PostgreSQL Source Code git master
prepjointree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * prepjointree.c
4 * Planner preprocessing for subqueries and join tree manipulation.
5 *
6 * NOTE: the intended sequence for invoking these operations is
7 * preprocess_relation_rtes
8 * replace_empty_jointree
9 * pull_up_sublinks
10 * preprocess_function_rtes
11 * pull_up_subqueries
12 * flatten_simple_union_all
13 * do expression preprocessing (including flattening JOIN alias vars)
14 * reduce_outer_joins
15 * remove_useless_result_rtes
16 *
17 *
18 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
19 * Portions Copyright (c) 1994, Regents of the University of California
20 *
21 *
22 * IDENTIFICATION
23 * src/backend/optimizer/prep/prepjointree.c
24 *
25 *-------------------------------------------------------------------------
26 */
27#include "postgres.h"
28
29#include "access/table.h"
30#include "catalog/pg_type.h"
31#include "funcapi.h"
32#include "miscadmin.h"
33#include "nodes/makefuncs.h"
35#include "nodes/nodeFuncs.h"
36#include "optimizer/clauses.h"
37#include "optimizer/optimizer.h"
39#include "optimizer/plancat.h"
40#include "optimizer/prep.h"
41#include "optimizer/subselect.h"
42#include "optimizer/tlist.h"
44#include "parser/parsetree.h"
47#include "utils/rel.h"
48
49
50typedef struct nullingrel_info
51{
52 /*
53 * For each leaf RTE, nullingrels[rti] is the set of relids of outer joins
54 * that potentially null that RTE.
55 */
57 /* Length of range table (maximum index in nullingrels[]) */
58 int rtlength; /* used only for assertion checks */
60
61/* Options for wrapping an expression for identification purposes */
63{
64 REPLACE_WRAP_NONE, /* no expressions need to be wrapped */
65 REPLACE_WRAP_ALL, /* all expressions need to be wrapped */
66 REPLACE_WRAP_VARFREE, /* variable-free expressions need to be
67 * wrapped */
69
71{
73 List *targetlist; /* tlist of subquery being pulled up */
74 RangeTblEntry *target_rte; /* RTE of subquery */
75 int result_relation; /* the index of the result relation in the
76 * rewritten query */
77 Relids relids; /* relids within subquery, as numbered after
78 * pullup (set only if target_rte->lateral) */
79 nullingrel_info *nullinfo; /* per-RTE nullingrel info (set only if
80 * target_rte->lateral) */
81 bool *outer_hasSubLinks; /* -> outer query's hasSubLinks */
82 int varno; /* varno of subquery */
83 ReplaceWrapOption wrap_option; /* do we need certain outputs to be PHVs? */
84 Node **rv_cache; /* cache for results with PHVs */
86
88{
89 Relids relids; /* base relids within this subtree */
90 bool contains_outer; /* does subtree contain outer join(s)? */
91 List *sub_states; /* List of states for subtree components */
93
95{
96 Relids inner_reduced; /* OJ relids reduced to plain inner joins */
97 List *partial_reduced; /* List of partially reduced FULL joins */
99
101{
102 int full_join_rti; /* RT index of a formerly-FULL join */
103 Relids unreduced_side; /* relids in its still-nullable side */
105
107 RangeTblEntry *rte, int rt_index,
108 Relation relation);
110 Relids *relids);
112 Node **jtlink1, Relids available_rels1,
113 Node **jtlink2, Relids available_rels2);
115 JoinExpr *lowest_outer_join,
116 AppendRelInfo *containing_appendrel);
118 RangeTblEntry *rte,
119 JoinExpr *lowest_outer_join,
120 AppendRelInfo *containing_appendrel);
122 RangeTblEntry *rte);
124 int parentRTindex, Query *setOpQuery,
125 int childRToffset);
126static void make_setop_translation_list(Query *query, int newvarno,
127 AppendRelInfo *appinfo);
128static bool is_simple_subquery(PlannerInfo *root, Query *subquery,
129 RangeTblEntry *rte,
130 JoinExpr *lowest_outer_join);
132 RangeTblEntry *rte);
135 RangeTblEntry *rte,
136 AppendRelInfo *containing_appendrel);
137static bool is_simple_union_all(Query *subquery);
138static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery,
139 List *colTypes);
140static bool is_safe_append_member(Query *subquery);
142 Node *jtnode, bool restricted,
143 Relids safe_upper_varnos);
146 AppendRelInfo *containing_appendrel);
147static void replace_vars_in_jointree(Node *jtnode,
149static Node *pullup_replace_vars(Node *expr,
156static void reduce_outer_joins_pass2(Node *jtnode,
160 Relids nonnullable_rels,
161 List *forced_null_vars);
163 int rtindex, Relids relids);
165 Node **parent_quals,
166 Relids *dropped_outer_joins);
167static int get_result_relid(PlannerInfo *root, Node *jtnode);
168static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc);
169static bool find_dependent_phvs(PlannerInfo *root, int varno);
171 Node *node, int varno);
172static void substitute_phv_relids(Node *node,
173 int varno, Relids subrelids);
174static void fix_append_rel_relids(PlannerInfo *root, int varno,
175 Relids subrelids);
176static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
178static void get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels,
179 nullingrel_info *info);
180
181
182/*
183 * transform_MERGE_to_join
184 * Replace a MERGE's jointree to also include the target relation.
185 */
186void
188{
189 RangeTblEntry *joinrte;
190 JoinExpr *joinexpr;
191 bool have_action[NUM_MERGE_MATCH_KINDS];
192 JoinType jointype;
193 int joinrti;
194 List *vars;
195 RangeTblRef *rtr;
196 FromExpr *target;
197 Node *source;
198 int sourcerti;
199
200 if (parse->commandType != CMD_MERGE)
201 return;
202
203 /* XXX probably bogus */
204 vars = NIL;
205
206 /*
207 * Work out what kind of join is required. If there any WHEN NOT MATCHED
208 * BY SOURCE/TARGET actions, an outer join is required so that we process
209 * all unmatched tuples from the source and/or target relations.
210 * Otherwise, we can use an inner join.
211 */
212 have_action[MERGE_WHEN_MATCHED] = false;
213 have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] = false;
214 have_action[MERGE_WHEN_NOT_MATCHED_BY_TARGET] = false;
215
216 foreach_node(MergeAction, action, parse->mergeActionList)
217 {
218 if (action->commandType != CMD_NOTHING)
219 have_action[action->matchKind] = true;
220 }
221
222 if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] &&
224 jointype = JOIN_FULL;
225 else if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE])
226 jointype = JOIN_LEFT;
227 else if (have_action[MERGE_WHEN_NOT_MATCHED_BY_TARGET])
228 jointype = JOIN_RIGHT;
229 else
230 jointype = JOIN_INNER;
231
232 /* Manufacture a join RTE to use. */
233 joinrte = makeNode(RangeTblEntry);
234 joinrte->rtekind = RTE_JOIN;
235 joinrte->jointype = jointype;
236 joinrte->joinmergedcols = 0;
237 joinrte->joinaliasvars = vars;
238 joinrte->joinleftcols = NIL; /* MERGE does not allow JOIN USING */
239 joinrte->joinrightcols = NIL; /* ditto */
240 joinrte->join_using_alias = NULL;
241
242 joinrte->alias = NULL;
243 joinrte->eref = makeAlias("*MERGE*", NIL);
244 joinrte->lateral = false;
245 joinrte->inh = false;
246 joinrte->inFromCl = true;
247
248 /*
249 * Add completed RTE to pstate's range table list, so that we know its
250 * index.
251 */
252 parse->rtable = lappend(parse->rtable, joinrte);
253 joinrti = list_length(parse->rtable);
254
255 /*
256 * Create a JOIN between the target and the source relation.
257 *
258 * Here the target is identified by parse->mergeTargetRelation. For a
259 * regular table, this will equal parse->resultRelation, but for a
260 * trigger-updatable view, it will be the expanded view subquery that we
261 * need to pull data from.
262 *
263 * The source relation is in parse->jointree->fromlist, but any quals in
264 * parse->jointree->quals are restrictions on the target relation (if the
265 * target relation is an auto-updatable view).
266 */
267 /* target rel, with any quals */
268 rtr = makeNode(RangeTblRef);
269 rtr->rtindex = parse->mergeTargetRelation;
270 target = makeFromExpr(list_make1(rtr), parse->jointree->quals);
271
272 /* source rel (expect exactly one -- see transformMergeStmt()) */
273 Assert(list_length(parse->jointree->fromlist) == 1);
274 source = linitial(parse->jointree->fromlist);
275
276 /*
277 * index of source rel (expect either a RangeTblRef or a JoinExpr -- see
278 * transformFromClauseItem()).
279 */
280 if (IsA(source, RangeTblRef))
281 sourcerti = ((RangeTblRef *) source)->rtindex;
282 else if (IsA(source, JoinExpr))
283 sourcerti = ((JoinExpr *) source)->rtindex;
284 else
285 {
286 elog(ERROR, "unrecognized source node type: %d",
287 (int) nodeTag(source));
288 sourcerti = 0; /* keep compiler quiet */
289 }
290
291 /* Join the source and target */
292 joinexpr = makeNode(JoinExpr);
293 joinexpr->jointype = jointype;
294 joinexpr->isNatural = false;
295 joinexpr->larg = (Node *) target;
296 joinexpr->rarg = source;
297 joinexpr->usingClause = NIL;
298 joinexpr->join_using_alias = NULL;
299 joinexpr->quals = parse->mergeJoinCondition;
300 joinexpr->alias = NULL;
301 joinexpr->rtindex = joinrti;
302
303 /* Make the new join be the sole entry in the query's jointree */
304 parse->jointree->fromlist = list_make1(joinexpr);
305 parse->jointree->quals = NULL;
306
307 /*
308 * If necessary, mark parse->targetlist entries that refer to the target
309 * as nullable by the join. Normally the targetlist will be empty for a
310 * MERGE, but if the target is a trigger-updatable view, it will contain a
311 * whole-row Var referring to the expanded view query.
312 */
313 if (parse->targetList != NIL &&
314 (jointype == JOIN_RIGHT || jointype == JOIN_FULL))
315 parse->targetList = (List *)
316 add_nulling_relids((Node *) parse->targetList,
317 bms_make_singleton(parse->mergeTargetRelation),
318 bms_make_singleton(joinrti));
319
320 /*
321 * If the source relation is on the outer side of the join, mark any
322 * source relation Vars in the join condition, actions, and RETURNING list
323 * as nullable by the join. These Vars will be added to the targetlist by
324 * preprocess_targetlist(), so it's important to mark them correctly here.
325 *
326 * It might seem that this is not necessary for Vars in the join
327 * condition, since it is inside the join, but it is also needed above the
328 * join (in the ModifyTable node) to distinguish between the MATCHED and
329 * NOT MATCHED BY SOURCE cases -- see ExecMergeMatched(). Note that this
330 * creates a modified copy of the join condition, for use above the join,
331 * without modifying the original join condition, inside the join.
332 */
333 if (jointype == JOIN_LEFT || jointype == JOIN_FULL)
334 {
335 parse->mergeJoinCondition =
336 add_nulling_relids(parse->mergeJoinCondition,
337 bms_make_singleton(sourcerti),
338 bms_make_singleton(joinrti));
339
340 foreach_node(MergeAction, action, parse->mergeActionList)
341 {
342 action->qual =
344 bms_make_singleton(sourcerti),
345 bms_make_singleton(joinrti));
346
347 action->targetList = (List *)
348 add_nulling_relids((Node *) action->targetList,
349 bms_make_singleton(sourcerti),
350 bms_make_singleton(joinrti));
351 }
352
353 parse->returningList = (List *)
354 add_nulling_relids((Node *) parse->returningList,
355 bms_make_singleton(sourcerti),
356 bms_make_singleton(joinrti));
357 }
358
359 /*
360 * If there are any WHEN NOT MATCHED BY SOURCE actions, the executor will
361 * use the join condition to distinguish between MATCHED and NOT MATCHED
362 * BY SOURCE cases. Otherwise, it's no longer needed, and we set it to
363 * NULL, saving cycles during planning and execution.
364 *
365 * We need to be careful though: the executor evaluates this condition
366 * using the output of the join subplan node, which nulls the output from
367 * the source relation when the join condition doesn't match. That risks
368 * producing incorrect results when rechecking using a "non-strict" join
369 * condition, such as "src.col IS NOT DISTINCT FROM tgt.col". To guard
370 * against that, we add an additional "src IS NOT NULL" check to the join
371 * condition, so that it does the right thing when performing a recheck
372 * based on the output of the join subplan.
373 */
374 if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE])
375 {
376 Var *var;
377 NullTest *ntest;
378
379 /* source wholerow Var (nullable by the new join) */
380 var = makeWholeRowVar(rt_fetch(sourcerti, parse->rtable),
381 sourcerti, 0, false);
382 var->varnullingrels = bms_make_singleton(joinrti);
383
384 /* "src IS NOT NULL" check */
385 ntest = makeNode(NullTest);
386 ntest->arg = (Expr *) var;
387 ntest->nulltesttype = IS_NOT_NULL;
388 ntest->argisrow = false;
389 ntest->location = -1;
390
391 /* combine it with the original join condition */
392 parse->mergeJoinCondition =
393 (Node *) make_and_qual((Node *) ntest, parse->mergeJoinCondition);
394 }
395 else
396 parse->mergeJoinCondition = NULL; /* join condition not needed */
397}
398
399/*
400 * preprocess_relation_rtes
401 * Do the preprocessing work for any relation RTEs in the FROM clause.
402 *
403 * This scans the rangetable for relation RTEs and retrieves the necessary
404 * catalog information for each relation. Using this information, it clears
405 * the inh flag for any relation that has no children, collects not-null
406 * attribute numbers for any relation that has column not-null constraints, and
407 * expands virtual generated columns for any relation that contains them.
408 *
409 * Note that expanding virtual generated columns may cause the query tree to
410 * have new copies of rangetable entries. Therefore, we have to use list_nth
411 * instead of foreach when iterating over the query's rangetable.
412 *
413 * Returns a modified copy of the query tree, if any relations with virtual
414 * generated columns are present.
415 */
416Query *
418{
419 Query *parse = root->parse;
420 int rtable_size;
421 int rt_index;
422
423 rtable_size = list_length(parse->rtable);
424
425 for (rt_index = 0; rt_index < rtable_size; rt_index++)
426 {
427 RangeTblEntry *rte = rt_fetch(rt_index + 1, parse->rtable);
428 Relation relation;
429
430 /* We only care about relation RTEs. */
431 if (rte->rtekind != RTE_RELATION)
432 continue;
433
434 /*
435 * We need not lock the relation since it was already locked by the
436 * rewriter.
437 */
438 relation = table_open(rte->relid, NoLock);
439
440 /*
441 * Check to see if the relation actually has any children; if not,
442 * clear the inh flag so we can treat it as a plain base relation.
443 *
444 * Note: this could give a false-positive result, if the rel once had
445 * children but no longer does. We used to be able to clear rte->inh
446 * later on when we discovered that, but no more; we have to handle
447 * such cases as full-fledged inheritance.
448 */
449 if (rte->inh)
450 rte->inh = relation->rd_rel->relhassubclass;
451
452 /*
453 * Check to see if the relation has any column not-null constraints;
454 * if so, retrieve the constraint information and store it in a
455 * relation OID based hash table.
456 */
458
459 /*
460 * Check to see if the relation has any virtual generated columns; if
461 * so, replace all Var nodes in the query that reference these columns
462 * with the generation expressions.
463 */
465 rte, rt_index + 1,
466 relation);
467
468 table_close(relation, NoLock);
469 }
470
471 return parse;
472}
473
474/*
475 * expand_virtual_generated_columns
476 * Expand virtual generated columns for the given relation.
477 *
478 * This checks whether the given relation has any virtual generated columns,
479 * and if so, replaces all Var nodes in the query that reference those columns
480 * with their generation expressions.
481 *
482 * Returns a modified copy of the query tree if the relation contains virtual
483 * generated columns.
484 */
485static Query *
487 RangeTblEntry *rte, int rt_index,
488 Relation relation)
489{
490 TupleDesc tupdesc;
491
492 /* Only normal relations can have virtual generated columns */
493 Assert(rte->rtekind == RTE_RELATION);
494
495 tupdesc = RelationGetDescr(relation);
496 if (tupdesc->constr && tupdesc->constr->has_generated_virtual)
497 {
498 List *tlist = NIL;
500
501 for (int i = 0; i < tupdesc->natts; i++)
502 {
503 Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
504 TargetEntry *tle;
505
506 if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
507 {
508 Node *defexpr;
509
510 defexpr = build_generation_expression(relation, i + 1);
511 ChangeVarNodes(defexpr, 1, rt_index, 0);
512
513 tle = makeTargetEntry((Expr *) defexpr, i + 1, 0, false);
514 tlist = lappend(tlist, tle);
515 }
516 else
517 {
518 Var *var;
519
520 var = makeVar(rt_index,
521 i + 1,
522 attr->atttypid,
523 attr->atttypmod,
524 attr->attcollation,
525 0);
526
527 tle = makeTargetEntry((Expr *) var, i + 1, 0, false);
528 tlist = lappend(tlist, tle);
529 }
530 }
531
532 Assert(list_length(tlist) > 0);
533 Assert(!rte->lateral);
534
535 /*
536 * The relation's targetlist items are now in the appropriate form to
537 * insert into the query, except that we may need to wrap them in
538 * PlaceHolderVars. Set up required context data for
539 * pullup_replace_vars.
540 */
541 rvcontext.root = root;
542 rvcontext.targetlist = tlist;
543 rvcontext.target_rte = rte;
544 rvcontext.result_relation = parse->resultRelation;
545 /* won't need these values */
546 rvcontext.relids = NULL;
547 rvcontext.nullinfo = NULL;
548 /* pass NULL for outer_hasSubLinks */
549 rvcontext.outer_hasSubLinks = NULL;
550 rvcontext.varno = rt_index;
551 /* this flag will be set below, if needed */
552 rvcontext.wrap_option = REPLACE_WRAP_NONE;
553 /* initialize cache array with indexes 0 .. length(tlist) */
554 rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
555 sizeof(Node *));
556
557 /*
558 * If the query uses grouping sets, we need a PlaceHolderVar for each
559 * expression of the relation's targetlist items. (See comments in
560 * pull_up_simple_subquery().)
561 */
562 if (parse->groupingSets)
563 rvcontext.wrap_option = REPLACE_WRAP_ALL;
564
565 /*
566 * Apply pullup variable replacement throughout the query tree.
567 */
568 parse = (Query *) pullup_replace_vars((Node *) parse, &rvcontext);
569 }
570
571 return parse;
572}
573
574/*
575 * replace_empty_jointree
576 * If the Query's jointree is empty, replace it with a dummy RTE_RESULT
577 * relation.
578 *
579 * By doing this, we can avoid a bunch of corner cases that formerly existed
580 * for SELECTs with omitted FROM clauses. An example is that a subquery
581 * with empty jointree previously could not be pulled up, because that would
582 * have resulted in an empty relid set, making the subquery not uniquely
583 * identifiable for join or PlaceHolderVar processing.
584 *
585 * Unlike most other functions in this file, this function doesn't recurse;
586 * we rely on other processing to invoke it on sub-queries at suitable times.
587 */
588void
590{
591 RangeTblEntry *rte;
592 Index rti;
593 RangeTblRef *rtr;
594
595 /* Nothing to do if jointree is already nonempty */
596 if (parse->jointree->fromlist != NIL)
597 return;
598
599 /* We mustn't change it in the top level of a setop tree, either */
600 if (parse->setOperations)
601 return;
602
603 /* Create suitable RTE */
604 rte = makeNode(RangeTblEntry);
605 rte->rtekind = RTE_RESULT;
606 rte->eref = makeAlias("*RESULT*", NIL);
607
608 /* Add it to rangetable */
609 parse->rtable = lappend(parse->rtable, rte);
610 rti = list_length(parse->rtable);
611
612 /* And jam a reference into the jointree */
613 rtr = makeNode(RangeTblRef);
614 rtr->rtindex = rti;
615 parse->jointree->fromlist = list_make1(rtr);
616}
617
618/*
619 * pull_up_sublinks
620 * Attempt to pull up ANY and EXISTS SubLinks to be treated as
621 * semijoins or anti-semijoins.
622 *
623 * A clause "foo op ANY (sub-SELECT)" can be processed by pulling the
624 * sub-SELECT up to become a rangetable entry and treating the implied
625 * comparisons as quals of a semijoin. However, this optimization *only*
626 * works at the top level of WHERE or a JOIN/ON clause, because we cannot
627 * distinguish whether the ANY ought to return FALSE or NULL in cases
628 * involving NULL inputs. Also, in an outer join's ON clause we can only
629 * do this if the sublink is degenerate (ie, references only the nullable
630 * side of the join). In that case it is legal to push the semijoin
631 * down into the nullable side of the join. If the sublink references any
632 * nonnullable-side variables then it would have to be evaluated as part
633 * of the outer join, which makes things way too complicated.
634 *
635 * Under similar conditions, EXISTS and NOT EXISTS clauses can be handled
636 * by pulling up the sub-SELECT and creating a semijoin or anti-semijoin.
637 *
638 * This routine searches for such clauses and does the necessary parsetree
639 * transformations if any are found.
640 *
641 * This routine has to run before preprocess_expression(), so the quals
642 * clauses are not yet reduced to implicit-AND format, and are not guaranteed
643 * to be AND/OR-flat either. That means we need to recursively search through
644 * explicit AND clauses. We stop as soon as we hit a non-AND item.
