PostgreSQL Source Code git master
lwlock.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * lwlock.c
4 * Lightweight lock manager
5 *
6 * Lightweight locks are intended primarily to provide mutual exclusion of
7 * access to shared-memory data structures. Therefore, they offer both
8 * exclusive and shared lock modes (to support read/write and read-only
9 * access to a shared object). There are few other frammishes. User-level
10 * locking should be done with the full lock manager --- which depends on
11 * LWLocks to protect its shared state.
12 *
13 * In addition to exclusive and shared modes, lightweight locks can be used to
14 * wait until a variable changes value. The variable is initially not set
15 * when the lock is acquired with LWLockAcquire, i.e. it remains set to the
16 * value it was set to when the lock was released last, and can be updated
17 * without releasing the lock by calling LWLockUpdateVar. LWLockWaitForVar
18 * waits for the variable to be updated, or until the lock is free. When
19 * releasing the lock with LWLockReleaseClearVar() the value can be set to an
20 * appropriate value for a free lock. The meaning of the variable is up to
21 * the caller, the lightweight lock code just assigns and compares it.
22 *
23 * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
24 * Portions Copyright (c) 1994, Regents of the University of California
25 *
26 * IDENTIFICATION
27 * src/backend/storage/lmgr/lwlock.c
28 *
29 * NOTES:
30 *
31 * This used to be a pretty straight forward reader-writer lock
32 * implementation, in which the internal state was protected by a
33 * spinlock. Unfortunately the overhead of taking the spinlock proved to be
34 * too high for workloads/locks that were taken in shared mode very
35 * frequently. Often we were spinning in the (obviously exclusive) spinlock,
36 * while trying to acquire a shared lock that was actually free.
37 *
38 * Thus a new implementation was devised that provides wait-free shared lock
39 * acquisition for locks that aren't exclusively locked.
40 *
41 * The basic idea is to have a single atomic variable 'lockcount' instead of
42 * the formerly separate shared and exclusive counters and to use atomic
43 * operations to acquire the lock. That's fairly easy to do for plain
44 * rw-spinlocks, but a lot harder for something like LWLocks that want to wait
45 * in the OS.
46 *
47 * For lock acquisition we use an atomic compare-and-exchange on the lockcount
48 * variable. For exclusive lock we swap in a sentinel value
49 * (LW_VAL_EXCLUSIVE), for shared locks we count the number of holders.
50 *
51 * To release the lock we use an atomic decrement to release the lock. If the
52 * new value is zero (we get that atomically), we know we can/have to release
53 * waiters.
54 *
55 * Obviously it is important that the sentinel value for exclusive locks
56 * doesn't conflict with the maximum number of possible share lockers -
57 * luckily MAX_BACKENDS makes that easily possible.
58 *
59 *
60 * The attentive reader might have noticed that naively doing the above has a
61 * glaring race condition: We try to lock using the atomic operations and
62 * notice that we have to wait. Unfortunately by the time we have finished
63 * queuing, the former locker very well might have already finished its
64 * work. That's problematic because we're now stuck waiting inside the OS.
65
66 * To mitigate those races we use a two phased attempt at locking:
67 * Phase 1: Try to do it atomically, if we succeed, nice
68 * Phase 2: Add ourselves to the waitqueue of the lock
69 * Phase 3: Try to grab the lock again, if we succeed, remove ourselves from
70 * the queue
71 * Phase 4: Sleep till wake-up, goto Phase 1
72 *
73 * This protects us against the problem from above as nobody can release too
74 * quick, before we're queued, since after Phase 2 we're already queued.
75 * -------------------------------------------------------------------------
76 */
77#include "postgres.h"
78
79#include "miscadmin.h"
80#include "pg_trace.h"
81#include "pgstat.h"
82#include "port/pg_bitutils.h"
83#include "storage/proc.h"
84#include "storage/proclist.h"
85#include "storage/procnumber.h"
86#include "storage/spin.h"
87#include "utils/memutils.h"
88
89#ifdef LWLOCK_STATS
90#include "utils/hsearch.h"
91#endif
92
93
94#define LW_FLAG_HAS_WAITERS ((uint32) 1 << 31)
95#define LW_FLAG_RELEASE_OK ((uint32) 1 << 30)
96#define LW_FLAG_LOCKED ((uint32) 1 << 29)
97#define LW_FLAG_BITS 3
98#define LW_FLAG_MASK (((1<<LW_FLAG_BITS)-1)<<(32-LW_FLAG_BITS))
99
100/* assumes MAX_BACKENDS is a (power of 2) - 1, checked below */
101#define LW_VAL_EXCLUSIVE (MAX_BACKENDS + 1)
102#define LW_VAL_SHARED 1
103
104/* already (power of 2)-1, i.e. suitable for a mask */
105#define LW_SHARED_MASK MAX_BACKENDS
106#define LW_LOCK_MASK (MAX_BACKENDS | LW_VAL_EXCLUSIVE)
107
108
110 "MAX_BACKENDS + 1 needs to be a power of 2");
111
113 "MAX_BACKENDS and LW_FLAG_MASK overlap");
114
116 "LW_VAL_EXCLUSIVE and LW_FLAG_MASK overlap");
117
118/*
119 * There are three sorts of LWLock "tranches":
120 *
121 * 1. The individually-named locks defined in lwlocklist.h each have their
122 * own tranche. We absorb the names of these tranches from there into
123 * BuiltinTrancheNames here.
124 *
125 * 2. There are some predefined tranches for built-in groups of locks defined
126 * in lwlocklist.h. We absorb the names of these tranches, too.
127 *
128 * 3. Extensions can create new tranches, via either RequestNamedLWLockTranche
129 * or LWLockNewTrancheId. These names are stored in shared memory and can be
130 * accessed via LWLockTrancheNames.
131 *
132 * All these names are user-visible as wait event names, so choose with care
133 * ... and do not forget to update the documentation's list of wait events.
134 */
135static const char *const BuiltinTrancheNames[] = {
136#define PG_LWLOCK(id, lockname) [id] = CppAsString(lockname),
137#define PG_LWLOCKTRANCHE(id, lockname) [LWTRANCHE_##id] = CppAsString(lockname),
138#include "storage/lwlocklist.h"
139#undef PG_LWLOCK
140#undef PG_LWLOCKTRANCHE
141};
142
145 "missing entries in BuiltinTrancheNames[]");
146
147/*
148 * This is indexed by tranche ID minus LWTRANCHE_FIRST_USER_DEFINED, and
149 * points to the shared memory locations of the names of all
150 * dynamically-created tranches. Backends inherit the pointer by fork from the
151 * postmaster (except in the EXEC_BACKEND case, where we have special measures
152 * to pass it down).
153 */
154char **LWLockTrancheNames = NULL;
155
156/*
157 * This points to the main array of LWLocks in shared memory. Backends inherit
158 * the pointer by fork from the postmaster (except in the EXEC_BACKEND case,
159 * where we have special measures to pass it down).
160 */
162
163/*
164 * We use this structure to keep track of locked LWLocks for release
165 * during error recovery. Normally, only a few will be held at once, but
166 * occasionally the number can be much higher.
167 */
168#define MAX_SIMUL_LWLOCKS 200
169
170/* struct representing the LWLocks we're holding */
171typedef struct LWLockHandle
172{
176
177static int num_held_lwlocks = 0;
179
180/* struct representing the LWLock tranche request for named tranche */
182{
186
187/*
188 * NamedLWLockTrancheRequests is the valid length of the request array. These
189 * variables are non-static so that launch_backend.c can copy them to child
190 * processes in EXEC_BACKEND builds.
