PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
lwlock.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * lwlock.c
4 * Lightweight lock manager
5 *
6 * Lightweight locks are intended primarily to provide mutual exclusion of
7 * access to shared-memory data structures. Therefore, they offer both
8 * exclusive and shared lock modes (to support read/write and read-only
9 * access to a shared object). There are few other frammishes. User-level
10 * locking should be done with the full lock manager --- which depends on
11 * LWLocks to protect its shared state.
12 *
13 * In addition to exclusive and shared modes, lightweight locks can be used to
14 * wait until a variable changes value. The variable is initially not set
15 * when the lock is acquired with LWLockAcquire, i.e. it remains set to the
16 * value it was set to when the lock was released last, and can be updated
17 * without releasing the lock by calling LWLockUpdateVar. LWLockWaitForVar
18 * waits for the variable to be updated, or until the lock is free. When
19 * releasing the lock with LWLockReleaseClearVar() the value can be set to an
20 * appropriate value for a free lock. The meaning of the variable is up to
21 * the caller, the lightweight lock code just assigns and compares it.
22 *
23 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
24 * Portions Copyright (c) 1994, Regents of the University of California
25 *
26 * IDENTIFICATION
27 * src/backend/storage/lmgr/lwlock.c
28 *
29 * NOTES:
30 *
31 * This used to be a pretty straight forward reader-writer lock
32 * implementation, in which the internal state was protected by a
33 * spinlock. Unfortunately the overhead of taking the spinlock proved to be
34 * too high for workloads/locks that were taken in shared mode very
35 * frequently. Often we were spinning in the (obviously exclusive) spinlock,
36 * while trying to acquire a shared lock that was actually free.
37 *
38 * Thus a new implementation was devised that provides wait-free shared lock
39 * acquisition for locks that aren't exclusively locked.
40 *
41 * The basic idea is to have a single atomic variable 'lockcount' instead of
42 * the formerly separate shared and exclusive counters and to use atomic
43 * operations to acquire the lock. That's fairly easy to do for plain
44 * rw-spinlocks, but a lot harder for something like LWLocks that want to wait
45 * in the OS.
46 *
47 * For lock acquisition we use an atomic compare-and-exchange on the lockcount
48 * variable. For exclusive lock we swap in a sentinel value
49 * (LW_VAL_EXCLUSIVE), for shared locks we count the number of holders.
50 *
51 * To release the lock we use an atomic decrement to release the lock. If the
52 * new value is zero (we get that atomically), we know we can/have to release
53 * waiters.
54 *
55 * Obviously it is important that the sentinel value for exclusive locks
56 * doesn't conflict with the maximum number of possible share lockers -
57 * luckily MAX_BACKENDS makes that easily possible.
58 *
59 *
60 * The attentive reader might have noticed that naively doing the above has a
61 * glaring race condition: We try to lock using the atomic operations and
62 * notice that we have to wait. Unfortunately by the time we have finished
63 * queuing, the former locker very well might have already finished its
64 * work. That's problematic because we're now stuck waiting inside the OS.
65
66 * To mitigate those races we use a two phased attempt at locking:
67 * Phase 1: Try to do it atomically, if we succeed, nice
68 * Phase 2: Add ourselves to the waitqueue of the lock
69 * Phase 3: Try to grab the lock again, if we succeed, remove ourselves from
70 * the queue
71 * Phase 4: Sleep till wake-up, goto Phase 1
72 *
73 * This protects us against the problem from above as nobody can release too
74 * quick, before we're queued, since after Phase 2 we're already queued.
75 * -------------------------------------------------------------------------
76 */
77#include "postgres.h"
78
79#include "miscadmin.h"
80#include "pg_trace.h"
81#include "pgstat.h"
82#include "port/pg_bitutils.h"
83#include "storage/proc.h"
84#include "storage/proclist.h"
85#include "storage/procnumber.h"
86#include "storage/spin.h"
87#include "utils/memutils.h"
88
89#ifdef LWLOCK_STATS
90#include "utils/hsearch.h"
91#endif
92
93
94#define LW_FLAG_HAS_WAITERS ((uint32) 1 << 31)
95#define LW_FLAG_RELEASE_OK ((uint32) 1 << 30)
96#define LW_FLAG_LOCKED ((uint32) 1 << 29)
97#define LW_FLAG_BITS 3
98#define LW_FLAG_MASK (((1<<LW_FLAG_BITS)-1)<<(32-LW_FLAG_BITS))
99
100/* assumes MAX_BACKENDS is a (power of 2) - 1, checked below */
101#define LW_VAL_EXCLUSIVE (MAX_BACKENDS + 1)
102#define LW_VAL_SHARED 1
103
104/* already (power of 2)-1, i.e. suitable for a mask */
105#define LW_SHARED_MASK MAX_BACKENDS
106#define LW_LOCK_MASK (MAX_BACKENDS | LW_VAL_EXCLUSIVE)
107
108
110 "MAX_BACKENDS + 1 needs to be a power of 2");
111
113 "MAX_BACKENDS and LW_FLAG_MASK overlap");
114
116 "LW_VAL_EXCLUSIVE and LW_FLAG_MASK overlap");
117
118/*
119 * There are three sorts of LWLock "tranches":
120 *
121 * 1. The individually-named locks defined in lwlocklist.h each have their
122 * own tranche. We absorb the names of these tranches from there into
123 * BuiltinTrancheNames here.
124 *
125 * 2. There are some predefined tranches for built-in groups of locks.
126 * These are listed in enum BuiltinTrancheIds in lwlock.h, and their names
127 * appear in BuiltinTrancheNames[] below.
128 *
129 * 3. Extensions can create new tranches, via either RequestNamedLWLockTranche
130 * or LWLockRegisterTranche. The names of these that are known in the current
131 * process appear in LWLockTrancheNames[].
132 *
133 * All these names are user-visible as wait event names, so choose with care
134 * ... and do not forget to update the documentation's list of wait events.
135 */
136static const char *const BuiltinTrancheNames[] = {
137#define PG_LWLOCK(id, lockname) [id] = CppAsString(lockname),
138#include "storage/lwlocklist.h"
139#undef PG_LWLOCK
140 [LWTRANCHE_XACT_BUFFER] = "XactBuffer",
141 [LWTRANCHE_COMMITTS_BUFFER] = "CommitTsBuffer",
142 [LWTRANCHE_SUBTRANS_BUFFER] = "SubtransBuffer",
143 [LWTRANCHE_MULTIXACTOFFSET_BUFFER] = "MultiXactOffsetBuffer",
144 [LWTRANCHE_MULTIXACTMEMBER_BUFFER] = "MultiXactMemberBuffer",
145 [LWTRANCHE_NOTIFY_BUFFER] = "NotifyBuffer",
146 [LWTRANCHE_SERIAL_BUFFER] = "SerialBuffer",
147 [LWTRANCHE_WAL_INSERT] = "WALInsert",
148 [LWTRANCHE_BUFFER_CONTENT] = "BufferContent",
149 [LWTRANCHE_REPLICATION_ORIGIN_STATE] = "ReplicationOriginState",
150 [LWTRANCHE_REPLICATION_SLOT_IO] = "ReplicationSlotIO",
151 [LWTRANCHE_LOCK_FASTPATH] = "LockFastPath",
152 [LWTRANCHE_BUFFER_MAPPING] = "BufferMapping",
153 [LWTRANCHE_LOCK_MANAGER] = "LockManager",
154 [LWTRANCHE_PREDICATE_LOCK_MANAGER] = "PredicateLockManager",
155 [LWTRANCHE_PARALLEL_HASH_JOIN] = "ParallelHashJoin",
156 [LWTRANCHE_PARALLEL_BTREE_SCAN] = "ParallelBtreeScan",
157 [LWTRANCHE_PARALLEL_QUERY_DSA] = "ParallelQueryDSA",
158 [LWTRANCHE_PER_SESSION_DSA] = "PerSessionDSA",
159 [LWTRANCHE_PER_SESSION_RECORD_TYPE] = "PerSessionRecordType",
160 [LWTRANCHE_PER_SESSION_RECORD_TYPMOD] = "PerSessionRecordTypmod",
161 [LWTRANCHE_SHARED_TUPLESTORE] = "SharedTupleStore",
162 [LWTRANCHE_SHARED_TIDBITMAP] = "SharedTidBitmap",
163 [LWTRANCHE_PARALLEL_APPEND] = "ParallelAppend",
164 [LWTRANCHE_PER_XACT_PREDICATE_LIST] = "PerXactPredicateList",
165 [LWTRANCHE_PGSTATS_DSA] = "PgStatsDSA",
166 [LWTRANCHE_PGSTATS_HASH] = "PgStatsHash",
167 [LWTRANCHE_PGSTATS_DATA] = "PgStatsData",
168 [LWTRANCHE_LAUNCHER_DSA] = "LogicalRepLauncherDSA",
169 [LWTRANCHE_LAUNCHER_HASH] = "LogicalRepLauncherHash",
170 [LWTRANCHE_DSM_REGISTRY_DSA] = "DSMRegistryDSA",
171 [LWTRANCHE_DSM_REGISTRY_HASH] = "DSMRegistryHash",
172 [LWTRANCHE_COMMITTS_SLRU] = "CommitTsSLRU",
173 [LWTRANCHE_MULTIXACTOFFSET_SLRU] = "MultixactOffsetSLRU",
174 [LWTRANCHE_MULTIXACTMEMBER_SLRU] = "MultixactMemberSLRU",
175 [LWTRANCHE_NOTIFY_SLRU] = "NotifySLRU",
176 [LWTRANCHE_SERIAL_SLRU] = "SerialSLRU",
177 [LWTRANCHE_SUBTRANS_SLRU] = "SubtransSLRU",
178 [LWTRANCHE_XACT_SLRU] = "XactSLRU",
179 [LWTRANCHE_PARALLEL_VACUUM_DSA] = "ParallelVacuumDSA",
180 [LWTRANCHE_AIO_URING_COMPLETION] = "AioUringCompletion",
181 [LWTRANCHE_MEMORY_CONTEXT_REPORTING_STATE] = "MemoryContextReportingState",
182 [LWTRANCHE_MEMORY_CONTEXT_REPORTING_PROC] = "MemoryContextReportingPerProcess",
183};
184
187 "missing entries in BuiltinTrancheNames[]");
188
189/*
190 * This is indexed by tranche ID minus LWTRANCHE_FIRST_USER_DEFINED, and
191 * stores the names of all dynamically-created tranches known to the current
192 * process. Any unused entries in the array will contain NULL.
