PostgreSQL Source Code  git master
relnode.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * relnode.c
4  * Relation-node lookup/construction routines
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/optimizer/util/relnode.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <limits.h>
18 
19 #include "miscadmin.h"
20 #include "nodes/nodeFuncs.h"
21 #include "optimizer/appendinfo.h"
22 #include "optimizer/clauses.h"
23 #include "optimizer/cost.h"
24 #include "optimizer/inherit.h"
25 #include "optimizer/pathnode.h"
26 #include "optimizer/paths.h"
27 #include "optimizer/placeholder.h"
28 #include "optimizer/plancat.h"
29 #include "optimizer/restrictinfo.h"
30 #include "optimizer/tlist.h"
31 #include "utils/hsearch.h"
32 #include "utils/lsyscache.h"
33 
34 
35 typedef struct JoinHashEntry
36 {
37  Relids join_relids; /* hash key --- MUST BE FIRST */
40 
41 static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
42  RelOptInfo *input_rel);
44  RelOptInfo *joinrel,
45  RelOptInfo *outer_rel,
46  RelOptInfo *inner_rel);
47 static void build_joinrel_joinlist(RelOptInfo *joinrel,
48  RelOptInfo *outer_rel,
49  RelOptInfo *inner_rel);
51  List *joininfo_list,
52  List *new_restrictlist);
54  List *joininfo_list,
55  List *new_joininfo);
56 static void set_foreign_rel_properties(RelOptInfo *joinrel,
57  RelOptInfo *outer_rel, RelOptInfo *inner_rel);
58 static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
59 static void build_joinrel_partition_info(RelOptInfo *joinrel,
60  RelOptInfo *outer_rel, RelOptInfo *inner_rel,
61  List *restrictlist, JoinType jointype);
62 static bool have_partkey_equi_join(RelOptInfo *joinrel,
63  RelOptInfo *rel1, RelOptInfo *rel2,
64  JoinType jointype, List *restrictlist);
65 static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel,
66  bool strict_op);
67 static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
68  RelOptInfo *outer_rel, RelOptInfo *inner_rel,
69  JoinType jointype);
70 static void build_child_join_reltarget(PlannerInfo *root,
71  RelOptInfo *parentrel,
72  RelOptInfo *childrel,
73  int nappinfos,
74  AppendRelInfo **appinfos);
75 
76 
77 /*
78  * setup_simple_rel_arrays
79  * Prepare the arrays we use for quickly accessing base relations
80  * and AppendRelInfos.
81  */
82 void
84 {
85  int size;
86  Index rti;
87  ListCell *lc;
88 
89  /* Arrays are accessed using RT indexes (1..N) */
90  size = list_length(root->parse->rtable) + 1;
91  root->simple_rel_array_size = size;
92 
93  /*
94  * simple_rel_array is initialized to all NULLs, since no RelOptInfos
95  * exist yet. It'll be filled by later calls to build_simple_rel().
96  */
97  root->simple_rel_array = (RelOptInfo **)
98  palloc0(size * sizeof(RelOptInfo *));
99 
100  /* simple_rte_array is an array equivalent of the rtable list */
101  root->simple_rte_array = (RangeTblEntry **)
102  palloc0(size * sizeof(RangeTblEntry *));
103  rti = 1;
104  foreach(lc, root->parse->rtable)
105  {
106  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
107 
108  root->simple_rte_array[rti++] = rte;
109  }
110 
111  /* append_rel_array is not needed if there are no AppendRelInfos */
112  if (root->append_rel_list == NIL)
113  {
114  root->append_rel_array = NULL;
115  return;
116  }
117 
118  root->append_rel_array = (AppendRelInfo **)
119  palloc0(size * sizeof(AppendRelInfo *));
120 
121  /*
122  * append_rel_array is filled with any already-existing AppendRelInfos,
123  * which currently could only come from UNION ALL flattening. We might
124  * add more later during inheritance expansion, but it's the
125  * responsibility of the expansion code to update the array properly.
126  */
127  foreach(lc, root->append_rel_list)
128  {
129  AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
130  int child_relid = appinfo->child_relid;
131 
132  /* Sanity check */
133  Assert(child_relid < size);
134 
135  if (root->append_rel_array[child_relid])
136  elog(ERROR, "child relation already exists");
137 
138  root->append_rel_array[child_relid] = appinfo;
139  }
140 }
141 
142 /*
143  * expand_planner_arrays
144  * Expand the PlannerInfo's per-RTE arrays by add_size members
145  * and initialize the newly added entries to NULLs
146  *
147  * Note: this causes the append_rel_array to become allocated even if
148  * it was not before. This is okay for current uses, because we only call
149  * this when adding child relations, which always have AppendRelInfos.
150  */
151 void
153 {
154  int new_size;
155 
156  Assert(add_size > 0);
157 
158  new_size = root->simple_rel_array_size + add_size;
159 
160  root->simple_rel_array = (RelOptInfo **)
162  sizeof(RelOptInfo *) * new_size);
164  0, sizeof(RelOptInfo *) * add_size);
165 
166  root->simple_rte_array = (RangeTblEntry **)
168  sizeof(RangeTblEntry *) * new_size);
170  0, sizeof(RangeTblEntry *) * add_size);
171 
172  if (root->append_rel_array)
173  {
174  root->append_rel_array = (AppendRelInfo **)
176  sizeof(AppendRelInfo *) * new_size);
178  0, sizeof(AppendRelInfo *) * add_size);
179  }
180  else
181  {
182  root->append_rel_array = (AppendRelInfo **)
183  palloc0(sizeof(AppendRelInfo *) * new_size);
184  }
185 
186  root->simple_rel_array_size = new_size;
187 }
188 
189 /*
190  * build_simple_rel
191  * Construct a new RelOptInfo for a base relation or 'other' relation.
192  */
193 RelOptInfo *
194 build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
195 {
196  RelOptInfo *rel;
197  RangeTblEntry *rte;
198 
199  /* Rel should not exist already */
200  Assert(relid > 0 && relid < root->simple_rel_array_size);
201  if (root->simple_rel_array[relid] != NULL)
202  elog(ERROR, "rel %d already exists", relid);
203 
204  /* Fetch RTE for relation */
205  rte = root->simple_rte_array[relid];
206  Assert(rte != NULL);
207 
208  rel = makeNode(RelOptInfo);
210  rel->relids = bms_make_singleton(relid);
211  rel->rows = 0;
212  /* cheap startup cost is interesting iff not all tuples to be retrieved */
213  rel->consider_startup = (root->tuple_fraction > 0);
214  rel->consider_param_startup = false; /* might get changed later */
215  rel->consider_parallel = false; /* might get changed later */
217  rel->pathlist = NIL;
218  rel->ppilist = NIL;
219  rel->partial_pathlist = NIL;
220  rel->cheapest_startup_path = NULL;
221  rel->cheapest_total_path = NULL;
222  rel->cheapest_unique_path = NULL;
224  rel->relid = relid;
225  rel->rtekind = rte->rtekind;
226  /* min_attr, max_attr, attr_needed, attr_widths are set below */
227  rel->lateral_vars = NIL;
228  rel->indexlist = NIL;
229  rel->statlist = NIL;
230  rel->pages = 0;
231  rel->tuples = 0;
232  rel->allvisfrac = 0;
233  rel->eclass_indexes = NULL;
234  rel->subroot = NULL;
235  rel->subplan_params = NIL;
236  rel->rel_parallel_workers = -1; /* set up in get_relation_info */
237  rel->amflags = 0;
238  rel->serverid = InvalidOid;
239  rel->userid = rte->checkAsUser;
240  rel->useridiscurrent = false;
241  rel->fdwroutine = NULL;
242  rel->fdw_private = NULL;
243  rel->unique_for_rels = NIL;
244  rel->non_unique_for_rels = NIL;
245  rel->baserestrictinfo = NIL;
246  rel->baserestrictcost.startup = 0;
247  rel->baserestrictcost.per_tuple = 0;
248  rel->baserestrict_min_security = UINT_MAX;
249  rel->joininfo = NIL;
250  rel->has_eclass_joins = false;
251  rel->consider_partitionwise_join = false; /* might get changed later */
252  rel->part_scheme = NULL;
253  rel->nparts = -1;
254  rel->boundinfo = NULL;
255  rel->partbounds_merged = false;
256  rel->partition_qual = NIL;
257  rel->part_rels = NULL;
258  rel->all_partrels = NULL;
259  rel->partexprs = NULL;
260  rel->nullable_partexprs = NULL;
261 
262  /*
263  * Pass assorted information down the inheritance hierarchy.
264  */
265  if (parent)
266  {
267  /*
268  * Each direct or indirect child wants to know the relids of its
269  * topmost parent.
270  */
271  if (parent->top_parent_relids)
272  rel->top_parent_relids = parent->top_parent_relids;
273  else
274  rel->top_parent_relids = bms_copy(parent->relids);
275 
276  /*
277  * Also propagate lateral-reference information from appendrel parent
278  * rels to their child rels. We intentionally give each child rel the
279  * same minimum parameterization, even though it's quite possible that
280  * some don't reference all the lateral rels. This is because any
281  * append path for the parent will have to have the same
282  * parameterization for every child anyway, and there's no value in
283  * forcing extra reparameterize_path() calls. Similarly, a lateral
284  * reference to the parent prevents use of otherwise-movable join rels
285  * for each child.
286  *
287  * It's possible for child rels to have their own children, in which
288  * case the topmost parent's lateral info propagates all the way down.
289  */
291  rel->lateral_relids = parent->lateral_relids;
293  }
294  else
295  {
296  rel->top_parent_relids = NULL;
297  rel->direct_lateral_relids = NULL;
298  rel->lateral_relids = NULL;
299  rel->lateral_referencers = NULL;
300  }
301 
302  /* Check type of rtable entry */
303  switch (rte->rtekind)
304  {
305  case RTE_RELATION:
306  /* Table --- retrieve statistics from the system catalogs */
307  get_relation_info(root, rte->relid, rte->inh, rel);
308  break;
309  case RTE_SUBQUERY:
310  case RTE_FUNCTION:
311  case RTE_TABLEFUNC:
312  case RTE_VALUES:
313  case RTE_CTE:
314  case RTE_NAMEDTUPLESTORE:
315 
316  /*
317  * Subquery, function, tablefunc, values list, CTE, or ENR --- set
318  * up attr range and arrays
319  *
320  * Note: 0 is included in range to support whole-row Vars
321  */
322  rel->min_attr = 0;
323  rel->max_attr = list_length(rte->eref->colnames);
324  rel->attr_needed = (Relids *)
325  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
326  rel->attr_widths = (int32 *)
327  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
328  break;
329  case RTE_RESULT:
330  /* RTE_RESULT has no columns, nor could it have whole-row Var */
331  rel->min_attr = 0;
332  rel->max_attr = -1;
333  rel->attr_needed = NULL;
334  rel->attr_widths = NULL;
335  break;
336  default:
337  elog(ERROR, "unrecognized RTE kind: %d",
338  (int) rte->rtekind);
339  break;
340  }
341 
342  /*
343  * Copy the parent's quals to the child, with appropriate substitution of
344  * variables. If any constant false or NULL clauses turn up, we can mark
345  * the child as dummy right away. (We must do this immediately so that
346  * pruning works correctly when recursing in expand_partitioned_rtentry.)
