PostgreSQL Source Code  git master
subselect.c File Reference
Include dependency graph for subselect.c:

Go to the source code of this file.

Data Structures

struct  convert_testexpr_context
 
struct  process_sublinks_context
 
struct  finalize_primnode_context
 
struct  inline_cte_walker_context
 

Typedefs

typedef struct convert_testexpr_context convert_testexpr_context
 
typedef struct process_sublinks_context process_sublinks_context
 
typedef struct finalize_primnode_context finalize_primnode_context
 
typedef struct inline_cte_walker_context inline_cte_walker_context
 

Functions

static Nodebuild_subplan (PlannerInfo *root, Plan *plan, Path *path, PlannerInfo *subroot, List *plan_params, SubLinkType subLinkType, int subLinkId, Node *testexpr, List *testexpr_paramids, bool unknownEqFalse)
 
static Listgenerate_subquery_params (PlannerInfo *root, List *tlist, List **paramIds)
 
static Listgenerate_subquery_vars (PlannerInfo *root, List *tlist, Index varno)
 
static Nodeconvert_testexpr (PlannerInfo *root, Node *testexpr, List *subst_nodes)
 
static Nodeconvert_testexpr_mutator (Node *node, convert_testexpr_context *context)
 
static bool subplan_is_hashable (Plan *plan)
 
static bool subpath_is_hashable (Path *path)
 
static bool testexpr_is_hashable (Node *testexpr, List *param_ids)
 
static bool test_opexpr_is_hashable (OpExpr *testexpr, List *param_ids)
 
static bool hash_ok_operator (OpExpr *expr)
 
static bool contain_dml (Node *node)
 
static bool contain_dml_walker (Node *node, void *context)
 
static bool contain_outer_selfref (Node *node)
 
static bool contain_outer_selfref_walker (Node *node, Index *depth)
 
static void inline_cte (PlannerInfo *root, CommonTableExpr *cte)
 
static bool inline_cte_walker (Node *node, inline_cte_walker_context *context)
 
static bool simplify_EXISTS_query (PlannerInfo *root, Query *query)
 
static Queryconvert_EXISTS_to_ANY (PlannerInfo *root, Query *subselect, Node **testexpr, List **paramIds)
 
static Nodereplace_correlation_vars_mutator (Node *node, PlannerInfo *root)
 
static Nodeprocess_sublinks_mutator (Node *node, process_sublinks_context *context)
 
static Bitmapsetfinalize_plan (PlannerInfo *root, Plan *plan, int gather_param, Bitmapset *valid_params, Bitmapset *scan_params)
 
static bool finalize_primnode (Node *node, finalize_primnode_context *context)
 
static bool finalize_agg_primnode (Node *node, finalize_primnode_context *context)
 
static void get_first_col_type (Plan *plan, Oid *coltype, int32 *coltypmod, Oid *colcollation)
 
static Nodemake_subplan (PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, int subLinkId, Node *testexpr, bool isTopQual)
 
void SS_process_ctes (PlannerInfo *root)
 
JoinExprconvert_ANY_sublink_to_join (PlannerInfo *root, SubLink *sublink, Relids available_rels)
 
JoinExprconvert_EXISTS_sublink_to_join (PlannerInfo *root, SubLink *sublink, bool under_not, Relids available_rels)
 
NodeSS_replace_correlation_vars (PlannerInfo *root, Node *expr)
 
NodeSS_process_sublinks (PlannerInfo *root, Node *expr, bool isQual)
 
void SS_identify_outer_params (PlannerInfo *root)
 
void SS_charge_for_initplans (PlannerInfo *root, RelOptInfo *final_rel)
 
void SS_compute_initplan_cost (List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
 
void SS_attach_initplans (PlannerInfo *root, Plan *plan)
 
void SS_finalize_plan (PlannerInfo *root, Plan *plan)
 
ParamSS_make_initplan_output_param (PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
 
void SS_make_initplan_from_plan (PlannerInfo *root, PlannerInfo *subroot, Plan *plan, Param *prm)
 

Typedef Documentation

◆ convert_testexpr_context

◆ finalize_primnode_context

◆ inline_cte_walker_context

◆ process_sublinks_context

Function Documentation

◆ build_subplan()

static Node * build_subplan ( PlannerInfo root,
Plan plan,
Path path,
PlannerInfo subroot,
List plan_params,
SubLinkType  subLinkType,
int  subLinkId,
Node testexpr,
List testexpr_paramids,
bool  unknownEqFalse 
)
static

Definition at line 319 of file subselect.c.

324 {
325  Node *result;
326  SubPlan *splan;
327  bool isInitPlan;
328  ListCell *lc;
329 
330  /*
331  * Initialize the SubPlan node. Note plan_id, plan_name, and cost fields
332  * are set further down.
333  */
335  splan->subLinkType = subLinkType;
336  splan->testexpr = NULL;
337  splan->paramIds = NIL;
338  get_first_col_type(plan, &splan->firstColType, &splan->firstColTypmod,
339  &splan->firstColCollation);
340  splan->useHashTable = false;
341  splan->unknownEqFalse = unknownEqFalse;
342  splan->parallel_safe = plan->parallel_safe;
343  splan->setParam = NIL;
344  splan->parParam = NIL;
345  splan->args = NIL;
346 
347  /*
348  * Make parParam and args lists of param IDs and expressions that current
349  * query level will pass to this child plan.
350  */
351  foreach(lc, plan_params)
352  {
353  PlannerParamItem *pitem = (PlannerParamItem *) lfirst(lc);
354  Node *arg = pitem->item;
355 
356  /*
357  * The Var, PlaceHolderVar, Aggref or GroupingFunc has already been
358  * adjusted to have the correct varlevelsup, phlevelsup, or
359  * agglevelsup.
360  *
361  * If it's a PlaceHolderVar, Aggref or GroupingFunc, its arguments
362  * might contain SubLinks, which have not yet been processed (see the
363  * comments for SS_replace_correlation_vars). Do that now.
364  */
365  if (IsA(arg, PlaceHolderVar) ||
366  IsA(arg, Aggref) ||
367  IsA(arg, GroupingFunc))
368  arg = SS_process_sublinks(root, arg, false);
369 
370  splan->parParam = lappend_int(splan->parParam, pitem->paramId);
371  splan->args = lappend(splan->args, arg);
372  }
373 
374  /*
375  * Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY,
376  * ROWCOMPARE, or MULTIEXPR types can be used as initPlans. For EXISTS,
377  * EXPR, or ARRAY, we return a Param referring to the result of evaluating
378  * the initPlan. For ROWCOMPARE, we must modify the testexpr tree to
379  * contain PARAM_EXEC Params instead of the PARAM_SUBLINK Params emitted
380  * by the parser, and then return that tree. For MULTIEXPR, we return a
381  * null constant: the resjunk targetlist item containing the SubLink does
382  * not need to return anything useful, since the referencing Params are
383  * elsewhere.
384  */
385  if (splan->parParam == NIL && subLinkType == EXISTS_SUBLINK)
386  {
387  Param *prm;
388 
389  Assert(testexpr == NULL);
390  prm = generate_new_exec_param(root, BOOLOID, -1, InvalidOid);
391  splan->setParam = list_make1_int(prm->paramid);
392  isInitPlan = true;
393  result = (Node *) prm;
394  }
395  else if (splan->parParam == NIL && subLinkType == EXPR_SUBLINK)
396  {
397  TargetEntry *te = linitial(plan->targetlist);
398  Param *prm;
399 
400  Assert(!te->resjunk);
401  Assert(testexpr == NULL);
403  exprType((Node *) te->expr),
404  exprTypmod((Node *) te->expr),
405  exprCollation((Node *) te->expr));
406  splan->setParam = list_make1_int(prm->paramid);
407  isInitPlan = true;
408  result = (Node *) prm;
409  }
410  else if (splan->parParam == NIL && subLinkType == ARRAY_SUBLINK)
411  {
412  TargetEntry *te = linitial(plan->targetlist);
413  Oid arraytype;
414  Param *prm;
415 
416  Assert(!te->resjunk);
417  Assert(testexpr == NULL);
418  arraytype = get_promoted_array_type(exprType((Node *) te->expr));
419  if (!OidIsValid(arraytype))
420  elog(ERROR, "could not find array type for datatype %s",
421  format_type_be(exprType((Node *) te->expr)));
423  arraytype,
424  exprTypmod((Node *) te->expr),
425  exprCollation((Node *) te->expr));
426  splan->setParam = list_make1_int(prm->paramid);
427  isInitPlan = true;
428  result = (Node *) prm;
429  }
430  else if (splan->parParam == NIL && subLinkType == ROWCOMPARE_SUBLINK)
431  {
432  /* Adjust the Params */
433  List *params;
434 
435  Assert(testexpr != NULL);
437  plan->targetlist,
438  &splan->paramIds);
439  result = convert_testexpr(root,
440  testexpr,
441  params);
442  splan->setParam = list_copy(splan->paramIds);
443  isInitPlan = true;
444 
445  /*
446  * The executable expression is returned to become part of the outer
447  * plan's expression tree; it is not kept in the initplan node.
448  */
449  }
450  else if (subLinkType == MULTIEXPR_SUBLINK)
451  {
452  /*
453  * Whether it's an initplan or not, it needs to set a PARAM_EXEC Param
454  * for each output column.
455  */
456  List *params;
457 
458  Assert(testexpr == NULL);
460  plan->targetlist,
461  &splan->setParam);
462 
463  /*
464  * Save the list of replacement Params in the n'th cell of
465  * root->multiexpr_params; setrefs.c will use it to replace
466  * PARAM_MULTIEXPR Params.
467  */
468  while (list_length(root->multiexpr_params) < subLinkId)
469  root->multiexpr_params = lappend(root->multiexpr_params, NIL);
470  lc = list_nth_cell(root->multiexpr_params, subLinkId - 1);
471  Assert(lfirst(lc) == NIL);
472  lfirst(lc) = params;
473 
474  /* It can be an initplan if there are no parParams. */
475  if (splan->parParam == NIL)
476  {
477  isInitPlan = true;
478  result = (Node *) makeNullConst(RECORDOID, -1, InvalidOid);
479  }
480  else
481  {
482  isInitPlan = false;
483  result = (Node *) splan;
484  }
485  }
486  else
487  {
488  /*
489  * Adjust the Params in the testexpr, unless caller already took care
490  * of it (as indicated by passing a list of Param IDs).
491  */
492  if (testexpr && testexpr_paramids == NIL)
493  {
494  List *params;
495 
497  plan->targetlist,
498  &splan->paramIds);
499  splan->testexpr = convert_testexpr(root,
500  testexpr,
501  params);
502  }
503  else
504  {
505  splan->testexpr = testexpr;
506  splan->paramIds = testexpr_paramids;
507  }
508 
509  /*
510  * We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types to
511  * initPlans, even when they are uncorrelated or undirect correlated,
512  * because we need to scan the output of the subplan for each outer
513  * tuple. But if it's a not-direct-correlated IN (= ANY) test, we
514  * might be able to use a hashtable to avoid comparing all the tuples.
515  */
516  if (subLinkType == ANY_SUBLINK &&
517  splan->parParam == NIL &&
519  testexpr_is_hashable(splan->testexpr, splan->paramIds))
520  splan->useHashTable = true;
521 
522  /*
523  * Otherwise, we have the option to tack a Material node onto the top
524  * of the subplan, to reduce the cost of reading it repeatedly. This
525  * is pointless for a direct-correlated subplan, since we'd have to
526  * recompute its results each time anyway. For uncorrelated/undirect
527  * correlated subplans, we add Material unless the subplan's top plan
528  * node would materialize its output anyway. Also, if enable_material
529  * is false, then the user does not want us to materialize anything
530  * unnecessarily, so we don't.
531  */
532  else if (splan->parParam == NIL && enable_material &&
535 
536  result = (Node *) splan;
537  isInitPlan = false;
538  }
539 
540  /*
541  * Add the subplan, its path, and its PlannerInfo to the global lists.
542  */
543  root->glob->subplans = lappend(root->glob->subplans, plan);
544  root->glob->subpaths = lappend(root->glob->subpaths, path);
545  root->glob->subroots = lappend(root->glob->subroots, subroot);
546  splan->plan_id = list_length(root->glob->subplans);
547 
548  if (isInitPlan)
549  root->init_plans = lappend(root->init_plans, splan);
550 
551  /*
552  * A parameterless subplan (not initplan) should be prepared to handle
553  * REWIND efficiently. If it has direct parameters then there's no point
554  * since it'll be reset on each scan anyway; and if it's an initplan then
555  * there's no point since it won't get re-run without parameter changes
556  * anyway. The input of a hashed subplan doesn't need REWIND either.
557  */
558  if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable)
559  root->glob->rewindPlanIDs = bms_add_member(root->glob->rewindPlanIDs,
560  splan->plan_id);
561 
562  /* Label the subplan for EXPLAIN purposes */
563  splan->plan_name = psprintf("%s %d",
564  isInitPlan ? "InitPlan" : "SubPlan",
565  splan->plan_id);
566 
567  /* Lastly, fill in the cost estimates for use later */
569 
570  return result;
571 }
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define Assert(condition)
Definition: c.h:858
#define OidIsValid(objectId)
Definition: c.h:775
bool enable_material
Definition: costsize.c:143
void cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
Definition: costsize.c:4435
Plan * materialize_finished_plan(Plan *subplan)
Definition: createplan.c:6527
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
bool ExecMaterializesOutput(NodeTag plantype)
Definition: execAmi.c:635
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
List * lappend(List *list, void *datum)
Definition: list.c:339
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * list_copy(const List *oldlist)
Definition: list.c:1573
Oid get_promoted_array_type(Oid typid)
Definition: lsyscache.c:2811
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:339
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:816
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define makeNode(_type_)
Definition: nodes.h:155
Param * generate_new_exec_param(PlannerInfo *root, Oid paramtype, int32 paramtypmod, Oid paramcollation)
Definition: paramassign.c:637
void * arg
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_nth_cell(const List *list, int n)
Definition: pg_list.h:277
#define linitial(l)
Definition: pg_list.h:178
#define list_make1_int(x1)
Definition: pg_list.h:227
#define plan(x)
Definition: pg_regress.c:162
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
@ ARRAY_SUBLINK
Definition: primnodes.h:1003
@ ANY_SUBLINK
Definition: primnodes.h:999
@ MULTIEXPR_SUBLINK
Definition: primnodes.h:1002
@ EXPR_SUBLINK
Definition: primnodes.h:1001
@ ROWCOMPARE_SUBLINK
Definition: primnodes.h:1000
@ EXISTS_SUBLINK
Definition: primnodes.h:997
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
tree ctl root
Definition: radixtree.h:1884
static SPIPlanPtr splan
Definition: regress.c:269
Definition: pg_list.h:54
Definition: nodes.h:129
int paramid
Definition: primnodes.h:377
Expr * expr
Definition: primnodes.h:2192
static bool testexpr_is_hashable(Node *testexpr, List *param_ids)
Definition: subselect.c:761
static List * generate_subquery_params(PlannerInfo *root, List *tlist, List **paramIds)
Definition: subselect.c:580
static Node * convert_testexpr(PlannerInfo *root, Node *testexpr, List *subst_nodes)
Definition: subselect.c:642
static bool subplan_is_hashable(Plan *plan)
Definition: subselect.c:712
static void get_first_col_type(Plan *plan, Oid *coltype, int32 *coltypmod, Oid *colcollation)
Definition: subselect.c:118
Node * SS_process_sublinks(PlannerInfo *root, Node *expr, bool isQual)
Definition: subselect.c:1919

References ANY_SUBLINK, arg, ARRAY_SUBLINK, Assert, bms_add_member(), convert_testexpr(), cost_subplan(), elog, enable_material, ERROR, ExecMaterializesOutput(), EXISTS_SUBLINK, TargetEntry::expr, EXPR_SUBLINK, exprCollation(), exprType(), exprTypmod(), format_type_be(), generate_new_exec_param(), generate_subquery_params(), get_first_col_type(), get_promoted_array_type(), InvalidOid, IsA, PlannerParamItem::item, lappend(), lappend_int(), lfirst, linitial, list_copy(), list_length(), list_make1_int, list_nth_cell(), makeNode, makeNullConst(), materialize_finished_plan(), MULTIEXPR_SUBLINK, NIL, nodeTag, OidIsValid, PlannerParamItem::paramId, Param::paramid, plan, psprintf(), root, ROWCOMPARE_SUBLINK, splan, SS_process_sublinks(), subplan_is_hashable(), and testexpr_is_hashable().

