PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
pathnode.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * pathnode.c
4 * Routines to manipulate pathlists and create path nodes
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/util/pathnode.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <math.h>
18
19#include "foreign/fdwapi.h"
20#include "miscadmin.h"
21#include "nodes/extensible.h"
23#include "optimizer/clauses.h"
24#include "optimizer/cost.h"
25#include "optimizer/optimizer.h"
26#include "optimizer/pathnode.h"
27#include "optimizer/paths.h"
28#include "optimizer/planmain.h"
29#include "optimizer/tlist.h"
30#include "parser/parsetree.h"
31#include "utils/memutils.h"
32#include "utils/selfuncs.h"
33
34typedef enum
35{
36 COSTS_EQUAL, /* path costs are fuzzily equal */
37 COSTS_BETTER1, /* first path is cheaper than second */
38 COSTS_BETTER2, /* second path is cheaper than first */
39 COSTS_DIFFERENT, /* neither path dominates the other on cost */
41
42/*
43 * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
44 * XXX is it worth making this user-controllable? It provides a tradeoff
45 * between planner runtime and the accuracy of path cost comparisons.
46 */
47#define STD_FUZZ_FACTOR 1.01
48
49static List *translate_sub_tlist(List *tlist, int relid);
50static int append_total_cost_compare(const ListCell *a, const ListCell *b);
51static int append_startup_cost_compare(const ListCell *a, const ListCell *b);
53 List *pathlist,
54 RelOptInfo *child_rel);
56 RelOptInfo *child_rel);
57
58
59/*****************************************************************************
60 * MISC. PATH UTILITIES
61 *****************************************************************************/
62
63/*
64 * compare_path_costs
65 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
66 * or more expensive than path2 for the specified criterion.
67 */
68int
69compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
70{
71 /* Number of disabled nodes, if different, trumps all else. */
72 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
73 {
74 if (path1->disabled_nodes < path2->disabled_nodes)
75 return -1;
76 else
77 return +1;
78 }
79
80 if (criterion == STARTUP_COST)
81 {
82 if (path1->startup_cost < path2->startup_cost)
83 return -1;
84 if (path1->startup_cost > path2->startup_cost)
85 return +1;
86
87 /*
88 * If paths have the same startup cost (not at all unlikely), order
89 * them by total cost.
90 */
91 if (path1->total_cost < path2->total_cost)
92 return -1;
93 if (path1->total_cost > path2->total_cost)
94 return +1;
95 }
96 else
97 {
98 if (path1->total_cost < path2->total_cost)
99 return -1;
100 if (path1->total_cost > path2->total_cost)
101 return +1;
102
103 /*
104 * If paths have the same total cost, order them by startup cost.
105 */
106 if (path1->startup_cost < path2->startup_cost)
107 return -1;
108 if (path1->startup_cost > path2->startup_cost)
109 return +1;
110 }
111 return 0;
112}
113
114/*
115 * compare_fractional_path_costs
116 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
117 * or more expensive than path2 for fetching the specified fraction
118 * of the total tuples.
119 *
120 * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
121 * path with the cheaper total_cost.
122 */
123int
125 double fraction)
126{
127 Cost cost1,
128 cost2;
129
130 /* Number of disabled nodes, if different, trumps all else. */
131 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
132 {
133 if (path1->disabled_nodes < path2->disabled_nodes)
134 return -1;
135 else
136 return +1;
137 }
138
139 if (fraction <= 0.0 || fraction >= 1.0)
140 return compare_path_costs(path1, path2, TOTAL_COST);
141 cost1 = path1->startup_cost +
142 fraction * (path1->total_cost - path1->startup_cost);
143 cost2 = path2->startup_cost +
144 fraction * (path2->total_cost - path2->startup_cost);
145 if (cost1 < cost2)
146 return -1;
147 if (cost1 > cost2)
148 return +1;
149 return 0;
150}
151
152/*
153 * compare_path_costs_fuzzily
154 * Compare the costs of two paths to see if either can be said to
155 * dominate the other.
156 *
157 * We use fuzzy comparisons so that add_path() can avoid keeping both of
158 * a pair of paths that really have insignificantly different cost.
159 *
160 * The fuzz_factor argument must be 1.0 plus delta, where delta is the
161 * fraction of the smaller cost that is considered to be a significant
162 * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
163 * be 1% of the smaller cost.
164 *
165 * The two paths are said to have "equal" costs if both startup and total
166 * costs are fuzzily the same. Path1 is said to be better than path2 if
167 * it has fuzzily better startup cost and fuzzily no worse total cost,
168 * or if it has fuzzily better total cost and fuzzily no worse startup cost.
169 * Path2 is better than path1 if the reverse holds. Finally, if one path
170 * is fuzzily better than the other on startup cost and fuzzily worse on
171 * total cost, we just say that their costs are "different", since neither
172 * dominates the other across the whole performance spectrum.
173 *
174 * This function also enforces a policy rule that paths for which the relevant
175 * one of parent->consider_startup and parent->consider_param_startup is false
176 * cannot survive comparisons solely on the grounds of good startup cost, so
177 * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
178 * (But if total costs are fuzzily equal, we compare startup costs anyway,
179 * in hopes of eliminating one path or the other.)
180 */
182compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
183{
184#define CONSIDER_PATH_STARTUP_COST(p) \
185 ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
186
187 /* Number of disabled nodes, if different, trumps all else. */
188 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
189 {
190 if (path1->disabled_nodes < path2->disabled_nodes)
191 return COSTS_BETTER1;
192 else
193 return COSTS_BETTER2;
194 }
195
196 /*
197 * Check total cost first since it's more likely to be different; many
198 * paths have zero startup cost.
199 */
200 if (path1->total_cost > path2->total_cost * fuzz_factor)
201 {
202 /* path1 fuzzily worse on total cost */
203 if (CONSIDER_PATH_STARTUP_COST(path1) &&
204 path2->startup_cost > path1->startup_cost * fuzz_factor)
205 {
206 /* ... but path2 fuzzily worse on startup, so DIFFERENT */
207 return COSTS_DIFFERENT;
208 }
209 /* else path2 dominates */
210 return COSTS_BETTER2;
211 }
212 if (path2->total_cost > path1->total_cost * fuzz_factor)
213 {
214 /* path2 fuzzily worse on total cost */
215 if (CONSIDER_PATH_STARTUP_COST(path2) &&
216 path1->startup_cost > path2->startup_cost * fuzz_factor)
217 {
218 /* ... but path1 fuzzily worse on startup, so DIFFERENT */
219 return COSTS_DIFFERENT;
220 }
221 /* else path1 dominates */
222 return COSTS_BETTER1;
223 }
224 /* fuzzily the same on total cost ... */
225 if (path1->startup_cost > path2->startup_cost * fuzz_factor)
226 {
227 /* ... but path1 fuzzily worse on startup, so path2 wins */
228 return COSTS_BETTER2;
229 }
230 if (path2->startup_cost > path1->startup_cost * fuzz_factor)
231 {
232 /* ... but path2 fuzzily worse on startup, so path1 wins */
233 return COSTS_BETTER1;
234 }
235 /* fuzzily the same on both costs */
236 return COSTS_EQUAL;
237
238#undef CONSIDER_PATH_STARTUP_COST
239}
240
241/*
242 * set_cheapest
243 * Find the minimum-cost paths from among a relation's paths,
244 * and save them in the rel's cheapest-path fields.
245 *
246 * cheapest_total_path is normally the cheapest-total-cost unparameterized
247 * path; but if there are no unparameterized paths, we assign it to be the
248 * best (cheapest least-parameterized) parameterized path. However, only
249 * unparameterized paths are considered candidates for cheapest_startup_path,
250 * so that will be NULL if there are no unparameterized paths.
251 *
252 * The cheapest_parameterized_paths list collects all parameterized paths
253 * that have survived the add_path() tournament for this relation. (Since
254 * add_path ignores pathkeys for a parameterized path, these will be paths
255 * that have best cost or best row count for their parameterization. We
256 * may also have both a parallel-safe and a non-parallel-safe path in some
257 * cases for the same parameterization in some cases, but this should be
258 * relatively rare since, most typically, all paths for the same relation
259 * will be parallel-safe or none of them will.)
260 *
261 * cheapest_parameterized_paths always includes the cheapest-total
262 * unparameterized path, too, if there is one; the users of that list find
263 * it more convenient if that's included.
264 *
265 * This is normally called only after we've finished constructing the path
266 * list for the rel node.
267 */
268void
270{
271 Path *cheapest_startup_path;
272 Path *cheapest_total_path;
273 Path *best_param_path;
274 List *parameterized_paths;
275 ListCell *p;
276
277 Assert(IsA(parent_rel, RelOptInfo));
278
279 if (parent_rel->pathlist == NIL)
280 elog(ERROR, "could not devise a query plan for the given query");
281
282 cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
283 parameterized_paths = NIL;
284
285 foreach(p, parent_rel->pathlist)
286 {
287 Path *path = (Path *) lfirst(p);
288 int cmp;
289
290 if (path->param_info)
291 {
292 /* Parameterized path, so add it to parameterized_paths */
293 parameterized_paths = lappend(parameterized_paths, path);
294
295 /*
296 * If we have an unparameterized cheapest-total, we no longer care
297 * about finding the best parameterized path, so move on.
298 */
299 if (cheapest_total_path)
300 continue;
301
302 /*
303 * Otherwise, track the best parameterized path, which is the one
304 * with least total cost among those of the minimum
305 * parameterization.
306 */
307 if (best_param_path == NULL)
308 best_param_path = path;
309 else
310 {
312 PATH_REQ_OUTER(best_param_path)))
313 {
314 case BMS_EQUAL:
315 /* keep the cheaper one */
316 if (compare_path_costs(path, best_param_path,
317 TOTAL_COST) < 0)
318 best_param_path = path;
319 break;
320 case BMS_SUBSET1:
321 /* new path is less-parameterized */
322 best_param_path = path;
323 break;
324 case BMS_SUBSET2:
325 /* old path is less-parameterized, keep it */
326 break;
327 case BMS_DIFFERENT:
328
329 /*
330 * This means that neither path has the least possible
331 * parameterization for the rel. We'll sit on the old
332 * path until something better comes along.
333 */
334 break;
335 }
336 }
337 }
338 else
339 {
340 /* Unparameterized path, so consider it for cheapest slots */
341 if (cheapest_total_path == NULL)
342 {
343 cheapest_startup_path = cheapest_total_path = path;
344 continue;
345 }
346
347 /*
348 * If we find two paths of identical costs, try to keep the
349 * better-sorted one. The paths might have unrelated sort
350 * orderings, in which case we can only guess which might be
351 * better to keep, but if one is superior then we definitely
352 * should keep that one.
353 */
354 cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
355 if (cmp > 0 ||
356 (cmp == 0 &&
357 compare_pathkeys(cheapest_startup_path->pathkeys,
358 path->pathkeys) == PATHKEYS_BETTER2))
359 cheapest_startup_path = path;
360
361 cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
362 if (cmp > 0 ||
363 (cmp == 0 &&
364 compare_pathkeys(cheapest_total_path->pathkeys,
365 path->pathkeys) == PATHKEYS_BETTER2))
366 cheapest_total_path = path;
367 }
368 }
369
370 /* Add cheapest unparameterized path, if any, to parameterized_paths */
371 if (cheapest_total_path)
372 parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
373
374 /*
375 * If there is no unparameterized path, use the best parameterized path as
376 * cheapest_total_path (but not as cheapest_startup_path).
377 */
378 if (cheapest_total_path == NULL)
379 cheapest_total_path = best_param_path;
380 Assert(cheapest_total_path != NULL);
381
382 parent_rel->cheapest_startup_path = cheapest_startup_path;
383 parent_rel->cheapest_total_path = cheapest_total_path;
384 parent_rel->cheapest_unique_path = NULL; /* computed only if needed */
385 parent_rel->cheapest_parameterized_paths = parameterized_paths;
386}
387
388/*
389 * add_path
390 * Consider a potential implementation path for the specified parent rel,
391 * and add it to the rel's pathlist if it is worthy of consideration.
392 *
393 * A path is worthy if it has a better sort order (better pathkeys) or
394 * cheaper cost (as defined below), or generates fewer rows, than any
395 * existing path that has the same or superset parameterization rels. We
396 * also consider parallel-safe paths more worthy than others.
397 *
398 * Cheaper cost can mean either a cheaper total cost or a cheaper startup
399 * cost; if one path is cheaper in one of these aspects and another is
400 * cheaper in the other, we keep both. However, when some path type is
401 * disabled (e.g. due to enable_seqscan=false), the number of times that
402 * a disabled path type is used is considered to be a higher-order
403 * component of the cost. Hence, if path A uses no disabled path type,
404 * and path B uses 1 or more disabled path types, A is cheaper, no matter
405 * what we estimate for the startup and total costs. The startup and total
406 * cost essentially act as a tiebreak when comparing paths that use equal
407 * numbers of disabled path nodes; but in practice this tiebreak is almost
408 * always used, since normally no path types are disabled.
409 *
410 * In addition to possibly adding new_path, we also remove from the rel's
411 * pathlist any old paths that are dominated by new_path --- that is,
412 * new_path is cheaper, at least as well ordered, generates no more rows,
413 * requires no outer rels not required by the old path, and is no less
414 * parallel-safe.
415 *
416 * In most cases, a path with a superset parameterization will generate
417 * fewer rows (since it has more join clauses to apply), so that those two
418 * figures of merit move in opposite directions; this means that a path of
419 * one parameterization can seldom dominate a path of another. But such
420 * cases do arise, so we make the full set of checks anyway.
421 *
422 * There are two policy decisions embedded in this function, along with
423 * its sibling add_path_precheck. First, we treat all parameterized paths
424 * as having NIL pathkeys, so that they cannot win comparisons on the
425 * basis of sort order. This is to reduce the number of parameterized
426 * paths that are kept; see discussion in src/backend/optimizer/README.
427 *
428 * Second, we only consider cheap startup cost to be interesting if
429 * parent_rel->consider_startup is true for an unparameterized path, or
430 * parent_rel->consider_param_startup is true for a parameterized one.
431 * Again, this allows discarding useless paths sooner.
432 *
433 * The pathlist is kept sorted by disabled_nodes and then by total_cost,
434 * with cheaper paths at the front. Within this routine, that's simply a
435 * speed hack: doing it that way makes it more likely that we will reject
436 * an inferior path after a few comparisons, rather than many comparisons.
437 * However, add_path_precheck relies on this ordering to exit early
438 * when possible.
439 *
440 * NOTE: discarded Path objects are immediately pfree'd to reduce planner
441 * memory consumption. We dare not try to free the substructure of a Path,
442 * since much of it may be shared with other Paths or the query tree itself;
443 * but just recycling discarded Path nodes is a very useful savings in
444 * a large join tree. We can recycle the List nodes of pathlist, too.
445 *
446 * As noted in optimizer/README, deleting a previously-accepted Path is
447 * safe because we know that Paths of this rel cannot yet be referenced
448 * from any other rel, such as a higher-level join. However, in some cases
449 * it is possible that a Path is referenced by another Path for its own
450 * rel; we must not delete such a Path, even if it is dominated by the new
451 * Path. Currently this occurs only for IndexPath objects, which may be
452 * referenced as children of BitmapHeapPaths as well as being paths in
453 * their own right. Hence, we don't pfree IndexPaths when rejecting them.
454 *
455 * 'parent_rel' is the relation entry to which the path corresponds.
456 * 'new_path' is a potential path for parent_rel.
457 *
458 * Returns nothing, but modifies parent_rel->pathlist.
459 */
460void
461add_path(RelOptInfo *parent_rel, Path *new_path)
462{
463 bool accept_new = true; /* unless we find a superior old path */
464 int insert_at = 0; /* where to insert new item */
465 List *new_path_pathkeys;
466 ListCell *p1;
467
468 /*
469 * This is a convenient place to check for query cancel --- no part of the
470 * planner goes very long without calling add_path().
471 */
473
474 /* Pretend parameterized paths have no pathkeys, per comment above */
475 new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
476
477 /*
478 * Loop to check proposed new path against old paths. Note it is possible
479 * for more than one old path to be tossed out because new_path dominates
480 * it.
481 */
482 foreach(p1, parent_rel->pathlist)
483 {
484 Path *old_path = (Path *) lfirst(p1);
485 bool remove_old = false; /* unless new proves superior */
486 PathCostComparison costcmp;
487 PathKeysComparison keyscmp;
488 BMS_Comparison outercmp;
489
490 /*
491 * Do a fuzzy cost comparison with standard fuzziness limit.
492 */
493 costcmp = compare_path_costs_fuzzily(new_path, old_path,
495
496 /*
497 * If the two paths compare differently for startup and total cost,
498 * then we want to keep both, and we can skip comparing pathkeys and
499 * required_outer rels. If they compare the same, proceed with the
500 * other comparisons. Row count is checked last. (We make the tests
501 * in this order because the cost comparison is most likely to turn
502 * out "different", and the pathkeys comparison next most likely. As
503 * explained above, row count very seldom makes a difference, so even
504 * though it's cheap to compare there's not much point in checking it
505 * earlier.)
506 */
507 if (costcmp != COSTS_DIFFERENT)
508 {
509 /* Similarly check to see if either dominates on pathkeys */
510 List *old_path_pathkeys;
511
512 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
513 keyscmp = compare_pathkeys(new_path_pathkeys,
514 old_path_pathkeys);
515 if (keyscmp != PATHKEYS_DIFFERENT)
516 {
517 switch (costcmp)
518 {
519 case COSTS_EQUAL:
520 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
521 PATH_REQ_OUTER(old_path));
522 if (keyscmp == PATHKEYS_BETTER1)
523 {
524 if ((outercmp == BMS_EQUAL ||
525 outercmp == BMS_SUBSET1) &&
526 new_path->rows <= old_path->rows &&
527 new_path->parallel_safe >= old_path->parallel_safe)
528 remove_old = true; /* new dominates old */
529 }
530 else if (keyscmp == PATHKEYS_BETTER2)
531 {
532 if ((outercmp == BMS_EQUAL ||
533 outercmp == BMS_SUBSET2) &&
534 new_path->rows >= old_path->rows &&
535 new_path->parallel_safe <= old_path->parallel_safe)
536 accept_new = false; /* old dominates new */
537 }
538 else /* keyscmp == PATHKEYS_EQUAL */
539 {
540 if (outercmp == BMS_EQUAL)
541 {
542 /*
543 * Same pathkeys and outer rels, and fuzzily
544 * the same cost, so keep just one; to decide
545 * which, first check parallel-safety, then
546 * rows, then do a fuzzy cost comparison with
547 * very small fuzz limit. (We used to do an
548 * exact cost comparison, but that results in
549 * annoying platform-specific plan variations
550 * due to roundoff in the cost estimates.) If
551 * things are still tied, arbitrarily keep
552 * only the old path. Notice that we will
553 * keep only the old path even if the
554 * less-fuzzy comparison decides the startup
555 * and total costs compare differently.
556 */
557 if (new_path->parallel_safe >
558 old_path->parallel_safe)
559 remove_old = true; /* new dominates old */
560 else if (new_path->parallel_safe <
561 old_path->parallel_safe)
562 accept_new = false; /* old dominates new */
563 else if (new_path->rows < old_path->rows)
564 remove_old = true; /* new dominates old */
565 else if (new_path->rows > old_path->rows)
566 accept_new = false; /* old dominates new */
567 else if (compare_path_costs_fuzzily(new_path,
568 old_path,
569 1.0000000001) == COSTS_BETTER1)
570 remove_old = true; /* new dominates old */
571 else
572 accept_new = false; /* old equals or
573 * dominates new */
574 }
575 else if (outercmp == BMS_SUBSET1 &&
576 new_path->rows <= old_path->rows &&
577 new_path->parallel_safe >= old_path->parallel_safe)
578 remove_old = true; /* new dominates old */
579 else if (outercmp == BMS_SUBSET2 &&
580 new_path->rows >= old_path->rows &&
581 new_path->parallel_safe <= old_path->parallel_safe)
582 accept_new = false; /* old dominates new */
583 /* else different parameterizations, keep both */
584 }
585 break;
586 case COSTS_BETTER1:
587 if (keyscmp != PATHKEYS_BETTER2)
588 {
589 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
590 PATH_REQ_OUTER(old_path));
591 if ((outercmp == BMS_EQUAL ||
592 outercmp == BMS_SUBSET1) &&
593 new_path->rows <= old_path->rows &&
594 new_path->parallel_safe >= old_path->parallel_safe)
595 remove_old = true; /* new dominates old */
596 }
597 break;
598 case COSTS_BETTER2:
599 if (keyscmp != PATHKEYS_BETTER1)
600 {
601 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
602 PATH_REQ_OUTER(old_path));
603 if ((outercmp == BMS_EQUAL ||
604 outercmp == BMS_SUBSET2) &&
605 new_path->rows >= old_path->rows &&
606 new_path->parallel_safe <= old_path->parallel_safe)
607 accept_new = false; /* old dominates new */
608 }
609 break;
610 case COSTS_DIFFERENT:
611
612 /*
613 * can't get here, but keep this case to keep compiler
614 * quiet
615 */
616 break;
617 }
618 }
619 }
620
621 /*
622 * Remove current element from pathlist if dominated by new.
623 */
624 if (remove_old)
625 {
626 parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
627 p1);
628
629 /*
630 * Delete the data pointed-to by the deleted cell, if possible
631 */
632 if (!IsA(old_path, IndexPath))
633 pfree(old_path);
634 }
635 else
636 {
637 /*
638 * new belongs after this old path if it has more disabled nodes
639 * or if it has the same number of nodes but a greater total cost
640 */
641 if (new_path->disabled_nodes > old_path->disabled_nodes ||
642 (new_path->disabled_nodes == old_path->disabled_nodes &&
643 new_path->total_cost >= old_path->total_cost))
644 insert_at = foreach_current_index(p1) + 1;
645 }
646
647 /*
648 * If we found an old path that dominates new_path, we can quit
649 * scanning the pathlist; we will not add new_path, and we assume
650 * new_path cannot dominate any other elements of the pathlist.