193 */
194static const char **LWLockTrancheNames = NULL;
196
197/*
198 * This points to the main array of LWLocks in shared memory. Backends inherit
199 * the pointer by fork from the postmaster (except in the EXEC_BACKEND case,
200 * where we have special measures to pass it down).
201 */
203
204/*
205 * We use this structure to keep track of locked LWLocks for release
206 * during error recovery. Normally, only a few will be held at once, but
207 * occasionally the number can be much higher; for example, the pg_buffercache
208 * extension locks all buffer partitions simultaneously.
209 */
210#define MAX_SIMUL_LWLOCKS 200
211
212/* struct representing the LWLocks we're holding */
213typedef struct LWLockHandle
214{
218
219static int num_held_lwlocks = 0;
221
222/* struct representing the LWLock tranche request for named tranche */
224{
228
231
232/*
233 * NamedLWLockTrancheRequests is both the valid length of the request array,
234 * and the length of the shared-memory NamedLWLockTrancheArray later on.
235 * This variable and NamedLWLockTrancheArray are non-static so that
236 * postmaster.c can copy them to child processes in EXEC_BACKEND builds.
237 */
239
240/* points to data in shared memory: */
242
243static void InitializeLWLocks(void);
244static inline void LWLockReportWaitStart(LWLock *lock);
245static inline void LWLockReportWaitEnd(void);
246static const char *GetLWTrancheName(uint16 trancheId);
247
248#define T_NAME(lock) \
249 GetLWTrancheName((lock)->tranche)
250
251#ifdef LWLOCK_STATS
252typedef struct lwlock_stats_key
253{
254 int tranche;
255 void *instance;
256} lwlock_stats_key;
257
258typedef struct lwlock_stats
259{
260 lwlock_stats_key key;
261 int sh_acquire_count;
262 int ex_acquire_count;
263 int block_count;
264 int dequeue_self_count;
265 int spin_delay_count;
266} lwlock_stats;
267
268static HTAB *lwlock_stats_htab;
269static lwlock_stats lwlock_stats_dummy;
270#endif
271
272#ifdef LOCK_DEBUG
273bool Trace_lwlocks = false;
274
275inline static void
276PRINT_LWDEBUG(const char *where, LWLock *lock, LWLockMode mode)
277{
278 /* hide statement & context here, otherwise the log is just too verbose */
279 if (Trace_lwlocks)
280 {
282
283 ereport(LOG,
284 (errhidestmt(true),
285 errhidecontext(true),
286 errmsg_internal("%d: %s(%s %p): excl %u shared %u haswaiters %u waiters %u rOK %d",
287 MyProcPid,
288 where, T_NAME(lock), lock,
289 (state & LW_VAL_EXCLUSIVE) != 0,
291 (state & LW_FLAG_HAS_WAITERS) != 0,
292 pg_atomic_read_u32(&lock->nwaiters),
293 (state & LW_FLAG_RELEASE_OK) != 0)));
294 }
295}
296
297inline static void
298LOG_LWDEBUG(const char *where, LWLock *lock, const char *msg)
299{
300 /* hide statement & context here, otherwise the log is just too verbose */
301 if (Trace_lwlocks)
302 {
303 ereport(LOG,
304 (errhidestmt(true),
305 errhidecontext(true),
306 errmsg_internal("%s(%s %p): %s", where,
307 T_NAME(lock), lock, msg)));
308 }
309}
310
311#else /* not LOCK_DEBUG */
312#define PRINT_LWDEBUG(a,b,c) ((void)0)
313#define LOG_LWDEBUG(a,b,c) ((void)0)
314#endif /* LOCK_DEBUG */
315
316#ifdef LWLOCK_STATS
317
318static void init_lwlock_stats(void);
319static void print_lwlock_stats(int code, Datum arg);
320static lwlock_stats * get_lwlock_stats_entry(LWLock *lock);
321
322static void
323init_lwlock_stats(void)
324{
325 HASHCTL ctl;
326 static MemoryContext lwlock_stats_cxt = NULL;
327 static bool exit_registered = false;
328
329 if (lwlock_stats_cxt != NULL)
330 MemoryContextDelete(lwlock_stats_cxt);
331
332 /*
333 * The LWLock stats will be updated within a critical section, which
334 * requires allocating new hash entries. Allocations within a critical
335 * section are normally not allowed because running out of memory would
336 * lead to a PANIC, but LWLOCK_STATS is debugging code that's not normally
337 * turned on in production, so that's an acceptable risk. The hash entries
338 * are small, so the risk of running out of memory is minimal in practice.
339 */
340 lwlock_stats_cxt = AllocSetContextCreate(TopMemoryContext,
341 "LWLock stats",
343 MemoryContextAllowInCriticalSection(lwlock_stats_cxt, true);
344
345 ctl.keysize = sizeof(lwlock_stats_key);
346 ctl.entrysize = sizeof(lwlock_stats);
347 ctl.hcxt = lwlock_stats_cxt;
348 lwlock_stats_htab = hash_create("lwlock stats", 16384, &ctl,
350 if (!exit_registered)
351 {
352 on_shmem_exit(print_lwlock_stats, 0);
353 exit_registered = true;
354 }
355}
356
357static void
358print_lwlock_stats(int code, Datum arg)
359{
360 HASH_SEQ_STATUS scan;
361 lwlock_stats *lwstats;
362
363 hash_seq_init(&scan, lwlock_stats_htab);
364
365 /* Grab an LWLock to keep different backends from mixing reports */
367
368 while ((lwstats = (lwlock_stats *) hash_seq_search(&scan)) != NULL)
369 {
370 fprintf(stderr,
371 "PID %d lwlock %s %p: shacq %u exacq %u blk %u spindelay %u dequeue self %u\n",
372 MyProcPid, GetLWTrancheName(lwstats->key.tranche),
373 lwstats->key.instance, lwstats->sh_acquire_count,
374 lwstats->ex_acquire_count, lwstats->block_count,
375 lwstats->spin_delay_count, lwstats->dequeue_self_count);
376 }
377
379}
380
381static lwlock_stats *
382get_lwlock_stats_entry(LWLock *lock)
383{
384 lwlock_stats_key key;
385 lwlock_stats *lwstats;
386 bool found;
387
388 /*
389 * During shared memory initialization, the hash table doesn't exist yet.
390 * Stats of that phase aren't very interesting, so just collect operations
391 * on all locks in a single dummy entry.
392 */
393 if (lwlock_stats_htab == NULL)
394 return &lwlock_stats_dummy;
395
396 /* Fetch or create the entry. */
397 MemSet(&key, 0, sizeof(key));
398 key.tranche = lock->tranche;
399 key.instance = lock;
400 lwstats = hash_search(lwlock_stats_htab, &key, HASH_ENTER, &found);
401 if (!found)
402 {
403 lwstats->sh_acquire_count = 0;
404 lwstats->ex_acquire_count = 0;
405 lwstats->block_count = 0;
406 lwstats->dequeue_self_count = 0;
407 lwstats->spin_delay_count = 0;
408 }
409 return lwstats;
410}
411#endif /* LWLOCK_STATS */
412
413
414/*
415 * Compute number of LWLocks required by named tranches. These will be
416 * allocated in the main array.
417 */
418static int
420{
421 int numLocks = 0;
422 int i;
423
424 for (i = 0; i < NamedLWLockTrancheRequests; i++)
425 numLocks += NamedLWLockTrancheRequestArray[i].num_lwlocks;
426
427 return numLocks;
428}
429
430/*
431 * Compute shmem space needed for LWLocks and named tranches.
432 */
433Size
435{
436 Size size;
437 int i;
438 int numLocks = NUM_FIXED_LWLOCKS;
439
440 /* Calculate total number of locks needed in the main array. */
441 numLocks += NumLWLocksForNamedTranches();
442
443 /* Space for the LWLock array. */
444 size = mul_size(numLocks, sizeof(LWLockPadded));
445
446 /* Space for dynamic allocation counter, plus room for alignment. */
447 size = add_size(size, sizeof(int) + LWLOCK_PADDED_SIZE);
448
449 /* space for named tranches. */
451
452 /* space for name of each tranche. */
453 for (i = 0; i < NamedLWLockTrancheRequests; i++)
454 size = add_size(size, strlen(NamedLWLockTrancheRequestArray[i].tranche_name) + 1);
455
456 return size;
457}
458
459/*
460 * Allocate shmem space for the main LWLock array and all tranches and
461 * initialize it. We also register extension LWLock tranches here.
462 */
463void
465{
467 {
468 Size spaceLocks = LWLockShmemSize();
469 int *LWLockCounter;
470 char *ptr;
471
472 /* Allocate space */
473 ptr = (char *) ShmemAlloc(spaceLocks);
474
475 /* Leave room for dynamic allocation of tranches */
476 ptr += sizeof(int);
477
478 /* Ensure desired alignment of LWLock array */
479 ptr += LWLOCK_PADDED_SIZE - ((uintptr_t) ptr) % LWLOCK_PADDED_SIZE;
480
482
483 /*
484 * Initialize the dynamic-allocation counter for tranches, which is
485 * stored just before the first LWLock.
