PostgreSQL Source Code git master
xlog.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * xlog.c
4 * PostgreSQL write-ahead log manager
5 *
6 * The Write-Ahead Log (WAL) functionality is split into several source
7 * files, in addition to this one:
8 *
9 * xloginsert.c - Functions for constructing WAL records
10 * xlogrecovery.c - WAL recovery and standby code
11 * xlogreader.c - Facility for reading WAL files and parsing WAL records
12 * xlogutils.c - Helper functions for WAL redo routines
13 *
14 * This file contains functions for coordinating database startup and
15 * checkpointing, and managing the write-ahead log buffers when the
16 * system is running.
17 *
18 * StartupXLOG() is the main entry point of the startup process. It
19 * coordinates database startup, performing WAL recovery, and the
20 * transition from WAL recovery into normal operations.
21 *
22 * XLogInsertRecord() inserts a WAL record into the WAL buffers. Most
23 * callers should not call this directly, but use the functions in
24 * xloginsert.c to construct the WAL record. XLogFlush() can be used
25 * to force the WAL to disk.
26 *
27 * In addition to those, there are many other functions for interrogating
28 * the current system state, and for starting/stopping backups.
29 *
30 *
31 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
32 * Portions Copyright (c) 1994, Regents of the University of California
33 *
34 * src/backend/access/transam/xlog.c
35 *
36 *-------------------------------------------------------------------------
37 */
38
39#include "postgres.h"
40
41#include <ctype.h>
42#include <math.h>
43#include <time.h>
44#include <fcntl.h>
45#include <sys/stat.h>
46#include <sys/time.h>
47#include <unistd.h>
48
49#include "access/clog.h"
50#include "access/commit_ts.h"
51#include "access/heaptoast.h"
52#include "access/multixact.h"
53#include "access/rewriteheap.h"
54#include "access/subtrans.h"
55#include "access/timeline.h"
56#include "access/transam.h"
57#include "access/twophase.h"
58#include "access/xact.h"
60#include "access/xlogarchive.h"
61#include "access/xloginsert.h"
62#include "access/xlogreader.h"
63#include "access/xlogrecovery.h"
64#include "access/xlogutils.h"
65#include "access/xlogwait.h"
66#include "backup/basebackup.h"
67#include "catalog/catversion.h"
68#include "catalog/pg_control.h"
69#include "catalog/pg_database.h"
71#include "common/file_utils.h"
72#include "executor/instrument.h"
73#include "miscadmin.h"
74#include "pg_trace.h"
75#include "pgstat.h"
76#include "port/atomics.h"
77#include "postmaster/bgwriter.h"
78#include "postmaster/startup.h"
81#include "replication/origin.h"
82#include "replication/slot.h"
86#include "storage/bufmgr.h"
87#include "storage/fd.h"
88#include "storage/ipc.h"
90#include "storage/latch.h"
91#include "storage/predicate.h"
92#include "storage/proc.h"
93#include "storage/procarray.h"
94#include "storage/reinit.h"
95#include "storage/spin.h"
96#include "storage/sync.h"
97#include "utils/guc_hooks.h"
98#include "utils/guc_tables.h"
101#include "utils/ps_status.h"
102#include "utils/relmapper.h"
103#include "utils/snapmgr.h"
104#include "utils/timeout.h"
105#include "utils/timestamp.h"
106#include "utils/varlena.h"
107
108#ifdef WAL_DEBUG
109#include "utils/memutils.h"
110#endif
111
112/* timeline ID to be used when bootstrapping */
113#define BootstrapTimeLineID 1
114
115/* User-settable parameters */
116int max_wal_size_mb = 1024; /* 1 GB */
117int min_wal_size_mb = 80; /* 80 MB */
119int XLOGbuffers = -1;
123bool EnableHotStandby = false;
124bool fullPageWrites = true;
125bool wal_log_hints = false;
129bool wal_init_zero = true;
130bool wal_recycle = true;
131bool log_checkpoints = true;
134int CommitDelay = 0; /* precommit delay in microseconds */
135int CommitSiblings = 5; /* # concurrent xacts needed to sleep */
138int wal_decode_buffer_size = 512 * 1024;
140
141#ifdef WAL_DEBUG
142bool XLOG_DEBUG = false;
143#endif
144
146
147/*
148 * Number of WAL insertion locks to use. A higher value allows more insertions
149 * to happen concurrently, but adds some CPU overhead to flushing the WAL,
150 * which needs to iterate all the locks.
151 */
152#define NUM_XLOGINSERT_LOCKS 8
153
154/*
155 * Max distance from last checkpoint, before triggering a new xlog-based
156 * checkpoint.
157 */
159
160/* Estimated distance between checkpoints, in bytes */
162static double PrevCheckPointDistance = 0;
163
164/*
165 * Track whether there were any deferred checks for custom resource managers
166 * specified in wal_consistency_checking.
167 */
169
170/*
171 * GUC support
172 */
174 {"fsync", WAL_SYNC_METHOD_FSYNC, false},
175#ifdef HAVE_FSYNC_WRITETHROUGH
176 {"fsync_writethrough", WAL_SYNC_METHOD_FSYNC_WRITETHROUGH, false},
177#endif
178 {"fdatasync", WAL_SYNC_METHOD_FDATASYNC, false},
179#ifdef O_SYNC
180 {"open_sync", WAL_SYNC_METHOD_OPEN, false},
181#endif
182#ifdef O_DSYNC
183 {"open_datasync", WAL_SYNC_METHOD_OPEN_DSYNC, false},
184#endif
185 {NULL, 0, false}
186};
187
188
189/*
190 * Although only "on", "off", and "always" are documented,
191 * we accept all the likely variants of "on" and "off".
192 */
194 {"always", ARCHIVE_MODE_ALWAYS, false},
195 {"on", ARCHIVE_MODE_ON, false},
196 {"off", ARCHIVE_MODE_OFF, false},
197 {"true", ARCHIVE_MODE_ON, true},
198 {"false", ARCHIVE_MODE_OFF, true},
199 {"yes", ARCHIVE_MODE_ON, true},
200 {"no", ARCHIVE_MODE_OFF, true},
201 {"1", ARCHIVE_MODE_ON, true},
202 {"0", ARCHIVE_MODE_OFF, true},
203 {NULL, 0, false}
204};
205
206/*
207 * Statistics for current checkpoint are collected in this global struct.
208 * Because only the checkpointer or a stand-alone backend can perform
209 * checkpoints, this will be unused in normal backends.
210 */
212
213/*
214 * During recovery, lastFullPageWrites keeps track of full_page_writes that
215 * the replayed WAL records indicate. It's initialized with full_page_writes
216 * that the recovery starting checkpoint record indicates, and then updated
217 * each time XLOG_FPW_CHANGE record is replayed.
218 */
220
221/*
222 * Local copy of the state tracked by SharedRecoveryState in shared memory,
223 * It is false if SharedRecoveryState is RECOVERY_STATE_DONE. True actually
224 * means "not known, need to check the shared state".
225 */
226static bool LocalRecoveryInProgress = true;
227
228/*
229 * Local state for XLogInsertAllowed():
230 * 1: unconditionally allowed to insert XLOG
231 * 0: unconditionally not allowed to insert XLOG
232 * -1: must check RecoveryInProgress(); disallow until it is false
233 * Most processes start with -1 and transition to 1 after seeing that recovery
234 * is not in progress. But we can also force the value for special cases.
235 * The coding in XLogInsertAllowed() depends on the first two of these states
236 * being numerically the same as bool true and false.
237 */
239
240/*
241 * ProcLastRecPtr points to the start of the last XLOG record inserted by the
242 * current backend. It is updated for all inserts. XactLastRecEnd points to
243 * end+1 of the last record, and is reset when we end a top-level transaction,
244 * or start a new one; so it can be used to tell if the current transaction has
245 * created any XLOG records.
246 *
247 * While in parallel mode, this may not be fully up to date. When committing,
248 * a transaction can assume this covers all xlog records written either by the
249 * user backend or by any parallel worker which was present at any point during
250 * the transaction. But when aborting, or when still in parallel mode, other
251 * parallel backends may have written WAL records at later LSNs than the value
252 * stored here. The parallel leader advances its own copy, when necessary,
253 * in WaitForParallelWorkersToFinish.
254 */
258
259/*
260 * RedoRecPtr is this backend's local copy of the REDO record pointer
261 * (which is almost but not quite the same as a pointer to the most recent
262 * CHECKPOINT record). We update this from the shared-memory copy,
263 * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
264 * hold an insertion lock). See XLogInsertRecord for details. We are also
265 * allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck;
266 * see GetRedoRecPtr.
267 *
268 * NB: Code that uses this variable must be prepared not only for the
269 * possibility that it may be arbitrarily out of date, but also for the
270 * possibility that it might be set to InvalidXLogRecPtr. We used to
271 * initialize it as a side effect of the first call to RecoveryInProgress(),
272 * which meant that most code that might use it could assume that it had a
273 * real if perhaps stale value. That's no longer the case.
274 */
276
277/*
278 * doPageWrites is this backend's local copy of (fullPageWrites ||
279 * runningBackups > 0). It is used together with RedoRecPtr to decide whether
280 * a full-page image of a page need to be taken.
281 *
282 * NB: Initially this is false, and there's no guarantee that it will be
283 * initialized to any other value before it is first used. Any code that
284 * makes use of it must recheck the value after obtaining a WALInsertLock,
285 * and respond appropriately if it turns out that the previous value wasn't
286 * accurate.
287 */
288static bool doPageWrites;
289
290/*----------
291 * Shared-memory data structures for XLOG control
292 *
293 * LogwrtRqst indicates a byte position that we need to write and/or fsync
294 * the log up to (all records before that point must be written or fsynced).
295 * The positions already written/fsynced are maintained in logWriteResult
296 * and logFlushResult using atomic access.
297 * In addition to the shared variable, each backend has a private copy of
298 * both in LogwrtResult, which is updated when convenient.
299 *
300 * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
301 * (protected by info_lck), but we don't need to cache any copies of it.
302 *
303 * info_lck is only held long enough to read/update the protected variables,
304 * so it's a plain spinlock. The other locks are held longer (potentially
305 * over I/O operations), so we use LWLocks for them. These locks are:
306 *
307 * WALBufMappingLock: must be held to replace a page in the WAL buffer cache.
308 * It is only held while initializing and changing the mapping. If the
309 * contents of the buffer being replaced haven't been written yet, the mapping
310 * lock is released while the write is done, and reacquired afterwards.
311 *
312 * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
313 * XLogFlush).
314 *
315 * ControlFileLock: must be held to read/update control file or create
316 * new log file.
317 *
318 *----------
319 */
320
321typedef struct XLogwrtRqst
322{
323 XLogRecPtr Write; /* last byte + 1 to write out */
324 XLogRecPtr Flush; /* last byte + 1 to flush */
326
327typedef struct XLogwrtResult
328{
329 XLogRecPtr Write; /* last byte + 1 written out */
330 XLogRecPtr Flush; /* last byte + 1 flushed */
332
333/*
334 * Inserting to WAL is protected by a small fixed number of WAL insertion
335 * locks. To insert to the WAL, you must hold one of the locks - it doesn't
336 * matter which one. To lock out other concurrent insertions, you must hold
337 * of them. Each WAL insertion lock consists of a lightweight lock, plus an
338 * indicator of how far the insertion has progressed (insertingAt).
339 *
340 * The insertingAt values are read when a process wants to flush WAL from
341 * the in-memory buffers to disk, to check that all the insertions to the
342 * region the process is about to write out have finished. You could simply
343 * wait for all currently in-progress insertions to finish, but the
344 * insertingAt indicator allows you to ignore insertions to later in the WAL,
345 * so that you only wait for the insertions that are modifying the buffers
346 * you're about to write out.
347 *
348 * This isn't just an optimization. If all the WAL buffers are dirty, an
349 * inserter that's holding a WAL insert lock might need to evict an old WAL
350 * buffer, which requires flushing the WAL. If it's possible for an inserter
351 * to block on another inserter unnecessarily, deadlock can arise when two
352 * inserters holding a WAL insert lock wait for each other to finish their
353 * insertion.
354 *
355 * Small WAL records that don't cross a page boundary never update the value,
356 * the WAL record is just copied to the page and the lock is released. But
357 * to avoid the deadlock-scenario explained above, the indicator is always
358 * updated before sleeping while holding an insertion lock.
359 *
360 * lastImportantAt contains the LSN of the last important WAL record inserted
361 * using a given lock. This value is used to detect if there has been
362 * important WAL activity since the last time some action, like a checkpoint,
363 * was performed - allowing to not repeat the action if not. The LSN is
364 * updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was
365 * set. lastImportantAt is never cleared, only overwritten by the LSN of newer
366 * records. Tracking the WAL activity directly in WALInsertLock has the
367 * advantage of not needing any additional locks to update the value.
368 */
369typedef struct
370{
375
376/*
377 * All the WAL insertion locks are allocated as an array in shared memory. We
378 * force the array stride to be a power of 2, which saves a few cycles in
379 * indexing, but more importantly also ensures that individual slots don't
380 * cross cache line boundaries. (Of course, we have to also ensure that the
381 * array start address is suitably aligned.)
382 */
384{
388
389/*
390 * Session status of running backup, used for sanity checks in SQL-callable
391 * functions to start and stop backups.
392 */
394
395/*
396 * Shared state data for WAL insertion.
397 */
398typedef struct XLogCtlInsert
399{
400 slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */
401
402 /*
403 * CurrBytePos is the end of reserved WAL. The next record will be
404 * inserted at that position. PrevBytePos is the start position of the
405 * previously inserted (or rather, reserved) record - it is copied to the
406 * prev-link of the next record. These are stored as "usable byte
407 * positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()).
408 */
411
412 /*
413 * Make sure the above heavily-contended spinlock and byte positions are
414 * on their own cache line. In particular, the RedoRecPtr and full page
415 * write variables below should be on a different cache line. They are
416 * read on every WAL insertion, but updated rarely, and we don't want
417 * those reads to steal the cache line containing Curr/PrevBytePos.
418 */
420
421 /*
422 * fullPageWrites is the authoritative value used by all backends to
423 * determine whether to write full-page image to WAL. This shared value,
424 * instead of the process-local fullPageWrites, is required because, when
425 * full_page_writes is changed by SIGHUP, we must WAL-log it before it
426 * actually affects WAL-logging by backends. Checkpointer sets at startup
427 * or after SIGHUP.
428 *
429 * To read these fields, you must hold an insertion lock. To modify them,
430 * you must hold ALL the locks.
431 */
432 XLogRecPtr RedoRecPtr; /* current redo point for insertions */
434
435 /*
436 * runningBackups is a counter indicating the number of backups currently
437 * in progress. lastBackupStart is the latest checkpoint redo location
438 * used as a starting point for an online backup.
439 */
442
443 /*
444 * WAL insertion locks.
445 */
448
449/*
450 * Total shared-memory state for XLOG.
451 */
452typedef struct XLogCtlData
453{
455
456 /* Protected by info_lck: */
458 XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */
459 XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */
460 XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */
461
462 XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */
463
464 /* Fake LSN counter, for unlogged relations. */
466
467 /* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */
470
471 /* These are accessed using atomics -- info_lck not needed */
472 pg_atomic_uint64 logInsertResult; /* last byte + 1 inserted to buffers */
473 pg_atomic_uint64 logWriteResult; /* last byte + 1 written out */
474 pg_atomic_uint64 logFlushResult; /* last byte + 1 flushed */
475
476 /*
477 * Latest initialized page in the cache (last byte position + 1).
478 *
479 * To change the identity of a buffer (and InitializedUpTo), you need to
480 * hold WALBufMappingLock. To change the identity of a buffer that's
481 * still dirty, the old page needs to be written out first, and for that
482 * you need WALWriteLock, and you need to ensure that there are no
483 * in-progress insertions to the page by calling
484 * WaitXLogInsertionsToFinish().
485 */
487
488 /*
489 * These values do not change after startup, although the pointed-to pages
490 * and xlblocks values certainly do. xlblocks values are protected by
491 * WALBufMappingLock.
492 */
493 char *pages; /* buffers for unwritten XLOG pages */
494 pg_atomic_uint64 *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
495 int XLogCacheBlck; /* highest allocated xlog buffer index */
496
497 /*
498 * InsertTimeLineID is the timeline into which new WAL is being inserted
499 * and flushed. It is zero during recovery, and does not change once set.
500 *
501 * If we create a new timeline when the system was started up,
502 * PrevTimeLineID is the old timeline's ID that we forked off from.
503 * Otherwise it's equal to InsertTimeLineID.
504 *
505 * We set these fields while holding info_lck. Most that reads these
506 * values knows that recovery is no longer in progress and so can safely
507 * read the value without a lock, but code that could be run either during
508 * or after recovery can take info_lck while reading these values.
509 */
512
513 /*
514 * SharedRecoveryState indicates if we're still in crash or archive
515 * recovery. Protected by info_lck.
516 */
518
519 /*
520 * InstallXLogFileSegmentActive indicates whether the checkpointer should
521 * arrange for future segments by recycling and/or PreallocXlogFiles().
522 * Protected by ControlFileLock. Only the startup process changes it. If
523 * true, anyone can use InstallXLogFileSegment(). If false, the startup
524 * process owns the exclusive right to install segments, by reading from
525 * the archive and possibly replacing existing files.
526 */
528
529 /*
530 * WalWriterSleeping indicates whether the WAL writer is currently in
531 * low-power mode (and hence should be nudged if an async commit occurs).
532 * Protected by info_lck.
533 */
535
536 /*
537 * During recovery, we keep a copy of the latest checkpoint record here.
538 * lastCheckPointRecPtr points to start of checkpoint record and
539 * lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the
540 * checkpointer when it wants to create a restartpoint.
541 *
542 * Protected by info_lck.
543 */
547
548 /*
549 * lastFpwDisableRecPtr points to the start of the last replayed
550 * XLOG_FPW_CHANGE record that instructs full_page_writes is disabled.
551 */
553
554 slock_t info_lck; /* locks shared variables shown above */
556
557/*
558 * Classification of XLogInsertRecord operations.
559 */
560typedef enum
561{
566
567static XLogCtlData *XLogCtl = NULL;
568
569/* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */
571
572/*
573 * We maintain an image of pg_control in shared memory.
574 */
576
577/*
578 * Calculate the amount of space left on the page after 'endptr'. Beware
579 * multiple evaluation!
580 */
581#define INSERT_FREESPACE(endptr) \
582 (((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ))
583
584/* Macro to advance to next buffer index. */
585#define NextBufIdx(idx) \
586 (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
587
588/*
589 * XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or
590 * would hold if it was in cache, the page containing 'recptr'.
591 */
592#define XLogRecPtrToBufIdx(recptr) \
593 (((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1))
594
595/*
596 * These are the number of bytes in a WAL page usable for WAL data.
597 */
598#define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD)
599
600/*
601 * Convert values of GUCs measured in megabytes to equiv. segment count.
602 * Rounds down.
603 */
604#define ConvertToXSegs(x, segsize) XLogMBVarToSegs((x), (segsize))
605
606/* The number of bytes in a WAL segment usable for WAL data. */
608
609/*
610 * Private, possibly out-of-date copy of shared LogwrtResult.
611 * See discussion above.
612 */
614
615/*
616 * Update local copy of shared XLogCtl->log{Write,Flush}Result
617 *
618 * It's critical that Flush always trails Write, so the order of the reads is
619 * important, as is the barrier. See also XLogWrite.
620 */
621#define RefreshXLogWriteResult(_target) \
622 do { \
623 _target.Flush = pg_atomic_read_u64(&XLogCtl->logFlushResult); \
624 pg_read_barrier(); \
625 _target.Write = pg_atomic_read_u64(&XLogCtl->logWriteResult); \
626 } while (0)
627
628/*
629 * openLogFile is -1 or a kernel FD for an open log file segment.
630 * openLogSegNo identifies the segment, and openLogTLI the corresponding TLI.
631 * These variables are only used to write the XLOG, and so will normally refer
632 * to the active segment.
633 *
634 * Note: call Reserve/ReleaseExternalFD to track consumption of this FD.
635 */
636static int openLogFile = -1;
639
640/*
641 * Local copies of equivalent fields in the control file. When running
642 * crash recovery, LocalMinRecoveryPoint is set to InvalidXLogRecPtr as we
643 * expect to replay all the WAL available, and updateMinRecoveryPoint is
644 * switched to false to prevent any updates while replaying records.
645 * Those values are kept consistent as long as crash recovery runs.
646 */
649static bool updateMinRecoveryPoint = true;
650
651/* For WALInsertLockAcquire/Release functions */
652static int MyLockNo = 0;
653static bool holdingAllLocks = false;
654
655#ifdef WAL_DEBUG
656static MemoryContext walDebugCxt = NULL;
657#endif
658
659static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI,
660 XLogRecPtr EndOfLog,
661 TimeLineID newTLI);
662static void CheckRequiredParameterValues(void);
663static void XLogReportParameters(void);
664static int LocalSetXLogInsertAllowed(void);
665static void CreateEndOfRecoveryRecord(void);
667 XLogRecPtr pagePtr,
668 TimeLineID newTLI);
669static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
670static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo);
672
673static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli,
674 bool opportunistic);
675static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible);
676static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
677 bool find_free, XLogSegNo max_segno,
678 TimeLineID tli);
679static void XLogFileClose(void);
680static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli);
681static void RemoveTempXlogFiles(void);
682static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr,
683 XLogRecPtr endptr, TimeLineID insertTLI);
684static void RemoveXlogFile(const struct dirent *segment_de,
685 XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
686 TimeLineID insertTLI);
687static void UpdateLastRemovedPtr(char *filename);
688static void ValidateXLOGDirectoryStructure(void);
689static void CleanupBackupHistory(void);
690static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
691static bool PerformRecoveryXLogAction(void);
692static void InitControlFile(uint64 sysidentifier, uint32 data_checksum_version);
693static void WriteControlFile(void);
694static void ReadControlFile(void);
695static void UpdateControlFile(void);
696static char *str_time(pg_time_t tnow, char *buf, size_t bufsize);
697
698static int get_sync_bit(int method);
699
700static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch,
701 XLogRecData *rdata,
702 XLogRecPtr StartPos, XLogRecPtr EndPos,
703 TimeLineID tli);
704static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos,
705 XLogRecPtr *EndPos, XLogRecPtr *PrevPtr);
706static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos,
707 XLogRecPtr *PrevPtr);
709static char *GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli);
713
714static void WALInsertLockAcquire(void);
715static void WALInsertLockAcquireExclusive(void);
716static void WALInsertLockRelease(void);
717static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt);
718
719/*
720 * Insert an XLOG record represented by an already-constructed chain of data
721 * chunks. This is a low-level routine; to construct the WAL record header
722 * and data, use the higher-level routines in xloginsert.c.
723 *
724 * If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this
725 * WAL record applies to, that were not included in the record as full page
726 * images. If fpw_lsn <= RedoRecPtr, the function does not perform the
727 * insertion and returns InvalidXLogRecPtr. The caller can then recalculate
728 * which pages need a full-page image, and retry. If fpw_lsn is invalid, the
729 * record is always inserted.
730 *
731 * 'flags' gives more in-depth control on the record being inserted. See
732 * XLogSetRecordFlags() for details.
733 *
734 * 'topxid_included' tells whether the top-transaction id is logged along with
735 * current subtransaction. See XLogRecordAssemble().
736 *
737 * The first XLogRecData in the chain must be for the record header, and its
738 * data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and
739 * xl_crc fields in the header, the rest of the header must already be filled
740 * by the caller.
741 *
742 * Returns XLOG pointer to end of record (beginning of next record).
743 * This can be used as LSN for data pages affected by the logged action.
744 * (LSN is the XLOG point up to which the XLOG must be flushed to disk
745 * before the data page can be written out. This implements the basic
746 * WAL rule "write the log before the data".)
747 */
750 XLogRecPtr fpw_lsn,
751 uint8 flags,
752 int num_fpi,
753 uint64 fpi_bytes,
754 bool topxid_included)
755{
757 pg_crc32c rdata_crc;
758 bool inserted;
759 XLogRecord *rechdr = (XLogRecord *) rdata->data;
760 uint8 info = rechdr->xl_info & ~XLR_INFO_MASK;
762 XLogRecPtr StartPos;
763 XLogRecPtr EndPos;
764 bool prevDoPageWrites = doPageWrites;
765 TimeLineID insertTLI;
766
767 /* Does this record type require special handling? */
768 if (unlikely(rechdr->xl_rmid == RM_XLOG_ID))
769 {
770 if (info == XLOG_SWITCH)
772 else if (info == XLOG_CHECKPOINT_REDO)
774 }
775
776 /* we assume that all of the record header is in the first chunk */
777 Assert(rdata->len >= SizeOfXLogRecord);
778
779 /* cross-check on whether we should be here or not */
780 if (!XLogInsertAllowed())
781 elog(ERROR, "cannot make new WAL entries during recovery");
782
783 /*
784 * Given that we're not in recovery, InsertTimeLineID is set and can't
785 * change, so we can read it without a lock.
786 */
787 insertTLI = XLogCtl->InsertTimeLineID;
788
789 /*----------
790 *
791 * We have now done all the preparatory work we can without holding a
792 * lock or modifying shared state. From here on, inserting the new WAL
793 * record to the shared WAL buffer cache is a two-step process:
794 *
795 * 1. Reserve the right amount of space from the WAL. The current head of
796 * reserved space is kept in Insert->CurrBytePos, and is protected by
797 * insertpos_lck.
798 *
799 * 2. Copy the record to the reserved WAL space. This involves finding the
800 * correct WAL buffer containing the reserved space, and copying the
801 * record in place. This can be done concurrently in multiple processes.
802 *
803 * To keep track of which insertions are still in-progress, each concurrent
804 * inserter acquires an insertion lock. In addition to just indicating that
805 * an insertion is in progress, the lock tells others how far the inserter
806 * has progressed. There is a small fixed number of insertion locks,
807 * determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page
808 * boundary, it updates the value stored in the lock to the how far it has
809 * inserted, to allow the previous buffer to be flushed.
810 *
811 * Holding onto an insertion lock also protects RedoRecPtr and
812 * fullPageWrites from changing until the insertion is finished.
813 *
814 * Step 2 can usually be done completely in parallel. If the required WAL
815 * page is not initialized yet, you have to grab WALBufMappingLock to
816 * initialize it, but the WAL writer tries to do that ahead of insertions
817 * to avoid that from happening in the critical path.
818 *
819 *----------
820 */
822
823 if (likely(class == WALINSERT_NORMAL))
824 {
826
827 /*
828 * Check to see if my copy of RedoRecPtr is out of date. If so, may
829 * have to go back and have the caller recompute everything. This can
830 * only happen just after a checkpoint, so it's better to be slow in
831 * this case and fast otherwise.
832 *
833 * Also check to see if fullPageWrites was just turned on or there's a
834 * running backup (which forces full-page writes); if we weren't
835 * already doing full-page writes then go back and recompute.
836 *
837 * If we aren't doing full-page writes then RedoRecPtr doesn't
838 * actually affect the contents of the XLOG record, so we'll update
839 * our local copy but not force a recomputation. (If doPageWrites was
840 * just turned off, we could recompute the record without full pages,
841 * but we choose not to bother.)
842 */
843 if (RedoRecPtr != Insert->RedoRecPtr)
844 {
845 Assert(RedoRecPtr < Insert->RedoRecPtr);
846 RedoRecPtr = Insert->RedoRecPtr;
847 }
848 doPageWrites = (Insert->fullPageWrites || Insert->runningBackups > 0);
849
850 if (doPageWrites &&
851 (!prevDoPageWrites ||
852 (XLogRecPtrIsValid(fpw_lsn) && fpw_lsn <= RedoRecPtr)))
853 {
854 /*
855 * Oops, some buffer now needs to be backed up that the caller
856 * didn't back up. Start over.
857 */
860 return InvalidXLogRecPtr;
861 }
862
863 /*
864 * Reserve space for the record in the WAL. This also sets the xl_prev
865 * pointer.
866 */
867 ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
868 &rechdr->xl_prev);
869
870 /* Normal records are always inserted. */
871 inserted = true;
872 }
873 else if (class == WALINSERT_SPECIAL_SWITCH)
874 {
875 /*
876 * In order to insert an XLOG_SWITCH record, we need to hold all of
877 * the WAL insertion locks, not just one, so that no one else can
878 * begin inserting a record until we've figured out how much space
879 * remains in the current WAL segment and claimed all of it.
880 *
881 * Nonetheless, this case is simpler than the normal cases handled
882 * below, which must check for changes in doPageWrites and RedoRecPtr.
883 * Those checks are only needed for records that can contain buffer
884 * references, and an XLOG_SWITCH record never does.
885 */
886 Assert(!XLogRecPtrIsValid(fpw_lsn));
888 inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev);
889 }
890 else
891 {
893
894 /*
895 * We need to update both the local and shared copies of RedoRecPtr,
896 * which means that we need to hold all the WAL insertion locks.
897 * However, there can't be any buffer references, so as above, we need
898 * not check RedoRecPtr before inserting the record; we just need to
899 * update it afterwards.
900 */
901 Assert(!XLogRecPtrIsValid(fpw_lsn));
903 ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
904 &rechdr->xl_prev);
905 RedoRecPtr = Insert->RedoRecPtr = StartPos;
906 inserted = true;
907 }
908
909 if (inserted)
910 {
911 /*
912 * Now that xl_prev has been filled in, calculate CRC of the record
913 * header.
914 */
915 rdata_crc = rechdr->xl_crc;
916 COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc));
917 FIN_CRC32C(rdata_crc);
918 rechdr->xl_crc = rdata_crc;
919
920 /*
921 * All the record data, including the header, is now ready to be
922 * inserted. Copy the record in the space reserved.
923 */
925 class == WALINSERT_SPECIAL_SWITCH, rdata,
926 StartPos, EndPos, insertTLI);
927
928 /*
929 * Unless record is flagged as not important, update LSN of last
930 * important record in the current slot. When holding all locks, just
931 * update the first one.
932 */
933 if ((flags & XLOG_MARK_UNIMPORTANT) == 0)
934 {
935 int lockno = holdingAllLocks ? 0 : MyLockNo;
936
937 WALInsertLocks[lockno].l.lastImportantAt = StartPos;
938 }
939 }
940 else
941 {
942 /*
943 * This was an xlog-switch record, but the current insert location was
944 * already exactly at the beginning of a segment, so there was no need
945 * to do anything.
946 */
947 }
948
949 /*
950 * Done! Let others know that we're finished.
951 */
953
955
957
958 /*
959 * Mark top transaction id is logged (if needed) so that we should not try
960 * to log it again with the next WAL record in the current subtransaction.
961 */
962 if (topxid_included)
964
965 /*
966 * Update shared LogwrtRqst.Write, if we crossed page boundary.
967 */
968 if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
969 {
971 /* advance global request to include new block(s) */
972 if (XLogCtl->LogwrtRqst.Write < EndPos)
973 XLogCtl->LogwrtRqst.Write = EndPos;
976 }
977
978 /*
979 * If this was an XLOG_SWITCH record, flush the record and the empty
980 * padding space that fills the rest of the segment, and perform
981 * end-of-segment actions (eg, notifying archiver).
982 */
983 if (class == WALINSERT_SPECIAL_SWITCH)
984 {
985 TRACE_POSTGRESQL_WAL_SWITCH();
986 XLogFlush(EndPos);
987
988 /*
989 * Even though we reserved the rest of the segment for us, which is
990 * reflected in EndPos, we return a pointer to just the end of the
991 * xlog-switch record.
992 */
993 if (inserted)
994 {
995 EndPos = StartPos + SizeOfXLogRecord;
996 if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
997 {
998 uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size);
999
1000 if (offset == EndPos % XLOG_BLCKSZ)
1001 EndPos += SizeOfXLogLongPHD;
1002 else
1003 EndPos += SizeOfXLogShortPHD;
1004 }
1005 }
1006 }
1007
1008#ifdef WAL_DEBUG
1009 if (XLOG_DEBUG)
1010 {
1011 static XLogReaderState *debug_reader = NULL;
1012 XLogRecord *record;
1013 DecodedXLogRecord *decoded;
1015 StringInfoData recordBuf;
1016 char *errormsg = NULL;
1017 MemoryContext oldCxt;
1018
1019 oldCxt = MemoryContextSwitchTo(walDebugCxt);
1020
1022 appendStringInfo(&buf, "INSERT @ %X/%08X: ", LSN_FORMAT_ARGS(EndPos));
1023
1024 /*
1025 * We have to piece together the WAL record data from the XLogRecData
1026 * entries, so that we can pass it to the rm_desc function as one
1027 * contiguous chunk.
1028 */
1029 initStringInfo(&recordBuf);
1030 for (; rdata != NULL; rdata = rdata->next)
1031 appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len);
1032
1033 /* We also need temporary space to decode the record. */
1034 record = (XLogRecord *) recordBuf.data;
1035 decoded = (DecodedXLogRecord *)
1037
1038 if (!debug_reader)
1039 debug_reader = XLogReaderAllocate(wal_segment_size, NULL,
1040 XL_ROUTINE(.page_read = NULL,
1041 .segment_open = NULL,
1042 .segment_close = NULL),
1043 NULL);
1044 if (!debug_reader)
1045 {
1046 appendStringInfoString(&buf, "error decoding record: out of memory while allocating a WAL reading processor");
1047 }
1048 else if (!DecodeXLogRecord(debug_reader,
1049 decoded,
1050 record,
1051 EndPos,
1052 &errormsg))
1053 {
1054 appendStringInfo(&buf, "error decoding record: %s",
1055 errormsg ? errormsg : "no error message");
1056 }
1057 else
1058 {
1059 appendStringInfoString(&buf, " - ");
1060
1061 debug_reader->record = decoded;
1062 xlog_outdesc(&buf, debug_reader);
1063 debug_reader->record = NULL;
1064 }
1065 elog(LOG, "%s", buf.data);
1066
1067 pfree(decoded);
1068 pfree(buf.data);
1069 pfree(recordBuf.data);
1070 MemoryContextSwitchTo(oldCxt);
1071 }
1072#endif
1073
1074 /*
1075 * Update our global variables
1076 */
1077 ProcLastRecPtr = StartPos;
1078 XactLastRecEnd = EndPos;
1079
1080 /* Report WAL traffic to the instrumentation. */
1081 if (inserted)
1082 {
1083 pgWalUsage.wal_bytes += rechdr->xl_tot_len;
1085 pgWalUsage.wal_fpi += num_fpi;
1086 pgWalUsage.wal_fpi_bytes += fpi_bytes;
1087
1088 /* Required for the flush of pending stats WAL data */
1089 pgstat_report_fixed = true;
1090 }
1091
1092 return EndPos;
1093}
1094
1095/*
1096 * Reserves the right amount of space for a record of given size from the WAL.
1097 * *StartPos is set to the beginning of the reserved section, *EndPos to
1098 * its end+1. *PrevPtr is set to the beginning of the previous record; it is
1099 * used to set the xl_prev of this record.
1100 *
1101 * This is the performance critical part of XLogInsert that must be serialized
1102 * across backends. The rest can happen mostly in parallel. Try to keep this
1103 * section as short as possible, insertpos_lck can be heavily contended on a
1104 * busy system.
1105 *
1106 * NB: The space calculation here must match the code in CopyXLogRecordToWAL,
1107 * where we actually copy the record to the reserved space.
1108 *
1109 * NB: Testing shows that XLogInsertRecord runs faster if this code is inlined;
1110 * however, because there are two call sites, the compiler is reluctant to
1111 * inline. We use pg_attribute_always_inline here to try to convince it.
1112 */
1115 XLogRecPtr *PrevPtr)
1116{
1118 uint64 startbytepos;
1119 uint64 endbytepos;
1120 uint64 prevbytepos;
1121
1122 size = MAXALIGN(size);
1123
1124 /* All (non xlog-switch) records should contain data. */
1125 Assert(size > SizeOfXLogRecord);
1126
1127 /*
1128 * The duration the spinlock needs to be held is minimized by minimizing
1129 * the calculations that have to be done while holding the lock. The
1130 * current tip of reserved WAL is kept in CurrBytePos, as a byte position
1131 * that only counts "usable" bytes in WAL, that is, it excludes all WAL
1132 * page headers. The mapping between "usable" byte positions and physical
1133 * positions (XLogRecPtrs) can be done outside the locked region, and
1134 * because the usable byte position doesn't include any headers, reserving
1135 * X bytes from WAL is almost as simple as "CurrBytePos += X".
1136 */
1137 SpinLockAcquire(&Insert->insertpos_lck);
1138
1139 startbytepos = Insert->CurrBytePos;
1140 endbytepos = startbytepos + size;
1141 prevbytepos = Insert->PrevBytePos;
1142 Insert->CurrBytePos = endbytepos;
1143 Insert->PrevBytePos = startbytepos;
1144
1145 SpinLockRelease(&Insert->insertpos_lck);
1146
1147 *StartPos = XLogBytePosToRecPtr(startbytepos);
1148 *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1149 *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1150
1151 /*
1152 * Check that the conversions between "usable byte positions" and
1153 * XLogRecPtrs work consistently in both directions.
1154 */
1155 Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1156 Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1157 Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1158}
1159
1160/*
1161 * Like ReserveXLogInsertLocation(), but for an xlog-switch record.
1162 *
1163 * A log-switch record is handled slightly differently. The rest of the
1164 * segment will be reserved for this insertion, as indicated by the returned
1165 * *EndPos value. However, if we are already at the beginning of the current
1166 * segment, *StartPos and *EndPos are set to the current location without
1167 * reserving any space, and the function returns false.
1168*/
1169static bool
1171{
1173 uint64 startbytepos;
1174 uint64 endbytepos;
1175 uint64 prevbytepos;
1177 XLogRecPtr ptr;
1178 uint32 segleft;
1179
1180 /*
1181 * These calculations are a bit heavy-weight to be done while holding a
1182 * spinlock, but since we're holding all the WAL insertion locks, there
1183 * are no other inserters competing for it. GetXLogInsertRecPtr() does
1184 * compete for it, but that's not called very frequently.
1185 */
1186 SpinLockAcquire(&Insert->insertpos_lck);
1187
1188 startbytepos = Insert->CurrBytePos;
1189
1190 ptr = XLogBytePosToEndRecPtr(startbytepos);
1191 if (XLogSegmentOffset(ptr, wal_segment_size) == 0)
1192 {
1193 SpinLockRelease(&Insert->insertpos_lck);
1194 *EndPos = *StartPos = ptr;
1195 return false;
1196 }
1197
1198 endbytepos = startbytepos + size;
1199 prevbytepos = Insert->PrevBytePos;
1200
1201 *StartPos = XLogBytePosToRecPtr(startbytepos);
1202 *EndPos = XLogBytePosToEndRecPtr(endbytepos);
1203
1205 if (segleft != wal_segment_size)
1206 {
1207 /* consume the rest of the segment */
1208 *EndPos += segleft;
1209 endbytepos = XLogRecPtrToBytePos(*EndPos);
1210 }
1211 Insert->CurrBytePos = endbytepos;
1212 Insert->PrevBytePos = startbytepos;
1213
1214 SpinLockRelease(&Insert->insertpos_lck);
1215
1216 *PrevPtr = XLogBytePosToRecPtr(prevbytepos);
1217
1219 Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
1220 Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
1221 Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
1222
1223 return true;
1224}
1225
1226/*
1227 * Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved
1228 * area in the WAL.
1229 */
1230static void
1231CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata,
1232 XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
1233{
1234 char *currpos;
1235 int freespace;
1236 int written;
1237 XLogRecPtr CurrPos;
1238 XLogPageHeader pagehdr;
1239
1240 /*
1241 * Get a pointer to the right place in the right WAL buffer to start
1242 * inserting to.
1243 */
1244 CurrPos = StartPos;
1245 currpos = GetXLogBuffer(CurrPos, tli);
1246 freespace = INSERT_FREESPACE(CurrPos);
1247
1248 /*
1249 * there should be enough space for at least the first field (xl_tot_len)
1250 * on this page.