Referenced by make_subplan().

◆ contain_dml()

static bool contain_dml ( Node node)
static

Definition at line 1056 of file subselect.c.

1057 {
1058  return contain_dml_walker(node, NULL);
1059 }
static bool contain_dml_walker(Node *node, void *context)
Definition: subselect.c:1062

References contain_dml_walker().

Referenced by SS_process_ctes().

◆ contain_dml_walker()

static bool contain_dml_walker ( Node node,
void *  context 
)
static

Definition at line 1062 of file subselect.c.

1063 {
1064  if (node == NULL)
1065  return false;
1066  if (IsA(node, Query))
1067  {
1068  Query *query = (Query *) node;
1069 
1070  if (query->commandType != CMD_SELECT ||
1071  query->rowMarks != NIL)
1072  return true;
1073 
1074  return query_tree_walker(query, contain_dml_walker, context, 0);
1075  }
1077 }
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:156
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:151
@ CMD_SELECT
Definition: nodes.h:265
tree context
Definition: radixtree.h:1833
List * rowMarks
Definition: parsenodes.h:217
CmdType commandType
Definition: parsenodes.h:121

References CMD_SELECT, Query::commandType, context, expression_tree_walker, IsA, NIL, query_tree_walker, and Query::rowMarks.

Referenced by contain_dml().

◆ contain_outer_selfref()

static bool contain_outer_selfref ( Node node)
static

Definition at line 1083 of file subselect.c.

1084 {
1085  Index depth = 0;
1086 
1087  /*
1088  * We should be starting with a Query, so that depth will be 1 while
1089  * examining its immediate contents.
1090  */
1091  Assert(IsA(node, Query));
1092 
1093  return contain_outer_selfref_walker(node, &depth);
1094 }
unsigned int Index
Definition: c.h:614
static bool contain_outer_selfref_walker(Node *node, Index *depth)
Definition: subselect.c:1097

References Assert, contain_outer_selfref_walker(), and IsA.

Referenced by SS_process_ctes().

◆ contain_outer_selfref_walker()

static bool contain_outer_selfref_walker ( Node node,
Index depth 
)
static

Definition at line 1097 of file subselect.c.

1098 {
1099  if (node == NULL)
1100  return false;
1101  if (IsA(node, RangeTblEntry))
1102  {
1103  RangeTblEntry *rte = (RangeTblEntry *) node;
1104 
1105  /*
1106  * Check for a self-reference to a CTE that's above the Query that our
1107  * search started at.
1108  */
1109  if (rte->rtekind == RTE_CTE &&
1110  rte->self_reference &&
1111  rte->ctelevelsup >= *depth)
1112  return true;
1113  return false; /* allow range_table_walker to continue */
1114  }
1115  if (IsA(node, Query))
1116  {
1117  /* Recurse into subquery, tracking nesting depth properly */
1118  Query *query = (Query *) node;
1119  bool result;
1120 
1121  (*depth)++;
1122 
1124  (void *) depth, QTW_EXAMINE_RTES_BEFORE);
1125 
1126  (*depth)--;
1127 
1128  return result;
1129  }
1131  (void *) depth);
1132 }
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:27
@ RTE_CTE
Definition: parsenodes.h:1034
Index ctelevelsup
Definition: parsenodes.h:1208
RTEKind rtekind
Definition: parsenodes.h:1057

References RangeTblEntry::ctelevelsup, expression_tree_walker, IsA, QTW_EXAMINE_RTES_BEFORE, query_tree_walker, RTE_CTE, and RangeTblEntry::rtekind.

Referenced by contain_outer_selfref().

◆ convert_ANY_sublink_to_join()

JoinExpr* convert_ANY_sublink_to_join ( PlannerInfo root,
SubLink sublink,
Relids  available_rels 
)

Definition at line 1254 of file subselect.c.

1256 {
1257  JoinExpr *result;
1258  Query *parse = root->parse;
1259  Query *subselect = (Query *) sublink->subselect;
1260  Relids upper_varnos;
1261  int rtindex;
1262  ParseNamespaceItem *nsitem;
1263  RangeTblEntry *rte;
1264  RangeTblRef *rtr;
1265  List *subquery_vars;
1266  Node *quals;
1267  ParseState *pstate;
1268  Relids sub_ref_outer_relids;
1269  bool use_lateral;
1270 
1271  Assert(sublink->subLinkType == ANY_SUBLINK);
1272 
1273  /*
1274  * If the sub-select contains any Vars of the parent query, we treat it as
1275  * LATERAL. (Vars from higher levels don't matter here.)
1276  */
1277  sub_ref_outer_relids = pull_varnos_of_level(NULL, (Node *) subselect, 1);
1278  use_lateral = !bms_is_empty(sub_ref_outer_relids);
1279 
1280  /*
1281  * Can't convert if the sub-select contains parent-level Vars of relations
1282  * not in available_rels.
1283  */
1284  if (!bms_is_subset(sub_ref_outer_relids, available_rels))
1285  return NULL;
1286 
1287  /*
1288  * The test expression must contain some Vars of the parent query, else
1289  * it's not gonna be a join. (Note that it won't have Vars referring to
1290  * the subquery, rather Params.)
1291  */
1292  upper_varnos = pull_varnos(root, sublink->testexpr);
1293  if (bms_is_empty(upper_varnos))
1294  return NULL;
1295 
1296  /*
1297  * However, it can't refer to anything outside available_rels.
1298  */
1299  if (!bms_is_subset(upper_varnos, available_rels))
1300  return NULL;
1301 
1302  /*
1303  * The combining operators and left-hand expressions mustn't be volatile.
1304  */
1305  if (contain_volatile_functions(sublink->testexpr))
1306  return NULL;
1307 
1308  /* Create a dummy ParseState for addRangeTableEntryForSubquery */
1309  pstate = make_parsestate(NULL);
1310 
1311  /*
1312  * Okay, pull up the sub-select into upper range table.
1313  *
1314  * We rely here on the assumption that the outer query has no references
1315  * to the inner (necessarily true, other than the Vars that we build
1316  * below). Therefore this is a lot easier than what pull_up_subqueries has
1317  * to go through.
1318  */
1319  nsitem = addRangeTableEntryForSubquery(pstate,
1320  subselect,
1321  makeAlias("ANY_subquery", NIL),
1322  use_lateral,
1323  false);
1324  rte = nsitem->p_rte;
1325  parse->rtable = lappend(parse->rtable, rte);
1326  rtindex = list_length(parse->rtable);
1327 
1328  /*
1329  * Form a RangeTblRef for the pulled-up sub-select.
1330  */
1331  rtr = makeNode(RangeTblRef);
1332  rtr->rtindex = rtindex;
1333 
1334  /*
1335  * Build a list of Vars representing the subselect outputs.
1336  */
1337  subquery_vars = generate_subquery_vars(root,
1338  subselect->targetList,
1339  rtindex);
1340 
1341  /*
1342  * Build the new join's qual expression, replacing Params with these Vars.
1343  */
1344  quals = convert_testexpr(root, sublink->testexpr, subquery_vars);
1345 
1346  /*
1347  * And finally, build the JoinExpr node.
1348  */
1349  result = makeNode(JoinExpr);
1350  result->jointype = JOIN_SEMI;
1351  result->isNatural = false;
1352  result->larg = NULL; /* caller must fill this in */
1353  result->rarg = (Node *) rtr;
1354  result->usingClause = NIL;
1355  result->join_using_alias = NULL;
1356  result->quals = quals;
1357  result->alias = NULL;
1358  result->rtindex = 0; /* we don't need an RTE for it */
1359 
1360  return result;
1361 }
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
#define bms_is_empty(a)
Definition: bitmapset.h:118
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:538
Alias * makeAlias(const char *aliasname, List *colnames)
Definition: makefuncs.c:389
@ JOIN_SEMI
Definition: nodes.h:307
ParseState * make_parsestate(ParseState *parentParseState)
Definition: parse_node.c:39
ParseNamespaceItem * addRangeTableEntryForSubquery(ParseState *pstate, Query *subquery, Alias *alias, bool lateral, bool inFromCl)
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:715
Node * quals
Definition: primnodes.h:2291
JoinType jointype
Definition: primnodes.h:2282
int rtindex
Definition: primnodes.h:2295
Node * larg
Definition: primnodes.h:2284
bool isNatural
Definition: primnodes.h:2283
Node * rarg
Definition: primnodes.h:2285
List * targetList
Definition: parsenodes.h:191
static List * generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno)
Definition: subselect.c:613
Relids pull_varnos_of_level(PlannerInfo *root, Node *node, int levelsup)
Definition: var.c:134
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:108

References addRangeTableEntryForSubquery(), ANY_SUBLINK, Assert, bms_is_empty, bms_is_subset(), contain_volatile_functions(), convert_testexpr(), generate_subquery_vars(), JoinExpr::isNatural, JOIN_SEMI, JoinExpr::jointype, lappend(), JoinExpr::larg, list_length(), make_parsestate(), makeAlias(), makeNode, NIL, parse(), pull_varnos(), pull_varnos_of_level(), JoinExpr::quals, JoinExpr::rarg, root, JoinExpr::rtindex, SubLink::subLinkType, SubLink::subselect, Query::targetList, and SubLink::testexpr.

Referenced by pull_up_sublinks_qual_recurse().

◆ convert_EXISTS_sublink_to_join()

JoinExpr* convert_EXISTS_sublink_to_join ( PlannerInfo root,
SubLink sublink,
bool  under_not,
Relids  available_rels 
)

Definition at line 1371 of file subselect.c.

1373 {
1374  JoinExpr *result;
1375  Query *parse = root->parse;
1376  Query *subselect = (Query *) sublink->subselect;
1377  Node *whereClause;
1378  int rtoffset;
1379  int varno;
1380  Relids clause_varnos;
1381  Relids upper_varnos;
1382 
1383  Assert(sublink->subLinkType == EXISTS_SUBLINK);
1384 
1385  /*
1386  * Can't flatten if it contains WITH. (We could arrange to pull up the
1387  * WITH into the parent query's cteList, but that risks changing the
1388  * semantics, since a WITH ought to be executed once per associated query
1389  * call.) Note that convert_ANY_sublink_to_join doesn't have to reject
1390  * this case, since it just produces a subquery RTE that doesn't have to
1391  * get flattened into the parent query.
1392  */
1393  if (subselect->cteList)
1394  return NULL;
1395 
1396  /*
1397  * Copy the subquery so we can modify it safely (see comments in
1398  * make_subplan).
1399  */
1400  subselect = copyObject(subselect);
1401 
1402  /*
1403  * See if the subquery can be simplified based on the knowledge that it's
1404  * being used in EXISTS(). If we aren't able to get rid of its
1405  * targetlist, we have to fail, because the pullup operation leaves us
1406  * with noplace to evaluate the targetlist.
1407  */
1408  if (!simplify_EXISTS_query(root, subselect))
1409  return NULL;
1410 
1411  /*
1412  * Separate out the WHERE clause. (We could theoretically also remove
1413  * top-level plain JOIN/ON clauses, but it's probably not worth the
1414  * trouble.)
1415  */
1416  whereClause = subselect->jointree->quals;
1417  subselect->jointree->quals = NULL;
1418 
1419  /*
1420  * The rest of the sub-select must not refer to any Vars of the parent
1421  * query. (Vars of higher levels should be okay, though.)
1422  */
1423  if (contain_vars_of_level((Node *) subselect, 1))
1424  return NULL;
1425 
1426  /*
1427  * On the other hand, the WHERE clause must contain some Vars of the
1428  * parent query, else it's not gonna be a join.
1429  */
1430  if (!contain_vars_of_level(whereClause, 1))
1431  return NULL;
1432 
1433  /*
1434  * We don't risk optimizing if the WHERE clause is volatile, either.
1435  */
1436  if (contain_volatile_functions(whereClause))
1437  return NULL;
1438 
1439  /*
1440  * The subquery must have a nonempty jointree, but we can make it so.
1441  */
1442  replace_empty_jointree(subselect);
1443 
1444  /*
1445  * Prepare to pull up the sub-select into top range table.
1446  *
1447  * We rely here on the assumption that the outer query has no references
1448  * to the inner (necessarily true). Therefore this is a lot easier than
1449  * what pull_up_subqueries has to go through.
1450  *
1451  * In fact, it's even easier than what convert_ANY_sublink_to_join has to
1452  * do. The machinations of simplify_EXISTS_query ensured that there is
1453  * nothing interesting in the subquery except an rtable and jointree, and
1454  * even the jointree FromExpr no longer has quals. So we can just append
1455  * the rtable to our own and use the FromExpr in our jointree. But first,
1456  * adjust all level-zero varnos in the subquery to account for the rtable
1457  * merger.
1458  */
1459  rtoffset = list_length(parse->rtable);
1460  OffsetVarNodes((Node *) subselect, rtoffset, 0);
1461  OffsetVarNodes(whereClause, rtoffset, 0);
1462 
1463  /*
1464  * Upper-level vars in subquery will now be one level closer to their
1465  * parent than before; in particular, anything that had been level 1
1466  * becomes level zero.
1467  */
1468  IncrementVarSublevelsUp((Node *) subselect, -1, 1);
1469  IncrementVarSublevelsUp(whereClause, -1, 1);
1470 
1471  /*
1472  * Now that the WHERE clause is adjusted to match the parent query
1473  * environment, we can easily identify all the level-zero rels it uses.
1474  * The ones <= rtoffset belong to the upper query; the ones > rtoffset do
1475  * not.
1476  */
1477  clause_varnos = pull_varnos(root, whereClause);
1478  upper_varnos = NULL;
1479  varno = -1;
1480  while ((varno = bms_next_member(clause_varnos, varno)) >= 0)
1481  {
1482  if (varno <= rtoffset)
1483  upper_varnos = bms_add_member(upper_varnos, varno);
1484  }
1485  bms_free(clause_varnos);
1486  Assert(!bms_is_empty(upper_varnos));
1487 
1488  /*
1489  * Now that we've got the set of upper-level varnos, we can make the last
1490  * check: only available_rels can be referenced.
1491  */
1492  if (!bms_is_subset(upper_varnos, available_rels))
1493  return NULL;
1494 
1495  /*
1496  * Now we can attach the modified subquery rtable to the parent. This also
1497  * adds subquery's RTEPermissionInfos into the upper query.
1498  */
1499  CombineRangeTables(&parse->rtable, &parse->rteperminfos,
1500  subselect->rtable, subselect->rteperminfos);
1501 
1502  /*
1503  * And finally, build the JoinExpr node.
1504  */
1505  result = makeNode(JoinExpr);
1506  result->jointype = under_not ? JOIN_ANTI : JOIN_SEMI;
1507  result->isNatural = false;
1508  result->larg = NULL; /* caller must fill this in */
1509  /* flatten out the FromExpr node if it's useless */
1510  if (list_length(subselect->jointree->fromlist) == 1)
1511  result->rarg = (Node *) linitial(subselect->jointree->fromlist);
1512  else
1513  result->rarg = (Node *) subselect->jointree;
1514  result->usingClause = NIL;
1515  result->join_using_alias = NULL;
1516  result->quals = whereClause;
1517  result->alias = NULL;
1518  result->rtindex = 0; /* we don't need an RTE for it */
1519 
1520  return result;
1521 }
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
#define copyObject(obj)
Definition: nodes.h:224
@ JOIN_ANTI
Definition: nodes.h:308
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:284
void OffsetVarNodes(Node *node, int offset, int sublevels_up)
Definition: rewriteManip.c:480
void CombineRangeTables(List **dst_rtable, List **dst_perminfos, List *src_rtable, List *src_perminfos)
Definition: rewriteManip.c:350
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:849
Node * quals
Definition: primnodes.h:2311
FromExpr * jointree
Definition: parsenodes.h:175
List * cteList
Definition: parsenodes.h:166
static bool simplify_EXISTS_query(PlannerInfo *root, Query *query)
Definition: subselect.c:1540
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:441

