PostgreSQL Source Code  git master
relnode.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * relnode.c
4  * Relation-node lookup/construction routines
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/optimizer/util/relnode.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <limits.h>
18 
19 #include "miscadmin.h"
20 #include "nodes/nodeFuncs.h"
21 #include "optimizer/appendinfo.h"
22 #include "optimizer/clauses.h"
23 #include "optimizer/cost.h"
24 #include "optimizer/inherit.h"
25 #include "optimizer/optimizer.h"
26 #include "optimizer/pathnode.h"
27 #include "optimizer/paths.h"
28 #include "optimizer/placeholder.h"
29 #include "optimizer/plancat.h"
30 #include "optimizer/restrictinfo.h"
31 #include "optimizer/tlist.h"
32 #include "parser/parse_relation.h"
33 #include "rewrite/rewriteManip.h"
34 #include "utils/hsearch.h"
35 #include "utils/lsyscache.h"
36 
37 
38 typedef struct JoinHashEntry
39 {
40  Relids join_relids; /* hash key --- MUST BE FIRST */
43 
44 static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
45  RelOptInfo *input_rel,
46  SpecialJoinInfo *sjinfo,
47  List *pushed_down_joins,
48  bool can_null);
50  RelOptInfo *joinrel,
51  RelOptInfo *outer_rel,
52  RelOptInfo *inner_rel,
53  SpecialJoinInfo *sjinfo);
54 static void build_joinrel_joinlist(RelOptInfo *joinrel,
55  RelOptInfo *outer_rel,
56  RelOptInfo *inner_rel);
58  RelOptInfo *joinrel,
59  RelOptInfo *input_rel,
60  Relids both_input_relids,
61  List *new_restrictlist);
63  List *joininfo_list,
64  List *new_joininfo);
65 static void set_foreign_rel_properties(RelOptInfo *joinrel,
66  RelOptInfo *outer_rel, RelOptInfo *inner_rel);
67 static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
69  RelOptInfo *joinrel,
70  RelOptInfo *outer_rel, RelOptInfo *inner_rel,
71  SpecialJoinInfo *sjinfo,
72  List *restrictlist);
73 static bool have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
74  RelOptInfo *rel1, RelOptInfo *rel2,
75  JoinType jointype, List *restrictlist);
76 static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel,
77  bool strict_op);
78 static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
79  RelOptInfo *outer_rel, RelOptInfo *inner_rel,
80  JoinType jointype);
82  RelOptInfo *parentrel,
83  RelOptInfo *childrel,
84  int nappinfos,
85  AppendRelInfo **appinfos);
86 
87 
88 /*
89  * setup_simple_rel_arrays
90  * Prepare the arrays we use for quickly accessing base relations
91  * and AppendRelInfos.
92  */
93 void
95 {
96  int size;
97  Index rti;
98  ListCell *lc;
99 
100  /* Arrays are accessed using RT indexes (1..N) */
101  size = list_length(root->parse->rtable) + 1;
102  root->simple_rel_array_size = size;
103 
104  /*
105  * simple_rel_array is initialized to all NULLs, since no RelOptInfos
106  * exist yet. It'll be filled by later calls to build_simple_rel().
107  */
108  root->simple_rel_array = (RelOptInfo **)
109  palloc0(size * sizeof(RelOptInfo *));
110 
111  /* simple_rte_array is an array equivalent of the rtable list */
112  root->simple_rte_array = (RangeTblEntry **)
113  palloc0(size * sizeof(RangeTblEntry *));
114  rti = 1;
115  foreach(lc, root->parse->rtable)
116  {
117  RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
118 
119  root->simple_rte_array[rti++] = rte;
120  }
121 
122  /* append_rel_array is not needed if there are no AppendRelInfos */
123  if (root->append_rel_list == NIL)
124  {
125  root->append_rel_array = NULL;
126  return;
127  }
128 
129  root->append_rel_array = (AppendRelInfo **)
130  palloc0(size * sizeof(AppendRelInfo *));
131 
132  /*
133  * append_rel_array is filled with any already-existing AppendRelInfos,
134  * which currently could only come from UNION ALL flattening. We might
135  * add more later during inheritance expansion, but it's the
136  * responsibility of the expansion code to update the array properly.
137  */
138  foreach(lc, root->append_rel_list)
139  {
140  AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
141  int child_relid = appinfo->child_relid;
142 
143  /* Sanity check */
144  Assert(child_relid < size);
145 
146  if (root->append_rel_array[child_relid])
147  elog(ERROR, "child relation already exists");
148 
149  root->append_rel_array[child_relid] = appinfo;
150  }
151 }
152 
153 /*
154  * expand_planner_arrays
155  * Expand the PlannerInfo's per-RTE arrays by add_size members
156  * and initialize the newly added entries to NULLs
157  *
158  * Note: this causes the append_rel_array to become allocated even if
159  * it was not before. This is okay for current uses, because we only call
160  * this when adding child relations, which always have AppendRelInfos.
161  */
162 void
164 {
165  int new_size;
166 
167  Assert(add_size > 0);
168 
169  new_size = root->simple_rel_array_size + add_size;
170 
171  root->simple_rel_array =
172  repalloc0_array(root->simple_rel_array, RelOptInfo *, root->simple_rel_array_size, new_size);
173 
174  root->simple_rte_array =
175  repalloc0_array(root->simple_rte_array, RangeTblEntry *, root->simple_rel_array_size, new_size);
176 
177  if (root->append_rel_array)
178  root->append_rel_array =
179  repalloc0_array(root->append_rel_array, AppendRelInfo *, root->simple_rel_array_size, new_size);
180  else
181  root->append_rel_array =
182  palloc0_array(AppendRelInfo *, new_size);
183 
184  root->simple_rel_array_size = new_size;
185 }
186 
187 /*
188  * build_simple_rel
189  * Construct a new RelOptInfo for a base relation or 'other' relation.
190  */
191 RelOptInfo *
193 {
194  RelOptInfo *rel;
195  RangeTblEntry *rte;
196 
197  /* Rel should not exist already */
198  Assert(relid > 0 && relid < root->simple_rel_array_size);
199  if (root->simple_rel_array[relid] != NULL)
200  elog(ERROR, "rel %d already exists", relid);
201 
202  /* Fetch RTE for relation */
203  rte = root->simple_rte_array[relid];
204  Assert(rte != NULL);
205 
206  rel = makeNode(RelOptInfo);
208  rel->relids = bms_make_singleton(relid);
209  rel->rows = 0;
210  /* cheap startup cost is interesting iff not all tuples to be retrieved */
211  rel->consider_startup = (root->tuple_fraction > 0);
212  rel->consider_param_startup = false; /* might get changed later */
213  rel->consider_parallel = false; /* might get changed later */
215  rel->pathlist = NIL;
216  rel->ppilist = NIL;
217  rel->partial_pathlist = NIL;
218  rel->cheapest_startup_path = NULL;
219  rel->cheapest_total_path = NULL;
220  rel->cheapest_unique_path = NULL;
222  rel->relid = relid;
223  rel->rtekind = rte->rtekind;
224  /* min_attr, max_attr, attr_needed, attr_widths are set below */
225  rel->notnullattnums = NULL;
226  rel->lateral_vars = NIL;
227  rel->indexlist = NIL;
228  rel->statlist = NIL;
229  rel->pages = 0;
230  rel->tuples = 0;
231  rel->allvisfrac = 0;
232  rel->eclass_indexes = NULL;
233  rel->subroot = NULL;
234  rel->subplan_params = NIL;
235  rel->rel_parallel_workers = -1; /* set up in get_relation_info */
236  rel->amflags = 0;
237  rel->serverid = InvalidOid;
238  if (rte->rtekind == RTE_RELATION)
239  {
240  Assert(parent == NULL ||
241  parent->rtekind == RTE_RELATION ||
242  parent->rtekind == RTE_SUBQUERY);
243 
244  /*
245  * For any RELATION rte, we need a userid with which to check
246  * permission access. Baserels simply use their own
247  * RTEPermissionInfo's checkAsUser.
248  *
249  * For otherrels normally there's no RTEPermissionInfo, so we use the
250  * parent's, which normally has one. The exceptional case is that the
251  * parent is a subquery, in which case the otherrel will have its own.
252  */
253  if (rel->reloptkind == RELOPT_BASEREL ||
255  parent->rtekind == RTE_SUBQUERY))
256  {
257  RTEPermissionInfo *perminfo;
258 
259  perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
260  rel->userid = perminfo->checkAsUser;
261  }
262  else
263  rel->userid = parent->userid;
264  }
265  else
266  rel->userid = InvalidOid;
267  rel->useridiscurrent = false;
268  rel->fdwroutine = NULL;
269  rel->fdw_private = NULL;
270  rel->unique_for_rels = NIL;
271  rel->non_unique_for_rels = NIL;
272  rel->baserestrictinfo = NIL;
273  rel->baserestrictcost.startup = 0;
274  rel->baserestrictcost.per_tuple = 0;
275  rel->baserestrict_min_security = UINT_MAX;
276  rel->joininfo = NIL;
277  rel->has_eclass_joins = false;
278  rel->consider_partitionwise_join = false; /* might get changed later */
279  rel->part_scheme = NULL;
280  rel->nparts = -1;
281  rel->boundinfo = NULL;
282  rel->partbounds_merged = false;
283  rel->partition_qual = NIL;
284  rel->part_rels = NULL;
285  rel->live_parts = NULL;
286  rel->all_partrels = NULL;
287  rel->partexprs = NULL;
288  rel->nullable_partexprs = NULL;
289 
290  /*
291  * Pass assorted information down the inheritance hierarchy.
292  */
293  if (parent)
294  {
295  /* We keep back-links to immediate parent and topmost parent. */
296  rel->parent = parent;
297  rel->top_parent = parent->top_parent ? parent->top_parent : parent;
298  rel->top_parent_relids = rel->top_parent->relids;
299 
300  /*
301  * A child rel is below the same outer joins as its parent. (We
302  * presume this info was already calculated for the parent.)
303  */
304  rel->nulling_relids = parent->nulling_relids;
305 
306  /*
307  * Also propagate lateral-reference information from appendrel parent
308  * rels to their child rels. We intentionally give each child rel the
309  * same minimum parameterization, even though it's quite possible that
310  * some don't reference all the lateral rels. This is because any
311  * append path for the parent will have to have the same
312  * parameterization for every child anyway, and there's no value in
313  * forcing extra reparameterize_path() calls. Similarly, a lateral
314  * reference to the parent prevents use of otherwise-movable join rels
315  * for each child.
316  *
317  * It's possible for child rels to have their own children, in which
318  * case the topmost parent's lateral info propagates all the way down.
319  */
321  rel->lateral_relids = parent->lateral_relids;
323  }
324  else
325  {
326  rel->parent = NULL;
327  rel->top_parent = NULL;
328  rel->top_parent_relids = NULL;
329  rel->nulling_relids = NULL;
330  rel->direct_lateral_relids = NULL;
331  rel->lateral_relids = NULL;
332  rel->lateral_referencers = NULL;
333  }
334 
335  /* Check type of rtable entry */
336  switch (rte->rtekind)
337  {
338  case RTE_RELATION:
339  /* Table --- retrieve statistics from the system catalogs */
340  get_relation_info(root, rte->relid, rte->inh, rel);
341  break;
342  case RTE_SUBQUERY:
343  case RTE_FUNCTION:
344  case RTE_TABLEFUNC:
345  case RTE_VALUES:
346  case RTE_CTE:
347  case RTE_NAMEDTUPLESTORE:
348 
349  /*
350  * Subquery, function, tablefunc, values list, CTE, or ENR --- set
351  * up attr range and arrays
352  *
353  * Note: 0 is included in range to support whole-row Vars
354  */
355  rel->min_attr = 0;
356  rel->max_attr = list_length(rte->eref->colnames);
357  rel->attr_needed = (Relids *)
358  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
359  rel->attr_widths = (int32 *)
360  palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
361  break;
362  case RTE_RESULT:
363  /* RTE_RESULT has no columns, nor could it have whole-row Var */
364  rel->min_attr = 0;
365  rel->max_attr = -1;
366  rel->attr_needed = NULL;
367  rel->attr_widths = NULL;
368  break;
369  default:
370  elog(ERROR, "unrecognized RTE kind: %d",
371  (int) rte->rtekind);
372  break;
373  }
374 
375  /*
376  * We must apply the partially filled in RelOptInfo before calling
377  * apply_child_basequals due to some transformations within that function
378  * which require the RelOptInfo to be available in the simple_rel_array.