1251 */
1252 Assert(freespace >= sizeof(uint32));
1253
1254 /* Copy record data */
1255 written = 0;
1256 while (rdata != NULL)
1257 {
1258 const char *rdata_data = rdata->data;
1259 int rdata_len = rdata->len;
1260
1261 while (rdata_len > freespace)
1262 {
1263 /*
1264 * Write what fits on this page, and continue on the next page.
1265 */
1266 Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0);
1267 memcpy(currpos, rdata_data, freespace);
1268 rdata_data += freespace;
1269 rdata_len -= freespace;
1270 written += freespace;
1271 CurrPos += freespace;
1272
1273 /*
1274 * Get pointer to beginning of next page, and set the xlp_rem_len
1275 * in the page header. Set XLP_FIRST_IS_CONTRECORD.
1276 *
1277 * It's safe to set the contrecord flag and xlp_rem_len without a
1278 * lock on the page. All the other flags were already set when the
1279 * page was initialized, in AdvanceXLInsertBuffer, and we're the
1280 * only backend that needs to set the contrecord flag.
1281 */
1282 currpos = GetXLogBuffer(CurrPos, tli);
1283 pagehdr = (XLogPageHeader) currpos;
1284 pagehdr->xlp_rem_len = write_len - written;
1286
1287 /* skip over the page header */
1288 if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0)
1289 {
1290 CurrPos += SizeOfXLogLongPHD;
1291 currpos += SizeOfXLogLongPHD;
1292 }
1293 else
1294 {
1295 CurrPos += SizeOfXLogShortPHD;
1296 currpos += SizeOfXLogShortPHD;
1297 }
1298 freespace = INSERT_FREESPACE(CurrPos);
1299 }
1300
1301 Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0);
1302 memcpy(currpos, rdata_data, rdata_len);
1303 currpos += rdata_len;
1304 CurrPos += rdata_len;
1305 freespace -= rdata_len;
1306 written += rdata_len;
1307
1308 rdata = rdata->next;
1309 }
1310 Assert(written == write_len);
1311
1312 /*
1313 * If this was an xlog-switch, it's not enough to write the switch record,
1314 * we also have to consume all the remaining space in the WAL segment. We
1315 * have already reserved that space, but we need to actually fill it.
1316 */
1317 if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0)
1318 {
1319 /* An xlog-switch record doesn't contain any data besides the header */
1320 Assert(write_len == SizeOfXLogRecord);
1321
1322 /* Assert that we did reserve the right amount of space */
1324
1325 /* Use up all the remaining space on the current page */
1326 CurrPos += freespace;
1327
1328 /*
1329 * Cause all remaining pages in the segment to be flushed, leaving the
1330 * XLog position where it should be, at the start of the next segment.
1331 * We do this one page at a time, to make sure we don't deadlock
1332 * against ourselves if wal_buffers < wal_segment_size.
1333 */
1334 while (CurrPos < EndPos)
1335 {
1336 /*
1337 * The minimal action to flush the page would be to call
1338 * WALInsertLockUpdateInsertingAt(CurrPos) followed by
1339 * AdvanceXLInsertBuffer(...). The page would be left initialized
1340 * mostly to zeros, except for the page header (always the short
1341 * variant, as this is never a segment's first page).
1342 *
1343 * The large vistas of zeros are good for compressibility, but the
1344 * headers interrupting them every XLOG_BLCKSZ (with values that
1345 * differ from page to page) are not. The effect varies with
1346 * compression tool, but bzip2 for instance compresses about an
1347 * order of magnitude worse if those headers are left in place.
1348 *
1349 * Rather than complicating AdvanceXLInsertBuffer itself (which is
1350 * called in heavily-loaded circumstances as well as this lightly-
1351 * loaded one) with variant behavior, we just use GetXLogBuffer
1352 * (which itself calls the two methods we need) to get the pointer
1353 * and zero most of the page. Then we just zero the page header.
1354 */
1355 currpos = GetXLogBuffer(CurrPos, tli);
1356 MemSet(currpos, 0, SizeOfXLogShortPHD);
1357
1358 CurrPos += XLOG_BLCKSZ;
1359 }
1360 }
1361 else
1362 {
1363 /* Align the end position, so that the next record starts aligned */
1364 CurrPos = MAXALIGN64(CurrPos);
1365 }
1366
1367 if (CurrPos != EndPos)
1368 ereport(PANIC,
1370 errmsg_internal("space reserved for WAL record does not match what was written"));
1371}
1372
1373/*
1374 * Acquire a WAL insertion lock, for inserting to WAL.
1375 */
1376static void
1378{
1379 bool immed;
1380
1381 /*
1382 * It doesn't matter which of the WAL insertion locks we acquire, so try
1383 * the one we used last time. If the system isn't particularly busy, it's
1384 * a good bet that it's still available, and it's good to have some
1385 * affinity to a particular lock so that you don't unnecessarily bounce
1386 * cache lines between processes when there's no contention.
1387 *
1388 * If this is the first time through in this backend, pick a lock
1389 * (semi-)randomly. This allows the locks to be used evenly if you have a
1390 * lot of very short connections.
1391 */
1392 static int lockToTry = -1;
1393
1394 if (lockToTry == -1)
1395 lockToTry = MyProcNumber % NUM_XLOGINSERT_LOCKS;
1396 MyLockNo = lockToTry;
1397
1398 /*
1399 * The insertingAt value is initially set to 0, as we don't know our
1400 * insert location yet.
1401 */
1403 if (!immed)
1404 {
1405 /*
1406 * If we couldn't get the lock immediately, try another lock next
1407 * time. On a system with more insertion locks than concurrent
1408 * inserters, this causes all the inserters to eventually migrate to a
1409 * lock that no-one else is using. On a system with more inserters
1410 * than locks, it still helps to distribute the inserters evenly
1411 * across the locks.
1412 */
1413 lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS;
1414 }
1415}
1416
1417/*
1418 * Acquire all WAL insertion locks, to prevent other backends from inserting
1419 * to WAL.
1420 */
1421static void
1423{
1424 int i;
1425
1426 /*
1427 * When holding all the locks, all but the last lock's insertingAt
1428 * indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real
1429 * XLogRecPtr value, to make sure that no-one blocks waiting on those.
1430 */
1431 for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++)
1432 {
1437 }
1438 /* Variable value reset to 0 at release */
1440
1441 holdingAllLocks = true;
1442}
1443
1444/*
1445 * Release our insertion lock (or locks, if we're holding them all).
1446 *
1447 * NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the
1448 * next time the lock is acquired.
1449 */
1450static void
1452{
1453 if (holdingAllLocks)
1454 {
1455 int i;
1456
1457 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1460 0);
1461
1462 holdingAllLocks = false;
1463 }
1464 else
1465 {
1468 0);
1469 }
1470}
1471
1472/*
1473 * Update our insertingAt value, to let others know that we've finished
1474 * inserting up to that point.
1475 */
1476static void
1478{
1479 if (holdingAllLocks)
1480 {
1481 /*
1482 * We use the last lock to mark our actual position, see comments in
1483 * WALInsertLockAcquireExclusive.
1484 */
1487 insertingAt);
1488 }
1489 else
1492 insertingAt);
1493}
1494
1495/*
1496 * Wait for any WAL insertions < upto to finish.
1497 *
1498 * Returns the location of the oldest insertion that is still in-progress.
1499 * Any WAL prior to that point has been fully copied into WAL buffers, and
1500 * can be flushed out to disk. Because this waits for any insertions older
1501 * than 'upto' to finish, the return value is always >= 'upto'.
1502 *
1503 * Note: When you are about to write out WAL, you must call this function
1504 * *before* acquiring WALWriteLock, to avoid deadlocks. This function might
1505 * need to wait for an insertion to finish (or at least advance to next
1506 * uninitialized page), and the inserter might need to evict an old WAL buffer
1507 * to make room for a new one, which in turn requires WALWriteLock.
1508 */
1509static XLogRecPtr
1511{
1512 uint64 bytepos;
1513 XLogRecPtr inserted;
1514 XLogRecPtr reservedUpto;
1515 XLogRecPtr finishedUpto;
1517 int i;
1518
1519 if (MyProc == NULL)
1520 elog(PANIC, "cannot wait without a PGPROC structure");
1521
1522 /*
1523 * Check if there's any work to do. Use a barrier to ensure we get the
1524 * freshest value.
1525 */
1527 if (upto <= inserted)
1528 return inserted;
1529
1530 /* Read the current insert position */
1531 SpinLockAcquire(&Insert->insertpos_lck);
1532 bytepos = Insert->CurrBytePos;
1533 SpinLockRelease(&Insert->insertpos_lck);
1534 reservedUpto = XLogBytePosToEndRecPtr(bytepos);
1535
1536 /*
1537 * No-one should request to flush a piece of WAL that hasn't even been
1538 * reserved yet. However, it can happen if there is a block with a bogus
1539 * LSN on disk, for example. XLogFlush checks for that situation and
1540 * complains, but only after the flush. Here we just assume that to mean
1541 * that all WAL that has been reserved needs to be finished. In this
1542 * corner-case, the return value can be smaller than 'upto' argument.
1543 */
1544 if (upto > reservedUpto)
1545 {
1546 ereport(LOG,
1547 errmsg("request to flush past end of generated WAL; request %X/%08X, current position %X/%08X",
1548 LSN_FORMAT_ARGS(upto), LSN_FORMAT_ARGS(reservedUpto)));
1549 upto = reservedUpto;
1550 }
1551
1552 /*
1553 * Loop through all the locks, sleeping on any in-progress insert older
1554 * than 'upto'.
1555 *
1556 * finishedUpto is our return value, indicating the point upto which all
1557 * the WAL insertions have been finished. Initialize it to the head of
1558 * reserved WAL, and as we iterate through the insertion locks, back it
1559 * out for any insertion that's still in progress.
1560 */
1561 finishedUpto = reservedUpto;
1562 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
1563 {
1564 XLogRecPtr insertingat = InvalidXLogRecPtr;
1565
1566 do
1567 {
1568 /*
1569 * See if this insertion is in progress. LWLockWaitForVar will
1570 * wait for the lock to be released, or for the 'value' to be set
1571 * by a LWLockUpdateVar call. When a lock is initially acquired,
1572 * its value is 0 (InvalidXLogRecPtr), which means that we don't
1573 * know where it's inserting yet. We will have to wait for it. If
1574 * it's a small insertion, the record will most likely fit on the
1575 * same page and the inserter will release the lock without ever
1576 * calling LWLockUpdateVar. But if it has to sleep, it will
1577 * advertise the insertion point with LWLockUpdateVar before
1578 * sleeping.
1579 *
1580 * In this loop we are only waiting for insertions that started
1581 * before WaitXLogInsertionsToFinish was called. The lack of
1582 * memory barriers in the loop means that we might see locks as
1583 * "unused" that have since become used. This is fine because
1584 * they only can be used for later insertions that we would not
1585 * want to wait on anyway. Not taking a lock to acquire the
1586 * current insertingAt value means that we might see older
1587 * insertingAt values. This is also fine, because if we read a
1588 * value too old, we will add ourselves to the wait queue, which
1589 * contains atomic operations.
1590 */
1591 if (LWLockWaitForVar(&WALInsertLocks[i].l.lock,
1593 insertingat, &insertingat))
1594 {
1595 /* the lock was free, so no insertion in progress */
1596 insertingat = InvalidXLogRecPtr;
1597 break;
1598 }
1599
1600 /*
1601 * This insertion is still in progress. Have to wait, unless the
1602 * inserter has proceeded past 'upto'.
1603 */
1604 } while (insertingat < upto);
1605
1606 if (XLogRecPtrIsValid(insertingat) && insertingat < finishedUpto)
1607 finishedUpto = insertingat;
1608 }
1609
1610 /*
1611 * Advance the limit we know to have been inserted and return the freshest
1612 * value we know of, which might be beyond what we requested if somebody
1613 * is concurrently doing this with an 'upto' pointer ahead of us.
1614 */
1616 finishedUpto);
1617
1618 return finishedUpto;
1619}
1620
1621/*
1622 * Get a pointer to the right location in the WAL buffer containing the
1623 * given XLogRecPtr.
1624 *
1625 * If the page is not initialized yet, it is initialized. That might require
1626 * evicting an old dirty buffer from the buffer cache, which means I/O.
1627 *
1628 * The caller must ensure that the page containing the requested location
1629 * isn't evicted yet, and won't be evicted. The way to ensure that is to
1630 * hold onto a WAL insertion lock with the insertingAt position set to
1631 * something <= ptr. GetXLogBuffer() will update insertingAt if it needs
1632 * to evict an old page from the buffer. (This means that once you call
1633 * GetXLogBuffer() with a given 'ptr', you must not access anything before
1634 * that point anymore, and must not call GetXLogBuffer() with an older 'ptr'
1635 * later, because older buffers might be recycled already)
1636 */
1637static char *
1639{
1640 int idx;
1641 XLogRecPtr endptr;
1642 static uint64 cachedPage = 0;
1643 static char *cachedPos = NULL;
1644 XLogRecPtr expectedEndPtr;
1645
1646 /*
1647 * Fast path for the common case that we need to access again the same
1648 * page as last time.
1649 */
1650 if (ptr / XLOG_BLCKSZ == cachedPage)
1651 {
1652 Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1653 Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1654 return cachedPos + ptr % XLOG_BLCKSZ;
1655 }
1656
1657 /*
1658 * The XLog buffer cache is organized so that a page is always loaded to a
1659 * particular buffer. That way we can easily calculate the buffer a given
1660 * page must be loaded into, from the XLogRecPtr alone.
1661 */
1662 idx = XLogRecPtrToBufIdx(ptr);
1663
1664 /*
1665 * See what page is loaded in the buffer at the moment. It could be the
1666 * page we're looking for, or something older. It can't be anything newer
1667 * - that would imply the page we're looking for has already been written
1668 * out to disk and evicted, and the caller is responsible for making sure
1669 * that doesn't happen.
1670 *
1671 * We don't hold a lock while we read the value. If someone is just about
1672 * to initialize or has just initialized the page, it's possible that we
1673 * get InvalidXLogRecPtr. That's ok, we'll grab the mapping lock (in
1674 * AdvanceXLInsertBuffer) and retry if we see anything other than the page
1675 * we're looking for.
1676 */
1677 expectedEndPtr = ptr;
1678 expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ;
1679
1681 if (expectedEndPtr != endptr)
1682 {
1683 XLogRecPtr initializedUpto;
1684
1685 /*
1686 * Before calling AdvanceXLInsertBuffer(), which can block, let others
1687 * know how far we're finished with inserting the record.
1688 *
1689 * NB: If 'ptr' points to just after the page header, advertise a
1690 * position at the beginning of the page rather than 'ptr' itself. If
1691 * there are no other insertions running, someone might try to flush
1692 * up to our advertised location. If we advertised a position after
1693 * the page header, someone might try to flush the page header, even
1694 * though page might actually not be initialized yet. As the first
1695 * inserter on the page, we are effectively responsible for making
1696 * sure that it's initialized, before we let insertingAt to move past
1697 * the page header.
1698 */
1699 if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD &&
1700 XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ)
1701 initializedUpto = ptr - SizeOfXLogShortPHD;
1702 else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD &&
1703 XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ)
1704 initializedUpto = ptr - SizeOfXLogLongPHD;
1705 else
1706 initializedUpto = ptr;
1707
1708 WALInsertLockUpdateInsertingAt(initializedUpto);
1709
1710 AdvanceXLInsertBuffer(ptr, tli, false);
1712
1713 if (expectedEndPtr != endptr)
1714 elog(PANIC, "could not find WAL buffer for %X/%08X",
1715 LSN_FORMAT_ARGS(ptr));
1716 }
1717 else
1718 {
1719 /*
1720 * Make sure the initialization of the page is visible to us, and
1721 * won't arrive later to overwrite the WAL data we write on the page.
1722 */
1724 }
1725
1726 /*
1727 * Found the buffer holding this page. Return a pointer to the right
1728 * offset within the page.
1729 */
1730 cachedPage = ptr / XLOG_BLCKSZ;
1731 cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1732
1733 Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
1734 Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
1735
1736 return cachedPos + ptr % XLOG_BLCKSZ;
1737}
1738
1739/*
1740 * Read WAL data directly from WAL buffers, if available. Returns the number
1741 * of bytes read successfully.
1742 *
1743 * Fewer than 'count' bytes may be read if some of the requested WAL data has
1744 * already been evicted.
1745 *
1746 * No locks are taken.
1747 *
1748 * Caller should ensure that it reads no further than LogwrtResult.Write
1749 * (which should have been updated by the caller when determining how far to
1750 * read). The 'tli' argument is only used as a convenient safety check so that
1751 * callers do not read from WAL buffers on a historical timeline.
1752 */
1753Size
1754WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count,
1755 TimeLineID tli)
1756{
1757 char *pdst = dstbuf;
1758 XLogRecPtr recptr = startptr;
1759 XLogRecPtr inserted;
1760 Size nbytes = count;
1761
1763 return 0;
1764
1765 Assert(XLogRecPtrIsValid(startptr));
1766
1767 /*
1768 * Caller should ensure that the requested data has been inserted into WAL
1769 * buffers before we try to read it.
1770 */
1772 if (startptr + count > inserted)
1773 ereport(ERROR,
1774 errmsg("cannot read past end of generated WAL: requested %X/%08X, current position %X/%08X",
1775 LSN_FORMAT_ARGS(startptr + count),
1776 LSN_FORMAT_ARGS(inserted)));
1777
1778 /*
1779 * Loop through the buffers without a lock. For each buffer, atomically
1780 * read and verify the end pointer, then copy the data out, and finally
1781 * re-read and re-verify the end pointer.
1782 *
1783 * Once a page is evicted, it never returns to the WAL buffers, so if the
1784 * end pointer matches the expected end pointer before and after we copy
1785 * the data, then the right page must have been present during the data
1786 * copy. Read barriers are necessary to ensure that the data copy actually
1787 * happens between the two verification steps.
1788 *
1789 * If either verification fails, we simply terminate the loop and return
1790 * with the data that had been already copied out successfully.
1791 */
1792 while (nbytes > 0)
1793 {
1794 uint32 offset = recptr % XLOG_BLCKSZ;
1795 int idx = XLogRecPtrToBufIdx(recptr);
1796 XLogRecPtr expectedEndPtr;
1797 XLogRecPtr endptr;
1798 const char *page;
1799 const char *psrc;
1800 Size npagebytes;
1801
1802 /*
1803 * Calculate the end pointer we expect in the xlblocks array if the
1804 * correct page is present.
1805 */
1806 expectedEndPtr = recptr + (XLOG_BLCKSZ - offset);
1807
1808 /*
1809 * First verification step: check that the correct page is present in
1810 * the WAL buffers.
1811 */
1813 if (expectedEndPtr != endptr)
1814 break;
1815
1816 /*
1817 * The correct page is present (or was at the time the endptr was
1818 * read; must re-verify later). Calculate pointer to source data and
1819 * determine how much data to read from this page.
1820 */
1821 page = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
1822 psrc = page + offset;
1823 npagebytes = Min(nbytes, XLOG_BLCKSZ - offset);
1824
1825 /*
1826 * Ensure that the data copy and the first verification step are not
1827 * reordered.
1828 */
1830
1831 /* data copy */
1832 memcpy(pdst, psrc, npagebytes);
1833
1834 /*
1835 * Ensure that the data copy and the second verification step are not
1836 * reordered.
1837 */
1839
1840 /*
1841 * Second verification step: check that the page we read from wasn't
1842 * evicted while we were copying the data.
1843 */
1845 if (expectedEndPtr != endptr)
1846 break;
1847
1848 pdst += npagebytes;
1849 recptr += npagebytes;
1850 nbytes -= npagebytes;
1851 }
1852
1853 Assert(pdst - dstbuf <= count);
1854
1855 return pdst - dstbuf;
1856}
1857
1858/*
1859 * Converts a "usable byte position" to XLogRecPtr. A usable byte position
1860 * is the position starting from the beginning of WAL, excluding all WAL
1861 * page headers.
1862 */
1863static XLogRecPtr
1865{
1866 uint64 fullsegs;
1867 uint64 fullpages;
1868 uint64 bytesleft;
1869 uint32 seg_offset;
1870 XLogRecPtr result;
1871
1872 fullsegs = bytepos / UsableBytesInSegment;
1873 bytesleft = bytepos % UsableBytesInSegment;
1874
1875 if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1876 {
1877 /* fits on first page of segment */
1878 seg_offset = bytesleft + SizeOfXLogLongPHD;
1879 }
1880 else
1881 {
1882 /* account for the first page on segment with long header */
1883 seg_offset = XLOG_BLCKSZ;
1884 bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1885
1886 fullpages = bytesleft / UsableBytesInPage;
1887 bytesleft = bytesleft % UsableBytesInPage;
1888
1889 seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1890 }
1891
1892 XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1893
1894 return result;
1895}
1896
1897/*
1898 * Like XLogBytePosToRecPtr, but if the position is at a page boundary,
1899 * returns a pointer to the beginning of the page (ie. before page header),
1900 * not to where the first xlog record on that page would go to. This is used
1901 * when converting a pointer to the end of a record.
1902 */
1903static XLogRecPtr
1905{
1906 uint64 fullsegs;
1907 uint64 fullpages;
1908 uint64 bytesleft;
1909 uint32 seg_offset;
1910 XLogRecPtr result;
1911
1912 fullsegs = bytepos / UsableBytesInSegment;
1913 bytesleft = bytepos % UsableBytesInSegment;
1914
1915 if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
1916 {
1917 /* fits on first page of segment */
1918 if (bytesleft == 0)
1919 seg_offset = 0;
1920 else
1921 seg_offset = bytesleft + SizeOfXLogLongPHD;
1922 }
1923 else
1924 {
1925 /* account for the first page on segment with long header */
1926 seg_offset = XLOG_BLCKSZ;
1927 bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
1928
1929 fullpages = bytesleft / UsableBytesInPage;
1930 bytesleft = bytesleft % UsableBytesInPage;
1931
1932 if (bytesleft == 0)
1933 seg_offset += fullpages * XLOG_BLCKSZ + bytesleft;
1934 else
1935 seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
1936 }
1937
1938 XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
1939
1940 return result;
1941}
1942
1943/*
1944 * Convert an XLogRecPtr to a "usable byte position".
1945 */
1946static uint64
1948{
1949 uint64 fullsegs;
1950 uint32 fullpages;
1951 uint32 offset;
1952 uint64 result;
1953
1954 XLByteToSeg(ptr, fullsegs, wal_segment_size);
1955
1956 fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ;
1957 offset = ptr % XLOG_BLCKSZ;
1958
1959 if (fullpages == 0)
1960 {
1961 result = fullsegs * UsableBytesInSegment;
1962 if (offset > 0)
1963 {
1964 Assert(offset >= SizeOfXLogLongPHD);
1965 result += offset - SizeOfXLogLongPHD;
1966 }
1967 }
1968 else
1969 {
1970 result = fullsegs * UsableBytesInSegment +
1971 (XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */
1972 (fullpages - 1) * UsableBytesInPage; /* full pages */
1973 if (offset > 0)
1974 {
1975 Assert(offset >= SizeOfXLogShortPHD);
1976 result += offset - SizeOfXLogShortPHD;
1977 }
1978 }
1979
1980 return result;
1981}
1982
1983/*
1984 * Initialize XLOG buffers, writing out old buffers if they still contain
1985 * unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is
1986 * true, initialize as many pages as we can without having to write out
1987 * unwritten data. Any new pages are initialized to zeros, with pages headers
1988 * initialized properly.
1989 */
1990static void
1991AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
1992{
1994 int nextidx;
1995 XLogRecPtr OldPageRqstPtr;
1996 XLogwrtRqst WriteRqst;
1997 XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr;
1998 XLogRecPtr NewPageBeginPtr;
1999 XLogPageHeader NewPage;
2000 int npages pg_attribute_unused() = 0;
2001
2002 LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
2003
2004 /*
2005 * Now that we have the lock, check if someone initialized the page
2006 * already.
2007 */
2008 while (upto >= XLogCtl->InitializedUpTo || opportunistic)
2009 {
2011
2012 /*
2013 * Get ending-offset of the buffer page we need to replace (this may
2014 * be zero if the buffer hasn't been used yet). Fall through if it's
2015 * already written out.
2016 */
2017 OldPageRqstPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[nextidx]);
2018 if (LogwrtResult.Write < OldPageRqstPtr)
2019 {
2020 /*
2021 * Nope, got work to do. If we just want to pre-initialize as much
2022 * as we can without flushing, give up now.
2023 */
2024 if (opportunistic)
2025 break;
2026
2027 /* Advance shared memory write request position */
2029 if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr)
2030 XLogCtl->LogwrtRqst.Write = OldPageRqstPtr;
2032
2033 /*
2034 * Acquire an up-to-date LogwrtResult value and see if we still
2035 * need to write it or if someone else already did.
2036 */
2038 if (LogwrtResult.Write < OldPageRqstPtr)
2039 {
2040 /*
2041 * Must acquire write lock. Release WALBufMappingLock first,
2042 * to make sure that all insertions that we need to wait for
2043 * can finish (up to this same position). Otherwise we risk
2044 * deadlock.
2045 */
2046 LWLockRelease(WALBufMappingLock);
2047
2048 WaitXLogInsertionsToFinish(OldPageRqstPtr);
2049
2050 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
2051
2053 if (LogwrtResult.Write >= OldPageRqstPtr)
2054 {
2055 /* OK, someone wrote it already */
2056 LWLockRelease(WALWriteLock);
2057 }
2058 else
2059 {
2060 /* Have to write it ourselves */
2061 TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
2062 WriteRqst.Write = OldPageRqstPtr;
2063 WriteRqst.Flush = 0;
2064 XLogWrite(WriteRqst, tli, false);
2065 LWLockRelease(WALWriteLock);
2067 TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
2068
2069 /*
2070 * Required for the flush of pending stats WAL data, per
2071 * update of pgWalUsage.
2072 */
2073 pgstat_report_fixed = true;
2074 }
2075 /* Re-acquire WALBufMappingLock and retry */
2076 LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
2077 continue;
2078 }
2079 }
2080
2081 /*
2082 * Now the next buffer slot is free and we can set it up to be the
2083 * next output page.
2084 */
2085 NewPageBeginPtr = XLogCtl->InitializedUpTo;
2086 NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ;
2087
2088 Assert(XLogRecPtrToBufIdx(NewPageBeginPtr) == nextidx);
2089
2090 NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
2091
2092 /*
2093 * Mark the xlblock with InvalidXLogRecPtr and issue a write barrier
2094 * before initializing. Otherwise, the old page may be partially
2095 * zeroed but look valid.
2096 */
2099
2100 /*
2101 * Be sure to re-zero the buffer so that bytes beyond what we've
2102 * written will look like zeroes and not valid XLOG records...
2103 */
2104 MemSet(NewPage, 0, XLOG_BLCKSZ);
2105
2106 /*
2107 * Fill the new page's header
2108 */
2109 NewPage->xlp_magic = XLOG_PAGE_MAGIC;
2110
2111 /* NewPage->xlp_info = 0; */ /* done by memset */
2112 NewPage->xlp_tli = tli;
2113 NewPage->xlp_pageaddr = NewPageBeginPtr;
2114
2115 /* NewPage->xlp_rem_len = 0; */ /* done by memset */
2116
2117 /*
2118 * If online backup is not in progress, mark the header to indicate
2119 * that WAL records beginning in this page have removable backup
2120 * blocks. This allows the WAL archiver to know whether it is safe to
2121 * compress archived WAL data by transforming full-block records into
2122 * the non-full-block format. It is sufficient to record this at the
2123 * page level because we force a page switch (in fact a segment
2124 * switch) when starting a backup, so the flag will be off before any
2125 * records can be written during the backup. At the end of a backup,
2126 * the last page will be marked as all unsafe when perhaps only part
2127 * is unsafe, but at worst the archiver would miss the opportunity to
2128 * compress a few records.
2129 */
2130 if (Insert->runningBackups == 0)
2131 NewPage->xlp_info |= XLP_BKP_REMOVABLE;
2132
2133 /*
2134 * If first page of an XLOG segment file, make it a long header.
2135 */
2136 if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0)
2137 {
2138 XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
2139
2140 NewLongPage->xlp_sysid = ControlFile->system_identifier;
2141 NewLongPage->xlp_seg_size = wal_segment_size;
2142 NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
2143 NewPage->xlp_info |= XLP_LONG_HEADER;
2144 }
2145
2146 /*
2147 * Make sure the initialization of the page becomes visible to others
2148 * before the xlblocks update. GetXLogBuffer() reads xlblocks without
2149 * holding a lock.
2150 */
2152
2153 pg_atomic_write_u64(&XLogCtl->xlblocks[nextidx], NewPageEndPtr);
2154 XLogCtl->InitializedUpTo = NewPageEndPtr;
2155
2156 npages++;
2157 }
2158 LWLockRelease(WALBufMappingLock);
2159
2160#ifdef WAL_DEBUG
2161 if (XLOG_DEBUG && npages > 0)
2162 {
2163 elog(DEBUG1, "initialized %d pages, up to %X/%08X",
2164 npages, LSN_FORMAT_ARGS(NewPageEndPtr));
2165 }
2166#endif
2167}
2168
2169/*
2170 * Calculate CheckPointSegments based on max_wal_size_mb and
2171 * checkpoint_completion_target.
2172 */
2173static void
2175{
2176 double target;
2177
2178 /*-------
2179 * Calculate the distance at which to trigger a checkpoint, to avoid
2180 * exceeding max_wal_size_mb. This is based on two assumptions:
2181 *
2182 * a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept
2183 * WAL for two checkpoint cycles to allow us to recover from the
2184 * secondary checkpoint if the first checkpoint failed, though we
2185 * only did this on the primary anyway, not on standby. Keeping just
2186 * one checkpoint simplifies processing and reduces disk space in
2187 * many smaller databases.)
2188 * b) during checkpoint, we consume checkpoint_completion_target *
2189 * number of segments consumed between checkpoints.
2190 *-------
2191 */
2192 target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) /
2194
2195 /* round down */
2196 CheckPointSegments = (int) target;
2197
2198 if (CheckPointSegments < 1)
2200}
2201
2202void
2204{
2207}
2208
2209void
2211{
2214}
2215
2216bool
2218{
2220 {
2221 GUC_check_errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.");
2222 return false;
2223 }
2224
2225 return true;
2226}
2227
2228/*
2229 * At a checkpoint, how many WAL segments to recycle as preallocated future
2230 * XLOG segments? Returns the highest segment that should be preallocated.
2231 */
2232static XLogSegNo
2234{
2235 XLogSegNo minSegNo;
2236 XLogSegNo maxSegNo;
2237 double distance;
2238 XLogSegNo recycleSegNo;
2239
2240 /*
2241 * Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb
2242 * correspond to. Always recycle enough segments to meet the minimum, and
2243 * remove enough segments to stay below the maximum.
2244 */
2245 minSegNo = lastredoptr / wal_segment_size +
2247 maxSegNo = lastredoptr / wal_segment_size +
2249
2250 /*
2251 * Between those limits, recycle enough segments to get us through to the
2252 * estimated end of next checkpoint.
2253 *
2254 * To estimate where the next checkpoint will finish, assume that the
2255 * system runs steadily consuming CheckPointDistanceEstimate bytes between
2256 * every checkpoint.
2257 */
2259 /* add 10% for good measure. */
2260 distance *= 1.10;
2261
2262 recycleSegNo = (XLogSegNo) ceil(((double) lastredoptr + distance) /
2264
2265 if (recycleSegNo < minSegNo)
2266 recycleSegNo = minSegNo;
2267 if (recycleSegNo > maxSegNo)
2268 recycleSegNo = maxSegNo;
2269
2270 return recycleSegNo;
2271}
2272
2273/*
2274 * Check whether we've consumed enough xlog space that a checkpoint is needed.
2275 *
2276 * new_segno indicates a log file that has just been filled up (or read
2277 * during recovery). We measure the distance from RedoRecPtr to new_segno
2278 * and see if that exceeds CheckPointSegments.
2279 *
2280 * Note: it is caller's responsibility that RedoRecPtr is up-to-date.
2281 */
2282bool
2284{
2285 XLogSegNo old_segno;
2286
2288
2289 if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1))
2290 return true;
2291 return false;
2292}
2293
2294/*
2295 * Write and/or fsync the log at least as far as WriteRqst indicates.
2296 *
2297 * If flexible == true, we don't have to write as far as WriteRqst, but
2298 * may stop at any convenient boundary (such as a cache or logfile boundary).
2299 * This option allows us to avoid uselessly issuing multiple writes when a
2300 * single one would do.
2301 *
2302 * Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst)
2303 * must be called before grabbing the lock, to make sure the data is ready to
2304 * write.
2305 */
2306static void
2307XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
2308{
2309 bool ispartialpage;
2310 bool last_iteration;
2311 bool finishing_seg;
2312 int curridx;
2313 int npages;
2314 int startidx;
2315 uint32 startoffset;
2316
2317 /* We should always be inside a critical section here */
2319
2320 /*
2321 * Update local LogwrtResult (caller probably did this already, but...)
2322 */
2324
2325 /*
2326 * Since successive pages in the xlog cache are consecutively allocated,
2327 * we can usually gather multiple pages together and issue just one
2328 * write() call. npages is the number of pages we have determined can be
2329 * written together; startidx is the cache block index of the first one,
2330 * and startoffset is the file offset at which it should go. The latter
2331 * two variables are only valid when npages > 0, but we must initialize
2332 * all of them to keep the compiler quiet.
2333 */
2334 npages = 0;
2335 startidx = 0;
2336 startoffset = 0;
2337
2338 /*
2339 * Within the loop, curridx is the cache block index of the page to
2340 * consider writing. Begin at the buffer containing the next unwritten
2341 * page, or last partially written page.
2342 */
2344
2345 while (LogwrtResult.Write < WriteRqst.Write)
2346 {
2347 /*
2348 * Make sure we're not ahead of the insert process. This could happen
2349 * if we're passed a bogus WriteRqst.Write that is past the end of the
2350 * last page that's been initialized by AdvanceXLInsertBuffer.
2351 */
2352 XLogRecPtr EndPtr = pg_atomic_read_u64(&XLogCtl->xlblocks[curridx]);
2353
2354 if (LogwrtResult.Write >= EndPtr)
2355 elog(PANIC, "xlog write request %X/%08X is past end of log %X/%08X",
2357 LSN_FORMAT_ARGS(EndPtr));
2358
2359 /* Advance LogwrtResult.Write to end of current buffer page */
2360 LogwrtResult.Write = EndPtr;
2361 ispartialpage = WriteRqst.Write < LogwrtResult.Write;
2362
2365 {
2366 /*
2367 * Switch to new logfile segment. We cannot have any pending
2368 * pages here (since we dump what we have at segment end).
2369 */
2370 Assert(npages == 0);
2371 if (openLogFile >= 0)
2372 XLogFileClose();
2375 openLogTLI = tli;
2376
2377 /* create/use new log file */
2380 }
2381
2382 /* Make sure we have the current logfile open */
2383 if (openLogFile < 0)
2384 {
2387 openLogTLI = tli;
2390 }
2391
2392 /* Add current page to the set of pending pages-to-dump */
2393 if (npages == 0)
2394 {
2395 /* first of group */
2396 startidx = curridx;
2397 startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ,
2399 }
2400 npages++;
2401
2402 /*
2403 * Dump the set if this will be the last loop iteration, or if we are
2404 * at the last page of the cache area (since the next page won't be
2405 * contiguous in memory), or if we are at the end of the logfile
2406 * segment.
2407 */
2408 last_iteration = WriteRqst.Write <= LogwrtResult.Write;
2409
2410 finishing_seg = !ispartialpage &&
2411 (startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size;
2412
2413 if (last_iteration ||
2414 curridx == XLogCtl->XLogCacheBlck ||
2415 finishing_seg)
2416 {
2417 char *from;
2418 Size nbytes;
2419 Size nleft;
2420 ssize_t written;
2422
2423 /* OK to write the page(s) */
2424 from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
2425 nbytes = npages * (Size) XLOG_BLCKSZ;
2426 nleft = nbytes;
2427 do
2428 {
2429 errno = 0;
2430
2431 /*
2432 * Measure I/O timing to write WAL data, for pg_stat_io.
2433 */
2435
2436 pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE);
2437 written = pg_pwrite(openLogFile, from, nleft, startoffset);
2439
2441 IOOP_WRITE, start, 1, written);
2442
2443 if (written <= 0)
2444 {
2445 char xlogfname[MAXFNAMELEN];
2446 int save_errno;
2447
2448 if (errno == EINTR)
2449 continue;
2450
2451 save_errno = errno;
2452 XLogFileName(xlogfname, tli, openLogSegNo,
2454 errno = save_errno;
2455 ereport(PANIC,
2457 errmsg("could not write to log file \"%s\" at offset %u, length %zu: %m",
2458 xlogfname, startoffset, nleft)));
2459 }
2460 nleft -= written;
2461 from += written;
2462 startoffset += written;
2463 } while (nleft > 0);
2464
2465 npages = 0;
2466
2467 /*
2468 * If we just wrote the whole last page of a logfile segment,
2469 * fsync the segment immediately. This avoids having to go back
2470 * and re-open prior segments when an fsync request comes along
2471 * later. Doing it here ensures that one and only one backend will
2472 * perform this fsync.
2473 *
2474 * This is also the right place to notify the Archiver that the
2475 * segment is ready to copy to archival storage, and to update the
2476 * timer for archive_timeout, and to signal for a checkpoint if
2477 * too many logfile segments have been used since the last
2478 * checkpoint.
2479 */
2480 if (finishing_seg)
2481 {
2483
2484 /* signal that we need to wakeup walsenders later */
2486
2487 LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
2488
2489 if (XLogArchivingActive())
2491
2492 XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
2494
2495 /*
2496 * Request a checkpoint if we've consumed too much xlog since
2497 * the last one. For speed, we first check using the local
2498 * copy of RedoRecPtr, which might be out of date; if it looks
2499 * like a checkpoint is needed, forcibly update RedoRecPtr and
2500 * recheck.
2501 */
2503 {
2504 (void) GetRedoRecPtr();
2507 }
2508 }
2509 }
2510
2511 if (ispartialpage)
2512 {
2513 /* Only asked to write a partial page */
2514 LogwrtResult.Write = WriteRqst.Write;
2515 break;
2516 }
2517 curridx = NextBufIdx(curridx);
2518
2519 /* If flexible, break out of loop as soon as we wrote something */
2520 if (flexible && npages == 0)
2521 break;
2522 }
2523
2524 Assert(npages == 0);
2525
2526 /*
2527 * If asked to flush, do so
2528 */
2529 if (LogwrtResult.Flush < WriteRqst.Flush &&
2531 {
2532 /*
2533 * Could get here without iterating above loop, in which case we might
2534 * have no open file or the wrong one. However, we do not need to
2535 * fsync more than one file.
2536 */
2539 {
2540 if (openLogFile >= 0 &&
2543 XLogFileClose();
2544 if (openLogFile < 0)
2545 {
2548 openLogTLI = tli;
2551 }
2552
2554 }
2555
2556 /* signal that we need to wakeup walsenders later */
2558
2560 }
2561
2562 /*
2563 * Update shared-memory status
2564 *
2565 * We make sure that the shared 'request' values do not fall behind the
2566 * 'result' values. This is not absolutely essential, but it saves some
2567 * code in a couple of places.
2568 */
2575
2576 /*
2577 * We write Write first, bar, then Flush. When reading, the opposite must
2578 * be done (with a matching barrier in between), so that we always see a
2579 * Flush value that trails behind the Write value seen.
2580 */
2584
2585#ifdef USE_ASSERT_CHECKING
2586 {
2590
2596
2597 /* WAL written to disk is always ahead of WAL flushed */
2598 Assert(Write >= Flush);
2599
2600 /* WAL inserted to buffers is always ahead of WAL written */
2601 Assert(Insert >= Write);
2602 }
2603#endif
2604}
2605
2606/*
2607 * Record the LSN for an asynchronous transaction commit/abort
2608 * and nudge the WALWriter if there is work for it to do.