347  */
348  if (parent)
349  {
350  AppendRelInfo *appinfo = root->append_rel_array[relid];
351 
352  Assert(appinfo != NULL);
353  if (!apply_child_basequals(root, parent, rel, rte, appinfo))
354  {
355  /*
356  * Some restriction clause reduced to constant FALSE or NULL after
357  * substitution, so this child need not be scanned.
358  */
359  mark_dummy_rel(rel);
360  }
361  }
362 
363  /* Save the finished struct in the query's simple_rel_array */
364  root->simple_rel_array[relid] = rel;
365 
366  return rel;
367 }
368 
369 /*
370  * find_base_rel
371  * Find a base or other relation entry, which must already exist.
372  */
373 RelOptInfo *
374 find_base_rel(PlannerInfo *root, int relid)
375 {
376  RelOptInfo *rel;
377 
378  Assert(relid > 0);
379 
380  if (relid < root->simple_rel_array_size)
381  {
382  rel = root->simple_rel_array[relid];
383  if (rel)
384  return rel;
385  }
386 
387  elog(ERROR, "no relation entry for relid %d", relid);
388 
389  return NULL; /* keep compiler quiet */
390 }
391 
392 /*
393  * build_join_rel_hash
394  * Construct the auxiliary hash table for join relations.
395  */
396 static void
398 {
399  HTAB *hashtab;
400  HASHCTL hash_ctl;
401  ListCell *l;
402 
403  /* Create the hash table */
404  hash_ctl.keysize = sizeof(Relids);
405  hash_ctl.entrysize = sizeof(JoinHashEntry);
406  hash_ctl.hash = bitmap_hash;
407  hash_ctl.match = bitmap_match;
408  hash_ctl.hcxt = CurrentMemoryContext;
409  hashtab = hash_create("JoinRelHashTable",
410  256L,
411  &hash_ctl,
413 
414  /* Insert all the already-existing joinrels */
415  foreach(l, root->join_rel_list)
416  {
417  RelOptInfo *rel = (RelOptInfo *) lfirst(l);
418  JoinHashEntry *hentry;
419  bool found;
420 
421  hentry = (JoinHashEntry *) hash_search(hashtab,
422  &(rel->relids),
423  HASH_ENTER,
424  &found);
425  Assert(!found);
426  hentry->join_rel = rel;
427  }
428 
429  root->join_rel_hash = hashtab;
430 }
431 
432 /*
433  * find_join_rel
434  * Returns relation entry corresponding to 'relids' (a set of RT indexes),
435  * or NULL if none exists. This is for join relations.
436  */
437 RelOptInfo *
439 {
440  /*
441  * Switch to using hash lookup when list grows "too long". The threshold
442  * is arbitrary and is known only here.
443  */
444  if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
445  build_join_rel_hash(root);
446 
447  /*
448  * Use either hashtable lookup or linear search, as appropriate.
449  *
450  * Note: the seemingly redundant hashkey variable is used to avoid taking
451  * the address of relids; unless the compiler is exceedingly smart, doing
452  * so would force relids out of a register and thus probably slow down the
453  * list-search case.
454  */
455  if (root->join_rel_hash)
456  {
457  Relids hashkey = relids;
458  JoinHashEntry *hentry;
459 
460  hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
461  &hashkey,
462  HASH_FIND,
463  NULL);
464  if (hentry)
465  return hentry->join_rel;
466  }
467  else
468  {
469  ListCell *l;
470 
471  foreach(l, root->join_rel_list)
472  {
473  RelOptInfo *rel = (RelOptInfo *) lfirst(l);
474 
475  if (bms_equal(rel->relids, relids))
476  return rel;
477  }
478  }
479 
480  return NULL;
481 }
482 
483 /*
484  * set_foreign_rel_properties
485  * Set up foreign-join fields if outer and inner relation are foreign
486  * tables (or joins) belonging to the same server and assigned to the same
487  * user to check access permissions as.
488  *
489  * In addition to an exact match of userid, we allow the case where one side
490  * has zero userid (implying current user) and the other side has explicit
491  * userid that happens to equal the current user; but in that case, pushdown of
492  * the join is only valid for the current user. The useridiscurrent field
493  * records whether we had to make such an assumption for this join or any
494  * sub-join.
495  *
496  * Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
497  * called for the join relation.
498  *
499  */
500 static void
502  RelOptInfo *inner_rel)
503 {
504  if (OidIsValid(outer_rel->serverid) &&
505  inner_rel->serverid == outer_rel->serverid)
506  {
507  if (inner_rel->userid == outer_rel->userid)
508  {
509  joinrel->serverid = outer_rel->serverid;
510  joinrel->userid = outer_rel->userid;
511  joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
512  joinrel->fdwroutine = outer_rel->fdwroutine;
513  }
514  else if (!OidIsValid(inner_rel->userid) &&
515  outer_rel->userid == GetUserId())
516  {
517  joinrel->serverid = outer_rel->serverid;
518  joinrel->userid = outer_rel->userid;
519  joinrel->useridiscurrent = true;
520  joinrel->fdwroutine = outer_rel->fdwroutine;
521  }
522  else if (!OidIsValid(outer_rel->userid) &&
523  inner_rel->userid == GetUserId())
524  {
525  joinrel->serverid = outer_rel->serverid;
526  joinrel->userid = inner_rel->userid;
527  joinrel->useridiscurrent = true;
528  joinrel->fdwroutine = outer_rel->fdwroutine;
529  }
530  }
531 }
532 
533 /*
534  * add_join_rel
535  * Add given join relation to the list of join relations in the given
536  * PlannerInfo. Also add it to the auxiliary hashtable if there is one.
537  */
538 static void
540 {
541  /* GEQO requires us to append the new joinrel to the end of the list! */
542  root->join_rel_list = lappend(root->join_rel_list, joinrel);
543 
544  /* store it into the auxiliary hashtable if there is one. */
545  if (root->join_rel_hash)
546  {
547  JoinHashEntry *hentry;
548  bool found;
549 
550  hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
551  &(joinrel->relids),
552  HASH_ENTER,
553  &found);
554  Assert(!found);
555  hentry->join_rel = joinrel;
556  }
557 }
558 
559 /*
560  * build_join_rel
561  * Returns relation entry corresponding to the union of two given rels,
562  * creating a new relation entry if none already exists.
563  *
564  * 'joinrelids' is the Relids set that uniquely identifies the join
565  * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
566  * joined
567  * 'sjinfo': join context info
568  * 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr
569  * receives the list of RestrictInfo nodes that apply to this
570  * particular pair of joinable relations.
571  *
572  * restrictlist_ptr makes the routine's API a little grotty, but it saves
573  * duplicated calculation of the restrictlist...
574  */
575 RelOptInfo *
577  Relids joinrelids,
578  RelOptInfo *outer_rel,
579  RelOptInfo *inner_rel,
580  SpecialJoinInfo *sjinfo,
581  List **restrictlist_ptr)
582 {
583  RelOptInfo *joinrel;
584  List *restrictlist;
585 
586  /* This function should be used only for join between parents. */
587  Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
588 
589  /*
590  * See if we already have a joinrel for this set of base rels.
591  */
592  joinrel = find_join_rel(root, joinrelids);
593 
594  if (joinrel)
595  {
596  /*
597  * Yes, so we only need to figure the restrictlist for this particular
598  * pair of component relations.
599  */
600  if (restrictlist_ptr)
601  *restrictlist_ptr = build_joinrel_restrictlist(root,
602  joinrel,
603  outer_rel,
604  inner_rel);
605  return joinrel;
606  }
607 
608  /*
609  * Nope, so make one.
610  */
611  joinrel = makeNode(RelOptInfo);
612  joinrel->reloptkind = RELOPT_JOINREL;
613  joinrel->relids = bms_copy(joinrelids);
614  joinrel->rows = 0;
615  /* cheap startup cost is interesting iff not all tuples to be retrieved */
616  joinrel->consider_startup = (root->tuple_fraction > 0);
617  joinrel->consider_param_startup = false;
618  joinrel->consider_parallel = false;
619  joinrel->reltarget = create_empty_pathtarget();
620  joinrel->pathlist = NIL;
621  joinrel->ppilist = NIL;
622  joinrel->partial_pathlist = NIL;
623  joinrel->cheapest_startup_path = NULL;
624  joinrel->cheapest_total_path = NULL;
625  joinrel->cheapest_unique_path = NULL;
627  /* init direct_lateral_relids from children; we'll finish it up below */
628  joinrel->direct_lateral_relids =
629  bms_union(outer_rel->direct_lateral_relids,
630  inner_rel->direct_lateral_relids);
631  joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids,
632  outer_rel, inner_rel);
633  joinrel->relid = 0; /* indicates not a baserel */
634  joinrel->rtekind = RTE_JOIN;
635  joinrel->min_attr = 0;
636  joinrel->max_attr = 0;
637  joinrel->attr_needed = NULL;
638  joinrel->attr_widths = NULL;
639  joinrel->lateral_vars = NIL;
640  joinrel->lateral_referencers = NULL;
641  joinrel->indexlist = NIL;
642  joinrel->statlist = NIL;
643  joinrel->pages = 0;
644  joinrel->tuples = 0;
645  joinrel->allvisfrac = 0;
646  joinrel->eclass_indexes = NULL;
647  joinrel->subroot = NULL;
648  joinrel->subplan_params = NIL;
649  joinrel->rel_parallel_workers = -1;
650  joinrel->amflags = 0;
651  joinrel->serverid = InvalidOid;
652  joinrel->userid = InvalidOid;
653  joinrel->useridiscurrent = false;
654  joinrel->fdwroutine = NULL;
655  joinrel->fdw_private = NULL;
656  joinrel->unique_for_rels = NIL;
657  joinrel->non_unique_for_rels = NIL;
658  joinrel->baserestrictinfo = NIL;
659  joinrel->baserestrictcost.startup = 0;
660  joinrel->baserestrictcost.per_tuple = 0;
661  joinrel->baserestrict_min_security = UINT_MAX;
662  joinrel->joininfo = NIL;
663  joinrel->has_eclass_joins = false;
664  joinrel->consider_partitionwise_join = false; /* might get changed later */
665  joinrel->top_parent_relids = NULL;
666  joinrel->part_scheme = NULL;
667  joinrel->nparts = -1;
668  joinrel->boundinfo = NULL;
669  joinrel->partbounds_merged = false;
670  joinrel->partition_qual = NIL;
671  joinrel->part_rels = NULL;
672  joinrel->all_partrels = NULL;
673  joinrel->partexprs = NULL;
674  joinrel->nullable_partexprs = NULL;
675 
676  /* Compute information relevant to the foreign relations. */
677  set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
678 
679  /*
680  * Create a new tlist containing just the vars that need to be output from
681  * this join (ie, are needed for higher joinclauses or final output).