191 */
194
195/* postmaster's local copy of the request array */
197
198/* shared memory counter of registered tranches */
199int *LWLockCounter = NULL;
200
201/* backend-local counter of registered tranches */
203
204#define MAX_NAMED_TRANCHES 256
205
206static void InitializeLWLocks(void);
207static inline void LWLockReportWaitStart(LWLock *lock);
208static inline void LWLockReportWaitEnd(void);
209static const char *GetLWTrancheName(uint16 trancheId);
210
211#define T_NAME(lock) \
212 GetLWTrancheName((lock)->tranche)
213
214#ifdef LWLOCK_STATS
215typedef struct lwlock_stats_key
216{
217 int tranche;
218 void *instance;
219} lwlock_stats_key;
220
221typedef struct lwlock_stats
222{
223 lwlock_stats_key key;
224 int sh_acquire_count;
225 int ex_acquire_count;
226 int block_count;
227 int dequeue_self_count;
228 int spin_delay_count;
229} lwlock_stats;
230
231static HTAB *lwlock_stats_htab;
232static lwlock_stats lwlock_stats_dummy;
233#endif
234
235#ifdef LOCK_DEBUG
236bool Trace_lwlocks = false;
237
238inline static void
239PRINT_LWDEBUG(const char *where, LWLock *lock, LWLockMode mode)
240{
241 /* hide statement & context here, otherwise the log is just too verbose */
242 if (Trace_lwlocks)
243 {
245
246 ereport(LOG,
247 (errhidestmt(true),
248 errhidecontext(true),
249 errmsg_internal("%d: %s(%s %p): excl %u shared %u haswaiters %u waiters %u rOK %d",
250 MyProcPid,
251 where, T_NAME(lock), lock,
252 (state & LW_VAL_EXCLUSIVE) != 0,
254 (state & LW_FLAG_HAS_WAITERS) != 0,
255 pg_atomic_read_u32(&lock->nwaiters),
256 (state & LW_FLAG_RELEASE_OK) != 0)));
257 }
258}
259
260inline static void
261LOG_LWDEBUG(const char *where, LWLock *lock, const char *msg)
262{
263 /* hide statement & context here, otherwise the log is just too verbose */
264 if (Trace_lwlocks)
265 {
266 ereport(LOG,
267 (errhidestmt(true),
268 errhidecontext(true),
269 errmsg_internal("%s(%s %p): %s", where,
270 T_NAME(lock), lock, msg)));
271 }
272}
273
274#else /* not LOCK_DEBUG */
275#define PRINT_LWDEBUG(a,b,c) ((void)0)
276#define LOG_LWDEBUG(a,b,c) ((void)0)
277#endif /* LOCK_DEBUG */
278
279#ifdef LWLOCK_STATS
280
281static void init_lwlock_stats(void);
282static void print_lwlock_stats(int code, Datum arg);
283static lwlock_stats * get_lwlock_stats_entry(LWLock *lock);
284
285static void
286init_lwlock_stats(void)
287{
288 HASHCTL ctl;
289 static MemoryContext lwlock_stats_cxt = NULL;
290 static bool exit_registered = false;
291
292 if (lwlock_stats_cxt != NULL)
293 MemoryContextDelete(lwlock_stats_cxt);
294
295 /*
296 * The LWLock stats will be updated within a critical section, which
297 * requires allocating new hash entries. Allocations within a critical
298 * section are normally not allowed because running out of memory would
299 * lead to a PANIC, but LWLOCK_STATS is debugging code that's not normally
300 * turned on in production, so that's an acceptable risk. The hash entries
301 * are small, so the risk of running out of memory is minimal in practice.
302 */
303 lwlock_stats_cxt = AllocSetContextCreate(TopMemoryContext,
304 "LWLock stats",
306 MemoryContextAllowInCriticalSection(lwlock_stats_cxt, true);
307
308 ctl.keysize = sizeof(lwlock_stats_key);
309 ctl.entrysize = sizeof(lwlock_stats);
310 ctl.hcxt = lwlock_stats_cxt;
311 lwlock_stats_htab = hash_create("lwlock stats", 16384, &ctl,
313 if (!exit_registered)
314 {
315 on_shmem_exit(print_lwlock_stats, 0);
316 exit_registered = true;
317 }
318}
319
320static void
321print_lwlock_stats(int code, Datum arg)
322{
323 HASH_SEQ_STATUS scan;
324 lwlock_stats *lwstats;
325
326 hash_seq_init(&scan, lwlock_stats_htab);
327
328 /* Grab an LWLock to keep different backends from mixing reports */
330
331 while ((lwstats = (lwlock_stats *) hash_seq_search(&scan)) != NULL)
332 {
333 fprintf(stderr,
334 "PID %d lwlock %s %p: shacq %u exacq %u blk %u spindelay %u dequeue self %u\n",
335 MyProcPid, GetLWTrancheName(lwstats->key.tranche),
336 lwstats->key.instance, lwstats->sh_acquire_count,
337 lwstats->ex_acquire_count, lwstats->block_count,
338 lwstats->spin_delay_count, lwstats->dequeue_self_count);
339 }
340
342}
343
344static lwlock_stats *
345get_lwlock_stats_entry(LWLock *lock)
346{
347 lwlock_stats_key key;
348 lwlock_stats *lwstats;
349 bool found;
350
351 /*
352 * During shared memory initialization, the hash table doesn't exist yet.
353 * Stats of that phase aren't very interesting, so just collect operations
354 * on all locks in a single dummy entry.
355 */
356 if (lwlock_stats_htab == NULL)
357 return &lwlock_stats_dummy;
358
359 /* Fetch or create the entry. */
360 MemSet(&key, 0, sizeof(key));
361 key.tranche = lock->tranche;
362 key.instance = lock;
363 lwstats = hash_search(lwlock_stats_htab, &key, HASH_ENTER, &found);
364 if (!found)
365 {
366 lwstats->sh_acquire_count = 0;
367 lwstats->ex_acquire_count = 0;
368 lwstats->block_count = 0;
369 lwstats->dequeue_self_count = 0;
370 lwstats->spin_delay_count = 0;
371 }
372 return lwstats;
373}
374#endif /* LWLOCK_STATS */
375
376
377/*
378 * Compute number of LWLocks required by named tranches. These will be
379 * allocated in the main array.
380 */
381static int
383{
384 int numLocks = 0;
385 int i;
386
387 for (i = 0; i < NamedLWLockTrancheRequests; i++)
388 numLocks += NamedLWLockTrancheRequestArray[i].num_lwlocks;
389
390 return numLocks;
391}
392
393/*
394 * Compute shmem space needed for LWLocks and named tranches.
395 */
396Size
398{
399 Size size;
400 int numLocks = NUM_FIXED_LWLOCKS;
401
402 /*
403 * If re-initializing shared memory, the request array will no longer be
404 * accessible, so switch to the copy in postmaster's local memory. We'll
405 * copy it back into shared memory later when CreateLWLocks() is called
406 * again.
407 */
410
411 /* Calculate total number of locks needed in the main array. */
412 numLocks += NumLWLocksForNamedTranches();
413
414 /* Space for dynamic allocation counter. */
415 size = MAXALIGN(sizeof(int));
416
417 /* Space for named tranches. */
418 size = add_size(size, mul_size(MAX_NAMED_TRANCHES, sizeof(char *)));
420
421 /*
422 * Make space for named tranche requests. This is done for the benefit of
423 * EXEC_BACKEND builds, which otherwise wouldn't be able to call
424 * GetNamedLWLockTranche() outside postmaster.
425 */
428
429 /* Space for the LWLock array, plus room for cache line alignment. */
430 size = add_size(size, LWLOCK_PADDED_SIZE);
431 size = add_size(size, mul_size(numLocks, sizeof(LWLockPadded)));
432
433 return size;
434}
435
436/*
437 * Allocate shmem space for the main LWLock array and all tranches and
438 * initialize it.
439 */
440void
442{
444 {
445 Size spaceLocks = LWLockShmemSize();
446 char *ptr;
447
448 /* Allocate space */
449 ptr = (char *) ShmemAlloc(spaceLocks);
450
451 /* Initialize the dynamic-allocation counter for tranches */
452 LWLockCounter = (int *) ptr;
454 ptr += MAXALIGN(sizeof(int));
455
456 /* Initialize tranche names */
457 LWLockTrancheNames = (char **) ptr;
458 ptr += MAX_NAMED_TRANCHES * sizeof(char *);
459 for (int i = 0; i < MAX_NAMED_TRANCHES; i++)
460 {
461 LWLockTrancheNames[i] = ptr;
462 ptr += NAMEDATALEN;
463 }
464
465 /*
466 * Move named tranche requests to shared memory. This is done for the
467 * benefit of EXEC_BACKEND builds, which otherwise wouldn't be able to
468 * call GetNamedLWLockTranche() outside postmaster.
469 */
471 {
472 /*
473 * Save the pointer to the request array in postmaster's local
474 * memory. We'll need it if we ever need to re-initialize shared
475 * memory after a crash.
476 */
478
483 }
484
485 /* Ensure desired alignment of LWLock array */
486 ptr += LWLOCK_PADDED_SIZE - ((uintptr_t) ptr) % LWLOCK_PADDED_SIZE;
488
489 /* Initialize all LWLocks */
491 }
492}
493
494/*
495 * Initialize LWLocks that are fixed and those belonging to named tranches.
