PostgreSQL Source Code  git master
subselect.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * subselect.c
4  * Planning routines for subselects.
5  *
6  * This module deals with SubLinks and CTEs, but not subquery RTEs (i.e.,
7  * not sub-SELECT-in-FROM cases).
8  *
9  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
10  * Portions Copyright (c) 1994, Regents of the University of California
11  *
12  * IDENTIFICATION
13  * src/backend/optimizer/plan/subselect.c
14  *
15  *-------------------------------------------------------------------------
16  */
17 #include "postgres.h"
18 
19 #include "access/htup_details.h"
20 #include "catalog/pg_operator.h"
21 #include "catalog/pg_type.h"
22 #include "executor/executor.h"
23 #include "miscadmin.h"
24 #include "nodes/makefuncs.h"
25 #include "nodes/nodeFuncs.h"
26 #include "optimizer/clauses.h"
27 #include "optimizer/cost.h"
28 #include "optimizer/optimizer.h"
29 #include "optimizer/paramassign.h"
30 #include "optimizer/pathnode.h"
31 #include "optimizer/planmain.h"
32 #include "optimizer/planner.h"
33 #include "optimizer/prep.h"
34 #include "optimizer/subselect.h"
35 #include "parser/parse_relation.h"
36 #include "rewrite/rewriteManip.h"
37 #include "utils/builtins.h"
38 #include "utils/lsyscache.h"
39 #include "utils/syscache.h"
40 
41 
43 {
45  List *subst_nodes; /* Nodes to substitute for Params */
47 
49 {
51  bool isTopQual;
53 
55 {
57  Bitmapset *paramids; /* Non-local PARAM_EXEC paramids found */
59 
61 {
62  const char *ctename; /* name and relative level of target CTE */
63  int levelsup;
64  int refcount; /* number of remaining references */
65  Query *ctequery; /* query to substitute */
67 
68 
69 static Node *build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot,
70  List *plan_params,
71  SubLinkType subLinkType, int subLinkId,
72  Node *testexpr, List *testexpr_paramids,
73  bool unknownEqFalse);
75  List **paramIds);
77  Index varno);
79  Node *testexpr,
80  List *subst_nodes);
81 static Node *convert_testexpr_mutator(Node *node,
82  convert_testexpr_context *context);
83 static bool subplan_is_hashable(Plan *plan);
84 static bool subpath_is_hashable(Path *path);
85 static bool testexpr_is_hashable(Node *testexpr, List *param_ids);
86 static bool test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids);
87 static bool hash_ok_operator(OpExpr *expr);
88 static bool contain_dml(Node *node);
89 static bool contain_dml_walker(Node *node, void *context);
90 static bool contain_outer_selfref(Node *node);
91 static bool contain_outer_selfref_walker(Node *node, Index *depth);
92 static void inline_cte(PlannerInfo *root, CommonTableExpr *cte);
93 static bool inline_cte_walker(Node *node, inline_cte_walker_context *context);
94 static bool simplify_EXISTS_query(PlannerInfo *root, Query *query);
95 static Query *convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect,
96  Node **testexpr, List **paramIds);
98 static Node *process_sublinks_mutator(Node *node,
99  process_sublinks_context *context);
101  Plan *plan,
102  int gather_param,
103  Bitmapset *valid_params,
104  Bitmapset *scan_params);
105 static bool finalize_primnode(Node *node, finalize_primnode_context *context);
106 static bool finalize_agg_primnode(Node *node, finalize_primnode_context *context);
107 
108 
109 /*
110  * Get the datatype/typmod/collation of the first column of the plan's output.
111  *
112  * This information is stored for ARRAY_SUBLINK execution and for
113  * exprType()/exprTypmod()/exprCollation(), which have no way to get at the
114  * plan associated with a SubPlan node. We really only need the info for
115  * EXPR_SUBLINK and ARRAY_SUBLINK subplans, but for consistency we save it
116  * always.
117  */
118 static void
119 get_first_col_type(Plan *plan, Oid *coltype, int32 *coltypmod,
120  Oid *colcollation)
121 {
122  /* In cases such as EXISTS, tlist might be empty; arbitrarily use VOID */
123  if (plan->targetlist)
124  {
126 
127  if (!tent->resjunk)
128  {
129  *coltype = exprType((Node *) tent->expr);
130  *coltypmod = exprTypmod((Node *) tent->expr);
131  *colcollation = exprCollation((Node *) tent->expr);
132  return;
133  }
134  }
135  *coltype = VOIDOID;
136  *coltypmod = -1;
137  *colcollation = InvalidOid;
138 }
139 
140 /*
141  * Convert a SubLink (as created by the parser) into a SubPlan.
142  *
143  * We are given the SubLink's contained query, type, ID, and testexpr. We are
144  * also told if this expression appears at top level of a WHERE/HAVING qual.
145  *
146  * Note: we assume that the testexpr has been AND/OR flattened (actually,
147  * it's been through eval_const_expressions), but not converted to
148  * implicit-AND form; and any SubLinks in it should already have been
149  * converted to SubPlans. The subquery is as yet untouched, however.
150  *
151  * The result is whatever we need to substitute in place of the SubLink node
152  * in the executable expression. If we're going to do the subplan as a
153  * regular subplan, this will be the constructed SubPlan node. If we're going
154  * to do the subplan as an InitPlan, the SubPlan node instead goes into
155  * root->init_plans, and what we return here is an expression tree
156  * representing the InitPlan's result: usually just a Param node representing
157  * a single scalar result, but possibly a row comparison tree containing
158  * multiple Param nodes, or for a MULTIEXPR subquery a simple NULL constant
159  * (since the real output Params are elsewhere in the tree, and the MULTIEXPR
160  * subquery itself is in a resjunk tlist entry whose value is uninteresting).
161  */
162 static Node *
164  SubLinkType subLinkType, int subLinkId,
165  Node *testexpr, bool isTopQual)
166 {
167  Query *subquery;
168  bool simple_exists = false;
169  double tuple_fraction;
170  PlannerInfo *subroot;
171  RelOptInfo *final_rel;
172  Path *best_path;
173  Plan *plan;
174  List *plan_params;
175  Node *result;
176 
177  /*
178  * Copy the source Query node. This is a quick and dirty kluge to resolve
179  * the fact that the parser can generate trees with multiple links to the
180  * same sub-Query node, but the planner wants to scribble on the Query.
181  * Try to clean this up when we do querytree redesign...
182  */
183  subquery = copyObject(orig_subquery);
184 
185  /*
186  * If it's an EXISTS subplan, we might be able to simplify it.
187  */
188  if (subLinkType == EXISTS_SUBLINK)
189  simple_exists = simplify_EXISTS_query(root, subquery);
190 
191  /*
192  * For an EXISTS subplan, tell lower-level planner to expect that only the
193  * first tuple will be retrieved. For ALL and ANY subplans, we will be
194  * able to stop evaluating if the test condition fails or matches, so very
195  * often not all the tuples will be retrieved; for lack of a better idea,
196  * specify 50% retrieval. For EXPR, MULTIEXPR, and ROWCOMPARE subplans,
197  * use default behavior (we're only expecting one row out, anyway).
198  *
199  * NOTE: if you change these numbers, also change cost_subplan() in
200  * path/costsize.c.
201  *
202  * XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash
203  * its output. In that case it would've been better to specify full
204  * retrieval. At present, however, we can only check hashability after
205  * we've made the subplan :-(. (Determining whether it'll fit in hash_mem
206  * is the really hard part.) Therefore, we don't want to be too
207  * optimistic about the percentage of tuples retrieved, for fear of
208  * selecting a plan that's bad for the materialization case.
209  */
210  if (subLinkType == EXISTS_SUBLINK)
211  tuple_fraction = 1.0; /* just like a LIMIT 1 */
212  else if (subLinkType == ALL_SUBLINK ||
213  subLinkType == ANY_SUBLINK)
214  tuple_fraction = 0.5; /* 50% */
215  else
216  tuple_fraction = 0.0; /* default behavior */
217 
218  /* plan_params should not be in use in current query level */
219  Assert(root->plan_params == NIL);
220 
221  /* Generate Paths for the subquery */
222  subroot = subquery_planner(root->glob, subquery,
223  root,
224  false, tuple_fraction);
225 
226  /* Isolate the params needed by this specific subplan */
227  plan_params = root->plan_params;
228  root->plan_params = NIL;
229 
230  /*
231  * Select best Path and turn it into a Plan. At least for now, there
232  * seems no reason to postpone doing that.
233  */
234  final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
235  best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
236 
237  plan = create_plan(subroot, best_path);
238 
239  /* And convert to SubPlan or InitPlan format. */
240  result = build_subplan(root, plan, subroot, plan_params,
241  subLinkType, subLinkId,
242  testexpr, NIL, isTopQual);
243 
244  /*
245  * If it's a correlated EXISTS with an unimportant targetlist, we might be
246  * able to transform it to the equivalent of an IN and then implement it
247  * by hashing. We don't have enough information yet to tell which way is
248  * likely to be better (it depends on the expected number of executions of
249  * the EXISTS qual, and we are much too early in planning the outer query
250  * to be able to guess that). So we generate both plans, if possible, and
251  * leave it to setrefs.c to decide which to use.
252  */
253  if (simple_exists && IsA(result, SubPlan))
254  {
255  Node *newtestexpr;
256  List *paramIds;
257 
258  /* Make a second copy of the original subquery */
259  subquery = copyObject(orig_subquery);
260  /* and re-simplify */
261  simple_exists = simplify_EXISTS_query(root, subquery);
262  Assert(simple_exists);
263  /* See if it can be converted to an ANY query */
264  subquery = convert_EXISTS_to_ANY(root, subquery,
265  &newtestexpr, &paramIds);
266  if (subquery)
267  {
268  /* Generate Paths for the ANY subquery; we'll need all rows */
269  subroot = subquery_planner(root->glob, subquery,
270  root,
271  false, 0.0);
272 
273  /* Isolate the params needed by this specific subplan */
274  plan_params = root->plan_params;
275  root->plan_params = NIL;
276 
277  /* Select best Path */
278  final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
279  best_path = final_rel->cheapest_total_path;
280 
281  /* Now we can check if it'll fit in hash_mem */
282  if (subpath_is_hashable(best_path))
283  {
284  SubPlan *hashplan;
285  AlternativeSubPlan *asplan;
286 
287  /* OK, finish planning the ANY subquery */
288  plan = create_plan(subroot, best_path);
289 
290  /* ... and convert to SubPlan format */
291  hashplan = castNode(SubPlan,
292  build_subplan(root, plan, subroot,
293  plan_params,
294  ANY_SUBLINK, 0,
295  newtestexpr,
296  paramIds,
297  true));
298  /* Check we got what we expected */
299  Assert(hashplan->parParam == NIL);
300  Assert(hashplan->useHashTable);
301 
302  /* Leave it to setrefs.c to decide which plan to use */
303  asplan = makeNode(AlternativeSubPlan);
304  asplan->subplans = list_make2(result, hashplan);
305  result = (Node *) asplan;
306  root->hasAlternativeSubPlans = true;
307  }
308  }
309  }
310 
311  return result;
312 }
313 
314 /*
315  * Build a SubPlan node given the raw inputs --- subroutine for make_subplan
316  *
317  * Returns either the SubPlan, or a replacement expression if we decide to
318  * make it an InitPlan, as explained in the comments for make_subplan.
319  */
320 static Node *
322  List *plan_params,
323  SubLinkType subLinkType, int subLinkId,
324  Node *testexpr, List *testexpr_paramids,
325  bool unknownEqFalse)
326 {
327  Node *result;
328  SubPlan *splan;
329  bool isInitPlan;
330  ListCell *lc;
331 
332  /*
333  * Initialize the SubPlan node. Note plan_id, plan_name, and cost fields
334  * are set further down.
335  */
336  splan = makeNode(SubPlan);
337  splan->subLinkType = subLinkType;
338  splan->testexpr = NULL;
339  splan->paramIds = NIL;
340  get_first_col_type(plan, &splan->firstColType, &splan->firstColTypmod,
341  &splan->firstColCollation);
342  splan->useHashTable = false;
343  splan->unknownEqFalse = unknownEqFalse;
344  splan->parallel_safe = plan->parallel_safe;
345  splan->setParam = NIL;
346  splan->parParam = NIL;
347  splan->args = NIL;
348 
349  /*
350  * Make parParam and args lists of param IDs and expressions that current
351  * query level will pass to this child plan.
352  */
353  foreach(lc, plan_params)
354  {
355  PlannerParamItem *pitem = (PlannerParamItem *) lfirst(lc);
356  Node *arg = pitem->item;
357 
358  /*
359  * The Var, PlaceHolderVar, or Aggref has already been adjusted to
360  * have the correct varlevelsup, phlevelsup, or agglevelsup.
361  *
362  * If it's a PlaceHolderVar or Aggref, its arguments might contain
363  * SubLinks, which have not yet been processed (see the comments for
364  * SS_replace_correlation_vars). Do that now.
365  */
366  if (IsA(arg, PlaceHolderVar) ||
367  IsA(arg, Aggref))
368  arg = SS_process_sublinks(root, arg, false);
369 
370  splan->parParam = lappend_int(splan->parParam, pitem->paramId);
371  splan->args = lappend(splan->args, arg);
372  }
373 
374  /*
375  * Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY,
376  * ROWCOMPARE, or MULTIEXPR types can be used as initPlans. For EXISTS,
377  * EXPR, or ARRAY, we return a Param referring to the result of evaluating
378  * the initPlan. For ROWCOMPARE, we must modify the testexpr tree to
379  * contain PARAM_EXEC Params instead of the PARAM_SUBLINK Params emitted
380  * by the parser, and then return that tree. For MULTIEXPR, we return a
381  * null constant: the resjunk targetlist item containing the SubLink does
382  * not need to return anything useful, since the referencing Params are
383  * elsewhere.
384  */
385  if (splan->parParam == NIL && subLinkType == EXISTS_SUBLINK)
386  {
387  Param *prm;
388 
389  Assert(testexpr == NULL);
390  prm = generate_new_exec_param(root, BOOLOID, -1, InvalidOid);
391  splan->setParam = list_make1_int(prm->paramid);
392  isInitPlan = true;
393  result = (Node *) prm;
394  }
395  else if (splan->parParam == NIL && subLinkType == EXPR_SUBLINK)
396  {
397  TargetEntry *te = linitial(plan->targetlist);
398  Param *prm;
399 
400  Assert(!te->resjunk);
401  Assert(testexpr == NULL);
402  prm = generate_new_exec_param(root,
403  exprType((Node *) te->expr),
404  exprTypmod((Node *) te->expr),
405  exprCollation((Node *) te->expr));
406  splan->setParam = list_make1_int(prm->paramid);
407  isInitPlan = true;
408  result = (Node *) prm;
409  }
410  else if (splan->parParam == NIL && subLinkType == ARRAY_SUBLINK)
411  {
412  TargetEntry *te = linitial(plan->targetlist);
413  Oid arraytype;
414  Param *prm;
415 
416  Assert(!te->resjunk);
417  Assert(testexpr == NULL);
418  arraytype = get_promoted_array_type(exprType((Node *) te->expr));
419  if (!OidIsValid(arraytype))
420  elog(ERROR, "could not find array type for datatype %s",
421  format_type_be(exprType((Node *) te->expr)));
422  prm = generate_new_exec_param(root,
423  arraytype,
424  exprTypmod((Node *) te->expr),
425  exprCollation((Node *) te->expr));
426  splan->setParam = list_make1_int(prm->paramid);
427  isInitPlan = true;
428  result = (Node *) prm;
429  }
430  else if (splan->parParam == NIL && subLinkType == ROWCOMPARE_SUBLINK)
431  {
432  /* Adjust the Params */
433  List *params;
434 
435  Assert(testexpr != NULL);
436  params = generate_subquery_params(root,
437  plan->targetlist,
438  &splan->paramIds);
439  result = convert_testexpr(root,
440  testexpr,
441  params);
442  splan->setParam = list_copy(splan->paramIds);
443  isInitPlan = true;
444 
445  /*
446  * The executable expression is returned to become part of the outer
447  * plan's expression tree; it is not kept in the initplan node.
