PostgreSQL Source Code  git master
joinrels.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * joinrels.c
4  * Routines to determine which relations should be joined
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/optimizer/path/joinrels.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include "miscadmin.h"
18 #include "optimizer/appendinfo.h"
19 #include "optimizer/joininfo.h"
20 #include "optimizer/pathnode.h"
21 #include "optimizer/paths.h"
23 #include "utils/memutils.h"
24 
25 
27  RelOptInfo *old_rel,
28  List *other_rels,
29  int first_rel_idx);
31  RelOptInfo *old_rel,
32  List *other_rels);
35 static bool restriction_is_constant_false(List *restrictlist,
36  RelOptInfo *joinrel,
37  bool only_pushed_down);
39  RelOptInfo *rel2, RelOptInfo *joinrel,
40  SpecialJoinInfo *sjinfo, List *restrictlist);
42  RelOptInfo *rel2, RelOptInfo *joinrel,
43  SpecialJoinInfo *parent_sjinfo,
44  List *parent_restrictlist);
46  SpecialJoinInfo *parent_sjinfo,
47  Relids left_relids, Relids right_relids);
48 static void free_child_join_sjinfo(SpecialJoinInfo *sjinfo);
50  RelOptInfo *rel2, RelOptInfo *joinrel,
51  SpecialJoinInfo *parent_sjinfo,
52  List **parts1, List **parts2);
53 static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
54  RelOptInfo *rel1, RelOptInfo *rel2,
55  List **parts1, List **parts2);
56 
57 
58 /*
59  * join_search_one_level
60  * Consider ways to produce join relations containing exactly 'level'
61  * jointree items. (This is one step of the dynamic-programming method
62  * embodied in standard_join_search.) Join rel nodes for each feasible
63  * combination of lower-level rels are created and returned in a list.
64  * Implementation paths are created for each such joinrel, too.
65  *
66  * level: level of rels we want to make this time
67  * root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
68  *
69  * The result is returned in root->join_rel_level[level].
70  */
71 void
73 {
74  List **joinrels = root->join_rel_level;
75  ListCell *r;
76  int k;
77 
78  Assert(joinrels[level] == NIL);
79 
80  /* Set join_cur_level so that new joinrels are added to proper list */
81  root->join_cur_level = level;
82 
83  /*
84  * First, consider left-sided and right-sided plans, in which rels of
85  * exactly level-1 member relations are joined against initial relations.
86  * We prefer to join using join clauses, but if we find a rel of level-1
87  * members that has no join clauses, we will generate Cartesian-product
88  * joins against all initial rels not already contained in it.
89  */
90  foreach(r, joinrels[level - 1])
91  {
92  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
93 
94  if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
95  has_join_restriction(root, old_rel))
96  {
97  int first_rel;
98 
99  /*
100  * There are join clauses or join order restrictions relevant to
101  * this rel, so consider joins between this rel and (only) those
102  * initial rels it is linked to by a clause or restriction.
103  *
104  * At level 2 this condition is symmetric, so there is no need to
105  * look at initial rels before this one in the list; we already
106  * considered such joins when we were at the earlier rel. (The
107  * mirror-image joins are handled automatically by make_join_rel.)
108  * In later passes (level > 2), we join rels of the previous level
109  * to each initial rel they don't already include but have a join
110  * clause or restriction with.
111  */
112  if (level == 2) /* consider remaining initial rels */
113  first_rel = foreach_current_index(r) + 1;
114  else
115  first_rel = 0;
116 
117  make_rels_by_clause_joins(root, old_rel, joinrels[1], first_rel);
118  }
119  else
120  {
121  /*
122  * Oops, we have a relation that is not joined to any other
123  * relation, either directly or by join-order restrictions.
124  * Cartesian product time.
125  *
126  * We consider a cartesian product with each not-already-included
127  * initial rel, whether it has other join clauses or not. At
128  * level 2, if there are two or more clauseless initial rels, we
129  * will redundantly consider joining them in both directions; but
130  * such cases aren't common enough to justify adding complexity to
131  * avoid the duplicated effort.
132  */
134  old_rel,
135  joinrels[1]);
136  }
137  }
138 
139  /*
140  * Now, consider "bushy plans" in which relations of k initial rels are
141  * joined to relations of level-k initial rels, for 2 <= k <= level-2.
142  *
143  * We only consider bushy-plan joins for pairs of rels where there is a
144  * suitable join clause (or join order restriction), in order to avoid
145  * unreasonable growth of planning time.
146  */
147  for (k = 2;; k++)
148  {
149  int other_level = level - k;
150 
151  /*
152  * Since make_join_rel(x, y) handles both x,y and y,x cases, we only
153  * need to go as far as the halfway point.
154  */
155  if (k > other_level)
156  break;
157 
158  foreach(r, joinrels[k])
159  {
160  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
161  int first_rel;
162  ListCell *r2;
163 
164  /*
165  * We can ignore relations without join clauses here, unless they
166  * participate in join-order restrictions --- then we might have
167  * to force a bushy join plan.
168  */
169  if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
170  !has_join_restriction(root, old_rel))
171  continue;
172 
173  if (k == other_level) /* only consider remaining rels */
174  first_rel = foreach_current_index(r) + 1;
175  else
176  first_rel = 0;
177 
178  for_each_from(r2, joinrels[other_level], first_rel)
179  {
180  RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
181 
182  if (!bms_overlap(old_rel->relids, new_rel->relids))
183  {
184  /*
185  * OK, we can build a rel of the right level from this
186  * pair of rels. Do so if there is at least one relevant
187  * join clause or join order restriction.
188  */
189  if (have_relevant_joinclause(root, old_rel, new_rel) ||
190  have_join_order_restriction(root, old_rel, new_rel))
191  {
192  (void) make_join_rel(root, old_rel, new_rel);
193  }
194  }
195  }
196  }
197  }
198 
199  /*----------
200  * Last-ditch effort: if we failed to find any usable joins so far, force
201  * a set of cartesian-product joins to be generated. This handles the
202  * special case where all the available rels have join clauses but we
203  * cannot use any of those clauses yet. This can only happen when we are
204  * considering a join sub-problem (a sub-joinlist) and all the rels in the
205  * sub-problem have only join clauses with rels outside the sub-problem.
206  * An example is
207  *
208  * SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
209  * WHERE a.w = c.x and b.y = d.z;
210  *
211  * If the "a INNER JOIN b" sub-problem does not get flattened into the
212  * upper level, we must be willing to make a cartesian join of a and b;
213  * but the code above will not have done so, because it thought that both
214  * a and b have joinclauses. We consider only left-sided and right-sided
215  * cartesian joins in this case (no bushy).
216  *----------
217  */
218  if (joinrels[level] == NIL)
219  {
220  /*
221  * This loop is just like the first one, except we always call
222  * make_rels_by_clauseless_joins().
223  */
224  foreach(r, joinrels[level - 1])
225  {
226  RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
227 
229  old_rel,
230  joinrels[1]);
231  }
232 
233  /*----------
234  * When special joins are involved, there may be no legal way
235  * to make an N-way join for some values of N. For example consider
236  *
237  * SELECT ... FROM t1 WHERE
238  * x IN (SELECT ... FROM t2,t3 WHERE ...) AND
239  * y IN (SELECT ... FROM t4,t5 WHERE ...)
240  *
241  * We will flatten this query to a 5-way join problem, but there are
242  * no 4-way joins that join_is_legal() will consider legal. We have
243  * to accept failure at level 4 and go on to discover a workable
244  * bushy plan at level 5.
245  *
246  * However, if there are no special joins and no lateral references
247  * then join_is_legal() should never fail, and so the following sanity
248  * check is useful.
249  *----------
250  */
251  if (joinrels[level] == NIL &&
252  root->join_info_list == NIL &&
253  !root->hasLateralRTEs)
254  elog(ERROR, "failed to build any %d-way joins", level);
255  }
256 }
257 
258 /*
259  * make_rels_by_clause_joins
260  * Build joins between the given relation 'old_rel' and other relations
261  * that participate in join clauses that 'old_rel' also participates in
262  * (or participate in join-order restrictions with it).
263  * The join rels are returned in root->join_rel_level[join_cur_level].
264  *
265  * Note: at levels above 2 we will generate the same joined relation in
266  * multiple ways --- for example (a join b) join c is the same RelOptInfo as
267  * (b join c) join a, though the second case will add a different set of Paths
268  * to it. This is the reason for using the join_rel_level mechanism, which
269  * automatically ensures that each new joinrel is only added to the list once.
270  *
271  * 'old_rel' is the relation entry for the relation to be joined
272  * 'other_rels': a list containing the other rels to be considered for joining
273  * 'first_rel_idx': the first rel to be considered in 'other_rels'
274  *
275  * Currently, this is only used with initial rels in other_rels, but it
276  * will work for joining to joinrels too.
277  */
278 static void
280  RelOptInfo *old_rel,
281  List *other_rels,
282  int first_rel_idx)
283 {
284  ListCell *l;
285 
286  for_each_from(l, other_rels, first_rel_idx)
287  {
288  RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
289 
290  if (!bms_overlap(old_rel->relids, other_rel->relids) &&
291  (have_relevant_joinclause(root, old_rel, other_rel) ||
292  have_join_order_restriction(root, old_rel, other_rel)))
293  {
294  (void) make_join_rel(root, old_rel, other_rel);
295  }
296  }
297 }
298 
299 /*
300  * make_rels_by_clauseless_joins
301  * Given a relation 'old_rel' and a list of other relations
302  * 'other_rels', create a join relation between 'old_rel' and each
303  * member of 'other_rels' that isn't already included in 'old_rel'.