645 */
646void
648{
649 Node *jtnode;
650 Relids relids;
651
652 /* Begin recursion through the jointree */
654 (Node *) root->parse->jointree,
655 &relids);
656
657 /*
658 * root->parse->jointree must always be a FromExpr, so insert a dummy one
659 * if we got a bare RangeTblRef or JoinExpr out of the recursion.
660 */
661 if (IsA(jtnode, FromExpr))
662 root->parse->jointree = (FromExpr *) jtnode;
663 else
664 root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL);
665}
666
667/*
668 * Recurse through jointree nodes for pull_up_sublinks()
669 *
670 * In addition to returning the possibly-modified jointree node, we return
671 * a relids set of the contained rels into *relids.
672 */
673static Node *
675 Relids *relids)
676{
677 /* Since this function recurses, it could be driven to stack overflow. */
679
680 if (jtnode == NULL)
681 {
682 *relids = NULL;
683 }
684 else if (IsA(jtnode, RangeTblRef))
685 {
686 int varno = ((RangeTblRef *) jtnode)->rtindex;
687
688 *relids = bms_make_singleton(varno);
689 /* jtnode is returned unmodified */
690 }
691 else if (IsA(jtnode, FromExpr))
692 {
693 FromExpr *f = (FromExpr *) jtnode;
694 List *newfromlist = NIL;
695 Relids frelids = NULL;
696 FromExpr *newf;
697 Node *jtlink;
698 ListCell *l;
699
700 /* First, recurse to process children and collect their relids */
701 foreach(l, f->fromlist)
702 {
703 Node *newchild;
704 Relids childrelids;
705
707 lfirst(l),
708 &childrelids);
709 newfromlist = lappend(newfromlist, newchild);
710 frelids = bms_join(frelids, childrelids);
711 }
712 /* Build the replacement FromExpr; no quals yet */
713 newf = makeFromExpr(newfromlist, NULL);
714 /* Set up a link representing the rebuilt jointree */
715 jtlink = (Node *) newf;
716 /* Now process qual --- all children are available for use */
718 &jtlink, frelids,
719 NULL, NULL);
720
721 /*
722 * Note that the result will be either newf, or a stack of JoinExprs
723 * with newf at the base. We rely on subsequent optimization steps to
724 * flatten this and rearrange the joins as needed.
725 *
726 * Although we could include the pulled-up subqueries in the returned
727 * relids, there's no need since upper quals couldn't refer to their
728 * outputs anyway.
729 */
730 *relids = frelids;
731 jtnode = jtlink;
732 }
733 else if (IsA(jtnode, JoinExpr))
734 {
735 JoinExpr *j;
736 Relids leftrelids;
737 Relids rightrelids;
738 Node *jtlink;
739
740 /*
741 * Make a modifiable copy of join node, but don't bother copying its
742 * subnodes (yet).
743 */
744 j = (JoinExpr *) palloc(sizeof(JoinExpr));
745 memcpy(j, jtnode, sizeof(JoinExpr));
746 jtlink = (Node *) j;
747
748 /* Recurse to process children and collect their relids */
750 &leftrelids);
752 &rightrelids);
753
754 /*
755 * Now process qual, showing appropriate child relids as available,
756 * and attach any pulled-up jointree items at the right place. In the
757 * inner-join case we put new JoinExprs above the existing one (much
758 * as for a FromExpr-style join). In outer-join cases the new
759 * JoinExprs must go into the nullable side of the outer join. The
760 * point of the available_rels machinations is to ensure that we only
761 * pull up quals for which that's okay.
762 *
763 * We don't expect to see any pre-existing JOIN_SEMI, JOIN_ANTI,
764 * JOIN_RIGHT_SEMI, or JOIN_RIGHT_ANTI jointypes here.
765 */
766 switch (j->jointype)
767 {
768 case JOIN_INNER:
769 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
770 &jtlink,
771 bms_union(leftrelids,
772 rightrelids),
773 NULL, NULL);
774 break;
775 case JOIN_LEFT:
776 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
777 &j->rarg,
778 rightrelids,
779 NULL, NULL);
780 break;
781 case JOIN_FULL:
782 /* can't do anything with full-join quals */
783 break;
784 case JOIN_RIGHT:
785 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
786 &j->larg,
787 leftrelids,
788 NULL, NULL);
789 break;
790 default:
791 elog(ERROR, "unrecognized join type: %d",
792 (int) j->jointype);
793 break;
794 }
795
796 /*
797 * Although we could include the pulled-up subqueries in the returned
798 * relids, there's no need since upper quals couldn't refer to their
799 * outputs anyway. But we *do* need to include the join's own rtindex
800 * because we haven't yet collapsed join alias variables, so upper
801 * levels would mistakenly think they couldn't use references to this
802 * join.
803 */
804 *relids = bms_join(leftrelids, rightrelids);
805 if (j->rtindex)
806 *relids = bms_add_member(*relids, j->rtindex);
807 jtnode = jtlink;
808 }
809 else
810 elog(ERROR, "unrecognized node type: %d",
811 (int) nodeTag(jtnode));
812 return jtnode;
813}
814
815/*
816 * Recurse through top-level qual nodes for pull_up_sublinks()
817 *
818 * jtlink1 points to the link in the jointree where any new JoinExprs should
819 * be inserted if they reference available_rels1 (i.e., available_rels1
820 * denotes the relations present underneath jtlink1). Optionally, jtlink2 can
821 * point to a second link where new JoinExprs should be inserted if they
822 * reference available_rels2 (pass NULL for both those arguments if not used).
823 * Note that SubLinks referencing both sets of variables cannot be optimized.
824 * If we find multiple pull-up-able SubLinks, they'll get stacked onto jtlink1
825 * and/or jtlink2 in the order we encounter them. We rely on subsequent
826 * optimization to rearrange the stack if appropriate.
827 *
828 * Returns the replacement qual node, or NULL if the qual should be removed.
829 */
830static Node *
832 Node **jtlink1, Relids available_rels1,
833 Node **jtlink2, Relids available_rels2)
834{
835 if (node == NULL)
836 return NULL;
837 if (IsA(node, SubLink))
838 {
839 SubLink *sublink = (SubLink *) node;
840 JoinExpr *j;
841 Relids child_rels;
842
843 /* Is it a convertible ANY or EXISTS clause? */
844 if (sublink->subLinkType == ANY_SUBLINK)
845 {
846 ScalarArrayOpExpr *saop;
847
848 if ((saop = convert_VALUES_to_ANY(root,
849 sublink->testexpr,
850 (Query *) sublink->subselect)) != NULL)
851
852 /*
853 * The VALUES sequence was simplified. Nothing more to do
854 * here.
855 */
856 return (Node *) saop;
857
858 if ((j = convert_ANY_sublink_to_join(root, sublink,
859 available_rels1)) != NULL)
860 {
861 /* Yes; insert the new join node into the join tree */
862 j->larg = *jtlink1;
863 *jtlink1 = (Node *) j;
864 /* Recursively process pulled-up jointree nodes */
866 j->rarg,
867 &child_rels);
868
869 /*
870 * Now recursively process the pulled-up quals. Any inserted
871 * joins can get stacked onto either j->larg or j->rarg,
872 * depending on which rels they reference.
873 */
875 j->quals,
876 &j->larg,
877 available_rels1,
878 &j->rarg,
879 child_rels);
880 /* Return NULL representing constant TRUE */
881 return NULL;
882 }
883 if (available_rels2 != NULL &&
885 available_rels2)) != NULL)
886 {
887 /* Yes; insert the new join node into the join tree */
888 j->larg = *jtlink2;
889 *jtlink2 = (Node *) j;
890 /* Recursively process pulled-up jointree nodes */
892 j->rarg,
893 &child_rels);
894
895 /*
896 * Now recursively process the pulled-up quals. Any inserted
897 * joins can get stacked onto either j->larg or j->rarg,
898 * depending on which rels they reference.
899 */
901 j->quals,
902 &j->larg,
903 available_rels2,
904 &j->rarg,
905 child_rels);
906 /* Return NULL representing constant TRUE */
907 return NULL;
908 }
909 }
910 else if (sublink->subLinkType == EXISTS_SUBLINK)
911 {
912 if ((j = convert_EXISTS_sublink_to_join(root, sublink, false,
913 available_rels1)) != NULL)
914 {
915 /* Yes; insert the new join node into the join tree */
916 j->larg = *jtlink1;
917 *jtlink1 = (Node *) j;
918 /* Recursively process pulled-up jointree nodes */
920 j->rarg,
921 &child_rels);
922
923 /*
924 * Now recursively process the pulled-up quals. Any inserted
925 * joins can get stacked onto either j->larg or j->rarg,
926 * depending on which rels they reference.
927 */
929 j->quals,
930 &j->larg,
931 available_rels1,
932 &j->rarg,
933 child_rels);
934 /* Return NULL representing constant TRUE */
935 return NULL;
936 }
937 if (available_rels2 != NULL &&
938 (j = convert_EXISTS_sublink_to_join(root, sublink, false,
939 available_rels2)) != NULL)
940 {
941 /* Yes; insert the new join node into the join tree */
942 j->larg = *jtlink2;
943 *jtlink2 = (Node *) j;
944 /* Recursively process pulled-up jointree nodes */
946 j->rarg,
947 &child_rels);
948
949 /*
950 * Now recursively process the pulled-up quals. Any inserted
951 * joins can get stacked onto either j->larg or j->rarg,
952 * depending on which rels they reference.
953 */
955 j->quals,
956 &j->larg,
957 available_rels2,
958 &j->rarg,
959 child_rels);
960 /* Return NULL representing constant TRUE */
961 return NULL;
962 }
963 }
964 /* Else return it unmodified */
965 return node;
966 }
967 if (is_notclause(node))
968 {
969 /* If the immediate argument of NOT is EXISTS, try to convert */
970 SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node);
971 JoinExpr *j;
972 Relids child_rels;
973
974 if (sublink && IsA(sublink, SubLink))
975 {
976 if (sublink->subLinkType == EXISTS_SUBLINK)
977 {
978 if ((j = convert_EXISTS_sublink_to_join(root, sublink, true,
979 available_rels1)) != NULL)
980 {
981 /* Yes; insert the new join node into the join tree */
982 j->larg = *jtlink1;
983 *jtlink1 = (Node *) j;
984 /* Recursively process pulled-up jointree nodes */
986 j->rarg,
987 &child_rels);
988
989 /*
990 * Now recursively process the pulled-up quals. Because
991 * we are underneath a NOT, we can't pull up sublinks that
992 * reference the left-hand stuff, but it's still okay to
993 * pull up sublinks referencing j->rarg.
994 */
996 j->quals,
997 &j->rarg,
998 child_rels,
999 NULL, NULL);
1000 /* Return NULL representing constant TRUE */
1001 return NULL;
1002 }
1003 if (available_rels2 != NULL &&
1004 (j = convert_EXISTS_sublink_to_join(root, sublink, true,
1005 available_rels2)) != NULL)
1006 {
1007 /* Yes; insert the new join node into the join tree */
1008 j->larg = *jtlink2;
1009 *jtlink2 = (Node *) j;
1010 /* Recursively process pulled-up jointree nodes */
1012 j->rarg,
1013 &child_rels);
1014
1015 /*
1016 * Now recursively process the pulled-up quals. Because
1017 * we are underneath a NOT, we can't pull up sublinks that
1018 * reference the left-hand stuff, but it's still okay to
1019 * pull up sublinks referencing j->rarg.
1020 */
1022 j->quals,
1023 &j->rarg,
1024 child_rels,
1025 NULL, NULL);
1026 /* Return NULL representing constant TRUE */
1027 return NULL;
1028 }
1029 }
1030 }
1031 /* Else return it unmodified */
1032 return node;
1033 }
1034 if (is_andclause(node))
1035 {
1036 /* Recurse into AND clause */
1037 List *newclauses = NIL;
1038 ListCell *l;
1039
1040 foreach(l, ((BoolExpr *) node)->args)
1041 {
1042 Node *oldclause = (Node *) lfirst(l);
1043 Node *newclause;
1044
1046 oldclause,
1047 jtlink1,
1048 available_rels1,
1049 jtlink2,
1050 available_rels2);
1051 if (newclause)
1052 newclauses = lappend(newclauses, newclause);
1053 }
1054 /* We might have got back fewer clauses than we started with */
1055 if (newclauses == NIL)
1056 return NULL;
1057 else if (list_length(newclauses) == 1)
1058 return (Node *) linitial(newclauses);
1059 else
1060 return (Node *) make_andclause(newclauses);
1061 }
1062 /* Stop if not an AND */
1063 return node;
1064}
1065
1066/*
1067 * preprocess_function_rtes
1068 * Constant-simplify any FUNCTION RTEs in the FROM clause, and then
1069 * attempt to "inline" any that are set-returning functions.
1070 *
1071 * If an RTE_FUNCTION rtable entry invokes a set-returning function that
1072 * contains just a simple SELECT, we can convert the rtable entry to an
1073 * RTE_SUBQUERY entry exposing the SELECT directly. This is especially
1074 * useful if the subquery can then be "pulled up" for further optimization,
1075 * but we do it even if not, to reduce executor overhead.
1076 *
1077 * This has to be done before we have started to do any optimization of
1078 * subqueries, else any such steps wouldn't get applied to subqueries
1079 * obtained via inlining. However, we do it after pull_up_sublinks
1080 * so that we can inline any functions used in SubLink subselects.
1081 *
1082 * The reason for applying const-simplification at this stage is that
1083 * (a) we'd need to do it anyway to inline a SRF, and (b) by doing it now,
1084 * we can be sure that pull_up_constant_function() will see constants
1085 * if there are constants to be seen. This approach also guarantees
1086 * that every FUNCTION RTE has been const-simplified, allowing planner.c's
1087 * preprocess_expression() to skip doing it again.
1088 *
1089 * Like most of the planner, this feels free to scribble on its input data
1090 * structure.
1091 */
1092void
1094{
1095 ListCell *rt;
1096
1097 foreach(rt, root->parse->rtable)
1098 {
1099 RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
1100
1101 if (rte->rtekind == RTE_FUNCTION)
1102 {
1103 Query *funcquery;
1104
1105 /* Apply const-simplification */
1106 rte->functions = (List *)
1108
1109 /* Check safety of expansion, and expand if possible */
1110 funcquery = inline_set_returning_function(root, rte);
1111 if (funcquery)
1112 {
1113 /* Successful expansion, convert the RTE to a subquery */
1114 rte->rtekind = RTE_SUBQUERY;
1115 rte->subquery = funcquery;
1116 rte->security_barrier = false;
1117
1118 /*
1119 * Clear fields that should not be set in a subquery RTE.
1120 * However, we leave rte->functions filled in for the moment,
1121 * in case makeWholeRowVar needs to consult it. We'll clear
1122 * it in setrefs.c (see add_rte_to_flat_rtable) so that this
1123 * abuse of the data structure doesn't escape the planner.
1124 */
1125 rte->funcordinality = false;
1126 }
1127 }
1128 }
1129}
1130
1131/*
1132 * pull_up_subqueries
1133 * Look for subqueries in the rangetable that can be pulled up into
1134 * the parent query. If the subquery has no special features like
1135 * grouping/aggregation then we can merge it into the parent's jointree.
1136 * Also, subqueries that are simple UNION ALL structures can be
1137 * converted into "append relations".
1138 */
1139void
1141{
1142 /* Top level of jointree must always be a FromExpr */
1143 Assert(IsA(root->parse->jointree, FromExpr));
1144 /* Recursion starts with no containing join nor appendrel */
1145 root->parse->jointree = (FromExpr *)
1146 pull_up_subqueries_recurse(root, (Node *) root->parse->jointree,
1147 NULL, NULL);
1148 /* We should still have a FromExpr */
1149 Assert(IsA(root->parse->jointree, FromExpr));
1150}
1151
1152/*
1153 * pull_up_subqueries_recurse
1154 * Recursive guts of pull_up_subqueries.
1155 *
1156 * This recursively processes the jointree and returns a modified jointree.
1157 *
1158 * If this jointree node is within either side of an outer join, then
1159 * lowest_outer_join references the lowest such JoinExpr node; otherwise
1160 * it is NULL. We use this to constrain the effects of LATERAL subqueries.
1161 *
1162 * If we are looking at a member subquery of an append relation,
1163 * containing_appendrel describes that relation; else it is NULL.
1164 * This forces use of the PlaceHolderVar mechanism for all non-Var targetlist
1165 * items, and puts some additional restrictions on what can be pulled up.
1166 *
1167 * A tricky aspect of this code is that if we pull up a subquery we have
1168 * to replace Vars that reference the subquery's outputs throughout the
1169 * parent query, including quals attached to jointree nodes above the one
1170 * we are currently processing! We handle this by being careful to maintain
1171 * validity of the jointree structure while recursing, in the following sense:
1172 * whenever we recurse, all qual expressions in the tree must be reachable
1173 * from the top level, in case the recursive call needs to modify them.
1174 *
1175 * Notice also that we can't turn pullup_replace_vars loose on the whole
1176 * jointree, because it'd return a mutated copy of the tree; we have to
1177 * invoke it just on the quals, instead. This behavior is what makes it
1178 * reasonable to pass lowest_outer_join as a pointer rather than some
1179 * more-indirect way of identifying the lowest OJ. Likewise, we don't
1180 * replace append_rel_list members but only their substructure, so the
1181 * containing_appendrel reference is safe to use.
1182 */
1183static Node *
1185 JoinExpr *lowest_outer_join,
1186 AppendRelInfo *containing_appendrel)
1187{
1188 /* Since this function recurses, it could be driven to stack overflow. */
1190 /* Also, since it's a bit expensive, let's check for query cancel. */
1192
1193 Assert(jtnode != NULL);
1194 if (IsA(jtnode, RangeTblRef))
1195 {
1196 int varno = ((RangeTblRef *) jtnode)->rtindex;
1197 RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable);
1198
1199 /*
1200 * Is this a subquery RTE, and if so, is the subquery simple enough to
1201 * pull up?
1202 *
1203 * If we are looking at an append-relation member, we can't pull it up
1204 * unless is_safe_append_member says so.
1205 */
1206 if (rte->rtekind == RTE_SUBQUERY &&
1207 is_simple_subquery(root, rte->subquery, rte, lowest_outer_join) &&
1208 (containing_appendrel == NULL ||
1210 return pull_up_simple_subquery(root, jtnode, rte,
1211 lowest_outer_join,
1212 containing_appendrel);
1213
1214 /*
1215 * Alternatively, is it a simple UNION ALL subquery? If so, flatten
1216 * into an "append relation".
1217 *
1218 * It's safe to do this regardless of whether this query is itself an
1219 * appendrel member. (If you're thinking we should try to flatten the
1220 * two levels of appendrel together, you're right; but we handle that
1221 * in set_append_rel_pathlist, not here.)
1222 */
1223 if (rte->rtekind == RTE_SUBQUERY &&
1225 return pull_up_simple_union_all(root, jtnode, rte);
1226
1227 /*
1228 * Or perhaps it's a simple VALUES RTE?
1229 *
1230 * We don't allow VALUES pullup below an outer join nor into an
1231 * appendrel (such cases are impossible anyway at the moment).
1232 */
1233 if (rte->rtekind == RTE_VALUES &&
1234 lowest_outer_join == NULL &&
1235 containing_appendrel == NULL &&
1236 is_simple_values(root, rte))
1237 return pull_up_simple_values(root, jtnode, rte);
1238
1239 /*
1240 * Or perhaps it's a FUNCTION RTE that we could inline?
1241 */
1242 if (rte->rtekind == RTE_FUNCTION)
1243 return pull_up_constant_function(root, jtnode, rte,
1244 containing_appendrel);
1245
1246 /* Otherwise, do nothing at this node. */
1247 }
1248 else if (IsA(jtnode, FromExpr))
1249 {
1250 FromExpr *f = (FromExpr *) jtnode;
1251 ListCell *l;
1252
1253 Assert(containing_appendrel == NULL);
1254 /* Recursively transform all the child nodes */
1255 foreach(l, f->fromlist)
1256 {
1258 lowest_outer_join,
1259 NULL);
1260 }
1261 }
1262 else if (IsA(jtnode, JoinExpr))
1263 {
1264 JoinExpr *j = (JoinExpr *) jtnode;
1265
1266 Assert(containing_appendrel == NULL);
1267 /* Recurse, being careful to tell myself when inside outer join */
1268 switch (j->jointype)
1269 {
1270 case JOIN_INNER:
1271 j->larg = pull_up_subqueries_recurse(root, j->larg,
1272 lowest_outer_join,
1273 NULL);
1274 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1275 lowest_outer_join,
1276 NULL);
1277 break;
1278 case JOIN_LEFT:
1279 case JOIN_SEMI:
1280 case JOIN_ANTI:
1281 j->larg = pull_up_subqueries_recurse(root, j->larg,
1282 j,
1283 NULL);
1284 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1285 j,
1286 NULL);
1287 break;
1288 case JOIN_FULL:
1289 j->larg = pull_up_subqueries_recurse(root, j->larg,
1290 j,
1291 NULL);
1292 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1293 j,
1294 NULL);
1295 break;
1296 case JOIN_RIGHT:
1297 j->larg = pull_up_subqueries_recurse(root, j->larg,
1298 j,
1299 NULL);
1300 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1301 j,
1302 NULL);
1303 break;
1304 default:
1305 elog(ERROR, "unrecognized join type: %d",
1306 (int) j->jointype);
1307 break;
1308 }
1309 }
1310 else
1311 elog(ERROR, "unrecognized node type: %d",
1312 (int) nodeTag(jtnode));
1313 return jtnode;
1314}
1315
1316/*
1317 * pull_up_simple_subquery
1318 * Attempt to pull up a single simple subquery.
