PostgreSQL Source Code  git master
walreceiver.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walreceiver.c
4  *
5  * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6  * is the process in the standby server that takes charge of receiving
7  * XLOG records from a primary server during streaming replication.
8  *
9  * When the startup process determines that it's time to start streaming,
10  * it instructs postmaster to start walreceiver. Walreceiver first connects
11  * to the primary server (it will be served by a walsender process
12  * in the primary server), and then keeps receiving XLOG records and
13  * writing them to the disk as long as the connection is alive. As XLOG
14  * records are received and flushed to disk, it updates the
15  * WalRcv->flushedUpto variable in shared memory, to inform the startup
16  * process of how far it can proceed with XLOG replay.
17  *
18  * A WAL receiver cannot directly load GUC parameters used when establishing
19  * its connection to the primary. Instead it relies on parameter values
20  * that are passed down by the startup process when streaming is requested.
21  * This applies, for example, to the replication slot and the connection
22  * string to be used for the connection with the primary.
23  *
24  * If the primary server ends streaming, but doesn't disconnect, walreceiver
25  * goes into "waiting" mode, and waits for the startup process to give new
26  * instructions. The startup process will treat that the same as
27  * disconnection, and will rescan the archive/pg_wal directory. But when the
28  * startup process wants to try streaming replication again, it will just
29  * nudge the existing walreceiver process that's waiting, instead of launching
30  * a new one.
31  *
32  * Normal termination is by SIGTERM, which instructs the walreceiver to
33  * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34  * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35  * of the connection and a FATAL error are treated not as a crash but as
36  * normal operation.
37  *
38  * This file contains the server-facing parts of walreceiver. The libpq-
39  * specific parts are in the libpqwalreceiver module. It's loaded
40  * dynamically to avoid linking the server with libpq.
41  *
42  * Portions Copyright (c) 2010-2024, PostgreSQL Global Development Group
43  *
44  *
45  * IDENTIFICATION
46  * src/backend/replication/walreceiver.c
47  *
48  *-------------------------------------------------------------------------
49  */
50 #include "postgres.h"
51 
52 #include <unistd.h>
53 
54 #include "access/htup_details.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/xlog_internal.h"
58 #include "access/xlogarchive.h"
59 #include "access/xlogrecovery.h"
60 #include "catalog/pg_authid.h"
61 #include "funcapi.h"
62 #include "libpq/pqformat.h"
63 #include "libpq/pqsignal.h"
64 #include "miscadmin.h"
65 #include "pgstat.h"
66 #include "postmaster/auxprocess.h"
67 #include "postmaster/interrupt.h"
69 #include "replication/walsender.h"
70 #include "storage/ipc.h"
71 #include "storage/proc.h"
72 #include "storage/procarray.h"
73 #include "storage/procsignal.h"
74 #include "utils/acl.h"
75 #include "utils/builtins.h"
76 #include "utils/guc.h"
77 #include "utils/pg_lsn.h"
78 #include "utils/ps_status.h"
79 #include "utils/timestamp.h"
80 
81 
82 /*
83  * GUC variables. (Other variables that affect walreceiver are in xlog.c
84  * because they're passed down from the startup process, for better
85  * synchronization.)
86  */
90 
91 /* libpqwalreceiver connection */
92 static WalReceiverConn *wrconn = NULL;
94 
95 /*
96  * These variables are used similarly to openLogFile/SegNo,
97  * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
98  * corresponding the filename of recvFile.
99  */
100 static int recvFile = -1;
102 static XLogSegNo recvSegNo = 0;
103 
104 /*
105  * LogstreamResult indicates the byte positions that we have already
106  * written/fsynced.
107  */
108 static struct
109 {
110  XLogRecPtr Write; /* last byte + 1 written out in the standby */
111  XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
113 
114 /*
115  * Reasons to wake up and perform periodic tasks.
116  */
117 typedef enum WalRcvWakeupReason
118 {
123 #define NUM_WALRCV_WAKEUPS (WALRCV_WAKEUP_HSFEEDBACK + 1)
125 
126 /*
127  * Wake up times for periodic tasks.
128  */
130 
132 
133 /* Prototypes for private functions */
134 static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
135 static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
136 static void WalRcvDie(int code, Datum arg);
137 static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len,
138  TimeLineID tli);
139 static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr,
140  TimeLineID tli);
141 static void XLogWalRcvFlush(bool dying, TimeLineID tli);
142 static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli);
143 static void XLogWalRcvSendReply(bool force, bool requestReply);
144 static void XLogWalRcvSendHSFeedback(bool immed);
145 static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
147 
148 /*
149  * Process any interrupts the walreceiver process may have received.
150  * This should be called any time the process's latch has become set.
151  *
152  * Currently, only SIGTERM is of interest. We can't just exit(1) within the
153  * SIGTERM signal handler, because the signal might arrive in the middle of
154  * some critical operation, like while we're holding a spinlock. Instead, the
155  * signal handler sets a flag variable as well as setting the process's latch.
156  * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
157  * latch has become set. Operations that could block for a long time, such as
158  * reading from a remote server, must pay attention to the latch too; see
159  * libpqrcv_PQgetResult for example.
160  */
161 void
163 {
164  /*
165  * Although walreceiver interrupt handling doesn't use the same scheme as
166  * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
167  * any incoming signals on Win32, and also to make sure we process any
168  * barrier events.
169  */
171 
173  {
174  ereport(FATAL,
175  (errcode(ERRCODE_ADMIN_SHUTDOWN),
176  errmsg("terminating walreceiver process due to administrator command")));
177  }
178 }
179 
180 
181 /* Main entry point for walreceiver process */
182 void
183 WalReceiverMain(char *startup_data, size_t startup_data_len)
184 {
185  char conninfo[MAXCONNINFO];
186  char *tmp_conninfo;
187  char slotname[NAMEDATALEN];
188  bool is_temp_slot;
189  XLogRecPtr startpoint;
190  TimeLineID startpointTLI;
191  TimeLineID primaryTLI;
192  bool first_stream;
193  WalRcvData *walrcv;
195  char *err;
196  char *sender_host = NULL;
197  int sender_port = 0;
198 
199  Assert(startup_data_len == 0);
200 
203 
204  /*
205  * WalRcv should be set up already (if we are a backend, we inherit this
206  * by fork() or EXEC_BACKEND mechanism from the postmaster).
207  */
208  walrcv = WalRcv;
209  Assert(walrcv != NULL);
210 
211  /*
212  * Mark walreceiver as running in shared memory.
213  *
214  * Do this as early as possible, so that if we fail later on, we'll set
215  * state to STOPPED. If we die before this, the startup process will keep
216  * waiting for us to start up, until it times out.