304  * The join rels are returned in root->join_rel_level[join_cur_level].
305  *
306  * 'old_rel' is the relation entry for the relation to be joined
307  * 'other_rels': a list containing the other rels to be considered for joining
308  *
309  * Currently, this is only used with initial rels in other_rels, but it would
310  * work for joining to joinrels too.
311  */
312 static void
314  RelOptInfo *old_rel,
315  List *other_rels)
316 {
317  ListCell *l;
318 
319  foreach(l, other_rels)
320  {
321  RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
322 
323  if (!bms_overlap(other_rel->relids, old_rel->relids))
324  {
325  (void) make_join_rel(root, old_rel, other_rel);
326  }
327  }
328 }
329 
330 
331 /*
332  * join_is_legal
333  * Determine whether a proposed join is legal given the query's
334  * join order constraints; and if it is, determine the join type.
335  *
336  * Caller must supply not only the two rels, but the union of their relids.
337  * (We could simplify the API by computing joinrelids locally, but this
338  * would be redundant work in the normal path through make_join_rel.
339  * Note that this value does NOT include the RT index of any outer join that
340  * might need to be performed here, so it's not the canonical identifier
341  * of the join relation.)
342  *
343  * On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
344  * else it's set to point to the associated SpecialJoinInfo node. Also,
345  * *reversed_p is set true if the given relations need to be swapped to
346  * match the SpecialJoinInfo node.
347  */
348 static bool
350  Relids joinrelids,
351  SpecialJoinInfo **sjinfo_p, bool *reversed_p)
352 {
353  SpecialJoinInfo *match_sjinfo;
354  bool reversed;
355  bool unique_ified;
356  bool must_be_leftjoin;
357  ListCell *l;
358 
359  /*
360  * Ensure output params are set on failure return. This is just to
361  * suppress uninitialized-variable warnings from overly anal compilers.
362  */
363  *sjinfo_p = NULL;
364  *reversed_p = false;
365 
366  /*
367  * If we have any special joins, the proposed join might be illegal; and
368  * in any case we have to determine its join type. Scan the join info
369  * list for matches and conflicts.
370  */
371  match_sjinfo = NULL;
372  reversed = false;
373  unique_ified = false;
374  must_be_leftjoin = false;
375 
376  foreach(l, root->join_info_list)
377  {
378  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
379 
380  /*
381  * This special join is not relevant unless its RHS overlaps the
382  * proposed join. (Check this first as a fast path for dismissing
383  * most irrelevant SJs quickly.)
384  */
385  if (!bms_overlap(sjinfo->min_righthand, joinrelids))
386  continue;
387 
388  /*
389  * Also, not relevant if proposed join is fully contained within RHS
390  * (ie, we're still building up the RHS).
391  */
392  if (bms_is_subset(joinrelids, sjinfo->min_righthand))
393  continue;
394 
395  /*
396  * Also, not relevant if SJ is already done within either input.
397  */
398  if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
399  bms_is_subset(sjinfo->min_righthand, rel1->relids))
400  continue;
401  if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
402  bms_is_subset(sjinfo->min_righthand, rel2->relids))
403  continue;
404 
405  /*
406  * If it's a semijoin and we already joined the RHS to any other rels
407  * within either input, then we must have unique-ified the RHS at that
408  * point (see below). Therefore the semijoin is no longer relevant in
409  * this join path.
410  */
411  if (sjinfo->jointype == JOIN_SEMI)
412  {
413  if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
414  !bms_equal(sjinfo->syn_righthand, rel1->relids))
415  continue;
416  if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
417  !bms_equal(sjinfo->syn_righthand, rel2->relids))
418  continue;
419  }
420 
421  /*
422  * If one input contains min_lefthand and the other contains
423  * min_righthand, then we can perform the SJ at this join.
424  *
425  * Reject if we get matches to more than one SJ; that implies we're
426  * considering something that's not really valid.
427  */
428  if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
429  bms_is_subset(sjinfo->min_righthand, rel2->relids))
430  {
431  if (match_sjinfo)
432  return false; /* invalid join path */
433  match_sjinfo = sjinfo;
434  reversed = false;
435  }
436  else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
437  bms_is_subset(sjinfo->min_righthand, rel1->relids))
438  {
439  if (match_sjinfo)
440  return false; /* invalid join path */
441  match_sjinfo = sjinfo;
442  reversed = true;
443  }
444  else if (sjinfo->jointype == JOIN_SEMI &&
445  bms_equal(sjinfo->syn_righthand, rel2->relids) &&
447  sjinfo) != NULL)
448  {
449  /*----------
450  * For a semijoin, we can join the RHS to anything else by
451  * unique-ifying the RHS (if the RHS can be unique-ified).
452  * We will only get here if we have the full RHS but less
453  * than min_lefthand on the LHS.
454  *
455  * The reason to consider such a join path is exemplified by
456  * SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
457  * If we insist on doing this as a semijoin we will first have
458  * to form the cartesian product of A*B. But if we unique-ify
459  * C then the semijoin becomes a plain innerjoin and we can join
460  * in any order, eg C to A and then to B. When C is much smaller
461  * than A and B this can be a huge win. So we allow C to be
462  * joined to just A or just B here, and then make_join_rel has
463  * to handle the case properly.
464  *
465  * Note that actually we'll allow unique-ified C to be joined to
466  * some other relation D here, too. That is legal, if usually not
467  * very sane, and this routine is only concerned with legality not
468  * with whether the join is good strategy.
469  *----------
470  */
471  if (match_sjinfo)
472  return false; /* invalid join path */
473  match_sjinfo = sjinfo;
474  reversed = false;
475  unique_ified = true;
476  }
477  else if (sjinfo->jointype == JOIN_SEMI &&
478  bms_equal(sjinfo->syn_righthand, rel1->relids) &&
480  sjinfo) != NULL)
481  {
482  /* Reversed semijoin case */
483  if (match_sjinfo)
484  return false; /* invalid join path */
485  match_sjinfo = sjinfo;
486  reversed = true;
487  unique_ified = true;
488  }
489  else
490  {
491  /*
492  * Otherwise, the proposed join overlaps the RHS but isn't a valid
493  * implementation of this SJ. But don't panic quite yet: the RHS
494  * violation might have occurred previously, in one or both input
495  * relations, in which case we must have previously decided that
496  * it was OK to commute some other SJ with this one. If we need
497  * to perform this join to finish building up the RHS, rejecting
498  * it could lead to not finding any plan at all. (This can occur
499  * because of the heuristics elsewhere in this file that postpone
500  * clauseless joins: we might not consider doing a clauseless join
501  * within the RHS until after we've performed other, validly
502  * commutable SJs with one or both sides of the clauseless join.)
503  * This consideration boils down to the rule that if both inputs
504  * overlap the RHS, we can allow the join --- they are either
505  * fully within the RHS, or represent previously-allowed joins to
506  * rels outside it.
507  */
508  if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
509  bms_overlap(rel2->relids, sjinfo->min_righthand))
510  continue; /* assume valid previous violation of RHS */
511 
512  /*
513  * The proposed join could still be legal, but only if we're
514  * allowed to associate it into the RHS of this SJ. That means
515  * this SJ must be a LEFT join (not SEMI or ANTI, and certainly
516  * not FULL) and the proposed join must not overlap the LHS.
517  */
518  if (sjinfo->jointype != JOIN_LEFT ||
519  bms_overlap(joinrelids, sjinfo->min_lefthand))
520  return false; /* invalid join path */
521 
522  /*
523  * To be valid, the proposed join must be a LEFT join; otherwise
524  * it can't associate into this SJ's RHS. But we may not yet have
525  * found the SpecialJoinInfo matching the proposed join, so we
526  * can't test that yet. Remember the requirement for later.
527  */
528  must_be_leftjoin = true;
529  }
530  }
531 
532  /*
533  * Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
534  * proposed join can't associate into an SJ's RHS.
535  *
536  * Also, fail if the proposed join's predicate isn't strict; we're
537  * essentially checking to see if we can apply outer-join identity 3, and
538  * that's a requirement. (This check may be redundant with checks in
539  * make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
540  */
541  if (must_be_leftjoin &&
542  (match_sjinfo == NULL ||
543  match_sjinfo->jointype != JOIN_LEFT ||
544  !match_sjinfo->lhs_strict))
545  return false; /* invalid join path */
546 
547  /*
548  * We also have to check for constraints imposed by LATERAL references.
549  */
550  if (root->hasLateralRTEs)
551  {
552  bool lateral_fwd;
553  bool lateral_rev;
554  Relids join_lateral_rels;
555 
556  /*
557  * The proposed rels could each contain lateral references to the
558  * other, in which case the join is impossible. If there are lateral
559  * references in just one direction, then the join has to be done with
560  * a nestloop with the lateral referencer on the inside. If the join
561  * matches an SJ that cannot be implemented by such a nestloop, the
562  * join is impossible.
563  *
564  * Also, if the lateral reference is only indirect, we should reject
565  * the join; whatever rel(s) the reference chain goes through must be
566  * joined to first.