379  */
380  root->simple_rel_array[relid] = rel;
381 
382  /*
383  * Apply the parent's quals to the child, with appropriate substitution of
384  * variables. If the resulting clause is constant-FALSE or NULL after
385  * applying transformations, apply_child_basequals returns false to
386  * indicate that scanning this relation won't yield any rows. In this
387  * case, we mark the child as dummy right away. (We must do this
388  * immediately so that pruning works correctly when recursing in
389  * expand_partitioned_rtentry.)
390  */
391  if (parent)
392  {
393  AppendRelInfo *appinfo = root->append_rel_array[relid];
394 
395  Assert(appinfo != NULL);
396  if (!apply_child_basequals(root, parent, rel, rte, appinfo))
397  {
398  /*
399  * Restriction clause reduced to constant FALSE or NULL. Mark as
400  * dummy so we won't scan this relation.
401  */
402  mark_dummy_rel(rel);
403  }
404  }
405 
406  return rel;
407 }
408 
409 /*
410  * find_base_rel
411  * Find a base or otherrel relation entry, which must already exist.
412  */
413 RelOptInfo *
415 {
416  RelOptInfo *rel;
417 
418  /* use an unsigned comparison to prevent negative array element access */
419  if ((uint32) relid < (uint32) root->simple_rel_array_size)
420  {
421  rel = root->simple_rel_array[relid];
422  if (rel)
423  return rel;
424  }
425 
426  elog(ERROR, "no relation entry for relid %d", relid);
427 
428  return NULL; /* keep compiler quiet */
429 }
430 
431 /*
432  * find_base_rel_noerr
433  * Find a base or otherrel relation entry, returning NULL if there's none
434  */
435 RelOptInfo *
437 {
438  /* use an unsigned comparison to prevent negative array element access */
439  if ((uint32) relid < (uint32) root->simple_rel_array_size)
440  return root->simple_rel_array[relid];
441  return NULL;
442 }
443 
444 /*
445  * find_base_rel_ignore_join
446  * Find a base or otherrel relation entry, which must already exist.
447  *
448  * Unlike find_base_rel, if relid references an outer join then this
449  * will return NULL rather than raising an error. This is convenient
450  * for callers that must deal with relid sets including both base and
451  * outer joins.
452  */
453 RelOptInfo *
455 {
456  /* use an unsigned comparison to prevent negative array element access */
457  if ((uint32) relid < (uint32) root->simple_rel_array_size)
458  {
459  RelOptInfo *rel;
460  RangeTblEntry *rte;
461 
462  rel = root->simple_rel_array[relid];
463  if (rel)
464  return rel;
465 
466  /*
467  * We could just return NULL here, but for debugging purposes it seems
468  * best to actually verify that the relid is an outer join and not
469  * something weird.
470  */
471  rte = root->simple_rte_array[relid];
472  if (rte && rte->rtekind == RTE_JOIN && rte->jointype != JOIN_INNER)
473  return NULL;
474  }
475 
476  elog(ERROR, "no relation entry for relid %d", relid);
477 
478  return NULL; /* keep compiler quiet */
479 }
480 
481 /*
482  * build_join_rel_hash
483  * Construct the auxiliary hash table for join relations.
484  */
485 static void
487 {
488  HTAB *hashtab;
489  HASHCTL hash_ctl;
490  ListCell *l;
491 
492  /* Create the hash table */
493  hash_ctl.keysize = sizeof(Relids);
494  hash_ctl.entrysize = sizeof(JoinHashEntry);
495  hash_ctl.hash = bitmap_hash;
496  hash_ctl.match = bitmap_match;
497  hash_ctl.hcxt = CurrentMemoryContext;
498  hashtab = hash_create("JoinRelHashTable",
499  256L,
500  &hash_ctl,
502 
503  /* Insert all the already-existing joinrels */
504  foreach(l, root->join_rel_list)
505  {
506  RelOptInfo *rel = (RelOptInfo *) lfirst(l);
507  JoinHashEntry *hentry;
508  bool found;
509 
510  hentry = (JoinHashEntry *) hash_search(hashtab,
511  &(rel->relids),
512  HASH_ENTER,
513  &found);
514  Assert(!found);
515  hentry->join_rel = rel;
516  }
517 
518  root->join_rel_hash = hashtab;
519 }
520 
521 /*
522  * find_join_rel
523  * Returns relation entry corresponding to 'relids' (a set of RT indexes),
524  * or NULL if none exists. This is for join relations.
525  */
526 RelOptInfo *
528 {
529  /*
530  * Switch to using hash lookup when list grows "too long". The threshold
531  * is arbitrary and is known only here.
532  */
533  if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
535 
536  /*
537  * Use either hashtable lookup or linear search, as appropriate.
538  *
539  * Note: the seemingly redundant hashkey variable is used to avoid taking
540  * the address of relids; unless the compiler is exceedingly smart, doing
541  * so would force relids out of a register and thus probably slow down the
542  * list-search case.
543  */
544  if (root->join_rel_hash)
545  {
546  Relids hashkey = relids;
547  JoinHashEntry *hentry;
548 
549  hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
550  &hashkey,
551  HASH_FIND,
552  NULL);
553  if (hentry)
554  return hentry->join_rel;
555  }
556  else
557  {
558  ListCell *l;
559 
560  foreach(l, root->join_rel_list)
561  {
562  RelOptInfo *rel = (RelOptInfo *) lfirst(l);
563 
564  if (bms_equal(rel->relids, relids))
565  return rel;
566  }
567  }
568 
569  return NULL;
570 }
571 
572 /*
573  * set_foreign_rel_properties
574  * Set up foreign-join fields if outer and inner relation are foreign
575  * tables (or joins) belonging to the same server and assigned to the same
576  * user to check access permissions as.
577  *
578  * In addition to an exact match of userid, we allow the case where one side
579  * has zero userid (implying current user) and the other side has explicit
580  * userid that happens to equal the current user; but in that case, pushdown of
581  * the join is only valid for the current user. The useridiscurrent field
582  * records whether we had to make such an assumption for this join or any
583  * sub-join.
584  *
585  * Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
586  * called for the join relation.
587  */
588 static void
590  RelOptInfo *inner_rel)
591 {
592  if (OidIsValid(outer_rel->serverid) &&
593  inner_rel->serverid == outer_rel->serverid)
594  {
595  if (inner_rel->userid == outer_rel->userid)
596  {
597  joinrel->serverid = outer_rel->serverid;
598  joinrel->userid = outer_rel->userid;
599  joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
600  joinrel->fdwroutine = outer_rel->fdwroutine;
601  }
602  else if (!OidIsValid(inner_rel->userid) &&
603  outer_rel->userid == GetUserId())
604  {
605  joinrel->serverid = outer_rel->serverid;
606  joinrel->userid = outer_rel->userid;
607  joinrel->useridiscurrent = true;
608  joinrel->fdwroutine = outer_rel->fdwroutine;
609  }
610  else if (!OidIsValid(outer_rel->userid) &&
611  inner_rel->userid == GetUserId())
612  {
613  joinrel->serverid = outer_rel->serverid;
614  joinrel->userid = inner_rel->userid;
615  joinrel->useridiscurrent = true;
616  joinrel->fdwroutine = outer_rel->fdwroutine;
617  }
618  }
619 }
620 
621 /*
622  * add_join_rel
623  * Add given join relation to the list of join relations in the given
624  * PlannerInfo. Also add it to the auxiliary hashtable if there is one.
625  */
626 static void
628 {
629  /* GEQO requires us to append the new joinrel to the end of the list! */
630  root->join_rel_list = lappend(root->join_rel_list, joinrel);
631 
632  /* store it into the auxiliary hashtable if there is one. */
633  if (root->join_rel_hash)
634  {
635  JoinHashEntry *hentry;
636  bool found;
637 
638  hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
639  &(joinrel->relids),
640  HASH_ENTER,
641  &found);
642  Assert(!found);
643  hentry->join_rel = joinrel;
644  }
645 }
646 
647 /*
648  * build_join_rel
649  * Returns relation entry corresponding to the union of two given rels,
650  * creating a new relation entry if none already exists.
651  *
652  * 'joinrelids' is the Relids set that uniquely identifies the join
653  * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
654  * joined
655  * 'sjinfo': join context info
656  * 'pushed_down_joins': any pushed-down outer joins that are now completed
657  * 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr
658  * receives the list of RestrictInfo nodes that apply to this
659  * particular pair of joinable relations.
660  *
661  * restrictlist_ptr makes the routine's API a little grotty, but it saves
662  * duplicated calculation of the restrictlist...
663  */
664 RelOptInfo *
666  Relids joinrelids,
667  RelOptInfo *outer_rel,
668  RelOptInfo *inner_rel,
669  SpecialJoinInfo *sjinfo,
670  List *pushed_down_joins,
671  List **restrictlist_ptr)
672 {
673  RelOptInfo *joinrel;
674  List *restrictlist;
675 
676  /* This function should be used only for join between parents. */
677  Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
678 
679  /*
680  * See if we already have a joinrel for this set of base rels.
681  */
682  joinrel = find_join_rel(root, joinrelids);
683 
684  if (joinrel)
685  {
686  /*
687  * Yes, so we only need to figure the restrictlist for this particular
688  * pair of component relations.
689  */
690  if (restrictlist_ptr)
691  *restrictlist_ptr = build_joinrel_restrictlist(root,
692  joinrel,
693  outer_rel,
694  inner_rel,
695  sjinfo);
696  return joinrel;
697  }
698 
699  /*
700  * Nope, so make one.
701  */
702  joinrel = makeNode(RelOptInfo);
703  joinrel->reloptkind = RELOPT_JOINREL;
704  joinrel->relids = bms_copy(joinrelids);
705  joinrel->rows = 0;
706  /* cheap startup cost is interesting iff not all tuples to be retrieved */
707  joinrel->consider_startup = (root->tuple_fraction > 0);
708  joinrel->consider_param_startup = false;
709  joinrel->consider_parallel = false;
710  joinrel->reltarget = create_empty_pathtarget();
711  joinrel->pathlist = NIL;
712  joinrel->ppilist = NIL;
713  joinrel->partial_pathlist = NIL;
714  joinrel->cheapest_startup_path = NULL;
715  joinrel->cheapest_total_path = NULL;
716  joinrel->cheapest_unique_path = NULL;
718  /* init direct_lateral_relids from children; we'll finish it up below */
719  joinrel->direct_lateral_relids =
720  bms_union(outer_rel->direct_lateral_relids,
721  inner_rel->direct_lateral_relids);
723  outer_rel, inner_rel);
724  joinrel->relid = 0; /* indicates not a baserel */
725  joinrel->rtekind = RTE_JOIN;
726  joinrel->min_attr = 0;
727  joinrel->max_attr = 0;
728  joinrel->attr_needed = NULL;
729  joinrel->attr_widths = NULL;
730  joinrel->notnullattnums = NULL;
731  joinrel->nulling_relids = NULL;
732  joinrel->lateral_vars = NIL;
733  joinrel->lateral_referencers = NULL;
734  joinrel->indexlist = NIL;
735  joinrel->statlist = NIL;
736  joinrel->pages = 0;
737  joinrel->tuples = 0;
738  joinrel->allvisfrac = 0;
739  joinrel->eclass_indexes = NULL;
740  joinrel->subroot = NULL;
741  joinrel->subplan_params = NIL;
742  joinrel->rel_parallel_workers = -1;
743  joinrel->amflags = 0;
744  joinrel->serverid = InvalidOid;
745  joinrel->userid = InvalidOid;
746  joinrel->useridiscurrent = false;
747  joinrel->fdwroutine = NULL;
748  joinrel->fdw_private = NULL;
749  joinrel->unique_for_rels = NIL;
750  joinrel->non_unique_for_rels = NIL;
751  joinrel->baserestrictinfo = NIL;
752  joinrel->baserestrictcost.startup = 0;
753  joinrel->baserestrictcost.per_tuple = 0;
754  joinrel->baserestrict_min_security = UINT_MAX;
755  joinrel->joininfo = NIL;
756  joinrel->has_eclass_joins = false;
757  joinrel->consider_partitionwise_join = false; /* might get changed later */
758  joinrel->parent = NULL;
759  joinrel->top_parent = NULL;
760  joinrel->top_parent_relids = NULL;
761  joinrel->part_scheme = NULL;
762  joinrel->nparts = -1;
763  joinrel->boundinfo = NULL;
764  joinrel->partbounds_merged = false;
765  joinrel->partition_qual = NIL;
766  joinrel->part_rels = NULL;
767  joinrel->live_parts = NULL;
768  joinrel->all_partrels = NULL;
769  joinrel->partexprs = NULL;
770  joinrel->nullable_partexprs = NULL;
771 
772  /* Compute information relevant to the foreign relations. */
773  set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
774 
775  /*
776  * Fill the joinrel's tlist with just the Vars and PHVs that need to be
777  * output from this join (ie, are needed for higher joinclauses or final
778  * output).
