PostgreSQL Source Code  git master
lwlock.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * lwlock.c
4  * Lightweight lock manager
5  *
6  * Lightweight locks are intended primarily to provide mutual exclusion of
7  * access to shared-memory data structures. Therefore, they offer both
8  * exclusive and shared lock modes (to support read/write and read-only
9  * access to a shared object). There are few other frammishes. User-level
10  * locking should be done with the full lock manager --- which depends on
11  * LWLocks to protect its shared state.
12  *
13  * In addition to exclusive and shared modes, lightweight locks can be used to
14  * wait until a variable changes value. The variable is initially not set
15  * when the lock is acquired with LWLockAcquire, i.e. it remains set to the
16  * value it was set to when the lock was released last, and can be updated
17  * without releasing the lock by calling LWLockUpdateVar. LWLockWaitForVar
18  * waits for the variable to be updated, or until the lock is free. When
19  * releasing the lock with LWLockReleaseClearVar() the value can be set to an
20  * appropriate value for a free lock. The meaning of the variable is up to
21  * the caller, the lightweight lock code just assigns and compares it.
22  *
23  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
24  * Portions Copyright (c) 1994, Regents of the University of California
25  *
26  * IDENTIFICATION
27  * src/backend/storage/lmgr/lwlock.c
28  *
29  * NOTES:
30  *
31  * This used to be a pretty straight forward reader-writer lock
32  * implementation, in which the internal state was protected by a
33  * spinlock. Unfortunately the overhead of taking the spinlock proved to be
34  * too high for workloads/locks that were taken in shared mode very
35  * frequently. Often we were spinning in the (obviously exclusive) spinlock,
36  * while trying to acquire a shared lock that was actually free.
37  *
38  * Thus a new implementation was devised that provides wait-free shared lock
39  * acquisition for locks that aren't exclusively locked.
40  *
41  * The basic idea is to have a single atomic variable 'lockcount' instead of
42  * the formerly separate shared and exclusive counters and to use atomic
43  * operations to acquire the lock. That's fairly easy to do for plain
44  * rw-spinlocks, but a lot harder for something like LWLocks that want to wait
45  * in the OS.
46  *
47  * For lock acquisition we use an atomic compare-and-exchange on the lockcount
48  * variable. For exclusive lock we swap in a sentinel value
49  * (LW_VAL_EXCLUSIVE), for shared locks we count the number of holders.
50  *
51  * To release the lock we use an atomic decrement to release the lock. If the
52  * new value is zero (we get that atomically), we know we can/have to release
53  * waiters.
54  *
55  * Obviously it is important that the sentinel value for exclusive locks
56  * doesn't conflict with the maximum number of possible share lockers -
57  * luckily MAX_BACKENDS makes that easily possible.
58  *
59  *
60  * The attentive reader might have noticed that naively doing the above has a
61  * glaring race condition: We try to lock using the atomic operations and
62  * notice that we have to wait. Unfortunately by the time we have finished
63  * queuing, the former locker very well might have already finished it's
64  * work. That's problematic because we're now stuck waiting inside the OS.
65 
66  * To mitigate those races we use a two phased attempt at locking:
67  * Phase 1: Try to do it atomically, if we succeed, nice
68  * Phase 2: Add ourselves to the waitqueue of the lock
69  * Phase 3: Try to grab the lock again, if we succeed, remove ourselves from
70  * the queue
71  * Phase 4: Sleep till wake-up, goto Phase 1
72  *
73  * This protects us against the problem from above as nobody can release too
74  * quick, before we're queued, since after Phase 2 we're already queued.
75  * -------------------------------------------------------------------------
76  */
77 #include "postgres.h"
78 
79 #include "miscadmin.h"
80 #include "pg_trace.h"
81 #include "pgstat.h"
82 #include "port/pg_bitutils.h"
83 #include "postmaster/postmaster.h"
84 #include "storage/proc.h"
85 #include "storage/proclist.h"
86 #include "storage/spin.h"
87 #include "utils/memutils.h"
88 
89 #ifdef LWLOCK_STATS
90 #include "utils/hsearch.h"
91 #endif
92 
93 
94 #define LW_FLAG_HAS_WAITERS ((uint32) 1 << 30)
95 #define LW_FLAG_RELEASE_OK ((uint32) 1 << 29)
96 #define LW_FLAG_LOCKED ((uint32) 1 << 28)
97 
98 #define LW_VAL_EXCLUSIVE ((uint32) 1 << 24)
99 #define LW_VAL_SHARED 1
100 
101 #define LW_LOCK_MASK ((uint32) ((1 << 25)-1))
102 /* Must be greater than MAX_BACKENDS - which is 2^23-1, so we're fine. */
103 #define LW_SHARED_MASK ((uint32) ((1 << 24)-1))
104 
106  "MAX_BACKENDS too big for lwlock.c");
107 
108 /*
109  * There are three sorts of LWLock "tranches":
110  *
111  * 1. The individually-named locks defined in lwlocknames.h each have their
112  * own tranche. We absorb the names of these tranches from there into
113  * BuiltinTrancheNames here.
114  *
115  * 2. There are some predefined tranches for built-in groups of locks.
116  * These are listed in enum BuiltinTrancheIds in lwlock.h, and their names
117  * appear in BuiltinTrancheNames[] below.
118  *
119  * 3. Extensions can create new tranches, via either RequestNamedLWLockTranche
120  * or LWLockRegisterTranche. The names of these that are known in the current
121  * process appear in LWLockTrancheNames[].
122  *
123  * All these names are user-visible as wait event names, so choose with care
124  * ... and do not forget to update the documentation's list of wait events.
125  */
126 static const char *const BuiltinTrancheNames[] = {
127 #define PG_LWLOCK(id, lockname) [id] = CppAsString(lockname) "Lock",
128 #include "storage/lwlocklist.h"
129 #undef PG_LWLOCK
130  [LWTRANCHE_XACT_BUFFER] = "XactBuffer",
131  [LWTRANCHE_COMMITTS_BUFFER] = "CommitTsBuffer",
132  [LWTRANCHE_SUBTRANS_BUFFER] = "SubtransBuffer",
133  [LWTRANCHE_MULTIXACTOFFSET_BUFFER] = "MultiXactOffsetBuffer",
134  [LWTRANCHE_MULTIXACTMEMBER_BUFFER] = "MultiXactMemberBuffer",
135  [LWTRANCHE_NOTIFY_BUFFER] = "NotifyBuffer",
136  [LWTRANCHE_SERIAL_BUFFER] = "SerialBuffer",
137  [LWTRANCHE_WAL_INSERT] = "WALInsert",
138  [LWTRANCHE_BUFFER_CONTENT] = "BufferContent",
139  [LWTRANCHE_REPLICATION_ORIGIN_STATE] = "ReplicationOriginState",
140  [LWTRANCHE_REPLICATION_SLOT_IO] = "ReplicationSlotIO",
141  [LWTRANCHE_LOCK_FASTPATH] = "LockFastPath",
142  [LWTRANCHE_BUFFER_MAPPING] = "BufferMapping",
143  [LWTRANCHE_LOCK_MANAGER] = "LockManager",
144  [LWTRANCHE_PREDICATE_LOCK_MANAGER] = "PredicateLockManager",
145  [LWTRANCHE_PARALLEL_HASH_JOIN] = "ParallelHashJoin",
146  [LWTRANCHE_PARALLEL_QUERY_DSA] = "ParallelQueryDSA",
147  [LWTRANCHE_PER_SESSION_DSA] = "PerSessionDSA",
148  [LWTRANCHE_PER_SESSION_RECORD_TYPE] = "PerSessionRecordType",
149  [LWTRANCHE_PER_SESSION_RECORD_TYPMOD] = "PerSessionRecordTypmod",
150  [LWTRANCHE_SHARED_TUPLESTORE] = "SharedTupleStore",
151  [LWTRANCHE_SHARED_TIDBITMAP] = "SharedTidBitmap",
152  [LWTRANCHE_PARALLEL_APPEND] = "ParallelAppend",
153  [LWTRANCHE_PER_XACT_PREDICATE_LIST] = "PerXactPredicateList",
154  [LWTRANCHE_PGSTATS_DSA] = "PgStatsDSA",
155  [LWTRANCHE_PGSTATS_HASH] = "PgStatsHash",
156  [LWTRANCHE_PGSTATS_DATA] = "PgStatsData",
157  [LWTRANCHE_LAUNCHER_DSA] = "LogicalRepLauncherDSA",
158  [LWTRANCHE_LAUNCHER_HASH] = "LogicalRepLauncherHash",
159  [LWTRANCHE_DSM_REGISTRY_DSA] = "DSMRegistryDSA",
160  [LWTRANCHE_DSM_REGISTRY_HASH] = "DSMRegistryHash",
161  [LWTRANCHE_COMMITTS_SLRU] = "CommitTSSLRU",
162  [LWTRANCHE_MULTIXACTOFFSET_SLRU] = "MultixactOffsetSLRU",
163  [LWTRANCHE_MULTIXACTMEMBER_SLRU] = "MultixactMemberSLRU",
164  [LWTRANCHE_NOTIFY_SLRU] = "NotifySLRU",
165  [LWTRANCHE_SERIAL_SLRU] = "SerialSLRU",
166  [LWTRANCHE_SUBTRANS_SLRU] = "SubtransSLRU",
167  [LWTRANCHE_XACT_SLRU] = "XactSLRU",
168  [LWTRANCHE_PARALLEL_VACUUM_DSA] = "ParallelVacuumDSA",
169 };
170 
173  "missing entries in BuiltinTrancheNames[]");
174 
175 /*
176  * This is indexed by tranche ID minus LWTRANCHE_FIRST_USER_DEFINED, and
177  * stores the names of all dynamically-created tranches known to the current
178  * process. Any unused entries in the array will contain NULL.
