnodes.h:67
Node * larg
Definition: primnodes.h:1450
int location
Definition: primnodes.h:73
int constlen
Definition: primnodes.h:195
Expr xpr
Definition: primnodes.h:494
char * relname
Definition: primnodes.h:68
Oid consttype
Definition: primnodes.h:192
List * aggargtypes
Definition: primnodes.h:299
struct RangeTblRef RangeTblRef
CoercionForm funcformat
Definition: primnodes.h:453
struct WindowFunc WindowFunc
struct RangeVar RangeVar
Index varnoold
Definition: primnodes.h:176
Oid opresulttype
Definition: primnodes.h:497
struct NextValueExpr NextValueExpr
MinMaxOp
Definition: primnodes.h:1053
bool resjunk
Definition: primnodes.h:1374
struct FieldStore FieldStore
Oid funcid
Definition: primnodes.h:448
List * colnames
Definition: primnodes.h:998
Node * viewQuery
Definition: primnodes.h:114
struct RowExpr RowExpr
Oid paramcollid
Definition: primnodes.h:248
int location
Definition: primnodes.h:249
Oid vartype
Definition: primnodes.h:170
List * args
Definition: primnodes.h:1046
BoolExprType boolop
Definition: primnodes.h:561
struct XmlExpr XmlExpr
struct TableFunc TableFunc
Expr * arg
Definition: primnodes.h:1179
int location
Definition: primnodes.h:311
List * coldefexprs
Definition: primnodes.h:91
Oid constcollid
Definition: primnodes.h:194
Oid resultcollid
Definition: primnodes.h:746
List * ns_names
Definition: primnodes.h:83
struct CoerceViaIO CoerceViaIO
Node * rowexpr
Definition: primnodes.h:85
int location
Definition: primnodes.h:178
int location
Definition: primnodes.h:999
struct Const Const
int32 typeMod
Definition: primnodes.h:1256
int location
Definition: primnodes.h:1067
List * exclRelTlist
Definition: primnodes.h:1498
List * refupperindexpr
Definition: primnodes.h:403
int location
Definition: primnodes.h:502
List * reflowerindexpr
Definition: primnodes.h:405
struct BoolExpr BoolExpr
List * aggorder
Definition: primnodes.h:302
Expr * arg
Definition: primnodes.h:1202
AttrNumber resno
Definition: primnodes.h:1368
Bitmapset * notnulls
Definition: primnodes.h:92
Index agglevelsup
Definition: primnodes.h:309
char * name
Definition: primnodes.h:478
Expr xpr
Definition: primnodes.h:191
char * cursor_name
Definition: primnodes.h:1277
List * aggdirectargs
Definition: primnodes.h:300
Oid resulttype
Definition: primnodes.h:770
Oid winfnoid
Definition: primnodes.h:355
Expr * arg
Definition: primnodes.h:810
List * elements
Definition: primnodes.h:954
struct BooleanTest BooleanTest
struct TargetEntry TargetEntry
Expr xpr
Definition: primnodes.h:950
int32 reftypmod
Definition: primnodes.h:401
struct MinMaxExpr MinMaxExpr
Oid opcollid
Definition: primnodes.h:499
struct InferenceElem InferenceElem
SQLValueFunctionOp
Definition: primnodes.h:1081
List * options
Definition: primnodes.h:111
List * newvals
Definition: primnodes.h:768
bool inh
Definition: primnodes.h:69
List * cols
Definition: primnodes.h:344
SubLinkType
Definition: primnodes.h:617
OnConflictAction action
Definition: primnodes.h:1486
bool isNatural
Definition: primnodes.h:1449
struct CurrentOfExpr CurrentOfExpr
List * usingClause
Definition: primnodes.h:1452
Expr xpr
Definition: primnodes.h:681
Index varno
Definition: primnodes.h:166
int ordinalitycol
Definition: primnodes.h:93
XmlExprOp op
Definition: primnodes.h:1141
List * args
Definition: primnodes.h:908
Oid refelemtype
Definition: primnodes.h:400
struct IntoClause IntoClause
CoercionForm coerceformat
Definition: primnodes.h:839
int location
Definition: primnodes.h:203
Node * quals
Definition: primnodes.h:1453
int location
Definition: primnodes.h:956
BoolTestType booltesttype
Definition: primnodes.h:1203
Index agglevelsup
Definition: primnodes.h:345
uintptr_t Datum
Definition: postgres.h:372
CoercionForm convertformat
Definition: primnodes.h:861
struct CaseTestExpr CaseTestExpr
Oid resultcollid
Definition: primnodes.h:813
Oid opfuncid
Definition: primnodes.h:496
Oid resulttype
Definition: primnodes.h:791
Node * testexpr
Definition: primnodes.h:685
unsigned int Index
Definition: c.h:365
List * coltypes
Definition: primnodes.h:87
NullTestType nulltesttype
Definition: primnodes.h:1180
int32 typmod
Definition: primnodes.h:1148
struct SQLValueFunction SQLValueFunction
Cost per_call_cost
Definition: primnodes.h:712
Oid resultcollid
Definition: primnodes.h:793
Oid aggfnoid
Definition: primnodes.h:294
List * colexprs
Definition: primnodes.h:90
List * named_args
Definition: primnodes.h:1143
int32 firstColTypmod
Definition: primnodes.h:693
struct ArrayExpr ArrayExpr
RowCompareType
Definition: primnodes.h:1016
List * args
Definition: primnodes.h:1145
struct ArrayCoerceExpr ArrayCoerceExpr
int32 paramtypmod
Definition: primnodes.h:247
char * plan_name
Definition: primnodes.h:690
int location
Definition: primnodes.h:815
Node * rarg
Definition: primnodes.h:1451
Alias * alias
