PostgreSQL Source Code  git master
xlog.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * xlog.c
4  * PostgreSQL write-ahead log manager
5  *
6  * The Write-Ahead Log (WAL) functionality is split into several source
7  * files, in addition to this one:
8  *
9  * xloginsert.c - Functions for constructing WAL records
10  * xlogrecovery.c - WAL recovery and standby code
11  * xlogreader.c - Facility for reading WAL files and parsing WAL records
12  * xlogutils.c - Helper functions for WAL redo routines
13  *
14  * This file contains functions for coordinating database startup and
15  * checkpointing, and managing the write-ahead log buffers when the
16  * system is running.
17  *
18  * StartupXLOG() is the main entry point of the startup process. It
19  * coordinates database startup, performing WAL recovery, and the
20  * transition from WAL recovery into normal operations.
21  *
22  * XLogInsertRecord() inserts a WAL record into the WAL buffers. Most
23  * callers should not call this directly, but use the functions in
24  * xloginsert.c to construct the WAL record. XLogFlush() can be used
25  * to force the WAL to disk.
26  *
27  * In addition to those, there are many other functions for interrogating
28  * the current system state, and for starting/stopping backups.
29  *
30  *
31  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
32  * Portions Copyright (c) 1994, Regents of the University of California
33  *
34  * src/backend/access/transam/xlog.c
35  *
36  *-------------------------------------------------------------------------
37  */
38 
39 #include "postgres.h"
40 
41 #include <ctype.h>
42 #include <math.h>
43 #include <time.h>
44 #include <fcntl.h>
45 #include <sys/stat.h>
46 #include <sys/time.h>
47 #include <unistd.h>
48 
49 #include "access/clog.h"
50 #include "access/commit_ts.h"
51 #include "access/heaptoast.h"
52 #include "access/multixact.h"
53 #include "access/rewriteheap.h"
54 #include "access/subtrans.h"
55 #include "access/timeline.h"
56 #include "access/transam.h"
57 #include "access/twophase.h"
58 #include "access/xact.h"
59 #include "access/xlog_internal.h"
60 #include "access/xlogarchive.h"
61 #include "access/xloginsert.h"
62 #include "access/xlogreader.h"
63 #include "access/xlogrecovery.h"
64 #include "access/xlogutils.h"
65 #include "backup/basebackup.h"
66 #include "catalog/catversion.h"
67 #include "catalog/pg_control.h"
68 #include "catalog/pg_database.h"
70 #include "common/file_utils.h"
71 #include "executor/instrument.h"
72 #include "miscadmin.h"
73 #include "pg_trace.h"
74 #include "pgstat.h"
75 #include "port/atomics.h"
76 #include "port/pg_iovec.h"
77 #include "postmaster/bgwriter.h"
78 #include "postmaster/startup.h"
80 #include "postmaster/walwriter.h"
81 #include "replication/origin.h"
82 #include "replication/slot.h"
83 #include "replication/snapbuild.h"
85 #include "replication/walsender.h"
86 #include "storage/bufmgr.h"
87 #include "storage/fd.h"
88 #include "storage/ipc.h"
89 #include "storage/large_object.h"
90 #include "storage/latch.h"
91 #include "storage/predicate.h"
92 #include "storage/proc.h"
93 #include "storage/procarray.h"
94 #include "storage/reinit.h"
95 #include "storage/spin.h"
96 #include "storage/sync.h"
97 #include "utils/guc_hooks.h"
98 #include "utils/guc_tables.h"
99 #include "utils/injection_point.h"
100 #include "utils/memutils.h"
101 #include "utils/ps_status.h"
102 #include "utils/relmapper.h"
103 #include "utils/snapmgr.h"
104 #include "utils/timeout.h"
105 #include "utils/timestamp.h"
106 #include "utils/varlena.h"
107 
108 /* timeline ID to be used when bootstrapping */
109 #define BootstrapTimeLineID 1
110 
111 /* User-settable parameters */
112 int max_wal_size_mb = 1024; /* 1 GB */
113 int min_wal_size_mb = 80; /* 80 MB */
115 int XLOGbuffers = -1;
118 char *XLogArchiveCommand = NULL;
119 bool EnableHotStandby = false;
120 bool fullPageWrites = true;
121 bool wal_log_hints = false;
125 bool wal_init_zero = true;
126 bool wal_recycle = true;
127 bool log_checkpoints = true;
130 int CommitDelay = 0; /* precommit delay in microseconds */
131 int CommitSiblings = 5; /* # concurrent xacts needed to sleep */
134 int wal_decode_buffer_size = 512 * 1024;
135 bool track_wal_io_timing = false;
136 
137 #ifdef WAL_DEBUG
138 bool XLOG_DEBUG = false;
139 #endif
140 
142 
143 /*
144  * Number of WAL insertion locks to use. A higher value allows more insertions
145  * to happen concurrently, but adds some CPU overhead to flushing the WAL,
146  * which needs to iterate all the locks.
147  */
148 #define NUM_XLOGINSERT_LOCKS 8
149 
150 /*
151  * Max distance from last checkpoint, before triggering a new xlog-based
152  * checkpoint.
153  */
155 
156 /* Estimated distance between checkpoints, in bytes */
157 static double CheckPointDistanceEstimate = 0;
158 static double PrevCheckPointDistance = 0;
159 
160 /*
161  * Track whether there were any deferred checks for custom resource managers
162  * specified in wal_consistency_checking.
163  */
165 
166 /*
167  * GUC support
168  */
170  {"fsync", WAL_SYNC_METHOD_FSYNC, false},
171 #ifdef HAVE_FSYNC_WRITETHROUGH
172  {"fsync_writethrough", WAL_SYNC_METHOD_FSYNC_WRITETHROUGH, false},
173 #endif
174  {"fdatasync", WAL_SYNC_METHOD_FDATASYNC, false},
175 #ifdef O_SYNC
176  {"open_sync", WAL_SYNC_METHOD_OPEN, false},
177 #endif
178 #ifdef O_DSYNC
179  {"open_datasync", WAL_SYNC_METHOD_OPEN_DSYNC, false},
180 #endif
181  {NULL, 0, false}
182 };
183 
184 
185 /*
186  * Although only "on", "off", and "always" are documented,
187  * we accept all the likely variants of "on" and "off".
188  */
189 const struct config_enum_entry archive_mode_options[] = {
190  {"always", ARCHIVE_MODE_ALWAYS, false},
191  {"on", ARCHIVE_MODE_ON, false},
192  {"off", ARCHIVE_MODE_OFF, false},
193  {"true", ARCHIVE_MODE_ON, true},
194  {"false", ARCHIVE_MODE_OFF, true},
195  {"yes", ARCHIVE_MODE_ON, true},
196  {"no", ARCHIVE_MODE_OFF, true},
197  {"1", ARCHIVE_MODE_ON, true},
198  {"0", ARCHIVE_MODE_OFF, true},
199  {NULL, 0, false}
200 };
201 
202 /*
203  * Statistics for current checkpoint are collected in this global struct.
204  * Because only the checkpointer or a stand-alone backend can perform
205  * checkpoints, this will be unused in normal backends.
206  */
208 
209 /*
210  * During recovery, lastFullPageWrites keeps track of full_page_writes that
211  * the replayed WAL records indicate. It's initialized with full_page_writes
212  * that the recovery starting checkpoint record indicates, and then updated
213  * each time XLOG_FPW_CHANGE record is replayed.
214  */
215 static bool lastFullPageWrites;
216 
217 /*
218  * Local copy of the state tracked by SharedRecoveryState in shared memory,
219  * It is false if SharedRecoveryState is RECOVERY_STATE_DONE. True actually
220  * means "not known, need to check the shared state".
221  */
222 static bool LocalRecoveryInProgress = true;
223 
224 /*
225  * Local state for XLogInsertAllowed():
226  * 1: unconditionally allowed to insert XLOG
227  * 0: unconditionally not allowed to insert XLOG
228  * -1: must check RecoveryInProgress(); disallow until it is false
229  * Most processes start with -1 and transition to 1 after seeing that recovery
230  * is not in progress. But we can also force the value for special cases.
231  * The coding in XLogInsertAllowed() depends on the first two of these states
232  * being numerically the same as bool true and false.
233  */
234 static int LocalXLogInsertAllowed = -1;
235 
236 /*
237  * ProcLastRecPtr points to the start of the last XLOG record inserted by the
238  * current backend. It is updated for all inserts. XactLastRecEnd points to
239  * end+1 of the last record, and is reset when we end a top-level transaction,
240  * or start a new one; so it can be used to tell if the current transaction has
241  * created any XLOG records.
242  *
243  * While in parallel mode, this may not be fully up to date. When committing,
244  * a transaction can assume this covers all xlog records written either by the
245  * user backend or by any parallel worker which was present at any point during
246  * the transaction. But when aborting, or when still in parallel mode, other
247  * parallel backends may have written WAL records at later LSNs than the value
248  * stored here. The parallel leader advances its own copy, when necessary,
249  * in WaitForParallelWorkersToFinish.
250  */
254 
255 /*
256  * RedoRecPtr is this backend's local copy of the REDO record pointer
257  * (which is almost but not quite the same as a pointer to the most recent
258  * CHECKPOINT record). We update this from the shared-memory copy,
259  * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
260  * hold an insertion lock). See XLogInsertRecord for details. We are also
261  * allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck;
262  * see GetRedoRecPtr.
263  *
264  * NB: Code that uses this variable must be prepared not only for the
265  * possibility that it may be arbitrarily out of date, but also for the
266  * possibility that it might be set to InvalidXLogRecPtr. We used to
267  * initialize it as a side effect of the first call to RecoveryInProgress(),
268  * which meant that most code that might use it could assume that it had a
269  * real if perhaps stale value. That's no longer the case.
270  */
272 
273 /*
274  * doPageWrites is this backend's local copy of (fullPageWrites ||
275  * runningBackups > 0). It is used together with RedoRecPtr to decide whether
276  * a full-page image of a page need to be taken.
277  *
278  * NB: Initially this is false, and there's no guarantee that it will be
279  * initialized to any other value before it is first used. Any code that
280  * makes use of it must recheck the value after obtaining a WALInsertLock,
281  * and respond appropriately if it turns out that the previous value wasn't
282  * accurate.
283  */
284 static bool doPageWrites;
285 
286 /*----------
287  * Shared-memory data structures for XLOG control
288  *
289  * LogwrtRqst indicates a byte position that we need to write and/or fsync
290  * the log up to (all records before that point must be written or fsynced).
291  * The positions already written/fsynced are maintained in logWriteResult
292  * and logFlushResult using atomic access.
293  * In addition to the shared variable, each backend has a private copy of
294  * both in LogwrtResult, which is updated when convenient.
295  *
296  * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
297  * (protected by info_lck), but we don't need to cache any copies of it.
298  *
299  * info_lck is only held long enough to read/update the protected variables,
300  * so it's a plain spinlock. The other locks are held longer (potentially
301  * over I/O operations), so we use LWLocks for them. These locks are:
302  *
303  * WALBufMappingLock: must be held to replace a page in the WAL buffer cache.
304  * It is only held while initializing and changing the mapping. If the
305  * contents of the buffer being replaced haven't been written yet, the mapping
306  * lock is released while the write is done, and reacquired afterwards.
307  *
308  * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
309  * XLogFlush).
310  *
311  * ControlFileLock: must be held to read/update control file or create
312  * new log file.
313  *
314  *----------
315  */
316 
317 typedef struct XLogwrtRqst
318 {
319  XLogRecPtr Write; /* last byte + 1 to write out */
320  XLogRecPtr Flush; /* last byte + 1 to flush */
322 
323 typedef struct XLogwrtResult
324 {
325  XLogRecPtr Write; /* last byte + 1 written out */
326  XLogRecPtr Flush; /* last byte + 1 flushed */
328 
329 /*
330  * Inserting to WAL is protected by a small fixed number of WAL insertion
331  * locks. To insert to the WAL, you must hold one of the locks - it doesn't
332  * matter which one. To lock out other concurrent insertions, you must hold
333  * of them. Each WAL insertion lock consists of a lightweight lock, plus an
334  * indicator of how far the insertion has progressed (insertingAt).
335  *
336  * The insertingAt values are read when a process wants to flush WAL from
337  * the in-memory buffers to disk, to check that all the insertions to the
338  * region the process is about to write out have finished. You could simply
339  * wait for all currently in-progress insertions to finish, but the
340  * insertingAt indicator allows you to ignore insertions to later in the WAL,
341  * so that you only wait for the insertions that are modifying the buffers
342  * you're about to write out.
343  *
344  * This isn't just an optimization. If all the WAL buffers are dirty, an
345  * inserter that's holding a WAL insert lock might need to evict an old WAL
346  * buffer, which requires flushing the WAL. If it's possible for an inserter
347  * to block on another inserter unnecessarily, deadlock can arise when two
348  * inserters holding a WAL insert lock wait for each other to finish their
349  * insertion.
350  *
351  * Small WAL records that don't cross a page boundary never update the value,
352  * the WAL record is just copied to the page and the lock is released. But
353  * to avoid the deadlock-scenario explained above, the indicator is always
354  * updated before sleeping while holding an insertion lock.
355  *
356  * lastImportantAt contains the LSN of the last important WAL record inserted
357  * using a given lock. This value is used to detect if there has been
358  * important WAL activity since the last time some action, like a checkpoint,
359  * was performed - allowing to not repeat the action if not. The LSN is
360  * updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was
361  * set. lastImportantAt is never cleared, only overwritten by the LSN of newer
362  * records. Tracking the WAL activity directly in WALInsertLock has the
363  * advantage of not needing any additional locks to update the value.
364  */
365 typedef struct
366 {
370 } WALInsertLock;
371 
372 /*
373  * All the WAL insertion locks are allocated as an array in shared memory. We
374  * force the array stride to be a power of 2, which saves a few cycles in
375  * indexing, but more importantly also ensures that individual slots don't
376  * cross cache line boundaries. (Of course, we have to also ensure that the
377  * array start address is suitably aligned.)
378  */
379 typedef union WALInsertLockPadded
380 {
384 
385 /*
386  * Session status of running backup, used for sanity checks in SQL-callable
387  * functions to start and stop backups.
388  */
390 
391 /*
392  * Shared state data for WAL insertion.
393  */
394 typedef struct XLogCtlInsert
395 {
396  slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */
397 
398  /*
399  * CurrBytePos is the end of reserved WAL. The next record will be
400  * inserted at that position. PrevBytePos is the start position of the
401  * previously inserted (or rather, reserved) record - it is copied to the
402  * prev-link of the next record. These are stored as "usable byte
403  * positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()).
404  */
405  uint64 CurrBytePos;
406  uint64 PrevBytePos;
407 
408  /*
409  * Make sure the above heavily-contended spinlock and byte positions are
410  * on their own cache line. In particular, the RedoRecPtr and full page
411  * write variables below should be on a different cache line. They are
412  * read on every WAL insertion, but updated rarely, and we don't want
413  * those reads to steal the cache line containing Curr/PrevBytePos.
414  */
416 
417  /*
418  * fullPageWrites is the authoritative value used by all backends to
419  * determine whether to write full-page image to WAL. This shared value,
420  * instead of the process-local fullPageWrites, is required because, when
421  * full_page_writes is changed by SIGHUP, we must WAL-log it before it
422  * actually affects WAL-logging by backends. Checkpointer sets at startup
423  * or after SIGHUP.
424  *
425  * To read these fields, you must hold an insertion lock. To modify them,
426  * you must hold ALL the locks.
427  */
428  XLogRecPtr RedoRecPtr; /* current redo point for insertions */
430 
431  /*
432  * runningBackups is a counter indicating the number of backups currently
433  * in progress. lastBackupStart is the latest checkpoint redo location
434  * used as a starting point for an online backup.
435  */
438 
439  /*
440  * WAL insertion locks.
441  */
444 
445 /*
446  * Total shared-memory state for XLOG.
447  */
448 typedef struct XLogCtlData
449 {
451 
452  /* Protected by info_lck: */
454  XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */
455  FullTransactionId ckptFullXid; /* nextXid of latest checkpoint */
456  XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */
457  XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */
458 
459  XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */
460 
461  /* Fake LSN counter, for unlogged relations. */
463 
464  /* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */
467 
468  /* These are accessed using atomics -- info_lck not needed */
469  pg_atomic_uint64 logInsertResult; /* last byte + 1 inserted to buffers */
470  pg_atomic_uint64 logWriteResult; /* last byte + 1 written out */
471  pg_atomic_uint64 logFlushResult; /* last byte + 1 flushed */
472 
473  /*
474  * Latest initialized page in the cache (last byte position + 1).
475  *
476  * To change the identity of a buffer (and InitializedUpTo), you need to
477  * hold WALBufMappingLock. To change the identity of a buffer that's
478  * still dirty, the old page needs to be written out first, and for that
479  * you need WALWriteLock, and you need to ensure that there are no
480  * in-progress insertions to the page by calling
481  * WaitXLogInsertionsToFinish().
482  */
484 
485  /*
486  * These values do not change after startup, although the pointed-to pages
487  * and xlblocks values certainly do. xlblocks values are protected by
488  * WALBufMappingLock.
489  */
490  char *pages; /* buffers for unwritten XLOG pages */
491  pg_atomic_uint64 *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
492  int XLogCacheBlck; /* highest allocated xlog buffer index */
493 
494  /*
495  * InsertTimeLineID is the timeline into which new WAL is being inserted
496  * and flushed. It is zero during recovery, and does not change once set.
497  *
498  * If we create a new timeline when the system was started up,
499  * PrevTimeLineID is the old timeline's ID that we forked off from.
500  * Otherwise it's equal to InsertTimeLineID.
501  *
502  * We set these fields while holding info_lck. Most that reads these
503  * values knows that recovery is no longer in progress and so can safely
504  * read the value without a lock, but code that could be run either during
505  * or after recovery can take info_lck while reading these values.
506  */
509 
510  /*
511  * SharedRecoveryState indicates if we're still in crash or archive
512  * recovery. Protected by info_lck.
513  */
515 
516  /*
517  * InstallXLogFileSegmentActive indicates whether the checkpointer should
518  * arrange for future segments by recycling and/or PreallocXlogFiles().
519  * Protected by ControlFileLock. Only the startup process changes it. If
520  * true, anyone can use InstallXLogFileSegment(). If false, the startup
521  * process owns the exclusive right to install segments, by reading from
522  * the archive and possibly replacing existing files.
523  */
525 
526  /*
527  * WalWriterSleeping indicates whether the WAL writer is currently in
528  * low-power mode (and hence should be nudged if an async commit occurs).
529  * Protected by info_lck.
530  */
532 
533  /*
534  * During recovery, we keep a copy of the latest checkpoint record here.
535  * lastCheckPointRecPtr points to start of checkpoint record and
536  * lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the
537  * checkpointer when it wants to create a restartpoint.
538  *
539  * Protected by info_lck.
540  */
544 
545  /*
546  * lastFpwDisableRecPtr points to the start of the last replayed
547  * XLOG_FPW_CHANGE record that instructs full_page_writes is disabled.
548  */
550 
551  slock_t info_lck; /* locks shared variables shown above */
553 
554 /*
555  * Classification of XLogRecordInsert operations.
556  */
557 typedef enum
558 {
563 
564 static XLogCtlData *XLogCtl = NULL;
565 
566 /* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */
568 
569 /*
570  * We maintain an image of pg_control in shared memory.
571  */
573 
574 /*
575  * Calculate the amount of space left on the page after 'endptr'. Beware
576  * multiple evaluation!
577  */
578 #define INSERT_FREESPACE(endptr) \
579  (((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ))
580 
581 /* Macro to advance to next buffer index. */
582 #define NextBufIdx(idx) \
583  (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
584 
585 /*
586  * XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or
587  * would hold if it was in cache, the page containing 'recptr'.
588  */
589 #define XLogRecPtrToBufIdx(recptr) \
590  (((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1))
591 
592 /*
593  * These are the number of bytes in a WAL page usable for WAL data.
594  */
595 #define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD)
596 
597 /*
598  * Convert values of GUCs measured in megabytes to equiv. segment count.
599  * Rounds down.
600  */
601 #define ConvertToXSegs(x, segsize) XLogMBVarToSegs((x), (segsize))
602 
603 /* The number of bytes in a WAL segment usable for WAL data. */
605 
606 /*
607  * Private, possibly out-of-date copy of shared LogwrtResult.
608  * See discussion above.
609  */
610 static XLogwrtResult LogwrtResult = {0, 0};
611 
612 /*
613  * Update local copy of shared XLogCtl->log{Write,Flush}Result
614  *
615  * It's critical that Flush always trails Write, so the order of the reads is
616  * important, as is the barrier. See also XLogWrite.
617  */
618 #define RefreshXLogWriteResult(_target) \
619  do { \
620  _target.Flush = pg_atomic_read_u64(&XLogCtl->logFlushResult); \
621  pg_read_barrier(); \
622  _target.Write = pg_atomic_read_u64(&XLogCtl->logWriteResult); \
623  } while (0)
624 
625 /*
626  * openLogFile is -1 or a kernel FD for an open log file segment.
627  * openLogSegNo identifies the segment, and openLogTLI the corresponding TLI.
628  * These variables are only used to write the XLOG, and so will normally refer
629  * to the active segment.
630  *
631  * Note: call Reserve/ReleaseExternalFD to track consumption of this FD.
632  */
633 static int openLogFile = -1;
636 
637 /*
638  * Local copies of equivalent fields in the control file. When running
639  * crash recovery, LocalMinRecoveryPoint is set to InvalidXLogRecPtr as we
640  * expect to replay all the WAL available, and updateMinRecoveryPoint is
641  * switched to false to prevent any updates while replaying records.
642  * Those values are kept consistent as long as crash recovery runs.
643  */
646 static bool updateMinRecoveryPoint = true;
647 
648 /* For WALInsertLockAcquire/Release functions */
649 static int MyLockNo = 0;
650 static bool holdingAllLocks = false;
651 
652 #ifdef WAL_DEBUG
653 static MemoryContext walDebugCxt = NULL;
654 #endif
655 
656 static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI,
657  XLogRecPtr EndOfLog,
658  TimeLineID newTLI);
659 static void CheckRequiredParameterValues(void);
660 static void XLogReportParameters(void);
661 static int LocalSetXLogInsertAllowed(void);
662 static void CreateEndOfRecoveryRecord(void);
664  XLogRecPtr pagePtr,
665  TimeLineID newTLI);
666 static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
667 static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo);
669 
670 static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli,
671  bool opportunistic);
672 static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible);
673 static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
674  bool find_free, XLogSegNo max_segno,
675  TimeLineID tli);
676 static void XLogFileClose(void);
677 static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli);
678 static void RemoveTempXlogFiles(void);
679 static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr,
680  XLogRecPtr endptr, TimeLineID insertTLI);
681 static void RemoveXlogFile(const struct dirent *segment_de,
682  XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
683  TimeLineID insertTLI);
684 static void UpdateLastRemovedPtr(char *filename);
685 static void ValidateXLOGDirectoryStructure(void);
686 static void CleanupBackupHistory(void);
687 static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
688 static bool PerformRecoveryXLogAction(void);
689 static void InitControlFile(uint64 sysidentifier, uint32 data_checksum_version);
690 static void WriteControlFile(void);
691 static void ReadControlFile(void);
692 static void UpdateControlFile(void);
693 static char *str_time(pg_time_t tnow);
694 
695 static int get_sync_bit(int method);
696 
697 static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch,
698  XLogRecData *rdata,
699  XLogRecPtr StartPos, XLogRecPtr EndPos,
700  TimeLineID tli);
701 static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos,
702  XLogRecPtr *EndPos, XLogRecPtr *PrevPtr);
703 static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos,
704  XLogRecPtr *PrevPtr);
706 static char *GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli);
707 static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos);
708 static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos);
709 static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr);
710 
711 static void WALInsertLockAcquire(void);
712 static void WALInsertLockAcquireExclusive(void);
713 static void WALInsertLockRelease(void);
714 static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt);
715 
716 /*
717  * Insert an XLOG record represented by an already-constructed chain of data
718  * chunks. This is a low-level routine; to construct the WAL record header
719  * and data, use the higher-level routines in xloginsert.c.
720  *
721  * If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this
722  * WAL record applies to, that were not included in the record as full page
723  * images. If fpw_lsn <= RedoRecPtr, the function does not perform the
724  * insertion and returns InvalidXLogRecPtr. The caller can then recalculate
725  * which pages need a full-page image, and retry. If fpw_lsn is invalid, the
726  * record is always inserted.
727  *
728  * 'flags' gives more in-depth control on the record being inserted. See
729  * XLogSetRecordFlags() for details.
730  *
731  * 'topxid_included' tells whether the top-transaction id is logged along with
732  * current subtransaction. See XLogRecordAssemble().
733  *
734  * The first XLogRecData in the chain must be for the record header, and its
735  * data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and
736  * xl_crc fields in the header, the rest of the header must already be filled
737  * by the caller.
738  *
739  * Returns XLOG pointer to end of record (beginning of next record).
740  * This can be used as LSN for data pages affected by the logged action.
741  * (LSN is the XLOG point up to which the XLOG must be flushed to disk
742  * before the data page can be written out. This implements the basic
743  * WAL rule "write the log before the data".)
744  */
747  XLogRecPtr fpw_lsn,
748  uint8 flags,
749  int num_fpi,
750  bool topxid_included)
751 {
753  pg_crc32c rdata_crc;
754  bool inserted;
755  XLogRecord *rechdr = (XLogRecord *) rdata->data;
756  uint8 info = rechdr->xl_info & ~XLR_INFO_MASK;
758  XLogRecPtr StartPos;
759  XLogRecPtr EndPos;
760  bool prevDoPageWrites = doPageWrites;
761  TimeLineID insertTLI;
762 
763  /* Does this record type require special handling? */
764  if (unlikely(rechdr->xl_rmid == RM_XLOG_ID))
765  {
766  if (info == XLOG_SWITCH)
767  class = WALINSERT_SPECIAL_SWITCH;
768  else if (info == XLOG_CHECKPOINT_REDO)
770  }
771 
772  /* we assume that all of the record header is in the first chunk */
773  Assert(rdata->len >= SizeOfXLogRecord);
774 
775  /* cross-check on whether we should be here or not */
776  if (!XLogInsertAllowed())
777  elog(ERROR, "cannot make new WAL entries during recovery");
778 
779  /*
780  * Given that we're not in recovery, InsertTimeLineID is set and can't
781  * change, so we can read it without a lock.
782  */
783  insertTLI = XLogCtl->InsertTimeLineID;
784 
785  /*----------
786  *
787  * We have now done all the preparatory work we can without holding a
788  * lock or modifying shared state. From here on, inserting the new WAL
789  * record to the shared WAL buffer cache is a two-step process:
790  *
791  * 1. Reserve the right amount of space from the WAL. The current head of
792  * reserved space is kept in Insert->CurrBytePos, and is protected by
793  * insertpos_lck.
794  *
795  * 2. Copy the record to the reserved WAL space. This involves finding the
796  * correct WAL buffer containing the reserved space, and copying the
797  * record in place. This can be done concurrently in multiple processes.
798  *
799  * To keep track of which insertions are still in-progress, each concurrent
800  * inserter acquires an insertion lock. In addition to just indicating that
801  * an insertion is in progress, the lock tells others how far the inserter
802  * has progressed. There is a small fixed number of insertion locks,
803  * determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page
804  * boundary, it updates the value stored in the lock to the how far it has
805  * inserted, to allow the previous buffer to be flushed.
806  *
807  * Holding onto an insertion lock also protects RedoRecPtr and
808  * fullPageWrites from changing until the insertion is finished.
809  *
810  * Step 2 can usually be done completely in parallel. If the required WAL
811  * page is not initialized yet, you have to grab WALBufMappingLock to
812  * initialize it, but the WAL writer tries to do that ahead of insertions
813  * to avoid that from happening in the critical path.
814  *
815  *----------
816  */
818 
819  if (likely(class == WALINSERT_NORMAL))
820  {
822 
823  /*
824  * Check to see if my copy of RedoRecPtr is out of date. If so, may
825  * have to go back and have the caller recompute everything. This can
826  * only happen just after a checkpoint, so it's better to be slow in
827  * this case and fast otherwise.
828  *
829  * Also check to see if fullPageWrites was just turned on or there's a
830  * running backup (which forces full-page writes); if we weren't
831  * already doing full-page writes then go back and recompute.
832  *
833  * If we aren't doing full-page writes then RedoRecPtr doesn't
834  * actually affect the contents of the XLOG record, so we'll update
835  * our local copy but not force a recomputation. (If doPageWrites was
836  * just turned off, we could recompute the record without full pages,
837  * but we choose not to bother.)
838  */
839  if (RedoRecPtr != Insert->RedoRecPtr)
840  {
841  Assert(RedoRecPtr < Insert->RedoRecPtr);
842  RedoRecPtr = Insert->RedoRecPtr;
843  }
844  doPageWrites = (Insert->fullPageWrites || Insert->runningBackups > 0);
845 
846  if (doPageWrites &&
847  (!prevDoPageWrites ||
848  (fpw_lsn != InvalidXLogRecPtr && fpw_lsn <= RedoRecPtr)))
849  {
850  /*
851  * Oops, some buffer now needs to be backed up that the caller
852  * didn't back up. Start over.
853  */
856  return InvalidXLogRecPtr;
857  }
858 
859  /*
860  * Reserve space for the record in the WAL. This also sets the xl_prev
861  * pointer.
862  */
863  ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
864  &rechdr->xl_prev);
865 
866  /* Normal records are always inserted. */
867  inserted = true;
868  }
869  else if (class == WALINSERT_SPECIAL_SWITCH)
870  {
871  /*
872  * In order to insert an XLOG_SWITCH record, we need to hold all of
873  * the WAL insertion locks, not just one, so that no one else can
874  * begin inserting a record until we've figured out how much space
875  * remains in the current WAL segment and claimed all of it.
876  *
877  * Nonetheless, this case is simpler than the normal cases handled
878  * below, which must check for changes in doPageWrites and RedoRecPtr.
879  * Those checks are only needed for records that can contain buffer
880  * references, and an XLOG_SWITCH record never does.
881  */
882  Assert(fpw_lsn == InvalidXLogRecPtr);
884  inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev);
885  }
886  else
887  {
889 
890  /*
891  * We need to update both the local and shared copies of RedoRecPtr,
892  * which means that we need to hold all the WAL insertion locks.
893  * However, there can't be any buffer references, so as above, we need
894  * not check RedoRecPtr before inserting the record; we just need to
895  * update it afterwards.
896  */
897  Assert(fpw_lsn == InvalidXLogRecPtr);
899  ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
900  &rechdr->xl_prev);
901  RedoRecPtr = Insert->RedoRecPtr = StartPos;
902  inserted = true;
903  }
904 
905  if (inserted)
906  {
907  /*
908  * Now that xl_prev has been filled in, calculate CRC of the record
909  * header.
910  */
911  rdata_crc = rechdr->xl_crc;
912  COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc));
913  FIN_CRC32C(rdata_crc);
914  rechdr->xl_crc = rdata_crc;
915 
916  /*
917  * All the record data, including the header, is now ready to be
918  * inserted. Copy the record in the space reserved.
919  */
921  class == WALINSERT_SPECIAL_SWITCH, rdata,
922  StartPos, EndPos, insertTLI);
923 
924  /*
925  * Unless record is flagged as not important, update LSN of last
926  * important record in the current slot. When holding all locks, just
927  * update the first one.
928  */
929  if ((flags & XLOG_MARK_UNIMPORTANT) == 0)
930  {
931  int lockno = holdingAllLocks ? 0 : MyLockNo;
932 
933  WALInsertLocks[lockno].l.lastImportantAt = StartPos;
934  }
935  }
936  else
937  {
938  /*
939  * This was an xlog-switch record, but the current insert location was
940  * already exactly at the beginning of a segment, so there was no need
941  * to do anything.
942  */
943  }
944 
945  /*
946  * Done! Let others know that we're finished.
947  */
949 
951 
953 
954  /*
955  * Mark top transaction id is logged (if needed) so that we should not try
956  * to log it again with the next WAL record in the current subtransaction.
957  */
958  if (topxid_included)
960 
961  /*
962  * Update shared LogwrtRqst.Write, if we crossed page boundary.
963  */
964  if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
965  {
967  /* advance global request to include new block(s) */
968  if (XLogCtl->LogwrtRqst.Write < EndPos)
969  XLogCtl->LogwrtRqst.Write = EndPos;
972  }
973 
974  /*
975  * If this was an XLOG_SWITCH record, flush the record and the empty
976  * padding space that fills the rest of the segment, and perform
977  * end-of-segment actions (eg, notifying archiver).
978  */
979  if (class == WALINSERT_SPECIAL_SWITCH)
980  {
981  TRACE_POSTGRESQL_WAL_SWITCH();
982  XLogFlush(EndPos);
983 
984  /*
985  * Even though we reserved the rest of the segment for us, which is
986  * reflected in EndPos, we return a pointer to just the end of the
987  * xlog-switch record.
988  */
989  if (inserted)
990  {
991  EndPos = StartPos + SizeOfXLogRecord;
992  if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
993  {
994  uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size);
995 
996  if (offset == EndPos % XLOG_BLCKSZ)
997  EndPos += SizeOfXLogLongPHD;
998  else
999  EndPos += SizeOfXLogShortPHD;
1000  }
1001  }
1002  }
1003 
1004 #ifdef WAL_DEBUG
1005  if (XLOG_DEBUG)
1006  {
1007  static XLogReaderState *debug_reader = NULL;
1008  XLogRecord *record;
1009  DecodedXLogRecord *decoded;
1011  StringInfoData recordBuf;
1012  char *errormsg = NULL;
1013  MemoryContext oldCxt;
1014 
1015  oldCxt = MemoryContextSwitchTo(walDebugCxt);
1016 
1017  initStringInfo(&buf);
1018  appendStringInfo(&buf, "INSERT @ %X/%X: ", LSN_FORMAT_ARGS(EndPos));
1019 
1020  /*
1021  * We have to piece together the WAL record data from the XLogRecData
1022  * entries, so that we can pass it to the rm_desc function as one
1023  * contiguous chunk.
1024  */
1025  initStringInfo(&recordBuf);
1026  for (; rdata != NULL; rdata = rdata->next)
1027  appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len);
1028 
1029  /* We also need temporary space to decode the record. */
1030  record = (XLogRecord *) recordBuf.data;
1031  decoded = (DecodedXLogRecord *)
1033 
1034  if (!debug_reader)
1035  debug_reader = XLogReaderAllocate(wal_segment_size, NULL,
1036  XL_ROUTINE(.page_read = NULL,
1037  .segment_open = NULL,
1038  .segment_close = NULL),
1039  NULL);
1040  if (!debug_reader)
1041  {
1042  appendStringInfoString(&buf, "error decoding record: out of memory while allocating a WAL reading processor");
1043  }
1044  else if (!DecodeXLogRecord(debug_reader,
1045  decoded,
1046  record,
1047  EndPos,
1048  &errormsg))
1049  {
1050  appendStringInfo(&buf, "error decoding record: %s",
1051  errormsg ? errormsg : "no error message");
1052  }
1053  else
1054  {
1055  appendStringInfoString(&buf, " - ");
1056 
1057  debug_reader->record = decoded;
1058  xlog_outdesc(&buf, debug_reader);
1059  debug_reader->record = NULL;
1060  }
1061  elog(LOG, "%s", buf.data);
1062 
1063  pfree(decoded);
1064  pfree(buf.data);
1065  pfree(recordBuf.data);
1066  MemoryContextSwitchTo(oldCxt);
1067  }
1068 #endif
1069 
1070  /*
1071  * Update our global variables
1072  */
1073  ProcLastRecPtr = StartPos;
1074  XactLastRecEnd = EndPos;
1075 
1076  /* Report WAL traffic to the instrumentation. */
1077  if (inserted)
1078  {
1079  pgWalUsage.wal_bytes += rechdr->xl_tot_len;
1081  pgWalUsage.wal_fpi += num_fpi;
1082  }
1083 
1084  return EndPos;
1085 }
1086 
1087 /*
1088  * Reserves the right amount of space for a record of given size from the WAL.
1089  * *StartPos is set to the beginning of the reserved section, *EndPos to
1090  * its end+1. *PrevPtr is set to the beginning of the previous record; it is
1091  * used to set the xl_prev of this record.
1092  *
1093  * This is the performance critical part of XLogInsert that must be serialized
1094  * across backends. The rest can happen mostly in parallel. Try to keep this
1095  * section as short as possible, insertpos_lck can be heavily contended on a
1096  * busy system.
1097  *
1098  * NB: The space calculation here must match the code in CopyXLogRecordToWAL,
1099  * where we actually copy the record to the reserved space.
1100  *
1101  * NB: Testing shows that XLogInsertRecord runs faster if this code is inlined;
1102  * however, because there are two call sites, the compiler is reluctant to
1103  * inline. We use pg_attribute_always_inline here to try to convince it.
1104  */
1105 static pg_attribute_always_inline void
1107  XLogRecPtr *PrevPtr)
1108 {
1110  uint64 startbytepos;
1111  uint64 endbytepos;
1112  uint64 prevbytepos;
1113 
1114  size = MAXALIGN(size);
1115 
1116  /* All (non xlog-switch) records should contain data. */
1118 
1119  /*
1120  * The duration the spinlock needs to be held is minimized by minimizing
1121  * the calculations that have to be done while holding the lock. The
1122  * current tip of reserved WAL is kept in CurrBytePos, as a byte position
1123  * that only counts "usable" bytes in WAL, that is, it excludes all WAL
1124  * page headers. The mapping between "usable" byte positions and physical
1125  * positions (XLogRecPtrs) can be done outside the locked region, and
1126  * because the usable byte position doesn't include any headers, reserving
1127  * X bytes from WAL is almost as simple as "CurrBytePos += X".
1128  */
1129  SpinLockAcquire(&Insert->insertpos_lck);
1130 
1131  startbytepos = Insert->CurrBytePos;
1132  endbytepos = startbytepos + size;
1133  prevbytepos = Insert->PrevBytePos;
1134  Insert->CurrBytePos = endbytepos;
1135  Insert->PrevBytePos = startbytepos;
1136 
1137  SpinLockRelease(&Insert->insertpos_lck);
1138 
1139  *StartPos = XLogBytePosToRecPtr(startbytepos);
1140  *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1141  *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1142 
1143  /*
1144  * Check that the conversions between "usable byte positions" and
1145  * XLogRecPtrs work consistently in both directions.
1146  */
1147  Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1148  Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1149  Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1150 }
1151 
1152 /*
1153  * Like ReserveXLogInsertLocation(), but for an xlog-switch record.
1154  *
1155  * A log-switch record is handled slightly differently. The rest of the
1156  * segment will be reserved for this insertion, as indicated by the returned
1157  * *EndPos value. However, if we are already at the beginning of the current
1158  * segment, *StartPos and *EndPos are set to the current location without
1159  * reserving any space, and the function returns false.
1160 */
1161 static bool
1162 ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
1163 {
1165  uint64 startbytepos;
1166  uint64 endbytepos;
1167  uint64 prevbytepos;
1169  XLogRecPtr ptr;
1170  uint32 segleft;
1171 
1172  /*
1173  * These calculations are a bit heavy-weight to be done while holding a
1174  * spinlock, but since we're holding all the WAL insertion locks, there
1175  * are no other inserters competing for it. GetXLogInsertRecPtr() does
1176  * compete for it, but that's not called very frequently.
1177  */
1178  SpinLockAcquire(&Insert->insertpos_lck);
1179 
1180  startbytepos = Insert->CurrBytePos;
1181 
1182  ptr = XLogBytePosToEndRecPtr(startbytepos);
1183  if (XLogSegmentOffset(ptr, wal_segment_size) == 0)
1184  {
1185  SpinLockRelease(&Insert->insertpos_lck);
1186  *EndPos = *StartPos = ptr;
1187  return false;
1188  }
1189 
1190  endbytepos = startbytepos + size;
1191  prevbytepos = Insert->PrevBytePos;
1192 
1193  *StartPos = XLogBytePosToRecPtr(startbytepos);
1194  *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1195 
1196  segleft = wal_segment_size - XLogSegmentOffset(*EndPos, wal_segment_size);
1197  if (segleft != wal_segment_size)
1198  {
1199  /* consume the rest of the segment */
1200  *EndPos += segleft;
1201  endbytepos = XLogRecPtrToBytePos(*EndPos);
1202  }
1203  Insert->CurrBytePos = endbytepos;
1204  Insert->PrevBytePos = startbytepos;
1205 
1206  SpinLockRelease(&Insert->insertpos_lck);
1207 
1208  *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1209 
1210  Assert(XLogSegmentOffset(*EndPos, wal_segment_size) == 0);
1211  Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1212  Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1213  Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1214 
1215  return true;
1216 }
1217 
1218 /*
1219  * Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved
1220  * area in the WAL.
1221  */
1222 static void
1223 CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata,
1224  XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
1225 {
1226  char *currpos;
1227  int freespace;
1228  int written;
1229  XLogRecPtr CurrPos;
1230  XLogPageHeader pagehdr;
1231 
1232  /*
1233  * Get a pointer to the right place in the right WAL buffer to start
1234  * inserting to.
1235  */
1236  CurrPos = StartPos;
1237  currpos = GetXLogBuffer(CurrPos, tli);
1238  freespace = INSERT_FREESPACE(CurrPos);
1239 
1240  /*
1241  * there should be enough space for at least the first field (xl_tot_len)
1242  * on this page.
1243  */
1244  Assert(freespace >= sizeof(uint32));
1245 
1246  /* Copy record data */
1247  written = 0;
1248  while (rdata != NULL)
1249  {
1250  char *rdata_data = rdata->data;
1251  int rdata_len = rdata->len;
1252 
1253  while (rdata_len > freespace)
1254  {
1255  /*
1256  * Write what fits on this page, and continue on the next page.
1257  */
1258  Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0);
1259  memcpy(currpos, rdata_data, freespace);
1260  rdata_data += freespace;
1261  rdata_len -= freespace;
1262  written += freespace;
1263  CurrPos += freespace;
1264 
1265  /*
1266  * Get pointer to beginning of next page, and set the xlp_rem_len
1267  * in the page header. Set XLP_FIRST_IS_CONTRECORD.
1268  *
1269  * It's safe to set the contrecord flag and xlp_rem_len without a
1270  * lock on the page. All the other flags were already set when the
1271  * page was initialized, in AdvanceXLInsertBuffer, and we're the
1272  * only backend that needs to set the contrecord flag.
1273  */
1274  currpos = GetXLogBuffer(CurrPos, tli);
1275  pagehdr = (XLogPageHeader) currpos;
1276  pagehdr->xlp_rem_len = write_len - written;
1277  pagehdr->xlp_info |= XLP_FIRST_IS_CONTRECORD;
1278 
1279  /* skip over the page header */
1280  if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0)
1281  {
1282  CurrPos += SizeOfXLogLongPHD;
1283  currpos += SizeOfXLogLongPHD;
1284  }
1285  else
1286  {
1287  CurrPos += SizeOfXLogShortPHD;
1288  currpos += SizeOfXLogShortPHD;
1289  }
1290  freespace = INSERT_FREESPACE(CurrPos);
1291  }
1292 
1293  Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0);
1294  memcpy(currpos, rdata_data, rdata_len);
1295  currpos += rdata_len;
1296  CurrPos += rdata_len;
1297  freespace -= rdata_len;
1298  written += rdata_len;
1299 
1300  rdata = rdata->next;
1301  }
1302  Assert(written == write_len);
1303 
1304  /*
1305  * If this was an xlog-switch, it's not enough to write the switch record,
1306  * we also have to consume all the remaining space in the WAL segment. We
1307  * have already reserved that space, but we need to actually fill it.
1308  */
1309  if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0)
1310  {
1311  /* An xlog-switch record doesn't contain any data besides the header */
1312  Assert(write_len == SizeOfXLogRecord);
1313 
1314  /* Assert that we did reserve the right amount of space */
1315  Assert(XLogSegmentOffset(EndPos, wal_segment_size) == 0);
1316 
1317  /* Use up all the remaining space on the current page */
1318  CurrPos += freespace;
1319 
1320  /*
1321  * Cause all remaining pages in the segment to be flushed, leaving the
1322  * XLog position where it should be, at the start of the next segment.