179  */
180 static const char **LWLockTrancheNames = NULL;
182 
183 /*
184  * This points to the main array of LWLocks in shared memory. Backends inherit
185  * the pointer by fork from the postmaster (except in the EXEC_BACKEND case,
186  * where we have special measures to pass it down).
187  */
189 
190 /*
191  * We use this structure to keep track of locked LWLocks for release
192  * during error recovery. Normally, only a few will be held at once, but
193  * occasionally the number can be much higher; for example, the pg_buffercache
194  * extension locks all buffer partitions simultaneously.
195  */
196 #define MAX_SIMUL_LWLOCKS 200
197 
198 /* struct representing the LWLocks we're holding */
199 typedef struct LWLockHandle
200 {
204 
205 static int num_held_lwlocks = 0;
207 
208 /* struct representing the LWLock tranche request for named tranche */
210 {
214 
217 
218 /*
219  * NamedLWLockTrancheRequests is both the valid length of the request array,
220  * and the length of the shared-memory NamedLWLockTrancheArray later on.
221  * This variable and NamedLWLockTrancheArray are non-static so that
222  * postmaster.c can copy them to child processes in EXEC_BACKEND builds.
223  */
225 
226 /* points to data in shared memory: */
228 
229 static void InitializeLWLocks(void);
230 static inline void LWLockReportWaitStart(LWLock *lock);
231 static inline void LWLockReportWaitEnd(void);
232 static const char *GetLWTrancheName(uint16 trancheId);
233 
234 #define T_NAME(lock) \
235  GetLWTrancheName((lock)->tranche)
236 
237 #ifdef LWLOCK_STATS
238 typedef struct lwlock_stats_key
239 {
240  int tranche;
241  void *instance;
242 } lwlock_stats_key;
243 
244 typedef struct lwlock_stats
245 {
246  lwlock_stats_key key;
247  int sh_acquire_count;
248  int ex_acquire_count;
249  int block_count;
250  int dequeue_self_count;
251  int spin_delay_count;
252 } lwlock_stats;
253 
254 static HTAB *lwlock_stats_htab;
255 static lwlock_stats lwlock_stats_dummy;
256 #endif
257 
258 #ifdef LOCK_DEBUG
259 bool Trace_lwlocks = false;
260 
261 inline static void
262 PRINT_LWDEBUG(const char *where, LWLock *lock, LWLockMode mode)
263 {
264  /* hide statement & context here, otherwise the log is just too verbose */
265  if (Trace_lwlocks)
266  {
268 
269  ereport(LOG,
270  (errhidestmt(true),
271  errhidecontext(true),
272  errmsg_internal("%d: %s(%s %p): excl %u shared %u haswaiters %u waiters %u rOK %d",
273  MyProcPid,
274  where, T_NAME(lock), lock,
275  (state & LW_VAL_EXCLUSIVE) != 0,
277  (state & LW_FLAG_HAS_WAITERS) != 0,
278  pg_atomic_read_u32(&lock->nwaiters),
279  (state & LW_FLAG_RELEASE_OK) != 0)));
280  }
281 }
282 
283 inline static void
284 LOG_LWDEBUG(const char *where, LWLock *lock, const char *msg)
285 {
286  /* hide statement & context here, otherwise the log is just too verbose */
287  if (Trace_lwlocks)
288  {
289  ereport(LOG,
290  (errhidestmt(true),
291  errhidecontext(true),
292  errmsg_internal("%s(%s %p): %s", where,
293  T_NAME(lock), lock, msg)));
294  }
295 }
296 
297 #else /* not LOCK_DEBUG */
298 #define PRINT_LWDEBUG(a,b,c) ((void)0)
299 #define LOG_LWDEBUG(a,b,c) ((void)0)
300 #endif /* LOCK_DEBUG */
301 
302 #ifdef LWLOCK_STATS
303 
304 static void init_lwlock_stats(void);
305 static void print_lwlock_stats(int code, Datum arg);
306 static lwlock_stats * get_lwlock_stats_entry(LWLock *lock);
307 
308 static void
309 init_lwlock_stats(void)
310 {
311  HASHCTL ctl;
312  static MemoryContext lwlock_stats_cxt = NULL;
313  static bool exit_registered = false;
314 
315  if (lwlock_stats_cxt != NULL)
316  MemoryContextDelete(lwlock_stats_cxt);
317 
318  /*
319  * The LWLock stats will be updated within a critical section, which
320  * requires allocating new hash entries. Allocations within a critical
321  * section are normally not allowed because running out of memory would
322  * lead to a PANIC, but LWLOCK_STATS is debugging code that's not normally
323  * turned on in production, so that's an acceptable risk. The hash entries
324  * are small, so the risk of running out of memory is minimal in practice.
325  */
326  lwlock_stats_cxt = AllocSetContextCreate(TopMemoryContext,
327  "LWLock stats",
329  MemoryContextAllowInCriticalSection(lwlock_stats_cxt, true);
330 
331  ctl.keysize = sizeof(lwlock_stats_key);
332  ctl.entrysize = sizeof(lwlock_stats);
333  ctl.hcxt = lwlock_stats_cxt;
334  lwlock_stats_htab = hash_create("lwlock stats", 16384, &ctl,
336  if (!exit_registered)
337  {
338  on_shmem_exit(print_lwlock_stats, 0);
339  exit_registered = true;
340  }
341 }
342 
343 static void
344 print_lwlock_stats(int code, Datum arg)
345 {
346  HASH_SEQ_STATUS scan;
347  lwlock_stats *lwstats;
348 
349  hash_seq_init(&scan, lwlock_stats_htab);
350 
351  /* Grab an LWLock to keep different backends from mixing reports */
353 
354  while ((lwstats = (lwlock_stats *) hash_seq_search(&scan)) != NULL)
355  {
356  fprintf(stderr,
357  "PID %d lwlock %s %p: shacq %u exacq %u blk %u spindelay %u dequeue self %u\n",
358  MyProcPid, GetLWTrancheName(lwstats->key.tranche),
359  lwstats->key.instance, lwstats->sh_acquire_count,
360  lwstats->ex_acquire_count, lwstats->block_count,
361  lwstats->spin_delay_count, lwstats->dequeue_self_count);
362  }
363 
364  LWLockRelease(&MainLWLockArray[0].lock);
365 }
366 
367 static lwlock_stats *
368 get_lwlock_stats_entry(LWLock *lock)
369 {
370  lwlock_stats_key key;
371  lwlock_stats *lwstats;
372  bool found;
373 
374  /*
375  * During shared memory initialization, the hash table doesn't exist yet.
376  * Stats of that phase aren't very interesting, so just collect operations
377  * on all locks in a single dummy entry.
378  */
379  if (lwlock_stats_htab == NULL)
380  return &lwlock_stats_dummy;
381 
382  /* Fetch or create the entry. */
383  MemSet(&key, 0, sizeof(key));
384  key.tranche = lock->tranche;
385  key.instance = lock;
386  lwstats = hash_search(lwlock_stats_htab, &key, HASH_ENTER, &found);
387  if (!found)
388  {
389  lwstats->sh_acquire_count = 0;
390  lwstats->ex_acquire_count = 0;
391  lwstats->block_count = 0;
392  lwstats->dequeue_self_count = 0;
393  lwstats->spin_delay_count = 0;
394  }
395  return lwstats;
396 }
397 #endif /* LWLOCK_STATS */
398 
399 
400 /*
401  * Compute number of LWLocks required by named tranches. These will be
402  * allocated in the main array.
403  */
404 static int
406 {
407  int numLocks = 0;
408  int i;
409 
410  for (i = 0; i < NamedLWLockTrancheRequests; i++)
411  numLocks += NamedLWLockTrancheRequestArray[i].num_lwlocks;
412 
413  return numLocks;
414 }
415 
416 /*
417  * Compute shmem space needed for LWLocks and named tranches.
418  */
419 Size
421 {
422  Size size;
423  int i;
424  int numLocks = NUM_FIXED_LWLOCKS;
425 
426  /* Calculate total number of locks needed in the main array. */
427  numLocks += NumLWLocksForNamedTranches();
428 
429  /* Space for the LWLock array. */
430  size = mul_size(numLocks, sizeof(LWLockPadded));
431 
432  /* Space for dynamic allocation counter, plus room for alignment. */
433  size = add_size(size, sizeof(int) + LWLOCK_PADDED_SIZE);
434 
435  /* space for named tranches. */
437 
438  /* space for name of each tranche. */
439  for (i = 0; i < NamedLWLockTrancheRequests; i++)
440  size = add_size(size, strlen(NamedLWLockTrancheRequestArray[i].tranche_name) + 1);
441 
442  return size;
443 }
444 
445 /*
446  * Allocate shmem space for the main LWLock array and all tranches and
447  * initialize it. We also register extension LWLock tranches here.