651 */
652 if (!accept_new)
653 break;
654 }
655
656 if (accept_new)
657 {
658 /* Accept the new path: insert it at proper place in pathlist */
659 parent_rel->pathlist =
660 list_insert_nth(parent_rel->pathlist, insert_at, new_path);
661 }
662 else
663 {
664 /* Reject and recycle the new path */
665 if (!IsA(new_path, IndexPath))
666 pfree(new_path);
667 }
668}
669
670/*
671 * add_path_precheck
672 * Check whether a proposed new path could possibly get accepted.
673 * We assume we know the path's pathkeys and parameterization accurately,
674 * and have lower bounds for its costs.
675 *
676 * Note that we do not know the path's rowcount, since getting an estimate for
677 * that is too expensive to do before prechecking. We assume here that paths
678 * of a superset parameterization will generate fewer rows; if that holds,
679 * then paths with different parameterizations cannot dominate each other
680 * and so we can simply ignore existing paths of another parameterization.
681 * (In the infrequent cases where that rule of thumb fails, add_path will
682 * get rid of the inferior path.)
683 *
684 * At the time this is called, we haven't actually built a Path structure,
685 * so the required information has to be passed piecemeal.
686 */
687bool
688add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
689 Cost startup_cost, Cost total_cost,
690 List *pathkeys, Relids required_outer)
691{
692 List *new_path_pathkeys;
693 bool consider_startup;
694 ListCell *p1;
695
696 /* Pretend parameterized paths have no pathkeys, per add_path policy */
697 new_path_pathkeys = required_outer ? NIL : pathkeys;
698
699 /* Decide whether new path's startup cost is interesting */
700 consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
701
702 foreach(p1, parent_rel->pathlist)
703 {
704 Path *old_path = (Path *) lfirst(p1);
705 PathKeysComparison keyscmp;
706
707 /*
708 * Since the pathlist is sorted by disabled_nodes and then by
709 * total_cost, we can stop looking once we reach a path with more
710 * disabled nodes, or the same number of disabled nodes plus a
711 * total_cost larger than the new path's.
712 */
713 if (unlikely(old_path->disabled_nodes != disabled_nodes))
714 {
715 if (disabled_nodes < old_path->disabled_nodes)
716 break;
717 }
718 else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
719 break;
720
721 /*
722 * We are looking for an old_path with the same parameterization (and
723 * by assumption the same rowcount) that dominates the new path on
724 * pathkeys as well as both cost metrics. If we find one, we can
725 * reject the new path.
726 *
727 * Cost comparisons here should match compare_path_costs_fuzzily.
728 */
729 /* new path can win on startup cost only if consider_startup */
730 if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
731 !consider_startup)
732 {
733 /* new path loses on cost, so check pathkeys... */
734 List *old_path_pathkeys;
735
736 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
737 keyscmp = compare_pathkeys(new_path_pathkeys,
738 old_path_pathkeys);
739 if (keyscmp == PATHKEYS_EQUAL ||
740 keyscmp == PATHKEYS_BETTER2)
741 {
742 /* new path does not win on pathkeys... */
743 if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
744 {
745 /* Found an old path that dominates the new one */
746 return false;
747 }
748 }
749 }
750 }
751
752 return true;
753}
754
755/*
756 * add_partial_path
757 * Like add_path, our goal here is to consider whether a path is worthy
758 * of being kept around, but the considerations here are a bit different.
759 * A partial path is one which can be executed in any number of workers in
760 * parallel such that each worker will generate a subset of the path's
761 * overall result.
762 *
763 * As in add_path, the partial_pathlist is kept sorted with the cheapest
764 * total path in front. This is depended on by multiple places, which
765 * just take the front entry as the cheapest path without searching.
766 *
767 * We don't generate parameterized partial paths for several reasons. Most
768 * importantly, they're not safe to execute, because there's nothing to
769 * make sure that a parallel scan within the parameterized portion of the
770 * plan is running with the same value in every worker at the same time.
771 * Fortunately, it seems unlikely to be worthwhile anyway, because having
772 * each worker scan the entire outer relation and a subset of the inner
773 * relation will generally be a terrible plan. The inner (parameterized)
774 * side of the plan will be small anyway. There could be rare cases where
775 * this wins big - e.g. if join order constraints put a 1-row relation on
776 * the outer side of the topmost join with a parameterized plan on the inner
777 * side - but we'll have to be content not to handle such cases until
778 * somebody builds an executor infrastructure that can cope with them.
779 *
780 * Because we don't consider parameterized paths here, we also don't
781 * need to consider the row counts as a measure of quality: every path will
782 * produce the same number of rows. Neither do we need to consider startup
783 * costs: parallelism is only used for plans that will be run to completion.
784 * Therefore, this routine is much simpler than add_path: it needs to
785 * consider only disabled nodes, pathkeys and total cost.
786 *
787 * As with add_path, we pfree paths that are found to be dominated by
788 * another partial path; this requires that there be no other references to
789 * such paths yet. Hence, GatherPaths must not be created for a rel until
790 * we're done creating all partial paths for it. Unlike add_path, we don't
791 * take an exception for IndexPaths as partial index paths won't be
792 * referenced by partial BitmapHeapPaths.
793 */
794void
795add_partial_path(RelOptInfo *parent_rel, Path *new_path)
796{
797 bool accept_new = true; /* unless we find a superior old path */
798 int insert_at = 0; /* where to insert new item */
799 ListCell *p1;
800
801 /* Check for query cancel. */
803
804 /* Path to be added must be parallel safe. */
805 Assert(new_path->parallel_safe);
806
807 /* Relation should be OK for parallelism, too. */
808 Assert(parent_rel->consider_parallel);
809
810 /*
811 * As in add_path, throw out any paths which are dominated by the new
812 * path, but throw out the new path if some existing path dominates it.
813 */
814 foreach(p1, parent_rel->partial_pathlist)
815 {
816 Path *old_path = (Path *) lfirst(p1);
817 bool remove_old = false; /* unless new proves superior */
818 PathKeysComparison keyscmp;
819
820 /* Compare pathkeys. */
821 keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
822
823 /* Unless pathkeys are incompatible, keep just one of the two paths. */
824 if (keyscmp != PATHKEYS_DIFFERENT)
825 {
826 if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
827 {
828 if (new_path->disabled_nodes > old_path->disabled_nodes)
829 accept_new = false;
830 else
831 remove_old = true;
832 }
833 else if (new_path->total_cost > old_path->total_cost
835 {
836 /* New path costs more; keep it only if pathkeys are better. */
837 if (keyscmp != PATHKEYS_BETTER1)
838 accept_new = false;
839 }
840 else if (old_path->total_cost > new_path->total_cost
842 {
843 /* Old path costs more; keep it only if pathkeys are better. */
844 if (keyscmp != PATHKEYS_BETTER2)
845 remove_old = true;
846 }
847 else if (keyscmp == PATHKEYS_BETTER1)
848 {
849 /* Costs are about the same, new path has better pathkeys. */
850 remove_old = true;
851 }
852 else if (keyscmp == PATHKEYS_BETTER2)
853 {
854 /* Costs are about the same, old path has better pathkeys. */
855 accept_new = false;
856 }
857 else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
858 {
859 /* Pathkeys are the same, and the old path costs more. */
860 remove_old = true;
861 }
862 else
863 {
864 /*
865 * Pathkeys are the same, and new path isn't materially
866 * cheaper.
867 */
868 accept_new = false;
869 }
870 }
871
872 /*
873 * Remove current element from partial_pathlist if dominated by new.
874 */
875 if (remove_old)
876 {
877 parent_rel->partial_pathlist =
879 pfree(old_path);
880 }
881 else
882 {
883 /* new belongs after this old path if it has cost >= old's */
884 if (new_path->total_cost >= old_path->total_cost)
885 insert_at = foreach_current_index(p1) + 1;
886 }
887
888 /*
889 * If we found an old path that dominates new_path, we can quit
890 * scanning the partial_pathlist; we will not add new_path, and we
891 * assume new_path cannot dominate any later path.
892 */
893 if (!accept_new)
894 break;
895 }
896
897 if (accept_new)
898 {
899 /* Accept the new path: insert it at proper place */
900 parent_rel->partial_pathlist =
901 list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
902 }
903 else
904 {
905 /* Reject and recycle the new path */
906 pfree(new_path);
907 }
908}
909
910/*
911 * add_partial_path_precheck
912 * Check whether a proposed new partial path could possibly get accepted.
913 *
914 * Unlike add_path_precheck, we can ignore startup cost and parameterization,
915 * since they don't matter for partial paths (see add_partial_path). But
916 * we do want to make sure we don't add a partial path if there's already
917 * a complete path that dominates it, since in that case the proposed path
918 * is surely a loser.
919 */
920bool
921add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
922 Cost total_cost, List *pathkeys)
923{
924 ListCell *p1;
925
926 /*
927 * Our goal here is twofold. First, we want to find out whether this path
928 * is clearly inferior to some existing partial path. If so, we want to
929 * reject it immediately. Second, we want to find out whether this path
930 * is clearly superior to some existing partial path -- at least, modulo
931 * final cost computations. If so, we definitely want to consider it.
932 *
933 * Unlike add_path(), we always compare pathkeys here. This is because we
934 * expect partial_pathlist to be very short, and getting a definitive
935 * answer at this stage avoids the need to call add_path_precheck.
936 */
937 foreach(p1, parent_rel->partial_pathlist)
938 {
939 Path *old_path = (Path *) lfirst(p1);
940 PathKeysComparison keyscmp;
941
942 keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
943 if (keyscmp != PATHKEYS_DIFFERENT)
944 {
945 if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
946 keyscmp != PATHKEYS_BETTER1)
947 return false;
948 if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
949 keyscmp != PATHKEYS_BETTER2)
950 return true;
951 }
952 }
953
954 /*
955 * This path is neither clearly inferior to an existing partial path nor
956 * clearly good enough that it might replace one. Compare it to
957 * non-parallel plans. If it loses even before accounting for the cost of
958 * the Gather node, we should definitely reject it.
959 *
960 * Note that we pass the total_cost to add_path_precheck twice. This is
961 * because it's never advantageous to consider the startup cost of a
962 * partial path; the resulting plans, if run in parallel, will be run to
963 * completion.
964 */
965 if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
966 pathkeys, NULL))
967 return false;
968
969 return true;
970}
971
972
973/*****************************************************************************
974 * PATH NODE CREATION ROUTINES
975 *****************************************************************************/
976
977/*
978 * create_seqscan_path
979 * Creates a path corresponding to a sequential scan, returning the
980 * pathnode.
981 */
982Path *
984 Relids required_outer, int parallel_workers)
985{
986 Path *pathnode = makeNode(Path);
987
988 pathnode->pathtype = T_SeqScan;
989 pathnode->parent = rel;
990 pathnode->pathtarget = rel->reltarget;
991 pathnode->param_info = get_baserel_parampathinfo(root, rel,
992 required_outer);
993 pathnode->parallel_aware = (parallel_workers > 0);
994 pathnode->parallel_safe = rel->consider_parallel;
995 pathnode->parallel_workers = parallel_workers;
996 pathnode->pathkeys = NIL; /* seqscan has unordered result */
997
998 cost_seqscan(pathnode, root, rel, pathnode->param_info);
999
1000 return pathnode;
1001}
1002
1003/*
1004 * create_samplescan_path
1005 * Creates a path node for a sampled table scan.
1006 */
1007Path *
1009{
1010 Path *pathnode = makeNode(Path);
1011
1012 pathnode->pathtype = T_SampleScan;
1013 pathnode->parent = rel;
1014 pathnode->pathtarget = rel->reltarget;
1015 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1016 required_outer);
1017 pathnode->parallel_aware = false;
1018 pathnode->parallel_safe = rel->consider_parallel;
1019 pathnode->parallel_workers = 0;
1020 pathnode->pathkeys = NIL; /* samplescan has unordered result */
1021
1022 cost_samplescan(pathnode, root, rel, pathnode->param_info);
1023
1024 return pathnode;
1025}
1026
1027/*
1028 * create_index_path
1029 * Creates a path node for an index scan.
1030 *
1031 * 'index' is a usable index.
1032 * 'indexclauses' is a list of IndexClause nodes representing clauses
1033 * to be enforced as qual conditions in the scan.
1034 * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
1035 * to be used as index ordering operators in the scan.
1036 * 'indexorderbycols' is an integer list of index column numbers (zero based)
1037 * the ordering operators can be used with.
1038 * 'pathkeys' describes the ordering of the path.
1039 * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
1040 * 'indexonly' is true if an index-only scan is wanted.
1041 * 'required_outer' is the set of outer relids for a parameterized path.
1042 * 'loop_count' is the number of repetitions of the indexscan to factor into
1043 * estimates of caching behavior.
1044 * 'partial_path' is true if constructing a parallel index scan path.
1045 *
1046 * Returns the new path node.
1047 */
1048IndexPath *
1051 List *indexclauses,
1052 List *indexorderbys,
1053 List *indexorderbycols,
1054 List *pathkeys,
1055 ScanDirection indexscandir,
1056 bool indexonly,
1057 Relids required_outer,
1058 double loop_count,
1059 bool partial_path)
1060{
1061 IndexPath *pathnode = makeNode(IndexPath);
1062 RelOptInfo *rel = index->rel;
1063
1064 pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1065 pathnode->path.parent = rel;
1066 pathnode->path.pathtarget = rel->reltarget;
1067 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1068 required_outer);
1069 pathnode->path.parallel_aware = false;
1070 pathnode->path.parallel_safe = rel->consider_parallel;
1071 pathnode->path.parallel_workers = 0;
1072 pathnode->path.pathkeys = pathkeys;
1073
1074 pathnode->indexinfo = index;
1075 pathnode->indexclauses = indexclauses;
1076 pathnode->indexorderbys = indexorderbys;
1077 pathnode->indexorderbycols = indexorderbycols;
1078 pathnode->indexscandir = indexscandir;
1079
1080 cost_index(pathnode, root, loop_count, partial_path);
1081
1082 return pathnode;
1083}
1084
1085/*
1086 * create_bitmap_heap_path
1087 * Creates a path node for a bitmap scan.
1088 *
1089 * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1090 * 'required_outer' is the set of outer relids for a parameterized path.
1091 * 'loop_count' is the number of repetitions of the indexscan to factor into
1092 * estimates of caching behavior.
1093 *
1094 * loop_count should match the value used when creating the component
1095 * IndexPaths.
1096 */
1099 RelOptInfo *rel,
1100 Path *bitmapqual,
1101 Relids required_outer,
1102 double loop_count,
1103 int parallel_degree)
1104{
1106
1107 pathnode->path.pathtype = T_BitmapHeapScan;
1108 pathnode->path.parent = rel;
1109 pathnode->path.pathtarget = rel->reltarget;
1110 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1111 required_outer);
1112 pathnode->path.parallel_aware = (parallel_degree > 0);
1113 pathnode->path.parallel_safe = rel->consider_parallel;
1114 pathnode->path.parallel_workers = parallel_degree;
1115 pathnode->path.pathkeys = NIL; /* always unordered */
1116
1117 pathnode->bitmapqual = bitmapqual;
1118
1119 cost_bitmap_heap_scan(&pathnode->path, root, rel,
1120 pathnode->path.param_info,
1121 bitmapqual, loop_count);
1122
1123 return pathnode;
1124}
1125
1126/*
1127 * create_bitmap_and_path
1128 * Creates a path node representing a BitmapAnd.
1129 */
1132 RelOptInfo *rel,
1133 List *bitmapquals)
1134{
1136 Relids required_outer = NULL;
1137 ListCell *lc;
1138
1139 pathnode->path.pathtype = T_BitmapAnd;
1140 pathnode->path.parent = rel;
1141 pathnode->path.pathtarget = rel->reltarget;
1142
1143 /*
1144 * Identify the required outer rels as the union of what the child paths
1145 * depend on. (Alternatively, we could insist that the caller pass this
1146 * in, but it's more convenient and reliable to compute it here.)
1147 */
1148 foreach(lc, bitmapquals)
1149 {
1150 Path *bitmapqual = (Path *) lfirst(lc);
1151
1152 required_outer = bms_add_members(required_outer,
1153 PATH_REQ_OUTER(bitmapqual));
1154 }
1155 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1156 required_outer);
1157
1158 /*
1159 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1160 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1161 * set the flag for this path based only on the relation-level flag,
1162 * without actually iterating over the list of children.
1163 */
1164 pathnode->path.parallel_aware = false;
1165 pathnode->path.parallel_safe = rel->consider_parallel;
1166 pathnode->path.parallel_workers = 0;
1167
1168 pathnode->path.pathkeys = NIL; /* always unordered */
1169
1170 pathnode->bitmapquals = bitmapquals;
1171
1172 /* this sets bitmapselectivity as well as the regular cost fields: */
1173 cost_bitmap_and_node(pathnode, root);
1174
1175 return pathnode;
1176}
1177
1178/*
1179 * create_bitmap_or_path
1180 * Creates a path node representing a BitmapOr.
1181 */
1184 RelOptInfo *rel,
1185 List *bitmapquals)
1186{
1187 BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1188 Relids required_outer = NULL;
1189 ListCell *lc;
1190
1191 pathnode->path.pathtype = T_BitmapOr;
1192 pathnode->path.parent = rel;
1193 pathnode->path.pathtarget = rel->reltarget;
1194
1195 /*
1196 * Identify the required outer rels as the union of what the child paths
1197 * depend on. (Alternatively, we could insist that the caller pass this
1198 * in, but it's more convenient and reliable to compute it here.)
1199 */
1200 foreach(lc, bitmapquals)
1201 {
1202 Path *bitmapqual = (Path *) lfirst(lc);
1203
1204 required_outer = bms_add_members(required_outer,
1205 PATH_REQ_OUTER(bitmapqual));
1206 }
1207 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1208 required_outer);
1209
1210 /*
1211 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1212 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1213 * set the flag for this path based only on the relation-level flag,
1214 * without actually iterating over the list of children.
1215 */
1216 pathnode->path.parallel_aware = false;
1217 pathnode->path.parallel_safe = rel->consider_parallel;
1218 pathnode->path.parallel_workers = 0;
1219
1220 pathnode->path.pathkeys = NIL; /* always unordered */
1221
1222 pathnode->bitmapquals = bitmapquals;
1223
1224 /* this sets bitmapselectivity as well as the regular cost fields: */
1225 cost_bitmap_or_node(pathnode, root);
1226
1227 return pathnode;
1228}
1229
1230/*
1231 * create_tidscan_path
1232 * Creates a path corresponding to a scan by TID, returning the pathnode.
1233 */
1234TidPath *
1236 Relids required_outer)
1237{
1238 TidPath *pathnode = makeNode(TidPath);
1239
1240 pathnode->path.pathtype = T_TidScan;
1241 pathnode->path.parent = rel;
1242 pathnode->path.pathtarget = rel->reltarget;
1243 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1244 required_outer);
1245 pathnode->path.parallel_aware = false;
1246 pathnode->path.parallel_safe = rel->consider_parallel;
1247 pathnode->path.parallel_workers = 0;
1248 pathnode->path.pathkeys = NIL; /* always unordered */
1249
1250 pathnode->tidquals = tidquals;
1251
1252 cost_tidscan(&pathnode->path, root, rel, tidquals,
1253 pathnode->path.param_info);
1254
1255 return pathnode;
1256}
1257
1258/*
1259 * create_tidrangescan_path
1260 * Creates a path corresponding to a scan by a range of TIDs, returning
1261 * the pathnode.
1262 */
1265 List *tidrangequals, Relids required_outer)
1266{
1267 TidRangePath *pathnode = makeNode(TidRangePath);
1268
1269 pathnode->path.pathtype = T_TidRangeScan;
1270 pathnode->path.parent = rel;
1271 pathnode->path.pathtarget = rel->reltarget;
1272 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1273 required_outer);
1274 pathnode->path.parallel_aware = false;
1275 pathnode->path.parallel_safe = rel->consider_parallel;
1276 pathnode->path.parallel_workers = 0;
1277 pathnode->path.pathkeys = NIL; /* always unordered */
1278
1279 pathnode->tidrangequals = tidrangequals;
1280
1281 cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
1282 pathnode->path.param_info);
1283
1284 return pathnode;
1285}
1286
1287/*
1288 * create_append_path
1289 * Creates a path corresponding to an Append plan, returning the
1290 * pathnode.
1291 *
1292 * Note that we must handle subpaths = NIL, representing a dummy access path.
1293 * Also, there are callers that pass root = NULL.
1294 *
1295 * 'rows', when passed as a non-negative number, will be used to overwrite the
1296 * returned path's row estimate. Otherwise, the row estimate is calculated
1297 * by totalling the row estimates from the 'subpaths' list.
1298 */
1299AppendPath *
1301 RelOptInfo *rel,
1302 List *subpaths, List *partial_subpaths,
1303 List *pathkeys, Relids required_outer,
1304 int parallel_workers, bool parallel_aware,
1305 double rows)
1306{
1307 AppendPath *pathnode = makeNode(AppendPath);
1308 ListCell *l;
1309
1310 Assert(!parallel_aware || parallel_workers > 0);
1311
1312 pathnode->path.pathtype = T_Append;
1313 pathnode->path.parent = rel;
1314 pathnode->path.pathtarget = rel->reltarget;
1315
1316 /*
1317 * If this is for a baserel (not a join or non-leaf partition), we prefer
1318 * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
1319 * for the path. This supports building a Memoize path atop this path,
1320 * and if this is a partitioned table the info may be useful for run-time
1321 * pruning (cf make_partition_pruneinfo()).
1322 *
1323 * However, if we don't have "root" then that won't work and we fall back
1324 * on the simpler get_appendrel_parampathinfo. There's no point in doing
1325 * the more expensive thing for a dummy path, either.
1326 */
1327 if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
1328 pathnode->path.param_info = get_baserel_parampathinfo(root,
1329 rel,
1330 required_outer);
1331 else
1332 pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1333 required_outer);
1334
1335 pathnode->path.parallel_aware = parallel_aware;
1336 pathnode->path.parallel_safe = rel->consider_parallel;
1337 pathnode->path.parallel_workers = parallel_workers;
1338 pathnode->path.pathkeys = pathkeys;
1339
1340 /*
1341 * For parallel append, non-partial paths are sorted by descending total
1342 * costs. That way, the total time to finish all non-partial paths is
1343 * minimized. Also, the partial paths are sorted by descending startup
1344 * costs. There may be some paths that require to do startup work by a
1345 * single worker. In such case, it's better for workers to choose the
1346 * expensive ones first, whereas the leader should choose the cheapest
1347 * startup plan.