1323  * We do this one page at a time, to make sure we don't deadlock
1324  * against ourselves if wal_buffers < wal_segment_size.
1325  */
1326  while (CurrPos < EndPos)
1327  {
1328  /*
1329  * The minimal action to flush the page would be to call
1330  * WALInsertLockUpdateInsertingAt(CurrPos) followed by
1331  * AdvanceXLInsertBuffer(...). The page would be left initialized
1332  * mostly to zeros, except for the page header (always the short
1333  * variant, as this is never a segment's first page).
1334  *
1335  * The large vistas of zeros are good for compressibility, but the
1336  * headers interrupting them every XLOG_BLCKSZ (with values that
1337  * differ from page to page) are not. The effect varies with
1338  * compression tool, but bzip2 for instance compresses about an
1339  * order of magnitude worse if those headers are left in place.
1340  *
1341  * Rather than complicating AdvanceXLInsertBuffer itself (which is
1342  * called in heavily-loaded circumstances as well as this lightly-
1343  * loaded one) with variant behavior, we just use GetXLogBuffer
1344  * (which itself calls the two methods we need) to get the pointer
1345  * and zero most of the page. Then we just zero the page header.
1346  */
1347  currpos = GetXLogBuffer(CurrPos, tli);
1348  MemSet(currpos, 0, SizeOfXLogShortPHD);
1349 
1350  CurrPos += XLOG_BLCKSZ;
1351  }
1352  }
1353  else
1354  {
1355  /* Align the end position, so that the next record starts aligned */
1356  CurrPos = MAXALIGN64(CurrPos);
1357  }
1358 
1359  if (CurrPos != EndPos)
1360  ereport(PANIC,
1362  errmsg_internal("space reserved for WAL record does not match what was written"));
1363 }
1364 
1365 /*
1366  * Acquire a WAL insertion lock, for inserting to WAL.
1367  */
1368 static void
1370 {
1371  bool immed;
1372 
1373  /*
1374  * It doesn't matter which of the WAL insertion locks we acquire, so try
1375  * the one we used last time. If the system isn't particularly busy, it's
1376  * a good bet that it's still available, and it's good to have some
1377  * affinity to a particular lock so that you don't unnecessarily bounce
1378  * cache lines between processes when there's no contention.
1379  *
1380  * If this is the first time through in this backend, pick a lock
1381  * (semi-)randomly. This allows the locks to be used evenly if you have a
1382  * lot of very short connections.
1383  */
1384  static int lockToTry = -1;
1385 
1386  if (lockToTry == -1)
1387  lockToTry = MyProcNumber % NUM_XLOGINSERT_LOCKS;
1388  MyLockNo = lockToTry;
1389 
1390  /*
1391  * The insertingAt value is initially set to 0, as we don't know our
1392  * insert location yet.
1393  */
1395  if (!immed)
1396  {
1397  /*
1398  * If we couldn't get the lock immediately, try another lock next
1399  * time. On a system with more insertion locks than concurrent
1400  * inserters, this causes all the inserters to eventually migrate to a
1401  * lock that no-one else is using. On a system with more inserters
1402  * than locks, it still helps to distribute the inserters evenly
1403  * across the locks.
1404  */
1405  lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS;
1406  }
1407 }
1408 
1409 /*
1410  * Acquire all WAL insertion locks, to prevent other backends from inserting
1411  * to WAL.
1412  */
1413 static void
1415 {
1416  int i;
1417 
1418  /*
1419  * When holding all the locks, all but the last lock's insertingAt
1420  * indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real
1421  * XLogRecPtr value, to make sure that no-one blocks waiting on those.
1422  */
1423  for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++)
1424  {
1426  LWLockUpdateVar(&WALInsertLocks[i].l.lock,
1428  PG_UINT64_MAX);
1429  }
1430  /* Variable value reset to 0 at release */
1432 
1433  holdingAllLocks = true;
1434 }
1435 
1436 /*
1437  * Release our insertion lock (or locks, if we're holding them all).
1438  *
1439  * NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the
1440  * next time the lock is acquired.
1441  */
1442 static void
1444 {
1445  if (holdingAllLocks)
1446  {
1447  int i;
1448 
1449  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1452  0);
1453 
1454  holdingAllLocks = false;
1455  }
1456  else
1457  {
1460  0);
1461  }
1462 }
1463 
1464 /*
1465  * Update our insertingAt value, to let others know that we've finished
1466  * inserting up to that point.
1467  */
1468 static void
1470 {
1471  if (holdingAllLocks)
1472  {
1473  /*
1474  * We use the last lock to mark our actual position, see comments in
1475  * WALInsertLockAcquireExclusive.
1476  */
1479  insertingAt);
1480  }
1481  else
1484  insertingAt);
1485 }
1486 
1487 /*
1488  * Wait for any WAL insertions < upto to finish.
1489  *
1490  * Returns the location of the oldest insertion that is still in-progress.
1491  * Any WAL prior to that point has been fully copied into WAL buffers, and
1492  * can be flushed out to disk. Because this waits for any insertions older
1493  * than 'upto' to finish, the return value is always >= 'upto'.
1494  *
1495  * Note: When you are about to write out WAL, you must call this function
1496  * *before* acquiring WALWriteLock, to avoid deadlocks. This function might
1497  * need to wait for an insertion to finish (or at least advance to next
1498  * uninitialized page), and the inserter might need to evict an old WAL buffer
1499  * to make room for a new one, which in turn requires WALWriteLock.
1500  */
1501 static XLogRecPtr
1503 {
1504  uint64 bytepos;
1505  XLogRecPtr inserted;
1506  XLogRecPtr reservedUpto;
1507  XLogRecPtr finishedUpto;
1509  int i;
1510 
1511  if (MyProc == NULL)
1512  elog(PANIC, "cannot wait without a PGPROC structure");
1513 
1514  /*
1515  * Check if there's any work to do. Use a barrier to ensure we get the
1516  * freshest value.
1517  */
1519  if (upto <= inserted)
1520  return inserted;
1521 
1522  /* Read the current insert position */
1523  SpinLockAcquire(&Insert->insertpos_lck);
1524  bytepos = Insert->CurrBytePos;
1525  SpinLockRelease(&Insert->insertpos_lck);
1526  reservedUpto = XLogBytePosToEndRecPtr(bytepos);
1527 
1528  /*
1529  * No-one should request to flush a piece of WAL that hasn't even been
1530  * reserved yet. However, it can happen if there is a block with a bogus
1531  * LSN on disk, for example. XLogFlush checks for that situation and
1532  * complains, but only after the flush. Here we just assume that to mean
1533  * that all WAL that has been reserved needs to be finished. In this
1534  * corner-case, the return value can be smaller than 'upto' argument.
1535  */
1536  if (upto > reservedUpto)
1537  {
1538  ereport(LOG,
1539  (errmsg("request to flush past end of generated WAL; request %X/%X, current position %X/%X",
1540  LSN_FORMAT_ARGS(upto), LSN_FORMAT_ARGS(reservedUpto))));
1541  upto = reservedUpto;
1542  }
1543 
1544  /*
1545  * Loop through all the locks, sleeping on any in-progress insert older
1546  * than 'upto'.
1547  *
1548  * finishedUpto is our return value, indicating the point upto which all
1549  * the WAL insertions have been finished. Initialize it to the head of
1550  * reserved WAL, and as we iterate through the insertion locks, back it
1551  * out for any insertion that's still in progress.
1552  */
1553  finishedUpto = reservedUpto;
1554  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1555  {
1556  XLogRecPtr insertingat = InvalidXLogRecPtr;
1557 
1558  do
1559  {
1560  /*
1561  * See if this insertion is in progress. LWLockWaitForVar will
1562  * wait for the lock to be released, or for the 'value' to be set
1563  * by a LWLockUpdateVar call. When a lock is initially acquired,
1564  * its value is 0 (InvalidXLogRecPtr), which means that we don't
1565  * know where it's inserting yet. We will have to wait for it. If
1566  * it's a small insertion, the record will most likely fit on the
1567  * same page and the inserter will release the lock without ever
1568  * calling LWLockUpdateVar. But if it has to sleep, it will
1569  * advertise the insertion point with LWLockUpdateVar before
1570  * sleeping.
1571  *
1572  * In this loop we are only waiting for insertions that started
1573  * before WaitXLogInsertionsToFinish was called. The lack of
1574  * memory barriers in the loop means that we might see locks as
1575  * "unused" that have since become used. This is fine because
1576  * they only can be used for later insertions that we would not
1577  * want to wait on anyway. Not taking a lock to acquire the
1578  * current insertingAt value means that we might see older
1579  * insertingAt values. This is also fine, because if we read a
1580  * value too old, we will add ourselves to the wait queue, which
1581  * contains atomic operations.
1582  */
1583  if (LWLockWaitForVar(&WALInsertLocks[i].l.lock,
1585  insertingat, &insertingat))
1586  {
1587  /* the lock was free, so no insertion in progress */
1588  insertingat = InvalidXLogRecPtr;
1589  break;
1590  }
1591 
1592  /*
1593  * This insertion is still in progress. Have to wait, unless the
1594  * inserter has proceeded past 'upto'.
1595  */
1596  } while (insertingat < upto);
1597 
1598  if (insertingat != InvalidXLogRecPtr && insertingat < finishedUpto)
1599  finishedUpto = insertingat;
1600  }
1601 
1602  /*
1603  * Advance the limit we know to have been inserted and return the freshest
1604  * value we know of, which might be beyond what we requested if somebody
1605  * is concurrently doing this with an 'upto' pointer ahead of us.
1606  */
1608  finishedUpto);
1609 
1610  return finishedUpto;
1611 }
1612 
1613 /*
1614  * Get a pointer to the right location in the WAL buffer containing the
1615  * given XLogRecPtr.
1616  *
1617  * If the page is not initialized yet, it is initialized. That might require
1618  * evicting an old dirty buffer from the buffer cache, which means I/O.
1619  *
1620  * The caller must ensure that the page containing the requested location
1621  * isn't evicted yet, and won't be evicted. The way to ensure that is to
1622  * hold onto a WAL insertion lock with the insertingAt position set to
1623  * something <= ptr. GetXLogBuffer() will update insertingAt if it needs
1624  * to evict an old page from the buffer. (This means that once you call
1625  * GetXLogBuffer() with a given 'ptr', you must not access anything before
1626  * that point anymore, and must not call GetXLogBuffer() with an older 'ptr'
1627  * later, because older buffers might be recycled already)
1628  */
1629 static char *
1631 {
1632  int idx;
1633  XLogRecPtr endptr;
1634  static uint64 cachedPage = 0;
1635  static char *cachedPos = NULL;
1636  XLogRecPtr expectedEndPtr;
1637 
1638  /*
1639  * Fast path for the common case that we need to access again the same
1640  * page as last time.
1641  */
1642  if (ptr / XLOG_BLCKSZ == cachedPage)
1643  {
1644  Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1645  Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1646  return cachedPos + ptr % XLOG_BLCKSZ;
1647  }
1648 
1649  /*
1650  * The XLog buffer cache is organized so that a page is always loaded to a
1651  * particular buffer. That way we can easily calculate the buffer a given
1652  * page must be loaded into, from the XLogRecPtr alone.
1653  */
1654  idx = XLogRecPtrToBufIdx(ptr);
1655 
1656  /*
1657  * See what page is loaded in the buffer at the moment. It could be the
1658  * page we're looking for, or something older. It can't be anything newer
1659  * - that would imply the page we're looking for has already been written
1660  * out to disk and evicted, and the caller is responsible for making sure
1661  * that doesn't happen.
1662  *
1663  * We don't hold a lock while we read the value. If someone is just about
1664  * to initialize or has just initialized the page, it's possible that we
1665  * get InvalidXLogRecPtr. That's ok, we'll grab the mapping lock (in
1666  * AdvanceXLInsertBuffer) and retry if we see anything other than the page
1667  * we're looking for.
1668  */
1669  expectedEndPtr = ptr;
1670  expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ;
1671 
1672  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1673  if (expectedEndPtr != endptr)
1674  {
1675  XLogRecPtr initializedUpto;
1676 
1677  /*
1678  * Before calling AdvanceXLInsertBuffer(), which can block, let others
1679  * know how far we're finished with inserting the record.
1680  *
1681  * NB: If 'ptr' points to just after the page header, advertise a
1682  * position at the beginning of the page rather than 'ptr' itself. If
1683  * there are no other insertions running, someone might try to flush
1684  * up to our advertised location. If we advertised a position after
1685  * the page header, someone might try to flush the page header, even
1686  * though page might actually not be initialized yet. As the first
1687  * inserter on the page, we are effectively responsible for making
1688  * sure that it's initialized, before we let insertingAt to move past
1689  * the page header.
1690  */
1691  if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD &&
1692  XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ)
1693  initializedUpto = ptr - SizeOfXLogShortPHD;
1694  else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD &&
1695  XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ)
1696  initializedUpto = ptr - SizeOfXLogLongPHD;
1697  else
1698  initializedUpto = ptr;
1699 
1700  WALInsertLockUpdateInsertingAt(initializedUpto);
1701 
1702  AdvanceXLInsertBuffer(ptr, tli, false);
1703  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1704 
1705  if (expectedEndPtr != endptr)
1706  elog(PANIC, "could not find WAL buffer for %X/%X",
1707  LSN_FORMAT_ARGS(ptr));
1708  }
1709  else
1710  {
1711  /*
1712  * Make sure the initialization of the page is visible to us, and
1713  * won't arrive later to overwrite the WAL data we write on the page.
1714  */
1716  }
1717 
1718  /*
1719  * Found the buffer holding this page. Return a pointer to the right
1720  * offset within the page.
1721  */
1722  cachedPage = ptr / XLOG_BLCKSZ;
1723  cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1724 
1725  Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1726  Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1727 
1728  return cachedPos + ptr % XLOG_BLCKSZ;
1729 }
1730 
1731 /*
1732  * Read WAL data directly from WAL buffers, if available. Returns the number
1733  * of bytes read successfully.
1734  *
1735  * Fewer than 'count' bytes may be read if some of the requested WAL data has
1736  * already been evicted.
1737  *
1738  * No locks are taken.
1739  *
1740  * Caller should ensure that it reads no further than LogwrtResult.Write
1741  * (which should have been updated by the caller when determining how far to
1742  * read). The 'tli' argument is only used as a convenient safety check so that
1743  * callers do not read from WAL buffers on a historical timeline.
1744  */
1745 Size
1746 WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count,
1747  TimeLineID tli)
1748 {
1749  char *pdst = dstbuf;
1750  XLogRecPtr recptr = startptr;
1751  XLogRecPtr inserted;
1752  Size nbytes = count;
1753 
1754  if (RecoveryInProgress() || tli != GetWALInsertionTimeLine())
1755  return 0;
1756 
1757  Assert(!XLogRecPtrIsInvalid(startptr));
1758 
1759  /*
1760  * Caller should ensure that the requested data has been inserted into WAL
1761  * buffers before we try to read it.
1762  */
1764  if (startptr + count > inserted)
1765  ereport(ERROR,
1766  errmsg("cannot read past end of generated WAL: requested %X/%X, current position %X/%X",
1767  LSN_FORMAT_ARGS(startptr + count),
1768  LSN_FORMAT_ARGS(inserted)));
1769 
1770  /*
1771  * Loop through the buffers without a lock. For each buffer, atomically
1772  * read and verify the end pointer, then copy the data out, and finally
1773  * re-read and re-verify the end pointer.
1774  *
1775  * Once a page is evicted, it never returns to the WAL buffers, so if the
1776  * end pointer matches the expected end pointer before and after we copy
1777  * the data, then the right page must have been present during the data
1778  * copy. Read barriers are necessary to ensure that the data copy actually
1779  * happens between the two verification steps.
1780  *
1781  * If either verification fails, we simply terminate the loop and return
1782  * with the data that had been already copied out successfully.
1783  */
1784  while (nbytes > 0)
1785  {
1786  uint32 offset = recptr % XLOG_BLCKSZ;
1787  int idx = XLogRecPtrToBufIdx(recptr);
1788  XLogRecPtr expectedEndPtr;
1789  XLogRecPtr endptr;
1790  const char *page;
1791  const char *psrc;
1792  Size npagebytes;
1793 
1794  /*
1795  * Calculate the end pointer we expect in the xlblocks array if the
1796  * correct page is present.
1797  */
1798  expectedEndPtr = recptr + (XLOG_BLCKSZ - offset);
1799 
1800  /*
1801  * First verification step: check that the correct page is present in
1802  * the WAL buffers.
1803  */
1804  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1805  if (expectedEndPtr != endptr)
1806  break;
1807 
1808  /*
1809  * The correct page is present (or was at the time the endptr was
1810  * read; must re-verify later). Calculate pointer to source data and
1811  * determine how much data to read from this page.
1812  */
1813  page = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1814  psrc = page + offset;
1815  npagebytes = Min(nbytes, XLOG_BLCKSZ - offset);
1816 
1817  /*
1818  * Ensure that the data copy and the first verification step are not
1819  * reordered.
1820  */
1821  pg_read_barrier();
1822 
1823  /* data copy */
1824  memcpy(pdst, psrc, npagebytes);
1825 
1826  /*
1827  * Ensure that the data copy and the second verification step are not
1828  * reordered.
1829  */
1830  pg_read_barrier();
1831 
1832  /*
1833  * Second verification step: check that the page we read from wasn't
1834  * evicted while we were copying the data.
1835  */
1836  endptr = pg_atomic_read_u64(&XLogCtl->xlblocks[idx]);
1837  if (expectedEndPtr != endptr)
1838  break;
1839 
1840  pdst += npagebytes;
1841  recptr += npagebytes;
1842  nbytes -= npagebytes;
1843  }
1844 
1845  Assert(pdst - dstbuf <= count);
1846 
1847  return pdst - dstbuf;
1848 }
1849 
1850 /*
1851  * Converts a "usable byte position" to XLogRecPtr. A usable byte position
1852  * is the position starting from the beginning of WAL, excluding all WAL
1853  * page headers.
1854  */
1855 static XLogRecPtr
1856 XLogBytePosToRecPtr(uint64 bytepos)
1857 {
1858  uint64 fullsegs;
1859  uint64 fullpages;
1860  uint64 bytesleft;
1861  uint32 seg_offset;
1862  XLogRecPtr result;
1863 
1864  fullsegs = bytepos / UsableBytesInSegment;
1865  bytesleft = bytepos % UsableBytesInSegment;
1866 
1867  if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1868  {
1869  /* fits on first page of segment */
1870  seg_offset = bytesleft + SizeOfXLogLongPHD;
1871  }
1872  else
1873  {
1874  /* account for the first page on segment with long header */
1875  seg_offset = XLOG_BLCKSZ;
1876  bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1877 
1878  fullpages = bytesleft / UsableBytesInPage;
1879  bytesleft = bytesleft % UsableBytesInPage;
1880 
1881  seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1882  }
1883 
1884  XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1885 
1886  return result;
1887 }
1888 
1889 /*
1890  * Like XLogBytePosToRecPtr, but if the position is at a page boundary,
1891  * returns a pointer to the beginning of the page (ie. before page header),
1892  * not to where the first xlog record on that page would go to. This is used
1893  * when converting a pointer to the end of a record.
1894  */
1895 static XLogRecPtr
1896 XLogBytePosToEndRecPtr(uint64 bytepos)
1897 {
1898  uint64 fullsegs;
1899  uint64 fullpages;
1900  uint64 bytesleft;
1901  uint32 seg_offset;
1902  XLogRecPtr result;
1903 
1904  fullsegs = bytepos / UsableBytesInSegment;
1905  bytesleft = bytepos % UsableBytesInSegment;
1906 
1907  if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1908  {
1909  /* fits on first page of segment */
1910  if (bytesleft == 0)
1911  seg_offset = 0;
1912  else
1913  seg_offset = bytesleft + SizeOfXLogLongPHD;
1914  }
1915  else
1916  {
1917  /* account for the first page on segment with long header */
1918  seg_offset = XLOG_BLCKSZ;
1919  bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1920 
1921  fullpages = bytesleft / UsableBytesInPage;
1922  bytesleft = bytesleft % UsableBytesInPage;
1923 
1924  if (bytesleft == 0)
1925  seg_offset += fullpages * XLOG_BLCKSZ + bytesleft;
1926  else
1927  seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1928  }
1929 
1930  XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1931 
1932  return result;
1933 }
1934 
1935 /*
1936  * Convert an XLogRecPtr to a "usable byte position".
1937  */
1938 static uint64
1940 {
1941  uint64 fullsegs;
1942  uint32 fullpages;
1943  uint32 offset;
1944  uint64 result;
1945 
1946  XLByteToSeg(ptr, fullsegs, wal_segment_size);
1947 
1948  fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ;
1949  offset = ptr % XLOG_BLCKSZ;
1950 
1951  if (fullpages == 0)
1952  {
1953  result = fullsegs * UsableBytesInSegment;
1954  if (offset > 0)
1955  {
1956  Assert(offset >= SizeOfXLogLongPHD);
1957  result += offset - SizeOfXLogLongPHD;
1958  }
1959  }
1960  else
1961  {
1962  result = fullsegs * UsableBytesInSegment +
1963  (XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */
1964  (fullpages - 1) * UsableBytesInPage; /* full pages */
1965  if (offset > 0)
1966  {
1967  Assert(offset >= SizeOfXLogShortPHD);
1968  result += offset - SizeOfXLogShortPHD;
1969  }
1970  }
1971 
1972  return result;
1973 }
1974 
1975 /*
1976  * Initialize XLOG buffers, writing out old buffers if they still contain
1977  * unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is
1978  * true, initialize as many pages as we can without having to write out
1979  * unwritten data. Any new pages are initialized to zeros, with pages headers
1980  * initialized properly.
1981  */
1982 static void
1983 AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
1984 {
1986  int nextidx;
1987  XLogRecPtr OldPageRqstPtr;
1988  XLogwrtRqst WriteRqst;
1989  XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr;
1990  XLogRecPtr NewPageBeginPtr;
1991  XLogPageHeader NewPage;
1992  int npages pg_attribute_unused() = 0;
1993 
1994  LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
1995 
1996  /*
1997  * Now that we have the lock, check if someone initialized the page
1998  * already.
1999  */
2000  while (upto >= XLogCtl->InitializedUpTo || opportunistic)
2001  {
2003 
2004  /*
2005  * Get ending-offset of the buffer page we need to replace (this may
2006  * be zero if the buffer hasn't been used yet). Fall through if it's
2007  * already written out.
2008  */
2009  OldPageRqstPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[nextidx]);
2010  if (LogwrtResult.Write < OldPageRqstPtr)
2011  {
2012  /*
2013  * Nope, got work to do. If we just want to pre-initialize as much
2014  * as we can without flushing, give up now.
2015  */
2016  if (opportunistic)
2017  break;
2018 
2019  /* Advance shared memory write request position */
2021  if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr)
2022  XLogCtl->LogwrtRqst.Write = OldPageRqstPtr;
2024 
2025  /*
2026  * Acquire an up-to-date LogwrtResult value and see if we still
2027  * need to write it or if someone else already did.
2028  */
2030  if (LogwrtResult.Write < OldPageRqstPtr)
2031  {
2032  /*
2033  * Must acquire write lock. Release WALBufMappingLock first,
2034  * to make sure that all insertions that we need to wait for
2035  * can finish (up to this same position). Otherwise we risk
2036  * deadlock.
2037  */
2038  LWLockRelease(WALBufMappingLock);
2039 
2040  WaitXLogInsertionsToFinish(OldPageRqstPtr);
2041 
2042  LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
2043 
2045  if (LogwrtResult.Write >= OldPageRqstPtr)
2046  {
2047  /* OK, someone wrote it already */
2048  LWLockRelease(WALWriteLock);
2049  }
2050  else
2051  {
2052  /* Have to write it ourselves */
2053  TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
2054  WriteRqst.Write = OldPageRqstPtr;
2055  WriteRqst.Flush = 0;
2056  XLogWrite(WriteRqst, tli, false);
2057  LWLockRelease(WALWriteLock);
2059  TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
2060  }
2061  /* Re-acquire WALBufMappingLock and retry */
2062  LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
2063  continue;
2064  }
2065  }
2066 
2067  /*
2068  * Now the next buffer slot is free and we can set it up to be the
2069  * next output page.
2070  */
2071  NewPageBeginPtr = XLogCtl->InitializedUpTo;
2072  NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ;
2073 
2074  Assert(XLogRecPtrToBufIdx(NewPageBeginPtr) == nextidx);
2075 
2076  NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
2077 
2078  /*
2079  * Mark the xlblock with InvalidXLogRecPtr and issue a write barrier
2080  * before initializing. Otherwise, the old page may be partially
2081  * zeroed but look valid.
2082  */
2084  pg_write_barrier();
2085 
2086  /*
2087  * Be sure to re-zero the buffer so that bytes beyond what we've
2088  * written will look like zeroes and not valid XLOG records...
2089  */
2090  MemSet((char *) NewPage, 0, XLOG_BLCKSZ);
2091 
2092  /*
2093  * Fill the new page's header
2094  */
2095  NewPage->xlp_magic = XLOG_PAGE_MAGIC;
2096 
2097  /* NewPage->xlp_info = 0; */ /* done by memset */
2098  NewPage->xlp_tli = tli;
2099  NewPage->xlp_pageaddr = NewPageBeginPtr;
2100 
2101  /* NewPage->xlp_rem_len = 0; */ /* done by memset */
2102 
2103  /*
2104  * If online backup is not in progress, mark the header to indicate
2105  * that WAL records beginning in this page have removable backup
2106  * blocks. This allows the WAL archiver to know whether it is safe to
2107  * compress archived WAL data by transforming full-block records into
2108  * the non-full-block format. It is sufficient to record this at the
2109  * page level because we force a page switch (in fact a segment
2110  * switch) when starting a backup, so the flag will be off before any
2111  * records can be written during the backup. At the end of a backup,
2112  * the last page will be marked as all unsafe when perhaps only part
2113  * is unsafe, but at worst the archiver would miss the opportunity to
2114  * compress a few records.
2115  */
2116  if (Insert->runningBackups == 0)
2117  NewPage->xlp_info |= XLP_BKP_REMOVABLE;
2118 
2119  /*
2120  * If first page of an XLOG segment file, make it a long header.
2121  */
2122  if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0)
2123  {
2124  XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
2125 
2126  NewLongPage->xlp_sysid = ControlFile->system_identifier;
2127  NewLongPage->xlp_seg_size = wal_segment_size;
2128  NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
2129  NewPage->xlp_info |= XLP_LONG_HEADER;
2130  }
2131 
2132  /*
2133  * Make sure the initialization of the page becomes visible to others
2134  * before the xlblocks update. GetXLogBuffer() reads xlblocks without
2135  * holding a lock.
2136  */
2137  pg_write_barrier();
2138 
2139  pg_atomic_write_u64(&XLogCtl->xlblocks[nextidx], NewPageEndPtr);
2140  XLogCtl->InitializedUpTo = NewPageEndPtr;
2141 
2142  npages++;
2143  }
2144  LWLockRelease(WALBufMappingLock);
2145 
2146 #ifdef WAL_DEBUG
2147  if (XLOG_DEBUG && npages > 0)
2148  {
2149  elog(DEBUG1, "initialized %d pages, up to %X/%X",
2150  npages, LSN_FORMAT_ARGS(NewPageEndPtr));
2151  }
2152 #endif
2153 }
2154 
2155 /*
2156  * Calculate CheckPointSegments based on max_wal_size_mb and
2157  * checkpoint_completion_target.
2158  */
2159 static void
2161 {
2162  double target;
2163 
2164  /*-------
2165  * Calculate the distance at which to trigger a checkpoint, to avoid
2166  * exceeding max_wal_size_mb. This is based on two assumptions:
2167  *
2168  * a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept
2169  * WAL for two checkpoint cycles to allow us to recover from the
2170  * secondary checkpoint if the first checkpoint failed, though we
2171  * only did this on the primary anyway, not on standby. Keeping just
2172  * one checkpoint simplifies processing and reduces disk space in
2173  * many smaller databases.)
2174  * b) during checkpoint, we consume checkpoint_completion_target *
2175  * number of segments consumed between checkpoints.
2176  *-------
2177  */
2178  target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) /
2180 
2181  /* round down */
2182  CheckPointSegments = (int) target;
2183 
2184  if (CheckPointSegments < 1)
2185  CheckPointSegments = 1;
2186 }
2187 
2188 void
2189 assign_max_wal_size(int newval, void *extra)
2190 {
2193 }
2194 
2195 void
2197 {
2200 }
2201 
2202 bool
2204 {
2205  if (!IsValidWalSegSize(*newval))
2206  {
2207  GUC_check_errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.");
2208  return false;
2209  }
2210 
2211  return true;
2212 }
2213 
2214 /*
2215  * GUC check_hook for max_slot_wal_keep_size
2216  *
2217  * We don't allow the value of max_slot_wal_keep_size other than -1 during the
2218  * binary upgrade. See start_postmaster() in pg_upgrade for more details.
2219  */
2220 bool
2222 {
2223  if (IsBinaryUpgrade && *newval != -1)
2224  {
2225  GUC_check_errdetail("\"%s\" must be set to -1 during binary upgrade mode.",
2226  "max_slot_wal_keep_size");
2227  return false;
2228  }
2229 
2230  return true;
2231 }
2232 
2233 /*
2234  * At a checkpoint, how many WAL segments to recycle as preallocated future
2235  * XLOG segments? Returns the highest segment that should be preallocated.
2236  */
2237 static XLogSegNo
2239 {
2240  XLogSegNo minSegNo;
2241  XLogSegNo maxSegNo;
2242  double distance;
2243  XLogSegNo recycleSegNo;
2244 
2245  /*
2246  * Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb
2247  * correspond to. Always recycle enough segments to meet the minimum, and
2248  * remove enough segments to stay below the maximum.
2249  */
2250  minSegNo = lastredoptr / wal_segment_size +
2252  maxSegNo = lastredoptr / wal_segment_size +
2254 
2255  /*
2256  * Between those limits, recycle enough segments to get us through to the
2257  * estimated end of next checkpoint.
2258  *
2259  * To estimate where the next checkpoint will finish, assume that the
2260  * system runs steadily consuming CheckPointDistanceEstimate bytes between
2261  * every checkpoint.
2262  */
2264  /* add 10% for good measure. */
2265  distance *= 1.10;
2266 
2267  recycleSegNo = (XLogSegNo) ceil(((double) lastredoptr + distance) /
2269 
2270  if (recycleSegNo < minSegNo)
2271  recycleSegNo = minSegNo;
2272  if (recycleSegNo > maxSegNo)
2273  recycleSegNo = maxSegNo;
2274 
2275  return recycleSegNo;
2276 }
2277 
2278 /*
2279  * Check whether we've consumed enough xlog space that a checkpoint is needed.
2280  *
2281  * new_segno indicates a log file that has just been filled up (or read
2282  * during recovery). We measure the distance from RedoRecPtr to new_segno
2283  * and see if that exceeds CheckPointSegments.
2284  *
2285  * Note: it is caller's responsibility that RedoRecPtr is up-to-date.
2286  */
2287 bool
2289 {
2290  XLogSegNo old_segno;
2291 
2293 
2294  if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1))
2295  return true;
2296  return false;
2297 }
2298 
2299 /*
2300  * Write and/or fsync the log at least as far as WriteRqst indicates.
2301  *
2302  * If flexible == true, we don't have to write as far as WriteRqst, but
2303  * may stop at any convenient boundary (such as a cache or logfile boundary).
2304  * This option allows us to avoid uselessly issuing multiple writes when a
2305  * single one would do.
2306  *
2307  * Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst)
2308  * must be called before grabbing the lock, to make sure the data is ready to
2309  * write.
2310  */
2311 static void
2312 XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
2313 {
2314  bool ispartialpage;
2315  bool last_iteration;
2316  bool finishing_seg;
2317  int curridx;
2318  int npages;
2319  int startidx;
2320  uint32 startoffset;
2321 
2322  /* We should always be inside a critical section here */
2323  Assert(CritSectionCount > 0);
2324 
2325  /*
2326  * Update local LogwrtResult (caller probably did this already, but...)
2327  */
2329 
2330  /*
2331  * Since successive pages in the xlog cache are consecutively allocated,
2332  * we can usually gather multiple pages together and issue just one
2333  * write() call. npages is the number of pages we have determined can be
2334  * written together; startidx is the cache block index of the first one,
2335  * and startoffset is the file offset at which it should go. The latter
2336  * two variables are only valid when npages > 0, but we must initialize
2337  * all of them to keep the compiler quiet.
2338  */
2339  npages = 0;
2340  startidx = 0;
2341  startoffset = 0;
2342 
2343  /*
2344  * Within the loop, curridx is the cache block index of the page to
2345  * consider writing. Begin at the buffer containing the next unwritten
2346  * page, or last partially written page.
2347  */
2349 
2350  while (LogwrtResult.Write < WriteRqst.Write)
2351  {
2352  /*
2353  * Make sure we're not ahead of the insert process. This could happen
2354  * if we're passed a bogus WriteRqst.Write that is past the end of the
2355  * last page that's been initialized by AdvanceXLInsertBuffer.
2356  */
2357  XLogRecPtr EndPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[curridx]);
2358 
2359  if (LogwrtResult.Write >= EndPtr)
2360  elog(PANIC, "xlog write request %X/%X is past end of log %X/%X",
2362  LSN_FORMAT_ARGS(EndPtr));
2363 
2364  /* Advance LogwrtResult.Write to end of current buffer page */
2365  LogwrtResult.Write = EndPtr;
2366  ispartialpage = WriteRqst.Write < LogwrtResult.Write;
2367 
2370  {
2371  /*
2372  * Switch to new logfile segment. We cannot have any pending
2373  * pages here (since we dump what we have at segment end).
2374  */
2375  Assert(npages == 0);
2376  if (openLogFile >= 0)
2377  XLogFileClose();
2380  openLogTLI = tli;
2381 
2382  /* create/use new log file */
2385  }
2386 
2387  /* Make sure we have the current logfile open */
2388  if (openLogFile < 0)
2389  {
2392  openLogTLI = tli;
2395  }
2396 
2397  /* Add current page to the set of pending pages-to-dump */
2398  if (npages == 0)
2399  {
2400  /* first of group */
2401  startidx = curridx;
2402  startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ,
2404  }
2405  npages++;
2406 
2407  /*
2408  * Dump the set if this will be the last loop iteration, or if we are
2409  * at the last page of the cache area (since the next page won't be
2410  * contiguous in memory), or if we are at the end of the logfile
2411  * segment.
2412  */
2413  last_iteration = WriteRqst.Write <= LogwrtResult.Write;
2414 
2415  finishing_seg = !ispartialpage &&
2416  (startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size;
2417 
2418  if (last_iteration ||
2419  curridx == XLogCtl->XLogCacheBlck ||
2420  finishing_seg)
2421  {
2422  char *from;
2423  Size nbytes;
2424  Size nleft;
2425  ssize_t written;
2426  instr_time start;
2427 
2428  /* OK to write the page(s) */
2429  from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
2430  nbytes = npages * (Size) XLOG_BLCKSZ;
2431  nleft = nbytes;
2432  do
2433  {
2434  errno = 0;
2435 
2436  /* Measure I/O timing to write WAL data */
2437  if (track_wal_io_timing)
2439  else
2441 
2442  pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE);
2443  written = pg_pwrite(openLogFile, from, nleft, startoffset);
2445 
2446  /*
2447  * Increment the I/O timing and the number of times WAL data
2448  * were written out to disk.
2449  */
2450  if (track_wal_io_timing)
2451  {
2452  instr_time end;
2453 
2456  }
2457 
2459 
2460  if (written <= 0)
2461  {
2462  char xlogfname[MAXFNAMELEN];
2463  int save_errno;
2464 
2465  if (errno == EINTR)
2466  continue;
2467 
2468  save_errno = errno;
2469  XLogFileName(xlogfname, tli, openLogSegNo,
2471  errno = save_errno;
2472  ereport(PANIC,
2474  errmsg("could not write to log file \"%s\" at offset %u, length %zu: %m",
2475  xlogfname, startoffset, nleft)));
2476  }
2477  nleft -= written;
2478  from += written;
2479  startoffset += written;
2480  } while (nleft > 0);
2481 
2482  npages = 0;
2483 
2484  /*
2485  * If we just wrote the whole last page of a logfile segment,
2486  * fsync the segment immediately. This avoids having to go back
2487  * and re-open prior segments when an fsync request comes along
2488  * later. Doing it here ensures that one and only one backend will
2489  * perform this fsync.
2490  *
2491  * This is also the right place to notify the Archiver that the
2492  * segment is ready to copy to archival storage, and to update the
2493  * timer for archive_timeout, and to signal for a checkpoint if
2494  * too many logfile segments have been used since the last
2495  * checkpoint.
2496  */
2497  if (finishing_seg)
2498  {
2500 
2501  /* signal that we need to wakeup walsenders later */
2503 
2504  LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
2505 
2506  if (XLogArchivingActive())
2508 
2509  XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
2511 
2512  /*
2513  * Request a checkpoint if we've consumed too much xlog since
2514  * the last one. For speed, we first check using the local
2515  * copy of RedoRecPtr, which might be out of date; if it looks
2516  * like a checkpoint is needed, forcibly update RedoRecPtr and
2517  * recheck.
2518  */
2520  {
2521  (void) GetRedoRecPtr();
2524  }
2525  }
2526  }
2527 
2528  if (ispartialpage)
2529  {
2530  /* Only asked to write a partial page */
2531  LogwrtResult.Write = WriteRqst.Write;
2532  break;
2533  }
2534  curridx = NextBufIdx(curridx);
2535 
2536  /* If flexible, break out of loop as soon as we wrote something */
2537  if (flexible && npages == 0)
2538  break;
2539  }
2540 
2541  Assert(npages == 0);
2542 
2543  /*
2544  * If asked to flush, do so
2545  */
2546  if (LogwrtResult.Flush < WriteRqst.Flush &&
2548  {
2549  /*
2550  * Could get here without iterating above loop, in which case we might
2551  * have no open file or the wrong one. However, we do not need to
2552  * fsync more than one file.
2553  */
2556  {
2557  if (openLogFile >= 0 &&
2560  XLogFileClose();
2561  if (openLogFile < 0)
2562  {
2565  openLogTLI = tli;
2568  }
2569 
2571  }
2572 
2573  /* signal that we need to wakeup walsenders later */
2575 
2577  }
2578 
2579  /*
2580  * Update shared-memory status
2581  *
2582  * We make sure that the shared 'request' values do not fall behind the
2583  * 'result' values. This is not absolutely essential, but it saves some
2584  * code in a couple of places.
2585  */
2592 
2593  /*
2594  * We write Write first, bar, then Flush. When reading, the opposite must
2595  * be done (with a matching barrier in between), so that we always see a
2596  * Flush value that trails behind the Write value seen.
2597  */
2599  pg_write_barrier();
2601 
2602 #ifdef USE_ASSERT_CHECKING
2603  {
2604  XLogRecPtr Flush;
2605  XLogRecPtr Write;
2607 
2609  pg_read_barrier();
2611  pg_read_barrier();
2613 
2614  /* WAL written to disk is always ahead of WAL flushed */
2615  Assert(Write >= Flush);
2616 
2617  /* WAL inserted to buffers is always ahead of WAL written */
2618  Assert(Insert >= Write);
2619  }
2620 #endif
2621 }
2622 
2623 /*
2624  * Record the LSN for an asynchronous transaction commit/abort
2625  * and nudge the WALWriter if there is work for it to do.
2626  * (This should not be called for synchronous commits.)
2627  */
2628 void
2630 {
2631  XLogRecPtr WriteRqstPtr = asyncXactLSN;
2632  bool sleeping;
2633  bool wakeup = false;
2634  XLogRecPtr prevAsyncXactLSN;
2635 
2637  sleeping = XLogCtl->WalWriterSleeping;
2638  prevAsyncXactLSN = XLogCtl->asyncXactLSN;
2639  if (XLogCtl->asyncXactLSN < asyncXactLSN)
2640  XLogCtl->asyncXactLSN = asyncXactLSN;
2642 
2643  /*
2644  * If somebody else already called this function with a more aggressive
2645  * LSN, they will have done what we needed (and perhaps more).
2646  */
2647  if (asyncXactLSN <= prevAsyncXactLSN)
2648  return;
2649 
2650  /*
2651  * If the WALWriter is sleeping, kick it to make it come out of low-power
2652  * mode, so that this async commit will reach disk within the expected
2653  * amount of time. Otherwise, determine whether it has enough WAL
2654  * available to flush, the same way that XLogBackgroundFlush() does.
2655  */
2656  if (sleeping)
2657  wakeup = true;
2658  else
2659  {
2660  int flushblocks;
2661 
2663 
2664  flushblocks =
2665  WriteRqstPtr / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
2666 
2667  if (WalWriterFlushAfter == 0 || flushblocks >= WalWriterFlushAfter)
2668  wakeup = true;
2669  }
2670 
2673 }
2674 
2675 /*
2676  * Record the LSN up to which we can remove WAL because it's not required by
2677  * any replication slot.
2678  */
2679 void
2681 {
2685 }
2686 
2687 
2688 /*
2689  * Return the oldest LSN we must retain to satisfy the needs of some
2690  * replication slot.
2691  */
2692 static XLogRecPtr
2694 {
2695  XLogRecPtr retval;
2696 
2698  retval = XLogCtl->replicationSlotMinLSN;
2700 
2701  return retval;
2702 }
2703 
2704 /*
2705  * Advance minRecoveryPoint in control file.
2706  *
2707  * If we crash during recovery, we must reach this point again before the
2708  * database is consistent.
2709  *
2710  * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
2711  * is only updated if it's not already greater than or equal to 'lsn'.
2712  */
2713 static void
2715 {
2716  /* Quick check using our local copy of the variable */
2717  if (!updateMinRecoveryPoint || (!force && lsn <= LocalMinRecoveryPoint))
2718  return;
2719 
2720  /*
2721  * An invalid minRecoveryPoint means that we need to recover all the WAL,
2722  * i.e., we're doing crash recovery. We never modify the control file's
2723  * value in that case, so we can short-circuit future checks here too. The
2724  * local values of minRecoveryPoint and minRecoveryPointTLI should not be
2725  * updated until crash recovery finishes. We only do this for the startup
2726  * process as it should not update its own reference of minRecoveryPoint
2727  * until it has finished crash recovery to make sure that all WAL
2728  * available is replayed in this case. This also saves from extra locks
2729  * taken on the control file from the startup process.
2730  */
2732  {
2733  updateMinRecoveryPoint = false;
2734  return;
2735  }
2736 
2737  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
2738 
2739  /* update local copy */
2742 
2744  updateMinRecoveryPoint = false;
2745  else if (force || LocalMinRecoveryPoint < lsn)
2746  {
2747  XLogRecPtr newMinRecoveryPoint;
2748  TimeLineID newMinRecoveryPointTLI;
2749 
2750  /*
2751  * To avoid having to update the control file too often, we update it
2752  * all the way to the last record being replayed, even though 'lsn'
2753  * would suffice for correctness. This also allows the 'force' case
2754  * to not need a valid 'lsn' value.
2755  *
2756  * Another important reason for doing it this way is that the passed
2757  * 'lsn' value could be bogus, i.e., past the end of available WAL, if
2758  * the caller got it from a corrupted heap page. Accepting such a
2759  * value as the min recovery point would prevent us from coming up at
2760  * all. Instead, we just log a warning and continue with recovery.
2761  * (See also the comments about corrupt LSNs in XLogFlush.)
