PostgreSQL Source Code git master
Loading...
Searching...
No Matches
walreceiver.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * walreceiver.c
4 *
5 * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6 * is the process in the standby server that takes charge of receiving
7 * XLOG records from a primary server during streaming replication.
8 *
9 * When the startup process determines that it's time to start streaming,
10 * it instructs postmaster to start walreceiver. Walreceiver first connects
11 * to the primary server (it will be served by a walsender process
12 * in the primary server), and then keeps receiving XLOG records and
13 * writing them to the disk as long as the connection is alive. As XLOG
14 * records are received and flushed to disk, it updates the
15 * WalRcv->flushedUpto variable in shared memory, to inform the startup
16 * process of how far it can proceed with XLOG replay.
17 *
18 * A WAL receiver cannot directly load GUC parameters used when establishing
19 * its connection to the primary. Instead it relies on parameter values
20 * that are passed down by the startup process when streaming is requested.
21 * This applies, for example, to the replication slot and the connection
22 * string to be used for the connection with the primary.
23 *
24 * If the primary server ends streaming, but doesn't disconnect, walreceiver
25 * goes into "waiting" mode, and waits for the startup process to give new
26 * instructions. The startup process will treat that the same as
27 * disconnection, and will rescan the archive/pg_wal directory. But when the
28 * startup process wants to try streaming replication again, it will just
29 * nudge the existing walreceiver process that's waiting, instead of launching
30 * a new one.
31 *
32 * Normal termination is by SIGTERM, which instructs the walreceiver to
33 * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34 * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35 * of the connection and a FATAL error are treated not as a crash but as
36 * normal operation.
37 *
38 * This file contains the server-facing parts of walreceiver. The libpq-
39 * specific parts are in the libpqwalreceiver module. It's loaded
40 * dynamically to avoid linking the server with libpq.
41 *
42 * Portions Copyright (c) 2010-2026, PostgreSQL Global Development Group
43 *
44 *
45 * IDENTIFICATION
46 * src/backend/replication/walreceiver.c
47 *
48 *-------------------------------------------------------------------------
49 */
50#include "postgres.h"
51
52#include <unistd.h>
53
54#include "access/htup_details.h"
55#include "access/timeline.h"
56#include "access/transam.h"
58#include "access/xlogarchive.h"
59#include "access/xlogrecovery.h"
60#include "access/xlogwait.h"
61#include "catalog/pg_authid.h"
62#include "funcapi.h"
63#include "libpq/pqformat.h"
64#include "libpq/pqsignal.h"
65#include "miscadmin.h"
66#include "pgstat.h"
71#include "storage/ipc.h"
72#include "storage/proc.h"
73#include "storage/procarray.h"
74#include "storage/procsignal.h"
75#include "tcop/tcopprot.h"
76#include "utils/acl.h"
77#include "utils/builtins.h"
78#include "utils/guc.h"
79#include "utils/pg_lsn.h"
80#include "utils/ps_status.h"
81#include "utils/timestamp.h"
82
83
84/*
85 * GUC variables. (Other variables that affect walreceiver are in xlog.c
86 * because they're passed down from the startup process, for better
87 * synchronization.)
88 */
92
93/* libpqwalreceiver connection */
96
97/*
98 * These variables are used similarly to openLogFile/SegNo,
99 * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
100 * corresponding the filename of recvFile.
101 */
102static int recvFile = -1;
105
106/*
107 * LogstreamResult indicates the byte positions that we have already
108 * written/fsynced.
109 */
110static struct
111{
112 XLogRecPtr Write; /* last byte + 1 written out in the standby */
113 XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
115
116/*
117 * Reasons to wake up and perform periodic tasks.
118 */
127
128/*
129 * Wake up times for periodic tasks.
130 */
132
134
135/* Prototypes for private functions */
137static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
138static void WalRcvDie(int code, Datum arg);
139static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len,
140 TimeLineID tli);
141static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr,
142 TimeLineID tli);
143static void XLogWalRcvFlush(bool dying, TimeLineID tli);
145static void XLogWalRcvSendReply(bool force, bool requestReply);
146static void XLogWalRcvSendHSFeedback(bool immed);
149
150
151/* Main entry point for walreceiver process */
152void
154{
155 char conninfo[MAXCONNINFO];
156 char *tmp_conninfo;
157 char slotname[NAMEDATALEN];
158 bool is_temp_slot;
159 XLogRecPtr startpoint;
160 TimeLineID startpointTLI;
162 bool first_stream;
165 char *err;
166 char *sender_host = NULL;
167 int sender_port = 0;
168 char *appname;
169
171
173
174 /*
175 * WalRcv should be set up already (if we are a backend, we inherit this
176 * by fork() or EXEC_BACKEND mechanism from the postmaster).
177 */
178 walrcv = WalRcv;
179 Assert(walrcv != NULL);
180
181 /*
182 * Mark walreceiver as running in shared memory.
183 *
184 * Do this as early as possible, so that if we fail later on, we'll set
185 * state to STOPPED. If we die before this, the startup process will keep
186 * waiting for us to start up, until it times out.
187 */
188 SpinLockAcquire(&walrcv->mutex);
189 Assert(walrcv->pid == 0);
190 switch (walrcv->walRcvState)
191 {
192 case WALRCV_STOPPING:
193 /* If we've already been requested to stop, don't start up. */
194 walrcv->walRcvState = WALRCV_STOPPED;
195 /* fall through */
196
197 case WALRCV_STOPPED:
198 SpinLockRelease(&walrcv->mutex);
199 ConditionVariableBroadcast(&walrcv->walRcvStoppedCV);
200 proc_exit(1);
201 break;
202
203 case WALRCV_STARTING:
204 /* The usual case */
205 break;
206
208 case WALRCV_WAITING:
209 case WALRCV_STREAMING:
211 default:
212 /* Shouldn't happen */
213 SpinLockRelease(&walrcv->mutex);
214 elog(PANIC, "walreceiver still running according to shared memory state");
215 }
216 /* Advertise our PID so that the startup process can kill us */
217 walrcv->pid = MyProcPid;
218 walrcv->walRcvState = WALRCV_CONNECTING;
219
220 /* Fetch information required to start streaming */
221 walrcv->ready_to_display = false;
222 strlcpy(conninfo, walrcv->conninfo, MAXCONNINFO);
223 strlcpy(slotname, walrcv->slotname, NAMEDATALEN);
224 is_temp_slot = walrcv->is_temp_slot;
225 startpoint = walrcv->receiveStart;
226 startpointTLI = walrcv->receiveStartTLI;
227
228 /*
229 * At most one of is_temp_slot and slotname can be set; otherwise,
230 * RequestXLogStreaming messed up.
