PostgreSQL Source Code  git master
pathnode.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * pathnode.c
4  * Routines to manipulate pathlists and create path nodes
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/optimizer/util/pathnode.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <math.h>
18 
19 #include "foreign/fdwapi.h"
20 #include "miscadmin.h"
21 #include "nodes/extensible.h"
22 #include "optimizer/appendinfo.h"
23 #include "optimizer/clauses.h"
24 #include "optimizer/cost.h"
25 #include "optimizer/optimizer.h"
26 #include "optimizer/pathnode.h"
27 #include "optimizer/paths.h"
28 #include "optimizer/planmain.h"
29 #include "optimizer/tlist.h"
30 #include "parser/parsetree.h"
31 #include "utils/memutils.h"
32 #include "utils/selfuncs.h"
33 
34 typedef enum
35 {
36  COSTS_EQUAL, /* path costs are fuzzily equal */
37  COSTS_BETTER1, /* first path is cheaper than second */
38  COSTS_BETTER2, /* second path is cheaper than first */
39  COSTS_DIFFERENT, /* neither path dominates the other on cost */
41 
42 /*
43  * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
44  * XXX is it worth making this user-controllable? It provides a tradeoff
45  * between planner runtime and the accuracy of path cost comparisons.
46  */
47 #define STD_FUZZ_FACTOR 1.01
48 
49 static List *translate_sub_tlist(List *tlist, int relid);
50 static int append_total_cost_compare(const ListCell *a, const ListCell *b);
51 static int append_startup_cost_compare(const ListCell *a, const ListCell *b);
53  List *pathlist,
54  RelOptInfo *child_rel);
55 static bool pathlist_is_reparameterizable_by_child(List *pathlist,
56  RelOptInfo *child_rel);
57 
58 
59 /*****************************************************************************
60  * MISC. PATH UTILITIES
61  *****************************************************************************/
62 
63 /*
64  * compare_path_costs
65  * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
66  * or more expensive than path2 for the specified criterion.
67  */
68 int
69 compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
70 {
71  /* Number of disabled nodes, if different, trumps all else. */
72  if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
73  {
74  if (path1->disabled_nodes < path2->disabled_nodes)
75  return -1;
76  else
77  return +1;
78  }
79 
80  if (criterion == STARTUP_COST)
81  {
82  if (path1->startup_cost < path2->startup_cost)
83  return -1;
84  if (path1->startup_cost > path2->startup_cost)
85  return +1;
86 
87  /*
88  * If paths have the same startup cost (not at all unlikely), order
89  * them by total cost.
90  */
91  if (path1->total_cost < path2->total_cost)
92  return -1;
93  if (path1->total_cost > path2->total_cost)
94  return +1;
95  }
96  else
97  {
98  if (path1->total_cost < path2->total_cost)
99  return -1;
100  if (path1->total_cost > path2->total_cost)
101  return +1;
102 
103  /*
104  * If paths have the same total cost, order them by startup cost.
105  */
106  if (path1->startup_cost < path2->startup_cost)
107  return -1;
108  if (path1->startup_cost > path2->startup_cost)
109  return +1;
110  }
111  return 0;
112 }
113 
114 /*
115  * compare_fractional_path_costs
116  * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
117  * or more expensive than path2 for fetching the specified fraction
118  * of the total tuples.
119  *
120  * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
121  * path with the cheaper total_cost.
122  */
123 int
125  double fraction)
126 {
127  Cost cost1,
128  cost2;
129 
130  /* Number of disabled nodes, if different, trumps all else. */
131  if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
132  {
133  if (path1->disabled_nodes < path2->disabled_nodes)
134  return -1;
135  else
136  return +1;
137  }
138 
139  if (fraction <= 0.0 || fraction >= 1.0)
140  return compare_path_costs(path1, path2, TOTAL_COST);
141  cost1 = path1->startup_cost +
142  fraction * (path1->total_cost - path1->startup_cost);
143  cost2 = path2->startup_cost +
144  fraction * (path2->total_cost - path2->startup_cost);
145  if (cost1 < cost2)
146  return -1;
147  if (cost1 > cost2)
148  return +1;
149  return 0;
150 }
151 
152 /*
153  * compare_path_costs_fuzzily
154  * Compare the costs of two paths to see if either can be said to
155  * dominate the other.
156  *
157  * We use fuzzy comparisons so that add_path() can avoid keeping both of
158  * a pair of paths that really have insignificantly different cost.
159  *
160  * The fuzz_factor argument must be 1.0 plus delta, where delta is the
161  * fraction of the smaller cost that is considered to be a significant
162  * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
163  * be 1% of the smaller cost.
164  *
165  * The two paths are said to have "equal" costs if both startup and total
166  * costs are fuzzily the same. Path1 is said to be better than path2 if
167  * it has fuzzily better startup cost and fuzzily no worse total cost,
168  * or if it has fuzzily better total cost and fuzzily no worse startup cost.
169  * Path2 is better than path1 if the reverse holds. Finally, if one path
170  * is fuzzily better than the other on startup cost and fuzzily worse on
171  * total cost, we just say that their costs are "different", since neither
172  * dominates the other across the whole performance spectrum.
173  *
174  * This function also enforces a policy rule that paths for which the relevant
175  * one of parent->consider_startup and parent->consider_param_startup is false
176  * cannot survive comparisons solely on the grounds of good startup cost, so
177  * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
178  * (But if total costs are fuzzily equal, we compare startup costs anyway,
179  * in hopes of eliminating one path or the other.)
180  */
181 static PathCostComparison
182 compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
183 {
184 #define CONSIDER_PATH_STARTUP_COST(p) \
185  ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
186 
187  /* Number of disabled nodes, if different, trumps all else. */
188  if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
189  {
190  if (path1->disabled_nodes < path2->disabled_nodes)
191  return COSTS_BETTER1;
192  else
193  return COSTS_BETTER2;
194  }
195 
196  /*
197  * Check total cost first since it's more likely to be different; many
198  * paths have zero startup cost.
199  */
200  if (path1->total_cost > path2->total_cost * fuzz_factor)
201  {
202  /* path1 fuzzily worse on total cost */
203  if (CONSIDER_PATH_STARTUP_COST(path1) &&
204  path2->startup_cost > path1->startup_cost * fuzz_factor)
205  {
206  /* ... but path2 fuzzily worse on startup, so DIFFERENT */
207  return COSTS_DIFFERENT;
208  }
209  /* else path2 dominates */
210  return COSTS_BETTER2;
211  }
212  if (path2->total_cost > path1->total_cost * fuzz_factor)
213  {
214  /* path2 fuzzily worse on total cost */
215  if (CONSIDER_PATH_STARTUP_COST(path2) &&
216  path1->startup_cost > path2->startup_cost * fuzz_factor)
217  {
218  /* ... but path1 fuzzily worse on startup, so DIFFERENT */
219  return COSTS_DIFFERENT;
220  }
221  /* else path1 dominates */
222  return COSTS_BETTER1;
223  }
224  /* fuzzily the same on total cost ... */
225  if (path1->startup_cost > path2->startup_cost * fuzz_factor)
226  {
227  /* ... but path1 fuzzily worse on startup, so path2 wins */
228  return COSTS_BETTER2;
229  }
230  if (path2->startup_cost > path1->startup_cost * fuzz_factor)
231  {
232  /* ... but path2 fuzzily worse on startup, so path1 wins */
233  return COSTS_BETTER1;
234  }
235  /* fuzzily the same on both costs */
236  return COSTS_EQUAL;
237 
238 #undef CONSIDER_PATH_STARTUP_COST
239 }
240 
241 /*
242  * set_cheapest
243  * Find the minimum-cost paths from among a relation's paths,
244  * and save them in the rel's cheapest-path fields.
245  *
246  * cheapest_total_path is normally the cheapest-total-cost unparameterized
247  * path; but if there are no unparameterized paths, we assign it to be the
248  * best (cheapest least-parameterized) parameterized path. However, only
249  * unparameterized paths are considered candidates for cheapest_startup_path,
250  * so that will be NULL if there are no unparameterized paths.
251  *
252  * The cheapest_parameterized_paths list collects all parameterized paths
253  * that have survived the add_path() tournament for this relation. (Since
254  * add_path ignores pathkeys for a parameterized path, these will be paths
255  * that have best cost or best row count for their parameterization. We
256  * may also have both a parallel-safe and a non-parallel-safe path in some
257  * cases for the same parameterization in some cases, but this should be
258  * relatively rare since, most typically, all paths for the same relation
259  * will be parallel-safe or none of them will.)
260  *
261  * cheapest_parameterized_paths always includes the cheapest-total
262  * unparameterized path, too, if there is one; the users of that list find
263  * it more convenient if that's included.
264  *
265  * This is normally called only after we've finished constructing the path
266  * list for the rel node.
267  */
268 void
270 {
271  Path *cheapest_startup_path;
272  Path *cheapest_total_path;
273  Path *best_param_path;
274  List *parameterized_paths;
275  ListCell *p;
276 
277  Assert(IsA(parent_rel, RelOptInfo));
278 
279  if (parent_rel->pathlist == NIL)
280  elog(ERROR, "could not devise a query plan for the given query");
281 
282  cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
283  parameterized_paths = NIL;
284 
285  foreach(p, parent_rel->pathlist)
286  {
287  Path *path = (Path *) lfirst(p);
288  int cmp;
289 
290  if (path->param_info)
291  {
292  /* Parameterized path, so add it to parameterized_paths */
293  parameterized_paths = lappend(parameterized_paths, path);
294 
295  /*
296  * If we have an unparameterized cheapest-total, we no longer care
297  * about finding the best parameterized path, so move on.
298  */
299  if (cheapest_total_path)
300  continue;
301 
302  /*
303  * Otherwise, track the best parameterized path, which is the one
304  * with least total cost among those of the minimum
305  * parameterization.
306  */
307  if (best_param_path == NULL)
308  best_param_path = path;
309  else
310  {
311  switch (bms_subset_compare(PATH_REQ_OUTER(path),
312  PATH_REQ_OUTER(best_param_path)))
313  {
314  case BMS_EQUAL:
315  /* keep the cheaper one */
316  if (compare_path_costs(path, best_param_path,
317  TOTAL_COST) < 0)
318  best_param_path = path;
319  break;
320  case BMS_SUBSET1:
321  /* new path is less-parameterized */
322  best_param_path = path;
323  break;
324  case BMS_SUBSET2:
325  /* old path is less-parameterized, keep it */
326  break;
327  case BMS_DIFFERENT:
328 
329  /*
330  * This means that neither path has the least possible
331  * parameterization for the rel. We'll sit on the old
332  * path until something better comes along.
333  */
334  break;
335  }
336  }
337  }
338  else
339  {
340  /* Unparameterized path, so consider it for cheapest slots */
341  if (cheapest_total_path == NULL)
342  {
343  cheapest_startup_path = cheapest_total_path = path;
344  continue;
345  }
346 
347  /*
348  * If we find two paths of identical costs, try to keep the
349  * better-sorted one. The paths might have unrelated sort
350  * orderings, in which case we can only guess which might be
351  * better to keep, but if one is superior then we definitely
352  * should keep that one.
353  */
354  cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
355  if (cmp > 0 ||
356  (cmp == 0 &&
357  compare_pathkeys(cheapest_startup_path->pathkeys,
358  path->pathkeys) == PATHKEYS_BETTER2))
359  cheapest_startup_path = path;
360 
361  cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
362  if (cmp > 0 ||
363  (cmp == 0 &&
364  compare_pathkeys(cheapest_total_path->pathkeys,
365  path->pathkeys) == PATHKEYS_BETTER2))
366  cheapest_total_path = path;
367  }
368  }
369 
370  /* Add cheapest unparameterized path, if any, to parameterized_paths */
371  if (cheapest_total_path)
372  parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
373 
374  /*
375  * If there is no unparameterized path, use the best parameterized path as
376  * cheapest_total_path (but not as cheapest_startup_path).
377  */
378  if (cheapest_total_path == NULL)
379  cheapest_total_path = best_param_path;
380  Assert(cheapest_total_path != NULL);
381 
382  parent_rel->cheapest_startup_path = cheapest_startup_path;
383  parent_rel->cheapest_total_path = cheapest_total_path;
384  parent_rel->cheapest_unique_path = NULL; /* computed only if needed */
385  parent_rel->cheapest_parameterized_paths = parameterized_paths;
386 }
387 
388 /*
389  * add_path
390  * Consider a potential implementation path for the specified parent rel,
391  * and add it to the rel's pathlist if it is worthy of consideration.
392  *
393  * A path is worthy if it has a better sort order (better pathkeys) or
394  * cheaper cost (as defined below), or generates fewer rows, than any
395  * existing path that has the same or superset parameterization rels. We
396  * also consider parallel-safe paths more worthy than others.
397  *
398  * Cheaper cost can mean either a cheaper total cost or a cheaper startup
399  * cost; if one path is cheaper in one of these aspects and another is
400  * cheaper in the other, we keep both. However, when some path type is
401  * disabled (e.g. due to enable_seqscan=false), the number of times that
402  * a disabled path type is used is considered to be a higher-order
403  * component of the cost. Hence, if path A uses no disabled path type,
404  * and path B uses 1 or more disabled path types, A is cheaper, no matter
405  * what we estimate for the startup and total costs. The startup and total
406  * cost essentially act as a tiebreak when comparing paths that use equal
407  * numbers of disabled path nodes; but in practice this tiebreak is almost
408  * always used, since normally no path types are disabled.
409  *
410  * In addition to possibly adding new_path, we also remove from the rel's
411  * pathlist any old paths that are dominated by new_path --- that is,
412  * new_path is cheaper, at least as well ordered, generates no more rows,
413  * requires no outer rels not required by the old path, and is no less
414  * parallel-safe.
415  *
416  * In most cases, a path with a superset parameterization will generate
417  * fewer rows (since it has more join clauses to apply), so that those two
418  * figures of merit move in opposite directions; this means that a path of
419  * one parameterization can seldom dominate a path of another. But such
420  * cases do arise, so we make the full set of checks anyway.
421  *
422  * There are two policy decisions embedded in this function, along with
423  * its sibling add_path_precheck. First, we treat all parameterized paths
424  * as having NIL pathkeys, so that they cannot win comparisons on the
425  * basis of sort order. This is to reduce the number of parameterized
426  * paths that are kept; see discussion in src/backend/optimizer/README.
427  *
428  * Second, we only consider cheap startup cost to be interesting if
429  * parent_rel->consider_startup is true for an unparameterized path, or
430  * parent_rel->consider_param_startup is true for a parameterized one.
431  * Again, this allows discarding useless paths sooner.
432  *
433  * The pathlist is kept sorted by disabled_nodes and then by total_cost,
434  * with cheaper paths at the front. Within this routine, that's simply a
435  * speed hack: doing it that way makes it more likely that we will reject
436  * an inferior path after a few comparisons, rather than many comparisons.
437  * However, add_path_precheck relies on this ordering to exit early
438  * when possible.
439  *
440  * NOTE: discarded Path objects are immediately pfree'd to reduce planner
441  * memory consumption. We dare not try to free the substructure of a Path,
442  * since much of it may be shared with other Paths or the query tree itself;
443  * but just recycling discarded Path nodes is a very useful savings in
444  * a large join tree. We can recycle the List nodes of pathlist, too.
445  *
446  * As noted in optimizer/README, deleting a previously-accepted Path is
447  * safe because we know that Paths of this rel cannot yet be referenced
448  * from any other rel, such as a higher-level join. However, in some cases
449  * it is possible that a Path is referenced by another Path for its own
450  * rel; we must not delete such a Path, even if it is dominated by the new
451  * Path. Currently this occurs only for IndexPath objects, which may be
452  * referenced as children of BitmapHeapPaths as well as being paths in
453  * their own right. Hence, we don't pfree IndexPaths when rejecting them.
454  *
455  * 'parent_rel' is the relation entry to which the path corresponds.
456  * 'new_path' is a potential path for parent_rel.
457  *
458  * Returns nothing, but modifies parent_rel->pathlist.
459  */
460 void
461 add_path(RelOptInfo *parent_rel, Path *new_path)
462 {
463  bool accept_new = true; /* unless we find a superior old path */
464  int insert_at = 0; /* where to insert new item */
465  List *new_path_pathkeys;
466  ListCell *p1;
467 
468  /*
469  * This is a convenient place to check for query cancel --- no part of the
470  * planner goes very long without calling add_path().
471  */
473 
474  /* Pretend parameterized paths have no pathkeys, per comment above */
475  new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
476 
477  /*
478  * Loop to check proposed new path against old paths. Note it is possible
479  * for more than one old path to be tossed out because new_path dominates
480  * it.
481  */
482  foreach(p1, parent_rel->pathlist)
483  {
484  Path *old_path = (Path *) lfirst(p1);
485  bool remove_old = false; /* unless new proves superior */
486  PathCostComparison costcmp;
487  PathKeysComparison keyscmp;
488  BMS_Comparison outercmp;
489 
490  /*
491  * Do a fuzzy cost comparison with standard fuzziness limit.
492  */
493  costcmp = compare_path_costs_fuzzily(new_path, old_path,
495 
496  /*
497  * If the two paths compare differently for startup and total cost,
498  * then we want to keep both, and we can skip comparing pathkeys and
499  * required_outer rels. If they compare the same, proceed with the
500  * other comparisons. Row count is checked last. (We make the tests
501  * in this order because the cost comparison is most likely to turn
502  * out "different", and the pathkeys comparison next most likely. As
503  * explained above, row count very seldom makes a difference, so even
504  * though it's cheap to compare there's not much point in checking it
505  * earlier.)
506  */
507  if (costcmp != COSTS_DIFFERENT)
508  {
509  /* Similarly check to see if either dominates on pathkeys */
510  List *old_path_pathkeys;
511 
512  old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
513  keyscmp = compare_pathkeys(new_path_pathkeys,
514  old_path_pathkeys);
515  if (keyscmp != PATHKEYS_DIFFERENT)
516  {
517  switch (costcmp)
518  {
519  case COSTS_EQUAL:
520  outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
521  PATH_REQ_OUTER(old_path));
522  if (keyscmp == PATHKEYS_BETTER1)
523  {
524  if ((outercmp == BMS_EQUAL ||
525  outercmp == BMS_SUBSET1) &&
526  new_path->rows <= old_path->rows &&
527  new_path->parallel_safe >= old_path->parallel_safe)
528  remove_old = true; /* new dominates old */
529  }
530  else if (keyscmp == PATHKEYS_BETTER2)
531  {
532  if ((outercmp == BMS_EQUAL ||
533  outercmp == BMS_SUBSET2) &&
534  new_path->rows >= old_path->rows &&
535  new_path->parallel_safe <= old_path->parallel_safe)
536  accept_new = false; /* old dominates new */
537  }
538  else /* keyscmp == PATHKEYS_EQUAL */
539  {
540  if (outercmp == BMS_EQUAL)
541  {
542  /*
543  * Same pathkeys and outer rels, and fuzzily
544  * the same cost, so keep just one; to decide
545  * which, first check parallel-safety, then
546  * rows, then do a fuzzy cost comparison with
547  * very small fuzz limit. (We used to do an
548  * exact cost comparison, but that results in
549  * annoying platform-specific plan variations
550  * due to roundoff in the cost estimates.) If
551  * things are still tied, arbitrarily keep
552  * only the old path. Notice that we will
553  * keep only the old path even if the
554  * less-fuzzy comparison decides the startup
555  * and total costs compare differently.
556  */
557  if (new_path->parallel_safe >
558  old_path->parallel_safe)
559  remove_old = true; /* new dominates old */
560  else if (new_path->parallel_safe <
561  old_path->parallel_safe)
562  accept_new = false; /* old dominates new */
563  else if (new_path->rows < old_path->rows)
564  remove_old = true; /* new dominates old */
565  else if (new_path->rows > old_path->rows)
566  accept_new = false; /* old dominates new */
567  else if (compare_path_costs_fuzzily(new_path,
568  old_path,
569  1.0000000001) == COSTS_BETTER1)
570  remove_old = true; /* new dominates old */
571  else
572  accept_new = false; /* old equals or
573  * dominates new */
574  }
575  else if (outercmp == BMS_SUBSET1 &&
576  new_path->rows <= old_path->rows &&
577  new_path->parallel_safe >= old_path->parallel_safe)
578  remove_old = true; /* new dominates old */
579  else if (outercmp == BMS_SUBSET2 &&
580  new_path->rows >= old_path->rows &&
581  new_path->parallel_safe <= old_path->parallel_safe)
582  accept_new = false; /* old dominates new */
583  /* else different parameterizations, keep both */
584  }
585  break;
586  case COSTS_BETTER1:
587  if (keyscmp != PATHKEYS_BETTER2)
588  {
589  outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
590  PATH_REQ_OUTER(old_path));
591  if ((outercmp == BMS_EQUAL ||
592  outercmp == BMS_SUBSET1) &&
593  new_path->rows <= old_path->rows &&
594  new_path->parallel_safe >= old_path->parallel_safe)
595  remove_old = true; /* new dominates old */
596  }
597  break;
598  case COSTS_BETTER2:
599  if (keyscmp != PATHKEYS_BETTER1)
600  {
601  outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
602  PATH_REQ_OUTER(old_path));
603  if ((outercmp == BMS_EQUAL ||
604  outercmp == BMS_SUBSET2) &&
605  new_path->rows >= old_path->rows &&
606  new_path->parallel_safe <= old_path->parallel_safe)
607  accept_new = false; /* old dominates new */
608  }
609  break;
610  case COSTS_DIFFERENT:
611 
612  /*
613  * can't get here, but keep this case to keep compiler
614  * quiet
615  */
616  break;
617  }
618  }
619  }
620 
621  /*
622  * Remove current element from pathlist if dominated by new.
623  */
624  if (remove_old)
625  {
626  parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
627  p1);
628 
629  /*
630  * Delete the data pointed-to by the deleted cell, if possible
631  */
632  if (!IsA(old_path, IndexPath))
633  pfree(old_path);
634  }
635  else
636  {
637  /*
638  * new belongs after this old path if it has more disabled nodes
639  * or if it has the same number of nodes but a greater total cost
640  */
641  if (new_path->disabled_nodes > old_path->disabled_nodes ||
642  (new_path->disabled_nodes == old_path->disabled_nodes &&
643  new_path->total_cost >= old_path->total_cost))
644  insert_at = foreach_current_index(p1) + 1;
645  }
646 
647  /*
648  * If we found an old path that dominates new_path, we can quit
649  * scanning the pathlist; we will not add new_path, and we assume
650  * new_path cannot dominate any other elements of the pathlist.