2609 * (This should not be called for synchronous commits.)
2610 */
2611void
2613{
2614 XLogRecPtr WriteRqstPtr = asyncXactLSN;
2615 bool sleeping;
2616 bool wakeup = false;
2617 XLogRecPtr prevAsyncXactLSN;
2618
2620 sleeping = XLogCtl->WalWriterSleeping;
2621 prevAsyncXactLSN = XLogCtl->asyncXactLSN;
2622 if (XLogCtl->asyncXactLSN < asyncXactLSN)
2623 XLogCtl->asyncXactLSN = asyncXactLSN;
2625
2626 /*
2627 * If somebody else already called this function with a more aggressive
2628 * LSN, they will have done what we needed (and perhaps more).
2629 */
2630 if (asyncXactLSN <= prevAsyncXactLSN)
2631 return;
2632
2633 /*
2634 * If the WALWriter is sleeping, kick it to make it come out of low-power
2635 * mode, so that this async commit will reach disk within the expected
2636 * amount of time. Otherwise, determine whether it has enough WAL
2637 * available to flush, the same way that XLogBackgroundFlush() does.
2638 */
2639 if (sleeping)
2640 wakeup = true;
2641 else
2642 {
2643 int flushblocks;
2644
2646
2647 flushblocks =
2648 WriteRqstPtr / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
2649
2650 if (WalWriterFlushAfter == 0 || flushblocks >= WalWriterFlushAfter)
2651 wakeup = true;
2652 }
2653
2654 if (wakeup)
2655 {
2656 volatile PROC_HDR *procglobal = ProcGlobal;
2657 ProcNumber walwriterProc = procglobal->walwriterProc;
2658
2659 if (walwriterProc != INVALID_PROC_NUMBER)
2660 SetLatch(&GetPGProcByNumber(walwriterProc)->procLatch);
2661 }
2662}
2663
2664/*
2665 * Record the LSN up to which we can remove WAL because it's not required by
2666 * any replication slot.
2667 */
2668void
2670{
2674}
2675
2676
2677/*
2678 * Return the oldest LSN we must retain to satisfy the needs of some
2679 * replication slot.
2680 */
2681static XLogRecPtr
2683{
2684 XLogRecPtr retval;
2685
2689
2690 return retval;
2691}
2692
2693/*
2694 * Advance minRecoveryPoint in control file.
2695 *
2696 * If we crash during recovery, we must reach this point again before the
2697 * database is consistent.
2698 *
2699 * If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
2700 * is only updated if it's not already greater than or equal to 'lsn'.
2701 */
2702static void
2704{
2705 /* Quick check using our local copy of the variable */
2706 if (!updateMinRecoveryPoint || (!force && lsn <= LocalMinRecoveryPoint))
2707 return;
2708
2709 /*
2710 * An invalid minRecoveryPoint means that we need to recover all the WAL,
2711 * i.e., we're doing crash recovery. We never modify the control file's
2712 * value in that case, so we can short-circuit future checks here too. The
2713 * local values of minRecoveryPoint and minRecoveryPointTLI should not be
2714 * updated until crash recovery finishes. We only do this for the startup
2715 * process as it should not update its own reference of minRecoveryPoint
2716 * until it has finished crash recovery to make sure that all WAL
2717 * available is replayed in this case. This also saves from extra locks
2718 * taken on the control file from the startup process.
2719 */
2721 {
2722 updateMinRecoveryPoint = false;
2723 return;
2724 }
2725
2726 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
2727
2728 /* update local copy */
2731
2733 updateMinRecoveryPoint = false;
2734 else if (force || LocalMinRecoveryPoint < lsn)
2735 {
2736 XLogRecPtr newMinRecoveryPoint;
2737 TimeLineID newMinRecoveryPointTLI;
2738
2739 /*
2740 * To avoid having to update the control file too often, we update it
2741 * all the way to the last record being replayed, even though 'lsn'
2742 * would suffice for correctness. This also allows the 'force' case
2743 * to not need a valid 'lsn' value.
2744 *
2745 * Another important reason for doing it this way is that the passed
2746 * 'lsn' value could be bogus, i.e., past the end of available WAL, if
2747 * the caller got it from a corrupted heap page. Accepting such a
2748 * value as the min recovery point would prevent us from coming up at
2749 * all. Instead, we just log a warning and continue with recovery.
2750 * (See also the comments about corrupt LSNs in XLogFlush.)
2751 */
2752 newMinRecoveryPoint = GetCurrentReplayRecPtr(&newMinRecoveryPointTLI);
2753 if (!force && newMinRecoveryPoint < lsn)
2754 elog(WARNING,
2755 "xlog min recovery request %X/%08X is past current point %X/%08X",
2756 LSN_FORMAT_ARGS(lsn), LSN_FORMAT_ARGS(newMinRecoveryPoint));
2757
2758 /* update control file */
2759 if (ControlFile->minRecoveryPoint < newMinRecoveryPoint)
2760 {
2761 ControlFile->minRecoveryPoint = newMinRecoveryPoint;
2762 ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI;
2764 LocalMinRecoveryPoint = newMinRecoveryPoint;
2765 LocalMinRecoveryPointTLI = newMinRecoveryPointTLI;
2766
2768 errmsg_internal("updated min recovery point to %X/%08X on timeline %u",
2769 LSN_FORMAT_ARGS(newMinRecoveryPoint),
2770 newMinRecoveryPointTLI));
2771 }
2772 }
2773 LWLockRelease(ControlFileLock);
2774}
2775
2776/*
2777 * Ensure that all XLOG data through the given position is flushed to disk.
2778 *
2779 * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
2780 * already held, and we try to avoid acquiring it if possible.
2781 */
2782void
2784{
2785 XLogRecPtr WriteRqstPtr;
2786 XLogwrtRqst WriteRqst;
2787 TimeLineID insertTLI = XLogCtl->InsertTimeLineID;
2788
2789 /*
2790 * During REDO, we are reading not writing WAL. Therefore, instead of
2791 * trying to flush the WAL, we should update minRecoveryPoint instead. We
2792 * test XLogInsertAllowed(), not InRecovery, because we need checkpointer
2793 * to act this way too, and because when it tries to write the
2794 * end-of-recovery checkpoint, it should indeed flush.
2795 */
2796 if (!XLogInsertAllowed())
2797 {
2798 UpdateMinRecoveryPoint(record, false);
2799 return;
2800 }
2801
2802 /* Quick exit if already known flushed */
2803 if (record <= LogwrtResult.Flush)
2804 return;
2805
2806#ifdef WAL_DEBUG
2807 if (XLOG_DEBUG)
2808 elog(LOG, "xlog flush request %X/%08X; write %X/%08X; flush %X/%08X",
2809 LSN_FORMAT_ARGS(record),
2812#endif
2813
2815
2816 /*
2817 * Since fsync is usually a horribly expensive operation, we try to
2818 * piggyback as much data as we can on each fsync: if we see any more data
2819 * entered into the xlog buffer, we'll write and fsync that too, so that
2820 * the final value of LogwrtResult.Flush is as large as possible. This
2821 * gives us some chance of avoiding another fsync immediately after.
2822 */
2823
2824 /* initialize to given target; may increase below */
2825 WriteRqstPtr = record;
2826
2827 /*
2828 * Now wait until we get the write lock, or someone else does the flush
2829 * for us.
2830 */
2831 for (;;)
2832 {
2833 XLogRecPtr insertpos;
2834
2835 /* done already? */
2837 if (record <= LogwrtResult.Flush)
2838 break;
2839
2840 /*
2841 * Before actually performing the write, wait for all in-flight
2842 * insertions to the pages we're about to write to finish.
2843 */
2845 if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write)
2846 WriteRqstPtr = XLogCtl->LogwrtRqst.Write;
2848 insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr);
2849
2850 /*
2851 * Try to get the write lock. If we can't get it immediately, wait
2852 * until it's released, and recheck if we still need to do the flush
2853 * or if the backend that held the lock did it for us already. This
2854 * helps to maintain a good rate of group committing when the system
2855 * is bottlenecked by the speed of fsyncing.
2856 */
2857 if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE))
2858 {
2859 /*
2860 * The lock is now free, but we didn't acquire it yet. Before we
2861 * do, loop back to check if someone else flushed the record for
2862 * us already.
2863 */
2864 continue;
2865 }
2866
2867 /* Got the lock; recheck whether request is satisfied */
2869 if (record <= LogwrtResult.Flush)
2870 {
2871 LWLockRelease(WALWriteLock);
2872 break;
2873 }
2874
2875 /*
2876 * Sleep before flush! By adding a delay here, we may give further
2877 * backends the opportunity to join the backlog of group commit
2878 * followers; this can significantly improve transaction throughput,
2879 * at the risk of increasing transaction latency.
2880 *
2881 * We do not sleep if enableFsync is not turned on, nor if there are
2882 * fewer than CommitSiblings other backends with active transactions.
2883 */
2884 if (CommitDelay > 0 && enableFsync &&
2886 {
2887 pgstat_report_wait_start(WAIT_EVENT_COMMIT_DELAY);
2890
2891 /*
2892 * Re-check how far we can now flush the WAL. It's generally not
2893 * safe to call WaitXLogInsertionsToFinish while holding
2894 * WALWriteLock, because an in-progress insertion might need to
2895 * also grab WALWriteLock to make progress. But we know that all
2896 * the insertions up to insertpos have already finished, because
2897 * that's what the earlier WaitXLogInsertionsToFinish() returned.
2898 * We're only calling it again to allow insertpos to be moved
2899 * further forward, not to actually wait for anyone.
2900 */
2901 insertpos = WaitXLogInsertionsToFinish(insertpos);
2902 }
2903
2904 /* try to write/flush later additions to XLOG as well */
2905 WriteRqst.Write = insertpos;
2906 WriteRqst.Flush = insertpos;
2907
2908 XLogWrite(WriteRqst, insertTLI, false);
2909
2910 LWLockRelease(WALWriteLock);
2911 /* done */
2912 break;
2913 }
2914
2916
2917 /* wake up walsenders now that we've released heavily contended locks */
2919
2920 /*
2921 * If we still haven't flushed to the request point then we have a
2922 * problem; most likely, the requested flush point is past end of XLOG.
2923 * This has been seen to occur when a disk page has a corrupted LSN.
2924 *
2925 * Formerly we treated this as a PANIC condition, but that hurts the
2926 * system's robustness rather than helping it: we do not want to take down
2927 * the whole system due to corruption on one data page. In particular, if
2928 * the bad page is encountered again during recovery then we would be
2929 * unable to restart the database at all! (This scenario actually
2930 * happened in the field several times with 7.1 releases.) As of 8.4, bad
2931 * LSNs encountered during recovery are UpdateMinRecoveryPoint's problem;
2932 * the only time we can reach here during recovery is while flushing the
2933 * end-of-recovery checkpoint record, and we don't expect that to have a
2934 * bad LSN.
2935 *
2936 * Note that for calls from xact.c, the ERROR will be promoted to PANIC
2937 * since xact.c calls this routine inside a critical section. However,
2938 * calls from bufmgr.c are not within critical sections and so we will not
2939 * force a restart for a bad LSN on a data page.
2940 */
2941 if (LogwrtResult.Flush < record)
2942 elog(ERROR,
2943 "xlog flush request %X/%08X is not satisfied --- flushed only to %X/%08X",
2944 LSN_FORMAT_ARGS(record),
2946
2947 /*
2948 * Cross-check XLogNeedsFlush(). Some of the checks of XLogFlush() and
2949 * XLogNeedsFlush() are duplicated, and this assertion ensures that these
2950 * remain consistent.
2951 */
2952 Assert(!XLogNeedsFlush(record));
2953}
2954
2955/*
2956 * Write & flush xlog, but without specifying exactly where to.
2957 *
2958 * We normally write only completed blocks; but if there is nothing to do on
2959 * that basis, we check for unwritten async commits in the current incomplete
2960 * block, and write through the latest one of those. Thus, if async commits
2961 * are not being used, we will write complete blocks only.
2962 *
2963 * If, based on the above, there's anything to write we do so immediately. But
2964 * to avoid calling fsync, fdatasync et. al. at a rate that'd impact
2965 * concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's
2966 * more than wal_writer_flush_after unflushed blocks.
2967 *
2968 * We can guarantee that async commits reach disk after at most three
2969 * wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite
2970 * to write "flexibly", meaning it can stop at the end of the buffer ring;
2971 * this makes a difference only with very high load or long wal_writer_delay,
2972 * but imposes one extra cycle for the worst case for async commits.)
2973 *
2974 * This routine is invoked periodically by the background walwriter process.
2975 *
2976 * Returns true if there was any work to do, even if we skipped flushing due
2977 * to wal_writer_delay/wal_writer_flush_after.
2978 */
2979bool
2981{
2982 XLogwrtRqst WriteRqst;
2983 bool flexible = true;
2984 static TimestampTz lastflush;
2986 int flushblocks;
2987 TimeLineID insertTLI;
2988
2989 /* XLOG doesn't need flushing during recovery */
2990 if (RecoveryInProgress())
2991 return false;
2992
2993 /*
2994 * Since we're not in recovery, InsertTimeLineID is set and can't change,
2995 * so we can read it without a lock.
2996 */
2997 insertTLI = XLogCtl->InsertTimeLineID;
2998
2999 /* read updated LogwrtRqst */
3001 WriteRqst = XLogCtl->LogwrtRqst;
3003
3004 /* back off to last completed page boundary */
3005 WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ;
3006
3007 /* if we have already flushed that far, consider async commit records */
3009 if (WriteRqst.Write <= LogwrtResult.Flush)
3010 {
3012 WriteRqst.Write = XLogCtl->asyncXactLSN;
3014 flexible = false; /* ensure it all gets written */
3015 }
3016
3017 /*
3018 * If already known flushed, we're done. Just need to check if we are
3019 * holding an open file handle to a logfile that's no longer in use,
3020 * preventing the file from being deleted.
3021 */
3022 if (WriteRqst.Write <= LogwrtResult.Flush)
3023 {
3024 if (openLogFile >= 0)
3025 {
3028 {
3029 XLogFileClose();
3030 }
3031 }
3032 return false;
3033 }
3034
3035 /*
3036 * Determine how far to flush WAL, based on the wal_writer_delay and
3037 * wal_writer_flush_after GUCs.
3038 *
3039 * Note that XLogSetAsyncXactLSN() performs similar calculation based on
3040 * wal_writer_flush_after, to decide when to wake us up. Make sure the
3041 * logic is the same in both places if you change this.
3042 */
3044 flushblocks =
3045 WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
3046
3047 if (WalWriterFlushAfter == 0 || lastflush == 0)
3048 {
3049 /* first call, or block based limits disabled */
3050 WriteRqst.Flush = WriteRqst.Write;
3051 lastflush = now;
3052 }
3053 else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay))
3054 {
3055 /*
3056 * Flush the writes at least every WalWriterDelay ms. This is
3057 * important to bound the amount of time it takes for an asynchronous
3058 * commit to hit disk.
3059 */
3060 WriteRqst.Flush = WriteRqst.Write;
3061 lastflush = now;
3062 }
3063 else if (flushblocks >= WalWriterFlushAfter)
3064 {
3065 /* exceeded wal_writer_flush_after blocks, flush */
3066 WriteRqst.Flush = WriteRqst.Write;
3067 lastflush = now;
3068 }
3069 else
3070 {
3071 /* no flushing, this time round */
3072 WriteRqst.Flush = 0;
3073 }
3074
3075#ifdef WAL_DEBUG
3076 if (XLOG_DEBUG)
3077 elog(LOG, "xlog bg flush request write %X/%08X; flush: %X/%08X, current is write %X/%08X; flush %X/%08X",
3078 LSN_FORMAT_ARGS(WriteRqst.Write),
3079 LSN_FORMAT_ARGS(WriteRqst.Flush),
3082#endif
3083
3085
3086 /* now wait for any in-progress insertions to finish and get write lock */
3088 LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
3090 if (WriteRqst.Write > LogwrtResult.Write ||
3091 WriteRqst.Flush > LogwrtResult.Flush)
3092 {
3093 XLogWrite(WriteRqst, insertTLI, flexible);
3094 }
3095 LWLockRelease(WALWriteLock);
3096
3098
3099 /* wake up walsenders now that we've released heavily contended locks */
3101
3102 /*
3103 * Great, done. To take some work off the critical path, try to initialize
3104 * as many of the no-longer-needed WAL buffers for future use as we can.
3105 */
3106 AdvanceXLInsertBuffer(InvalidXLogRecPtr, insertTLI, true);
3107
3108 /*
3109 * If we determined that we need to write data, but somebody else
3110 * wrote/flushed already, it should be considered as being active, to
3111 * avoid hibernating too early.
3112 */
3113 return true;
3114}
3115
3116/*
3117 * Test whether XLOG data has been flushed up to (at least) the given
3118 * position, or whether the minimum recovery point has been updated past
3119 * the given position.
3120 *
3121 * Returns true if a flush is still needed, or if the minimum recovery point
3122 * must be updated.
3123 *
3124 * It is possible that someone else is already in the process of flushing
3125 * that far, or has updated the minimum recovery point up to the given
3126 * position.
3127 */
3128bool
3130{
3131 /*
3132 * During recovery, we don't flush WAL but update minRecoveryPoint
3133 * instead. So "needs flush" is taken to mean whether minRecoveryPoint
3134 * would need to be updated.
3135 *
3136 * Using XLogInsertAllowed() rather than RecoveryInProgress() matters for
3137 * the case of an end-of-recovery checkpoint, where WAL data is flushed.
3138 * This check should be consistent with the one in XLogFlush().
3139 */
3140 if (!XLogInsertAllowed())
3141 {
3142 /* Quick exit if already known to be updated or cannot be updated */
3144 return false;
3145
3146 /*
3147 * An invalid minRecoveryPoint means that we need to recover all the
3148 * WAL, i.e., we're doing crash recovery. We never modify the control
3149 * file's value in that case, so we can short-circuit future checks
3150 * here too. This triggers a quick exit path for the startup process,
3151 * which cannot update its local copy of minRecoveryPoint as long as
3152 * it has not replayed all WAL available when doing crash recovery.
3153 */
3155 {
3156 updateMinRecoveryPoint = false;
3157 return false;
3158 }
3159
3160 /*
3161 * Update local copy of minRecoveryPoint. But if the lock is busy,
3162 * just return a conservative guess.
3163 */
3164 if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED))
3165 return true;
3168 LWLockRelease(ControlFileLock);
3169
3170 /*
3171 * Check minRecoveryPoint for any other process than the startup
3172 * process doing crash recovery, which should not update the control
3173 * file value if crash recovery is still running.
3174 */
3176 updateMinRecoveryPoint = false;
3177
3178 /* check again */
3180 return false;
3181 else
3182 return true;
3183 }
3184
3185 /* Quick exit if already known flushed */
3186 if (record <= LogwrtResult.Flush)
3187 return false;
3188
3189 /* read LogwrtResult and update local state */
3191
3192 /* check again */
3193 if (record <= LogwrtResult.Flush)
3194 return false;
3195
3196 return true;
3197}
3198
3199/*
3200 * Try to make a given XLOG file segment exist.
3201 *
3202 * logsegno: identify segment.
3203 *
3204 * *added: on return, true if this call raised the number of extant segments.
3205 *
3206 * path: on return, this char[MAXPGPATH] has the path to the logsegno file.
3207 *
3208 * Returns -1 or FD of opened file. A -1 here is not an error; a caller
3209 * wanting an open segment should attempt to open "path", which usually will
3210 * succeed. (This is weird, but it's efficient for the callers.)
3211 */
3212static int
3214 bool *added, char *path)
3215{
3216 char tmppath[MAXPGPATH];
3217 XLogSegNo installed_segno;
3218 XLogSegNo max_segno;
3219 int fd;
3220 int save_errno;
3221 int open_flags = O_RDWR | O_CREAT | O_EXCL | PG_BINARY;
3222 instr_time io_start;
3223
3224 Assert(logtli != 0);
3225
3226 XLogFilePath(path, logtli, logsegno, wal_segment_size);
3227
3228 /*
3229 * Try to use existent file (checkpoint maker may have created it already)
3230 */
3231 *added = false;
3232 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3234 if (fd < 0)
3235 {
3236 if (errno != ENOENT)
3237 ereport(ERROR,
3239 errmsg("could not open file \"%s\": %m", path)));
3240 }
3241 else
3242 return fd;
3243
3244 /*
3245 * Initialize an empty (all zeroes) segment. NOTE: it is possible that
3246 * another process is doing the same thing. If so, we will end up
3247 * pre-creating an extra log segment. That seems OK, and better than
3248 * holding the lock throughout this lengthy process.
3249 */
3250 elog(DEBUG2, "creating and filling new WAL file");
3251
3252 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3253
3254 unlink(tmppath);
3255
3257 open_flags |= PG_O_DIRECT;
3258
3259 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3260 fd = BasicOpenFile(tmppath, open_flags);
3261 if (fd < 0)
3262 ereport(ERROR,
3264 errmsg("could not create file \"%s\": %m", tmppath)));
3265
3266 /* Measure I/O timing when initializing segment */
3268
3269 pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE);
3270 save_errno = 0;
3271 if (wal_init_zero)
3272 {
3273 ssize_t rc;
3274
3275 /*
3276 * Zero-fill the file. With this setting, we do this the hard way to
3277 * ensure that all the file space has really been allocated. On
3278 * platforms that allow "holes" in files, just seeking to the end
3279 * doesn't allocate intermediate space. This way, we know that we
3280 * have all the space and (after the fsync below) that all the
3281 * indirect blocks are down on disk. Therefore, fdatasync(2) or
3282 * O_DSYNC will be sufficient to sync future writes to the log file.
3283 */
3285
3286 if (rc < 0)
3287 save_errno = errno;
3288 }
3289 else
3290 {
3291 /*
3292 * Otherwise, seeking to the end and writing a solitary byte is
3293 * enough.
3294 */
3295 errno = 0;
3296 if (pg_pwrite(fd, "\0", 1, wal_segment_size - 1) != 1)
3297 {
3298 /* if write didn't set errno, assume no disk space */
3299 save_errno = errno ? errno : ENOSPC;
3300 }
3301 }
3303
3304 /*
3305 * A full segment worth of data is written when using wal_init_zero. One
3306 * byte is written when not using it.
3307 */
3309 io_start, 1,
3311
3312 if (save_errno)
3313 {
3314 /*
3315 * If we fail to make the file, delete it to release disk space
3316 */
3317 unlink(tmppath);
3318
3319 close(fd);
3320
3321 errno = save_errno;
3322
3323 ereport(ERROR,
3325 errmsg("could not write to file \"%s\": %m", tmppath)));
3326 }
3327
3328 /* Measure I/O timing when flushing segment */
3330
3331 pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC);
3332 if (pg_fsync(fd) != 0)
3333 {
3334 save_errno = errno;
3335 close(fd);
3336 errno = save_errno;
3337 ereport(ERROR,
3339 errmsg("could not fsync file \"%s\": %m", tmppath)));
3340 }
3342
3344 IOOP_FSYNC, io_start, 1, 0);
3345
3346 if (close(fd) != 0)
3347 ereport(ERROR,
3349 errmsg("could not close file \"%s\": %m", tmppath)));
3350
3351 /*
3352 * Now move the segment into place with its final name. Cope with
3353 * possibility that someone else has created the file while we were
3354 * filling ours: if so, use ours to pre-create a future log segment.
3355 */
3356 installed_segno = logsegno;
3357
3358 /*
3359 * XXX: What should we use as max_segno? We used to use XLOGfileslop when
3360 * that was a constant, but that was always a bit dubious: normally, at a
3361 * checkpoint, XLOGfileslop was the offset from the checkpoint record, but
3362 * here, it was the offset from the insert location. We can't do the
3363 * normal XLOGfileslop calculation here because we don't have access to
3364 * the prior checkpoint's redo location. So somewhat arbitrarily, just use
3365 * CheckPointSegments.
3366 */
3367 max_segno = logsegno + CheckPointSegments;
3368 if (InstallXLogFileSegment(&installed_segno, tmppath, true, max_segno,
3369 logtli))
3370 {
3371 *added = true;
3372 elog(DEBUG2, "done creating and filling new WAL file");
3373 }
3374 else
3375 {
3376 /*
3377 * No need for any more future segments, or InstallXLogFileSegment()
3378 * failed to rename the file into place. If the rename failed, a
3379 * caller opening the file may fail.
3380 */
3381 unlink(tmppath);
3382 elog(DEBUG2, "abandoned new WAL file");
3383 }
3384
3385 return -1;
3386}
3387
3388/*
3389 * Create a new XLOG file segment, or open a pre-existing one.
3390 *
3391 * logsegno: identify segment to be created/opened.
3392 *
3393 * Returns FD of opened file.
3394 *
3395 * Note: errors here are ERROR not PANIC because we might or might not be
3396 * inside a critical section (eg, during checkpoint there is no reason to
3397 * take down the system on failure). They will promote to PANIC if we are
3398 * in a critical section.
3399 */
3400int
3402{
3403 bool ignore_added;
3404 char path[MAXPGPATH];
3405 int fd;
3406
3407 Assert(logtli != 0);
3408
3409 fd = XLogFileInitInternal(logsegno, logtli, &ignore_added, path);
3410 if (fd >= 0)
3411 return fd;
3412
3413 /* Now open original target segment (might not be file I just made) */
3414 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3416 if (fd < 0)
3417 ereport(ERROR,
3419 errmsg("could not open file \"%s\": %m", path)));
3420 return fd;
3421}
3422
3423/*
3424 * Create a new XLOG file segment by copying a pre-existing one.
3425 *
3426 * destsegno: identify segment to be created.
3427 *
3428 * srcTLI, srcsegno: identify segment to be copied (could be from
3429 * a different timeline)
3430 *
3431 * upto: how much of the source file to copy (the rest is filled with
3432 * zeros)
3433 *
3434 * Currently this is only used during recovery, and so there are no locking
3435 * considerations. But we should be just as tense as XLogFileInit to avoid
3436 * emplacing a bogus file.
3437 */
3438static void
3440 TimeLineID srcTLI, XLogSegNo srcsegno,
3441 int upto)
3442{
3443 char path[MAXPGPATH];
3444 char tmppath[MAXPGPATH];
3445 PGAlignedXLogBlock buffer;
3446 int srcfd;
3447 int fd;
3448 int nbytes;
3449
3450 /*
3451 * Open the source file
3452 */
3453 XLogFilePath(path, srcTLI, srcsegno, wal_segment_size);
3454 srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
3455 if (srcfd < 0)
3456 ereport(ERROR,
3458 errmsg("could not open file \"%s\": %m", path)));
3459
3460 /*
3461 * Copy into a temp file name.
3462 */
3463 snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
3464
3465 unlink(tmppath);
3466
3467 /* do not use get_sync_bit() here --- want to fsync only at end of fill */
3468 fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
3469 if (fd < 0)
3470 ereport(ERROR,
3472 errmsg("could not create file \"%s\": %m", tmppath)));
3473
3474 /*
3475 * Do the data copying.
3476 */
3477 for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer))
3478 {
3479 int nread;
3480
3481 nread = upto - nbytes;
3482
3483 /*
3484 * The part that is not read from the source file is filled with
3485 * zeros.
3486 */
3487 if (nread < sizeof(buffer))
3488 memset(buffer.data, 0, sizeof(buffer));
3489
3490 if (nread > 0)
3491 {
3492 int r;
3493
3494 if (nread > sizeof(buffer))
3495 nread = sizeof(buffer);
3496 pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ);
3497 r = read(srcfd, buffer.data, nread);
3498 if (r != nread)
3499 {
3500 if (r < 0)
3501 ereport(ERROR,
3503 errmsg("could not read file \"%s\": %m",
3504 path)));
3505 else
3506 ereport(ERROR,
3508 errmsg("could not read file \"%s\": read %d of %zu",
3509 path, r, (Size) nread)));
3510 }
3512 }
3513 errno = 0;
3514 pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE);
3515 if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer))
3516 {
3517 int save_errno = errno;
3518
3519 /*
3520 * If we fail to make the file, delete it to release disk space
3521 */
3522 unlink(tmppath);
3523 /* if write didn't set errno, assume problem is no disk space */
3524 errno = save_errno ? save_errno : ENOSPC;
3525
3526 ereport(ERROR,
3528 errmsg("could not write to file \"%s\": %m", tmppath)));
3529 }
3531 }
3532
3533 pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC);
3534 if (pg_fsync(fd) != 0)
3537 errmsg("could not fsync file \"%s\": %m", tmppath)));
3539
3540 if (CloseTransientFile(fd) != 0)
3541 ereport(ERROR,
3543 errmsg("could not close file \"%s\": %m", tmppath)));
3544
3545 if (CloseTransientFile(srcfd) != 0)
3546 ereport(ERROR,
3548 errmsg("could not close file \"%s\": %m", path)));
3549
3550 /*
3551 * Now move the segment into place with its final name.
3552 */
3553 if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, destTLI))
3554 elog(ERROR, "InstallXLogFileSegment should not have failed");
3555}
3556
3557/*
3558 * Install a new XLOG segment file as a current or future log segment.
3559 *
3560 * This is used both to install a newly-created segment (which has a temp
3561 * filename while it's being created) and to recycle an old segment.
3562 *
3563 * *segno: identify segment to install as (or first possible target).
3564 * When find_free is true, this is modified on return to indicate the
3565 * actual installation location or last segment searched.
3566 *
3567 * tmppath: initial name of file to install. It will be renamed into place.
3568 *
3569 * find_free: if true, install the new segment at the first empty segno
3570 * number at or after the passed numbers. If false, install the new segment
3571 * exactly where specified, deleting any existing segment file there.
3572 *
3573 * max_segno: maximum segment number to install the new file as. Fail if no
3574 * free slot is found between *segno and max_segno. (Ignored when find_free
3575 * is false.)
3576 *
3577 * tli: The timeline on which the new segment should be installed.
3578 *
3579 * Returns true if the file was installed successfully. false indicates that
3580 * max_segno limit was exceeded, the startup process has disabled this
3581 * function for now, or an error occurred while renaming the file into place.
3582 */
3583static bool
3584InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
3585 bool find_free, XLogSegNo max_segno, TimeLineID tli)
3586{
3587 char path[MAXPGPATH];
3588 struct stat stat_buf;
3589
3590 Assert(tli != 0);
3591
3592 XLogFilePath(path, tli, *segno, wal_segment_size);
3593
3594 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
3596 {
3597 LWLockRelease(ControlFileLock);
3598 return false;
3599 }
3600
3601 if (!find_free)
3602 {
3603 /* Force installation: get rid of any pre-existing segment file */
3604 durable_unlink(path, DEBUG1);
3605 }
3606 else
3607 {
3608 /* Find a free slot to put it in */
3609 while (stat(path, &stat_buf) == 0)
3610 {
3611 if ((*segno) >= max_segno)
3612 {
3613 /* Failed to find a free slot within specified range */
3614 LWLockRelease(ControlFileLock);
3615 return false;
3616 }
3617 (*segno)++;
3618 XLogFilePath(path, tli, *segno, wal_segment_size);
3619 }
3620 }
3621
3622 Assert(access(path, F_OK) != 0 && errno == ENOENT);
3623 if (durable_rename(tmppath, path, LOG) != 0)
3624 {
3625 LWLockRelease(ControlFileLock);
3626 /* durable_rename already emitted log message */
3627 return false;
3628 }
3629
3630 LWLockRelease(ControlFileLock);
3631
3632 return true;
3633}
3634
3635/*
3636 * Open a pre-existing logfile segment for writing.
3637 */
3638int
3640{
3641 char path[MAXPGPATH];
3642 int fd;
3643
3644 XLogFilePath(path, tli, segno, wal_segment_size);
3645
3646 fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
3648 if (fd < 0)
3649 ereport(PANIC,
3651 errmsg("could not open file \"%s\": %m", path)));
3652
3653 return fd;
3654}
3655
3656/*
3657 * Close the current logfile segment for writing.
3658 */
3659static void
3661{
3662 Assert(openLogFile >= 0);
3663
3664 /*
3665 * WAL segment files will not be re-read in normal operation, so we advise
3666 * the OS to release any cached pages. But do not do so if WAL archiving
3667 * or streaming is active, because archiver and walsender process could
3668 * use the cache to read the WAL segment.
3669 */
3670#if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
3671 if (!XLogIsNeeded() && (io_direct_flags & IO_DIRECT_WAL) == 0)
3672 (void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
3673#endif
3674
3675 if (close(openLogFile) != 0)
3676 {
3677 char xlogfname[MAXFNAMELEN];
3678 int save_errno = errno;
3679
3681 errno = save_errno;
3682 ereport(PANIC,
3684 errmsg("could not close file \"%s\": %m", xlogfname)));
3685 }
3686
3687 openLogFile = -1;
3689}
3690
3691/*
3692 * Preallocate log files beyond the specified log endpoint.
3693 *
3694 * XXX this is currently extremely conservative, since it forces only one
3695 * future log segment to exist, and even that only if we are 75% done with
3696 * the current one. This is only appropriate for very low-WAL-volume systems.
3697 * High-volume systems will be OK once they've built up a sufficient set of
3698 * recycled log segments, but the startup transient is likely to include
3699 * a lot of segment creations by foreground processes, which is not so good.
3700 *
3701 * XLogFileInitInternal() can ereport(ERROR). All known causes indicate big
3702 * trouble; for example, a full filesystem is one cause. The checkpoint WAL
3703 * and/or ControlFile updates already completed. If a RequestCheckpoint()
3704 * initiated the present checkpoint and an ERROR ends this function, the
3705 * command that called RequestCheckpoint() fails. That's not ideal, but it's
3706 * not worth contorting more functions to use caller-specified elevel values.
3707 * (With or without RequestCheckpoint(), an ERROR forestalls some inessential
3708 * reporting and resource reclamation.)
3709 */
3710static void
3712{
3713 XLogSegNo _logSegNo;
3714 int lf;
3715 bool added;
3716 char path[MAXPGPATH];
3717 uint64 offset;
3718
3720 return; /* unlocked check says no */
3721
3722 XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size);
3723 offset = XLogSegmentOffset(endptr - 1, wal_segment_size);
3724 if (offset >= (uint32) (0.75 * wal_segment_size))
3725 {
3726 _logSegNo++;
3727 lf = XLogFileInitInternal(_logSegNo, tli, &added, path);
3728 if (lf >= 0)
3729 close(lf);
3730 if (added)
3732 }
3733}
3734
3735/*
3736 * Throws an error if the given log segment has already been removed or
3737 * recycled. The caller should only pass a segment that it knows to have
3738 * existed while the server has been running, as this function always
3739 * succeeds if no WAL segments have been removed since startup.
3740 * 'tli' is only used in the error message.
3741 *
3742 * Note: this function guarantees to keep errno unchanged on return.
3743 * This supports callers that use this to possibly deliver a better
3744 * error message about a missing file, while still being able to throw
3745 * a normal file-access error afterwards, if this does return.
3746 */
3747void
3749{
3750 int save_errno = errno;
3751 XLogSegNo lastRemovedSegNo;
3752
3754 lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3756
3757 if (segno <= lastRemovedSegNo)
3758 {
3759 char filename[MAXFNAMELEN];
3760
3762 errno = save_errno;
3763 ereport(ERROR,
3765 errmsg("requested WAL segment %s has already been removed",
3766 filename)));
3767 }
3768 errno = save_errno;
3769}
3770
3771/*
3772 * Return the last WAL segment removed, or 0 if no segment has been removed
3773 * since startup.
3774 *
3775 * NB: the result can be out of date arbitrarily fast, the caller has to deal
3776 * with that.
3777 */
3780{
3781 XLogSegNo lastRemovedSegNo;
3782
3784 lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
3786
3787 return lastRemovedSegNo;
3788}
3789
3790/*
3791 * Return the oldest WAL segment on the given TLI that still exists in
3792 * XLOGDIR, or 0 if none.
3793 */
3796{
3797 DIR *xldir;
3798 struct dirent *xlde;
3799 XLogSegNo oldest_segno = 0;
3800
3801 xldir = AllocateDir(XLOGDIR);
3802 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3803 {
3804 TimeLineID file_tli;
3805 XLogSegNo file_segno;
3806
3807 /* Ignore files that are not XLOG segments. */
3808 if (!IsXLogFileName(xlde->d_name))
3809 continue;
3810
3811 /* Parse filename to get TLI and segno. */
3812 XLogFromFileName(xlde->d_name, &file_tli, &file_segno,
3814
3815 /* Ignore anything that's not from the TLI of interest. */
3816 if (tli != file_tli)
3817 continue;
3818
3819 /* If it's the oldest so far, update oldest_segno. */
3820 if (oldest_segno == 0 || file_segno < oldest_segno)
3821 oldest_segno = file_segno;
3822 }
3823
3824 FreeDir(xldir);
3825 return oldest_segno;
3826}
3827
3828/*
3829 * Update the last removed segno pointer in shared memory, to reflect that the
3830 * given XLOG file has been removed.
3831 */
3832static void
3834{
3835 uint32 tli;
3836 XLogSegNo segno;
3837
3839
3841 if (segno > XLogCtl->lastRemovedSegNo)
3842 XLogCtl->lastRemovedSegNo = segno;
3844}
3845
3846/*
3847 * Remove all temporary log files in pg_wal
3848 *
3849 * This is called at the beginning of recovery after a previous crash,
3850 * at a point where no other processes write fresh WAL data.
3851 */
3852static void
3854{
3855 DIR *xldir;
3856 struct dirent *xlde;
3857
3858 elog(DEBUG2, "removing all temporary WAL segments");
3859
3860 xldir = AllocateDir(XLOGDIR);
3861 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3862 {
3863 char path[MAXPGPATH];
3864
3865 if (strncmp(xlde->d_name, "xlogtemp.", 9) != 0)
3866 continue;
3867
3868 snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
3869 unlink(path);
3870 elog(DEBUG2, "removed temporary WAL segment \"%s\"", path);
3871 }
3872 FreeDir(xldir);
3873}
3874
3875/*
3876 * Recycle or remove all log files older or equal to passed segno.
3877 *
3878 * endptr is current (or recent) end of xlog, and lastredoptr is the
3879 * redo pointer of the last checkpoint. These are used to determine
3880 * whether we want to recycle rather than delete no-longer-wanted log files.
3881 *
3882 * insertTLI is the current timeline for XLOG insertion. Any recycled
3883 * segments should be reused for this timeline.
3884 */
3885static void
3887 TimeLineID insertTLI)
3888{
3889 DIR *xldir;
3890 struct dirent *xlde;
3891 char lastoff[MAXFNAMELEN];
3892 XLogSegNo endlogSegNo;
3893 XLogSegNo recycleSegNo;
3894
3895 /* Initialize info about where to try to recycle to */
3896 XLByteToSeg(endptr, endlogSegNo, wal_segment_size);
3897 recycleSegNo = XLOGfileslop(lastredoptr);
3898
3899 /*
3900 * Construct a filename of the last segment to be kept. The timeline ID
3901 * doesn't matter, we ignore that in the comparison. (During recovery,
3902 * InsertTimeLineID isn't set, so we can't use that.)
3903 */
3904 XLogFileName(lastoff, 0, segno, wal_segment_size);
3905
3906 elog(DEBUG2, "attempting to remove WAL segments older than log file %s",
3907 lastoff);
3908
3909 xldir = AllocateDir(XLOGDIR);
3910
3911 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3912 {
3913 /* Ignore files that are not XLOG segments */
3914 if (!IsXLogFileName(xlde->d_name) &&
3916 continue;
3917
3918 /*
3919 * We ignore the timeline part of the XLOG segment identifiers in
3920 * deciding whether a segment is still needed. This ensures that we
3921 * won't prematurely remove a segment from a parent timeline. We could
3922 * probably be a little more proactive about removing segments of
3923 * non-parent timelines, but that would be a whole lot more
3924 * complicated.
3925 *
3926 * We use the alphanumeric sorting property of the filenames to decide
3927 * which ones are earlier than the lastoff segment.