682  *
683  * NOTE: the tlist order for a join rel will depend on which pair of outer
684  * and inner rels we first try to build it from. But the contents should
685  * be the same regardless.
686  */
687  build_joinrel_tlist(root, joinrel, outer_rel);
688  build_joinrel_tlist(root, joinrel, inner_rel);
689  add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel);
690 
691  /*
692  * add_placeholders_to_joinrel also took care of adding the ph_lateral
693  * sets of any PlaceHolderVars computed here to direct_lateral_relids, so
694  * now we can finish computing that. This is much like the computation of
695  * the transitively-closed lateral_relids in min_join_parameterization,
696  * except that here we *do* have to consider the added PHVs.
697  */
698  joinrel->direct_lateral_relids =
699  bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
700  if (bms_is_empty(joinrel->direct_lateral_relids))
701  joinrel->direct_lateral_relids = NULL;
702 
703  /*
704  * Construct restrict and join clause lists for the new joinrel. (The
705  * caller might or might not need the restrictlist, but I need it anyway
706  * for set_joinrel_size_estimates().)
707  */
708  restrictlist = build_joinrel_restrictlist(root, joinrel,
709  outer_rel, inner_rel);
710  if (restrictlist_ptr)
711  *restrictlist_ptr = restrictlist;
712  build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
713 
714  /*
715  * This is also the right place to check whether the joinrel has any
716  * pending EquivalenceClass joins.
717  */
718  joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel);
719 
720  /* Store the partition information. */
721  build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist,
722  sjinfo->jointype);
723 
724  /*
725  * Set estimates of the joinrel's size.
726  */
727  set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
728  sjinfo, restrictlist);
729 
730  /*
731  * Set the consider_parallel flag if this joinrel could potentially be
732  * scanned within a parallel worker. If this flag is false for either
733  * inner_rel or outer_rel, then it must be false for the joinrel also.
734  * Even if both are true, there might be parallel-restricted expressions
735  * in the targetlist or quals.
736  *
737  * Note that if there are more than two rels in this relation, they could
738  * be divided between inner_rel and outer_rel in any arbitrary way. We
739  * assume this doesn't matter, because we should hit all the same baserels
740  * and joinclauses while building up to this joinrel no matter which we
741  * take; therefore, we should make the same decision here however we get
742  * here.
743  */
744  if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
745  is_parallel_safe(root, (Node *) restrictlist) &&
746  is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
747  joinrel->consider_parallel = true;
748 
749  /* Add the joinrel to the PlannerInfo. */
750  add_join_rel(root, joinrel);
751 
752  /*
753  * Also, if dynamic-programming join search is active, add the new joinrel
754  * to the appropriate sublist. Note: you might think the Assert on number
755  * of members should be for equality, but some of the level 1 rels might
756  * have been joinrels already, so we can only assert <=.
757  */
758  if (root->join_rel_level)
759  {
760  Assert(root->join_cur_level > 0);
761  Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
762  root->join_rel_level[root->join_cur_level] =
763  lappend(root->join_rel_level[root->join_cur_level], joinrel);
764  }
765 
766  return joinrel;
767 }
768 
769 /*
770  * build_child_join_rel
771  * Builds RelOptInfo representing join between given two child relations.
772  *
773  * 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
774  * joined
775  * 'parent_joinrel' is the RelOptInfo representing the join between parent
776  * relations. Some of the members of new RelOptInfo are produced by
777  * translating corresponding members of this RelOptInfo
778  * 'sjinfo': child-join context info
779  * 'restrictlist': list of RestrictInfo nodes that apply to this particular
780  * pair of joinable relations
781  * 'jointype' is the join type (inner, left, full, etc)
782  */
783 RelOptInfo *
785  RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
786  List *restrictlist, SpecialJoinInfo *sjinfo,
787  JoinType jointype)
788 {
789  RelOptInfo *joinrel = makeNode(RelOptInfo);
790  AppendRelInfo **appinfos;
791  int nappinfos;
792 
793  /* Only joins between "other" relations land here. */
794  Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
795 
796  /* The parent joinrel should have consider_partitionwise_join set. */
797  Assert(parent_joinrel->consider_partitionwise_join);
798 
799  joinrel->reloptkind = RELOPT_OTHER_JOINREL;
800  joinrel->relids = bms_union(outer_rel->relids, inner_rel->relids);
801  joinrel->rows = 0;
802  /* cheap startup cost is interesting iff not all tuples to be retrieved */
803  joinrel->consider_startup = (root->tuple_fraction > 0);
804  joinrel->consider_param_startup = false;
805  joinrel->consider_parallel = false;
806  joinrel->reltarget = create_empty_pathtarget();
807  joinrel->pathlist = NIL;
808  joinrel->ppilist = NIL;
809  joinrel->partial_pathlist = NIL;
810  joinrel->cheapest_startup_path = NULL;
811  joinrel->cheapest_total_path = NULL;
812  joinrel->cheapest_unique_path = NULL;
814  joinrel->direct_lateral_relids = NULL;
815  joinrel->lateral_relids = NULL;
816  joinrel->relid = 0; /* indicates not a baserel */
817  joinrel->rtekind = RTE_JOIN;
818  joinrel->min_attr = 0;
819  joinrel->max_attr = 0;
820  joinrel->attr_needed = NULL;
821  joinrel->attr_widths = NULL;
822  joinrel->lateral_vars = NIL;
823  joinrel->lateral_referencers = NULL;
824  joinrel->indexlist = NIL;
825  joinrel->pages = 0;
826  joinrel->tuples = 0;
827  joinrel->allvisfrac = 0;
828  joinrel->eclass_indexes = NULL;
829  joinrel->subroot = NULL;
830  joinrel->subplan_params = NIL;
831  joinrel->amflags = 0;
832  joinrel->serverid = InvalidOid;
833  joinrel->userid = InvalidOid;
834  joinrel->useridiscurrent = false;
835  joinrel->fdwroutine = NULL;
836  joinrel->fdw_private = NULL;
837  joinrel->baserestrictinfo = NIL;
838  joinrel->baserestrictcost.startup = 0;
839  joinrel->baserestrictcost.per_tuple = 0;
840  joinrel->joininfo = NIL;
841  joinrel->has_eclass_joins = false;
842  joinrel->consider_partitionwise_join = false; /* might get changed later */
843  joinrel->top_parent_relids = NULL;
844  joinrel->part_scheme = NULL;
845  joinrel->nparts = -1;
846  joinrel->boundinfo = NULL;
847  joinrel->partbounds_merged = false;
848  joinrel->partition_qual = NIL;
849  joinrel->part_rels = NULL;
850  joinrel->all_partrels = NULL;
851  joinrel->partexprs = NULL;
852  joinrel->nullable_partexprs = NULL;
853 
854  joinrel->top_parent_relids = bms_union(outer_rel->top_parent_relids,
855  inner_rel->top_parent_relids);
856 
857  /* Compute information relevant to foreign relations. */
858  set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
859 
860  /* Compute information needed for mapping Vars to the child rel */
861  appinfos = find_appinfos_by_relids(root, joinrel->relids, &nappinfos);
862 
863  /* Set up reltarget struct */
864  build_child_join_reltarget(root, parent_joinrel, joinrel,
865  nappinfos, appinfos);
866 
867  /* Construct joininfo list. */
868  joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
869  (Node *) parent_joinrel->joininfo,
870  nappinfos,
871  appinfos);
872 
873  /*
874  * Lateral relids referred in child join will be same as that referred in
875  * the parent relation.
876  */
877  joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
878  joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
879 
880  /*
881  * If the parent joinrel has pending equivalence classes, so does the
882  * child.
883  */
884  joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
885 
886  /* Is the join between partitions itself partitioned? */
887  build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist,
888  jointype);
889 
890  /* Child joinrel is parallel safe if parent is parallel safe. */
891  joinrel->consider_parallel = parent_joinrel->consider_parallel;
892 
893  /* Set estimates of the child-joinrel's size. */
894  set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
895  sjinfo, restrictlist);
896 
897  /* We build the join only once. */
898  Assert(!find_join_rel(root, joinrel->relids));
899 
900  /* Add the relation to the PlannerInfo. */
901  add_join_rel(root, joinrel);
902 
903  /*
904  * We might need EquivalenceClass members corresponding to the child join,
905  * so that we can represent sort pathkeys for it. As with children of
906  * baserels, we shouldn't need this unless there are relevant eclass joins
907  * (implying that a merge join might be possible) or pathkeys to sort by.
908  */
909  if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
911  nappinfos, appinfos,
912  parent_joinrel, joinrel);
913 
914  pfree(appinfos);
915 
916  return joinrel;
917 }
918 
919 /*
920  * min_join_parameterization
921  *
922  * Determine the minimum possible parameterization of a joinrel, that is, the
923  * set of other rels it contains LATERAL references to. We save this value in
924  * the join's RelOptInfo. This function is split out of build_join_rel()
925  * because join_is_legal() needs the value to check a prospective join.
926  */
927 Relids
929  Relids joinrelids,
930  RelOptInfo *outer_rel,
931  RelOptInfo *inner_rel)
932 {
933  Relids result;
934 
935  /*
936  * Basically we just need the union of the inputs' lateral_relids, less
937  * whatever is already in the join.