448  */
449 void
451 {
452  if (!IsUnderPostmaster)
453  {
454  Size spaceLocks = LWLockShmemSize();
455  int *LWLockCounter;
456  char *ptr;
457 
458  /* Allocate space */
459  ptr = (char *) ShmemAlloc(spaceLocks);
460 
461  /* Leave room for dynamic allocation of tranches */
462  ptr += sizeof(int);
463 
464  /* Ensure desired alignment of LWLock array */
465  ptr += LWLOCK_PADDED_SIZE - ((uintptr_t) ptr) % LWLOCK_PADDED_SIZE;
466 
467  MainLWLockArray = (LWLockPadded *) ptr;
468 
469  /*
470  * Initialize the dynamic-allocation counter for tranches, which is
471  * stored just before the first LWLock.
472  */
473  LWLockCounter = (int *) ((char *) MainLWLockArray - sizeof(int));
474  *LWLockCounter = LWTRANCHE_FIRST_USER_DEFINED;
475 
476  /* Initialize all LWLocks */
478  }
479 
480  /* Register named extension LWLock tranches in the current process. */
481  for (int i = 0; i < NamedLWLockTrancheRequests; i++)
483  NamedLWLockTrancheArray[i].trancheName);
484 }
485 
486 /*
487  * Initialize LWLocks that are fixed and those belonging to named tranches.
488  */
489 static void
491 {
492  int numNamedLocks = NumLWLocksForNamedTranches();
493  int id;
494  int i;
495  int j;
496  LWLockPadded *lock;
497 
498  /* Initialize all individual LWLocks in main array */
499  for (id = 0, lock = MainLWLockArray; id < NUM_INDIVIDUAL_LWLOCKS; id++, lock++)
500  LWLockInitialize(&lock->lock, id);
501 
502  /* Initialize buffer mapping LWLocks in main array */
504  for (id = 0; id < NUM_BUFFER_PARTITIONS; id++, lock++)
506 
507  /* Initialize lmgrs' LWLocks in main array */
509  for (id = 0; id < NUM_LOCK_PARTITIONS; id++, lock++)
511 
512  /* Initialize predicate lmgrs' LWLocks in main array */
514  for (id = 0; id < NUM_PREDICATELOCK_PARTITIONS; id++, lock++)
516 
517  /*
518  * Copy the info about any named tranches into shared memory (so that
519  * other processes can see it), and initialize the requested LWLocks.
520  */
522  {
523  char *trancheNames;
524 
526  &MainLWLockArray[NUM_FIXED_LWLOCKS + numNamedLocks];
527 
528  trancheNames = (char *) NamedLWLockTrancheArray +
531 
532  for (i = 0; i < NamedLWLockTrancheRequests; i++)
533  {
534  NamedLWLockTrancheRequest *request;
535  NamedLWLockTranche *tranche;
536  char *name;
537 
538  request = &NamedLWLockTrancheRequestArray[i];
539  tranche = &NamedLWLockTrancheArray[i];
540 
541  name = trancheNames;
542  trancheNames += strlen(request->tranche_name) + 1;
543  strcpy(name, request->tranche_name);
544  tranche->trancheId = LWLockNewTrancheId();
545  tranche->trancheName = name;
546 
547  for (j = 0; j < request->num_lwlocks; j++, lock++)
548  LWLockInitialize(&lock->lock, tranche->trancheId);
549  }
550  }
551 }
552 
553 /*
554  * InitLWLockAccess - initialize backend-local state needed to hold LWLocks
555  */
556 void
558 {
559 #ifdef LWLOCK_STATS
560  init_lwlock_stats();
561 #endif
562 }
563 
564 /*
565  * GetNamedLWLockTranche - returns the base address of LWLock from the
566  * specified tranche.
567  *
568  * Caller needs to retrieve the requested number of LWLocks starting from
569  * the base lock address returned by this API. This can be used for
570  * tranches that are requested by using RequestNamedLWLockTranche() API.
571  */
572 LWLockPadded *
573 GetNamedLWLockTranche(const char *tranche_name)
574 {
575  int lock_pos;
576  int i;
577 
578  /*
579  * Obtain the position of base address of LWLock belonging to requested
580  * tranche_name in MainLWLockArray. LWLocks for named tranches are placed
581  * in MainLWLockArray after fixed locks.
582  */
583  lock_pos = NUM_FIXED_LWLOCKS;
584  for (i = 0; i < NamedLWLockTrancheRequests; i++)
585  {
586  if (strcmp(NamedLWLockTrancheRequestArray[i].tranche_name,
587  tranche_name) == 0)
588  return &MainLWLockArray[lock_pos];
589 
591  }
592 
593  elog(ERROR, "requested tranche is not registered");
594 
595  /* just to keep compiler quiet */
596  return NULL;
597 }
598 
599 /*
600  * Allocate a new tranche ID.
601  */
602 int
604 {
605  int result;
606  int *LWLockCounter;
607 
608  LWLockCounter = (int *) ((char *) MainLWLockArray - sizeof(int));
609  /* We use the ShmemLock spinlock to protect LWLockCounter */
611  result = (*LWLockCounter)++;
613 
614  return result;
615 }
616 
617 /*
618  * Register a dynamic tranche name in the lookup table of the current process.
619  *
620  * This routine will save a pointer to the tranche name passed as an argument,
621  * so the name should be allocated in a backend-lifetime context
622  * (shared memory, TopMemoryContext, static constant, or similar).
623  *
624  * The tranche name will be user-visible as a wait event name, so try to
625  * use a name that fits the style for those.
626  */
627 void
628 LWLockRegisterTranche(int tranche_id, const char *tranche_name)
629 {
630  /* This should only be called for user-defined tranches. */
631  if (tranche_id < LWTRANCHE_FIRST_USER_DEFINED)
632  return;
633 
634  /* Convert to array index. */
635  tranche_id -= LWTRANCHE_FIRST_USER_DEFINED;
636 
637  /* If necessary, create or enlarge array. */
638  if (tranche_id >= LWLockTrancheNamesAllocated)
639  {
640  int newalloc;
641 
642  newalloc = pg_nextpower2_32(Max(8, tranche_id + 1));
643 
644  if (LWLockTrancheNames == NULL)
645  LWLockTrancheNames = (const char **)
647  newalloc * sizeof(char *));
648  else
651  LWLockTrancheNamesAllocated = newalloc;
652  }
653 
654  LWLockTrancheNames[tranche_id] = tranche_name;
655 }
656 
657 /*
658  * RequestNamedLWLockTranche
659  * Request that extra LWLocks be allocated during postmaster
660  * startup.
661  *
662  * This may only be called via the shmem_request_hook of a library that is
663  * loaded into the postmaster via shared_preload_libraries. Calls from
664  * elsewhere will fail.
665  *
666  * The tranche name will be user-visible as a wait event name, so try to
667  * use a name that fits the style for those.
668  */
669 void
670 RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
671 {
672  NamedLWLockTrancheRequest *request;
673 
675  elog(FATAL, "cannot request additional LWLocks outside shmem_request_hook");
676 
677  if (NamedLWLockTrancheRequestArray == NULL)
678  {
683  * sizeof(NamedLWLockTrancheRequest));
684  }
685 
687  {
689 
692  i * sizeof(NamedLWLockTrancheRequest));
694  }
695 
697  Assert(strlen(tranche_name) + 1 <= NAMEDATALEN);
698  strlcpy(request->tranche_name, tranche_name, NAMEDATALEN);
699  request->num_lwlocks = num_lwlocks;
701 }
702 
703 /*
704  * LWLockInitialize - initialize a new lwlock; it's initially unlocked
705  */
706 void
707 LWLockInitialize(LWLock *lock, int tranche_id)
708 {
710 #ifdef LOCK_DEBUG
711  pg_atomic_init_u32(&lock->nwaiters, 0);
712 #endif
713  lock->tranche = tranche_id;
714  proclist_init(&lock->waiters);
715 }
716 
717 /*
718  * Report start of wait event for light-weight locks.
719  *
720  * This function will be used by all the light-weight lock calls which
721  * needs to wait to acquire the lock. This function distinguishes wait
722  * event based on tranche and lock id.
723  */
724 static inline void
726 {
728 }
729 
730 /*
731  * Report end of wait event for light-weight locks.
732  */
733 static inline void
735 {
737 }
738 
739 /*
740  * Return the name of an LWLock tranche.
741  */
742 static const char *
744 {
745  /* Built-in tranche or individual LWLock? */
746  if (trancheId < LWTRANCHE_FIRST_USER_DEFINED)
747  return BuiltinTrancheNames[trancheId];
748 
749  /*
750  * It's an extension tranche, so look in LWLockTrancheNames[]. However,
751  * it's possible that the tranche has never been registered in the current
752  * process, in which case give up and return "extension".
753  */
754  trancheId -= LWTRANCHE_FIRST_USER_DEFINED;
755 
756  if (trancheId >= LWLockTrancheNamesAllocated ||
757  LWLockTrancheNames[trancheId] == NULL)
758  return "extension";
759 
760  return LWLockTrancheNames[trancheId];
761 }
762 
763 /*
764  * Return an identifier for an LWLock based on the wait class and event.
765  */
766 const char *
768 {
769  Assert(classId == PG_WAIT_LWLOCK);
770  /* The event IDs are just tranche numbers. */
771  return GetLWTrancheName(eventId);
772 }
773 
774 /*
775  * Internal function that tries to atomically acquire the lwlock in the passed
776  * in mode.
777  *
778  * This function will not block waiting for a lock to become free - that's the
779  * caller's job.
780  *
781  * Returns true if the lock isn't free and we need to wait.
782  */
783 static bool
785 {
786  uint32 old_state;
787 
789 
790  /*
791  * Read once outside the loop, later iterations will get the newer value
792  * via compare & exchange.