231 */
232 Assert(!is_temp_slot || (slotname[0] == '\0'));
233
234 /* Initialise to a sanish value */
236 walrcv->lastMsgSendTime =
237 walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
238
239 /* Report our proc number so that others can wake us up */
240 walrcv->procno = MyProcNumber;
241
242 SpinLockRelease(&walrcv->mutex);
243
245
246 /* Arrange to clean up at walreceiver exit */
247 on_shmem_exit(WalRcvDie, PointerGetDatum(&startpointTLI));
248
249 /* Properly accept or ignore signals the postmaster might send us */
250 pqsignal(SIGHUP, SignalHandlerForConfigReload); /* set flag to read config
251 * file */
253 pqsignal(SIGTERM, die); /* request shutdown */
254 /* SIGQUIT handler was already set up by InitPostmasterChild */
259
260 /* Reset some signals that are accepted by postmaster but not here */
262
263 /* Load the libpq-specific functions */
264 load_file("libpqwalreceiver", false);
266 elog(ERROR, "libpqwalreceiver didn't initialize correctly");
267
268 /* Unblock signals (they were blocked when the postmaster forked us) */
270
271 /* Establish the connection to the primary for XLOG streaming */
272 appname = cluster_name[0] ? cluster_name : "walreceiver";
273 wrconn = walrcv_connect(conninfo, true, false, false, appname, &err);
274 if (!wrconn)
277 errmsg("streaming replication receiver \"%s\" could not connect to the primary server: %s",
278 appname, err)));
279
280 /*
281 * Save user-visible connection string. This clobbers the original
282 * conninfo, for security. Also save host and port of the sender server
283 * this walreceiver is connected to.
284 */
286 walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
287 SpinLockAcquire(&walrcv->mutex);
288 memset(walrcv->conninfo, 0, MAXCONNINFO);
289 if (tmp_conninfo)
291
292 memset(walrcv->sender_host, 0, NI_MAXHOST);
293 if (sender_host)
294 strlcpy(walrcv->sender_host, sender_host, NI_MAXHOST);
295
296 walrcv->sender_port = sender_port;
297 walrcv->ready_to_display = true;
298 SpinLockRelease(&walrcv->mutex);
299
300 if (tmp_conninfo)
302
303 if (sender_host)
304 pfree(sender_host);
305
306 first_stream = true;
307 for (;;)
308 {
309 char *primary_sysid;
310 char standby_sysid[32];
312
313 /*
314 * Check that we're connected to a valid server using the
315 * IDENTIFY_SYSTEM replication command.
316 */
318
322 {
325 errmsg("database system identifier differs between the primary and standby"),
326 errdetail("The primary's identifier is %s, the standby's identifier is %s.",
328 }
329
330 /*
331 * Confirm that the current timeline of the primary is the same or
332 * ahead of ours.
333 */
334 if (primaryTLI < startpointTLI)
337 errmsg("highest timeline %u of the primary is behind recovery timeline %u",
338 primaryTLI, startpointTLI)));
339
340 /*
341 * Get any missing history files. We do this always, even when we're
342 * not interested in that timeline, so that if we're promoted to
343 * become the primary later on, we don't select the same timeline that
344 * was already used in the current primary. This isn't bullet-proof -
345 * you'll need some external software to manage your cluster if you
346 * need to ensure that a unique timeline id is chosen in every case,
347 * but let's avoid the confusion of timeline id collisions where we
348 * can.
349 */
351
352 /*
353 * Create temporary replication slot if requested, and update slot
354 * name in shared memory. (Note the slot name cannot already be set
355 * in this case.)
356 */
357 if (is_temp_slot)
358 {
359 snprintf(slotname, sizeof(slotname),
360 "pg_walreceiver_%lld",
361 (long long int) walrcv_get_backend_pid(wrconn));
362
363 walrcv_create_slot(wrconn, slotname, true, false, false, 0, NULL);
364
365 SpinLockAcquire(&walrcv->mutex);
366 strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
367 SpinLockRelease(&walrcv->mutex);
368 }
369
370 /*
371 * Start streaming.
372 *
373 * We'll try to start at the requested starting point and timeline,
374 * even if it's different from the server's latest timeline. In case
375 * we've already reached the end of the old timeline, the server will
376 * finish the streaming immediately, and we will go back to await
377 * orders from the startup process. If recovery_target_timeline is
378 * 'latest', the startup process will scan pg_wal and find the new
379 * history file, bump recovery target timeline, and ask us to restart
380 * on the new timeline.
381 */
382 options.logical = false;
383 options.startpoint = startpoint;
384 options.slotname = slotname[0] != '\0' ? slotname : NULL;
385 options.proto.physical.startpointTLI = startpointTLI;
387 {
388 if (first_stream)
389 ereport(LOG,
390 errmsg("started streaming WAL from primary at %X/%08X on timeline %u",
391 LSN_FORMAT_ARGS(startpoint), startpointTLI));
392 else
393 ereport(LOG,
394 errmsg("restarted WAL streaming at %X/%08X on timeline %u",
395 LSN_FORMAT_ARGS(startpoint), startpointTLI));
396 first_stream = false;
397
398 /*
399 * Switch to STREAMING after a successful connection if current
400 * state is CONNECTING. This switch happens after an initial
401 * startup, or after a restart as determined by
402 * WalRcvWaitForStartPosition().
403 */
404 SpinLockAcquire(&walrcv->mutex);
405 if (walrcv->walRcvState == WALRCV_CONNECTING)
406 walrcv->walRcvState = WALRCV_STREAMING;
407 SpinLockRelease(&walrcv->mutex);
408
409 /* Initialize LogstreamResult and buffers for processing messages */
412
413 /* Initialize nap wakeup times. */
415 for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
417
418 /* Send initial reply/feedback messages. */
419 XLogWalRcvSendReply(true, false);
421
422 /* Loop until end-of-streaming or error */
423 for (;;)
424 {
425 char *buf;
426 int len;
427 bool endofwal = false;
429 int rc;
431 long nap;
432
433 /*
434 * Exit walreceiver if we're not in recovery. This should not
435 * happen, but cross-check the status here.