651  */
652  if (!accept_new)
653  break;
654  }
655 
656  if (accept_new)
657  {
658  /* Accept the new path: insert it at proper place in pathlist */
659  parent_rel->pathlist =
660  list_insert_nth(parent_rel->pathlist, insert_at, new_path);
661  }
662  else
663  {
664  /* Reject and recycle the new path */
665  if (!IsA(new_path, IndexPath))
666  pfree(new_path);
667  }
668 }
669 
670 /*
671  * add_path_precheck
672  * Check whether a proposed new path could possibly get accepted.
673  * We assume we know the path's pathkeys and parameterization accurately,
674  * and have lower bounds for its costs.
675  *
676  * Note that we do not know the path's rowcount, since getting an estimate for
677  * that is too expensive to do before prechecking. We assume here that paths
678  * of a superset parameterization will generate fewer rows; if that holds,
679  * then paths with different parameterizations cannot dominate each other
680  * and so we can simply ignore existing paths of another parameterization.
681  * (In the infrequent cases where that rule of thumb fails, add_path will
682  * get rid of the inferior path.)
683  *
684  * At the time this is called, we haven't actually built a Path structure,
685  * so the required information has to be passed piecemeal.
686  */
687 bool
688 add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
689  Cost startup_cost, Cost total_cost,
690  List *pathkeys, Relids required_outer)
691 {
692  List *new_path_pathkeys;
693  bool consider_startup;
694  ListCell *p1;
695 
696  /* Pretend parameterized paths have no pathkeys, per add_path policy */
697  new_path_pathkeys = required_outer ? NIL : pathkeys;
698 
699  /* Decide whether new path's startup cost is interesting */
700  consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
701 
702  foreach(p1, parent_rel->pathlist)
703  {
704  Path *old_path = (Path *) lfirst(p1);
705  PathKeysComparison keyscmp;
706 
707  /*
708  * Since the pathlist is sorted by disabled_nodes and then by
709  * total_cost, we can stop looking once we reach a path with more
710  * disabled nodes, or the same number of disabled nodes plus a
711  * total_cost larger than the new path's.
712  */
713  if (unlikely(old_path->disabled_nodes != disabled_nodes))
714  {
715  if (disabled_nodes < old_path->disabled_nodes)
716  break;
717  }
718  else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
719  break;
720 
721  /*
722  * We are looking for an old_path with the same parameterization (and
723  * by assumption the same rowcount) that dominates the new path on
724  * pathkeys as well as both cost metrics. If we find one, we can
725  * reject the new path.
726  *
727  * Cost comparisons here should match compare_path_costs_fuzzily.
728  */
729  /* new path can win on startup cost only if consider_startup */
730  if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
731  !consider_startup)
732  {
733  /* new path loses on cost, so check pathkeys... */
734  List *old_path_pathkeys;
735 
736  old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
737  keyscmp = compare_pathkeys(new_path_pathkeys,
738  old_path_pathkeys);
739  if (keyscmp == PATHKEYS_EQUAL ||
740  keyscmp == PATHKEYS_BETTER2)
741  {
742  /* new path does not win on pathkeys... */
743  if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
744  {
745  /* Found an old path that dominates the new one */
746  return false;
747  }
748  }
749  }
750  }
751 
752  return true;
753 }
754 
755 /*
756  * add_partial_path
757  * Like add_path, our goal here is to consider whether a path is worthy
758  * of being kept around, but the considerations here are a bit different.
759  * A partial path is one which can be executed in any number of workers in
760  * parallel such that each worker will generate a subset of the path's
761  * overall result.
762  *
763  * As in add_path, the partial_pathlist is kept sorted with the cheapest
764  * total path in front. This is depended on by multiple places, which
765  * just take the front entry as the cheapest path without searching.
766  *
767  * We don't generate parameterized partial paths for several reasons. Most
768  * importantly, they're not safe to execute, because there's nothing to
769  * make sure that a parallel scan within the parameterized portion of the
770  * plan is running with the same value in every worker at the same time.
771  * Fortunately, it seems unlikely to be worthwhile anyway, because having
772  * each worker scan the entire outer relation and a subset of the inner
773  * relation will generally be a terrible plan. The inner (parameterized)
774  * side of the plan will be small anyway. There could be rare cases where
775  * this wins big - e.g. if join order constraints put a 1-row relation on
776  * the outer side of the topmost join with a parameterized plan on the inner
777  * side - but we'll have to be content not to handle such cases until
778  * somebody builds an executor infrastructure that can cope with them.
779  *
780  * Because we don't consider parameterized paths here, we also don't
781  * need to consider the row counts as a measure of quality: every path will
782  * produce the same number of rows. Neither do we need to consider startup
783  * costs: parallelism is only used for plans that will be run to completion.
784  * Therefore, this routine is much simpler than add_path: it needs to
785  * consider only disabled nodes, pathkeys and total cost.
786  *
787  * As with add_path, we pfree paths that are found to be dominated by
788  * another partial path; this requires that there be no other references to
789  * such paths yet. Hence, GatherPaths must not be created for a rel until
790  * we're done creating all partial paths for it. Unlike add_path, we don't
791  * take an exception for IndexPaths as partial index paths won't be
792  * referenced by partial BitmapHeapPaths.
793  */
794 void
795 add_partial_path(RelOptInfo *parent_rel, Path *new_path)
796 {
797  bool accept_new = true; /* unless we find a superior old path */
798  int insert_at = 0; /* where to insert new item */
799  ListCell *p1;
800 
801  /* Check for query cancel. */
803 
804  /* Path to be added must be parallel safe. */
805  Assert(new_path->parallel_safe);
806 
807  /* Relation should be OK for parallelism, too. */
808  Assert(parent_rel->consider_parallel);
809 
810  /*
811  * As in add_path, throw out any paths which are dominated by the new
812  * path, but throw out the new path if some existing path dominates it.
813  */
814  foreach(p1, parent_rel->partial_pathlist)
815  {
816  Path *old_path = (Path *) lfirst(p1);
817  bool remove_old = false; /* unless new proves superior */
818  PathKeysComparison keyscmp;
819 
820  /* Compare pathkeys. */
821  keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
822 
823  /* Unless pathkeys are incompatible, keep just one of the two paths. */
824  if (keyscmp != PATHKEYS_DIFFERENT)
825  {
826  if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
827  {
828  if (new_path->disabled_nodes > old_path->disabled_nodes)
829  accept_new = false;
830  else
831  remove_old = true;
832  }
833  else if (new_path->total_cost > old_path->total_cost
834  * STD_FUZZ_FACTOR)
835  {
836  /* New path costs more; keep it only if pathkeys are better. */
837  if (keyscmp != PATHKEYS_BETTER1)
838  accept_new = false;
839  }
840  else if (old_path->total_cost > new_path->total_cost
841  * STD_FUZZ_FACTOR)
842  {
843  /* Old path costs more; keep it only if pathkeys are better. */
844  if (keyscmp != PATHKEYS_BETTER2)
845  remove_old = true;
846  }
847  else if (keyscmp == PATHKEYS_BETTER1)
848  {
849  /* Costs are about the same, new path has better pathkeys. */
850  remove_old = true;
851  }
852  else if (keyscmp == PATHKEYS_BETTER2)
853  {
854  /* Costs are about the same, old path has better pathkeys. */
855  accept_new = false;
856  }
857  else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
858  {
859  /* Pathkeys are the same, and the old path costs more. */
860  remove_old = true;
861  }
862  else
863  {
864  /*
865  * Pathkeys are the same, and new path isn't materially
866  * cheaper.
867  */
868  accept_new = false;
869  }
870  }
871 
872  /*
873  * Remove current element from partial_pathlist if dominated by new.
874  */
875  if (remove_old)
876  {
877  parent_rel->partial_pathlist =
878  foreach_delete_current(parent_rel->partial_pathlist, p1);
879  pfree(old_path);
880  }
881  else
882  {
883  /* new belongs after this old path if it has cost >= old's */
884  if (new_path->total_cost >= old_path->total_cost)
885  insert_at = foreach_current_index(p1) + 1;
886  }
887 
888  /*
889  * If we found an old path that dominates new_path, we can quit
890  * scanning the partial_pathlist; we will not add new_path, and we
891  * assume new_path cannot dominate any later path.
892  */
893  if (!accept_new)
894  break;
895  }
896 
897  if (accept_new)
898  {
899  /* Accept the new path: insert it at proper place */
900  parent_rel->partial_pathlist =
901  list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
902  }
903  else
904  {
905  /* Reject and recycle the new path */
906  pfree(new_path);
907  }
908 }
909 
910 /*
911  * add_partial_path_precheck
912  * Check whether a proposed new partial path could possibly get accepted.
913  *
914  * Unlike add_path_precheck, we can ignore startup cost and parameterization,
915  * since they don't matter for partial paths (see add_partial_path). But
916  * we do want to make sure we don't add a partial path if there's already
917  * a complete path that dominates it, since in that case the proposed path
918  * is surely a loser.
919  */
920 bool
921 add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
922  Cost total_cost, List *pathkeys)
923 {
924  ListCell *p1;
925 
926  /*
927  * Our goal here is twofold. First, we want to find out whether this path
928  * is clearly inferior to some existing partial path. If so, we want to
929  * reject it immediately. Second, we want to find out whether this path
930  * is clearly superior to some existing partial path -- at least, modulo
931  * final cost computations. If so, we definitely want to consider it.
932  *
933  * Unlike add_path(), we always compare pathkeys here. This is because we
934  * expect partial_pathlist to be very short, and getting a definitive
935  * answer at this stage avoids the need to call add_path_precheck.
936  */
937  foreach(p1, parent_rel->partial_pathlist)
938  {
939  Path *old_path = (Path *) lfirst(p1);
940  PathKeysComparison keyscmp;
941 
942  keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
943  if (keyscmp != PATHKEYS_DIFFERENT)
944  {
945  if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
946  keyscmp != PATHKEYS_BETTER1)
947  return false;
948  if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
949  keyscmp != PATHKEYS_BETTER2)
950  return true;
951  }
952  }
953 
954  /*
955  * This path is neither clearly inferior to an existing partial path nor
956  * clearly good enough that it might replace one. Compare it to
957  * non-parallel plans. If it loses even before accounting for the cost of
958  * the Gather node, we should definitely reject it.
959  *
960  * Note that we pass the total_cost to add_path_precheck twice. This is
961  * because it's never advantageous to consider the startup cost of a
962  * partial path; the resulting plans, if run in parallel, will be run to
963  * completion.
964  */
965  if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
966  pathkeys, NULL))
967  return false;
968 
969  return true;
970 }
971 
972 
973 /*****************************************************************************
974  * PATH NODE CREATION ROUTINES
975  *****************************************************************************/
976 
977 /*
978  * create_seqscan_path
979  * Creates a path corresponding to a sequential scan, returning the
980  * pathnode.
981  */
982 Path *
984  Relids required_outer, int parallel_workers)
985 {
986  Path *pathnode = makeNode(Path);
987 
988  pathnode->pathtype = T_SeqScan;
989  pathnode->parent = rel;
990  pathnode->pathtarget = rel->reltarget;
991  pathnode->param_info = get_baserel_parampathinfo(root, rel,
992  required_outer);
993  pathnode->parallel_aware = (parallel_workers > 0);
994  pathnode->parallel_safe = rel->consider_parallel;
995  pathnode->parallel_workers = parallel_workers;
996  pathnode->pathkeys = NIL; /* seqscan has unordered result */
997 
998  cost_seqscan(pathnode, root, rel, pathnode->param_info);
999 
1000  return pathnode;
1001 }
1002 
1003 /*
1004  * create_samplescan_path
1005  * Creates a path node for a sampled table scan.
1006  */
1007 Path *
1009 {
1010  Path *pathnode = makeNode(Path);
1011 
1012  pathnode->pathtype = T_SampleScan;
1013  pathnode->parent = rel;
1014  pathnode->pathtarget = rel->reltarget;
1015  pathnode->param_info = get_baserel_parampathinfo(root, rel,
1016  required_outer);
1017  pathnode->parallel_aware = false;
1018  pathnode->parallel_safe = rel->consider_parallel;
1019  pathnode->parallel_workers = 0;
1020  pathnode->pathkeys = NIL; /* samplescan has unordered result */
1021 
1022  cost_samplescan(pathnode, root, rel, pathnode->param_info);
1023 
1024  return pathnode;
1025 }
1026 
1027 /*
1028  * create_index_path
1029  * Creates a path node for an index scan.
1030  *
1031  * 'index' is a usable index.
1032  * 'indexclauses' is a list of IndexClause nodes representing clauses
1033  * to be enforced as qual conditions in the scan.
1034  * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
1035  * to be used as index ordering operators in the scan.
1036  * 'indexorderbycols' is an integer list of index column numbers (zero based)
1037  * the ordering operators can be used with.
1038  * 'pathkeys' describes the ordering of the path.
1039  * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
1040  * 'indexonly' is true if an index-only scan is wanted.
1041  * 'required_outer' is the set of outer relids for a parameterized path.
1042  * 'loop_count' is the number of repetitions of the indexscan to factor into
1043  * estimates of caching behavior.
1044  * 'partial_path' is true if constructing a parallel index scan path.
1045  *
1046  * Returns the new path node.
1047  */
1048 IndexPath *
1051  List *indexclauses,
1052  List *indexorderbys,
1053  List *indexorderbycols,
1054  List *pathkeys,
1055  ScanDirection indexscandir,
1056  bool indexonly,
1057  Relids required_outer,
1058  double loop_count,
1059  bool partial_path)
1060 {
1061  IndexPath *pathnode = makeNode(IndexPath);
1062  RelOptInfo *rel = index->rel;
1063 
1064  pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1065  pathnode->path.parent = rel;
1066  pathnode->path.pathtarget = rel->reltarget;
1067  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1068  required_outer);
1069  pathnode->path.parallel_aware = false;
1070  pathnode->path.parallel_safe = rel->consider_parallel;
1071  pathnode->path.parallel_workers = 0;
1072  pathnode->path.pathkeys = pathkeys;
1073 
1074  pathnode->indexinfo = index;
1075  pathnode->indexclauses = indexclauses;
1076  pathnode->indexorderbys = indexorderbys;
1077  pathnode->indexorderbycols = indexorderbycols;
1078  pathnode->indexscandir = indexscandir;
1079 
1080  cost_index(pathnode, root, loop_count, partial_path);
1081 
1082  return pathnode;
1083 }
1084 
1085 /*
1086  * create_bitmap_heap_path
1087  * Creates a path node for a bitmap scan.
1088  *
1089  * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1090  * 'required_outer' is the set of outer relids for a parameterized path.
1091  * 'loop_count' is the number of repetitions of the indexscan to factor into
1092  * estimates of caching behavior.
1093  *
1094  * loop_count should match the value used when creating the component
1095  * IndexPaths.
1096  */
1099  RelOptInfo *rel,
1100  Path *bitmapqual,
1101  Relids required_outer,
1102  double loop_count,
1103  int parallel_degree)
1104 {
1105  BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
1106 
1107  pathnode->path.pathtype = T_BitmapHeapScan;
1108  pathnode->path.parent = rel;
1109  pathnode->path.pathtarget = rel->reltarget;
1110  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1111  required_outer);
1112  pathnode->path.parallel_aware = (parallel_degree > 0);
1113  pathnode->path.parallel_safe = rel->consider_parallel;
1114  pathnode->path.parallel_workers = parallel_degree;
1115  pathnode->path.pathkeys = NIL; /* always unordered */
1116 
1117  pathnode->bitmapqual = bitmapqual;
1118 
1119  cost_bitmap_heap_scan(&pathnode->path, root, rel,
1120  pathnode->path.param_info,
1121  bitmapqual, loop_count);
1122 
1123  return pathnode;
1124 }
1125 
1126 /*
1127  * create_bitmap_and_path
1128  * Creates a path node representing a BitmapAnd.
1129  */
1130 BitmapAndPath *
1132  RelOptInfo *rel,
1133  List *bitmapquals)
1134 {
1135  BitmapAndPath *pathnode = makeNode(BitmapAndPath);
1136  Relids required_outer = NULL;
1137  ListCell *lc;
1138 
1139  pathnode->path.pathtype = T_BitmapAnd;
1140  pathnode->path.parent = rel;
1141  pathnode->path.pathtarget = rel->reltarget;
1142 
1143  /*
1144  * Identify the required outer rels as the union of what the child paths
1145  * depend on. (Alternatively, we could insist that the caller pass this
1146  * in, but it's more convenient and reliable to compute it here.)
1147  */
1148  foreach(lc, bitmapquals)
1149  {
1150  Path *bitmapqual = (Path *) lfirst(lc);
1151 
1152  required_outer = bms_add_members(required_outer,
1153  PATH_REQ_OUTER(bitmapqual));
1154  }
1155  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1156  required_outer);
1157 
1158  /*
1159  * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1160  * parallel-safe if and only if rel->consider_parallel is set. So, we can
1161  * set the flag for this path based only on the relation-level flag,
1162  * without actually iterating over the list of children.
1163  */
1164  pathnode->path.parallel_aware = false;
1165  pathnode->path.parallel_safe = rel->consider_parallel;
1166  pathnode->path.parallel_workers = 0;
1167 
1168  pathnode->path.pathkeys = NIL; /* always unordered */
1169 
1170  pathnode->bitmapquals = bitmapquals;
1171 
1172  /* this sets bitmapselectivity as well as the regular cost fields: */
1173  cost_bitmap_and_node(pathnode, root);
1174 
1175  return pathnode;
1176 }
1177 
1178 /*
1179  * create_bitmap_or_path
1180  * Creates a path node representing a BitmapOr.
1181  */
1182 BitmapOrPath *
1184  RelOptInfo *rel,
1185  List *bitmapquals)
1186 {
1187  BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1188  Relids required_outer = NULL;
1189  ListCell *lc;
1190 
1191  pathnode->path.pathtype = T_BitmapOr;
1192  pathnode->path.parent = rel;
1193  pathnode->path.pathtarget = rel->reltarget;
1194 
1195  /*
1196  * Identify the required outer rels as the union of what the child paths
1197  * depend on. (Alternatively, we could insist that the caller pass this
1198  * in, but it's more convenient and reliable to compute it here.)
1199  */
1200  foreach(lc, bitmapquals)
1201  {
1202  Path *bitmapqual = (Path *) lfirst(lc);
1203 
1204  required_outer = bms_add_members(required_outer,
1205  PATH_REQ_OUTER(bitmapqual));
1206  }
1207  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1208  required_outer);
1209 
1210  /*
1211  * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1212  * parallel-safe if and only if rel->consider_parallel is set. So, we can
1213  * set the flag for this path based only on the relation-level flag,
1214  * without actually iterating over the list of children.
1215  */
1216  pathnode->path.parallel_aware = false;
1217  pathnode->path.parallel_safe = rel->consider_parallel;
1218  pathnode->path.parallel_workers = 0;
1219 
1220  pathnode->path.pathkeys = NIL; /* always unordered */
1221 
1222  pathnode->bitmapquals = bitmapquals;
1223 
1224  /* this sets bitmapselectivity as well as the regular cost fields: */
1225  cost_bitmap_or_node(pathnode, root);
1226 
1227  return pathnode;
1228 }
1229 
1230 /*
1231  * create_tidscan_path
1232  * Creates a path corresponding to a scan by TID, returning the pathnode.
1233  */
1234 TidPath *
1236  Relids required_outer)
1237 {
1238  TidPath *pathnode = makeNode(TidPath);
1239 
1240  pathnode->path.pathtype = T_TidScan;
1241  pathnode->path.parent = rel;
1242  pathnode->path.pathtarget = rel->reltarget;
1243  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1244  required_outer);
1245  pathnode->path.parallel_aware = false;
1246  pathnode->path.parallel_safe = rel->consider_parallel;
1247  pathnode->path.parallel_workers = 0;
1248  pathnode->path.pathkeys = NIL; /* always unordered */
1249 
1250  pathnode->tidquals = tidquals;
1251 
1252  cost_tidscan(&pathnode->path, root, rel, tidquals,
1253  pathnode->path.param_info);
1254 
1255  return pathnode;
1256 }
1257 
1258 /*
1259  * create_tidrangescan_path
1260  * Creates a path corresponding to a scan by a range of TIDs, returning
1261  * the pathnode.
1262  */
1263 TidRangePath *
1265  List *tidrangequals, Relids required_outer)
1266 {
1267  TidRangePath *pathnode = makeNode(TidRangePath);
1268 
1269  pathnode->path.pathtype = T_TidRangeScan;
1270  pathnode->path.parent = rel;
1271  pathnode->path.pathtarget = rel->reltarget;
1272  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1273  required_outer);
1274  pathnode->path.parallel_aware = false;
1275  pathnode->path.parallel_safe = rel->consider_parallel;
1276  pathnode->path.parallel_workers = 0;
1277  pathnode->path.pathkeys = NIL; /* always unordered */
1278 
1279  pathnode->tidrangequals = tidrangequals;
1280 
1281  cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
1282  pathnode->path.param_info);
1283 
1284  return pathnode;
1285 }
1286 
1287 /*
1288  * create_append_path
1289  * Creates a path corresponding to an Append plan, returning the
1290  * pathnode.
1291  *
1292  * Note that we must handle subpaths = NIL, representing a dummy access path.
1293  * Also, there are callers that pass root = NULL.
1294  *
1295  * 'rows', when passed as a non-negative number, will be used to overwrite the
1296  * returned path's row estimate. Otherwise, the row estimate is calculated
1297  * by totalling the row estimates from the 'subpaths' list.
1298  */
1299 AppendPath *
1301  RelOptInfo *rel,
1302  List *subpaths, List *partial_subpaths,
1303  List *pathkeys, Relids required_outer,
1304  int parallel_workers, bool parallel_aware,
1305  double rows)
1306 {
1307  AppendPath *pathnode = makeNode(AppendPath);
1308  ListCell *l;
1309 
1310  Assert(!parallel_aware || parallel_workers > 0);
1311 
1312  pathnode->path.pathtype = T_Append;
1313  pathnode->path.parent = rel;
1314  pathnode->path.pathtarget = rel->reltarget;
1315 
1316  /*
1317  * If this is for a baserel (not a join or non-leaf partition), we prefer
1318  * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
1319  * for the path. This supports building a Memoize path atop this path,
1320  * and if this is a partitioned table the info may be useful for run-time
1321  * pruning (cf make_partition_pruneinfo()).
