PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
joinrels.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * joinrels.c
4 * Routines to determine which relations should be joined
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/path/joinrels.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "miscadmin.h"
19#include "optimizer/joininfo.h"
20#include "optimizer/pathnode.h"
21#include "optimizer/paths.h"
23#include "utils/memutils.h"
24
25
27 RelOptInfo *old_rel,
28 List *other_rels,
29 int first_rel_idx);
31 RelOptInfo *old_rel,
32 List *other_rels);
35static bool restriction_is_constant_false(List *restrictlist,
36 RelOptInfo *joinrel,
37 bool only_pushed_down);
39 RelOptInfo *rel2, RelOptInfo *joinrel,
40 SpecialJoinInfo *sjinfo, List *restrictlist);
42 RelOptInfo *rel2, RelOptInfo *joinrel,
43 SpecialJoinInfo *parent_sjinfo,
44 List *parent_restrictlist);
46 SpecialJoinInfo *parent_sjinfo,
47 Relids left_relids, Relids right_relids);
48static void free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
49 SpecialJoinInfo *parent_sjinfo);
51 RelOptInfo *rel2, RelOptInfo *joinrel,
52 SpecialJoinInfo *parent_sjinfo,
53 List **parts1, List **parts2);
55 RelOptInfo *rel1, RelOptInfo *rel2,
56 List **parts1, List **parts2);
57
58
59/*
60 * join_search_one_level
61 * Consider ways to produce join relations containing exactly 'level'
62 * jointree items. (This is one step of the dynamic-programming method
63 * embodied in standard_join_search.) Join rel nodes for each feasible
64 * combination of lower-level rels are created and returned in a list.
65 * Implementation paths are created for each such joinrel, too.
66 *
67 * level: level of rels we want to make this time
68 * root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
69 *
70 * The result is returned in root->join_rel_level[level].
71 */
72void
74{
75 List **joinrels = root->join_rel_level;
76 ListCell *r;
77 int k;
78
79 Assert(joinrels[level] == NIL);
80
81 /* Set join_cur_level so that new joinrels are added to proper list */
82 root->join_cur_level = level;
83
84 /*
85 * First, consider left-sided and right-sided plans, in which rels of
86 * exactly level-1 member relations are joined against initial relations.
87 * We prefer to join using join clauses, but if we find a rel of level-1
88 * members that has no join clauses, we will generate Cartesian-product
89 * joins against all initial rels not already contained in it.
90 */
91 foreach(r, joinrels[level - 1])
92 {
93 RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
94
95 if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
96 has_join_restriction(root, old_rel))
97 {
98 int first_rel;
99
100 /*
101 * There are join clauses or join order restrictions relevant to
102 * this rel, so consider joins between this rel and (only) those
103 * initial rels it is linked to by a clause or restriction.
104 *
105 * At level 2 this condition is symmetric, so there is no need to
106 * look at initial rels before this one in the list; we already
107 * considered such joins when we were at the earlier rel. (The
108 * mirror-image joins are handled automatically by make_join_rel.)
109 * In later passes (level > 2), we join rels of the previous level
110 * to each initial rel they don't already include but have a join
111 * clause or restriction with.
112 */
113 if (level == 2) /* consider remaining initial rels */
114 first_rel = foreach_current_index(r) + 1;
115 else
116 first_rel = 0;
117
118 make_rels_by_clause_joins(root, old_rel, joinrels[1], first_rel);
119 }
120 else
121 {
122 /*
123 * Oops, we have a relation that is not joined to any other
124 * relation, either directly or by join-order restrictions.
125 * Cartesian product time.
126 *
127 * We consider a cartesian product with each not-already-included
128 * initial rel, whether it has other join clauses or not. At
129 * level 2, if there are two or more clauseless initial rels, we
130 * will redundantly consider joining them in both directions; but
131 * such cases aren't common enough to justify adding complexity to
132 * avoid the duplicated effort.
133 */
135 old_rel,
136 joinrels[1]);
137 }
138 }
139
140 /*
141 * Now, consider "bushy plans" in which relations of k initial rels are
142 * joined to relations of level-k initial rels, for 2 <= k <= level-2.
143 *
144 * We only consider bushy-plan joins for pairs of rels where there is a
145 * suitable join clause (or join order restriction), in order to avoid
146 * unreasonable growth of planning time.
147 */
148 for (k = 2;; k++)
149 {
150 int other_level = level - k;
151
152 /*
153 * Since make_join_rel(x, y) handles both x,y and y,x cases, we only
154 * need to go as far as the halfway point.
155 */
156 if (k > other_level)
157 break;
158
159 foreach(r, joinrels[k])
160 {
161 RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
162 int first_rel;
163 ListCell *r2;
164
165 /*
166 * We can ignore relations without join clauses here, unless they
167 * participate in join-order restrictions --- then we might have
168 * to force a bushy join plan.
169 */
170 if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
171 !has_join_restriction(root, old_rel))
172 continue;
173
174 if (k == other_level) /* only consider remaining rels */
175 first_rel = foreach_current_index(r) + 1;
176 else
177 first_rel = 0;
178
179 for_each_from(r2, joinrels[other_level], first_rel)
180 {
181 RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
182
183 if (!bms_overlap(old_rel->relids, new_rel->relids))
184 {
185 /*
186 * OK, we can build a rel of the right level from this
187 * pair of rels. Do so if there is at least one relevant
188 * join clause or join order restriction.
189 */
190 if (have_relevant_joinclause(root, old_rel, new_rel) ||
191 have_join_order_restriction(root, old_rel, new_rel))
192 {
193 (void) make_join_rel(root, old_rel, new_rel);
194 }
195 }
196 }
197 }
198 }
199
200 /*----------
201 * Last-ditch effort: if we failed to find any usable joins so far, force
202 * a set of cartesian-product joins to be generated. This handles the
203 * special case where all the available rels have join clauses but we
204 * cannot use any of those clauses yet. This can only happen when we are
205 * considering a join sub-problem (a sub-joinlist) and all the rels in the
206 * sub-problem have only join clauses with rels outside the sub-problem.
207 * An example is
208 *
209 * SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
210 * WHERE a.w = c.x and b.y = d.z;
211 *
212 * If the "a INNER JOIN b" sub-problem does not get flattened into the
213 * upper level, we must be willing to make a cartesian join of a and b;
214 * but the code above will not have done so, because it thought that both
215 * a and b have joinclauses. We consider only left-sided and right-sided
216 * cartesian joins in this case (no bushy).
217 *----------
218 */
219 if (joinrels[level] == NIL)
220 {
221 /*
222 * This loop is just like the first one, except we always call
223 * make_rels_by_clauseless_joins().
224 */
225 foreach(r, joinrels[level - 1])
226 {
227 RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
228
230 old_rel,
231 joinrels[1]);
232 }
233
234 /*----------
235 * When special joins are involved, there may be no legal way
236 * to make an N-way join for some values of N. For example consider
237 *
238 * SELECT ... FROM t1 WHERE
239 * x IN (SELECT ... FROM t2,t3 WHERE ...) AND
240 * y IN (SELECT ... FROM t4,t5 WHERE ...)
241 *
242 * We will flatten this query to a 5-way join problem, but there are
243 * no 4-way joins that join_is_legal() will consider legal. We have
244 * to accept failure at level 4 and go on to discover a workable
245 * bushy plan at level 5.
246 *
247 * However, if there are no special joins and no lateral references
248 * then join_is_legal() should never fail, and so the following sanity
249 * check is useful.
250 *----------
251 */
252 if (joinrels[level] == NIL &&
253 root->join_info_list == NIL &&
254 !root->hasLateralRTEs)
255 elog(ERROR, "failed to build any %d-way joins", level);
256 }
257}
258
259/*
260 * make_rels_by_clause_joins
261 * Build joins between the given relation 'old_rel' and other relations
262 * that participate in join clauses that 'old_rel' also participates in
263 * (or participate in join-order restrictions with it).
264 * The join rels are returned in root->join_rel_level[join_cur_level].
265 *
266 * Note: at levels above 2 we will generate the same joined relation in
267 * multiple ways --- for example (a join b) join c is the same RelOptInfo as
268 * (b join c) join a, though the second case will add a different set of Paths
269 * to it. This is the reason for using the join_rel_level mechanism, which
270 * automatically ensures that each new joinrel is only added to the list once.
271 *
272 * 'old_rel' is the relation entry for the relation to be joined
273 * 'other_rels': a list containing the other rels to be considered for joining
274 * 'first_rel_idx': the first rel to be considered in 'other_rels'
275 *
276 * Currently, this is only used with initial rels in other_rels, but it
277 * will work for joining to joinrels too.
278 */
279static void
281 RelOptInfo *old_rel,
282 List *other_rels,
283 int first_rel_idx)
284{
285 ListCell *l;
286
287 for_each_from(l, other_rels, first_rel_idx)
288 {
289 RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
290
291 if (!bms_overlap(old_rel->relids, other_rel->relids) &&
292 (have_relevant_joinclause(root, old_rel, other_rel) ||
293 have_join_order_restriction(root, old_rel, other_rel)))
294 {
295 (void) make_join_rel(root, old_rel, other_rel);
296 }
297 }
298}
299
300/*
301 * make_rels_by_clauseless_joins
302 * Given a relation 'old_rel' and a list of other relations
303 * 'other_rels', create a join relation between 'old_rel' and each
304 * member of 'other_rels' that isn't already included in 'old_rel'.