486 */
487 LWLockCounter = (int *) ((char *) MainLWLockArray - sizeof(int));
488 *LWLockCounter = LWTRANCHE_FIRST_USER_DEFINED;
489
490 /* Initialize all LWLocks */
492 }
493
494 /* Register named extension LWLock tranches in the current process. */
495 for (int i = 0; i < NamedLWLockTrancheRequests; i++)
497 NamedLWLockTrancheArray[i].trancheName);
498}
499
500/*
501 * Initialize LWLocks that are fixed and those belonging to named tranches.
502 */
503static void
505{
506 int numNamedLocks = NumLWLocksForNamedTranches();
507 int id;
508 int i;
509 int j;
510 LWLockPadded *lock;
511
512 /* Initialize all individual LWLocks in main array */
513 for (id = 0, lock = MainLWLockArray; id < NUM_INDIVIDUAL_LWLOCKS; id++, lock++)
514 LWLockInitialize(&lock->lock, id);
515
516 /* Initialize buffer mapping LWLocks in main array */
518 for (id = 0; id < NUM_BUFFER_PARTITIONS; id++, lock++)
520
521 /* Initialize lmgrs' LWLocks in main array */
523 for (id = 0; id < NUM_LOCK_PARTITIONS; id++, lock++)
525
526 /* Initialize predicate lmgrs' LWLocks in main array */
528 for (id = 0; id < NUM_PREDICATELOCK_PARTITIONS; id++, lock++)
530
531 /*
532 * Copy the info about any named tranches into shared memory (so that
533 * other processes can see it), and initialize the requested LWLocks.
534 */
536 {
537 char *trancheNames;
538
540 &MainLWLockArray[NUM_FIXED_LWLOCKS + numNamedLocks];
541
542 trancheNames = (char *) NamedLWLockTrancheArray +
545
546 for (i = 0; i < NamedLWLockTrancheRequests; i++)
547 {
549 NamedLWLockTranche *tranche;
550 char *name;
551
553 tranche = &NamedLWLockTrancheArray[i];
554
555 name = trancheNames;
556 trancheNames += strlen(request->tranche_name) + 1;
557 strcpy(name, request->tranche_name);
558 tranche->trancheId = LWLockNewTrancheId();
559 tranche->trancheName = name;
560
561 for (j = 0; j < request->num_lwlocks; j++, lock++)
562 LWLockInitialize(&lock->lock, tranche->trancheId);
563 }
564 }
565}
566
567/*
568 * InitLWLockAccess - initialize backend-local state needed to hold LWLocks
569 */
570void
572{
573#ifdef LWLOCK_STATS
574 init_lwlock_stats();
575#endif
576}
577
578/*
579 * GetNamedLWLockTranche - returns the base address of LWLock from the
580 * specified tranche.
581 *
582 * Caller needs to retrieve the requested number of LWLocks starting from
583 * the base lock address returned by this API. This can be used for
584 * tranches that are requested by using RequestNamedLWLockTranche() API.
585 */
587GetNamedLWLockTranche(const char *tranche_name)
588{
589 int lock_pos;
590 int i;
591
592 /*
593 * Obtain the position of base address of LWLock belonging to requested
594 * tranche_name in MainLWLockArray. LWLocks for named tranches are placed
595 * in MainLWLockArray after fixed locks.
596 */
597 lock_pos = NUM_FIXED_LWLOCKS;
598 for (i = 0; i < NamedLWLockTrancheRequests; i++)
599 {
600 if (strcmp(NamedLWLockTrancheRequestArray[i].tranche_name,
601 tranche_name) == 0)
602 return &MainLWLockArray[lock_pos];
603
605 }
606
607 elog(ERROR, "requested tranche is not registered");
608
609 /* just to keep compiler quiet */
610 return NULL;
611}
612
613/*
614 * Allocate a new tranche ID.
615 */
616int
618{
619 int result;
620 int *LWLockCounter;
621
622 LWLockCounter = (int *) ((char *) MainLWLockArray - sizeof(int));
623 /* We use the ShmemLock spinlock to protect LWLockCounter */
625 result = (*LWLockCounter)++;
627
628 return result;
629}
630
631/*
632 * Register a dynamic tranche name in the lookup table of the current process.
633 *
634 * This routine will save a pointer to the tranche name passed as an argument,
635 * so the name should be allocated in a backend-lifetime context
636 * (shared memory, TopMemoryContext, static constant, or similar).
637 *
638 * The tranche name will be user-visible as a wait event name, so try to
639 * use a name that fits the style for those.
640 */
641void
642LWLockRegisterTranche(int tranche_id, const char *tranche_name)
643{
644 /* This should only be called for user-defined tranches. */
645 if (tranche_id < LWTRANCHE_FIRST_USER_DEFINED)
646 return;
647
648 /* Convert to array index. */
649 tranche_id -= LWTRANCHE_FIRST_USER_DEFINED;
650
651 /* If necessary, create or enlarge array. */
652 if (tranche_id >= LWLockTrancheNamesAllocated)
653 {
654 int newalloc;
655
656 newalloc = pg_nextpower2_32(Max(8, tranche_id + 1));
657
658 if (LWLockTrancheNames == NULL)
659 LWLockTrancheNames = (const char **)
661 newalloc * sizeof(char *));
662 else
666 }
667
668 LWLockTrancheNames[tranche_id] = tranche_name;
669}
670
671/*
672 * RequestNamedLWLockTranche
673 * Request that extra LWLocks be allocated during postmaster
674 * startup.
675 *
676 * This may only be called via the shmem_request_hook of a library that is
677 * loaded into the postmaster via shared_preload_libraries. Calls from
678 * elsewhere will fail.
679 *
680 * The tranche name will be user-visible as a wait event name, so try to
681 * use a name that fits the style for those.
682 */
683void
684RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
685{
687
689 elog(FATAL, "cannot request additional LWLocks outside shmem_request_hook");
690
692 {
697 * sizeof(NamedLWLockTrancheRequest));
698 }
699
701 {
703
706 i * sizeof(NamedLWLockTrancheRequest));
708 }
709
711 Assert(strlen(tranche_name) + 1 <= NAMEDATALEN);
712 strlcpy(request->tranche_name, tranche_name, NAMEDATALEN);
713 request->num_lwlocks = num_lwlocks;
715}
716
717/*
718 * LWLockInitialize - initialize a new lwlock; it's initially unlocked
719 */
720void
721LWLockInitialize(LWLock *lock, int tranche_id)
722{
724#ifdef LOCK_DEBUG
725 pg_atomic_init_u32(&lock->nwaiters, 0);
726#endif
727 lock->tranche = tranche_id;
728 proclist_init(&lock->waiters);
729}
730
731/*
732 * Report start of wait event for light-weight locks.
733 *
734 * This function will be used by all the light-weight lock calls which
735 * needs to wait to acquire the lock. This function distinguishes wait
736 * event based on tranche and lock id.
737 */
738static inline void
740{
742}
743
744/*
745 * Report end of wait event for light-weight locks.
746 */
747static inline void
749{
751}
752
753/*
754 * Return the name of an LWLock tranche.
755 */
756static const char *
758{
759 /* Built-in tranche or individual LWLock? */
760 if (trancheId < LWTRANCHE_FIRST_USER_DEFINED)
761 return BuiltinTrancheNames[trancheId];
762
763 /*
764 * It's an extension tranche, so look in LWLockTrancheNames[]. However,
765 * it's possible that the tranche has never been registered in the current
766 * process, in which case give up and return "extension".
767 */
768 trancheId -= LWTRANCHE_FIRST_USER_DEFINED;
769
770 if (trancheId >= LWLockTrancheNamesAllocated ||
771 LWLockTrancheNames[trancheId] == NULL)
772 return "extension";
773
774 return LWLockTrancheNames[trancheId];
775}
776
777/*
778 * Return an identifier for an LWLock based on the wait class and event.
779 */
780const char *
782{
783 Assert(classId == PG_WAIT_LWLOCK);
784 /* The event IDs are just tranche numbers. */
785 return GetLWTrancheName(eventId);
786}
787
788/*
789 * Internal function that tries to atomically acquire the lwlock in the passed
790 * in mode.
791 *
792 * This function will not block waiting for a lock to become free - that's the
793 * caller's job.
794 *
795 * Returns true if the lock isn't free and we need to wait.
796 */
797static bool
799{
800 uint32 old_state;
801
803
804 /*
805 * Read once outside the loop, later iterations will get the newer value
806 * via compare & exchange.
807 */
808 old_state = pg_atomic_read_u32(&lock->state);
809
810 /* loop until we've determined whether we could acquire the lock or not */
811 while (true)
812 {
813 uint32 desired_state;
814 bool lock_free;
815
816 desired_state = old_state;
817
818 if (mode == LW_EXCLUSIVE)
819 {
820 lock_free = (old_state & LW_LOCK_MASK) == 0;
821 if (lock_free)
822 desired_state += LW_VAL_EXCLUSIVE;
823 }
824 else
825 {
826 lock_free = (old_state & LW_VAL_EXCLUSIVE) == 0;
827 if (lock_free)
828 desired_state += LW_VAL_SHARED;
829 }
830
831 /*
832 * Attempt to swap in the state we are expecting. If we didn't see
833 * lock to be free, that's just the old value. If we saw it as free,
834 * we'll attempt to mark it acquired. The reason that we always swap
835 * in the value is that this doubles as a memory barrier. We could try
836 * to be smarter and only swap in values if we saw the lock as free,
837 * but benchmark haven't shown it as beneficial so far.