448  */
449  }
450  else if (subLinkType == MULTIEXPR_SUBLINK)
451  {
452  /*
453  * Whether it's an initplan or not, it needs to set a PARAM_EXEC Param
454  * for each output column.
455  */
456  List *params;
457 
458  Assert(testexpr == NULL);
459  params = generate_subquery_params(root,
460  plan->targetlist,
461  &splan->setParam);
462 
463  /*
464  * Save the list of replacement Params in the n'th cell of
465  * root->multiexpr_params; setrefs.c will use it to replace
466  * PARAM_MULTIEXPR Params.
467  */
468  while (list_length(root->multiexpr_params) < subLinkId)
470  lc = list_nth_cell(root->multiexpr_params, subLinkId - 1);
471  Assert(lfirst(lc) == NIL);
472  lfirst(lc) = params;
473 
474  /* It can be an initplan if there are no parParams. */
475  if (splan->parParam == NIL)
476  {
477  isInitPlan = true;
478  result = (Node *) makeNullConst(RECORDOID, -1, InvalidOid);
479  }
480  else
481  {
482  isInitPlan = false;
483  result = (Node *) splan;
484  }
485  }
486  else
487  {
488  /*
489  * Adjust the Params in the testexpr, unless caller already took care
490  * of it (as indicated by passing a list of Param IDs).
491  */
492  if (testexpr && testexpr_paramids == NIL)
493  {
494  List *params;
495 
496  params = generate_subquery_params(root,
497  plan->targetlist,
498  &splan->paramIds);
499  splan->testexpr = convert_testexpr(root,
500  testexpr,
501  params);
502  }
503  else
504  {
505  splan->testexpr = testexpr;
506  splan->paramIds = testexpr_paramids;
507  }
508 
509  /*
510  * We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types to
511  * initPlans, even when they are uncorrelated or undirect correlated,
512  * because we need to scan the output of the subplan for each outer
513  * tuple. But if it's a not-direct-correlated IN (= ANY) test, we
514  * might be able to use a hashtable to avoid comparing all the tuples.
515  */
516  if (subLinkType == ANY_SUBLINK &&
517  splan->parParam == NIL &&
518  subplan_is_hashable(plan) &&
519  testexpr_is_hashable(splan->testexpr, splan->paramIds))
520  splan->useHashTable = true;
521 
522  /*
523  * Otherwise, we have the option to tack a Material node onto the top
524  * of the subplan, to reduce the cost of reading it repeatedly. This
525  * is pointless for a direct-correlated subplan, since we'd have to
526  * recompute its results each time anyway. For uncorrelated/undirect
527  * correlated subplans, we add Material unless the subplan's top plan
528  * node would materialize its output anyway. Also, if enable_material
529  * is false, then the user does not want us to materialize anything
530  * unnecessarily, so we don't.
531  */
532  else if (splan->parParam == NIL && enable_material &&
534  plan = materialize_finished_plan(plan);
535 
536  result = (Node *) splan;
537  isInitPlan = false;
538  }
539 
540  /*
541  * Add the subplan and its PlannerInfo to the global lists.
542  */
543  root->glob->subplans = lappend(root->glob->subplans, plan);
544  root->glob->subroots = lappend(root->glob->subroots, subroot);
545  splan->plan_id = list_length(root->glob->subplans);
546 
547  if (isInitPlan)
548  root->init_plans = lappend(root->init_plans, splan);
549 
550  /*
551  * A parameterless subplan (not initplan) should be prepared to handle
552  * REWIND efficiently. If it has direct parameters then there's no point
553  * since it'll be reset on each scan anyway; and if it's an initplan then
554  * there's no point since it won't get re-run without parameter changes
555  * anyway. The input of a hashed subplan doesn't need REWIND either.
556  */
557  if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable)
559  splan->plan_id);
560 
561  /* Label the subplan for EXPLAIN purposes */
562  splan->plan_name = palloc(32 + 12 * list_length(splan->setParam));
563  sprintf(splan->plan_name, "%s %d",
564  isInitPlan ? "InitPlan" : "SubPlan",
565  splan->plan_id);
566  if (splan->setParam)
567  {
568  char *ptr = splan->plan_name + strlen(splan->plan_name);
569 
570  ptr += sprintf(ptr, " (returns ");
571  foreach(lc, splan->setParam)
572  {
573  ptr += sprintf(ptr, "$%d%s",
574  lfirst_int(lc),
575  lnext(splan->setParam, lc) ? "," : ")");
576  }
577  }
578 
579  /* Lastly, fill in the cost estimates for use later */
580  cost_subplan(root, splan, plan);
581 
582  return result;
583 }
584 
585 /*
586  * generate_subquery_params: build a list of Params representing the output
587  * columns of a sublink's sub-select, given the sub-select's targetlist.
588  *
589  * We also return an integer list of the paramids of the Params.
590  */
591 static List *
593 {
594  List *result;
595  List *ids;
596  ListCell *lc;
597 
598  result = ids = NIL;
599  foreach(lc, tlist)
600  {
601  TargetEntry *tent = (TargetEntry *) lfirst(lc);
602  Param *param;
603 
604  if (tent->resjunk)
605  continue;
606 
607  param = generate_new_exec_param(root,
608  exprType((Node *) tent->expr),
609  exprTypmod((Node *) tent->expr),
610  exprCollation((Node *) tent->expr));
611  result = lappend(result, param);
612  ids = lappend_int(ids, param->paramid);
613  }
614 
615  *paramIds = ids;
616  return result;
617 }
618 
619 /*
620  * generate_subquery_vars: build a list of Vars representing the output
621  * columns of a sublink's sub-select, given the sub-select's targetlist.
622  * The Vars have the specified varno (RTE index).
623  */
624 static List *
626 {
627  List *result;
628  ListCell *lc;
629 
630  result = NIL;
631  foreach(lc, tlist)
632  {
633  TargetEntry *tent = (TargetEntry *) lfirst(lc);
634  Var *var;
635 
636  if (tent->resjunk)
637  continue;
638 
639  var = makeVarFromTargetEntry(varno, tent);
640  result = lappend(result, var);
641  }
642 
643  return result;
644 }
645 
646 /*
647  * convert_testexpr: convert the testexpr given by the parser into
648  * actually executable form. This entails replacing PARAM_SUBLINK Params
649  * with Params or Vars representing the results of the sub-select. The
650  * nodes to be substituted are passed in as the List result from
651  * generate_subquery_params or generate_subquery_vars.
652  */
653 static Node *
655  Node *testexpr,
656  List *subst_nodes)
657 {
658  convert_testexpr_context context;
659 
660  context.root = root;
661  context.subst_nodes = subst_nodes;
662  return convert_testexpr_mutator(testexpr, &context);
663 }
664 
665 static Node *
667  convert_testexpr_context *context)
668 {
669  if (node == NULL)
670  return NULL;
671  if (IsA(node, Param))
672  {
673  Param *param = (Param *) node;
674 
675  if (param->paramkind == PARAM_SUBLINK)
676  {
677  if (param->paramid <= 0 ||
678  param->paramid > list_length(context->subst_nodes))
679  elog(ERROR, "unexpected PARAM_SUBLINK ID: %d", param->paramid);
680 
681  /*
682  * We copy the list item to avoid having doubly-linked
683  * substructure in the modified parse tree. This is probably
684  * unnecessary when it's a Param, but be safe.
685  */
686  return (Node *) copyObject(list_nth(context->subst_nodes,
687  param->paramid - 1));
688  }
689  }
690  if (IsA(node, SubLink))
691  {
692  /*
693  * If we come across a nested SubLink, it is neither necessary nor
694  * correct to recurse into it: any PARAM_SUBLINKs we might find inside
695  * belong to the inner SubLink not the outer. So just return it as-is.
696  *
697  * This reasoning depends on the assumption that nothing will pull
698  * subexpressions into or out of the testexpr field of a SubLink, at
699  * least not without replacing PARAM_SUBLINKs first. If we did want
700  * to do that we'd need to rethink the parser-output representation
701  * altogether, since currently PARAM_SUBLINKs are only unique per
702  * SubLink not globally across the query. The whole point of
703  * replacing them with Vars or PARAM_EXEC nodes is to make them
704  * globally unique before they escape from the SubLink's testexpr.
705  *
706  * Note: this can't happen when called during SS_process_sublinks,
707  * because that recursively processes inner SubLinks first. It can
708  * happen when called from convert_ANY_sublink_to_join, though.
709  */
710  return node;
711  }
712  return expression_tree_mutator(node,
714  (void *) context);
715 }
716 
717 /*
718  * subplan_is_hashable: can we implement an ANY subplan by hashing?
719  *
720  * This is not responsible for checking whether the combining testexpr
721  * is suitable for hashing. We only look at the subquery itself.
722  */
723 static bool
725 {
726  double subquery_size;
727  int hash_mem = get_hash_mem();
728 
729  /*
730  * The estimated size of the subquery result must fit in hash_mem. (Note:
731  * we use heap tuple overhead here even though the tuples will actually be
732  * stored as MinimalTuples; this provides some fudge factor for hashtable
733  * overhead.)
734  */
735  subquery_size = plan->plan_rows *
737  if (subquery_size > hash_mem * 1024L)
738  return false;
739 
740  return true;
741 }
742 
743 /*
744  * subpath_is_hashable: can we implement an ANY subplan by hashing?
745  *
746  * Identical to subplan_is_hashable, but work from a Path for the subplan.
747  */
748 static bool
750 {
751  double subquery_size;
752  int hash_mem = get_hash_mem();
753 
754  /*
755  * The estimated size of the subquery result must fit in hash_mem. (Note:
756  * we use heap tuple overhead here even though the tuples will actually be
757  * stored as MinimalTuples; this provides some fudge factor for hashtable
758  * overhead.)
759  */
760  subquery_size = path->rows *
762  if (subquery_size > hash_mem * 1024L)
763  return false;
764 
765  return true;
766 }
767 
768 /*
769  * testexpr_is_hashable: is an ANY SubLink's test expression hashable?
770  *
771  * To identify LHS vs RHS of the hash expression, we must be given the
772  * list of output Param IDs of the SubLink's subquery.
773  */
774 static bool
775 testexpr_is_hashable(Node *testexpr, List *param_ids)
776 {
777  /*
778  * The testexpr must be a single OpExpr, or an AND-clause containing only
779  * OpExprs, each of which satisfy test_opexpr_is_hashable().
780  */
781  if (testexpr && IsA(testexpr, OpExpr))
782  {
783  if (test_opexpr_is_hashable((OpExpr *) testexpr, param_ids))
784  return true;
785  }
786  else if (is_andclause(testexpr))
787  {
788  ListCell *l;
789 
790  foreach(l, ((BoolExpr *) testexpr)->args)
791  {
792  Node *andarg = (Node *) lfirst(l);
793 
794  if (!IsA(andarg, OpExpr))
795  return false;
796  if (!test_opexpr_is_hashable((OpExpr *) andarg, param_ids))
797  return false;
798  }
799  return true;
800  }
801 
802  return false;
803 }
804 
805 static bool
806 test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids)
807 {
808  /*
809  * The combining operator must be hashable and strict. The need for
810  * hashability is obvious, since we want to use hashing. Without
811  * strictness, behavior in the presence of nulls is too unpredictable. We
812  * actually must assume even more than plain strictness: it can't yield
813  * NULL for non-null inputs, either (see nodeSubplan.c). However, hash
814  * indexes and hash joins assume that too.
815  */
816  if (!hash_ok_operator(testexpr))
817  return false;
818 
819  /*
820  * The left and right inputs must belong to the outer and inner queries
821  * respectively; hence Params that will be supplied by the subquery must
822  * not appear in the LHS, and Vars of the outer query must not appear in
823  * the RHS. (Ordinarily, this must be true because of the way that the
824  * parser builds an ANY SubLink's testexpr ... but inlining of functions
825  * could have changed the expression's structure, so we have to check.
826  * Such cases do not occur often enough to be worth trying to optimize, so
827  * we don't worry about trying to commute the clause or anything like
828  * that; we just need to be sure not to build an invalid plan.)
829  */
830  if (list_length(testexpr->args) != 2)
831  return false;
832  if (contain_exec_param((Node *) linitial(testexpr->args), param_ids))
833  return false;
834  if (contain_var_clause((Node *) lsecond(testexpr->args)))
835  return false;
836  return true;
837 }
838 
839 /*
840  * Check expression is hashable + strict
841  *
842  * We could use op_hashjoinable() and op_strict(), but do it like this to
843  * avoid a redundant cache lookup.
844  */
845 static bool
847 {
848  Oid opid = expr->opno;
849 
850  /* quick out if not a binary operator */
851  if (list_length(expr->args) != 2)
852  return false;
853  if (opid == ARRAY_EQ_OP)
854  {
855  /* array_eq is strict, but must check input type to ensure hashable */
856  /* XXX record_eq will need same treatment when it becomes hashable */
857  Node *leftarg = linitial(expr->args);
858 
859  return op_hashjoinable(opid, exprType(leftarg));
860  }
861  else
862  {
863  /* else must look up the operator properties */
864  HeapTuple tup;
865  Form_pg_operator optup;
866 
868  if (!HeapTupleIsValid(tup))
869  elog(ERROR, "cache lookup failed for operator %u", opid);
870  optup = (Form_pg_operator) GETSTRUCT(tup);
871  if (!optup->oprcanhash || !func_strict(optup->oprcode))
872  {
873  ReleaseSysCache(tup);
874  return false;
875  }
876  ReleaseSysCache(tup);
877  return true;
878  }
879 }
880 
881 
882 /*
883  * SS_process_ctes: process a query's WITH list
884  *
885  * Consider each CTE in the WITH list and either ignore it (if it's an
886  * unreferenced SELECT), "inline" it to create a regular sub-SELECT-in-FROM,
887  * or convert it to an initplan.
888  *
889  * A side effect is to fill in root->cte_plan_ids with a list that
890  * parallels root->parse->cteList and provides the subplan ID for
891  * each CTE's initplan, or a dummy ID (-1) if we didn't make an initplan.