3928 */
3929 if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
3930 {
3931 if (XLogArchiveCheckDone(xlde->d_name))
3932 {
3933 /* Update the last removed location in shared memory first */
3935
3936 RemoveXlogFile(xlde, recycleSegNo, &endlogSegNo, insertTLI);
3937 }
3938 }
3939 }
3940
3941 FreeDir(xldir);
3942}
3943
3944/*
3945 * Recycle or remove WAL files that are not part of the given timeline's
3946 * history.
3947 *
3948 * This is called during recovery, whenever we switch to follow a new
3949 * timeline, and at the end of recovery when we create a new timeline. We
3950 * wouldn't otherwise care about extra WAL files lying in pg_wal, but they
3951 * might be leftover pre-allocated or recycled WAL segments on the old timeline
3952 * that we haven't used yet, and contain garbage. If we just leave them in
3953 * pg_wal, they will eventually be archived, and we can't let that happen.
3954 * Files that belong to our timeline history are valid, because we have
3955 * successfully replayed them, but from others we can't be sure.
3956 *
3957 * 'switchpoint' is the current point in WAL where we switch to new timeline,
3958 * and 'newTLI' is the new timeline we switch to.
3959 */
3960void
3962{
3963 DIR *xldir;
3964 struct dirent *xlde;
3965 char switchseg[MAXFNAMELEN];
3966 XLogSegNo endLogSegNo;
3967 XLogSegNo switchLogSegNo;
3968 XLogSegNo recycleSegNo;
3969
3970 /*
3971 * Initialize info about where to begin the work. This will recycle,
3972 * somewhat arbitrarily, 10 future segments.
3973 */
3974 XLByteToPrevSeg(switchpoint, switchLogSegNo, wal_segment_size);
3975 XLByteToSeg(switchpoint, endLogSegNo, wal_segment_size);
3976 recycleSegNo = endLogSegNo + 10;
3977
3978 /*
3979 * Construct a filename of the last segment to be kept.
3980 */
3981 XLogFileName(switchseg, newTLI, switchLogSegNo, wal_segment_size);
3982
3983 elog(DEBUG2, "attempting to remove WAL segments newer than log file %s",
3984 switchseg);
3985
3986 xldir = AllocateDir(XLOGDIR);
3987
3988 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
3989 {
3990 /* Ignore files that are not XLOG segments */
3991 if (!IsXLogFileName(xlde->d_name))
3992 continue;
3993
3994 /*
3995 * Remove files that are on a timeline older than the new one we're
3996 * switching to, but with a segment number >= the first segment on the
3997 * new timeline.
3998 */
3999 if (strncmp(xlde->d_name, switchseg, 8) < 0 &&
4000 strcmp(xlde->d_name + 8, switchseg + 8) > 0)
4001 {
4002 /*
4003 * If the file has already been marked as .ready, however, don't
4004 * remove it yet. It should be OK to remove it - files that are
4005 * not part of our timeline history are not required for recovery
4006 * - but seems safer to let them be archived and removed later.
4007 */
4008 if (!XLogArchiveIsReady(xlde->d_name))
4009 RemoveXlogFile(xlde, recycleSegNo, &endLogSegNo, newTLI);
4010 }
4011 }
4012
4013 FreeDir(xldir);
4014}
4015
4016/*
4017 * Recycle or remove a log file that's no longer needed.
4018 *
4019 * segment_de is the dirent structure of the segment to recycle or remove.
4020 * recycleSegNo is the segment number to recycle up to. endlogSegNo is
4021 * the segment number of the current (or recent) end of WAL.
4022 *
4023 * endlogSegNo gets incremented if the segment is recycled so as it is not
4024 * checked again with future callers of this function.
4025 *
4026 * insertTLI is the current timeline for XLOG insertion. Any recycled segments
4027 * should be used for this timeline.
4028 */
4029static void
4030RemoveXlogFile(const struct dirent *segment_de,
4031 XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
4032 TimeLineID insertTLI)
4033{
4034 char path[MAXPGPATH];
4035#ifdef WIN32
4036 char newpath[MAXPGPATH];
4037#endif
4038 const char *segname = segment_de->d_name;
4039
4040 snprintf(path, MAXPGPATH, XLOGDIR "/%s", segname);
4041
4042 /*
4043 * Before deleting the file, see if it can be recycled as a future log
4044 * segment. Only recycle normal files, because we don't want to recycle
4045 * symbolic links pointing to a separate archive directory.
4046 */
4047 if (wal_recycle &&
4048 *endlogSegNo <= recycleSegNo &&
4049 XLogCtl->InstallXLogFileSegmentActive && /* callee rechecks this */
4050 get_dirent_type(path, segment_de, false, DEBUG2) == PGFILETYPE_REG &&
4051 InstallXLogFileSegment(endlogSegNo, path,
4052 true, recycleSegNo, insertTLI))
4053 {
4055 (errmsg_internal("recycled write-ahead log file \"%s\"",
4056 segname)));
4058 /* Needn't recheck that slot on future iterations */
4059 (*endlogSegNo)++;
4060 }
4061 else
4062 {
4063 /* No need for any more future segments, or recycling failed ... */
4064 int rc;
4065
4067 (errmsg_internal("removing write-ahead log file \"%s\"",
4068 segname)));
4069
4070#ifdef WIN32
4071
4072 /*
4073 * On Windows, if another process (e.g another backend) holds the file
4074 * open in FILE_SHARE_DELETE mode, unlink will succeed, but the file
4075 * will still show up in directory listing until the last handle is
4076 * closed. To avoid confusing the lingering deleted file for a live
4077 * WAL file that needs to be archived, rename it before deleting it.
4078 *
4079 * If another process holds the file open without FILE_SHARE_DELETE
4080 * flag, rename will fail. We'll try again at the next checkpoint.
4081 */
4082 snprintf(newpath, MAXPGPATH, "%s.deleted", path);
4083 if (rename(path, newpath) != 0)
4084 {
4085 ereport(LOG,
4087 errmsg("could not rename file \"%s\": %m",
4088 path)));
4089 return;
4090 }
4091 rc = durable_unlink(newpath, LOG);
4092#else
4093 rc = durable_unlink(path, LOG);
4094#endif
4095 if (rc != 0)
4096 {
4097 /* Message already logged by durable_unlink() */
4098 return;
4099 }
4101 }
4102
4103 XLogArchiveCleanup(segname);
4104}
4105
4106/*
4107 * Verify whether pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
4108 * If the latter do not exist, recreate them.
4109 *
4110 * It is not the goal of this function to verify the contents of these
4111 * directories, but to help in cases where someone has performed a cluster
4112 * copy for PITR purposes but omitted pg_wal from the copy.
4113 *
4114 * We could also recreate pg_wal if it doesn't exist, but a deliberate
4115 * policy decision was made not to. It is fairly common for pg_wal to be
4116 * a symlink, and if that was the DBA's intent then automatically making a
4117 * plain directory would result in degraded performance with no notice.
4118 */
4119static void
4121{
4122 char path[MAXPGPATH];
4123 struct stat stat_buf;
4124
4125 /* Check for pg_wal; if it doesn't exist, error out */
4126 if (stat(XLOGDIR, &stat_buf) != 0 ||
4127 !S_ISDIR(stat_buf.st_mode))
4128 ereport(FATAL,
4130 errmsg("required WAL directory \"%s\" does not exist",
4131 XLOGDIR)));
4132
4133 /* Check for archive_status */
4134 snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
4135 if (stat(path, &stat_buf) == 0)
4136 {
4137 /* Check for weird cases where it exists but isn't a directory */
4138 if (!S_ISDIR(stat_buf.st_mode))
4139 ereport(FATAL,
4141 errmsg("required WAL directory \"%s\" does not exist",
4142 path)));
4143 }
4144 else
4145 {
4146 ereport(LOG,
4147 (errmsg("creating missing WAL directory \"%s\"", path)));
4148 if (MakePGDirectory(path) < 0)
4149 ereport(FATAL,
4151 errmsg("could not create missing directory \"%s\": %m",
4152 path)));
4153 }
4154
4155 /* Check for summaries */
4156 snprintf(path, MAXPGPATH, XLOGDIR "/summaries");
4157 if (stat(path, &stat_buf) == 0)
4158 {
4159 /* Check for weird cases where it exists but isn't a directory */
4160 if (!S_ISDIR(stat_buf.st_mode))
4161 ereport(FATAL,
4162 (errmsg("required WAL directory \"%s\" does not exist",
4163 path)));
4164 }
4165 else
4166 {
4167 ereport(LOG,
4168 (errmsg("creating missing WAL directory \"%s\"", path)));
4169 if (MakePGDirectory(path) < 0)
4170 ereport(FATAL,
4171 (errmsg("could not create missing directory \"%s\": %m",
4172 path)));
4173 }
4174}
4175
4176/*
4177 * Remove previous backup history files. This also retries creation of
4178 * .ready files for any backup history files for which XLogArchiveNotify
4179 * failed earlier.
4180 */
4181static void
4183{
4184 DIR *xldir;
4185 struct dirent *xlde;
4186 char path[MAXPGPATH + sizeof(XLOGDIR)];
4187
4188 xldir = AllocateDir(XLOGDIR);
4189
4190 while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
4191 {
4193 {
4194 if (XLogArchiveCheckDone(xlde->d_name))
4195 {
4196 elog(DEBUG2, "removing WAL backup history file \"%s\"",
4197 xlde->d_name);
4198 snprintf(path, sizeof(path), XLOGDIR "/%s", xlde->d_name);
4199 unlink(path);
4201 }
4202 }
4203 }
4204
4205 FreeDir(xldir);
4206}
4207
4208/*
4209 * I/O routines for pg_control
4210 *
4211 * *ControlFile is a buffer in shared memory that holds an image of the
4212 * contents of pg_control. WriteControlFile() initializes pg_control
4213 * given a preloaded buffer, ReadControlFile() loads the buffer from
4214 * the pg_control file (during postmaster or standalone-backend startup),
4215 * and UpdateControlFile() rewrites pg_control after we modify xlog state.
4216 * InitControlFile() fills the buffer with initial values.
4217 *
4218 * For simplicity, WriteControlFile() initializes the fields of pg_control
4219 * that are related to checking backend/database compatibility, and
4220 * ReadControlFile() verifies they are correct. We could split out the
4221 * I/O and compatibility-check functions, but there seems no need currently.
4222 */
4223
4224static void
4225InitControlFile(uint64 sysidentifier, uint32 data_checksum_version)
4226{
4227 char mock_auth_nonce[MOCK_AUTH_NONCE_LEN];
4228
4229 /*
4230 * Generate a random nonce. This is used for authentication requests that
4231 * will fail because the user does not exist. The nonce is used to create
4232 * a genuine-looking password challenge for the non-existent user, in lieu
4233 * of an actual stored password.
4234 */
4235 if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN))
4236 ereport(PANIC,
4237 (errcode(ERRCODE_INTERNAL_ERROR),
4238 errmsg("could not generate secret authorization token")));
4239
4240 memset(ControlFile, 0, sizeof(ControlFileData));
4241 /* Initialize pg_control status fields */
4242 ControlFile->system_identifier = sysidentifier;
4246
4247 /* Set important parameter values for use when replaying WAL */
4256 ControlFile->data_checksum_version = data_checksum_version;
4257}
4258
4259static void
4261{
4262 int fd;
4263 char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */
4264
4265 /*
4266 * Initialize version and compatibility-check fields
4267 */
4270
4271 ControlFile->maxAlign = MAXIMUM_ALIGNOF;
4273
4274 ControlFile->blcksz = BLCKSZ;
4275 ControlFile->relseg_size = RELSEG_SIZE;
4277 ControlFile->xlog_blcksz = XLOG_BLCKSZ;
4279
4282
4285
4286 ControlFile->float8ByVal = true; /* vestigial */
4287
4288 /*
4289 * Initialize the default 'char' signedness.
4290 *
4291 * The signedness of the char type is implementation-defined. For instance
4292 * on x86 architecture CPUs, the char data type is typically treated as
4293 * signed by default, whereas on aarch architecture CPUs, it is typically
4294 * treated as unsigned by default. In v17 or earlier, we accidentally let
4295 * C implementation signedness affect persistent data. This led to
4296 * inconsistent results when comparing char data across different
4297 * platforms.
4298 *
4299 * This flag can be used as a hint to ensure consistent behavior for
4300 * pre-v18 data files that store data sorted by the 'char' type on disk,
4301 * especially in cross-platform replication scenarios.
4302 *
4303 * Newly created database clusters unconditionally set the default char
4304 * signedness to true. pg_upgrade changes this flag for clusters that were
4305 * initialized on signedness=false platforms. As a result,
4306 * signedness=false setting will become rare over time. If we had known
4307 * about this problem during the last development cycle that forced initdb
4308 * (v8.3), we would have made all clusters signed or all clusters
4309 * unsigned. Making pg_upgrade the only source of signedness=false will
4310 * cause the population of database clusters to converge toward that
4311 * retrospective ideal.
4312 */
4314
4315 /* Contents are protected with a CRC */
4319 offsetof(ControlFileData, crc));
4321
4322 /*
4323 * We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding
4324 * the excess over sizeof(ControlFileData). This reduces the odds of
4325 * premature-EOF errors when reading pg_control. We'll still fail when we
4326 * check the contents of the file, but hopefully with a more specific
4327 * error than "couldn't read pg_control".
4328 */
4329 memset(buffer, 0, PG_CONTROL_FILE_SIZE);
4330 memcpy(buffer, ControlFile, sizeof(ControlFileData));
4331
4333 O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
4334 if (fd < 0)
4335 ereport(PANIC,
4337 errmsg("could not create file \"%s\": %m",
4339
4340 errno = 0;
4341 pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE);
4343 {
4344 /* if write didn't set errno, assume problem is no disk space */
4345 if (errno == 0)
4346 errno = ENOSPC;
4347 ereport(PANIC,
4349 errmsg("could not write to file \"%s\": %m",
4351 }
4353
4354 pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC);
4355 if (pg_fsync(fd) != 0)
4356 ereport(PANIC,
4358 errmsg("could not fsync file \"%s\": %m",
4361
4362 if (close(fd) != 0)
4363 ereport(PANIC,
4365 errmsg("could not close file \"%s\": %m",
4367}
4368
4369static void
4371{
4372 pg_crc32c crc;
4373 int fd;
4374 char wal_segsz_str[20];
4375 int r;
4376
4377 /*
4378 * Read data...
4379 */
4381 O_RDWR | PG_BINARY);
4382 if (fd < 0)
4383 ereport(PANIC,
4385 errmsg("could not open file \"%s\": %m",
4387
4388 pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ);
4389 r = read(fd, ControlFile, sizeof(ControlFileData));
4390 if (r != sizeof(ControlFileData))
4391 {
4392 if (r < 0)
4393 ereport(PANIC,
4395 errmsg("could not read file \"%s\": %m",
4397 else
4398 ereport(PANIC,
4400 errmsg("could not read file \"%s\": read %d of %zu",
4401 XLOG_CONTROL_FILE, r, sizeof(ControlFileData))));
4402 }
4404
4405 close(fd);
4406
4407 /*
4408 * Check for expected pg_control format version. If this is wrong, the
4409 * CRC check will likely fail because we'll be checking the wrong number
4410 * of bytes. Complaining about wrong version will probably be more
4411 * enlightening than complaining about wrong CRC.
4412 */
4413
4415 ereport(FATAL,
4416 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4417 errmsg("database files are incompatible with server"),
4418 errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
4419 " but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
4422 errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
4423
4425 ereport(FATAL,
4426 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4427 errmsg("database files are incompatible with server"),
4428 errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
4429 " but the server was compiled with PG_CONTROL_VERSION %d.",
4431 errhint("It looks like you need to initdb.")));
4432
4433 /* Now check the CRC. */
4437 offsetof(ControlFileData, crc));
4438 FIN_CRC32C(crc);
4439
4440 if (!EQ_CRC32C(crc, ControlFile->crc))
4441 ereport(FATAL,
4442 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4443 errmsg("incorrect checksum in control file")));
4444
4445 /*
4446 * Do compatibility checking immediately. If the database isn't
4447 * compatible with the backend executable, we want to abort before we can
4448 * possibly do any damage.
4449 */
4451 ereport(FATAL,
4452 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4453 errmsg("database files are incompatible with server"),
4454 /* translator: %s is a variable name and %d is its value */
4455 errdetail("The database cluster was initialized with %s %d,"
4456 " but the server was compiled with %s %d.",
4457 "CATALOG_VERSION_NO", ControlFile->catalog_version_no,
4458 "CATALOG_VERSION_NO", CATALOG_VERSION_NO),
4459 errhint("It looks like you need to initdb.")));
4460 if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
4461 ereport(FATAL,
4462 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4463 errmsg("database files are incompatible with server"),
4464 /* translator: %s is a variable name and %d is its value */
4465 errdetail("The database cluster was initialized with %s %d,"
4466 " but the server was compiled with %s %d.",
4467 "MAXALIGN", ControlFile->maxAlign,
4468 "MAXALIGN", MAXIMUM_ALIGNOF),
4469 errhint("It looks like you need to initdb.")));
4471 ereport(FATAL,
4472 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4473 errmsg("database files are incompatible with server"),
4474 errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
4475 errhint("It looks like you need to initdb.")));
4476 if (ControlFile->blcksz != BLCKSZ)
4477 ereport(FATAL,
4478 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4479 errmsg("database files are incompatible with server"),
4480 /* translator: %s is a variable name and %d is its value */
4481 errdetail("The database cluster was initialized with %s %d,"
4482 " but the server was compiled with %s %d.",
4483 "BLCKSZ", ControlFile->blcksz,
4484 "BLCKSZ", BLCKSZ),
4485 errhint("It looks like you need to recompile or initdb.")));
4486 if (ControlFile->relseg_size != RELSEG_SIZE)
4487 ereport(FATAL,
4488 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4489 errmsg("database files are incompatible with server"),
4490 /* translator: %s is a variable name and %d is its value */
4491 errdetail("The database cluster was initialized with %s %d,"
4492 " but the server was compiled with %s %d.",
4493 "RELSEG_SIZE", ControlFile->relseg_size,
4494 "RELSEG_SIZE", RELSEG_SIZE),
4495 errhint("It looks like you need to recompile or initdb.")));
4497 ereport(FATAL,
4498 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4499 errmsg("database files are incompatible with server"),
4500 /* translator: %s is a variable name and %d is its value */
4501 errdetail("The database cluster was initialized with %s %d,"
4502 " but the server was compiled with %s %d.",
4503 "SLRU_PAGES_PER_SEGMENT", ControlFile->slru_pages_per_segment,
4504 "SLRU_PAGES_PER_SEGMENT", SLRU_PAGES_PER_SEGMENT),
4505 errhint("It looks like you need to recompile or initdb.")));
4506 if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
4507 ereport(FATAL,
4508 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4509 errmsg("database files are incompatible with server"),
4510 /* translator: %s is a variable name and %d is its value */
4511 errdetail("The database cluster was initialized with %s %d,"
4512 " but the server was compiled with %s %d.",
4513 "XLOG_BLCKSZ", ControlFile->xlog_blcksz,
4514 "XLOG_BLCKSZ", XLOG_BLCKSZ),
4515 errhint("It looks like you need to recompile or initdb.")));
4517 ereport(FATAL,
4518 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4519 errmsg("database files are incompatible with server"),
4520 /* translator: %s is a variable name and %d is its value */
4521 errdetail("The database cluster was initialized with %s %d,"
4522 " but the server was compiled with %s %d.",
4523 "NAMEDATALEN", ControlFile->nameDataLen,
4524 "NAMEDATALEN", NAMEDATALEN),
4525 errhint("It looks like you need to recompile or initdb.")));
4527 ereport(FATAL,
4528 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4529 errmsg("database files are incompatible with server"),
4530 /* translator: %s is a variable name and %d is its value */
4531 errdetail("The database cluster was initialized with %s %d,"
4532 " but the server was compiled with %s %d.",
4533 "INDEX_MAX_KEYS", ControlFile->indexMaxKeys,
4534 "INDEX_MAX_KEYS", INDEX_MAX_KEYS),
4535 errhint("It looks like you need to recompile or initdb.")));
4537 ereport(FATAL,
4538 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4539 errmsg("database files are incompatible with server"),
4540 /* translator: %s is a variable name and %d is its value */
4541 errdetail("The database cluster was initialized with %s %d,"
4542 " but the server was compiled with %s %d.",
4543 "TOAST_MAX_CHUNK_SIZE", ControlFile->toast_max_chunk_size,
4544 "TOAST_MAX_CHUNK_SIZE", (int) TOAST_MAX_CHUNK_SIZE),
4545 errhint("It looks like you need to recompile or initdb.")));
4547 ereport(FATAL,
4548 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
4549 errmsg("database files are incompatible with server"),
4550 /* translator: %s is a variable name and %d is its value */
4551 errdetail("The database cluster was initialized with %s %d,"
4552 " but the server was compiled with %s %d.",
4553 "LOBLKSIZE", ControlFile->loblksize,
4554 "LOBLKSIZE", (int) LOBLKSIZE),
4555 errhint("It looks like you need to recompile or initdb.")));
4556
4557 Assert(ControlFile->float8ByVal); /* vestigial, not worth an error msg */
4558
4560
4562 ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4563 errmsg_plural("invalid WAL segment size in control file (%d byte)",
4564 "invalid WAL segment size in control file (%d bytes)",
4567 errdetail("The WAL segment size must be a power of two between 1 MB and 1 GB.")));
4568
4569 snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d", wal_segment_size);
4570 SetConfigOption("wal_segment_size", wal_segsz_str, PGC_INTERNAL,
4572
4573 /* check and update variables dependent on wal_segment_size */
4575 ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4576 /* translator: both %s are GUC names */
4577 errmsg("\"%s\" must be at least twice \"%s\"",
4578 "min_wal_size", "wal_segment_size")));
4579
4581 ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4582 /* translator: both %s are GUC names */
4583 errmsg("\"%s\" must be at least twice \"%s\"",
4584 "max_wal_size", "wal_segment_size")));
4585
4587 (wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) -
4589
4591
4592 /* Make the initdb settings visible as GUC variables, too */
4593 SetConfigOption("data_checksums", DataChecksumsEnabled() ? "yes" : "no",
4595}
4596
4597/*
4598 * Utility wrapper to update the control file. Note that the control
4599 * file gets flushed.
4600 */
4601static void
4603{
4605}
4606
4607/*
4608 * Returns the unique system identifier from control file.
4609 */
4610uint64
4612{
4613 Assert(ControlFile != NULL);
4615}
4616
4617/*
4618 * Returns the random nonce from control file.
4619 */
4620char *
4622{
4623 Assert(ControlFile != NULL);
4625}
4626
4627/*
4628 * Are checksums enabled for data pages?
4629 */
4630bool
4632{
4633 Assert(ControlFile != NULL);
4634 return (ControlFile->data_checksum_version > 0);
4635}
4636
4637/*
4638 * Return true if the cluster was initialized on a platform where the
4639 * default signedness of char is "signed". This function exists for code
4640 * that deals with pre-v18 data files that store data sorted by the 'char'
4641 * type on disk (e.g., GIN and GiST indexes). See the comments in
4642 * WriteControlFile() for details.
4643 */
4644bool
4646{
4648}
4649
4650/*
4651 * Returns a fake LSN for unlogged relations.
4652 *
4653 * Each call generates an LSN that is greater than any previous value
4654 * returned. The current counter value is saved and restored across clean
4655 * shutdowns, but like unlogged relations, does not survive a crash. This can
4656 * be used in lieu of real LSN values returned by XLogInsert, if you need an
4657 * LSN-like increasing sequence of numbers without writing any WAL.
4658 */
4661{
4663}
4664
4665/*
4666 * Auto-tune the number of XLOG buffers.
4667 *
4668 * The preferred setting for wal_buffers is about 3% of shared_buffers, with
4669 * a maximum of one XLOG segment (there is little reason to think that more
4670 * is helpful, at least so long as we force an fsync when switching log files)
4671 * and a minimum of 8 blocks (which was the default value prior to PostgreSQL
4672 * 9.1, when auto-tuning was added).
4673 *
4674 * This should not be called until NBuffers has received its final value.
4675 */
4676static int
4678{
4679 int xbuffers;
4680
4681 xbuffers = NBuffers / 32;
4682 if (xbuffers > (wal_segment_size / XLOG_BLCKSZ))
4683 xbuffers = (wal_segment_size / XLOG_BLCKSZ);
4684 if (xbuffers < 8)
4685 xbuffers = 8;
4686 return xbuffers;
4687}
4688
4689/*
4690 * GUC check_hook for wal_buffers
4691 */
4692bool
4694{
4695 /*
4696 * -1 indicates a request for auto-tune.
4697 */
4698 if (*newval == -1)
4699 {
4700 /*
4701 * If we haven't yet changed the boot_val default of -1, just let it
4702 * be. We'll fix it when XLOGShmemSize is called.
4703 */
4704 if (XLOGbuffers == -1)
4705 return true;
4706
4707 /* Otherwise, substitute the auto-tune value */
4709 }
4710
4711 /*
4712 * We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL
4713 * 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer
4714 * the case, we just silently treat such values as a request for the
4715 * minimum. (We could throw an error instead, but that doesn't seem very
4716 * helpful.)
4717 */
4718 if (*newval < 4)
4719 *newval = 4;
4720
4721 return true;
4722}
4723
4724/*
4725 * GUC check_hook for wal_consistency_checking
4726 */
4727bool
4729{
4730 char *rawstring;
4731 List *elemlist;
4732 ListCell *l;
4733 bool newwalconsistency[RM_MAX_ID + 1];
4734
4735 /* Initialize the array */
4736 MemSet(newwalconsistency, 0, (RM_MAX_ID + 1) * sizeof(bool));
4737
4738 /* Need a modifiable copy of string */
4739 rawstring = pstrdup(*newval);
4740
4741 /* Parse string into list of identifiers */
4742 if (!SplitIdentifierString(rawstring, ',', &elemlist))
4743 {
4744 /* syntax error in list */
4745 GUC_check_errdetail("List syntax is invalid.");
4746 pfree(rawstring);
4747 list_free(elemlist);
4748 return false;
4749 }
4750
4751 foreach(l, elemlist)
4752 {
4753 char *tok = (char *) lfirst(l);
4754 int rmid;
4755
4756 /* Check for 'all'. */
4757 if (pg_strcasecmp(tok, "all") == 0)
4758 {
4759 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4760 if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL)
4761 newwalconsistency[rmid] = true;
4762 }
4763 else
4764 {
4765 /* Check if the token matches any known resource manager. */
4766 bool found = false;
4767
4768 for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
4769 {
4770 if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL &&
4771 pg_strcasecmp(tok, GetRmgr(rmid).rm_name) == 0)
4772 {
4773 newwalconsistency[rmid] = true;
4774 found = true;
4775 break;
4776 }
4777 }
4778 if (!found)
4779 {
4780 /*
4781 * During startup, it might be a not-yet-loaded custom
4782 * resource manager. Defer checking until
4783 * InitializeWalConsistencyChecking().
4784 */
4786 {
4788 }
4789 else
4790 {
4791 GUC_check_errdetail("Unrecognized key word: \"%s\".", tok);
4792 pfree(rawstring);
4793 list_free(elemlist);
4794 return false;
4795 }
4796 }
4797 }
4798 }
4799
4800 pfree(rawstring);
4801 list_free(elemlist);
4802
4803 /* assign new value */
4804 *extra = guc_malloc(LOG, (RM_MAX_ID + 1) * sizeof(bool));
4805 if (!*extra)
4806 return false;
4807 memcpy(*extra, newwalconsistency, (RM_MAX_ID + 1) * sizeof(bool));
4808 return true;
4809}
4810
4811/*
4812 * GUC assign_hook for wal_consistency_checking
4813 */
4814void
4816{
4817 /*
4818 * If some checks were deferred, it's possible that the checks will fail
4819 * later during InitializeWalConsistencyChecking(). But in that case, the
4820 * postmaster will exit anyway, so it's safe to proceed with the
4821 * assignment.
4822 *
4823 * Any built-in resource managers specified are assigned immediately,
4824 * which affects WAL created before shared_preload_libraries are
4825 * processed. Any custom resource managers specified won't be assigned
4826 * until after shared_preload_libraries are processed, but that's OK
4827 * because WAL for a custom resource manager can't be written before the
4828 * module is loaded anyway.
4829 */
4831}
4832
4833/*
4834 * InitializeWalConsistencyChecking: run after loading custom resource managers
4835 *
4836 * If any unknown resource managers were specified in the
4837 * wal_consistency_checking GUC, processing was deferred. Now that
4838 * shared_preload_libraries have been loaded, process wal_consistency_checking
4839 * again.
4840 */
4841void
4843{
4845
4847 {
4848 struct config_generic *guc;
4849
4850 guc = find_option("wal_consistency_checking", false, false, ERROR);
4851
4853
4854 set_config_option_ext("wal_consistency_checking",
4856 guc->scontext, guc->source, guc->srole,
4857 GUC_ACTION_SET, true, ERROR, false);
4858
4859 /* checking should not be deferred again */
4861 }
4862}
4863
4864/*
4865 * GUC show_hook for archive_command
4866 */
4867const char *
4869{
4870 if (XLogArchivingActive())
4871 return XLogArchiveCommand;
4872 else
4873 return "(disabled)";
4874}
4875
4876/*
4877 * GUC show_hook for in_hot_standby
4878 */
4879const char *
4881{
4882 /*
4883 * We display the actual state based on shared memory, so that this GUC
4884 * reports up-to-date state if examined intra-query. The underlying
4885 * variable (in_hot_standby_guc) changes only when we transmit a new value
4886 * to the client.
4887 */
4888 return RecoveryInProgress() ? "on" : "off";
4889}
4890
4891/*
4892 * Read the control file, set respective GUCs.
4893 *
4894 * This is to be called during startup, including a crash recovery cycle,
4895 * unless in bootstrap mode, where no control file yet exists. As there's no
4896 * usable shared memory yet (its sizing can depend on the contents of the
4897 * control file!), first store the contents in local memory. XLOGShmemInit()
4898 * will then copy it to shared memory later.
4899 *
4900 * reset just controls whether previous contents are to be expected (in the
4901 * reset case, there's a dangling pointer into old shared memory), or not.
4902 */
4903void
4905{
4906 Assert(reset || ControlFile == NULL);
4909}
4910
4911/*
4912 * Get the wal_level from the control file. For a standby, this value should be
4913 * considered as its active wal_level, because it may be different from what
4914 * was originally configured on standby.
4915 */
4918{
4919 return ControlFile->wal_level;
4920}
4921
4922/*
4923 * Initialization of shared memory for XLOG
4924 */
4925Size
4927{
4928 Size size;
4929
4930 /*
4931 * If the value of wal_buffers is -1, use the preferred auto-tune value.
4932 * This isn't an amazingly clean place to do this, but we must wait till
4933 * NBuffers has received its final value, and must do it before using the
4934 * value of XLOGbuffers to do anything important.
4935 *
4936 * We prefer to report this value's source as PGC_S_DYNAMIC_DEFAULT.
4937 * However, if the DBA explicitly set wal_buffers = -1 in the config file,
4938 * then PGC_S_DYNAMIC_DEFAULT will fail to override that and we must force
4939 * the matter with PGC_S_OVERRIDE.
4940 */
4941 if (XLOGbuffers == -1)
4942 {
4943 char buf[32];
4944
4945 snprintf(buf, sizeof(buf), "%d", XLOGChooseNumBuffers());
4946 SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
4948 if (XLOGbuffers == -1) /* failed to apply it? */
4949 SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
4951 }
4952 Assert(XLOGbuffers > 0);
4953
4954 /* XLogCtl */
4955 size = sizeof(XLogCtlData);
4956
4957 /* WAL insertion locks, plus alignment */
4958 size = add_size(size, mul_size(sizeof(WALInsertLockPadded), NUM_XLOGINSERT_LOCKS + 1));
4959 /* xlblocks array */
4960 size = add_size(size, mul_size(sizeof(pg_atomic_uint64), XLOGbuffers));
4961 /* extra alignment padding for XLOG I/O buffers */
4962 size = add_size(size, Max(XLOG_BLCKSZ, PG_IO_ALIGN_SIZE));
4963 /* and the buffers themselves */
4964 size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
4965
4966 /*
4967 * Note: we don't count ControlFileData, it comes out of the "slop factor"
4968 * added by CreateSharedMemoryAndSemaphores. This lets us use this
4969 * routine again below to compute the actual allocation size.
4970 */
4971
4972 return size;
4973}
4974
4975void
4977{
4978 bool foundCFile,
4979 foundXLog;
4980 char *allocptr;
4981 int i;
4982 ControlFileData *localControlFile;
4983
4984#ifdef WAL_DEBUG
4985
4986 /*
4987 * Create a memory context for WAL debugging that's exempt from the normal
4988 * "no pallocs in critical section" rule. Yes, that can lead to a PANIC if
4989 * an allocation fails, but wal_debug is not for production use anyway.
4990 */
4991 if (walDebugCxt == NULL)
4992 {
4994 "WAL Debug",
4996 MemoryContextAllowInCriticalSection(walDebugCxt, true);
4997 }
4998#endif
4999
5000
5001 XLogCtl = (XLogCtlData *)
5002 ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
5003
5004 localControlFile = ControlFile;
5006 ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
5007
5008 if (foundCFile || foundXLog)
5009 {
5010 /* both should be present or neither */
5011 Assert(foundCFile && foundXLog);
5012
5013 /* Initialize local copy of WALInsertLocks */
5015
5016 if (localControlFile)
5017 pfree(localControlFile);
5018 return;
5019 }
5020 memset(XLogCtl, 0, sizeof(XLogCtlData));
5021
5022 /*
5023 * Already have read control file locally, unless in bootstrap mode. Move
5024 * contents into shared memory.
5025 */
5026 if (localControlFile)
5027 {
5028 memcpy(ControlFile, localControlFile, sizeof(ControlFileData));
5029 pfree(localControlFile);
5030 }
5031
5032 /*
5033 * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
5034 * multiple of the alignment for same, so no extra alignment padding is
5035 * needed here.
5036 */
5037 allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
5038 XLogCtl->xlblocks = (pg_atomic_uint64 *) allocptr;
5039 allocptr += sizeof(pg_atomic_uint64) * XLOGbuffers;
5040
5041 for (i = 0; i < XLOGbuffers; i++)
5042 {
5044 }
5045
5046 /* WAL insertion locks. Ensure they're aligned to the full padded size */
5047 allocptr += sizeof(WALInsertLockPadded) -
5048 ((uintptr_t) allocptr) % sizeof(WALInsertLockPadded);
5050 (WALInsertLockPadded *) allocptr;
5051 allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS;
5052
5053 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
5054 {
5055 LWLockInitialize(&WALInsertLocks[i].l.lock, LWTRANCHE_WAL_INSERT);
5058 }
5059
5060 /*
5061 * Align the start of the page buffers to a full xlog block size boundary.
5062 * This simplifies some calculations in XLOG insertion. It is also
5063 * required for O_DIRECT.
5064 */
5065 allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr);
5066 XLogCtl->pages = allocptr;
5067 memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
5068
5069 /*
5070 * Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
5071 * in additional info.)
5072 */
5076 XLogCtl->WalWriterSleeping = false;
5077
5084}
5085
5086/*
5087 * This func must be called ONCE on system install. It creates pg_control
5088 * and the initial XLOG segment.
5089 */
5090void
5091BootStrapXLOG(uint32 data_checksum_version)
5092{
5093 CheckPoint checkPoint;
5094 PGAlignedXLogBlock buffer;
5095 XLogPageHeader page;
5096 XLogLongPageHeader longpage;
5097 XLogRecord *record;
5098 char *recptr;
5099 uint64 sysidentifier;
5100 struct timeval tv;
5101 pg_crc32c crc;
5102
5103 /* allow ordinary WAL segment creation, like StartupXLOG() would */
5105
5106 /*
5107 * Select a hopefully-unique system identifier code for this installation.
5108 * We use the result of gettimeofday(), including the fractional seconds
5109 * field, as being about as unique as we can easily get. (Think not to
5110 * use random(), since it hasn't been seeded and there's no portable way
5111 * to seed it other than the system clock value...) The upper half of the
5112 * uint64 value is just the tv_sec part, while the lower half contains the
5113 * tv_usec part (which must fit in 20 bits), plus 12 bits from our current
5114 * PID for a little extra uniqueness. A person knowing this encoding can
5115 * determine the initialization time of the installation, which could
5116 * perhaps be useful sometimes.
5117 */
5118 gettimeofday(&tv, NULL);
5119 sysidentifier = ((uint64) tv.tv_sec) << 32;
5120 sysidentifier |= ((uint64) tv.tv_usec) << 12;
5121 sysidentifier |= getpid() & 0xFFF;
5122
5123 memset(&buffer, 0, sizeof buffer);
5124 page = (XLogPageHeader) &buffer;
5125
5126 /*
5127 * Set up information for the initial checkpoint record
5128 *
5129 * The initial checkpoint record is written to the beginning of the WAL
5130 * segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not
5131 * used, so that we can use 0/0 to mean "before any valid WAL segment".
5132 */
5136 checkPoint.fullPageWrites = fullPageWrites;
5137 checkPoint.wal_level = wal_level;
5138 checkPoint.nextXid =
5140 checkPoint.nextOid = FirstGenbkiObjectId;
5141 checkPoint.nextMulti = FirstMultiXactId;
5142 checkPoint.nextMultiOffset = 1;
5144 checkPoint.oldestXidDB = Template1DbOid;
5145 checkPoint.oldestMulti = FirstMultiXactId;
5146 checkPoint.oldestMultiDB = Template1DbOid;
5149 checkPoint.time = (pg_time_t) time(NULL);
5151
5152 TransamVariables->nextXid = checkPoint.nextXid;
5153 TransamVariables->nextOid = checkPoint.nextOid;
5155 MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5156 AdvanceOldestClogXid(checkPoint.oldestXid);
5157 SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5158 SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB);
5160
5161 /* Set up the XLOG page header */
5162 page->xlp_magic = XLOG_PAGE_MAGIC;
5163 page->xlp_info = XLP_LONG_HEADER;
5166 longpage = (XLogLongPageHeader) page;
5167 longpage->xlp_sysid = sysidentifier;
5168 longpage->xlp_seg_size = wal_segment_size;
5169 longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
5170
5171 /* Insert the initial checkpoint record */
5172 recptr = ((char *) page + SizeOfXLogLongPHD);
5173 record = (XLogRecord *) recptr;
5174 record->xl_prev = 0;
5175 record->xl_xid = InvalidTransactionId;
5176 record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint);
5178 record->xl_rmid = RM_XLOG_ID;
5179 recptr += SizeOfXLogRecord;
5180 /* fill the XLogRecordDataHeaderShort struct */
5181 *(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT;
5182 *(recptr++) = sizeof(checkPoint);
5183 memcpy(recptr, &checkPoint, sizeof(checkPoint));
5184 recptr += sizeof(checkPoint);
5185 Assert(recptr - (char *) record == record->xl_tot_len);
5186
5188 COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord);
5189 COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc));
5190 FIN_CRC32C(crc);
5191 record->xl_crc = crc;
5192
5193 /* Create first XLOG segment file */
5196
5197 /*
5198 * We needn't bother with Reserve/ReleaseExternalFD here, since we'll
5199 * close the file again in a moment.