217  */
218  SpinLockAcquire(&walrcv->mutex);
219  Assert(walrcv->pid == 0);
220  switch (walrcv->walRcvState)
221  {
222  case WALRCV_STOPPING:
223  /* If we've already been requested to stop, don't start up. */
224  walrcv->walRcvState = WALRCV_STOPPED;
225  /* fall through */
226 
227  case WALRCV_STOPPED:
228  SpinLockRelease(&walrcv->mutex);
230  proc_exit(1);
231  break;
232 
233  case WALRCV_STARTING:
234  /* The usual case */
235  break;
236 
237  case WALRCV_WAITING:
238  case WALRCV_STREAMING:
239  case WALRCV_RESTARTING:
240  default:
241  /* Shouldn't happen */
242  SpinLockRelease(&walrcv->mutex);
243  elog(PANIC, "walreceiver still running according to shared memory state");
244  }
245  /* Advertise our PID so that the startup process can kill us */
246  walrcv->pid = MyProcPid;
247  walrcv->walRcvState = WALRCV_STREAMING;
248 
249  /* Fetch information required to start streaming */
250  walrcv->ready_to_display = false;
251  strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
252  strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
253  is_temp_slot = walrcv->is_temp_slot;
254  startpoint = walrcv->receiveStart;
255  startpointTLI = walrcv->receiveStartTLI;
256 
257  /*
258  * At most one of is_temp_slot and slotname can be set; otherwise,
259  * RequestXLogStreaming messed up.
260  */
261  Assert(!is_temp_slot || (slotname[0] == '\0'));
262 
263  /* Initialise to a sanish value */
265  walrcv->lastMsgSendTime =
266  walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
267 
268  /* Report the latch to use to awaken this process */
269  walrcv->latch = &MyProc->procLatch;
270 
271  SpinLockRelease(&walrcv->mutex);
272 
274 
275  /* Arrange to clean up at walreceiver exit */
276  on_shmem_exit(WalRcvDie, PointerGetDatum(&startpointTLI));
277 
278  /* Properly accept or ignore signals the postmaster might send us */
279  pqsignal(SIGHUP, SignalHandlerForConfigReload); /* set flag to read config
280  * file */
281  pqsignal(SIGINT, SIG_IGN);
282  pqsignal(SIGTERM, SignalHandlerForShutdownRequest); /* request shutdown */
283  /* SIGQUIT handler was already set up by InitPostmasterChild */
288 
289  /* Reset some signals that are accepted by postmaster but not here */
291 
292  /* Load the libpq-specific functions */
293  load_file("libpqwalreceiver", false);
294  if (WalReceiverFunctions == NULL)
295  elog(ERROR, "libpqwalreceiver didn't initialize correctly");
296 
297  /* Unblock signals (they were blocked when the postmaster forked us) */
298  sigprocmask(SIG_SETMASK, &UnBlockSig, NULL);
299 
300  /* Establish the connection to the primary for XLOG streaming */
301  wrconn = walrcv_connect(conninfo, true, false, false,
302  cluster_name[0] ? cluster_name : "walreceiver",
303  &err);
304  if (!wrconn)
305  ereport(ERROR,
306  (errcode(ERRCODE_CONNECTION_FAILURE),
307  errmsg("could not connect to the primary server: %s", err)));
308 
309  /*
310  * Save user-visible connection string. This clobbers the original
311  * conninfo, for security. Also save host and port of the sender server
312  * this walreceiver is connected to.
313  */
314  tmp_conninfo = walrcv_get_conninfo(wrconn);
315  walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
316  SpinLockAcquire(&walrcv->mutex);
317  memset(walrcv->conninfo, 0, MAXCONNINFO);
318  if (tmp_conninfo)
319  strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
320 
321  memset(walrcv->sender_host, 0, NI_MAXHOST);
322  if (sender_host)
323  strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
324 
325  walrcv->sender_port = sender_port;
326  walrcv->ready_to_display = true;
327  SpinLockRelease(&walrcv->mutex);
328 
329  if (tmp_conninfo)
330  pfree(tmp_conninfo);
331 
332  if (sender_host)
333  pfree(sender_host);
334 
335  first_stream = true;
336  for (;;)
337  {
338  char *primary_sysid;
339  char standby_sysid[32];
341 
342  /*
343  * Check that we're connected to a valid server using the
344  * IDENTIFY_SYSTEM replication command.
345  */
346  primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
347 
348  snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
350  if (strcmp(primary_sysid, standby_sysid) != 0)
351  {
352  ereport(ERROR,
353  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
354  errmsg("database system identifier differs between the primary and standby"),
355  errdetail("The primary's identifier is %s, the standby's identifier is %s.",
356  primary_sysid, standby_sysid)));
357  }
358 
359  /*
360  * Confirm that the current timeline of the primary is the same or
361  * ahead of ours.
362  */
363  if (primaryTLI < startpointTLI)
364  ereport(ERROR,
365  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
366  errmsg("highest timeline %u of the primary is behind recovery timeline %u",
367  primaryTLI, startpointTLI)));
368 
369  /*
370  * Get any missing history files. We do this always, even when we're
371  * not interested in that timeline, so that if we're promoted to
372  * become the primary later on, we don't select the same timeline that
373  * was already used in the current primary. This isn't bullet-proof -
374  * you'll need some external software to manage your cluster if you
375  * need to ensure that a unique timeline id is chosen in every case,
376  * but let's avoid the confusion of timeline id collisions where we
377  * can.
378  */
379  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
380 
381  /*
382  * Create temporary replication slot if requested, and update slot
383  * name in shared memory. (Note the slot name cannot already be set
384  * in this case.)
385  */
386  if (is_temp_slot)
387  {
388  snprintf(slotname, sizeof(slotname),
389  "pg_walreceiver_%lld",
390  (long long int) walrcv_get_backend_pid(wrconn));
391 
392  walrcv_create_slot(wrconn, slotname, true, false, false, 0, NULL);
393 
394  SpinLockAcquire(&walrcv->mutex);
395  strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
396  SpinLockRelease(&walrcv->mutex);
397  }
398 
399  /*
400  * Start streaming.
401  *
402  * We'll try to start at the requested starting point and timeline,
403  * even if it's different from the server's latest timeline. In case
404  * we've already reached the end of the old timeline, the server will
405  * finish the streaming immediately, and we will go back to await
406  * orders from the startup process. If recovery_target_timeline is
407  * 'latest', the startup process will scan pg_wal and find the new
408  * history file, bump recovery target timeline, and ask us to restart
409  * on the new timeline.
410  */
411  options.logical = false;
412  options.startpoint = startpoint;
413  options.slotname = slotname[0] != '\0' ? slotname : NULL;
414  options.proto.physical.startpointTLI = startpointTLI;
416  {
417  if (first_stream)
418  ereport(LOG,
419  (errmsg("started streaming WAL from primary at %X/%X on timeline %u",
420  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
421  else
422  ereport(LOG,
423  (errmsg("restarted WAL streaming at %X/%X on timeline %u",
424  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
425  first_stream = false;
426 
427  /* Initialize LogstreamResult and buffers for processing messages */
430 
431  /* Initialize nap wakeup times. */
433  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
435 
436  /* Send initial reply/feedback messages. */
437  XLogWalRcvSendReply(true, false);
439 
440  /* Loop until end-of-streaming or error */
441  for (;;)
442  {
443  char *buf;
444  int len;
445  bool endofwal = false;
446  pgsocket wait_fd = PGINVALID_SOCKET;
447  int rc;
448  TimestampTz nextWakeup;
449  long nap;
450 
451  /*
452  * Exit walreceiver if we're not in recovery. This should not
453  * happen, but cross-check the status here.