838 *
839 * Retry if the value changed since we last looked at it.
840 */
842 &old_state, desired_state))
843 {
844 if (lock_free)
845 {
846 /* Great! Got the lock. */
847#ifdef LOCK_DEBUG
848 if (mode == LW_EXCLUSIVE)
849 lock->owner = MyProc;
850#endif
851 return false;
852 }
853 else
854 return true; /* somebody else has the lock */
855 }
856 }
858}
859
860/*
861 * Lock the LWLock's wait list against concurrent activity.
862 *
863 * NB: even though the wait list is locked, non-conflicting lock operations
864 * may still happen concurrently.
865 *
866 * Time spent holding mutex should be short!
867 */
868static void
870{
871 uint32 old_state;
872#ifdef LWLOCK_STATS
873 lwlock_stats *lwstats;
874 uint32 delays = 0;
875
876 lwstats = get_lwlock_stats_entry(lock);
877#endif
878
879 while (true)
880 {
881 /* always try once to acquire lock directly */
882 old_state = pg_atomic_fetch_or_u32(&lock->state, LW_FLAG_LOCKED);
883 if (!(old_state & LW_FLAG_LOCKED))
884 break; /* got lock */
885
886 /* and then spin without atomic operations until lock is released */
887 {
888 SpinDelayStatus delayStatus;
889
890 init_local_spin_delay(&delayStatus);
891
892 while (old_state & LW_FLAG_LOCKED)
893 {
894 perform_spin_delay(&delayStatus);
895 old_state = pg_atomic_read_u32(&lock->state);
896 }
897#ifdef LWLOCK_STATS
898 delays += delayStatus.delays;
899#endif
900 finish_spin_delay(&delayStatus);
901 }
902
903 /*
904 * Retry. The lock might obviously already be re-acquired by the time
905 * we're attempting to get it again.
906 */
907 }
908
909#ifdef LWLOCK_STATS
910 lwstats->spin_delay_count += delays;
911#endif
912}
913
914/*
915 * Unlock the LWLock's wait list.
916 *
917 * Note that it can be more efficient to manipulate flags and release the
918 * locks in a single atomic operation.
919 */
920static void
922{
924
925 old_state = pg_atomic_fetch_and_u32(&lock->state, ~LW_FLAG_LOCKED);
926
927 Assert(old_state & LW_FLAG_LOCKED);
928}
929
930/*
931 * Wakeup all the lockers that currently have a chance to acquire the lock.
932 */
933static void
935{
936 bool new_release_ok;
937 bool wokeup_somebody = false;
940
942
943 new_release_ok = true;
944
945 /* lock wait list while collecting backends to wake up */
946 LWLockWaitListLock(lock);
947
948 proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
949 {
950 PGPROC *waiter = GetPGProcByNumber(iter.cur);
951
952 if (wokeup_somebody && waiter->lwWaitMode == LW_EXCLUSIVE)
953 continue;
954
955 proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
956 proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
957
958 if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
959 {
960 /*
961 * Prevent additional wakeups until retryer gets to run. Backends
962 * that are just waiting for the lock to become free don't retry
963 * automatically.
964 */
965 new_release_ok = false;
966
967 /*
968 * Don't wakeup (further) exclusive locks.
969 */
970 wokeup_somebody = true;
971 }
972
973 /*
974 * Signal that the process isn't on the wait list anymore. This allows
975 * LWLockDequeueSelf() to remove itself of the waitlist with a
976 * proclist_delete(), rather than having to check if it has been
977 * removed from the list.
978 */
979 Assert(waiter->lwWaiting == LW_WS_WAITING);
981
982 /*
983 * Once we've woken up an exclusive lock, there's no point in waking
984 * up anybody else.
985 */
986 if (waiter->lwWaitMode == LW_EXCLUSIVE)
987 break;
988 }
989
991
992 /* unset required flags, and release lock, in one fell swoop */
993 {
994 uint32 old_state;
995 uint32 desired_state;
996
997 old_state = pg_atomic_read_u32(&lock->state);
998 while (true)
999 {
1000 desired_state = old_state;
1001
1002 /* compute desired flags */
1003
1004 if (new_release_ok)
1005 desired_state |= LW_FLAG_RELEASE_OK;
1006 else
1007 desired_state &= ~LW_FLAG_RELEASE_OK;
1008
1010 desired_state &= ~LW_FLAG_HAS_WAITERS;
1011
1012 desired_state &= ~LW_FLAG_LOCKED; /* release lock */
1013
1014 if (pg_atomic_compare_exchange_u32(&lock->state, &old_state,
1015 desired_state))
1016 break;
1017 }
1018 }
1019
1020 /* Awaken any waiters I removed from the queue. */
1021 proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1022 {
1023 PGPROC *waiter = GetPGProcByNumber(iter.cur);
1024
1025 LOG_LWDEBUG("LWLockRelease", lock, "release waiter");
1026 proclist_delete(&wakeup, iter.cur, lwWaitLink);
1027
1028 /*
1029 * Guarantee that lwWaiting being unset only becomes visible once the
1030 * unlink from the link has completed. Otherwise the target backend
1031 * could be woken up for other reason and enqueue for a new lock - if
1032 * that happens before the list unlink happens, the list would end up
1033 * being corrupted.
1034 *
1035 * The barrier pairs with the LWLockWaitListLock() when enqueuing for
1036 * another lock.
1037 */
1039 waiter->lwWaiting = LW_WS_NOT_WAITING;
1040 PGSemaphoreUnlock(waiter->sem);
1041 }
1042}
1043
1044/*
1045 * Add ourselves to the end of the queue.
1046 *
1047 * NB: Mode can be LW_WAIT_UNTIL_FREE here!
1048 */
1049static void
1051{
1052 /*
1053 * If we don't have a PGPROC structure, there's no way to wait. This
1054 * should never occur, since MyProc should only be null during shared
1055 * memory initialization.
1056 */
1057 if (MyProc == NULL)
1058 elog(PANIC, "cannot wait without a PGPROC structure");
1059
1061 elog(PANIC, "queueing for lock while waiting on another one");
1062
1063 LWLockWaitListLock(lock);
1064
1065 /* setting the flag is protected by the spinlock */
1067
1070
1071 /* LW_WAIT_UNTIL_FREE waiters are always at the front of the queue */
1072 if (mode == LW_WAIT_UNTIL_FREE)
1073 proclist_push_head(&lock->waiters, MyProcNumber, lwWaitLink);
1074 else
1075 proclist_push_tail(&lock->waiters, MyProcNumber, lwWaitLink);
1076
1077 /* Can release the mutex now */
1079
1080#ifdef LOCK_DEBUG
1081 pg_atomic_fetch_add_u32(&lock->nwaiters, 1);
1082#endif
1083}
1084
1085/*
1086 * Remove ourselves from the waitlist.
1087 *
1088 * This is used if we queued ourselves because we thought we needed to sleep
1089 * but, after further checking, we discovered that we don't actually need to
1090 * do so.
1091 */
1092static void
1094{
1095 bool on_waitlist;
1096
1097#ifdef LWLOCK_STATS
1098 lwlock_stats *lwstats;
1099
1100 lwstats = get_lwlock_stats_entry(lock);
1101
1102 lwstats->dequeue_self_count++;
1103#endif
1104
1105 LWLockWaitListLock(lock);
1106
1107 /*
1108 * Remove ourselves from the waitlist, unless we've already been removed.
1109 * The removal happens with the wait list lock held, so there's no race in
1110 * this check.
1111 */
1112 on_waitlist = MyProc->lwWaiting == LW_WS_WAITING;
1113 if (on_waitlist)
1114 proclist_delete(&lock->waiters, MyProcNumber, lwWaitLink);
1115
1116 if (proclist_is_empty(&lock->waiters) &&
1118 {
1120 }
1121
1122 /* XXX: combine with fetch_and above? */
1124
1125 /* clear waiting state again, nice for debugging */
1126 if (on_waitlist)
1128 else
1129 {
1130 int extraWaits = 0;
1131
1132 /*
1133 * Somebody else dequeued us and has or will wake us up. Deal with the
1134 * superfluous absorption of a wakeup.
1135 */
1136
1137 /*
1138 * Reset RELEASE_OK flag if somebody woke us before we removed
1139 * ourselves - they'll have set it to false.
1140 */
1142
1143 /*
1144 * Now wait for the scheduled wakeup, otherwise our ->lwWaiting would
1145 * get reset at some inconvenient point later. Most of the time this
1146 * will immediately return.
1147 */
1148 for (;;)
1149 {
1152 break;
1153 extraWaits++;
1154 }
1155
1156 /*
1157 * Fix the process wait semaphore's count for any absorbed wakeups.
1158 */
1159 while (extraWaits-- > 0)
1161 }
1162
1163#ifdef LOCK_DEBUG
1164 {
1165 /* not waiting anymore */
1166 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1167
1168 Assert(nwaiters < MAX_BACKENDS);
1169 }
1170#endif
1171}
1172
1173/*
1174 * LWLockAcquire - acquire a lightweight lock in the specified mode
1175 *
1176 * If the lock is not available, sleep until it is. Returns true if the lock
1177 * was available immediately, false if we had to sleep.
1178 *
1179 * Side effect: cancel/die interrupts are held off until lock release.
