PostgreSQL Source Code  git master
walreceiver.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walreceiver.c
4  *
5  * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6  * is the process in the standby server that takes charge of receiving
7  * XLOG records from a primary server during streaming replication.
8  *
9  * When the startup process determines that it's time to start streaming,
10  * it instructs postmaster to start walreceiver. Walreceiver first connects
11  * to the primary server (it will be served by a walsender process
12  * in the primary server), and then keeps receiving XLOG records and
13  * writing them to the disk as long as the connection is alive. As XLOG
14  * records are received and flushed to disk, it updates the
15  * WalRcv->flushedUpto variable in shared memory, to inform the startup
16  * process of how far it can proceed with XLOG replay.
17  *
18  * A WAL receiver cannot directly load GUC parameters used when establishing
19  * its connection to the primary. Instead it relies on parameter values
20  * that are passed down by the startup process when streaming is requested.
21  * This applies, for example, to the replication slot and the connection
22  * string to be used for the connection with the primary.
23  *
24  * If the primary server ends streaming, but doesn't disconnect, walreceiver
25  * goes into "waiting" mode, and waits for the startup process to give new
26  * instructions. The startup process will treat that the same as
27  * disconnection, and will rescan the archive/pg_wal directory. But when the
28  * startup process wants to try streaming replication again, it will just
29  * nudge the existing walreceiver process that's waiting, instead of launching
30  * a new one.
31  *
32  * Normal termination is by SIGTERM, which instructs the walreceiver to
33  * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34  * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35  * of the connection and a FATAL error are treated not as a crash but as
36  * normal operation.
37  *
38  * This file contains the server-facing parts of walreceiver. The libpq-
39  * specific parts are in the libpqwalreceiver module. It's loaded
40  * dynamically to avoid linking the server with libpq.
41  *
42  * Portions Copyright (c) 2010-2023, PostgreSQL Global Development Group
43  *
44  *
45  * IDENTIFICATION
46  * src/backend/replication/walreceiver.c
47  *
48  *-------------------------------------------------------------------------
49  */
50 #include "postgres.h"
51 
52 #include <unistd.h>
53 
54 #include "access/htup_details.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/xlog_internal.h"
58 #include "access/xlogarchive.h"
59 #include "access/xlogrecovery.h"
60 #include "catalog/pg_authid.h"
61 #include "catalog/pg_type.h"
62 #include "common/ip.h"
63 #include "funcapi.h"
64 #include "libpq/pqformat.h"
65 #include "libpq/pqsignal.h"
66 #include "miscadmin.h"
67 #include "pgstat.h"
68 #include "postmaster/interrupt.h"
70 #include "replication/walsender.h"
71 #include "storage/ipc.h"
72 #include "storage/pmsignal.h"
73 #include "storage/proc.h"
74 #include "storage/procarray.h"
75 #include "storage/procsignal.h"
76 #include "utils/acl.h"
77 #include "utils/builtins.h"
78 #include "utils/guc.h"
79 #include "utils/pg_lsn.h"
80 #include "utils/ps_status.h"
81 #include "utils/resowner.h"
82 #include "utils/timestamp.h"
83 
84 
85 /*
86  * GUC variables. (Other variables that affect walreceiver are in xlog.c
87  * because they're passed down from the startup process, for better
88  * synchronization.)
89  */
93 
94 /* libpqwalreceiver connection */
95 static WalReceiverConn *wrconn = NULL;
97 
98 /*
99  * These variables are used similarly to openLogFile/SegNo,
100  * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
101  * corresponding the filename of recvFile.
102  */
103 static int recvFile = -1;
105 static XLogSegNo recvSegNo = 0;
106 
107 /*
108  * LogstreamResult indicates the byte positions that we have already
109  * written/fsynced.
110  */
111 static struct
112 {
113  XLogRecPtr Write; /* last byte + 1 written out in the standby */
114  XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
116 
117 /*
118  * Reasons to wake up and perform periodic tasks.
119  */
120 typedef enum WalRcvWakeupReason
121 {
125  WALRCV_WAKEUP_HSFEEDBACK
126 #define NUM_WALRCV_WAKEUPS (WALRCV_WAKEUP_HSFEEDBACK + 1)
128 
129 /*
130  * Wake up times for periodic tasks.
131  */
133 
136 
137 /* Prototypes for private functions */
138 static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
139 static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
140 static void WalRcvDie(int code, Datum arg);
141 static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len,
142  TimeLineID tli);
143 static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr,
144  TimeLineID tli);
145 static void XLogWalRcvFlush(bool dying, TimeLineID tli);
146 static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli);
147 static void XLogWalRcvSendReply(bool force, bool requestReply);
148 static void XLogWalRcvSendHSFeedback(bool immed);
149 static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
151 
152 /*
153  * Process any interrupts the walreceiver process may have received.
154  * This should be called any time the process's latch has become set.
155  *
156  * Currently, only SIGTERM is of interest. We can't just exit(1) within the
157  * SIGTERM signal handler, because the signal might arrive in the middle of
158  * some critical operation, like while we're holding a spinlock. Instead, the
159  * signal handler sets a flag variable as well as setting the process's latch.
160  * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
161  * latch has become set. Operations that could block for a long time, such as
162  * reading from a remote server, must pay attention to the latch too; see
163  * libpqrcv_PQgetResult for example.
164  */
165 void
167 {
168  /*
169  * Although walreceiver interrupt handling doesn't use the same scheme as
170  * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
171  * any incoming signals on Win32, and also to make sure we process any
172  * barrier events.
173  */
175 
177  {
178  ereport(FATAL,
179  (errcode(ERRCODE_ADMIN_SHUTDOWN),
180  errmsg("terminating walreceiver process due to administrator command")));
181  }
182 }
183 
184 
185 /* Main entry point for walreceiver process */
186 void
188 {
189  char conninfo[MAXCONNINFO];
190  char *tmp_conninfo;
191  char slotname[NAMEDATALEN];
192  bool is_temp_slot;
193  XLogRecPtr startpoint;
194  TimeLineID startpointTLI;
195  TimeLineID primaryTLI;
196  bool first_stream;
197  WalRcvData *walrcv = WalRcv;
199  char *err;
200  char *sender_host = NULL;
201  int sender_port = 0;
202 
203  /*
204  * WalRcv should be set up already (if we are a backend, we inherit this
205  * by fork() or EXEC_BACKEND mechanism from the postmaster).
206  */
207  Assert(walrcv != NULL);
208 
209  /*
210  * Mark walreceiver as running in shared memory.
211  *
212  * Do this as early as possible, so that if we fail later on, we'll set
213  * state to STOPPED. If we die before this, the startup process will keep
214  * waiting for us to start up, until it times out.