305 * The join rels are returned in root->join_rel_level[join_cur_level].
306 *
307 * 'old_rel' is the relation entry for the relation to be joined
308 * 'other_rels': a list containing the other rels to be considered for joining
309 *
310 * Currently, this is only used with initial rels in other_rels, but it would
311 * work for joining to joinrels too.
312 */
313static void
315 RelOptInfo *old_rel,
316 List *other_rels)
317{
318 ListCell *l;
319
320 foreach(l, other_rels)
321 {
322 RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
323
324 if (!bms_overlap(other_rel->relids, old_rel->relids))
325 {
326 (void) make_join_rel(root, old_rel, other_rel);
327 }
328 }
329}
330
331
332/*
333 * join_is_legal
334 * Determine whether a proposed join is legal given the query's
335 * join order constraints; and if it is, determine the join type.
336 *
337 * Caller must supply not only the two rels, but the union of their relids.
338 * (We could simplify the API by computing joinrelids locally, but this
339 * would be redundant work in the normal path through make_join_rel.
340 * Note that this value does NOT include the RT index of any outer join that
341 * might need to be performed here, so it's not the canonical identifier
342 * of the join relation.)
343 *
344 * On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
345 * else it's set to point to the associated SpecialJoinInfo node. Also,
346 * *reversed_p is set true if the given relations need to be swapped to
347 * match the SpecialJoinInfo node.
348 */
349static bool
351 Relids joinrelids,
352 SpecialJoinInfo **sjinfo_p, bool *reversed_p)
353{
354 SpecialJoinInfo *match_sjinfo;
355 bool reversed;
356 bool unique_ified;
357 bool must_be_leftjoin;
358 ListCell *l;
359
360 /*
361 * Ensure output params are set on failure return. This is just to
362 * suppress uninitialized-variable warnings from overly anal compilers.
363 */
364 *sjinfo_p = NULL;
365 *reversed_p = false;
366
367 /*
368 * If we have any special joins, the proposed join might be illegal; and
369 * in any case we have to determine its join type. Scan the join info
370 * list for matches and conflicts.
371 */
372 match_sjinfo = NULL;
373 reversed = false;
374 unique_ified = false;
375 must_be_leftjoin = false;
376
377 foreach(l, root->join_info_list)
378 {
379 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
380
381 /*
382 * This special join is not relevant unless its RHS overlaps the
383 * proposed join. (Check this first as a fast path for dismissing
384 * most irrelevant SJs quickly.)
385 */
386 if (!bms_overlap(sjinfo->min_righthand, joinrelids))
387 continue;
388
389 /*
390 * Also, not relevant if proposed join is fully contained within RHS
391 * (ie, we're still building up the RHS).
392 */
393 if (bms_is_subset(joinrelids, sjinfo->min_righthand))
394 continue;
395
396 /*
397 * Also, not relevant if SJ is already done within either input.
398 */
399 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
400 bms_is_subset(sjinfo->min_righthand, rel1->relids))
401 continue;
402 if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
403 bms_is_subset(sjinfo->min_righthand, rel2->relids))
404 continue;
405
406 /*
407 * If it's a semijoin and we already joined the RHS to any other rels
408 * within either input, then we must have unique-ified the RHS at that
409 * point (see below). Therefore the semijoin is no longer relevant in
410 * this join path.
411 */
412 if (sjinfo->jointype == JOIN_SEMI)
413 {
414 if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
415 !bms_equal(sjinfo->syn_righthand, rel1->relids))
416 continue;
417 if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
418 !bms_equal(sjinfo->syn_righthand, rel2->relids))
419 continue;
420 }
421
422 /*
423 * If one input contains min_lefthand and the other contains
424 * min_righthand, then we can perform the SJ at this join.
425 *
426 * Reject if we get matches to more than one SJ; that implies we're
427 * considering something that's not really valid.
428 */
429 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
430 bms_is_subset(sjinfo->min_righthand, rel2->relids))
431 {
432 if (match_sjinfo)
433 return false; /* invalid join path */
434 match_sjinfo = sjinfo;
435 reversed = false;
436 }
437 else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
438 bms_is_subset(sjinfo->min_righthand, rel1->relids))
439 {
440 if (match_sjinfo)
441 return false; /* invalid join path */
442 match_sjinfo = sjinfo;
443 reversed = true;
444 }
445 else if (sjinfo->jointype == JOIN_SEMI &&
446 bms_equal(sjinfo->syn_righthand, rel2->relids) &&
448 sjinfo) != NULL)
449 {
450 /*----------
451 * For a semijoin, we can join the RHS to anything else by
452 * unique-ifying the RHS (if the RHS can be unique-ified).
453 * We will only get here if we have the full RHS but less
454 * than min_lefthand on the LHS.
455 *
456 * The reason to consider such a join path is exemplified by
457 * SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
458 * If we insist on doing this as a semijoin we will first have
459 * to form the cartesian product of A*B. But if we unique-ify
460 * C then the semijoin becomes a plain innerjoin and we can join
461 * in any order, eg C to A and then to B. When C is much smaller
462 * than A and B this can be a huge win. So we allow C to be
463 * joined to just A or just B here, and then make_join_rel has
464 * to handle the case properly.
465 *
466 * Note that actually we'll allow unique-ified C to be joined to
467 * some other relation D here, too. That is legal, if usually not
468 * very sane, and this routine is only concerned with legality not
469 * with whether the join is good strategy.
470 *----------
471 */
472 if (match_sjinfo)
473 return false; /* invalid join path */
474 match_sjinfo = sjinfo;
475 reversed = false;
476 unique_ified = true;
477 }
478 else if (sjinfo->jointype == JOIN_SEMI &&
479 bms_equal(sjinfo->syn_righthand, rel1->relids) &&
481 sjinfo) != NULL)
482 {
483 /* Reversed semijoin case */
484 if (match_sjinfo)
485 return false; /* invalid join path */
486 match_sjinfo = sjinfo;
487 reversed = true;
488 unique_ified = true;
489 }
490 else
491 {
492 /*
493 * Otherwise, the proposed join overlaps the RHS but isn't a valid
494 * implementation of this SJ. But don't panic quite yet: the RHS
495 * violation might have occurred previously, in one or both input
496 * relations, in which case we must have previously decided that
497 * it was OK to commute some other SJ with this one. If we need
498 * to perform this join to finish building up the RHS, rejecting
499 * it could lead to not finding any plan at all. (This can occur
500 * because of the heuristics elsewhere in this file that postpone
501 * clauseless joins: we might not consider doing a clauseless join
502 * within the RHS until after we've performed other, validly
503 * commutable SJs with one or both sides of the clauseless join.)
504 * This consideration boils down to the rule that if both inputs
505 * overlap the RHS, we can allow the join --- they are either
506 * fully within the RHS, or represent previously-allowed joins to
507 * rels outside it.
508 */
509 if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
510 bms_overlap(rel2->relids, sjinfo->min_righthand))
511 continue; /* assume valid previous violation of RHS */
512
513 /*
514 * The proposed join could still be legal, but only if we're
515 * allowed to associate it into the RHS of this SJ. That means
516 * this SJ must be a LEFT join (not SEMI or ANTI, and certainly
517 * not FULL) and the proposed join must not overlap the LHS.
518 */
519 if (sjinfo->jointype != JOIN_LEFT ||
520 bms_overlap(joinrelids, sjinfo->min_lefthand))
521 return false; /* invalid join path */
522
523 /*
524 * To be valid, the proposed join must be a LEFT join; otherwise
525 * it can't associate into this SJ's RHS. But we may not yet have
526 * found the SpecialJoinInfo matching the proposed join, so we
527 * can't test that yet. Remember the requirement for later.
528 */
529 must_be_leftjoin = true;
530 }
531 }
532
533 /*
534 * Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
535 * proposed join can't associate into an SJ's RHS.
536 *
537 * Also, fail if the proposed join's predicate isn't strict; we're
538 * essentially checking to see if we can apply outer-join identity 3, and
539 * that's a requirement. (This check may be redundant with checks in
540 * make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
541 */
542 if (must_be_leftjoin &&
543 (match_sjinfo == NULL ||
544 match_sjinfo->jointype != JOIN_LEFT ||
545 !match_sjinfo->lhs_strict))
546 return false; /* invalid join path */
547
548 /*
549 * We also have to check for constraints imposed by LATERAL references.
550 */
551 if (root->hasLateralRTEs)
552 {
553 bool lateral_fwd;
554 bool lateral_rev;
555 Relids join_lateral_rels;
556
557 /*
558 * The proposed rels could each contain lateral references to the
559 * other, in which case the join is impossible. If there are lateral
560 * references in just one direction, then the join has to be done with
561 * a nestloop with the lateral referencer on the inside. If the join
562 * matches an SJ that cannot be implemented by such a nestloop, the
563 * join is impossible.
564 *
565 * Also, if the lateral reference is only indirect, we should reject
566 * the join; whatever rel(s) the reference chain goes through must be
567 * joined to first.
568 *
569 * Another case that might keep us from building a valid plan is the
570 * implementation restriction described by have_dangerous_phv().