References Assert, bms_add_member(), bms_free(), bms_is_empty, bms_is_subset(), bms_next_member(), CombineRangeTables(), contain_vars_of_level(), contain_volatile_functions(), copyObject, Query::cteList, EXISTS_SUBLINK, FromExpr::fromlist, IncrementVarSublevelsUp(), JoinExpr::isNatural, JOIN_ANTI, JOIN_SEMI, Query::jointree, JoinExpr::jointype, JoinExpr::larg, linitial, list_length(), makeNode, NIL, OffsetVarNodes(), parse(), pull_varnos(), JoinExpr::quals, FromExpr::quals, JoinExpr::rarg, replace_empty_jointree(), root, Query::rtable, JoinExpr::rtindex, simplify_EXISTS_query(), SubLink::subLinkType, and SubLink::subselect.

Referenced by pull_up_sublinks_qual_recurse().

◆ convert_EXISTS_to_ANY()

static Query * convert_EXISTS_to_ANY ( PlannerInfo root,
Query subselect,
Node **  testexpr,
List **  paramIds 
)
static

Definition at line 1628 of file subselect.c.

1630 {
1631  Node *whereClause;
1632  List *leftargs,
1633  *rightargs,
1634  *opids,
1635  *opcollations,
1636  *newWhere,
1637  *tlist,
1638  *testlist,
1639  *paramids;
1640  ListCell *lc,
1641  *rc,
1642  *oc,
1643  *cc;
1644  AttrNumber resno;
1645 
1646  /*
1647  * Query must not require a targetlist, since we have to insert a new one.
1648  * Caller should have dealt with the case already.
1649  */
1650  Assert(subselect->targetList == NIL);
1651 
1652  /*
1653  * Separate out the WHERE clause. (We could theoretically also remove
1654  * top-level plain JOIN/ON clauses, but it's probably not worth the
1655  * trouble.)
1656  */
1657  whereClause = subselect->jointree->quals;
1658  subselect->jointree->quals = NULL;
1659 
1660  /*
1661  * The rest of the sub-select must not refer to any Vars of the parent
1662  * query. (Vars of higher levels should be okay, though.)
1663  *
1664  * Note: we need not check for Aggrefs separately because we know the
1665  * sub-select is as yet unoptimized; any uplevel Aggref must therefore
1666  * contain an uplevel Var reference. This is not the case below ...
1667  */
1668  if (contain_vars_of_level((Node *) subselect, 1))
1669  return NULL;
1670 
1671  /*
1672  * We don't risk optimizing if the WHERE clause is volatile, either.
1673  */
1674  if (contain_volatile_functions(whereClause))
1675  return NULL;
1676 
1677  /*
1678  * Clean up the WHERE clause by doing const-simplification etc on it.
1679  * Aside from simplifying the processing we're about to do, this is
1680  * important for being able to pull chunks of the WHERE clause up into the
1681  * parent query. Since we are invoked partway through the parent's
1682  * preprocess_expression() work, earlier steps of preprocess_expression()
1683  * wouldn't get applied to the pulled-up stuff unless we do them here. For
1684  * the parts of the WHERE clause that get put back into the child query,
1685  * this work is partially duplicative, but it shouldn't hurt.
1686  *
1687  * Note: we do not run flatten_join_alias_vars. This is OK because any
1688  * parent aliases were flattened already, and we're not going to pull any
1689  * child Vars (of any description) into the parent.
1690  *
1691  * Note: passing the parent's root to eval_const_expressions is
1692  * technically wrong, but we can get away with it since only the
1693  * boundParams (if any) are used, and those would be the same in a
1694  * subroot.
1695  */
1696  whereClause = eval_const_expressions(root, whereClause);
1697  whereClause = (Node *) canonicalize_qual((Expr *) whereClause, false);
1698  whereClause = (Node *) make_ands_implicit((Expr *) whereClause);
1699 
1700  /*
1701  * We now have a flattened implicit-AND list of clauses, which we try to
1702  * break apart into "outervar = innervar" hash clauses. Anything that
1703  * can't be broken apart just goes back into the newWhere list. Note that
1704  * we aren't trying hard yet to ensure that we have only outer or only
1705  * inner on each side; we'll check that if we get to the end.
1706  */
1707  leftargs = rightargs = opids = opcollations = newWhere = NIL;
1708  foreach(lc, (List *) whereClause)
1709  {
1710  OpExpr *expr = (OpExpr *) lfirst(lc);
1711 
1712  if (IsA(expr, OpExpr) &&
1713  hash_ok_operator(expr))
1714  {
1715  Node *leftarg = (Node *) linitial(expr->args);
1716  Node *rightarg = (Node *) lsecond(expr->args);
1717 
1718  if (contain_vars_of_level(leftarg, 1))
1719  {
1720  leftargs = lappend(leftargs, leftarg);
1721  rightargs = lappend(rightargs, rightarg);
1722  opids = lappend_oid(opids, expr->opno);
1723  opcollations = lappend_oid(opcollations, expr->inputcollid);
1724  continue;
1725  }
1726  if (contain_vars_of_level(rightarg, 1))
1727  {
1728  /*
1729  * We must commute the clause to put the outer var on the
1730  * left, because the hashing code in nodeSubplan.c expects
1731  * that. This probably shouldn't ever fail, since hashable
1732  * operators ought to have commutators, but be paranoid.
1733  */
1734  expr->opno = get_commutator(expr->opno);
1735  if (OidIsValid(expr->opno) && hash_ok_operator(expr))
1736  {
1737  leftargs = lappend(leftargs, rightarg);
1738  rightargs = lappend(rightargs, leftarg);
1739  opids = lappend_oid(opids, expr->opno);
1740  opcollations = lappend_oid(opcollations, expr->inputcollid);
1741  continue;
1742  }
1743  /* If no commutator, no chance to optimize the WHERE clause */
1744  return NULL;
1745  }
1746  }
1747  /* Couldn't handle it as a hash clause */
1748  newWhere = lappend(newWhere, expr);
1749  }
1750 
1751  /*
1752  * If we didn't find anything we could convert, fail.
1753  */
1754  if (leftargs == NIL)
1755  return NULL;
1756 
1757  /*
1758  * There mustn't be any parent Vars or Aggs in the stuff that we intend to
1759  * put back into the child query. Note: you might think we don't need to
1760  * check for Aggs separately, because an uplevel Agg must contain an
1761  * uplevel Var in its argument. But it is possible that the uplevel Var
1762  * got optimized away by eval_const_expressions. Consider
1763  *
1764  * SUM(CASE WHEN false THEN uplevelvar ELSE 0 END)
1765  */
1766  if (contain_vars_of_level((Node *) newWhere, 1) ||
1767  contain_vars_of_level((Node *) rightargs, 1))
1768  return NULL;
1769  if (root->parse->hasAggs &&
1770  (contain_aggs_of_level((Node *) newWhere, 1) ||
1771  contain_aggs_of_level((Node *) rightargs, 1)))
1772  return NULL;
1773 
1774  /*
1775  * And there can't be any child Vars in the stuff we intend to pull up.
1776  * (Note: we'd need to check for child Aggs too, except we know the child
1777  * has no aggs at all because of simplify_EXISTS_query's check. The same
1778  * goes for window functions.)
1779  */
1780  if (contain_vars_of_level((Node *) leftargs, 0))
1781  return NULL;
1782 
1783  /*
1784  * Also reject sublinks in the stuff we intend to pull up. (It might be
1785  * possible to support this, but doesn't seem worth the complication.)
1786  */
1787  if (contain_subplans((Node *) leftargs))
1788  return NULL;
1789 
1790  /*
1791  * Okay, adjust the sublevelsup in the stuff we're pulling up.
1792  */
1793  IncrementVarSublevelsUp((Node *) leftargs, -1, 1);
1794 
1795  /*
1796  * Put back any child-level-only WHERE clauses.
1797  */
1798  if (newWhere)
1799  subselect->jointree->quals = (Node *) make_ands_explicit(newWhere);
1800 
1801  /*
1802  * Build a new targetlist for the child that emits the expressions we
1803  * need. Concurrently, build a testexpr for the parent using Params to
1804  * reference the child outputs. (Since we generate Params directly here,
1805  * there will be no need to convert the testexpr in build_subplan.)
1806  */
1807  tlist = testlist = paramids = NIL;
1808  resno = 1;
1809  forfour(lc, leftargs, rc, rightargs, oc, opids, cc, opcollations)
1810  {
1811  Node *leftarg = (Node *) lfirst(lc);
1812  Node *rightarg = (Node *) lfirst(rc);
1813  Oid opid = lfirst_oid(oc);
1814  Oid opcollation = lfirst_oid(cc);
1815  Param *param;
1816 
1817  param = generate_new_exec_param(root,
1818  exprType(rightarg),
1819  exprTypmod(rightarg),
1820  exprCollation(rightarg));
1821  tlist = lappend(tlist,
1822  makeTargetEntry((Expr *) rightarg,
1823  resno++,
1824  NULL,
1825  false));
1826  testlist = lappend(testlist,
1827  make_opclause(opid, BOOLOID, false,
1828  (Expr *) leftarg, (Expr *) param,
1829  InvalidOid, opcollation));
1830  paramids = lappend_int(paramids, param->paramid);
1831  }
1832 
1833  /* Put everything where it should go, and we're done */
1834  subselect->targetList = tlist;
1835  *testexpr = (Node *) make_ands_explicit(testlist);
1836  *paramIds = paramids;
1837 
1838  return subselect;
1839 }
int16 AttrNumber
Definition: attnum.h:21
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2254
bool contain_subplans(Node *clause)
Definition: clauses.c:330
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1509
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:628
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:737
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:240
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:726
#define lsecond(l)
Definition: pg_list.h:183
#define forfour(cell1, list1, cell2, list2, cell3, list3, cell4, list4)
Definition: pg_list.h:575
#define lfirst_oid(lc)
Definition: pg_list.h:174
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
bool contain_aggs_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:85
Oid opno
Definition: primnodes.h:818
List * args
Definition: primnodes.h:836
static bool hash_ok_operator(OpExpr *expr)
Definition: subselect.c:832

References OpExpr::args, Assert, canonicalize_qual(), contain_aggs_of_level(), contain_subplans(), contain_vars_of_level(), contain_volatile_functions(), eval_const_expressions(), exprCollation(), exprType(), exprTypmod(), forfour, generate_new_exec_param(), get_commutator(), hash_ok_operator(), IncrementVarSublevelsUp(), InvalidOid, IsA, Query::jointree, lappend(), lappend_int(), lappend_oid(), lfirst, lfirst_oid, linitial, lsecond, make_ands_explicit(), make_ands_implicit(), make_opclause(), makeTargetEntry(), NIL, OidIsValid, OpExpr::opno, Param::paramid, FromExpr::quals, root, and Query::targetList.

Referenced by make_subplan().

◆ convert_testexpr()

static Node * convert_testexpr ( PlannerInfo root,
Node testexpr,
List subst_nodes 
)
static

Definition at line 642 of file subselect.c.

645 {
647 
648  context.root = root;
649  context.subst_nodes = subst_nodes;
650  return convert_testexpr_mutator(testexpr, &context);
651 }
static Node * convert_testexpr_mutator(Node *node, convert_testexpr_context *context)
Definition: subselect.c:654

References context, convert_testexpr_mutator(), and root.

Referenced by build_subplan(), and convert_ANY_sublink_to_join().

◆ convert_testexpr_mutator()

static Node * convert_testexpr_mutator ( Node node,
convert_testexpr_context context 
)
static

Definition at line 654 of file subselect.c.

656 {
657  if (node == NULL)
658  return NULL;
659  if (IsA(node, Param))
660  {
661  Param *param = (Param *) node;
662 
663  if (param->paramkind == PARAM_SUBLINK)
664  {
665  if (param->paramid <= 0 ||
666  param->paramid > list_length(context->subst_nodes))
667  elog(ERROR, "unexpected PARAM_SUBLINK ID: %d", param->paramid);
668 
669  /*
670  * We copy the list item to avoid having doubly-linked
671  * substructure in the modified parse tree. This is probably
672  * unnecessary when it's a Param, but be safe.
673  */
674  return (Node *) copyObject(list_nth(context->subst_nodes,
675  param->paramid - 1));
676  }
677  }
678  if (IsA(node, SubLink))
679  {
680  /*
681  * If we come across a nested SubLink, it is neither necessary nor
682  * correct to recurse into it: any PARAM_SUBLINKs we might find inside
683  * belong to the inner SubLink not the outer. So just return it as-is.
684  *
685  * This reasoning depends on the assumption that nothing will pull
686  * subexpressions into or out of the testexpr field of a SubLink, at
687  * least not without replacing PARAM_SUBLINKs first. If we did want
688  * to do that we'd need to rethink the parser-output representation
689  * altogether, since currently PARAM_SUBLINKs are only unique per
690  * SubLink not globally across the query. The whole point of
691  * replacing them with Vars or PARAM_EXEC nodes is to make them
692  * globally unique before they escape from the SubLink's testexpr.
693  *
694  * Note: this can't happen when called during SS_process_sublinks,
695  * because that recursively processes inner SubLinks first. It can
696  * happen when called from convert_ANY_sublink_to_join, though.
697  */
698  return node;
699  }
700  return expression_tree_mutator(node,
702  (void *) context);
703 }
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:153
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
@ PARAM_SUBLINK
Definition: primnodes.h:369
ParamKind paramkind
Definition: primnodes.h:376

References context, copyObject, elog, ERROR, expression_tree_mutator, IsA, list_length(), list_nth(), PARAM_SUBLINK, Param::paramid, and Param::paramkind.

Referenced by convert_testexpr().

