PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
nodeHash.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * nodeHash.c
4 * Routines to hash relations for hashjoin
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/executor/nodeHash.c
12 *
13 * See note on parallelism in nodeHashjoin.c.
14 *
15 *-------------------------------------------------------------------------
16 */
17/*
18 * INTERFACE ROUTINES
19 * MultiExecHash - generate an in-memory hash table of the relation
20 * ExecInitHash - initialize node and subnodes
21 * ExecEndHash - shutdown node and subnodes
22 */
23
24#include "postgres.h"
25
26#include <math.h>
27#include <limits.h>
28
29#include "access/htup_details.h"
30#include "access/parallel.h"
32#include "commands/tablespace.h"
33#include "executor/executor.h"
34#include "executor/hashjoin.h"
35#include "executor/nodeHash.h"
37#include "miscadmin.h"
38#include "port/pg_bitutils.h"
39#include "utils/dynahash.h"
40#include "utils/lsyscache.h"
41#include "utils/memutils.h"
42#include "utils/syscache.h"
43#include "utils/wait_event.h"
44
45static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
46static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
49static void ExecHashBuildSkewHash(HashState *hashstate,
50 HashJoinTable hashtable, Hash *node,
51 int mcvsToUse);
52static void ExecHashSkewTableInsert(HashJoinTable hashtable,
53 TupleTableSlot *slot,
54 uint32 hashvalue,
55 int bucketNumber);
56static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
57
58static void *dense_alloc(HashJoinTable hashtable, Size size);
60 size_t size,
61 dsa_pointer *shared);
62static void MultiExecPrivateHash(HashState *node);
63static void MultiExecParallelHash(HashState *node);
65 int bucketno);
67 HashJoinTuple tuple);
68static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
69 HashJoinTuple tuple,
70 dsa_pointer tuple_shared);
71static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
76 dsa_pointer *shared);
78 int batchno,
79 size_t size);
80static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
82
83
84/* ----------------------------------------------------------------
85 * ExecHash
86 *
87 * stub for pro forma compliance
88 * ----------------------------------------------------------------
89 */
90static TupleTableSlot *
92{
93 elog(ERROR, "Hash node does not support ExecProcNode call convention");
94 return NULL;
95}
96
97/* ----------------------------------------------------------------
98 * MultiExecHash
99 *
100 * build hash table for hashjoin, doing partitioning if more
101 * than one batch is required.
102 * ----------------------------------------------------------------
103 */
104Node *
106{
107 /* must provide our own instrumentation support */
108 if (node->ps.instrument)
110
111 if (node->parallel_state != NULL)
113 else
115
116 /* must provide our own instrumentation support */
117 if (node->ps.instrument)
119
120 /*
121 * We do not return the hash table directly because it's not a subtype of
122 * Node, and so would violate the MultiExecProcNode API. Instead, our
123 * parent Hashjoin node is expected to know how to fish it out of our node
124 * state. Ugly but not really worth cleaning up, since Hashjoin knows
125 * quite a bit more about Hash besides that.
126 */
127 return NULL;
128}
129
130/* ----------------------------------------------------------------
131 * MultiExecPrivateHash
132 *
133 * parallel-oblivious version, building a backend-private
134 * hash table and (if necessary) batch files.
135 * ----------------------------------------------------------------
136 */
137static void
139{
140 PlanState *outerNode;
141 HashJoinTable hashtable;
142 TupleTableSlot *slot;
143 ExprContext *econtext;
144
145 /*
146 * get state info from node
147 */
148 outerNode = outerPlanState(node);
149 hashtable = node->hashtable;
150
151 /*
152 * set expression context
153 */
154 econtext = node->ps.ps_ExprContext;
155
156 /*
157 * Get all tuples from the node below the Hash node and insert into the
158 * hash table (or temp files).
159 */
160 for (;;)
161 {
162 bool isnull;
163 Datum hashdatum;
164
165 slot = ExecProcNode(outerNode);
166 if (TupIsNull(slot))
167 break;
168 /* We have to compute the hash value */
169 econtext->ecxt_outertuple = slot;
170
171 ResetExprContext(econtext);
172
173 hashdatum = ExecEvalExprSwitchContext(node->hash_expr, econtext,
174 &isnull);
175
176 if (!isnull)
177 {
178 uint32 hashvalue = DatumGetUInt32(hashdatum);
179 int bucketNumber;
180
181 bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
182 if (bucketNumber != INVALID_SKEW_BUCKET_NO)
183 {
184 /* It's a skew tuple, so put it into that hash table */
185 ExecHashSkewTableInsert(hashtable, slot, hashvalue,
186 bucketNumber);
187 hashtable->skewTuples += 1;
188 }
189 else
190 {
191 /* Not subject to skew optimization, so insert normally */
192 ExecHashTableInsert(hashtable, slot, hashvalue);
193 }
194 hashtable->totalTuples += 1;
195 }
196 }
197
198 /* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
199 if (hashtable->nbuckets != hashtable->nbuckets_optimal)
201
202 /* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
203 hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
204 if (hashtable->spaceUsed > hashtable->spacePeak)
205 hashtable->spacePeak = hashtable->spaceUsed;
206
207 hashtable->partialTuples = hashtable->totalTuples;
208}
209
210/* ----------------------------------------------------------------
211 * MultiExecParallelHash
212 *
213 * parallel-aware version, building a shared hash table and
214 * (if necessary) batch files using the combined effort of
215 * a set of co-operating backends.
216 * ----------------------------------------------------------------
217 */
218static void
220{
221 ParallelHashJoinState *pstate;
222 PlanState *outerNode;
223 HashJoinTable hashtable;
224 TupleTableSlot *slot;
225 ExprContext *econtext;
226 uint32 hashvalue;
227 Barrier *build_barrier;
228 int i;
229
230 /*
231 * get state info from node
232 */
233 outerNode = outerPlanState(node);
234 hashtable = node->hashtable;
235
236 /*
237 * set expression context
238 */
239 econtext = node->ps.ps_ExprContext;
240
241 /*
242 * Synchronize the parallel hash table build. At this stage we know that
243 * the shared hash table has been or is being set up by
244 * ExecHashTableCreate(), but we don't know if our peers have returned
245 * from there or are here in MultiExecParallelHash(), and if so how far
246 * through they are. To find out, we check the build_barrier phase then
247 * and jump to the right step in the build algorithm.
248 */
249 pstate = hashtable->parallel_state;
250 build_barrier = &pstate->build_barrier;
251 Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATE);
252 switch (BarrierPhase(build_barrier))
253 {
255
256 /*
257 * Either I just allocated the initial hash table in
258 * ExecHashTableCreate(), or someone else is doing that. Either
259 * way, wait for everyone to arrive here so we can proceed.
260 */
261 BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
262 /* Fall through. */
263
265
266 /*
267 * It's time to begin hashing, or if we just arrived here then
268 * hashing is already underway, so join in that effort. While
269 * hashing we have to be prepared to help increase the number of
270 * batches or buckets at any time, and if we arrived here when
271 * that was already underway we'll have to help complete that work
272 * immediately so that it's safe to access batches and buckets
273 * below.
274 */
283 for (;;)
284 {
285 bool isnull;
286
287 slot = ExecProcNode(outerNode);
288 if (TupIsNull(slot))
289 break;
290 econtext->ecxt_outertuple = slot;
291
292 ResetExprContext(econtext);
293
295 econtext,
296 &isnull));
297
298 if (!isnull)
299 ExecParallelHashTableInsert(hashtable, slot, hashvalue);
300 hashtable->partialTuples++;
301 }
302
303 /*
304 * Make sure that any tuples we wrote to disk are visible to
305 * others before anyone tries to load them.
306 */
307 for (i = 0; i < hashtable->nbatch; ++i)
308 sts_end_write(hashtable->batches[i].inner_tuples);
309
310 /*
311 * Update shared counters. We need an accurate total tuple count
312 * to control the empty table optimization.
313 */
315
318
319 /*
320 * Wait for everyone to finish building and flushing files and
321 * counters.
322 */
323 if (BarrierArriveAndWait(build_barrier,
324 WAIT_EVENT_HASH_BUILD_HASH_INNER))
325 {
326 /*
327 * Elect one backend to disable any further growth. Batches
328 * are now fixed. While building them we made sure they'd fit
329 * in our memory budget when we load them back in later (or we
330 * tried to do that and gave up because we detected extreme
331 * skew).
332 */
333 pstate->growth = PHJ_GROWTH_DISABLED;
334 }
335 }
336
337 /*
338 * We're not yet attached to a batch. We all agree on the dimensions and
339 * number of inner tuples (for the empty table optimization).
340 */
341 hashtable->curbatch = -1;
342 hashtable->nbuckets = pstate->nbuckets;
343 hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
344 hashtable->totalTuples = pstate->total_tuples;
345
346 /*
347 * Unless we're completely done and the batch state has been freed, make
348 * sure we have accessors.
349 */
350 if (BarrierPhase(build_barrier) < PHJ_BUILD_FREE)
352
353 /*
354 * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
355 * case, which will bring the build phase to PHJ_BUILD_RUN (if it isn't
356 * there already).
357 */
358 Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASH_OUTER ||
359 BarrierPhase(build_barrier) == PHJ_BUILD_RUN ||
360 BarrierPhase(build_barrier) == PHJ_BUILD_FREE);
361}
362
363/* ----------------------------------------------------------------
364 * ExecInitHash
365 *
366 * Init routine for Hash node
367 * ----------------------------------------------------------------
368 */
369HashState *
370ExecInitHash(Hash *node, EState *estate, int eflags)
371{
372 HashState *hashstate;
373
374 /* check for unsupported flags */
376
377 /*
378 * create state structure
379 */
380 hashstate = makeNode(HashState);
381 hashstate->ps.plan = (Plan *) node;
382 hashstate->ps.state = estate;
383 hashstate->ps.ExecProcNode = ExecHash;
384 /* delay building hashtable until ExecHashTableCreate() in executor run */
385 hashstate->hashtable = NULL;
386
387 /*
388 * Miscellaneous initialization
389 *
390 * create expression context for node
391 */
392 ExecAssignExprContext(estate, &hashstate->ps);
393
394 /*
395 * initialize child nodes
396 */
397 outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
398
399 /*
400 * initialize our result slot and type. No need to build projection
401 * because this node doesn't do projections.
402 */
404 hashstate->ps.ps_ProjInfo = NULL;
405
406 Assert(node->plan.qual == NIL);
407
408 /*
409 * Delay initialization of hash_expr until ExecInitHashJoin(). We cannot
410 * build the ExprState here as we don't yet know the join type we're going
411 * to be hashing values for and we need to know that before calling
412 * ExecBuildHash32Expr as the keep_nulls parameter depends on the join
413 * type.
414 */
415 hashstate->hash_expr = NULL;
416
417 return hashstate;
418}
419
420/* ---------------------------------------------------------------
421 * ExecEndHash
422 *
423 * clean up routine for Hash node
424 * ----------------------------------------------------------------
425 */
426void
428{
430
431 /*
432 * shut down the subplan
433 */
436}
437
438
439/* ----------------------------------------------------------------
440 * ExecHashTableCreate
441 *
442 * create an empty hashtable data structure for hashjoin.
443 * ----------------------------------------------------------------
444 */
447{
448 Hash *node;
449 HashJoinTable hashtable;
450 Plan *outerNode;
451 size_t space_allowed;
452 int nbuckets;
453 int nbatch;
454 double rows;
455 int num_skew_mcvs;
456 int log2_nbuckets;
457 MemoryContext oldcxt;
458
459 /*
460 * Get information about the size of the relation to be hashed (it's the
461 * "outer" subtree of this node, but the inner relation of the hashjoin).
462 * Compute the appropriate size of the hash table.
463 */
464 node = (Hash *) state->ps.plan;
465 outerNode = outerPlan(node);
466
467 /*
468 * If this is shared hash table with a partial plan, then we can't use
469 * outerNode->plan_rows to estimate its size. We need an estimate of the
470 * total number of rows across all copies of the partial plan.
471 */
472 rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
473
474 ExecChooseHashTableSize(rows, outerNode->plan_width,
475 OidIsValid(node->skewTable),
476 state->parallel_state != NULL,
477 state->parallel_state != NULL ?
478 state->parallel_state->nparticipants - 1 : 0,
479 &space_allowed,
480 &nbuckets, &nbatch, &num_skew_mcvs);
481
482 /* nbuckets must be a power of 2 */
483 log2_nbuckets = my_log2(nbuckets);
484 Assert(nbuckets == (1 << log2_nbuckets));
485
486 /*
487 * Initialize the hash table control block.
488 *
489 * The hashtable control block is just palloc'd from the executor's
490 * per-query memory context. Everything else should be kept inside the
491 * subsidiary hashCxt, batchCxt or spillCxt.
492 */
493 hashtable = palloc_object(HashJoinTableData);
494 hashtable->nbuckets = nbuckets;
495 hashtable->nbuckets_original = nbuckets;
496 hashtable->nbuckets_optimal = nbuckets;
497 hashtable->log2_nbuckets = log2_nbuckets;
498 hashtable->log2_nbuckets_optimal = log2_nbuckets;
499 hashtable->buckets.unshared = NULL;
500 hashtable->skewEnabled = false;
501 hashtable->skewBucket = NULL;
502 hashtable->skewBucketLen = 0;
503 hashtable->nSkewBuckets = 0;
504 hashtable->skewBucketNums = NULL;
505 hashtable->nbatch = nbatch;
506 hashtable->curbatch = 0;
507 hashtable->nbatch_original = nbatch;
508 hashtable->nbatch_outstart = nbatch;
509 hashtable->growEnabled = true;
510 hashtable->totalTuples = 0;
511 hashtable->partialTuples = 0;
512 hashtable->skewTuples = 0;
513 hashtable->innerBatchFile = NULL;
514 hashtable->outerBatchFile = NULL;
515 hashtable->spaceUsed = 0;
516 hashtable->spacePeak = 0;
517 hashtable->spaceAllowed = space_allowed;
518 hashtable->spaceUsedSkew = 0;
519 hashtable->spaceAllowedSkew =
520 hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
521 hashtable->chunks = NULL;
522 hashtable->current_chunk = NULL;
523 hashtable->parallel_state = state->parallel_state;
524 hashtable->area = state->ps.state->es_query_dsa;
525 hashtable->batches = NULL;
526
527#ifdef HJDEBUG
528 printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
529 hashtable, nbatch, nbuckets);
530#endif
531
532 /*
533 * Create temporary memory contexts in which to keep the hashtable working
534 * storage. See notes in executor/hashjoin.h.
535 */
537 "HashTableContext",
539
540 hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
541 "HashBatchContext",
543
544 hashtable->spillCxt = AllocSetContextCreate(hashtable->hashCxt,
545 "HashSpillContext",
547
548 /* Allocate data that will live for the life of the hashjoin */
549
550 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
551
552 if (nbatch > 1 && hashtable->parallel_state == NULL)
553 {
554 MemoryContext oldctx;
555
556 /*
557 * allocate and initialize the file arrays in hashCxt (not needed for
558 * parallel case which uses shared tuplestores instead of raw files)
559 */
560 oldctx = MemoryContextSwitchTo(hashtable->spillCxt);
561
562 hashtable->innerBatchFile = palloc0_array(BufFile *, nbatch);
563 hashtable->outerBatchFile = palloc0_array(BufFile *, nbatch);
564
565 MemoryContextSwitchTo(oldctx);
566
567 /* The files will not be opened until needed... */
568 /* ... but make sure we have temp tablespaces established for them */
570 }
571
572 MemoryContextSwitchTo(oldcxt);
573
574 if (hashtable->parallel_state)
575 {
576 ParallelHashJoinState *pstate = hashtable->parallel_state;
577 Barrier *build_barrier;
578
579 /*
580 * Attach to the build barrier. The corresponding detach operation is
581 * in ExecHashTableDetach. Note that we won't attach to the
582 * batch_barrier for batch 0 yet. We'll attach later and start it out
583 * in PHJ_BATCH_PROBE phase, because batch 0 is allocated up front and
584 * then loaded while hashing (the standard hybrid hash join
585 * algorithm), and we'll coordinate that using build_barrier.
