PostgreSQL Source Code  git master
walreceiver.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walreceiver.c
4  *
5  * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6  * is the process in the standby server that takes charge of receiving
7  * XLOG records from a primary server during streaming replication.
8  *
9  * When the startup process determines that it's time to start streaming,
10  * it instructs postmaster to start walreceiver. Walreceiver first connects
11  * to the primary server (it will be served by a walsender process
12  * in the primary server), and then keeps receiving XLOG records and
13  * writing them to the disk as long as the connection is alive. As XLOG
14  * records are received and flushed to disk, it updates the
15  * WalRcv->flushedUpto variable in shared memory, to inform the startup
16  * process of how far it can proceed with XLOG replay.
17  *
18  * A WAL receiver cannot directly load GUC parameters used when establishing
19  * its connection to the primary. Instead it relies on parameter values
20  * that are passed down by the startup process when streaming is requested.
21  * This applies, for example, to the replication slot and the connection
22  * string to be used for the connection with the primary.
23  *
24  * If the primary server ends streaming, but doesn't disconnect, walreceiver
25  * goes into "waiting" mode, and waits for the startup process to give new
26  * instructions. The startup process will treat that the same as
27  * disconnection, and will rescan the archive/pg_wal directory. But when the
28  * startup process wants to try streaming replication again, it will just
29  * nudge the existing walreceiver process that's waiting, instead of launching
30  * a new one.
31  *
32  * Normal termination is by SIGTERM, which instructs the walreceiver to
33  * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34  * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35  * of the connection and a FATAL error are treated not as a crash but as
36  * normal operation.
37  *
38  * This file contains the server-facing parts of walreceiver. The libpq-
39  * specific parts are in the libpqwalreceiver module. It's loaded
40  * dynamically to avoid linking the server with libpq.
41  *
42  * Portions Copyright (c) 2010-2022, PostgreSQL Global Development Group
43  *
44  *
45  * IDENTIFICATION
46  * src/backend/replication/walreceiver.c
47  *
48  *-------------------------------------------------------------------------
49  */
50 #include "postgres.h"
51 
52 #include <unistd.h>
53 
54 #include "access/htup_details.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/xlog_internal.h"
58 #include "access/xlogarchive.h"
59 #include "access/xlogrecovery.h"
60 #include "catalog/pg_authid.h"
61 #include "catalog/pg_type.h"
62 #include "common/ip.h"
63 #include "funcapi.h"
64 #include "libpq/pqformat.h"
65 #include "libpq/pqsignal.h"
66 #include "miscadmin.h"
67 #include "pgstat.h"
68 #include "postmaster/interrupt.h"
70 #include "replication/walsender.h"
71 #include "storage/ipc.h"
72 #include "storage/pmsignal.h"
73 #include "storage/proc.h"
74 #include "storage/procarray.h"
75 #include "storage/procsignal.h"
76 #include "utils/acl.h"
77 #include "utils/builtins.h"
78 #include "utils/guc.h"
79 #include "utils/pg_lsn.h"
80 #include "utils/ps_status.h"
81 #include "utils/resowner.h"
82 #include "utils/timestamp.h"
83 
84 
85 /*
86  * GUC variables. (Other variables that affect walreceiver are in xlog.c
87  * because they're passed down from the startup process, for better
88  * synchronization.)
89  */
93 
94 /* libpqwalreceiver connection */
95 static WalReceiverConn *wrconn = NULL;
97 
98 /*
99  * These variables are used similarly to openLogFile/SegNo,
100  * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
101  * corresponding the filename of recvFile.
102  */
103 static int recvFile = -1;
105 static XLogSegNo recvSegNo = 0;
106 
107 /*
108  * LogstreamResult indicates the byte positions that we have already
109  * written/fsynced.
110  */
111 static struct
112 {
113  XLogRecPtr Write; /* last byte + 1 written out in the standby */
114  XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
116 
117 /*
118  * Reasons to wake up and perform periodic tasks.
119  */
120 typedef enum WalRcvWakeupReason
121 {
128 
129 /*
130  * Wake up times for periodic tasks.
131  */
133 
136 
137 /* Prototypes for private functions */
138 static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
139 static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
140 static void WalRcvDie(int code, Datum arg);
141 static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len,
142  TimeLineID tli);
143 static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr,
144  TimeLineID tli);
145 static void XLogWalRcvFlush(bool dying, TimeLineID tli);
146 static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli);
147 static void XLogWalRcvSendReply(bool force, bool requestReply);
148 static void XLogWalRcvSendHSFeedback(bool immed);
149 static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
151 
152 /*
153  * Process any interrupts the walreceiver process may have received.
154  * This should be called any time the process's latch has become set.
155  *
156  * Currently, only SIGTERM is of interest. We can't just exit(1) within the
157  * SIGTERM signal handler, because the signal might arrive in the middle of
158  * some critical operation, like while we're holding a spinlock. Instead, the
159  * signal handler sets a flag variable as well as setting the process's latch.
160  * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
161  * latch has become set. Operations that could block for a long time, such as
162  * reading from a remote server, must pay attention to the latch too; see
163  * libpqrcv_PQgetResult for example.
164  */
165 void
167 {
168  /*
169  * Although walreceiver interrupt handling doesn't use the same scheme as
170  * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
171  * any incoming signals on Win32, and also to make sure we process any
172  * barrier events.
173  */
175 
177  {
178  ereport(FATAL,
179  (errcode(ERRCODE_ADMIN_SHUTDOWN),
180  errmsg("terminating walreceiver process due to administrator command")));
181  }
182 }
183 
184 
185 /* Main entry point for walreceiver process */
186 void
188 {
189  char conninfo[MAXCONNINFO];
190  char *tmp_conninfo;
191  char slotname[NAMEDATALEN];
192  bool is_temp_slot;
193  XLogRecPtr startpoint;
194  TimeLineID startpointTLI;
195  TimeLineID primaryTLI;
196  bool first_stream;
197  WalRcvData *walrcv = WalRcv;
199  char *err;
200  char *sender_host = NULL;
201  int sender_port = 0;
202 
203  /*
204  * WalRcv should be set up already (if we are a backend, we inherit this
205  * by fork() or EXEC_BACKEND mechanism from the postmaster).
206  */
207  Assert(walrcv != NULL);
208 
210 
211  /*
212  * Mark walreceiver as running in shared memory.
213  *
214  * Do this as early as possible, so that if we fail later on, we'll set
215  * state to STOPPED. If we die before this, the startup process will keep
216  * waiting for us to start up, until it times out.
