PostgreSQL Source Code git master
Loading...
Searching...
No Matches
pathnode.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * pathnode.c
4 * Routines to manipulate pathlists and create path nodes
5 *
6 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/util/pathnode.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/htup_details.h"
18#include "executor/nodeSetOp.h"
19#include "foreign/fdwapi.h"
20#include "miscadmin.h"
21#include "nodes/extensible.h"
23#include "optimizer/clauses.h"
24#include "optimizer/cost.h"
25#include "optimizer/optimizer.h"
26#include "optimizer/pathnode.h"
27#include "optimizer/paths.h"
28#include "optimizer/planmain.h"
29#include "optimizer/tlist.h"
30#include "parser/parsetree.h"
31#include "utils/memutils.h"
32#include "utils/selfuncs.h"
33
34typedef enum
35{
36 COSTS_EQUAL, /* path costs are fuzzily equal */
37 COSTS_BETTER1, /* first path is cheaper than second */
38 COSTS_BETTER2, /* second path is cheaper than first */
39 COSTS_DIFFERENT, /* neither path dominates the other on cost */
41
42/*
43 * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
44 * XXX is it worth making this user-controllable? It provides a tradeoff
45 * between planner runtime and the accuracy of path cost comparisons.
46 */
47#define STD_FUZZ_FACTOR 1.01
48
49static int append_total_cost_compare(const ListCell *a, const ListCell *b);
50static int append_startup_cost_compare(const ListCell *a, const ListCell *b);
52 List *pathlist,
56
57
58/*****************************************************************************
59 * MISC. PATH UTILITIES
60 *****************************************************************************/
61
62/*
63 * compare_path_costs
64 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
65 * or more expensive than path2 for the specified criterion.
66 */
67int
69{
70 /* Number of disabled nodes, if different, trumps all else. */
71 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
72 {
73 if (path1->disabled_nodes < path2->disabled_nodes)
74 return -1;
75 else
76 return +1;
77 }
78
80 {
81 if (path1->startup_cost < path2->startup_cost)
82 return -1;
83 if (path1->startup_cost > path2->startup_cost)
84 return +1;
85
86 /*
87 * If paths have the same startup cost (not at all unlikely), order
88 * them by total cost.
89 */
90 if (path1->total_cost < path2->total_cost)
91 return -1;
92 if (path1->total_cost > path2->total_cost)
93 return +1;
94 }
95 else
96 {
97 if (path1->total_cost < path2->total_cost)
98 return -1;
99 if (path1->total_cost > path2->total_cost)
100 return +1;
101
102 /*
103 * If paths have the same total cost, order them by startup cost.
104 */
105 if (path1->startup_cost < path2->startup_cost)
106 return -1;
107 if (path1->startup_cost > path2->startup_cost)
108 return +1;
109 }
110 return 0;
111}
112
113/*
114 * compare_fractional_path_costs
115 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
116 * or more expensive than path2 for fetching the specified fraction
117 * of the total tuples.
118 *
119 * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
120 * path with the cheaper total_cost.
121 */
122int
124 double fraction)
125{
126 Cost cost1,
127 cost2;
128
129 /* Number of disabled nodes, if different, trumps all else. */
130 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
131 {
132 if (path1->disabled_nodes < path2->disabled_nodes)
133 return -1;
134 else
135 return +1;
136 }
137
140 cost1 = path1->startup_cost +
141 fraction * (path1->total_cost - path1->startup_cost);
142 cost2 = path2->startup_cost +
143 fraction * (path2->total_cost - path2->startup_cost);
144 if (cost1 < cost2)
145 return -1;
146 if (cost1 > cost2)
147 return +1;
148 return 0;
149}
150
151/*
152 * compare_path_costs_fuzzily
153 * Compare the costs of two paths to see if either can be said to
154 * dominate the other.
155 *
156 * We use fuzzy comparisons so that add_path() can avoid keeping both of
157 * a pair of paths that really have insignificantly different cost.
158 *
159 * The fuzz_factor argument must be 1.0 plus delta, where delta is the
160 * fraction of the smaller cost that is considered to be a significant
161 * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
162 * be 1% of the smaller cost.
163 *
164 * The two paths are said to have "equal" costs if both startup and total
165 * costs are fuzzily the same. Path1 is said to be better than path2 if
166 * it has fuzzily better startup cost and fuzzily no worse total cost,
167 * or if it has fuzzily better total cost and fuzzily no worse startup cost.
168 * Path2 is better than path1 if the reverse holds. Finally, if one path
169 * is fuzzily better than the other on startup cost and fuzzily worse on
170 * total cost, we just say that their costs are "different", since neither
171 * dominates the other across the whole performance spectrum.
172 *
173 * This function also enforces a policy rule that paths for which the relevant
174 * one of parent->consider_startup and parent->consider_param_startup is false
175 * cannot survive comparisons solely on the grounds of good startup cost, so
176 * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
177 * (But if total costs are fuzzily equal, we compare startup costs anyway,
178 * in hopes of eliminating one path or the other.)
179 */
182{
183#define CONSIDER_PATH_STARTUP_COST(p) \
184 ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
185
186 /* Number of disabled nodes, if different, trumps all else. */
187 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
188 {
189 if (path1->disabled_nodes < path2->disabled_nodes)
190 return COSTS_BETTER1;
191 else
192 return COSTS_BETTER2;
193 }
194
195 /*
196 * Check total cost first since it's more likely to be different; many
197 * paths have zero startup cost.
198 */
199 if (path1->total_cost > path2->total_cost * fuzz_factor)
200 {
201 /* path1 fuzzily worse on total cost */
203 path2->startup_cost > path1->startup_cost * fuzz_factor)
204 {
205 /* ... but path2 fuzzily worse on startup, so DIFFERENT */
206 return COSTS_DIFFERENT;
207 }
208 /* else path2 dominates */
209 return COSTS_BETTER2;
210 }
211 if (path2->total_cost > path1->total_cost * fuzz_factor)
212 {
213 /* path2 fuzzily worse on total cost */
215 path1->startup_cost > path2->startup_cost * fuzz_factor)
216 {
217 /* ... but path1 fuzzily worse on startup, so DIFFERENT */
218 return COSTS_DIFFERENT;
219 }
220 /* else path1 dominates */
221 return COSTS_BETTER1;
222 }
223 /* fuzzily the same on total cost ... */
224 if (path1->startup_cost > path2->startup_cost * fuzz_factor)
225 {
226 /* ... but path1 fuzzily worse on startup, so path2 wins */
227 return COSTS_BETTER2;
228 }
229 if (path2->startup_cost > path1->startup_cost * fuzz_factor)
230 {
231 /* ... but path2 fuzzily worse on startup, so path1 wins */
232 return COSTS_BETTER1;
233 }
234 /* fuzzily the same on both costs */
235 return COSTS_EQUAL;
236
237#undef CONSIDER_PATH_STARTUP_COST
238}
239
240/*
241 * set_cheapest
242 * Find the minimum-cost paths from among a relation's paths,
243 * and save them in the rel's cheapest-path fields.
244 *
245 * cheapest_total_path is normally the cheapest-total-cost unparameterized
246 * path; but if there are no unparameterized paths, we assign it to be the
247 * best (cheapest least-parameterized) parameterized path. However, only
248 * unparameterized paths are considered candidates for cheapest_startup_path,
249 * so that will be NULL if there are no unparameterized paths.
250 *
251 * The cheapest_parameterized_paths list collects all parameterized paths
252 * that have survived the add_path() tournament for this relation. (Since
253 * add_path ignores pathkeys for a parameterized path, these will be paths
254 * that have best cost or best row count for their parameterization. We
255 * may also have both a parallel-safe and a non-parallel-safe path in some
256 * cases for the same parameterization in some cases, but this should be
257 * relatively rare since, most typically, all paths for the same relation
258 * will be parallel-safe or none of them will.)
259 *
260 * cheapest_parameterized_paths always includes the cheapest-total
261 * unparameterized path, too, if there is one; the users of that list find
262 * it more convenient if that's included.
263 *
264 * This is normally called only after we've finished constructing the path
265 * list for the rel node.
266 */
267void
269{
270 Path *cheapest_startup_path;
271 Path *cheapest_total_path;
274 ListCell *p;
275
277
278 if (parent_rel->pathlist == NIL)
279 elog(ERROR, "could not devise a query plan for the given query");
280
281 cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
283
284 foreach(p, parent_rel->pathlist)
285 {
286 Path *path = (Path *) lfirst(p);
287 int cmp;
288
289 if (path->param_info)
290 {
291 /* Parameterized path, so add it to parameterized_paths */
293
294 /*
295 * If we have an unparameterized cheapest-total, we no longer care
296 * about finding the best parameterized path, so move on.
297 */
298 if (cheapest_total_path)
299 continue;
300
301 /*
302 * Otherwise, track the best parameterized path, which is the one
303 * with least total cost among those of the minimum
304 * parameterization.
305 */
306 if (best_param_path == NULL)
307 best_param_path = path;
308 else
309 {
312 {
313 case BMS_EQUAL:
314 /* keep the cheaper one */
316 TOTAL_COST) < 0)
317 best_param_path = path;
318 break;
319 case BMS_SUBSET1:
320 /* new path is less-parameterized */
321 best_param_path = path;
322 break;
323 case BMS_SUBSET2:
324 /* old path is less-parameterized, keep it */
325 break;
326 case BMS_DIFFERENT:
327
328 /*
329 * This means that neither path has the least possible
330 * parameterization for the rel. We'll sit on the old
331 * path until something better comes along.
332 */
333 break;
334 }
335 }
336 }
337 else
338 {
339 /* Unparameterized path, so consider it for cheapest slots */
340 if (cheapest_total_path == NULL)
341 {
342 cheapest_startup_path = cheapest_total_path = path;
343 continue;
344 }
345
346 /*
347 * If we find two paths of identical costs, try to keep the
348 * better-sorted one. The paths might have unrelated sort
349 * orderings, in which case we can only guess which might be
350 * better to keep, but if one is superior then we definitely
351 * should keep that one.
352 */
353 cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
354 if (cmp > 0 ||
355 (cmp == 0 &&
356 compare_pathkeys(cheapest_startup_path->pathkeys,
357 path->pathkeys) == PATHKEYS_BETTER2))
358 cheapest_startup_path = path;
359
360 cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
361 if (cmp > 0 ||
362 (cmp == 0 &&
363 compare_pathkeys(cheapest_total_path->pathkeys,
364 path->pathkeys) == PATHKEYS_BETTER2))
365 cheapest_total_path = path;
366 }
367 }
368
369 /* Add cheapest unparameterized path, if any, to parameterized_paths */
370 if (cheapest_total_path)
371 parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
372
373 /*
374 * If there is no unparameterized path, use the best parameterized path as
375 * cheapest_total_path (but not as cheapest_startup_path).
376 */
377 if (cheapest_total_path == NULL)
378 cheapest_total_path = best_param_path;
379 Assert(cheapest_total_path != NULL);
380
381 parent_rel->cheapest_startup_path = cheapest_startup_path;
382 parent_rel->cheapest_total_path = cheapest_total_path;
383 parent_rel->cheapest_parameterized_paths = parameterized_paths;
384}
385
386/*
387 * add_path
388 * Consider a potential implementation path for the specified parent rel,
389 * and add it to the rel's pathlist if it is worthy of consideration.
390 *
391 * A path is worthy if it has a better sort order (better pathkeys) or
392 * cheaper cost (as defined below), or generates fewer rows, than any
393 * existing path that has the same or superset parameterization rels. We
394 * also consider parallel-safe paths more worthy than others.
395 *
396 * Cheaper cost can mean either a cheaper total cost or a cheaper startup
397 * cost; if one path is cheaper in one of these aspects and another is
398 * cheaper in the other, we keep both. However, when some path type is
399 * disabled (e.g. due to enable_seqscan=false), the number of times that
400 * a disabled path type is used is considered to be a higher-order
401 * component of the cost. Hence, if path A uses no disabled path type,
402 * and path B uses 1 or more disabled path types, A is cheaper, no matter
403 * what we estimate for the startup and total costs. The startup and total
404 * cost essentially act as a tiebreak when comparing paths that use equal
405 * numbers of disabled path nodes; but in practice this tiebreak is almost
406 * always used, since normally no path types are disabled.
407 *
408 * In addition to possibly adding new_path, we also remove from the rel's
409 * pathlist any old paths that are dominated by new_path --- that is,
410 * new_path is cheaper, at least as well ordered, generates no more rows,
411 * requires no outer rels not required by the old path, and is no less
412 * parallel-safe.
413 *
414 * In most cases, a path with a superset parameterization will generate
415 * fewer rows (since it has more join clauses to apply), so that those two
416 * figures of merit move in opposite directions; this means that a path of
417 * one parameterization can seldom dominate a path of another. But such
418 * cases do arise, so we make the full set of checks anyway.
419 *
420 * There are two policy decisions embedded in this function, along with
421 * its sibling add_path_precheck. First, we treat all parameterized paths
422 * as having NIL pathkeys, so that they cannot win comparisons on the
423 * basis of sort order. This is to reduce the number of parameterized
424 * paths that are kept; see discussion in src/backend/optimizer/README.
425 *
426 * Second, we only consider cheap startup cost to be interesting if
427 * parent_rel->consider_startup is true for an unparameterized path, or
428 * parent_rel->consider_param_startup is true for a parameterized one.
429 * Again, this allows discarding useless paths sooner.
430 *
431 * The pathlist is kept sorted by disabled_nodes and then by total_cost,
432 * with cheaper paths at the front. Within this routine, that's simply a
433 * speed hack: doing it that way makes it more likely that we will reject
434 * an inferior path after a few comparisons, rather than many comparisons.
435 * However, add_path_precheck relies on this ordering to exit early
436 * when possible.
437 *
438 * NOTE: discarded Path objects are immediately pfree'd to reduce planner
439 * memory consumption. We dare not try to free the substructure of a Path,
440 * since much of it may be shared with other Paths or the query tree itself;
441 * but just recycling discarded Path nodes is a very useful savings in
442 * a large join tree. We can recycle the List nodes of pathlist, too.
443 *
444 * As noted in optimizer/README, deleting a previously-accepted Path is
445 * safe because we know that Paths of this rel cannot yet be referenced
446 * from any other rel, such as a higher-level join. However, in some cases
447 * it is possible that a Path is referenced by another Path for its own
448 * rel; we must not delete such a Path, even if it is dominated by the new
449 * Path. Currently this occurs only for IndexPath objects, which may be
450 * referenced as children of BitmapHeapPaths as well as being paths in
451 * their own right. Hence, we don't pfree IndexPaths when rejecting them.
452 *
453 * 'parent_rel' is the relation entry to which the path corresponds.
454 * 'new_path' is a potential path for parent_rel.
455 *
456 * Returns nothing, but modifies parent_rel->pathlist.
457 */
458void
460{
461 bool accept_new = true; /* unless we find a superior old path */
462 int insert_at = 0; /* where to insert new item */
464 ListCell *p1;
465
466 /*
467 * This is a convenient place to check for query cancel --- no part of the
468 * planner goes very long without calling add_path().
469 */
471
472 /* Pretend parameterized paths have no pathkeys, per comment above */
473 new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
474
475 /*
476 * Loop to check proposed new path against old paths. Note it is possible
477 * for more than one old path to be tossed out because new_path dominates
478 * it.
479 */
480 foreach(p1, parent_rel->pathlist)
481 {
482 Path *old_path = (Path *) lfirst(p1);
483 bool remove_old = false; /* unless new proves superior */
487
488 /*
489 * Do a fuzzy cost comparison with standard fuzziness limit.
490 */
493
494 /*
495 * If the two paths compare differently for startup and total cost,
496 * then we want to keep both, and we can skip comparing pathkeys and
497 * required_outer rels. If they compare the same, proceed with the
498 * other comparisons. Row count is checked last. (We make the tests
499 * in this order because the cost comparison is most likely to turn
500 * out "different", and the pathkeys comparison next most likely. As
501 * explained above, row count very seldom makes a difference, so even
502 * though it's cheap to compare there's not much point in checking it
503 * earlier.)
504 */
506 {
507 /* Similarly check to see if either dominates on pathkeys */
509
510 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
514 {
515 switch (costcmp)
516 {
517 case COSTS_EQUAL:
521 {
522 if ((outercmp == BMS_EQUAL ||
523 outercmp == BMS_SUBSET1) &&
524 new_path->rows <= old_path->rows &&
525 new_path->parallel_safe >= old_path->parallel_safe)
526 remove_old = true; /* new dominates old */
527 }
528 else if (keyscmp == PATHKEYS_BETTER2)
529 {
530 if ((outercmp == BMS_EQUAL ||
531 outercmp == BMS_SUBSET2) &&
532 new_path->rows >= old_path->rows &&
533 new_path->parallel_safe <= old_path->parallel_safe)
534 accept_new = false; /* old dominates new */
535 }
536 else /* keyscmp == PATHKEYS_EQUAL */
537 {
538 if (outercmp == BMS_EQUAL)
539 {
540 /*
541 * Same pathkeys and outer rels, and fuzzily
542 * the same cost, so keep just one; to decide
543 * which, first check parallel-safety, then
544 * rows, then do a fuzzy cost comparison with
545 * very small fuzz limit. (We used to do an
546 * exact cost comparison, but that results in
547 * annoying platform-specific plan variations
548 * due to roundoff in the cost estimates.) If
549 * things are still tied, arbitrarily keep
550 * only the old path. Notice that we will
551 * keep only the old path even if the
552 * less-fuzzy comparison decides the startup
553 * and total costs compare differently.
554 */
555 if (new_path->parallel_safe >
556 old_path->parallel_safe)
557 remove_old = true; /* new dominates old */
558 else if (new_path->parallel_safe <
559 old_path->parallel_safe)
560 accept_new = false; /* old dominates new */
561 else if (new_path->rows < old_path->rows)
562 remove_old = true; /* new dominates old */
563 else if (new_path->rows > old_path->rows)
564 accept_new = false; /* old dominates new */
566 old_path,
567 1.0000000001) == COSTS_BETTER1)
568 remove_old = true; /* new dominates old */
569 else
570 accept_new = false; /* old equals or
571 * dominates new */
572 }
573 else if (outercmp == BMS_SUBSET1 &&
574 new_path->rows <= old_path->rows &&
575 new_path->parallel_safe >= old_path->parallel_safe)
576 remove_old = true; /* new dominates old */
577 else if (outercmp == BMS_SUBSET2 &&
578 new_path->rows >= old_path->rows &&
579 new_path->parallel_safe <= old_path->parallel_safe)
580 accept_new = false; /* old dominates new */
581 /* else different parameterizations, keep both */
582 }
583 break;
584 case COSTS_BETTER1:
586 {
589 if ((outercmp == BMS_EQUAL ||
590 outercmp == BMS_SUBSET1) &&
591 new_path->rows <= old_path->rows &&
592 new_path->parallel_safe >= old_path->parallel_safe)
593 remove_old = true; /* new dominates old */
594 }
595 break;
596 case COSTS_BETTER2:
598 {
601 if ((outercmp == BMS_EQUAL ||
602 outercmp == BMS_SUBSET2) &&
603 new_path->rows >= old_path->rows &&
604 new_path->parallel_safe <= old_path->parallel_safe)
605 accept_new = false; /* old dominates new */
606 }
607 break;
608 case COSTS_DIFFERENT:
609
610 /*
611 * can't get here, but keep this case to keep compiler
612 * quiet
613 */
614 break;
615 }
616 }
617 }
618
619 /*
620 * Remove current element from pathlist if dominated by new.