◆ finalize_agg_primnode()

static bool finalize_agg_primnode ( Node node,
finalize_primnode_context context 
)
static

Definition at line 2974 of file subselect.c.

2975 {
2976  if (node == NULL)
2977  return false;
2978  if (IsA(node, Aggref))
2979  {
2980  Aggref *agg = (Aggref *) node;
2981 
2982  /* we should not consider the direct arguments, if any */
2983  finalize_primnode((Node *) agg->args, context);
2985  return false; /* there can't be any Aggrefs below here */
2986  }
2988  (void *) context);
2989 }
List * args
Definition: primnodes.h:468
Expr * aggfilter
Definition: primnodes.h:477
static bool finalize_agg_primnode(Node *node, finalize_primnode_context *context)
Definition: subselect.c:2974
static bool finalize_primnode(Node *node, finalize_primnode_context *context)
Definition: subselect.c:2890

References Aggref::aggfilter, Aggref::args, context, expression_tree_walker, finalize_primnode(), and IsA.

Referenced by finalize_plan().

◆ finalize_plan()

static Bitmapset * finalize_plan ( PlannerInfo root,
Plan plan,
int  gather_param,
Bitmapset valid_params,
Bitmapset scan_params 
)
static

Definition at line 2292 of file subselect.c.

2296 {
2298  int locally_added_param;
2299  Bitmapset *nestloop_params;
2300  Bitmapset *initExtParam;
2301  Bitmapset *initSetParam;
2302  Bitmapset *child_params;
2303  ListCell *l;
2304 
2305  if (plan == NULL)
2306  return NULL;
2307 
2308  context.root = root;
2309  context.paramids = NULL; /* initialize set to empty */
2310  locally_added_param = -1; /* there isn't one */
2311  nestloop_params = NULL; /* there aren't any */
2312 
2313  /*
2314  * Examine any initPlans to determine the set of external params they
2315  * reference and the set of output params they supply. (We assume
2316  * SS_finalize_plan was run on them already.)
2317  */
2318  initExtParam = initSetParam = NULL;
2319  foreach(l, plan->initPlan)
2320  {
2321  SubPlan *initsubplan = (SubPlan *) lfirst(l);
2322  Plan *initplan = planner_subplan_get_plan(root, initsubplan);
2323  ListCell *l2;
2324 
2325  initExtParam = bms_add_members(initExtParam, initplan->extParam);
2326  foreach(l2, initsubplan->setParam)
2327  {
2328  initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2329  }
2330  }
2331 
2332  /* Any setParams are validly referenceable in this node and children */
2333  if (initSetParam)
2334  valid_params = bms_union(valid_params, initSetParam);
2335 
2336  /*
2337  * When we call finalize_primnode, context.paramids sets are automatically
2338  * merged together. But when recursing to self, we have to do it the hard
2339  * way. We want the paramids set to include params in subplans as well as
2340  * at this level.
2341  */
2342 
2343  /* Find params in targetlist and qual */
2344  finalize_primnode((Node *) plan->targetlist, &context);
2345  finalize_primnode((Node *) plan->qual, &context);
2346 
2347  /*
2348  * If it's a parallel-aware scan node, mark it as dependent on the parent
2349  * Gather/GatherMerge's rescan Param.
2350  */
2351  if (plan->parallel_aware)
2352  {
2353  if (gather_param < 0)
2354  elog(ERROR, "parallel-aware plan node is not below a Gather");
2355  context.paramids =
2356  bms_add_member(context.paramids, gather_param);
2357  }
2358 
2359  /* Check additional node-type-specific fields */
2360  switch (nodeTag(plan))
2361  {
2362  case T_Result:
2363  finalize_primnode(((Result *) plan)->resconstantqual,
2364  &context);
2365  break;
2366 
2367  case T_SeqScan:
2368  context.paramids = bms_add_members(context.paramids, scan_params);
2369  break;
2370 
2371  case T_SampleScan:
2372  finalize_primnode((Node *) ((SampleScan *) plan)->tablesample,
2373  &context);
2374  context.paramids = bms_add_members(context.paramids, scan_params);
2375  break;
2376 
2377  case T_IndexScan:
2378  finalize_primnode((Node *) ((IndexScan *) plan)->indexqual,
2379  &context);
2380  finalize_primnode((Node *) ((IndexScan *) plan)->indexorderby,
2381  &context);
2382 
2383  /*
2384  * we need not look at indexqualorig, since it will have the same
2385  * param references as indexqual. Likewise, we can ignore
2386  * indexorderbyorig.
2387  */
2388  context.paramids = bms_add_members(context.paramids, scan_params);
2389  break;
2390 
2391  case T_IndexOnlyScan:
2392  finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexqual,
2393  &context);
2394  finalize_primnode((Node *) ((IndexOnlyScan *) plan)->recheckqual,
2395  &context);
2396  finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexorderby,
2397  &context);
2398 
2399  /*
2400  * we need not look at indextlist, since it cannot contain Params.
2401  */
2402  context.paramids = bms_add_members(context.paramids, scan_params);
2403  break;
2404 
2405  case T_BitmapIndexScan:
2406  finalize_primnode((Node *) ((BitmapIndexScan *) plan)->indexqual,
2407  &context);
2408 
2409  /*
2410  * we need not look at indexqualorig, since it will have the same
2411  * param references as indexqual.
2412  */
2413  break;
2414 
2415  case T_BitmapHeapScan:
2416  finalize_primnode((Node *) ((BitmapHeapScan *) plan)->bitmapqualorig,
2417  &context);
2418  context.paramids = bms_add_members(context.paramids, scan_params);
2419  break;
2420 
2421  case T_TidScan:
2422  finalize_primnode((Node *) ((TidScan *) plan)->tidquals,
2423  &context);
2424  context.paramids = bms_add_members(context.paramids, scan_params);
2425  break;
2426 
2427  case T_TidRangeScan:
2428  finalize_primnode((Node *) ((TidRangeScan *) plan)->tidrangequals,
2429  &context);
2430  context.paramids = bms_add_members(context.paramids, scan_params);
2431  break;
2432 
2433  case T_SubqueryScan:
2434  {
2435  SubqueryScan *sscan = (SubqueryScan *) plan;
2436  RelOptInfo *rel;
2437  Bitmapset *subquery_params;
2438 
2439  /* We must run finalize_plan on the subquery */
2440  rel = find_base_rel(root, sscan->scan.scanrelid);
2441  subquery_params = rel->subroot->outer_params;
2442  if (gather_param >= 0)
2443  subquery_params = bms_add_member(bms_copy(subquery_params),
2444  gather_param);
2445  finalize_plan(rel->subroot, sscan->subplan, gather_param,
2446  subquery_params, NULL);
2447 
2448  /* Now we can add its extParams to the parent's params */
2449  context.paramids = bms_add_members(context.paramids,
2450  sscan->subplan->extParam);
2451  /* We need scan_params too, though */
2452  context.paramids = bms_add_members(context.paramids,
2453  scan_params);
2454  }
2455  break;
2456 
2457  case T_FunctionScan:
2458  {
2459  FunctionScan *fscan = (FunctionScan *) plan;
2460  ListCell *lc;
2461 
2462  /*
2463  * Call finalize_primnode independently on each function
2464  * expression, so that we can record which params are
2465  * referenced in each, in order to decide which need
2466  * re-evaluating during rescan.
2467  */
2468  foreach(lc, fscan->functions)
2469  {
2470  RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2471  finalize_primnode_context funccontext;
2472 
2473  funccontext = context;
2474  funccontext.paramids = NULL;
2475 
2476  finalize_primnode(rtfunc->funcexpr, &funccontext);
2477 
2478  /* remember results for execution */
2479  rtfunc->funcparams = funccontext.paramids;
2480 
2481  /* add the function's params to the overall set */
2482  context.paramids = bms_add_members(context.paramids,
2483  funccontext.paramids);
2484  }
2485 
2486  context.paramids = bms_add_members(context.paramids,
2487  scan_params);
2488  }
2489  break;
2490 
2491  case T_TableFuncScan:
2492  finalize_primnode((Node *) ((TableFuncScan *) plan)->tablefunc,
2493  &context);
2494  context.paramids = bms_add_members(context.paramids, scan_params);
2495  break;
2496 
2497  case T_ValuesScan:
2498  finalize_primnode((Node *) ((ValuesScan *) plan)->values_lists,
2499  &context);
2500  context.paramids = bms_add_members(context.paramids, scan_params);
2501  break;
2502 
2503  case T_CteScan:
2504  {
2505  /*
2506  * You might think we should add the node's cteParam to
2507  * paramids, but we shouldn't because that param is just a
2508  * linkage mechanism for multiple CteScan nodes for the same
2509  * CTE; it is never used for changed-param signaling. What we
2510  * have to do instead is to find the referenced CTE plan and
2511  * incorporate its external paramids, so that the correct
2512  * things will happen if the CTE references outer-level
2513  * variables. See test cases for bug #4902. (We assume
2514  * SS_finalize_plan was run on the CTE plan already.)
2515  */
2516  int plan_id = ((CteScan *) plan)->ctePlanId;
2517  Plan *cteplan;
2518 
2519  /* so, do this ... */
2520  if (plan_id < 1 || plan_id > list_length(root->glob->subplans))
2521  elog(ERROR, "could not find plan for CteScan referencing plan ID %d",
2522  plan_id);
2523  cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
2524  context.paramids =
2525  bms_add_members(context.paramids, cteplan->extParam);
2526 
2527 #ifdef NOT_USED
2528  /* ... but not this */
2529  context.paramids =
2530  bms_add_member(context.paramids,
2531  ((CteScan *) plan)->cteParam);
2532 #endif
2533 
2534  context.paramids = bms_add_members(context.paramids,
2535  scan_params);
2536  }
2537  break;
2538 
2539  case T_WorkTableScan:
2540  context.paramids =
2541  bms_add_member(context.paramids,
2542  ((WorkTableScan *) plan)->wtParam);
2543  context.paramids = bms_add_members(context.paramids, scan_params);
2544  break;
2545 
2546  case T_NamedTuplestoreScan:
2547  context.paramids = bms_add_members(context.paramids, scan_params);
2548  break;
2549 
2550  case T_ForeignScan:
2551  {
2552  ForeignScan *fscan = (ForeignScan *) plan;
2553 
2554  finalize_primnode((Node *) fscan->fdw_exprs,
2555  &context);
2557  &context);
2558 
2559  /* We assume fdw_scan_tlist cannot contain Params */
2560  context.paramids = bms_add_members(context.paramids,
2561  scan_params);
2562  }
2563  break;
2564 
2565  case T_CustomScan:
2566  {
2567  CustomScan *cscan = (CustomScan *) plan;
2568  ListCell *lc;
2569 
2570  finalize_primnode((Node *) cscan->custom_exprs,
2571  &context);
2572  /* We assume custom_scan_tlist cannot contain Params */
2573  context.paramids =
2574  bms_add_members(context.paramids, scan_params);
2575 
2576  /* child nodes if any */
2577  foreach(lc, cscan->custom_plans)
2578  {
2579  context.paramids =
2580  bms_add_members(context.paramids,
2582  (Plan *) lfirst(lc),
2583  gather_param,
2584  valid_params,
2585  scan_params));
2586  }
2587  }
2588  break;
2589 
2590  case T_ModifyTable:
2591  {
2592  ModifyTable *mtplan = (ModifyTable *) plan;
2593 
2594  /* Force descendant scan nodes to reference epqParam */
2595  locally_added_param = mtplan->epqParam;
2596  valid_params = bms_add_member(bms_copy(valid_params),
2597  locally_added_param);
2598  scan_params = bms_add_member(bms_copy(scan_params),
2599  locally_added_param);
2601  &context);
2602  finalize_primnode((Node *) mtplan->onConflictSet,
2603  &context);
2605  &context);
2606  /* exclRelTlist contains only Vars, doesn't need examination */
2607  }
2608  break;
2609 
2610  case T_Append:
2611  {
2612  foreach(l, ((Append *) plan)->appendplans)
2613  {
2614  context.paramids =
2615  bms_add_members(context.paramids,
2617  (Plan *) lfirst(l),
2618  gather_param,
2619  valid_params,
2620  scan_params));
2621  }
2622  }
2623  break;
2624 
2625  case T_MergeAppend:
2626  {
2627  foreach(l, ((MergeAppend *) plan)->mergeplans)
2628  {
2629  context.paramids =
2630  bms_add_members(context.paramids,
2632  (Plan *) lfirst(l),
2633  gather_param,
2634  valid_params,
2635  scan_params));
2636  }
2637  }
2638  break;
2639 
2640  case T_BitmapAnd:
2641  {
2642  foreach(l, ((BitmapAnd *) plan)->bitmapplans)
2643  {
2644  context.paramids =
2645  bms_add_members(context.paramids,
2647  (Plan *) lfirst(l),
2648  gather_param,
2649  valid_params,
2650  scan_params));
2651  }
2652  }
2653  break;
2654 
2655  case T_BitmapOr:
2656  {
2657  foreach(l, ((BitmapOr *) plan)->bitmapplans)
2658  {
2659  context.paramids =
2660  bms_add_members(context.paramids,
2662  (Plan *) lfirst(l),
2663  gather_param,
2664  valid_params,
2665  scan_params));
2666  }
2667  }
2668  break;
2669 
2670  case T_NestLoop:
2671  {
2672  finalize_primnode((Node *) ((Join *) plan)->joinqual,
2673  &context);
2674  /* collect set of params that will be passed to right child */
2675  foreach(l, ((NestLoop *) plan)->nestParams)
2676  {
2677  NestLoopParam *nlp = (NestLoopParam *) lfirst(l);
2678 
2679  nestloop_params = bms_add_member(nestloop_params,
2680  nlp->paramno);
2681  }
2682  }
2683  break;
2684 
2685  case T_MergeJoin:
2686  finalize_primnode((Node *) ((Join *) plan)->joinqual,
2687  &context);
2688  finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
2689  &context);
2690  break;
2691 
2692  case T_HashJoin:
2693  finalize_primnode((Node *) ((Join *) plan)->joinqual,
2694  &context);
2695  finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
2696  &context);
2697  break;
2698 
2699  case T_Hash:
2700  finalize_primnode((Node *) ((Hash *) plan)->hashkeys,
2701  &context);
2702  break;
2703 
2704  case T_Limit:
2705  finalize_primnode(((Limit *) plan)->limitOffset,
2706  &context);
2707  finalize_primnode(((Limit *) plan)->limitCount,
2708  &context);
2709  break;
2710 
2711  case T_RecursiveUnion:
2712  /* child nodes are allowed to reference wtParam */
2713  locally_added_param = ((RecursiveUnion *) plan)->wtParam;
2714  valid_params = bms_add_member(bms_copy(valid_params),
2715  locally_added_param);
2716  /* wtParam does *not* get added to scan_params */
2717  break;
2718 
2719  case T_LockRows:
2720  /* Force descendant scan nodes to reference epqParam */
2721  locally_added_param = ((LockRows *) plan)->epqParam;
2722  valid_params = bms_add_member(bms_copy(valid_params),
2723  locally_added_param);
2724  scan_params = bms_add_member(bms_copy(scan_params),
2725  locally_added_param);
2726  break;
2727 
2728  case T_Agg:
2729  {
2730  Agg *agg = (Agg *) plan;
2731 
2732  /*
2733  * AGG_HASHED plans need to know which Params are referenced
2734  * in aggregate calls. Do a separate scan to identify them.
2735  */
2736  if (agg->aggstrategy == AGG_HASHED)
2737  {
2738  finalize_primnode_context aggcontext;
2739 
2740  aggcontext.root = root;
2741  aggcontext.paramids = NULL;
2743  &aggcontext);
2745  &aggcontext);
2746  agg->aggParams = aggcontext.paramids;
2747  }
2748  }
2749  break;
2750 
2751  case T_WindowAgg:
2752  finalize_primnode(((WindowAgg *) plan)->startOffset,
2753  &context);
2754  finalize_primnode(((WindowAgg *) plan)->endOffset,
2755  &context);
2756  break;
2757 
2758  case T_Gather:
2759  /* child nodes are allowed to reference rescan_param, if any */
2760  locally_added_param = ((Gather *) plan)->rescan_param;
2761  if (locally_added_param >= 0)
2762  {
2763  valid_params = bms_add_member(bms_copy(valid_params),
2764  locally_added_param);
2765 
2766  /*
2767  * We currently don't support nested Gathers. The issue so
2768  * far as this function is concerned would be how to identify
2769  * which child nodes depend on which Gather.
2770  */
2771  Assert(gather_param < 0);
2772  /* Pass down rescan_param to child parallel-aware nodes */
2773  gather_param = locally_added_param;
2774  }
2775  /* rescan_param does *not* get added to scan_params */
2776  break;
2777 
2778  case T_GatherMerge:
2779  /* child nodes are allowed to reference rescan_param, if any */
2780  locally_added_param = ((GatherMerge *) plan)->rescan_param;
2781  if (locally_added_param >= 0)
2782  {
2783  valid_params = bms_add_member(bms_copy(valid_params),
2784  locally_added_param);
2785 
2786  /*
2787  * We currently don't support nested Gathers. The issue so
2788  * far as this function is concerned would be how to identify
2789  * which child nodes depend on which Gather.
2790  */
2791  Assert(gather_param < 0);
2792  /* Pass down rescan_param to child parallel-aware nodes */
2793  gather_param = locally_added_param;
2794  }
2795  /* rescan_param does *not* get added to scan_params */
2796  break;
2797 
2798  case T_Memoize:
2799  finalize_primnode((Node *) ((Memoize *) plan)->param_exprs,
2800  &context);
2801  break;
2802 
2803  case T_ProjectSet:
2804  case T_Material:
2805  case T_Sort:
2806  case T_IncrementalSort:
2807  case T_Unique:
2808  case T_SetOp:
2809  case T_Group:
2810  /* no node-type-specific fields need fixing */
2811  break;
2812 
2813  default:
2814  elog(ERROR, "unrecognized node type: %d",
2815  (int) nodeTag(plan));
2816  }
2817 
2818  /* Process left and right child plans, if any */
2819  child_params = finalize_plan(root,
2820  plan->lefttree,
2821  gather_param,
2822  valid_params,
2823  scan_params);
2824  context.paramids = bms_add_members(context.paramids, child_params);
2825 
2826  if (nestloop_params)
2827  {
2828  /* right child can reference nestloop_params as well as valid_params */
2829  child_params = finalize_plan(root,
2830  plan->righttree,
2831  gather_param,
2832  bms_union(nestloop_params, valid_params),
2833  scan_params);
2834  /* ... and they don't count as parameters used at my level */
2835  child_params = bms_difference(child_params, nestloop_params);
2836  bms_free(nestloop_params);
2837  }
2838  else
2839  {
2840  /* easy case */
2841  child_params = finalize_plan(root,
2842  plan->righttree,
2843  gather_param,
2844  valid_params,
2845  scan_params);
2846  }
2847  context.paramids = bms_add_members(context.paramids, child_params);
2848 
2849  /*
2850  * Any locally generated parameter doesn't count towards its generating
2851  * plan node's external dependencies. (Note: if we changed valid_params
2852  * and/or scan_params, we leak those bitmapsets; not worth the notational
2853  * trouble to clean them up.)
2854  */
2855  if (locally_added_param >= 0)
2856  {
2857  context.paramids = bms_del_member(context.paramids,
2858  locally_added_param);
2859  }
2860 
2861  /* Now we have all the paramids referenced in this node and children */
2862 
2863  if (!bms_is_subset(context.paramids, valid_params))
2864  elog(ERROR, "plan should not reference subplan's variable");
2865 
2866  /*
2867  * The plan node's allParam and extParam fields should include all its
2868  * referenced paramids, plus contributions from any child initPlans.
2869  * However, any setParams of the initPlans should not be present in the
2870  * parent node's extParams, only in its allParams. (It's possible that
2871  * some initPlans have extParams that are setParams of other initPlans.)
2872  */
2873 
2874  /* allParam must include initplans' extParams and setParams */
2875  plan->allParam = bms_union(context.paramids, initExtParam);
2876  plan->allParam = bms_add_members(plan->allParam, initSetParam);
2877  /* extParam must include any initplan extParams */
2878  plan->extParam = bms_union(context.paramids, initExtParam);
2879  /* but not any initplan setParams */
2880  plan->extParam = bms_del_members(plan->extParam, initSetParam);
2881 
2882  return plan->allParam;
2883 }
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
Bitmapset * bms_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:346
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:868
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
@ AGG_HASHED
Definition: nodes.h:355
#define planner_subplan_get_plan(root, subplan)
Definition: pathnodes.h:169
#define lfirst_int(lc)
Definition: pg_list.h:173
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
Definition: plannodes.h:997
Bitmapset * aggParams
Definition: plannodes.h:1023
Plan plan
Definition: plannodes.h:998
AggStrategy aggstrategy
Definition: plannodes.h:1001
List * custom_exprs
Definition: plannodes.h:745
List * custom_plans
Definition: plannodes.h:744
List * fdw_exprs
Definition: plannodes.h:715
List * fdw_recheck_quals
Definition: plannodes.h:718
List * functions
Definition: plannodes.h:612
int epqParam
Definition: plannodes.h:244
List * onConflictSet
Definition: plannodes.h:247
List * returningLists
Definition: plannodes.h:240
Node * onConflictWhere
Definition: plannodes.h:249
Bitmapset * extParam
Definition: plannodes.h:170
List * qual
Definition: plannodes.h:153
List * targetlist
Definition: plannodes.h:152
Bitmapset * outer_params
Definition: pathnodes.h:221
PlannerInfo * subroot
Definition: pathnodes.h:947
Index scanrelid
Definition: plannodes.h:389
List * setParam
Definition: primnodes.h:1088
Plan * subplan
Definition: plannodes.h:601
PlannerInfo * root
Definition: subselect.c:56
static Bitmapset * finalize_plan(PlannerInfo *root, Plan *plan, int gather_param, Bitmapset *valid_params, Bitmapset *scan_params)
Definition: subselect.c:2292