215  */
216  SpinLockAcquire(&walrcv->mutex);
217  Assert(walrcv->pid == 0);
218  switch (walrcv->walRcvState)
219  {
220  case WALRCV_STOPPING:
221  /* If we've already been requested to stop, don't start up. */
222  walrcv->walRcvState = WALRCV_STOPPED;
223  /* fall through */
224 
225  case WALRCV_STOPPED:
226  SpinLockRelease(&walrcv->mutex);
228  proc_exit(1);
229  break;
230 
231  case WALRCV_STARTING:
232  /* The usual case */
233  break;
234 
235  case WALRCV_WAITING:
236  case WALRCV_STREAMING:
237  case WALRCV_RESTARTING:
238  default:
239  /* Shouldn't happen */
240  SpinLockRelease(&walrcv->mutex);
241  elog(PANIC, "walreceiver still running according to shared memory state");
242  }
243  /* Advertise our PID so that the startup process can kill us */
244  walrcv->pid = MyProcPid;
245  walrcv->walRcvState = WALRCV_STREAMING;
246 
247  /* Fetch information required to start streaming */
248  walrcv->ready_to_display = false;
249  strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
250  strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
251  is_temp_slot = walrcv->is_temp_slot;
252  startpoint = walrcv->receiveStart;
253  startpointTLI = walrcv->receiveStartTLI;
254 
255  /*
256  * At most one of is_temp_slot and slotname can be set; otherwise,
257  * RequestXLogStreaming messed up.
258  */
259  Assert(!is_temp_slot || (slotname[0] == '\0'));
260 
261  /* Initialise to a sanish value */
263  walrcv->lastMsgSendTime =
264  walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
265 
266  /* Report the latch to use to awaken this process */
267  walrcv->latch = &MyProc->procLatch;
268 
269  SpinLockRelease(&walrcv->mutex);
270 
272 
273  /* Arrange to clean up at walreceiver exit */
274  on_shmem_exit(WalRcvDie, PointerGetDatum(&startpointTLI));
275 
276  /* Properly accept or ignore signals the postmaster might send us */
277  pqsignal(SIGHUP, SignalHandlerForConfigReload); /* set flag to read config
278  * file */
279  pqsignal(SIGINT, SIG_IGN);
280  pqsignal(SIGTERM, SignalHandlerForShutdownRequest); /* request shutdown */
281  /* SIGQUIT handler was already set up by InitPostmasterChild */
286 
287  /* Reset some signals that are accepted by postmaster but not here */
289 
290  /* Load the libpq-specific functions */
291  load_file("libpqwalreceiver", false);
292  if (WalReceiverFunctions == NULL)
293  elog(ERROR, "libpqwalreceiver didn't initialize correctly");
294 
295  /* Unblock signals (they were blocked when the postmaster forked us) */
296  sigprocmask(SIG_SETMASK, &UnBlockSig, NULL);
297 
298  /* Establish the connection to the primary for XLOG streaming */
299  wrconn = walrcv_connect(conninfo, false, false,
300  cluster_name[0] ? cluster_name : "walreceiver",
301  &err);
302  if (!wrconn)
303  ereport(ERROR,
304  (errcode(ERRCODE_CONNECTION_FAILURE),
305  errmsg("could not connect to the primary server: %s", err)));
306 
307  /*
308  * Save user-visible connection string. This clobbers the original
309  * conninfo, for security. Also save host and port of the sender server
310  * this walreceiver is connected to.
311  */
312  tmp_conninfo = walrcv_get_conninfo(wrconn);
313  walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
314  SpinLockAcquire(&walrcv->mutex);
315  memset(walrcv->conninfo, 0, MAXCONNINFO);
316  if (tmp_conninfo)
317  strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
318 
319  memset(walrcv->sender_host, 0, NI_MAXHOST);
320  if (sender_host)
321  strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
322 
323  walrcv->sender_port = sender_port;
324  walrcv->ready_to_display = true;
325  SpinLockRelease(&walrcv->mutex);
326 
327  if (tmp_conninfo)
328  pfree(tmp_conninfo);
329 
330  if (sender_host)
331  pfree(sender_host);
332 
333  first_stream = true;
334  for (;;)
335  {
336  char *primary_sysid;
337  char standby_sysid[32];
339 
340  /*
341  * Check that we're connected to a valid server using the
342  * IDENTIFY_SYSTEM replication command.
343  */
344  primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
345 
346  snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
348  if (strcmp(primary_sysid, standby_sysid) != 0)
349  {
350  ereport(ERROR,
351  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
352  errmsg("database system identifier differs between the primary and standby"),
353  errdetail("The primary's identifier is %s, the standby's identifier is %s.",
354  primary_sysid, standby_sysid)));
355  }
356 
357  /*
358  * Confirm that the current timeline of the primary is the same or
359  * ahead of ours.
360  */
361  if (primaryTLI < startpointTLI)
362  ereport(ERROR,
363  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
364  errmsg("highest timeline %u of the primary is behind recovery timeline %u",
365  primaryTLI, startpointTLI)));
366 
367  /*
368  * Get any missing history files. We do this always, even when we're
369  * not interested in that timeline, so that if we're promoted to
370  * become the primary later on, we don't select the same timeline that
371  * was already used in the current primary. This isn't bullet-proof -
372  * you'll need some external software to manage your cluster if you
373  * need to ensure that a unique timeline id is chosen in every case,
374  * but let's avoid the confusion of timeline id collisions where we
375  * can.
376  */
377  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
378 
379  /*
380  * Create temporary replication slot if requested, and update slot
381  * name in shared memory. (Note the slot name cannot already be set
382  * in this case.)
383  */
384  if (is_temp_slot)
385  {
386  snprintf(slotname, sizeof(slotname),
387  "pg_walreceiver_%lld",
388  (long long int) walrcv_get_backend_pid(wrconn));
389 
390  walrcv_create_slot(wrconn, slotname, true, false, 0, NULL);
391 
392  SpinLockAcquire(&walrcv->mutex);
393  strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
394  SpinLockRelease(&walrcv->mutex);
395  }
396 
397  /*
398  * Start streaming.
399  *
400  * We'll try to start at the requested starting point and timeline,
401  * even if it's different from the server's latest timeline. In case
402  * we've already reached the end of the old timeline, the server will
403  * finish the streaming immediately, and we will go back to await
404  * orders from the startup process. If recovery_target_timeline is
405  * 'latest', the startup process will scan pg_wal and find the new
406  * history file, bump recovery target timeline, and ask us to restart
407  * on the new timeline.
408  */
409  options.logical = false;
410  options.startpoint = startpoint;
411  options.slotname = slotname[0] != '\0' ? slotname : NULL;
412  options.proto.physical.startpointTLI = startpointTLI;
414  {
415  if (first_stream)
416  ereport(LOG,
417  (errmsg("started streaming WAL from primary at %X/%X on timeline %u",
418  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
419  else
420  ereport(LOG,
421  (errmsg("restarted WAL streaming at %X/%X on timeline %u",
422  LSN_FORMAT_ARGS(startpoint), startpointTLI)));
423  first_stream = false;
424 
425  /* Initialize LogstreamResult and buffers for processing messages */
429 
430  /* Initialize nap wakeup times. */
432  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
434 
435  /* Send initial reply/feedback messages. */
436  XLogWalRcvSendReply(true, false);
438 
439  /* Loop until end-of-streaming or error */
440  for (;;)
441  {
442  char *buf;
443  int len;
444  bool endofwal = false;
445  pgsocket wait_fd = PGINVALID_SOCKET;
446  int rc;
447  TimestampTz nextWakeup;
448  long nap;
449 
450  /*
451  * Exit walreceiver if we're not in recovery. This should not
452  * happen, but cross-check the status here.