571 */
572 lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
573 lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
574 if (lateral_fwd && lateral_rev)
575 return false; /* have lateral refs in both directions */
576 if (lateral_fwd)
577 {
578 /* has to be implemented as nestloop with rel1 on left */
579 if (match_sjinfo &&
580 (reversed ||
581 unique_ified ||
582 match_sjinfo->jointype == JOIN_FULL))
583 return false; /* not implementable as nestloop */
584 /* check there is a direct reference from rel2 to rel1 */
585 if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
586 return false; /* only indirect refs, so reject */
587 /* check we won't have a dangerous PHV */
588 if (have_dangerous_phv(root, rel1->relids, rel2->lateral_relids))
589 return false; /* might be unable to handle required PHV */
590 }
591 else if (lateral_rev)
592 {
593 /* has to be implemented as nestloop with rel2 on left */
594 if (match_sjinfo &&
595 (!reversed ||
596 unique_ified ||
597 match_sjinfo->jointype == JOIN_FULL))
598 return false; /* not implementable as nestloop */
599 /* check there is a direct reference from rel1 to rel2 */
600 if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
601 return false; /* only indirect refs, so reject */
602 /* check we won't have a dangerous PHV */
603 if (have_dangerous_phv(root, rel2->relids, rel1->lateral_relids))
604 return false; /* might be unable to handle required PHV */
605 }
606
607 /*
608 * LATERAL references could also cause problems later on if we accept
609 * this join: if the join's minimum parameterization includes any rels
610 * that would have to be on the inside of an outer join with this join
611 * rel, then it's never going to be possible to build the complete
612 * query using this join. We should reject this join not only because
613 * it'll save work, but because if we don't, the clauseless-join
614 * heuristics might think that legality of this join means that some
615 * other join rel need not be formed, and that could lead to failure
616 * to find any plan at all. We have to consider not only rels that
617 * are directly on the inner side of an OJ with the joinrel, but also
618 * ones that are indirectly so, so search to find all such rels.
619 */
620 join_lateral_rels = min_join_parameterization(root, joinrelids,
621 rel1, rel2);
622 if (join_lateral_rels)
623 {
624 Relids join_plus_rhs = bms_copy(joinrelids);
625 bool more;
626
627 do
628 {
629 more = false;
630 foreach(l, root->join_info_list)
631 {
632 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
633
634 /* ignore full joins --- their ordering is predetermined */
635 if (sjinfo->jointype == JOIN_FULL)
636 continue;
637
638 if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
639 !bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
640 {
641 join_plus_rhs = bms_add_members(join_plus_rhs,
642 sjinfo->min_righthand);
643 more = true;
644 }
645 }
646 } while (more);
647 if (bms_overlap(join_plus_rhs, join_lateral_rels))
648 return false; /* will not be able to join to some RHS rel */
649 }
650 }
651
652 /* Otherwise, it's a valid join */
653 *sjinfo_p = match_sjinfo;
654 *reversed_p = reversed;
655 return true;
656}
657
658/*
659 * init_dummy_sjinfo
660 * Populate the given SpecialJoinInfo for a plain inner join between the
661 * left and right relations specified by left_relids and right_relids
662 * respectively.
663 *
664 * Normally, an inner join does not have a SpecialJoinInfo node associated with
665 * it. But some functions involved in join planning require one containing at
666 * least the information of which relations are being joined. So we initialize
667 * that information here.
668 */
669void
671 Relids right_relids)
672{
673 sjinfo->type = T_SpecialJoinInfo;
674 sjinfo->min_lefthand = left_relids;
675 sjinfo->min_righthand = right_relids;
676 sjinfo->syn_lefthand = left_relids;
677 sjinfo->syn_righthand = right_relids;
678 sjinfo->jointype = JOIN_INNER;
679 sjinfo->ojrelid = 0;
680 sjinfo->commute_above_l = NULL;
681 sjinfo->commute_above_r = NULL;
682 sjinfo->commute_below_l = NULL;
683 sjinfo->commute_below_r = NULL;
684 /* we don't bother trying to make the remaining fields valid */
685 sjinfo->lhs_strict = false;
686 sjinfo->semi_can_btree = false;
687 sjinfo->semi_can_hash = false;
688 sjinfo->semi_operators = NIL;
689 sjinfo->semi_rhs_exprs = NIL;
690}
691
692/*
693 * make_join_rel
694 * Find or create a join RelOptInfo that represents the join of
695 * the two given rels, and add to it path information for paths
696 * created with the two rels as outer and inner rel.
697 * (The join rel may already contain paths generated from other
698 * pairs of rels that add up to the same set of base rels.)
699 *
700 * NB: will return NULL if attempted join is not valid. This can happen
701 * when working with outer joins, or with IN or EXISTS clauses that have been
702 * turned into joins.
703 */
706{
707 Relids joinrelids;
708 SpecialJoinInfo *sjinfo;
709 bool reversed;
710 List *pushed_down_joins = NIL;
711 SpecialJoinInfo sjinfo_data;
712 RelOptInfo *joinrel;
713 List *restrictlist;
714
715 /* We should never try to join two overlapping sets of rels. */
716 Assert(!bms_overlap(rel1->relids, rel2->relids));
717
718 /* Construct Relids set that identifies the joinrel (without OJ as yet). */
719 joinrelids = bms_union(rel1->relids, rel2->relids);
720
721 /* Check validity and determine join type. */
722 if (!join_is_legal(root, rel1, rel2, joinrelids,
723 &sjinfo, &reversed))
724 {
725 /* invalid join path */
726 bms_free(joinrelids);
727 return NULL;
728 }
729
730 /*
731 * Add outer join relid(s) to form the canonical relids. Any added outer
732 * joins besides sjinfo itself are appended to pushed_down_joins.
733 */
734 joinrelids = add_outer_joins_to_relids(root, joinrelids, sjinfo,
735 &pushed_down_joins);
736
737 /* Swap rels if needed to match the join info. */
738 if (reversed)
739 {
740 RelOptInfo *trel = rel1;
741
742 rel1 = rel2;
743 rel2 = trel;
744 }
745
746 /*
747 * If it's a plain inner join, then we won't have found anything in
748 * join_info_list. Make up a SpecialJoinInfo so that selectivity
749 * estimation functions will know what's being joined.
750 */
751 if (sjinfo == NULL)
752 {
753 sjinfo = &sjinfo_data;
754 init_dummy_sjinfo(sjinfo, rel1->relids, rel2->relids);
755 }
756
757 /*
758 * Find or build the join RelOptInfo, and compute the restrictlist that
759 * goes with this particular joining.
760 */
761 joinrel = build_join_rel(root, joinrelids, rel1, rel2,
762 sjinfo, pushed_down_joins,
763 &restrictlist);
764
765 /*
766 * If we've already proven this join is empty, we needn't consider any
767 * more paths for it.
768 */
769 if (is_dummy_rel(joinrel))
770 {
771 bms_free(joinrelids);
772 return joinrel;
773 }
774
775 /* Add paths to the join relation. */
776 populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
777 restrictlist);
778
779 bms_free(joinrelids);
780
781 return joinrel;
782}
783
784/*
785 * add_outer_joins_to_relids
786 * Add relids to input_relids to represent any outer joins that will be
787 * calculated at this join.
788 *
789 * input_relids is the union of the relid sets of the two input relations.
790 * Note that we modify this in-place and return it; caller must bms_copy()
791 * it first, if a separate value is desired.
792 *
793 * sjinfo represents the join being performed.
794 *
795 * If the current join completes the calculation of any outer joins that
796 * have been pushed down per outer-join identity 3, those relids will be
797 * added to the result along with sjinfo's own relid. If pushed_down_joins
798 * is not NULL, then also the SpecialJoinInfos for such added outer joins will
799 * be appended to *pushed_down_joins (so caller must initialize it to NIL).
800 */
801Relids
803 SpecialJoinInfo *sjinfo,
804 List **pushed_down_joins)
805{
806 /* Nothing to do if this isn't an outer join with an assigned relid. */
807 if (sjinfo == NULL || sjinfo->ojrelid == 0)
808 return input_relids;
809
810 /*
811 * If it's not a left join, we have no rules that would permit executing
812 * it in non-syntactic order, so just form the syntactic relid set. (This
813 * is just a quick-exit test; we'd come to the same conclusion anyway,
814 * since its commute_below_l and commute_above_l sets must be empty.)
815 */
816 if (sjinfo->jointype != JOIN_LEFT)
817 return bms_add_member(input_relids, sjinfo->ojrelid);
818
819 /*
820 * We cannot add the OJ relid if this join has been pushed into the RHS of
821 * a syntactically-lower left join per OJ identity 3. (If it has, then we
822 * cannot claim that its outputs represent the final state of its RHS.)
823 * There will not be any other OJs that can be added either, so we're
824 * done.
825 */
826 if (!bms_is_subset(sjinfo->commute_below_l, input_relids))
827 return input_relids;
828
829 /* OK to add OJ's own relid */
830 input_relids = bms_add_member(input_relids, sjinfo->ojrelid);
831
832 /*
833 * Contrariwise, if we are now forming the final result of such a commuted
834 * pair of OJs, it's time to add the relid(s) of the pushed-down join(s).
835 * We can skip this if this join was never a candidate to be pushed up.