References AGG_HASHED, Agg::aggParams, Agg::aggstrategy, Assert, bms_add_member(), bms_add_members(), bms_copy(), bms_del_member(), bms_del_members(), bms_difference(), bms_free(), bms_is_subset(), bms_union(), context, CustomScan::custom_exprs, CustomScan::custom_plans, elog, ModifyTable::epqParam, ERROR, Plan::extParam, ForeignScan::fdw_exprs, ForeignScan::fdw_recheck_quals, finalize_agg_primnode(), finalize_primnode(), find_base_rel(), RangeTblFunction::funcexpr, FunctionScan::functions, lfirst, lfirst_int, list_length(), list_nth(), nodeTag, ModifyTable::onConflictSet, ModifyTable::onConflictWhere, PlannerInfo::outer_params, finalize_primnode_context::paramids, NestLoopParam::paramno, Agg::plan, plan, planner_subplan_get_plan, Plan::qual, ModifyTable::returningLists, finalize_primnode_context::root, root, SubqueryScan::scan, Scan::scanrelid, SubPlan::setParam, SubqueryScan::subplan, RelOptInfo::subroot, and Plan::targetlist.

Referenced by SS_finalize_plan().

◆ finalize_primnode()

static bool finalize_primnode ( Node node,
finalize_primnode_context context 
)
static

Definition at line 2890 of file subselect.c.

2891 {
2892  if (node == NULL)
2893  return false;
2894  if (IsA(node, Param))
2895  {
2896  if (((Param *) node)->paramkind == PARAM_EXEC)
2897  {
2898  int paramid = ((Param *) node)->paramid;
2899 
2900  context->paramids = bms_add_member(context->paramids, paramid);
2901  }
2902  return false; /* no more to do here */
2903  }
2904  else if (IsA(node, Aggref))
2905  {
2906  /*
2907  * Check to see if the aggregate will be replaced by a Param
2908  * referencing a subquery output during setrefs.c. If so, we must
2909  * account for that Param here. (For various reasons, it's not
2910  * convenient to perform that substitution earlier than setrefs.c, nor
2911  * to perform this processing after setrefs.c. Thus we need a wart
2912  * here.)
2913  */
2914  Aggref *aggref = (Aggref *) node;
2915  Param *aggparam;
2916 
2917  aggparam = find_minmax_agg_replacement_param(context->root, aggref);
2918  if (aggparam != NULL)
2919  context->paramids = bms_add_member(context->paramids,
2920  aggparam->paramid);
2921  /* Fall through to examine the agg's arguments */
2922  }
2923  else if (IsA(node, SubPlan))
2924  {
2925  SubPlan *subplan = (SubPlan *) node;
2926  Plan *plan = planner_subplan_get_plan(context->root, subplan);
2927  ListCell *lc;
2928  Bitmapset *subparamids;
2929 
2930  /* Recurse into the testexpr, but not into the Plan */
2931  finalize_primnode(subplan->testexpr, context);
2932 
2933  /*
2934  * Remove any param IDs of output parameters of the subplan that were
2935  * referenced in the testexpr. These are not interesting for
2936  * parameter change signaling since we always re-evaluate the subplan.
2937  * Note that this wouldn't work too well if there might be uses of the
2938  * same param IDs elsewhere in the plan, but that can't happen because
2939  * generate_new_exec_param never tries to merge params.
2940  */
2941  foreach(lc, subplan->paramIds)
2942  {
2943  context->paramids = bms_del_member(context->paramids,
2944  lfirst_int(lc));
2945  }
2946 
2947  /* Also examine args list */
2948  finalize_primnode((Node *) subplan->args, context);
2949 
2950  /*
2951  * Add params needed by the subplan to paramids, but excluding those
2952  * we will pass down to it. (We assume SS_finalize_plan was run on
2953  * the subplan already.)
2954  */
2955  subparamids = bms_copy(plan->extParam);
2956  foreach(lc, subplan->parParam)
2957  {
2958  subparamids = bms_del_member(subparamids, lfirst_int(lc));
2959  }
2960  context->paramids = bms_join(context->paramids, subparamids);
2961 
2962  return false; /* no more to do here */
2963  }
2965  (void *) context);
2966 }
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1230
@ PARAM_EXEC
Definition: primnodes.h:368
Param * find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
Definition: setrefs.c:3427
List * args
Definition: primnodes.h:1091
List * paramIds
Definition: primnodes.h:1068
Node * testexpr
Definition: primnodes.h:1067
List * parParam
Definition: primnodes.h:1090

References SubPlan::args, bms_add_member(), bms_copy(), bms_del_member(), bms_join(), context, expression_tree_walker, find_minmax_agg_replacement_param(), IsA, lfirst_int, PARAM_EXEC, Param::paramid, SubPlan::paramIds, SubPlan::parParam, plan, planner_subplan_get_plan, and SubPlan::testexpr.

Referenced by finalize_agg_primnode(), and finalize_plan().

◆ generate_subquery_params()

static List * generate_subquery_params ( PlannerInfo root,
List tlist,
List **  paramIds 
)
static

Definition at line 580 of file subselect.c.

581 {
582  List *result;
583  List *ids;
584  ListCell *lc;
585 
586  result = ids = NIL;
587  foreach(lc, tlist)
588  {
589  TargetEntry *tent = (TargetEntry *) lfirst(lc);
590  Param *param;
591 
592  if (tent->resjunk)
593  continue;
594 
596  exprType((Node *) tent->expr),
597  exprTypmod((Node *) tent->expr),
598  exprCollation((Node *) tent->expr));
599  result = lappend(result, param);
600  ids = lappend_int(ids, param->paramid);
601  }
602 
603  *paramIds = ids;
604  return result;
605 }

References TargetEntry::expr, exprCollation(), exprType(), exprTypmod(), generate_new_exec_param(), lappend(), lappend_int(), lfirst, NIL, Param::paramid, and root.

Referenced by build_subplan().

◆ generate_subquery_vars()

static List * generate_subquery_vars ( PlannerInfo root,
List tlist,
Index  varno 
)
static

Definition at line 613 of file subselect.c.

614 {
615  List *result;
616  ListCell *lc;
617 
618  result = NIL;
619  foreach(lc, tlist)
620  {
621  TargetEntry *tent = (TargetEntry *) lfirst(lc);
622  Var *var;
623 
624  if (tent->resjunk)
625  continue;
626 
627  var = makeVarFromTargetEntry(varno, tent);
628  result = lappend(result, var);
629  }
630 
631  return result;
632 }
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:105
Definition: primnodes.h:248

References lappend(), lfirst, makeVarFromTargetEntry(), and NIL.

Referenced by convert_ANY_sublink_to_join().

◆ get_first_col_type()

static void get_first_col_type ( Plan plan,
Oid coltype,
int32 coltypmod,
Oid colcollation 
)
static

Definition at line 118 of file subselect.c.

120 {
121  /* In cases such as EXISTS, tlist might be empty; arbitrarily use VOID */
122  if (plan->targetlist)
123  {
124  TargetEntry *tent = linitial_node(TargetEntry, plan->targetlist);
125 
126  if (!tent->resjunk)
127  {
128  *coltype = exprType((Node *) tent->expr);
129  *coltypmod = exprTypmod((Node *) tent->expr);
130  *colcollation = exprCollation((Node *) tent->expr);
131  return;
132  }
133  }
134  *coltype = VOIDOID;
135  *coltypmod = -1;
136  *colcollation = InvalidOid;
137 }
#define linitial_node(type, l)
Definition: pg_list.h:181

References TargetEntry::expr, exprCollation(), exprType(), exprTypmod(), InvalidOid, linitial_node, and plan.

Referenced by build_subplan(), SS_make_initplan_from_plan(), and SS_process_ctes().

◆ hash_ok_operator()

static bool hash_ok_operator ( OpExpr expr)
static

Definition at line 832 of file subselect.c.