567  *
568  * Another case that might keep us from building a valid plan is the
569  * implementation restriction described by have_dangerous_phv().
570  */
571  lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
572  lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
573  if (lateral_fwd && lateral_rev)
574  return false; /* have lateral refs in both directions */
575  if (lateral_fwd)
576  {
577  /* has to be implemented as nestloop with rel1 on left */
578  if (match_sjinfo &&
579  (reversed ||
580  unique_ified ||
581  match_sjinfo->jointype == JOIN_FULL))
582  return false; /* not implementable as nestloop */
583  /* check there is a direct reference from rel2 to rel1 */
584  if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
585  return false; /* only indirect refs, so reject */
586  /* check we won't have a dangerous PHV */
587  if (have_dangerous_phv(root, rel1->relids, rel2->lateral_relids))
588  return false; /* might be unable to handle required PHV */
589  }
590  else if (lateral_rev)
591  {
592  /* has to be implemented as nestloop with rel2 on left */
593  if (match_sjinfo &&
594  (!reversed ||
595  unique_ified ||
596  match_sjinfo->jointype == JOIN_FULL))
597  return false; /* not implementable as nestloop */
598  /* check there is a direct reference from rel1 to rel2 */
599  if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
600  return false; /* only indirect refs, so reject */
601  /* check we won't have a dangerous PHV */
602  if (have_dangerous_phv(root, rel2->relids, rel1->lateral_relids))
603  return false; /* might be unable to handle required PHV */
604  }
605 
606  /*
607  * LATERAL references could also cause problems later on if we accept
608  * this join: if the join's minimum parameterization includes any rels
609  * that would have to be on the inside of an outer join with this join
610  * rel, then it's never going to be possible to build the complete
611  * query using this join. We should reject this join not only because
612  * it'll save work, but because if we don't, the clauseless-join
613  * heuristics might think that legality of this join means that some
614  * other join rel need not be formed, and that could lead to failure
615  * to find any plan at all. We have to consider not only rels that
616  * are directly on the inner side of an OJ with the joinrel, but also
617  * ones that are indirectly so, so search to find all such rels.
618  */
619  join_lateral_rels = min_join_parameterization(root, joinrelids,
620  rel1, rel2);
621  if (join_lateral_rels)
622  {
623  Relids join_plus_rhs = bms_copy(joinrelids);
624  bool more;
625 
626  do
627  {
628  more = false;
629  foreach(l, root->join_info_list)
630  {
631  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
632 
633  /* ignore full joins --- their ordering is predetermined */
634  if (sjinfo->jointype == JOIN_FULL)
635  continue;
636 
637  if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
638  !bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
639  {
640  join_plus_rhs = bms_add_members(join_plus_rhs,
641  sjinfo->min_righthand);
642  more = true;
643  }
644  }
645  } while (more);
646  if (bms_overlap(join_plus_rhs, join_lateral_rels))
647  return false; /* will not be able to join to some RHS rel */
648  }
649  }
650 
651  /* Otherwise, it's a valid join */
652  *sjinfo_p = match_sjinfo;
653  *reversed_p = reversed;
654  return true;
655 }
656 
657 /*
658  * init_dummy_sjinfo
659  * Populate the given SpecialJoinInfo for a plain inner join between the
660  * left and right relations specified by left_relids and right_relids
661  * respectively.
662  *
663  * Normally, an inner join does not have a SpecialJoinInfo node associated with
664  * it. But some functions involved in join planning require one containing at
665  * least the information of which relations are being joined. So we initialize
666  * that information here.
667  */
668 void
670  Relids right_relids)
671 {
672  sjinfo->type = T_SpecialJoinInfo;
673  sjinfo->min_lefthand = left_relids;
674  sjinfo->min_righthand = right_relids;
675  sjinfo->syn_lefthand = left_relids;
676  sjinfo->syn_righthand = right_relids;
677  sjinfo->jointype = JOIN_INNER;
678  sjinfo->ojrelid = 0;
679  sjinfo->commute_above_l = NULL;
680  sjinfo->commute_above_r = NULL;
681  sjinfo->commute_below_l = NULL;
682  sjinfo->commute_below_r = NULL;
683  /* we don't bother trying to make the remaining fields valid */
684  sjinfo->lhs_strict = false;
685  sjinfo->semi_can_btree = false;
686  sjinfo->semi_can_hash = false;
687  sjinfo->semi_operators = NIL;
688  sjinfo->semi_rhs_exprs = NIL;
689 }
690 
691 /*
692  * make_join_rel
693  * Find or create a join RelOptInfo that represents the join of
694  * the two given rels, and add to it path information for paths
695  * created with the two rels as outer and inner rel.
696  * (The join rel may already contain paths generated from other
697  * pairs of rels that add up to the same set of base rels.)
698  *
699  * NB: will return NULL if attempted join is not valid. This can happen
700  * when working with outer joins, or with IN or EXISTS clauses that have been
701  * turned into joins.
702  */
703 RelOptInfo *
705 {
706  Relids joinrelids;
707  SpecialJoinInfo *sjinfo;
708  bool reversed;
709  List *pushed_down_joins = NIL;
710  SpecialJoinInfo sjinfo_data;
711  RelOptInfo *joinrel;
712  List *restrictlist;
713 
714  /* We should never try to join two overlapping sets of rels. */
715  Assert(!bms_overlap(rel1->relids, rel2->relids));
716 
717  /* Construct Relids set that identifies the joinrel (without OJ as yet). */
718  joinrelids = bms_union(rel1->relids, rel2->relids);
719 
720  /* Check validity and determine join type. */
721  if (!join_is_legal(root, rel1, rel2, joinrelids,
722  &sjinfo, &reversed))
723  {
724  /* invalid join path */
725  bms_free(joinrelids);
726  return NULL;
727  }
728 
729  /*
730  * Add outer join relid(s) to form the canonical relids. Any added outer
731  * joins besides sjinfo itself are appended to pushed_down_joins.
732  */
733  joinrelids = add_outer_joins_to_relids(root, joinrelids, sjinfo,
734  &pushed_down_joins);
735 
736  /* Swap rels if needed to match the join info. */
737  if (reversed)
738  {
739  RelOptInfo *trel = rel1;
740 
741  rel1 = rel2;
742  rel2 = trel;
743  }
744 
745  /*
746  * If it's a plain inner join, then we won't have found anything in
747  * join_info_list. Make up a SpecialJoinInfo so that selectivity
748  * estimation functions will know what's being joined.
749  */
750  if (sjinfo == NULL)
751  {
752  sjinfo = &sjinfo_data;
753  init_dummy_sjinfo(sjinfo, rel1->relids, rel2->relids);
754  }
755 
756  /*
757  * Find or build the join RelOptInfo, and compute the restrictlist that
758  * goes with this particular joining.
759  */
760  joinrel = build_join_rel(root, joinrelids, rel1, rel2,
761  sjinfo, pushed_down_joins,
762  &restrictlist);
763 
764  /*
765  * If we've already proven this join is empty, we needn't consider any
766  * more paths for it.
767  */
768  if (is_dummy_rel(joinrel))
769  {
770  bms_free(joinrelids);
771  return joinrel;
772  }
773 
774  /* Add paths to the join relation. */
775  populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
776  restrictlist);
777 
778  bms_free(joinrelids);
779 
780  return joinrel;
781 }
782 
783 /*
784  * add_outer_joins_to_relids
785  * Add relids to input_relids to represent any outer joins that will be
786  * calculated at this join.
787  *
788  * input_relids is the union of the relid sets of the two input relations.
789  * Note that we modify this in-place and return it; caller must bms_copy()
790  * it first, if a separate value is desired.
791  *
792  * sjinfo represents the join being performed.
793  *
794  * If the current join completes the calculation of any outer joins that
795  * have been pushed down per outer-join identity 3, those relids will be
796  * added to the result along with sjinfo's own relid. If pushed_down_joins
797  * is not NULL, then also the SpecialJoinInfos for such added outer joins will
798  * be appended to *pushed_down_joins (so caller must initialize it to NIL).
799  */
800 Relids
802  SpecialJoinInfo *sjinfo,
803  List **pushed_down_joins)
804 {
805  /* Nothing to do if this isn't an outer join with an assigned relid. */
806  if (sjinfo == NULL || sjinfo->ojrelid == 0)
807  return input_relids;
808 
809  /*
810  * If it's not a left join, we have no rules that would permit executing
811  * it in non-syntactic order, so just form the syntactic relid set. (This
812  * is just a quick-exit test; we'd come to the same conclusion anyway,
813  * since its commute_below_l and commute_above_l sets must be empty.)
814  */
815  if (sjinfo->jointype != JOIN_LEFT)
816  return bms_add_member(input_relids, sjinfo->ojrelid);
817 
818  /*
819  * We cannot add the OJ relid if this join has been pushed into the RHS of
820  * a syntactically-lower left join per OJ identity 3. (If it has, then we
821  * cannot claim that its outputs represent the final state of its RHS.)
822  * There will not be any other OJs that can be added either, so we're
823  * done.
824  */
825  if (!bms_is_subset(sjinfo->commute_below_l, input_relids))
826  return input_relids;
827 
828  /* OK to add OJ's own relid */
829  input_relids = bms_add_member(input_relids, sjinfo->ojrelid);
830 
831  /*
832  * Contrariwise, if we are now forming the final result of such a commuted
833  * pair of OJs, it's time to add the relid(s) of the pushed-down join(s).