621 */
622 if (remove_old)
623 {
624 parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
625 p1);
626
627 /*
628 * Delete the data pointed-to by the deleted cell, if possible
629 */
630 if (!IsA(old_path, IndexPath))
632 }
633 else
634 {
635 /*
636 * new belongs after this old path if it has more disabled nodes
637 * or if it has the same number of nodes but a greater total cost
638 */
639 if (new_path->disabled_nodes > old_path->disabled_nodes ||
640 (new_path->disabled_nodes == old_path->disabled_nodes &&
641 new_path->total_cost >= old_path->total_cost))
643 }
644
645 /*
646 * If we found an old path that dominates new_path, we can quit
647 * scanning the pathlist; we will not add new_path, and we assume
648 * new_path cannot dominate any other elements of the pathlist.
649 */
650 if (!accept_new)
651 break;
652 }
653
654 if (accept_new)
655 {
656 /* Accept the new path: insert it at proper place in pathlist */
657 parent_rel->pathlist =
659 }
660 else
661 {
662 /* Reject and recycle the new path */
663 if (!IsA(new_path, IndexPath))
665 }
666}
667
668/*
669 * add_path_precheck
670 * Check whether a proposed new path could possibly get accepted.
671 * We assume we know the path's pathkeys and parameterization accurately,
672 * and have lower bounds for its costs.
673 *
674 * Note that we do not know the path's rowcount, since getting an estimate for
675 * that is too expensive to do before prechecking. We assume here that paths
676 * of a superset parameterization will generate fewer rows; if that holds,
677 * then paths with different parameterizations cannot dominate each other
678 * and so we can simply ignore existing paths of another parameterization.
679 * (In the infrequent cases where that rule of thumb fails, add_path will
680 * get rid of the inferior path.)
681 *
682 * At the time this is called, we haven't actually built a Path structure,
683 * so the required information has to be passed piecemeal.
684 */
685bool
687 Cost startup_cost, Cost total_cost,
688 List *pathkeys, Relids required_outer)
689{
691 bool consider_startup;
692 ListCell *p1;
693
694 /* Pretend parameterized paths have no pathkeys, per add_path policy */
695 new_path_pathkeys = required_outer ? NIL : pathkeys;
696
697 /* Decide whether new path's startup cost is interesting */
698 consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
699
700 foreach(p1, parent_rel->pathlist)
701 {
702 Path *old_path = (Path *) lfirst(p1);
704
705 /*
706 * Since the pathlist is sorted by disabled_nodes and then by
707 * total_cost, we can stop looking once we reach a path with more
708 * disabled nodes, or the same number of disabled nodes plus a
709 * total_cost larger than the new path's.
710 */
711 if (unlikely(old_path->disabled_nodes != disabled_nodes))
712 {
713 if (disabled_nodes < old_path->disabled_nodes)
714 break;
715 }
716 else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
717 break;
718
719 /*
720 * We are looking for an old_path with the same parameterization (and
721 * by assumption the same rowcount) that dominates the new path on
722 * pathkeys as well as both cost metrics. If we find one, we can
723 * reject the new path.
724 *
725 * Cost comparisons here should match compare_path_costs_fuzzily.
726 */
727 /* new path can win on startup cost only if consider_startup */
728 if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
729 !consider_startup)
730 {
731 /* new path loses on cost, so check pathkeys... */
733
734 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
737 if (keyscmp == PATHKEYS_EQUAL ||
739 {
740 /* new path does not win on pathkeys... */
742 {
743 /* Found an old path that dominates the new one */
744 return false;
745 }
746 }
747 }
748 }
749
750 return true;
751}
752
753/*
754 * add_partial_path
755 * Like add_path, our goal here is to consider whether a path is worthy
756 * of being kept around, but the considerations here are a bit different.
757 * A partial path is one which can be executed in any number of workers in
758 * parallel such that each worker will generate a subset of the path's
759 * overall result.
760 *
761 * As in add_path, the partial_pathlist is kept sorted with the cheapest
762 * total path in front. This is depended on by multiple places, which
763 * just take the front entry as the cheapest path without searching.
764 *
765 * We don't generate parameterized partial paths for several reasons. Most
766 * importantly, they're not safe to execute, because there's nothing to
767 * make sure that a parallel scan within the parameterized portion of the
768 * plan is running with the same value in every worker at the same time.
769 * Fortunately, it seems unlikely to be worthwhile anyway, because having
770 * each worker scan the entire outer relation and a subset of the inner
771 * relation will generally be a terrible plan. The inner (parameterized)
772 * side of the plan will be small anyway. There could be rare cases where
773 * this wins big - e.g. if join order constraints put a 1-row relation on
774 * the outer side of the topmost join with a parameterized plan on the inner
775 * side - but we'll have to be content not to handle such cases until
776 * somebody builds an executor infrastructure that can cope with them.
777 *
778 * Because we don't consider parameterized paths here, we also don't
779 * need to consider the row counts as a measure of quality: every path will
780 * produce the same number of rows. Neither do we need to consider startup
781 * costs: parallelism is only used for plans that will be run to completion.
782 * Therefore, this routine is much simpler than add_path: it needs to
783 * consider only disabled nodes, pathkeys and total cost.
784 *
785 * As with add_path, we pfree paths that are found to be dominated by
786 * another partial path; this requires that there be no other references to
787 * such paths yet. Hence, GatherPaths must not be created for a rel until
788 * we're done creating all partial paths for it. Unlike add_path, we don't
789 * take an exception for IndexPaths as partial index paths won't be
790 * referenced by partial BitmapHeapPaths.
791 */
792void
794{
795 bool accept_new = true; /* unless we find a superior old path */
796 int insert_at = 0; /* where to insert new item */
797 ListCell *p1;
798
799 /* Check for query cancel. */
801
802 /* Path to be added must be parallel safe. */
803 Assert(new_path->parallel_safe);
804
805 /* Relation should be OK for parallelism, too. */
806 Assert(parent_rel->consider_parallel);
807
808 /*
809 * As in add_path, throw out any paths which are dominated by the new
810 * path, but throw out the new path if some existing path dominates it.
811 */
812 foreach(p1, parent_rel->partial_pathlist)
813 {
814 Path *old_path = (Path *) lfirst(p1);
815 bool remove_old = false; /* unless new proves superior */
817
818 /* Compare pathkeys. */
819 keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
820
821 /* Unless pathkeys are incompatible, keep just one of the two paths. */
823 {
824 if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
825 {
826 if (new_path->disabled_nodes > old_path->disabled_nodes)
827 accept_new = false;
828 else
829 remove_old = true;
830 }
831 else if (new_path->total_cost > old_path->total_cost
833 {
834 /* New path costs more; keep it only if pathkeys are better. */
836 accept_new = false;
837 }
838 else if (old_path->total_cost > new_path->total_cost
840 {
841 /* Old path costs more; keep it only if pathkeys are better. */
843 remove_old = true;
844 }
845 else if (keyscmp == PATHKEYS_BETTER1)
846 {
847 /* Costs are about the same, new path has better pathkeys. */
848 remove_old = true;
849 }
850 else if (keyscmp == PATHKEYS_BETTER2)
851 {
852 /* Costs are about the same, old path has better pathkeys. */
853 accept_new = false;
854 }
855 else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
856 {
857 /* Pathkeys are the same, and the old path costs more. */
858 remove_old = true;
859 }
860 else
861 {
862 /*
863 * Pathkeys are the same, and new path isn't materially
864 * cheaper.
865 */
866 accept_new = false;
867 }
868 }
869
870 /*
871 * Remove current element from partial_pathlist if dominated by new.
872 */
873 if (remove_old)
874 {
875 parent_rel->partial_pathlist =
876 foreach_delete_current(parent_rel->partial_pathlist, p1);
878 }
879 else
880 {
881 /* new belongs after this old path if it has cost >= old's */
882 if (new_path->total_cost >= old_path->total_cost)
884 }
885
886 /*
887 * If we found an old path that dominates new_path, we can quit
888 * scanning the partial_pathlist; we will not add new_path, and we
889 * assume new_path cannot dominate any later path.
890 */
891 if (!accept_new)
892 break;
893 }
894
895 if (accept_new)
896 {
897 /* Accept the new path: insert it at proper place */
898 parent_rel->partial_pathlist =
899 list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
900 }
901 else
902 {
903 /* Reject and recycle the new path */
905 }
906}
907
908/*
909 * add_partial_path_precheck
910 * Check whether a proposed new partial path could possibly get accepted.
911 *
912 * Unlike add_path_precheck, we can ignore startup cost and parameterization,
913 * since they don't matter for partial paths (see add_partial_path). But
914 * we do want to make sure we don't add a partial path if there's already
915 * a complete path that dominates it, since in that case the proposed path
916 * is surely a loser.
917 */
918bool
920 Cost total_cost, List *pathkeys)
921{
922 ListCell *p1;
923
924 /*
925 * Our goal here is twofold. First, we want to find out whether this path
926 * is clearly inferior to some existing partial path. If so, we want to
927 * reject it immediately. Second, we want to find out whether this path
928 * is clearly superior to some existing partial path -- at least, modulo
929 * final cost computations. If so, we definitely want to consider it.
930 *
931 * Unlike add_path(), we always compare pathkeys here. This is because we
932 * expect partial_pathlist to be very short, and getting a definitive
933 * answer at this stage avoids the need to call add_path_precheck.
934 */
935 foreach(p1, parent_rel->partial_pathlist)
936 {
937 Path *old_path = (Path *) lfirst(p1);
939
940 keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
942 {
943 if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
945 return false;
946 if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
948 return true;
949 }
950 }
951
952 /*
953 * This path is neither clearly inferior to an existing partial path nor
954 * clearly good enough that it might replace one. Compare it to
955 * non-parallel plans. If it loses even before accounting for the cost of
956 * the Gather node, we should definitely reject it.
957 *
958 * Note that we pass the total_cost to add_path_precheck twice. This is
959 * because it's never advantageous to consider the startup cost of a
960 * partial path; the resulting plans, if run in parallel, will be run to
961 * completion.
962 */
963 if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
964 pathkeys, NULL))
965 return false;
966
967 return true;
968}
969
970
971/*****************************************************************************
972 * PATH NODE CREATION ROUTINES
973 *****************************************************************************/
974
975/*
976 * create_seqscan_path
977 * Creates a path corresponding to a sequential scan, returning the
978 * pathnode.
979 */
980Path *
982 Relids required_outer, int parallel_workers)
983{
985
986 pathnode->pathtype = T_SeqScan;
987 pathnode->parent = rel;
988 pathnode->pathtarget = rel->reltarget;
989 pathnode->param_info = get_baserel_parampathinfo(root, rel,
991 pathnode->parallel_aware = (parallel_workers > 0);
992 pathnode->parallel_safe = rel->consider_parallel;
993 pathnode->parallel_workers = parallel_workers;
994 pathnode->pathkeys = NIL; /* seqscan has unordered result */
995
996 cost_seqscan(pathnode, root, rel, pathnode->param_info);
997
998 return pathnode;
999}
1000
1001/*
1002 * create_samplescan_path
1003 * Creates a path node for a sampled table scan.
1004 */
1005Path *
1007{
1009
1010 pathnode->pathtype = T_SampleScan;
1011 pathnode->parent = rel;
1012 pathnode->pathtarget = rel->reltarget;
1013 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1015 pathnode->parallel_aware = false;
1016 pathnode->parallel_safe = rel->consider_parallel;
1017 pathnode->parallel_workers = 0;
1018 pathnode->pathkeys = NIL; /* samplescan has unordered result */
1019
1020 cost_samplescan(pathnode, root, rel, pathnode->param_info);
1021
1022 return pathnode;
1023}
1024
1025/*
1026 * create_index_path
1027 * Creates a path node for an index scan.
1028 *
1029 * 'index' is a usable index.
1030 * 'indexclauses' is a list of IndexClause nodes representing clauses
1031 * to be enforced as qual conditions in the scan.
1032 * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
1033 * to be used as index ordering operators in the scan.
1034 * 'indexorderbycols' is an integer list of index column numbers (zero based)
1035 * the ordering operators can be used with.
1036 * 'pathkeys' describes the ordering of the path.
1037 * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
1038 * 'indexonly' is true if an index-only scan is wanted.
1039 * 'required_outer' is the set of outer relids for a parameterized path.
1040 * 'loop_count' is the number of repetitions of the indexscan to factor into
1041 * estimates of caching behavior.
1042 * 'partial_path' is true if constructing a parallel index scan path.
1043 *
1044 * Returns the new path node.
1045 */
1046IndexPath *
1049 List *indexclauses,
1050 List *indexorderbys,
1051 List *indexorderbycols,
1052 List *pathkeys,
1053 ScanDirection indexscandir,
1054 bool indexonly,
1056 double loop_count,
1057 bool partial_path)
1058{
1060 RelOptInfo *rel = index->rel;
1061
1062 pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1063 pathnode->path.parent = rel;
1064 pathnode->path.pathtarget = rel->reltarget;
1065 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1067 pathnode->path.parallel_aware = false;
1068 pathnode->path.parallel_safe = rel->consider_parallel;
1069 pathnode->path.parallel_workers = 0;
1070 pathnode->path.pathkeys = pathkeys;
1071
1072 pathnode->indexinfo = index;
1073 pathnode->indexclauses = indexclauses;
1074 pathnode->indexorderbys = indexorderbys;
1075 pathnode->indexorderbycols = indexorderbycols;
1076 pathnode->indexscandir = indexscandir;
1077
1079
1080 return pathnode;
1081}
1082
1083/*
1084 * create_bitmap_heap_path
1085 * Creates a path node for a bitmap scan.
1086 *
1087 * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1088 * 'required_outer' is the set of outer relids for a parameterized path.
1089 * 'loop_count' is the number of repetitions of the indexscan to factor into
1090 * estimates of caching behavior.
1091 *
1092 * loop_count should match the value used when creating the component
1093 * IndexPaths.
1094 */
1097 RelOptInfo *rel,
1098 Path *bitmapqual,
1100 double loop_count,
1101 int parallel_degree)
1102{
1104
1105 pathnode->path.pathtype = T_BitmapHeapScan;
1106 pathnode->path.parent = rel;
1107 pathnode->path.pathtarget = rel->reltarget;
1108 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1110 pathnode->path.parallel_aware = (parallel_degree > 0);
1111 pathnode->path.parallel_safe = rel->consider_parallel;
1112 pathnode->path.parallel_workers = parallel_degree;
1113 pathnode->path.pathkeys = NIL; /* always unordered */
1114
1115 pathnode->bitmapqual = bitmapqual;
1116
1117 cost_bitmap_heap_scan(&pathnode->path, root, rel,
1118 pathnode->path.param_info,
1119 bitmapqual, loop_count);
1120
1121 return pathnode;
1122}
1123
1124/*
1125 * create_bitmap_and_path
1126 * Creates a path node representing a BitmapAnd.
1127 */
1130 RelOptInfo *rel,
1131 List *bitmapquals)
1132{
1135 ListCell *lc;
1136
1137 pathnode->path.pathtype = T_BitmapAnd;
1138 pathnode->path.parent = rel;
1139 pathnode->path.pathtarget = rel->reltarget;
1140
1141 /*
1142 * Identify the required outer rels as the union of what the child paths
1143 * depend on. (Alternatively, we could insist that the caller pass this
1144 * in, but it's more convenient and reliable to compute it here.)
1145 */
1146 foreach(lc, bitmapquals)
1147 {
1148 Path *bitmapqual = (Path *) lfirst(lc);
1149
1151 PATH_REQ_OUTER(bitmapqual));
1152 }
1153 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1155
1156 /*
1157 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1158 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1159 * set the flag for this path based only on the relation-level flag,
1160 * without actually iterating over the list of children.
1161 */
1162 pathnode->path.parallel_aware = false;
1163 pathnode->path.parallel_safe = rel->consider_parallel;
1164 pathnode->path.parallel_workers = 0;
1165
1166 pathnode->path.pathkeys = NIL; /* always unordered */
1167
1168 pathnode->bitmapquals = bitmapquals;
1169
1170 /* this sets bitmapselectivity as well as the regular cost fields: */
1172
1173 return pathnode;
1174}
1175
1176/*
1177 * create_bitmap_or_path
1178 * Creates a path node representing a BitmapOr.
1179 */
1182 RelOptInfo *rel,
1183 List *bitmapquals)
1184{
1187 ListCell *lc;
1188
1189 pathnode->path.pathtype = T_BitmapOr;
1190 pathnode->path.parent = rel;
1191 pathnode->path.pathtarget = rel->reltarget;
1192
1193 /*
1194 * Identify the required outer rels as the union of what the child paths
1195 * depend on. (Alternatively, we could insist that the caller pass this
1196 * in, but it's more convenient and reliable to compute it here.)
1197 */
1198 foreach(lc, bitmapquals)
1199 {
1200 Path *bitmapqual = (Path *) lfirst(lc);
1201
1203 PATH_REQ_OUTER(bitmapqual));
1204 }
1205 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1207
1208 /*
1209 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1210 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1211 * set the flag for this path based only on the relation-level flag,
1212 * without actually iterating over the list of children.
1213 */
1214 pathnode->path.parallel_aware = false;
1215 pathnode->path.parallel_safe = rel->consider_parallel;
1216 pathnode->path.parallel_workers = 0;
1217
1218 pathnode->path.pathkeys = NIL; /* always unordered */
1219
1220 pathnode->bitmapquals = bitmapquals;
1221
1222 /* this sets bitmapselectivity as well as the regular cost fields: */
1224
1225 return pathnode;
1226}
1227
1228/*
1229 * create_tidscan_path
1230 * Creates a path corresponding to a scan by TID, returning the pathnode.
1231 */
1232TidPath *
1235{
1237
1238 pathnode->path.pathtype = T_TidScan;
1239 pathnode->path.parent = rel;
1240 pathnode->path.pathtarget = rel->reltarget;
1241 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1243 pathnode->path.parallel_aware = false;
1244 pathnode->path.parallel_safe = rel->consider_parallel;
1245 pathnode->path.parallel_workers = 0;
1246 pathnode->path.pathkeys = NIL; /* always unordered */
1247
1248 pathnode->tidquals = tidquals;
1249
1250 cost_tidscan(&pathnode->path, root, rel, tidquals,
1251 pathnode->path.param_info);
1252
1253 return pathnode;
1254}
1255
1256/*
1257 * create_tidrangescan_path
1258 * Creates a path corresponding to a scan by a range of TIDs, returning
1259 * the pathnode.