5200 */
5201
5202 /* Write the first page with the initial record */
5203 errno = 0;
5204 pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE);
5205 if (write(openLogFile, &buffer, XLOG_BLCKSZ) != XLOG_BLCKSZ)
5206 {
5207 /* if write didn't set errno, assume problem is no disk space */
5208 if (errno == 0)
5209 errno = ENOSPC;
5210 ereport(PANIC,
5212 errmsg("could not write bootstrap write-ahead log file: %m")));
5213 }
5215
5216 pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC);
5217 if (pg_fsync(openLogFile) != 0)
5218 ereport(PANIC,
5220 errmsg("could not fsync bootstrap write-ahead log file: %m")));
5222
5223 if (close(openLogFile) != 0)
5224 ereport(PANIC,
5226 errmsg("could not close bootstrap write-ahead log file: %m")));
5227
5228 openLogFile = -1;
5229
5230 /* Now create pg_control */
5231 InitControlFile(sysidentifier, data_checksum_version);
5232 ControlFile->time = checkPoint.time;
5233 ControlFile->checkPoint = checkPoint.redo;
5234 ControlFile->checkPointCopy = checkPoint;
5235
5236 /* some additional ControlFile fields are set in WriteControlFile() */
5238
5239 /* Bootstrap the commit log, too */
5240 BootStrapCLOG();
5244
5245 /*
5246 * Force control file to be read - in contrast to normal processing we'd
5247 * otherwise never run the checks and GUC related initializations therein.
5248 */
5250}
5251
5252static char *
5253str_time(pg_time_t tnow, char *buf, size_t bufsize)
5254{
5256 "%Y-%m-%d %H:%M:%S %Z",
5257 pg_localtime(&tnow, log_timezone));
5258
5259 return buf;
5260}
5261
5262/*
5263 * Initialize the first WAL segment on new timeline.
5264 */
5265static void
5267{
5268 char xlogfname[MAXFNAMELEN];
5269 XLogSegNo endLogSegNo;
5270 XLogSegNo startLogSegNo;
5271
5272 /* we always switch to a new timeline after archive recovery */
5273 Assert(endTLI != newTLI);
5274
5275 /*
5276 * Update min recovery point one last time.
5277 */
5279
5280 /*
5281 * Calculate the last segment on the old timeline, and the first segment
5282 * on the new timeline. If the switch happens in the middle of a segment,
5283 * they are the same, but if the switch happens exactly at a segment
5284 * boundary, startLogSegNo will be endLogSegNo + 1.
5285 */
5286 XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size);
5287 XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size);
5288
5289 /*
5290 * Initialize the starting WAL segment for the new timeline. If the switch
5291 * happens in the middle of a segment, copy data from the last WAL segment
5292 * of the old timeline up to the switch point, to the starting WAL segment
5293 * on the new timeline.
5294 */
5295 if (endLogSegNo == startLogSegNo)
5296 {
5297 /*
5298 * Make a copy of the file on the new timeline.
5299 *
5300 * Writing WAL isn't allowed yet, so there are no locking
5301 * considerations. But we should be just as tense as XLogFileInit to
5302 * avoid emplacing a bogus file.
5303 */
5304 XLogFileCopy(newTLI, endLogSegNo, endTLI, endLogSegNo,
5306 }
5307 else
5308 {
5309 /*
5310 * The switch happened at a segment boundary, so just create the next
5311 * segment on the new timeline.
5312 */
5313 int fd;
5314
5315 fd = XLogFileInit(startLogSegNo, newTLI);
5316
5317 if (close(fd) != 0)
5318 {
5319 int save_errno = errno;
5320
5321 XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5322 errno = save_errno;
5323 ereport(ERROR,
5325 errmsg("could not close file \"%s\": %m", xlogfname)));
5326 }
5327 }
5328
5329 /*
5330 * Let's just make real sure there are not .ready or .done flags posted
5331 * for the new segment.
5332 */
5333 XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
5334 XLogArchiveCleanup(xlogfname);
5335}
5336
5337/*
5338 * Perform cleanup actions at the conclusion of archive recovery.
5339 */
5340static void
5342 TimeLineID newTLI)
5343{
5344 /*
5345 * Execute the recovery_end_command, if any.
5346 */
5347 if (recoveryEndCommand && strcmp(recoveryEndCommand, "") != 0)
5349 "recovery_end_command",
5350 true,
5351 WAIT_EVENT_RECOVERY_END_COMMAND);
5352
5353 /*
5354 * We switched to a new timeline. Clean up segments on the old timeline.
5355 *
5356 * If there are any higher-numbered segments on the old timeline, remove
5357 * them. They might contain valid WAL, but they might also be
5358 * pre-allocated files containing garbage. In any case, they are not part
5359 * of the new timeline's history so we don't need them.
5360 */
5361 RemoveNonParentXlogFiles(EndOfLog, newTLI);
5362
5363 /*
5364 * If the switch happened in the middle of a segment, what to do with the
5365 * last, partial segment on the old timeline? If we don't archive it, and
5366 * the server that created the WAL never archives it either (e.g. because
5367 * it was hit by a meteor), it will never make it to the archive. That's
5368 * OK from our point of view, because the new segment that we created with
5369 * the new TLI contains all the WAL from the old timeline up to the switch
5370 * point. But if you later try to do PITR to the "missing" WAL on the old
5371 * timeline, recovery won't find it in the archive. It's physically
5372 * present in the new file with new TLI, but recovery won't look there
5373 * when it's recovering to the older timeline. On the other hand, if we
5374 * archive the partial segment, and the original server on that timeline
5375 * is still running and archives the completed version of the same segment
5376 * later, it will fail. (We used to do that in 9.4 and below, and it
5377 * caused such problems).
5378 *
5379 * As a compromise, we rename the last segment with the .partial suffix,
5380 * and archive it. Archive recovery will never try to read .partial
5381 * segments, so they will normally go unused. But in the odd PITR case,
5382 * the administrator can copy them manually to the pg_wal directory
5383 * (removing the suffix). They can be useful in debugging, too.
5384 *
5385 * If a .done or .ready file already exists for the old timeline, however,
5386 * we had already determined that the segment is complete, so we can let
5387 * it be archived normally. (In particular, if it was restored from the
5388 * archive to begin with, it's expected to have a .done file).
5389 */
5390 if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 &&
5392 {
5393 char origfname[MAXFNAMELEN];
5394 XLogSegNo endLogSegNo;
5395
5396 XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size);
5397 XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size);
5398
5399 if (!XLogArchiveIsReadyOrDone(origfname))
5400 {
5401 char origpath[MAXPGPATH];
5402 char partialfname[MAXFNAMELEN];
5403 char partialpath[MAXPGPATH];
5404
5405 /*
5406 * If we're summarizing WAL, we can't rename the partial file
5407 * until the summarizer finishes with it, else it will fail.
5408 */
5409 if (summarize_wal)
5410 WaitForWalSummarization(EndOfLog);
5411
5412 XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size);
5413 snprintf(partialfname, MAXFNAMELEN, "%s.partial", origfname);
5414 snprintf(partialpath, MAXPGPATH, "%s.partial", origpath);
5415
5416 /*
5417 * Make sure there's no .done or .ready file for the .partial
5418 * file.
5419 */
5420 XLogArchiveCleanup(partialfname);
5421
5422 durable_rename(origpath, partialpath, ERROR);
5423 XLogArchiveNotify(partialfname);
5424 }
5425 }
5426}
5427
5428/*
5429 * Check to see if required parameters are set high enough on this server
5430 * for various aspects of recovery operation.
5431 *
5432 * Note that all the parameters which this function tests need to be
5433 * listed in Administrator's Overview section in high-availability.sgml.
5434 * If you change them, don't forget to update the list.
5435 */
5436static void
5438{
5439 /*
5440 * For archive recovery, the WAL must be generated with at least 'replica'
5441 * wal_level.
5442 */
5444 {
5445 ereport(FATAL,
5446 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5447 errmsg("WAL was generated with \"wal_level=minimal\", cannot continue recovering"),
5448 errdetail("This happens if you temporarily set \"wal_level=minimal\" on the server."),
5449 errhint("Use a backup taken after setting \"wal_level\" to higher than \"minimal\".")));
5450 }
5451
5452 /*
5453 * For Hot Standby, the WAL must be generated with 'replica' mode, and we
5454 * must have at least as many backend slots as the primary.
5455 */
5457 {
5458 /* We ignore autovacuum_worker_slots when we make this test. */
5459 RecoveryRequiresIntParameter("max_connections",
5462 RecoveryRequiresIntParameter("max_worker_processes",
5465 RecoveryRequiresIntParameter("max_wal_senders",
5468 RecoveryRequiresIntParameter("max_prepared_transactions",
5471 RecoveryRequiresIntParameter("max_locks_per_transaction",
5474 }
5475}
5476
5477/*
5478 * This must be called ONCE during postmaster or standalone-backend startup
5479 */
5480void
5482{
5484 CheckPoint checkPoint;
5485 bool wasShutdown;
5486 bool didCrash;
5487 bool haveTblspcMap;
5488 bool haveBackupLabel;
5489 XLogRecPtr EndOfLog;
5490 TimeLineID EndOfLogTLI;
5491 TimeLineID newTLI;
5492 bool performedWalRecovery;
5493 EndOfWalRecoveryInfo *endOfRecoveryInfo;
5496 TransactionId oldestActiveXID;
5497 bool promoted = false;
5498 char timebuf[128];
5499
5500 /*
5501 * We should have an aux process resource owner to use, and we should not
5502 * be in a transaction that's installed some other resowner.
5503 */
5505 Assert(CurrentResourceOwner == NULL ||
5508
5509 /*
5510 * Check that contents look valid.
5511 */
5513 ereport(FATAL,
5515 errmsg("control file contains invalid checkpoint location")));
5516
5517 switch (ControlFile->state)
5518 {
5519 case DB_SHUTDOWNED:
5520
5521 /*
5522 * This is the expected case, so don't be chatty in standalone
5523 * mode
5524 */
5526 (errmsg("database system was shut down at %s",
5528 timebuf, sizeof(timebuf)))));
5529 break;
5530
5532 ereport(LOG,
5533 (errmsg("database system was shut down in recovery at %s",
5535 timebuf, sizeof(timebuf)))));
5536 break;
5537
5538 case DB_SHUTDOWNING:
5539 ereport(LOG,
5540 (errmsg("database system shutdown was interrupted; last known up at %s",
5542 timebuf, sizeof(timebuf)))));
5543 break;
5544
5546 ereport(LOG,
5547 (errmsg("database system was interrupted while in recovery at %s",
5549 timebuf, sizeof(timebuf))),
5550 errhint("This probably means that some data is corrupted and"
5551 " you will have to use the last backup for recovery.")));
5552 break;
5553
5555 ereport(LOG,
5556 (errmsg("database system was interrupted while in recovery at log time %s",
5558 timebuf, sizeof(timebuf))),
5559 errhint("If this has occurred more than once some data might be corrupted"
5560 " and you might need to choose an earlier recovery target.")));
5561 break;
5562
5563 case DB_IN_PRODUCTION:
5564 ereport(LOG,
5565 (errmsg("database system was interrupted; last known up at %s",
5567 timebuf, sizeof(timebuf)))));
5568 break;
5569
5570 default:
5571 ereport(FATAL,
5573 errmsg("control file contains invalid database cluster state")));
5574 }
5575
5576 /* This is just to allow attaching to startup process with a debugger */
5577#ifdef XLOG_REPLAY_DELAY
5579 pg_usleep(60000000L);
5580#endif
5581
5582 /*
5583 * Verify that pg_wal, pg_wal/archive_status, and pg_wal/summaries exist.
5584 * In cases where someone has performed a copy for PITR, these directories
5585 * may have been excluded and need to be re-created.
5586 */
5588
5589 /* Set up timeout handler needed to report startup progress. */
5593
5594 /*----------
5595 * If we previously crashed, perform a couple of actions:
5596 *
5597 * - The pg_wal directory may still include some temporary WAL segments
5598 * used when creating a new segment, so perform some clean up to not
5599 * bloat this path. This is done first as there is no point to sync
5600 * this temporary data.
5601 *
5602 * - There might be data which we had written, intending to fsync it, but
5603 * which we had not actually fsync'd yet. Therefore, a power failure in
5604 * the near future might cause earlier unflushed writes to be lost, even
5605 * though more recent data written to disk from here on would be
5606 * persisted. To avoid that, fsync the entire data directory.
5607 */
5610 {
5613 didCrash = true;
5614 }
5615 else
5616 didCrash = false;
5617
5618 /*
5619 * Prepare for WAL recovery if needed.
5620 *
5621 * InitWalRecovery analyzes the control file and the backup label file, if
5622 * any. It updates the in-memory ControlFile buffer according to the
5623 * starting checkpoint, and sets InRecovery and ArchiveRecoveryRequested.
5624 * It also applies the tablespace map file, if any.
5625 */
5626 InitWalRecovery(ControlFile, &wasShutdown,
5627 &haveBackupLabel, &haveTblspcMap);
5628 checkPoint = ControlFile->checkPointCopy;
5629
5630 /* initialize shared memory variables from the checkpoint record */
5631 TransamVariables->nextXid = checkPoint.nextXid;
5632 TransamVariables->nextOid = checkPoint.nextOid;
5634 MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
5635 AdvanceOldestClogXid(checkPoint.oldestXid);
5636 SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
5637 SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB);
5639 checkPoint.newestCommitTsXid);
5640
5641 /*
5642 * Clear out any old relcache cache files. This is *necessary* if we do
5643 * any WAL replay, since that would probably result in the cache files
5644 * being out of sync with database reality. In theory we could leave them
5645 * in place if the database had been cleanly shut down, but it seems
5646 * safest to just remove them always and let them be rebuilt during the
5647 * first backend startup. These files needs to be removed from all
5648 * directories including pg_tblspc, however the symlinks are created only
5649 * after reading tablespace_map file in case of archive recovery from
5650 * backup, so needs to clear old relcache files here after creating
5651 * symlinks.
5652 */
5654
5655 /*
5656 * Initialize replication slots, before there's a chance to remove
5657 * required resources.
5658 */
5660
5661 /*
5662 * Startup logical state, needs to be setup now so we have proper data
5663 * during crash recovery.
5664 */
5666
5667 /*
5668 * Startup CLOG. This must be done after TransamVariables->nextXid has
5669 * been initialized and before we accept connections or begin WAL replay.
5670 */
5671 StartupCLOG();
5672
5673 /*
5674 * Startup MultiXact. We need to do this early to be able to replay
5675 * truncations.
5676 */
5678
5679 /*
5680 * Ditto for commit timestamps. Activate the facility if the setting is
5681 * enabled in the control file, as there should be no tracking of commit
5682 * timestamps done when the setting was disabled. This facility can be
5683 * started or stopped when replaying a XLOG_PARAMETER_CHANGE record.
5684 */
5687
5688 /*
5689 * Recover knowledge about replay progress of known replication partners.
5690 */
5692
5693 /*
5694 * Initialize unlogged LSN. On a clean shutdown, it's restored from the
5695 * control file. On recovery, all unlogged relations are blown away, so
5696 * the unlogged LSN counter can be reset too.
5697 */
5701 else
5704
5705 /*
5706 * Copy any missing timeline history files between 'now' and the recovery
5707 * target timeline from archive to pg_wal. While we don't need those files
5708 * ourselves - the history file of the recovery target timeline covers all
5709 * the previous timelines in the history too - a cascading standby server
5710 * might be interested in them. Or, if you archive the WAL from this
5711 * server to a different archive than the primary, it'd be good for all
5712 * the history files to get archived there after failover, so that you can
5713 * use one of the old timelines as a PITR target. Timeline history files
5714 * are small, so it's better to copy them unnecessarily than not copy them
5715 * and regret later.
5716 */
5718
5719 /*
5720 * Before running in recovery, scan pg_twophase and fill in its status to
5721 * be able to work on entries generated by redo. Doing a scan before
5722 * taking any recovery action has the merit to discard any 2PC files that
5723 * are newer than the first record to replay, saving from any conflicts at
5724 * replay. This avoids as well any subsequent scans when doing recovery
5725 * of the on-disk two-phase data.
5726 */
5728
5729 /*
5730 * When starting with crash recovery, reset pgstat data - it might not be
5731 * valid. Otherwise restore pgstat data. It's safe to do this here,
5732 * because postmaster will not yet have started any other processes.
5733 *
5734 * NB: Restoring replication slot stats relies on slot state to have
5735 * already been restored from disk.
5736 *
5737 * TODO: With a bit of extra work we could just start with a pgstat file
5738 * associated with the checkpoint redo location we're starting from.
5739 */
5740 if (didCrash)
5742 else
5744
5746
5749
5750 /* REDO */
5751 if (InRecovery)
5752 {
5753 /* Initialize state for RecoveryInProgress() */
5757 else
5760
5761 /*
5762 * Update pg_control to show that we are recovering and to show the
5763 * selected checkpoint as the place we are starting from. We also mark
5764 * pg_control with any minimum recovery stop point obtained from a
5765 * backup history file.
5766 *
5767 * No need to hold ControlFileLock yet, we aren't up far enough.
5768 */
5770
5771 /*
5772 * If there was a backup label file, it's done its job and the info
5773 * has now been propagated into pg_control. We must get rid of the
5774 * label file so that if we crash during recovery, we'll pick up at
5775 * the latest recovery restartpoint instead of going all the way back
5776 * to the backup start point. It seems prudent though to just rename
5777 * the file out of the way rather than delete it completely.
5778 */
5779 if (haveBackupLabel)
5780 {
5781 unlink(BACKUP_LABEL_OLD);
5783 }
5784
5785 /*
5786 * If there was a tablespace_map file, it's done its job and the
5787 * symlinks have been created. We must get rid of the map file so
5788 * that if we crash during recovery, we don't create symlinks again.
5789 * It seems prudent though to just rename the file out of the way
5790 * rather than delete it completely.
5791 */
5792 if (haveTblspcMap)
5793 {
5794 unlink(TABLESPACE_MAP_OLD);
5796 }
5797
5798 /*
5799 * Initialize our local copy of minRecoveryPoint. When doing crash
5800 * recovery we want to replay up to the end of WAL. Particularly, in
5801 * the case of a promoted standby minRecoveryPoint value in the
5802 * control file is only updated after the first checkpoint. However,
5803 * if the instance crashes before the first post-recovery checkpoint
5804 * is completed then recovery will use a stale location causing the
5805 * startup process to think that there are still invalid page
5806 * references when checking for data consistency.
5807 */
5809 {
5812 }
5813 else
5814 {
5817 }
5818
5819 /* Check that the GUCs used to generate the WAL allow recovery */
5821
5822 /*
5823 * We're in recovery, so unlogged relations may be trashed and must be
5824 * reset. This should be done BEFORE allowing Hot Standby
5825 * connections, so that read-only backends don't try to read whatever
5826 * garbage is left over from before.
5827 */
5829
5830 /*
5831 * Likewise, delete any saved transaction snapshot files that got left
5832 * behind by crashed backends.
5833 */
5835
5836 /*
5837 * Initialize for Hot Standby, if enabled. We won't let backends in
5838 * yet, not until we've reached the min recovery point specified in
5839 * control file and we've established a recovery snapshot from a
5840 * running-xacts WAL record.
5841 */
5843 {
5844 TransactionId *xids;
5845 int nxids;
5846
5848 (errmsg_internal("initializing for hot standby")));
5849
5851
5852 if (wasShutdown)
5853 oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
5854 else
5855 oldestActiveXID = checkPoint.oldestActiveXid;
5856 Assert(TransactionIdIsValid(oldestActiveXID));
5857
5858 /* Tell procarray about the range of xids it has to deal with */
5860
5861 /*
5862 * Startup subtrans only. CLOG, MultiXact and commit timestamp
5863 * have already been started up and other SLRUs are not maintained
5864 * during recovery and need not be started yet.
5865 */
5866 StartupSUBTRANS(oldestActiveXID);
5867
5868 /*
5869 * If we're beginning at a shutdown checkpoint, we know that
5870 * nothing was running on the primary at this point. So fake-up an
5871 * empty running-xacts record and use that here and now. Recover
5872 * additional standby state for prepared transactions.
5873 */
5874 if (wasShutdown)
5875 {
5877 TransactionId latestCompletedXid;
5878
5879 /* Update pg_subtrans entries for any prepared transactions */
5881
5882 /*
5883 * Construct a RunningTransactions snapshot representing a
5884 * shut down server, with only prepared transactions still
5885 * alive. We're never overflowed at this point because all
5886 * subxids are listed with their parent prepared transactions.
5887 */
5888 running.xcnt = nxids;
5889 running.subxcnt = 0;
5891 running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
5892 running.oldestRunningXid = oldestActiveXID;
5893 latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
5894 TransactionIdRetreat(latestCompletedXid);
5895 Assert(TransactionIdIsNormal(latestCompletedXid));
5896 running.latestCompletedXid = latestCompletedXid;
5897 running.xids = xids;
5898
5900 }
5901 }
5902
5903 /*
5904 * We're all set for replaying the WAL now. Do it.
5905 */
5907 performedWalRecovery = true;
5908 }
5909 else
5910 performedWalRecovery = false;
5911
5912 /*
5913 * Finish WAL recovery.
5914 */
5915 endOfRecoveryInfo = FinishWalRecovery();
5916 EndOfLog = endOfRecoveryInfo->endOfLog;
5917 EndOfLogTLI = endOfRecoveryInfo->endOfLogTLI;
5918 abortedRecPtr = endOfRecoveryInfo->abortedRecPtr;
5919 missingContrecPtr = endOfRecoveryInfo->missingContrecPtr;
5920
5921 /*
5922 * Reset ps status display, so as no information related to recovery shows
5923 * up.
5924 */
5925 set_ps_display("");
5926
5927 /*
5928 * When recovering from a backup (we are in recovery, and archive recovery
5929 * was requested), complain if we did not roll forward far enough to reach
5930 * the point where the database is consistent. For regular online
5931 * backup-from-primary, that means reaching the end-of-backup WAL record
5932 * (at which point we reset backupStartPoint to be Invalid), for
5933 * backup-from-replica (which can't inject records into the WAL stream),
5934 * that point is when we reach the minRecoveryPoint in pg_control (which
5935 * we purposefully copy last when backing up from a replica). For
5936 * pg_rewind (which creates a backup_label with a method of "pg_rewind")
5937 * or snapshot-style backups (which don't), backupEndRequired will be set
5938 * to false.
5939 *
5940 * Note: it is indeed okay to look at the local variable
5941 * LocalMinRecoveryPoint here, even though ControlFile->minRecoveryPoint
5942 * might be further ahead --- ControlFile->minRecoveryPoint cannot have
5943 * been advanced beyond the WAL we processed.
5944 */
5945 if (InRecovery &&
5946 (EndOfLog < LocalMinRecoveryPoint ||
5948 {
5949 /*
5950 * Ran off end of WAL before reaching end-of-backup WAL record, or
5951 * minRecoveryPoint. That's a bad sign, indicating that you tried to
5952 * recover from an online backup but never called pg_backup_stop(), or
5953 * you didn't archive all the WAL needed.
5954 */
5956 {
5958 ereport(FATAL,
5959 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5960 errmsg("WAL ends before end of online backup"),
5961 errhint("All WAL generated while online backup was taken must be available at recovery.")));
5962 else
5963 ereport(FATAL,
5964 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
5965 errmsg("WAL ends before consistent recovery point")));
5966 }
5967 }
5968
5969 /*
5970 * Reset unlogged relations to the contents of their INIT fork. This is
5971 * done AFTER recovery is complete so as to include any unlogged relations
5972 * created during recovery, but BEFORE recovery is marked as having
5973 * completed successfully. Otherwise we'd not retry if any of the post
5974 * end-of-recovery steps fail.
5975 */
5976 if (InRecovery)
5978
5979 /*
5980 * Pre-scan prepared transactions to find out the range of XIDs present.
5981 * This information is not quite needed yet, but it is positioned here so
5982 * as potential problems are detected before any on-disk change is done.
5983 */
5984 oldestActiveXID = PrescanPreparedTransactions(NULL, NULL);
5985
5986 /*
5987 * Allow ordinary WAL segment creation before possibly switching to a new
5988 * timeline, which creates a new segment, and after the last ReadRecord().
5989 */
5991
5992 /*
5993 * Consider whether we need to assign a new timeline ID.
5994 *
5995 * If we did archive recovery, we always assign a new ID. This handles a
5996 * couple of issues. If we stopped short of the end of WAL during
5997 * recovery, then we are clearly generating a new timeline and must assign
5998 * it a unique new ID. Even if we ran to the end, modifying the current
5999 * last segment is problematic because it may result in trying to
6000 * overwrite an already-archived copy of that segment, and we encourage
6001 * DBAs to make their archive_commands reject that. We can dodge the
6002 * problem by making the new active segment have a new timeline ID.
6003 *
6004 * In a normal crash recovery, we can just extend the timeline we were in.
6005 */
6006 newTLI = endOfRecoveryInfo->lastRecTLI;
6008 {
6010 ereport(LOG,
6011 (errmsg("selected new timeline ID: %u", newTLI)));
6012
6013 /*
6014 * Make a writable copy of the last WAL segment. (Note that we also
6015 * have a copy of the last block of the old WAL in
6016 * endOfRecovery->lastPage; we will use that below.)
6017 */
6018 XLogInitNewTimeline(EndOfLogTLI, EndOfLog, newTLI);
6019
6020 /*
6021 * Remove the signal files out of the way, so that we don't
6022 * accidentally re-enter archive recovery mode in a subsequent crash.
6023 */
6024 if (endOfRecoveryInfo->standby_signal_file_found)
6026
6027 if (endOfRecoveryInfo->recovery_signal_file_found)
6029
6030 /*
6031 * Write the timeline history file, and have it archived. After this
6032 * point (or rather, as soon as the file is archived), the timeline
6033 * will appear as "taken" in the WAL archive and to any standby
6034 * servers. If we crash before actually switching to the new
6035 * timeline, standby servers will nevertheless think that we switched
6036 * to the new timeline, and will try to connect to the new timeline.
6037 * To minimize the window for that, try to do as little as possible
6038 * between here and writing the end-of-recovery record.
6039 */
6041 EndOfLog, endOfRecoveryInfo->recoveryStopReason);
6042
6043 ereport(LOG,
6044 (errmsg("archive recovery complete")));
6045 }
6046
6047 /* Save the selected TimeLineID in shared memory, too */
6049 XLogCtl->InsertTimeLineID = newTLI;
6050 XLogCtl->PrevTimeLineID = endOfRecoveryInfo->lastRecTLI;
6052
6053 /*
6054 * Actually, if WAL ended in an incomplete record, skip the parts that
6055 * made it through and start writing after the portion that persisted.
6056 * (It's critical to first write an OVERWRITE_CONTRECORD message, which
6057 * we'll do as soon as we're open for writing new WAL.)
6058 */
6060 {
6061 /*
6062 * We should only have a missingContrecPtr if we're not switching to a
6063 * new timeline. When a timeline switch occurs, WAL is copied from the
6064 * old timeline to the new only up to the end of the last complete
6065 * record, so there can't be an incomplete WAL record that we need to
6066 * disregard.
6067 */
6068 Assert(newTLI == endOfRecoveryInfo->lastRecTLI);
6070 EndOfLog = missingContrecPtr;
6071 }
6072
6073 /*
6074 * Prepare to write WAL starting at EndOfLog location, and init xlog
6075 * buffer cache using the block containing the last record from the
6076 * previous incarnation.
6077 */
6078 Insert = &XLogCtl->Insert;
6079 Insert->PrevBytePos = XLogRecPtrToBytePos(endOfRecoveryInfo->lastRec);
6080 Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog);
6081
6082 /*
6083 * Tricky point here: lastPage contains the *last* block that the LastRec
6084 * record spans, not the one it starts in. The last block is indeed the
6085 * one we want to use.
6086 */
6087 if (EndOfLog % XLOG_BLCKSZ != 0)
6088 {
6089 char *page;
6090 int len;
6091 int firstIdx;
6092
6093 firstIdx = XLogRecPtrToBufIdx(EndOfLog);
6094 len = EndOfLog - endOfRecoveryInfo->lastPageBeginPtr;
6095 Assert(len < XLOG_BLCKSZ);
6096
6097 /* Copy the valid part of the last block, and zero the rest */
6098 page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ];
6099 memcpy(page, endOfRecoveryInfo->lastPage, len);
6100 memset(page + len, 0, XLOG_BLCKSZ - len);
6101
6102 pg_atomic_write_u64(&XLogCtl->xlblocks[firstIdx], endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ);
6103 XLogCtl->InitializedUpTo = endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ;
6104 }
6105 else
6106 {
6107 /*
6108 * There is no partial block to copy. Just set InitializedUpTo, and
6109 * let the first attempt to insert a log record to initialize the next
6110 * buffer.
6111 */
6112 XLogCtl->InitializedUpTo = EndOfLog;
6113 }
6114
6115 /*
6116 * Update local and shared status. This is OK to do without any locks
6117 * because no other process can be reading or writing WAL yet.
6118 */
6119 LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
6123 XLogCtl->LogwrtRqst.Write = EndOfLog;
6124 XLogCtl->LogwrtRqst.Flush = EndOfLog;
6125
6126 /*
6127 * Preallocate additional log files, if wanted.
6128 */
6129 PreallocXlogFiles(EndOfLog, newTLI);
6130
6131 /*
6132 * Okay, we're officially UP.
6133 */
6134 InRecovery = false;
6135
6136 /* start the archive_timeout timer and LSN running */
6137 XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
6138 XLogCtl->lastSegSwitchLSN = EndOfLog;
6139
6140 /* also initialize latestCompletedXid, to nextXid - 1 */
6141 LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
6144 LWLockRelease(ProcArrayLock);
6145
6146 /*
6147 * Start up subtrans, if not already done for hot standby. (commit
6148 * timestamps are started below, if necessary.)
6149 */
6151 StartupSUBTRANS(oldestActiveXID);
6152
6153 /*
6154 * Perform end of recovery actions for any SLRUs that need it.
6155 */
6156 TrimCLOG();
6157 TrimMultiXact();
6158
6159 /*
6160 * Reload shared-memory state for prepared transactions. This needs to
6161 * happen before renaming the last partial segment of the old timeline as
6162 * it may be possible that we have to recover some transactions from it.
6163 */
6165
6166 /* Shut down xlogreader */
6168
6169 /* Enable WAL writes for this backend only. */
6171
6172 /* If necessary, write overwrite-contrecord before doing anything else */
6174 {
6177 }
6178
6179 /*
6180 * Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE
6181 * record before resource manager writes cleanup WAL records or checkpoint
6182 * record is written.
6183 */
6184 Insert->fullPageWrites = lastFullPageWrites;
6186
6187 /*
6188 * Emit checkpoint or end-of-recovery record in XLOG, if required.
6189 */
6190 if (performedWalRecovery)
6191 promoted = PerformRecoveryXLogAction();
6192
6193 /*
6194 * If any of the critical GUCs have changed, log them before we allow
6195 * backends to write WAL.
6196 */
6198
6199 /* If this is archive recovery, perform post-recovery cleanup actions. */
6201 CleanupAfterArchiveRecovery(EndOfLogTLI, EndOfLog, newTLI);
6202
6203 /*
6204 * Local WAL inserts enabled, so it's time to finish initialization of
6205 * commit timestamp.
6206 */
6208
6209 /* Clean up EndOfWalRecoveryInfo data to appease Valgrind leak checking */
6210 if (endOfRecoveryInfo->lastPage)
6211 pfree(endOfRecoveryInfo->lastPage);
6212 pfree(endOfRecoveryInfo->recoveryStopReason);
6213 pfree(endOfRecoveryInfo);
6214
6215 /*
6216 * All done with end-of-recovery actions.
6217 *
6218 * Now allow backends to write WAL and update the control file status in
6219 * consequence. SharedRecoveryState, that controls if backends can write
6220 * WAL, is updated while holding ControlFileLock to prevent other backends
6221 * to look at an inconsistent state of the control file in shared memory.
6222 * There is still a small window during which backends can write WAL and
6223 * the control file is still referring to a system not in DB_IN_PRODUCTION
6224 * state while looking at the on-disk control file.
6225 *
6226 * Also, we use info_lck to update SharedRecoveryState to ensure that
6227 * there are no race conditions concerning visibility of other recent
6228 * updates to shared memory.
6229 */
6230 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6232
6236
6238 LWLockRelease(ControlFileLock);
6239
6240 /*
6241 * Wake up all waiters for replay LSN. They need to report an error that
6242 * recovery was ended before reaching the target LSN.
6243 */
6245
6246 /*
6247 * Shutdown the recovery environment. This must occur after
6248 * RecoverPreparedTransactions() (see notes in lock_twophase_recover())
6249 * and after switching SharedRecoveryState to RECOVERY_STATE_DONE so as
6250 * any session building a snapshot will not rely on KnownAssignedXids as
6251 * RecoveryInProgress() would return false at this stage. This is
6252 * particularly critical for prepared 2PC transactions, that would still
6253 * need to be included in snapshots once recovery has ended.
6254 */
6257
6258 /*
6259 * If there were cascading standby servers connected to us, nudge any wal
6260 * sender processes to notice that we've been promoted.
6261 */
6262 WalSndWakeup(true, true);
6263
6264 /*
6265 * If this was a promotion, request an (online) checkpoint now. This isn't
6266 * required for consistency, but the last restartpoint might be far back,
6267 * and in case of a crash, recovering from it might take a longer than is
6268 * appropriate now that we're not in standby mode anymore.
6269 */
6270 if (promoted)
6272}
6273
6274/*
6275 * Callback from PerformWalRecovery(), called when we switch from crash
6276 * recovery to archive recovery mode. Updates the control file accordingly.
6277 */
6278void
6280{
6281 /* initialize minRecoveryPoint to this record */
6282 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6284 if (ControlFile->minRecoveryPoint < EndRecPtr)
6285 {
6286 ControlFile->minRecoveryPoint = EndRecPtr;
6287 ControlFile->minRecoveryPointTLI = replayTLI;
6288 }
6289 /* update local copy */
6292
6293 /*
6294 * The startup process can update its local copy of minRecoveryPoint from
6295 * this point.
6296 */
6298
6300
6301 /*
6302 * We update SharedRecoveryState while holding the lock on ControlFileLock
6303 * so both states are consistent in shared memory.
6304 */
6308
6309 LWLockRelease(ControlFileLock);
6310}
6311
6312/*
6313 * Callback from PerformWalRecovery(), called when we reach the end of backup.
6314 * Updates the control file accordingly.
6315 */
6316void
6318{
6319 /*
6320 * We have reached the end of base backup, as indicated by pg_control. The
6321 * data on disk is now consistent (unless minRecoveryPoint is further
6322 * ahead, which can happen if we crashed during previous recovery). Reset
6323 * backupStartPoint and backupEndPoint, and update minRecoveryPoint to
6324 * make sure we don't allow starting up at an earlier point even if
6325 * recovery is stopped and restarted soon after this.
6326 */
6327 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
6328
6329 if (ControlFile->minRecoveryPoint < EndRecPtr)
6330 {
6331 ControlFile->minRecoveryPoint = EndRecPtr;
6333 }
6334
6339
6340 LWLockRelease(ControlFileLock);
6341}
6342
6343/*
6344 * Perform whatever XLOG actions are necessary at end of REDO.
6345 *
6346 * The goal here is to make sure that we'll be able to recover properly if
6347 * we crash again. If we choose to write a checkpoint, we'll write a shutdown
6348 * checkpoint rather than an on-line one. This is not particularly critical,
6349 * but since we may be assigning a new TLI, using a shutdown checkpoint allows
6350 * us to have the rule that TLI only changes in shutdown checkpoints, which
6351 * allows some extra error checking in xlog_redo.
6352 */
6353static bool
6355{
6356 bool promoted = false;
6357
6358 /*
6359 * Perform a checkpoint to update all our recovery activity to disk.
6360 *
6361 * Note that we write a shutdown checkpoint rather than an on-line one.
6362 * This is not particularly critical, but since we may be assigning a new
6363 * TLI, using a shutdown checkpoint allows us to have the rule that TLI
6364 * only changes in shutdown checkpoints, which allows some extra error
6365 * checking in xlog_redo.
6366 *
6367 * In promotion, only create a lightweight end-of-recovery record instead
6368 * of a full checkpoint. A checkpoint is requested later, after we're
6369 * fully out of recovery mode and already accepting queries.
6370 */
6373 {
6374 promoted = true;
6375
6376 /*
6377 * Insert a special WAL record to mark the end of recovery, since we
6378 * aren't doing a checkpoint. That means that the checkpointer process
6379 * may likely be in the middle of a time-smoothed restartpoint and
6380 * could continue to be for minutes after this. That sounds strange,
6381 * but the effect is roughly the same and it would be stranger to try
6382 * to come out of the restartpoint and then checkpoint. We request a
6383 * checkpoint later anyway, just for safety.
6384 */
6386 }
6387 else
6388 {
6392 }
6393
6394 return promoted;
6395}
6396
6397/*
6398 * Is the system still in recovery?
6399 *
6400 * Unlike testing InRecovery, this works in any process that's connected to
6401 * shared memory.
6402 */
6403bool
6405{
6406 /*
6407 * We check shared state each time only until we leave recovery mode. We
6408 * can't re-enter recovery, so there's no need to keep checking after the
6409 * shared variable has once been seen false.
6410 */
6412 return false;
6413 else
6414 {
6415 /*
6416 * use volatile pointer to make sure we make a fresh read of the
6417 * shared variable.
6418 */
6419 volatile XLogCtlData *xlogctl = XLogCtl;
6420
6422
6423 /*
6424 * Note: We don't need a memory barrier when we're still in recovery.
6425 * We might exit recovery immediately after return, so the caller
6426 * can't rely on 'true' meaning that we're still in recovery anyway.
6427 */
6428
6430 }
6431}
6432
6433/*
6434 * Returns current recovery state from shared memory.
6435 *
6436 * This returned state is kept consistent with the contents of the control
6437 * file. See details about the possible values of RecoveryState in xlog.h.
6438 */
6441{
6442 RecoveryState retval;
6443
6445 retval = XLogCtl->SharedRecoveryState;
6447
6448 return retval;
6449}
6450
6451/*
6452 * Is this process allowed to insert new WAL records?
6453 *
6454 * Ordinarily this is essentially equivalent to !RecoveryInProgress().
6455 * But we also have provisions for forcing the result "true" or "false"
6456 * within specific processes regardless of the global state.
6457 */
6458bool
6460{
6461 /*
6462 * If value is "unconditionally true" or "unconditionally false", just
6463 * return it. This provides the normal fast path once recovery is known
6464 * done.
6465 */
6466 if (LocalXLogInsertAllowed >= 0)
6467 return (bool) LocalXLogInsertAllowed;
6468
6469 /*
6470 * Else, must check to see if we're still in recovery.
6471 */
6472 if (RecoveryInProgress())
6473 return false;
6474
6475 /*
6476 * On exit from recovery, reset to "unconditionally true", since there is
6477 * no need to keep checking.
6478 */
6480 return true;
6481}
6482
6483/*
6484 * Make XLogInsertAllowed() return true in the current process only.
6485 *
6486 * Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later,
6487 * and even call LocalSetXLogInsertAllowed() again after that.
6488 *
6489 * Returns the previous value of LocalXLogInsertAllowed.
6490 */
6491static int
6493{
6494 int oldXLogAllowed = LocalXLogInsertAllowed;
6495
6497
6498 return oldXLogAllowed;
6499}
6500
6501/*
6502 * Return the current Redo pointer from shared memory.
6503 *
6504 * As a side-effect, the local RedoRecPtr copy is updated.
6505 */
6508{
6509 XLogRecPtr ptr;
6510
6511 /*
6512 * The possibly not up-to-date copy in XlogCtl is enough. Even if we
6513 * grabbed a WAL insertion lock to read the authoritative value in
6514 * Insert->RedoRecPtr, someone might update it just after we've released
6515 * the lock.
6516 */
6518 ptr = XLogCtl->RedoRecPtr;
6520
6521 if (RedoRecPtr < ptr)
6522 RedoRecPtr = ptr;
6523
6524 return RedoRecPtr;
6525}
6526
6527/*
6528 * Return information needed to decide whether a modified block needs a
6529 * full-page image to be included in the WAL record.
6530 *
6531 * The returned values are cached copies from backend-private memory, and
6532 * possibly out-of-date or, indeed, uninitialized, in which case they will
6533 * be InvalidXLogRecPtr and false, respectively. XLogInsertRecord will
6534 * re-check them against up-to-date values, while holding the WAL insert lock.