1348 */
1349 if (pathnode->path.parallel_aware)
1350 {
1351 /*
1352 * We mustn't fiddle with the order of subpaths when the Append has
1353 * pathkeys. The order they're listed in is critical to keeping the
1354 * pathkeys valid.
1355 */
1356 Assert(pathkeys == NIL);
1357
1359 list_sort(partial_subpaths, append_startup_cost_compare);
1360 }
1361 pathnode->first_partial_path = list_length(subpaths);
1362 pathnode->subpaths = list_concat(subpaths, partial_subpaths);
1363
1364 /*
1365 * Apply query-wide LIMIT if known and path is for sole base relation.
1366 * (Handling this at this low level is a bit klugy.)
1367 */
1368 if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
1369 pathnode->limit_tuples = root->limit_tuples;
1370 else
1371 pathnode->limit_tuples = -1.0;
1372
1373 foreach(l, pathnode->subpaths)
1374 {
1375 Path *subpath = (Path *) lfirst(l);
1376
1377 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1378 subpath->parallel_safe;
1379
1380 /* All child paths must have same parameterization */
1381 Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1382 }
1383
1384 Assert(!parallel_aware || pathnode->path.parallel_safe);
1385
1386 /*
1387 * If there's exactly one child path then the output of the Append is
1388 * necessarily ordered the same as the child's, so we can inherit the
1389 * child's pathkeys if any, overriding whatever the caller might've said.
1390 * Furthermore, if the child's parallel awareness matches the Append's,
1391 * then the Append is a no-op and will be discarded later (in setrefs.c).
1392 * Then we can inherit the child's size and cost too, effectively charging
1393 * zero for the Append. Otherwise, we must do the normal costsize
1394 * calculation.
1395 */
1396 if (list_length(pathnode->subpaths) == 1)
1397 {
1398 Path *child = (Path *) linitial(pathnode->subpaths);
1399
1400 if (child->parallel_aware == parallel_aware)
1401 {
1402 pathnode->path.rows = child->rows;
1403 pathnode->path.startup_cost = child->startup_cost;
1404 pathnode->path.total_cost = child->total_cost;
1405 }
1406 else
1407 cost_append(pathnode);
1408 /* Must do this last, else cost_append complains */
1409 pathnode->path.pathkeys = child->pathkeys;
1410 }
1411 else
1412 cost_append(pathnode);
1413
1414 /* If the caller provided a row estimate, override the computed value. */
1415 if (rows >= 0)
1416 pathnode->path.rows = rows;
1417
1418 return pathnode;
1419}
1420
1421/*
1422 * append_total_cost_compare
1423 * list_sort comparator for sorting append child paths
1424 * by total_cost descending
1425 *
1426 * For equal total costs, we fall back to comparing startup costs; if those
1427 * are equal too, break ties using bms_compare on the paths' relids.
1428 * (This is to avoid getting unpredictable results from list_sort.)
1429 */
1430static int
1432{
1433 Path *path1 = (Path *) lfirst(a);
1434 Path *path2 = (Path *) lfirst(b);
1435 int cmp;
1436
1437 cmp = compare_path_costs(path1, path2, TOTAL_COST);
1438 if (cmp != 0)
1439 return -cmp;
1440 return bms_compare(path1->parent->relids, path2->parent->relids);
1441}
1442
1443/*
1444 * append_startup_cost_compare
1445 * list_sort comparator for sorting append child paths
1446 * by startup_cost descending
1447 *
1448 * For equal startup costs, we fall back to comparing total costs; if those
1449 * are equal too, break ties using bms_compare on the paths' relids.
1450 * (This is to avoid getting unpredictable results from list_sort.)
1451 */
1452static int
1454{
1455 Path *path1 = (Path *) lfirst(a);
1456 Path *path2 = (Path *) lfirst(b);
1457 int cmp;
1458
1459 cmp = compare_path_costs(path1, path2, STARTUP_COST);
1460 if (cmp != 0)
1461 return -cmp;
1462 return bms_compare(path1->parent->relids, path2->parent->relids);
1463}
1464
1465/*
1466 * create_merge_append_path
1467 * Creates a path corresponding to a MergeAppend plan, returning the
1468 * pathnode.
1469 */
1472 RelOptInfo *rel,
1473 List *subpaths,
1474 List *pathkeys,
1475 Relids required_outer)
1476{
1478 int input_disabled_nodes;
1479 Cost input_startup_cost;
1480 Cost input_total_cost;
1481 ListCell *l;
1482
1483 /*
1484 * We don't currently support parameterized MergeAppend paths, as
1485 * explained in the comments for generate_orderedappend_paths.
1486 */
1487 Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
1488
1489 pathnode->path.pathtype = T_MergeAppend;
1490 pathnode->path.parent = rel;
1491 pathnode->path.pathtarget = rel->reltarget;
1492 pathnode->path.param_info = NULL;
1493 pathnode->path.parallel_aware = false;
1494 pathnode->path.parallel_safe = rel->consider_parallel;
1495 pathnode->path.parallel_workers = 0;
1496 pathnode->path.pathkeys = pathkeys;
1497 pathnode->subpaths = subpaths;
1498
1499 /*
1500 * Apply query-wide LIMIT if known and path is for sole base relation.
1501 * (Handling this at this low level is a bit klugy.)
1502 */
1503 if (bms_equal(rel->relids, root->all_query_rels))
1504 pathnode->limit_tuples = root->limit_tuples;
1505 else
1506 pathnode->limit_tuples = -1.0;
1507
1508 /*
1509 * Add up the sizes and costs of the input paths.
1510 */
1511 pathnode->path.rows = 0;
1512 input_disabled_nodes = 0;
1513 input_startup_cost = 0;
1514 input_total_cost = 0;
1515 foreach(l, subpaths)
1516 {
1517 Path *subpath = (Path *) lfirst(l);
1518
1519 /* All child paths should be unparameterized */
1521
1522 pathnode->path.rows += subpath->rows;
1523 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1524 subpath->parallel_safe;
1525
1526 if (pathkeys_contained_in(pathkeys, subpath->pathkeys))
1527 {
1528 /* Subpath is adequately ordered, we won't need to sort it */
1529 input_disabled_nodes += subpath->disabled_nodes;
1530 input_startup_cost += subpath->startup_cost;
1531 input_total_cost += subpath->total_cost;
1532 }
1533 else
1534 {
1535 /* We'll need to insert a Sort node, so include cost for that */
1536 Path sort_path; /* dummy for result of cost_sort */
1537
1538 cost_sort(&sort_path,
1539 root,
1540 pathkeys,
1541 subpath->disabled_nodes,
1542 subpath->total_cost,
1543 subpath->rows,
1544 subpath->pathtarget->width,
1545 0.0,
1546 work_mem,
1547 pathnode->limit_tuples);
1548 input_disabled_nodes += sort_path.disabled_nodes;
1549 input_startup_cost += sort_path.startup_cost;
1550 input_total_cost += sort_path.total_cost;
1551 }
1552 }
1553
1554 /*
1555 * Now we can compute total costs of the MergeAppend. If there's exactly
1556 * one child path and its parallel awareness matches that of the
1557 * MergeAppend, then the MergeAppend is a no-op and will be discarded
1558 * later (in setrefs.c); otherwise we do the normal cost calculation.
1559 */
1560 if (list_length(subpaths) == 1 &&
1561 ((Path *) linitial(subpaths))->parallel_aware ==
1562 pathnode->path.parallel_aware)
1563 {
1564 pathnode->path.disabled_nodes = input_disabled_nodes;
1565 pathnode->path.startup_cost = input_startup_cost;
1566 pathnode->path.total_cost = input_total_cost;
1567 }
1568 else
1569 cost_merge_append(&pathnode->path, root,
1570 pathkeys, list_length(subpaths),
1571 input_disabled_nodes,
1572 input_startup_cost, input_total_cost,
1573 pathnode->path.rows);
1574
1575 return pathnode;
1576}
1577
1578/*
1579 * create_group_result_path
1580 * Creates a path representing a Result-and-nothing-else plan.
1581 *
1582 * This is only used for degenerate grouping cases, in which we know we
1583 * need to produce one result row, possibly filtered by a HAVING qual.
1584 */
1587 PathTarget *target, List *havingqual)
1588{
1590
1591 pathnode->path.pathtype = T_Result;
1592 pathnode->path.parent = rel;
1593 pathnode->path.pathtarget = target;
1594 pathnode->path.param_info = NULL; /* there are no other rels... */
1595 pathnode->path.parallel_aware = false;
1596 pathnode->path.parallel_safe = rel->consider_parallel;
1597 pathnode->path.parallel_workers = 0;
1598 pathnode->path.pathkeys = NIL;
1599 pathnode->quals = havingqual;
1600
1601 /*
1602 * We can't quite use cost_resultscan() because the quals we want to
1603 * account for are not baserestrict quals of the rel. Might as well just
1604 * hack it here.
1605 */
1606 pathnode->path.rows = 1;
1607 pathnode->path.startup_cost = target->cost.startup;
1608 pathnode->path.total_cost = target->cost.startup +
1609 cpu_tuple_cost + target->cost.per_tuple;
1610
1611 /*
1612 * Add cost of qual, if any --- but we ignore its selectivity, since our
1613 * rowcount estimate should be 1 no matter what the qual is.
1614 */
1615 if (havingqual)
1616 {
1617 QualCost qual_cost;
1618
1619 cost_qual_eval(&qual_cost, havingqual, root);
1620 /* havingqual is evaluated once at startup */
1621 pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1622 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1623 }
1624
1625 return pathnode;
1626}
1627
1628/*
1629 * create_material_path
1630 * Creates a path corresponding to a Material plan, returning the
1631 * pathnode.
1632 */
1635{
1636 MaterialPath *pathnode = makeNode(MaterialPath);
1637
1638 Assert(subpath->parent == rel);
1639
1640 pathnode->path.pathtype = T_Material;
1641 pathnode->path.parent = rel;
1642 pathnode->path.pathtarget = rel->reltarget;
1643 pathnode->path.param_info = subpath->param_info;
1644 pathnode->path.parallel_aware = false;
1645 pathnode->path.parallel_safe = rel->consider_parallel &&
1646 subpath->parallel_safe;
1647 pathnode->path.parallel_workers = subpath->parallel_workers;
1648 pathnode->path.pathkeys = subpath->pathkeys;
1649
1650 pathnode->subpath = subpath;
1651
1652 cost_material(&pathnode->path,
1653 subpath->disabled_nodes,
1654 subpath->startup_cost,
1655 subpath->total_cost,
1656 subpath->rows,
1657 subpath->pathtarget->width);
1658
1659 return pathnode;
1660}
1661
1662/*
1663 * create_memoize_path
1664 * Creates a path corresponding to a Memoize plan, returning the pathnode.
1665 */
1668 List *param_exprs, List *hash_operators,
1669 bool singlerow, bool binary_mode, double calls)
1670{
1671 MemoizePath *pathnode = makeNode(MemoizePath);
1672
1673 Assert(subpath->parent == rel);
1674
1675 pathnode->path.pathtype = T_Memoize;
1676 pathnode->path.parent = rel;
1677 pathnode->path.pathtarget = rel->reltarget;
1678 pathnode->path.param_info = subpath->param_info;
1679 pathnode->path.parallel_aware = false;
1680 pathnode->path.parallel_safe = rel->consider_parallel &&
1681 subpath->parallel_safe;
1682 pathnode->path.parallel_workers = subpath->parallel_workers;
1683 pathnode->path.pathkeys = subpath->pathkeys;
1684
1685 pathnode->subpath = subpath;
1686 pathnode->hash_operators = hash_operators;
1687 pathnode->param_exprs = param_exprs;
1688 pathnode->singlerow = singlerow;
1689 pathnode->binary_mode = binary_mode;
1690 pathnode->calls = clamp_row_est(calls);
1691
1692 /*
1693 * For now we set est_entries to 0. cost_memoize_rescan() does all the
1694 * hard work to determine how many cache entries there are likely to be,
1695 * so it seems best to leave it up to that function to fill this field in.
1696 * If left at 0, the executor will make a guess at a good value.
1697 */
1698 pathnode->est_entries = 0;
1699
1700 /* we should not generate this path type when enable_memoize=false */
1702 pathnode->path.disabled_nodes = subpath->disabled_nodes;
1703
1704 /*
1705 * Add a small additional charge for caching the first entry. All the
1706 * harder calculations for rescans are performed in cost_memoize_rescan().
1707 */
1708 pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
1709 pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
1710 pathnode->path.rows = subpath->rows;
1711
1712 return pathnode;
1713}
1714
1715/*
1716 * create_unique_path
1717 * Creates a path representing elimination of distinct rows from the
1718 * input data. Distinct-ness is defined according to the needs of the
1719 * semijoin represented by sjinfo. If it is not possible to identify
1720 * how to make the data unique, NULL is returned.
1721 *
1722 * If used at all, this is likely to be called repeatedly on the same rel;
1723 * and the input subpath should always be the same (the cheapest_total path
1724 * for the rel). So we cache the result.
1725 */
1726UniquePath *
1728 SpecialJoinInfo *sjinfo)
1729{
1730 UniquePath *pathnode;
1731 Path sort_path; /* dummy for result of cost_sort */
1732 Path agg_path; /* dummy for result of cost_agg */
1733 MemoryContext oldcontext;
1734 int numCols;
1735
1736 /* Caller made a mistake if subpath isn't cheapest_total ... */
1738 Assert(subpath->parent == rel);
1739 /* ... or if SpecialJoinInfo is the wrong one */
1740 Assert(sjinfo->jointype == JOIN_SEMI);
1741 Assert(bms_equal(rel->relids, sjinfo->syn_righthand));
1742
1743 /* If result already cached, return it */
1744 if (rel->cheapest_unique_path)
1745 return (UniquePath *) rel->cheapest_unique_path;
1746
1747 /* If it's not possible to unique-ify, return NULL */
1748 if (!(sjinfo->semi_can_btree || sjinfo->semi_can_hash))
1749 return NULL;
1750
1751 /*
1752 * When called during GEQO join planning, we are in a short-lived memory
1753 * context. We must make sure that the path and any subsidiary data
1754 * structures created for a baserel survive the GEQO cycle, else the
1755 * baserel is trashed for future GEQO cycles. On the other hand, when we
1756 * are creating those for a joinrel during GEQO, we don't want them to
1757 * clutter the main planning context. Upshot is that the best solution is
1758 * to explicitly allocate memory in the same context the given RelOptInfo
1759 * is in.
1760 */
1762
1763 pathnode = makeNode(UniquePath);
1764
1765 pathnode->path.pathtype = T_Unique;
1766 pathnode->path.parent = rel;
1767 pathnode->path.pathtarget = rel->reltarget;
1768 pathnode->path.param_info = subpath->param_info;
1769 pathnode->path.parallel_aware = false;
1770 pathnode->path.parallel_safe = rel->consider_parallel &&
1771 subpath->parallel_safe;
1772 pathnode->path.parallel_workers = subpath->parallel_workers;
1773
1774 /*
1775 * Assume the output is unsorted, since we don't necessarily have pathkeys
1776 * to represent it. (This might get overridden below.)
1777 */
1778 pathnode->path.pathkeys = NIL;
1779
1780 pathnode->subpath = subpath;
1781
1782 /*
1783 * Under GEQO and when planning child joins, the sjinfo might be
1784 * short-lived, so we'd better make copies of data structures we extract
1785 * from it.
1786 */
1787 pathnode->in_operators = copyObject(sjinfo->semi_operators);
1788 pathnode->uniq_exprs = copyObject(sjinfo->semi_rhs_exprs);
1789
1790 /*
1791 * If the input is a relation and it has a unique index that proves the
1792 * semi_rhs_exprs are unique, then we don't need to do anything. Note
1793 * that relation_has_unique_index_for automatically considers restriction
1794 * clauses for the rel, as well.
1795 */
1796 if (rel->rtekind == RTE_RELATION && sjinfo->semi_can_btree &&
1798 sjinfo->semi_rhs_exprs,
1799 sjinfo->semi_operators))
1800 {
1801 pathnode->umethod = UNIQUE_PATH_NOOP;
1802 pathnode->path.rows = rel->rows;
1803 pathnode->path.disabled_nodes = subpath->disabled_nodes;
1804 pathnode->path.startup_cost = subpath->startup_cost;
1805 pathnode->path.total_cost = subpath->total_cost;
1806 pathnode->path.pathkeys = subpath->pathkeys;
1807
1808 rel->cheapest_unique_path = (Path *) pathnode;
1809
1810 MemoryContextSwitchTo(oldcontext);
1811
1812 return pathnode;
1813 }
1814
1815 /*
1816 * If the input is a subquery whose output must be unique already, then we
1817 * don't need to do anything. The test for uniqueness has to consider
1818 * exactly which columns we are extracting; for example "SELECT DISTINCT
1819 * x,y" doesn't guarantee that x alone is distinct. So we cannot check for
1820 * this optimization unless semi_rhs_exprs consists only of simple Vars
1821 * referencing subquery outputs. (Possibly we could do something with
1822 * expressions in the subquery outputs, too, but for now keep it simple.)
1823 */
1824 if (rel->rtekind == RTE_SUBQUERY)
1825 {
1827
1829 {
1830 List *sub_tlist_colnos;
1831
1832 sub_tlist_colnos = translate_sub_tlist(sjinfo->semi_rhs_exprs,
1833 rel->relid);
1834
1835 if (sub_tlist_colnos &&
1837 sub_tlist_colnos,
1838 sjinfo->semi_operators))
1839 {
1840 pathnode->umethod = UNIQUE_PATH_NOOP;
1841 pathnode->path.rows = rel->rows;
1842 pathnode->path.disabled_nodes = subpath->disabled_nodes;
1843 pathnode->path.startup_cost = subpath->startup_cost;
1844 pathnode->path.total_cost = subpath->total_cost;
1845 pathnode->path.pathkeys = subpath->pathkeys;
1846
1847 rel->cheapest_unique_path = (Path *) pathnode;
1848
1849 MemoryContextSwitchTo(oldcontext);
1850
1851 return pathnode;
1852 }
1853 }
1854 }
1855
1856 /* Estimate number of output rows */
1857 pathnode->path.rows = estimate_num_groups(root,
1858 sjinfo->semi_rhs_exprs,
1859 rel->rows,
1860 NULL,
1861 NULL);
1862 numCols = list_length(sjinfo->semi_rhs_exprs);
1863
1864 if (sjinfo->semi_can_btree)
1865 {
1866 /*
1867 * Estimate cost for sort+unique implementation
1868 */
1869 cost_sort(&sort_path, root, NIL,
1870 subpath->disabled_nodes,
1871 subpath->total_cost,
1872 rel->rows,
1873 subpath->pathtarget->width,
1874 0.0,
1875 work_mem,
1876 -1.0);
1877
1878 /*
1879 * Charge one cpu_operator_cost per comparison per input tuple. We
1880 * assume all columns get compared at most of the tuples. (XXX
1881 * probably this is an overestimate.) This should agree with
1882 * create_upper_unique_path.
1883 */
1884 sort_path.total_cost += cpu_operator_cost * rel->rows * numCols;
1885 }
1886
1887 if (sjinfo->semi_can_hash)
1888 {
1889 /*
1890 * Estimate the overhead per hashtable entry at 64 bytes (same as in
1891 * planner.c).
1892 */
1893 int hashentrysize = subpath->pathtarget->width + 64;
1894
1895 if (hashentrysize * pathnode->path.rows > get_hash_memory_limit())
1896 {
1897 /*
1898 * We should not try to hash. Hack the SpecialJoinInfo to
1899 * remember this, in case we come through here again.
1900 */
1901 sjinfo->semi_can_hash = false;
1902 }
1903 else
1904 cost_agg(&agg_path, root,
1905 AGG_HASHED, NULL,
1906 numCols, pathnode->path.rows,
1907 NIL,
1908 subpath->disabled_nodes,
1909 subpath->startup_cost,
1910 subpath->total_cost,
1911 rel->rows,
1912 subpath->pathtarget->width);
1913 }
1914
1915 if (sjinfo->semi_can_btree && sjinfo->semi_can_hash)
1916 {
1917 if (agg_path.disabled_nodes < sort_path.disabled_nodes ||
1918 (agg_path.disabled_nodes == sort_path.disabled_nodes &&
1919 agg_path.total_cost < sort_path.total_cost))
1920 pathnode->umethod = UNIQUE_PATH_HASH;
1921 else
1922 pathnode->umethod = UNIQUE_PATH_SORT;
1923 }
1924 else if (sjinfo->semi_can_btree)
1925 pathnode->umethod = UNIQUE_PATH_SORT;
1926 else if (sjinfo->semi_can_hash)
1927 pathnode->umethod = UNIQUE_PATH_HASH;
1928 else
1929 {
1930 /* we can get here only if we abandoned hashing above */
1931 MemoryContextSwitchTo(oldcontext);
1932 return NULL;
1933 }
1934
1935 if (pathnode->umethod == UNIQUE_PATH_HASH)
1936 {
1937 pathnode->path.disabled_nodes = agg_path.disabled_nodes;
1938 pathnode->path.startup_cost = agg_path.startup_cost;
1939 pathnode->path.total_cost = agg_path.total_cost;
1940 }
1941 else
1942 {
1943 pathnode->path.disabled_nodes = sort_path.disabled_nodes;
1944 pathnode->path.startup_cost = sort_path.startup_cost;
1945 pathnode->path.total_cost = sort_path.total_cost;
1946 }
1947
1948 rel->cheapest_unique_path = (Path *) pathnode;
1949
1950 MemoryContextSwitchTo(oldcontext);
1951
1952 return pathnode;
1953}
1954
1955/*
1956 * create_gather_merge_path
1957 *
1958 * Creates a path corresponding to a gather merge scan, returning
1959 * the pathnode.