1260 */
1263 List *tidrangequals, Relids required_outer,
1264 int parallel_workers)
1265{
1267
1268 pathnode->path.pathtype = T_TidRangeScan;
1269 pathnode->path.parent = rel;
1270 pathnode->path.pathtarget = rel->reltarget;
1271 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1273 pathnode->path.parallel_aware = (parallel_workers > 0);
1274 pathnode->path.parallel_safe = rel->consider_parallel;
1275 pathnode->path.parallel_workers = parallel_workers;
1276 pathnode->path.pathkeys = NIL; /* always unordered */
1277
1278 pathnode->tidrangequals = tidrangequals;
1279
1280 cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
1281 pathnode->path.param_info);
1282
1283 return pathnode;
1284}
1285
1286/*
1287 * create_append_path
1288 * Creates a path corresponding to an Append plan, returning the
1289 * pathnode.
1290 *
1291 * Note that we must handle subpaths = NIL, representing a dummy access path.
1292 * Also, there are callers that pass root = NULL.
1293 *
1294 * 'rows', when passed as a non-negative number, will be used to overwrite the
1295 * returned path's row estimate. Otherwise, the row estimate is calculated
1296 * by totalling the row estimates from the 'subpaths' list.
1297 */
1298AppendPath *
1300 RelOptInfo *rel,
1301 List *subpaths, List *partial_subpaths,
1302 List *pathkeys, Relids required_outer,
1303 int parallel_workers, bool parallel_aware,
1304 double rows)
1305{
1307 ListCell *l;
1308
1309 Assert(!parallel_aware || parallel_workers > 0);
1310
1311 pathnode->path.pathtype = T_Append;
1312 pathnode->path.parent = rel;
1313 pathnode->path.pathtarget = rel->reltarget;
1314
1315 /*
1316 * If this is for a baserel (not a join or non-leaf partition), we prefer
1317 * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
1318 * for the path. This supports building a Memoize path atop this path,
1319 * and if this is a partitioned table the info may be useful for run-time
1320 * pruning (cf make_partition_pruneinfo()).
1321 *
1322 * However, if we don't have "root" then that won't work and we fall back
1323 * on the simpler get_appendrel_parampathinfo. There's no point in doing
1324 * the more expensive thing for a dummy path, either.
1325 */
1326 if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
1327 pathnode->path.param_info = get_baserel_parampathinfo(root,
1328 rel,
1330 else
1331 pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1333
1334 pathnode->path.parallel_aware = parallel_aware;
1335 pathnode->path.parallel_safe = rel->consider_parallel;
1336 pathnode->path.parallel_workers = parallel_workers;
1337 pathnode->path.pathkeys = pathkeys;
1338
1339 /*
1340 * For parallel append, non-partial paths are sorted by descending total
1341 * costs. That way, the total time to finish all non-partial paths is
1342 * minimized. Also, the partial paths are sorted by descending startup
1343 * costs. There may be some paths that require to do startup work by a
1344 * single worker. In such case, it's better for workers to choose the
1345 * expensive ones first, whereas the leader should choose the cheapest
1346 * startup plan.
1347 */
1348 if (pathnode->path.parallel_aware)
1349 {
1350 /*
1351 * We mustn't fiddle with the order of subpaths when the Append has
1352 * pathkeys. The order they're listed in is critical to keeping the
1353 * pathkeys valid.
1354 */
1355 Assert(pathkeys == NIL);
1356
1359 }
1360 pathnode->first_partial_path = list_length(subpaths);
1361 pathnode->subpaths = list_concat(subpaths, partial_subpaths);
1362
1363 /*
1364 * Apply query-wide LIMIT if known and path is for sole base relation.
1365 * (Handling this at this low level is a bit klugy.)
1366 */
1367 if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
1368 pathnode->limit_tuples = root->limit_tuples;
1369 else
1370 pathnode->limit_tuples = -1.0;
1371
1372 foreach(l, pathnode->subpaths)
1373 {
1374 Path *subpath = (Path *) lfirst(l);
1375
1376 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1377 subpath->parallel_safe;
1378
1379 /* All child paths must have same parameterization */
1381 }
1382
1383 Assert(!parallel_aware || pathnode->path.parallel_safe);
1384
1385 /*
1386 * If there's exactly one child path then the output of the Append is
1387 * necessarily ordered the same as the child's, so we can inherit the
1388 * child's pathkeys if any, overriding whatever the caller might've said.
1389 * Furthermore, if the child's parallel awareness matches the Append's,
1390 * then the Append is a no-op and will be discarded later (in setrefs.c).
1391 * Then we can inherit the child's size and cost too, effectively charging
1392 * zero for the Append. Otherwise, we must do the normal costsize
1393 * calculation.
1394 */
1395 if (list_length(pathnode->subpaths) == 1)
1396 {
1397 Path *child = (Path *) linitial(pathnode->subpaths);
1398
1399 if (child->parallel_aware == parallel_aware)
1400 {
1401 pathnode->path.rows = child->rows;
1402 pathnode->path.startup_cost = child->startup_cost;
1403 pathnode->path.total_cost = child->total_cost;
1404 }
1405 else
1407 /* Must do this last, else cost_append complains */
1408 pathnode->path.pathkeys = child->pathkeys;
1409 }
1410 else
1412
1413 /* If the caller provided a row estimate, override the computed value. */
1414 if (rows >= 0)
1415 pathnode->path.rows = rows;
1416
1417 return pathnode;
1418}
1419
1420/*
1421 * append_total_cost_compare
1422 * list_sort comparator for sorting append child paths
1423 * by total_cost descending
1424 *
1425 * For equal total costs, we fall back to comparing startup costs; if those
1426 * are equal too, break ties using bms_compare on the paths' relids.
1427 * (This is to avoid getting unpredictable results from list_sort.)
1428 */
1429static int
1431{
1432 Path *path1 = (Path *) lfirst(a);
1433 Path *path2 = (Path *) lfirst(b);
1434 int cmp;
1435
1437 if (cmp != 0)
1438 return -cmp;
1439 return bms_compare(path1->parent->relids, path2->parent->relids);
1440}
1441
1442/*
1443 * append_startup_cost_compare
1444 * list_sort comparator for sorting append child paths
1445 * by startup_cost descending
1446 *
1447 * For equal startup costs, we fall back to comparing total costs; if those
1448 * are equal too, break ties using bms_compare on the paths' relids.
1449 * (This is to avoid getting unpredictable results from list_sort.)
1450 */
1451static int
1453{
1454 Path *path1 = (Path *) lfirst(a);
1455 Path *path2 = (Path *) lfirst(b);
1456 int cmp;
1457
1459 if (cmp != 0)
1460 return -cmp;
1461 return bms_compare(path1->parent->relids, path2->parent->relids);
1462}
1463
1464/*
1465 * create_merge_append_path
1466 * Creates a path corresponding to a MergeAppend plan, returning the
1467 * pathnode.
1468 */
1471 RelOptInfo *rel,
1472 List *subpaths,
1473 List *pathkeys,
1475{
1480 ListCell *l;
1481
1482 /*
1483 * We don't currently support parameterized MergeAppend paths, as
1484 * explained in the comments for generate_orderedappend_paths.
1485 */
1487
1488 pathnode->path.pathtype = T_MergeAppend;
1489 pathnode->path.parent = rel;
1490 pathnode->path.pathtarget = rel->reltarget;
1491 pathnode->path.param_info = NULL;
1492 pathnode->path.parallel_aware = false;
1493 pathnode->path.parallel_safe = rel->consider_parallel;
1494 pathnode->path.parallel_workers = 0;
1495 pathnode->path.pathkeys = pathkeys;
1496 pathnode->subpaths = subpaths;
1497
1498 /*
1499 * Apply query-wide LIMIT if known and path is for sole base relation.
1500 * (Handling this at this low level is a bit klugy.)
1501 */
1502 if (bms_equal(rel->relids, root->all_query_rels))
1503 pathnode->limit_tuples = root->limit_tuples;
1504 else
1505 pathnode->limit_tuples = -1.0;
1506
1507 /*
1508 * Add up the sizes and costs of the input paths.
1509 */
1510 pathnode->path.rows = 0;
1513 input_total_cost = 0;
1514 foreach(l, subpaths)
1515 {
1516 Path *subpath = (Path *) lfirst(l);
1517 int presorted_keys;
1518 Path sort_path; /* dummy for result of
1519 * cost_sort/cost_incremental_sort */
1520
1521 /* All child paths should be unparameterized */
1523
1524 pathnode->path.rows += subpath->rows;
1525 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1526 subpath->parallel_safe;
1527
1528 if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1529 &presorted_keys))
1530 {
1531 /*
1532 * We'll need to insert a Sort node, so include costs for that. We
1533 * choose to use incremental sort if it is enabled and there are
1534 * presorted keys; otherwise we use full sort.
1535 *
1536 * We can use the parent's LIMIT if any, since we certainly won't
1537 * pull more than that many tuples from any child.
1538 */
1539 if (enable_incremental_sort && presorted_keys > 0)
1540 {
1542 root,
1543 pathkeys,
1544 presorted_keys,
1545 subpath->disabled_nodes,
1546 subpath->startup_cost,
1547 subpath->total_cost,
1548 subpath->rows,
1549 subpath->pathtarget->width,
1550 0.0,
1551 work_mem,
1552 pathnode->limit_tuples);
1553 }
1554 else
1555 {
1557 root,
1558 pathkeys,
1559 subpath->disabled_nodes,
1560 subpath->total_cost,
1561 subpath->rows,
1562 subpath->pathtarget->width,
1563 0.0,
1564 work_mem,
1565 pathnode->limit_tuples);
1566 }
1567
1568 subpath = &sort_path;
1569 }
1570
1571 input_disabled_nodes += subpath->disabled_nodes;
1572 input_startup_cost += subpath->startup_cost;
1573 input_total_cost += subpath->total_cost;
1574 }
1575
1576 /*
1577 * Now we can compute total costs of the MergeAppend. If there's exactly
1578 * one child path and its parallel awareness matches that of the
1579 * MergeAppend, then the MergeAppend is a no-op and will be discarded
1580 * later (in setrefs.c); otherwise we do the normal cost calculation.
1581 */
1582 if (list_length(subpaths) == 1 &&
1583 ((Path *) linitial(subpaths))->parallel_aware ==
1584 pathnode->path.parallel_aware)
1585 {
1586 pathnode->path.disabled_nodes = input_disabled_nodes;
1587 pathnode->path.startup_cost = input_startup_cost;
1588 pathnode->path.total_cost = input_total_cost;
1589 }
1590 else
1592 pathkeys, list_length(subpaths),
1595 pathnode->path.rows);
1596
1597 return pathnode;
1598}
1599
1600/*
1601 * create_group_result_path
1602 * Creates a path representing a Result-and-nothing-else plan.
1603 *
1604 * This is only used for degenerate grouping cases, in which we know we
1605 * need to produce one result row, possibly filtered by a HAVING qual.
1606 */
1609 PathTarget *target, List *havingqual)
1610{
1612
1613 pathnode->path.pathtype = T_Result;
1614 pathnode->path.parent = rel;
1615 pathnode->path.pathtarget = target;
1616 pathnode->path.param_info = NULL; /* there are no other rels... */
1617 pathnode->path.parallel_aware = false;
1618 pathnode->path.parallel_safe = rel->consider_parallel;
1619 pathnode->path.parallel_workers = 0;
1620 pathnode->path.pathkeys = NIL;
1621 pathnode->quals = havingqual;
1622
1623 /*
1624 * We can't quite use cost_resultscan() because the quals we want to
1625 * account for are not baserestrict quals of the rel. Might as well just
1626 * hack it here.
1627 */
1628 pathnode->path.rows = 1;
1629 pathnode->path.startup_cost = target->cost.startup;
1630 pathnode->path.total_cost = target->cost.startup +
1631 cpu_tuple_cost + target->cost.per_tuple;
1632
1633 /*
1634 * Add cost of qual, if any --- but we ignore its selectivity, since our
1635 * rowcount estimate should be 1 no matter what the qual is.
1636 */
1637 if (havingqual)
1638 {
1640
1642 /* havingqual is evaluated once at startup */
1643 pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1644 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1645 }
1646
1647 return pathnode;
1648}
1649
1650/*
1651 * create_material_path
1652 * Creates a path corresponding to a Material plan, returning the
1653 * pathnode.
1654 */
1657{
1659
1660 Assert(subpath->parent == rel);
1661
1662 pathnode->path.pathtype = T_Material;
1663 pathnode->path.parent = rel;
1664 pathnode->path.pathtarget = rel->reltarget;
1665 pathnode->path.param_info = subpath->param_info;
1666 pathnode->path.parallel_aware = false;
1667 pathnode->path.parallel_safe = rel->consider_parallel &&
1668 subpath->parallel_safe;
1669 pathnode->path.parallel_workers = subpath->parallel_workers;
1670 pathnode->path.pathkeys = subpath->pathkeys;
1671
1672 pathnode->subpath = subpath;
1673
1674 cost_material(&pathnode->path,
1675 enabled,
1676 subpath->disabled_nodes,
1677 subpath->startup_cost,
1678 subpath->total_cost,
1679 subpath->rows,
1680 subpath->pathtarget->width);
1681
1682 return pathnode;
1683}
1684
1685/*
1686 * create_memoize_path
1687 * Creates a path corresponding to a Memoize plan, returning the pathnode.
1688 */
1691 List *param_exprs, List *hash_operators,
1692 bool singlerow, bool binary_mode, Cardinality est_calls)
1693{
1695
1696 Assert(subpath->parent == rel);
1697
1698 pathnode->path.pathtype = T_Memoize;
1699 pathnode->path.parent = rel;
1700 pathnode->path.pathtarget = rel->reltarget;
1701 pathnode->path.param_info = subpath->param_info;
1702 pathnode->path.parallel_aware = false;
1703 pathnode->path.parallel_safe = rel->consider_parallel &&
1704 subpath->parallel_safe;
1705 pathnode->path.parallel_workers = subpath->parallel_workers;
1706 pathnode->path.pathkeys = subpath->pathkeys;
1707
1708 pathnode->subpath = subpath;
1709 pathnode->hash_operators = hash_operators;
1710 pathnode->param_exprs = param_exprs;
1711 pathnode->singlerow = singlerow;
1712 pathnode->binary_mode = binary_mode;
1713
1714 /*
1715 * For now we set est_entries to 0. cost_memoize_rescan() does all the
1716 * hard work to determine how many cache entries there are likely to be,
1717 * so it seems best to leave it up to that function to fill this field in.
1718 * If left at 0, the executor will make a guess at a good value.
1719 */
1720 pathnode->est_entries = 0;
1721
1722 pathnode->est_calls = clamp_row_est(est_calls);
1723
1724 /* These will also be set later in cost_memoize_rescan() */
1725 pathnode->est_unique_keys = 0.0;
1726 pathnode->est_hit_ratio = 0.0;
1727
1728 /*
1729 * We should not be asked to generate this path type when memoization is
1730 * disabled, so set our count of disabled nodes equal to the subpath's
1731 * count.
1732 *
1733 * It would be nice to also Assert that memoization is enabled, but the
1734 * value of enable_memoize is not controlling: what we would need to check
1735 * is that the JoinPathExtraData's pgs_mask included PGS_NESTLOOP_MEMOIZE.
1736 */
1737 pathnode->path.disabled_nodes = subpath->disabled_nodes;
1738
1739 /*
1740 * Add a small additional charge for caching the first entry. All the
1741 * harder calculations for rescans are performed in cost_memoize_rescan().
1742 */
1743 pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
1744 pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
1745 pathnode->path.rows = subpath->rows;
1746
1747 return pathnode;
1748}
1749
1750/*
1751 * create_gather_merge_path
1752 *
1753 * Creates a path corresponding to a gather merge scan, returning
1754 * the pathnode.
1755 */
1758 PathTarget *target, List *pathkeys,
1759 Relids required_outer, double *rows)
1760{
1762 int input_disabled_nodes = 0;
1765
1766 Assert(subpath->parallel_safe);
1767 Assert(pathkeys);
1768
1769 /*
1770 * The subpath should guarantee that it is adequately ordered either by
1771 * adding an explicit sort node or by using presorted input. We cannot
1772 * add an explicit Sort node for the subpath in createplan.c on additional
1773 * pathkeys, because we can't guarantee the sort would be safe. For
1774 * example, expressions may be volatile or otherwise parallel unsafe.
1775 */
1776 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1777 elog(ERROR, "gather merge input not sufficiently sorted");
1778
1779 pathnode->path.pathtype = T_GatherMerge;
1780 pathnode->path.parent = rel;
1781 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1783 pathnode->path.parallel_aware = false;
1784
1785 pathnode->subpath = subpath;
1786 pathnode->num_workers = subpath->parallel_workers;
1787 pathnode->path.pathkeys = pathkeys;
1788 pathnode->path.pathtarget = target ? target : rel->reltarget;
1789
1790 input_disabled_nodes += subpath->disabled_nodes;
1791 input_startup_cost += subpath->startup_cost;
1792 input_total_cost += subpath->total_cost;
1793
1794 cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
1796 input_total_cost, rows);
1797
1798 return pathnode;
1799}
1800
1801/*
1802 * create_gather_path
1803 * Creates a path corresponding to a gather scan, returning the
1804 * pathnode.
1805 *
1806 * 'rows' may optionally be set to override row estimates from other sources.
1807 */
1808GatherPath *
1810 PathTarget *target, Relids required_outer, double *rows)
1811{
1813
1814 Assert(subpath->parallel_safe);
1815
1816 pathnode->path.pathtype = T_Gather;
1817 pathnode->path.parent = rel;
1818 pathnode->path.pathtarget = target;
1819 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1821 pathnode->path.parallel_aware = false;
1822 pathnode->path.parallel_safe = false;
1823 pathnode->path.parallel_workers = 0;
1824 pathnode->path.pathkeys = NIL; /* Gather has unordered result */
1825
1826 pathnode->subpath = subpath;
1827 pathnode->num_workers = subpath->parallel_workers;
1828 pathnode->single_copy = false;
1829
1830 if (pathnode->num_workers == 0)
1831 {
1832 pathnode->path.pathkeys = subpath->pathkeys;
1833 pathnode->num_workers = 1;
1834 pathnode->single_copy = true;
1835 }
1836
1837 cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
1838
1839 return pathnode;
1840}
1841
1842/*
1843 * create_subqueryscan_path
1844 * Creates a path corresponding to a scan of a subquery,
1845 * returning the pathnode.
1846 *
1847 * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
1848 * be trivial, ie just a fetch of all the subquery output columns in order.
1849 * While we could determine that here, the caller can usually do it more
1850 * efficiently (or at least amortize it over multiple calls).
1851 */
1854 bool trivial_pathtarget,
1855 List *pathkeys, Relids required_outer)
1856{
1858
1859 pathnode->path.pathtype = T_SubqueryScan;
1860 pathnode->path.parent = rel;
1861 pathnode->path.pathtarget = rel->reltarget;
1862 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1864 pathnode->path.parallel_aware = false;
1865 pathnode->path.parallel_safe = rel->consider_parallel &&
1866 subpath->parallel_safe;
1867 pathnode->path.parallel_workers = subpath->parallel_workers;
1868 pathnode->path.pathkeys = pathkeys;
1869 pathnode->subpath = subpath;
1870
1871 cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
1873
1874 return pathnode;
1875}
1876
1877/*
1878 * create_functionscan_path
1879 * Creates a path corresponding to a sequential scan of a function,
1880 * returning the pathnode.