1319 *
1320 * jtnode is a RangeTblRef that has been tentatively identified as a simple
1321 * subquery by pull_up_subqueries. We return the replacement jointree node,
1322 * or jtnode itself if we determine that the subquery can't be pulled up
1323 * after all.
1324 *
1325 * rte is the RangeTblEntry referenced by jtnode. Remaining parameters are
1326 * as for pull_up_subqueries_recurse.
1327 */
1328static Node *
1330 JoinExpr *lowest_outer_join,
1331 AppendRelInfo *containing_appendrel)
1332{
1333 Query *parse = root->parse;
1334 int varno = ((RangeTblRef *) jtnode)->rtindex;
1335 Query *subquery;
1336 PlannerInfo *subroot;
1337 int rtoffset;
1339 ListCell *lc;
1340
1341 /*
1342 * Make a modifiable copy of the subquery to hack on, so that the RTE will
1343 * be left unchanged in case we decide below that we can't pull it up
1344 * after all.
1345 */
1346 subquery = copyObject(rte->subquery);
1347
1348 /*
1349 * Create a PlannerInfo data structure for this subquery.
1350 *
1351 * NOTE: the next few steps should match the first processing in
1352 * subquery_planner(). Can we refactor to avoid code duplication, or
1353 * would that just make things uglier?
1354 */
1355 subroot = makeNode(PlannerInfo);
1356 subroot->parse = subquery;
1357 subroot->glob = root->glob;
1358 subroot->query_level = root->query_level;
1359 subroot->plan_name = root->plan_name;
1360 subroot->parent_root = root->parent_root;
1361 subroot->plan_params = NIL;
1362 subroot->outer_params = NULL;
1363 subroot->planner_cxt = CurrentMemoryContext;
1364 subroot->init_plans = NIL;
1365 subroot->cte_plan_ids = NIL;
1366 subroot->multiexpr_params = NIL;
1367 subroot->join_domains = NIL;
1368 subroot->eq_classes = NIL;
1369 subroot->ec_merging_done = false;
1370 subroot->last_rinfo_serial = 0;
1371 subroot->all_result_relids = NULL;
1372 subroot->leaf_result_relids = NULL;
1373 subroot->append_rel_list = NIL;
1374 subroot->row_identity_vars = NIL;
1375 subroot->rowMarks = NIL;
1376 memset(subroot->upper_rels, 0, sizeof(subroot->upper_rels));
1377 memset(subroot->upper_targets, 0, sizeof(subroot->upper_targets));
1378 subroot->processed_groupClause = NIL;
1379 subroot->processed_distinctClause = NIL;
1380 subroot->processed_tlist = NIL;
1381 subroot->update_colnos = NIL;
1382 subroot->grouping_map = NULL;
1383 subroot->minmax_aggs = NIL;
1384 subroot->qual_security_level = 0;
1385 subroot->placeholdersFrozen = false;
1386 subroot->hasRecursion = false;
1387 subroot->assumeReplanning = false;
1388 subroot->wt_param_id = -1;
1389 subroot->non_recursive_path = NULL;
1390 /* We don't currently need a top JoinDomain for the subroot */
1391
1392 /* No CTEs to worry about */
1393 Assert(subquery->cteList == NIL);
1394
1395 /*
1396 * Scan the rangetable for relation RTEs and retrieve the necessary
1397 * catalog information for each relation. Using this information, clear
1398 * the inh flag for any relation that has no children, collect not-null
1399 * attribute numbers for any relation that has column not-null
1400 * constraints, and expand virtual generated columns for any relation that
1401 * contains them.
1402 */
1403 subquery = subroot->parse = preprocess_relation_rtes(subroot);
1404
1405 /*
1406 * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so
1407 * that we don't need so many special cases to deal with that situation.
1408 */
1409 replace_empty_jointree(subquery);
1410
1411 /*
1412 * Pull up any SubLinks within the subquery's quals, so that we don't
1413 * leave unoptimized SubLinks behind.
1414 */
1415 if (subquery->hasSubLinks)
1416 pull_up_sublinks(subroot);
1417
1418 /*
1419 * Similarly, preprocess its function RTEs to inline any set-returning
1420 * functions in its rangetable.
1421 */
1422 preprocess_function_rtes(subroot);
1423
1424 /*
1425 * Recursively pull up the subquery's subqueries, so that
1426 * pull_up_subqueries' processing is complete for its jointree and
1427 * rangetable.
1428 *
1429 * Note: it's okay that the subquery's recursion starts with NULL for
1430 * containing-join info, even if we are within an outer join in the upper
1431 * query; the lower query starts with a clean slate for outer-join
1432 * semantics. Likewise, we needn't pass down appendrel state.
1433 */
1434 pull_up_subqueries(subroot);
1435
1436 /*
1437 * Now we must recheck whether the subquery is still simple enough to pull
1438 * up. If not, abandon processing it.
1439 *
1440 * We don't really need to recheck all the conditions involved, but it's
1441 * easier just to keep this "if" looking the same as the one in
1442 * pull_up_subqueries_recurse.
1443 */
1444 if (is_simple_subquery(root, subquery, rte, lowest_outer_join) &&
1445 (containing_appendrel == NULL || is_safe_append_member(subquery)))
1446 {
1447 /* good to go */
1448 }
1449 else
1450 {
1451 /*
1452 * Give up, return unmodified RangeTblRef.
1453 *
1454 * Note: The work we just did will be redone when the subquery gets
1455 * planned on its own. Perhaps we could avoid that by storing the
1456 * modified subquery back into the rangetable, but I'm not gonna risk
1457 * it now.
1458 */
1459 return jtnode;
1460 }
1461
1462 /*
1463 * We must flatten any join alias Vars in the subquery's targetlist,
1464 * because pulling up the subquery's subqueries might have changed their
1465 * expansions into arbitrary expressions, which could affect
1466 * pullup_replace_vars' decisions about whether PlaceHolderVar wrappers
1467 * are needed for tlist entries. (Likely it'd be better to do
1468 * flatten_join_alias_vars on the whole query tree at some earlier stage,
1469 * maybe even in the rewriter; but for now let's just fix this case here.)
1470 */
1471 subquery->targetList = (List *)
1472 flatten_join_alias_vars(subroot, subroot->parse,
1473 (Node *) subquery->targetList);
1474
1475 /*
1476 * Adjust level-0 varnos in subquery so that we can append its rangetable
1477 * to upper query's. We have to fix the subquery's append_rel_list as
1478 * well.
1479 */
1480 rtoffset = list_length(parse->rtable);
1481 OffsetVarNodes((Node *) subquery, rtoffset, 0);
1482 OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0);
1483
1484 /*
1485 * Upper-level vars in subquery are now one level closer to their parent
1486 * than before.
1487 */
1488 IncrementVarSublevelsUp((Node *) subquery, -1, 1);
1489 IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1);
1490
1491 /*
1492 * The subquery's targetlist items are now in the appropriate form to
1493 * insert into the top query, except that we may need to wrap them in
1494 * PlaceHolderVars. Set up required context data for pullup_replace_vars.
1495 * (Note that we should include the subquery's inner joins in relids,
1496 * since it may include join alias vars referencing them.)
1497 */
1498 rvcontext.root = root;
1499 rvcontext.targetlist = subquery->targetList;
1500 rvcontext.target_rte = rte;
1501 rvcontext.result_relation = 0;
1502 if (rte->lateral)
1503 {
1504 rvcontext.relids = get_relids_in_jointree((Node *) subquery->jointree,
1505 true, true);
1506 rvcontext.nullinfo = get_nullingrels(parse);
1507 }
1508 else /* won't need these values */
1509 {
1510 rvcontext.relids = NULL;
1511 rvcontext.nullinfo = NULL;
1512 }
1513 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
1514 rvcontext.varno = varno;
1515 /* this flag will be set below, if needed */
1516 rvcontext.wrap_option = REPLACE_WRAP_NONE;
1517 /* initialize cache array with indexes 0 .. length(tlist) */
1518 rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) *
1519 sizeof(Node *));
1520
1521 /*
1522 * If the parent query uses grouping sets, we need a PlaceHolderVar for
1523 * each expression of the subquery's targetlist items. This ensures that
1524 * expressions retain their separate identity so that they will match
1525 * grouping set columns when appropriate. (It'd be sufficient to wrap
1526 * values used in grouping set columns, and do so only in non-aggregated
1527 * portions of the tlist and havingQual, but that would require a lot of
1528 * infrastructure that pullup_replace_vars hasn't currently got.)
1529 */
1530 if (parse->groupingSets)
1531 rvcontext.wrap_option = REPLACE_WRAP_ALL;
1532
1533 /*
1534 * Replace all of the top query's references to the subquery's outputs
1535 * with copies of the adjusted subtlist items, being careful not to
1536 * replace any of the jointree structure.
1537 */
1539 containing_appendrel);
1540
1541 /*
1542 * If the subquery had a LATERAL marker, propagate that to any of its
1543 * child RTEs that could possibly now contain lateral cross-references.
1544 * The children might or might not contain any actual lateral
1545 * cross-references, but we have to mark the pulled-up child RTEs so that
1546 * later planner stages will check for such.
1547 */
1548 if (rte->lateral)
1549 {
1550 foreach(lc, subquery->rtable)
1551 {
1552 RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc);
1553
1554 switch (child_rte->rtekind)
1555 {
1556 case RTE_RELATION:
1557 if (child_rte->tablesample)
1558 child_rte->lateral = true;
1559 break;
1560 case RTE_SUBQUERY:
1561 case RTE_FUNCTION:
1562 case RTE_VALUES:
1563 case RTE_TABLEFUNC:
1564 child_rte->lateral = true;
1565 break;
1566 case RTE_JOIN:
1567 case RTE_CTE:
1569 case RTE_RESULT:
1570 case RTE_GROUP:
1571 /* these can't contain any lateral references */
1572 break;
1573 }
1574 }
1575 }
1576
1577 /*
1578 * Now append the adjusted rtable entries and their perminfos to upper
1579 * query. (We hold off until after fixing the upper rtable entries; no
1580 * point in running that code on the subquery ones too.)
1581 */
1582 CombineRangeTables(&parse->rtable, &parse->rteperminfos,
1583 subquery->rtable, subquery->rteperminfos);
1584
1585 /*
1586 * Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already
1587 * adjusted the marker rtindexes, so just concat the lists.)
1588 */
1589 parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks);
1590
1591 /*
1592 * We also have to fix the relid sets of any PlaceHolderVar nodes in the
1593 * parent query. (This could perhaps be done by pullup_replace_vars(),
1594 * but it seems cleaner to use two passes.) Note in particular that any
1595 * PlaceHolderVar nodes just created by pullup_replace_vars() will be
1596 * adjusted, so having created them with the subquery's varno is correct.
1597 *
1598 * Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We
1599 * already checked that this won't require introducing multiple subrelids
1600 * into the single-slot AppendRelInfo structs.
1601 */
1602 if (root->glob->lastPHId != 0 || root->append_rel_list)
1603 {
1604 Relids subrelids;
1605
1606 subrelids = get_relids_in_jointree((Node *) subquery->jointree,
1607 true, false);
1608 if (root->glob->lastPHId != 0)
1609 substitute_phv_relids((Node *) parse, varno, subrelids);
1610 fix_append_rel_relids(root, varno, subrelids);
1611 }
1612
1613 /*
1614 * And now add subquery's AppendRelInfos to our list.
1615 */
1616 root->append_rel_list = list_concat(root->append_rel_list,
1617 subroot->append_rel_list);
1618
1619 /*
1620 * We don't have to do the equivalent bookkeeping for outer-join info,
1621 * because that hasn't been set up yet. placeholder_list likewise.
1622 */
1623 Assert(root->join_info_list == NIL);
1624 Assert(subroot->join_info_list == NIL);
1625 Assert(root->placeholder_list == NIL);
1626 Assert(subroot->placeholder_list == NIL);
1627
1628 /*
1629 * We no longer need the RTE's copy of the subquery's query tree. Getting
1630 * rid of it saves nothing in particular so far as this level of query is
1631 * concerned; but if this query level is in turn pulled up into a parent,
1632 * we'd waste cycles copying the now-unused query tree.
1633 */
1634 rte->subquery = NULL;
1635
1636 /*
1637 * Miscellaneous housekeeping.
1638 *
1639 * Although replace_rte_variables() faithfully updated parse->hasSubLinks
1640 * if it copied any SubLinks out of the subquery's targetlist, we still
1641 * could have SubLinks added to the query in the expressions of FUNCTION
1642 * and VALUES RTEs copied up from the subquery. So it's necessary to copy
1643 * subquery->hasSubLinks anyway. Perhaps this can be improved someday.
1644 */
1645 parse->hasSubLinks |= subquery->hasSubLinks;
1646
1647 /* If subquery had any RLS conditions, now main query does too */
1648 parse->hasRowSecurity |= subquery->hasRowSecurity;
1649
1650 /*
1651 * subquery won't be pulled up if it hasAggs, hasWindowFuncs, or
1652 * hasTargetSRFs, so no work needed on those flags
1653 */
1654
1655 /*
1656 * Return the adjusted subquery jointree to replace the RangeTblRef entry
1657 * in parent's jointree; or, if the FromExpr is degenerate, just return
1658 * its single member.
1659 */
1660 Assert(IsA(subquery->jointree, FromExpr));
1661 Assert(subquery->jointree->fromlist != NIL);
1662 if (subquery->jointree->quals == NULL &&
1663 list_length(subquery->jointree->fromlist) == 1)
1664 return (Node *) linitial(subquery->jointree->fromlist);
1665
1666 return (Node *) subquery->jointree;
1667}
1668
1669/*
1670 * pull_up_simple_union_all
1671 * Pull up a single simple UNION ALL subquery.
1672 *
1673 * jtnode is a RangeTblRef that has been identified as a simple UNION ALL
1674 * subquery by pull_up_subqueries. We pull up the leaf subqueries and
1675 * build an "append relation" for the union set. The result value is just
1676 * jtnode, since we don't actually need to change the query jointree.
1677 */
1678static Node *
1680{
1681 int varno = ((RangeTblRef *) jtnode)->rtindex;
1682 Query *subquery = rte->subquery;
1683 int rtoffset = list_length(root->parse->rtable);
1684 List *rtable;
1685
1686 /*
1687 * Make a modifiable copy of the subquery's rtable, so we can adjust
1688 * upper-level Vars in it. There are no such Vars in the setOperations
1689 * tree proper, so fixing the rtable should be sufficient.
1690 */
1691 rtable = copyObject(subquery->rtable);
1692
1693 /*
1694 * Upper-level vars in subquery are now one level closer to their parent
1695 * than before. We don't have to worry about offsetting varnos, though,
1696 * because the UNION leaf queries can't cross-reference each other.
1697 */
1698 IncrementVarSublevelsUp_rtable(rtable, -1, 1);
1699
1700 /*
1701 * If the UNION ALL subquery had a LATERAL marker, propagate that to all
1702 * its children. The individual children might or might not contain any
1703 * actual lateral cross-references, but we have to mark the pulled-up
1704 * child RTEs so that later planner stages will check for such.
1705 */
1706 if (rte->lateral)
1707 {
1708 ListCell *rt;
1709
1710 foreach(rt, rtable)
1711 {
1712 RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt);
1713
1714 Assert(child_rte->rtekind == RTE_SUBQUERY);
1715 child_rte->lateral = true;
1716 }
1717 }
1718
1719 /*
1720 * Append child RTEs (and their perminfos) to parent rtable.
1721 */
1722 CombineRangeTables(&root->parse->rtable, &root->parse->rteperminfos,
1723 rtable, subquery->rteperminfos);
1724
1725 /*
1726 * Recursively scan the subquery's setOperations tree and add
1727 * AppendRelInfo nodes for leaf subqueries to the parent's
1728 * append_rel_list. Also apply pull_up_subqueries to the leaf subqueries.
1729 */
1730 Assert(subquery->setOperations);
1731 pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery,
1732 rtoffset);
1733
1734 /*
1735 * Mark the parent as an append relation.
1736 */
1737 rte->inh = true;
1738
1739 return jtnode;
1740}
1741
1742/*
1743 * pull_up_union_leaf_queries -- recursive guts of pull_up_simple_union_all
1744 *
1745 * Build an AppendRelInfo for each leaf query in the setop tree, and then
1746 * apply pull_up_subqueries to the leaf query.
1747 *
1748 * Note that setOpQuery is the Query containing the setOp node, whose tlist
1749 * contains references to all the setop output columns. When called from
1750 * pull_up_simple_union_all, this is *not* the same as root->parse, which is
1751 * the parent Query we are pulling up into.
1752 *
1753 * parentRTindex is the appendrel parent's index in root->parse->rtable.
1754 *
1755 * The child RTEs have already been copied to the parent. childRToffset
1756 * tells us where in the parent's range table they were copied. When called
1757 * from flatten_simple_union_all, childRToffset is 0 since the child RTEs
1758 * were already in root->parse->rtable and no RT index adjustment is needed.
1759 */
1760static void
1762 Query *setOpQuery, int childRToffset)
1763{
1764 if (IsA(setOp, RangeTblRef))
1765 {
1766 RangeTblRef *rtr = (RangeTblRef *) setOp;
1767 int childRTindex;
1768 AppendRelInfo *appinfo;
1769
1770 /*
1771 * Calculate the index in the parent's range table
1772 */
1773 childRTindex = childRToffset + rtr->rtindex;
1774
1775 /*
1776 * Build a suitable AppendRelInfo, and attach to parent's list.
1777 */
1778 appinfo = makeNode(AppendRelInfo);
1779 appinfo->parent_relid = parentRTindex;
1780 appinfo->child_relid = childRTindex;
1781 appinfo->parent_reltype = InvalidOid;
1782 appinfo->child_reltype = InvalidOid;
1783 make_setop_translation_list(setOpQuery, childRTindex, appinfo);
1784 appinfo->parent_reloid = InvalidOid;
1785 root->append_rel_list = lappend(root->append_rel_list, appinfo);
1786
1787 /*
1788 * Recursively apply pull_up_subqueries to the new child RTE. (We
1789 * must build the AppendRelInfo first, because this will modify it;
1790 * indeed, that's the only part of the upper query where Vars
1791 * referencing childRTindex can exist at this point.)
1792 *
1793 * Note that we can pass NULL for containing-join info even if we're
1794 * actually under an outer join, because the child's expressions
1795 * aren't going to propagate up to the join. Also, we ignore the
1796 * possibility that pull_up_subqueries_recurse() returns a different
1797 * jointree node than what we pass it; if it does, the important thing
1798 * is that it replaced the child relid in the AppendRelInfo node.
1799 */
1800 rtr = makeNode(RangeTblRef);
1801 rtr->rtindex = childRTindex;
1802 (void) pull_up_subqueries_recurse(root, (Node *) rtr,
1803 NULL, appinfo);
1804 }
1805 else if (IsA(setOp, SetOperationStmt))
1806 {
1807 SetOperationStmt *op = (SetOperationStmt *) setOp;
1808
1809 /* Recurse to reach leaf queries */
1810 pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery,
1811 childRToffset);
1812 pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery,
1813 childRToffset);
1814 }
1815 else
1816 {
1817 elog(ERROR, "unrecognized node type: %d",
1818 (int) nodeTag(setOp));
1819 }
1820}
1821
1822/*
1823 * make_setop_translation_list
1824 * Build the list of translations from parent Vars to child Vars for
1825 * a UNION ALL member. (At this point it's just a simple list of
1826 * referencing Vars, but if we succeed in pulling up the member
1827 * subquery, the Vars will get replaced by pulled-up expressions.)
1828 * Also create the rather trivial reverse-translation array.
1829 */
1830static void
1832 AppendRelInfo *appinfo)
1833{
1834 List *vars = NIL;
1835 AttrNumber *pcolnos;
1836 ListCell *l;
1837
1838 /* Initialize reverse-translation array with all entries zero */
1839 /* (entries for resjunk columns will stay that way) */
1840 appinfo->num_child_cols = list_length(query->targetList);
1841 appinfo->parent_colnos = pcolnos =
1842 (AttrNumber *) palloc0(appinfo->num_child_cols * sizeof(AttrNumber));
1843
1844 foreach(l, query->targetList)
1845 {
1846 TargetEntry *tle = (TargetEntry *) lfirst(l);
1847
1848 if (tle->resjunk)
1849 continue;
1850
1851 vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle));
1852 pcolnos[tle->resno - 1] = tle->resno;
1853 }
1854
1855 appinfo->translated_vars = vars;
1856}
1857
1858/*
1859 * is_simple_subquery
1860 * Check a subquery in the range table to see if it's simple enough
1861 * to pull up into the parent query.
1862 *
1863 * rte is the RTE_SUBQUERY RangeTblEntry that contained the subquery.
1864 * (Note subquery is not necessarily equal to rte->subquery; it could be a
1865 * processed copy of that.)
1866 * lowest_outer_join is the lowest outer join above the subquery, or NULL.
1867 */
1868static bool
1870 JoinExpr *lowest_outer_join)
1871{
1872 /*
1873 * Let's just make sure it's a valid subselect ...
1874 */
1875 if (!IsA(subquery, Query) ||
1876 subquery->commandType != CMD_SELECT)
1877 elog(ERROR, "subquery is bogus");
1878
1879 /*
1880 * Can't currently pull up a query with setops (unless it's simple UNION
1881 * ALL, which is handled by a different code path). Maybe after querytree
1882 * redesign...
1883 */
1884 if (subquery->setOperations)
1885 return false;
1886
1887 /*
1888 * Can't pull up a subquery involving grouping, aggregation, SRFs,
1889 * sorting, limiting, or WITH. (XXX WITH could possibly be allowed later)
1890 *
1891 * We also don't pull up a subquery that has explicit FOR UPDATE/SHARE
1892 * clauses, because pullup would cause the locking to occur semantically
1893 * higher than it should. Implicit FOR UPDATE/SHARE is okay because in
1894 * that case the locking was originally declared in the upper query
1895 * anyway.
