PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
subselect.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * subselect.c
4 * Planning routines for subselects.
5 *
6 * This module deals with SubLinks and CTEs, but not subquery RTEs (i.e.,
7 * not sub-SELECT-in-FROM cases).
8 *
9 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
10 * Portions Copyright (c) 1994, Regents of the University of California
11 *
12 * IDENTIFICATION
13 * src/backend/optimizer/plan/subselect.c
14 *
15 *-------------------------------------------------------------------------
16 */
17#include "postgres.h"
18
19#include "access/htup_details.h"
20#include "catalog/pg_operator.h"
21#include "catalog/pg_type.h"
22#include "executor/executor.h"
23#include "miscadmin.h"
24#include "nodes/makefuncs.h"
25#include "nodes/nodeFuncs.h"
26#include "optimizer/clauses.h"
27#include "optimizer/cost.h"
28#include "optimizer/optimizer.h"
30#include "optimizer/pathnode.h"
31#include "optimizer/planmain.h"
32#include "optimizer/planner.h"
33#include "optimizer/prep.h"
34#include "optimizer/subselect.h"
37#include "utils/builtins.h"
38#include "utils/lsyscache.h"
39#include "utils/syscache.h"
40
41
43{
45 List *subst_nodes; /* Nodes to substitute for Params */
47
49{
53
55{
57 Bitmapset *paramids; /* Non-local PARAM_EXEC paramids found */
59
61{
62 const char *ctename; /* name and relative level of target CTE */
64 Query *ctequery; /* query to substitute */
66
67
69 PlannerInfo *subroot, List *plan_params,
70 SubLinkType subLinkType, int subLinkId,
71 Node *testexpr, List *testexpr_paramids,
72 bool unknownEqFalse);
74 List **paramIds);
76 Index varno);
78 Node *testexpr,
79 List *subst_nodes);
82static bool subplan_is_hashable(Plan *plan);
83static bool subpath_is_hashable(Path *path);
84static bool testexpr_is_hashable(Node *testexpr, List *param_ids);
85static bool test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids);
86static bool hash_ok_operator(OpExpr *expr);
87static bool contain_dml(Node *node);
88static bool contain_dml_walker(Node *node, void *context);
89static bool contain_outer_selfref(Node *node);
90static bool contain_outer_selfref_walker(Node *node, Index *depth);
91static void inline_cte(PlannerInfo *root, CommonTableExpr *cte);
92static bool inline_cte_walker(Node *node, inline_cte_walker_context *context);
93static bool simplify_EXISTS_query(PlannerInfo *root, Query *query);
95 Node **testexpr, List **paramIds);
100 Plan *plan,
101 int gather_param,
102 Bitmapset *valid_params,
103 Bitmapset *scan_params);
104static bool finalize_primnode(Node *node, finalize_primnode_context *context);
105static bool finalize_agg_primnode(Node *node, finalize_primnode_context *context);
106
107
108/*
109 * Get the datatype/typmod/collation of the first column of the plan's output.
110 *
111 * This information is stored for ARRAY_SUBLINK execution and for
112 * exprType()/exprTypmod()/exprCollation(), which have no way to get at the
113 * plan associated with a SubPlan node. We really only need the info for
114 * EXPR_SUBLINK and ARRAY_SUBLINK subplans, but for consistency we save it
115 * always.
116 */
117static void
118get_first_col_type(Plan *plan, Oid *coltype, int32 *coltypmod,
119 Oid *colcollation)
120{
121 /* In cases such as EXISTS, tlist might be empty; arbitrarily use VOID */
122 if (plan->targetlist)
123 {
124 TargetEntry *tent = linitial_node(TargetEntry, plan->targetlist);
125
126 if (!tent->resjunk)
127 {
128 *coltype = exprType((Node *) tent->expr);
129 *coltypmod = exprTypmod((Node *) tent->expr);
130 *colcollation = exprCollation((Node *) tent->expr);
131 return;
132 }
133 }
134 *coltype = VOIDOID;
135 *coltypmod = -1;
136 *colcollation = InvalidOid;
137}
138
139/*
140 * Convert a SubLink (as created by the parser) into a SubPlan.
141 *
142 * We are given the SubLink's contained query, type, ID, and testexpr. We are
143 * also told if this expression appears at top level of a WHERE/HAVING qual.
144 *
145 * Note: we assume that the testexpr has been AND/OR flattened (actually,
146 * it's been through eval_const_expressions), but not converted to
147 * implicit-AND form; and any SubLinks in it should already have been
148 * converted to SubPlans. The subquery is as yet untouched, however.
149 *
150 * The result is whatever we need to substitute in place of the SubLink node
151 * in the executable expression. If we're going to do the subplan as a
152 * regular subplan, this will be the constructed SubPlan node. If we're going
153 * to do the subplan as an InitPlan, the SubPlan node instead goes into
154 * root->init_plans, and what we return here is an expression tree
155 * representing the InitPlan's result: usually just a Param node representing
156 * a single scalar result, but possibly a row comparison tree containing
157 * multiple Param nodes, or for a MULTIEXPR subquery a simple NULL constant
158 * (since the real output Params are elsewhere in the tree, and the MULTIEXPR
159 * subquery itself is in a resjunk tlist entry whose value is uninteresting).
160 */
161static Node *
163 SubLinkType subLinkType, int subLinkId,
164 Node *testexpr, bool isTopQual)
165{
166 Query *subquery;
167 bool simple_exists = false;
168 double tuple_fraction;
169 PlannerInfo *subroot;
170 RelOptInfo *final_rel;
171 Path *best_path;
172 Plan *plan;
173 List *plan_params;
174 Node *result;
175
176 /*
177 * Copy the source Query node. This is a quick and dirty kluge to resolve
178 * the fact that the parser can generate trees with multiple links to the
179 * same sub-Query node, but the planner wants to scribble on the Query.
180 * Try to clean this up when we do querytree redesign...
181 */
182 subquery = copyObject(orig_subquery);
183
184 /*
185 * If it's an EXISTS subplan, we might be able to simplify it.
186 */
187 if (subLinkType == EXISTS_SUBLINK)
188 simple_exists = simplify_EXISTS_query(root, subquery);
189
190 /*
191 * For an EXISTS subplan, tell lower-level planner to expect that only the
192 * first tuple will be retrieved. For ALL and ANY subplans, we will be
193 * able to stop evaluating if the test condition fails or matches, so very
194 * often not all the tuples will be retrieved; for lack of a better idea,
195 * specify 50% retrieval. For EXPR, MULTIEXPR, and ROWCOMPARE subplans,
196 * use default behavior (we're only expecting one row out, anyway).
197 *
198 * NOTE: if you change these numbers, also change cost_subplan() in
199 * path/costsize.c.
200 *
201 * XXX If an ANY subplan is uncorrelated, build_subplan may decide to hash
202 * its output. In that case it would've been better to specify full
203 * retrieval. At present, however, we can only check hashability after
204 * we've made the subplan :-(. (Determining whether it'll fit in hash_mem
205 * is the really hard part.) Therefore, we don't want to be too
206 * optimistic about the percentage of tuples retrieved, for fear of
207 * selecting a plan that's bad for the materialization case.
208 */
209 if (subLinkType == EXISTS_SUBLINK)
210 tuple_fraction = 1.0; /* just like a LIMIT 1 */
211 else if (subLinkType == ALL_SUBLINK ||
212 subLinkType == ANY_SUBLINK)
213 tuple_fraction = 0.5; /* 50% */
214 else
215 tuple_fraction = 0.0; /* default behavior */
216
217 /* plan_params should not be in use in current query level */
218 Assert(root->plan_params == NIL);
219
220 /* Generate Paths for the subquery */
221 subroot = subquery_planner(root->glob, subquery, root, false,
222 tuple_fraction, NULL);
223
224 /* Isolate the params needed by this specific subplan */
225 plan_params = root->plan_params;
226 root->plan_params = NIL;
227
228 /*
229 * Select best Path and turn it into a Plan. At least for now, there
230 * seems no reason to postpone doing that.
231 */
232 final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
233 best_path = get_cheapest_fractional_path(final_rel, tuple_fraction);
234
235 plan = create_plan(subroot, best_path);
236
237 /* And convert to SubPlan or InitPlan format. */
238 result = build_subplan(root, plan, best_path,
239 subroot, plan_params,
240 subLinkType, subLinkId,
241 testexpr, NIL, isTopQual);
242
243 /*
244 * If it's a correlated EXISTS with an unimportant targetlist, we might be
245 * able to transform it to the equivalent of an IN and then implement it
246 * by hashing. We don't have enough information yet to tell which way is
247 * likely to be better (it depends on the expected number of executions of
248 * the EXISTS qual, and we are much too early in planning the outer query
249 * to be able to guess that). So we generate both plans, if possible, and
250 * leave it to setrefs.c to decide which to use.
251 */
252 if (simple_exists && IsA(result, SubPlan))
253 {
254 Node *newtestexpr;
255 List *paramIds;
256
257 /* Make a second copy of the original subquery */
258 subquery = copyObject(orig_subquery);
259 /* and re-simplify */
260 simple_exists = simplify_EXISTS_query(root, subquery);
261 Assert(simple_exists);
262 /* See if it can be converted to an ANY query */
263 subquery = convert_EXISTS_to_ANY(root, subquery,
264 &newtestexpr, &paramIds);
265 if (subquery)
266 {
267 /* Generate Paths for the ANY subquery; we'll need all rows */
268 subroot = subquery_planner(root->glob, subquery, root, false, 0.0,
269 NULL);
270
271 /* Isolate the params needed by this specific subplan */
272 plan_params = root->plan_params;
273 root->plan_params = NIL;
274
275 /* Select best Path */
276 final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
277 best_path = final_rel->cheapest_total_path;
278
279 /* Now we can check if it'll fit in hash_mem */
280 if (subpath_is_hashable(best_path))
281 {
282 SubPlan *hashplan;
283 AlternativeSubPlan *asplan;
284
285 /* OK, finish planning the ANY subquery */
286 plan = create_plan(subroot, best_path);
287
288 /* ... and convert to SubPlan format */
289 hashplan = castNode(SubPlan,
290 build_subplan(root, plan, best_path,
291 subroot, plan_params,
292 ANY_SUBLINK, 0,
293 newtestexpr,
294 paramIds,
295 true));
296 /* Check we got what we expected */
297 Assert(hashplan->parParam == NIL);
298 Assert(hashplan->useHashTable);
299
300 /* Leave it to setrefs.c to decide which plan to use */
302 asplan->subplans = list_make2(result, hashplan);
303 result = (Node *) asplan;
304 root->hasAlternativeSubPlans = true;
305 }
306 }
307 }
308
309 return result;
310}
311
312/*
313 * Build a SubPlan node given the raw inputs --- subroutine for make_subplan
314 *
315 * Returns either the SubPlan, or a replacement expression if we decide to
316 * make it an InitPlan, as explained in the comments for make_subplan.
317 */
318static Node *
320 PlannerInfo *subroot, List *plan_params,
321 SubLinkType subLinkType, int subLinkId,
322 Node *testexpr, List *testexpr_paramids,
323 bool unknownEqFalse)
324{
325 Node *result;
326 SubPlan *splan;
327 bool isInitPlan;
328 ListCell *lc;
329
330 /*
331 * Initialize the SubPlan node. Note plan_id, plan_name, and cost fields
332 * are set further down.
333 */
334 splan = makeNode(SubPlan);
335 splan->subLinkType = subLinkType;
336 splan->testexpr = NULL;
337 splan->paramIds = NIL;
339 &splan->firstColCollation);
340 splan->useHashTable = false;
341 splan->unknownEqFalse = unknownEqFalse;
342 splan->parallel_safe = plan->parallel_safe;
343 splan->setParam = NIL;
344 splan->parParam = NIL;
345 splan->args = NIL;
346
347 /*
348 * Make parParam and args lists of param IDs and expressions that current
349 * query level will pass to this child plan.
350 */
351 foreach(lc, plan_params)
352 {
354 Node *arg = pitem->item;
355
356 /*
357 * The Var, PlaceHolderVar, Aggref, GroupingFunc, or ReturningExpr has
358 * already been adjusted to have the correct varlevelsup, phlevelsup,
359 * agglevelsup, or retlevelsup.
360 *
361 * If it's a PlaceHolderVar, Aggref, GroupingFunc, or ReturningExpr,
362 * its arguments might contain SubLinks, which have not yet been
363 * processed (see the comments for SS_replace_correlation_vars). Do
364 * that now.
365 */
366 if (IsA(arg, PlaceHolderVar) ||
367 IsA(arg, Aggref) ||
368 IsA(arg, GroupingFunc) ||
370 arg = SS_process_sublinks(root, arg, false);
371
372 splan->parParam = lappend_int(splan->parParam, pitem->paramId);
373 splan->args = lappend(splan->args, arg);
374 }
375
376 /*
377 * Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY,
378 * ROWCOMPARE, or MULTIEXPR types can be used as initPlans. For EXISTS,
379 * EXPR, or ARRAY, we return a Param referring to the result of evaluating
380 * the initPlan. For ROWCOMPARE, we must modify the testexpr tree to
381 * contain PARAM_EXEC Params instead of the PARAM_SUBLINK Params emitted
382 * by the parser, and then return that tree. For MULTIEXPR, we return a
383 * null constant: the resjunk targetlist item containing the SubLink does
384 * not need to return anything useful, since the referencing Params are
385 * elsewhere.
386 */
387 if (splan->parParam == NIL && subLinkType == EXISTS_SUBLINK)
388 {
389 Param *prm;
390
391 Assert(testexpr == NULL);
392 prm = generate_new_exec_param(root, BOOLOID, -1, InvalidOid);
393 splan->setParam = list_make1_int(prm->paramid);
394 isInitPlan = true;
395 result = (Node *) prm;
396 }
397 else if (splan->parParam == NIL && subLinkType == EXPR_SUBLINK)
398 {
399 TargetEntry *te = linitial(plan->targetlist);
400 Param *prm;
401
402 Assert(!te->resjunk);
403 Assert(testexpr == NULL);
405 exprType((Node *) te->expr),
406 exprTypmod((Node *) te->expr),
407 exprCollation((Node *) te->expr));
408 splan->setParam = list_make1_int(prm->paramid);
409 isInitPlan = true;
410 result = (Node *) prm;
411 }
412 else if (splan->parParam == NIL && subLinkType == ARRAY_SUBLINK)
413 {
414 TargetEntry *te = linitial(plan->targetlist);
415 Oid arraytype;
416 Param *prm;
417
418 Assert(!te->resjunk);
419 Assert(testexpr == NULL);
420 arraytype = get_promoted_array_type(exprType((Node *) te->expr));
421 if (!OidIsValid(arraytype))
422 elog(ERROR, "could not find array type for datatype %s",
423 format_type_be(exprType((Node *) te->expr)));
425 arraytype,
426 exprTypmod((Node *) te->expr),
427 exprCollation((Node *) te->expr));
428 splan->setParam = list_make1_int(prm->paramid);
429 isInitPlan = true;
430 result = (Node *) prm;
431 }
432 else if (splan->parParam == NIL && subLinkType == ROWCOMPARE_SUBLINK)
433 {
434 /* Adjust the Params */
435 List *params;
436
437 Assert(testexpr != NULL);
439 plan->targetlist,
440 &splan->paramIds);
441 result = convert_testexpr(root,
442 testexpr,
443 params);
444 splan->setParam = list_copy(splan->paramIds);
445 isInitPlan = true;
446
447 /*
448 * The executable expression is returned to become part of the outer
449 * plan's expression tree; it is not kept in the initplan node.
450 */
451 }
452 else if (subLinkType == MULTIEXPR_SUBLINK)
453 {
454 /*
455 * Whether it's an initplan or not, it needs to set a PARAM_EXEC Param
456 * for each output column.