436 */
437 if (!RecoveryInProgress())
440 errmsg("cannot continue WAL streaming, recovery has already ended")));
441
442 /* Process any requests or signals received recently */
444
446 {
447 ConfigReloadPending = false;
449 /* recompute wakeup times */
451 for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
454 }
455
456 /* See if we can read data immediately */
458 if (len != 0)
459 {
460 /*
461 * Process the received data, and any subsequent data we
462 * can read without blocking.
463 */
464 for (;;)
465 {
466 if (len > 0)
467 {
468 /*
469 * Something was received from primary, so adjust
470 * the ping and terminate wakeup times.
471 */
474 now);
476 XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1,
477 startpointTLI);
478 }
479 else if (len == 0)
480 break;
481 else if (len < 0)
482 {
483 ereport(LOG,
484 (errmsg("replication terminated by primary server"),
485 errdetail("End of WAL reached on timeline %u at %X/%08X.",
486 startpointTLI,
488 endofwal = true;
489 break;
490 }
492 }
493
494 /* Let the primary know that we received some data. */
495 XLogWalRcvSendReply(false, false);
496
497 /*
498 * If we've written some records, flush them to disk and
499 * let the startup process and primary server know about
500 * them.
501 */
502 XLogWalRcvFlush(false, startpointTLI);
503 }
504
505 /* Check if we need to exit the streaming loop. */
506 if (endofwal)
507 break;
508
509 /* Find the soonest wakeup time, to limit our nap. */
511 for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
513
514 /* Calculate the nap time, clamping as necessary. */
517
518 /*
519 * Ideally we would reuse a WaitEventSet object repeatedly
520 * here to avoid the overheads of WaitLatchOrSocket on epoll
521 * systems, but we can't be sure that libpq (or any other
522 * walreceiver implementation) has the same socket (even if
523 * the fd is the same number, it may have been closed and
524 * reopened since the last time). In future, if there is a
525 * function for removing sockets from WaitEventSet, then we
526 * could add and remove just the socket each time, potentially
527 * avoiding some system calls.
528 */
533 wait_fd,
534 nap,
536 if (rc & WL_LATCH_SET)
537 {
540
541 if (walrcv->force_reply)
542 {
543 /*
544 * The recovery process has asked us to send apply
545 * feedback now. Make sure the flag is really set to
546 * false in shared memory before sending the reply, so
547 * we don't miss a new request for a reply.
548 */
549 walrcv->force_reply = false;
551 XLogWalRcvSendReply(true, false);
552 }
553 }
554 if (rc & WL_TIMEOUT)
555 {
556 /*
557 * We didn't receive anything new. If we haven't heard
558 * anything from the server for more than
559 * wal_receiver_timeout / 2, ping the server. Also, if
560 * it's been longer than wal_receiver_status_interval
561 * since the last update we sent, send a status update to
562 * the primary anyway, to report any progress in applying
563 * WAL.
564 */
565 bool requestReply = false;
566
567 /*
568 * Report pending statistics to the cumulative stats
569 * system. This location is useful for the report as it
570 * is not within a tight loop in the WAL receiver, to
571 * avoid bloating pgstats with requests, while also making
572 * sure that the reports happen each time a status update
573 * is sent.
574 */
575 pgstat_report_wal(false);
576
577 /*
578 * Check if time since last receive from primary has
579 * reached the configured limit.
580 */
585 errmsg("terminating walreceiver due to timeout")));
586
587 /*
588 * If we didn't receive anything new for half of receiver
589 * replication timeout, then ping the server.
590 */
592 {
593 requestReply = true;
595 }
596
599 }
600 }
601
602 /*
603 * The backend finished streaming. Exit streaming COPY-mode from
604 * our side, too.
605 */
607
608 /*
609 * If the server had switched to a new timeline that we didn't
610 * know about when we began streaming, fetch its timeline history
611 * file now.
612 */
614 }
615 else
616 ereport(LOG,
617 (errmsg("primary server contains no more WAL on requested timeline %u",
618 startpointTLI)));
619
620 /*
621 * End of WAL reached on the requested timeline. Close the last
622 * segment, and await for new orders from the startup process.
623 */
624 if (recvFile >= 0)
625 {
627
628 XLogWalRcvFlush(false, startpointTLI);
630 if (close(recvFile) != 0)
633 errmsg("could not close WAL segment %s: %m",
634 xlogfname)));
635
636 /*
637 * Create .done file forcibly to prevent the streamed segment from
638 * being archived later.
639 */
642 else
644 }
645 recvFile = -1;
646
647 elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
648 WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
649 }
650 /* not reached */
651}
652
653/*
654 * Wait for startup process to set receiveStart and receiveStartTLI.
655 */
656static void
658{
660 int state;
661
662 SpinLockAcquire(&walrcv->mutex);
663 state = walrcv->walRcvState;
665 {
666 SpinLockRelease(&walrcv->mutex);
667 if (state == WALRCV_STOPPING)
668 proc_exit(0);
669 else
670 elog(FATAL, "unexpected walreceiver state");
671 }
672 walrcv->walRcvState = WALRCV_WAITING;
673 walrcv->receiveStart = InvalidXLogRecPtr;
674 walrcv->receiveStartTLI = 0;
675 SpinLockRelease(&walrcv->mutex);
676
677 set_ps_display("idle");
678
679 /*
680 * nudge startup process to notice that we've stopped streaming and are
681 * now waiting for instructions.
682 */
684 for (;;)
685 {
687
689
690 SpinLockAcquire(&walrcv->mutex);
691 Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
692 walrcv->walRcvState == WALRCV_WAITING ||
693 walrcv->walRcvState == WALRCV_STOPPING);
694 if (walrcv->walRcvState == WALRCV_RESTARTING)
695 {
696 /*
697 * No need to handle changes in primary_conninfo or
698 * primary_slot_name here. Startup process will signal us to
699 * terminate in case those change.
700 */
701 *startpoint = walrcv->receiveStart;
702 *startpointTLI = walrcv->receiveStartTLI;
703 walrcv->walRcvState = WALRCV_CONNECTING;
704 SpinLockRelease(&walrcv->mutex);
705 break;
706 }
707 if (walrcv->walRcvState == WALRCV_STOPPING)
708 {
709 /*
710 * We should've received SIGTERM if the startup process wants us
711 * to die, but might as well check it here too.