836 */
837 if (sjinfo->commute_above_l)
838 {
839 Relids commute_above_rels = bms_copy(sjinfo->commute_above_l);
840 ListCell *lc;
841
842 /*
843 * The current join could complete the nulling of more than one
844 * pushed-down join, so we have to examine all the SpecialJoinInfos.
845 * Because join_info_list was built in bottom-up order, it's
846 * sufficient to traverse it once: an ojrelid we add in one loop
847 * iteration would not have affected decisions of earlier iterations.
848 */
849 foreach(lc, root->join_info_list)
850 {
851 SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
852
853 if (othersj == sjinfo ||
854 othersj->ojrelid == 0 || othersj->jointype != JOIN_LEFT)
855 continue; /* definitely not interesting */
856
857 if (!bms_is_member(othersj->ojrelid, commute_above_rels))
858 continue;
859
860 /* Add it if not already present but conditions now satisfied */
861 if (!bms_is_member(othersj->ojrelid, input_relids) &&
862 bms_is_subset(othersj->min_lefthand, input_relids) &&
863 bms_is_subset(othersj->min_righthand, input_relids) &&
864 bms_is_subset(othersj->commute_below_l, input_relids))
865 {
866 input_relids = bms_add_member(input_relids, othersj->ojrelid);
867 /* report such pushed down outer joins, if asked */
868 if (pushed_down_joins != NULL)
869 *pushed_down_joins = lappend(*pushed_down_joins, othersj);
870
871 /*
872 * We must also check any joins that othersj potentially
873 * commutes with. They likewise must appear later in
874 * join_info_list than othersj itself, so we can visit them
875 * later in this loop.
876 */
877 commute_above_rels = bms_add_members(commute_above_rels,
878 othersj->commute_above_l);
879 }
880 }
881 }
882
883 return input_relids;
884}
885
886/*
887 * populate_joinrel_with_paths
888 * Add paths to the given joinrel for given pair of joining relations. The
889 * SpecialJoinInfo provides details about the join and the restrictlist
890 * contains the join clauses and the other clauses applicable for given pair
891 * of the joining relations.
892 */
893static void
895 RelOptInfo *rel2, RelOptInfo *joinrel,
896 SpecialJoinInfo *sjinfo, List *restrictlist)
897{
898 /*
899 * Consider paths using each rel as both outer and inner. Depending on
900 * the join type, a provably empty outer or inner rel might mean the join
901 * is provably empty too; in which case throw away any previously computed
902 * paths and mark the join as dummy. (We do it this way since it's
903 * conceivable that dummy-ness of a multi-element join might only be
904 * noticeable for certain construction paths.)
905 *
906 * Also, a provably constant-false join restriction typically means that
907 * we can skip evaluating one or both sides of the join. We do this by
908 * marking the appropriate rel as dummy. For outer joins, a
909 * constant-false restriction that is pushed down still means the whole
910 * join is dummy, while a non-pushed-down one means that no inner rows
911 * will join so we can treat the inner rel as dummy.
912 *
913 * We need only consider the jointypes that appear in join_info_list, plus
914 * JOIN_INNER.
915 */
916 switch (sjinfo->jointype)
917 {
918 case JOIN_INNER:
919 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
920 restriction_is_constant_false(restrictlist, joinrel, false))
921 {
922 mark_dummy_rel(joinrel);
923 break;
924 }
925 add_paths_to_joinrel(root, joinrel, rel1, rel2,
926 JOIN_INNER, sjinfo,
927 restrictlist);
928 add_paths_to_joinrel(root, joinrel, rel2, rel1,
929 JOIN_INNER, sjinfo,
930 restrictlist);
931 break;
932 case JOIN_LEFT:
933 if (is_dummy_rel(rel1) ||
934 restriction_is_constant_false(restrictlist, joinrel, true))
935 {
936 mark_dummy_rel(joinrel);
937 break;
938 }
939 if (restriction_is_constant_false(restrictlist, joinrel, false) &&
940 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
941 mark_dummy_rel(rel2);
942 add_paths_to_joinrel(root, joinrel, rel1, rel2,
943 JOIN_LEFT, sjinfo,
944 restrictlist);
945 add_paths_to_joinrel(root, joinrel, rel2, rel1,
946 JOIN_RIGHT, sjinfo,
947 restrictlist);
948 break;
949 case JOIN_FULL:
950 if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
951 restriction_is_constant_false(restrictlist, joinrel, true))
952 {
953 mark_dummy_rel(joinrel);
954 break;
955 }
956 add_paths_to_joinrel(root, joinrel, rel1, rel2,
957 JOIN_FULL, sjinfo,
958 restrictlist);
959 add_paths_to_joinrel(root, joinrel, rel2, rel1,
960 JOIN_FULL, sjinfo,
961 restrictlist);
962
963 /*
964 * If there are join quals that aren't mergeable or hashable, we
965 * may not be able to build any valid plan. Complain here so that
966 * we can give a somewhat-useful error message. (Since we have no
967 * flexibility of planning for a full join, there's no chance of
968 * succeeding later with another pair of input rels.)
969 */
970 if (joinrel->pathlist == NIL)
972 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
973 errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
974 break;
975 case JOIN_SEMI:
976
977 /*
978 * We might have a normal semijoin, or a case where we don't have
979 * enough rels to do the semijoin but can unique-ify the RHS and
980 * then do an innerjoin (see comments in join_is_legal). In the
981 * latter case we can't apply JOIN_SEMI joining.
982 */
983 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
984 bms_is_subset(sjinfo->min_righthand, rel2->relids))
985 {
986 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
987 restriction_is_constant_false(restrictlist, joinrel, false))
988 {
989 mark_dummy_rel(joinrel);
990 break;
991 }
992 add_paths_to_joinrel(root, joinrel, rel1, rel2,
993 JOIN_SEMI, sjinfo,
994 restrictlist);
995 add_paths_to_joinrel(root, joinrel, rel2, rel1,
996 JOIN_RIGHT_SEMI, sjinfo,
997 restrictlist);
998 }
999
1000 /*
1001 * If we know how to unique-ify the RHS and one input rel is
1002 * exactly the RHS (not a superset) we can consider unique-ifying
1003 * it and then doing a regular join. (The create_unique_path
1004 * check here is probably redundant with what join_is_legal did,
1005 * but if so the check is cheap because it's cached. So test
1006 * anyway to be sure.)
1007 */
1008 if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
1010 sjinfo) != NULL)
1011 {
1012 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
1013 restriction_is_constant_false(restrictlist, joinrel, false))
1014 {
1015 mark_dummy_rel(joinrel);
1016 break;
1017 }
1018 add_paths_to_joinrel(root, joinrel, rel1, rel2,
1019 JOIN_UNIQUE_INNER, sjinfo,
1020 restrictlist);
1021 add_paths_to_joinrel(root, joinrel, rel2, rel1,
1022 JOIN_UNIQUE_OUTER, sjinfo,
1023 restrictlist);
1024 }
1025 break;
1026 case JOIN_ANTI:
1027 if (is_dummy_rel(rel1) ||
1028 restriction_is_constant_false(restrictlist, joinrel, true))
1029 {
1030 mark_dummy_rel(joinrel);
1031 break;
1032 }
1033 if (restriction_is_constant_false(restrictlist, joinrel, false) &&
1034 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
1035 mark_dummy_rel(rel2);
1036 add_paths_to_joinrel(root, joinrel, rel1, rel2,
1037 JOIN_ANTI, sjinfo,
1038 restrictlist);
1039 add_paths_to_joinrel(root, joinrel, rel2, rel1,
1040 JOIN_RIGHT_ANTI, sjinfo,
1041 restrictlist);
1042 break;
1043 default:
1044 /* other values not expected here */
1045 elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
1046 break;
1047 }
1048
1049 /* Apply partitionwise join technique, if possible. */
1050 try_partitionwise_join(root, rel1, rel2, joinrel, sjinfo, restrictlist);
1051}
1052
1053
1054/*
1055 * have_join_order_restriction
1056 * Detect whether the two relations should be joined to satisfy
1057 * a join-order restriction arising from special or lateral joins.
1058 *
1059 * In practice this is always used with have_relevant_joinclause(), and so
1060 * could be merged with that function, but it seems clearer to separate the
1061 * two concerns. We need this test because there are degenerate cases where
1062 * a clauseless join must be performed to satisfy join-order restrictions.
1063 * Also, if one rel has a lateral reference to the other, or both are needed
1064 * to compute some PHV, we should consider joining them even if the join would
1065 * be clauseless.
1066 *
1067 * Note: this is only a problem if one side of a degenerate outer join
1068 * contains multiple rels, or a clauseless join is required within an
1069 * IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
1070 * join_search_one_level(). We could dispense with this test if we were
1071 * willing to try bushy plans in the "last ditch" case, but that seems much
1072 * less efficient.
1073 */
1074bool
1076 RelOptInfo *rel1, RelOptInfo *rel2)
1077{
1078 bool result = false;
1079 ListCell *l;
1080
1081 /*
1082 * If either side has a direct lateral reference to the other, attempt the
1083 * join regardless of outer-join considerations.