1960 */
1963 PathTarget *target, List *pathkeys,
1964 Relids required_outer, double *rows)
1965{
1967 int input_disabled_nodes = 0;
1968 Cost input_startup_cost = 0;
1969 Cost input_total_cost = 0;
1970
1971 Assert(subpath->parallel_safe);
1972 Assert(pathkeys);
1973
1974 /*
1975 * The subpath should guarantee that it is adequately ordered either by
1976 * adding an explicit sort node or by using presorted input. We cannot
1977 * add an explicit Sort node for the subpath in createplan.c on additional
1978 * pathkeys, because we can't guarantee the sort would be safe. For
1979 * example, expressions may be volatile or otherwise parallel unsafe.
1980 */
1981 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1982 elog(ERROR, "gather merge input not sufficiently sorted");
1983
1984 pathnode->path.pathtype = T_GatherMerge;
1985 pathnode->path.parent = rel;
1986 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1987 required_outer);
1988 pathnode->path.parallel_aware = false;
1989
1990 pathnode->subpath = subpath;
1991 pathnode->num_workers = subpath->parallel_workers;
1992 pathnode->path.pathkeys = pathkeys;
1993 pathnode->path.pathtarget = target ? target : rel->reltarget;
1994
1995 input_disabled_nodes += subpath->disabled_nodes;
1996 input_startup_cost += subpath->startup_cost;
1997 input_total_cost += subpath->total_cost;
1998
1999 cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
2000 input_disabled_nodes, input_startup_cost,
2001 input_total_cost, rows);
2002
2003 return pathnode;
2004}
2005
2006/*
2007 * translate_sub_tlist - get subquery column numbers represented by tlist
2008 *
2009 * The given targetlist usually contains only Vars referencing the given relid.
2010 * Extract their varattnos (ie, the column numbers of the subquery) and return
2011 * as an integer List.
2012 *
2013 * If any of the tlist items is not a simple Var, we cannot determine whether
2014 * the subquery's uniqueness condition (if any) matches ours, so punt and
2015 * return NIL.
2016 */
2017static List *
2018translate_sub_tlist(List *tlist, int relid)
2019{
2020 List *result = NIL;
2021 ListCell *l;
2022
2023 foreach(l, tlist)
2024 {
2025 Var *var = (Var *) lfirst(l);
2026
2027 if (!var || !IsA(var, Var) ||
2028 var->varno != relid)
2029 return NIL; /* punt */
2030
2031 result = lappend_int(result, var->varattno);
2032 }
2033 return result;
2034}
2035
2036/*
2037 * create_gather_path
2038 * Creates a path corresponding to a gather scan, returning the
2039 * pathnode.
2040 *
2041 * 'rows' may optionally be set to override row estimates from other sources.
2042 */
2043GatherPath *
2045 PathTarget *target, Relids required_outer, double *rows)
2046{
2047 GatherPath *pathnode = makeNode(GatherPath);
2048
2049 Assert(subpath->parallel_safe);
2050
2051 pathnode->path.pathtype = T_Gather;
2052 pathnode->path.parent = rel;
2053 pathnode->path.pathtarget = target;
2054 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2055 required_outer);
2056 pathnode->path.parallel_aware = false;
2057 pathnode->path.parallel_safe = false;
2058 pathnode->path.parallel_workers = 0;
2059 pathnode->path.pathkeys = NIL; /* Gather has unordered result */
2060
2061 pathnode->subpath = subpath;
2062 pathnode->num_workers = subpath->parallel_workers;
2063 pathnode->single_copy = false;
2064
2065 if (pathnode->num_workers == 0)
2066 {
2067 pathnode->path.pathkeys = subpath->pathkeys;
2068 pathnode->num_workers = 1;
2069 pathnode->single_copy = true;
2070 }
2071
2072 cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
2073
2074 return pathnode;
2075}
2076
2077/*
2078 * create_subqueryscan_path
2079 * Creates a path corresponding to a scan of a subquery,
2080 * returning the pathnode.
2081 *
2082 * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
2083 * be trivial, ie just a fetch of all the subquery output columns in order.
2084 * While we could determine that here, the caller can usually do it more
2085 * efficiently (or at least amortize it over multiple calls).
2086 */
2089 bool trivial_pathtarget,
2090 List *pathkeys, Relids required_outer)
2091{
2093
2094 pathnode->path.pathtype = T_SubqueryScan;
2095 pathnode->path.parent = rel;
2096 pathnode->path.pathtarget = rel->reltarget;
2097 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2098 required_outer);
2099 pathnode->path.parallel_aware = false;
2100 pathnode->path.parallel_safe = rel->consider_parallel &&
2101 subpath->parallel_safe;
2102 pathnode->path.parallel_workers = subpath->parallel_workers;
2103 pathnode->path.pathkeys = pathkeys;
2104 pathnode->subpath = subpath;
2105
2106 cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
2107 trivial_pathtarget);
2108
2109 return pathnode;
2110}
2111
2112/*
2113 * create_functionscan_path
2114 * Creates a path corresponding to a sequential scan of a function,
2115 * returning the pathnode.
2116 */
2117Path *
2119 List *pathkeys, Relids required_outer)
2120{
2121 Path *pathnode = makeNode(Path);
2122
2123 pathnode->pathtype = T_FunctionScan;
2124 pathnode->parent = rel;
2125 pathnode->pathtarget = rel->reltarget;
2126 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2127 required_outer);
2128 pathnode->parallel_aware = false;
2129 pathnode->parallel_safe = rel->consider_parallel;
2130 pathnode->parallel_workers = 0;
2131 pathnode->pathkeys = pathkeys;
2132
2133 cost_functionscan(pathnode, root, rel, pathnode->param_info);
2134
2135 return pathnode;
2136}
2137
2138/*
2139 * create_tablefuncscan_path
2140 * Creates a path corresponding to a sequential scan of a table function,
2141 * returning the pathnode.
2142 */
2143Path *
2145 Relids required_outer)
2146{
2147 Path *pathnode = makeNode(Path);
2148
2149 pathnode->pathtype = T_TableFuncScan;
2150 pathnode->parent = rel;
2151 pathnode->pathtarget = rel->reltarget;
2152 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2153 required_outer);
2154 pathnode->parallel_aware = false;
2155 pathnode->parallel_safe = rel->consider_parallel;
2156 pathnode->parallel_workers = 0;
2157 pathnode->pathkeys = NIL; /* result is always unordered */
2158
2159 cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
2160
2161 return pathnode;
2162}
2163
2164/*
2165 * create_valuesscan_path
2166 * Creates a path corresponding to a scan of a VALUES list,
2167 * returning the pathnode.
2168 */
2169Path *
2171 Relids required_outer)
2172{
2173 Path *pathnode = makeNode(Path);
2174
2175 pathnode->pathtype = T_ValuesScan;
2176 pathnode->parent = rel;
2177 pathnode->pathtarget = rel->reltarget;
2178 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2179 required_outer);
2180 pathnode->parallel_aware = false;
2181 pathnode->parallel_safe = rel->consider_parallel;
2182 pathnode->parallel_workers = 0;
2183 pathnode->pathkeys = NIL; /* result is always unordered */
2184
2185 cost_valuesscan(pathnode, root, rel, pathnode->param_info);
2186
2187 return pathnode;
2188}
2189
2190/*
2191 * create_ctescan_path
2192 * Creates a path corresponding to a scan of a non-self-reference CTE,
2193 * returning the pathnode.
2194 */
2195Path *
2197 List *pathkeys, Relids required_outer)
2198{
2199 Path *pathnode = makeNode(Path);
2200
2201 pathnode->pathtype = T_CteScan;
2202 pathnode->parent = rel;
2203 pathnode->pathtarget = rel->reltarget;
2204 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2205 required_outer);
2206 pathnode->parallel_aware = false;
2207 pathnode->parallel_safe = rel->consider_parallel;
2208 pathnode->parallel_workers = 0;
2209 pathnode->pathkeys = pathkeys;
2210
2211 cost_ctescan(pathnode, root, rel, pathnode->param_info);
2212
2213 return pathnode;
2214}
2215
2216/*
2217 * create_namedtuplestorescan_path
2218 * Creates a path corresponding to a scan of a named tuplestore, returning
2219 * the pathnode.
2220 */
2221Path *
2223 Relids required_outer)
2224{
2225 Path *pathnode = makeNode(Path);
2226
2227 pathnode->pathtype = T_NamedTuplestoreScan;
2228 pathnode->parent = rel;
2229 pathnode->pathtarget = rel->reltarget;
2230 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2231 required_outer);
2232 pathnode->parallel_aware = false;
2233 pathnode->parallel_safe = rel->consider_parallel;
2234 pathnode->parallel_workers = 0;
2235 pathnode->pathkeys = NIL; /* result is always unordered */
2236
2237 cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
2238
2239 return pathnode;
2240}
2241
2242/*
2243 * create_resultscan_path
2244 * Creates a path corresponding to a scan of an RTE_RESULT relation,
2245 * returning the pathnode.
2246 */
2247Path *
2249 Relids required_outer)
2250{
2251 Path *pathnode = makeNode(Path);
2252
2253 pathnode->pathtype = T_Result;
2254 pathnode->parent = rel;
2255 pathnode->pathtarget = rel->reltarget;
2256 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2257 required_outer);
2258 pathnode->parallel_aware = false;
2259 pathnode->parallel_safe = rel->consider_parallel;
2260 pathnode->parallel_workers = 0;
2261 pathnode->pathkeys = NIL; /* result is always unordered */
2262
2263 cost_resultscan(pathnode, root, rel, pathnode->param_info);
2264
2265 return pathnode;
2266}
2267
2268/*
2269 * create_worktablescan_path
2270 * Creates a path corresponding to a scan of a self-reference CTE,
2271 * returning the pathnode.
2272 */
2273Path *
2275 Relids required_outer)
2276{
2277 Path *pathnode = makeNode(Path);
2278
2279 pathnode->pathtype = T_WorkTableScan;
2280 pathnode->parent = rel;
2281 pathnode->pathtarget = rel->reltarget;
2282 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2283 required_outer);
2284 pathnode->parallel_aware = false;
2285 pathnode->parallel_safe = rel->consider_parallel;
2286 pathnode->parallel_workers = 0;
2287 pathnode->pathkeys = NIL; /* result is always unordered */
2288
2289 /* Cost is the same as for a regular CTE scan */
2290 cost_ctescan(pathnode, root, rel, pathnode->param_info);
2291
2292 return pathnode;
2293}
2294
2295/*
2296 * create_foreignscan_path
2297 * Creates a path corresponding to a scan of a foreign base table,
2298 * returning the pathnode.
2299 *
2300 * This function is never called from core Postgres; rather, it's expected
2301 * to be called by the GetForeignPaths function of a foreign data wrapper.
2302 * We make the FDW supply all fields of the path, since we do not have any way
2303 * to calculate them in core. However, there is a usually-sane default for
2304 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2305 */
2308 PathTarget *target,
2309 double rows, int disabled_nodes,
2310 Cost startup_cost, Cost total_cost,
2311 List *pathkeys,
2312 Relids required_outer,
2313 Path *fdw_outerpath,
2314 List *fdw_restrictinfo,
2315 List *fdw_private)
2316{
2317 ForeignPath *pathnode = makeNode(ForeignPath);
2318
2319 /* Historically some FDWs were confused about when to use this */
2320 Assert(IS_SIMPLE_REL(rel));
2321
2322 pathnode->path.pathtype = T_ForeignScan;
2323 pathnode->path.parent = rel;
2324 pathnode->path.pathtarget = target ? target : rel->reltarget;
2325 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2326 required_outer);
2327 pathnode->path.parallel_aware = false;
2328 pathnode->path.parallel_safe = rel->consider_parallel;
2329 pathnode->path.parallel_workers = 0;
2330 pathnode->path.rows = rows;
2331 pathnode->path.disabled_nodes = disabled_nodes;
2332 pathnode->path.startup_cost = startup_cost;
2333 pathnode->path.total_cost = total_cost;
2334 pathnode->path.pathkeys = pathkeys;
2335
2336 pathnode->fdw_outerpath = fdw_outerpath;
2337 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2338 pathnode->fdw_private = fdw_private;
2339
2340 return pathnode;
2341}
2342
2343/*
2344 * create_foreign_join_path
2345 * Creates a path corresponding to a scan of a foreign join,
2346 * returning the pathnode.
2347 *
2348 * This function is never called from core Postgres; rather, it's expected
2349 * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
2350 * We make the FDW supply all fields of the path, since we do not have any way
2351 * to calculate them in core. However, there is a usually-sane default for
2352 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2353 */
2356 PathTarget *target,
2357 double rows, int disabled_nodes,
2358 Cost startup_cost, Cost total_cost,
2359 List *pathkeys,
2360 Relids required_outer,
2361 Path *fdw_outerpath,
2362 List *fdw_restrictinfo,
2363 List *fdw_private)
2364{
2365 ForeignPath *pathnode = makeNode(ForeignPath);
2366
2367 /*
2368 * We should use get_joinrel_parampathinfo to handle parameterized paths,
2369 * but the API of this function doesn't support it, and existing
2370 * extensions aren't yet trying to build such paths anyway. For the
2371 * moment just throw an error if someone tries it; eventually we should
2372 * revisit this.
2373 */
2374 if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
2375 elog(ERROR, "parameterized foreign joins are not supported yet");
2376
2377 pathnode->path.pathtype = T_ForeignScan;
2378 pathnode->path.parent = rel;
2379 pathnode->path.pathtarget = target ? target : rel->reltarget;
2380 pathnode->path.param_info = NULL; /* XXX see above */
2381 pathnode->path.parallel_aware = false;
2382 pathnode->path.parallel_safe = rel->consider_parallel;
2383 pathnode->path.parallel_workers = 0;
2384 pathnode->path.rows = rows;
2385 pathnode->path.disabled_nodes = disabled_nodes;
2386 pathnode->path.startup_cost = startup_cost;
2387 pathnode->path.total_cost = total_cost;
2388 pathnode->path.pathkeys = pathkeys;
2389
2390 pathnode->fdw_outerpath = fdw_outerpath;
2391 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2392 pathnode->fdw_private = fdw_private;
2393
2394 return pathnode;
2395}
2396
2397/*
2398 * create_foreign_upper_path
2399 * Creates a path corresponding to an upper relation that's computed
2400 * directly by an FDW, returning the pathnode.
2401 *
2402 * This function is never called from core Postgres; rather, it's expected to
2403 * be called by the GetForeignUpperPaths function of a foreign data wrapper.
2404 * We make the FDW supply all fields of the path, since we do not have any way
2405 * to calculate them in core. However, there is a usually-sane default for
2406 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2407 */
2410 PathTarget *target,
2411 double rows, int disabled_nodes,
2412 Cost startup_cost, Cost total_cost,
2413 List *pathkeys,
2414 Path *fdw_outerpath,
2415 List *fdw_restrictinfo,
2416 List *fdw_private)
2417{
2418 ForeignPath *pathnode = makeNode(ForeignPath);
2419
2420 /*
2421 * Upper relations should never have any lateral references, since joining
2422 * is complete.
2423 */
2425
2426 pathnode->path.pathtype = T_ForeignScan;
2427 pathnode->path.parent = rel;
2428 pathnode->path.pathtarget = target ? target : rel->reltarget;
2429 pathnode->path.param_info = NULL;
2430 pathnode->path.parallel_aware = false;
2431 pathnode->path.parallel_safe = rel->consider_parallel;
2432 pathnode->path.parallel_workers = 0;
2433 pathnode->path.rows = rows;
2434 pathnode->path.disabled_nodes = disabled_nodes;
2435 pathnode->path.startup_cost = startup_cost;
2436 pathnode->path.total_cost = total_cost;
2437 pathnode->path.pathkeys = pathkeys;
2438
2439 pathnode->fdw_outerpath = fdw_outerpath;
2440 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2441 pathnode->fdw_private = fdw_private;
2442
2443 return pathnode;
2444}
2445
2446/*
2447 * calc_nestloop_required_outer
2448 * Compute the required_outer set for a nestloop join path
2449 *
2450 * Note: when considering a child join, the inputs nonetheless use top-level
2451 * parent relids
2452 *
2453 * Note: result must not share storage with either input
2454 */
2455Relids
2457 Relids outer_paramrels,
2458 Relids innerrelids,
2459 Relids inner_paramrels)
2460{
2461 Relids required_outer;
2462
2463 /* inner_path can require rels from outer path, but not vice versa */
2464 Assert(!bms_overlap(outer_paramrels, innerrelids));
2465 /* easy case if inner path is not parameterized */
2466 if (!inner_paramrels)
2467 return bms_copy(outer_paramrels);
2468 /* else, form the union ... */
2469 required_outer = bms_union(outer_paramrels, inner_paramrels);
2470 /* ... and remove any mention of now-satisfied outer rels */
2471 required_outer = bms_del_members(required_outer,
2472 outerrelids);
2473 return required_outer;
2474}
2475
2476/*
2477 * calc_non_nestloop_required_outer
2478 * Compute the required_outer set for a merge or hash join path
2479 *
2480 * Note: result must not share storage with either input
2481 */
2482Relids
2484{
2485 Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2486 Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2487 Relids innerrelids PG_USED_FOR_ASSERTS_ONLY;
2488 Relids outerrelids PG_USED_FOR_ASSERTS_ONLY;
2489 Relids required_outer;
2490
2491 /*
2492 * Any parameterization of the input paths refers to topmost parents of
2493 * the relevant relations, because reparameterize_path_by_child() hasn't
2494 * been called yet. So we must consider topmost parents of the relations
2495 * being joined, too, while checking for disallowed parameterization
2496 * cases.
2497 */
2498 if (inner_path->parent->top_parent_relids)
2499 innerrelids = inner_path->parent->top_parent_relids;
2500 else
2501 innerrelids = inner_path->parent->relids;
2502
2503 if (outer_path->parent->top_parent_relids)
2504 outerrelids = outer_path->parent->top_parent_relids;
2505 else
2506 outerrelids = outer_path->parent->relids;
2507
2508 /* neither path can require rels from the other */
2509 Assert(!bms_overlap(outer_paramrels, innerrelids));
2510 Assert(!bms_overlap(inner_paramrels, outerrelids));
2511 /* form the union ... */
2512 required_outer = bms_union(outer_paramrels, inner_paramrels);
2513 /* we do not need an explicit test for empty; bms_union gets it right */
2514 return required_outer;
2515}
2516
2517/*
2518 * create_nestloop_path
2519 * Creates a pathnode corresponding to a nestloop join between two
2520 * relations.
2521 *
2522 * 'joinrel' is the join relation.
2523 * 'jointype' is the type of join required
2524 * 'workspace' is the result from initial_cost_nestloop
2525 * 'extra' contains various information about the join
2526 * 'outer_path' is the outer path
2527 * 'inner_path' is the inner path
2528 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2529 * 'pathkeys' are the path keys of the new join path
2530 * 'required_outer' is the set of required outer rels
2531 *
2532 * Returns the resulting path node.
2533 */
2534NestPath *
2536 RelOptInfo *joinrel,
2537 JoinType jointype,
2538 JoinCostWorkspace *workspace,
2539 JoinPathExtraData *extra,
2540 Path *outer_path,
2541 Path *inner_path,
2542 List *restrict_clauses,
2543 List *pathkeys,
2544 Relids required_outer)
2545{
2546 NestPath *pathnode = makeNode(NestPath);
2547 Relids inner_req_outer = PATH_REQ_OUTER(inner_path);
2548 Relids outerrelids;
2549
2550 /*
2551 * Paths are parameterized by top-level parents, so run parameterization
2552 * tests on the parent relids.
2553 */
2554 if (outer_path->parent->top_parent_relids)
2555 outerrelids = outer_path->parent->top_parent_relids;
2556 else
2557 outerrelids = outer_path->parent->relids;
2558
2559 /*
2560 * If the inner path is parameterized by the outer, we must drop any
2561 * restrict_clauses that are due to be moved into the inner path. We have
2562 * to do this now, rather than postpone the work till createplan time,
2563 * because the restrict_clauses list can affect the size and cost
2564 * estimates for this path. We detect such clauses by checking for serial
2565 * number match to clauses already enforced in the inner path.
2566 */
2567 if (bms_overlap(inner_req_outer, outerrelids))
2568 {
2569 Bitmapset *enforced_serials = get_param_path_clause_serials(inner_path);
2570 List *jclauses = NIL;
2571 ListCell *lc;
2572
2573 foreach(lc, restrict_clauses)
2574 {
2575 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2576
2577 if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
2578 jclauses = lappend(jclauses, rinfo);
2579 }
2580 restrict_clauses = jclauses;
2581 }
2582
2583 pathnode->jpath.path.pathtype = T_NestLoop;
2584 pathnode->jpath.path.parent = joinrel;
2585 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2586 pathnode->jpath.path.param_info =
2588 joinrel,
2589 outer_path,
2590 inner_path,
2591 extra->sjinfo,
2592 required_outer,
2593 &restrict_clauses);
2594 pathnode->jpath.path.parallel_aware = false;
2595 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2596 outer_path->parallel_safe && inner_path->parallel_safe;
2597 /* This is a foolish way to estimate parallel_workers, but for now... */
2598 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2599 pathnode->jpath.path.pathkeys = pathkeys;
2600 pathnode->jpath.jointype = jointype;
2601 pathnode->jpath.inner_unique = extra->inner_unique;
2602 pathnode->jpath.outerjoinpath = outer_path;
2603 pathnode->jpath.innerjoinpath = inner_path;
2604 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2605
2606 final_cost_nestloop(root, pathnode, workspace, extra);
2607
2608 return pathnode;
2609}
2610
2611/*
2612 * create_mergejoin_path
2613 * Creates a pathnode corresponding to a mergejoin join between
2614 * two relations
2615 *
2616 * 'joinrel' is the join relation
2617 * 'jointype' is the type of join required
2618 * 'workspace' is the result from initial_cost_mergejoin
2619 * 'extra' contains various information about the join
2620 * 'outer_path' is the outer path
2621 * 'inner_path' is the inner path
2622 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2623 * 'pathkeys' are the path keys of the new join path
2624 * 'required_outer' is the set of required outer rels
2625 * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2626 * (this should be a subset of the restrict_clauses list)
2627 * 'outersortkeys' are the sort varkeys for the outer relation
2628 * 'innersortkeys' are the sort varkeys for the inner relation
2629 */
2630MergePath *
2632 RelOptInfo *joinrel,
2633 JoinType jointype,
2634 JoinCostWorkspace *workspace,
2635 JoinPathExtraData *extra,
2636 Path *outer_path,
2637 Path *inner_path,
2638 List *restrict_clauses,
2639 List *pathkeys,
2640 Relids required_outer,
2641 List *mergeclauses,
2642 List *outersortkeys,
2643 List *innersortkeys)
2644{
2645 MergePath *pathnode = makeNode(MergePath);
2646
2647 pathnode->jpath.path.pathtype = T_MergeJoin;
2648 pathnode->jpath.path.parent = joinrel;
2649 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2650 pathnode->jpath.path.param_info =
2652 joinrel,
2653 outer_path,
2654 inner_path,
2655 extra->sjinfo,
2656 required_outer,
2657 &restrict_clauses);
2658 pathnode->jpath.path.parallel_aware = false;
2659 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2660 outer_path->parallel_safe && inner_path->parallel_safe;
2661 /* This is a foolish way to estimate parallel_workers, but for now... */
2662 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2663 pathnode->jpath.path.pathkeys = pathkeys;
2664 pathnode->jpath.jointype = jointype;
2665 pathnode->jpath.inner_unique = extra->inner_unique;
2666 pathnode->jpath.outerjoinpath = outer_path;
2667 pathnode->jpath.innerjoinpath = inner_path;
2668 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2669 pathnode->path_mergeclauses = mergeclauses;
2670 pathnode->outersortkeys = outersortkeys;
2671 pathnode->innersortkeys = innersortkeys;
2672 /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2673 /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2674
2675 final_cost_mergejoin(root, pathnode, workspace, extra);
2676
2677 return pathnode;
2678}
2679
2680/*
2681 * create_hashjoin_path
2682 * Creates a pathnode corresponding to a hash join between two relations.
