PostgreSQL Source Code  git master
walreceiver.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walreceiver.c
4  *
5  * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6  * is the process in the standby server that takes charge of receiving
7  * XLOG records from a primary server during streaming replication.
8  *
9  * When the startup process determines that it's time to start streaming,
10  * it instructs postmaster to start walreceiver. Walreceiver first connects
11  * to the primary server (it will be served by a walsender process
12  * in the primary server), and then keeps receiving XLOG records and
13  * writing them to the disk as long as the connection is alive. As XLOG
14  * records are received and flushed to disk, it updates the
15  * WalRcv->flushedUpto variable in shared memory, to inform the startup
16  * process of how far it can proceed with XLOG replay.
17  *
18  * A WAL receiver cannot directly load GUC parameters used when establishing
19  * its connection to the primary. Instead it relies on parameter values
20  * that are passed down by the startup process when streaming is requested.
21  * This applies, for example, to the replication slot and the connection
22  * string to be used for the connection with the primary.
23  *
24  * If the primary server ends streaming, but doesn't disconnect, walreceiver
25  * goes into "waiting" mode, and waits for the startup process to give new
26  * instructions. The startup process will treat that the same as
27  * disconnection, and will rescan the archive/pg_wal directory. But when the
28  * startup process wants to try streaming replication again, it will just
29  * nudge the existing walreceiver process that's waiting, instead of launching
30  * a new one.
31  *
32  * Normal termination is by SIGTERM, which instructs the walreceiver to
33  * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34  * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35  * of the connection and a FATAL error are treated not as a crash but as
36  * normal operation.
37  *
38  * This file contains the server-facing parts of walreceiver. The libpq-
39  * specific parts are in the libpqwalreceiver module. It's loaded
40  * dynamically to avoid linking the server with libpq.
41  *
42  * Portions Copyright (c) 2010-2022, PostgreSQL Global Development Group
43  *
44  *
45  * IDENTIFICATION
46  * src/backend/replication/walreceiver.c
47  *
48  *-------------------------------------------------------------------------
49  */
50 #include "postgres.h"
51 
52 #include <unistd.h>
53 
54 #include "access/htup_details.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/xlog_internal.h"
58 #include "access/xlogarchive.h"
59 #include "access/xlogrecovery.h"
60 #include "catalog/pg_authid.h"
61 #include "catalog/pg_type.h"
62 #include "common/ip.h"
63 #include "funcapi.h"
64 #include "libpq/pqformat.h"
65 #include "libpq/pqsignal.h"
66 #include "miscadmin.h"
67 #include "pgstat.h"
68 #include "postmaster/interrupt.h"
70 #include "replication/walsender.h"
71 #include "storage/ipc.h"
72 #include "storage/pmsignal.h"
73 #include "storage/proc.h"
74 #include "storage/procarray.h"
75 #include "storage/procsignal.h"
76 #include "utils/acl.h"
77 #include "utils/builtins.h"
78 #include "utils/guc.h"
79 #include "utils/pg_lsn.h"
80 #include "utils/ps_status.h"
81 #include "utils/resowner.h"
82 #include "utils/timestamp.h"
83 
84 
85 /*
86  * GUC variables. (Other variables that affect walreceiver are in xlog.c
87  * because they're passed down from the startup process, for better
88  * synchronization.)
89  */
93 
94 /* libpqwalreceiver connection */
95 static WalReceiverConn *wrconn = NULL;
97 
98 #define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */
99 
100 /*
101  * These variables are used similarly to openLogFile/SegNo,
102  * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
103  * corresponding the filename of recvFile.
104  */
105 static int recvFile = -1;
107 static XLogSegNo recvSegNo = 0;
108 
109 /*
110  * LogstreamResult indicates the byte positions that we have already
111  * written/fsynced.
112  */
113 static struct
114 {
115  XLogRecPtr Write; /* last byte + 1 written out in the standby */
116  XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
118 
121 
122 /* Prototypes for private functions */
123 static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
124 static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
125 static void WalRcvDie(int code, Datum arg);
126 static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len,
127  TimeLineID tli);
128 static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr,
129  TimeLineID tli);
130 static void XLogWalRcvFlush(bool dying, TimeLineID tli);
131 static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli);
132 static void XLogWalRcvSendReply(bool force, bool requestReply);
133 static void XLogWalRcvSendHSFeedback(bool immed);
134 static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
135 
136 /*
137  * Process any interrupts the walreceiver process may have received.
138  * This should be called any time the process's latch has become set.
139  *
140  * Currently, only SIGTERM is of interest. We can't just exit(1) within the
141  * SIGTERM signal handler, because the signal might arrive in the middle of
142  * some critical operation, like while we're holding a spinlock. Instead, the
143  * signal handler sets a flag variable as well as setting the process's latch.
144  * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
145  * latch has become set. Operations that could block for a long time, such as
146  * reading from a remote server, must pay attention to the latch too; see
147  * libpqrcv_PQgetResult for example.
148  */
149 void
151 {
152  /*
153  * Although walreceiver interrupt handling doesn't use the same scheme as
154  * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
155  * any incoming signals on Win32, and also to make sure we process any
156  * barrier events.
157  */
159 
161  {
162  ereport(FATAL,
163  (errcode(ERRCODE_ADMIN_SHUTDOWN),
164  errmsg("terminating walreceiver process due to administrator command")));
165  }
166 }
167 
168 
169 /* Main entry point for walreceiver process */
170 void
172 {
173  char conninfo[MAXCONNINFO];
174  char *tmp_conninfo;
175  char slotname[NAMEDATALEN];
176  bool is_temp_slot;
177  XLogRecPtr startpoint;
178  TimeLineID startpointTLI;
179  TimeLineID primaryTLI;
180  bool first_stream;
181  WalRcvData *walrcv = WalRcv;
182  TimestampTz last_recv_timestamp;
184  bool ping_sent;
185  char *err;
186  char *sender_host = NULL;
187  int sender_port = 0;
188 
189  /*
190  * WalRcv should be set up already (if we are a backend, we inherit this
191  * by fork() or EXEC_BACKEND mechanism from the postmaster).
192  */
193  Assert(walrcv != NULL);
194 
196 
197  /*
198  * Mark walreceiver as running in shared memory.
199  *
200  * Do this as early as possible, so that if we fail later on, we'll set
201  * state to STOPPED. If we die before this, the startup process will keep
202  * waiting for us to start up, until it times out.