779  *
780  * NOTE: the tlist order for a join rel will depend on which pair of outer
781  * and inner rels we first try to build it from. But the contents should
782  * be the same regardless.
783  */
784  build_joinrel_tlist(root, joinrel, outer_rel, sjinfo, pushed_down_joins,
785  (sjinfo->jointype == JOIN_FULL));
786  build_joinrel_tlist(root, joinrel, inner_rel, sjinfo, pushed_down_joins,
787  (sjinfo->jointype != JOIN_INNER));
788  add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel, sjinfo);
789 
790  /*
791  * add_placeholders_to_joinrel also took care of adding the ph_lateral
792  * sets of any PlaceHolderVars computed here to direct_lateral_relids, so
793  * now we can finish computing that. This is much like the computation of
794  * the transitively-closed lateral_relids in min_join_parameterization,
795  * except that here we *do* have to consider the added PHVs.
796  */
797  joinrel->direct_lateral_relids =
798  bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
799 
800  /*
801  * Construct restrict and join clause lists for the new joinrel. (The
802  * caller might or might not need the restrictlist, but I need it anyway
803  * for set_joinrel_size_estimates().)
804  */
805  restrictlist = build_joinrel_restrictlist(root, joinrel,
806  outer_rel, inner_rel,
807  sjinfo);
808  if (restrictlist_ptr)
809  *restrictlist_ptr = restrictlist;
810  build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
811 
812  /*
813  * This is also the right place to check whether the joinrel has any
814  * pending EquivalenceClass joins.
815  */
817 
818  /* Store the partition information. */
819  build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
820  restrictlist);
821 
822  /*
823  * Set estimates of the joinrel's size.
824  */
825  set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
826  sjinfo, restrictlist);
827 
828  /*
829  * Set the consider_parallel flag if this joinrel could potentially be
830  * scanned within a parallel worker. If this flag is false for either
831  * inner_rel or outer_rel, then it must be false for the joinrel also.
832  * Even if both are true, there might be parallel-restricted expressions
833  * in the targetlist or quals.
834  *
835  * Note that if there are more than two rels in this relation, they could
836  * be divided between inner_rel and outer_rel in any arbitrary way. We
837  * assume this doesn't matter, because we should hit all the same baserels
838  * and joinclauses while building up to this joinrel no matter which we
839  * take; therefore, we should make the same decision here however we get
840  * here.
841  */
842  if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
843  is_parallel_safe(root, (Node *) restrictlist) &&
844  is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
845  joinrel->consider_parallel = true;
846 
847  /* Add the joinrel to the PlannerInfo. */
848  add_join_rel(root, joinrel);
849 
850  /*
851  * Also, if dynamic-programming join search is active, add the new joinrel
852  * to the appropriate sublist. Note: you might think the Assert on number
853  * of members should be for equality, but some of the level 1 rels might
854  * have been joinrels already, so we can only assert <=.
855  */
856  if (root->join_rel_level)
857  {
858  Assert(root->join_cur_level > 0);
859  Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
860  root->join_rel_level[root->join_cur_level] =
861  lappend(root->join_rel_level[root->join_cur_level], joinrel);
862  }
863 
864  return joinrel;
865 }
866 
867 /*
868  * build_child_join_rel
869  * Builds RelOptInfo representing join between given two child relations.
870  *
871  * 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
872  * joined
873  * 'parent_joinrel' is the RelOptInfo representing the join between parent
874  * relations. Some of the members of new RelOptInfo are produced by
875  * translating corresponding members of this RelOptInfo
876  * 'restrictlist': list of RestrictInfo nodes that apply to this particular
877  * pair of joinable relations
878  * 'sjinfo': child join's join-type details
879  * 'nappinfos' and 'appinfos': AppendRelInfo array for child relids
880  */
881 RelOptInfo *
883  RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
884  List *restrictlist, SpecialJoinInfo *sjinfo,
885  int nappinfos, AppendRelInfo **appinfos)
886 {
887  RelOptInfo *joinrel = makeNode(RelOptInfo);
888 
889  /* Only joins between "other" relations land here. */
890  Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
891 
892  /* The parent joinrel should have consider_partitionwise_join set. */
893  Assert(parent_joinrel->consider_partitionwise_join);
894 
895  joinrel->reloptkind = RELOPT_OTHER_JOINREL;
896  joinrel->relids = adjust_child_relids(parent_joinrel->relids,
897  nappinfos, appinfos);
898  joinrel->rows = 0;
899  /* cheap startup cost is interesting iff not all tuples to be retrieved */
900  joinrel->consider_startup = (root->tuple_fraction > 0);
901  joinrel->consider_param_startup = false;
902  joinrel->consider_parallel = false;
903  joinrel->reltarget = create_empty_pathtarget();
904  joinrel->pathlist = NIL;
905  joinrel->ppilist = NIL;
906  joinrel->partial_pathlist = NIL;
907  joinrel->cheapest_startup_path = NULL;
908  joinrel->cheapest_total_path = NULL;
909  joinrel->cheapest_unique_path = NULL;
911  joinrel->direct_lateral_relids = NULL;
912  joinrel->lateral_relids = NULL;
913  joinrel->relid = 0; /* indicates not a baserel */
914  joinrel->rtekind = RTE_JOIN;
915  joinrel->min_attr = 0;
916  joinrel->max_attr = 0;
917  joinrel->attr_needed = NULL;
918  joinrel->attr_widths = NULL;
919  joinrel->notnullattnums = NULL;
920  joinrel->nulling_relids = NULL;
921  joinrel->lateral_vars = NIL;
922  joinrel->lateral_referencers = NULL;
923  joinrel->indexlist = NIL;
924  joinrel->pages = 0;
925  joinrel->tuples = 0;
926  joinrel->allvisfrac = 0;
927  joinrel->eclass_indexes = NULL;
928  joinrel->subroot = NULL;
929  joinrel->subplan_params = NIL;
930  joinrel->amflags = 0;
931  joinrel->serverid = InvalidOid;
932  joinrel->userid = InvalidOid;
933  joinrel->useridiscurrent = false;
934  joinrel->fdwroutine = NULL;
935  joinrel->fdw_private = NULL;
936  joinrel->baserestrictinfo = NIL;
937  joinrel->baserestrictcost.startup = 0;
938  joinrel->baserestrictcost.per_tuple = 0;
939  joinrel->joininfo = NIL;
940  joinrel->has_eclass_joins = false;
941  joinrel->consider_partitionwise_join = false; /* might get changed later */
942  joinrel->parent = parent_joinrel;
943  joinrel->top_parent = parent_joinrel->top_parent ? parent_joinrel->top_parent : parent_joinrel;
944  joinrel->top_parent_relids = joinrel->top_parent->relids;
945  joinrel->part_scheme = NULL;
946  joinrel->nparts = -1;
947  joinrel->boundinfo = NULL;
948  joinrel->partbounds_merged = false;
949  joinrel->partition_qual = NIL;
950  joinrel->part_rels = NULL;
951  joinrel->live_parts = NULL;
952  joinrel->all_partrels = NULL;
953  joinrel->partexprs = NULL;
954  joinrel->nullable_partexprs = NULL;
955 
956  /* Compute information relevant to foreign relations. */
957  set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
958 
959  /* Set up reltarget struct */
960  build_child_join_reltarget(root, parent_joinrel, joinrel,
961  nappinfos, appinfos);
962 
963  /* Construct joininfo list. */
964  joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
965  (Node *) parent_joinrel->joininfo,
966  nappinfos,
967  appinfos);
968 
969  /*
970  * Lateral relids referred in child join will be same as that referred in
971  * the parent relation.
972  */
973  joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
974  joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
975 
976  /*
977  * If the parent joinrel has pending equivalence classes, so does the
978  * child.
979  */
980  joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
981 
982  /* Is the join between partitions itself partitioned? */
983  build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
984  restrictlist);
985 
986  /* Child joinrel is parallel safe if parent is parallel safe. */
987  joinrel->consider_parallel = parent_joinrel->consider_parallel;
988 
989  /* Set estimates of the child-joinrel's size. */
990  set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
991  sjinfo, restrictlist);
992 
993  /* We build the join only once. */
994  Assert(!find_join_rel(root, joinrel->relids));
995 
996  /* Add the relation to the PlannerInfo. */
997  add_join_rel(root, joinrel);
998 
999  /*
1000  * We might need EquivalenceClass members corresponding to the child join,
1001  * so that we can represent sort pathkeys for it. As with children of
1002  * baserels, we shouldn't need this unless there are relevant eclass joins
1003  * (implying that a merge join might be possible) or pathkeys to sort by.
1004  */
1005  if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
1007  nappinfos, appinfos,
1008  parent_joinrel, joinrel);
1009 
1010  return joinrel;
1011 }
1012 
1013 /*
1014  * min_join_parameterization
1015  *
1016  * Determine the minimum possible parameterization of a joinrel, that is, the
1017  * set of other rels it contains LATERAL references to. We save this value in
1018  * the join's RelOptInfo. This function is split out of build_join_rel()
1019  * because join_is_legal() needs the value to check a prospective join.
1020  */
1021 Relids
1023  Relids joinrelids,
1024  RelOptInfo *outer_rel,
1025  RelOptInfo *inner_rel)
1026 {
1027  Relids result;
1028 
1029  /*
1030  * Basically we just need the union of the inputs' lateral_relids, less
1031  * whatever is already in the join.
1032  *
1033  * It's not immediately obvious that this is a valid way to compute the
1034  * result, because it might seem that we're ignoring possible lateral refs
1035  * of PlaceHolderVars that are due to be computed at the join but not in
1036  * either input. However, because create_lateral_join_info() already
1037  * charged all such PHV refs to each member baserel of the join, they'll
1038  * be accounted for already in the inputs' lateral_relids. Likewise, we
1039  * do not need to worry about doing transitive closure here, because that
1040  * was already accounted for in the original baserel lateral_relids.
1041  */
1042  result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
1043  result = bms_del_members(result, joinrelids);
1044  return result;
1045 }
1046 
1047 /*
1048  * build_joinrel_tlist
1049  * Builds a join relation's target list from an input relation.
1050  * (This is invoked twice to handle the two input relations.)
1051  *
1052  * The join's targetlist includes all Vars of its member relations that
1053  * will still be needed above the join. This subroutine adds all such
1054  * Vars from the specified input rel's tlist to the join rel's tlist.
1055  * Likewise for any PlaceHolderVars emitted by the input rel.
1056  *
1057  * We also compute the expected width of the join's output, making use
1058  * of data that was cached at the baserel level by set_rel_width().
1059  *
1060  * Pass can_null as true if the join is an outer join that can null Vars
1061  * from this input relation. If so, we will (normally) add the join's relid
1062  * to the nulling bitmaps of Vars and PHVs bubbled up from the input.
1063  *
1064  * When forming an outer join's target list, special handling is needed in
1065  * case the outer join was commuted with another one per outer join identity 3
1066  * (see optimizer/README). We must take steps to ensure that the output Vars
1067  * have the same nulling bitmaps that they would if the two joins had been
1068  * done in syntactic order; else they won't match Vars appearing higher in
1069  * the query tree. An exception to the match-the-syntactic-order rule is
1070  * that when an outer join is pushed down into another one's RHS per identity
1071  * 3, we can't mark its Vars as nulled until the now-upper outer join is also
1072  * completed. So we need to do three things:
1073  *
1074  * First, we add the outer join's relid to the nulling bitmap only if the
1075  * outer join has been completely performed and the Var or PHV actually
1076  * comes from within the syntactically nullable side(s) of the outer join.
1077  * This takes care of the possibility that we have transformed
1078  * (A leftjoin B on (Pab)) leftjoin C on (Pbc)
1079  * to
1080  * A leftjoin (B leftjoin C on (Pbc)) on (Pab)
1081  * Here the pushed-down B/C join cannot mark C columns as nulled yet,
1082  * while the now-upper A/B join must not mark C columns as nulled by itself.
1083  *
1084  * Second, perform the same operation for each SpecialJoinInfo listed in
1085  * pushed_down_joins (which, in this example, would be the B/C join when
1086  * we are at the now-upper A/B join). This allows the now-upper join to
1087  * complete the marking of "C" Vars that now have fully valid values.
1088  *
1089  * Third, any relid in sjinfo->commute_above_r that is already part of
1090  * the joinrel is added to the nulling bitmaps of nullable Vars and PHVs.
1091  * This takes care of the reverse case where we implement
1092  * A leftjoin (B leftjoin C on (Pbc)) on (Pab)
1093  * as
1094  * (A leftjoin B on (Pab)) leftjoin C on (Pbc)
1095  * The C columns emitted by the B/C join need to be shown as nulled by both
1096  * the B/C and A/B joins, even though they've not physically traversed the
1097  * A/B join.