938  *
939  * It's not immediately obvious that this is a valid way to compute the
940  * result, because it might seem that we're ignoring possible lateral refs
941  * of PlaceHolderVars that are due to be computed at the join but not in
942  * either input. However, because create_lateral_join_info() already
943  * charged all such PHV refs to each member baserel of the join, they'll
944  * be accounted for already in the inputs' lateral_relids. Likewise, we
945  * do not need to worry about doing transitive closure here, because that
946  * was already accounted for in the original baserel lateral_relids.
947  */
948  result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
949  result = bms_del_members(result, joinrelids);
950 
951  /* Maintain invariant that result is exactly NULL if empty */
952  if (bms_is_empty(result))
953  result = NULL;
954 
955  return result;
956 }
957 
958 /*
959  * build_joinrel_tlist
960  * Builds a join relation's target list from an input relation.
961  * (This is invoked twice to handle the two input relations.)
962  *
963  * The join's targetlist includes all Vars of its member relations that
964  * will still be needed above the join. This subroutine adds all such
965  * Vars from the specified input rel's tlist to the join rel's tlist.
966  *
967  * We also compute the expected width of the join's output, making use
968  * of data that was cached at the baserel level by set_rel_width().
969  */
970 static void
972  RelOptInfo *input_rel)
973 {
974  Relids relids = joinrel->relids;
975  ListCell *vars;
976 
977  foreach(vars, input_rel->reltarget->exprs)
978  {
979  Var *var = (Var *) lfirst(vars);
980 
981  /*
982  * Ignore PlaceHolderVars in the input tlists; we'll make our own
983  * decisions about whether to copy them.
984  */
985  if (IsA(var, PlaceHolderVar))
986  continue;
987 
988  /*
989  * Otherwise, anything in a baserel or joinrel targetlist ought to be
990  * a Var. (More general cases can only appear in appendrel child
991  * rels, which will never be seen here.)
992  */
993  if (!IsA(var, Var))
994  elog(ERROR, "unexpected node type in rel targetlist: %d",
995  (int) nodeTag(var));
996 
997  if (var->varno == ROWID_VAR)
998  {
999  /* UPDATE/DELETE row identity vars are always needed */
1000  RowIdentityVarInfo *ridinfo = (RowIdentityVarInfo *)
1001  list_nth(root->row_identity_vars, var->varattno - 1);
1002 
1003  joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
1004  var);
1005  /* Vars have cost zero, so no need to adjust reltarget->cost */
1006  joinrel->reltarget->width += ridinfo->rowidwidth;
1007  }
1008  else
1009  {
1010  RelOptInfo *baserel;
1011  int ndx;
1012 
1013  /* Get the Var's original base rel */
1014  baserel = find_base_rel(root, var->varno);
1015 
1016  /* Is it still needed above this joinrel? */
1017  ndx = var->varattno - baserel->min_attr;
1018  if (bms_nonempty_difference(baserel->attr_needed[ndx], relids))
1019  {
1020  /* Yup, add it to the output */
1021  joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
1022  var);
1023  /* Vars have cost zero, so no need to adjust reltarget->cost */
1024  joinrel->reltarget->width += baserel->attr_widths[ndx];
1025  }
1026  }
1027  }
1028 }
1029 
1030 /*
1031  * build_joinrel_restrictlist
1032  * build_joinrel_joinlist
1033  * These routines build lists of restriction and join clauses for a
1034  * join relation from the joininfo lists of the relations it joins.
1035  *
1036  * These routines are separate because the restriction list must be
1037  * built afresh for each pair of input sub-relations we consider, whereas
1038  * the join list need only be computed once for any join RelOptInfo.
1039  * The join list is fully determined by the set of rels making up the
1040  * joinrel, so we should get the same results (up to ordering) from any
1041  * candidate pair of sub-relations. But the restriction list is whatever
1042  * is not handled in the sub-relations, so it depends on which
1043  * sub-relations are considered.
1044  *
1045  * If a join clause from an input relation refers to base rels still not
1046  * present in the joinrel, then it is still a join clause for the joinrel;
1047  * we put it into the joininfo list for the joinrel. Otherwise,
1048  * the clause is now a restrict clause for the joined relation, and we
1049  * return it to the caller of build_joinrel_restrictlist() to be stored in
1050  * join paths made from this pair of sub-relations. (It will not need to
1051  * be considered further up the join tree.)
1052  *
1053  * In many cases we will find the same RestrictInfos in both input
1054  * relations' joinlists, so be careful to eliminate duplicates.
1055  * Pointer equality should be a sufficient test for dups, since all
1056  * the various joinlist entries ultimately refer to RestrictInfos
1057  * pushed into them by distribute_restrictinfo_to_rels().
1058  *
1059  * 'joinrel' is a join relation node
1060  * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
1061  * to form joinrel.
1062  *
1063  * build_joinrel_restrictlist() returns a list of relevant restrictinfos,
1064  * whereas build_joinrel_joinlist() stores its results in the joinrel's
1065  * joininfo list. One or the other must accept each given clause!
1066  *
1067  * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
1068  * up to the join relation. I believe this is no longer necessary, because
1069  * RestrictInfo nodes are no longer context-dependent. Instead, just include
1070  * the original nodes in the lists made for the join relation.
1071  */
1072 static List *
1074  RelOptInfo *joinrel,
1075  RelOptInfo *outer_rel,
1076  RelOptInfo *inner_rel)
1077 {
1078  List *result;
1079 
1080  /*
1081  * Collect all the clauses that syntactically belong at this level,
1082  * eliminating any duplicates (important since we will see many of the
1083  * same clauses arriving from both input relations).
1084  */
1085  result = subbuild_joinrel_restrictlist(joinrel, outer_rel->joininfo, NIL);
1086  result = subbuild_joinrel_restrictlist(joinrel, inner_rel->joininfo, result);
1087 
1088  /*
1089  * Add on any clauses derived from EquivalenceClasses. These cannot be
1090  * redundant with the clauses in the joininfo lists, so don't bother
1091  * checking.
1092  */
1093  result = list_concat(result,
1095  joinrel->relids,
1096  outer_rel->relids,
1097  inner_rel));
1098 
1099  return result;
1100 }
1101 
1102 static void
1104  RelOptInfo *outer_rel,
1105  RelOptInfo *inner_rel)
1106 {
1107  List *result;
1108 
1109  /*
1110  * Collect all the clauses that syntactically belong above this level,
1111  * eliminating any duplicates (important since we will see many of the
1112  * same clauses arriving from both input relations).
1113  */
1114  result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
1115  result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
1116 
1117  joinrel->joininfo = result;
1118 }
1119 
1120 static List *
1122  List *joininfo_list,
1123  List *new_restrictlist)
1124 {
1125  ListCell *l;
1126 
1127  foreach(l, joininfo_list)
1128  {
1129  RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1130 
1131  if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1132  {
1133  /*
1134  * This clause becomes a restriction clause for the joinrel, since
1135  * it refers to no outside rels. Add it to the list, being
1136  * careful to eliminate duplicates. (Since RestrictInfo nodes in
1137  * different joinlists will have been multiply-linked rather than
1138  * copied, pointer equality should be a sufficient test.)
1139  */
1140  new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
1141  }
1142  else
1143  {
1144  /*
1145  * This clause is still a join clause at this level, so we ignore
1146  * it in this routine.
1147  */
1148  }
1149  }
1150 
1151  return new_restrictlist;
1152 }
1153 
1154 static List *
1156  List *joininfo_list,
1157  List *new_joininfo)
1158 {
1159  ListCell *l;
1160 
1161  /* Expected to be called only for join between parent relations. */
1162  Assert(joinrel->reloptkind == RELOPT_JOINREL);
1163 
1164  foreach(l, joininfo_list)
1165  {
1166  RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1167 
1168  if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1169  {
1170  /*
1171  * This clause becomes a restriction clause for the joinrel, since
1172  * it refers to no outside rels. So we can ignore it in this
1173  * routine.
1174  */
1175  }
1176  else
1177  {
1178  /*
1179  * This clause is still a join clause at this level, so add it to
1180  * the new joininfo list, being careful to eliminate duplicates.
1181  * (Since RestrictInfo nodes in different joinlists will have been
1182  * multiply-linked rather than copied, pointer equality should be
1183  * a sufficient test.)
1184  */
1185  new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
1186  }
1187  }
1188 
1189  return new_joininfo;
1190 }
1191 
1192 
1193 /*
1194  * fetch_upper_rel
1195  * Build a RelOptInfo describing some post-scan/join query processing,
1196  * or return a pre-existing one if somebody already built it.
1197  *
1198  * An "upper" relation is identified by an UpperRelationKind and a Relids set.
1199  * The meaning of the Relids set is not specified here, and very likely will
1200  * vary for different relation kinds.
1201  *
1202  * Most of the fields in an upper-level RelOptInfo are not used and are not
1203  * set here (though makeNode should ensure they're zeroes). We basically only
1204  * care about fields that are of interest to add_path() and set_cheapest().
1205  */
1206 RelOptInfo *
1208 {
1209  RelOptInfo *upperrel;
1210  ListCell *lc;
1211 
1212  /*
1213  * For the moment, our indexing data structure is just a List for each
1214  * relation kind. If we ever get so many of one kind that this stops
1215  * working well, we can improve it. No code outside this function should
1216  * assume anything about how to find a particular upperrel.
1217  */
1218 
1219  /* If we already made this upperrel for the query, return it */
1220  foreach(lc, root->upper_rels[kind])
1221  {
1222  upperrel = (RelOptInfo *) lfirst(lc);
1223 
1224  if (bms_equal(upperrel->relids, relids))
1225  return upperrel;
1226  }
1227 
1228  upperrel = makeNode(RelOptInfo);
1229  upperrel->reloptkind = RELOPT_UPPER_REL;
1230  upperrel->relids = bms_copy(relids);
1231 
1232  /* cheap startup cost is interesting iff not all tuples to be retrieved */
1233  upperrel->consider_startup = (root->tuple_fraction > 0);
1234  upperrel->consider_param_startup = false;
1235  upperrel->consider_parallel = false; /* might get changed later */
1236  upperrel->reltarget = create_empty_pathtarget();
1237  upperrel->pathlist = NIL;
1238  upperrel->cheapest_startup_path = NULL;
1239  upperrel->cheapest_total_path = NULL;
1240  upperrel->cheapest_unique_path = NULL;
1241  upperrel->cheapest_parameterized_paths = NIL;
1242 
1243  root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
1244 
1245  return upperrel;
1246 }
1247 
1248 
1249 /*
1250  * find_childrel_parents
1251  * Compute the set of parent relids of an appendrel child rel.