453  */
454  if (!RecoveryInProgress())
455  ereport(FATAL,
456  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
457  errmsg("cannot continue WAL streaming, recovery has already ended")));
458 
459  /* Process any requests or signals received recently */
461 
463  {
464  ConfigReloadPending = false;
466  /* recompute wakeup times */
468  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
471  }
472 
473  /* See if we can read data immediately */
474  len = walrcv_receive(wrconn, &buf, &wait_fd);
475  if (len != 0)
476  {
477  /*
478  * Process the received data, and any subsequent data we
479  * can read without blocking.
480  */
481  for (;;)
482  {
483  if (len > 0)
484  {
485  /*
486  * Something was received from primary, so adjust
487  * the ping and terminate wakeup times.
488  */
491  now);
493  XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1,
494  startpointTLI);
495  }
496  else if (len == 0)
497  break;
498  else if (len < 0)
499  {
500  ereport(LOG,
501  (errmsg("replication terminated by primary server"),
502  errdetail("End of WAL reached on timeline %u at %X/%X.",
503  startpointTLI,
505  endofwal = true;
506  break;
507  }
508  len = walrcv_receive(wrconn, &buf, &wait_fd);
509  }
510 
511  /* Let the primary know that we received some data. */
512  XLogWalRcvSendReply(false, false);
513 
514  /*
515  * If we've written some records, flush them to disk and
516  * let the startup process and primary server know about
517  * them.
518  */
519  XLogWalRcvFlush(false, startpointTLI);
520  }
521 
522  /* Check if we need to exit the streaming loop. */
523  if (endofwal)
524  break;
525 
526  /* Find the soonest wakeup time, to limit our nap. */
527  nextWakeup = TIMESTAMP_INFINITY;
528  for (int i = 0; i < NUM_WALRCV_WAKEUPS; ++i)
529  nextWakeup = Min(wakeup[i], nextWakeup);
530 
531  /* Calculate the nap time, clamping as necessary. */
533  nap = TimestampDifferenceMilliseconds(now, nextWakeup);
534 
535  /*
536  * Ideally we would reuse a WaitEventSet object repeatedly
537  * here to avoid the overheads of WaitLatchOrSocket on epoll
538  * systems, but we can't be sure that libpq (or any other
539  * walreceiver implementation) has the same socket (even if
540  * the fd is the same number, it may have been closed and
541  * reopened since the last time). In future, if there is a
542  * function for removing sockets from WaitEventSet, then we
543  * could add and remove just the socket each time, potentially
544  * avoiding some system calls.
545  */
546  Assert(wait_fd != PGINVALID_SOCKET);
550  wait_fd,
551  nap,
552  WAIT_EVENT_WAL_RECEIVER_MAIN);
553  if (rc & WL_LATCH_SET)
554  {
557 
558  if (walrcv->force_reply)
559  {
560  /*
561  * The recovery process has asked us to send apply
562  * feedback now. Make sure the flag is really set to
563  * false in shared memory before sending the reply, so
564  * we don't miss a new request for a reply.
565  */
566  walrcv->force_reply = false;
568  XLogWalRcvSendReply(true, false);
569  }
570  }
571  if (rc & WL_TIMEOUT)
572  {
573  /*
574  * We didn't receive anything new. If we haven't heard
575  * anything from the server for more than
576  * wal_receiver_timeout / 2, ping the server. Also, if
577  * it's been longer than wal_receiver_status_interval
578  * since the last update we sent, send a status update to
579  * the primary anyway, to report any progress in applying
580  * WAL.
581  */
582  bool requestReply = false;
583 
584  /*
585  * Check if time since last receive from primary has
586  * reached the configured limit.
587  */
590  ereport(ERROR,
591  (errcode(ERRCODE_CONNECTION_FAILURE),
592  errmsg("terminating walreceiver due to timeout")));
593 
594  /*
595  * If we didn't receive anything new for half of receiver
596  * replication timeout, then ping the server.
597  */
598  if (now >= wakeup[WALRCV_WAKEUP_PING])
599  {
600  requestReply = true;
602  }
603 
604  XLogWalRcvSendReply(requestReply, requestReply);
606  }
607  }
608 
609  /*
610  * The backend finished streaming. Exit streaming COPY-mode from
611  * our side, too.
612  */
613  walrcv_endstreaming(wrconn, &primaryTLI);
614 
615  /*
616  * If the server had switched to a new timeline that we didn't
617  * know about when we began streaming, fetch its timeline history
618  * file now.
619  */
620  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
621  }
622  else
623  ereport(LOG,
624  (errmsg("primary server contains no more WAL on requested timeline %u",
625  startpointTLI)));
626 
627  /*
628  * End of WAL reached on the requested timeline. Close the last
629  * segment, and await for new orders from the startup process.
630  */
631  if (recvFile >= 0)
632  {
633  char xlogfname[MAXFNAMELEN];
634 
635  XLogWalRcvFlush(false, startpointTLI);
637  if (close(recvFile) != 0)
638  ereport(PANIC,
640  errmsg("could not close WAL segment %s: %m",
641  xlogfname)));
642 
643  /*
644  * Create .done file forcibly to prevent the streamed segment from
645  * being archived later.
646  */
648  XLogArchiveForceDone(xlogfname);
649  else
650  XLogArchiveNotify(xlogfname);
651  }
652  recvFile = -1;
653 
654  elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
655  WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
656  }
657  /* not reached */
658 }
659 
660 /*
661  * Wait for startup process to set receiveStart and receiveStartTLI.
662  */
663 static void
665 {
666  WalRcvData *walrcv = WalRcv;
667  int state;
668 
669  SpinLockAcquire(&walrcv->mutex);
670  state = walrcv->walRcvState;
671  if (state != WALRCV_STREAMING)
672  {
673  SpinLockRelease(&walrcv->mutex);
674  if (state == WALRCV_STOPPING)
675  proc_exit(0);
676  else
677  elog(FATAL, "unexpected walreceiver state");
678  }
679  walrcv->walRcvState = WALRCV_WAITING;
681  walrcv->receiveStartTLI = 0;
682  SpinLockRelease(&walrcv->mutex);
683 
684  set_ps_display("idle");
685 
686  /*
687  * nudge startup process to notice that we've stopped streaming and are
688  * now waiting for instructions.
689  */
690  WakeupRecovery();
691  for (;;)
692  {
694 
696 
697  SpinLockAcquire(&walrcv->mutex);
698  Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
699  walrcv->walRcvState == WALRCV_WAITING ||
700  walrcv->walRcvState == WALRCV_STOPPING);
701  if (walrcv->walRcvState == WALRCV_RESTARTING)
702  {
703  /*
704  * No need to handle changes in primary_conninfo or
705  * primary_slot_name here. Startup process will signal us to
706  * terminate in case those change.