203  */
204  SpinLockAcquire(&walrcv->mutex);
205  Assert(walrcv->pid == 0);
206  switch (walrcv->walRcvState)
207  {
208  case WALRCV_STOPPING:
209  /* If we've already been requested to stop, don't start up. */
210  walrcv->walRcvState = WALRCV_STOPPED;
211  /* fall through */
212 
213  case WALRCV_STOPPED:
214  SpinLockRelease(&walrcv->mutex);
216  proc_exit(1);
217  break;
218 
219  case WALRCV_STARTING:
220  /* The usual case */
221  break;
222 
223  case WALRCV_WAITING:
224  case WALRCV_STREAMING:
225  case WALRCV_RESTARTING:
226  default:
227  /* Shouldn't happen */
228  SpinLockRelease(&walrcv->mutex);
229  elog(PANIC, "walreceiver still running according to shared memory state");
230  }
231  /* Advertise our PID so that the startup process can kill us */
232  walrcv->pid = MyProcPid;
233  walrcv->walRcvState = WALRCV_STREAMING;
234 
235  /* Fetch information required to start streaming */
236  walrcv->ready_to_display = false;
237  strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
238  strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
239  is_temp_slot = walrcv->is_temp_slot;
240  startpoint = walrcv->receiveStart;
241  startpointTLI = walrcv->receiveStartTLI;
242 
243  /*
244  * At most one of is_temp_slot and slotname can be set; otherwise,
245  * RequestXLogStreaming messed up.
246  */
247  Assert(!is_temp_slot || (slotname[0] == '\0'));
248 
249  /* Initialise to a sanish value */
250  walrcv->lastMsgSendTime =
251  walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
252 
253  /* Report the latch to use to awaken this process */
254  walrcv->latch = &MyProc->procLatch;
255 
256  SpinLockRelease(&walrcv->mutex);
257 
259 
260  /* Arrange to clean up at walreceiver exit */
261  on_shmem_exit(WalRcvDie, PointerGetDatum(&startpointTLI));
262 
263  /* Properly accept or ignore signals the postmaster might send us */
264  pqsignal(SIGHUP, SignalHandlerForConfigReload); /* set flag to read config
265  * file */
266  pqsignal(SIGINT, SIG_IGN);
267  pqsignal(SIGTERM, SignalHandlerForShutdownRequest); /* request shutdown */
268  /* SIGQUIT handler was already set up by InitPostmasterChild */
273 
274  /* Reset some signals that are accepted by postmaster but not here */
276 
277  /* Load the libpq-specific functions */
278  load_file("libpqwalreceiver", false);
279  if (WalReceiverFunctions == NULL)
280  elog(ERROR, "libpqwalreceiver didn't initialize correctly");
281 
282  /* Unblock signals (they were blocked when the postmaster forked us) */
284 
285  /* Establish the connection to the primary for XLOG streaming */
286  wrconn = walrcv_connect(conninfo, false,
287  cluster_name[0] ? cluster_name : "walreceiver",
288  &err);
289  if (!wrconn)
290  ereport(ERROR,
291  (errcode(ERRCODE_CONNECTION_FAILURE),
292  errmsg("could not connect to the primary server: %s", err)));
293 
294  /*
295  * Save user-visible connection string. This clobbers the original
296  * conninfo, for security. Also save host and port of the sender server
297  * this walreceiver is connected to.
298  */
299  tmp_conninfo = walrcv_get_conninfo(wrconn);
300  walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
301  SpinLockAcquire(&walrcv->mutex);
302  memset(walrcv->conninfo, 0, MAXCONNINFO);
303  if (tmp_conninfo)
304  strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
305 
306  memset(walrcv->sender_host, 0, NI_MAXHOST);
307  if (sender_host)
308  strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
309 
310  walrcv->sender_port = sender_port;
311  walrcv->ready_to_display = true;
312  SpinLockRelease(&walrcv->mutex);
313 
314  if (tmp_conninfo)
315  pfree(tmp_conninfo);
316 
317  if (sender_host)
318  pfree(sender_host);
319 
320  first_stream = true;
321  for (;;)
322  {
323  char *primary_sysid;
324  char standby_sysid[32];
326 
327  /*
328  * Check that we're connected to a valid server using the
329  * IDENTIFY_SYSTEM replication command.
330  */
331  primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
332 
333  snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
335  if (strcmp(primary_sysid, standby_sysid) != 0)
336  {
337  ereport(ERROR,
338  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
339  errmsg("database system identifier differs between the primary and standby"),
340  errdetail("The primary's identifier is %s, the standby's identifier is %s.",
341  primary_sysid, standby_sysid)));
342  }
343 
344  /*
345  * Confirm that the current timeline of the primary is the same or
346  * ahead of ours.
347  */
348  if (primaryTLI < startpointTLI)
349  ereport(ERROR,
350  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
351  errmsg("highest timeline %u of the primary is behind recovery timeline %u",
352  primaryTLI, startpointTLI)));
353 
354  /*
355  * Get any missing history files. We do this always, even when we're
356  * not interested in that timeline, so that if we're promoted to
357  * become the primary later on, we don't select the same timeline that
358  * was already used in the current primary. This isn't bullet-proof -
359  * you'll need some external software to manage your cluster if you
360  * need to ensure that a unique timeline id is chosen in every case,
361  * but let's avoid the confusion of timeline id collisions where we
362  * can.
363  */
364  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
365 
366  /*
367  * Create temporary replication slot if requested, and update slot
368  * name in shared memory. (Note the slot name cannot already be set
369  * in this case.)
370  */
371  if (is_temp_slot)
372  {
373  snprintf(slotname, sizeof(slotname),
374  "pg_walreceiver_%lld",
375  (long long int) walrcv_get_backend_pid(wrconn));
376 
377  walrcv_create_slot(wrconn, slotname, true, false, 0, NULL);
378 
379  SpinLockAcquire(&walrcv->mutex);
380  strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
381  SpinLockRelease(&walrcv->mutex);
382  }
383 
384  /*
385  * Start streaming.
386  *
387  * We'll try to start at the requested starting point and timeline,
388  * even if it's different from the server's latest timeline. In case
389  * we've already reached the end of the old timeline, the server will
390  * finish the streaming immediately, and we will go back to await
391  * orders from the startup process. If recovery_target_timeline is
392  * 'latest', the startup process will scan pg_wal and find the new
393  * history file, bump recovery target timeline, and ask us to restart
394  * on the new timeline.
395  */
396  options.logical = false;
397  options.startpoint = startpoint;
398  options.slotname = slotname[0] != '\0' ? slotname : NULL;
399  options.proto.physical.startpointTLI = startpointTLI;
401  {
402  if (first_stream)
403  ereport(LOG,
404  (errmsg("started streaming WAL from primary at %X/%X on timeline %u",
405  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
406  else
407  ereport(LOG,
408  (errmsg("restarted WAL streaming at %X/%X on timeline %u",
409  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
410  first_stream = false;
411 
412  /* Initialize LogstreamResult and buffers for processing messages */
416 
417  /* Initialize the last recv timestamp */
418  last_recv_timestamp = GetCurrentTimestamp();
419  ping_sent = false;
420 
421  /* Loop until end-of-streaming or error */
422  for (;;)
423  {
424  char *buf;
425  int len;
426  bool endofwal = false;
427  pgsocket wait_fd = PGINVALID_SOCKET;
428  int rc;
429 
430  /*
431  * Exit walreceiver if we're not in recovery. This should not
432  * happen, but cross-check the status here.