496 */
497static void
499{
500 int id;
501 int i;
502 int j;
503 LWLockPadded *lock;
504
505 /* Initialize all individual LWLocks in main array */
506 for (id = 0, lock = MainLWLockArray; id < NUM_INDIVIDUAL_LWLOCKS; id++, lock++)
507 LWLockInitialize(&lock->lock, id);
508
509 /* Initialize buffer mapping LWLocks in main array */
511 for (id = 0; id < NUM_BUFFER_PARTITIONS; id++, lock++)
512 LWLockInitialize(&lock->lock, LWTRANCHE_BUFFER_MAPPING);
513
514 /* Initialize lmgrs' LWLocks in main array */
516 for (id = 0; id < NUM_LOCK_PARTITIONS; id++, lock++)
517 LWLockInitialize(&lock->lock, LWTRANCHE_LOCK_MANAGER);
518
519 /* Initialize predicate lmgrs' LWLocks in main array */
521 for (id = 0; id < NUM_PREDICATELOCK_PARTITIONS; id++, lock++)
522 LWLockInitialize(&lock->lock, LWTRANCHE_PREDICATE_LOCK_MANAGER);
523
524 /*
525 * Copy the info about any named tranches into shared memory (so that
526 * other processes can see it), and initialize the requested LWLocks.
527 */
529 {
531
532 for (i = 0; i < NamedLWLockTrancheRequests; i++)
533 {
535 int tranche;
536
538 tranche = LWLockNewTrancheId(request->tranche_name);
539
540 for (j = 0; j < request->num_lwlocks; j++, lock++)
541 LWLockInitialize(&lock->lock, tranche);
542 }
543 }
544}
545
546/*
547 * InitLWLockAccess - initialize backend-local state needed to hold LWLocks
548 */
549void
551{
552#ifdef LWLOCK_STATS
553 init_lwlock_stats();
554#endif
555}
556
557/*
558 * GetNamedLWLockTranche - returns the base address of LWLock from the
559 * specified tranche.
560 *
561 * Caller needs to retrieve the requested number of LWLocks starting from
562 * the base lock address returned by this API. This can be used for
563 * tranches that are requested by using RequestNamedLWLockTranche() API.
564 */
566GetNamedLWLockTranche(const char *tranche_name)
567{
568 int lock_pos;
569 int i;
570
571 /*
572 * Obtain the position of base address of LWLock belonging to requested
573 * tranche_name in MainLWLockArray. LWLocks for named tranches are placed
574 * in MainLWLockArray after fixed locks.
575 */
576 lock_pos = NUM_FIXED_LWLOCKS;
577 for (i = 0; i < NamedLWLockTrancheRequests; i++)
578 {
579 if (strcmp(NamedLWLockTrancheRequestArray[i].tranche_name,
580 tranche_name) == 0)
581 return &MainLWLockArray[lock_pos];
582
584 }
585
586 elog(ERROR, "requested tranche is not registered");
587
588 /* just to keep compiler quiet */
589 return NULL;
590}
591
592/*
593 * Allocate a new tranche ID with the provided name.
594 */
595int
597{
598 int result;
599
600 if (!name)
602 (errcode(ERRCODE_INVALID_NAME),
603 errmsg("tranche name cannot be NULL")));
604
605 if (strlen(name) >= NAMEDATALEN)
607 (errcode(ERRCODE_NAME_TOO_LONG),
608 errmsg("tranche name too long"),
609 errdetail("LWLock tranche names must be no longer than %d bytes.",
610 NAMEDATALEN - 1)));
611
612 /*
613 * We use the ShmemLock spinlock to protect LWLockCounter and
614 * LWLockTrancheNames.
615 */
617
619 {
622 (errmsg("maximum number of tranches already registered"),
623 errdetail("No more than %d tranches may be registered.",
625 }
626
627 result = (*LWLockCounter)++;
630
632
633 return result;
634}
635
636/*
637 * RequestNamedLWLockTranche
638 * Request that extra LWLocks be allocated during postmaster
639 * startup.
640 *
641 * This may only be called via the shmem_request_hook of a library that is
642 * loaded into the postmaster via shared_preload_libraries. Calls from
643 * elsewhere will fail.
644 *
645 * The tranche name will be user-visible as a wait event name, so try to
646 * use a name that fits the style for those.
647 */
648void
649RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
650{
652 static int NamedLWLockTrancheRequestsAllocated;
653
655 elog(FATAL, "cannot request additional LWLocks outside shmem_request_hook");
656
657 if (!tranche_name)
659 (errcode(ERRCODE_INVALID_NAME),
660 errmsg("tranche name cannot be NULL")));
661
662 if (strlen(tranche_name) >= NAMEDATALEN)
664 (errcode(ERRCODE_NAME_TOO_LONG),
665 errmsg("tranche name too long"),
666 errdetail("LWLock tranche names must be no longer than %d bytes.",
667 NAMEDATALEN - 1)));
668
670 {
671 NamedLWLockTrancheRequestsAllocated = 16;
674 NamedLWLockTrancheRequestsAllocated
675 * sizeof(NamedLWLockTrancheRequest));
676 }
677
678 if (NamedLWLockTrancheRequests >= NamedLWLockTrancheRequestsAllocated)
679 {
681
684 i * sizeof(NamedLWLockTrancheRequest));
685 NamedLWLockTrancheRequestsAllocated = i;
686 }
687
689 strlcpy(request->tranche_name, tranche_name, NAMEDATALEN);
690 request->num_lwlocks = num_lwlocks;
692}
693
694/*
695 * LWLockInitialize - initialize a new lwlock; it's initially unlocked
696 */
697void
698LWLockInitialize(LWLock *lock, int tranche_id)
699{
700 /* verify the tranche_id is valid */
701 (void) GetLWTrancheName(tranche_id);
702
704#ifdef LOCK_DEBUG
705 pg_atomic_init_u32(&lock->nwaiters, 0);
706#endif
707 lock->tranche = tranche_id;
708 proclist_init(&lock->waiters);
709}
710
711/*
712 * Report start of wait event for light-weight locks.
713 *
714 * This function will be used by all the light-weight lock calls which
715 * needs to wait to acquire the lock. This function distinguishes wait
716 * event based on tranche and lock id.
717 */
718static inline void
720{
722}
723
724/*
725 * Report end of wait event for light-weight locks.
726 */
727static inline void
729{
731}
732
733/*
734 * Return the name of an LWLock tranche.
735 */
736static const char *
738{
739 /* Built-in tranche or individual LWLock? */
740 if (trancheId < LWTRANCHE_FIRST_USER_DEFINED)
741 return BuiltinTrancheNames[trancheId];
742
743 /*
744 * We only ever add new entries to LWLockTrancheNames, so most lookups can
745 * avoid taking the spinlock as long as the backend-local counter
746 * (LocalLWLockCounter) is greater than the requested tranche ID. Else,
747 * we need to first update the backend-local counter with ShmemLock held
748 * before attempting the lookup again. In practice, the latter case is
749 * probably rare.
750 */
751 if (trancheId >= LocalLWLockCounter)
752 {
756
757 if (trancheId >= LocalLWLockCounter)
758 elog(ERROR, "tranche %d is not registered", trancheId);
759 }
760
761 /*
762 * It's an extension tranche, so look in LWLockTrancheNames.
763 */
764 trancheId -= LWTRANCHE_FIRST_USER_DEFINED;
765
766 return LWLockTrancheNames[trancheId];
767}
768
769/*
770 * Return an identifier for an LWLock based on the wait class and event.
771 */
772const char *
774{
775 Assert(classId == PG_WAIT_LWLOCK);
776 /* The event IDs are just tranche numbers. */
777 return GetLWTrancheName(eventId);
778}
779
780/*
781 * Internal function that tries to atomically acquire the lwlock in the passed
782 * in mode.
783 *
784 * This function will not block waiting for a lock to become free - that's the
785 * caller's job.
786 *
787 * Returns true if the lock isn't free and we need to wait.
788 */
789static bool
791{
792 uint32 old_state;
793
795
796 /*
797 * Read once outside the loop, later iterations will get the newer value
798 * via compare & exchange.
799 */
800 old_state = pg_atomic_read_u32(&lock->state);
801
802 /* loop until we've determined whether we could acquire the lock or not */
803 while (true)
804 {
805 uint32 desired_state;
806 bool lock_free;
807
808 desired_state = old_state;
809
810 if (mode == LW_EXCLUSIVE)
811 {
812 lock_free = (old_state & LW_LOCK_MASK) == 0;
813 if (lock_free)
814 desired_state += LW_VAL_EXCLUSIVE;
815 }
816 else
817 {
818 lock_free = (old_state & LW_VAL_EXCLUSIVE) == 0;
819 if (lock_free)
820 desired_state += LW_VAL_SHARED;
821 }
822
823 /*
824 * Attempt to swap in the state we are expecting. If we didn't see
825 * lock to be free, that's just the old value. If we saw it as free,
826 * we'll attempt to mark it acquired. The reason that we always swap
827 * in the value is that this doubles as a memory barrier. We could try
828 * to be smarter and only swap in values if we saw the lock as free,
829 * but benchmark haven't shown it as beneficial so far.