586 */
587 build_barrier = &pstate->build_barrier;
588 BarrierAttach(build_barrier);
589
590 /*
591 * So far we have no idea whether there are any other participants,
592 * and if so, what phase they are working on. The only thing we care
593 * about at this point is whether someone has already created the
594 * SharedHashJoinBatch objects and the hash table for batch 0. One
595 * backend will be elected to do that now if necessary.
596 */
597 if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECT &&
598 BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
599 {
600 pstate->nbatch = nbatch;
601 pstate->space_allowed = space_allowed;
602 pstate->growth = PHJ_GROWTH_OK;
603
604 /* Set up the shared state for coordinating batches. */
605 ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
606
607 /*
608 * Allocate batch 0's hash table up front so we can load it
609 * directly while hashing.
610 */
611 pstate->nbuckets = nbuckets;
612 ExecParallelHashTableAlloc(hashtable, 0);
613 }
614
615 /*
616 * The next Parallel Hash synchronization point is in
617 * MultiExecParallelHash(), which will progress it all the way to
618 * PHJ_BUILD_RUN. The caller must not return control from this
619 * executor node between now and then.
620 */
621 }
622 else
623 {
624 /*
625 * Prepare context for the first-scan space allocations; allocate the
626 * hashbucket array therein, and set each bucket "empty".
627 */
629
630 hashtable->buckets.unshared = palloc0_array(HashJoinTuple, nbuckets);
631
632 /*
633 * Set up for skew optimization, if possible and there's a need for
634 * more than one batch. (In a one-batch join, there's no point in
635 * it.)
636 */
637 if (nbatch > 1)
638 ExecHashBuildSkewHash(state, hashtable, node, num_skew_mcvs);
639
640 MemoryContextSwitchTo(oldcxt);
641 }
642
643 return hashtable;
644}
645
646
647/*
648 * Compute appropriate size for hashtable given the estimated size of the
649 * relation to be hashed (number of rows and average row width).
650 *
651 * This is exported so that the planner's costsize.c can use it.
652 */
653
654/* Target bucket loading (tuples per bucket) */
655#define NTUP_PER_BUCKET 1
656
657void
658ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
659 bool try_combined_hash_mem,
660 int parallel_workers,
661 size_t *space_allowed,
662 int *numbuckets,
663 int *numbatches,
664 int *num_skew_mcvs)
665{
666 int tupsize;
667 double inner_rel_bytes;
668 size_t hash_table_bytes;
669 size_t bucket_bytes;
670 size_t max_pointers;
671 int nbatch = 1;
672 int nbuckets;
673 double dbuckets;
674
675 /* Force a plausible relation size if no info */
676 if (ntuples <= 0.0)
677 ntuples = 1000.0;
678
679 /*
680 * Estimate tupsize based on footprint of tuple in hashtable... note this
681 * does not allow for any palloc overhead. The manipulations of spaceUsed
682 * don't count palloc overhead either.
683 */
684 tupsize = HJTUPLE_OVERHEAD +
686 MAXALIGN(tupwidth);
687 inner_rel_bytes = ntuples * tupsize;
688
689 /*
690 * Compute in-memory hashtable size limit from GUCs.
691 */
692 hash_table_bytes = get_hash_memory_limit();
693
694 /*
695 * Parallel Hash tries to use the combined hash_mem of all workers to
696 * avoid the need to batch. If that won't work, it falls back to hash_mem
697 * per worker and tries to process batches in parallel.
698 */
699 if (try_combined_hash_mem)
700 {
701 /* Careful, this could overflow size_t */
702 double newlimit;
703
704 newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
705 newlimit = Min(newlimit, (double) SIZE_MAX);
706 hash_table_bytes = (size_t) newlimit;
707 }
708
709 *space_allowed = hash_table_bytes;
710
711 /*
712 * If skew optimization is possible, estimate the number of skew buckets
713 * that will fit in the memory allowed, and decrement the assumed space
714 * available for the main hash table accordingly.
715 *
716 * We make the optimistic assumption that each skew bucket will contain
717 * one inner-relation tuple. If that turns out to be low, we will recover
718 * at runtime by reducing the number of skew buckets.
719 *
720 * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
721 * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
722 * will round up to the next power of 2 and then multiply by 4 to reduce
723 * collisions.
724 */
725 if (useskew)
726 {
727 size_t bytes_per_mcv;
728 size_t skew_mcvs;
729
730 /*----------
731 * Compute number of MCVs we could hold in hash_table_bytes
732 *
733 * Divisor is:
734 * size of a hash tuple +
735 * worst-case size of skewBucket[] per MCV +
736 * size of skewBucketNums[] entry +
737 * size of skew bucket struct itself
738 *----------
739 */
740 bytes_per_mcv = tupsize +
741 (8 * sizeof(HashSkewBucket *)) +
742 sizeof(int) +
744 skew_mcvs = hash_table_bytes / bytes_per_mcv;
745
746 /*
747 * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
748 * not to worry about size_t overflow in the multiplication)
749 */
750 skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;
751
752 /* Now clamp to integer range */
753 skew_mcvs = Min(skew_mcvs, INT_MAX);
754
755 *num_skew_mcvs = (int) skew_mcvs;
756
757 /* Reduce hash_table_bytes by the amount needed for the skew table */
758 if (skew_mcvs > 0)
759 hash_table_bytes -= skew_mcvs * bytes_per_mcv;
760 }
761 else
762 *num_skew_mcvs = 0;
763
764 /*
765 * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
766 * memory is filled, assuming a single batch; but limit the value so that
767 * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
768 * nor MaxAllocSize.
769 *
770 * Note that both nbuckets and nbatch must be powers of 2 to make
771 * ExecHashGetBucketAndBatch fast.
772 */
773 max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
774 max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
775 /* If max_pointers isn't a power of 2, must round it down to one */
776 max_pointers = pg_prevpower2_size_t(max_pointers);
777
778 /* Also ensure we avoid integer overflow in nbatch and nbuckets */
779 /* (this step is redundant given the current value of MaxAllocSize) */
780 max_pointers = Min(max_pointers, INT_MAX / 2 + 1);
781
782 dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
783 dbuckets = Min(dbuckets, max_pointers);
784 nbuckets = (int) dbuckets;
785 /* don't let nbuckets be really small, though ... */
786 nbuckets = Max(nbuckets, 1024);
787 /* ... and force it to be a power of 2. */
788 nbuckets = pg_nextpower2_32(nbuckets);
789
790 /*
791 * If there's not enough space to store the projected number of tuples and
792 * the required bucket headers, we will need multiple batches.
793 */
794 bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
795 if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
796 {
797 /* We'll need multiple batches */
798 size_t sbuckets;
799 double dbatch;
800 int minbatch;
801 size_t bucket_size;
802
803 /*
804 * If Parallel Hash with combined hash_mem would still need multiple
805 * batches, we'll have to fall back to regular hash_mem budget.
806 */
807 if (try_combined_hash_mem)
808 {
809 ExecChooseHashTableSize(ntuples, tupwidth, useskew,
810 false, parallel_workers,
811 space_allowed,
812 numbuckets,
813 numbatches,
814 num_skew_mcvs);
815 return;
816 }
817
818 /*
819 * Estimate the number of buckets we'll want to have when hash_mem is
820 * entirely full. Each bucket will contain a bucket pointer plus
821 * NTUP_PER_BUCKET tuples, whose projected size already includes
822 * overhead for the hash code, pointer to the next tuple, etc.
823 */
824 bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
825 if (hash_table_bytes <= bucket_size)
826 sbuckets = 1; /* avoid pg_nextpower2_size_t(0) */
827 else
828 sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
829 sbuckets = Min(sbuckets, max_pointers);
830 nbuckets = (int) sbuckets;
831 nbuckets = pg_nextpower2_32(nbuckets);
832 bucket_bytes = nbuckets * sizeof(HashJoinTuple);
833
834 /*
835 * Buckets are simple pointers to hashjoin tuples, while tupsize
836 * includes the pointer, hash code, and MinimalTupleData. So buckets
837 * should never really exceed 25% of hash_mem (even for
838 * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
839 * 2^N bytes, where we might get more because of doubling. So let's
840 * look for 50% here.
841 */
842 Assert(bucket_bytes <= hash_table_bytes / 2);
843
844 /* Calculate required number of batches. */
845 dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
846 dbatch = Min(dbatch, max_pointers);
847 minbatch = (int) dbatch;
848 nbatch = pg_nextpower2_32(Max(2, minbatch));
849 }
850
851 Assert(nbuckets > 0);
852 Assert(nbatch > 0);
853
854 *numbuckets = nbuckets;
855 *numbatches = nbatch;
856}
857
858
859/* ----------------------------------------------------------------
860 * ExecHashTableDestroy
861 *
862 * destroy a hash table
863 * ----------------------------------------------------------------
864 */
865void
867{
868 int i;
869
870 /*
871 * Make sure all the temp files are closed. We skip batch 0, since it
872 * can't have any temp files (and the arrays might not even exist if
873 * nbatch is only 1). Parallel hash joins don't use these files.
874 */
875 if (hashtable->innerBatchFile != NULL)
876 {
877 for (i = 1; i < hashtable->nbatch; i++)
878 {
879 if (hashtable->innerBatchFile[i])
880 BufFileClose(hashtable->innerBatchFile[i]);
881 if (hashtable->outerBatchFile[i])
882 BufFileClose(hashtable->outerBatchFile[i]);
883 }
884 }
885
886 /* Release working memory (batchCxt is a child, so it goes away too) */
887 MemoryContextDelete(hashtable->hashCxt);
888
889 /* And drop the control block */
890 pfree(hashtable);
891}
892
893/*
894 * ExecHashIncreaseNumBatches
895 * increase the original number of batches in order to reduce
896 * current memory consumption
897 */
898static void
900{
901 int oldnbatch = hashtable->nbatch;
902 int curbatch = hashtable->curbatch;
903 int nbatch;
904 long ninmemory;
905 long nfreed;
906 HashMemoryChunk oldchunks;
907
908 /* do nothing if we've decided to shut off growth */
909 if (!hashtable->growEnabled)
910 return;
911
912 /* safety check to avoid overflow */
913 if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
914 return;
915
916 nbatch = oldnbatch * 2;
917 Assert(nbatch > 1);
918
919#ifdef HJDEBUG
920 printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
921 hashtable, nbatch, hashtable->spaceUsed);
922#endif
923
924 if (hashtable->innerBatchFile == NULL)
925 {
926 MemoryContext oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
927
928 /* we had no file arrays before */
929 hashtable->innerBatchFile = palloc0_array(BufFile *, nbatch);
930 hashtable->outerBatchFile = palloc0_array(BufFile *, nbatch);
931
932 MemoryContextSwitchTo(oldcxt);
933
934 /* time to establish the temp tablespaces, too */
936 }
937 else
938 {
939 /* enlarge arrays and zero out added entries */
940 hashtable->innerBatchFile = repalloc0_array(hashtable->innerBatchFile, BufFile *, oldnbatch, nbatch);
941 hashtable->outerBatchFile = repalloc0_array(hashtable->outerBatchFile, BufFile *, oldnbatch, nbatch);
942 }
943
944 hashtable->nbatch = nbatch;
945
946 /*
947 * Scan through the existing hash table entries and dump out any that are
948 * no longer of the current batch.
949 */
950 ninmemory = nfreed = 0;
951
952 /* If know we need to resize nbuckets, we can do it while rebatching. */
953 if (hashtable->nbuckets_optimal != hashtable->nbuckets)
954 {
955 /* we never decrease the number of buckets */
956 Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
957
958 hashtable->nbuckets = hashtable->nbuckets_optimal;
959 hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
960
961 hashtable->buckets.unshared =
963 HashJoinTuple, hashtable->nbuckets);
964 }
965
966 /*
967 * We will scan through the chunks directly, so that we can reset the
968 * buckets now and not have to keep track which tuples in the buckets have
969 * already been processed. We will free the old chunks as we go.
970 */
971 memset(hashtable->buckets.unshared, 0,
972 sizeof(HashJoinTuple) * hashtable->nbuckets);
973 oldchunks = hashtable->chunks;
974 hashtable->chunks = NULL;
975
976 /* so, let's scan through the old chunks, and all tuples in each chunk */
977 while (oldchunks != NULL)
978 {
979 HashMemoryChunk nextchunk = oldchunks->next.unshared;
980
981 /* position within the buffer (up to oldchunks->used) */
982 size_t idx = 0;
983
984 /* process all tuples stored in this chunk (and then free it) */
985 while (idx < oldchunks->used)
986 {
987 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
988 MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
989 int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
990 int bucketno;
991 int batchno;
992
993 ninmemory++;
994 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
995 &bucketno, &batchno);
996
997 if (batchno == curbatch)
998 {
999 /* keep tuple in memory - copy it into the new chunk */
1000 HashJoinTuple copyTuple;
1001
1002 copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1003 memcpy(copyTuple, hashTuple, hashTupleSize);
1004
1005 /* and add it back to the appropriate bucket */
1006 copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1007 hashtable->buckets.unshared[bucketno] = copyTuple;
1008 }
1009 else
1010 {
1011 /* dump it out */
1012 Assert(batchno > curbatch);
1014 hashTuple->hashvalue,
1015 &hashtable->innerBatchFile[batchno],
1016 hashtable);
1017
1018 hashtable->spaceUsed -= hashTupleSize;
1019 nfreed++;
1020 }
1021
1022 /* next tuple in this chunk */
1023 idx += MAXALIGN(hashTupleSize);
1024
1025 /* allow this loop to be cancellable */
1027 }
1028
1029 /* we're done with this chunk - free it and proceed to the next one */
1030 pfree(oldchunks);
1031 oldchunks = nextchunk;
1032 }
1033
1034#ifdef HJDEBUG
1035 printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
1036 hashtable, nfreed, ninmemory, hashtable->spaceUsed);
1037#endif
1038
1039 /*
1040 * If we dumped out either all or none of the tuples in the table, disable
1041 * further expansion of nbatch. This situation implies that we have
1042 * enough tuples of identical hashvalues to overflow spaceAllowed.
1043 * Increasing nbatch will not fix it since there's no way to subdivide the
1044 * group any more finely. We have to just gut it out and hope the server
1045 * has enough RAM.
1046 */
1047 if (nfreed == 0 || nfreed == ninmemory)
1048 {
1049 hashtable->growEnabled = false;
1050#ifdef HJDEBUG
1051 printf("Hashjoin %p: disabling further increase of nbatch\n",
1052 hashtable);
1053#endif
1054 }
1055}
1056
1057/*
1058 * ExecParallelHashIncreaseNumBatches
1059 * Every participant attached to grow_batches_barrier must run this
1060 * function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
1061 */
1062static void
1064{
1065 ParallelHashJoinState *pstate = hashtable->parallel_state;
1066
1068
1069 /*
1070 * It's unlikely, but we need to be prepared for new participants to show
1071 * up while we're in the middle of this operation so we need to switch on
1072 * barrier phase here.