433  */
434  if (!RecoveryInProgress())
435  ereport(FATAL,
436  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
437  errmsg("cannot continue WAL streaming, recovery has already ended")));
438 
439  /* Process any requests or signals received recently */
441 
443  {
444  ConfigReloadPending = false;
447  }
448 
449  /* See if we can read data immediately */
450  len = walrcv_receive(wrconn, &buf, &wait_fd);
451  if (len != 0)
452  {
453  /*
454  * Process the received data, and any subsequent data we
455  * can read without blocking.
456  */
457  for (;;)
458  {
459  if (len > 0)
460  {
461  /*
462  * Something was received from primary, so reset
463  * timeout
464  */
465  last_recv_timestamp = GetCurrentTimestamp();
466  ping_sent = false;
467  XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1,
468  startpointTLI);
469  }
470  else if (len == 0)
471  break;
472  else if (len < 0)
473  {
474  ereport(LOG,
475  (errmsg("replication terminated by primary server"),
476  errdetail("End of WAL reached on timeline %u at %X/%X.",
477  startpointTLI,
479  endofwal = true;
480  break;
481  }
482  len = walrcv_receive(wrconn, &buf, &wait_fd);
483  }
484 
485  /* Let the primary know that we received some data. */
486  XLogWalRcvSendReply(false, false);
487 
488  /*
489  * If we've written some records, flush them to disk and
490  * let the startup process and primary server know about
491  * them.
492  */
493  XLogWalRcvFlush(false, startpointTLI);
494  }
495 
496  /* Check if we need to exit the streaming loop. */
497  if (endofwal)
498  break;
499 
500  /*
501  * Ideally we would reuse a WaitEventSet object repeatedly
502  * here to avoid the overheads of WaitLatchOrSocket on epoll
503  * systems, but we can't be sure that libpq (or any other
504  * walreceiver implementation) has the same socket (even if
505  * the fd is the same number, it may have been closed and
506  * reopened since the last time). In future, if there is a
507  * function for removing sockets from WaitEventSet, then we
508  * could add and remove just the socket each time, potentially
509  * avoiding some system calls.
510  */
511  Assert(wait_fd != PGINVALID_SOCKET);
515  wait_fd,
518  if (rc & WL_LATCH_SET)
519  {
522 
523  if (walrcv->force_reply)
524  {
525  /*
526  * The recovery process has asked us to send apply
527  * feedback now. Make sure the flag is really set to
528  * false in shared memory before sending the reply, so
529  * we don't miss a new request for a reply.
530  */
531  walrcv->force_reply = false;
533  XLogWalRcvSendReply(true, false);
534  }
535  }
536  if (rc & WL_TIMEOUT)
537  {
538  /*
539  * We didn't receive anything new. If we haven't heard
540  * anything from the server for more than
541  * wal_receiver_timeout / 2, ping the server. Also, if
542  * it's been longer than wal_receiver_status_interval
543  * since the last update we sent, send a status update to
544  * the primary anyway, to report any progress in applying
545  * WAL.
546  */
547  bool requestReply = false;
548 
549  /*
550  * Check if time since last receive from primary has
551  * reached the configured limit.
552  */
553  if (wal_receiver_timeout > 0)
554  {
556  TimestampTz timeout;
557 
558  timeout =
559  TimestampTzPlusMilliseconds(last_recv_timestamp,
561 
562  if (now >= timeout)
563  ereport(ERROR,
564  (errcode(ERRCODE_CONNECTION_FAILURE),
565  errmsg("terminating walreceiver due to timeout")));
566 
567  /*
568  * We didn't receive anything new, for half of
569  * receiver replication timeout. Ping the server.
570  */
571  if (!ping_sent)
572  {
573  timeout = TimestampTzPlusMilliseconds(last_recv_timestamp,
574  (wal_receiver_timeout / 2));
575  if (now >= timeout)
576  {
577  requestReply = true;
578  ping_sent = true;
579  }
580  }
581  }
582 
583  XLogWalRcvSendReply(requestReply, requestReply);
585  }
586  }
587 
588  /*
589  * The backend finished streaming. Exit streaming COPY-mode from
590  * our side, too.
591  */
592  walrcv_endstreaming(wrconn, &primaryTLI);
593 
594  /*
595  * If the server had switched to a new timeline that we didn't
596  * know about when we began streaming, fetch its timeline history
597  * file now.
598  */
599  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
600  }
601  else
602  ereport(LOG,
603  (errmsg("primary server contains no more WAL on requested timeline %u",
604  startpointTLI)));
605 
606  /*
607  * End of WAL reached on the requested timeline. Close the last
608  * segment, and await for new orders from the startup process.
609  */
610  if (recvFile >= 0)
611  {
612  char xlogfname[MAXFNAMELEN];
613 
614  XLogWalRcvFlush(false, startpointTLI);
616  if (close(recvFile) != 0)
617  ereport(PANIC,
619  errmsg("could not close log segment %s: %m",
620  xlogfname)));
621 
622  /*
623  * Create .done file forcibly to prevent the streamed segment from
624  * being archived later.
625  */
627  XLogArchiveForceDone(xlogfname);
628  else
629  XLogArchiveNotify(xlogfname);
630  }
631  recvFile = -1;
632 
633  elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
634  WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
635  }
636  /* not reached */
637 }
638 
639 /*
640  * Wait for startup process to set receiveStart and receiveStartTLI.
641  */
642 static void
644 {
645  WalRcvData *walrcv = WalRcv;
646  int state;
647 
648  SpinLockAcquire(&walrcv->mutex);
649  state = walrcv->walRcvState;
650  if (state != WALRCV_STREAMING)
651  {
652  SpinLockRelease(&walrcv->mutex);
653  if (state == WALRCV_STOPPING)
654  proc_exit(0);
655  else
656  elog(FATAL, "unexpected walreceiver state");
657  }
658  walrcv->walRcvState = WALRCV_WAITING;
660  walrcv->receiveStartTLI = 0;
661  SpinLockRelease(&walrcv->mutex);
662 
663  set_ps_display("idle");
664 
665  /*
666  * nudge startup process to notice that we've stopped streaming and are
667  * now waiting for instructions.
668  */
669  WakeupRecovery();
670  for (;;)
671  {
673 
675 
676  SpinLockAcquire(&walrcv->mutex);
677  Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
678  walrcv->walRcvState == WALRCV_WAITING ||
679  walrcv->walRcvState == WALRCV_STOPPING);
680  if (walrcv->walRcvState == WALRCV_RESTARTING)
681  {
682  /*
683  * No need to handle changes in primary_conninfo or
684  * primary_slot_name here. Startup process will signal us to
685  * terminate in case those change.