1881 */
1882Path *
1884 List *pathkeys, Relids required_outer)
1885{
1887
1888 pathnode->pathtype = T_FunctionScan;
1889 pathnode->parent = rel;
1890 pathnode->pathtarget = rel->reltarget;
1891 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1893 pathnode->parallel_aware = false;
1894 pathnode->parallel_safe = rel->consider_parallel;
1895 pathnode->parallel_workers = 0;
1896 pathnode->pathkeys = pathkeys;
1897
1898 cost_functionscan(pathnode, root, rel, pathnode->param_info);
1899
1900 return pathnode;
1901}
1902
1903/*
1904 * create_tablefuncscan_path
1905 * Creates a path corresponding to a sequential scan of a table function,
1906 * returning the pathnode.
1907 */
1908Path *
1911{
1913
1914 pathnode->pathtype = T_TableFuncScan;
1915 pathnode->parent = rel;
1916 pathnode->pathtarget = rel->reltarget;
1917 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1919 pathnode->parallel_aware = false;
1920 pathnode->parallel_safe = rel->consider_parallel;
1921 pathnode->parallel_workers = 0;
1922 pathnode->pathkeys = NIL; /* result is always unordered */
1923
1924 cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
1925
1926 return pathnode;
1927}
1928
1929/*
1930 * create_valuesscan_path
1931 * Creates a path corresponding to a scan of a VALUES list,
1932 * returning the pathnode.
1933 */
1934Path *
1937{
1939
1940 pathnode->pathtype = T_ValuesScan;
1941 pathnode->parent = rel;
1942 pathnode->pathtarget = rel->reltarget;
1943 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1945 pathnode->parallel_aware = false;
1946 pathnode->parallel_safe = rel->consider_parallel;
1947 pathnode->parallel_workers = 0;
1948 pathnode->pathkeys = NIL; /* result is always unordered */
1949
1950 cost_valuesscan(pathnode, root, rel, pathnode->param_info);
1951
1952 return pathnode;
1953}
1954
1955/*
1956 * create_ctescan_path
1957 * Creates a path corresponding to a scan of a non-self-reference CTE,
1958 * returning the pathnode.
1959 */
1960Path *
1962 List *pathkeys, Relids required_outer)
1963{
1965
1966 pathnode->pathtype = T_CteScan;
1967 pathnode->parent = rel;
1968 pathnode->pathtarget = rel->reltarget;
1969 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1971 pathnode->parallel_aware = false;
1972 pathnode->parallel_safe = rel->consider_parallel;
1973 pathnode->parallel_workers = 0;
1974 pathnode->pathkeys = pathkeys;
1975
1976 cost_ctescan(pathnode, root, rel, pathnode->param_info);
1977
1978 return pathnode;
1979}
1980
1981/*
1982 * create_namedtuplestorescan_path
1983 * Creates a path corresponding to a scan of a named tuplestore, returning
1984 * the pathnode.
1985 */
1986Path *
1989{
1991
1992 pathnode->pathtype = T_NamedTuplestoreScan;
1993 pathnode->parent = rel;
1994 pathnode->pathtarget = rel->reltarget;
1995 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1997 pathnode->parallel_aware = false;
1998 pathnode->parallel_safe = rel->consider_parallel;
1999 pathnode->parallel_workers = 0;
2000 pathnode->pathkeys = NIL; /* result is always unordered */
2001
2002 cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
2003
2004 return pathnode;
2005}
2006
2007/*
2008 * create_resultscan_path
2009 * Creates a path corresponding to a scan of an RTE_RESULT relation,
2010 * returning the pathnode.
2011 */
2012Path *
2015{
2017
2018 pathnode->pathtype = T_Result;
2019 pathnode->parent = rel;
2020 pathnode->pathtarget = rel->reltarget;
2021 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2023 pathnode->parallel_aware = false;
2024 pathnode->parallel_safe = rel->consider_parallel;
2025 pathnode->parallel_workers = 0;
2026 pathnode->pathkeys = NIL; /* result is always unordered */
2027
2028 cost_resultscan(pathnode, root, rel, pathnode->param_info);
2029
2030 return pathnode;
2031}
2032
2033/*
2034 * create_worktablescan_path
2035 * Creates a path corresponding to a scan of a self-reference CTE,
2036 * returning the pathnode.
2037 */
2038Path *
2041{
2043
2044 pathnode->pathtype = T_WorkTableScan;
2045 pathnode->parent = rel;
2046 pathnode->pathtarget = rel->reltarget;
2047 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2049 pathnode->parallel_aware = false;
2050 pathnode->parallel_safe = rel->consider_parallel;
2051 pathnode->parallel_workers = 0;
2052 pathnode->pathkeys = NIL; /* result is always unordered */
2053
2054 /* Cost is the same as for a regular CTE scan */
2055 cost_ctescan(pathnode, root, rel, pathnode->param_info);
2056
2057 return pathnode;
2058}
2059
2060/*
2061 * create_foreignscan_path
2062 * Creates a path corresponding to a scan of a foreign base table,
2063 * returning the pathnode.
2064 *
2065 * This function is never called from core Postgres; rather, it's expected
2066 * to be called by the GetForeignPaths function of a foreign data wrapper.
2067 * We make the FDW supply all fields of the path, since we do not have any way
2068 * to calculate them in core. However, there is a usually-sane default for
2069 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2070 */
2073 PathTarget *target,
2074 double rows, int disabled_nodes,
2075 Cost startup_cost, Cost total_cost,
2076 List *pathkeys,
2078 Path *fdw_outerpath,
2079 List *fdw_restrictinfo,
2080 List *fdw_private)
2081{
2083
2084 /* Historically some FDWs were confused about when to use this */
2085 Assert(IS_SIMPLE_REL(rel));
2086
2087 pathnode->path.pathtype = T_ForeignScan;
2088 pathnode->path.parent = rel;
2089 pathnode->path.pathtarget = target ? target : rel->reltarget;
2090 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2092 pathnode->path.parallel_aware = false;
2093 pathnode->path.parallel_safe = rel->consider_parallel;
2094 pathnode->path.parallel_workers = 0;
2095 pathnode->path.rows = rows;
2096 pathnode->path.disabled_nodes = disabled_nodes;
2097 pathnode->path.startup_cost = startup_cost;
2098 pathnode->path.total_cost = total_cost;
2099 pathnode->path.pathkeys = pathkeys;
2100
2101 pathnode->fdw_outerpath = fdw_outerpath;
2102 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2103 pathnode->fdw_private = fdw_private;
2104
2105 return pathnode;
2106}
2107
2108/*
2109 * create_foreign_join_path
2110 * Creates a path corresponding to a scan of a foreign join,
2111 * returning the pathnode.
2112 *
2113 * This function is never called from core Postgres; rather, it's expected
2114 * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
2115 * We make the FDW supply all fields of the path, since we do not have any way
2116 * to calculate them in core. However, there is a usually-sane default for
2117 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2118 */
2121 PathTarget *target,
2122 double rows, int disabled_nodes,
2123 Cost startup_cost, Cost total_cost,
2124 List *pathkeys,
2126 Path *fdw_outerpath,
2127 List *fdw_restrictinfo,
2128 List *fdw_private)
2129{
2131
2132 /*
2133 * We should use get_joinrel_parampathinfo to handle parameterized paths,
2134 * but the API of this function doesn't support it, and existing
2135 * extensions aren't yet trying to build such paths anyway. For the
2136 * moment just throw an error if someone tries it; eventually we should
2137 * revisit this.
2138 */
2140 elog(ERROR, "parameterized foreign joins are not supported yet");
2141
2142 pathnode->path.pathtype = T_ForeignScan;
2143 pathnode->path.parent = rel;
2144 pathnode->path.pathtarget = target ? target : rel->reltarget;
2145 pathnode->path.param_info = NULL; /* XXX see above */
2146 pathnode->path.parallel_aware = false;
2147 pathnode->path.parallel_safe = rel->consider_parallel;
2148 pathnode->path.parallel_workers = 0;
2149 pathnode->path.rows = rows;
2150 pathnode->path.disabled_nodes = disabled_nodes;
2151 pathnode->path.startup_cost = startup_cost;
2152 pathnode->path.total_cost = total_cost;
2153 pathnode->path.pathkeys = pathkeys;
2154
2155 pathnode->fdw_outerpath = fdw_outerpath;
2156 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2157 pathnode->fdw_private = fdw_private;
2158
2159 return pathnode;
2160}
2161
2162/*
2163 * create_foreign_upper_path
2164 * Creates a path corresponding to an upper relation that's computed
2165 * directly by an FDW, returning the pathnode.
2166 *
2167 * This function is never called from core Postgres; rather, it's expected to
2168 * be called by the GetForeignUpperPaths function of a foreign data wrapper.
2169 * We make the FDW supply all fields of the path, since we do not have any way
2170 * to calculate them in core. However, there is a usually-sane default for
2171 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2172 */
2175 PathTarget *target,
2176 double rows, int disabled_nodes,
2177 Cost startup_cost, Cost total_cost,
2178 List *pathkeys,
2179 Path *fdw_outerpath,
2180 List *fdw_restrictinfo,
2181 List *fdw_private)
2182{
2184
2185 /*
2186 * Upper relations should never have any lateral references, since joining
2187 * is complete.
2188 */
2190
2191 pathnode->path.pathtype = T_ForeignScan;
2192 pathnode->path.parent = rel;
2193 pathnode->path.pathtarget = target ? target : rel->reltarget;
2194 pathnode->path.param_info = NULL;
2195 pathnode->path.parallel_aware = false;
2196 pathnode->path.parallel_safe = rel->consider_parallel;
2197 pathnode->path.parallel_workers = 0;
2198 pathnode->path.rows = rows;
2199 pathnode->path.disabled_nodes = disabled_nodes;
2200 pathnode->path.startup_cost = startup_cost;
2201 pathnode->path.total_cost = total_cost;
2202 pathnode->path.pathkeys = pathkeys;
2203
2204 pathnode->fdw_outerpath = fdw_outerpath;
2205 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2206 pathnode->fdw_private = fdw_private;
2207
2208 return pathnode;
2209}
2210
2211/*
2212 * calc_nestloop_required_outer
2213 * Compute the required_outer set for a nestloop join path
2214 *
2215 * Note: when considering a child join, the inputs nonetheless use top-level
2216 * parent relids
2217 *
2218 * Note: result must not share storage with either input
2219 */
2220Relids
2225{
2227
2228 /* inner_path can require rels from outer path, but not vice versa */
2230 /* easy case if inner path is not parameterized */
2231 if (!inner_paramrels)
2232 return bms_copy(outer_paramrels);
2233 /* else, form the union ... */
2235 /* ... and remove any mention of now-satisfied outer rels */
2237 outerrelids);
2238 return required_outer;
2239}
2240
2241/*
2242 * calc_non_nestloop_required_outer
2243 * Compute the required_outer set for a merge or hash join path
2244 *
2245 * Note: result must not share storage with either input
2246 */
2247Relids
2249{
2253 Relids outerrelids PG_USED_FOR_ASSERTS_ONLY;
2255
2256 /*
2257 * Any parameterization of the input paths refers to topmost parents of
2258 * the relevant relations, because reparameterize_path_by_child() hasn't
2259 * been called yet. So we must consider topmost parents of the relations
2260 * being joined, too, while checking for disallowed parameterization
2261 * cases.
2262 */
2263 if (inner_path->parent->top_parent_relids)
2264 innerrelids = inner_path->parent->top_parent_relids;
2265 else
2266 innerrelids = inner_path->parent->relids;
2267
2268 if (outer_path->parent->top_parent_relids)
2269 outerrelids = outer_path->parent->top_parent_relids;
2270 else
2271 outerrelids = outer_path->parent->relids;
2272
2273 /* neither path can require rels from the other */
2275 Assert(!bms_overlap(inner_paramrels, outerrelids));
2276 /* form the union ... */
2278 /* we do not need an explicit test for empty; bms_union gets it right */
2279 return required_outer;
2280}
2281
2282/*
2283 * create_nestloop_path
2284 * Creates a pathnode corresponding to a nestloop join between two
2285 * relations.
2286 *
2287 * 'joinrel' is the join relation.
2288 * 'jointype' is the type of join required
2289 * 'workspace' is the result from initial_cost_nestloop
2290 * 'extra' contains various information about the join
2291 * 'outer_path' is the outer path
2292 * 'inner_path' is the inner path
2293 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2294 * 'pathkeys' are the path keys of the new join path
2295 * 'required_outer' is the set of required outer rels
2296 *
2297 * Returns the resulting path node.
2298 */
2299NestPath *
2301 RelOptInfo *joinrel,
2302 JoinType jointype,
2303 JoinCostWorkspace *workspace,
2304 JoinPathExtraData *extra,
2308 List *pathkeys,
2310{
2313 Relids outerrelids;
2314
2315 /*
2316 * Paths are parameterized by top-level parents, so run parameterization
2317 * tests on the parent relids.
2318 */
2319 if (outer_path->parent->top_parent_relids)
2320 outerrelids = outer_path->parent->top_parent_relids;
2321 else
2322 outerrelids = outer_path->parent->relids;
2323
2324 /*
2325 * If the inner path is parameterized by the outer, we must drop any
2326 * restrict_clauses that are due to be moved into the inner path. We have
2327 * to do this now, rather than postpone the work till createplan time,
2328 * because the restrict_clauses list can affect the size and cost
2329 * estimates for this path. We detect such clauses by checking for serial
2330 * number match to clauses already enforced in the inner path.
2331 */
2332 if (bms_overlap(inner_req_outer, outerrelids))
2333 {
2335 List *jclauses = NIL;
2336 ListCell *lc;
2337
2338 foreach(lc, restrict_clauses)
2339 {
2340 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2341
2343 jclauses = lappend(jclauses, rinfo);
2344 }
2346 }
2347
2348 pathnode->jpath.path.pathtype = T_NestLoop;
2349 pathnode->jpath.path.parent = joinrel;
2350 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2351 pathnode->jpath.path.param_info =
2353 joinrel,
2354 outer_path,
2355 inner_path,
2356 extra->sjinfo,
2359 pathnode->jpath.path.parallel_aware = false;
2360 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2361 outer_path->parallel_safe && inner_path->parallel_safe;
2362 /* This is a foolish way to estimate parallel_workers, but for now... */
2363 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2364 pathnode->jpath.path.pathkeys = pathkeys;
2365 pathnode->jpath.jointype = jointype;
2366 pathnode->jpath.inner_unique = extra->inner_unique;
2367 pathnode->jpath.outerjoinpath = outer_path;
2368 pathnode->jpath.innerjoinpath = inner_path;
2369 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2370
2371 final_cost_nestloop(root, pathnode, workspace, extra);
2372
2373 return pathnode;
2374}
2375
2376/*
2377 * create_mergejoin_path
2378 * Creates a pathnode corresponding to a mergejoin join between
2379 * two relations
2380 *
2381 * 'joinrel' is the join relation
2382 * 'jointype' is the type of join required
2383 * 'workspace' is the result from initial_cost_mergejoin
2384 * 'extra' contains various information about the join
2385 * 'outer_path' is the outer path
2386 * 'inner_path' is the inner path
2387 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2388 * 'pathkeys' are the path keys of the new join path
2389 * 'required_outer' is the set of required outer rels
2390 * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2391 * (this should be a subset of the restrict_clauses list)
2392 * 'outersortkeys' are the sort varkeys for the outer relation
2393 * 'innersortkeys' are the sort varkeys for the inner relation
2394 * 'outer_presorted_keys' is the number of presorted keys of the outer path
2395 */
2396MergePath *
2398 RelOptInfo *joinrel,
2399 JoinType jointype,
2400 JoinCostWorkspace *workspace,
2401 JoinPathExtraData *extra,
2405 List *pathkeys,
2407 List *mergeclauses,
2408 List *outersortkeys,
2409 List *innersortkeys,
2410 int outer_presorted_keys)
2411{
2413
2414 pathnode->jpath.path.pathtype = T_MergeJoin;
2415 pathnode->jpath.path.parent = joinrel;
2416 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2417 pathnode->jpath.path.param_info =
2419 joinrel,
2420 outer_path,
2421 inner_path,
2422 extra->sjinfo,
2425 pathnode->jpath.path.parallel_aware = false;
2426 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2427 outer_path->parallel_safe && inner_path->parallel_safe;
2428 /* This is a foolish way to estimate parallel_workers, but for now... */
2429 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2430 pathnode->jpath.path.pathkeys = pathkeys;
2431 pathnode->jpath.jointype = jointype;
2432 pathnode->jpath.inner_unique = extra->inner_unique;
2433 pathnode->jpath.outerjoinpath = outer_path;
2434 pathnode->jpath.innerjoinpath = inner_path;
2435 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2436 pathnode->path_mergeclauses = mergeclauses;
2437 pathnode->outersortkeys = outersortkeys;
2438 pathnode->innersortkeys = innersortkeys;
2439 pathnode->outer_presorted_keys = outer_presorted_keys;
2440 /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2441 /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2442
2443 final_cost_mergejoin(root, pathnode, workspace, extra);
2444
2445 return pathnode;
2446}
2447
2448/*
2449 * create_hashjoin_path
2450 * Creates a pathnode corresponding to a hash join between two relations.
2451 *
2452 * 'joinrel' is the join relation
2453 * 'jointype' is the type of join required
2454 * 'workspace' is the result from initial_cost_hashjoin
2455 * 'extra' contains various information about the join
2456 * 'outer_path' is the cheapest outer path
2457 * 'inner_path' is the cheapest inner path
2458 * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
2459 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2460 * 'required_outer' is the set of required outer rels
2461 * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2462 * (this should be a subset of the restrict_clauses list)
2463 */
2464HashPath *
2466 RelOptInfo *joinrel,
2467 JoinType jointype,
2468 JoinCostWorkspace *workspace,
2469 JoinPathExtraData *extra,
2472 bool parallel_hash,
2475 List *hashclauses)
2476{
2478
2479 pathnode->jpath.path.pathtype = T_HashJoin;
2480 pathnode->jpath.path.parent = joinrel;
2481 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2482 pathnode->jpath.path.param_info =
2484 joinrel,
2485 outer_path,
2486 inner_path,
2487 extra->sjinfo,
2490 pathnode->jpath.path.parallel_aware =
2491 joinrel->consider_parallel && parallel_hash;
2492 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2493 outer_path->parallel_safe && inner_path->parallel_safe;
2494 /* This is a foolish way to estimate parallel_workers, but for now... */
2495 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2496
2497 /*
2498 * A hashjoin never has pathkeys, since its output ordering is
2499 * unpredictable due to possible batching. XXX If the inner relation is
2500 * small enough, we could instruct the executor that it must not batch,
2501 * and then we could assume that the output inherits the outer relation's
2502 * ordering, which might save a sort step. However there is considerable
2503 * downside if our estimate of the inner relation size is badly off. For
2504 * the moment we don't risk it. (Note also that if we wanted to take this
2505 * seriously, joinpath.c would have to consider many more paths for the
2506 * outer rel than it does now.)