830 *
831 * Retry if the value changed since we last looked at it.
832 */
834 &old_state, desired_state))
835 {
836 if (lock_free)
837 {
838 /* Great! Got the lock. */
839#ifdef LOCK_DEBUG
840 if (mode == LW_EXCLUSIVE)
841 lock->owner = MyProc;
842#endif
843 return false;
844 }
845 else
846 return true; /* somebody else has the lock */
847 }
848 }
850}
851
852/*
853 * Lock the LWLock's wait list against concurrent activity.
854 *
855 * NB: even though the wait list is locked, non-conflicting lock operations
856 * may still happen concurrently.
857 *
858 * Time spent holding mutex should be short!
859 */
860static void
862{
863 uint32 old_state;
864#ifdef LWLOCK_STATS
865 lwlock_stats *lwstats;
866 uint32 delays = 0;
867
868 lwstats = get_lwlock_stats_entry(lock);
869#endif
870
871 while (true)
872 {
873 /*
874 * Always try once to acquire the lock directly, without setting up
875 * the spin-delay infrastructure. The work necessary for that shows up
876 * in profiles and is rarely necessary.
877 */
878 old_state = pg_atomic_fetch_or_u32(&lock->state, LW_FLAG_LOCKED);
879 if (likely(!(old_state & LW_FLAG_LOCKED)))
880 break; /* got lock */
881
882 /* and then spin without atomic operations until lock is released */
883 {
884 SpinDelayStatus delayStatus;
885
886 init_local_spin_delay(&delayStatus);
887
888 while (old_state & LW_FLAG_LOCKED)
889 {
890 perform_spin_delay(&delayStatus);
891 old_state = pg_atomic_read_u32(&lock->state);
892 }
893#ifdef LWLOCK_STATS
894 delays += delayStatus.delays;
895#endif
896 finish_spin_delay(&delayStatus);
897 }
898
899 /*
900 * Retry. The lock might obviously already be re-acquired by the time
901 * we're attempting to get it again.
902 */
903 }
904
905#ifdef LWLOCK_STATS
906 lwstats->spin_delay_count += delays;
907#endif
908}
909
910/*
911 * Unlock the LWLock's wait list.
912 *
913 * Note that it can be more efficient to manipulate flags and release the
914 * locks in a single atomic operation.
915 */
916static void
918{
920
921 old_state = pg_atomic_fetch_and_u32(&lock->state, ~LW_FLAG_LOCKED);
922
923 Assert(old_state & LW_FLAG_LOCKED);
924}
925
926/*
927 * Wakeup all the lockers that currently have a chance to acquire the lock.
928 */
929static void
931{
932 bool new_release_ok;
933 bool wokeup_somebody = false;
936
938
939 new_release_ok = true;
940
941 /* lock wait list while collecting backends to wake up */
942 LWLockWaitListLock(lock);
943
944 proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
945 {
946 PGPROC *waiter = GetPGProcByNumber(iter.cur);
947
948 if (wokeup_somebody && waiter->lwWaitMode == LW_EXCLUSIVE)
949 continue;
950
951 proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
952 proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
953
954 if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
955 {
956 /*
957 * Prevent additional wakeups until retryer gets to run. Backends
958 * that are just waiting for the lock to become free don't retry
959 * automatically.
960 */
961 new_release_ok = false;
962
963 /*
964 * Don't wakeup (further) exclusive locks.
965 */
966 wokeup_somebody = true;
967 }
968
969 /*
970 * Signal that the process isn't on the wait list anymore. This allows
971 * LWLockDequeueSelf() to remove itself of the waitlist with a
972 * proclist_delete(), rather than having to check if it has been
973 * removed from the list.
974 */
975 Assert(waiter->lwWaiting == LW_WS_WAITING);
977
978 /*
979 * Once we've woken up an exclusive lock, there's no point in waking
980 * up anybody else.
981 */
982 if (waiter->lwWaitMode == LW_EXCLUSIVE)
983 break;
984 }
985
987
988 /* unset required flags, and release lock, in one fell swoop */
989 {
990 uint32 old_state;
991 uint32 desired_state;
992
993 old_state = pg_atomic_read_u32(&lock->state);
994 while (true)
995 {
996 desired_state = old_state;
997
998 /* compute desired flags */
999
1000 if (new_release_ok)
1001 desired_state |= LW_FLAG_RELEASE_OK;
1002 else
1003 desired_state &= ~LW_FLAG_RELEASE_OK;
1004
1005 if (proclist_is_empty(&lock->waiters))
1006 desired_state &= ~LW_FLAG_HAS_WAITERS;
1007
1008 desired_state &= ~LW_FLAG_LOCKED; /* release lock */
1009
1010 if (pg_atomic_compare_exchange_u32(&lock->state, &old_state,
1011 desired_state))
1012 break;
1013 }
1014 }
1015
1016 /* Awaken any waiters I removed from the queue. */
1017 proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1018 {
1019 PGPROC *waiter = GetPGProcByNumber(iter.cur);
1020
1021 LOG_LWDEBUG("LWLockRelease", lock, "release waiter");
1022 proclist_delete(&wakeup, iter.cur, lwWaitLink);
1023
1024 /*
1025 * Guarantee that lwWaiting being unset only becomes visible once the
1026 * unlink from the link has completed. Otherwise the target backend
1027 * could be woken up for other reason and enqueue for a new lock - if
1028 * that happens before the list unlink happens, the list would end up
1029 * being corrupted.
1030 *
1031 * The barrier pairs with the LWLockWaitListLock() when enqueuing for
1032 * another lock.
1033 */
1035 waiter->lwWaiting = LW_WS_NOT_WAITING;
1036 PGSemaphoreUnlock(waiter->sem);
1037 }
1038}
1039
1040/*
1041 * Add ourselves to the end of the queue.
1042 *
1043 * NB: Mode can be LW_WAIT_UNTIL_FREE here!
1044 */
1045static void
1047{
1048 /*
1049 * If we don't have a PGPROC structure, there's no way to wait. This
1050 * should never occur, since MyProc should only be null during shared
1051 * memory initialization.
1052 */
1053 if (MyProc == NULL)
1054 elog(PANIC, "cannot wait without a PGPROC structure");
1055
1057 elog(PANIC, "queueing for lock while waiting on another one");
1058
1059 LWLockWaitListLock(lock);
1060
1061 /* setting the flag is protected by the spinlock */
1063
1066
1067 /* LW_WAIT_UNTIL_FREE waiters are always at the front of the queue */
1068 if (mode == LW_WAIT_UNTIL_FREE)
1069 proclist_push_head(&lock->waiters, MyProcNumber, lwWaitLink);
1070 else
1071 proclist_push_tail(&lock->waiters, MyProcNumber, lwWaitLink);
1072
1073 /* Can release the mutex now */
1075
1076#ifdef LOCK_DEBUG
1077 pg_atomic_fetch_add_u32(&lock->nwaiters, 1);
1078#endif
1079}
1080
1081/*
1082 * Remove ourselves from the waitlist.
1083 *
1084 * This is used if we queued ourselves because we thought we needed to sleep
1085 * but, after further checking, we discovered that we don't actually need to
1086 * do so.
1087 */
1088static void
1090{
1091 bool on_waitlist;
1092
1093#ifdef LWLOCK_STATS
1094 lwlock_stats *lwstats;
1095
1096 lwstats = get_lwlock_stats_entry(lock);
1097
1098 lwstats->dequeue_self_count++;
1099#endif
1100
1101 LWLockWaitListLock(lock);
1102
1103 /*
1104 * Remove ourselves from the waitlist, unless we've already been removed.
1105 * The removal happens with the wait list lock held, so there's no race in
1106 * this check.
1107 */
1108 on_waitlist = MyProc->lwWaiting == LW_WS_WAITING;
1109 if (on_waitlist)
1110 proclist_delete(&lock->waiters, MyProcNumber, lwWaitLink);
1111
1112 if (proclist_is_empty(&lock->waiters) &&
1114 {
1116 }
1117
1118 /* XXX: combine with fetch_and above? */
1120
1121 /* clear waiting state again, nice for debugging */
1122 if (on_waitlist)
1124 else
1125 {
1126 int extraWaits = 0;
1127
1128 /*
1129 * Somebody else dequeued us and has or will wake us up. Deal with the
1130 * superfluous absorption of a wakeup.
1131 */
1132
1133 /*
1134 * Reset RELEASE_OK flag if somebody woke us before we removed
1135 * ourselves - they'll have set it to false.
1136 */
1138
1139 /*
1140 * Now wait for the scheduled wakeup, otherwise our ->lwWaiting would
1141 * get reset at some inconvenient point later. Most of the time this
1142 * will immediately return.