217  */
218  SpinLockAcquire(&walrcv->mutex);
219  Assert(walrcv->pid == 0);
220  switch (walrcv->walRcvState)
221  {
222  case WALRCV_STOPPING:
223  /* If we've already been requested to stop, don't start up. */
224  walrcv->walRcvState = WALRCV_STOPPED;
225  /* fall through */
226 
227  case WALRCV_STOPPED:
228  SpinLockRelease(&walrcv->mutex);
230  proc_exit(1);
231  break;
232 
233  case WALRCV_STARTING:
234  /* The usual case */
235  break;
236 
237  case WALRCV_WAITING:
238  case WALRCV_STREAMING:
239  case WALRCV_RESTARTING:
240  default:
241  /* Shouldn't happen */
242  SpinLockRelease(&walrcv->mutex);
243  elog(PANIC, "walreceiver still running according to shared memory state");
244  }
245  /* Advertise our PID so that the startup process can kill us */
246  walrcv->pid = MyProcPid;
247  walrcv->walRcvState = WALRCV_STREAMING;
248 
249  /* Fetch information required to start streaming */
250  walrcv->ready_to_display = false;
251  strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
252  strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
253  is_temp_slot = walrcv->is_temp_slot;
254  startpoint = walrcv->receiveStart;
255  startpointTLI = walrcv->receiveStartTLI;
256 
257  /*
258  * At most one of is_temp_slot and slotname can be set; otherwise,
259  * RequestXLogStreaming messed up.
260  */
261  Assert(!is_temp_slot || (slotname[0] == '\0'));
262 
263  /* Initialise to a sanish value */
264  walrcv->lastMsgSendTime =
265  walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
266 
267  /* Report the latch to use to awaken this process */
268  walrcv->latch = &MyProc->procLatch;
269 
270  SpinLockRelease(&walrcv->mutex);
271 
273 
274  /* Arrange to clean up at walreceiver exit */
275  on_shmem_exit(WalRcvDie, PointerGetDatum(&startpointTLI));
276 
277  /* Properly accept or ignore signals the postmaster might send us */
278  pqsignal(SIGHUP, SignalHandlerForConfigReload); /* set flag to read config
279  * file */
280  pqsignal(SIGINT, SIG_IGN);
281  pqsignal(SIGTERM, SignalHandlerForShutdownRequest); /* request shutdown */
282  /* SIGQUIT handler was already set up by InitPostmasterChild */
287 
288  /* Reset some signals that are accepted by postmaster but not here */
290 
291  /* Load the libpq-specific functions */
292  load_file("libpqwalreceiver", false);
293  if (WalReceiverFunctions == NULL)
294  elog(ERROR, "libpqwalreceiver didn't initialize correctly");
295 
296  /* Unblock signals (they were blocked when the postmaster forked us) */
298 
299  /* Establish the connection to the primary for XLOG streaming */
300  wrconn = walrcv_connect(conninfo, false,
301  cluster_name[0] ? cluster_name : "walreceiver",
302  &err);
303  if (!wrconn)
304  ereport(ERROR,
305  (errcode(ERRCODE_CONNECTION_FAILURE),
306  errmsg("could not connect to the primary server: %s", err)));
307 
308  /*
309  * Save user-visible connection string. This clobbers the original
310  * conninfo, for security. Also save host and port of the sender server
311  * this walreceiver is connected to.
312  */
313  tmp_conninfo = walrcv_get_conninfo(wrconn);
314  walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
315  SpinLockAcquire(&walrcv->mutex);
316  memset(walrcv->conninfo, 0, MAXCONNINFO);
317  if (tmp_conninfo)
318  strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
319 
320  memset(walrcv->sender_host, 0, NI_MAXHOST);
321  if (sender_host)
322  strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
323 
324  walrcv->sender_port = sender_port;
325  walrcv->ready_to_display = true;
326  SpinLockRelease(&walrcv->mutex);
327 
328  if (tmp_conninfo)
329  pfree(tmp_conninfo);
330 
331  if (sender_host)
332  pfree(sender_host);
333 
334  first_stream = true;
335  for (;;)
336  {
337  char *primary_sysid;
338  char standby_sysid[32];
340 
341  /*
342  * Check that we're connected to a valid server using the
343  * IDENTIFY_SYSTEM replication command.
344  */
345  primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
346 
347  snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
349  if (strcmp(primary_sysid, standby_sysid) != 0)
350  {
351  ereport(ERROR,
352  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
353  errmsg("database system identifier differs between the primary and standby"),
354  errdetail("The primary's identifier is %s, the standby's identifier is %s.",
355  primary_sysid, standby_sysid)));
356  }
357 
358  /*
359  * Confirm that the current timeline of the primary is the same or
360  * ahead of ours.
361  */
362  if (primaryTLI < startpointTLI)
363  ereport(ERROR,
364  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
365  errmsg("highest timeline %u of the primary is behind recovery timeline %u",
366  primaryTLI, startpointTLI)));
367 
368  /*
369  * Get any missing history files. We do this always, even when we're
370  * not interested in that timeline, so that if we're promoted to
371  * become the primary later on, we don't select the same timeline that
372  * was already used in the current primary. This isn't bullet-proof -
373  * you'll need some external software to manage your cluster if you
374  * need to ensure that a unique timeline id is chosen in every case,
375  * but let's avoid the confusion of timeline id collisions where we
376  * can.
377  */
378  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
379 
380  /*
381  * Create temporary replication slot if requested, and update slot
382  * name in shared memory. (Note the slot name cannot already be set
383  * in this case.)
384  */
385  if (is_temp_slot)
386  {
387  snprintf(slotname, sizeof(slotname),
388  "pg_walreceiver_%lld",
389  (long long int) walrcv_get_backend_pid(wrconn));
390 
391  walrcv_create_slot(wrconn, slotname, true, false, 0, NULL);
392 
393  SpinLockAcquire(&walrcv->mutex);
394  strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
395  SpinLockRelease(&walrcv->mutex);
396  }
397 
398  /*
399  * Start streaming.
400  *
401  * We'll try to start at the requested starting point and timeline,
402  * even if it's different from the server's latest timeline. In case
403  * we've already reached the end of the old timeline, the server will
404  * finish the streaming immediately, and we will go back to await
405  * orders from the startup process. If recovery_target_timeline is
406  * 'latest', the startup process will scan pg_wal and find the new
407  * history file, bump recovery target timeline, and ask us to restart
408  * on the new timeline.
409  */
410  options.logical = false;
411  options.startpoint = startpoint;
412  options.slotname = slotname[0] != '\0' ? slotname : NULL;
413  options.proto.physical.startpointTLI = startpointTLI;
415  {
416  if (first_stream)
417  ereport(LOG,
418  (errmsg("started streaming WAL from primary at %X/%X on timeline %u",
419  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
420  else
421  ereport(LOG,
422  (errmsg("restarted WAL streaming at %X/%X on timeline %u",
423  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
424  first_stream = false;
425 
426  /* Initialize LogstreamResult and buffers for processing messages */
430 
431  /* Initialize nap wakeup times. */
433  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
435 
436  /* Send initial reply/feedback messages. */
437  XLogWalRcvSendReply(true, false);
439 
440  /* Loop until end-of-streaming or error */
441  for (;;)
442  {
443  char *buf;
444  int len;
445  bool endofwal = false;
446  pgsocket wait_fd = PGINVALID_SOCKET;
447  int rc;
448  TimestampTz nextWakeup;
449  int nap;
450 
451  /*
452  * Exit walreceiver if we're not in recovery. This should not
453  * happen, but cross-check the status here.
