PostgreSQL Source Code  git master
walreceiver.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walreceiver.c
4  *
5  * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6  * is the process in the standby server that takes charge of receiving
7  * XLOG records from a primary server during streaming replication.
8  *
9  * When the startup process determines that it's time to start streaming,
10  * it instructs postmaster to start walreceiver. Walreceiver first connects
11  * to the primary server (it will be served by a walsender process
12  * in the primary server), and then keeps receiving XLOG records and
13  * writing them to the disk as long as the connection is alive. As XLOG
14  * records are received and flushed to disk, it updates the
15  * WalRcv->flushedUpto variable in shared memory, to inform the startup
16  * process of how far it can proceed with XLOG replay.
17  *
18  * A WAL receiver cannot directly load GUC parameters used when establishing
19  * its connection to the primary. Instead it relies on parameter values
20  * that are passed down by the startup process when streaming is requested.
21  * This applies, for example, to the replication slot and the connection
22  * string to be used for the connection with the primary.
23  *
24  * If the primary server ends streaming, but doesn't disconnect, walreceiver
25  * goes into "waiting" mode, and waits for the startup process to give new
26  * instructions. The startup process will treat that the same as
27  * disconnection, and will rescan the archive/pg_wal directory. But when the
28  * startup process wants to try streaming replication again, it will just
29  * nudge the existing walreceiver process that's waiting, instead of launching
30  * a new one.
31  *
32  * Normal termination is by SIGTERM, which instructs the walreceiver to
33  * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34  * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35  * of the connection and a FATAL error are treated not as a crash but as
36  * normal operation.
37  *
38  * This file contains the server-facing parts of walreceiver. The libpq-
39  * specific parts are in the libpqwalreceiver module. It's loaded
40  * dynamically to avoid linking the server with libpq.
41  *
42  * Portions Copyright (c) 2010-2024, PostgreSQL Global Development Group
43  *
44  *
45  * IDENTIFICATION
46  * src/backend/replication/walreceiver.c
47  *
48  *-------------------------------------------------------------------------
49  */
50 #include "postgres.h"
51 
52 #include <unistd.h>
53 
54 #include "access/htup_details.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/xlog_internal.h"
58 #include "access/xlogarchive.h"
59 #include "access/xlogrecovery.h"
60 #include "catalog/pg_authid.h"
61 #include "funcapi.h"
62 #include "libpq/pqformat.h"
63 #include "libpq/pqsignal.h"
64 #include "miscadmin.h"
65 #include "pgstat.h"
66 #include "postmaster/auxprocess.h"
67 #include "postmaster/interrupt.h"
69 #include "replication/walsender.h"
70 #include "storage/ipc.h"
71 #include "storage/proc.h"
72 #include "storage/procarray.h"
73 #include "storage/procsignal.h"
74 #include "utils/acl.h"
75 #include "utils/builtins.h"
76 #include "utils/guc.h"
77 #include "utils/pg_lsn.h"
78 #include "utils/ps_status.h"
79 #include "utils/timestamp.h"
80 
81 
82 /*
83  * GUC variables. (Other variables that affect walreceiver are in xlog.c
84  * because they're passed down from the startup process, for better
85  * synchronization.)
86  */
90 
91 /* libpqwalreceiver connection */
92 static WalReceiverConn *wrconn = NULL;
94 
95 /*
96  * These variables are used similarly to openLogFile/SegNo,
97  * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
98  * corresponding the filename of recvFile.
99  */
100 static int recvFile = -1;
102 static XLogSegNo recvSegNo = 0;
103 
104 /*
105  * LogstreamResult indicates the byte positions that we have already
106  * written/fsynced.
107  */
108 static struct
109 {
110  XLogRecPtr Write; /* last byte + 1 written out in the standby */
111  XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
113 
114 /*
115  * Reasons to wake up and perform periodic tasks.
116  */
117 typedef enum WalRcvWakeupReason
118 {
123 #define NUM_WALRCV_WAKEUPS (WALRCV_WAKEUP_HSFEEDBACK + 1)
125 
126 /*
127  * Wake up times for periodic tasks.
128  */
130 
132 
133 /* Prototypes for private functions */
134 static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
135 static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
136 static void WalRcvDie(int code, Datum arg);
137 static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len,
138  TimeLineID tli);
139 static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr,
140  TimeLineID tli);
141 static void XLogWalRcvFlush(bool dying, TimeLineID tli);
142 static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli);
143 static void XLogWalRcvSendReply(bool force, bool requestReply);
144 static void XLogWalRcvSendHSFeedback(bool immed);
145 static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
147 
148 /*
149  * Process any interrupts the walreceiver process may have received.
150  * This should be called any time the process's latch has become set.
151  *
152  * Currently, only SIGTERM is of interest. We can't just exit(1) within the
153  * SIGTERM signal handler, because the signal might arrive in the middle of
154  * some critical operation, like while we're holding a spinlock. Instead, the
155  * signal handler sets a flag variable as well as setting the process's latch.
156  * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
157  * latch has become set. Operations that could block for a long time, such as
158  * reading from a remote server, must pay attention to the latch too; see
159  * libpqrcv_PQgetResult for example.
160  */
161 void
163 {
164  /*
165  * Although walreceiver interrupt handling doesn't use the same scheme as
166  * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
167  * any incoming signals on Win32, and also to make sure we process any
168  * barrier events.
169  */
171 
173  {
174  ereport(FATAL,
175  (errcode(ERRCODE_ADMIN_SHUTDOWN),
176  errmsg("terminating walreceiver process due to administrator command")));
177  }
178 }
179 
180 
181 /* Main entry point for walreceiver process */
182 void
183 WalReceiverMain(char *startup_data, size_t startup_data_len)
184 {
185  char conninfo[MAXCONNINFO];
186  char *tmp_conninfo;
187  char slotname[NAMEDATALEN];
188  bool is_temp_slot;
189  XLogRecPtr startpoint;
190  TimeLineID startpointTLI;
191  TimeLineID primaryTLI;
192  bool first_stream;
193  WalRcvData *walrcv;
195  char *err;
196  char *sender_host = NULL;
197  int sender_port = 0;
198  char *appname;
199 
200  Assert(startup_data_len == 0);
201 
204 
205  /*
206  * WalRcv should be set up already (if we are a backend, we inherit this
207  * by fork() or EXEC_BACKEND mechanism from the postmaster).
208  */
209  walrcv = WalRcv;
210  Assert(walrcv != NULL);
211 
212  /*
213  * Mark walreceiver as running in shared memory.
214  *
215  * Do this as early as possible, so that if we fail later on, we'll set
216  * state to STOPPED. If we die before this, the startup process will keep
217  * waiting for us to start up, until it times out.