1084 */
1085 if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
1087 return true;
1088
1089 /*
1090 * Likewise, if both rels are needed to compute some PlaceHolderVar,
1091 * attempt the join regardless of outer-join considerations. (This is not
1092 * very desirable, because a PHV with a large eval_at set will cause a lot
1093 * of probably-useless joins to be considered, but failing to do this can
1094 * cause us to fail to construct a plan at all.)
1095 */
1096 foreach(l, root->placeholder_list)
1097 {
1098 PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
1099
1100 if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
1101 bms_is_subset(rel2->relids, phinfo->ph_eval_at))
1102 return true;
1103 }
1104
1105 /*
1106 * It's possible that the rels correspond to the left and right sides of a
1107 * degenerate outer join, that is, one with no joinclause mentioning the
1108 * non-nullable side; in which case we should force the join to occur.
1109 *
1110 * Also, the two rels could represent a clauseless join that has to be
1111 * completed to build up the LHS or RHS of an outer join.
1112 */
1113 foreach(l, root->join_info_list)
1114 {
1115 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
1116
1117 /* ignore full joins --- other mechanisms handle them */
1118 if (sjinfo->jointype == JOIN_FULL)
1119 continue;
1120
1121 /* Can we perform the SJ with these rels? */
1122 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
1123 bms_is_subset(sjinfo->min_righthand, rel2->relids))
1124 {
1125 result = true;
1126 break;
1127 }
1128 if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
1129 bms_is_subset(sjinfo->min_righthand, rel1->relids))
1130 {
1131 result = true;
1132 break;
1133 }
1134
1135 /*
1136 * Might we need to join these rels to complete the RHS? We have to
1137 * use "overlap" tests since either rel might include a lower SJ that
1138 * has been proven to commute with this one.
1139 */
1140 if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
1141 bms_overlap(sjinfo->min_righthand, rel2->relids))
1142 {
1143 result = true;
1144 break;
1145 }
1146
1147 /* Likewise for the LHS. */
1148 if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
1149 bms_overlap(sjinfo->min_lefthand, rel2->relids))
1150 {
1151 result = true;
1152 break;
1153 }
1154 }
1155
1156 /*
1157 * We do not force the join to occur if either input rel can legally be
1158 * joined to anything else using joinclauses. This essentially means that
1159 * clauseless bushy joins are put off as long as possible. The reason is
1160 * that when there is a join order restriction high up in the join tree
1161 * (that is, with many rels inside the LHS or RHS), we would otherwise
1162 * expend lots of effort considering very stupid join combinations within
1163 * its LHS or RHS.
1164 */
1165 if (result)
1166 {
1167 if (has_legal_joinclause(root, rel1) ||
1169 result = false;
1170 }
1171
1172 return result;
1173}
1174
1175
1176/*
1177 * has_join_restriction
1178 * Detect whether the specified relation has join-order restrictions,
1179 * due to being inside an outer join or an IN (sub-SELECT),
1180 * or participating in any LATERAL references or multi-rel PHVs.
1181 *
1182 * Essentially, this tests whether have_join_order_restriction() could
1183 * succeed with this rel and some other one. It's OK if we sometimes
1184 * say "true" incorrectly. (Therefore, we don't bother with the relatively
1185 * expensive has_legal_joinclause test.)
1186 */
1187static bool
1189{
1190 ListCell *l;
1191
1192 if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
1193 return true;
1194
1195 foreach(l, root->placeholder_list)
1196 {
1197 PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
1198
1199 if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
1200 !bms_equal(rel->relids, phinfo->ph_eval_at))
1201 return true;
1202 }
1203
1204 foreach(l, root->join_info_list)
1205 {
1206 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
1207
1208 /* ignore full joins --- other mechanisms preserve their ordering */
1209 if (sjinfo->jointype == JOIN_FULL)
1210 continue;
1211
1212 /* ignore if SJ is already contained in rel */
1213 if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
1214 bms_is_subset(sjinfo->min_righthand, rel->relids))
1215 continue;
1216
1217 /* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
1218 if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
1219 bms_overlap(sjinfo->min_righthand, rel->relids))
1220 return true;
1221 }
1222
1223 return false;
1224}
1225
1226
1227/*
1228 * has_legal_joinclause
1229 * Detect whether the specified relation can legally be joined
1230 * to any other rels using join clauses.
1231 *
1232 * We consider only joins to single other relations in the current
1233 * initial_rels list. This is sufficient to get a "true" result in most real
1234 * queries, and an occasional erroneous "false" will only cost a bit more
1235 * planning time. The reason for this limitation is that considering joins to
1236 * other joins would require proving that the other join rel can legally be
1237 * formed, which seems like too much trouble for something that's only a
1238 * heuristic to save planning time. (Note: we must look at initial_rels
1239 * and not all of the query, since when we are planning a sub-joinlist we
1240 * may be forced to make clauseless joins within initial_rels even though
1241 * there are join clauses linking to other parts of the query.)
1242 */
1243static bool
1245{
1246 ListCell *lc;
1247
1248 foreach(lc, root->initial_rels)
1249 {
1250 RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
1251
1252 /* ignore rels that are already in "rel" */
1253 if (bms_overlap(rel->relids, rel2->relids))
1254 continue;
1255
1256 if (have_relevant_joinclause(root, rel, rel2))
1257 {
1258 Relids joinrelids;
1259 SpecialJoinInfo *sjinfo;
1260 bool reversed;
1261
1262 /* join_is_legal needs relids of the union */
1263 joinrelids = bms_union(rel->relids, rel2->relids);
1264
1265 if (join_is_legal(root, rel, rel2, joinrelids,
1266 &sjinfo, &reversed))
1267 {
1268 /* Yes, this will work */
1269 bms_free(joinrelids);
1270 return true;
1271 }
1272
1273 bms_free(joinrelids);
1274 }
1275 }
1276
1277 return false;
1278}
1279
1280
1281/*
1282 * There's a pitfall for creating parameterized nestloops: suppose the inner
1283 * rel (call it A) has a parameter that is a PlaceHolderVar, and that PHV's
1284 * minimum eval_at set includes the outer rel (B) and some third rel (C).
1285 * We might think we could create a B/A nestloop join that's parameterized by
1286 * C. But we would end up with a plan in which the PHV's expression has to be
1287 * evaluated as a nestloop parameter at the B/A join; and the executor is only
1288 * set up to handle simple Vars as NestLoopParams. Rather than add complexity
1289 * and overhead to the executor for such corner cases, it seems better to
1290 * forbid the join. (Note that we can still make use of A's parameterized
1291 * path with pre-joined B+C as the outer rel. have_join_order_restriction()
1292 * ensures that we will consider making such a join even if there are not
1293 * other reasons to do so.)
1294 *
1295 * So we check whether any PHVs used in the query could pose such a hazard.
1296 * We don't have any simple way of checking whether a risky PHV would actually
1297 * be used in the inner plan, and the case is so unusual that it doesn't seem
1298 * worth working very hard on it.
1299 *
1300 * This needs to be checked in two places. If the inner rel's minimum
1301 * parameterization would trigger the restriction, then join_is_legal() should
1302 * reject the join altogether, because there will be no workable paths for it.
1303 * But joinpath.c has to check again for every proposed nestloop path, because
1304 * the inner path might have more than the minimum parameterization, causing
1305 * some PHV to be dangerous for it that otherwise wouldn't be.
1306 */
1307bool
1309 Relids outer_relids, Relids inner_params)
1310{
1311 ListCell *lc;
1312
1313 foreach(lc, root->placeholder_list)
1314 {
1315 PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
1316
1317 if (!bms_is_subset(phinfo->ph_eval_at, inner_params))
1318 continue; /* ignore, could not be a nestloop param */
1319 if (!bms_overlap(phinfo->ph_eval_at, outer_relids))
1320 continue; /* ignore, not relevant to this join */
1321 if (bms_is_subset(phinfo->ph_eval_at, outer_relids))
1322 continue; /* safe, it can be eval'd within outerrel */
1323 /* Otherwise, it's potentially unsafe, so reject the join */
1324 return true;
1325 }
1326
1327 /* OK to perform the join */
1328 return false;
1329}
1330
1331
1332/*
1333 * is_dummy_rel --- has relation been proven empty?
1334 */
1335bool
1337{
1338 Path *path;
1339
1340 /*
1341 * A rel that is known dummy will have just one path that is a childless
1342 * Append. (Even if somehow it has more paths, a childless Append will
1343 * have cost zero and hence should be at the front of the pathlist.)
1344 */
1345 if (rel->pathlist == NIL)
1346 return false;
1347 path = (Path *) linitial(rel->pathlist);
1348
1349 /*
1350 * Initially, a dummy path will just be a childless Append. But in later
1351 * planning stages we might stick a ProjectSetPath and/or ProjectionPath
1352 * on top, since Append can't project. Rather than make assumptions about
1353 * which combinations can occur, just descend through whatever we find.
1354 */
1355 for (;;)
1356 {
1357 if (IsA(path, ProjectionPath))
1358 path = ((ProjectionPath *) path)->subpath;
1359 else if (IsA(path, ProjectSetPath))
1360 path = ((ProjectSetPath *) path)->subpath;
1361 else
1362 break;
1363 }
1364 if (IS_DUMMY_APPEND(path))
1365 return true;
1366 return false;
1367}
1368
1369/*
1370 * Mark a relation as proven empty.
1371 *
1372 * During GEQO planning, this can get invoked more than once on the same
1373 * baserel struct, so it's worth checking to see if the rel is already marked
1374 * dummy.