1073 */
1075 {
1077
1078 /*
1079 * Elect one participant to prepare to grow the number of batches.
1080 * This involves reallocating or resetting the buckets of batch 0
1081 * in preparation for all participants to begin repartitioning the
1082 * tuples.
1083 */
1085 WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
1086 {
1087 dsa_pointer_atomic *buckets;
1088 ParallelHashJoinBatch *old_batch0;
1089 int new_nbatch;
1090 int i;
1091
1092 /* Move the old batch out of the way. */
1093 old_batch0 = hashtable->batches[0].shared;
1094 pstate->old_batches = pstate->batches;
1095 pstate->old_nbatch = hashtable->nbatch;
1096 pstate->batches = InvalidDsaPointer;
1097
1098 /* Free this backend's old accessors. */
1100
1101 /* Figure out how many batches to use. */
1102 if (hashtable->nbatch == 1)
1103 {
1104 /*
1105 * We are going from single-batch to multi-batch. We need
1106 * to switch from one large combined memory budget to the
1107 * regular hash_mem budget.
1108 */
1110
1111 /*
1112 * The combined hash_mem of all participants wasn't
1113 * enough. Therefore one batch per participant would be
1114 * approximately equivalent and would probably also be
1115 * insufficient. So try two batches per participant,
1116 * rounded up to a power of two.
1117 */
1118 new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
1119 }
1120 else
1121 {
1122 /*
1123 * We were already multi-batched. Try doubling the number
1124 * of batches.
1125 */
1126 new_nbatch = hashtable->nbatch * 2;
1127 }
1128
1129 /* Allocate new larger generation of batches. */
1130 Assert(hashtable->nbatch == pstate->nbatch);
1131 ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
1132 Assert(hashtable->nbatch == pstate->nbatch);
1133
1134 /* Replace or recycle batch 0's bucket array. */
1135 if (pstate->old_nbatch == 1)
1136 {
1137 double dtuples;
1138 double dbuckets;
1139 int new_nbuckets;
1140 uint32 max_buckets;
1141
1142 /*
1143 * We probably also need a smaller bucket array. How many
1144 * tuples do we expect per batch, assuming we have only
1145 * half of them so far? Normally we don't need to change
1146 * the bucket array's size, because the size of each batch
1147 * stays the same as we add more batches, but in this
1148 * special case we move from a large batch to many smaller
1149 * batches and it would be wasteful to keep the large
1150 * array.
1151 */
1152 dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
1153
1154 /*
1155 * We need to calculate the maximum number of buckets to
1156 * stay within the MaxAllocSize boundary. Round the
1157 * maximum number to the previous power of 2 given that
1158 * later we round the number to the next power of 2.
1159 */
1160 max_buckets = pg_prevpower2_32((uint32)
1161 (MaxAllocSize / sizeof(dsa_pointer_atomic)));
1162 dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
1163 dbuckets = Min(dbuckets, max_buckets);
1164 new_nbuckets = (int) dbuckets;
1165 new_nbuckets = Max(new_nbuckets, 1024);
1166 new_nbuckets = pg_nextpower2_32(new_nbuckets);
1167 dsa_free(hashtable->area, old_batch0->buckets);
1168 hashtable->batches[0].shared->buckets =
1169 dsa_allocate(hashtable->area,
1170 sizeof(dsa_pointer_atomic) * new_nbuckets);
1171 buckets = (dsa_pointer_atomic *)
1172 dsa_get_address(hashtable->area,
1173 hashtable->batches[0].shared->buckets);
1174 for (i = 0; i < new_nbuckets; ++i)
1176 pstate->nbuckets = new_nbuckets;
1177 }
1178 else
1179 {
1180 /* Recycle the existing bucket array. */
1181 hashtable->batches[0].shared->buckets = old_batch0->buckets;
1182 buckets = (dsa_pointer_atomic *)
1183 dsa_get_address(hashtable->area, old_batch0->buckets);
1184 for (i = 0; i < hashtable->nbuckets; ++i)
1186 }
1187
1188 /* Move all chunks to the work queue for parallel processing. */
1189 pstate->chunk_work_queue = old_batch0->chunks;
1190
1191 /* Disable further growth temporarily while we're growing. */
1192 pstate->growth = PHJ_GROWTH_DISABLED;
1193 }
1194 else
1195 {
1196 /* All other participants just flush their tuples to disk. */
1198 }
1199 /* Fall through. */
1200
1202 /* Wait for the above to be finished. */
1204 WAIT_EVENT_HASH_GROW_BATCHES_REALLOCATE);
1205 /* Fall through. */
1206
1208 /* Make sure that we have the current dimensions and buckets. */
1211 /* Then partition, flush counters. */
1215 /* Wait for the above to be finished. */
1217 WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
1218 /* Fall through. */
1219
1221
1222 /*
1223 * Elect one participant to clean up and decide whether further
1224 * repartitioning is needed, or should be disabled because it's
1225 * not helping.
1226 */
1228 WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
1229 {
1230 ParallelHashJoinBatch *old_batches;
1231 bool space_exhausted = false;
1232 bool extreme_skew_detected = false;
1233
1234 /* Make sure that we have the current dimensions and buckets. */
1237
1238 old_batches = dsa_get_address(hashtable->area, pstate->old_batches);
1239
1240 /* Are any of the new generation of batches exhausted? */
1241 for (int i = 0; i < hashtable->nbatch; ++i)
1242 {
1243 ParallelHashJoinBatch *batch;
1244 ParallelHashJoinBatch *old_batch;
1245 int parent;
1246
1247 batch = hashtable->batches[i].shared;
1248 if (batch->space_exhausted ||
1249 batch->estimated_size > pstate->space_allowed)
1250 space_exhausted = true;
1251
1252 parent = i % pstate->old_nbatch;
1253 old_batch = NthParallelHashJoinBatch(old_batches, parent);
1254 if (old_batch->space_exhausted ||
1255 batch->estimated_size > pstate->space_allowed)
1256 {
1257 /*
1258 * Did this batch receive ALL of the tuples from its
1259 * parent batch? That would indicate that further
1260 * repartitioning isn't going to help (the hash values
1261 * are probably all the same).
1262 */
1263 if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
1264 extreme_skew_detected = true;
1265 }
1266 }
1267
1268 /* Don't keep growing if it's not helping or we'd overflow. */
1269 if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
1270 pstate->growth = PHJ_GROWTH_DISABLED;
1271 else if (space_exhausted)
1273 else
1274 pstate->growth = PHJ_GROWTH_OK;
1275
1276 /* Free the old batches in shared memory. */
1277 dsa_free(hashtable->area, pstate->old_batches);
1279 }
1280 /* Fall through. */
1281
1283 /* Wait for the above to complete. */
1285 WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
1286 }
1287}
1288
1289/*
1290 * Repartition the tuples currently loaded into memory for inner batch 0
1291 * because the number of batches has been increased. Some tuples are retained
1292 * in memory and some are written out to a later batch.
1293 */
1294static void
1296{
1297 dsa_pointer chunk_shared;
1299
1300 Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
1301
1302 while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
1303 {
1304 size_t idx = 0;
1305
1306 /* Repartition all tuples in this chunk. */
1307 while (idx < chunk->used)
1308 {
1310 MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1311 HashJoinTuple copyTuple;
1312 dsa_pointer shared;
1313 int bucketno;
1314 int batchno;
1315
1316 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1317 &bucketno, &batchno);
1318
1319 Assert(batchno < hashtable->nbatch);
1320 if (batchno == 0)
1321 {
1322 /* It still belongs in batch 0. Copy to a new chunk. */
1323 copyTuple =
1325 HJTUPLE_OVERHEAD + tuple->t_len,
1326 &shared);
1327 copyTuple->hashvalue = hashTuple->hashvalue;
1328 memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
1329 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1330 copyTuple, shared);
1331 }
1332 else
1333 {
1334 size_t tuple_size =
1336
1337 /* It belongs in a later batch. */
1338 hashtable->batches[batchno].estimated_size += tuple_size;
1339 sts_puttuple(hashtable->batches[batchno].inner_tuples,
1340 &hashTuple->hashvalue, tuple);
1341 }
1342
1343 /* Count this tuple. */
1344 ++hashtable->batches[0].old_ntuples;
1345 ++hashtable->batches[batchno].ntuples;
1346
1348 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1349 }
1350
1351 /* Free this chunk. */
1352 dsa_free(hashtable->area, chunk_shared);
1353
1355 }
1356}
1357
1358/*
1359 * Help repartition inner batches 1..n.
1360 */
1361static void
1363{
1364 ParallelHashJoinState *pstate = hashtable->parallel_state;
1365 int old_nbatch = pstate->old_nbatch;
1366 SharedTuplestoreAccessor **old_inner_tuples;
1367 ParallelHashJoinBatch *old_batches;
1368 int i;
1369
1370 /* Get our hands on the previous generation of batches. */
1371 old_batches = (ParallelHashJoinBatch *)
1372 dsa_get_address(hashtable->area, pstate->old_batches);
1373 old_inner_tuples = palloc0_array(SharedTuplestoreAccessor *, old_nbatch);
1374 for (i = 1; i < old_nbatch; ++i)
1375 {
1376 ParallelHashJoinBatch *shared =
1377 NthParallelHashJoinBatch(old_batches, i);
1378
1379 old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
1381 &pstate->fileset);
1382 }
1383
1384 /* Join in the effort to repartition them. */
1385 for (i = 1; i < old_nbatch; ++i)
1386 {
1387 MinimalTuple tuple;
1388 uint32 hashvalue;
1389
1390 /* Scan one partition from the previous generation. */
1391 sts_begin_parallel_scan(old_inner_tuples[i]);
1392 while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
1393 {
1394 size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1395 int bucketno;
1396 int batchno;
1397
1398 /* Decide which partition it goes to in the new generation. */
1399 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
1400 &batchno);
1401
1402 hashtable->batches[batchno].estimated_size += tuple_size;
1403 ++hashtable->batches[batchno].ntuples;
1404 ++hashtable->batches[i].old_ntuples;
1405
1406 /* Store the tuple its new batch. */
1407 sts_puttuple(hashtable->batches[batchno].inner_tuples,
1408 &hashvalue, tuple);
1409
1411 }
1412 sts_end_parallel_scan(old_inner_tuples[i]);
1413 }
1414
1415 pfree(old_inner_tuples);
1416}
1417
1418/*
1419 * Transfer the backend-local per-batch counters to the shared totals.
1420 */
1421static void
1423{
1424 ParallelHashJoinState *pstate = hashtable->parallel_state;
1425 int i;
1426
1427 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
1428 pstate->total_tuples = 0;
1429 for (i = 0; i < hashtable->nbatch; ++i)
1430 {
1431 ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
1432
1433 batch->shared->size += batch->size;
1434 batch->shared->estimated_size += batch->estimated_size;
1435 batch->shared->ntuples += batch->ntuples;
1436 batch->shared->old_ntuples += batch->old_ntuples;
1437 batch->size = 0;
1438 batch->estimated_size = 0;
1439 batch->ntuples = 0;
1440 batch->old_ntuples = 0;
1441 pstate->total_tuples += batch->shared->ntuples;
1442 }
1443 LWLockRelease(&pstate->lock);
1444}
1445
1446/*
1447 * ExecHashIncreaseNumBuckets
1448 * increase the original number of buckets in order to reduce
1449 * number of tuples per bucket
1450 */
1451static void
1453{
1455
1456 /* do nothing if not an increase (it's called increase for a reason) */
1457 if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
1458 return;
1459
1460#ifdef HJDEBUG
1461 printf("Hashjoin %p: increasing nbuckets %d => %d\n",
1462 hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
1463#endif
1464
1465 hashtable->nbuckets = hashtable->nbuckets_optimal;
1466 hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
1467
1468 Assert(hashtable->nbuckets > 1);
1469 Assert(hashtable->nbuckets <= (INT_MAX / 2));
1470 Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
1471
1472 /*
1473 * Just reallocate the proper number of buckets - we don't need to walk
1474 * through them - we can walk the dense-allocated chunks (just like in
1475 * ExecHashIncreaseNumBatches, but without all the copying into new
1476 * chunks)
1477 */
1478 hashtable->buckets.unshared =
1479 repalloc_array(hashtable->buckets.unshared,
1480 HashJoinTuple, hashtable->nbuckets);
1481
1482 memset(hashtable->buckets.unshared, 0,
1483 hashtable->nbuckets * sizeof(HashJoinTuple));
1484
1485 /* scan through all tuples in all chunks to rebuild the hash table */
1486 for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
1487 {
1488 /* process all tuples stored in this chunk */
1489 size_t idx = 0;
1490
1491 while (idx < chunk->used)
1492 {
1494 int bucketno;
1495 int batchno;
1496
1497 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1498 &bucketno, &batchno);
1499
1500 /* add the tuple to the proper bucket */
1501 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1502 hashtable->buckets.unshared[bucketno] = hashTuple;
1503
1504 /* advance index past the tuple */
1506 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1507 }
1508
1509 /* allow this loop to be cancellable */
1511 }
1512}
1513
1514static void
1516{
1517 ParallelHashJoinState *pstate = hashtable->parallel_state;
1518 int i;
1520 dsa_pointer chunk_s;
1521
1523
1524 /*
1525 * It's unlikely, but we need to be prepared for new participants to show
1526 * up while we're in the middle of this operation so we need to switch on
1527 * barrier phase here.
1528 */
1530 {
1532 /* Elect one participant to prepare to increase nbuckets. */
1534 WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
1535 {
1536 size_t size;
1537 dsa_pointer_atomic *buckets;
1538
1539 /* Double the size of the bucket array. */
1540 pstate->nbuckets *= 2;
1541 size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
1542 hashtable->batches[0].shared->size += size / 2;
1543 dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
1544 hashtable->batches[0].shared->buckets =
1545 dsa_allocate(hashtable->area, size);
1546 buckets = (dsa_pointer_atomic *)
1547 dsa_get_address(hashtable->area,
1548 hashtable->batches[0].shared->buckets);
1549 for (i = 0; i < pstate->nbuckets; ++i)
1551
1552 /* Put the chunk list onto the work queue. */
1553 pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
1554
1555 /* Clear the flag. */
1556 pstate->growth = PHJ_GROWTH_OK;
1557 }
1558 /* Fall through. */
1559
1561 /* Wait for the above to complete. */
1563 WAIT_EVENT_HASH_GROW_BUCKETS_REALLOCATE);
1564 /* Fall through. */
1565
1567 /* Reinsert all tuples into the hash table. */
1570 while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
1571 {
1572 size_t idx = 0;
1573
1574 while (idx < chunk->used)
1575 {
1577 dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
1578 int bucketno;
1579 int batchno;
1580
1581 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1582 &bucketno, &batchno);
1583 Assert(batchno == 0);
1584
1585 /* add the tuple to the proper bucket */
1586 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1587 hashTuple, shared);
1588
1589 /* advance index past the tuple */
1591 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1592 }
1593
1594 /* allow this loop to be cancellable */
1596 }
1598 WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
1599 }
1600}
1601
1602/*
1603 * ExecHashTableInsert
1604 * insert a tuple into the hash table depending on the hash value
1605 * it may just go to a temp file for later batches
1606 *
1607 * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
1608 * tuple; the minimal case in particular is certain to happen while reloading
1609 * tuples from batch files. We could save some cycles in the regular-tuple
1610 * case by not forcing the slot contents into minimal form; not clear if it's
1611 * worth the messiness required.
