PostgreSQL Source Code  git master
walreceiver.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * walreceiver.c
4  *
5  * The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
6  * is the process in the standby server that takes charge of receiving
7  * XLOG records from a primary server during streaming replication.
8  *
9  * When the startup process determines that it's time to start streaming,
10  * it instructs postmaster to start walreceiver. Walreceiver first connects
11  * to the primary server (it will be served by a walsender process
12  * in the primary server), and then keeps receiving XLOG records and
13  * writing them to the disk as long as the connection is alive. As XLOG
14  * records are received and flushed to disk, it updates the
15  * WalRcv->flushedUpto variable in shared memory, to inform the startup
16  * process of how far it can proceed with XLOG replay.
17  *
18  * A WAL receiver cannot directly load GUC parameters used when establishing
19  * its connection to the primary. Instead it relies on parameter values
20  * that are passed down by the startup process when streaming is requested.
21  * This applies, for example, to the replication slot and the connection
22  * string to be used for the connection with the primary.
23  *
24  * If the primary server ends streaming, but doesn't disconnect, walreceiver
25  * goes into "waiting" mode, and waits for the startup process to give new
26  * instructions. The startup process will treat that the same as
27  * disconnection, and will rescan the archive/pg_wal directory. But when the
28  * startup process wants to try streaming replication again, it will just
29  * nudge the existing walreceiver process that's waiting, instead of launching
30  * a new one.
31  *
32  * Normal termination is by SIGTERM, which instructs the walreceiver to
33  * exit(0). Emergency termination is by SIGQUIT; like any postmaster child
34  * process, the walreceiver will simply abort and exit on SIGQUIT. A close
35  * of the connection and a FATAL error are treated not as a crash but as
36  * normal operation.
37  *
38  * This file contains the server-facing parts of walreceiver. The libpq-
39  * specific parts are in the libpqwalreceiver module. It's loaded
40  * dynamically to avoid linking the server with libpq.
41  *
42  * Portions Copyright (c) 2010-2020, PostgreSQL Global Development Group
43  *
44  *
45  * IDENTIFICATION
46  * src/backend/replication/walreceiver.c
47  *
48  *-------------------------------------------------------------------------
49  */
50 #include "postgres.h"
51 
52 #include <unistd.h>
53 
54 #include "access/htup_details.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/xlog_internal.h"
58 #include "access/xlogarchive.h"
59 #include "catalog/pg_authid.h"
60 #include "catalog/pg_type.h"
61 #include "common/ip.h"
62 #include "funcapi.h"
63 #include "libpq/pqformat.h"
64 #include "libpq/pqsignal.h"
65 #include "miscadmin.h"
66 #include "pgstat.h"
67 #include "postmaster/interrupt.h"
69 #include "replication/walsender.h"
70 #include "storage/ipc.h"
71 #include "storage/pmsignal.h"
72 #include "storage/procarray.h"
73 #include "storage/procsignal.h"
74 #include "utils/acl.h"
75 #include "utils/builtins.h"
76 #include "utils/guc.h"
77 #include "utils/pg_lsn.h"
78 #include "utils/ps_status.h"
79 #include "utils/resowner.h"
80 #include "utils/timestamp.h"
81 
82 
83 /*
84  * GUC variables. (Other variables that affect walreceiver are in xlog.c
85  * because they're passed down from the startup process, for better
86  * synchronization.)
87  */
91 
92 /* libpqwalreceiver connection */
93 static WalReceiverConn *wrconn = NULL;
95 
96 #define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */
97 
98 /*
99  * These variables are used similarly to openLogFile/SegNo,
100  * but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
101  * corresponding the filename of recvFile.
102  */
103 static int recvFile = -1;
105 static XLogSegNo recvSegNo = 0;
106 
107 /*
108  * Flags set by interrupt handlers of walreceiver for later service in the
109  * main loop.
110  */
111 static volatile sig_atomic_t got_SIGHUP = false;
112 static volatile sig_atomic_t got_SIGTERM = false;
113 
114 /*
115  * LogstreamResult indicates the byte positions that we have already
116  * written/fsynced.
117  */
118 static struct
119 {
120  XLogRecPtr Write; /* last byte + 1 written out in the standby */
121  XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
123 
126 
127 /* Prototypes for private functions */
128 static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
129 static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
130 static void WalRcvDie(int code, Datum arg);
131 static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len);
132 static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr);
133 static void XLogWalRcvFlush(bool dying);
134 static void XLogWalRcvSendReply(bool force, bool requestReply);
135 static void XLogWalRcvSendHSFeedback(bool immed);
136 static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
137 
138 /* Signal handlers */
139 static void WalRcvSigHupHandler(SIGNAL_ARGS);
141 
142 
143 /*
144  * Process any interrupts the walreceiver process may have received.
145  * This should be called any time the process's latch has become set.
146  *
147  * Currently, only SIGTERM is of interest. We can't just exit(1) within the
148  * SIGTERM signal handler, because the signal might arrive in the middle of
149  * some critical operation, like while we're holding a spinlock. Instead, the
150  * signal handler sets a flag variable as well as setting the process's latch.
151  * We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
152  * latch has become set. Operations that could block for a long time, such as
153  * reading from a remote server, must pay attention to the latch too; see
154  * libpqrcv_PQgetResult for example.
155  */
156 void
158 {
159  /*
160  * Although walreceiver interrupt handling doesn't use the same scheme as
161  * regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
162  * any incoming signals on Win32, and also to make sure we process any
163  * barrier events.
164  */
166 
167  if (got_SIGTERM)
168  {
169  ereport(FATAL,
170  (errcode(ERRCODE_ADMIN_SHUTDOWN),
171  errmsg("terminating walreceiver process due to administrator command")));
172  }
173 }
174 
175 
176 /* Main entry point for walreceiver process */
177 void
179 {
180  char conninfo[MAXCONNINFO];
181  char *tmp_conninfo;
182  char slotname[NAMEDATALEN];
183  bool is_temp_slot;
184  XLogRecPtr startpoint;
185  TimeLineID startpointTLI;
186  TimeLineID primaryTLI;
187  bool first_stream;
188  WalRcvData *walrcv = WalRcv;
189  TimestampTz last_recv_timestamp;
191  bool ping_sent;
192  char *err;
193  char *sender_host = NULL;
194  int sender_port = 0;
195 
196  /*
197  * WalRcv should be set up already (if we are a backend, we inherit this
198  * by fork() or EXEC_BACKEND mechanism from the postmaster).
199  */
200  Assert(walrcv != NULL);
201 
202  now = GetCurrentTimestamp();
203 
204  /*
205  * Mark walreceiver as running in shared memory.
206  *
207  * Do this as early as possible, so that if we fail later on, we'll set
208  * state to STOPPED. If we die before this, the startup process will keep
209  * waiting for us to start up, until it times out.