834  * We can skip this if this join was never a candidate to be pushed up.
835  */
836  if (sjinfo->commute_above_l)
837  {
838  Relids commute_above_rels = bms_copy(sjinfo->commute_above_l);
839  ListCell *lc;
840 
841  /*
842  * The current join could complete the nulling of more than one
843  * pushed-down join, so we have to examine all the SpecialJoinInfos.
844  * Because join_info_list was built in bottom-up order, it's
845  * sufficient to traverse it once: an ojrelid we add in one loop
846  * iteration would not have affected decisions of earlier iterations.
847  */
848  foreach(lc, root->join_info_list)
849  {
850  SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
851 
852  if (othersj == sjinfo ||
853  othersj->ojrelid == 0 || othersj->jointype != JOIN_LEFT)
854  continue; /* definitely not interesting */
855 
856  if (!bms_is_member(othersj->ojrelid, commute_above_rels))
857  continue;
858 
859  /* Add it if not already present but conditions now satisfied */
860  if (!bms_is_member(othersj->ojrelid, input_relids) &&
861  bms_is_subset(othersj->min_lefthand, input_relids) &&
862  bms_is_subset(othersj->min_righthand, input_relids) &&
863  bms_is_subset(othersj->commute_below_l, input_relids))
864  {
865  input_relids = bms_add_member(input_relids, othersj->ojrelid);
866  /* report such pushed down outer joins, if asked */
867  if (pushed_down_joins != NULL)
868  *pushed_down_joins = lappend(*pushed_down_joins, othersj);
869 
870  /*
871  * We must also check any joins that othersj potentially
872  * commutes with. They likewise must appear later in
873  * join_info_list than othersj itself, so we can visit them
874  * later in this loop.
875  */
876  commute_above_rels = bms_add_members(commute_above_rels,
877  othersj->commute_above_l);
878  }
879  }
880  }
881 
882  return input_relids;
883 }
884 
885 /*
886  * populate_joinrel_with_paths
887  * Add paths to the given joinrel for given pair of joining relations. The
888  * SpecialJoinInfo provides details about the join and the restrictlist
889  * contains the join clauses and the other clauses applicable for given pair
890  * of the joining relations.
891  */
892 static void
894  RelOptInfo *rel2, RelOptInfo *joinrel,
895  SpecialJoinInfo *sjinfo, List *restrictlist)
896 {
897  /*
898  * Consider paths using each rel as both outer and inner. Depending on
899  * the join type, a provably empty outer or inner rel might mean the join
900  * is provably empty too; in which case throw away any previously computed
901  * paths and mark the join as dummy. (We do it this way since it's
902  * conceivable that dummy-ness of a multi-element join might only be
903  * noticeable for certain construction paths.)
904  *
905  * Also, a provably constant-false join restriction typically means that
906  * we can skip evaluating one or both sides of the join. We do this by
907  * marking the appropriate rel as dummy. For outer joins, a
908  * constant-false restriction that is pushed down still means the whole
909  * join is dummy, while a non-pushed-down one means that no inner rows
910  * will join so we can treat the inner rel as dummy.
911  *
912  * We need only consider the jointypes that appear in join_info_list, plus
913  * JOIN_INNER.
914  */
915  switch (sjinfo->jointype)
916  {
917  case JOIN_INNER:
918  if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
919  restriction_is_constant_false(restrictlist, joinrel, false))
920  {
921  mark_dummy_rel(joinrel);
922  break;
923  }
924  add_paths_to_joinrel(root, joinrel, rel1, rel2,
925  JOIN_INNER, sjinfo,
926  restrictlist);
927  add_paths_to_joinrel(root, joinrel, rel2, rel1,
928  JOIN_INNER, sjinfo,
929  restrictlist);
930  break;
931  case JOIN_LEFT:
932  if (is_dummy_rel(rel1) ||
933  restriction_is_constant_false(restrictlist, joinrel, true))
934  {
935  mark_dummy_rel(joinrel);
936  break;
937  }
938  if (restriction_is_constant_false(restrictlist, joinrel, false) &&
939  bms_is_subset(rel2->relids, sjinfo->syn_righthand))
940  mark_dummy_rel(rel2);
941  add_paths_to_joinrel(root, joinrel, rel1, rel2,
942  JOIN_LEFT, sjinfo,
943  restrictlist);
944  add_paths_to_joinrel(root, joinrel, rel2, rel1,
945  JOIN_RIGHT, sjinfo,
946  restrictlist);
947  break;
948  case JOIN_FULL:
949  if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
950  restriction_is_constant_false(restrictlist, joinrel, true))
951  {
952  mark_dummy_rel(joinrel);
953  break;
954  }
955  add_paths_to_joinrel(root, joinrel, rel1, rel2,
956  JOIN_FULL, sjinfo,
957  restrictlist);
958  add_paths_to_joinrel(root, joinrel, rel2, rel1,
959  JOIN_FULL, sjinfo,
960  restrictlist);
961 
962  /*
963  * If there are join quals that aren't mergeable or hashable, we
964  * may not be able to build any valid plan. Complain here so that
965  * we can give a somewhat-useful error message. (Since we have no
966  * flexibility of planning for a full join, there's no chance of
967  * succeeding later with another pair of input rels.)
968  */
969  if (joinrel->pathlist == NIL)
970  ereport(ERROR,
971  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
972  errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
973  break;
974  case JOIN_SEMI:
975 
976  /*
977  * We might have a normal semijoin, or a case where we don't have
978  * enough rels to do the semijoin but can unique-ify the RHS and
979  * then do an innerjoin (see comments in join_is_legal). In the
980  * latter case we can't apply JOIN_SEMI joining.
981  */
982  if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
983  bms_is_subset(sjinfo->min_righthand, rel2->relids))
984  {
985  if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
986  restriction_is_constant_false(restrictlist, joinrel, false))
987  {
988  mark_dummy_rel(joinrel);
989  break;
990  }
991  add_paths_to_joinrel(root, joinrel, rel1, rel2,
992  JOIN_SEMI, sjinfo,
993  restrictlist);
994  add_paths_to_joinrel(root, joinrel, rel2, rel1,
995  JOIN_RIGHT_SEMI, sjinfo,
996  restrictlist);
997  }
998 
999  /*
1000  * If we know how to unique-ify the RHS and one input rel is
1001  * exactly the RHS (not a superset) we can consider unique-ifying
1002  * it and then doing a regular join. (The create_unique_path
1003  * check here is probably redundant with what join_is_legal did,
1004  * but if so the check is cheap because it's cached. So test
1005  * anyway to be sure.)
1006  */
1007  if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
1009  sjinfo) != NULL)
1010  {
1011  if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
1012  restriction_is_constant_false(restrictlist, joinrel, false))
1013  {
1014  mark_dummy_rel(joinrel);
1015  break;
1016  }
1017  add_paths_to_joinrel(root, joinrel, rel1, rel2,
1018  JOIN_UNIQUE_INNER, sjinfo,
1019  restrictlist);
1020  add_paths_to_joinrel(root, joinrel, rel2, rel1,
1021  JOIN_UNIQUE_OUTER, sjinfo,
1022  restrictlist);
1023  }
1024  break;
1025  case JOIN_ANTI:
1026  if (is_dummy_rel(rel1) ||
1027  restriction_is_constant_false(restrictlist, joinrel, true))
1028  {
1029  mark_dummy_rel(joinrel);
1030  break;
1031  }
1032  if (restriction_is_constant_false(restrictlist, joinrel, false) &&
1033  bms_is_subset(rel2->relids, sjinfo->syn_righthand))
1034  mark_dummy_rel(rel2);
1035  add_paths_to_joinrel(root, joinrel, rel1, rel2,
1036  JOIN_ANTI, sjinfo,
1037  restrictlist);
1038  add_paths_to_joinrel(root, joinrel, rel2, rel1,
1039  JOIN_RIGHT_ANTI, sjinfo,
1040  restrictlist);
1041  break;
1042  default:
1043  /* other values not expected here */
1044  elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
1045  break;
1046  }
1047 
1048  /* Apply partitionwise join technique, if possible. */
1049  try_partitionwise_join(root, rel1, rel2, joinrel, sjinfo, restrictlist);
1050 }
1051 
1052 
1053 /*
1054  * have_join_order_restriction
1055  * Detect whether the two relations should be joined to satisfy
1056  * a join-order restriction arising from special or lateral joins.
1057  *
1058  * In practice this is always used with have_relevant_joinclause(), and so
1059  * could be merged with that function, but it seems clearer to separate the
1060  * two concerns. We need this test because there are degenerate cases where
1061  * a clauseless join must be performed to satisfy join-order restrictions.
1062  * Also, if one rel has a lateral reference to the other, or both are needed
1063  * to compute some PHV, we should consider joining them even if the join would
1064  * be clauseless.
1065  *
1066  * Note: this is only a problem if one side of a degenerate outer join
1067  * contains multiple rels, or a clauseless join is required within an
1068  * IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
1069  * join_search_one_level(). We could dispense with this test if we were
1070  * willing to try bushy plans in the "last ditch" case, but that seems much
1071  * less efficient.