2683 *
2684 * 'joinrel' is the join relation
2685 * 'jointype' is the type of join required
2686 * 'workspace' is the result from initial_cost_hashjoin
2687 * 'extra' contains various information about the join
2688 * 'outer_path' is the cheapest outer path
2689 * 'inner_path' is the cheapest inner path
2690 * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
2691 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2692 * 'required_outer' is the set of required outer rels
2693 * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2694 * (this should be a subset of the restrict_clauses list)
2695 */
2696HashPath *
2698 RelOptInfo *joinrel,
2699 JoinType jointype,
2700 JoinCostWorkspace *workspace,
2701 JoinPathExtraData *extra,
2702 Path *outer_path,
2703 Path *inner_path,
2704 bool parallel_hash,
2705 List *restrict_clauses,
2706 Relids required_outer,
2707 List *hashclauses)
2708{
2709 HashPath *pathnode = makeNode(HashPath);
2710
2711 pathnode->jpath.path.pathtype = T_HashJoin;
2712 pathnode->jpath.path.parent = joinrel;
2713 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2714 pathnode->jpath.path.param_info =
2716 joinrel,
2717 outer_path,
2718 inner_path,
2719 extra->sjinfo,
2720 required_outer,
2721 &restrict_clauses);
2722 pathnode->jpath.path.parallel_aware =
2723 joinrel->consider_parallel && parallel_hash;
2724 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2725 outer_path->parallel_safe && inner_path->parallel_safe;
2726 /* This is a foolish way to estimate parallel_workers, but for now... */
2727 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2728
2729 /*
2730 * A hashjoin never has pathkeys, since its output ordering is
2731 * unpredictable due to possible batching. XXX If the inner relation is
2732 * small enough, we could instruct the executor that it must not batch,
2733 * and then we could assume that the output inherits the outer relation's
2734 * ordering, which might save a sort step. However there is considerable
2735 * downside if our estimate of the inner relation size is badly off. For
2736 * the moment we don't risk it. (Note also that if we wanted to take this
2737 * seriously, joinpath.c would have to consider many more paths for the
2738 * outer rel than it does now.)
2739 */
2740 pathnode->jpath.path.pathkeys = NIL;
2741 pathnode->jpath.jointype = jointype;
2742 pathnode->jpath.inner_unique = extra->inner_unique;
2743 pathnode->jpath.outerjoinpath = outer_path;
2744 pathnode->jpath.innerjoinpath = inner_path;
2745 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2746 pathnode->path_hashclauses = hashclauses;
2747 /* final_cost_hashjoin will fill in pathnode->num_batches */
2748
2749 final_cost_hashjoin(root, pathnode, workspace, extra);
2750
2751 return pathnode;
2752}
2753
2754/*
2755 * create_projection_path
2756 * Creates a pathnode that represents performing a projection.
2757 *
2758 * 'rel' is the parent relation associated with the result
2759 * 'subpath' is the path representing the source of data
2760 * 'target' is the PathTarget to be computed
2761 */
2764 RelOptInfo *rel,
2765 Path *subpath,
2766 PathTarget *target)
2767{
2769 PathTarget *oldtarget;
2770
2771 /*
2772 * We mustn't put a ProjectionPath directly above another; it's useless
2773 * and will confuse create_projection_plan. Rather than making sure all
2774 * callers handle that, let's implement it here, by stripping off any
2775 * ProjectionPath in what we're given. Given this rule, there won't be
2776 * more than one.
2777 */
2779 {
2781
2782 Assert(subpp->path.parent == rel);
2783 subpath = subpp->subpath;
2785 }
2786
2787 pathnode->path.pathtype = T_Result;
2788 pathnode->path.parent = rel;
2789 pathnode->path.pathtarget = target;
2790 /* For now, assume we are above any joins, so no parameterization */
2791 pathnode->path.param_info = NULL;
2792 pathnode->path.parallel_aware = false;
2793 pathnode->path.parallel_safe = rel->consider_parallel &&
2794 subpath->parallel_safe &&
2795 is_parallel_safe(root, (Node *) target->exprs);
2796 pathnode->path.parallel_workers = subpath->parallel_workers;
2797 /* Projection does not change the sort order */
2798 pathnode->path.pathkeys = subpath->pathkeys;
2799
2800 pathnode->subpath = subpath;
2801
2802 /*
2803 * We might not need a separate Result node. If the input plan node type
2804 * can project, we can just tell it to project something else. Or, if it
2805 * can't project but the desired target has the same expression list as
2806 * what the input will produce anyway, we can still give it the desired
2807 * tlist (possibly changing its ressortgroupref labels, but nothing else).
2808 * Note: in the latter case, create_projection_plan has to recheck our
2809 * conclusion; see comments therein.
2810 */
2811 oldtarget = subpath->pathtarget;
2813 equal(oldtarget->exprs, target->exprs))
2814 {
2815 /* No separate Result node needed */
2816 pathnode->dummypp = true;
2817
2818 /*
2819 * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2820 */
2821 pathnode->path.rows = subpath->rows;
2822 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2823 pathnode->path.startup_cost = subpath->startup_cost +
2824 (target->cost.startup - oldtarget->cost.startup);
2825 pathnode->path.total_cost = subpath->total_cost +
2826 (target->cost.startup - oldtarget->cost.startup) +
2827 (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2828 }
2829 else
2830 {
2831 /* We really do need the Result node */
2832 pathnode->dummypp = false;
2833
2834 /*
2835 * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2836 * evaluating the tlist. There is no qual to worry about.
2837 */
2838 pathnode->path.rows = subpath->rows;
2839 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2840 pathnode->path.startup_cost = subpath->startup_cost +
2841 target->cost.startup;
2842 pathnode->path.total_cost = subpath->total_cost +
2843 target->cost.startup +
2844 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2845 }
2846
2847 return pathnode;
2848}
2849
2850/*
2851 * apply_projection_to_path
2852 * Add a projection step, or just apply the target directly to given path.
2853 *
2854 * This has the same net effect as create_projection_path(), except that if
2855 * a separate Result plan node isn't needed, we just replace the given path's
2856 * pathtarget with the desired one. This must be used only when the caller
2857 * knows that the given path isn't referenced elsewhere and so can be modified
2858 * in-place.
2859 *
2860 * If the input path is a GatherPath or GatherMergePath, we try to push the
2861 * new target down to its input as well; this is a yet more invasive
2862 * modification of the input path, which create_projection_path() can't do.
2863 *
2864 * Note that we mustn't change the source path's parent link; so when it is
2865 * add_path'd to "rel" things will be a bit inconsistent. So far that has
2866 * not caused any trouble.
2867 *
2868 * 'rel' is the parent relation associated with the result
2869 * 'path' is the path representing the source of data
2870 * 'target' is the PathTarget to be computed
2871 */
2872Path *
2874 RelOptInfo *rel,
2875 Path *path,
2876 PathTarget *target)
2877{
2878 QualCost oldcost;
2879
2880 /*
2881 * If given path can't project, we might need a Result node, so make a
2882 * separate ProjectionPath.
2883 */
2884 if (!is_projection_capable_path(path))
2885 return (Path *) create_projection_path(root, rel, path, target);
2886
2887 /*
2888 * We can just jam the desired tlist into the existing path, being sure to
2889 * update its cost estimates appropriately.
2890 */
2891 oldcost = path->pathtarget->cost;
2892 path->pathtarget = target;
2893
2894 path->startup_cost += target->cost.startup - oldcost.startup;
2895 path->total_cost += target->cost.startup - oldcost.startup +
2896 (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2897
2898 /*
2899 * If the path happens to be a Gather or GatherMerge path, we'd like to
2900 * arrange for the subpath to return the required target list so that
2901 * workers can help project. But if there is something that is not
2902 * parallel-safe in the target expressions, then we can't.
2903 */
2904 if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
2905 is_parallel_safe(root, (Node *) target->exprs))
2906 {
2907 /*
2908 * We always use create_projection_path here, even if the subpath is
2909 * projection-capable, so as to avoid modifying the subpath in place.
2910 * It seems unlikely at present that there could be any other
2911 * references to the subpath, but better safe than sorry.
2912 *
2913 * Note that we don't change the parallel path's cost estimates; it
2914 * might be appropriate to do so, to reflect the fact that the bulk of
2915 * the target evaluation will happen in workers.
2916 */
2917 if (IsA(path, GatherPath))
2918 {
2919 GatherPath *gpath = (GatherPath *) path;
2920
2921 gpath->subpath = (Path *)
2923 gpath->subpath->parent,
2924 gpath->subpath,
2925 target);
2926 }
2927 else
2928 {
2929 GatherMergePath *gmpath = (GatherMergePath *) path;
2930
2931 gmpath->subpath = (Path *)
2933 gmpath->subpath->parent,
2934 gmpath->subpath,
2935 target);
2936 }
2937 }
2938 else if (path->parallel_safe &&
2939 !is_parallel_safe(root, (Node *) target->exprs))
2940 {
2941 /*
2942 * We're inserting a parallel-restricted target list into a path
2943 * currently marked parallel-safe, so we have to mark it as no longer
2944 * safe.
2945 */
2946 path->parallel_safe = false;
2947 }
2948
2949 return path;
2950}
2951
2952/*
2953 * create_set_projection_path
2954 * Creates a pathnode that represents performing a projection that
2955 * includes set-returning functions.
2956 *
2957 * 'rel' is the parent relation associated with the result
2958 * 'subpath' is the path representing the source of data
2959 * 'target' is the PathTarget to be computed
2960 */
2963 RelOptInfo *rel,
2964 Path *subpath,
2965 PathTarget *target)
2966{
2968 double tlist_rows;
2969 ListCell *lc;
2970
2971 pathnode->path.pathtype = T_ProjectSet;
2972 pathnode->path.parent = rel;
2973 pathnode->path.pathtarget = target;
2974 /* For now, assume we are above any joins, so no parameterization */
2975 pathnode->path.param_info = NULL;
2976 pathnode->path.parallel_aware = false;
2977 pathnode->path.parallel_safe = rel->consider_parallel &&
2978 subpath->parallel_safe &&
2979 is_parallel_safe(root, (Node *) target->exprs);
2980 pathnode->path.parallel_workers = subpath->parallel_workers;
2981 /* Projection does not change the sort order XXX? */
2982 pathnode->path.pathkeys = subpath->pathkeys;
2983
2984 pathnode->subpath = subpath;
2985
2986 /*
2987 * Estimate number of rows produced by SRFs for each row of input; if
2988 * there's more than one in this node, use the maximum.
2989 */
2990 tlist_rows = 1;
2991 foreach(lc, target->exprs)
2992 {
2993 Node *node = (Node *) lfirst(lc);
2994 double itemrows;
2995
2996 itemrows = expression_returns_set_rows(root, node);
2997 if (tlist_rows < itemrows)
2998 tlist_rows = itemrows;
2999 }
3000
3001 /*
3002 * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
3003 * per input row, and half of cpu_tuple_cost for each added output row.
3004 * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
3005 * this estimate later.
3006 */
3007 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3008 pathnode->path.rows = subpath->rows * tlist_rows;
3009 pathnode->path.startup_cost = subpath->startup_cost +
3010 target->cost.startup;
3011 pathnode->path.total_cost = subpath->total_cost +
3012 target->cost.startup +
3013 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
3014 (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
3015
3016 return pathnode;
3017}
3018
3019/*
3020 * create_incremental_sort_path
3021 * Creates a pathnode that represents performing an incremental sort.
3022 *
3023 * 'rel' is the parent relation associated with the result
3024 * 'subpath' is the path representing the source of data
3025 * 'pathkeys' represents the desired sort order
3026 * 'presorted_keys' is the number of keys by which the input path is
3027 * already sorted
3028 * 'limit_tuples' is the estimated bound on the number of output tuples,
3029 * or -1 if no LIMIT or couldn't estimate
3030 */
3033 RelOptInfo *rel,
3034 Path *subpath,
3035 List *pathkeys,
3036 int presorted_keys,
3037 double limit_tuples)
3038{
3040 SortPath *pathnode = &sort->spath;
3041
3042 pathnode->path.pathtype = T_IncrementalSort;
3043 pathnode->path.parent = rel;
3044 /* Sort doesn't project, so use source path's pathtarget */
3045 pathnode->path.pathtarget = subpath->pathtarget;
3046 /* For now, assume we are above any joins, so no parameterization */
3047 pathnode->path.param_info = NULL;
3048 pathnode->path.parallel_aware = false;
3049 pathnode->path.parallel_safe = rel->consider_parallel &&
3050 subpath->parallel_safe;
3051 pathnode->path.parallel_workers = subpath->parallel_workers;
3052 pathnode->path.pathkeys = pathkeys;
3053
3054 pathnode->subpath = subpath;
3055
3056 cost_incremental_sort(&pathnode->path,
3057 root, pathkeys, presorted_keys,
3058 subpath->disabled_nodes,
3059 subpath->startup_cost,
3060 subpath->total_cost,
3061 subpath->rows,
3062 subpath->pathtarget->width,
3063 0.0, /* XXX comparison_cost shouldn't be 0? */
3064 work_mem, limit_tuples);
3065
3066 sort->nPresortedCols = presorted_keys;
3067
3068 return sort;
3069}
3070
3071/*
3072 * create_sort_path
3073 * Creates a pathnode that represents performing an explicit sort.
3074 *
3075 * 'rel' is the parent relation associated with the result
3076 * 'subpath' is the path representing the source of data
3077 * 'pathkeys' represents the desired sort order
3078 * 'limit_tuples' is the estimated bound on the number of output tuples,
3079 * or -1 if no LIMIT or couldn't estimate
3080 */
3081SortPath *
3083 RelOptInfo *rel,
3084 Path *subpath,
3085 List *pathkeys,
3086 double limit_tuples)
3087{
3088 SortPath *pathnode = makeNode(SortPath);
3089
3090 pathnode->path.pathtype = T_Sort;
3091 pathnode->path.parent = rel;
3092 /* Sort doesn't project, so use source path's pathtarget */
3093 pathnode->path.pathtarget = subpath->pathtarget;
3094 /* For now, assume we are above any joins, so no parameterization */
3095 pathnode->path.param_info = NULL;
3096 pathnode->path.parallel_aware = false;
3097 pathnode->path.parallel_safe = rel->consider_parallel &&
3098 subpath->parallel_safe;
3099 pathnode->path.parallel_workers = subpath->parallel_workers;
3100 pathnode->path.pathkeys = pathkeys;
3101
3102 pathnode->subpath = subpath;
3103
3104 cost_sort(&pathnode->path, root, pathkeys,
3105 subpath->disabled_nodes,
3106 subpath->total_cost,
3107 subpath->rows,
3108 subpath->pathtarget->width,
3109 0.0, /* XXX comparison_cost shouldn't be 0? */
3110 work_mem, limit_tuples);
3111
3112 return pathnode;
3113}
3114
3115/*
3116 * create_group_path
3117 * Creates a pathnode that represents performing grouping of presorted input
3118 *
3119 * 'rel' is the parent relation associated with the result
3120 * 'subpath' is the path representing the source of data
3121 * 'target' is the PathTarget to be computed
3122 * 'groupClause' is a list of SortGroupClause's representing the grouping
3123 * 'qual' is the HAVING quals if any
3124 * 'numGroups' is the estimated number of groups
3125 */
3126GroupPath *
3128 RelOptInfo *rel,
3129 Path *subpath,
3130 List *groupClause,
3131 List *qual,
3132 double numGroups)
3133{
3134 GroupPath *pathnode = makeNode(GroupPath);
3135 PathTarget *target = rel->reltarget;
3136
3137 pathnode->path.pathtype = T_Group;
3138 pathnode->path.parent = rel;
3139 pathnode->path.pathtarget = target;
3140 /* For now, assume we are above any joins, so no parameterization */
3141 pathnode->path.param_info = NULL;
3142 pathnode->path.parallel_aware = false;
3143 pathnode->path.parallel_safe = rel->consider_parallel &&
3144 subpath->parallel_safe;
3145 pathnode->path.parallel_workers = subpath->parallel_workers;
3146 /* Group doesn't change sort ordering */
3147 pathnode->path.pathkeys = subpath->pathkeys;
3148
3149 pathnode->subpath = subpath;
3150
3151 pathnode->groupClause = groupClause;
3152 pathnode->qual = qual;
3153
3154 cost_group(&pathnode->path, root,
3155 list_length(groupClause),
3156 numGroups,
3157 qual,
3158 subpath->disabled_nodes,
3159 subpath->startup_cost, subpath->total_cost,
3160 subpath->rows);
3161
3162 /* add tlist eval cost for each output row */
3163 pathnode->path.startup_cost += target->cost.startup;
3164 pathnode->path.total_cost += target->cost.startup +
3165 target->cost.per_tuple * pathnode->path.rows;
3166
3167 return pathnode;
3168}
3169
3170/*
3171 * create_upper_unique_path
3172 * Creates a pathnode that represents performing an explicit Unique step
3173 * on presorted input.
3174 *
3175 * This produces a Unique plan node, but the use-case is so different from
3176 * create_unique_path that it doesn't seem worth trying to merge the two.
3177 *
3178 * 'rel' is the parent relation associated with the result
3179 * 'subpath' is the path representing the source of data
3180 * 'numCols' is the number of grouping columns
3181 * 'numGroups' is the estimated number of groups
3182 *
3183 * The input path must be sorted on the grouping columns, plus possibly
3184 * additional columns; so the first numCols pathkeys are the grouping columns
3185 */
3188 RelOptInfo *rel,
3189 Path *subpath,
3190 int numCols,
3191 double numGroups)
3192{
3194
3195 pathnode->path.pathtype = T_Unique;
3196 pathnode->path.parent = rel;
3197 /* Unique doesn't project, so use source path's pathtarget */
3198 pathnode->path.pathtarget = subpath->pathtarget;
3199 /* For now, assume we are above any joins, so no parameterization */
3200 pathnode->path.param_info = NULL;
3201 pathnode->path.parallel_aware = false;
3202 pathnode->path.parallel_safe = rel->consider_parallel &&
3203 subpath->parallel_safe;
3204 pathnode->path.parallel_workers = subpath->parallel_workers;
3205 /* Unique doesn't change the input ordering */
3206 pathnode->path.pathkeys = subpath->pathkeys;
3207
3208 pathnode->subpath = subpath;
3209 pathnode->numkeys = numCols;
3210
3211 /*
3212 * Charge one cpu_operator_cost per comparison per input tuple. We assume
3213 * all columns get compared at most of the tuples. (XXX probably this is
3214 * an overestimate.)
3215 */
3216 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3217 pathnode->path.startup_cost = subpath->startup_cost;
3218 pathnode->path.total_cost = subpath->total_cost +
3219 cpu_operator_cost * subpath->rows * numCols;
3220 pathnode->path.rows = numGroups;
3221
3222 return pathnode;
3223}
3224
3225/*
3226 * create_agg_path
3227 * Creates a pathnode that represents performing aggregation/grouping
3228 *
3229 * 'rel' is the parent relation associated with the result
3230 * 'subpath' is the path representing the source of data
3231 * 'target' is the PathTarget to be computed
3232 * 'aggstrategy' is the Agg node's basic implementation strategy
3233 * 'aggsplit' is the Agg node's aggregate-splitting mode
3234 * 'groupClause' is a list of SortGroupClause's representing the grouping
3235 * 'qual' is the HAVING quals if any
3236 * 'aggcosts' contains cost info about the aggregate functions to be computed
3237 * 'numGroups' is the estimated number of groups (1 if not grouping)
3238 */
3239AggPath *
3241 RelOptInfo *rel,
3242 Path *subpath,
3243 PathTarget *target,
3244 AggStrategy aggstrategy,
3245 AggSplit aggsplit,
3246 List *groupClause,
3247 List *qual,
3248 const AggClauseCosts *aggcosts,
3249 double numGroups)
3250{
3251 AggPath *pathnode = makeNode(AggPath);
3252
3253 pathnode->path.pathtype = T_Agg;
3254 pathnode->path.parent = rel;
3255 pathnode->path.pathtarget = target;
3256 /* For now, assume we are above any joins, so no parameterization */
3257 pathnode->path.param_info = NULL;
3258 pathnode->path.parallel_aware = false;
3259 pathnode->path.parallel_safe = rel->consider_parallel &&
3260 subpath->parallel_safe;
3261 pathnode->path.parallel_workers = subpath->parallel_workers;
3262
3263 if (aggstrategy == AGG_SORTED)
3264 {
3265 /*
3266 * Attempt to preserve the order of the subpath. Additional pathkeys
3267 * may have been added in adjust_group_pathkeys_for_groupagg() to
3268 * support ORDER BY / DISTINCT aggregates. Pathkeys added there
3269 * belong to columns within the aggregate function, so we must strip
3270 * these additional pathkeys off as those columns are unavailable
3271 * above the aggregate node.