454  */
455  if (!RecoveryInProgress())
456  ereport(FATAL,
457  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
458  errmsg("cannot continue WAL streaming, recovery has already ended")));
459 
460  /* Process any requests or signals received recently */
462 
464  {
465  ConfigReloadPending = false;
468  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
471  }
472 
473  /* See if we can read data immediately */
474  len = walrcv_receive(wrconn, &buf, &wait_fd);
476  if (len != 0)
477  {
478  /*
479  * Process the received data, and any subsequent data we
480  * can read without blocking.
481  */
482  for (;;)
483  {
484  if (len > 0)
485  {
486  /*
487  * Something was received from primary, so adjust
488  * the ping and terminate wakeup times.
489  */
491  now);
493  XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1,
494  startpointTLI);
495  }
496  else if (len == 0)
497  break;
498  else if (len < 0)
499  {
500  ereport(LOG,
501  (errmsg("replication terminated by primary server"),
502  errdetail("End of WAL reached on timeline %u at %X/%X.",
503  startpointTLI,
505  endofwal = true;
506  break;
507  }
508  len = walrcv_receive(wrconn, &buf, &wait_fd);
510  }
511 
512  /* Let the primary know that we received some data. */
513  XLogWalRcvSendReply(false, false);
514 
515  /*
516  * If we've written some records, flush them to disk and
517  * let the startup process and primary server know about
518  * them.
519  */
520  XLogWalRcvFlush(false, startpointTLI);
521  }
522 
523  /* Check if we need to exit the streaming loop. */
524  if (endofwal)
525  break;
526 
527  /* Find the soonest wakeup time, to limit our nap. */
528  nextWakeup = PG_INT64_MAX;
529  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
530  nextWakeup = Min(wakeup[i], nextWakeup);
531 
532  /*
533  * Calculate the nap time. WaitLatchOrSocket() doesn't accept
534  * timeouts longer than INT_MAX milliseconds, so we limit the
535  * result accordingly. Also, we round up to the next
536  * millisecond to avoid waking up too early and spinning until
537  * one of the wakeup times.
538  */
539  nap = (int) Min(INT_MAX, Max(0, (nextWakeup - now + 999) / 1000));
540 
541  /*
542  * Ideally we would reuse a WaitEventSet object repeatedly
543  * here to avoid the overheads of WaitLatchOrSocket on epoll
544  * systems, but we can't be sure that libpq (or any other
545  * walreceiver implementation) has the same socket (even if
546  * the fd is the same number, it may have been closed and
547  * reopened since the last time). In future, if there is a
548  * function for removing sockets from WaitEventSet, then we
549  * could add and remove just the socket each time, potentially
550  * avoiding some system calls.
551  */
552  Assert(wait_fd != PGINVALID_SOCKET);
556  wait_fd,
557  nap,
560  if (rc & WL_LATCH_SET)
561  {
564 
565  if (walrcv->force_reply)
566  {
567  /*
568  * The recovery process has asked us to send apply
569  * feedback now. Make sure the flag is really set to
570  * false in shared memory before sending the reply, so
571  * we don't miss a new request for a reply.
572  */
573  walrcv->force_reply = false;
575  XLogWalRcvSendReply(true, false);
576  }
577  }
578  if (rc & WL_TIMEOUT)
579  {
580  /*
581  * We didn't receive anything new. If we haven't heard
582  * anything from the server for more than
583  * wal_receiver_timeout / 2, ping the server. Also, if
584  * it's been longer than wal_receiver_status_interval
585  * since the last update we sent, send a status update to
586  * the primary anyway, to report any progress in applying
587  * WAL.
588  */
589  bool requestReply = false;
590 
591  /*
592  * Check if time since last receive from primary has
593  * reached the configured limit.
594  */
596  ereport(ERROR,
597  (errcode(ERRCODE_CONNECTION_FAILURE),
598  errmsg("terminating walreceiver due to timeout")));
599 
600  /*
601  * We didn't receive anything new, for half of receiver
602  * replication timeout. Ping the server.
603  */
604  if (now >= wakeup[WALRCV_WAKEUP_PING])
605  {
606  requestReply = true;
608  }
609 
610  XLogWalRcvSendReply(requestReply, requestReply);
612  }
613  }
614 
615  /*
616  * The backend finished streaming. Exit streaming COPY-mode from
617  * our side, too.
618  */
619  walrcv_endstreaming(wrconn, &primaryTLI);
620 
621  /*
622  * If the server had switched to a new timeline that we didn't
623  * know about when we began streaming, fetch its timeline history
624  * file now.
625  */
626  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
627  }
628  else
629  ereport(LOG,
630  (errmsg("primary server contains no more WAL on requested timeline %u",
631  startpointTLI)));
632 
633  /*
634  * End of WAL reached on the requested timeline. Close the last
635  * segment, and await for new orders from the startup process.
636  */
637  if (recvFile >= 0)
638  {
639  char xlogfname[MAXFNAMELEN];
640 
641  XLogWalRcvFlush(false, startpointTLI);
643  if (close(recvFile) != 0)
644  ereport(PANIC,
646  errmsg("could not close WAL segment %s: %m",
647  xlogfname)));
648 
649  /*
650  * Create .done file forcibly to prevent the streamed segment from
651  * being archived later.
652  */
654  XLogArchiveForceDone(xlogfname);
655  else
656  XLogArchiveNotify(xlogfname);
657  }
658  recvFile = -1;
659 
660  elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
661  WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
662  }
663  /* not reached */
664 }
665 
666 /*
667  * Wait for startup process to set receiveStart and receiveStartTLI.
668  */
669 static void
671 {
672  WalRcvData *walrcv = WalRcv;
673  int state;
674 
675  SpinLockAcquire(&walrcv->mutex);
676  state = walrcv->walRcvState;
677  if (state != WALRCV_STREAMING)
678  {
679  SpinLockRelease(&walrcv->mutex);
680  if (state == WALRCV_STOPPING)
681  proc_exit(0);
682  else
683  elog(FATAL, "unexpected walreceiver state");
684  }
685  walrcv->walRcvState = WALRCV_WAITING;
687  walrcv->receiveStartTLI = 0;
688  SpinLockRelease(&walrcv->mutex);
689 
690  set_ps_display("idle");
691 
692  /*
693  * nudge startup process to notice that we've stopped streaming and are
694  * now waiting for instructions.
695  */
696  WakeupRecovery();
697  for (;;)
698  {
700 
702 
703  SpinLockAcquire(&walrcv->mutex);
704  Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
705  walrcv->walRcvState == WALRCV_WAITING ||
706  walrcv->walRcvState == WALRCV_STOPPING);
707  if (walrcv->walRcvState == WALRCV_RESTARTING)
708  {
709  /*
710  * No need to handle changes in primary_conninfo or
711  * primary_slot_name here. Startup process will signal us to
712  * terminate in case those change.
713  */
714  *startpoint = walrcv->receiveStart;
715  *startpointTLI = walrcv->receiveStartTLI;
716  walrcv->walRcvState = WALRCV_STREAMING;
717  SpinLockRelease(&walrcv->mutex);
718  break;
719  }
720  if (walrcv->walRcvState == WALRCV_STOPPING)
721  {
722  /*
723  * We should've received SIGTERM if the startup process wants us
724  * to die, but might as well check it here too.