712 */
713 SpinLockRelease(&walrcv->mutex);
714 exit(1);
715 }
716 SpinLockRelease(&walrcv->mutex);
717
720 }
721
723 {
724 char activitymsg[50];
725
726 snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%08X",
727 LSN_FORMAT_ARGS(*startpoint));
729 }
730}
731
732/*
733 * Fetch any missing timeline history files between 'first' and 'last'
734 * (inclusive) from the server.
735 */
736static void
738{
739 TimeLineID tli;
740
741 for (tli = first; tli <= last; tli++)
742 {
743 /* there's no history file for timeline 1 */
744 if (tli != 1 && !existsTimeLineHistory(tli))
745 {
746 char *fname;
747 char *content;
748 int len;
750
751 ereport(LOG,
752 (errmsg("fetching timeline history file for timeline %u from primary server",
753 tli)));
754
755 walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
756
757 /*
758 * Check that the filename on the primary matches what we
759 * calculated ourselves. This is just a sanity check, it should
760 * always match.
761 */
763 if (strcmp(fname, expectedfname) != 0)
766 errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
767 tli)));
768
769 /*
770 * Write the file to pg_wal.
771 */
772 writeTimeLineHistoryFile(tli, content, len);
773
774 /*
775 * Mark the streamed history file as ready for archiving if
776 * archive_mode is always.
777 */
780 else
781 XLogArchiveNotify(fname);
782
783 pfree(fname);
784 pfree(content);
785 }
786 }
787}
788
789/*
790 * Mark us as STOPPED in shared memory at exit.
791 */
792static void
794{
797
798 Assert(*startpointTLI_p != 0);
799
800 /* Ensure that all WAL records received are flushed to disk */
802
803 /* Mark ourselves inactive in shared memory */
804 SpinLockAcquire(&walrcv->mutex);
805 Assert(walrcv->walRcvState == WALRCV_STREAMING ||
806 walrcv->walRcvState == WALRCV_CONNECTING ||
807 walrcv->walRcvState == WALRCV_RESTARTING ||
808 walrcv->walRcvState == WALRCV_STARTING ||
809 walrcv->walRcvState == WALRCV_WAITING ||
810 walrcv->walRcvState == WALRCV_STOPPING);
811 Assert(walrcv->pid == MyProcPid);
812 walrcv->walRcvState = WALRCV_STOPPED;
813 walrcv->pid = 0;
814 walrcv->procno = INVALID_PROC_NUMBER;
815 walrcv->ready_to_display = false;
816 SpinLockRelease(&walrcv->mutex);
817
818 ConditionVariableBroadcast(&walrcv->walRcvStoppedCV);
819
820 /* Terminate the connection gracefully. */
821 if (wrconn != NULL)
823
824 /* Wake up the startup process to notice promptly that we're gone */
826}
827
828/*
829 * Accept the message from XLOG stream, and process it.
830 */
831static void
832XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
833{
834 int hdrlen;
838 bool replyRequested;
839
840 switch (type)
841 {
843 {
845
846 hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
847 if (len < hdrlen)
850 errmsg_internal("invalid WAL message received from primary")));
851
852 /* initialize a StringInfo with the given buffer */
854
855 /* read the fields */
860
861 buf += hdrlen;
862 len -= hdrlen;
864 break;
865 }
867 {
869
870 hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
871 if (len != hdrlen)
874 errmsg_internal("invalid keepalive message received from primary")));
875
876 /* initialize a StringInfo with the given buffer */
878
879 /* read the fields */
883
885
886 /* If the primary requested a reply, send one immediately */
887 if (replyRequested)
888 XLogWalRcvSendReply(true, false);
889 break;
890 }
891 default:
894 errmsg_internal("invalid replication message type %d",
895 type)));
896 }
897}
898
899/*
900 * Write XLOG data to disk.
901 */
902static void
904{
905 int startoff;
906 int byteswritten;
908
909 Assert(tli != 0);
910
911 while (nbytes > 0)
912 {
913 int segbytes;
914
915 /* Close the current segment if it's completed */
918
919 if (recvFile < 0)
920 {
921 /* Create/use new log file */
924 recvFileTLI = tli;
925 }
926
927 /* Calculate the start offset of the received logs */
929
930 if (startoff + nbytes > wal_segment_size)
932 else
933 segbytes = nbytes;
934
935 /* OK to write the logs */
936 errno = 0;
937
938 /*
939 * Measure I/O timing to write WAL data, for pg_stat_io.
940 */
942
946
949
950 if (byteswritten <= 0)
951 {
953 int save_errno;
954
955 /* if write didn't set errno, assume no disk space */
956 if (errno == 0)
957 errno = ENOSPC;
958
964 errmsg("could not write to WAL segment %s "
965 "at offset %d, length %d: %m",
967 }
968
969 /* Update state for write */
971
972 nbytes -= byteswritten;
973 buf += byteswritten;
974
975 LogstreamResult.Write = recptr;
976 }
977
978 /* Update shared-memory status */
980
981 /*
982 * If we wrote an LSN that someone was waiting for, notify the waiters.
983 */
984 if (waitLSNState &&
985 (LogstreamResult.Write >=
988
989 /*
990 * Close the current segment if it's fully written up in the last cycle of
991 * the loop, to create its archive notification file soon. Otherwise WAL
992 * archiving of the segment will be delayed until any data in the next
993 * segment is received and written.
994 */
997}
998
999/*
1000 * Flush the log to disk.
1001 *
1002 * If we're in the midst of dying, it's unwise to do anything that might throw
1003 * an error, so we skip sending a reply in that case.
1004 */
1005static void
1007{
1008 Assert(tli != 0);
1009
1010 if (LogstreamResult.Flush < LogstreamResult.Write)
1011 {
1013
1015
1016 LogstreamResult.Flush = LogstreamResult.Write;
1017
1018 /* Update shared-memory status */
1019 SpinLockAcquire(&walrcv->mutex);
1020 if (walrcv->flushedUpto < LogstreamResult.Flush)
1021 {
1022 walrcv->latestChunkStart = walrcv->flushedUpto;
1023 walrcv->flushedUpto = LogstreamResult.Flush;
1024 walrcv->receivedTLI = tli;
1025 }
1026 SpinLockRelease(&walrcv->mutex);
1027
1028 /*
1029 * If we flushed an LSN that someone was waiting for, notify the
1030 * waiters.