1252  *
1253  * Since appendrels can be nested, a child could have multiple levels of
1254  * appendrel ancestors. This function computes a Relids set of all the
1255  * parent relation IDs.
1256  */
1257 Relids
1259 {
1260  Relids result = NULL;
1261 
1263  Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
1264 
1265  do
1266  {
1267  AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
1268  Index prelid = appinfo->parent_relid;
1269 
1270  result = bms_add_member(result, prelid);
1271 
1272  /* traverse up to the parent rel, loop if it's also a child rel */
1273  rel = find_base_rel(root, prelid);
1274  } while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
1275 
1276  Assert(rel->reloptkind == RELOPT_BASEREL);
1277 
1278  return result;
1279 }
1280 
1281 
1282 /*
1283  * get_baserel_parampathinfo
1284  * Get the ParamPathInfo for a parameterized path for a base relation,
1285  * constructing one if we don't have one already.
1286  *
1287  * This centralizes estimating the rowcounts for parameterized paths.
1288  * We need to cache those to be sure we use the same rowcount for all paths
1289  * of the same parameterization for a given rel. This is also a convenient
1290  * place to determine which movable join clauses the parameterized path will
1291  * be responsible for evaluating.
1292  */
1293 ParamPathInfo *
1295  Relids required_outer)
1296 {
1297  ParamPathInfo *ppi;
1298  Relids joinrelids;
1299  List *pclauses;
1300  double rows;
1301  ListCell *lc;
1302 
1303  /* If rel has LATERAL refs, every path for it should account for them */
1304  Assert(bms_is_subset(baserel->lateral_relids, required_outer));
1305 
1306  /* Unparameterized paths have no ParamPathInfo */
1307  if (bms_is_empty(required_outer))
1308  return NULL;
1309 
1310  Assert(!bms_overlap(baserel->relids, required_outer));
1311 
1312  /* If we already have a PPI for this parameterization, just return it */
1313  if ((ppi = find_param_path_info(baserel, required_outer)))
1314  return ppi;
1315 
1316  /*
1317  * Identify all joinclauses that are movable to this base rel given this
1318  * parameterization.
1319  */
1320  joinrelids = bms_union(baserel->relids, required_outer);
1321  pclauses = NIL;
1322  foreach(lc, baserel->joininfo)
1323  {
1324  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1325 
1326  if (join_clause_is_movable_into(rinfo,
1327  baserel->relids,
1328  joinrelids))
1329  pclauses = lappend(pclauses, rinfo);
1330  }
1331 
1332  /*
1333  * Add in joinclauses generated by EquivalenceClasses, too. (These
1334  * necessarily satisfy join_clause_is_movable_into.)
1335  */
1336  pclauses = list_concat(pclauses,
1338  joinrelids,
1339  required_outer,
1340  baserel));
1341 
1342  /* Estimate the number of rows returned by the parameterized scan */
1343  rows = get_parameterized_baserel_size(root, baserel, pclauses);
1344 
1345  /* And now we can build the ParamPathInfo */
1346  ppi = makeNode(ParamPathInfo);
1347  ppi->ppi_req_outer = required_outer;
1348  ppi->ppi_rows = rows;
1349  ppi->ppi_clauses = pclauses;
1350  baserel->ppilist = lappend(baserel->ppilist, ppi);
1351 
1352  return ppi;
1353 }
1354 
1355 /*
1356  * get_joinrel_parampathinfo
1357  * Get the ParamPathInfo for a parameterized path for a join relation,
1358  * constructing one if we don't have one already.
1359  *
1360  * This centralizes estimating the rowcounts for parameterized paths.
1361  * We need to cache those to be sure we use the same rowcount for all paths
1362  * of the same parameterization for a given rel. This is also a convenient
1363  * place to determine which movable join clauses the parameterized path will
1364  * be responsible for evaluating.
1365  *
1366  * outer_path and inner_path are a pair of input paths that can be used to
1367  * construct the join, and restrict_clauses is the list of regular join
1368  * clauses (including clauses derived from EquivalenceClasses) that must be
1369  * applied at the join node when using these inputs.
1370  *
1371  * Unlike the situation for base rels, the set of movable join clauses to be
1372  * enforced at a join varies with the selected pair of input paths, so we
1373  * must calculate that and pass it back, even if we already have a matching
1374  * ParamPathInfo. We handle this by adding any clauses moved down to this
1375  * join to *restrict_clauses, which is an in/out parameter. (The addition
1376  * is done in such a way as to not modify the passed-in List structure.)
1377  *
1378  * Note: when considering a nestloop join, the caller must have removed from
1379  * restrict_clauses any movable clauses that are themselves scheduled to be
1380  * pushed into the right-hand path. We do not do that here since it's
1381  * unnecessary for other join types.
1382  */
1383 ParamPathInfo *
1385  Path *outer_path,
1386  Path *inner_path,
1387  SpecialJoinInfo *sjinfo,
1388  Relids required_outer,
1389  List **restrict_clauses)
1390 {
1391  ParamPathInfo *ppi;
1392  Relids join_and_req;
1393  Relids outer_and_req;
1394  Relids inner_and_req;
1395  List *pclauses;
1396  List *eclauses;
1397  List *dropped_ecs;
1398  double rows;
1399  ListCell *lc;
1400 
1401  /* If rel has LATERAL refs, every path for it should account for them */
1402  Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
1403 
1404  /* Unparameterized paths have no ParamPathInfo or extra join clauses */
1405  if (bms_is_empty(required_outer))
1406  return NULL;
1407 
1408  Assert(!bms_overlap(joinrel->relids, required_outer));
1409 
1410  /*
1411  * Identify all joinclauses that are movable to this join rel given this
1412  * parameterization. These are the clauses that are movable into this
1413  * join, but not movable into either input path. Treat an unparameterized
1414  * input path as not accepting parameterized clauses (because it won't,
1415  * per the shortcut exit above), even though the joinclause movement rules
1416  * might allow the same clauses to be moved into a parameterized path for
1417  * that rel.
1418  */
1419  join_and_req = bms_union(joinrel->relids, required_outer);
1420  if (outer_path->param_info)
1421  outer_and_req = bms_union(outer_path->parent->relids,
1422  PATH_REQ_OUTER(outer_path));
1423  else
1424  outer_and_req = NULL; /* outer path does not accept parameters */
1425  if (inner_path->param_info)
1426  inner_and_req = bms_union(inner_path->parent->relids,
1427  PATH_REQ_OUTER(inner_path));
1428  else
1429  inner_and_req = NULL; /* inner path does not accept parameters */
1430 
1431  pclauses = NIL;
1432  foreach(lc, joinrel->joininfo)
1433  {
1434  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1435 
1436  if (join_clause_is_movable_into(rinfo,
1437  joinrel->relids,
1438  join_and_req) &&
1440  outer_path->parent->relids,
1441  outer_and_req) &&
1443  inner_path->parent->relids,
1444  inner_and_req))
1445  pclauses = lappend(pclauses, rinfo);
1446  }
1447 
1448  /* Consider joinclauses generated by EquivalenceClasses, too */
1449  eclauses = generate_join_implied_equalities(root,
1450  join_and_req,
1451  required_outer,
1452  joinrel);
1453  /* We only want ones that aren't movable to lower levels */
1454  dropped_ecs = NIL;
1455  foreach(lc, eclauses)
1456  {
1457  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1458 
1459  /*
1460  * In principle, join_clause_is_movable_into() should accept anything
1461  * returned by generate_join_implied_equalities(); but because its
1462  * analysis is only approximate, sometimes it doesn't. So we
1463  * currently cannot use this Assert; instead just assume it's okay to
1464  * apply the joinclause at this level.
1465  */
1466 #ifdef NOT_USED
1468  joinrel->relids,
1469  join_and_req));
1470 #endif
1471  if (join_clause_is_movable_into(rinfo,
1472  outer_path->parent->relids,
1473  outer_and_req))
1474  continue; /* drop if movable into LHS */
1475  if (join_clause_is_movable_into(rinfo,
1476  inner_path->parent->relids,
1477  inner_and_req))
1478  {
1479  /* drop if movable into RHS, but remember EC for use below */
1480  Assert(rinfo->left_ec == rinfo->right_ec);
1481  dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
1482  continue;
1483  }
1484  pclauses = lappend(pclauses, rinfo);
1485  }
1486 
1487  /*
1488  * EquivalenceClasses are harder to deal with than we could wish, because
1489  * of the fact that a given EC can generate different clauses depending on
1490  * context. Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
1491  * LHS and RHS of the current join and Z is in required_outer, and further
1492  * suppose that the inner_path is parameterized by both X and Z. The code
1493  * above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
1494  * and in the latter case will have discarded it as being movable into the
1495  * RHS. However, the EC machinery might have produced either Y.Y = X.X or
1496  * Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
1497  * not have produced both, and we can't readily tell from here which one
1498  * it did pick. If we add no clause to this join, we'll end up with
1499  * insufficient enforcement of the EC; either Z.Z or X.X will fail to be
1500  * constrained to be equal to the other members of the EC. (When we come
1501  * to join Z to this X/Y path, we will certainly drop whichever EC clause
1502  * is generated at that join, so this omission won't get fixed later.)
1503  *
1504  * To handle this, for each EC we discarded such a clause from, try to
1505  * generate a clause connecting the required_outer rels to the join's LHS
1506  * ("Z.Z = X.X" in the terms of the above example). If successful, and if
1507  * the clause can't be moved to the LHS, add it to the current join's
1508  * restriction clauses. (If an EC cannot generate such a clause then it
1509  * has nothing that needs to be enforced here, while if the clause can be
1510  * moved into the LHS then it should have been enforced within that path.)
1511  *
1512  * Note that we don't need similar processing for ECs whose clause was
1513  * considered to be movable into the LHS, because the LHS can't refer to
1514  * the RHS so there is no comparable ambiguity about what it might
1515  * actually be enforcing internally.
1516  */
1517  if (dropped_ecs)
1518  {
1519  Relids real_outer_and_req;
1520 
1521  real_outer_and_req = bms_union(outer_path->parent->relids,
1522  required_outer);
1523  eclauses =
1525  dropped_ecs,
1526  real_outer_and_req,
1527  required_outer,
1528  outer_path->parent);
1529  foreach(lc, eclauses)
1530  {
1531  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1532 
1533  /* As above, can't quite assert this here */
1534 #ifdef NOT_USED
1536  outer_path->parent->relids,
1537  real_outer_and_req));
1538 #endif
1539  if (!join_clause_is_movable_into(rinfo,
1540  outer_path->parent->relids,
1541  outer_and_req))
1542  pclauses = lappend(pclauses, rinfo);
1543  }
1544  }
1545 
1546  /*
1547  * Now, attach the identified moved-down clauses to the caller's
1548  * restrict_clauses list. By using list_concat in this order, we leave
1549  * the original list structure of restrict_clauses undamaged.