1896 */
1897 if (subquery->hasAggs ||
1898 subquery->hasWindowFuncs ||
1899 subquery->hasTargetSRFs ||
1900 subquery->groupClause ||
1901 subquery->groupingSets ||
1902 subquery->havingQual ||
1903 subquery->sortClause ||
1904 subquery->distinctClause ||
1905 subquery->limitOffset ||
1906 subquery->limitCount ||
1907 subquery->hasForUpdate ||
1908 subquery->cteList)
1909 return false;
1910
1911 /*
1912 * Don't pull up if the RTE represents a security-barrier view; we
1913 * couldn't prevent information leakage once the RTE's Vars are scattered
1914 * about in the upper query.
1915 */
1916 if (rte->security_barrier)
1917 return false;
1918
1919 /*
1920 * If the subquery is LATERAL, check for pullup restrictions from that.
1921 */
1922 if (rte->lateral)
1923 {
1924 bool restricted;
1925 Relids safe_upper_varnos;
1926
1927 /*
1928 * The subquery's WHERE and JOIN/ON quals mustn't contain any lateral
1929 * references to rels outside a higher outer join (including the case
1930 * where the outer join is within the subquery itself). In such a
1931 * case, pulling up would result in a situation where we need to
1932 * postpone quals from below an outer join to above it, which is
1933 * probably completely wrong and in any case is a complication that
1934 * doesn't seem worth addressing at the moment.
1935 */
1936 if (lowest_outer_join != NULL)
1937 {
1938 restricted = true;
1939 safe_upper_varnos = get_relids_in_jointree((Node *) lowest_outer_join,
1940 true, true);
1941 }
1942 else
1943 {
1944 restricted = false;
1945 safe_upper_varnos = NULL; /* doesn't matter */
1946 }
1947
1949 (Node *) subquery->jointree,
1950 restricted, safe_upper_varnos))
1951 return false;
1952
1953 /*
1954 * If there's an outer join above the LATERAL subquery, also disallow
1955 * pullup if the subquery's targetlist has any references to rels
1956 * outside the outer join, since these might get pulled into quals
1957 * above the subquery (but in or below the outer join) and then lead
1958 * to qual-postponement issues similar to the case checked for above.
1959 * (We wouldn't need to prevent pullup if no such references appear in
1960 * outer-query quals, but we don't have enough info here to check
1961 * that. Also, maybe this restriction could be removed if we forced
1962 * such refs to be wrapped in PlaceHolderVars, even when they're below
1963 * the nearest outer join? But it's a pretty hokey usage, so not
1964 * clear this is worth sweating over.)
1965 *
1966 * If you change this, see also the comments about lateral references
1967 * in pullup_replace_vars_callback().
1968 */
1969 if (lowest_outer_join != NULL)
1970 {
1972 (Node *) subquery->targetList,
1973 1);
1974
1975 if (!bms_is_subset(lvarnos, safe_upper_varnos))
1976 return false;
1977 }
1978 }
1979
1980 /*
1981 * Don't pull up a subquery that has any volatile functions in its
1982 * targetlist. Otherwise we might introduce multiple evaluations of these
1983 * functions, if they get copied to multiple places in the upper query,
1984 * leading to surprising results. (Note: the PlaceHolderVar mechanism
1985 * doesn't quite guarantee single evaluation; else we could pull up anyway
1986 * and just wrap such items in PlaceHolderVars ...)
1987 */
1988 if (contain_volatile_functions((Node *) subquery->targetList))
1989 return false;
1990
1991 return true;
1992}
1993
1994/*
1995 * pull_up_simple_values
1996 * Pull up a single simple VALUES RTE.
1997 *
1998 * jtnode is a RangeTblRef that has been identified as a simple VALUES RTE
1999 * by pull_up_subqueries. We always return a RangeTblRef representing a
2000 * RESULT RTE to replace it (all failure cases should have been detected by
2001 * is_simple_values()). Actually, what we return is just jtnode, because
2002 * we replace the VALUES RTE in the rangetable with the RESULT RTE.
2003 *
2004 * rte is the RangeTblEntry referenced by jtnode. Because of the limited
2005 * possible usage of VALUES RTEs, we do not need the remaining parameters
2006 * of pull_up_subqueries_recurse.
2007 */
2008static Node *
2010{
2011 Query *parse = root->parse;
2012 int varno = ((RangeTblRef *) jtnode)->rtindex;
2013 List *values_list;
2014 List *tlist;
2015 AttrNumber attrno;
2017 ListCell *lc;
2018
2019 Assert(rte->rtekind == RTE_VALUES);
2020 Assert(list_length(rte->values_lists) == 1);
2021
2022 /*
2023 * Need a modifiable copy of the VALUES list to hack on, just in case it's
2024 * multiply referenced.
2025 */
2026 values_list = copyObject(linitial(rte->values_lists));
2027
2028 /*
2029 * The VALUES RTE can't contain any Vars of level zero, let alone any that
2030 * are join aliases, so no need to flatten join alias Vars.
2031 */
2032 Assert(!contain_vars_of_level((Node *) values_list, 0));
2033
2034 /*
2035 * Set up required context data for pullup_replace_vars. In particular,
2036 * we have to make the VALUES list look like a subquery targetlist.
2037 */
2038 tlist = NIL;
2039 attrno = 1;
2040 foreach(lc, values_list)
2041 {
2042 tlist = lappend(tlist,
2043 makeTargetEntry((Expr *) lfirst(lc),
2044 attrno,
2045 NULL,
2046 false));
2047 attrno++;
2048 }
2049 rvcontext.root = root;
2050 rvcontext.targetlist = tlist;
2051 rvcontext.target_rte = rte;
2052 rvcontext.result_relation = 0;
2053 rvcontext.relids = NULL; /* can't be any lateral references here */
2054 rvcontext.nullinfo = NULL;
2055 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
2056 rvcontext.varno = varno;
2057 rvcontext.wrap_option = REPLACE_WRAP_NONE;
2058 /* initialize cache array with indexes 0 .. length(tlist) */
2059 rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
2060 sizeof(Node *));
2061
2062 /*
2063 * Replace all of the top query's references to the RTE's outputs with
2064 * copies of the adjusted VALUES expressions, being careful not to replace
2065 * any of the jointree structure. We can assume there's no outer joins or
2066 * appendrels in the dummy Query that surrounds a VALUES RTE.
2067 */
2068 perform_pullup_replace_vars(root, &rvcontext, NULL);
2069
2070 /*
2071 * There should be no appendrels to fix, nor any outer joins and hence no
2072 * PlaceHolderVars.
2073 */
2074 Assert(root->append_rel_list == NIL);
2075 Assert(root->join_info_list == NIL);
2076 Assert(root->placeholder_list == NIL);
2077
2078 /*
2079 * Replace the VALUES RTE with a RESULT RTE. The VALUES RTE is the only
2080 * rtable entry in the current query level, so this is easy.
2081 */
2082 Assert(list_length(parse->rtable) == 1);
2083
2084 /* Create suitable RTE */
2085 rte = makeNode(RangeTblEntry);
2086 rte->rtekind = RTE_RESULT;
2087 rte->eref = makeAlias("*RESULT*", NIL);
2088
2089 /* Replace rangetable */
2090 parse->rtable = list_make1(rte);
2091
2092 /* We could manufacture a new RangeTblRef, but the one we have is fine */
2093 Assert(varno == 1);
2094
2095 return jtnode;
2096}
2097
2098/*
2099 * is_simple_values
2100 * Check a VALUES RTE in the range table to see if it's simple enough
2101 * to pull up into the parent query.
2102 *
2103 * rte is the RTE_VALUES RangeTblEntry to check.
2104 */
2105static bool
2107{
2108 Assert(rte->rtekind == RTE_VALUES);
2109
2110 /*
2111 * There must be exactly one VALUES list, else it's not semantically
2112 * correct to replace the VALUES RTE with a RESULT RTE, nor would we have
2113 * a unique set of expressions to substitute into the parent query.
2114 */
2115 if (list_length(rte->values_lists) != 1)
2116 return false;
2117
2118 /*
2119 * Because VALUES can't appear under an outer join (or at least, we won't
2120 * try to pull it up if it does), we need not worry about LATERAL, nor
2121 * about validity of PHVs for the VALUES' outputs.
2122 */
2123
2124 /*
2125 * Don't pull up a VALUES that contains any set-returning or volatile
2126 * functions. The considerations here are basically identical to the
2127 * restrictions on a pull-able subquery's targetlist.
2128 */
2131 return false;
2132
2133 /*
2134 * Do not pull up a VALUES that's not the only RTE in its parent query.
2135 * This is actually the only case that the parser will generate at the
2136 * moment, and assuming this is true greatly simplifies
2137 * pull_up_simple_values().
2138 */
2139 if (list_length(root->parse->rtable) != 1 ||
2140 rte != (RangeTblEntry *) linitial(root->parse->rtable))
2141 return false;
2142
2143 return true;
2144}
2145
2146/*
2147 * pull_up_constant_function
2148 * Pull up an RTE_FUNCTION expression that was simplified to a constant.
2149 *
2150 * jtnode is a RangeTblRef that has been identified as a FUNCTION RTE by
2151 * pull_up_subqueries. If its expression is just a Const, hoist that value
2152 * up into the parent query, and replace the RTE_FUNCTION with RTE_RESULT.
2153 *
2154 * In principle we could pull up any immutable expression, but we don't.
2155 * That might result in multiple evaluations of the expression, which could
2156 * be costly if it's not just a Const. Also, the main value of this is
2157 * to let the constant participate in further const-folding, and of course
2158 * that won't happen for a non-Const.
2159 *
2160 * The pulled-up value might need to be wrapped in a PlaceHolderVar if the
2161 * RTE is below an outer join or is part of an appendrel; the extra
2162 * parameters show whether that's needed.
2163 */
2164static Node *
2166 RangeTblEntry *rte,
2167 AppendRelInfo *containing_appendrel)
2168{
2169 Query *parse = root->parse;
2170 RangeTblFunction *rtf;
2171 TypeFuncClass functypclass;
2172 Oid funcrettype;
2173 TupleDesc tupdesc;
2175
2176 /* Fail if the RTE has ORDINALITY - we don't implement that here. */
2177 if (rte->funcordinality)
2178 return jtnode;
2179
2180 /* Fail if RTE isn't a single, simple Const expr */
2181 if (list_length(rte->functions) != 1)
2182 return jtnode;
2184 if (!IsA(rtf->funcexpr, Const))
2185 return jtnode;
2186
2187 /*
2188 * If the function's result is not a scalar, we punt. In principle we
2189 * could break the composite constant value apart into per-column
2190 * constants, but for now it seems not worth the work.
2191 */
2192 if (rtf->funccolcount != 1)
2193 return jtnode; /* definitely composite */
2194
2195 /* If it has a coldeflist, it certainly returns RECORD */
2196 if (rtf->funccolnames != NIL)
2197 return jtnode; /* must be a one-column RECORD type */
2198
2199 functypclass = get_expr_result_type(rtf->funcexpr,
2200 &funcrettype,
2201 &tupdesc);
2202 if (functypclass != TYPEFUNC_SCALAR)
2203 return jtnode; /* must be a one-column composite type */
2204
2205 /* Create context for applying pullup_replace_vars */
2206 rvcontext.root = root;
2207 rvcontext.targetlist = list_make1(makeTargetEntry((Expr *) rtf->funcexpr,
2208 1, /* resno */
2209 NULL, /* resname */
2210 false)); /* resjunk */
2211 rvcontext.target_rte = rte;
2212 rvcontext.result_relation = 0;
2213
2214 /*
2215 * Since this function was reduced to a Const, it doesn't contain any
2216 * lateral references, even if it's marked as LATERAL. This means we
2217 * don't need to fill relids or nullinfo.
2218 */
2219 rvcontext.relids = NULL;
2220 rvcontext.nullinfo = NULL;
2221
2222 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
2223 rvcontext.varno = ((RangeTblRef *) jtnode)->rtindex;
2224 /* this flag will be set below, if needed */
2225 rvcontext.wrap_option = REPLACE_WRAP_NONE;
2226 /* initialize cache array with indexes 0 .. length(tlist) */
2227 rvcontext.rv_cache = palloc0((list_length(rvcontext.targetlist) + 1) *
2228 sizeof(Node *));
2229
2230 /*
2231 * If the parent query uses grouping sets, we need a PlaceHolderVar for
2232 * each expression of the subquery's targetlist items. (See comments in
2233 * pull_up_simple_subquery().)
2234 */
2235 if (parse->groupingSets)
2236 rvcontext.wrap_option = REPLACE_WRAP_ALL;
2237
2238 /*
2239 * Replace all of the top query's references to the RTE's output with
2240 * copies of the funcexpr, being careful not to replace any of the
2241 * jointree structure.
2242 */
2244 containing_appendrel);
2245
2246 /*
2247 * We don't need to bother with changing PlaceHolderVars in the parent
2248 * query. Their references to the RT index are still good for now, and
2249 * will get removed later if we're able to drop the RTE_RESULT.
2250 */
2251
2252 /*
2253 * Convert the RTE to be RTE_RESULT type, signifying that we don't need to
2254 * scan it anymore, and zero out RTE_FUNCTION-specific fields. Also make
2255 * sure the RTE is not marked LATERAL, since elsewhere we don't expect
2256 * RTE_RESULTs to be LATERAL.
2257 */
2258 rte->rtekind = RTE_RESULT;
2259 rte->functions = NIL;
2260 rte->lateral = false;
2261
2262 /*
2263 * We can reuse the RangeTblRef node.
2264 */
2265 return jtnode;
2266}
2267
2268/*
2269 * is_simple_union_all
2270 * Check a subquery to see if it's a simple UNION ALL.
2271 *
2272 * We require all the setops to be UNION ALL (no mixing) and there can't be
2273 * any datatype coercions involved, ie, all the leaf queries must emit the
2274 * same datatypes.
2275 */
2276static bool
2278{
2279 SetOperationStmt *topop;
2280
2281 /* Let's just make sure it's a valid subselect ... */
2282 if (!IsA(subquery, Query) ||
2283 subquery->commandType != CMD_SELECT)
2284 elog(ERROR, "subquery is bogus");
2285
2286 /* Is it a set-operation query at all? */
2287 topop = castNode(SetOperationStmt, subquery->setOperations);
2288 if (!topop)
2289 return false;
2290
2291 /* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */
2292 if (subquery->sortClause ||
2293 subquery->limitOffset ||
2294 subquery->limitCount ||
2295 subquery->rowMarks ||
2296 subquery->cteList)
2297 return false;
2298
2299 /* Recursively check the tree of set operations */
2300 return is_simple_union_all_recurse((Node *) topop, subquery,
2301 topop->colTypes);
2302}
2303
2304static bool
2305is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
2306{
2307 /* Since this function recurses, it could be driven to stack overflow. */
2309
2310 if (IsA(setOp, RangeTblRef))
2311 {
2312 RangeTblRef *rtr = (RangeTblRef *) setOp;
2313 RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable);
2314 Query *subquery = rte->subquery;
2315
2316 Assert(subquery != NULL);
2317
2318 /* Leaf nodes are OK if they match the toplevel column types */
2319 /* We don't have to compare typmods or collations here */
2320 return tlist_same_datatypes(subquery->targetList, colTypes, true);
2321 }
2322 else if (IsA(setOp, SetOperationStmt))
2323 {
2324 SetOperationStmt *op = (SetOperationStmt *) setOp;
2325
2326 /* Must be UNION ALL */
2327 if (op->op != SETOP_UNION || !op->all)
2328 return false;
2329
2330 /* Recurse to check inputs */
2331 return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) &&
2332 is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes);
2333 }
2334 else
2335 {
2336 elog(ERROR, "unrecognized node type: %d",
2337 (int) nodeTag(setOp));
2338 return false; /* keep compiler quiet */
2339 }
2340}
2341
2342/*
2343 * is_safe_append_member
2344 * Check a subquery that is a leaf of a UNION ALL appendrel to see if it's
2345 * safe to pull up.
2346 */
2347static bool
2349{
2350 FromExpr *jtnode;
2351
2352 /*
2353 * It's only safe to pull up the child if its jointree contains exactly
2354 * one RTE, else the AppendRelInfo data structure breaks. The one base RTE
2355 * could be buried in several levels of FromExpr, however. Also, if the
2356 * child's jointree is completely empty, we can pull up because
2357 * pull_up_simple_subquery will insert a single RTE_RESULT RTE instead.
2358 *
2359 * Also, the child can't have any WHERE quals because there's no place to
2360 * put them in an appendrel. (This is a bit annoying...) If we didn't
2361 * need to check this, we'd just test whether get_relids_in_jointree()
2362 * yields a singleton set, to be more consistent with the coding of
2363 * fix_append_rel_relids().
2364 */
2365 jtnode = subquery->jointree;
2366 Assert(IsA(jtnode, FromExpr));
2367 /* Check the completely-empty case */
2368 if (jtnode->fromlist == NIL && jtnode->quals == NULL)
2369 return true;
2370 /* Check the more general case */
2371 while (IsA(jtnode, FromExpr))
2372 {
2373 if (jtnode->quals != NULL)
2374 return false;
2375 if (list_length(jtnode->fromlist) != 1)
2376 return false;
2377 jtnode = linitial(jtnode->fromlist);
2378 }
2379 if (!IsA(jtnode, RangeTblRef))
2380 return false;
2381
2382 return true;
2383}
2384
2385/*
2386 * jointree_contains_lateral_outer_refs
2387 * Check for disallowed lateral references in a jointree's quals
2388 *
2389 * If restricted is false, all level-1 Vars are allowed (but we still must
2390 * search the jointree, since it might contain outer joins below which there
2391 * will be restrictions). If restricted is true, return true when any qual
2392 * in the jointree contains level-1 Vars coming from outside the rels listed
2393 * in safe_upper_varnos.
2394 */
2395static bool
2397 bool restricted,
2398 Relids safe_upper_varnos)
2399{
2400 if (jtnode == NULL)
2401 return false;
2402 if (IsA(jtnode, RangeTblRef))
2403 return false;
2404 else if (IsA(jtnode, FromExpr))
2405 {
2406 FromExpr *f = (FromExpr *) jtnode;
2407 ListCell *l;
2408
2409 /* First, recurse to check child joins */
2410 foreach(l, f->fromlist)
2411 {
2413 lfirst(l),
2414 restricted,
2415 safe_upper_varnos))
2416 return true;
2417 }
2418
2419 /* Then check the top-level quals */
2420 if (restricted &&
2422 safe_upper_varnos))
2423 return true;
2424 }
2425 else if (IsA(jtnode, JoinExpr))
2426 {
2427 JoinExpr *j = (JoinExpr *) jtnode;
2428
2429 /*
2430 * If this is an outer join, we mustn't allow any upper lateral
2431 * references in or below it.
2432 */
2433 if (j->jointype != JOIN_INNER)
2434 {
2435 restricted = true;
2436 safe_upper_varnos = NULL;
2437 }
2438
2439 /* Check the child joins */
2441 j->larg,
2442 restricted,
2443 safe_upper_varnos))
2444 return true;
2446 j->rarg,
2447 restricted,
2448 safe_upper_varnos))
2449 return true;
2450
2451 /* Check the JOIN's qual clauses */
2452 if (restricted &&
2454 safe_upper_varnos))
2455 return true;
2456 }
2457 else
2458 elog(ERROR, "unrecognized node type: %d",
2459 (int) nodeTag(jtnode));
2460 return false;
2461}
2462
2463/*
2464 * Perform pullup_replace_vars everyplace it's needed in the query tree.
2465 *
2466 * Caller has already filled *rvcontext with data describing what to
2467 * substitute for Vars referencing the target subquery. In addition
2468 * we need the identity of the containing appendrel if any.
2469 */
2470static void
2472 pullup_replace_vars_context *rvcontext,
2473 AppendRelInfo *containing_appendrel)
2474{
2475 Query *parse = root->parse;
2476 ListCell *lc;
2477
2478 /*
2479 * If we are considering an appendrel child subquery (that is, a UNION ALL
2480 * member query that we're pulling up), then the only part of the upper
2481 * query that could reference the child yet is the translated_vars list of
2482 * the associated AppendRelInfo. Furthermore, we do not want to force use
2483 * of PHVs in the AppendRelInfo --- there isn't any outer join between.
2484 */
2485 if (containing_appendrel)
2486 {
2487 ReplaceWrapOption save_wrap_option = rvcontext->wrap_option;
2488
2489 rvcontext->wrap_option = REPLACE_WRAP_NONE;
2490 containing_appendrel->translated_vars = (List *)
2491 pullup_replace_vars((Node *) containing_appendrel->translated_vars,
2492 rvcontext);
2493 rvcontext->wrap_option = save_wrap_option;
2494 return;
2495 }
2496
2497 /*
2498 * Replace all of the top query's references to the subquery's outputs
2499 * with copies of the adjusted subtlist items, being careful not to
2500 * replace any of the jointree structure. (This'd be a lot cleaner if we
2501 * could use query_tree_mutator.) We have to use PHVs in the targetList,
2502 * returningList, and havingQual, since those are certainly above any
2503 * outer join. replace_vars_in_jointree tracks its location in the
2504 * jointree and uses PHVs or not appropriately.