454  */
455  if (!RecoveryInProgress())
456  ereport(FATAL,
457  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
458  errmsg("cannot continue WAL streaming, recovery has already ended")));
459 
460  /* Process any requests or signals received recently */
462 
464  {
465  ConfigReloadPending = false;
467  /* recompute wakeup times */
469  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
472  }
473 
474  /* See if we can read data immediately */
475  len = walrcv_receive(wrconn, &buf, &wait_fd);
476  if (len != 0)
477  {
478  /*
479  * Process the received data, and any subsequent data we
480  * can read without blocking.
481  */
482  for (;;)
483  {
484  if (len > 0)
485  {
486  /*
487  * Something was received from primary, so adjust
488  * the ping and terminate wakeup times.
489  */
492  now);
494  XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1,
495  startpointTLI);
496  }
497  else if (len == 0)
498  break;
499  else if (len < 0)
500  {
501  ereport(LOG,
502  (errmsg("replication terminated by primary server"),
503  errdetail("End of WAL reached on timeline %u at %X/%X.",
504  startpointTLI,
506  endofwal = true;
507  break;
508  }
509  len = walrcv_receive(wrconn, &buf, &wait_fd);
510  }
511 
512  /* Let the primary know that we received some data. */
513  XLogWalRcvSendReply(false, false);
514 
515  /*
516  * If we've written some records, flush them to disk and
517  * let the startup process and primary server know about
518  * them.
519  */
520  XLogWalRcvFlush(false, startpointTLI);
521  }
522 
523  /* Check if we need to exit the streaming loop. */
524  if (endofwal)
525  break;
526 
527  /* Find the soonest wakeup time, to limit our nap. */
528  nextWakeup = TIMESTAMP_INFINITY;
529  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
530  nextWakeup = Min(wakeup[i], nextWakeup);
531 
532  /* Calculate the nap time, clamping as necessary. */
534  nap = TimestampDifferenceMilliseconds(now, nextWakeup);
535 
536  /*
537  * Ideally we would reuse a WaitEventSet object repeatedly
538  * here to avoid the overheads of WaitLatchOrSocket on epoll
539  * systems, but we can't be sure that libpq (or any other
540  * walreceiver implementation) has the same socket (even if
541  * the fd is the same number, it may have been closed and
542  * reopened since the last time). In future, if there is a
543  * function for removing sockets from WaitEventSet, then we
544  * could add and remove just the socket each time, potentially
545  * avoiding some system calls.
546  */
547  Assert(wait_fd != PGINVALID_SOCKET);
551  wait_fd,
552  nap,
553  WAIT_EVENT_WAL_RECEIVER_MAIN);
554  if (rc & WL_LATCH_SET)
555  {
558 
559  if (walrcv->force_reply)
560  {
561  /*
562  * The recovery process has asked us to send apply
563  * feedback now. Make sure the flag is really set to
564  * false in shared memory before sending the reply, so
565  * we don't miss a new request for a reply.
566  */
567  walrcv->force_reply = false;
569  XLogWalRcvSendReply(true, false);
570  }
571  }
572  if (rc & WL_TIMEOUT)
573  {
574  /*
575  * We didn't receive anything new. If we haven't heard
576  * anything from the server for more than
577  * wal_receiver_timeout / 2, ping the server. Also, if
578  * it's been longer than wal_receiver_status_interval
579  * since the last update we sent, send a status update to
580  * the primary anyway, to report any progress in applying
581  * WAL.
582  */
583  bool requestReply = false;
584 
585  /*
586  * Check if time since last receive from primary has
587  * reached the configured limit.
588  */
591  ereport(ERROR,
592  (errcode(ERRCODE_CONNECTION_FAILURE),
593  errmsg("terminating walreceiver due to timeout")));
594 
595  /*
596  * If we didn't receive anything new for half of receiver
597  * replication timeout, then ping the server.
598  */
599  if (now >= wakeup[WALRCV_WAKEUP_PING])
600  {
601  requestReply = true;
603  }
604 
605  XLogWalRcvSendReply(requestReply, requestReply);
607  }
608  }
609 
610  /*
611  * The backend finished streaming. Exit streaming COPY-mode from
612  * our side, too.
613  */
614  walrcv_endstreaming(wrconn, &primaryTLI);
615 
616  /*
617  * If the server had switched to a new timeline that we didn't
618  * know about when we began streaming, fetch its timeline history
619  * file now.
620  */
621  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
622  }
623  else
624  ereport(LOG,
625  (errmsg("primary server contains no more WAL on requested timeline %u",
626  startpointTLI)));
627 
628  /*
629  * End of WAL reached on the requested timeline. Close the last
630  * segment, and await for new orders from the startup process.
631  */
632  if (recvFile >= 0)
633  {
634  char xlogfname[MAXFNAMELEN];
635 
636  XLogWalRcvFlush(false, startpointTLI);
638  if (close(recvFile) != 0)
639  ereport(PANIC,
641  errmsg("could not close WAL segment %s: %m",
642  xlogfname)));
643 
644  /*
645  * Create .done file forcibly to prevent the streamed segment from
646  * being archived later.
647  */
649  XLogArchiveForceDone(xlogfname);
650  else
651  XLogArchiveNotify(xlogfname);
652  }
653  recvFile = -1;
654 
655  elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
656  WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
657  }
658  /* not reached */
659 }
660 
661 /*
662  * Wait for startup process to set receiveStart and receiveStartTLI.
663  */
664 static void
666 {
667  WalRcvData *walrcv = WalRcv;
668  int state;
669 
670  SpinLockAcquire(&walrcv->mutex);
671  state = walrcv->walRcvState;
672  if (state != WALRCV_STREAMING)
673  {
674  SpinLockRelease(&walrcv->mutex);
675  if (state == WALRCV_STOPPING)
676  proc_exit(0);
677  else
678  elog(FATAL, "unexpected walreceiver state");
679  }
680  walrcv->walRcvState = WALRCV_WAITING;
682  walrcv->receiveStartTLI = 0;
683  SpinLockRelease(&walrcv->mutex);
684 
685  set_ps_display("idle");
686 
687  /*
688  * nudge startup process to notice that we've stopped streaming and are
689  * now waiting for instructions.
690  */
691  WakeupRecovery();
692  for (;;)
693  {
695 
697 
698  SpinLockAcquire(&walrcv->mutex);
699  Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
700  walrcv->walRcvState == WALRCV_WAITING ||
701  walrcv->walRcvState == WALRCV_STOPPING);
702  if (walrcv->walRcvState == WALRCV_RESTARTING)
703  {
704  /*
705  * No need to handle changes in primary_conninfo or
706  * primary_slot_name here. Startup process will signal us to
707  * terminate in case those change.