1550  */
1551  *restrict_clauses = list_concat(pclauses, *restrict_clauses);
1552 
1553  /* If we already have a PPI for this parameterization, just return it */
1554  if ((ppi = find_param_path_info(joinrel, required_outer)))
1555  return ppi;
1556 
1557  /* Estimate the number of rows returned by the parameterized join */
1558  rows = get_parameterized_joinrel_size(root, joinrel,
1559  outer_path,
1560  inner_path,
1561  sjinfo,
1562  *restrict_clauses);
1563 
1564  /*
1565  * And now we can build the ParamPathInfo. No point in saving the
1566  * input-pair-dependent clause list, though.
1567  *
1568  * Note: in GEQO mode, we'll be called in a temporary memory context, but
1569  * the joinrel structure is there too, so no problem.
1570  */
1571  ppi = makeNode(ParamPathInfo);
1572  ppi->ppi_req_outer = required_outer;
1573  ppi->ppi_rows = rows;
1574  ppi->ppi_clauses = NIL;
1575  joinrel->ppilist = lappend(joinrel->ppilist, ppi);
1576 
1577  return ppi;
1578 }
1579 
1580 /*
1581  * get_appendrel_parampathinfo
1582  * Get the ParamPathInfo for a parameterized path for an append relation.
1583  *
1584  * For an append relation, the rowcount estimate will just be the sum of
1585  * the estimates for its children. However, we still need a ParamPathInfo
1586  * to flag the fact that the path requires parameters. So this just creates
1587  * a suitable struct with zero ppi_rows (and no ppi_clauses either, since
1588  * the Append node isn't responsible for checking quals).
1589  */
1590 ParamPathInfo *
1591 get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
1592 {
1593  ParamPathInfo *ppi;
1594 
1595  /* If rel has LATERAL refs, every path for it should account for them */
1596  Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
1597 
1598  /* Unparameterized paths have no ParamPathInfo */
1599  if (bms_is_empty(required_outer))
1600  return NULL;
1601 
1602  Assert(!bms_overlap(appendrel->relids, required_outer));
1603 
1604  /* If we already have a PPI for this parameterization, just return it */
1605  if ((ppi = find_param_path_info(appendrel, required_outer)))
1606  return ppi;
1607 
1608  /* Else build the ParamPathInfo */
1609  ppi = makeNode(ParamPathInfo);
1610  ppi->ppi_req_outer = required_outer;
1611  ppi->ppi_rows = 0;
1612  ppi->ppi_clauses = NIL;
1613  appendrel->ppilist = lappend(appendrel->ppilist, ppi);
1614 
1615  return ppi;
1616 }
1617 
1618 /*
1619  * Returns a ParamPathInfo for the parameterization given by required_outer, if
1620  * already available in the given rel. Returns NULL otherwise.
1621  */
1622 ParamPathInfo *
1624 {
1625  ListCell *lc;
1626 
1627  foreach(lc, rel->ppilist)
1628  {
1629  ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
1630 
1631  if (bms_equal(ppi->ppi_req_outer, required_outer))
1632  return ppi;
1633  }
1634 
1635  return NULL;
1636 }
1637 
1638 /*
1639  * build_joinrel_partition_info
1640  * Checks if the two relations being joined can use partitionwise join
1641  * and if yes, initialize partitioning information of the resulting
1642  * partitioned join relation.
1643  */
1644 static void
1646  RelOptInfo *inner_rel, List *restrictlist,
1647  JoinType jointype)
1648 {
1649  PartitionScheme part_scheme;
1650 
1651  /* Nothing to do if partitionwise join technique is disabled. */
1653  {
1654  Assert(!IS_PARTITIONED_REL(joinrel));
1655  return;
1656  }
1657 
1658  /*
1659  * We can only consider this join as an input to further partitionwise
1660  * joins if (a) the input relations are partitioned and have
1661  * consider_partitionwise_join=true, (b) the partition schemes match, and
1662  * (c) we can identify an equi-join between the partition keys. Note that
1663  * if it were possible for have_partkey_equi_join to return different
1664  * answers for the same joinrel depending on which join ordering we try
1665  * first, this logic would break. That shouldn't happen, though, because
1666  * of the way the query planner deduces implied equalities and reorders
1667  * the joins. Please see optimizer/README for details.
1668  */
1669  if (outer_rel->part_scheme == NULL || inner_rel->part_scheme == NULL ||
1670  !outer_rel->consider_partitionwise_join ||
1671  !inner_rel->consider_partitionwise_join ||
1672  outer_rel->part_scheme != inner_rel->part_scheme ||
1673  !have_partkey_equi_join(joinrel, outer_rel, inner_rel,
1674  jointype, restrictlist))
1675  {
1676  Assert(!IS_PARTITIONED_REL(joinrel));
1677  return;
1678  }
1679 
1680  part_scheme = outer_rel->part_scheme;
1681 
1682  /*
1683  * This function will be called only once for each joinrel, hence it
1684  * should not have partitioning fields filled yet.
1685  */
1686  Assert(!joinrel->part_scheme && !joinrel->partexprs &&
1687  !joinrel->nullable_partexprs && !joinrel->part_rels &&
1688  !joinrel->boundinfo);
1689 
1690  /*
1691  * If the join relation is partitioned, it uses the same partitioning
1692  * scheme as the joining relations.
1693  *
1694  * Note: we calculate the partition bounds, number of partitions, and
1695  * child-join relations of the join relation in try_partitionwise_join().
1696  */
1697  joinrel->part_scheme = part_scheme;
1698  set_joinrel_partition_key_exprs(joinrel, outer_rel, inner_rel, jointype);
1699 
1700  /*
1701  * Set the consider_partitionwise_join flag.
1702  */
1703  Assert(outer_rel->consider_partitionwise_join);
1704  Assert(inner_rel->consider_partitionwise_join);
1705  joinrel->consider_partitionwise_join = true;
1706 }
1707 
1708 /*
1709  * have_partkey_equi_join
1710  *
1711  * Returns true if there exist equi-join conditions involving pairs
1712  * of matching partition keys of the relations being joined for all
1713  * partition keys.
1714  */
1715 static bool
1717  RelOptInfo *rel1, RelOptInfo *rel2,
1718  JoinType jointype, List *restrictlist)
1719 {
1720  PartitionScheme part_scheme = rel1->part_scheme;
1721  ListCell *lc;
1722  int cnt_pks;
1723  bool pk_has_clause[PARTITION_MAX_KEYS];
1724  bool strict_op;
1725 
1726  /*
1727  * This function must only be called when the joined relations have same
1728  * partitioning scheme.
1729  */
1730  Assert(rel1->part_scheme == rel2->part_scheme);
1731  Assert(part_scheme);
1732 
1733  memset(pk_has_clause, 0, sizeof(pk_has_clause));
1734  foreach(lc, restrictlist)
1735  {
1736  RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
1737  OpExpr *opexpr;
1738  Expr *expr1;
1739  Expr *expr2;
1740  int ipk1;
1741  int ipk2;
1742 
1743  /* If processing an outer join, only use its own join clauses. */
1744  if (IS_OUTER_JOIN(jointype) &&
1745  RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
1746  continue;
1747 
1748  /* Skip clauses which can not be used for a join. */
1749  if (!rinfo->can_join)
1750  continue;
1751 
1752  /* Skip clauses which are not equality conditions. */
1753  if (!rinfo->mergeopfamilies && !OidIsValid(rinfo->hashjoinoperator))
1754  continue;
1755 
1756  /* Should be OK to assume it's an OpExpr. */
1757  opexpr = castNode(OpExpr, rinfo->clause);
1758 
1759  /* Match the operands to the relation. */
1760  if (bms_is_subset(rinfo->left_relids, rel1->relids) &&
1761  bms_is_subset(rinfo->right_relids, rel2->relids))
1762  {
1763  expr1 = linitial(opexpr->args);
1764  expr2 = lsecond(opexpr->args);
1765  }
1766  else if (bms_is_subset(rinfo->left_relids, rel2->relids) &&
1767  bms_is_subset(rinfo->right_relids, rel1->relids))
1768  {
1769  expr1 = lsecond(opexpr->args);
1770  expr2 = linitial(opexpr->args);
1771  }
1772  else
1773  continue;
1774 
1775  /*
1776  * Now we need to know whether the join operator is strict; see
1777  * comments in pathnodes.h.
1778  */
1779  strict_op = op_strict(opexpr->opno);
1780 
1781  /*
1782  * Only clauses referencing the partition keys are useful for
1783  * partitionwise join.
1784  */
1785  ipk1 = match_expr_to_partition_keys(expr1, rel1, strict_op);
1786  if (ipk1 < 0)
1787  continue;
1788  ipk2 = match_expr_to_partition_keys(expr2, rel2, strict_op);
1789  if (ipk2 < 0)
1790  continue;
1791 
1792  /*
1793  * If the clause refers to keys at different ordinal positions, it can
1794  * not be used for partitionwise join.
1795  */
1796  if (ipk1 != ipk2)
1797  continue;
1798 
1799  /*
1800  * The clause allows partitionwise join only if it uses the same
1801  * operator family as that specified by the partition key.
1802  */
1804  {
1805  if (!OidIsValid(rinfo->hashjoinoperator) ||
1807  part_scheme->partopfamily[ipk1]))
1808  continue;
1809  }
1810  else if (!list_member_oid(rinfo->mergeopfamilies,
1811  part_scheme->partopfamily[ipk1]))
1812  continue;
1813 
1814  /* Mark the partition key as having an equi-join clause. */
1815  pk_has_clause[ipk1] = true;
1816  }
1817 
1818  /* Check whether every partition key has an equi-join condition. */
1819  for (cnt_pks = 0; cnt_pks < part_scheme->partnatts; cnt_pks++)
1820  {
1821  if (!pk_has_clause[cnt_pks])
1822  return false;
1823  }
1824 
1825  return true;
1826 }
1827 
1828 /*
1829  * match_expr_to_partition_keys
1830  *
1831  * Tries to match an expression to one of the nullable or non-nullable
1832  * partition keys of "rel". Returns the matched key's ordinal position,
1833  * or -1 if the expression could not be matched to any of the keys.
1834  *
1835  * strict_op must be true if the expression will be compared with the
1836  * partition key using a strict operator. This allows us to consider
1837  * nullable as well as nonnullable partition keys.