1612 */
1613void
1615 TupleTableSlot *slot,
1616 uint32 hashvalue)
1617{
1618 bool shouldFree;
1619 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1620 int bucketno;
1621 int batchno;
1622
1623 ExecHashGetBucketAndBatch(hashtable, hashvalue,
1624 &bucketno, &batchno);
1625
1626 /*
1627 * decide whether to put the tuple in the hash table or a temp file
1628 */
1629 if (batchno == hashtable->curbatch)
1630 {
1631 /*
1632 * put the tuple in hash table
1633 */
1634 HashJoinTuple hashTuple;
1635 int hashTupleSize;
1636 double ntuples = (hashtable->totalTuples - hashtable->skewTuples);
1637
1638 /* Create the HashJoinTuple */
1639 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
1640 hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1641
1642 hashTuple->hashvalue = hashvalue;
1643 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1644
1645 /*
1646 * We always reset the tuple-matched flag on insertion. This is okay
1647 * even when reloading a tuple from a batch file, since the tuple
1648 * could not possibly have been matched to an outer tuple before it
1649 * went into the batch file.
1650 */
1652
1653 /* Push it onto the front of the bucket's list */
1654 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1655 hashtable->buckets.unshared[bucketno] = hashTuple;
1656
1657 /*
1658 * Increase the (optimal) number of buckets if we just exceeded the
1659 * NTUP_PER_BUCKET threshold, but only when there's still a single
1660 * batch.
1661 */
1662 if (hashtable->nbatch == 1 &&
1663 ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
1664 {
1665 /* Guard against integer overflow and alloc size overflow */
1666 if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
1667 hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
1668 {
1669 hashtable->nbuckets_optimal *= 2;
1670 hashtable->log2_nbuckets_optimal += 1;
1671 }
1672 }
1673
1674 /* Account for space used, and back off if we've used too much */
1675 hashtable->spaceUsed += hashTupleSize;
1676 if (hashtable->spaceUsed > hashtable->spacePeak)
1677 hashtable->spacePeak = hashtable->spaceUsed;
1678 if (hashtable->spaceUsed +
1679 hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
1680 > hashtable->spaceAllowed)
1681 ExecHashIncreaseNumBatches(hashtable);
1682 }
1683 else
1684 {
1685 /*
1686 * put the tuple into a temp file for later batches
1687 */
1688 Assert(batchno > hashtable->curbatch);
1690 hashvalue,
1691 &hashtable->innerBatchFile[batchno],
1692 hashtable);
1693 }
1694
1695 if (shouldFree)
1697}
1698
1699/*
1700 * ExecParallelHashTableInsert
1701 * insert a tuple into a shared hash table or shared batch tuplestore
1702 */
1703void
1705 TupleTableSlot *slot,
1706 uint32 hashvalue)
1707{
1708 bool shouldFree;
1709 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1710 dsa_pointer shared;
1711 int bucketno;
1712 int batchno;
1713
1714retry:
1715 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1716
1717 if (batchno == 0)
1718 {
1719 HashJoinTuple hashTuple;
1720
1721 /* Try to load it into memory. */
1724 hashTuple = ExecParallelHashTupleAlloc(hashtable,
1725 HJTUPLE_OVERHEAD + tuple->t_len,
1726 &shared);
1727 if (hashTuple == NULL)
1728 goto retry;
1729
1730 /* Store the hash value in the HashJoinTuple header. */
1731 hashTuple->hashvalue = hashvalue;
1732 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1734
1735 /* Push it onto the front of the bucket's list */
1736 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1737 hashTuple, shared);
1738 }
1739 else
1740 {
1741 size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1742
1743 Assert(batchno > 0);
1744
1745 /* Try to preallocate space in the batch if necessary. */
1746 if (hashtable->batches[batchno].preallocated < tuple_size)
1747 {
1748 if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
1749 goto retry;
1750 }
1751
1752 Assert(hashtable->batches[batchno].preallocated >= tuple_size);
1753 hashtable->batches[batchno].preallocated -= tuple_size;
1754 sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
1755 tuple);
1756 }
1757 ++hashtable->batches[batchno].ntuples;
1758
1759 if (shouldFree)
1761}
1762
1763/*
1764 * Insert a tuple into the current hash table. Unlike
1765 * ExecParallelHashTableInsert, this version is not prepared to send the tuple
1766 * to other batches or to run out of memory, and should only be called with
1767 * tuples that belong in the current batch once growth has been disabled.
1768 */
1769void
1771 TupleTableSlot *slot,
1772 uint32 hashvalue)
1773{
1774 bool shouldFree;
1775 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1776 HashJoinTuple hashTuple;
1777 dsa_pointer shared;
1778 int batchno;
1779 int bucketno;
1780
1781 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1782 Assert(batchno == hashtable->curbatch);
1783 hashTuple = ExecParallelHashTupleAlloc(hashtable,
1784 HJTUPLE_OVERHEAD + tuple->t_len,
1785 &shared);
1786 hashTuple->hashvalue = hashvalue;
1787 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1789 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1790 hashTuple, shared);
1791
1792 if (shouldFree)
1794}
1795
1796
1797/*
1798 * ExecHashGetBucketAndBatch
1799 * Determine the bucket number and batch number for a hash value
1800 *
1801 * Note: on-the-fly increases of nbatch must not change the bucket number
1802 * for a given hash code (since we don't move tuples to different hash
1803 * chains), and must only cause the batch number to remain the same or
1804 * increase. Our algorithm is
1805 * bucketno = hashvalue MOD nbuckets
1806 * batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
1807 * where nbuckets and nbatch are both expected to be powers of 2, so we can
1808 * do the computations by shifting and masking. (This assumes that all hash
1809 * functions are good about randomizing all their output bits, else we are
1810 * likely to have very skewed bucket or batch occupancy.)
1811 *
1812 * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
1813 * bucket count growth. Once we start batching, the value is fixed and does
1814 * not change over the course of the join (making it possible to compute batch
1815 * number the way we do here).
1816 *
1817 * nbatch is always a power of 2; we increase it only by doubling it. This
1818 * effectively adds one more bit to the top of the batchno. In very large
1819 * joins, we might run out of bits to add, so we do this by rotating the hash
1820 * value. This causes batchno to steal bits from bucketno when the number of
1821 * virtual buckets exceeds 2^32. It's better to have longer bucket chains
1822 * than to lose the ability to divide batches.
1823 */
1824void
1826 uint32 hashvalue,
1827 int *bucketno,
1828 int *batchno)
1829{
1830 uint32 nbuckets = (uint32) hashtable->nbuckets;
1831 uint32 nbatch = (uint32) hashtable->nbatch;
1832
1833 if (nbatch > 1)
1834 {
1835 *bucketno = hashvalue & (nbuckets - 1);
1836 *batchno = pg_rotate_right32(hashvalue,
1837 hashtable->log2_nbuckets) & (nbatch - 1);
1838 }
1839 else
1840 {
1841 *bucketno = hashvalue & (nbuckets - 1);
1842 *batchno = 0;
1843 }
1844}
1845
1846/*
1847 * ExecScanHashBucket
1848 * scan a hash bucket for matches to the current outer tuple
1849 *
1850 * The current outer tuple must be stored in econtext->ecxt_outertuple.
1851 *
1852 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1853 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1854 * for the latter.
1855 */
1856bool
1858 ExprContext *econtext)
1859{
1860 ExprState *hjclauses = hjstate->hashclauses;
1861 HashJoinTable hashtable = hjstate->hj_HashTable;
1862 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1863 uint32 hashvalue = hjstate->hj_CurHashValue;
1864
1865 /*
1866 * hj_CurTuple is the address of the tuple last returned from the current
1867 * bucket, or NULL if it's time to start scanning a new bucket.
1868 *
1869 * If the tuple hashed to a skew bucket then scan the skew bucket
1870 * otherwise scan the standard hashtable bucket.
1871 */
1872 if (hashTuple != NULL)
1873 hashTuple = hashTuple->next.unshared;
1874 else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
1875 hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
1876 else
1877 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
1878
1879 while (hashTuple != NULL)
1880 {
1881 if (hashTuple->hashvalue == hashvalue)
1882 {
1883 TupleTableSlot *inntuple;
1884
1885 /* insert hashtable's tuple into exec slot so ExecQual sees it */
1886 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1887 hjstate->hj_HashTupleSlot,
1888 false); /* do not pfree */
1889 econtext->ecxt_innertuple = inntuple;
1890
1891 if (ExecQualAndReset(hjclauses, econtext))
1892 {
1893 hjstate->hj_CurTuple = hashTuple;
1894 return true;
1895 }
1896 }
1897
1898 hashTuple = hashTuple->next.unshared;
1899 }
1900
1901 /*
1902 * no match
1903 */
1904 return false;
1905}
1906
1907/*
1908 * ExecParallelScanHashBucket
1909 * scan a hash bucket for matches to the current outer tuple
1910 *
1911 * The current outer tuple must be stored in econtext->ecxt_outertuple.
1912 *
1913 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1914 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1915 * for the latter.
1916 */
1917bool
1919 ExprContext *econtext)
1920{
1921 ExprState *hjclauses = hjstate->hashclauses;
1922 HashJoinTable hashtable = hjstate->hj_HashTable;
1923 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1924 uint32 hashvalue = hjstate->hj_CurHashValue;
1925
1926 /*
1927 * hj_CurTuple is the address of the tuple last returned from the current
1928 * bucket, or NULL if it's time to start scanning a new bucket.
1929 */
1930 if (hashTuple != NULL)
1931 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
1932 else
1933 hashTuple = ExecParallelHashFirstTuple(hashtable,
1934 hjstate->hj_CurBucketNo);
1935
1936 while (hashTuple != NULL)
1937 {
1938 if (hashTuple->hashvalue == hashvalue)
1939 {
1940 TupleTableSlot *inntuple;
1941
1942 /* insert hashtable's tuple into exec slot so ExecQual sees it */
1943 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1944 hjstate->hj_HashTupleSlot,
1945 false); /* do not pfree */
1946 econtext->ecxt_innertuple = inntuple;
1947
1948 if (ExecQualAndReset(hjclauses, econtext))
1949 {
1950 hjstate->hj_CurTuple = hashTuple;
1951 return true;
1952 }
1953 }
1954
1955 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
1956 }
1957
1958 /*
1959 * no match
1960 */
1961 return false;
1962}
1963
1964/*
1965 * ExecPrepHashTableForUnmatched
1966 * set up for a series of ExecScanHashTableForUnmatched calls
1967 */
1968void
1970{
1971 /*----------
1972 * During this scan we use the HashJoinState fields as follows:
1973 *
1974 * hj_CurBucketNo: next regular bucket to scan
1975 * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
1976 * hj_CurTuple: last tuple returned, or NULL to start next bucket
1977 *----------
1978 */
1979 hjstate->hj_CurBucketNo = 0;
1980 hjstate->hj_CurSkewBucketNo = 0;
1981 hjstate->hj_CurTuple = NULL;
1982}
1983
1984/*
1985 * Decide if this process is allowed to run the unmatched scan. If so, the
1986 * batch barrier is advanced to PHJ_BATCH_SCAN and true is returned.
1987 * Otherwise the batch is detached and false is returned.
1988 */
1989bool
1991{
1992 HashJoinTable hashtable = hjstate->hj_HashTable;
1993 int curbatch = hashtable->curbatch;
1994 ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
1995
1997
1998 /*
1999 * It would not be deadlock-free to wait on the batch barrier, because it
2000 * is in PHJ_BATCH_PROBE phase, and thus processes attached to it have
2001 * already emitted tuples. Therefore, we'll hold a wait-free election:
2002 * only one process can continue to the next phase, and all others detach
2003 * from this batch. They can still go any work on other batches, if there
2004 * are any.
2005 */
2007 {
2008 /* This process considers the batch to be done. */
2009 hashtable->batches[hashtable->curbatch].done = true;
2010
2011 /* Make sure any temporary files are closed. */
2012 sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
2013 sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
2014
2015 /*
2016 * Track largest batch we've seen, which would normally happen in
2017 * ExecHashTableDetachBatch().
2018 */
2019 hashtable->spacePeak =
2020 Max(hashtable->spacePeak,
2021 batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
2022 hashtable->curbatch = -1;
2023 return false;
2024 }
2025
2026 /* Now we are alone with this batch. */
2028
2029 /*
2030 * Has another process decided to give up early and command all processes
2031 * to skip the unmatched scan?
2032 */
2033 if (batch->skip_unmatched)
2034 {
2035 hashtable->batches[hashtable->curbatch].done = true;
2036 ExecHashTableDetachBatch(hashtable);
2037 return false;
2038 }
2039
2040 /* Now prepare the process local state, just as for non-parallel join. */
2042
2043 return true;
2044}
2045
2046/*
2047 * ExecScanHashTableForUnmatched
2048 * scan the hash table for unmatched inner tuples
2049 *
2050 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2051 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2052 * for the latter.
2053 */
2054bool
2056{
2057 HashJoinTable hashtable = hjstate->hj_HashTable;
2058 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2059
2060 for (;;)
2061 {
2062 /*
2063 * hj_CurTuple is the address of the tuple last returned from the
2064 * current bucket, or NULL if it's time to start scanning a new
2065 * bucket.
2066 */
2067 if (hashTuple != NULL)
2068 hashTuple = hashTuple->next.unshared;
2069 else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2070 {
2071 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
2072 hjstate->hj_CurBucketNo++;
2073 }
2074 else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
2075 {
2076 int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
2077
2078 hashTuple = hashtable->skewBucket[j]->tuples;
2079 hjstate->hj_CurSkewBucketNo++;
2080 }
2081 else
2082 break; /* finished all buckets */
2083
2084 while (hashTuple != NULL)
2085 {
2087 {
2088 TupleTableSlot *inntuple;
2089
2090 /* insert hashtable's tuple into exec slot */
2091 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2092 hjstate->hj_HashTupleSlot,
2093 false); /* do not pfree */
2094 econtext->ecxt_innertuple = inntuple;
2095
2096 /*
2097 * Reset temp memory each time; although this function doesn't
2098 * do any qual eval, the caller will, so let's keep it
2099 * parallel to ExecScanHashBucket.
2100 */
2101 ResetExprContext(econtext);
2102
2103 hjstate->hj_CurTuple = hashTuple;
2104 return true;
2105 }
2106
2107 hashTuple = hashTuple->next.unshared;
2108 }
2109
2110 /* allow this loop to be cancellable */
2112 }
2113
2114 /*
2115 * no more unmatched tuples
2116 */
2117 return false;
2118}
2119
2120/*
2121 * ExecParallelScanHashTableForUnmatched
2122 * scan the hash table for unmatched inner tuples, in parallel join
2123 *
2124 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2125 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2126 * for the latter.
2127 */
2128bool
2130 ExprContext *econtext)
2131{
2132 HashJoinTable hashtable = hjstate->hj_HashTable;
2133 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2134
2135 for (;;)
2136 {
2137 /*
2138 * hj_CurTuple is the address of the tuple last returned from the
2139 * current bucket, or NULL if it's time to start scanning a new
2140 * bucket.