210  */
211  SpinLockAcquire(&walrcv->mutex);
212  Assert(walrcv->pid == 0);
213  switch (walrcv->walRcvState)
214  {
215  case WALRCV_STOPPING:
216  /* If we've already been requested to stop, don't start up. */
217  walrcv->walRcvState = WALRCV_STOPPED;
218  /* fall through */
219 
220  case WALRCV_STOPPED:
221  SpinLockRelease(&walrcv->mutex);
222  proc_exit(1);
223  break;
224 
225  case WALRCV_STARTING:
226  /* The usual case */
227  break;
228 
229  case WALRCV_WAITING:
230  case WALRCV_STREAMING:
231  case WALRCV_RESTARTING:
232  default:
233  /* Shouldn't happen */
234  SpinLockRelease(&walrcv->mutex);
235  elog(PANIC, "walreceiver still running according to shared memory state");
236  }
237  /* Advertise our PID so that the startup process can kill us */
238  walrcv->pid = MyProcPid;
239  walrcv->walRcvState = WALRCV_STREAMING;
240 
241  /* Fetch information required to start streaming */
242  walrcv->ready_to_display = false;
243  strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
244  strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
245  is_temp_slot = walrcv->is_temp_slot;
246  startpoint = walrcv->receiveStart;
247  startpointTLI = walrcv->receiveStartTLI;
248 
249  /*
250  * At most one of is_temp_slot and slotname can be set; otherwise,
251  * RequestXLogStreaming messed up.
252  */
253  Assert(!is_temp_slot || (slotname[0] == '\0'));
254 
255  /* Initialise to a sanish value */
256  walrcv->lastMsgSendTime =
257  walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
258 
259  /* Report the latch to use to awaken this process */
260  walrcv->latch = &MyProc->procLatch;
261 
262  SpinLockRelease(&walrcv->mutex);
263 
265 
266  /* Arrange to clean up at walreceiver exit */
268 
269  /* Properly accept or ignore signals the postmaster might send us */
270  pqsignal(SIGHUP, WalRcvSigHupHandler); /* set flag to read config file */
271  pqsignal(SIGINT, SIG_IGN);
272  pqsignal(SIGTERM, WalRcvShutdownHandler); /* request shutdown */
278 
279  /* Reset some signals that are accepted by postmaster but not here */
281 
282  /* We allow SIGQUIT (quickdie) at all times */
283  sigdelset(&BlockSig, SIGQUIT);
284 
285  /* Load the libpq-specific functions */
286  load_file("libpqwalreceiver", false);
287  if (WalReceiverFunctions == NULL)
288  elog(ERROR, "libpqwalreceiver didn't initialize correctly");
289 
290  /* Unblock signals (they were blocked when the postmaster forked us) */
292 
293  /* Establish the connection to the primary for XLOG streaming */
294  wrconn = walrcv_connect(conninfo, false, cluster_name[0] ? cluster_name : "walreceiver", &err);
295  if (!wrconn)
296  ereport(ERROR,
297  (errmsg("could not connect to the primary server: %s", err)));
298 
299  /*
300  * Save user-visible connection string. This clobbers the original
301  * conninfo, for security. Also save host and port of the sender server
302  * this walreceiver is connected to.
303  */
304  tmp_conninfo = walrcv_get_conninfo(wrconn);
305  walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
306  SpinLockAcquire(&walrcv->mutex);
307  memset(walrcv->conninfo, 0, MAXCONNINFO);
308  if (tmp_conninfo)
309  strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
310 
311  memset(walrcv->sender_host, 0, NI_MAXHOST);
312  if (sender_host)
313  strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
314 
315  walrcv->sender_port = sender_port;
316  walrcv->ready_to_display = true;
317  SpinLockRelease(&walrcv->mutex);
318 
319  if (tmp_conninfo)
320  pfree(tmp_conninfo);
321 
322  if (sender_host)
323  pfree(sender_host);
324 
325  first_stream = true;
326  for (;;)
327  {
328  char *primary_sysid;
329  char standby_sysid[32];
331 
332  /*
333  * Check that we're connected to a valid server using the
334  * IDENTIFY_SYSTEM replication command.
335  */
336  primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
337 
338  snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
340  if (strcmp(primary_sysid, standby_sysid) != 0)
341  {
342  ereport(ERROR,
343  (errmsg("database system identifier differs between the primary and standby"),
344  errdetail("The primary's identifier is %s, the standby's identifier is %s.",
345  primary_sysid, standby_sysid)));
346  }
347 
348  /*
349  * Confirm that the current timeline of the primary is the same or
350  * ahead of ours.
351  */
352  if (primaryTLI < startpointTLI)
353  ereport(ERROR,
354  (errmsg("highest timeline %u of the primary is behind recovery timeline %u",
355  primaryTLI, startpointTLI)));
356 
357  /*
358  * Get any missing history files. We do this always, even when we're
359  * not interested in that timeline, so that if we're promoted to
360  * become the primary later on, we don't select the same timeline that
361  * was already used in the current primary. This isn't bullet-proof -
362  * you'll need some external software to manage your cluster if you
363  * need to ensure that a unique timeline id is chosen in every case,
364  * but let's avoid the confusion of timeline id collisions where we
365  * can.
366  */
367  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
368 
369  /*
370  * Create temporary replication slot if requested, and update slot
371  * name in shared memory. (Note the slot name cannot already be set
372  * in this case.)
373  */
374  if (is_temp_slot)
375  {
376  snprintf(slotname, sizeof(slotname),
377  "pg_walreceiver_%lld",
378  (long long int) walrcv_get_backend_pid(wrconn));
379 
380  walrcv_create_slot(wrconn, slotname, true, 0, NULL);
381 
382  SpinLockAcquire(&walrcv->mutex);
383  strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
384  SpinLockRelease(&walrcv->mutex);
385  }
386 
387  /*
388  * Start streaming.
389  *
390  * We'll try to start at the requested starting point and timeline,
391  * even if it's different from the server's latest timeline. In case
392  * we've already reached the end of the old timeline, the server will
393  * finish the streaming immediately, and we will go back to await
394  * orders from the startup process. If recovery_target_timeline is
395  * 'latest', the startup process will scan pg_wal and find the new
396  * history file, bump recovery target timeline, and ask us to restart
397  * on the new timeline.
398  */
399  options.logical = false;
400  options.startpoint = startpoint;
401  options.slotname = slotname[0] != '\0' ? slotname : NULL;
402  options.proto.physical.startpointTLI = startpointTLI;
403  ThisTimeLineID = startpointTLI;
404  if (walrcv_startstreaming(wrconn, &options))
405  {
406  if (first_stream)
407  ereport(LOG,
408  (errmsg("started streaming WAL from primary at %X/%X on timeline %u",
409  (uint32) (startpoint >> 32), (uint32) startpoint,
410  startpointTLI)));
411  else
412  ereport(LOG,
413  (errmsg("restarted WAL streaming at %X/%X on timeline %u",
414  (uint32) (startpoint >> 32), (uint32) startpoint,
415  startpointTLI)));
416  first_stream = false;
417 
418  /* Initialize LogstreamResult and buffers for processing messages */
420  initStringInfo(&reply_message);
421  initStringInfo(&incoming_message);
422 
423  /* Initialize the last recv timestamp */
424  last_recv_timestamp = GetCurrentTimestamp();
425  ping_sent = false;
426 
427  /* Loop until end-of-streaming or error */
428  for (;;)
429  {
430  char *buf;
431  int len;
432  bool endofwal = false;
433  pgsocket wait_fd = PGINVALID_SOCKET;
434  int rc;
435 
436  /*
437  * Exit walreceiver if we're not in recovery. This should not
438  * happen, but cross-check the status here.