686  */
687  *startpoint = walrcv->receiveStart;
688  *startpointTLI = walrcv->receiveStartTLI;
689  walrcv->walRcvState = WALRCV_STREAMING;
690  SpinLockRelease(&walrcv->mutex);
691  break;
692  }
693  if (walrcv->walRcvState == WALRCV_STOPPING)
694  {
695  /*
696  * We should've received SIGTERM if the startup process wants us
697  * to die, but might as well check it here too.
698  */
699  SpinLockRelease(&walrcv->mutex);
700  exit(1);
701  }
702  SpinLockRelease(&walrcv->mutex);
703 
706  }
707 
709  {
710  char activitymsg[50];
711 
712  snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
713  LSN_FORMAT_ARGS(*startpoint));
714  set_ps_display(activitymsg);
715  }
716 }
717 
718 /*
719  * Fetch any missing timeline history files between 'first' and 'last'
720  * (inclusive) from the server.
721  */
722 static void
724 {
725  TimeLineID tli;
726 
727  for (tli = first; tli <= last; tli++)
728  {
729  /* there's no history file for timeline 1 */
730  if (tli != 1 && !existsTimeLineHistory(tli))
731  {
732  char *fname;
733  char *content;
734  int len;
735  char expectedfname[MAXFNAMELEN];
736 
737  ereport(LOG,
738  (errmsg("fetching timeline history file for timeline %u from primary server",
739  tli)));
740 
741  walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
742 
743  /*
744  * Check that the filename on the primary matches what we
745  * calculated ourselves. This is just a sanity check, it should
746  * always match.
747  */
748  TLHistoryFileName(expectedfname, tli);
749  if (strcmp(fname, expectedfname) != 0)
750  ereport(ERROR,
751  (errcode(ERRCODE_PROTOCOL_VIOLATION),
752  errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
753  tli)));
754 
755  /*
756  * Write the file to pg_wal.
757  */
758  writeTimeLineHistoryFile(tli, content, len);
759 
760  /*
761  * Mark the streamed history file as ready for archiving if
762  * archive_mode is always.
763  */
765  XLogArchiveForceDone(fname);
766  else
767  XLogArchiveNotify(fname);
768 
769  pfree(fname);
770  pfree(content);
771  }
772  }
773 }
774 
775 /*
776  * Mark us as STOPPED in shared memory at exit.
777  */
778 static void
779 WalRcvDie(int code, Datum arg)
780 {
781  WalRcvData *walrcv = WalRcv;
782  TimeLineID *startpointTLI_p = (TimeLineID *) DatumGetPointer(arg);
783 
784  Assert(*startpointTLI_p != 0);
785 
786  /* Ensure that all WAL records received are flushed to disk */
787  XLogWalRcvFlush(true, *startpointTLI_p);
788 
789  /* Mark ourselves inactive in shared memory */
790  SpinLockAcquire(&walrcv->mutex);
791  Assert(walrcv->walRcvState == WALRCV_STREAMING ||
792  walrcv->walRcvState == WALRCV_RESTARTING ||
793  walrcv->walRcvState == WALRCV_STARTING ||
794  walrcv->walRcvState == WALRCV_WAITING ||
795  walrcv->walRcvState == WALRCV_STOPPING);
796  Assert(walrcv->pid == MyProcPid);
797  walrcv->walRcvState = WALRCV_STOPPED;
798  walrcv->pid = 0;
799  walrcv->ready_to_display = false;
800  walrcv->latch = NULL;
801  SpinLockRelease(&walrcv->mutex);
802 
804 
805  /* Terminate the connection gracefully. */
806  if (wrconn != NULL)
808 
809  /* Wake up the startup process to notice promptly that we're gone */
810  WakeupRecovery();
811 }
812 
813 /*
814  * Accept the message from XLOG stream, and process it.
815  */
816 static void
817 XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
818 {
819  int hdrlen;
820  XLogRecPtr dataStart;
821  XLogRecPtr walEnd;
822  TimestampTz sendTime;
823  bool replyRequested;
824 
826 
827  switch (type)
828  {
829  case 'w': /* WAL records */
830  {
831  /* copy message to StringInfo */
832  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
833  if (len < hdrlen)
834  ereport(ERROR,
835  (errcode(ERRCODE_PROTOCOL_VIOLATION),
836  errmsg_internal("invalid WAL message received from primary")));
838 
839  /* read the fields */
840  dataStart = pq_getmsgint64(&incoming_message);
841  walEnd = pq_getmsgint64(&incoming_message);
842  sendTime = pq_getmsgint64(&incoming_message);
843  ProcessWalSndrMessage(walEnd, sendTime);
844 
845  buf += hdrlen;
846  len -= hdrlen;
847  XLogWalRcvWrite(buf, len, dataStart, tli);
848  break;
849  }
850  case 'k': /* Keepalive */
851  {
852  /* copy message to StringInfo */
853  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
854  if (len != hdrlen)
855  ereport(ERROR,
856  (errcode(ERRCODE_PROTOCOL_VIOLATION),
857  errmsg_internal("invalid keepalive message received from primary")));
859 
860  /* read the fields */
861  walEnd = pq_getmsgint64(&incoming_message);
862  sendTime = pq_getmsgint64(&incoming_message);
863  replyRequested = pq_getmsgbyte(&incoming_message);
864 
865  ProcessWalSndrMessage(walEnd, sendTime);
866 
867  /* If the primary requested a reply, send one immediately */
868  if (replyRequested)
869  XLogWalRcvSendReply(true, false);
870  break;
871  }
872  default:
873  ereport(ERROR,
874  (errcode(ERRCODE_PROTOCOL_VIOLATION),
875  errmsg_internal("invalid replication message type %d",
876  type)));
877  }
878 }
879 
880 /*
881  * Write XLOG data to disk.
882  */
883 static void
884 XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
885 {
886  int startoff;
887  int byteswritten;
888 
889  Assert(tli != 0);
890 
891  while (nbytes > 0)
892  {
893  int segbytes;
894 
895  /* Close the current segment if it's completed */
896  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
897  XLogWalRcvClose(recptr, tli);
898 
899  if (recvFile < 0)
900  {
901  /* Create/use new log file */
904  recvFileTLI = tli;
905  }
906 
907  /* Calculate the start offset of the received logs */
908  startoff = XLogSegmentOffset(recptr, wal_segment_size);
909 
910  if (startoff + nbytes > wal_segment_size)
911  segbytes = wal_segment_size - startoff;
912  else
913  segbytes = nbytes;
914 
915  /* OK to write the logs */
916  errno = 0;
917 
918  byteswritten = pg_pwrite(recvFile, buf, segbytes, (off_t) startoff);
919  if (byteswritten <= 0)
920  {
921  char xlogfname[MAXFNAMELEN];
922  int save_errno;
923 
924  /* if write didn't set errno, assume no disk space */
925  if (errno == 0)
926  errno = ENOSPC;
927 
928  save_errno = errno;
930  errno = save_errno;
931  ereport(PANIC,
933  errmsg("could not write to log segment %s "
934  "at offset %u, length %lu: %m",
935  xlogfname, startoff, (unsigned long) segbytes)));
936  }
937 
938  /* Update state for write */
939  recptr += byteswritten;
940 
941  nbytes -= byteswritten;
942  buf += byteswritten;
943 
944  LogstreamResult.Write = recptr;
945  }
946 
947  /* Update shared-memory status */
949 
950  /*
951  * Close the current segment if it's fully written up in the last cycle of
952  * the loop, to create its archive notification file soon. Otherwise WAL
953  * archiving of the segment will be delayed until any data in the next
954  * segment is received and written.