793  */
794  old_state = pg_atomic_read_u32(&lock->state);
795 
796  /* loop until we've determined whether we could acquire the lock or not */
797  while (true)
798  {
799  uint32 desired_state;
800  bool lock_free;
801 
802  desired_state = old_state;
803 
804  if (mode == LW_EXCLUSIVE)
805  {
806  lock_free = (old_state & LW_LOCK_MASK) == 0;
807  if (lock_free)
808  desired_state += LW_VAL_EXCLUSIVE;
809  }
810  else
811  {
812  lock_free = (old_state & LW_VAL_EXCLUSIVE) == 0;
813  if (lock_free)
814  desired_state += LW_VAL_SHARED;
815  }
816 
817  /*
818  * Attempt to swap in the state we are expecting. If we didn't see
819  * lock to be free, that's just the old value. If we saw it as free,
820  * we'll attempt to mark it acquired. The reason that we always swap
821  * in the value is that this doubles as a memory barrier. We could try
822  * to be smarter and only swap in values if we saw the lock as free,
823  * but benchmark haven't shown it as beneficial so far.
824  *
825  * Retry if the value changed since we last looked at it.
826  */
828  &old_state, desired_state))
829  {
830  if (lock_free)
831  {
832  /* Great! Got the lock. */
833 #ifdef LOCK_DEBUG
834  if (mode == LW_EXCLUSIVE)
835  lock->owner = MyProc;
836 #endif
837  return false;
838  }
839  else
840  return true; /* somebody else has the lock */
841  }
842  }
843  pg_unreachable();
844 }
845 
846 /*
847  * Lock the LWLock's wait list against concurrent activity.
848  *
849  * NB: even though the wait list is locked, non-conflicting lock operations
850  * may still happen concurrently.
851  *
852  * Time spent holding mutex should be short!
853  */
854 static void
856 {
857  uint32 old_state;
858 #ifdef LWLOCK_STATS
859  lwlock_stats *lwstats;
860  uint32 delays = 0;
861 
862  lwstats = get_lwlock_stats_entry(lock);
863 #endif
864 
865  while (true)
866  {
867  /* always try once to acquire lock directly */
868  old_state = pg_atomic_fetch_or_u32(&lock->state, LW_FLAG_LOCKED);
869  if (!(old_state & LW_FLAG_LOCKED))
870  break; /* got lock */
871 
872  /* and then spin without atomic operations until lock is released */
873  {
874  SpinDelayStatus delayStatus;
875 
876  init_local_spin_delay(&delayStatus);
877 
878  while (old_state & LW_FLAG_LOCKED)
879  {
880  perform_spin_delay(&delayStatus);
881  old_state = pg_atomic_read_u32(&lock->state);
882  }
883 #ifdef LWLOCK_STATS
884  delays += delayStatus.delays;
885 #endif
886  finish_spin_delay(&delayStatus);
887  }
888 
889  /*
890  * Retry. The lock might obviously already be re-acquired by the time
891  * we're attempting to get it again.
892  */
893  }
894 
895 #ifdef LWLOCK_STATS
896  lwstats->spin_delay_count += delays;
897 #endif
898 }
899 
900 /*
901  * Unlock the LWLock's wait list.
902  *
903  * Note that it can be more efficient to manipulate flags and release the
904  * locks in a single atomic operation.
905  */
906 static void
908 {
910 
911  old_state = pg_atomic_fetch_and_u32(&lock->state, ~LW_FLAG_LOCKED);
912 
913  Assert(old_state & LW_FLAG_LOCKED);
914 }
915 
916 /*
917  * Wakeup all the lockers that currently have a chance to acquire the lock.
918  */
919 static void
921 {
922  bool new_release_ok;
923  bool wokeup_somebody = false;
926 
928 
929  new_release_ok = true;
930 
931  /* lock wait list while collecting backends to wake up */
932  LWLockWaitListLock(lock);
933 
934  proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
935  {
936  PGPROC *waiter = GetPGProcByNumber(iter.cur);
937 
938  if (wokeup_somebody && waiter->lwWaitMode == LW_EXCLUSIVE)
939  continue;
940 
941  proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
942  proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
943 
944  if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
945  {
946  /*
947  * Prevent additional wakeups until retryer gets to run. Backends
948  * that are just waiting for the lock to become free don't retry
949  * automatically.
950  */
951  new_release_ok = false;
952 
953  /*
954  * Don't wakeup (further) exclusive locks.
955  */
956  wokeup_somebody = true;
957  }
958 
959  /*
960  * Signal that the process isn't on the wait list anymore. This allows
961  * LWLockDequeueSelf() to remove itself of the waitlist with a
962  * proclist_delete(), rather than having to check if it has been
963  * removed from the list.
964  */
965  Assert(waiter->lwWaiting == LW_WS_WAITING);
967 
968  /*
969  * Once we've woken up an exclusive lock, there's no point in waking
970  * up anybody else.
971  */
972  if (waiter->lwWaitMode == LW_EXCLUSIVE)
973  break;
974  }
975 
977 
978  /* unset required flags, and release lock, in one fell swoop */
979  {
980  uint32 old_state;
981  uint32 desired_state;
982 
983  old_state = pg_atomic_read_u32(&lock->state);
984  while (true)
985  {
986  desired_state = old_state;
987 
988  /* compute desired flags */
989 
990  if (new_release_ok)
991  desired_state |= LW_FLAG_RELEASE_OK;
992  else
993  desired_state &= ~LW_FLAG_RELEASE_OK;
994 
996  desired_state &= ~LW_FLAG_HAS_WAITERS;
997 
998  desired_state &= ~LW_FLAG_LOCKED; /* release lock */
999 
1000  if (pg_atomic_compare_exchange_u32(&lock->state, &old_state,
1001  desired_state))
1002  break;
1003  }
1004  }
1005 
1006  /* Awaken any waiters I removed from the queue. */
1007  proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1008  {
1009  PGPROC *waiter = GetPGProcByNumber(iter.cur);
1010 
1011  LOG_LWDEBUG("LWLockRelease", lock, "release waiter");
1012  proclist_delete(&wakeup, iter.cur, lwWaitLink);
1013 
1014  /*
1015  * Guarantee that lwWaiting being unset only becomes visible once the
1016  * unlink from the link has completed. Otherwise the target backend
1017  * could be woken up for other reason and enqueue for a new lock - if
1018  * that happens before the list unlink happens, the list would end up
1019  * being corrupted.
1020  *
1021  * The barrier pairs with the LWLockWaitListLock() when enqueuing for
1022  * another lock.
1023  */
1024  pg_write_barrier();
1025  waiter->lwWaiting = LW_WS_NOT_WAITING;
1026  PGSemaphoreUnlock(waiter->sem);
1027  }
1028 }
1029 
1030 /*
1031  * Add ourselves to the end of the queue.
1032  *
1033  * NB: Mode can be LW_WAIT_UNTIL_FREE here!
1034  */
1035 static void
1037 {
1038  /*
1039  * If we don't have a PGPROC structure, there's no way to wait. This
1040  * should never occur, since MyProc should only be null during shared
1041  * memory initialization.
1042  */
1043  if (MyProc == NULL)
1044  elog(PANIC, "cannot wait without a PGPROC structure");
1045 
1047  elog(PANIC, "queueing for lock while waiting on another one");
1048 
1049  LWLockWaitListLock(lock);
1050 
1051  /* setting the flag is protected by the spinlock */
1053 
1055  MyProc->lwWaitMode = mode;
1056 
1057  /* LW_WAIT_UNTIL_FREE waiters are always at the front of the queue */
1058  if (mode == LW_WAIT_UNTIL_FREE)
1059  proclist_push_head(&lock->waiters, MyProcNumber, lwWaitLink);
1060  else
1061  proclist_push_tail(&lock->waiters, MyProcNumber, lwWaitLink);
1062 
1063  /* Can release the mutex now */
1064  LWLockWaitListUnlock(lock);
1065 
1066 #ifdef LOCK_DEBUG
1067  pg_atomic_fetch_add_u32(&lock->nwaiters, 1);
1068 #endif
1069 }
1070 
1071 /*
1072  * Remove ourselves from the waitlist.
1073  *
1074  * This is used if we queued ourselves because we thought we needed to sleep
1075  * but, after further checking, we discovered that we don't actually need to
1076  * do so.
1077  */
1078 static void
1080 {
1081  bool on_waitlist;
1082 
1083 #ifdef LWLOCK_STATS
1084  lwlock_stats *lwstats;
1085 
1086  lwstats = get_lwlock_stats_entry(lock);
1087 
1088  lwstats->dequeue_self_count++;
1089 #endif
1090 
1091  LWLockWaitListLock(lock);
1092 
1093  /*
1094  * Remove ourselves from the waitlist, unless we've already been removed.
1095  * The removal happens with the wait list lock held, so there's no race in
1096  * this check.
1097  */
1098  on_waitlist = MyProc->lwWaiting == LW_WS_WAITING;
1099  if (on_waitlist)
1100  proclist_delete(&lock->waiters, MyProcNumber, lwWaitLink);
1101 
1102  if (proclist_is_empty(&lock->waiters) &&
1103  (pg_atomic_read_u32(&lock->state) & LW_FLAG_HAS_WAITERS) != 0)
1104  {
1106  }
1107 
1108  /* XXX: combine with fetch_and above? */
1109  LWLockWaitListUnlock(lock);
1110 
1111  /* clear waiting state again, nice for debugging */
1112  if (on_waitlist)
1114  else
1115  {
1116  int extraWaits = 0;
1117 
1118  /*
1119  * Somebody else dequeued us and has or will wake us up. Deal with the
1120  * superfluous absorption of a wakeup.