439  */
440  if (!RecoveryInProgress())
441  ereport(FATAL,
442  (errmsg("cannot continue WAL streaming, recovery has already ended")));
443 
444  /* Process any requests or signals received recently */
446 
447  if (got_SIGHUP)
448  {
449  got_SIGHUP = false;
452  }
453 
454  /* See if we can read data immediately */
455  len = walrcv_receive(wrconn, &buf, &wait_fd);
456  if (len != 0)
457  {
458  /*
459  * Process the received data, and any subsequent data we
460  * can read without blocking.
461  */
462  for (;;)
463  {
464  if (len > 0)
465  {
466  /*
467  * Something was received from primary, so reset
468  * timeout
469  */
470  last_recv_timestamp = GetCurrentTimestamp();
471  ping_sent = false;
472  XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1);
473  }
474  else if (len == 0)
475  break;
476  else if (len < 0)
477  {
478  ereport(LOG,
479  (errmsg("replication terminated by primary server"),
480  errdetail("End of WAL reached on timeline %u at %X/%X.",
481  startpointTLI,
482  (uint32) (LogstreamResult.Write >> 32), (uint32) LogstreamResult.Write)));
483  endofwal = true;
484  break;
485  }
486  len = walrcv_receive(wrconn, &buf, &wait_fd);
487  }
488 
489  /* Let the primary know that we received some data. */
490  XLogWalRcvSendReply(false, false);
491 
492  /*
493  * If we've written some records, flush them to disk and
494  * let the startup process and primary server know about
495  * them.
496  */
497  XLogWalRcvFlush(false);
498  }
499 
500  /* Check if we need to exit the streaming loop. */
501  if (endofwal)
502  break;
503 
504  /*
505  * Ideally we would reuse a WaitEventSet object repeatedly
506  * here to avoid the overheads of WaitLatchOrSocket on epoll
507  * systems, but we can't be sure that libpq (or any other
508  * walreceiver implementation) has the same socket (even if
509  * the fd is the same number, it may have been closed and
510  * reopened since the last time). In future, if there is a
511  * function for removing sockets from WaitEventSet, then we
512  * could add and remove just the socket each time, potentially
513  * avoiding some system calls.
514  */
515  Assert(wait_fd != PGINVALID_SOCKET);
516  rc = WaitLatchOrSocket(walrcv->latch,
519  wait_fd,
522  if (rc & WL_LATCH_SET)
523  {
524  ResetLatch(walrcv->latch);
526 
527  if (walrcv->force_reply)
528  {
529  /*
530  * The recovery process has asked us to send apply
531  * feedback now. Make sure the flag is really set to
532  * false in shared memory before sending the reply, so
533  * we don't miss a new request for a reply.
534  */
535  walrcv->force_reply = false;
537  XLogWalRcvSendReply(true, false);
538  }
539  }
540  if (rc & WL_TIMEOUT)
541  {
542  /*
543  * We didn't receive anything new. If we haven't heard
544  * anything from the server for more than
545  * wal_receiver_timeout / 2, ping the server. Also, if
546  * it's been longer than wal_receiver_status_interval
547  * since the last update we sent, send a status update to
548  * the primary anyway, to report any progress in applying
549  * WAL.
550  */
551  bool requestReply = false;
552 
553  /*
554  * Check if time since last receive from standby has
555  * reached the configured limit.
556  */
557  if (wal_receiver_timeout > 0)
558  {
560  TimestampTz timeout;
561 
562  timeout =
563  TimestampTzPlusMilliseconds(last_recv_timestamp,
565 
566  if (now >= timeout)
567  ereport(ERROR,
568  (errmsg("terminating walreceiver due to timeout")));
569 
570  /*
571  * We didn't receive anything new, for half of
572  * receiver replication timeout. Ping the server.
573  */
574  if (!ping_sent)
575  {
576  timeout = TimestampTzPlusMilliseconds(last_recv_timestamp,
577  (wal_receiver_timeout / 2));
578  if (now >= timeout)
579  {
580  requestReply = true;
581  ping_sent = true;
582  }
583  }
584  }
585 
586  XLogWalRcvSendReply(requestReply, requestReply);
588  }
589  }
590 
591  /*
592  * The backend finished streaming. Exit streaming COPY-mode from
593  * our side, too.
594  */
595  walrcv_endstreaming(wrconn, &primaryTLI);
596 
597  /*
598  * If the server had switched to a new timeline that we didn't
599  * know about when we began streaming, fetch its timeline history
600  * file now.
601  */
602  WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
603  }
604  else
605  ereport(LOG,
606  (errmsg("primary server contains no more WAL on requested timeline %u",
607  startpointTLI)));
608 
609  /*
610  * End of WAL reached on the requested timeline. Close the last
611  * segment, and await for new orders from the startup process.
612  */
613  if (recvFile >= 0)
614  {
615  char xlogfname[MAXFNAMELEN];
616 
617  XLogWalRcvFlush(false);
619  if (close(recvFile) != 0)
620  ereport(PANIC,
622  errmsg("could not close log segment %s: %m",
623  xlogfname)));
624 
625  /*
626  * Create .done file forcibly to prevent the streamed segment from
627  * being archived later.
628  */
630  XLogArchiveForceDone(xlogfname);
631  else
632  XLogArchiveNotify(xlogfname);
633  }
634  recvFile = -1;
635 
636  elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
637  WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
638  }
639  /* not reached */
640 }
641 
642 /*
643  * Wait for startup process to set receiveStart and receiveStartTLI.
644  */
645 static void
647 {
648  WalRcvData *walrcv = WalRcv;
649  int state;
650 
651  SpinLockAcquire(&walrcv->mutex);
652  state = walrcv->walRcvState;
653  if (state != WALRCV_STREAMING)
654  {
655  SpinLockRelease(&walrcv->mutex);
656  if (state == WALRCV_STOPPING)
657  proc_exit(0);
658  else
659  elog(FATAL, "unexpected walreceiver state");
660  }
661  walrcv->walRcvState = WALRCV_WAITING;
663  walrcv->receiveStartTLI = 0;
664  SpinLockRelease(&walrcv->mutex);
665 
666  set_ps_display("idle");
667 
668  /*
669  * nudge startup process to notice that we've stopped streaming and are
670  * now waiting for instructions.
671  */
672  WakeupRecovery();
673  for (;;)
674  {
675  ResetLatch(walrcv->latch);
676 
678 
679  SpinLockAcquire(&walrcv->mutex);
680  Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
681  walrcv->walRcvState == WALRCV_WAITING ||
682  walrcv->walRcvState == WALRCV_STOPPING);
683  if (walrcv->walRcvState == WALRCV_RESTARTING)
684  {
685  /*
686  * No need to handle changes in primary_conninfo or
687  * primary_slotname here. Startup process will signal us to
688  * terminate in case those change.
689  */
690  *startpoint = walrcv->receiveStart;
691  *startpointTLI = walrcv->receiveStartTLI;
692  walrcv->walRcvState = WALRCV_STREAMING;
693  SpinLockRelease(&walrcv->mutex);
694  break;
695  }
696  if (walrcv->walRcvState == WALRCV_STOPPING)
697  {
698  /*
699  * We should've received SIGTERM if the startup process wants us
700  * to die, but might as well check it here too.
701  */
702  SpinLockRelease(&walrcv->mutex);
703  exit(1);
704  }
705  SpinLockRelease(&walrcv->mutex);
706 
707  (void) WaitLatch(walrcv->latch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
709  }
710 
712  {
713  char activitymsg[50];
714 
715  snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
716  (uint32) (*startpoint >> 32),
717  (uint32) *startpoint);
718  set_ps_display(activitymsg);
719  }
720 }
721 
722 /*
723  * Fetch any missing timeline history files between 'first' and 'last'
724  * (inclusive) from the server.