1098  */
1099 static void
1101  RelOptInfo *input_rel,
1102  SpecialJoinInfo *sjinfo,
1103  List *pushed_down_joins,
1104  bool can_null)
1105 {
1106  Relids relids = joinrel->relids;
1107  int64 tuple_width = joinrel->reltarget->width;
1108  ListCell *vars;
1109  ListCell *lc;
1110 
1111  foreach(vars, input_rel->reltarget->exprs)
1112  {
1113  Var *var = (Var *) lfirst(vars);
1114 
1115  /*
1116  * For a PlaceHolderVar, we have to look up the PlaceHolderInfo.
1117  */
1118  if (IsA(var, PlaceHolderVar))
1119  {
1120  PlaceHolderVar *phv = (PlaceHolderVar *) var;
1121  PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
1122 
1123  /* Is it still needed above this joinrel? */
1124  if (bms_nonempty_difference(phinfo->ph_needed, relids))
1125  {
1126  /*
1127  * Yup, add it to the output. If this join potentially nulls
1128  * this input, we have to update the PHV's phnullingrels,
1129  * which means making a copy.
1130  */
1131  if (can_null)
1132  {
1133  phv = copyObject(phv);
1134  /* See comments above to understand this logic */
1135  if (sjinfo->ojrelid != 0 &&
1136  bms_is_member(sjinfo->ojrelid, relids) &&
1137  (bms_is_subset(phv->phrels, sjinfo->syn_righthand) ||
1138  (sjinfo->jointype == JOIN_FULL &&
1139  bms_is_subset(phv->phrels, sjinfo->syn_lefthand))))
1141  sjinfo->ojrelid);
1142  foreach(lc, pushed_down_joins)
1143  {
1144  SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
1145 
1146  Assert(bms_is_member(othersj->ojrelid, relids));
1147  if (bms_is_subset(phv->phrels, othersj->syn_righthand))
1149  othersj->ojrelid);
1150  }
1151  phv->phnullingrels =
1152  bms_join(phv->phnullingrels,
1154  relids));
1155  }
1156 
1157  joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
1158  phv);
1159  /* Bubbling up the precomputed result has cost zero */
1160  tuple_width += phinfo->ph_width;
1161  }
1162  continue;
1163  }
1164 
1165  /*
1166  * Otherwise, anything in a baserel or joinrel targetlist ought to be
1167  * a Var. (More general cases can only appear in appendrel child
1168  * rels, which will never be seen here.)
1169  */
1170  if (!IsA(var, Var))
1171  elog(ERROR, "unexpected node type in rel targetlist: %d",
1172  (int) nodeTag(var));
1173 
1174  if (var->varno == ROWID_VAR)
1175  {
1176  /* UPDATE/DELETE/MERGE row identity vars are always needed */
1177  RowIdentityVarInfo *ridinfo = (RowIdentityVarInfo *)
1178  list_nth(root->row_identity_vars, var->varattno - 1);
1179 
1180  /* Update reltarget width estimate from RowIdentityVarInfo */
1181  tuple_width += ridinfo->rowidwidth;
1182  }
1183  else
1184  {
1185  RelOptInfo *baserel;
1186  int ndx;
1187 
1188  /* Get the Var's original base rel */
1189  baserel = find_base_rel(root, var->varno);
1190 
1191  /* Is it still needed above this joinrel? */
1192  ndx = var->varattno - baserel->min_attr;
1193  if (!bms_nonempty_difference(baserel->attr_needed[ndx], relids))
1194  continue; /* nope, skip it */
1195 
1196  /* Update reltarget width estimate from baserel's attr_widths */
1197  tuple_width += baserel->attr_widths[ndx];
1198  }
1199 
1200  /*
1201  * Add the Var to the output. If this join potentially nulls this
1202  * input, we have to update the Var's varnullingrels, which means
1203  * making a copy. But note that we don't ever add nullingrel bits to
1204  * row identity Vars (cf. comments in setrefs.c).
1205  */
1206  if (can_null && var->varno != ROWID_VAR)
1207  {
1208  var = copyObject(var);
1209  /* See comments above to understand this logic */
1210  if (sjinfo->ojrelid != 0 &&
1211  bms_is_member(sjinfo->ojrelid, relids) &&
1212  (bms_is_member(var->varno, sjinfo->syn_righthand) ||
1213  (sjinfo->jointype == JOIN_FULL &&
1214  bms_is_member(var->varno, sjinfo->syn_lefthand))))
1215  var->varnullingrels = bms_add_member(var->varnullingrels,
1216  sjinfo->ojrelid);
1217  foreach(lc, pushed_down_joins)
1218  {
1219  SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
1220 
1221  Assert(bms_is_member(othersj->ojrelid, relids));
1222  if (bms_is_member(var->varno, othersj->syn_righthand))
1223  var->varnullingrels = bms_add_member(var->varnullingrels,
1224  othersj->ojrelid);
1225  }
1226  var->varnullingrels =
1227  bms_join(var->varnullingrels,
1229  relids));
1230  }
1231 
1232  joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
1233  var);
1234 
1235  /* Vars have cost zero, so no need to adjust reltarget->cost */
1236  }
1237 
1238  joinrel->reltarget->width = clamp_width_est(tuple_width);
1239 }
1240 
1241 /*
1242  * build_joinrel_restrictlist
1243  * build_joinrel_joinlist
1244  * These routines build lists of restriction and join clauses for a
1245  * join relation from the joininfo lists of the relations it joins.
1246  *
1247  * These routines are separate because the restriction list must be
1248  * built afresh for each pair of input sub-relations we consider, whereas
1249  * the join list need only be computed once for any join RelOptInfo.
1250  * The join list is fully determined by the set of rels making up the
1251  * joinrel, so we should get the same results (up to ordering) from any
1252  * candidate pair of sub-relations. But the restriction list is whatever
1253  * is not handled in the sub-relations, so it depends on which
1254  * sub-relations are considered.
1255  *
1256  * If a join clause from an input relation refers to base+OJ rels still not
1257  * present in the joinrel, then it is still a join clause for the joinrel;
1258  * we put it into the joininfo list for the joinrel. Otherwise,
1259  * the clause is now a restrict clause for the joined relation, and we
1260  * return it to the caller of build_joinrel_restrictlist() to be stored in
1261  * join paths made from this pair of sub-relations. (It will not need to
1262  * be considered further up the join tree.)
1263  *
1264  * In many cases we will find the same RestrictInfos in both input
1265  * relations' joinlists, so be careful to eliminate duplicates.
1266  * Pointer equality should be a sufficient test for dups, since all
1267  * the various joinlist entries ultimately refer to RestrictInfos
1268  * pushed into them by distribute_restrictinfo_to_rels().
1269  *
1270  * 'joinrel' is a join relation node
1271  * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
1272  * to form joinrel.
1273  * 'sjinfo': join context info
1274  *
1275  * build_joinrel_restrictlist() returns a list of relevant restrictinfos,
1276  * whereas build_joinrel_joinlist() stores its results in the joinrel's
1277  * joininfo list. One or the other must accept each given clause!
1278  *
1279  * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
1280  * up to the join relation. I believe this is no longer necessary, because
1281  * RestrictInfo nodes are no longer context-dependent. Instead, just include
1282  * the original nodes in the lists made for the join relation.
1283  */
1284 static List *
1286  RelOptInfo *joinrel,
1287  RelOptInfo *outer_rel,
1288  RelOptInfo *inner_rel,
1289  SpecialJoinInfo *sjinfo)
1290 {
1291  List *result;
1292  Relids both_input_relids;
1293 
1294  both_input_relids = bms_union(outer_rel->relids, inner_rel->relids);
1295 
1296  /*
1297  * Collect all the clauses that syntactically belong at this level,
1298  * eliminating any duplicates (important since we will see many of the
1299  * same clauses arriving from both input relations).
1300  */
1301  result = subbuild_joinrel_restrictlist(root, joinrel, outer_rel,
1302  both_input_relids, NIL);
1303  result = subbuild_joinrel_restrictlist(root, joinrel, inner_rel,
1304  both_input_relids, result);
1305 
1306  /*
1307  * Add on any clauses derived from EquivalenceClasses. These cannot be
1308  * redundant with the clauses in the joininfo lists, so don't bother
1309  * checking.
1310  */
1311  result = list_concat(result,
1313  joinrel->relids,
1314  outer_rel->relids,
1315  inner_rel,
1316  sjinfo));
1317 
1318  return result;
1319 }
1320 
1321 static void
1323  RelOptInfo *outer_rel,
1324  RelOptInfo *inner_rel)
1325 {
1326  List *result;
1327 
1328  /*
1329  * Collect all the clauses that syntactically belong above this level,
1330  * eliminating any duplicates (important since we will see many of the
1331  * same clauses arriving from both input relations).
1332  */
1333  result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
1334  result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
1335 
1336  joinrel->joininfo = result;
1337 }
1338 
1339 static List *
1341  RelOptInfo *joinrel,
1342  RelOptInfo *input_rel,
1343  Relids both_input_relids,
1344  List *new_restrictlist)
1345 {
1346  ListCell *l;
1347 
1348  foreach(l, input_rel->joininfo)
1349  {
1350  RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1351 
1352  if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1353  {
1354  /*
1355  * This clause should become a restriction clause for the joinrel,
1356  * since it refers to no outside rels. However, if it's a clone
1357  * clause then it might be too late to evaluate it, so we have to
1358  * check. (If it is too late, just ignore the clause, taking it
1359  * on faith that another clone was or will be selected.) Clone
1360  * clauses should always be outer-join clauses, so we compare
1361  * against both_input_relids.
1362  */
1363  if (rinfo->has_clone || rinfo->is_clone)
1364  {
1365  Assert(!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids));
1366  if (!bms_is_subset(rinfo->required_relids, both_input_relids))
1367  continue;
1368  if (bms_overlap(rinfo->incompatible_relids, both_input_relids))
1369  continue;
1370  }
1371  else
1372  {
1373  /*
1374  * For non-clone clauses, we just Assert it's OK. These might
1375  * be either join or filter clauses; if it's a join clause
1376  * then it should not refer to the current join's output.
1377  * (There is little point in checking incompatible_relids,
1378  * because it'll be NULL.)
1379  */
1380  Assert(RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids) ||
1382  both_input_relids));
1383  }
1384 
1385  /*
1386  * OK, so add it to the list, being careful to eliminate
1387  * duplicates. (Since RestrictInfo nodes in different joinlists
1388  * will have been multiply-linked rather than copied, pointer
1389  * equality should be a sufficient test.)
1390  */
1391  new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
1392  }
1393  else
1394  {
1395  /*
1396  * This clause is still a join clause at this level, so we ignore
1397  * it in this routine.
1398  */
1399  }
1400  }
1401 
1402  return new_restrictlist;
1403 }
1404 
1405 static List *
1407  List *joininfo_list,
1408  List *new_joininfo)
1409 {
1410  ListCell *l;
1411 
1412  /* Expected to be called only for join between parent relations. */
1413  Assert(joinrel->reloptkind == RELOPT_JOINREL);
1414 
1415  foreach(l, joininfo_list)
1416  {
1417  RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
1418 
1419  if (bms_is_subset(rinfo->required_relids, joinrel->relids))
1420  {
1421  /*
1422  * This clause becomes a restriction clause for the joinrel, since
1423  * it refers to no outside rels. So we can ignore it in this
1424  * routine.
1425  */
1426  }
1427  else
1428  {
1429  /*
1430  * This clause is still a join clause at this level, so add it to
1431  * the new joininfo list, being careful to eliminate duplicates.
1432  * (Since RestrictInfo nodes in different joinlists will have been
1433  * multiply-linked rather than copied, pointer equality should be
1434  * a sufficient test.)
1435  */
1436  new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
1437  }
1438  }
1439 
1440  return new_joininfo;
1441 }
1442 
1443 
1444 /*
1445  * fetch_upper_rel
1446  * Build a RelOptInfo describing some post-scan/join query processing,
1447  * or return a pre-existing one if somebody already built it.
1448  *
1449  * An "upper" relation is identified by an UpperRelationKind and a Relids set.
1450  * The meaning of the Relids set is not specified here, and very likely will
1451  * vary for different relation kinds.
1452  *
1453  * Most of the fields in an upper-level RelOptInfo are not used and are not
1454  * set here (though makeNode should ensure they're zeroes). We basically only
1455  * care about fields that are of interest to add_path() and set_cheapest().
1456  */
1457 RelOptInfo *
1459 {
1460  RelOptInfo *upperrel;
1461  ListCell *lc;
1462 
1463  /*
1464  * For the moment, our indexing data structure is just a List for each
1465  * relation kind. If we ever get so many of one kind that this stops
1466  * working well, we can improve it. No code outside this function should
1467  * assume anything about how to find a particular upperrel.