218  */
219  SpinLockAcquire(&walrcv->mutex);
220  Assert(walrcv->pid == 0);
221  switch (walrcv->walRcvState)
222  {
223  case WALRCV_STOPPING:
224  /* If we've already been requested to stop, don't start up. */
225  walrcv->walRcvState = WALRCV_STOPPED;
226  /* fall through */
227 
228  case WALRCV_STOPPED:
229  SpinLockRelease(&walrcv->mutex);
231  proc_exit(1);
232  break;
233 
234  case WALRCV_STARTING:
235  /* The usual case */
236  break;
237 
238  case WALRCV_WAITING:
239  case WALRCV_STREAMING:
240  case WALRCV_RESTARTING:
241  default:
242  /* Shouldn't happen */
243  SpinLockRelease(&walrcv->mutex);
244  elog(PANIC, "walreceiver still running according to shared memory state");
245  }
246  /* Advertise our PID so that the startup process can kill us */
247  walrcv->pid = MyProcPid;
248  walrcv->walRcvState = WALRCV_STREAMING;
249 
250  /* Fetch information required to start streaming */
251  walrcv->ready_to_display = false;
252  strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
253  strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
254  is_temp_slot = walrcv->is_temp_slot;
255  startpoint = walrcv->receiveStart;
256  startpointTLI = walrcv->receiveStartTLI;
257 
258  /*
259  * At most one of is_temp_slot and slotname can be set; otherwise,
260  * RequestXLogStreaming messed up.
261  */
262  Assert(!is_temp_slot || (slotname[0] == '\0'));
263 
264  /* Initialise to a sanish value */
266  walrcv->lastMsgSendTime =
267  walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
268 
269  /* Report the latch to use to awaken this process */
270  walrcv->latch = &MyProc->procLatch;
271 
272  SpinLockRelease(&walrcv->mutex);
273 
275 
276  /* Arrange to clean up at walreceiver exit */
277  on_shmem_exit(WalRcvDie, PointerGetDatum(&startpointTLI));
278 
279  /* Properly accept or ignore signals the postmaster might send us */
280  pqsignal(SIGHUP, SignalHandlerForConfigReload); /* set flag to read config
281  * file */
282  pqsignal(SIGINT, SIG_IGN);
283  pqsignal(SIGTERM, SignalHandlerForShutdownRequest); /* request shutdown */
284  /* SIGQUIT handler was already set up by InitPostmasterChild */
289 
290  /* Reset some signals that are accepted by postmaster but not here */
292 
293  /* Load the libpq-specific functions */
294  load_file("libpqwalreceiver", false);
295  if (WalReceiverFunctions == NULL)
296  elog(ERROR, "libpqwalreceiver didn't initialize correctly");
297 
298  /* Unblock signals (they were blocked when the postmaster forked us) */
299  sigprocmask(SIG_SETMASK, &UnBlockSig, NULL);
300 
301  /* Establish the connection to the primary for XLOG streaming */
302  appname = cluster_name[0] ? cluster_name : "walreceiver";
303  wrconn = walrcv_connect(conninfo, true, false, false, appname, &err);
304  if (!wrconn)
305  ereport(ERROR,
306  (errcode(ERRCODE_CONNECTION_FAILURE),
307  errmsg("streaming replication receiver \"%s\" could not connect to the primary server: %s",
308  appname, err)));
309 
310  /*
311  * Save user-visible connection string. This clobbers the original
312  * conninfo, for security. Also save host and port of the sender server
313  * this walreceiver is connected to.
314  */
315  tmp_conninfo = walrcv_get_conninfo(wrconn);
316  walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
317  SpinLockAcquire(&walrcv->mutex);
318  memset(walrcv->conninfo, 0, MAXCONNINFO);
319  if (tmp_conninfo)
320  strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
321 
322  memset(walrcv->sender_host, 0, NI_MAXHOST);
323  if (sender_host)
324  strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
325 
326  walrcv->sender_port = sender_port;
327  walrcv->ready_to_display = true;
328  SpinLockRelease(&walrcv->mutex);
329 
330  if (tmp_conninfo)
331  pfree(tmp_conninfo);
332 
333  if (sender_host)
334  pfree(sender_host);
335 
336  first_stream = true;
337  for (;;)
338  {
339  char *primary_sysid;
340  char standby_sysid[32];
342 
343  /*
344  * Check that we're connected to a valid server using the
345  * IDENTIFY_SYSTEM replication command.
346  */
347  primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
348 
349  snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
351  if (strcmp(primary_sysid, standby_sysid) != 0)
352  {
353  ereport(ERROR,
354  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
355  errmsg("database system identifier differs between the primary and standby"),
356  errdetail("The primary's identifier is %s, the standby's identifier is %s.",
357  primary_sysid, standby_sysid)));
358  }
359 
360  /*
361  * Confirm that the current timeline of the primary is the same or
362  * ahead of ours.
363  */
364  if (primaryTLI < startpointTLI)
365  ereport(ERROR,
366  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
367  errmsg("highest timeline %u of the primary is behind recovery timeline %u",
368  primaryTLI, startpointTLI)));
369 
370  /*
371  * Get any missing history files. We do this always, even when we're
372  * not interested in that timeline, so that if we're promoted to
373  * become the primary later on, we don't select the same timeline that
374  * was already used in the current primary. This isn't bullet-proof -
375  * you'll need some external software to manage your cluster if you
376  * need to ensure that a unique timeline id is chosen in every case,
377  * but let's avoid the confusion of timeline id collisions where we
378  * can.
379  */
380  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
381 
382  /*
383  * Create temporary replication slot if requested, and update slot
384  * name in shared memory. (Note the slot name cannot already be set
385  * in this case.)
386  */
387  if (is_temp_slot)
388  {
389  snprintf(slotname, sizeof(slotname),
390  "pg_walreceiver_%lld",
391  (long long int) walrcv_get_backend_pid(wrconn));
392 
393  walrcv_create_slot(wrconn, slotname, true, false, false, 0, NULL);
394 
395  SpinLockAcquire(&walrcv->mutex);
396  strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
397  SpinLockRelease(&walrcv->mutex);
398  }
399 
400  /*
401  * Start streaming.
402  *
403  * We'll try to start at the requested starting point and timeline,
404  * even if it's different from the server's latest timeline. In case
405  * we've already reached the end of the old timeline, the server will
406  * finish the streaming immediately, and we will go back to await
407  * orders from the startup process. If recovery_target_timeline is
408  * 'latest', the startup process will scan pg_wal and find the new
409  * history file, bump recovery target timeline, and ask us to restart
410  * on the new timeline.
411  */
412  options.logical = false;
413  options.startpoint = startpoint;
414  options.slotname = slotname[0] != '\0' ? slotname : NULL;
415  options.proto.physical.startpointTLI = startpointTLI;
417  {
418  if (first_stream)
419  ereport(LOG,
420  (errmsg("started streaming WAL from primary at %X/%X on timeline %u",
421  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
422  else
423  ereport(LOG,
424  (errmsg("restarted WAL streaming at %X/%X on timeline %u",
425  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
426  first_stream = false;
427 
428  /* Initialize LogstreamResult and buffers for processing messages */
431 
432  /* Initialize nap wakeup times. */
434  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
436 
437  /* Send initial reply/feedback messages. */
438  XLogWalRcvSendReply(true, false);
440 
441  /* Loop until end-of-streaming or error */
442  for (;;)
443  {
444  char *buf;
445  int len;
446  bool endofwal = false;
447  pgsocket wait_fd = PGINVALID_SOCKET;
448  int rc;
449  TimestampTz nextWakeup;
450  long nap;
451 
452  /*
453  * Exit walreceiver if we're not in recovery. This should not
454  * happen, but cross-check the status here.