1838  */
1839 static int
1840 match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
1841 {
1842  int cnt;
1843 
1844  /* This function should be called only for partitioned relations. */
1845  Assert(rel->part_scheme);
1846  Assert(rel->partexprs);
1847  Assert(rel->nullable_partexprs);
1848 
1849  /* Remove any relabel decorations. */
1850  while (IsA(expr, RelabelType))
1851  expr = (Expr *) (castNode(RelabelType, expr))->arg;
1852 
1853  for (cnt = 0; cnt < rel->part_scheme->partnatts; cnt++)
1854  {
1855  ListCell *lc;
1856 
1857  /* We can always match to the non-nullable partition keys. */
1858  foreach(lc, rel->partexprs[cnt])
1859  {
1860  if (equal(lfirst(lc), expr))
1861  return cnt;
1862  }
1863 
1864  if (!strict_op)
1865  continue;
1866 
1867  /*
1868  * If it's a strict join operator then a NULL partition key on one
1869  * side will not join to any partition key on the other side, and in
1870  * particular such a row can't join to a row from a different
1871  * partition on the other side. So, it's okay to search the nullable
1872  * partition keys as well.
1873  */
1874  foreach(lc, rel->nullable_partexprs[cnt])
1875  {
1876  if (equal(lfirst(lc), expr))
1877  return cnt;
1878  }
1879  }
1880 
1881  return -1;
1882 }
1883 
1884 /*
1885  * set_joinrel_partition_key_exprs
1886  * Initialize partition key expressions for a partitioned joinrel.
1887  */
1888 static void
1890  RelOptInfo *outer_rel, RelOptInfo *inner_rel,
1891  JoinType jointype)
1892 {
1893  PartitionScheme part_scheme = joinrel->part_scheme;
1894  int partnatts = part_scheme->partnatts;
1895 
1896  joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
1897  joinrel->nullable_partexprs =
1898  (List **) palloc0(sizeof(List *) * partnatts);
1899 
1900  /*
1901  * The joinrel's partition expressions are the same as those of the input
1902  * rels, but we must properly classify them as nullable or not in the
1903  * joinrel's output. (Also, we add some more partition expressions if
1904  * it's a FULL JOIN.)
1905  */
1906  for (int cnt = 0; cnt < partnatts; cnt++)
1907  {
1908  /* mark these const to enforce that we copy them properly */
1909  const List *outer_expr = outer_rel->partexprs[cnt];
1910  const List *outer_null_expr = outer_rel->nullable_partexprs[cnt];
1911  const List *inner_expr = inner_rel->partexprs[cnt];
1912  const List *inner_null_expr = inner_rel->nullable_partexprs[cnt];
1913  List *partexpr = NIL;
1914  List *nullable_partexpr = NIL;
1915  ListCell *lc;
1916 
1917  switch (jointype)
1918  {
1919  /*
1920  * A join relation resulting from an INNER join may be
1921  * regarded as partitioned by either of the inner and outer
1922  * relation keys. For example, A INNER JOIN B ON A.a = B.b
1923  * can be regarded as partitioned on either A.a or B.b. So we
1924  * add both keys to the joinrel's partexpr lists. However,
1925  * anything that was already nullable still has to be treated
1926  * as nullable.
1927  */
1928  case JOIN_INNER:
1929  partexpr = list_concat_copy(outer_expr, inner_expr);
1930  nullable_partexpr = list_concat_copy(outer_null_expr,
1931  inner_null_expr);
1932  break;
1933 
1934  /*
1935  * A join relation resulting from a SEMI or ANTI join may be
1936  * regarded as partitioned by the outer relation keys. The
1937  * inner relation's keys are no longer interesting; since they
1938  * aren't visible in the join output, nothing could join to
1939  * them.
1940  */
1941  case JOIN_SEMI:
1942  case JOIN_ANTI:
1943  partexpr = list_copy(outer_expr);
1944  nullable_partexpr = list_copy(outer_null_expr);
1945  break;
1946 
1947  /*
1948  * A join relation resulting from a LEFT OUTER JOIN likewise
1949  * may be regarded as partitioned on the (non-nullable) outer
1950  * relation keys. The inner (nullable) relation keys are okay
1951  * as partition keys for further joins as long as they involve
1952  * strict join operators.
1953  */
1954  case JOIN_LEFT:
1955  partexpr = list_copy(outer_expr);
1956  nullable_partexpr = list_concat_copy(inner_expr,
1957  outer_null_expr);
1958  nullable_partexpr = list_concat(nullable_partexpr,
1959  inner_null_expr);
1960  break;
1961 
1962  /*
1963  * For FULL OUTER JOINs, both relations are nullable, so the
1964  * resulting join relation may be regarded as partitioned on
1965  * either of inner and outer relation keys, but only for joins
1966  * that involve strict join operators.
1967  */
1968  case JOIN_FULL:
1969  nullable_partexpr = list_concat_copy(outer_expr,
1970  inner_expr);
1971  nullable_partexpr = list_concat(nullable_partexpr,
1972  outer_null_expr);
1973  nullable_partexpr = list_concat(nullable_partexpr,
1974  inner_null_expr);
1975 
1976  /*
1977  * Also add CoalesceExprs corresponding to each possible
1978  * full-join output variable (that is, left side coalesced to
1979  * right side), so that we can match equijoin expressions
1980  * using those variables. We really only need these for
1981  * columns merged by JOIN USING, and only with the pairs of
1982  * input items that correspond to the data structures that
1983  * parse analysis would build for such variables. But it's
1984  * hard to tell which those are, so just make all the pairs.
1985  * Extra items in the nullable_partexprs list won't cause big
1986  * problems. (It's possible that such items will get matched
1987  * to user-written COALESCEs, but it should still be valid to
1988  * partition on those, since they're going to be either the
1989  * partition column or NULL; it's the same argument as for
1990  * partitionwise nesting of any outer join.) We assume no
1991  * type coercions are needed to make the coalesce expressions,
1992  * since columns of different types won't have gotten
1993  * classified as the same PartitionScheme.
1994  */
1995  foreach(lc, list_concat_copy(outer_expr, outer_null_expr))
1996  {
1997  Node *larg = (Node *) lfirst(lc);
1998  ListCell *lc2;
1999 
2000  foreach(lc2, list_concat_copy(inner_expr, inner_null_expr))
2001  {
2002  Node *rarg = (Node *) lfirst(lc2);
2004 
2005  c->coalescetype = exprType(larg);
2006  c->coalescecollid = exprCollation(larg);
2007  c->args = list_make2(larg, rarg);
2008  c->location = -1;
2009  nullable_partexpr = lappend(nullable_partexpr, c);
2010  }
2011  }
2012  break;
2013 
2014  default:
2015  elog(ERROR, "unrecognized join type: %d", (int) jointype);
2016  }
2017 
2018  joinrel->partexprs[cnt] = partexpr;
2019  joinrel->nullable_partexprs[cnt] = nullable_partexpr;
2020  }
2021 }
2022 
2023 /*
2024  * build_child_join_reltarget
2025  * Set up a child-join relation's reltarget from a parent-join relation.
2026  */
2027 static void
2029  RelOptInfo *parentrel,
2030  RelOptInfo *childrel,
2031  int nappinfos,
2032  AppendRelInfo **appinfos)
2033 {
2034  /* Build the targetlist */
2035  childrel->reltarget->exprs = (List *)
2037  (Node *) parentrel->reltarget->exprs,
2038  nappinfos, appinfos);
2039 
2040  /* Set the cost and width fields */
2041  childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
2042  childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
2043  childrel->reltarget->width = parentrel->reltarget->width;
2044 }
#define list_make2(x1, x2)
Definition: pg_list.h:208
bool has_eclass_joins
Definition: pathnodes.h:746
struct Path * cheapest_unique_path
Definition: pathnodes.h:695
PathTarget * create_empty_pathtarget(void)
Definition: tlist.c:670
#define NIL
Definition: pg_list.h:65
bool op_in_opfamily(Oid opno, Oid opfamily)
Definition: lsyscache.c:64
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition: relnode.c:1623
UpperRelationKind
Definition: pathnodes.h:67
int join_cur_level
Definition: pathnodes.h:239
List * unique_for_rels
Definition: pathnodes.h:735
bool op_strict(Oid opno)
Definition: lsyscache.c:1448
#define IsA(nodeptr, _type_)
Definition: nodes.h:590
Query * parse
Definition: pathnodes.h:161
List * statlist
Definition: pathnodes.h:714
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:74
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition: relnode.c:1294
RelOptKind reloptkind
Definition: pathnodes.h:673
Relids * attr_needed
Definition: pathnodes.h:709
#define ROWID_VAR
Definition: primnodes.h:178
Relids required_relids
Definition: pathnodes.h:2066
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
List * colnames
Definition: primnodes.h:43
MemoryContext hcxt
Definition: hsearch.h:86
RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids)
Definition: relnode.c:438
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition: relnode.c:1384
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:3113
Oid GetUserId(void)
Definition: miscinit.c:478
#define castNode(_type_, nodeptr)
Definition: nodes.h:608
static List * subbuild_joinrel_restrictlist(RelOptInfo *joinrel, List *joininfo_list, List *new_restrictlist)
Definition: relnode.c:1121
static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, JoinType jointype)
Definition: relnode.c:1889
#define IS_OTHER_REL(rel)
Definition: pathnodes.h:664
void set_joinrel_size_estimates(PlannerInfo *root, RelOptInfo *rel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: costsize.c:5004
struct Path * cheapest_startup_path
Definition: pathnodes.h:693
Oid userid
Definition: pathnodes.h:728
Relids join_relids
Definition: relnode.c:37
double tuples
Definition: pathnodes.h:716
List * baserestrictinfo
Definition: pathnodes.h:740
bool consider_param_startup
Definition: pathnodes.h:683
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:755
ParamPathInfo * param_info
Definition: pathnodes.h:1177
Size entrysize
Definition: hsearch.h:76
List * list_copy(const List *oldlist)
Definition: list.c:1418
Definition: nodes.h:539
List * list_concat(List *list1, const List *list2)
Definition: list.c:530
List * partial_pathlist
Definition: pathnodes.h:692
#define PARTITION_MAX_KEYS
#define MemSet(start, val, len)
Definition: c.h:1008
Relids left_relids
Definition: pathnodes.h:2075
AttrNumber varattno
Definition: primnodes.h:191
List * join_rel_list
Definition: pathnodes.h:228
EquivalenceClass * right_ec
Definition: pathnodes.h:2097
List * cheapest_parameterized_paths
Definition: pathnodes.h:696
Index baserestrict_min_security
Definition: pathnodes.h:742
Relids all_partrels
Definition: pathnodes.h:765
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:954
bool useridiscurrent
Definition: pathnodes.h:729
List ** nullable_partexprs
Definition: pathnodes.h:767
Definition: primnodes.h:186
#define OidIsValid(objectId)
Definition: c.h:710