2141 */
2142 if (hashTuple != NULL)
2143 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2144 else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2145 hashTuple = ExecParallelHashFirstTuple(hashtable,
2146 hjstate->hj_CurBucketNo++);
2147 else
2148 break; /* finished all buckets */
2149
2150 while (hashTuple != NULL)
2151 {
2153 {
2154 TupleTableSlot *inntuple;
2155
2156 /* insert hashtable's tuple into exec slot */
2157 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2158 hjstate->hj_HashTupleSlot,
2159 false); /* do not pfree */
2160 econtext->ecxt_innertuple = inntuple;
2161
2162 /*
2163 * Reset temp memory each time; although this function doesn't
2164 * do any qual eval, the caller will, so let's keep it
2165 * parallel to ExecScanHashBucket.
2166 */
2167 ResetExprContext(econtext);
2168
2169 hjstate->hj_CurTuple = hashTuple;
2170 return true;
2171 }
2172
2173 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2174 }
2175
2176 /* allow this loop to be cancellable */
2178 }
2179
2180 /*
2181 * no more unmatched tuples
2182 */
2183 return false;
2184}
2185
2186/*
2187 * ExecHashTableReset
2188 *
2189 * reset hash table header for new batch
2190 */
2191void
2193{
2194 MemoryContext oldcxt;
2195 int nbuckets = hashtable->nbuckets;
2196
2197 /*
2198 * Release all the hash buckets and tuples acquired in the prior pass, and
2199 * reinitialize the context for a new pass.
2200 */
2201 MemoryContextReset(hashtable->batchCxt);
2202 oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
2203
2204 /* Reallocate and reinitialize the hash bucket headers. */
2205 hashtable->buckets.unshared = palloc0_array(HashJoinTuple, nbuckets);
2206
2207 hashtable->spaceUsed = 0;
2208
2209 MemoryContextSwitchTo(oldcxt);
2210
2211 /* Forget the chunks (the memory was freed by the context reset above). */
2212 hashtable->chunks = NULL;
2213}
2214
2215/*
2216 * ExecHashTableResetMatchFlags
2217 * Clear all the HeapTupleHeaderHasMatch flags in the table
2218 */
2219void
2221{
2222 HashJoinTuple tuple;
2223 int i;
2224
2225 /* Reset all flags in the main table ... */
2226 for (i = 0; i < hashtable->nbuckets; i++)
2227 {
2228 for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
2229 tuple = tuple->next.unshared)
2231 }
2232
2233 /* ... and the same for the skew buckets, if any */
2234 for (i = 0; i < hashtable->nSkewBuckets; i++)
2235 {
2236 int j = hashtable->skewBucketNums[i];
2237 HashSkewBucket *skewBucket = hashtable->skewBucket[j];
2238
2239 for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
2241 }
2242}
2243
2244
2245void
2247{
2249
2250 /*
2251 * if chgParam of subnode is not null then plan will be re-scanned by
2252 * first ExecProcNode.
2253 */
2254 if (outerPlan->chgParam == NULL)
2256}
2257
2258
2259/*
2260 * ExecHashBuildSkewHash
2261 *
2262 * Set up for skew optimization if we can identify the most common values
2263 * (MCVs) of the outer relation's join key. We make a skew hash bucket
2264 * for the hash value of each MCV, up to the number of slots allowed
2265 * based on available memory.
2266 */
2267static void
2269 Hash *node, int mcvsToUse)
2270{
2271 HeapTupleData *statsTuple;
2272 AttStatsSlot sslot;
2273
2274 /* Do nothing if planner didn't identify the outer relation's join key */
2275 if (!OidIsValid(node->skewTable))
2276 return;
2277 /* Also, do nothing if we don't have room for at least one skew bucket */
2278 if (mcvsToUse <= 0)
2279 return;
2280
2281 /*
2282 * Try to find the MCV statistics for the outer relation's join key.
2283 */
2284 statsTuple = SearchSysCache3(STATRELATTINH,
2287 BoolGetDatum(node->skewInherit));
2288 if (!HeapTupleIsValid(statsTuple))
2289 return;
2290
2291 if (get_attstatsslot(&sslot, statsTuple,
2292 STATISTIC_KIND_MCV, InvalidOid,
2294 {
2295 double frac;
2296 int nbuckets;
2297 int i;
2298
2299 if (mcvsToUse > sslot.nvalues)
2300 mcvsToUse = sslot.nvalues;
2301
2302 /*
2303 * Calculate the expected fraction of outer relation that will
2304 * participate in the skew optimization. If this isn't at least
2305 * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
2306 */
2307 frac = 0;
2308 for (i = 0; i < mcvsToUse; i++)
2309 frac += sslot.numbers[i];
2311 {
2312 free_attstatsslot(&sslot);
2313 ReleaseSysCache(statsTuple);
2314 return;
2315 }
2316
2317 /*
2318 * Okay, set up the skew hashtable.
2319 *
2320 * skewBucket[] is an open addressing hashtable with a power of 2 size
2321 * that is greater than the number of MCV values. (This ensures there
2322 * will be at least one null entry, so searches will always
2323 * terminate.)
2324 *
2325 * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
2326 * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
2327 * since we limit pg_statistic entries to much less than that.
2328 */
2329 nbuckets = pg_nextpower2_32(mcvsToUse + 1);
2330 /* use two more bits just to help avoid collisions */
2331 nbuckets <<= 2;
2332
2333 hashtable->skewEnabled = true;
2334 hashtable->skewBucketLen = nbuckets;
2335
2336 /*
2337 * We allocate the bucket memory in the hashtable's batch context. It
2338 * is only needed during the first batch, and this ensures it will be
2339 * automatically removed once the first batch is done.
2340 */
2341 hashtable->skewBucket = (HashSkewBucket **)
2343 nbuckets * sizeof(HashSkewBucket *));
2344 hashtable->skewBucketNums = (int *)
2346 mcvsToUse * sizeof(int));
2347
2348 hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
2349 + mcvsToUse * sizeof(int);
2350 hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
2351 + mcvsToUse * sizeof(int);
2352 if (hashtable->spaceUsed > hashtable->spacePeak)
2353 hashtable->spacePeak = hashtable->spaceUsed;
2354
2355 /*
2356 * Create a skew bucket for each MCV hash value.
2357 *
2358 * Note: it is very important that we create the buckets in order of
2359 * decreasing MCV frequency. If we have to remove some buckets, they
2360 * must be removed in reverse order of creation (see notes in
2361 * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
2362 * be removed first.
2363 */
2364
2365 for (i = 0; i < mcvsToUse; i++)
2366 {
2367 uint32 hashvalue;
2368 int bucket;
2369
2370 hashvalue = DatumGetUInt32(FunctionCall1Coll(hashstate->skew_hashfunction,
2371 hashstate->skew_collation,
2372 sslot.values[i]));
2373
2374 /*
2375 * While we have not hit a hole in the hashtable and have not hit
2376 * the desired bucket, we have collided with some previous hash
2377 * value, so try the next bucket location. NB: this code must
2378 * match ExecHashGetSkewBucket.
2379 */
2380 bucket = hashvalue & (nbuckets - 1);
2381 while (hashtable->skewBucket[bucket] != NULL &&
2382 hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2383 bucket = (bucket + 1) & (nbuckets - 1);
2384
2385 /*
2386 * If we found an existing bucket with the same hashvalue, leave
2387 * it alone. It's okay for two MCVs to share a hashvalue.
2388 */
2389 if (hashtable->skewBucket[bucket] != NULL)
2390 continue;
2391
2392 /* Okay, create a new skew bucket for this hashvalue. */
2393 hashtable->skewBucket[bucket] = (HashSkewBucket *)
2394 MemoryContextAlloc(hashtable->batchCxt,
2395 sizeof(HashSkewBucket));
2396 hashtable->skewBucket[bucket]->hashvalue = hashvalue;
2397 hashtable->skewBucket[bucket]->tuples = NULL;
2398 hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
2399 hashtable->nSkewBuckets++;
2400 hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
2401 hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
2402 if (hashtable->spaceUsed > hashtable->spacePeak)
2403 hashtable->spacePeak = hashtable->spaceUsed;
2404 }
2405
2406 free_attstatsslot(&sslot);
2407 }
2408
2409 ReleaseSysCache(statsTuple);
2410}
2411
2412/*
2413 * ExecHashGetSkewBucket
2414 *
2415 * Returns the index of the skew bucket for this hashvalue,
2416 * or INVALID_SKEW_BUCKET_NO if the hashvalue is not
2417 * associated with any active skew bucket.
2418 */
2419int
2421{
2422 int bucket;
2423
2424 /*
2425 * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
2426 * particular, this happens after the initial batch is done).
2427 */
2428 if (!hashtable->skewEnabled)
2430
2431 /*
2432 * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
2433 */
2434 bucket = hashvalue & (hashtable->skewBucketLen - 1);
2435
2436 /*
2437 * While we have not hit a hole in the hashtable and have not hit the
2438 * desired bucket, we have collided with some other hash value, so try the
2439 * next bucket location.
2440 */
2441 while (hashtable->skewBucket[bucket] != NULL &&
2442 hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2443 bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
2444
2445 /*
2446 * Found the desired bucket?
2447 */
2448 if (hashtable->skewBucket[bucket] != NULL)
2449 return bucket;
2450
2451 /*
2452 * There must not be any hashtable entry for this hash value.
2453 */
2455}
2456
2457/*
2458 * ExecHashSkewTableInsert
2459 *
2460 * Insert a tuple into the skew hashtable.
2461 *
2462 * This should generally match up with the current-batch case in
2463 * ExecHashTableInsert.
2464 */
2465static void
2467 TupleTableSlot *slot,
2468 uint32 hashvalue,
2469 int bucketNumber)
2470{
2471 bool shouldFree;
2472 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
2473 HashJoinTuple hashTuple;
2474 int hashTupleSize;
2475
2476 /* Create the HashJoinTuple */
2477 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2478 hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
2479 hashTupleSize);
2480 hashTuple->hashvalue = hashvalue;
2481 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
2483
2484 /* Push it onto the front of the skew bucket's list */
2485 hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
2486 hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
2487 Assert(hashTuple != hashTuple->next.unshared);
2488
2489 /* Account for space used, and back off if we've used too much */
2490 hashtable->spaceUsed += hashTupleSize;
2491 hashtable->spaceUsedSkew += hashTupleSize;
2492 if (hashtable->spaceUsed > hashtable->spacePeak)
2493 hashtable->spacePeak = hashtable->spaceUsed;
2494 while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
2496
2497 /* Check we are not over the total spaceAllowed, either */
2498 if (hashtable->spaceUsed > hashtable->spaceAllowed)
2499 ExecHashIncreaseNumBatches(hashtable);
2500
2501 if (shouldFree)
2503}
2504
2505/*
2506 * ExecHashRemoveNextSkewBucket
2507 *
2508 * Remove the least valuable skew bucket by pushing its tuples into
2509 * the main hash table.
2510 */
2511static void
2513{
2514 int bucketToRemove;
2515 HashSkewBucket *bucket;
2516 uint32 hashvalue;
2517 int bucketno;
2518 int batchno;
2519 HashJoinTuple hashTuple;
2520
2521 /* Locate the bucket to remove */
2522 bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
2523 bucket = hashtable->skewBucket[bucketToRemove];
2524
2525 /*
2526 * Calculate which bucket and batch the tuples belong to in the main
2527 * hashtable. They all have the same hash value, so it's the same for all
2528 * of them. Also note that it's not possible for nbatch to increase while
2529 * we are processing the tuples.
2530 */
2531 hashvalue = bucket->hashvalue;
2532 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
2533
2534 /* Process all tuples in the bucket */
2535 hashTuple = bucket->tuples;
2536 while (hashTuple != NULL)
2537 {
2538 HashJoinTuple nextHashTuple = hashTuple->next.unshared;
2539 MinimalTuple tuple;
2540 Size tupleSize;
2541
2542 /*
2543 * This code must agree with ExecHashTableInsert. We do not use
2544 * ExecHashTableInsert directly as ExecHashTableInsert expects a
2545 * TupleTableSlot while we already have HashJoinTuples.
2546 */
2547 tuple = HJTUPLE_MINTUPLE(hashTuple);
2548 tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2549
2550 /* Decide whether to put the tuple in the hash table or a temp file */
2551 if (batchno == hashtable->curbatch)
2552 {
2553 /* Move the tuple to the main hash table */
2554 HashJoinTuple copyTuple;
2555
2556 /*
2557 * We must copy the tuple into the dense storage, else it will not
2558 * be found by, eg, ExecHashIncreaseNumBatches.
2559 */
2560 copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
2561 memcpy(copyTuple, hashTuple, tupleSize);
2562 pfree(hashTuple);
2563
2564 copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
2565 hashtable->buckets.unshared[bucketno] = copyTuple;
2566
2567 /* We have reduced skew space, but overall space doesn't change */
2568 hashtable->spaceUsedSkew -= tupleSize;
2569 }
2570 else
2571 {
2572 /* Put the tuple into a temp file for later batches */
2573 Assert(batchno > hashtable->curbatch);
2574 ExecHashJoinSaveTuple(tuple, hashvalue,
2575 &hashtable->innerBatchFile[batchno],
2576 hashtable);
2577 pfree(hashTuple);
2578 hashtable->spaceUsed -= tupleSize;
2579 hashtable->spaceUsedSkew -= tupleSize;
2580 }
2581
2582 hashTuple = nextHashTuple;
2583
2584 /* allow this loop to be cancellable */
2586 }
2587
2588 /*
2589 * Free the bucket struct itself and reset the hashtable entry to NULL.
2590 *
2591 * NOTE: this is not nearly as simple as it looks on the surface, because
2592 * of the possibility of collisions in the hashtable. Suppose that hash
2593 * values A and B collide at a particular hashtable entry, and that A was
2594 * entered first so B gets shifted to a different table entry. If we were
2595 * to remove A first then ExecHashGetSkewBucket would mistakenly start
2596 * reporting that B is not in the hashtable, because it would hit the NULL
2597 * before finding B. However, we always remove entries in the reverse
2598 * order of creation, so this failure cannot happen.
2599 */
2600 hashtable->skewBucket[bucketToRemove] = NULL;
2601 hashtable->nSkewBuckets--;
2602 pfree(bucket);
2603 hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
2604 hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
2605
2606 /*
2607 * If we have removed all skew buckets then give up on skew optimization.
2608 * Release the arrays since they aren't useful any more.
2609 */
2610 if (hashtable->nSkewBuckets == 0)
2611 {
2612 hashtable->skewEnabled = false;
2613 pfree(hashtable->skewBucket);
2614 pfree(hashtable->skewBucketNums);
2615 hashtable->skewBucket = NULL;
2616 hashtable->skewBucketNums = NULL;
2617 hashtable->spaceUsed -= hashtable->spaceUsedSkew;
2618 hashtable->spaceUsedSkew = 0;
2619 }
2620}
2621
2622/*
2623 * Reserve space in the DSM segment for instrumentation data.
2624 */
2625void
2627{
2628 size_t size;
2629
2630 /* don't need this if not instrumenting or no workers */
2631 if (!node->ps.instrument || pcxt->nworkers == 0)
2632 return;
2633
2634 size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
2635 size = add_size(size, offsetof(SharedHashInfo, hinstrument));
2638}
2639
2640/*
2641 * Set up a space in the DSM for all workers to record instrumentation data
2642 * about their hash table.