455  */
456  if (!RecoveryInProgress())
457  ereport(FATAL,
458  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
459  errmsg("cannot continue WAL streaming, recovery has already ended")));
460 
461  /* Process any requests or signals received recently */
463 
465  {
466  ConfigReloadPending = false;
468  /* recompute wakeup times */
470  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
473  }
474 
475  /* See if we can read data immediately */
476  len = walrcv_receive(wrconn, &buf, &wait_fd);
477  if (len != 0)
478  {
479  /*
480  * Process the received data, and any subsequent data we
481  * can read without blocking.
482  */
483  for (;;)
484  {
485  if (len > 0)
486  {
487  /*
488  * Something was received from primary, so adjust
489  * the ping and terminate wakeup times.
490  */
493  now);
495  XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1,
496  startpointTLI);
497  }
498  else if (len == 0)
499  break;
500  else if (len < 0)
501  {
502  ereport(LOG,
503  (errmsg("replication terminated by primary server"),
504  errdetail("End of WAL reached on timeline %u at %X/%X.",
505  startpointTLI,
507  endofwal = true;
508  break;
509  }
510  len = walrcv_receive(wrconn, &buf, &wait_fd);
511  }
512 
513  /* Let the primary know that we received some data. */
514  XLogWalRcvSendReply(false, false);
515 
516  /*
517  * If we've written some records, flush them to disk and
518  * let the startup process and primary server know about
519  * them.
520  */
521  XLogWalRcvFlush(false, startpointTLI);
522  }
523 
524  /* Check if we need to exit the streaming loop. */
525  if (endofwal)
526  break;
527 
528  /* Find the soonest wakeup time, to limit our nap. */
529  nextWakeup = TIMESTAMP_INFINITY;
530  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
531  nextWakeup = Min(wakeup[i], nextWakeup);
532 
533  /* Calculate the nap time, clamping as necessary. */
535  nap = TimestampDifferenceMilliseconds(now, nextWakeup);
536 
537  /*
538  * Ideally we would reuse a WaitEventSet object repeatedly
539  * here to avoid the overheads of WaitLatchOrSocket on epoll
540  * systems, but we can't be sure that libpq (or any other
541  * walreceiver implementation) has the same socket (even if
542  * the fd is the same number, it may have been closed and
543  * reopened since the last time). In future, if there is a
544  * function for removing sockets from WaitEventSet, then we
545  * could add and remove just the socket each time, potentially
546  * avoiding some system calls.
547  */
548  Assert(wait_fd != PGINVALID_SOCKET);
552  wait_fd,
553  nap,
554  WAIT_EVENT_WAL_RECEIVER_MAIN);
555  if (rc & WL_LATCH_SET)
556  {
559 
560  if (walrcv->force_reply)
561  {
562  /*
563  * The recovery process has asked us to send apply
564  * feedback now. Make sure the flag is really set to
565  * false in shared memory before sending the reply, so
566  * we don't miss a new request for a reply.
567  */
568  walrcv->force_reply = false;
570  XLogWalRcvSendReply(true, false);
571  }
572  }
573  if (rc & WL_TIMEOUT)
574  {
575  /*
576  * We didn't receive anything new. If we haven't heard
577  * anything from the server for more than
578  * wal_receiver_timeout / 2, ping the server. Also, if
579  * it's been longer than wal_receiver_status_interval
580  * since the last update we sent, send a status update to
581  * the primary anyway, to report any progress in applying
582  * WAL.
583  */
584  bool requestReply = false;
585 
586  /*
587  * Check if time since last receive from primary has
588  * reached the configured limit.
589  */
592  ereport(ERROR,
593  (errcode(ERRCODE_CONNECTION_FAILURE),
594  errmsg("terminating walreceiver due to timeout")));
595 
596  /*
597  * If we didn't receive anything new for half of receiver
598  * replication timeout, then ping the server.
599  */
600  if (now >= wakeup[WALRCV_WAKEUP_PING])
601  {
602  requestReply = true;
604  }
605 
606  XLogWalRcvSendReply(requestReply, requestReply);
608  }
609  }
610 
611  /*
612  * The backend finished streaming. Exit streaming COPY-mode from
613  * our side, too.
614  */
615  walrcv_endstreaming(wrconn, &primaryTLI);
616 
617  /*
618  * If the server had switched to a new timeline that we didn't
619  * know about when we began streaming, fetch its timeline history
620  * file now.
621  */
622  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
623  }
624  else
625  ereport(LOG,
626  (errmsg("primary server contains no more WAL on requested timeline %u",
627  startpointTLI)));
628 
629  /*
630  * End of WAL reached on the requested timeline. Close the last
631  * segment, and await for new orders from the startup process.
632  */
633  if (recvFile >= 0)
634  {
635  char xlogfname[MAXFNAMELEN];
636 
637  XLogWalRcvFlush(false, startpointTLI);
639  if (close(recvFile) != 0)
640  ereport(PANIC,
642  errmsg("could not close WAL segment %s: %m",
643  xlogfname)));
644 
645  /*
646  * Create .done file forcibly to prevent the streamed segment from
647  * being archived later.
648  */
650  XLogArchiveForceDone(xlogfname);
651  else
652  XLogArchiveNotify(xlogfname);
653  }
654  recvFile = -1;
655 
656  elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
657  WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
658  }
659  /* not reached */
660 }
661 
662 /*
663  * Wait for startup process to set receiveStart and receiveStartTLI.
664  */
665 static void
667 {
668  WalRcvData *walrcv = WalRcv;
669  int state;
670 
671  SpinLockAcquire(&walrcv->mutex);
672  state = walrcv->walRcvState;
673  if (state != WALRCV_STREAMING)
674  {
675  SpinLockRelease(&walrcv->mutex);
676  if (state == WALRCV_STOPPING)
677  proc_exit(0);
678  else
679  elog(FATAL, "unexpected walreceiver state");
680  }
681  walrcv->walRcvState = WALRCV_WAITING;
683  walrcv->receiveStartTLI = 0;
684  SpinLockRelease(&walrcv->mutex);
685 
686  set_ps_display("idle");
687 
688  /*
689  * nudge startup process to notice that we've stopped streaming and are
690  * now waiting for instructions.
691  */
692  WakeupRecovery();
693  for (;;)
694  {
696 
698 
699  SpinLockAcquire(&walrcv->mutex);
700  Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
701  walrcv->walRcvState == WALRCV_WAITING ||
702  walrcv->walRcvState == WALRCV_STOPPING);
703  if (walrcv->walRcvState == WALRCV_RESTARTING)
704  {
705  /*
706  * No need to handle changes in primary_conninfo or
707  * primary_slot_name here. Startup process will signal us to
708  * terminate in case those change.