1180 */
1181bool
1183{
1184 PGPROC *proc = MyProc;
1185 bool result = true;
1186 int extraWaits = 0;
1187#ifdef LWLOCK_STATS
1188 lwlock_stats *lwstats;
1189
1190 lwstats = get_lwlock_stats_entry(lock);
1191#endif
1192
1194
1195 PRINT_LWDEBUG("LWLockAcquire", lock, mode);
1196
1197#ifdef LWLOCK_STATS
1198 /* Count lock acquisition attempts */
1199 if (mode == LW_EXCLUSIVE)
1200 lwstats->ex_acquire_count++;
1201 else
1202 lwstats->sh_acquire_count++;
1203#endif /* LWLOCK_STATS */
1204
1205 /*
1206 * We can't wait if we haven't got a PGPROC. This should only occur
1207 * during bootstrap or shared memory initialization. Put an Assert here
1208 * to catch unsafe coding practices.
1209 */
1210 Assert(!(proc == NULL && IsUnderPostmaster));
1211
1212 /* Ensure we will have room to remember the lock */
1214 elog(ERROR, "too many LWLocks taken");
1215
1216 /*
1217 * Lock out cancel/die interrupts until we exit the code section protected
1218 * by the LWLock. This ensures that interrupts will not interfere with
1219 * manipulations of data structures in shared memory.
1220 */
1222
1223 /*
1224 * Loop here to try to acquire lock after each time we are signaled by
1225 * LWLockRelease.
1226 *
1227 * NOTE: it might seem better to have LWLockRelease actually grant us the
1228 * lock, rather than retrying and possibly having to go back to sleep. But
1229 * in practice that is no good because it means a process swap for every
1230 * lock acquisition when two or more processes are contending for the same
1231 * lock. Since LWLocks are normally used to protect not-very-long
1232 * sections of computation, a process needs to be able to acquire and
1233 * release the same lock many times during a single CPU time slice, even
1234 * in the presence of contention. The efficiency of being able to do that
1235 * outweighs the inefficiency of sometimes wasting a process dispatch
1236 * cycle because the lock is not free when a released waiter finally gets
1237 * to run. See pgsql-hackers archives for 29-Dec-01.
1238 */
1239 for (;;)
1240 {
1241 bool mustwait;
1242
1243 /*
1244 * Try to grab the lock the first time, we're not in the waitqueue
1245 * yet/anymore.
1246 */
1247 mustwait = LWLockAttemptLock(lock, mode);
1248
1249 if (!mustwait)
1250 {
1251 LOG_LWDEBUG("LWLockAcquire", lock, "immediately acquired lock");
1252 break; /* got the lock */
1253 }
1254
1255 /*
1256 * Ok, at this point we couldn't grab the lock on the first try. We
1257 * cannot simply queue ourselves to the end of the list and wait to be
1258 * woken up because by now the lock could long have been released.
1259 * Instead add us to the queue and try to grab the lock again. If we
1260 * succeed we need to revert the queuing and be happy, otherwise we
1261 * recheck the lock. If we still couldn't grab it, we know that the
1262 * other locker will see our queue entries when releasing since they
1263 * existed before we checked for the lock.
1264 */
1265
1266 /* add to the queue */
1267 LWLockQueueSelf(lock, mode);
1268
1269 /* we're now guaranteed to be woken up if necessary */
1270 mustwait = LWLockAttemptLock(lock, mode);
1271
1272 /* ok, grabbed the lock the second time round, need to undo queueing */
1273 if (!mustwait)
1274 {
1275 LOG_LWDEBUG("LWLockAcquire", lock, "acquired, undoing queue");
1276
1277 LWLockDequeueSelf(lock);
1278 break;
1279 }
1280
1281 /*
1282 * Wait until awakened.
1283 *
1284 * It is possible that we get awakened for a reason other than being
1285 * signaled by LWLockRelease. If so, loop back and wait again. Once
1286 * we've gotten the LWLock, re-increment the sema by the number of
1287 * additional signals received.
1288 */
1289 LOG_LWDEBUG("LWLockAcquire", lock, "waiting");
1290
1291#ifdef LWLOCK_STATS
1292 lwstats->block_count++;
1293#endif
1294
1296 if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1297 TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1298
1299 for (;;)
1300 {
1301 PGSemaphoreLock(proc->sem);
1302 if (proc->lwWaiting == LW_WS_NOT_WAITING)
1303 break;
1304 extraWaits++;
1305 }
1306
1307 /* Retrying, allow LWLockRelease to release waiters again. */
1309
1310#ifdef LOCK_DEBUG
1311 {
1312 /* not waiting anymore */
1313 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1314
1315 Assert(nwaiters < MAX_BACKENDS);
1316 }
1317#endif
1318
1319 if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1320 TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1322
1323 LOG_LWDEBUG("LWLockAcquire", lock, "awakened");
1324
1325 /* Now loop back and try to acquire lock again. */
1326 result = false;
1327 }
1328
1329 if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_ENABLED())
1330 TRACE_POSTGRESQL_LWLOCK_ACQUIRE(T_NAME(lock), mode);
1331
1332 /* Add lock to list of locks held by this backend */
1335
1336 /*
1337 * Fix the process wait semaphore's count for any absorbed wakeups.
1338 */
1339 while (extraWaits-- > 0)
1340 PGSemaphoreUnlock(proc->sem);
1341
1342 return result;
1343}
1344
1345/*
1346 * LWLockConditionalAcquire - acquire a lightweight lock in the specified mode
1347 *
1348 * If the lock is not available, return false with no side-effects.
1349 *
1350 * If successful, cancel/die interrupts are held off until lock release.
1351 */
1352bool
1354{
1355 bool mustwait;
1356
1358
1359 PRINT_LWDEBUG("LWLockConditionalAcquire", lock, mode);
1360
1361 /* Ensure we will have room to remember the lock */
1363 elog(ERROR, "too many LWLocks taken");
1364
1365 /*
1366 * Lock out cancel/die interrupts until we exit the code section protected
1367 * by the LWLock. This ensures that interrupts will not interfere with
1368 * manipulations of data structures in shared memory.
1369 */
1371
1372 /* Check for the lock */
1373 mustwait = LWLockAttemptLock(lock, mode);
1374
1375 if (mustwait)
1376 {
1377 /* Failed to get lock, so release interrupt holdoff */
1379
1380 LOG_LWDEBUG("LWLockConditionalAcquire", lock, "failed");
1381 if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL_ENABLED())
1382 TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_FAIL(T_NAME(lock), mode);
1383 }
1384 else
1385 {
1386 /* Add lock to list of locks held by this backend */
1389 if (TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE_ENABLED())
1390 TRACE_POSTGRESQL_LWLOCK_CONDACQUIRE(T_NAME(lock), mode);
1391 }
1392 return !mustwait;
1393}
1394
1395/*
1396 * LWLockAcquireOrWait - Acquire lock, or wait until it's free
1397 *
1398 * The semantics of this function are a bit funky. If the lock is currently
1399 * free, it is acquired in the given mode, and the function returns true. If
1400 * the lock isn't immediately free, the function waits until it is released
1401 * and returns false, but does not acquire the lock.
1402 *
1403 * This is currently used for WALWriteLock: when a backend flushes the WAL,
1404 * holding WALWriteLock, it can flush the commit records of many other
1405 * backends as a side-effect. Those other backends need to wait until the
1406 * flush finishes, but don't need to acquire the lock anymore. They can just
1407 * wake up, observe that their records have already been flushed, and return.
1408 */
1409bool
1411{
1412 PGPROC *proc = MyProc;
1413 bool mustwait;
1414 int extraWaits = 0;
1415#ifdef LWLOCK_STATS
1416 lwlock_stats *lwstats;
1417
1418 lwstats = get_lwlock_stats_entry(lock);
1419#endif
1420
1422
1423 PRINT_LWDEBUG("LWLockAcquireOrWait", lock, mode);
1424
1425 /* Ensure we will have room to remember the lock */
1427 elog(ERROR, "too many LWLocks taken");
1428
1429 /*
1430 * Lock out cancel/die interrupts until we exit the code section protected
1431 * by the LWLock. This ensures that interrupts will not interfere with
1432 * manipulations of data structures in shared memory.
1433 */
1435
1436 /*
1437 * NB: We're using nearly the same twice-in-a-row lock acquisition
1438 * protocol as LWLockAcquire(). Check its comments for details.
1439 */
1440 mustwait = LWLockAttemptLock(lock, mode);
1441
1442 if (mustwait)
1443 {
1445
1446 mustwait = LWLockAttemptLock(lock, mode);
1447
1448 if (mustwait)
1449 {
1450 /*
1451 * Wait until awakened. Like in LWLockAcquire, be prepared for
1452 * bogus wakeups.
1453 */
1454 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "waiting");
1455
1456#ifdef LWLOCK_STATS
1457 lwstats->block_count++;
1458#endif
1459
1461 if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1462 TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), mode);
1463
1464 for (;;)
1465 {
1466 PGSemaphoreLock(proc->sem);
1467 if (proc->lwWaiting == LW_WS_NOT_WAITING)
1468 break;
1469 extraWaits++;
1470 }
1471
1472#ifdef LOCK_DEBUG
1473 {
1474 /* not waiting anymore */
1475 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1476
1477 Assert(nwaiters < MAX_BACKENDS);
1478 }
1479#endif
1480 if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1481 TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), mode);
1483
1484 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "awakened");
1485 }
1486 else
1487 {
1488 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "acquired, undoing queue");
1489
1490 /*
1491 * Got lock in the second attempt, undo queueing. We need to treat
1492 * this as having successfully acquired the lock, otherwise we'd
1493 * not necessarily wake up people we've prevented from acquiring
1494 * the lock.
1495 */
1496 LWLockDequeueSelf(lock);
1497 }
1498 }
1499
1500 /*
1501 * Fix the process wait semaphore's count for any absorbed wakeups.