457 */
458 List *params;
459
460 Assert(testexpr == NULL);
462 plan->targetlist,
463 &splan->setParam);
464
465 /*
466 * Save the list of replacement Params in the n'th cell of
467 * root->multiexpr_params; setrefs.c will use it to replace
468 * PARAM_MULTIEXPR Params.
469 */
470 while (list_length(root->multiexpr_params) < subLinkId)
471 root->multiexpr_params = lappend(root->multiexpr_params, NIL);
472 lc = list_nth_cell(root->multiexpr_params, subLinkId - 1);
473 Assert(lfirst(lc) == NIL);
474 lfirst(lc) = params;
475
476 /* It can be an initplan if there are no parParams. */
477 if (splan->parParam == NIL)
478 {
479 isInitPlan = true;
480 result = (Node *) makeNullConst(RECORDOID, -1, InvalidOid);
481 }
482 else
483 {
484 isInitPlan = false;
485 result = (Node *) splan;
486 }
487 }
488 else
489 {
490 /*
491 * Adjust the Params in the testexpr, unless caller already took care
492 * of it (as indicated by passing a list of Param IDs).
493 */
494 if (testexpr && testexpr_paramids == NIL)
495 {
496 List *params;
497
499 plan->targetlist,
500 &splan->paramIds);
502 testexpr,
503 params);
504 }
505 else
506 {
507 splan->testexpr = testexpr;
508 splan->paramIds = testexpr_paramids;
509 }
510
511 /*
512 * We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types to
513 * initPlans, even when they are uncorrelated or undirect correlated,
514 * because we need to scan the output of the subplan for each outer
515 * tuple. But if it's a not-direct-correlated IN (= ANY) test, we
516 * might be able to use a hashtable to avoid comparing all the tuples.
517 */
518 if (subLinkType == ANY_SUBLINK &&
519 splan->parParam == NIL &&
521 testexpr_is_hashable(splan->testexpr, splan->paramIds))
522 splan->useHashTable = true;
523
524 /*
525 * Otherwise, we have the option to tack a Material node onto the top
526 * of the subplan, to reduce the cost of reading it repeatedly. This
527 * is pointless for a direct-correlated subplan, since we'd have to
528 * recompute its results each time anyway. For uncorrelated/undirect
529 * correlated subplans, we add Material unless the subplan's top plan
530 * node would materialize its output anyway. Also, if enable_material
531 * is false, then the user does not want us to materialize anything
532 * unnecessarily, so we don't.
533 */
534 else if (splan->parParam == NIL && enable_material &&
537
538 result = (Node *) splan;
539 isInitPlan = false;
540 }
541
542 /*
543 * Add the subplan, its path, and its PlannerInfo to the global lists.
544 */
545 root->glob->subplans = lappend(root->glob->subplans, plan);
546 root->glob->subpaths = lappend(root->glob->subpaths, path);
547 root->glob->subroots = lappend(root->glob->subroots, subroot);
548 splan->plan_id = list_length(root->glob->subplans);
549
550 if (isInitPlan)
551 root->init_plans = lappend(root->init_plans, splan);
552
553 /*
554 * A parameterless subplan (not initplan) should be prepared to handle
555 * REWIND efficiently. If it has direct parameters then there's no point
556 * since it'll be reset on each scan anyway; and if it's an initplan then
557 * there's no point since it won't get re-run without parameter changes
558 * anyway. The input of a hashed subplan doesn't need REWIND either.
559 */
560 if (splan->parParam == NIL && !isInitPlan && !splan->useHashTable)
561 root->glob->rewindPlanIDs = bms_add_member(root->glob->rewindPlanIDs,
562 splan->plan_id);
563
564 /* Label the subplan for EXPLAIN purposes */
565 splan->plan_name = psprintf("%s %d",
566 isInitPlan ? "InitPlan" : "SubPlan",
567 splan->plan_id);
568
569 /* Lastly, fill in the cost estimates for use later */
570 cost_subplan(root, splan, plan);
571
572 return result;
573}
574
575/*
576 * generate_subquery_params: build a list of Params representing the output
577 * columns of a sublink's sub-select, given the sub-select's targetlist.
578 *
579 * We also return an integer list of the paramids of the Params.
580 */
581static List *
583{
584 List *result;
585 List *ids;
586 ListCell *lc;
587
588 result = ids = NIL;
589 foreach(lc, tlist)
590 {
591 TargetEntry *tent = (TargetEntry *) lfirst(lc);
592 Param *param;
593
594 if (tent->resjunk)
595 continue;
596
598 exprType((Node *) tent->expr),
599 exprTypmod((Node *) tent->expr),
600 exprCollation((Node *) tent->expr));
601 result = lappend(result, param);
602 ids = lappend_int(ids, param->paramid);
603 }
604
605 *paramIds = ids;
606 return result;
607}
608
609/*
610 * generate_subquery_vars: build a list of Vars representing the output
611 * columns of a sublink's sub-select, given the sub-select's targetlist.
612 * The Vars have the specified varno (RTE index).
613 */
614static List *
616{
617 List *result;
618 ListCell *lc;
619
620 result = NIL;
621 foreach(lc, tlist)
622 {
623 TargetEntry *tent = (TargetEntry *) lfirst(lc);
624 Var *var;
625
626 if (tent->resjunk)
627 continue;
628
629 var = makeVarFromTargetEntry(varno, tent);
630 result = lappend(result, var);
631 }
632
633 return result;
634}
635
636/*
637 * convert_testexpr: convert the testexpr given by the parser into
638 * actually executable form. This entails replacing PARAM_SUBLINK Params
639 * with Params or Vars representing the results of the sub-select. The
640 * nodes to be substituted are passed in as the List result from
641 * generate_subquery_params or generate_subquery_vars.
642 */
643static Node *
645 Node *testexpr,
646 List *subst_nodes)
647{
649
650 context.root = root;
651 context.subst_nodes = subst_nodes;
652 return convert_testexpr_mutator(testexpr, &context);
653}
654
655static Node *
658{
659 if (node == NULL)
660 return NULL;
661 if (IsA(node, Param))
662 {
663 Param *param = (Param *) node;
664
665 if (param->paramkind == PARAM_SUBLINK)
666 {
667 if (param->paramid <= 0 ||
668 param->paramid > list_length(context->subst_nodes))
669 elog(ERROR, "unexpected PARAM_SUBLINK ID: %d", param->paramid);
670
671 /*
672 * We copy the list item to avoid having doubly-linked
673 * substructure in the modified parse tree. This is probably
674 * unnecessary when it's a Param, but be safe.
675 */
676 return (Node *) copyObject(list_nth(context->subst_nodes,
677 param->paramid - 1));
678 }
679 }
680 if (IsA(node, SubLink))
681 {
682 /*
683 * If we come across a nested SubLink, it is neither necessary nor
684 * correct to recurse into it: any PARAM_SUBLINKs we might find inside
685 * belong to the inner SubLink not the outer. So just return it as-is.
686 *
687 * This reasoning depends on the assumption that nothing will pull
688 * subexpressions into or out of the testexpr field of a SubLink, at
689 * least not without replacing PARAM_SUBLINKs first. If we did want
690 * to do that we'd need to rethink the parser-output representation
691 * altogether, since currently PARAM_SUBLINKs are only unique per
692 * SubLink not globally across the query. The whole point of
693 * replacing them with Vars or PARAM_EXEC nodes is to make them
694 * globally unique before they escape from the SubLink's testexpr.
695 *
696 * Note: this can't happen when called during SS_process_sublinks,
697 * because that recursively processes inner SubLinks first. It can
698 * happen when called from convert_ANY_sublink_to_join, though.
699 */
700 return node;
701 }
703}
704
705/*
706 * subplan_is_hashable: can we implement an ANY subplan by hashing?
707 *
708 * This is not responsible for checking whether the combining testexpr
709 * is suitable for hashing. We only look at the subquery itself.
710 */
711static bool
713{
714 double subquery_size;
715
716 /*
717 * The estimated size of the subquery result must fit in hash_mem. (Note:
718 * we use heap tuple overhead here even though the tuples will actually be
719 * stored as MinimalTuples; this provides some fudge factor for hashtable
720 * overhead.)
721 */
722 subquery_size = plan->plan_rows *
724 if (subquery_size > get_hash_memory_limit())
725 return false;
726
727 return true;
728}
729
730/*
731 * subpath_is_hashable: can we implement an ANY subplan by hashing?
732 *
733 * Identical to subplan_is_hashable, but work from a Path for the subplan.
734 */
735static bool
737{
738 double subquery_size;
739
740 /*
741 * The estimated size of the subquery result must fit in hash_mem. (Note:
742 * we use heap tuple overhead here even though the tuples will actually be
743 * stored as MinimalTuples; this provides some fudge factor for hashtable
744 * overhead.)
745 */
746 subquery_size = path->rows *
747 (MAXALIGN(path->pathtarget->width) + MAXALIGN(SizeofHeapTupleHeader));
748 if (subquery_size > get_hash_memory_limit())
749 return false;
750
751 return true;
752}
753
754/*
755 * testexpr_is_hashable: is an ANY SubLink's test expression hashable?
756 *
757 * To identify LHS vs RHS of the hash expression, we must be given the
758 * list of output Param IDs of the SubLink's subquery.
759 */
760static bool
761testexpr_is_hashable(Node *testexpr, List *param_ids)
762{
763 /*
764 * The testexpr must be a single OpExpr, or an AND-clause containing only
765 * OpExprs, each of which satisfy test_opexpr_is_hashable().
766 */
767 if (testexpr && IsA(testexpr, OpExpr))
768 {
769 if (test_opexpr_is_hashable((OpExpr *) testexpr, param_ids))
770 return true;
771 }
772 else if (is_andclause(testexpr))
773 {
774 ListCell *l;
775
776 foreach(l, ((BoolExpr *) testexpr)->args)
777 {
778 Node *andarg = (Node *) lfirst(l);
779
780 if (!IsA(andarg, OpExpr))
781 return false;
782 if (!test_opexpr_is_hashable((OpExpr *) andarg, param_ids))
783 return false;
784 }
785 return true;
786 }
787
788 return false;
789}
790
791static bool
792test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids)
793{
794 /*
795 * The combining operator must be hashable and strict. The need for
796 * hashability is obvious, since we want to use hashing. Without
797 * strictness, behavior in the presence of nulls is too unpredictable. We
798 * actually must assume even more than plain strictness: it can't yield
799 * NULL for non-null inputs, either (see nodeSubplan.c). However, hash
800 * indexes and hash joins assume that too.
801 */
802 if (!hash_ok_operator(testexpr))
803 return false;
804
805 /*
806 * The left and right inputs must belong to the outer and inner queries
807 * respectively; hence Params that will be supplied by the subquery must
808 * not appear in the LHS, and Vars of the outer query must not appear in
809 * the RHS. (Ordinarily, this must be true because of the way that the
810 * parser builds an ANY SubLink's testexpr ... but inlining of functions
811 * could have changed the expression's structure, so we have to check.
812 * Such cases do not occur often enough to be worth trying to optimize, so
813 * we don't worry about trying to commute the clause or anything like
814 * that; we just need to be sure not to build an invalid plan.)
815 */
816 if (list_length(testexpr->args) != 2)
817 return false;
818 if (contain_exec_param((Node *) linitial(testexpr->args), param_ids))
819 return false;
820 if (contain_var_clause((Node *) lsecond(testexpr->args)))
821 return false;
822 return true;
823}
824
825/*
826 * Check expression is hashable + strict
827 *
828 * We could use op_hashjoinable() and op_strict(), but do it like this to
829 * avoid a redundant cache lookup.
830 */
831static bool
833{
834 Oid opid = expr->opno;
835
836 /* quick out if not a binary operator */
837 if (list_length(expr->args) != 2)
838 return false;
839 if (opid == ARRAY_EQ_OP ||
840 opid == RECORD_EQ_OP)
841 {
842 /* these are strict, but must check input type to ensure hashable */
843 Node *leftarg = linitial(expr->args);
844
845 return op_hashjoinable(opid, exprType(leftarg));
846 }
847 else
848 {
849 /* else must look up the operator properties */
850 HeapTuple tup;
851 Form_pg_operator optup;
852
853 tup = SearchSysCache1(OPEROID, ObjectIdGetDatum(opid));
854 if (!HeapTupleIsValid(tup))
855 elog(ERROR, "cache lookup failed for operator %u", opid);
856 optup = (Form_pg_operator) GETSTRUCT(tup);
857 if (!optup->oprcanhash || !func_strict(optup->oprcode))
858 {
859 ReleaseSysCache(tup);
860 return false;
861 }
862 ReleaseSysCache(tup);
863 return true;
864 }
865}
866
867
868/*
869 * SS_process_ctes: process a query's WITH list
870 *
871 * Consider each CTE in the WITH list and either ignore it (if it's an
872 * unreferenced SELECT), "inline" it to create a regular sub-SELECT-in-FROM,
873 * or convert it to an initplan.
874 *
875 * A side effect is to fill in root->cte_plan_ids with a list that
876 * parallels root->parse->cteList and provides the subplan ID for
877 * each CTE's initplan, or a dummy ID (-1) if we didn't make an initplan.
878 */
879void
881{
882 ListCell *lc;
883
884 Assert(root->cte_plan_ids == NIL);
885
886 foreach(lc, root->parse->cteList)
887 {
889 CmdType cmdType = ((Query *) cte->ctequery)->commandType;
890 Query *subquery;
891 PlannerInfo *subroot;
892 RelOptInfo *final_rel;
893 Path *best_path;
894 Plan *plan;
895 SubPlan *splan;
896 int paramid;
897
898 /*
899 * Ignore SELECT CTEs that are not actually referenced anywhere.
900 */
901 if (cte->cterefcount == 0 && cmdType == CMD_SELECT)
902 {
903 /* Make a dummy entry in cte_plan_ids */
904 root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
905 continue;
906 }
907
908 /*
909 * Consider inlining the CTE (creating RTE_SUBQUERY RTE(s)) instead of
910 * implementing it as a separately-planned CTE.
911 *
912 * We cannot inline if any of these conditions hold:
913 *
914 * 1. The user said not to (the CTEMaterializeAlways option).
915 *
916 * 2. The CTE is recursive.
917 *
918 * 3. The CTE has side-effects; this includes either not being a plain
919 * SELECT, or containing volatile functions. Inlining might change
920 * the side-effects, which would be bad.
921 *
922 * 4. The CTE is multiply-referenced and contains a self-reference to
923 * a recursive CTE outside itself. Inlining would result in multiple
924 * recursive self-references, which we don't support.
925 *
926 * Otherwise, we have an option whether to inline or not. That should
927 * always be a win if there's just a single reference, but if the CTE
928 * is multiply-referenced then it's unclear: inlining adds duplicate
929 * computations, but the ability to absorb restrictions from the outer
930 * query level could outweigh that. We do not have nearly enough
931 * information at this point to tell whether that's true, so we let
932 * the user express a preference. Our default behavior is to inline
933 * only singly-referenced CTEs, but a CTE marked CTEMaterializeNever
934 * will be inlined even if multiply referenced.
935 *
936 * Note: we check for volatile functions last, because that's more
937 * expensive than the other tests needed.
938 */
941 cte->cterefcount == 1)) &&
942 !cte->cterecursive &&
943 cmdType == CMD_SELECT &&
944 !contain_dml(cte->ctequery) &&
945 (cte->cterefcount <= 1 ||
948 {
949 inline_cte(root, cte);
950 /* Make a dummy entry in cte_plan_ids */
951 root->cte_plan_ids = lappend_int(root->cte_plan_ids, -1);
952 continue;
953 }
954
955 /*
956 * Copy the source Query node. Probably not necessary, but let's keep
957 * this similar to make_subplan.