709  */
710  *startpoint = walrcv->receiveStart;
711  *startpointTLI = walrcv->receiveStartTLI;
712  walrcv->walRcvState = WALRCV_STREAMING;
713  SpinLockRelease(&walrcv->mutex);
714  break;
715  }
716  if (walrcv->walRcvState == WALRCV_STOPPING)
717  {
718  /*
719  * We should've received SIGTERM if the startup process wants us
720  * to die, but might as well check it here too.
721  */
722  SpinLockRelease(&walrcv->mutex);
723  exit(1);
724  }
725  SpinLockRelease(&walrcv->mutex);
726 
728  WAIT_EVENT_WAL_RECEIVER_WAIT_START);
729  }
730 
732  {
733  char activitymsg[50];
734 
735  snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
736  LSN_FORMAT_ARGS(*startpoint));
737  set_ps_display(activitymsg);
738  }
739 }
740 
741 /*
742  * Fetch any missing timeline history files between 'first' and 'last'
743  * (inclusive) from the server.
744  */
745 static void
747 {
748  TimeLineID tli;
749 
750  for (tli = first; tli <= last; tli++)
751  {
752  /* there's no history file for timeline 1 */
753  if (tli != 1 && !existsTimeLineHistory(tli))
754  {
755  char *fname;
756  char *content;
757  int len;
758  char expectedfname[MAXFNAMELEN];
759 
760  ereport(LOG,
761  (errmsg("fetching timeline history file for timeline %u from primary server",
762  tli)));
763 
764  walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
765 
766  /*
767  * Check that the filename on the primary matches what we
768  * calculated ourselves. This is just a sanity check, it should
769  * always match.
770  */
771  TLHistoryFileName(expectedfname, tli);
772  if (strcmp(fname, expectedfname) != 0)
773  ereport(ERROR,
774  (errcode(ERRCODE_PROTOCOL_VIOLATION),
775  errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
776  tli)));
777 
778  /*
779  * Write the file to pg_wal.
780  */
781  writeTimeLineHistoryFile(tli, content, len);
782 
783  /*
784  * Mark the streamed history file as ready for archiving if
785  * archive_mode is always.
786  */
788  XLogArchiveForceDone(fname);
789  else
790  XLogArchiveNotify(fname);
791 
792  pfree(fname);
793  pfree(content);
794  }
795  }
796 }
797 
798 /*
799  * Mark us as STOPPED in shared memory at exit.
800  */
801 static void
802 WalRcvDie(int code, Datum arg)
803 {
804  WalRcvData *walrcv = WalRcv;
805  TimeLineID *startpointTLI_p = (TimeLineID *) DatumGetPointer(arg);
806 
807  Assert(*startpointTLI_p != 0);
808 
809  /* Ensure that all WAL records received are flushed to disk */
810  XLogWalRcvFlush(true, *startpointTLI_p);
811 
812  /* Mark ourselves inactive in shared memory */
813  SpinLockAcquire(&walrcv->mutex);
814  Assert(walrcv->walRcvState == WALRCV_STREAMING ||
815  walrcv->walRcvState == WALRCV_RESTARTING ||
816  walrcv->walRcvState == WALRCV_STARTING ||
817  walrcv->walRcvState == WALRCV_WAITING ||
818  walrcv->walRcvState == WALRCV_STOPPING);
819  Assert(walrcv->pid == MyProcPid);
820  walrcv->walRcvState = WALRCV_STOPPED;
821  walrcv->pid = 0;
822  walrcv->ready_to_display = false;
823  walrcv->latch = NULL;
824  SpinLockRelease(&walrcv->mutex);
825 
827 
828  /* Terminate the connection gracefully. */
829  if (wrconn != NULL)
831 
832  /* Wake up the startup process to notice promptly that we're gone */
833  WakeupRecovery();
834 }
835 
836 /*
837  * Accept the message from XLOG stream, and process it.
838  */
839 static void
840 XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
841 {
842  int hdrlen;
843  XLogRecPtr dataStart;
844  XLogRecPtr walEnd;
845  TimestampTz sendTime;
846  bool replyRequested;
847 
848  switch (type)
849  {
850  case 'w': /* WAL records */
851  {
852  StringInfoData incoming_message;
853 
854  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
855  if (len < hdrlen)
856  ereport(ERROR,
857  (errcode(ERRCODE_PROTOCOL_VIOLATION),
858  errmsg_internal("invalid WAL message received from primary")));
859 
860  /* initialize a StringInfo with the given buffer */
861  initReadOnlyStringInfo(&incoming_message, buf, hdrlen);
862 
863  /* read the fields */
864  dataStart = pq_getmsgint64(&incoming_message);
865  walEnd = pq_getmsgint64(&incoming_message);
866  sendTime = pq_getmsgint64(&incoming_message);
867  ProcessWalSndrMessage(walEnd, sendTime);
868 
869  buf += hdrlen;
870  len -= hdrlen;
871  XLogWalRcvWrite(buf, len, dataStart, tli);
872  break;
873  }
874  case 'k': /* Keepalive */
875  {
876  StringInfoData incoming_message;
877 
878  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
879  if (len != hdrlen)
880  ereport(ERROR,
881  (errcode(ERRCODE_PROTOCOL_VIOLATION),
882  errmsg_internal("invalid keepalive message received from primary")));
883 
884  /* initialize a StringInfo with the given buffer */
885  initReadOnlyStringInfo(&incoming_message, buf, hdrlen);
886 
887  /* read the fields */
888  walEnd = pq_getmsgint64(&incoming_message);
889  sendTime = pq_getmsgint64(&incoming_message);
890  replyRequested = pq_getmsgbyte(&incoming_message);
891 
892  ProcessWalSndrMessage(walEnd, sendTime);
893 
894  /* If the primary requested a reply, send one immediately */
895  if (replyRequested)
896  XLogWalRcvSendReply(true, false);
897  break;
898  }
899  default:
900  ereport(ERROR,
901  (errcode(ERRCODE_PROTOCOL_VIOLATION),
902  errmsg_internal("invalid replication message type %d",
903  type)));
904  }
905 }
906 
907 /*
908  * Write XLOG data to disk.