1322  *
1323  * However, if we don't have "root" then that won't work and we fall back
1324  * on the simpler get_appendrel_parampathinfo. There's no point in doing
1325  * the more expensive thing for a dummy path, either.
1326  */
1327  if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
1328  pathnode->path.param_info = get_baserel_parampathinfo(root,
1329  rel,
1330  required_outer);
1331  else
1332  pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1333  required_outer);
1334 
1335  pathnode->path.parallel_aware = parallel_aware;
1336  pathnode->path.parallel_safe = rel->consider_parallel;
1337  pathnode->path.parallel_workers = parallel_workers;
1338  pathnode->path.pathkeys = pathkeys;
1339 
1340  /*
1341  * For parallel append, non-partial paths are sorted by descending total
1342  * costs. That way, the total time to finish all non-partial paths is
1343  * minimized. Also, the partial paths are sorted by descending startup
1344  * costs. There may be some paths that require to do startup work by a
1345  * single worker. In such case, it's better for workers to choose the
1346  * expensive ones first, whereas the leader should choose the cheapest
1347  * startup plan.
1348  */
1349  if (pathnode->path.parallel_aware)
1350  {
1351  /*
1352  * We mustn't fiddle with the order of subpaths when the Append has
1353  * pathkeys. The order they're listed in is critical to keeping the
1354  * pathkeys valid.
1355  */
1356  Assert(pathkeys == NIL);
1357 
1359  list_sort(partial_subpaths, append_startup_cost_compare);
1360  }
1361  pathnode->first_partial_path = list_length(subpaths);
1362  pathnode->subpaths = list_concat(subpaths, partial_subpaths);
1363 
1364  /*
1365  * Apply query-wide LIMIT if known and path is for sole base relation.
1366  * (Handling this at this low level is a bit klugy.)
1367  */
1368  if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
1369  pathnode->limit_tuples = root->limit_tuples;
1370  else
1371  pathnode->limit_tuples = -1.0;
1372 
1373  foreach(l, pathnode->subpaths)
1374  {
1375  Path *subpath = (Path *) lfirst(l);
1376 
1377  pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1378  subpath->parallel_safe;
1379 
1380  /* All child paths must have same parameterization */
1381  Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1382  }
1383 
1384  Assert(!parallel_aware || pathnode->path.parallel_safe);
1385 
1386  /*
1387  * If there's exactly one child path then the output of the Append is
1388  * necessarily ordered the same as the child's, so we can inherit the
1389  * child's pathkeys if any, overriding whatever the caller might've said.
1390  * Furthermore, if the child's parallel awareness matches the Append's,
1391  * then the Append is a no-op and will be discarded later (in setrefs.c).
1392  * Then we can inherit the child's size and cost too, effectively charging
1393  * zero for the Append. Otherwise, we must do the normal costsize
1394  * calculation.
1395  */
1396  if (list_length(pathnode->subpaths) == 1)
1397  {
1398  Path *child = (Path *) linitial(pathnode->subpaths);
1399 
1400  if (child->parallel_aware == parallel_aware)
1401  {
1402  pathnode->path.rows = child->rows;
1403  pathnode->path.startup_cost = child->startup_cost;
1404  pathnode->path.total_cost = child->total_cost;
1405  }
1406  else
1407  cost_append(pathnode);
1408  /* Must do this last, else cost_append complains */
1409  pathnode->path.pathkeys = child->pathkeys;
1410  }
1411  else
1412  cost_append(pathnode);
1413 
1414  /* If the caller provided a row estimate, override the computed value. */
1415  if (rows >= 0)
1416  pathnode->path.rows = rows;
1417 
1418  return pathnode;
1419 }
1420 
1421 /*
1422  * append_total_cost_compare
1423  * list_sort comparator for sorting append child paths
1424  * by total_cost descending
1425  *
1426  * For equal total costs, we fall back to comparing startup costs; if those
1427  * are equal too, break ties using bms_compare on the paths' relids.
1428  * (This is to avoid getting unpredictable results from list_sort.)
1429  */
1430 static int
1432 {
1433  Path *path1 = (Path *) lfirst(a);
1434  Path *path2 = (Path *) lfirst(b);
1435  int cmp;
1436 
1437  cmp = compare_path_costs(path1, path2, TOTAL_COST);
1438  if (cmp != 0)
1439  return -cmp;
1440  return bms_compare(path1->parent->relids, path2->parent->relids);
1441 }
1442 
1443 /*
1444  * append_startup_cost_compare
1445  * list_sort comparator for sorting append child paths
1446  * by startup_cost descending
1447  *
1448  * For equal startup costs, we fall back to comparing total costs; if those
1449  * are equal too, break ties using bms_compare on the paths' relids.
1450  * (This is to avoid getting unpredictable results from list_sort.)
1451  */
1452 static int
1454 {
1455  Path *path1 = (Path *) lfirst(a);
1456  Path *path2 = (Path *) lfirst(b);
1457  int cmp;
1458 
1459  cmp = compare_path_costs(path1, path2, STARTUP_COST);
1460  if (cmp != 0)
1461  return -cmp;
1462  return bms_compare(path1->parent->relids, path2->parent->relids);
1463 }
1464 
1465 /*
1466  * create_merge_append_path
1467  * Creates a path corresponding to a MergeAppend plan, returning the
1468  * pathnode.
1469  */
1472  RelOptInfo *rel,
1473  List *subpaths,
1474  List *pathkeys,
1475  Relids required_outer)
1476 {
1478  int input_disabled_nodes;
1479  Cost input_startup_cost;
1480  Cost input_total_cost;
1481  ListCell *l;
1482 
1483  /*
1484  * We don't currently support parameterized MergeAppend paths, as
1485  * explained in the comments for generate_orderedappend_paths.
1486  */
1487  Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
1488 
1489  pathnode->path.pathtype = T_MergeAppend;
1490  pathnode->path.parent = rel;
1491  pathnode->path.pathtarget = rel->reltarget;
1492  pathnode->path.param_info = NULL;
1493  pathnode->path.parallel_aware = false;
1494  pathnode->path.parallel_safe = rel->consider_parallel;
1495  pathnode->path.parallel_workers = 0;
1496  pathnode->path.pathkeys = pathkeys;
1497  pathnode->subpaths = subpaths;
1498 
1499  /*
1500  * Apply query-wide LIMIT if known and path is for sole base relation.
1501  * (Handling this at this low level is a bit klugy.)
1502  */
1503  if (bms_equal(rel->relids, root->all_query_rels))
1504  pathnode->limit_tuples = root->limit_tuples;
1505  else
1506  pathnode->limit_tuples = -1.0;
1507 
1508  /*
1509  * Add up the sizes and costs of the input paths.
1510  */
1511  pathnode->path.rows = 0;
1512  input_disabled_nodes = 0;
1513  input_startup_cost = 0;
1514  input_total_cost = 0;
1515  foreach(l, subpaths)
1516  {
1517  Path *subpath = (Path *) lfirst(l);
1518 
1519  /* All child paths should be unparameterized */
1521 
1522  pathnode->path.rows += subpath->rows;
1523  pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1524  subpath->parallel_safe;
1525 
1526  if (pathkeys_contained_in(pathkeys, subpath->pathkeys))
1527  {
1528  /* Subpath is adequately ordered, we won't need to sort it */
1529  input_disabled_nodes += subpath->disabled_nodes;
1530  input_startup_cost += subpath->startup_cost;
1531  input_total_cost += subpath->total_cost;
1532  }
1533  else
1534  {
1535  /* We'll need to insert a Sort node, so include cost for that */
1536  Path sort_path; /* dummy for result of cost_sort */
1537 
1538  cost_sort(&sort_path,
1539  root,
1540  pathkeys,
1541  subpath->disabled_nodes,
1542  subpath->total_cost,
1543  subpath->rows,
1544  subpath->pathtarget->width,
1545  0.0,
1546  work_mem,
1547  pathnode->limit_tuples);
1548  input_disabled_nodes += sort_path.disabled_nodes;
1549  input_startup_cost += sort_path.startup_cost;
1550  input_total_cost += sort_path.total_cost;
1551  }
1552  }
1553 
1554  /*
1555  * Now we can compute total costs of the MergeAppend. If there's exactly
1556  * one child path and its parallel awareness matches that of the
1557  * MergeAppend, then the MergeAppend is a no-op and will be discarded
1558  * later (in setrefs.c); otherwise we do the normal cost calculation.
1559  */
1560  if (list_length(subpaths) == 1 &&
1561  ((Path *) linitial(subpaths))->parallel_aware ==
1562  pathnode->path.parallel_aware)
1563  {
1564  pathnode->path.disabled_nodes = input_disabled_nodes;
1565  pathnode->path.startup_cost = input_startup_cost;
1566  pathnode->path.total_cost = input_total_cost;
1567  }
1568  else
1569  cost_merge_append(&pathnode->path, root,
1570  pathkeys, list_length(subpaths),
1571  input_disabled_nodes,
1572  input_startup_cost, input_total_cost,
1573  pathnode->path.rows);
1574 
1575  return pathnode;
1576 }
1577 
1578 /*
1579  * create_group_result_path
1580  * Creates a path representing a Result-and-nothing-else plan.
1581  *
1582  * This is only used for degenerate grouping cases, in which we know we
1583  * need to produce one result row, possibly filtered by a HAVING qual.
1584  */
1587  PathTarget *target, List *havingqual)
1588 {
1590 
1591  pathnode->path.pathtype = T_Result;
1592  pathnode->path.parent = rel;
1593  pathnode->path.pathtarget = target;
1594  pathnode->path.param_info = NULL; /* there are no other rels... */
1595  pathnode->path.parallel_aware = false;
1596  pathnode->path.parallel_safe = rel->consider_parallel;
1597  pathnode->path.parallel_workers = 0;
1598  pathnode->path.pathkeys = NIL;
1599  pathnode->quals = havingqual;
1600 
1601  /*
1602  * We can't quite use cost_resultscan() because the quals we want to
1603  * account for are not baserestrict quals of the rel. Might as well just
1604  * hack it here.
1605  */
1606  pathnode->path.rows = 1;
1607  pathnode->path.startup_cost = target->cost.startup;
1608  pathnode->path.total_cost = target->cost.startup +
1609  cpu_tuple_cost + target->cost.per_tuple;
1610 
1611  /*
1612  * Add cost of qual, if any --- but we ignore its selectivity, since our
1613  * rowcount estimate should be 1 no matter what the qual is.
1614  */
1615  if (havingqual)
1616  {
1617  QualCost qual_cost;
1618 
1619  cost_qual_eval(&qual_cost, havingqual, root);
1620  /* havingqual is evaluated once at startup */
1621  pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1622  pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1623  }
1624 
1625  return pathnode;
1626 }
1627 
1628 /*
1629  * create_material_path
1630  * Creates a path corresponding to a Material plan, returning the
1631  * pathnode.
1632  */
1633 MaterialPath *
1635 {
1636  MaterialPath *pathnode = makeNode(MaterialPath);
1637 
1638  Assert(subpath->parent == rel);
1639 
1640  pathnode->path.pathtype = T_Material;
1641  pathnode->path.parent = rel;
1642  pathnode->path.pathtarget = rel->reltarget;
1643  pathnode->path.param_info = subpath->param_info;
1644  pathnode->path.parallel_aware = false;
1645  pathnode->path.parallel_safe = rel->consider_parallel &&
1646  subpath->parallel_safe;
1647  pathnode->path.parallel_workers = subpath->parallel_workers;
1648  pathnode->path.pathkeys = subpath->pathkeys;
1649 
1650  pathnode->subpath = subpath;
1651 
1652  cost_material(&pathnode->path,
1653  subpath->disabled_nodes,
1654  subpath->startup_cost,
1655  subpath->total_cost,
1656  subpath->rows,
1657  subpath->pathtarget->width);
1658 
1659  return pathnode;
1660 }
1661 
1662 /*
1663  * create_memoize_path
1664  * Creates a path corresponding to a Memoize plan, returning the pathnode.
1665  */
1666 MemoizePath *
1668  List *param_exprs, List *hash_operators,
1669  bool singlerow, bool binary_mode, double calls)
1670 {
1671  MemoizePath *pathnode = makeNode(MemoizePath);
1672 
1673  Assert(subpath->parent == rel);
1674 
1675  pathnode->path.pathtype = T_Memoize;
1676  pathnode->path.parent = rel;
1677  pathnode->path.pathtarget = rel->reltarget;
1678  pathnode->path.param_info = subpath->param_info;
1679  pathnode->path.parallel_aware = false;
1680  pathnode->path.parallel_safe = rel->consider_parallel &&
1681  subpath->parallel_safe;
1682  pathnode->path.parallel_workers = subpath->parallel_workers;
1683  pathnode->path.pathkeys = subpath->pathkeys;
1684 
1685  pathnode->subpath = subpath;
1686  pathnode->hash_operators = hash_operators;
1687  pathnode->param_exprs = param_exprs;
1688  pathnode->singlerow = singlerow;
1689  pathnode->binary_mode = binary_mode;
1690  pathnode->calls = clamp_row_est(calls);
1691 
1692  /*
1693  * For now we set est_entries to 0. cost_memoize_rescan() does all the
1694  * hard work to determine how many cache entries there are likely to be,
1695  * so it seems best to leave it up to that function to fill this field in.
1696  * If left at 0, the executor will make a guess at a good value.
1697  */
1698  pathnode->est_entries = 0;
1699 
1700  /* we should not generate this path type when enable_memoize=false */
1702  pathnode->path.disabled_nodes = subpath->disabled_nodes;
1703 
1704  /*
1705  * Add a small additional charge for caching the first entry. All the
1706  * harder calculations for rescans are performed in cost_memoize_rescan().
1707  */
1708  pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
1709  pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
1710  pathnode->path.rows = subpath->rows;
1711 
1712  return pathnode;
1713 }
1714 
1715 /*
1716  * create_unique_path
1717  * Creates a path representing elimination of distinct rows from the
1718  * input data. Distinct-ness is defined according to the needs of the
1719  * semijoin represented by sjinfo. If it is not possible to identify
1720  * how to make the data unique, NULL is returned.
1721  *
1722  * If used at all, this is likely to be called repeatedly on the same rel;
1723  * and the input subpath should always be the same (the cheapest_total path
1724  * for the rel). So we cache the result.
1725  */
1726 UniquePath *
1728  SpecialJoinInfo *sjinfo)
1729 {
1730  UniquePath *pathnode;
1731  Path sort_path; /* dummy for result of cost_sort */
1732  Path agg_path; /* dummy for result of cost_agg */
1733  MemoryContext oldcontext;
1734  int numCols;
1735 
1736  /* Caller made a mistake if subpath isn't cheapest_total ... */
1738  Assert(subpath->parent == rel);
1739  /* ... or if SpecialJoinInfo is the wrong one */
1740  Assert(sjinfo->jointype == JOIN_SEMI);
1741  Assert(bms_equal(rel->relids, sjinfo->syn_righthand));
1742 
1743  /* If result already cached, return it */
1744  if (rel->cheapest_unique_path)
1745  return (UniquePath *) rel->cheapest_unique_path;
1746 
1747  /* If it's not possible to unique-ify, return NULL */
1748  if (!(sjinfo->semi_can_btree || sjinfo->semi_can_hash))
1749  return NULL;
1750 
1751  /*
1752  * When called during GEQO join planning, we are in a short-lived memory
1753  * context. We must make sure that the path and any subsidiary data
1754  * structures created for a baserel survive the GEQO cycle, else the
1755  * baserel is trashed for future GEQO cycles. On the other hand, when we
1756  * are creating those for a joinrel during GEQO, we don't want them to
1757  * clutter the main planning context. Upshot is that the best solution is
1758  * to explicitly allocate memory in the same context the given RelOptInfo
1759  * is in.
1760  */
1761  oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
1762 
1763  pathnode = makeNode(UniquePath);
1764 
1765  pathnode->path.pathtype = T_Unique;
1766  pathnode->path.parent = rel;
1767  pathnode->path.pathtarget = rel->reltarget;
1768  pathnode->path.param_info = subpath->param_info;
1769  pathnode->path.parallel_aware = false;
1770  pathnode->path.parallel_safe = rel->consider_parallel &&
1771  subpath->parallel_safe;
1772  pathnode->path.parallel_workers = subpath->parallel_workers;
1773 
1774  /*
1775  * Assume the output is unsorted, since we don't necessarily have pathkeys
1776  * to represent it. (This might get overridden below.)
1777  */
1778  pathnode->path.pathkeys = NIL;
1779 
1780  pathnode->subpath = subpath;
1781 
1782  /*
1783  * Under GEQO and when planning child joins, the sjinfo might be
1784  * short-lived, so we'd better make copies of data structures we extract
1785  * from it.
1786  */
1787  pathnode->in_operators = copyObject(sjinfo->semi_operators);
1788  pathnode->uniq_exprs = copyObject(sjinfo->semi_rhs_exprs);
1789 
1790  /*
1791  * If the input is a relation and it has a unique index that proves the
1792  * semi_rhs_exprs are unique, then we don't need to do anything. Note
1793  * that relation_has_unique_index_for automatically considers restriction
1794  * clauses for the rel, as well.
1795  */
1796  if (rel->rtekind == RTE_RELATION && sjinfo->semi_can_btree &&
1798  sjinfo->semi_rhs_exprs,
1799  sjinfo->semi_operators))
1800  {
1801  pathnode->umethod = UNIQUE_PATH_NOOP;
1802  pathnode->path.rows = rel->rows;
1803  pathnode->path.disabled_nodes = subpath->disabled_nodes;
1804  pathnode->path.startup_cost = subpath->startup_cost;
1805  pathnode->path.total_cost = subpath->total_cost;
1806  pathnode->path.pathkeys = subpath->pathkeys;
1807 
1808  rel->cheapest_unique_path = (Path *) pathnode;
1809 
1810  MemoryContextSwitchTo(oldcontext);
1811 
1812  return pathnode;
1813  }
1814 
1815  /*
1816  * If the input is a subquery whose output must be unique already, then we
1817  * don't need to do anything. The test for uniqueness has to consider
1818  * exactly which columns we are extracting; for example "SELECT DISTINCT
1819  * x,y" doesn't guarantee that x alone is distinct. So we cannot check for
1820  * this optimization unless semi_rhs_exprs consists only of simple Vars
1821  * referencing subquery outputs. (Possibly we could do something with
1822  * expressions in the subquery outputs, too, but for now keep it simple.)
1823  */
1824  if (rel->rtekind == RTE_SUBQUERY)
1825  {
1826  RangeTblEntry *rte = planner_rt_fetch(rel->relid, root);
1827 
1829  {
1830  List *sub_tlist_colnos;
1831 
1832  sub_tlist_colnos = translate_sub_tlist(sjinfo->semi_rhs_exprs,
1833  rel->relid);
1834 
1835  if (sub_tlist_colnos &&
1837  sub_tlist_colnos,
1838  sjinfo->semi_operators))
1839  {
1840  pathnode->umethod = UNIQUE_PATH_NOOP;
1841  pathnode->path.rows = rel->rows;
1842  pathnode->path.disabled_nodes = subpath->disabled_nodes;
1843  pathnode->path.startup_cost = subpath->startup_cost;
1844  pathnode->path.total_cost = subpath->total_cost;
1845  pathnode->path.pathkeys = subpath->pathkeys;
1846 
1847  rel->cheapest_unique_path = (Path *) pathnode;
1848 
1849  MemoryContextSwitchTo(oldcontext);
1850 
1851  return pathnode;
1852  }
1853  }
1854  }
1855 
1856  /* Estimate number of output rows */
1857  pathnode->path.rows = estimate_num_groups(root,
1858  sjinfo->semi_rhs_exprs,
1859  rel->rows,
1860  NULL,
1861  NULL);
1862  numCols = list_length(sjinfo->semi_rhs_exprs);
1863 
1864  if (sjinfo->semi_can_btree)
1865  {
1866  /*
1867  * Estimate cost for sort+unique implementation
1868  */
1869  cost_sort(&sort_path, root, NIL,
1870  subpath->disabled_nodes,
1871  subpath->total_cost,
1872  rel->rows,
1873  subpath->pathtarget->width,
1874  0.0,
1875  work_mem,
1876  -1.0);
1877 
1878  /*
1879  * Charge one cpu_operator_cost per comparison per input tuple. We
1880  * assume all columns get compared at most of the tuples. (XXX
1881  * probably this is an overestimate.) This should agree with
1882  * create_upper_unique_path.
1883  */
1884  sort_path.total_cost += cpu_operator_cost * rel->rows * numCols;
1885  }
1886 
1887  if (sjinfo->semi_can_hash)
1888  {
1889  /*
1890  * Estimate the overhead per hashtable entry at 64 bytes (same as in
1891  * planner.c).
1892  */
1893  int hashentrysize = subpath->pathtarget->width + 64;
1894 
1895  if (hashentrysize * pathnode->path.rows > get_hash_memory_limit())
1896  {
1897  /*
1898  * We should not try to hash. Hack the SpecialJoinInfo to
1899  * remember this, in case we come through here again.