955  */
956  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
957  XLogWalRcvClose(recptr, tli);
958 }
959 
960 /*
961  * Flush the log to disk.
962  *
963  * If we're in the midst of dying, it's unwise to do anything that might throw
964  * an error, so we skip sending a reply in that case.
965  */
966 static void
967 XLogWalRcvFlush(bool dying, TimeLineID tli)
968 {
969  Assert(tli != 0);
970 
971  if (LogstreamResult.Flush < LogstreamResult.Write)
972  {
973  WalRcvData *walrcv = WalRcv;
974 
976 
977  LogstreamResult.Flush = LogstreamResult.Write;
978 
979  /* Update shared-memory status */
980  SpinLockAcquire(&walrcv->mutex);
981  if (walrcv->flushedUpto < LogstreamResult.Flush)
982  {
983  walrcv->latestChunkStart = walrcv->flushedUpto;
984  walrcv->flushedUpto = LogstreamResult.Flush;
985  walrcv->receivedTLI = tli;
986  }
987  SpinLockRelease(&walrcv->mutex);
988 
989  /* Signal the startup process and walsender that new WAL has arrived */
990  WakeupRecovery();
992  WalSndWakeup();
993 
994  /* Report XLOG streaming progress in PS display */
996  {
997  char activitymsg[50];
998 
999  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
1001  set_ps_display(activitymsg);
1002  }
1003 
1004  /* Also let the primary know that we made some progress */
1005  if (!dying)
1006  {
1007  XLogWalRcvSendReply(false, false);
1008  XLogWalRcvSendHSFeedback(false);
1009  }
1010  }
1011 }
1012 
1013 /*
1014  * Close the current segment.
1015  *
1016  * Flush the segment to disk before closing it. Otherwise we have to
1017  * reopen and fsync it later.
1018  *
1019  * Create an archive notification file since the segment is known completed.
1020  */
1021 static void
1023 {
1024  char xlogfname[MAXFNAMELEN];
1025 
1027  Assert(tli != 0);
1028 
1029  /*
1030  * fsync() and close current file before we switch to next one. We would
1031  * otherwise have to reopen this file to fsync it later
1032  */
1033  XLogWalRcvFlush(false, tli);
1034 
1036 
1037  /*
1038  * XLOG segment files will be re-read by recovery in startup process soon,
1039  * so we don't advise the OS to release cache pages associated with the
1040  * file like XLogFileClose() does.
1041  */
1042  if (close(recvFile) != 0)
1043  ereport(PANIC,
1045  errmsg("could not close log segment %s: %m",
1046  xlogfname)));
1047 
1048  /*
1049  * Create .done file forcibly to prevent the streamed segment from being
1050  * archived later.
1051  */
1053  XLogArchiveForceDone(xlogfname);
1054  else
1055  XLogArchiveNotify(xlogfname);
1056 
1057  recvFile = -1;
1058 }
1059 
1060 /*
1061  * Send reply message to primary, indicating our current WAL locations, oldest
1062  * xmin and the current time.
1063  *
1064  * If 'force' is not set, the message is only sent if enough time has
1065  * passed since last status update to reach wal_receiver_status_interval.
1066  * If wal_receiver_status_interval is disabled altogether and 'force' is
1067  * false, this is a no-op.
1068  *
1069  * If 'requestReply' is true, requests the server to reply immediately upon
1070  * receiving this message. This is used for heartbeats, when approaching
1071  * wal_receiver_timeout.
1072  */
1073 static void
1074 XLogWalRcvSendReply(bool force, bool requestReply)
1075 {
1076  static XLogRecPtr writePtr = 0;
1077  static XLogRecPtr flushPtr = 0;
1078  XLogRecPtr applyPtr;
1079  static TimestampTz sendTime = 0;
1080  TimestampTz now;
1081 
1082  /*
1083  * If the user doesn't want status to be reported to the primary, be sure
1084  * to exit before doing anything at all.
1085  */
1086  if (!force && wal_receiver_status_interval <= 0)
1087  return;
1088 
1089  /* Get current timestamp. */
1091 
1092  /*
1093  * We can compare the write and flush positions to the last message we
1094  * sent without taking any lock, but the apply position requires a spin
1095  * lock, so we don't check that unless something else has changed or 10
1096  * seconds have passed. This means that the apply WAL location will
1097  * appear, from the primary's point of view, to lag slightly, but since
1098  * this is only for reporting purposes and only on idle systems, that's
1099  * probably OK.
1100  */
1101  if (!force
1102  && writePtr == LogstreamResult.Write
1103  && flushPtr == LogstreamResult.Flush
1104  && !TimestampDifferenceExceeds(sendTime, now,
1106  return;
1107  sendTime = now;
1108 
1109  /* Construct a new message */
1110  writePtr = LogstreamResult.Write;
1111  flushPtr = LogstreamResult.Flush;
1112  applyPtr = GetXLogReplayRecPtr(NULL);
1113 
1115  pq_sendbyte(&reply_message, 'r');
1116  pq_sendint64(&reply_message, writePtr);
1117  pq_sendint64(&reply_message, flushPtr);
1118  pq_sendint64(&reply_message, applyPtr);
1120  pq_sendbyte(&reply_message, requestReply ? 1 : 0);
1121 
1122  /* Send it */
1123  elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
1124  LSN_FORMAT_ARGS(writePtr),
1125  LSN_FORMAT_ARGS(flushPtr),
1126  LSN_FORMAT_ARGS(applyPtr),
1127  requestReply ? " (reply requested)" : "");
1128 
1130 }
1131 
1132 /*
1133  * Send hot standby feedback message to primary, plus the current time,
1134  * in case they don't have a watch.
1135  *
1136  * If the user disables feedback, send one final message to tell sender
1137  * to forget about the xmin on this standby. We also send this message
1138  * on first connect because a previous connection might have set xmin
1139  * on a replication slot. (If we're not using a slot it's harmless to
1140  * send a feedback message explicitly setting InvalidTransactionId).
1141  */
1142 static void
1144 {
1145  TimestampTz now;
1146  FullTransactionId nextFullXid;
1147  TransactionId nextXid;
1148  uint32 xmin_epoch,
1149  catalog_xmin_epoch;
1150  TransactionId xmin,
1151  catalog_xmin;
1152  static TimestampTz sendTime = 0;
1153 
1154  /* initially true so we always send at least one feedback message */
1155  static bool primary_has_standby_xmin = true;
1156 
1157  /*
1158  * If the user doesn't want status to be reported to the primary, be sure
1159  * to exit before doing anything at all.