2762  */
2763  newMinRecoveryPoint = GetCurrentReplayRecPtr(&newMinRecoveryPointTLI);
2764  if (!force && newMinRecoveryPoint < lsn)
2765  elog(WARNING,
2766  "xlog min recovery request %X/%X is past current point %X/%X",
2767  LSN_FORMAT_ARGS(lsn), LSN_FORMAT_ARGS(newMinRecoveryPoint));
2768 
2769  /* update control file */
2770  if (ControlFile->minRecoveryPoint < newMinRecoveryPoint)
2771  {
2772  ControlFile->minRecoveryPoint = newMinRecoveryPoint;
2773  ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI;
2775  LocalMinRecoveryPoint = newMinRecoveryPoint;
2776  LocalMinRecoveryPointTLI = newMinRecoveryPointTLI;
2777 
2778  ereport(DEBUG2,
2779  (errmsg_internal("updated min recovery point to %X/%X on timeline %u",
2780  LSN_FORMAT_ARGS(newMinRecoveryPoint),
2781  newMinRecoveryPointTLI)));
2782  }
2783  }
2784  LWLockRelease(ControlFileLock);
2785 }
2786 
2787 /*
2788  * Ensure that all XLOG data through the given position is flushed to disk.
2789  *
2790  * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
2791  * already held, and we try to avoid acquiring it if possible.
2792  */
2793 void
2795 {
2796  XLogRecPtr WriteRqstPtr;
2797  XLogwrtRqst WriteRqst;
2798  TimeLineID insertTLI = XLogCtl->InsertTimeLineID;
2799 
2800  /*
2801  * During REDO, we are reading not writing WAL. Therefore, instead of
2802  * trying to flush the WAL, we should update minRecoveryPoint instead. We
2803  * test XLogInsertAllowed(), not InRecovery, because we need checkpointer
2804  * to act this way too, and because when it tries to write the
2805  * end-of-recovery checkpoint, it should indeed flush.
2806  */
2807  if (!XLogInsertAllowed())
2808  {
2809  UpdateMinRecoveryPoint(record, false);
2810  return;
2811  }
2812 
2813  /* Quick exit if already known flushed */
2814  if (record <= LogwrtResult.Flush)
2815  return;
2816 
2817 #ifdef WAL_DEBUG
2818  if (XLOG_DEBUG)
2819  elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X",
2820  LSN_FORMAT_ARGS(record),
2823 #endif
2824 
2826 
2827  /*
2828  * Since fsync is usually a horribly expensive operation, we try to
2829  * piggyback as much data as we can on each fsync: if we see any more data
2830  * entered into the xlog buffer, we'll write and fsync that too, so that
2831  * the final value of LogwrtResult.Flush is as large as possible. This
2832  * gives us some chance of avoiding another fsync immediately after.
2833  */
2834 
2835  /* initialize to given target; may increase below */
2836  WriteRqstPtr = record;
2837 
2838  /*
2839  * Now wait until we get the write lock, or someone else does the flush
2840  * for us.
2841  */
2842  for (;;)
2843  {
2844  XLogRecPtr insertpos;
2845 
2846  /* done already? */
2848  if (record <= LogwrtResult.Flush)
2849  break;
2850 
2851  /*
2852  * Before actually performing the write, wait for all in-flight
2853  * insertions to the pages we're about to write to finish.
2854  */
2856  if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write)
2857  WriteRqstPtr = XLogCtl->LogwrtRqst.Write;
2859  insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr);
2860 
2861  /*
2862  * Try to get the write lock. If we can't get it immediately, wait
2863  * until it's released, and recheck if we still need to do the flush
2864  * or if the backend that held the lock did it for us already. This
2865  * helps to maintain a good rate of group committing when the system
2866  * is bottlenecked by the speed of fsyncing.
2867  */
2868  if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE))
2869  {
2870  /*
2871  * The lock is now free, but we didn't acquire it yet. Before we
2872  * do, loop back to check if someone else flushed the record for
2873  * us already.
2874  */
2875  continue;
2876  }
2877 
2878  /* Got the lock; recheck whether request is satisfied */
2880  if (record <= LogwrtResult.Flush)
2881  {
2882  LWLockRelease(WALWriteLock);
2883  break;
2884  }
2885 
2886  /*
2887  * Sleep before flush! By adding a delay here, we may give further
2888  * backends the opportunity to join the backlog of group commit
2889  * followers; this can significantly improve transaction throughput,
2890  * at the risk of increasing transaction latency.
2891  *
2892  * We do not sleep if enableFsync is not turned on, nor if there are
2893  * fewer than CommitSiblings other backends with active transactions.
2894  */
2895  if (CommitDelay > 0 && enableFsync &&
2897  {
2899 
2900  /*
2901  * Re-check how far we can now flush the WAL. It's generally not
2902  * safe to call WaitXLogInsertionsToFinish while holding
2903  * WALWriteLock, because an in-progress insertion might need to
2904  * also grab WALWriteLock to make progress. But we know that all
2905  * the insertions up to insertpos have already finished, because
2906  * that's what the earlier WaitXLogInsertionsToFinish() returned.
2907  * We're only calling it again to allow insertpos to be moved
2908  * further forward, not to actually wait for anyone.
2909  */
2910  insertpos = WaitXLogInsertionsToFinish(insertpos);
2911  }
2912 
2913  /* try to write/flush later additions to XLOG as well */
2914  WriteRqst.Write = insertpos;
2915  WriteRqst.Flush = insertpos;
2916 
2917  XLogWrite(WriteRqst, insertTLI, false);
2918 
2919  LWLockRelease(WALWriteLock);
2920  /* done */
2921  break;
2922  }
2923 
2924  END_CRIT_SECTION();
2925 
2926  /* wake up walsenders now that we've released heavily contended locks */
2928 
2929  /*
2930  * If we still haven't flushed to the request point then we have a
2931  * problem; most likely, the requested flush point is past end of XLOG.
2932  * This has been seen to occur when a disk page has a corrupted LSN.
2933  *
2934  * Formerly we treated this as a PANIC condition, but that hurts the
2935  * system's robustness rather than helping it: we do not want to take down
2936  * the whole system due to corruption on one data page. In particular, if
2937  * the bad page is encountered again during recovery then we would be
2938  * unable to restart the database at all! (This scenario actually
2939  * happened in the field several times with 7.1 releases.) As of 8.4, bad
2940  * LSNs encountered during recovery are UpdateMinRecoveryPoint's problem;
2941  * the only time we can reach here during recovery is while flushing the
2942  * end-of-recovery checkpoint record, and we don't expect that to have a
2943  * bad LSN.
2944  *
2945  * Note that for calls from xact.c, the ERROR will be promoted to PANIC
2946  * since xact.c calls this routine inside a critical section. However,
2947  * calls from bufmgr.c are not within critical sections and so we will not
2948  * force a restart for a bad LSN on a data page.
2949  */
2950  if (LogwrtResult.Flush < record)
2951  elog(ERROR,
2952  "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X",
2953  LSN_FORMAT_ARGS(record),
2955 }
2956 
2957 /*
2958  * Write & flush xlog, but without specifying exactly where to.
2959  *
2960  * We normally write only completed blocks; but if there is nothing to do on
2961  * that basis, we check for unwritten async commits in the current incomplete
2962  * block, and write through the latest one of those. Thus, if async commits
2963  * are not being used, we will write complete blocks only.
2964  *
2965  * If, based on the above, there's anything to write we do so immediately. But
2966  * to avoid calling fsync, fdatasync et. al. at a rate that'd impact
2967  * concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's
2968  * more than wal_writer_flush_after unflushed blocks.
2969  *
2970  * We can guarantee that async commits reach disk after at most three
2971  * wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite
2972  * to write "flexibly", meaning it can stop at the end of the buffer ring;
2973  * this makes a difference only with very high load or long wal_writer_delay,
2974  * but imposes one extra cycle for the worst case for async commits.)
2975  *
2976  * This routine is invoked periodically by the background walwriter process.
2977  *
2978  * Returns true if there was any work to do, even if we skipped flushing due
2979  * to wal_writer_delay/wal_writer_flush_after.
2980  */
2981 bool
2983 {
2984  XLogwrtRqst WriteRqst;
2985  bool flexible = true;
2986  static TimestampTz lastflush;
2987  TimestampTz now;
2988  int flushblocks;
2989  TimeLineID insertTLI;
2990 
2991  /* XLOG doesn't need flushing during recovery */
2992  if (RecoveryInProgress())
2993  return false;
2994 
2995  /*
2996  * Since we're not in recovery, InsertTimeLineID is set and can't change,
2997  * so we can read it without a lock.
2998  */
2999  insertTLI = XLogCtl->InsertTimeLineID;
3000 
3001  /* read updated LogwrtRqst */
3003  WriteRqst = XLogCtl->LogwrtRqst;
3005 
3006  /* back off to last completed page boundary */
3007  WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ;
3008 
3009  /* if we have already flushed that far, consider async commit records */
3011  if (WriteRqst.Write <= LogwrtResult.Flush)
3012  {
3014  WriteRqst.Write = XLogCtl->asyncXactLSN;
3016  flexible = false; /* ensure it all gets written */
3017  }
3018 
3019  /*
3020  * If already known flushed, we're done. Just need to check if we are
3021  * holding an open file handle to a logfile that's no longer in use,
3022  * preventing the file from being deleted.
3023  */
3024  if (WriteRqst.Write <= LogwrtResult.Flush)
3025  {
3026  if (openLogFile >= 0)
3027  {
3030  {
3031  XLogFileClose();
3032  }
3033  }
3034  return false;
3035  }
3036 
3037  /*
3038  * Determine how far to flush WAL, based on the wal_writer_delay and
3039  * wal_writer_flush_after GUCs.
3040  *
3041  * Note that XLogSetAsyncXactLSN() performs similar calculation based on
3042  * wal_writer_flush_after, to decide when to wake us up. Make sure the
3043  * logic is the same in both places if you change this.
3044  */
3046  flushblocks =
3047  WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
3048 
3049  if (WalWriterFlushAfter == 0 || lastflush == 0)
3050  {
3051  /* first call, or block based limits disabled */
3052  WriteRqst.Flush = WriteRqst.Write;
3053  lastflush = now;
3054  }
3055  else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay))
3056  {
3057  /*
3058  * Flush the writes at least every WalWriterDelay ms. This is
3059  * important to bound the amount of time it takes for an asynchronous
3060  * commit to hit disk.
3061  */
3062  WriteRqst.Flush = WriteRqst.Write;
3063  lastflush = now;
3064  }
3065  else if (flushblocks >= WalWriterFlushAfter)
3066  {
3067  /* exceeded wal_writer_flush_after blocks, flush */
3068  WriteRqst.Flush = WriteRqst.Write;
3069  lastflush = now;
3070  }
3071  else
3072  {
3073  /* no flushing, this time round */
3074  WriteRqst.Flush = 0;
3075  }
3076 
3077 #ifdef WAL_DEBUG
3078  if (XLOG_DEBUG)
3079  elog(LOG, "xlog bg flush request write %X/%X; flush: %X/%X, current is write %X/%X; flush %X/%X",
3080  LSN_FORMAT_ARGS(WriteRqst.Write),
3081  LSN_FORMAT_ARGS(WriteRqst.Flush),
3084 #endif
3085 
3087 
3088  /* now wait for any in-progress insertions to finish and get write lock */
3089  WaitXLogInsertionsToFinish(WriteRqst.Write);
3090  LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
3092  if (WriteRqst.Write > LogwrtResult.Write ||
3093  WriteRqst.Flush > LogwrtResult.Flush)
3094  {
3095  XLogWrite(WriteRqst, insertTLI, flexible);
3096  }
3097  LWLockRelease(WALWriteLock);
3098 
3099  END_CRIT_SECTION();
3100 
3101  /* wake up walsenders now that we've released heavily contended locks */
3103 
3104  /*
3105  * Great, done. To take some work off the critical path, try to initialize
3106  * as many of the no-longer-needed WAL buffers for future use as we can.
3107  */
3108  AdvanceXLInsertBuffer(InvalidXLogRecPtr, insertTLI, true);
3109 
3110  /*
3111  * If we determined that we need to write data, but somebody else
3112  * wrote/flushed already, it should be considered as being active, to
3113  * avoid hibernating too early.
3114  */
3115  return true;
3116 }
3117 
3118 /*
3119  * Test whether XLOG data has been flushed up to (at least) the given position.
3120  *
3121  * Returns true if a flush is still needed. (It may be that someone else
3122  * is already in process of flushing that far, however.)
3123  */
3124 bool
3126 {
3127  /*
3128  * During recovery, we don't flush WAL but update minRecoveryPoint
3129  * instead. So "needs flush" is taken to mean whether minRecoveryPoint
3130  * would need to be updated.
3131  */
3132  if (RecoveryInProgress())
3133  {
3134  /*
3135  * An invalid minRecoveryPoint means that we need to recover all the
3136  * WAL, i.e., we're doing crash recovery. We never modify the control
3137  * file's value in that case, so we can short-circuit future checks
3138  * here too. This triggers a quick exit path for the startup process,
3139  * which cannot update its local copy of minRecoveryPoint as long as
3140  * it has not replayed all WAL available when doing crash recovery.
3141  */
3143  updateMinRecoveryPoint = false;
3144 
3145  /* Quick exit if already known to be updated or cannot be updated */
3147  return false;
3148 
3149  /*
3150  * Update local copy of minRecoveryPoint. But if the lock is busy,
3151  * just return a conservative guess.
3152  */
3153  if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED))
3154  return true;
3157  LWLockRelease(ControlFileLock);
3158 
3159  /*
3160  * Check minRecoveryPoint for any other process than the startup
3161  * process doing crash recovery, which should not update the control
3162  * file value if crash recovery is still running.
3163  */
3165  updateMinRecoveryPoint = false;
3166 
3167  /* check again */
3169  return false;
3170  else
3171  return true;
3172  }
3173 
3174  /* Quick exit if already known flushed */
3175  if (record <= LogwrtResult.Flush)
3176  return false;
3177 
3178  /* read LogwrtResult and update local state */
3180 
3181  /* check again */
3182  if (record <= LogwrtResult.Flush)
3183  return false;
3184 
3185  return true;
3186 }
3187 
3188 /*
3189  * Try to make a given XLOG file segment exist.
3190  *
3191  * logsegno: identify segment.
3192  *
3193  * *added: on return, true if this call raised the number of extant segments.
3194  *
3195  * path: on return, this char[MAXPGPATH] has the path to the logsegno file.
3196  *
3197  * Returns -1 or FD of opened file. A -1 here is not an error; a caller
3198  * wanting an open segment should attempt to open "path", which usually will
3199  * succeed. (This is weird, but it's efficient for the callers.)
3200  */
3201 static int
3203  bool *added, char *path)
3204 {
3205  char tmppath[MAXPGPATH];
3206  XLogSegNo installed_segno;
3207  XLogSegNo max_segno;
3208  int fd;
3209  int save_errno;
3210  int open_flags = O_RDWR | O_CREAT | O_EXCL | PG_BINARY;
3211 
3212  Assert(logtli != 0);
3213 
3214  XLogFilePath(path, logtli, logsegno, wal_segment_size);
3215 
3216  /*
3217  * Try to use existent file (checkpoint maker may have created it already)
3218  */
3219  *added = false;
3220  fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3222  if (fd < 0)
3223  {
3224  if (errno != ENOENT)
3225  ereport(ERROR,
3227  errmsg("could not open file \"%s\": %m", path)));
3228  }
3229  else
3230  return fd;
3231 
3232  /*
3233  * Initialize an empty (all zeroes) segment. NOTE: it is possible that
3234  * another process is doing the same thing. If so, we will end up
3235  * pre-creating an extra log segment. That seems OK, and better than
3236  * holding the lock throughout this lengthy process.
3237  */
3238  elog(DEBUG2, "creating and filling new WAL file");
3239 
3240  snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3241 
3242  unlink(tmppath);
3243 
3245  open_flags |= PG_O_DIRECT;
3246 
3247  /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3248  fd = BasicOpenFile(tmppath, open_flags);
3249  if (fd < 0)
3250  ereport(ERROR,
3252  errmsg("could not create file \"%s\": %m", tmppath)));
3253 
3254  pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE);
3255  save_errno = 0;
3256  if (wal_init_zero)
3257  {
3258  ssize_t rc;
3259 
3260  /*
3261  * Zero-fill the file. With this setting, we do this the hard way to
3262  * ensure that all the file space has really been allocated. On
3263  * platforms that allow "holes" in files, just seeking to the end
3264  * doesn't allocate intermediate space. This way, we know that we
3265  * have all the space and (after the fsync below) that all the
3266  * indirect blocks are down on disk. Therefore, fdatasync(2) or
3267  * O_DSYNC will be sufficient to sync future writes to the log file.
3268  */
3270 
3271  if (rc < 0)
3272  save_errno = errno;
3273  }
3274  else
3275  {
3276  /*
3277  * Otherwise, seeking to the end and writing a solitary byte is
3278  * enough.
3279  */
3280  errno = 0;
3281  if (pg_pwrite(fd, "\0", 1, wal_segment_size - 1) != 1)
3282  {
3283  /* if write didn't set errno, assume no disk space */
3284  save_errno = errno ? errno : ENOSPC;
3285  }
3286  }
3288 
3289  if (save_errno)
3290  {
3291  /*
3292  * If we fail to make the file, delete it to release disk space
3293  */
3294  unlink(tmppath);
3295 
3296  close(fd);
3297 
3298  errno = save_errno;
3299 
3300  ereport(ERROR,
3302  errmsg("could not write to file \"%s\": %m", tmppath)));
3303  }
3304 
3305  pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC);
3306  if (pg_fsync(fd) != 0)
3307  {
3308  save_errno = errno;
3309  close(fd);
3310  errno = save_errno;
3311  ereport(ERROR,
3313  errmsg("could not fsync file \"%s\": %m", tmppath)));
3314  }
3316 
3317  if (close(fd) != 0)
3318  ereport(ERROR,
3320  errmsg("could not close file \"%s\": %m", tmppath)));
3321 
3322  /*
3323  * Now move the segment into place with its final name. Cope with
3324  * possibility that someone else has created the file while we were
3325  * filling ours: if so, use ours to pre-create a future log segment.
3326  */
3327  installed_segno = logsegno;
3328 
3329  /*
3330  * XXX: What should we use as max_segno? We used to use XLOGfileslop when
3331  * that was a constant, but that was always a bit dubious: normally, at a
3332  * checkpoint, XLOGfileslop was the offset from the checkpoint record, but
3333  * here, it was the offset from the insert location. We can't do the
3334  * normal XLOGfileslop calculation here because we don't have access to
3335  * the prior checkpoint's redo location. So somewhat arbitrarily, just use
3336  * CheckPointSegments.
3337  */
3338  max_segno = logsegno + CheckPointSegments;
3339  if (InstallXLogFileSegment(&installed_segno, tmppath, true, max_segno,
3340  logtli))
3341  {
3342  *added = true;
3343  elog(DEBUG2, "done creating and filling new WAL file");
3344  }
3345  else
3346  {
3347  /*
3348  * No need for any more future segments, or InstallXLogFileSegment()
3349  * failed to rename the file into place. If the rename failed, a
3350  * caller opening the file may fail.
3351  */
3352  unlink(tmppath);
3353  elog(DEBUG2, "abandoned new WAL file");
3354  }
3355 
3356  return -1;
3357 }
3358 
3359 /*
3360  * Create a new XLOG file segment, or open a pre-existing one.
3361  *
3362  * logsegno: identify segment to be created/opened.
3363  *
3364  * Returns FD of opened file.
3365  *
3366  * Note: errors here are ERROR not PANIC because we might or might not be
3367  * inside a critical section (eg, during checkpoint there is no reason to
3368  * take down the system on failure). They will promote to PANIC if we are
3369  * in a critical section.
3370  */
3371 int
3373 {
3374  bool ignore_added;
3375  char path[MAXPGPATH];
3376  int fd;
3377 
3378  Assert(logtli != 0);
3379 
3380  fd = XLogFileInitInternal(logsegno, logtli, &ignore_added, path);
3381  if (fd >= 0)
3382  return fd;
3383 
3384  /* Now open original target segment (might not be file I just made) */
3385  fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3387  if (fd < 0)
3388  ereport(ERROR,
3390  errmsg("could not open file \"%s\": %m", path)));
3391  return fd;
3392 }
3393 
3394 /*
3395  * Create a new XLOG file segment by copying a pre-existing one.
3396  *
3397  * destsegno: identify segment to be created.
3398  *
3399  * srcTLI, srcsegno: identify segment to be copied (could be from
3400  * a different timeline)
3401  *
3402  * upto: how much of the source file to copy (the rest is filled with
3403  * zeros)
3404  *
3405  * Currently this is only used during recovery, and so there are no locking
3406  * considerations. But we should be just as tense as XLogFileInit to avoid
3407  * emplacing a bogus file.
3408  */
3409 static void
3410 XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno,
3411  TimeLineID srcTLI, XLogSegNo srcsegno,
3412  int upto)
3413 {
3414  char path[MAXPGPATH];
3415  char tmppath[MAXPGPATH];
3416  PGAlignedXLogBlock buffer;
3417  int srcfd;
3418  int fd;
3419  int nbytes;
3420 
3421  /*
3422  * Open the source file
3423  */
3424  XLogFilePath(path, srcTLI, srcsegno, wal_segment_size);
3425  srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
3426  if (srcfd < 0)
3427  ereport(ERROR,
3429  errmsg("could not open file \"%s\": %m", path)));
3430 
3431  /*
3432  * Copy into a temp file name.
3433  */
3434  snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3435 
3436  unlink(tmppath);
3437 
3438  /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3439  fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
3440  if (fd < 0)
3441  ereport(ERROR,
3443  errmsg("could not create file \"%s\": %m", tmppath)));
3444 
3445  /*
3446  * Do the data copying.
3447  */
3448  for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer))
3449  {
3450  int nread;
3451 
3452  nread = upto - nbytes;
3453 
3454  /*
3455  * The part that is not read from the source file is filled with
3456  * zeros.
3457  */
3458  if (nread < sizeof(buffer))
3459  memset(buffer.data, 0, sizeof(buffer));
3460 
3461  if (nread > 0)
3462  {
3463  int r;
3464 
3465  if (nread > sizeof(buffer))
3466  nread = sizeof(buffer);
3467  pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ);
3468  r = read(srcfd, buffer.data, nread);
3469  if (r != nread)
3470  {
3471  if (r < 0)
3472  ereport(ERROR,
3474  errmsg("could not read file \"%s\": %m",
3475  path)));
3476  else
3477  ereport(ERROR,
3479  errmsg("could not read file \"%s\": read %d of %zu",
3480  path, r, (Size) nread)));
3481  }
3483  }
3484  errno = 0;
3485  pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE);
3486  if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer))
3487  {
3488  int save_errno = errno;
3489 
3490  /*
3491  * If we fail to make the file, delete it to release disk space
3492  */
3493  unlink(tmppath);
3494  /* if write didn't set errno, assume problem is no disk space */
3495  errno = save_errno ? save_errno : ENOSPC;
3496 
3497  ereport(ERROR,
3499  errmsg("could not write to file \"%s\": %m", tmppath)));
3500  }
3502  }
3503 
3504  pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC);
3505  if (pg_fsync(fd) != 0)
3508  errmsg("could not fsync file \"%s\": %m", tmppath)));
3510 
3511  if (CloseTransientFile(fd) != 0)
3512  ereport(ERROR,
3514  errmsg("could not close file \"%s\": %m", tmppath)));
3515 
3516  if (CloseTransientFile(srcfd) != 0)
3517  ereport(ERROR,
3519  errmsg("could not close file \"%s\": %m", path)));
3520 
3521  /*
3522  * Now move the segment into place with its final name.
3523  */
3524  if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, destTLI))
3525  elog(ERROR, "InstallXLogFileSegment should not have failed");
3526 }
3527 
3528 /*
3529  * Install a new XLOG segment file as a current or future log segment.
3530  *
3531  * This is used both to install a newly-created segment (which has a temp
3532  * filename while it's being created) and to recycle an old segment.
3533  *
3534  * *segno: identify segment to install as (or first possible target).
3535  * When find_free is true, this is modified on return to indicate the
3536  * actual installation location or last segment searched.
3537  *
3538  * tmppath: initial name of file to install. It will be renamed into place.
3539  *
3540  * find_free: if true, install the new segment at the first empty segno
3541  * number at or after the passed numbers. If false, install the new segment
3542  * exactly where specified, deleting any existing segment file there.
3543  *
3544  * max_segno: maximum segment number to install the new file as. Fail if no
3545  * free slot is found between *segno and max_segno. (Ignored when find_free
3546  * is false.)
3547  *
3548  * tli: The timeline on which the new segment should be installed.
3549  *
3550  * Returns true if the file was installed successfully. false indicates that
3551  * max_segno limit was exceeded, the startup process has disabled this
3552  * function for now, or an error occurred while renaming the file into place.
3553  */
3554 static bool
3555 InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
3556  bool find_free, XLogSegNo max_segno, TimeLineID tli)
3557 {
3558  char path[MAXPGPATH];
3559  struct stat stat_buf;
3560 
3561  Assert(tli != 0);
3562 
3563  XLogFilePath(path, tli, *segno, wal_segment_size);
3564 
3565  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
3567  {
3568  LWLockRelease(ControlFileLock);
3569  return false;
3570  }
3571 
3572  if (!find_free)
3573  {
3574  /* Force installation: get rid of any pre-existing segment file */
3575  durable_unlink(path, DEBUG1);
3576  }
3577  else
3578  {
3579  /* Find a free slot to put it in */
3580  while (stat(path, &stat_buf) == 0)
3581  {
3582  if ((*segno) >= max_segno)
3583  {
3584  /* Failed to find a free slot within specified range */
3585  LWLockRelease(ControlFileLock);
3586  return false;
3587  }
3588  (*segno)++;
3589  XLogFilePath(path, tli, *segno, wal_segment_size);
3590  }
3591  }
3592 
3593  Assert(access(path, F_OK) != 0 && errno == ENOENT);
3594  if (durable_rename(tmppath, path, LOG) != 0)
3595  {
3596  LWLockRelease(ControlFileLock);
3597  /* durable_rename already emitted log message */
3598  return false;
3599  }
3600 
3601  LWLockRelease(ControlFileLock);
3602 
3603  return true;
3604 }
3605 
3606 /*
3607  * Open a pre-existing logfile segment for writing.
3608  */
3609 int
3611 {
3612  char path[MAXPGPATH];
3613  int fd;
3614 
3615  XLogFilePath(path, tli, segno, wal_segment_size);
3616 
3617  fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3619  if (fd < 0)
3620  ereport(PANIC,
3622  errmsg("could not open file \"%s\": %m", path)));
3623 
3624  return fd;
3625 }
3626 
3627 /*
3628  * Close the current logfile segment for writing.
3629  */
3630 static void
3632 {
3633  Assert(openLogFile >= 0);
3634 
3635  /*
3636  * WAL segment files will not be re-read in normal operation, so we advise
3637  * the OS to release any cached pages. But do not do so if WAL archiving
3638  * or streaming is active, because archiver and walsender process could
3639  * use the cache to read the WAL segment.
3640  */
3641 #if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
3642  if (!XLogIsNeeded() && (io_direct_flags & IO_DIRECT_WAL) == 0)
3643  (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
3644 #endif
3645 
3646  if (close(openLogFile) != 0)
3647  {
3648  char xlogfname[MAXFNAMELEN];
3649  int save_errno = errno;
3650 
3652  errno = save_errno;
3653  ereport(PANIC,
3655  errmsg("could not close file \"%s\": %m", xlogfname)));
3656  }
3657 
3658  openLogFile = -1;
3660 }
3661 
3662 /*
3663  * Preallocate log files beyond the specified log endpoint.
3664  *
3665  * XXX this is currently extremely conservative, since it forces only one
3666  * future log segment to exist, and even that only if we are 75% done with
3667  * the current one. This is only appropriate for very low-WAL-volume systems.
3668  * High-volume systems will be OK once they've built up a sufficient set of
3669  * recycled log segments, but the startup transient is likely to include
3670  * a lot of segment creations by foreground processes, which is not so good.
3671  *
3672  * XLogFileInitInternal() can ereport(ERROR). All known causes indicate big
3673  * trouble; for example, a full filesystem is one cause. The checkpoint WAL
3674  * and/or ControlFile updates already completed. If a RequestCheckpoint()
3675  * initiated the present checkpoint and an ERROR ends this function, the
3676  * command that called RequestCheckpoint() fails. That's not ideal, but it's
3677  * not worth contorting more functions to use caller-specified elevel values.
3678  * (With or without RequestCheckpoint(), an ERROR forestalls some inessential
3679  * reporting and resource reclamation.)
3680  */
3681 static void
3683 {
3684  XLogSegNo _logSegNo;
3685  int lf;
3686  bool added;
3687  char path[MAXPGPATH];
3688  uint64 offset;
3689 
3691  return; /* unlocked check says no */
3692 
3693  XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size);
3694  offset = XLogSegmentOffset(endptr - 1, wal_segment_size);
3695  if (offset >= (uint32) (0.75 * wal_segment_size))
3696  {
3697  _logSegNo++;
3698  lf = XLogFileInitInternal(_logSegNo, tli, &added, path);
3699  if (lf >= 0)
3700  close(lf);
3701  if (added)
3703  }
3704 }
3705 
3706 /*
3707  * Throws an error if the given log segment has already been removed or
3708  * recycled. The caller should only pass a segment that it knows to have
3709  * existed while the server has been running, as this function always
3710  * succeeds if no WAL segments have been removed since startup.
3711  * 'tli' is only used in the error message.
3712  *
3713  * Note: this function guarantees to keep errno unchanged on return.
3714  * This supports callers that use this to possibly deliver a better
3715  * error message about a missing file, while still being able to throw
3716  * a normal file-access error afterwards, if this does return.
3717  */
3718 void
3720 {
3721  int save_errno = errno;
3722  XLogSegNo lastRemovedSegNo;
3723 
3725  lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3727 
3728  if (segno <= lastRemovedSegNo)
3729  {
3730  char filename[MAXFNAMELEN];
3731 
3732  XLogFileName(filename, tli, segno, wal_segment_size);
3733  errno = save_errno;
3734  ereport(ERROR,
3736  errmsg("requested WAL segment %s has already been removed",
3737  filename)));
3738  }
3739  errno = save_errno;
3740 }
3741 
3742 /*
3743  * Return the last WAL segment removed, or 0 if no segment has been removed
3744  * since startup.
3745  *
3746  * NB: the result can be out of date arbitrarily fast, the caller has to deal
3747  * with that.
3748  */
3749 XLogSegNo
3751 {
3752  XLogSegNo lastRemovedSegNo;
3753 
3755  lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3757 
3758  return lastRemovedSegNo;
3759 }
3760 
3761 /*
3762  * Return the oldest WAL segment on the given TLI that still exists in
3763  * XLOGDIR, or 0 if none.
3764  */
3765 XLogSegNo
3767 {
3768  DIR *xldir;
3769  struct dirent *xlde;
3770  XLogSegNo oldest_segno = 0;
3771 
3772  xldir = AllocateDir(XLOGDIR);
3773  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3774  {
3775  TimeLineID file_tli;
3776  XLogSegNo file_segno;
3777 
3778  /* Ignore files that are not XLOG segments. */
3779  if (!IsXLogFileName(xlde->d_name))
3780  continue;
3781 
3782  /* Parse filename to get TLI and segno. */
3783  XLogFromFileName(xlde->d_name, &file_tli, &file_segno,
3785 
3786  /* Ignore anything that's not from the TLI of interest. */
3787  if (tli != file_tli)
3788  continue;
3789 
3790  /* If it's the oldest so far, update oldest_segno. */
3791  if (oldest_segno == 0 || file_segno < oldest_segno)
3792  oldest_segno = file_segno;
3793  }
3794 
3795  FreeDir(xldir);
3796  return oldest_segno;
3797 }
3798 
3799 /*
3800  * Update the last removed segno pointer in shared memory, to reflect that the
3801  * given XLOG file has been removed.
3802  */
3803 static void
3805 {
3806  uint32 tli;
3807  XLogSegNo segno;
3808 
3809  XLogFromFileName(filename, &tli, &segno, wal_segment_size);
3810 
3812  if (segno > XLogCtl->lastRemovedSegNo)
3813  XLogCtl->lastRemovedSegNo = segno;
3815 }
3816 
3817 /*
3818  * Remove all temporary log files in pg_wal
3819  *
3820  * This is called at the beginning of recovery after a previous crash,
3821  * at a point where no other processes write fresh WAL data.
3822  */
3823 static void
3825 {
3826  DIR *xldir;
3827  struct dirent *xlde;
3828 
3829  elog(DEBUG2, "removing all temporary WAL segments");
3830 
3831  xldir = AllocateDir(XLOGDIR);
3832  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3833  {
3834  char path[MAXPGPATH];
3835 
3836  if (strncmp(xlde->d_name, "xlogtemp.", 9) != 0)
3837  continue;
3838 
3839  snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
3840  unlink(path);
3841  elog(DEBUG2, "removed temporary WAL segment \"%s\"", path);
3842  }
3843  FreeDir(xldir);
3844 }
3845 
3846 /*
3847  * Recycle or remove all log files older or equal to passed segno.
3848  *
3849  * endptr is current (or recent) end of xlog, and lastredoptr is the
3850  * redo pointer of the last checkpoint. These are used to determine
3851  * whether we want to recycle rather than delete no-longer-wanted log files.
3852  *
3853  * insertTLI is the current timeline for XLOG insertion. Any recycled
3854  * segments should be reused for this timeline.
3855  */
3856 static void
3858  TimeLineID insertTLI)
3859 {
3860  DIR *xldir;
3861  struct dirent *xlde;
3862  char lastoff[MAXFNAMELEN];
3863  XLogSegNo endlogSegNo;
3864  XLogSegNo recycleSegNo;
3865 
3866  /* Initialize info about where to try to recycle to */
3867  XLByteToSeg(endptr, endlogSegNo, wal_segment_size);
3868  recycleSegNo = XLOGfileslop(lastredoptr);
3869 
3870  /*
3871  * Construct a filename of the last segment to be kept. The timeline ID
3872  * doesn't matter, we ignore that in the comparison. (During recovery,
3873  * InsertTimeLineID isn't set, so we can't use that.)
3874  */
3875  XLogFileName(lastoff, 0, segno, wal_segment_size);
3876 
3877  elog(DEBUG2, "attempting to remove WAL segments older than log file %s",
3878  lastoff);
3879 
3880  xldir = AllocateDir(XLOGDIR);
3881 
3882  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3883  {
3884  /* Ignore files that are not XLOG segments */
3885  if (!IsXLogFileName(xlde->d_name) &&
3886  !IsPartialXLogFileName(xlde->d_name))
3887  continue;
3888 
3889  /*
3890  * We ignore the timeline part of the XLOG segment identifiers in
3891  * deciding whether a segment is still needed. This ensures that we
3892  * won't prematurely remove a segment from a parent timeline. We could
3893  * probably be a little more proactive about removing segments of
3894  * non-parent timelines, but that would be a whole lot more
3895  * complicated.
3896  *
3897  * We use the alphanumeric sorting property of the filenames to decide
3898  * which ones are earlier than the lastoff segment.
3899  */
3900  if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
3901  {
3902  if (XLogArchiveCheckDone(xlde->d_name))
3903  {
3904  /* Update the last removed location in shared memory first */
3906 
3907  RemoveXlogFile(xlde, recycleSegNo, &endlogSegNo, insertTLI);
3908  }
3909  }
3910  }
3911 
3912  FreeDir(xldir);
3913 }
3914 
3915 /*
3916  * Recycle or remove WAL files that are not part of the given timeline's
3917  * history.
3918  *
3919  * This is called during recovery, whenever we switch to follow a new
3920  * timeline, and at the end of recovery when we create a new timeline. We
3921  * wouldn't otherwise care about extra WAL files lying in pg_wal, but they
3922  * might be leftover pre-allocated or recycled WAL segments on the old timeline
3923  * that we haven't used yet, and contain garbage. If we just leave them in
3924  * pg_wal, they will eventually be archived, and we can't let that happen.
3925  * Files that belong to our timeline history are valid, because we have
3926  * successfully replayed them, but from others we can't be sure.
3927  *
3928  * 'switchpoint' is the current point in WAL where we switch to new timeline,
3929  * and 'newTLI' is the new timeline we switch to.
3930  */
3931 void
3933 {
3934  DIR *xldir;
3935  struct dirent *xlde;
3936  char switchseg[MAXFNAMELEN];
3937  XLogSegNo endLogSegNo;
3938  XLogSegNo switchLogSegNo;
3939  XLogSegNo recycleSegNo;
3940 
3941  /*
3942  * Initialize info about where to begin the work. This will recycle,
3943  * somewhat arbitrarily, 10 future segments.
3944  */
3945  XLByteToPrevSeg(switchpoint, switchLogSegNo, wal_segment_size);
3946  XLByteToSeg(switchpoint, endLogSegNo, wal_segment_size);
3947  recycleSegNo = endLogSegNo + 10;
3948 
3949  /*
3950  * Construct a filename of the last segment to be kept.
3951  */
3952  XLogFileName(switchseg, newTLI, switchLogSegNo, wal_segment_size);
3953 
3954  elog(DEBUG2, "attempting to remove WAL segments newer than log file %s",
3955  switchseg);
3956 
3957  xldir = AllocateDir(XLOGDIR);
3958 
3959  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3960  {
3961  /* Ignore files that are not XLOG segments */
3962  if (!IsXLogFileName(xlde->d_name))
3963  continue;
3964 
3965  /*
3966  * Remove files that are on a timeline older than the new one we're
3967  * switching to, but with a segment number >= the first segment on the
3968  * new timeline.
3969  */
3970  if (strncmp(xlde->d_name, switchseg, 8) < 0 &&
3971  strcmp(xlde->d_name + 8, switchseg + 8) > 0)
3972  {
3973  /*
3974  * If the file has already been marked as .ready, however, don't
3975  * remove it yet. It should be OK to remove it - files that are
3976  * not part of our timeline history are not required for recovery
3977  * - but seems safer to let them be archived and removed later.
3978  */
3979  if (!XLogArchiveIsReady(xlde->d_name))
3980  RemoveXlogFile(xlde, recycleSegNo, &endLogSegNo, newTLI);
3981  }
3982  }
3983 
3984  FreeDir(xldir);
3985 }
3986 
3987 /*
3988  * Recycle or remove a log file that's no longer needed.
3989  *
3990  * segment_de is the dirent structure of the segment to recycle or remove.
3991  * recycleSegNo is the segment number to recycle up to. endlogSegNo is
3992  * the segment number of the current (or recent) end of WAL.
3993  *
3994  * endlogSegNo gets incremented if the segment is recycled so as it is not
3995  * checked again with future callers of this function.
3996  *
3997  * insertTLI is the current timeline for XLOG insertion. Any recycled segments
3998  * should be used for this timeline.
3999  */
4000 static void
4001 RemoveXlogFile(const struct dirent *segment_de,
4002  XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
4003  TimeLineID insertTLI)
4004 {
4005  char path[MAXPGPATH];
4006 #ifdef WIN32
4007  char newpath[MAXPGPATH];
4008 #endif
4009  const char *segname = segment_de->d_name;
4010 
4011  snprintf(path, MAXPGPATH, XLOGDIR "/%s", segname);
4012 
4013  /*
4014  * Before deleting the file, see if it can be recycled as a future log
4015  * segment. Only recycle normal files, because we don't want to recycle
4016  * symbolic links pointing to a separate archive directory.
4017  */
4018  if (wal_recycle &&
4019  *endlogSegNo <= recycleSegNo &&
4020  XLogCtl->InstallXLogFileSegmentActive && /* callee rechecks this */
4021  get_dirent_type(path, segment_de, false, DEBUG2) == PGFILETYPE_REG &&
4022  InstallXLogFileSegment(endlogSegNo, path,
4023  true, recycleSegNo, insertTLI))
4024  {
4025  ereport(DEBUG2,
4026  (errmsg_internal("recycled write-ahead log file \"%s\"",
4027  segname)));
4029  /* Needn't recheck that slot on future iterations */
4030  (*endlogSegNo)++;
4031  }
4032  else
4033  {
4034  /* No need for any more future segments, or recycling failed ... */
4035  int rc;
4036 
4037  ereport(DEBUG2,
4038  (errmsg_internal("removing write-ahead log file \"%s\"",
4039  segname)));
4040 
4041 #ifdef WIN32
4042 
4043  /*
4044  * On Windows, if another process (e.g another backend) holds the file
4045  * open in FILE_SHARE_DELETE mode, unlink will succeed, but the file
4046  * will still show up in directory listing until the last handle is
4047  * closed. To avoid confusing the lingering deleted file for a live
4048  * WAL file that needs to be archived, rename it before deleting it.
4049  *
4050  * If another process holds the file open without FILE_SHARE_DELETE
4051  * flag, rename will fail. We'll try again at the next checkpoint.
4052  */
4053  snprintf(newpath, MAXPGPATH, "%s.deleted", path);
4054  if (rename(path, newpath) != 0)
4055  {
4056  ereport(LOG,
4058  errmsg("could not rename file \"%s\": %m",
4059  path)));
4060  return;
4061  }
4062  rc = durable_unlink(newpath, LOG);
4063 #else
4064  rc = durable_unlink(path, LOG);
4065 #endif
4066  if (rc != 0)
4067  {
4068  /* Message already logged by durable_unlink() */
4069  return;
4070  }
4072  }
4073 
4074  XLogArchiveCleanup(segname);
4075 }
4076 
4077 /*
4078  * Verify whether pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
4079  * If the latter do not exist, recreate them.
4080  *
4081  * It is not the goal of this function to verify the contents of these
4082  * directories, but to help in cases where someone has performed a cluster
4083  * copy for PITR purposes but omitted pg_wal from the copy.
4084  *
4085  * We could also recreate pg_wal if it doesn't exist, but a deliberate
4086  * policy decision was made not to. It is fairly common for pg_wal to be
4087  * a symlink, and if that was the DBA's intent then automatically making a
4088  * plain directory would result in degraded performance with no notice.
4089  */
4090 static void
4092 {
4093  char path[MAXPGPATH];
4094  struct stat stat_buf;
4095 
4096  /* Check for pg_wal; if it doesn't exist, error out */
4097  if (stat(XLOGDIR, &stat_buf) != 0 ||
4098  !S_ISDIR(stat_buf.st_mode))
4099  ereport(FATAL,
4101  errmsg("required WAL directory \"%s\" does not exist",
4102  XLOGDIR)));
4103 
4104  /* Check for archive_status */
4105  snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
4106  if (stat(path, &stat_buf) == 0)
4107  {
4108  /* Check for weird cases where it exists but isn't a directory */
4109  if (!S_ISDIR(stat_buf.st_mode))
4110  ereport(FATAL,
4112  errmsg("required WAL directory \"%s\" does not exist",
4113  path)));
4114  }
4115  else
4116  {
4117  ereport(LOG,
4118  (errmsg("creating missing WAL directory \"%s\"", path)));
4119  if (MakePGDirectory(path) < 0)
4120  ereport(FATAL,
4122  errmsg("could not create missing directory \"%s\": %m",
4123  path)));
4124  }
4125 
4126  /* Check for summaries */
4127  snprintf(path, MAXPGPATH, XLOGDIR "/summaries");
4128  if (stat(path, &stat_buf) == 0)
4129  {
4130  /* Check for weird cases where it exists but isn't a directory */
4131  if (!S_ISDIR(stat_buf.st_mode))
4132  ereport(FATAL,
4133  (errmsg("required WAL directory \"%s\" does not exist",
4134  path)));
4135  }
4136  else
4137  {
4138  ereport(LOG,
4139  (errmsg("creating missing WAL directory \"%s\"", path)));
4140  if (MakePGDirectory(path) < 0)
4141  ereport(FATAL,
4142  (errmsg("could not create missing directory \"%s\": %m",
4143  path)));
4144  }
4145 }
4146 
4147 /*
4148  * Remove previous backup history files. This also retries creation of
4149  * .ready files for any backup history files for which XLogArchiveNotify
4150  * failed earlier.