725  */
726 static void
728 {
729  TimeLineID tli;
730 
731  for (tli = first; tli <= last; tli++)
732  {
733  /* there's no history file for timeline 1 */
734  if (tli != 1 && !existsTimeLineHistory(tli))
735  {
736  char *fname;
737  char *content;
738  int len;
739  char expectedfname[MAXFNAMELEN];
740 
741  ereport(LOG,
742  (errmsg("fetching timeline history file for timeline %u from primary server",
743  tli)));
744 
745  walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
746 
747  /*
748  * Check that the filename on the primary matches what we
749  * calculated ourselves. This is just a sanity check, it should
750  * always match.
751  */
752  TLHistoryFileName(expectedfname, tli);
753  if (strcmp(fname, expectedfname) != 0)
754  ereport(ERROR,
755  (errcode(ERRCODE_PROTOCOL_VIOLATION),
756  errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
757  tli)));
758 
759  /*
760  * Write the file to pg_wal.
761  */
762  writeTimeLineHistoryFile(tli, content, len);
763 
764  pfree(fname);
765  pfree(content);
766  }
767  }
768 }
769 
770 /*
771  * Mark us as STOPPED in shared memory at exit.
772  */
773 static void
774 WalRcvDie(int code, Datum arg)
775 {
776  WalRcvData *walrcv = WalRcv;
777 
778  /* Ensure that all WAL records received are flushed to disk */
779  XLogWalRcvFlush(true);
780 
781  /* Mark ourselves inactive in shared memory */
782  SpinLockAcquire(&walrcv->mutex);
783  Assert(walrcv->walRcvState == WALRCV_STREAMING ||
784  walrcv->walRcvState == WALRCV_RESTARTING ||
785  walrcv->walRcvState == WALRCV_STARTING ||
786  walrcv->walRcvState == WALRCV_WAITING ||
787  walrcv->walRcvState == WALRCV_STOPPING);
788  Assert(walrcv->pid == MyProcPid);
789  walrcv->walRcvState = WALRCV_STOPPED;
790  walrcv->pid = 0;
791  walrcv->ready_to_display = false;
792  walrcv->latch = NULL;
793  SpinLockRelease(&walrcv->mutex);
794 
795  /* Terminate the connection gracefully. */
796  if (wrconn != NULL)
797  walrcv_disconnect(wrconn);
798 
799  /* Wake up the startup process to notice promptly that we're gone */
800  WakeupRecovery();
801 }
802 
803 /* SIGHUP: set flag to re-read config file at next convenient time */
804 static void
806 {
807  got_SIGHUP = true;
808 }
809 
810 
811 /* SIGTERM: set flag for ProcessWalRcvInterrupts */
812 static void
814 {
815  int save_errno = errno;
816 
817  got_SIGTERM = true;
818 
819  if (WalRcv->latch)
821 
822  errno = save_errno;
823 }
824 
825 /*
826  * Accept the message from XLOG stream, and process it.
827  */
828 static void
829 XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len)
830 {
831  int hdrlen;
832  XLogRecPtr dataStart;
833  XLogRecPtr walEnd;
834  TimestampTz sendTime;
835  bool replyRequested;
836 
837  resetStringInfo(&incoming_message);
838 
839  switch (type)
840  {
841  case 'w': /* WAL records */
842  {
843  /* copy message to StringInfo */
844  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
845  if (len < hdrlen)
846  ereport(ERROR,
847  (errcode(ERRCODE_PROTOCOL_VIOLATION),
848  errmsg_internal("invalid WAL message received from primary")));
849  appendBinaryStringInfo(&incoming_message, buf, hdrlen);
850 
851  /* read the fields */
852  dataStart = pq_getmsgint64(&incoming_message);
853  walEnd = pq_getmsgint64(&incoming_message);
854  sendTime = pq_getmsgint64(&incoming_message);
855  ProcessWalSndrMessage(walEnd, sendTime);
856 
857  buf += hdrlen;
858  len -= hdrlen;
859  XLogWalRcvWrite(buf, len, dataStart);
860  break;
861  }
862  case 'k': /* Keepalive */
863  {
864  /* copy message to StringInfo */
865  hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
866  if (len != hdrlen)
867  ereport(ERROR,
868  (errcode(ERRCODE_PROTOCOL_VIOLATION),
869  errmsg_internal("invalid keepalive message received from primary")));
870  appendBinaryStringInfo(&incoming_message, buf, hdrlen);
871 
872  /* read the fields */
873  walEnd = pq_getmsgint64(&incoming_message);
874  sendTime = pq_getmsgint64(&incoming_message);
875  replyRequested = pq_getmsgbyte(&incoming_message);
876 
877  ProcessWalSndrMessage(walEnd, sendTime);
878 
879  /* If the primary requested a reply, send one immediately */
880  if (replyRequested)
881  XLogWalRcvSendReply(true, false);
882  break;
883  }
884  default:
885  ereport(ERROR,
886  (errcode(ERRCODE_PROTOCOL_VIOLATION),
887  errmsg_internal("invalid replication message type %d",
888  type)));
889  }
890 }
891 
892 /*
893  * Write XLOG data to disk.
894  */
895 static void
896 XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr)
897 {
898  int startoff;
899  int byteswritten;
900 
901  while (nbytes > 0)
902  {
903  int segbytes;
904 
905  if (recvFile < 0 || !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
906  {
907  bool use_existent;
908 
909  /*
910  * fsync() and close current file before we switch to next one. We
911  * would otherwise have to reopen this file to fsync it later
912  */
913  if (recvFile >= 0)
914  {
915  char xlogfname[MAXFNAMELEN];
916 
917  XLogWalRcvFlush(false);
918 
920 
921  /*
922  * XLOG segment files will be re-read by recovery in startup
923  * process soon, so we don't advise the OS to release cache
924  * pages associated with the file like XLogFileClose() does.
925  */
926  if (close(recvFile) != 0)
927  ereport(PANIC,
929  errmsg("could not close log segment %s: %m",
930  xlogfname)));
931 
932  /*
933  * Create .done file forcibly to prevent the streamed segment
934  * from being archived later.
935  */
937  XLogArchiveForceDone(xlogfname);
938  else
939  XLogArchiveNotify(xlogfname);
940  }
941  recvFile = -1;
942 
943  /* Create/use new log file */
945  use_existent = true;
946  recvFile = XLogFileInit(recvSegNo, &use_existent, true);
948  }
949 
950  /* Calculate the start offset of the received logs */
951  startoff = XLogSegmentOffset(recptr, wal_segment_size);
952 
953  if (startoff + nbytes > wal_segment_size)
954  segbytes = wal_segment_size - startoff;
955  else
956  segbytes = nbytes;
957 
958  /* OK to write the logs */
959  errno = 0;
960 
961  byteswritten = pg_pwrite(recvFile, buf, segbytes, (off_t) startoff);
962  if (byteswritten <= 0)
963  {
964  char xlogfname[MAXFNAMELEN];
965  int save_errno;
966 
967  /* if write didn't set errno, assume no disk space */
968  if (errno == 0)
969  errno = ENOSPC;
970 
971  save_errno = errno;
973  errno = save_errno;
974  ereport(PANIC,
976  errmsg("could not write to log segment %s "
977  "at offset %u, length %lu: %m",
978  xlogfname, startoff, (unsigned long) segbytes)));
979  }
980 
981  /* Update state for write */
982  recptr += byteswritten;
983 
984  nbytes -= byteswritten;
985  buf += byteswritten;
986 
987  LogstreamResult.Write = recptr;
988  }
989 
990  /* Update shared-memory status */
992 }
993 
994 /*
995  * Flush the log to disk.