1900  */
1901  sjinfo->semi_can_hash = false;
1902  }
1903  else
1904  cost_agg(&agg_path, root,
1905  AGG_HASHED, NULL,
1906  numCols, pathnode->path.rows,
1907  NIL,
1908  subpath->disabled_nodes,
1909  subpath->startup_cost,
1910  subpath->total_cost,
1911  rel->rows,
1912  subpath->pathtarget->width);
1913  }
1914 
1915  if (sjinfo->semi_can_btree && sjinfo->semi_can_hash)
1916  {
1917  if (agg_path.disabled_nodes < sort_path.disabled_nodes ||
1918  (agg_path.disabled_nodes == sort_path.disabled_nodes &&
1919  agg_path.total_cost < sort_path.total_cost))
1920  pathnode->umethod = UNIQUE_PATH_HASH;
1921  else
1922  pathnode->umethod = UNIQUE_PATH_SORT;
1923  }
1924  else if (sjinfo->semi_can_btree)
1925  pathnode->umethod = UNIQUE_PATH_SORT;
1926  else if (sjinfo->semi_can_hash)
1927  pathnode->umethod = UNIQUE_PATH_HASH;
1928  else
1929  {
1930  /* we can get here only if we abandoned hashing above */
1931  MemoryContextSwitchTo(oldcontext);
1932  return NULL;
1933  }
1934 
1935  if (pathnode->umethod == UNIQUE_PATH_HASH)
1936  {
1937  pathnode->path.disabled_nodes = agg_path.disabled_nodes;
1938  pathnode->path.startup_cost = agg_path.startup_cost;
1939  pathnode->path.total_cost = agg_path.total_cost;
1940  }
1941  else
1942  {
1943  pathnode->path.disabled_nodes = sort_path.disabled_nodes;
1944  pathnode->path.startup_cost = sort_path.startup_cost;
1945  pathnode->path.total_cost = sort_path.total_cost;
1946  }
1947 
1948  rel->cheapest_unique_path = (Path *) pathnode;
1949 
1950  MemoryContextSwitchTo(oldcontext);
1951 
1952  return pathnode;
1953 }
1954 
1955 /*
1956  * create_gather_merge_path
1957  *
1958  * Creates a path corresponding to a gather merge scan, returning
1959  * the pathnode.
1960  */
1963  PathTarget *target, List *pathkeys,
1964  Relids required_outer, double *rows)
1965 {
1967  int input_disabled_nodes = 0;
1968  Cost input_startup_cost = 0;
1969  Cost input_total_cost = 0;
1970 
1971  Assert(subpath->parallel_safe);
1972  Assert(pathkeys);
1973 
1974  /*
1975  * The subpath should guarantee that it is adequately ordered either by
1976  * adding an explicit sort node or by using presorted input. We cannot
1977  * add an explicit Sort node for the subpath in createplan.c on additional
1978  * pathkeys, because we can't guarantee the sort would be safe. For
1979  * example, expressions may be volatile or otherwise parallel unsafe.
1980  */
1981  if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1982  elog(ERROR, "gather merge input not sufficiently sorted");
1983 
1984  pathnode->path.pathtype = T_GatherMerge;
1985  pathnode->path.parent = rel;
1986  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1987  required_outer);
1988  pathnode->path.parallel_aware = false;
1989 
1990  pathnode->subpath = subpath;
1991  pathnode->num_workers = subpath->parallel_workers;
1992  pathnode->path.pathkeys = pathkeys;
1993  pathnode->path.pathtarget = target ? target : rel->reltarget;
1994 
1995  input_disabled_nodes += subpath->disabled_nodes;
1996  input_startup_cost += subpath->startup_cost;
1997  input_total_cost += subpath->total_cost;
1998 
1999  cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
2000  input_disabled_nodes, input_startup_cost,
2001  input_total_cost, rows);
2002 
2003  return pathnode;
2004 }
2005 
2006 /*
2007  * translate_sub_tlist - get subquery column numbers represented by tlist
2008  *
2009  * The given targetlist usually contains only Vars referencing the given relid.
2010  * Extract their varattnos (ie, the column numbers of the subquery) and return
2011  * as an integer List.
2012  *
2013  * If any of the tlist items is not a simple Var, we cannot determine whether
2014  * the subquery's uniqueness condition (if any) matches ours, so punt and
2015  * return NIL.
2016  */
2017 static List *
2018 translate_sub_tlist(List *tlist, int relid)
2019 {
2020  List *result = NIL;
2021  ListCell *l;
2022 
2023  foreach(l, tlist)
2024  {
2025  Var *var = (Var *) lfirst(l);
2026 
2027  if (!var || !IsA(var, Var) ||
2028  var->varno != relid)
2029  return NIL; /* punt */
2030 
2031  result = lappend_int(result, var->varattno);
2032  }
2033  return result;
2034 }
2035 
2036 /*
2037  * create_gather_path
2038  * Creates a path corresponding to a gather scan, returning the
2039  * pathnode.
2040  *
2041  * 'rows' may optionally be set to override row estimates from other sources.
2042  */
2043 GatherPath *
2045  PathTarget *target, Relids required_outer, double *rows)
2046 {
2047  GatherPath *pathnode = makeNode(GatherPath);
2048 
2049  Assert(subpath->parallel_safe);
2050 
2051  pathnode->path.pathtype = T_Gather;
2052  pathnode->path.parent = rel;
2053  pathnode->path.pathtarget = target;
2054  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2055  required_outer);
2056  pathnode->path.parallel_aware = false;
2057  pathnode->path.parallel_safe = false;
2058  pathnode->path.parallel_workers = 0;
2059  pathnode->path.pathkeys = NIL; /* Gather has unordered result */
2060 
2061  pathnode->subpath = subpath;
2062  pathnode->num_workers = subpath->parallel_workers;
2063  pathnode->single_copy = false;
2064 
2065  if (pathnode->num_workers == 0)
2066  {
2067  pathnode->path.pathkeys = subpath->pathkeys;
2068  pathnode->num_workers = 1;
2069  pathnode->single_copy = true;
2070  }
2071 
2072  cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
2073 
2074  return pathnode;
2075 }
2076 
2077 /*
2078  * create_subqueryscan_path
2079  * Creates a path corresponding to a scan of a subquery,
2080  * returning the pathnode.
2081  *
2082  * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
2083  * be trivial, ie just a fetch of all the subquery output columns in order.
2084  * While we could determine that here, the caller can usually do it more
2085  * efficiently (or at least amortize it over multiple calls).
2086  */
2089  bool trivial_pathtarget,
2090  List *pathkeys, Relids required_outer)
2091 {
2093 
2094  pathnode->path.pathtype = T_SubqueryScan;
2095  pathnode->path.parent = rel;
2096  pathnode->path.pathtarget = rel->reltarget;
2097  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2098  required_outer);
2099  pathnode->path.parallel_aware = false;
2100  pathnode->path.parallel_safe = rel->consider_parallel &&
2101  subpath->parallel_safe;
2102  pathnode->path.parallel_workers = subpath->parallel_workers;
2103  pathnode->path.pathkeys = pathkeys;
2104  pathnode->subpath = subpath;
2105 
2106  cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
2107  trivial_pathtarget);
2108 
2109  return pathnode;
2110 }
2111 
2112 /*
2113  * create_functionscan_path
2114  * Creates a path corresponding to a sequential scan of a function,
2115  * returning the pathnode.
2116  */
2117 Path *
2119  List *pathkeys, Relids required_outer)
2120 {
2121  Path *pathnode = makeNode(Path);
2122 
2123  pathnode->pathtype = T_FunctionScan;
2124  pathnode->parent = rel;
2125  pathnode->pathtarget = rel->reltarget;
2126  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2127  required_outer);
2128  pathnode->parallel_aware = false;
2129  pathnode->parallel_safe = rel->consider_parallel;
2130  pathnode->parallel_workers = 0;
2131  pathnode->pathkeys = pathkeys;
2132 
2133  cost_functionscan(pathnode, root, rel, pathnode->param_info);
2134 
2135  return pathnode;
2136 }
2137 
2138 /*
2139  * create_tablefuncscan_path
2140  * Creates a path corresponding to a sequential scan of a table function,
2141  * returning the pathnode.
2142  */
2143 Path *
2145  Relids required_outer)
2146 {
2147  Path *pathnode = makeNode(Path);
2148 
2149  pathnode->pathtype = T_TableFuncScan;
2150  pathnode->parent = rel;
2151  pathnode->pathtarget = rel->reltarget;
2152  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2153  required_outer);
2154  pathnode->parallel_aware = false;
2155  pathnode->parallel_safe = rel->consider_parallel;
2156  pathnode->parallel_workers = 0;
2157  pathnode->pathkeys = NIL; /* result is always unordered */
2158 
2159  cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
2160 
2161  return pathnode;
2162 }
2163 
2164 /*
2165  * create_valuesscan_path
2166  * Creates a path corresponding to a scan of a VALUES list,
2167  * returning the pathnode.
2168  */
2169 Path *
2171  Relids required_outer)
2172 {
2173  Path *pathnode = makeNode(Path);
2174 
2175  pathnode->pathtype = T_ValuesScan;
2176  pathnode->parent = rel;
2177  pathnode->pathtarget = rel->reltarget;
2178  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2179  required_outer);
2180  pathnode->parallel_aware = false;
2181  pathnode->parallel_safe = rel->consider_parallel;
2182  pathnode->parallel_workers = 0;
2183  pathnode->pathkeys = NIL; /* result is always unordered */
2184 
2185  cost_valuesscan(pathnode, root, rel, pathnode->param_info);
2186 
2187  return pathnode;
2188 }
2189 
2190 /*
2191  * create_ctescan_path
2192  * Creates a path corresponding to a scan of a non-self-reference CTE,
2193  * returning the pathnode.
2194  */
2195 Path *
2197  List *pathkeys, Relids required_outer)
2198 {
2199  Path *pathnode = makeNode(Path);
2200 
2201  pathnode->pathtype = T_CteScan;
2202  pathnode->parent = rel;
2203  pathnode->pathtarget = rel->reltarget;
2204  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2205  required_outer);
2206  pathnode->parallel_aware = false;
2207  pathnode->parallel_safe = rel->consider_parallel;
2208  pathnode->parallel_workers = 0;
2209  pathnode->pathkeys = pathkeys;
2210 
2211  cost_ctescan(pathnode, root, rel, pathnode->param_info);
2212 
2213  return pathnode;
2214 }
2215 
2216 /*
2217  * create_namedtuplestorescan_path
2218  * Creates a path corresponding to a scan of a named tuplestore, returning
2219  * the pathnode.
2220  */
2221 Path *
2223  Relids required_outer)
2224 {
2225  Path *pathnode = makeNode(Path);
2226 
2227  pathnode->pathtype = T_NamedTuplestoreScan;
2228  pathnode->parent = rel;
2229  pathnode->pathtarget = rel->reltarget;
2230  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2231  required_outer);
2232  pathnode->parallel_aware = false;
2233  pathnode->parallel_safe = rel->consider_parallel;
2234  pathnode->parallel_workers = 0;
2235  pathnode->pathkeys = NIL; /* result is always unordered */
2236 
2237  cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
2238 
2239  return pathnode;
2240 }
2241 
2242 /*
2243  * create_resultscan_path
2244  * Creates a path corresponding to a scan of an RTE_RESULT relation,
2245  * returning the pathnode.
2246  */
2247 Path *
2249  Relids required_outer)
2250 {
2251  Path *pathnode = makeNode(Path);
2252 
2253  pathnode->pathtype = T_Result;
2254  pathnode->parent = rel;
2255  pathnode->pathtarget = rel->reltarget;
2256  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2257  required_outer);
2258  pathnode->parallel_aware = false;
2259  pathnode->parallel_safe = rel->consider_parallel;
2260  pathnode->parallel_workers = 0;
2261  pathnode->pathkeys = NIL; /* result is always unordered */
2262 
2263  cost_resultscan(pathnode, root, rel, pathnode->param_info);
2264 
2265  return pathnode;
2266 }
2267 
2268 /*
2269  * create_worktablescan_path
2270  * Creates a path corresponding to a scan of a self-reference CTE,
2271  * returning the pathnode.
2272  */
2273 Path *
2275  Relids required_outer)
2276 {
2277  Path *pathnode = makeNode(Path);
2278 
2279  pathnode->pathtype = T_WorkTableScan;
2280  pathnode->parent = rel;
2281  pathnode->pathtarget = rel->reltarget;
2282  pathnode->param_info = get_baserel_parampathinfo(root, rel,
2283  required_outer);
2284  pathnode->parallel_aware = false;
2285  pathnode->parallel_safe = rel->consider_parallel;
2286  pathnode->parallel_workers = 0;
2287  pathnode->pathkeys = NIL; /* result is always unordered */
2288 
2289  /* Cost is the same as for a regular CTE scan */
2290  cost_ctescan(pathnode, root, rel, pathnode->param_info);
2291 
2292  return pathnode;
2293 }
2294 
2295 /*
2296  * create_foreignscan_path
2297  * Creates a path corresponding to a scan of a foreign base table,
2298  * returning the pathnode.
2299  *
2300  * This function is never called from core Postgres; rather, it's expected
2301  * to be called by the GetForeignPaths function of a foreign data wrapper.
2302  * We make the FDW supply all fields of the path, since we do not have any way
2303  * to calculate them in core. However, there is a usually-sane default for
2304  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2305  */
2306 ForeignPath *
2308  PathTarget *target,
2309  double rows, int disabled_nodes,
2310  Cost startup_cost, Cost total_cost,
2311  List *pathkeys,
2312  Relids required_outer,
2313  Path *fdw_outerpath,
2314  List *fdw_restrictinfo,
2315  List *fdw_private)
2316 {
2317  ForeignPath *pathnode = makeNode(ForeignPath);
2318 
2319  /* Historically some FDWs were confused about when to use this */
2320  Assert(IS_SIMPLE_REL(rel));
2321 
2322  pathnode->path.pathtype = T_ForeignScan;
2323  pathnode->path.parent = rel;
2324  pathnode->path.pathtarget = target ? target : rel->reltarget;
2325  pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2326  required_outer);
2327  pathnode->path.parallel_aware = false;
2328  pathnode->path.parallel_safe = rel->consider_parallel;
2329  pathnode->path.parallel_workers = 0;
2330  pathnode->path.rows = rows;
2331  pathnode->path.disabled_nodes = disabled_nodes;
2332  pathnode->path.startup_cost = startup_cost;
2333  pathnode->path.total_cost = total_cost;
2334  pathnode->path.pathkeys = pathkeys;
2335 
2336  pathnode->fdw_outerpath = fdw_outerpath;
2337  pathnode->fdw_restrictinfo = fdw_restrictinfo;
2338  pathnode->fdw_private = fdw_private;
2339 
2340  return pathnode;
2341 }
2342 
2343 /*
2344  * create_foreign_join_path
2345  * Creates a path corresponding to a scan of a foreign join,
2346  * returning the pathnode.
2347  *
2348  * This function is never called from core Postgres; rather, it's expected
2349  * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
2350  * We make the FDW supply all fields of the path, since we do not have any way
2351  * to calculate them in core. However, there is a usually-sane default for
2352  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2353  */
2354 ForeignPath *
2356  PathTarget *target,
2357  double rows, int disabled_nodes,
2358  Cost startup_cost, Cost total_cost,
2359  List *pathkeys,
2360  Relids required_outer,
2361  Path *fdw_outerpath,
2362  List *fdw_restrictinfo,
2363  List *fdw_private)
2364 {
2365  ForeignPath *pathnode = makeNode(ForeignPath);
2366 
2367  /*
2368  * We should use get_joinrel_parampathinfo to handle parameterized paths,
2369  * but the API of this function doesn't support it, and existing
2370  * extensions aren't yet trying to build such paths anyway. For the
2371  * moment just throw an error if someone tries it; eventually we should
2372  * revisit this.
2373  */
2374  if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
2375  elog(ERROR, "parameterized foreign joins are not supported yet");
2376 
2377  pathnode->path.pathtype = T_ForeignScan;
2378  pathnode->path.parent = rel;
2379  pathnode->path.pathtarget = target ? target : rel->reltarget;
2380  pathnode->path.param_info = NULL; /* XXX see above */
2381  pathnode->path.parallel_aware = false;
2382  pathnode->path.parallel_safe = rel->consider_parallel;
2383  pathnode->path.parallel_workers = 0;
2384  pathnode->path.rows = rows;
2385  pathnode->path.disabled_nodes = disabled_nodes;
2386  pathnode->path.startup_cost = startup_cost;
2387  pathnode->path.total_cost = total_cost;
2388  pathnode->path.pathkeys = pathkeys;
2389 
2390  pathnode->fdw_outerpath = fdw_outerpath;
2391  pathnode->fdw_restrictinfo = fdw_restrictinfo;
2392  pathnode->fdw_private = fdw_private;
2393 
2394  return pathnode;
2395 }
2396 
2397 /*
2398  * create_foreign_upper_path
2399  * Creates a path corresponding to an upper relation that's computed
2400  * directly by an FDW, returning the pathnode.
2401  *
2402  * This function is never called from core Postgres; rather, it's expected to
2403  * be called by the GetForeignUpperPaths function of a foreign data wrapper.
2404  * We make the FDW supply all fields of the path, since we do not have any way
2405  * to calculate them in core. However, there is a usually-sane default for
2406  * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2407  */
2408 ForeignPath *
2410  PathTarget *target,
2411  double rows, int disabled_nodes,
2412  Cost startup_cost, Cost total_cost,
2413  List *pathkeys,
2414  Path *fdw_outerpath,
2415  List *fdw_restrictinfo,
2416  List *fdw_private)
2417 {
2418  ForeignPath *pathnode = makeNode(ForeignPath);
2419 
2420  /*
2421  * Upper relations should never have any lateral references, since joining
2422  * is complete.
2423  */
2425 
2426  pathnode->path.pathtype = T_ForeignScan;
2427  pathnode->path.parent = rel;
2428  pathnode->path.pathtarget = target ? target : rel->reltarget;
2429  pathnode->path.param_info = NULL;
2430  pathnode->path.parallel_aware = false;
2431  pathnode->path.parallel_safe = rel->consider_parallel;
2432  pathnode->path.parallel_workers = 0;
2433  pathnode->path.rows = rows;
2434  pathnode->path.disabled_nodes = disabled_nodes;
2435  pathnode->path.startup_cost = startup_cost;
2436  pathnode->path.total_cost = total_cost;
2437  pathnode->path.pathkeys = pathkeys;
2438 
2439  pathnode->fdw_outerpath = fdw_outerpath;
2440  pathnode->fdw_restrictinfo = fdw_restrictinfo;
2441  pathnode->fdw_private = fdw_private;
2442 
2443  return pathnode;
2444 }
2445 
2446 /*
2447  * calc_nestloop_required_outer
2448  * Compute the required_outer set for a nestloop join path
2449  *
2450  * Note: when considering a child join, the inputs nonetheless use top-level
2451  * parent relids
2452  *
2453  * Note: result must not share storage with either input
2454  */
2455 Relids
2457  Relids outer_paramrels,
2458  Relids innerrelids,
2459  Relids inner_paramrels)
2460 {
2461  Relids required_outer;
2462 
2463  /* inner_path can require rels from outer path, but not vice versa */
2464  Assert(!bms_overlap(outer_paramrels, innerrelids));
2465  /* easy case if inner path is not parameterized */
2466  if (!inner_paramrels)
2467  return bms_copy(outer_paramrels);
2468  /* else, form the union ... */
2469  required_outer = bms_union(outer_paramrels, inner_paramrels);
2470  /* ... and remove any mention of now-satisfied outer rels */
2471  required_outer = bms_del_members(required_outer,
2472  outerrelids);
2473  return required_outer;
2474 }
2475 
2476 /*
2477  * calc_non_nestloop_required_outer
2478  * Compute the required_outer set for a merge or hash join path
2479  *
2480  * Note: result must not share storage with either input
2481  */
2482 Relids
2483 calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
2484 {
2485  Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2486  Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2487  Relids innerrelids PG_USED_FOR_ASSERTS_ONLY;
2488  Relids outerrelids PG_USED_FOR_ASSERTS_ONLY;
2489  Relids required_outer;
2490 
2491  /*
2492  * Any parameterization of the input paths refers to topmost parents of
2493  * the relevant relations, because reparameterize_path_by_child() hasn't
2494  * been called yet. So we must consider topmost parents of the relations
2495  * being joined, too, while checking for disallowed parameterization
2496  * cases.
2497  */
2498  if (inner_path->parent->top_parent_relids)
2499  innerrelids = inner_path->parent->top_parent_relids;
2500  else
2501  innerrelids = inner_path->parent->relids;
2502 
2503  if (outer_path->parent->top_parent_relids)
2504  outerrelids = outer_path->parent->top_parent_relids;
2505  else
2506  outerrelids = outer_path->parent->relids;
2507 
2508  /* neither path can require rels from the other */
2509  Assert(!bms_overlap(outer_paramrels, innerrelids));
2510  Assert(!bms_overlap(inner_paramrels, outerrelids));
2511  /* form the union ... */
2512  required_outer = bms_union(outer_paramrels, inner_paramrels);
2513  /* we do not need an explicit test for empty; bms_union gets it right */
2514  return required_outer;
2515 }
2516 
2517 /*
2518  * create_nestloop_path
2519  * Creates a pathnode corresponding to a nestloop join between two
2520  * relations.
2521  *
2522  * 'joinrel' is the join relation.
2523  * 'jointype' is the type of join required
2524  * 'workspace' is the result from initial_cost_nestloop
2525  * 'extra' contains various information about the join
2526  * 'outer_path' is the outer path
2527  * 'inner_path' is the inner path
2528  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2529  * 'pathkeys' are the path keys of the new join path
2530  * 'required_outer' is the set of required outer rels
2531  *
2532  * Returns the resulting path node.
2533  */
2534 NestPath *
2536  RelOptInfo *joinrel,
2537  JoinType jointype,
2538  JoinCostWorkspace *workspace,
2539  JoinPathExtraData *extra,
2540  Path *outer_path,
2541  Path *inner_path,
2542  List *restrict_clauses,
2543  List *pathkeys,
2544  Relids required_outer)
2545 {
2546  NestPath *pathnode = makeNode(NestPath);
2547  Relids inner_req_outer = PATH_REQ_OUTER(inner_path);
2548  Relids outerrelids;
2549 
2550  /*
2551  * Paths are parameterized by top-level parents, so run parameterization
2552  * tests on the parent relids.
2553  */
2554  if (outer_path->parent->top_parent_relids)
2555  outerrelids = outer_path->parent->top_parent_relids;
2556  else
2557  outerrelids = outer_path->parent->relids;
2558 
2559  /*
2560  * If the inner path is parameterized by the outer, we must drop any
2561  * restrict_clauses that are due to be moved into the inner path. We have
2562  * to do this now, rather than postpone the work till createplan time,
2563  * because the restrict_clauses list can affect the size and cost
2564  * estimates for this path. We detect such clauses by checking for serial
2565  * number match to clauses already enforced in the inner path.