1468  */
1469 
1470  /* If we already made this upperrel for the query, return it */
1471  foreach(lc, root->upper_rels[kind])
1472  {
1473  upperrel = (RelOptInfo *) lfirst(lc);
1474 
1475  if (bms_equal(upperrel->relids, relids))
1476  return upperrel;
1477  }
1478 
1479  upperrel = makeNode(RelOptInfo);
1480  upperrel->reloptkind = RELOPT_UPPER_REL;
1481  upperrel->relids = bms_copy(relids);
1482 
1483  /* cheap startup cost is interesting iff not all tuples to be retrieved */
1484  upperrel->consider_startup = (root->tuple_fraction > 0);
1485  upperrel->consider_param_startup = false;
1486  upperrel->consider_parallel = false; /* might get changed later */
1487  upperrel->reltarget = create_empty_pathtarget();
1488  upperrel->pathlist = NIL;
1489  upperrel->cheapest_startup_path = NULL;
1490  upperrel->cheapest_total_path = NULL;
1491  upperrel->cheapest_unique_path = NULL;
1492  upperrel->cheapest_parameterized_paths = NIL;
1493 
1494  root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
1495 
1496  return upperrel;
1497 }
1498 
1499 
1500 /*
1501  * find_childrel_parents
1502  * Compute the set of parent relids of an appendrel child rel.
1503  *
1504  * Since appendrels can be nested, a child could have multiple levels of
1505  * appendrel ancestors. This function computes a Relids set of all the
1506  * parent relation IDs.
1507  */
1508 Relids
1510 {
1511  Relids result = NULL;
1512 
1514  Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
1515 
1516  do
1517  {
1518  AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
1519  Index prelid = appinfo->parent_relid;
1520 
1521  result = bms_add_member(result, prelid);
1522 
1523  /* traverse up to the parent rel, loop if it's also a child rel */
1524  rel = find_base_rel(root, prelid);
1525  } while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
1526 
1527  Assert(rel->reloptkind == RELOPT_BASEREL);
1528 
1529  return result;
1530 }
1531 
1532 
1533 /*
1534  * get_baserel_parampathinfo
1535  * Get the ParamPathInfo for a parameterized path for a base relation,
1536  * constructing one if we don't have one already.
1537  *
1538  * This centralizes estimating the rowcounts for parameterized paths.
1539  * We need to cache those to be sure we use the same rowcount for all paths
1540  * of the same parameterization for a given rel. This is also a convenient
1541  * place to determine which movable join clauses the parameterized path will
1542  * be responsible for evaluating.
1543  */
1544 ParamPathInfo *
1546  Relids required_outer)
1547 {
1548  ParamPathInfo *ppi;
1549  Relids joinrelids;
1550  List *pclauses;
1551  List *eqclauses;
1552  Bitmapset *pserials;
1553  double rows;
1554  ListCell *lc;
1555 
1556  /* If rel has LATERAL refs, every path for it should account for them */
1557  Assert(bms_is_subset(baserel->lateral_relids, required_outer));
1558 
1559  /* Unparameterized paths have no ParamPathInfo */
1560  if (bms_is_empty(required_outer))
1561  return NULL;
1562 
1563  Assert(!bms_overlap(baserel->relids, required_outer));
1564 
1565  /* If we already have a PPI for this parameterization, just return it */
1566  if ((ppi = find_param_path_info(baserel, required_outer)))
1567  return ppi;
1568 
1569  /*
1570  * Identify all joinclauses that are movable to this base rel given this
1571  * parameterization.
1572  */
1573  joinrelids = bms_union(baserel->relids, required_outer);
1574  pclauses = NIL;
1575  foreach(lc, baserel->joininfo)
1576  {
1577  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1578 
1579  if (join_clause_is_movable_into(rinfo,
1580  baserel->relids,
1581  joinrelids))
1582  pclauses = lappend(pclauses, rinfo);
1583  }
1584 
1585  /*
1586  * Add in joinclauses generated by EquivalenceClasses, too. (These
1587  * necessarily satisfy join_clause_is_movable_into; but in assert-enabled
1588  * builds, let's verify that.)
1589  */
1591  joinrelids,
1592  required_outer,
1593  baserel,
1594  NULL);
1595 #ifdef USE_ASSERT_CHECKING
1596  foreach(lc, eqclauses)
1597  {
1598  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1599 
1601  baserel->relids,
1602  joinrelids));
1603  }
1604 #endif
1605  pclauses = list_concat(pclauses, eqclauses);
1606 
1607  /* Compute set of serial numbers of the enforced clauses */
1608  pserials = NULL;
1609  foreach(lc, pclauses)
1610  {
1611  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1612 
1613  pserials = bms_add_member(pserials, rinfo->rinfo_serial);
1614  }
1615 
1616  /* Estimate the number of rows returned by the parameterized scan */
1617  rows = get_parameterized_baserel_size(root, baserel, pclauses);
1618 
1619  /* And now we can build the ParamPathInfo */
1620  ppi = makeNode(ParamPathInfo);
1621  ppi->ppi_req_outer = required_outer;
1622  ppi->ppi_rows = rows;
1623  ppi->ppi_clauses = pclauses;
1624  ppi->ppi_serials = pserials;
1625  baserel->ppilist = lappend(baserel->ppilist, ppi);
1626 
1627  return ppi;
1628 }
1629 
1630 /*
1631  * get_joinrel_parampathinfo
1632  * Get the ParamPathInfo for a parameterized path for a join relation,
1633  * constructing one if we don't have one already.
1634  *
1635  * This centralizes estimating the rowcounts for parameterized paths.
1636  * We need to cache those to be sure we use the same rowcount for all paths
1637  * of the same parameterization for a given rel. This is also a convenient
1638  * place to determine which movable join clauses the parameterized path will
1639  * be responsible for evaluating.
1640  *
1641  * outer_path and inner_path are a pair of input paths that can be used to
1642  * construct the join, and restrict_clauses is the list of regular join
1643  * clauses (including clauses derived from EquivalenceClasses) that must be
1644  * applied at the join node when using these inputs.
1645  *
1646  * Unlike the situation for base rels, the set of movable join clauses to be
1647  * enforced at a join varies with the selected pair of input paths, so we
1648  * must calculate that and pass it back, even if we already have a matching
1649  * ParamPathInfo. We handle this by adding any clauses moved down to this
1650  * join to *restrict_clauses, which is an in/out parameter. (The addition
1651  * is done in such a way as to not modify the passed-in List structure.)
1652  *
1653  * Note: when considering a nestloop join, the caller must have removed from
1654  * restrict_clauses any movable clauses that are themselves scheduled to be
1655  * pushed into the right-hand path. We do not do that here since it's
1656  * unnecessary for other join types.
1657  */
1658 ParamPathInfo *
1660  Path *outer_path,
1661  Path *inner_path,
1662  SpecialJoinInfo *sjinfo,
1663  Relids required_outer,
1664  List **restrict_clauses)
1665 {
1666  ParamPathInfo *ppi;
1667  Relids join_and_req;
1668  Relids outer_and_req;
1669  Relids inner_and_req;
1670  List *pclauses;
1671  List *eclauses;
1672  List *dropped_ecs;
1673  double rows;
1674  ListCell *lc;
1675 
1676  /* If rel has LATERAL refs, every path for it should account for them */
1677  Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
1678 
1679  /* Unparameterized paths have no ParamPathInfo or extra join clauses */
1680  if (bms_is_empty(required_outer))
1681  return NULL;
1682 
1683  Assert(!bms_overlap(joinrel->relids, required_outer));
1684 
1685  /*
1686  * Identify all joinclauses that are movable to this join rel given this
1687  * parameterization. These are the clauses that are movable into this
1688  * join, but not movable into either input path. Treat an unparameterized
1689  * input path as not accepting parameterized clauses (because it won't,
1690  * per the shortcut exit above), even though the joinclause movement rules
1691  * might allow the same clauses to be moved into a parameterized path for
1692  * that rel.
1693  */
1694  join_and_req = bms_union(joinrel->relids, required_outer);
1695  if (outer_path->param_info)
1696  outer_and_req = bms_union(outer_path->parent->relids,
1697  PATH_REQ_OUTER(outer_path));
1698  else
1699  outer_and_req = NULL; /* outer path does not accept parameters */
1700  if (inner_path->param_info)
1701  inner_and_req = bms_union(inner_path->parent->relids,
1702  PATH_REQ_OUTER(inner_path));
1703  else
1704  inner_and_req = NULL; /* inner path does not accept parameters */
1705 
1706  pclauses = NIL;
1707  foreach(lc, joinrel->joininfo)
1708  {
1709  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1710 
1711  if (join_clause_is_movable_into(rinfo,
1712  joinrel->relids,
1713  join_and_req) &&
1715  outer_path->parent->relids,
1716  outer_and_req) &&
1718  inner_path->parent->relids,
1719  inner_and_req))
1720  pclauses = lappend(pclauses, rinfo);
1721  }
1722 
1723  /* Consider joinclauses generated by EquivalenceClasses, too */
1725  join_and_req,
1726  required_outer,
1727  joinrel,
1728  NULL);
1729  /* We only want ones that aren't movable to lower levels */
1730  dropped_ecs = NIL;
1731  foreach(lc, eclauses)
1732  {
1733  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1734 
1736  joinrel->relids,
1737  join_and_req));
1738  if (join_clause_is_movable_into(rinfo,
1739  outer_path->parent->relids,
1740  outer_and_req))
1741  continue; /* drop if movable into LHS */
1742  if (join_clause_is_movable_into(rinfo,
1743  inner_path->parent->relids,
1744  inner_and_req))
1745  {
1746  /* drop if movable into RHS, but remember EC for use below */
1747  Assert(rinfo->left_ec == rinfo->right_ec);
1748  dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
1749  continue;
1750  }
1751  pclauses = lappend(pclauses, rinfo);
1752  }
1753 
1754  /*
1755  * EquivalenceClasses are harder to deal with than we could wish, because
1756  * of the fact that a given EC can generate different clauses depending on
1757  * context. Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
1758  * LHS and RHS of the current join and Z is in required_outer, and further
1759  * suppose that the inner_path is parameterized by both X and Z. The code
1760  * above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
1761  * and in the latter case will have discarded it as being movable into the
1762  * RHS. However, the EC machinery might have produced either Y.Y = X.X or
1763  * Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
1764  * not have produced both, and we can't readily tell from here which one
1765  * it did pick. If we add no clause to this join, we'll end up with
1766  * insufficient enforcement of the EC; either Z.Z or X.X will fail to be
1767  * constrained to be equal to the other members of the EC. (When we come
1768  * to join Z to this X/Y path, we will certainly drop whichever EC clause
1769  * is generated at that join, so this omission won't get fixed later.)
1770  *
1771  * To handle this, for each EC we discarded such a clause from, try to
1772  * generate a clause connecting the required_outer rels to the join's LHS
1773  * ("Z.Z = X.X" in the terms of the above example). If successful, and if
1774  * the clause can't be moved to the LHS, add it to the current join's
1775  * restriction clauses. (If an EC cannot generate such a clause then it
1776  * has nothing that needs to be enforced here, while if the clause can be
1777  * moved into the LHS then it should have been enforced within that path.)
1778  *
1779  * Note that we don't need similar processing for ECs whose clause was
1780  * considered to be movable into the LHS, because the LHS can't refer to
1781  * the RHS so there is no comparable ambiguity about what it might
1782  * actually be enforcing internally.
1783  */
1784  if (dropped_ecs)
1785  {
1786  Relids real_outer_and_req;
1787 
1788  real_outer_and_req = bms_union(outer_path->parent->relids,
1789  required_outer);
1790  eclauses =
1792  dropped_ecs,
1793  real_outer_and_req,
1794  required_outer,
1795  outer_path->parent);
1796  foreach(lc, eclauses)
1797  {
1798  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1799 
1801  outer_path->parent->relids,
1802  real_outer_and_req));
1803  if (!join_clause_is_movable_into(rinfo,
1804  outer_path->parent->relids,
1805  outer_and_req))
1806  pclauses = lappend(pclauses, rinfo);
1807  }
1808  }
1809 
1810  /*
1811  * Now, attach the identified moved-down clauses to the caller's
1812  * restrict_clauses list. By using list_concat in this order, we leave
1813  * the original list structure of restrict_clauses undamaged.
1814  */
1815  *restrict_clauses = list_concat(pclauses, *restrict_clauses);
1816 
1817  /* If we already have a PPI for this parameterization, just return it */
1818  if ((ppi = find_param_path_info(joinrel, required_outer)))
1819  return ppi;
1820 
1821  /* Estimate the number of rows returned by the parameterized join */
1822  rows = get_parameterized_joinrel_size(root, joinrel,
1823  outer_path,
1824  inner_path,
1825  sjinfo,
1826  *restrict_clauses);
1827 
1828  /*
1829  * And now we can build the ParamPathInfo. No point in saving the
1830  * input-pair-dependent clause list, though.