2507 */
2508 pathnode->jpath.path.pathkeys = NIL;
2509 pathnode->jpath.jointype = jointype;
2510 pathnode->jpath.inner_unique = extra->inner_unique;
2511 pathnode->jpath.outerjoinpath = outer_path;
2512 pathnode->jpath.innerjoinpath = inner_path;
2513 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2514 pathnode->path_hashclauses = hashclauses;
2515 /* final_cost_hashjoin will fill in pathnode->num_batches */
2516
2517 final_cost_hashjoin(root, pathnode, workspace, extra);
2518
2519 return pathnode;
2520}
2521
2522/*
2523 * create_projection_path
2524 * Creates a pathnode that represents performing a projection.
2525 *
2526 * 'rel' is the parent relation associated with the result
2527 * 'subpath' is the path representing the source of data
2528 * 'target' is the PathTarget to be computed
2529 */
2532 RelOptInfo *rel,
2533 Path *subpath,
2534 PathTarget *target)
2535{
2538
2539 /*
2540 * We mustn't put a ProjectionPath directly above another; it's useless
2541 * and will confuse create_projection_plan. Rather than making sure all
2542 * callers handle that, let's implement it here, by stripping off any
2543 * ProjectionPath in what we're given. Given this rule, there won't be
2544 * more than one.
2545 */
2547 {
2549
2550 Assert(subpp->path.parent == rel);
2551 subpath = subpp->subpath;
2553 }
2554
2555 pathnode->path.pathtype = T_Result;
2556 pathnode->path.parent = rel;
2557 pathnode->path.pathtarget = target;
2558 pathnode->path.param_info = subpath->param_info;
2559 pathnode->path.parallel_aware = false;
2560 pathnode->path.parallel_safe = rel->consider_parallel &&
2561 subpath->parallel_safe &&
2562 is_parallel_safe(root, (Node *) target->exprs);
2563 pathnode->path.parallel_workers = subpath->parallel_workers;
2564 /* Projection does not change the sort order */
2565 pathnode->path.pathkeys = subpath->pathkeys;
2566
2567 pathnode->subpath = subpath;
2568
2569 /*
2570 * We might not need a separate Result node. If the input plan node type
2571 * can project, we can just tell it to project something else. Or, if it
2572 * can't project but the desired target has the same expression list as
2573 * what the input will produce anyway, we can still give it the desired
2574 * tlist (possibly changing its ressortgroupref labels, but nothing else).
2575 * Note: in the latter case, create_projection_plan has to recheck our
2576 * conclusion; see comments therein.
2577 */
2578 oldtarget = subpath->pathtarget;
2580 equal(oldtarget->exprs, target->exprs))
2581 {
2582 /* No separate Result node needed */
2583 pathnode->dummypp = true;
2584
2585 /*
2586 * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2587 */
2588 pathnode->path.rows = subpath->rows;
2589 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2590 pathnode->path.startup_cost = subpath->startup_cost +
2591 (target->cost.startup - oldtarget->cost.startup);
2592 pathnode->path.total_cost = subpath->total_cost +
2593 (target->cost.startup - oldtarget->cost.startup) +
2594 (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2595 }
2596 else
2597 {
2598 /* We really do need the Result node */
2599 pathnode->dummypp = false;
2600
2601 /*
2602 * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2603 * evaluating the tlist. There is no qual to worry about.
2604 */
2605 pathnode->path.rows = subpath->rows;
2606 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2607 pathnode->path.startup_cost = subpath->startup_cost +
2608 target->cost.startup;
2609 pathnode->path.total_cost = subpath->total_cost +
2610 target->cost.startup +
2611 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2612 }
2613
2614 return pathnode;
2615}
2616
2617/*
2618 * apply_projection_to_path
2619 * Add a projection step, or just apply the target directly to given path.
2620 *
2621 * This has the same net effect as create_projection_path(), except that if
2622 * a separate Result plan node isn't needed, we just replace the given path's
2623 * pathtarget with the desired one. This must be used only when the caller
2624 * knows that the given path isn't referenced elsewhere and so can be modified
2625 * in-place.
2626 *
2627 * If the input path is a GatherPath or GatherMergePath, we try to push the
2628 * new target down to its input as well; this is a yet more invasive
2629 * modification of the input path, which create_projection_path() can't do.
2630 *
2631 * Note that we mustn't change the source path's parent link; so when it is
2632 * add_path'd to "rel" things will be a bit inconsistent. So far that has
2633 * not caused any trouble.
2634 *
2635 * 'rel' is the parent relation associated with the result
2636 * 'path' is the path representing the source of data
2637 * 'target' is the PathTarget to be computed
2638 */
2639Path *
2641 RelOptInfo *rel,
2642 Path *path,
2643 PathTarget *target)
2644{
2646
2647 /*
2648 * If given path can't project, we might need a Result node, so make a
2649 * separate ProjectionPath.
2650 */
2651 if (!is_projection_capable_path(path))
2652 return (Path *) create_projection_path(root, rel, path, target);
2653
2654 /*
2655 * We can just jam the desired tlist into the existing path, being sure to
2656 * update its cost estimates appropriately.
2657 */
2658 oldcost = path->pathtarget->cost;
2659 path->pathtarget = target;
2660
2661 path->startup_cost += target->cost.startup - oldcost.startup;
2662 path->total_cost += target->cost.startup - oldcost.startup +
2663 (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2664
2665 /*
2666 * If the path happens to be a Gather or GatherMerge path, we'd like to
2667 * arrange for the subpath to return the required target list so that
2668 * workers can help project. But if there is something that is not
2669 * parallel-safe in the target expressions, then we can't.
2670 */
2671 if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
2672 is_parallel_safe(root, (Node *) target->exprs))
2673 {
2674 /*
2675 * We always use create_projection_path here, even if the subpath is
2676 * projection-capable, so as to avoid modifying the subpath in place.
2677 * It seems unlikely at present that there could be any other
2678 * references to the subpath, but better safe than sorry.
2679 *
2680 * Note that we don't change the parallel path's cost estimates; it
2681 * might be appropriate to do so, to reflect the fact that the bulk of
2682 * the target evaluation will happen in workers.
2683 */
2684 if (IsA(path, GatherPath))
2685 {
2686 GatherPath *gpath = (GatherPath *) path;
2687
2688 gpath->subpath = (Path *)
2690 gpath->subpath->parent,
2691 gpath->subpath,
2692 target);
2693 }
2694 else
2695 {
2697
2698 gmpath->subpath = (Path *)
2700 gmpath->subpath->parent,
2701 gmpath->subpath,
2702 target);
2703 }
2704 }
2705 else if (path->parallel_safe &&
2706 !is_parallel_safe(root, (Node *) target->exprs))
2707 {
2708 /*
2709 * We're inserting a parallel-restricted target list into a path
2710 * currently marked parallel-safe, so we have to mark it as no longer
2711 * safe.
2712 */
2713 path->parallel_safe = false;
2714 }
2715
2716 return path;
2717}
2718
2719/*
2720 * create_set_projection_path
2721 * Creates a pathnode that represents performing a projection that
2722 * includes set-returning functions.
2723 *
2724 * 'rel' is the parent relation associated with the result
2725 * 'subpath' is the path representing the source of data
2726 * 'target' is the PathTarget to be computed
2727 */
2730 RelOptInfo *rel,
2731 Path *subpath,
2732 PathTarget *target)
2733{
2735 double tlist_rows;
2736 ListCell *lc;
2737
2738 pathnode->path.pathtype = T_ProjectSet;
2739 pathnode->path.parent = rel;
2740 pathnode->path.pathtarget = target;
2741 /* For now, assume we are above any joins, so no parameterization */
2742 pathnode->path.param_info = NULL;
2743 pathnode->path.parallel_aware = false;
2744 pathnode->path.parallel_safe = rel->consider_parallel &&
2745 subpath->parallel_safe &&
2746 is_parallel_safe(root, (Node *) target->exprs);
2747 pathnode->path.parallel_workers = subpath->parallel_workers;
2748 /* Projection does not change the sort order XXX? */
2749 pathnode->path.pathkeys = subpath->pathkeys;
2750
2751 pathnode->subpath = subpath;
2752
2753 /*
2754 * Estimate number of rows produced by SRFs for each row of input; if
2755 * there's more than one in this node, use the maximum.
2756 */
2757 tlist_rows = 1;
2758 foreach(lc, target->exprs)
2759 {
2760 Node *node = (Node *) lfirst(lc);
2761 double itemrows;
2762
2764 if (tlist_rows < itemrows)
2766 }
2767
2768 /*
2769 * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
2770 * per input row, and half of cpu_tuple_cost for each added output row.
2771 * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
2772 * this estimate later.
2773 */
2774 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2775 pathnode->path.rows = subpath->rows * tlist_rows;
2776 pathnode->path.startup_cost = subpath->startup_cost +
2777 target->cost.startup;
2778 pathnode->path.total_cost = subpath->total_cost +
2779 target->cost.startup +
2780 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
2781 (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
2782
2783 return pathnode;
2784}
2785
2786/*
2787 * create_incremental_sort_path
2788 * Creates a pathnode that represents performing an incremental sort.
2789 *
2790 * 'rel' is the parent relation associated with the result
2791 * 'subpath' is the path representing the source of data
2792 * 'pathkeys' represents the desired sort order
2793 * 'presorted_keys' is the number of keys by which the input path is
2794 * already sorted
2795 * 'limit_tuples' is the estimated bound on the number of output tuples,
2796 * or -1 if no LIMIT or couldn't estimate
2797 */
2800 RelOptInfo *rel,
2801 Path *subpath,
2802 List *pathkeys,
2803 int presorted_keys,
2804 double limit_tuples)
2805{
2807 SortPath *pathnode = &sort->spath;
2808
2810 pathnode->path.parent = rel;
2811 /* Sort doesn't project, so use source path's pathtarget */
2812 pathnode->path.pathtarget = subpath->pathtarget;
2813 pathnode->path.param_info = subpath->param_info;
2814 pathnode->path.parallel_aware = false;
2815 pathnode->path.parallel_safe = rel->consider_parallel &&
2816 subpath->parallel_safe;
2817 pathnode->path.parallel_workers = subpath->parallel_workers;
2818 pathnode->path.pathkeys = pathkeys;
2819
2820 pathnode->subpath = subpath;
2821
2823 root, pathkeys, presorted_keys,
2824 subpath->disabled_nodes,
2825 subpath->startup_cost,
2826 subpath->total_cost,
2827 subpath->rows,
2828 subpath->pathtarget->width,
2829 0.0, /* XXX comparison_cost shouldn't be 0? */
2830 work_mem, limit_tuples);
2831
2832 sort->nPresortedCols = presorted_keys;
2833
2834 return sort;
2835}
2836
2837/*
2838 * create_sort_path
2839 * Creates a pathnode that represents performing an explicit sort.
2840 *
2841 * 'rel' is the parent relation associated with the result
2842 * 'subpath' is the path representing the source of data
2843 * 'pathkeys' represents the desired sort order
2844 * 'limit_tuples' is the estimated bound on the number of output tuples,
2845 * or -1 if no LIMIT or couldn't estimate
2846 */
2847SortPath *
2849 RelOptInfo *rel,
2850 Path *subpath,
2851 List *pathkeys,
2852 double limit_tuples)
2853{
2855
2856 pathnode->path.pathtype = T_Sort;
2857 pathnode->path.parent = rel;
2858 /* Sort doesn't project, so use source path's pathtarget */
2859 pathnode->path.pathtarget = subpath->pathtarget;
2860 pathnode->path.param_info = subpath->param_info;
2861 pathnode->path.parallel_aware = false;
2862 pathnode->path.parallel_safe = rel->consider_parallel &&
2863 subpath->parallel_safe;
2864 pathnode->path.parallel_workers = subpath->parallel_workers;
2865 pathnode->path.pathkeys = pathkeys;
2866
2867 pathnode->subpath = subpath;
2868
2869 cost_sort(&pathnode->path, root, pathkeys,
2870 subpath->disabled_nodes,
2871 subpath->total_cost,
2872 subpath->rows,
2873 subpath->pathtarget->width,
2874 0.0, /* XXX comparison_cost shouldn't be 0? */
2875 work_mem, limit_tuples);
2876
2877 return pathnode;
2878}
2879
2880/*
2881 * create_group_path
2882 * Creates a pathnode that represents performing grouping of presorted input
2883 *
2884 * 'rel' is the parent relation associated with the result
2885 * 'subpath' is the path representing the source of data
2886 * 'target' is the PathTarget to be computed
2887 * 'groupClause' is a list of SortGroupClause's representing the grouping
2888 * 'qual' is the HAVING quals if any
2889 * 'numGroups' is the estimated number of groups
2890 */
2891GroupPath *
2893 RelOptInfo *rel,
2894 Path *subpath,
2895 List *groupClause,
2896 List *qual,
2897 double numGroups)
2898{
2900 PathTarget *target = rel->reltarget;
2901
2902 pathnode->path.pathtype = T_Group;
2903 pathnode->path.parent = rel;
2904 pathnode->path.pathtarget = target;
2905 /* For now, assume we are above any joins, so no parameterization */
2906 pathnode->path.param_info = NULL;
2907 pathnode->path.parallel_aware = false;
2908 pathnode->path.parallel_safe = rel->consider_parallel &&
2909 subpath->parallel_safe;
2910 pathnode->path.parallel_workers = subpath->parallel_workers;
2911 /* Group doesn't change sort ordering */
2912 pathnode->path.pathkeys = subpath->pathkeys;
2913
2914 pathnode->subpath = subpath;
2915
2916 pathnode->groupClause = groupClause;
2917 pathnode->qual = qual;
2918
2919 cost_group(&pathnode->path, root,
2920 list_length(groupClause),
2921 numGroups,
2922 qual,
2923 subpath->disabled_nodes,
2924 subpath->startup_cost, subpath->total_cost,
2925 subpath->rows);
2926
2927 /* add tlist eval cost for each output row */
2928 pathnode->path.startup_cost += target->cost.startup;
2929 pathnode->path.total_cost += target->cost.startup +
2930 target->cost.per_tuple * pathnode->path.rows;
2931
2932 return pathnode;
2933}
2934
2935/*
2936 * create_unique_path
2937 * Creates a pathnode that represents performing an explicit Unique step
2938 * on presorted input.
2939 *
2940 * 'rel' is the parent relation associated with the result
2941 * 'subpath' is the path representing the source of data
2942 * 'numCols' is the number of grouping columns
2943 * 'numGroups' is the estimated number of groups
2944 *
2945 * The input path must be sorted on the grouping columns, plus possibly
2946 * additional columns; so the first numCols pathkeys are the grouping columns
2947 */
2948UniquePath *
2950 RelOptInfo *rel,
2951 Path *subpath,
2952 int numCols,
2953 double numGroups)
2954{
2956
2957 pathnode->path.pathtype = T_Unique;
2958 pathnode->path.parent = rel;
2959 /* Unique doesn't project, so use source path's pathtarget */
2960 pathnode->path.pathtarget = subpath->pathtarget;
2961 pathnode->path.param_info = subpath->param_info;
2962 pathnode->path.parallel_aware = false;
2963 pathnode->path.parallel_safe = rel->consider_parallel &&
2964 subpath->parallel_safe;
2965 pathnode->path.parallel_workers = subpath->parallel_workers;
2966 /* Unique doesn't change the input ordering */
2967 pathnode->path.pathkeys = subpath->pathkeys;
2968
2969 pathnode->subpath = subpath;
2970 pathnode->numkeys = numCols;
2971
2972 /*
2973 * Charge one cpu_operator_cost per comparison per input tuple. We assume
2974 * all columns get compared at most of the tuples. (XXX probably this is
2975 * an overestimate.)
2976 */
2977 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2978 pathnode->path.startup_cost = subpath->startup_cost;
2979 pathnode->path.total_cost = subpath->total_cost +
2980 cpu_operator_cost * subpath->rows * numCols;
2981 pathnode->path.rows = numGroups;
2982
2983 return pathnode;
2984}
2985
2986/*
2987 * create_agg_path
2988 * Creates a pathnode that represents performing aggregation/grouping
2989 *
2990 * 'rel' is the parent relation associated with the result
2991 * 'subpath' is the path representing the source of data
2992 * 'target' is the PathTarget to be computed
2993 * 'aggstrategy' is the Agg node's basic implementation strategy
2994 * 'aggsplit' is the Agg node's aggregate-splitting mode
2995 * 'groupClause' is a list of SortGroupClause's representing the grouping
2996 * 'qual' is the HAVING quals if any
2997 * 'aggcosts' contains cost info about the aggregate functions to be computed
2998 * 'numGroups' is the estimated number of groups (1 if not grouping)
2999 */
3000AggPath *
3002 RelOptInfo *rel,
3003 Path *subpath,
3004 PathTarget *target,
3005 AggStrategy aggstrategy,
3006 AggSplit aggsplit,
3007 List *groupClause,
3008 List *qual,
3009 const AggClauseCosts *aggcosts,
3010 double numGroups)
3011{
3013
3014 pathnode->path.pathtype = T_Agg;
3015 pathnode->path.parent = rel;
3016 pathnode->path.pathtarget = target;
3017 pathnode->path.param_info = subpath->param_info;
3018 pathnode->path.parallel_aware = false;
3019 pathnode->path.parallel_safe = rel->consider_parallel &&
3020 subpath->parallel_safe;
3021 pathnode->path.parallel_workers = subpath->parallel_workers;
3022
3023 if (aggstrategy == AGG_SORTED)
3024 {
3025 /*
3026 * Attempt to preserve the order of the subpath. Additional pathkeys
3027 * may have been added in adjust_group_pathkeys_for_groupagg() to
3028 * support ORDER BY / DISTINCT aggregates. Pathkeys added there
3029 * belong to columns within the aggregate function, so we must strip
3030 * these additional pathkeys off as those columns are unavailable
3031 * above the aggregate node.
3032 */
3033 if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
3034 pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
3035 root->num_groupby_pathkeys);
3036 else
3037 pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
3038 }
3039 else
3040 pathnode->path.pathkeys = NIL; /* output is unordered */
3041
3042 pathnode->subpath = subpath;
3043
3044 pathnode->aggstrategy = aggstrategy;
3045 pathnode->aggsplit = aggsplit;
3046 pathnode->numGroups = numGroups;
3047 pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
3048 pathnode->groupClause = groupClause;
3049 pathnode->qual = qual;
3050
3051 cost_agg(&pathnode->path, root,
3052 aggstrategy, aggcosts,
3053 list_length(groupClause), numGroups,
3054 qual,
3055 subpath->disabled_nodes,
3056 subpath->startup_cost, subpath->total_cost,
3057 subpath->rows, subpath->pathtarget->width);
3058
3059 /* add tlist eval cost for each output row */
3060 pathnode->path.startup_cost += target->cost.startup;
3061 pathnode->path.total_cost += target->cost.startup +
3062 target->cost.per_tuple * pathnode->path.rows;
3063
3064 return pathnode;
3065}
3066
3067/*
3068 * create_groupingsets_path
3069 * Creates a pathnode that represents performing GROUPING SETS aggregation
3070 *
3071 * GroupingSetsPath represents sorted grouping with one or more grouping sets.
3072 * The input path's result must be sorted to match the last entry in
3073 * rollup_groupclauses.