1502 */
1503 while (extraWaits-- > 0)
1504 PGSemaphoreUnlock(proc->sem);
1505
1506 if (mustwait)
1507 {
1508 /* Failed to get lock, so release interrupt holdoff */
1510 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "failed");
1511 if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL_ENABLED())
1512 TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_FAIL(T_NAME(lock), mode);
1513 }
1514 else
1515 {
1516 LOG_LWDEBUG("LWLockAcquireOrWait", lock, "succeeded");
1517 /* Add lock to list of locks held by this backend */
1520 if (TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT_ENABLED())
1521 TRACE_POSTGRESQL_LWLOCK_ACQUIRE_OR_WAIT(T_NAME(lock), mode);
1522 }
1523
1524 return !mustwait;
1525}
1526
1527/*
1528 * Does the lwlock in its current state need to wait for the variable value to
1529 * change?
1530 *
1531 * If we don't need to wait, and it's because the value of the variable has
1532 * changed, store the current value in newval.
1533 *
1534 * *result is set to true if the lock was free, and false otherwise.
1535 */
1536static bool
1538 uint64 *newval, bool *result)
1539{
1540 bool mustwait;
1541 uint64 value;
1542
1543 /*
1544 * Test first to see if it the slot is free right now.
1545 *
1546 * XXX: the unique caller of this routine, WaitXLogInsertionsToFinish()
1547 * via LWLockWaitForVar(), uses an implied barrier with a spinlock before
1548 * this, so we don't need a memory barrier here as far as the current
1549 * usage is concerned. But that might not be safe in general.
1550 */
1551 mustwait = (pg_atomic_read_u32(&lock->state) & LW_VAL_EXCLUSIVE) != 0;
1552
1553 if (!mustwait)
1554 {
1555 *result = true;
1556 return false;
1557 }
1558
1559 *result = false;
1560
1561 /*
1562 * Reading this value atomically is safe even on platforms where uint64
1563 * cannot be read without observing a torn value.
1564 */
1565 value = pg_atomic_read_u64(valptr);
1566
1567 if (value != oldval)
1568 {
1569 mustwait = false;
1570 *newval = value;
1571 }
1572 else
1573 {
1574 mustwait = true;
1575 }
1576
1577 return mustwait;
1578}
1579
1580/*
1581 * LWLockWaitForVar - Wait until lock is free, or a variable is updated.
1582 *
1583 * If the lock is held and *valptr equals oldval, waits until the lock is
1584 * either freed, or the lock holder updates *valptr by calling
1585 * LWLockUpdateVar. If the lock is free on exit (immediately or after
1586 * waiting), returns true. If the lock is still held, but *valptr no longer
1587 * matches oldval, returns false and sets *newval to the current value in
1588 * *valptr.
1589 *
1590 * Note: this function ignores shared lock holders; if the lock is held
1591 * in shared mode, returns 'true'.
1592 *
1593 * Be aware that LWLockConflictsWithVar() does not include a memory barrier,
1594 * hence the caller of this function may want to rely on an explicit barrier or
1595 * an implied barrier via spinlock or LWLock to avoid memory ordering issues.
1596 */
1597bool
1599 uint64 *newval)
1600{
1601 PGPROC *proc = MyProc;
1602 int extraWaits = 0;
1603 bool result = false;
1604#ifdef LWLOCK_STATS
1605 lwlock_stats *lwstats;
1606
1607 lwstats = get_lwlock_stats_entry(lock);
1608#endif
1609
1610 PRINT_LWDEBUG("LWLockWaitForVar", lock, LW_WAIT_UNTIL_FREE);
1611
1612 /*
1613 * Lock out cancel/die interrupts while we sleep on the lock. There is no
1614 * cleanup mechanism to remove us from the wait queue if we got
1615 * interrupted.
1616 */
1618
1619 /*
1620 * Loop here to check the lock's status after each time we are signaled.
1621 */
1622 for (;;)
1623 {
1624 bool mustwait;
1625
1626 mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1627 &result);
1628
1629 if (!mustwait)
1630 break; /* the lock was free or value didn't match */
1631
1632 /*
1633 * Add myself to wait queue. Note that this is racy, somebody else
1634 * could wakeup before we're finished queuing. NB: We're using nearly
1635 * the same twice-in-a-row lock acquisition protocol as
1636 * LWLockAcquire(). Check its comments for details. The only
1637 * difference is that we also have to check the variable's values when
1638 * checking the state of the lock.
1639 */
1641
1642 /*
1643 * Set RELEASE_OK flag, to make sure we get woken up as soon as the
1644 * lock is released.
1645 */
1647
1648 /*
1649 * We're now guaranteed to be woken up if necessary. Recheck the lock
1650 * and variables state.
1651 */
1652 mustwait = LWLockConflictsWithVar(lock, valptr, oldval, newval,
1653 &result);
1654
1655 /* Ok, no conflict after we queued ourselves. Undo queueing. */
1656 if (!mustwait)
1657 {
1658 LOG_LWDEBUG("LWLockWaitForVar", lock, "free, undoing queue");
1659
1660 LWLockDequeueSelf(lock);
1661 break;
1662 }
1663
1664 /*
1665 * Wait until awakened.
1666 *
1667 * It is possible that we get awakened for a reason other than being
1668 * signaled by LWLockRelease. If so, loop back and wait again. Once
1669 * we've gotten the LWLock, re-increment the sema by the number of
1670 * additional signals received.
1671 */
1672 LOG_LWDEBUG("LWLockWaitForVar", lock, "waiting");
1673
1674#ifdef LWLOCK_STATS
1675 lwstats->block_count++;
1676#endif
1677
1679 if (TRACE_POSTGRESQL_LWLOCK_WAIT_START_ENABLED())
1680 TRACE_POSTGRESQL_LWLOCK_WAIT_START(T_NAME(lock), LW_EXCLUSIVE);
1681
1682 for (;;)
1683 {
1684 PGSemaphoreLock(proc->sem);
1685 if (proc->lwWaiting == LW_WS_NOT_WAITING)
1686 break;
1687 extraWaits++;
1688 }
1689
1690#ifdef LOCK_DEBUG
1691 {
1692 /* not waiting anymore */
1693 uint32 nwaiters PG_USED_FOR_ASSERTS_ONLY = pg_atomic_fetch_sub_u32(&lock->nwaiters, 1);
1694
1695 Assert(nwaiters < MAX_BACKENDS);
1696 }
1697#endif
1698
1699 if (TRACE_POSTGRESQL_LWLOCK_WAIT_DONE_ENABLED())
1700 TRACE_POSTGRESQL_LWLOCK_WAIT_DONE(T_NAME(lock), LW_EXCLUSIVE);
1702
1703 LOG_LWDEBUG("LWLockWaitForVar", lock, "awakened");
1704
1705 /* Now loop back and check the status of the lock again. */
1706 }
1707
1708 /*
1709 * Fix the process wait semaphore's count for any absorbed wakeups.
1710 */
1711 while (extraWaits-- > 0)
1712 PGSemaphoreUnlock(proc->sem);
1713
1714 /*
1715 * Now okay to allow cancel/die interrupts.
1716 */
1718
1719 return result;
1720}
1721
1722
1723/*
1724 * LWLockUpdateVar - Update a variable and wake up waiters atomically
1725 *
1726 * Sets *valptr to 'val', and wakes up all processes waiting for us with
1727 * LWLockWaitForVar(). It first sets the value atomically and then wakes up
1728 * waiting processes so that any process calling LWLockWaitForVar() on the same
1729 * lock is guaranteed to see the new value, and act accordingly.
1730 *
1731 * The caller must be holding the lock in exclusive mode.
1732 */
1733void
1735{
1738
1739 PRINT_LWDEBUG("LWLockUpdateVar", lock, LW_EXCLUSIVE);
1740
1741 /*
1742 * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1743 * that the variable is updated before waking up waiters.
1744 */
1745 pg_atomic_exchange_u64(valptr, val);
1746
1748
1749 LWLockWaitListLock(lock);
1750
1752
1753 /*
1754 * See if there are any LW_WAIT_UNTIL_FREE waiters that need to be woken
1755 * up. They are always in the front of the queue.
1756 */
1757 proclist_foreach_modify(iter, &lock->waiters, lwWaitLink)
1758 {
1759 PGPROC *waiter = GetPGProcByNumber(iter.cur);
1760
1761 if (waiter->lwWaitMode != LW_WAIT_UNTIL_FREE)
1762 break;
1763
1764 proclist_delete(&lock->waiters, iter.cur, lwWaitLink);
1765 proclist_push_tail(&wakeup, iter.cur, lwWaitLink);
1766
1767 /* see LWLockWakeup() */
1768 Assert(waiter->lwWaiting == LW_WS_WAITING);
1770 }
1771
1772 /* We are done updating shared state of the lock itself. */
1774
1775 /*
1776 * Awaken any waiters I removed from the queue.
1777 */
1778 proclist_foreach_modify(iter, &wakeup, lwWaitLink)
1779 {
1780 PGPROC *waiter = GetPGProcByNumber(iter.cur);
1781
1782 proclist_delete(&wakeup, iter.cur, lwWaitLink);
1783 /* check comment in LWLockWakeup() about this barrier */
1785 waiter->lwWaiting = LW_WS_NOT_WAITING;
1786 PGSemaphoreUnlock(waiter->sem);
1787 }
1788}
1789
1790
1791/*
1792 * Stop treating lock as held by current backend.
1793 *
1794 * This is the code that can be shared between actually releasing a lock
1795 * (LWLockRelease()) and just not tracking ownership of the lock anymore
1796 * without releasing the lock (LWLockDisown()).
1797 *
1798 * Returns the mode in which the lock was held by the current backend.