892  */
893 void
895 {
896  ListCell *lc;
897 
898  Assert(root->cte_plan_ids == NIL);
899 
900  foreach(lc, root->parse->cteList)
901  {
902  CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
903  CmdType cmdType = ((Query *) cte->ctequery)->commandType;
904  Query *subquery;
905  PlannerInfo *subroot;
906  RelOptInfo *final_rel;
907  Path *best_path;
908  Plan *plan;
909  SubPlan *splan;
910  int paramid;
911 
912  /*
913  * Ignore SELECT CTEs that are not actually referenced anywhere.
914  */
915  if (cte->cterefcount == 0 && cmdType == CMD_SELECT)
916  {
917  /* Make a dummy entry in cte_plan_ids */
918  root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
919  continue;
920  }
921 
922  /*
923  * Consider inlining the CTE (creating RTE_SUBQUERY RTE(s)) instead of
924  * implementing it as a separately-planned CTE.
925  *
926  * We cannot inline if any of these conditions hold:
927  *
928  * 1. The user said not to (the CTEMaterializeAlways option).
929  *
930  * 2. The CTE is recursive.
931  *
932  * 3. The CTE has side-effects; this includes either not being a plain
933  * SELECT, or containing volatile functions. Inlining might change
934  * the side-effects, which would be bad.
935  *
936  * 4. The CTE is multiply-referenced and contains a self-reference to
937  * a recursive CTE outside itself. Inlining would result in multiple
938  * recursive self-references, which we don't support.
939  *
940  * Otherwise, we have an option whether to inline or not. That should
941  * always be a win if there's just a single reference, but if the CTE
942  * is multiply-referenced then it's unclear: inlining adds duplicate
943  * computations, but the ability to absorb restrictions from the outer
944  * query level could outweigh that. We do not have nearly enough
945  * information at this point to tell whether that's true, so we let
946  * the user express a preference. Our default behavior is to inline
947  * only singly-referenced CTEs, but a CTE marked CTEMaterializeNever
948  * will be inlined even if multiply referenced.
949  *
950  * Note: we check for volatile functions last, because that's more
951  * expensive than the other tests needed.
952  */
953  if ((cte->ctematerialized == CTEMaterializeNever ||
955  cte->cterefcount == 1)) &&
956  !cte->cterecursive &&
957  cmdType == CMD_SELECT &&
958  !contain_dml(cte->ctequery) &&
959  (cte->cterefcount <= 1 ||
962  {
963  inline_cte(root, cte);
964  /* Make a dummy entry in cte_plan_ids */
965  root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
966  continue;
967  }
968 
969  /*
970  * Copy the source Query node. Probably not necessary, but let's keep
971  * this similar to make_subplan.
972  */
973  subquery = (Query *) copyObject(cte->ctequery);
974 
975  /* plan_params should not be in use in current query level */
976  Assert(root->plan_params == NIL);
977 
978  /*
979  * Generate Paths for the CTE query. Always plan for full retrieval
980  * --- we don't have enough info to predict otherwise.
981  */
982  subroot = subquery_planner(root->glob, subquery,
983  root,
984  cte->cterecursive, 0.0);
985 
986  /*
987  * Since the current query level doesn't yet contain any RTEs, it
988  * should not be possible for the CTE to have requested parameters of
989  * this level.
990  */
991  if (root->plan_params)
992  elog(ERROR, "unexpected outer reference in CTE query");
993 
994  /*
995  * Select best Path and turn it into a Plan. At least for now, there
996  * seems no reason to postpone doing that.
997  */
998  final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
999  best_path = final_rel->cheapest_total_path;
1000 
1001  plan = create_plan(subroot, best_path);
1002 
1003  /*
1004  * Make a SubPlan node for it. This is just enough unlike
1005  * build_subplan that we can't share code.
1006  *
1007  * Note plan_id, plan_name, and cost fields are set further down.
1008  */
1009  splan = makeNode(SubPlan);
1010  splan->subLinkType = CTE_SUBLINK;
1011  splan->testexpr = NULL;
1012  splan->paramIds = NIL;
1013  get_first_col_type(plan, &splan->firstColType, &splan->firstColTypmod,
1014  &splan->firstColCollation);
1015  splan->useHashTable = false;
1016  splan->unknownEqFalse = false;
1017 
1018  /*
1019  * CTE scans are not considered for parallelism (cf
1020  * set_rel_consider_parallel), and even if they were, initPlans aren't
1021  * parallel-safe.
1022  */
1023  splan->parallel_safe = false;
1024  splan->setParam = NIL;
1025  splan->parParam = NIL;
1026  splan->args = NIL;
1027 
1028  /*
1029  * The node can't have any inputs (since it's an initplan), so the
1030  * parParam and args lists remain empty. (It could contain references
1031  * to earlier CTEs' output param IDs, but CTE outputs are not
1032  * propagated via the args list.)
1033  */
1034 
1035  /*
1036  * Assign a param ID to represent the CTE's output. No ordinary
1037  * "evaluation" of this param slot ever happens, but we use the param
1038  * ID for setParam/chgParam signaling just as if the CTE plan were
1039  * returning a simple scalar output. (Also, the executor abuses the
1040  * ParamExecData slot for this param ID for communication among
1041  * multiple CteScan nodes that might be scanning this CTE.)
1042  */
1043  paramid = assign_special_exec_param(root);
1044  splan->setParam = list_make1_int(paramid);
1045 
1046  /*
1047  * Add the subplan and its PlannerInfo to the global lists.
1048  */
1049  root->glob->subplans = lappend(root->glob->subplans, plan);
1050  root->glob->subroots = lappend(root->glob->subroots, subroot);
1051  splan->plan_id = list_length(root->glob->subplans);
1052 
1053  root->init_plans = lappend(root->init_plans, splan);
1054 
1055  root->cte_plan_ids = lappend_int(root->cte_plan_ids, splan->plan_id);
1056 
1057  /* Label the subplan for EXPLAIN purposes */
1058  splan->plan_name = psprintf("CTE %s", cte->ctename);
1059 
1060  /* Lastly, fill in the cost estimates for use later */
1061  cost_subplan(root, splan, plan);
1062  }
1063 }
1064 
1065 /*
1066  * contain_dml: is any subquery not a plain SELECT?
1067  *
1068  * We reject SELECT FOR UPDATE/SHARE as well as INSERT etc.
1069  */
1070 static bool
1072 {
1073  return contain_dml_walker(node, NULL);
1074 }
1075 
1076 static bool
1077 contain_dml_walker(Node *node, void *context)
1078 {
1079  if (node == NULL)
1080  return false;
1081  if (IsA(node, Query))
1082  {
1083  Query *query = (Query *) node;
1084 
1085  if (query->commandType != CMD_SELECT ||
1086  query->rowMarks != NIL)
1087  return true;
1088 
1089  return query_tree_walker(query, contain_dml_walker, context, 0);
1090  }
1091  return expression_tree_walker(node, contain_dml_walker, context);
1092 }
1093 
1094 /*
1095  * contain_outer_selfref: is there an external recursive self-reference?
1096  */
1097 static bool
1099 {
1100  Index depth = 0;
1101 
1102  /*
1103  * We should be starting with a Query, so that depth will be 1 while
1104  * examining its immediate contents.
1105  */
1106  Assert(IsA(node, Query));
1107 
1108  return contain_outer_selfref_walker(node, &depth);
1109 }
1110 
1111 static bool
1113 {
1114  if (node == NULL)
1115  return false;
1116  if (IsA(node, RangeTblEntry))
1117  {
1118  RangeTblEntry *rte = (RangeTblEntry *) node;
1119 
1120  /*
1121  * Check for a self-reference to a CTE that's above the Query that our
1122  * search started at.
1123  */
1124  if (rte->rtekind == RTE_CTE &&
1125  rte->self_reference &&
1126  rte->ctelevelsup >= *depth)
1127  return true;
1128  return false; /* allow range_table_walker to continue */
1129  }
1130  if (IsA(node, Query))
1131  {
1132  /* Recurse into subquery, tracking nesting depth properly */
1133  Query *query = (Query *) node;
1134  bool result;
1135 
1136  (*depth)++;
1137 
1139  (void *) depth, QTW_EXAMINE_RTES_BEFORE);
1140 
1141  (*depth)--;
1142 
1143  return result;
1144  }
1146  (void *) depth);
1147 }
1148 
1149 /*
1150  * inline_cte: convert RTE_CTE references to given CTE into RTE_SUBQUERYs
1151  */
1152 static void
1154 {
1155  struct inline_cte_walker_context context;
1156 
1157  context.ctename = cte->ctename;
1158  /* Start at levelsup = -1 because we'll immediately increment it */
1159  context.levelsup = -1;
1160  context.refcount = cte->cterefcount;
1161  context.ctequery = castNode(Query, cte->ctequery);
1162 
1163  (void) inline_cte_walker((Node *) root->parse, &context);
1164 
1165  /* Assert we replaced all references */
1166  Assert(context.refcount == 0);
1167 }
1168 
1169 static bool
1171 {
1172  if (node == NULL)
1173  return false;
1174  if (IsA(node, Query))
1175  {
1176  Query *query = (Query *) node;
1177 
1178  context->levelsup++;
1179 
1180  /*
1181  * Visit the query's RTE nodes after their contents; otherwise
1182  * query_tree_walker would descend into the newly inlined CTE query,
1183  * which we don't want.
1184  */
1185  (void) query_tree_walker(query, inline_cte_walker, context,
1187 
1188  context->levelsup--;
1189 
1190  return false;
1191  }
1192  else if (IsA(node, RangeTblEntry))
1193  {
1194  RangeTblEntry *rte = (RangeTblEntry *) node;
1195 
1196  if (rte->rtekind == RTE_CTE &&
1197  strcmp(rte->ctename, context->ctename) == 0 &&
1198  rte->ctelevelsup == context->levelsup)
1199  {
1200  /*
1201  * Found a reference to replace. Generate a copy of the CTE query
1202  * with appropriate level adjustment for outer references (e.g.,
1203  * to other CTEs).
1204  */
1205  Query *newquery = copyObject(context->ctequery);
1206 
1207  if (context->levelsup > 0)
1208  IncrementVarSublevelsUp((Node *) newquery, context->levelsup, 1);
1209 
1210  /*
1211  * Convert the RTE_CTE RTE into a RTE_SUBQUERY.
1212  *
1213  * Historically, a FOR UPDATE clause has been treated as extending
1214  * into views and subqueries, but not into CTEs. We preserve this
1215  * distinction by not trying to push rowmarks into the new
1216  * subquery.
1217  */
1218  rte->rtekind = RTE_SUBQUERY;
1219  rte->subquery = newquery;
1220  rte->security_barrier = false;
1221 
1222  /* Zero out CTE-specific fields */
1223  rte->ctename = NULL;
1224  rte->ctelevelsup = 0;
1225  rte->self_reference = false;
1226  rte->coltypes = NIL;
1227  rte->coltypmods = NIL;
1228  rte->colcollations = NIL;
1229 
1230  /* Count the number of replacements we've done */
1231  context->refcount--;
1232  }
1233 
1234  return false;
1235  }
1236 
1237  return expression_tree_walker(node, inline_cte_walker, context);
1238 }
1239 
1240 
1241 /*
1242  * convert_ANY_sublink_to_join: try to convert an ANY SubLink to a join
1243  *
1244  * The caller has found an ANY SubLink at the top level of one of the query's
1245  * qual clauses, but has not checked the properties of the SubLink further.
1246  * Decide whether it is appropriate to process this SubLink in join style.
1247  * If so, form a JoinExpr and return it. Return NULL if the SubLink cannot
1248  * be converted to a join.
1249  *
1250  * The only non-obvious input parameter is available_rels: this is the set
1251  * of query rels that can safely be referenced in the sublink expression.
1252  * (We must restrict this to avoid changing the semantics when a sublink
1253  * is present in an outer join's ON qual.) The conversion must fail if
1254  * the converted qual would reference any but these parent-query relids.
1255  *
1256  * On success, the returned JoinExpr has larg = NULL and rarg = the jointree
1257  * item representing the pulled-up subquery. The caller must set larg to
1258  * represent the relation(s) on the lefthand side of the new join, and insert
1259  * the JoinExpr into the upper query's jointree at an appropriate place
1260  * (typically, where the lefthand relation(s) had been). Note that the
1261  * passed-in SubLink must also be removed from its original position in the
1262  * query quals, since the quals of the returned JoinExpr replace it.
1263  * (Notionally, we replace the SubLink with a constant TRUE, then elide the
1264  * redundant constant from the qual.)
1265  *
1266  * On success, the caller is also responsible for recursively applying
1267  * pull_up_sublinks processing to the rarg and quals of the returned JoinExpr.
1268  * (On failure, there is no need to do anything, since pull_up_sublinks will
1269  * be applied when we recursively plan the sub-select.)
1270  *
1271  * Side effects of a successful conversion include adding the SubLink's
1272  * subselect to the query's rangetable, so that it can be referenced in
1273  * the JoinExpr's rarg.
1274  */
1275 JoinExpr *
1277  Relids available_rels)
1278 {
1279  JoinExpr *result;
1280  Query *parse = root->parse;
1281  Query *subselect = (Query *) sublink->subselect;
1282  Relids upper_varnos;
1283  int rtindex;
1284  ParseNamespaceItem *nsitem;
1285  RangeTblEntry *rte;
1286  RangeTblRef *rtr;
1287  List *subquery_vars;
1288  Node *quals;
1289  ParseState *pstate;
1290 
1291  Assert(sublink->subLinkType == ANY_SUBLINK);
1292 
1293  /*
1294  * The sub-select must not refer to any Vars of the parent query. (Vars of
1295  * higher levels should be okay, though.)
1296  */
1297  if (contain_vars_of_level((Node *) subselect, 1))
1298  return NULL;
1299 
1300  /*
1301  * The test expression must contain some Vars of the parent query, else
1302  * it's not gonna be a join. (Note that it won't have Vars referring to
1303  * the subquery, rather Params.)
1304  */
1305  upper_varnos = pull_varnos(sublink->testexpr);
1306  if (bms_is_empty(upper_varnos))
1307  return NULL;
1308 
1309  /*
1310  * However, it can't refer to anything outside available_rels.
1311  */
1312  if (!bms_is_subset(upper_varnos, available_rels))
1313  return NULL;
1314 
1315  /*
1316  * The combining operators and left-hand expressions mustn't be volatile.
1317  */
1318  if (contain_volatile_functions(sublink->testexpr))
1319  return NULL;
1320 
1321  /* Create a dummy ParseState for addRangeTableEntryForSubquery */
1322  pstate = make_parsestate(NULL);
1323 
1324  /*
1325  * Okay, pull up the sub-select into upper range table.
1326  *
1327  * We rely here on the assumption that the outer query has no references
1328  * to the inner (necessarily true, other than the Vars that we build
1329  * below). Therefore this is a lot easier than what pull_up_subqueries has
1330  * to go through.
1331  */
1332  nsitem = addRangeTableEntryForSubquery(pstate,
1333  subselect,
1334  makeAlias("ANY_subquery", NIL),
1335  false,
1336  false);
1337  rte = nsitem->p_rte;
1338  parse->rtable = lappend(parse->rtable, rte);
1339  rtindex = list_length(parse->rtable);
1340 
1341  /*
1342  * Form a RangeTblRef for the pulled-up sub-select.
1343  */
1344  rtr = makeNode(RangeTblRef);
1345  rtr->rtindex = rtindex;
1346 
1347  /*
1348  * Build a list of Vars representing the subselect outputs.