707  */
708  *startpoint = walrcv->receiveStart;
709  *startpointTLI = walrcv->receiveStartTLI;
710  walrcv->walRcvState = WALRCV_STREAMING;
711  SpinLockRelease(&walrcv->mutex);
712  break;
713  }
714  if (walrcv->walRcvState == WALRCV_STOPPING)
715  {
716  /*
717  * We should've received SIGTERM if the startup process wants us
718  * to die, but might as well check it here too.
719  */
720  SpinLockRelease(&walrcv->mutex);
721  exit(1);
722  }
723  SpinLockRelease(&walrcv->mutex);
724 
726  WAIT_EVENT_WAL_RECEIVER_WAIT_START);
727  }
728 
730  {
731  char activitymsg[50];
732 
733  snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
734  LSN_FORMAT_ARGS(*startpoint));
735  set_ps_display(activitymsg);
736  }
737 }
738 
739 /*
740  * Fetch any missing timeline history files between 'first' and 'last'
741  * (inclusive) from the server.
742  */
743 static void
745 {
746  TimeLineID tli;
747 
748  for (tli = first; tli <= last; tli++)
749  {
750  /* there's no history file for timeline 1 */
751  if (tli != 1 && !existsTimeLineHistory(tli))
752  {
753  char *fname;
754  char *content;
755  int len;
756  char expectedfname[MAXFNAMELEN];
757 
758  ereport(LOG,
759  (errmsg("fetching timeline history file for timeline %u from primary server",
760  tli)));
761 
762  walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
763 
764  /*
765  * Check that the filename on the primary matches what we
766  * calculated ourselves. This is just a sanity check, it should
767  * always match.
768  */
769  TLHistoryFileName(expectedfname, tli);
770  if (strcmp(fname, expectedfname) != 0)
771  ereport(ERROR,
772  (errcode(ERRCODE_PROTOCOL_VIOLATION),
773  errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
774  tli)));
775 
776  /*
777  * Write the file to pg_wal.
778  */
779  writeTimeLineHistoryFile(tli, content, len);
780 
781  /*
782  * Mark the streamed history file as ready for archiving if
783  * archive_mode is always.
784  */
786  XLogArchiveForceDone(fname);
787  else
788  XLogArchiveNotify(fname);
789 
790  pfree(fname);
791  pfree(content);
792  }
793  }
794 }
795 
796 /*
797  * Mark us as STOPPED in shared memory at exit.
798  */
799 static void
800 WalRcvDie(int code, Datum arg)
801 {
802  WalRcvData *walrcv = WalRcv;
803  TimeLineID *startpointTLI_p = (TimeLineID *) DatumGetPointer(arg);
804 
805  Assert(*startpointTLI_p != 0);
806 
807  /* Ensure that all WAL records received are flushed to disk */
808  XLogWalRcvFlush(true, *startpointTLI_p);
809 
810  /* Mark ourselves inactive in shared memory */
811  SpinLockAcquire(&walrcv->mutex);
812  Assert(walrcv->walRcvState == WALRCV_STREAMING ||
813  walrcv->walRcvState == WALRCV_RESTARTING ||
814  walrcv->walRcvState == WALRCV_STARTING ||
815  walrcv->walRcvState == WALRCV_WAITING ||
816  walrcv->walRcvState == WALRCV_STOPPING);
817  Assert(walrcv->pid == MyProcPid);
818  walrcv->walRcvState = WALRCV_STOPPED;
819  walrcv->pid = 0;
820  walrcv->ready_to_display = false;
821  walrcv->latch = NULL;
822  SpinLockRelease(&walrcv->mutex);
823 
825 
826  /* Terminate the connection gracefully. */
827  if (wrconn != NULL)
829 
830  /* Wake up the startup process to notice promptly that we're gone */
831  WakeupRecovery();
832 }
833 
834 /*
835  * Accept the message from XLOG stream, and process it.
836  */
837 static void
838 XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
839 {
840  int hdrlen;
841  XLogRecPtr dataStart;
842  XLogRecPtr walEnd;
843  TimestampTz sendTime;
844  bool replyRequested;
845 
847 
848  switch (type)
849  {
850  case 'w': /* WAL records */
851  {
852  /* copy message to StringInfo */
853  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
854  if (len < hdrlen)
855  ereport(ERROR,
856  (errcode(ERRCODE_PROTOCOL_VIOLATION),
857  errmsg_internal("invalid WAL message received from primary")));
859 
860  /* read the fields */
861  dataStart = pq_getmsgint64(&incoming_message);
862  walEnd = pq_getmsgint64(&incoming_message);
863  sendTime = pq_getmsgint64(&incoming_message);
864  ProcessWalSndrMessage(walEnd, sendTime);
865 
866  buf += hdrlen;
867  len -= hdrlen;
868  XLogWalRcvWrite(buf, len, dataStart, tli);
869  break;
870  }
871  case 'k': /* Keepalive */
872  {
873  /* copy message to StringInfo */
874  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
875  if (len != hdrlen)
876  ereport(ERROR,
877  (errcode(ERRCODE_PROTOCOL_VIOLATION),
878  errmsg_internal("invalid keepalive message received from primary")));
880 
881  /* read the fields */
882  walEnd = pq_getmsgint64(&incoming_message);
883  sendTime = pq_getmsgint64(&incoming_message);
884  replyRequested = pq_getmsgbyte(&incoming_message);
885 
886  ProcessWalSndrMessage(walEnd, sendTime);
887 
888  /* If the primary requested a reply, send one immediately */
889  if (replyRequested)
890  XLogWalRcvSendReply(true, false);
891  break;
892  }
893  default:
894  ereport(ERROR,
895  (errcode(ERRCODE_PROTOCOL_VIOLATION),
896  errmsg_internal("invalid replication message type %d",
897  type)));
898  }
899 }
900 
901 /*
902  * Write XLOG data to disk.
903  */
904 static void
905 XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
906 {
907  int startoff;
908  int byteswritten;
909 
910  Assert(tli != 0);
911 
912  while (nbytes > 0)
913  {
914  int segbytes;
915 
916  /* Close the current segment if it's completed */
917  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
918  XLogWalRcvClose(recptr, tli);
919 
920  if (recvFile < 0)
921  {
922  /* Create/use new log file */
925  recvFileTLI = tli;
926  }
927 
928  /* Calculate the start offset of the received logs */
929  startoff = XLogSegmentOffset(recptr, wal_segment_size);
930 
931  if (startoff + nbytes > wal_segment_size)
932  segbytes = wal_segment_size - startoff;
933  else
934  segbytes = nbytes;
935 
936  /* OK to write the logs */
937  errno = 0;
938 
939  byteswritten = pg_pwrite(recvFile, buf, segbytes, (off_t) startoff);
940  if (byteswritten <= 0)
941  {
942  char xlogfname[MAXFNAMELEN];
943  int save_errno;
944 
945  /* if write didn't set errno, assume no disk space */
946  if (errno == 0)
947  errno = ENOSPC;
948 
949  save_errno = errno;
951  errno = save_errno;
952  ereport(PANIC,
954  errmsg("could not write to WAL segment %s "
955  "at offset %u, length %lu: %m",
956  xlogfname, startoff, (unsigned long) segbytes)));
957  }
958 
959  /* Update state for write */
960  recptr += byteswritten;
961 
962  nbytes -= byteswritten;
963  buf += byteswritten;
964 
965  LogstreamResult.Write = recptr;
966  }
967 
968  /* Update shared-memory status */
970 
971  /*
972  * Close the current segment if it's fully written up in the last cycle of
973  * the loop, to create its archive notification file soon. Otherwise WAL
974  * archiving of the segment will be delayed until any data in the next
975  * segment is received and written.