2643 */
2644void
2646{
2647 size_t size;
2648
2649 /* don't need this if not instrumenting or no workers */
2650 if (!node->ps.instrument || pcxt->nworkers == 0)
2651 return;
2652
2653 size = offsetof(SharedHashInfo, hinstrument) +
2654 pcxt->nworkers * sizeof(HashInstrumentation);
2656
2657 /* Each per-worker area must start out as zeroes. */
2658 memset(node->shared_info, 0, size);
2659
2660 node->shared_info->num_workers = pcxt->nworkers;
2661 shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
2662 node->shared_info);
2663}
2664
2665/*
2666 * Locate the DSM space for hash table instrumentation data that we'll write
2667 * to at shutdown time.
2668 */
2669void
2671{
2672 SharedHashInfo *shared_info;
2673
2674 /* don't need this if not instrumenting */
2675 if (!node->ps.instrument)
2676 return;
2677
2678 /*
2679 * Find our entry in the shared area, and set up a pointer to it so that
2680 * we'll accumulate stats there when shutting down or rebuilding the hash
2681 * table.
2682 */
2683 shared_info = (SharedHashInfo *)
2684 shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
2685 node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
2686}
2687
2688/*
2689 * Collect EXPLAIN stats if needed, saving them into DSM memory if
2690 * ExecHashInitializeWorker was called, or local storage if not. In the
2691 * parallel case, this must be done in ExecShutdownHash() rather than
2692 * ExecEndHash() because the latter runs after we've detached from the DSM
2693 * segment.
2694 */
2695void
2697{
2698 /* Allocate save space if EXPLAIN'ing and we didn't do so already */
2699 if (node->ps.instrument && !node->hinstrument)
2701 /* Now accumulate data for the current (final) hash table */
2702 if (node->hinstrument && node->hashtable)
2704}
2705
2706/*
2707 * Retrieve instrumentation data from workers before the DSM segment is
2708 * detached, so that EXPLAIN can access it.
2709 */
2710void
2712{
2713 SharedHashInfo *shared_info = node->shared_info;
2714 size_t size;
2715
2716 if (shared_info == NULL)
2717 return;
2718
2719 /* Replace node->shared_info with a copy in backend-local memory. */
2720 size = offsetof(SharedHashInfo, hinstrument) +
2721 shared_info->num_workers * sizeof(HashInstrumentation);
2722 node->shared_info = palloc(size);
2723 memcpy(node->shared_info, shared_info, size);
2724}
2725
2726/*
2727 * Accumulate instrumentation data from 'hashtable' into an
2728 * initially-zeroed HashInstrumentation struct.
2729 *
2730 * This is used to merge information across successive hash table instances
2731 * within a single plan node. We take the maximum values of each interesting
2732 * number. The largest nbuckets and largest nbatch values might have occurred
2733 * in different instances, so there's some risk of confusion from reporting
2734 * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
2735 * issue if we don't report the largest values. Similarly, we want to report
2736 * the largest spacePeak regardless of whether it happened in the same
2737 * instance as the largest nbuckets or nbatch. All the instances should have
2738 * the same nbuckets_original and nbatch_original; but there's little value
2739 * in depending on that here, so handle them the same way.
2740 */
2741void
2743 HashJoinTable hashtable)
2744{
2745 instrument->nbuckets = Max(instrument->nbuckets,
2746 hashtable->nbuckets);
2747 instrument->nbuckets_original = Max(instrument->nbuckets_original,
2748 hashtable->nbuckets_original);
2749 instrument->nbatch = Max(instrument->nbatch,
2750 hashtable->nbatch);
2751 instrument->nbatch_original = Max(instrument->nbatch_original,
2752 hashtable->nbatch_original);
2753 instrument->space_peak = Max(instrument->space_peak,
2754 hashtable->spacePeak);
2755}
2756
2757/*
2758 * Allocate 'size' bytes from the currently active HashMemoryChunk
2759 */
2760static void *
2762{
2763 HashMemoryChunk newChunk;
2764 char *ptr;
2765
2766 /* just in case the size is not already aligned properly */
2767 size = MAXALIGN(size);
2768
2769 /*
2770 * If tuple size is larger than threshold, allocate a separate chunk.
2771 */
2773 {
2774 /* allocate new chunk and put it at the beginning of the list */
2775 newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2777 newChunk->maxlen = size;
2778 newChunk->used = size;
2779 newChunk->ntuples = 1;
2780
2781 /*
2782 * Add this chunk to the list after the first existing chunk, so that
2783 * we don't lose the remaining space in the "current" chunk.
2784 */
2785 if (hashtable->chunks != NULL)
2786 {
2787 newChunk->next = hashtable->chunks->next;
2788 hashtable->chunks->next.unshared = newChunk;
2789 }
2790 else
2791 {
2792 newChunk->next.unshared = hashtable->chunks;
2793 hashtable->chunks = newChunk;
2794 }
2795
2796 return HASH_CHUNK_DATA(newChunk);
2797 }
2798
2799 /*
2800 * See if we have enough space for it in the current chunk (if any). If
2801 * not, allocate a fresh chunk.
2802 */
2803 if ((hashtable->chunks == NULL) ||
2804 (hashtable->chunks->maxlen - hashtable->chunks->used) < size)
2805 {
2806 /* allocate new chunk and put it at the beginning of the list */
2807 newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2809
2810 newChunk->maxlen = HASH_CHUNK_SIZE;
2811 newChunk->used = size;
2812 newChunk->ntuples = 1;
2813
2814 newChunk->next.unshared = hashtable->chunks;
2815 hashtable->chunks = newChunk;
2816
2817 return HASH_CHUNK_DATA(newChunk);
2818 }
2819
2820 /* There is enough space in the current chunk, let's add the tuple */
2821 ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
2822 hashtable->chunks->used += size;
2823 hashtable->chunks->ntuples += 1;
2824
2825 /* return pointer to the start of the tuple memory */
2826 return ptr;
2827}
2828
2829/*
2830 * Allocate space for a tuple in shared dense storage. This is equivalent to
2831 * dense_alloc but for Parallel Hash using shared memory.
2832 *
2833 * While loading a tuple into shared memory, we might run out of memory and
2834 * decide to repartition, or determine that the load factor is too high and
2835 * decide to expand the bucket array, or discover that another participant has
2836 * commanded us to help do that. Return NULL if number of buckets or batches
2837 * has changed, indicating that the caller must retry (considering the
2838 * possibility that the tuple no longer belongs in the same batch).
2839 */
2840static HashJoinTuple
2842 dsa_pointer *shared)
2843{
2844 ParallelHashJoinState *pstate = hashtable->parallel_state;
2845 dsa_pointer chunk_shared;
2847 Size chunk_size;
2848 HashJoinTuple result;
2849 int curbatch = hashtable->curbatch;
2850
2851 size = MAXALIGN(size);
2852
2853 /*
2854 * Fast path: if there is enough space in this backend's current chunk,
2855 * then we can allocate without any locking.
2856 */
2857 chunk = hashtable->current_chunk;
2858 if (chunk != NULL &&
2860 chunk->maxlen - chunk->used >= size)
2861 {
2862
2863 chunk_shared = hashtable->current_chunk_shared;
2864 Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
2865 *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
2866 result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
2867 chunk->used += size;
2868
2869 Assert(chunk->used <= chunk->maxlen);
2870 Assert(result == dsa_get_address(hashtable->area, *shared));
2871
2872 return result;
2873 }
2874
2875 /* Slow path: try to allocate a new chunk. */
2876 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
2877
2878 /*
2879 * Check if we need to help increase the number of buckets or batches.
2880 */
2881 if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
2883 {
2884 ParallelHashGrowth growth = pstate->growth;
2885
2886 hashtable->current_chunk = NULL;
2887 LWLockRelease(&pstate->lock);
2888
2889 /* Another participant has commanded us to help grow. */
2890 if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
2892 else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2894
2895 /* The caller must retry. */
2896 return NULL;
2897 }
2898
2899 /* Oversized tuples get their own chunk. */
2901 chunk_size = size + HASH_CHUNK_HEADER_SIZE;
2902 else
2903 chunk_size = HASH_CHUNK_SIZE;
2904
2905 /* Check if it's time to grow batches or buckets. */
2906 if (pstate->growth != PHJ_GROWTH_DISABLED)
2907 {
2908 Assert(curbatch == 0);
2910
2911 /*
2912 * Check if our space limit would be exceeded. To avoid choking on
2913 * very large tuples or very low hash_mem setting, we'll always allow
2914 * each backend to allocate at least one chunk.
2915 */
2916 if (hashtable->batches[0].at_least_one_chunk &&
2917 hashtable->batches[0].shared->size +
2918 chunk_size > pstate->space_allowed)
2919 {
2921 hashtable->batches[0].shared->space_exhausted = true;
2922 LWLockRelease(&pstate->lock);
2923
2924 return NULL;
2925 }
2926
2927 /* Check if our load factor limit would be exceeded. */
2928 if (hashtable->nbatch == 1)
2929 {
2930 hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
2931 hashtable->batches[0].ntuples = 0;
2932 /* Guard against integer overflow and alloc size overflow */
2933 if (hashtable->batches[0].shared->ntuples + 1 >
2934 hashtable->nbuckets * NTUP_PER_BUCKET &&
2935 hashtable->nbuckets < (INT_MAX / 2) &&
2936 hashtable->nbuckets * 2 <=
2938 {
2940 LWLockRelease(&pstate->lock);
2941
2942 return NULL;
2943 }
2944 }
2945 }
2946
2947 /* We are cleared to allocate a new chunk. */
2948 chunk_shared = dsa_allocate(hashtable->area, chunk_size);
2949 hashtable->batches[curbatch].shared->size += chunk_size;
2950 hashtable->batches[curbatch].at_least_one_chunk = true;
2951
2952 /* Set up the chunk. */
2953 chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
2954 *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
2955 chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
2956 chunk->used = size;
2957
2958 /*
2959 * Push it onto the list of chunks, so that it can be found if we need to
2960 * increase the number of buckets or batches (batch 0 only) and later for
2961 * freeing the memory (all batches).
2962 */
2963 chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
2964 hashtable->batches[curbatch].shared->chunks = chunk_shared;
2965
2967 {
2968 /*
2969 * Make this the current chunk so that we can use the fast path to
2970 * fill the rest of it up in future calls.
2971 */
2972 hashtable->current_chunk = chunk;
2973 hashtable->current_chunk_shared = chunk_shared;
2974 }
2975 LWLockRelease(&pstate->lock);
2976
2977 Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
2979
2980 return result;
2981}
2982
2983/*
2984 * One backend needs to set up the shared batch state including tuplestores.
2985 * Other backends will ensure they have correctly configured accessors by
2986 * called ExecParallelHashEnsureBatchAccessors().
2987 */
2988static void
2990{
2991 ParallelHashJoinState *pstate = hashtable->parallel_state;
2992 ParallelHashJoinBatch *batches;
2993 MemoryContext oldcxt;
2994 int i;
2995
2996 Assert(hashtable->batches == NULL);
2997
2998 /* Allocate space. */
2999 pstate->batches =
3000 dsa_allocate0(hashtable->area,
3001 EstimateParallelHashJoinBatch(hashtable) * nbatch);
3002 pstate->nbatch = nbatch;
3003 batches = dsa_get_address(hashtable->area, pstate->batches);
3004
3005 /*
3006 * Use hash join spill memory context to allocate accessors, including
3007 * buffers for the temporary files.
3008 */
3009 oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
3010
3011 /* Allocate this backend's accessor array. */
3012 hashtable->nbatch = nbatch;
3013 hashtable->batches =
3015
3016 /* Set up the shared state, tuplestores and backend-local accessors. */
3017 for (i = 0; i < hashtable->nbatch; ++i)
3018 {
3019 ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3021 char name[MAXPGPATH];
3022
3023 /*
3024 * All members of shared were zero-initialized. We just need to set
3025 * up the Barrier.
3026 */
3027 BarrierInit(&shared->batch_barrier, 0);
3028 if (i == 0)
3029 {
3030 /* Batch 0 doesn't need to be loaded. */
3031 BarrierAttach(&shared->batch_barrier);
3032 while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBE)
3034 BarrierDetach(&shared->batch_barrier);
3035 }
3036
3037 /* Initialize accessor state. All members were zero-initialized. */
3038 accessor->shared = shared;
3039
3040 /* Initialize the shared tuplestores. */
3041 snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
3042 accessor->inner_tuples =
3044 pstate->nparticipants,
3046 sizeof(uint32),
3048 &pstate->fileset,
3049 name);
3050 snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
3051 accessor->outer_tuples =
3053 pstate->nparticipants),
3054 pstate->nparticipants,
3056 sizeof(uint32),
3058 &pstate->fileset,
3059 name);
3060 }
3061
3062 MemoryContextSwitchTo(oldcxt);
3063}
3064
3065/*
3066 * Free the current set of ParallelHashJoinBatchAccessor objects.
3067 */
3068static void
3070{
3071 int i;
3072
3073 for (i = 0; i < hashtable->nbatch; ++i)
3074 {
3075 /* Make sure no files are left open. */
3076 sts_end_write(hashtable->batches[i].inner_tuples);
3077 sts_end_write(hashtable->batches[i].outer_tuples);
3080 }
3081 pfree(hashtable->batches);
3082 hashtable->batches = NULL;
3083}
3084
3085/*
3086 * Make sure this backend has up-to-date accessors for the current set of
3087 * batches.
3088 */
3089static void
3091{
3092 ParallelHashJoinState *pstate = hashtable->parallel_state;
3093 ParallelHashJoinBatch *batches;
3094 MemoryContext oldcxt;
3095 int i;
3096
3097 if (hashtable->batches != NULL)
3098 {
3099 if (hashtable->nbatch == pstate->nbatch)
3100 return;
3102 }
3103
3104 /*
3105 * We should never see a state where the batch-tracking array is freed,
3106 * because we should have given up sooner if we join when the build
3107 * barrier has reached the PHJ_BUILD_FREE phase.
3108 */
3110
3111 /*
3112 * Use hash join spill memory context to allocate accessors, including
3113 * buffers for the temporary files.
3114 */
3115 oldcxt = MemoryContextSwitchTo(hashtable->spillCxt);
3116
3117 /* Allocate this backend's accessor array. */
3118 hashtable->nbatch = pstate->nbatch;
3119 hashtable->batches =
3121
3122 /* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
3123 batches = (ParallelHashJoinBatch *)
3124 dsa_get_address(hashtable->area, pstate->batches);
3125
3126 /* Set up the accessor array and attach to the tuplestores. */
3127 for (i = 0; i < hashtable->nbatch; ++i)
3128 {
3129 ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3131
3132 accessor->shared = shared;
3133 accessor->preallocated = 0;
3134 accessor->done = false;
3135 accessor->outer_eof = false;
3136 accessor->inner_tuples =
3139 &pstate->fileset);
3140 accessor->outer_tuples =
3142 pstate->nparticipants),
3144 &pstate->fileset);
3145 }
3146
3147 MemoryContextSwitchTo(oldcxt);
3148}
3149
3150/*
3151 * Allocate an empty shared memory hash table for a given batch.
3152 */
3153void
3155{
3156 ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
3157 dsa_pointer_atomic *buckets;
3158 int nbuckets = hashtable->parallel_state->nbuckets;
3159 int i;
3160
3161 batch->buckets =
3162 dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
3163 buckets = (dsa_pointer_atomic *)
3164 dsa_get_address(hashtable->area, batch->buckets);
3165 for (i = 0; i < nbuckets; ++i)
3167}
3168
3169/*
3170 * If we are currently attached to a shared hash join batch, detach. If we
3171 * are last to detach, clean up.