2505 */
2506 parse->targetList = (List *)
2507 pullup_replace_vars((Node *) parse->targetList, rvcontext);
2508 parse->returningList = (List *)
2509 pullup_replace_vars((Node *) parse->returningList, rvcontext);
2510
2511 if (parse->onConflict)
2512 {
2513 parse->onConflict->onConflictSet = (List *)
2514 pullup_replace_vars((Node *) parse->onConflict->onConflictSet,
2515 rvcontext);
2516 parse->onConflict->onConflictWhere =
2517 pullup_replace_vars(parse->onConflict->onConflictWhere,
2518 rvcontext);
2519
2520 /*
2521 * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist
2522 * can't contain any references to a subquery.
2523 */
2524 }
2525 if (parse->mergeActionList)
2526 {
2527 foreach(lc, parse->mergeActionList)
2528 {
2529 MergeAction *action = lfirst(lc);
2530
2531 action->qual = pullup_replace_vars(action->qual, rvcontext);
2532 action->targetList = (List *)
2533 pullup_replace_vars((Node *) action->targetList, rvcontext);
2534 }
2535 }
2536 parse->mergeJoinCondition = pullup_replace_vars(parse->mergeJoinCondition,
2537 rvcontext);
2538 replace_vars_in_jointree((Node *) parse->jointree, rvcontext);
2539 Assert(parse->setOperations == NULL);
2540 parse->havingQual = pullup_replace_vars(parse->havingQual, rvcontext);
2541
2542 /*
2543 * Replace references in the translated_vars lists of appendrels.
2544 */
2545 foreach(lc, root->append_rel_list)
2546 {
2547 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
2548
2549 appinfo->translated_vars = (List *)
2550 pullup_replace_vars((Node *) appinfo->translated_vars, rvcontext);
2551 }
2552
2553 /*
2554 * Replace references in the joinaliasvars lists of join RTEs and the
2555 * groupexprs list of group RTE.
2556 */
2557 foreach(lc, parse->rtable)
2558 {
2559 RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc);
2560
2561 if (otherrte->rtekind == RTE_JOIN)
2562 otherrte->joinaliasvars = (List *)
2563 pullup_replace_vars((Node *) otherrte->joinaliasvars,
2564 rvcontext);
2565 else if (otherrte->rtekind == RTE_GROUP)
2566 otherrte->groupexprs = (List *)
2567 pullup_replace_vars((Node *) otherrte->groupexprs,
2568 rvcontext);
2569 }
2570}
2571
2572/*
2573 * Helper routine for perform_pullup_replace_vars: do pullup_replace_vars on
2574 * every expression in the jointree, without changing the jointree structure
2575 * itself. Ugly, but there's no other way...
2576 */
2577static void
2580{
2581 if (jtnode == NULL)
2582 return;
2583 if (IsA(jtnode, RangeTblRef))
2584 {
2585 /*
2586 * If the RangeTblRef refers to a LATERAL subquery (that isn't the
2587 * same subquery we're pulling up), it might contain references to the
2588 * target subquery, which we must replace. We drive this from the
2589 * jointree scan, rather than a scan of the rtable, so that we can
2590 * avoid processing no-longer-referenced RTEs.
2591 */
2592 int varno = ((RangeTblRef *) jtnode)->rtindex;
2593
2594 if (varno != context->varno) /* ignore target subquery itself */
2595 {
2596 RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable);
2597
2598 Assert(rte != context->target_rte);
2599 if (rte->lateral)
2600 {
2601 switch (rte->rtekind)
2602 {
2603 case RTE_RELATION:
2604 /* shouldn't be marked LATERAL unless tablesample */
2605 Assert(rte->tablesample);
2608 context);
2609 break;
2610 case RTE_SUBQUERY:
2611 rte->subquery =
2613 context);
2614 break;
2615 case RTE_FUNCTION:
2616 rte->functions = (List *)
2618 context);
2619 break;
2620 case RTE_TABLEFUNC:
2621 rte->tablefunc = (TableFunc *)
2623 context);
2624 break;
2625 case RTE_VALUES:
2626 rte->values_lists = (List *)
2628 context);
2629 break;
2630 case RTE_JOIN:
2631 case RTE_CTE:
2633 case RTE_RESULT:
2634 case RTE_GROUP:
2635 /* these shouldn't be marked LATERAL */
2636 Assert(false);
2637 break;
2638 }
2639 }
2640 }
2641 }
2642 else if (IsA(jtnode, FromExpr))
2643 {
2644 FromExpr *f = (FromExpr *) jtnode;
2645 ListCell *l;
2646
2647 foreach(l, f->fromlist)
2648 replace_vars_in_jointree(lfirst(l), context);
2649 f->quals = pullup_replace_vars(f->quals, context);
2650 }
2651 else if (IsA(jtnode, JoinExpr))
2652 {
2653 JoinExpr *j = (JoinExpr *) jtnode;
2654 ReplaceWrapOption save_wrap_option = context->wrap_option;
2655
2656 replace_vars_in_jointree(j->larg, context);
2657 replace_vars_in_jointree(j->rarg, context);
2658
2659 /*
2660 * Use PHVs within the join quals of a full join for variable-free
2661 * expressions. Otherwise, we cannot identify which side of the join
2662 * a pulled-up variable-free expression came from, which can lead to
2663 * failure to make a plan at all because none of the quals appear to
2664 * be mergeable or hashable conditions.
2665 */
2666 if (j->jointype == JOIN_FULL)
2668
2669 j->quals = pullup_replace_vars(j->quals, context);
2670
2671 context->wrap_option = save_wrap_option;
2672 }
2673 else
2674 elog(ERROR, "unrecognized node type: %d",
2675 (int) nodeTag(jtnode));
2676}
2677
2678/*
2679 * Apply pullup variable replacement throughout an expression tree
2680 *
2681 * Returns a modified copy of the tree, so this can't be used where we
2682 * need to do in-place replacement.
2683 */
2684static Node *
2686{
2687 return replace_rte_variables(expr,
2688 context->varno, 0,
2690 context,
2691 context->outer_hasSubLinks);
2692}
2693
2694static Node *
2697{
2699 int varattno = var->varattno;
2700 bool need_phv;
2701 Node *newnode;
2702
2703 /* System columns are not replaced. */
2704 if (varattno < InvalidAttrNumber)
2705 return (Node *) copyObject(var);
2706
2707 /*
2708 * We need a PlaceHolderVar if the Var-to-be-replaced has nonempty
2709 * varnullingrels (unless we find below that the replacement expression is
2710 * a Var or PlaceHolderVar that we can just add the nullingrels to). We
2711 * also need one if the caller has instructed us that certain expression
2712 * replacements need to be wrapped for identification purposes.
2713 */
2714 need_phv = (var->varnullingrels != NULL) ||
2715 (rcon->wrap_option != REPLACE_WRAP_NONE);
2716
2717 /*
2718 * If PlaceHolderVars are needed, we cache the modified expressions in
2719 * rcon->rv_cache[]. This is not in hopes of any material speed gain
2720 * within this function, but to avoid generating identical PHVs with
2721 * different IDs. That would result in duplicate evaluations at runtime,
2722 * and possibly prevent optimizations that rely on recognizing different
2723 * references to the same subquery output as being equal(). So it's worth
2724 * a bit of extra effort to avoid it.
2725 *
2726 * The cached items have phlevelsup = 0 and phnullingrels = NULL; we'll
2727 * copy them and adjust those values for this reference site below.
2728 */
2729 if (need_phv &&
2730 varattno >= InvalidAttrNumber &&
2731 varattno <= list_length(rcon->targetlist) &&
2732 rcon->rv_cache[varattno] != NULL)
2733 {
2734 /* Just copy the entry and fall through to adjust phlevelsup etc */
2735 newnode = copyObject(rcon->rv_cache[varattno]);
2736 }
2737 else
2738 {
2739 /*
2740 * Generate the replacement expression. This takes care of expanding
2741 * wholerow references and dealing with non-default varreturningtype.
2742 */
2743 newnode = ReplaceVarFromTargetList(var,
2744 rcon->target_rte,
2745 rcon->targetlist,
2746 rcon->result_relation,
2748 0);
2749
2750 /* Insert PlaceHolderVar if needed */
2751 if (need_phv)
2752 {
2753 bool wrap;
2754
2755 if (rcon->wrap_option == REPLACE_WRAP_ALL)
2756 {
2757 /* Caller told us to wrap all expressions in a PlaceHolderVar */
2758 wrap = true;
2759 }
2760 else if (varattno == InvalidAttrNumber)
2761 {
2762 /*
2763 * Insert PlaceHolderVar for whole-tuple reference. Notice
2764 * that we are wrapping one PlaceHolderVar around the whole
2765 * RowExpr, rather than putting one around each element of the
2766 * row. This is because we need the expression to yield NULL,
2767 * not ROW(NULL,NULL,...) when it is forced to null by an
2768 * outer join.
2769 */
2770 wrap = true;
2771 }
2772 else if (newnode && IsA(newnode, Var) &&
2773 ((Var *) newnode)->varlevelsup == 0)
2774 {
2775 /*
2776 * Simple Vars always escape being wrapped, unless they are
2777 * lateral references to something outside the subquery being
2778 * pulled up and the referenced rel is not under the same
2779 * lowest nulling outer join.
2780 */
2781 wrap = false;
2782 if (rcon->target_rte->lateral &&
2783 !bms_is_member(((Var *) newnode)->varno, rcon->relids))
2784 {
2785 nullingrel_info *nullinfo = rcon->nullinfo;
2786 int lvarno = ((Var *) newnode)->varno;
2787
2788 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2789 if (!bms_is_subset(nullinfo->nullingrels[rcon->varno],
2790 nullinfo->nullingrels[lvarno]))
2791 wrap = true;
2792 }
2793 }
2794 else if (newnode && IsA(newnode, PlaceHolderVar) &&
2795 ((PlaceHolderVar *) newnode)->phlevelsup == 0)
2796 {
2797 /* The same rules apply for a PlaceHolderVar */
2798 wrap = false;
2799 if (rcon->target_rte->lateral &&
2800 !bms_is_subset(((PlaceHolderVar *) newnode)->phrels,
2801 rcon->relids))
2802 {
2803 nullingrel_info *nullinfo = rcon->nullinfo;
2804 Relids lvarnos = ((PlaceHolderVar *) newnode)->phrels;
2805 int lvarno;
2806
2807 lvarno = -1;
2808 while ((lvarno = bms_next_member(lvarnos, lvarno)) >= 0)
2809 {
2810 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2811 if (!bms_is_subset(nullinfo->nullingrels[rcon->varno],
2812 nullinfo->nullingrels[lvarno]))
2813 {
2814 wrap = true;
2815 break;
2816 }
2817 }
2818 }
2819 }
2820 else
2821 {
2822 /*
2823 * If the node contains Var(s) or PlaceHolderVar(s) of the
2824 * subquery being pulled up, or of rels that are under the
2825 * same lowest nulling outer join as the subquery, and does
2826 * not contain any non-strict constructs, then instead of
2827 * adding a PHV on top we can add the required nullingrels to
2828 * those Vars/PHVs. (This is fundamentally a generalization
2829 * of the above cases for bare Vars and PHVs.)
2830 *
2831 * This test is somewhat expensive, but it avoids pessimizing
2832 * the plan in cases where the nullingrels get removed again
2833 * later by outer join reduction.
2834 *
2835 * Note that we don't force wrapping of expressions containing
2836 * lateral references, so long as they also contain Vars/PHVs
2837 * of the subquery, or of rels that are under the same lowest
2838 * nulling outer join as the subquery. This is okay because
2839 * of the restriction to strict constructs: if those Vars/PHVs
2840 * have been forced to NULL by an outer join then the end
2841 * result of the expression will be NULL too, regardless of
2842 * the lateral references. So it's not necessary to force the
2843 * expression to be evaluated below the outer join. This can
2844 * be a very valuable optimization, because it may allow us to
2845 * avoid using a nested loop to pass the lateral reference
2846 * down.
2847 *
2848 * This analysis could be tighter: in particular, a non-strict
2849 * construct hidden within a lower-level PlaceHolderVar is not
2850 * reason to add another PHV. But for now it doesn't seem
2851 * worth the code to be more exact. This is also why it's
2852 * preferable to handle bare PHVs in the above branch, rather
2853 * than this branch. We also prefer to handle bare Vars in a
2854 * separate branch, as it's cheaper this way and parallels the
2855 * handling of PHVs.
2856 *
2857 * For a LATERAL subquery, we have to check the actual var
2858 * membership of the node, but if it's non-lateral then any
2859 * level-zero var must belong to the subquery.
2860 */
2861 bool contain_nullable_vars = false;
2862
2863 if (!rcon->target_rte->lateral)
2864 {
2865 if (contain_vars_of_level(newnode, 0))
2866 contain_nullable_vars = true;
2867 }
2868 else
2869 {
2870 Relids all_varnos;
2871
2872 all_varnos = pull_varnos(rcon->root, newnode);
2873 if (bms_overlap(all_varnos, rcon->relids))
2874 contain_nullable_vars = true;
2875 else
2876 {
2877 nullingrel_info *nullinfo = rcon->nullinfo;
2878 int varno;
2879
2880 varno = -1;
2881 while ((varno = bms_next_member(all_varnos, varno)) >= 0)
2882 {
2883 Assert(varno > 0 && varno <= nullinfo->rtlength);
2884 if (bms_is_subset(nullinfo->nullingrels[rcon->varno],
2885 nullinfo->nullingrels[varno]))
2886 {
2887 contain_nullable_vars = true;
2888 break;
2889 }
2890 }
2891 }
2892 }
2893
2894 if (contain_nullable_vars &&
2896 {
2897 /* No wrap needed */
2898 wrap = false;
2899 }
2900 else
2901 {
2902 /* Else wrap it in a PlaceHolderVar */
2903 wrap = true;
2904 }
2905 }
2906
2907 if (wrap)
2908 {
2909 newnode = (Node *)
2911 (Expr *) newnode,
2912 bms_make_singleton(rcon->varno));
2913
2914 /*
2915 * Cache it if possible (ie, if the attno is in range, which
2916 * it probably always should be).
2917 */
2918 if (varattno >= InvalidAttrNumber &&
2919 varattno <= list_length(rcon->targetlist))
2920 rcon->rv_cache[varattno] = copyObject(newnode);
2921 }
2922 }
2923 }
2924
2925 /* Propagate any varnullingrels into the replacement expression */
2926 if (var->varnullingrels != NULL)
2927 {
2928 if (IsA(newnode, Var))
2929 {
2930 Var *newvar = (Var *) newnode;
2931
2932 Assert(newvar->varlevelsup == 0);
2933 newvar->varnullingrels = bms_add_members(newvar->varnullingrels,
2934 var->varnullingrels);
2935 }
2936 else if (IsA(newnode, PlaceHolderVar))
2937 {
2938 PlaceHolderVar *newphv = (PlaceHolderVar *) newnode;
2939
2940 Assert(newphv->phlevelsup == 0);
2942 var->varnullingrels);
2943 }
2944 else
2945 {
2946 /*
2947 * There should be Vars/PHVs within the expression that we can
2948 * modify. Vars/PHVs of the subquery should have the full
2949 * var->varnullingrels added to them, but if there are lateral
2950 * references within the expression, those must be marked with
2951 * only the nullingrels that potentially apply to them. (This
2952 * corresponds to the fact that the expression will now be
2953 * evaluated at the join level of the Var that we are replacing:
2954 * the lateral references may have bubbled up through fewer outer
2955 * joins than the subquery's Vars have. Per the discussion above,
2956 * we'll still get the right answers.) That relid set could be
2957 * different for different lateral relations, so we have to do
2958 * this work for each one.
2959 *
2960 * (Currently, the restrictions in is_simple_subquery() mean that
2961 * at most we have to remove the lowest outer join's relid from
2962 * the nullingrels of a lateral reference. However, we might
2963 * relax those restrictions someday, so let's do this right.)
2964 */
2965 if (rcon->target_rte->lateral)
2966 {
2967 nullingrel_info *nullinfo = rcon->nullinfo;
2968 Relids lvarnos;
2969 int lvarno;
2970
2971 /*
2972 * Identify lateral varnos used within newnode. We must do
2973 * this before injecting var->varnullingrels into the tree.
2974 */
2975 lvarnos = pull_varnos(rcon->root, newnode);
2976 lvarnos = bms_del_members(lvarnos, rcon->relids);
2977 /* For each one, add relevant nullingrels if any */
2978 lvarno = -1;
2979 while ((lvarno = bms_next_member(lvarnos, lvarno)) >= 0)
2980 {
2981 Relids lnullingrels;
2982
2983 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2984 lnullingrels = bms_intersect(var->varnullingrels,
2985 nullinfo->nullingrels[lvarno]);
2986 if (!bms_is_empty(lnullingrels))
2987 newnode = add_nulling_relids(newnode,
2988 bms_make_singleton(lvarno),
2989 lnullingrels);
2990 }
2991 }
2992
2993 /* Finally, deal with Vars/PHVs of the subquery itself */
2994 newnode = add_nulling_relids(newnode,
2995 rcon->relids,
2996 var->varnullingrels);
2997 /* Assert we did put the varnullingrels into the expression */
2998 Assert(bms_is_subset(var->varnullingrels,
2999 pull_varnos(rcon->root, newnode)));
3000 }
3001 }
3002
3003 /* Must adjust varlevelsup if replaced Var is within a subquery */
3004 if (var->varlevelsup > 0)
3005 IncrementVarSublevelsUp(newnode, var->varlevelsup, 0);
3006
3007 return newnode;
3008}
3009
3010/*
3011 * Apply pullup variable replacement to a subquery
3012 *
3013 * This needs to be different from pullup_replace_vars() because
3014 * replace_rte_variables will think that it shouldn't increment sublevels_up
3015 * before entering the Query; so we need to call it with sublevels_up == 1.
3016 */
3017static Query *
3020{
3021 Assert(IsA(query, Query));
3022 return (Query *) replace_rte_variables((Node *) query,
3023 context->varno, 1,
3025 context,
3026 NULL);
3027}
3028
3029
3030/*
3031 * flatten_simple_union_all
3032 * Try to optimize top-level UNION ALL structure into an appendrel
3033 *
3034 * If a query's setOperations tree consists entirely of simple UNION ALL
3035 * operations, flatten it into an append relation, which we can process more
3036 * intelligently than the general setops case. Otherwise, do nothing.
3037 *
3038 * In most cases, this can succeed only for a top-level query, because for a
3039 * subquery in FROM, the parent query's invocation of pull_up_subqueries would
3040 * already have flattened the UNION via pull_up_simple_union_all. But there
3041 * are a few cases we can support here but not in that code path, for example
3042 * when the subquery also contains ORDER BY.
3043 */
3044void
3046{
3047 Query *parse = root->parse;
3048 SetOperationStmt *topop;
3049 Node *leftmostjtnode;
3050 int leftmostRTI;
3051 RangeTblEntry *leftmostRTE;
3052 int childRTI;
3053 RangeTblEntry *childRTE;
3054 RangeTblRef *rtr;
3055
3056 /* Shouldn't be called unless query has setops */
3057 topop = castNode(SetOperationStmt, parse->setOperations);
3058 Assert(topop);
3059
3060 /* Can't optimize away a recursive UNION */
3061 if (root->hasRecursion)
3062 return;
3063
3064 /*
3065 * Recursively check the tree of set operations. If not all UNION ALL
3066 * with identical column types, punt.
3067 */
3068 if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes))
3069 return;
3070
3071 /*
3072 * Locate the leftmost leaf query in the setops tree. The upper query's
3073 * Vars all refer to this RTE (see transformSetOperationStmt).
3074 */
3075 leftmostjtnode = topop->larg;
3076 while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt))
3077 leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg;
3078 Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef));
3079 leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex;
3080 leftmostRTE = rt_fetch(leftmostRTI, parse->rtable);
3081 Assert(leftmostRTE->rtekind == RTE_SUBQUERY);
3082
3083 /*
3084 * Make a copy of the leftmost RTE and add it to the rtable. This copy
3085 * will represent the leftmost leaf query in its capacity as a member of
3086 * the appendrel. The original will represent the appendrel as a whole.
3087 * (We must do things this way because the upper query's Vars have to be
3088 * seen as referring to the whole appendrel.)
3089 */
3090 childRTE = copyObject(leftmostRTE);
3091 parse->rtable = lappend(parse->rtable, childRTE);
3092 childRTI = list_length(parse->rtable);
3093
3094 /* Modify the setops tree to reference the child copy */
3095 ((RangeTblRef *) leftmostjtnode)->rtindex = childRTI;
3096
3097 /* Modify the formerly-leftmost RTE to mark it as an appendrel parent */
3098 leftmostRTE->inh = true;
3099
3100 /*
3101 * Form a RangeTblRef for the appendrel, and insert it into FROM. The top
3102 * Query of a setops tree should have had an empty FromClause initially.
3103 */
3104 rtr = makeNode(RangeTblRef);
3105 rtr->rtindex = leftmostRTI;
3106 Assert(parse->jointree->fromlist == NIL);
3107 parse->jointree->fromlist = list_make1(rtr);
3108
3109 /*
3110 * Now pretend the query has no setops. We must do this before trying to
3111 * do subquery pullup, because of Assert in pull_up_simple_subquery.
3112 */
3113 parse->setOperations = NULL;
3114
3115 /*
3116 * Build AppendRelInfo information, and apply pull_up_subqueries to the
3117 * leaf queries of the UNION ALL. (We must do that now because they
3118 * weren't previously referenced by the jointree, and so were missed by
3119 * the main invocation of pull_up_subqueries.)
3120 */
3121 pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0);
3122}
3123
3124
3125/*
3126 * reduce_outer_joins
3127 * Attempt to reduce outer joins to plain inner joins.