4151  */
4152 static void
4154 {
4155  DIR *xldir;
4156  struct dirent *xlde;
4157  char path[MAXPGPATH + sizeof(XLOGDIR)];
4158 
4159  xldir = AllocateDir(XLOGDIR);
4160 
4161  while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
4162  {
4163  if (IsBackupHistoryFileName(xlde->d_name))
4164  {
4165  if (XLogArchiveCheckDone(xlde->d_name))
4166  {
4167  elog(DEBUG2, "removing WAL backup history file \"%s\"",
4168  xlde->d_name);
4169  snprintf(path, sizeof(path), XLOGDIR "/%s", xlde->d_name);
4170  unlink(path);
4171  XLogArchiveCleanup(xlde->d_name);
4172  }
4173  }
4174  }
4175 
4176  FreeDir(xldir);
4177 }
4178 
4179 /*
4180  * I/O routines for pg_control
4181  *
4182  * *ControlFile is a buffer in shared memory that holds an image of the
4183  * contents of pg_control. WriteControlFile() initializes pg_control
4184  * given a preloaded buffer, ReadControlFile() loads the buffer from
4185  * the pg_control file (during postmaster or standalone-backend startup),
4186  * and UpdateControlFile() rewrites pg_control after we modify xlog state.
4187  * InitControlFile() fills the buffer with initial values.
4188  *
4189  * For simplicity, WriteControlFile() initializes the fields of pg_control
4190  * that are related to checking backend/database compatibility, and
4191  * ReadControlFile() verifies they are correct. We could split out the
4192  * I/O and compatibility-check functions, but there seems no need currently.
4193  */
4194 
4195 static void
4196 InitControlFile(uint64 sysidentifier, uint32 data_checksum_version)
4197 {
4198  char mock_auth_nonce[MOCK_AUTH_NONCE_LEN];
4199 
4200  /*
4201  * Generate a random nonce. This is used for authentication requests that
4202  * will fail because the user does not exist. The nonce is used to create
4203  * a genuine-looking password challenge for the non-existent user, in lieu
4204  * of an actual stored password.
4205  */
4206  if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN))
4207  ereport(PANIC,
4208  (errcode(ERRCODE_INTERNAL_ERROR),
4209  errmsg("could not generate secret authorization token")));
4210 
4211  memset(ControlFile, 0, sizeof(ControlFileData));
4212  /* Initialize pg_control status fields */
4213  ControlFile->system_identifier = sysidentifier;
4214  memcpy(ControlFile->mock_authentication_nonce, mock_auth_nonce, MOCK_AUTH_NONCE_LEN);
4217 
4218  /* Set important parameter values for use when replaying WAL */
4227  ControlFile->data_checksum_version = data_checksum_version;
4228 }
4229 
4230 static void
4232 {
4233  int fd;
4234  char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */
4235 
4236  /*
4237  * Initialize version and compatibility-check fields
4238  */
4241 
4242  ControlFile->maxAlign = MAXIMUM_ALIGNOF;
4244 
4245  ControlFile->blcksz = BLCKSZ;
4246  ControlFile->relseg_size = RELSEG_SIZE;
4247  ControlFile->xlog_blcksz = XLOG_BLCKSZ;
4249 
4252 
4255 
4257 
4258  /* Contents are protected with a CRC */
4261  (char *) ControlFile,
4262  offsetof(ControlFileData, crc));
4264 
4265  /*
4266  * We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding
4267  * the excess over sizeof(ControlFileData). This reduces the odds of
4268  * premature-EOF errors when reading pg_control. We'll still fail when we
4269  * check the contents of the file, but hopefully with a more specific
4270  * error than "couldn't read pg_control".
4271  */
4272  memset(buffer, 0, PG_CONTROL_FILE_SIZE);
4273  memcpy(buffer, ControlFile, sizeof(ControlFileData));
4274 
4276  O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
4277  if (fd < 0)
4278  ereport(PANIC,
4280  errmsg("could not create file \"%s\": %m",
4281  XLOG_CONTROL_FILE)));
4282 
4283  errno = 0;
4284  pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE);
4286  {
4287  /* if write didn't set errno, assume problem is no disk space */
4288  if (errno == 0)
4289  errno = ENOSPC;
4290  ereport(PANIC,
4292  errmsg("could not write to file \"%s\": %m",
4293  XLOG_CONTROL_FILE)));
4294  }
4296 
4297  pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC);
4298  if (pg_fsync(fd) != 0)
4299  ereport(PANIC,
4301  errmsg("could not fsync file \"%s\": %m",
4302  XLOG_CONTROL_FILE)));
4304 
4305  if (close(fd) != 0)
4306  ereport(PANIC,
4308  errmsg("could not close file \"%s\": %m",
4309  XLOG_CONTROL_FILE)));
4310 }
4311 
4312 static void
4314 {
4315  pg_crc32c crc;
4316  int fd;
4317  static char wal_segsz_str[20];
4318  int r;
4319 
4320  /*
4321  * Read data...
4322  */
4324  O_RDWR | PG_BINARY);
4325  if (fd < 0)
4326  ereport(PANIC,
4328  errmsg("could not open file \"%s\": %m",
4329  XLOG_CONTROL_FILE)));
4330 
4331  pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ);
4332  r = read(fd, ControlFile, sizeof(ControlFileData));
4333  if (r != sizeof(ControlFileData))
4334  {
4335  if (r < 0)
4336  ereport(PANIC,
4338  errmsg("could not read file \"%s\": %m",
4339  XLOG_CONTROL_FILE)));
4340  else
4341  ereport(PANIC,
4343  errmsg("could not read file \"%s\": read %d of %zu",
4344  XLOG_CONTROL_FILE, r, sizeof(ControlFileData))));
4345  }
4347 
4348  close(fd);
4349 
4350  /*
4351  * Check for expected pg_control format version. If this is wrong, the
4352  * CRC check will likely fail because we'll be checking the wrong number
4353  * of bytes. Complaining about wrong version will probably be more
4354  * enlightening than complaining about wrong CRC.
4355  */
4356 
4358  ereport(FATAL,
4359  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4360  errmsg("database files are incompatible with server"),
4361  errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
4362  " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
4365  errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
4366 
4368  ereport(FATAL,
4369  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4370  errmsg("database files are incompatible with server"),
4371  errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
4372  " but the server was compiled with PG_CONTROL_VERSION %d.",
4374  errhint("It looks like you need to initdb.")));
4375 
4376  /* Now check the CRC. */
4377  INIT_CRC32C(crc);
4378  COMP_CRC32C(crc,
4379  (char *) ControlFile,
4380  offsetof(ControlFileData, crc));
4381  FIN_CRC32C(crc);
4382 
4383  if (!EQ_CRC32C(crc, ControlFile->crc))
4384  ereport(FATAL,
4385  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4386  errmsg("incorrect checksum in control file")));
4387 
4388  /*
4389  * Do compatibility checking immediately. If the database isn't
4390  * compatible with the backend executable, we want to abort before we can
4391  * possibly do any damage.
4392  */
4394  ereport(FATAL,
4395  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4396  errmsg("database files are incompatible with server"),
4397  errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d,"
4398  " but the server was compiled with CATALOG_VERSION_NO %d.",
4400  errhint("It looks like you need to initdb.")));
4401  if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
4402  ereport(FATAL,
4403  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4404  errmsg("database files are incompatible with server"),
4405  errdetail("The database cluster was initialized with MAXALIGN %d,"
4406  " but the server was compiled with MAXALIGN %d.",
4407  ControlFile->maxAlign, MAXIMUM_ALIGNOF),
4408  errhint("It looks like you need to initdb.")));
4410  ereport(FATAL,
4411  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4412  errmsg("database files are incompatible with server"),
4413  errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
4414  errhint("It looks like you need to initdb.")));
4415  if (ControlFile->blcksz != BLCKSZ)
4416  ereport(FATAL,
4417  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4418  errmsg("database files are incompatible with server"),
4419  errdetail("The database cluster was initialized with BLCKSZ %d,"
4420  " but the server was compiled with BLCKSZ %d.",
4421  ControlFile->blcksz, BLCKSZ),
4422  errhint("It looks like you need to recompile or initdb.")));
4423  if (ControlFile->relseg_size != RELSEG_SIZE)
4424  ereport(FATAL,
4425  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4426  errmsg("database files are incompatible with server"),
4427  errdetail("The database cluster was initialized with RELSEG_SIZE %d,"
4428  " but the server was compiled with RELSEG_SIZE %d.",
4429  ControlFile->relseg_size, RELSEG_SIZE),
4430  errhint("It looks like you need to recompile or initdb.")));
4431  if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
4432  ereport(FATAL,
4433  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4434  errmsg("database files are incompatible with server"),
4435  errdetail("The database cluster was initialized with XLOG_BLCKSZ %d,"
4436  " but the server was compiled with XLOG_BLCKSZ %d.",
4437  ControlFile->xlog_blcksz, XLOG_BLCKSZ),
4438  errhint("It looks like you need to recompile or initdb.")));
4440  ereport(FATAL,
4441  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4442  errmsg("database files are incompatible with server"),
4443  errdetail("The database cluster was initialized with NAMEDATALEN %d,"
4444  " but the server was compiled with NAMEDATALEN %d.",
4446  errhint("It looks like you need to recompile or initdb.")));
4448  ereport(FATAL,
4449  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4450  errmsg("database files are incompatible with server"),
4451  errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d,"
4452  " but the server was compiled with INDEX_MAX_KEYS %d.",
4454  errhint("It looks like you need to recompile or initdb.")));
4456  ereport(FATAL,
4457  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4458  errmsg("database files are incompatible with server"),
4459  errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d,"
4460  " but the server was compiled with TOAST_MAX_CHUNK_SIZE %d.",
4462  errhint("It looks like you need to recompile or initdb.")));
4464  ereport(FATAL,
4465  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4466  errmsg("database files are incompatible with server"),
4467  errdetail("The database cluster was initialized with LOBLKSIZE %d,"
4468  " but the server was compiled with LOBLKSIZE %d.",
4469  ControlFile->loblksize, (int) LOBLKSIZE),
4470  errhint("It looks like you need to recompile or initdb.")));
4471 
4472 #ifdef USE_FLOAT8_BYVAL
4473  if (ControlFile->float8ByVal != true)
4474  ereport(FATAL,
4475  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4476  errmsg("database files are incompatible with server"),
4477  errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL"
4478  " but the server was compiled with USE_FLOAT8_BYVAL."),
4479  errhint("It looks like you need to recompile or initdb.")));
4480 #else
4481  if (ControlFile->float8ByVal != false)
4482  ereport(FATAL,
4483  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4484  errmsg("database files are incompatible with server"),
4485  errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL"
4486  " but the server was compiled without USE_FLOAT8_BYVAL."),
4487  errhint("It looks like you need to recompile or initdb.")));
4488 #endif
4489 
4491 
4493  ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4494  errmsg_plural("invalid WAL segment size in control file (%d byte)",
4495  "invalid WAL segment size in control file (%d bytes)",
4498  errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.")));
4499 
4500  snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d", wal_segment_size);
4501  SetConfigOption("wal_segment_size", wal_segsz_str, PGC_INTERNAL,
4503 
4504  /* check and update variables dependent on wal_segment_size */
4506  ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4507  errmsg("\"min_wal_size\" must be at least twice \"wal_segment_size\"")));
4508 
4510  ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4511  errmsg("\"max_wal_size\" must be at least twice \"wal_segment_size\"")));
4512 
4514  (wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) -
4516 
4518 
4519  /* Make the initdb settings visible as GUC variables, too */
4520  SetConfigOption("data_checksums", DataChecksumsEnabled() ? "yes" : "no",
4522 }
4523 
4524 /*
4525  * Utility wrapper to update the control file. Note that the control
4526  * file gets flushed.
4527  */
4528 static void
4530 {
4532 }
4533 
4534 /*
4535  * Returns the unique system identifier from control file.
4536  */
4537 uint64
4539 {
4540  Assert(ControlFile != NULL);
4542 }
4543 
4544 /*
4545  * Returns the random nonce from control file.
4546  */
4547 char *
4549 {
4550  Assert(ControlFile != NULL);
4552 }
4553 
4554 /*
4555  * Are checksums enabled for data pages?
4556  */
4557 bool
4559 {
4560  Assert(ControlFile != NULL);
4561  return (ControlFile->data_checksum_version > 0);
4562 }
4563 
4564 /*
4565  * Returns a fake LSN for unlogged relations.
4566  *
4567  * Each call generates an LSN that is greater than any previous value
4568  * returned. The current counter value is saved and restored across clean
4569  * shutdowns, but like unlogged relations, does not survive a crash. This can
4570  * be used in lieu of real LSN values returned by XLogInsert, if you need an
4571  * LSN-like increasing sequence of numbers without writing any WAL.
4572  */
4573 XLogRecPtr
4575 {
4577 }
4578 
4579 /*
4580  * Auto-tune the number of XLOG buffers.
4581  *
4582  * The preferred setting for wal_buffers is about 3% of shared_buffers, with
4583  * a maximum of one XLOG segment (there is little reason to think that more
4584  * is helpful, at least so long as we force an fsync when switching log files)
4585  * and a minimum of 8 blocks (which was the default value prior to PostgreSQL
4586  * 9.1, when auto-tuning was added).
4587  *
4588  * This should not be called until NBuffers has received its final value.
4589  */
4590 static int
4592 {
4593  int xbuffers;
4594 
4595  xbuffers = NBuffers / 32;
4596  if (xbuffers > (wal_segment_size / XLOG_BLCKSZ))
4597  xbuffers = (wal_segment_size / XLOG_BLCKSZ);
4598  if (xbuffers < 8)
4599  xbuffers = 8;
4600  return xbuffers;
4601 }
4602 
4603 /*
4604  * GUC check_hook for wal_buffers
4605  */
4606 bool
4608 {
4609  /*
4610  * -1 indicates a request for auto-tune.
4611  */
4612  if (*newval == -1)
4613  {
4614  /*
4615  * If we haven't yet changed the boot_val default of -1, just let it
4616  * be. We'll fix it when XLOGShmemSize is called.
4617  */
4618  if (XLOGbuffers == -1)
4619  return true;
4620 
4621  /* Otherwise, substitute the auto-tune value */
4623  }
4624 
4625  /*
4626  * We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL
4627  * 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer
4628  * the case, we just silently treat such values as a request for the
4629  * minimum. (We could throw an error instead, but that doesn't seem very
4630  * helpful.)
4631  */
4632  if (*newval < 4)
4633  *newval = 4;
4634 
4635  return true;
4636 }
4637 
4638 /*
4639  * GUC check_hook for wal_consistency_checking
4640  */
4641 bool
4643 {
4644  char *rawstring;
4645  List *elemlist;
4646  ListCell *l;
4647  bool newwalconsistency[RM_MAX_ID + 1];
4648 
4649  /* Initialize the array */
4650  MemSet(newwalconsistency, 0, (RM_MAX_ID + 1) * sizeof(bool));
4651 
4652  /* Need a modifiable copy of string */
4653  rawstring = pstrdup(*newval);
4654 
4655  /* Parse string into list of identifiers */
4656  if (!SplitIdentifierString(rawstring, ',', &elemlist))
4657  {
4658  /* syntax error in list */
4659  GUC_check_errdetail("List syntax is invalid.");
4660  pfree(rawstring);
4661  list_free(elemlist);
4662  return false;
4663  }
4664 
4665  foreach(l, elemlist)
4666  {
4667  char *tok = (char *) lfirst(l);
4668  int rmid;
4669 
4670  /* Check for 'all'. */
4671  if (pg_strcasecmp(tok, "all") == 0)
4672  {
4673  for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4674  if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL)
4675  newwalconsistency[rmid] = true;
4676  }
4677  else
4678  {
4679  /* Check if the token matches any known resource manager. */
4680  bool found = false;
4681 
4682  for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4683  {
4684  if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL &&
4685  pg_strcasecmp(tok, GetRmgr(rmid).rm_name) == 0)
4686  {
4687  newwalconsistency[rmid] = true;
4688  found = true;
4689  break;
4690  }
4691  }
4692  if (!found)
4693  {
4694  /*
4695  * During startup, it might be a not-yet-loaded custom
4696  * resource manager. Defer checking until
4697  * InitializeWalConsistencyChecking().
4698  */
4700  {
4702  }
4703  else
4704  {
4705  GUC_check_errdetail("Unrecognized key word: \"%s\".", tok);
4706  pfree(rawstring);
4707  list_free(elemlist);
4708  return false;
4709  }
4710  }
4711  }
4712  }
4713 
4714  pfree(rawstring);
4715  list_free(elemlist);
4716 
4717  /* assign new value */
4718  *extra = guc_malloc(ERROR, (RM_MAX_ID + 1) * sizeof(bool));
4719  memcpy(*extra, newwalconsistency, (RM_MAX_ID + 1) * sizeof(bool));
4720  return true;
4721 }
4722 
4723 /*
4724  * GUC assign_hook for wal_consistency_checking
4725  */
4726 void
4727 assign_wal_consistency_checking(const char *newval, void *extra)
4728 {
4729  /*
4730  * If some checks were deferred, it's possible that the checks will fail
4731  * later during InitializeWalConsistencyChecking(). But in that case, the
4732  * postmaster will exit anyway, so it's safe to proceed with the
4733  * assignment.
4734  *
4735  * Any built-in resource managers specified are assigned immediately,
4736  * which affects WAL created before shared_preload_libraries are
4737  * processed. Any custom resource managers specified won't be assigned
4738  * until after shared_preload_libraries are processed, but that's OK
4739  * because WAL for a custom resource manager can't be written before the
4740  * module is loaded anyway.
4741  */
4742  wal_consistency_checking = extra;
4743 }
4744 
4745 /*
4746  * InitializeWalConsistencyChecking: run after loading custom resource managers
4747  *
4748  * If any unknown resource managers were specified in the
4749  * wal_consistency_checking GUC, processing was deferred. Now that
4750  * shared_preload_libraries have been loaded, process wal_consistency_checking
4751  * again.
4752  */
4753 void
4755 {
4757 
4759  {
4760  struct config_generic *guc;
4761 
4762  guc = find_option("wal_consistency_checking", false, false, ERROR);
4763 
4765 
4766  set_config_option_ext("wal_consistency_checking",
4768  guc->scontext, guc->source, guc->srole,
4769  GUC_ACTION_SET, true, ERROR, false);
4770 
4771  /* checking should not be deferred again */
4773  }
4774 }
4775 
4776 /*
4777  * GUC show_hook for archive_command
4778  */
4779 const char *
4781 {
4782  if (XLogArchivingActive())
4783  return XLogArchiveCommand;
4784  else
4785  return "(disabled)";
4786 }
4787 
4788 /*
4789  * GUC show_hook for in_hot_standby
4790  */
4791 const char *
4793 {
4794  /*
4795  * We display the actual state based on shared memory, so that this GUC
4796  * reports up-to-date state if examined intra-query. The underlying
4797  * variable (in_hot_standby_guc) changes only when we transmit a new value
4798  * to the client.
4799  */
4800  return RecoveryInProgress() ? "on" : "off";
4801 }
4802 
4803 /*
4804  * Read the control file, set respective GUCs.
4805  *
4806  * This is to be called during startup, including a crash recovery cycle,
4807  * unless in bootstrap mode, where no control file yet exists. As there's no
4808  * usable shared memory yet (its sizing can depend on the contents of the
4809  * control file!), first store the contents in local memory. XLOGShmemInit()
4810  * will then copy it to shared memory later.
4811  *
4812  * reset just controls whether previous contents are to be expected (in the
4813  * reset case, there's a dangling pointer into old shared memory), or not.
4814  */
4815 void
4817 {
4818  Assert(reset || ControlFile == NULL);
4819  ControlFile = palloc(sizeof(ControlFileData));
4820  ReadControlFile();
4821 }
4822 
4823 /*
4824  * Get the wal_level from the control file. For a standby, this value should be
4825  * considered as its active wal_level, because it may be different from what
4826  * was originally configured on standby.
4827  */
4828 WalLevel
4830 {
4831  return ControlFile->wal_level;
4832 }
4833 
4834 /*
4835  * Initialization of shared memory for XLOG
4836  */
4837 Size
4839 {
4840  Size size;
4841 
4842  /*
4843  * If the value of wal_buffers is -1, use the preferred auto-tune value.
4844  * This isn't an amazingly clean place to do this, but we must wait till
4845  * NBuffers has received its final value, and must do it before using the
4846  * value of XLOGbuffers to do anything important.
4847  *
4848  * We prefer to report this value's source as PGC_S_DYNAMIC_DEFAULT.
4849  * However, if the DBA explicitly set wal_buffers = -1 in the config file,
4850  * then PGC_S_DYNAMIC_DEFAULT will fail to override that and we must force
4851  * the matter with PGC_S_OVERRIDE.
4852  */
4853  if (XLOGbuffers == -1)
4854  {
4855  char buf[32];
4856 
4857  snprintf(buf, sizeof(buf), "%d", XLOGChooseNumBuffers());
4858  SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
4860  if (XLOGbuffers == -1) /* failed to apply it? */
4861  SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
4862  PGC_S_OVERRIDE);
4863  }
4864  Assert(XLOGbuffers > 0);
4865 
4866  /* XLogCtl */
4867  size = sizeof(XLogCtlData);
4868 
4869  /* WAL insertion locks, plus alignment */
4871  /* xlblocks array */
4873  /* extra alignment padding for XLOG I/O buffers */
4874  size = add_size(size, Max(XLOG_BLCKSZ, PG_IO_ALIGN_SIZE));
4875  /* and the buffers themselves */
4876  size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
4877 
4878  /*
4879  * Note: we don't count ControlFileData, it comes out of the "slop factor"
4880  * added by CreateSharedMemoryAndSemaphores. This lets us use this
4881  * routine again below to compute the actual allocation size.
4882  */
4883 
4884  return size;
4885 }
4886 
4887 void
4889 {
4890  bool foundCFile,
4891  foundXLog;
4892  char *allocptr;
4893  int i;
4894  ControlFileData *localControlFile;
4895 
4896 #ifdef WAL_DEBUG
4897 
4898  /*
4899  * Create a memory context for WAL debugging that's exempt from the normal
4900  * "no pallocs in critical section" rule. Yes, that can lead to a PANIC if
4901  * an allocation fails, but wal_debug is not for production use anyway.
4902  */
4903  if (walDebugCxt == NULL)
4904  {
4906  "WAL Debug",
4908  MemoryContextAllowInCriticalSection(walDebugCxt, true);
4909  }
4910 #endif
4911 
4912 
4913  XLogCtl = (XLogCtlData *)
4914  ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
4915 
4916  localControlFile = ControlFile;
4918  ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
4919 
4920  if (foundCFile || foundXLog)
4921  {
4922  /* both should be present or neither */
4923  Assert(foundCFile && foundXLog);
4924 
4925  /* Initialize local copy of WALInsertLocks */
4927 
4928  if (localControlFile)
4929  pfree(localControlFile);
4930  return;
4931  }
4932  memset(XLogCtl, 0, sizeof(XLogCtlData));
4933 
4934  /*
4935  * Already have read control file locally, unless in bootstrap mode. Move
4936  * contents into shared memory.
4937  */
4938  if (localControlFile)
4939  {
4940  memcpy(ControlFile, localControlFile, sizeof(ControlFileData));
4941  pfree(localControlFile);
4942  }
4943 
4944  /*
4945  * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
4946  * multiple of the alignment for same, so no extra alignment padding is
4947  * needed here.
4948  */
4949  allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
4950  XLogCtl->xlblocks = (pg_atomic_uint64 *) allocptr;
4951  allocptr += sizeof(pg_atomic_uint64) * XLOGbuffers;
4952 
4953  for (i = 0; i < XLOGbuffers; i++)
4954  {
4956  }
4957 
4958  /* WAL insertion locks. Ensure they're aligned to the full padded size */
4959  allocptr += sizeof(WALInsertLockPadded) -
4960  ((uintptr_t) allocptr) % sizeof(WALInsertLockPadded);
4962  (WALInsertLockPadded *) allocptr;
4963  allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS;
4964 
4965  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
4966  {
4970  }
4971 
4972  /*
4973  * Align the start of the page buffers to a full xlog block size boundary.
4974  * This simplifies some calculations in XLOG insertion. It is also
4975  * required for O_DIRECT.
4976  */
4977  allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr);
4978  XLogCtl->pages = allocptr;
4979  memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
4980 
4981  /*
4982  * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
4983  * in additional info.)
4984  */
4988  XLogCtl->WalWriterSleeping = false;
4989 
4996 }
4997 
4998 /*
4999  * This func must be called ONCE on system install. It creates pg_control
5000  * and the initial XLOG segment.
5001  */
5002 void
5003 BootStrapXLOG(uint32 data_checksum_version)
5004 {
5005  CheckPoint checkPoint;
5006  char *buffer;
5007  XLogPageHeader page;
5008  XLogLongPageHeader longpage;
5009  XLogRecord *record;
5010  char *recptr;
5011  uint64 sysidentifier;
5012  struct timeval tv;
5013  pg_crc32c crc;
5014 
5015  /* allow ordinary WAL segment creation, like StartupXLOG() would */
5017 
5018  /*
5019  * Select a hopefully-unique system identifier code for this installation.
5020  * We use the result of gettimeofday(), including the fractional seconds
5021  * field, as being about as unique as we can easily get. (Think not to
5022  * use random(), since it hasn't been seeded and there's no portable way
5023  * to seed it other than the system clock value...) The upper half of the
5024  * uint64 value is just the tv_sec part, while the lower half contains the
5025  * tv_usec part (which must fit in 20 bits), plus 12 bits from our current
5026  * PID for a little extra uniqueness. A person knowing this encoding can
5027  * determine the initialization time of the installation, which could
5028  * perhaps be useful sometimes.
5029  */
5030  gettimeofday(&tv, NULL);
5031  sysidentifier = ((uint64) tv.tv_sec) << 32;
5032  sysidentifier |= ((uint64) tv.tv_usec) << 12;
5033  sysidentifier |= getpid() & 0xFFF;
5034 
5035  /* page buffer must be aligned suitably for O_DIRECT */
5036  buffer = (char *) palloc(XLOG_BLCKSZ + XLOG_BLCKSZ);
5037  page = (XLogPageHeader) TYPEALIGN(XLOG_BLCKSZ, buffer);
5038  memset(page, 0, XLOG_BLCKSZ);
5039 
5040  /*
5041  * Set up information for the initial checkpoint record
5042  *
5043  * The initial checkpoint record is written to the beginning of the WAL
5044  * segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not
5045  * used, so that we can use 0/0 to mean "before any valid WAL segment".
5046  */
5047  checkPoint.redo = wal_segment_size + SizeOfXLogLongPHD;
5048  checkPoint.ThisTimeLineID = BootstrapTimeLineID;
5049  checkPoint.PrevTimeLineID = BootstrapTimeLineID;
5050  checkPoint.fullPageWrites = fullPageWrites;
5051  checkPoint.wal_level = wal_level;
5052  checkPoint.nextXid =
5054  checkPoint.nextOid = FirstGenbkiObjectId;
5055  checkPoint.nextMulti = FirstMultiXactId;
5056  checkPoint.nextMultiOffset = 0;
5057  checkPoint.oldestXid = FirstNormalTransactionId;
5058  checkPoint.oldestXidDB = Template1DbOid;
5059  checkPoint.oldestMulti = FirstMultiXactId;
5060  checkPoint.oldestMultiDB = Template1DbOid;
5063  checkPoint.time = (pg_time_t) time(NULL);
5065 
5066  TransamVariables->nextXid = checkPoint.nextXid;
5067  TransamVariables->nextOid = checkPoint.nextOid;
5069  MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5070  AdvanceOldestClogXid(checkPoint.oldestXid);
5071  SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5072  SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
5074 
5075  /* Set up the XLOG page header */
5076  page->xlp_magic = XLOG_PAGE_MAGIC;
5077  page->xlp_info = XLP_LONG_HEADER;
5078  page->xlp_tli = BootstrapTimeLineID;
5080  longpage = (XLogLongPageHeader) page;
5081  longpage->xlp_sysid = sysidentifier;
5082  longpage->xlp_seg_size = wal_segment_size;
5083  longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
5084 
5085  /* Insert the initial checkpoint record */
5086  recptr = ((char *) page + SizeOfXLogLongPHD);
5087  record = (XLogRecord *) recptr;
5088  record->xl_prev = 0;
5089  record->xl_xid = InvalidTransactionId;
5090  record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint);
5092  record->xl_rmid = RM_XLOG_ID;
5093  recptr += SizeOfXLogRecord;
5094  /* fill the XLogRecordDataHeaderShort struct */
5095  *(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT;
5096  *(recptr++) = sizeof(checkPoint);
5097  memcpy(recptr, &checkPoint, sizeof(checkPoint));
5098  recptr += sizeof(checkPoint);
5099  Assert(recptr - (char *) record == record->xl_tot_len);
5100 
5101  INIT_CRC32C(crc);
5102  COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord);
5103  COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc));
5104  FIN_CRC32C(crc);
5105  record->xl_crc = crc;
5106 
5107  /* Create first XLOG segment file */
5110 
5111  /*
5112  * We needn't bother with Reserve/ReleaseExternalFD here, since we'll
5113  * close the file again in a moment.
5114  */
5115 
5116  /* Write the first page with the initial record */
5117  errno = 0;
5118  pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE);
5119  if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ)
5120  {
5121  /* if write didn't set errno, assume problem is no disk space */
5122  if (errno == 0)
5123  errno = ENOSPC;
5124  ereport(PANIC,
5126  errmsg("could not write bootstrap write-ahead log file: %m")));
5127  }
5129 
5130  pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC);
5131  if (pg_fsync(openLogFile) != 0)
5132  ereport(PANIC,
5134  errmsg("could not fsync bootstrap write-ahead log file: %m")));
5136 
5137  if (close(openLogFile) != 0)
5138  ereport(PANIC,
5140  errmsg("could not close bootstrap write-ahead log file: %m")));
5141 
5142  openLogFile = -1;
5143 
5144  /* Now create pg_control */
5145  InitControlFile(sysidentifier, data_checksum_version);
5146  ControlFile->time = checkPoint.time;
5147  ControlFile->checkPoint = checkPoint.redo;
5148  ControlFile->checkPointCopy = checkPoint;
5149 
5150  /* some additional ControlFile fields are set in WriteControlFile() */
5151  WriteControlFile();
5152 
5153  /* Bootstrap the commit log, too */
5154  BootStrapCLOG();
5158 
5159  pfree(buffer);
5160 
5161  /*
5162  * Force control file to be read - in contrast to normal processing we'd
5163  * otherwise never run the checks and GUC related initializations therein.
5164  */
5165  ReadControlFile();
5166 }
5167 
5168 static char *
5170 {
5171  static char buf[128];
5172 
5173  pg_strftime(buf, sizeof(buf),
5174  "%Y-%m-%d %H:%M:%S %Z",
5175  pg_localtime(&tnow, log_timezone));
5176 
5177  return buf;
5178 }
5179 
5180 /*
5181  * Initialize the first WAL segment on new timeline.
5182  */
5183 static void
5185 {
5186  char xlogfname[MAXFNAMELEN];
5187  XLogSegNo endLogSegNo;
5188  XLogSegNo startLogSegNo;
5189 
5190  /* we always switch to a new timeline after archive recovery */
5191  Assert(endTLI != newTLI);
5192 
5193  /*
5194  * Update min recovery point one last time.
5195  */
5197 
5198  /*
5199  * Calculate the last segment on the old timeline, and the first segment
5200  * on the new timeline. If the switch happens in the middle of a segment,
5201  * they are the same, but if the switch happens exactly at a segment
5202  * boundary, startLogSegNo will be endLogSegNo + 1.
5203  */
5204  XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size);
5205  XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size);
5206 
5207  /*
5208  * Initialize the starting WAL segment for the new timeline. If the switch
5209  * happens in the middle of a segment, copy data from the last WAL segment
5210  * of the old timeline up to the switch point, to the starting WAL segment
5211  * on the new timeline.
5212  */
5213  if (endLogSegNo == startLogSegNo)
5214  {
5215  /*
5216  * Make a copy of the file on the new timeline.
5217  *
5218  * Writing WAL isn't allowed yet, so there are no locking
5219  * considerations. But we should be just as tense as XLogFileInit to
5220  * avoid emplacing a bogus file.
5221  */
5222  XLogFileCopy(newTLI, endLogSegNo, endTLI, endLogSegNo,
5223  XLogSegmentOffset(endOfLog, wal_segment_size));
5224  }
5225  else
5226  {
5227  /*
5228  * The switch happened at a segment boundary, so just create the next
5229  * segment on the new timeline.
5230  */
5231  int fd;
5232 
5233  fd = XLogFileInit(startLogSegNo, newTLI);
5234 
5235  if (close(fd) != 0)
5236  {
5237  int save_errno = errno;
5238 
5239  XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5240  errno = save_errno;
5241  ereport(ERROR,
5243  errmsg("could not close file \"%s\": %m", xlogfname)));
5244  }
5245  }
5246 
5247  /*
5248  * Let's just make real sure there are not .ready or .done flags posted
5249  * for the new segment.
5250  */
5251  XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5252  XLogArchiveCleanup(xlogfname);
5253 }
5254 
5255 /*
5256  * Perform cleanup actions at the conclusion of archive recovery.
5257  */
5258 static void
5260  TimeLineID newTLI)
5261 {
5262  /*
5263  * Execute the recovery_end_command, if any.
5264  */
5265  if (recoveryEndCommand && strcmp(recoveryEndCommand, "") != 0)
5267  "recovery_end_command",
5268  true,
5269  WAIT_EVENT_RECOVERY_END_COMMAND);
5270 
5271  /*
5272  * We switched to a new timeline. Clean up segments on the old timeline.
5273  *
5274  * If there are any higher-numbered segments on the old timeline, remove
5275  * them. They might contain valid WAL, but they might also be
5276  * pre-allocated files containing garbage. In any case, they are not part
5277  * of the new timeline's history so we don't need them.
5278  */
5279  RemoveNonParentXlogFiles(EndOfLog, newTLI);
5280 
5281  /*
5282  * If the switch happened in the middle of a segment, what to do with the
5283  * last, partial segment on the old timeline? If we don't archive it, and
5284  * the server that created the WAL never archives it either (e.g. because
5285  * it was hit by a meteor), it will never make it to the archive. That's
5286  * OK from our point of view, because the new segment that we created with
5287  * the new TLI contains all the WAL from the old timeline up to the switch
5288  * point. But if you later try to do PITR to the "missing" WAL on the old
5289  * timeline, recovery won't find it in the archive. It's physically
5290  * present in the new file with new TLI, but recovery won't look there
5291  * when it's recovering to the older timeline. On the other hand, if we
5292  * archive the partial segment, and the original server on that timeline
5293  * is still running and archives the completed version of the same segment
5294  * later, it will fail. (We used to do that in 9.4 and below, and it
5295  * caused such problems).
5296  *
5297  * As a compromise, we rename the last segment with the .partial suffix,
5298  * and archive it. Archive recovery will never try to read .partial
5299  * segments, so they will normally go unused. But in the odd PITR case,
5300  * the administrator can copy them manually to the pg_wal directory
5301  * (removing the suffix). They can be useful in debugging, too.
5302  *
5303  * If a .done or .ready file already exists for the old timeline, however,
5304  * we had already determined that the segment is complete, so we can let
5305  * it be archived normally. (In particular, if it was restored from the
5306  * archive to begin with, it's expected to have a .done file).
5307  */
5308  if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 &&
5310  {
5311  char origfname[MAXFNAMELEN];
5312  XLogSegNo endLogSegNo;
5313 
5314  XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size);
5315  XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size);
5316 
5317  if (!XLogArchiveIsReadyOrDone(origfname))
5318  {
5319  char origpath[MAXPGPATH];
5320  char partialfname[MAXFNAMELEN];
5321  char partialpath[MAXPGPATH];
5322 
5323  /*
5324  * If we're summarizing WAL, we can't rename the partial file
5325  * until the summarizer finishes with it, else it will fail.
5326  */
5327  if (summarize_wal)
5328  WaitForWalSummarization(EndOfLog);
5329 
5330  XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size);
5331  snprintf(partialfname, MAXFNAMELEN, "%s.partial", origfname);
5332  snprintf(partialpath, MAXPGPATH, "%s.partial", origpath);
5333 
5334  /*
5335  * Make sure there's no .done or .ready file for the .partial
5336  * file.
5337  */
5338  XLogArchiveCleanup(partialfname);
5339 
5340  durable_rename(origpath, partialpath, ERROR);
5341  XLogArchiveNotify(partialfname);
5342  }
5343  }
5344 }
5345 
5346 /*
5347  * Check to see if required parameters are set high enough on this server
5348  * for various aspects of recovery operation.
5349  *
5350  * Note that all the parameters which this function tests need to be
5351  * listed in Administrator's Overview section in high-availability.sgml.
5352  * If you change them, don't forget to update the list.
5353  */
5354 static void
5356 {
5357  /*
5358  * For archive recovery, the WAL must be generated with at least 'replica'
5359  * wal_level.
5360  */
5362  {
5363  ereport(FATAL,
5364  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5365  errmsg("WAL was generated with \"wal_level=minimal\", cannot continue recovering"),
5366  errdetail("This happens if you temporarily set \"wal_level=minimal\" on the server."),
5367  errhint("Use a backup taken after setting \"wal_level\" to higher than \"minimal\".")));
5368  }
5369 
5370  /*
5371  * For Hot Standby, the WAL must be generated with 'replica' mode, and we
5372  * must have at least as many backend slots as the primary.
5373  */
5375  {
5376  /* We ignore autovacuum_max_workers when we make this test. */
5377  RecoveryRequiresIntParameter("max_connections",
5380  RecoveryRequiresIntParameter("max_worker_processes",
5383  RecoveryRequiresIntParameter("max_wal_senders",
5386  RecoveryRequiresIntParameter("max_prepared_transactions",
5389  RecoveryRequiresIntParameter("max_locks_per_transaction",
5392  }
5393 }
5394 
5395 /*
5396  * This must be called ONCE during postmaster or standalone-backend startup
5397  */
5398 void
5400 {
5402  CheckPoint checkPoint;
5403  bool wasShutdown;
5404  bool didCrash;
5405  bool haveTblspcMap;
5406  bool haveBackupLabel;
5407  XLogRecPtr EndOfLog;
5408  TimeLineID EndOfLogTLI;
5409  TimeLineID newTLI;
5410  bool performedWalRecovery;
5411  EndOfWalRecoveryInfo *endOfRecoveryInfo;
5414  TransactionId oldestActiveXID;
5415  bool promoted = false;
5416 
5417  /*
5418  * We should have an aux process resource owner to use, and we should not
5419  * be in a transaction that's installed some other resowner.
5420  */
5422  Assert(CurrentResourceOwner == NULL ||
5425 
5426  /*
5427  * Check that contents look valid.
5428  */
5430  ereport(FATAL,
5432  errmsg("control file contains invalid checkpoint location")));
5433 
5434  switch (ControlFile->state)
5435  {
5436  case DB_SHUTDOWNED:
5437 
5438  /*
5439  * This is the expected case, so don't be chatty in standalone
5440  * mode
5441  */
5443  (errmsg("database system was shut down at %s",
5444  str_time(ControlFile->time))));
5445  break;
5446 
5448  ereport(LOG,
5449  (errmsg("database system was shut down in recovery at %s",
5450  str_time(ControlFile->time))));
5451  break;
5452 
5453  case DB_SHUTDOWNING:
5454  ereport(LOG,
5455  (errmsg("database system shutdown was interrupted; last known up at %s",
5456  str_time(ControlFile->time))));
5457  break;
5458 
5459  case DB_IN_CRASH_RECOVERY:
5460  ereport(LOG,
5461  (errmsg("database system was interrupted while in recovery at %s",
5463  errhint("This probably means that some data is corrupted and"
5464  " you will have to use the last backup for recovery.")));
5465  break;
5466 
5468  ereport(LOG,
5469  (errmsg("database system was interrupted while in recovery at log time %s",
5471  errhint("If this has occurred more than once some data might be corrupted"
5472  " and you might need to choose an earlier recovery target.")));
5473  break;
5474 
5475  case DB_IN_PRODUCTION:
5476  ereport(LOG,
5477  (errmsg("database system was interrupted; last known up at %s",
5478  str_time(ControlFile->time))));
5479  break;
5480 
5481  default:
5482  ereport(FATAL,
5484  errmsg("control file contains invalid database cluster state")));
5485  }
5486 
5487  /* This is just to allow attaching to startup process with a debugger */
5488 #ifdef XLOG_REPLAY_DELAY
5490  pg_usleep(60000000L);
5491 #endif
5492 
5493  /*
5494  * Verify that pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
5495  * In cases where someone has performed a copy for PITR, these directories
5496  * may have been excluded and need to be re-created.
5497  */
5499 
5500  /* Set up timeout handler needed to report startup progress. */
5504 
5505  /*----------
5506  * If we previously crashed, perform a couple of actions:
5507  *
5508  * - The pg_wal directory may still include some temporary WAL segments
5509  * used when creating a new segment, so perform some clean up to not
5510  * bloat this path. This is done first as there is no point to sync
5511  * this temporary data.
5512  *
5513  * - There might be data which we had written, intending to fsync it, but
5514  * which we had not actually fsync'd yet. Therefore, a power failure in
5515  * the near future might cause earlier unflushed writes to be lost, even
5516  * though more recent data written to disk from here on would be
5517  * persisted. To avoid that, fsync the entire data directory.
5518  */
5519  if (ControlFile->state != DB_SHUTDOWNED &&
5521  {
5524  didCrash = true;
5525  }
5526  else
5527  didCrash = false;
5528 
5529  /*
5530  * Prepare for WAL recovery if needed.
5531  *
5532  * InitWalRecovery analyzes the control file and the backup label file, if
5533  * any. It updates the in-memory ControlFile buffer according to the
5534  * starting checkpoint, and sets InRecovery and ArchiveRecoveryRequested.
5535  * It also applies the tablespace map file, if any.
5536  */
5537  InitWalRecovery(ControlFile, &wasShutdown,
5538  &haveBackupLabel, &haveTblspcMap);
5539  checkPoint = ControlFile->checkPointCopy;
5540 
5541  /* initialize shared memory variables from the checkpoint record */
5542  TransamVariables->nextXid = checkPoint.nextXid;
5543  TransamVariables->nextOid = checkPoint.nextOid;
5545  MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5546  AdvanceOldestClogXid(checkPoint.oldestXid);
5547  SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5548  SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
5550  checkPoint.newestCommitTsXid);
5551  XLogCtl->ckptFullXid = checkPoint.nextXid;
5552 
5553  /*
5554  * Clear out any old relcache cache files. This is *necessary* if we do
5555  * any WAL replay, since that would probably result in the cache files
5556  * being out of sync with database reality. In theory we could leave them
5557  * in place if the database had been cleanly shut down, but it seems
5558  * safest to just remove them always and let them be rebuilt during the
5559  * first backend startup. These files needs to be removed from all
5560  * directories including pg_tblspc, however the symlinks are created only
5561  * after reading tablespace_map file in case of archive recovery from
5562  * backup, so needs to clear old relcache files here after creating
5563  * symlinks.
5564  */
5566 
5567  /*
5568  * Initialize replication slots, before there's a chance to remove
5569  * required resources.
5570  */
5572 
5573  /*
5574  * Startup logical state, needs to be setup now so we have proper data
5575  * during crash recovery.
5576  */
5578 
5579  /*
5580  * Startup CLOG. This must be done after TransamVariables->nextXid has
5581  * been initialized and before we accept connections or begin WAL replay.
5582  */
5583  StartupCLOG();
5584 
5585  /*
5586  * Startup MultiXact. We need to do this early to be able to replay
5587  * truncations.
5588  */
5589  StartupMultiXact();
5590 
5591  /*
5592  * Ditto for commit timestamps. Activate the facility if the setting is
5593  * enabled in the control file, as there should be no tracking of commit
5594  * timestamps done when the setting was disabled. This facility can be
5595  * started or stopped when replaying a XLOG_PARAMETER_CHANGE record.
5596  */
5598  StartupCommitTs();
5599 
5600  /*
5601  * Recover knowledge about replay progress of known replication partners.
5602  */
5604 
5605  /*
5606  * Initialize unlogged LSN. On a clean shutdown, it's restored from the
5607  * control file. On recovery, all unlogged relations are blown away, so
5608  * the unlogged LSN counter can be reset too.