3074 *
3075 * 'rel' is the parent relation associated with the result
3076 * 'subpath' is the path representing the source of data
3077 * 'target' is the PathTarget to be computed
3078 * 'having_qual' is the HAVING quals if any
3079 * 'rollups' is a list of RollupData nodes
3080 * 'agg_costs' contains cost info about the aggregate functions to be computed
3081 */
3084 RelOptInfo *rel,
3085 Path *subpath,
3087 AggStrategy aggstrategy,
3088 List *rollups,
3090{
3092 PathTarget *target = rel->reltarget;
3093 ListCell *lc;
3094 bool is_first = true;
3095 bool is_first_sort = true;
3096
3097 /* The topmost generated Plan node will be an Agg */
3098 pathnode->path.pathtype = T_Agg;
3099 pathnode->path.parent = rel;
3100 pathnode->path.pathtarget = target;
3101 pathnode->path.param_info = subpath->param_info;
3102 pathnode->path.parallel_aware = false;
3103 pathnode->path.parallel_safe = rel->consider_parallel &&
3104 subpath->parallel_safe;
3105 pathnode->path.parallel_workers = subpath->parallel_workers;
3106 pathnode->subpath = subpath;
3107
3108 /*
3109 * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
3110 * to AGG_HASHED, here if possible.
3111 */
3112 if (aggstrategy == AGG_SORTED &&
3113 list_length(rollups) == 1 &&
3114 ((RollupData *) linitial(rollups))->groupClause == NIL)
3115 aggstrategy = AGG_PLAIN;
3116
3117 if (aggstrategy == AGG_MIXED &&
3118 list_length(rollups) == 1)
3119 aggstrategy = AGG_HASHED;
3120
3121 /*
3122 * Output will be in sorted order by group_pathkeys if, and only if, there
3123 * is a single rollup operation on a non-empty list of grouping
3124 * expressions.
3125 */
3126 if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
3127 pathnode->path.pathkeys = root->group_pathkeys;
3128 else
3129 pathnode->path.pathkeys = NIL;
3130
3131 pathnode->aggstrategy = aggstrategy;
3132 pathnode->rollups = rollups;
3133 pathnode->qual = having_qual;
3134 pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
3135
3136 Assert(rollups != NIL);
3137 Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
3138 Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
3139
3140 foreach(lc, rollups)
3141 {
3143 List *gsets = rollup->gsets;
3144 int numGroupCols = list_length(linitial(gsets));
3145
3146 /*
3147 * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
3148 * (already-sorted) input, and following ones do their own sort.
3149 *
3150 * In AGG_HASHED mode, there is one rollup for each grouping set.
3151 *
3152 * In AGG_MIXED mode, the first rollups are hashed, the first
3153 * non-hashed one takes the (already-sorted) input, and following ones
3154 * do their own sort.
3155 */
3156 if (is_first)
3157 {
3158 cost_agg(&pathnode->path, root,
3159 aggstrategy,
3160 agg_costs,
3162 rollup->numGroups,
3164 subpath->disabled_nodes,
3165 subpath->startup_cost,
3166 subpath->total_cost,
3167 subpath->rows,
3168 subpath->pathtarget->width);
3169 is_first = false;
3170 if (!rollup->is_hashed)
3171 is_first_sort = false;
3172 }
3173 else
3174 {
3175 Path sort_path; /* dummy for result of cost_sort */
3176 Path agg_path; /* dummy for result of cost_agg */
3177
3178 if (rollup->is_hashed || is_first_sort)
3179 {
3180 /*
3181 * Account for cost of aggregation, but don't charge input
3182 * cost again
3183 */
3185 rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
3186 agg_costs,
3188 rollup->numGroups,
3190 0, 0.0, 0.0,
3191 subpath->rows,
3192 subpath->pathtarget->width);
3193 if (!rollup->is_hashed)
3194 is_first_sort = false;
3195 }
3196 else
3197 {
3198 /* Account for cost of sort, but don't charge input cost again */
3200 0.0,
3201 subpath->rows,
3202 subpath->pathtarget->width,
3203 0.0,
3204 work_mem,
3205 -1.0);
3206
3207 /* Account for cost of aggregation */
3208
3210 AGG_SORTED,
3211 agg_costs,
3213 rollup->numGroups,
3215 sort_path.disabled_nodes,
3216 sort_path.startup_cost,
3217 sort_path.total_cost,
3218 sort_path.rows,
3219 subpath->pathtarget->width);
3220 }
3221
3222 pathnode->path.disabled_nodes += agg_path.disabled_nodes;
3223 pathnode->path.total_cost += agg_path.total_cost;
3224 pathnode->path.rows += agg_path.rows;
3225 }
3226 }
3227
3228 /* add tlist eval cost for each output row */
3229 pathnode->path.startup_cost += target->cost.startup;
3230 pathnode->path.total_cost += target->cost.startup +
3231 target->cost.per_tuple * pathnode->path.rows;
3232
3233 return pathnode;
3234}
3235
3236/*
3237 * create_minmaxagg_path
3238 * Creates a pathnode that represents computation of MIN/MAX aggregates
3239 *
3240 * 'rel' is the parent relation associated with the result
3241 * 'target' is the PathTarget to be computed
3242 * 'mmaggregates' is a list of MinMaxAggInfo structs
3243 * 'quals' is the HAVING quals if any
3244 */
3247 RelOptInfo *rel,
3248 PathTarget *target,
3249 List *mmaggregates,
3250 List *quals)
3251{
3255 ListCell *lc;
3256
3257 /* The topmost generated Plan node will be a Result */
3258 pathnode->path.pathtype = T_Result;
3259 pathnode->path.parent = rel;
3260 pathnode->path.pathtarget = target;
3261 /* For now, assume we are above any joins, so no parameterization */
3262 pathnode->path.param_info = NULL;
3263 pathnode->path.parallel_aware = false;
3264 pathnode->path.parallel_safe = true; /* might change below */
3265 pathnode->path.parallel_workers = 0;
3266 /* Result is one unordered row */
3267 pathnode->path.rows = 1;
3268 pathnode->path.pathkeys = NIL;
3269
3270 pathnode->mmaggregates = mmaggregates;
3271 pathnode->quals = quals;
3272
3273 /* Calculate cost of all the initplans, and check parallel safety */
3274 initplan_cost = 0;
3275 foreach(lc, mmaggregates)
3276 {
3278
3280 initplan_cost += mminfo->pathcost;
3281 if (!mminfo->path->parallel_safe)
3282 pathnode->path.parallel_safe = false;
3283 }
3284
3285 /* add tlist eval cost for each output row, plus cpu_tuple_cost */
3286 pathnode->path.disabled_nodes = initplan_disabled_nodes;
3287 pathnode->path.startup_cost = initplan_cost + target->cost.startup;
3288 pathnode->path.total_cost = initplan_cost + target->cost.startup +
3289 target->cost.per_tuple + cpu_tuple_cost;
3290
3291 /*
3292 * Add cost of qual, if any --- but we ignore its selectivity, since our
3293 * rowcount estimate should be 1 no matter what the qual is.
3294 */
3295 if (quals)
3296 {
3298
3299 cost_qual_eval(&qual_cost, quals, root);
3300 pathnode->path.startup_cost += qual_cost.startup;
3301 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
3302 }
3303
3304 /*
3305 * If the initplans were all parallel-safe, also check safety of the
3306 * target and quals. (The Result node itself isn't parallelizable, but if
3307 * we are in a subquery then it can be useful for the outer query to know
3308 * that this one is parallel-safe.)
3309 */
3310 if (pathnode->path.parallel_safe)
3311 pathnode->path.parallel_safe =
3312 is_parallel_safe(root, (Node *) target->exprs) &&
3313 is_parallel_safe(root, (Node *) quals);
3314
3315 return pathnode;
3316}
3317
3318/*
3319 * create_windowagg_path
3320 * Creates a pathnode that represents computation of window functions
3321 *
3322 * 'rel' is the parent relation associated with the result
3323 * 'subpath' is the path representing the source of data
3324 * 'target' is the PathTarget to be computed
3325 * 'windowFuncs' is a list of WindowFunc structs
3326 * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
3327 * 'winclause' is a WindowClause that is common to all the WindowFuncs
3328 * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
3329 * Must always be NIL when topwindow == false
3330 * 'topwindow' pass as true only for the top-level WindowAgg. False for all
3331 * intermediate WindowAggs.
3332 *
3333 * The input must be sorted according to the WindowClause's PARTITION keys
3334 * plus ORDER BY keys.
3335 */
3338 RelOptInfo *rel,
3339 Path *subpath,
3340 PathTarget *target,
3341 List *windowFuncs,
3342 List *runCondition,
3343 WindowClause *winclause,
3344 List *qual,
3345 bool topwindow)
3346{
3348
3349 /* qual can only be set for the topwindow */
3350 Assert(qual == NIL || topwindow);
3351
3352 pathnode->path.pathtype = T_WindowAgg;
3353 pathnode->path.parent = rel;
3354 pathnode->path.pathtarget = target;
3355 /* For now, assume we are above any joins, so no parameterization */
3356 pathnode->path.param_info = NULL;
3357 pathnode->path.parallel_aware = false;
3358 pathnode->path.parallel_safe = rel->consider_parallel &&
3359 subpath->parallel_safe;
3360 pathnode->path.parallel_workers = subpath->parallel_workers;
3361 /* WindowAgg preserves the input sort order */
3362 pathnode->path.pathkeys = subpath->pathkeys;
3363
3364 pathnode->subpath = subpath;
3365 pathnode->winclause = winclause;
3366 pathnode->qual = qual;
3367 pathnode->runCondition = runCondition;
3368 pathnode->topwindow = topwindow;
3369
3370 /*
3371 * For costing purposes, assume that there are no redundant partitioning
3372 * or ordering columns; it's not worth the trouble to deal with that
3373 * corner case here. So we just pass the unmodified list lengths to
3374 * cost_windowagg.
3375 */
3377 windowFuncs,
3378 winclause,
3379 subpath->disabled_nodes,
3380 subpath->startup_cost,
3381 subpath->total_cost,
3382 subpath->rows);
3383
3384 /* add tlist eval cost for each output row */
3385 pathnode->path.startup_cost += target->cost.startup;
3386 pathnode->path.total_cost += target->cost.startup +
3387 target->cost.per_tuple * pathnode->path.rows;
3388
3389 return pathnode;
3390}
3391
3392/*
3393 * create_setop_path
3394 * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3395 *
3396 * 'rel' is the parent relation associated with the result
3397 * 'leftpath' is the path representing the left-hand source of data
3398 * 'rightpath' is the path representing the right-hand source of data
3399 * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3400 * 'strategy' is the implementation strategy (sorted or hashed)
3401 * 'groupList' is a list of SortGroupClause's representing the grouping
3402 * 'numGroups' is the estimated number of distinct groups in left-hand input
3403 * 'outputRows' is the estimated number of output rows
3404 *
3405 * leftpath and rightpath must produce the same columns. Moreover, if
3406 * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
3407 * by all the grouping columns.
3408 */
3409SetOpPath *
3411 RelOptInfo *rel,
3412 Path *leftpath,
3413 Path *rightpath,
3414 SetOpCmd cmd,
3415 SetOpStrategy strategy,
3416 List *groupList,
3417 double numGroups,
3418 double outputRows)
3419{
3421
3422 pathnode->path.pathtype = T_SetOp;
3423 pathnode->path.parent = rel;
3424 pathnode->path.pathtarget = rel->reltarget;
3425 /* For now, assume we are above any joins, so no parameterization */
3426 pathnode->path.param_info = NULL;
3427 pathnode->path.parallel_aware = false;
3428 pathnode->path.parallel_safe = rel->consider_parallel &&
3429 leftpath->parallel_safe && rightpath->parallel_safe;
3430 pathnode->path.parallel_workers =
3431 leftpath->parallel_workers + rightpath->parallel_workers;
3432 /* SetOp preserves the input sort order if in sort mode */
3433 pathnode->path.pathkeys =
3434 (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
3435
3436 pathnode->leftpath = leftpath;
3437 pathnode->rightpath = rightpath;
3438 pathnode->cmd = cmd;
3439 pathnode->strategy = strategy;
3440 pathnode->groupList = groupList;
3441 pathnode->numGroups = numGroups;
3442
3443 /*
3444 * Compute cost estimates. As things stand, we end up with the same total
3445 * cost in this node for sort and hash methods, but different startup
3446 * costs. This could be refined perhaps, but it'll do for now.
3447 */
3448 pathnode->path.disabled_nodes =
3449 leftpath->disabled_nodes + rightpath->disabled_nodes;
3450 if (strategy == SETOP_SORTED)
3451 {
3452 /*
3453 * In sorted mode, we can emit output incrementally. Charge one
3454 * cpu_operator_cost per comparison per input tuple. Like cost_group,
3455 * we assume all columns get compared at most of the tuples.
3456 */
3457 pathnode->path.startup_cost =
3458 leftpath->startup_cost + rightpath->startup_cost;
3459 pathnode->path.total_cost =
3460 leftpath->total_cost + rightpath->total_cost +
3461 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3462
3463 /*
3464 * Also charge a small amount per extracted tuple. Like cost_sort,
3465 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3466 * qual-checking or projection.
3467 */
3468 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3469 }
3470 else
3471 {
3473
3474 /*
3475 * In hashed mode, we must read all the input before we can emit
3476 * anything. Also charge comparison costs to represent the cost of
3477 * hash table lookups.
3478 */
3479 pathnode->path.startup_cost =
3480 leftpath->total_cost + rightpath->total_cost +
3481 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3482 pathnode->path.total_cost = pathnode->path.startup_cost;
3483
3484 /*
3485 * Also charge a small amount per extracted tuple. Like cost_sort,
3486 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3487 * qual-checking or projection.
3488 */
3489 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3490
3491 /*
3492 * Mark the path as disabled if enable_hashagg is off. While this
3493 * isn't exactly a HashAgg node, it seems close enough to justify
3494 * letting that switch control it.
3495 */
3496 if (!enable_hashagg)
3497 pathnode->path.disabled_nodes++;
3498
3499 /*
3500 * Also disable if it doesn't look like the hashtable will fit into
3501 * hash_mem. (Note: reject on equality, to ensure that an estimate of
3502 * SIZE_MAX disables hashing regardless of the hash_mem limit.)
3503 */
3505 leftpath->pathtarget->width);
3507 pathnode->path.disabled_nodes++;
3508 }
3509 pathnode->path.rows = outputRows;
3510
3511 return pathnode;
3512}
3513
3514/*
3515 * create_recursiveunion_path
3516 * Creates a pathnode that represents a recursive UNION node
3517 *
3518 * 'rel' is the parent relation associated with the result
3519 * 'leftpath' is the source of data for the non-recursive term
3520 * 'rightpath' is the source of data for the recursive term
3521 * 'target' is the PathTarget to be computed
3522 * 'distinctList' is a list of SortGroupClause's representing the grouping
3523 * 'wtParam' is the ID of Param representing work table
3524 * 'numGroups' is the estimated number of groups
3525 *
3526 * For recursive UNION ALL, distinctList is empty and numGroups is zero
3527 */
3530 RelOptInfo *rel,
3531 Path *leftpath,
3532 Path *rightpath,
3533 PathTarget *target,
3534 List *distinctList,
3535 int wtParam,
3536 double numGroups)
3537{
3539
3540 pathnode->path.pathtype = T_RecursiveUnion;
3541 pathnode->path.parent = rel;
3542 pathnode->path.pathtarget = target;
3543 /* For now, assume we are above any joins, so no parameterization */
3544 pathnode->path.param_info = NULL;
3545 pathnode->path.parallel_aware = false;
3546 pathnode->path.parallel_safe = rel->consider_parallel &&
3547 leftpath->parallel_safe && rightpath->parallel_safe;
3548 /* Foolish, but we'll do it like joins for now: */
3549 pathnode->path.parallel_workers = leftpath->parallel_workers;
3550 /* RecursiveUnion result is always unsorted */
3551 pathnode->path.pathkeys = NIL;
3552
3553 pathnode->leftpath = leftpath;
3554 pathnode->rightpath = rightpath;
3555 pathnode->distinctList = distinctList;
3556 pathnode->wtParam = wtParam;
3557 pathnode->numGroups = numGroups;
3558
3559 cost_recursive_union(&pathnode->path, leftpath, rightpath);
3560
3561 return pathnode;
3562}
3563
3564/*
3565 * create_lockrows_path
3566 * Creates a pathnode that represents acquiring row locks
3567 *
3568 * 'rel' is the parent relation associated with the result
3569 * 'subpath' is the path representing the source of data
3570 * 'rowMarks' is a list of PlanRowMark's
3571 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3572 */
3575 Path *subpath, List *rowMarks, int epqParam)
3576{
3578
3579 pathnode->path.pathtype = T_LockRows;
3580 pathnode->path.parent = rel;
3581 /* LockRows doesn't project, so use source path's pathtarget */
3582 pathnode->path.pathtarget = subpath->pathtarget;
3583 /* For now, assume we are above any joins, so no parameterization */
3584 pathnode->path.param_info = NULL;
3585 pathnode->path.parallel_aware = false;
3586 pathnode->path.parallel_safe = false;
3587 pathnode->path.parallel_workers = 0;
3588 pathnode->path.rows = subpath->rows;
3589
3590 /*
3591 * The result cannot be assumed sorted, since locking might cause the sort
3592 * key columns to be replaced with new values.
3593 */
3594 pathnode->path.pathkeys = NIL;
3595
3596 pathnode->subpath = subpath;
3597 pathnode->rowMarks = rowMarks;
3598 pathnode->epqParam = epqParam;
3599
3600 /*
3601 * We should charge something extra for the costs of row locking and
3602 * possible refetches, but it's hard to say how much. For now, use
3603 * cpu_tuple_cost per row.
3604 */
3605 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3606 pathnode->path.startup_cost = subpath->startup_cost;
3607 pathnode->path.total_cost = subpath->total_cost +
3608 cpu_tuple_cost * subpath->rows;
3609
3610 return pathnode;
3611}
3612
3613/*
3614 * create_modifytable_path
3615 * Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
3616 * mods
3617 *
3618 * 'rel' is the parent relation associated with the result
3619 * 'subpath' is a Path producing source data
3620 * 'operation' is the operation type
3621 * 'canSetTag' is true if we set the command tag/es_processed
3622 * 'nominalRelation' is the parent RT index for use of EXPLAIN
3623 * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
3624 * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3625 * 'updateColnosLists' is a list of UPDATE target column number lists
3626 * (one sublist per rel); or NIL if not an UPDATE
3627 * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3628 * 'returningLists' is a list of RETURNING tlists (one per rel)
3629 * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3630 * 'onconflict' is the ON CONFLICT clause, or NULL
3631 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3632 * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
3633 * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
3634 */
3637 Path *subpath,
3638 CmdType operation, bool canSetTag,
3639 Index nominalRelation, Index rootRelation,
3640 List *resultRelations,
3641 List *updateColnosLists,
3642 List *withCheckOptionLists, List *returningLists,
3643 List *rowMarks, OnConflictExpr *onconflict,
3644 List *mergeActionLists, List *mergeJoinConditions,
3645 int epqParam)
3646{
3648
3649 Assert(operation == CMD_MERGE ||
3650 (operation == CMD_UPDATE ?