1143 */
1144 for (;;)
1145 {
1148 break;
1149 extraWaits++;
1150 }
1151
1152 /*
1153 * Fix the process wait semaphore's count for any absorbed wakeups.
1154 */
1155 while (extraWaits-- > 0)
1157 }
1158
1159#ifdef LOCK_DEBUG
1160 {
1161 /* not waiting anymore */
1162 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1163
1164 Assert(nwaiters < MAX_BACKENDS);
1165 }
1166#endif
1167}
1168
1169/*
1170 * LWLockAcquire - acquire a lightweight lock in the specified mode
1171 *
1172 * If the lock is not available, sleep until it is. Returns true if the lock
1173 * was available immediately, false if we had to sleep.
1174 *
1175 * Side effect: cancel/die interrupts are held off until lock release.
1176 */
1177bool
1179{
1180 PGPROC *proc = MyProc;
1181 bool result = true;
1182 int extraWaits = 0;
1183#ifdef LWLOCK_STATS
1184 lwlock_stats *lwstats;
1185
1186 lwstats = get_lwlock_stats_entry(lock);
1187#endif
1188
1190
1191 PRINT_LWDEBUG("LWLockAcquire", lock, mode);
1192
1193#ifdef LWLOCK_STATS
1194 /* Count lock acquisition attempts */
1195 if (mode == LW_EXCLUSIVE)
1196 lwstats->ex_acquire_count++;
1197 else
1198 lwstats->sh_acquire_count++;
1199#endif /* LWLOCK_STATS */
1200
1201 /*
1202 * We can't wait if we haven't got a PGPROC. This should only occur
1203 * during bootstrap or shared memory initialization. Put an Assert here
1204 * to catch unsafe coding practices.
1205 */
1206 Assert(!(proc == NULL && IsUnderPostmaster));
1207
1208 /* Ensure we will have room to remember the lock */
1210 elog(ERROR, "too many LWLocks taken");
1211
1212 /*
1213 * Lock out cancel/die interrupts until we exit the code section protected
1214 * by the LWLock. This ensures that interrupts will not interfere with
1215 * manipulations of data structures in shared memory.
1216 */
1218
1219 /*
1220 * Loop here to try to acquire lock after each time we are signaled by
1221 * LWLockRelease.
1222 *
1223 * NOTE: it might seem better to have LWLockRelease actually grant us the
1224 * lock, rather than retrying and possibly having to go back to sleep. But
1225 * in practice that is no good because it means a process swap for every
1226 * lock acquisition when two or more processes are contending for the same
1227 * lock. Since LWLocks are normally used to protect not-very-long
1228 * sections of computation, a process needs to be able to acquire and
1229 * release the same lock many times during a single CPU time slice, even
1230 * in the presence of contention. The efficiency of being able to do that
1231 * outweighs the inefficiency of sometimes wasting a process dispatch
1232 * cycle because the lock is not free when a released waiter finally gets
1233 * to run. See pgsql-hackers archives for 29-Dec-01.
1234 */
1235 for (;;)
1236 {
1237 bool mustwait;
1238
1239 /*
1240 * Try to grab the lock the first time, we're not in the waitqueue
1241 * yet/anymore.
1242 */
1243 mustwait = LWLockAttemptLock(lock, mode);
1244
1245 if (!mustwait)
1246 {
1247 LOG_LWDEBUG("LWLockAcquire", lock, "immediately acquired lock");
1248 break; /* got the lock */
1249 }
1250
1251 /*
1252 * Ok, at this point we couldn't grab the lock on the first try. We
1253 * cannot simply queue ourselves to the end of the list and wait to be
1254 * woken up because by now the lock could long have been released.
1255 * Instead add us to the queue and try to grab the lock again. If we
1256 * succeed we need to revert the queuing and be happy, otherwise we
1257 * recheck the lock. If we still couldn't grab it, we know that the
1258 * other locker will see our queue entries when releasing since they
1259 * existed before we checked for the lock.
1260 */
1261
1262 /* add to the queue */
1263 LWLockQueueSelf(lock, mode);
1264
1265 /* we're now guaranteed to be woken up if necessary */
1266 mustwait = LWLockAttemptLock(lock, mode);
1267
1268 /* ok, grabbed the lock the second time round, need to undo queueing */
1269 if (!mustwait)
1270 {
1271 LOG_LWDEBUG("LWLockAcquire", lock, "acquired, undoing queue");
1272
1273 LWLockDequeueSelf(lock);
1274 break;
1275 }
1276
1277 /*
1278 * Wait until awakened.
1279 *
1280 * It is possible that we get awakened for a reason other than being
1281 * signaled by LWLockRelease. If so, loop back and wait again. Once
1282 * we've gotten the LWLock, re-increment the sema by the number of
1283 * additional signals received.
1284 */
1285 LOG_LWDEBUG("LWLockAcquire", lock, "waiting");
1286
1287#ifdef LWLOCK_STATS
1288 lwstats->block_count++;
1289#endif
1290
1292 if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1293 TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1294
1295 for (;;)
1296 {
1297 PGSemaphoreLock(proc->sem);
1298 if (proc->lwWaiting == LW_WS_NOT_WAITING)
1299 break;
1300 extraWaits++;
1301 }
1302
1303 /* Retrying, allow LWLockRelease to release waiters again. */
1305
1306#ifdef LOCK_DEBUG
1307 {
1308 /* not waiting anymore */
1309 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1310
1311 Assert(nwaiters < MAX_BACKENDS);
1312 }
1313#endif
1314
1315 if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1316 TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1318
1319 LOG_LWDEBUG("LWLockAcquire", lock, "awakened");
1320
1321 /* Now loop back and try to acquire lock again. */
1322 result = false;
1323 }
1324
1325 if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_ENABLED())
1326 TRACE_POSTGRESQL_LWLOCK_ACQUIRE(T_NAME(lock), mode);
1327
1328 /* Add lock to list of locks held by this backend */
1331
1332 /*
1333 * Fix the process wait semaphore's count for any absorbed wakeups.
1334 */
1335 while (extraWaits-- > 0)
1336 PGSemaphoreUnlock(proc->sem);
1337
1338 return result;
1339}
1340
1341/*
1342 * LWLockConditionalAcquire - acquire a lightweight lock in the specified mode
1343 *
1344 * If the lock is not available, return false with no side-effects.
1345 *
1346 * If successful, cancel/die interrupts are held off until lock release.
1347 */
1348bool
1350{
1351 bool mustwait;
1352
1354
1355 PRINT_LWDEBUG("LWLockConditionalAcquire", lock, mode);
1356
1357 /* Ensure we will have room to remember the lock */
1359 elog(ERROR, "too many LWLocks taken");
1360
1361 /*
1362 * Lock out cancel/die interrupts until we exit the code section protected
1363 * by the LWLock. This ensures that interrupts will not interfere with
1364 * manipulations of data structures in shared memory.
1365 */
1367
1368 /* Check for the lock */
1369 mustwait = LWLockAttemptLock(lock, mode);
1370
1371 if (mustwait)
1372 {
1373 /* Failed to get lock, so release interrupt holdoff */
1375
1376 LOG_LWDEBUG("LWLockConditionalAcquire", lock, "failed");
1377 if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL_ENABLED())
1378 TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL(T_NAME(lock), mode);
1379 }
1380 else
1381 {
1382 /* Add lock to list of locks held by this backend */
1385 if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_ENABLED())
1386 TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE(T_NAME(lock), mode);
1387 }
1388 return !mustwait;
1389}
1390
1391/*
1392 * LWLockAcquireOrWait - Acquire lock, or wait until it's free
1393 *
1394 * The semantics of this function are a bit funky. If the lock is currently
1395 * free, it is acquired in the given mode, and the function returns true. If
1396 * the lock isn't immediately free, the function waits until it is released
1397 * and returns false, but does not acquire the lock.
1398 *
1399 * This is currently used for WALWriteLock: when a backend flushes the WAL,
1400 * holding WALWriteLock, it can flush the commit records of many other
1401 * backends as a side-effect. Those other backends need to wait until the
1402 * flush finishes, but don't need to acquire the lock anymore. They can just
1403 * wake up, observe that their records have already been flushed, and return.
1404 */
1405bool
1407{
1408 PGPROC *proc = MyProc;
1409 bool mustwait;
1410 int extraWaits = 0;
1411#ifdef LWLOCK_STATS
1412 lwlock_stats *lwstats;
1413
1414 lwstats = get_lwlock_stats_entry(lock);
1415#endif
1416
1418
1419 PRINT_LWDEBUG("LWLockAcquireOrWait", lock, mode);
1420
1421 /* Ensure we will have room to remember the lock */
1423 elog(ERROR, "too many LWLocks taken");
1424
1425 /*
1426 * Lock out cancel/die interrupts until we exit the code section protected
1427 * by the LWLock. This ensures that interrupts will not interfere with
1428 * manipulations of data structures in shared memory.