6535 */
6536void
6537GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
6538{
6539 *RedoRecPtr_p = RedoRecPtr;
6540 *doPageWrites_p = doPageWrites;
6541}
6542
6543/*
6544 * GetInsertRecPtr -- Returns the current insert position.
6545 *
6546 * NOTE: The value *actually* returned is the position of the last full
6547 * xlog page. It lags behind the real insert position by at most 1 page.
6548 * For that, we don't need to scan through WAL insertion locks, and an
6549 * approximation is enough for the current usage of this function.
6550 */
6553{
6554 XLogRecPtr recptr;
6555
6557 recptr = XLogCtl->LogwrtRqst.Write;
6559
6560 return recptr;
6561}
6562
6563/*
6564 * GetFlushRecPtr -- Returns the current flush position, ie, the last WAL
6565 * position known to be fsync'd to disk. This should only be used on a
6566 * system that is known not to be in recovery.
6567 */
6570{
6572
6574
6575 /*
6576 * If we're writing and flushing WAL, the time line can't be changing, so
6577 * no lock is required.
6578 */
6579 if (insertTLI)
6580 *insertTLI = XLogCtl->InsertTimeLineID;
6581
6582 return LogwrtResult.Flush;
6583}
6584
6585/*
6586 * GetWALInsertionTimeLine -- Returns the current timeline of a system that
6587 * is not in recovery.
6588 */
6591{
6593
6594 /* Since the value can't be changing, no lock is required. */
6595 return XLogCtl->InsertTimeLineID;
6596}
6597
6598/*
6599 * GetWALInsertionTimeLineIfSet -- If the system is not in recovery, returns
6600 * the WAL insertion timeline; else, returns 0. Wherever possible, use
6601 * GetWALInsertionTimeLine() instead, since it's cheaper. Note that this
6602 * function decides recovery has ended as soon as the insert TLI is set, which
6603 * happens before we set XLogCtl->SharedRecoveryState to RECOVERY_STATE_DONE.
6604 */
6607{
6608 TimeLineID insertTLI;
6609
6611 insertTLI = XLogCtl->InsertTimeLineID;
6613
6614 return insertTLI;
6615}
6616
6617/*
6618 * GetLastImportantRecPtr -- Returns the LSN of the last important record
6619 * inserted. All records not explicitly marked as unimportant are considered
6620 * important.
6621 *
6622 * The LSN is determined by computing the maximum of
6623 * WALInsertLocks[i].lastImportantAt.
6624 */
6627{
6629 int i;
6630
6631 for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
6632 {
6633 XLogRecPtr last_important;
6634
6635 /*
6636 * Need to take a lock to prevent torn reads of the LSN, which are
6637 * possible on some of the supported platforms. WAL insert locks only
6638 * support exclusive mode, so we have to use that.
6639 */
6641 last_important = WALInsertLocks[i].l.lastImportantAt;
6642 LWLockRelease(&WALInsertLocks[i].l.lock);
6643
6644 if (res < last_important)
6645 res = last_important;
6646 }
6647
6648 return res;
6649}
6650
6651/*
6652 * Get the time and LSN of the last xlog segment switch
6653 */
6656{
6657 pg_time_t result;
6658
6659 /* Need WALWriteLock, but shared lock is sufficient */
6660 LWLockAcquire(WALWriteLock, LW_SHARED);
6661 result = XLogCtl->lastSegSwitchTime;
6662 *lastSwitchLSN = XLogCtl->lastSegSwitchLSN;
6663 LWLockRelease(WALWriteLock);
6664
6665 return result;
6666}
6667
6668/*
6669 * This must be called ONCE during postmaster or standalone-backend shutdown
6670 */
6671void
6673{
6674 /*
6675 * We should have an aux process resource owner to use, and we should not
6676 * be in a transaction that's installed some other resowner.
6677 */
6679 Assert(CurrentResourceOwner == NULL ||
6682
6683 /* Don't be chatty in standalone mode */
6685 (errmsg("shutting down")));
6686
6687 /*
6688 * Signal walsenders to move to stopping state.
6689 */
6691
6692 /*
6693 * Wait for WAL senders to be in stopping state. This prevents commands
6694 * from writing new WAL.
6695 */
6697
6698 if (RecoveryInProgress())
6700 else
6701 {
6702 /*
6703 * If archiving is enabled, rotate the last XLOG file so that all the
6704 * remaining records are archived (postmaster wakes up the archiver
6705 * process one more time at the end of shutdown). The checkpoint
6706 * record will go to the next XLOG file and won't be archived (yet).
6707 */
6708 if (XLogArchivingActive())
6709 RequestXLogSwitch(false);
6710
6712 }
6713}
6714
6715/*
6716 * Log start of a checkpoint.
6717 */
6718static void
6719LogCheckpointStart(int flags, bool restartpoint)
6720{
6721 if (restartpoint)
6722 ereport(LOG,
6723 /* translator: the placeholders show checkpoint options */
6724 (errmsg("restartpoint starting:%s%s%s%s%s%s%s%s",
6725 (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6726 (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6727 (flags & CHECKPOINT_FAST) ? " fast" : "",
6728 (flags & CHECKPOINT_FORCE) ? " force" : "",
6729 (flags & CHECKPOINT_WAIT) ? " wait" : "",
6730 (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6731 (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6732 (flags & CHECKPOINT_FLUSH_UNLOGGED) ? " flush-unlogged" : "")));
6733 else
6734 ereport(LOG,
6735 /* translator: the placeholders show checkpoint options */
6736 (errmsg("checkpoint starting:%s%s%s%s%s%s%s%s",
6737 (flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
6738 (flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
6739 (flags & CHECKPOINT_FAST) ? " fast" : "",
6740 (flags & CHECKPOINT_FORCE) ? " force" : "",
6741 (flags & CHECKPOINT_WAIT) ? " wait" : "",
6742 (flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
6743 (flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
6744 (flags & CHECKPOINT_FLUSH_UNLOGGED) ? " flush-unlogged" : "")));
6745}
6746
6747/*
6748 * Log end of a checkpoint.
6749 */
6750static void
6751LogCheckpointEnd(bool restartpoint)
6752{
6753 long write_msecs,
6754 sync_msecs,
6755 total_msecs,
6756 longest_msecs,
6757 average_msecs;
6758 uint64 average_sync_time;
6759
6761
6764
6767
6768 /* Accumulate checkpoint timing summary data, in milliseconds. */
6769 PendingCheckpointerStats.write_time += write_msecs;
6770 PendingCheckpointerStats.sync_time += sync_msecs;
6771
6772 /*
6773 * All of the published timing statistics are accounted for. Only
6774 * continue if a log message is to be written.
6775 */
6776 if (!log_checkpoints)
6777 return;
6778
6781
6782 /*
6783 * Timing values returned from CheckpointStats are in microseconds.
6784 * Convert to milliseconds for consistent printing.
6785 */
6786 longest_msecs = (long) ((CheckpointStats.ckpt_longest_sync + 999) / 1000);
6787
6788 average_sync_time = 0;
6790 average_sync_time = CheckpointStats.ckpt_agg_sync_time /
6792 average_msecs = (long) ((average_sync_time + 999) / 1000);
6793
6794 /*
6795 * ControlFileLock is not required to see ControlFile->checkPoint and
6796 * ->checkPointCopy here as we are the only updator of those variables at
6797 * this moment.
6798 */
6799 if (restartpoint)
6800 ereport(LOG,
6801 (errmsg("restartpoint complete: wrote %d buffers (%.1f%%), "
6802 "wrote %d SLRU buffers; %d WAL file(s) added, "
6803 "%d removed, %d recycled; write=%ld.%03d s, "
6804 "sync=%ld.%03d s, total=%ld.%03d s; sync files=%d, "
6805 "longest=%ld.%03d s, average=%ld.%03d s; distance=%d kB, "
6806 "estimate=%d kB; lsn=%X/%08X, redo lsn=%X/%08X",
6813 write_msecs / 1000, (int) (write_msecs % 1000),
6814 sync_msecs / 1000, (int) (sync_msecs % 1000),
6815 total_msecs / 1000, (int) (total_msecs % 1000),
6817 longest_msecs / 1000, (int) (longest_msecs % 1000),
6818 average_msecs / 1000, (int) (average_msecs % 1000),
6819 (int) (PrevCheckPointDistance / 1024.0),
6820 (int) (CheckPointDistanceEstimate / 1024.0),
6823 else
6824 ereport(LOG,
6825 (errmsg("checkpoint complete: wrote %d buffers (%.1f%%), "
6826 "wrote %d SLRU buffers; %d WAL file(s) added, "
6827 "%d removed, %d recycled; write=%ld.%03d s, "
6828 "sync=%ld.%03d s, total=%ld.%03d s; sync files=%d, "
6829 "longest=%ld.%03d s, average=%ld.%03d s; distance=%d kB, "
6830 "estimate=%d kB; lsn=%X/%08X, redo lsn=%X/%08X",
6837 write_msecs / 1000, (int) (write_msecs % 1000),
6838 sync_msecs / 1000, (int) (sync_msecs % 1000),
6839 total_msecs / 1000, (int) (total_msecs % 1000),
6841 longest_msecs / 1000, (int) (longest_msecs % 1000),
6842 average_msecs / 1000, (int) (average_msecs % 1000),
6843 (int) (PrevCheckPointDistance / 1024.0),
6844 (int) (CheckPointDistanceEstimate / 1024.0),
6847}
6848
6849/*
6850 * Update the estimate of distance between checkpoints.
6851 *
6852 * The estimate is used to calculate the number of WAL segments to keep
6853 * preallocated, see XLOGfileslop().
6854 */
6855static void
6857{
6858 /*
6859 * To estimate the number of segments consumed between checkpoints, keep a
6860 * moving average of the amount of WAL generated in previous checkpoint
6861 * cycles. However, if the load is bursty, with quiet periods and busy
6862 * periods, we want to cater for the peak load. So instead of a plain
6863 * moving average, let the average decline slowly if the previous cycle
6864 * used less WAL than estimated, but bump it up immediately if it used
6865 * more.
6866 *
6867 * When checkpoints are triggered by max_wal_size, this should converge to
6868 * CheckpointSegments * wal_segment_size,
6869 *
6870 * Note: This doesn't pay any attention to what caused the checkpoint.
6871 * Checkpoints triggered manually with CHECKPOINT command, or by e.g.
6872 * starting a base backup, are counted the same as those created
6873 * automatically. The slow-decline will largely mask them out, if they are
6874 * not frequent. If they are frequent, it seems reasonable to count them
6875 * in as any others; if you issue a manual checkpoint every 5 minutes and
6876 * never let a timed checkpoint happen, it makes sense to base the
6877 * preallocation on that 5 minute interval rather than whatever
6878 * checkpoint_timeout is set to.
6879 */
6880 PrevCheckPointDistance = nbytes;
6881 if (CheckPointDistanceEstimate < nbytes)
6883 else
6885 (0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes);
6886}
6887
6888/*
6889 * Update the ps display for a process running a checkpoint. Note that
6890 * this routine should not do any allocations so as it can be called
6891 * from a critical section.
6892 */
6893static void
6894update_checkpoint_display(int flags, bool restartpoint, bool reset)
6895{
6896 /*
6897 * The status is reported only for end-of-recovery and shutdown
6898 * checkpoints or shutdown restartpoints. Updating the ps display is
6899 * useful in those situations as it may not be possible to rely on
6900 * pg_stat_activity to see the status of the checkpointer or the startup
6901 * process.
6902 */
6904 return;
6905
6906 if (reset)
6907 set_ps_display("");
6908 else
6909 {
6910 char activitymsg[128];
6911
6912 snprintf(activitymsg, sizeof(activitymsg), "performing %s%s%s",
6913 (flags & CHECKPOINT_END_OF_RECOVERY) ? "end-of-recovery " : "",
6914 (flags & CHECKPOINT_IS_SHUTDOWN) ? "shutdown " : "",
6915 restartpoint ? "restartpoint" : "checkpoint");
6916 set_ps_display(activitymsg);
6917 }
6918}
6919
6920
6921/*
6922 * Perform a checkpoint --- either during shutdown, or on-the-fly
6923 *
6924 * flags is a bitwise OR of the following:
6925 * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
6926 * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
6927 * CHECKPOINT_FAST: finish the checkpoint ASAP, ignoring
6928 * checkpoint_completion_target parameter.
6929 * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
6930 * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
6931 * CHECKPOINT_END_OF_RECOVERY).
6932 * CHECKPOINT_FLUSH_UNLOGGED: also flush buffers of unlogged tables.
6933 *
6934 * Note: flags contains other bits, of interest here only for logging purposes.
6935 * In particular note that this routine is synchronous and does not pay
6936 * attention to CHECKPOINT_WAIT.
6937 *
6938 * If !shutdown then we are writing an online checkpoint. An XLOG_CHECKPOINT_REDO
6939 * record is inserted into WAL at the logical location of the checkpoint, before
6940 * flushing anything to disk, and when the checkpoint is eventually completed,
6941 * and it is from this point that WAL replay will begin in the case of a recovery
6942 * from this checkpoint. Once everything is written to disk, an
6943 * XLOG_CHECKPOINT_ONLINE record is written to complete the checkpoint, and
6944 * points back to the earlier XLOG_CHECKPOINT_REDO record. This mechanism allows
6945 * other write-ahead log records to be written while the checkpoint is in
6946 * progress, but we must be very careful about order of operations. This function
6947 * may take many minutes to execute on a busy system.
6948 *
6949 * On the other hand, when shutdown is true, concurrent insertion into the
6950 * write-ahead log is impossible, so there is no need for two separate records.
6951 * In this case, we only insert an XLOG_CHECKPOINT_SHUTDOWN record, and it's
6952 * both the record marking the completion of the checkpoint and the location
6953 * from which WAL replay would begin if needed.
6954 *
6955 * Returns true if a new checkpoint was performed, or false if it was skipped
6956 * because the system was idle.
6957 */
6958bool
6960{
6961 bool shutdown;
6962 CheckPoint checkPoint;
6963 XLogRecPtr recptr;
6964 XLogSegNo _logSegNo;
6966 uint32 freespace;
6967 XLogRecPtr PriorRedoPtr;
6968 XLogRecPtr last_important_lsn;
6969 VirtualTransactionId *vxids;
6970 int nvxids;
6971 int oldXLogAllowed = 0;
6972
6973 /*
6974 * An end-of-recovery checkpoint is really a shutdown checkpoint, just
6975 * issued at a different time.
6976 */
6978 shutdown = true;
6979 else
6980 shutdown = false;
6981
6982 /* sanity check */
6983 if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
6984 elog(ERROR, "can't create a checkpoint during recovery");
6985
6986 /*
6987 * Prepare to accumulate statistics.
6988 *
6989 * Note: because it is possible for log_checkpoints to change while a
6990 * checkpoint proceeds, we always accumulate stats, even if
6991 * log_checkpoints is currently off.
6992 */
6995
6996 /*
6997 * Let smgr prepare for checkpoint; this has to happen outside the
6998 * critical section and before we determine the REDO pointer. Note that
6999 * smgr must not do anything that'd have to be undone if we decide no
7000 * checkpoint is needed.
7001 */
7003
7004 /*
7005 * Use a critical section to force system panic if we have trouble.
7006 */
7008
7009 if (shutdown)
7010 {
7011 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7014 LWLockRelease(ControlFileLock);
7015 }
7016
7017 /* Begin filling in the checkpoint WAL record */
7018 MemSet(&checkPoint, 0, sizeof(checkPoint));
7019 checkPoint.time = (pg_time_t) time(NULL);
7020
7021 /*
7022 * For Hot Standby, derive the oldestActiveXid before we fix the redo
7023 * pointer. This allows us to begin accumulating changes to assemble our
7024 * starting snapshot of locks and transactions.
7025 */
7026 if (!shutdown && XLogStandbyInfoActive())
7027 checkPoint.oldestActiveXid = GetOldestActiveTransactionId(false, true);
7028 else
7030
7031 /*
7032 * Get location of last important record before acquiring insert locks (as
7033 * GetLastImportantRecPtr() also locks WAL locks).
7034 */
7035 last_important_lsn = GetLastImportantRecPtr();
7036
7037 /*
7038 * If this isn't a shutdown or forced checkpoint, and if there has been no
7039 * WAL activity requiring a checkpoint, skip it. The idea here is to
7040 * avoid inserting duplicate checkpoints when the system is idle.
7041 */
7043 CHECKPOINT_FORCE)) == 0)
7044 {
7045 if (last_important_lsn == ControlFile->checkPoint)
7046 {
7049 (errmsg_internal("checkpoint skipped because system is idle")));
7050 return false;
7051 }
7052 }
7053
7054 /*
7055 * An end-of-recovery checkpoint is created before anyone is allowed to
7056 * write WAL. To allow us to write the checkpoint record, temporarily
7057 * enable XLogInsertAllowed.
7058 */
7059 if (flags & CHECKPOINT_END_OF_RECOVERY)
7060 oldXLogAllowed = LocalSetXLogInsertAllowed();
7061
7063 if (flags & CHECKPOINT_END_OF_RECOVERY)
7065 else
7066 checkPoint.PrevTimeLineID = checkPoint.ThisTimeLineID;
7067
7068 /*
7069 * We must block concurrent insertions while examining insert state.
7070 */
7072
7073 checkPoint.fullPageWrites = Insert->fullPageWrites;
7074 checkPoint.wal_level = wal_level;
7075
7076 if (shutdown)
7077 {
7078 XLogRecPtr curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos);
7079
7080 /*
7081 * Compute new REDO record ptr = location of next XLOG record.
7082 *
7083 * Since this is a shutdown checkpoint, there can't be any concurrent
7084 * WAL insertion.
7085 */
7086 freespace = INSERT_FREESPACE(curInsert);
7087 if (freespace == 0)
7088 {
7089 if (XLogSegmentOffset(curInsert, wal_segment_size) == 0)
7090 curInsert += SizeOfXLogLongPHD;
7091 else
7092 curInsert += SizeOfXLogShortPHD;
7093 }
7094 checkPoint.redo = curInsert;
7095
7096 /*
7097 * Here we update the shared RedoRecPtr for future XLogInsert calls;
7098 * this must be done while holding all the insertion locks.
7099 *
7100 * Note: if we fail to complete the checkpoint, RedoRecPtr will be
7101 * left pointing past where it really needs to point. This is okay;
7102 * the only consequence is that XLogInsert might back up whole buffers
7103 * that it didn't really need to. We can't postpone advancing
7104 * RedoRecPtr because XLogInserts that happen while we are dumping
7105 * buffers must assume that their buffer changes are not included in
7106 * the checkpoint.
7107 */
7108 RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
7109 }
7110
7111 /*
7112 * Now we can release the WAL insertion locks, allowing other xacts to
7113 * proceed while we are flushing disk buffers.
7114 */
7116
7117 /*
7118 * If this is an online checkpoint, we have not yet determined the redo
7119 * point. We do so now by inserting the special XLOG_CHECKPOINT_REDO
7120 * record; the LSN at which it starts becomes the new redo pointer. We
7121 * don't do this for a shutdown checkpoint, because in that case no WAL
7122 * can be written between the redo point and the insertion of the
7123 * checkpoint record itself, so the checkpoint record itself serves to
7124 * mark the redo point.
7125 */
7126 if (!shutdown)
7127 {
7128 /* Include WAL level in record for WAL summarizer's benefit. */
7131 (void) XLogInsert(RM_XLOG_ID, XLOG_CHECKPOINT_REDO);
7132
7133 /*
7134 * XLogInsertRecord will have updated XLogCtl->Insert.RedoRecPtr in
7135 * shared memory and RedoRecPtr in backend-local memory, but we need
7136 * to copy that into the record that will be inserted when the
7137 * checkpoint is complete.
7138 */
7139 checkPoint.redo = RedoRecPtr;
7140 }
7141
7142 /* Update the info_lck-protected copy of RedoRecPtr as well */
7144 XLogCtl->RedoRecPtr = checkPoint.redo;
7146
7147 /*
7148 * If enabled, log checkpoint start. We postpone this until now so as not
7149 * to log anything if we decided to skip the checkpoint.
7150 */
7151 if (log_checkpoints)
7152 LogCheckpointStart(flags, false);
7153
7154 /* Update the process title */
7155 update_checkpoint_display(flags, false, false);
7156
7157 TRACE_POSTGRESQL_CHECKPOINT_START(flags);
7158
7159 /*
7160 * Get the other info we need for the checkpoint record.
7161 *
7162 * We don't need to save oldestClogXid in the checkpoint, it only matters
7163 * for the short period in which clog is being truncated, and if we crash
7164 * during that we'll redo the clog truncation and fix up oldestClogXid
7165 * there.
7166 */
7167 LWLockAcquire(XidGenLock, LW_SHARED);
7168 checkPoint.nextXid = TransamVariables->nextXid;
7169 checkPoint.oldestXid = TransamVariables->oldestXid;
7171 LWLockRelease(XidGenLock);
7172
7173 LWLockAcquire(CommitTsLock, LW_SHARED);
7176 LWLockRelease(CommitTsLock);
7177
7178 LWLockAcquire(OidGenLock, LW_SHARED);
7179 checkPoint.nextOid = TransamVariables->nextOid;
7180 if (!shutdown)
7181 checkPoint.nextOid += TransamVariables->oidCount;
7182 LWLockRelease(OidGenLock);
7183
7184 MultiXactGetCheckptMulti(shutdown,
7185 &checkPoint.nextMulti,
7186 &checkPoint.nextMultiOffset,
7187 &checkPoint.oldestMulti,
7188 &checkPoint.oldestMultiDB);
7189
7190 /*
7191 * Having constructed the checkpoint record, ensure all shmem disk buffers
7192 * and commit-log buffers are flushed to disk.
7193 *
7194 * This I/O could fail for various reasons. If so, we will fail to
7195 * complete the checkpoint, but there is no reason to force a system
7196 * panic. Accordingly, exit critical section while doing it.
7197 */
7199
7200 /*
7201 * In some cases there are groups of actions that must all occur on one
7202 * side or the other of a checkpoint record. Before flushing the
7203 * checkpoint record we must explicitly wait for any backend currently
7204 * performing those groups of actions.
7205 *
7206 * One example is end of transaction, so we must wait for any transactions
7207 * that are currently in commit critical sections. If an xact inserted
7208 * its commit record into XLOG just before the REDO point, then a crash
7209 * restart from the REDO point would not replay that record, which means
7210 * that our flushing had better include the xact's update of pg_xact. So
7211 * we wait till he's out of his commit critical section before proceeding.
7212 * See notes in RecordTransactionCommit().
7213 *
7214 * Because we've already released the insertion locks, this test is a bit
7215 * fuzzy: it is possible that we will wait for xacts we didn't really need
7216 * to wait for. But the delay should be short and it seems better to make
7217 * checkpoint take a bit longer than to hold off insertions longer than
7218 * necessary. (In fact, the whole reason we have this issue is that xact.c
7219 * does commit record XLOG insertion and clog update as two separate steps
7220 * protected by different locks, but again that seems best on grounds of
7221 * minimizing lock contention.)
7222 *
7223 * A transaction that has not yet set delayChkptFlags when we look cannot
7224 * be at risk, since it has not inserted its commit record yet; and one
7225 * that's already cleared it is not at risk either, since it's done fixing
7226 * clog and we will correctly flush the update below. So we cannot miss
7227 * any xacts we need to wait for.
7228 */
7230 if (nvxids > 0)
7231 {
7232 do
7233 {
7234 /*
7235 * Keep absorbing fsync requests while we wait. There could even
7236 * be a deadlock if we don't, if the process that prevents the
7237 * checkpoint is trying to add a request to the queue.
7238 */
7240
7241 pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_START);
7242 pg_usleep(10000L); /* wait for 10 msec */
7244 } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7246 }
7247 pfree(vxids);
7248
7249 CheckPointGuts(checkPoint.redo, flags);
7250
7252 if (nvxids > 0)
7253 {
7254 do
7255 {
7257
7258 pgstat_report_wait_start(WAIT_EVENT_CHECKPOINT_DELAY_COMPLETE);
7259 pg_usleep(10000L); /* wait for 10 msec */
7261 } while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
7263 }
7264 pfree(vxids);
7265
7266 /*
7267 * Take a snapshot of running transactions and write this to WAL. This
7268 * allows us to reconstruct the state of running transactions during
7269 * archive recovery, if required. Skip, if this info disabled.
7270 *
7271 * If we are shutting down, or Startup process is completing crash
7272 * recovery we don't need to write running xact data.
7273 */
7274 if (!shutdown && XLogStandbyInfoActive())
7276
7278
7279 /*
7280 * Now insert the checkpoint record into XLOG.
7281 */
7283 XLogRegisterData(&checkPoint, sizeof(checkPoint));
7284 recptr = XLogInsert(RM_XLOG_ID,
7285 shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
7287
7288 XLogFlush(recptr);
7289
7290 /*
7291 * We mustn't write any new WAL after a shutdown checkpoint, or it will be
7292 * overwritten at next startup. No-one should even try, this just allows
7293 * sanity-checking. In the case of an end-of-recovery checkpoint, we want
7294 * to just temporarily disable writing until the system has exited
7295 * recovery.
7296 */
7297 if (shutdown)
7298 {
7299 if (flags & CHECKPOINT_END_OF_RECOVERY)
7300 LocalXLogInsertAllowed = oldXLogAllowed;
7301 else
7302 LocalXLogInsertAllowed = 0; /* never again write WAL */
7303 }
7304
7305 /*
7306 * We now have ProcLastRecPtr = start of actual checkpoint record, recptr
7307 * = end of actual checkpoint record.
7308 */
7309 if (shutdown && checkPoint.redo != ProcLastRecPtr)
7310 ereport(PANIC,
7311 (errmsg("concurrent write-ahead log activity while database system is shutting down")));
7312
7313 /*
7314 * Remember the prior checkpoint's redo ptr for
7315 * UpdateCheckPointDistanceEstimate()
7316 */
7317 PriorRedoPtr = ControlFile->checkPointCopy.redo;
7318
7319 /*
7320 * Update the control file.
7321 */
7322 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7323 if (shutdown)
7326 ControlFile->checkPointCopy = checkPoint;
7327 /* crash recovery should always recover to the end of WAL */
7330
7331 /*
7332 * Persist unloggedLSN value. It's reset on crash recovery, so this goes
7333 * unused on non-shutdown checkpoints, but seems useful to store it always
7334 * for debugging purposes.
7335 */
7337
7339 LWLockRelease(ControlFileLock);
7340
7341 /*
7342 * We are now done with critical updates; no need for system panic if we
7343 * have trouble while fooling with old log segments.
7344 */
7346
7347 /*
7348 * WAL summaries end when the next XLOG_CHECKPOINT_REDO or
7349 * XLOG_CHECKPOINT_SHUTDOWN record is reached. This is the first point
7350 * where (a) we're not inside of a critical section and (b) we can be
7351 * certain that the relevant record has been flushed to disk, which must
7352 * happen before it can be summarized.
7353 *
7354 * If this is a shutdown checkpoint, then this happens reasonably
7355 * promptly: we've only just inserted and flushed the
7356 * XLOG_CHECKPOINT_SHUTDOWN record. If this is not a shutdown checkpoint,
7357 * then this might not be very prompt at all: the XLOG_CHECKPOINT_REDO
7358 * record was written before we began flushing data to disk, and that
7359 * could be many minutes ago at this point. However, we don't XLogFlush()
7360 * after inserting that record, so we're not guaranteed that it's on disk
7361 * until after the above call that flushes the XLOG_CHECKPOINT_ONLINE
7362 * record.
7363 */
7365
7366 /*
7367 * Let smgr do post-checkpoint cleanup (eg, deleting old files).
7368 */
7370
7371 /*
7372 * Update the average distance between checkpoints if the prior checkpoint
7373 * exists.
7374 */
7375 if (XLogRecPtrIsValid(PriorRedoPtr))
7377
7378 INJECTION_POINT("checkpoint-before-old-wal-removal", NULL);
7379
7380 /*
7381 * Delete old log files, those no longer needed for last checkpoint to
7382 * prevent the disk holding the xlog from growing full.
7383 */
7385 KeepLogSeg(recptr, &_logSegNo);
7387 _logSegNo, InvalidOid,
7389 {
7390 /*
7391 * Some slots have been invalidated; recalculate the old-segment
7392 * horizon, starting again from RedoRecPtr.
7393 */
7395 KeepLogSeg(recptr, &_logSegNo);
7396 }
7397 _logSegNo--;
7398 RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr,
7399 checkPoint.ThisTimeLineID);
7400
7401 /*
7402 * Make more log segments if needed. (Do this after recycling old log
7403 * segments, since that may supply some of the needed files.)
7404 */
7405 if (!shutdown)
7406 PreallocXlogFiles(recptr, checkPoint.ThisTimeLineID);
7407
7408 /*
7409 * Truncate pg_subtrans if possible. We can throw away all data before
7410 * the oldest XMIN of any running transaction. No future transaction will
7411 * attempt to reference any pg_subtrans entry older than that (see Asserts
7412 * in subtrans.c). During recovery, though, we mustn't do this because
7413 * StartupSUBTRANS hasn't been called yet.
7414 */
7415 if (!RecoveryInProgress())
7417
7418 /* Real work is done; log and update stats. */
7419 LogCheckpointEnd(false);
7420
7421 /* Reset the process title */
7422 update_checkpoint_display(flags, false, true);
7423
7424 TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
7425 NBuffers,
7429
7430 return true;
7431}
7432
7433/*
7434 * Mark the end of recovery in WAL though without running a full checkpoint.
7435 * We can expect that a restartpoint is likely to be in progress as we
7436 * do this, though we are unwilling to wait for it to complete.
7437 *
7438 * CreateRestartPoint() allows for the case where recovery may end before
7439 * the restartpoint completes so there is no concern of concurrent behaviour.
7440 */
7441static void
7443{
7444 xl_end_of_recovery xlrec;
7445 XLogRecPtr recptr;
7446
7447 /* sanity check */
7448 if (!RecoveryInProgress())
7449 elog(ERROR, "can only be used to end recovery");
7450
7451 xlrec.end_time = GetCurrentTimestamp();
7452 xlrec.wal_level = wal_level;
7453
7458
7460
7462 XLogRegisterData(&xlrec, sizeof(xl_end_of_recovery));
7463 recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY);
7464
7465 XLogFlush(recptr);
7466
7467 /*
7468 * Update the control file so that crash recovery can follow the timeline
7469 * changes to this point.
7470 */
7471 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7472 ControlFile->minRecoveryPoint = recptr;
7475 LWLockRelease(ControlFileLock);
7476
7478}
7479
7480/*
7481 * Write an OVERWRITE_CONTRECORD message.
7482 *
7483 * When on WAL replay we expect a continuation record at the start of a page
7484 * that is not there, recovery ends and WAL writing resumes at that point.
7485 * But it's wrong to resume writing new WAL back at the start of the record
7486 * that was broken, because downstream consumers of that WAL (physical
7487 * replicas) are not prepared to "rewind". So the first action after
7488 * finishing replay of all valid WAL must be to write a record of this type
7489 * at the point where the contrecord was missing; to support xlogreader
7490 * detecting the special case, XLP_FIRST_IS_OVERWRITE_CONTRECORD is also added
7491 * to the page header where the record occurs. xlogreader has an ad-hoc
7492 * mechanism to report metadata about the broken record, which is what we
7493 * use here.
7494 *
7495 * At replay time, XLP_FIRST_IS_OVERWRITE_CONTRECORD instructs xlogreader to
7496 * skip the record it was reading, and pass back the LSN of the skipped
7497 * record, so that its caller can verify (on "replay" of that record) that the
7498 * XLOG_OVERWRITE_CONTRECORD matches what was effectively overwritten.
7499 *
7500 * 'aborted_lsn' is the beginning position of the record that was incomplete.
7501 * It is included in the WAL record. 'pagePtr' and 'newTLI' point to the
7502 * beginning of the XLOG page where the record is to be inserted. They must
7503 * match the current WAL insert position, they're passed here just so that we
7504 * can verify that.
7505 */
7506static XLogRecPtr
7508 TimeLineID newTLI)
7509{
7511 XLogRecPtr recptr;
7512 XLogPageHeader pagehdr;
7513 XLogRecPtr startPos;
7514
7515 /* sanity checks */
7516 if (!RecoveryInProgress())
7517 elog(ERROR, "can only be used at end of recovery");
7518 if (pagePtr % XLOG_BLCKSZ != 0)
7519 elog(ERROR, "invalid position for missing continuation record %X/%08X",
7520 LSN_FORMAT_ARGS(pagePtr));
7521
7522 /* The current WAL insert position should be right after the page header */
7523 startPos = pagePtr;
7524 if (XLogSegmentOffset(startPos, wal_segment_size) == 0)
7525 startPos += SizeOfXLogLongPHD;
7526 else
7527 startPos += SizeOfXLogShortPHD;
7528 recptr = GetXLogInsertRecPtr();
7529 if (recptr != startPos)
7530 elog(ERROR, "invalid WAL insert position %X/%08X for OVERWRITE_CONTRECORD",
7531 LSN_FORMAT_ARGS(recptr));
7532
7534
7535 /*
7536 * Initialize the XLOG page header (by GetXLogBuffer), and set the
7537 * XLP_FIRST_IS_OVERWRITE_CONTRECORD flag.
7538 *
7539 * No other backend is allowed to write WAL yet, so acquiring the WAL
7540 * insertion lock is just pro forma.
7541 */
7543 pagehdr = (XLogPageHeader) GetXLogBuffer(pagePtr, newTLI);
7546
7547 /*
7548 * Insert the XLOG_OVERWRITE_CONTRECORD record as the first record on the
7549 * page. We know it becomes the first record, because no other backend is
7550 * allowed to write WAL yet.
7551 */
7553 xlrec.overwritten_lsn = aborted_lsn;
7556 recptr = XLogInsert(RM_XLOG_ID, XLOG_OVERWRITE_CONTRECORD);
7557
7558 /* check that the record was inserted to the right place */
7559 if (ProcLastRecPtr != startPos)
7560 elog(ERROR, "OVERWRITE_CONTRECORD was inserted to unexpected position %X/%08X",
7562
7563 XLogFlush(recptr);
7564
7566
7567 return recptr;
7568}
7569
7570/*
7571 * Flush all data in shared memory to disk, and fsync
7572 *
7573 * This is the common code shared between regular checkpoints and
7574 * recovery restartpoints.
7575 */
7576static void
7577CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
7578{
7584
7585 /* Write out all dirty data in SLRUs and the main buffer pool */
7586 TRACE_POSTGRESQL_BUFFER_CHECKPOINT_START(flags);
7593 CheckPointBuffers(flags);
7594
7595 /* Perform all queued up fsyncs */
7596 TRACE_POSTGRESQL_BUFFER_CHECKPOINT_SYNC_START();
7600 TRACE_POSTGRESQL_BUFFER_CHECKPOINT_DONE();
7601
7602 /* We deliberately delay 2PC checkpointing as long as possible */
7603 CheckPointTwoPhase(checkPointRedo);
7604}
7605
7606/*
7607 * Save a checkpoint for recovery restart if appropriate
7608 *
7609 * This function is called each time a checkpoint record is read from XLOG.
7610 * It must determine whether the checkpoint represents a safe restartpoint or
7611 * not. If so, the checkpoint record is stashed in shared memory so that
7612 * CreateRestartPoint can consult it. (Note that the latter function is
7613 * executed by the checkpointer, while this one will be executed by the
7614 * startup process.)
7615 */
7616static void
7618{
7619 /*
7620 * Also refrain from creating a restartpoint if we have seen any
7621 * references to non-existent pages. Restarting recovery from the
7622 * restartpoint would not see the references, so we would lose the
7623 * cross-check that the pages belonged to a relation that was dropped
7624 * later.
7625 */
7627 {
7628 elog(DEBUG2,
7629 "could not record restart point at %X/%08X because there are unresolved references to invalid pages",
7630 LSN_FORMAT_ARGS(checkPoint->redo));
7631 return;
7632 }
7633
7634 /*
7635 * Copy the checkpoint record to shared memory, so that checkpointer can
7636 * work out the next time it wants to perform a restartpoint.
7637 */
7641 XLogCtl->lastCheckPoint = *checkPoint;
7643}
7644
7645/*
7646 * Establish a restartpoint if possible.
7647 *
7648 * This is similar to CreateCheckPoint, but is used during WAL recovery
7649 * to establish a point from which recovery can roll forward without
7650 * replaying the entire recovery log.
7651 *
7652 * Returns true if a new restartpoint was established. We can only establish
7653 * a restartpoint if we have replayed a safe checkpoint record since last
7654 * restartpoint.
7655 */
7656bool
7658{
7659 XLogRecPtr lastCheckPointRecPtr;
7660 XLogRecPtr lastCheckPointEndPtr;
7661 CheckPoint lastCheckPoint;
7662 XLogRecPtr PriorRedoPtr;
7663 XLogRecPtr receivePtr;
7664 XLogRecPtr replayPtr;
7665 TimeLineID replayTLI;
7666 XLogRecPtr endptr;
7667 XLogSegNo _logSegNo;
7668 TimestampTz xtime;
7669
7670 /* Concurrent checkpoint/restartpoint cannot happen */
7672
7673 /* Get a local copy of the last safe checkpoint record. */
7675 lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr;
7676 lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr;
7677 lastCheckPoint = XLogCtl->lastCheckPoint;
7679
7680 /*
7681 * Check that we're still in recovery mode. It's ok if we exit recovery
7682 * mode after this check, the restart point is valid anyway.
7683 */
7684 if (!RecoveryInProgress())
7685 {
7687 (errmsg_internal("skipping restartpoint, recovery has already ended")));
7688 return false;
7689 }
7690
7691 /*
7692 * If the last checkpoint record we've replayed is already our last
7693 * restartpoint, we can't perform a new restart point. We still update
7694 * minRecoveryPoint in that case, so that if this is a shutdown restart
7695 * point, we won't start up earlier than before. That's not strictly
7696 * necessary, but when hot standby is enabled, it would be rather weird if
7697 * the database opened up for read-only connections at a point-in-time
7698 * before the last shutdown. Such time travel is still possible in case of
7699 * immediate shutdown, though.
7700 *
7701 * We don't explicitly advance minRecoveryPoint when we do create a
7702 * restartpoint. It's assumed that flushing the buffers will do that as a
7703 * side-effect.
7704 */
7705 if (!XLogRecPtrIsValid(lastCheckPointRecPtr) ||
7706 lastCheckPoint.redo <= ControlFile->checkPointCopy.redo)
7707 {
7709 errmsg_internal("skipping restartpoint, already performed at %X/%08X",
7710 LSN_FORMAT_ARGS(lastCheckPoint.redo)));
7711
7713 if (flags & CHECKPOINT_IS_SHUTDOWN)
7714 {
7715 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7718 LWLockRelease(ControlFileLock);
7719 }
7720 return false;
7721 }
7722
7723 /*
7724 * Update the shared RedoRecPtr so that the startup process can calculate
7725 * the number of segments replayed since last restartpoint, and request a
7726 * restartpoint if it exceeds CheckPointSegments.
7727 *
7728 * Like in CreateCheckPoint(), hold off insertions to update it, although
7729 * during recovery this is just pro forma, because no WAL insertions are
7730 * happening.
7731 */
7733 RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo;
7735
7736 /* Also update the info_lck-protected copy */
7738 XLogCtl->RedoRecPtr = lastCheckPoint.redo;
7740
7741 /*
7742 * Prepare to accumulate statistics.
7743 *
7744 * Note: because it is possible for log_checkpoints to change while a
7745 * checkpoint proceeds, we always accumulate stats, even if
7746 * log_checkpoints is currently off.
7747 */
7750
7751 if (log_checkpoints)
7752 LogCheckpointStart(flags, true);
7753
7754 /* Update the process title */
7755 update_checkpoint_display(flags, true, false);
7756
7757 CheckPointGuts(lastCheckPoint.redo, flags);
7758
7759 /*
7760 * This location needs to be after CheckPointGuts() to ensure that some
7761 * work has already happened during this checkpoint.