3128 *
3129 * The idea here is that given a query like
3130 * SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
3131 * we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE
3132 * is strict. The strict operator will always return NULL, causing the outer
3133 * WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's
3134 * columns. Therefore, there's no need for the join to produce null-extended
3135 * rows in the first place --- which makes it a plain join not an outer join.
3136 * (This scenario may not be very likely in a query written out by hand, but
3137 * it's reasonably likely when pushing quals down into complex views.)
3138 *
3139 * More generally, an outer join can be reduced in strength if there is a
3140 * strict qual above it in the qual tree that constrains a Var from the
3141 * nullable side of the join to be non-null. (For FULL joins this applies
3142 * to each side separately.)
3143 *
3144 * Another transformation we apply here is to recognize cases like
3145 * SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
3146 * If the join clause is strict for b.y, then only null-extended rows could
3147 * pass the upper WHERE, and we can conclude that what the query is really
3148 * specifying is an anti-semijoin. We change the join type from JOIN_LEFT
3149 * to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be
3150 * removed to prevent bogus selectivity calculations, but we leave it to
3151 * distribute_qual_to_rels to get rid of such clauses.
3152 *
3153 * Also, we get rid of JOIN_RIGHT cases by flipping them around to become
3154 * JOIN_LEFT. This saves some code here and in some later planner routines;
3155 * the main benefit is to reduce the number of jointypes that can appear in
3156 * SpecialJoinInfo nodes. Note that we can still generate Paths and Plans
3157 * that use JOIN_RIGHT (or JOIN_RIGHT_ANTI) by switching the inputs again.
3158 *
3159 * To ease recognition of strict qual clauses, we require this routine to be
3160 * run after expression preprocessing (i.e., qual canonicalization and JOIN
3161 * alias-var expansion).
3162 */
3163void
3165{
3168 ListCell *lc;
3169
3170 /*
3171 * To avoid doing strictness checks on more quals than necessary, we want
3172 * to stop descending the jointree as soon as there are no outer joins
3173 * below our current point. This consideration forces a two-pass process.
3174 * The first pass gathers information about which base rels appear below
3175 * each side of each join clause, and about whether there are outer
3176 * join(s) below each side of each join clause. The second pass examines
3177 * qual clauses and changes join types as it descends the tree.
3178 */
3179 state1 = reduce_outer_joins_pass1((Node *) root->parse->jointree);
3180
3181 /* planner.c shouldn't have called me if no outer joins */
3182 if (state1 == NULL || !state1->contains_outer)
3183 elog(ERROR, "so where are the outer joins?");
3184
3185 state2.inner_reduced = NULL;
3186 state2.partial_reduced = NIL;
3187
3188 reduce_outer_joins_pass2((Node *) root->parse->jointree,
3189 state1, &state2,
3190 root, NULL, NIL);
3191
3192 /*
3193 * If we successfully reduced the strength of any outer joins, we must
3194 * remove references to those joins as nulling rels. This is handled as
3195 * an additional pass, for simplicity and because we can handle all
3196 * fully-reduced joins in a single pass over the parse tree.
3197 */
3198 if (!bms_is_empty(state2.inner_reduced))
3199 {
3200 root->parse = (Query *)
3201 remove_nulling_relids((Node *) root->parse,
3202 state2.inner_reduced,
3203 NULL);
3204 /* There could be references in the append_rel_list, too */
3205 root->append_rel_list = (List *)
3206 remove_nulling_relids((Node *) root->append_rel_list,
3207 state2.inner_reduced,
3208 NULL);
3209 }
3210
3211 /*
3212 * Partially-reduced full joins have to be done one at a time, since
3213 * they'll each need a different setting of except_relids.
3214 */
3215 foreach(lc, state2.partial_reduced)
3216 {
3218 Relids full_join_relids = bms_make_singleton(statep->full_join_rti);
3219
3220 root->parse = (Query *)
3221 remove_nulling_relids((Node *) root->parse,
3222 full_join_relids,
3223 statep->unreduced_side);
3224 root->append_rel_list = (List *)
3225 remove_nulling_relids((Node *) root->append_rel_list,
3226 full_join_relids,
3227 statep->unreduced_side);
3228 }
3229}
3230
3231/*
3232 * reduce_outer_joins_pass1 - phase 1 data collection
3233 *
3234 * Returns a state node describing the given jointree node.
3235 */
3238{
3240
3243 result->relids = NULL;
3244 result->contains_outer = false;
3245 result->sub_states = NIL;
3246
3247 if (jtnode == NULL)
3248 return result;
3249 if (IsA(jtnode, RangeTblRef))
3250 {
3251 int varno = ((RangeTblRef *) jtnode)->rtindex;
3252
3253 result->relids = bms_make_singleton(varno);
3254 }
3255 else if (IsA(jtnode, FromExpr))
3256 {
3257 FromExpr *f = (FromExpr *) jtnode;
3258 ListCell *l;
3259
3260 foreach(l, f->fromlist)
3261 {
3263
3264 sub_state = reduce_outer_joins_pass1(lfirst(l));
3265 result->relids = bms_add_members(result->relids,
3266 sub_state->relids);
3267 result->contains_outer |= sub_state->contains_outer;
3268 result->sub_states = lappend(result->sub_states, sub_state);
3269 }
3270 }
3271 else if (IsA(jtnode, JoinExpr))
3272 {
3273 JoinExpr *j = (JoinExpr *) jtnode;
3275
3276 /* join's own RT index is not wanted in result->relids */
3277 if (IS_OUTER_JOIN(j->jointype))
3278 result->contains_outer = true;
3279
3280 sub_state = reduce_outer_joins_pass1(j->larg);
3281 result->relids = bms_add_members(result->relids,
3282 sub_state->relids);
3283 result->contains_outer |= sub_state->contains_outer;
3284 result->sub_states = lappend(result->sub_states, sub_state);
3285
3286 sub_state = reduce_outer_joins_pass1(j->rarg);
3287 result->relids = bms_add_members(result->relids,
3288 sub_state->relids);
3289 result->contains_outer |= sub_state->contains_outer;
3290 result->sub_states = lappend(result->sub_states, sub_state);
3291 }
3292 else
3293 elog(ERROR, "unrecognized node type: %d",
3294 (int) nodeTag(jtnode));
3295 return result;
3296}
3297
3298/*
3299 * reduce_outer_joins_pass2 - phase 2 processing
3300 *
3301 * jtnode: current jointree node
3302 * state1: state data collected by phase 1 for this node
3303 * state2: where to accumulate info about successfully-reduced joins
3304 * root: toplevel planner state
3305 * nonnullable_rels: set of base relids forced non-null by upper quals
3306 * forced_null_vars: multibitmapset of Vars forced null by upper quals
3307 *
3308 * Returns info in state2 about outer joins that were successfully simplified.
3309 * Joins that were fully reduced to inner joins are all added to
3310 * state2->inner_reduced. If a full join is reduced to a left join,
3311 * it needs its own entry in state2->partial_reduced, since that will
3312 * require custom processing to remove only the correct nullingrel markers.
3313 */
3314static void
3319 Relids nonnullable_rels,
3320 List *forced_null_vars)
3321{
3322 /*
3323 * pass 2 should never descend as far as an empty subnode or base rel,
3324 * because it's only called on subtrees marked as contains_outer.
3325 */
3326 if (jtnode == NULL)
3327 elog(ERROR, "reached empty jointree");
3328 if (IsA(jtnode, RangeTblRef))
3329 elog(ERROR, "reached base rel");
3330 else if (IsA(jtnode, FromExpr))
3331 {
3332 FromExpr *f = (FromExpr *) jtnode;
3333 ListCell *l;
3334 ListCell *s;
3335 Relids pass_nonnullable_rels;
3336 List *pass_forced_null_vars;
3337
3338 /* Scan quals to see if we can add any constraints */
3339 pass_nonnullable_rels = find_nonnullable_rels(f->quals);
3340 pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels,
3341 nonnullable_rels);
3342 pass_forced_null_vars = find_forced_null_vars(f->quals);
3343 pass_forced_null_vars = mbms_add_members(pass_forced_null_vars,
3344 forced_null_vars);
3345 /* And recurse --- but only into interesting subtrees */
3347 forboth(l, f->fromlist, s, state1->sub_states)
3348 {
3349 reduce_outer_joins_pass1_state *sub_state = lfirst(s);
3350
3351 if (sub_state->contains_outer)
3352 reduce_outer_joins_pass2(lfirst(l), sub_state,
3353 state2, root,
3354 pass_nonnullable_rels,
3355 pass_forced_null_vars);
3356 }
3357 bms_free(pass_nonnullable_rels);
3358 /* can't so easily clean up var lists, unfortunately */
3359 }
3360 else if (IsA(jtnode, JoinExpr))
3361 {
3362 JoinExpr *j = (JoinExpr *) jtnode;
3363 int rtindex = j->rtindex;
3364 JoinType jointype = j->jointype;
3365 reduce_outer_joins_pass1_state *left_state = linitial(state1->sub_states);
3366 reduce_outer_joins_pass1_state *right_state = lsecond(state1->sub_states);
3367
3368 /* Can we simplify this join? */
3369 switch (jointype)
3370 {
3371 case JOIN_INNER:
3372 break;
3373 case JOIN_LEFT:
3374 if (bms_overlap(nonnullable_rels, right_state->relids))
3375 jointype = JOIN_INNER;
3376 break;
3377 case JOIN_RIGHT:
3378 if (bms_overlap(nonnullable_rels, left_state->relids))
3379 jointype = JOIN_INNER;
3380 break;
3381 case JOIN_FULL:
3382 if (bms_overlap(nonnullable_rels, left_state->relids))
3383 {
3384 if (bms_overlap(nonnullable_rels, right_state->relids))
3385 jointype = JOIN_INNER;
3386 else
3387 {
3388 jointype = JOIN_LEFT;
3389 /* Also report partial reduction in state2 */
3390 report_reduced_full_join(state2, rtindex,
3391 right_state->relids);
3392 }
3393 }
3394 else
3395 {
3396 if (bms_overlap(nonnullable_rels, right_state->relids))
3397 {
3398 jointype = JOIN_RIGHT;
3399 /* Also report partial reduction in state2 */
3400 report_reduced_full_join(state2, rtindex,
3401 left_state->relids);
3402 }
3403 }
3404 break;
3405 case JOIN_SEMI:
3406 case JOIN_ANTI:
3407
3408 /*
3409 * These could only have been introduced by pull_up_sublinks,
3410 * so there's no way that upper quals could refer to their
3411 * righthand sides, and no point in checking. We don't expect
3412 * to see JOIN_RIGHT_SEMI or JOIN_RIGHT_ANTI yet.
3413 */
3414 break;
3415 default:
3416 elog(ERROR, "unrecognized join type: %d",
3417 (int) jointype);
3418 break;
3419 }
3420
3421 /*
3422 * Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we
3423 * reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no
3424 * longer matches the internal ordering of any CoalesceExpr's built to
3425 * represent merged join variables. We don't care about that at
3426 * present, but be wary of it ...
3427 */
3428 if (jointype == JOIN_RIGHT)
3429 {
3430 Node *tmparg;
3431
3432 tmparg = j->larg;
3433 j->larg = j->rarg;
3434 j->rarg = tmparg;
3435 jointype = JOIN_LEFT;
3436 right_state = linitial(state1->sub_states);
3437 left_state = lsecond(state1->sub_states);
3438 }
3439
3440 /*
3441 * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if
3442 * the join's own quals are strict for any var that was forced null by
3443 * higher qual levels. NOTE: there are other ways that we could
3444 * detect an anti-join, in particular if we were to check whether Vars
3445 * coming from the RHS must be non-null because of table constraints.
3446 * That seems complicated and expensive though (in particular, one
3447 * would have to be wary of lower outer joins). For the moment this
3448 * seems sufficient.
3449 */
3450 if (jointype == JOIN_LEFT)
3451 {
3452 List *nonnullable_vars;
3453 Bitmapset *overlap;
3454
3455 /* Find Vars in j->quals that must be non-null in joined rows */
3456 nonnullable_vars = find_nonnullable_vars(j->quals);
3457
3458 /*
3459 * It's not sufficient to check whether nonnullable_vars and
3460 * forced_null_vars overlap: we need to know if the overlap
3461 * includes any RHS variables.
3462 */
3463 overlap = mbms_overlap_sets(nonnullable_vars, forced_null_vars);
3464 if (bms_overlap(overlap, right_state->relids))
3465 jointype = JOIN_ANTI;
3466 }
3467
3468 /*
3469 * Apply the jointype change, if any, to both jointree node and RTE.
3470 * Also, if we changed an RTE to INNER, add its RTI to inner_reduced.
3471 */
3472 if (rtindex && jointype != j->jointype)
3473 {
3474 RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable);
3475
3476 Assert(rte->rtekind == RTE_JOIN);
3477 Assert(rte->jointype == j->jointype);
3478 rte->jointype = jointype;
3479 if (jointype == JOIN_INNER)
3480 state2->inner_reduced = bms_add_member(state2->inner_reduced,
3481 rtindex);
3482 }
3483 j->jointype = jointype;
3484
3485 /* Only recurse if there's more to do below here */
3486 if (left_state->contains_outer || right_state->contains_outer)
3487 {
3488 Relids local_nonnullable_rels;
3489 List *local_forced_null_vars;
3490 Relids pass_nonnullable_rels;
3491 List *pass_forced_null_vars;
3492
3493 /*
3494 * If this join is (now) inner, we can add any constraints its
3495 * quals provide to those we got from above. But if it is outer,
3496 * we can pass down the local constraints only into the nullable
3497 * side, because an outer join never eliminates any rows from its
3498 * non-nullable side. Also, there is no point in passing upper
3499 * constraints into the nullable side, since if there were any
3500 * we'd have been able to reduce the join. (In the case of upper
3501 * forced-null constraints, we *must not* pass them into the
3502 * nullable side --- they either applied here, or not.) The upshot
3503 * is that we pass either the local or the upper constraints,
3504 * never both, to the children of an outer join.
3505 *
3506 * Note that a SEMI join works like an inner join here: it's okay
3507 * to pass down both local and upper constraints. (There can't be
3508 * any upper constraints affecting its inner side, but it's not
3509 * worth having a separate code path to avoid passing them.)
3510 *
3511 * At a FULL join we just punt and pass nothing down --- is it
3512 * possible to be smarter?
3513 */
3514 if (jointype != JOIN_FULL)
3515 {
3516 local_nonnullable_rels = find_nonnullable_rels(j->quals);
3517 local_forced_null_vars = find_forced_null_vars(j->quals);
3518 if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
3519 {
3520 /* OK to merge upper and local constraints */
3521 local_nonnullable_rels = bms_add_members(local_nonnullable_rels,
3522 nonnullable_rels);
3523 local_forced_null_vars = mbms_add_members(local_forced_null_vars,
3524 forced_null_vars);
3525 }
3526 }
3527 else
3528 {
3529 /* no use in calculating these */
3530 local_nonnullable_rels = NULL;
3531 local_forced_null_vars = NIL;
3532 }
3533
3534 if (left_state->contains_outer)
3535 {
3536 if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
3537 {
3538 /* pass union of local and upper constraints */
3539 pass_nonnullable_rels = local_nonnullable_rels;
3540 pass_forced_null_vars = local_forced_null_vars;
3541 }
3542 else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */
3543 {
3544 /* can't pass local constraints to non-nullable side */
3545 pass_nonnullable_rels = nonnullable_rels;
3546 pass_forced_null_vars = forced_null_vars;
3547 }
3548 else
3549 {
3550 /* no constraints pass through JOIN_FULL */
3551 pass_nonnullable_rels = NULL;
3552 pass_forced_null_vars = NIL;
3553 }
3554 reduce_outer_joins_pass2(j->larg, left_state,
3555 state2, root,
3556 pass_nonnullable_rels,
3557 pass_forced_null_vars);
3558 }
3559
3560 if (right_state->contains_outer)
3561 {
3562 if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */
3563 {
3564 /* pass appropriate constraints, per comment above */
3565 pass_nonnullable_rels = local_nonnullable_rels;
3566 pass_forced_null_vars = local_forced_null_vars;
3567 }
3568 else
3569 {
3570 /* no constraints pass through JOIN_FULL */
3571 pass_nonnullable_rels = NULL;
3572 pass_forced_null_vars = NIL;
3573 }
3574 reduce_outer_joins_pass2(j->rarg, right_state,
3575 state2, root,
3576 pass_nonnullable_rels,
3577 pass_forced_null_vars);
3578 }
3579 bms_free(local_nonnullable_rels);
3580 }
3581 }
3582 else
3583 elog(ERROR, "unrecognized node type: %d",
3584 (int) nodeTag(jtnode));
3585}
3586
3587/* Helper for reduce_outer_joins_pass2 */
3588static void
3590 int rtindex, Relids relids)
3591{
3593
3594 statep = palloc(sizeof(reduce_outer_joins_partial_state));
3595 statep->full_join_rti = rtindex;
3596 statep->unreduced_side = relids;
3597 state2->partial_reduced = lappend(state2->partial_reduced, statep);
3598}
3599
3600
3601/*
3602 * remove_useless_result_rtes
3603 * Attempt to remove RTE_RESULT RTEs from the join tree.
3604 * Also, elide single-child FromExprs where possible.
3605 *
3606 * We can remove RTE_RESULT entries from the join tree using the knowledge
3607 * that RTE_RESULT returns exactly one row and has no output columns. Hence,
3608 * if one is inner-joined to anything else, we can delete it. Optimizations
3609 * are also possible for some outer-join cases, as detailed below.
3610 *
3611 * This pass also replaces single-child FromExprs with their child node
3612 * where possible. It's appropriate to do that here and not earlier because
3613 * RTE_RESULT removal might reduce a multiple-child FromExpr to have only one
3614 * child. We can remove such a FromExpr if its quals are empty, or if it's
3615 * semantically valid to merge the quals into those of the parent node.
3616 * While removing unnecessary join tree nodes has some micro-efficiency value,
3617 * the real reason to do this is to eliminate cases where the nullable side of
3618 * an outer join node is a FromExpr whose single child is another outer join.
3619 * To correctly determine whether the two outer joins can commute,
3620 * deconstruct_jointree() must treat any quals of such a FromExpr as being
3621 * degenerate quals of the upper outer join. The best way to do that is to
3622 * make them actually *be* quals of the upper join, by dropping the FromExpr
3623 * and hoisting the quals up into the upper join's quals. (Note that there is
3624 * no hazard when the intermediate FromExpr has multiple children, since then
3625 * it represents an inner join that cannot commute with the upper outer join.)
3626 * As long as we have to do that, we might as well elide such FromExprs
3627 * everywhere.
3628 *
3629 * Some of these optimizations depend on recognizing empty (constant-true)
3630 * quals for FromExprs and JoinExprs. That makes it useful to apply this
3631 * optimization pass after expression preprocessing, since that will have
3632 * eliminated constant-true quals, allowing more cases to be recognized as
3633 * optimizable. What's more, the usual reason for an RTE_RESULT to be present
3634 * is that we pulled up a subquery or VALUES clause, thus very possibly
3635 * replacing Vars with constants, making it more likely that a qual can be
3636 * reduced to constant true. Also, because some optimizations depend on
3637 * the outer-join type, it's best to have done reduce_outer_joins() first.
3638 *
3639 * A PlaceHolderVar referencing an RTE_RESULT RTE poses an obstacle to this
3640 * process: we must remove the RTE_RESULT's relid from the PHV's phrels, but
3641 * we must not reduce the phrels set to empty. If that would happen, and
3642 * the RTE_RESULT is an immediate child of an outer join, we have to give up
3643 * and not remove the RTE_RESULT: there is noplace else to evaluate the
3644 * PlaceHolderVar. (That is, in such cases the RTE_RESULT *does* have output
3645 * columns.) But if the RTE_RESULT is an immediate child of an inner join,
3646 * we can usually change the PlaceHolderVar's phrels so as to evaluate it at
3647 * the inner join instead. This is OK because we really only care that PHVs
3648 * are evaluated above or below the correct outer joins. We can't, however,
3649 * postpone the evaluation of a PHV to above where it is used; so there are
3650 * some checks below on whether output PHVs are laterally referenced in the
3651 * other join input rel(s).
3652 *
3653 * We used to try to do this work as part of pull_up_subqueries() where the
3654 * potentially-optimizable cases get introduced; but it's way simpler, and
3655 * more effective, to do it separately.
3656 */
3657void
3659{
3660 Relids dropped_outer_joins = NULL;
3661 ListCell *cell;
3662
3663 /* Top level of jointree must always be a FromExpr */
3664 Assert(IsA(root->parse->jointree, FromExpr));
3665 /* Recurse ... */
3666 root->parse->jointree = (FromExpr *)
3668 (Node *) root->parse->jointree,
3669 NULL,
3670 &dropped_outer_joins);
3671 /* We should still have a FromExpr */
3672 Assert(IsA(root->parse->jointree, FromExpr));
3673
3674 /*
3675 * If we removed any outer-join nodes from the jointree, run around and
3676 * remove references to those joins as nulling rels. (There could be such
3677 * references in PHVs that we pulled up out of the original subquery that
3678 * the RESULT rel replaced. This is kosher on the grounds that we now
3679 * know that such an outer join wouldn't really have nulled anything.) We
3680 * don't do this during the main recursion, for simplicity and because we
3681 * can handle all such joins in a single pass over the parse tree.