3172 */
3173void
3175{
3176 if (hashtable->parallel_state != NULL &&
3177 hashtable->curbatch >= 0)
3178 {
3179 int curbatch = hashtable->curbatch;
3180 ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
3181 bool attached = true;
3182
3183 /* Make sure any temporary files are closed. */
3184 sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
3185 sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
3186
3187 /* After attaching we always get at least to PHJ_BATCH_PROBE. */
3190
3191 /*
3192 * If we're abandoning the PHJ_BATCH_PROBE phase early without having
3193 * reached the end of it, it means the plan doesn't want any more
3194 * tuples, and it is happy to abandon any tuples buffered in this
3195 * process's subplans. For correctness, we can't allow any process to
3196 * execute the PHJ_BATCH_SCAN phase, because we will never have the
3197 * complete set of match bits. Therefore we skip emitting unmatched
3198 * tuples in all backends (if this is a full/right join), as if those
3199 * tuples were all due to be emitted by this process and it has
3200 * abandoned them too.
3201 */
3202 if (BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_PROBE &&
3203 !hashtable->batches[curbatch].outer_eof)
3204 {
3205 /*
3206 * This flag may be written to by multiple backends during
3207 * PHJ_BATCH_PROBE phase, but will only be read in PHJ_BATCH_SCAN
3208 * phase so requires no extra locking.
3209 */
3210 batch->skip_unmatched = true;
3211 }
3212
3213 /*
3214 * Even if we aren't doing a full/right outer join, we'll step through
3215 * the PHJ_BATCH_SCAN phase just to maintain the invariant that
3216 * freeing happens in PHJ_BATCH_FREE, but that'll be wait-free.
3217 */
3220 if (attached && BarrierArriveAndDetach(&batch->batch_barrier))
3221 {
3222 /*
3223 * We are not longer attached to the batch barrier, but we're the
3224 * process that was chosen to free resources and it's safe to
3225 * assert the current phase. The ParallelHashJoinBatch can't go
3226 * away underneath us while we are attached to the build barrier,
3227 * making this access safe.
3228 */
3230
3231 /* Free shared chunks and buckets. */
3232 while (DsaPointerIsValid(batch->chunks))
3233 {
3235 dsa_get_address(hashtable->area, batch->chunks);
3236 dsa_pointer next = chunk->next.shared;
3237
3238 dsa_free(hashtable->area, batch->chunks);
3239 batch->chunks = next;
3240 }
3241 if (DsaPointerIsValid(batch->buckets))
3242 {
3243 dsa_free(hashtable->area, batch->buckets);
3244 batch->buckets = InvalidDsaPointer;
3245 }
3246 }
3247
3248 /*
3249 * Track the largest batch we've been attached to. Though each
3250 * backend might see a different subset of batches, explain.c will
3251 * scan the results from all backends to find the largest value.
3252 */
3253 hashtable->spacePeak =
3254 Max(hashtable->spacePeak,
3255 batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
3256
3257 /* Remember that we are not attached to a batch. */
3258 hashtable->curbatch = -1;
3259 }
3260}
3261
3262/*
3263 * Detach from all shared resources. If we are last to detach, clean up.
3264 */
3265void
3267{
3268 ParallelHashJoinState *pstate = hashtable->parallel_state;
3269
3270 /*
3271 * If we're involved in a parallel query, we must either have gotten all
3272 * the way to PHJ_BUILD_RUN, or joined too late and be in PHJ_BUILD_FREE.
3273 */
3274 Assert(!pstate ||
3276
3277 if (pstate && BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_RUN)
3278 {
3279 int i;
3280
3281 /* Make sure any temporary files are closed. */
3282 if (hashtable->batches)
3283 {
3284 for (i = 0; i < hashtable->nbatch; ++i)
3285 {
3286 sts_end_write(hashtable->batches[i].inner_tuples);
3287 sts_end_write(hashtable->batches[i].outer_tuples);
3290 }
3291 }
3292
3293 /* If we're last to detach, clean up shared memory. */
3295 {
3296 /*
3297 * Late joining processes will see this state and give up
3298 * immediately.
3299 */
3301
3302 if (DsaPointerIsValid(pstate->batches))
3303 {
3304 dsa_free(hashtable->area, pstate->batches);
3305 pstate->batches = InvalidDsaPointer;
3306 }
3307 }
3308 }
3309 hashtable->parallel_state = NULL;
3310}
3311
3312/*
3313 * Get the first tuple in a given bucket identified by number.
3314 */
3315static inline HashJoinTuple
3317{
3318 HashJoinTuple tuple;
3319 dsa_pointer p;
3320
3321 Assert(hashtable->parallel_state);
3322 p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
3323 tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
3324
3325 return tuple;
3326}
3327
3328/*
3329 * Get the next tuple in the same bucket as 'tuple'.
3330 */
3331static inline HashJoinTuple
3333{
3335
3336 Assert(hashtable->parallel_state);
3337 next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
3338
3339 return next;
3340}
3341
3342/*
3343 * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
3344 */
3345static inline void
3347 HashJoinTuple tuple,
3348 dsa_pointer tuple_shared)
3349{
3350 for (;;)
3351 {
3352 tuple->next.shared = dsa_pointer_atomic_read(head);
3354 &tuple->next.shared,
3355 tuple_shared))
3356 break;
3357 }
3358}
3359
3360/*
3361 * Prepare to work on a given batch.
3362 */
3363void
3365{
3366 Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
3367
3368 hashtable->curbatch = batchno;
3369 hashtable->buckets.shared = (dsa_pointer_atomic *)
3370 dsa_get_address(hashtable->area,
3371 hashtable->batches[batchno].shared->buckets);
3372 hashtable->nbuckets = hashtable->parallel_state->nbuckets;
3373 hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
3374 hashtable->current_chunk = NULL;
3376 hashtable->batches[batchno].at_least_one_chunk = false;
3377}
3378
3379/*
3380 * Take the next available chunk from the queue of chunks being worked on in
3381 * parallel. Return NULL if there are none left. Otherwise return a pointer
3382 * to the chunk, and set *shared to the DSA pointer to the chunk.
3383 */
3384static HashMemoryChunk
3386{
3387 ParallelHashJoinState *pstate = hashtable->parallel_state;
3389
3390 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3392 {
3393 *shared = pstate->chunk_work_queue;
3395 dsa_get_address(hashtable->area, *shared);
3396 pstate->chunk_work_queue = chunk->next.shared;
3397 }
3398 else
3399 chunk = NULL;
3400 LWLockRelease(&pstate->lock);
3401
3402 return chunk;
3403}
3404
3405/*
3406 * Increase the space preallocated in this backend for a given inner batch by
3407 * at least a given amount. This allows us to track whether a given batch
3408 * would fit in memory when loaded back in. Also increase the number of
3409 * batches or buckets if required.
3410 *
3411 * This maintains a running estimation of how much space will be taken when we
3412 * load the batch back into memory by simulating the way chunks will be handed
3413 * out to workers. It's not perfectly accurate because the tuples will be
3414 * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
3415 * it should be pretty close. It tends to overestimate by a fraction of a
3416 * chunk per worker since all workers gang up to preallocate during hashing,
3417 * but workers tend to reload batches alone if there are enough to go around,
3418 * leaving fewer partially filled chunks. This effect is bounded by
3419 * nparticipants.
3420 *
3421 * Return false if the number of batches or buckets has changed, and the
3422 * caller should reconsider which batch a given tuple now belongs in and call
3423 * again.
3424 */
3425static bool
3426ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
3427{
3428 ParallelHashJoinState *pstate = hashtable->parallel_state;
3429 ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
3431
3432 Assert(batchno > 0);
3433 Assert(batchno < hashtable->nbatch);
3434 Assert(size == MAXALIGN(size));
3435
3436 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3437
3438 /* Has another participant commanded us to help grow? */
3439 if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
3441 {
3442 ParallelHashGrowth growth = pstate->growth;
3443
3444 LWLockRelease(&pstate->lock);
3445 if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
3447 else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3449
3450 return false;
3451 }
3452
3453 if (pstate->growth != PHJ_GROWTH_DISABLED &&
3454 batch->at_least_one_chunk &&
3456 > pstate->space_allowed))
3457 {
3458 /*
3459 * We have determined that this batch would exceed the space budget if
3460 * loaded into memory. Command all participants to help repartition.
3461 */
3462 batch->shared->space_exhausted = true;
3464 LWLockRelease(&pstate->lock);
3465
3466 return false;
3467 }
3468
3469 batch->at_least_one_chunk = true;
3471 batch->preallocated = want;
3472 LWLockRelease(&pstate->lock);
3473
3474 return true;
3475}
3476
3477/*
3478 * Calculate the limit on how much memory can be used by Hash and similar
3479 * plan types. This is work_mem times hash_mem_multiplier, and is
3480 * expressed in bytes.
3481 *
3482 * Exported for use by the planner, as well as other hash-like executor
3483 * nodes. This is a rather random place for this, but there is no better
3484 * place.
3485 */
3486size_t
3488{
3489 double mem_limit;
3490
3491 /* Do initial calculation in double arithmetic */
3492 mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;
3493
3494 /* Clamp in case it doesn't fit in size_t */
3495 mem_limit = Min(mem_limit, (double) SIZE_MAX);
3496
3497 return (size_t) mem_limit;
3498}
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
int ParallelWorkerNumber
Definition: parallel.c:114
void PrepareTempTablespaces(void)
Definition: tablespace.c:1331
bool BarrierArriveAndDetachExceptLast(Barrier *barrier)
Definition: barrier.c:213
bool BarrierArriveAndDetach(Barrier *barrier)
Definition: barrier.c:203
int BarrierAttach(Barrier *barrier)
Definition: barrier.c:236
void BarrierInit(Barrier *barrier, int participants)
Definition: barrier.c:100
int BarrierPhase(Barrier *barrier)
Definition: barrier.c:265
bool BarrierArriveAndWait(Barrier *barrier, uint32 wait_event_info)
Definition: barrier.c:125
bool BarrierDetach(Barrier *barrier)
Definition: barrier.c:256
static int32 next
Definition: blutils.c:219
void BufFileClose(BufFile *file)
Definition: buffile.c:412
#define Min(x, y)
Definition: c.h:958
#define MAXALIGN(LEN)
Definition: c.h:765
#define Max(x, y)
Definition: c.h:952
#define Assert(condition)
Definition: c.h:812
uint32_t uint32
Definition: c.h:485
#define OidIsValid(objectId)
Definition: c.h:729
size_t Size
Definition: c.h:559
void * dsa_get_address(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:942
void dsa_free(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:826
#define dsa_allocate0(area, size)
Definition: dsa.h:113
uint64 dsa_pointer
Definition: dsa.h:62
#define dsa_pointer_atomic_init
Definition: dsa.h:64
#define dsa_allocate(area, size)
Definition: dsa.h:109
#define dsa_pointer_atomic_write
Definition: dsa.h:66
#define InvalidDsaPointer
Definition: dsa.h:78
#define dsa_pointer_atomic_compare_exchange
Definition: dsa.h:68
#define dsa_pointer_atomic_read
Definition: dsa.h:65
pg_atomic_uint64 dsa_pointer_atomic
Definition: dsa.h:63
#define DsaPointerIsValid(x)
Definition: dsa.h:106
int my_log2(long num)
Definition: dynahash.c:1794
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
void ExecReScan(PlanState *node)
Definition: execAmi.c:76
void ExecEndNode(PlanState *node)
Definition: execProcnode.c:562
PlanState * ExecInitNode(Plan *node, EState *estate, int eflags)
Definition: execProcnode.c:142
MinimalTuple ExecFetchSlotMinimalTuple(TupleTableSlot *slot, bool *shouldFree)
Definition: execTuples.c:1879
TupleTableSlot * ExecStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1633
void ExecInitResultTupleSlotTL(PlanState *planstate, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1986
const TupleTableSlotOps TTSOpsMinimalTuple
Definition: execTuples.c:86
void ExecAssignExprContext(EState *estate, PlanState *planstate)
Definition: execUtils.c:485
#define outerPlanState(node)
Definition: execnodes.h:1221
struct HashJoinTupleData * HashJoinTuple
Definition: execnodes.h:2216
struct HashInstrumentation HashInstrumentation
#define EXEC_FLAG_BACKWARD
Definition: executor.h:68
#define ResetExprContext(econtext)
Definition: executor.h:557
static bool ExecQualAndReset(ExprState *state, ExprContext *econtext)
Definition: executor.h:453
static TupleTableSlot * ExecProcNode(PlanState *node)
Definition: executor.h:267
static Datum ExecEvalExprSwitchContext(ExprState *state, ExprContext *econtext, bool *isNull)
Definition: executor.h:361
#define EXEC_FLAG_MARK
Definition: executor.h:69
#define palloc_object(type)
Definition: fe_memutils.h:74
#define MaxAllocSize
Definition: fe_memutils.h:22
#define repalloc_array(pointer, type, count)
Definition: fe_memutils.h:78
#define palloc0_array(type, count)
Definition: fe_memutils.h:77
#define palloc0_object(type)
Definition: fe_memutils.h:75
Datum FunctionCall1Coll(FmgrInfo *flinfo, Oid collation, Datum arg1)
Definition: fmgr.c:1129
double hash_mem_multiplier
Definition: globals.c:131
int work_mem
Definition: globals.c:130
uint64 chunk
#define PHJ_GROW_BATCHES_REPARTITION
Definition: hashjoin.h:287
struct HashMemoryChunkData * HashMemoryChunk
Definition: hashjoin.h:148
#define PHJ_BATCH_SCAN
Definition: hashjoin.h:281
#define HASH_CHUNK_DATA(hc)
Definition: hashjoin.h:152
#define PHJ_BATCH_PROBE
Definition: hashjoin.h:280
#define PHJ_GROW_BUCKETS_REINSERT
Definition: hashjoin.h:295
#define SKEW_MIN_OUTER_FRACTION
Definition: hashjoin.h:122
#define PHJ_GROW_BUCKETS_ELECT
Definition: hashjoin.h:293
#define HJTUPLE_OVERHEAD
Definition: hashjoin.h:90
#define PHJ_GROW_BUCKETS_PHASE(n)
Definition: hashjoin.h:296
#define PHJ_GROW_BATCHES_ELECT
Definition: hashjoin.h:285
#define ParallelHashJoinBatchInner(batch)
Definition: hashjoin.h:182
#define PHJ_BUILD_FREE
Definition: hashjoin.h:274
#define PHJ_BUILD_HASH_INNER
Definition: hashjoin.h:271
#define NthParallelHashJoinBatch(base, n)
Definition: hashjoin.h:198
#define HASH_CHUNK_THRESHOLD
Definition: hashjoin.h:154
#define PHJ_BUILD_HASH_OUTER
Definition: hashjoin.h:272
#define HJTUPLE_MINTUPLE(hjtup)
Definition: hashjoin.h:91
#define SKEW_BUCKET_OVERHEAD
Definition: hashjoin.h:119
#define PHJ_GROW_BATCHES_DECIDE