725  */
726  SpinLockRelease(&walrcv->mutex);
727  exit(1);
728  }
729  SpinLockRelease(&walrcv->mutex);
730 
733  }
734 
736  {
737  char activitymsg[50];
738 
739  snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
740  LSN_FORMAT_ARGS(*startpoint));
741  set_ps_display(activitymsg);
742  }
743 }
744 
745 /*
746  * Fetch any missing timeline history files between 'first' and 'last'
747  * (inclusive) from the server.
748  */
749 static void
751 {
752  TimeLineID tli;
753 
754  for (tli = first; tli <= last; tli++)
755  {
756  /* there's no history file for timeline 1 */
757  if (tli != 1 && !existsTimeLineHistory(tli))
758  {
759  char *fname;
760  char *content;
761  int len;
762  char expectedfname[MAXFNAMELEN];
763 
764  ereport(LOG,
765  (errmsg("fetching timeline history file for timeline %u from primary server",
766  tli)));
767 
768  walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
769 
770  /*
771  * Check that the filename on the primary matches what we
772  * calculated ourselves. This is just a sanity check, it should
773  * always match.
774  */
775  TLHistoryFileName(expectedfname, tli);
776  if (strcmp(fname, expectedfname) != 0)
777  ereport(ERROR,
778  (errcode(ERRCODE_PROTOCOL_VIOLATION),
779  errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
780  tli)));
781 
782  /*
783  * Write the file to pg_wal.
784  */
785  writeTimeLineHistoryFile(tli, content, len);
786 
787  /*
788  * Mark the streamed history file as ready for archiving if
789  * archive_mode is always.
790  */
792  XLogArchiveForceDone(fname);
793  else
794  XLogArchiveNotify(fname);
795 
796  pfree(fname);
797  pfree(content);
798  }
799  }
800 }
801 
802 /*
803  * Mark us as STOPPED in shared memory at exit.
804  */
805 static void
806 WalRcvDie(int code, Datum arg)
807 {
808  WalRcvData *walrcv = WalRcv;
809  TimeLineID *startpointTLI_p = (TimeLineID *) DatumGetPointer(arg);
810 
811  Assert(*startpointTLI_p != 0);
812 
813  /* Ensure that all WAL records received are flushed to disk */
814  XLogWalRcvFlush(true, *startpointTLI_p);
815 
816  /* Mark ourselves inactive in shared memory */
817  SpinLockAcquire(&walrcv->mutex);
818  Assert(walrcv->walRcvState == WALRCV_STREAMING ||
819  walrcv->walRcvState == WALRCV_RESTARTING ||
820  walrcv->walRcvState == WALRCV_STARTING ||
821  walrcv->walRcvState == WALRCV_WAITING ||
822  walrcv->walRcvState == WALRCV_STOPPING);
823  Assert(walrcv->pid == MyProcPid);
824  walrcv->walRcvState = WALRCV_STOPPED;
825  walrcv->pid = 0;
826  walrcv->ready_to_display = false;
827  walrcv->latch = NULL;
828  SpinLockRelease(&walrcv->mutex);
829 
831 
832  /* Terminate the connection gracefully. */
833  if (wrconn != NULL)
835 
836  /* Wake up the startup process to notice promptly that we're gone */
837  WakeupRecovery();
838 }
839 
840 /*
841  * Accept the message from XLOG stream, and process it.
842  */
843 static void
844 XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
845 {
846  int hdrlen;
847  XLogRecPtr dataStart;
848  XLogRecPtr walEnd;
849  TimestampTz sendTime;
850  bool replyRequested;
851 
853 
854  switch (type)
855  {
856  case 'w': /* WAL records */
857  {
858  /* copy message to StringInfo */
859  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
860  if (len < hdrlen)
861  ereport(ERROR,
862  (errcode(ERRCODE_PROTOCOL_VIOLATION),
863  errmsg_internal("invalid WAL message received from primary")));
865 
866  /* read the fields */
867  dataStart = pq_getmsgint64(&incoming_message);
868  walEnd = pq_getmsgint64(&incoming_message);
869  sendTime = pq_getmsgint64(&incoming_message);
870  ProcessWalSndrMessage(walEnd, sendTime);
871 
872  buf += hdrlen;
873  len -= hdrlen;
874  XLogWalRcvWrite(buf, len, dataStart, tli);
875  break;
876  }
877  case 'k': /* Keepalive */
878  {
879  /* copy message to StringInfo */
880  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
881  if (len != hdrlen)
882  ereport(ERROR,
883  (errcode(ERRCODE_PROTOCOL_VIOLATION),
884  errmsg_internal("invalid keepalive message received from primary")));
886 
887  /* read the fields */
888  walEnd = pq_getmsgint64(&incoming_message);
889  sendTime = pq_getmsgint64(&incoming_message);
890  replyRequested = pq_getmsgbyte(&incoming_message);
891 
892  ProcessWalSndrMessage(walEnd, sendTime);
893 
894  /* If the primary requested a reply, send one immediately */
895  if (replyRequested)
896  XLogWalRcvSendReply(true, false);
897  break;
898  }
899  default:
900  ereport(ERROR,
901  (errcode(ERRCODE_PROTOCOL_VIOLATION),
902  errmsg_internal("invalid replication message type %d",
903  type)));
904  }
905 }
906 
907 /*
908  * Write XLOG data to disk.
909  */
910 static void
911 XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
912 {
913  int startoff;
914  int byteswritten;
915 
916  Assert(tli != 0);
917 
918  while (nbytes > 0)
919  {
920  int segbytes;
921 
922  /* Close the current segment if it's completed */
923  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
924  XLogWalRcvClose(recptr, tli);
925 
926  if (recvFile < 0)
927  {
928  /* Create/use new log file */
931  recvFileTLI = tli;
932  }
933 
934  /* Calculate the start offset of the received logs */
935  startoff = XLogSegmentOffset(recptr, wal_segment_size);
936 
937  if (startoff + nbytes > wal_segment_size)
938  segbytes = wal_segment_size - startoff;
939  else
940  segbytes = nbytes;
941 
942  /* OK to write the logs */
943  errno = 0;
944 
945  byteswritten = pg_pwrite(recvFile, buf, segbytes, (off_t) startoff);
946  if (byteswritten <= 0)
947  {
948  char xlogfname[MAXFNAMELEN];
949  int save_errno;
950 
951  /* if write didn't set errno, assume no disk space */
952  if (errno == 0)
953  errno = ENOSPC;
954 
955  save_errno = errno;
957  errno = save_errno;
958  ereport(PANIC,
960  errmsg("could not write to WAL segment %s "
961  "at offset %u, length %lu: %m",
962  xlogfname, startoff, (unsigned long) segbytes)));
963  }
964 
965  /* Update state for write */
966  recptr += byteswritten;
967 
968  nbytes -= byteswritten;
969  buf += byteswritten;
970 
971  LogstreamResult.Write = recptr;
972  }
973 
974  /* Update shared-memory status */
976 
977  /*
978  * Close the current segment if it's fully written up in the last cycle of
979  * the loop, to create its archive notification file soon. Otherwise WAL
980  * archiving of the segment will be delayed until any data in the next
981  * segment is received and written.