958 */
959 subquery = (Query *) copyObject(cte->ctequery);
960
961 /* plan_params should not be in use in current query level */
962 Assert(root->plan_params == NIL);
963
964 /*
965 * Generate Paths for the CTE query. Always plan for full retrieval
966 * --- we don't have enough info to predict otherwise.
967 */
968 subroot = subquery_planner(root->glob, subquery, root,
969 cte->cterecursive, 0.0, NULL);
970
971 /*
972 * Since the current query level doesn't yet contain any RTEs, it
973 * should not be possible for the CTE to have requested parameters of
974 * this level.
975 */
976 if (root->plan_params)
977 elog(ERROR, "unexpected outer reference in CTE query");
978
979 /*
980 * Select best Path and turn it into a Plan. At least for now, there
981 * seems no reason to postpone doing that.
982 */
983 final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
984 best_path = final_rel->cheapest_total_path;
985
986 plan = create_plan(subroot, best_path);
987
988 /*
989 * Make a SubPlan node for it. This is just enough unlike
990 * build_subplan that we can't share code.
991 *
992 * Note plan_id, plan_name, and cost fields are set further down.
993 */
994 splan = makeNode(SubPlan);
995 splan->subLinkType = CTE_SUBLINK;
996 splan->testexpr = NULL;
997 splan->paramIds = NIL;
999 &splan->firstColCollation);
1000 splan->useHashTable = false;
1001 splan->unknownEqFalse = false;
1002
1003 /*
1004 * CTE scans are not considered for parallelism (cf
1005 * set_rel_consider_parallel).
1006 */
1007 splan->parallel_safe = false;
1008 splan->setParam = NIL;
1009 splan->parParam = NIL;
1010 splan->args = NIL;
1011
1012 /*
1013 * The node can't have any inputs (since it's an initplan), so the
1014 * parParam and args lists remain empty. (It could contain references
1015 * to earlier CTEs' output param IDs, but CTE outputs are not
1016 * propagated via the args list.)
1017 */
1018
1019 /*
1020 * Assign a param ID to represent the CTE's output. No ordinary
1021 * "evaluation" of this param slot ever happens, but we use the param
1022 * ID for setParam/chgParam signaling just as if the CTE plan were
1023 * returning a simple scalar output. (Also, the executor abuses the
1024 * ParamExecData slot for this param ID for communication among
1025 * multiple CteScan nodes that might be scanning this CTE.)
1026 */
1028 splan->setParam = list_make1_int(paramid);
1029
1030 /*
1031 * Add the subplan, its path, and its PlannerInfo to the global lists.
1032 */
1033 root->glob->subplans = lappend(root->glob->subplans, plan);
1034 root->glob->subpaths = lappend(root->glob->subpaths, best_path);
1035 root->glob->subroots = lappend(root->glob->subroots, subroot);
1036 splan->plan_id = list_length(root->glob->subplans);
1037
1038 root->init_plans = lappend(root->init_plans, splan);
1039
1040 root->cte_plan_ids = lappend_int(root->cte_plan_ids, splan->plan_id);
1041
1042 /* Label the subplan for EXPLAIN purposes */
1043 splan->plan_name = psprintf("CTE %s", cte->ctename);
1044
1045 /* Lastly, fill in the cost estimates for use later */
1046 cost_subplan(root, splan, plan);
1047 }
1048}
1049
1050/*
1051 * contain_dml: is any subquery not a plain SELECT?
1052 *
1053 * We reject SELECT FOR UPDATE/SHARE as well as INSERT etc.
1054 */
1055static bool
1057{
1058 return contain_dml_walker(node, NULL);
1059}
1060
1061static bool
1062contain_dml_walker(Node *node, void *context)
1063{
1064 if (node == NULL)
1065 return false;
1066 if (IsA(node, Query))
1067 {
1068 Query *query = (Query *) node;
1069
1070 if (query->commandType != CMD_SELECT ||
1071 query->rowMarks != NIL)
1072 return true;
1073
1074 return query_tree_walker(query, contain_dml_walker, context, 0);
1075 }
1076 return expression_tree_walker(node, contain_dml_walker, context);
1077}
1078
1079/*
1080 * contain_outer_selfref: is there an external recursive self-reference?
1081 */
1082static bool
1084{
1085 Index depth = 0;
1086
1087 /*
1088 * We should be starting with a Query, so that depth will be 1 while
1089 * examining its immediate contents.
1090 */
1091 Assert(IsA(node, Query));
1092
1093 return contain_outer_selfref_walker(node, &depth);
1094}
1095
1096static bool
1098{
1099 if (node == NULL)
1100 return false;
1101 if (IsA(node, RangeTblEntry))
1102 {
1103 RangeTblEntry *rte = (RangeTblEntry *) node;
1104
1105 /*
1106 * Check for a self-reference to a CTE that's above the Query that our
1107 * search started at.
1108 */
1109 if (rte->rtekind == RTE_CTE &&
1110 rte->self_reference &&
1111 rte->ctelevelsup >= *depth)
1112 return true;
1113 return false; /* allow range_table_walker to continue */
1114 }
1115 if (IsA(node, Query))
1116 {
1117 /* Recurse into subquery, tracking nesting depth properly */
1118 Query *query = (Query *) node;
1119 bool result;
1120
1121 (*depth)++;
1122
1125
1126 (*depth)--;
1127
1128 return result;
1129 }
1131}
1132
1133/*
1134 * inline_cte: convert RTE_CTE references to given CTE into RTE_SUBQUERYs
1135 */
1136static void
1138{
1139 struct inline_cte_walker_context context;
1140
1141 context.ctename = cte->ctename;
1142 /* Start at levelsup = -1 because we'll immediately increment it */
1143 context.levelsup = -1;
1144 context.ctequery = castNode(Query, cte->ctequery);
1145
1146 (void) inline_cte_walker((Node *) root->parse, &context);
1147}
1148
1149static bool
1151{
1152 if (node == NULL)
1153 return false;
1154 if (IsA(node, Query))
1155 {
1156 Query *query = (Query *) node;
1157
1158 context->levelsup++;
1159
1160 /*
1161 * Visit the query's RTE nodes after their contents; otherwise
1162 * query_tree_walker would descend into the newly inlined CTE query,
1163 * which we don't want.
1164 */
1165 (void) query_tree_walker(query, inline_cte_walker, context,
1167
1168 context->levelsup--;
1169
1170 return false;
1171 }
1172 else if (IsA(node, RangeTblEntry))
1173 {
1174 RangeTblEntry *rte = (RangeTblEntry *) node;
1175
1176 if (rte->rtekind == RTE_CTE &&
1177 strcmp(rte->ctename, context->ctename) == 0 &&
1178 rte->ctelevelsup == context->levelsup)
1179 {
1180 /*
1181 * Found a reference to replace. Generate a copy of the CTE query
1182 * with appropriate level adjustment for outer references (e.g.,
1183 * to other CTEs).
1184 */
1185 Query *newquery = copyObject(context->ctequery);
1186
1187 if (context->levelsup > 0)
1188 IncrementVarSublevelsUp((Node *) newquery, context->levelsup, 1);
1189
1190 /*
1191 * Convert the RTE_CTE RTE into a RTE_SUBQUERY.
1192 *
1193 * Historically, a FOR UPDATE clause has been treated as extending
1194 * into views and subqueries, but not into CTEs. We preserve this
1195 * distinction by not trying to push rowmarks into the new
1196 * subquery.
1197 */
1198 rte->rtekind = RTE_SUBQUERY;
1199 rte->subquery = newquery;
1200 rte->security_barrier = false;
1201
1202 /* Zero out CTE-specific fields */
1203 rte->ctename = NULL;
1204 rte->ctelevelsup = 0;
1205 rte->self_reference = false;
1206 rte->coltypes = NIL;
1207 rte->coltypmods = NIL;
1208 rte->colcollations = NIL;
1209 }
1210
1211 return false;
1212 }
1213
1214 return expression_tree_walker(node, inline_cte_walker, context);
1215}
1216
1217/*
1218 * Attempt to transform 'testexpr' over the VALUES subquery into
1219 * a ScalarArrayOpExpr. We currently support the transformation only when
1220 * it ends up with a constant array. Otherwise, the evaluation of non-hashed
1221 * SAOP might be slower than the corresponding Hash Join with VALUES.
1222 *
1223 * Return transformed ScalarArrayOpExpr or NULL if transformation isn't
1224 * allowed.
1225 */
1228{
1229 RangeTblEntry *rte;
1230 Node *leftop;
1231 Node *rightop;
1232 Oid opno;
1233 ListCell *lc;
1234 Oid inputcollid;
1235 List *exprs = NIL;
1236
1237 /*
1238 * Check we have a binary operator over a single-column subquery with no
1239 * joins and no LIMIT/OFFSET/ORDER BY clauses.
1240 */
1241 if (!IsA(testexpr, OpExpr) ||
1242 list_length(((OpExpr *) testexpr)->args) != 2 ||
1243 list_length(values->targetList) > 1 ||
1244 values->limitCount != NULL ||
1245 values->limitOffset != NULL ||
1246 values->sortClause != NIL ||
1247 list_length(values->rtable) != 1)
1248 return NULL;
1249
1250 rte = linitial_node(RangeTblEntry, values->rtable);
1251 leftop = linitial(((OpExpr *) testexpr)->args);
1252 rightop = lsecond(((OpExpr *) testexpr)->args);
1253 opno = ((OpExpr *) testexpr)->opno;
1254 inputcollid = ((OpExpr *) testexpr)->inputcollid;
1255
1256 /*
1257 * Also, check that only RTE corresponds to VALUES; the list of values has
1258 * at least two items and no volatile functions.
1259 */
1260 if (rte->rtekind != RTE_VALUES ||
1261 list_length(rte->values_lists) < 2 ||
1263 return NULL;
1264
1265 foreach(lc, rte->values_lists)
1266 {
1267 List *elem = lfirst(lc);
1268 Node *value = linitial(elem);
1269
1270 /*
1271 * Prepare an evaluation of the right side of the operator with
1272 * substitution of the given value.
1273 */
1275
1276 /*
1277 * Try to evaluate constant expressions. We could get Const as a
1278 * result.
1279 */
1281
1282 /*
1283 * As we only support constant output arrays, all the items must also
1284 * be constant.
1285 */
1286 if (!IsA(value, Const))
1287 return NULL;
1288
1289 exprs = lappend(exprs, value);
1290 }
1291
1292 /* Finally, build ScalarArrayOpExpr at the top of the 'exprs' list. */
1293 return make_SAOP_expr(opno, leftop, exprType(rightop),
1294 linitial_oid(rte->colcollations), inputcollid,
1295 exprs, false);
1296}
1297
1298/*
1299 * convert_ANY_sublink_to_join: try to convert an ANY SubLink to a join
1300 *
1301 * The caller has found an ANY SubLink at the top level of one of the query's
1302 * qual clauses, but has not checked the properties of the SubLink further.
1303 * Decide whether it is appropriate to process this SubLink in join style.
1304 * If so, form a JoinExpr and return it. Return NULL if the SubLink cannot
1305 * be converted to a join.
1306 *
1307 * The only non-obvious input parameter is available_rels: this is the set
1308 * of query rels that can safely be referenced in the sublink expression.
1309 * (We must restrict this to avoid changing the semantics when a sublink
1310 * is present in an outer join's ON qual.) The conversion must fail if
1311 * the converted qual would reference any but these parent-query relids.
1312 *
1313 * On success, the returned JoinExpr has larg = NULL and rarg = the jointree
1314 * item representing the pulled-up subquery. The caller must set larg to
1315 * represent the relation(s) on the lefthand side of the new join, and insert
1316 * the JoinExpr into the upper query's jointree at an appropriate place
1317 * (typically, where the lefthand relation(s) had been). Note that the
1318 * passed-in SubLink must also be removed from its original position in the
1319 * query quals, since the quals of the returned JoinExpr replace it.
1320 * (Notionally, we replace the SubLink with a constant TRUE, then elide the
1321 * redundant constant from the qual.)
1322 *
1323 * On success, the caller is also responsible for recursively applying
1324 * pull_up_sublinks processing to the rarg and quals of the returned JoinExpr.
1325 * (On failure, there is no need to do anything, since pull_up_sublinks will
1326 * be applied when we recursively plan the sub-select.)
1327 *
1328 * Side effects of a successful conversion include adding the SubLink's
1329 * subselect to the query's rangetable, so that it can be referenced in
1330 * the JoinExpr's rarg.
1331 */
1332JoinExpr *
1334 Relids available_rels)
1335{
1336 JoinExpr *result;
1337 Query *parse = root->parse;
1338 Query *subselect = (Query *) sublink->subselect;
1339 Relids upper_varnos;
1340 int rtindex;
1341 ParseNamespaceItem *nsitem;
1342 RangeTblEntry *rte;
1343 RangeTblRef *rtr;
1344 List *subquery_vars;
1345 Node *quals;
1346 ParseState *pstate;
1347 Relids sub_ref_outer_relids;
1348 bool use_lateral;
1349
1350 Assert(sublink->subLinkType == ANY_SUBLINK);
1351
1352 /*
1353 * If the sub-select contains any Vars of the parent query, we treat it as
1354 * LATERAL. (Vars from higher levels don't matter here.)
1355 */
1356 sub_ref_outer_relids = pull_varnos_of_level(NULL, (Node *) subselect, 1);
1357 use_lateral = !bms_is_empty(sub_ref_outer_relids);
1358
1359 /*
1360 * Can't convert if the sub-select contains parent-level Vars of relations
1361 * not in available_rels.
1362 */
1363 if (!bms_is_subset(sub_ref_outer_relids, available_rels))
1364 return NULL;
1365
1366 /*
1367 * The test expression must contain some Vars of the parent query, else
1368 * it's not gonna be a join. (Note that it won't have Vars referring to
1369 * the subquery, rather Params.)
1370 */
1371 upper_varnos = pull_varnos(root, sublink->testexpr);
1372 if (bms_is_empty(upper_varnos))
1373 return NULL;
1374
1375 /*
1376 * However, it can't refer to anything outside available_rels.
1377 */
1378 if (!bms_is_subset(upper_varnos, available_rels))
1379 return NULL;
1380
1381 /*
1382 * The combining operators and left-hand expressions mustn't be volatile.
1383 */
1385 return NULL;
1386
1387 /* Create a dummy ParseState for addRangeTableEntryForSubquery */
1388 pstate = make_parsestate(NULL);
1389
1390 /*
1391 * Okay, pull up the sub-select into upper range table.
1392 *
1393 * We rely here on the assumption that the outer query has no references
1394 * to the inner (necessarily true, other than the Vars that we build
1395 * below). Therefore this is a lot easier than what pull_up_subqueries has
1396 * to go through.
1397 */
1398 nsitem = addRangeTableEntryForSubquery(pstate,
1399 subselect,
1400 makeAlias("ANY_subquery", NIL),
1401 use_lateral,
1402 false);
1403 rte = nsitem->p_rte;
1404 parse->rtable = lappend(parse->rtable, rte);
1405 rtindex = list_length(parse->rtable);
1406
1407 /*
1408 * Form a RangeTblRef for the pulled-up sub-select.
1409 */
1410 rtr = makeNode(RangeTblRef);
1411 rtr->rtindex = rtindex;
1412
1413 /*
1414 * Build a list of Vars representing the subselect outputs.
1415 */
1416 subquery_vars = generate_subquery_vars(root,
1417 subselect->targetList,
1418 rtindex);
1419
1420 /*
1421 * Build the new join's qual expression, replacing Params with these Vars.
1422 */
1423 quals = convert_testexpr(root, sublink->testexpr, subquery_vars);
1424
1425 /*
1426 * And finally, build the JoinExpr node.