1799 *
1800 * NB: This does not call RESUME_INTERRUPTS(), but leaves that responsibility
1801 * of the caller.
1802 *
1803 * NB: This will leave lock->owner pointing to the current backend (if
1804 * LOCK_DEBUG is set). This is somewhat intentional, as it makes it easier to
1805 * debug cases of missing wakeups during lock release.
1806 */
1807static inline LWLockMode
1809{
1811 int i;
1812
1813 /*
1814 * Remove lock from list of locks held. Usually, but not always, it will
1815 * be the latest-acquired lock; so search array backwards.
1816 */
1817 for (i = num_held_lwlocks; --i >= 0;)
1818 if (lock == held_lwlocks[i].lock)
1819 break;
1820
1821 if (i < 0)
1822 elog(ERROR, "lock %s is not held", T_NAME(lock));
1823
1825
1827 for (; i < num_held_lwlocks; i++)
1828 held_lwlocks[i] = held_lwlocks[i + 1];
1829
1830 return mode;
1831}
1832
1833/*
1834 * Helper function to release lock, shared between LWLockRelease() and
1835 * LWLockReleaseDisowned().
1836 */
1837static void
1839{
1840 uint32 oldstate;
1841 bool check_waiters;
1842
1843 /*
1844 * Release my hold on lock, after that it can immediately be acquired by
1845 * others, even if we still have to wakeup other waiters.
1846 */
1847 if (mode == LW_EXCLUSIVE)
1849 else
1850 oldstate = pg_atomic_sub_fetch_u32(&lock->state, LW_VAL_SHARED);
1851
1852 /* nobody else can have that kind of lock */
1853 Assert(!(oldstate & LW_VAL_EXCLUSIVE));
1854
1855 if (TRACE_POSTGRESQL_LWLOCK_RELEASE_ENABLED())
1856 TRACE_POSTGRESQL_LWLOCK_RELEASE(T_NAME(lock));
1857
1858 /*
1859 * We're still waiting for backends to get scheduled, don't wake them up
1860 * again.
1861 */
1862 if ((oldstate & (LW_FLAG_HAS_WAITERS | LW_FLAG_RELEASE_OK)) ==
1864 (oldstate & LW_LOCK_MASK) == 0)
1865 check_waiters = true;
1866 else
1867 check_waiters = false;
1868
1869 /*
1870 * As waking up waiters requires the spinlock to be acquired, only do so
1871 * if necessary.
1872 */
1873 if (check_waiters)
1874 {
1875 /* XXX: remove before commit? */
1876 LOG_LWDEBUG("LWLockRelease", lock, "releasing waiters");
1877 LWLockWakeup(lock);
1878 }
1879}
1880
1881
1882/*
1883 * Stop treating lock as held by current backend.
1884 *
1885 * After calling this function it's the callers responsibility to ensure that
1886 * the lock gets released (via LWLockReleaseDisowned()), even in case of an
1887 * error. This only is desirable if the lock is going to be released in a
1888 * different process than the process that acquired it.
1889 */
1890void
1892{
1894
1896}
1897
1898/*
1899 * LWLockRelease - release a previously acquired lock
1900 */
1901void
1903{
1905
1906 mode = LWLockDisownInternal(lock);
1907
1908 PRINT_LWDEBUG("LWLockRelease", lock, mode);
1909
1911
1912 /*
1913 * Now okay to allow cancel/die interrupts.
1914 */
1916}
1917
1918/*
1919 * Release lock previously disowned with LWLockDisown().
1920 */
1921void
1923{
1925}
1926
1927/*
1928 * LWLockReleaseClearVar - release a previously acquired lock, reset variable
1929 */
1930void
1932{
1933 /*
1934 * Note that pg_atomic_exchange_u64 is a full barrier, so we're guaranteed
1935 * that the variable is updated before releasing the lock.
1936 */
1937 pg_atomic_exchange_u64(valptr, val);
1938
1939 LWLockRelease(lock);
1940}
1941
1942
1943/*
1944 * LWLockReleaseAll - release all currently-held locks
1945 *
1946 * Used to clean up after ereport(ERROR). An important difference between this
1947 * function and retail LWLockRelease calls is that InterruptHoldoffCount is
1948 * unchanged by this operation. This is necessary since InterruptHoldoffCount
1949 * has been set to an appropriate level earlier in error recovery. We could
1950 * decrement it below zero if we allow it to drop for each released lock!
1951 */
1952void
1954{
1955 while (num_held_lwlocks > 0)
1956 {
1957 HOLD_INTERRUPTS(); /* match the upcoming RESUME_INTERRUPTS */
1958
1960 }
1961}
1962
1963
1964/*
1965 * LWLockHeldByMe - test whether my process holds a lock in any mode
1966 *
1967 * This is meant as debug support only.
1968 */
1969bool
1971{
1972 int i;
1973
1974 for (i = 0; i < num_held_lwlocks; i++)
1975 {
1976 if (held_lwlocks[i].lock == lock)
1977 return true;
1978 }
1979 return false;
1980}
1981
1982/*
1983 * LWLockAnyHeldByMe - test whether my process holds any of an array of locks
1984 *
1985 * This is meant as debug support only.
1986 */
1987bool
1988LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
1989{
1990 char *held_lock_addr;
1991 char *begin;
1992 char *end;
1993 int i;
1994
1995 begin = (char *) lock;
1996 end = begin + nlocks * stride;
1997 for (i = 0; i < num_held_lwlocks; i++)
1998 {
1999 held_lock_addr = (char *) held_lwlocks[i].lock;
2000 if (held_lock_addr >= begin &&
2001 held_lock_addr < end &&
2002 (held_lock_addr - begin) % stride == 0)
2003 return true;
2004 }
2005 return false;
2006}
2007
2008/*
2009 * LWLockHeldByMeInMode - test whether my process holds a lock in given mode
2010 *
2011 * This is meant as debug support only.
2012 */
2013bool
2015{
2016 int i;
2017
2018 for (i = 0; i < num_held_lwlocks; i++)
2019 {
2020 if (held_lwlocks[i].lock == lock && held_lwlocks[i].mode == mode)
2021 return true;
2022 }
2023 return false;
2024}
static uint32 pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
Definition: atomics.h:396
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:349
static uint32 pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
Definition: atomics.h:410
static uint32 pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:439
static uint32 pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
Definition: atomics.h:381
static void pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:221
#define pg_write_barrier()
Definition: atomics.h:157
static uint32 pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
Definition: atomics.h:366
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:239
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:467
static uint64 pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval)
Definition: atomics.h:503
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:224
#define Max(x, y)
Definition: c.h:969
uint64_t uint64
Definition: c.h:503
uint16_t uint16
Definition: c.h:501
#define pg_unreachable()
Definition: c.h:332
uint32_t uint32
Definition: c.h:502
#define lengthof(array)
Definition: c.h:759
#define MemSet(start, val, len)
Definition: c.h:991
size_t Size
Definition: c.h:576
#define fprintf(file, fmt, msg)
Definition: cubescan.l:21
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1420
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1158
int errhidestmt(bool hide_stmt)
Definition: elog.c:1433
int errhidecontext(bool hide_ctx)
Definition: elog.c:1452
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:149
int MyProcPid
Definition: globals.c:48
ProcNumber MyProcNumber
Definition: globals.c:91
bool IsUnderPostmaster
Definition: globals.c:121
#define newval
Assert(PointerIsAligned(start, uint64))
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
long val
Definition: informix.c:689
static struct @165 value
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
int j
Definition: isn.c:78
int i
Definition: isn.c:77
#define LW_VAL_EXCLUSIVE
Definition: lwlock.c:101
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1734
static void LWLockWakeup(LWLock *lock)
Definition: lwlock.c:934
#define LW_FLAG_LOCKED
Definition: lwlock.c:96
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1970
static LWLockHandle held_lwlocks[MAX_SIMUL_LWLOCKS]
Definition: lwlock.c:220
static int LWLockTrancheNamesAllocated
Definition: lwlock.c:195
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1931
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1182
static void LWLockReleaseInternal(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1838
void CreateLWLocks(void)
Definition: lwlock.c:464
NamedLWLockTranche * NamedLWLockTrancheArray
Definition: lwlock.c:241
void LWLockDisown(LWLock *lock)
Definition: lwlock.c:1891
static LWLockMode LWLockDisownInternal(LWLock *lock)
Definition: lwlock.c:1808
#define LW_VAL_SHARED
Definition: lwlock.c:102
static bool LWLockAttemptLock(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:798
static void LWLockWaitListLock(LWLock *lock)
Definition: lwlock.c:869
void LWLockRegisterTranche(int tranche_id, const char *tranche_name)
Definition: lwlock.c:642
LWLockPadded * GetNamedLWLockTranche(const char *tranche_name)
Definition: lwlock.c:587
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2014
static void LWLockReportWaitEnd(void)
Definition: lwlock.c:748