3682 */
3683 if (!bms_is_empty(dropped_outer_joins))
3684 {
3685 root->parse = (Query *)
3686 remove_nulling_relids((Node *) root->parse,
3687 dropped_outer_joins,
3688 NULL);
3689 /* There could be references in the append_rel_list, too */
3690 root->append_rel_list = (List *)
3691 remove_nulling_relids((Node *) root->append_rel_list,
3692 dropped_outer_joins,
3693 NULL);
3694 }
3695
3696 /*
3697 * Remove any PlanRowMark referencing an RTE_RESULT RTE. We obviously
3698 * must do that for any RTE_RESULT that we just removed. But one for a
3699 * RTE that we did not remove can be dropped anyway: since the RTE has
3700 * only one possible output row, there is no need for EPQ to mark and
3701 * restore that row.
3702 *
3703 * It's necessary, not optional, to remove the PlanRowMark for a surviving
3704 * RTE_RESULT RTE; otherwise we'll generate a whole-row Var for the
3705 * RTE_RESULT, which the executor has no support for.
3706 */
3707 foreach(cell, root->rowMarks)
3708 {
3709 PlanRowMark *rc = (PlanRowMark *) lfirst(cell);
3710
3711 if (rt_fetch(rc->rti, root->parse->rtable)->rtekind == RTE_RESULT)
3712 root->rowMarks = foreach_delete_current(root->rowMarks, cell);
3713 }
3714}
3715
3716/*
3717 * remove_useless_results_recurse
3718 * Recursive guts of remove_useless_result_rtes.
3719 *
3720 * This recursively processes the jointree and returns a modified jointree.
3721 * In addition, the RT indexes of any removed outer-join nodes are added to
3722 * *dropped_outer_joins.
3723 *
3724 * jtnode is the current jointree node. If it could be valid to merge
3725 * its quals into those of the parent node, parent_quals should point to
3726 * the parent's quals list; otherwise, pass NULL for parent_quals.
3727 * (Note that in some cases, parent_quals points to the quals of a parent
3728 * more than one level up in the tree.)
3729 */
3730static Node *
3732 Node **parent_quals,
3733 Relids *dropped_outer_joins)
3734{
3735 Assert(jtnode != NULL);
3736 if (IsA(jtnode, RangeTblRef))
3737 {
3738 /* Can't immediately do anything with a RangeTblRef */
3739 }
3740 else if (IsA(jtnode, FromExpr))
3741 {
3742 FromExpr *f = (FromExpr *) jtnode;
3743 Relids result_relids = NULL;
3744 ListCell *cell;
3745
3746 /*
3747 * We can drop RTE_RESULT rels from the fromlist so long as at least
3748 * one child remains, since joining to a one-row table changes
3749 * nothing. (But we can't drop a RTE_RESULT that computes PHV(s) that
3750 * are needed by some sibling. The cleanup transformation below would
3751 * reassign the PHVs to be computed at the join, which is too late for
3752 * the sibling's use.) The easiest way to mechanize this rule is to
3753 * modify the list in-place.
3754 */
3755 foreach(cell, f->fromlist)
3756 {
3757 Node *child = (Node *) lfirst(cell);
3758 int varno;
3759
3760 /* Recursively transform child, allowing it to push up quals ... */
3761 child = remove_useless_results_recurse(root, child,
3762 &f->quals,
3763 dropped_outer_joins);
3764 /* ... and stick it back into the tree */
3765 lfirst(cell) = child;
3766
3767 /*
3768 * If it's an RTE_RESULT with at least one sibling, and no sibling
3769 * references dependent PHVs, we can drop it. We don't yet know
3770 * what the inner join's final relid set will be, so postpone
3771 * cleanup of PHVs etc till after this loop.
3772 */
3773 if (list_length(f->fromlist) > 1 &&
3774 (varno = get_result_relid(root, child)) != 0 &&
3776 {
3777 f->fromlist = foreach_delete_current(f->fromlist, cell);
3778 result_relids = bms_add_member(result_relids, varno);
3779 }
3780 }
3781
3782 /*
3783 * Clean up if we dropped any RTE_RESULT RTEs. This is a bit
3784 * inefficient if there's more than one, but it seems better to
3785 * optimize the support code for the single-relid case.
3786 */
3787 if (result_relids)
3788 {
3789 int varno = -1;
3790
3791 while ((varno = bms_next_member(result_relids, varno)) >= 0)
3792 remove_result_refs(root, varno, (Node *) f);
3793 }
3794
3795 /*
3796 * If the FromExpr now has only one child, see if we can elide it.
3797 * This is always valid if there are no quals, except at the top of
3798 * the jointree (since Query.jointree is required to point to a
3799 * FromExpr). Otherwise, we can do it if we can push the quals up to
3800 * the parent node.
3801 *
3802 * Note: while it would not be terribly hard to generalize this
3803 * transformation to merge multi-child FromExprs into their parent
3804 * FromExpr, that risks making the parent join too expensive to plan.
3805 * We leave it to later processing to decide heuristically whether
3806 * that's a good idea. Pulling up a single child is always OK,
3807 * however.
3808 */
3809 if (list_length(f->fromlist) == 1 &&
3810 f != root->parse->jointree &&
3811 (f->quals == NULL || parent_quals != NULL))
3812 {
3813 /*
3814 * Merge any quals up to parent. They should be in implicit-AND
3815 * format by now, so we just need to concatenate lists. Put the
3816 * child quals at the front, on the grounds that they should
3817 * nominally be evaluated earlier.
3818 */
3819 if (f->quals != NULL)
3820 *parent_quals = (Node *)
3822 castNode(List, *parent_quals));
3823 return (Node *) linitial(f->fromlist);
3824 }
3825 }
3826 else if (IsA(jtnode, JoinExpr))
3827 {
3828 JoinExpr *j = (JoinExpr *) jtnode;
3829 int varno;
3830
3831 /*
3832 * First, recurse. We can absorb pushed-up FromExpr quals from either
3833 * child into this node if the jointype is INNER, since then this is
3834 * equivalent to a FromExpr. When the jointype is LEFT, we can absorb
3835 * quals from the RHS child into the current node, as they're
3836 * essentially degenerate quals of the outer join. Moreover, if we've
3837 * been passed down a parent_quals pointer then we can allow quals of
3838 * the LHS child to be absorbed into the parent. (This is important
3839 * to ensure we remove single-child FromExprs immediately below
3840 * commutable left joins.) For other jointypes, we can't move child
3841 * quals up, or at least there's no particular reason to.
3842 */
3843 j->larg = remove_useless_results_recurse(root, j->larg,
3844 (j->jointype == JOIN_INNER) ?
3845 &j->quals :
3846 (j->jointype == JOIN_LEFT) ?
3847 parent_quals : NULL,
3848 dropped_outer_joins);
3849 j->rarg = remove_useless_results_recurse(root, j->rarg,
3850 (j->jointype == JOIN_INNER ||
3851 j->jointype == JOIN_LEFT) ?
3852 &j->quals : NULL,
3853 dropped_outer_joins);
3854
3855 /* Apply join-type-specific optimization rules */
3856 switch (j->jointype)
3857 {
3858 case JOIN_INNER:
3859
3860 /*
3861 * An inner join is equivalent to a FromExpr, so if either
3862 * side was simplified to an RTE_RESULT rel, we can replace
3863 * the join with a FromExpr with just the other side.
3864 * Furthermore, we can elide that FromExpr according to the
3865 * same rules as above.
3866 *
3867 * Just as in the FromExpr case, we can't simplify if the
3868 * other input rel references any PHVs that are marked as to
3869 * be evaluated at the RTE_RESULT rel, because we can't
3870 * postpone their evaluation in that case. But we only have
3871 * to check this in cases where it's syntactically legal for
3872 * the other input to have a LATERAL reference to the
3873 * RTE_RESULT rel. Only RHSes of inner and left joins are
3874 * allowed to have such refs.
3875 */
3876 if ((varno = get_result_relid(root, j->larg)) != 0 &&
3877 !find_dependent_phvs_in_jointree(root, j->rarg, varno))
3878 {
3879 remove_result_refs(root, varno, j->rarg);
3880 if (j->quals != NULL && parent_quals == NULL)
3881 jtnode = (Node *)
3882 makeFromExpr(list_make1(j->rarg), j->quals);
3883 else
3884 {
3885 /* Merge any quals up to parent */
3886 if (j->quals != NULL)
3887 *parent_quals = (Node *)
3888 list_concat(castNode(List, j->quals),
3889 castNode(List, *parent_quals));
3890 jtnode = j->rarg;
3891 }
3892 }
3893 else if ((varno = get_result_relid(root, j->rarg)) != 0)
3894 {
3895 remove_result_refs(root, varno, j->larg);
3896 if (j->quals != NULL && parent_quals == NULL)
3897 jtnode = (Node *)
3898 makeFromExpr(list_make1(j->larg), j->quals);
3899 else
3900 {
3901 /* Merge any quals up to parent */
3902 if (j->quals != NULL)
3903 *parent_quals = (Node *)
3904 list_concat(castNode(List, j->quals),
3905 castNode(List, *parent_quals));
3906 jtnode = j->larg;
3907 }
3908 }
3909 break;
3910 case JOIN_LEFT:
3911
3912 /*
3913 * We can simplify this case if the RHS is an RTE_RESULT, with
3914 * two different possibilities:
3915 *
3916 * If the qual is empty (JOIN ON TRUE), then the join can be
3917 * strength-reduced to a plain inner join, since each LHS row
3918 * necessarily has exactly one join partner. So we can always
3919 * discard the RHS, much as in the JOIN_INNER case above.
3920 * (Again, the LHS could not contain a lateral reference to
3921 * the RHS.)
3922 *
3923 * Otherwise, it's still true that each LHS row should be
3924 * returned exactly once, and since the RHS returns no columns
3925 * (unless there are PHVs that have to be evaluated there), we
3926 * don't much care if it's null-extended or not. So in this
3927 * case also, we can just ignore the qual and discard the left
3928 * join.
3929 */
3930 if ((varno = get_result_relid(root, j->rarg)) != 0 &&
3931 (j->quals == NULL ||
3932 !find_dependent_phvs(root, varno)))
3933 {
3934 remove_result_refs(root, varno, j->larg);
3935 *dropped_outer_joins = bms_add_member(*dropped_outer_joins,
3936 j->rtindex);
3937 jtnode = j->larg;
3938 }
3939 break;
3940 case JOIN_SEMI:
3941
3942 /*
3943 * We may simplify this case if the RHS is an RTE_RESULT; the
3944 * join qual becomes effectively just a filter qual for the
3945 * LHS, since we should either return the LHS row or not. The
3946 * filter clause must go into a new FromExpr if we can't push
3947 * it up to the parent.
3948 *
3949 * There is a fine point about PHVs that are supposed to be
3950 * evaluated at the RHS. Such PHVs could only appear in the
3951 * semijoin's qual, since the rest of the query cannot
3952 * reference any outputs of the semijoin's RHS. Therefore,
3953 * they can't actually go to null before being examined, and
3954 * it'd be OK to just remove the PHV wrapping. We don't have
3955 * infrastructure for that, but remove_result_refs() will
3956 * relabel them as to be evaluated at the LHS, which is fine.
3957 *
3958 * Also, we don't need to worry about removing traces of the
3959 * join's rtindex, since it hasn't got one.
3960 */
3961 if ((varno = get_result_relid(root, j->rarg)) != 0)
3962 {
3963 Assert(j->rtindex == 0);
3964 remove_result_refs(root, varno, j->larg);
3965 if (j->quals != NULL && parent_quals == NULL)
3966 jtnode = (Node *)
3967 makeFromExpr(list_make1(j->larg), j->quals);
3968 else
3969 {
3970 /* Merge any quals up to parent */
3971 if (j->quals != NULL)
3972 *parent_quals = (Node *)
3973 list_concat(castNode(List, j->quals),
3974 castNode(List, *parent_quals));
3975 jtnode = j->larg;
3976 }
3977 }
3978 break;
3979 case JOIN_FULL:
3980 case JOIN_ANTI:
3981 /* We have no special smarts for these cases */
3982 break;
3983 default:
3984 /* Note: JOIN_RIGHT should be gone at this point */
3985 elog(ERROR, "unrecognized join type: %d",
3986 (int) j->jointype);
3987 break;
3988 }
3989 }
3990 else
3991 elog(ERROR, "unrecognized node type: %d",
3992 (int) nodeTag(jtnode));
3993 return jtnode;
3994}
3995
3996/*
3997 * get_result_relid
3998 * If jtnode is a RangeTblRef for an RTE_RESULT RTE, return its relid;
3999 * otherwise return 0.
4000 */
4001static int
4003{
4004 int varno;
4005
4006 if (!IsA(jtnode, RangeTblRef))
4007 return 0;
4008 varno = ((RangeTblRef *) jtnode)->rtindex;
4009 if (rt_fetch(varno, root->parse->rtable)->rtekind != RTE_RESULT)
4010 return 0;
4011 return varno;
4012}
4013
4014/*
4015 * remove_result_refs
4016 * Helper routine for dropping an unneeded RTE_RESULT RTE.
4017 *
4018 * This doesn't physically remove the RTE from the jointree, because that's
4019 * more easily handled in remove_useless_results_recurse. What it does do
4020 * is the necessary cleanup in the rest of the tree: we must adjust any PHVs
4021 * that may reference the RTE. Be sure to call this at a point where the
4022 * jointree is valid (no disconnected nodes).
4023 *
4024 * Note that we don't need to process the append_rel_list, since RTEs
4025 * referenced directly in the jointree won't be appendrel members.
4026 *
4027 * varno is the RTE_RESULT's relid.
4028 * newjtloc is the jointree location at which any PHVs referencing the
4029 * RTE_RESULT should be evaluated instead.
4030 */
4031static void
4033{
4034 /* Fix up PlaceHolderVars as needed */
4035 /* If there are no PHVs anywhere, we can skip this bit */
4036 if (root->glob->lastPHId != 0)
4037 {
4038 Relids subrelids;
4039
4040 subrelids = get_relids_in_jointree(newjtloc, true, false);
4041 Assert(!bms_is_empty(subrelids));
4042 substitute_phv_relids((Node *) root->parse, varno, subrelids);
4043 fix_append_rel_relids(root, varno, subrelids);
4044 }
4045
4046 /*
4047 * We also need to remove any PlanRowMark referencing the RTE, but we
4048 * postpone that work until we return to remove_useless_result_rtes.
4049 */
4050}
4051
4052
4053/*
4054 * find_dependent_phvs - are there any PlaceHolderVars whose relids are
4055 * exactly the given varno?
4056 *
4057 * find_dependent_phvs should be used when we want to see if there are
4058 * any such PHVs anywhere in the Query. Another use-case is to see if
4059 * a subtree of the join tree contains such PHVs; but for that, we have
4060 * to look not only at the join tree nodes themselves but at the
4061 * referenced RTEs. For that, use find_dependent_phvs_in_jointree.
4062 */
4063
4064typedef struct
4065{
4069
4070static bool
4073{
4074 if (node == NULL)
4075 return false;
4076 if (IsA(node, PlaceHolderVar))
4077 {
4078 PlaceHolderVar *phv = (PlaceHolderVar *) node;
4079
4080 if (phv->phlevelsup == context->sublevels_up &&
4081 bms_equal(context->relids, phv->phrels))
4082 return true;
4083 /* fall through to examine children */
4084 }
4085 if (IsA(node, Query))
4086 {
4087 /* Recurse into subselects */
4088 bool result;
4089
4090 context->sublevels_up++;
4091 result = query_tree_walker((Query *) node,
4093 context, 0);
4094 context->sublevels_up--;
4095 return result;
4096 }
4097 /* Shouldn't need to handle most planner auxiliary nodes here */
4098 Assert(!IsA(node, SpecialJoinInfo));
4099 Assert(!IsA(node, PlaceHolderInfo));
4100 Assert(!IsA(node, MinMaxAggInfo));
4101
4103}
4104
4105static bool
4107{
4109
4110 /* If there are no PHVs anywhere, we needn't work hard */
4111 if (root->glob->lastPHId == 0)
4112 return false;
4113
4114 context.relids = bms_make_singleton(varno);
4115 context.sublevels_up = 0;
4116
4117 if (query_tree_walker(root->parse, find_dependent_phvs_walker, &context, 0))
4118 return true;
4119 /* The append_rel_list could be populated already, so check it too */
4120 if (expression_tree_walker((Node *) root->append_rel_list,
4122 &context))
4123 return true;
4124 return false;
4125}
4126
4127static bool
4129{
4131 Relids subrelids;
4132 int relid;
4133
4134 /* If there are no PHVs anywhere, we needn't work hard */
4135 if (root->glob->lastPHId == 0)
4136 return false;
4137
4138 context.relids = bms_make_singleton(varno);
4139 context.sublevels_up = 0;
4140
4141 /*
4142 * See if the jointree fragment itself contains references (in join quals)
4143 */
4144 if (find_dependent_phvs_walker(node, &context))
4145 return true;
4146
4147 /*
4148 * Otherwise, identify the set of referenced RTEs (we can ignore joins,
4149 * since they should be flattened already, so their join alias lists no
4150 * longer matter), and tediously check each RTE. We can ignore RTEs that
4151 * are not marked LATERAL, though, since they couldn't possibly contain
4152 * any cross-references to other RTEs.
4153 */
4154 subrelids = get_relids_in_jointree(node, false, false);
4155 relid = -1;
4156 while ((relid = bms_next_member(subrelids, relid)) >= 0)
4157 {
4158 RangeTblEntry *rte = rt_fetch(relid, root->parse->rtable);
4159
4160 if (rte->lateral &&
4162 return true;
4163 }
4164
4165 return false;
4166}
4167
4168/*
4169 * substitute_phv_relids - adjust PlaceHolderVar relid sets after pulling up
4170 * a subquery or removing an RTE_RESULT jointree item
4171 *
4172 * Find any PlaceHolderVar nodes in the given tree that reference the
4173 * pulled-up relid, and change them to reference the replacement relid(s).
4174 *
4175 * NOTE: although this has the form of a walker, we cheat and modify the
4176 * nodes in-place. This should be OK since the tree was copied by
4177 * pullup_replace_vars earlier. Avoid scribbling on the original values of
4178 * the bitmapsets, though, because expression_tree_mutator doesn't copy those.
4179 */
4180
4181typedef struct
4182{
4187
4188static bool
4191{
4192 if (node == NULL)
4193 return false;
4194 if (IsA(node, PlaceHolderVar))
4195 {
4196 PlaceHolderVar *phv = (PlaceHolderVar *) node;
4197
4198 if (phv->phlevelsup == context->sublevels_up &&
4199 bms_is_member(context->varno, phv->phrels))
4200 {
4201 phv->phrels = bms_union(phv->phrels,
4202 context->subrelids);
4203 phv->phrels = bms_del_member(phv->phrels,
4204 context->varno);
4205 /* Assert we haven't broken the PHV */
4206 Assert(!bms_is_empty(phv->phrels));
4207 }
4208 /* fall through to examine children */
4209 }
4210 if (IsA(node, Query))
4211 {
4212 /* Recurse into subselects */
4213 bool result;
4214
4215 context->sublevels_up++;
4216 result = query_tree_walker((Query *) node,
4218 context, 0);
4219 context->sublevels_up--;
4220 return result;
4221 }
4222 /* Shouldn't need to handle planner auxiliary nodes here */
4223 Assert(!IsA(node, SpecialJoinInfo));
4224 Assert(!IsA(node, AppendRelInfo));
4225 Assert(!IsA(node, PlaceHolderInfo));
4226 Assert(!IsA(node, MinMaxAggInfo));
4227
4229}
4230
4231static void
4232substitute_phv_relids(Node *node, int varno, Relids subrelids)
4233{
4235
4236 context.varno = varno;
4237 context.sublevels_up = 0;
4238 context.subrelids = subrelids;
4239
4240 /*
4241 * Must be prepared to start with a Query or a bare expression tree.
4242 */
4245 &context,
4246 0);
4247}
4248
4249/*
4250 * fix_append_rel_relids: update RT-index fields of AppendRelInfo nodes
4251 *
4252 * When we pull up a subquery, any AppendRelInfo references to the subquery's
4253 * RT index have to be replaced by the substituted relid (and there had better
4254 * be only one). We also need to apply substitute_phv_relids to their
4255 * translated_vars lists, since those might contain PlaceHolderVars.
4256 *
4257 * We assume we may modify the AppendRelInfo nodes in-place.
4258 */
4259static void
4261{
4262 ListCell *l;
4263 int subvarno = -1;
4264
4265 /*
4266 * We only want to extract the member relid once, but we mustn't fail
4267 * immediately if there are multiple members; it could be that none of the
4268 * AppendRelInfo nodes refer to it. So compute it on first use. Note that
4269 * bms_singleton_member will complain if set is not singleton.
4270 */
4271 foreach(l, root->append_rel_list)
4272 {
4273 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
4274
4275 /* The parent_relid shouldn't ever be a pullup target */
4276 Assert(appinfo->parent_relid != varno);
4277
4278 if (appinfo->child_relid == varno)
4279 {
4280 if (subvarno < 0)
4281 subvarno = bms_singleton_member(subrelids);
4282 appinfo->child_relid = subvarno;
4283 }
4284
4285 /* Also fix up any PHVs in its translated vars */
4286 if (root->glob->lastPHId != 0)
4288 varno, subrelids);
4289 }
4290}
4291
4292/*
4293 * get_relids_in_jointree: get set of RT indexes present in a jointree
4294 *
4295 * Base-relation relids are always included in the result.
4296 * If include_outer_joins is true, outer-join RT indexes are included.
4297 * If include_inner_joins is true, inner-join RT indexes are included.
4298 *
4299 * Note that for most purposes in the planner, outer joins are included
4300 * in standard relid sets. Setting include_inner_joins true is only
4301 * appropriate for special purposes during subquery flattening.