1429 */
1431
1432 /*
1433 * NB: We're using nearly the same twice-in-a-row lock acquisition
1434 * protocol as LWLockAcquire(). Check its comments for details.
1435 */
1436 mustwait = LWLockAttemptLock(lock, mode);
1437
1438 if (mustwait)
1439 {
1441
1442 mustwait = LWLockAttemptLock(lock, mode);
1443
1444 if (mustwait)
1445 {
1446 /*
1447 * Wait until awakened. Like in LWLockAcquire, be prepared for
1448 * bogus wakeups.
1449 */
1450 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "waiting");
1451
1452#ifdef LWLOCK_STATS
1453 lwstats->block_count++;
1454#endif
1455
1457 if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1458 TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1459
1460 for (;;)
1461 {
1462 PGSemaphoreLock(proc->sem);
1463 if (proc->lwWaiting == LW_WS_NOT_WAITING)
1464 break;
1465 extraWaits++;
1466 }
1467
1468#ifdef LOCK_DEBUG
1469 {
1470 /* not waiting anymore */
1471 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1472
1473 Assert(nwaiters < MAX_BACKENDS);
1474 }
1475#endif
1476 if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1477 TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1479
1480 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "awakened");
1481 }
1482 else
1483 {
1484 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "acquired, undoing queue");
1485
1486 /*
1487 * Got lock in the second attempt, undo queueing. We need to treat
1488 * this as having successfully acquired the lock, otherwise we'd
1489 * not necessarily wake up people we've prevented from acquiring
1490 * the lock.
1491 */
1492 LWLockDequeueSelf(lock);
1493 }
1494 }
1495
1496 /*
1497 * Fix the process wait semaphore's count for any absorbed wakeups.
1498 */
1499 while (extraWaits-- > 0)
1500 PGSemaphoreUnlock(proc->sem);
1501
1502 if (mustwait)
1503 {
1504 /* Failed to get lock, so release interrupt holdoff */
1506 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "failed");
1507 if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL_ENABLED())
1508 TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL(T_NAME(lock), mode);
1509 }
1510 else
1511 {
1512 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "succeeded");
1513 /* Add lock to list of locks held by this backend */
1516 if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_ENABLED())
1517 TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT(T_NAME(lock), mode);
1518 }
1519
1520 return !mustwait;
1521}
1522
1523/*
1524 * Does the lwlock in its current state need to wait for the variable value to
1525 * change?
1526 *
1527 * If we don't need to wait, and it's because the value of the variable has
1528 * changed, store the current value in newval.
1529 *
1530 * *result is set to true if the lock was free, and false otherwise.
1531 */
1532static bool
1534 uint64 *newval, bool *result)
1535{
1536 bool mustwait;
1537 uint64 value;
1538
1539 /*
1540 * Test first to see if it the slot is free right now.
1541 *
1542 * XXX: the unique caller of this routine, WaitXLogInsertionsToFinish()
1543 * via LWLockWaitForVar(), uses an implied barrier with a spinlock before
1544 * this, so we don't need a memory barrier here as far as the current
1545 * usage is concerned. But that might not be safe in general.
1546 */
1547 mustwait = (pg_atomic_read_u32(&lock->state) & LW_VAL_EXCLUSIVE) != 0;
1548
1549 if (!mustwait)
1550 {
1551 *result = true;
1552 return false;
1553 }
1554
1555 *result = false;
1556
1557 /*
1558 * Reading this value atomically is safe even on platforms where uint64
1559 * cannot be read without observing a torn value.
1560 */
1561 value = pg_atomic_read_u64(valptr);
1562
1563 if (value != oldval)
1564 {
1565 mustwait = false;
1566 *newval = value;
1567 }
1568 else
1569 {
1570 mustwait = true;
1571 }
1572
1573 return mustwait;
1574}
1575
1576/*
1577 * LWLockWaitForVar - Wait until lock is free, or a variable is updated.
1578 *
1579 * If the lock is held and *valptr equals oldval, waits until the lock is
1580 * either freed, or the lock holder updates *valptr by calling
1581 * LWLockUpdateVar. If the lock is free on exit (immediately or after
1582 * waiting), returns true. If the lock is still held, but *valptr no longer
1583 * matches oldval, returns false and sets *newval to the current value in
1584 * *valptr.
1585 *
1586 * Note: this function ignores shared lock holders; if the lock is held
1587 * in shared mode, returns 'true'.
1588 *
1589 * Be aware that LWLockConflictsWithVar() does not include a memory barrier,
1590 * hence the caller of this function may want to rely on an explicit barrier or
1591 * an implied barrier via spinlock or LWLock to avoid memory ordering issues.
1592 */
1593bool
1595 uint64 *newval)
1596{
1597 PGPROC *proc = MyProc;
1598 int extraWaits = 0;
1599 bool result = false;
1600#ifdef LWLOCK_STATS
1601 lwlock_stats *lwstats;
1602
1603 lwstats = get_lwlock_stats_entry(lock);
1604#endif
1605
1606 PRINT_LWDEBUG("LWLockWaitForVar", lock, LW_WAIT_UNTIL_FREE);
1607
1608 /*
1609 * Lock out cancel/die interrupts while we sleep on the lock. There is no
1610 * cleanup mechanism to remove us from the wait queue if we got
1611 * interrupted.
1612 */
1614
1615 /*
1616 * Loop here to check the lock's status after each time we are signaled.
1617 */
1618 for (;;)
1619 {
1620 bool mustwait;
1621
1622 mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1623 &result);
1624
1625 if (!mustwait)
1626 break; /* the lock was free or value didn't match */
1627
1628 /*
1629 * Add myself to wait queue. Note that this is racy, somebody else
1630 * could wakeup before we're finished queuing. NB: We're using nearly
1631 * the same twice-in-a-row lock acquisition protocol as
1632 * LWLockAcquire(). Check its comments for details. The only
1633 * difference is that we also have to check the variable's values when
1634 * checking the state of the lock.
1635 */
1637
1638 /*
1639 * Set RELEASE_OK flag, to make sure we get woken up as soon as the
1640 * lock is released.
1641 */
1643
1644 /*
1645 * We're now guaranteed to be woken up if necessary. Recheck the lock
1646 * and variables state.
1647 */
1648 mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1649 &result);
1650
1651 /* Ok, no conflict after we queued ourselves. Undo queueing. */
1652 if (!mustwait)
1653 {
1654 LOG_LWDEBUG("LWLockWaitForVar", lock, "free, undoing queue");
1655
1656 LWLockDequeueSelf(lock);
1657 break;
1658 }
1659
1660 /*
1661 * Wait until awakened.
1662 *
1663 * It is possible that we get awakened for a reason other than being
1664 * signaled by LWLockRelease. If so, loop back and wait again. Once
1665 * we've gotten the LWLock, re-increment the sema by the number of
1666 * additional signals received.
1667 */
1668 LOG_LWDEBUG("LWLockWaitForVar", lock, "waiting");
1669
1670#ifdef LWLOCK_STATS
1671 lwstats->block_count++;
1672#endif
1673
1675 if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1676 TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), LW_EXCLUSIVE);
1677
1678 for (;;)
1679 {
1680 PGSemaphoreLock(proc->sem);
1681 if (proc->lwWaiting == LW_WS_NOT_WAITING)
1682 break;
1683 extraWaits++;
1684 }
1685
1686#ifdef LOCK_DEBUG
1687 {
1688 /* not waiting anymore */
1689 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1690
1691 Assert(nwaiters < MAX_BACKENDS);
1692 }
1693#endif
1694
1695 if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1696 TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), LW_EXCLUSIVE);
1698
1699 LOG_LWDEBUG("LWLockWaitForVar", lock, "awakened");
1700
1701 /* Now loop back and check the status of the lock again. */
1702 }
1703
1704 /*
1705 * Fix the process wait semaphore's count for any absorbed wakeups.
1706 */
1707 while (extraWaits-- > 0)
1708 PGSemaphoreUnlock(proc->sem);
1709
1710 /*
1711 * Now okay to allow cancel/die interrupts.
1712 */
1714
1715 return result;
1716}
1717
1718
1719/*
1720 * LWLockUpdateVar - Update a variable and wake up waiters atomically
1721 *
1722 * Sets *valptr to 'val', and wakes up all processes waiting for us with
1723 * LWLockWaitForVar(). It first sets the value atomically and then wakes up
1724 * waiting processes so that any process calling LWLockWaitForVar() on the same
1725 * lock is guaranteed to see the new value, and act accordingly.