void add_placeholders_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: placeholder.c:413
List * mergeopfamilies
Definition: pathnodes.h:2093
#define lsecond(l)
Definition: pg_list.h:179
Cost startup
Definition: pathnodes.h:45
double allvisfrac
Definition: pathnodes.h:717
signed int int32
Definition: c.h:429
JoinType
Definition: nodes.h:706
struct RelOptInfo ** simple_rel_array
Definition: pathnodes.h:185
void add_child_join_rel_equivalences(PlannerInfo *root, int nappinfos, AppendRelInfo **appinfos, RelOptInfo *parent_joinrel, RelOptInfo *child_joinrel)
Definition: equivclass.c:2696
PlannerInfo * subroot
Definition: pathnodes.h:720
bool consider_startup
Definition: pathnodes.h:682
Definition: dynahash.c:219
bool apply_child_basequals(PlannerInfo *root, RelOptInfo *parentrel, RelOptInfo *childrel, RangeTblEntry *childRTE, AppendRelInfo *appinfo)
Definition: inherit.c:737
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:635
Relids lateral_relids
Definition: pathnodes.h:701
Cost per_tuple
Definition: pathnodes.h:46
static void set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:501
uint32 amflags
Definition: pathnodes.h:723
double tuple_fraction
Definition: pathnodes.h:339
struct JoinHashEntry JoinHashEntry
void pfree(void *pointer)
Definition: mcxt.c:1169
List ** partexprs
Definition: pathnodes.h:766
#define linitial(l)
Definition: pg_list.h:174
List * rtable
Definition: parsenodes.h:147
#define ERROR
Definition: elog.h:46
static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *input_rel)
Definition: relnode.c:971
List * row_identity_vars
Definition: pathnodes.h:285
List * list_append_unique_ptr(List *list, void *datum)
Definition: list.c:1208
List * generate_join_implied_equalities(PlannerInfo *root, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel)
Definition: equivclass.c:1421
static void * list_nth(const List *list, int n)
Definition: pg_list.h:278
List * args
Definition: primnodes.h:1122
Relids min_join_parameterization(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:928
RelOptInfo * build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel, RelOptInfo *inner_rel, RelOptInfo *parent_joinrel, List *restrictlist, SpecialJoinInfo *sjinfo, JoinType jointype)
Definition: relnode.c:784
RelOptInfo * parent
Definition: pathnodes.h:1174
RelOptInfo * join_rel
Definition: relnode.c:38
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:315
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1207
#define lfirst_node(type, lc)
Definition: pg_list.h:172
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:646
double get_parameterized_joinrel_size(PlannerInfo *root, RelOptInfo *rel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, List *restrict_clauses)
Definition: costsize.c:5036
struct Path * cheapest_total_path
Definition: pathnodes.h:694
static List * build_joinrel_restrictlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1073
#define PATH_REQ_OUTER(path)
Definition: pathnodes.h:1193
char * c
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:186
List * joininfo
Definition: pathnodes.h:744
static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
Definition: relnode.c:1840
List * list_concat_copy(const List *list1, const List *list2)
Definition: list.c:567
struct FdwRoutine * fdwroutine
Definition: pathnodes.h:731
int nparts
Definition: pathnodes.h:756
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:349
Relids relids
Definition: pathnodes.h:676
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:194
MemoryContext CurrentMemoryContext
Definition: mcxt.c:42
bool partbounds_merged
Definition: pathnodes.h:760
bool has_relevant_eclass_joinclause(PlannerInfo *root, RelOptInfo *rel1)
Definition: equivclass.c:3047
int simple_rel_array_size
Definition: pathnodes.h:186
List * non_unique_for_rels
Definition: pathnodes.h:737
bool join_clause_is_movable_into(RestrictInfo *rinfo, Relids currentrelids, Relids current_and_outer)
Definition: restrictinfo.c:598
List * ppilist
Definition: pathnodes.h:691
Index relid
Definition: pathnodes.h:704
List * lappend(List *list, void *datum)
Definition: list.c:336
RangeTblEntry ** simple_rte_array
Definition: pathnodes.h:193
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:715
Relids lateral_referencers
Definition: pathnodes.h:712
Expr * clause
Definition: pathnodes.h:2045
bool bms_is_empty(const Bitmapset *a)
Definition: bitmapset.c:701
Index varno
Definition: primnodes.h:189
Oid serverid
Definition: pathnodes.h:727
List * exprs
Definition: pathnodes.h:1102
Relids direct_lateral_relids
Definition: pathnodes.h:700
bool consider_partitionwise_join
Definition: pathnodes.h:749
int bitmap_match(const void *key1, const void *key2, Size keysize)
Definition: bitmapset.c:1187
void * palloc0(Size size)
Definition: mcxt.c:1093
List * generate_join_implied_equalities_for_ecs(PlannerInfo *root, List *eclasses, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel)
Definition: equivclass.c:1499
void mark_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1261
int rel_parallel_workers
Definition: pathnodes.h:722
List * append_rel_list
Definition: pathnodes.h:283
struct AppendRelInfo ** append_rel_array
Definition: pathnodes.h:201
Size add_size(Size s1, Size s2)
Definition: shmem.c:502
double get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel, List *param_clauses)
Definition: costsize.c:4955
struct PartitionBoundInfoData * boundinfo
Definition: pathnodes.h:759
Size keysize
Definition: hsearch.h:75
RelOptInfo * build_join_rel(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List **restrictlist_ptr)
Definition: relnode.c:576
unsigned int Index
Definition: c.h:549
HashCompareFunc match
Definition: hsearch.h:80
#define PARTITION_STRATEGY_HASH
Definition: parsenodes.h:814
RTEKind rtekind
Definition: pathnodes.h:706
Relids find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
Definition: relnode.c:1258
List * indexlist
Definition: pathnodes.h:713
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2128
double rows
Definition: pathnodes.h:679
#define InvalidOid
Definition: postgres_ext.h:36
static void build_join_rel_hash(PlannerInfo *root)
Definition: relnode.c:397
void * fdw_private
Definition: pathnodes.h:732
#define makeNode(_type_)
Definition: nodes.h:587
Relids right_relids
Definition: pathnodes.h:2076
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:689
BlockNumber pages
Definition: pathnodes.h:715
#define Assert(condition)
Definition: c.h:804
#define lfirst(lc)
Definition: pg_list.h:169
List ** join_rel_level
Definition: pathnodes.h:238
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:83
List * lateral_vars
Definition: pathnodes.h:711
#define HASH_COMPARE
Definition: hsearch.h:99
JoinType jointype
Definition: pathnodes.h:2245
List * ppi_clauses
Definition: pathnodes.h:1135
struct RelOptInfo ** part_rels
Definition: pathnodes.h:763
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:225
Oid hashjoinoperator
Definition: pathnodes.h:2106
bool enable_partitionwise_join
Definition: costsize.c:147
QualCost cost
Definition: pathnodes.h:1104
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:41
static int list_length(const List *l)
Definition: pg_list.h:149
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:759
struct HTAB * join_rel_hash
Definition: pathnodes.h:229
bool consider_parallel
Definition: pathnodes.h:684
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:736
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1182
Bitmapset * Relids
Definition: pathnodes.h:28
#define nodeTag(nodeptr)
Definition: nodes.h:544
double ppi_rows
Definition: pathnodes.h:1134
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:928
RTEKind rtekind
Definition: parsenodes.h:995
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:494
AttrNumber max_attr
Definition: pathnodes.h:708
void expand_planner_arrays(PlannerInfo *root, int add_size)
Definition: relnode.c:152
EquivalenceClass * left_ec
Definition: pathnodes.h:2096
static List * subbuild_joinrel_joinlist(RelOptInfo *joinrel, List *joininfo_list, List *new_joininfo)
Definition: relnode.c:1155
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:778
#define elog(elevel,...)
Definition: elog.h:232
static void build_joinrel_partition_info(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, List *restrictlist, JoinType jointype)
Definition: relnode.c:1645
Oid coalescetype
Definition: primnodes.h:1120
uint32 bitmap_hash(const void *key, Size keysize)
Definition: bitmapset.c:1177
void * arg
bool has_useful_pathkeys(PlannerInfo *root, RelOptInfo *rel)
Definition: pathkeys.c:1910
PartitionScheme part_scheme
Definition: pathnodes.h:755
List * pathlist
Definition: pathnodes.h:690
Oid opno
Definition: primnodes.h:542
Relids ppi_req_outer
Definition: pathnodes.h:1133
Index child_relid
Definition: pathnodes.h:2296
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition: relnode.c:1591
Alias * eref
Definition: parsenodes.h:1141
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:374
List * partition_qual
Definition: pathnodes.h:762
List * args
Definition: primnodes.h:548
Index parent_relid
Definition: pathnodes.h:2295
int32 * attr_widths
Definition: pathnodes.h:710
Definition: regcomp.c:237
Definition: pg_list.h:50
struct PathTarget * reltarget
Definition: pathnodes.h:687
QualCost baserestrictcost
Definition: pathnodes.h:741
static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
Definition: relnode.c:539
List * subplan_params
Definition: pathnodes.h:721
static void build_child_join_reltarget(PlannerInfo *root, RelOptInfo *parentrel, RelOptInfo *childrel, int nappinfos, AppendRelInfo **appinfos)
Definition: relnode.c:2028
Bitmapset * eclass_indexes
Definition: pathnodes.h:718
Oid coalescecollid
Definition: primnodes.h:1121
static void build_joinrel_joinlist(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1103
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:113
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:94
static bool have_partkey_equi_join(RelOptInfo *joinrel, RelOptInfo *rel1, RelOptInfo *rel2, JoinType jointype, List *restrictlist)
Definition: relnode.c:1716
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:195
Relids top_parent_relids
Definition: pathnodes.h:751
bool bms_nonempty_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:545
HashValueFunc hash
Definition: hsearch.h:78
#define HASH_FUNCTION
Definition: hsearch.h:98
List * upper_rels[UPPERREL_FINAL+1]
Definition: pathnodes.h:306
AttrNumber min_attr
Definition: pathnodes.h:707