1831  *
1832  * Note: in GEQO mode, we'll be called in a temporary memory context, but
1833  * the joinrel structure is there too, so no problem.
1834  */
1835  ppi = makeNode(ParamPathInfo);
1836  ppi->ppi_req_outer = required_outer;
1837  ppi->ppi_rows = rows;
1838  ppi->ppi_clauses = NIL;
1839  ppi->ppi_serials = NULL;
1840  joinrel->ppilist = lappend(joinrel->ppilist, ppi);
1841 
1842  return ppi;
1843 }
1844 
1845 /*
1846  * get_appendrel_parampathinfo
1847  * Get the ParamPathInfo for a parameterized path for an append relation.
1848  *
1849  * For an append relation, the rowcount estimate will just be the sum of
1850  * the estimates for its children. However, we still need a ParamPathInfo
1851  * to flag the fact that the path requires parameters. So this just creates
1852  * a suitable struct with zero ppi_rows (and no ppi_clauses either, since
1853  * the Append node isn't responsible for checking quals).
1854  */
1855 ParamPathInfo *
1856 get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
1857 {
1858  ParamPathInfo *ppi;
1859 
1860  /* If rel has LATERAL refs, every path for it should account for them */
1861  Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
1862 
1863  /* Unparameterized paths have no ParamPathInfo */
1864  if (bms_is_empty(required_outer))
1865  return NULL;
1866 
1867  Assert(!bms_overlap(appendrel->relids, required_outer));
1868 
1869  /* If we already have a PPI for this parameterization, just return it */
1870  if ((ppi = find_param_path_info(appendrel, required_outer)))
1871  return ppi;
1872 
1873  /* Else build the ParamPathInfo */
1874  ppi = makeNode(ParamPathInfo);
1875  ppi->ppi_req_outer = required_outer;
1876  ppi->ppi_rows = 0;
1877  ppi->ppi_clauses = NIL;
1878  ppi->ppi_serials = NULL;
1879  appendrel->ppilist = lappend(appendrel->ppilist, ppi);
1880 
1881  return ppi;
1882 }
1883 
1884 /*
1885  * Returns a ParamPathInfo for the parameterization given by required_outer, if
1886  * already available in the given rel. Returns NULL otherwise.
1887  */
1888 ParamPathInfo *
1890 {
1891  ListCell *lc;
1892 
1893  foreach(lc, rel->ppilist)
1894  {
1895  ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
1896 
1897  if (bms_equal(ppi->ppi_req_outer, required_outer))
1898  return ppi;
1899  }
1900 
1901  return NULL;
1902 }
1903 
1904 /*
1905  * get_param_path_clause_serials
1906  * Given a parameterized Path, return the set of pushed-down clauses
1907  * (identified by rinfo_serial numbers) enforced within the Path.
1908  */
1909 Bitmapset *
1911 {
1912  if (path->param_info == NULL)
1913  return NULL; /* not parameterized */
1914  if (IsA(path, NestPath) ||
1915  IsA(path, MergePath) ||
1916  IsA(path, HashPath))
1917  {
1918  /*
1919  * For a join path, combine clauses enforced within either input path
1920  * with those enforced as joinrestrictinfo in this path. Note that
1921  * joinrestrictinfo may include some non-pushed-down clauses, but for
1922  * current purposes it's okay if we include those in the result. (To
1923  * be more careful, we could check for clause_relids overlapping the
1924  * path parameterization, but it's not worth the cycles for now.)
1925  */
1926  JoinPath *jpath = (JoinPath *) path;
1927  Bitmapset *pserials;
1928  ListCell *lc;
1929 
1930  pserials = NULL;
1931  pserials = bms_add_members(pserials,
1933  pserials = bms_add_members(pserials,
1935  foreach(lc, jpath->joinrestrictinfo)
1936  {
1937  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1938 
1939  pserials = bms_add_member(pserials, rinfo->rinfo_serial);
1940  }
1941  return pserials;
1942  }
1943  else if (IsA(path, AppendPath))
1944  {
1945  /*
1946  * For an appendrel, take the intersection of the sets of clauses
1947  * enforced in each input path.
1948  */
1949  AppendPath *apath = (AppendPath *) path;
1950  Bitmapset *pserials;
1951  ListCell *lc;
1952 
1953  pserials = NULL;
1954  foreach(lc, apath->subpaths)
1955  {
1956  Path *subpath = (Path *) lfirst(lc);
1957  Bitmapset *subserials;
1958 
1959  subserials = get_param_path_clause_serials(subpath);
1960  if (lc == list_head(apath->subpaths))
1961  pserials = bms_copy(subserials);
1962  else
1963  pserials = bms_int_members(pserials, subserials);
1964  }
1965  return pserials;
1966  }
1967  else if (IsA(path, MergeAppendPath))
1968  {
1969  /* Same as AppendPath case */
1970  MergeAppendPath *apath = (MergeAppendPath *) path;
1971  Bitmapset *pserials;
1972  ListCell *lc;
1973 
1974  pserials = NULL;
1975  foreach(lc, apath->subpaths)
1976  {
1977  Path *subpath = (Path *) lfirst(lc);
1978  Bitmapset *subserials;
1979 
1980  subserials = get_param_path_clause_serials(subpath);
1981  if (lc == list_head(apath->subpaths))
1982  pserials = bms_copy(subserials);
1983  else
1984  pserials = bms_int_members(pserials, subserials);
1985  }
1986  return pserials;
1987  }
1988  else
1989  {
1990  /*
1991  * Otherwise, it's a baserel path and we can use the
1992  * previously-computed set of serial numbers.
1993  */
1994  return path->param_info->ppi_serials;
1995  }
1996 }
1997 
1998 /*
1999  * build_joinrel_partition_info
2000  * Checks if the two relations being joined can use partitionwise join
2001  * and if yes, initialize partitioning information of the resulting
2002  * partitioned join relation.
2003  */
2004 static void
2006  RelOptInfo *joinrel, RelOptInfo *outer_rel,
2007  RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo,
2008  List *restrictlist)
2009 {
2010  PartitionScheme part_scheme;
2011 
2012  /* Nothing to do if partitionwise join technique is disabled. */
2014  {
2015  Assert(!IS_PARTITIONED_REL(joinrel));
2016  return;
2017  }
2018 
2019  /*
2020  * We can only consider this join as an input to further partitionwise
2021  * joins if (a) the input relations are partitioned and have
2022  * consider_partitionwise_join=true, (b) the partition schemes match, and
2023  * (c) we can identify an equi-join between the partition keys. Note that
2024  * if it were possible for have_partkey_equi_join to return different
2025  * answers for the same joinrel depending on which join ordering we try
2026  * first, this logic would break. That shouldn't happen, though, because
2027  * of the way the query planner deduces implied equalities and reorders
2028  * the joins. Please see optimizer/README for details.
2029  */
2030  if (outer_rel->part_scheme == NULL || inner_rel->part_scheme == NULL ||
2031  !outer_rel->consider_partitionwise_join ||
2032  !inner_rel->consider_partitionwise_join ||
2033  outer_rel->part_scheme != inner_rel->part_scheme ||
2034  !have_partkey_equi_join(root, joinrel, outer_rel, inner_rel,
2035  sjinfo->jointype, restrictlist))
2036  {
2037  Assert(!IS_PARTITIONED_REL(joinrel));
2038  return;
2039  }
2040 
2041  part_scheme = outer_rel->part_scheme;
2042 
2043  /*
2044  * This function will be called only once for each joinrel, hence it
2045  * should not have partitioning fields filled yet.
2046  */
2047  Assert(!joinrel->part_scheme && !joinrel->partexprs &&
2048  !joinrel->nullable_partexprs && !joinrel->part_rels &&
2049  !joinrel->boundinfo);
2050 
2051  /*
2052  * If the join relation is partitioned, it uses the same partitioning
2053  * scheme as the joining relations.
2054  *
2055  * Note: we calculate the partition bounds, number of partitions, and
2056  * child-join relations of the join relation in try_partitionwise_join().
2057  */
2058  joinrel->part_scheme = part_scheme;
2059  set_joinrel_partition_key_exprs(joinrel, outer_rel, inner_rel,
2060  sjinfo->jointype);
2061 
2062  /*
2063  * Set the consider_partitionwise_join flag.
2064  */
2065  Assert(outer_rel->consider_partitionwise_join);
2066  Assert(inner_rel->consider_partitionwise_join);
2067  joinrel->consider_partitionwise_join = true;
2068 }
2069 
2070 /*
2071  * have_partkey_equi_join
2072  *
2073  * Returns true if there exist equi-join conditions involving pairs
2074  * of matching partition keys of the relations being joined for all
2075  * partition keys.
2076  */
2077 static bool
2079  RelOptInfo *rel1, RelOptInfo *rel2,
2080  JoinType jointype, List *restrictlist)
2081 {
2082  PartitionScheme part_scheme = rel1->part_scheme;
2083  bool pk_known_equal[PARTITION_MAX_KEYS];
2084  int num_equal_pks;
2085  ListCell *lc;
2086 
2087  /*
2088  * This function must only be called when the joined relations have same
2089  * partitioning scheme.
2090  */
2091  Assert(rel1->part_scheme == rel2->part_scheme);
2092  Assert(part_scheme);
2093 
2094  /* We use a bool array to track which partkey columns are known equal */
2095  memset(pk_known_equal, 0, sizeof(pk_known_equal));
2096  /* ... as well as a count of how many are known equal */
2097  num_equal_pks = 0;
2098 
2099  /* First, look through the join's restriction clauses */
2100  foreach(lc, restrictlist)
2101  {
2102  RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
2103  OpExpr *opexpr;
2104  Expr *expr1;
2105  Expr *expr2;
2106  bool strict_op;
2107  int ipk1;
2108  int ipk2;
2109 
2110  /* If processing an outer join, only use its own join clauses. */
2111  if (IS_OUTER_JOIN(jointype) &&
2112  RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
2113  continue;
2114 
2115  /* Skip clauses which can not be used for a join. */
2116  if (!rinfo->can_join)
2117  continue;
2118 
2119  /* Skip clauses which are not equality conditions. */
2120  if (!rinfo->mergeopfamilies && !OidIsValid(rinfo->hashjoinoperator))
2121  continue;
2122 
2123  /* Should be OK to assume it's an OpExpr. */
2124  opexpr = castNode(OpExpr, rinfo->clause);
2125 
2126  /* Match the operands to the relation. */
2127  if (bms_is_subset(rinfo->left_relids, rel1->relids) &&
2128  bms_is_subset(rinfo->right_relids, rel2->relids))
2129  {
2130  expr1 = linitial(opexpr->args);
2131  expr2 = lsecond(opexpr->args);
2132  }
2133  else if (bms_is_subset(rinfo->left_relids, rel2->relids) &&
2134  bms_is_subset(rinfo->right_relids, rel1->relids))
2135  {
2136  expr1 = lsecond(opexpr->args);
2137  expr2 = linitial(opexpr->args);
2138  }
2139  else
2140  continue;
2141 
2142  /*
2143  * Now we need to know whether the join operator is strict; see
2144  * comments in pathnodes.h.
2145  */
2146  strict_op = op_strict(opexpr->opno);
2147 
2148  /*
2149  * Vars appearing in the relation's partition keys will not have any
2150  * varnullingrels, but those in expr1 and expr2 will if we're above
2151  * outer joins that could null the respective rels. It's okay to
2152  * match anyway, if the join operator is strict.
2153  */
2154  if (strict_op)
2155  {
2156  if (bms_overlap(rel1->relids, root->outer_join_rels))
2157  expr1 = (Expr *) remove_nulling_relids((Node *) expr1,
2158  root->outer_join_rels,
2159  NULL);
2160  if (bms_overlap(rel2->relids, root->outer_join_rels))
2161  expr2 = (Expr *) remove_nulling_relids((Node *) expr2,
2162  root->outer_join_rels,
2163  NULL);
2164  }
2165 
2166  /*
2167  * Only clauses referencing the partition keys are useful for
2168  * partitionwise join.
2169  */
2170  ipk1 = match_expr_to_partition_keys(expr1, rel1, strict_op);
2171  if (ipk1 < 0)
2172  continue;
2173  ipk2 = match_expr_to_partition_keys(expr2, rel2, strict_op);
2174  if (ipk2 < 0)
2175  continue;
2176 
2177  /*
2178  * If the clause refers to keys at different ordinal positions, it can
2179  * not be used for partitionwise join.