2566  */
2567  if (bms_overlap(inner_req_outer, outerrelids))
2568  {
2569  Bitmapset *enforced_serials = get_param_path_clause_serials(inner_path);
2570  List *jclauses = NIL;
2571  ListCell *lc;
2572 
2573  foreach(lc, restrict_clauses)
2574  {
2575  RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2576 
2577  if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
2578  jclauses = lappend(jclauses, rinfo);
2579  }
2580  restrict_clauses = jclauses;
2581  }
2582 
2583  pathnode->jpath.path.pathtype = T_NestLoop;
2584  pathnode->jpath.path.parent = joinrel;
2585  pathnode->jpath.path.pathtarget = joinrel->reltarget;
2586  pathnode->jpath.path.param_info =
2588  joinrel,
2589  outer_path,
2590  inner_path,
2591  extra->sjinfo,
2592  required_outer,
2593  &restrict_clauses);
2594  pathnode->jpath.path.parallel_aware = false;
2595  pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2596  outer_path->parallel_safe && inner_path->parallel_safe;
2597  /* This is a foolish way to estimate parallel_workers, but for now... */
2598  pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2599  pathnode->jpath.path.pathkeys = pathkeys;
2600  pathnode->jpath.jointype = jointype;
2601  pathnode->jpath.inner_unique = extra->inner_unique;
2602  pathnode->jpath.outerjoinpath = outer_path;
2603  pathnode->jpath.innerjoinpath = inner_path;
2604  pathnode->jpath.joinrestrictinfo = restrict_clauses;
2605 
2606  final_cost_nestloop(root, pathnode, workspace, extra);
2607 
2608  return pathnode;
2609 }
2610 
2611 /*
2612  * create_mergejoin_path
2613  * Creates a pathnode corresponding to a mergejoin join between
2614  * two relations
2615  *
2616  * 'joinrel' is the join relation
2617  * 'jointype' is the type of join required
2618  * 'workspace' is the result from initial_cost_mergejoin
2619  * 'extra' contains various information about the join
2620  * 'outer_path' is the outer path
2621  * 'inner_path' is the inner path
2622  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2623  * 'pathkeys' are the path keys of the new join path
2624  * 'required_outer' is the set of required outer rels
2625  * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2626  * (this should be a subset of the restrict_clauses list)
2627  * 'outersortkeys' are the sort varkeys for the outer relation
2628  * 'innersortkeys' are the sort varkeys for the inner relation
2629  */
2630 MergePath *
2632  RelOptInfo *joinrel,
2633  JoinType jointype,
2634  JoinCostWorkspace *workspace,
2635  JoinPathExtraData *extra,
2636  Path *outer_path,
2637  Path *inner_path,
2638  List *restrict_clauses,
2639  List *pathkeys,
2640  Relids required_outer,
2641  List *mergeclauses,
2642  List *outersortkeys,
2643  List *innersortkeys)
2644 {
2645  MergePath *pathnode = makeNode(MergePath);
2646 
2647  pathnode->jpath.path.pathtype = T_MergeJoin;
2648  pathnode->jpath.path.parent = joinrel;
2649  pathnode->jpath.path.pathtarget = joinrel->reltarget;
2650  pathnode->jpath.path.param_info =
2652  joinrel,
2653  outer_path,
2654  inner_path,
2655  extra->sjinfo,
2656  required_outer,
2657  &restrict_clauses);
2658  pathnode->jpath.path.parallel_aware = false;
2659  pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2660  outer_path->parallel_safe && inner_path->parallel_safe;
2661  /* This is a foolish way to estimate parallel_workers, but for now... */
2662  pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2663  pathnode->jpath.path.pathkeys = pathkeys;
2664  pathnode->jpath.jointype = jointype;
2665  pathnode->jpath.inner_unique = extra->inner_unique;
2666  pathnode->jpath.outerjoinpath = outer_path;
2667  pathnode->jpath.innerjoinpath = inner_path;
2668  pathnode->jpath.joinrestrictinfo = restrict_clauses;
2669  pathnode->path_mergeclauses = mergeclauses;
2670  pathnode->outersortkeys = outersortkeys;
2671  pathnode->innersortkeys = innersortkeys;
2672  /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2673  /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2674 
2675  final_cost_mergejoin(root, pathnode, workspace, extra);
2676 
2677  return pathnode;
2678 }
2679 
2680 /*
2681  * create_hashjoin_path
2682  * Creates a pathnode corresponding to a hash join between two relations.
2683  *
2684  * 'joinrel' is the join relation
2685  * 'jointype' is the type of join required
2686  * 'workspace' is the result from initial_cost_hashjoin
2687  * 'extra' contains various information about the join
2688  * 'outer_path' is the cheapest outer path
2689  * 'inner_path' is the cheapest inner path
2690  * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
2691  * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2692  * 'required_outer' is the set of required outer rels
2693  * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2694  * (this should be a subset of the restrict_clauses list)
2695  */
2696 HashPath *
2698  RelOptInfo *joinrel,
2699  JoinType jointype,
2700  JoinCostWorkspace *workspace,
2701  JoinPathExtraData *extra,
2702  Path *outer_path,
2703  Path *inner_path,
2704  bool parallel_hash,
2705  List *restrict_clauses,
2706  Relids required_outer,
2707  List *hashclauses)
2708 {
2709  HashPath *pathnode = makeNode(HashPath);
2710 
2711  pathnode->jpath.path.pathtype = T_HashJoin;
2712  pathnode->jpath.path.parent = joinrel;
2713  pathnode->jpath.path.pathtarget = joinrel->reltarget;
2714  pathnode->jpath.path.param_info =
2716  joinrel,
2717  outer_path,
2718  inner_path,
2719  extra->sjinfo,
2720  required_outer,
2721  &restrict_clauses);
2722  pathnode->jpath.path.parallel_aware =
2723  joinrel->consider_parallel && parallel_hash;
2724  pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2725  outer_path->parallel_safe && inner_path->parallel_safe;
2726  /* This is a foolish way to estimate parallel_workers, but for now... */
2727  pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2728 
2729  /*
2730  * A hashjoin never has pathkeys, since its output ordering is
2731  * unpredictable due to possible batching. XXX If the inner relation is
2732  * small enough, we could instruct the executor that it must not batch,
2733  * and then we could assume that the output inherits the outer relation's
2734  * ordering, which might save a sort step. However there is considerable
2735  * downside if our estimate of the inner relation size is badly off. For
2736  * the moment we don't risk it. (Note also that if we wanted to take this
2737  * seriously, joinpath.c would have to consider many more paths for the
2738  * outer rel than it does now.)
2739  */
2740  pathnode->jpath.path.pathkeys = NIL;
2741  pathnode->jpath.jointype = jointype;
2742  pathnode->jpath.inner_unique = extra->inner_unique;
2743  pathnode->jpath.outerjoinpath = outer_path;
2744  pathnode->jpath.innerjoinpath = inner_path;
2745  pathnode->jpath.joinrestrictinfo = restrict_clauses;
2746  pathnode->path_hashclauses = hashclauses;
2747  /* final_cost_hashjoin will fill in pathnode->num_batches */
2748 
2749  final_cost_hashjoin(root, pathnode, workspace, extra);
2750 
2751  return pathnode;
2752 }
2753 
2754 /*
2755  * create_projection_path
2756  * Creates a pathnode that represents performing a projection.
2757  *
2758  * 'rel' is the parent relation associated with the result
2759  * 'subpath' is the path representing the source of data
2760  * 'target' is the PathTarget to be computed
2761  */
2764  RelOptInfo *rel,
2765  Path *subpath,
2766  PathTarget *target)
2767 {
2768  ProjectionPath *pathnode = makeNode(ProjectionPath);
2769  PathTarget *oldtarget;
2770 
2771  /*
2772  * We mustn't put a ProjectionPath directly above another; it's useless
2773  * and will confuse create_projection_plan. Rather than making sure all
2774  * callers handle that, let's implement it here, by stripping off any
2775  * ProjectionPath in what we're given. Given this rule, there won't be
2776  * more than one.
2777  */
2778  if (IsA(subpath, ProjectionPath))
2779  {
2780  ProjectionPath *subpp = (ProjectionPath *) subpath;
2781 
2782  Assert(subpp->path.parent == rel);
2783  subpath = subpp->subpath;
2785  }
2786 
2787  pathnode->path.pathtype = T_Result;
2788  pathnode->path.parent = rel;
2789  pathnode->path.pathtarget = target;
2790  /* For now, assume we are above any joins, so no parameterization */
2791  pathnode->path.param_info = NULL;
2792  pathnode->path.parallel_aware = false;
2793  pathnode->path.parallel_safe = rel->consider_parallel &&
2794  subpath->parallel_safe &&
2795  is_parallel_safe(root, (Node *) target->exprs);
2796  pathnode->path.parallel_workers = subpath->parallel_workers;
2797  /* Projection does not change the sort order */
2798  pathnode->path.pathkeys = subpath->pathkeys;
2799 
2800  pathnode->subpath = subpath;
2801 
2802  /*
2803  * We might not need a separate Result node. If the input plan node type
2804  * can project, we can just tell it to project something else. Or, if it
2805  * can't project but the desired target has the same expression list as
2806  * what the input will produce anyway, we can still give it the desired
2807  * tlist (possibly changing its ressortgroupref labels, but nothing else).
2808  * Note: in the latter case, create_projection_plan has to recheck our
2809  * conclusion; see comments therein.
2810  */
2811  oldtarget = subpath->pathtarget;
2813  equal(oldtarget->exprs, target->exprs))
2814  {
2815  /* No separate Result node needed */
2816  pathnode->dummypp = true;
2817 
2818  /*
2819  * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2820  */
2821  pathnode->path.rows = subpath->rows;
2822  pathnode->path.disabled_nodes = subpath->disabled_nodes;
2823  pathnode->path.startup_cost = subpath->startup_cost +
2824  (target->cost.startup - oldtarget->cost.startup);
2825  pathnode->path.total_cost = subpath->total_cost +
2826  (target->cost.startup - oldtarget->cost.startup) +
2827  (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2828  }
2829  else
2830  {
2831  /* We really do need the Result node */
2832  pathnode->dummypp = false;
2833 
2834  /*
2835  * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2836  * evaluating the tlist. There is no qual to worry about.
2837  */
2838  pathnode->path.rows = subpath->rows;
2839  pathnode->path.disabled_nodes = subpath->disabled_nodes;
2840  pathnode->path.startup_cost = subpath->startup_cost +
2841  target->cost.startup;
2842  pathnode->path.total_cost = subpath->total_cost +
2843  target->cost.startup +
2844  (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2845  }
2846 
2847  return pathnode;
2848 }
2849 
2850 /*
2851  * apply_projection_to_path
2852  * Add a projection step, or just apply the target directly to given path.
2853  *
2854  * This has the same net effect as create_projection_path(), except that if
2855  * a separate Result plan node isn't needed, we just replace the given path's
2856  * pathtarget with the desired one. This must be used only when the caller
2857  * knows that the given path isn't referenced elsewhere and so can be modified
2858  * in-place.
2859  *
2860  * If the input path is a GatherPath or GatherMergePath, we try to push the
2861  * new target down to its input as well; this is a yet more invasive
2862  * modification of the input path, which create_projection_path() can't do.
2863  *
2864  * Note that we mustn't change the source path's parent link; so when it is
2865  * add_path'd to "rel" things will be a bit inconsistent. So far that has
2866  * not caused any trouble.
2867  *
2868  * 'rel' is the parent relation associated with the result
2869  * 'path' is the path representing the source of data
2870  * 'target' is the PathTarget to be computed
2871  */
2872 Path *
2874  RelOptInfo *rel,
2875  Path *path,
2876  PathTarget *target)
2877 {
2878  QualCost oldcost;
2879 
2880  /*
2881  * If given path can't project, we might need a Result node, so make a
2882  * separate ProjectionPath.
2883  */
2884  if (!is_projection_capable_path(path))
2885  return (Path *) create_projection_path(root, rel, path, target);
2886 
2887  /*
2888  * We can just jam the desired tlist into the existing path, being sure to
2889  * update its cost estimates appropriately.
2890  */
2891  oldcost = path->pathtarget->cost;
2892  path->pathtarget = target;
2893 
2894  path->startup_cost += target->cost.startup - oldcost.startup;
2895  path->total_cost += target->cost.startup - oldcost.startup +
2896  (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2897 
2898  /*
2899  * If the path happens to be a Gather or GatherMerge path, we'd like to
2900  * arrange for the subpath to return the required target list so that
2901  * workers can help project. But if there is something that is not
2902  * parallel-safe in the target expressions, then we can't.
2903  */
2904  if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
2905  is_parallel_safe(root, (Node *) target->exprs))
2906  {
2907  /*
2908  * We always use create_projection_path here, even if the subpath is
2909  * projection-capable, so as to avoid modifying the subpath in place.
2910  * It seems unlikely at present that there could be any other
2911  * references to the subpath, but better safe than sorry.
2912  *
2913  * Note that we don't change the parallel path's cost estimates; it
2914  * might be appropriate to do so, to reflect the fact that the bulk of
2915  * the target evaluation will happen in workers.
2916  */
2917  if (IsA(path, GatherPath))
2918  {
2919  GatherPath *gpath = (GatherPath *) path;
2920 
2921  gpath->subpath = (Path *)
2923  gpath->subpath->parent,
2924  gpath->subpath,
2925  target);
2926  }
2927  else
2928  {
2929  GatherMergePath *gmpath = (GatherMergePath *) path;
2930 
2931  gmpath->subpath = (Path *)
2933  gmpath->subpath->parent,
2934  gmpath->subpath,
2935  target);
2936  }
2937  }
2938  else if (path->parallel_safe &&
2939  !is_parallel_safe(root, (Node *) target->exprs))
2940  {
2941  /*
2942  * We're inserting a parallel-restricted target list into a path
2943  * currently marked parallel-safe, so we have to mark it as no longer
2944  * safe.
2945  */
2946  path->parallel_safe = false;
2947  }
2948 
2949  return path;
2950 }
2951 
2952 /*
2953  * create_set_projection_path
2954  * Creates a pathnode that represents performing a projection that
2955  * includes set-returning functions.
2956  *
2957  * 'rel' is the parent relation associated with the result
2958  * 'subpath' is the path representing the source of data
2959  * 'target' is the PathTarget to be computed
2960  */
2963  RelOptInfo *rel,
2964  Path *subpath,
2965  PathTarget *target)
2966 {
2967  ProjectSetPath *pathnode = makeNode(ProjectSetPath);
2968  double tlist_rows;
2969  ListCell *lc;
2970 
2971  pathnode->path.pathtype = T_ProjectSet;
2972  pathnode->path.parent = rel;
2973  pathnode->path.pathtarget = target;
2974  /* For now, assume we are above any joins, so no parameterization */
2975  pathnode->path.param_info = NULL;
2976  pathnode->path.parallel_aware = false;
2977  pathnode->path.parallel_safe = rel->consider_parallel &&
2978  subpath->parallel_safe &&
2979  is_parallel_safe(root, (Node *) target->exprs);
2980  pathnode->path.parallel_workers = subpath->parallel_workers;
2981  /* Projection does not change the sort order XXX? */
2982  pathnode->path.pathkeys = subpath->pathkeys;
2983 
2984  pathnode->subpath = subpath;
2985 
2986  /*
2987  * Estimate number of rows produced by SRFs for each row of input; if
2988  * there's more than one in this node, use the maximum.
2989  */
2990  tlist_rows = 1;
2991  foreach(lc, target->exprs)
2992  {
2993  Node *node = (Node *) lfirst(lc);
2994  double itemrows;
2995 
2996  itemrows = expression_returns_set_rows(root, node);
2997  if (tlist_rows < itemrows)
2998  tlist_rows = itemrows;
2999  }
3000 
3001  /*
3002  * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
3003  * per input row, and half of cpu_tuple_cost for each added output row.
3004  * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
3005  * this estimate later.
3006  */
3007  pathnode->path.disabled_nodes = subpath->disabled_nodes;
3008  pathnode->path.rows = subpath->rows * tlist_rows;
3009  pathnode->path.startup_cost = subpath->startup_cost +
3010  target->cost.startup;
3011  pathnode->path.total_cost = subpath->total_cost +
3012  target->cost.startup +
3013  (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
3014  (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
3015 
3016  return pathnode;
3017 }
3018 
3019 /*
3020  * create_incremental_sort_path
3021  * Creates a pathnode that represents performing an incremental sort.
3022  *
3023  * 'rel' is the parent relation associated with the result
3024  * 'subpath' is the path representing the source of data
3025  * 'pathkeys' represents the desired sort order
3026  * 'presorted_keys' is the number of keys by which the input path is
3027  * already sorted
3028  * 'limit_tuples' is the estimated bound on the number of output tuples,
3029  * or -1 if no LIMIT or couldn't estimate
3030  */
3033  RelOptInfo *rel,
3034  Path *subpath,
3035  List *pathkeys,
3036  int presorted_keys,
3037  double limit_tuples)
3038 {
3040  SortPath *pathnode = &sort->spath;
3041 
3042  pathnode->path.pathtype = T_IncrementalSort;
3043  pathnode->path.parent = rel;
3044  /* Sort doesn't project, so use source path's pathtarget */
3045  pathnode->path.pathtarget = subpath->pathtarget;
3046  /* For now, assume we are above any joins, so no parameterization */
3047  pathnode->path.param_info = NULL;
3048  pathnode->path.parallel_aware = false;
3049  pathnode->path.parallel_safe = rel->consider_parallel &&
3050  subpath->parallel_safe;
3051  pathnode->path.parallel_workers = subpath->parallel_workers;
3052  pathnode->path.pathkeys = pathkeys;
3053 
3054  pathnode->subpath = subpath;
3055 
3056  cost_incremental_sort(&pathnode->path,
3057  root, pathkeys, presorted_keys,
3058  subpath->disabled_nodes,
3059  subpath->startup_cost,
3060  subpath->total_cost,
3061  subpath->rows,
3062  subpath->pathtarget->width,
3063  0.0, /* XXX comparison_cost shouldn't be 0? */
3064  work_mem, limit_tuples);
3065 
3066  sort->nPresortedCols = presorted_keys;
3067 
3068  return sort;
3069 }
3070 
3071 /*
3072  * create_sort_path
3073  * Creates a pathnode that represents performing an explicit sort.
3074  *
3075  * 'rel' is the parent relation associated with the result
3076  * 'subpath' is the path representing the source of data
3077  * 'pathkeys' represents the desired sort order
3078  * 'limit_tuples' is the estimated bound on the number of output tuples,
3079  * or -1 if no LIMIT or couldn't estimate
3080  */
3081 SortPath *
3083  RelOptInfo *rel,
3084  Path *subpath,
3085  List *pathkeys,
3086  double limit_tuples)
3087 {
3088  SortPath *pathnode = makeNode(SortPath);
3089 
3090  pathnode->path.pathtype = T_Sort;
3091  pathnode->path.parent = rel;
3092  /* Sort doesn't project, so use source path's pathtarget */
3093  pathnode->path.pathtarget = subpath->pathtarget;
3094  /* For now, assume we are above any joins, so no parameterization */
3095  pathnode->path.param_info = NULL;
3096  pathnode->path.parallel_aware = false;
3097  pathnode->path.parallel_safe = rel->consider_parallel &&
3098  subpath->parallel_safe;
3099  pathnode->path.parallel_workers = subpath->parallel_workers;
3100  pathnode->path.pathkeys = pathkeys;
3101 
3102  pathnode->subpath = subpath;
3103 
3104  cost_sort(&pathnode->path, root, pathkeys,
3105  subpath->disabled_nodes,
3106  subpath->total_cost,
3107  subpath->rows,
3108  subpath->pathtarget->width,
3109  0.0, /* XXX comparison_cost shouldn't be 0? */
3110  work_mem, limit_tuples);
3111 
3112  return pathnode;
3113 }
3114 
3115 /*
3116  * create_group_path
3117  * Creates a pathnode that represents performing grouping of presorted input
3118  *
3119  * 'rel' is the parent relation associated with the result
3120  * 'subpath' is the path representing the source of data
3121  * 'target' is the PathTarget to be computed
3122  * 'groupClause' is a list of SortGroupClause's representing the grouping
3123  * 'qual' is the HAVING quals if any
3124  * 'numGroups' is the estimated number of groups
3125  */
3126 GroupPath *
3128  RelOptInfo *rel,
3129  Path *subpath,
3130  List *groupClause,
3131  List *qual,
3132  double numGroups)
3133 {
3134  GroupPath *pathnode = makeNode(GroupPath);
3135  PathTarget *target = rel->reltarget;
3136 
3137  pathnode->path.pathtype = T_Group;
3138  pathnode->path.parent = rel;
3139  pathnode->path.pathtarget = target;
3140  /* For now, assume we are above any joins, so no parameterization */
3141  pathnode->path.param_info = NULL;
3142  pathnode->path.parallel_aware = false;
3143  pathnode->path.parallel_safe = rel->consider_parallel &&
3144  subpath->parallel_safe;
3145  pathnode->path.parallel_workers = subpath->parallel_workers;
3146  /* Group doesn't change sort ordering */
3147  pathnode->path.pathkeys = subpath->pathkeys;
3148 
3149  pathnode->subpath = subpath;
3150 
3151  pathnode->groupClause = groupClause;
3152  pathnode->qual = qual;
3153 
3154  cost_group(&pathnode->path, root,
3155  list_length(groupClause),
3156  numGroups,
3157  qual,
3158  subpath->disabled_nodes,
3159  subpath->startup_cost, subpath->total_cost,
3160  subpath->rows);
3161 
3162  /* add tlist eval cost for each output row */
3163  pathnode->path.startup_cost += target->cost.startup;
3164  pathnode->path.total_cost += target->cost.startup +
3165  target->cost.per_tuple * pathnode->path.rows;
3166 
3167  return pathnode;
3168 }
3169 
3170 /*
3171  * create_upper_unique_path
3172  * Creates a pathnode that represents performing an explicit Unique step
3173  * on presorted input.
3174  *
3175  * This produces a Unique plan node, but the use-case is so different from
3176  * create_unique_path that it doesn't seem worth trying to merge the two.