1427 */
1428 result = makeNode(JoinExpr);
1429 result->jointype = JOIN_SEMI;
1430 result->isNatural = false;
1431 result->larg = NULL; /* caller must fill this in */
1432 result->rarg = (Node *) rtr;
1433 result->usingClause = NIL;
1434 result->join_using_alias = NULL;
1435 result->quals = quals;
1436 result->alias = NULL;
1437 result->rtindex = 0; /* we don't need an RTE for it */
1438
1439 return result;
1440}
1441
1442/*
1443 * convert_EXISTS_sublink_to_join: try to convert an EXISTS SubLink to a join
1444 *
1445 * The API of this function is identical to convert_ANY_sublink_to_join's,
1446 * except that we also support the case where the caller has found NOT EXISTS,
1447 * so we need an additional input parameter "under_not".
1448 */
1449JoinExpr *
1451 bool under_not, Relids available_rels)
1452{
1453 JoinExpr *result;
1454 Query *parse = root->parse;
1455 Query *subselect = (Query *) sublink->subselect;
1456 Node *whereClause;
1457 int rtoffset;
1458 int varno;
1459 Relids clause_varnos;
1460 Relids upper_varnos;
1461
1462 Assert(sublink->subLinkType == EXISTS_SUBLINK);
1463
1464 /*
1465 * Can't flatten if it contains WITH. (We could arrange to pull up the
1466 * WITH into the parent query's cteList, but that risks changing the
1467 * semantics, since a WITH ought to be executed once per associated query
1468 * call.) Note that convert_ANY_sublink_to_join doesn't have to reject
1469 * this case, since it just produces a subquery RTE that doesn't have to
1470 * get flattened into the parent query.
1471 */
1472 if (subselect->cteList)
1473 return NULL;
1474
1475 /*
1476 * Copy the subquery so we can modify it safely (see comments in
1477 * make_subplan).
1478 */
1479 subselect = copyObject(subselect);
1480
1481 /*
1482 * See if the subquery can be simplified based on the knowledge that it's
1483 * being used in EXISTS(). If we aren't able to get rid of its
1484 * targetlist, we have to fail, because the pullup operation leaves us
1485 * with noplace to evaluate the targetlist.
1486 */
1487 if (!simplify_EXISTS_query(root, subselect))
1488 return NULL;
1489
1490 /*
1491 * Separate out the WHERE clause. (We could theoretically also remove
1492 * top-level plain JOIN/ON clauses, but it's probably not worth the
1493 * trouble.)
1494 */
1495 whereClause = subselect->jointree->quals;
1496 subselect->jointree->quals = NULL;
1497
1498 /*
1499 * The rest of the sub-select must not refer to any Vars of the parent
1500 * query. (Vars of higher levels should be okay, though.)
1501 */
1502 if (contain_vars_of_level((Node *) subselect, 1))
1503 return NULL;
1504
1505 /*
1506 * On the other hand, the WHERE clause must contain some Vars of the
1507 * parent query, else it's not gonna be a join.
1508 */
1509 if (!contain_vars_of_level(whereClause, 1))
1510 return NULL;
1511
1512 /*
1513 * We don't risk optimizing if the WHERE clause is volatile, either.
1514 */
1515 if (contain_volatile_functions(whereClause))
1516 return NULL;
1517
1518 /*
1519 * The subquery must have a nonempty jointree, but we can make it so.
1520 */
1521 replace_empty_jointree(subselect);
1522
1523 /*
1524 * Prepare to pull up the sub-select into top range table.
1525 *
1526 * We rely here on the assumption that the outer query has no references
1527 * to the inner (necessarily true). Therefore this is a lot easier than
1528 * what pull_up_subqueries has to go through.
1529 *
1530 * In fact, it's even easier than what convert_ANY_sublink_to_join has to
1531 * do. The machinations of simplify_EXISTS_query ensured that there is
1532 * nothing interesting in the subquery except an rtable and jointree, and
1533 * even the jointree FromExpr no longer has quals. So we can just append
1534 * the rtable to our own and use the FromExpr in our jointree. But first,
1535 * adjust all level-zero varnos in the subquery to account for the rtable
1536 * merger.
1537 */
1538 rtoffset = list_length(parse->rtable);
1539 OffsetVarNodes((Node *) subselect, rtoffset, 0);
1540 OffsetVarNodes(whereClause, rtoffset, 0);
1541
1542 /*
1543 * Upper-level vars in subquery will now be one level closer to their
1544 * parent than before; in particular, anything that had been level 1
1545 * becomes level zero.
1546 */
1547 IncrementVarSublevelsUp((Node *) subselect, -1, 1);
1548 IncrementVarSublevelsUp(whereClause, -1, 1);
1549
1550 /*
1551 * Now that the WHERE clause is adjusted to match the parent query
1552 * environment, we can easily identify all the level-zero rels it uses.
1553 * The ones <= rtoffset belong to the upper query; the ones > rtoffset do
1554 * not.
1555 */
1556 clause_varnos = pull_varnos(root, whereClause);
1557 upper_varnos = NULL;
1558 varno = -1;
1559 while ((varno = bms_next_member(clause_varnos, varno)) >= 0)
1560 {
1561 if (varno <= rtoffset)
1562 upper_varnos = bms_add_member(upper_varnos, varno);
1563 }
1564 bms_free(clause_varnos);
1565 Assert(!bms_is_empty(upper_varnos));
1566
1567 /*
1568 * Now that we've got the set of upper-level varnos, we can make the last
1569 * check: only available_rels can be referenced.
1570 */
1571 if (!bms_is_subset(upper_varnos, available_rels))
1572 return NULL;
1573
1574 /*
1575 * Now we can attach the modified subquery rtable to the parent. This also
1576 * adds subquery's RTEPermissionInfos into the upper query.
1577 */
1578 CombineRangeTables(&parse->rtable, &parse->rteperminfos,
1579 subselect->rtable, subselect->rteperminfos);
1580
1581 /*
1582 * And finally, build the JoinExpr node.
1583 */
1584 result = makeNode(JoinExpr);
1585 result->jointype = under_not ? JOIN_ANTI : JOIN_SEMI;
1586 result->isNatural = false;
1587 result->larg = NULL; /* caller must fill this in */
1588 /* flatten out the FromExpr node if it's useless */
1589 if (list_length(subselect->jointree->fromlist) == 1)
1590 result->rarg = (Node *) linitial(subselect->jointree->fromlist);
1591 else
1592 result->rarg = (Node *) subselect->jointree;
1593 result->usingClause = NIL;
1594 result->join_using_alias = NULL;
1595 result->quals = whereClause;
1596 result->alias = NULL;
1597 result->rtindex = 0; /* we don't need an RTE for it */
1598
1599 return result;
1600}
1601
1602/*
1603 * simplify_EXISTS_query: remove any useless stuff in an EXISTS's subquery
1604 *
1605 * The only thing that matters about an EXISTS query is whether it returns
1606 * zero or more than zero rows. Therefore, we can remove certain SQL features
1607 * that won't affect that. The only part that is really likely to matter in
1608 * typical usage is simplifying the targetlist: it's a common habit to write
1609 * "SELECT * FROM" even though there is no need to evaluate any columns.
1610 *
1611 * Note: by suppressing the targetlist we could cause an observable behavioral
1612 * change, namely that any errors that might occur in evaluating the tlist
1613 * won't occur, nor will other side-effects of volatile functions. This seems
1614 * unlikely to bother anyone in practice.
1615 *
1616 * Returns true if was able to discard the targetlist, else false.
1617 */
1618static bool
1620{
1621 ListCell *lc;
1622
1623 /*
1624 * We don't try to simplify at all if the query uses set operations,
1625 * aggregates, grouping sets, SRFs, modifying CTEs, HAVING, OFFSET, or FOR
1626 * UPDATE/SHARE; none of these seem likely in normal usage and their
1627 * possible effects are complex. (Note: we could ignore an "OFFSET 0"
1628 * clause, but that traditionally is used as an optimization fence, so we
1629 * don't.)
1630 */
1631 if (query->commandType != CMD_SELECT ||
1632 query->setOperations ||
1633 query->hasAggs ||
1634 query->groupingSets ||
1635 query->hasWindowFuncs ||
1636 query->hasTargetSRFs ||
1637 query->hasModifyingCTE ||
1638 query->havingQual ||
1639 query->limitOffset ||
1640 query->rowMarks)
1641 return false;
1642
1643 /*
1644 * LIMIT with a constant positive (or NULL) value doesn't affect the
1645 * semantics of EXISTS, so let's ignore such clauses. This is worth doing
1646 * because people accustomed to certain other DBMSes may be in the habit
1647 * of writing EXISTS(SELECT ... LIMIT 1) as an optimization. If there's a
1648 * LIMIT with anything else as argument, though, we can't simplify.
1649 */
1650 if (query->limitCount)
1651 {
1652 /*
1653 * The LIMIT clause has not yet been through eval_const_expressions,
1654 * so we have to apply that here. It might seem like this is a waste
1655 * of cycles, since the only case plausibly worth worrying about is
1656 * "LIMIT 1" ... but what we'll actually see is "LIMIT int8(1::int4)",
1657 * so we have to fold constants or we're not going to recognize it.
1658 */
1659 Node *node = eval_const_expressions(root, query->limitCount);
1660 Const *limit;
1661
1662 /* Might as well update the query if we simplified the clause. */
1663 query->limitCount = node;
1664
1665 if (!IsA(node, Const))
1666 return false;
1667
1668 limit = (Const *) node;
1669 Assert(limit->consttype == INT8OID);
1670 if (!limit->constisnull && DatumGetInt64(limit->constvalue) <= 0)
1671 return false;
1672
1673 /* Whether or not the targetlist is safe, we can drop the LIMIT. */
1674 query->limitCount = NULL;
1675 }
1676
1677 /*
1678 * Otherwise, we can throw away the targetlist, as well as any GROUP,
1679 * WINDOW, DISTINCT, and ORDER BY clauses; none of those clauses will
1680 * change a nonzero-rows result to zero rows or vice versa. (Furthermore,
1681 * since our parsetree representation of these clauses depends on the
1682 * targetlist, we'd better throw them away if we drop the targetlist.)
1683 */
1684 query->targetList = NIL;
1685 query->groupClause = NIL;
1686 query->windowClause = NIL;
1687 query->distinctClause = NIL;
1688 query->sortClause = NIL;
1689 query->hasDistinctOn = false;
1690
1691 /*
1692 * Since we have thrown away the GROUP BY clauses, we'd better remove the
1693 * RTE_GROUP RTE and clear the hasGroupRTE flag.
1694 */
1695 foreach(lc, query->rtable)
1696 {
1698
1699 /*
1700 * Remove the RTE_GROUP RTE and clear the hasGroupRTE flag. (Since
1701 * we'll exit the foreach loop immediately, we don't bother with
1702 * foreach_delete_current.)
1703 */
1704 if (rte->rtekind == RTE_GROUP)
1705 {
1706 Assert(query->hasGroupRTE);
1707 query->rtable = list_delete_cell(query->rtable, lc);
1708 query->hasGroupRTE = false;
1709 break;
1710 }
1711 }
1712
1713 return true;
1714}
1715
1716/*
1717 * convert_EXISTS_to_ANY: try to convert EXISTS to a hashable ANY sublink
1718 *
1719 * The subselect is expected to be a fresh copy that we can munge up,
1720 * and to have been successfully passed through simplify_EXISTS_query.
1721 *
1722 * On success, the modified subselect is returned, and we store a suitable
1723 * upper-level test expression at *testexpr, plus a list of the subselect's
1724 * output Params at *paramIds. (The test expression is already Param-ified
1725 * and hence need not go through convert_testexpr, which is why we have to
1726 * deal with the Param IDs specially.)
1727 *
1728 * On failure, returns NULL.
1729 */
1730static Query *
1732 Node **testexpr, List **paramIds)
1733{
1734 Node *whereClause;
1735 List *leftargs,
1736 *rightargs,
1737 *opids,
1738 *opcollations,
1739 *newWhere,
1740 *tlist,
1741 *testlist,
1742 *paramids;
1743 ListCell *lc,
1744 *rc,
1745 *oc,
1746 *cc;
1747 AttrNumber resno;
1748
1749 /*
1750 * Query must not require a targetlist, since we have to insert a new one.
1751 * Caller should have dealt with the case already.
1752 */
1753 Assert(subselect->targetList == NIL);
1754
1755 /*
1756 * Separate out the WHERE clause. (We could theoretically also remove
1757 * top-level plain JOIN/ON clauses, but it's probably not worth the
1758 * trouble.)
1759 */
1760 whereClause = subselect->jointree->quals;
1761 subselect->jointree->quals = NULL;
1762
1763 /*
1764 * The rest of the sub-select must not refer to any Vars of the parent
1765 * query. (Vars of higher levels should be okay, though.)
1766 *
1767 * Note: we need not check for Aggrefs separately because we know the
1768 * sub-select is as yet unoptimized; any uplevel Aggref must therefore
1769 * contain an uplevel Var reference. This is not the case below ...
1770 */
1771 if (contain_vars_of_level((Node *) subselect, 1))
1772 return NULL;
1773
1774 /*
1775 * We don't risk optimizing if the WHERE clause is volatile, either.
1776 */
1777 if (contain_volatile_functions(whereClause))
1778 return NULL;
1779
1780 /*
1781 * Clean up the WHERE clause by doing const-simplification etc on it.
1782 * Aside from simplifying the processing we're about to do, this is
1783 * important for being able to pull chunks of the WHERE clause up into the
1784 * parent query. Since we are invoked partway through the parent's
1785 * preprocess_expression() work, earlier steps of preprocess_expression()
1786 * wouldn't get applied to the pulled-up stuff unless we do them here. For
1787 * the parts of the WHERE clause that get put back into the child query,
1788 * this work is partially duplicative, but it shouldn't hurt.
1789 *
1790 * Note: we do not run flatten_join_alias_vars. This is OK because any
1791 * parent aliases were flattened already, and we're not going to pull any
1792 * child Vars (of any description) into the parent.
1793 *
1794 * Note: passing the parent's root to eval_const_expressions is
1795 * technically wrong, but we can get away with it since only the
1796 * boundParams (if any) are used, and those would be the same in a
1797 * subroot.
1798 */
1799 whereClause = eval_const_expressions(root, whereClause);
1800 whereClause = (Node *) canonicalize_qual((Expr *) whereClause, false);
1801 whereClause = (Node *) make_ands_implicit((Expr *) whereClause);
1802
1803 /*
1804 * We now have a flattened implicit-AND list of clauses, which we try to
1805 * break apart into "outervar = innervar" hash clauses. Anything that
1806 * can't be broken apart just goes back into the newWhere list. Note that
1807 * we aren't trying hard yet to ensure that we have only outer or only
1808 * inner on each side; we'll check that if we get to the end.
1809 */
1810 leftargs = rightargs = opids = opcollations = newWhere = NIL;
1811 foreach(lc, (List *) whereClause)
1812 {
1813 OpExpr *expr = (OpExpr *) lfirst(lc);
1814
1815 if (IsA(expr, OpExpr) &&
1816 hash_ok_operator(expr))
1817 {
1818 Node *leftarg = (Node *) linitial(expr->args);
1819 Node *rightarg = (Node *) lsecond(expr->args);
1820
1821 if (contain_vars_of_level(leftarg, 1))
1822 {
1823 leftargs = lappend(leftargs, leftarg);
1824 rightargs = lappend(rightargs, rightarg);
1825 opids = lappend_oid(opids, expr->opno);
1826 opcollations = lappend_oid(opcollations, expr->inputcollid);
1827 continue;
1828 }
1829 if (contain_vars_of_level(rightarg, 1))
1830 {
1831 /*
1832 * We must commute the clause to put the outer var on the
1833 * left, because the hashing code in nodeSubplan.c expects
1834 * that. This probably shouldn't ever fail, since hashable
1835 * operators ought to have commutators, but be paranoid.