2180  */
2181  if (ipk1 != ipk2)
2182  continue;
2183 
2184  /* Ignore clause if we already proved these keys equal. */
2185  if (pk_known_equal[ipk1])
2186  continue;
2187 
2188  /*
2189  * The clause allows partitionwise join only if it uses the same
2190  * operator family as that specified by the partition key.
2191  */
2192  if (part_scheme->strategy == PARTITION_STRATEGY_HASH)
2193  {
2194  if (!OidIsValid(rinfo->hashjoinoperator) ||
2195  !op_in_opfamily(rinfo->hashjoinoperator,
2196  part_scheme->partopfamily[ipk1]))
2197  continue;
2198  }
2199  else if (!list_member_oid(rinfo->mergeopfamilies,
2200  part_scheme->partopfamily[ipk1]))
2201  continue;
2202 
2203  /* Mark the partition key as having an equi-join clause. */
2204  pk_known_equal[ipk1] = true;
2205 
2206  /* We can stop examining clauses once we prove all keys equal. */
2207  if (++num_equal_pks == part_scheme->partnatts)
2208  return true;
2209  }
2210 
2211  /*
2212  * Also check to see if any keys are known equal by equivclass.c. In most
2213  * cases there would have been a join restriction clause generated from
2214  * any EC that had such knowledge, but there might be no such clause, or
2215  * it might happen to constrain other members of the ECs than the ones we
2216  * are looking for.
2217  */
2218  for (int ipk = 0; ipk < part_scheme->partnatts; ipk++)
2219  {
2220  Oid btree_opfamily;
2221 
2222  /* Ignore if we already proved these keys equal. */
2223  if (pk_known_equal[ipk])
2224  continue;
2225 
2226  /*
2227  * We need a btree opfamily to ask equivclass.c about. If the
2228  * partopfamily is a hash opfamily, look up its equality operator, and
2229  * select some btree opfamily that that operator is part of. (Any
2230  * such opfamily should be good enough, since equivclass.c will track
2231  * multiple opfamilies as appropriate.)
2232  */
2233  if (part_scheme->strategy == PARTITION_STRATEGY_HASH)
2234  {
2235  Oid eq_op;
2236  List *eq_opfamilies;
2237 
2238  eq_op = get_opfamily_member(part_scheme->partopfamily[ipk],
2239  part_scheme->partopcintype[ipk],
2240  part_scheme->partopcintype[ipk],
2242  if (!OidIsValid(eq_op))
2243  break; /* we're not going to succeed */
2244  eq_opfamilies = get_mergejoin_opfamilies(eq_op);
2245  if (eq_opfamilies == NIL)
2246  break; /* we're not going to succeed */
2247  btree_opfamily = linitial_oid(eq_opfamilies);
2248  }
2249  else
2250  btree_opfamily = part_scheme->partopfamily[ipk];
2251 
2252  /*
2253  * We consider only non-nullable partition keys here; nullable ones
2254  * would not be treated as part of the same equivalence classes as
2255  * non-nullable ones.
2256  */
2257  foreach(lc, rel1->partexprs[ipk])
2258  {
2259  Node *expr1 = (Node *) lfirst(lc);
2260  ListCell *lc2;
2261 
2262  foreach(lc2, rel2->partexprs[ipk])
2263  {
2264  Node *expr2 = (Node *) lfirst(lc2);
2265 
2266  if (exprs_known_equal(root, expr1, expr2, btree_opfamily))
2267  {
2268  pk_known_equal[ipk] = true;
2269  break;
2270  }
2271  }
2272  if (pk_known_equal[ipk])
2273  break;
2274  }
2275 
2276  if (pk_known_equal[ipk])
2277  {
2278  /* We can stop examining keys once we prove all keys equal. */
2279  if (++num_equal_pks == part_scheme->partnatts)
2280  return true;
2281  }
2282  else
2283  break; /* no chance to succeed, give up */
2284  }
2285 
2286  return false;
2287 }
2288 
2289 /*
2290  * match_expr_to_partition_keys
2291  *
2292  * Tries to match an expression to one of the nullable or non-nullable
2293  * partition keys of "rel". Returns the matched key's ordinal position,
2294  * or -1 if the expression could not be matched to any of the keys.
2295  *
2296  * strict_op must be true if the expression will be compared with the
2297  * partition key using a strict operator. This allows us to consider
2298  * nullable as well as nonnullable partition keys.
2299  */
2300 static int
2301 match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
2302 {
2303  int cnt;
2304 
2305  /* This function should be called only for partitioned relations. */
2306  Assert(rel->part_scheme);
2307  Assert(rel->partexprs);
2308  Assert(rel->nullable_partexprs);
2309 
2310  /* Remove any relabel decorations. */
2311  while (IsA(expr, RelabelType))
2312  expr = (Expr *) (castNode(RelabelType, expr))->arg;
2313 
2314  for (cnt = 0; cnt < rel->part_scheme->partnatts; cnt++)
2315  {
2316  ListCell *lc;
2317 
2318  /* We can always match to the non-nullable partition keys. */
2319  foreach(lc, rel->partexprs[cnt])
2320  {
2321  if (equal(lfirst(lc), expr))
2322  return cnt;
2323  }
2324 
2325  if (!strict_op)
2326  continue;
2327 
2328  /*
2329  * If it's a strict join operator then a NULL partition key on one
2330  * side will not join to any partition key on the other side, and in
2331  * particular such a row can't join to a row from a different
2332  * partition on the other side. So, it's okay to search the nullable
2333  * partition keys as well.
2334  */
2335  foreach(lc, rel->nullable_partexprs[cnt])
2336  {
2337  if (equal(lfirst(lc), expr))
2338  return cnt;
2339  }
2340  }
2341 
2342  return -1;
2343 }
2344 
2345 /*
2346  * set_joinrel_partition_key_exprs
2347  * Initialize partition key expressions for a partitioned joinrel.
2348  */
2349 static void
2351  RelOptInfo *outer_rel, RelOptInfo *inner_rel,
2352  JoinType jointype)
2353 {
2354  PartitionScheme part_scheme = joinrel->part_scheme;
2355  int partnatts = part_scheme->partnatts;
2356 
2357  joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
2358  joinrel->nullable_partexprs =
2359  (List **) palloc0(sizeof(List *) * partnatts);
2360 
2361  /*
2362  * The joinrel's partition expressions are the same as those of the input
2363  * rels, but we must properly classify them as nullable or not in the
2364  * joinrel's output. (Also, we add some more partition expressions if
2365  * it's a FULL JOIN.)
2366  */
2367  for (int cnt = 0; cnt < partnatts; cnt++)
2368  {
2369  /* mark these const to enforce that we copy them properly */
2370  const List *outer_expr = outer_rel->partexprs[cnt];
2371  const List *outer_null_expr = outer_rel->nullable_partexprs[cnt];
2372  const List *inner_expr = inner_rel->partexprs[cnt];
2373  const List *inner_null_expr = inner_rel->nullable_partexprs[cnt];
2374  List *partexpr = NIL;
2375  List *nullable_partexpr = NIL;
2376  ListCell *lc;
2377 
2378  switch (jointype)
2379  {
2380  /*
2381  * A join relation resulting from an INNER join may be
2382  * regarded as partitioned by either of the inner and outer
2383  * relation keys. For example, A INNER JOIN B ON A.a = B.b
2384  * can be regarded as partitioned on either A.a or B.b. So we
2385  * add both keys to the joinrel's partexpr lists. However,
2386  * anything that was already nullable still has to be treated
2387  * as nullable.
2388  */
2389  case JOIN_INNER:
2390  partexpr = list_concat_copy(outer_expr, inner_expr);
2391  nullable_partexpr = list_concat_copy(outer_null_expr,
2392  inner_null_expr);
2393  break;
2394 
2395  /*
2396  * A join relation resulting from a SEMI or ANTI join may be
2397  * regarded as partitioned by the outer relation keys. The
2398  * inner relation's keys are no longer interesting; since they
2399  * aren't visible in the join output, nothing could join to
2400  * them.
2401  */
2402  case JOIN_SEMI:
2403  case JOIN_ANTI:
2404  partexpr = list_copy(outer_expr);
2405  nullable_partexpr = list_copy(outer_null_expr);
2406  break;
2407 
2408  /*
2409  * A join relation resulting from a LEFT OUTER JOIN likewise
2410  * may be regarded as partitioned on the (non-nullable) outer
2411  * relation keys. The inner (nullable) relation keys are okay
2412  * as partition keys for further joins as long as they involve
2413  * strict join operators.
2414  */
2415  case JOIN_LEFT:
2416  partexpr = list_copy(outer_expr);
2417  nullable_partexpr = list_concat_copy(inner_expr,
2418  outer_null_expr);
2419  nullable_partexpr = list_concat(nullable_partexpr,
2420  inner_null_expr);
2421  break;
2422 
2423  /*
2424  * For FULL OUTER JOINs, both relations are nullable, so the
2425  * resulting join relation may be regarded as partitioned on
2426  * either of inner and outer relation keys, but only for joins
2427  * that involve strict join operators.
2428  */
2429  case JOIN_FULL:
2430  nullable_partexpr = list_concat_copy(outer_expr,
2431  inner_expr);
2432  nullable_partexpr = list_concat(nullable_partexpr,
2433  outer_null_expr);
2434  nullable_partexpr = list_concat(nullable_partexpr,
2435  inner_null_expr);
2436 
2437  /*
2438  * Also add CoalesceExprs corresponding to each possible
2439  * full-join output variable (that is, left side coalesced to
2440  * right side), so that we can match equijoin expressions
2441  * using those variables. We really only need these for
2442  * columns merged by JOIN USING, and only with the pairs of
2443  * input items that correspond to the data structures that
2444  * parse analysis would build for such variables. But it's
2445  * hard to tell which those are, so just make all the pairs.
2446  * Extra items in the nullable_partexprs list won't cause big
2447  * problems. (It's possible that such items will get matched
2448  * to user-written COALESCEs, but it should still be valid to
2449  * partition on those, since they're going to be either the
2450  * partition column or NULL; it's the same argument as for
2451  * partitionwise nesting of any outer join.) We assume no
2452  * type coercions are needed to make the coalesce expressions,
2453  * since columns of different types won't have gotten
2454  * classified as the same PartitionScheme. Note that we
2455  * intentionally leave out the varnullingrels decoration that
2456  * would ordinarily appear on the Vars inside these
2457  * CoalesceExprs, because have_partkey_equi_join will strip
2458  * varnullingrels from the expressions it will compare to the
2459  * partexprs.
2460  */
2461  foreach(lc, list_concat_copy(outer_expr, outer_null_expr))
2462  {
2463  Node *larg = (Node *) lfirst(lc);
2464  ListCell *lc2;
2465 
2466  foreach(lc2, list_concat_copy(inner_expr, inner_null_expr))
2467  {
2468  Node *rarg = (Node *) lfirst(lc2);
2470 
2471  c->coalescetype = exprType(larg);
2472  c->coalescecollid = exprCollation(larg);
2473  c->args = list_make2(larg, rarg);
2474  c->location = -1;
2475  nullable_partexpr = lappend(nullable_partexpr, c);
2476  }
2477  }
2478  break;
2479 
2480  default:
2481  elog(ERROR, "unrecognized join type: %d", (int) jointype);
2482  }
2483 
2484  joinrel->partexprs[cnt] = partexpr;
2485  joinrel->nullable_partexprs[cnt] = nullable_partexpr;
2486  }
2487 }
2488 
2489 /*
2490  * build_child_join_reltarget
2491  * Set up a child-join relation's reltarget from a parent-join relation.