7762 */
7763 INJECTION_POINT("create-restart-point", NULL);
7764
7765 /*
7766 * Remember the prior checkpoint's redo ptr for
7767 * UpdateCheckPointDistanceEstimate()
7768 */
7769 PriorRedoPtr = ControlFile->checkPointCopy.redo;
7770
7771 /*
7772 * Update pg_control, using current time. Check that it still shows an
7773 * older checkpoint, else do nothing; this is a quick hack to make sure
7774 * nothing really bad happens if somehow we get here after the
7775 * end-of-recovery checkpoint.
7776 */
7777 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
7778 if (ControlFile->checkPointCopy.redo < lastCheckPoint.redo)
7779 {
7780 /*
7781 * Update the checkpoint information. We do this even if the cluster
7782 * does not show DB_IN_ARCHIVE_RECOVERY to match with the set of WAL
7783 * segments recycled below.
7784 */
7785 ControlFile->checkPoint = lastCheckPointRecPtr;
7786 ControlFile->checkPointCopy = lastCheckPoint;
7787
7788 /*
7789 * Ensure minRecoveryPoint is past the checkpoint record and update it
7790 * if the control file still shows DB_IN_ARCHIVE_RECOVERY. Normally,
7791 * this will have happened already while writing out dirty buffers,
7792 * but not necessarily - e.g. because no buffers were dirtied. We do
7793 * this because a backup performed in recovery uses minRecoveryPoint
7794 * to determine which WAL files must be included in the backup, and
7795 * the file (or files) containing the checkpoint record must be
7796 * included, at a minimum. Note that for an ordinary restart of
7797 * recovery there's no value in having the minimum recovery point any
7798 * earlier than this anyway, because redo will begin just after the
7799 * checkpoint record.
7800 */
7802 {
7803 if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr)
7804 {
7805 ControlFile->minRecoveryPoint = lastCheckPointEndPtr;
7807
7808 /* update local copy */
7811 }
7812 if (flags & CHECKPOINT_IS_SHUTDOWN)
7814 }
7816 }
7817 LWLockRelease(ControlFileLock);
7818
7819 /*
7820 * Update the average distance between checkpoints/restartpoints if the
7821 * prior checkpoint exists.
7822 */
7823 if (XLogRecPtrIsValid(PriorRedoPtr))
7825
7826 /*
7827 * Delete old log files, those no longer needed for last restartpoint to
7828 * prevent the disk holding the xlog from growing full.
7829 */
7831
7832 /*
7833 * Retreat _logSegNo using the current end of xlog replayed or received,
7834 * whichever is later.
7835 */
7836 receivePtr = GetWalRcvFlushRecPtr(NULL, NULL);
7837 replayPtr = GetXLogReplayRecPtr(&replayTLI);
7838 endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr;
7839 KeepLogSeg(endptr, &_logSegNo);
7841 _logSegNo, InvalidOid,
7843 {
7844 /*
7845 * Some slots have been invalidated; recalculate the old-segment
7846 * horizon, starting again from RedoRecPtr.
7847 */
7849 KeepLogSeg(endptr, &_logSegNo);
7850 }
7851 _logSegNo--;
7852
7853 /*
7854 * Try to recycle segments on a useful timeline. If we've been promoted
7855 * since the beginning of this restartpoint, use the new timeline chosen
7856 * at end of recovery. If we're still in recovery, use the timeline we're
7857 * currently replaying.
7858 *
7859 * There is no guarantee that the WAL segments will be useful on the
7860 * current timeline; if recovery proceeds to a new timeline right after
7861 * this, the pre-allocated WAL segments on this timeline will not be used,
7862 * and will go wasted until recycled on the next restartpoint. We'll live
7863 * with that.
7864 */
7865 if (!RecoveryInProgress())
7866 replayTLI = XLogCtl->InsertTimeLineID;
7867
7868 RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr, replayTLI);
7869
7870 /*
7871 * Make more log segments if needed. (Do this after recycling old log
7872 * segments, since that may supply some of the needed files.)
7873 */
7874 PreallocXlogFiles(endptr, replayTLI);
7875
7876 /*
7877 * Truncate pg_subtrans if possible. We can throw away all data before
7878 * the oldest XMIN of any running transaction. No future transaction will
7879 * attempt to reference any pg_subtrans entry older than that (see Asserts
7880 * in subtrans.c). When hot standby is disabled, though, we mustn't do
7881 * this because StartupSUBTRANS hasn't been called yet.
7882 */
7883 if (EnableHotStandby)
7885
7886 /* Real work is done; log and update stats. */
7887 LogCheckpointEnd(true);
7888
7889 /* Reset the process title */
7890 update_checkpoint_display(flags, true, true);
7891
7892 xtime = GetLatestXTime();
7894 errmsg("recovery restart point at %X/%08X",
7895 LSN_FORMAT_ARGS(lastCheckPoint.redo)),
7896 xtime ? errdetail("Last completed transaction was at log time %s.",
7897 timestamptz_to_str(xtime)) : 0);
7898
7899 /*
7900 * Finally, execute archive_cleanup_command, if any.
7901 */
7902 if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "") != 0)
7904 "archive_cleanup_command",
7905 false,
7906 WAIT_EVENT_ARCHIVE_CLEANUP_COMMAND);
7907
7908 return true;
7909}
7910
7911/*
7912 * Report availability of WAL for the given target LSN
7913 * (typically a slot's restart_lsn)
7914 *
7915 * Returns one of the following enum values:
7916 *
7917 * * WALAVAIL_RESERVED means targetLSN is available and it is in the range of
7918 * max_wal_size.
7919 *
7920 * * WALAVAIL_EXTENDED means it is still available by preserving extra
7921 * segments beyond max_wal_size. If max_slot_wal_keep_size is smaller
7922 * than max_wal_size, this state is not returned.
7923 *
7924 * * WALAVAIL_UNRESERVED means it is being lost and the next checkpoint will
7925 * remove reserved segments. The walsender using this slot may return to the
7926 * above.
7927 *
7928 * * WALAVAIL_REMOVED means it has been removed. A replication stream on
7929 * a slot with this LSN cannot continue. (Any associated walsender
7930 * processes should have been terminated already.)
7931 *
7932 * * WALAVAIL_INVALID_LSN means the slot hasn't been set to reserve WAL.
7933 */
7936{
7937 XLogRecPtr currpos; /* current write LSN */
7938 XLogSegNo currSeg; /* segid of currpos */
7939 XLogSegNo targetSeg; /* segid of targetLSN */
7940 XLogSegNo oldestSeg; /* actual oldest segid */
7941 XLogSegNo oldestSegMaxWalSize; /* oldest segid kept by max_wal_size */
7942 XLogSegNo oldestSlotSeg; /* oldest segid kept by slot */
7943 uint64 keepSegs;
7944
7945 /*
7946 * slot does not reserve WAL. Either deactivated, or has never been active
7947 */
7948 if (!XLogRecPtrIsValid(targetLSN))
7949 return WALAVAIL_INVALID_LSN;
7950
7951 /*
7952 * Calculate the oldest segment currently reserved by all slots,
7953 * considering wal_keep_size and max_slot_wal_keep_size. Initialize
7954 * oldestSlotSeg to the current segment.
7955 */
7956 currpos = GetXLogWriteRecPtr();
7957 XLByteToSeg(currpos, oldestSlotSeg, wal_segment_size);
7958 KeepLogSeg(currpos, &oldestSlotSeg);
7959
7960 /*
7961 * Find the oldest extant segment file. We get 1 until checkpoint removes
7962 * the first WAL segment file since startup, which causes the status being
7963 * wrong under certain abnormal conditions but that doesn't actually harm.
7964 */
7965 oldestSeg = XLogGetLastRemovedSegno() + 1;
7966
7967 /* calculate oldest segment by max_wal_size */
7968 XLByteToSeg(currpos, currSeg, wal_segment_size);
7970
7971 if (currSeg > keepSegs)
7972 oldestSegMaxWalSize = currSeg - keepSegs;
7973 else
7974 oldestSegMaxWalSize = 1;
7975
7976 /* the segment we care about */
7977 XLByteToSeg(targetLSN, targetSeg, wal_segment_size);
7978
7979 /*
7980 * No point in returning reserved or extended status values if the
7981 * targetSeg is known to be lost.
7982 */
7983 if (targetSeg >= oldestSlotSeg)
7984 {
7985 /* show "reserved" when targetSeg is within max_wal_size */
7986 if (targetSeg >= oldestSegMaxWalSize)
7987 return WALAVAIL_RESERVED;
7988
7989 /* being retained by slots exceeding max_wal_size */
7990 return WALAVAIL_EXTENDED;
7991 }
7992
7993 /* WAL segments are no longer retained but haven't been removed yet */
7994 if (targetSeg >= oldestSeg)
7995 return WALAVAIL_UNRESERVED;
7996
7997 /* Definitely lost */
7998 return WALAVAIL_REMOVED;
7999}
8000
8001
8002/*
8003 * Retreat *logSegNo to the last segment that we need to retain because of
8004 * either wal_keep_size or replication slots.
8005 *
8006 * This is calculated by subtracting wal_keep_size from the given xlog
8007 * location, recptr and by making sure that that result is below the
8008 * requirement of replication slots. For the latter criterion we do consider
8009 * the effects of max_slot_wal_keep_size: reserve at most that much space back
8010 * from recptr.
8011 *
8012 * Note about replication slots: if this function calculates a value
8013 * that's further ahead than what slots need reserved, then affected
8014 * slots need to be invalidated and this function invoked again.
8015 * XXX it might be a good idea to rewrite this function so that
8016 * invalidation is optionally done here, instead.
8017 */
8018static void
8020{
8021 XLogSegNo currSegNo;
8022 XLogSegNo segno;
8023 XLogRecPtr keep;
8024
8025 XLByteToSeg(recptr, currSegNo, wal_segment_size);
8026 segno = currSegNo;
8027
8028 /* Calculate how many segments are kept by slots. */
8030 if (XLogRecPtrIsValid(keep) && keep < recptr)
8031 {
8032 XLByteToSeg(keep, segno, wal_segment_size);
8033
8034 /*
8035 * Account for max_slot_wal_keep_size to avoid keeping more than
8036 * configured. However, don't do that during a binary upgrade: if
8037 * slots were to be invalidated because of this, it would not be
8038 * possible to preserve logical ones during the upgrade.
8039 */
8041 {
8042 uint64 slot_keep_segs;
8043
8044 slot_keep_segs =
8046
8047 if (currSegNo - segno > slot_keep_segs)
8048 segno = currSegNo - slot_keep_segs;
8049 }
8050 }
8051
8052 /*
8053 * If WAL summarization is in use, don't remove WAL that has yet to be
8054 * summarized.
8055 */
8056 keep = GetOldestUnsummarizedLSN(NULL, NULL);
8057 if (XLogRecPtrIsValid(keep))
8058 {
8059 XLogSegNo unsummarized_segno;
8060
8061 XLByteToSeg(keep, unsummarized_segno, wal_segment_size);
8062 if (unsummarized_segno < segno)
8063 segno = unsummarized_segno;
8064 }
8065
8066 /* but, keep at least wal_keep_size if that's set */
8067 if (wal_keep_size_mb > 0)
8068 {
8069 uint64 keep_segs;
8070
8072 if (currSegNo - segno < keep_segs)
8073 {
8074 /* avoid underflow, don't go below 1 */
8075 if (currSegNo <= keep_segs)
8076 segno = 1;
8077 else
8078 segno = currSegNo - keep_segs;
8079 }
8080 }
8081
8082 /* don't delete WAL segments newer than the calculated segment */
8083 if (segno < *logSegNo)
8084 *logSegNo = segno;
8085}
8086
8087/*
8088 * Write a NEXTOID log record
8089 */
8090void
8092{
8094 XLogRegisterData(&nextOid, sizeof(Oid));
8095 (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID);
8096
8097 /*
8098 * We need not flush the NEXTOID record immediately, because any of the
8099 * just-allocated OIDs could only reach disk as part of a tuple insert or
8100 * update that would have its own XLOG record that must follow the NEXTOID
8101 * record. Therefore, the standard buffer LSN interlock applied to those
8102 * records will ensure no such OID reaches disk before the NEXTOID record
8103 * does.
8104 *
8105 * Note, however, that the above statement only covers state "within" the
8106 * database. When we use a generated OID as a file or directory name, we
8107 * are in a sense violating the basic WAL rule, because that filesystem
8108 * change may reach disk before the NEXTOID WAL record does. The impact
8109 * of this is that if a database crash occurs immediately afterward, we
8110 * might after restart re-generate the same OID and find that it conflicts
8111 * with the leftover file or directory. But since for safety's sake we
8112 * always loop until finding a nonconflicting filename, this poses no real
8113 * problem in practice. See pgsql-hackers discussion 27-Sep-2006.
8114 */
8115}
8116
8117/*
8118 * Write an XLOG SWITCH record.
8119 *
8120 * Here we just blindly issue an XLogInsert request for the record.
8121 * All the magic happens inside XLogInsert.
8122 *
8123 * The return value is either the end+1 address of the switch record,
8124 * or the end+1 address of the prior segment if we did not need to
8125 * write a switch record because we are already at segment start.
8126 */
8128RequestXLogSwitch(bool mark_unimportant)
8129{
8130 XLogRecPtr RecPtr;
8131
8132 /* XLOG SWITCH has no data */
8134
8135 if (mark_unimportant)
8137 RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH);
8138
8139 return RecPtr;
8140}
8141
8142/*
8143 * Write a RESTORE POINT record
8144 */
8146XLogRestorePoint(const char *rpName)
8147{
8148 XLogRecPtr RecPtr;
8149 xl_restore_point xlrec;
8150
8151 xlrec.rp_time = GetCurrentTimestamp();
8152 strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN);
8153
8155 XLogRegisterData(&xlrec, sizeof(xl_restore_point));
8156
8157 RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT);
8158
8159 ereport(LOG,
8160 errmsg("restore point \"%s\" created at %X/%08X",
8161 rpName, LSN_FORMAT_ARGS(RecPtr)));
8162
8163 return RecPtr;
8164}
8165
8166/*
8167 * Check if any of the GUC parameters that are critical for hot standby
8168 * have changed, and update the value in pg_control file if necessary.
8169 */
8170static void
8172{
8181 {
8182 /*
8183 * The change in number of backend slots doesn't need to be WAL-logged
8184 * if archiving is not enabled, as you can't start archive recovery
8185 * with wal_level=minimal anyway. We don't really care about the
8186 * values in pg_control either if wal_level=minimal, but seems better
8187 * to keep them up-to-date to avoid confusion.
8188 */
8190 {
8191 xl_parameter_change xlrec;
8192 XLogRecPtr recptr;
8193
8199 xlrec.wal_level = wal_level;
8202
8204 XLogRegisterData(&xlrec, sizeof(xlrec));
8205
8206 recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE);
8207 XLogFlush(recptr);
8208 }
8209
8210 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8211
8221
8222 LWLockRelease(ControlFileLock);
8223 }
8224}
8225
8226/*
8227 * Update full_page_writes in shared memory, and write an
8228 * XLOG_FPW_CHANGE record if necessary.
8229 *
8230 * Note: this function assumes there is no other process running
8231 * concurrently that could update it.
8232 */
8233void
8235{
8237 bool recoveryInProgress;
8238
8239 /*
8240 * Do nothing if full_page_writes has not been changed.
8241 *
8242 * It's safe to check the shared full_page_writes without the lock,
8243 * because we assume that there is no concurrently running process which
8244 * can update it.
8245 */
8246 if (fullPageWrites == Insert->fullPageWrites)
8247 return;
8248
8249 /*
8250 * Perform this outside critical section so that the WAL insert
8251 * initialization done by RecoveryInProgress() doesn't trigger an
8252 * assertion failure.
8253 */
8254 recoveryInProgress = RecoveryInProgress();
8255
8257
8258 /*
8259 * It's always safe to take full page images, even when not strictly
8260 * required, but not the other round. So if we're setting full_page_writes
8261 * to true, first set it true and then write the WAL record. If we're
8262 * setting it to false, first write the WAL record and then set the global
8263 * flag.
8264 */
8265 if (fullPageWrites)
8266 {
8268 Insert->fullPageWrites = true;
8270 }
8271
8272 /*
8273 * Write an XLOG_FPW_CHANGE record. This allows us to keep track of
8274 * full_page_writes during archive recovery, if required.
8275 */
8276 if (XLogStandbyInfoActive() && !recoveryInProgress)
8277 {
8279 XLogRegisterData(&fullPageWrites, sizeof(bool));
8280
8281 XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE);
8282 }
8283
8284 if (!fullPageWrites)
8285 {
8287 Insert->fullPageWrites = false;
8289 }
8291}
8292
8293/*
8294 * XLOG resource manager's routines
8295 *
8296 * Definitions of info values are in include/catalog/pg_control.h, though
8297 * not all record types are related to control file updates.
8298 *
8299 * NOTE: Some XLOG record types that are directly related to WAL recovery
8300 * are handled in xlogrecovery_redo().
8301 */
8302void
8304{
8305 uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
8306 XLogRecPtr lsn = record->EndRecPtr;
8307
8308 /*
8309 * In XLOG rmgr, backup blocks are only used by XLOG_FPI and
8310 * XLOG_FPI_FOR_HINT records.
8311 */
8312 Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT ||
8313 !XLogRecHasAnyBlockRefs(record));
8314
8315 if (info == XLOG_NEXTOID)
8316 {
8317 Oid nextOid;
8318
8319 /*
8320 * We used to try to take the maximum of TransamVariables->nextOid and
8321 * the recorded nextOid, but that fails if the OID counter wraps
8322 * around. Since no OID allocation should be happening during replay
8323 * anyway, better to just believe the record exactly. We still take
8324 * OidGenLock while setting the variable, just in case.
8325 */
8326 memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
8327 LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8328 TransamVariables->nextOid = nextOid;
8330 LWLockRelease(OidGenLock);
8331 }
8332 else if (info == XLOG_CHECKPOINT_SHUTDOWN)
8333 {
8334 CheckPoint checkPoint;
8335 TimeLineID replayTLI;
8336
8337 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8338 /* In a SHUTDOWN checkpoint, believe the counters exactly */
8339 LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8340 TransamVariables->nextXid = checkPoint.nextXid;
8341 LWLockRelease(XidGenLock);
8342 LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
8343 TransamVariables->nextOid = checkPoint.nextOid;
8345 LWLockRelease(OidGenLock);
8347 checkPoint.nextMultiOffset);
8348
8350 checkPoint.oldestMultiDB);
8351
8352 /*
8353 * No need to set oldestClogXid here as well; it'll be set when we
8354 * redo an xl_clog_truncate if it changed since initialization.
8355 */
8356 SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
8357
8358 /*
8359 * If we see a shutdown checkpoint while waiting for an end-of-backup
8360 * record, the backup was canceled and the end-of-backup record will
8361 * never arrive.
8362 */
8366 ereport(PANIC,
8367 (errmsg("online backup was canceled, recovery cannot continue")));
8368
8369 /*
8370 * If we see a shutdown checkpoint, we know that nothing was running
8371 * on the primary at this point. So fake-up an empty running-xacts
8372 * record and use that here and now. Recover additional standby state
8373 * for prepared transactions.
8374 */
8376 {
8377 TransactionId *xids;
8378 int nxids;
8379 TransactionId oldestActiveXID;
8380 TransactionId latestCompletedXid;
8382
8383 oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
8384
8385 /* Update pg_subtrans entries for any prepared transactions */
8387
8388 /*
8389 * Construct a RunningTransactions snapshot representing a shut
8390 * down server, with only prepared transactions still alive. We're
8391 * never overflowed at this point because all subxids are listed
8392 * with their parent prepared transactions.
8393 */
8394 running.xcnt = nxids;
8395 running.subxcnt = 0;
8397 running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
8398 running.oldestRunningXid = oldestActiveXID;
8399 latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
8400 TransactionIdRetreat(latestCompletedXid);
8401 Assert(TransactionIdIsNormal(latestCompletedXid));
8402 running.latestCompletedXid = latestCompletedXid;
8403 running.xids = xids;
8404
8406 }
8407
8408 /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8409 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8411 LWLockRelease(ControlFileLock);
8412
8413 /*
8414 * We should've already switched to the new TLI before replaying this
8415 * record.
8416 */
8417 (void) GetCurrentReplayRecPtr(&replayTLI);
8418 if (checkPoint.ThisTimeLineID != replayTLI)
8419 ereport(PANIC,
8420 (errmsg("unexpected timeline ID %u (should be %u) in shutdown checkpoint record",
8421 checkPoint.ThisTimeLineID, replayTLI)));
8422
8423 RecoveryRestartPoint(&checkPoint, record);
8424
8425 /*
8426 * After replaying a checkpoint record, free all smgr objects.
8427 * Otherwise we would never do so for dropped relations, as the
8428 * startup does not process shared invalidation messages or call
8429 * AtEOXact_SMgr().
8430 */
8432 }
8433 else if (info == XLOG_CHECKPOINT_ONLINE)
8434 {
8435 CheckPoint checkPoint;
8436 TimeLineID replayTLI;
8437
8438 memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
8439 /* In an ONLINE checkpoint, treat the XID counter as a minimum */
8440 LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
8442 checkPoint.nextXid))
8443 TransamVariables->nextXid = checkPoint.nextXid;
8444 LWLockRelease(XidGenLock);
8445
8446 /*
8447 * We ignore the nextOid counter in an ONLINE checkpoint, preferring
8448 * to track OID assignment through XLOG_NEXTOID records. The nextOid
8449 * counter is from the start of the checkpoint and might well be stale
8450 * compared to later XLOG_NEXTOID records. We could try to take the
8451 * maximum of the nextOid counter and our latest value, but since
8452 * there's no particular guarantee about the speed with which the OID
8453 * counter wraps around, that's a risky thing to do. In any case,
8454 * users of the nextOid counter are required to avoid assignment of
8455 * duplicates, so that a somewhat out-of-date value should be safe.
8456 */
8457
8458 /* Handle multixact */
8460 checkPoint.nextMultiOffset);
8461
8462 /*
8463 * NB: This may perform multixact truncation when replaying WAL
8464 * generated by an older primary.
8465 */
8467 checkPoint.oldestMultiDB);
8469 checkPoint.oldestXid))
8471 checkPoint.oldestXidDB);
8472 /* ControlFile->checkPointCopy always tracks the latest ckpt XID */
8473 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8475 LWLockRelease(ControlFileLock);
8476
8477 /* TLI should not change in an on-line checkpoint */
8478 (void) GetCurrentReplayRecPtr(&replayTLI);
8479 if (checkPoint.ThisTimeLineID != replayTLI)
8480 ereport(PANIC,
8481 (errmsg("unexpected timeline ID %u (should be %u) in online checkpoint record",
8482 checkPoint.ThisTimeLineID, replayTLI)));
8483
8484 RecoveryRestartPoint(&checkPoint, record);
8485
8486 /*
8487 * After replaying a checkpoint record, free all smgr objects.
8488 * Otherwise we would never do so for dropped relations, as the
8489 * startup does not process shared invalidation messages or call
8490 * AtEOXact_SMgr().
8491 */
8493 }
8494 else if (info == XLOG_OVERWRITE_CONTRECORD)
8495 {
8496 /* nothing to do here, handled in xlogrecovery_redo() */
8497 }
8498 else if (info == XLOG_END_OF_RECOVERY)
8499 {
8500 xl_end_of_recovery xlrec;
8501 TimeLineID replayTLI;
8502
8503 memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery));
8504
8505 /*
8506 * For Hot Standby, we could treat this like a Shutdown Checkpoint,
8507 * but this case is rarer and harder to test, so the benefit doesn't
8508 * outweigh the potential extra cost of maintenance.
8509 */
8510
8511 /*
8512 * We should've already switched to the new TLI before replaying this
8513 * record.
8514 */
8515 (void) GetCurrentReplayRecPtr(&replayTLI);
8516 if (xlrec.ThisTimeLineID != replayTLI)
8517 ereport(PANIC,
8518 (errmsg("unexpected timeline ID %u (should be %u) in end-of-recovery record",
8519 xlrec.ThisTimeLineID, replayTLI)));
8520 }
8521 else if (info == XLOG_NOOP)
8522 {
8523 /* nothing to do here */
8524 }
8525 else if (info == XLOG_SWITCH)
8526 {
8527 /* nothing to do here */
8528 }
8529 else if (info == XLOG_RESTORE_POINT)
8530 {
8531 /* nothing to do here, handled in xlogrecovery.c */
8532 }
8533 else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT)
8534 {
8535 /*
8536 * XLOG_FPI records contain nothing else but one or more block
8537 * references. Every block reference must include a full-page image
8538 * even if full_page_writes was disabled when the record was generated
8539 * - otherwise there would be no point in this record.
8540 *
8541 * XLOG_FPI_FOR_HINT records are generated when a page needs to be
8542 * WAL-logged because of a hint bit update. They are only generated
8543 * when checksums and/or wal_log_hints are enabled. They may include
8544 * no full-page images if full_page_writes was disabled when they were
8545 * generated. In this case there is nothing to do here.
8546 *
8547 * No recovery conflicts are generated by these generic records - if a
8548 * resource manager needs to generate conflicts, it has to define a
8549 * separate WAL record type and redo routine.
8550 */
8551 for (uint8 block_id = 0; block_id <= XLogRecMaxBlockId(record); block_id++)
8552 {
8553 Buffer buffer;
8554
8555 if (!XLogRecHasBlockImage(record, block_id))
8556 {
8557 if (info == XLOG_FPI)
8558 elog(ERROR, "XLOG_FPI record did not contain a full-page image");
8559 continue;
8560 }
8561
8562 if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED)
8563 elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block");
8564 UnlockReleaseBuffer(buffer);
8565 }
8566 }
8567 else if (info == XLOG_BACKUP_END)
8568 {
8569 /* nothing to do here, handled in xlogrecovery_redo() */
8570 }
8571 else if (info == XLOG_PARAMETER_CHANGE)
8572 {
8573 xl_parameter_change xlrec;
8574
8575 /* Update our copy of the parameters in pg_control */
8576 memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change));
8577
8578 /*
8579 * Invalidate logical slots if we are in hot standby and the primary
8580 * does not have a WAL level sufficient for logical decoding. No need
8581 * to search for potentially conflicting logically slots if standby is
8582 * running with wal_level lower than logical, because in that case, we
8583 * would have either disallowed creation of logical slots or
8584 * invalidated existing ones.
8585 */
8586 if (InRecovery && InHotStandby &&
8587 xlrec.wal_level < WAL_LEVEL_LOGICAL &&
8590 0, InvalidOid,
8592
8593 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
8601
8602 /*
8603 * Update minRecoveryPoint to ensure that if recovery is aborted, we
8604 * recover back up to this point before allowing hot standby again.
8605 * This is important if the max_* settings are decreased, to ensure
8606 * you don't run queries against the WAL preceding the change. The
8607 * local copies cannot be updated as long as crash recovery is
8608 * happening and we expect all the WAL to be replayed.
8609 */
8611 {
8614 }
8616 {
8617 TimeLineID replayTLI;
8618
8619 (void) GetCurrentReplayRecPtr(&replayTLI);
8621 ControlFile->minRecoveryPointTLI = replayTLI;
8622 }
8623
8627
8629 LWLockRelease(ControlFileLock);
8630
8631 /* Check to see if any parameter change gives a problem on recovery */
8633 }
8634 else if (info == XLOG_FPW_CHANGE)
8635 {
8636 bool fpw;
8637
8638 memcpy(&fpw, XLogRecGetData(record), sizeof(bool));
8639
8640 /*
8641 * Update the LSN of the last replayed XLOG_FPW_CHANGE record so that
8642 * do_pg_backup_start() and do_pg_backup_stop() can check whether
8643 * full_page_writes has been disabled during online backup.
8644 */
8645 if (!fpw)
8646 {
8651 }
8652
8653 /* Keep track of full_page_writes */
8654 lastFullPageWrites = fpw;
8655 }
8656 else if (info == XLOG_CHECKPOINT_REDO)
8657 {
8658 /* nothing to do here, just for informational purposes */
8659 }
8660}
8661
8662/*
8663 * Return the extra open flags used for opening a file, depending on the
8664 * value of the GUCs wal_sync_method, fsync and debug_io_direct.
8665 */
8666static int
8667get_sync_bit(int method)
8668{
8669 int o_direct_flag = 0;
8670
8671 /*
8672 * Use O_DIRECT if requested, except in walreceiver process. The WAL
8673 * written by walreceiver is normally read by the startup process soon
8674 * after it's written. Also, walreceiver performs unaligned writes, which
8675 * don't work with O_DIRECT, so it is required for correctness too.
8676 */
8678 o_direct_flag = PG_O_DIRECT;
8679
8680 /* If fsync is disabled, never open in sync mode */
8681 if (!enableFsync)
8682 return o_direct_flag;
8683
8684 switch (method)
8685 {
8686 /*
8687 * enum values for all sync options are defined even if they are
8688 * not supported on the current platform. But if not, they are
8689 * not included in the enum option array, and therefore will never
8690 * be seen here.
8691 */
8695 return o_direct_flag;
8696#ifdef O_SYNC
8698 return O_SYNC | o_direct_flag;
8699#endif
8700#ifdef O_DSYNC
8702 return O_DSYNC | o_direct_flag;
8703#endif
8704 default:
8705 /* can't happen (unless we are out of sync with option array) */
8706 elog(ERROR, "unrecognized \"wal_sync_method\": %d", method);
8707 return 0; /* silence warning */
8708 }
8709}
8710
8711/*
8712 * GUC support
8713 */
8714void
8715assign_wal_sync_method(int new_wal_sync_method, void *extra)
8716{
8717 if (wal_sync_method != new_wal_sync_method)
8718 {
8719 /*
8720 * To ensure that no blocks escape unsynced, force an fsync on the
8721 * currently open log segment (if any). Also, if the open flag is
8722 * changing, close the log file so it will be reopened (with new flag
8723 * bit) at next use.
8724 */
8725 if (openLogFile >= 0)
8726 {
8727 pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN);
8728 if (pg_fsync(openLogFile) != 0)
8729 {
8730 char xlogfname[MAXFNAMELEN];
8731 int save_errno;
8732
8733 save_errno = errno;
8736 errno = save_errno;
8737 ereport(PANIC,
8739 errmsg("could not fsync file \"%s\": %m", xlogfname)));
8740 }
8741
8743 if (get_sync_bit(wal_sync_method) != get_sync_bit(new_wal_sync_method))
8744 XLogFileClose();
8745 }
8746 }
8747}
8748
8749
8750/*
8751 * Issue appropriate kind of fsync (if any) for an XLOG output file.
8752 *
8753 * 'fd' is a file descriptor for the XLOG file to be fsync'd.
8754 * 'segno' is for error reporting purposes.
8755 */
8756void
8758{
8759 char *msg = NULL;
8761
8762 Assert(tli != 0);
8763
8764 /*
8765 * Quick exit if fsync is disabled or write() has already synced the WAL
8766 * file.
8767 */
8768 if (!enableFsync ||
8771 return;
8772
8773 /*
8774 * Measure I/O timing to sync the WAL file for pg_stat_io.
8775 */
8777
8778 pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC);
8779 switch (wal_sync_method)
8780 {
8782 if (pg_fsync_no_writethrough(fd) != 0)
8783 msg = _("could not fsync file \"%s\": %m");
8784 break;
8785#ifdef HAVE_FSYNC_WRITETHROUGH
8787 if (pg_fsync_writethrough(fd) != 0)
8788 msg = _("could not fsync write-through file \"%s\": %m");
8789 break;
8790#endif
8792 if (pg_fdatasync(fd) != 0)
8793 msg = _("could not fdatasync file \"%s\": %m");
8794 break;
8797 /* not reachable */
8798 Assert(false);
8799 break;
8800 default:
8801 ereport(PANIC,
8802 errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8803 errmsg_internal("unrecognized \"wal_sync_method\": %d", wal_sync_method));
8804 break;
8805 }
8806
8807 /* PANIC if failed to fsync */
8808 if (msg)
8809 {
8810 char xlogfname[MAXFNAMELEN];
8811 int save_errno = errno;
8812
8813 XLogFileName(xlogfname, tli, segno, wal_segment_size);
8814 errno = save_errno;
8815 ereport(PANIC,
8817 errmsg(msg, xlogfname)));
8818 }
8819
8821
8823 start, 1, 0);
8824}
8825
8826/*
8827 * do_pg_backup_start is the workhorse of the user-visible pg_backup_start()
8828 * function. It creates the necessary starting checkpoint and constructs the
8829 * backup state and tablespace map.
8830 *
8831 * Input parameters are "state" (the backup state), "fast" (if true, we do
8832 * the checkpoint in fast mode), and "tablespaces" (if non-NULL, indicates a
8833 * list of tablespaceinfo structs describing the cluster's tablespaces.).
8834 *
8835 * The tablespace map contents are appended to passed-in parameter
8836 * tablespace_map and the caller is responsible for including it in the backup
8837 * archive as 'tablespace_map'. The tablespace_map file is required mainly for
8838 * tar format in windows as native windows utilities are not able to create
8839 * symlinks while extracting files from tar. However for consistency and
8840 * platform-independence, we do it the same way everywhere.
8841 *
8842 * It fills in "state" with the information required for the backup, such
8843 * as the minimum WAL location that must be present to restore from this
8844 * backup (starttli) and the corresponding timeline ID (starttli).
8845 *
8846 * Every successfully started backup must be stopped by calling
8847 * do_pg_backup_stop() or do_pg_abort_backup(). There can be many
8848 * backups active at the same time.
8849 *
8850 * It is the responsibility of the caller of this function to verify the
8851 * permissions of the calling user!
8852 */
8853void
8854do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces,
8855 BackupState *state, StringInfo tblspcmapfile)
8856{
8858
8859 Assert(state != NULL);
8861
8862 /*
8863 * During recovery, we don't need to check WAL level. Because, if WAL
8864 * level is not sufficient, it's impossible to get here during recovery.
8865 */
8867 ereport(ERROR,
8868 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8869 errmsg("WAL level not sufficient for making an online backup"),
8870 errhint("\"wal_level\" must be set to \"replica\" or \"logical\" at server start.")));
8871
8872 if (strlen(backupidstr) > MAXPGPATH)
8873 ereport(ERROR,
8874 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
8875 errmsg("backup label too long (max %d bytes)",
8876 MAXPGPATH)));
8877
8878 strlcpy(state->name, backupidstr, sizeof(state->name));
8879
8880 /*
8881 * Mark backup active in shared memory. We must do full-page WAL writes
8882 * during an on-line backup even if not doing so at other times, because
8883 * it's quite possible for the backup dump to obtain a "torn" (partially
8884 * written) copy of a database page if it reads the page concurrently with
8885 * our write to the same page. This can be fixed as long as the first
8886 * write to the page in the WAL sequence is a full-page write. Hence, we
8887 * increment runningBackups then force a CHECKPOINT, to ensure there are
8888 * no dirty pages in shared memory that might get dumped while the backup
8889 * is in progress without having a corresponding WAL record. (Once the
8890 * backup is complete, we need not force full-page writes anymore, since
8891 * we expect that any pages not modified during the backup interval must
8892 * have been correctly captured by the backup.)
8893 *
8894 * Note that forcing full-page writes has no effect during an online
8895 * backup from the standby.
8896 *
8897 * We must hold all the insertion locks to change the value of
8898 * runningBackups, to ensure adequate interlocking against
8899 * XLogInsertRecord().
8900 */
8904
8905 /*
8906 * Ensure we decrement runningBackups if we fail below. NB -- for this to
8907 * work correctly, it is critical that sessionBackupState is only updated
8908 * after this block is over.
8909 */
8911 {
8912 bool gotUniqueStartpoint = false;
8913 DIR *tblspcdir;
8914 struct dirent *de;
8915 tablespaceinfo *ti;
8916 int datadirpathlen;
8917
8918 /*
8919 * Force an XLOG file switch before the checkpoint, to ensure that the
8920 * WAL segment the checkpoint is written to doesn't contain pages with
8921 * old timeline IDs. That would otherwise happen if you called
8922 * pg_backup_start() right after restoring from a PITR archive: the
8923 * first WAL segment containing the startup checkpoint has pages in
8924 * the beginning with the old timeline ID. That can cause trouble at
8925 * recovery: we won't have a history file covering the old timeline if
8926 * pg_wal directory was not included in the base backup and the WAL
8927 * archive was cleared too before starting the backup.
8928 *
8929 * This also ensures that we have emitted a WAL page header that has
8930 * XLP_BKP_REMOVABLE off before we emit the checkpoint record.
8931 * Therefore, if a WAL archiver (such as pglesslog) is trying to
8932 * compress out removable backup blocks, it won't remove any that
8933 * occur after this point.
8934 *
8935 * During recovery, we skip forcing XLOG file switch, which means that
8936 * the backup taken during recovery is not available for the special
8937 * recovery case described above.
8938 */
8940 RequestXLogSwitch(false);
8941
8942 do
8943 {
8944 bool checkpointfpw;
8945
8946 /*
8947 * Force a CHECKPOINT. Aside from being necessary to prevent torn
8948 * page problems, this guarantees that two successive backup runs
8949 * will have different checkpoint positions and hence different
8950 * history file names, even if nothing happened in between.
8951 *
8952 * During recovery, establish a restartpoint if possible. We use
8953 * the last restartpoint as the backup starting checkpoint. This
8954 * means that two successive backup runs can have same checkpoint
8955 * positions.
8956 *
8957 * Since the fact that we are executing do_pg_backup_start()
8958 * during recovery means that checkpointer is running, we can use
8959 * RequestCheckpoint() to establish a restartpoint.
8960 *
8961 * We use CHECKPOINT_FAST only if requested by user (via passing
8962 * fast = true). Otherwise this can take awhile.
8963 */
8965 (fast ? CHECKPOINT_FAST : 0));
8966
8967 /*
8968 * Now we need to fetch the checkpoint record location, and also
8969 * its REDO pointer. The oldest point in WAL that would be needed
8970 * to restore starting from the checkpoint is precisely the REDO
8971 * pointer.
8972 */
8973 LWLockAcquire(ControlFileLock, LW_SHARED);
8974 state->checkpointloc = ControlFile->checkPoint;
8975 state->startpoint = ControlFile->checkPointCopy.redo;
8977 checkpointfpw = ControlFile->checkPointCopy.fullPageWrites;
8978 LWLockRelease(ControlFileLock);
8979
8981 {
8982 XLogRecPtr recptr;
8983
8984 /*
8985 * Check to see if all WAL replayed during online backup
8986 * (i.e., since last restartpoint used as backup starting
8987 * checkpoint) contain full-page writes.
8988 */
8990 recptr = XLogCtl->lastFpwDisableRecPtr;
8992
8993 if (!checkpointfpw || state->startpoint <= recptr)
8994 ereport(ERROR,
8995 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
8996 errmsg("WAL generated with \"full_page_writes=off\" was replayed "
8997 "since last restartpoint"),
8998 errhint("This means that the backup being taken on the standby "
8999 "is corrupt and should not be used. "
9000 "Enable \"full_page_writes\" and run CHECKPOINT on the primary, "
9001 "and then try an online backup again.")));
9002
9003 /*
9004 * During recovery, since we don't use the end-of-backup WAL
9005 * record and don't write the backup history file, the
9006 * starting WAL location doesn't need to be unique. This means
9007 * that two base backups started at the same time might use
9008 * the same checkpoint as starting locations.
9009 */
9010 gotUniqueStartpoint = true;
9011 }
9012
9013 /*
9014 * If two base backups are started at the same time (in WAL sender
9015 * processes), we need to make sure that they use different
9016 * checkpoints as starting locations, because we use the starting
9017 * WAL location as a unique identifier for the base backup in the
9018 * end-of-backup WAL record and when we write the backup history
9019 * file. Perhaps it would be better generate a separate unique ID
9020 * for each backup instead of forcing another checkpoint, but
9021 * taking a checkpoint right after another is not that expensive
9022 * either because only few buffers have been dirtied yet.