1349  */
1350  subquery_vars = generate_subquery_vars(root,
1351  subselect->targetList,
1352  rtindex);
1353 
1354  /*
1355  * Build the new join's qual expression, replacing Params with these Vars.
1356  */
1357  quals = convert_testexpr(root, sublink->testexpr, subquery_vars);
1358 
1359  /*
1360  * And finally, build the JoinExpr node.
1361  */
1362  result = makeNode(JoinExpr);
1363  result->jointype = JOIN_SEMI;
1364  result->isNatural = false;
1365  result->larg = NULL; /* caller must fill this in */
1366  result->rarg = (Node *) rtr;
1367  result->usingClause = NIL;
1368  result->quals = quals;
1369  result->alias = NULL;
1370  result->rtindex = 0; /* we don't need an RTE for it */
1371 
1372  return result;
1373 }
1374 
1375 /*
1376  * convert_EXISTS_sublink_to_join: try to convert an EXISTS SubLink to a join
1377  *
1378  * The API of this function is identical to convert_ANY_sublink_to_join's,
1379  * except that we also support the case where the caller has found NOT EXISTS,
1380  * so we need an additional input parameter "under_not".
1381  */
1382 JoinExpr *
1384  bool under_not, Relids available_rels)
1385 {
1386  JoinExpr *result;
1387  Query *parse = root->parse;
1388  Query *subselect = (Query *) sublink->subselect;
1389  Node *whereClause;
1390  int rtoffset;
1391  int varno;
1392  Relids clause_varnos;
1393  Relids upper_varnos;
1394 
1395  Assert(sublink->subLinkType == EXISTS_SUBLINK);
1396 
1397  /*
1398  * Can't flatten if it contains WITH. (We could arrange to pull up the
1399  * WITH into the parent query's cteList, but that risks changing the
1400  * semantics, since a WITH ought to be executed once per associated query
1401  * call.) Note that convert_ANY_sublink_to_join doesn't have to reject
1402  * this case, since it just produces a subquery RTE that doesn't have to
1403  * get flattened into the parent query.
1404  */
1405  if (subselect->cteList)
1406  return NULL;
1407 
1408  /*
1409  * Copy the subquery so we can modify it safely (see comments in
1410  * make_subplan).
1411  */
1412  subselect = copyObject(subselect);
1413 
1414  /*
1415  * See if the subquery can be simplified based on the knowledge that it's
1416  * being used in EXISTS(). If we aren't able to get rid of its
1417  * targetlist, we have to fail, because the pullup operation leaves us
1418  * with noplace to evaluate the targetlist.
1419  */
1420  if (!simplify_EXISTS_query(root, subselect))
1421  return NULL;
1422 
1423  /*
1424  * Separate out the WHERE clause. (We could theoretically also remove
1425  * top-level plain JOIN/ON clauses, but it's probably not worth the
1426  * trouble.)
1427  */
1428  whereClause = subselect->jointree->quals;
1429  subselect->jointree->quals = NULL;
1430 
1431  /*
1432  * The rest of the sub-select must not refer to any Vars of the parent
1433  * query. (Vars of higher levels should be okay, though.)
1434  */
1435  if (contain_vars_of_level((Node *) subselect, 1))
1436  return NULL;
1437 
1438  /*
1439  * On the other hand, the WHERE clause must contain some Vars of the
1440  * parent query, else it's not gonna be a join.
1441  */
1442  if (!contain_vars_of_level(whereClause, 1))
1443  return NULL;
1444 
1445  /*
1446  * We don't risk optimizing if the WHERE clause is volatile, either.
1447  */
1448  if (contain_volatile_functions(whereClause))
1449  return NULL;
1450 
1451  /*
1452  * The subquery must have a nonempty jointree, but we can make it so.
1453  */
1454  replace_empty_jointree(subselect);
1455 
1456  /*
1457  * Prepare to pull up the sub-select into top range table.
1458  *
1459  * We rely here on the assumption that the outer query has no references
1460  * to the inner (necessarily true). Therefore this is a lot easier than
1461  * what pull_up_subqueries has to go through.
1462  *
1463  * In fact, it's even easier than what convert_ANY_sublink_to_join has to
1464  * do. The machinations of simplify_EXISTS_query ensured that there is
1465  * nothing interesting in the subquery except an rtable and jointree, and
1466  * even the jointree FromExpr no longer has quals. So we can just append
1467  * the rtable to our own and use the FromExpr in our jointree. But first,
1468  * adjust all level-zero varnos in the subquery to account for the rtable
1469  * merger.
1470  */
1471  rtoffset = list_length(parse->rtable);
1472  OffsetVarNodes((Node *) subselect, rtoffset, 0);
1473  OffsetVarNodes(whereClause, rtoffset, 0);
1474 
1475  /*
1476  * Upper-level vars in subquery will now be one level closer to their
1477  * parent than before; in particular, anything that had been level 1
1478  * becomes level zero.
1479  */
1480  IncrementVarSublevelsUp((Node *) subselect, -1, 1);
1481  IncrementVarSublevelsUp(whereClause, -1, 1);
1482 
1483  /*
1484  * Now that the WHERE clause is adjusted to match the parent query
1485  * environment, we can easily identify all the level-zero rels it uses.
1486  * The ones <= rtoffset belong to the upper query; the ones > rtoffset do
1487  * not.
1488  */
1489  clause_varnos = pull_varnos(whereClause);
1490  upper_varnos = NULL;
1491  while ((varno = bms_first_member(clause_varnos)) >= 0)
1492  {
1493  if (varno <= rtoffset)
1494  upper_varnos = bms_add_member(upper_varnos, varno);
1495  }
1496  bms_free(clause_varnos);
1497  Assert(!bms_is_empty(upper_varnos));
1498 
1499  /*
1500  * Now that we've got the set of upper-level varnos, we can make the last
1501  * check: only available_rels can be referenced.
1502  */
1503  if (!bms_is_subset(upper_varnos, available_rels))
1504  return NULL;
1505 
1506  /* Now we can attach the modified subquery rtable to the parent */
1507  parse->rtable = list_concat(parse->rtable, subselect->rtable);
1508 
1509  /*
1510  * And finally, build the JoinExpr node.
1511  */
1512  result = makeNode(JoinExpr);
1513  result->jointype = under_not ? JOIN_ANTI : JOIN_SEMI;
1514  result->isNatural = false;
1515  result->larg = NULL; /* caller must fill this in */
1516  /* flatten out the FromExpr node if it's useless */
1517  if (list_length(subselect->jointree->fromlist) == 1)
1518  result->rarg = (Node *) linitial(subselect->jointree->fromlist);
1519  else
1520  result->rarg = (Node *) subselect->jointree;
1521  result->usingClause = NIL;
1522  result->quals = whereClause;
1523  result->alias = NULL;
1524  result->rtindex = 0; /* we don't need an RTE for it */
1525 
1526  return result;
1527 }
1528 
1529 /*
1530  * simplify_EXISTS_query: remove any useless stuff in an EXISTS's subquery
1531  *
1532  * The only thing that matters about an EXISTS query is whether it returns
1533  * zero or more than zero rows. Therefore, we can remove certain SQL features
1534  * that won't affect that. The only part that is really likely to matter in
1535  * typical usage is simplifying the targetlist: it's a common habit to write
1536  * "SELECT * FROM" even though there is no need to evaluate any columns.
1537  *
1538  * Note: by suppressing the targetlist we could cause an observable behavioral
1539  * change, namely that any errors that might occur in evaluating the tlist
1540  * won't occur, nor will other side-effects of volatile functions. This seems
1541  * unlikely to bother anyone in practice.
1542  *
1543  * Returns true if was able to discard the targetlist, else false.
1544  */
1545 static bool
1547 {
1548  /*
1549  * We don't try to simplify at all if the query uses set operations,
1550  * aggregates, grouping sets, SRFs, modifying CTEs, HAVING, OFFSET, or FOR
1551  * UPDATE/SHARE; none of these seem likely in normal usage and their
1552  * possible effects are complex. (Note: we could ignore an "OFFSET 0"
1553  * clause, but that traditionally is used as an optimization fence, so we
1554  * don't.)
1555  */
1556  if (query->commandType != CMD_SELECT ||
1557  query->setOperations ||
1558  query->hasAggs ||
1559  query->groupingSets ||
1560  query->hasWindowFuncs ||
1561  query->hasTargetSRFs ||
1562  query->hasModifyingCTE ||
1563  query->havingQual ||
1564  query->limitOffset ||
1565  query->rowMarks)
1566  return false;
1567 
1568  /*
1569  * LIMIT with a constant positive (or NULL) value doesn't affect the
1570  * semantics of EXISTS, so let's ignore such clauses. This is worth doing
1571  * because people accustomed to certain other DBMSes may be in the habit
1572  * of writing EXISTS(SELECT ... LIMIT 1) as an optimization. If there's a
1573  * LIMIT with anything else as argument, though, we can't simplify.
1574  */
1575  if (query->limitCount)
1576  {
1577  /*
1578  * The LIMIT clause has not yet been through eval_const_expressions,
1579  * so we have to apply that here. It might seem like this is a waste
1580  * of cycles, since the only case plausibly worth worrying about is
1581  * "LIMIT 1" ... but what we'll actually see is "LIMIT int8(1::int4)",
1582  * so we have to fold constants or we're not going to recognize it.
1583  */
1584  Node *node = eval_const_expressions(root, query->limitCount);
1585  Const *limit;
1586 
1587  /* Might as well update the query if we simplified the clause. */
1588  query->limitCount = node;
1589 
1590  if (!IsA(node, Const))
1591  return false;
1592 
1593  limit = (Const *) node;
1594  Assert(limit->consttype == INT8OID);
1595  if (!limit->constisnull && DatumGetInt64(limit->constvalue) <= 0)
1596  return false;
1597 
1598  /* Whether or not the targetlist is safe, we can drop the LIMIT. */
1599  query->limitCount = NULL;
1600  }
1601 
1602  /*
1603  * Otherwise, we can throw away the targetlist, as well as any GROUP,
1604  * WINDOW, DISTINCT, and ORDER BY clauses; none of those clauses will
1605  * change a nonzero-rows result to zero rows or vice versa. (Furthermore,
1606  * since our parsetree representation of these clauses depends on the
1607  * targetlist, we'd better throw them away if we drop the targetlist.)
1608  */
1609  query->targetList = NIL;
1610  query->groupClause = NIL;
1611  query->windowClause = NIL;
1612  query->distinctClause = NIL;
1613  query->sortClause = NIL;
1614  query->hasDistinctOn = false;
1615 
1616  return true;
1617 }
1618 
1619 /*
1620  * convert_EXISTS_to_ANY: try to convert EXISTS to a hashable ANY sublink
1621  *
1622  * The subselect is expected to be a fresh copy that we can munge up,
1623  * and to have been successfully passed through simplify_EXISTS_query.
1624  *
1625  * On success, the modified subselect is returned, and we store a suitable
1626  * upper-level test expression at *testexpr, plus a list of the subselect's
1627  * output Params at *paramIds. (The test expression is already Param-ified
1628  * and hence need not go through convert_testexpr, which is why we have to
1629  * deal with the Param IDs specially.)
1630  *
1631  * On failure, returns NULL.
1632  */
1633 static Query *
1635  Node **testexpr, List **paramIds)
1636 {
1637  Node *whereClause;
1638  List *leftargs,
1639  *rightargs,
1640  *opids,
1641  *opcollations,
1642  *newWhere,
1643  *tlist,
1644  *testlist,
1645  *paramids;
1646  ListCell *lc,
1647  *rc,
1648  *oc,
1649  *cc;
1650  AttrNumber resno;
1651 
1652  /*
1653  * Query must not require a targetlist, since we have to insert a new one.
1654  * Caller should have dealt with the case already.
1655  */
1656  Assert(subselect->targetList == NIL);
1657 
1658  /*
1659  * Separate out the WHERE clause. (We could theoretically also remove
1660  * top-level plain JOIN/ON clauses, but it's probably not worth the
1661  * trouble.)
1662  */
1663  whereClause = subselect->jointree->quals;
1664  subselect->jointree->quals = NULL;
1665 
1666  /*
1667  * The rest of the sub-select must not refer to any Vars of the parent
1668  * query. (Vars of higher levels should be okay, though.)
1669  *
1670  * Note: we need not check for Aggrefs separately because we know the
1671  * sub-select is as yet unoptimized; any uplevel Aggref must therefore
1672  * contain an uplevel Var reference. This is not the case below ...
1673  */
1674  if (contain_vars_of_level((Node *) subselect, 1))
1675  return NULL;
1676 
1677  /*
1678  * We don't risk optimizing if the WHERE clause is volatile, either.
1679  */
1680  if (contain_volatile_functions(whereClause))
1681  return NULL;
1682 
1683  /*
1684  * Clean up the WHERE clause by doing const-simplification etc on it.
1685  * Aside from simplifying the processing we're about to do, this is
1686  * important for being able to pull chunks of the WHERE clause up into the
1687  * parent query. Since we are invoked partway through the parent's
1688  * preprocess_expression() work, earlier steps of preprocess_expression()
1689  * wouldn't get applied to the pulled-up stuff unless we do them here. For
1690  * the parts of the WHERE clause that get put back into the child query,
1691  * this work is partially duplicative, but it shouldn't hurt.
1692  *
1693  * Note: we do not run flatten_join_alias_vars. This is OK because any
1694  * parent aliases were flattened already, and we're not going to pull any
1695  * child Vars (of any description) into the parent.
1696  *
1697  * Note: passing the parent's root to eval_const_expressions is
1698  * technically wrong, but we can get away with it since only the
1699  * boundParams (if any) are used, and those would be the same in a
1700  * subroot.
1701  */
1702  whereClause = eval_const_expressions(root, whereClause);
1703  whereClause = (Node *) canonicalize_qual((Expr *) whereClause, false);
1704  whereClause = (Node *) make_ands_implicit((Expr *) whereClause);
1705 
1706  /*
1707  * We now have a flattened implicit-AND list of clauses, which we try to
1708  * break apart into "outervar = innervar" hash clauses. Anything that
1709  * can't be broken apart just goes back into the newWhere list. Note that
1710  * we aren't trying hard yet to ensure that we have only outer or only
1711  * inner on each side; we'll check that if we get to the end.
1712  */
1713  leftargs = rightargs = opids = opcollations = newWhere = NIL;
1714  foreach(lc, (List *) whereClause)
1715  {
1716  OpExpr *expr = (OpExpr *) lfirst(lc);
1717 
1718  if (IsA(expr, OpExpr) &&
1719  hash_ok_operator(expr))
1720  {
1721  Node *leftarg = (Node *) linitial(expr->args);
1722  Node *rightarg = (Node *) lsecond(expr->args);
1723 
1724  if (contain_vars_of_level(leftarg, 1))
1725  {
1726  leftargs = lappend(leftargs, leftarg);
1727  rightargs = lappend(rightargs, rightarg);
1728  opids = lappend_oid(opids, expr->opno);
1729  opcollations = lappend_oid(opcollations, expr->inputcollid);
1730  continue;
1731  }
1732  if (contain_vars_of_level(rightarg, 1))
1733  {
1734  /*
1735  * We must commute the clause to put the outer var on the
1736  * left, because the hashing code in nodeSubplan.c expects
1737  * that. This probably shouldn't ever fail, since hashable
1738  * operators ought to have commutators, but be paranoid.