1160  */
1162  !primary_has_standby_xmin)
1163  return;
1164 
1165  /* Get current timestamp. */
1167 
1168  if (!immed)
1169  {
1170  /*
1171  * Send feedback at most once per wal_receiver_status_interval.
1172  */
1173  if (!TimestampDifferenceExceeds(sendTime, now,
1175  return;
1176  sendTime = now;
1177  }
1178 
1179  /*
1180  * If Hot Standby is not yet accepting connections there is nothing to
1181  * send. Check this after the interval has expired to reduce number of
1182  * calls.
1183  *
1184  * Bailing out here also ensures that we don't send feedback until we've
1185  * read our own replication slot state, so we don't tell the primary to
1186  * discard needed xmin or catalog_xmin from any slots that may exist on
1187  * this replica.
1188  */
1189  if (!HotStandbyActive())
1190  return;
1191 
1192  /*
1193  * Make the expensive call to get the oldest xmin once we are certain
1194  * everything else has been checked.
1195  */
1197  {
1198  GetReplicationHorizons(&xmin, &catalog_xmin);
1199  }
1200  else
1201  {
1202  xmin = InvalidTransactionId;
1203  catalog_xmin = InvalidTransactionId;
1204  }
1205 
1206  /*
1207  * Get epoch and adjust if nextXid and oldestXmin are different sides of
1208  * the epoch boundary.
1209  */
1210  nextFullXid = ReadNextFullTransactionId();
1211  nextXid = XidFromFullTransactionId(nextFullXid);
1212  xmin_epoch = EpochFromFullTransactionId(nextFullXid);
1213  catalog_xmin_epoch = xmin_epoch;
1214  if (nextXid < xmin)
1215  xmin_epoch--;
1216  if (nextXid < catalog_xmin)
1217  catalog_xmin_epoch--;
1218 
1219  elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1220  xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1221 
1222  /* Construct the message and send it. */
1224  pq_sendbyte(&reply_message, 'h');
1226  pq_sendint32(&reply_message, xmin);
1227  pq_sendint32(&reply_message, xmin_epoch);
1228  pq_sendint32(&reply_message, catalog_xmin);
1229  pq_sendint32(&reply_message, catalog_xmin_epoch);
1231  if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1232  primary_has_standby_xmin = true;
1233  else
1234  primary_has_standby_xmin = false;
1235 }
1236 
1237 /*
1238  * Update shared memory status upon receiving a message from primary.
1239  *
1240  * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1241  * message, reported by primary.
1242  */
1243 static void
1245 {
1246  WalRcvData *walrcv = WalRcv;
1247 
1248  TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1249 
1250  /* Update shared-memory status */
1251  SpinLockAcquire(&walrcv->mutex);
1252  if (walrcv->latestWalEnd < walEnd)
1253  walrcv->latestWalEndTime = sendTime;
1254  walrcv->latestWalEnd = walEnd;
1255  walrcv->lastMsgSendTime = sendTime;
1256  walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1257  SpinLockRelease(&walrcv->mutex);
1258 
1260  {
1261  char *sendtime;
1262  char *receipttime;
1263  int applyDelay;
1264 
1265  /* Copy because timestamptz_to_str returns a static buffer */
1266  sendtime = pstrdup(timestamptz_to_str(sendTime));
1267  receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1268  applyDelay = GetReplicationApplyDelay();
1269 
1270  /* apply delay is not available */
1271  if (applyDelay == -1)
1272  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1273  sendtime,
1274  receipttime,
1276  else
1277  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1278  sendtime,
1279  receipttime,
1280  applyDelay,
1282 
1283  pfree(sendtime);
1284  pfree(receipttime);
1285  }
1286 }
1287 
1288 /*
1289  * Wake up the walreceiver main loop.
1290  *
1291  * This is called by the startup process whenever interesting xlog records
1292  * are applied, so that walreceiver can check if it needs to send an apply
1293  * notification back to the primary which may be waiting in a COMMIT with
1294  * synchronous_commit = remote_apply.
1295  */
1296 void
1298 {
1299  Latch *latch;
1300 
1301  WalRcv->force_reply = true;
1302  /* fetching the latch pointer might not be atomic, so use spinlock */
1304  latch = WalRcv->latch;
1306  if (latch)
1307  SetLatch(latch);
1308 }
1309 
1310 /*
1311  * Return a string constant representing the state. This is used
1312  * in system functions and views, and should *not* be translated.
1313  */
1314 static const char *
1316 {
1317  switch (state)
1318  {
1319  case WALRCV_STOPPED:
1320  return "stopped";
1321  case WALRCV_STARTING:
1322  return "starting";
1323  case WALRCV_STREAMING:
1324  return "streaming";
1325  case WALRCV_WAITING:
1326  return "waiting";
1327  case WALRCV_RESTARTING:
1328  return "restarting";
1329  case WALRCV_STOPPING:
1330  return "stopping";
1331  }
1332  return "UNKNOWN";
1333 }
1334 
1335 /*
1336  * Returns activity of WAL receiver, including pid, state and xlog locations
1337  * received from the WAL sender of another server.
1338  */
1339 Datum
1341 {
1342  TupleDesc tupdesc;
1343  Datum *values;
1344  bool *nulls;
1345  int pid;
1346  bool ready_to_display;
1348  XLogRecPtr receive_start_lsn;
1349  TimeLineID receive_start_tli;
1350  XLogRecPtr written_lsn;
1351  XLogRecPtr flushed_lsn;
1352  TimeLineID received_tli;
1353  TimestampTz last_send_time;
1354  TimestampTz last_receipt_time;
1355  XLogRecPtr latest_end_lsn;
1356  TimestampTz latest_end_time;
1357  char sender_host[NI_MAXHOST];
1358  int sender_port = 0;
1359  char slotname[NAMEDATALEN];
1360  char conninfo[MAXCONNINFO];
1361 
1362  /* Take a lock to ensure value consistency */
1364  pid = (int) WalRcv->pid;
1365  ready_to_display = WalRcv->ready_to_display;
1367  receive_start_lsn = WalRcv->receiveStart;
1368  receive_start_tli = WalRcv->receiveStartTLI;
1369  flushed_lsn = WalRcv->flushedUpto;
1370  received_tli = WalRcv->receivedTLI;
1371  last_send_time = WalRcv->lastMsgSendTime;
1372  last_receipt_time = WalRcv->lastMsgReceiptTime;
1373  latest_end_lsn = WalRcv->latestWalEnd;
1374  latest_end_time = WalRcv->latestWalEndTime;
1375  strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
1376  strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
1377  sender_port = WalRcv->sender_port;
1378  strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
1380 
1381  /*
1382  * No WAL receiver (or not ready yet), just return a tuple with NULL
1383  * values
1384  */
1385  if (pid == 0 || !ready_to_display)
1386  PG_RETURN_NULL();
1387 
1388  /*
1389  * Read "writtenUpto" without holding a spinlock. Note that it may not be
1390  * consistent with the other shared variables of the WAL receiver
1391  * protected by a spinlock, but this should not be used for data integrity
1392  * checks.