struct LWLockHandle LWLockHandle
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1598
int LWLockNewTrancheId(void)
Definition: lwlock.c:617
static const char * GetLWTrancheName(uint16 trancheId)
Definition: lwlock.c:757
#define LW_LOCK_MASK
Definition: lwlock.c:106
int NamedLWLockTrancheRequests
Definition: lwlock.c:238
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)
Definition: lwlock.c:684
#define LW_FLAG_RELEASE_OK
Definition: lwlock.c:95
#define LW_FLAG_MASK
Definition: lwlock.c:98
#define LW_FLAG_HAS_WAITERS
Definition: lwlock.c:94
#define MAX_SIMUL_LWLOCKS
Definition: lwlock.c:210
struct NamedLWLockTrancheRequest NamedLWLockTrancheRequest
static int NumLWLocksForNamedTranches(void)
Definition: lwlock.c:419
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1902
#define T_NAME(lock)
Definition: lwlock.c:248
static int num_held_lwlocks
Definition: lwlock.c:219
void LWLockReleaseAll(void)
Definition: lwlock.c:1953
static void InitializeLWLocks(void)
Definition: lwlock.c:504
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:721
static int NamedLWLockTrancheRequestsAllocated
Definition: lwlock.c:230
static const char *const BuiltinTrancheNames[]
Definition: lwlock.c:136
static NamedLWLockTrancheRequest * NamedLWLockTrancheRequestArray
Definition: lwlock.c:229
void LWLockReleaseDisowned(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1922
static void LWLockWaitListUnlock(LWLock *lock)
Definition: lwlock.c:921
static const char ** LWLockTrancheNames
Definition: lwlock.c:194
#define LOG_LWDEBUG(a, b, c)
Definition: lwlock.c:313
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1353
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1410
static void LWLockQueueSelf(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1050
#define PRINT_LWDEBUG(a, b, c)
Definition: lwlock.c:312
static void LWLockReportWaitStart(LWLock *lock)
Definition: lwlock.c:739
LWLockPadded * MainLWLockArray
Definition: lwlock.c:202
StaticAssertDecl(((MAX_BACKENDS+1) &MAX_BACKENDS)==0, "MAX_BACKENDS + 1 needs to be a power of 2")
const char * GetLWLockIdentifier(uint32 classId, uint16 eventId)
Definition: lwlock.c:781
static void LWLockDequeueSelf(LWLock *lock)
Definition: lwlock.c:1093
Size LWLockShmemSize(void)
Definition: lwlock.c:434
bool LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride)
Definition: lwlock.c:1988
#define LW_SHARED_MASK
Definition: lwlock.c:105
static bool LWLockConflictsWithVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval, bool *result)
Definition: lwlock.c:1537
void InitLWLockAccess(void)
Definition: lwlock.c:571
@ LW_WS_NOT_WAITING
Definition: lwlock.h:30
@ LW_WS_WAITING
Definition: lwlock.h:31
@ LW_WS_PENDING_WAKEUP
Definition: lwlock.h:32
#define LWLOCK_PADDED_SIZE
Definition: lwlock.h:62
#define BUFFER_MAPPING_LWLOCK_OFFSET
Definition: lwlock.h:104
#define NUM_LOCK_PARTITIONS
Definition: lwlock.h:97
@ LWTRANCHE_FIRST_USER_DEFINED
Definition: lwlock.h:224
@ LWTRANCHE_SHARED_TIDBITMAP
Definition: lwlock.h:203
@ LWTRANCHE_SERIAL_SLRU
Definition: lwlock.h:217
@ LWTRANCHE_PER_SESSION_DSA
Definition: lwlock.h:199
@ LWTRANCHE_PARALLEL_QUERY_DSA
Definition: lwlock.h:198
@ LWTRANCHE_COMMITTS_BUFFER
Definition: lwlock.h:182
@ LWTRANCHE_PARALLEL_VACUUM_DSA
Definition: lwlock.h:220
@ LWTRANCHE_AIO_URING_COMPLETION
Definition: lwlock.h:221
@ LWTRANCHE_PGSTATS_HASH
Definition: lwlock.h:207
@ LWTRANCHE_PARALLEL_BTREE_SCAN
Definition: lwlock.h:197
@ LWTRANCHE_SUBTRANS_BUFFER
Definition: lwlock.h:183
@ LWTRANCHE_PER_SESSION_RECORD_TYPMOD
Definition: lwlock.h:201
@ LWTRANCHE_LAUNCHER_HASH
Definition: lwlock.h:210
@ LWTRANCHE_DSM_REGISTRY_DSA
Definition: lwlock.h:211
@ LWTRANCHE_XACT_BUFFER
Definition: lwlock.h:181
@ LWTRANCHE_DSM_REGISTRY_HASH
Definition: lwlock.h:212
@ LWTRANCHE_NOTIFY_SLRU
Definition: lwlock.h:216
@ LWTRANCHE_REPLICATION_ORIGIN_STATE
Definition: lwlock.h:190
@ LWTRANCHE_MULTIXACTOFFSET_SLRU
Definition: lwlock.h:215
@ LWTRANCHE_PARALLEL_APPEND
Definition: lwlock.h:204
@ LWTRANCHE_REPLICATION_SLOT_IO
Definition: lwlock.h:191
@ LWTRANCHE_SUBTRANS_SLRU
Definition: lwlock.h:218
@ LWTRANCHE_MULTIXACTMEMBER_SLRU
Definition: lwlock.h:214
@ LWTRANCHE_BUFFER_CONTENT
Definition: lwlock.h:189
@ LWTRANCHE_MULTIXACTMEMBER_BUFFER
Definition: lwlock.h:185
@ LWTRANCHE_NOTIFY_BUFFER
Definition: lwlock.h:186
@ LWTRANCHE_PER_SESSION_RECORD_TYPE
Definition: lwlock.h:200
@ LWTRANCHE_PREDICATE_LOCK_MANAGER
Definition: lwlock.h:195
@ LWTRANCHE_BUFFER_MAPPING
Definition: lwlock.h:193
@ LWTRANCHE_MEMORY_CONTEXT_REPORTING_PROC
Definition: lwlock.h:223
@ LWTRANCHE_SERIAL_BUFFER
Definition: lwlock.h:187
@ LWTRANCHE_LAUNCHER_DSA
Definition: lwlock.h:209
@ LWTRANCHE_PGSTATS_DSA
Definition: lwlock.h:206
@ LWTRANCHE_PARALLEL_HASH_JOIN
Definition: lwlock.h:196
@ LWTRANCHE_COMMITTS_SLRU
Definition: lwlock.h:213
@ LWTRANCHE_PGSTATS_DATA
Definition: lwlock.h:208
@ LWTRANCHE_PER_XACT_PREDICATE_LIST
Definition: lwlock.h:205
@ LWTRANCHE_XACT_SLRU
Definition: lwlock.h:219
@ LWTRANCHE_MULTIXACTOFFSET_BUFFER
Definition: lwlock.h:184
@ LWTRANCHE_MEMORY_CONTEXT_REPORTING_STATE
Definition: lwlock.h:222
@ LWTRANCHE_WAL_INSERT
Definition: lwlock.h:188
@ LWTRANCHE_LOCK_MANAGER
Definition: lwlock.h:194
@ LWTRANCHE_SHARED_TUPLESTORE
Definition: lwlock.h:202
@ LWTRANCHE_LOCK_FASTPATH
Definition: lwlock.h:192
#define LOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:105
#define NUM_BUFFER_PARTITIONS
Definition: lwlock.h:93
#define PREDICATELOCK_MANAGER_LWLOCK_OFFSET
Definition: lwlock.h:107
#define NUM_FIXED_LWLOCKS
Definition: lwlock.h:109
LWLockMode
Definition: lwlock.h:113
@ LW_SHARED
Definition: lwlock.h:115
@ LW_WAIT_UNTIL_FREE
Definition: lwlock.h:116
@ LW_EXCLUSIVE
Definition: lwlock.h:114
#define NUM_PREDICATELOCK_PARTITIONS
Definition: lwlock.h:101
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1256
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1290
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:2167
MemoryContext TopMemoryContext
Definition: mcxt.c:165
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:485
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:725
#define AllocSetContextCreate
Definition: memutils.h:149
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:180
#define RESUME_INTERRUPTS()
Definition: miscadmin.h:136
#define HOLD_INTERRUPTS()
Definition: miscadmin.h:134
bool process_shmem_requests_in_progress
Definition: miscinit.c:1841
#define repalloc0_array(pointer, type, oldcount, count)
Definition: palloc.h:109
void * arg
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
static PgChecksumMode mode
Definition: pg_checksums.c:55
#define NAMEDATALEN
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:339
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:319
uintptr_t Datum
Definition: postgres.h:69
#define GetPGProcByNumber(n)
Definition: proc.h:424
#define proclist_delete(list, procno, link_member)
Definition: proclist.h:187
static void proclist_init(proclist_head *list)
Definition: proclist.h:29
#define proclist_push_tail(list, procno, link_member)
Definition: proclist.h:191
#define proclist_push_head(list, procno, link_member)
Definition: proclist.h:189
#define proclist_foreach_modify(iter, lhead, link_member)
Definition: proclist.h:206
static bool proclist_is_empty(const proclist_head *list)
Definition: proclist.h:38
#define MAX_BACKENDS
Definition: procnumber.h:39
tree ctl
Definition: radixtree.h:1838
void perform_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:126
void finish_spin_delay(SpinDelayStatus *status)
Definition: s_lock.c:186
#define init_local_spin_delay(status)
Definition: s_lock.h:751
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void * ShmemAlloc(Size size)
Definition: shmem.c:152
slock_t * ShmemLock
Definition: shmem.c:88
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
Definition: dynahash.c:220
LWLockMode mode
Definition: lwlock.c:216
LWLock * lock
Definition: lwlock.c:215
Definition: lwlock.h:42
pg_atomic_uint32 state
Definition: lwlock.h:44
uint16 tranche
Definition: lwlock.h:43
proclist_head waiters
Definition: lwlock.h:45
char tranche_name[NAMEDATALEN]
Definition: lwlock.c:225
char * trancheName
Definition: lwlock.h:80
Definition: proc.h:163
uint8 lwWaitMode
Definition: proc.h:225
PGSemaphore sem
Definition: proc.h:167
uint8 lwWaiting
Definition: proc.h:224
Definition: regguts.h:323
LWLock lock
Definition: lwlock.h:70
#define PG_WAIT_LWLOCK
Definition: wait_event.h:18
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
const char * name
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:130