3651 list_length(resultRelations) == list_length(updateColnosLists) :
3652 updateColnosLists == NIL));
3653 Assert(withCheckOptionLists == NIL ||
3654 list_length(resultRelations) == list_length(withCheckOptionLists));
3655 Assert(returningLists == NIL ||
3656 list_length(resultRelations) == list_length(returningLists));
3657
3658 pathnode->path.pathtype = T_ModifyTable;
3659 pathnode->path.parent = rel;
3660 /* pathtarget is not interesting, just make it minimally valid */
3661 pathnode->path.pathtarget = rel->reltarget;
3662 /* For now, assume we are above any joins, so no parameterization */
3663 pathnode->path.param_info = NULL;
3664 pathnode->path.parallel_aware = false;
3665 pathnode->path.parallel_safe = false;
3666 pathnode->path.parallel_workers = 0;
3667 pathnode->path.pathkeys = NIL;
3668
3669 /*
3670 * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
3671 *
3672 * Currently, we don't charge anything extra for the actual table
3673 * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3674 * expressions if any. It would only be window dressing, since
3675 * ModifyTable is always a top-level node and there is no way for the
3676 * costs to change any higher-level planning choices. But we might want
3677 * to make it look better sometime.
3678 */
3679 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3680 pathnode->path.startup_cost = subpath->startup_cost;
3681 pathnode->path.total_cost = subpath->total_cost;
3682 if (returningLists != NIL)
3683 {
3684 pathnode->path.rows = subpath->rows;
3685
3686 /*
3687 * Set width to match the subpath output. XXX this is totally wrong:
3688 * we should return an average of the RETURNING tlist widths. But
3689 * it's what happened historically, and improving it is a task for
3690 * another day. (Again, it's mostly window dressing.)
3691 */
3692 pathnode->path.pathtarget->width = subpath->pathtarget->width;
3693 }
3694 else
3695 {
3696 pathnode->path.rows = 0;
3697 pathnode->path.pathtarget->width = 0;
3698 }
3699
3700 pathnode->subpath = subpath;
3701 pathnode->operation = operation;
3702 pathnode->canSetTag = canSetTag;
3703 pathnode->nominalRelation = nominalRelation;
3704 pathnode->rootRelation = rootRelation;
3705 pathnode->resultRelations = resultRelations;
3706 pathnode->updateColnosLists = updateColnosLists;
3707 pathnode->withCheckOptionLists = withCheckOptionLists;
3708 pathnode->returningLists = returningLists;
3709 pathnode->rowMarks = rowMarks;
3710 pathnode->onconflict = onconflict;
3711 pathnode->epqParam = epqParam;
3712 pathnode->mergeActionLists = mergeActionLists;
3713 pathnode->mergeJoinConditions = mergeJoinConditions;
3714
3715 return pathnode;
3716}
3717
3718/*
3719 * create_limit_path
3720 * Creates a pathnode that represents performing LIMIT/OFFSET
3721 *
3722 * In addition to providing the actual OFFSET and LIMIT expressions,
3723 * the caller must provide estimates of their values for costing purposes.
3724 * The estimates are as computed by preprocess_limit(), ie, 0 represents
3725 * the clause not being present, and -1 means it's present but we could
3726 * not estimate its value.
3727 *
3728 * 'rel' is the parent relation associated with the result
3729 * 'subpath' is the path representing the source of data
3730 * 'limitOffset' is the actual OFFSET expression, or NULL
3731 * 'limitCount' is the actual LIMIT expression, or NULL
3732 * 'offset_est' is the estimated value of the OFFSET expression
3733 * 'count_est' is the estimated value of the LIMIT expression
3734 */
3735LimitPath *
3737 Path *subpath,
3738 Node *limitOffset, Node *limitCount,
3739 LimitOption limitOption,
3740 int64 offset_est, int64 count_est)
3741{
3743
3744 pathnode->path.pathtype = T_Limit;
3745 pathnode->path.parent = rel;
3746 /* Limit doesn't project, so use source path's pathtarget */
3747 pathnode->path.pathtarget = subpath->pathtarget;
3748 /* For now, assume we are above any joins, so no parameterization */
3749 pathnode->path.param_info = NULL;
3750 pathnode->path.parallel_aware = false;
3751 pathnode->path.parallel_safe = rel->consider_parallel &&
3752 subpath->parallel_safe;
3753 pathnode->path.parallel_workers = subpath->parallel_workers;
3754 pathnode->path.rows = subpath->rows;
3755 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3756 pathnode->path.startup_cost = subpath->startup_cost;
3757 pathnode->path.total_cost = subpath->total_cost;
3758 pathnode->path.pathkeys = subpath->pathkeys;
3759 pathnode->subpath = subpath;
3760 pathnode->limitOffset = limitOffset;
3761 pathnode->limitCount = limitCount;
3762 pathnode->limitOption = limitOption;
3763
3764 /*
3765 * Adjust the output rows count and costs according to the offset/limit.
3766 */
3768 &pathnode->path.startup_cost,
3769 &pathnode->path.total_cost,
3770 offset_est, count_est);
3771
3772 return pathnode;
3773}
3774
3775/*
3776 * adjust_limit_rows_costs
3777 * Adjust the size and cost estimates for a LimitPath node according to the
3778 * offset/limit.
3779 *
3780 * This is only a cosmetic issue if we are at top level, but if we are
3781 * building a subquery then it's important to report correct info to the outer
3782 * planner.
3783 *
3784 * When the offset or count couldn't be estimated, use 10% of the estimated
3785 * number of rows emitted from the subpath.
3786 *
3787 * XXX we don't bother to add eval costs of the offset/limit expressions
3788 * themselves to the path costs. In theory we should, but in most cases those
3789 * expressions are trivial and it's just not worth the trouble.
3790 */
3791void
3792adjust_limit_rows_costs(double *rows, /* in/out parameter */
3793 Cost *startup_cost, /* in/out parameter */
3794 Cost *total_cost, /* in/out parameter */
3795 int64 offset_est,
3796 int64 count_est)
3797{
3798 double input_rows = *rows;
3799 Cost input_startup_cost = *startup_cost;
3800 Cost input_total_cost = *total_cost;
3801
3802 if (offset_est != 0)
3803 {
3804 double offset_rows;
3805
3806 if (offset_est > 0)
3807 offset_rows = (double) offset_est;
3808 else
3810 if (offset_rows > *rows)
3811 offset_rows = *rows;
3812 if (input_rows > 0)
3813 *startup_cost +=
3816 *rows -= offset_rows;
3817 if (*rows < 1)
3818 *rows = 1;
3819 }
3820
3821 if (count_est != 0)
3822 {
3823 double count_rows;
3824
3825 if (count_est > 0)
3826 count_rows = (double) count_est;
3827 else
3829 if (count_rows > *rows)
3830 count_rows = *rows;
3831 if (input_rows > 0)
3832 *total_cost = *startup_cost +
3835 *rows = count_rows;
3836 if (*rows < 1)
3837 *rows = 1;
3838 }
3839}
3840
3841
3842/*
3843 * reparameterize_path
3844 * Attempt to modify a Path to have greater parameterization
3845 *
3846 * We use this to attempt to bring all child paths of an appendrel to the
3847 * same parameterization level, ensuring that they all enforce the same set
3848 * of join quals (and thus that that parameterization can be attributed to
3849 * an append path built from such paths). Currently, only a few path types
3850 * are supported here, though more could be added at need. We return NULL
3851 * if we can't reparameterize the given path.
3852 *
3853 * Note: we intentionally do not pass created paths to add_path(); it would
3854 * possibly try to delete them on the grounds of being cost-inferior to the
3855 * paths they were made from, and we don't want that. Paths made here are
3856 * not necessarily of general-purpose usefulness, but they can be useful
3857 * as members of an append path.
3858 */
3859Path *
3862 double loop_count)
3863{
3864 RelOptInfo *rel = path->parent;
3865
3866 /* Can only increase, not decrease, path's parameterization */
3868 return NULL;
3869 switch (path->pathtype)
3870 {
3871 case T_SeqScan:
3872 return create_seqscan_path(root, rel, required_outer, 0);
3873 case T_SampleScan:
3875 case T_IndexScan:
3876 case T_IndexOnlyScan:
3877 {
3878 IndexPath *ipath = (IndexPath *) path;
3880
3881 /*
3882 * We can't use create_index_path directly, and would not want
3883 * to because it would re-compute the indexqual conditions
3884 * which is wasted effort. Instead we hack things a bit:
3885 * flat-copy the path node, revise its param_info, and redo
3886 * the cost estimate.
3887 */
3888 memcpy(newpath, ipath, sizeof(IndexPath));
3889 newpath->path.param_info =
3892 return (Path *) newpath;
3893 }
3894 case T_BitmapHeapScan:
3895 {
3897
3899 rel,
3900 bpath->bitmapqual,
3902 loop_count, 0);
3903 }
3904 case T_SubqueryScan:
3905 {
3906 SubqueryScanPath *spath = (SubqueryScanPath *) path;
3907 Path *subpath = spath->subpath;
3908 bool trivial_pathtarget;
3909
3910 /*
3911 * If existing node has zero extra cost, we must have decided
3912 * its target is trivial. (The converse is not true, because
3913 * it might have a trivial target but quals to enforce; but in
3914 * that case the new node will too, so it doesn't matter
3915 * whether we get the right answer here.)
3916 */
3918 (subpath->total_cost == spath->path.total_cost);
3919
3921 rel,
3922 subpath,
3924 spath->path.pathkeys,
3926 }
3927 case T_Result:
3928 /* Supported only for RTE_RESULT scan paths */
3929 if (IsA(path, Path))
3931 break;
3932 case T_Append:
3933 {
3934 AppendPath *apath = (AppendPath *) path;
3935 List *childpaths = NIL;
3937 int i;
3938 ListCell *lc;
3939
3940 /* Reparameterize the children */
3941 i = 0;
3942 foreach(lc, apath->subpaths)
3943 {
3944 Path *spath = (Path *) lfirst(lc);
3945
3946 spath = reparameterize_path(root, spath,
3948 loop_count);
3949 if (spath == NULL)
3950 return NULL;
3951 /* We have to re-split the regular and partial paths */
3952 if (i < apath->first_partial_path)
3953 childpaths = lappend(childpaths, spath);
3954 else
3956 i++;
3957 }
3958 return (Path *)
3960 apath->path.pathkeys, required_outer,
3961 apath->path.parallel_workers,
3962 apath->path.parallel_aware,
3963 -1);
3964 }
3965 case T_Material:
3966 {
3967 MaterialPath *mpath = (MaterialPath *) path;
3968 Path *spath = mpath->subpath;
3969 bool enabled;
3970
3971 spath = reparameterize_path(root, spath,
3973 loop_count);
3974 enabled =
3975 (mpath->path.disabled_nodes <= spath->disabled_nodes);
3976 if (spath == NULL)
3977 return NULL;
3978 return (Path *) create_material_path(rel, spath, enabled);
3979 }
3980 case T_Memoize:
3981 {
3982 MemoizePath *mpath = (MemoizePath *) path;
3983 Path *spath = mpath->subpath;
3984
3985 spath = reparameterize_path(root, spath,
3987 loop_count);
3988 if (spath == NULL)
3989 return NULL;
3990 return (Path *) create_memoize_path(root, rel,
3991 spath,
3992 mpath->param_exprs,
3993 mpath->hash_operators,
3994 mpath->singlerow,
3995 mpath->binary_mode,
3996 mpath->est_calls);
3997 }
3998 default:
3999 break;
4000 }
4001 return NULL;
4002}
4003
4004/*
4005 * reparameterize_path_by_child
4006 * Given a path parameterized by the parent of the given child relation,
4007 * translate the path to be parameterized by the given child relation.
4008 *
4009 * Most fields in the path are not changed, but any expressions must be
4010 * adjusted to refer to the correct varnos, and any subpaths must be
4011 * recursively reparameterized. Other fields that refer to specific relids
4012 * also need adjustment.
4013 *
4014 * The cost, number of rows, width and parallel path properties depend upon
4015 * path->parent, which does not change during the translation. So we need
4016 * not change those.
4017 *
4018 * Currently, only a few path types are supported here, though more could be
4019 * added at need. We return NULL if we can't reparameterize the given path.
4020 *
4021 * Note that this function can change referenced RangeTblEntries, RelOptInfos
4022 * and IndexOptInfos as well as the Path structures. Therefore, it's only safe
4023 * to call during create_plan(), when we have made a final choice of which Path
4024 * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
4025 *
4026 * Keep this code in sync with path_is_reparameterizable_by_child()!
4027 */
4028Path *
4031{
4032 Path *new_path;
4036
4037#define ADJUST_CHILD_ATTRS(node) \
4038 ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
4039 (Node *) (node), \
4040 child_rel, \
4041 child_rel->top_parent))
4042
4043#define REPARAMETERIZE_CHILD_PATH(path) \
4044do { \
4045 (path) = reparameterize_path_by_child(root, (path), child_rel); \
4046 if ((path) == NULL) \
4047 return NULL; \
4048} while(0)
4049
4050#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
4051do { \
4052 if ((pathlist) != NIL) \
4053 { \
4054 (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
4055 child_rel); \
4056 if ((pathlist) == NIL) \
4057 return NULL; \
4058 } \
4059} while(0)
4060
4061 /*
4062 * If the path is not parameterized by the parent of the given relation,
4063 * it doesn't need reparameterization.
4064 */
4065 if (!path->param_info ||
4066 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4067 return path;
4068
4069 /*
4070 * If possible, reparameterize the given path.
4071 *
4072 * This function is currently only applied to the inner side of a nestloop
4073 * join that is being partitioned by the partitionwise-join code. Hence,
4074 * we need only support path types that plausibly arise in that context.
4075 * (In particular, supporting sorted path types would be a waste of code
4076 * and cycles: even if we translated them here, they'd just lose in
4077 * subsequent cost comparisons.) If we do see an unsupported path type,
4078 * that just means we won't be able to generate a partitionwise-join plan
4079 * using that path type.
4080 */
4081 switch (nodeTag(path))
4082 {
4083 case T_Path:
4084 new_path = path;
4085 ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
4086 if (path->pathtype == T_SampleScan)
4087 {
4088 Index scan_relid = path->parent->relid;
4090
4091 /* it should be a base rel with a tablesample clause... */
4092 Assert(scan_relid > 0);
4094 Assert(rte->rtekind == RTE_RELATION);
4095 Assert(rte->tablesample != NULL);
4096
4097 ADJUST_CHILD_ATTRS(rte->tablesample);
4098 }
4099 break;
4100
4101 case T_IndexPath:
4102 {
4103 IndexPath *ipath = (IndexPath *) path;
4104
4105 ADJUST_CHILD_ATTRS(ipath->indexinfo->indrestrictinfo);
4106 ADJUST_CHILD_ATTRS(ipath->indexclauses);
4107 new_path = (Path *) ipath;
4108 }
4109 break;
4110
4111 case T_BitmapHeapPath:
4112 {
4114
4115 ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
4116 REPARAMETERIZE_CHILD_PATH(bhpath->bitmapqual);
4117 new_path = (Path *) bhpath;
4118 }
4119 break;
4120
4121 case T_BitmapAndPath:
4122 {
4124
4126 new_path = (Path *) bapath;
4127 }
4128 break;
4129
4130 case T_BitmapOrPath:
4131 {
4132 BitmapOrPath *bopath = (BitmapOrPath *) path;
4133
4135 new_path = (Path *) bopath;
4136 }
4137 break;
4138
4139 case T_ForeignPath:
4140 {
4141 ForeignPath *fpath = (ForeignPath *) path;
4143
4144 ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
4145 if (fpath->fdw_outerpath)
4146 REPARAMETERIZE_CHILD_PATH(fpath->fdw_outerpath);
4147 if (fpath->fdw_restrictinfo)
4148 ADJUST_CHILD_ATTRS(fpath->fdw_restrictinfo);
4149
4150 /* Hand over to FDW if needed. */
4151 rfpc_func =
4152 path->parent->fdwroutine->ReparameterizeForeignPathByChild;
4153 if (rfpc_func)
4154 fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
4155 child_rel);
4156 new_path = (Path *) fpath;
4157 }
4158 break;
4159
4160 case T_CustomPath:
4161 {
4162 CustomPath *cpath = (CustomPath *) path;
4163
4164 ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
4166 if (cpath->custom_restrictinfo)
4167 ADJUST_CHILD_ATTRS(cpath->custom_restrictinfo);
4168 if (cpath->methods &&
4169 cpath->methods->ReparameterizeCustomPathByChild)
4170 cpath->custom_private =
4171 cpath->methods->ReparameterizeCustomPathByChild(root,
4172 cpath->custom_private,
4173 child_rel);
4174 new_path = (Path *) cpath;
4175 }
4176 break;
4177
4178 case T_NestPath:
4179 {
4180 NestPath *npath = (NestPath *) path;
4181 JoinPath *jpath = (JoinPath *) npath;
4182
4186 new_path = (Path *) npath;
4187 }
4188 break;
4189
4190 case T_MergePath:
4191 {
4192 MergePath *mpath = (MergePath *) path;
4193 JoinPath *jpath = (JoinPath *) mpath;
4194
4198 ADJUST_CHILD_ATTRS(mpath->path_mergeclauses);
4199 new_path = (Path *) mpath;
4200 }
4201 break;
4202
4203 case T_HashPath:
4204 {
4205 HashPath *hpath = (HashPath *) path;
4206 JoinPath *jpath = (JoinPath *) hpath;
4207
4211 ADJUST_CHILD_ATTRS(hpath->path_hashclauses);
4212 new_path = (Path *) hpath;
4213 }
4214 break;
4215
4216 case T_AppendPath:
4217 {
4218 AppendPath *apath = (AppendPath *) path;
4219
4221 new_path = (Path *) apath;
4222 }
4223 break;
4224
4225 case T_MaterialPath:
4226 {
4227 MaterialPath *mpath = (MaterialPath *) path;
4228
4230 new_path = (Path *) mpath;
4231 }
4232 break;
4233
4234 case T_MemoizePath:
4235 {
4236 MemoizePath *mpath = (MemoizePath *) path;
4237
4239 ADJUST_CHILD_ATTRS(mpath->param_exprs);
4240 new_path = (Path *) mpath;
4241 }
4242 break;
4243
4244 case T_GatherPath:
4245 {
4246 GatherPath *gpath = (GatherPath *) path;
4247
4249 new_path = (Path *) gpath;
4250 }
4251 break;
4252
4253 default:
4254 /* We don't know how to reparameterize this path. */
4255 return NULL;
4256 }
4257
4258 /*
4259 * Adjust the parameterization information, which refers to the topmost
4260 * parent. The topmost parent can be multiple levels away from the given
4261 * child, hence use multi-level expression adjustment routines.
4262 */
4263 old_ppi = new_path->param_info;
4266 child_rel,
4267 child_rel->top_parent);
4268
4269 /* If we already have a PPI for this parameterization, just return it */
4271
4272 /*
4273 * If not, build a new one and link it to the list of PPIs. For the same
4274 * reason as explained in mark_dummy_rel(), allocate new PPI in the same
4275 * context the given RelOptInfo is in.