5609  */
5613  else
5616 
5617  /*
5618  * Copy any missing timeline history files between 'now' and the recovery
5619  * target timeline from archive to pg_wal. While we don't need those files
5620  * ourselves - the history file of the recovery target timeline covers all
5621  * the previous timelines in the history too - a cascading standby server
5622  * might be interested in them. Or, if you archive the WAL from this
5623  * server to a different archive than the primary, it'd be good for all
5624  * the history files to get archived there after failover, so that you can
5625  * use one of the old timelines as a PITR target. Timeline history files
5626  * are small, so it's better to copy them unnecessarily than not copy them
5627  * and regret later.
5628  */
5630 
5631  /*
5632  * Before running in recovery, scan pg_twophase and fill in its status to
5633  * be able to work on entries generated by redo. Doing a scan before
5634  * taking any recovery action has the merit to discard any 2PC files that
5635  * are newer than the first record to replay, saving from any conflicts at
5636  * replay. This avoids as well any subsequent scans when doing recovery
5637  * of the on-disk two-phase data.
5638  */
5640 
5641  /*
5642  * When starting with crash recovery, reset pgstat data - it might not be
5643  * valid. Otherwise restore pgstat data. It's safe to do this here,
5644  * because postmaster will not yet have started any other processes.
5645  *
5646  * NB: Restoring replication slot stats relies on slot state to have
5647  * already been restored from disk.
5648  *
5649  * TODO: With a bit of extra work we could just start with a pgstat file
5650  * associated with the checkpoint redo location we're starting from.
5651  */
5652  if (didCrash)
5654  else
5656 
5657  lastFullPageWrites = checkPoint.fullPageWrites;
5658 
5661 
5662  /* REDO */
5663  if (InRecovery)
5664  {
5665  /* Initialize state for RecoveryInProgress() */
5667  if (InArchiveRecovery)
5669  else
5672 
5673  /*
5674  * Update pg_control to show that we are recovering and to show the
5675  * selected checkpoint as the place we are starting from. We also mark
5676  * pg_control with any minimum recovery stop point obtained from a
5677  * backup history file.
5678  *
5679  * No need to hold ControlFileLock yet, we aren't up far enough.
5680  */
5682 
5683  /*
5684  * If there was a backup label file, it's done its job and the info
5685  * has now been propagated into pg_control. We must get rid of the
5686  * label file so that if we crash during recovery, we'll pick up at
5687  * the latest recovery restartpoint instead of going all the way back
5688  * to the backup start point. It seems prudent though to just rename
5689  * the file out of the way rather than delete it completely.
5690  */
5691  if (haveBackupLabel)
5692  {
5693  unlink(BACKUP_LABEL_OLD);
5695  }
5696 
5697  /*
5698  * If there was a tablespace_map file, it's done its job and the
5699  * symlinks have been created. We must get rid of the map file so
5700  * that if we crash during recovery, we don't create symlinks again.
5701  * It seems prudent though to just rename the file out of the way
5702  * rather than delete it completely.
5703  */
5704  if (haveTblspcMap)
5705  {
5706  unlink(TABLESPACE_MAP_OLD);
5708  }
5709 
5710  /*
5711  * Initialize our local copy of minRecoveryPoint. When doing crash
5712  * recovery we want to replay up to the end of WAL. Particularly, in
5713  * the case of a promoted standby minRecoveryPoint value in the
5714  * control file is only updated after the first checkpoint. However,
5715  * if the instance crashes before the first post-recovery checkpoint
5716  * is completed then recovery will use a stale location causing the
5717  * startup process to think that there are still invalid page
5718  * references when checking for data consistency.
5719  */
5720  if (InArchiveRecovery)
5721  {
5724  }
5725  else
5726  {
5729  }
5730 
5731  /* Check that the GUCs used to generate the WAL allow recovery */
5733 
5734  /*
5735  * We're in recovery, so unlogged relations may be trashed and must be
5736  * reset. This should be done BEFORE allowing Hot Standby
5737  * connections, so that read-only backends don't try to read whatever
5738  * garbage is left over from before.
5739  */
5741 
5742  /*
5743  * Likewise, delete any saved transaction snapshot files that got left
5744  * behind by crashed backends.
5745  */
5747 
5748  /*
5749  * Initialize for Hot Standby, if enabled. We won't let backends in
5750  * yet, not until we've reached the min recovery point specified in
5751  * control file and we've established a recovery snapshot from a
5752  * running-xacts WAL record.
5753  */
5755  {
5756  TransactionId *xids;
5757  int nxids;
5758 
5759  ereport(DEBUG1,
5760  (errmsg_internal("initializing for hot standby")));
5761 
5763 
5764  if (wasShutdown)
5765  oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
5766  else
5767  oldestActiveXID = checkPoint.oldestActiveXid;
5768  Assert(TransactionIdIsValid(oldestActiveXID));
5769 
5770  /* Tell procarray about the range of xids it has to deal with */
5772 
5773  /*
5774  * Startup subtrans only. CLOG, MultiXact and commit timestamp
5775  * have already been started up and other SLRUs are not maintained
5776  * during recovery and need not be started yet.
5777  */
5778  StartupSUBTRANS(oldestActiveXID);
5779 
5780  /*
5781  * If we're beginning at a shutdown checkpoint, we know that
5782  * nothing was running on the primary at this point. So fake-up an
5783  * empty running-xacts record and use that here and now. Recover
5784  * additional standby state for prepared transactions.
5785  */
5786  if (wasShutdown)
5787  {
5788  RunningTransactionsData running;
5789  TransactionId latestCompletedXid;
5790 
5791  /* Update pg_subtrans entries for any prepared transactions */
5793 
5794  /*
5795  * Construct a RunningTransactions snapshot representing a
5796  * shut down server, with only prepared transactions still
5797  * alive. We're never overflowed at this point because all
5798  * subxids are listed with their parent prepared transactions.
5799  */
5800  running.xcnt = nxids;
5801  running.subxcnt = 0;
5803  running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
5804  running.oldestRunningXid = oldestActiveXID;
5805  latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
5806  TransactionIdRetreat(latestCompletedXid);
5807  Assert(TransactionIdIsNormal(latestCompletedXid));
5808  running.latestCompletedXid = latestCompletedXid;
5809  running.xids = xids;
5810 
5811  ProcArrayApplyRecoveryInfo(&running);
5812  }
5813  }
5814 
5815  /*
5816  * We're all set for replaying the WAL now. Do it.
5817  */
5819  performedWalRecovery = true;
5820  }
5821  else
5822  performedWalRecovery = false;
5823 
5824  /*
5825  * Finish WAL recovery.
5826  */
5827  endOfRecoveryInfo = FinishWalRecovery();
5828  EndOfLog = endOfRecoveryInfo->endOfLog;
5829  EndOfLogTLI = endOfRecoveryInfo->endOfLogTLI;
5830  abortedRecPtr = endOfRecoveryInfo->abortedRecPtr;
5831  missingContrecPtr = endOfRecoveryInfo->missingContrecPtr;
5832 
5833  /*
5834  * Reset ps status display, so as no information related to recovery shows
5835  * up.
5836  */
5837  set_ps_display("");
5838 
5839  /*
5840  * When recovering from a backup (we are in recovery, and archive recovery
5841  * was requested), complain if we did not roll forward far enough to reach
5842  * the point where the database is consistent. For regular online
5843  * backup-from-primary, that means reaching the end-of-backup WAL record
5844  * (at which point we reset backupStartPoint to be Invalid), for
5845  * backup-from-replica (which can't inject records into the WAL stream),
5846  * that point is when we reach the minRecoveryPoint in pg_control (which
5847  * we purposefully copy last when backing up from a replica). For
5848  * pg_rewind (which creates a backup_label with a method of "pg_rewind")
5849  * or snapshot-style backups (which don't), backupEndRequired will be set
5850  * to false.
5851  *
5852  * Note: it is indeed okay to look at the local variable
5853  * LocalMinRecoveryPoint here, even though ControlFile->minRecoveryPoint
5854  * might be further ahead --- ControlFile->minRecoveryPoint cannot have
5855  * been advanced beyond the WAL we processed.
5856  */
5857  if (InRecovery &&
5858  (EndOfLog < LocalMinRecoveryPoint ||
5860  {
5861  /*
5862  * Ran off end of WAL before reaching end-of-backup WAL record, or
5863  * minRecoveryPoint. That's a bad sign, indicating that you tried to
5864  * recover from an online backup but never called pg_backup_stop(), or
5865  * you didn't archive all the WAL needed.
5866  */
5868  {
5870  ereport(FATAL,
5871  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5872  errmsg("WAL ends before end of online backup"),
5873  errhint("All WAL generated while online backup was taken must be available at recovery.")));
5874  else
5875  ereport(FATAL,
5876  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5877  errmsg("WAL ends before consistent recovery point")));
5878  }
5879  }
5880 
5881  /*
5882  * Reset unlogged relations to the contents of their INIT fork. This is
5883  * done AFTER recovery is complete so as to include any unlogged relations
5884  * created during recovery, but BEFORE recovery is marked as having
5885  * completed successfully. Otherwise we'd not retry if any of the post
5886  * end-of-recovery steps fail.
5887  */
5888  if (InRecovery)
5890 
5891  /*
5892  * Pre-scan prepared transactions to find out the range of XIDs present.
5893  * This information is not quite needed yet, but it is positioned here so
5894  * as potential problems are detected before any on-disk change is done.
5895  */
5896  oldestActiveXID = PrescanPreparedTransactions(NULL, NULL);
5897 
5898  /*
5899  * Allow ordinary WAL segment creation before possibly switching to a new
5900  * timeline, which creates a new segment, and after the last ReadRecord().
5901  */
5903 
5904  /*
5905  * Consider whether we need to assign a new timeline ID.
5906  *
5907  * If we did archive recovery, we always assign a new ID. This handles a
5908  * couple of issues. If we stopped short of the end of WAL during
5909  * recovery, then we are clearly generating a new timeline and must assign
5910  * it a unique new ID. Even if we ran to the end, modifying the current
5911  * last segment is problematic because it may result in trying to
5912  * overwrite an already-archived copy of that segment, and we encourage
5913  * DBAs to make their archive_commands reject that. We can dodge the
5914  * problem by making the new active segment have a new timeline ID.
5915  *
5916  * In a normal crash recovery, we can just extend the timeline we were in.
5917  */
5918  newTLI = endOfRecoveryInfo->lastRecTLI;
5920  {
5921  newTLI = findNewestTimeLine(recoveryTargetTLI) + 1;
5922  ereport(LOG,
5923  (errmsg("selected new timeline ID: %u", newTLI)));
5924 
5925  /*
5926  * Make a writable copy of the last WAL segment. (Note that we also
5927  * have a copy of the last block of the old WAL in
5928  * endOfRecovery->lastPage; we will use that below.)
5929  */
5930  XLogInitNewTimeline(EndOfLogTLI, EndOfLog, newTLI);
5931 
5932  /*
5933  * Remove the signal files out of the way, so that we don't
5934  * accidentally re-enter archive recovery mode in a subsequent crash.
5935  */
5936  if (endOfRecoveryInfo->standby_signal_file_found)
5938 
5939  if (endOfRecoveryInfo->recovery_signal_file_found)
5941 
5942  /*
5943  * Write the timeline history file, and have it archived. After this
5944  * point (or rather, as soon as the file is archived), the timeline
5945  * will appear as "taken" in the WAL archive and to any standby
5946  * servers. If we crash before actually switching to the new
5947  * timeline, standby servers will nevertheless think that we switched
5948  * to the new timeline, and will try to connect to the new timeline.
5949  * To minimize the window for that, try to do as little as possible
5950  * between here and writing the end-of-recovery record.
5951  */
5953  EndOfLog, endOfRecoveryInfo->recoveryStopReason);
5954 
5955  ereport(LOG,
5956  (errmsg("archive recovery complete")));
5957  }
5958 
5959  /* Save the selected TimeLineID in shared memory, too */
5961  XLogCtl->InsertTimeLineID = newTLI;
5962  XLogCtl->PrevTimeLineID = endOfRecoveryInfo->lastRecTLI;
5964 
5965  /*
5966  * Actually, if WAL ended in an incomplete record, skip the parts that
5967  * made it through and start writing after the portion that persisted.
5968  * (It's critical to first write an OVERWRITE_CONTRECORD message, which
5969  * we'll do as soon as we're open for writing new WAL.)
5970  */
5972  {
5973  /*
5974  * We should only have a missingContrecPtr if we're not switching to a
5975  * new timeline. When a timeline switch occurs, WAL is copied from the
5976  * old timeline to the new only up to the end of the last complete
5977  * record, so there can't be an incomplete WAL record that we need to
5978  * disregard.
5979  */
5980  Assert(newTLI == endOfRecoveryInfo->lastRecTLI);
5982  EndOfLog = missingContrecPtr;
5983  }
5984 
5985  /*
5986  * Prepare to write WAL starting at EndOfLog location, and init xlog
5987  * buffer cache using the block containing the last record from the
5988  * previous incarnation.
5989  */
5990  Insert = &XLogCtl->Insert;
5991  Insert->PrevBytePos = XLogRecPtrToBytePos(endOfRecoveryInfo->lastRec);
5992  Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog);
5993 
5994  /*
5995  * Tricky point here: lastPage contains the *last* block that the LastRec
5996  * record spans, not the one it starts in. The last block is indeed the
5997  * one we want to use.
5998  */
5999  if (EndOfLog % XLOG_BLCKSZ != 0)
6000  {
6001  char *page;
6002  int len;
6003  int firstIdx;
6004 
6005  firstIdx = XLogRecPtrToBufIdx(EndOfLog);
6006  len = EndOfLog - endOfRecoveryInfo->lastPageBeginPtr;
6007  Assert(len < XLOG_BLCKSZ);
6008 
6009  /* Copy the valid part of the last block, and zero the rest */
6010  page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ];
6011  memcpy(page, endOfRecoveryInfo->lastPage, len);
6012  memset(page + len, 0, XLOG_BLCKSZ - len);
6013 
6014  pg_atomic_write_u64(&XLogCtl->xlblocks[firstIdx], endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ);
6015  XLogCtl->InitializedUpTo = endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ;
6016  }
6017  else
6018  {
6019  /*
6020  * There is no partial block to copy. Just set InitializedUpTo, and
6021  * let the first attempt to insert a log record to initialize the next
6022  * buffer.
6023  */
6024  XLogCtl->InitializedUpTo = EndOfLog;
6025  }
6026 
6027  /*
6028  * Update local and shared status. This is OK to do without any locks
6029  * because no other process can be reading or writing WAL yet.
6030  */
6031  LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
6035  XLogCtl->LogwrtRqst.Write = EndOfLog;
6036  XLogCtl->LogwrtRqst.Flush = EndOfLog;
6037 
6038  /*
6039  * Preallocate additional log files, if wanted.
6040  */
6041  PreallocXlogFiles(EndOfLog, newTLI);
6042 
6043  /*
6044  * Okay, we're officially UP.
6045  */
6046  InRecovery = false;
6047 
6048  /* start the archive_timeout timer and LSN running */
6049  XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
6050  XLogCtl->lastSegSwitchLSN = EndOfLog;
6051 
6052  /* also initialize latestCompletedXid, to nextXid - 1 */
6053  LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
6056  LWLockRelease(ProcArrayLock);
6057 
6058  /*
6059  * Start up subtrans, if not already done for hot standby. (commit
6060  * timestamps are started below, if necessary.)
6061  */
6063  StartupSUBTRANS(oldestActiveXID);
6064 
6065  /*
6066  * Perform end of recovery actions for any SLRUs that need it.
6067  */
6068  TrimCLOG();
6069  TrimMultiXact();
6070 
6071  /*
6072  * Reload shared-memory state for prepared transactions. This needs to
6073  * happen before renaming the last partial segment of the old timeline as
6074  * it may be possible that we have to recovery some transactions from it.
6075  */
6077 
6078  /* Shut down xlogreader */
6080 
6081  /* Enable WAL writes for this backend only. */
6083 
6084  /* If necessary, write overwrite-contrecord before doing anything else */
6086  {
6089  }
6090 
6091  /*
6092  * Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE
6093  * record before resource manager writes cleanup WAL records or checkpoint
6094  * record is written.
6095  */
6096  Insert->fullPageWrites = lastFullPageWrites;
6098 
6099  /*
6100  * Emit checkpoint or end-of-recovery record in XLOG, if required.
6101  */
6102  if (performedWalRecovery)
6103  promoted = PerformRecoveryXLogAction();
6104 
6105  /*
6106  * If any of the critical GUCs have changed, log them before we allow
6107  * backends to write WAL.
6108  */
6110 
6111  /* If this is archive recovery, perform post-recovery cleanup actions. */
6113  CleanupAfterArchiveRecovery(EndOfLogTLI, EndOfLog, newTLI);
6114 
6115  /*
6116  * Local WAL inserts enabled, so it's time to finish initialization of
6117  * commit timestamp.
6118  */
6120 
6121  /*
6122  * All done with end-of-recovery actions.
6123  *
6124  * Now allow backends to write WAL and update the control file status in
6125  * consequence. SharedRecoveryState, that controls if backends can write
6126  * WAL, is updated while holding ControlFileLock to prevent other backends
6127  * to look at an inconsistent state of the control file in shared memory.
6128  * There is still a small window during which backends can write WAL and
6129  * the control file is still referring to a system not in DB_IN_PRODUCTION
6130  * state while looking at the on-disk control file.
6131  *
6132  * Also, we use info_lck to update SharedRecoveryState to ensure that
6133  * there are no race conditions concerning visibility of other recent
6134  * updates to shared memory.
6135  */
6136  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6138 
6142 
6144  LWLockRelease(ControlFileLock);
6145 
6146  /*
6147  * Shutdown the recovery environment. This must occur after
6148  * RecoverPreparedTransactions() (see notes in lock_twophase_recover())
6149  * and after switching SharedRecoveryState to RECOVERY_STATE_DONE so as
6150  * any session building a snapshot will not rely on KnownAssignedXids as
6151  * RecoveryInProgress() would return false at this stage. This is
6152  * particularly critical for prepared 2PC transactions, that would still
6153  * need to be included in snapshots once recovery has ended.
6154  */
6157 
6158  /*
6159  * If there were cascading standby servers connected to us, nudge any wal
6160  * sender processes to notice that we've been promoted.
6161  */
6162  WalSndWakeup(true, true);
6163 
6164  /*
6165  * If this was a promotion, request an (online) checkpoint now. This isn't
6166  * required for consistency, but the last restartpoint might be far back,
6167  * and in case of a crash, recovering from it might take a longer than is
6168  * appropriate now that we're not in standby mode anymore.
6169  */
6170  if (promoted)
6172 }
6173 
6174 /*
6175  * Callback from PerformWalRecovery(), called when we switch from crash
6176  * recovery to archive recovery mode. Updates the control file accordingly.
6177  */
6178 void
6180 {
6181  /* initialize minRecoveryPoint to this record */
6182  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6184  if (ControlFile->minRecoveryPoint < EndRecPtr)
6185  {
6186  ControlFile->minRecoveryPoint = EndRecPtr;
6187  ControlFile->minRecoveryPointTLI = replayTLI;
6188  }
6189  /* update local copy */
6192 
6193  /*
6194  * The startup process can update its local copy of minRecoveryPoint from
6195  * this point.
6196  */
6197  updateMinRecoveryPoint = true;
6198 
6200 
6201  /*
6202  * We update SharedRecoveryState while holding the lock on ControlFileLock
6203  * so both states are consistent in shared memory.
6204  */
6208 
6209  LWLockRelease(ControlFileLock);
6210 }
6211 
6212 /*
6213  * Callback from PerformWalRecovery(), called when we reach the end of backup.
6214  * Updates the control file accordingly.
6215  */
6216 void
6218 {
6219  /*
6220  * We have reached the end of base backup, as indicated by pg_control. The
6221  * data on disk is now consistent (unless minRecoveryPoint is further
6222  * ahead, which can happen if we crashed during previous recovery). Reset
6223  * backupStartPoint and backupEndPoint, and update minRecoveryPoint to
6224  * make sure we don't allow starting up at an earlier point even if
6225  * recovery is stopped and restarted soon after this.
6226  */
6227  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6228 
6229  if (ControlFile->minRecoveryPoint < EndRecPtr)
6230  {
6231  ControlFile->minRecoveryPoint = EndRecPtr;
6233  }
6234 
6237  ControlFile->backupEndRequired = false;
6239 
6240  LWLockRelease(ControlFileLock);
6241 }
6242 
6243 /*
6244  * Perform whatever XLOG actions are necessary at end of REDO.
6245  *
6246  * The goal here is to make sure that we'll be able to recover properly if
6247  * we crash again. If we choose to write a checkpoint, we'll write a shutdown
6248  * checkpoint rather than an on-line one. This is not particularly critical,
6249  * but since we may be assigning a new TLI, using a shutdown checkpoint allows
6250  * us to have the rule that TLI only changes in shutdown checkpoints, which
6251  * allows some extra error checking in xlog_redo.
6252  */
6253 static bool
6255 {
6256  bool promoted = false;
6257 
6258  /*
6259  * Perform a checkpoint to update all our recovery activity to disk.
6260  *
6261  * Note that we write a shutdown checkpoint rather than an on-line one.
6262  * This is not particularly critical, but since we may be assigning a new
6263  * TLI, using a shutdown checkpoint allows us to have the rule that TLI
6264  * only changes in shutdown checkpoints, which allows some extra error
6265  * checking in xlog_redo.
6266  *
6267  * In promotion, only create a lightweight end-of-recovery record instead
6268  * of a full checkpoint. A checkpoint is requested later, after we're
6269  * fully out of recovery mode and already accepting queries.
6270  */
6273  {
6274  promoted = true;
6275 
6276  /*
6277  * Insert a special WAL record to mark the end of recovery, since we
6278  * aren't doing a checkpoint. That means that the checkpointer process
6279  * may likely be in the middle of a time-smoothed restartpoint and
6280  * could continue to be for minutes after this. That sounds strange,
6281  * but the effect is roughly the same and it would be stranger to try
6282  * to come out of the restartpoint and then checkpoint. We request a
6283  * checkpoint later anyway, just for safety.
6284  */
6286  }
6287  else
6288  {
6291  CHECKPOINT_WAIT);
6292  }
6293 
6294  return promoted;
6295 }
6296 
6297 /*
6298  * Is the system still in recovery?
6299  *
6300  * Unlike testing InRecovery, this works in any process that's connected to
6301  * shared memory.
6302  */
6303 bool
6305 {
6306  /*
6307  * We check shared state each time only until we leave recovery mode. We
6308  * can't re-enter recovery, so there's no need to keep checking after the
6309  * shared variable has once been seen false.
6310  */
6312  return false;
6313  else
6314  {
6315  /*
6316  * use volatile pointer to make sure we make a fresh read of the
6317  * shared variable.
6318  */
6319  volatile XLogCtlData *xlogctl = XLogCtl;
6320 
6322 
6323  /*
6324  * Note: We don't need a memory barrier when we're still in recovery.
6325  * We might exit recovery immediately after return, so the caller
6326  * can't rely on 'true' meaning that we're still in recovery anyway.
6327  */
6328 
6329  return LocalRecoveryInProgress;
6330  }
6331 }
6332 
6333 /*
6334  * Returns current recovery state from shared memory.
6335  *
6336  * This returned state is kept consistent with the contents of the control
6337  * file. See details about the possible values of RecoveryState in xlog.h.
6338  */
6341 {
6342  RecoveryState retval;
6343 
6345  retval = XLogCtl->SharedRecoveryState;
6347 
6348  return retval;
6349 }
6350 
6351 /*
6352  * Is this process allowed to insert new WAL records?
6353  *
6354  * Ordinarily this is essentially equivalent to !RecoveryInProgress().
6355  * But we also have provisions for forcing the result "true" or "false"
6356  * within specific processes regardless of the global state.
6357  */
6358 bool
6360 {
6361  /*
6362  * If value is "unconditionally true" or "unconditionally false", just
6363  * return it. This provides the normal fast path once recovery is known
6364  * done.
6365  */
6366  if (LocalXLogInsertAllowed >= 0)
6367  return (bool) LocalXLogInsertAllowed;
6368 
6369  /*
6370  * Else, must check to see if we're still in recovery.
6371  */
6372  if (RecoveryInProgress())
6373  return false;
6374 
6375  /*
6376  * On exit from recovery, reset to "unconditionally true", since there is
6377  * no need to keep checking.
6378  */
6380  return true;
6381 }
6382 
6383 /*
6384  * Make XLogInsertAllowed() return true in the current process only.
6385  *
6386  * Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later,
6387  * and even call LocalSetXLogInsertAllowed() again after that.
6388  *
6389  * Returns the previous value of LocalXLogInsertAllowed.
6390  */
6391 static int
6393 {
6394  int oldXLogAllowed = LocalXLogInsertAllowed;
6395 
6397 
6398  return oldXLogAllowed;
6399 }
6400 
6401 /*
6402  * Return the current Redo pointer from shared memory.
6403  *
6404  * As a side-effect, the local RedoRecPtr copy is updated.
6405  */
6406 XLogRecPtr
6408 {
6409  XLogRecPtr ptr;
6410 
6411  /*
6412  * The possibly not up-to-date copy in XlogCtl is enough. Even if we
6413  * grabbed a WAL insertion lock to read the authoritative value in
6414  * Insert->RedoRecPtr, someone might update it just after we've released
6415  * the lock.
6416  */
6418  ptr = XLogCtl->RedoRecPtr;
6420 
6421  if (RedoRecPtr < ptr)
6422  RedoRecPtr = ptr;
6423 
6424  return RedoRecPtr;
6425 }
6426 
6427 /*
6428  * Return information needed to decide whether a modified block needs a
6429  * full-page image to be included in the WAL record.
6430  *
6431  * The returned values are cached copies from backend-private memory, and
6432  * possibly out-of-date or, indeed, uninitialized, in which case they will
6433  * be InvalidXLogRecPtr and false, respectively. XLogInsertRecord will
6434  * re-check them against up-to-date values, while holding the WAL insert lock.
6435  */
6436 void
6437 GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
6438 {
6439  *RedoRecPtr_p = RedoRecPtr;
6440  *doPageWrites_p = doPageWrites;
6441 }
6442 
6443 /*
6444  * GetInsertRecPtr -- Returns the current insert position.
6445  *
6446  * NOTE: The value *actually* returned is the position of the last full
6447  * xlog page. It lags behind the real insert position by at most 1 page.
6448  * For that, we don't need to scan through WAL insertion locks, and an
6449  * approximation is enough for the current usage of this function.
6450  */
6451 XLogRecPtr
6453 {
6454  XLogRecPtr recptr;
6455 
6457  recptr = XLogCtl->LogwrtRqst.Write;
6459 
6460  return recptr;
6461 }
6462 
6463 /*
6464  * GetFlushRecPtr -- Returns the current flush position, ie, the last WAL
6465  * position known to be fsync'd to disk. This should only be used on a
6466  * system that is known not to be in recovery.
6467  */
6468 XLogRecPtr
6470 {
6472 
6474 
6475  /*
6476  * If we're writing and flushing WAL, the time line can't be changing, so
6477  * no lock is required.
6478  */
6479  if (insertTLI)
6480  *insertTLI = XLogCtl->InsertTimeLineID;
6481 
6482  return LogwrtResult.Flush;
6483 }
6484 
6485 /*
6486  * GetWALInsertionTimeLine -- Returns the current timeline of a system that
6487  * is not in recovery.
6488  */
6489 TimeLineID
6491 {
6493 
6494  /* Since the value can't be changing, no lock is required. */
6495  return XLogCtl->InsertTimeLineID;
6496 }
6497 
6498 /*
6499  * GetWALInsertionTimeLineIfSet -- If the system is not in recovery, returns
6500  * the WAL insertion timeline; else, returns 0. Wherever possible, use
6501  * GetWALInsertionTimeLine() instead, since it's cheaper. Note that this
6502  * function decides recovery has ended as soon as the insert TLI is set, which
6503  * happens before we set XLogCtl->SharedRecoveryState to RECOVERY_STATE_DONE.
6504  */
6505 TimeLineID
6507 {
6508  TimeLineID insertTLI;
6509 
6511  insertTLI = XLogCtl->InsertTimeLineID;
6513 
6514  return insertTLI;
6515 }
6516 
6517 /*
6518  * GetLastImportantRecPtr -- Returns the LSN of the last important record
6519  * inserted. All records not explicitly marked as unimportant are considered
6520  * important.
6521  *
6522  * The LSN is determined by computing the maximum of
6523  * WALInsertLocks[i].lastImportantAt.
6524  */
6525 XLogRecPtr
6527 {
6529  int i;
6530 
6531  for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
6532  {
6533  XLogRecPtr last_important;
6534 
6535  /*
6536  * Need to take a lock to prevent torn reads of the LSN, which are
6537  * possible on some of the supported platforms. WAL insert locks only
6538  * support exclusive mode, so we have to use that.
6539  */
6541  last_important = WALInsertLocks[i].l.lastImportantAt;
6542  LWLockRelease(&WALInsertLocks[i].l.lock);
6543 
6544  if (res < last_important)
6545  res = last_important;
6546  }
6547 
6548  return res;
6549 }
6550 
6551 /*
6552  * Get the time and LSN of the last xlog segment switch
6553  */
6554 pg_time_t
6556 {
6557  pg_time_t result;
6558 
6559  /* Need WALWriteLock, but shared lock is sufficient */
6560  LWLockAcquire(WALWriteLock, LW_SHARED);
6561  result = XLogCtl->lastSegSwitchTime;
6562  *lastSwitchLSN = XLogCtl->lastSegSwitchLSN;
6563  LWLockRelease(WALWriteLock);
6564 
6565  return result;
6566 }
6567 
6568 /*
6569  * This must be called ONCE during postmaster or standalone-backend shutdown
6570  */
6571 void
6573 {
6574  /*
6575  * We should have an aux process resource owner to use, and we should not
6576  * be in a transaction that's installed some other resowner.
6577  */
6579  Assert(CurrentResourceOwner == NULL ||
6582 
6583  /* Don't be chatty in standalone mode */
6585  (errmsg("shutting down")));
6586 
6587  /*
6588  * Signal walsenders to move to stopping state.
6589  */
6591 
6592  /*
6593  * Wait for WAL senders to be in stopping state. This prevents commands
6594  * from writing new WAL.
6595  */
6597 
6598  if (RecoveryInProgress())
6600  else
6601  {
6602  /*
6603  * If archiving is enabled, rotate the last XLOG file so that all the
6604  * remaining records are archived (postmaster wakes up the archiver
6605  * process one more time at the end of shutdown). The checkpoint
6606  * record will go to the next XLOG file and won't be archived (yet).
6607  */
6608  if (XLogArchivingActive())
6609  RequestXLogSwitch(false);
6610 
6612  }
6613 }
6614 
6615 /*
6616  * Log start of a checkpoint.
6617  */
6618 static void
6619 LogCheckpointStart(int flags, bool restartpoint)
6620 {
6621  if (restartpoint)
6622  ereport(LOG,
6623  /* translator: the placeholders show checkpoint options */
6624  (errmsg("restartpoint starting:%s%s%s%s%s%s%s%s",
6625  (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6626  (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6627  (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6628  (flags & CHECKPOINT_FORCE) ? " force" : "",
6629  (flags & CHECKPOINT_WAIT) ? " wait" : "",
6630  (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6631  (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6632  (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
6633  else
6634  ereport(LOG,
6635  /* translator: the placeholders show checkpoint options */
6636  (errmsg("checkpoint starting:%s%s%s%s%s%s%s%s",
6637  (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6638  (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6639  (flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
6640  (flags & CHECKPOINT_FORCE) ? " force" : "",
6641  (flags & CHECKPOINT_WAIT) ? " wait" : "",
6642  (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6643  (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6644  (flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
6645 }
6646 
6647 /*
6648  * Log end of a checkpoint.
6649  */
6650 static void
6651 LogCheckpointEnd(bool restartpoint)
6652 {
6653  long write_msecs,
6654  sync_msecs,
6655  total_msecs,
6656  longest_msecs,
6657  average_msecs;
6658  uint64 average_sync_time;
6659 
6661 
6664 
6667 
6668  /* Accumulate checkpoint timing summary data, in milliseconds. */
6669  PendingCheckpointerStats.write_time += write_msecs;
6670  PendingCheckpointerStats.sync_time += sync_msecs;
6671 
6672  /*
6673  * All of the published timing statistics are accounted for. Only
6674  * continue if a log message is to be written.
6675  */
6676  if (!log_checkpoints)
6677  return;
6678 
6681 
6682  /*
6683  * Timing values returned from CheckpointStats are in microseconds.
6684  * Convert to milliseconds for consistent printing.
6685  */
6686  longest_msecs = (long) ((CheckpointStats.ckpt_longest_sync + 999) / 1000);
6687 
6688  average_sync_time = 0;
6690  average_sync_time = CheckpointStats.ckpt_agg_sync_time /
6692  average_msecs = (long) ((average_sync_time + 999) / 1000);
6693 
6694  /*
6695  * ControlFileLock is not required to see ControlFile->checkPoint and
6696  * ->checkPointCopy here as we are the only updator of those variables at
6697  * this moment.
6698  */
6699  if (restartpoint)
6700  ereport(LOG,
6701  (errmsg("restartpoint complete: wrote %d buffers (%.1f%%); "
6702  "%d WAL file(s) added, %d removed, %d recycled; "
6703  "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
6704  "sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; "
6705  "distance=%d kB, estimate=%d kB; "
6706  "lsn=%X/%X, redo lsn=%X/%X",
6708  (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
6712  write_msecs / 1000, (int) (write_msecs % 1000),
6713  sync_msecs / 1000, (int) (sync_msecs % 1000),
6714  total_msecs / 1000, (int) (total_msecs % 1000),
6716  longest_msecs / 1000, (int) (longest_msecs % 1000),
6717  average_msecs / 1000, (int) (average_msecs % 1000),
6718  (int) (PrevCheckPointDistance / 1024.0),
6719  (int) (CheckPointDistanceEstimate / 1024.0),
6722  else
6723  ereport(LOG,
6724  (errmsg("checkpoint complete: wrote %d buffers (%.1f%%); "
6725  "%d WAL file(s) added, %d removed, %d recycled; "
6726  "write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
6727  "sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; "
6728  "distance=%d kB, estimate=%d kB; "
6729  "lsn=%X/%X, redo lsn=%X/%X",
6731  (double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
6735  write_msecs / 1000, (int) (write_msecs % 1000),
6736  sync_msecs / 1000, (int) (sync_msecs % 1000),
6737  total_msecs / 1000, (int) (total_msecs % 1000),
6739  longest_msecs / 1000, (int) (longest_msecs % 1000),
6740  average_msecs / 1000, (int) (average_msecs % 1000),
6741  (int) (PrevCheckPointDistance / 1024.0),
6742  (int) (CheckPointDistanceEstimate / 1024.0),
6745 }
6746 
6747 /*
6748  * Update the estimate of distance between checkpoints.
6749  *
6750  * The estimate is used to calculate the number of WAL segments to keep
6751  * preallocated, see XLOGfileslop().
6752  */
6753 static void
6755 {
6756  /*
6757  * To estimate the number of segments consumed between checkpoints, keep a
6758  * moving average of the amount of WAL generated in previous checkpoint
6759  * cycles. However, if the load is bursty, with quiet periods and busy
6760  * periods, we want to cater for the peak load. So instead of a plain
6761  * moving average, let the average decline slowly if the previous cycle
6762  * used less WAL than estimated, but bump it up immediately if it used
6763  * more.
6764  *
6765  * When checkpoints are triggered by max_wal_size, this should converge to
6766  * CheckpointSegments * wal_segment_size,
6767  *
6768  * Note: This doesn't pay any attention to what caused the checkpoint.
6769  * Checkpoints triggered manually with CHECKPOINT command, or by e.g.
6770  * starting a base backup, are counted the same as those created
6771  * automatically. The slow-decline will largely mask them out, if they are
6772  * not frequent. If they are frequent, it seems reasonable to count them
6773  * in as any others; if you issue a manual checkpoint every 5 minutes and
6774  * never let a timed checkpoint happen, it makes sense to base the
6775  * preallocation on that 5 minute interval rather than whatever
6776  * checkpoint_timeout is set to.
6777  */
6778  PrevCheckPointDistance = nbytes;
6779  if (CheckPointDistanceEstimate < nbytes)
6780  CheckPointDistanceEstimate = nbytes;
6781  else
6783  (0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes);
6784 }
6785 
6786 /*
6787  * Update the ps display for a process running a checkpoint. Note that
6788  * this routine should not do any allocations so as it can be called
6789  * from a critical section.
6790  */
6791 static void
6792 update_checkpoint_display(int flags, bool restartpoint, bool reset)
6793 {
6794  /*
6795  * The status is reported only for end-of-recovery and shutdown
6796  * checkpoints or shutdown restartpoints. Updating the ps display is
6797  * useful in those situations as it may not be possible to rely on
6798  * pg_stat_activity to see the status of the checkpointer or the startup
6799  * process.
6800  */
6801  if ((flags & (CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IS_SHUTDOWN)) == 0)
6802  return;
6803 
6804  if (reset)
6805  set_ps_display("");
6806  else
6807  {
6808  char activitymsg[128];
6809 
6810  snprintf(activitymsg, sizeof(activitymsg), "performing %s%s%s",
6811  (flags & CHECKPOINT_END_OF_RECOVERY) ? "end-of-recovery " : "",
6812  (flags & CHECKPOINT_IS_SHUTDOWN) ? "shutdown " : "",
6813  restartpoint ? "restartpoint" : "checkpoint");
6814  set_ps_display(activitymsg);
6815  }
6816 }
6817 
6818 
6819 /*
6820  * Perform a checkpoint --- either during shutdown, or on-the-fly
6821  *
6822  * flags is a bitwise OR of the following:
6823  * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
6824  * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
6825  * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
6826  * ignoring checkpoint_completion_target parameter.
6827  * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
6828  * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
6829  * CHECKPOINT_END_OF_RECOVERY).
6830  * CHECKPOINT_FLUSH_ALL: also flush buffers of unlogged tables.
6831  *
6832  * Note: flags contains other bits, of interest here only for logging purposes.
6833  * In particular note that this routine is synchronous and does not pay
6834  * attention to CHECKPOINT_WAIT.
6835  *
6836  * If !shutdown then we are writing an online checkpoint. An XLOG_CHECKPOINT_REDO
6837  * record is inserted into WAL at the logical location of the checkpoint, before
6838  * flushing anything to disk, and when the checkpoint is eventually completed,
6839  * and it is from this point that WAL replay will begin in the case of a recovery
6840  * from this checkpoint. Once everything is written to disk, an
6841  * XLOG_CHECKPOINT_ONLINE record is written to complete the checkpoint, and
6842  * points back to the earlier XLOG_CHECKPOINT_REDO record. This mechanism allows
6843  * other write-ahead log records to be written while the checkpoint is in
6844  * progress, but we must be very careful about order of operations. This function
6845  * may take many minutes to execute on a busy system.
6846  *
6847  * On the other hand, when shutdown is true, concurrent insertion into the
6848  * write-ahead log is impossible, so there is no need for two separate records.
6849  * In this case, we only insert an XLOG_CHECKPOINT_SHUTDOWN record, and it's
6850  * both the record marking the completion of the checkpoint and the location
6851  * from which WAL replay would begin if needed.
6852  */
6853 void
6855 {
6856  bool shutdown;
6857  CheckPoint checkPoint;
6858  XLogRecPtr recptr;
6859  XLogSegNo _logSegNo;
6861  uint32 freespace;
6862  XLogRecPtr PriorRedoPtr;
6863  XLogRecPtr last_important_lsn;
6864  VirtualTransactionId *vxids;
6865  int nvxids;
6866  int oldXLogAllowed = 0;
6867 
6868  /*
6869  * An end-of-recovery checkpoint is really a shutdown checkpoint, just
6870  * issued at a different time.
6871  */
6873  shutdown = true;
6874  else
6875  shutdown = false;
6876 
6877  /* sanity check */
6878  if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
6879  elog(ERROR, "can't create a checkpoint during recovery");
6880 
6881  /*
6882  * Prepare to accumulate statistics.
6883  *
6884  * Note: because it is possible for log_checkpoints to change while a
6885  * checkpoint proceeds, we always accumulate stats, even if
6886  * log_checkpoints is currently off.
6887  */
6888  MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
6890 
6891  /*
6892  * Let smgr prepare for checkpoint; this has to happen outside the
6893  * critical section and before we determine the REDO pointer. Note that
6894  * smgr must not do anything that'd have to be undone if we decide no
6895  * checkpoint is needed.
6896  */
6898 
6899  /*
6900  * Use a critical section to force system panic if we have trouble.
6901  */
6903 
6904  if (shutdown)
6905  {
6906  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6909  LWLockRelease(ControlFileLock);
6910  }
6911 
6912  /* Begin filling in the checkpoint WAL record */
6913  MemSet(&checkPoint, 0, sizeof(checkPoint));
6914  checkPoint.time = (pg_time_t) time(NULL);
6915 
6916  /*
6917  * For Hot Standby, derive the oldestActiveXid before we fix the redo
6918  * pointer. This allows us to begin accumulating changes to assemble our
6919  * starting snapshot of locks and transactions.
6920  */
6921  if (!shutdown && XLogStandbyInfoActive())
6923  else
6925 
6926  /*
6927  * Get location of last important record before acquiring insert locks (as
6928  * GetLastImportantRecPtr() also locks WAL locks).
6929  */
6930  last_important_lsn = GetLastImportantRecPtr();
6931 
6932  /*
6933  * If this isn't a shutdown or forced checkpoint, and if there has been no
6934  * WAL activity requiring a checkpoint, skip it. The idea here is to
6935  * avoid inserting duplicate checkpoints when the system is idle.
6936  */
6938  CHECKPOINT_FORCE)) == 0)
6939  {
6940  if (last_important_lsn == ControlFile->checkPoint)
6941  {
6942  END_CRIT_SECTION();
6943  ereport(DEBUG1,
6944  (errmsg_internal("checkpoint skipped because system is idle")));
6945  return;
6946  }
6947  }
6948 
6949  /*
6950  * An end-of-recovery checkpoint is created before anyone is allowed to
6951  * write WAL. To allow us to write the checkpoint record, temporarily
6952  * enable XLogInsertAllowed.
6953  */
6954  if (flags & CHECKPOINT_END_OF_RECOVERY)
6955  oldXLogAllowed = LocalSetXLogInsertAllowed();
6956 
6957  checkPoint.ThisTimeLineID = XLogCtl->InsertTimeLineID;
6958  if (flags & CHECKPOINT_END_OF_RECOVERY)
6959  checkPoint.PrevTimeLineID = XLogCtl->PrevTimeLineID;
6960  else
6961  checkPoint.PrevTimeLineID = checkPoint.ThisTimeLineID;
6962 
6963  /*
6964  * We must block concurrent insertions while examining insert state.
6965  */
6967 
6968  checkPoint.fullPageWrites = Insert->fullPageWrites;
6969  checkPoint.wal_level = wal_level;
6970 
6971  if (shutdown)
6972  {
6973  XLogRecPtr curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos);
6974 
6975  /*
6976  * Compute new REDO record ptr = location of next XLOG record.
6977  *
6978  * Since this is a shutdown checkpoint, there can't be any concurrent
6979  * WAL insertion.
6980  */
6981  freespace = INSERT_FREESPACE(curInsert);
6982  if (freespace == 0)
6983  {
6984  if (XLogSegmentOffset(curInsert, wal_segment_size) == 0)
6985  curInsert += SizeOfXLogLongPHD;
6986  else
6987  curInsert += SizeOfXLogShortPHD;
6988  }
6989  checkPoint.redo = curInsert;
6990 
6991  /*
6992  * Here we update the shared RedoRecPtr for future XLogInsert calls;
6993  * this must be done while holding all the insertion locks.
6994  *
6995  * Note: if we fail to complete the checkpoint, RedoRecPtr will be
6996  * left pointing past where it really needs to point. This is okay;
6997  * the only consequence is that XLogInsert might back up whole buffers
6998  * that it didn't really need to. We can't postpone advancing
6999  * RedoRecPtr because XLogInserts that happen while we are dumping
7000  * buffers must assume that their buffer changes are not included in
7001  * the checkpoint.
7002  */
7003  RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
7004  }
7005 
7006  /*
7007  * Now we can release the WAL insertion locks, allowing other xacts to
7008  * proceed while we are flushing disk buffers.