1836 */
1837 expr->opno = get_commutator(expr->opno);
1838 if (OidIsValid(expr->opno) && hash_ok_operator(expr))
1839 {
1840 leftargs = lappend(leftargs, rightarg);
1841 rightargs = lappend(rightargs, leftarg);
1842 opids = lappend_oid(opids, expr->opno);
1843 opcollations = lappend_oid(opcollations, expr->inputcollid);
1844 continue;
1845 }
1846 /* If no commutator, no chance to optimize the WHERE clause */
1847 return NULL;
1848 }
1849 }
1850 /* Couldn't handle it as a hash clause */
1851 newWhere = lappend(newWhere, expr);
1852 }
1853
1854 /*
1855 * If we didn't find anything we could convert, fail.
1856 */
1857 if (leftargs == NIL)
1858 return NULL;
1859
1860 /*
1861 * There mustn't be any parent Vars or Aggs in the stuff that we intend to
1862 * put back into the child query. Note: you might think we don't need to
1863 * check for Aggs separately, because an uplevel Agg must contain an
1864 * uplevel Var in its argument. But it is possible that the uplevel Var
1865 * got optimized away by eval_const_expressions. Consider
1866 *
1867 * SUM(CASE WHEN false THEN uplevelvar ELSE 0 END)
1868 */
1869 if (contain_vars_of_level((Node *) newWhere, 1) ||
1870 contain_vars_of_level((Node *) rightargs, 1))
1871 return NULL;
1872 if (root->parse->hasAggs &&
1873 (contain_aggs_of_level((Node *) newWhere, 1) ||
1874 contain_aggs_of_level((Node *) rightargs, 1)))
1875 return NULL;
1876
1877 /*
1878 * And there can't be any child Vars in the stuff we intend to pull up.
1879 * (Note: we'd need to check for child Aggs too, except we know the child
1880 * has no aggs at all because of simplify_EXISTS_query's check. The same
1881 * goes for window functions.)
1882 */
1883 if (contain_vars_of_level((Node *) leftargs, 0))
1884 return NULL;
1885
1886 /*
1887 * Also reject sublinks in the stuff we intend to pull up. (It might be
1888 * possible to support this, but doesn't seem worth the complication.)
1889 */
1890 if (contain_subplans((Node *) leftargs))
1891 return NULL;
1892
1893 /*
1894 * Okay, adjust the sublevelsup in the stuff we're pulling up.
1895 */
1896 IncrementVarSublevelsUp((Node *) leftargs, -1, 1);
1897
1898 /*
1899 * Put back any child-level-only WHERE clauses.
1900 */
1901 if (newWhere)
1902 subselect->jointree->quals = (Node *) make_ands_explicit(newWhere);
1903
1904 /*
1905 * Build a new targetlist for the child that emits the expressions we
1906 * need. Concurrently, build a testexpr for the parent using Params to
1907 * reference the child outputs. (Since we generate Params directly here,
1908 * there will be no need to convert the testexpr in build_subplan.)
1909 */
1910 tlist = testlist = paramids = NIL;
1911 resno = 1;
1912 forfour(lc, leftargs, rc, rightargs, oc, opids, cc, opcollations)
1913 {
1914 Node *leftarg = (Node *) lfirst(lc);
1915 Node *rightarg = (Node *) lfirst(rc);
1916 Oid opid = lfirst_oid(oc);
1917 Oid opcollation = lfirst_oid(cc);
1918 Param *param;
1919
1921 exprType(rightarg),
1922 exprTypmod(rightarg),
1923 exprCollation(rightarg));
1924 tlist = lappend(tlist,
1925 makeTargetEntry((Expr *) rightarg,
1926 resno++,
1927 NULL,
1928 false));
1929 testlist = lappend(testlist,
1930 make_opclause(opid, BOOLOID, false,
1931 (Expr *) leftarg, (Expr *) param,
1932 InvalidOid, opcollation));
1933 paramids = lappend_int(paramids, param->paramid);
1934 }
1935
1936 /* Put everything where it should go, and we're done */
1937 subselect->targetList = tlist;
1938 *testexpr = (Node *) make_ands_explicit(testlist);
1939 *paramIds = paramids;
1940
1941 return subselect;
1942}
1943
1944
1945/*
1946 * Replace correlation vars (uplevel vars) with Params.
1947 *
1948 * Uplevel PlaceHolderVars, aggregates, GROUPING() expressions,
1949 * MergeSupportFuncs, and ReturningExprs are replaced, too.
1950 *
1951 * Note: it is critical that this runs immediately after SS_process_sublinks.
1952 * Since we do not recurse into the arguments of uplevel PHVs and aggregates,
1953 * they will get copied to the appropriate subplan args list in the parent
1954 * query with uplevel vars not replaced by Params, but only adjusted in level
1955 * (see replace_outer_placeholdervar and replace_outer_agg). That's exactly
1956 * what we want for the vars of the parent level --- but if a PHV's or
1957 * aggregate's argument contains any further-up variables, they have to be
1958 * replaced with Params in their turn. That will happen when the parent level
1959 * runs SS_replace_correlation_vars. Therefore it must do so after expanding
1960 * its sublinks to subplans. And we don't want any steps in between, else
1961 * those steps would never get applied to the argument expressions, either in
1962 * the parent or the child level.
1963 *
1964 * Another fairly tricky thing going on here is the handling of SubLinks in
1965 * the arguments of uplevel PHVs/aggregates. Those are not touched inside the
1966 * intermediate query level, either. Instead, SS_process_sublinks recurses on
1967 * them after copying the PHV or Aggref expression into the parent plan level
1968 * (this is actually taken care of in build_subplan).
1969 */
1970Node *
1972{
1973 /* No setup needed for tree walk, so away we go */
1975}
1976
1977static Node *
1979{
1980 if (node == NULL)
1981 return NULL;
1982 if (IsA(node, Var))
1983 {
1984 if (((Var *) node)->varlevelsup > 0)
1985 return (Node *) replace_outer_var(root, (Var *) node);
1986 }
1987 if (IsA(node, PlaceHolderVar))
1988 {
1989 if (((PlaceHolderVar *) node)->phlevelsup > 0)
1991 (PlaceHolderVar *) node);
1992 }
1993 if (IsA(node, Aggref))
1994 {
1995 if (((Aggref *) node)->agglevelsup > 0)
1996 return (Node *) replace_outer_agg(root, (Aggref *) node);
1997 }
1998 if (IsA(node, GroupingFunc))
1999 {
2000 if (((GroupingFunc *) node)->agglevelsup > 0)
2001 return (Node *) replace_outer_grouping(root, (GroupingFunc *) node);
2002 }
2003 if (IsA(node, MergeSupportFunc))
2004 {
2005 if (root->parse->commandType != CMD_MERGE)
2007 (MergeSupportFunc *) node);
2008 }
2009 if (IsA(node, ReturningExpr))
2010 {
2011 if (((ReturningExpr *) node)->retlevelsup > 0)
2013 (ReturningExpr *) node);
2014 }
2016}
2017
2018/*
2019 * Expand SubLinks to SubPlans in the given expression.
2020 *
2021 * The isQual argument tells whether or not this expression is a WHERE/HAVING
2022 * qualifier expression. If it is, any sublinks appearing at top level need
2023 * not distinguish FALSE from UNKNOWN return values.
2024 */
2025Node *
2027{
2029
2030 context.root = root;
2031 context.isTopQual = isQual;
2032 return process_sublinks_mutator(expr, &context);
2033}
2034
2035static Node *
2037{
2038 process_sublinks_context locContext;
2039
2040 locContext.root = context->root;
2041
2042 if (node == NULL)
2043 return NULL;
2044 if (IsA(node, SubLink))
2045 {
2046 SubLink *sublink = (SubLink *) node;
2047 Node *testexpr;
2048
2049 /*
2050 * First, recursively process the lefthand-side expressions, if any.
2051 * They're not top-level anymore.
2052 */
2053 locContext.isTopQual = false;
2054 testexpr = process_sublinks_mutator(sublink->testexpr, &locContext);
2055
2056 /*
2057 * Now build the SubPlan node and make the expr to return.
2058 */
2059 return make_subplan(context->root,
2060 (Query *) sublink->subselect,
2061 sublink->subLinkType,
2062 sublink->subLinkId,
2063 testexpr,
2064 context->isTopQual);
2065 }
2066
2067 /*
2068 * Don't recurse into the arguments of an outer PHV, Aggref, GroupingFunc,
2069 * or ReturningExpr here. Any SubLinks in the arguments have to be dealt
2070 * with at the outer query level; they'll be handled when build_subplan
2071 * collects the PHV, Aggref, GroupingFunc, or ReturningExpr into the
2072 * arguments to be passed down to the current subplan.
2073 */
2074 if (IsA(node, PlaceHolderVar))
2075 {
2076 if (((PlaceHolderVar *) node)->phlevelsup > 0)
2077 return node;
2078 }
2079 else if (IsA(node, Aggref))
2080 {
2081 if (((Aggref *) node)->agglevelsup > 0)
2082 return node;
2083 }
2084 else if (IsA(node, GroupingFunc))
2085 {
2086 if (((GroupingFunc *) node)->agglevelsup > 0)
2087 return node;
2088 }
2089 else if (IsA(node, ReturningExpr))
2090 {
2091 if (((ReturningExpr *) node)->retlevelsup > 0)
2092 return node;
2093 }
2094
2095 /*
2096 * We should never see a SubPlan expression in the input (since this is
2097 * the very routine that creates 'em to begin with). We shouldn't find
2098 * ourselves invoked directly on a Query, either.
2099 */
2100 Assert(!IsA(node, SubPlan));
2101 Assert(!IsA(node, AlternativeSubPlan));
2102 Assert(!IsA(node, Query));
2103
2104 /*
2105 * Because make_subplan() could return an AND or OR clause, we have to
2106 * take steps to preserve AND/OR flatness of a qual. We assume the input
2107 * has been AND/OR flattened and so we need no recursion here.
2108 *
2109 * (Due to the coding here, we will not get called on the List subnodes of
2110 * an AND; and the input is *not* yet in implicit-AND format. So no check
2111 * is needed for a bare List.)
2112 *
2113 * Anywhere within the top-level AND/OR clause structure, we can tell
2114 * make_subplan() that NULL and FALSE are interchangeable. So isTopQual
2115 * propagates down in both cases. (Note that this is unlike the meaning
2116 * of "top level qual" used in most other places in Postgres.)
2117 */
2118 if (is_andclause(node))
2119 {
2120 List *newargs = NIL;
2121 ListCell *l;
2122
2123 /* Still at qual top-level */
2124 locContext.isTopQual = context->isTopQual;
2125
2126 foreach(l, ((BoolExpr *) node)->args)
2127 {
2128 Node *newarg;
2129
2130 newarg = process_sublinks_mutator(lfirst(l), &locContext);
2131 if (is_andclause(newarg))
2132 newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
2133 else
2134 newargs = lappend(newargs, newarg);
2135 }
2136 return (Node *) make_andclause(newargs);
2137 }
2138
2139 if (is_orclause(node))
2140 {
2141 List *newargs = NIL;
2142 ListCell *l;
2143
2144 /* Still at qual top-level */
2145 locContext.isTopQual = context->isTopQual;
2146
2147 foreach(l, ((BoolExpr *) node)->args)
2148 {
2149 Node *newarg;
2150
2151 newarg = process_sublinks_mutator(lfirst(l), &locContext);
2152 if (is_orclause(newarg))
2153 newargs = list_concat(newargs, ((BoolExpr *) newarg)->args);
2154 else
2155 newargs = lappend(newargs, newarg);
2156 }
2157 return (Node *) make_orclause(newargs);
2158 }
2159
2160 /*
2161 * If we recurse down through anything other than an AND or OR node, we
2162 * are definitely not at top qual level anymore.
2163 */
2164 locContext.isTopQual = false;
2165
2166 return expression_tree_mutator(node,
2168 &locContext);
2169}
2170
2171/*
2172 * SS_identify_outer_params - identify the Params available from outer levels
2173 *
2174 * This must be run after SS_replace_correlation_vars and SS_process_sublinks
2175 * processing is complete in a given query level as well as all of its
2176 * descendant levels (which means it's most practical to do it at the end of
2177 * processing the query level). We compute the set of paramIds that outer
2178 * levels will make available to this level+descendants, and record it in
2179 * root->outer_params for use while computing extParam/allParam sets in final
2180 * plan cleanup. (We can't just compute it then, because the upper levels'
2181 * plan_params lists are transient and will be gone by then.)
2182 */
2183void
2185{
2186 Bitmapset *outer_params;
2187 PlannerInfo *proot;
2188 ListCell *l;
2189
2190 /*
2191 * If no parameters have been assigned anywhere in the tree, we certainly
2192 * don't need to do anything here.
2193 */
2194 if (root->glob->paramExecTypes == NIL)
2195 return;
2196
2197 /*
2198 * Scan all query levels above this one to see which parameters are due to
2199 * be available from them, either because lower query levels have
2200 * requested them (via plan_params) or because they will be available from
2201 * initPlans of those levels.
2202 */
2203 outer_params = NULL;
2204 for (proot = root->parent_root; proot != NULL; proot = proot->parent_root)
2205 {
2206 /*
2207 * Include ordinary Var/PHV/Aggref/GroupingFunc/ReturningExpr params.
2208 */
2209 foreach(l, proot->plan_params)
2210 {
2212
2213 outer_params = bms_add_member(outer_params, pitem->paramId);
2214 }
2215 /* Include any outputs of outer-level initPlans */
2216 foreach(l, proot->init_plans)
2217 {
2218 SubPlan *initsubplan = (SubPlan *) lfirst(l);
2219 ListCell *l2;
2220
2221 foreach(l2, initsubplan->setParam)
2222 {
2223 outer_params = bms_add_member(outer_params, lfirst_int(l2));
2224 }
2225 }
2226 /* Include worktable ID, if a recursive query is being planned */
2227 if (proot->wt_param_id >= 0)
2228 outer_params = bms_add_member(outer_params, proot->wt_param_id);
2229 }
2230 root->outer_params = outer_params;
2231}
2232
2233/*
2234 * SS_charge_for_initplans - account for initplans in Path costs & parallelism
2235 *
2236 * If any initPlans have been created in the current query level, they will
2237 * get attached to the Plan tree created from whichever Path we select from
2238 * the given rel. Increment all that rel's Paths' costs to account for them,
2239 * and if any of the initPlans are parallel-unsafe, mark all the rel's Paths
2240 * parallel-unsafe as well.
2241 *
2242 * This is separate from SS_attach_initplans because we might conditionally
2243 * create more initPlans during create_plan(), depending on which Path we
2244 * select. However, Paths that would generate such initPlans are expected
2245 * to have included their cost and parallel-safety effects already.
2246 */
2247void
2249{
2250 Cost initplan_cost;
2251 bool unsafe_initplans;
2252 ListCell *lc;
2253
2254 /* Nothing to do if no initPlans */
2255 if (root->init_plans == NIL)
2256 return;
2257
2258 /*
2259 * Compute the cost increment just once, since it will be the same for all
2260 * Paths. Also check for parallel-unsafe initPlans.
2261 */
2262 SS_compute_initplan_cost(root->init_plans,
2263 &initplan_cost, &unsafe_initplans);
2264
2265 /*
2266 * Now adjust the costs and parallel_safe flags.