Definition: primnodes.h:1454
Expr * arg
Definition: primnodes.h:477
struct NullTest NullTest
int location
Definition: primnodes.h:364
Oid inputcollid
Definition: primnodes.h:455
JoinType jointype
Definition: primnodes.h:1448
char * aliasname
Definition: primnodes.h:42
NodeTag type
Definition: primnodes.h:1418
NodeTag type
Definition: primnodes.h:1447
List * setParam
Definition: primnodes.h:706
List * ns_uris
Definition: primnodes.h:82
Expr * aggfilter
Definition: primnodes.h:360
struct ScalarArrayOpExpr ScalarArrayOpExpr
Expr * expr
Definition: primnodes.h:1367
AggSplit aggsplit
Definition: primnodes.h:310
XmlOptionType xmloption
Definition: primnodes.h:1146
int paramid
Definition: primnodes.h:245
XmlOptionType
Definition: primnodes.h:1132
Oid array_collid
Definition: primnodes.h:952
bool unknownEqFalse
Definition: primnodes.h:699
int location
Definition: primnodes.h:1182
AggSplit
Definition: nodes.h:756
struct GroupingFunc GroupingFunc
Oid row_typeid
Definition: primnodes.h:986
struct RowCompareExpr RowCompareExpr
Oid refcollid
Definition: primnodes.h:402
Oid inputcollid
Definition: primnodes.h:1064
Expr * arg
Definition: primnodes.h:875
Expr xpr
Definition: primnodes.h:560
Expr * aggfilter
Definition: primnodes.h:304
int location
Definition: primnodes.h:910
List * parParam
Definition: primnodes.h:708
Oid inputcollid
Definition: primnodes.h:500
struct OnConflictExpr OnConflictExpr
Oid inputcollid
Definition: primnodes.h:358
List * args
Definition: primnodes.h:562
Expr xpr
Definition: primnodes.h:293
bool parallel_safe
Definition: primnodes.h:702
struct Param Param
NodeTag type
Definition: primnodes.h:107
int32 consttypmod
Definition: primnodes.h:193
Oid element_typeid
Definition: primnodes.h:953
char relpersistence
Definition: primnodes.h:71
Oid wintype
Definition: primnodes.h:356
CoercionForm coerceformat
Definition: primnodes.h:814
AttrNumber varoattno
Definition: primnodes.h:177
Oid refarraytype
Definition: primnodes.h:399
struct SubLink SubLink
Node * arbiterWhere
Definition: primnodes.h:1491
Expr xpr
Definition: primnodes.h:918
AttrNumber resorigcol
Definition: primnodes.h:1373
Oid aggcollid
Definition: primnodes.h:296
Expr xpr
Definition: primnodes.h:447
RangeVar * rel
Definition: primnodes.h:109
struct Aggref Aggref
List * fieldnums
Definition: primnodes.h:769
bool winagg
Definition: primnodes.h:363
Oid coalescetype
Definition: primnodes.h:1044
Expr xpr
Definition: primnodes.h:766
Oid aggtranstype
Definition: primnodes.h:298
List * onConflictSet
Definition: primnodes.h:1495
Oid varcollid
Definition: primnodes.h:172
Index ressortgroupref
Definition: primnodes.h:1370
Oid aggtype
Definition: primnodes.h:295
Alias * alias
Definition: primnodes.h:72
OpExpr DistinctExpr
Definition: primnodes.h:515
NodeTag type
Definition: primnodes.h:134
bool useHashTable
Definition: primnodes.h:697
bool argisrow
Definition: primnodes.h:1181
MinMaxOp op
Definition: primnodes.h:1065
Oid minmaxcollid
Definition: primnodes.h:1063
Oid firstColCollation
Definition: primnodes.h:694
struct SetToDefault SetToDefault
char aggkind
Definition: primnodes.h:308
Cost startup_cost
Definition: primnodes.h:711
int32 resulttypmod
Definition: primnodes.h:792
Expr * arg
Definition: primnodes.h:907
int location
Definition: primnodes.h:457
Oid opno
Definition: primnodes.h:495
struct CoalesceExpr CoalesceExpr
int32 resulttypmod
Definition: primnodes.h:836
Expr * result
Definition: primnodes.h:920
List * colNames
Definition: primnodes.h:110
List * args
Definition: primnodes.h:501
List * inputcollids
Definition: primnodes.h:1033
int location
Definition: primnodes.h:94
CoercionForm relabelformat
Definition: primnodes.h:794
Expr * defresult
Definition: primnodes.h:909
Expr * expr
Definition: primnodes.h:919
int location
Definition: primnodes.h:877
CoercionForm row_format
Definition: primnodes.h:997
CoercionForm
Definition: primnodes.h:435
Node * onConflictWhere
Definition: primnodes.h:1496
int rtindex
Definition: primnodes.h:1455
Definition: pg_list.h:45
OnConflictAction
Definition: nodes.h:798
int16 AttrNumber
Definition: attnum.h:21
Oid paramtype
Definition: primnodes.h:246
int location
Definition: primnodes.h:795
char * catalogname
Definition: primnodes.h:66
bool constisnull
Definition: primnodes.h:197
Oid coalescecollid
Definition: primnodes.h:1045
bool funcvariadic
Definition: primnodes.h:451
double Cost
Definition: nodes.h:639
struct CaseExpr CaseExpr
Expr * refexpr
Definition: primnodes.h:407
bool opretset
Definition: primnodes.h:498
struct NamedArgExpr NamedArgExpr
int32 resulttypmod
Definition: primnodes.h:745
bool winstar
Definition: primnodes.h:362
AttrNumber fieldnum
Definition: primnodes.h:742
BoolExprType
Definition: primnodes.h:553
int32 vartypmod
Definition: primnodes.h:171
List * args
Definition: primnodes.h:709