1031 */
1032 if (waitLSNState &&
1033 (LogstreamResult.Flush >=
1036
1037 /* Signal the startup process and walsender that new WAL has arrived */
1040 WalSndWakeup(true, false);
1041
1042 /* Report XLOG streaming progress in PS display */
1044 {
1045 char activitymsg[50];
1046
1047 snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%08X",
1050 }
1051
1052 /* Also let the primary know that we made some progress */
1053 if (!dying)
1054 {
1055 XLogWalRcvSendReply(false, false);
1057 }
1058 }
1059}
1060
1061/*
1062 * Close the current segment.
1063 *
1064 * Flush the segment to disk before closing it. Otherwise we have to
1065 * reopen and fsync it later.
1066 *
1067 * Create an archive notification file since the segment is known completed.
1068 */
1069static void
1071{
1072 char xlogfname[MAXFNAMELEN];
1073
1075 Assert(tli != 0);
1076
1077 /*
1078 * fsync() and close current file before we switch to next one. We would
1079 * otherwise have to reopen this file to fsync it later
1080 */
1081 XLogWalRcvFlush(false, tli);
1082
1084
1085 /*
1086 * XLOG segment files will be re-read by recovery in startup process soon,
1087 * so we don't advise the OS to release cache pages associated with the
1088 * file like XLogFileClose() does.
1089 */
1090 if (close(recvFile) != 0)
1091 ereport(PANIC,
1093 errmsg("could not close WAL segment %s: %m",
1094 xlogfname)));
1095
1096 /*
1097 * Create .done file forcibly to prevent the streamed segment from being
1098 * archived later.
1099 */
1102 else
1104
1105 recvFile = -1;
1106}
1107
1108/*
1109 * Send reply message to primary, indicating our current WAL locations, oldest
1110 * xmin and the current time.
1111 *
1112 * If 'force' is not set, the message is only sent if enough time has
1113 * passed since last status update to reach wal_receiver_status_interval.
1114 * If wal_receiver_status_interval is disabled altogether and 'force' is
1115 * false, this is a no-op.
1116 *
1117 * If 'requestReply' is true, requests the server to reply immediately upon
1118 * receiving this message. This is used for heartbeats, when approaching
1119 * wal_receiver_timeout.
1120 */
1121static void
1123{
1128
1129 /*
1130 * If the user doesn't want status to be reported to the primary, be sure
1131 * to exit before doing anything at all.
1132 */
1133 if (!force && wal_receiver_status_interval <= 0)
1134 return;
1135
1136 /* Get current timestamp. */
1138
1139 /*
1140 * We can compare the write and flush positions to the last message we
1141 * sent without taking any lock, but the apply position requires a spin
1142 * lock, so we don't check that unless something else has changed or 10
1143 * seconds have passed. This means that the apply WAL location will
1144 * appear, from the primary's point of view, to lag slightly, but since
1145 * this is only for reporting purposes and only on idle systems, that's
1146 * probably OK.
1147 */
1148 if (!force
1149 && writePtr == LogstreamResult.Write
1150 && flushPtr == LogstreamResult.Flush
1152 return;
1153
1154 /* Make sure we wake up when it's time to send another reply. */
1156
1157 /* Construct a new message */
1158 writePtr = LogstreamResult.Write;
1159 flushPtr = LogstreamResult.Flush;
1161
1169
1170 /* Send it */
1171 elog(DEBUG2, "sending write %X/%08X flush %X/%08X apply %X/%08X%s",
1175 requestReply ? " (reply requested)" : "");
1176
1178}
1179
1180/*
1181 * Send hot standby feedback message to primary, plus the current time,
1182 * in case they don't have a watch.
1183 *
1184 * If the user disables feedback, send one final message to tell sender
1185 * to forget about the xmin on this standby. We also send this message
1186 * on first connect because a previous connection might have set xmin
1187 * on a replication slot. (If we're not using a slot it's harmless to
1188 * send a feedback message explicitly setting InvalidTransactionId).
1189 */
1190static void
1192{
1195 TransactionId nextXid;
1198 TransactionId xmin,
1199 catalog_xmin;
1200
1201 /* initially true so we always send at least one feedback message */
1202 static bool primary_has_standby_xmin = true;
1203
1204 /*
1205 * If the user doesn't want status to be reported to the primary, be sure
1206 * to exit before doing anything at all.
1207 */
1210 return;
1211
1212 /* Get current timestamp. */
1214
1215 /* Send feedback at most once per wal_receiver_status_interval. */
1217 return;
1218
1219 /* Make sure we wake up when it's time to send feedback again. */
1221
1222 /*
1223 * If Hot Standby is not yet accepting connections there is nothing to
1224 * send. Check this after the interval has expired to reduce number of
1225 * calls.
1226 *
1227 * Bailing out here also ensures that we don't send feedback until we've
1228 * read our own replication slot state, so we don't tell the primary to
1229 * discard needed xmin or catalog_xmin from any slots that may exist on
1230 * this replica.
1231 */
1232 if (!HotStandbyActive())
1233 return;
1234
1235 /*
1236 * Make the expensive call to get the oldest xmin once we are certain
1237 * everything else has been checked.
1238 */
1240 {
1241 GetReplicationHorizons(&xmin, &catalog_xmin);
1242 }
1243 else
1244 {
1245 xmin = InvalidTransactionId;
1246 catalog_xmin = InvalidTransactionId;
1247 }
1248
1249 /*
1250 * Get epoch and adjust if nextXid and oldestXmin are different sides of
1251 * the epoch boundary.
1252 */
1257 if (nextXid < xmin)
1258 xmin_epoch--;
1259 if (nextXid < catalog_xmin)
1261
1262 elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1263 xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1264
1265 /* Construct the message and send it. */
1271 pq_sendint32(&reply_message, catalog_xmin);
1274 if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1276 else
1278}
1279
1280/*
1281 * Update shared memory status upon receiving a message from primary.
1282 *
1283 * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1284 * message, reported by primary.