2267 */
2268 foreach(lc, final_rel->pathlist)
2269 {
2270 Path *path = (Path *) lfirst(lc);
2271
2272 path->startup_cost += initplan_cost;
2273 path->total_cost += initplan_cost;
2274 if (unsafe_initplans)
2275 path->parallel_safe = false;
2276 }
2277
2278 /*
2279 * Adjust partial paths' costs too, or forget them entirely if we must
2280 * consider the rel parallel-unsafe.
2281 */
2282 if (unsafe_initplans)
2283 {
2284 final_rel->partial_pathlist = NIL;
2285 final_rel->consider_parallel = false;
2286 }
2287 else
2288 {
2289 foreach(lc, final_rel->partial_pathlist)
2290 {
2291 Path *path = (Path *) lfirst(lc);
2292
2293 path->startup_cost += initplan_cost;
2294 path->total_cost += initplan_cost;
2295 }
2296 }
2297
2298 /* We needn't do set_cheapest() here, caller will do it */
2299}
2300
2301/*
2302 * SS_compute_initplan_cost - count up the cost delta for some initplans
2303 *
2304 * The total cost returned in *initplan_cost_p should be added to both the
2305 * startup and total costs of the plan node the initplans get attached to.
2306 * We also report whether any of the initplans are not parallel-safe.
2307 *
2308 * The primary user of this is SS_charge_for_initplans, but it's also
2309 * used in adjusting costs when we move initplans to another plan node.
2310 */
2311void
2313 Cost *initplan_cost_p,
2314 bool *unsafe_initplans_p)
2315{
2316 Cost initplan_cost;
2317 bool unsafe_initplans;
2318 ListCell *lc;
2319
2320 /*
2321 * We assume each initPlan gets run once during top plan startup. This is
2322 * a conservative overestimate, since in fact an initPlan might be
2323 * executed later than plan startup, or even not at all.
2324 */
2325 initplan_cost = 0;
2326 unsafe_initplans = false;
2327 foreach(lc, init_plans)
2328 {
2329 SubPlan *initsubplan = lfirst_node(SubPlan, lc);
2330
2331 initplan_cost += initsubplan->startup_cost + initsubplan->per_call_cost;
2332 if (!initsubplan->parallel_safe)
2333 unsafe_initplans = true;
2334 }
2335 *initplan_cost_p = initplan_cost;
2336 *unsafe_initplans_p = unsafe_initplans;
2337}
2338
2339/*
2340 * SS_attach_initplans - attach initplans to topmost plan node
2341 *
2342 * Attach any initplans created in the current query level to the specified
2343 * plan node, which should normally be the topmost node for the query level.
2344 * (In principle the initPlans could go in any node at or above where they're
2345 * referenced; but there seems no reason to put them any lower than the
2346 * topmost node, so we don't bother to track exactly where they came from.)
2347 *
2348 * We do not touch the plan node's cost or parallel_safe flag. The initplans
2349 * must have been accounted for in SS_charge_for_initplans, or by any later
2350 * code that adds initplans via SS_make_initplan_from_plan.
2351 */
2352void
2354{
2355 plan->initPlan = root->init_plans;
2356}
2357
2358/*
2359 * SS_finalize_plan - do final parameter processing for a completed Plan.
2360 *
2361 * This recursively computes the extParam and allParam sets for every Plan
2362 * node in the given plan tree. (Oh, and RangeTblFunction.funcparams too.)
2363 *
2364 * We assume that SS_finalize_plan has already been run on any initplans or
2365 * subplans the plan tree could reference.
2366 */
2367void
2369{
2370 /* No setup needed, just recurse through plan tree. */
2371 (void) finalize_plan(root, plan, -1, root->outer_params, NULL);
2372}
2373
2374/*
2375 * Recursive processing of all nodes in the plan tree
2376 *
2377 * gather_param is the rescan_param of an ancestral Gather/GatherMerge,
2378 * or -1 if there is none.
2379 *
2380 * valid_params is the set of param IDs supplied by outer plan levels
2381 * that are valid to reference in this plan node or its children.
2382 *
2383 * scan_params is a set of param IDs to force scan plan nodes to reference.
2384 * This is for EvalPlanQual support, and is always NULL at the top of the
2385 * recursion.
2386 *
2387 * The return value is the computed allParam set for the given Plan node.
2388 * This is just an internal notational convenience: we can add a child
2389 * plan's allParams to the set of param IDs of interest to this level
2390 * in the same statement that recurses to that child.
2391 *
2392 * Do not scribble on caller's values of valid_params or scan_params!
2393 *
2394 * Note: although we attempt to deal with initPlans anywhere in the tree, the
2395 * logic is not really right. The problem is that a plan node might return an
2396 * output Param of its initPlan as a targetlist item, in which case it's valid
2397 * for the parent plan level to reference that same Param; the parent's usage
2398 * will be converted into a Var referencing the child plan node by setrefs.c.
2399 * But this function would see the parent's reference as out of scope and
2400 * complain about it. For now, this does not matter because the planner only
2401 * attaches initPlans to the topmost plan node in a query level, so the case
2402 * doesn't arise. If we ever merge this processing into setrefs.c, maybe it
2403 * can be handled more cleanly.
2404 */
2405static Bitmapset *
2407 int gather_param,
2408 Bitmapset *valid_params,
2409 Bitmapset *scan_params)
2410{
2412 int locally_added_param;
2413 Bitmapset *nestloop_params;
2414 Bitmapset *initExtParam;
2415 Bitmapset *initSetParam;
2416 Bitmapset *child_params;
2417 ListCell *l;
2418
2419 if (plan == NULL)
2420 return NULL;
2421
2422 context.root = root;
2423 context.paramids = NULL; /* initialize set to empty */
2424 locally_added_param = -1; /* there isn't one */
2425 nestloop_params = NULL; /* there aren't any */
2426
2427 /*
2428 * Examine any initPlans to determine the set of external params they
2429 * reference and the set of output params they supply. (We assume
2430 * SS_finalize_plan was run on them already.)
2431 */
2432 initExtParam = initSetParam = NULL;
2433 foreach(l, plan->initPlan)
2434 {
2435 SubPlan *initsubplan = (SubPlan *) lfirst(l);
2436 Plan *initplan = planner_subplan_get_plan(root, initsubplan);
2437 ListCell *l2;
2438
2439 initExtParam = bms_add_members(initExtParam, initplan->extParam);
2440 foreach(l2, initsubplan->setParam)
2441 {
2442 initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2443 }
2444 }
2445
2446 /* Any setParams are validly referenceable in this node and children */
2447 if (initSetParam)
2448 valid_params = bms_union(valid_params, initSetParam);
2449
2450 /*
2451 * When we call finalize_primnode, context.paramids sets are automatically
2452 * merged together. But when recursing to self, we have to do it the hard
2453 * way. We want the paramids set to include params in subplans as well as
2454 * at this level.
2455 */
2456
2457 /* Find params in targetlist and qual */
2458 finalize_primnode((Node *) plan->targetlist, &context);
2459 finalize_primnode((Node *) plan->qual, &context);
2460
2461 /*
2462 * If it's a parallel-aware scan node, mark it as dependent on the parent
2463 * Gather/GatherMerge's rescan Param.
2464 */
2465 if (plan->parallel_aware)
2466 {
2467 if (gather_param < 0)
2468 elog(ERROR, "parallel-aware plan node is not below a Gather");
2469 context.paramids =
2470 bms_add_member(context.paramids, gather_param);
2471 }
2472
2473 /* Check additional node-type-specific fields */
2474 switch (nodeTag(plan))
2475 {
2476 case T_Result:
2477 finalize_primnode(((Result *) plan)->resconstantqual,
2478 &context);
2479 break;
2480
2481 case T_SeqScan:
2482 context.paramids = bms_add_members(context.paramids, scan_params);
2483 break;
2484
2485 case T_SampleScan:
2486 finalize_primnode((Node *) ((SampleScan *) plan)->tablesample,
2487 &context);
2488 context.paramids = bms_add_members(context.paramids, scan_params);
2489 break;
2490
2491 case T_IndexScan:
2492 finalize_primnode((Node *) ((IndexScan *) plan)->indexqual,
2493 &context);
2494 finalize_primnode((Node *) ((IndexScan *) plan)->indexorderby,
2495 &context);
2496
2497 /*
2498 * we need not look at indexqualorig, since it will have the same
2499 * param references as indexqual. Likewise, we can ignore
2500 * indexorderbyorig.
2501 */
2502 context.paramids = bms_add_members(context.paramids, scan_params);
2503 break;
2504
2505 case T_IndexOnlyScan:
2506 finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexqual,
2507 &context);
2508 finalize_primnode((Node *) ((IndexOnlyScan *) plan)->recheckqual,
2509 &context);
2510 finalize_primnode((Node *) ((IndexOnlyScan *) plan)->indexorderby,
2511 &context);
2512
2513 /*
2514 * we need not look at indextlist, since it cannot contain Params.
2515 */
2516 context.paramids = bms_add_members(context.paramids, scan_params);
2517 break;
2518
2519 case T_BitmapIndexScan:
2520 finalize_primnode((Node *) ((BitmapIndexScan *) plan)->indexqual,
2521 &context);
2522
2523 /*
2524 * we need not look at indexqualorig, since it will have the same
2525 * param references as indexqual.
2526 */
2527 break;
2528
2529 case T_BitmapHeapScan:
2530 finalize_primnode((Node *) ((BitmapHeapScan *) plan)->bitmapqualorig,
2531 &context);
2532 context.paramids = bms_add_members(context.paramids, scan_params);
2533 break;
2534
2535 case T_TidScan:
2536 finalize_primnode((Node *) ((TidScan *) plan)->tidquals,
2537 &context);
2538 context.paramids = bms_add_members(context.paramids, scan_params);
2539 break;
2540
2541 case T_TidRangeScan:
2542 finalize_primnode((Node *) ((TidRangeScan *) plan)->tidrangequals,
2543 &context);
2544 context.paramids = bms_add_members(context.paramids, scan_params);
2545 break;
2546
2547 case T_SubqueryScan:
2548 {
2549 SubqueryScan *sscan = (SubqueryScan *) plan;
2550 RelOptInfo *rel;
2551 Bitmapset *subquery_params;
2552
2553 /* We must run finalize_plan on the subquery */
2554 rel = find_base_rel(root, sscan->scan.scanrelid);
2555 subquery_params = rel->subroot->outer_params;
2556 if (gather_param >= 0)
2557 subquery_params = bms_add_member(bms_copy(subquery_params),
2558 gather_param);
2559 finalize_plan(rel->subroot, sscan->subplan, gather_param,
2560 subquery_params, NULL);
2561
2562 /* Now we can add its extParams to the parent's params */
2563 context.paramids = bms_add_members(context.paramids,
2564 sscan->subplan->extParam);
2565 /* We need scan_params too, though */
2566 context.paramids = bms_add_members(context.paramids,
2567 scan_params);
2568 }
2569 break;
2570
2571 case T_FunctionScan:
2572 {
2573 FunctionScan *fscan = (FunctionScan *) plan;
2574 ListCell *lc;
2575
2576 /*
2577 * Call finalize_primnode independently on each function
2578 * expression, so that we can record which params are
2579 * referenced in each, in order to decide which need
2580 * re-evaluating during rescan.
2581 */
2582 foreach(lc, fscan->functions)
2583 {
2584 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2585 finalize_primnode_context funccontext;
2586
2587 funccontext = context;
2588 funccontext.paramids = NULL;
2589
2590 finalize_primnode(rtfunc->funcexpr, &funccontext);
2591
2592 /* remember results for execution */
2593 rtfunc->funcparams = funccontext.paramids;
2594
2595 /* add the function's params to the overall set */
2596 context.paramids = bms_add_members(context.paramids,
2597 funccontext.paramids);
2598 }
2599
2600 context.paramids = bms_add_members(context.paramids,
2601 scan_params);
2602 }
2603 break;
2604
2605 case T_TableFuncScan:
2606 finalize_primnode((Node *) ((TableFuncScan *) plan)->tablefunc,
2607 &context);
2608 context.paramids = bms_add_members(context.paramids, scan_params);
2609 break;
2610
2611 case T_ValuesScan:
2612 finalize_primnode((Node *) ((ValuesScan *) plan)->values_lists,
2613 &context);
2614 context.paramids = bms_add_members(context.paramids, scan_params);
2615 break;
2616
2617 case T_CteScan:
2618 {
2619 /*
2620 * You might think we should add the node's cteParam to
2621 * paramids, but we shouldn't because that param is just a
2622 * linkage mechanism for multiple CteScan nodes for the same
2623 * CTE; it is never used for changed-param signaling. What we
2624 * have to do instead is to find the referenced CTE plan and
2625 * incorporate its external paramids, so that the correct
2626 * things will happen if the CTE references outer-level
2627 * variables. See test cases for bug #4902. (We assume
2628 * SS_finalize_plan was run on the CTE plan already.)