1121  */
1122 
1123  /*
1124  * Reset RELEASE_OK flag if somebody woke us before we removed
1125  * ourselves - they'll have set it to false.
1126  */
1128 
1129  /*
1130  * Now wait for the scheduled wakeup, otherwise our ->lwWaiting would
1131  * get reset at some inconvenient point later. Most of the time this
1132  * will immediately return.
1133  */
1134  for (;;)
1135  {
1138  break;
1139  extraWaits++;
1140  }
1141 
1142  /*
1143  * Fix the process wait semaphore's count for any absorbed wakeups.
1144  */
1145  while (extraWaits-- > 0)
1147  }
1148 
1149 #ifdef LOCK_DEBUG
1150  {
1151  /* not waiting anymore */
1152  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1153 
1154  Assert(nwaiters < MAX_BACKENDS);
1155  }
1156 #endif
1157 }
1158 
1159 /*
1160  * LWLockAcquire - acquire a lightweight lock in the specified mode
1161  *
1162  * If the lock is not available, sleep until it is. Returns true if the lock
1163  * was available immediately, false if we had to sleep.
1164  *
1165  * Side effect: cancel/die interrupts are held off until lock release.
1166  */
1167 bool
1169 {
1170  PGPROC *proc = MyProc;
1171  bool result = true;
1172  int extraWaits = 0;
1173 #ifdef LWLOCK_STATS
1174  lwlock_stats *lwstats;
1175 
1176  lwstats = get_lwlock_stats_entry(lock);
1177 #endif
1178 
1180 
1181  PRINT_LWDEBUG("LWLockAcquire", lock, mode);
1182 
1183 #ifdef LWLOCK_STATS
1184  /* Count lock acquisition attempts */
1185  if (mode == LW_EXCLUSIVE)
1186  lwstats->ex_acquire_count++;
1187  else
1188  lwstats->sh_acquire_count++;
1189 #endif /* LWLOCK_STATS */
1190 
1191  /*
1192  * We can't wait if we haven't got a PGPROC. This should only occur
1193  * during bootstrap or shared memory initialization. Put an Assert here
1194  * to catch unsafe coding practices.
1195  */
1196  Assert(!(proc == NULL && IsUnderPostmaster));
1197 
1198  /* Ensure we will have room to remember the lock */
1200  elog(ERROR, "too many LWLocks taken");
1201 
1202  /*
1203  * Lock out cancel/die interrupts until we exit the code section protected
1204  * by the LWLock. This ensures that interrupts will not interfere with
1205  * manipulations of data structures in shared memory.
1206  */
1207  HOLD_INTERRUPTS();
1208 
1209  /*
1210  * Loop here to try to acquire lock after each time we are signaled by
1211  * LWLockRelease.
1212  *
1213  * NOTE: it might seem better to have LWLockRelease actually grant us the
1214  * lock, rather than retrying and possibly having to go back to sleep. But
1215  * in practice that is no good because it means a process swap for every
1216  * lock acquisition when two or more processes are contending for the same
1217  * lock. Since LWLocks are normally used to protect not-very-long
1218  * sections of computation, a process needs to be able to acquire and
1219  * release the same lock many times during a single CPU time slice, even
1220  * in the presence of contention. The efficiency of being able to do that
1221  * outweighs the inefficiency of sometimes wasting a process dispatch
1222  * cycle because the lock is not free when a released waiter finally gets
1223  * to run. See pgsql-hackers archives for 29-Dec-01.
1224  */
1225  for (;;)
1226  {
1227  bool mustwait;
1228 
1229  /*
1230  * Try to grab the lock the first time, we're not in the waitqueue
1231  * yet/anymore.
1232  */
1233  mustwait = LWLockAttemptLock(lock, mode);
1234 
1235  if (!mustwait)
1236  {
1237  LOG_LWDEBUG("LWLockAcquire", lock, "immediately acquired lock");
1238  break; /* got the lock */
1239  }
1240 
1241  /*
1242  * Ok, at this point we couldn't grab the lock on the first try. We
1243  * cannot simply queue ourselves to the end of the list and wait to be
1244  * woken up because by now the lock could long have been released.
1245  * Instead add us to the queue and try to grab the lock again. If we
1246  * succeed we need to revert the queuing and be happy, otherwise we
1247  * recheck the lock. If we still couldn't grab it, we know that the
1248  * other locker will see our queue entries when releasing since they
1249  * existed before we checked for the lock.
1250  */
1251 
1252  /* add to the queue */
1253  LWLockQueueSelf(lock, mode);
1254 
1255  /* we're now guaranteed to be woken up if necessary */
1256  mustwait = LWLockAttemptLock(lock, mode);
1257 
1258  /* ok, grabbed the lock the second time round, need to undo queueing */
1259  if (!mustwait)
1260  {
1261  LOG_LWDEBUG("LWLockAcquire", lock, "acquired, undoing queue");
1262 
1263  LWLockDequeueSelf(lock);
1264  break;
1265  }
1266 
1267  /*
1268  * Wait until awakened.
1269  *
1270  * It is possible that we get awakened for a reason other than being
1271  * signaled by LWLockRelease. If so, loop back and wait again. Once
1272  * we've gotten the LWLock, re-increment the sema by the number of
1273  * additional signals received.
1274  */
1275  LOG_LWDEBUG("LWLockAcquire", lock, "waiting");
1276 
1277 #ifdef LWLOCK_STATS
1278  lwstats->block_count++;
1279 #endif
1280 
1281  LWLockReportWaitStart(lock);
1282  if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1283  TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1284 
1285  for (;;)
1286  {
1287  PGSemaphoreLock(proc->sem);
1288  if (proc->lwWaiting == LW_WS_NOT_WAITING)
1289  break;
1290  extraWaits++;
1291  }
1292 
1293  /* Retrying, allow LWLockRelease to release waiters again. */
1295 
1296 #ifdef LOCK_DEBUG
1297  {
1298  /* not waiting anymore */
1299  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1300 
1301  Assert(nwaiters < MAX_BACKENDS);
1302  }
1303 #endif
1304 
1305  if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1306  TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1308 
1309  LOG_LWDEBUG("LWLockAcquire", lock, "awakened");
1310 
1311  /* Now loop back and try to acquire lock again. */
1312  result = false;
1313  }
1314 
1315  if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_ENABLED())
1316  TRACE_POSTGRESQL_LWLOCK_ACQUIRE(T_NAME(lock), mode);
1317 
1318  /* Add lock to list of locks held by this backend */
1321 
1322  /*
1323  * Fix the process wait semaphore's count for any absorbed wakeups.
1324  */
1325  while (extraWaits-- > 0)
1326  PGSemaphoreUnlock(proc->sem);
1327 
1328  return result;
1329 }
1330 
1331 /*
1332  * LWLockConditionalAcquire - acquire a lightweight lock in the specified mode
1333  *
1334  * If the lock is not available, return false with no side-effects.
1335  *
1336  * If successful, cancel/die interrupts are held off until lock release.
1337  */
1338 bool
1340 {
1341  bool mustwait;
1342 
1344 
1345  PRINT_LWDEBUG("LWLockConditionalAcquire", lock, mode);
1346 
1347  /* Ensure we will have room to remember the lock */
1349  elog(ERROR, "too many LWLocks taken");
1350 
1351  /*
1352  * Lock out cancel/die interrupts until we exit the code section protected
1353  * by the LWLock. This ensures that interrupts will not interfere with
1354  * manipulations of data structures in shared memory.
1355  */
1356  HOLD_INTERRUPTS();
1357 
1358  /* Check for the lock */
1359  mustwait = LWLockAttemptLock(lock, mode);
1360 
1361  if (mustwait)
1362  {
1363  /* Failed to get lock, so release interrupt holdoff */
1365 
1366  LOG_LWDEBUG("LWLockConditionalAcquire", lock, "failed");
1367  if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL_ENABLED())
1368  TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL(T_NAME(lock), mode);
1369  }
1370  else
1371  {
1372  /* Add lock to list of locks held by this backend */
1375  if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_ENABLED())
1376  TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE(T_NAME(lock), mode);
1377  }
1378  return !mustwait;
1379 }
1380 
1381 /*
1382  * LWLockAcquireOrWait - Acquire lock, or wait until it's free
1383  *
1384  * The semantics of this function are a bit funky. If the lock is currently
1385  * free, it is acquired in the given mode, and the function returns true. If
1386  * the lock isn't immediately free, the function waits until it is released
1387  * and returns false, but does not acquire the lock.
1388  *
1389  * This is currently used for WALWriteLock: when a backend flushes the WAL,
1390  * holding WALWriteLock, it can flush the commit records of many other
1391  * backends as a side-effect. Those other backends need to wait until the
1392  * flush finishes, but don't need to acquire the lock anymore. They can just
1393  * wake up, observe that their records have already been flushed, and return.