1375 *
1376 * Also, when called during GEQO join planning, we are in a short-lived
1377 * memory context. We must make sure that the dummy path attached to a
1378 * baserel survives the GEQO cycle, else the baserel is trashed for future
1379 * GEQO cycles. On the other hand, when we are marking a joinrel during GEQO,
1380 * we don't want the dummy path to clutter the main planning context. Upshot
1381 * is that the best solution is to explicitly make the dummy path in the same
1382 * context the given RelOptInfo is in.
1383 */
1384void
1386{
1387 MemoryContext oldcontext;
1388
1389 /* Already marked? */
1390 if (is_dummy_rel(rel))
1391 return;
1392
1393 /* No, so choose correct context to make the dummy path in */
1395
1396 /* Set dummy size estimate */
1397 rel->rows = 0;
1398
1399 /* Evict any previously chosen paths */
1400 rel->pathlist = NIL;
1401 rel->partial_pathlist = NIL;
1402
1403 /* Set up the dummy path */
1404 add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
1405 NIL, rel->lateral_relids,
1406 0, false, -1));
1407
1408 /* Set or update cheapest_total_path and related fields */
1409 set_cheapest(rel);
1410
1411 MemoryContextSwitchTo(oldcontext);
1412}
1413
1414
1415/*
1416 * restriction_is_constant_false --- is a restrictlist just FALSE?
1417 *
1418 * In cases where a qual is provably constant FALSE, eval_const_expressions
1419 * will generally have thrown away anything that's ANDed with it. In outer
1420 * join situations this will leave us computing cartesian products only to
1421 * decide there's no match for an outer row, which is pretty stupid. So,
1422 * we need to detect the case.
1423 *
1424 * If only_pushed_down is true, then consider only quals that are pushed-down
1425 * from the point of view of the joinrel.
1426 */
1427static bool
1429 RelOptInfo *joinrel,
1430 bool only_pushed_down)
1431{
1432 ListCell *lc;
1433
1434 /*
1435 * Despite the above comment, the restriction list we see here might
1436 * possibly have other members besides the FALSE constant, since other
1437 * quals could get "pushed down" to the outer join level. So we check
1438 * each member of the list.
1439 */
1440 foreach(lc, restrictlist)
1441 {
1443
1444 if (only_pushed_down && !RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
1445 continue;
1446
1447 if (rinfo->clause && IsA(rinfo->clause, Const))
1448 {
1449 Const *con = (Const *) rinfo->clause;
1450
1451 /* constant NULL is as good as constant FALSE for our purposes */
1452 if (con->constisnull)
1453 return true;
1454 if (!DatumGetBool(con->constvalue))
1455 return true;
1456 }
1457 }
1458 return false;
1459}
1460
1461/*
1462 * Assess whether join between given two partitioned relations can be broken
1463 * down into joins between matching partitions; a technique called
1464 * "partitionwise join"
1465 *
1466 * Partitionwise join is possible when a. Joining relations have same
1467 * partitioning scheme b. There exists an equi-join between the partition keys
1468 * of the two relations.
1469 *
1470 * Partitionwise join is planned as follows (details: optimizer/README.)
1471 *
1472 * 1. Create the RelOptInfos for joins between matching partitions i.e
1473 * child-joins and add paths to them.
1474 *
1475 * 2. Construct Append or MergeAppend paths across the set of child joins.
1476 * This second phase is implemented by generate_partitionwise_join_paths().
1477 *
1478 * The RelOptInfo, SpecialJoinInfo and restrictlist for each child join are
1479 * obtained by translating the respective parent join structures.
1480 */
1481static void
1483 RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo,
1484 List *parent_restrictlist)
1485{
1486 bool rel1_is_simple = IS_SIMPLE_REL(rel1);
1487 bool rel2_is_simple = IS_SIMPLE_REL(rel2);
1488 List *parts1 = NIL;
1489 List *parts2 = NIL;
1490 ListCell *lcr1 = NULL;
1491 ListCell *lcr2 = NULL;
1492 int cnt_parts;
1493
1494 /* Guard against stack overflow due to overly deep partition hierarchy. */
1496
1497 /* Nothing to do, if the join relation is not partitioned. */
1498 if (joinrel->part_scheme == NULL || joinrel->nparts == 0)
1499 return;
1500
1501 /* The join relation should have consider_partitionwise_join set. */
1503
1504 /*
1505 * We can not perform partitionwise join if either of the joining
1506 * relations is not partitioned.
1507 */
1508 if (!IS_PARTITIONED_REL(rel1) || !IS_PARTITIONED_REL(rel2))
1509 return;
1510
1512
1513 /* The joining relations should have consider_partitionwise_join set. */
1516
1517 /*
1518 * The partition scheme of the join relation should match that of the
1519 * joining relations.
1520 */
1521 Assert(joinrel->part_scheme == rel1->part_scheme &&
1522 joinrel->part_scheme == rel2->part_scheme);
1523
1524 Assert(!(joinrel->partbounds_merged && (joinrel->nparts <= 0)));
1525
1526 compute_partition_bounds(root, rel1, rel2, joinrel, parent_sjinfo,
1527 &parts1, &parts2);
1528
1529 if (joinrel->partbounds_merged)
1530 {
1531 lcr1 = list_head(parts1);
1532 lcr2 = list_head(parts2);
1533 }
1534
1535 /*
1536 * Create child-join relations for this partitioned join, if those don't
1537 * exist. Add paths to child-joins for a pair of child relations
1538 * corresponding to the given pair of parent relations.
1539 */
1540 for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
1541 {
1542 RelOptInfo *child_rel1;
1543 RelOptInfo *child_rel2;
1544 bool rel1_empty;
1545 bool rel2_empty;
1546 SpecialJoinInfo *child_sjinfo;
1547 List *child_restrictlist;
1548 RelOptInfo *child_joinrel;
1549 AppendRelInfo **appinfos;
1550 int nappinfos;
1551 Relids child_relids;
1552
1553 if (joinrel->partbounds_merged)
1554 {
1555 child_rel1 = lfirst_node(RelOptInfo, lcr1);
1556 child_rel2 = lfirst_node(RelOptInfo, lcr2);
1557 lcr1 = lnext(parts1, lcr1);
1558 lcr2 = lnext(parts2, lcr2);
1559 }
1560 else
1561 {
1562 child_rel1 = rel1->part_rels[cnt_parts];
1563 child_rel2 = rel2->part_rels[cnt_parts];
1564 }
1565
1566 rel1_empty = (child_rel1 == NULL || IS_DUMMY_REL(child_rel1));
1567 rel2_empty = (child_rel2 == NULL || IS_DUMMY_REL(child_rel2));
1568
1569 /*
1570 * Check for cases where we can prove that this segment of the join
1571 * returns no rows, due to one or both inputs being empty (including
1572 * inputs that have been pruned away entirely). If so just ignore it.
1573 * These rules are equivalent to populate_joinrel_with_paths's rules
1574 * for dummy input relations.
1575 */
1576 switch (parent_sjinfo->jointype)
1577 {
1578 case JOIN_INNER:
1579 case JOIN_SEMI:
1580 if (rel1_empty || rel2_empty)
1581 continue; /* ignore this join segment */
1582 break;
1583 case JOIN_LEFT:
1584 case JOIN_ANTI:
1585 if (rel1_empty)
1586 continue; /* ignore this join segment */
1587 break;
1588 case JOIN_FULL:
1589 if (rel1_empty && rel2_empty)
1590 continue; /* ignore this join segment */
1591 break;
1592 default:
1593 /* other values not expected here */
1594 elog(ERROR, "unrecognized join type: %d",
1595 (int) parent_sjinfo->jointype);
1596 break;
1597 }
1598
1599 /*
1600 * If a child has been pruned entirely then we can't generate paths
1601 * for it, so we have to reject partitionwise joining unless we were
1602 * able to eliminate this partition above.
1603 */
1604 if (child_rel1 == NULL || child_rel2 == NULL)
1605 {
1606 /*
1607 * Mark the joinrel as unpartitioned so that later functions treat
1608 * it correctly.
1609 */
1610 joinrel->nparts = 0;
1611 return;
1612 }
1613
1614 /*
1615 * If a leaf relation has consider_partitionwise_join=false, it means
1616 * that it's a dummy relation for which we skipped setting up tlist
1617 * expressions and adding EC members in set_append_rel_size(), so
1618 * again we have to fail here.
1619 */
1620 if (rel1_is_simple && !child_rel1->consider_partitionwise_join)
1621 {
1623 Assert(IS_DUMMY_REL(child_rel1));
1624 joinrel->nparts = 0;
1625 return;
1626 }
1627 if (rel2_is_simple && !child_rel2->consider_partitionwise_join)
1628 {
1630 Assert(IS_DUMMY_REL(child_rel2));
1631 joinrel->nparts = 0;
1632 return;
1633 }
1634
1635 /* We should never try to join two overlapping sets of rels. */
1636 Assert(!bms_overlap(child_rel1->relids, child_rel2->relids));
1637
1638 /*
1639 * Construct SpecialJoinInfo from parent join relations's
1640 * SpecialJoinInfo.