2629 */
2630 int plan_id = ((CteScan *) plan)->ctePlanId;
2631 Plan *cteplan;
2632
2633 /* so, do this ... */
2634 if (plan_id < 1 || plan_id > list_length(root->glob->subplans))
2635 elog(ERROR, "could not find plan for CteScan referencing plan ID %d",
2636 plan_id);
2637 cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
2638 context.paramids =
2639 bms_add_members(context.paramids, cteplan->extParam);
2640
2641#ifdef NOT_USED
2642 /* ... but not this */
2643 context.paramids =
2644 bms_add_member(context.paramids,
2645 ((CteScan *) plan)->cteParam);
2646#endif
2647
2648 context.paramids = bms_add_members(context.paramids,
2649 scan_params);
2650 }
2651 break;
2652
2653 case T_WorkTableScan:
2654 context.paramids =
2655 bms_add_member(context.paramids,
2656 ((WorkTableScan *) plan)->wtParam);
2657 context.paramids = bms_add_members(context.paramids, scan_params);
2658 break;
2659
2660 case T_NamedTuplestoreScan:
2661 context.paramids = bms_add_members(context.paramids, scan_params);
2662 break;
2663
2664 case T_ForeignScan:
2665 {
2666 ForeignScan *fscan = (ForeignScan *) plan;
2667
2668 finalize_primnode((Node *) fscan->fdw_exprs,
2669 &context);
2671 &context);
2672
2673 /* We assume fdw_scan_tlist cannot contain Params */
2674 context.paramids = bms_add_members(context.paramids,
2675 scan_params);
2676 }
2677 break;
2678
2679 case T_CustomScan:
2680 {
2681 CustomScan *cscan = (CustomScan *) plan;
2682 ListCell *lc;
2683
2685 &context);
2686 /* We assume custom_scan_tlist cannot contain Params */
2687 context.paramids =
2688 bms_add_members(context.paramids, scan_params);
2689
2690 /* child nodes if any */
2691 foreach(lc, cscan->custom_plans)
2692 {
2693 context.paramids =
2694 bms_add_members(context.paramids,
2696 (Plan *) lfirst(lc),
2697 gather_param,
2698 valid_params,
2699 scan_params));
2700 }
2701 }
2702 break;
2703
2704 case T_ModifyTable:
2705 {
2706 ModifyTable *mtplan = (ModifyTable *) plan;
2707
2708 /* Force descendant scan nodes to reference epqParam */
2709 locally_added_param = mtplan->epqParam;
2710 valid_params = bms_add_member(bms_copy(valid_params),
2711 locally_added_param);
2712 scan_params = bms_add_member(bms_copy(scan_params),
2713 locally_added_param);
2715 &context);
2717 &context);
2719 &context);
2720 /* exclRelTlist contains only Vars, doesn't need examination */
2721 }
2722 break;
2723
2724 case T_Append:
2725 {
2726 foreach(l, ((Append *) plan)->appendplans)
2727 {
2728 context.paramids =
2729 bms_add_members(context.paramids,
2731 (Plan *) lfirst(l),
2732 gather_param,
2733 valid_params,
2734 scan_params));
2735 }
2736 }
2737 break;
2738
2739 case T_MergeAppend:
2740 {
2741 foreach(l, ((MergeAppend *) plan)->mergeplans)
2742 {
2743 context.paramids =
2744 bms_add_members(context.paramids,
2746 (Plan *) lfirst(l),
2747 gather_param,
2748 valid_params,
2749 scan_params));
2750 }
2751 }
2752 break;
2753
2754 case T_BitmapAnd:
2755 {
2756 foreach(l, ((BitmapAnd *) plan)->bitmapplans)
2757 {
2758 context.paramids =
2759 bms_add_members(context.paramids,
2761 (Plan *) lfirst(l),
2762 gather_param,
2763 valid_params,
2764 scan_params));
2765 }
2766 }
2767 break;
2768
2769 case T_BitmapOr:
2770 {
2771 foreach(l, ((BitmapOr *) plan)->bitmapplans)
2772 {
2773 context.paramids =
2774 bms_add_members(context.paramids,
2776 (Plan *) lfirst(l),
2777 gather_param,
2778 valid_params,
2779 scan_params));
2780 }
2781 }
2782 break;
2783
2784 case T_NestLoop:
2785 {
2786 finalize_primnode((Node *) ((Join *) plan)->joinqual,
2787 &context);
2788 /* collect set of params that will be passed to right child */
2789 foreach(l, ((NestLoop *) plan)->nestParams)
2790 {
2791 NestLoopParam *nlp = (NestLoopParam *) lfirst(l);
2792
2793 nestloop_params = bms_add_member(nestloop_params,
2794 nlp->paramno);
2795 }
2796 }
2797 break;
2798
2799 case T_MergeJoin:
2800 finalize_primnode((Node *) ((Join *) plan)->joinqual,
2801 &context);
2802 finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
2803 &context);
2804 break;
2805
2806 case T_HashJoin:
2807 finalize_primnode((Node *) ((Join *) plan)->joinqual,
2808 &context);
2809 finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
2810 &context);
2811 break;
2812
2813 case T_Hash:
2814 finalize_primnode((Node *) ((Hash *) plan)->hashkeys,
2815 &context);
2816 break;
2817
2818 case T_Limit:
2819 finalize_primnode(((Limit *) plan)->limitOffset,
2820 &context);
2821 finalize_primnode(((Limit *) plan)->limitCount,
2822 &context);
2823 break;
2824
2825 case T_RecursiveUnion:
2826 /* child nodes are allowed to reference wtParam */
2827 locally_added_param = ((RecursiveUnion *) plan)->wtParam;
2828 valid_params = bms_add_member(bms_copy(valid_params),
2829 locally_added_param);
2830 /* wtParam does *not* get added to scan_params */
2831 break;
2832
2833 case T_LockRows:
2834 /* Force descendant scan nodes to reference epqParam */
2835 locally_added_param = ((LockRows *) plan)->epqParam;
2836 valid_params = bms_add_member(bms_copy(valid_params),
2837 locally_added_param);
2838 scan_params = bms_add_member(bms_copy(scan_params),
2839 locally_added_param);
2840 break;
2841
2842 case T_Agg:
2843 {
2844 Agg *agg = (Agg *) plan;
2845
2846 /*
2847 * AGG_HASHED plans need to know which Params are referenced
2848 * in aggregate calls. Do a separate scan to identify them.
2849 */
2850 if (agg->aggstrategy == AGG_HASHED)
2851 {
2852 finalize_primnode_context aggcontext;
2853
2854 aggcontext.root = root;
2855 aggcontext.paramids = NULL;
2857 &aggcontext);
2859 &aggcontext);
2860 agg->aggParams = aggcontext.paramids;
2861 }
2862 }
2863 break;
2864
2865 case T_WindowAgg:
2866 finalize_primnode(((WindowAgg *) plan)->startOffset,
2867 &context);
2868 finalize_primnode(((WindowAgg *) plan)->endOffset,
2869 &context);
2870 break;
2871
2872 case T_Gather:
2873 /* child nodes are allowed to reference rescan_param, if any */
2874 locally_added_param = ((Gather *) plan)->rescan_param;
2875 if (locally_added_param >= 0)
2876 {
2877 valid_params = bms_add_member(bms_copy(valid_params),
2878 locally_added_param);
2879
2880 /*
2881 * We currently don't support nested Gathers. The issue so
2882 * far as this function is concerned would be how to identify
2883 * which child nodes depend on which Gather.
2884 */
2885 Assert(gather_param < 0);
2886 /* Pass down rescan_param to child parallel-aware nodes */
2887 gather_param = locally_added_param;
2888 }
2889 /* rescan_param does *not* get added to scan_params */
2890 break;
2891
2892 case T_GatherMerge:
2893 /* child nodes are allowed to reference rescan_param, if any */
2894 locally_added_param = ((GatherMerge *) plan)->rescan_param;
2895 if (locally_added_param >= 0)
2896 {
2897 valid_params = bms_add_member(bms_copy(valid_params),
2898 locally_added_param);
2899
2900 /*
2901 * We currently don't support nested Gathers. The issue so
2902 * far as this function is concerned would be how to identify
2903 * which child nodes depend on which Gather.
2904 */
2905 Assert(gather_param < 0);
2906 /* Pass down rescan_param to child parallel-aware nodes */
2907 gather_param = locally_added_param;
2908 }
2909 /* rescan_param does *not* get added to scan_params */
2910 break;
2911
2912 case T_Memoize:
2913 finalize_primnode((Node *) ((Memoize *) plan)->param_exprs,
2914 &context);
2915 break;
2916
2917 case T_ProjectSet:
2918 case T_Material:
2919 case T_Sort:
2920 case T_IncrementalSort:
2921 case T_Unique:
2922 case T_SetOp:
2923 case T_Group:
2924 /* no node-type-specific fields need fixing */
2925 break;
2926
2927 default:
2928 elog(ERROR, "unrecognized node type: %d",
2929 (int) nodeTag(plan));
2930 }
2931
2932 /* Process left and right child plans, if any */
2933 child_params = finalize_plan(root,
2934 plan->lefttree,
2935 gather_param,
2936 valid_params,
2937 scan_params);
2938 context.paramids = bms_add_members(context.paramids, child_params);
2939
2940 if (nestloop_params)
2941 {
2942 /* right child can reference nestloop_params as well as valid_params */
2943 child_params = finalize_plan(root,
2944 plan->righttree,
2945 gather_param,
2946 bms_union(nestloop_params, valid_params),
2947 scan_params);
2948 /* ... and they don't count as parameters used at my level */
2949 child_params = bms_difference(child_params, nestloop_params);
2950 bms_free(nestloop_params);
2951 }
2952 else
2953 {
2954 /* easy case */
2955 child_params = finalize_plan(root,
2956 plan->righttree,
2957 gather_param,
2958 valid_params,
2959 scan_params);
2960 }
2961 context.paramids = bms_add_members(context.paramids, child_params);
2962
2963 /*
2964 * Any locally generated parameter doesn't count towards its generating
2965 * plan node's external dependencies. (Note: if we changed valid_params
2966 * and/or scan_params, we leak those bitmapsets; not worth the notational
2967 * trouble to clean them up.)
2968 */
2969 if (locally_added_param >= 0)
2970 {
2971 context.paramids = bms_del_member(context.paramids,
2972 locally_added_param);
2973 }
2974
2975 /* Now we have all the paramids referenced in this node and children */
2976
2977 if (!bms_is_subset(context.paramids, valid_params))
2978 elog(ERROR, "plan should not reference subplan's variable");
2979
2980 /*
2981 * The plan node's allParam and extParam fields should include all its
2982 * referenced paramids, plus contributions from any child initPlans.
2983 * However, any setParams of the initPlans should not be present in the
2984 * parent node's extParams, only in its allParams. (It's possible that
2985 * some initPlans have extParams that are setParams of other initPlans.)
2986 */
2987
2988 /* allParam must include initplans' extParams and setParams */
2989 plan->allParam = bms_union(context.paramids, initExtParam);
2990 plan->allParam = bms_add_members(plan->allParam, initSetParam);
2991 /* extParam must include any initplan extParams */
2992 plan->extParam = bms_union(context.paramids, initExtParam);
2993 /* but not any initplan setParams */
2994 plan->extParam = bms_del_members(plan->extParam, initSetParam);
2995
2996 return plan->allParam;
2997}
2998
2999/*
3000 * finalize_primnode: add IDs of all PARAM_EXEC params that appear (or will
3001 * appear) in the given expression tree to the result set.
3002 */
3003static bool
3005{
3006 if (node == NULL)
3007 return false;
3008 if (IsA(node, Param))
3009 {
3010 if (((Param *) node)->paramkind == PARAM_EXEC)
3011 {
3012 int paramid = ((Param *) node)->paramid;
3013
3014 context->paramids = bms_add_member(context->paramids, paramid);
3015 }
3016 return false; /* no more to do here */
3017 }
3018 else if (IsA(node, Aggref))
3019 {
3020 /*
3021 * Check to see if the aggregate will be replaced by a Param
3022 * referencing a subquery output during setrefs.c. If so, we must
3023 * account for that Param here. (For various reasons, it's not
3024 * convenient to perform that substitution earlier than setrefs.c, nor
3025 * to perform this processing after setrefs.c. Thus we need a wart
3026 * here.)
3027 */
3028 Aggref *aggref = (Aggref *) node;
3029 Param *aggparam;
3030
3031 aggparam = find_minmax_agg_replacement_param(context->root, aggref);
3032 if (aggparam != NULL)
3033 context->paramids = bms_add_member(context->paramids,
3034 aggparam->paramid);
3035 /* Fall through to examine the agg's arguments */
3036 }
3037 else if (IsA(node, SubPlan))
3038 {
3039 SubPlan *subplan = (SubPlan *) node;
3040 Plan *plan = planner_subplan_get_plan(context->root, subplan);
3041 ListCell *lc;
3042 Bitmapset *subparamids;
3043
3044 /* Recurse into the testexpr, but not into the Plan */
3045 finalize_primnode(subplan->testexpr, context);
3046
3047 /*
3048 * Remove any param IDs of output parameters of the subplan that were
3049 * referenced in the testexpr. These are not interesting for
3050 * parameter change signaling since we always re-evaluate the subplan.
3051 * Note that this wouldn't work too well if there might be uses of the
3052 * same param IDs elsewhere in the plan, but that can't happen because
3053 * generate_new_exec_param never tries to merge params.
3054 */
3055 foreach(lc, subplan->paramIds)
3056 {
3057 context->paramids = bms_del_member(context->paramids,
3058 lfirst_int(lc));
3059 }
3060
3061 /* Also examine args list */
3062 finalize_primnode((Node *) subplan->args, context);
3063
3064 /*
3065 * Add params needed by the subplan to paramids, but excluding those
3066 * we will pass down to it. (We assume SS_finalize_plan was run on
3067 * the subplan already.)
3068 */
3069 subparamids = bms_copy(plan->extParam);
3070 foreach(lc, subplan->parParam)
3071 {
3072 subparamids = bms_del_member(subparamids, lfirst_int(lc));
3073 }
3074 context->paramids = bms_join(context->paramids, subparamids);
3075
3076 return false; /* no more to do here */
3077 }
3078 return expression_tree_walker(node, finalize_primnode, context);
3079}
3080
3081/*
3082 * finalize_agg_primnode: find all Aggref nodes in the given expression tree,
3083 * and add IDs of all PARAM_EXEC params appearing within their aggregated
3084 * arguments to the result set.
3085 */
3086static bool
3088{
3089 if (node == NULL)
3090 return false;
3091 if (IsA(node, Aggref))
3092 {
3093 Aggref *agg = (Aggref *) node;
3094
3095 /* we should not consider the direct arguments, if any */
3096 finalize_primnode((Node *) agg->args, context);
3097 finalize_primnode((Node *) agg->aggfilter, context);
3098 return false; /* there can't be any Aggrefs below here */
3099 }
3100 return expression_tree_walker(node, finalize_agg_primnode, context);
3101}
3102
3103/*
3104 * SS_make_initplan_output_param - make a Param for an initPlan's output
3105 *
3106 * The plan is expected to return a scalar value of the given type/collation.
3107 *
3108 * Note that in some cases the initplan may not ever appear in the finished
3109 * plan tree. If that happens, we'll have wasted a PARAM_EXEC slot, which
3110 * is no big deal.
3111 */
3112Param *
3114 Oid resulttype, int32 resulttypmod,
3115 Oid resultcollation)
3116{
3117 return generate_new_exec_param(root, resulttype,
3118 resulttypmod, resultcollation);
3119}
3120
3121/*
3122 * SS_make_initplan_from_plan - given a plan tree, make it an InitPlan
3123 *
3124 * We build an EXPR_SUBLINK SubPlan node and put it into the initplan
3125 * list for the outer query level. A Param that represents the initplan's
3126 * output has already been assigned using SS_make_initplan_output_param.
3127 */
3128void
3130 PlannerInfo *subroot, Plan *plan,
3131 Param *prm)
3132{
3133 SubPlan *node;
3134
3135 /*
3136 * Add the subplan and its PlannerInfo, as well as a dummy path entry, to
3137 * the global lists. Ideally we'd save a real path, but right now our
3138 * sole caller doesn't build a path that exactly matches the plan. Since
3139 * we're not currently going to need the path for an initplan, it's not
3140 * worth requiring construction of such a path.
3141 */
3142 root->glob->subplans = lappend(root->glob->subplans, plan);
3143 root->glob->subpaths = lappend(root->glob->subpaths, NULL);
3144 root->glob->subroots = lappend(root->glob->subroots, subroot);
3145
3146 /*
3147 * Create a SubPlan node and add it to the outer list of InitPlans. Note
3148 * it has to appear after any other InitPlans it might depend on (see
3149 * comments in ExecReScan).
3150 */
3151 node = makeNode(SubPlan);
3152 node->subLinkType = EXPR_SUBLINK;
3153 node->plan_id = list_length(root->glob->subplans);
3154 node->plan_name = psprintf("InitPlan %d", node->plan_id);
3156 &node->firstColCollation);
3157 node->parallel_safe = plan->parallel_safe;
3158 node->setParam = list_make1_int(prm->paramid);
3159
3160 root->init_plans = lappend(root->init_plans, node);
3161
3162 /*
3163 * The node can't have any inputs (since it's an initplan), so the
3164 * parParam and args lists remain empty.