Definition: hashjoin.h:288
#define PHJ_GROW_BATCHES_REALLOCATE
Definition: hashjoin.h:286
#define HASH_CHUNK_HEADER_SIZE
Definition: hashjoin.h:151
#define PHJ_GROW_BATCHES_FINISH
Definition: hashjoin.h:289
#define ParallelHashJoinBatchOuter(batch, nparticipants)
Definition: hashjoin.h:187
#define SKEW_HASH_MEM_PERCENT
Definition: hashjoin.h:121
#define PHJ_BUILD_ALLOCATE
Definition: hashjoin.h:270
#define PHJ_GROW_BUCKETS_REALLOCATE
Definition: hashjoin.h:294
#define PHJ_BATCH_FREE
Definition: hashjoin.h:282
#define PHJ_GROW_BATCHES_PHASE(n)
Definition: hashjoin.h:290
#define HASH_CHUNK_SIZE
Definition: hashjoin.h:150
ParallelHashGrowth
Definition: hashjoin.h:231
@ PHJ_GROWTH_NEED_MORE_BUCKETS
Definition: hashjoin.h:235
@ PHJ_GROWTH_OK
Definition: hashjoin.h:233
@ PHJ_GROWTH_NEED_MORE_BATCHES
Definition: hashjoin.h:237
@ PHJ_GROWTH_DISABLED
Definition: hashjoin.h:239
#define PHJ_BUILD_RUN
Definition: hashjoin.h:273
#define INVALID_SKEW_BUCKET_NO
Definition: hashjoin.h:120
#define PHJ_BUILD_ELECT
Definition: hashjoin.h:269
#define EstimateParallelHashJoinBatch(hashtable)
Definition: hashjoin.h:193
void heap_free_minimal_tuple(MinimalTuple mtup)
Definition: heaptuple.c:1524
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
#define HeapTupleHeaderHasMatch(tup)
Definition: htup_details.h:514
#define SizeofMinimalTupleHeader
Definition: htup_details.h:647
#define HeapTupleHeaderClearMatch(tup)
Definition: htup_details.h:524
void InstrStartNode(Instrumentation *instr)
Definition: instrument.c:68
void InstrStopNode(Instrumentation *instr, double nTuples)
Definition: instrument.c:84
int j
Definition: isn.c:73
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
void free_attstatsslot(AttStatsSlot *sslot)
Definition: lsyscache.c:3344
bool get_attstatsslot(AttStatsSlot *sslot, HeapTuple statstuple, int reqkind, Oid reqop, int flags)
Definition: lsyscache.c:3234
#define ATTSTATSSLOT_NUMBERS
Definition: lsyscache.h:43
#define ATTSTATSSLOT_VALUES
Definition: lsyscache.h:42
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1168
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1781
@ LW_EXCLUSIVE
Definition: lwlock.h:114
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1181
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc(Size size)
Definition: mcxt.c:1317
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
Definition: nodeHash.c:1452
static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
Definition: nodeHash.c:2512
void ExecParallelHashTableInsert(HashJoinTable hashtable, TupleTableSlot *slot, uint32 hashvalue)
Definition: nodeHash.c:1704
static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
Definition: nodeHash.c:3426
void ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
Definition: nodeHash.c:3364
static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
Definition: nodeHash.c:1515
static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
Definition: nodeHash.c:3090
void ExecHashTableReset(HashJoinTable hashtable)
Definition: nodeHash.c:2192
static void ExecHashBuildSkewHash(HashState *hashstate, HashJoinTable hashtable, Hash *node, int mcvsToUse)
Definition: nodeHash.c:2268
static HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
Definition: nodeHash.c:3316
void ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
Definition: nodeHash.c:2645
bool ExecParallelScanHashBucket(HashJoinState *hjstate, ExprContext *econtext)
Definition: nodeHash.c:1918
static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size, dsa_pointer *shared)
Definition: nodeHash.c:2841
static void * dense_alloc(HashJoinTable hashtable, Size size)
Definition: nodeHash.c:2761
static void MultiExecParallelHash(HashState *node)
Definition: nodeHash.c:219
void ExecHashAccumInstrumentation(HashInstrumentation *instrument, HashJoinTable hashtable)
Definition: nodeHash.c:2742
static void MultiExecPrivateHash(HashState *node)
Definition: nodeHash.c:138
void ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
Definition: nodeHash.c:2670
static void ExecParallelHashPushTuple(dsa_pointer_atomic *head, HashJoinTuple tuple, dsa_pointer tuple_shared)
Definition: nodeHash.c:3346
Node * MultiExecHash(HashState *node)
Definition: nodeHash.c:105
HashState * ExecInitHash(Hash *node, EState *estate, int eflags)
Definition: nodeHash.c:370
void ExecHashTableDetachBatch(HashJoinTable hashtable)
Definition: nodeHash.c:3174
void ExecHashEstimate(HashState *node, ParallelContext *pcxt)
Definition: nodeHash.c:2626
void ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, bool try_combined_hash_mem, int parallel_workers, size_t *space_allowed, int *numbuckets, int *numbatches, int *num_skew_mcvs)
Definition: nodeHash.c:658
void ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
Definition: nodeHash.c:1969
void ExecHashTableDetach(HashJoinTable hashtable)
Definition: nodeHash.c:3266
bool ExecParallelScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
Definition: nodeHash.c:2129
void ExecHashTableDestroy(HashJoinTable hashtable)
Definition: nodeHash.c:866
HashJoinTable ExecHashTableCreate(HashState *state)
Definition: nodeHash.c:446
#define NTUP_PER_BUCKET
Definition: nodeHash.c:655
int ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
Definition: nodeHash.c:2420
static void ExecHashIncreaseNumBatches(HashJoinTable hashtable)
Definition: nodeHash.c:899
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3487
bool ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
Definition: nodeHash.c:2055
static void ExecHashSkewTableInsert(HashJoinTable hashtable, TupleTableSlot *slot, uint32 hashvalue, int bucketNumber)
Definition: nodeHash.c:2466
static void ExecParallelHashRepartitionRest(HashJoinTable hashtable)
Definition: nodeHash.c:1362
static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
Definition: nodeHash.c:2989
void ExecHashTableResetMatchFlags(HashJoinTable hashtable)
Definition: nodeHash.c:2220
static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
Definition: nodeHash.c:3069
static HashJoinTuple ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
Definition: nodeHash.c:3332
void ExecEndHash(HashState *node)
Definition: nodeHash.c:427
void ExecShutdownHash(HashState *node)
Definition: nodeHash.c:2696
void ExecHashTableInsert(HashJoinTable hashtable, TupleTableSlot *slot, uint32 hashvalue)
Definition: nodeHash.c:1614
static TupleTableSlot * ExecHash(PlanState *pstate)
Definition: nodeHash.c:91
void ExecHashGetBucketAndBatch(HashJoinTable hashtable, uint32 hashvalue, int *bucketno, int *batchno)
Definition: nodeHash.c:1825
static void ExecParallelHashMergeCounters(HashJoinTable hashtable)
Definition: nodeHash.c:1422
void ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
Definition: nodeHash.c:3154
bool ExecParallelPrepHashTableForUnmatched(HashJoinState *hjstate)
Definition: nodeHash.c:1990
void ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable, TupleTableSlot *slot, uint32 hashvalue)
Definition: nodeHash.c:1770
static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
Definition: nodeHash.c:3385
void ExecReScanHash(HashState *node)
Definition: nodeHash.c:2246
bool ExecScanHashBucket(HashJoinState *hjstate, ExprContext *econtext)
Definition: nodeHash.c:1857
static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
Definition: nodeHash.c:1295
static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
Definition: nodeHash.c:1063
void ExecHashRetrieveInstrumentation(HashState *node)
Definition: nodeHash.c:2711
void ExecHashJoinSaveTuple(MinimalTuple tuple, uint32 hashvalue, BufFile **fileptr, HashJoinTable hashtable)
#define makeNode(_type_)
Definition: nodes.h:155
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
#define repalloc0_array(pointer, type, oldcount, count)
Definition: palloc.h:109
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
static uint32 pg_rotate_right32(uint32 word, int n)
Definition: pg_bitutils.h:398
#define pg_nextpower2_size_t
Definition: pg_bitutils.h:417
static uint32 pg_prevpower2_32(uint32 num)
Definition: pg_bitutils.h:235
#define pg_prevpower2_size_t
Definition: pg_bitutils.h:418
#define MAXPGPATH
#define NIL
Definition: pg_list.h:68
#define outerPlan(node)
Definition: plannodes.h:183
#define snprintf
Definition: port.h:238
#define printf(...)
Definition: port.h:244
static uint32 DatumGetUInt32(Datum X)
Definition: postgres.h:222
uintptr_t Datum
Definition: postgres.h:64
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:172
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:252
#define InvalidOid
Definition: postgres_ext.h:36
SharedTuplestoreAccessor * sts_attach(SharedTuplestore *sts, int my_participant_number, SharedFileSet *fileset)
MinimalTuple sts_parallel_scan_next(SharedTuplestoreAccessor *accessor, void *meta_data)
void sts_end_write(SharedTuplestoreAccessor *accessor)
SharedTuplestoreAccessor * sts_initialize(SharedTuplestore *sts, int participants, int my_participant_number, size_t meta_data_size, int flags, SharedFileSet *fileset, const char *name)
void sts_end_parallel_scan(SharedTuplestoreAccessor *accessor)
void sts_puttuple(SharedTuplestoreAccessor *accessor, void *meta_data, MinimalTuple tuple)
void sts_begin_parallel_scan(SharedTuplestoreAccessor *accessor)
#define SHARED_TUPLESTORE_SINGLE_PASS
void * shm_toc_allocate(shm_toc *toc, Size nbytes)
Definition: shm_toc.c:88
void shm_toc_insert(shm_toc *toc, uint64 key, void *address)
Definition: shm_toc.c:171
void * shm_toc_lookup(shm_toc *toc, uint64 key, bool noError)
Definition: shm_toc.c:232
#define shm_toc_estimate_chunk(e, sz)
Definition: shm_toc.h:51
#define shm_toc_estimate_keys(e, cnt)
Definition: shm_toc.h:53
Size add_size(Size s1, Size s2)
Definition: shmem.c:488
Size mul_size(Size s1, Size s2)
Definition: shmem.c:505
static pg_noinline void Size size
Definition: slab.c:607
Datum * values
Definition: lsyscache.h:53
float4 * numbers
Definition: lsyscache.h:56
TupleTableSlot * ecxt_innertuple
Definition: execnodes.h:260
TupleTableSlot * ecxt_outertuple
Definition: execnodes.h:262
HashJoinTuple hj_CurTuple
Definition: execnodes.h:2228
int hj_CurSkewBucketNo
Definition: execnodes.h:2227
ExprState * hashclauses
Definition: execnodes.h:2222
uint32 hj_CurHashValue
Definition: execnodes.h:2225
int hj_CurBucketNo
Definition: execnodes.h:2226
HashJoinTable hj_HashTable
Definition: execnodes.h:2224
TupleTableSlot * hj_HashTupleSlot
Definition: execnodes.h:2230
struct HashJoinTupleData ** unshared
Definition: hashjoin.h:311
HashMemoryChunk chunks
Definition: hashjoin.h:355
ParallelHashJoinBatchAccessor * batches
Definition: hashjoin.h:361
MemoryContext hashCxt
Definition: hashjoin.h:350
double totalTuples
Definition: hashjoin.h:330
union HashJoinTableData::@107 buckets
double partialTuples
Definition: hashjoin.h:331
ParallelHashJoinState * parallel_state
Definition: hashjoin.h:360
MemoryContext spillCxt
Definition: hashjoin.h:352
HashMemoryChunk current_chunk
Definition: hashjoin.h:358
Size spaceAllowedSkew
Definition: hashjoin.h:348
int * skewBucketNums
Definition: hashjoin.h:320
BufFile ** innerBatchFile
Definition: hashjoin.h:341
int log2_nbuckets_optimal
Definition: hashjoin.h:305
dsa_pointer_atomic * shared
Definition: hashjoin.h:313
dsa_area * area
Definition: hashjoin.h:359
BufFile ** outerBatchFile
Definition: hashjoin.h:342
dsa_pointer current_chunk_shared
Definition: hashjoin.h:362
MemoryContext batchCxt
Definition: hashjoin.h:351
double skewTuples
Definition: hashjoin.h:332
HashSkewBucket ** skewBucket
Definition: hashjoin.h:317
dsa_pointer shared
Definition: hashjoin.h:84
union HashJoinTupleData::@105 next
uint32 hashvalue
Definition: hashjoin.h:86
struct HashJoinTupleData * unshared
Definition: hashjoin.h:83
union HashMemoryChunkData::@106 next
struct HashMemoryChunkData * unshared
Definition: hashjoin.h:137
HashJoinTuple tuples
Definition: hashjoin.h:116
uint32 hashvalue
Definition: hashjoin.h:115
struct ParallelHashJoinState * parallel_state
Definition: execnodes.h:2799
HashJoinTable hashtable
Definition: execnodes.h:2777
SharedHashInfo * shared_info
Definition: execnodes.h:2789
ExprState * hash_expr
Definition: execnodes.h:2778
Oid skew_collation
Definition: execnodes.h:2781
FmgrInfo * skew_hashfunction
Definition: execnodes.h:2780
PlanState ps
Definition: execnodes.h:2776
HashInstrumentation * hinstrument
Definition: execnodes.h:2796
AttrNumber skewColumn
Definition: plannodes.h:1208
Oid skewTable
Definition: plannodes.h:1207
bool skewInherit
Definition: plannodes.h:1209
Cardinality rows_total
Definition: plannodes.h:1211
Plan plan
Definition: plannodes.h:1200
Definition: nodes.h:129
shm_toc_estimator estimator
Definition: parallel.h:41
shm_toc * toc
Definition: parallel.h:44
SharedTuplestoreAccessor * outer_tuples
Definition: hashjoin.h:221
ParallelHashJoinBatch * shared
Definition: hashjoin.h:209
SharedTuplestoreAccessor * inner_tuples
Definition: hashjoin.h:220
dsa_pointer chunks
Definition: hashjoin.h:167
dsa_pointer buckets
Definition: hashjoin.h:164
Barrier grow_batches_barrier
Definition: hashjoin.h:261
dsa_pointer old_batches
Definition: hashjoin.h:249
dsa_pointer chunk_work_queue
Definition: hashjoin.h:254
Barrier grow_buckets_barrier
Definition: hashjoin.h:262
ParallelHashGrowth growth
Definition: hashjoin.h:253
SharedFileSet fileset
Definition: hashjoin.h:265
dsa_pointer batches
Definition: hashjoin.h:248
Instrumentation * instrument
Definition: execnodes.h:1135
Plan * plan
Definition: execnodes.h:1125
EState * state
Definition: execnodes.h:1127
ExprContext * ps_ExprContext
Definition: execnodes.h:1164
ProjectionInfo * ps_ProjInfo
Definition: execnodes.h:1165
ExecProcNodeMtd ExecProcNode
Definition: execnodes.h:1131
bool parallel_aware
Definition: plannodes.h:141
List * qual
Definition: plannodes.h:154
int plan_width
Definition: plannodes.h:136
Cardinality plan_rows
Definition: plannodes.h:135
int plan_node_id
Definition: plannodes.h:152
HashInstrumentation hinstrument[FLEXIBLE_ARRAY_MEMBER]
Definition: execnodes.h:2767
Definition: regguts.h:323
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:269
HeapTuple SearchSysCache3(int cacheId, Datum key1, Datum key2, Datum key3)
Definition: syscache.c:243
#define TupIsNull(slot)
Definition: tuptable.h:306
const char * name