833 {
834  Oid opid = expr->opno;
835 
836  /* quick out if not a binary operator */
837  if (list_length(expr->args) != 2)
838  return false;
839  if (opid == ARRAY_EQ_OP ||
840  opid == RECORD_EQ_OP)
841  {
842  /* these are strict, but must check input type to ensure hashable */
843  Node *leftarg = linitial(expr->args);
844 
845  return op_hashjoinable(opid, exprType(leftarg));
846  }
847  else
848  {
849  /* else must look up the operator properties */
850  HeapTuple tup;
851  Form_pg_operator optup;
852 
853  tup = SearchSysCache1(OPEROID, ObjectIdGetDatum(opid));
854  if (!HeapTupleIsValid(tup))
855  elog(ERROR, "cache lookup failed for operator %u", opid);
856  optup = (Form_pg_operator) GETSTRUCT(tup);
857  if (!optup->oprcanhash || !func_strict(optup->oprcode))
858  {
859  ReleaseSysCache(tup);
860  return false;
861  }
862  ReleaseSysCache(tup);
863  return true;
864  }
865 }
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define GETSTRUCT(TUP)
Definition: htup_details.h:653
bool op_hashjoinable(Oid opno, Oid inputtype)
Definition: lsyscache.c:1437
bool func_strict(Oid funcid)
Definition: lsyscache.c:1761
FormData_pg_operator * Form_pg_operator
Definition: pg_operator.h:83
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:266
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:218

References OpExpr::args, elog, ERROR, exprType(), func_strict(), GETSTRUCT, HeapTupleIsValid, linitial, list_length(), ObjectIdGetDatum(), op_hashjoinable(), OpExpr::opno, ReleaseSysCache(), and SearchSysCache1().

Referenced by convert_EXISTS_to_ANY(), and test_opexpr_is_hashable().

◆ inline_cte()

static void inline_cte ( PlannerInfo root,
CommonTableExpr cte 
)
static

Definition at line 1138 of file subselect.c.

1139 {
1141 
1142  context.ctename = cte->ctename;
1143  /* Start at levelsup = -1 because we'll immediately increment it */
1144  context.levelsup = -1;
1145  context.ctequery = castNode(Query, cte->ctequery);
1146 
1147  (void) inline_cte_walker((Node *) root->parse, &context);
1148 }
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
static bool inline_cte_walker(Node *node, inline_cte_walker_context *context)
Definition: subselect.c:1151

References castNode, context, CommonTableExpr::ctename, CommonTableExpr::ctequery, inline_cte_walker(), and root.

Referenced by SS_process_ctes().

◆ inline_cte_walker()

static bool inline_cte_walker ( Node node,
inline_cte_walker_context context 
)
static

Definition at line 1151 of file subselect.c.

1152 {
1153  if (node == NULL)
1154  return false;
1155  if (IsA(node, Query))
1156  {
1157  Query *query = (Query *) node;
1158 
1159  context->levelsup++;
1160 
1161  /*
1162  * Visit the query's RTE nodes after their contents; otherwise
1163  * query_tree_walker would descend into the newly inlined CTE query,
1164  * which we don't want.
1165  */
1168 
1169  context->levelsup--;
1170 
1171  return false;
1172  }
1173  else if (IsA(node, RangeTblEntry))
1174  {
1175  RangeTblEntry *rte = (RangeTblEntry *) node;
1176 
1177  if (rte->rtekind == RTE_CTE &&
1178  strcmp(rte->ctename, context->ctename) == 0 &&
1179  rte->ctelevelsup == context->levelsup)
1180  {
1181  /*
1182  * Found a reference to replace. Generate a copy of the CTE query
1183  * with appropriate level adjustment for outer references (e.g.,
1184  * to other CTEs).
1185  */
1186  Query *newquery = copyObject(context->ctequery);
1187 
1188  if (context->levelsup > 0)
1189  IncrementVarSublevelsUp((Node *) newquery, context->levelsup, 1);
1190 
1191  /*
1192  * Convert the RTE_CTE RTE into a RTE_SUBQUERY.
1193  *
1194  * Historically, a FOR UPDATE clause has been treated as extending
1195  * into views and subqueries, but not into CTEs. We preserve this
1196  * distinction by not trying to push rowmarks into the new
1197  * subquery.
1198  */
1199  rte->rtekind = RTE_SUBQUERY;
1200  rte->subquery = newquery;
1201  rte->security_barrier = false;
1202 
1203  /* Zero out CTE-specific fields */
1204  rte->ctename = NULL;
1205  rte->ctelevelsup = 0;
1206  rte->self_reference = false;
1207  rte->coltypes = NIL;
1208  rte->coltypmods = NIL;
1209  rte->colcollations = NIL;
1210  }
1211 
1212  return false;
1213  }
1214 
1216 }
#define QTW_EXAMINE_RTES_AFTER
Definition: nodeFuncs.h:28
@ RTE_SUBQUERY
Definition: parsenodes.h:1029
char * ctename
Definition: parsenodes.h:1206
Query * subquery
Definition: parsenodes.h:1114

References context, copyObject, RangeTblEntry::ctelevelsup, RangeTblEntry::ctename, expression_tree_walker, IncrementVarSublevelsUp(), IsA, NIL, QTW_EXAMINE_RTES_AFTER, query_tree_walker, RTE_CTE, RTE_SUBQUERY, RangeTblEntry::rtekind, and RangeTblEntry::subquery.

Referenced by inline_cte().

◆ make_subplan()

static Node* make_subplan ( PlannerInfo root,
Query orig_subquery,
SubLinkType  subLinkType,
int  subLinkId,
Node testexpr,
bool  isTopQual 
)
static

Definition at line 162 of file subselect.c.

165 {
166  Query *subquery;
167  bool simple_exists = false;
168  double tuple_fraction;
169  PlannerInfo *subroot;
170  RelOptInfo *final_rel;
171  Path *best_path;
172  Plan *plan;
173  List *plan_params;
174  Node *result;
175 
176  /*
177  * Copy the source Query node. This is a quick and dirty kluge to resolve
178  * the fact that the parser can generate trees with multiple links to the
179  * same sub-Query node, but the planner wants to scribble on the Query.
180  * Try to clean this up when we do querytree redesign...
181  */
182  subquery = copyObject(orig_subquery);
183 
184  /*
185  * If it's an EXISTS subplan, we might be able to simplify it.
186  */
187  if (subLinkType == EXISTS_SUBLINK)
188  simple_exists = simplify_EXISTS_query(root, subquery);
189 
190  /*
191  * For an EXISTS subplan, tell lower-level planner to expect that only the
192  * first tuple will be retrieved. For ALL and ANY subplans, we will be
193  * able to stop evaluating if the test condition fails or matches, so very
194  * often not all the tuples will be retrieved; for lack of a better idea,
195  * specify 50% retrieval. For EXPR, MULTIEXPR, and ROWCOMPARE subplans,
196  * use default behavior (we're only expecting one row out, anyway).
197  *
198  * NOTE: if you change these numbers, also change cost_subplan() in
199  * path/costsize.c.
200  *
201  * XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash
202  * its output. In that case it would've been better to specify full
203  * retrieval. At present, however, we can only check hashability after
204  * we've made the subplan :-(. (Determining whether it'll fit in hash_mem
205  * is the really hard part.) Therefore, we don't want to be too
206  * optimistic about the percentage of tuples retrieved, for fear of
207  * selecting a plan that's bad for the materialization case.
208  */
209  if (subLinkType == EXISTS_SUBLINK)
210  tuple_fraction = 1.0; /* just like a LIMIT 1 */
211  else if (subLinkType == ALL_SUBLINK ||
212  subLinkType == ANY_SUBLINK)
213  tuple_fraction = 0.5; /* 50% */
214  else
215  tuple_fraction = 0.0; /* default behavior */
216 
217  /* plan_params should not be in use in current query level */
218  Assert(root->plan_params == NIL);
219 
220  /* Generate Paths for the subquery */
221  subroot = subquery_planner(root->glob, subquery, root, false,
222  tuple_fraction, NULL);
223 
224  /* Isolate the params needed by this specific subplan */
225  plan_params = root->plan_params;
226  root->plan_params = NIL;
227 
228  /*
229  * Select best Path and turn it into a Plan. At least for now, there
230  * seems no reason to postpone doing that.
231  */
232  final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
233  best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
234 
235  plan = create_plan(subroot, best_path);
236 
237  /* And convert to SubPlan or InitPlan format. */
238  result = build_subplan(root, plan, best_path,
239  subroot, plan_params,
240  subLinkType, subLinkId,
241  testexpr, NIL, isTopQual);
242 
243  /*
244  * If it's a correlated EXISTS with an unimportant targetlist, we might be
245  * able to transform it to the equivalent of an IN and then implement it
246  * by hashing. We don't have enough information yet to tell which way is
247  * likely to be better (it depends on the expected number of executions of
248  * the EXISTS qual, and we are much too early in planning the outer query
249  * to be able to guess that). So we generate both plans, if possible, and
250  * leave it to setrefs.c to decide which to use.
251  */
252  if (simple_exists && IsA(result, SubPlan))
253  {
254  Node *newtestexpr;
255  List *paramIds;
256 
257  /* Make a second copy of the original subquery */
258  subquery = copyObject(orig_subquery);
259  /* and re-simplify */
260  simple_exists = simplify_EXISTS_query(root, subquery);
261  Assert(simple_exists);
262  /* See if it can be converted to an ANY query */
263  subquery = convert_EXISTS_to_ANY(root, subquery,
264  &newtestexpr, &paramIds);
265  if (subquery)
266  {
267  /* Generate Paths for the ANY subquery; we'll need all rows */
268  subroot = subquery_planner(root->glob, subquery, root, false, 0.0,
269  NULL);
270 
271  /* Isolate the params needed by this specific subplan */
272  plan_params = root->plan_params;
273  root->plan_params = NIL;
274 
275  /* Select best Path */
276  final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
277  best_path = final_rel->cheapest_total_path;
278 
279  /* Now we can check if it'll fit in hash_mem */
280  if (subpath_is_hashable(best_path))
281  {
282  SubPlan *hashplan;
283  AlternativeSubPlan *asplan;
284 
285  /* OK, finish planning the ANY subquery */
286  plan = create_plan(subroot, best_path);
287 
288  /* ... and convert to SubPlan format */
289  hashplan = castNode(SubPlan,
290  build_subplan(root, plan, best_path,
291  subroot, plan_params,
292  ANY_SUBLINK, 0,
293  newtestexpr,
294  paramIds,
295  true));
296  /* Check we got what we expected */
297  Assert(hashplan->parParam == NIL);
298  Assert(hashplan->useHashTable);
299 
300  /* Leave it to setrefs.c to decide which plan to use */
301  asplan = makeNode(AlternativeSubPlan);
302  asplan->subplans = list_make2(result, hashplan);
303  result = (Node *) asplan;
304  root->hasAlternativeSubPlans = true;
305  }
306  }
307  }
308 
309  return result;
310 }
Plan * create_plan(PlannerInfo *root, Path *best_path)
Definition: createplan.c:337
@ UPPERREL_FINAL
Definition: pathnodes.h:79
#define list_make2(x1, x2)
Definition: pg_list.h:214
PlannerInfo * subquery_planner(PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction, SetOperationStmt *setops)
Definition: planner.c:628
Path * get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction)
Definition: planner.c:6422
@ ALL_SUBLINK
Definition: primnodes.h:998
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1470
struct Path * cheapest_total_path
Definition: pathnodes.h:896
bool useHashTable
Definition: primnodes.h:1079
static Query * convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect, Node **testexpr, List **paramIds)
Definition: subselect.c:1628
static bool subpath_is_hashable(Path *path)
Definition: subselect.c:736
static Node * build_subplan(PlannerInfo *root, Plan *plan, Path *path, PlannerInfo *subroot, List *plan_params, SubLinkType subLinkType, int subLinkId, Node *testexpr, List *testexpr_paramids, bool unknownEqFalse)
Definition: subselect.c:319

References ALL_SUBLINK, ANY_SUBLINK, Assert, build_subplan(), castNode, RelOptInfo::cheapest_total_path, convert_EXISTS_to_ANY(), copyObject, create_plan(), EXISTS_SUBLINK, fetch_upper_rel(), get_cheapest_fractional_path(), IsA, list_make2, makeNode, NIL, SubPlan::parParam, plan, root, simplify_EXISTS_query(), subpath_is_hashable(), AlternativeSubPlan::subplans, subquery_planner(), UPPERREL_FINAL, and SubPlan::useHashTable.

Referenced by process_sublinks_mutator().

◆ process_sublinks_mutator()

static Node * process_sublinks_mutator ( Node node,
process_sublinks_context context 
)
static

Definition at line 1929 of file subselect.c.

1930 {
1931  process_sublinks_context locContext;
1932 
1933  locContext.root = context->root;
1934 
1935  if (node == NULL)
1936  return NULL;
1937  if (IsA(node, SubLink))
1938  {
1939  SubLink *sublink = (SubLink *) node;
1940  Node *testexpr;
1941 
1942  /*
1943  * First, recursively process the lefthand-side expressions, if any.
1944  * They're not top-level anymore.
1945  */
1946  locContext.isTopQual = false;
1947  testexpr = process_sublinks_mutator(sublink->testexpr, &locContext);
1948 
1949  /*
1950  * Now build the SubPlan node and make the expr to return.
1951  */
1952  return make_subplan(context->root,
1953  (Query *) sublink->subselect,
1954  sublink->subLinkType,
1955  sublink->subLinkId,
1956  testexpr,
1957  context->isTopQual);
1958  }
1959 
1960  /*
1961  * Don't recurse into the arguments of an outer PHV, Aggref or
1962  * GroupingFunc here. Any SubLinks in the arguments have to be dealt with
1963  * at the outer query level; they'll be handled when build_subplan
1964  * collects the PHV, Aggref or GroupingFunc into the arguments to be
1965  * passed down to the current subplan.
1966  */
1967  if (IsA(node, PlaceHolderVar))
1968  {
1969  if (((PlaceHolderVar *) node)->phlevelsup > 0)
1970  return node;
1971  }
1972  else if (IsA(node, Aggref))
1973  {
1974  if (((Aggref *) node)->agglevelsup > 0)
1975  return node;
1976  }
1977  else if (IsA(node, GroupingFunc))
1978  {
1979  if (((GroupingFunc *) node)->agglevelsup > 0)
1980  return node;
1981  }
1982 
1983  /*
1984  * We should never see a SubPlan expression in the input (since this is
1985  * the very routine that creates 'em to begin with). We shouldn't find
1986  * ourselves invoked directly on a Query, either.
1987  */
1988  Assert(!IsA(node, SubPlan));
1989  Assert(!IsA(node, AlternativeSubPlan));
1990  Assert(!IsA(node, Query));
1991 
1992  /*
1993  * Because make_subplan() could return an AND or OR clause, we have to
1994  * take steps to preserve AND/OR flatness of a qual. We assume the input
1995  * has been AND/OR flattened and so we need no recursion here.
1996  *
1997  * (Due to the coding here, we will not get called on the List subnodes of
1998  * an AND; and the input is *not* yet in implicit-AND format. So no check
1999  * is needed for a bare List.)
2000  *
2001  * Anywhere within the top-level AND/OR clause structure, we can tell
2002  * make_subplan() that NULL and FALSE are interchangeable. So isTopQual
2003  * propagates down in both cases. (Note that this is unlike the meaning
2004  * of "top level qual" used in most other places in Postgres.)
2005  */
2006  if (is_andclause(node))
2007  {
2008  List *newargs = NIL;
2009  ListCell *l;
2010 
2011  /* Still at qual top-level */
2012  locContext.isTopQual = context->isTopQual;
2013 
2014  foreach(l, ((BoolExpr *) node)->args)
2015  {
2016  Node *newarg;
2017 
2018  newarg = process_sublinks_mutator(lfirst(l), &locContext);
2019  if (is_andclause(newarg))
2020  newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
2021  else
2022  newargs = lappend(newargs, newarg);
2023  }
2024  return (Node *) make_andclause(newargs);
2025  }
2026 
2027  if (is_orclause(node))
2028  {
2029  List *newargs = NIL;
2030  ListCell *l;
2031 
2032  /* Still at qual top-level */
2033  locContext.isTopQual = context->isTopQual;
2034 
2035  foreach(l, ((BoolExpr *) node)->args)
2036  {
2037  Node *newarg;
2038 
2039  newarg = process_sublinks_mutator(lfirst(l), &locContext);
2040  if (is_orclause(newarg))
2041  newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
2042  else
2043  newargs = lappend(newargs, newarg);
2044  }
2045  return (Node *) make_orclause(newargs);
2046  }
2047 
2048  /*
2049  * If we recurse down through anything other than an AND or OR node, we
2050  * are definitely not at top qual level anymore.
2051  */
2052  locContext.isTopQual = false;
2053 
2054  return expression_tree_mutator(node,
2056  (void *) &locContext);
2057 }
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:654
Expr * make_orclause(List *orclauses)
Definition: makefuncs.c:670
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:105
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:114
static Node * process_sublinks_mutator(Node *node, process_sublinks_context *context)
Definition: subselect.c:1929
static Node * make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, int subLinkId, Node *testexpr, bool isTopQual)
Definition: subselect.c:162

References generate_unaccent_rules::args, Assert, context, expression_tree_mutator, is_andclause(), is_orclause(), IsA, process_sublinks_context::isTopQual, lappend(), lfirst, list_concat(), make_andclause(), make_orclause(), make_subplan(), NIL, process_sublinks_context::root, SubLink::subLinkId, SubLink::subLinkType, SubLink::subselect, and SubLink::testexpr.