1393  */
1394  written_lsn = pg_atomic_read_u64(&WalRcv->writtenUpto);
1395 
1396  /* determine result type */
1397  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1398  elog(ERROR, "return type must be a row type");
1399 
1400  values = palloc0(sizeof(Datum) * tupdesc->natts);
1401  nulls = palloc0(sizeof(bool) * tupdesc->natts);
1402 
1403  /* Fetch values */
1404  values[0] = Int32GetDatum(pid);
1405 
1406  if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
1407  {
1408  /*
1409  * Only superusers and roles with privileges of pg_read_all_stats can
1410  * see details. Other users only get the pid value to know whether it
1411  * is a WAL receiver, but no details.
1412  */
1413  memset(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1414  }
1415  else
1416  {
1418 
1419  if (XLogRecPtrIsInvalid(receive_start_lsn))
1420  nulls[2] = true;
1421  else
1422  values[2] = LSNGetDatum(receive_start_lsn);
1423  values[3] = Int32GetDatum(receive_start_tli);
1424  if (XLogRecPtrIsInvalid(written_lsn))
1425  nulls[4] = true;
1426  else
1427  values[4] = LSNGetDatum(written_lsn);
1428  if (XLogRecPtrIsInvalid(flushed_lsn))
1429  nulls[5] = true;
1430  else
1431  values[5] = LSNGetDatum(flushed_lsn);
1432  values[6] = Int32GetDatum(received_tli);
1433  if (last_send_time == 0)
1434  nulls[7] = true;
1435  else
1436  values[7] = TimestampTzGetDatum(last_send_time);
1437  if (last_receipt_time == 0)
1438  nulls[8] = true;
1439  else
1440  values[8] = TimestampTzGetDatum(last_receipt_time);
1441  if (XLogRecPtrIsInvalid(latest_end_lsn))
1442  nulls[9] = true;
1443  else
1444  values[9] = LSNGetDatum(latest_end_lsn);
1445  if (latest_end_time == 0)
1446  nulls[10] = true;
1447  else
1448  values[10] = TimestampTzGetDatum(latest_end_time);
1449  if (*slotname == '\0')
1450  nulls[11] = true;
1451  else
1452  values[11] = CStringGetTextDatum(slotname);
1453  if (*sender_host == '\0')
1454  nulls[12] = true;
1455  else
1456  values[12] = CStringGetTextDatum(sender_host);
1457  if (sender_port == 0)
1458  nulls[13] = true;
1459  else
1460  values[13] = Int32GetDatum(sender_port);
1461  if (*conninfo == '\0')
1462  nulls[14] = true;
1463  else
1464  values[14] = CStringGetTextDatum(conninfo);
1465  }
1466 
1467  /* Returns the record as Datum */
1469 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:4925
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:438
#define pg_memory_barrier()
Definition: atomics.h:145
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:429
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition: timeline.c:463
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition: timeline.c:222
sigset_t UnBlockSig
Definition: pqsignal.c:22
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1705
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1574
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1538
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1768
static Datum values[MAXATTR]
Definition: bootstrap.c:156
#define CStringGetTextDatum(s)
Definition: builtins.h:85
unsigned int uint32
Definition: c.h:452
#define UINT64_FORMAT
Definition: c.h:495
uint32 TransactionId
Definition: c.h:598
size_t Size
Definition: c.h:551
void ConditionVariableBroadcast(ConditionVariable *cv)
int64 TimestampTz
Definition: timestamp.h:39
void load_file(const char *filename, bool restricted)
Definition: dfmgr.c:144
int errmsg_internal(const char *fmt,...)
Definition: elog.c:991
int errcode_for_file_access(void)
Definition: elog.c:716
int errdetail(const char *fmt,...)
Definition: elog.c:1037
bool message_level_is_interesting(int elevel)
Definition: elog.c:265
int errcode(int sqlerrcode)
Definition: elog.c:693
int errmsg(const char *fmt,...)
Definition: elog.c:904
#define LOG
Definition: elog.h:25
#define FATAL
Definition: elog.h:35
#define DEBUG2
Definition: elog.h:23
#define PANIC
Definition: elog.h:36
#define DEBUG1
Definition: elog.h:24
#define ERROR
Definition: elog.h:33
#define ereport(elevel,...)
Definition: elog.h:143
#define PG_RETURN_NULL()
Definition: fmgr.h:345
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:353
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
#define HeapTupleGetDatum(tuple)
Definition: funcapi.h:220
#define NI_MAXHOST
Definition: getaddrinfo.h:88
int MyProcPid
Definition: globals.c:44
struct Latch * MyLatch
Definition: globals.c:58
char * cluster_name
Definition: guc.c:653
@ PGC_SIGHUP
Definition: guc.h:72
void ProcessConfigFile(GucContext context)
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
#define close(a)
Definition: win32.h:12
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:108
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:361
void proc_exit(int code)
Definition: ipc.c:104
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:524
void SetLatch(Latch *latch)
Definition: latch.c:591
void ResetLatch(Latch *latch)
Definition: latch.c:683
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:476
#define WL_SOCKET_READABLE
Definition: latch.h:126
#define WL_TIMEOUT
Definition: latch.h:128
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:130
#define WL_LATCH_SET
Definition: latch.h:125
Assert(fmt[strlen(fmt) - 1] !='\n')
exit(1)
char * pstrdup(const char *in)
Definition: mcxt.c:1305
void pfree(void *pointer)
Definition: mcxt.c:1175
void * palloc0(Size size)
Definition: mcxt.c:1099
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:121
Oid GetUserId(void)
Definition: miscinit.c:491
void * arg
#define NAMEDATALEN
const void size_t len
#define LSNGetDatum(X)
Definition: pg_lsn.h:22
static char ** options
static char * buf
Definition: pg_test_fsync.c:67
ssize_t pg_pwrite(int fd, const void *buf, size_t nbyte, off_t offset)
Definition: pwrite.c:27
int pgsocket
Definition: port.h:29
#define snprintf
Definition: port.h:225
#define PGINVALID_SOCKET
Definition: port.h:31
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
uintptr_t Datum
Definition: postgres.h:411
#define DatumGetPointer(X)
Definition: postgres.h:593
#define Int32GetDatum(X)
Definition: postgres.h:523
#define PointerGetDatum(X)
Definition: postgres.h:600
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:401
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:455
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:145
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:161
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:153
#define PG_SETMASK(mask)
Definition: pqsignal.h:19
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:2048
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:638
bool update_process_title
Definition: ps_status.c:36
void set_ps_display(const char *activity)