3272 */
3273 if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
3274 pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
3275 root->num_groupby_pathkeys);
3276 else
3277 pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
3278 }
3279 else
3280 pathnode->path.pathkeys = NIL; /* output is unordered */
3281
3282 pathnode->subpath = subpath;
3283
3284 pathnode->aggstrategy = aggstrategy;
3285 pathnode->aggsplit = aggsplit;
3286 pathnode->numGroups = numGroups;
3287 pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
3288 pathnode->groupClause = groupClause;
3289 pathnode->qual = qual;
3290
3291 cost_agg(&pathnode->path, root,
3292 aggstrategy, aggcosts,
3293 list_length(groupClause), numGroups,
3294 qual,
3295 subpath->disabled_nodes,
3296 subpath->startup_cost, subpath->total_cost,
3297 subpath->rows, subpath->pathtarget->width);
3298
3299 /* add tlist eval cost for each output row */
3300 pathnode->path.startup_cost += target->cost.startup;
3301 pathnode->path.total_cost += target->cost.startup +
3302 target->cost.per_tuple * pathnode->path.rows;
3303
3304 return pathnode;
3305}
3306
3307/*
3308 * create_groupingsets_path
3309 * Creates a pathnode that represents performing GROUPING SETS aggregation
3310 *
3311 * GroupingSetsPath represents sorted grouping with one or more grouping sets.
3312 * The input path's result must be sorted to match the last entry in
3313 * rollup_groupclauses.
3314 *
3315 * 'rel' is the parent relation associated with the result
3316 * 'subpath' is the path representing the source of data
3317 * 'target' is the PathTarget to be computed
3318 * 'having_qual' is the HAVING quals if any
3319 * 'rollups' is a list of RollupData nodes
3320 * 'agg_costs' contains cost info about the aggregate functions to be computed
3321 */
3324 RelOptInfo *rel,
3325 Path *subpath,
3326 List *having_qual,
3327 AggStrategy aggstrategy,
3328 List *rollups,
3329 const AggClauseCosts *agg_costs)
3330{
3332 PathTarget *target = rel->reltarget;
3333 ListCell *lc;
3334 bool is_first = true;
3335 bool is_first_sort = true;
3336
3337 /* The topmost generated Plan node will be an Agg */
3338 pathnode->path.pathtype = T_Agg;
3339 pathnode->path.parent = rel;
3340 pathnode->path.pathtarget = target;
3341 pathnode->path.param_info = subpath->param_info;
3342 pathnode->path.parallel_aware = false;
3343 pathnode->path.parallel_safe = rel->consider_parallel &&
3344 subpath->parallel_safe;
3345 pathnode->path.parallel_workers = subpath->parallel_workers;
3346 pathnode->subpath = subpath;
3347
3348 /*
3349 * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
3350 * to AGG_HASHED, here if possible.
3351 */
3352 if (aggstrategy == AGG_SORTED &&
3353 list_length(rollups) == 1 &&
3354 ((RollupData *) linitial(rollups))->groupClause == NIL)
3355 aggstrategy = AGG_PLAIN;
3356
3357 if (aggstrategy == AGG_MIXED &&
3358 list_length(rollups) == 1)
3359 aggstrategy = AGG_HASHED;
3360
3361 /*
3362 * Output will be in sorted order by group_pathkeys if, and only if, there
3363 * is a single rollup operation on a non-empty list of grouping
3364 * expressions.
3365 */
3366 if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
3367 pathnode->path.pathkeys = root->group_pathkeys;
3368 else
3369 pathnode->path.pathkeys = NIL;
3370
3371 pathnode->aggstrategy = aggstrategy;
3372 pathnode->rollups = rollups;
3373 pathnode->qual = having_qual;
3374 pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
3375
3376 Assert(rollups != NIL);
3377 Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
3378 Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
3379
3380 foreach(lc, rollups)
3381 {
3382 RollupData *rollup = lfirst(lc);
3383 List *gsets = rollup->gsets;
3384 int numGroupCols = list_length(linitial(gsets));
3385
3386 /*
3387 * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
3388 * (already-sorted) input, and following ones do their own sort.
3389 *
3390 * In AGG_HASHED mode, there is one rollup for each grouping set.
3391 *
3392 * In AGG_MIXED mode, the first rollups are hashed, the first
3393 * non-hashed one takes the (already-sorted) input, and following ones
3394 * do their own sort.
3395 */
3396 if (is_first)
3397 {
3398 cost_agg(&pathnode->path, root,
3399 aggstrategy,
3400 agg_costs,
3401 numGroupCols,
3402 rollup->numGroups,
3403 having_qual,
3404 subpath->disabled_nodes,
3405 subpath->startup_cost,
3406 subpath->total_cost,
3407 subpath->rows,
3408 subpath->pathtarget->width);
3409 is_first = false;
3410 if (!rollup->is_hashed)
3411 is_first_sort = false;
3412 }
3413 else
3414 {
3415 Path sort_path; /* dummy for result of cost_sort */
3416 Path agg_path; /* dummy for result of cost_agg */
3417
3418 if (rollup->is_hashed || is_first_sort)
3419 {
3420 /*
3421 * Account for cost of aggregation, but don't charge input
3422 * cost again
3423 */
3424 cost_agg(&agg_path, root,
3425 rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
3426 agg_costs,
3427 numGroupCols,
3428 rollup->numGroups,
3429 having_qual,
3430 0, 0.0, 0.0,
3431 subpath->rows,
3432 subpath->pathtarget->width);
3433 if (!rollup->is_hashed)
3434 is_first_sort = false;
3435 }
3436 else
3437 {
3438 /* Account for cost of sort, but don't charge input cost again */
3439 cost_sort(&sort_path, root, NIL, 0,
3440 0.0,
3441 subpath->rows,
3442 subpath->pathtarget->width,
3443 0.0,
3444 work_mem,
3445 -1.0);
3446
3447 /* Account for cost of aggregation */
3448
3449 cost_agg(&agg_path, root,
3450 AGG_SORTED,
3451 agg_costs,
3452 numGroupCols,
3453 rollup->numGroups,
3454 having_qual,
3455 sort_path.disabled_nodes,
3456 sort_path.startup_cost,
3457 sort_path.total_cost,
3458 sort_path.rows,
3459 subpath->pathtarget->width);
3460 }
3461
3462 pathnode->path.disabled_nodes += agg_path.disabled_nodes;
3463 pathnode->path.total_cost += agg_path.total_cost;
3464 pathnode->path.rows += agg_path.rows;
3465 }
3466 }
3467
3468 /* add tlist eval cost for each output row */
3469 pathnode->path.startup_cost += target->cost.startup;
3470 pathnode->path.total_cost += target->cost.startup +
3471 target->cost.per_tuple * pathnode->path.rows;
3472
3473 return pathnode;
3474}
3475
3476/*
3477 * create_minmaxagg_path
3478 * Creates a pathnode that represents computation of MIN/MAX aggregates
3479 *
3480 * 'rel' is the parent relation associated with the result
3481 * 'target' is the PathTarget to be computed
3482 * 'mmaggregates' is a list of MinMaxAggInfo structs
3483 * 'quals' is the HAVING quals if any
3484 */
3487 RelOptInfo *rel,
3488 PathTarget *target,
3489 List *mmaggregates,
3490 List *quals)
3491{
3493 Cost initplan_cost;
3494 int initplan_disabled_nodes = 0;
3495 ListCell *lc;
3496
3497 /* The topmost generated Plan node will be a Result */
3498 pathnode->path.pathtype = T_Result;
3499 pathnode->path.parent = rel;
3500 pathnode->path.pathtarget = target;
3501 /* For now, assume we are above any joins, so no parameterization */
3502 pathnode->path.param_info = NULL;
3503 pathnode->path.parallel_aware = false;
3504 pathnode->path.parallel_safe = true; /* might change below */
3505 pathnode->path.parallel_workers = 0;
3506 /* Result is one unordered row */
3507 pathnode->path.rows = 1;
3508 pathnode->path.pathkeys = NIL;
3509
3510 pathnode->mmaggregates = mmaggregates;
3511 pathnode->quals = quals;
3512
3513 /* Calculate cost of all the initplans, and check parallel safety */
3514 initplan_cost = 0;
3515 foreach(lc, mmaggregates)
3516 {
3517 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3518
3519 initplan_disabled_nodes += mminfo->path->disabled_nodes;
3520 initplan_cost += mminfo->pathcost;
3521 if (!mminfo->path->parallel_safe)
3522 pathnode->path.parallel_safe = false;
3523 }
3524
3525 /* add tlist eval cost for each output row, plus cpu_tuple_cost */
3526 pathnode->path.disabled_nodes = initplan_disabled_nodes;
3527 pathnode->path.startup_cost = initplan_cost + target->cost.startup;
3528 pathnode->path.total_cost = initplan_cost + target->cost.startup +
3529 target->cost.per_tuple + cpu_tuple_cost;
3530
3531 /*
3532 * Add cost of qual, if any --- but we ignore its selectivity, since our
3533 * rowcount estimate should be 1 no matter what the qual is.
3534 */
3535 if (quals)
3536 {
3537 QualCost qual_cost;
3538
3539 cost_qual_eval(&qual_cost, quals, root);
3540 pathnode->path.startup_cost += qual_cost.startup;
3541 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
3542 }
3543
3544 /*
3545 * If the initplans were all parallel-safe, also check safety of the
3546 * target and quals. (The Result node itself isn't parallelizable, but if
3547 * we are in a subquery then it can be useful for the outer query to know
3548 * that this one is parallel-safe.)
3549 */
3550 if (pathnode->path.parallel_safe)
3551 pathnode->path.parallel_safe =
3552 is_parallel_safe(root, (Node *) target->exprs) &&
3553 is_parallel_safe(root, (Node *) quals);
3554
3555 return pathnode;
3556}
3557
3558/*
3559 * create_windowagg_path
3560 * Creates a pathnode that represents computation of window functions
3561 *
3562 * 'rel' is the parent relation associated with the result
3563 * 'subpath' is the path representing the source of data
3564 * 'target' is the PathTarget to be computed
3565 * 'windowFuncs' is a list of WindowFunc structs
3566 * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
3567 * 'winclause' is a WindowClause that is common to all the WindowFuncs
3568 * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
3569 * Must always be NIL when topwindow == false
3570 * 'topwindow' pass as true only for the top-level WindowAgg. False for all
3571 * intermediate WindowAggs.
3572 *
3573 * The input must be sorted according to the WindowClause's PARTITION keys
3574 * plus ORDER BY keys.
3575 */
3578 RelOptInfo *rel,
3579 Path *subpath,
3580 PathTarget *target,
3581 List *windowFuncs,
3582 List *runCondition,
3583 WindowClause *winclause,
3584 List *qual,
3585 bool topwindow)
3586{
3588
3589 /* qual can only be set for the topwindow */
3590 Assert(qual == NIL || topwindow);
3591
3592 pathnode->path.pathtype = T_WindowAgg;
3593 pathnode->path.parent = rel;
3594 pathnode->path.pathtarget = target;
3595 /* For now, assume we are above any joins, so no parameterization */
3596 pathnode->path.param_info = NULL;
3597 pathnode->path.parallel_aware = false;
3598 pathnode->path.parallel_safe = rel->consider_parallel &&
3599 subpath->parallel_safe;
3600 pathnode->path.parallel_workers = subpath->parallel_workers;
3601 /* WindowAgg preserves the input sort order */
3602 pathnode->path.pathkeys = subpath->pathkeys;
3603
3604 pathnode->subpath = subpath;
3605 pathnode->winclause = winclause;
3606 pathnode->qual = qual;
3607 pathnode->runCondition = runCondition;
3608 pathnode->topwindow = topwindow;
3609
3610 /*
3611 * For costing purposes, assume that there are no redundant partitioning
3612 * or ordering columns; it's not worth the trouble to deal with that
3613 * corner case here. So we just pass the unmodified list lengths to
3614 * cost_windowagg.
3615 */
3616 cost_windowagg(&pathnode->path, root,
3617 windowFuncs,
3618 winclause,
3619 subpath->disabled_nodes,
3620 subpath->startup_cost,
3621 subpath->total_cost,
3622 subpath->rows);
3623
3624 /* add tlist eval cost for each output row */
3625 pathnode->path.startup_cost += target->cost.startup;
3626 pathnode->path.total_cost += target->cost.startup +
3627 target->cost.per_tuple * pathnode->path.rows;
3628
3629 return pathnode;
3630}
3631
3632/*
3633 * create_setop_path
3634 * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3635 *
3636 * 'rel' is the parent relation associated with the result
3637 * 'leftpath' is the path representing the left-hand source of data
3638 * 'rightpath' is the path representing the right-hand source of data
3639 * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3640 * 'strategy' is the implementation strategy (sorted or hashed)
3641 * 'groupList' is a list of SortGroupClause's representing the grouping
3642 * 'numGroups' is the estimated number of distinct groups in left-hand input
3643 * 'outputRows' is the estimated number of output rows
3644 *
3645 * leftpath and rightpath must produce the same columns. Moreover, if
3646 * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
3647 * by all the grouping columns.
3648 */
3649SetOpPath *
3651 RelOptInfo *rel,
3652 Path *leftpath,
3653 Path *rightpath,
3654 SetOpCmd cmd,
3655 SetOpStrategy strategy,
3656 List *groupList,
3657 double numGroups,
3658 double outputRows)
3659{
3660 SetOpPath *pathnode = makeNode(SetOpPath);
3661
3662 pathnode->path.pathtype = T_SetOp;
3663 pathnode->path.parent = rel;
3664 pathnode->path.pathtarget = rel->reltarget;
3665 /* For now, assume we are above any joins, so no parameterization */
3666 pathnode->path.param_info = NULL;
3667 pathnode->path.parallel_aware = false;
3668 pathnode->path.parallel_safe = rel->consider_parallel &&
3669 leftpath->parallel_safe && rightpath->parallel_safe;
3670 pathnode->path.parallel_workers =
3671 leftpath->parallel_workers + rightpath->parallel_workers;
3672 /* SetOp preserves the input sort order if in sort mode */
3673 pathnode->path.pathkeys =
3674 (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
3675
3676 pathnode->leftpath = leftpath;
3677 pathnode->rightpath = rightpath;
3678 pathnode->cmd = cmd;
3679 pathnode->strategy = strategy;
3680 pathnode->groupList = groupList;
3681 pathnode->numGroups = numGroups;
3682
3683 /*
3684 * Compute cost estimates. As things stand, we end up with the same total
3685 * cost in this node for sort and hash methods, but different startup
3686 * costs. This could be refined perhaps, but it'll do for now.
3687 */
3688 pathnode->path.disabled_nodes =
3689 leftpath->disabled_nodes + rightpath->disabled_nodes;
3690 if (strategy == SETOP_SORTED)
3691 {
3692 /*
3693 * In sorted mode, we can emit output incrementally. Charge one
3694 * cpu_operator_cost per comparison per input tuple. Like cost_group,
3695 * we assume all columns get compared at most of the tuples.
3696 */
3697 pathnode->path.startup_cost =
3698 leftpath->startup_cost + rightpath->startup_cost;
3699 pathnode->path.total_cost =
3700 leftpath->total_cost + rightpath->total_cost +
3701 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3702
3703 /*
3704 * Also charge a small amount per extracted tuple. Like cost_sort,
3705 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3706 * qual-checking or projection.
3707 */
3708 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3709 }
3710 else
3711 {
3712 Size hashentrysize;
3713
3714 /*
3715 * In hashed mode, we must read all the input before we can emit
3716 * anything. Also charge comparison costs to represent the cost of
3717 * hash table lookups.
3718 */
3719 pathnode->path.startup_cost =
3720 leftpath->total_cost + rightpath->total_cost +
3721 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3722 pathnode->path.total_cost = pathnode->path.startup_cost;
3723
3724 /*
3725 * Also charge a small amount per extracted tuple. Like cost_sort,
3726 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3727 * qual-checking or projection.
3728 */
3729 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3730
3731 /*
3732 * Mark the path as disabled if enable_hashagg is off. While this
3733 * isn't exactly a HashAgg node, it seems close enough to justify
3734 * letting that switch control it.
3735 */
3736 if (!enable_hashagg)
3737 pathnode->path.disabled_nodes++;
3738
3739 /*
3740 * Also disable if it doesn't look like the hashtable will fit into
3741 * hash_mem.
3742 */
3743 hashentrysize = MAXALIGN(leftpath->pathtarget->width) +
3745 if (hashentrysize * numGroups > get_hash_memory_limit())
3746 pathnode->path.disabled_nodes++;
3747 }
3748 pathnode->path.rows = outputRows;
3749
3750 return pathnode;
3751}
3752
3753/*
3754 * create_recursiveunion_path
3755 * Creates a pathnode that represents a recursive UNION node
3756 *
3757 * 'rel' is the parent relation associated with the result
3758 * 'leftpath' is the source of data for the non-recursive term
3759 * 'rightpath' is the source of data for the recursive term
3760 * 'target' is the PathTarget to be computed
3761 * 'distinctList' is a list of SortGroupClause's representing the grouping
3762 * 'wtParam' is the ID of Param representing work table
3763 * 'numGroups' is the estimated number of groups
3764 *
3765 * For recursive UNION ALL, distinctList is empty and numGroups is zero
3766 */
3769 RelOptInfo *rel,
3770 Path *leftpath,
3771 Path *rightpath,
3772 PathTarget *target,
3773 List *distinctList,
3774 int wtParam,
3775 double numGroups)
3776{
3778
3779 pathnode->path.pathtype = T_RecursiveUnion;
3780 pathnode->path.parent = rel;
3781 pathnode->path.pathtarget = target;
3782 /* For now, assume we are above any joins, so no parameterization */
3783 pathnode->path.param_info = NULL;
3784 pathnode->path.parallel_aware = false;
3785 pathnode->path.parallel_safe = rel->consider_parallel &&
3786 leftpath->parallel_safe && rightpath->parallel_safe;
3787 /* Foolish, but we'll do it like joins for now: */
3788 pathnode->path.parallel_workers = leftpath->parallel_workers;
3789 /* RecursiveUnion result is always unsorted */
3790 pathnode->path.pathkeys = NIL;
3791
3792 pathnode->leftpath = leftpath;
3793 pathnode->rightpath = rightpath;
3794 pathnode->distinctList = distinctList;
3795 pathnode->wtParam = wtParam;
3796 pathnode->numGroups = numGroups;
3797
3798 cost_recursive_union(&pathnode->path, leftpath, rightpath);
3799
3800 return pathnode;
3801}
3802
3803/*
3804 * create_lockrows_path
3805 * Creates a pathnode that represents acquiring row locks
3806 *
3807 * 'rel' is the parent relation associated with the result
3808 * 'subpath' is the path representing the source of data
3809 * 'rowMarks' is a list of PlanRowMark's
3810 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3811 */
3814 Path *subpath, List *rowMarks, int epqParam)
3815{
3816 LockRowsPath *pathnode = makeNode(LockRowsPath);
3817
3818 pathnode->path.pathtype = T_LockRows;
3819 pathnode->path.parent = rel;
3820 /* LockRows doesn't project, so use source path's pathtarget */
3821 pathnode->path.pathtarget = subpath->pathtarget;
3822 /* For now, assume we are above any joins, so no parameterization */
3823 pathnode->path.param_info = NULL;
3824 pathnode->path.parallel_aware = false;
3825 pathnode->path.parallel_safe = false;
3826 pathnode->path.parallel_workers = 0;
3827 pathnode->path.rows = subpath->rows;
3828
3829 /*
3830 * The result cannot be assumed sorted, since locking might cause the sort
3831 * key columns to be replaced with new values.
3832 */
3833 pathnode->path.pathkeys = NIL;
3834
3835 pathnode->subpath = subpath;
3836 pathnode->rowMarks = rowMarks;
3837 pathnode->epqParam = epqParam;
3838
3839 /*
3840 * We should charge something extra for the costs of row locking and
3841 * possible refetches, but it's hard to say how much. For now, use
3842 * cpu_tuple_cost per row.
3843 */
3844 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3845 pathnode->path.startup_cost = subpath->startup_cost;
3846 pathnode->path.total_cost = subpath->total_cost +
3847 cpu_tuple_cost * subpath->rows;
3848
3849 return pathnode;
3850}
3851
3852/*
3853 * create_modifytable_path
3854 * Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
3855 * mods
3856 *
3857 * 'rel' is the parent relation associated with the result
3858 * 'subpath' is a Path producing source data
3859 * 'operation' is the operation type
3860 * 'canSetTag' is true if we set the command tag/es_processed
3861 * 'nominalRelation' is the parent RT index for use of EXPLAIN
3862 * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
3863 * 'partColsUpdated' is true if any partitioning columns are being updated,
3864 * either from the target relation or a descendent partitioned table.
3865 * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3866 * 'updateColnosLists' is a list of UPDATE target column number lists
3867 * (one sublist per rel); or NIL if not an UPDATE
3868 * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3869 * 'returningLists' is a list of RETURNING tlists (one per rel)
3870 * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3871 * 'onconflict' is the ON CONFLICT clause, or NULL
3872 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3873 * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
3874 * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
3875 */
3878 Path *subpath,
3879 CmdType operation, bool canSetTag,
3880 Index nominalRelation, Index rootRelation,
3881 bool partColsUpdated,
3882 List *resultRelations,
3883 List *updateColnosLists,
3884 List *withCheckOptionLists, List *returningLists,
3885 List *rowMarks, OnConflictExpr *onconflict,
3886 List *mergeActionLists, List *mergeJoinConditions,
3887 int epqParam)
3888{
3890
3891 Assert(operation == CMD_MERGE ||
3892 (operation == CMD_UPDATE ?