1072  */
1073 bool
1075  RelOptInfo *rel1, RelOptInfo *rel2)
1076 {
1077  bool result = false;
1078  ListCell *l;
1079 
1080  /*
1081  * If either side has a direct lateral reference to the other, attempt the
1082  * join regardless of outer-join considerations.
1083  */
1084  if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
1086  return true;
1087 
1088  /*
1089  * Likewise, if both rels are needed to compute some PlaceHolderVar,
1090  * attempt the join regardless of outer-join considerations. (This is not
1091  * very desirable, because a PHV with a large eval_at set will cause a lot
1092  * of probably-useless joins to be considered, but failing to do this can
1093  * cause us to fail to construct a plan at all.)
1094  */
1095  foreach(l, root->placeholder_list)
1096  {
1097  PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
1098 
1099  if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
1100  bms_is_subset(rel2->relids, phinfo->ph_eval_at))
1101  return true;
1102  }
1103 
1104  /*
1105  * It's possible that the rels correspond to the left and right sides of a
1106  * degenerate outer join, that is, one with no joinclause mentioning the
1107  * non-nullable side; in which case we should force the join to occur.
1108  *
1109  * Also, the two rels could represent a clauseless join that has to be
1110  * completed to build up the LHS or RHS of an outer join.
1111  */
1112  foreach(l, root->join_info_list)
1113  {
1114  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
1115 
1116  /* ignore full joins --- other mechanisms handle them */
1117  if (sjinfo->jointype == JOIN_FULL)
1118  continue;
1119 
1120  /* Can we perform the SJ with these rels? */
1121  if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
1122  bms_is_subset(sjinfo->min_righthand, rel2->relids))
1123  {
1124  result = true;
1125  break;
1126  }
1127  if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
1128  bms_is_subset(sjinfo->min_righthand, rel1->relids))
1129  {
1130  result = true;
1131  break;
1132  }
1133 
1134  /*
1135  * Might we need to join these rels to complete the RHS? We have to
1136  * use "overlap" tests since either rel might include a lower SJ that
1137  * has been proven to commute with this one.
1138  */
1139  if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
1140  bms_overlap(sjinfo->min_righthand, rel2->relids))
1141  {
1142  result = true;
1143  break;
1144  }
1145 
1146  /* Likewise for the LHS. */
1147  if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
1148  bms_overlap(sjinfo->min_lefthand, rel2->relids))
1149  {
1150  result = true;
1151  break;
1152  }
1153  }
1154 
1155  /*
1156  * We do not force the join to occur if either input rel can legally be
1157  * joined to anything else using joinclauses. This essentially means that
1158  * clauseless bushy joins are put off as long as possible. The reason is
1159  * that when there is a join order restriction high up in the join tree
1160  * (that is, with many rels inside the LHS or RHS), we would otherwise
1161  * expend lots of effort considering very stupid join combinations within
1162  * its LHS or RHS.
1163  */
1164  if (result)
1165  {
1166  if (has_legal_joinclause(root, rel1) ||
1167  has_legal_joinclause(root, rel2))
1168  result = false;
1169  }
1170 
1171  return result;
1172 }
1173 
1174 
1175 /*
1176  * has_join_restriction
1177  * Detect whether the specified relation has join-order restrictions,
1178  * due to being inside an outer join or an IN (sub-SELECT),
1179  * or participating in any LATERAL references or multi-rel PHVs.
1180  *
1181  * Essentially, this tests whether have_join_order_restriction() could
1182  * succeed with this rel and some other one. It's OK if we sometimes
1183  * say "true" incorrectly. (Therefore, we don't bother with the relatively
1184  * expensive has_legal_joinclause test.)
1185  */
1186 static bool
1188 {
1189  ListCell *l;
1190 
1191  if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
1192  return true;
1193 
1194  foreach(l, root->placeholder_list)
1195  {
1196  PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
1197 
1198  if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
1199  !bms_equal(rel->relids, phinfo->ph_eval_at))
1200  return true;
1201  }
1202 
1203  foreach(l, root->join_info_list)
1204  {
1205  SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
1206 
1207  /* ignore full joins --- other mechanisms preserve their ordering */
1208  if (sjinfo->jointype == JOIN_FULL)
1209  continue;
1210 
1211  /* ignore if SJ is already contained in rel */
1212  if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
1213  bms_is_subset(sjinfo->min_righthand, rel->relids))
1214  continue;
1215 
1216  /* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
1217  if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
1218  bms_overlap(sjinfo->min_righthand, rel->relids))
1219  return true;
1220  }
1221 
1222  return false;
1223 }
1224 
1225 
1226 /*
1227  * has_legal_joinclause
1228  * Detect whether the specified relation can legally be joined
1229  * to any other rels using join clauses.
1230  *
1231  * We consider only joins to single other relations in the current
1232  * initial_rels list. This is sufficient to get a "true" result in most real
1233  * queries, and an occasional erroneous "false" will only cost a bit more
1234  * planning time. The reason for this limitation is that considering joins to
1235  * other joins would require proving that the other join rel can legally be
1236  * formed, which seems like too much trouble for something that's only a
1237  * heuristic to save planning time. (Note: we must look at initial_rels
1238  * and not all of the query, since when we are planning a sub-joinlist we
1239  * may be forced to make clauseless joins within initial_rels even though
1240  * there are join clauses linking to other parts of the query.)
1241  */
1242 static bool
1244 {
1245  ListCell *lc;
1246 
1247  foreach(lc, root->initial_rels)
1248  {
1249  RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
1250 
1251  /* ignore rels that are already in "rel" */
1252  if (bms_overlap(rel->relids, rel2->relids))
1253  continue;
1254 
1255  if (have_relevant_joinclause(root, rel, rel2))
1256  {
1257  Relids joinrelids;
1258  SpecialJoinInfo *sjinfo;
1259  bool reversed;
1260 
1261  /* join_is_legal needs relids of the union */
1262  joinrelids = bms_union(rel->relids, rel2->relids);
1263 
1264  if (join_is_legal(root, rel, rel2, joinrelids,
1265  &sjinfo, &reversed))
1266  {
1267  /* Yes, this will work */
1268  bms_free(joinrelids);
1269  return true;
1270  }
1271 
1272  bms_free(joinrelids);
1273  }
1274  }
1275 
1276  return false;
1277 }
1278 
1279 
1280 /*
1281  * There's a pitfall for creating parameterized nestloops: suppose the inner
1282  * rel (call it A) has a parameter that is a PlaceHolderVar, and that PHV's
1283  * minimum eval_at set includes the outer rel (B) and some third rel (C).
1284  * We might think we could create a B/A nestloop join that's parameterized by
1285  * C. But we would end up with a plan in which the PHV's expression has to be
1286  * evaluated as a nestloop parameter at the B/A join; and the executor is only
1287  * set up to handle simple Vars as NestLoopParams. Rather than add complexity
1288  * and overhead to the executor for such corner cases, it seems better to
1289  * forbid the join. (Note that we can still make use of A's parameterized
1290  * path with pre-joined B+C as the outer rel. have_join_order_restriction()
1291  * ensures that we will consider making such a join even if there are not
1292  * other reasons to do so.)
1293  *
1294  * So we check whether any PHVs used in the query could pose such a hazard.
1295  * We don't have any simple way of checking whether a risky PHV would actually
1296  * be used in the inner plan, and the case is so unusual that it doesn't seem
1297  * worth working very hard on it.
1298  *
1299  * This needs to be checked in two places. If the inner rel's minimum
1300  * parameterization would trigger the restriction, then join_is_legal() should
1301  * reject the join altogether, because there will be no workable paths for it.
1302  * But joinpath.c has to check again for every proposed nestloop path, because
1303  * the inner path might have more than the minimum parameterization, causing
1304  * some PHV to be dangerous for it that otherwise wouldn't be.
1305  */
1306 bool
1308  Relids outer_relids, Relids inner_params)
1309 {
1310  ListCell *lc;
1311 
1312  foreach(lc, root->placeholder_list)
1313  {
1314  PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
1315 
1316  if (!bms_is_subset(phinfo->ph_eval_at, inner_params))
1317  continue; /* ignore, could not be a nestloop param */
1318  if (!bms_overlap(phinfo->ph_eval_at, outer_relids))
1319  continue; /* ignore, not relevant to this join */
1320  if (bms_is_subset(phinfo->ph_eval_at, outer_relids))
1321  continue; /* safe, it can be eval'd within outerrel */
1322  /* Otherwise, it's potentially unsafe, so reject the join */
1323  return true;
1324  }
1325 
1326  /* OK to perform the join */
1327  return false;
1328 }
1329 
1330 
1331 /*
1332  * is_dummy_rel --- has relation been proven empty?
1333  */
1334 bool
1336 {
1337  Path *path;
1338 
1339  /*
1340  * A rel that is known dummy will have just one path that is a childless
1341  * Append. (Even if somehow it has more paths, a childless Append will
1342  * have cost zero and hence should be at the front of the pathlist.)
1343  */
1344  if (rel->pathlist == NIL)
1345  return false;
1346  path = (Path *) linitial(rel->pathlist);
1347 
1348  /*
1349  * Initially, a dummy path will just be a childless Append. But in later
1350  * planning stages we might stick a ProjectSetPath and/or ProjectionPath
1351  * on top, since Append can't project. Rather than make assumptions about
1352  * which combinations can occur, just descend through whatever we find.