2492  */
2493 static void
2495  RelOptInfo *parentrel,
2496  RelOptInfo *childrel,
2497  int nappinfos,
2498  AppendRelInfo **appinfos)
2499 {
2500  /* Build the targetlist */
2501  childrel->reltarget->exprs = (List *)
2503  (Node *) parentrel->reltarget->exprs,
2504  nappinfos, appinfos);
2505 
2506  /* Set the cost and width fields */
2507  childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
2508  childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
2509  childrel->reltarget->width = parentrel->reltarget->width;
2510 }
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:200
Relids adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:558
uint32 bitmap_hash(const void *key, Size keysize)
Definition: bitmapset.c:1432
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1230
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
Bitmapset * bms_int_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1109
int bitmap_match(const void *key1, const void *key2, Size keysize)
Definition: bitmapset.c:1442
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
bool bms_nonempty_difference(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:641
#define bms_is_empty(a)
Definition: bitmapset.h:118
unsigned int uint32
Definition: c.h:509
signed int int32
Definition: c.h:497
#define Assert(condition)
Definition: c.h:861
unsigned int Index
Definition: c.h:617
#define OidIsValid(objectId)
Definition: c.h:778
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:753
double get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel, List *param_clauses)
Definition: costsize.c:5353
double get_parameterized_joinrel_size(PlannerInfo *root, RelOptInfo *rel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, List *restrict_clauses)
Definition: costsize.c:5434
void set_joinrel_size_estimates(PlannerInfo *root, RelOptInfo *rel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: costsize.c:5402
bool enable_partitionwise_join
Definition: costsize.c:159
int32 clamp_width_est(int64 tuple_width)
Definition: costsize.c:242
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
bool exprs_known_equal(PlannerInfo *root, Node *item1, Node *item2, Oid opfamily)
Definition: equivclass.c:2503
List * generate_join_implied_equalities_for_ecs(PlannerInfo *root, List *eclasses, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel)
Definition: equivclass.c:1490
List * generate_join_implied_equalities(PlannerInfo *root, Relids join_relids, Relids outer_relids, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: equivclass.c:1390
void add_child_join_rel_equivalences(PlannerInfo *root, int nappinfos, AppendRelInfo **appinfos, RelOptInfo *parent_joinrel, RelOptInfo *child_joinrel)
Definition: equivclass.c:2817
bool has_relevant_eclass_joinclause(PlannerInfo *root, RelOptInfo *rel1)
Definition: equivclass.c:3227
#define palloc0_array(type, count)
Definition: fe_memutils.h:65
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_COMPARE
Definition: hsearch.h:99
#define HASH_FUNCTION
Definition: hsearch.h:98
bool apply_child_basequals(PlannerInfo *root, RelOptInfo *parentrel, RelOptInfo *childrel, RangeTblEntry *childRTE, AppendRelInfo *appinfo)
Definition: inherit.c:843
void mark_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1384
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_copy(const List *oldlist)
Definition: list.c:1573
bool list_member_oid(const List *list, Oid datum)
Definition: list.c:722
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * list_append_unique_ptr(List *list, void *datum)
Definition: list.c:1356
List * list_concat_copy(const List *list1, const List *list2)
Definition: list.c:598
List * get_mergejoin_opfamilies(Oid opno)
Definition: lsyscache.c:366
bool op_strict(Oid opno)
Definition: lsyscache.c:1477
Oid get_opfamily_member(Oid opfamily, Oid lefttype, Oid righttype, int16 strategy)
Definition: lsyscache.c:166
bool op_in_opfamily(Oid opno, Oid opfamily)
Definition: lsyscache.c:66
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:310
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
Oid GetUserId(void)
Definition: miscinit.c:514
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:816
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
#define nodeTag(nodeptr)
Definition: nodes.h:133
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:338
#define makeNode(_type_)
Definition: nodes.h:155
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
JoinType
Definition: nodes.h:288
@ JOIN_SEMI
Definition: nodes.h:307
@ JOIN_FULL
Definition: nodes.h:295
@ JOIN_INNER
Definition: nodes.h:293
@ JOIN_LEFT
Definition: nodes.h:294
@ JOIN_ANTI
Definition: nodes.h:308
#define repalloc0_array(pointer, type, oldcount, count)
Definition: palloc.h:109
RTEPermissionInfo * getRTEPermissionInfo(List *rteperminfos, RangeTblEntry *rte)
@ PARTITION_STRATEGY_HASH
Definition: parsenodes.h:876
@ RTE_JOIN
Definition: parsenodes.h:1019
@ RTE_CTE
Definition: parsenodes.h:1023
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1024
@ RTE_VALUES
Definition: parsenodes.h:1022
@ RTE_SUBQUERY
Definition: parsenodes.h:1018
@ RTE_RESULT
Definition: parsenodes.h:1025
@ RTE_FUNCTION
Definition: parsenodes.h:1020
@ RTE_TABLEFUNC
Definition: parsenodes.h:1021
@ RTE_RELATION
Definition: parsenodes.h:1017
bool has_useful_pathkeys(PlannerInfo *root, RelOptInfo *rel)
Definition: pathkeys.c:2275
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2728
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:1062
#define PATH_REQ_OUTER(path)
Definition: pathnodes.h:1676
Bitmapset * Relids
Definition: pathnodes.h:30
UpperRelationKind
Definition: pathnodes.h:70
@ RELOPT_BASEREL
Definition: pathnodes.h:827
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:829
@ RELOPT_UPPER_REL
Definition: pathnodes.h:831
@ RELOPT_JOINREL
Definition: pathnodes.h:828
@ RELOPT_OTHER_JOINREL
Definition: pathnodes.h:830
#define IS_OTHER_REL(rel)
Definition: pathnodes.h:854
void * arg
#define PARTITION_MAX_KEYS
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define linitial_oid(l)
Definition: pg_list.h:180
#define list_make2(x1, x2)
Definition: pg_list.h:214
PlaceHolderInfo * find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv)
Definition: placeholder.c:83
void add_placeholders_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: placeholder.c:400
void get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent, RelOptInfo *rel)
Definition: plancat.c:116
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
char * c
#define ROWID_VAR
Definition: primnodes.h:239
tree ctl root
Definition: radixtree.h:1886
static void build_joinrel_partition_info(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: relnode.c:2005
void setup_simple_rel_arrays(PlannerInfo *root)
Definition: relnode.c:94
static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, JoinType jointype)
Definition: relnode.c:2350
static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *input_rel, SpecialJoinInfo *sjinfo, List *pushed_down_joins, bool can_null)
Definition: relnode.c:1100
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition: relnode.c:1545
RelOptInfo * build_join_rel(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *pushed_down_joins, List **restrictlist_ptr)
Definition: relnode.c:665
static bool have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *rel1, RelOptInfo *rel2, JoinType jointype, List *restrictlist)
Definition: relnode.c:2078
Relids min_join_parameterization(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1022
static void build_join_rel_hash(PlannerInfo *root)
Definition: relnode.c:486
RelOptInfo * build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel, RelOptInfo *inner_rel, RelOptInfo *parent_joinrel, List *restrictlist, SpecialJoinInfo *sjinfo, int nappinfos, AppendRelInfo **appinfos)
Definition: relnode.c:882
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition: relnode.c:1856
RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
Definition: relnode.c:192
Relids find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
Definition: relnode.c:1509
void expand_planner_arrays(PlannerInfo *root, int add_size)
Definition: relnode.c:163
RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids)
Definition: relnode.c:527
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition: relnode.c:1659
RelOptInfo * find_base_rel_ignore_join(PlannerInfo *root, int relid)
Definition: relnode.c:454
static void build_child_join_reltarget(PlannerInfo *root, RelOptInfo *parentrel, RelOptInfo *childrel, int nappinfos, AppendRelInfo **appinfos)
Definition: relnode.c:2494
RelOptInfo * find_base_rel_noerr(PlannerInfo *root, int relid)
Definition: relnode.c:436
static List * build_joinrel_restrictlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo)
Definition: relnode.c:1285
static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
Definition: relnode.c:2301
static void set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:589
struct JoinHashEntry JoinHashEntry
static void build_joinrel_joinlist(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1322
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition: relnode.c:1889
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1458
static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
Definition: relnode.c:627
static List * subbuild_joinrel_joinlist(RelOptInfo *joinrel, List *joininfo_list, List *new_joininfo)
Definition: relnode.c:1406
static List * subbuild_joinrel_restrictlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *input_rel, Relids both_input_relids, List *new_restrictlist)
Definition: relnode.c:1340
Bitmapset * get_param_path_clause_serials(Path *path)
Definition: relnode.c:1910
bool join_clause_is_movable_into(RestrictInfo *rinfo, Relids currentrelids, Relids current_and_outer)
Definition: restrictinfo.c:670
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
static pg_noinline void Size size
Definition: slab.c:607
#define HTEqualStrategyNumber
Definition: stratnum.h:41
List * subpaths
Definition: pathnodes.h:1939
Index child_relid
Definition: pathnodes.h:2977
Index parent_relid
Definition: pathnodes.h:2976
Size keysize
Definition: hsearch.h:75
HashValueFunc hash
Definition: hsearch.h:78
Size entrysize
Definition: hsearch.h:76
HashCompareFunc match
Definition: hsearch.h:80
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:220
Relids join_relids
Definition: relnode.c:40
RelOptInfo * join_rel
Definition: relnode.c:41
Path * outerjoinpath
Definition: pathnodes.h:2081
Path * innerjoinpath
Definition: pathnodes.h:2082
List * joinrestrictinfo
Definition: pathnodes.h:2084
Definition: pg_list.h:54
Definition: nodes.h:129
Oid opno
Definition: primnodes.h:818
List * args
Definition: primnodes.h:836
Cardinality ppi_rows
Definition: pathnodes.h:1586
List * ppi_clauses
Definition: pathnodes.h:1587
Bitmapset * ppi_serials
Definition: pathnodes.h:1588
Relids ppi_req_outer
Definition: pathnodes.h:1585
List * exprs
Definition: pathnodes.h:1539
QualCost cost
Definition: pathnodes.h:1545
Relids ph_needed
Definition: pathnodes.h:3101
Relids phnullingrels
Definition: pathnodes.h:2798
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
JoinType jointype
Definition: parsenodes.h:1151
RTEKind rtekind
Definition: parsenodes.h:1047
List * baserestrictinfo
Definition: pathnodes.h:985
bool consider_param_startup
Definition: pathnodes.h:885
List * subplan_params
Definition: pathnodes.h:954
List * ppilist
Definition: pathnodes.h:899
bool useridiscurrent
Definition: pathnodes.h:968
uint32 amflags
Definition: pathnodes.h:958
List * joininfo
Definition: pathnodes.h:991
Bitmapset * notnullattnums
Definition: pathnodes.h:936
List * partition_qual
Definition: pathnodes.h:1027
Relids relids
Definition: pathnodes.h:871
struct PathTarget * reltarget
Definition: pathnodes.h:893
Index relid
Definition: pathnodes.h:918
List * statlist
Definition: pathnodes.h:946
List * lateral_vars
Definition: pathnodes.h:940
List * unique_for_rels
Definition: pathnodes.h:977
Cardinality tuples
Definition: pathnodes.h:949
bool consider_parallel
Definition: pathnodes.h:887
Relids top_parent_relids
Definition: pathnodes.h:1009
bool partbounds_merged
Definition: pathnodes.h:1025
BlockNumber pages
Definition: pathnodes.h:948
Relids lateral_relids
Definition: pathnodes.h:913
List * cheapest_parameterized_paths
Definition: pathnodes.h:904
List * pathlist
Definition: pathnodes.h:898
RelOptKind reloptkind
Definition: pathnodes.h:865
List * indexlist
Definition: pathnodes.h:944
struct Path * cheapest_unique_path
Definition: pathnodes.h:903
Relids lateral_referencers
Definition: pathnodes.h:942
struct Path * cheapest_startup_path
Definition: pathnodes.h:901
QualCost baserestrictcost
Definition: pathnodes.h:987
struct Path * cheapest_total_path
Definition: pathnodes.h:902
Oid userid
Definition: pathnodes.h:966
List * non_unique_for_rels
Definition: pathnodes.h:979
Bitmapset * eclass_indexes
Definition: pathnodes.h:952
Relids all_partrels
Definition: pathnodes.h:1041
Relids direct_lateral_relids
Definition: pathnodes.h:911
bool has_eclass_joins
Definition: pathnodes.h:993
Oid serverid
Definition: pathnodes.h:964
bool consider_startup
Definition: pathnodes.h:883
Bitmapset * live_parts
Definition: pathnodes.h:1039
int rel_parallel_workers
Definition: pathnodes.h:956
bool consider_partitionwise_join
Definition: pathnodes.h:999
List * partial_pathlist
Definition: pathnodes.h:900
PlannerInfo * subroot
Definition: pathnodes.h:953
AttrNumber max_attr
Definition: pathnodes.h:926
Relids nulling_relids
Definition: pathnodes.h:938
Index baserestrict_min_security
Definition: pathnodes.h:989
double allvisfrac
Definition: pathnodes.h:950
Cardinality rows
Definition: pathnodes.h:877
AttrNumber min_attr
Definition: pathnodes.h:924
RTEKind rtekind
Definition: pathnodes.h:922
Relids required_relids
Definition: pathnodes.h:2602
int rinfo_serial
Definition: pathnodes.h:2643
Relids incompatible_relids
Definition: pathnodes.h:2605
Expr * clause
Definition: pathnodes.h:2571
bool has_clone
Definition: pathnodes.h:2583
Relids commute_above_r
Definition: pathnodes.h:2908
Relids syn_lefthand
Definition: pathnodes.h:2903
JoinType jointype
Definition: pathnodes.h:2905
Relids syn_righthand
Definition: pathnodes.h:2904
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
int varno
Definition: primnodes.h:255
Definition: regcomp.c:281
PathTarget * create_empty_pathtarget(void)
Definition: tlist.c:681