982  */
983  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
984  XLogWalRcvClose(recptr, tli);
985 }
986 
987 /*
988  * Flush the log to disk.
989  *
990  * If we're in the midst of dying, it's unwise to do anything that might throw
991  * an error, so we skip sending a reply in that case.
992  */
993 static void
994 XLogWalRcvFlush(bool dying, TimeLineID tli)
995 {
996  Assert(tli != 0);
997 
998  if (LogstreamResult.Flush < LogstreamResult.Write)
999  {
1000  WalRcvData *walrcv = WalRcv;
1001 
1003 
1004  LogstreamResult.Flush = LogstreamResult.Write;
1005 
1006  /* Update shared-memory status */
1007  SpinLockAcquire(&walrcv->mutex);
1008  if (walrcv->flushedUpto < LogstreamResult.Flush)
1009  {
1010  walrcv->latestChunkStart = walrcv->flushedUpto;
1011  walrcv->flushedUpto = LogstreamResult.Flush;
1012  walrcv->receivedTLI = tli;
1013  }
1014  SpinLockRelease(&walrcv->mutex);
1015 
1016  /* Signal the startup process and walsender that new WAL has arrived */
1017  WakeupRecovery();
1019  WalSndWakeup();
1020 
1021  /* Report XLOG streaming progress in PS display */
1023  {
1024  char activitymsg[50];
1025 
1026  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
1028  set_ps_display(activitymsg);
1029  }
1030 
1031  /* Also let the primary know that we made some progress */
1032  if (!dying)
1033  {
1034  XLogWalRcvSendReply(false, false);
1035  XLogWalRcvSendHSFeedback(false);
1036  }
1037  }
1038 }
1039 
1040 /*
1041  * Close the current segment.
1042  *
1043  * Flush the segment to disk before closing it. Otherwise we have to
1044  * reopen and fsync it later.
1045  *
1046  * Create an archive notification file since the segment is known completed.
1047  */
1048 static void
1050 {
1051  char xlogfname[MAXFNAMELEN];
1052 
1054  Assert(tli != 0);
1055 
1056  /*
1057  * fsync() and close current file before we switch to next one. We would
1058  * otherwise have to reopen this file to fsync it later
1059  */
1060  XLogWalRcvFlush(false, tli);
1061 
1063 
1064  /*
1065  * XLOG segment files will be re-read by recovery in startup process soon,
1066  * so we don't advise the OS to release cache pages associated with the
1067  * file like XLogFileClose() does.
1068  */
1069  if (close(recvFile) != 0)
1070  ereport(PANIC,
1072  errmsg("could not close WAL segment %s: %m",
1073  xlogfname)));
1074 
1075  /*
1076  * Create .done file forcibly to prevent the streamed segment from being
1077  * archived later.
1078  */
1080  XLogArchiveForceDone(xlogfname);
1081  else
1082  XLogArchiveNotify(xlogfname);
1083 
1084  recvFile = -1;
1085 }
1086 
1087 /*
1088  * Send reply message to primary, indicating our current WAL locations, oldest
1089  * xmin and the current time.
1090  *
1091  * If 'force' is not set, the message is only sent if enough time has
1092  * passed since last status update to reach wal_receiver_status_interval.
1093  * If wal_receiver_status_interval is disabled altogether and 'force' is
1094  * false, this is a no-op.
1095  *
1096  * If 'requestReply' is true, requests the server to reply immediately upon
1097  * receiving this message. This is used for heartbeats, when approaching
1098  * wal_receiver_timeout.
1099  */
1100 static void
1101 XLogWalRcvSendReply(bool force, bool requestReply)
1102 {
1103  static XLogRecPtr writePtr = 0;
1104  static XLogRecPtr flushPtr = 0;
1105  XLogRecPtr applyPtr;
1106  TimestampTz now;
1107 
1108  /*
1109  * If the user doesn't want status to be reported to the primary, be sure
1110  * to exit before doing anything at all.
1111  */
1112  if (!force && wal_receiver_status_interval <= 0)
1113  return;
1114 
1115  /* Get current timestamp. */
1117 
1118  /*
1119  * We can compare the write and flush positions to the last message we
1120  * sent without taking any lock, but the apply position requires a spin
1121  * lock, so we don't check that unless something else has changed or 10
1122  * seconds have passed. This means that the apply WAL location will
1123  * appear, from the primary's point of view, to lag slightly, but since
1124  * this is only for reporting purposes and only on idle systems, that's
1125  * probably OK.
1126  */
1127  if (!force
1128  && writePtr == LogstreamResult.Write
1129  && flushPtr == LogstreamResult.Flush
1131  return;
1132 
1133  /* Make sure we wake up when it's time to send another reply. */
1135 
1136  /* Construct a new message */
1137  writePtr = LogstreamResult.Write;
1138  flushPtr = LogstreamResult.Flush;
1139  applyPtr = GetXLogReplayRecPtr(NULL);
1140 
1142  pq_sendbyte(&reply_message, 'r');
1143  pq_sendint64(&reply_message, writePtr);
1144  pq_sendint64(&reply_message, flushPtr);
1145  pq_sendint64(&reply_message, applyPtr);
1147  pq_sendbyte(&reply_message, requestReply ? 1 : 0);
1148 
1149  /* Send it */
1150  elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
1151  LSN_FORMAT_ARGS(writePtr),
1152  LSN_FORMAT_ARGS(flushPtr),
1153  LSN_FORMAT_ARGS(applyPtr),
1154  requestReply ? " (reply requested)" : "");
1155 
1157 }
1158 
1159 /*
1160  * Send hot standby feedback message to primary, plus the current time,
1161  * in case they don't have a watch.
1162  *
1163  * If the user disables feedback, send one final message to tell sender
1164  * to forget about the xmin on this standby. We also send this message
1165  * on first connect because a previous connection might have set xmin
1166  * on a replication slot. (If we're not using a slot it's harmless to
1167  * send a feedback message explicitly setting InvalidTransactionId).
1168  */
1169 static void
1171 {
1172  TimestampTz now;
1173  FullTransactionId nextFullXid;
1174  TransactionId nextXid;
1175  uint32 xmin_epoch,
1176  catalog_xmin_epoch;
1177  TransactionId xmin,
1178  catalog_xmin;
1179 
1180  /* initially true so we always send at least one feedback message */
1181  static bool primary_has_standby_xmin = true;
1182 
1183  /*
1184  * If the user doesn't want status to be reported to the primary, be sure
1185  * to exit before doing anything at all.
1186  */
1188  !primary_has_standby_xmin)
1189  return;
1190 
1191  /* Get current timestamp. */
1193 
1194  /* Send feedback at most once per wal_receiver_status_interval. */
1195  if (!immed && now < wakeup[WALRCV_WAKEUP_HSFEEDBACK])
1196  return;
1197 
1198  /* Make sure we wake up when it's time to send feedback again. */
1200 
1201  /*
1202  * If Hot Standby is not yet accepting connections there is nothing to
1203  * send. Check this after the interval has expired to reduce number of
1204  * calls.