1726 *
1727 * The caller must be holding the lock in exclusive mode.
1728 */
1729void
1731{
1734
1735 PRINT_LWDEBUG("LWLockUpdateVar", lock, LW_EXCLUSIVE);
1736
1737 /*
1738 * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1739 * that the variable is updated before waking up waiters.
1740 */
1741 pg_atomic_exchange_u64(valptr, val);
1742
1744
1745 LWLockWaitListLock(lock);
1746
1748
1749 /*
1750 * See if there are any LW_WAIT_UNTIL_FREE waiters that need to be woken
1751 * up. They are always in the front of the queue.
1752 */
1753 proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
1754 {
1755 PGPROC *waiter = GetPGProcByNumber(iter.cur);
1756
1757 if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
1758 break;
1759
1760 proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
1761 proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
1762
1763 /* see LWLockWakeup() */
1764 Assert(waiter->lwWaiting == LW_WS_WAITING);
1766 }
1767
1768 /* We are done updating shared state of the lock itself. */
1770
1771 /*
1772 * Awaken any waiters I removed from the queue.
1773 */
1774 proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1775 {
1776 PGPROC *waiter = GetPGProcByNumber(iter.cur);
1777
1778 proclist_delete(&wakeup, iter.cur, lwWaitLink);
1779 /* check comment in LWLockWakeup() about this barrier */
1781 waiter->lwWaiting = LW_WS_NOT_WAITING;
1782 PGSemaphoreUnlock(waiter->sem);
1783 }
1784}
1785
1786
1787/*
1788 * Stop treating lock as held by current backend.
1789 *
1790 * This is the code that can be shared between actually releasing a lock
1791 * (LWLockRelease()) and just not tracking ownership of the lock anymore
1792 * without releasing the lock (LWLockDisown()).
1793 *
1794 * Returns the mode in which the lock was held by the current backend.
1795 *
1796 * NB: This does not call RESUME_INTERRUPTS(), but leaves that responsibility
1797 * of the caller.
1798 *
1799 * NB: This will leave lock->owner pointing to the current backend (if
1800 * LOCK_DEBUG is set). This is somewhat intentional, as it makes it easier to
1801 * debug cases of missing wakeups during lock release.
1802 */
1803static inline LWLockMode
1805{
1807 int i;
1808
1809 /*
1810 * Remove lock from list of locks held. Usually, but not always, it will
1811 * be the latest-acquired lock; so search array backwards.
1812 */
1813 for (i = num_held_lwlocks; --i >= 0;)
1814 if (lock == held_lwlocks[i].lock)
1815 break;
1816
1817 if (i < 0)
1818 elog(ERROR, "lock %s is not held", T_NAME(lock));
1819
1821
1823 for (; i < num_held_lwlocks; i++)
1824 held_lwlocks[i] = held_lwlocks[i + 1];
1825
1826 return mode;
1827}
1828
1829/*
1830 * Helper function to release lock, shared between LWLockRelease() and
1831 * LWLockReleaseDisowned().
1832 */
1833static void
1835{
1836 uint32 oldstate;
1837 bool check_waiters;
1838
1839 /*
1840 * Release my hold on lock, after that it can immediately be acquired by
1841 * others, even if we still have to wakeup other waiters.
1842 */
1843 if (mode == LW_EXCLUSIVE)
1845 else
1846 oldstate = pg_atomic_sub_fetch_u32(&lock->state, LW_VAL_SHARED);
1847
1848 /* nobody else can have that kind of lock */
1849 Assert(!(oldstate & LW_VAL_EXCLUSIVE));
1850
1851 if (TRACE_POSTGRESQL_LWLOCK_RELEASE_ENABLED())
1852 TRACE_POSTGRESQL_LWLOCK_RELEASE(T_NAME(lock));
1853
1854 /*
1855 * We're still waiting for backends to get scheduled, don't wake them up
1856 * again.
1857 */
1858 if ((oldstate & (LW_FLAG_HAS_WAITERS | LW_FLAG_RELEASE_OK)) ==
1860 (oldstate & LW_LOCK_MASK) == 0)
1861 check_waiters = true;
1862 else
1863 check_waiters = false;
1864
1865 /*
1866 * As waking up waiters requires the spinlock to be acquired, only do so
1867 * if necessary.
1868 */
1869 if (check_waiters)
1870 {
1871 /* XXX: remove before commit? */
1872 LOG_LWDEBUG("LWLockRelease", lock, "releasing waiters");
1873 LWLockWakeup(lock);
1874 }
1875}
1876
1877
1878/*
1879 * Stop treating lock as held by current backend.
1880 *
1881 * After calling this function it's the callers responsibility to ensure that
1882 * the lock gets released (via LWLockReleaseDisowned()), even in case of an
1883 * error. This only is desirable if the lock is going to be released in a
1884 * different process than the process that acquired it.
1885 */
1886void
1888{
1890
1892}
1893
1894/*
1895 * LWLockRelease - release a previously acquired lock
1896 */
1897void
1899{
1901
1902 mode = LWLockDisownInternal(lock);
1903
1904 PRINT_LWDEBUG("LWLockRelease", lock, mode);
1905
1907
1908 /*
1909 * Now okay to allow cancel/die interrupts.
1910 */
1912}
1913
1914/*
1915 * Release lock previously disowned with LWLockDisown().
1916 */
1917void
1919{
1921}
1922
1923/*
1924 * LWLockReleaseClearVar - release a previously acquired lock, reset variable
1925 */
1926void
1928{
1929 /*
1930 * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1931 * that the variable is updated before releasing the lock.
1932 */
1933 pg_atomic_exchange_u64(valptr, val);
1934
1935 LWLockRelease(lock);
1936}
1937
1938
1939/*
1940 * LWLockReleaseAll - release all currently-held locks
1941 *
1942 * Used to clean up after ereport(ERROR). An important difference between this
1943 * function and retail LWLockRelease calls is that InterruptHoldoffCount is
1944 * unchanged by this operation. This is necessary since InterruptHoldoffCount
1945 * has been set to an appropriate level earlier in error recovery. We could
1946 * decrement it below zero if we allow it to drop for each released lock!
1947 */
1948void
1950{
1951 while (num_held_lwlocks > 0)
1952 {
1953 HOLD_INTERRUPTS(); /* match the upcoming RESUME_INTERRUPTS */
1954
1956 }
1957}
1958
1959
1960/*
1961 * ForEachLWLockHeldByMe - run a callback for each held lock
1962 *
1963 * This is meant as debug support only.
1964 */
1965void
1967 void *context)
1968{
1969 int i;
1970
1971 for (i = 0; i < num_held_lwlocks; i++)
1972 callback(held_lwlocks[i].lock, held_lwlocks[i].mode, context);
1973}
1974
1975/*
1976 * LWLockHeldByMe - test whether my process holds a lock in any mode
1977 *
1978 * This is meant as debug support only.
1979 */
1980bool
1982{
1983 int i;
1984
1985 for (i = 0; i < num_held_lwlocks; i++)
1986 {
1987 if (held_lwlocks[i].lock == lock)
1988 return true;
1989 }
1990 return false;
1991}
1992
1993/*
1994 * LWLockAnyHeldByMe - test whether my process holds any of an array of locks
1995 *
1996 * This is meant as debug support only.
1997 */
1998bool
1999LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
2000{
2001 char *held_lock_addr;
2002 char *begin;
2003 char *end;
2004 int i;
2005
2006 begin = (char *) lock;
2007 end = begin + nlocks * stride;
2008 for (i = 0; i < num_held_lwlocks; i++)
2009 {
2010 held_lock_addr = (char *) held_lwlocks[i].lock;
2011 if (held_lock_addr >= begin &&
2012 held_lock_addr < end &&
2013 (held_lock_addr - begin) % stride == 0)
2014 return true;
2015 }
2016 return false;
2017}
2018
2019/*
2020 * LWLockHeldByMeInMode - test whether my process holds a lock in given mode
2021 *
2022 * This is meant as debug support only.