976  */
977  if (recvFile >= 0 && !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
978  XLogWalRcvClose(recptr, tli);
979 }
980 
981 /*
982  * Flush the log to disk.
983  *
984  * If we're in the midst of dying, it's unwise to do anything that might throw
985  * an error, so we skip sending a reply in that case.
986  */
987 static void
988 XLogWalRcvFlush(bool dying, TimeLineID tli)
989 {
990  Assert(tli != 0);
991 
992  if (LogstreamResult.Flush < LogstreamResult.Write)
993  {
994  WalRcvData *walrcv = WalRcv;
995 
997 
998  LogstreamResult.Flush = LogstreamResult.Write;
999 
1000  /* Update shared-memory status */
1001  SpinLockAcquire(&walrcv->mutex);
1002  if (walrcv->flushedUpto < LogstreamResult.Flush)
1003  {
1004  walrcv->latestChunkStart = walrcv->flushedUpto;
1005  walrcv->flushedUpto = LogstreamResult.Flush;
1006  walrcv->receivedTLI = tli;
1007  }
1008  SpinLockRelease(&walrcv->mutex);
1009 
1010  /* Signal the startup process and walsender that new WAL has arrived */
1011  WakeupRecovery();
1013  WalSndWakeup(true, false);
1014 
1015  /* Report XLOG streaming progress in PS display */
1017  {
1018  char activitymsg[50];
1019 
1020  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
1022  set_ps_display(activitymsg);
1023  }
1024 
1025  /* Also let the primary know that we made some progress */
1026  if (!dying)
1027  {
1028  XLogWalRcvSendReply(false, false);
1029  XLogWalRcvSendHSFeedback(false);
1030  }
1031  }
1032 }
1033 
1034 /*
1035  * Close the current segment.
1036  *
1037  * Flush the segment to disk before closing it. Otherwise we have to
1038  * reopen and fsync it later.
1039  *
1040  * Create an archive notification file since the segment is known completed.
1041  */
1042 static void
1044 {
1045  char xlogfname[MAXFNAMELEN];
1046 
1048  Assert(tli != 0);
1049 
1050  /*
1051  * fsync() and close current file before we switch to next one. We would
1052  * otherwise have to reopen this file to fsync it later
1053  */
1054  XLogWalRcvFlush(false, tli);
1055 
1057 
1058  /*
1059  * XLOG segment files will be re-read by recovery in startup process soon,
1060  * so we don't advise the OS to release cache pages associated with the
1061  * file like XLogFileClose() does.
1062  */
1063  if (close(recvFile) != 0)
1064  ereport(PANIC,
1066  errmsg("could not close WAL segment %s: %m",
1067  xlogfname)));
1068 
1069  /*
1070  * Create .done file forcibly to prevent the streamed segment from being
1071  * archived later.
1072  */
1074  XLogArchiveForceDone(xlogfname);
1075  else
1076  XLogArchiveNotify(xlogfname);
1077 
1078  recvFile = -1;
1079 }
1080 
1081 /*
1082  * Send reply message to primary, indicating our current WAL locations, oldest
1083  * xmin and the current time.
1084  *
1085  * If 'force' is not set, the message is only sent if enough time has
1086  * passed since last status update to reach wal_receiver_status_interval.
1087  * If wal_receiver_status_interval is disabled altogether and 'force' is
1088  * false, this is a no-op.
1089  *
1090  * If 'requestReply' is true, requests the server to reply immediately upon
1091  * receiving this message. This is used for heartbeats, when approaching
1092  * wal_receiver_timeout.
1093  */
1094 static void
1095 XLogWalRcvSendReply(bool force, bool requestReply)
1096 {
1097  static XLogRecPtr writePtr = 0;
1098  static XLogRecPtr flushPtr = 0;
1099  XLogRecPtr applyPtr;
1100  TimestampTz now;
1101 
1102  /*
1103  * If the user doesn't want status to be reported to the primary, be sure
1104  * to exit before doing anything at all.
1105  */
1106  if (!force && wal_receiver_status_interval <= 0)
1107  return;
1108 
1109  /* Get current timestamp. */
1111 
1112  /*
1113  * We can compare the write and flush positions to the last message we
1114  * sent without taking any lock, but the apply position requires a spin
1115  * lock, so we don't check that unless something else has changed or 10
1116  * seconds have passed. This means that the apply WAL location will
1117  * appear, from the primary's point of view, to lag slightly, but since
1118  * this is only for reporting purposes and only on idle systems, that's
1119  * probably OK.
1120  */
1121  if (!force
1122  && writePtr == LogstreamResult.Write
1123  && flushPtr == LogstreamResult.Flush
1125  return;
1126 
1127  /* Make sure we wake up when it's time to send another reply. */
1129 
1130  /* Construct a new message */
1131  writePtr = LogstreamResult.Write;
1132  flushPtr = LogstreamResult.Flush;
1133  applyPtr = GetXLogReplayRecPtr(NULL);
1134 
1136  pq_sendbyte(&reply_message, 'r');
1137  pq_sendint64(&reply_message, writePtr);
1138  pq_sendint64(&reply_message, flushPtr);
1139  pq_sendint64(&reply_message, applyPtr);
1141  pq_sendbyte(&reply_message, requestReply ? 1 : 0);
1142 
1143  /* Send it */
1144  elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
1145  LSN_FORMAT_ARGS(writePtr),
1146  LSN_FORMAT_ARGS(flushPtr),
1147  LSN_FORMAT_ARGS(applyPtr),
1148  requestReply ? " (reply requested)" : "");
1149 
1151 }
1152 
1153 /*
1154  * Send hot standby feedback message to primary, plus the current time,
1155  * in case they don't have a watch.
1156  *
1157  * If the user disables feedback, send one final message to tell sender
1158  * to forget about the xmin on this standby. We also send this message
1159  * on first connect because a previous connection might have set xmin
1160  * on a replication slot. (If we're not using a slot it's harmless to
1161  * send a feedback message explicitly setting InvalidTransactionId).
1162  */
1163 static void
1165 {
1166  TimestampTz now;
1167  FullTransactionId nextFullXid;
1168  TransactionId nextXid;
1169  uint32 xmin_epoch,
1170  catalog_xmin_epoch;
1171  TransactionId xmin,
1172  catalog_xmin;
1173 
1174  /* initially true so we always send at least one feedback message */
1175  static bool primary_has_standby_xmin = true;
1176 
1177  /*
1178  * If the user doesn't want status to be reported to the primary, be sure
1179  * to exit before doing anything at all.