1205  *
1206  * Bailing out here also ensures that we don't send feedback until we've
1207  * read our own replication slot state, so we don't tell the primary to
1208  * discard needed xmin or catalog_xmin from any slots that may exist on
1209  * this replica.
1210  */
1211  if (!HotStandbyActive())
1212  return;
1213 
1214  /*
1215  * Make the expensive call to get the oldest xmin once we are certain
1216  * everything else has been checked.
1217  */
1219  {
1220  GetReplicationHorizons(&xmin, &catalog_xmin);
1221  }
1222  else
1223  {
1224  xmin = InvalidTransactionId;
1225  catalog_xmin = InvalidTransactionId;
1226  }
1227 
1228  /*
1229  * Get epoch and adjust if nextXid and oldestXmin are different sides of
1230  * the epoch boundary.
1231  */
1232  nextFullXid = ReadNextFullTransactionId();
1233  nextXid = XidFromFullTransactionId(nextFullXid);
1234  xmin_epoch = EpochFromFullTransactionId(nextFullXid);
1235  catalog_xmin_epoch = xmin_epoch;
1236  if (nextXid < xmin)
1237  xmin_epoch--;
1238  if (nextXid < catalog_xmin)
1239  catalog_xmin_epoch--;
1240 
1241  elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1242  xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1243 
1244  /* Construct the message and send it. */
1246  pq_sendbyte(&reply_message, 'h');
1248  pq_sendint32(&reply_message, xmin);
1249  pq_sendint32(&reply_message, xmin_epoch);
1250  pq_sendint32(&reply_message, catalog_xmin);
1251  pq_sendint32(&reply_message, catalog_xmin_epoch);
1253  if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1254  primary_has_standby_xmin = true;
1255  else
1256  primary_has_standby_xmin = false;
1257 }
1258 
1259 /*
1260  * Update shared memory status upon receiving a message from primary.
1261  *
1262  * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1263  * message, reported by primary.
1264  */
1265 static void
1267 {
1268  WalRcvData *walrcv = WalRcv;
1269 
1270  TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1271 
1272  /* Update shared-memory status */
1273  SpinLockAcquire(&walrcv->mutex);
1274  if (walrcv->latestWalEnd < walEnd)
1275  walrcv->latestWalEndTime = sendTime;
1276  walrcv->latestWalEnd = walEnd;
1277  walrcv->lastMsgSendTime = sendTime;
1278  walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1279  SpinLockRelease(&walrcv->mutex);
1280 
1282  {
1283  char *sendtime;
1284  char *receipttime;
1285  int applyDelay;
1286 
1287  /* Copy because timestamptz_to_str returns a static buffer */
1288  sendtime = pstrdup(timestamptz_to_str(sendTime));
1289  receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1290  applyDelay = GetReplicationApplyDelay();
1291 
1292  /* apply delay is not available */
1293  if (applyDelay == -1)
1294  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1295  sendtime,
1296  receipttime,
1298  else
1299  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1300  sendtime,
1301  receipttime,
1302  applyDelay,
1304 
1305  pfree(sendtime);
1306  pfree(receipttime);
1307  }
1308 }
1309 
1310 /*
1311  * Compute the next wakeup time for a given wakeup reason. Can be called to
1312  * initialize a wakeup time, to adjust it for the next wakeup, or to
1313  * reinitialize it when GUCs have changed.
1314  */
1315 static void
1317 {
1318  switch (reason)
1319  {
1321  if (wal_receiver_timeout <= 0)
1322  wakeup[reason] = PG_INT64_MAX;
1323  else
1324  wakeup[reason] = now + wal_receiver_timeout * INT64CONST(1000);
1325  break;
1326  case WALRCV_WAKEUP_PING:
1327  if (wal_receiver_timeout <= 0)
1328  wakeup[reason] = PG_INT64_MAX;
1329  else
1330  wakeup[reason] = now + (wal_receiver_timeout / 2) * INT64CONST(1000);
1331  break;
1334  wakeup[reason] = PG_INT64_MAX;
1335  else
1336  wakeup[reason] = now + wal_receiver_status_interval * INT64CONST(1000000);
1337  break;
1338  case WALRCV_WAKEUP_REPLY:
1340  wakeup[reason] = PG_INT64_MAX;
1341  else
1342  wakeup[reason] = now + wal_receiver_status_interval * INT64CONST(1000000);
1343  break;
1344  default:
1345  break;
1346  }
1347 }
1348 
1349 /*
1350  * Wake up the walreceiver main loop.
1351  *
1352  * This is called by the startup process whenever interesting xlog records
1353  * are applied, so that walreceiver can check if it needs to send an apply
1354  * notification back to the primary which may be waiting in a COMMIT with
1355  * synchronous_commit = remote_apply.
1356  */
1357 void
1359 {
1360  Latch *latch;
1361 
1362  WalRcv->force_reply = true;
1363  /* fetching the latch pointer might not be atomic, so use spinlock */
1365  latch = WalRcv->latch;
1367  if (latch)
1368  SetLatch(latch);
1369 }
1370 
1371 /*
1372  * Return a string constant representing the state. This is used
1373  * in system functions and views, and should *not* be translated.
1374  */
1375 static const char *
1377 {
1378  switch (state)
1379  {
1380  case WALRCV_STOPPED:
1381  return "stopped";
1382  case WALRCV_STARTING:
1383  return "starting";
1384  case WALRCV_STREAMING:
1385  return "streaming";
1386  case WALRCV_WAITING:
1387  return "waiting";
1388  case WALRCV_RESTARTING:
1389  return "restarting";
1390  case WALRCV_STOPPING:
1391  return "stopping";
1392  }
1393  return "UNKNOWN";
1394 }
1395 
1396 /*
1397  * Returns activity of WAL receiver, including pid, state and xlog locations
1398  * received from the WAL sender of another server.
1399  */
1400 Datum
1402 {
1403  TupleDesc tupdesc;
1404  Datum *values;
1405  bool *nulls;
1406  int pid;
1407  bool ready_to_display;
1409  XLogRecPtr receive_start_lsn;
1410  TimeLineID receive_start_tli;
1411  XLogRecPtr written_lsn;
1412  XLogRecPtr flushed_lsn;
1413  TimeLineID received_tli;
1414  TimestampTz last_send_time;
1415  TimestampTz last_receipt_time;
1416  XLogRecPtr latest_end_lsn;
1417  TimestampTz latest_end_time;
1418  char sender_host[NI_MAXHOST];
1419  int sender_port = 0;
1420  char slotname[NAMEDATALEN];
1421  char conninfo[MAXCONNINFO];
1422 
1423  /* Take a lock to ensure value consistency */
1425  pid = (int) WalRcv->pid;
1426  ready_to_display = WalRcv->ready_to_display;
1428  receive_start_lsn = WalRcv->receiveStart;
1429  receive_start_tli = WalRcv->receiveStartTLI;
1430  flushed_lsn = WalRcv->flushedUpto;
1431  received_tli = WalRcv->receivedTLI;
1432  last_send_time = WalRcv->lastMsgSendTime;
1433  last_receipt_time = WalRcv->lastMsgReceiptTime;
1434  latest_end_lsn = WalRcv->latestWalEnd;
1435  latest_end_time = WalRcv->latestWalEndTime;
1436  strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
1437  strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
1438  sender_port = WalRcv->sender_port;
1439  strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
1441 
1442  /*
1443  * No WAL receiver (or not ready yet), just return a tuple with NULL
1444  * values
1445  */
1446  if (pid == 0 || !ready_to_display)
1447  PG_RETURN_NULL();
1448 
1449  /*
1450  * Read "writtenUpto" without holding a spinlock. Note that it may not be
1451  * consistent with the other shared variables of the WAL receiver
1452  * protected by a spinlock, but this should not be used for data integrity
1453  * checks.