1641 */
1642 child_sjinfo = build_child_join_sjinfo(root, parent_sjinfo,
1643 child_rel1->relids,
1644 child_rel2->relids);
1645
1646 /* Find the AppendRelInfo structures */
1647 child_relids = bms_union(child_rel1->relids, child_rel2->relids);
1648 appinfos = find_appinfos_by_relids(root, child_relids,
1649 &nappinfos);
1650
1651 /*
1652 * Construct restrictions applicable to the child join from those
1653 * applicable to the parent join.
1654 */
1655 child_restrictlist =
1657 (Node *) parent_restrictlist,
1658 nappinfos, appinfos);
1659
1660 /* Find or construct the child join's RelOptInfo */
1661 child_joinrel = joinrel->part_rels[cnt_parts];
1662 if (!child_joinrel)
1663 {
1664 child_joinrel = build_child_join_rel(root, child_rel1, child_rel2,
1665 joinrel, child_restrictlist,
1666 child_sjinfo, nappinfos, appinfos);
1667 joinrel->part_rels[cnt_parts] = child_joinrel;
1668 joinrel->live_parts = bms_add_member(joinrel->live_parts, cnt_parts);
1669 joinrel->all_partrels = bms_add_members(joinrel->all_partrels,
1670 child_joinrel->relids);
1671 }
1672
1673 /* Assert we got the right one */
1674 Assert(bms_equal(child_joinrel->relids,
1675 adjust_child_relids(joinrel->relids,
1676 nappinfos, appinfos)));
1677
1678 /* And make paths for the child join */
1679 populate_joinrel_with_paths(root, child_rel1, child_rel2,
1680 child_joinrel, child_sjinfo,
1681 child_restrictlist);
1682
1683 /*
1684 * When there are thousands of partitions involved, this loop will
1685 * accumulate a significant amount of memory usage from objects that
1686 * are only needed within the loop. Free these local objects eagerly
1687 * at the end of each iteration.
1688 */
1689 pfree(appinfos);
1690 bms_free(child_relids);
1691 free_child_join_sjinfo(child_sjinfo, parent_sjinfo);
1692 }
1693}
1694
1695/*
1696 * Construct the SpecialJoinInfo for a child-join by translating
1697 * SpecialJoinInfo for the join between parents. left_relids and right_relids
1698 * are the relids of left and right side of the join respectively.
1699 *
1700 * If translations are added to or removed from this function, consider
1701 * updating free_child_join_sjinfo() accordingly.
1702 */
1703static SpecialJoinInfo *
1705 Relids left_relids, Relids right_relids)
1706{
1708 AppendRelInfo **left_appinfos;
1709 int left_nappinfos;
1710 AppendRelInfo **right_appinfos;
1711 int right_nappinfos;
1712
1713 /* Dummy SpecialJoinInfos can be created without any translation. */
1714 if (parent_sjinfo->jointype == JOIN_INNER)
1715 {
1716 Assert(parent_sjinfo->ojrelid == 0);
1717 init_dummy_sjinfo(sjinfo, left_relids, right_relids);
1718 return sjinfo;
1719 }
1720
1721 memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
1722 left_appinfos = find_appinfos_by_relids(root, left_relids,
1723 &left_nappinfos);
1724 right_appinfos = find_appinfos_by_relids(root, right_relids,
1725 &right_nappinfos);
1726
1728 left_nappinfos, left_appinfos);
1730 right_nappinfos,
1731 right_appinfos);
1733 left_nappinfos, left_appinfos);
1735 right_nappinfos,
1736 right_appinfos);
1737 /* outer-join relids need no adjustment */
1739 (Node *) sjinfo->semi_rhs_exprs,
1740 right_nappinfos,
1741 right_appinfos);
1742
1743 pfree(left_appinfos);
1744 pfree(right_appinfos);
1745
1746 return sjinfo;
1747}
1748
1749/*
1750 * free_child_join_sjinfo
1751 * Free memory consumed by a SpecialJoinInfo created by
1752 * build_child_join_sjinfo()
1753 *
1754 * Only members that are translated copies of their counterpart in the parent
1755 * SpecialJoinInfo are freed here.
1756 */
1757static void
1759 SpecialJoinInfo *parent_sjinfo)
1760{
1761 /*
1762 * Dummy SpecialJoinInfos of inner joins do not have any translated fields
1763 * and hence no fields that to be freed.
1764 */
1765 if (child_sjinfo->jointype != JOIN_INNER)
1766 {
1767 if (child_sjinfo->min_lefthand != parent_sjinfo->min_lefthand)
1768 bms_free(child_sjinfo->min_lefthand);
1769
1770 if (child_sjinfo->min_righthand != parent_sjinfo->min_righthand)
1771 bms_free(child_sjinfo->min_righthand);
1772
1773 if (child_sjinfo->syn_lefthand != parent_sjinfo->syn_lefthand)
1774 bms_free(child_sjinfo->syn_lefthand);
1775
1776 if (child_sjinfo->syn_righthand != parent_sjinfo->syn_righthand)
1777 bms_free(child_sjinfo->syn_righthand);
1778
1779 Assert(child_sjinfo->commute_above_l == parent_sjinfo->commute_above_l);
1780 Assert(child_sjinfo->commute_above_r == parent_sjinfo->commute_above_r);
1781 Assert(child_sjinfo->commute_below_l == parent_sjinfo->commute_below_l);
1782 Assert(child_sjinfo->commute_below_r == parent_sjinfo->commute_below_r);
1783
1784 Assert(child_sjinfo->semi_operators == parent_sjinfo->semi_operators);
1785
1786 /*
1787 * semi_rhs_exprs may in principle be freed, but a simple pfree() does
1788 * not suffice, so we leave it alone.
1789 */
1790 }
1791
1792 pfree(child_sjinfo);
1793}
1794
1795/*
1796 * compute_partition_bounds
1797 * Compute the partition bounds for a join rel from those for inputs
1798 */
1799static void
1801 RelOptInfo *rel2, RelOptInfo *joinrel,
1802 SpecialJoinInfo *parent_sjinfo,
1803 List **parts1, List **parts2)
1804{
1805 /*
1806 * If we don't have the partition bounds for the join rel yet, try to
1807 * compute those along with pairs of partitions to be joined.
1808 */
1809 if (joinrel->nparts == -1)
1810 {
1811 PartitionScheme part_scheme = joinrel->part_scheme;
1812 PartitionBoundInfo boundinfo = NULL;
1813 int nparts = 0;
1814
1815 Assert(joinrel->boundinfo == NULL);
1816 Assert(joinrel->part_rels == NULL);
1817
1818 /*
1819 * See if the partition bounds for inputs are exactly the same, in
1820 * which case we don't need to work hard: the join rel will have the
1821 * same partition bounds as inputs, and the partitions with the same
1822 * cardinal positions will form the pairs.
1823 *
1824 * Note: even in cases where one or both inputs have merged bounds, it
1825 * would be possible for both the bounds to be exactly the same, but
1826 * it seems unlikely to be worth the cycles to check.
1827 */
1828 if (!rel1->partbounds_merged &&
1829 !rel2->partbounds_merged &&
1830 rel1->nparts == rel2->nparts &&
1831 partition_bounds_equal(part_scheme->partnatts,
1832 part_scheme->parttyplen,
1833 part_scheme->parttypbyval,
1834 rel1->boundinfo, rel2->boundinfo))
1835 {
1836 boundinfo = rel1->boundinfo;
1837 nparts = rel1->nparts;
1838 }
1839 else
1840 {
1841 /* Try merging the partition bounds for inputs. */
1842 boundinfo = partition_bounds_merge(part_scheme->partnatts,
1843 part_scheme->partsupfunc,
1844 part_scheme->partcollation,
1845 rel1, rel2,
1846 parent_sjinfo->jointype,
1847 parts1, parts2);
1848 if (boundinfo == NULL)
1849 {
1850 joinrel->nparts = 0;
1851 return;
1852 }
1853 nparts = list_length(*parts1);
1854 joinrel->partbounds_merged = true;
1855 }
1856
1857 Assert(nparts > 0);
1858 joinrel->boundinfo = boundinfo;
1859 joinrel->nparts = nparts;
1860 joinrel->part_rels =
1861 (RelOptInfo **) palloc0(sizeof(RelOptInfo *) * nparts);
1862 }
1863 else
1864 {
1865 Assert(joinrel->nparts > 0);
1866 Assert(joinrel->boundinfo);
1867 Assert(joinrel->part_rels);
1868
1869 /*
1870 * If the join rel's partbounds_merged flag is true, it means inputs
1871 * are not guaranteed to have the same partition bounds, therefore we
1872 * can't assume that the partitions at the same cardinal positions
1873 * form the pairs; let get_matching_part_pairs() generate the pairs.
1874 * Otherwise, nothing to do since we can assume that.