1180  */
1182  !primary_has_standby_xmin)
1183  return;
1184 
1185  /* Get current timestamp. */
1187 
1188  /* Send feedback at most once per wal_receiver_status_interval. */
1189  if (!immed && now < wakeup[WALRCV_WAKEUP_HSFEEDBACK])
1190  return;
1191 
1192  /* Make sure we wake up when it's time to send feedback again. */
1193  WalRcvComputeNextWakeup(WALRCV_WAKEUP_HSFEEDBACK, now);
1194 
1195  /*
1196  * If Hot Standby is not yet accepting connections there is nothing to
1197  * send. Check this after the interval has expired to reduce number of
1198  * calls.
1199  *
1200  * Bailing out here also ensures that we don't send feedback until we've
1201  * read our own replication slot state, so we don't tell the primary to
1202  * discard needed xmin or catalog_xmin from any slots that may exist on
1203  * this replica.
1204  */
1205  if (!HotStandbyActive())
1206  return;
1207 
1208  /*
1209  * Make the expensive call to get the oldest xmin once we are certain
1210  * everything else has been checked.
1211  */
1213  {
1214  GetReplicationHorizons(&xmin, &catalog_xmin);
1215  }
1216  else
1217  {
1218  xmin = InvalidTransactionId;
1219  catalog_xmin = InvalidTransactionId;
1220  }
1221 
1222  /*
1223  * Get epoch and adjust if nextXid and oldestXmin are different sides of
1224  * the epoch boundary.
1225  */
1226  nextFullXid = ReadNextFullTransactionId();
1227  nextXid = XidFromFullTransactionId(nextFullXid);
1228  xmin_epoch = EpochFromFullTransactionId(nextFullXid);
1229  catalog_xmin_epoch = xmin_epoch;
1230  if (nextXid < xmin)
1231  xmin_epoch--;
1232  if (nextXid < catalog_xmin)
1233  catalog_xmin_epoch--;
1234 
1235  elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1236  xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1237 
1238  /* Construct the message and send it. */
1240  pq_sendbyte(&reply_message, 'h');
1242  pq_sendint32(&reply_message, xmin);
1243  pq_sendint32(&reply_message, xmin_epoch);
1244  pq_sendint32(&reply_message, catalog_xmin);
1245  pq_sendint32(&reply_message, catalog_xmin_epoch);
1247  if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1248  primary_has_standby_xmin = true;
1249  else
1250  primary_has_standby_xmin = false;
1251 }
1252 
1253 /*
1254  * Update shared memory status upon receiving a message from primary.
1255  *
1256  * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1257  * message, reported by primary.
1258  */
1259 static void
1261 {
1262  WalRcvData *walrcv = WalRcv;
1263  TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1264 
1265  /* Update shared-memory status */
1266  SpinLockAcquire(&walrcv->mutex);
1267  if (walrcv->latestWalEnd < walEnd)
1268  walrcv->latestWalEndTime = sendTime;
1269  walrcv->latestWalEnd = walEnd;
1270  walrcv->lastMsgSendTime = sendTime;
1271  walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1272  SpinLockRelease(&walrcv->mutex);
1273 
1275  {
1276  char *sendtime;
1277  char *receipttime;
1278  int applyDelay;
1279 
1280  /* Copy because timestamptz_to_str returns a static buffer */
1281  sendtime = pstrdup(timestamptz_to_str(sendTime));
1282  receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1283  applyDelay = GetReplicationApplyDelay();
1284 
1285  /* apply delay is not available */
1286  if (applyDelay == -1)
1287  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1288  sendtime,
1289  receipttime,
1291  else
1292  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1293  sendtime,
1294  receipttime,
1295  applyDelay,
1297 
1298  pfree(sendtime);
1299  pfree(receipttime);
1300  }
1301 }
1302 
1303 /*
1304  * Compute the next wakeup time for a given wakeup reason. Can be called to
1305  * initialize a wakeup time, to adjust it for the next wakeup, or to
1306  * reinitialize it when GUCs have changed. We ask the caller to pass in the
1307  * value of "now" because this frequently avoids multiple calls of
1308  * GetCurrentTimestamp(). It had better be a reasonably up-to-date value
1309  * though.
1310  */
1311 static void
1313 {
1314  switch (reason)
1315  {
1317  if (wal_receiver_timeout <= 0)
1318  wakeup[reason] = TIMESTAMP_INFINITY;
1319  else
1321  break;
1322  case WALRCV_WAKEUP_PING:
1323  if (wal_receiver_timeout <= 0)
1324  wakeup[reason] = TIMESTAMP_INFINITY;
1325  else
1327  break;
1328  case WALRCV_WAKEUP_HSFEEDBACK:
1330  wakeup[reason] = TIMESTAMP_INFINITY;
1331  else
1333  break;
1334  case WALRCV_WAKEUP_REPLY:
1336  wakeup[reason] = TIMESTAMP_INFINITY;
1337  else
1339  break;
1340  /* there's intentionally no default: here */
1341  }
1342 }
1343 
1344 /*
1345  * Wake up the walreceiver main loop.
1346  *
1347  * This is called by the startup process whenever interesting xlog records
1348  * are applied, so that walreceiver can check if it needs to send an apply
1349  * notification back to the primary which may be waiting in a COMMIT with
1350  * synchronous_commit = remote_apply.
1351  */
1352 void
1354 {
1355  Latch *latch;
1356 
1357  WalRcv->force_reply = true;
1358  /* fetching the latch pointer might not be atomic, so use spinlock */
1360  latch = WalRcv->latch;
1362  if (latch)
1363  SetLatch(latch);
1364 }
1365 
1366 /*
1367  * Return a string constant representing the state. This is used
1368  * in system functions and views, and should *not* be translated.
1369  */
1370 static const char *
1372 {
1373  switch (state)
1374  {
1375  case WALRCV_STOPPED:
1376  return "stopped";
1377  case WALRCV_STARTING:
1378  return "starting";
1379  case WALRCV_STREAMING:
1380  return "streaming";
1381  case WALRCV_WAITING:
1382  return "waiting";
1383  case WALRCV_RESTARTING:
1384  return "restarting";
1385  case WALRCV_STOPPING:
1386  return "stopping";
1387  }
1388  return "UNKNOWN";
1389 }
1390 
1391 /*
1392  * Returns activity of WAL receiver, including pid, state and xlog locations
1393  * received from the WAL sender of another server.