7009  */
7011 
7012  /*
7013  * If this is an online checkpoint, we have not yet determined the redo
7014  * point. We do so now by inserting the special XLOG_CHECKPOINT_REDO
7015  * record; the LSN at which it starts becomes the new redo pointer. We
7016  * don't do this for a shutdown checkpoint, because in that case no WAL
7017  * can be written between the redo point and the insertion of the
7018  * checkpoint record itself, so the checkpoint record itself serves to
7019  * mark the redo point.
7020  */
7021  if (!shutdown)
7022  {
7023  /* Include WAL level in record for WAL summarizer's benefit. */
7024  XLogBeginInsert();
7025  XLogRegisterData((char *) &wal_level, sizeof(wal_level));
7026  (void) XLogInsert(RM_XLOG_ID, XLOG_CHECKPOINT_REDO);
7027 
7028  /*
7029  * XLogInsertRecord will have updated XLogCtl->Insert.RedoRecPtr in
7030  * shared memory and RedoRecPtr in backend-local memory, but we need
7031  * to copy that into the record that will be inserted when the
7032  * checkpoint is complete.
7033  */
7034  checkPoint.redo = RedoRecPtr;
7035  }
7036 
7037  /* Update the info_lck-protected copy of RedoRecPtr as well */
7039  XLogCtl->RedoRecPtr = checkPoint.redo;
7041 
7042  /*
7043  * If enabled, log checkpoint start. We postpone this until now so as not
7044  * to log anything if we decided to skip the checkpoint.
7045  */
7046  if (log_checkpoints)
7047  LogCheckpointStart(flags, false);
7048 
7049  /* Update the process title */
7050  update_checkpoint_display(flags, false, false);
7051 
7052  TRACE_POSTGRESQL_CHECKPOINT_START(flags);
7053 
7054  /*
7055  * Get the other info we need for the checkpoint record.
7056  *
7057  * We don't need to save oldestClogXid in the checkpoint, it only matters
7058  * for the short period in which clog is being truncated, and if we crash
7059  * during that we'll redo the clog truncation and fix up oldestClogXid
7060  * there.
7061  */
7062  LWLockAcquire(XidGenLock, LW_SHARED);
7063  checkPoint.nextXid = TransamVariables->nextXid;
7064  checkPoint.oldestXid = TransamVariables->oldestXid;
7066  LWLockRelease(XidGenLock);
7067 
7068  LWLockAcquire(CommitTsLock, LW_SHARED);
7071  LWLockRelease(CommitTsLock);
7072 
7073  LWLockAcquire(OidGenLock, LW_SHARED);
7074  checkPoint.nextOid = TransamVariables->nextOid;
7075  if (!shutdown)
7076  checkPoint.nextOid += TransamVariables->oidCount;
7077  LWLockRelease(OidGenLock);
7078 
7079  MultiXactGetCheckptMulti(shutdown,
7080  &checkPoint.nextMulti,
7081  &checkPoint.nextMultiOffset,
7082  &checkPoint.oldestMulti,
7083  &checkPoint.oldestMultiDB);
7084 
7085  /*
7086  * Having constructed the checkpoint record, ensure all shmem disk buffers
7087  * and commit-log buffers are flushed to disk.
7088  *
7089  * This I/O could fail for various reasons. If so, we will fail to
7090  * complete the checkpoint, but there is no reason to force a system
7091  * panic. Accordingly, exit critical section while doing it.
7092  */
7093  END_CRIT_SECTION();
7094 
7095  /*
7096  * In some cases there are groups of actions that must all occur on one
7097  * side or the other of a checkpoint record. Before flushing the
7098  * checkpoint record we must explicitly wait for any backend currently
7099  * performing those groups of actions.
7100  *
7101  * One example is end of transaction, so we must wait for any transactions
7102  * that are currently in commit critical sections. If an xact inserted
7103  * its commit record into XLOG just before the REDO point, then a crash
7104  * restart from the REDO point would not replay that record, which means
7105  * that our flushing had better include the xact's update of pg_xact. So
7106  * we wait till he's out of his commit critical section before proceeding.
7107  * See notes in RecordTransactionCommit().
7108  *
7109  * Because we've already released the insertion locks, this test is a bit
7110  * fuzzy: it is possible that we will wait for xacts we didn't really need
7111  * to wait for. But the delay should be short and it seems better to make
7112  * checkpoint take a bit longer than to hold off insertions longer than
7113  * necessary. (In fact, the whole reason we have this issue is that xact.c
7114  * does commit record XLOG insertion and clog update as two separate steps
7115  * protected by different locks, but again that seems best on grounds of
7116  * minimizing lock contention.)
7117  *
7118  * A transaction that has not yet set delayChkptFlags when we look cannot
7119  * be at risk, since it has not inserted its commit record yet; and one
7120  * that's already cleared it is not at risk either, since it's done fixing
7121  * clog and we will correctly flush the update below. So we cannot miss
7122  * any xacts we need to wait for.
7123  */
7125  if (nvxids > 0)
7126  {
7127  do
7128  {
7129  /*
7130  * Keep absorbing fsync requests while we wait. There could even
7131  * be a deadlock if we don't, if the process that prevents the
7132  * checkpoint is trying to add a request to the queue.
7133  */
7135 
7136  pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_START);
7137  pg_usleep(10000L); /* wait for 10 msec */
7139  } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7141  }
7142  pfree(vxids);
7143 
7144  CheckPointGuts(checkPoint.redo, flags);
7145 
7147  if (nvxids > 0)
7148  {
7149  do
7150  {
7152 
7153  pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_COMPLETE);
7154  pg_usleep(10000L); /* wait for 10 msec */
7156  } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7158  }
7159  pfree(vxids);
7160 
7161  /*
7162  * Take a snapshot of running transactions and write this to WAL. This
7163  * allows us to reconstruct the state of running transactions during
7164  * archive recovery, if required. Skip, if this info disabled.
7165  *
7166  * If we are shutting down, or Startup process is completing crash
7167  * recovery we don't need to write running xact data.
7168  */
7169  if (!shutdown && XLogStandbyInfoActive())
7171 
7173 
7174  /*
7175  * Now insert the checkpoint record into XLOG.
7176  */
7177  XLogBeginInsert();
7178  XLogRegisterData((char *) (&checkPoint), sizeof(checkPoint));
7179  recptr = XLogInsert(RM_XLOG_ID,
7180  shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
7182 
7183  XLogFlush(recptr);
7184 
7185  /*
7186  * We mustn't write any new WAL after a shutdown checkpoint, or it will be
7187  * overwritten at next startup. No-one should even try, this just allows
7188  * sanity-checking. In the case of an end-of-recovery checkpoint, we want
7189  * to just temporarily disable writing until the system has exited
7190  * recovery.
7191  */
7192  if (shutdown)
7193  {
7194  if (flags & CHECKPOINT_END_OF_RECOVERY)
7195  LocalXLogInsertAllowed = oldXLogAllowed;
7196  else
7197  LocalXLogInsertAllowed = 0; /* never again write WAL */
7198  }
7199 
7200  /*
7201  * We now have ProcLastRecPtr = start of actual checkpoint record, recptr
7202  * = end of actual checkpoint record.
7203  */
7204  if (shutdown && checkPoint.redo != ProcLastRecPtr)
7205  ereport(PANIC,
7206  (errmsg("concurrent write-ahead log activity while database system is shutting down")));
7207 
7208  /*
7209  * Remember the prior checkpoint's redo ptr for
7210  * UpdateCheckPointDistanceEstimate()
7211  */
7212  PriorRedoPtr = ControlFile->checkPointCopy.redo;
7213 
7214  /*
7215  * Update the control file.
7216  */
7217  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7218  if (shutdown)
7221  ControlFile->checkPointCopy = checkPoint;
7222  /* crash recovery should always recover to the end of WAL */
7225 
7226  /*
7227  * Persist unloggedLSN value. It's reset on crash recovery, so this goes
7228  * unused on non-shutdown checkpoints, but seems useful to store it always
7229  * for debugging purposes.
7230  */
7232 
7234  LWLockRelease(ControlFileLock);
7235 
7236  /* Update shared-memory copy of checkpoint XID/epoch */
7238  XLogCtl->ckptFullXid = checkPoint.nextXid;
7240 
7241  /*
7242  * We are now done with critical updates; no need for system panic if we
7243  * have trouble while fooling with old log segments.
7244  */
7245  END_CRIT_SECTION();
7246 
7247  /*
7248  * WAL summaries end when the next XLOG_CHECKPOINT_REDO or
7249  * XLOG_CHECKPOINT_SHUTDOWN record is reached. This is the first point
7250  * where (a) we're not inside of a critical section and (b) we can be
7251  * certain that the relevant record has been flushed to disk, which must
7252  * happen before it can be summarized.
7253  *
7254  * If this is a shutdown checkpoint, then this happens reasonably
7255  * promptly: we've only just inserted and flushed the
7256  * XLOG_CHECKPOINT_SHUTDOWN record. If this is not a shutdown checkpoint,
7257  * then this might not be very prompt at all: the XLOG_CHECKPOINT_REDO
7258  * record was written before we began flushing data to disk, and that
7259  * could be many minutes ago at this point. However, we don't XLogFlush()
7260  * after inserting that record, so we're not guaranteed that it's on disk
7261  * until after the above call that flushes the XLOG_CHECKPOINT_ONLINE
7262  * record.
7263  */
7265 
7266  /*
7267  * Let smgr do post-checkpoint cleanup (eg, deleting old files).
7268  */
7270 
7271  /*
7272  * Update the average distance between checkpoints if the prior checkpoint
7273  * exists.
7274  */
7275  if (PriorRedoPtr != InvalidXLogRecPtr)
7277 
7278  /*
7279  * Delete old log files, those no longer needed for last checkpoint to
7280  * prevent the disk holding the xlog from growing full.
7281  */
7283  KeepLogSeg(recptr, &_logSegNo);
7285  _logSegNo, InvalidOid,
7287  {
7288  /*
7289  * Some slots have been invalidated; recalculate the old-segment
7290  * horizon, starting again from RedoRecPtr.
7291  */
7293  KeepLogSeg(recptr, &_logSegNo);
7294  }
7295  _logSegNo--;
7296  RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr,
7297  checkPoint.ThisTimeLineID);
7298 
7299  /*
7300  * Make more log segments if needed. (Do this after recycling old log
7301  * segments, since that may supply some of the needed files.)
7302  */
7303  if (!shutdown)
7304  PreallocXlogFiles(recptr, checkPoint.ThisTimeLineID);
7305 
7306  /*
7307  * Truncate pg_subtrans if possible. We can throw away all data before
7308  * the oldest XMIN of any running transaction. No future transaction will
7309  * attempt to reference any pg_subtrans entry older than that (see Asserts
7310  * in subtrans.c). During recovery, though, we mustn't do this because
7311  * StartupSUBTRANS hasn't been called yet.
7312  */
7313  if (!RecoveryInProgress())
7315 
7316  /* Real work is done; log and update stats. */
7317  LogCheckpointEnd(false);
7318 
7319  /* Reset the process title */
7320  update_checkpoint_display(flags, false, true);
7321 
7322  TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
7323  NBuffers,
7327 }
7328 
7329 /*
7330  * Mark the end of recovery in WAL though without running a full checkpoint.
7331  * We can expect that a restartpoint is likely to be in progress as we
7332  * do this, though we are unwilling to wait for it to complete.
7333  *
7334  * CreateRestartPoint() allows for the case where recovery may end before
7335  * the restartpoint completes so there is no concern of concurrent behaviour.
7336  */
7337 static void
7339 {
7340  xl_end_of_recovery xlrec;
7341  XLogRecPtr recptr;
7342 
7343  /* sanity check */
7344  if (!RecoveryInProgress())
7345  elog(ERROR, "can only be used to end recovery");
7346 
7347  xlrec.end_time = GetCurrentTimestamp();
7348  xlrec.wal_level = wal_level;
7349 
7354 
7356 
7357  XLogBeginInsert();
7358  XLogRegisterData((char *) &xlrec, sizeof(xl_end_of_recovery));
7359  recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY);
7360 
7361  XLogFlush(recptr);
7362 
7363  /*
7364  * Update the control file so that crash recovery can follow the timeline
7365  * changes to this point.
7366  */
7367  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7368  ControlFile->minRecoveryPoint = recptr;
7371  LWLockRelease(ControlFileLock);
7372 
7373  END_CRIT_SECTION();
7374 }
7375 
7376 /*
7377  * Write an OVERWRITE_CONTRECORD message.
7378  *
7379  * When on WAL replay we expect a continuation record at the start of a page
7380  * that is not there, recovery ends and WAL writing resumes at that point.
7381  * But it's wrong to resume writing new WAL back at the start of the record
7382  * that was broken, because downstream consumers of that WAL (physical
7383  * replicas) are not prepared to "rewind". So the first action after
7384  * finishing replay of all valid WAL must be to write a record of this type
7385  * at the point where the contrecord was missing; to support xlogreader
7386  * detecting the special case, XLP_FIRST_IS_OVERWRITE_CONTRECORD is also added
7387  * to the page header where the record occurs. xlogreader has an ad-hoc
7388  * mechanism to report metadata about the broken record, which is what we
7389  * use here.
7390  *
7391  * At replay time, XLP_FIRST_IS_OVERWRITE_CONTRECORD instructs xlogreader to
7392  * skip the record it was reading, and pass back the LSN of the skipped
7393  * record, so that its caller can verify (on "replay" of that record) that the
7394  * XLOG_OVERWRITE_CONTRECORD matches what was effectively overwritten.
7395  *
7396  * 'aborted_lsn' is the beginning position of the record that was incomplete.
7397  * It is included in the WAL record. 'pagePtr' and 'newTLI' point to the
7398  * beginning of the XLOG page where the record is to be inserted. They must
7399  * match the current WAL insert position, they're passed here just so that we
7400  * can verify that.
7401  */
7402 static XLogRecPtr
7404  TimeLineID newTLI)
7405 {
7407  XLogRecPtr recptr;
7408  XLogPageHeader pagehdr;
7409  XLogRecPtr startPos;
7410 
7411  /* sanity checks */
7412  if (!RecoveryInProgress())
7413  elog(ERROR, "can only be used at end of recovery");
7414  if (pagePtr % XLOG_BLCKSZ != 0)
7415  elog(ERROR, "invalid position for missing continuation record %X/%X",
7416  LSN_FORMAT_ARGS(pagePtr));
7417 
7418  /* The current WAL insert position should be right after the page header */
7419  startPos = pagePtr;
7420  if (XLogSegmentOffset(startPos, wal_segment_size) == 0)
7421  startPos += SizeOfXLogLongPHD;
7422  else
7423  startPos += SizeOfXLogShortPHD;
7424  recptr = GetXLogInsertRecPtr();
7425  if (recptr != startPos)
7426  elog(ERROR, "invalid WAL insert position %X/%X for OVERWRITE_CONTRECORD",
7427  LSN_FORMAT_ARGS(recptr));
7428 
7430 
7431  /*
7432  * Initialize the XLOG page header (by GetXLogBuffer), and set the
7433  * XLP_FIRST_IS_OVERWRITE_CONTRECORD flag.
7434  *
7435  * No other backend is allowed to write WAL yet, so acquiring the WAL
7436  * insertion lock is just pro forma.
7437  */
7439  pagehdr = (XLogPageHeader) GetXLogBuffer(pagePtr, newTLI);
7442 
7443  /*
7444  * Insert the XLOG_OVERWRITE_CONTRECORD record as the first record on the
7445  * page. We know it becomes the first record, because no other backend is
7446  * allowed to write WAL yet.
7447  */
7448  XLogBeginInsert();
7449  xlrec.overwritten_lsn = aborted_lsn;
7451  XLogRegisterData((char *) &xlrec, sizeof(xl_overwrite_contrecord));
7452  recptr = XLogInsert(RM_XLOG_ID, XLOG_OVERWRITE_CONTRECORD);
7453 
7454  /* check that the record was inserted to the right place */
7455  if (ProcLastRecPtr != startPos)
7456  elog(ERROR, "OVERWRITE_CONTRECORD was inserted to unexpected position %X/%X",
7458 
7459  XLogFlush(recptr);
7460 
7461  END_CRIT_SECTION();
7462 
7463  return recptr;
7464 }
7465 
7466 /*
7467  * Flush all data in shared memory to disk, and fsync
7468  *
7469  * This is the common code shared between regular checkpoints and
7470  * recovery restartpoints.
7471  */
7472 static void
7473 CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
7474 {
7480 
7481  /* Write out all dirty data in SLRUs and the main buffer pool */
7482  TRACE_POSTGRESQL_BUFFER_CHECKPOINT_START(flags);
7484  CheckPointCLOG();
7489  CheckPointBuffers(flags);
7490 
7491  /* Perform all queued up fsyncs */
7492  TRACE_POSTGRESQL_BUFFER_CHECKPOINT_SYNC_START();
7496  TRACE_POSTGRESQL_BUFFER_CHECKPOINT_DONE();
7497 
7498  /* We deliberately delay 2PC checkpointing as long as possible */
7499  CheckPointTwoPhase(checkPointRedo);
7500 }
7501 
7502 /*
7503  * Save a checkpoint for recovery restart if appropriate
7504  *
7505  * This function is called each time a checkpoint record is read from XLOG.
7506  * It must determine whether the checkpoint represents a safe restartpoint or
7507  * not. If so, the checkpoint record is stashed in shared memory so that
7508  * CreateRestartPoint can consult it. (Note that the latter function is
7509  * executed by the checkpointer, while this one will be executed by the
7510  * startup process.)
7511  */
7512 static void
7514 {
7515  /*
7516  * Also refrain from creating a restartpoint if we have seen any
7517  * references to non-existent pages. Restarting recovery from the
7518  * restartpoint would not see the references, so we would lose the
7519  * cross-check that the pages belonged to a relation that was dropped
7520  * later.
7521  */
7522  if (XLogHaveInvalidPages())
7523  {
7524  elog(DEBUG2,
7525  "could not record restart point at %X/%X because there "
7526  "are unresolved references to invalid pages",
7527  LSN_FORMAT_ARGS(checkPoint->redo));
7528  return;
7529  }
7530 
7531  /*
7532  * Copy the checkpoint record to shared memory, so that checkpointer can
7533  * work out the next time it wants to perform a restartpoint.
7534  */
7538  XLogCtl->lastCheckPoint = *checkPoint;
7540 }
7541 
7542 /*
7543  * Establish a restartpoint if possible.
7544  *
7545  * This is similar to CreateCheckPoint, but is used during WAL recovery
7546  * to establish a point from which recovery can roll forward without
7547  * replaying the entire recovery log.
7548  *
7549  * Returns true if a new restartpoint was established. We can only establish
7550  * a restartpoint if we have replayed a safe checkpoint record since last
7551  * restartpoint.
7552  */
7553 bool
7555 {
7556  XLogRecPtr lastCheckPointRecPtr;
7557  XLogRecPtr lastCheckPointEndPtr;
7558  CheckPoint lastCheckPoint;
7559  XLogRecPtr PriorRedoPtr;
7560  XLogRecPtr receivePtr;
7561  XLogRecPtr replayPtr;
7562  TimeLineID replayTLI;
7563  XLogRecPtr endptr;
7564  XLogSegNo _logSegNo;
7565  TimestampTz xtime;
7566 
7567  /* Concurrent checkpoint/restartpoint cannot happen */
7569 
7570  /* Get a local copy of the last safe checkpoint record. */
7572  lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr;
7573  lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr;
7574  lastCheckPoint = XLogCtl->lastCheckPoint;
7576 
7577  /*
7578  * Check that we're still in recovery mode. It's ok if we exit recovery
7579  * mode after this check, the restart point is valid anyway.
7580  */
7581  if (!RecoveryInProgress())
7582  {
7583  ereport(DEBUG2,
7584  (errmsg_internal("skipping restartpoint, recovery has already ended")));
7585  return false;
7586  }
7587 
7588  /*
7589  * If the last checkpoint record we've replayed is already our last
7590  * restartpoint, we can't perform a new restart point. We still update
7591  * minRecoveryPoint in that case, so that if this is a shutdown restart
7592  * point, we won't start up earlier than before. That's not strictly
7593  * necessary, but when hot standby is enabled, it would be rather weird if
7594  * the database opened up for read-only connections at a point-in-time
7595  * before the last shutdown. Such time travel is still possible in case of
7596  * immediate shutdown, though.
7597  *
7598  * We don't explicitly advance minRecoveryPoint when we do create a
7599  * restartpoint. It's assumed that flushing the buffers will do that as a
7600  * side-effect.
7601  */
7602  if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) ||
7603  lastCheckPoint.redo <= ControlFile->checkPointCopy.redo)
7604  {
7605  ereport(DEBUG2,
7606  (errmsg_internal("skipping restartpoint, already performed at %X/%X",
7607  LSN_FORMAT_ARGS(lastCheckPoint.redo))));
7608 
7610  if (flags & CHECKPOINT_IS_SHUTDOWN)
7611  {
7612  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7615  LWLockRelease(ControlFileLock);
7616  }
7617  return false;
7618  }
7619 
7620  /*
7621  * Update the shared RedoRecPtr so that the startup process can calculate
7622  * the number of segments replayed since last restartpoint, and request a
7623  * restartpoint if it exceeds CheckPointSegments.
7624  *
7625  * Like in CreateCheckPoint(), hold off insertions to update it, although
7626  * during recovery this is just pro forma, because no WAL insertions are
7627  * happening.
7628  */
7630  RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo;
7632 
7633  /* Also update the info_lck-protected copy */
7635  XLogCtl->RedoRecPtr = lastCheckPoint.redo;
7637 
7638  /*
7639  * Prepare to accumulate statistics.
7640  *
7641  * Note: because it is possible for log_checkpoints to change while a
7642  * checkpoint proceeds, we always accumulate stats, even if
7643  * log_checkpoints is currently off.
7644  */
7645  MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
7647 
7648  if (log_checkpoints)
7649  LogCheckpointStart(flags, true);
7650 
7651  /* Update the process title */
7652  update_checkpoint_display(flags, true, false);
7653 
7654  CheckPointGuts(lastCheckPoint.redo, flags);
7655 
7656  /*
7657  * This location needs to be after CheckPointGuts() to ensure that some
7658  * work has already happened during this checkpoint.
7659  */
7660  INJECTION_POINT("create-restart-point");
7661 
7662  /*
7663  * Remember the prior checkpoint's redo ptr for
7664  * UpdateCheckPointDistanceEstimate()
7665  */
7666  PriorRedoPtr = ControlFile->checkPointCopy.redo;
7667 
7668  /*
7669  * Update pg_control, using current time. Check that it still shows an
7670  * older checkpoint, else do nothing; this is a quick hack to make sure
7671  * nothing really bad happens if somehow we get here after the
7672  * end-of-recovery checkpoint.
7673  */
7674  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7675  if (ControlFile->checkPointCopy.redo < lastCheckPoint.redo)
7676  {
7677  /*
7678  * Update the checkpoint information. We do this even if the cluster
7679  * does not show DB_IN_ARCHIVE_RECOVERY to match with the set of WAL
7680  * segments recycled below.
7681  */
7682  ControlFile->checkPoint = lastCheckPointRecPtr;
7683  ControlFile->checkPointCopy = lastCheckPoint;
7684 
7685  /*
7686  * Ensure minRecoveryPoint is past the checkpoint record and update it
7687  * if the control file still shows DB_IN_ARCHIVE_RECOVERY. Normally,
7688  * this will have happened already while writing out dirty buffers,
7689  * but not necessarily - e.g. because no buffers were dirtied. We do
7690  * this because a backup performed in recovery uses minRecoveryPoint
7691  * to determine which WAL files must be included in the backup, and
7692  * the file (or files) containing the checkpoint record must be
7693  * included, at a minimum. Note that for an ordinary restart of
7694  * recovery there's no value in having the minimum recovery point any
7695  * earlier than this anyway, because redo will begin just after the
7696  * checkpoint record.
7697  */
7699  {
7700  if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr)
7701  {
7702  ControlFile->minRecoveryPoint = lastCheckPointEndPtr;
7704 
7705  /* update local copy */
7708  }
7709  if (flags & CHECKPOINT_IS_SHUTDOWN)
7711  }
7713  }
7714  LWLockRelease(ControlFileLock);
7715 
7716  /*
7717  * Update the average distance between checkpoints/restartpoints if the
7718  * prior checkpoint exists.
7719  */
7720  if (PriorRedoPtr != InvalidXLogRecPtr)
7722 
7723  /*
7724  * Delete old log files, those no longer needed for last restartpoint to
7725  * prevent the disk holding the xlog from growing full.
7726  */
7728 
7729  /*
7730  * Retreat _logSegNo using the current end of xlog replayed or received,
7731  * whichever is later.
7732  */
7733  receivePtr = GetWalRcvFlushRecPtr(NULL, NULL);
7734  replayPtr = GetXLogReplayRecPtr(&replayTLI);
7735  endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr;
7736  KeepLogSeg(endptr, &_logSegNo);
7738  _logSegNo, InvalidOid,
7740  {
7741  /*
7742  * Some slots have been invalidated; recalculate the old-segment
7743  * horizon, starting again from RedoRecPtr.
7744  */
7746  KeepLogSeg(endptr, &_logSegNo);
7747  }
7748  _logSegNo--;
7749 
7750  /*
7751  * Try to recycle segments on a useful timeline. If we've been promoted
7752  * since the beginning of this restartpoint, use the new timeline chosen
7753  * at end of recovery. If we're still in recovery, use the timeline we're
7754  * currently replaying.
7755  *
7756  * There is no guarantee that the WAL segments will be useful on the
7757  * current timeline; if recovery proceeds to a new timeline right after
7758  * this, the pre-allocated WAL segments on this timeline will not be used,
7759  * and will go wasted until recycled on the next restartpoint. We'll live
7760  * with that.
7761  */
7762  if (!RecoveryInProgress())
7763  replayTLI = XLogCtl->InsertTimeLineID;
7764 
7765  RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr, replayTLI);
7766 
7767  /*
7768  * Make more log segments if needed. (Do this after recycling old log
7769  * segments, since that may supply some of the needed files.)
7770  */
7771  PreallocXlogFiles(endptr, replayTLI);
7772 
7773  /*
7774  * Truncate pg_subtrans if possible. We can throw away all data before
7775  * the oldest XMIN of any running transaction. No future transaction will
7776  * attempt to reference any pg_subtrans entry older than that (see Asserts
7777  * in subtrans.c). When hot standby is disabled, though, we mustn't do
7778  * this because StartupSUBTRANS hasn't been called yet.
7779  */
7780  if (EnableHotStandby)
7782 
7783  /* Real work is done; log and update stats. */
7784  LogCheckpointEnd(true);
7785 
7786  /* Reset the process title */
7787  update_checkpoint_display(flags, true, true);
7788 
7789  xtime = GetLatestXTime();
7791  (errmsg("recovery restart point at %X/%X",
7792  LSN_FORMAT_ARGS(lastCheckPoint.redo)),
7793  xtime ? errdetail("Last completed transaction was at log time %s.",
7794  timestamptz_to_str(xtime)) : 0));
7795 
7796  /*
7797  * Finally, execute archive_cleanup_command, if any.
7798  */
7799  if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "") != 0)
7801  "archive_cleanup_command",
7802  false,
7803  WAIT_EVENT_ARCHIVE_CLEANUP_COMMAND);
7804 
7805  return true;
7806 }
7807 
7808 /*
7809  * Report availability of WAL for the given target LSN
7810  * (typically a slot's restart_lsn)
7811  *
7812  * Returns one of the following enum values:
7813  *
7814  * * WALAVAIL_RESERVED means targetLSN is available and it is in the range of
7815  * max_wal_size.
7816  *
7817  * * WALAVAIL_EXTENDED means it is still available by preserving extra
7818  * segments beyond max_wal_size. If max_slot_wal_keep_size is smaller
7819  * than max_wal_size, this state is not returned.
7820  *
7821  * * WALAVAIL_UNRESERVED means it is being lost and the next checkpoint will
7822  * remove reserved segments. The walsender using this slot may return to the
7823  * above.
7824  *
7825  * * WALAVAIL_REMOVED means it has been removed. A replication stream on
7826  * a slot with this LSN cannot continue. (Any associated walsender
7827  * processes should have been terminated already.)
7828  *
7829  * * WALAVAIL_INVALID_LSN means the slot hasn't been set to reserve WAL.
7830  */
7833 {
7834  XLogRecPtr currpos; /* current write LSN */
7835  XLogSegNo currSeg; /* segid of currpos */
7836  XLogSegNo targetSeg; /* segid of targetLSN */
7837  XLogSegNo oldestSeg; /* actual oldest segid */
7838  XLogSegNo oldestSegMaxWalSize; /* oldest segid kept by max_wal_size */
7839  XLogSegNo oldestSlotSeg; /* oldest segid kept by slot */
7840  uint64 keepSegs;
7841 
7842  /*
7843  * slot does not reserve WAL. Either deactivated, or has never been active
7844  */
7845  if (XLogRecPtrIsInvalid(targetLSN))
7846  return WALAVAIL_INVALID_LSN;
7847 
7848  /*
7849  * Calculate the oldest segment currently reserved by all slots,
7850  * considering wal_keep_size and max_slot_wal_keep_size. Initialize
7851  * oldestSlotSeg to the current segment.
7852  */
7853  currpos = GetXLogWriteRecPtr();
7854  XLByteToSeg(currpos, oldestSlotSeg, wal_segment_size);
7855  KeepLogSeg(currpos, &oldestSlotSeg);
7856 
7857  /*
7858  * Find the oldest extant segment file. We get 1 until checkpoint removes
7859  * the first WAL segment file since startup, which causes the status being
7860  * wrong under certain abnormal conditions but that doesn't actually harm.
7861  */
7862  oldestSeg = XLogGetLastRemovedSegno() + 1;
7863 
7864  /* calculate oldest segment by max_wal_size */
7865  XLByteToSeg(currpos, currSeg, wal_segment_size);
7867 
7868  if (currSeg > keepSegs)
7869  oldestSegMaxWalSize = currSeg - keepSegs;
7870  else
7871  oldestSegMaxWalSize = 1;
7872 
7873  /* the segment we care about */
7874  XLByteToSeg(targetLSN, targetSeg, wal_segment_size);
7875 
7876  /*
7877  * No point in returning reserved or extended status values if the
7878  * targetSeg is known to be lost.
7879  */
7880  if (targetSeg >= oldestSlotSeg)
7881  {
7882  /* show "reserved" when targetSeg is within max_wal_size */
7883  if (targetSeg >= oldestSegMaxWalSize)
7884  return WALAVAIL_RESERVED;
7885 
7886  /* being retained by slots exceeding max_wal_size */
7887  return WALAVAIL_EXTENDED;
7888  }
7889 
7890  /* WAL segments are no longer retained but haven't been removed yet */
7891  if (targetSeg >= oldestSeg)
7892  return WALAVAIL_UNRESERVED;
7893 
7894  /* Definitely lost */
7895  return WALAVAIL_REMOVED;
7896 }
7897 
7898 
7899 /*
7900  * Retreat *logSegNo to the last segment that we need to retain because of
7901  * either wal_keep_size or replication slots.
7902  *
7903  * This is calculated by subtracting wal_keep_size from the given xlog
7904  * location, recptr and by making sure that that result is below the
7905  * requirement of replication slots. For the latter criterion we do consider
7906  * the effects of max_slot_wal_keep_size: reserve at most that much space back
7907  * from recptr.
7908  *
7909  * Note about replication slots: if this function calculates a value
7910  * that's further ahead than what slots need reserved, then affected
7911  * slots need to be invalidated and this function invoked again.
7912  * XXX it might be a good idea to rewrite this function so that
7913  * invalidation is optionally done here, instead.
7914  */
7915 static void
7916 KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
7917 {
7918  XLogSegNo currSegNo;
7919  XLogSegNo segno;
7920  XLogRecPtr keep;
7921 
7922  XLByteToSeg(recptr, currSegNo, wal_segment_size);
7923  segno = currSegNo;
7924 
7925  /*
7926  * Calculate how many segments are kept by slots first, adjusting for
7927  * max_slot_wal_keep_size.
7928  */
7930  if (keep != InvalidXLogRecPtr && keep < recptr)
7931  {
7932  XLByteToSeg(keep, segno, wal_segment_size);
7933 
7934  /* Cap by max_slot_wal_keep_size ... */
7935  if (max_slot_wal_keep_size_mb >= 0)
7936  {
7937  uint64 slot_keep_segs;
7938 
7939  slot_keep_segs =
7941 
7942  if (currSegNo - segno > slot_keep_segs)
7943  segno = currSegNo - slot_keep_segs;
7944  }
7945  }
7946 
7947  /*
7948  * If WAL summarization is in use, don't remove WAL that has yet to be
7949  * summarized.
7950  */
7951  keep = GetOldestUnsummarizedLSN(NULL, NULL);
7952  if (keep != InvalidXLogRecPtr)
7953  {
7954  XLogSegNo unsummarized_segno;
7955 
7956  XLByteToSeg(keep, unsummarized_segno, wal_segment_size);
7957  if (unsummarized_segno < segno)
7958  segno = unsummarized_segno;
7959  }
7960 
7961  /* but, keep at least wal_keep_size if that's set */
7962  if (wal_keep_size_mb > 0)
7963  {
7964  uint64 keep_segs;
7965 
7967  if (currSegNo - segno < keep_segs)
7968  {
7969  /* avoid underflow, don't go below 1 */
7970  if (currSegNo <= keep_segs)
7971  segno = 1;
7972  else
7973  segno = currSegNo - keep_segs;
7974  }
7975  }
7976 
7977  /* don't delete WAL segments newer than the calculated segment */
7978  if (segno < *logSegNo)
7979  *logSegNo = segno;
7980 }
7981 
7982 /*
7983  * Write a NEXTOID log record
7984  */
7985 void
7987 {
7988  XLogBeginInsert();
7989  XLogRegisterData((char *) (&nextOid), sizeof(Oid));
7990  (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID);
7991 
7992  /*
7993  * We need not flush the NEXTOID record immediately, because any of the
7994  * just-allocated OIDs could only reach disk as part of a tuple insert or
7995  * update that would have its own XLOG record that must follow the NEXTOID
7996  * record. Therefore, the standard buffer LSN interlock applied to those
7997  * records will ensure no such OID reaches disk before the NEXTOID record
7998  * does.
7999  *
8000  * Note, however, that the above statement only covers state "within" the
8001  * database. When we use a generated OID as a file or directory name, we
8002  * are in a sense violating the basic WAL rule, because that filesystem
8003  * change may reach disk before the NEXTOID WAL record does. The impact
8004  * of this is that if a database crash occurs immediately afterward, we
8005  * might after restart re-generate the same OID and find that it conflicts
8006  * with the leftover file or directory. But since for safety's sake we
8007  * always loop until finding a nonconflicting filename, this poses no real
8008  * problem in practice. See pgsql-hackers discussion 27-Sep-2006.
8009  */
8010 }
8011 
8012 /*
8013  * Write an XLOG SWITCH record.
8014  *
8015  * Here we just blindly issue an XLogInsert request for the record.
8016  * All the magic happens inside XLogInsert.
8017  *
8018  * The return value is either the end+1 address of the switch record,
8019  * or the end+1 address of the prior segment if we did not need to
8020  * write a switch record because we are already at segment start.
8021  */
8022 XLogRecPtr
8023 RequestXLogSwitch(bool mark_unimportant)
8024 {
8025  XLogRecPtr RecPtr;
8026 
8027  /* XLOG SWITCH has no data */
8028  XLogBeginInsert();
8029 
8030  if (mark_unimportant)
8032  RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH);
8033 
8034  return RecPtr;
8035 }
8036 
8037 /*
8038  * Write a RESTORE POINT record
8039  */
8040 XLogRecPtr
8041 XLogRestorePoint(const char *rpName)
8042 {
8043  XLogRecPtr RecPtr;
8044  xl_restore_point xlrec;
8045 
8046  xlrec.rp_time = GetCurrentTimestamp();
8047  strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN);
8048 
8049  XLogBeginInsert();
8050  XLogRegisterData((char *) &xlrec, sizeof(xl_restore_point));
8051 
8052  RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT);
8053 
8054  ereport(LOG,
8055  (errmsg("restore point \"%s\" created at %X/%X",
8056  rpName, LSN_FORMAT_ARGS(RecPtr))));
8057 
8058  return RecPtr;
8059 }
8060 
8061 /*
8062  * Check if any of the GUC parameters that are critical for hot standby
8063  * have changed, and update the value in pg_control file if necessary.
8064  */
8065 static void
8067 {
8068  if (wal_level != ControlFile->wal_level ||
8076  {
8077  /*
8078  * The change in number of backend slots doesn't need to be WAL-logged
8079  * if archiving is not enabled, as you can't start archive recovery
8080  * with wal_level=minimal anyway. We don't really care about the
8081  * values in pg_control either if wal_level=minimal, but seems better
8082  * to keep them up-to-date to avoid confusion.
8083  */
8085  {
8086  xl_parameter_change xlrec;
8087  XLogRecPtr recptr;
8088 
8094  xlrec.wal_level = wal_level;
8095  xlrec.wal_log_hints = wal_log_hints;
8097 
8098  XLogBeginInsert();
8099  XLogRegisterData((char *) &xlrec, sizeof(xlrec));
8100 
8101  recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE);
8102  XLogFlush(recptr);
8103  }
8104 
8105  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8106 
8116 
8117  LWLockRelease(ControlFileLock);
8118  }
8119 }
8120 
8121 /*
8122  * Update full_page_writes in shared memory, and write an
8123  * XLOG_FPW_CHANGE record if necessary.
8124  *
8125  * Note: this function assumes there is no other process running
8126  * concurrently that could update it.
8127  */
8128 void
8130 {
8132  bool recoveryInProgress;
8133 
8134  /*
8135  * Do nothing if full_page_writes has not been changed.
8136  *
8137  * It's safe to check the shared full_page_writes without the lock,
8138  * because we assume that there is no concurrently running process which
8139  * can update it.
8140  */
8141  if (fullPageWrites == Insert->fullPageWrites)
8142  return;
8143 
8144  /*
8145  * Perform this outside critical section so that the WAL insert
8146  * initialization done by RecoveryInProgress() doesn't trigger an
8147  * assertion failure.
8148  */
8149  recoveryInProgress = RecoveryInProgress();
8150 
8152 
8153  /*
8154  * It's always safe to take full page images, even when not strictly
8155  * required, but not the other round. So if we're setting full_page_writes
8156  * to true, first set it true and then write the WAL record. If we're
8157  * setting it to false, first write the WAL record and then set the global
8158  * flag.
8159  */
8160  if (fullPageWrites)
8161  {
8163  Insert->fullPageWrites = true;
8165  }
8166 
8167  /*
8168  * Write an XLOG_FPW_CHANGE record. This allows us to keep track of
8169  * full_page_writes during archive recovery, if required.
8170  */
8171  if (XLogStandbyInfoActive() && !recoveryInProgress)
8172  {
8173  XLogBeginInsert();
8174  XLogRegisterData((char *) (&fullPageWrites), sizeof(bool));
8175 
8176  XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE);
8177  }
8178 
8179  if (!fullPageWrites)
8180  {
8182  Insert->fullPageWrites = false;
8184  }
8185  END_CRIT_SECTION();
8186 }
8187 
8188 /*
8189  * XLOG resource manager's routines
8190  *
8191  * Definitions of info values are in include/catalog/pg_control.h, though
8192  * not all record types are related to control file updates.
8193  *
8194  * NOTE: Some XLOG record types that are directly related to WAL recovery
8195  * are handled in xlogrecovery_redo().
8196  */
8197 void
8199 {
8200  uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
8201  XLogRecPtr lsn = record->EndRecPtr;
8202 
8203  /*
8204  * In XLOG rmgr, backup blocks are only used by XLOG_FPI and
8205  * XLOG_FPI_FOR_HINT records.
8206  */
8207  Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT ||
8208  !XLogRecHasAnyBlockRefs(record));
8209 
8210  if (info == XLOG_NEXTOID)
8211  {
8212  Oid nextOid;
8213 
8214  /*
8215  * We used to try to take the maximum of TransamVariables->nextOid and
8216  * the recorded nextOid, but that fails if the OID counter wraps
8217  * around. Since no OID allocation should be happening during replay
8218  * anyway, better to just believe the record exactly. We still take
8219  * OidGenLock while setting the variable, just in case.
8220  */
8221  memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
8222  LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8223  TransamVariables->nextOid = nextOid;
8225  LWLockRelease(OidGenLock);
8226  }
8227  else if (info == XLOG_CHECKPOINT_SHUTDOWN)
8228  {
8229  CheckPoint checkPoint;
8230  TimeLineID replayTLI;
8231 
8232  memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8233  /* In a SHUTDOWN checkpoint, believe the counters exactly */
8234  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8235  TransamVariables->nextXid = checkPoint.nextXid;
8236  LWLockRelease(XidGenLock);
8237  LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8238  TransamVariables->nextOid = checkPoint.nextOid;
8240  LWLockRelease(OidGenLock);
8241  MultiXactSetNextMXact(checkPoint.nextMulti,
8242  checkPoint.nextMultiOffset);
8243 
8245  checkPoint.oldestMultiDB);
8246 
8247  /*
8248  * No need to set oldestClogXid here as well; it'll be set when we
8249  * redo an xl_clog_truncate if it changed since initialization.
8250  */
8251  SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
8252 
8253  /*
8254  * If we see a shutdown checkpoint while waiting for an end-of-backup
8255  * record, the backup was canceled and the end-of-backup record will
8256  * never arrive.
8257  */
8261  ereport(PANIC,
8262  (errmsg("online backup was canceled, recovery cannot continue")));
8263 
8264  /*
8265  * If we see a shutdown checkpoint, we know that nothing was running
8266  * on the primary at this point. So fake-up an empty running-xacts
8267  * record and use that here and now. Recover additional standby state
8268  * for prepared transactions.
8269  */
8271  {
8272  TransactionId *xids;
8273  int nxids;
8274  TransactionId oldestActiveXID;
8275  TransactionId latestCompletedXid;
8276  RunningTransactionsData running;
8277 
8278  oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
8279 
8280  /* Update pg_subtrans entries for any prepared transactions */
8282 
8283  /*
8284  * Construct a RunningTransactions snapshot representing a shut
8285  * down server, with only prepared transactions still alive. We're
8286  * never overflowed at this point because all subxids are listed
8287  * with their parent prepared transactions.
8288  */
8289  running.xcnt = nxids;
8290  running.subxcnt = 0;
8292  running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
8293  running.oldestRunningXid = oldestActiveXID;
8294  latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
8295  TransactionIdRetreat(latestCompletedXid);
8296  Assert(TransactionIdIsNormal(latestCompletedXid));
8297  running.latestCompletedXid = latestCompletedXid;
8298  running.xids = xids;
8299 
8300  ProcArrayApplyRecoveryInfo(&running);
8301  }
8302 
8303  /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8304  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8305  ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
8306  LWLockRelease(ControlFileLock);
8307 
8308  /* Update shared-memory copy of checkpoint XID/epoch */
8310  XLogCtl->ckptFullXid = checkPoint.nextXid;
8312 
8313  /*
8314  * We should've already switched to the new TLI before replaying this
8315  * record.
8316  */
8317  (void) GetCurrentReplayRecPtr(&replayTLI);
8318  if (checkPoint.ThisTimeLineID != replayTLI)
8319  ereport(PANIC,
8320  (errmsg("unexpected timeline ID %u (should be %u) in shutdown checkpoint record",
8321  checkPoint.ThisTimeLineID, replayTLI)));
8322 
8323  RecoveryRestartPoint(&checkPoint, record);
8324  }
8325  else if (info == XLOG_CHECKPOINT_ONLINE)
8326  {
8327  CheckPoint checkPoint;
8328  TimeLineID replayTLI;
8329 
8330  memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8331  /* In an ONLINE checkpoint, treat the XID counter as a minimum */
8332  LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8334  checkPoint.nextXid))
8335  TransamVariables->nextXid = checkPoint.nextXid;
8336  LWLockRelease(XidGenLock);
8337 
8338  /*
8339  * We ignore the nextOid counter in an ONLINE checkpoint, preferring
8340  * to track OID assignment through XLOG_NEXTOID records. The nextOid
8341  * counter is from the start of the checkpoint and might well be stale
8342  * compared to later XLOG_NEXTOID records. We could try to take the
8343  * maximum of the nextOid counter and our latest value, but since
8344  * there's no particular guarantee about the speed with which the OID
8345  * counter wraps around, that's a risky thing to do. In any case,
8346  * users of the nextOid counter are required to avoid assignment of
8347  * duplicates, so that a somewhat out-of-date value should be safe.