708  */
709  *startpoint = walrcv->receiveStart;
710  *startpointTLI = walrcv->receiveStartTLI;
711  walrcv->walRcvState = WALRCV_STREAMING;
712  SpinLockRelease(&walrcv->mutex);
713  break;
714  }
715  if (walrcv->walRcvState == WALRCV_STOPPING)
716  {
717  /*
718  * We should've received SIGTERM if the startup process wants us
719  * to die, but might as well check it here too.
720  */
721  SpinLockRelease(&walrcv->mutex);
722  exit(1);
723  }
724  SpinLockRelease(&walrcv->mutex);
725 
727  WAIT_EVENT_WAL_RECEIVER_WAIT_START);
728  }
729 
731  {
732  char activitymsg[50];
733 
734  snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
735  LSN_FORMAT_ARGS(*startpoint));
736  set_ps_display(activitymsg);
737  }
738 }
739 
740 /*
741  * Fetch any missing timeline history files between 'first' and 'last'
742  * (inclusive) from the server.
743  */
744 static void
746 {
747  TimeLineID tli;
748 
749  for (tli = first; tli <= last; tli++)
750  {
751  /* there's no history file for timeline 1 */
752  if (tli != 1 && !existsTimeLineHistory(tli))
753  {
754  char *fname;
755  char *content;
756  int len;
757  char expectedfname[MAXFNAMELEN];
758 
759  ereport(LOG,
760  (errmsg("fetching timeline history file for timeline %u from primary server",
761  tli)));
762 
763  walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
764 
765  /*
766  * Check that the filename on the primary matches what we
767  * calculated ourselves. This is just a sanity check, it should
768  * always match.
769  */
770  TLHistoryFileName(expectedfname, tli);
771  if (strcmp(fname, expectedfname) != 0)
772  ereport(ERROR,
773  (errcode(ERRCODE_PROTOCOL_VIOLATION),
774  errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
775  tli)));
776 
777  /*
778  * Write the file to pg_wal.
779  */
780  writeTimeLineHistoryFile(tli, content, len);
781 
782  /*
783  * Mark the streamed history file as ready for archiving if
784  * archive_mode is always.
785  */
787  XLogArchiveForceDone(fname);
788  else
789  XLogArchiveNotify(fname);
790 
791  pfree(fname);
792  pfree(content);
793  }
794  }
795 }
796 
797 /*
798  * Mark us as STOPPED in shared memory at exit.
799  */
800 static void
801 WalRcvDie(int code, Datum arg)
802 {
803  WalRcvData *walrcv = WalRcv;
804  TimeLineID *startpointTLI_p = (TimeLineID *) DatumGetPointer(arg);
805 
806  Assert(*startpointTLI_p != 0);
807 
808  /* Ensure that all WAL records received are flushed to disk */
809  XLogWalRcvFlush(true, *startpointTLI_p);
810 
811  /* Mark ourselves inactive in shared memory */
812  SpinLockAcquire(&walrcv->mutex);
813  Assert(walrcv->walRcvState == WALRCV_STREAMING ||
814  walrcv->walRcvState == WALRCV_RESTARTING ||
815  walrcv->walRcvState == WALRCV_STARTING ||
816  walrcv->walRcvState == WALRCV_WAITING ||
817  walrcv->walRcvState == WALRCV_STOPPING);
818  Assert(walrcv->pid == MyProcPid);
819  walrcv->walRcvState = WALRCV_STOPPED;
820  walrcv->pid = 0;
821  walrcv->ready_to_display = false;
822  walrcv->latch = NULL;
823  SpinLockRelease(&walrcv->mutex);
824 
826 
827  /* Terminate the connection gracefully. */
828  if (wrconn != NULL)
830 
831  /* Wake up the startup process to notice promptly that we're gone */
832  WakeupRecovery();
833 }
834 
835 /*
836  * Accept the message from XLOG stream, and process it.
837  */
838 static void
839 XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
840 {
841  int hdrlen;
842  XLogRecPtr dataStart;
843  XLogRecPtr walEnd;
844  TimestampTz sendTime;
845  bool replyRequested;
846 
847  switch (type)
848  {
849  case 'w': /* WAL records */
850  {
851  StringInfoData incoming_message;
852 
853  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
854  if (len < hdrlen)
855  ereport(ERROR,
856  (errcode(ERRCODE_PROTOCOL_VIOLATION),
857  errmsg_internal("invalid WAL message received from primary")));
858 
859  /* initialize a StringInfo with the given buffer */
860  initReadOnlyStringInfo(&incoming_message, buf, hdrlen);
861 
862  /* read the fields */
863  dataStart = pq_getmsgint64(&incoming_message);
864  walEnd = pq_getmsgint64(&incoming_message);
865  sendTime = pq_getmsgint64(&incoming_message);
866  ProcessWalSndrMessage(walEnd, sendTime);
867 
868  buf += hdrlen;
869  len -= hdrlen;
870  XLogWalRcvWrite(buf, len, dataStart, tli);
871  break;
872  }
873  case 'k': /* Keepalive */
874  {
875  StringInfoData incoming_message;
876 
877  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
878  if (len != hdrlen)
879  ereport(ERROR,
880  (errcode(ERRCODE_PROTOCOL_VIOLATION),
881  errmsg_internal("invalid keepalive message received from primary")));
882 
883  /* initialize a StringInfo with the given buffer */
884  initReadOnlyStringInfo(&incoming_message, buf, hdrlen);
885 
886  /* read the fields */
887  walEnd = pq_getmsgint64(&incoming_message);
888  sendTime = pq_getmsgint64(&incoming_message);
889  replyRequested = pq_getmsgbyte(&incoming_message);
890 
891  ProcessWalSndrMessage(walEnd, sendTime);
892 
893  /* If the primary requested a reply, send one immediately */
894  if (replyRequested)
895  XLogWalRcvSendReply(true, false);
896  break;
897  }
898  default:
899  ereport(ERROR,
900  (errcode(ERRCODE_PROTOCOL_VIOLATION),
901  errmsg_internal("invalid replication message type %d",
902  type)));
903  }
904 }
905 
906 /*
907  * Write XLOG data to disk.
908  */
909 static void
910 XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
911 {
912  int startoff;
913  int byteswritten;
914 
915  Assert(tli != 0);
916 
917  while (nbytes > 0)
918  {
919  int segbytes;
920 
921  /* Close the current segment if it's completed */
922  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
923  XLogWalRcvClose(recptr, tli);
924 
925  if (recvFile < 0)
926  {
927  /* Create/use new log file */
930  recvFileTLI = tli;
931  }
932 
933  /* Calculate the start offset of the received logs */
934  startoff = XLogSegmentOffset(recptr, wal_segment_size);
935 
936  if (startoff + nbytes > wal_segment_size)
937  segbytes = wal_segment_size - startoff;
938  else
939  segbytes = nbytes;
940 
941  /* OK to write the logs */
942  errno = 0;
943 
944  byteswritten = pg_pwrite(recvFile, buf, segbytes, (off_t) startoff);
945  if (byteswritten <= 0)
946  {
947  char xlogfname[MAXFNAMELEN];
948  int save_errno;
949 
950  /* if write didn't set errno, assume no disk space */
951  if (errno == 0)
952  errno = ENOSPC;
953 
954  save_errno = errno;
956  errno = save_errno;
957  ereport(PANIC,
959  errmsg("could not write to WAL segment %s "
960  "at offset %d, length %lu: %m",
961  xlogfname, startoff, (unsigned long) segbytes)));
962  }
963 
964  /* Update state for write */
965  recptr += byteswritten;
966 
967  nbytes -= byteswritten;
968  buf += byteswritten;
969 
970  LogstreamResult.Write = recptr;
971  }
972 
973  /* Update shared-memory status */
975 
976  /*
977  * Close the current segment if it's fully written up in the last cycle of
978  * the loop, to create its archive notification file soon. Otherwise WAL
979  * archiving of the segment will be delayed until any data in the next
980  * segment is received and written.