1353  */
1354  for (;;)
1355  {
1356  if (IsA(path, ProjectionPath))
1357  path = ((ProjectionPath *) path)->subpath;
1358  else if (IsA(path, ProjectSetPath))
1359  path = ((ProjectSetPath *) path)->subpath;
1360  else
1361  break;
1362  }
1363  if (IS_DUMMY_APPEND(path))
1364  return true;
1365  return false;
1366 }
1367 
1368 /*
1369  * Mark a relation as proven empty.
1370  *
1371  * During GEQO planning, this can get invoked more than once on the same
1372  * baserel struct, so it's worth checking to see if the rel is already marked
1373  * dummy.
1374  *
1375  * Also, when called during GEQO join planning, we are in a short-lived
1376  * memory context. We must make sure that the dummy path attached to a
1377  * baserel survives the GEQO cycle, else the baserel is trashed for future
1378  * GEQO cycles. On the other hand, when we are marking a joinrel during GEQO,
1379  * we don't want the dummy path to clutter the main planning context. Upshot
1380  * is that the best solution is to explicitly make the dummy path in the same
1381  * context the given RelOptInfo is in.
1382  */
1383 void
1385 {
1386  MemoryContext oldcontext;
1387 
1388  /* Already marked? */
1389  if (is_dummy_rel(rel))
1390  return;
1391 
1392  /* No, so choose correct context to make the dummy path in */
1393  oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
1394 
1395  /* Set dummy size estimate */
1396  rel->rows = 0;
1397 
1398  /* Evict any previously chosen paths */
1399  rel->pathlist = NIL;
1400  rel->partial_pathlist = NIL;
1401 
1402  /* Set up the dummy path */
1403  add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
1404  NIL, rel->lateral_relids,
1405  0, false, -1));
1406 
1407  /* Set or update cheapest_total_path and related fields */
1408  set_cheapest(rel);
1409 
1410  MemoryContextSwitchTo(oldcontext);
1411 }
1412 
1413 
1414 /*
1415  * restriction_is_constant_false --- is a restrictlist just FALSE?
1416  *
1417  * In cases where a qual is provably constant FALSE, eval_const_expressions
1418  * will generally have thrown away anything that's ANDed with it. In outer
1419  * join situations this will leave us computing cartesian products only to
1420  * decide there's no match for an outer row, which is pretty stupid. So,
1421  * we need to detect the case.
1422  *
1423  * If only_pushed_down is true, then consider only quals that are pushed-down
1424  * from the point of view of the joinrel.
1425  */
1426 static bool
1428  RelOptInfo *joinrel,
1429  bool only_pushed_down)
1430 {
1431  ListCell *lc;
1432 
1433  /*
1434  * Despite the above comment, the restriction list we see here might
1435  * possibly have other members besides the FALSE constant, since other
1436  * quals could get "pushed down" to the outer join level. So we check
1437  * each member of the list.
1438  */
1439  foreach(lc, restrictlist)
1440  {
1441  RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
1442 
1443  if (only_pushed_down && !RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
1444  continue;
1445 
1446  if (rinfo->clause && IsA(rinfo->clause, Const))
1447  {
1448  Const *con = (Const *) rinfo->clause;
1449 
1450  /* constant NULL is as good as constant FALSE for our purposes */
1451  if (con->constisnull)
1452  return true;
1453  if (!DatumGetBool(con->constvalue))
1454  return true;
1455  }
1456  }
1457  return false;
1458 }
1459 
1460 /*
1461  * Assess whether join between given two partitioned relations can be broken
1462  * down into joins between matching partitions; a technique called
1463  * "partitionwise join"
1464  *
1465  * Partitionwise join is possible when a. Joining relations have same
1466  * partitioning scheme b. There exists an equi-join between the partition keys
1467  * of the two relations.
1468  *
1469  * Partitionwise join is planned as follows (details: optimizer/README.)
1470  *
1471  * 1. Create the RelOptInfos for joins between matching partitions i.e
1472  * child-joins and add paths to them.
1473  *
1474  * 2. Construct Append or MergeAppend paths across the set of child joins.
1475  * This second phase is implemented by generate_partitionwise_join_paths().
1476  *
1477  * The RelOptInfo, SpecialJoinInfo and restrictlist for each child join are
1478  * obtained by translating the respective parent join structures.
1479  */
1480 static void
1482  RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo,
1483  List *parent_restrictlist)
1484 {
1485  bool rel1_is_simple = IS_SIMPLE_REL(rel1);
1486  bool rel2_is_simple = IS_SIMPLE_REL(rel2);
1487  List *parts1 = NIL;
1488  List *parts2 = NIL;
1489  ListCell *lcr1 = NULL;
1490  ListCell *lcr2 = NULL;
1491  int cnt_parts;
1492 
1493  /* Guard against stack overflow due to overly deep partition hierarchy. */
1495 
1496  /* Nothing to do, if the join relation is not partitioned. */
1497  if (joinrel->part_scheme == NULL || joinrel->nparts == 0)
1498  return;
1499 
1500  /* The join relation should have consider_partitionwise_join set. */
1502 
1503  /*
1504  * We can not perform partitionwise join if either of the joining
1505  * relations is not partitioned.
1506  */
1507  if (!IS_PARTITIONED_REL(rel1) || !IS_PARTITIONED_REL(rel2))
1508  return;
1509 
1511 
1512  /* The joining relations should have consider_partitionwise_join set. */
1515 
1516  /*
1517  * The partition scheme of the join relation should match that of the
1518  * joining relations.
1519  */
1520  Assert(joinrel->part_scheme == rel1->part_scheme &&
1521  joinrel->part_scheme == rel2->part_scheme);
1522 
1523  Assert(!(joinrel->partbounds_merged && (joinrel->nparts <= 0)));
1524 
1525  compute_partition_bounds(root, rel1, rel2, joinrel, parent_sjinfo,
1526  &parts1, &parts2);
1527 
1528  if (joinrel->partbounds_merged)
1529  {
1530  lcr1 = list_head(parts1);
1531  lcr2 = list_head(parts2);
1532  }
1533 
1534  /*
1535  * Create child-join relations for this partitioned join, if those don't
1536  * exist. Add paths to child-joins for a pair of child relations
1537  * corresponding to the given pair of parent relations.
1538  */
1539  for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
1540  {
1541  RelOptInfo *child_rel1;
1542  RelOptInfo *child_rel2;
1543  bool rel1_empty;
1544  bool rel2_empty;
1545  SpecialJoinInfo *child_sjinfo;
1546  List *child_restrictlist;
1547  RelOptInfo *child_joinrel;
1548  AppendRelInfo **appinfos;
1549  int nappinfos;
1550  Relids child_relids;
1551 
1552  if (joinrel->partbounds_merged)
1553  {
1554  child_rel1 = lfirst_node(RelOptInfo, lcr1);
1555  child_rel2 = lfirst_node(RelOptInfo, lcr2);
1556  lcr1 = lnext(parts1, lcr1);
1557  lcr2 = lnext(parts2, lcr2);
1558  }
1559  else
1560  {
1561  child_rel1 = rel1->part_rels[cnt_parts];
1562  child_rel2 = rel2->part_rels[cnt_parts];
1563  }
1564 
1565  rel1_empty = (child_rel1 == NULL || IS_DUMMY_REL(child_rel1));
1566  rel2_empty = (child_rel2 == NULL || IS_DUMMY_REL(child_rel2));
1567 
1568  /*
1569  * Check for cases where we can prove that this segment of the join
1570  * returns no rows, due to one or both inputs being empty (including
1571  * inputs that have been pruned away entirely). If so just ignore it.
1572  * These rules are equivalent to populate_joinrel_with_paths's rules
1573  * for dummy input relations.
1574  */
1575  switch (parent_sjinfo->jointype)
1576  {
1577  case JOIN_INNER:
1578  case JOIN_SEMI:
1579  if (rel1_empty || rel2_empty)
1580  continue; /* ignore this join segment */
1581  break;
1582  case JOIN_LEFT:
1583  case JOIN_ANTI:
1584  if (rel1_empty)
1585  continue; /* ignore this join segment */
1586  break;
1587  case JOIN_FULL:
1588  if (rel1_empty && rel2_empty)
1589  continue; /* ignore this join segment */
1590  break;
1591  default:
1592  /* other values not expected here */
1593  elog(ERROR, "unrecognized join type: %d",
1594  (int) parent_sjinfo->jointype);
1595  break;
1596  }
1597 
1598  /*
1599  * If a child has been pruned entirely then we can't generate paths
1600  * for it, so we have to reject partitionwise joining unless we were
1601  * able to eliminate this partition above.
1602  */
1603  if (child_rel1 == NULL || child_rel2 == NULL)
1604  {
1605  /*
1606  * Mark the joinrel as unpartitioned so that later functions treat
1607  * it correctly.
1608  */
1609  joinrel->nparts = 0;
1610  return;
1611  }
1612 
1613  /*
1614  * If a leaf relation has consider_partitionwise_join=false, it means
1615  * that it's a dummy relation for which we skipped setting up tlist
1616  * expressions and adding EC members in set_append_rel_size(), so
1617  * again we have to fail here.