Referenced by SS_process_sublinks().

◆ replace_correlation_vars_mutator()

static Node * replace_correlation_vars_mutator ( Node node,
PlannerInfo root 
)
static

Definition at line 1875 of file subselect.c.

1876 {
1877  if (node == NULL)
1878  return NULL;
1879  if (IsA(node, Var))
1880  {
1881  if (((Var *) node)->varlevelsup > 0)
1882  return (Node *) replace_outer_var(root, (Var *) node);
1883  }
1884  if (IsA(node, PlaceHolderVar))
1885  {
1886  if (((PlaceHolderVar *) node)->phlevelsup > 0)
1888  (PlaceHolderVar *) node);
1889  }
1890  if (IsA(node, Aggref))
1891  {
1892  if (((Aggref *) node)->agglevelsup > 0)
1893  return (Node *) replace_outer_agg(root, (Aggref *) node);
1894  }
1895  if (IsA(node, GroupingFunc))
1896  {
1897  if (((GroupingFunc *) node)->agglevelsup > 0)
1898  return (Node *) replace_outer_grouping(root, (GroupingFunc *) node);
1899  }
1900  if (IsA(node, MergeSupportFunc))
1901  {
1902  if (root->parse->commandType != CMD_MERGE)
1904  (MergeSupportFunc *) node);
1905  }
1906  return expression_tree_mutator(node,
1908  (void *) root);
1909 }
@ CMD_MERGE
Definition: nodes.h:269
Param * replace_outer_var(PlannerInfo *root, Var *var)
Definition: paramassign.c:120
Param * replace_outer_grouping(PlannerInfo *root, GroupingFunc *grp)
Definition: paramassign.c:270
Param * replace_outer_placeholdervar(PlannerInfo *root, PlaceHolderVar *phv)
Definition: paramassign.c:197
Param * replace_outer_merge_support(PlannerInfo *root, MergeSupportFunc *msf)
Definition: paramassign.c:317
Param * replace_outer_agg(PlannerInfo *root, Aggref *agg)
Definition: paramassign.c:224
static Node * replace_correlation_vars_mutator(Node *node, PlannerInfo *root)
Definition: subselect.c:1875

References CMD_MERGE, expression_tree_mutator, IsA, replace_outer_agg(), replace_outer_grouping(), replace_outer_merge_support(), replace_outer_placeholdervar(), replace_outer_var(), and root.

Referenced by SS_replace_correlation_vars().

◆ simplify_EXISTS_query()

static bool simplify_EXISTS_query ( PlannerInfo root,
Query query 
)
static

Definition at line 1540 of file subselect.c.

1541 {
1542  /*
1543  * We don't try to simplify at all if the query uses set operations,
1544  * aggregates, grouping sets, SRFs, modifying CTEs, HAVING, OFFSET, or FOR
1545  * UPDATE/SHARE; none of these seem likely in normal usage and their
1546  * possible effects are complex. (Note: we could ignore an "OFFSET 0"
1547  * clause, but that traditionally is used as an optimization fence, so we
1548  * don't.)
1549  */
1550  if (query->commandType != CMD_SELECT ||
1551  query->setOperations ||
1552  query->hasAggs ||
1553  query->groupingSets ||
1554  query->hasWindowFuncs ||
1555  query->hasTargetSRFs ||
1556  query->hasModifyingCTE ||
1557  query->havingQual ||
1558  query->limitOffset ||
1559  query->rowMarks)
1560  return false;
1561 
1562  /*
1563  * LIMIT with a constant positive (or NULL) value doesn't affect the
1564  * semantics of EXISTS, so let's ignore such clauses. This is worth doing
1565  * because people accustomed to certain other DBMSes may be in the habit
1566  * of writing EXISTS(SELECT ... LIMIT 1) as an optimization. If there's a
1567  * LIMIT with anything else as argument, though, we can't simplify.
1568  */
1569  if (query->limitCount)
1570  {
1571  /*
1572  * The LIMIT clause has not yet been through eval_const_expressions,
1573  * so we have to apply that here. It might seem like this is a waste
1574  * of cycles, since the only case plausibly worth worrying about is
1575  * "LIMIT 1" ... but what we'll actually see is "LIMIT int8(1::int4)",
1576  * so we have to fold constants or we're not going to recognize it.
1577  */
1578  Node *node = eval_const_expressions(root, query->limitCount);
1579  Const *limit;
1580 
1581  /* Might as well update the query if we simplified the clause. */
1582  query->limitCount = node;
1583 
1584  if (!IsA(node, Const))
1585  return false;
1586 
1587  limit = (Const *) node;
1588  Assert(limit->consttype == INT8OID);
1589  if (!limit->constisnull && DatumGetInt64(limit->constvalue) <= 0)
1590  return false;
1591 
1592  /* Whether or not the targetlist is safe, we can drop the LIMIT. */
1593  query->limitCount = NULL;
1594  }
1595 
1596  /*
1597  * Otherwise, we can throw away the targetlist, as well as any GROUP,
1598  * WINDOW, DISTINCT, and ORDER BY clauses; none of those clauses will
1599  * change a nonzero-rows result to zero rows or vice versa. (Furthermore,
1600  * since our parsetree representation of these clauses depends on the
1601  * targetlist, we'd better throw them away if we drop the targetlist.)
1602  */
1603  query->targetList = NIL;
1604  query->groupClause = NIL;
1605  query->windowClause = NIL;
1606  query->distinctClause = NIL;
1607  query->sortClause = NIL;
1608  query->hasDistinctOn = false;
1609 
1610  return true;
1611 }
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:385
Oid consttype
Definition: primnodes.h:312
Node * limitCount
Definition: parsenodes.h:214
Node * setOperations
Definition: parsenodes.h:219
List * groupClause
Definition: parsenodes.h:200
Node * havingQual
Definition: parsenodes.h:205
Node * limitOffset
Definition: parsenodes.h:213
List * windowClause
Definition: parsenodes.h:207
List * groupingSets
Definition: parsenodes.h:203
List * distinctClause
Definition: parsenodes.h:209
List * sortClause
Definition: parsenodes.h:211

References Assert, CMD_SELECT, Query::commandType, Const::consttype, DatumGetInt64(), Query::distinctClause, eval_const_expressions(), Query::groupClause, Query::groupingSets, Query::havingQual, IsA, Query::limitCount, Query::limitOffset, NIL, root, Query::rowMarks, Query::setOperations, Query::sortClause, Query::targetList, and Query::windowClause.

Referenced by convert_EXISTS_sublink_to_join(), and make_subplan().

◆ SS_attach_initplans()

void SS_attach_initplans ( PlannerInfo root,
Plan plan 
)

Definition at line 2239 of file subselect.c.

2240 {
2241  plan->initPlan = root->init_plans;
2242 }

References plan, and root.

Referenced by create_plan().

◆ SS_charge_for_initplans()

void SS_charge_for_initplans ( PlannerInfo root,
RelOptInfo final_rel 
)

Definition at line 2134 of file subselect.c.

2135 {
2136  Cost initplan_cost;
2137  bool unsafe_initplans;
2138  ListCell *lc;
2139 
2140  /* Nothing to do if no initPlans */
2141  if (root->init_plans == NIL)
2142  return;
2143 
2144  /*
2145  * Compute the cost increment just once, since it will be the same for all
2146  * Paths. Also check for parallel-unsafe initPlans.
2147  */
2148  SS_compute_initplan_cost(root->init_plans,
2149  &initplan_cost, &unsafe_initplans);
2150 
2151  /*
2152  * Now adjust the costs and parallel_safe flags.
2153  */
2154  foreach(lc, final_rel->pathlist)
2155  {
2156  Path *path = (Path *) lfirst(lc);
2157 
2158  path->startup_cost += initplan_cost;
2159  path->total_cost += initplan_cost;
2160  if (unsafe_initplans)
2161  path->parallel_safe = false;
2162  }
2163 
2164  /*
2165  * Adjust partial paths' costs too, or forget them entirely if we must
2166  * consider the rel parallel-unsafe.
2167  */
2168  if (unsafe_initplans)
2169  {
2170  final_rel->partial_pathlist = NIL;
2171  final_rel->consider_parallel = false;
2172  }
2173  else
2174  {
2175  foreach(lc, final_rel->partial_pathlist)
2176  {
2177  Path *path = (Path *) lfirst(lc);
2178 
2179  path->startup_cost += initplan_cost;
2180  path->total_cost += initplan_cost;
2181  }
2182  }
2183 
2184  /* We needn't do set_cheapest() here, caller will do it */
2185 }
double Cost
Definition: nodes.h:251
Cost startup_cost
Definition: pathnodes.h:1661
Cost total_cost
Definition: pathnodes.h:1662
bool parallel_safe
Definition: pathnodes.h:1655
bool consider_parallel
Definition: pathnodes.h:881
List * pathlist
Definition: pathnodes.h:892
List * partial_pathlist
Definition: pathnodes.h:894
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2198

References RelOptInfo::consider_parallel, lfirst, NIL, Path::parallel_safe, RelOptInfo::partial_pathlist, RelOptInfo::pathlist, root, SS_compute_initplan_cost(), Path::startup_cost, and Path::total_cost.

Referenced by build_minmax_path(), and subquery_planner().

◆ SS_compute_initplan_cost()

void SS_compute_initplan_cost ( List init_plans,
Cost initplan_cost_p,
bool unsafe_initplans_p 
)

Definition at line 2198 of file subselect.c.

2201 {
2202  Cost initplan_cost;
2203  bool unsafe_initplans;
2204  ListCell *lc;
2205 
2206  /*
2207  * We assume each initPlan gets run once during top plan startup. This is
2208  * a conservative overestimate, since in fact an initPlan might be
2209  * executed later than plan startup, or even not at all.
2210  */
2211  initplan_cost = 0;
2212  unsafe_initplans = false;
2213  foreach(lc, init_plans)
2214  {
2215  SubPlan *initsubplan = lfirst_node(SubPlan, lc);
2216 
2217  initplan_cost += initsubplan->startup_cost + initsubplan->per_call_cost;
2218  if (!initsubplan->parallel_safe)
2219  unsafe_initplans = true;
2220  }
2221  *initplan_cost_p = initplan_cost;
2222  *unsafe_initplans_p = unsafe_initplans;
2223 }
#define lfirst_node(type, lc)
Definition: pg_list.h:176
bool parallel_safe
Definition: primnodes.h:1084
Cost startup_cost
Definition: primnodes.h:1093
Cost per_call_cost
Definition: primnodes.h:1094

References lfirst_node, SubPlan::parallel_safe, SubPlan::per_call_cost, and SubPlan::startup_cost.

Referenced by clean_up_removed_plan_level(), materialize_finished_plan(), SS_charge_for_initplans(), and standard_planner().

◆ SS_finalize_plan()

void SS_finalize_plan ( PlannerInfo root,
Plan plan 
)

Definition at line 2254 of file subselect.c.

2255 {
2256  /* No setup needed, just recurse through plan tree. */
2257  (void) finalize_plan(root, plan, -1, root->outer_params, NULL);
2258 }

References finalize_plan(), plan, and root.

Referenced by standard_planner().

◆ SS_identify_outer_params()

void SS_identify_outer_params ( PlannerInfo root)

Definition at line 2072 of file subselect.c.

2073 {
2074  Bitmapset *outer_params;
2075  PlannerInfo *proot;
2076  ListCell *l;
2077 
2078  /*
2079  * If no parameters have been assigned anywhere in the tree, we certainly
2080  * don't need to do anything here.
2081  */
2082  if (root->glob->paramExecTypes == NIL)
2083  return;
2084 
2085  /*
2086  * Scan all query levels above this one to see which parameters are due to
2087  * be available from them, either because lower query levels have
2088  * requested them (via plan_params) or because they will be available from
2089  * initPlans of those levels.
2090  */
2091  outer_params = NULL;
2092  for (proot = root->parent_root; proot != NULL; proot = proot->parent_root)
2093  {
2094  /* Include ordinary Var/PHV/Aggref/GroupingFunc params */
2095  foreach(l, proot->plan_params)
2096  {
2097  PlannerParamItem *pitem = (PlannerParamItem *) lfirst(l);
2098 
2099  outer_params = bms_add_member(outer_params, pitem->paramId);
2100  }
2101  /* Include any outputs of outer-level initPlans */
2102  foreach(l, proot->init_plans)
2103  {
2104  SubPlan *initsubplan = (SubPlan *) lfirst(l);
2105  ListCell *l2;
2106 
2107  foreach(l2, initsubplan->setParam)
2108  {
2109  outer_params = bms_add_member(outer_params, lfirst_int(l2));
2110  }
2111  }
2112  /* Include worktable ID, if a recursive query is being planned */
2113  if (proot->wt_param_id >= 0)
2114  outer_params = bms_add_member(outer_params, proot->wt_param_id);
2115  }
2116  root->outer_params = outer_params;
2117 }
List * init_plans
Definition: pathnodes.h:299
int wt_param_id
Definition: pathnodes.h:530
List * plan_params
Definition: pathnodes.h:220

References bms_add_member(), PlannerInfo::init_plans, lfirst, lfirst_int, NIL, PlannerParamItem::paramId, PlannerInfo::plan_params, root, SubPlan::setParam, and PlannerInfo::wt_param_id.

Referenced by build_minmax_path(), and subquery_planner().

◆ SS_make_initplan_from_plan()

void SS_make_initplan_from_plan ( PlannerInfo root,
PlannerInfo subroot,
Plan plan,
Param prm 
)

Definition at line 3017 of file subselect.c.