1394  */
1395 Datum
1397 {
1398  TupleDesc tupdesc;
1399  Datum *values;
1400  bool *nulls;
1401  int pid;
1402  bool ready_to_display;
1404  XLogRecPtr receive_start_lsn;
1405  TimeLineID receive_start_tli;
1406  XLogRecPtr written_lsn;
1407  XLogRecPtr flushed_lsn;
1408  TimeLineID received_tli;
1409  TimestampTz last_send_time;
1410  TimestampTz last_receipt_time;
1411  XLogRecPtr latest_end_lsn;
1412  TimestampTz latest_end_time;
1413  char sender_host[NI_MAXHOST];
1414  int sender_port = 0;
1415  char slotname[NAMEDATALEN];
1416  char conninfo[MAXCONNINFO];
1417 
1418  /* Take a lock to ensure value consistency */
1420  pid = (int) WalRcv->pid;
1421  ready_to_display = WalRcv->ready_to_display;
1423  receive_start_lsn = WalRcv->receiveStart;
1424  receive_start_tli = WalRcv->receiveStartTLI;
1425  flushed_lsn = WalRcv->flushedUpto;
1426  received_tli = WalRcv->receivedTLI;
1427  last_send_time = WalRcv->lastMsgSendTime;
1428  last_receipt_time = WalRcv->lastMsgReceiptTime;
1429  latest_end_lsn = WalRcv->latestWalEnd;
1430  latest_end_time = WalRcv->latestWalEndTime;
1431  strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
1432  strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
1433  sender_port = WalRcv->sender_port;
1434  strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
1436 
1437  /*
1438  * No WAL receiver (or not ready yet), just return a tuple with NULL
1439  * values
1440  */
1441  if (pid == 0 || !ready_to_display)
1442  PG_RETURN_NULL();
1443 
1444  /*
1445  * Read "writtenUpto" without holding a spinlock. Note that it may not be
1446  * consistent with the other shared variables of the WAL receiver
1447  * protected by a spinlock, but this should not be used for data integrity
1448  * checks.
1449  */
1450  written_lsn = pg_atomic_read_u64(&WalRcv->writtenUpto);
1451 
1452  /* determine result type */
1453  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1454  elog(ERROR, "return type must be a row type");
1455 
1456  values = palloc0(sizeof(Datum) * tupdesc->natts);
1457  nulls = palloc0(sizeof(bool) * tupdesc->natts);
1458 
1459  /* Fetch values */
1460  values[0] = Int32GetDatum(pid);
1461 
1462  if (!has_privs_of_role(GetUserId(), ROLE_PG_READ_ALL_STATS))
1463  {
1464  /*
1465  * Only superusers and roles with privileges of pg_read_all_stats can
1466  * see details. Other users only get the pid value to know whether it
1467  * is a WAL receiver, but no details.
1468  */
1469  memset(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1470  }
1471  else
1472  {
1474 
1475  if (XLogRecPtrIsInvalid(receive_start_lsn))
1476  nulls[2] = true;
1477  else
1478  values[2] = LSNGetDatum(receive_start_lsn);
1479  values[3] = Int32GetDatum(receive_start_tli);
1480  if (XLogRecPtrIsInvalid(written_lsn))
1481  nulls[4] = true;
1482  else
1483  values[4] = LSNGetDatum(written_lsn);
1484  if (XLogRecPtrIsInvalid(flushed_lsn))
1485  nulls[5] = true;
1486  else
1487  values[5] = LSNGetDatum(flushed_lsn);
1488  values[6] = Int32GetDatum(received_tli);
1489  if (last_send_time == 0)
1490  nulls[7] = true;
1491  else
1492  values[7] = TimestampTzGetDatum(last_send_time);
1493  if (last_receipt_time == 0)
1494  nulls[8] = true;
1495  else
1496  values[8] = TimestampTzGetDatum(last_receipt_time);
1497  if (XLogRecPtrIsInvalid(latest_end_lsn))
1498  nulls[9] = true;
1499  else
1500  values[9] = LSNGetDatum(latest_end_lsn);
1501  if (latest_end_time == 0)
1502  nulls[10] = true;
1503  else
1504  values[10] = TimestampTzGetDatum(latest_end_time);
1505  if (*slotname == '\0')
1506  nulls[11] = true;
1507  else
1508  values[11] = CStringGetTextDatum(slotname);
1509  if (*sender_host == '\0')
1510  nulls[12] = true;
1511  else
1512  values[12] = CStringGetTextDatum(sender_host);
1513  if (sender_port == 0)
1514  nulls[13] = true;
1515  else
1516  values[13] = Int32GetDatum(sender_port);
1517  if (*conninfo == '\0')
1518  nulls[14] = true;
1519  else
1520  values[14] = CStringGetTextDatum(conninfo);
1521  }
1522 
1523  /* Returns the record as Datum */
1525 }
bool has_privs_of_role(Oid member, Oid role)
Definition: acl.c:4961
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:433
#define pg_memory_barrier()
Definition: atomics.h:140
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:424
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition: timeline.c:463
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition: timeline.c:222
sigset_t UnBlockSig
Definition: pqsignal.c:22
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1695
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1583
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1547
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1782
static Datum values[MAXATTR]
Definition: bootstrap.c:156
#define CStringGetTextDatum(s)
Definition: builtins.h:94
unsigned int uint32
Definition: c.h:495
#define Min(x, y)
Definition: c.h:993
#define UINT64_FORMAT
Definition: c.h:538
uint32 TransactionId
Definition: c.h:641
size_t Size
Definition: c.h:594
void ConditionVariableBroadcast(ConditionVariable *cv)
int64 TimestampTz
Definition: timestamp.h:39
#define TIMESTAMP_INFINITY
Definition: timestamp.h:150
void load_file(const char *filename, bool restricted)
Definition: dfmgr.c:144
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1156
int errcode_for_file_access(void)
Definition: elog.c:881
int errdetail(const char *fmt,...)
Definition: elog.c:1202
bool message_level_is_interesting(int elevel)
Definition: elog.c:277
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define ereport(elevel,...)
Definition: elog.h:149
void err(int eval, const char *fmt,...)