4276 */
4277 if (new_ppi == NULL)
4278 {
4279 MemoryContext oldcontext;
4280 RelOptInfo *rel = path->parent;
4281
4283
4285 new_ppi->ppi_req_outer = bms_copy(required_outer);
4286 new_ppi->ppi_rows = old_ppi->ppi_rows;
4287 new_ppi->ppi_clauses = old_ppi->ppi_clauses;
4288 ADJUST_CHILD_ATTRS(new_ppi->ppi_clauses);
4289 new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
4290 rel->ppilist = lappend(rel->ppilist, new_ppi);
4291
4292 MemoryContextSwitchTo(oldcontext);
4293 }
4295
4296 new_path->param_info = new_ppi;
4297
4298 /*
4299 * Adjust the path target if the parent of the outer relation is
4300 * referenced in the targetlist. This can happen when only the parent of
4301 * outer relation is laterally referenced in this relation.
4302 */
4303 if (bms_overlap(path->parent->lateral_relids,
4304 child_rel->top_parent_relids))
4305 {
4306 new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
4307 ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
4308 }
4309
4310 return new_path;
4311}
4312
4313/*
4314 * path_is_reparameterizable_by_child
4315 * Given a path parameterized by the parent of the given child relation,
4316 * see if it can be translated to be parameterized by the child relation.
4317 *
4318 * This must return true if and only if reparameterize_path_by_child()
4319 * would succeed on this path. Currently it's sufficient to verify that
4320 * the path and all of its subpaths (if any) are of the types handled by
4321 * that function. However, subpaths that are not parameterized can be
4322 * disregarded since they won't require translation.
4323 */
4324bool
4326{
4327#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
4328do { \
4329 if (!path_is_reparameterizable_by_child(path, child_rel)) \
4330 return false; \
4331} while(0)
4332
4333#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
4334do { \
4335 if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
4336 return false; \
4337} while(0)
4338
4339 /*
4340 * If the path is not parameterized by the parent of the given relation,
4341 * it doesn't need reparameterization.
4342 */
4343 if (!path->param_info ||
4344 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4345 return true;
4346
4347 /*
4348 * Check that the path type is one that reparameterize_path_by_child() can
4349 * handle, and recursively check subpaths.
4350 */
4351 switch (nodeTag(path))
4352 {
4353 case T_Path:
4354 case T_IndexPath:
4355 break;
4356
4357 case T_BitmapHeapPath:
4358 {
4360
4362 }
4363 break;
4364
4365 case T_BitmapAndPath:
4366 {
4368
4370 }
4371 break;
4372
4373 case T_BitmapOrPath:
4374 {
4375 BitmapOrPath *bopath = (BitmapOrPath *) path;
4376
4378 }
4379 break;
4380
4381 case T_ForeignPath:
4382 {
4383 ForeignPath *fpath = (ForeignPath *) path;
4384
4385 if (fpath->fdw_outerpath)
4387 }
4388 break;
4389
4390 case T_CustomPath:
4391 {
4392 CustomPath *cpath = (CustomPath *) path;
4393
4395 }
4396 break;
4397
4398 case T_NestPath:
4399 case T_MergePath:
4400 case T_HashPath:
4401 {
4402 JoinPath *jpath = (JoinPath *) path;
4403
4406 }
4407 break;
4408
4409 case T_AppendPath:
4410 {
4411 AppendPath *apath = (AppendPath *) path;
4412
4414 }
4415 break;
4416
4417 case T_MaterialPath:
4418 {
4419 MaterialPath *mpath = (MaterialPath *) path;
4420
4422 }
4423 break;
4424
4425 case T_MemoizePath:
4426 {
4427 MemoizePath *mpath = (MemoizePath *) path;
4428
4430 }
4431 break;
4432
4433 case T_GatherPath:
4434 {
4435 GatherPath *gpath = (GatherPath *) path;
4436
4438 }
4439 break;
4440
4441 default:
4442 /* We don't know how to reparameterize this path. */
4443 return false;
4444 }
4445
4446 return true;
4447}
4448
4449/*
4450 * reparameterize_pathlist_by_child
4451 * Helper function to reparameterize a list of paths by given child rel.
4452 *
4453 * Returns NIL to indicate failure, so pathlist had better not be NIL.
4454 */
4455static List *
4457 List *pathlist,
4459{
4460 ListCell *lc;
4461 List *result = NIL;
4462
4463 foreach(lc, pathlist)
4464 {
4466 child_rel);
4467
4468 if (path == NULL)
4469 {
4470 list_free(result);
4471 return NIL;
4472 }
4473
4474 result = lappend(result, path);
4475 }
4476
4477 return result;
4478}
4479
4480/*
4481 * pathlist_is_reparameterizable_by_child
4482 * Helper function to check if a list of paths can be reparameterized.
4483 */
4484static bool
4486{
4487 ListCell *lc;
4488
4489 foreach(lc, pathlist)
4490 {
4491 Path *path = (Path *) lfirst(lc);
4492
4494 return false;
4495 }
4496
4497 return true;
4498}
Datum sort(PG_FUNCTION_ARGS)
Definition _int_op.c:198
Relids adjust_child_relids_multilevel(PlannerInfo *root, Relids relids, RelOptInfo *childrel, RelOptInfo *parentrel)
Definition appendinfo.c:659
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:142
BMS_Comparison bms_subset_compare(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:445
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:1160
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:412
void bms_free(Bitmapset *a)
Definition bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition bitmapset.c:510
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:916
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:581
int bms_compare(const Bitmapset *a, const Bitmapset *b)
Definition bitmapset.c:183
Bitmapset * bms_copy(const Bitmapset *a)
Definition bitmapset.c:122
#define bms_is_empty(a)
Definition bitmapset.h:118
BMS_Comparison
Definition bitmapset.h:61
@ BMS_DIFFERENT
Definition bitmapset.h:65
@ BMS_SUBSET1
Definition bitmapset.h:63
@ BMS_EQUAL
Definition bitmapset.h:62
@ BMS_SUBSET2
Definition bitmapset.h:64
#define PG_USED_FOR_ASSERTS_ONLY
Definition c.h:223
#define Assert(condition)
Definition c.h:873
int64_t int64
Definition c.h:543
#define unlikely(x)
Definition c.h:412
unsigned int Index
Definition c.h:628
size_t Size
Definition c.h:619
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition clauses.c:762
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition clauses.c:298
double cpu_operator_cost
Definition costsize.c:134
void final_cost_hashjoin(PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition costsize.c:4421
void final_cost_mergejoin(PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition costsize.c:3960
void cost_material(Path *path, bool enabled, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition costsize.c:2583
void cost_windowagg(Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition costsize.c:3209
void cost_functionscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:1563
void cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
Definition costsize.c:1011
void cost_tidrangescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
Definition costsize.c:1360
void cost_agg(Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
Definition costsize.c:2793
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition costsize.c:2201
void final_cost_nestloop(PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition costsize.c:3460
void cost_gather_merge(GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
Definition costsize.c:469
void cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
Definition costsize.c:1875
void cost_tablefuncscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:1629
double cpu_tuple_cost
Definition costsize.c:132
void cost_samplescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:348
void cost_gather(GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
Definition costsize.c:429
void cost_append(AppendPath *apath, PlannerInfo *root)
Definition costsize.c:2311
void cost_namedtuplestorescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:1791
void cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:269
void cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:1690
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition costsize.c:2053
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition costsize.c:4904
void cost_group(Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition costsize.c:3306
void cost_resultscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:1833
void cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
Definition costsize.c:1157
void cost_tidscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
Definition costsize.c:1250
void cost_merge_append(Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
Definition costsize.c:2525
bool enable_hashagg
Definition costsize.c:152
double clamp_row_est(double nrows)
Definition costsize.c:213
void cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
Definition costsize.c:1478
void cost_ctescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition costsize.c:1745
void cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
Definition costsize.c:1202
void cost_index(IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
Definition costsize.c:544
bool enable_incremental_sort
Definition costsize.c:151
bool is_projection_capable_path(Path *path)
#define ERROR
Definition elog.h:39
#define elog(elevel,...)
Definition elog.h:226
bool equal(const void *a, const void *b)
Definition equalfuncs.c:223
List *(* ReparameterizeForeignPathByChild_function)(PlannerInfo *root, List *fdw_private, RelOptInfo *child_rel)
Definition fdwapi.h:182
int work_mem
Definition globals.c:131
int b
Definition isn.c:74
int a
Definition isn.c:73
int i
Definition isn.c:77
List * lappend(List *list, void *datum)
Definition list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition list.c:1674
List * list_concat(List *list1, const List *list2)
Definition list.c:561
List * lcons(void *datum, List *list)
Definition list.c:495
void list_free(List *list)
Definition list.c:1546
List * list_copy_head(const List *oldlist, int len)
Definition list.c:1593
List * list_insert_nth(List *list, int pos, void *datum)
Definition list.c:439
Datum subpath(PG_FUNCTION_ARGS)
Definition ltree_op.c:311
void pfree(void *pointer)
Definition mcxt.c:1616
MemoryContext GetMemoryChunkContext(void *pointer)
Definition mcxt.c:756
#define CHECK_FOR_INTERRUPTS()
Definition miscadmin.h:123
size_t get_hash_memory_limit(void)
Definition nodeHash.c:3621
Size EstimateSetOpHashTableSpace(double nentries, Size tupleWidth)
Definition nodeSetOp.c:115
SetOpCmd
Definition nodes.h:407
SetOpStrategy
Definition nodes.h:415
@ SETOP_SORTED
Definition nodes.h:416
#define IsA(nodeptr, _type_)
Definition nodes.h:164
double Cost
Definition nodes.h:261
#define nodeTag(nodeptr)
Definition nodes.h:139
double Cardinality
Definition nodes.h:262
CmdType
Definition nodes.h:273
@ CMD_MERGE
Definition nodes.h:279
@ CMD_UPDATE
Definition nodes.h:276
AggStrategy
Definition nodes.h:363
@ AGG_SORTED
Definition nodes.h:365
@ AGG_HASHED
Definition nodes.h:366
@ AGG_MIXED
Definition nodes.h:367
@ AGG_PLAIN
Definition nodes.h:364
AggSplit
Definition nodes.h:385
LimitOption
Definition nodes.h:440
#define makeNode(_type_)
Definition nodes.h:161
JoinType
Definition nodes.h:298
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition palloc.h:124
@ RTE_RELATION
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition pathkeys.c:558
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition pathkeys.c:343
PathKeysComparison compare_pathkeys(List *keys1, List *keys2)
Definition pathkeys.c:304
#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist)
static int append_startup_cost_compare(const ListCell *a, const ListCell *b)
Definition pathnode.c:1452
#define REPARAMETERIZE_CHILD_PATH(path)
Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
Definition pathnode.c:2248
static PathCostComparison compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
Definition pathnode.c:181
ForeignPath * create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition pathnode.c:2174
BitmapAndPath * create_bitmap_and_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition pathnode.c:1129
Path * create_functionscan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition pathnode.c:1883
bool path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
Definition pathnode.c:4325
MemoizePath * create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *param_exprs, List *hash_operators, bool singlerow, bool binary_mode, Cardinality est_calls)
Definition pathnode.c:1690
Path * create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition pathnode.c:1935
MaterialPath * create_material_path(RelOptInfo *rel, Path *subpath, bool enabled)
Definition pathnode.c:1656
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition pathnode.c:3246
Path * create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition pathnode.c:2039
static bool pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
Definition pathnode.c:4485
SetOpPath * create_setop_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, SetOpCmd cmd, SetOpStrategy strategy, List *groupList, double numGroups, double outputRows)
Definition pathnode.c:3410
#define STD_FUZZ_FACTOR
Definition pathnode.c:47
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, List *resultRelations, List *updateColnosLists, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, List *mergeActionLists, List *mergeJoinConditions, int epqParam)
Definition pathnode.c:3636
Relids calc_nestloop_required_outer(Relids outerrelids, Relids outer_paramrels, Relids innerrelids, Relids inner_paramrels)
Definition pathnode.c:2221
IndexPath * create_index_path(PlannerInfo *root, IndexOptInfo *index, List *indexclauses, List *indexorderbys, List *indexorderbycols, List *pathkeys, ScanDirection indexscandir, bool indexonly, Relids required_outer, double loop_count, bool partial_path)
Definition pathnode.c:1047
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition pathnode.c:2729
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition pathnode.c:2531
#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist)
TidRangePath * create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel, List *tidrangequals, Relids required_outer, int parallel_workers)
Definition pathnode.c:1262
static List * reparameterize_pathlist_by_child(PlannerInfo *root, List *pathlist, RelOptInfo *child_rel)
Definition pathnode.c:4456
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, List *runCondition, WindowClause *winclause, List *qual, bool topwindow)
Definition pathnode.c:3337
Path * reparameterize_path_by_child(PlannerInfo *root, Path *path, RelOptInfo *child_rel)
Definition pathnode.c:4029
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition pathnode.c:3574
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition pathnode.c:2640
Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers)
Definition pathnode.c:981
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition pathnode.c:1757
HashPath * create_hashjoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, bool parallel_hash, List *restrict_clauses, Relids required_outer, List *hashclauses)
Definition pathnode.c:2465
void set_cheapest(RelOptInfo *parent_rel)
Definition pathnode.c:268
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition pathnode.c:793
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition pathnode.c:3736
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition pathnode.c:1299
Path * create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition pathnode.c:1987
SubqueryScanPath * create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, bool trivial_pathtarget, List *pathkeys, Relids required_outer)
Definition pathnode.c:1853
#define ADJUST_CHILD_ATTRS(node)
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition pathnode.c:123
IncrementalSortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition pathnode.c:2799
PathCostComparison
Definition pathnode.c:35
@ COSTS_EQUAL
Definition pathnode.c:36
@ COSTS_BETTER1
Definition pathnode.c:37
@ COSTS_BETTER2
Definition pathnode.c:38
@ COSTS_DIFFERENT
Definition pathnode.c:39
BitmapOrPath * create_bitmap_or_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition pathnode.c:1181
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs)
Definition pathnode.c:3083
BitmapHeapPath * create_bitmap_heap_path(PlannerInfo *root, RelOptInfo *rel, Path *bitmapqual, Relids required_outer, double loop_count, int parallel_degree)
Definition pathnode.c:1096
Path * create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition pathnode.c:1909
#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path)
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition pathnode.c:2848
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition pathnode.c:2892
ForeignPath * create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition pathnode.c:2072
TidPath * create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals, Relids required_outer)
Definition pathnode.c:1233
#define CONSIDER_PATH_STARTUP_COST(p)
GatherPath * create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, Relids required_outer, double *rows)
Definition pathnode.c:1809
Path * create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition pathnode.c:1006
ForeignPath * create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition pathnode.c:2120
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition pathnode.c:459
int compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
Definition pathnode.c:68
bool add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer)
Definition pathnode.c:686
static int append_total_cost_compare(const ListCell *a, const ListCell *b)
Definition pathnode.c:1430
Path * create_resultscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition pathnode.c:2013
void adjust_limit_rows_costs(double *rows, Cost *startup_cost, Cost *total_cost, int64 offset_est, int64 count_est)
Definition pathnode.c:3792
Path * create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition pathnode.c:1961
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition pathnode.c:2949
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition pathnode.c:3001
bool add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost total_cost, List *pathkeys)
Definition pathnode.c:919
MergePath * create_mergejoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer, List *mergeclauses, List *outersortkeys, List *innersortkeys, int outer_presorted_keys)
Definition pathnode.c:2397
RecursiveUnionPath * create_recursiveunion_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, PathTarget *target, List *distinctList, int wtParam, double numGroups)
Definition pathnode.c:3529
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition pathnode.c:1608
MergeAppendPath * create_merge_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *pathkeys, Relids required_outer)
Definition pathnode.c:1470
Path * reparameterize_path(PlannerInfo *root, Path *path, Relids required_outer, double loop_count)
Definition pathnode.c:3860
NestPath * create_nestloop_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer)
Definition pathnode.c:2300
#define IS_SIMPLE_REL(rel)
Definition pathnodes.h:971
CostSelector
Definition pathnodes.h:110
@ TOTAL_COST
Definition pathnodes.h:111
@ STARTUP_COST
Definition pathnodes.h:111
#define PATH_REQ_OUTER(path)
Definition pathnodes.h:1995
#define planner_rt_fetch(rti, root)
Definition pathnodes.h:686
@ RELOPT_BASEREL
Definition pathnodes.h:959
PathKeysComparison
Definition paths.h:219
@ PATHKEYS_BETTER2
Definition paths.h:222
@ PATHKEYS_BETTER1
Definition paths.h:221
@ PATHKEYS_DIFFERENT
Definition paths.h:223
@ PATHKEYS_EQUAL
Definition paths.h:220
#define lfirst(lc)
Definition pg_list.h:172
static int list_length(const List *l)
Definition pg_list.h:152
#define NIL
Definition pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition pg_list.h:403
#define foreach_delete_current(lst, var_or_cell)
Definition pg_list.h:391
#define linitial(l)
Definition pg_list.h:178
static int fb(int x)
tree ctl root
Definition radixtree.h:1857
static int cmp(const chr *x, const chr *y, size_t len)
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition relnode.c:2004
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition relnode.c:1807
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition relnode.c:1693
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition relnode.c:2037
Bitmapset * get_param_path_clause_serials(Path *path)
Definition relnode.c:2058
ScanDirection
Definition sdir.h:25
SpecialJoinInfo * sjinfo
Definition pathnodes.h:3578
Path * outerjoinpath
Definition pathnodes.h:2374
Path * innerjoinpath
Definition pathnodes.h:2375
List * joinrestrictinfo
Definition pathnodes.h:2377
Definition pg_list.h:54
Definition nodes.h:135
List * exprs
Definition pathnodes.h:1858
QualCost cost
Definition pathnodes.h:1864
List * pathkeys
Definition pathnodes.h:1991
NodeTag pathtype
Definition pathnodes.h:1951
Cardinality rows
Definition pathnodes.h:1985
Cost startup_cost
Definition pathnodes.h:1987
int parallel_workers
Definition pathnodes.h:1982
int disabled_nodes
Definition pathnodes.h:1986
Cost total_cost
Definition pathnodes.h:1988
bool parallel_aware
Definition pathnodes.h:1978
bool parallel_safe
Definition pathnodes.h:1980
Cost per_tuple
Definition pathnodes.h:121
Cost startup
Definition pathnodes.h:120
List * ppilist
Definition pathnodes.h:1033
Relids relids
Definition pathnodes.h:1003
struct PathTarget * reltarget
Definition pathnodes.h:1027
bool consider_parallel
Definition pathnodes.h:1019
Relids lateral_relids
Definition pathnodes.h:1046
RelOptKind reloptkind
Definition pathnodes.h:997
Cardinality rows
Definition pathnodes.h:1009
Path path
Definition pathnodes.h:2507
Definition type.h:96
PathTarget * copy_pathtarget(PathTarget *src)
Definition tlist.c:666