1739  */
1740  expr->opno = get_commutator(expr->opno);
1741  if (OidIsValid(expr->opno) && hash_ok_operator(expr))
1742  {
1743  leftargs = lappend(leftargs, rightarg);
1744  rightargs = lappend(rightargs, leftarg);
1745  opids = lappend_oid(opids, expr->opno);
1746  opcollations = lappend_oid(opcollations, expr->inputcollid);
1747  continue;
1748  }
1749  /* If no commutator, no chance to optimize the WHERE clause */
1750  return NULL;
1751  }
1752  }
1753  /* Couldn't handle it as a hash clause */
1754  newWhere = lappend(newWhere, expr);
1755  }
1756 
1757  /*
1758  * If we didn't find anything we could convert, fail.
1759  */
1760  if (leftargs == NIL)
1761  return NULL;
1762 
1763  /*
1764  * There mustn't be any parent Vars or Aggs in the stuff that we intend to
1765  * put back into the child query. Note: you might think we don't need to
1766  * check for Aggs separately, because an uplevel Agg must contain an
1767  * uplevel Var in its argument. But it is possible that the uplevel Var
1768  * got optimized away by eval_const_expressions. Consider
1769  *
1770  * SUM(CASE WHEN false THEN uplevelvar ELSE 0 END)
1771  */
1772  if (contain_vars_of_level((Node *) newWhere, 1) ||
1773  contain_vars_of_level((Node *) rightargs, 1))
1774  return NULL;
1775  if (root->parse->hasAggs &&
1776  (contain_aggs_of_level((Node *) newWhere, 1) ||
1777  contain_aggs_of_level((Node *) rightargs, 1)))
1778  return NULL;
1779 
1780  /*
1781  * And there can't be any child Vars in the stuff we intend to pull up.
1782  * (Note: we'd need to check for child Aggs too, except we know the child
1783  * has no aggs at all because of simplify_EXISTS_query's check. The same
1784  * goes for window functions.)
1785  */
1786  if (contain_vars_of_level((Node *) leftargs, 0))
1787  return NULL;
1788 
1789  /*
1790  * Also reject sublinks in the stuff we intend to pull up. (It might be
1791  * possible to support this, but doesn't seem worth the complication.)
1792  */
1793  if (contain_subplans((Node *) leftargs))
1794  return NULL;
1795 
1796  /*
1797  * Okay, adjust the sublevelsup in the stuff we're pulling up.
1798  */
1799  IncrementVarSublevelsUp((Node *) leftargs, -1, 1);
1800 
1801  /*
1802  * Put back any child-level-only WHERE clauses.
1803  */
1804  if (newWhere)
1805  subselect->jointree->quals = (Node *) make_ands_explicit(newWhere);
1806 
1807  /*
1808  * Build a new targetlist for the child that emits the expressions we
1809  * need. Concurrently, build a testexpr for the parent using Params to
1810  * reference the child outputs. (Since we generate Params directly here,
1811  * there will be no need to convert the testexpr in build_subplan.)
1812  */
1813  tlist = testlist = paramids = NIL;
1814  resno = 1;
1815  forfour(lc, leftargs, rc, rightargs, oc, opids, cc, opcollations)
1816  {
1817  Node *leftarg = (Node *) lfirst(lc);
1818  Node *rightarg = (Node *) lfirst(rc);
1819  Oid opid = lfirst_oid(oc);
1820  Oid opcollation = lfirst_oid(cc);
1821  Param *param;
1822 
1823  param = generate_new_exec_param(root,
1824  exprType(rightarg),
1825  exprTypmod(rightarg),
1826  exprCollation(rightarg));
1827  tlist = lappend(tlist,
1828  makeTargetEntry((Expr *) rightarg,
1829  resno++,
1830  NULL,
1831  false));
1832  testlist = lappend(testlist,
1833  make_opclause(opid, BOOLOID, false,
1834  (Expr *) leftarg, (Expr *) param,
1835  InvalidOid, opcollation));
1836  paramids = lappend_int(paramids, param->paramid);
1837  }
1838 
1839  /* Put everything where it should go, and we're done */
1840  subselect->targetList = tlist;
1841  *testexpr = (Node *) make_ands_explicit(testlist);
1842  *paramIds = paramids;
1843 
1844  return subselect;
1845 }
1846 
1847 
1848 /*
1849  * Replace correlation vars (uplevel vars) with Params.
1850  *
1851  * Uplevel PlaceHolderVars and aggregates are replaced, too.
1852  *
1853  * Note: it is critical that this runs immediately after SS_process_sublinks.
1854  * Since we do not recurse into the arguments of uplevel PHVs and aggregates,
1855  * they will get copied to the appropriate subplan args list in the parent
1856  * query with uplevel vars not replaced by Params, but only adjusted in level
1857  * (see replace_outer_placeholdervar and replace_outer_agg). That's exactly
1858  * what we want for the vars of the parent level --- but if a PHV's or
1859  * aggregate's argument contains any further-up variables, they have to be
1860  * replaced with Params in their turn. That will happen when the parent level
1861  * runs SS_replace_correlation_vars. Therefore it must do so after expanding
1862  * its sublinks to subplans. And we don't want any steps in between, else
1863  * those steps would never get applied to the argument expressions, either in
1864  * the parent or the child level.
1865  *
1866  * Another fairly tricky thing going on here is the handling of SubLinks in
1867  * the arguments of uplevel PHVs/aggregates. Those are not touched inside the
1868  * intermediate query level, either. Instead, SS_process_sublinks recurses on
1869  * them after copying the PHV or Aggref expression into the parent plan level
1870  * (this is actually taken care of in build_subplan).
1871  */
1872 Node *
1874 {
1875  /* No setup needed for tree walk, so away we go */
1876  return replace_correlation_vars_mutator(expr, root);
1877 }
1878 
1879 static Node *
1881 {
1882  if (node == NULL)
1883  return NULL;
1884  if (IsA(node, Var))
1885  {
1886  if (((Var *) node)->varlevelsup > 0)
1887  return (Node *) replace_outer_var(root, (Var *) node);
1888  }
1889  if (IsA(node, PlaceHolderVar))
1890  {
1891  if (((PlaceHolderVar *) node)->phlevelsup > 0)
1892  return (Node *) replace_outer_placeholdervar(root,
1893  (PlaceHolderVar *) node);
1894  }
1895  if (IsA(node, Aggref))
1896  {
1897  if (((Aggref *) node)->agglevelsup > 0)
1898  return (Node *) replace_outer_agg(root, (Aggref *) node);
1899  }
1900  if (IsA(node, GroupingFunc))
1901  {
1902  if (((GroupingFunc *) node)->agglevelsup > 0)
1903  return (Node *) replace_outer_grouping(root, (GroupingFunc *) node);
1904  }
1905  return expression_tree_mutator(node,
1907  (void *) root);
1908 }
1909 
1910 /*
1911  * Expand SubLinks to SubPlans in the given expression.
1912  *
1913  * The isQual argument tells whether or not this expression is a WHERE/HAVING
1914  * qualifier expression. If it is, any sublinks appearing at top level need
1915  * not distinguish FALSE from UNKNOWN return values.
1916  */
1917 Node *
1919 {
1920  process_sublinks_context context;
1921 
1922  context.root = root;
1923  context.isTopQual = isQual;
1924  return process_sublinks_mutator(expr, &context);
1925 }
1926 
1927 static Node *
1929 {
1930  process_sublinks_context locContext;
1931 
1932  locContext.root = context->root;
1933 
1934  if (node == NULL)
1935  return NULL;
1936  if (IsA(node, SubLink))
1937  {
1938  SubLink *sublink = (SubLink *) node;
1939  Node *testexpr;
1940 
1941  /*
1942  * First, recursively process the lefthand-side expressions, if any.
1943  * They're not top-level anymore.
1944  */
1945  locContext.isTopQual = false;
1946  testexpr = process_sublinks_mutator(sublink->testexpr, &locContext);
1947 
1948  /*
1949  * Now build the SubPlan node and make the expr to return.
1950  */
1951  return make_subplan(context->root,
1952  (Query *) sublink->subselect,
1953  sublink->subLinkType,
1954  sublink->subLinkId,
1955  testexpr,
1956  context->isTopQual);
1957  }
1958 
1959  /*
1960  * Don't recurse into the arguments of an outer PHV or aggregate here. Any
1961  * SubLinks in the arguments have to be dealt with at the outer query
1962  * level; they'll be handled when build_subplan collects the PHV or Aggref
1963  * into the arguments to be passed down to the current subplan.
1964  */
1965  if (IsA(node, PlaceHolderVar))
1966  {
1967  if (((PlaceHolderVar *) node)->phlevelsup > 0)
1968  return node;
1969  }
1970  else if (IsA(node, Aggref))
1971  {
1972  if (((Aggref *) node)->agglevelsup > 0)
1973  return node;
1974  }
1975 
1976  /*
1977  * We should never see a SubPlan expression in the input (since this is
1978  * the very routine that creates 'em to begin with). We shouldn't find
1979  * ourselves invoked directly on a Query, either.
1980  */
1981  Assert(!IsA(node, SubPlan));
1982  Assert(!IsA(node, AlternativeSubPlan));
1983  Assert(!IsA(node, Query));
1984 
1985  /*
1986  * Because make_subplan() could return an AND or OR clause, we have to
1987  * take steps to preserve AND/OR flatness of a qual. We assume the input
1988  * has been AND/OR flattened and so we need no recursion here.
1989  *
1990  * (Due to the coding here, we will not get called on the List subnodes of
1991  * an AND; and the input is *not* yet in implicit-AND format. So no check
1992  * is needed for a bare List.)
1993  *
1994  * Anywhere within the top-level AND/OR clause structure, we can tell
1995  * make_subplan() that NULL and FALSE are interchangeable. So isTopQual
1996  * propagates down in both cases. (Note that this is unlike the meaning
1997  * of "top level qual" used in most other places in Postgres.)
1998  */
1999  if (is_andclause(node))
2000  {
2001  List *newargs = NIL;
2002  ListCell *l;
2003 
2004  /* Still at qual top-level */
2005  locContext.isTopQual = context->isTopQual;
2006 
2007  foreach(l, ((BoolExpr *) node)->args)
2008  {
2009  Node *newarg;
2010 
2011  newarg = process_sublinks_mutator(lfirst(l), &locContext);
2012  if (is_andclause(newarg))
2013  newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
2014  else
2015  newargs = lappend(newargs, newarg);
2016  }
2017  return (Node *) make_andclause(newargs);
2018  }
2019 
2020  if (is_orclause(node))
2021  {
2022  List *newargs = NIL;
2023  ListCell *l;
2024 
2025  /* Still at qual top-level */
2026  locContext.isTopQual = context->isTopQual;
2027 
2028  foreach(l, ((BoolExpr *) node)->args)
2029  {
2030  Node *newarg;
2031 
2032  newarg = process_sublinks_mutator(lfirst(l), &locContext);
2033  if (is_orclause(newarg))
2034  newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
2035  else
2036  newargs = lappend(newargs, newarg);
2037  }
2038  return (Node *) make_orclause(newargs);
2039  }
2040 
2041  /*
2042  * If we recurse down through anything other than an AND or OR node, we
2043  * are definitely not at top qual level anymore.
2044  */
2045  locContext.isTopQual = false;
2046 
2047  return expression_tree_mutator(node,
2049  (void *) &locContext);
2050 }
2051 
2052 /*
2053  * SS_identify_outer_params - identify the Params available from outer levels
2054  *
2055  * This must be run after SS_replace_correlation_vars and SS_process_sublinks
2056  * processing is complete in a given query level as well as all of its
2057  * descendant levels (which means it's most practical to do it at the end of
2058  * processing the query level). We compute the set of paramIds that outer
2059  * levels will make available to this level+descendants, and record it in
2060  * root->outer_params for use while computing extParam/allParam sets in final
2061  * plan cleanup. (We can't just compute it then, because the upper levels'
2062  * plan_params lists are transient and will be gone by then.)
2063  */
2064 void
2066 {
2067  Bitmapset *outer_params;
2068  PlannerInfo *proot;
2069  ListCell *l;
2070 
2071  /*
2072  * If no parameters have been assigned anywhere in the tree, we certainly
2073  * don't need to do anything here.
2074  */
2075  if (root->glob->paramExecTypes == NIL)
2076  return;
2077 
2078  /*
2079  * Scan all query levels above this one to see which parameters are due to
2080  * be available from them, either because lower query levels have
2081  * requested them (via plan_params) or because they will be available from
2082  * initPlans of those levels.
2083  */
2084  outer_params = NULL;
2085  for (proot = root->parent_root; proot != NULL; proot = proot->parent_root)
2086  {
2087  /* Include ordinary Var/PHV/Aggref params */
2088  foreach(l, proot->plan_params)
2089  {
2090  PlannerParamItem *pitem = (PlannerParamItem *) lfirst(l);
2091 
2092  outer_params = bms_add_member(outer_params, pitem->paramId);
2093  }
2094  /* Include any outputs of outer-level initPlans */
2095  foreach(l, proot->init_plans)
2096  {
2097  SubPlan *initsubplan = (SubPlan *) lfirst(l);
2098  ListCell *l2;
2099 
2100  foreach(l2, initsubplan->setParam)
2101  {
2102  outer_params = bms_add_member(outer_params, lfirst_int(l2));
2103  }
2104  }
2105  /* Include worktable ID, if a recursive query is being planned */
2106  if (proot->wt_param_id >= 0)
2107  outer_params = bms_add_member(outer_params, proot->wt_param_id);
2108  }
2109  root->outer_params = outer_params;
2110 }
2111 
2112 /*
2113  * SS_charge_for_initplans - account for initplans in Path costs & parallelism
2114  *
2115  * If any initPlans have been created in the current query level, they will
2116  * get attached to the Plan tree created from whichever Path we select from
2117  * the given rel. Increment all that rel's Paths' costs to account for them,
2118  * and make sure the paths get marked as parallel-unsafe, since we can't
2119  * currently transmit initPlans to parallel workers.
2120  *
2121  * This is separate from SS_attach_initplans because we might conditionally
2122  * create more initPlans during create_plan(), depending on which Path we
2123  * select. However, Paths that would generate such initPlans are expected
2124  * to have included their cost already.
2125  */
2126 void
2128 {
2129  Cost initplan_cost;
2130  ListCell *lc;
2131 
2132  /* Nothing to do if no initPlans */
2133  if (root->init_plans == NIL)
2134  return;
2135 
2136  /*
2137  * Compute the cost increment just once, since it will be the same for all
2138  * Paths. We assume each initPlan gets run once during top plan startup.
2139  * This is a conservative overestimate, since in fact an initPlan might be
2140  * executed later than plan startup, or even not at all.
2141  */
2142  initplan_cost = 0;
2143  foreach(lc, root->init_plans)
2144  {
2145  SubPlan *initsubplan = (SubPlan *) lfirst(lc);
2146 
2147  initplan_cost += initsubplan->startup_cost + initsubplan->per_call_cost;
2148  }
2149 
2150  /*
2151  * Now adjust the costs and parallel_safe flags.