3177  *
3178  * 'rel' is the parent relation associated with the result
3179  * 'subpath' is the path representing the source of data
3180  * 'numCols' is the number of grouping columns
3181  * 'numGroups' is the estimated number of groups
3182  *
3183  * The input path must be sorted on the grouping columns, plus possibly
3184  * additional columns; so the first numCols pathkeys are the grouping columns
3185  */
3188  RelOptInfo *rel,
3189  Path *subpath,
3190  int numCols,
3191  double numGroups)
3192 {
3194 
3195  pathnode->path.pathtype = T_Unique;
3196  pathnode->path.parent = rel;
3197  /* Unique doesn't project, so use source path's pathtarget */
3198  pathnode->path.pathtarget = subpath->pathtarget;
3199  /* For now, assume we are above any joins, so no parameterization */
3200  pathnode->path.param_info = NULL;
3201  pathnode->path.parallel_aware = false;
3202  pathnode->path.parallel_safe = rel->consider_parallel &&
3203  subpath->parallel_safe;
3204  pathnode->path.parallel_workers = subpath->parallel_workers;
3205  /* Unique doesn't change the input ordering */
3206  pathnode->path.pathkeys = subpath->pathkeys;
3207 
3208  pathnode->subpath = subpath;
3209  pathnode->numkeys = numCols;
3210 
3211  /*
3212  * Charge one cpu_operator_cost per comparison per input tuple. We assume
3213  * all columns get compared at most of the tuples. (XXX probably this is
3214  * an overestimate.)
3215  */
3216  pathnode->path.disabled_nodes = subpath->disabled_nodes;
3217  pathnode->path.startup_cost = subpath->startup_cost;
3218  pathnode->path.total_cost = subpath->total_cost +
3219  cpu_operator_cost * subpath->rows * numCols;
3220  pathnode->path.rows = numGroups;
3221 
3222  return pathnode;
3223 }
3224 
3225 /*
3226  * create_agg_path
3227  * Creates a pathnode that represents performing aggregation/grouping
3228  *
3229  * 'rel' is the parent relation associated with the result
3230  * 'subpath' is the path representing the source of data
3231  * 'target' is the PathTarget to be computed
3232  * 'aggstrategy' is the Agg node's basic implementation strategy
3233  * 'aggsplit' is the Agg node's aggregate-splitting mode
3234  * 'groupClause' is a list of SortGroupClause's representing the grouping
3235  * 'qual' is the HAVING quals if any
3236  * 'aggcosts' contains cost info about the aggregate functions to be computed
3237  * 'numGroups' is the estimated number of groups (1 if not grouping)
3238  */
3239 AggPath *
3241  RelOptInfo *rel,
3242  Path *subpath,
3243  PathTarget *target,
3244  AggStrategy aggstrategy,
3245  AggSplit aggsplit,
3246  List *groupClause,
3247  List *qual,
3248  const AggClauseCosts *aggcosts,
3249  double numGroups)
3250 {
3251  AggPath *pathnode = makeNode(AggPath);
3252 
3253  pathnode->path.pathtype = T_Agg;
3254  pathnode->path.parent = rel;
3255  pathnode->path.pathtarget = target;
3256  /* For now, assume we are above any joins, so no parameterization */
3257  pathnode->path.param_info = NULL;
3258  pathnode->path.parallel_aware = false;
3259  pathnode->path.parallel_safe = rel->consider_parallel &&
3260  subpath->parallel_safe;
3261  pathnode->path.parallel_workers = subpath->parallel_workers;
3262 
3263  if (aggstrategy == AGG_SORTED)
3264  {
3265  /*
3266  * Attempt to preserve the order of the subpath. Additional pathkeys
3267  * may have been added in adjust_group_pathkeys_for_groupagg() to
3268  * support ORDER BY / DISTINCT aggregates. Pathkeys added there
3269  * belong to columns within the aggregate function, so we must strip
3270  * these additional pathkeys off as those columns are unavailable
3271  * above the aggregate node.
3272  */
3273  if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
3274  pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
3275  root->num_groupby_pathkeys);
3276  else
3277  pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
3278  }
3279  else
3280  pathnode->path.pathkeys = NIL; /* output is unordered */
3281 
3282  pathnode->subpath = subpath;
3283 
3284  pathnode->aggstrategy = aggstrategy;
3285  pathnode->aggsplit = aggsplit;
3286  pathnode->numGroups = numGroups;
3287  pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
3288  pathnode->groupClause = groupClause;
3289  pathnode->qual = qual;
3290 
3291  cost_agg(&pathnode->path, root,
3292  aggstrategy, aggcosts,
3293  list_length(groupClause), numGroups,
3294  qual,
3295  subpath->disabled_nodes,
3296  subpath->startup_cost, subpath->total_cost,
3297  subpath->rows, subpath->pathtarget->width);
3298 
3299  /* add tlist eval cost for each output row */
3300  pathnode->path.startup_cost += target->cost.startup;
3301  pathnode->path.total_cost += target->cost.startup +
3302  target->cost.per_tuple * pathnode->path.rows;
3303 
3304  return pathnode;
3305 }
3306 
3307 /*
3308  * create_groupingsets_path
3309  * Creates a pathnode that represents performing GROUPING SETS aggregation
3310  *
3311  * GroupingSetsPath represents sorted grouping with one or more grouping sets.
3312  * The input path's result must be sorted to match the last entry in
3313  * rollup_groupclauses.
3314  *
3315  * 'rel' is the parent relation associated with the result
3316  * 'subpath' is the path representing the source of data
3317  * 'target' is the PathTarget to be computed
3318  * 'having_qual' is the HAVING quals if any
3319  * 'rollups' is a list of RollupData nodes
3320  * 'agg_costs' contains cost info about the aggregate functions to be computed
3321  */
3324  RelOptInfo *rel,
3325  Path *subpath,
3326  List *having_qual,
3327  AggStrategy aggstrategy,
3328  List *rollups,
3329  const AggClauseCosts *agg_costs)
3330 {
3332  PathTarget *target = rel->reltarget;
3333  ListCell *lc;
3334  bool is_first = true;
3335  bool is_first_sort = true;
3336 
3337  /* The topmost generated Plan node will be an Agg */
3338  pathnode->path.pathtype = T_Agg;
3339  pathnode->path.parent = rel;
3340  pathnode->path.pathtarget = target;
3341  pathnode->path.param_info = subpath->param_info;
3342  pathnode->path.parallel_aware = false;
3343  pathnode->path.parallel_safe = rel->consider_parallel &&
3344  subpath->parallel_safe;
3345  pathnode->path.parallel_workers = subpath->parallel_workers;
3346  pathnode->subpath = subpath;
3347 
3348  /*
3349  * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
3350  * to AGG_HASHED, here if possible.
3351  */
3352  if (aggstrategy == AGG_SORTED &&
3353  list_length(rollups) == 1 &&
3354  ((RollupData *) linitial(rollups))->groupClause == NIL)
3355  aggstrategy = AGG_PLAIN;
3356 
3357  if (aggstrategy == AGG_MIXED &&
3358  list_length(rollups) == 1)
3359  aggstrategy = AGG_HASHED;
3360 
3361  /*
3362  * Output will be in sorted order by group_pathkeys if, and only if, there
3363  * is a single rollup operation on a non-empty list of grouping
3364  * expressions.
3365  */
3366  if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
3367  pathnode->path.pathkeys = root->group_pathkeys;
3368  else
3369  pathnode->path.pathkeys = NIL;
3370 
3371  pathnode->aggstrategy = aggstrategy;
3372  pathnode->rollups = rollups;
3373  pathnode->qual = having_qual;
3374  pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
3375 
3376  Assert(rollups != NIL);
3377  Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
3378  Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
3379 
3380  foreach(lc, rollups)
3381  {
3382  RollupData *rollup = lfirst(lc);
3383  List *gsets = rollup->gsets;
3384  int numGroupCols = list_length(linitial(gsets));
3385 
3386  /*
3387  * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
3388  * (already-sorted) input, and following ones do their own sort.
3389  *
3390  * In AGG_HASHED mode, there is one rollup for each grouping set.
3391  *
3392  * In AGG_MIXED mode, the first rollups are hashed, the first
3393  * non-hashed one takes the (already-sorted) input, and following ones
3394  * do their own sort.
3395  */
3396  if (is_first)
3397  {
3398  cost_agg(&pathnode->path, root,
3399  aggstrategy,
3400  agg_costs,
3401  numGroupCols,
3402  rollup->numGroups,
3403  having_qual,
3404  subpath->disabled_nodes,
3405  subpath->startup_cost,
3406  subpath->total_cost,
3407  subpath->rows,
3408  subpath->pathtarget->width);
3409  is_first = false;
3410  if (!rollup->is_hashed)
3411  is_first_sort = false;
3412  }
3413  else
3414  {
3415  Path sort_path; /* dummy for result of cost_sort */
3416  Path agg_path; /* dummy for result of cost_agg */
3417 
3418  if (rollup->is_hashed || is_first_sort)
3419  {
3420  /*
3421  * Account for cost of aggregation, but don't charge input
3422  * cost again
3423  */
3424  cost_agg(&agg_path, root,
3425  rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
3426  agg_costs,
3427  numGroupCols,
3428  rollup->numGroups,
3429  having_qual,
3430  0, 0.0, 0.0,
3431  subpath->rows,
3432  subpath->pathtarget->width);
3433  if (!rollup->is_hashed)
3434  is_first_sort = false;
3435  }
3436  else
3437  {
3438  /* Account for cost of sort, but don't charge input cost again */
3439  cost_sort(&sort_path, root, NIL, 0,
3440  0.0,
3441  subpath->rows,
3442  subpath->pathtarget->width,
3443  0.0,
3444  work_mem,
3445  -1.0);
3446 
3447  /* Account for cost of aggregation */
3448 
3449  cost_agg(&agg_path, root,
3450  AGG_SORTED,
3451  agg_costs,
3452  numGroupCols,
3453  rollup->numGroups,
3454  having_qual,
3455  sort_path.disabled_nodes,
3456  sort_path.startup_cost,
3457  sort_path.total_cost,
3458  sort_path.rows,
3459  subpath->pathtarget->width);
3460  }
3461 
3462  pathnode->path.disabled_nodes += agg_path.disabled_nodes;
3463  pathnode->path.total_cost += agg_path.total_cost;
3464  pathnode->path.rows += agg_path.rows;
3465  }
3466  }
3467 
3468  /* add tlist eval cost for each output row */
3469  pathnode->path.startup_cost += target->cost.startup;
3470  pathnode->path.total_cost += target->cost.startup +
3471  target->cost.per_tuple * pathnode->path.rows;
3472 
3473  return pathnode;
3474 }
3475 
3476 /*
3477  * create_minmaxagg_path
3478  * Creates a pathnode that represents computation of MIN/MAX aggregates
3479  *
3480  * 'rel' is the parent relation associated with the result
3481  * 'target' is the PathTarget to be computed
3482  * 'mmaggregates' is a list of MinMaxAggInfo structs
3483  * 'quals' is the HAVING quals if any
3484  */
3485 MinMaxAggPath *
3487  RelOptInfo *rel,
3488  PathTarget *target,
3489  List *mmaggregates,
3490  List *quals)
3491 {
3492  MinMaxAggPath *pathnode = makeNode(MinMaxAggPath);
3493  Cost initplan_cost;
3494  int initplan_disabled_nodes = 0;
3495  ListCell *lc;
3496 
3497  /* The topmost generated Plan node will be a Result */
3498  pathnode->path.pathtype = T_Result;
3499  pathnode->path.parent = rel;
3500  pathnode->path.pathtarget = target;
3501  /* For now, assume we are above any joins, so no parameterization */
3502  pathnode->path.param_info = NULL;
3503  pathnode->path.parallel_aware = false;
3504  pathnode->path.parallel_safe = true; /* might change below */
3505  pathnode->path.parallel_workers = 0;
3506  /* Result is one unordered row */
3507  pathnode->path.rows = 1;
3508  pathnode->path.pathkeys = NIL;
3509 
3510  pathnode->mmaggregates = mmaggregates;
3511  pathnode->quals = quals;
3512 
3513  /* Calculate cost of all the initplans, and check parallel safety */
3514  initplan_cost = 0;
3515  foreach(lc, mmaggregates)
3516  {
3517  MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3518 
3519  initplan_disabled_nodes += mminfo->path->disabled_nodes;
3520  initplan_cost += mminfo->pathcost;
3521  if (!mminfo->path->parallel_safe)
3522  pathnode->path.parallel_safe = false;
3523  }
3524 
3525  /* add tlist eval cost for each output row, plus cpu_tuple_cost */
3526  pathnode->path.disabled_nodes = initplan_disabled_nodes;
3527  pathnode->path.startup_cost = initplan_cost + target->cost.startup;
3528  pathnode->path.total_cost = initplan_cost + target->cost.startup +
3529  target->cost.per_tuple + cpu_tuple_cost;
3530 
3531  /*
3532  * Add cost of qual, if any --- but we ignore its selectivity, since our
3533  * rowcount estimate should be 1 no matter what the qual is.
3534  */
3535  if (quals)
3536  {
3537  QualCost qual_cost;
3538 
3539  cost_qual_eval(&qual_cost, quals, root);
3540  pathnode->path.startup_cost += qual_cost.startup;
3541  pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
3542  }
3543 
3544  /*
3545  * If the initplans were all parallel-safe, also check safety of the
3546  * target and quals. (The Result node itself isn't parallelizable, but if
3547  * we are in a subquery then it can be useful for the outer query to know
3548  * that this one is parallel-safe.)
3549  */
3550  if (pathnode->path.parallel_safe)
3551  pathnode->path.parallel_safe =
3552  is_parallel_safe(root, (Node *) target->exprs) &&
3553  is_parallel_safe(root, (Node *) quals);
3554 
3555  return pathnode;
3556 }
3557 
3558 /*
3559  * create_windowagg_path
3560  * Creates a pathnode that represents computation of window functions
3561  *
3562  * 'rel' is the parent relation associated with the result
3563  * 'subpath' is the path representing the source of data
3564  * 'target' is the PathTarget to be computed
3565  * 'windowFuncs' is a list of WindowFunc structs
3566  * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
3567  * 'winclause' is a WindowClause that is common to all the WindowFuncs
3568  * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
3569  * Must always be NIL when topwindow == false
3570  * 'topwindow' pass as true only for the top-level WindowAgg. False for all
3571  * intermediate WindowAggs.
3572  *
3573  * The input must be sorted according to the WindowClause's PARTITION keys
3574  * plus ORDER BY keys.
3575  */
3576 WindowAggPath *
3578  RelOptInfo *rel,
3579  Path *subpath,
3580  PathTarget *target,
3581  List *windowFuncs,
3582  List *runCondition,
3583  WindowClause *winclause,
3584  List *qual,
3585  bool topwindow)
3586 {
3587  WindowAggPath *pathnode = makeNode(WindowAggPath);
3588 
3589  /* qual can only be set for the topwindow */
3590  Assert(qual == NIL || topwindow);
3591 
3592  pathnode->path.pathtype = T_WindowAgg;
3593  pathnode->path.parent = rel;
3594  pathnode->path.pathtarget = target;
3595  /* For now, assume we are above any joins, so no parameterization */
3596  pathnode->path.param_info = NULL;
3597  pathnode->path.parallel_aware = false;
3598  pathnode->path.parallel_safe = rel->consider_parallel &&
3599  subpath->parallel_safe;
3600  pathnode->path.parallel_workers = subpath->parallel_workers;
3601  /* WindowAgg preserves the input sort order */
3602  pathnode->path.pathkeys = subpath->pathkeys;
3603 
3604  pathnode->subpath = subpath;
3605  pathnode->winclause = winclause;
3606  pathnode->qual = qual;
3607  pathnode->runCondition = runCondition;
3608  pathnode->topwindow = topwindow;
3609 
3610  /*
3611  * For costing purposes, assume that there are no redundant partitioning
3612  * or ordering columns; it's not worth the trouble to deal with that
3613  * corner case here. So we just pass the unmodified list lengths to
3614  * cost_windowagg.
3615  */
3616  cost_windowagg(&pathnode->path, root,
3617  windowFuncs,
3618  winclause,
3619  subpath->disabled_nodes,
3620  subpath->startup_cost,
3621  subpath->total_cost,
3622  subpath->rows);
3623 
3624  /* add tlist eval cost for each output row */
3625  pathnode->path.startup_cost += target->cost.startup;
3626  pathnode->path.total_cost += target->cost.startup +
3627  target->cost.per_tuple * pathnode->path.rows;
3628 
3629  return pathnode;
3630 }
3631 
3632 /*
3633  * create_setop_path
3634  * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3635  *
3636  * 'rel' is the parent relation associated with the result
3637  * 'subpath' is the path representing the source of data
3638  * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3639  * 'strategy' is the implementation strategy (sorted or hashed)
3640  * 'distinctList' is a list of SortGroupClause's representing the grouping
3641  * 'flagColIdx' is the column number where the flag column will be, if any
3642  * 'firstFlag' is the flag value for the first input relation when hashing;
3643  * or -1 when sorting
3644  * 'numGroups' is the estimated number of distinct groups
3645  * 'outputRows' is the estimated number of output rows
3646  */
3647 SetOpPath *
3649  RelOptInfo *rel,
3650  Path *subpath,
3651  SetOpCmd cmd,
3652  SetOpStrategy strategy,
3653  List *distinctList,
3654  AttrNumber flagColIdx,
3655  int firstFlag,
3656  double numGroups,
3657  double outputRows)
3658 {
3659  SetOpPath *pathnode = makeNode(SetOpPath);
3660 
3661  pathnode->path.pathtype = T_SetOp;
3662  pathnode->path.parent = rel;
3663  /* SetOp doesn't project, so use source path's pathtarget */
3664  pathnode->path.pathtarget = subpath->pathtarget;
3665  /* For now, assume we are above any joins, so no parameterization */
3666  pathnode->path.param_info = NULL;
3667  pathnode->path.parallel_aware = false;
3668  pathnode->path.parallel_safe = rel->consider_parallel &&
3669  subpath->parallel_safe;
3670  pathnode->path.parallel_workers = subpath->parallel_workers;
3671  /* SetOp preserves the input sort order if in sort mode */
3672  pathnode->path.pathkeys =
3673  (strategy == SETOP_SORTED) ? subpath->pathkeys : NIL;
3674 
3675  pathnode->subpath = subpath;
3676  pathnode->cmd = cmd;
3677  pathnode->strategy = strategy;
3678  pathnode->distinctList = distinctList;
3679  pathnode->flagColIdx = flagColIdx;
3680  pathnode->firstFlag = firstFlag;
3681  pathnode->numGroups = numGroups;
3682 
3683  /*
3684  * Charge one cpu_operator_cost per comparison per input tuple. We assume
3685  * all columns get compared at most of the tuples.
3686  */
3687  pathnode->path.disabled_nodes = subpath->disabled_nodes;
3688  pathnode->path.startup_cost = subpath->startup_cost;
3689  pathnode->path.total_cost = subpath->total_cost +
3690  cpu_operator_cost * subpath->rows * list_length(distinctList);
3691  pathnode->path.rows = outputRows;
3692 
3693  return pathnode;
3694 }
3695 
3696 /*
3697  * create_recursiveunion_path
3698  * Creates a pathnode that represents a recursive UNION node
3699  *
3700  * 'rel' is the parent relation associated with the result
3701  * 'leftpath' is the source of data for the non-recursive term
3702  * 'rightpath' is the source of data for the recursive term
3703  * 'target' is the PathTarget to be computed
3704  * 'distinctList' is a list of SortGroupClause's representing the grouping
3705  * 'wtParam' is the ID of Param representing work table
3706  * 'numGroups' is the estimated number of groups
3707  *
3708  * For recursive UNION ALL, distinctList is empty and numGroups is zero
3709  */
3712  RelOptInfo *rel,
3713  Path *leftpath,
3714  Path *rightpath,
3715  PathTarget *target,
3716  List *distinctList,
3717  int wtParam,
3718  double numGroups)
3719 {
3721 
3722  pathnode->path.pathtype = T_RecursiveUnion;
3723  pathnode->path.parent = rel;
3724  pathnode->path.pathtarget = target;
3725  /* For now, assume we are above any joins, so no parameterization */
3726  pathnode->path.param_info = NULL;
3727  pathnode->path.parallel_aware = false;
3728  pathnode->path.parallel_safe = rel->consider_parallel &&
3729  leftpath->parallel_safe && rightpath->parallel_safe;
3730  /* Foolish, but we'll do it like joins for now: */
3731  pathnode->path.parallel_workers = leftpath->parallel_workers;
3732  /* RecursiveUnion result is always unsorted */
3733  pathnode->path.pathkeys = NIL;
3734 
3735  pathnode->leftpath = leftpath;
3736  pathnode->rightpath = rightpath;
3737  pathnode->distinctList = distinctList;
3738  pathnode->wtParam = wtParam;
3739  pathnode->numGroups = numGroups;
3740 
3741  cost_recursive_union(&pathnode->path, leftpath, rightpath);
3742 
3743  return pathnode;
3744 }
3745 
3746 /*
3747  * create_lockrows_path
3748  * Creates a pathnode that represents acquiring row locks
3749  *
3750  * 'rel' is the parent relation associated with the result
3751  * 'subpath' is the path representing the source of data
3752  * 'rowMarks' is a list of PlanRowMark's
3753  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3754  */
3755 LockRowsPath *
3757  Path *subpath, List *rowMarks, int epqParam)
3758 {
3759  LockRowsPath *pathnode = makeNode(LockRowsPath);
3760 
3761  pathnode->path.pathtype = T_LockRows;
3762  pathnode->path.parent = rel;
3763  /* LockRows doesn't project, so use source path's pathtarget */
3764  pathnode->path.pathtarget = subpath->pathtarget;
3765  /* For now, assume we are above any joins, so no parameterization */
3766  pathnode->path.param_info = NULL;
3767  pathnode->path.parallel_aware = false;
3768  pathnode->path.parallel_safe = false;
3769  pathnode->path.parallel_workers = 0;
3770  pathnode->path.rows = subpath->rows;
3771 
3772  /*
3773  * The result cannot be assumed sorted, since locking might cause the sort
3774  * key columns to be replaced with new values.
3775  */
3776  pathnode->path.pathkeys = NIL;
3777 
3778  pathnode->subpath = subpath;
3779  pathnode->rowMarks = rowMarks;
3780  pathnode->epqParam = epqParam;
3781 
3782  /*
3783  * We should charge something extra for the costs of row locking and
3784  * possible refetches, but it's hard to say how much. For now, use
3785  * cpu_tuple_cost per row.