1285 */
1286static void
1288{
1290 TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1291
1292 /* Update shared-memory status */
1293 SpinLockAcquire(&walrcv->mutex);
1294 if (walrcv->latestWalEnd < walEnd)
1295 walrcv->latestWalEndTime = sendTime;
1296 walrcv->latestWalEnd = walEnd;
1297 walrcv->lastMsgSendTime = sendTime;
1298 walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1299 SpinLockRelease(&walrcv->mutex);
1300
1302 {
1303 char *sendtime;
1304 char *receipttime;
1305 int applyDelay;
1306
1307 /* Copy because timestamptz_to_str returns a static buffer */
1309 receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1311
1312 /* apply delay is not available */
1313 if (applyDelay == -1)
1314 elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1315 sendtime,
1318 else
1319 elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1320 sendtime,
1322 applyDelay,
1324
1325 pfree(sendtime);
1327 }
1328}
1329
1330/*
1331 * Compute the next wakeup time for a given wakeup reason. Can be called to
1332 * initialize a wakeup time, to adjust it for the next wakeup, or to
1333 * reinitialize it when GUCs have changed. We ask the caller to pass in the
1334 * value of "now" because this frequently avoids multiple calls of
1335 * GetCurrentTimestamp(). It had better be a reasonably up-to-date value
1336 * though.
1337 */
1338static void
1340{
1341 switch (reason)
1342 {
1344 if (wal_receiver_timeout <= 0)
1345 wakeup[reason] = TIMESTAMP_INFINITY;
1346 else
1348 break;
1349 case WALRCV_WAKEUP_PING:
1350 if (wal_receiver_timeout <= 0)
1351 wakeup[reason] = TIMESTAMP_INFINITY;
1352 else
1354 break;
1357 wakeup[reason] = TIMESTAMP_INFINITY;
1358 else
1360 break;
1363 wakeup[reason] = TIMESTAMP_INFINITY;
1364 else
1366 break;
1367 /* there's intentionally no default: here */
1368 }
1369}
1370
1371/*
1372 * Wake up the walreceiver main loop.
1373 *
1374 * This is called by the startup process whenever interesting xlog records
1375 * are applied, so that walreceiver can check if it needs to send an apply
1376 * notification back to the primary which may be waiting in a COMMIT with
1377 * synchronous_commit = remote_apply.
1378 */
1379void
1381{
1382 ProcNumber procno;
1383
1384 WalRcv->force_reply = true;
1385 /* fetching the proc number is probably atomic, but don't rely on it */
1387 procno = WalRcv->procno;
1389 if (procno != INVALID_PROC_NUMBER)
1390 SetLatch(&GetPGProcByNumber(procno)->procLatch);
1391}
1392
1393/*
1394 * Return a string constant representing the state. This is used
1395 * in system functions and views, and should *not* be translated.
1396 */
1397static const char *
1399{
1400 switch (state)
1401 {
1402 case WALRCV_STOPPED:
1403 return "stopped";
1404 case WALRCV_STARTING:
1405 return "starting";
1406 case WALRCV_CONNECTING:
1407 return "connecting";
1408 case WALRCV_STREAMING:
1409 return "streaming";
1410 case WALRCV_WAITING:
1411 return "waiting";
1412 case WALRCV_RESTARTING:
1413 return "restarting";
1414 case WALRCV_STOPPING:
1415 return "stopping";
1416 }
1417 return "UNKNOWN";
1418}
1419
1420/*
1421 * Returns activity of WAL receiver, including pid, state and xlog locations
1422 * received from the WAL sender of another server.
1423 */
1424Datum
1426{
1427 TupleDesc tupdesc;
1428 Datum *values;
1429 bool *nulls;
1430 int pid;
1431 bool ready_to_display;
1438 TimestampTz last_send_time;
1442 char sender_host[NI_MAXHOST];
1443 int sender_port = 0;
1444 char slotname[NAMEDATALEN];
1445 char conninfo[MAXCONNINFO];
1446
1447 /* Take a lock to ensure value consistency */
1449 pid = (int) WalRcv->pid;
1450 ready_to_display = WalRcv->ready_to_display;
1456 last_send_time = WalRcv->lastMsgSendTime;
1460 strlcpy(slotname, WalRcv->slotname, sizeof(slotname));
1461 strlcpy(sender_host, WalRcv->sender_host, sizeof(sender_host));
1462 sender_port = WalRcv->sender_port;
1463 strlcpy(conninfo, WalRcv->conninfo, sizeof(conninfo));
1465
1466 /*
1467 * No WAL receiver (or not ready yet), just return a tuple with NULL
1468 * values
1469 */
1470 if (pid == 0 || !ready_to_display)
1472
1473 /*
1474 * Read "writtenUpto" without holding a spinlock. Note that it may not be
1475 * consistent with the other shared variables of the WAL receiver
1476 * protected by a spinlock, but this should not be used for data integrity
1477 * checks.
1478 */
1480
1481 /* determine result type */
1482 if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1483 elog(ERROR, "return type must be a row type");
1484
1485 values = palloc0_array(Datum, tupdesc->natts);
1486 nulls = palloc0_array(bool, tupdesc->natts);
1487
1488 /* Fetch values */
1489 values[0] = Int32GetDatum(pid);
1490
1492 {
1493 /*
1494 * Only superusers and roles with privileges of pg_read_all_stats can
1495 * see details. Other users only get the pid value to know whether it
1496 * is a WAL receiver, but no details.
1497 */
1498 memset(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1499 }
1500 else
1501 {
1503
1505 nulls[2] = true;
1506 else
1510 nulls[4] = true;
1511 else
1514 nulls[5] = true;
1515 else
1518 if (last_send_time == 0)
1519 nulls[7] = true;
1520 else
1521 values[7] = TimestampTzGetDatum(last_send_time);
1522 if (last_receipt_time == 0)
1523 nulls[8] = true;
1524 else
1527 nulls[9] = true;
1528 else
1530 if (latest_end_time == 0)
1531 nulls[10] = true;
1532 else
1534 if (*slotname == '\0')
1535 nulls[11] = true;
1536 else
1537 values[11] = CStringGetTextDatum(slotname);
1538 if (*sender_host == '\0')
1539 nulls[12] = true;
1540 else
1541 values[12] = CStringGetTextDatum(sender_host);
1542 if (sender_port == 0)
1543 nulls[13] = true;
1544 else
1545 values[13] = Int32GetDatum(sender_port);
1546 if (*conninfo == '\0')
1547 nulls[14] = true;
1548 else
1549 values[14] = CStringGetTextDatum(conninfo);
1550 }
1551
1552 /* Returns the record as Datum */
1554}
bool has_privs_of_role(Oid member, Oid role)
Definition acl.c:5284
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition atomics.h:485
#define pg_memory_barrier()
Definition atomics.h:141
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition atomics.h:467
void AuxiliaryProcessMainCommon(void)
Definition auxprocess.c:39
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition timeline.c:463
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition timeline.c:222
sigset_t UnBlockSig
Definition pqsignal.c:22
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition timestamp.c:1757
TimestampTz GetCurrentTimestamp(void)
Definition timestamp.c:1645
const char * timestamptz_to_str(TimestampTz t)
Definition timestamp.c:1862
Datum now(PG_FUNCTION_ARGS)
Definition timestamp.c:1609
static Datum values[MAXATTR]
Definition bootstrap.c:155
#define CStringGetTextDatum(s)
Definition builtins.h:97
#define Min(x, y)
Definition c.h:997
#define Assert(condition)
Definition c.h:873
int64_t int64
Definition c.h:543
#define UINT64_FORMAT
Definition c.h:565
uint32_t uint32
Definition c.h:546
uint32 TransactionId
Definition c.h:666
size_t Size
Definition c.h:619
void ConditionVariableBroadcast(ConditionVariable *cv)
int64 TimestampTz
Definition timestamp.h:39
#define TIMESTAMP_INFINITY
Definition timestamp.h:151
void load_file(const char *filename, bool restricted)
Definition dfmgr.c:149
int errmsg_internal(const char *fmt,...)