3165 */
3166
3167 /* Set costs of SubPlan using info from the plan tree */
3168 cost_subplan(subroot, node, plan);
3169}
int16 AttrNumber
Definition: attnum.h:21
Bitmapset * bms_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:346
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:868
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1230
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
static Datum values[MAXATTR]
Definition: bootstrap.c:151
#define MAXALIGN(LEN)
Definition: c.h:782
int32_t int32
Definition: c.h:498
unsigned int Index
Definition: c.h:585
#define OidIsValid(objectId)
Definition: c.h:746
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2256
bool contain_subplans(Node *clause)
Definition: clauses.c:331
ScalarArrayOpExpr * make_SAOP_expr(Oid oper, Node *leftexpr, Oid coltype, Oid arraycollid, Oid inputcollid, List *exprs, bool haveNonConst)
Definition: clauses.c:5453
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:539
bool contain_exec_param(Node *clause, List *param_ids)
Definition: clauses.c:1138
bool enable_material
Definition: costsize.c:154
void cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
Definition: costsize.c:4533
Plan * materialize_finished_plan(Plan *subplan)
Definition: createplan.c:6594
Plan * create_plan(PlannerInfo *root, Path *best_path)
Definition: createplan.c:337
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
bool ExecMaterializesOutput(NodeTag plantype)
Definition: execAmi.c:636
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
Assert(PointerIsAligned(start, uint64))
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
static struct @165 value
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * list_delete_cell(List *list, ListCell *cell)
Definition: list.c:841
List * list_copy(const List *oldlist)
Definition: list.c:1573
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
bool op_hashjoinable(Oid opno, Oid inputtype)
Definition: lsyscache.c:1577
bool func_strict(Oid funcid)
Definition: lsyscache.c:1901
Oid get_promoted_array_type(Oid typid)
Definition: lsyscache.c:2951
Oid get_commutator(Oid opno)
Definition: lsyscache.c:1649
Alias * makeAlias(const char *aliasname, List *colnames)
Definition: makefuncs.c:438
Expr * make_orclause(List *orclauses)
Definition: makefuncs.c:743
Expr * make_ands_explicit(List *andclauses)
Definition: makefuncs.c:799
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:388
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:727
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
Expr * make_opclause(Oid opno, Oid opresulttype, bool opretset, Expr *leftop, Expr *rightop, Oid opcollid, Oid inputcollid)
Definition: makefuncs.c:701
List * make_ands_implicit(Expr *clause)
Definition: makefuncs.c:810
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:107
static bool is_orclause(const void *clause)
Definition: nodeFuncs.h:116
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define QTW_EXAMINE_RTES_AFTER
Definition: nodeFuncs.h:28
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:27
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3616
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:230
double Cost
Definition: nodes.h:257
#define nodeTag(nodeptr)
Definition: nodes.h:139
CmdType
Definition: nodes.h:269
@ CMD_MERGE
Definition: nodes.h:275
@ CMD_SELECT
Definition: nodes.h:271
@ AGG_HASHED
Definition: nodes.h:362
#define makeNode(_type_)
Definition: nodes.h:161
#define castNode(_type_, nodeptr)
Definition: nodes.h:182
@ JOIN_SEMI
Definition: nodes.h:313
@ JOIN_ANTI
Definition: nodes.h:314
Param * replace_outer_merge_support(PlannerInfo *root, MergeSupportFunc *msf)
Definition: paramassign.c:318
Param * generate_new_exec_param(PlannerInfo *root, Oid paramtype, int32 paramtypmod, Oid paramcollation)
Definition: paramassign.c:684
Param * replace_outer_agg(PlannerInfo *root, Aggref *agg)
Definition: paramassign.c:225
Param * replace_outer_returning(PlannerInfo *root, ReturningExpr *rexpr)
Definition: paramassign.c:368
Param * replace_outer_grouping(PlannerInfo *root, GroupingFunc *grp)
Definition: paramassign.c:271
Param * replace_outer_var(PlannerInfo *root, Var *var)
Definition: paramassign.c:121
Param * replace_outer_placeholdervar(PlannerInfo *root, PlaceHolderVar *phv)
Definition: paramassign.c:198
int assign_special_exec_param(PlannerInfo *root)
Definition: paramassign.c:711
ParseState * make_parsestate(ParseState *parentParseState)
Definition: parse_node.c:39
ParseNamespaceItem * addRangeTableEntryForSubquery(ParseState *pstate, Query *subquery, Alias *alias, bool lateral, bool inFromCl)
@ RTE_CTE
Definition: parsenodes.h:1032
@ RTE_VALUES
Definition: parsenodes.h:1031
@ RTE_SUBQUERY
Definition: parsenodes.h:1027
@ RTE_GROUP
Definition: parsenodes.h:1037
@ CTEMaterializeNever
Definition: parsenodes.h:1654
@ CTEMaterializeDefault
Definition: parsenodes.h:1652
#define planner_subplan_get_plan(root, subplan)
Definition: pathnodes.h:188
@ UPPERREL_FINAL
Definition: pathnodes.h:79
void * arg
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial_node(type, l)
Definition: pg_list.h:181
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define linitial(l)
Definition: pg_list.h:178
static ListCell * list_nth_cell(const List *list, int n)
Definition: pg_list.h:277
#define lsecond(l)
Definition: pg_list.h:183
#define forfour(cell1, list1, cell2, list2, cell3, list3, cell4, list4)
Definition: pg_list.h:575
#define list_make1_int(x1)
Definition: pg_list.h:227
#define linitial_oid(l)
Definition: pg_list.h:180
#define lfirst_oid(lc)
Definition: pg_list.h:174
#define list_make2(x1, x2)
Definition: pg_list.h:214
FormData_pg_operator * Form_pg_operator
Definition: pg_operator.h:83
#define plan(x)
Definition: pg_regress.c:161
Path * get_cheapest_fractional_path(RelOptInfo *rel, double tuple_fraction)
Definition: planner.c:6483
PlannerInfo * subquery_planner(PlannerGlobal *glob, Query *parse, PlannerInfo *parent_root, bool hasRecursion, double tuple_fraction, SetOperationStmt *setops)
Definition: planner.c:647
static int64 DatumGetInt64(Datum X)
Definition: postgres.h:390
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:257
#define InvalidOid
Definition: postgres_ext.h:35
unsigned int Oid
Definition: postgres_ext.h:30
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:410
Expr * canonicalize_qual(Expr *qual, bool is_check)
Definition: prepqual.c:293
SubLinkType
Definition: primnodes.h:1013
@ ARRAY_SUBLINK
Definition: primnodes.h:1020
@ ANY_SUBLINK
Definition: primnodes.h:1016
@ MULTIEXPR_SUBLINK
Definition: primnodes.h:1019
@ CTE_SUBLINK
Definition: primnodes.h:1021
@ EXPR_SUBLINK
Definition: primnodes.h:1018
@ ROWCOMPARE_SUBLINK
Definition: primnodes.h:1017
@ ALL_SUBLINK
Definition: primnodes.h:1015
@ EXISTS_SUBLINK
Definition: primnodes.h:1014
@ PARAM_SUBLINK
Definition: primnodes.h:386
@ PARAM_EXEC
Definition: primnodes.h:385
char * psprintf(const char *fmt,...)
Definition: psprintf.c:43
tree ctl root
Definition: radixtree.h:1857
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
void OffsetVarNodes(Node *node, int offset, int sublevels_up)
Definition: rewriteManip.c:476
void CombineRangeTables(List **dst_rtable, List **dst_perminfos, List *src_rtable, List *src_perminfos)
Definition: rewriteManip.c:347
bool contain_aggs_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:85
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:928
Param * find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
Definition: setrefs.c:3519
Bitmapset * aggParams
Definition: plannodes.h:1165
Plan plan
Definition: plannodes.h:1140
AggStrategy aggstrategy
Definition: plannodes.h:1143
List * args
Definition: primnodes.h:485
Expr * aggfilter
Definition: primnodes.h:494
CTEMaterialize ctematerialized
Definition: parsenodes.h:1693
Oid consttype
Definition: primnodes.h:329
List * custom_exprs
Definition: plannodes.h:879
List * custom_plans
Definition: plannodes.h:877
List * fdw_exprs
Definition: plannodes.h:841
List * fdw_recheck_quals
Definition: plannodes.h:847
Node * quals
Definition: primnodes.h:2338
List * fromlist
Definition: primnodes.h:2337
List * functions
Definition: plannodes.h:727
Node * quals
Definition: primnodes.h:2318
JoinType jointype
Definition: primnodes.h:2309
int rtindex
Definition: primnodes.h:2322
Node * larg
Definition: primnodes.h:2311
bool isNatural
Definition: primnodes.h:2310
Node * rarg
Definition: primnodes.h:2312
Definition: pg_list.h:54
int epqParam
Definition: plannodes.h:320
List * onConflictSet
Definition: plannodes.h:326
List * returningLists
Definition: plannodes.h:312
Node * onConflictWhere
Definition: plannodes.h:330
Definition: nodes.h:135
Oid opno
Definition: primnodes.h:835
List * args
Definition: primnodes.h:853
int paramid
Definition: primnodes.h:394
ParamKind paramkind
Definition: primnodes.h:393
Cardinality rows
Definition: pathnodes.h:1796
Cost startup_cost
Definition: pathnodes.h:1798
Cost total_cost
Definition: pathnodes.h:1799
bool parallel_safe
Definition: pathnodes.h:1791
Bitmapset * extParam
Definition: plannodes.h:229
List * qual
Definition: plannodes.h:211
List * targetlist
Definition: plannodes.h:209
List * init_plans
Definition: pathnodes.h:323
Bitmapset * outer_params
Definition: pathnodes.h:245
int wt_param_id
Definition: pathnodes.h:560
List * plan_params
Definition: pathnodes.h:244
List * rowMarks
Definition: parsenodes.h:228
Node * limitCount
Definition: parsenodes.h:225
FromExpr * jointree
Definition: parsenodes.h:177
Node * setOperations
Definition: parsenodes.h:230
List * cteList
Definition: parsenodes.h:168
List * groupClause
Definition: parsenodes.h:211
Node * havingQual
Definition: parsenodes.h:216
List * rtable
Definition: parsenodes.h:170
Node * limitOffset
Definition: parsenodes.h:224
CmdType commandType
Definition: parsenodes.h:121
List * windowClause
Definition: parsenodes.h:218
List * targetList
Definition: parsenodes.h:193
List * groupingSets
Definition: parsenodes.h:214
List * distinctClause
Definition: parsenodes.h:220
List * sortClause
Definition: parsenodes.h:222
char * ctename
Definition: parsenodes.h:1210
Index ctelevelsup
Definition: parsenodes.h:1212
Query * subquery
Definition: parsenodes.h:1118
List * values_lists
Definition: parsenodes.h:1204
RTEKind rtekind
Definition: parsenodes.h:1061
bool consider_parallel
Definition: pathnodes.h:914
List * pathlist
Definition: pathnodes.h:925
struct Path * cheapest_total_path
Definition: pathnodes.h:929
List * partial_pathlist
Definition: pathnodes.h:927
PlannerInfo * subroot
Definition: pathnodes.h:980
Index scanrelid
Definition: plannodes.h:483
int plan_id
Definition: primnodes.h:1087
char * plan_name
Definition: primnodes.h:1089
List * args
Definition: primnodes.h:1108
List * paramIds
Definition: primnodes.h:1085
bool useHashTable
Definition: primnodes.h:1096
Node * testexpr
Definition: primnodes.h:1084
int32 firstColTypmod
Definition: primnodes.h:1092
List * parParam
Definition: primnodes.h:1107
bool parallel_safe
Definition: primnodes.h:1101
List * setParam
Definition: primnodes.h:1105
bool unknownEqFalse
Definition: primnodes.h:1098
Cost startup_cost
Definition: primnodes.h:1110
Oid firstColCollation
Definition: primnodes.h:1093
Cost per_call_cost
Definition: primnodes.h:1111
SubLinkType subLinkType
Definition: primnodes.h:1082
Oid firstColType
Definition: primnodes.h:1091
Plan * subplan
Definition: plannodes.h:715
Expr * expr
Definition: primnodes.h:2219
Definition: primnodes.h:262
PlannerInfo * root
Definition: subselect.c:44
PlannerInfo * root
Definition: subselect.c:56
const char * ctename
Definition: subselect.c:62
JoinExpr * convert_ANY_sublink_to_join(PlannerInfo *root, SubLink *sublink, Relids available_rels)
Definition: subselect.c:1333
static bool contain_dml_walker(Node *node, void *context)
Definition: subselect.c:1062
static bool testexpr_is_hashable(Node *testexpr, List *param_ids)
Definition: subselect.c:761
Node * SS_process_sublinks(PlannerInfo *root, Node *expr, bool isQual)
Definition: subselect.c:2026
void SS_process_ctes(PlannerInfo *root)
Definition: subselect.c:880
void SS_identify_outer_params(PlannerInfo *root)
Definition: subselect.c:2184
static bool finalize_agg_primnode(Node *node, finalize_primnode_context *context)
Definition: subselect.c:3087
static bool contain_outer_selfref(Node *node)
Definition: subselect.c:1083
static List * generate_subquery_vars(PlannerInfo *root, List *tlist, Index varno)
Definition: subselect.c:615
Node * SS_replace_correlation_vars(PlannerInfo *root, Node *expr)
Definition: subselect.c:1971
static bool contain_dml(Node *node)
Definition: subselect.c:1056
void SS_finalize_plan(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2368
static Query * convert_EXISTS_to_ANY(PlannerInfo *root, Query *subselect, Node **testexpr, List **paramIds)
Definition: subselect.c:1731
static Node * process_sublinks_mutator(Node *node, process_sublinks_context *context)
Definition: subselect.c:2036
struct process_sublinks_context process_sublinks_context
static Node * replace_correlation_vars_mutator(Node *node, PlannerInfo *root)
Definition: subselect.c:1978
static bool test_opexpr_is_hashable(OpExpr *testexpr, List *param_ids)
Definition: subselect.c:792
static List * generate_subquery_params(PlannerInfo *root, List *tlist, List **paramIds)
Definition: subselect.c:582
static Node * convert_testexpr(PlannerInfo *root, Node *testexpr, List *subst_nodes)
Definition: subselect.c:644
static bool subpath_is_hashable(Path *path)
Definition: subselect.c:736
static Node * make_subplan(PlannerInfo *root, Query *orig_subquery, SubLinkType subLinkType, int subLinkId, Node *testexpr, bool isTopQual)
Definition: subselect.c:162
static bool contain_outer_selfref_walker(Node *node, Index *depth)
Definition: subselect.c:1097
struct convert_testexpr_context convert_testexpr_context
static bool hash_ok_operator(OpExpr *expr)
Definition: subselect.c:832
ScalarArrayOpExpr * convert_VALUES_to_ANY(PlannerInfo *root, Node *testexpr, Query *values)
Definition: subselect.c:1227
static void inline_cte(PlannerInfo *root, CommonTableExpr *cte)
Definition: subselect.c:1137
static bool subplan_is_hashable(Plan *plan)
Definition: subselect.c:712
static bool simplify_EXISTS_query(PlannerInfo *root, Query *query)
Definition: subselect.c:1619
struct finalize_primnode_context finalize_primnode_context
static bool finalize_primnode(Node *node, finalize_primnode_context *context)
Definition: subselect.c:3004
static void get_first_col_type(Plan *plan, Oid *coltype, int32 *coltypmod, Oid *colcollation)
Definition: subselect.c:118
static bool inline_cte_walker(Node *node, inline_cte_walker_context *context)
Definition: subselect.c:1150
void SS_attach_initplans(PlannerInfo *root, Plan *plan)
Definition: subselect.c:2353
JoinExpr * convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, bool under_not, Relids available_rels)
Definition: subselect.c:1450
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2312
void SS_charge_for_initplans(PlannerInfo *root, RelOptInfo *final_rel)
Definition: subselect.c:2248
static Node * convert_testexpr_mutator(Node *node, convert_testexpr_context *context)
Definition: subselect.c:656
Param * SS_make_initplan_output_param(PlannerInfo *root, Oid resulttype, int32 resulttypmod, Oid resultcollation)
Definition: subselect.c:3113
struct inline_cte_walker_context inline_cte_walker_context
static Node * build_subplan(PlannerInfo *root, Plan *plan, Path *path, PlannerInfo *subroot, List *plan_params, SubLinkType subLinkType, int subLinkId, Node *testexpr, List *testexpr_paramids, bool unknownEqFalse)
Definition: subselect.c:319
void SS_make_initplan_from_plan(PlannerInfo *root, PlannerInfo *subroot, Plan *plan, Param *prm)
Definition: subselect.c:3129
static Bitmapset * finalize_plan(PlannerInfo *root, Plan *plan, int gather_param, Bitmapset *valid_params, Bitmapset *scan_params)
Definition: subselect.c:2406
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:221
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:444
bool contain_var_clause(Node *node)
Definition: var.c:406
Relids pull_varnos_of_level(PlannerInfo *root, Node *node, int levelsup)
Definition: var.c:140
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114