1394  */
1395 bool
1397 {
1398  PGPROC *proc = MyProc;
1399  bool mustwait;
1400  int extraWaits = 0;
1401 #ifdef LWLOCK_STATS
1402  lwlock_stats *lwstats;
1403 
1404  lwstats = get_lwlock_stats_entry(lock);
1405 #endif
1406 
1408 
1409  PRINT_LWDEBUG("LWLockAcquireOrWait", lock, mode);
1410 
1411  /* Ensure we will have room to remember the lock */
1413  elog(ERROR, "too many LWLocks taken");
1414 
1415  /*
1416  * Lock out cancel/die interrupts until we exit the code section protected
1417  * by the LWLock. This ensures that interrupts will not interfere with
1418  * manipulations of data structures in shared memory.
1419  */
1420  HOLD_INTERRUPTS();
1421 
1422  /*
1423  * NB: We're using nearly the same twice-in-a-row lock acquisition
1424  * protocol as LWLockAcquire(). Check its comments for details.
1425  */
1426  mustwait = LWLockAttemptLock(lock, mode);
1427 
1428  if (mustwait)
1429  {
1431 
1432  mustwait = LWLockAttemptLock(lock, mode);
1433 
1434  if (mustwait)
1435  {
1436  /*
1437  * Wait until awakened. Like in LWLockAcquire, be prepared for
1438  * bogus wakeups.
1439  */
1440  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "waiting");
1441 
1442 #ifdef LWLOCK_STATS
1443  lwstats->block_count++;
1444 #endif
1445 
1446  LWLockReportWaitStart(lock);
1447  if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1448  TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1449 
1450  for (;;)
1451  {
1452  PGSemaphoreLock(proc->sem);
1453  if (proc->lwWaiting == LW_WS_NOT_WAITING)
1454  break;
1455  extraWaits++;
1456  }
1457 
1458 #ifdef LOCK_DEBUG
1459  {
1460  /* not waiting anymore */
1461  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1462 
1463  Assert(nwaiters < MAX_BACKENDS);
1464  }
1465 #endif
1466  if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1467  TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1469 
1470  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "awakened");
1471  }
1472  else
1473  {
1474  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "acquired, undoing queue");
1475 
1476  /*
1477  * Got lock in the second attempt, undo queueing. We need to treat
1478  * this as having successfully acquired the lock, otherwise we'd
1479  * not necessarily wake up people we've prevented from acquiring
1480  * the lock.
1481  */
1482  LWLockDequeueSelf(lock);
1483  }
1484  }
1485 
1486  /*
1487  * Fix the process wait semaphore's count for any absorbed wakeups.
1488  */
1489  while (extraWaits-- > 0)
1490  PGSemaphoreUnlock(proc->sem);
1491 
1492  if (mustwait)
1493  {
1494  /* Failed to get lock, so release interrupt holdoff */
1496  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "failed");
1497  if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL_ENABLED())
1498  TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL(T_NAME(lock), mode);
1499  }
1500  else
1501  {
1502  LOG_LWDEBUG("LWLockAcquireOrWait", lock, "succeeded");
1503  /* Add lock to list of locks held by this backend */
1506  if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_ENABLED())
1507  TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT(T_NAME(lock), mode);
1508  }
1509 
1510  return !mustwait;
1511 }
1512 
1513 /*
1514  * Does the lwlock in its current state need to wait for the variable value to
1515  * change?
1516  *
1517  * If we don't need to wait, and it's because the value of the variable has
1518  * changed, store the current value in newval.
1519  *
1520  * *result is set to true if the lock was free, and false otherwise.
1521  */
1522 static bool
1523 LWLockConflictsWithVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval,
1524  uint64 *newval, bool *result)
1525 {
1526  bool mustwait;
1527  uint64 value;
1528 
1529  /*
1530  * Test first to see if it the slot is free right now.
1531  *
1532  * XXX: the unique caller of this routine, WaitXLogInsertionsToFinish()
1533  * via LWLockWaitForVar(), uses an implied barrier with a spinlock before
1534  * this, so we don't need a memory barrier here as far as the current
1535  * usage is concerned. But that might not be safe in general.
1536  */
1537  mustwait = (pg_atomic_read_u32(&lock->state) & LW_VAL_EXCLUSIVE) != 0;
1538 
1539  if (!mustwait)
1540  {
1541  *result = true;
1542  return false;
1543  }
1544 
1545  *result = false;
1546 
1547  /*
1548  * Reading this value atomically is safe even on platforms where uint64
1549  * cannot be read without observing a torn value.
1550  */
1551  value = pg_atomic_read_u64(valptr);
1552 
1553  if (value != oldval)
1554  {
1555  mustwait = false;
1556  *newval = value;
1557  }
1558  else
1559  {
1560  mustwait = true;
1561  }
1562 
1563  return mustwait;
1564 }
1565 
1566 /*
1567  * LWLockWaitForVar - Wait until lock is free, or a variable is updated.
1568  *
1569  * If the lock is held and *valptr equals oldval, waits until the lock is
1570  * either freed, or the lock holder updates *valptr by calling
1571  * LWLockUpdateVar. If the lock is free on exit (immediately or after
1572  * waiting), returns true. If the lock is still held, but *valptr no longer
1573  * matches oldval, returns false and sets *newval to the current value in
1574  * *valptr.
1575  *
1576  * Note: this function ignores shared lock holders; if the lock is held
1577  * in shared mode, returns 'true'.
1578  *
1579  * Be aware that LWLockConflictsWithVar() does not include a memory barrier,
1580  * hence the caller of this function may want to rely on an explicit barrier or
1581  * an implied barrier via spinlock or LWLock to avoid memory ordering issues.
1582  */
1583 bool
1584 LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval,
1585  uint64 *newval)
1586 {
1587  PGPROC *proc = MyProc;
1588  int extraWaits = 0;
1589  bool result = false;
1590 #ifdef LWLOCK_STATS
1591  lwlock_stats *lwstats;
1592 
1593  lwstats = get_lwlock_stats_entry(lock);
1594 #endif
1595 
1596  PRINT_LWDEBUG("LWLockWaitForVar", lock, LW_WAIT_UNTIL_FREE);
1597 
1598  /*
1599  * Lock out cancel/die interrupts while we sleep on the lock. There is no
1600  * cleanup mechanism to remove us from the wait queue if we got
1601  * interrupted.
1602  */
1603  HOLD_INTERRUPTS();
1604 
1605  /*
1606  * Loop here to check the lock's status after each time we are signaled.
1607  */
1608  for (;;)
1609  {
1610  bool mustwait;
1611 
1612  mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1613  &result);
1614 
1615  if (!mustwait)
1616  break; /* the lock was free or value didn't match */
1617 
1618  /*
1619  * Add myself to wait queue. Note that this is racy, somebody else
1620  * could wakeup before we're finished queuing. NB: We're using nearly
1621  * the same twice-in-a-row lock acquisition protocol as
1622  * LWLockAcquire(). Check its comments for details. The only
1623  * difference is that we also have to check the variable's values when
1624  * checking the state of the lock.
1625  */
1627 
1628  /*
1629  * Set RELEASE_OK flag, to make sure we get woken up as soon as the
1630  * lock is released.
1631  */
1633 
1634  /*
1635  * We're now guaranteed to be woken up if necessary. Recheck the lock
1636  * and variables state.
1637  */
1638  mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1639  &result);
1640 
1641  /* Ok, no conflict after we queued ourselves. Undo queueing. */
1642  if (!mustwait)
1643  {
1644  LOG_LWDEBUG("LWLockWaitForVar", lock, "free, undoing queue");
1645 
1646  LWLockDequeueSelf(lock);
1647  break;
1648  }
1649 
1650  /*
1651  * Wait until awakened.
1652  *
1653  * It is possible that we get awakened for a reason other than being
1654  * signaled by LWLockRelease. If so, loop back and wait again. Once
1655  * we've gotten the LWLock, re-increment the sema by the number of
1656  * additional signals received.
1657  */
1658  LOG_LWDEBUG("LWLockWaitForVar", lock, "waiting");
1659 
1660 #ifdef LWLOCK_STATS
1661  lwstats->block_count++;
1662 #endif
1663 
1664  LWLockReportWaitStart(lock);
1665  if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1666  TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), LW_EXCLUSIVE);
1667 
1668  for (;;)
1669  {
1670  PGSemaphoreLock(proc->sem);
1671  if (proc->lwWaiting == LW_WS_NOT_WAITING)
1672  break;
1673  extraWaits++;
1674  }
1675 
1676 #ifdef LOCK_DEBUG
1677  {
1678  /* not waiting anymore */
1679  uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1680 
1681  Assert(nwaiters < MAX_BACKENDS);
1682  }
1683 #endif
1684 
1685  if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1686  TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), LW_EXCLUSIVE);
1688 
1689  LOG_LWDEBUG("LWLockWaitForVar", lock, "awakened");
1690 
1691  /* Now loop back and check the status of the lock again. */
1692  }
1693 
1694  /*
1695  * Fix the process wait semaphore's count for any absorbed wakeups.
1696  */
1697  while (extraWaits-- > 0)
1698  PGSemaphoreUnlock(proc->sem);
1699 
1700  /*
1701  * Now okay to allow cancel/die interrupts.
1702  */
1704 
1705  return result;
1706 }
1707 
1708 
1709 /*
1710  * LWLockUpdateVar - Update a variable and wake up waiters atomically
1711  *
1712  * Sets *valptr to 'val', and wakes up all processes waiting for us with
1713  * LWLockWaitForVar(). It first sets the value atomically and then wakes up
1714  * waiting processes so that any process calling LWLockWaitForVar() on the same
1715  * lock is guaranteed to see the new value, and act accordingly.
1716  *
1717  * The caller must be holding the lock in exclusive mode.