996  *
997  * If we're in the midst of dying, it's unwise to do anything that might throw
998  * an error, so we skip sending a reply in that case.
999  */
1000 static void
1001 XLogWalRcvFlush(bool dying)
1002 {
1003  if (LogstreamResult.Flush < LogstreamResult.Write)
1004  {
1005  WalRcvData *walrcv = WalRcv;
1006 
1008 
1009  LogstreamResult.Flush = LogstreamResult.Write;
1010 
1011  /* Update shared-memory status */
1012  SpinLockAcquire(&walrcv->mutex);
1013  if (walrcv->flushedUpto < LogstreamResult.Flush)
1014  {
1015  walrcv->latestChunkStart = walrcv->flushedUpto;
1016  walrcv->flushedUpto = LogstreamResult.Flush;
1017  walrcv->receivedTLI = ThisTimeLineID;
1018  }
1019  SpinLockRelease(&walrcv->mutex);
1020 
1021  /* Signal the startup process and walsender that new WAL has arrived */
1022  WakeupRecovery();
1024  WalSndWakeup();
1025 
1026  /* Report XLOG streaming progress in PS display */
1028  {
1029  char activitymsg[50];
1030 
1031  snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
1032  (uint32) (LogstreamResult.Write >> 32),
1033  (uint32) LogstreamResult.Write);
1034  set_ps_display(activitymsg);
1035  }
1036 
1037  /* Also let the primary know that we made some progress */
1038  if (!dying)
1039  {
1040  XLogWalRcvSendReply(false, false);
1041  XLogWalRcvSendHSFeedback(false);
1042  }
1043  }
1044 }
1045 
1046 /*
1047  * Send reply message to primary, indicating our current WAL locations, oldest
1048  * xmin and the current time.
1049  *
1050  * If 'force' is not set, the message is only sent if enough time has
1051  * passed since last status update to reach wal_receiver_status_interval.
1052  * If wal_receiver_status_interval is disabled altogether and 'force' is
1053  * false, this is a no-op.
1054  *
1055  * If 'requestReply' is true, requests the server to reply immediately upon
1056  * receiving this message. This is used for heartbeats, when approaching
1057  * wal_receiver_timeout.
1058  */
1059 static void
1060 XLogWalRcvSendReply(bool force, bool requestReply)
1061 {
1062  static XLogRecPtr writePtr = 0;
1063  static XLogRecPtr flushPtr = 0;
1064  XLogRecPtr applyPtr;
1065  static TimestampTz sendTime = 0;
1066  TimestampTz now;
1067 
1068  /*
1069  * If the user doesn't want status to be reported to the primary, be sure
1070  * to exit before doing anything at all.
1071  */
1072  if (!force && wal_receiver_status_interval <= 0)
1073  return;
1074 
1075  /* Get current timestamp. */
1076  now = GetCurrentTimestamp();
1077 
1078  /*
1079  * We can compare the write and flush positions to the last message we
1080  * sent without taking any lock, but the apply position requires a spin
1081  * lock, so we don't check that unless something else has changed or 10
1082  * seconds have passed. This means that the apply WAL location will
1083  * appear, from the primary's point of view, to lag slightly, but since
1084  * this is only for reporting purposes and only on idle systems, that's
1085  * probably OK.
1086  */
1087  if (!force
1088  && writePtr == LogstreamResult.Write
1089  && flushPtr == LogstreamResult.Flush
1090  && !TimestampDifferenceExceeds(sendTime, now,
1092  return;
1093  sendTime = now;
1094 
1095  /* Construct a new message */
1096  writePtr = LogstreamResult.Write;
1097  flushPtr = LogstreamResult.Flush;
1098  applyPtr = GetXLogReplayRecPtr(NULL);
1099 
1100  resetStringInfo(&reply_message);
1101  pq_sendbyte(&reply_message, 'r');
1102  pq_sendint64(&reply_message, writePtr);
1103  pq_sendint64(&reply_message, flushPtr);
1104  pq_sendint64(&reply_message, applyPtr);
1105  pq_sendint64(&reply_message, GetCurrentTimestamp());
1106  pq_sendbyte(&reply_message, requestReply ? 1 : 0);
1107 
1108  /* Send it */
1109  elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
1110  (uint32) (writePtr >> 32), (uint32) writePtr,
1111  (uint32) (flushPtr >> 32), (uint32) flushPtr,
1112  (uint32) (applyPtr >> 32), (uint32) applyPtr,
1113  requestReply ? " (reply requested)" : "");
1114 
1115  walrcv_send(wrconn, reply_message.data, reply_message.len);
1116 }
1117 
1118 /*
1119  * Send hot standby feedback message to primary, plus the current time,
1120  * in case they don't have a watch.
1121  *
1122  * If the user disables feedback, send one final message to tell sender
1123  * to forget about the xmin on this standby. We also send this message
1124  * on first connect because a previous connection might have set xmin
1125  * on a replication slot. (If we're not using a slot it's harmless to
1126  * send a feedback message explicitly setting InvalidTransactionId).
1127  */
1128 static void
1130 {
1131  TimestampTz now;
1132  FullTransactionId nextFullXid;
1133  TransactionId nextXid;
1134  uint32 xmin_epoch,
1135  catalog_xmin_epoch;
1136  TransactionId xmin,
1137  catalog_xmin;
1138  static TimestampTz sendTime = 0;
1139 
1140  /* initially true so we always send at least one feedback message */
1141  static bool primary_has_standby_xmin = true;
1142 
1143  /*
1144  * If the user doesn't want status to be reported to the primary, be sure
1145  * to exit before doing anything at all.
1146  */
1148  !primary_has_standby_xmin)
1149  return;
1150 
1151  /* Get current timestamp. */
1152  now = GetCurrentTimestamp();
1153 
1154  if (!immed)
1155  {
1156  /*
1157  * Send feedback at most once per wal_receiver_status_interval.
1158  */
1159  if (!TimestampDifferenceExceeds(sendTime, now,
1161  return;
1162  sendTime = now;
1163  }
1164 
1165  /*
1166  * If Hot Standby is not yet accepting connections there is nothing to
1167  * send. Check this after the interval has expired to reduce number of
1168  * calls.
1169  *
1170  * Bailing out here also ensures that we don't send feedback until we've
1171  * read our own replication slot state, so we don't tell the primary to
1172  * discard needed xmin or catalog_xmin from any slots that may exist on
1173  * this replica.
1174  */
1175  if (!HotStandbyActive())
1176  return;
1177 
1178  /*
1179  * Make the expensive call to get the oldest xmin once we are certain
1180  * everything else has been checked.
1181  */
1183  {
1184  TransactionId slot_xmin;
1185 
1186  /*
1187  * Usually GetOldestXmin() would include both global replication slot
1188  * xmin and catalog_xmin in its calculations, but we want to derive
1189  * separate values for each of those. So we ask for an xmin that
1190  * excludes the catalog_xmin.