8348  */
8349 
8350  /* Handle multixact */
8352  checkPoint.nextMultiOffset);
8353 
8354  /*
8355  * NB: This may perform multixact truncation when replaying WAL
8356  * generated by an older primary.
8357  */
8359  checkPoint.oldestMultiDB);
8361  checkPoint.oldestXid))
8362  SetTransactionIdLimit(checkPoint.oldestXid,
8363  checkPoint.oldestXidDB);
8364  /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8365  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8366  ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
8367  LWLockRelease(ControlFileLock);
8368 
8369  /* Update shared-memory copy of checkpoint XID/epoch */
8371  XLogCtl->ckptFullXid = checkPoint.nextXid;
8373 
8374  /* TLI should not change in an on-line checkpoint */
8375  (void) GetCurrentReplayRecPtr(&replayTLI);
8376  if (checkPoint.ThisTimeLineID != replayTLI)
8377  ereport(PANIC,
8378  (errmsg("unexpected timeline ID %u (should be %u) in online checkpoint record",
8379  checkPoint.ThisTimeLineID, replayTLI)));
8380 
8381  RecoveryRestartPoint(&checkPoint, record);
8382  }
8383  else if (info == XLOG_OVERWRITE_CONTRECORD)
8384  {
8385  /* nothing to do here, handled in xlogrecovery_redo() */
8386  }
8387  else if (info == XLOG_END_OF_RECOVERY)
8388  {
8389  xl_end_of_recovery xlrec;
8390  TimeLineID replayTLI;
8391 
8392  memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery));
8393 
8394  /*
8395  * For Hot Standby, we could treat this like a Shutdown Checkpoint,
8396  * but this case is rarer and harder to test, so the benefit doesn't
8397  * outweigh the potential extra cost of maintenance.
8398  */
8399 
8400  /*
8401  * We should've already switched to the new TLI before replaying this
8402  * record.
8403  */
8404  (void) GetCurrentReplayRecPtr(&replayTLI);
8405  if (xlrec.ThisTimeLineID != replayTLI)
8406  ereport(PANIC,
8407  (errmsg("unexpected timeline ID %u (should be %u) in end-of-recovery record",
8408  xlrec.ThisTimeLineID, replayTLI)));
8409  }
8410  else if (info == XLOG_NOOP)
8411  {
8412  /* nothing to do here */
8413  }
8414  else if (info == XLOG_SWITCH)
8415  {
8416  /* nothing to do here */
8417  }
8418  else if (info == XLOG_RESTORE_POINT)
8419  {
8420  /* nothing to do here, handled in xlogrecovery.c */
8421  }
8422  else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT)
8423  {
8424  /*
8425  * XLOG_FPI records contain nothing else but one or more block
8426  * references. Every block reference must include a full-page image
8427  * even if full_page_writes was disabled when the record was generated
8428  * - otherwise there would be no point in this record.
8429  *
8430  * XLOG_FPI_FOR_HINT records are generated when a page needs to be
8431  * WAL-logged because of a hint bit update. They are only generated
8432  * when checksums and/or wal_log_hints are enabled. They may include
8433  * no full-page images if full_page_writes was disabled when they were
8434  * generated. In this case there is nothing to do here.
8435  *
8436  * No recovery conflicts are generated by these generic records - if a
8437  * resource manager needs to generate conflicts, it has to define a
8438  * separate WAL record type and redo routine.
8439  */
8440  for (uint8 block_id = 0; block_id <= XLogRecMaxBlockId(record); block_id++)
8441  {
8442  Buffer buffer;
8443 
8444  if (!XLogRecHasBlockImage(record, block_id))
8445  {
8446  if (info == XLOG_FPI)
8447  elog(ERROR, "XLOG_FPI record did not contain a full-page image");
8448  continue;
8449  }
8450 
8451  if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED)
8452  elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block");
8453  UnlockReleaseBuffer(buffer);
8454  }
8455  }
8456  else if (info == XLOG_BACKUP_END)
8457  {
8458  /* nothing to do here, handled in xlogrecovery_redo() */
8459  }
8460  else if (info == XLOG_PARAMETER_CHANGE)
8461  {
8462  xl_parameter_change xlrec;
8463 
8464  /* Update our copy of the parameters in pg_control */
8465  memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change));
8466 
8467  /*
8468  * Invalidate logical slots if we are in hot standby and the primary
8469  * does not have a WAL level sufficient for logical decoding. No need
8470  * to search for potentially conflicting logically slots if standby is
8471  * running with wal_level lower than logical, because in that case, we
8472  * would have either disallowed creation of logical slots or
8473  * invalidated existing ones.
8474  */
8475  if (InRecovery && InHotStandby &&
8476  xlrec.wal_level < WAL_LEVEL_LOGICAL &&
8479  0, InvalidOid,
8481 
8482  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8488  ControlFile->wal_level = xlrec.wal_level;
8490 
8491  /*
8492  * Update minRecoveryPoint to ensure that if recovery is aborted, we
8493  * recover back up to this point before allowing hot standby again.
8494  * This is important if the max_* settings are decreased, to ensure
8495  * you don't run queries against the WAL preceding the change. The
8496  * local copies cannot be updated as long as crash recovery is
8497  * happening and we expect all the WAL to be replayed.
8498  */
8499  if (InArchiveRecovery)
8500  {
8503  }
8505  {
8506  TimeLineID replayTLI;
8507 
8508  (void) GetCurrentReplayRecPtr(&replayTLI);
8510  ControlFile->minRecoveryPointTLI = replayTLI;
8511  }
8512 
8516 
8518  LWLockRelease(ControlFileLock);
8519 
8520  /* Check to see if any parameter change gives a problem on recovery */
8522  }
8523  else if (info == XLOG_FPW_CHANGE)
8524  {
8525  bool fpw;
8526 
8527  memcpy(&fpw, XLogRecGetData(record), sizeof(bool));
8528 
8529  /*
8530  * Update the LSN of the last replayed XLOG_FPW_CHANGE record so that
8531  * do_pg_backup_start() and do_pg_backup_stop() can check whether
8532  * full_page_writes has been disabled during online backup.
8533  */
8534  if (!fpw)
8535  {
8537  if (XLogCtl->lastFpwDisableRecPtr < record->ReadRecPtr)
8540  }
8541 
8542  /* Keep track of full_page_writes */
8543  lastFullPageWrites = fpw;
8544  }
8545  else if (info == XLOG_CHECKPOINT_REDO)
8546  {
8547  /* nothing to do here, just for informational purposes */
8548  }
8549 }
8550 
8551 /*
8552  * Return the extra open flags used for opening a file, depending on the
8553  * value of the GUCs wal_sync_method, fsync and debug_io_direct.
8554  */
8555 static int
8556 get_sync_bit(int method)
8557 {
8558  int o_direct_flag = 0;
8559 
8560  /*
8561  * Use O_DIRECT if requested, except in walreceiver process. The WAL
8562  * written by walreceiver is normally read by the startup process soon
8563  * after it's written. Also, walreceiver performs unaligned writes, which
8564  * don't work with O_DIRECT, so it is required for correctness too.
8565  */
8567  o_direct_flag = PG_O_DIRECT;
8568 
8569  /* If fsync is disabled, never open in sync mode */
8570  if (!enableFsync)
8571  return o_direct_flag;
8572 
8573  switch (method)
8574  {
8575  /*
8576  * enum values for all sync options are defined even if they are
8577  * not supported on the current platform. But if not, they are
8578  * not included in the enum option array, and therefore will never
8579  * be seen here.
8580  */
8581  case WAL_SYNC_METHOD_FSYNC:
8584  return o_direct_flag;
8585 #ifdef O_SYNC
8586  case WAL_SYNC_METHOD_OPEN:
8587  return O_SYNC | o_direct_flag;
8588 #endif
8589 #ifdef O_DSYNC
8591  return O_DSYNC | o_direct_flag;
8592 #endif
8593  default:
8594  /* can't happen (unless we are out of sync with option array) */
8595  elog(ERROR, "unrecognized \"wal_sync_method\": %d", method);
8596  return 0; /* silence warning */
8597  }
8598 }
8599 
8600 /*
8601  * GUC support
8602  */
8603 void
8604 assign_wal_sync_method(int new_wal_sync_method, void *extra)
8605 {
8606  if (wal_sync_method != new_wal_sync_method)
8607  {
8608  /*
8609  * To ensure that no blocks escape unsynced, force an fsync on the
8610  * currently open log segment (if any). Also, if the open flag is
8611  * changing, close the log file so it will be reopened (with new flag
8612  * bit) at next use.
8613  */
8614  if (openLogFile >= 0)
8615  {
8616  pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN);
8617  if (pg_fsync(openLogFile) != 0)
8618  {
8619  char xlogfname[MAXFNAMELEN];
8620  int save_errno;
8621 
8622  save_errno = errno;
8623  XLogFileName(xlogfname, openLogTLI, openLogSegNo,
8625  errno = save_errno;
8626  ereport(PANIC,
8628  errmsg("could not fsync file \"%s\": %m", xlogfname)));
8629  }
8630 
8632  if (get_sync_bit(wal_sync_method) != get_sync_bit(new_wal_sync_method))
8633  XLogFileClose();
8634  }
8635  }
8636 }
8637 
8638 
8639 /*
8640  * Issue appropriate kind of fsync (if any) for an XLOG output file.
8641  *
8642  * 'fd' is a file descriptor for the XLOG file to be fsync'd.
8643  * 'segno' is for error reporting purposes.
8644  */
8645 void
8647 {
8648  char *msg = NULL;
8649  instr_time start;
8650 
8651  Assert(tli != 0);
8652 
8653  /*
8654  * Quick exit if fsync is disabled or write() has already synced the WAL
8655  * file.
8656  */
8657  if (!enableFsync ||
8660  return;
8661 
8662  /* Measure I/O timing to sync the WAL file */
8663  if (track_wal_io_timing)
8665  else
8667 
8668  pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC);
8669  switch (wal_sync_method)
8670  {
8671  case WAL_SYNC_METHOD_FSYNC:
8672  if (pg_fsync_no_writethrough(fd) != 0)
8673  msg = _("could not fsync file \"%s\": %m");
8674  break;
8675 #ifdef HAVE_FSYNC_WRITETHROUGH
8677  if (pg_fsync_writethrough(fd) != 0)
8678  msg = _("could not fsync write-through file \"%s\": %m");
8679  break;
8680 #endif
8682  if (pg_fdatasync(fd) != 0)
8683  msg = _("could not fdatasync file \"%s\": %m");
8684  break;
8685  case WAL_SYNC_METHOD_OPEN:
8687  /* not reachable */
8688  Assert(false);
8689  break;
8690  default:
8691  ereport(PANIC,
8692  errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8693  errmsg_internal("unrecognized \"wal_sync_method\": %d", wal_sync_method));
8694  break;
8695  }
8696 
8697  /* PANIC if failed to fsync */
8698  if (msg)
8699  {
8700  char xlogfname[MAXFNAMELEN];
8701  int save_errno = errno;
8702 
8703  XLogFileName(xlogfname, tli, segno, wal_segment_size);
8704  errno = save_errno;
8705  ereport(PANIC,
8707  errmsg(msg, xlogfname)));
8708  }
8709 
8711 
8712  /*
8713  * Increment the I/O timing and the number of times WAL files were synced.
8714  */
8715  if (track_wal_io_timing)
8716  {
8717  instr_time end;
8718 
8721  }
8722 
8724 }
8725 
8726 /*
8727  * do_pg_backup_start is the workhorse of the user-visible pg_backup_start()
8728  * function. It creates the necessary starting checkpoint and constructs the
8729  * backup state and tablespace map.
8730  *
8731  * Input parameters are "state" (the backup state), "fast" (if true, we do
8732  * the checkpoint in immediate mode to make it faster), and "tablespaces"
8733  * (if non-NULL, indicates a list of tablespaceinfo structs describing the
8734  * cluster's tablespaces.).
8735  *
8736  * The tablespace map contents are appended to passed-in parameter
8737  * tablespace_map and the caller is responsible for including it in the backup
8738  * archive as 'tablespace_map'. The tablespace_map file is required mainly for
8739  * tar format in windows as native windows utilities are not able to create
8740  * symlinks while extracting files from tar. However for consistency and
8741  * platform-independence, we do it the same way everywhere.
8742  *
8743  * It fills in "state" with the information required for the backup, such
8744  * as the minimum WAL location that must be present to restore from this
8745  * backup (starttli) and the corresponding timeline ID (starttli).
8746  *
8747  * Every successfully started backup must be stopped by calling
8748  * do_pg_backup_stop() or do_pg_abort_backup(). There can be many
8749  * backups active at the same time.
8750  *
8751  * It is the responsibility of the caller of this function to verify the
8752  * permissions of the calling user!
8753  */
8754 void
8755 do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces,
8756  BackupState *state, StringInfo tblspcmapfile)
8757 {
8759 
8760  Assert(state != NULL);
8762 
8763  /*
8764  * During recovery, we don't need to check WAL level. Because, if WAL
8765  * level is not sufficient, it's impossible to get here during recovery.
8766  */
8768  ereport(ERROR,
8769  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8770  errmsg("WAL level not sufficient for making an online backup"),
8771  errhint("\"wal_level\" must be set to \"replica\" or \"logical\" at server start.")));
8772 
8773  if (strlen(backupidstr) > MAXPGPATH)
8774  ereport(ERROR,
8775  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8776  errmsg("backup label too long (max %d bytes)",
8777  MAXPGPATH)));
8778 
8779  strlcpy(state->name, backupidstr, sizeof(state->name));
8780 
8781  /*
8782  * Mark backup active in shared memory. We must do full-page WAL writes
8783  * during an on-line backup even if not doing so at other times, because
8784  * it's quite possible for the backup dump to obtain a "torn" (partially
8785  * written) copy of a database page if it reads the page concurrently with
8786  * our write to the same page. This can be fixed as long as the first
8787  * write to the page in the WAL sequence is a full-page write. Hence, we
8788  * increment runningBackups then force a CHECKPOINT, to ensure there are
8789  * no dirty pages in shared memory that might get dumped while the backup
8790  * is in progress without having a corresponding WAL record. (Once the
8791  * backup is complete, we need not force full-page writes anymore, since
8792  * we expect that any pages not modified during the backup interval must
8793  * have been correctly captured by the backup.)
8794  *
8795  * Note that forcing full-page writes has no effect during an online
8796  * backup from the standby.
8797  *
8798  * We must hold all the insertion locks to change the value of
8799  * runningBackups, to ensure adequate interlocking against
8800  * XLogInsertRecord().
8801  */
8805 
8806  /*
8807  * Ensure we decrement runningBackups if we fail below. NB -- for this to
8808  * work correctly, it is critical that sessionBackupState is only updated
8809  * after this block is over.
8810  */
8812  {
8813  bool gotUniqueStartpoint = false;
8814  DIR *tblspcdir;
8815  struct dirent *de;
8816  tablespaceinfo *ti;
8817  int datadirpathlen;
8818 
8819  /*
8820  * Force an XLOG file switch before the checkpoint, to ensure that the
8821  * WAL segment the checkpoint is written to doesn't contain pages with
8822  * old timeline IDs. That would otherwise happen if you called
8823  * pg_backup_start() right after restoring from a PITR archive: the
8824  * first WAL segment containing the startup checkpoint has pages in
8825  * the beginning with the old timeline ID. That can cause trouble at
8826  * recovery: we won't have a history file covering the old timeline if
8827  * pg_wal directory was not included in the base backup and the WAL
8828  * archive was cleared too before starting the backup.
8829  *
8830  * This also ensures that we have emitted a WAL page header that has
8831  * XLP_BKP_REMOVABLE off before we emit the checkpoint record.
8832  * Therefore, if a WAL archiver (such as pglesslog) is trying to
8833  * compress out removable backup blocks, it won't remove any that
8834  * occur after this point.
8835  *
8836  * During recovery, we skip forcing XLOG file switch, which means that
8837  * the backup taken during recovery is not available for the special
8838  * recovery case described above.
8839  */
8841  RequestXLogSwitch(false);
8842 
8843  do
8844  {
8845  bool checkpointfpw;
8846 
8847  /*
8848  * Force a CHECKPOINT. Aside from being necessary to prevent torn
8849  * page problems, this guarantees that two successive backup runs
8850  * will have different checkpoint positions and hence different
8851  * history file names, even if nothing happened in between.
8852  *
8853  * During recovery, establish a restartpoint if possible. We use
8854  * the last restartpoint as the backup starting checkpoint. This
8855  * means that two successive backup runs can have same checkpoint
8856  * positions.
8857  *
8858  * Since the fact that we are executing do_pg_backup_start()
8859  * during recovery means that checkpointer is running, we can use
8860  * RequestCheckpoint() to establish a restartpoint.
8861  *
8862  * We use CHECKPOINT_IMMEDIATE only if requested by user (via
8863  * passing fast = true). Otherwise this can take awhile.
8864  */
8866  (fast ? CHECKPOINT_IMMEDIATE : 0));
8867 
8868  /*
8869  * Now we need to fetch the checkpoint record location, and also
8870  * its REDO pointer. The oldest point in WAL that would be needed
8871  * to restore starting from the checkpoint is precisely the REDO
8872  * pointer.
8873  */
8874  LWLockAcquire(ControlFileLock, LW_SHARED);
8875  state->checkpointloc = ControlFile->checkPoint;
8876  state->startpoint = ControlFile->checkPointCopy.redo;
8878  checkpointfpw = ControlFile->checkPointCopy.fullPageWrites;
8879  LWLockRelease(ControlFileLock);
8880 
8882  {
8883  XLogRecPtr recptr;
8884 
8885  /*
8886  * Check to see if all WAL replayed during online backup
8887  * (i.e., since last restartpoint used as backup starting
8888  * checkpoint) contain full-page writes.
8889  */
8891  recptr = XLogCtl->lastFpwDisableRecPtr;
8893 
8894  if (!checkpointfpw || state->startpoint <= recptr)
8895  ereport(ERROR,
8896  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8897  errmsg("WAL generated with \"full_page_writes=off\" was replayed "
8898  "since last restartpoint"),
8899  errhint("This means that the backup being taken on the standby "
8900  "is corrupt and should not be used. "
8901  "Enable \"full_page_writes\" and run CHECKPOINT on the primary, "
8902  "and then try an online backup again.")));
8903 
8904  /*
8905  * During recovery, since we don't use the end-of-backup WAL
8906  * record and don't write the backup history file, the
8907  * starting WAL location doesn't need to be unique. This means
8908  * that two base backups started at the same time might use
8909  * the same checkpoint as starting locations.
8910  */
8911  gotUniqueStartpoint = true;
8912  }
8913 
8914  /*
8915  * If two base backups are started at the same time (in WAL sender
8916  * processes), we need to make sure that they use different
8917  * checkpoints as starting locations, because we use the starting
8918  * WAL location as a unique identifier for the base backup in the
8919  * end-of-backup WAL record and when we write the backup history
8920  * file. Perhaps it would be better generate a separate unique ID
8921  * for each backup instead of forcing another checkpoint, but
8922  * taking a checkpoint right after another is not that expensive
8923  * either because only few buffers have been dirtied yet.
8924  */
8926  if (XLogCtl->Insert.lastBackupStart < state->startpoint)
8927  {
8928  XLogCtl->Insert.lastBackupStart = state->startpoint;
8929  gotUniqueStartpoint = true;
8930  }
8932  } while (!gotUniqueStartpoint);
8933 
8934  /*
8935  * Construct tablespace_map file.
8936  */
8937  datadirpathlen = strlen(DataDir);
8938 
8939  /* Collect information about all tablespaces */
8940  tblspcdir = AllocateDir("pg_tblspc");
8941  while ((de = ReadDir(tblspcdir, "pg_tblspc")) != NULL)
8942  {
8943  char fullpath[MAXPGPATH + 10];
8944  char linkpath[MAXPGPATH];
8945  char *relpath = NULL;
8946  char *s;
8947  PGFileType de_type;
8948  char *badp;
8949  Oid tsoid;
8950 
8951  /*
8952  * Try to parse the directory name as an unsigned integer.
8953  *
8954  * Tablespace directories should be positive integers that can be
8955  * represented in 32 bits, with no leading zeroes or trailing
8956  * garbage. If we come across a name that doesn't meet those
8957  * criteria, skip it.
8958  */
8959  if (de->d_name[0] < '1' || de->d_name[1] > '9')
8960  continue;
8961  errno = 0;
8962  tsoid = strtoul(de->d_name, &badp, 10);
8963  if (*badp != '\0' || errno == EINVAL || errno == ERANGE)
8964  continue;
8965 
8966  snprintf(fullpath, sizeof(fullpath), "pg_tblspc/%s", de->d_name);
8967 
8968  de_type = get_dirent_type(fullpath, de, false, ERROR);
8969 
8970  if (de_type == PGFILETYPE_LNK)
8971  {
8972  StringInfoData escapedpath;
8973  int rllen;
8974 
8975  rllen = readlink(fullpath, linkpath, sizeof(linkpath));
8976  if (rllen < 0)
8977  {
8978  ereport(WARNING,
8979  (errmsg("could not read symbolic link \"%s\": %m",
8980  fullpath)));
8981  continue;
8982  }
8983  else if (rllen >= sizeof(linkpath))
8984  {
8985  ereport(WARNING,
8986  (errmsg("symbolic link \"%s\" target is too long",
8987  fullpath)));
8988  continue;
8989  }
8990  linkpath[rllen] = '\0';
8991 
8992  /*
8993  * Relpath holds the relative path of the tablespace directory
8994  * when it's located within PGDATA, or NULL if it's located
8995  * elsewhere.
8996  */
8997  if (rllen > datadirpathlen &&
8998  strncmp(linkpath, DataDir, datadirpathlen) == 0 &&
8999  IS_DIR_SEP(linkpath[datadirpathlen]))
9000  relpath = pstrdup(linkpath + datadirpathlen + 1);
9001 
9002  /*
9003  * Add a backslash-escaped version of the link path to the
9004  * tablespace map file.
9005  */
9006  initStringInfo(&escapedpath);
9007  for (s = linkpath; *s; s++)
9008  {
9009  if (*s == '\n' || *s == '\r' || *s == '\\')
9010  appendStringInfoChar(&escapedpath, '\\');
9011  appendStringInfoChar(&escapedpath, *s);
9012  }
9013  appendStringInfo(tblspcmapfile, "%s %s\n",
9014  de->d_name, escapedpath.data);
9015  pfree(escapedpath.data);
9016  }
9017  else if (de_type == PGFILETYPE_DIR)
9018  {
9019  /*
9020  * It's possible to use allow_in_place_tablespaces to create
9021  * directories directly under pg_tblspc, for testing purposes
9022  * only.
9023  *
9024  * In this case, we store a relative path rather than an
9025  * absolute path into the tablespaceinfo.
9026  */
9027  snprintf(linkpath, sizeof(linkpath), "pg_tblspc/%s",
9028  de->d_name);
9029  relpath = pstrdup(linkpath);
9030  }
9031  else
9032  {
9033  /* Skip any other file type that appears here. */
9034  continue;
9035  }
9036 
9037  ti = palloc(sizeof(tablespaceinfo));
9038  ti->oid = tsoid;
9039  ti->path = pstrdup(linkpath);
9040  ti->rpath = relpath;
9041  ti->size = -1;
9042 
9043  if (tablespaces)
9044  *tablespaces = lappend(*tablespaces, ti);
9045  }
9046  FreeDir(tblspcdir);
9047 
9048  state->starttime = (pg_time_t) time(NULL);
9049  }
9051 
9052  state->started_in_recovery = backup_started_in_recovery;
9053 
9054  /*
9055  * Mark that the start phase has correctly finished for the backup.
9056  */
9058 }
9059 
9060 /*
9061  * Utility routine to fetch the session-level status of a backup running.
9062  */
9065 {
9066  return sessionBackupState;
9067 }
9068 
9069 /*
9070  * do_pg_backup_stop
9071  *
9072  * Utility function called at the end of an online backup. It creates history
9073  * file (if required), resets sessionBackupState and so on. It can optionally
9074  * wait for WAL segments to be archived.
9075  *
9076  * "state" is filled with the information necessary to restore from this
9077  * backup with its stop LSN (stoppoint), its timeline ID (stoptli), etc.
9078  *
9079  * It is the responsibility of the caller of this function to verify the
9080  * permissions of the calling user!
9081  */
9082 void
9083 do_pg_backup_stop(BackupState *state, bool waitforarchive)
9084 {
9085  bool backup_stopped_in_recovery = false;
9086  char histfilepath[MAXPGPATH];
9087  char lastxlogfilename[MAXFNAMELEN];
9088  char histfilename[MAXFNAMELEN];
9089  XLogSegNo _logSegNo;
9090  FILE *fp;
9091  int seconds_before_warning;
9092  int waits = 0;
9093  bool reported_waiting = false;
9094 
9095  Assert(state != NULL);
9096 
9097  backup_stopped_in_recovery = RecoveryInProgress();
9098 
9099  /*
9100  * During recovery, we don't need to check WAL level. Because, if WAL
9101  * level is not sufficient, it's impossible to get here during recovery.
9102  */
9103  if (!backup_stopped_in_recovery && !XLogIsNeeded())
9104  ereport(ERROR,
9105  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9106  errmsg("WAL level not sufficient for making an online backup"),
9107  errhint("wal_level must be set to \"replica\" or \"logical\" at server start.")));
9108 
9109  /*
9110  * OK to update backup counter and session-level lock.
9111  *
9112  * Note that CHECK_FOR_INTERRUPTS() must not occur while updating them,
9113  * otherwise they can be updated inconsistently, which might cause
9114  * do_pg_abort_backup() to fail.
9115  */
9117 
9118  /*
9119  * It is expected that each do_pg_backup_start() call is matched by
9120  * exactly one do_pg_backup_stop() call.
9121  */
9124 
9125  /*
9126  * Clean up session-level lock.
9127  *
9128  * You might think that WALInsertLockRelease() can be called before
9129  * cleaning up session-level lock because session-level lock doesn't need
9130  * to be protected with WAL insertion lock. But since
9131  * CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be
9132  * cleaned up before it.
9133  */
9135 
9137 
9138  /*
9139  * If we are taking an online backup from the standby, we confirm that the
9140  * standby has not been promoted during the backup.
9141  */
9142  if (state->started_in_recovery && !backup_stopped_in_recovery)
9143  ereport(ERROR,
9144  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9145  errmsg("the standby was promoted during online backup"),
9146  errhint("This means that the backup being taken is corrupt "
9147  "and should not be used. "
9148  "Try taking another online backup.")));
9149 
9150  /*
9151  * During recovery, we don't write an end-of-backup record. We assume that
9152  * pg_control was backed up last and its minimum recovery point can be
9153  * available as the backup end location. Since we don't have an
9154  * end-of-backup record, we use the pg_control value to check whether
9155  * we've reached the end of backup when starting recovery from this
9156  * backup. We have no way of checking if pg_control wasn't backed up last
9157  * however.
9158  *
9159  * We don't force a switch to new WAL file but it is still possible to
9160  * wait for all the required files to be archived if waitforarchive is
9161  * true. This is okay if we use the backup to start a standby and fetch
9162  * the missing WAL using streaming replication. But in the case of an
9163  * archive recovery, a user should set waitforarchive to true and wait for
9164  * them to be archived to ensure that all the required files are
9165  * available.
9166  *
9167  * We return the current minimum recovery point as the backup end
9168  * location. Note that it can be greater than the exact backup end
9169  * location if the minimum recovery point is updated after the backup of
9170  * pg_control. This is harmless for current uses.
9171  *
9172  * XXX currently a backup history file is for informational and debug
9173  * purposes only. It's not essential for an online backup. Furthermore,
9174  * even if it's created, it will not be archived during recovery because
9175  * an archiver is not invoked. So it doesn't seem worthwhile to write a
9176  * backup history file during recovery.
9177  */
9178  if (backup_stopped_in_recovery)
9179  {
9180  XLogRecPtr recptr;
9181 
9182  /*
9183  * Check to see if all WAL replayed during online backup contain
9184  * full-page writes.
9185  */
9187  recptr = XLogCtl->lastFpwDisableRecPtr;
9189 
9190  if (state->startpoint <= recptr)
9191  ereport(ERROR,
9192  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9193  errmsg("WAL generated with \"full_page_writes=off\" was replayed "
9194  "during online backup"),
9195  errhint("This means that the backup being taken on the standby "
9196  "is corrupt and should not be used. "
9197  "Enable \"full_page_writes\" and run CHECKPOINT on the primary, "
9198  "and then try an online backup again.")));
9199 
9200 
9201  LWLockAcquire(ControlFileLock, LW_SHARED);
9202  state->stoppoint = ControlFile->minRecoveryPoint;
9204  LWLockRelease(ControlFileLock);
9205  }
9206  else
9207  {
9208  char *history_file;
9209 
9210  /*
9211  * Write the backup-end xlog record
9212  */
9213  XLogBeginInsert();
9214  XLogRegisterData((char *) (&state->startpoint),
9215  sizeof(state->startpoint));
9216  state->stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END);
9217 
9218  /*
9219  * Given that we're not in recovery, InsertTimeLineID is set and can't
9220  * change, so we can read it without a lock.
9221  */
9222  state->stoptli = XLogCtl->InsertTimeLineID;
9223 
9224  /*
9225  * Force a switch to a new xlog segment file, so that the backup is
9226  * valid as soon as archiver moves out the current segment file.
9227  */
9228  RequestXLogSwitch(false);
9229 
9230  state->stoptime = (pg_time_t) time(NULL);
9231 
9232  /*
9233  * Write the backup history file
9234  */
9235  XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9236  BackupHistoryFilePath(histfilepath, state->stoptli, _logSegNo,
9237  state->startpoint, wal_segment_size);
9238  fp = AllocateFile(histfilepath, "w");
9239  if (!fp)
9240  ereport(ERROR,
9242  errmsg("could not create file \"%s\": %m",
9243  histfilepath)));
9244 
9245  /* Build and save the contents of the backup history file */
9246  history_file = build_backup_content(state, true);
9247  fprintf(fp, "%s", history_file);
9248  pfree(history_file);
9249 
9250  if (fflush(fp) || ferror(fp) || FreeFile(fp))
9251  ereport(ERROR,
9253  errmsg("could not write file \"%s\": %m",
9254  histfilepath)));
9255 
9256  /*
9257  * Clean out any no-longer-needed history files. As a side effect,
9258  * this will post a .ready file for the newly created history file,
9259  * notifying the archiver that history file may be archived
9260  * immediately.
9261  */
9263  }
9264 
9265  /*
9266  * If archiving is enabled, wait for all the required WAL files to be
9267  * archived before returning. If archiving isn't enabled, the required WAL
9268  * needs to be transported via streaming replication (hopefully with
9269  * wal_keep_size set high enough), or some more exotic mechanism like
9270  * polling and copying files from pg_wal with script. We have no knowledge
9271  * of those mechanisms, so it's up to the user to ensure that he gets all
9272  * the required WAL.
9273  *
9274  * We wait until both the last WAL file filled during backup and the
9275  * history file have been archived, and assume that the alphabetic sorting
9276  * property of the WAL files ensures any earlier WAL files are safely
9277  * archived as well.
9278  *
9279  * We wait forever, since archive_command is supposed to work and we
9280  * assume the admin wanted his backup to work completely. If you don't
9281  * wish to wait, then either waitforarchive should be passed in as false,
9282  * or you can set statement_timeout. Also, some notices are issued to
9283  * clue in anyone who might be doing this interactively.
9284  */
9285 
9286  if (waitforarchive &&
9287  ((!backup_stopped_in_recovery && XLogArchivingActive()) ||
9288  (backup_stopped_in_recovery && XLogArchivingAlways())))
9289  {
9290  XLByteToPrevSeg(state->stoppoint, _logSegNo, wal_segment_size);
9291  XLogFileName(lastxlogfilename, state->stoptli, _logSegNo,
9293 
9294  XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9295  BackupHistoryFileName(histfilename, state->stoptli, _logSegNo,
9296  state->startpoint, wal_segment_size);
9297 
9298  seconds_before_warning = 60;
9299  waits = 0;
9300 
9301  while (XLogArchiveIsBusy(lastxlogfilename) ||
9302  XLogArchiveIsBusy(histfilename))
9303  {
9305 
9306  if (!reported_waiting && waits > 5)
9307  {
9308  ereport(NOTICE,
9309  (errmsg("base backup done, waiting for required WAL segments to be archived")));
9310  reported_waiting = true;
9311  }
9312 
9313  (void) WaitLatch(MyLatch,
9315  1000L,
9316  WAIT_EVENT_BACKUP_WAIT_WAL_ARCHIVE);
9318 
9319  if (++waits >= seconds_before_warning)
9320  {
9321  seconds_before_warning *= 2; /* This wraps in >10 years... */
9322  ereport(WARNING,
9323  (errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)",
9324  waits),
9325  errhint("Check that your \"archive_command\" is executing properly. "
9326  "You can safely cancel this backup, "
9327  "but the database backup will not be usable without all the WAL segments.")));
9328  }
9329  }
9330 
9331  ereport(NOTICE,
9332  (errmsg("all required WAL segments have been archived")));
9333  }
9334  else if (waitforarchive)
9335  ereport(NOTICE,
9336  (errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup")));
9337 }
9338 
9339 
9340 /*
9341  * do_pg_abort_backup: abort a running backup
9342  *
9343  * This does just the most basic steps of do_pg_backup_stop(), by taking the
9344  * system out of backup mode, thus making it a lot more safe to call from
9345  * an error handler.
9346  *
9347  * 'arg' indicates that it's being called during backup setup; so
9348  * sessionBackupState has not been modified yet, but runningBackups has
9349  * already been incremented. When it's false, then it's invoked as a
9350  * before_shmem_exit handler, and therefore we must not change state
9351  * unless sessionBackupState indicates that a backup is actually running.
9352  *
9353  * NB: This gets used as a PG_ENSURE_ERROR_CLEANUP callback and
9354  * before_shmem_exit handler, hence the odd-looking signature.
9355  */
9356 void
9358 {
9359  bool during_backup_start = DatumGetBool(arg);
9360 
9361  /* If called during backup start, there shouldn't be one already running */
9362  Assert(!during_backup_start || sessionBackupState == SESSION_BACKUP_NONE);
9363 
9364  if (during_backup_start || sessionBackupState != SESSION_BACKUP_NONE)
9365  {
9369 
9372 
9373  if (!during_backup_start)
9374  ereport(WARNING,
9375  errmsg("aborting backup due to backend exiting before pg_backup_stop was called"));
9376  }
9377 }
9378 
9379 /*
9380  * Register a handler that will warn about unterminated backups at end of
9381  * session, unless this has already been done.
9382  */
9383 void
9385 {
9386  static bool already_done = false;
9387 
9388  if (already_done)
9389  return;
9391  already_done = true;
9392 }
9393 
9394 /*
9395  * Get latest WAL insert pointer
9396  */
9397 XLogRecPtr
9399 {
9401  uint64 current_bytepos;
9402 
9403  SpinLockAcquire(&Insert->insertpos_lck);
9404  current_bytepos = Insert->CurrBytePos;
9405  SpinLockRelease(&Insert->insertpos_lck);
9406 
9407  return XLogBytePosToRecPtr(current_bytepos);
9408 }
9409 
9410 /*
9411  * Get latest WAL write pointer
9412  */
9413 XLogRecPtr
9415 {
9417 
9418  return LogwrtResult.Write;
9419 }
9420 
9421 /*
9422  * Returns the redo pointer of the last checkpoint or restartpoint. This is
9423  * the oldest point in WAL that we still need, if we have to restart recovery.
9424  */
9425 void
9427 {
9428  LWLockAcquire(ControlFileLock, LW_SHARED);
9429  *oldrecptr = ControlFile->checkPointCopy.redo;
9431  LWLockRelease(ControlFileLock);
9432 }
9433 
9434 /* Thin wrapper around ShutdownWalRcv(). */
9435 void
9437 {
9438  ShutdownWalRcv();
9439 
9440  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9442  LWLockRelease(ControlFileLock);
9443 }
9444 
9445 /* Enable WAL file recycling and preallocation. */
9446 void
9448 {
9449  LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9451  LWLockRelease(ControlFileLock);
9452 }
9453 
9454 bool
9456 {
9457  bool result;
9458 
9459  LWLockAcquire(ControlFileLock, LW_SHARED);
9461  LWLockRelease(ControlFileLock);
9462 
9463  return result;
9464 }
9465 
9466 /*
9467  * Update the WalWriterSleeping flag.
9468  */
9469 void
9470 SetWalWriterSleeping(bool sleeping)
9471 {
9473  XLogCtl->WalWriterSleeping = sleeping;
9475 }
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:259
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:478
#define pg_memory_barrier()
Definition: atomics.h:136
#define pg_read_barrier()
Definition: atomics.h:149
static uint64 pg_atomic_read_membarrier_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:469
#define pg_write_barrier()
Definition: atomics.h:150
static uint64 pg_atomic_monotonic_advance_u64(volatile pg_atomic_uint64 *ptr, uint64 target)
Definition: atomics.h:578
static uint64 pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
Definition: atomics.h:515
static void pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:446
static void pg_atomic_write_membarrier_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:487
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:460
TimeLineID findNewestTimeLine(TimeLineID startTLI)
Definition: timeline.c:264
void restoreTimeLineHistoryFiles(TimeLineID begin, TimeLineID end)
Definition: timeline.c:50
void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI, XLogRecPtr switchpoint, char *reason)
Definition: timeline.c:304
void startup_progress_timeout_handler(void)
Definition: startup.c:303
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1767
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1791
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1655
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1619
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1854
static bool backup_started_in_recovery
Definition: basebackup.c:123
int Buffer
Definition: buf.h:23
void CheckPointBuffers(int flags)
Definition: bufmgr.c:3722
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:4953
unsigned int uint32
Definition: c.h:506
#define Min(x, y)
Definition: c.h:1004
#define pg_attribute_unused()
Definition: c.h:123
#define likely(x)
Definition: c.h:310
#define MAXALIGN(LEN)
Definition: c.h:811
#define TYPEALIGN(ALIGNVAL, LEN)
Definition: c.h:804
#define Max(x, y)
Definition: c.h:998
#define Assert(condition)
Definition: c.h:858
#define PG_BINARY
Definition: c.h:1273
#define pg_attribute_always_inline
Definition: c.h:234
#define FLOAT8PASSBYVAL
Definition: c.h:635
#define unlikely(x)
Definition: c.h:311
#define MAXALIGN64(LEN)
Definition: c.h:836
#define PG_UINT64_MAX
Definition: c.h:593
unsigned char uint8
Definition: c.h:504
#define MemSet(start, val, len)
Definition: c.h:1020
uint32 TransactionId
Definition: c.h:652
size_t Size
Definition: c.h:605
#define CATALOG_VERSION_NO
Definition: catversion.h:60
void AbsorbSyncRequests(void)
double CheckPointCompletionTarget
Definition: checkpointer.c:138
void RequestCheckpoint(int flags)
Definition: checkpointer.c:941
void BootStrapCLOG(void)
Definition: clog.c:833
void StartupCLOG(void)
Definition: clog.c:877
void CheckPointCLOG(void)
Definition: clog.c:937
void TrimCLOG(void)
Definition: clog.c:892
void StartupCommitTs(void)
Definition: commit_ts.c:632
void CommitTsParameterChange(bool newvalue, bool oldvalue)
Definition: commit_ts.c:664
bool track_commit_timestamp
Definition: commit_ts.c:109
void CompleteCommitTsInitialization(void)
Definition: commit_ts.c:642
void BootStrapCommitTs(void)
Definition: commit_ts.c:596
void SetCommitTsLimit(TransactionId oldestXact, TransactionId newestXact)
Definition: commit_ts.c:909
void CheckPointCommitTs(void)
Definition: commit_ts.c:820
void update_controlfile(const char *DataDir, ControlFileData *ControlFile, bool do_sync)
int64 TimestampTz
Definition: timestamp.h:39
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1180
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
int errcode_for_file_access(void)
Definition: elog.c:876
int errdetail(const char *fmt,...)