Definition: ps_status.c:349
pqsigfunc pqsignal(int signum, pqsigfunc handler)
Definition: signal.c:180
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:68
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:75
void appendBinaryStringInfo(StringInfo str, const char *data, int datalen)
Definition: stringinfo.c:227
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Definition: latch.h:111
Latch procLatch
Definition: proc.h:168
TimestampTz lastMsgReceiptTime
Definition: walreceiver.h:100
XLogRecPtr latestWalEnd
Definition: walreceiver.h:105
TimeLineID receiveStartTLI
Definition: walreceiver.h:76
TimeLineID receivedTLI
Definition: walreceiver.h:86
char slotname[NAMEDATALEN]
Definition: walreceiver.h:125
Latch * latch
Definition: walreceiver.h:143
char sender_host[NI_MAXHOST]
Definition: walreceiver.h:118
pid_t pid
Definition: walreceiver.h:64
XLogRecPtr latestChunkStart
Definition: walreceiver.h:94
XLogRecPtr receiveStart
Definition: walreceiver.h:75
XLogRecPtr flushedUpto
Definition: walreceiver.h:85
sig_atomic_t force_reply
Definition: walreceiver.h:160
ConditionVariable walRcvStoppedCV
Definition: walreceiver.h:66
bool is_temp_slot
Definition: walreceiver.h:131
pg_atomic_uint64 writtenUpto
Definition: walreceiver.h:153
TimestampTz lastMsgSendTime
Definition: walreceiver.h:99
WalRcvState walRcvState
Definition: walreceiver.h:65
TimestampTz latestWalEndTime
Definition: walreceiver.h:106
bool ready_to_display
Definition: walreceiver.h:134
int sender_port
Definition: walreceiver.h:119
slock_t mutex
Definition: walreceiver.h:145
char conninfo[MAXCONNINFO]
Definition: walreceiver.h:112
Definition: regguts.h:318
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TimestampTzGetDatum(X)
Definition: timestamp.h:32
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:56
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:261
@ WAIT_EVENT_WAL_RECEIVER_MAIN
Definition: wait_event.h:47
@ WAIT_EVENT_WAL_RECEIVER_WAIT_START
Definition: wait_event.h:130
void ProcessWalRcvInterrupts(void)
Definition: walreceiver.c:150
static WalReceiverConn * wrconn
Definition: walreceiver.c:95
void WalReceiverMain(void)
Definition: walreceiver.c:171
static struct @17 LogstreamResult
static StringInfoData reply_message
Definition: walreceiver.c:119
bool hot_standby_feedback
Definition: walreceiver.c:92
XLogRecPtr Flush
Definition: walreceiver.c:116
static int recvFile
Definition: walreceiver.c:105
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
Definition: walreceiver.c:1244
int wal_receiver_status_interval
Definition: walreceiver.c:90
#define NAPTIME_PER_CYCLE
Definition: walreceiver.c:98
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
Definition: walreceiver.c:723
XLogRecPtr Write
Definition: walreceiver.c:115
static StringInfoData incoming_message
Definition: walreceiver.c:120
static void XLogWalRcvFlush(bool dying, TimeLineID tli)
Definition: walreceiver.c:967
static TimeLineID recvFileTLI
Definition: walreceiver.c:106
WalReceiverFunctionsType * WalReceiverFunctions
Definition: walreceiver.c:96
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:884
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
Definition: walreceiver.c:1340
int wal_receiver_timeout
Definition: walreceiver.c:91
static XLogSegNo recvSegNo
Definition: walreceiver.c:107
static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:1022
static void XLogWalRcvSendHSFeedback(bool immed)
Definition: walreceiver.c:1143
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
Definition: walreceiver.c:643
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
Definition: walreceiver.c:817
static const char * WalRcvGetStateString(WalRcvState state)
Definition: walreceiver.c:1315
static void WalRcvDie(int code, Datum arg)
Definition: walreceiver.c:779
static void XLogWalRcvSendReply(bool force, bool requestReply)
Definition: walreceiver.c:1074
void WalRcvForceReply(void)
Definition: walreceiver.c:1297
#define walrcv_create_slot(conn, slotname, temporary, two_phase, snapshot_action, lsn)
Definition: walreceiver.h:426
#define AllowCascadeReplication()
Definition: walreceiver.h:40
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
Definition: walreceiver.h:416
#define walrcv_startstreaming(conn, options)
Definition: walreceiver.h:418
#define walrcv_connect(conninfo, logical, appname, err)
Definition: walreceiver.h:404
#define walrcv_send(conn, buffer, nbytes)
Definition: walreceiver.h:424
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
Definition: walreceiver.h:410
#define MAXCONNINFO
Definition: walreceiver.h:37
#define walrcv_get_conninfo(conn)
Definition: walreceiver.h:408
#define walrcv_endstreaming(conn, next_tli)
Definition: walreceiver.h:420
WalRcvState
Definition: walreceiver.h:46
@ WALRCV_STARTING
Definition: walreceiver.h:48
@ WALRCV_STOPPED
Definition: walreceiver.h:47
@ WALRCV_RESTARTING
Definition: walreceiver.h:52
@ WALRCV_STREAMING
Definition: walreceiver.h:50
@ WALRCV_WAITING
Definition: walreceiver.h:51
@ WALRCV_STOPPING
Definition: walreceiver.h:53
#define walrcv_identify_system(conn, primary_tli)
Definition: walreceiver.h:412
#define walrcv_disconnect(conn)
Definition: walreceiver.h:432
#define walrcv_get_backend_pid(conn)
Definition: walreceiver.h:428
#define walrcv_receive(conn, buffer, wait_fd)
Definition: walreceiver.h:422
WalRcvData * WalRcv
int GetReplicationApplyDelay(void)
int GetReplicationTransferLatency(void)
void WalSndWakeup(void)
Definition: walsender.c:3296
#define SIGCHLD
Definition: win32_port.h:177
#define SIGHUP
Definition: win32_port.h:167
#define SIG_DFL
Definition: win32_port.h:162
#define SIGPIPE
Definition: win32_port.h:172
#define SIGUSR1
Definition: win32_port.h:179
#define SIGALRM
Definition: win32_port.h:173
#define SIGUSR2
Definition: win32_port.h:180
#define SIG_IGN
Definition: win32_port.h:164
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3106
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4203
bool RecoveryInProgress(void)
Definition: xlog.c:5759
int XLogArchiveMode
Definition: xlog.c:120
int wal_segment_size
Definition: xlog.c:144
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:7974
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:62
#define TLHistoryFileName(fname, tli)
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
#define XLogFileName(fname, tli, logSegNo, wal_segsz_bytes)
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
void XLogArchiveForceDone(const char *xlog)
Definition: xlogarchive.c:540
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:474
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
bool HotStandbyActive(void)
void WakeupRecovery(void)
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)