909  */
910 static void
911 XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
912 {
913  int startoff;
914  int byteswritten;
915 
916  Assert(tli != 0);
917 
918  while (nbytes > 0)
919  {
920  int segbytes;
921 
922  /* Close the current segment if it's completed */
923  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
924  XLogWalRcvClose(recptr, tli);
925 
926  if (recvFile < 0)
927  {
928  /* Create/use new log file */
931  recvFileTLI = tli;
932  }
933 
934  /* Calculate the start offset of the received logs */
935  startoff = XLogSegmentOffset(recptr, wal_segment_size);
936 
937  if (startoff + nbytes > wal_segment_size)
938  segbytes = wal_segment_size - startoff;
939  else
940  segbytes = nbytes;
941 
942  /* OK to write the logs */
943  errno = 0;
944 
945  byteswritten = pg_pwrite(recvFile, buf, segbytes, (off_t) startoff);
946  if (byteswritten <= 0)
947  {
948  char xlogfname[MAXFNAMELEN];
949  int save_errno;
950 
951  /* if write didn't set errno, assume no disk space */
952  if (errno == 0)
953  errno = ENOSPC;
954 
955  save_errno = errno;
957  errno = save_errno;
958  ereport(PANIC,
960  errmsg("could not write to WAL segment %s "
961  "at offset %d, length %lu: %m",
962  xlogfname, startoff, (unsigned long) segbytes)));
963  }
964 
965  /* Update state for write */
966  recptr += byteswritten;
967 
968  nbytes -= byteswritten;
969  buf += byteswritten;
970 
971  LogstreamResult.Write = recptr;
972  }
973 
974  /* Update shared-memory status */
976 
977  /*
978  * Close the current segment if it's fully written up in the last cycle of
979  * the loop, to create its archive notification file soon. Otherwise WAL
980  * archiving of the segment will be delayed until any data in the next
981  * segment is received and written.
982  */
983  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
984  XLogWalRcvClose(recptr, tli);
985 }
986 
987 /*
988  * Flush the log to disk.
989  *
990  * If we're in the midst of dying, it's unwise to do anything that might throw
991  * an error, so we skip sending a reply in that case.
992  */
993 static void
994 XLogWalRcvFlush(bool dying, TimeLineID tli)
995 {
996  Assert(tli != 0);
997 
998  if (LogstreamResult.Flush < LogstreamResult.Write)
999  {
1000  WalRcvData *walrcv = WalRcv;
1001 
1003 
1004  LogstreamResult.Flush = LogstreamResult.Write;
1005 
1006  /* Update shared-memory status */
1007  SpinLockAcquire(&walrcv->mutex);
1008  if (walrcv->flushedUpto < LogstreamResult.Flush)
1009  {
1010  walrcv->latestChunkStart = walrcv->flushedUpto;
1011  walrcv->flushedUpto = LogstreamResult.Flush;
1012  walrcv->receivedTLI = tli;
1013  }
1014  SpinLockRelease(&walrcv->mutex);
1015 
1016  /* Signal the startup process and walsender that new WAL has arrived */
1017  WakeupRecovery();
1019  WalSndWakeup(true, false);
1020 
1021  /* Report XLOG streaming progress in PS display */
1023  {
1024  char activitymsg[50];
1025 
1026  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
1028  set_ps_display(activitymsg);
1029  }
1030 
1031  /* Also let the primary know that we made some progress */
1032  if (!dying)
1033  {
1034  XLogWalRcvSendReply(false, false);
1035  XLogWalRcvSendHSFeedback(false);
1036  }
1037  }
1038 }
1039 
1040 /*
1041  * Close the current segment.
1042  *
1043  * Flush the segment to disk before closing it. Otherwise we have to
1044  * reopen and fsync it later.
1045  *
1046  * Create an archive notification file since the segment is known completed.
1047  */
1048 static void
1050 {
1051  char xlogfname[MAXFNAMELEN];
1052 
1054  Assert(tli != 0);
1055 
1056  /*
1057  * fsync() and close current file before we switch to next one. We would
1058  * otherwise have to reopen this file to fsync it later
1059  */
1060  XLogWalRcvFlush(false, tli);
1061 
1063 
1064  /*
1065  * XLOG segment files will be re-read by recovery in startup process soon,
1066  * so we don't advise the OS to release cache pages associated with the
1067  * file like XLogFileClose() does.
1068  */
1069  if (close(recvFile) != 0)
1070  ereport(PANIC,
1072  errmsg("could not close WAL segment %s: %m",
1073  xlogfname)));
1074 
1075  /*
1076  * Create .done file forcibly to prevent the streamed segment from being
1077  * archived later.
1078  */
1080  XLogArchiveForceDone(xlogfname);
1081  else
1082  XLogArchiveNotify(xlogfname);
1083 
1084  recvFile = -1;
1085 }
1086 
1087 /*
1088  * Send reply message to primary, indicating our current WAL locations, oldest
1089  * xmin and the current time.
1090  *
1091  * If 'force' is not set, the message is only sent if enough time has
1092  * passed since last status update to reach wal_receiver_status_interval.
1093  * If wal_receiver_status_interval is disabled altogether and 'force' is
1094  * false, this is a no-op.
1095  *
1096  * If 'requestReply' is true, requests the server to reply immediately upon
1097  * receiving this message. This is used for heartbeats, when approaching
1098  * wal_receiver_timeout.
1099  */
1100 static void
1101 XLogWalRcvSendReply(bool force, bool requestReply)
1102 {
1103  static XLogRecPtr writePtr = 0;
1104  static XLogRecPtr flushPtr = 0;
1105  XLogRecPtr applyPtr;
1106  TimestampTz now;
1107 
1108  /*
1109  * If the user doesn't want status to be reported to the primary, be sure
1110  * to exit before doing anything at all.
1111  */
1112  if (!force && wal_receiver_status_interval <= 0)
1113  return;
1114 
1115  /* Get current timestamp. */
1117 
1118  /*
1119  * We can compare the write and flush positions to the last message we
1120  * sent without taking any lock, but the apply position requires a spin
1121  * lock, so we don't check that unless something else has changed or 10
1122  * seconds have passed. This means that the apply WAL location will
1123  * appear, from the primary's point of view, to lag slightly, but since
1124  * this is only for reporting purposes and only on idle systems, that's
1125  * probably OK.
1126  */
1127  if (!force
1128  && writePtr == LogstreamResult.Write
1129  && flushPtr == LogstreamResult.Flush
1131  return;
1132 
1133  /* Make sure we wake up when it's time to send another reply. */
1135 
1136  /* Construct a new message */
1137  writePtr = LogstreamResult.Write;
1138  flushPtr = LogstreamResult.Flush;
1139  applyPtr = GetXLogReplayRecPtr(NULL);
1140 
1142  pq_sendbyte(&reply_message, 'r');
1143  pq_sendint64(&reply_message, writePtr);
1144  pq_sendint64(&reply_message, flushPtr);
1145  pq_sendint64(&reply_message, applyPtr);
1147  pq_sendbyte(&reply_message, requestReply ? 1 : 0);
1148 
1149  /* Send it */
1150  elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
1151  LSN_FORMAT_ARGS(writePtr),
1152  LSN_FORMAT_ARGS(flushPtr),
1153  LSN_FORMAT_ARGS(applyPtr),
1154  requestReply ? " (reply requested)" : "");
1155 
1157 }
1158 
1159 /*
1160  * Send hot standby feedback message to primary, plus the current time,
1161  * in case they don't have a watch.
1162  *
1163  * If the user disables feedback, send one final message to tell sender
1164  * to forget about the xmin on this standby. We also send this message
1165  * on first connect because a previous connection might have set xmin
1166  * on a replication slot. (If we're not using a slot it's harmless to
1167  * send a feedback message explicitly setting InvalidTransactionId).