1454  */
1455  written_lsn = pg_atomic_read_u64(&WalRcv->writtenUpto);
1456 
1457  /* determine result type */
1458  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1459  elog(ERROR, "return type must be a row type");
1460 
1461  values = palloc0(sizeof(Datum) * tupdesc->natts);
1462  nulls = palloc0(sizeof(bool) * tupdesc->natts);
1463 
1464  /* Fetch values */
1465  values[0] = Int32GetDatum(pid);
1466 
1467  if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
1468  {
1469  /*
1470  * Only superusers and roles with privileges of pg_read_all_stats can
1471  * see details. Other users only get the pid value to know whether it
1472  * is a WAL receiver, but no details.
1473  */
1474  memset(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1475  }
1476  else
1477  {
1479 
1480  if (XLogRecPtrIsInvalid(receive_start_lsn))
1481  nulls[2] = true;
1482  else
1483  values[2] = LSNGetDatum(receive_start_lsn);
1484  values[3] = Int32GetDatum(receive_start_tli);
1485  if (XLogRecPtrIsInvalid(written_lsn))
1486  nulls[4] = true;
1487  else
1488  values[4] = LSNGetDatum(written_lsn);
1489  if (XLogRecPtrIsInvalid(flushed_lsn))
1490  nulls[5] = true;
1491  else
1492  values[5] = LSNGetDatum(flushed_lsn);
1493  values[6] = Int32GetDatum(received_tli);
1494  if (last_send_time == 0)
1495  nulls[7] = true;
1496  else
1497  values[7] = TimestampTzGetDatum(last_send_time);
1498  if (last_receipt_time == 0)
1499  nulls[8] = true;
1500  else
1501  values[8] = TimestampTzGetDatum(last_receipt_time);
1502  if (XLogRecPtrIsInvalid(latest_end_lsn))
1503  nulls[9] = true;
1504  else
1505  values[9] = LSNGetDatum(latest_end_lsn);
1506  if (latest_end_time == 0)
1507  nulls[10] = true;
1508  else
1509  values[10] = TimestampTzGetDatum(latest_end_time);
1510  if (*slotname == '\0')
1511  nulls[11] = true;
1512  else
1513  values[11] = CStringGetTextDatum(slotname);
1514  if (*sender_host == '\0')
1515  nulls[12] = true;
1516  else
1517  values[12] = CStringGetTextDatum(sender_host);
1518  if (sender_port == 0)
1519  nulls[13] = true;
1520  else
1521  values[13] = Int32GetDatum(sender_port);
1522  if (*conninfo == '\0')
1523  nulls[14] = true;
1524  else
1525  values[14] = CStringGetTextDatum(conninfo);
1526  }
1527 
1528  /* Returns the record as Datum */
1530 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:4949
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:433
#define pg_memory_barrier()
Definition: atomics.h:140
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:424
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition: timeline.c:463
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition: timeline.c:222
sigset_t UnBlockSig
Definition: pqsignal.c:22
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1573
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1537
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1782
static Datum values[MAXATTR]
Definition: bootstrap.c:156
#define CStringGetTextDatum(s)
Definition: builtins.h:85
unsigned int uint32
Definition: c.h:442
#define Min(x, y)
Definition: c.h:937
#define Max(x, y)
Definition: c.h:931
#define UINT64_FORMAT
Definition: c.h:485
#define PG_INT64_MAX
Definition: c.h:528
uint32 TransactionId
Definition: c.h:588
size_t Size
Definition: c.h:541
void ConditionVariableBroadcast(ConditionVariable *cv)
int64 TimestampTz
Definition: timestamp.h:39
void load_file(const char *filename, bool restricted)
Definition: dfmgr.c:144
int errmsg_internal(const char *fmt,...)
Definition: elog.c:993
int errcode_for_file_access(void)
Definition: elog.c:718
int errdetail(const char *fmt,...)
Definition: elog.c:1039
bool message_level_is_interesting(int elevel)
Definition: elog.c:269
int errcode(int sqlerrcode)
Definition: elog.c:695
int errmsg(const char *fmt,...)
Definition: elog.c:906
#define LOG
Definition: elog.h:27
#define FATAL
Definition: elog.h:37
#define DEBUG2
Definition: elog.h:25
#define PANIC
Definition: elog.h:38
#define DEBUG1
Definition: elog.h:26
#define ERROR
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:145
#define PG_RETURN_NULL()
Definition: fmgr.h:345
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:353
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition: funcapi.h:230
int MyProcPid
Definition: globals.c:44
struct Latch * MyLatch
Definition: globals.c:58
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
char * cluster_name
Definition: guc_tables.c:502
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
#define close(a)
Definition: win32.h:12
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:108
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:361
void proc_exit(int code)
Definition: ipc.c:104
int i
Definition: isn.c:73
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:524
void SetLatch(Latch *latch)
Definition: latch.c:591
void ResetLatch(Latch *latch)
Definition: latch.c:683
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:476
#define WL_SOCKET_READABLE
Definition: latch.h:126
#define WL_TIMEOUT
Definition: latch.h:128
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:130
#define WL_LATCH_SET
Definition: latch.h:125
Assert(fmt[strlen(fmt) - 1] !='\n')
exit(1)
char * pstrdup(const char *in)
Definition: mcxt.c:1483
void pfree(void *pointer)
Definition: mcxt.c:1306
void * palloc0(Size size)
Definition: mcxt.c:1230
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:121
Oid GetUserId(void)
Definition: miscinit.c:497
void * arg
#define NAMEDATALEN
const void size_t len
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:28
static char ** options
static char * buf
Definition: pg_test_fsync.c:67
#define pg_pwrite
Definition: port.h:226
pqsigfunc pqsignal(int signo, pqsigfunc func)
int pgsocket
Definition: port.h:29
#define snprintf
Definition: port.h:238
#define PGINVALID_SOCKET
Definition: port.h:31
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:670
uintptr_t Datum
Definition: postgres.h:412
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:660
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:560
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:401
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:455
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:145
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:161
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:153
#define PG_SETMASK(mask)
Definition: pqsignal.h:18
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:2055
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:638
bool update_process_title
Definition: ps_status.c:35
void set_ps_display(const char *activity)
Definition: ps_status.c:342
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:68