981  */
982  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
983  XLogWalRcvClose(recptr, tli);
984 }
985 
986 /*
987  * Flush the log to disk.
988  *
989  * If we're in the midst of dying, it's unwise to do anything that might throw
990  * an error, so we skip sending a reply in that case.
991  */
992 static void
993 XLogWalRcvFlush(bool dying, TimeLineID tli)
994 {
995  Assert(tli != 0);
996 
997  if (LogstreamResult.Flush < LogstreamResult.Write)
998  {
999  WalRcvData *walrcv = WalRcv;
1000 
1002 
1003  LogstreamResult.Flush = LogstreamResult.Write;
1004 
1005  /* Update shared-memory status */
1006  SpinLockAcquire(&walrcv->mutex);
1007  if (walrcv->flushedUpto < LogstreamResult.Flush)
1008  {
1009  walrcv->latestChunkStart = walrcv->flushedUpto;
1010  walrcv->flushedUpto = LogstreamResult.Flush;
1011  walrcv->receivedTLI = tli;
1012  }
1013  SpinLockRelease(&walrcv->mutex);
1014 
1015  /* Signal the startup process and walsender that new WAL has arrived */
1016  WakeupRecovery();
1018  WalSndWakeup(true, false);
1019 
1020  /* Report XLOG streaming progress in PS display */
1022  {
1023  char activitymsg[50];
1024 
1025  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
1027  set_ps_display(activitymsg);
1028  }
1029 
1030  /* Also let the primary know that we made some progress */
1031  if (!dying)
1032  {
1033  XLogWalRcvSendReply(false, false);
1034  XLogWalRcvSendHSFeedback(false);
1035  }
1036  }
1037 }
1038 
1039 /*
1040  * Close the current segment.
1041  *
1042  * Flush the segment to disk before closing it. Otherwise we have to
1043  * reopen and fsync it later.
1044  *
1045  * Create an archive notification file since the segment is known completed.
1046  */
1047 static void
1049 {
1050  char xlogfname[MAXFNAMELEN];
1051 
1053  Assert(tli != 0);
1054 
1055  /*
1056  * fsync() and close current file before we switch to next one. We would
1057  * otherwise have to reopen this file to fsync it later
1058  */
1059  XLogWalRcvFlush(false, tli);
1060 
1062 
1063  /*
1064  * XLOG segment files will be re-read by recovery in startup process soon,
1065  * so we don't advise the OS to release cache pages associated with the
1066  * file like XLogFileClose() does.
1067  */
1068  if (close(recvFile) != 0)
1069  ereport(PANIC,
1071  errmsg("could not close WAL segment %s: %m",
1072  xlogfname)));
1073 
1074  /*
1075  * Create .done file forcibly to prevent the streamed segment from being
1076  * archived later.
1077  */
1079  XLogArchiveForceDone(xlogfname);
1080  else
1081  XLogArchiveNotify(xlogfname);
1082 
1083  recvFile = -1;
1084 }
1085 
1086 /*
1087  * Send reply message to primary, indicating our current WAL locations, oldest
1088  * xmin and the current time.
1089  *
1090  * If 'force' is not set, the message is only sent if enough time has
1091  * passed since last status update to reach wal_receiver_status_interval.
1092  * If wal_receiver_status_interval is disabled altogether and 'force' is
1093  * false, this is a no-op.
1094  *
1095  * If 'requestReply' is true, requests the server to reply immediately upon
1096  * receiving this message. This is used for heartbeats, when approaching
1097  * wal_receiver_timeout.
1098  */
1099 static void
1100 XLogWalRcvSendReply(bool force, bool requestReply)
1101 {
1102  static XLogRecPtr writePtr = 0;
1103  static XLogRecPtr flushPtr = 0;
1104  XLogRecPtr applyPtr;
1105  TimestampTz now;
1106 
1107  /*
1108  * If the user doesn't want status to be reported to the primary, be sure
1109  * to exit before doing anything at all.
1110  */
1111  if (!force && wal_receiver_status_interval <= 0)
1112  return;
1113 
1114  /* Get current timestamp. */
1116 
1117  /*
1118  * We can compare the write and flush positions to the last message we
1119  * sent without taking any lock, but the apply position requires a spin
1120  * lock, so we don't check that unless something else has changed or 10
1121  * seconds have passed. This means that the apply WAL location will
1122  * appear, from the primary's point of view, to lag slightly, but since
1123  * this is only for reporting purposes and only on idle systems, that's
1124  * probably OK.
1125  */
1126  if (!force
1127  && writePtr == LogstreamResult.Write
1128  && flushPtr == LogstreamResult.Flush
1130  return;
1131 
1132  /* Make sure we wake up when it's time to send another reply. */
1134 
1135  /* Construct a new message */
1136  writePtr = LogstreamResult.Write;
1137  flushPtr = LogstreamResult.Flush;
1138  applyPtr = GetXLogReplayRecPtr(NULL);
1139 
1141  pq_sendbyte(&reply_message, 'r');
1142  pq_sendint64(&reply_message, writePtr);
1143  pq_sendint64(&reply_message, flushPtr);
1144  pq_sendint64(&reply_message, applyPtr);
1146  pq_sendbyte(&reply_message, requestReply ? 1 : 0);
1147 
1148  /* Send it */
1149  elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
1150  LSN_FORMAT_ARGS(writePtr),
1151  LSN_FORMAT_ARGS(flushPtr),
1152  LSN_FORMAT_ARGS(applyPtr),
1153  requestReply ? " (reply requested)" : "");
1154 
1156 }
1157 
1158 /*
1159  * Send hot standby feedback message to primary, plus the current time,
1160  * in case they don't have a watch.
1161  *
1162  * If the user disables feedback, send one final message to tell sender
1163  * to forget about the xmin on this standby. We also send this message
1164  * on first connect because a previous connection might have set xmin
1165  * on a replication slot. (If we're not using a slot it's harmless to
1166  * send a feedback message explicitly setting InvalidTransactionId).
1167  */
1168 static void
1170 {
1171  TimestampTz now;
1172  FullTransactionId nextFullXid;
1173  TransactionId nextXid;
1174  uint32 xmin_epoch,
1175  catalog_xmin_epoch;
1176  TransactionId xmin,
1177  catalog_xmin;
1178 
1179  /* initially true so we always send at least one feedback message */
1180  static bool primary_has_standby_xmin = true;
1181 
1182  /*
1183  * If the user doesn't want status to be reported to the primary, be sure
1184  * to exit before doing anything at all.