1168  */
1169 static void
1171 {
1172  TimestampTz now;
1173  FullTransactionId nextFullXid;
1174  TransactionId nextXid;
1175  uint32 xmin_epoch,
1176  catalog_xmin_epoch;
1177  TransactionId xmin,
1178  catalog_xmin;
1179 
1180  /* initially true so we always send at least one feedback message */
1181  static bool primary_has_standby_xmin = true;
1182 
1183  /*
1184  * If the user doesn't want status to be reported to the primary, be sure
1185  * to exit before doing anything at all.
1186  */
1188  !primary_has_standby_xmin)
1189  return;
1190 
1191  /* Get current timestamp. */
1193 
1194  /* Send feedback at most once per wal_receiver_status_interval. */
1195  if (!immed && now < wakeup[WALRCV_WAKEUP_HSFEEDBACK])
1196  return;
1197 
1198  /* Make sure we wake up when it's time to send feedback again. */
1200 
1201  /*
1202  * If Hot Standby is not yet accepting connections there is nothing to
1203  * send. Check this after the interval has expired to reduce number of
1204  * calls.
1205  *
1206  * Bailing out here also ensures that we don't send feedback until we've
1207  * read our own replication slot state, so we don't tell the primary to
1208  * discard needed xmin or catalog_xmin from any slots that may exist on
1209  * this replica.
1210  */
1211  if (!HotStandbyActive())
1212  return;
1213 
1214  /*
1215  * Make the expensive call to get the oldest xmin once we are certain
1216  * everything else has been checked.
1217  */
1219  {
1220  GetReplicationHorizons(&xmin, &catalog_xmin);
1221  }
1222  else
1223  {
1224  xmin = InvalidTransactionId;
1225  catalog_xmin = InvalidTransactionId;
1226  }
1227 
1228  /*
1229  * Get epoch and adjust if nextXid and oldestXmin are different sides of
1230  * the epoch boundary.
1231  */
1232  nextFullXid = ReadNextFullTransactionId();
1233  nextXid = XidFromFullTransactionId(nextFullXid);
1234  xmin_epoch = EpochFromFullTransactionId(nextFullXid);
1235  catalog_xmin_epoch = xmin_epoch;
1236  if (nextXid < xmin)
1237  xmin_epoch--;
1238  if (nextXid < catalog_xmin)
1239  catalog_xmin_epoch--;
1240 
1241  elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1242  xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1243 
1244  /* Construct the message and send it. */
1246  pq_sendbyte(&reply_message, 'h');
1248  pq_sendint32(&reply_message, xmin);
1249  pq_sendint32(&reply_message, xmin_epoch);
1250  pq_sendint32(&reply_message, catalog_xmin);
1251  pq_sendint32(&reply_message, catalog_xmin_epoch);
1253  if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1254  primary_has_standby_xmin = true;
1255  else
1256  primary_has_standby_xmin = false;
1257 }
1258 
1259 /*
1260  * Update shared memory status upon receiving a message from primary.
1261  *
1262  * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1263  * message, reported by primary.
1264  */
1265 static void
1267 {
1268  WalRcvData *walrcv = WalRcv;
1269  TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1270 
1271  /* Update shared-memory status */
1272  SpinLockAcquire(&walrcv->mutex);
1273  if (walrcv->latestWalEnd < walEnd)
1274  walrcv->latestWalEndTime = sendTime;
1275  walrcv->latestWalEnd = walEnd;
1276  walrcv->lastMsgSendTime = sendTime;
1277  walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1278  SpinLockRelease(&walrcv->mutex);
1279 
1281  {
1282  char *sendtime;
1283  char *receipttime;
1284  int applyDelay;
1285 
1286  /* Copy because timestamptz_to_str returns a static buffer */
1287  sendtime = pstrdup(timestamptz_to_str(sendTime));
1288  receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1289  applyDelay = GetReplicationApplyDelay();
1290 
1291  /* apply delay is not available */
1292  if (applyDelay == -1)
1293  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1294  sendtime,
1295  receipttime,
1297  else
1298  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1299  sendtime,
1300  receipttime,
1301  applyDelay,
1303 
1304  pfree(sendtime);
1305  pfree(receipttime);
1306  }
1307 }
1308 
1309 /*
1310  * Compute the next wakeup time for a given wakeup reason. Can be called to
1311  * initialize a wakeup time, to adjust it for the next wakeup, or to
1312  * reinitialize it when GUCs have changed. We ask the caller to pass in the
1313  * value of "now" because this frequently avoids multiple calls of
1314  * GetCurrentTimestamp(). It had better be a reasonably up-to-date value
1315  * though.
1316  */
1317 static void
1319 {
1320  switch (reason)
1321  {
1323  if (wal_receiver_timeout <= 0)
1324  wakeup[reason] = TIMESTAMP_INFINITY;
1325  else
1327  break;
1328  case WALRCV_WAKEUP_PING:
1329  if (wal_receiver_timeout <= 0)
1330  wakeup[reason] = TIMESTAMP_INFINITY;
1331  else
1333  break;
1336  wakeup[reason] = TIMESTAMP_INFINITY;
1337  else
1339  break;
1340  case WALRCV_WAKEUP_REPLY:
1342  wakeup[reason] = TIMESTAMP_INFINITY;
1343  else
1345  break;
1346  /* there's intentionally no default: here */
1347  }
1348 }
1349 
1350 /*
1351  * Wake up the walreceiver main loop.
1352  *
1353  * This is called by the startup process whenever interesting xlog records
1354  * are applied, so that walreceiver can check if it needs to send an apply
1355  * notification back to the primary which may be waiting in a COMMIT with
1356  * synchronous_commit = remote_apply.
1357  */
1358 void
1360 {
1361  Latch *latch;
1362 
1363  WalRcv->force_reply = true;
1364  /* fetching the latch pointer might not be atomic, so use spinlock */
1366  latch = WalRcv->latch;
1368  if (latch)
1369  SetLatch(latch);
1370 }
1371 
1372 /*
1373  * Return a string constant representing the state. This is used
1374  * in system functions and views, and should *not* be translated.
1375  */
1376 static const char *
1378 {
1379  switch (state)
1380  {
1381  case WALRCV_STOPPED:
1382  return "stopped";
1383  case WALRCV_STARTING:
1384  return "starting";
1385  case WALRCV_STREAMING:
1386  return "streaming";
1387  case WALRCV_WAITING:
1388  return "waiting";
1389  case WALRCV_RESTARTING:
1390  return "restarting";
1391  case WALRCV_STOPPING:
1392  return "stopping";
1393  }
1394  return "UNKNOWN";
1395 }
1396 
1397 /*
1398  * Returns activity of WAL receiver, including pid, state and xlog locations
1399  * received from the WAL sender of another server.