1718  */
1719 void
1721 {
1723  proclist_mutable_iter iter;
1724 
1725  PRINT_LWDEBUG("LWLockUpdateVar", lock, LW_EXCLUSIVE);
1726 
1727  /*
1728  * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1729  * that the variable is updated before waking up waiters.
1730  */
1731  pg_atomic_exchange_u64(valptr, val);
1732 
1734 
1735  LWLockWaitListLock(lock);
1736 
1738 
1739  /*
1740  * See if there are any LW_WAIT_UNTIL_FREE waiters that need to be woken
1741  * up. They are always in the front of the queue.
1742  */
1743  proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
1744  {
1745  PGPROC *waiter = GetPGProcByNumber(iter.cur);
1746 
1747  if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
1748  break;
1749 
1750  proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
1751  proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
1752 
1753  /* see LWLockWakeup() */
1754  Assert(waiter->lwWaiting == LW_WS_WAITING);
1755  waiter->lwWaiting = LW_WS_PENDING_WAKEUP;
1756  }
1757 
1758  /* We are done updating shared state of the lock itself. */
1759  LWLockWaitListUnlock(lock);
1760 
1761  /*
1762  * Awaken any waiters I removed from the queue.
1763  */
1764  proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1765  {
1766  PGPROC *waiter = GetPGProcByNumber(iter.cur);
1767 
1768  proclist_delete(&wakeup, iter.cur, lwWaitLink);
1769  /* check comment in LWLockWakeup() about this barrier */
1770  pg_write_barrier();
1771  waiter->lwWaiting = LW_WS_NOT_WAITING;
1772  PGSemaphoreUnlock(waiter->sem);
1773  }
1774 }
1775 
1776 
1777 /*
1778  * LWLockRelease - release a previously acquired lock
1779  */
1780 void
1782 {
1783  LWLockMode mode;
1784  uint32 oldstate;
1785  bool check_waiters;
1786  int i;
1787 
1788  /*
1789  * Remove lock from list of locks held. Usually, but not always, it will
1790  * be the latest-acquired lock; so search array backwards.
1791  */
1792  for (i = num_held_lwlocks; --i >= 0;)
1793  if (lock == held_lwlocks[i].lock)
1794  break;
1795 
1796  if (i < 0)
1797  elog(ERROR, "lock %s is not held", T_NAME(lock));
1798 
1799  mode = held_lwlocks[i].mode;
1800 
1801  num_held_lwlocks--;
1802  for (; i < num_held_lwlocks; i++)
1803  held_lwlocks[i] = held_lwlocks[i + 1];
1804 
1805  PRINT_LWDEBUG("LWLockRelease", lock, mode);
1806 
1807  /*
1808  * Release my hold on lock, after that it can immediately be acquired by
1809  * others, even if we still have to wakeup other waiters.
1810  */
1811  if (mode == LW_EXCLUSIVE)
1812  oldstate = pg_atomic_sub_fetch_u32(&lock->state, LW_VAL_EXCLUSIVE);
1813  else
1814  oldstate = pg_atomic_sub_fetch_u32(&lock->state, LW_VAL_SHARED);
1815 
1816  /* nobody else can have that kind of lock */
1817  Assert(!(oldstate & LW_VAL_EXCLUSIVE));
1818 
1819  if (TRACE_POSTGRESQL_LWLOCK_RELEASE_ENABLED())
1820  TRACE_POSTGRESQL_LWLOCK_RELEASE(T_NAME(lock));
1821 
1822  /*
1823  * We're still waiting for backends to get scheduled, don't wake them up
1824  * again.
1825  */
1826  if ((oldstate & (LW_FLAG_HAS_WAITERS | LW_FLAG_RELEASE_OK)) ==
1828  (oldstate & LW_LOCK_MASK) == 0)
1829  check_waiters = true;
1830  else
1831  check_waiters = false;
1832 
1833  /*
1834  * As waking up waiters requires the spinlock to be acquired, only do so
1835  * if necessary.
1836  */
1837  if (check_waiters)
1838  {
1839  /* XXX: remove before commit? */
1840  LOG_LWDEBUG("LWLockRelease", lock, "releasing waiters");
1841  LWLockWakeup(lock);
1842  }
1843 
1844  /*
1845  * Now okay to allow cancel/die interrupts.
1846  */
1848 }
1849 
1850 /*
1851  * LWLockReleaseClearVar - release a previously acquired lock, reset variable
1852  */
1853 void
1855 {
1856  /*
1857  * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1858  * that the variable is updated before releasing the lock.
1859  */
1860  pg_atomic_exchange_u64(valptr, val);
1861 
1862  LWLockRelease(lock);
1863 }
1864 
1865 
1866 /*
1867  * LWLockReleaseAll - release all currently-held locks
1868  *
1869  * Used to clean up after ereport(ERROR). An important difference between this
1870  * function and retail LWLockRelease calls is that InterruptHoldoffCount is
1871  * unchanged by this operation. This is necessary since InterruptHoldoffCount
1872  * has been set to an appropriate level earlier in error recovery. We could
1873  * decrement it below zero if we allow it to drop for each released lock!
1874  */
1875 void
1877 {
1878  while (num_held_lwlocks > 0)
1879  {
1880  HOLD_INTERRUPTS(); /* match the upcoming RESUME_INTERRUPTS */
1881 
1883  }
1884 }
1885 
1886 
1887 /*
1888  * LWLockHeldByMe - test whether my process holds a lock in any mode
1889  *
1890  * This is meant as debug support only.
1891  */
1892 bool
1894 {
1895  int i;
1896 
1897  for (i = 0; i < num_held_lwlocks; i++)
1898  {
1899  if (held_lwlocks[i].lock == lock)
1900  return true;
1901  }
1902  return false;
1903 }
1904 
1905 /*
1906  * LWLockAnyHeldByMe - test whether my process holds any of an array of locks
1907  *
1908  * This is meant as debug support only.
1909  */
1910 bool
1911 LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
1912 {
1913  char *held_lock_addr;
1914  char *begin;
1915  char *end;
1916  int i;
1917 
1918  begin = (char *) lock;
1919  end = begin + nlocks * stride;
1920  for (i = 0; i < num_held_lwlocks; i++)
1921  {
1922  held_lock_addr = (char *) held_lwlocks[i].lock;
1923  if (held_lock_addr >= begin &&
1924  held_lock_addr < end &&
1925  (held_lock_addr - begin) % stride == 0)
1926  return true;
1927  }
1928  return false;
1929 }
1930 
1931 /*
1932  * LWLockHeldByMeInMode - test whether my process holds a lock in given mode
1933  *
1934  * This is meant as debug support only.
1935  */
1936 bool
1938 {
1939  int i;
1940 
1941  for (i = 0; i < num_held_lwlocks; i++)
1942  {
1943  if (held_lwlocks[i].lock == lock && held_lwlocks[i].mode == mode)
1944  return true;
1945  }
1946  return false;
1947 }
static uint32 pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
Definition: atomics.h:389
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:342
static uint32 pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
Definition: atomics.h:403
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:432
static uint32 pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:374
static void pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:214
#define pg_write_barrier()
Definition: atomics.h:150
static uint32 pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:359
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:232
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:460
static uint64 pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval)
Definition: atomics.h:496
unsigned short uint16
Definition: c.h:505
unsigned int uint32
Definition: c.h:506
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:182
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
#define pg_unreachable()
Definition: c.h:296
#define lengthof(array)
Definition: c.h:788
#define MemSet(start, val, len)
Definition: c.h:1020
size_t Size
Definition: c.h:605
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1395
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errhidestmt(bool hide_stmt)
Definition: elog.c:1411
int errhidecontext(bool hide_ctx)
Definition: elog.c:1430
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
int MyProcPid
Definition: globals.c:46
ProcNumber MyProcNumber
Definition: globals.c:88
bool IsUnderPostmaster
Definition: globals.c:118
#define newval
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
long val
Definition: informix.c:670
static struct @155 value
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
int j
Definition: isn.c:74
int i
Definition: isn.c:73
#define LW_VAL_EXCLUSIVE
Definition: lwlock.c:98
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1720
StaticAssertDecl(LW_VAL_EXCLUSIVE >(uint32) MAX_BACKENDS, "MAX_BACKENDS too big for lwlock.c")
static void LWLockWakeup(LWLock *lock)
Definition: lwlock.c:920
#define LW_FLAG_LOCKED
Definition: lwlock.c:96
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1893
const char * GetLWLockIdentifier(uint32 classId, uint16 eventId)
Definition: lwlock.c:767
LWLockPadded * GetNamedLWLockTranche(const char *tranche_name)
Definition: lwlock.c:573
static LWLockHandle held_lwlocks[MAX_SIMUL_LWLOCKS]
Definition: lwlock.c:206
static int LWLockTrancheNamesAllocated
Definition: lwlock.c:181
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1854