3786  */
3787  pathnode->path.disabled_nodes = subpath->disabled_nodes;
3788  pathnode->path.startup_cost = subpath->startup_cost;
3789  pathnode->path.total_cost = subpath->total_cost +
3790  cpu_tuple_cost * subpath->rows;
3791 
3792  return pathnode;
3793 }
3794 
3795 /*
3796  * create_modifytable_path
3797  * Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
3798  * mods
3799  *
3800  * 'rel' is the parent relation associated with the result
3801  * 'subpath' is a Path producing source data
3802  * 'operation' is the operation type
3803  * 'canSetTag' is true if we set the command tag/es_processed
3804  * 'nominalRelation' is the parent RT index for use of EXPLAIN
3805  * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
3806  * 'partColsUpdated' is true if any partitioning columns are being updated,
3807  * either from the target relation or a descendent partitioned table.
3808  * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3809  * 'updateColnosLists' is a list of UPDATE target column number lists
3810  * (one sublist per rel); or NIL if not an UPDATE
3811  * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3812  * 'returningLists' is a list of RETURNING tlists (one per rel)
3813  * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3814  * 'onconflict' is the ON CONFLICT clause, or NULL
3815  * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3816  * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
3817  * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
3818  */
3821  Path *subpath,
3822  CmdType operation, bool canSetTag,
3823  Index nominalRelation, Index rootRelation,
3824  bool partColsUpdated,
3825  List *resultRelations,
3826  List *updateColnosLists,
3827  List *withCheckOptionLists, List *returningLists,
3828  List *rowMarks, OnConflictExpr *onconflict,
3829  List *mergeActionLists, List *mergeJoinConditions,
3830  int epqParam)
3831 {
3833 
3834  Assert(operation == CMD_MERGE ||
3835  (operation == CMD_UPDATE ?
3836  list_length(resultRelations) == list_length(updateColnosLists) :
3837  updateColnosLists == NIL));
3838  Assert(withCheckOptionLists == NIL ||
3839  list_length(resultRelations) == list_length(withCheckOptionLists));
3840  Assert(returningLists == NIL ||
3841  list_length(resultRelations) == list_length(returningLists));
3842 
3843  pathnode->path.pathtype = T_ModifyTable;
3844  pathnode->path.parent = rel;
3845  /* pathtarget is not interesting, just make it minimally valid */
3846  pathnode->path.pathtarget = rel->reltarget;
3847  /* For now, assume we are above any joins, so no parameterization */
3848  pathnode->path.param_info = NULL;
3849  pathnode->path.parallel_aware = false;
3850  pathnode->path.parallel_safe = false;
3851  pathnode->path.parallel_workers = 0;
3852  pathnode->path.pathkeys = NIL;
3853 
3854  /*
3855  * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
3856  *
3857  * Currently, we don't charge anything extra for the actual table
3858  * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3859  * expressions if any. It would only be window dressing, since
3860  * ModifyTable is always a top-level node and there is no way for the
3861  * costs to change any higher-level planning choices. But we might want
3862  * to make it look better sometime.
3863  */
3864  pathnode->path.disabled_nodes = subpath->disabled_nodes;
3865  pathnode->path.startup_cost = subpath->startup_cost;
3866  pathnode->path.total_cost = subpath->total_cost;
3867  if (returningLists != NIL)
3868  {
3869  pathnode->path.rows = subpath->rows;
3870 
3871  /*
3872  * Set width to match the subpath output. XXX this is totally wrong:
3873  * we should return an average of the RETURNING tlist widths. But
3874  * it's what happened historically, and improving it is a task for
3875  * another day. (Again, it's mostly window dressing.)
3876  */
3877  pathnode->path.pathtarget->width = subpath->pathtarget->width;
3878  }
3879  else
3880  {
3881  pathnode->path.rows = 0;
3882  pathnode->path.pathtarget->width = 0;
3883  }
3884 
3885  pathnode->subpath = subpath;
3886  pathnode->operation = operation;
3887  pathnode->canSetTag = canSetTag;
3888  pathnode->nominalRelation = nominalRelation;
3889  pathnode->rootRelation = rootRelation;
3890  pathnode->partColsUpdated = partColsUpdated;
3891  pathnode->resultRelations = resultRelations;
3892  pathnode->updateColnosLists = updateColnosLists;
3893  pathnode->withCheckOptionLists = withCheckOptionLists;
3894  pathnode->returningLists = returningLists;
3895  pathnode->rowMarks = rowMarks;
3896  pathnode->onconflict = onconflict;
3897  pathnode->epqParam = epqParam;
3898  pathnode->mergeActionLists = mergeActionLists;
3899  pathnode->mergeJoinConditions = mergeJoinConditions;
3900 
3901  return pathnode;
3902 }
3903 
3904 /*
3905  * create_limit_path
3906  * Creates a pathnode that represents performing LIMIT/OFFSET
3907  *
3908  * In addition to providing the actual OFFSET and LIMIT expressions,
3909  * the caller must provide estimates of their values for costing purposes.
3910  * The estimates are as computed by preprocess_limit(), ie, 0 represents
3911  * the clause not being present, and -1 means it's present but we could
3912  * not estimate its value.
3913  *
3914  * 'rel' is the parent relation associated with the result
3915  * 'subpath' is the path representing the source of data
3916  * 'limitOffset' is the actual OFFSET expression, or NULL
3917  * 'limitCount' is the actual LIMIT expression, or NULL
3918  * 'offset_est' is the estimated value of the OFFSET expression
3919  * 'count_est' is the estimated value of the LIMIT expression
3920  */
3921 LimitPath *
3923  Path *subpath,
3924  Node *limitOffset, Node *limitCount,
3925  LimitOption limitOption,
3926  int64 offset_est, int64 count_est)
3927 {
3928  LimitPath *pathnode = makeNode(LimitPath);
3929 
3930  pathnode->path.pathtype = T_Limit;
3931  pathnode->path.parent = rel;
3932  /* Limit doesn't project, so use source path's pathtarget */
3933  pathnode->path.pathtarget = subpath->pathtarget;
3934  /* For now, assume we are above any joins, so no parameterization */
3935  pathnode->path.param_info = NULL;
3936  pathnode->path.parallel_aware = false;
3937  pathnode->path.parallel_safe = rel->consider_parallel &&
3938  subpath->parallel_safe;
3939  pathnode->path.parallel_workers = subpath->parallel_workers;
3940  pathnode->path.rows = subpath->rows;
3941  pathnode->path.disabled_nodes = subpath->disabled_nodes;
3942  pathnode->path.startup_cost = subpath->startup_cost;
3943  pathnode->path.total_cost = subpath->total_cost;
3944  pathnode->path.pathkeys = subpath->pathkeys;
3945  pathnode->subpath = subpath;
3946  pathnode->limitOffset = limitOffset;
3947  pathnode->limitCount = limitCount;
3948  pathnode->limitOption = limitOption;
3949 
3950  /*
3951  * Adjust the output rows count and costs according to the offset/limit.
3952  */
3953  adjust_limit_rows_costs(&pathnode->path.rows,
3954  &pathnode->path.startup_cost,
3955  &pathnode->path.total_cost,
3956  offset_est, count_est);
3957 
3958  return pathnode;
3959 }
3960 
3961 /*
3962  * adjust_limit_rows_costs
3963  * Adjust the size and cost estimates for a LimitPath node according to the
3964  * offset/limit.
3965  *
3966  * This is only a cosmetic issue if we are at top level, but if we are
3967  * building a subquery then it's important to report correct info to the outer
3968  * planner.
3969  *
3970  * When the offset or count couldn't be estimated, use 10% of the estimated
3971  * number of rows emitted from the subpath.
3972  *
3973  * XXX we don't bother to add eval costs of the offset/limit expressions
3974  * themselves to the path costs. In theory we should, but in most cases those
3975  * expressions are trivial and it's just not worth the trouble.
3976  */
3977 void
3978 adjust_limit_rows_costs(double *rows, /* in/out parameter */
3979  Cost *startup_cost, /* in/out parameter */
3980  Cost *total_cost, /* in/out parameter */
3981  int64 offset_est,
3982  int64 count_est)
3983 {
3984  double input_rows = *rows;
3985  Cost input_startup_cost = *startup_cost;
3986  Cost input_total_cost = *total_cost;
3987 
3988  if (offset_est != 0)
3989  {
3990  double offset_rows;
3991 
3992  if (offset_est > 0)
3993  offset_rows = (double) offset_est;
3994  else
3995  offset_rows = clamp_row_est(input_rows * 0.10);
3996  if (offset_rows > *rows)
3997  offset_rows = *rows;
3998  if (input_rows > 0)
3999  *startup_cost +=
4000  (input_total_cost - input_startup_cost)
4001  * offset_rows / input_rows;
4002  *rows -= offset_rows;
4003  if (*rows < 1)
4004  *rows = 1;
4005  }
4006 
4007  if (count_est != 0)
4008  {
4009  double count_rows;
4010 
4011  if (count_est > 0)
4012  count_rows = (double) count_est;
4013  else
4014  count_rows = clamp_row_est(input_rows * 0.10);
4015  if (count_rows > *rows)
4016  count_rows = *rows;
4017  if (input_rows > 0)
4018  *total_cost = *startup_cost +
4019  (input_total_cost - input_startup_cost)
4020  * count_rows / input_rows;
4021  *rows = count_rows;
4022  if (*rows < 1)
4023  *rows = 1;
4024  }
4025 }
4026 
4027 
4028 /*
4029  * reparameterize_path
4030  * Attempt to modify a Path to have greater parameterization
4031  *
4032  * We use this to attempt to bring all child paths of an appendrel to the
4033  * same parameterization level, ensuring that they all enforce the same set
4034  * of join quals (and thus that that parameterization can be attributed to
4035  * an append path built from such paths). Currently, only a few path types
4036  * are supported here, though more could be added at need. We return NULL
4037  * if we can't reparameterize the given path.
4038  *
4039  * Note: we intentionally do not pass created paths to add_path(); it would
4040  * possibly try to delete them on the grounds of being cost-inferior to the
4041  * paths they were made from, and we don't want that. Paths made here are
4042  * not necessarily of general-purpose usefulness, but they can be useful
4043  * as members of an append path.
4044  */
4045 Path *
4047  Relids required_outer,
4048  double loop_count)
4049 {
4050  RelOptInfo *rel = path->parent;
4051 
4052  /* Can only increase, not decrease, path's parameterization */
4053  if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
4054  return NULL;
4055  switch (path->pathtype)
4056  {
4057  case T_SeqScan:
4058  return create_seqscan_path(root, rel, required_outer, 0);
4059  case T_SampleScan:
4060  return (Path *) create_samplescan_path(root, rel, required_outer);
4061  case T_IndexScan:
4062  case T_IndexOnlyScan:
4063  {
4064  IndexPath *ipath = (IndexPath *) path;
4065  IndexPath *newpath = makeNode(IndexPath);
4066 
4067  /*
4068  * We can't use create_index_path directly, and would not want
4069  * to because it would re-compute the indexqual conditions
4070  * which is wasted effort. Instead we hack things a bit:
4071  * flat-copy the path node, revise its param_info, and redo
4072  * the cost estimate.
4073  */
4074  memcpy(newpath, ipath, sizeof(IndexPath));
4075  newpath->path.param_info =
4076  get_baserel_parampathinfo(root, rel, required_outer);
4077  cost_index(newpath, root, loop_count, false);
4078  return (Path *) newpath;
4079  }
4080  case T_BitmapHeapScan:
4081  {
4082  BitmapHeapPath *bpath = (BitmapHeapPath *) path;
4083 
4084  return (Path *) create_bitmap_heap_path(root,
4085  rel,
4086  bpath->bitmapqual,
4087  required_outer,
4088  loop_count, 0);
4089  }
4090  case T_SubqueryScan:
4091  {
4092  SubqueryScanPath *spath = (SubqueryScanPath *) path;
4093  Path *subpath = spath->subpath;
4094  bool trivial_pathtarget;
4095 
4096  /*
4097  * If existing node has zero extra cost, we must have decided
4098  * its target is trivial. (The converse is not true, because
4099  * it might have a trivial target but quals to enforce; but in
4100  * that case the new node will too, so it doesn't matter
4101  * whether we get the right answer here.)
4102  */
4103  trivial_pathtarget =
4104  (subpath->total_cost == spath->path.total_cost);
4105 
4106  return (Path *) create_subqueryscan_path(root,
4107  rel,
4108  subpath,
4109  trivial_pathtarget,
4110  spath->path.pathkeys,
4111  required_outer);
4112  }
4113  case T_Result:
4114  /* Supported only for RTE_RESULT scan paths */
4115  if (IsA(path, Path))
4116  return create_resultscan_path(root, rel, required_outer);
4117  break;
4118  case T_Append:
4119  {
4120  AppendPath *apath = (AppendPath *) path;
4121  List *childpaths = NIL;
4122  List *partialpaths = NIL;
4123  int i;
4124  ListCell *lc;
4125 
4126  /* Reparameterize the children */
4127  i = 0;
4128  foreach(lc, apath->subpaths)
4129  {
4130  Path *spath = (Path *) lfirst(lc);
4131 
4132  spath = reparameterize_path(root, spath,
4133  required_outer,
4134  loop_count);
4135  if (spath == NULL)
4136  return NULL;
4137  /* We have to re-split the regular and partial paths */
4138  if (i < apath->first_partial_path)
4139  childpaths = lappend(childpaths, spath);
4140  else
4141  partialpaths = lappend(partialpaths, spath);
4142  i++;
4143  }
4144  return (Path *)
4145  create_append_path(root, rel, childpaths, partialpaths,
4146  apath->path.pathkeys, required_outer,
4147  apath->path.parallel_workers,
4148  apath->path.parallel_aware,
4149  -1);
4150  }
4151  case T_Material:
4152  {
4153  MaterialPath *mpath = (MaterialPath *) path;
4154  Path *spath = mpath->subpath;
4155 
4156  spath = reparameterize_path(root, spath,
4157  required_outer,
4158  loop_count);
4159  if (spath == NULL)
4160  return NULL;
4161  return (Path *) create_material_path(rel, spath);
4162  }
4163  case T_Memoize:
4164  {
4165  MemoizePath *mpath = (MemoizePath *) path;
4166  Path *spath = mpath->subpath;
4167 
4168  spath = reparameterize_path(root, spath,
4169  required_outer,
4170  loop_count);
4171  if (spath == NULL)
4172  return NULL;
4173  return (Path *) create_memoize_path(root, rel,
4174  spath,
4175  mpath->param_exprs,
4176  mpath->hash_operators,
4177  mpath->singlerow,
4178  mpath->binary_mode,
4179  mpath->calls);
4180  }
4181  default:
4182  break;
4183  }
4184  return NULL;
4185 }
4186 
4187 /*
4188  * reparameterize_path_by_child
4189  * Given a path parameterized by the parent of the given child relation,
4190  * translate the path to be parameterized by the given child relation.
4191  *
4192  * Most fields in the path are not changed, but any expressions must be
4193  * adjusted to refer to the correct varnos, and any subpaths must be
4194  * recursively reparameterized. Other fields that refer to specific relids
4195  * also need adjustment.
4196  *
4197  * The cost, number of rows, width and parallel path properties depend upon
4198  * path->parent, which does not change during the translation. So we need
4199  * not change those.
4200  *
4201  * Currently, only a few path types are supported here, though more could be
4202  * added at need. We return NULL if we can't reparameterize the given path.
4203  *
4204  * Note that this function can change referenced RangeTblEntries, RelOptInfos
4205  * and IndexOptInfos as well as the Path structures. Therefore, it's only safe
4206  * to call during create_plan(), when we have made a final choice of which Path
4207  * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
4208  *
4209  * Keep this code in sync with path_is_reparameterizable_by_child()!
4210  */
4211 Path *
4213  RelOptInfo *child_rel)
4214 {
4215  Path *new_path;
4216  ParamPathInfo *new_ppi;
4217  ParamPathInfo *old_ppi;
4218  Relids required_outer;
4219 
4220 #define ADJUST_CHILD_ATTRS(node) \
4221  ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
4222  (Node *) (node), \
4223  child_rel, \
4224  child_rel->top_parent))
4225 
4226 #define REPARAMETERIZE_CHILD_PATH(path) \
4227 do { \
4228  (path) = reparameterize_path_by_child(root, (path), child_rel); \
4229  if ((path) == NULL) \
4230  return NULL; \
4231 } while(0)
4232 
4233 #define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
4234 do { \
4235  if ((pathlist) != NIL) \
4236  { \
4237  (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
4238  child_rel); \
4239  if ((pathlist) == NIL) \
4240  return NULL; \
4241  } \
4242 } while(0)
4243 
4244  /*
4245  * If the path is not parameterized by the parent of the given relation,
4246  * it doesn't need reparameterization.
4247  */
4248  if (!path->param_info ||
4249  !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4250  return path;
4251 
4252  /*
4253  * If possible, reparameterize the given path.
4254  *
4255  * This function is currently only applied to the inner side of a nestloop
4256  * join that is being partitioned by the partitionwise-join code. Hence,
4257  * we need only support path types that plausibly arise in that context.
4258  * (In particular, supporting sorted path types would be a waste of code
4259  * and cycles: even if we translated them here, they'd just lose in
4260  * subsequent cost comparisons.) If we do see an unsupported path type,
4261  * that just means we won't be able to generate a partitionwise-join plan
4262  * using that path type.
4263  */
4264  switch (nodeTag(path))
4265  {
4266  case T_Path:
4267  new_path = path;
4268  ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
4269  if (path->pathtype == T_SampleScan)
4270  {
4271  Index scan_relid = path->parent->relid;
4272  RangeTblEntry *rte;
4273 
4274  /* it should be a base rel with a tablesample clause... */
4275  Assert(scan_relid > 0);
4276  rte = planner_rt_fetch(scan_relid, root);
4277  Assert(rte->rtekind == RTE_RELATION);
4278  Assert(rte->tablesample != NULL);
4279 
4281  }
4282  break;
4283 
4284  case T_IndexPath:
4285  {
4286  IndexPath *ipath = (IndexPath *) path;
4287 
4290  new_path = (Path *) ipath;
4291  }
4292  break;
4293 
4294  case T_BitmapHeapPath:
4295  {
4296  BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4297 
4298  ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
4300  new_path = (Path *) bhpath;
4301  }
4302  break;
4303 
4304  case T_BitmapAndPath:
4305  {
4306  BitmapAndPath *bapath = (BitmapAndPath *) path;
4307 
4309  new_path = (Path *) bapath;
4310  }
4311  break;
4312 
4313  case T_BitmapOrPath:
4314  {
4315  BitmapOrPath *bopath = (BitmapOrPath *) path;
4316 
4318  new_path = (Path *) bopath;
4319  }
4320  break;
4321 
4322  case T_ForeignPath:
4323  {
4324  ForeignPath *fpath = (ForeignPath *) path;
4326 
4327  ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
4328  if (fpath->fdw_outerpath)
4330  if (fpath->fdw_restrictinfo)
4332 
4333  /* Hand over to FDW if needed. */
4334  rfpc_func =
4335  path->parent->fdwroutine->ReparameterizeForeignPathByChild;
4336  if (rfpc_func)
4337  fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
4338  child_rel);
4339  new_path = (Path *) fpath;
4340  }
4341  break;
4342 
4343  case T_CustomPath:
4344  {
4345  CustomPath *cpath = (CustomPath *) path;
4346 
4347  ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
4349  if (cpath->custom_restrictinfo)
4351  if (cpath->methods &&
4353  cpath->custom_private =
4355  cpath->custom_private,
4356  child_rel);
4357  new_path = (Path *) cpath;
4358  }
4359  break;
4360 
4361  case T_NestPath:
4362  {
4363  NestPath *npath = (NestPath *) path;
4364  JoinPath *jpath = (JoinPath *) npath;
4365 
4369  new_path = (Path *) npath;
4370  }
4371  break;
4372 
4373  case T_MergePath:
4374  {
4375  MergePath *mpath = (MergePath *) path;
4376  JoinPath *jpath = (JoinPath *) mpath;
4377 
4382  new_path = (Path *) mpath;
4383  }
4384  break;
4385 
4386  case T_HashPath:
4387  {
4388  HashPath *hpath = (HashPath *) path;
4389  JoinPath *jpath = (JoinPath *) hpath;
4390 
4395  new_path = (Path *) hpath;
4396  }
4397  break;
4398 
4399  case T_AppendPath:
4400  {
4401  AppendPath *apath = (AppendPath *) path;
4402 
4404  new_path = (Path *) apath;
4405  }
4406  break;
4407 
4408  case T_MaterialPath:
4409  {
4410  MaterialPath *mpath = (MaterialPath *) path;
4411 
4413  new_path = (Path *) mpath;
4414  }
4415  break;
4416 
4417  case T_MemoizePath:
4418  {
4419  MemoizePath *mpath = (MemoizePath *) path;
4420 
4423  new_path = (Path *) mpath;
4424  }
4425  break;
4426 
4427  case T_GatherPath:
4428  {
4429  GatherPath *gpath = (GatherPath *) path;
4430 
4432  new_path = (Path *) gpath;
4433  }
4434  break;
4435 
4436  default:
4437  /* We don't know how to reparameterize this path. */
4438  return NULL;
4439  }
4440 
4441  /*
4442  * Adjust the parameterization information, which refers to the topmost
4443  * parent. The topmost parent can be multiple levels away from the given
4444  * child, hence use multi-level expression adjustment routines.
4445  */
4446  old_ppi = new_path->param_info;
4447  required_outer =
4449  child_rel,
4450  child_rel->top_parent);
4451 
4452  /* If we already have a PPI for this parameterization, just return it */
4453  new_ppi = find_param_path_info(new_path->parent, required_outer);
4454 
4455  /*
4456  * If not, build a new one and link it to the list of PPIs. For the same
4457  * reason as explained in mark_dummy_rel(), allocate new PPI in the same
4458  * context the given RelOptInfo is in.
4459  */
4460  if (new_ppi == NULL)
4461  {
4462  MemoryContext oldcontext;
4463  RelOptInfo *rel = path->parent;
4464 
4465  oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
4466 
4467  new_ppi = makeNode(ParamPathInfo);
4468  new_ppi->ppi_req_outer = bms_copy(required_outer);
4469  new_ppi->ppi_rows = old_ppi->ppi_rows;
4470  new_ppi->ppi_clauses = old_ppi->ppi_clauses;
4471  ADJUST_CHILD_ATTRS(new_ppi->ppi_clauses);
4472  new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
4473  rel->ppilist = lappend(rel->ppilist, new_ppi);
4474 
4475  MemoryContextSwitchTo(oldcontext);
4476  }
4477  bms_free(required_outer);
4478 
4479  new_path->param_info = new_ppi;
4480 
4481  /*
4482  * Adjust the path target if the parent of the outer relation is
4483  * referenced in the targetlist. This can happen when only the parent of
4484  * outer relation is laterally referenced in this relation.