1185  */
1187  !primary_has_standby_xmin)
1188  return;
1189 
1190  /* Get current timestamp. */
1192 
1193  /* Send feedback at most once per wal_receiver_status_interval. */
1194  if (!immed && now < wakeup[WALRCV_WAKEUP_HSFEEDBACK])
1195  return;
1196 
1197  /* Make sure we wake up when it's time to send feedback again. */
1199 
1200  /*
1201  * If Hot Standby is not yet accepting connections there is nothing to
1202  * send. Check this after the interval has expired to reduce number of
1203  * calls.
1204  *
1205  * Bailing out here also ensures that we don't send feedback until we've
1206  * read our own replication slot state, so we don't tell the primary to
1207  * discard needed xmin or catalog_xmin from any slots that may exist on
1208  * this replica.
1209  */
1210  if (!HotStandbyActive())
1211  return;
1212 
1213  /*
1214  * Make the expensive call to get the oldest xmin once we are certain
1215  * everything else has been checked.
1216  */
1218  {
1219  GetReplicationHorizons(&xmin, &catalog_xmin);
1220  }
1221  else
1222  {
1223  xmin = InvalidTransactionId;
1224  catalog_xmin = InvalidTransactionId;
1225  }
1226 
1227  /*
1228  * Get epoch and adjust if nextXid and oldestXmin are different sides of
1229  * the epoch boundary.
1230  */
1231  nextFullXid = ReadNextFullTransactionId();
1232  nextXid = XidFromFullTransactionId(nextFullXid);
1233  xmin_epoch = EpochFromFullTransactionId(nextFullXid);
1234  catalog_xmin_epoch = xmin_epoch;
1235  if (nextXid < xmin)
1236  xmin_epoch--;
1237  if (nextXid < catalog_xmin)
1238  catalog_xmin_epoch--;
1239 
1240  elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1241  xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1242 
1243  /* Construct the message and send it. */
1245  pq_sendbyte(&reply_message, 'h');
1247  pq_sendint32(&reply_message, xmin);
1248  pq_sendint32(&reply_message, xmin_epoch);
1249  pq_sendint32(&reply_message, catalog_xmin);
1250  pq_sendint32(&reply_message, catalog_xmin_epoch);
1252  if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1253  primary_has_standby_xmin = true;
1254  else
1255  primary_has_standby_xmin = false;
1256 }
1257 
1258 /*
1259  * Update shared memory status upon receiving a message from primary.
1260  *
1261  * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1262  * message, reported by primary.
1263  */
1264 static void
1266 {
1267  WalRcvData *walrcv = WalRcv;
1268  TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1269 
1270  /* Update shared-memory status */
1271  SpinLockAcquire(&walrcv->mutex);
1272  if (walrcv->latestWalEnd < walEnd)
1273  walrcv->latestWalEndTime = sendTime;
1274  walrcv->latestWalEnd = walEnd;
1275  walrcv->lastMsgSendTime = sendTime;
1276  walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1277  SpinLockRelease(&walrcv->mutex);
1278 
1280  {
1281  char *sendtime;
1282  char *receipttime;
1283  int applyDelay;
1284 
1285  /* Copy because timestamptz_to_str returns a static buffer */
1286  sendtime = pstrdup(timestamptz_to_str(sendTime));
1287  receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1288  applyDelay = GetReplicationApplyDelay();
1289 
1290  /* apply delay is not available */
1291  if (applyDelay == -1)
1292  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1293  sendtime,
1294  receipttime,
1296  else
1297  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1298  sendtime,
1299  receipttime,
1300  applyDelay,
1302 
1303  pfree(sendtime);
1304  pfree(receipttime);
1305  }
1306 }
1307 
1308 /*
1309  * Compute the next wakeup time for a given wakeup reason. Can be called to
1310  * initialize a wakeup time, to adjust it for the next wakeup, or to
1311  * reinitialize it when GUCs have changed. We ask the caller to pass in the
1312  * value of "now" because this frequently avoids multiple calls of
1313  * GetCurrentTimestamp(). It had better be a reasonably up-to-date value
1314  * though.
1315  */
1316 static void
1318 {
1319  switch (reason)
1320  {
1322  if (wal_receiver_timeout <= 0)
1323  wakeup[reason] = TIMESTAMP_INFINITY;
1324  else
1326  break;
1327  case WALRCV_WAKEUP_PING:
1328  if (wal_receiver_timeout <= 0)
1329  wakeup[reason] = TIMESTAMP_INFINITY;
1330  else
1332  break;
1335  wakeup[reason] = TIMESTAMP_INFINITY;
1336  else
1338  break;
1339  case WALRCV_WAKEUP_REPLY:
1341  wakeup[reason] = TIMESTAMP_INFINITY;
1342  else
1344  break;
1345  /* there's intentionally no default: here */
1346  }
1347 }
1348 
1349 /*
1350  * Wake up the walreceiver main loop.
1351  *
1352  * This is called by the startup process whenever interesting xlog records
1353  * are applied, so that walreceiver can check if it needs to send an apply
1354  * notification back to the primary which may be waiting in a COMMIT with
1355  * synchronous_commit = remote_apply.
1356  */
1357 void
1359 {
1360  Latch *latch;
1361 
1362  WalRcv->force_reply = true;
1363  /* fetching the latch pointer might not be atomic, so use spinlock */
1365  latch = WalRcv->latch;
1367  if (latch)
1368  SetLatch(latch);
1369 }
1370 
1371 /*
1372  * Return a string constant representing the state. This is used
1373  * in system functions and views, and should *not* be translated.
1374  */
1375 static const char *
1377 {
1378  switch (state)
1379  {
1380  case WALRCV_STOPPED:
1381  return "stopped";
1382  case WALRCV_STARTING:
1383  return "starting";
1384  case WALRCV_STREAMING:
1385  return "streaming";
1386  case WALRCV_WAITING:
1387  return "waiting";
1388  case WALRCV_RESTARTING:
1389  return "restarting";
1390  case WALRCV_STOPPING:
1391  return "stopping";
1392  }
1393  return "UNKNOWN";
1394 }
1395 
1396 /*
1397  * Returns activity of WAL receiver, including pid, state and xlog locations
1398  * received from the WAL sender of another server.