2152  */
2153  foreach(lc, final_rel->pathlist)
2154  {
2155  Path *path = (Path *) lfirst(lc);
2156 
2157  path->startup_cost += initplan_cost;
2158  path->total_cost += initplan_cost;
2159  path->parallel_safe = false;
2160  }
2161 
2162  /*
2163  * Forget about any partial paths and clear consider_parallel, too;
2164  * they're not usable if we attached an initPlan.
2165  */
2166  final_rel->partial_pathlist = NIL;
2167  final_rel->consider_parallel = false;
2168 
2169  /* We needn't do set_cheapest() here, caller will do it */
2170 }
2171 
2172 /*
2173  * SS_attach_initplans - attach initplans to topmost plan node
2174  *
2175  * Attach any initplans created in the current query level to the specified
2176  * plan node, which should normally be the topmost node for the query level.
2177  * (In principle the initPlans could go in any node at or above where they're
2178  * referenced; but there seems no reason to put them any lower than the
2179  * topmost node, so we don't bother to track exactly where they came from.)
2180  * We do not touch the plan node's cost; the initplans should have been
2181  * accounted for in path costing.
2182  */
2183 void
2185 {
2186  plan->initPlan = root->init_plans;
2187 }
2188 
2189 /*
2190  * SS_finalize_plan - do final parameter processing for a completed Plan.
2191  *
2192  * This recursively computes the extParam and allParam sets for every Plan
2193  * node in the given plan tree. (Oh, and RangeTblFunction.funcparams too.)
2194  *
2195  * We assume that SS_finalize_plan has already been run on any initplans or
2196  * subplans the plan tree could reference.
2197  */
2198 void
2200 {
2201  /* No setup needed, just recurse through plan tree. */
2202  (void) finalize_plan(root, plan, -1, root->outer_params, NULL);
2203 }
2204 
2205 /*
2206  * Recursive processing of all nodes in the plan tree
2207  *
2208  * gather_param is the rescan_param of an ancestral Gather/GatherMerge,
2209  * or -1 if there is none.
2210  *
2211  * valid_params is the set of param IDs supplied by outer plan levels
2212  * that are valid to reference in this plan node or its children.
2213  *
2214  * scan_params is a set of param IDs to force scan plan nodes to reference.
2215  * This is for EvalPlanQual support, and is always NULL at the top of the
2216  * recursion.
2217  *
2218  * The return value is the computed allParam set for the given Plan node.
2219  * This is just an internal notational convenience: we can add a child
2220  * plan's allParams to the set of param IDs of interest to this level
2221  * in the same statement that recurses to that child.
2222  *
2223  * Do not scribble on caller's values of valid_params or scan_params!
2224  *
2225  * Note: although we attempt to deal with initPlans anywhere in the tree, the
2226  * logic is not really right. The problem is that a plan node might return an
2227  * output Param of its initPlan as a targetlist item, in which case it's valid
2228  * for the parent plan level to reference that same Param; the parent's usage
2229  * will be converted into a Var referencing the child plan node by setrefs.c.
2230  * But this function would see the parent's reference as out of scope and
2231  * complain about it. For now, this does not matter because the planner only
2232  * attaches initPlans to the topmost plan node in a query level, so the case
2233  * doesn't arise. If we ever merge this processing into setrefs.c, maybe it
2234  * can be handled more cleanly.
2235  */
2236 static Bitmapset *
2238  int gather_param,
2239  Bitmapset *valid_params,
2240  Bitmapset *scan_params)
2241 {
2242  finalize_primnode_context context;
2243  int locally_added_param;
2244  Bitmapset *nestloop_params;
2245  Bitmapset *initExtParam;
2246  Bitmapset *initSetParam;
2247  Bitmapset *child_params;
2248  ListCell *l;
2249 
2250  if (plan == NULL)
2251  return NULL;
2252 
2253  context.root = root;
2254  context.paramids = NULL; /* initialize set to empty */
2255  locally_added_param = -1; /* there isn't one */
2256  nestloop_params = NULL; /* there aren't any */
2257 
2258  /*
2259  * Examine any initPlans to determine the set of external params they
2260  * reference and the set of output params they supply. (We assume
2261  * SS_finalize_plan was run on them already.)
2262  */
2263  initExtParam = initSetParam = NULL;
2264  foreach(l, plan->initPlan)
2265  {
2266  SubPlan *initsubplan = (SubPlan *) lfirst(l);
2267  Plan *initplan = planner_subplan_get_plan(root, initsubplan);
2268  ListCell *l2;
2269 
2270  initExtParam = bms_add_members(initExtParam, initplan->extParam);
2271  foreach(l2, initsubplan->setParam)
2272  {
2273  initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2274  }
2275  }
2276 
2277  /* Any setParams are validly referenceable in this node and children */
2278  if (initSetParam)
2279  valid_params = bms_union(valid_params, initSetParam);
2280 
2281  /*
2282  * When we call finalize_primnode, context.paramids sets are automatically
2283  * merged together. But when recursing to self, we have to do it the hard
2284  * way. We want the paramids set to include params in subplans as well as
2285  * at this level.
2286  */
2287 
2288  /* Find params in targetlist and qual */
2289  finalize_primnode((Node *) plan->targetlist, &context);
2290  finalize_primnode((Node *) plan->qual, &context);
2291 
2292  /*
2293  * If it's a parallel-aware scan node, mark it as dependent on the parent
2294  * Gather/GatherMerge's rescan Param.
2295  */
2296  if (plan->parallel_aware)
2297  {
2298  if (gather_param < 0)
2299  elog(ERROR, "parallel-aware plan node is not below a Gather");
2300  context.paramids =
2301  bms_add_member(context.paramids, gather_param);
2302  }
2303 
2304  /* Check additional node-type-specific fields */
2305  switch (nodeTag(plan))
2306  {
2307  case T_Result:
2308  finalize_primnode(((Result *) plan)->resconstantqual,
2309  &context);
2310  break;
2311 
2312  case T_SeqScan:
2313  context.paramids = bms_add_members(context.paramids, scan_params);
2314  break;
2315 
2316  case T_SampleScan:
2317  finalize_primnode((Node *) ((SampleScan *) plan)->tablesample,
2318  &context);
2319  context.paramids = bms_add_members(context.paramids, scan_params);
2320  break;
2321 
2322  case T_IndexScan:
2323  finalize_primnode((Node *) ((IndexScan *) plan)->indexqual,
2324  &context);
2325  finalize_primnode((Node *) ((IndexScan *) plan)->indexorderby,
2326  &context);
2327 
2328  /*
2329  * we need not look at indexqualorig, since it will have the same
2330  * param references as indexqual. Likewise, we can ignore
2331  * indexorderbyorig.
2332  */
2333  context.paramids = bms_add_members(context.paramids, scan_params);
2334  break;
2335 
2336  case T_IndexOnlyScan:
2337  finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexqual,
2338  &context);
2339  finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexorderby,
2340  &context);
2341 
2342  /*
2343  * we need not look at indextlist, since it cannot contain Params.
2344  */
2345  context.paramids = bms_add_members(context.paramids, scan_params);
2346  break;
2347 
2348  case T_BitmapIndexScan:
2349  finalize_primnode((Node *) ((BitmapIndexScan *) plan)->indexqual,
2350  &context);
2351 
2352  /*
2353  * we need not look at indexqualorig, since it will have the same
2354  * param references as indexqual.
2355  */
2356  break;
2357 
2358  case T_BitmapHeapScan:
2359  finalize_primnode((Node *) ((BitmapHeapScan *) plan)->bitmapqualorig,
2360  &context);
2361  context.paramids = bms_add_members(context.paramids, scan_params);
2362  break;
2363 
2364  case T_TidScan:
2365  finalize_primnode((Node *) ((TidScan *) plan)->tidquals,
2366  &context);
2367  context.paramids = bms_add_members(context.paramids, scan_params);
2368  break;
2369 
2370  case T_SubqueryScan:
2371  {
2372  SubqueryScan *sscan = (SubqueryScan *) plan;
2373  RelOptInfo *rel;
2374  Bitmapset *subquery_params;
2375 
2376  /* We must run finalize_plan on the subquery */
2377  rel = find_base_rel(root, sscan->scan.scanrelid);
2378  subquery_params = rel->subroot->outer_params;
2379  if (gather_param >= 0)
2380  subquery_params = bms_add_member(bms_copy(subquery_params),
2381  gather_param);
2382  finalize_plan(rel->subroot, sscan->subplan, gather_param,
2383  subquery_params, NULL);
2384 
2385  /* Now we can add its extParams to the parent's params */
2386  context.paramids = bms_add_members(context.paramids,
2387  sscan->subplan->extParam);
2388  /* We need scan_params too, though */
2389  context.paramids = bms_add_members(context.paramids,
2390  scan_params);
2391  }
2392  break;
2393 
2394  case T_FunctionScan:
2395  {
2396  FunctionScan *fscan = (FunctionScan *) plan;
2397  ListCell *lc;
2398 
2399  /*
2400  * Call finalize_primnode independently on each function
2401  * expression, so that we can record which params are
2402  * referenced in each, in order to decide which need
2403  * re-evaluating during rescan.
2404  */
2405  foreach(lc, fscan->functions)
2406  {
2407  RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2408  finalize_primnode_context funccontext;
2409 
2410  funccontext = context;
2411  funccontext.paramids = NULL;
2412 
2413  finalize_primnode(rtfunc->funcexpr, &funccontext);
2414 
2415  /* remember results for execution */
2416  rtfunc->funcparams = funccontext.paramids;
2417 
2418  /* add the function's params to the overall set */
2419  context.paramids = bms_add_members(context.paramids,
2420  funccontext.paramids);
2421  }
2422 
2423  context.paramids = bms_add_members(context.paramids,
2424  scan_params);
2425  }
2426  break;
2427 
2428  case T_TableFuncScan:
2429  finalize_primnode((Node *) ((TableFuncScan *) plan)->tablefunc,
2430  &context);
2431  context.paramids = bms_add_members(context.paramids, scan_params);
2432  break;
2433 
2434  case T_ValuesScan:
2435  finalize_primnode((Node *) ((ValuesScan *) plan)->values_lists,
2436  &context);
2437  context.paramids = bms_add_members(context.paramids, scan_params);
2438  break;
2439 
2440  case T_CteScan:
2441  {
2442  /*
2443  * You might think we should add the node's cteParam to
2444  * paramids, but we shouldn't because that param is just a
2445  * linkage mechanism for multiple CteScan nodes for the same
2446  * CTE; it is never used for changed-param signaling. What we
2447  * have to do instead is to find the referenced CTE plan and
2448  * incorporate its external paramids, so that the correct
2449  * things will happen if the CTE references outer-level
2450  * variables. See test cases for bug #4902. (We assume
2451  * SS_finalize_plan was run on the CTE plan already.)
2452  */
2453  int plan_id = ((CteScan *) plan)->ctePlanId;
2454  Plan *cteplan;
2455 
2456  /* so, do this ... */
2457  if (plan_id < 1 || plan_id > list_length(root->glob->subplans))
2458  elog(ERROR, "could not find plan for CteScan referencing plan ID %d",
2459  plan_id);
2460  cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
2461  context.paramids =
2462  bms_add_members(context.paramids, cteplan->extParam);
2463 
2464 #ifdef NOT_USED
2465  /* ... but not this */
2466  context.paramids =
2467  bms_add_member(context.paramids,
2468  ((CteScan *) plan)->cteParam);
2469 #endif
2470 
2471  context.paramids = bms_add_members(context.paramids,
2472  scan_params);
2473  }
2474  break;
2475 
2476  case T_WorkTableScan:
2477  context.paramids =
2478  bms_add_member(context.paramids,
2479  ((WorkTableScan *) plan)->wtParam);
2480  context.paramids = bms_add_members(context.paramids, scan_params);
2481  break;
2482 
2483  case T_NamedTuplestoreScan:
2484  context.paramids = bms_add_members(context.paramids, scan_params);
2485  break;
2486 
2487  case T_ForeignScan:
2488  {
2489  ForeignScan *fscan = (ForeignScan *) plan;
2490 
2491  finalize_primnode((Node *) fscan->fdw_exprs,
2492  &context);
2494  &context);
2495 
2496  /* We assume fdw_scan_tlist cannot contain Params */
2497  context.paramids = bms_add_members(context.paramids,
2498  scan_params);
2499  }
2500  break;
2501 
2502  case T_CustomScan:
2503  {
2504  CustomScan *cscan = (CustomScan *) plan;
2505  ListCell *lc;
2506 
2507  finalize_primnode((Node *) cscan->custom_exprs,
2508  &context);
2509  /* We assume custom_scan_tlist cannot contain Params */
2510  context.paramids =
2511  bms_add_members(context.paramids, scan_params);
2512 
2513  /* child nodes if any */
2514  foreach(lc, cscan->custom_plans)
2515  {
2516  context.paramids =
2517  bms_add_members(context.paramids,
2518  finalize_plan(root,
2519  (Plan *) lfirst(lc),
2520  gather_param,
2521  valid_params,
2522  scan_params));
2523  }
2524  }
2525  break;
2526 
2527  case T_ModifyTable:
2528  {
2529  ModifyTable *mtplan = (ModifyTable *) plan;
2530  ListCell *l;
2531 
2532  /* Force descendant scan nodes to reference epqParam */
2533  locally_added_param = mtplan->epqParam;
2534  valid_params = bms_add_member(bms_copy(valid_params),
2535  locally_added_param);
2536  scan_params = bms_add_member(bms_copy(scan_params),
2537  locally_added_param);
2539  &context);
2540  finalize_primnode((Node *) mtplan->onConflictSet,
2541  &context);
2543  &context);
2544  /* exclRelTlist contains only Vars, doesn't need examination */
2545  foreach(l, mtplan->plans)
2546  {
2547  context.paramids =
2548  bms_add_members(context.paramids,
2549  finalize_plan(root,
2550  (Plan *) lfirst(l),
2551  gather_param,
2552  valid_params,
2553  scan_params));
2554  }
2555  }
2556  break;
2557 
2558  case T_Append:
2559  {
2560  ListCell *l;
2561 
2562  foreach(l, ((Append *) plan)->appendplans)
2563  {
2564  context.paramids =
2565  bms_add_members(context.paramids,
2566  finalize_plan(root,
2567  (Plan *) lfirst(l),
2568  gather_param,
2569  valid_params,
2570  scan_params));
2571  }
2572  }
2573  break;
2574 
2575  case T_MergeAppend:
2576  {
2577  ListCell *l;
2578 
2579  foreach(l, ((MergeAppend *) plan)->mergeplans)
2580  {
2581  context.paramids =
2582  bms_add_members(context.paramids,
2583  finalize_plan(root,
2584  (Plan *) lfirst(l),
2585  gather_param,
2586  valid_params,
2587  scan_params));
2588  }
2589  }
2590  break;
2591 
2592  case T_BitmapAnd:
2593  {
2594  ListCell *l;
2595 
2596  foreach(l, ((BitmapAnd *) plan)->bitmapplans)
2597  {
2598  context.paramids =
2599  bms_add_members(context.paramids,
2600  finalize_plan(root,
2601  (Plan *) lfirst(l),
2602  gather_param,
2603  valid_params,
2604  scan_params));
2605  }
2606  }
2607  break;
2608 
2609  case T_BitmapOr:
2610  {
2611  ListCell *l;
2612 
2613  foreach(l, ((BitmapOr *) plan)->bitmapplans)
2614  {
2615  context.paramids =
2616  bms_add_members(context.paramids,
2617  finalize_plan(root,
2618  (Plan *) lfirst(l),
2619  gather_param,
2620  valid_params,
2621  scan_params));
2622  }
2623  }
2624  break;
2625 
2626  case T_NestLoop:
2627  {
2628  ListCell *l;
2629 
2630  finalize_primnode((Node *) ((Join *) plan)->joinqual,
2631  &context);
2632  /* collect set of params that will be passed to right child */
2633  foreach(l, ((NestLoop *) plan)->nestParams)
2634  {
2635  NestLoopParam *nlp = (NestLoopParam *) lfirst(l);
2636 
2637  nestloop_params = bms_add_member(nestloop_params,
2638  nlp->paramno);
2639  }
2640  }
2641  break;
2642 
2643  case T_MergeJoin:
2644  finalize_primnode((Node *) ((Join *) plan)->joinqual,
2645  &context);
2646  finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
2647  &context);
2648  break;
2649 
2650  case T_HashJoin:
2651  finalize_primnode((Node *) ((Join *) plan)->joinqual,
2652  &context);
2653  finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
2654  &context);
2655  break;
2656 
2657  case T_Limit:
2658  finalize_primnode(((Limit *) plan)->limitOffset,
2659  &context);
2660  finalize_primnode(((Limit *) plan)->limitCount,
2661  &context);
2662  break;
2663 
2664  case T_RecursiveUnion:
2665  /* child nodes are allowed to reference wtParam */
2666  locally_added_param = ((RecursiveUnion *) plan)->wtParam;
2667  valid_params = bms_add_member(bms_copy(valid_params),
2668  locally_added_param);
2669  /* wtParam does *not* get added to scan_params */
2670  break;
2671 
2672  case T_LockRows:
2673  /* Force descendant scan nodes to reference epqParam */
2674  locally_added_param = ((LockRows *) plan)->epqParam;
2675  valid_params = bms_add_member(bms_copy(valid_params),
2676  locally_added_param);
2677  scan_params = bms_add_member(bms_copy(scan_params),
2678  locally_added_param);
2679  break;
2680 
2681  case T_Agg:
2682  {
2683  Agg *agg = (Agg *) plan;
2684 
2685  /*
2686  * AGG_HASHED plans need to know which Params are referenced
2687  * in aggregate calls. Do a separate scan to identify them.