1191  */
1192  xmin = GetOldestXmin(NULL,
1194 
1195  ProcArrayGetReplicationSlotXmin(&slot_xmin, &catalog_xmin);
1196 
1197  if (TransactionIdIsValid(slot_xmin) &&
1198  TransactionIdPrecedes(slot_xmin, xmin))
1199  xmin = slot_xmin;
1200  }
1201  else
1202  {
1203  xmin = InvalidTransactionId;
1204  catalog_xmin = InvalidTransactionId;
1205  }
1206 
1207  /*
1208  * Get epoch and adjust if nextXid and oldestXmin are different sides of
1209  * the epoch boundary.
1210  */
1211  nextFullXid = ReadNextFullTransactionId();
1212  nextXid = XidFromFullTransactionId(nextFullXid);
1213  xmin_epoch = EpochFromFullTransactionId(nextFullXid);
1214  catalog_xmin_epoch = xmin_epoch;
1215  if (nextXid < xmin)
1216  xmin_epoch--;
1217  if (nextXid < catalog_xmin)
1218  catalog_xmin_epoch--;
1219 
1220  elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
1221  xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
1222 
1223  /* Construct the message and send it. */
1224  resetStringInfo(&reply_message);
1225  pq_sendbyte(&reply_message, 'h');
1226  pq_sendint64(&reply_message, GetCurrentTimestamp());
1227  pq_sendint32(&reply_message, xmin);
1228  pq_sendint32(&reply_message, xmin_epoch);
1229  pq_sendint32(&reply_message, catalog_xmin);
1230  pq_sendint32(&reply_message, catalog_xmin_epoch);
1231  walrcv_send(wrconn, reply_message.data, reply_message.len);
1232  if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
1233  primary_has_standby_xmin = true;
1234  else
1235  primary_has_standby_xmin = false;
1236 }
1237 
1238 /*
1239  * Update shared memory status upon receiving a message from primary.
1240  *
1241  * 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
1242  * message, reported by primary.
1243  */
1244 static void
1246 {
1247  WalRcvData *walrcv = WalRcv;
1248 
1249  TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
1250 
1251  /* Update shared-memory status */
1252  SpinLockAcquire(&walrcv->mutex);
1253  if (walrcv->latestWalEnd < walEnd)
1254  walrcv->latestWalEndTime = sendTime;
1255  walrcv->latestWalEnd = walEnd;
1256  walrcv->lastMsgSendTime = sendTime;
1257  walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
1258  SpinLockRelease(&walrcv->mutex);
1259 
1260  if (log_min_messages <= DEBUG2)
1261  {
1262  char *sendtime;
1263  char *receipttime;
1264  int applyDelay;
1265 
1266  /* Copy because timestamptz_to_str returns a static buffer */
1267  sendtime = pstrdup(timestamptz_to_str(sendTime));
1268  receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
1269  applyDelay = GetReplicationApplyDelay();
1270 
1271  /* apply delay is not available */
1272  if (applyDelay == -1)
1273  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
1274  sendtime,
1275  receipttime,
1277  else
1278  elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
1279  sendtime,
1280  receipttime,
1281  applyDelay,
1283 
1284  pfree(sendtime);
1285  pfree(receipttime);
1286  }
1287 }
1288 
1289 /*
1290  * Wake up the walreceiver main loop.
1291  *
1292  * This is called by the startup process whenever interesting xlog records
1293  * are applied, so that walreceiver can check if it needs to send an apply
1294  * notification back to the primary which may be waiting in a COMMIT with
1295  * synchronous_commit = remote_apply.
1296  */
1297 void
1299 {
1300  Latch *latch;
1301 
1302  WalRcv->force_reply = true;
1303  /* fetching the latch pointer might not be atomic, so use spinlock */
1305  latch = WalRcv->latch;
1307  if (latch)
1308  SetLatch(latch);
1309 }
1310 
1311 /*
1312  * Return a string constant representing the state. This is used
1313  * in system functions and views, and should *not* be translated.
1314  */
1315 static const char *
1317 {
1318  switch (state)
1319  {
1320  case WALRCV_STOPPED:
1321  return "stopped";
1322  case WALRCV_STARTING:
1323  return "starting";
1324  case WALRCV_STREAMING:
1325  return "streaming";
1326  case WALRCV_WAITING:
1327  return "waiting";
1328  case WALRCV_RESTARTING:
1329  return "restarting";
1330  case WALRCV_STOPPING:
1331  return "stopping";
1332  }
1333  return "UNKNOWN";
1334 }
1335 
1336 /*
1337  * Returns activity of WAL receiver, including pid, state and xlog locations
1338  * received from the WAL sender of another server.
1339  */
1340 Datum
1342 {
1343  TupleDesc tupdesc;
1344  Datum *values;
1345  bool *nulls;
1346  int pid;
1347  bool ready_to_display;
1349  XLogRecPtr receive_start_lsn;
1350  TimeLineID receive_start_tli;
1351  XLogRecPtr written_lsn;
1352  XLogRecPtr flushed_lsn;
1353  TimeLineID received_tli;
1354  TimestampTz last_send_time;
1355  TimestampTz last_receipt_time;
1356  XLogRecPtr latest_end_lsn;
1357  TimestampTz latest_end_time;
1358  char sender_host[NI_MAXHOST];
1359  int sender_port = 0;
1360  char slotname[NAMEDATALEN];
1361  char conninfo[MAXCONNINFO];
1362 
1363  /* Take a lock to ensure value consistency */
1365  pid = (int) WalRcv->pid;
1366  ready_to_display = WalRcv->ready_to_display;
1367  state = WalRcv->walRcvState;
1368  receive_start_lsn = WalRcv->receiveStart;
1369  receive_start_tli = WalRcv->receiveStartTLI;
1370  written_lsn = pg_atomic_read_u64(&WalRcv->writtenUpto);
1371  flushed_lsn = WalRcv->flushedUpto;
1372  received_tli = WalRcv->receivedTLI;
1373  last_send_time = WalRcv->lastMsgSendTime;
1374  last_receipt_time = WalRcv->lastMsgReceiptTime;
1375  latest_end_lsn = WalRcv->latestWalEnd;
1376  latest_end_time = WalRcv->latestWalEndTime;
1377  strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
1378  strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
1379  sender_port = WalRcv->sender_port;
1380  strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
1382 
1383  /*
1384  * No WAL receiver (or not ready yet), just return a tuple with NULL
1385  * values
1386  */
1387  if (pid == 0 || !ready_to_display)
1388  PG_RETURN_NULL();
1389 
1390  /* determine result type */
1391  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
1392  elog(ERROR, "return type must be a row type");
1393 
1394  values = palloc0(sizeof(Datum) * tupdesc->natts);
1395  nulls = palloc0(sizeof(bool) * tupdesc->natts);
1396 
1397  /* Fetch values */
1398  values[0] = Int32GetDatum(pid);
1399 
1400  if (!is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS))
1401  {
1402  /*
1403  * Only superusers and members of pg_read_all_stats can see details.
1404  * Other users only get the pid value to know whether it is a WAL
1405  * receiver, but no details.