1618  */
1619  if (rel1_is_simple && !child_rel1->consider_partitionwise_join)
1620  {
1621  Assert(child_rel1->reloptkind == RELOPT_OTHER_MEMBER_REL);
1622  Assert(IS_DUMMY_REL(child_rel1));
1623  joinrel->nparts = 0;
1624  return;
1625  }
1626  if (rel2_is_simple && !child_rel2->consider_partitionwise_join)
1627  {
1628  Assert(child_rel2->reloptkind == RELOPT_OTHER_MEMBER_REL);
1629  Assert(IS_DUMMY_REL(child_rel2));
1630  joinrel->nparts = 0;
1631  return;
1632  }
1633 
1634  /* We should never try to join two overlapping sets of rels. */
1635  Assert(!bms_overlap(child_rel1->relids, child_rel2->relids));
1636 
1637  /*
1638  * Construct SpecialJoinInfo from parent join relations's
1639  * SpecialJoinInfo.
1640  */
1641  child_sjinfo = build_child_join_sjinfo(root, parent_sjinfo,
1642  child_rel1->relids,
1643  child_rel2->relids);
1644 
1645  /* Find the AppendRelInfo structures */
1646  child_relids = bms_union(child_rel1->relids, child_rel2->relids);
1647  appinfos = find_appinfos_by_relids(root, child_relids,
1648  &nappinfos);
1649 
1650  /*
1651  * Construct restrictions applicable to the child join from those
1652  * applicable to the parent join.
1653  */
1654  child_restrictlist =
1656  (Node *) parent_restrictlist,
1657  nappinfos, appinfos);
1658 
1659  /* Find or construct the child join's RelOptInfo */
1660  child_joinrel = joinrel->part_rels[cnt_parts];
1661  if (!child_joinrel)
1662  {
1663  child_joinrel = build_child_join_rel(root, child_rel1, child_rel2,
1664  joinrel, child_restrictlist,
1665  child_sjinfo, nappinfos, appinfos);
1666  joinrel->part_rels[cnt_parts] = child_joinrel;
1667  joinrel->live_parts = bms_add_member(joinrel->live_parts, cnt_parts);
1668  joinrel->all_partrels = bms_add_members(joinrel->all_partrels,
1669  child_joinrel->relids);
1670  }
1671 
1672  /* Assert we got the right one */
1673  Assert(bms_equal(child_joinrel->relids,
1674  adjust_child_relids(joinrel->relids,
1675  nappinfos, appinfos)));
1676 
1677  /* And make paths for the child join */
1678  populate_joinrel_with_paths(root, child_rel1, child_rel2,
1679  child_joinrel, child_sjinfo,
1680  child_restrictlist);
1681 
1682  /*
1683  * When there are thousands of partitions involved, this loop will
1684  * accumulate a significant amount of memory usage from objects that
1685  * are only needed within the loop. Free these local objects eagerly
1686  * at the end of each iteration.
1687  */
1688  pfree(appinfos);
1689  bms_free(child_relids);
1690  free_child_join_sjinfo(child_sjinfo);
1691  }
1692 }
1693 
1694 /*
1695  * Construct the SpecialJoinInfo for a child-join by translating
1696  * SpecialJoinInfo for the join between parents. left_relids and right_relids
1697  * are the relids of left and right side of the join respectively.
1698  *
1699  * If translations are added to or removed from this function, consider
1700  * updating free_child_join_sjinfo() accordingly.
1701  */
1702 static SpecialJoinInfo *
1704  Relids left_relids, Relids right_relids)
1705 {
1707  AppendRelInfo **left_appinfos;
1708  int left_nappinfos;
1709  AppendRelInfo **right_appinfos;
1710  int right_nappinfos;
1711 
1712  /* Dummy SpecialJoinInfos can be created without any translation. */
1713  if (parent_sjinfo->jointype == JOIN_INNER)
1714  {
1715  Assert(parent_sjinfo->ojrelid == 0);
1716  init_dummy_sjinfo(sjinfo, left_relids, right_relids);
1717  return sjinfo;
1718  }
1719 
1720  memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
1721  left_appinfos = find_appinfos_by_relids(root, left_relids,
1722  &left_nappinfos);
1723  right_appinfos = find_appinfos_by_relids(root, right_relids,
1724  &right_nappinfos);
1725 
1726  sjinfo->min_lefthand = adjust_child_relids(sjinfo->min_lefthand,
1727  left_nappinfos, left_appinfos);
1729  right_nappinfos,
1730  right_appinfos);
1731  sjinfo->syn_lefthand = adjust_child_relids(sjinfo->syn_lefthand,
1732  left_nappinfos, left_appinfos);
1734  right_nappinfos,
1735  right_appinfos);
1736  /* outer-join relids need no adjustment */
1738  (Node *) sjinfo->semi_rhs_exprs,
1739  right_nappinfos,
1740  right_appinfos);
1741 
1742  pfree(left_appinfos);
1743  pfree(right_appinfos);
1744 
1745  return sjinfo;
1746 }
1747 
1748 /*
1749  * free_child_join_sjinfo
1750  * Free memory consumed by a SpecialJoinInfo created by
1751  * build_child_join_sjinfo()
1752  *
1753  * Only members that are translated copies of their counterpart in the parent
1754  * SpecialJoinInfo are freed here.
1755  */
1756 static void
1758 {
1759  /*
1760  * Dummy SpecialJoinInfos of inner joins do not have any translated fields
1761  * and hence no fields that to be freed.
1762  */
1763  if (sjinfo->jointype != JOIN_INNER)
1764  {
1765  bms_free(sjinfo->min_lefthand);
1766  bms_free(sjinfo->min_righthand);
1767  bms_free(sjinfo->syn_lefthand);
1768  bms_free(sjinfo->syn_righthand);
1769 
1770  /*
1771  * semi_rhs_exprs may in principle be freed, but a simple pfree() does
1772  * not suffice, so we leave it alone.
1773  */
1774  }
1775 
1776  pfree(sjinfo);
1777 }
1778 
1779 /*
1780  * compute_partition_bounds
1781  * Compute the partition bounds for a join rel from those for inputs
1782  */
1783 static void
1785  RelOptInfo *rel2, RelOptInfo *joinrel,
1786  SpecialJoinInfo *parent_sjinfo,
1787  List **parts1, List **parts2)
1788 {
1789  /*
1790  * If we don't have the partition bounds for the join rel yet, try to
1791  * compute those along with pairs of partitions to be joined.
1792  */
1793  if (joinrel->nparts == -1)
1794  {
1795  PartitionScheme part_scheme = joinrel->part_scheme;
1796  PartitionBoundInfo boundinfo = NULL;
1797  int nparts = 0;
1798 
1799  Assert(joinrel->boundinfo == NULL);
1800  Assert(joinrel->part_rels == NULL);
1801 
1802  /*
1803  * See if the partition bounds for inputs are exactly the same, in
1804  * which case we don't need to work hard: the join rel will have the
1805  * same partition bounds as inputs, and the partitions with the same
1806  * cardinal positions will form the pairs.
1807  *
1808  * Note: even in cases where one or both inputs have merged bounds, it
1809  * would be possible for both the bounds to be exactly the same, but
1810  * it seems unlikely to be worth the cycles to check.
1811  */
1812  if (!rel1->partbounds_merged &&
1813  !rel2->partbounds_merged &&
1814  rel1->nparts == rel2->nparts &&
1815  partition_bounds_equal(part_scheme->partnatts,
1816  part_scheme->parttyplen,
1817  part_scheme->parttypbyval,
1818  rel1->boundinfo, rel2->boundinfo))
1819  {
1820  boundinfo = rel1->boundinfo;
1821  nparts = rel1->nparts;
1822  }
1823  else
1824  {
1825  /* Try merging the partition bounds for inputs. */
1826  boundinfo = partition_bounds_merge(part_scheme->partnatts,
1827  part_scheme->partsupfunc,
1828  part_scheme->partcollation,
1829  rel1, rel2,
1830  parent_sjinfo->jointype,
1831  parts1, parts2);
1832  if (boundinfo == NULL)
1833  {
1834  joinrel->nparts = 0;
1835  return;
1836  }
1837  nparts = list_length(*parts1);
1838  joinrel->partbounds_merged = true;
1839  }
1840 
1841  Assert(nparts > 0);
1842  joinrel->boundinfo = boundinfo;
1843  joinrel->nparts = nparts;
1844  joinrel->part_rels =
1845  (RelOptInfo **) palloc0(sizeof(RelOptInfo *) * nparts);
1846  }
1847  else
1848  {
1849  Assert(joinrel->nparts > 0);
1850  Assert(joinrel->boundinfo);
1851  Assert(joinrel->part_rels);
1852 
1853  /*
1854  * If the join rel's partbounds_merged flag is true, it means inputs
1855  * are not guaranteed to have the same partition bounds, therefore we
1856  * can't assume that the partitions at the same cardinal positions
1857  * form the pairs; let get_matching_part_pairs() generate the pairs.
1858  * Otherwise, nothing to do since we can assume that.