4485  */
4486  if (bms_overlap(path->parent->lateral_relids,
4487  child_rel->top_parent_relids))
4488  {
4489  new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
4490  ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
4491  }
4492 
4493  return new_path;
4494 }
4495 
4496 /*
4497  * path_is_reparameterizable_by_child
4498  * Given a path parameterized by the parent of the given child relation,
4499  * see if it can be translated to be parameterized by the child relation.
4500  *
4501  * This must return true if and only if reparameterize_path_by_child()
4502  * would succeed on this path. Currently it's sufficient to verify that
4503  * the path and all of its subpaths (if any) are of the types handled by
4504  * that function. However, subpaths that are not parameterized can be
4505  * disregarded since they won't require translation.
4506  */
4507 bool
4509 {
4510 #define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
4511 do { \
4512  if (!path_is_reparameterizable_by_child(path, child_rel)) \
4513  return false; \
4514 } while(0)
4515 
4516 #define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
4517 do { \
4518  if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
4519  return false; \
4520 } while(0)
4521 
4522  /*
4523  * If the path is not parameterized by the parent of the given relation,
4524  * it doesn't need reparameterization.
4525  */
4526  if (!path->param_info ||
4527  !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4528  return true;
4529 
4530  /*
4531  * Check that the path type is one that reparameterize_path_by_child() can
4532  * handle, and recursively check subpaths.
4533  */
4534  switch (nodeTag(path))
4535  {
4536  case T_Path:
4537  case T_IndexPath:
4538  break;
4539 
4540  case T_BitmapHeapPath:
4541  {
4542  BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4543 
4545  }
4546  break;
4547 
4548  case T_BitmapAndPath:
4549  {
4550  BitmapAndPath *bapath = (BitmapAndPath *) path;
4551 
4553  }
4554  break;
4555 
4556  case T_BitmapOrPath:
4557  {
4558  BitmapOrPath *bopath = (BitmapOrPath *) path;
4559 
4561  }
4562  break;
4563 
4564  case T_ForeignPath:
4565  {
4566  ForeignPath *fpath = (ForeignPath *) path;
4567 
4568  if (fpath->fdw_outerpath)
4570  }
4571  break;
4572 
4573  case T_CustomPath:
4574  {
4575  CustomPath *cpath = (CustomPath *) path;
4576 
4578  }
4579  break;
4580 
4581  case T_NestPath:
4582  case T_MergePath:
4583  case T_HashPath:
4584  {
4585  JoinPath *jpath = (JoinPath *) path;
4586 
4589  }
4590  break;
4591 
4592  case T_AppendPath:
4593  {
4594  AppendPath *apath = (AppendPath *) path;
4595 
4597  }
4598  break;
4599 
4600  case T_MaterialPath:
4601  {
4602  MaterialPath *mpath = (MaterialPath *) path;
4603 
4605  }
4606  break;
4607 
4608  case T_MemoizePath:
4609  {
4610  MemoizePath *mpath = (MemoizePath *) path;
4611 
4613  }
4614  break;
4615 
4616  case T_GatherPath:
4617  {
4618  GatherPath *gpath = (GatherPath *) path;
4619 
4621  }
4622  break;
4623 
4624  default:
4625  /* We don't know how to reparameterize this path. */
4626  return false;
4627  }
4628 
4629  return true;
4630 }
4631 
4632 /*
4633  * reparameterize_pathlist_by_child
4634  * Helper function to reparameterize a list of paths by given child rel.
4635  *
4636  * Returns NIL to indicate failure, so pathlist had better not be NIL.
4637  */
4638 static List *
4640  List *pathlist,
4641  RelOptInfo *child_rel)
4642 {
4643  ListCell *lc;
4644  List *result = NIL;
4645 
4646  foreach(lc, pathlist)
4647  {
4649  child_rel);
4650 
4651  if (path == NULL)
4652  {
4653  list_free(result);
4654  return NIL;
4655  }
4656 
4657  result = lappend(result, path);
4658  }
4659 
4660  return result;
4661 }
4662 
4663 /*
4664  * pathlist_is_reparameterizable_by_child
4665  * Helper function to check if a list of paths can be reparameterized.
4666  */
4667 static bool
4669 {
4670  ListCell *lc;
4671 
4672  foreach(lc, pathlist)
4673  {
4674  Path *path = (Path *) lfirst(lc);
4675 
4676  if (!path_is_reparameterizable_by_child(path, child_rel))
4677  return false;
4678  }
4679 
4680  return true;
4681 }
Datum sort(PG_FUNCTION_ARGS)
Definition: _int_op.c:195
bool query_is_distinct_for(Query *query, List *colnos, List *opids)
Definition: analyzejoins.c:983
bool query_supports_distinctness(Query *query)
Definition: analyzejoins.c:946
Relids adjust_child_relids_multilevel(PlannerInfo *root, Relids relids, RelOptInfo *childrel, RelOptInfo *parentrel)
Definition: appendinfo.c:591
int16 AttrNumber
Definition: attnum.h:21
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
BMS_Comparison bms_subset_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:445
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
int bms_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:183
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
BMS_Comparison
Definition: bitmapset.h:61
@ BMS_DIFFERENT
Definition: bitmapset.h:65
@ BMS_SUBSET1
Definition: bitmapset.h:63
@ BMS_EQUAL
Definition: bitmapset.h:62
@ BMS_SUBSET2
Definition: bitmapset.h:64
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:201
#define Assert(condition)
Definition: c.h:812
int64_t int64
Definition: c.h:482
#define unlikely(x)
Definition: c.h:330
unsigned int Index
Definition: c.h:568
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:752
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:288
double cpu_operator_cost
Definition: costsize.c:134
void final_cost_hashjoin(PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:4275
void final_cost_mergejoin(PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3837
bool enable_memoize
Definition: costsize.c:155
void cost_windowagg(Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3099
void cost_functionscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1538
void cost_material(Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2483
void cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
Definition: costsize.c:1023
void cost_tidrangescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
Definition: costsize.c:1363
void cost_agg(Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
Definition: costsize.c:2682
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2144
void final_cost_nestloop(PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3350
void cost_gather_merge(GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
Definition: costsize.c:485
void cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
Definition: costsize.c:1826
void cost_tablefuncscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1600
double cpu_tuple_cost
Definition: costsize.c:132
void cost_samplescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:370
void cost_gather(GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
Definition: costsize.c:446
void cost_namedtuplestorescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1750
void cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:295
void cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1657
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2000
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4732
void cost_group(Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3196
void cost_resultscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1788
void cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
Definition: costsize.c:1165
void cost_tidscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
Definition: costsize.c:1258
void cost_merge_append(Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
Definition: costsize.c:2432
double clamp_row_est(double nrows)
Definition: costsize.c:213
void cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
Definition: costsize.c:1457
void cost_append(AppendPath *apath)
Definition: costsize.c:2250
void cost_ctescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1708
void cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
Definition: costsize.c:1210
void cost_index(IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
Definition: costsize.c:560
bool is_projection_capable_path(Path *path)
Definition: createplan.c:7294
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
List *(* ReparameterizeForeignPathByChild_function)(PlannerInfo *root, List *fdw_private, RelOptInfo *child_rel)
Definition: fdwapi.h:182
int work_mem
Definition: globals.c:130
bool relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel, List *restrictlist, List *exprlist, List *oprlist)
Definition: indxpath.c:4149
int b
Definition: isn.c:69
int a
Definition: isn.c:68
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_insert_nth(List *list, int pos, void *datum)
Definition: list.c:439
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_copy_head(const List *oldlist, int len)
Definition: list.c:1593
List * lappend_int(List *list, int datum)
Definition: list.c:357
void list_free(List *list)
Definition: list.c:1546
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lcons(void *datum, List *list)
Definition: list.c:495
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:308
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:707
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3487
SetOpCmd
Definition: nodes.h:397
SetOpStrategy
Definition: nodes.h:405
@ SETOP_SORTED
Definition: nodes.h:406
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
double Cost
Definition: nodes.h:251
#define nodeTag(nodeptr)
Definition: nodes.h:133
CmdType
Definition: nodes.h:263
@ CMD_MERGE
Definition: nodes.h:269
@ CMD_UPDATE
Definition: nodes.h:266
AggStrategy
Definition: nodes.h:353
@ AGG_SORTED
Definition: nodes.h:355
@ AGG_HASHED
Definition: nodes.h:356
@ AGG_MIXED
Definition: nodes.h:357
@ AGG_PLAIN
Definition: nodes.h:354
AggSplit
Definition: nodes.h:375
LimitOption
Definition: nodes.h:430
#define makeNode(_type_)
Definition: nodes.h:155
JoinType
Definition: nodes.h:288
@ JOIN_SEMI
Definition: nodes.h:307
@ RTE_SUBQUERY
Definition: parsenodes.h:1018
@ RTE_RELATION
Definition: parsenodes.h:1017
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
PathKeysComparison compare_pathkeys(List *keys1, List *keys2)
Definition: pathkeys.c:304
#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist)
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1300
static int append_startup_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1453
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:3082
TidPath * create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals, Relids required_outer)
Definition: pathnode.c:1235
#define REPARAMETERIZE_CHILD_PATH(path)
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1586
NestPath * create_nestloop_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2535
Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
Definition: pathnode.c:2483
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, SpecialJoinInfo *sjinfo)
Definition: pathnode.c:1727
static PathCostComparison compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
Definition: pathnode.c:182
bool path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4508
IndexPath * create_index_path(PlannerInfo *root, IndexOptInfo *index, List *indexclauses, List *indexorderbys, List *indexorderbycols, List *pathkeys, ScanDirection indexscandir, bool indexonly, Relids required_outer, double loop_count, bool partial_path)
Definition: pathnode.c:1049
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3922
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2763
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1962
UpperUniquePath * create_upper_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:3187
static bool pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4668
#define STD_FUZZ_FACTOR
Definition: pathnode.c:47
Relids calc_nestloop_required_outer(Relids outerrelids, Relids outer_paramrels, Relids innerrelids, Relids inner_paramrels)
Definition: pathnode.c:2456
Path * create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2144
Path * create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2222
ForeignPath * create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2355
#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist)
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3756
Path * reparameterize_path_by_child(PlannerInfo *root, Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4212
MergePath * create_mergejoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer, List *mergeclauses, List *outersortkeys, List *innersortkeys)
Definition: pathnode.c:2631
static List * reparameterize_pathlist_by_child(PlannerInfo *root, List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4639
GatherPath * create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, Relids required_outer, double *rows)
Definition: pathnode.c:2044
Path * create_resultscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2248
Path * create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1008
MemoizePath * create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *param_exprs, List *hash_operators, bool singlerow, bool binary_mode, double calls)
Definition: pathnode.c:1667
MergeAppendPath * create_merge_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1471
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
Path * reparameterize_path(PlannerInfo *root, Path *path, Relids required_outer, double loop_count)
Definition: pathnode.c:4046
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2962
SubqueryScanPath * create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, bool trivial_pathtarget, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2088
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:795
MaterialPath * create_material_path(RelOptInfo *rel, Path *subpath)
Definition: pathnode.c:1634
Path * create_functionscan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2118
#define ADJUST_CHILD_ATTRS(node)
BitmapOrPath * create_bitmap_or_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1183
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:124
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:3127
PathCostComparison
Definition: pathnode.c:35
@ COSTS_EQUAL
Definition: pathnode.c:36
@ COSTS_BETTER1
Definition: pathnode.c:37
@ COSTS_BETTER2
Definition: pathnode.c:38
@ COSTS_DIFFERENT
Definition: pathnode.c:39
HashPath * create_hashjoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, bool parallel_hash, List *restrict_clauses, Relids required_outer, List *hashclauses)
Definition: pathnode.c:2697
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs)
Definition: pathnode.c:3323
SetOpPath * create_setop_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, SetOpCmd cmd, SetOpStrategy strategy, List *distinctList, AttrNumber flagColIdx, int firstFlag, double numGroups, double outputRows)
Definition: pathnode.c:3648
#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path)
RecursiveUnionPath * create_recursiveunion_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, PathTarget *target, List *distinctList, int wtParam, double numGroups)
Definition: pathnode.c:3711
IncrementalSortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:3032
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3486
Path * create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2274
#define CONSIDER_PATH_STARTUP_COST(p)
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, List *runCondition, WindowClause *winclause, List *qual, bool topwindow)
Definition: pathnode.c:3577
ForeignPath * create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2409
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:3240
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, bool partColsUpdated, List *resultRelations, List *updateColnosLists, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, List *mergeActionLists, List *mergeJoinConditions, int epqParam)
Definition: pathnode.c:3820
Path * create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2170
int compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
Definition: pathnode.c:69
bool add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer)
Definition: pathnode.c:688
ForeignPath * create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2307
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2873
static int append_total_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1431
BitmapAndPath * create_bitmap_and_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1131
TidRangePath * create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel, List *tidrangequals, Relids required_outer)
Definition: pathnode.c:1264
Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers)
Definition: pathnode.c:983
void adjust_limit_rows_costs(double *rows, Cost *startup_cost, Cost *total_cost, int64 offset_est, int64 count_est)
Definition: pathnode.c:3978
bool add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost total_cost, List *pathkeys)
Definition: pathnode.c:921
static List * translate_sub_tlist(List *tlist, int relid)
Definition: pathnode.c:2018
Path * create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2196
BitmapHeapPath * create_bitmap_heap_path(PlannerInfo *root, RelOptInfo *rel, Path *bitmapqual, Relids required_outer, double loop_count, int parallel_degree)
Definition: pathnode.c:1098
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:839
@ UNIQUE_PATH_SORT
Definition: pathnodes.h:2032
@ UNIQUE_PATH_NOOP
Definition: pathnodes.h:2030
@ UNIQUE_PATH_HASH
Definition: pathnodes.h:2031
CostSelector
Definition: pathnodes.h:37
@ TOTAL_COST
Definition: pathnodes.h:38
@ STARTUP_COST
Definition: pathnodes.h:38
#define PATH_REQ_OUTER(path)
Definition: pathnodes.h:1679
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:570
@ RELOPT_BASEREL
Definition: pathnodes.h:827
PathKeysComparison
Definition: paths.h:203
@ PATHKEYS_BETTER2
Definition: paths.h:206
@ PATHKEYS_BETTER1
Definition: paths.h:205
@ PATHKEYS_DIFFERENT
Definition: paths.h:207
@ PATHKEYS_EQUAL
Definition: paths.h:204
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define linitial(l)
Definition: pg_list.h:178
MemoryContextSwitchTo(old_ctx)
tree ctl root
Definition: radixtree.h:1888
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition: relnode.c:1545
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition: relnode.c:1856
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition: relnode.c:1659
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition: relnode.c:1889
Bitmapset * get_param_path_clause_serials(Path *path)
Definition: relnode.c:1910
ScanDirection
Definition: sdir.h:25
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset, EstimationInfo *estinfo)
Definition: selfuncs.c:3420
Size transitionSpace
Definition: pathnodes.h:62
Path * subpath
Definition: pathnodes.h:2264
Cardinality numGroups
Definition: pathnodes.h:2267
AggSplit aggsplit
Definition: pathnodes.h:2266
List * groupClause
Definition: pathnodes.h:2269
uint64 transitionSpace
Definition: pathnodes.h:2268
AggStrategy aggstrategy
Definition: pathnodes.h:2265
Path path
Definition: pathnodes.h:2263
List * qual
Definition: pathnodes.h:2270
int first_partial_path
Definition: pathnodes.h:1944
Cardinality limit_tuples
Definition: pathnodes.h:1945
List * subpaths
Definition: pathnodes.h:1942
List * bitmapquals
Definition: pathnodes.h:1807
Path * bitmapqual
Definition: pathnodes.h:1795
List * bitmapquals
Definition: pathnodes.h:1820
struct List *(* ReparameterizeCustomPathByChild)(PlannerInfo *root, List *custom_private, RelOptInfo *child_rel)
Definition: extensible.h:103
const struct CustomPathMethods * methods
Definition: pathnodes.h:1921
List * custom_paths
Definition: pathnodes.h:1918
List * custom_private
Definition: pathnodes.h:1920
List * custom_restrictinfo
Definition: pathnodes.h:1919
Path * fdw_outerpath
Definition: pathnodes.h:1880
List * fdw_restrictinfo
Definition: pathnodes.h:1881
List * fdw_private
Definition: pathnodes.h:1882
bool single_copy
Definition: pathnodes.h:2053
Path * subpath
Definition: pathnodes.h:2052
int num_workers
Definition: pathnodes.h:2054
List * qual
Definition: pathnodes.h:2238
List * groupClause
Definition: pathnodes.h:2237
Path * subpath
Definition: pathnodes.h:2236
Path path
Definition: pathnodes.h:2235
uint64 transitionSpace
Definition: pathnodes.h:2310
AggStrategy aggstrategy
Definition: pathnodes.h:2307
List * path_hashclauses
Definition: pathnodes.h:2162
JoinPath jpath
Definition: pathnodes.h:2161
List * indrestrictinfo
Definition: pathnodes.h:1184
List * indexclauses
Definition: pathnodes.h:1721
ScanDirection indexscandir
Definition: pathnodes.h:1724
Path path
Definition: pathnodes.h:1719
List * indexorderbycols
Definition: pathnodes.h:1723
List * indexorderbys
Definition: pathnodes.h:1722
IndexOptInfo * indexinfo
Definition: pathnodes.h:1720
SpecialJoinInfo * sjinfo
Definition: pathnodes.h:3243
Path * outerjoinpath
Definition: pathnodes.h:2084
Path * innerjoinpath
Definition: pathnodes.h:2085
JoinType jointype
Definition: pathnodes.h:2079
bool inner_unique
Definition: pathnodes.h:2081
List * joinrestrictinfo
Definition: pathnodes.h:2087
Path path
Definition: pathnodes.h:2410
Path * subpath
Definition: pathnodes.h:2411
LimitOption limitOption
Definition: pathnodes.h:2414
Node * limitOffset
Definition: pathnodes.h:2412
Node * limitCount
Definition: pathnodes.h:2413
Definition: pg_list.h:54
Path * subpath
Definition: pathnodes.h:2371
List * rowMarks
Definition: pathnodes.h:2372
Path * subpath
Definition: pathnodes.h:1992
bool singlerow
Definition: pathnodes.h:2006
List * hash_operators
Definition: pathnodes.h:2004
uint32 est_entries
Definition: pathnodes.h:2011
bool binary_mode
Definition: pathnodes.h:2008
Cardinality calls
Definition: pathnodes.h:2010
Path * subpath
Definition: pathnodes.h:2003
List * param_exprs
Definition: pathnodes.h:2005
Cardinality limit_tuples
Definition: pathnodes.h:1967
List * outersortkeys
Definition: pathnodes.h:2144
List * innersortkeys
Definition: pathnodes.h:2145
JoinPath jpath
Definition: pathnodes.h:2142
List * path_mergeclauses
Definition: pathnodes.h:2143
List * quals
Definition: pathnodes.h:2320
List * mmaggregates
Definition: pathnodes.h:2319
bool partColsUpdated
Definition: pathnodes.h:2391
List * returningLists
Definition: pathnodes.h:2395
List * resultRelations
Definition: pathnodes.h:2392
List * withCheckOptionLists
Definition: pathnodes.h:2394
List * mergeJoinConditions
Definition: pathnodes.h:2401
List * updateColnosLists
Definition: pathnodes.h:2393
OnConflictExpr * onconflict
Definition: pathnodes.h:2397
CmdType operation
Definition: pathnodes.h:2387
Index rootRelation
Definition: pathnodes.h:2390
Index nominalRelation
Definition: pathnodes.h:2389
List * mergeActionLists
Definition: pathnodes.h:2399
JoinPath jpath
Definition: pathnodes.h:2102
Definition: nodes.h:129
Cardinality ppi_rows
Definition: pathnodes.h:1589
List * ppi_clauses
Definition: pathnodes.h:1590
Bitmapset * ppi_serials
Definition: pathnodes.h:1591
Relids ppi_req_outer
Definition: pathnodes.h:1588
List * exprs
Definition: pathnodes.h:1542
QualCost cost
Definition: pathnodes.h:1548
List * pathkeys
Definition: pathnodes.h:1675
NodeTag pathtype
Definition: pathnodes.h:1635
Cardinality rows
Definition: pathnodes.h:1669
Cost startup_cost
Definition: pathnodes.h:1671
int parallel_workers
Definition: pathnodes.h:1666
int disabled_nodes
Definition: pathnodes.h:1670
Cost total_cost
Definition: pathnodes.h:1672
bool parallel_aware
Definition: pathnodes.h:1662
bool parallel_safe
Definition: pathnodes.h:1664
Path * subpath
Definition: pathnodes.h:2196
Path * subpath
Definition: pathnodes.h:2184
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
struct TableSampleClause * tablesample
Definition: parsenodes.h:1098
Query * subquery
Definition: parsenodes.h:1104
RTEKind rtekind
Definition: parsenodes.h:1047
Cardinality numGroups
Definition: pathnodes.h:2362
bool consider_param_startup
Definition: pathnodes.h:885
List * ppilist
Definition: pathnodes.h:899
Relids relids
Definition: pathnodes.h:871
struct PathTarget * reltarget
Definition: pathnodes.h:893
Index relid
Definition: pathnodes.h:918
bool consider_parallel
Definition: pathnodes.h:887
Relids top_parent_relids
Definition: pathnodes.h:1009
Relids lateral_relids
Definition: pathnodes.h:913
List * cheapest_parameterized_paths
Definition: pathnodes.h:904
List * pathlist
Definition: pathnodes.h:898
RelOptKind reloptkind
Definition: pathnodes.h:865
struct Path * cheapest_unique_path
Definition: pathnodes.h:903
struct Path * cheapest_startup_path
Definition: pathnodes.h:901
struct Path * cheapest_total_path
Definition: pathnodes.h:902
bool consider_startup
Definition: pathnodes.h:883
List * partial_pathlist
Definition: pathnodes.h:900
Cardinality rows
Definition: pathnodes.h:877
RTEKind rtekind
Definition: pathnodes.h:922
int rinfo_serial
Definition: pathnodes.h:2646
Cardinality numGroups
Definition: pathnodes.h:2294
List * gsets
Definitio