Definition: elog.c:1203
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define _(x)
Definition: elog.c:90
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:224
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:149
struct pg_atomic_uint64 pg_atomic_uint64
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2909
int MakePGDirectory(const char *directoryName)
Definition: fd.c:3913
int FreeDir(DIR *dir)
Definition: fd.c:2961
int pg_fsync_no_writethrough(int fd)
Definition: fd.c:441
int io_direct_flags
Definition: fd.c:168
FILE * AllocateFile(const char *name, const char *mode)
Definition: fd.c:2583
int durable_rename(const char *oldfile, const char *newfile, int elevel)
Definition: fd.c:782
int pg_fdatasync(int fd)
Definition: fd.c:480
int CloseTransientFile(int fd)
Definition: fd.c:2809
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1087
int FreeFile(FILE *file)
Definition: fd.c:2781
int pg_fsync_writethrough(int fd)
Definition: fd.c:461
void ReleaseExternalFD(void)
Definition: fd.c:1239
int data_sync_elevel(int elevel)
Definition: fd.c:3936
static void Insert(File file)
Definition: fd.c:1313
int durable_unlink(const char *fname, int elevel)
Definition: fd.c:872
void ReserveExternalFD(void)
Definition: fd.c:1221
int pg_fsync(int fd)
Definition: fd.c:386
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2633
void SyncDataDirectory(void)
Definition: fd.c:3544
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2843
#define IO_DIRECT_WAL
Definition: fd.h:55
#define IO_DIRECT_WAL_INIT
Definition: fd.h:56
#define PG_O_DIRECT
Definition: fd.h:97
ssize_t pg_pwrite_zeros(int fd, size_t size, off_t offset)
Definition: file_utils.c:687
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:525
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_LNK
Definition: file_utils.h:24
@ PGFILETYPE_DIR
Definition: file_utils.h:23
@ PGFILETYPE_REG
Definition: file_utils.h:22
bool IsBinaryUpgrade
Definition: globals.c:119
int NBuffers
Definition: globals.c:140
bool enableFsync
Definition: globals.c:127
ProcNumber MyProcNumber
Definition: globals.c:88
bool IsUnderPostmaster
Definition: globals.c:118
int MaxConnections
Definition: globals.c:141
volatile uint32 CritSectionCount
Definition: globals.c:44
char * DataDir
Definition: globals.c:69
bool IsPostmasterEnvironment
Definition: globals.c:117
struct Latch * MyLatch
Definition: globals.c:61
int max_worker_processes
Definition: globals.c:142
void * guc_malloc(int elevel, size_t size)
Definition: guc.c:637
struct config_generic * find_option(const char *name, bool create_placeholders, bool skip_errors, int elevel)
Definition: guc.c:1234
int set_config_option_ext(const char *name, const char *value, GucContext context, GucSource source, Oid srole, GucAction action, bool changeVal, int elevel, bool is_reload)
Definition: guc.c:3380
void SetConfigOption(const char *name, const char *value, GucContext context, GucSource source)
Definition: guc.c:4282
#define newval
@ GUC_ACTION_SET
Definition: guc.h:199
#define GUC_check_errdetail
Definition: guc.h:472
GucSource
Definition: guc.h:108
@ PGC_S_DYNAMIC_DEFAULT
Definition: guc.h:110
@ PGC_S_OVERRIDE
Definition: guc.h:119
@ PGC_INTERNAL
Definition: guc.h:69
@ PGC_POSTMASTER
Definition: guc.h:70
return str start
#define TOAST_MAX_CHUNK_SIZE
Definition: heaptoast.h:84
#define INJECTION_POINT(name)
#define INSTR_TIME_SET_CURRENT(t)
Definition: instr_time.h:122
#define INSTR_TIME_SET_ZERO(t)
Definition: instr_time.h:172
#define INSTR_TIME_ACCUM_DIFF(x, y, z)
Definition: instr_time.h:184
WalUsage pgWalUsage
Definition: instrument.c:22
#define close(a)
Definition: win32.h:12
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
#define PG_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:47
#define PG_END_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:52
int i
Definition: isn.c:73
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:77
#define LOBLKSIZE
Definition: large_object.h:70
void SetLatch(Latch *latch)
Definition: latch.c:632
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
static void const char fflush(stdout)
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_free(List *list)
Definition: list.c:1546
int max_locks_per_xact
Definition: lock.c:53
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1720
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1854
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1168
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1584
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1781
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:707
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1339
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1396
@ LWTRANCHE_WAL_INSERT
Definition: lwlock.h:186
@ LW_SHARED
Definition: lwlock.h:115
@ LW_EXCLUSIVE
Definition: lwlock.h:114
char * pstrdup(const char *in)
Definition: mcxt.c:1696
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:694
void * palloc(Size size)
Definition: mcxt.c:1317
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:454
#define START_CRIT_SECTION()
Definition: miscadmin.h:149
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
@ B_CHECKPOINTER
Definition: miscadmin.h:357
#define END_CRIT_SECTION()
Definition: miscadmin.h:151
#define AmWalReceiverProcess()
Definition: miscadmin.h:383
bool process_shared_preload_libraries_done
Definition: miscinit.c:1779
BackendType MyBackendType
Definition: miscinit.c:63
void MultiXactSetNextMXact(MultiXactId nextMulti, MultiXactOffset nextMultiOffset)
Definition: multixact.c:2320
void MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
Definition: multixact.c:2528
void MultiXactGetCheckptMulti(bool is_shutdown, MultiXactId *nextMulti, MultiXactOffset *nextMultiOffset, MultiXactId *oldestMulti, Oid *oldestMultiDB)
Definition: multixact.c:2274
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid, bool is_startup)
Definition: multixact.c:2354
void CheckPointMultiXact(void)
Definition: multixact.c:2296
void TrimMultiXact(void)
Definition: multixact.c:2170
void MultiXactAdvanceNextMXact(MultiXactId minMulti, MultiXactOffset minMultiOffset)
Definition: multixact.c:2503
void BootStrapMultiXact(void)
Definition: multixact.c:2026
void StartupMultiXact(void)
Definition: multixact.c:2145
#define FirstMultiXactId
Definition: multixact.h:25
void StartupReplicationOrigin(void)
Definition: origin.c:699
void CheckPointReplicationOrigin(void)
Definition: origin.c:573
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define INDEX_MAX_KEYS
#define NAMEDATALEN
#define MAXPGPATH
#define DEFAULT_XLOG_SEG_SIZE
#define PG_IO_ALIGN_SIZE
#define PG_CACHE_LINE_SIZE
#define FLOATFORMAT_VALUE
Definition: pg_control.h:201
#define XLOG_RESTORE_POINT
Definition: pg_control.h:75
#define XLOG_FPW_CHANGE
Definition: pg_control.h:76
#define XLOG_CHECKPOINT_REDO
Definition: pg_control.h:82
#define PG_CONTROL_VERSION
Definition: pg_control.h:25
#define XLOG_OVERWRITE_CONTRECORD
Definition: pg_control.h:81
#define XLOG_FPI
Definition: pg_control.h:79
#define XLOG_FPI_FOR_HINT
Definition: pg_control.h:78
#define MOCK_AUTH_NONCE_LEN
Definition: pg_control.h:28
#define XLOG_NEXTOID
Definition: pg_control.h:71
@ DB_IN_PRODUCTION
Definition: pg_control.h:97
@ DB_SHUTDOWNING
Definition: pg_control.h:94
@ DB_IN_ARCHIVE_RECOVERY
Definition: pg_control.h:96
@ DB_SHUTDOWNED_IN_RECOVERY
Definition: pg_control.h:93
@ DB_SHUTDOWNED
Definition: pg_control.h:92
@ DB_IN_CRASH_RECOVERY
Definition: pg_control.h:95
#define XLOG_NOOP
Definition: pg_control.h:70
#define XLOG_CHECKPOINT_SHUTDOWN
Definition: pg_control.h:68
#define PG_CONTROL_FILE_SIZE
Definition: pg_control.h:250
#define XLOG_SWITCH
Definition: pg_control.h:72
#define XLOG_BACKUP_END
Definition: pg_control.h:73
#define XLOG_PARAMETER_CHANGE
Definition: pg_control.h:74
#define XLOG_CHECKPOINT_ONLINE
Definition: pg_control.h:69
#define XLOG_END_OF_RECOVERY
Definition: pg_control.h:77
uint32 pg_crc32c
Definition: pg_crc32c.h:38
#define COMP_CRC32C(crc, data, len)
Definition: pg_crc32c.h:98
#define EQ_CRC32C(c1, c2)
Definition: pg_crc32c.h:42
#define INIT_CRC32C(crc)
Definition: pg_crc32c.h:41
#define FIN_CRC32C(crc)
Definition: pg_crc32c.h:103
const void size_t len
return crc
static char * filename
Definition: pg_dumpall.c:119
#define lfirst(lc)
Definition: pg_list.h:172
static rewind_source * source
Definition: pg_rewind.c:89
static char * buf
Definition: pg_test_fsync.c:73
void pgstat_restore_stats(void)
Definition: pgstat.c:450
void pgstat_discard_stats(void)
Definition: pgstat.c:462
PgStat_CheckpointerStats PendingCheckpointerStats
PgStat_PendingWalStats PendingWalStats
Definition: pgstat_wal.c:24
int64 pg_time_t
Definition: pgtime.h:23
struct pg_tm * pg_localtime(const pg_time_t *timep, const pg_tz *tz)
Definition: localtime.c:1344
size_t pg_strftime(char *s, size_t maxsize, const char *format, const struct pg_tm *t)
Definition: strftime.c:128
PGDLLIMPORT pg_tz * log_timezone
Definition: pgtz.c:31
bool pg_strong_random(void *buf, size_t len)
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:36
#define pg_pwrite
Definition: port.h:226
#define snprintf
Definition: port.h:238
#define fprintf
Definition: port.h:242
#define IS_DIR_SEP(ch)
Definition: port.h:102
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static bool DatumGetBool(Datum X)
Definition: postgres.h:90
uintptr_t Datum
Definition: postgres.h:64
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
void CheckPointPredicate(void)
Definition: predicate.c:1036
static int fd(const char *x, int i)
Definition: preproc-init.c:105
short access
Definition: preproc-type.c:36
#define DELAY_CHKPT_START
Definition: proc.h:114
#define DELAY_CHKPT_COMPLETE
Definition: proc.h:115
VirtualTransactionId * GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
Definition: procarray.c:3047
bool MinimumActiveBackends(int min)
Definition: procarray.c:3550
TransactionId GetOldestActiveTransactionId(void)
Definition: procarray.c:2884
TransactionId GetOldestTransactionIdConsideredRunning(void)
Definition: procarray.c:2034
bool HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
Definition: procarray.c:3093
void ProcArrayApplyRecoveryInfo(RunningTransactions running)
Definition: procarray.c:1054
void ProcArrayInitRecovery(TransactionId initializedUptoXID)
Definition: procarray.c:1023
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
MemoryContextSwitchTo(old_ctx)
void ResetUnloggedRelations(int op)
Definition: reinit.c:47
#define UNLOGGED_RELATION_INIT
Definition: reinit.h:28
#define UNLOGGED_RELATION_CLEANUP
Definition: reinit.h:27
void RelationCacheInitFileRemove(void)
Definition: relcache.c:6801
void CheckPointRelationMap(void)
Definition: relmapper.c:611
#define relpath(rlocator, forknum)
Definition: relpath.h:94
void StartupReorderBuffer(void)
ResourceOwner CurrentResourceOwner
Definition: resowner.c:165
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:168
void CheckPointLogicalRewriteHeap(void)
Definition: rewriteheap.c:1155
#define RM_MAX_ID
Definition: rmgr.h:33
int slock_t
Definition: s_lock.h:670
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void pg_usleep(long microsec)
Definition: signal.c:53
static pg_noinline void Size size
Definition: slab.c:607
void CheckPointReplicationSlots(bool is_shutdown)
Definition: slot.c:1860
bool InvalidateObsoleteReplicationSlots(ReplicationSlotInvalidationCause cause, XLogSegNo oldestSegno, Oid dboid, TransactionId snapshotConflictHorizon)
Definition: slot.c:1804
void StartupReplicationSlots(void)
Definition: slot.c:1917
@ RS_INVAL_WAL_REMOVED
Definition: slot.h:51
@ RS_INVAL_WAL_LEVEL
Definition: slot.h:55
void CheckPointSnapBuild(void)
Definition: snapbuild.c:2071
void DeleteAllExportedSnapshotFiles(void)
Definition: snapmgr.c:1567
#define SpinLockInit(lock)
Definition: spin.h:60
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
void reset(void)
Definition: sql-declare.c:600
PGPROC * MyProc
Definition: proc.c:66
PROC_HDR * ProcGlobal
Definition: proc.c:78
XLogRecPtr LogStandbySnapshot(void)
Definition: standby.c:1285
void InitRecoveryTransactionEnvironment(void)
Definition: standby.c:94
void ShutdownRecoveryTransactionEnvironment(void)
Definition: standby.c:160
@ SUBXIDS_IN_SUBTRANS
Definition: standby.h:82
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:97
void appendBinaryStringInfo(StringInfo str, const void *data, int datalen)
Definition: stringinfo.c:233
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:182
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:194
void initStringInfo(StringInfo str)
Definition: stringinfo.c:59
Oid oldestMultiDB
Definition: pg_control.h:51
MultiXactId oldestMulti
Definition: pg_control.h:50
MultiXactOffset nextMultiOffset
Definition: pg_control.h:47
TransactionId newestCommitTsXid
Definition: pg_control.h:55
TransactionId oldestXid
Definition: pg_control.h:48
TimeLineID PrevTimeLineID
Definition: pg_control.h:40
TimeLineID ThisTimeLineID
Definition: pg_control.h:39
Oid nextOid
Definition: pg_control.h:45
TransactionId oldestActiveXid
Definition: pg_control.h:64
bool fullPageWrites
Definition: pg_control.h:42
MultiXactId nextMulti
Definition: pg_control.h:46
FullTransactionId nextXid
Definition: pg_control.h:44
TransactionId oldestCommitTsXid
Definition: pg_control.h:53
pg_time_t time
Definition: pg_control.h:52
int wal_level
Definition: pg_control.h:43
XLogRecPtr redo
Definition: pg_control.h:37
Oid oldestXidDB
Definition: pg_control.h:49
uint64 ckpt_agg_sync_time
Definition: xlog.h:175
uint64 ckpt_longest_sync
Definition: xlog.h:174
TimestampTz ckpt_start_t
Definition: xlog.h:161
TimestampTz ckpt_end_t
Definition: xlog.h:165
int ckpt_segs_removed
Definition: xlog.h:170
TimestampTz ckpt_write_t
Definition: xlog.h:162
int ckpt_segs_added
Definition: xlog.h:169
TimestampTz ckpt_sync_end_t
Definition: xlog.h:164
TimestampTz ckpt_sync_t
Definition: xlog.h:163
int ckpt_bufs_written
Definition: xlog.h:167
int ckpt_segs_recycled
Definition: xlog.h:171
int ckpt_sync_rels
Definition: xlog.h:173
char mock_authentication_nonce[MOCK_AUTH_NONCE_LEN]
Definition: pg_control.h:229
int max_worker_processes
Definition: pg_control.h:181
uint32 pg_control_version
Definition: pg_control.h:125
uint32 xlog_seg_size
Definition: pg_control.h:211
XLogRecPtr backupStartPoint
Definition: pg_control.h:170
bool track_commit_timestamp
Definition: pg_control.h:185
bool backupEndRequired
Definition: pg_control.h:172
int max_locks_per_xact
Definition: pg_control.h:184
uint32 nameDataLen
Definition: pg_control.h:213
CheckPoint checkPointCopy
Definition: pg_control.h:135
XLogRecPtr backupEndPoint
Definition: pg_control.h:171
XLogRecPtr minRecoveryPoint
Definition: pg_control.h:168
uint32 data_checksum_version
Definition: pg_control.h:222
XLogRecPtr unloggedLSN
Definition: pg_control.h:137
uint32 indexMaxKeys
Definition: pg_control.h:214
uint32 relseg_size
Definition: pg_control.h:208
pg_time_t time
Definition: pg_control.h:132
XLogRecPtr checkPoint
Definition: pg_control.h:133
uint64 system_identifier
Definition: pg_control.h:110
uint32 catalog_version_no
Definition: pg_control.h:126
double floatFormat
Definition: pg_control.h:200
int max_prepared_xacts
Definition: pg_control.h:183
uint32 xlog_blcksz
Definition: pg_control.h:210
TimeLineID minRecoveryPointTLI
Definition: pg_control.h:169
uint32 loblksize
Definition: pg_control.h:217
pg_crc32c crc
Definition: pg_control.h:232
uint32 toast_max_chunk_size
Definition: pg_control.h:216
Definition: dirent.c:26
XLogRecPtr lastPageBeginPtr
Definition: xlogrecovery.h:111
XLogRecPtr abortedRecPtr
Definition: xlogrecovery.h:120
XLogRecPtr missingContrecPtr
Definition: xlogrecovery.h:121
TimeLineID endOfLogTLI
Definition: xlogrecovery.h:109
Definition: lwlock.h:42
Definition: pg_list.h:54
Latch * walwriterLatch
Definition: proc.h:411
PgStat_Counter sync_time
Definition: pgstat.h:269
PgStat_Counter write_time
Definition: pgstat.h:268
instr_time wal_sync_time
Definition: pgstat.h:456
PgStat_Counter wal_write
Definition: pgstat.h:453
PgStat_Counter wal_buffers_full
Definition: pgstat.h:452
PgStat_Counter wal_sync
Definition: pgstat.h:454
instr_time wal_write_time
Definition: pgstat.h:455
void(* rm_mask)(char *pagedata, BlockNumber blkno)
TransactionId oldestRunningXid
Definition: standby.h:92
TransactionId nextXid
Definition: standby.h:91
TransactionId latestCompletedXid
Definition: standby.h:95
subxids_array_status subxid_status
Definition: standby.h:90
TransactionId * xids
Definition: standby.h:97
TransactionId oldestCommitTsXid
Definition: transam.h:232
TransactionId newestCommitTsXid
Definition: transam.h:233
FullTransactionId latestCompletedXid
Definition: transam.h:238
FullTransactionId nextXid
Definition: transam.h:220
TransactionId oldestXid
Definition: transam.h:222
pg_atomic_uint64 insertingAt
Definition: xlog.c:368
XLogRecPtr lastImportantAt
Definition: xlog.c:369
LWLock lock
Definition: xlog.c:367
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
int64 wal_records
Definition: instrument.h:53
CheckPoint lastCheckPoint
Definition: xlog.c:543
XLogwrtRqst LogwrtRqst
Definition: xlog.c:453
slock_t info_lck
Definition: xlog.c:551
XLogRecPtr InitializedUpTo
Definition: xlog.c:483
char * pages
Definition: xlog.c:490
FullTransactionId ckptFullXid
Definition: xlog.c:455
pg_time_t lastSegSwitchTime
Definition: xlog.c:465
XLogRecPtr replicationSlotMinLSN
Definition: xlog.c:457
RecoveryState SharedRecoveryState
Definition: xlog.c:514
TimeLineID InsertTimeLineID
Definition: xlog.c:507
XLogRecPtr lastSegSwitchLSN
Definition: xlog.c:466
XLogSegNo lastRemovedSegNo
Definition: xlog.c:459
pg_atomic_uint64 * xlblocks
Definition: xlog.c:491
pg_atomic_uint64 logWriteResult
Definition: xlog.c:470
int XLogCacheBlck
Definition: xlog.c:492
XLogRecPtr RedoRecPtr
Definition: xlog.c:454
XLogRecPtr lastCheckPointRecPtr
Definition: xlog.c:541
XLogRecPtr lastFpwDisableRecPtr
Definition: xlog.c:549
XLogCtlInsert Insert
Definition: xlog.c:450
bool InstallXLogFileSegmentActive
Definition: xlog.c:524
bool WalWriterSleeping
Definition: xlog.c:531
XLogRecPtr asyncXactLSN
Definition: xlog.c:456
XLogRecPtr lastCheckPointEndPtr
Definition: xlog.c:542
pg_atomic_uint64 logFlushResult
Definition: xlog.c:471
pg_atomic_uint64 logInsertResult
Definition: xlog.c:469
TimeLineID PrevTimeLineID
Definition: xlog.c:508
pg_atomic_uint64 unloggedLSN
Definition: xlog.c:462
WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:442
XLogRecPtr RedoRecPtr
Definition: xlog.c:428
uint64 PrevBytePos
Definition: xlog.c:406
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:415
int runningBackups
Definition: xlog.c:436
slock_t insertpos_lck
Definition: xlog.c:396
uint64 CurrBytePos
Definition: xlog.c:405
bool fullPageWrites
Definition: xlog.c:429
XLogRecPtr lastBackupStart
Definition: xlog.c:437
TimeLineID xlp_tli
Definition: xlog_internal.h:40
XLogRecPtr xlp_pageaddr
Definition: xlog_internal.h:41
DecodedXLogRecord * record
Definition: xlogreader.h:236
XLogRecPtr EndRecPtr
Definition: xlogreader.h:207
XLogRecPtr ReadRecPtr
Definition: xlogreader.h:206
struct XLogRecData * next
XLogRecPtr xl_prev
Definition: xlogrecord.h:45
pg_crc32c xl_crc
Definition: xlogrecord.h:49
uint8 xl_info
Definition: xlogrecord.h:46
uint32 xl_tot_len
Definition: xlogrecord.h:43
TransactionId xl_xid
Definition: xlogrecord.h:44
RmgrId xl_rmid
Definition: xlogrecord.h:47
XLogRecPtr Flush
Definition: xlog.c:326
XLogRecPtr Write
Definition: xlog.c:325
XLogRecPtr Flush
Definition: xlog.c:320
XLogRecPtr Write
Definition: xlog.c:319
Definition: guc.h:170
GucContext scontext
Definition: guc_tables.h:167
GucSource source
Definition: guc_tables.h:165
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
unsigned short st_mode
Definition: win32_port.h:268
Definition: regguts.h:323
char * rpath
Definition: basebackup.h:32
TimeLineID PrevTimeLineID
TimestampTz end_time
TimeLineID ThisTimeLineID
char rp_name[MAXFNAMELEN]
TimestampTz rp_time
void StartupSUBTRANS(TransactionId oldestActiveXID)
Definition: subtrans.c:309
void CheckPointSUBTRANS(void)
Definition: subtrans.c:355
void BootStrapSUBTRANS(void)
Definition: subtrans.c:270
void TruncateSUBTRANS(TransactionId oldestXact)
Definition: subtrans.c:411
void ProcessSyncRequests(void)
Definition: sync.c:286
void SyncPreCheckpoint(void)
Definition: sync.c:177
void SyncPostCheckpoint(void)
Definition: sync.c:202
TimeoutId RegisterTimeout(TimeoutId id, timeout_handler_proc handler)
Definition: timeout.c:505
@ STARTUP_PROGRESS_TIMEOUT
Definition: timeout.h:38
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define TransactionIdRetreat(dest)
Definition: transam.h:141
#define InvalidTransactionId
Definition: transam.h:31
static void FullTransactionIdRetreat(FullTransactionId *dest)
Definition: transam.h:103
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstGenbkiObjectId
Definition: transam.h:195
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static FullTransactionId FullTransactionIdFromEpochAndXid(uint32 epoch, TransactionId xid)
Definition: transam.h:71
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
#define FullTransactionIdPrecedes(a, b)
Definition: transam.h:51
void RecoverPreparedTransactions(void)
Definition: twophase.c:2083
void restoreTwoPhaseData(void)
Definition: twophase.c:1898
int max_prepared_xacts
Definition: twophase.c:115
TransactionId PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p)
Definition: twophase.c:1962
void StandbyRecoverPreparedTransactions(void)
Definition: twophase.c:2042
void CheckPointTwoPhase(XLogRecPtr redo_horizon)
Definition: twophase.c:1816
char data[XLOG_BLCKSZ]
Definition: c.h:1148
WALInsertLock l
Definition: xlog.c:381
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:382
bool SplitIdentifierString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:3457
void SetTransactionIdLimit(TransactionId oldest_datfrozenxid, Oid oldest_datoid)
Definition: varsup.c:372
void AdvanceOldestClogXid(TransactionId oldest_datfrozenxid)
Definition: varsup.c:355
TransamVariablesData * TransamVariables
Definition: varsup.c:34
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:129
XLogRecPtr Flush
Definition: walreceiver.c:111
XLogRecPtr Write
Definition: walreceiver.c:110
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
void ShutdownWalRcv(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3669
int max_wal_senders
Definition: walsender.c:121
void WalSndInitStopping(void)
Definition: walsender.c:3748
void WalSndWaitStopping(void)
Definition: walsender.c:3774
static void WalSndWakeupProcessRequests(bool physical, bool logical)
Definition: walsender.h:66
#define WalSndWakeupRequest()
Definition: walsender.h:59
void SetWalSummarizerLatch(void)
bool summarize_wal
void WaitForWalSummarization(XLogRecPtr lsn)
XLogRecPtr GetOldestUnsummarizedLSN(TimeLineID *tli, bool *lsn_is_exact)
int WalWriterFlushAfter
Definition: walwriter.c:72
int WalWriterDelay
Definition: walwriter.c:71
#define stat
Definition: win32_port.h:284
#define EINTR
Definition: win32_port.h:374
#define S_ISDIR(m)
Definition: win32_port.h:325
#define readlink(path, buf, size)
Definition: win32_port.h:236
#define O_CLOEXEC
Definition: win32_port.h:359
#define O_DSYNC
Definition: win32_port.h:352
int gettimeofday(struct timeval *tp, void *tzp)
void MarkSubxactTopXidLogged(void)
Definition: xact.c:589
void MarkCurrentTransactionIdLoggedIfAny(void)
Definition: xact.c:539
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3372
void assign_wal_sync_method(int new_wal_sync_method, void *extra)
Definition: xlog.c:8604
static void CreateEndOfRecoveryRecord(void)
Definition: xlog.c:7338
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4538
int wal_decode_buffer_size
Definition: xlog.c:134
XLogRecPtr ProcLastRecPtr
Definition: xlog.c:251
static XLogCtlData * XLogCtl
Definition: xlog.c:564
bool fullPageWrites
Definition: xlog.c:120
void UpdateFullPageWrites(void)
Definition: xlog.c:8129
bool RecoveryInProgress(void)
Definition: xlog.c:6304
static void CleanupBackupHistory(void)
Definition: xlog.c:4153
void GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
Definition: xlog.c:6437
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6490
bool check_max_slot_wal_keep_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2221
const char * show_in_hot_standby(void)
Definition: xlog.c:4792
XLogRecPtr RequestXLogSwitch(bool mark_unimportant)
Definition: xlog.c:8023
void do_pg_abort_backup(int code, Datum arg)
Definition: xlog.c:9357
XLogSegNo XLogGetLastRemovedSegno(void)
Definition: xlog.c:3750
static char * str_time(pg_time_t tnow)
Definition: xlog.c:5169
char * XLogArchiveCommand
Definition: xlog.c:118
struct XLogCtlInsert XLogCtlInsert
int wal_keep_size_mb
Definition: xlog.c:114
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1746
static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto)
Definition: xlog.c:1502
static void WALInsertLockRelease(void)
Definition: xlog.c:1443
static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos)
Definition: xlog.c:1856
bool EnableHotStandby
Definition: xlog.c:119
static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt)
Definition: xlog.c:1469
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6407
void assign_wal_consistency_checking(const char *newval, void *extra)
Definition: xlog.c:4727
static void InitControlFile(uint64 sysidentifier, uint32 data_checksum_version)
Definition: xlog.c:4196
void SetInstallXLogFileSegmentActive(void)
Definition: xlog.c:9447
static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
Definition: xlog.c:1983
static void WALInsertLockAcquireExclusive(void)
Definition: xlog.c:1414
static void UpdateControlFile(void)
Definition: xlog.c:4529
void StartupXLOG(void)
Definition: xlog.c:5399
bool IsInstallXLogFileSegmentActive(void)
Definition: xlog.c:9455
static int openLogFile
Definition: xlog.c:633
void BootStrapXLOG(uint32 data_checksum_version)
Definition: xlog.c:5003
XLogRecPtr XactLastRecEnd
Definition: xlog.c:252
bool CreateRestartPoint(int flags)
Definition: xlog.c:7554
static void ValidateXLOGDirectoryStructure(void)
Definition: xlog.c:4091
int CommitDelay
Definition: xlog.c:130
static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr, XLogRecPtr endptr, TimeLineID insertTLI)
Definition: xlog.c:3857
static XLogRecPtr CreateOverwriteContrecordRecord(XLogRecPtr aborted_lsn, XLogRecPtr pagePtr, TimeLineID newTLI)
Definition: xlog.c:7403
XLogRecPtr GetInsertRecPtr(void)
Definition: xlog.c:6452
bool wal_init_zero
Definition: xlog.c:125
static void CalculateCheckpointSegments(void)
Definition: xlog.c:2160
int XLogArchiveMode
Definition: xlog.c:117
SessionBackupState get_backup_status(void)
Definition: xlog.c:9064
static void XLogReportParameters(void)
Definition: xlog.c:8066
#define RefreshXLogWriteResult(_target)
Definition: xlog.c:618
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3719
int wal_level
Definition: xlog.c:129
static void LogCheckpointStart(int flags, bool restartpoint)
Definition: xlog.c:6619
static XLogRecPtr RedoRecPtr
Definition: xlog.c:271
void assign_checkpoint_completion_target(double newval, void *extra)
Definition: xlog.c:2196
static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void)
Definition: xlog.c:2693
XLogRecPtr XLogInsertRecord(XLogRecData *rdata, XLogRecPtr fpw_lsn, uint8 flags, int num_fpi, bool topxid_included)
Definition: xlog.c:746
static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, bool find_free, XLogSegNo max_segno, TimeLineID tli)
Definition: xlog.c:3555
static void WriteControlFile(void)
Definition: xlog.c:4231
int wal_segment_size
Definition: xlog.c:141
struct XLogwrtResult XLogwrtResult
WALAvailability GetWALAvailability(XLogRecPtr targetLSN)
Definition: xlog.c:7832
#define UsableBytesInPage
Definition: xlog.c:595
int max_wal_size_mb
Definition: xlog.c:112
void XLOGShmemInit(void)
Definition: xlog.c:4888
void ShutdownXLOG(int code, Datum arg)
Definition: xlog.c:6572
bool DataChecksumsEnabled(void)
Definition: xlog.c:4558
static bool PerformRecoveryXLogAction(void)
Definition: xlog.c:6254
RecoveryState GetRecoveryState(void)
Definition: xlog.c:6340
int XLogArchiveTimeout
Definition: xlog.c:116
static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI, XLogRecPtr EndOfLog, TimeLineID newTLI)
Definition: xlog.c:5259
#define ConvertToXSegs(x, segsize)
Definition: xlog.c:601
bool wal_recycle
Definition: xlog.c:126
static void RemoveXlogFile(const struct dirent *segment_de, XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo, TimeLineID insertTLI)
Definition: xlog.c:4001
pg_time_t GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN)
Definition: xlog.c:6555
char * GetMockAuthenticationNonce(void)
Definition: xlog.c:4548
static int XLOGChooseNumBuffers(void)
Definition: xlog.c:4591
static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos)
Definition: xlog.c:1896
static int get_sync_bit(int method)
Definition: xlog.c:8556
static XLogwrtResult LogwrtResult
Definition: xlog.c:610
void XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn)
Definition: xlog.c:2680
static void LogCheckpointEnd(bool restartpoint)
Definition: xlog.c:6651
union WALInsertLockPadded WALInsertLockPadded
void SwitchIntoArchiveRecovery(XLogRecPtr EndRecPtr, TimeLineID replayTLI)
Definition: xlog.c:6179
static bool lastFullPageWrites
Definition: xlog.c:215
char * wal_consistency_checking_string
Definition: xlog.c:123
static void WALInsertLockAcquire(void)
Definition: xlog.c:1369
int CommitSiblings
Definition: xlog.c:131
static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata, XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
Definition: xlog.c:1223
static double CheckPointDistanceEstimate
Definition: xlog.c:157
static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr)
Definition: xlog.c:1939
XLogRecPtr GetXLogInsertRecPtr(void)
Definition: xlog.c:9398
Size XLOGShmemSize(void)
Definition: xlog.c:4838
void SetWalWriterSleeping(bool sleeping)
Definition: xlog.c:9470
bool wal_log_hints
Definition: xlog.c:121
static void XLogInitNewTimeline(TimeLineID endTLI, XLogRecPtr endOfLog, TimeLineID newTLI)
Definition: xlog.c:5184
static void CheckRequiredParameterValues(void)
Definition: xlog.c:5355
#define XLogRecPtrToBufIdx(recptr)
Definition: xlog.c:589
int wal_sync_method
Definition: xlog.c:128
int XLogFileOpen(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3610
int max_slot_wal_keep_size_mb
Definition: xlog.c:133
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6469
static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli)
Definition: xlog.c:3682
static bool doPageWrites
Definition: xlog.c:284
static bool holdingAllLocks
Definition: xlog.c:650
static TimeLineID openLogTLI
Definition: xlog.c:635
XLogRecPtr XactLastCommitEnd
Definition: xlog.c:253
WalLevel GetActiveWalLevelOnStandby(void)
Definition: xlog.c:4829
bool log_checkpoints
Definition: xlog.c:127
static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
Definition: xlog.c:7916
static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
Definition: xlog.c:2312
void InitializeWalConsistencyChecking(void)
Definition: xlog.c:4754
static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
Definition: xlog.c:2714
static int LocalSetXLogInsertAllowed(void)
Definition: xlog.c:6392
void assign_max_wal_size(int newval, void *extra)
Definition: xlog.c:2189
void RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI)
Definition: xlog.c:3932
XLogRecPtr GetLastImportantRecPtr(void)
Definition: xlog.c:6526
void xlog_redo(XLogReaderState *record)
Definition: xlog.c:8198
static int MyLockNo
Definition: xlog.c:649
static void RecoveryRestartPoint(const CheckPoint *checkPoint, XLogReaderState *record)
Definition: xlog.c:7513
bool XLogNeedsFlush(XLogRecPtr record)
Definition: xlog.c:3125
void register_persistent_abort_backup_handler(void)
Definition: xlog.c:9384
static double PrevCheckPointDistance
Definition: xlog.c:158
void ReachedEndOfBackup(XLogRecPtr EndRecPtr, TimeLineID tli)
Definition: xlog.c:6217
void LocalProcessControlFile(bool reset)
Definition: xlog.c:4816
static void XLogFileClose(void)
Definition: xlog.c:3631
int wal_compression
Definition: xlog.c:122
static void UpdateCheckPointDistanceEstimate(uint64 nbytes)
Definition: xlog.c:6754
static bool LocalRecoveryInProgress
Definition: xlog.c:222
XLogSegNo XLogGetOldestSegno(TimeLineID tli)
Definition: xlog.c:3766
XLogRecPtr GetXLogWriteRecPtr(void)
Definition: xlog.c:9414
static WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:567
static XLogSegNo openLogSegNo
Definition: xlog.c:634
#define INSERT_FREESPACE(endptr)
Definition: xlog.c:578
int wal_retrieve_retry_interval
Definition: xlog.c:132
int XLOGbuffers
Definition: xlog.c:115
bool XLogBackgroundFlush(void)
Definition: xlog.c:2982
const struct config_enum_entry archive_mode_options[]
Definition: xlog.c:189
void GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli)
Definition: xlog.c:9426
bool track_wal_io_timing
Definition: xlog.c:135
static XLogSegNo XLOGfileslop(XLogRecPtr lastredoptr)
Definition: xlog.c:2238
static int UsableBytesInSegment
Definition: xlog.c:604
static char * GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli)
Definition: xlog.c:1630
const char * show_archive_command(void)
Definition: xlog.c:4780
WalInsertClass
Definition: xlog.c:558
@ WALINSERT_SPECIAL_SWITCH
Definition: xlog.c:560
@ WALINSERT_NORMAL
Definition: xlog.c:559
@ WALINSERT_SPECIAL_CHECKPOINT
Definition: xlog.c:561
bool XLogInsertAllowed(void)
Definition: xlog.c:6359
void do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces, BackupState *state, StringInfo tblspcmapfile)
Definition: xlog.c:8755
static ControlFileData * ControlFile
Definition: xlog.c:572
bool check_wal_segment_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2203
static void XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno, TimeLineID srcTLI, XLogSegNo srcsegno, int upto)
Definition: xlog.c:3410
static int LocalXLogInsertAllowed
Definition: xlog.c:234
static void RemoveTempXlogFiles(void)
Definition: xlog.c:3824
XLogRecPtr XLogRestorePoint(const char *rpName)
Definition: xlog.c:8041
static XLogRecPtr LocalMinRecoveryPoint
Definition: xlog.c:644
#define NUM_XLOGINSERT_LOCKS
Definition: xlog.c:148
struct XLogwrtRqst XLogwrtRqst
TimeLineID GetWALInsertionTimeLineIfSet(void)
Definition: xlog.c:6506
void do_pg_backup_stop(BackupState *state, bool waitforarchive)
Definition: xlog.c:9083
bool check_wal_consistency_checking(char **newval, void **extra, GucSource source)
Definition: xlog.c:4642
const struct config_enum_entry wal_sync_method_options[]
Definition: xlog.c:169
int min_wal_size_mb
Definition: xlog.c:113
#define BootstrapTimeLineID
Definition: xlog.c:109
CheckpointStatsData CheckpointStats
Definition: xlog.c:207
bool check_wal_buffers(int *newval, void **extra, GucSource source)
Definition: xlog.c:4607
XLogRecPtr GetFakeLSNForUnloggedRel(void)
Definition: xlog.c:4574
void XLogPutNextOid(Oid nextOid)
Definition: xlog.c:7986
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2794
static void ReadControlFile(void)
Definition: xlog.c:4313
static SessionBackupState sessionBackupState
Definition: xlog.c:389
static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
Definition: xlog.c:7473
static bool updateMinRecoveryPoint
Definition: xlog.c:646
int CheckPointSegments
Definition: xlog.c:154
static bool check_wal_consistency_checking_deferred
Definition: xlog.c:164
static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1106
void XLogShutdownWalRcv(void)
Definition: xlog.c:9436
#define NextBufIdx(idx)
Definition: xlog.c:582
static void UpdateLastRemovedPtr(char *filename)
Definition: xlog.c:3804
void CreateCheckPoint(int flags)
Definition: xlog.c:6854
static TimeLineID LocalMinRecoveryPointTLI
Definition: xlog.c:645
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8646
struct XLogCtlData XLogCtlData
static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1162
void XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN)
Definition: xlog.c:2629
bool XLogCheckpointNeeded(XLogSegNo new_segno)
Definition: xlog.c:2288
bool * wal_consistency_checking
Definition: xlog.c:124
static int XLogFileInitInternal(XLogSegNo logsegno, TimeLineID logtli, bool *added, char *path)
Definition: xlog.c:3202
static void update_checkpoint_display(int flags, bool restartpoint, bool reset)
Definition: xlog.c:6792
#define XLogArchivingActive()
Definition: xlog.h:99
#define TABLESPACE_MAP_OLD
Definition: xlog.h:305
#define XLOG_MARK_UNIMPORTANT
Definition: xlog.h:155
#define TABLESPACE_MAP
Definition: xlog.h:304
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:67
@ ARCHIVE_MODE_OFF
Definition: xlog.h:65
@ ARCHIVE_MODE_ON
Definition: xlog.h:66
#define STANDBY_SIGNAL_FILE
Definition: xlog.h:300
#define CHECKPOINT_CAUSE_XLOG
Definition: xlog.h:148
WALAvailability
Definition: xlog.h:187
@ WALAVAIL_REMOVED
Definition: xlog.h:193
@ WALAVAIL_RESERVED
Definition: xlog.h:189
@ WALAVAIL_UNRESERVED
Definition: xlog.h:192
@ WALAVAIL_EXTENDED
Definition: xlog.h:190
@ WALAVAIL_INVALID_LSN
Definition: xlog.h:188
#define BACKUP_LABEL_OLD
Definition: xlog.h:302
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:140
#define CHECKPOINT_FLUSH_ALL
Definition: xlog.h:143
@ WAL_COMPRESSION_NONE
Definition: xlog.h:82
#define BACKUP_LABEL_FILE
Definition: xlog.h:301
#define CHECKPOINT_CAUSE_TIME
Definition: xlog.h:149
#define CHECKPOINT_FORCE
Definition: xlog.h:142
SessionBackupState
Definition: xlog.h:285
@ SESSION_BACKUP_RUNNING
Definition: xlog.h:287
@ SESSION_BACKUP_NONE
Definition: xlog.h:286
#define CHECKPOINT_WAIT
Definition: xlog.h:145
#define RECOVERY_SIGNAL_FILE
Definition: xlog.h:299
#define CHECKPOINT_IS_SHUTDOWN
Definition: xlog.h:139
#define XLogArchivingAlways()
Definition: xlog.h:102
WalLevel
Definition: xlog.h:73
@ WAL_LEVEL_REPLICA
Definition: xlog.h:75
@ WAL_LEVEL_LOGICAL
Definition: xlog.h:76
@ WAL_LEVEL_MINIMAL
Definition: xlog.h:74
#define CHECKPOINT_IMMEDIATE
Definition: xlog.h:141
RecoveryState
Definition: xlog.h:90
@ RECOVERY_STATE_CRASH
Definition: xlog.h:91
@ RECOVERY_STATE_DONE
Definition: xlog.h:93
@ RECOVERY_STATE_ARCHIVE
Definition: xlog.h:92
#define XLogIsNeeded()
Definition: xlog.h:109
@ WAL_SYNC_METHOD_OPEN
Definition: xlog.h:26
@ WAL_SYNC_METHOD_FDATASYNC
Definition: xlog.h:25
@ WAL_SYNC_METHOD_FSYNC_WRITETHROUGH
Definition: xlog.h:27
@ WAL_SYNC_METHOD_OPEN_DSYNC
Definition: xlog.h:28
@ WAL_SYNC_METHOD_FSYNC
Definition: xlog.h:24
#define XLogStandbyInfoActive()
Definition: xlog.h:123
#define XLP_FIRST_IS_CONTRECORD
Definition: xlog_internal.h:74
static RmgrData GetRmgr(RmgrId rmid)
#define IsValidWalSegSize(size)
Definition: xlog_internal.h:96
XLogLongPageHeaderData * XLogLongPageHeader
Definition: xlog_internal.h:71
#define XLP_FIRST_IS_OVERWRITE_CONTRECORD
Definition: xlog_internal.h:80
#define XLOG_CONTROL_FILE
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
static bool IsXLogFileName(const char *fname)
static void XLogFromFileName(const char *fname, TimeLineID *tli, XLogSegNo *logSegNo, int wal_segsz_bytes)
#define XLByteToPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
#define XLogSegNoOffsetToRecPtr(segno, offset, wal_segsz_bytes, dest)
#define MAXFNAMELEN
XLogPageHeaderData * XLogPageHeader
Definition: xlog_internal.h:54
#define XLOGDIR
#define XLP_LONG_HEADER
Definition: xlog_internal.h:76
static bool IsBackupHistoryFileName(const char *fname)
#define XLP_BKP_REMOVABLE
Definition: xlog_internal.h:78
#define XLOG_PAGE_MAGIC
Definition: xlog_internal.h:34
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void BackupHistoryFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XRecOffIsValid(xlrp)
#define SizeOfXLogShortPHD
Definition: xlog_internal.h:52
#define SizeOfXLogLongPHD
Definition: xlog_internal.h:69
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void BackupHistoryFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static bool RmgrIdExists(RmgrId rmid)
#define XLByteInPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
static bool IsPartialXLogFileName(const char *fname)
bool XLogArchiveIsReadyOrDone(const char *xlog)
Definition: xlogarchive.c:664
bool XLogArchiveIsBusy(const char *xlog)
Definition: xlogarchive.c:619
bool XLogArchiveIsReady(const char *xlog)
Definition: xlogarchive.c:694
void XLogArchiveNotifySeg(XLogSegNo segno, TimeLineID tli)
Definition: xlogarchive.c:492
void ExecuteRecoveryCommand(const char *command, const char *commandName, bool failOnSignal, uint32 wait_event_info)
Definition: xlogarchive.c:295
bool XLogArchiveCheckDone(const char *xlog)
Definition: xlogarchive.c:565
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:444
void XLogArchiveCleanup(const char *xlog)
Definition: xlogarchive.c:712
char * build_backup_content(BackupState *state, bool ishistoryfile)
Definition: xlogbackup.c:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
#define FirstNormalUnloggedLSN
Definition: xlogdefs.h:36
#define XLogRecPtrIsInvalid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:59
#define DEFAULT_WAL_SYNC_METHOD
Definition: xlogdefs.h:79
uint64 XLogSegNo
Definition: xlogdefs.h:48
void XLogRegisterData(char *data, uint32 len)
Definition: xloginsert.c:364
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:474
void XLogSetRecordFlags(uint8 flags)
Definition: xloginsert.c:456
void XLogBeginInsert(void)
Definition: xloginsert.c:149
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:106
bool DecodeXLogRecord(XLogReaderState *state, DecodedXLogRecord *decoded, XLogRecord *record, XLogRecPtr lsn, char **errormsg)
Definition: xlogreader.c:1662
size_t DecodeXLogRecordRequiredSpace(size_t xl_tot_len)
Definition: xlogreader.c:1629
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:410
#define XLogRecGetData(decoder)
Definition: xlogreader.h:415
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
#define XLogRecMaxBlockId(decoder)
Definition: xlogreader.h:418
#define XLogRecHasBlockImage(decoder, block_id)
Definition: xlogreader.h:423
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:417
#define SizeOfXLogRecordDataHeaderShort
Definition: xlogrecord.h:217
#define XLR_BLOCK_ID_DATA_SHORT
Definition: xlogrecord.h:241
#define XLR_INFO_MASK
Definition: xlogrecord.h:62
#define SizeOfXLogRecord
Definition: xlogrecord.h:55
void ShutdownWalRecovery(void)
bool ArchiveRecoveryRequested
Definition: xlogrecovery.c:137
bool InArchiveRecovery
Definition: xlogrecovery.c:138
void RecoveryRequiresIntParameter(const char *param_name, int currValue, int minValue)
void PerformWalRecovery(void)
EndOfWalRecoveryInfo * FinishWalRecovery(void)
char * archiveCleanupCommand
Definition: xlogrecovery.c:84
XLogRecPtr GetCurrentReplayRecPtr(TimeLineID *replayEndTLI)
void xlog_outdesc(StringInfo buf, XLogReaderState *record)
bool PromoteIsTriggered(void)
static XLogRecPtr missingContrecPtr
Definition: xlogrecovery.c:373
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
static XLogRecPtr abortedRecPtr
Definition: xlogrecovery.c:372
void InitWalRecovery(ControlFileData *ControlFile, bool *wasShutdown_ptr, bool *haveBackupLabel_ptr, bool *haveTblspcMap_ptr)
Definition: xlogrecovery.c:512
char * recoveryEndCommand
Definition: xlogrecovery.c:83
TimeLineID recoveryTargetTLI
Definition: xlogrecovery.c:122
TimestampTz GetLatestXTime(void)
bool XLogHaveInvalidPages(void)
Definition: xlogutils.c:235
XLogRedoAction XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id, Buffer *buf)
Definition: xlogutils.c:314
HotStandbyState standbyState
Definition: xlogutils.c:53
bool InRecovery
Definition: xlogutils.c:50
@ STANDBY_DISABLED
Definition: xlogutils.h:52
@ STANDBY_INITIALIZED
Definition: xlogutils.h:53
#define InHotStandby
Definition: xlogutils.h:60
@ BLK_RESTORED
Definition: xlogutils.h:76