2688  */
2689  if (agg->aggstrategy == AGG_HASHED)
2690  {
2691  finalize_primnode_context aggcontext;
2692 
2693  aggcontext.root = root;
2694  aggcontext.paramids = NULL;
2696  &aggcontext);
2698  &aggcontext);
2699  agg->aggParams = aggcontext.paramids;
2700  }
2701  }
2702  break;
2703 
2704  case T_WindowAgg:
2705  finalize_primnode(((WindowAgg *) plan)->startOffset,
2706  &context);
2707  finalize_primnode(((WindowAgg *) plan)->endOffset,
2708  &context);
2709  break;
2710 
2711  case T_Gather:
2712  /* child nodes are allowed to reference rescan_param, if any */
2713  locally_added_param = ((Gather *) plan)->rescan_param;
2714  if (locally_added_param >= 0)
2715  {
2716  valid_params = bms_add_member(bms_copy(valid_params),
2717  locally_added_param);
2718 
2719  /*
2720  * We currently don't support nested Gathers. The issue so
2721  * far as this function is concerned would be how to identify
2722  * which child nodes depend on which Gather.
2723  */
2724  Assert(gather_param < 0);
2725  /* Pass down rescan_param to child parallel-aware nodes */
2726  gather_param = locally_added_param;
2727  }
2728  /* rescan_param does *not* get added to scan_params */
2729  break;
2730 
2731  case T_GatherMerge:
2732  /* child nodes are allowed to reference rescan_param, if any */
2733  locally_added_param = ((GatherMerge *) plan)->rescan_param;
2734  if (locally_added_param >= 0)
2735  {
2736  valid_params = bms_add_member(bms_copy(valid_params),
2737  locally_added_param);
2738 
2739  /*
2740  * We currently don't support nested Gathers. The issue so
2741  * far as this function is concerned would be how to identify
2742  * which child nodes depend on which Gather.
2743  */
2744  Assert(gather_param < 0);
2745  /* Pass down rescan_param to child parallel-aware nodes */
2746  gather_param = locally_added_param;
2747  }
2748  /* rescan_param does *not* get added to scan_params */
2749  break;
2750 
2751  case T_ProjectSet:
2752  case T_Hash:
2753  case T_Material:
2754  case T_Sort:
2755  case T_IncrementalSort:
2756  case T_Unique:
2757  case T_SetOp:
2758  case T_Group:
2759  /* no node-type-specific fields need fixing */
2760  break;
2761 
2762  default:
2763  elog(ERROR, "unrecognized node type: %d",
2764  (int) nodeTag(plan));
2765  }
2766 
2767  /* Process left and right child plans, if any */
2768  child_params = finalize_plan(root,
2769  plan->lefttree,
2770  gather_param,
2771  valid_params,
2772  scan_params);
2773  context.paramids = bms_add_members(context.paramids, child_params);
2774 
2775  if (nestloop_params)
2776  {
2777  /* right child can reference nestloop_params as well as valid_params */
2778  child_params = finalize_plan(root,
2779  plan->righttree,
2780  gather_param,
2781  bms_union(nestloop_params, valid_params),
2782  scan_params);
2783  /* ... and they don't count as parameters used at my level */
2784  child_params = bms_difference(child_params, nestloop_params);
2785  bms_free(nestloop_params);
2786  }
2787  else
2788  {
2789  /* easy case */
2790  child_params = finalize_plan(root,
2791  plan->righttree,
2792  gather_param,
2793  valid_params,
2794  scan_params);
2795  }
2796  context.paramids = bms_add_members(context.paramids, child_params);
2797 
2798  /*
2799  * Any locally generated parameter doesn't count towards its generating
2800  * plan node's external dependencies. (Note: if we changed valid_params
2801  * and/or scan_params, we leak those bitmapsets; not worth the notational
2802  * trouble to clean them up.)
2803  */
2804  if (locally_added_param >= 0)
2805  {
2806  context.paramids = bms_del_member(context.paramids,
2807  locally_added_param);
2808  }
2809 
2810  /* Now we have all the paramids referenced in this node and children */
2811 
2812  if (!bms_is_subset(context.paramids, valid_params))
2813  elog(ERROR, "plan should not reference subplan's variable");
2814 
2815  /*
2816  * The plan node's allParam and extParam fields should include all its
2817  * referenced paramids, plus contributions from any child initPlans.
2818  * However, any setParams of the initPlans should not be present in the
2819  * parent node's extParams, only in its allParams. (It's possible that
2820  * some initPlans have extParams that are setParams of other initPlans.)
2821  */
2822 
2823  /* allParam must include initplans' extParams and setParams */
2824  plan->allParam = bms_union(context.paramids, initExtParam);
2825  plan->allParam = bms_add_members(plan->allParam, initSetParam);
2826  /* extParam must include any initplan extParams */
2827  plan->extParam = bms_union(context.paramids, initExtParam);
2828  /* but not any initplan setParams */
2829  plan->extParam = bms_del_members(plan->extParam, initSetParam);
2830 
2831  /*
2832  * For speed at execution time, make sure extParam/allParam are actually
2833  * NULL if they are empty sets.
2834  */
2835  if (bms_is_empty(plan->extParam))
2836  plan->extParam = NULL;
2837  if (bms_is_empty(plan->allParam))
2838  plan->allParam = NULL;
2839 
2840  return plan->allParam;
2841 }
2842 
2843 /*
2844  * finalize_primnode: add IDs of all PARAM_EXEC params appearing in the given
2845  * expression tree to the result set.
2846  */
2847 static bool
2849 {
2850  if (node == NULL)
2851  return false;
2852  if (IsA(node, Param))
2853  {
2854  if (((Param *) node)->paramkind == PARAM_EXEC)
2855  {
2856  int paramid = ((Param *) node)->paramid;
2857 
2858  context->paramids = bms_add_member(context->paramids, paramid);
2859  }
2860  return false; /* no more to do here */
2861  }
2862  if (IsA(node, SubPlan))
2863  {
2864  SubPlan *subplan = (SubPlan *) node;
2865  Plan *plan = planner_subplan_get_plan(context->root, subplan);
2866  ListCell *lc;
2867  Bitmapset *subparamids;
2868 
2869  /* Recurse into the testexpr, but not into the Plan */
2870  finalize_primnode(subplan->testexpr, context);
2871 
2872  /*
2873  * Remove any param IDs of output parameters of the subplan that were
2874  * referenced in the testexpr. These are not interesting for
2875  * parameter change signaling since we always re-evaluate the subplan.
2876  * Note that this wouldn't work too well if there might be uses of the
2877  * same param IDs elsewhere in the plan, but that can't happen because
2878  * generate_new_exec_param never tries to merge params.
2879  */
2880  foreach(lc, subplan->paramIds)
2881  {
2882  context->paramids = bms_del_member(context->paramids,
2883  lfirst_int(lc));
2884  }
2885 
2886  /* Also examine args list */
2887  finalize_primnode((Node *) subplan->args, context);
2888 
2889  /*
2890  * Add params needed by the subplan to paramids, but excluding those
2891  * we will pass down to it. (We assume SS_finalize_plan was run on
2892  * the subplan already.)
2893  */
2894  subparamids = bms_copy(plan->extParam);
2895  foreach(lc, subplan->parParam)
2896  {
2897  subparamids = bms_del_member(subparamids, lfirst_int(lc));
2898  }
2899  context->paramids = bms_join(context->paramids, subparamids);
2900 
2901  return false; /* no more to do here */
2902  }
2904  (void *) context);
2905 }
2906 
2907 /*
2908  * finalize_agg_primnode: find all Aggref nodes in the given expression tree,
2909  * and add IDs of all PARAM_EXEC params appearing within their aggregated
2910  * arguments to the result set.
2911  */
2912 static bool
2914 {
2915  if (node == NULL)
2916  return false;
2917  if (IsA(node, Aggref))
2918  {
2919  Aggref *agg = (Aggref *) node;
2920 
2921  /* we should not consider the direct arguments, if any */
2922  finalize_primnode((Node *) agg->args, context);
2923  finalize_primnode((Node *) agg->aggfilter, context);
2924  return false; /* there can't be any Aggrefs below here */
2925  }
2927  (void *) context);
2928 }
2929 
2930 /*
2931  * SS_make_initplan_output_param - make a Param for an initPlan's output
2932  *
2933  * The plan is expected to return a scalar value of the given type/collation.
2934  *
2935  * Note that in some cases the initplan may not ever appear in the finished
2936  * plan tree. If that happens, we'll have wasted a PARAM_EXEC slot, which
2937  * is no big deal.
2938  */
2939 Param *
2941  Oid resulttype, int32 resulttypmod,
2942  Oid resultcollation)
2943 {
2944  return generate_new_exec_param(root, resulttype,
2945  resulttypmod, resultcollation);
2946 }
2947 
2948 /*
2949  * SS_make_initplan_from_plan - given a plan tree, make it an InitPlan
2950  *
2951  * We build an EXPR_SUBLINK SubPlan node and put it into the initplan
2952  * list for the outer query level. A Param that represents the initplan's
2953  * output has already been assigned using SS_make_initplan_output_param.
2954  */
2955 void
2957  PlannerInfo *subroot, Plan *plan,
2958  Param *prm)
2959 {
2960  SubPlan *node;
2961 
2962  /*
2963  * Add the subplan and its PlannerInfo to the global lists.
2964  */
2965  root->glob->subplans = lappend(root->glob->subplans, plan);
2966  root->glob->subroots = lappend(root->glob->subroots, subroot);
2967 
2968  /*
2969  * Create a SubPlan node and add it to the outer list of InitPlans. Note
2970  * it has to appear after any other InitPlans it might depend on (see
2971  * comments in ExecReScan).
2972  */
2973  node = makeNode(SubPlan);
2974  node->subLinkType = EXPR_SUBLINK;
2975  node->plan_id = list_length(root->glob->subplans);
2976  node->plan_name = psprintf("InitPlan %d (returns $%d)",
2977  node->plan_id, prm->paramid);
2978  get_first_col_type(plan, &node->firstColType, &node->firstColTypmod,
2979  &node->firstColCollation);
2980  node->setParam = list_make1_int(prm->paramid);
2981 
2982  root->init_plans = lappend(root->init_plans, node);
2983 
2984  /*
2985  * The node can't have any inputs (since it's an initplan), so the
2986  * parParam and args lists remain empty.
2987  */
2988 
2989  /* Set costs of SubPlan using info from the plan tree */
2990  cost_subplan(subroot, node, plan);
2991 }
Datum constvalue
Definition: primnodes.h:214
#define list_make2(x1, x2)
Definition: pg_list.h:208
Node * limitOffset
Definition: parsenodes.h:160
static Node * convert_testexpr(PlannerInfo *root, Node *testexpr, List *subst_nodes)
Definition: subselect.c:654
#define NIL
Definition: pg_list.h:65
static Node * make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, int subLinkId, Node *testexpr, bool isTopQual)
Definition: subselect.c:163
Oid firstColType
Definition: primnodes.h:713
bool query_tree_walker(Query *query, bool(*walker)(), void *context, int flags)
Definition: nodeFuncs.c:2322
List * qual
Definition: plannodes.h:137
#define SizeofHeapTupleHeader
Definition: htup_details.h:184
static Node * build_subplan(PlannerInfo *root, Plan *plan, PlannerInfo *subroot, List *plan_params, SubLinkType subLinkType, int subLinkId, Node *testexpr, List *testexpr_paramids, bool unknownEqFalse)
Definition: subselect.c:321
double plan_rows
Definition: plannodes.h:123
Definition: nodes.h:79
int bms_first_member(Bitmapset *a)
Definition: bitmapset.c:996
#define IsA(nodeptr, _type_)
Definition: nodes.h:579
static Node * convert_testexpr_mutator(Node *node, convert_testexpr_context *context)
Definition: subselect.c:666
PathTarget * pathtarget
Definition: pathnodes.h:1144
Query * parse
Definition: pathnodes.h:177
void OffsetVarNodes(Node *node, int offset, int sublevels_up)
Definition: rewriteManip.c:425
PlannerInfo * root
Definition: subselect.c:56
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1421
Node * expression_tree_mutator(Node *node, Node *(*mutator)(), void *context)
Definition: nodeFuncs.c:2565
int plan_id
Definition: primnodes.h:709
#define GETSTRUCT(TUP)
Definition: htup_details.h:655
#define planner_subplan_get_plan(root, subplan)
Definition: pathnodes.h:151
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:74
List * plan_params
Definition: pathnodes.h:191
List * sortClause
Definition: parsenodes.h:158
Param * generate_new_exec_param(PlannerInfo *root, Oid paramtype, int32 paramtypmod, Oid paramcollation)
Definition: paramassign.c:557
Definition: nodes.h:81
Index scanrelid
Definition: plannodes.h:337
#define QTW_EXAMINE_RTES_AFTER
Definition: nodeFuncs.h:27
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:776
static bool contain_dml_walker(Node *node, void *context)
Definition: subselect.c:1077
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:310
static ListCell * list_nth_cell(const List *list, int n)
Definition: pg_list.h:244
FromExpr * jointree
Definition: parsenodes.h:138
bool contain_exec_param(Node *clause, List *param_ids)
Definition: clauses.c:1235
static void get_first_col_type(Plan *plan, Oid *coltype, int32 *coltypmod, Oid *colcollation)
Definition: subselect.c:119
PlannerInfo * parent_root
Definition: pathnodes.h:183
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:106
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:25
#define castNode(_type_, nodeptr)
Definition: nodes.h:597
List * functions
Definition: plannodes.h:517
static bool subplan_is_hashable(Plan *plan)
Definition: subselect.c:724
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
char * psprintf(const char *fmt,...)