3893 list_length(resultRelations) == list_length(updateColnosLists) :
3894 updateColnosLists == NIL));
3895 Assert(withCheckOptionLists == NIL ||
3896 list_length(resultRelations) == list_length(withCheckOptionLists));
3897 Assert(returningLists == NIL ||
3898 list_length(resultRelations) == list_length(returningLists));
3899
3900 pathnode->path.pathtype = T_ModifyTable;
3901 pathnode->path.parent = rel;
3902 /* pathtarget is not interesting, just make it minimally valid */
3903 pathnode->path.pathtarget = rel->reltarget;
3904 /* For now, assume we are above any joins, so no parameterization */
3905 pathnode->path.param_info = NULL;
3906 pathnode->path.parallel_aware = false;
3907 pathnode->path.parallel_safe = false;
3908 pathnode->path.parallel_workers = 0;
3909 pathnode->path.pathkeys = NIL;
3910
3911 /*
3912 * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
3913 *
3914 * Currently, we don't charge anything extra for the actual table
3915 * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3916 * expressions if any. It would only be window dressing, since
3917 * ModifyTable is always a top-level node and there is no way for the
3918 * costs to change any higher-level planning choices. But we might want
3919 * to make it look better sometime.
3920 */
3921 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3922 pathnode->path.startup_cost = subpath->startup_cost;
3923 pathnode->path.total_cost = subpath->total_cost;
3924 if (returningLists != NIL)
3925 {
3926 pathnode->path.rows = subpath->rows;
3927
3928 /*
3929 * Set width to match the subpath output. XXX this is totally wrong:
3930 * we should return an average of the RETURNING tlist widths. But
3931 * it's what happened historically, and improving it is a task for
3932 * another day. (Again, it's mostly window dressing.)
3933 */
3934 pathnode->path.pathtarget->width = subpath->pathtarget->width;
3935 }
3936 else
3937 {
3938 pathnode->path.rows = 0;
3939 pathnode->path.pathtarget->width = 0;
3940 }
3941
3942 pathnode->subpath = subpath;
3943 pathnode->operation = operation;
3944 pathnode->canSetTag = canSetTag;
3945 pathnode->nominalRelation = nominalRelation;
3946 pathnode->rootRelation = rootRelation;
3947 pathnode->partColsUpdated = partColsUpdated;
3948 pathnode->resultRelations = resultRelations;
3949 pathnode->updateColnosLists = updateColnosLists;
3950 pathnode->withCheckOptionLists = withCheckOptionLists;
3951 pathnode->returningLists = returningLists;
3952 pathnode->rowMarks = rowMarks;
3953 pathnode->onconflict = onconflict;
3954 pathnode->epqParam = epqParam;
3955 pathnode->mergeActionLists = mergeActionLists;
3956 pathnode->mergeJoinConditions = mergeJoinConditions;
3957
3958 return pathnode;
3959}
3960
3961/*
3962 * create_limit_path
3963 * Creates a pathnode that represents performing LIMIT/OFFSET
3964 *
3965 * In addition to providing the actual OFFSET and LIMIT expressions,
3966 * the caller must provide estimates of their values for costing purposes.
3967 * The estimates are as computed by preprocess_limit(), ie, 0 represents
3968 * the clause not being present, and -1 means it's present but we could
3969 * not estimate its value.
3970 *
3971 * 'rel' is the parent relation associated with the result
3972 * 'subpath' is the path representing the source of data
3973 * 'limitOffset' is the actual OFFSET expression, or NULL
3974 * 'limitCount' is the actual LIMIT expression, or NULL
3975 * 'offset_est' is the estimated value of the OFFSET expression
3976 * 'count_est' is the estimated value of the LIMIT expression
3977 */
3978LimitPath *
3980 Path *subpath,
3981 Node *limitOffset, Node *limitCount,
3982 LimitOption limitOption,
3983 int64 offset_est, int64 count_est)
3984{
3985 LimitPath *pathnode = makeNode(LimitPath);
3986
3987 pathnode->path.pathtype = T_Limit;
3988 pathnode->path.parent = rel;
3989 /* Limit doesn't project, so use source path's pathtarget */
3990 pathnode->path.pathtarget = subpath->pathtarget;
3991 /* For now, assume we are above any joins, so no parameterization */
3992 pathnode->path.param_info = NULL;
3993 pathnode->path.parallel_aware = false;
3994 pathnode->path.parallel_safe = rel->consider_parallel &&
3995 subpath->parallel_safe;
3996 pathnode->path.parallel_workers = subpath->parallel_workers;
3997 pathnode->path.rows = subpath->rows;
3998 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3999 pathnode->path.startup_cost = subpath->startup_cost;
4000 pathnode->path.total_cost = subpath->total_cost;
4001 pathnode->path.pathkeys = subpath->pathkeys;
4002 pathnode->subpath = subpath;
4003 pathnode->limitOffset = limitOffset;
4004 pathnode->limitCount = limitCount;
4005 pathnode->limitOption = limitOption;
4006
4007 /*
4008 * Adjust the output rows count and costs according to the offset/limit.
4009 */
4011 &pathnode->path.startup_cost,
4012 &pathnode->path.total_cost,
4013 offset_est, count_est);
4014
4015 return pathnode;
4016}
4017
4018/*
4019 * adjust_limit_rows_costs
4020 * Adjust the size and cost estimates for a LimitPath node according to the
4021 * offset/limit.
4022 *
4023 * This is only a cosmetic issue if we are at top level, but if we are
4024 * building a subquery then it's important to report correct info to the outer
4025 * planner.
4026 *
4027 * When the offset or count couldn't be estimated, use 10% of the estimated
4028 * number of rows emitted from the subpath.
4029 *
4030 * XXX we don't bother to add eval costs of the offset/limit expressions
4031 * themselves to the path costs. In theory we should, but in most cases those
4032 * expressions are trivial and it's just not worth the trouble.
4033 */
4034void
4035adjust_limit_rows_costs(double *rows, /* in/out parameter */
4036 Cost *startup_cost, /* in/out parameter */
4037 Cost *total_cost, /* in/out parameter */
4038 int64 offset_est,
4039 int64 count_est)
4040{
4041 double input_rows = *rows;
4042 Cost input_startup_cost = *startup_cost;
4043 Cost input_total_cost = *total_cost;
4044
4045 if (offset_est != 0)
4046 {
4047 double offset_rows;
4048
4049 if (offset_est > 0)
4050 offset_rows = (double) offset_est;
4051 else
4052 offset_rows = clamp_row_est(input_rows * 0.10);
4053 if (offset_rows > *rows)
4054 offset_rows = *rows;
4055 if (input_rows > 0)
4056 *startup_cost +=
4057 (input_total_cost - input_startup_cost)
4058 * offset_rows / input_rows;
4059 *rows -= offset_rows;
4060 if (*rows < 1)
4061 *rows = 1;
4062 }
4063
4064 if (count_est != 0)
4065 {
4066 double count_rows;
4067
4068 if (count_est > 0)
4069 count_rows = (double) count_est;
4070 else
4071 count_rows = clamp_row_est(input_rows * 0.10);
4072 if (count_rows > *rows)
4073 count_rows = *rows;
4074 if (input_rows > 0)
4075 *total_cost = *startup_cost +
4076 (input_total_cost - input_startup_cost)
4077 * count_rows / input_rows;
4078 *rows = count_rows;
4079 if (*rows < 1)
4080 *rows = 1;
4081 }
4082}
4083
4084
4085/*
4086 * reparameterize_path
4087 * Attempt to modify a Path to have greater parameterization
4088 *
4089 * We use this to attempt to bring all child paths of an appendrel to the
4090 * same parameterization level, ensuring that they all enforce the same set
4091 * of join quals (and thus that that parameterization can be attributed to
4092 * an append path built from such paths). Currently, only a few path types
4093 * are supported here, though more could be added at need. We return NULL
4094 * if we can't reparameterize the given path.
4095 *
4096 * Note: we intentionally do not pass created paths to add_path(); it would
4097 * possibly try to delete them on the grounds of being cost-inferior to the
4098 * paths they were made from, and we don't want that. Paths made here are
4099 * not necessarily of general-purpose usefulness, but they can be useful
4100 * as members of an append path.
4101 */
4102Path *
4104 Relids required_outer,
4105 double loop_count)
4106{
4107 RelOptInfo *rel = path->parent;
4108
4109 /* Can only increase, not decrease, path's parameterization */
4110 if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
4111 return NULL;
4112 switch (path->pathtype)
4113 {
4114 case T_SeqScan:
4115 return create_seqscan_path(root, rel, required_outer, 0);
4116 case T_SampleScan:
4117 return (Path *) create_samplescan_path(root, rel, required_outer);
4118 case T_IndexScan:
4119 case T_IndexOnlyScan:
4120 {
4121 IndexPath *ipath = (IndexPath *) path;
4122 IndexPath *newpath = makeNode(IndexPath);
4123
4124 /*
4125 * We can't use create_index_path directly, and would not want
4126 * to because it would re-compute the indexqual conditions
4127 * which is wasted effort. Instead we hack things a bit:
4128 * flat-copy the path node, revise its param_info, and redo
4129 * the cost estimate.
4130 */
4131 memcpy(newpath, ipath, sizeof(IndexPath));
4132 newpath->path.param_info =
4133 get_baserel_parampathinfo(root, rel, required_outer);
4134 cost_index(newpath, root, loop_count, false);
4135 return (Path *) newpath;
4136 }
4137 case T_BitmapHeapScan:
4138 {
4139 BitmapHeapPath *bpath = (BitmapHeapPath *) path;
4140
4142 rel,
4143 bpath->bitmapqual,
4144 required_outer,
4145 loop_count, 0);
4146 }
4147 case T_SubqueryScan:
4148 {
4149 SubqueryScanPath *spath = (SubqueryScanPath *) path;
4150 Path *subpath = spath->subpath;
4151 bool trivial_pathtarget;
4152
4153 /*
4154 * If existing node has zero extra cost, we must have decided
4155 * its target is trivial. (The converse is not true, because
4156 * it might have a trivial target but quals to enforce; but in
4157 * that case the new node will too, so it doesn't matter
4158 * whether we get the right answer here.)
4159 */
4160 trivial_pathtarget =
4161 (subpath->total_cost == spath->path.total_cost);
4162
4164 rel,
4165 subpath,
4166 trivial_pathtarget,
4167 spath->path.pathkeys,
4168 required_outer);
4169 }
4170 case T_Result:
4171 /* Supported only for RTE_RESULT scan paths */
4172 if (IsA(path, Path))
4173 return create_resultscan_path(root, rel, required_outer);
4174 break;
4175 case T_Append:
4176 {
4177 AppendPath *apath = (AppendPath *) path;
4178 List *childpaths = NIL;
4179 List *partialpaths = NIL;
4180 int i;
4181 ListCell *lc;
4182
4183 /* Reparameterize the children */
4184 i = 0;
4185 foreach(lc, apath->subpaths)
4186 {
4187 Path *spath = (Path *) lfirst(lc);
4188
4189 spath = reparameterize_path(root, spath,
4190 required_outer,
4191 loop_count);
4192 if (spath == NULL)
4193 return NULL;
4194 /* We have to re-split the regular and partial paths */
4195 if (i < apath->first_partial_path)
4196 childpaths = lappend(childpaths, spath);
4197 else
4198 partialpaths = lappend(partialpaths, spath);
4199 i++;
4200 }
4201 return (Path *)
4202 create_append_path(root, rel, childpaths, partialpaths,
4203 apath->path.pathkeys, required_outer,
4204 apath->path.parallel_workers,
4205 apath->path.parallel_aware,
4206 -1);
4207 }
4208 case T_Material:
4209 {
4210 MaterialPath *mpath = (MaterialPath *) path;
4211 Path *spath = mpath->subpath;
4212
4213 spath = reparameterize_path(root, spath,
4214 required_outer,
4215 loop_count);
4216 if (spath == NULL)
4217 return NULL;
4218 return (Path *) create_material_path(rel, spath);
4219 }
4220 case T_Memoize:
4221 {
4222 MemoizePath *mpath = (MemoizePath *) path;
4223 Path *spath = mpath->subpath;
4224
4225 spath = reparameterize_path(root, spath,
4226 required_outer,
4227 loop_count);
4228 if (spath == NULL)
4229 return NULL;
4230 return (Path *) create_memoize_path(root, rel,
4231 spath,
4232 mpath->param_exprs,
4233 mpath->hash_operators,
4234 mpath->singlerow,
4235 mpath->binary_mode,
4236 mpath->calls);
4237 }
4238 default:
4239 break;
4240 }
4241 return NULL;
4242}
4243
4244/*
4245 * reparameterize_path_by_child
4246 * Given a path parameterized by the parent of the given child relation,
4247 * translate the path to be parameterized by the given child relation.
4248 *
4249 * Most fields in the path are not changed, but any expressions must be
4250 * adjusted to refer to the correct varnos, and any subpaths must be
4251 * recursively reparameterized. Other fields that refer to specific relids
4252 * also need adjustment.
4253 *
4254 * The cost, number of rows, width and parallel path properties depend upon
4255 * path->parent, which does not change during the translation. So we need
4256 * not change those.
4257 *
4258 * Currently, only a few path types are supported here, though more could be
4259 * added at need. We return NULL if we can't reparameterize the given path.
4260 *
4261 * Note that this function can change referenced RangeTblEntries, RelOptInfos
4262 * and IndexOptInfos as well as the Path structures. Therefore, it's only safe
4263 * to call during create_plan(), when we have made a final choice of which Path
4264 * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
4265 *
4266 * Keep this code in sync with path_is_reparameterizable_by_child()!
4267 */
4268Path *
4270 RelOptInfo *child_rel)
4271{
4272 Path *new_path;
4273 ParamPathInfo *new_ppi;
4274 ParamPathInfo *old_ppi;
4275 Relids required_outer;
4276
4277#define ADJUST_CHILD_ATTRS(node) \
4278 ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
4279 (Node *) (node), \
4280 child_rel, \
4281 child_rel->top_parent))
4282
4283#define REPARAMETERIZE_CHILD_PATH(path) \
4284do { \
4285 (path) = reparameterize_path_by_child(root, (path), child_rel); \
4286 if ((path) == NULL) \
4287 return NULL; \
4288} while(0)
4289
4290#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
4291do { \
4292 if ((pathlist) != NIL) \
4293 { \
4294 (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
4295 child_rel); \
4296 if ((pathlist) == NIL) \
4297 return NULL; \
4298 } \
4299} while(0)
4300
4301 /*
4302 * If the path is not parameterized by the parent of the given relation,
4303 * it doesn't need reparameterization.
4304 */
4305 if (!path->param_info ||
4306 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4307 return path;
4308
4309 /*
4310 * If possible, reparameterize the given path.
4311 *
4312 * This function is currently only applied to the inner side of a nestloop
4313 * join that is being partitioned by the partitionwise-join code. Hence,
4314 * we need only support path types that plausibly arise in that context.
4315 * (In particular, supporting sorted path types would be a waste of code
4316 * and cycles: even if we translated them here, they'd just lose in
4317 * subsequent cost comparisons.) If we do see an unsupported path type,
4318 * that just means we won't be able to generate a partitionwise-join plan
4319 * using that path type.
4320 */
4321 switch (nodeTag(path))
4322 {
4323 case T_Path:
4324 new_path = path;
4325 ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
4326 if (path->pathtype == T_SampleScan)
4327 {
4328 Index scan_relid = path->parent->relid;
4329 RangeTblEntry *rte;
4330
4331 /* it should be a base rel with a tablesample clause... */
4332 Assert(scan_relid > 0);
4333 rte = planner_rt_fetch(scan_relid, root);
4334 Assert(rte->rtekind == RTE_RELATION);
4335 Assert(rte->tablesample != NULL);
4336
4338 }
4339 break;
4340
4341 case T_IndexPath:
4342 {
4343 IndexPath *ipath = (IndexPath *) path;
4344
4347 new_path = (Path *) ipath;
4348 }
4349 break;
4350
4351 case T_BitmapHeapPath:
4352 {
4353 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4354
4355 ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
4357 new_path = (Path *) bhpath;
4358 }
4359 break;
4360
4361 case T_BitmapAndPath:
4362 {
4363 BitmapAndPath *bapath = (BitmapAndPath *) path;
4364
4366 new_path = (Path *) bapath;
4367 }
4368 break;
4369
4370 case T_BitmapOrPath:
4371 {
4372 BitmapOrPath *bopath = (BitmapOrPath *) path;
4373
4375 new_path = (Path *) bopath;
4376 }
4377 break;
4378
4379 case T_ForeignPath:
4380 {
4381 ForeignPath *fpath = (ForeignPath *) path;
4383
4384 ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
4385 if (fpath->fdw_outerpath)
4387 if (fpath->fdw_restrictinfo)
4389
4390 /* Hand over to FDW if needed. */
4391 rfpc_func =
4392 path->parent->fdwroutine->ReparameterizeForeignPathByChild;
4393 if (rfpc_func)
4394 fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
4395 child_rel);
4396 new_path = (Path *) fpath;
4397 }
4398 break;
4399
4400 case T_CustomPath:
4401 {
4402 CustomPath *cpath = (CustomPath *) path;
4403
4404 ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
4406 if (cpath->custom_restrictinfo)
4408 if (cpath->methods &&
4410 cpath->custom_private =
4412 cpath->custom_private,
4413 child_rel);
4414 new_path = (Path *) cpath;
4415 }
4416 break;
4417
4418 case T_NestPath:
4419 {
4420 NestPath *npath = (NestPath *) path;
4421 JoinPath *jpath = (JoinPath *) npath;
4422
4426 new_path = (Path *) npath;
4427 }
4428 break;
4429
4430 case T_MergePath:
4431 {
4432 MergePath *mpath = (MergePath *) path;
4433 JoinPath *jpath = (JoinPath *) mpath;
4434
4439 new_path = (Path *) mpath;
4440 }
4441 break;
4442
4443 case T_HashPath:
4444 {
4445 HashPath *hpath = (HashPath *) path;
4446 JoinPath *jpath = (JoinPath *) hpath;
4447
4452 new_path = (Path *) hpath;
4453 }
4454 break;
4455
4456 case T_AppendPath:
4457 {
4458 AppendPath *apath = (AppendPath *) path;
4459
4461 new_path = (Path *) apath;
4462 }
4463 break;
4464
4465 case T_MaterialPath:
4466 {
4467 MaterialPath *mpath = (MaterialPath *) path;
4468
4470 new_path = (Path *) mpath;
4471 }
4472 break;
4473
4474 case T_MemoizePath:
4475 {
4476 MemoizePath *mpath = (MemoizePath *) path;
4477
4480 new_path = (Path *) mpath;
4481 }
4482 break;
4483
4484 case T_GatherPath:
4485 {
4486 GatherPath *gpath = (GatherPath *) path;
4487
4489 new_path = (Path *) gpath;
4490 }
4491 break;
4492
4493 default:
4494 /* We don't know how to reparameterize this path. */
4495 return NULL;
4496 }
4497
4498 /*
4499 * Adjust the parameterization information, which refers to the topmost
4500 * parent. The topmost parent can be multiple levels away from the given
4501 * child, hence use multi-level expression adjustment routines.
4502 */
4503 old_ppi = new_path->param_info;
4504 required_outer =
4506 child_rel,
4507 child_rel->top_parent);
4508
4509 /* If we already have a PPI for this parameterization, just return it */
4510 new_ppi = find_param_path_info(new_path->parent, required_outer);
4511
4512 /*
4513 * If not, build a new one and link it to the list of PPIs. For the same
4514 * reason as explained in mark_dummy_rel(), allocate new PPI in the same
4515 * context the given RelOptInfo is in.
4516 */
4517 if (new_ppi == NULL)
4518 {
4519 MemoryContext oldcontext;
4520 RelOptInfo *rel = path->parent;
4521
4523
4524 new_ppi = makeNode(ParamPathInfo);
4525 new_ppi->ppi_req_outer = bms_copy(required_outer);
4526 new_ppi->ppi_rows = old_ppi->ppi_rows;
4527 new_ppi->ppi_clauses = old_ppi->ppi_clauses;
4529 new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
4530 rel->ppilist = lappend(rel->ppilist, new_ppi);
4531
4532 MemoryContextSwitchTo(oldcontext);
4533 }
4534 bms_free(required_outer);
4535
4536 new_path->param_info = new_ppi;
4537
4538 /*
4539 * Adjust the path target if the parent of the outer relation is
4540 * referenced in the targetlist. This can happen when only the parent of
4541 * outer relation is laterally referenced in this relation.
4542 */
4543 if (bms_overlap(path->parent->lateral_relids,
4544 child_rel->top_parent_relids))
4545 {
4546 new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
4547 ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
4548 }
4549
4550 return new_path;
4551}
4552
4553/*
4554 * path_is_reparameterizable_by_child
4555 * Given a path parameterized by the parent of the given child relation,
4556 * see if it can be translated to be parameterized by the child relation.
4557 *
4558 * This must return true if and only if reparameterize_path_by_child()
4559 * would succeed on this path. Currently it's sufficient to verify that
4560 * the path and all of its subpaths (if any) are of the types handled by
4561 * that function. However, subpaths that are not parameterized can be
4562 * disregarded since they won't require translation.
4563 */
4564bool
4566{
4567#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
4568do { \
4569 if (!path_is_reparameterizable_by_child(path, child_rel)) \
4570 return false; \
4571} while(0)
4572
4573#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
4574do { \
4575 if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
4576 return false; \
4577} while(0)
4578
4579 /*
4580 * If the path is not parameterized by the parent of the given relation,
4581 * it doesn't need reparameterization.
4582 */
4583 if (!path->param_info ||
4584 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4585 return true;
4586
4587 /*
4588 * Check that the path type is one that reparameterize_path_by_child() can
4589 * handle, and recursively check subpaths.