1875 */
1876 if (joinrel->partbounds_merged)
1877 {
1878 get_matching_part_pairs(root, joinrel, rel1, rel2,
1879 parts1, parts2);
1880 Assert(list_length(*parts1) == joinrel->nparts);
1881 Assert(list_length(*parts2) == joinrel->nparts);
1882 }
1883 }
1884}
1885
1886/*
1887 * get_matching_part_pairs
1888 * Generate pairs of partitions to be joined from inputs
1889 */
1890static void
1892 RelOptInfo *rel1, RelOptInfo *rel2,
1893 List **parts1, List **parts2)
1894{
1895 bool rel1_is_simple = IS_SIMPLE_REL(rel1);
1896 bool rel2_is_simple = IS_SIMPLE_REL(rel2);
1897 int cnt_parts;
1898
1899 *parts1 = NIL;
1900 *parts2 = NIL;
1901
1902 for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
1903 {
1904 RelOptInfo *child_joinrel = joinrel->part_rels[cnt_parts];
1905 RelOptInfo *child_rel1;
1906 RelOptInfo *child_rel2;
1907 Relids child_relids1;
1908 Relids child_relids2;
1909
1910 /*
1911 * If this segment of the join is empty, it means that this segment
1912 * was ignored when previously creating child-join paths for it in
1913 * try_partitionwise_join() as it would not contribute to the join
1914 * result, due to one or both inputs being empty; add NULL to each of
1915 * the given lists so that this segment will be ignored again in that
1916 * function.
1917 */
1918 if (!child_joinrel)
1919 {
1920 *parts1 = lappend(*parts1, NULL);
1921 *parts2 = lappend(*parts2, NULL);
1922 continue;
1923 }
1924
1925 /*
1926 * Get a relids set of partition(s) involved in this join segment that
1927 * are from the rel1 side.
1928 */
1929 child_relids1 = bms_intersect(child_joinrel->relids,
1930 rel1->all_partrels);
1931 Assert(bms_num_members(child_relids1) == bms_num_members(rel1->relids));
1932
1933 /*
1934 * Get a child rel for rel1 with the relids. Note that we should have
1935 * the child rel even if rel1 is a join rel, because in that case the
1936 * partitions specified in the relids would have matching/overlapping
1937 * boundaries, so the specified partitions should be considered as
1938 * ones to be joined when planning partitionwise joins of rel1,
1939 * meaning that the child rel would have been built by the time we get
1940 * here.
1941 */
1942 if (rel1_is_simple)
1943 {
1944 int varno = bms_singleton_member(child_relids1);
1945
1946 child_rel1 = find_base_rel(root, varno);
1947 }
1948 else
1949 child_rel1 = find_join_rel(root, child_relids1);
1950 Assert(child_rel1);
1951
1952 /*
1953 * Get a relids set of partition(s) involved in this join segment that
1954 * are from the rel2 side.
1955 */
1956 child_relids2 = bms_intersect(child_joinrel->relids,
1957 rel2->all_partrels);
1958 Assert(bms_num_members(child_relids2) == bms_num_members(rel2->relids));
1959
1960 /*
1961 * Get a child rel for rel2 with the relids. See above comments.
1962 */
1963 if (rel2_is_simple)
1964 {
1965 int varno = bms_singleton_member(child_relids2);
1966
1967 child_rel2 = find_base_rel(root, varno);
1968 }
1969 else
1970 child_rel2 = find_join_rel(root, child_relids2);
1971 Assert(child_rel2);
1972
1973 /*
1974 * The join of rel1 and rel2 is legal, so is the join of the child
1975 * rels obtained above; add them to the given lists as a join pair
1976 * producing this join segment.
1977 */
1978 *parts1 = lappend(*parts1, child_rel1);
1979 *parts2 = lappend(*parts2, child_rel2);
1980 }
1981}
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:753
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:200
Relids adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:574
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:149
Assert(PointerIsAligned(start, uint64))
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
bool have_relevant_joinclause(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joininfo.c:39
void add_paths_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel, JoinType jointype, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: joinpath.c:124
static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: joinrels.c:894
static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo, List *parent_restrictlist)
Definition: joinrels.c:1482
static void make_rels_by_clauseless_joins(PlannerInfo *root, RelOptInfo *old_rel, List *other_rels)
Definition: joinrels.c:314
bool is_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1336
void join_search_one_level(PlannerInfo *root, int level)
Definition: joinrels.c:73
static bool restriction_is_constant_false(List *restrictlist, RelOptInfo *joinrel, bool only_pushed_down)
Definition: joinrels.c:1428
static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *rel1, RelOptInfo *rel2, List **parts1, List **parts2)
Definition: joinrels.c:1891
RelOptInfo * make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joinrels.c:705
static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
Definition: joinrels.c:1244
static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo, List **parts1, List **parts2)
Definition: joinrels.c:1800
Relids add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids, SpecialJoinInfo *sjinfo, List **pushed_down_joins)
Definition: joinrels.c:802
static SpecialJoinInfo * build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:1704
void mark_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1385
bool have_dangerous_phv(PlannerInfo *root, Relids outer_relids, Relids inner_params)
Definition: joinrels.c:1308
bool have_join_order_restriction(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joinrels.c:1075
static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
Definition: joinrels.c:1188
void init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:670
static void free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo, SpecialJoinInfo *parent_sjinfo)
Definition: joinrels.c:1758
static bool join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, Relids joinrelids, SpecialJoinInfo **sjinfo_p, bool *reversed_p)
Definition: joinrels.c:350
static void make_rels_by_clause_joins(PlannerInfo *root, RelOptInfo *old_rel, List *other_rels, int first_rel_idx)
Definition: joinrels.c:280
List * lappend(List *list, void *datum)
Definition: list.c:339
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:311
void pfree(void *pointer)
Definition: mcxt.c:2147
void * palloc0(Size size)
Definition: mcxt.c:1970
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:738
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define makeNode(_type_)
Definition: nodes.h:161
@ JOIN_SEMI
Definition: nodes.h:313
@ JOIN_FULL
Definition: nodes.h:301
@ JOIN_INNER
Definition: nodes.h:299
@ JOIN_RIGHT
Definition: nodes.h:302
@ JOIN_RIGHT_SEMI
Definition: nodes.h:315
@ JOIN_LEFT
Definition: nodes.h:300
@ JOIN_UNIQUE_OUTER
Definition: nodes.h:322
@ JOIN_RIGHT_ANTI
Definition: nodes.h:316
@ JOIN_UNIQUE_INNER
Definition: nodes.h:323
@ JOIN_ANTI
Definition: nodes.h:314
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
bool partition_bounds_equal(int partnatts, int16 *parttyplen, bool *parttypbyval, PartitionBoundInfo b1, PartitionBoundInfo b2)
Definition: partbounds.c:896
PartitionBoundInfo partition_bounds_merge(int partnatts, FmgrInfo *partsupfunc, Oid *partcollation, RelOptInfo *outer_rel, RelOptInfo *inner_rel, JoinType jointype, List **outer_parts, List **inner_parts)
Definition: partbounds.c:1118
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, SpecialJoinInfo *sjinfo)
Definition: pathnode.c:1727
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1300
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:2075
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2857
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:866
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:2083
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:1089
#define REL_HAS_ALL_PART_PROPS(rel)
Definition: pathnodes.h:1097
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:856
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
#define linitial(l)
Definition: pg_list.h:178
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
static bool DatumGetBool(Datum X)
Definition: postgres.h:95
tree ctl root
Definition: radixtree.h:1857
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:414
RelOptInfo * build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel, RelOptInfo *inner_rel, RelOptInfo *parent_joinrel, List *restrictlist, SpecialJoinInfo *sjinfo, int nappinfos, AppendRelInfo **appinfos)
Definition: relnode.c:882
Relids min_join_parameterization(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1022
RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids)
Definition: relnode.c:527
RelOptInfo * build_join_rel(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *pushed_down_joins, List **restrictlist_ptr)
Definition: relnode.c:665
void check_stack_depth(void)
Definition: stack_depth.c:95
Definition: pg_list.h:54
Definition: nodes.h:135
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:628
Relids ph_eval_at
Definition: pathnodes.h:3224
List * joininfo
Definition: pathnodes.h:1018
Relids relids
Definition: pathnodes.h:898
bool partbounds_merged
Definition: pathnodes.h:1052
Relids lateral_relids
Definition: pathnodes.h:940
List * pathlist
Definition: pathnodes.h:925
RelOptKind reloptkind
Definition: pathnodes.h:892
Relids lateral_referencers
Definition: pathnodes.h:969
struct Path * cheapest_total_path
Definition: pathnodes.h:929
Relids all_partrels
Definition: pathnodes.h:1068
Relids direct_lateral_relids
Definition: pathnodes.h:938
bool has_eclass_joins
Definition: pathnodes.h:1020
Bitmapset * live_parts
Definition: pathnodes.h:1066
bool consider_partitionwise_join
Definition: pathnodes.h:1026
List * partial_pathlist
Definition: pathnodes.h:927
Cardinality rows
Definition: pathnodes.h:904
Expr * clause
Definition: pathnodes.h:2700
Relids commute_above_r
Definition: pathnodes.h:3037
Relids syn_lefthand
Definition: pathnodes.h:3032
Relids min_righthand
Definition: pathnodes.h:3031
List * semi_rhs_exprs
Definition: pathnodes.h:3045
Relids commute_above_l
Definition: pathnodes.h:3036
JoinType jointype
Definition: pathnodes.h:3034
Relids commute_below_l
Definition: pathnodes.h:3038
Relids min_lefthand
Definition: pathnodes.h:3030
Relids syn_righthand
Definition: pathnodes.h:3033
Relids commute_below_r
Definition: pathnodes.h:3039
List * semi_operators
Definition: pathnodes.h:3044