1400  */
1401 Datum
1403 {
1404  TupleDesc tupdesc;
1405  Datum *values;
1406  bool *nulls;
1407  int pid;
1408  bool ready_to_display;
1410  XLogRecPtr receive_start_lsn;
1411  TimeLineID receive_start_tli;
1412  XLogRecPtr written_lsn;
1413  XLogRecPtr flushed_lsn;
1414  TimeLineID received_tli;
1415  TimestampTz last_send_time;
1416  TimestampTz last_receipt_time;
1417  XLogRecPtr latest_end_lsn;
1418  TimestampTz latest_end_time;
1419  char sender_host[NI_MAXHOST];
1420  int sender_port = 0;
1421  char slotname[NAMEDATALEN];
1422  char conninfo[MAXCONNINFO];
1423 
1424  /* Take a lock to ensure value consistency */
1426  pid = (int) WalRcv->pid;
1427  ready_to_display = WalRcv->ready_to_display;
1429  receive_start_lsn = WalRcv->receiveStart;
1430  receive_start_tli = WalRcv->receiveStartTLI;
1431  flushed_lsn = WalRcv->flushedUpto;
1432  received_tli = WalRcv->receivedTLI;
1433  last_send_time = WalRcv->lastMsgSendTime;
1434  last_receipt_time = WalRcv->lastMsgReceiptTime;
1435  latest_end_lsn = WalRcv->latestWalEnd;
1436  latest_end_time = WalRcv->latestWalEndTime;
1437  strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
1438  strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
1439  sender_port = WalRcv->sender_port;
1440  strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
1442 
1443  /*
1444  * No WAL receiver (or not ready yet), just return a tuple with NULL
1445  * values
1446  */
1447  if (pid == 0 || !ready_to_display)
1448  PG_RETURN_NULL();
1449 
1450  /*
1451  * Read "writtenUpto" without holding a spinlock. Note that it may not be
1452  * consistent with the other shared variables of the WAL receiver
1453  * protected by a spinlock, but this should not be used for data integrity
1454  * checks.
1455  */
1456  written_lsn = pg_atomic_read_u64(&WalRcv->writtenUpto);
1457 
1458  /* determine result type */
1459  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1460  elog(ERROR, "return type must be a row type");
1461 
1462  values = palloc0(sizeof(Datum) * tupdesc->natts);
1463  nulls = palloc0(sizeof(bool) * tupdesc->natts);
1464 
1465  /* Fetch values */
1466  values[0] = Int32GetDatum(pid);
1467 
1468  if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
1469  {
1470  /*
1471  * Only superusers and roles with privileges of pg_read_all_stats can
1472  * see details. Other users only get the pid value to know whether it
1473  * is a WAL receiver, but no details.
1474  */
1475  memset(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1476  }
1477  else
1478  {
1480 
1481  if (XLogRecPtrIsInvalid(receive_start_lsn))
1482  nulls[2] = true;
1483  else
1484  values[2] = LSNGetDatum(receive_start_lsn);
1485  values[3] = Int32GetDatum(receive_start_tli);
1486  if (XLogRecPtrIsInvalid(written_lsn))
1487  nulls[4] = true;
1488  else
1489  values[4] = LSNGetDatum(written_lsn);
1490  if (XLogRecPtrIsInvalid(flushed_lsn))
1491  nulls[5] = true;
1492  else
1493  values[5] = LSNGetDatum(flushed_lsn);
1494  values[6] = Int32GetDatum(received_tli);
1495  if (last_send_time == 0)
1496  nulls[7] = true;
1497  else
1498  values[7] = TimestampTzGetDatum(last_send_time);
1499  if (last_receipt_time == 0)
1500  nulls[8] = true;
1501  else
1502  values[8] = TimestampTzGetDatum(last_receipt_time);
1503  if (XLogRecPtrIsInvalid(latest_end_lsn))
1504  nulls[9] = true;
1505  else
1506  values[9] = LSNGetDatum(latest_end_lsn);
1507  if (latest_end_time == 0)
1508  nulls[10] = true;
1509  else
1510  values[10] = TimestampTzGetDatum(latest_end_time);
1511  if (*slotname == '\0')
1512  nulls[11] = true;
1513  else
1514  values[11] = CStringGetTextDatum(slotname);
1515  if (*sender_host == '\0')
1516  nulls[12] = true;
1517  else
1518  values[12] = CStringGetTextDatum(sender_host);
1519  if (sender_port == 0)
1520  nulls[13] = true;
1521  else
1522  values[13] = Int32GetDatum(sender_port);
1523  if (*conninfo == '\0')
1524  nulls[14] = true;
1525  else
1526  values[14] = CStringGetTextDatum(conninfo);
1527  }
1528 
1529  /* Returns the record as Datum */
1531 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:5268
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:485
#define pg_memory_barrier()
Definition: atomics.h:143
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:467
void AuxiliaryProcessMainCommon(void)
Definition: auxprocess.c:44
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition: timeline.c:463
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition: timeline.c:222
sigset_t UnBlockSig
Definition: pqsignal.c:22
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1756
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1644
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1608
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1843
static Datum values[MAXATTR]
Definition: bootstrap.c:150
#define CStringGetTextDatum(s)
Definition: builtins.h:97
unsigned int uint32
Definition: c.h:509
#define Min(x, y)
Definition: c.h:1007
#define Assert(condition)
Definition: c.h:861
#define UINT64_FORMAT
Definition: c.h:552
uint32 TransactionId
Definition: c.h:655
size_t Size
Definition: c.h:608
void ConditionVariableBroadcast(ConditionVariable *cv)
int64 TimestampTz
Definition: timestamp.h:39
#define TIMESTAMP_INFINITY
Definition: timestamp.h:151
void load_file(const char *filename, bool restricted)
Definition: dfmgr.c:144
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errcode_for_file_access(void)
Definition: elog.c:876
int errdetail(const char *fmt,...)
Definition: elog.c:1203
bool message_level_is_interesting(int elevel)
Definition: elog.c:272
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
void err(int eval, const char *fmt,...)