1399  */
1400 Datum
1402 {
1403  TupleDesc tupdesc;
1404  Datum *values;
1405  bool *nulls;
1406  int pid;
1407  bool ready_to_display;
1409  XLogRecPtr receive_start_lsn;
1410  TimeLineID receive_start_tli;
1411  XLogRecPtr written_lsn;
1412  XLogRecPtr flushed_lsn;
1413  TimeLineID received_tli;
1414  TimestampTz last_send_time;
1415  TimestampTz last_receipt_time;
1416  XLogRecPtr latest_end_lsn;
1417  TimestampTz latest_end_time;
1418  char sender_host[NI_MAXHOST];
1419  int sender_port = 0;
1420  char slotname[NAMEDATALEN];
1421  char conninfo[MAXCONNINFO];
1422 
1423  /* Take a lock to ensure value consistency */
1425  pid = (int) WalRcv->pid;
1426  ready_to_display = WalRcv->ready_to_display;
1428  receive_start_lsn = WalRcv->receiveStart;
1429  receive_start_tli = WalRcv->receiveStartTLI;
1430  flushed_lsn = WalRcv->flushedUpto;
1431  received_tli = WalRcv->receivedTLI;
1432  last_send_time = WalRcv->lastMsgSendTime;
1433  last_receipt_time = WalRcv->lastMsgReceiptTime;
1434  latest_end_lsn = WalRcv->latestWalEnd;
1435  latest_end_time = WalRcv->latestWalEndTime;
1436  strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
1437  strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
1438  sender_port = WalRcv->sender_port;
1439  strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
1441 
1442  /*
1443  * No WAL receiver (or not ready yet), just return a tuple with NULL
1444  * values
1445  */
1446  if (pid == 0 || !ready_to_display)
1447  PG_RETURN_NULL();
1448 
1449  /*
1450  * Read "writtenUpto" without holding a spinlock. Note that it may not be
1451  * consistent with the other shared variables of the WAL receiver
1452  * protected by a spinlock, but this should not be used for data integrity
1453  * checks.
1454  */
1455  written_lsn = pg_atomic_read_u64(&WalRcv->writtenUpto);
1456 
1457  /* determine result type */
1458  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1459  elog(ERROR, "return type must be a row type");
1460 
1461  values = palloc0(sizeof(Datum) * tupdesc->natts);
1462  nulls = palloc0(sizeof(bool) * tupdesc->natts);
1463 
1464  /* Fetch values */
1465  values[0] = Int32GetDatum(pid);
1466 
1467  if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
1468  {
1469  /*
1470  * Only superusers and roles with privileges of pg_read_all_stats can
1471  * see details. Other users only get the pid value to know whether it
1472  * is a WAL receiver, but no details.
1473  */
1474  memset(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1475  }
1476  else
1477  {
1479 
1480  if (XLogRecPtrIsInvalid(receive_start_lsn))
1481  nulls[2] = true;
1482  else
1483  values[2] = LSNGetDatum(receive_start_lsn);
1484  values[3] = Int32GetDatum(receive_start_tli);
1485  if (XLogRecPtrIsInvalid(written_lsn))
1486  nulls[4] = true;
1487  else
1488  values[4] = LSNGetDatum(written_lsn);
1489  if (XLogRecPtrIsInvalid(flushed_lsn))
1490  nulls[5] = true;
1491  else
1492  values[5] = LSNGetDatum(flushed_lsn);
1493  values[6] = Int32GetDatum(received_tli);
1494  if (last_send_time == 0)
1495  nulls[7] = true;
1496  else
1497  values[7] = TimestampTzGetDatum(last_send_time);
1498  if (last_receipt_time == 0)
1499  nulls[8] = true;
1500  else
1501  values[8] = TimestampTzGetDatum(last_receipt_time);
1502  if (XLogRecPtrIsInvalid(latest_end_lsn))
1503  nulls[9] = true;
1504  else
1505  values[9] = LSNGetDatum(latest_end_lsn);
1506  if (latest_end_time == 0)
1507  nulls[10] = true;
1508  else
1509  values[10] = TimestampTzGetDatum(latest_end_time);
1510  if (*slotname == '\0')
1511  nulls[11] = true;
1512  else
1513  values[11] = CStringGetTextDatum(slotname);
1514  if (*sender_host == '\0')
1515  nulls[12] = true;
1516  else
1517  values[12] = CStringGetTextDatum(sender_host);
1518  if (sender_port == 0)
1519  nulls[13] = true;
1520  else
1521  values[13] = Int32GetDatum(sender_port);
1522  if (*conninfo == '\0')
1523  nulls[14] = true;
1524  else
1525  values[14] = CStringGetTextDatum(conninfo);
1526  }
1527 
1528  /* Returns the record as Datum */
1530 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5066
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:480
#define pg_memory_barrier()
Definition: atomics.h:138
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:462
void AuxiliaryProcessMainCommon(void)
Definition: auxprocess.c:44
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition: timeline.c:463
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition: timeline.c:222
sigset_t UnBlockSig
Definition: pqsignal.c:22
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1766
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1654
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1618
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1853
static Datum values[MAXATTR]
Definition: bootstrap.c:152
#define CStringGetTextDatum(s)
Definition: builtins.h:97
unsigned int uint32
Definition: c.h:493
#define Min(x, y)
Definition: c.h:991
#define UINT64_FORMAT
Definition: c.h:536
uint32 TransactionId
Definition: c.h:639
size_t Size
Definition: c.h:592
void ConditionVariableBroadcast(ConditionVariable *cv)
int64 TimestampTz
Definition: timestamp.h:39
#define TIMESTAMP_INFINITY
Definition: timestamp.h:151
void load_file(const char *filename, bool restricted)
Definition: dfmgr.c:144
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1159
int errcode_for_file_access(void)
Definition: elog.c:882
int errdetail(const char *fmt,...)
Definition: elog.c:1205
bool message_level_is_interesting(int elevel)
Definition: elog.c:276
int errcode(int sqlerrcode)
Definition: elog.c:859
int errmsg(const char *fmt,...)
Definition: elog.c:1072
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define ereport(elevel,...)
Definition: elog.h:149
void err(int eval, const char *fmt,...)