3020 {
3021  SubPlan *node;
3022 
3023  /*
3024  * Add the subplan and its PlannerInfo, as well as a dummy path entry, to
3025  * the global lists. Ideally we'd save a real path, but right now our
3026  * sole caller doesn't build a path that exactly matches the plan. Since
3027  * we're not currently going to need the path for an initplan, it's not
3028  * worth requiring construction of such a path.
3029  */
3030  root->glob->subplans = lappend(root->glob->subplans, plan);
3031  root->glob->subpaths = lappend(root->glob->subpaths, NULL);
3032  root->glob->subroots = lappend(root->glob->subroots, subroot);
3033 
3034  /*
3035  * Create a SubPlan node and add it to the outer list of InitPlans. Note
3036  * it has to appear after any other InitPlans it might depend on (see
3037  * comments in ExecReScan).
3038  */
3039  node = makeNode(SubPlan);
3040  node->subLinkType = EXPR_SUBLINK;
3041  node->plan_id = list_length(root->glob->subplans);
3042  node->plan_name = psprintf("InitPlan %d", node->plan_id);
3044  &node->firstColCollation);
3045  node->parallel_safe = plan->parallel_safe;
3046  node->setParam = list_make1_int(prm->paramid);
3047 
3048  root->init_plans = lappend(root->init_plans, node);
3049 
3050  /*
3051  * The node can't have any inputs (since it's an initplan), so the
3052  * parParam and args lists remain empty.
3053  */
3054 
3055  /* Set costs of SubPlan using info from the plan tree */
3056  cost_subplan(subroot, node, plan);
3057 }
int plan_id
Definition: primnodes.h:1070
char * plan_name
Definition: primnodes.h:1072
int32 firstColTypmod
Definition: primnodes.h:1075
Oid firstColCollation
Definition: primnodes.h:1076
SubLinkType subLinkType
Definition: primnodes.h:1065
Oid firstColType
Definition: primnodes.h:1074

References cost_subplan(), EXPR_SUBLINK, SubPlan::firstColCollation, SubPlan::firstColType, SubPlan::firstColTypmod, get_first_col_type(), lappend(), list_length(), list_make1_int, makeNode, SubPlan::parallel_safe, Param::paramid, plan, SubPlan::plan_id, SubPlan::plan_name, psprintf(), root, SubPlan::setParam, and SubPlan::subLinkType.

Referenced by create_minmaxagg_plan().

◆ SS_make_initplan_output_param()

Param* SS_make_initplan_output_param ( PlannerInfo root,
Oid  resulttype,
int32  resulttypmod,
Oid  resultcollation 
)

Definition at line 3001 of file subselect.c.

3004 {
3005  return generate_new_exec_param(root, resulttype,
3006  resulttypmod, resultcollation);
3007 }

References generate_new_exec_param(), and root.

Referenced by preprocess_minmax_aggregates().

◆ SS_process_ctes()

void SS_process_ctes ( PlannerInfo root)

Definition at line 880 of file subselect.c.

881 {
882  ListCell *lc;
883 
884  Assert(root->cte_plan_ids == NIL);
885 
886  foreach(lc, root->parse->cteList)
887  {
888  CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
889  CmdType cmdType = ((Query *) cte->ctequery)->commandType;
890  Query *subquery;
891  PlannerInfo *subroot;
892  RelOptInfo *final_rel;
893  Path *best_path;
894  Plan *plan;
895  SubPlan *splan;
896  int paramid;
897 
898  /*
899  * Ignore SELECT CTEs that are not actually referenced anywhere.
900  */
901  if (cte->cterefcount == 0 && cmdType == CMD_SELECT)
902  {
903  /* Make a dummy entry in cte_plan_ids */
904  root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
905  continue;
906  }
907 
908  /*
909  * Consider inlining the CTE (creating RTE_SUBQUERY RTE(s)) instead of
910  * implementing it as a separately-planned CTE.
911  *
912  * We cannot inline if any of these conditions hold:
913  *
914  * 1. The user said not to (the CTEMaterializeAlways option).
915  *
916  * 2. The CTE is recursive.
917  *
918  * 3. The CTE has side-effects; this includes either not being a plain
919  * SELECT, or containing volatile functions. Inlining might change
920  * the side-effects, which would be bad.
921  *
922  * 4. The CTE is multiply-referenced and contains a self-reference to
923  * a recursive CTE outside itself. Inlining would result in multiple
924  * recursive self-references, which we don't support.
925  *
926  * Otherwise, we have an option whether to inline or not. That should
927  * always be a win if there's just a single reference, but if the CTE
928  * is multiply-referenced then it's unclear: inlining adds duplicate
929  * computations, but the ability to absorb restrictions from the outer
930  * query level could outweigh that. We do not have nearly enough
931  * information at this point to tell whether that's true, so we let
932  * the user express a preference. Our default behavior is to inline
933  * only singly-referenced CTEs, but a CTE marked CTEMaterializeNever
934  * will be inlined even if multiply referenced.
935  *
936  * Note: we check for volatile functions last, because that's more
937  * expensive than the other tests needed.
938  */
939  if ((cte->ctematerialized == CTEMaterializeNever ||
941  cte->cterefcount == 1)) &&
942  !cte->cterecursive &&
943  cmdType == CMD_SELECT &&
944  !contain_dml(cte->ctequery) &&
945  (cte->cterefcount <= 1 ||
948  {
949  inline_cte(root, cte);
950  /* Make a dummy entry in cte_plan_ids */
951  root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
952  continue;
953  }
954 
955  /*
956  * Copy the source Query node. Probably not necessary, but let's keep
957  * this similar to make_subplan.
958  */
959  subquery = (Query *) copyObject(cte->ctequery);
960 
961  /* plan_params should not be in use in current query level */
962  Assert(root->plan_params == NIL);
963 
964  /*
965  * Generate Paths for the CTE query. Always plan for full retrieval
966  * --- we don't have enough info to predict otherwise.
967  */
968  subroot = subquery_planner(root->glob, subquery, root,
969  cte->cterecursive, 0.0, NULL);
970 
971  /*
972  * Since the current query level doesn't yet contain any RTEs, it
973  * should not be possible for the CTE to have requested parameters of
974  * this level.
975  */
976  if (root->plan_params)
977  elog(ERROR, "unexpected outer reference in CTE query");
978 
979  /*
980  * Select best Path and turn it into a Plan. At least for now, there
981  * seems no reason to postpone doing that.
982  */
983  final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
984  best_path = final_rel->cheapest_total_path;
985 
986  plan = create_plan(subroot, best_path);
987 
988  /*
989  * Make a SubPlan node for it. This is just enough unlike
990  * build_subplan that we can't share code.
991  *
992  * Note plan_id, plan_name, and cost fields are set further down.
993  */
995  splan->subLinkType = CTE_SUBLINK;
996  splan->testexpr = NULL;
997  splan->paramIds = NIL;
998  get_first_col_type(plan, &splan->firstColType, &splan->firstColTypmod,
999  &splan->firstColCollation);
1000  splan->useHashTable = false;
1001  splan->unknownEqFalse = false;
1002 
1003  /*
1004  * CTE scans are not considered for parallelism (cf
1005  * set_rel_consider_parallel).
1006  */
1007  splan->parallel_safe = false;
1008  splan->setParam = NIL;
1009  splan->parParam = NIL;
1010  splan->args = NIL;
1011 
1012  /*
1013  * The node can't have any inputs (since it's an initplan), so the
1014  * parParam and args lists remain empty. (It could contain references
1015  * to earlier CTEs' output param IDs, but CTE outputs are not
1016  * propagated via the args list.)
1017  */
1018 
1019  /*
1020  * Assign a param ID to represent the CTE's output. No ordinary
1021  * "evaluation" of this param slot ever happens, but we use the param
1022  * ID for setParam/chgParam signaling just as if the CTE plan were
1023  * returning a simple scalar output. (Also, the executor abuses the
1024  * ParamExecData slot for this param ID for communication among
1025  * multiple CteScan nodes that might be scanning this CTE.)
1026  */
1027  paramid = assign_special_exec_param(root);
1028  splan->setParam = list_make1_int(paramid);
1029 
1030  /*
1031  * Add the subplan, its path, and its PlannerInfo to the global lists.
1032  */
1033  root->glob->subplans = lappend(root->glob->subplans, plan);
1034  root->glob->subpaths = lappend(root->glob->subpaths, best_path);
1035  root->glob->subroots = lappend(root->glob->subroots, subroot);
1036  splan->plan_id = list_length(root->glob->subplans);
1037 
1038  root->init_plans = lappend(root->init_plans, splan);
1039 
1040  root->cte_plan_ids = lappend_int(root->cte_plan_ids, splan->plan_id);
1041 
1042  /* Label the subplan for EXPLAIN purposes */
1043  splan->plan_name = psprintf("CTE %s", cte->ctename);
1044 
1045  /* Lastly, fill in the cost estimates for use later */
1047  }
1048 }
CmdType
Definition: nodes.h:263
int assign_special_exec_param(PlannerInfo *root)
Definition: paramassign.c:664
@ CTEMaterializeNever
Definition: parsenodes.h:1643
@ CTEMaterializeDefault
Definition: parsenodes.h:1641
@ CTE_SUBLINK
Definition: primnodes.h:1004
CTEMaterialize ctematerialized
Definition: parsenodes.h:1682
static bool contain_outer_selfref(Node *node)
Definition: subselect.c:1083
static bool contain_dml(Node *node)
Definition: subselect.c:1056
static void inline_cte(PlannerInfo *root, CommonTableExpr *cte)
Definition: subselect.c:1138

References Assert, assign_special_exec_param(), RelOptInfo::cheapest_total_path, CMD_SELECT, contain_dml(), contain_outer_selfref(), contain_volatile_functions(), copyObject, cost_subplan(), create_plan(), CTE_SUBLINK, CommonTableExpr::ctematerialized, CTEMaterializeDefault, CTEMaterializeNever, CommonTableExpr::ctename, CommonTableExpr::ctequery, elog, ERROR, fetch_upper_rel(), get_first_col_type(), inline_cte(), lappend(), lappend_int(), lfirst, list_length(), list_make1_int, makeNode, NIL, plan, psprintf(), root, splan, subquery_planner(), and UPPERREL_FINAL.

Referenced by subquery_planner().

◆ SS_process_sublinks()

Node* SS_process_sublinks ( PlannerInfo root,
Node expr,
bool  isQual 
)

Definition at line 1919 of file subselect.c.

1920 {
1922 
1923  context.root = root;
1924  context.isTopQual = isQual;
1925  return process_sublinks_mutator(expr, &context);
1926 }

References context, process_sublinks_mutator(), and root.

Referenced by build_subplan(), and preprocess_expression().

◆ SS_replace_correlation_vars()

Node* SS_replace_correlation_vars ( PlannerInfo root,
Node expr 
)

Definition at line 1868 of file subselect.c.

1869 {
1870  /* No setup needed for tree walk, so away we go */
1871  return replace_correlation_vars_mutator(expr, root);
1872 }

References replace_correlation_vars_mutator(), and root.

Referenced by preprocess_expression().

◆ subpath_is_hashable()

static bool subpath_is_hashable ( Path path)
static

Definition at line 736 of file subselect.c.

737 {
738  double subquery_size;
739 
740  /*
741  * The estimated size of the subquery result must fit in hash_mem. (Note:
742  * we use heap tuple overhead here even though the tuples will actually be
743  * stored as MinimalTuples; this provides some fudge factor for hashtable
744  * overhead.)
745  */
746  subquery_size = path->rows *
747  (MAXALIGN(path->pathtarget->width) + MAXALIGN(SizeofHeapTupleHeader));
748  if (subquery_size > get_hash_memory_limit())
749  return false;
750 
751  return true;
752 }
#define MAXALIGN(LEN)
Definition: c.h:811
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3595
Cardinality rows
Definition: pathnodes.h:1660

References get_hash_memory_limit(), MAXALIGN, Path::rows, and SizeofHeapTupleHeader.

Referenced by make_subplan().

◆ subplan_is_hashable()

static bool subplan_is_hashable ( Plan plan)
static

Definition at line 712 of file subselect.c.

713 {
714  double subquery_size;
715 
716  /*
717  * The estimated size of the subquery result must fit in hash_mem. (Note:
718  * we use heap tuple overhead here even though the tuples will actually be
719  * stored as MinimalTuples; this provides some fudge factor for hashtable
720  * overhead.)
721  */
722  subquery_size = plan->plan_rows *
723  (MAXALIGN(plan->plan_width) + MAXALIGN(SizeofHeapTupleHeader));
724  if (subquery_size > get_hash_memory_limit())
725  return false;
726 
727  return true;
728 }

References get_hash_memory_limit(), MAXALIGN, plan, and SizeofHeapTupleHeader.

Referenced by build_subplan().

◆ test_opexpr_is_hashable()

static bool test_opexpr_is_hashable ( OpExpr testexpr,
List param_ids 
)
static

Definition at line 792 of file subselect.c.

793 {
794  /*
795  * The combining operator must be hashable and strict. The need for
796  * hashability is obvious, since we want to use hashing. Without
797  * strictness, behavior in the presence of nulls is too unpredictable. We
798  * actually must assume even more than plain strictness: it can't yield
799  * NULL for non-null inputs, either (see nodeSubplan.c). However, hash
800  * indexes and hash joins assume that too.
801  */
802  if (!hash_ok_operator(testexpr))
803  return false;
804 
805  /*
806  * The left and right inputs must belong to the outer and inner queries
807  * respectively; hence Params that will be supplied by the subquery must
808  * not appear in the LHS, and Vars of the outer query must not appear in
809  * the RHS. (Ordinarily, this must be true because of the way that the
810  * parser builds an ANY SubLink's testexpr ... but inlining of functions
811  * could have changed the expression's structure, so we have to check.
812  * Such cases do not occur often enough to be worth trying to optimize, so
813  * we don't worry about trying to commute the clause or anything like
814  * that; we just need to be sure not to build an invalid plan.)
815  */
816  if (list_length(testexpr->args) != 2)
817  return false;
818  if (contain_exec_param((Node *) linitial(testexpr->args), param_ids))
819  return false;
820  if (contain_var_clause((Node *) lsecond(testexpr->args)))
821  return false;
822  return true;
823 }
bool contain_exec_param(Node *clause, List *param_ids)
Definition: clauses.c:1137
bool contain_var_clause(Node *node)
Definition: var.c:403

References OpExpr::args, contain_exec_param(), contain_var_clause(), hash_ok_operator(), linitial, list_length(), and lsecond.

Referenced by testexpr_is_hashable().

◆ testexpr_is_hashable()

static bool testexpr_is_hashable ( Node testexpr,
List param_ids 
)
static

Definition at line 761 of file subselect.c.

762 {
763  /*
764  * The testexpr must be a single OpExpr, or an AND-clause containing only
765  * OpExprs, each of which satisfy test_opexpr_is_hashable().
766  */
767  if (testexpr && IsA(testexpr, OpExpr))
768  {
769  if (test_opexpr_is_hashable((OpExpr *) testexpr, param_ids))
770  return true;
771  }
772  else if (is_andclause(testexpr))
773  {
774  ListCell *l;
775 
776  foreach(l, ((BoolExpr *) testexpr)->args)
777  {
778  Node *andarg = (Node *) lfirst(l);
779 
780  if (!IsA(andarg, OpExpr))
781  return false;
782  if (!test_opexpr_is_hashable((OpExpr *) andarg, param_ids))
783  return false;
784  }
785  return true;
786  }
787 
788  return false;
789 }
static bool test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids)
Definition: subselect.c:792

References generate_unaccent_rules::args, is_andclause(), IsA, lfirst, and test_opexpr_is_hashable().

Referenced by build_subplan().