1406  */
1407  MemSet(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
1408  }
1409  else
1410  {
1411  values[1] = CStringGetTextDatum(WalRcvGetStateString(state));
1412 
1413  if (XLogRecPtrIsInvalid(receive_start_lsn))
1414  nulls[2] = true;
1415  else
1416  values[2] = LSNGetDatum(receive_start_lsn);
1417  values[3] = Int32GetDatum(receive_start_tli);
1418  if (XLogRecPtrIsInvalid(written_lsn))
1419  nulls[4] = true;
1420  else
1421  values[4] = LSNGetDatum(written_lsn);
1422  if (XLogRecPtrIsInvalid(flushed_lsn))
1423  nulls[5] = true;
1424  else
1425  values[5] = LSNGetDatum(flushed_lsn);
1426  values[6] = Int32GetDatum(received_tli);
1427  if (last_send_time == 0)
1428  nulls[7] = true;
1429  else
1430  values[7] = TimestampTzGetDatum(last_send_time);
1431  if (last_receipt_time == 0)
1432  nulls[8] = true;
1433  else
1434  values[8] = TimestampTzGetDatum(last_receipt_time);
1435  if (XLogRecPtrIsInvalid(latest_end_lsn))
1436  nulls[9] = true;
1437  else
1438  values[9] = LSNGetDatum(latest_end_lsn);
1439  if (latest_end_time == 0)
1440  nulls[10] = true;
1441  else
1442  values[10] = TimestampTzGetDatum(latest_end_time);
1443  if (*slotname == '\0')
1444  nulls[11] = true;
1445  else
1446  values[11] = CStringGetTextDatum(slotname);
1447  if (*sender_host == '\0')
1448  nulls[12] = true;
1449  else
1450  values[12] = CStringGetTextDatum(sender_host);
1451  if (sender_port == 0)
1452  nulls[13] = true;
1453  else
1454  values[13] = Int32GetDatum(sender_port);
1455  if (*conninfo == '\0')
1456  nulls[14] = true;
1457  else
1458  values[14] = CStringGetTextDatum(conninfo);
1459  }
1460 
1461  /* Returns the record as Datum */
1462  PG_RETURN_DATUM(HeapTupleGetDatum(heap_form_tuple(tupdesc, values, nulls)));
1463 }
int sender_port
Definition: walreceiver.h:117
#define SIGQUIT
Definition: win32_port.h:154
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
Definition: walreceiver.c:727
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
#define walrcv_get_conninfo(conn)
Definition: walreceiver.h:400
static const char * WalRcvGetStateString(WalRcvState state)
Definition: walreceiver.c:1316
#define walrcv_endstreaming(conn, next_tli)
Definition: walreceiver.h:412
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
Definition: walreceiver.c:1245
#define DEBUG1
Definition: elog.h:25
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:205
int MyProcPid
Definition: globals.c:40
uint32 TimeLineID
Definition: xlogdefs.h:52
bool hot_standby_feedback
Definition: walreceiver.c:90
slock_t mutex
Definition: walreceiver.h:143
#define WL_TIMEOUT
Definition: latch.h:127
void ProcessConfigFile(GucContext context)
int wal_segment_size
Definition: xlog.c:116
uint32 TransactionId
Definition: c.h:513
Oid GetUserId(void)
Definition: miscinit.c:448
#define SIGUSR1
Definition: win32_port.h:165
bool update_process_title
Definition: ps_status.c:36
XLogRecPtr Write
Definition: walreceiver.c:120
int GetReplicationTransferLatency(void)
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1574
#define SIGCHLD
Definition: win32_port.h:163
PGPROC * MyProc
Definition: proc.c:67
int64 TimestampTz
Definition: timestamp.h:39
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
Definition: walreceiver.c:646
sig_atomic_t force_reply
Definition: walreceiver.h:158
void issue_xlog_fsync(int fd, XLogSegNo segno)
Definition: xlog.c:10397
#define walrcv_identify_system(conn, primary_tli)
Definition: walreceiver.h:404
WalRcvState walRcvState
Definition: walreceiver.h:64
static StringInfoData incoming_message
Definition: walreceiver.c:125
char * pstrdup(const char *in)
Definition: mcxt.c:1186
bool HotStandbyActive(void)
Definition: xlog.c:8146
static void XLogWalRcvSendHSFeedback(bool immed)
Definition: walreceiver.c:1129
int XLogFileInit(XLogSegNo logsegno, bool *use_existent, bool use_lock)
Definition: xlog.c:3254
#define walrcv_receive(conn, buffer, wait_fd)
Definition: walreceiver.h:414
void ProcessWalRcvInterrupts(void)
Definition: walreceiver.c:157
static void WalRcvSigHupHandler(SIGNAL_ARGS)
Definition: walreceiver.c:805
#define walrcv_startstreaming(conn, options)
Definition: walreceiver.h:410
union WalRcvStreamOptions::@104 proto
void proc_exit(int code)
Definition: ipc.c:104
int errcode(int sqlerrcode)
Definition: elog.c:610
#define LSNGetDatum(X)
Definition: pg_lsn.h:22
TimeLineID receivedTLI
Definition: walreceiver.h:84
#define MemSet(start, val, len)
Definition: c.h:971
#define WL_SOCKET_READABLE
Definition: latch.h:125
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len)
Definition: walreceiver.c:829
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
#define SIGPIPE
Definition: win32_port.h:158
#define SIGUSR2
Definition: win32_port.h:166
#define LOG
Definition: elog.h:26
static void pq_sendint64(StringInfo buf, uint64 i)
Definition: pqformat.h:153
bool RecoveryInProgress(void)
Definition: xlog.c:8072
void SetLatch(Latch *latch)
Definition: latch.c:457
int wal_receiver_status_interval
Definition: walreceiver.c:88
#define walrcv_create_slot(conn, slotname, temporary, snapshot_action, lsn)
Definition: walreceiver.h:418
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1673
#define PANIC
Definition: elog.h:53
void ProcArrayGetReplicationSlotXmin(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:3114
#define NAPTIME_PER_CYCLE
Definition: walreceiver.c:96
ssize_t pg_pwrite(int fd, const void *buf, size_t nbyte, off_t offset)
Definition: pwrite.c:27
TimestampTz lastMsgReceiptTime
Definition: walreceiver.h:98
Datum pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
Definition: walreceiver.c:1341
void ResetLatch(Latch *latch)
Definition: latch.c:540
TimestampTz lastMsgSendTime
Definition: walreceiver.h:97
#define PG_SETMASK(mask)
Definition: pqsignal.h:19
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:438
int wal_receiver_timeout
Definition: walreceiver.c:89
Latch procLatch
Definition: proc.h:111
static WalReceiverConn * wrconn
Definition: walreceiver.c:93
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:365
WalRcvState
Definition: walreceiver.h:44
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define XLByteInSeg(xlrp, logSegNo, wal_segsz_bytes)
pg_atomic_uint64 writtenUpto
Definition: walreceiver.h:151
static void pq_sendbyte(StringInfo buf, uint8 byt)
Definition: pqformat.h:161
#define NAMEDATALEN
void set_ps_display(const char *activity)
Definition: ps_status.c:349
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:145
#define SpinLockAcquire(lock)
Definition: spin.h:62
static StringInfoData reply_message
Definition: walreceiver.c:124
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:466
void WalReceiverMain(void)
Definition: walreceiver.c:178
void SignalHandlerForCrashExit(SIGNAL_ARGS)
Definition: interrupt.c:72
void pfree(void *pointer)
Definition: mcxt.c:1056
static void pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:415
#define NI_MAXHOST
Definition: getaddrinfo.h:88
#define ERROR
Definition: elog.h:43
#define PROCARRAY_SLOTS_XMIN
Definition: procarray.h:37
void WakeupRecovery(void)
Definition: xlog.c:12666
#define TimestampTzGetDatum(X)
Definition: timestamp.h:32
#define FATAL
Definition: elog.h:52
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
Definition: xlog.c:11469
pid_t pid
Definition: walreceiver.h:63
#define MAXCONNINFO
Definition: walreceiver.h:36
XLogRecPtr latestChunkStart
Definition: walreceiver.h:92
#define DEBUG2
Definition: elog.h:24
Definition: latch.h:110
#define TLHistoryFileName(fname, tli)
void on_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:361
static char * buf
Definition: pg_test_fsync.c:67
void writeTimeLineHistoryFile(TimeLineID tli, char *content, int size)
Definition: timeline.c:467
uint64 XLogSegNo
Definition: xlogdefs.h:41
int XLogArchiveMode
Definition: xlog.c:94
int errdetail(const char *fmt,...)