Definition: err.c:43
#define PG_RETURN_NULL()
Definition: fmgr.h:345
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:353
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition: funcapi.h:230
int MyProcPid
Definition: globals.c:45
struct Latch * MyLatch
Definition: globals.c:60
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
char * cluster_name
Definition: guc_tables.c:538
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1116
#define close(a)
Definition: win32.h:12
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:105
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
void proc_exit(int code)
Definition: ipc.c:104
int i
Definition: isn.c:73
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:565
void SetLatch(Latch *latch)
Definition: latch.c:632
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_SOCKET_READABLE
Definition: latch.h:128
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
Assert(fmt[strlen(fmt) - 1] !='\n')
exit(1)
char * pstrdup(const char *in)
Definition: mcxt.c:1683
void pfree(void *pointer)
Definition: mcxt.c:1508
void * palloc0(Size size)
Definition: mcxt.c:1334
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
@ B_WAL_RECEIVER
Definition: miscadmin.h:356
Oid GetUserId(void)
Definition: miscinit.c:514
BackendType MyBackendType
Definition: miscinit.c:63
void * arg
#define NAMEDATALEN
const void size_t len
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:28
static char ** options
static char * buf
Definition: pg_test_fsync.c:73
#define pg_pwrite
Definition: port.h:226
pqsigfunc pqsignal(int signo, pqsigfunc func)
int pgsocket
Definition: port.h:29
#define snprintf
Definition: port.h:238
#define PGINVALID_SOCKET
Definition: port.h:31
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:399
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:453
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:152
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:2035
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:635
bool update_process_title
Definition: ps_status.c:29
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:66
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:78
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
static void initReadOnlyStringInfo(StringInfo str, char *data, int len)
Definition: stringinfo.h:130
Definition: latch.h:113
Latch procLatch
Definition: proc.h:165
TimestampTz lastMsgReceiptTime
Definition: walreceiver.h:101
XLogRecPtr latestWalEnd
Definition: walreceiver.h:106
TimeLineID receiveStartTLI
Definition: walreceiver.h:77
TimeLineID receivedTLI
Definition: walreceiver.h:87
char slotname[NAMEDATALEN]
Definition: walreceiver.h:126
Latch * latch
Definition: walreceiver.h:144
char sender_host[NI_MAXHOST]
Definition: walreceiver.h:119
pid_t pid
Definition: walreceiver.h:65
XLogRecPtr latestChunkStart
Definition: walreceiver.h:95
XLogRecPtr receiveStart
Definition: walreceiver.h:76
XLogRecPtr flushedUpto
Definition: walreceiver.h:86
sig_atomic_t force_reply
Definition: walreceiver.h:161
ConditionVariable walRcvStoppedCV
Definition: walreceiver.h:67
bool is_temp_slot
Definition: walreceiver.h:132
pg_atomic_uint64 writtenUpto
Definition: walreceiver.h:154
TimestampTz lastMsgSendTime
Definition: walreceiver.h:100
WalRcvState walRcvState
Definition: walreceiver.h:66
TimestampTz latestWalEndTime
Definition: walreceiver.h:107
bool ready_to_display
Definition: walreceiver.h:135
int sender_port
Definition: walreceiver.h:120
slock_t mutex
Definition: walreceiver.h:146
char conninfo[MAXCONNINFO]
Definition: walreceiver.h:113
Definition: regguts.h:323
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
#define TimestampTzPlusSeconds(tz, s)
Definition: timestamp.h:86
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:288
const char * type
void ProcessWalRcvInterrupts(void)
Definition: walreceiver.c:162
#define NUM_WALRCV_WAKEUPS
Definition: walreceiver.c:123
static WalReceiverConn * wrconn
Definition: walreceiver.c:92
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:129
static StringInfoData reply_message
Definition: walreceiver.c:131
bool hot_standby_feedback
Definition: walreceiver.c:89
XLogRecPtr Flush
Definition: walreceiver.c:111
static int recvFile
Definition: walreceiver.c:100
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
Definition: walreceiver.c:1265
int wal_receiver_status_interval
Definition: walreceiver.c:87
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
Definition: walreceiver.c:745
XLogRecPtr Write
Definition: walreceiver.c:110
static void XLogWalRcvFlush(bool dying, TimeLineID tli)
Definition: walreceiver.c:993
static struct @18 LogstreamResult
static TimeLineID recvFileTLI
Definition: walreceiver.c:101
WalReceiverFunctionsType * WalReceiverFunctions
Definition: walreceiver.c:93
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:910
void WalReceiverMain(char *startup_data, size_t startup_data_len)
Definition: walreceiver.c:183
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
Definition: walreceiver.c:1401
int wal_receiver_timeout
Definition: walreceiver.c:88
static XLogSegNo recvSegNo
Definition: walreceiver.c:102
static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:1048
static void XLogWalRcvSendHSFeedback(bool immed)
Definition: walreceiver.c:1169
WalRcvWakeupReason
Definition: walreceiver.c:118
@ WALRCV_WAKEUP_TERMINATE
Definition: walreceiver.c:119
@ WALRCV_WAKEUP_REPLY
Definition: walreceiver.c:121
@ WALRCV_WAKEUP_PING
Definition: walreceiver.c:120
@ WALRCV_WAKEUP_HSFEEDBACK
Definition: walreceiver.c:122
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
Definition: walreceiver.c:665
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
Definition: walreceiver.c:839
static void WalRcvComputeNextWakeup(WalRcvWakeupReason reason, TimestampTz now)
Definition: walreceiver.c:1317
static const char * WalRcvGetStateString(WalRcvState state)
Definition: walreceiver.c:1376
static void WalRcvDie(int code, Datum arg)
Definition: walreceiver.c:801
static void XLogWalRcvSendReply(bool force, bool requestReply)
Definition: walreceiver.c:1100
void WalRcvForceReply(void)
Definition: walreceiver.c:1358
#define AllowCascadeReplication()
Definition: walreceiver.h:41
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
Definition: walreceiver.h:446
#define walrcv_startstreaming(conn, options)
Definition: walreceiver.h:448
#define walrcv_connect(conninfo, replication, logical, must_use_password, appname, err)
Definition: walreceiver.h:432
#define walrcv_send(conn, buffer, nbytes)
Definition: walreceiver.h:454
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
Definition: walreceiver.h:438
#define MAXCONNINFO
Definition: walreceiver.h:38
#define walrcv_create_slot(conn, slotname, temporary, two_phase, failover, snapshot_action, lsn)
Definition: walreceiver.h:456
#define walrcv_get_conninfo(conn)
Definition: walreceiver.h:436
#define walrcv_endstreaming(conn, next_tli)
Definition: walreceiver.h:450
WalRcvState
Definition: walreceiver.h:47
@ WALRCV_STARTING
Definition: walreceiver.h:49
@ WALRCV_STOPPED
Definition: walreceiver.h:48
@ WALRCV_RESTARTING
Definition: walreceiver.h:53
@ WALRCV_STREAMING
Definition: walreceiver.h:51
@ WALRCV_WAITING
Definition: walreceiver.h:52
@ WALRCV_STOPPING
Definition: walreceiver.h:54
#define walrcv_identify_system(conn, primary_tli)
Definition: walreceiver.h:440
#define walrcv_disconnect(conn)
Definition: walreceiver.h:464
#define walrcv_get_backend_pid(conn)
Definition: walreceiver.h:460
#define walrcv_receive(conn, buffer, wait_fd)
Definition: walreceiver.h:452
WalRcvData * WalRcv
int GetReplicationApplyDelay(void)
int GetReplicationTransferLatency(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3666
#define SIGCHLD
Definition: win32_port.h:178
#define SIGHUP
Definition: win32_port.h:168
#define SIG_DFL
Definition: win32_port.h:163
#define SIGPIPE
Definition: win32_port.h:173
#define SIGUSR1
Definition: win32_port.h:180
#define SIGALRM
Definition: win32_port.h:174
#define SIGUSR2
Definition: win32_port.h:181
#define SIG_IGN
Definition: win32_port.h:165
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3310
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4458
bool RecoveryInProgress(void)
Definition: xlog.c:6201
int XLogArchiveMode
Definition: xlog.c:119
int wal_segment_size
Definition: xlog.c:143
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8516
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:65
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
static void TLHistoryFileName(char *fname, TimeLineID tli)
void XLogArchiveForceDone(const char *xlog)
Definition: xlogarchive.c:510
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:444
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
bool HotStandbyActive(void)
void WakeupRecovery(void)
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)