1859  */
1860  if (joinrel->partbounds_merged)
1861  {
1862  get_matching_part_pairs(root, joinrel, rel1, rel2,
1863  parts1, parts2);
1864  Assert(list_length(*parts1) == joinrel->nparts);
1865  Assert(list_length(*parts2) == joinrel->nparts);
1866  }
1867  }
1868 }
1869 
1870 /*
1871  * get_matching_part_pairs
1872  * Generate pairs of partitions to be joined from inputs
1873  */
1874 static void
1876  RelOptInfo *rel1, RelOptInfo *rel2,
1877  List **parts1, List **parts2)
1878 {
1879  bool rel1_is_simple = IS_SIMPLE_REL(rel1);
1880  bool rel2_is_simple = IS_SIMPLE_REL(rel2);
1881  int cnt_parts;
1882 
1883  *parts1 = NIL;
1884  *parts2 = NIL;
1885 
1886  for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
1887  {
1888  RelOptInfo *child_joinrel = joinrel->part_rels[cnt_parts];
1889  RelOptInfo *child_rel1;
1890  RelOptInfo *child_rel2;
1891  Relids child_relids1;
1892  Relids child_relids2;
1893 
1894  /*
1895  * If this segment of the join is empty, it means that this segment
1896  * was ignored when previously creating child-join paths for it in
1897  * try_partitionwise_join() as it would not contribute to the join
1898  * result, due to one or both inputs being empty; add NULL to each of
1899  * the given lists so that this segment will be ignored again in that
1900  * function.
1901  */
1902  if (!child_joinrel)
1903  {
1904  *parts1 = lappend(*parts1, NULL);
1905  *parts2 = lappend(*parts2, NULL);
1906  continue;
1907  }
1908 
1909  /*
1910  * Get a relids set of partition(s) involved in this join segment that
1911  * are from the rel1 side.
1912  */
1913  child_relids1 = bms_intersect(child_joinrel->relids,
1914  rel1->all_partrels);
1915  Assert(bms_num_members(child_relids1) == bms_num_members(rel1->relids));
1916 
1917  /*
1918  * Get a child rel for rel1 with the relids. Note that we should have
1919  * the child rel even if rel1 is a join rel, because in that case the
1920  * partitions specified in the relids would have matching/overlapping
1921  * boundaries, so the specified partitions should be considered as
1922  * ones to be joined when planning partitionwise joins of rel1,
1923  * meaning that the child rel would have been built by the time we get
1924  * here.
1925  */
1926  if (rel1_is_simple)
1927  {
1928  int varno = bms_singleton_member(child_relids1);
1929 
1930  child_rel1 = find_base_rel(root, varno);
1931  }
1932  else
1933  child_rel1 = find_join_rel(root, child_relids1);
1934  Assert(child_rel1);
1935 
1936  /*
1937  * Get a relids set of partition(s) involved in this join segment that
1938  * are from the rel2 side.
1939  */
1940  child_relids2 = bms_intersect(child_joinrel->relids,
1941  rel2->all_partrels);
1942  Assert(bms_num_members(child_relids2) == bms_num_members(rel2->relids));
1943 
1944  /*
1945  * Get a child rel for rel2 with the relids. See above comments.
1946  */
1947  if (rel2_is_simple)
1948  {
1949  int varno = bms_singleton_member(child_relids2);
1950 
1951  child_rel2 = find_base_rel(root, varno);
1952  }
1953  else
1954  child_rel2 = find_join_rel(root, child_relids2);
1955  Assert(child_rel2);
1956 
1957  /*
1958  * The join of rel1 and rel2 is legal, so is the join of the child
1959  * rels obtained above; add them to the given lists as a join pair
1960  * producing this join segment.
1961  */
1962  *parts1 = lappend(*parts1, child_rel1);
1963  *parts2 = lappend(*parts2, child_rel2);
1964  }
1965 }
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:737
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:200
Relids adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:558
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define Assert(condition)
Definition: c.h:858
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
bool have_relevant_joinclause(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joininfo.c:39
void add_paths_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel, JoinType jointype, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: joinpath.c:126
static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: joinrels.c:893
static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo, List *parent_restrictlist)
Definition: joinrels.c:1481
static void make_rels_by_clauseless_joins(PlannerInfo *root, RelOptInfo *old_rel, List *other_rels)
Definition: joinrels.c:313
bool is_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1335
void join_search_one_level(PlannerInfo *root, int level)
Definition: joinrels.c:72
static bool restriction_is_constant_false(List *restrictlist, RelOptInfo *joinrel, bool only_pushed_down)
Definition: joinrels.c:1427
static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *rel1, RelOptInfo *rel2, List **parts1, List **parts2)
Definition: joinrels.c:1875
static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
Definition: joinrels.c:1243
static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo, List **parts1, List **parts2)
Definition: joinrels.c:1784
Relids add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids, SpecialJoinInfo *sjinfo, List **pushed_down_joins)
Definition: joinrels.c:801
static SpecialJoinInfo * build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:1703
RelOptInfo * make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joinrels.c:704
void mark_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1384
bool have_dangerous_phv(PlannerInfo *root, Relids outer_relids, Relids inner_params)
Definition: joinrels.c:1307
bool have_join_order_restriction(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joinrels.c:1074
static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
Definition: joinrels.c:1187
void init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:669
static bool join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, Relids joinrelids, SpecialJoinInfo **sjinfo_p, bool *reversed_p)
Definition: joinrels.c:349
static void free_child_join_sjinfo(SpecialJoinInfo *sjinfo)
Definition: joinrels.c:1757
static void make_rels_by_clause_joins(PlannerInfo *root, RelOptInfo *old_rel, List *other_rels, int first_rel_idx)
Definition: joinrels.c:279
List * lappend(List *list, void *datum)
Definition: list.c:339
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:310
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:707
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define makeNode(_type_)
Definition: nodes.h:155
@ JOIN_SEMI
Definition: nodes.h:307
@ JOIN_FULL
Definition: nodes.h:295
@ JOIN_INNER
Definition: nodes.h:293
@ JOIN_RIGHT
Definition: nodes.h:296
@ JOIN_RIGHT_SEMI
Definition: nodes.h:309
@ JOIN_LEFT
Definition: nodes.h:294
@ JOIN_UNIQUE_OUTER
Definition: nodes.h:316
@ JOIN_RIGHT_ANTI
Definition: nodes.h:310
@ JOIN_UNIQUE_INNER
Definition: nodes.h:317
@ JOIN_ANTI
Definition: nodes.h:308
bool partition_bounds_equal(int partnatts, int16 *parttyplen, bool *parttypbyval, PartitionBoundInfo b1, PartitionBoundInfo b2)
Definition: partbounds.c:896
PartitionBoundInfo partition_bounds_merge(int partnatts, FmgrInfo *partsupfunc, Oid *partcollation, RelOptInfo *outer_rel, RelOptInfo *inner_rel, JoinType jointype, List **outer_parts, List **inner_parts)
Definition: partbounds.c:1118
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1300
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, SpecialJoinInfo *sjinfo)
Definition: pathnode.c:1727
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:1945
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2728
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:839
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:1953
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:1062
#define REL_HAS_ALL_PART_PROPS(rel)
Definition: pathnodes.h:1070
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:829
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
#define linitial(l)
Definition: pg_list.h:178
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
void check_stack_depth(void)
Definition: postgres.c:3540
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
MemoryContextSwitchTo(old_ctx)
tree ctl root
Definition: radixtree.h:1886
RelOptInfo * build_join_rel(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *pushed_down_joins, List **restrictlist_ptr)
Definition: relnode.c:665
Relids min_join_parameterization(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1022
RelOptInfo * build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel, RelOptInfo *inner_rel, RelOptInfo *parent_joinrel, List *restrictlist, SpecialJoinInfo *sjinfo, int nappinfos, AppendRelInfo **appinfos)
Definition: relnode.c:882
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids)
Definition: relnode.c:527
Definition: pg_list.h:54
Definition: nodes.h:129
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:601
Relids ph_eval_at
Definition: pathnodes.h:3095
List * joininfo
Definition: pathnodes.h:991
Relids relids
Definition: pathnodes.h:871
bool partbounds_merged
Definition: pathnodes.h:1025
Relids lateral_relids
Definition: pathnodes.h:913
List * pathlist
Definition: pathnodes.h:898
RelOptKind reloptkind
Definition: pathnodes.h:865
Relids lateral_referencers
Definition: pathnodes.h:942
struct Path * cheapest_total_path
Definition: pathnodes.h:902
Relids all_partrels
Definition: pathnodes.h:1041
Relids direct_lateral_relids
Definition: pathnodes.h:911
bool has_eclass_joins
Definition: pathnodes.h:993
Bitmapset * live_parts
Definition: pathnodes.h:1039
bool consider_partitionwise_join
Definition: pathnodes.h:999
List * partial_pathlist
Definition: pathnodes.h:900
Cardinality rows
Definition: pathnodes.h:877
Expr * clause
Definition: pathnodes.h:2571
Relids commute_above_r
Definition: pathnodes.h:2908
Relids syn_lefthand
Definition: pathnodes.h:2903
Relids min_righthand
Definition: pathnodes.h:2902
List * semi_rhs_exprs
Definition: pathnodes.h:2916
Relids commute_above_l
Definition: pathnodes.h:2907
JoinType jointype
Definition: pathnodes.h:2905
Relids commute_below_l
Definition: pathnodes.h:2909
Relids min_lefthand
Definition: pathnodes.h:2901
Relids syn_righthand
Definition: pathnodes.h:2904
Relids commute_below_r
Definition: pathnodes.h:2910
List * semi_operators
Definition: pathnodes.h:2915