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:75
void appendBinaryStringInfo(StringInfo str, const char *data, int datalen)
Definition: stringinfo.c:227
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Definition: latch.h:111
Latch procLatch
Definition: proc.h:170
TimestampTz lastMsgReceiptTime
Definition: walreceiver.h:102
XLogRecPtr latestWalEnd
Definition: walreceiver.h:107
TimeLineID receiveStartTLI
Definition: walreceiver.h:78
TimeLineID receivedTLI
Definition: walreceiver.h:88
char slotname[NAMEDATALEN]
Definition: walreceiver.h:127
Latch * latch
Definition: walreceiver.h:145
char sender_host[NI_MAXHOST]
Definition: walreceiver.h:120
pid_t pid
Definition: walreceiver.h:66
XLogRecPtr latestChunkStart
Definition: walreceiver.h:96
XLogRecPtr receiveStart
Definition: walreceiver.h:77
XLogRecPtr flushedUpto
Definition: walreceiver.h:87
sig_atomic_t force_reply
Definition: walreceiver.h:162
ConditionVariable walRcvStoppedCV
Definition: walreceiver.h:68
bool is_temp_slot
Definition: walreceiver.h:133
pg_atomic_uint64 writtenUpto
Definition: walreceiver.h:155
TimestampTz lastMsgSendTime
Definition: walreceiver.h:101
WalRcvState walRcvState
Definition: walreceiver.h:67
TimestampTz latestWalEndTime
Definition: walreceiver.h:108
bool ready_to_display
Definition: walreceiver.h:136
int sender_port
Definition: walreceiver.h:121
slock_t mutex
Definition: walreceiver.h:147
char conninfo[MAXCONNINFO]
Definition: walreceiver.h:114
Definition: regguts.h:318
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:261
@ WAIT_EVENT_WAL_RECEIVER_MAIN
Definition: wait_event.h:47
@ WAIT_EVENT_WAL_RECEIVER_WAIT_START
Definition: wait_event.h:130
void ProcessWalRcvInterrupts(void)
Definition: walreceiver.c:166
static WalReceiverConn * wrconn
Definition: walreceiver.c:95
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:132
void WalReceiverMain(void)
Definition: walreceiver.c:187
static StringInfoData reply_message
Definition: walreceiver.c:134
bool hot_standby_feedback
Definition: walreceiver.c:92
XLogRecPtr Flush
Definition: walreceiver.c:114
static int recvFile
Definition: walreceiver.c:103
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
Definition: walreceiver.c:1266
int wal_receiver_status_interval
Definition: walreceiver.c:90
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
Definition: walreceiver.c:750
XLogRecPtr Write
Definition: walreceiver.c:113
static StringInfoData incoming_message
Definition: walreceiver.c:135
static void XLogWalRcvFlush(bool dying, TimeLineID tli)
Definition: walreceiver.c:994
static struct @18 LogstreamResult
static TimeLineID recvFileTLI
Definition: walreceiver.c:104
WalReceiverFunctionsType * WalReceiverFunctions
Definition: walreceiver.c:96
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:911
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
Definition: walreceiver.c:1401
int wal_receiver_timeout
Definition: walreceiver.c:91
static XLogSegNo recvSegNo
Definition: walreceiver.c:105
static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:1049
static void XLogWalRcvSendHSFeedback(bool immed)
Definition: walreceiver.c:1170
WalRcvWakeupReason
Definition: walreceiver.c:121
@ NUM_WALRCV_WAKEUPS
Definition: walreceiver.c:126
@ WALRCV_WAKEUP_TERMINATE
Definition: walreceiver.c:122
@ WALRCV_WAKEUP_REPLY
Definition: walreceiver.c:124
@ WALRCV_WAKEUP_PING
Definition: walreceiver.c:123
@ WALRCV_WAKEUP_HSFEEDBACK
Definition: walreceiver.c:125
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
Definition: walreceiver.c:670
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
Definition: walreceiver.c:844
static void WalRcvComputeNextWakeup(WalRcvWakeupReason reason, TimestampTz now)
Definition: walreceiver.c:1316
static const char * WalRcvGetStateString(WalRcvState state)
Definition: walreceiver.c:1376
static void WalRcvDie(int code, Datum arg)
Definition: walreceiver.c:806
static void XLogWalRcvSendReply(bool force, bool requestReply)
Definition: walreceiver.c:1101
void WalRcvForceReply(void)
Definition: walreceiver.c:1358
#define walrcv_create_slot(conn, slotname, temporary, two_phase, snapshot_action, lsn)
Definition: walreceiver.h:430
#define AllowCascadeReplication()
Definition: walreceiver.h:42
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
Definition: walreceiver.h:420
#define walrcv_startstreaming(conn, options)
Definition: walreceiver.h:422
#define walrcv_connect(conninfo, logical, appname, err)
Definition: walreceiver.h:408
#define walrcv_send(conn, buffer, nbytes)
Definition: walreceiver.h:428
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
Definition: walreceiver.h:414
#define MAXCONNINFO
Definition: walreceiver.h:39
#define walrcv_get_conninfo(conn)
Definition: walreceiver.h:412
#define walrcv_endstreaming(conn, next_tli)
Definition: walreceiver.h:424
WalRcvState
Definition: walreceiver.h:48
@ WALRCV_STARTING
Definition: walreceiver.h:50
@ WALRCV_STOPPED
Definition: walreceiver.h:49
@ WALRCV_RESTARTING
Definition: walreceiver.h:54
@ WALRCV_STREAMING
Definition: walreceiver.h:52
@ WALRCV_WAITING
Definition: walreceiver.h:53
@ WALRCV_STOPPING
Definition: walreceiver.h:55
#define walrcv_identify_system(conn, primary_tli)
Definition: walreceiver.h:416
#define walrcv_disconnect(conn)
Definition: walreceiver.h:436
#define walrcv_get_backend_pid(conn)
Definition: walreceiver.h:432
#define walrcv_receive(conn, buffer, wait_fd)
Definition: walreceiver.h:426
WalRcvData * WalRcv
int GetReplicationApplyDelay(void)
int GetReplicationTransferLatency(void)
void WalSndWakeup(void)
Definition: walsender.c:3296
#define SIGCHLD
Definition: win32_port.h:186
#define SIGHUP
Definition: win32_port.h:176
#define SIG_DFL
Definition: win32_port.h:171
#define SIGPIPE
Definition: win32_port.h:181
#define SIGUSR1
Definition: win32_port.h:188
#define SIGALRM
Definition: win32_port.h:182
#define SIGUSR2
Definition: win32_port.h:189
#define SIG_IGN
Definition: win32_port.h:173
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3085
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4181
bool RecoveryInProgress(void)
Definition: xlog.c:5912
int XLogArchiveMode
Definition: xlog.c:122
int wal_segment_size
Definition: xlog.c:146
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8138
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:62
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
static void TLHistoryFileName(char *fname, TimeLineID tli)
void XLogArchiveForceDone(const char *xlog)
Definition: xlogarchive.c:542
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:476
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
bool HotStandbyActive(void)
void WakeupRecovery(void)
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)