Definition: psprintf.c:46
List * fdw_exprs
Definition: plannodes.h:617
List * coltypmods
Definition: parsenodes.h:1103
bool hasAggs
Definition: parsenodes.h:125
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:97
Bitmapset * bms_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:291
void SS_charge_for_initplans(PlannerInfo *root, RelOptInfo *final_rel)
Definition: subselect.c:2127
Var * makeVarFromTargetEntry(Index varno, TargetEntry *tle)
Definition: makefuncs.c:103
SubLinkType subLinkType
Definition: primnodes.h:704
List * groupingSets
Definition: parsenodes.h:150
ParamKind paramkind
Definition: primnodes.h:262
static List * generate_subquery_params(PlannerInfo *root, List *tlist, List **paramIds)
Definition: subselect.c:592
List * list_copy(const List *oldlist)
Definition: list.c:1403
Definition: nodes.h:528
List * custom_exprs
Definition: plannodes.h:646
List * list_concat(List *list1, const List *list2)
Definition: list.c:515
Definition: nodes.h:49
List * partial_pathlist
Definition: pathnodes.h:680
List * args
Definition: primnodes.h:319
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2287
char * format_type_be(Oid type_oid)
Definition: format_type.c:339
List * paramIds
Definition: primnodes.h:707
Node * SS_process_sublinks(PlannerInfo *root, Node *expr, bool isQual)
Definition: subselect.c:1918
static bool test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids)
Definition: subselect.c:806
JoinExpr * convert_ANY_sublink_to_join(PlannerInfo *root, SubLink *sublink, Relids available_rels)
Definition: subselect.c:1276
Definition: nodes.h:76
bool contain_var_clause(Node *node)
Definition: var.c:331
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:724
int assign_special_exec_param(PlannerInfo *root)
Definition: paramassign.c:584
static bool hash_ok_operator(OpExpr *expr)
Definition: subselect.c:846
unsigned int Oid
Definition: postgres_ext.h:31
Expr * make_orclause(List *orclauses)
Definition: makefuncs.c:651
List * rowMarks
Definition: parsenodes.h:164
Definition: primnodes.h:181
#define linitial_node(type, l)
Definition: pg_list.h:177
static bool simplify_EXISTS_query(PlannerInfo *root, Query *query)
Definition: subselect.c:1546
List * custom_plans
Definition: plannodes.h:645
List * lappend_oid(List *list, Oid datum)
Definition: list.c:357
#define OidIsValid(objectId)
Definition: c.h:652
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:609
List * colcollations
Definition: parsenodes.h:1104
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:148
List * plans
Definition: plannodes.h:221
Node * quals
Definition: primnodes.h:1514
#define lsecond(l)
Definition: pg_list.h:179
bool hasDistinctOn
Definition: parsenodes.h:129
struct inline_cte_walker_context inline_cte_walker_context
signed int int32
Definition: c.h:363
List * onConflictSet
Definition: plannodes.h:230
List * windowClause
Definition: parsenodes.h:154
static Node * process_sublinks_mutator(Node *node, process_sublinks_context *context)
Definition: subselect.c:1928
List * targetList
Definition: parsenodes.h:140
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:337
JoinExpr * convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, bool under_not, Relids available_rels)
Definition: subselect.c:1383
ParseState * make_parsestate(ParseState *parentParseState)
Definition: parse_node.c:43
List * multiexpr_params
Definition: pathnodes.h:261
Node * larg
Definition: primnodes.h:1493
Plan * create_plan(PlannerInfo *root, Path *best_path)
Definition: createplan.c:321
PlannerInfo * subroot
Definition: pathnodes.h:708
bool contain_subplans(Node *clause)
Definition: clauses.c:610
Alias * makeAlias(const char *aliasname, List *colnames)
Definition: makefuncs.c:387
Oid consttype
Definition: primnodes.h:210
#define sprintf
Definition: port.h:217
Param * replace_outer_placeholdervar(PlannerInfo *root, PlaceHolderVar *phv)
Definition: paramassign.c:196
int wt_param_id
Definition: pathnodes.h:352
struct Plan * righttree
Definition: plannodes.h:139
AggStrategy aggstrategy
Definition: plannodes.h:819
bool op_hashjoinable(Oid opno, Oid inputtype)
Definition: lsyscache.c:1354
bool resjunk
Definition: primnodes.h:1417
#define linitial(l)
Definition: pg_list.h:174
Definition: nodes.h:46
List * rtable
Definition: parsenodes.h:137
List * distinctClause
Definition: parsenodes.h:156
#define ObjectIdGetDatum(X)
Definition: postgres.h:507
#define ERROR
Definition: elog.h:43
List * paramExecTypes
Definition: pathnodes.h:129
Param * replace_outer_var(PlannerInfo *root, Var *var)
Definition: paramassign.c:119
#define lfirst_int(lc)
Definition: pg_list.h:170
static void * list_nth(const List *list, int n)
Definition: pg_list.h:266
Cost startup_cost
Definition: pathnodes.h:1154
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:949
static bool finalize_primnode(Node *node, finalize_primnode_context *context)
Definition: subselect.c:2848
Bitmapset * rewindPlanIDs
Definition: pathnodes.h:115
bool hasAlternativeSubPlans
Definition: pathnodes.h:348
#define DatumGetInt64(X)
Definition: postgres.h:607
static void inline_cte(PlannerInfo *root, CommonTableExpr *cte)
Definition: subselect.c:1153
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:315
Definition: nodes.h:78
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1192
struct Path * cheapest_total_path
Definition: pathnodes.h:682
static List * generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno)
Definition: subselect.c:625
Node * limitCount
Definition: parsenodes.h:161
List * subplans
Definition: pathnodes.h:111
PlannerInfo * root
Definition: subselect.c:44
Bitmapset * aggParams
Definition: plannodes.h:827
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:635
PlannerGlobal * glob
Definition: pathnodes.h:179
Plan * materialize_finished_plan(Plan *subplan)
Definition: createplan.c:6315
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:292
bool parallel_aware
Definition: plannodes.h:129
Bitmapset * allParam
Definition: plannodes.h:155
List * fdw_recheck_quals
Definition: plannodes.h:620
static Bitmapset * finalize_plan(PlannerInfo *root, Plan *plan, int gather_param, Bitmapset *valid_params, Bitmapset *scan_params)
Definition: subselect.c:2237
void SS_process_ctes(PlannerInfo *root)
Definition: subselect.c:894
static SPIPlanPtr splan
Definition: regress.c:259
#define list_make1_int(x1)
Definition: pg_list.h:217
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:238
struct convert_testexpr_context convert_testexpr_context
Relids pull_varnos(Node *node)
Definition: var.c:95
List * lappend_int(List *list, int datum)
Definition: list.c:339
SubLinkType
Definition: primnodes.h:638
List * lappend(List *list, void *datum)
Definition: list.c:321
bool isNatural
Definition: primnodes.h:1492
bool bms_is_empty(const Bitmapset *a)
Definition: bitmapset.c:701
List * usingClause
Definition: primnodes.h:1495
Plan plan
Definition: plannodes.h:818
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:1116
static Query * convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect, Node **testexpr, List **paramIds)
Definition: subselect.c:1634
Oid get_promoted_array_type(Oid typid)
Definition: lsyscache.c:2688
static bool finalize_agg_primnode(Node *node, finalize_primnode_context *context)
Definition: subselect.c:2913
Node * quals
Definition: primnodes.h:1496
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:1164
List * cte_plan_ids
Definition: pathnodes.h:259
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:707
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:718
bool self_reference
Definition: parsenodes.h:1082
Node * testexpr
Definition: primnodes.h:706
unsigned int Index
Definition: c.h:483
List * init_plans
Definition: pathnodes.h:257
bool security_barrier
Definition: parsenodes.h:1013
Definition: nodes.h:84
Cost per_call_cost
Definition: primnodes.h:733
#define InvalidOid
Definition: postgres_ext.h:36
static bool contain_dml(Node *node)
Definition: subselect.c:1071
static bool contain_outer_selfref(Node *node)
Definition: subselect.c:1098
int32 firstColTypmod
Definition: primnodes.h:714
Cost total_cost
Definition: pathnodes.h:1155
CmdType commandType
Definition: parsenodes.h:112
bool hasTargetSRFs
Definition: parsenodes.h:127
void bms_free(Bitmapset *a)
Definition: bitmapset.c:208
struct process_sublinks_context process_sublinks_context
#define makeNode(_type_)
Definition: nodes.h:576
char * plan_name
Definition: primnodes.h:711
Node * rarg
Definition: primnodes.h:1494
int plan_width
Definition: plannodes.h:124
Alias * alias
Definition: primnodes.h:1497
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
JoinType jointype
Definition: primnodes.h:1491
#define Assert(condition)
Definition: c.h:746
#define lfirst(lc)
Definition: pg_list.h:169
bool hasWindowFuncs
Definition: parsenodes.h:126
CTEMaterialize ctematerialized
Definition: parsenodes.h:1453
void SS_identify_outer_params(PlannerInfo *root)
Definition: subselect.c:2065
List * setParam
Definition: primnodes.h:727
double rows
Definition: pathnodes.h:1153
bool parallel_safe
Definition: pathnodes.h:1149
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:369
Param * SS_make_initplan_output_param(PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
Definition: subselect.c:2940
Expr * expr
Definition: primnodes.h:1410
int paramid
Definition: primnodes.h:263
void cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
Definition: costsize.c:3865
Bitmapset * outer_params
Definition: pathnodes.h:192
bool unknownEqFalse
Definition: primnodes.h:720
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:225
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
const char * ctename
Definition: subselect.c:62
bool expression_tree_walker(Node *node, bool(*walker)(), void *context)
Definition: nodeFuncs.c:1888
static int list_length(const List *l)
Definition: pg_list.h:149
Node * SS_replace_correlation_vars(PlannerInfo *root, Node *expr)
Definition: subselect.c:1873
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:768
void SS_attach_initplans(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2184
List * subroots
Definition: pathnodes.h:113
Expr * aggfilter
Definition: primnodes.h:322
Bitmapset * extParam
Definition: plannodes.h:154
Index ctelevelsup
Definition: parsenodes.h:1081
#define MAXALIGN(LEN)
Definition: c.h:699
Bitmapset * funcparams
Definition: parsenodes.h:1157
List * parParam
Definition: primnodes.h:729
Oid inputcollid
Definition: primnodes.h:521
bool consider_parallel
Definition: pathnodes.h:672
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
void SS_make_initplan_from_plan(PlannerInfo *root, PlannerInfo *subroot, Plan *plan, Param *prm)
Definition: subselect.c:2956
struct Plan * lefttree
Definition: plannodes.h:138
FormData_pg_operator * Form_pg_operator
Definition: pg_operator.h:83
bool func_strict(Oid funcid)
Definition: lsyscache.c:1673
bool parallel_safe
Definition: primnodes.h:723
#define nodeTag(nodeptr)
Definition: nodes.h:533
List * targetlist
Definition: plannodes.h:136
bool contain_aggs_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:67
#define forfour(cell1, list1, cell2, list2, cell3, list3, cell4, list4)
Definition: pg_list.h:491
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:928
RTEKind rtekind
Definition: parsenodes.h:977
Definition: nodes.h:85
char * ctename
Definition: parsenodes.h:1080
List * cteList
Definition: parsenodes.h:135
Node * setOperations
Definition: parsenodes.h:166
Query * subquery
Definition: parsenodes.h:1012
List * groupClause
Definition: parsenodes.h:148
void * palloc(Size size)
Definition: mcxt.c:950
List * initPlan
Definition: plannodes.h:140
static bool testexpr_is_hashable(Node *testexpr, List *param_ids)
Definition: subselect.c:775
Definition: nodes.h:82
#define elog(elevel,...)
Definition: elog.h:214
ParseNamespaceItem * addRangeTableEntryForSubquery(ParseState *pstate, Query *subquery, Alias *alias, bool lateral, bool inFromCl)
bool hasModifyingCTE
Definition: parsenodes.h:131
void * arg
bool ExecMaterializesOutput(NodeTag plantype)
Definition: execAmi.c:623
bool useHashTable
Definition: primnodes.h:718
List * returningLists
Definition: plannodes.h:223
bool parallel_safe
Definition: plannodes.h:130
Oid firstColCollation
Definition: primnodes.h:715
Cost startup_cost
Definition: primnodes.h:732
List * pathlist
Definition: pathnodes.h:678
Oid opno
Definition: primnodes.h:516
Definition: plannodes.h:816
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:374
#define copyObject(obj)
Definition: nodes.h:644
List * args
Definition: primnodes.h:522
Node * havingQual
Definition: parsenodes.h:152
List * coltypes
Definition: parsenodes.h:1102
void SS_finalize_plan(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2199
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:773
Param * replace_outer_grouping(PlannerInfo *root, GroupingFunc *grp)
Definition: paramassign.c:269
struct finalize_primnode_context finalize_primnode_context
int rtindex
Definition: primnodes.h:1498
Definition: pg_list.h:50
int16 AttrNumber
Definition: attnum.h:21
PlannerInfo * subquery_planner(PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction)
Definition: planner.c:594
CmdType
Definition: nodes.h:671
static Node * replace_correlation_vars_mutator(Node *node, PlannerInfo *root)
Definition: subselect.c:1880
bool constisnull
Definition: primnodes.h:215
static bool subpath_is_hashable(Path *path)
Definition: subselect.c:749
static bool inline_cte_walker(Node *node, inline_cte_walker_context *context)
Definition: subselect.c:1170
double Cost
Definition: nodes.h:662
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:793
int get_hash_mem(void)
Definition: nodeHash.c:3389
Plan * subplan
Definition: plannodes.h:507
Path * get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction)
Definition: planner.c:6015
#define lfirst_oid(lc)
Definition: pg_list.h:171
static bool contain_outer_selfref_walker(Node *node, Index *depth)
Definition: subselect.c:1112
static struct subre * parse(struct vars *, int, int, struct state *, struct state *)
Definition: regcomp.c:648
int epqParam
Definition: plannodes.h:227
Node * onConflictWhere
Definition: plannodes.h:231
bool enable_material
Definition: costsize.c:141
Param * replace_outer_agg(PlannerInfo *root, Aggref *agg)
Definition: paramassign.c:223
Definition: nodes.h:87
List * args
Definition: primnodes.h:730