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1168
void CreateLWLocks(void)
Definition: lwlock.c:450
NamedLWLockTranche * NamedLWLockTrancheArray
Definition: lwlock.c:227
#define LW_VAL_SHARED
Definition: lwlock.c:99
static bool LWLockAttemptLock(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:784
static void LWLockWaitListLock(LWLock *lock)
Definition: lwlock.c:855
void LWLockRegisterTranche(int tranche_id, const char *tranche_name)
Definition: lwlock.c:628
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1937
static void LWLockReportWaitEnd(void)
Definition: lwlock.c:734
struct LWLockHandle LWLockHandle
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1584
int LWLockNewTrancheId(void)
Definition: lwlock.c:603
static const char * GetLWTrancheName(uint16 trancheId)
Definition: lwlock.c:743
#define LW_LOCK_MASK
Definition: lwlock.c:101
int NamedLWLockTrancheRequests
Definition: lwlock.c:224
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
Definition: lwlock.c:670
#define LW_FLAG_RELEASE_OK
Definition: lwlock.c:95
#define LW_FLAG_HAS_WAITERS
Definition: lwlock.c:94
#define MAX_SIMUL_LWLOCKS
Definition: lwlock.c:196
struct NamedLWLockTrancheRequest NamedLWLockTrancheRequest
static int NumLWLocksForNamedTranches(void)
Definition: lwlock.c:405
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1781
#define T_NAME(lock)
Definition: lwlock.c:234
static int num_held_lwlocks
Definition: lwlock.c:205
void LWLockReleaseAll(void)
Definition: lwlock.c:1876
static void InitializeLWLocks(void)
Definition: lwlock.c:490
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:707
static int NamedLWLockTrancheRequestsAllocated
Definition: lwlock.c:216
static const char *const BuiltinTrancheNames[]
Definition: lwlock.c:126
static NamedLWLockTrancheRequest * NamedLWLockTrancheRequestArray
Definition: lwlock.c:215
static void LWLockWaitListUnlock(LWLock *lock)
Definition: lwlock.c:907
static const char ** LWLockTrancheNames
Definition: lwlock.c:180
#define LOG_LWDEBUG(a, b, c)
Definition: lwlock.c:299
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1339
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1396
static void LWLockQueueSelf(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1036
#define PRINT_LWDEBUG(a, b, c)
Definition: lwlock.c:298
static void LWLockReportWaitStart(LWLock *lock)
Definition: lwlock.c:725
LWLockPadded * MainLWLockArray
Definition: lwlock.c:188
static void LWLockDequeueSelf(LWLock *lock)
Definition: lwlock.c:1079
Size LWLockShmemSize(void)
Definition: lwlock.c:420
bool LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
Definition: lwlock.c:1911
#define LW_SHARED_MASK
Definition: lwlock.c:103
static bool LWLockConflictsWithVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval, bool *result)
Definition: lwlock.c:1523
void InitLWLockAccess(void)
Definition: lwlock.c:557
@ LW_WS_NOT_WAITING
Definition: lwlock.h:30
@ LW_WS_WAITING
Definition: lwlock.h:31
@ LW_WS_PENDING_WAKEUP
Definition: lwlock.h:32
#define LWLOCK_PADDED_SIZE
Definition: lwlock.h:62
#define BUFFER_MAPPING_LWLOCK_OFFSET
Definition: lwlock.h:104
#define NUM_LOCK_PARTITIONS
Definition: lwlock.h:97
@ LWTRANCHE_FIRST_USER_DEFINED
Definition: lwlock.h:218
@ LWTRANCHE_SHARED_TIDBITMAP
Definition: lwlock.h:200
@ LWTRANCHE_SERIAL_SLRU
Definition: lwlock.h:214
@ LWTRANCHE_PER_SESSION_DSA
Definition: lwlock.h:196
@ LWTRANCHE_PARALLEL_QUERY_DSA
Definition: lwlock.h:195
@ LWTRANCHE_COMMITTS_BUFFER
Definition: lwlock.h:180
@ LWTRANCHE_PARALLEL_VACUUM_DSA
Definition: lwlock.h:217
@ LWTRANCHE_PGSTATS_HASH
Definition: lwlock.h:204
@ LWTRANCHE_SUBTRANS_BUFFER
Definition: lwlock.h:181
@ LWTRANCHE_PER_SESSION_RECORD_TYPMOD
Definition: lwlock.h:198
@ LWTRANCHE_LAUNCHER_HASH
Definition: lwlock.h:207
@ LWTRANCHE_DSM_REGISTRY_DSA
Definition: lwlock.h:208
@ LWTRANCHE_XACT_BUFFER
Definition: lwlock.h:179
@ LWTRANCHE_DSM_REGISTRY_HASH
Definition: lwlock.h:209
@ LWTRANCHE_NOTIFY_SLRU
Definition: lwlock.h:213
@ LWTRANCHE_REPLICATION_ORIGIN_STATE
Definition: lwlock.h:188
@ LWTRANCHE_MULTIXACTOFFSET_SLRU
Definition: lwlock.h:212
@ LWTRANCHE_PARALLEL_APPEND
Definition: lwlock.h:201
@ LWTRANCHE_REPLICATION_SLOT_IO
Definition: lwlock.h:189
@ LWTRANCHE_SUBTRANS_SLRU
Definition: lwlock.h:215
@ LWTRANCHE_MULTIXACTMEMBER_SLRU
Definition: lwlock.h:211
@ LWTRANCHE_BUFFER_CONTENT
Definition: lwlock.h:187
@ LWTRANCHE_MULTIXACTMEMBER_BUFFER
Definition: lwlock.h:183
@ LWTRANCHE_NOTIFY_BUFFER
Definition: lwlock.h:184
@ LWTRANCHE_PER_SESSION_RECORD_TYPE
Definition: lwlock.h:197
@ LWTRANCHE_PREDICATE_LOCK_MANAGER
Definition: lwlock.h:193
@ LWTRANCHE_BUFFER_MAPPING
Definition: lwlock.h:191
@ LWTRANCHE_SERIAL_BUFFER
Definition: lwlock.h:185
@ LWTRANCHE_LAUNCHER_DSA
Definition: lwlock.h:206
@ LWTRANCHE_PGSTATS_DSA
Definition: lwlock.h:203
@ LWTRANCHE_PARALLEL_HASH_JOIN
Definition: lwlock.h:194
@ LWTRANCHE_COMMITTS_SLRU
Definition: lwlock.h:210
@ LWTRANCHE_PGSTATS_DATA
Definition: lwlock.h:205
@ LWTRANCHE_PER_XACT_PREDICATE_LIST
Definition: lwlock.h:202
@ LWTRANCHE_XACT_SLRU
Definition: lwlock.h:216
@ LWTRANCHE_MULTIXACTOFFSET_BUFFER
Definition: lwlock.h:182
@ LWTRANCHE_WAL_INSERT
Definition: lwlock.h:186
@ LWTRANCHE_LOCK_MANAGER
Definition: lwlock.h:192
@ LWTRANCHE_SHARED_TUPLESTORE
Definition: lwlock.h:199
@ LWTRANCHE_LOCK_FASTPATH
Definition: lwlock.h:190
#define LOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:105
#define NUM_BUFFER_PARTITIONS
Definition: lwlock.h:93
#define PREDICATELOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:107
#define NUM_FIXED_LWLOCKS
Definition: lwlock.h:109
LWLockMode
Definition: lwlock.h:113
@ LW_SHARED
Definition: lwlock.h:115
@ LW_WAIT_UNTIL_FREE
Definition: lwlock.h:116
@ LW_EXCLUSIVE
Definition: lwlock.h:114
#define NUM_PREDICATELOCK_PARTITIONS
Definition: lwlock.h:101
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1215
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1541
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1181
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:694
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define RESUME_INTERRUPTS()
Definition: miscadmin.h:135
#define HOLD_INTERRUPTS()
Definition: miscadmin.h:133
bool process_shmem_requests_in_progress
Definition: miscinit.c:1782
#define repalloc0_array(pointer, type, oldcount, count)
Definition: palloc.h:109
void * arg
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
static PgChecksumMode mode
Definition: pg_checksums.c:56
#define NAMEDATALEN
#define fprintf
Definition: port.h:242
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:340
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:320
uintptr_t Datum
Definition: postgres.h:64
#define MAX_BACKENDS
Definition: postmaster.h:103
#define GetPGProcByNumber(n)
Definition: proc.h:427
#define proclist_delete(list, procno, link_member)
Definition: proclist.h:187
static void proclist_init(proclist_head *list)
Definition: proclist.h:29
#define proclist_push_tail(list, procno, link_member)
Definition: proclist.h:191
#define proclist_push_head(list, procno, link_member)
Definition: proclist.h:189
#define proclist_foreach_modify(iter, lhead, link_member)
Definition: proclist.h:206
static bool proclist_is_empty(const proclist_head *list)
Definition: proclist.h:38
tree ctl
Definition: radixtree.h:1853
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:127
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:187
#define init_local_spin_delay(status)
Definition: s_lock.h:778
void * ShmemAlloc(Size size)
Definition: shmem.c:152
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
slock_t * ShmemLock
Definition: shmem.c:87
static pg_noinline void Size size
Definition: slab.c:607
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:66
Definition: dynahash.c:220
LWLockMode mode
Definition: lwlock.c:202
LWLock * lock
Definition: lwlock.c:201
Definition: lwlock.h:42
pg_atomic_uint32 state
Definition: lwlock.h:44
uint16 tranche
Definition: lwlock.h:43
proclist_head waiters
Definition: lwlock.h:45
char tranche_name[NAMEDATALEN]
Definition: lwlock.c:211
char * trancheName
Definition: lwlock.h:80
Definition: proc.h:157
uint8 lwWaitMode
Definition: proc.h:219
PGSemaphore sem
Definition: proc.h:161
uint8 lwWaiting
Definition: proc.h:218
Definition: regguts.h:323
LWLock lock
Definition: lwlock.h:70
#define PG_WAIT_LWLOCK
Definition: wait_event.h:18
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
const char * name
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:129