Definition: elog.c:957
static struct @24 LogstreamResult
int errcode_for_file_access(void)
Definition: elog.c:633
#define SIGHUP
Definition: win32_port.h:153
#define InvalidTransactionId
Definition: transam.h:31
#define AllowCascadeReplication()
Definition: walreceiver.h:39
XLogRecPtr startpoint
Definition: walreceiver.h:168
void resetStringInfo(StringInfo str)
Definition: stringinfo.c:75
int WaitLatchOrSocket(Latch *latch, int wakeEvents, pgsocket sock, long timeout, uint32 wait_event_info)
Definition: latch.c:390
unsigned int uint32
Definition: c.h:367
int pgsocket
Definition: port.h:31
sigset_t UnBlockSig
Definition: pqsignal.c:22
bool existsTimeLineHistory(TimeLineID probeTLI)
Definition: timeline.c:222
static volatile sig_atomic_t got_SIGHUP
Definition: walreceiver.c:111
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:300
XLogRecPtr Flush
Definition: walreceiver.c:121
TimeLineID receiveStartTLI
Definition: walreceiver.h:74
static TimeLineID recvFileTLI
Definition: walreceiver.c:104
#define walrcv_get_backend_pid(conn)
Definition: walreceiver.h:420
FullTransactionId ReadNextFullTransactionId(void)
Definition: varsup.c:246
Definition: guc.h:72
char * cluster_name
Definition: guc.c:551
Latch * latch
Definition: walreceiver.h:141
int GetReplicationApplyDelay(void)
#define SIG_IGN
Definition: win32_port.h:150
static char ** options
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
static XLogSegNo recvSegNo
Definition: walreceiver.c:105
#define MAXFNAMELEN
#define SpinLockRelease(lock)
Definition: spin.h:64
sigset_t BlockSig
Definition: pqsignal.c:22
void * palloc0(Size size)
Definition: mcxt.c:980
void XLogArchiveForceDone(const char *xlog)
Definition: xlogarchive.c:516
uintptr_t Datum
Definition: postgres.h:367
#define PG_RETURN_DATUM(x)
Definition: fmgr.h:352
WalReceiverFunctionsType * WalReceiverFunctions
Definition: walreceiver.c:94
#define PGINVALID_SOCKET
Definition: port.h:33
#define PROCARRAY_FLAGS_DEFAULT
Definition: procarray.h:50
static void XLogWalRcvSendReply(bool force, bool requestReply)
Definition: walreceiver.c:1060
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
bool ready_to_display
Definition: walreceiver.h:132
#define EpochFromFullTransactionId(x)
Definition: transam.h:47
TimestampTz latestWalEndTime
Definition: walreceiver.h:104
int log_min_messages
Definition: guc.c:534
static void WalRcvShutdownHandler(SIGNAL_ARGS)
Definition: walreceiver.c:813
TimeLineID ThisTimeLineID
Definition: xlog.c:191
#define TimestampTzPlusMilliseconds(tz, ms)
Definition: timestamp.h:56
#define ereport(elevel,...)
Definition: elog.h:144
TransactionId GetOldestXmin(Relation rel, int flags)
Definition: procarray.c:1305
pqsigfunc pqsignal(int signum, pqsigfunc handler)
Definition: signal.c:170
int pq_getmsgbyte(StringInfo msg)
Definition: pqformat.c:401
bool is_member_of_role(Oid member, Oid role)
Definition: acl.c:4916
XLogRecPtr latestWalEnd
Definition: walreceiver.h:103
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
int errmsg_internal(const char *fmt,...)
Definition: elog.c:911
#define pg_memory_barrier()
Definition: atomics.h:145
#define SIG_DFL
Definition: win32_port.h:148
#define SIGNAL_ARGS
Definition: c.h:1295
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define Assert(condition)
Definition: c.h:738
Definition: regguts.h:298
void load_file(const char *filename, bool restricted)
Definition: dfmgr.c:146
size_t Size
Definition: c.h:466
#define XLogFileName(fname, tli, logSegNo, wal_segsz_bytes)
#define SIGALRM
Definition: win32_port.h:159
#define walrcv_disconnect(conn)
Definition: walreceiver.h:424
#define HeapTupleGetDatum(tuple)
Definition: funcapi.h:220
#define walrcv_send(conn, buffer, nbytes)
Definition: walreceiver.h:416
bool is_temp_slot
Definition: walreceiver.h:129
#define walrcv_readtimelinehistoryfile(conn, tli, filename, content, size)
Definition: walreceiver.h:408
static void XLogWalRcvFlush(bool dying)
Definition: walreceiver.c:1001
WalRcvData * WalRcv
static Datum values[MAXATTR]
Definition: bootstrap.c:167
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4913
#define Int32GetDatum(X)
Definition: postgres.h:479
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:429
char sender_host[NI_MAXHOST]
Definition: walreceiver.h:116
int errmsg(const char *fmt,...)
Definition: elog.c:824
static void WalRcvDie(int code, Datum arg)
Definition: walreceiver.c:774
#define elog(elevel,...)
Definition: elog.h:214
int64 pq_getmsgint64(StringInfo msg)
Definition: pqformat.c:455
#define walrcv_get_senderinfo(conn, sender_host, sender_port)
Definition: walreceiver.h:402
#define CStringGetTextDatum(s)
Definition: builtins.h:87
void * arg
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:99
struct WalRcvStreamOptions::@104::@105 physical
#define close(a)
Definition: win32.h:12
XLogRecPtr receiveStart
Definition: walreceiver.h:73
#define TransactionIdIsValid(xid)
Definition: transam.h:41
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:551
static volatile sig_atomic_t got_SIGTERM
Definition: walreceiver.c:112
static int recvFile
Definition: walreceiver.c:103
XLogRecPtr flushedUpto
Definition: walreceiver.h:83
#define snprintf
Definition: port.h:193
#define WL_LATCH_SET
Definition: latch.h:124
#define UINT64_FORMAT
Definition: c.h:410
void appendBinaryStringInfo(StringInfo str, const char *data, int datalen)
Definition: stringinfo.c:227
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1538
#define PG_RETURN_NULL()
Definition: fmgr.h:344
char slotname[NAMEDATALEN]
Definition: walreceiver.h:123
void WalSndWakeup(void)
Definition: walsender.c:3110
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:129
char conninfo[MAXCONNINFO]
Definition: walreceiver.h:110
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr)
Definition: walreceiver.c:896
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1736
void WalRcvForceReply(void)
Definition: walreceiver.c:1298
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
#define walrcv_connect(conninfo, logical, appname, err)
Definition: walreceiver.h:396