Definition elog.c:1170
int errcode_for_file_access(void)
Definition elog.c:886
int errdetail(const char *fmt,...)
Definition elog.c:1216
bool message_level_is_interesting(int elevel)
Definition elog.c:273
int errcode(int sqlerrcode)
Definition elog.c:863
int errmsg(const char *fmt,...)
Definition elog.c:1080
#define LOG
Definition elog.h:31
#define FATAL
Definition elog.h:41
#define DEBUG2
Definition elog.h:29
#define PANIC
Definition elog.h:42
#define DEBUG1
Definition elog.h:30
#define ERROR
Definition elog.h:39
#define elog(elevel,...)
Definition elog.h:226
#define ereport(elevel,...)
Definition elog.h:150
void err(int eval, const char *fmt,...)
Definition err.c:43
#define palloc0_array(type, count)
Definition fe_memutils.h:77
#define PG_RETURN_NULL()
Definition fmgr.h:346
#define PG_RETURN_DATUM(x)
Definition fmgr.h:354
#define PG_FUNCTION_ARGS
Definition fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition funcapi.c:276
@ TYPEFUNC_COMPOSITE
Definition funcapi.h:149
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition funcapi.h:230
int MyProcPid
Definition globals.c:47
ProcNumber MyProcNumber
Definition globals.c:90
struct Latch * MyLatch
Definition globals.c:63
void ProcessConfigFile(GucContext context)
Definition guc-file.l:120
@ PGC_SIGHUP
Definition guc.h:75
char * cluster_name
Definition guc_tables.c:564
return str start
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition heaptuple.c:1117
#define close(a)
Definition win32.h:12
volatile sig_atomic_t ConfigReloadPending
Definition interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition ipc.c:372
void proc_exit(int code)
Definition ipc.c:105
int i
Definition isn.c:77
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition latch.c:223
void SetLatch(Latch *latch)
Definition latch.c:290
void ResetLatch(Latch *latch)
Definition latch.c:374
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition latch.c:172
char * pstrdup(const char *in)
Definition mcxt.c:1781
void pfree(void *pointer)
Definition mcxt.c:1616
#define CHECK_FOR_INTERRUPTS()
Definition miscadmin.h:123
Oid GetUserId(void)
Definition miscinit.c:469
void * arg
#define NAMEDATALEN
const void size_t len
static Datum LSNGetDatum(XLogRecPtr X)
Definition pg_lsn.h:31
static char buf[DEFAULT_XLOG_SEG_SIZE]
#define die(msg)
@ IOOBJECT_WAL
Definition pgstat.h:279
@ IOCONTEXT_NORMAL
Definition pgstat.h:289
@ IOOP_WRITE
Definition pgstat.h:316
instr_time pgstat_prepare_io_time(bool track_io_guc)
Definition pgstat_io.c:91
void pgstat_count_io_op_time(IOObject io_object, IOContext io_context, IOOp io_op, instr_time start_time, uint32 cnt, uint64 bytes)
Definition pgstat_io.c:122
void pgstat_report_wal(bool force)
Definition pgstat_wal.c:46
#define pqsignal
Definition port.h:547
#define pg_pwrite
Definition port.h:248
int pgsocket
Definition port.h:29
#define snprintf
Definition port.h:260
#define PGINVALID_SOCKET
Definition port.h:31
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition strlcpy.c:45
off_t pgoff_t
Definition port.h:421
static Datum PointerGetDatum(const void *X)
Definition postgres.h:352
uint64_t Datum
Definition postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition postgres.h:342
static Datum Int32GetDatum(int32 X)
Definition postgres.h:222
int pq_getmsgbyte(StringInfo msg)
Definition pqformat.c:398
int64 pq_getmsgint64(StringInfo msg)
Definition pqformat.c:452
static void pq_sendint32(StringInfo buf, uint32 i)
Definition pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition pqformat.h:152
static int fb(int x)
#define GetPGProcByNumber(n)
Definition proc.h:440
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition procarray.c:1992
#define INVALID_PROC_NUMBER
Definition procnumber.h:26
int ProcNumber
Definition procnumber.h:24
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition procsignal.c:677
#define PqReplMsg_WALData
Definition protocol.h:77
#define PqReplMsg_Keepalive
Definition protocol.h:75
#define PqReplMsg_HotStandbyFeedback
Definition protocol.h:82
#define PqReplMsg_StandbyStatusUpdate
Definition protocol.h:84
bool update_process_title
Definition ps_status.c:31
static void set_ps_display(const char *activity)
Definition ps_status.h:40
#define SpinLockRelease(lock)
Definition spin.h:61
#define SpinLockAcquire(lock)
Definition spin.h:59
void resetStringInfo(StringInfo str)
Definition stringinfo.c:126
void initStringInfo(StringInfo str)
Definition stringinfo.c:97
static void initReadOnlyStringInfo(StringInfo str, char *data, int len)
Definition stringinfo.h:157
pg_atomic_uint64 minWaitedLSN[WAIT_LSN_TYPE_COUNT]
Definition xlogwait.h:85
TimestampTz lastMsgReceiptTime
XLogRecPtr latestWalEnd
TimeLineID receiveStartTLI
Definition walreceiver.h:88
TimeLineID receivedTLI
Definition walreceiver.h:98
char slotname[NAMEDATALEN]
char sender_host[NI_MAXHOST]
XLogRecPtr receiveStart
Definition walreceiver.h:87
XLogRecPtr flushedUpto
Definition walreceiver.h:97
sig_atomic_t force_reply
ProcNumber procno
Definition walreceiver.h:68
pg_atomic_uint64 writtenUpto
TimestampTz lastMsgSendTime
WalRcvState walRcvState
Definition walreceiver.h:72