2023 */
2024bool
2026{
2027 int i;
2028
2029 for (i = 0; i < num_held_lwlocks; i++)
2030 {
2031 if (held_lwlocks[i].lock == lock && held_lwlocks[i].mode == mode)
2032 return true;
2033 }
2034 return false;
2035}
static uint32 pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
Definition: atomics.h:396
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:349
static uint32 pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
Definition: atomics.h:410
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:439
static uint32 pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:381
static void pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:219
#define pg_write_barrier()
Definition: atomics.h:155
static uint32 pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:366
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:237
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:467
static uint64 pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval)
Definition: atomics.h:513
#define likely(x)
Definition: c.h:417
#define MAXALIGN(LEN)
Definition: c.h:832
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:229
uint64_t uint64
Definition: c.h:553
uint16_t uint16
Definition: c.h:551
#define pg_unreachable()
Definition: c.h:347
uint32_t uint32
Definition: c.h:552
#define lengthof(array)
Definition: c.h:809
#define MemSet(start, val, len)
Definition: c.h:1019
size_t Size
Definition: c.h:625
#define fprintf(file, fmt, msg)
Definition: cubescan.l:21
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1415
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1380
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errhidestmt(bool hide_stmt)
Definition: elog.c:1445
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhidecontext(bool hide_ctx)
Definition: elog.c:1464
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
int MyProcPid
Definition: globals.c:47
ProcNumber MyProcNumber
Definition: globals.c:90
bool IsUnderPostmaster
Definition: globals.c:120
#define newval
Assert(PointerIsAligned(start, uint64))
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
long val
Definition: informix.c:689
static struct @171 value
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
int j
Definition: isn.c:78
int i
Definition: isn.c:77
#define LW_VAL_EXCLUSIVE
Definition: lwlock.c:101
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1730
static void LWLockWakeup(LWLock *lock)
Definition: lwlock.c:930
#define LW_FLAG_LOCKED
Definition: lwlock.c:96
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1981
static int LocalLWLockCounter
Definition: lwlock.c:202
static LWLockHandle held_lwlocks[MAX_SIMUL_LWLOCKS]
Definition: lwlock.c:178
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1927
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1178
static void LWLockReleaseInternal(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1834
void CreateLWLocks(void)
Definition: lwlock.c:441
void LWLockDisown(LWLock *lock)
Definition: lwlock.c:1887
int LWLockNewTrancheId(const char *name)
Definition: lwlock.c:596
static LWLockMode LWLockDisownInternal(LWLock *lock)
Definition: lwlock.c:1804
#define LW_VAL_SHARED
Definition: lwlock.c:102
static bool LWLockAttemptLock(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:790
static void LWLockWaitListLock(LWLock *lock)
Definition: lwlock.c:861
LWLockPadded * GetNamedLWLockTranche(const char *tranche_name)
Definition: lwlock.c:566
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2025
static void LWLockReportWaitEnd(void)
Definition: lwlock.c:728
struct LWLockHandle LWLockHandle
char ** LWLockTrancheNames
Definition: lwlock.c:154
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1594
static const char * GetLWTrancheName(uint16 trancheId)
Definition: lwlock.c:737
#define LW_LOCK_MASK
Definition: lwlock.c:106
int NamedLWLockTrancheRequests
Definition: lwlock.c:192
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
Definition: lwlock.c:649
#define LW_FLAG_RELEASE_OK
Definition: lwlock.c:95
#define LW_FLAG_MASK
Definition: lwlock.c:98
#define LW_FLAG_HAS_WAITERS
Definition: lwlock.c:94
#define MAX_SIMUL_LWLOCKS
Definition: lwlock.c:168
struct NamedLWLockTrancheRequest NamedLWLockTrancheRequest
static int NumLWLocksForNamedTranches(void)
Definition: lwlock.c:382
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1898
static NamedLWLockTrancheRequest * LocalNamedLWLockTrancheRequestArray
Definition: lwlock.c:196
#define T_NAME(lock)
Definition: lwlock.c:211
static int num_held_lwlocks
Definition: lwlock.c:177
void LWLockReleaseAll(void)
Definition: lwlock.c:1949
static void InitializeLWLocks(void)
Definition: lwlock.c:498
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:698
static const char *const BuiltinTrancheNames[]
Definition: lwlock.c:135
NamedLWLockTrancheRequest * NamedLWLockTrancheRequestArray
Definition: lwlock.c:193
void LWLockReleaseDisowned(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1918
static void LWLockWaitListUnlock(LWLock *lock)
Definition: lwlock.c:917
#define LOG_LWDEBUG(a, b, c)
Definition: lwlock.c:276
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1349
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1406
static void LWLockQueueSelf(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1046
#define PRINT_LWDEBUG(a, b, c)
Definition: lwlock.c:275
static void LWLockReportWaitStart(LWLock *lock)
Definition: lwlock.c:719
LWLockPadded * MainLWLockArray
Definition: lwlock.c:161
StaticAssertDecl(((MAX_BACKENDS+1) &MAX_BACKENDS)==0, "MAX_BACKENDS + 1 needs to be a power of 2")
void ForEachLWLockHeldByMe(void(*callback)(LWLock *, LWLockMode, void *), void *context)
Definition: lwlock.c:1966
const char * GetLWLockIdentifier(uint32 classId, uint16 eventId)
Definition: lwlock.c:773
static void LWLockDequeueSelf(LWLock *lock)
Definition: lwlock.c:1089
int * LWLockCounter
Definition: lwlock.c:199
Size LWLockShmemSize(void)
Definition: lwlock.c:397
bool LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
Definition: lwlock.c:1999
#define MAX_NAMED_TRANCHES
Definition: lwlock.c:204
#define LW_SHARED_MASK
Definition: lwlock.c:105
static bool LWLockConflictsWithVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval, bool *result)
Definition: lwlock.c:1533
void InitLWLockAccess(void)
Definition: lwlock.c:550
@ LW_WS_NOT_WAITING
Definition: lwlock.h:30
@ LW_WS_WAITING
Definition: lwlock.h:31
@ LW_WS_PENDING_WAKEUP
Definition: lwlock.h:32
#define LWLOCK_PADDED_SIZE
Definition: lwlock.h:62
#define BUFFER_MAPPING_LWLOCK_OFFSET
Definition: lwlock.h:102
#define NUM_LOCK_PARTITIONS
Definition: lwlock.h:95
@ LWTRANCHE_FIRST_USER_DEFINED
Definition: lwlock.h:186
#define LOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:103
#define NUM_BUFFER_PARTITIONS
Definition: lwlock.h:91
#define PREDICATELOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:105
#define NUM_FIXED_LWLOCKS
Definition: lwlock.h:107
LWLockMode
Definition: lwlock.h:111
@ LW_SHARED
Definition: lwlock.h:113
@ LW_WAIT_UNTIL_FREE
Definition: lwlock.h:114
@ LW_EXCLUSIVE
Definition: lwlock.h:112
#define NUM_PREDICATELOCK_PARTITIONS
Definition: lwlock.h:99
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1232
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1632
MemoryContext TopMemoryContext
Definition: mcxt.c:166
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:472
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:743
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define RESUME_INTERRUPTS()
Definition: miscadmin.h:136
#define HOLD_INTERRUPTS()
Definition: miscadmin.h:134
bool process_shmem_requests_in_progress
Definition: miscinit.c:1790
void * arg
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
static PgChecksumMode mode
Definition: pg_checksums.c:56
#define NAMEDATALEN
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:335
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:315
uint64_t Datum
Definition: postgres.h:70
#define GetPGProcByNumber(n)
Definition: proc.h:440
#define proclist_delete(list, procno, link_member)
Definition: proclist.h:187
static void proclist_init(proclist_head *list)
Definition: proclist.h:29
#define proclist_push_tail(list, procno, link_member)
Definition: proclist.h:191
#define proclist_push_head(list, procno, link_member)
Definition: proclist.h:189
#define proclist_foreach_modify(iter, lhead, link_member)
Definition: proclist.h:206
static bool proclist_is_empty(const proclist_head *list)
Definition: proclist.h:38
#define MAX_BACKENDS
Definition: procnumber.h:39
tree ctl
Definition: radixtree.h:1838
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:126
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:186
#define init_local_spin_delay(status)
Definition: s_lock.h:733
Size add_size(Size s1, Size s2)
Definition: shmem.c:495
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void * ShmemAlloc(Size size)
Definition: shmem.c:154
slock_t * ShmemLock
Definition: shmem.c:90
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
Definition: dynahash.c:222
LWLockMode mode
Definition: lwlock.c:174
LWLock * lock
Definition: lwlock.c:173
Definition: lwlock.h:42
pg_atomic_uint32 state
Definition: lwlock.h:44
uint16 tranche
Definition: lwlock.h:43
proclist_head waiters
Definition: lwlock.h:45
char tranche_name[NAMEDATALEN]
Definition: lwlock.c:183
Definition: proc.h:179
uint8 lwWaitMode
Definition: proc.h:241
PGSemaphore sem
Definition: proc.h:183
uint8 lwWaiting
Definition: proc.h:240
Definition: regguts.h:323
static void callback(struct sockaddr *addr, struct sockaddr *mask, void *unused)
Definition: test_ifaddrs.c:46
LWLock lock
Definition: lwlock.h:70
#define PG_WAIT_LWLOCK
Definition: wait_classes.h:18
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
const char * name
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:131