4302 */
4303Relids
4304get_relids_in_jointree(Node *jtnode, bool include_outer_joins,
4305 bool include_inner_joins)
4306{
4307 Relids result = NULL;
4308
4309 if (jtnode == NULL)
4310 return result;
4311 if (IsA(jtnode, RangeTblRef))
4312 {
4313 int varno = ((RangeTblRef *) jtnode)->rtindex;
4314
4315 result = bms_make_singleton(varno);
4316 }
4317 else if (IsA(jtnode, FromExpr))
4318 {
4319 FromExpr *f = (FromExpr *) jtnode;
4320 ListCell *l;
4321
4322 foreach(l, f->fromlist)
4323 {
4324 result = bms_join(result,
4326 include_outer_joins,
4327 include_inner_joins));
4328 }
4329 }
4330 else if (IsA(jtnode, JoinExpr))
4331 {
4332 JoinExpr *j = (JoinExpr *) jtnode;
4333
4334 result = get_relids_in_jointree(j->larg,
4335 include_outer_joins,
4336 include_inner_joins);
4337 result = bms_join(result,
4339 include_outer_joins,
4340 include_inner_joins));
4341 if (j->rtindex)
4342 {
4343 if (j->jointype == JOIN_INNER)
4344 {
4345 if (include_inner_joins)
4346 result = bms_add_member(result, j->rtindex);
4347 }
4348 else
4349 {
4350 if (include_outer_joins)
4351 result = bms_add_member(result, j->rtindex);
4352 }
4353 }
4354 }
4355 else
4356 elog(ERROR, "unrecognized node type: %d",
4357 (int) nodeTag(jtnode));
4358 return result;
4359}
4360
4361/*
4362 * get_relids_for_join: get set of base+OJ RT indexes making up a join
4363 */
4364Relids
4365get_relids_for_join(Query *query, int joinrelid)
4366{
4367 Node *jtnode;
4368
4369 jtnode = find_jointree_node_for_rel((Node *) query->jointree,
4370 joinrelid);
4371 if (!jtnode)
4372 elog(ERROR, "could not find join node %d", joinrelid);
4373 return get_relids_in_jointree(jtnode, true, false);
4374}
4375
4376/*
4377 * find_jointree_node_for_rel: locate jointree node for a base or join RT index
4378 *
4379 * Returns NULL if not found
4380 */
4381static Node *
4383{
4384 if (jtnode == NULL)
4385 return NULL;
4386 if (IsA(jtnode, RangeTblRef))
4387 {
4388 int varno = ((RangeTblRef *) jtnode)->rtindex;
4389
4390 if (relid == varno)
4391 return jtnode;
4392 }
4393 else if (IsA(jtnode, FromExpr))
4394 {
4395 FromExpr *f = (FromExpr *) jtnode;
4396 ListCell *l;
4397
4398 foreach(l, f->fromlist)
4399 {
4400 jtnode = find_jointree_node_for_rel(lfirst(l), relid);
4401 if (jtnode)
4402 return jtnode;
4403 }
4404 }
4405 else if (IsA(jtnode, JoinExpr))
4406 {
4407 JoinExpr *j = (JoinExpr *) jtnode;
4408
4409 if (relid == j->rtindex)
4410 return jtnode;
4411 jtnode = find_jointree_node_for_rel(j->larg, relid);
4412 if (jtnode)
4413 return jtnode;
4414 jtnode = find_jointree_node_for_rel(j->rarg, relid);
4415 if (jtnode)
4416 return jtnode;
4417 }
4418 else
4419 elog(ERROR, "unrecognized node type: %d",
4420 (int) nodeTag(jtnode));
4421 return NULL;
4422}
4423
4424/*
4425 * get_nullingrels: collect info about which outer joins null which relations
4426 *
4427 * The result struct contains, for each leaf relation used in the query,
4428 * the set of relids of outer joins that potentially null that rel.
4429 */
4430static nullingrel_info *
4432{
4434
4435 result->rtlength = list_length(parse->rtable);
4436 result->nullingrels = palloc0_array(Relids, result->rtlength + 1);
4437 get_nullingrels_recurse((Node *) parse->jointree, NULL, result);
4438 return result;
4439}
4440
4441/*
4442 * Recursive guts of get_nullingrels().
4443 *
4444 * Note: at any recursion level, the passed-down upper_nullingrels must be
4445 * treated as a constant, but it can be stored directly into *info
4446 * if we're at leaf level. Upper recursion levels do not free their mutated
4447 * copies of the nullingrels, because those are probably referenced by
4448 * at least one leaf rel.
4449 */
4450static void
4451get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels,
4452 nullingrel_info *info)
4453{
4454 if (jtnode == NULL)
4455 return;
4456 if (IsA(jtnode, RangeTblRef))
4457 {
4458 int varno = ((RangeTblRef *) jtnode)->rtindex;
4459
4460 Assert(varno > 0 && varno <= info->rtlength);
4461 info->nullingrels[varno] = upper_nullingrels;
4462 }
4463 else if (IsA(jtnode, FromExpr))
4464 {
4465 FromExpr *f = (FromExpr *) jtnode;
4466 ListCell *l;
4467
4468 foreach(l, f->fromlist)
4469 {
4470 get_nullingrels_recurse(lfirst(l), upper_nullingrels, info);
4471 }
4472 }
4473 else if (IsA(jtnode, JoinExpr))
4474 {
4475 JoinExpr *j = (JoinExpr *) jtnode;
4476 Relids local_nullingrels;
4477
4478 switch (j->jointype)
4479 {
4480 case JOIN_INNER:
4481 get_nullingrels_recurse(j->larg, upper_nullingrels, info);
4482 get_nullingrels_recurse(j->rarg, upper_nullingrels, info);
4483 break;
4484 case JOIN_LEFT:
4485 case JOIN_SEMI:
4486 case JOIN_ANTI:
4487 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4488 j->rtindex);
4489 get_nullingrels_recurse(j->larg, upper_nullingrels, info);
4490 get_nullingrels_recurse(j->rarg, local_nullingrels, info);
4491 break;
4492 case JOIN_FULL:
4493 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4494 j->rtindex);
4495 get_nullingrels_recurse(j->larg, local_nullingrels, info);
4496 get_nullingrels_recurse(j->rarg, local_nullingrels, info);
4497 break;
4498 case JOIN_RIGHT:
4499 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4500 j->rtindex);
4501 get_nullingrels_recurse(j->larg, local_nullingrels, info);
4502 get_nullingrels_recurse(j->rarg, upper_nullingrels, info);
4503 break;
4504 default:
4505 elog(ERROR, "unrecognized join type: %d",
4506 (int) j->jointype);
4507 break;
4508 }
4509 }
4510 else
4511 elog(ERROR, "unrecognized node type: %d",
4512 (int) nodeTag(jtnode));
4513}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:868
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1230
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
unsigned int Index
Definition: c.h:623
List * find_forced_null_vars(Node *node)
Definition: clauses.c:1923
Query * inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
Definition: clauses.c:5168
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2262
List * find_nonnullable_vars(Node *clause)
Definition: clauses.c:1714
Relids find_nonnullable_rels(Node *clause)
Definition: clauses.c:1463
bool contain_nonstrict_functions(Node *clause)
Definition: clauses.c:997
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:542
static bool restricted
Definition: command.c:199
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc0_array(type, count)
Definition: fe_memutils.h:77
TypeFuncClass get_expr_result_type(Node *expr, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:299
TypeFuncClass
Definition: funcapi.h:147
@ TYPEFUNC_SCALAR
Definition: funcapi.h:148
Assert(PointerIsAligned(start, uint64))
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
#define NoLock
Definition: lockdefs.h:34
Alias * makeAlias(const char *aliasname, List *colnames)
Definition: makefuncs.c:438
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
FromExpr * makeFromExpr(List *fromlist, Node *quals)
Definition: makefuncs.c:336
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Var * makeWholeRowVar(RangeTblEntry *rte, int varno, Index varlevelsup, bool allowScalar)
Definition: makefuncs.c:137
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:727
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
Node * make_and_qual(Node *qual1, Node *qual2)
Definition: makefuncs.c:780
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
List * mbms_add_members(List *a, const List *b)
Bitmapset * mbms_overlap_sets(const List *a, const List *b)
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:763
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:107
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define query_or_expression_tree_walker(n, w, c, f)
Definition: nodeFuncs.h:171
#define range_table_entry_walker(r, w, c, f)
Definition: nodeFuncs.h:168
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
static bool is_notclause(const void *clause)
Definition: nodeFuncs.h:125
static Expr * get_notclausearg(const void *notclause)
Definition: nodeFuncs.h:134
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:348
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_SELECT
Definition: nodes.h:275
@ CMD_NOTHING
Definition: nodes.h:282
#define makeNode(_type_)
Definition: nodes.h:161
#define castNode(_type_, nodeptr)
Definition: nodes.h:182
JoinType
Definition: nodes.h:298
@ JOIN_SEMI
Definition: nodes.h:317
@ JOIN_FULL
Definition: nodes.h:305
@ JOIN_INNER
Definition: nodes.h:303
@ JOIN_RIGHT
Definition: nodes.h:306
@ JOIN_LEFT
Definition: nodes.h:304
@ JOIN_ANTI
Definition: nodes.h:318
@ SETOP_UNION
Definition: parsenodes.h:2177
@ RTE_JOIN
Definition: parsenodes.h:1045
@ RTE_CTE
Definition: parsenodes.h:1049
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1050
@ RTE_VALUES
Definition: parsenodes.h:1048
@ RTE_SUBQUERY
Definition: parsenodes.h:1044
@ RTE_RESULT
Definition: parsenodes.h:1051
@ RTE_FUNCTION
Definition: parsenodes.h:1046
@ RTE_TABLEFUNC
Definition: parsenodes.h:1047
@ RTE_GROUP
Definition: parsenodes.h:1054
@ RTE_RELATION
Definition: parsenodes.h:1043
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial_node(type, l)
Definition: pg_list.h:181
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
#define foreach_node(type, var, lst)
Definition: pg_list.h:496
static rewind_source * source
Definition: pg_rewind.c:89
PlaceHolderVar * make_placeholder_expr(PlannerInfo *root, Expr *expr, Relids phrels)
Definition: placeholder.c:54
void get_relation_notnullatts(PlannerInfo *root, Relation relation)
Definition: plancat.c:682
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
static Node * pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, JoinExpr *lowest_outer_join, AppendRelInfo *containing_appendrel)
static nullingrel_info * get_nullingrels(Query *parse)
static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc)
static Node * pull_up_constant_function(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, AppendRelInfo *containing_appendrel)
void preprocess_function_rtes(PlannerInfo *root)
static bool find_dependent_phvs_walker(Node *node, find_dependent_phvs_context *context)
static Node * find_jointree_node_for_rel(Node *jtnode, int relid)
static Node * pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
static void reduce_outer_joins_pass2(Node *jtnode, reduce_outer_joins_pass1_state *state1, reduce_outer_joins_pass2_state *state2, PlannerInfo *root, Relids nonnullable_rels, List *forced_null_vars)
static void pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, int parentRTindex, Query *setOpQuery, int childRToffset)
static bool is_simple_values(PlannerInfo *root, RangeTblEntry *rte)
static void make_setop_translation_list(Query *query, int newvarno, AppendRelInfo *appinfo)
void flatten_simple_union_all(PlannerInfo *root)
void transform_MERGE_to_join(Query *parse)
Definition: prepjointree.c:187
static void report_reduced_full_join(reduce_outer_joins_pass2_state *state2, int rtindex, Relids relids)
static void perform_pullup_replace_vars(PlannerInfo *root, pullup_replace_vars_context *rvcontext, AppendRelInfo *containing_appendrel)
struct nullingrel_info nullingrel_info
void remove_useless_result_rtes(PlannerInfo *root)
static Node * pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, Relids *relids)
Definition: prepjointree.c:674
static void get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels, nullingrel_info *info)
ReplaceWrapOption
Definition: prepjointree.c:63
@ REPLACE_WRAP_VARFREE
Definition: prepjointree.c:66
@ REPLACE_WRAP_ALL
Definition: prepjointree.c:65
@ REPLACE_WRAP_NONE
Definition: prepjointree.c:64
static reduce_outer_joins_pass1_state * reduce_outer_joins_pass1(Node *jtnode)
static void replace_vars_in_jointree(Node *jtnode, pullup_replace_vars_context *context)
static bool is_simple_subquery(PlannerInfo *root, Query *subquery, RangeTblEntry *rte, JoinExpr *lowest_outer_join)
static void substitute_phv_relids(Node *node, int varno, Relids subrelids)
void pull_up_sublinks(PlannerInfo *root)
Definition: prepjointree.c:647
static Node * pullup_replace_vars_callback(Var *var, replace_rte_variables_context *context)
static Node * pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, JoinExpr *lowest_outer_join, AppendRelInfo *containing_appendrel)
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:589
static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
static bool substitute_phv_relids_walker(Node *node, substitute_phv_relids_context *context)
static void fix_append_rel_relids(PlannerInfo *root, int varno, Relids subrelids)
static Node * remove_useless_results_recurse(PlannerInfo *root, Node *jtnode, Node **parent_quals, Relids *dropped_outer_joins)
static Query * pullup_replace_vars_subquery(Query *query, pullup_replace_vars_context *context)
Relids get_relids_for_join(Query *query, int joinrelid)
void pull_up_subqueries(PlannerInfo *root)
Relids get_relids_in_jointree(Node *jtnode, bool include_outer_joins, bool include_inner_joins)
static int get_result_relid(PlannerInfo *root, Node *jtnode)
Query * preprocess_relation_rtes(PlannerInfo *root)
Definition: prepjointree.c:417
static Node * pull_up_simple_values(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
struct reduce_outer_joins_pass1_state reduce_outer_joins_pass1_state
struct reduce_outer_joins_partial_state reduce_outer_joins_partial_state
static bool is_safe_append_member(Query *subquery)
struct pullup_replace_vars_context pullup_replace_vars_context
static Node * pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, Node **jtlink1, Relids available_rels1, Node **jtlink2, Relids available_rels2)
Definition: prepjointree.c:831
void reduce_outer_joins(PlannerInfo *root)
static Query * expand_virtual_generated_columns(PlannerInfo *root, Query *parse, RangeTblEntry *rte, int rt_index, Relation relation)
Definition: prepjointree.c:486
static bool find_dependent_phvs(PlannerInfo *root, int varno)
static bool jointree_contains_lateral_outer_refs(PlannerInfo *root, Node *jtnode, bool restricted, Relids safe_upper_varnos)
struct reduce_outer_joins_pass2_state reduce_outer_joins_pass2_state
static Node * pullup_replace_vars(Node *expr, pullup_replace_vars_context *context)
static bool is_simple_union_all(Query *subquery)
static bool find_dependent_phvs_in_jointree(PlannerInfo *root, Node *node, int varno)
@ ANY_SUBLINK
Definition: primnodes.h:1031
@ EXISTS_SUBLINK
Definition: primnodes.h:1029
#define NUM_MERGE_MATCH_KINDS
Definition: primnodes.h:2026
@ IS_NOT_NULL
Definition: primnodes.h:1977
@ MERGE_WHEN_NOT_MATCHED_BY_TARGET
Definition: primnodes.h:2023
@ MERGE_WHEN_NOT_MATCHED_BY_SOURCE
Definition: primnodes.h:2022
@ MERGE_WHEN_MATCHED
Definition: primnodes.h:2021
tree ctl root
Definition: radixtree.h:1857
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717
#define RelationGetDescr(relation)
Definition: rel.h:541
Node * build_generation_expression(Relation rel, int attrno)
void IncrementVarSublevelsUp_rtable(List *rtable, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:904
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:733
void OffsetVarNodes(Node *node, int offset, int sublevels_up)
Definition: rewriteManip.c:476
void CombineRangeTables(List **dst_rtable, List **dst_perminfos, List *src_rtable, List *src_perminfos)
Definition: rewriteManip.c:347
Node * add_nulling_relids(Node *node, const Bitmapset *target_relids, const Bitmapset *added_relids)
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
Node * replace_rte_variables(Node *node, int target_varno, int sublevels_up, replace_rte_variables_callback callback, void *callback_arg, bool *outer_hasSubLinks)
Node * ReplaceVarFromTargetList(Var *var, RangeTblEntry *target_rte, List *targetlist, int result_relation, ReplaceVarsNoMatchOption nomatch_option, int nomatch_varno)
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:881
@ REPLACEVARS_REPORT_ERROR
Definition: rewriteManip.h:39
void check_stack_depth(void)
Definition: stack_depth.c:95
Index child_relid
Definition: pathnodes.h:3192
List * translated_vars
Definition: pathnodes.h:3219
Index parent_relid
Definition: pathnodes.h:3191
int num_child_cols
Definition: pathnodes.h:3227
Oid parent_reltype
Definition: pathnodes.h:3200
Node * quals
Definition: primnodes.h:2358
List * fromlist
Definition: primnodes.h:2357
Node * quals
Definition: primnodes.h:2338
JoinType jointype
Definition: primnodes.h:2329
int rtindex
Definition: primnodes.h:2342
Node * larg
Definition: primnodes.h:2331
bool isNatural
Definition: primnodes.h:2330
Node * rarg
Definition: primnodes.h:2332
Definition: pg_list.h:54
Definition: nodes.h:135
NullTestType nulltesttype
Definition: primnodes.h:1984
ParseLoc location
Definition: primnodes.h:1987
Expr * arg
Definition: primnodes.h:1983
Relids phnullingrels
Definition: pathnodes.h:3018
Index phlevelsup
Definition: pathnodes.h:3024
List * minmax_aggs
Definition: pathnodes.h:515
List * processed_tlist
Definition: pathnodes.h:499
bool hasRecursion
Definition: pathnodes.h:547
List * cte_plan_ids
Definition: pathnodes.h:333
int last_rinfo_serial
Definition: pathnodes.h:371
Index qual_security_level
Definition: pathnodes.h:532
List * init_plans
Definition: pathnodes.h:327
bool assumeReplanning
Definition: pathnodes.h:549
List * multiexpr_params
Definition: pathnodes.h:336
List * row_identity_vars
Definition: pathnodes.h:396
bool ec_merging_done
Definition: pathnodes.h:345
Bitmapset * outer_params
Definition: pathnodes.h:249
Index query_level
Definition: pathnodes.h:233
List * append_rel_list
Definition: pathnodes.h:393
struct Path * non_recursive_path
Definition: pathnodes.h:577
List * placeholder_list
Definition: pathnodes.h:402
PlannerGlobal * glob
Definition: pathnodes.h:230
List * join_domains
Definition: pathnodes.h:339
List * eq_classes
Definition: pathnodes.h:342
int wt_param_id
Definition: pathnodes.h:575
List * plan_params
Definition: pathnodes.h:248
List * processed_groupClause
Definition: pathnodes.h:476
List * processed_distinctClause
Definition: pathnodes.h:488
Query * parse
Definition: pathnodes.h:227
List * rowMarks
Definition: pathnodes.h:399
List * update_colnos
Definition: pathnodes.h:507
bool placeholdersFrozen
Definition: pathnodes.h:545
List * join_info_list
Definition: pathnodes.h:368
char * plan_name
Definition: pathnodes.h:239
Relids all_result_relids
Definition: pathnodes.h:382
Relids leaf_result_relids
Definition: pathnodes.h:384
List * rowMarks
Definition: parsenodes.h:234
Node * limitCount
Definition: parsenodes.h:231
FromExpr * jointree
Definition: parsenodes.h:182
Node * setOperations
Definition: parsenodes.h:236
List * cteList
Definition: parsenodes.h:173
List * groupClause
Definition: parsenodes.h:216
Node * havingQual
Definition: parsenodes.h:222
List * rtable
Definition: parsenodes.h:175
Node * limitOffset
Definition: parsenodes.h:230
CmdType commandType
Definition: parsenodes.h:121
List * targetList
Definition: parsenodes.h:198
List * groupingSets
Definition: parsenodes.h:220
List * distinctClause
Definition: parsenodes.h:226
List * sortClause
Definition: parsenodes.h:228
TableFunc * tablefunc
Definition: parsenodes.h:1215
bool funcordinality
Definition: parsenodes.h:1210
struct TableSampleClause * tablesample
Definition: parsenodes.h:1129
Query * subquery
Definition: parsenodes.h:1135
List * values_lists
Definition: parsenodes.h:1221
JoinType jointype
Definition: parsenodes.h:1182
List * functions
Definition: parsenodes.h:1208
RTEKind rtekind
Definition: parsenodes.h:1078
Form_pg_class rd_rel
Definition: rel.h:111
SetOperation op
Definition: parsenodes.h:2255
AttrNumber resno
Definition: primnodes.h:2241
bool has_generated_virtual
Definition: tupdesc.h:47
TupleConstr * constr
Definition: tupdesc.h:141
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
Index varlevelsup
Definition: primnodes.h:294
Relids * nullingrels
Definition: prepjointree.c:56
nullingrel_info * nullinfo
Definition: prepjointree.c:79
ReplaceWrapOption wrap_option
Definition: prepjointree.c:83
RangeTblEntry * target_rte
Definition: prepjointree.c:74
Definition: regcomp.c:282
JoinExpr * convert_ANY_sublink_to_join(PlannerInfo *root, SubLink *sublink, Relids available_rels)
Definition: subselect.c:1335
ScalarArrayOpExpr * convert_VALUES_to_ANY(PlannerInfo *root, Node *testexpr, Query *values)
Definition: subselect.c:1229
JoinExpr * convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, bool under_not, Relids available_rels)
Definition: subselect.c:1452
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
bool tlist_same_datatypes(List *tlist, List *colTypes, bool junkOK)
Definition: tlist.c:248
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:444
Relids pull_varnos_of_level(PlannerInfo *root, Node *node, int levelsup)
Definition: var.c:140
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789