TimestampTz latestWalEndTime
bool ready_to_display
slock_t mutex
char conninfo[MAXCONNINFO]
#define InvalidTransactionId
Definition transam.h:31
#define EpochFromFullTransactionId(x)
Definition transam.h:47
#define XidFromFullTransactionId(x)
Definition transam.h:48
#define TransactionIdIsValid(xid)
Definition transam.h:41
static Datum TimestampTzGetDatum(TimestampTz X)
Definition timestamp.h:52
#define TimestampTzPlusMilliseconds(tz, ms)
Definition timestamp.h:85
#define TimestampTzPlusSeconds(tz, s)
Definition timestamp.h:86
FullTransactionId ReadNextFullTransactionId(void)
Definition varsup.c:288
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition wait_event.h:69
static void pgstat_report_wait_end(void)
Definition wait_event.h:85
const char * type
#define WL_SOCKET_READABLE
#define WL_TIMEOUT
#define WL_EXIT_ON_PM_DEATH
#define WL_LATCH_SET
#define NUM_WALRCV_WAKEUPS
static WalReceiverConn * wrconn
Definition walreceiver.c:94
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
void WalReceiverMain(const void *startup_data, size_t startup_data_len)
static StringInfoData reply_message
bool hot_standby_feedback
Definition walreceiver.c:91
XLogRecPtr Flush
static int recvFile
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
int wal_receiver_status_interval
Definition walreceiver.c:89
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
XLogRecPtr Write
static void XLogWalRcvFlush(bool dying, TimeLineID tli)
static TimeLineID recvFileTLI
WalReceiverFunctionsType * WalReceiverFunctions
Definition walreceiver.c:95
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
int wal_receiver_timeout
Definition walreceiver.c:90
static XLogSegNo recvSegNo
static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli)
static void XLogWalRcvSendHSFeedback(bool immed)
WalRcvWakeupReason
@ WALRCV_WAKEUP_TERMINATE
@ WALRCV_WAKEUP_REPLY
@ WALRCV_WAKEUP_PING
@ WALRCV_WAKEUP_HSFEEDBACK
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
static void WalRcvComputeNextWakeup(WalRcvWakeupReason reason, TimestampTz now)
static void WalRcvDie(int code, Datum arg)
static void XLogWalRcvSendReply(bool force, bool requestReply)
static struct @19 LogstreamResult
static const char * WalRcvGetStateString(WalRcvState state)
void WalRcvForceReply(void)
#define AllowCascadeReplication()
Definition walreceiver.h:40
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
#define walrcv_startstreaming(conn, options)
#define walrcv_connect(conninfo, replication, logical, must_use_password, appname, err)
#define walrcv_send(conn, buffer, nbytes)
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
#define MAXCONNINFO
Definition walreceiver.h:37
#define walrcv_create_slot(conn, slotname, temporary, two_phase, failover, snapshot_action, lsn)
#define walrcv_get_conninfo(conn)
#define walrcv_endstreaming(conn, next_tli)
WalRcvState
Definition walreceiver.h:46
@ WALRCV_STARTING
Definition walreceiver.h:48
@ WALRCV_STOPPED
Definition walreceiver.h:47
@ WALRCV_CONNECTING
Definition walreceiver.h:50
@ WALRCV_RESTARTING
Definition walreceiver.h:53
@ WALRCV_STREAMING
Definition walreceiver.h:51
@ WALRCV_WAITING
Definition walreceiver.h:52
@ WALRCV_STOPPING
Definition walreceiver.h:54
#define walrcv_identify_system(conn, primary_tli)
#define walrcv_disconnect(conn)
#define walrcv_get_backend_pid(conn)
#define walrcv_receive(conn, buffer, wait_fd)
WalRcvData * WalRcv
int GetReplicationApplyDelay(void)
int GetReplicationTransferLatency(void)
void WalSndWakeup(bool physical, bool logical)
Definition walsender.c:3810
#define SIGCHLD
Definition win32_port.h:168
#define SIGHUP
Definition win32_port.h:158
#define SIGPIPE
Definition win32_port.h:163
#define SIGUSR1
Definition win32_port.h:170
#define SIGALRM
Definition win32_port.h:164
#define SIGUSR2
Definition win32_port.h:171
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition xlog.c:3417
uint64 GetSystemIdentifier(void)
Definition xlog.c:4627
bool RecoveryInProgress(void)
Definition xlog.c:6460
int XLogArchiveMode
Definition xlog.c:122
int wal_segment_size
Definition xlog.c:146
bool track_wal_io_timing
Definition xlog.c:140
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition xlog.c:8858
@ ARCHIVE_MODE_ALWAYS
Definition xlog.h:68
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
static void TLHistoryFileName(char *fname, TimeLineID tli)
void XLogArchiveForceDone(const char *xlog)
void XLogArchiveNotify(const char *xlog)
#define XLogRecPtrIsValid(r)
Definition xlogdefs.h:29
#define LSN_FORMAT_ARGS(lsn)
Definition xlogdefs.h:47
uint64 XLogRecPtr
Definition xlogdefs.h:21
#define InvalidXLogRecPtr
Definition xlogdefs.h:28
uint32 TimeLineID
Definition xlogdefs.h:63
uint64 XLogSegNo
Definition xlogdefs.h:52
bool HotStandbyActive(void)
void WakeupRecovery(void)
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
struct WaitLSNState * waitLSNState
Definition xlogwait.c:68
void WaitLSNWakeup(WaitLSNType lsnType, XLogRecPtr currentLSN)
Definition xlogwait.c:317
@ WAIT_LSN_TYPE_STANDBY_FLUSH
Definition xlogwait.h:41
@ WAIT_LSN_TYPE_STANDBY_WRITE
Definition xlogwait.h:40