Definition: err.c:43
#define PG_RETURN_NULL()
Definition: fmgr.h:345
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:353
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition: funcapi.h:230
int MyProcPid
Definition: globals.c:46
struct Latch * MyLatch
Definition: globals.c:62
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
char * cluster_name
Definition: guc_tables.c:537
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1116
#define close(a)
Definition: win32.h:12
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:105
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:365
void proc_exit(int code)
Definition: ipc.c:104
int i
Definition: isn.c:73
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:565
void SetLatch(Latch *latch)
Definition: latch.c:632
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_SOCKET_READABLE
Definition: latch.h:128
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
exit(1)
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
@ B_WAL_RECEIVER
Definition: miscadmin.h:356
Oid GetUserId(void)
Definition: miscinit.c:514
BackendType MyBackendType
Definition: miscinit.c:63
void * arg
#define NAMEDATALEN
const void size_t len
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:28
static char ** options
static char * buf
Definition: pg_test_fsync.c:73
#define pg_pwrite
Definition: port.h:226
pqsigfunc pqsignal(int signo, pqsigfunc func)
int pgsocket
Definition: port.h:29
#define snprintf
Definition: port.h:238
#define PGINVALID_SOCKET
Definition: port.h:31
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:399
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:453
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:160
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:152
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:2047
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:671
bool update_process_title
Definition: ps_status.c:29
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:78
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
static void initReadOnlyStringInfo(StringInfo str, char *data, int len)
Definition: stringinfo.h:130
Definition: latch.h:113
Latch procLatch
Definition: proc.h:169
TimestampTz lastMsgReceiptTime
Definition: walreceiver.h:101
XLogRecPtr latestWalEnd
Definition: walreceiver.h:106
TimeLineID receiveStartTLI
Definition: walreceiver.h:77
TimeLineID receivedTLI
Definition: walreceiver.h:87
char slotname[NAMEDATALEN]
Definition: walreceiver.h:126
Latch * latch
Definition: walreceiver.h:144
char sender_host[NI_MAXHOST]
Definition: walreceiver.h:119
pid_t pid
Definition: walreceiver.h:65
XLogRecPtr latestChunkStart
Definition: walreceiver.h:95
XLogRecPtr receiveStart
Definition: walreceiver.h:76
XLogRecPtr flushedUpto
Definition: walreceiver.h:86
sig_atomic_t force_reply
Definition: walreceiver.h:161
ConditionVariable walRcvStoppedCV
Definition: walreceiver.h:67
bool is_temp_slot
Definition: walreceiver.h:132
pg_atomic_uint64 writtenUpto
Definition: walreceiver.h:154
TimestampTz lastMsgSendTime
Definition: walreceiver.h:100
WalRcvState walRcvState
Definition: walreceiver.h:66
TimestampTz latestWalEndTime
Definition: walreceiver.h:107
bool ready_to_display
Definition: walreceiver.h:135
int sender_port
Definition: walreceiver.h:120
slock_t mutex
Definition: walreceiver.h:146
char conninfo[MAXCONNINFO]
Definition: walreceiver.h:113
Definition: regguts.h:323
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
#define TimestampTzPlusSeconds(tz, s)
Definition: timestamp.h:86
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:288
const char * type
void ProcessWalRcvInterrupts(void)
Definition: walreceiver.c:162
#define NUM_WALRCV_WAKEUPS
Definition: walreceiver.c:123
static WalReceiverConn * wrconn
Definition: walreceiver.c:92
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:129
static StringInfoData reply_message
Definition: walreceiver.c:131
bool hot_standby_feedback
Definition: walreceiver.c:89
XLogRecPtr Flush
Definition: walreceiver.c:111
static int recvFile
Definition: walreceiver.c:100
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
Definition: walreceiver.c:1266
int wal_receiver_status_interval
Definition: walreceiver.c:87
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
Definition: walreceiver.c:746
XLogRecPtr Write
Definition: walreceiver.c:110
static void XLogWalRcvFlush(bool dying, TimeLineID tli)
Definition: walreceiver.c:994
static TimeLineID recvFileTLI
Definition: walreceiver.c:101
WalReceiverFunctionsType * WalReceiverFunctions
Definition: walreceiver.c:93
static struct @21 LogstreamResult
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:911
void WalReceiverMain(char *startup_data, size_t startup_data_len)
Definition: walreceiver.c:183
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
Definition: walreceiver.c:1402
int wal_receiver_timeout
Definition: walreceiver.c:88
static XLogSegNo recvSegNo
Definition: walreceiver.c:102
static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:1049
static void XLogWalRcvSendHSFeedback(bool immed)
Definition: walreceiver.c:1170
WalRcvWakeupReason
Definition: walreceiver.c:118
@ WALRCV_WAKEUP_TERMINATE
Definition: walreceiver.c:119
@ WALRCV_WAKEUP_REPLY
Definition: walreceiver.c:121
@ WALRCV_WAKEUP_PING
Definition: walreceiver.c:120
@ WALRCV_WAKEUP_HSFEEDBACK
Definition: walreceiver.c:122
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
Definition: walreceiver.c:666
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
Definition: walreceiver.c:840
static void WalRcvComputeNextWakeup(WalRcvWakeupReason reason, TimestampTz now)
Definition: walreceiver.c:1318
static const char * WalRcvGetStateString(WalRcvState state)
Definition: walreceiver.c:1377
static void WalRcvDie(int code, Datum arg)
Definition: walreceiver.c:802
static void XLogWalRcvSendReply(bool force, bool requestReply)
Definition: walreceiver.c:1101
void WalRcvForceReply(void)
Definition: walreceiver.c:1359
#define AllowCascadeReplication()
Definition: walreceiver.h:41
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
Definition: walreceiver.h:448
#define walrcv_startstreaming(conn, options)
Definition: walreceiver.h:450
#define walrcv_connect(conninfo, replication, logical, must_use_password, appname, err)
Definition: walreceiver.h:434
#define walrcv_send(conn, buffer, nbytes)
Definition: walreceiver.h:456
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
Definition: walreceiver.h:440
#define MAXCONNINFO
Definition: walreceiver.h:38
#define walrcv_create_slot(conn, slotname, temporary, two_phase, failover, snapshot_action, lsn)
Definition: walreceiver.h:458
#define walrcv_get_conninfo(conn)
Definition: walreceiver.h:438
#define walrcv_endstreaming(conn, next_tli)
Definition: walreceiver.h:452
WalRcvState
Definition: walreceiver.h:47
@ WALRCV_STARTING
Definition: walreceiver.h:49
@ WALRCV_STOPPED
Definition: walreceiver.h:48
@ WALRCV_RESTARTING
Definition: walreceiver.h:53
@ WALRCV_STREAMING
Definition: walreceiver.h:51
@ WALRCV_WAITING
Definition: walreceiver.h:52
@ WALRCV_STOPPING
Definition: walreceiver.h:54
#define walrcv_identify_system(conn, primary_tli)
Definition: walreceiver.h:442
#define walrcv_disconnect(conn)
Definition: walreceiver.h:466
#define walrcv_get_backend_pid(conn)
Definition: walreceiver.h:462
#define walrcv_receive(conn, buffer, wait_fd)
Definition: walreceiver.h:454
WalRcvData * WalRcv
int GetReplicationApplyDelay(void)
int GetReplicationTransferLatency(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3666
#define SIGCHLD
Definition: win32_port.h:178
#define SIGHUP
Definition: win32_port.h:168
#define SIG_DFL
Definition: win32_port.h:163
#define SIGPIPE
Definition: win32_port.h:173
#define SIGUSR1
Definition: win32_port.h:180
#define SIGALRM
Definition: win32_port.h:174
#define SIGUSR2
Definition: win32_port.h:181
#define SIG_IGN
Definition: win32_port.h:165
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3373
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4561
bool RecoveryInProgress(void)
Definition: xlog.c:6333
int XLogArchiveMode
Definition: xlog.c:118
int wal_segment_size
Definition: xlog.c:142
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8682
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:67
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
static void TLHistoryFileName(char *fname, TimeLineID tli)
void XLogArchiveForceDone(const char *xlog)
Definition: xlogarchive.c:510
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:444
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
bool HotStandbyActive(void)
void WakeupRecovery(void)
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)