Definition: err.c:43
#define PG_RETURN_NULL()
Definition: fmgr.h:345
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:353
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition: funcapi.h:230
int MyProcPid
Definition: globals.c:44
struct Latch * MyLatch
Definition: globals.c:58
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
char * cluster_name
Definition: guc_tables.c:534
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1108
#define close(a)
Definition: win32.h:12
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:109
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:361
void proc_exit(int code)
Definition: ipc.c:104
int i
Definition: isn.c:73
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:538
void SetLatch(Latch *latch)
Definition: latch.c:605
void ResetLatch(Latch *latch)
Definition: latch.c:697
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:490
#define WL_SOCKET_READABLE
Definition: latch.h:126
#define WL_TIMEOUT
Definition: latch.h:128
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:130
#define WL_LATCH_SET
Definition: latch.h:125
Assert(fmt[strlen(fmt) - 1] !='\n')
exit(1)
char * pstrdup(const char *in)
Definition: mcxt.c:1644
void pfree(void *pointer)
Definition: mcxt.c:1456
void * palloc0(Size size)
Definition: mcxt.c:1257
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:121
Oid GetUserId(void)
Definition: miscinit.c:509
void * arg
#define NAMEDATALEN
const void size_t len
static Datum LSNGetDatum(XLogRecPtr X)
Definition: pg_lsn.h:28
static char ** options
static char * buf
Definition: pg_test_fsync.c:67
#define pg_pwrite
Definition: port.h:226
pqsigfunc pqsignal(int signo, pqsigfunc func)
int pgsocket
Definition: port.h:29
#define snprintf
Definition: port.h:238
#define PGINVALID_SOCKET
Definition: port.h:31
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:312
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:212
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:402
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:456
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:145
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:161
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:153
void GetReplicationHorizons(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:2028
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:639
bool update_process_title
Definition: ps_status.c:31
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:66
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:75
void appendBinaryStringInfo(StringInfo str, const void *data, int datalen)
Definition: stringinfo.c:227
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Definition: latch.h:111
Latch procLatch
Definition: proc.h:170
TimestampTz lastMsgReceiptTime
Definition: walreceiver.h:102
XLogRecPtr latestWalEnd
Definition: walreceiver.h:107
TimeLineID receiveStartTLI
Definition: walreceiver.h:78
TimeLineID receivedTLI
Definition: walreceiver.h:88
char slotname[NAMEDATALEN]
Definition: walreceiver.h:127
Latch * latch
Definition: walreceiver.h:145
char sender_host[NI_MAXHOST]
Definition: walreceiver.h:120
pid_t pid
Definition: walreceiver.h:66
XLogRecPtr latestChunkStart
Definition: walreceiver.h:96
XLogRecPtr receiveStart
Definition: walreceiver.h:77
XLogRecPtr flushedUpto
Definition: walreceiver.h:87
sig_atomic_t force_reply
Definition: walreceiver.h:162
ConditionVariable walRcvStoppedCV
Definition: walreceiver.h:68
bool is_temp_slot
Definition: walreceiver.h:133
pg_atomic_uint64 writtenUpto
Definition: walreceiver.h:155
TimestampTz lastMsgSendTime
Definition: walreceiver.h:101
WalRcvState walRcvState
Definition: walreceiver.h:67
TimestampTz latestWalEndTime
Definition: walreceiver.h:108
bool ready_to_display
Definition: walreceiver.h:136
int sender_port
Definition: walreceiver.h:121
slock_t mutex
Definition: walreceiver.h:147
char conninfo[MAXCONNINFO]
Definition: walreceiver.h:114
Definition: regguts.h:323
#define InvalidTransactionId
Definition: transam.h:31
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static Datum TimestampTzGetDatum(TimestampTz X)
Definition: timestamp.h:52
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:85
#define TimestampTzPlusSeconds(tz, s)
Definition: timestamp.h:86
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:261
const char * type
void ProcessWalRcvInterrupts(void)
Definition: walreceiver.c:166
#define NUM_WALRCV_WAKEUPS
Definition: walreceiver.c:126
static WalReceiverConn * wrconn
Definition: walreceiver.c:95
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:132
void WalReceiverMain(void)
Definition: walreceiver.c:187
static StringInfoData reply_message
Definition: walreceiver.c:134
bool hot_standby_feedback
Definition: walreceiver.c:92
XLogRecPtr Flush
Definition: walreceiver.c:114
static int recvFile
Definition: walreceiver.c:103
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
Definition: walreceiver.c:1260
int wal_receiver_status_interval
Definition: walreceiver.c:90
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
Definition: walreceiver.c:744
XLogRecPtr Write
Definition: walreceiver.c:113
static StringInfoData incoming_message
Definition: walreceiver.c:135
static void XLogWalRcvFlush(bool dying, TimeLineID tli)
Definition: walreceiver.c:988
static struct @18 LogstreamResult
static TimeLineID recvFileTLI
Definition: walreceiver.c:104
WalReceiverFunctionsType * WalReceiverFunctions
Definition: walreceiver.c:96
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:905
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
Definition: walreceiver.c:1396
int wal_receiver_timeout
Definition: walreceiver.c:91
static XLogSegNo recvSegNo
Definition: walreceiver.c:105
static void XLogWalRcvClose(XLogRecPtr recptr, TimeLineID tli)
Definition: walreceiver.c:1043
static void XLogWalRcvSendHSFeedback(bool immed)
Definition: walreceiver.c:1164
WalRcvWakeupReason
Definition: walreceiver.c:121
@ WALRCV_WAKEUP_TERMINATE
Definition: walreceiver.c:122
@ WALRCV_WAKEUP_REPLY
Definition: walreceiver.c:124
@ WALRCV_WAKEUP_PING
Definition: walreceiver.c:123
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
Definition: walreceiver.c:664
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len, TimeLineID tli)
Definition: walreceiver.c:838
static void WalRcvComputeNextWakeup(WalRcvWakeupReason reason, TimestampTz now)
Definition: walreceiver.c:1312
static const char * WalRcvGetStateString(WalRcvState state)
Definition: walreceiver.c:1371
static void WalRcvDie(int code, Datum arg)
Definition: walreceiver.c:800
static void XLogWalRcvSendReply(bool force, bool requestReply)
Definition: walreceiver.c:1095
void WalRcvForceReply(void)
Definition: walreceiver.c:1353
#define walrcv_create_slot(conn, slotname, temporary, two_phase, snapshot_action, lsn)
Definition: walreceiver.h:432
#define AllowCascadeReplication()
Definition: walreceiver.h:42
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
Definition: walreceiver.h:422
#define walrcv_startstreaming(conn, options)
Definition: walreceiver.h:424
#define walrcv_send(conn, buffer, nbytes)
Definition: walreceiver.h:430
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
Definition: walreceiver.h:416
#define MAXCONNINFO
Definition: walreceiver.h:39
#define walrcv_get_conninfo(conn)
Definition: walreceiver.h:414
#define walrcv_endstreaming(conn, next_tli)
Definition: walreceiver.h:426
#define walrcv_connect(conninfo, logical, must_use_password, appname, err)
Definition: walreceiver.h:410
WalRcvState
Definition: walreceiver.h:48
@ WALRCV_STARTING
Definition: walreceiver.h:50
@ WALRCV_STOPPED
Definition: walreceiver.h:49
@ WALRCV_RESTARTING
Definition: walreceiver.h:54
@ WALRCV_STREAMING
Definition: walreceiver.h:52
@ WALRCV_WAITING
Definition: walreceiver.h:53
@ WALRCV_STOPPING
Definition: walreceiver.h:55
#define walrcv_identify_system(conn, primary_tli)
Definition: walreceiver.h:418
#define walrcv_disconnect(conn)
Definition: walreceiver.h:438
#define walrcv_get_backend_pid(conn)
Definition: walreceiver.h:434
#define walrcv_receive(conn, buffer, wait_fd)
Definition: walreceiver.h:428
WalRcvData * WalRcv
int GetReplicationApplyDelay(void)
int GetReplicationTransferLatency(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3333
#define SIGCHLD
Definition: win32_port.h:178
#define SIGHUP
Definition: win32_port.h:168
#define SIG_DFL
Definition: win32_port.h:163
#define SIGPIPE
Definition: win32_port.h:173
#define SIGUSR1
Definition: win32_port.h:180
#define SIGALRM
Definition: win32_port.h:174
#define SIGUSR2
Definition: win32_port.h:181
#define SIG_IGN
Definition: win32_port.h:165
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3113
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4203
bool RecoveryInProgress(void)
Definition: xlog.c:5948
int XLogArchiveMode
Definition: xlog.c:122
int wal_segment_size
Definition: xlog.c:146
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8186
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:62
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
#define MAXFNAMELEN
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
static void TLHistoryFileName(char *fname, TimeLineID tli)
void XLogArchiveForceDone(const char *xlog)
Definition: xlogarchive.c:504
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:438
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
uint64 XLogSegNo
Definition: xlogdefs.h:48
bool HotStandbyActive(void)
void WakeupRecovery(void)
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)