4590 */
4591 switch (nodeTag(path))
4592 {
4593 case T_Path:
4594 case T_IndexPath:
4595 break;
4596
4597 case T_BitmapHeapPath:
4598 {
4599 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4600
4602 }
4603 break;
4604
4605 case T_BitmapAndPath:
4606 {
4607 BitmapAndPath *bapath = (BitmapAndPath *) path;
4608
4610 }
4611 break;
4612
4613 case T_BitmapOrPath:
4614 {
4615 BitmapOrPath *bopath = (BitmapOrPath *) path;
4616
4618 }
4619 break;
4620
4621 case T_ForeignPath:
4622 {
4623 ForeignPath *fpath = (ForeignPath *) path;
4624
4625 if (fpath->fdw_outerpath)
4627 }
4628 break;
4629
4630 case T_CustomPath:
4631 {
4632 CustomPath *cpath = (CustomPath *) path;
4633
4635 }
4636 break;
4637
4638 case T_NestPath:
4639 case T_MergePath:
4640 case T_HashPath:
4641 {
4642 JoinPath *jpath = (JoinPath *) path;
4643
4646 }
4647 break;
4648
4649 case T_AppendPath:
4650 {
4651 AppendPath *apath = (AppendPath *) path;
4652
4654 }
4655 break;
4656
4657 case T_MaterialPath:
4658 {
4659 MaterialPath *mpath = (MaterialPath *) path;
4660
4662 }
4663 break;
4664
4665 case T_MemoizePath:
4666 {
4667 MemoizePath *mpath = (MemoizePath *) path;
4668
4670 }
4671 break;
4672
4673 case T_GatherPath:
4674 {
4675 GatherPath *gpath = (GatherPath *) path;
4676
4678 }
4679 break;
4680
4681 default:
4682 /* We don't know how to reparameterize this path. */
4683 return false;
4684 }
4685
4686 return true;
4687}
4688
4689/*
4690 * reparameterize_pathlist_by_child
4691 * Helper function to reparameterize a list of paths by given child rel.
4692 *
4693 * Returns NIL to indicate failure, so pathlist had better not be NIL.
4694 */
4695static List *
4697 List *pathlist,
4698 RelOptInfo *child_rel)
4699{
4700 ListCell *lc;
4701 List *result = NIL;
4702
4703 foreach(lc, pathlist)
4704 {
4706 child_rel);
4707
4708 if (path == NULL)
4709 {
4710 list_free(result);
4711 return NIL;
4712 }
4713
4714 result = lappend(result, path);
4715 }
4716
4717 return result;
4718}
4719
4720/*
4721 * pathlist_is_reparameterizable_by_child
4722 * Helper function to check if a list of paths can be reparameterized.
4723 */
4724static bool
4726{
4727 ListCell *lc;
4728
4729 foreach(lc, pathlist)
4730 {
4731 Path *path = (Path *) lfirst(lc);
4732
4733 if (!path_is_reparameterizable_by_child(path, child_rel))
4734 return false;
4735 }
4736
4737 return true;
4738}
Datum sort(PG_FUNCTION_ARGS)
Definition: _int_op.c:195
bool query_is_distinct_for(Query *query, List *colnos, List *opids)
Definition: analyzejoins.c:983
bool query_supports_distinctness(Query *query)
Definition: analyzejoins.c:946
Relids adjust_child_relids_multilevel(PlannerInfo *root, Relids relids, RelOptInfo *childrel, RelOptInfo *parentrel)
Definition: appendinfo.c:591
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
BMS_Comparison bms_subset_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:445
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
int bms_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:183
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
BMS_Comparison
Definition: bitmapset.h:61
@ BMS_DIFFERENT
Definition: bitmapset.h:65
@ BMS_SUBSET1
Definition: bitmapset.h:63
@ BMS_EQUAL
Definition: bitmapset.h:62
@ BMS_SUBSET2
Definition: bitmapset.h:64
#define MAXALIGN(LEN)
Definition: c.h:765
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:201
#define Assert(condition)
Definition: c.h:812
int64_t int64
Definition: c.h:482
#define unlikely(x)
Definition: c.h:330
unsigned int Index
Definition: c.h:568
size_t Size
Definition: c.h:559
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:752
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:288
double cpu_operator_cost
Definition: costsize.c:134
void final_cost_hashjoin(PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:4275
void final_cost_mergejoin(PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3837
bool enable_memoize
Definition: costsize.c:155
void cost_windowagg(Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3099
void cost_functionscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1538
void cost_material(Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2483
void cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
Definition: costsize.c:1023
void cost_tidrangescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
Definition: costsize.c:1363
void cost_agg(Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
Definition: costsize.c:2682
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2144
void final_cost_nestloop(PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3350
void cost_gather_merge(GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
Definition: costsize.c:485
void cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
Definition: costsize.c:1826
void cost_tablefuncscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1600
double cpu_tuple_cost
Definition: costsize.c:132
void cost_samplescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:370
void cost_gather(GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
Definition: costsize.c:446
void cost_namedtuplestorescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1750
void cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:295
void cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1657
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2000
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4732
void cost_group(Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3196
void cost_resultscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1788
void cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
Definition: costsize.c:1165
void cost_tidscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
Definition: costsize.c:1258
void cost_merge_append(Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
Definition: costsize.c:2432
bool enable_hashagg
Definition: costsize.c:152
double clamp_row_est(double nrows)
Definition: costsize.c:213
void cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
Definition: costsize.c:1457
void cost_append(AppendPath *apath)
Definition: costsize.c:2250
void cost_ctescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1708
void cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
Definition: costsize.c:1210
void cost_index(IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
Definition: costsize.c:560
bool is_projection_capable_path(Path *path)
Definition: createplan.c:7303
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
List *(* ReparameterizeForeignPathByChild_function)(PlannerInfo *root, List *fdw_private, RelOptInfo *child_rel)
Definition: fdwapi.h:182
int work_mem
Definition: globals.c:130
#define SizeofMinimalTupleHeader
Definition: htup_details.h:647
bool relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel, List *restrictlist, List *exprlist, List *oprlist)
Definition: indxpath.c:4149
int b
Definition: isn.c:69
int a
Definition: isn.c:68
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * lcons(void *datum, List *list)
Definition: list.c:495
void list_free(List *list)
Definition: list.c:1546
List * list_copy_head(const List *oldlist, int len)
Definition: list.c:1593
List * list_insert_nth(List *list, int pos, void *datum)
Definition: list.c:439
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:308
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:707
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3487
SetOpCmd
Definition: nodes.h:397
SetOpStrategy
Definition: nodes.h:405
@ SETOP_SORTED
Definition: nodes.h:406
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define copyObject(obj)
Definition: nodes.h:224
double Cost
Definition: nodes.h:251
#define nodeTag(nodeptr)
Definition: nodes.h:133
CmdType
Definition: nodes.h:263
@ CMD_MERGE
Definition: nodes.h:269
@ CMD_UPDATE
Definition: nodes.h:266
AggStrategy
Definition: nodes.h:353
@ AGG_SORTED
Definition: nodes.h:355
@ AGG_HASHED
Definition: nodes.h:356
@ AGG_MIXED
Definition: nodes.h:357
@ AGG_PLAIN
Definition: nodes.h:354
AggSplit
Definition: nodes.h:375
LimitOption
Definition: nodes.h:430
#define makeNode(_type_)
Definition: nodes.h:155
JoinType
Definition: nodes.h:288
@ JOIN_SEMI
Definition: nodes.h:307
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
@ RTE_SUBQUERY
Definition: parsenodes.h:1018
@ RTE_RELATION
Definition: parsenodes.h:1017
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
PathKeysComparison compare_pathkeys(List *keys1, List *keys2)
Definition: pathkeys.c:304
#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist)
static int append_startup_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1453
TidRangePath * create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel, List *tidrangequals, Relids required_outer)
Definition: pathnode.c:1264
#define REPARAMETERIZE_CHILD_PATH(path)
Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
Definition: pathnode.c:2483
static PathCostComparison compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
Definition: pathnode.c:182
ForeignPath * create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2409
BitmapAndPath * create_bitmap_and_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1131
Path * create_functionscan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2118
bool path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4565
Path * create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2170
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3486
Path * create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2274
static bool pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4725
SetOpPath * create_setop_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, SetOpCmd cmd, SetOpStrategy strategy, List *groupList, double numGroups, double outputRows)
Definition: pathnode.c:3650
#define STD_FUZZ_FACTOR
Definition: pathnode.c:47
Relids calc_nestloop_required_outer(Relids outerrelids, Relids outer_paramrels, Relids innerrelids, Relids inner_paramrels)
Definition: pathnode.c:2456
IndexPath * create_index_path(PlannerInfo *root, IndexOptInfo *index, List *indexclauses, List *indexorderbys, List *indexorderbycols, List *pathkeys, ScanDirection indexscandir, bool indexonly, Relids required_outer, double loop_count, bool partial_path)
Definition: pathnode.c:1049
MemoizePath * create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *param_exprs, List *hash_operators, bool singlerow, bool binary_mode, double calls)
Definition: pathnode.c:1667
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2962
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2763
#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist)
static List * reparameterize_pathlist_by_child(PlannerInfo *root, List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4696
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, List *runCondition, WindowClause *winclause, List *qual, bool topwindow)
Definition: pathnode.c:3577
Path * reparameterize_path_by_child(PlannerInfo *root, Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4269
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3813
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2873
Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers)
Definition: pathnode.c:983
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1962
HashPath * create_hashjoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, bool parallel_hash, List *restrict_clauses, Relids required_outer, List *hashclauses)
Definition: pathnode.c:2697
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, SpecialJoinInfo *sjinfo)
Definition: pathnode.c:1727
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:795
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3979
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1300
Path * create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2222
SubqueryScanPath * create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, bool trivial_pathtarget, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2088
#define ADJUST_CHILD_ATTRS(node)
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:124
IncrementalSortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:3032
PathCostComparison
Definition: pathnode.c:35
@ COSTS_EQUAL
Definition: pathnode.c:36
@ COSTS_BETTER1
Definition: pathnode.c:37
@ COSTS_BETTER2
Definition: pathnode.c:38
@ COSTS_DIFFERENT
Definition: pathnode.c:39
BitmapOrPath * create_bitmap_or_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1183
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs)
Definition: pathnode.c:3323
BitmapHeapPath * create_bitmap_heap_path(PlannerInfo *root, RelOptInfo *rel, Path *bitmapqual, Relids required_outer, double loop_count, int parallel_degree)
Definition: pathnode.c:1098
Path * create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2144
#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path)
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:3082
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:3127
ForeignPath * create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2307
TidPath * create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals, Relids required_outer)
Definition: pathnode.c:1235
#define CONSIDER_PATH_STARTUP_COST(p)
GatherPath * create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, Relids required_outer, double *rows)
Definition: pathnode.c:2044
Path * create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1008
MaterialPath * create_material_path(RelOptInfo *rel, Path *subpath)
Definition: pathnode.c:1634
ForeignPath * create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2355
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
int compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
Definition: pathnode.c:69
bool add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer)
Definition: pathnode.c:688
static int append_total_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1431
Path * create_resultscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2248
UpperUniquePath * create_upper_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:3187
void adjust_limit_rows_costs(double *rows, Cost *startup_cost, Cost *total_cost, int64 offset_est, int64 count_est)
Definition: pathnode.c:4035
Path * create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2196
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:3240
bool add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost total_cost, List *pathkeys)
Definition: pathnode.c:921
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, bool partColsUpdated, List *resultRelations, List *updateColnosLists, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, List *mergeActionLists, List *mergeJoinConditions, int epqParam)
Definition: pathnode.c:3877
MergePath * create_mergejoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer, List *mergeclauses, List *outersortkeys, List *innersortkeys)
Definition: pathnode.c:2631
static List * translate_sub_tlist(List *tlist, int relid)
Definition: pathnode.c:2018
RecursiveUnionPath * create_recursiveunion_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, PathTarget *target, List *distinctList, int wtParam, double numGroups)
Definition: pathnode.c:3768
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1586
MergeAppendPath * create_merge_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1471
Path * reparameterize_path(PlannerInfo *root, Path *path, Relids required_outer, double loop_count)
Definition: pathnode.c:4103
NestPath * create_nestloop_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2535
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:839
@ UNIQUE_PATH_SORT
Definition: pathnodes.h:2034
@ UNIQUE_PATH_NOOP
Definition: pathnodes.h:2032
@ UNIQUE_PATH_HASH
Definition: pathnodes.h:2033
CostSelector
Definition: pathnodes.h:37
@ TOTAL_COST
Definition: pathnodes.h:38
@ STARTUP_COST
Definition: pathnodes.h:38
#define PATH_REQ_OUTER(path)
Definition: pathnodes.h:1681
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:570
@ RELOPT_BASEREL
Definition: pathnodes.h:827
PathKeysComparison
Definition: paths.h:203
@ PATHKEYS_BETTER2
Definition: paths.h:206
@ PATHKEYS_BETTER1
Definition: paths.h:205
@ PATHKEYS_DIFFERENT
Definition: paths.h:207
@ PATHKEYS_EQUAL
Definition: paths.h:204
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define linitial(l)
Definition: pg_list.h:178
tree ctl root
Definition: radixtree.h:1857
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition: relnode.c:1856
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition: relnode.c:1659
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition: relnode.c:1545
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition: relnode.c:1889
Bitmapset * get_param_path_clause_serials(Path *path)
Definition: relnode.c:1910
ScanDirection
Definition: sdir.h:25
double estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows, List **pgset, EstimationInfo *estinfo)
Definition: selfuncs.c:3430
Size transitionSpace
Definition: pathnodes.h:62
Path * subpath
Definition: pathnodes.h:2266
Cardinality numGroups
Definition: pathnodes.h:2269
AggSplit aggsplit
Definition: pathnodes.h:2268
List * groupClause
Definition: pathnodes.h:2271
uint64 transitionSpace
Definition: pathnodes.h:2270
AggStrategy aggstrategy
Definition: pathnodes.h:2267
Path path
Definition: pathnodes.h:2265
List * qual
Definition: pathnodes.h:2272
int first_partial_path
Definition: pathnodes.h:1946
Cardinality limit_tuples
Definition: pathnodes.h:1947
List * subpaths
Definition: pathnodes.h:1944
List * bitmapquals
Definition: pathnodes.h:1809
Path * bitmapqual
Definition: pathnodes.h:1797
List * bitmapquals
Definition: pathnodes.h:1822
struct List *(* ReparameterizeCustomPathByChild)(PlannerInfo *root, List *custom_private, RelOptInfo *child_rel)
Definition: extensible.h:103
const struct CustomPathMethods * methods
Definition: pathnodes.h:1923
List * custom_paths
Definition: pathnodes.h:1920
List * custom_private
Definition: pathnodes.h:1922
List * custom_restrictinfo
Definition: pathnodes.h:1921
Path * fdw_outerpath
Definition: pathnodes.h:1882
List * fdw_restrictinfo
Definition: pathnodes.h:1883
List * fdw_private
Definition: pathnodes.h:1884
bool single_copy
Definition: pathnodes.h:2055
Path * subpath
Definition: pathnodes.h:2054
int num_workers
Definition: pathnodes.h:2056
List * qual
Definition: pathnodes.h:2240
List * groupClause
Definition: pathnodes.h:2239
Path * subpath
Definition: pathnodes.h:2238
Path path
Definition: pathnodes.h:2237
uint64 transitionSpace
Definition: pathnodes.h:2312
AggStrategy aggstrategy
Definition: pathnodes.h:2309
List * path_hashclauses
Definition: pathnodes.h:2164
JoinPath jpath
Definition: pathnodes.h:2163
List * indrestrictinfo
Definition: pathnodes.h:1184
List * indexclauses
Definition: pathnodes.h:1723
ScanDirection indexscandir
Definition: pathnodes.h:1726
Path path
Definition: pathnodes.h:1721
List * indexorderbycols
Definition: pathnodes.h:1725
List * indexorderbys
Definition: pathnodes.h:1724
IndexOptInfo * indexinfo
Definition: pathnodes.h:1722
SpecialJoinInfo * sjinfo
Definition: pathnodes.h:3244
Path * outerjoinpath
Definition: pathnodes.h:2086
Path * innerjoinpath
Definition: pathnodes.h:2087
JoinType jointype
Definition: pathnodes.h:2081
bool inner_unique
Definition: pathnodes.h:2083
List * joinrestrictinfo
Definition: pathnodes.h:2089
Path path
Definition: pathnodes.h:2411
Path * subpath
Definition: pathnodes.h:2412
LimitOption limitOption
Definition: pathnodes.h:2415
Node * limitOffset
Definition: pathnodes.h:2413
Node * limitCount
Definition: pathnodes.h:2414
Definition: pg_list.h:54
Path * subpath
Definition: pathnodes.h:2372
List * rowMarks
Definition: pathnodes.h:2373
Path * subpath
Definition: pathnodes.h:1994
bool singlerow
Definition: pathnodes.h:2008
List * hash_operators
Definition: pathnodes.h:2006
uint32 est_entries
Definition: pathnodes.h:2013
bool binary_mode
Definition: pathnodes.h:2010
Cardinality calls
Definition: pathnodes.h:2012
Path * subpath
Definition: pathnodes.h:2005
List * param_exprs
Definition: pathnodes.h:2007
Cardinality limit_tuples
Definition: pathnodes.h:1969
List * outersortkeys
Definition: pathnodes.h:2146
List * innersortkeys
Definition: pathnodes.h:2147
JoinPath jpath
Definition: pathnodes.h:2144
List * path_mergeclauses
Definition: pathnodes.h:2145
List * quals
Definition: pathnodes.h:2322
List * mmaggregates
Definition: pathnodes.h:2321
bool partColsUpdated
Definition: pathnodes.h:2392
List * returningLists
Definition: pathnodes.h:2396
List * resultRelations
Definition: pathnodes.h:2393
List * withCheckOptionLists
Definition: pathnodes.h:2395
List * mergeJoinConditions
Definition: pathnodes.h:2402
List * updateColnosLists
Definition: pathnodes.h:2394
OnConflictExpr * onconflict
Definition: pathnodes.h:2398
CmdType operation
Definition: pathnodes.h:2388
Index rootRelation
Definition: pathnodes.h:2391
Index nominalRelation
Definition: pathnodes.h:2390
List * mergeActionLists
Definition: pathnodes.h:2400
JoinPath jpath
Definition: pathnodes.h:2104
Definition: nodes.h:129
Cardinality ppi_rows
Definition: pathnodes.h:1591
List * ppi_clauses
Definition: pathnodes.h:1592
Bitmapset * ppi_serials
Definition: pathnodes.h:1593
Relids ppi_req_outer
Definition: pathnodes.h:1590
List * exprs
Definition: pathnodes.h:1544
QualCost cost
Definition: pathnodes.h:1550
List * pathkeys
Definition: pathnodes.h:1677
NodeTag pathtype
Definition: pathnodes.h:1637
Cardinality rows
Definition: pathnodes.h:1671
Cost startup_cost
Definition: pathnodes.h:1673
int parallel_workers
Definition: pathnodes.h:1668
int disabled_nodes
Definition: pathnodes.h:1672
Cost total_cost
Definition: pathnodes.h:1674
bool parallel_aware
Definition: pathnodes.h:1664
bool parallel_safe
Definition: pathnodes.h:1666
Path * subpath
Definition: pathnodes.h:2198
Path * subpath
Definition: pathnodes.h:2186
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
struct TableSampleClause * tablesample
Definition: parsenodes.h:1098
Query * subquery
Definition: parsenodes.h:1104
RTEKind rtekind
Definition: parsenodes.h:1047
Cardinality numGroups
Definition: pathnodes.h:2363
bool consider_param_startup
Definition: pathnodes.h:885
List * ppilist
Definition: pathnodes.h:899
Relids relids
Definition: pathnodes.h:871
struct PathTarget * reltarget
Definition: pathnodes.h:893
Index relid
Definition: pathnodes.h:918
bool consider_parallel
Definition: pathnodes.h:887
Relids top_parent_relids
Definition: pathnodes.h:1009
Relids lateral_relids
Definition: pathnodes.h:913
List * cheapest_parameterized_paths
Definition: pathnodes.h:904
List * pathlist
Definition: pathnodes.h:898
RelOptKind reloptkind
Definition: pathnodes.h:865
struct Path * cheapest_unique_path
Definition: pathnodes.h:903
struct Path * cheapest_startup_path
Definition: pathnodes.h:901
struct Path * cheapest_total_path
Definition: pathnodes.h:902
bool consider_startup
Definition: pathnodes.h:883
List * partial_pathlist
Definition: pathnodes.h:900
Cardinality rows
Definition: pathnodes.h:877
RTEKind rtekind
Definition: pathnodes.h:922
int rinfo_serial
Definition: pathnodes.h:2647
Cardinality numGroups
Definition: pathnodes.h:2296
List * gsets
Definition: pathnodes.h:2294
bool is_hashed
Definition: pathnodes.h:2298
Path * rightpath
Definition: pathnodes.h:2346
Cardinality numGroups
Definition: pathnodes.h:2350
Path * leftpath
Definition: pathnodes.h:2345
SetOpCmd cmd
Definition: pathnodes.h:2347
Path path
Definition: pathnodes.h:2344
SetOpStrategy strategy
Definition: pathnodes.h:2348
List * groupList
Definition: pathnodes.h:2349
Path path
Definition: pathnodes.h:2211
Path * subpath
Definition: pathnodes.h:2212
List * semi_rhs_exprs
Definition: pathnodes.h:2920
JoinType jointype
Definition: pathnodes.h:2909
Relids syn_righthand
Definition: pathnodes.h:2908
List * semi_operators
Definition: pathnodes.h:2919
List * tidquals
Definition: pathnodes.h:1836
Path path
Definition: pathnodes.h:1835
List * tidrangequals
Definition: pathnodes.h:1848
Path * subpath
Definition: pathnodes.h:2040
List * uniq_exprs
Definition: pathnodes.h:2043
UniquePathMethod umethod
Definition: pathnodes.h:2041
List * in_operators
Definition: pathnodes.h:2042
Definition: primnodes.h:248
AttrNumber varattno
Definition: primnodes.h:260
int varno
Definition: primnodes.h:255
List * runCondition
Definition: pathnodes.h:2334
Path * subpath
Definition: pathnodes.h:2331
WindowClause * winclause
Definition: pathnodes.h:2332
Definition: type.h:96
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:657