9023 */
9025 if (XLogCtl->Insert.lastBackupStart < state->startpoint)
9026 {
9027 XLogCtl->Insert.lastBackupStart = state->startpoint;
9028 gotUniqueStartpoint = true;
9029 }
9031 } while (!gotUniqueStartpoint);
9032
9033 /*
9034 * Construct tablespace_map file.
9035 */
9036 datadirpathlen = strlen(DataDir);
9037
9038 /* Collect information about all tablespaces */
9039 tblspcdir = AllocateDir(PG_TBLSPC_DIR);
9040 while ((de = ReadDir(tblspcdir, PG_TBLSPC_DIR)) != NULL)
9041 {
9042 char fullpath[MAXPGPATH + sizeof(PG_TBLSPC_DIR)];
9043 char linkpath[MAXPGPATH];
9044 char *relpath = NULL;
9045 char *s;
9046 PGFileType de_type;
9047 char *badp;
9048 Oid tsoid;
9049
9050 /*
9051 * Try to parse the directory name as an unsigned integer.
9052 *
9053 * Tablespace directories should be positive integers that can be
9054 * represented in 32 bits, with no leading zeroes or trailing
9055 * garbage. If we come across a name that doesn't meet those
9056 * criteria, skip it.
9057 */
9058 if (de->d_name[0] < '1' || de->d_name[1] > '9')
9059 continue;
9060 errno = 0;
9061 tsoid = strtoul(de->d_name, &badp, 10);
9062 if (*badp != '\0' || errno == EINVAL || errno == ERANGE)
9063 continue;
9064
9065 snprintf(fullpath, sizeof(fullpath), "%s/%s", PG_TBLSPC_DIR, de->d_name);
9066
9067 de_type = get_dirent_type(fullpath, de, false, ERROR);
9068
9069 if (de_type == PGFILETYPE_LNK)
9070 {
9071 StringInfoData escapedpath;
9072 int rllen;
9073
9074 rllen = readlink(fullpath, linkpath, sizeof(linkpath));
9075 if (rllen < 0)
9076 {
9078 (errmsg("could not read symbolic link \"%s\": %m",
9079 fullpath)));
9080 continue;
9081 }
9082 else if (rllen >= sizeof(linkpath))
9083 {
9085 (errmsg("symbolic link \"%s\" target is too long",
9086 fullpath)));
9087 continue;
9088 }
9089 linkpath[rllen] = '\0';
9090
9091 /*
9092 * Relpath holds the relative path of the tablespace directory
9093 * when it's located within PGDATA, or NULL if it's located
9094 * elsewhere.
9095 */
9096 if (rllen > datadirpathlen &&
9097 strncmp(linkpath, DataDir, datadirpathlen) == 0 &&
9098 IS_DIR_SEP(linkpath[datadirpathlen]))
9099 relpath = pstrdup(linkpath + datadirpathlen + 1);
9100
9101 /*
9102 * Add a backslash-escaped version of the link path to the
9103 * tablespace map file.
9104 */
9105 initStringInfo(&escapedpath);
9106 for (s = linkpath; *s; s++)
9107 {
9108 if (*s == '\n' || *s == '\r' || *s == '\\')
9109 appendStringInfoChar(&escapedpath, '\\');
9110 appendStringInfoChar(&escapedpath, *s);
9111 }
9112 appendStringInfo(tblspcmapfile, "%s %s\n",
9113 de->d_name, escapedpath.data);
9114 pfree(escapedpath.data);
9115 }
9116 else if (de_type == PGFILETYPE_DIR)
9117 {
9118 /*
9119 * It's possible to use allow_in_place_tablespaces to create
9120 * directories directly under pg_tblspc, for testing purposes
9121 * only.
9122 *
9123 * In this case, we store a relative path rather than an
9124 * absolute path into the tablespaceinfo.
9125 */
9126 snprintf(linkpath, sizeof(linkpath), "%s/%s",
9127 PG_TBLSPC_DIR, de->d_name);
9128 relpath = pstrdup(linkpath);
9129 }
9130 else
9131 {
9132 /* Skip any other file type that appears here. */
9133 continue;
9134 }
9135
9137 ti->oid = tsoid;
9138 ti->path = pstrdup(linkpath);
9139 ti->rpath = relpath;
9140 ti->size = -1;
9141
9142 if (tablespaces)
9143 *tablespaces = lappend(*tablespaces, ti);
9144 }
9145 FreeDir(tblspcdir);
9146
9147 state->starttime = (pg_time_t) time(NULL);
9148 }
9150
9151 state->started_in_recovery = backup_started_in_recovery;
9152
9153 /*
9154 * Mark that the start phase has correctly finished for the backup.
9155 */
9157}
9158
9159/*
9160 * Utility routine to fetch the session-level status of a backup running.
9161 */
9164{
9165 return sessionBackupState;
9166}
9167
9168/*
9169 * do_pg_backup_stop
9170 *
9171 * Utility function called at the end of an online backup. It creates history
9172 * file (if required), resets sessionBackupState and so on. It can optionally
9173 * wait for WAL segments to be archived.
9174 *
9175 * "state" is filled with the information necessary to restore from this
9176 * backup with its stop LSN (stoppoint), its timeline ID (stoptli), etc.
9177 *
9178 * It is the responsibility of the caller of this function to verify the
9179 * permissions of the calling user!
9180 */
9181void
9183{
9184 bool backup_stopped_in_recovery = false;
9185 char histfilepath[MAXPGPATH];
9186 char lastxlogfilename[MAXFNAMELEN];
9187 char histfilename[MAXFNAMELEN];
9188 XLogSegNo _logSegNo;
9189 FILE *fp;
9190 int seconds_before_warning;
9191 int waits = 0;
9192 bool reported_waiting = false;
9193
9194 Assert(state != NULL);
9195
9196 backup_stopped_in_recovery = RecoveryInProgress();
9197
9198 /*
9199 * During recovery, we don't need to check WAL level. Because, if WAL
9200 * level is not sufficient, it's impossible to get here during recovery.
9201 */
9202 if (!backup_stopped_in_recovery && !XLogIsNeeded())
9203 ereport(ERROR,
9204 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9205 errmsg("WAL level not sufficient for making an online backup"),
9206 errhint("\"wal_level\" must be set to \"replica\" or \"logical\" at server start.")));
9207
9208 /*
9209 * OK to update backup counter and session-level lock.
9210 *
9211 * Note that CHECK_FOR_INTERRUPTS() must not occur while updating them,
9212 * otherwise they can be updated inconsistently, which might cause
9213 * do_pg_abort_backup() to fail.
9214 */
9216
9217 /*
9218 * It is expected that each do_pg_backup_start() call is matched by
9219 * exactly one do_pg_backup_stop() call.
9220 */
9223
9224 /*
9225 * Clean up session-level lock.
9226 *
9227 * You might think that WALInsertLockRelease() can be called before
9228 * cleaning up session-level lock because session-level lock doesn't need
9229 * to be protected with WAL insertion lock. But since
9230 * CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be
9231 * cleaned up before it.
9232 */
9234
9236
9237 /*
9238 * If we are taking an online backup from the standby, we confirm that the
9239 * standby has not been promoted during the backup.
9240 */
9241 if (state->started_in_recovery && !backup_stopped_in_recovery)
9242 ereport(ERROR,
9243 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9244 errmsg("the standby was promoted during online backup"),
9245 errhint("This means that the backup being taken is corrupt "
9246 "and should not be used. "
9247 "Try taking another online backup.")));
9248
9249 /*
9250 * During recovery, we don't write an end-of-backup record. We assume that
9251 * pg_control was backed up last and its minimum recovery point can be
9252 * available as the backup end location. Since we don't have an
9253 * end-of-backup record, we use the pg_control value to check whether
9254 * we've reached the end of backup when starting recovery from this
9255 * backup. We have no way of checking if pg_control wasn't backed up last
9256 * however.
9257 *
9258 * We don't force a switch to new WAL file but it is still possible to
9259 * wait for all the required files to be archived if waitforarchive is
9260 * true. This is okay if we use the backup to start a standby and fetch
9261 * the missing WAL using streaming replication. But in the case of an
9262 * archive recovery, a user should set waitforarchive to true and wait for
9263 * them to be archived to ensure that all the required files are
9264 * available.
9265 *
9266 * We return the current minimum recovery point as the backup end
9267 * location. Note that it can be greater than the exact backup end
9268 * location if the minimum recovery point is updated after the backup of
9269 * pg_control. This is harmless for current uses.
9270 *
9271 * XXX currently a backup history file is for informational and debug
9272 * purposes only. It's not essential for an online backup. Furthermore,
9273 * even if it's created, it will not be archived during recovery because
9274 * an archiver is not invoked. So it doesn't seem worthwhile to write a
9275 * backup history file during recovery.
9276 */
9277 if (backup_stopped_in_recovery)
9278 {
9279 XLogRecPtr recptr;
9280
9281 /*
9282 * Check to see if all WAL replayed during online backup contain
9283 * full-page writes.
9284 */
9286 recptr = XLogCtl->lastFpwDisableRecPtr;
9288
9289 if (state->startpoint <= recptr)
9290 ereport(ERROR,
9291 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
9292 errmsg("WAL generated with \"full_page_writes=off\" was replayed "
9293 "during online backup"),
9294 errhint("This means that the backup being taken on the standby "
9295 "is corrupt and should not be used. "
9296 "Enable \"full_page_writes\" and run CHECKPOINT on the primary, "
9297 "and then try an online backup again.")));
9298
9299
9300 LWLockAcquire(ControlFileLock, LW_SHARED);
9301 state->stoppoint = ControlFile->minRecoveryPoint;
9303 LWLockRelease(ControlFileLock);
9304 }
9305 else
9306 {
9307 char *history_file;
9308
9309 /*
9310 * Write the backup-end xlog record
9311 */
9313 XLogRegisterData(&state->startpoint,
9314 sizeof(state->startpoint));
9315 state->stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END);
9316
9317 /*
9318 * Given that we're not in recovery, InsertTimeLineID is set and can't
9319 * change, so we can read it without a lock.
9320 */
9321 state->stoptli = XLogCtl->InsertTimeLineID;
9322
9323 /*
9324 * Force a switch to a new xlog segment file, so that the backup is
9325 * valid as soon as archiver moves out the current segment file.
9326 */
9327 RequestXLogSwitch(false);
9328
9329 state->stoptime = (pg_time_t) time(NULL);
9330
9331 /*
9332 * Write the backup history file
9333 */
9334 XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9335 BackupHistoryFilePath(histfilepath, state->stoptli, _logSegNo,
9336 state->startpoint, wal_segment_size);
9337 fp = AllocateFile(histfilepath, "w");
9338 if (!fp)
9339 ereport(ERROR,
9341 errmsg("could not create file \"%s\": %m",
9342 histfilepath)));
9343
9344 /* Build and save the contents of the backup history file */
9345 history_file = build_backup_content(state, true);
9346 fprintf(fp, "%s", history_file);
9347 pfree(history_file);
9348
9349 if (fflush(fp) || ferror(fp) || FreeFile(fp))
9350 ereport(ERROR,
9352 errmsg("could not write file \"%s\": %m",
9353 histfilepath)));
9354
9355 /*
9356 * Clean out any no-longer-needed history files. As a side effect,
9357 * this will post a .ready file for the newly created history file,
9358 * notifying the archiver that history file may be archived
9359 * immediately.
9360 */
9362 }
9363
9364 /*
9365 * If archiving is enabled, wait for all the required WAL files to be
9366 * archived before returning. If archiving isn't enabled, the required WAL
9367 * needs to be transported via streaming replication (hopefully with
9368 * wal_keep_size set high enough), or some more exotic mechanism like
9369 * polling and copying files from pg_wal with script. We have no knowledge
9370 * of those mechanisms, so it's up to the user to ensure that he gets all
9371 * the required WAL.
9372 *
9373 * We wait until both the last WAL file filled during backup and the
9374 * history file have been archived, and assume that the alphabetic sorting
9375 * property of the WAL files ensures any earlier WAL files are safely
9376 * archived as well.
9377 *
9378 * We wait forever, since archive_command is supposed to work and we
9379 * assume the admin wanted his backup to work completely. If you don't
9380 * wish to wait, then either waitforarchive should be passed in as false,
9381 * or you can set statement_timeout. Also, some notices are issued to
9382 * clue in anyone who might be doing this interactively.
9383 */
9384
9385 if (waitforarchive &&
9386 ((!backup_stopped_in_recovery && XLogArchivingActive()) ||
9387 (backup_stopped_in_recovery && XLogArchivingAlways())))
9388 {
9389 XLByteToPrevSeg(state->stoppoint, _logSegNo, wal_segment_size);
9390 XLogFileName(lastxlogfilename, state->stoptli, _logSegNo,
9392
9393 XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
9394 BackupHistoryFileName(histfilename, state->stoptli, _logSegNo,
9395 state->startpoint, wal_segment_size);
9396
9397 seconds_before_warning = 60;
9398 waits = 0;
9399
9400 while (XLogArchiveIsBusy(lastxlogfilename) ||
9401 XLogArchiveIsBusy(histfilename))
9402 {
9404
9405 if (!reported_waiting && waits > 5)
9406 {
9408 (errmsg("base backup done, waiting for required WAL segments to be archived")));
9409 reported_waiting = true;
9410 }
9411
9412 (void) WaitLatch(MyLatch,
9414 1000L,
9415 WAIT_EVENT_BACKUP_WAIT_WAL_ARCHIVE);
9417
9418 if (++waits >= seconds_before_warning)
9419 {
9420 seconds_before_warning *= 2; /* This wraps in >10 years... */
9422 (errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)",
9423 waits),
9424 errhint("Check that your \"archive_command\" is executing properly. "
9425 "You can safely cancel this backup, "
9426 "but the database backup will not be usable without all the WAL segments.")));
9427 }
9428 }
9429
9431 (errmsg("all required WAL segments have been archived")));
9432 }
9433 else if (waitforarchive)
9435 (errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup")));
9436}
9437
9438
9439/*
9440 * do_pg_abort_backup: abort a running backup
9441 *
9442 * This does just the most basic steps of do_pg_backup_stop(), by taking the
9443 * system out of backup mode, thus making it a lot more safe to call from
9444 * an error handler.
9445 *
9446 * 'arg' indicates that it's being called during backup setup; so
9447 * sessionBackupState has not been modified yet, but runningBackups has
9448 * already been incremented. When it's false, then it's invoked as a
9449 * before_shmem_exit handler, and therefore we must not change state
9450 * unless sessionBackupState indicates that a backup is actually running.
9451 *
9452 * NB: This gets used as a PG_ENSURE_ERROR_CLEANUP callback and
9453 * before_shmem_exit handler, hence the odd-looking signature.
9454 */
9455void
9457{
9458 bool during_backup_start = DatumGetBool(arg);
9459
9460 /* If called during backup start, there shouldn't be one already running */
9461 Assert(!during_backup_start || sessionBackupState == SESSION_BACKUP_NONE);
9462
9463 if (during_backup_start || sessionBackupState != SESSION_BACKUP_NONE)
9464 {
9468
9471
9472 if (!during_backup_start)
9474 errmsg("aborting backup due to backend exiting before pg_backup_stop was called"));
9475 }
9476}
9477
9478/*
9479 * Register a handler that will warn about unterminated backups at end of
9480 * session, unless this has already been done.
9481 */
9482void
9484{
9485 static bool already_done = false;
9486
9487 if (already_done)
9488 return;
9490 already_done = true;
9491}
9492
9493/*
9494 * Get latest WAL insert pointer
9495 */
9498{
9500 uint64 current_bytepos;
9501
9502 SpinLockAcquire(&Insert->insertpos_lck);
9503 current_bytepos = Insert->CurrBytePos;
9504 SpinLockRelease(&Insert->insertpos_lck);
9505
9506 return XLogBytePosToRecPtr(current_bytepos);
9507}
9508
9509/*
9510 * Get latest WAL write pointer
9511 */
9514{
9516
9517 return LogwrtResult.Write;
9518}
9519
9520/*
9521 * Returns the redo pointer of the last checkpoint or restartpoint. This is
9522 * the oldest point in WAL that we still need, if we have to restart recovery.
9523 */
9524void
9526{
9527 LWLockAcquire(ControlFileLock, LW_SHARED);
9528 *oldrecptr = ControlFile->checkPointCopy.redo;
9530 LWLockRelease(ControlFileLock);
9531}
9532
9533/* Thin wrapper around ShutdownWalRcv(). */
9534void
9536{
9538
9541}
9542
9543/* Enable WAL file recycling and preallocation. */
9544void
9546{
9547 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9549 LWLockRelease(ControlFileLock);
9550}
9551
9552/* Disable WAL file recycling and preallocation. */
9553void
9555{
9556 LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
9558 LWLockRelease(ControlFileLock);
9559}
9560
9561bool
9563{
9564 bool result;
9565
9566 LWLockAcquire(ControlFileLock, LW_SHARED);
9568 LWLockRelease(ControlFileLock);
9569
9570 return result;
9571}
9572
9573/*
9574 * Update the WalWriterSleeping flag.
9575 */
9576void
9578{
9580 XLogCtl->WalWriterSleeping = sleeping;
9582}
Datum idx(PG_FUNCTION_ARGS)
Definition: _int_op.c:262
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:485
#define pg_memory_barrier()
Definition: atomics.h:141
#define pg_read_barrier()
Definition: atomics.h:154
static uint64 pg_atomic_read_membarrier_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:476
#define pg_write_barrier()
Definition: atomics.h:155
static uint64 pg_atomic_monotonic_advance_u64(volatile pg_atomic_uint64 *ptr, uint64 target)
Definition: atomics.h:595
static uint64 pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
Definition: atomics.h:532
static void pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:453
static void pg_atomic_write_membarrier_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:504
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:467
TimeLineID findNewestTimeLine(TimeLineID startTLI)
Definition: timeline.c:264
void restoreTimeLineHistoryFiles(TimeLineID begin, TimeLineID end)
Definition: timeline.c:50
void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI, XLogRecPtr switchpoint, char *reason)
Definition: timeline.c:304
void startup_progress_timeout_handler(void)
Definition: startup.c:303
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1757
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
const char * timestamptz_to_str(TimestampTz t)
Definition: timestamp.c:1862
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1609
static bool backup_started_in_recovery
Definition: basebackup.c:123
int Buffer
Definition: buf.h:23
void CheckPointBuffers(int flags)
Definition: bufmgr.c:4209
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5383
#define Min(x, y)
Definition: c.h:1016
#define pg_attribute_unused()
Definition: c.h:138
#define likely(x)
Definition: c.h:417
#define MAXALIGN(LEN)
Definition: c.h:824
#define TYPEALIGN(ALIGNVAL, LEN)
Definition: c.h:817
uint8_t uint8
Definition: c.h:550
#define Max(x, y)
Definition: c.h:1010
#define PG_BINARY
Definition: c.h:1271
#define pg_attribute_always_inline
Definition: c.h:285
uint64_t uint64
Definition: c.h:553
#define unlikely(x)
Definition: c.h:418
uint32_t uint32
Definition: c.h:552
#define MAXALIGN64(LEN)
Definition: c.h:849
#define PG_UINT64_MAX
Definition: c.h:612
#define MemSet(start, val, len)
Definition: c.h:1032
uint32 TransactionId
Definition: c.h:671
size_t Size
Definition: c.h:624
#define CATALOG_VERSION_NO
Definition: catversion.h:60
void AbsorbSyncRequests(void)
double CheckPointCompletionTarget
Definition: checkpointer.c:159
void RequestCheckpoint(int flags)
void BootStrapCLOG(void)
Definition: clog.c:832
void StartupCLOG(void)
Definition: clog.c:843
void CheckPointCLOG(void)
Definition: clog.c:903
void TrimCLOG(void)
Definition: clog.c:858
void StartupCommitTs(void)
Definition: commit_ts.c:608
void CommitTsParameterChange(bool newvalue, bool oldvalue)
Definition: commit_ts.c:640
bool track_commit_timestamp
Definition: commit_ts.c:109
void CompleteCommitTsInitialization(void)
Definition: commit_ts.c:618
void BootStrapCommitTs(void)
Definition: commit_ts.c:594
void SetCommitTsLimit(TransactionId oldestXact, TransactionId newestXact)
Definition: commit_ts.c:887
void CheckPointCommitTs(void)
Definition: commit_ts.c:794
void update_controlfile(const char *DataDir, ControlFileData *ControlFile, bool do_sync)
#define fprintf(file, fmt, msg)
Definition: cubescan.l:21
int64 TimestampTz
Definition: timestamp.h:39
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1193
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errcode_for_file_access(void)
Definition: elog.c:886
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhint(const char *fmt,...)
Definition: elog.c:1330
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define FATAL
Definition: elog.h:41
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define PANIC
Definition: elog.h:42
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:150
struct pg_atomic_uint64 pg_atomic_uint64
int MakePGDirectory(const char *directoryName)
Definition: fd.c:3959
int FreeDir(DIR *dir)
Definition: fd.c:3005
int pg_fsync_no_writethrough(int fd)
Definition: fd.c:438
int io_direct_flags
Definition: fd.c:168
int durable_rename(const char *oldfile, const char *newfile, int elevel)
Definition: fd.c:779
int pg_fdatasync(int fd)
Definition: fd.c:477
int CloseTransientFile(int fd)
Definition: fd.c:2851
int BasicOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1086
int FreeFile(FILE *file)
Definition: fd.c:2823
int pg_fsync_writethrough(int fd)
Definition: fd.c:458
void ReleaseExternalFD(void)
Definition: fd.c:1221
int data_sync_elevel(int elevel)
Definition: fd.c:3982
static void Insert(File file)
Definition: fd.c:1297
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2887
int durable_unlink(const char *fname, int elevel)
Definition: fd.c:869
void ReserveExternalFD(void)
Definition: fd.c:1203
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2953
int pg_fsync(int fd)
Definition: fd.c:386
FILE * AllocateFile(const char *name, const char *mode)
Definition: fd.c:2624
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2674
void SyncDataDirectory(void)
Definition: fd.c:3590
#define IO_DIRECT_WAL
Definition: fd.h:55
#define IO_DIRECT_WAL_INIT
Definition: fd.h:56
#define PG_O_DIRECT
Definition: fd.h:112
#define palloc_object(type)
Definition: fe_memutils.h:74
ssize_t pg_pwrite_zeros(int fd, size_t size, pgoff_t offset)
Definition: file_utils.c:709
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:547
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_LNK
Definition: file_utils.h:24
@ PGFILETYPE_DIR
Definition: file_utils.h:23
@ PGFILETYPE_REG
Definition: file_utils.h:22
bool IsBinaryUpgrade
Definition: globals.c:121
int NBuffers
Definition: globals.c:142
bool enableFsync
Definition: globals.c:129
ProcNumber MyProcNumber
Definition: globals.c:90
bool IsUnderPostmaster
Definition: globals.c:120
int MaxConnections
Definition: globals.c:143
volatile uint32 CritSectionCount
Definition: globals.c:45
char * DataDir
Definition: globals.c:71
bool IsPostmasterEnvironment
Definition: globals.c:119
struct Latch * MyLatch
Definition: globals.c:63
int max_worker_processes
Definition: globals.c:144
int set_config_option_ext(const char *name, const char *value, GucContext context, GucSource source, Oid srole, GucAction action, bool changeVal, int elevel, bool is_reload)
Definition: guc.c:3256
void SetConfigOption(const char *name, const char *value, GucContext context, GucSource source)
Definition: guc.c:4196
void * guc_malloc(int elevel, size_t size)
Definition: guc.c:636
#define newval
struct config_generic * find_option(const char *name, bool create_placeholders, bool skip_errors, int elevel)
Definition: guc.c:1113
@ GUC_ACTION_SET
Definition: guc.h:203
#define GUC_check_errdetail
Definition: guc.h:505
GucSource
Definition: guc.h:112
@ PGC_S_DYNAMIC_DEFAULT
Definition: guc.h:114
@ PGC_S_OVERRIDE
Definition: guc.h:123
@ PGC_INTERNAL
Definition: guc.h:73
@ PGC_POSTMASTER
Definition: guc.h:74
Assert(PointerIsAligned(start, uint64))
return str start
#define TOAST_MAX_CHUNK_SIZE
Definition: heaptoast.h:84
#define bufsize
Definition: indent_globs.h:36
#define INJECTION_POINT(name, arg)
WalUsage pgWalUsage
Definition: instrument.c:22
#define close(a)
Definition: win32.h:12
#define write(a, b, c)
Definition: win32.h:14
#define read(a, b, c)
Definition: win32.h:13
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
#define PG_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:47
#define PG_END_ENSURE_ERROR_CLEANUP(cleanup_function, arg)
Definition: ipc.h:52
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
#define LOBLKSIZE
Definition: large_object.h:70
void SetLatch(Latch *latch)
Definition: latch.c:290
void ResetLatch(Latch *latch)
Definition: latch.c:374
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:172
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_free(List *list)
Definition: list.c:1546
int max_locks_per_xact
Definition: lock.c:53
void LWLockUpdateVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1726
void LWLockReleaseClearVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 val)
Definition: lwlock.c:1923
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
bool LWLockWaitForVar(LWLock *lock, pg_atomic_uint64 *valptr, uint64 oldval, uint64 *newval)
Definition: lwlock.c:1590
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:698
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1345
bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1402
@ LW_SHARED
Definition: lwlock.h:113
@ LW_EXCLUSIVE
Definition: lwlock.h:112
char * pstrdup(const char *in)
Definition: mcxt.c:1759
void pfree(void *pointer)
Definition: mcxt.c:1594
MemoryContext TopMemoryContext
Definition: mcxt.c:166
void * palloc(Size size)
Definition: mcxt.c:1365
void MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
Definition: mcxt.c:740
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define AmStartupProcess()
Definition: miscadmin.h:390
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:477
#define START_CRIT_SECTION()
Definition: miscadmin.h:150
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
@ B_CHECKPOINTER
Definition: miscadmin.h:363
#define END_CRIT_SECTION()
Definition: miscadmin.h:152
#define AmWalReceiverProcess()
Definition: miscadmin.h:391
bool process_shared_preload_libraries_done
Definition: miscinit.c:1787
BackendType MyBackendType
Definition: miscinit.c:64
void MultiXactSetNextMXact(MultiXactId nextMulti, MultiXactOffset nextMultiOffset)
Definition: multixact.c:1989
void MultiXactAdvanceOldest(MultiXactId oldestMulti, Oid oldestMultiDB)
Definition: multixact.c:2188
void MultiXactGetCheckptMulti(bool is_shutdown, MultiXactId *nextMulti, MultiXactOffset *nextMultiOffset, MultiXactId *oldestMulti, Oid *oldestMultiDB)
Definition: multixact.c:1943
void CheckPointMultiXact(void)
Definition: multixact.c:1965
void TrimMultiXact(void)
Definition: multixact.c:1831
void MultiXactAdvanceNextMXact(MultiXactId minMulti, MultiXactOffset minMultiOffset)
Definition: multixact.c:2161
void BootStrapMultiXact(void)
Definition: multixact.c:1790
void StartupMultiXact(void)
Definition: multixact.c:1806
void SetMultiXactIdLimit(MultiXactId oldest_datminmxid, Oid oldest_datoid)
Definition: multixact.c:2011
#define FirstMultiXactId
Definition: multixact.h:26
void StartupReplicationOrigin(void)
Definition: origin.c:722
void CheckPointReplicationOrigin(void)
Definition: origin.c:596
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
#define INDEX_MAX_KEYS
#define NAMEDATALEN
#define MAXPGPATH
#define DEFAULT_XLOG_SEG_SIZE
#define SLRU_PAGES_PER_SEGMENT
#define PG_IO_ALIGN_SIZE
#define PG_CACHE_LINE_SIZE
#define FLOATFORMAT_VALUE
Definition: pg_control.h:201
#define XLOG_RESTORE_POINT
Definition: pg_control.h:75
#define XLOG_FPW_CHANGE
Definition: pg_control.h:76
#define XLOG_CHECKPOINT_REDO
Definition: pg_control.h:82
#define PG_CONTROL_VERSION
Definition: pg_control.h:25
#define XLOG_OVERWRITE_CONTRECORD
Definition: pg_control.h:81
#define XLOG_FPI
Definition: pg_control.h:79
#define XLOG_FPI_FOR_HINT
Definition: pg_control.h:78
#define MOCK_AUTH_NONCE_LEN
Definition: pg_control.h:28
#define XLOG_NEXTOID
Definition: pg_control.h:71
@ DB_IN_PRODUCTION
Definition: pg_control.h:97
@ DB_SHUTDOWNING
Definition: pg_control.h:94
@ DB_IN_ARCHIVE_RECOVERY
Definition: pg_control.h:96
@ DB_SHUTDOWNED_IN_RECOVERY
Definition: pg_control.h:93
@ DB_SHUTDOWNED
Definition: pg_control.h:92
@ DB_IN_CRASH_RECOVERY
Definition: pg_control.h:95
#define XLOG_NOOP
Definition: pg_control.h:70
#define XLOG_CHECKPOINT_SHUTDOWN
Definition: pg_control.h:68
#define PG_CONTROL_FILE_SIZE
Definition: pg_control.h:258
#define XLOG_SWITCH
Definition: pg_control.h:72
#define XLOG_BACKUP_END
Definition: pg_control.h:73
#define XLOG_PARAMETER_CHANGE
Definition: pg_control.h:74
#define XLOG_CHECKPOINT_ONLINE
Definition: pg_control.h:69
#define XLOG_END_OF_RECOVERY
Definition: pg_control.h:77
uint32 pg_crc32c
Definition: pg_crc32c.h:38
#define COMP_CRC32C(crc, data, len)
Definition: pg_crc32c.h:153
#define EQ_CRC32C(c1, c2)
Definition: pg_crc32c.h:42
#define INIT_CRC32C(crc)
Definition: pg_crc32c.h:41
#define FIN_CRC32C(crc)
Definition: pg_crc32c.h:158
const void size_t len
return crc
static char * filename
Definition: pg_dumpall.c:120
#define lfirst(lc)
Definition: pg_list.h:172
static rewind_source * source
Definition: pg_rewind.c:89
static char buf[DEFAULT_XLOG_SEG_SIZE]
Definition: pg_test_fsync.c:71
bool pgstat_report_fixed
Definition: pgstat.c:218
void pgstat_restore_stats(void)
Definition: pgstat.c:507
void pgstat_discard_stats(void)
Definition: pgstat.c:519
@ IOOBJECT_WAL
Definition: pgstat.h:279
@ IOCONTEXT_INIT
Definition: pgstat.h:288
@ IOCONTEXT_NORMAL
Definition: pgstat.h:289
@ IOOP_FSYNC
Definition: pgstat.h:308
@ IOOP_WRITE
Definition: pgstat.h:316
PgStat_CheckpointerStats PendingCheckpointerStats
instr_time pgstat_prepare_io_time(bool track_io_guc)
Definition: pgstat_io.c:91
void pgstat_count_io_op_time(IOObject io_object, IOContext io_context, IOOp io_op, instr_time start_time, uint32 cnt, uint64 bytes)
Definition: pgstat_io.c:122
int64 pg_time_t
Definition: pgtime.h:23
size_t pg_strftime(char *s, size_t maxsize, const char *format, const struct pg_tm *t)
Definition: strftime.c:128
struct pg_tm * pg_localtime(const pg_time_t *timep, const pg_tz *tz)
Definition: localtime.c:1345
PGDLLIMPORT pg_tz * log_timezone
Definition: pgtz.c:31
bool pg_strong_random(void *buf, size_t len)
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:32
#define pg_pwrite
Definition: port.h:248
#define snprintf
Definition: port.h:260
#define IS_DIR_SEP(ch)
Definition: port.h:103
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
uint64_t Datum
Definition: postgres.h:70
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
void CheckPointPredicate(void)
Definition: predicate.c:1041
static int fd(const char *x, int i)
Definition: preproc-init.c:105
short access
Definition: preproc-type.c:36
#define GetPGProcByNumber(n)
Definition: proc.h:440
#define DELAY_CHKPT_START
Definition: proc.h:135
#define DELAY_CHKPT_COMPLETE
Definition: proc.h:136
bool MinimumActiveBackends(int min)
Definition: procarray.c:3506
TransactionId GetOldestTransactionIdConsideredRunning(void)
Definition: procarray.c:1982
bool HaveVirtualXIDsDelayingChkpt(VirtualTransactionId *vxids, int nvxids, int type)
Definition: procarray.c:3050
void ProcArrayApplyRecoveryInfo(RunningTransactions running)
Definition: procarray.c:1054
TransactionId GetOldestActiveTransactionId(bool inCommitOnly, bool allDbs)
Definition: procarray.c:2833
void ProcArrayInitRecovery(TransactionId initializedUptoXID)
Definition: procarray.c:1023
VirtualTransactionId * GetVirtualXIDsDelayingChkpt(int *nvxids, int type)
Definition: procarray.c:3005
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int ProcNumber
Definition: procnumber.h:24
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
void ResetUnloggedRelations(int op)
Definition: reinit.c:47
#define UNLOGGED_RELATION_INIT
Definition: reinit.h:28
#define UNLOGGED_RELATION_CLEANUP
Definition: reinit.h:27
void RelationCacheInitFileRemove(void)
Definition: relcache.c:6900
void CheckPointRelationMap(void)
Definition: relmapper.c:611
#define relpath(rlocator, forknum)
Definition: relpath.h:150
#define PG_TBLSPC_DIR
Definition: relpath.h:41
void StartupReorderBuffer(void)
ResourceOwner CurrentResourceOwner
Definition: resowner.c:173
ResourceOwner AuxProcessResourceOwner
Definition: resowner.c:176
void CheckPointLogicalRewriteHeap(void)
Definition: rewriteheap.c:1154
#define RM_MAX_ID
Definition: rmgr.h:33
Size add_size(Size s1, Size s2)
Definition: shmem.c:495
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:389
void pg_usleep(long microsec)
Definition: signal.c:53
void CheckPointReplicationSlots(bool is_shutdown)
Definition: slot.c:2128
void StartupReplicationSlots(void)
Definition: slot.c:2206
bool InvalidateObsoleteReplicationSlots(uint32 possible_causes, XLogSegNo oldestSegno, Oid dboid, TransactionId snapshotConflictHorizon)
Definition: slot.c:2068
@ RS_INVAL_WAL_REMOVED
Definition: slot.h:62
@ RS_INVAL_IDLE_TIMEOUT
Definition: slot.h:68
@ RS_INVAL_WAL_LEVEL
Definition: slot.h:66
void smgrdestroyall(void)
Definition: smgr.c:386
void CheckPointSnapBuild(void)
Definition: snapbuild.c:1969
void DeleteAllExportedSnapshotFiles(void)
Definition: snapmgr.c:1587
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
void reset(void)
Definition: sql-declare.c:600
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
XLogRecPtr LogStandbySnapshot(void)
Definition: standby.c:1282
void InitRecoveryTransactionEnvironment(void)
Definition: standby.c:95
void ShutdownRecoveryTransactionEnvironment(void)
Definition: standby.c:161
@ SUBXIDS_IN_SUBTRANS
Definition: standby.h:82
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void appendBinaryStringInfo(StringInfo str, const void *data, int datalen)
Definition: stringinfo.c:281
void appendStringInfoString(StringInfo str, const char *s)
Definition: stringinfo.c:230
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:242
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
Oid oldestMultiDB
Definition: pg_control.h:51
MultiXactId oldestMulti
Definition: pg_control.h:50
MultiXactOffset nextMultiOffset
Definition: pg_control.h:47
TransactionId newestCommitTsXid
Definition: pg_control.h:55
TransactionId oldestXid
Definition: pg_control.h:48
TimeLineID PrevTimeLineID
Definition: pg_control.h:40
TimeLineID ThisTimeLineID
Definition: pg_control.h:39
Oid nextOid
Definition: pg_control.h:45
TransactionId oldestActiveXid
Definition: pg_control.h:64
bool fullPageWrites
Definition: pg_control.h:42
MultiXactId nextMulti
Definition: pg_control.h:46
FullTransactionId nextXid
Definition: pg_control.h:44
TransactionId oldestCommitTsXid
Definition: pg_control.h:53
pg_time_t time
Definition: pg_control.h:52
int wal_level
Definition: pg_control.h:43
XLogRecPtr redo
Definition: pg_control.h:37
Oid oldestXidDB
Definition: pg_control.h:49
uint64 ckpt_agg_sync_time
Definition: xlog.h:176
uint64 ckpt_longest_sync
Definition: xlog.h:175
TimestampTz ckpt_start_t
Definition: xlog.h:161
TimestampTz ckpt_end_t
Definition: xlog.h:165
int ckpt_segs_removed
Definition: xlog.h:171
TimestampTz ckpt_write_t
Definition: xlog.h:162
int ckpt_segs_added
Definition: xlog.h:170
TimestampTz ckpt_sync_end_t
Definition: xlog.h:164
TimestampTz ckpt_sync_t
Definition: xlog.h:163
int ckpt_bufs_written
Definition: xlog.h:167
int ckpt_segs_recycled
Definition: xlog.h:172
int ckpt_slru_written
Definition: xlog.h:168
int ckpt_sync_rels
Definition: xlog.h:174
char mock_authentication_nonce[MOCK_AUTH_NONCE_LEN]
Definition: pg_control.h:237
int max_worker_processes
Definition: pg_control.h:181
uint32 pg_control_version
Definition: pg_control.h:125
uint32 xlog_seg_size
Definition: pg_control.h:213
XLogRecPtr backupStartPoint
Definition: pg_control.h:170
bool track_commit_timestamp
Definition: pg_control.h:185
bool backupEndRequired
Definition: pg_control.h:172
int max_locks_per_xact
Definition: pg_control.h:184
uint32 nameDataLen
Definition: pg_control.h:215
CheckPoint checkPointCopy
Definition: pg_control.h:135
uint32 slru_pages_per_segment
Definition: pg_control.h:210
XLogRecPtr backupEndPoint
Definition: pg_control.h:171
XLogRecPtr minRecoveryPoint
Definition: pg_control.h:168
uint32 data_checksum_version
Definition: pg_control.h:224
XLogRecPtr unloggedLSN
Definition: pg_control.h:137
uint32 indexMaxKeys
Definition: pg_control.h:216
uint32 relseg_size
Definition: pg_control.h:208
pg_time_t time
Definition: pg_control.h:132
bool default_char_signedness
Definition: pg_control.h:230
XLogRecPtr checkPoint
Definition: pg_control.h:133
uint64 system_identifier
Definition: pg_control.h:110
uint32 catalog_version_no
Definition: pg_control.h:126
double floatFormat
Definition: pg_control.h:200
int max_prepared_xacts
Definition: pg_control.h:183
uint32 xlog_blcksz
Definition: pg_control.h:212
TimeLineID minRecoveryPointTLI
Definition: pg_control.h:169
uint32 loblksize
Definition: pg_control.h:219
pg_crc32c crc
Definition: pg_control.h:240
uint32 toast_max_chunk_size
Definition: pg_control.h:218
Definition: dirent.c:26
XLogRecPtr lastPageBeginPtr
Definition: xlogrecovery.h:121
XLogRecPtr abortedRecPtr
Definition: xlogrecovery.h:130
XLogRecPtr missingContrecPtr
Definition: xlogrecovery.h:131
TimeLineID endOfLogTLI
Definition: xlogrecovery.h:119
Definition: lwlock.h:42
Definition: pg_list.h:54
char data[XLOG_BLCKSZ]
Definition: c.h:1148
Definition: proc.h:386
ProcNumber walwriterProc
Definition: proc.h:424
PgStat_Counter sync_time
Definition: pgstat.h:265
PgStat_Counter write_time
Definition: pgstat.h:264
void(* rm_mask)(char *pagedata, BlockNumber blkno)
TransactionId oldestRunningXid
Definition: standby.h:92
TransactionId nextXid
Definition: standby.h:91
TransactionId latestCompletedXid
Definition: standby.h:95
subxids_array_status subxid_status
Definition: standby.h:90
TransactionId * xids
Definition: standby.h:97
TransactionId oldestCommitTsXid
Definition: transam.h:232
TransactionId newestCommitTsXid
Definition: transam.h:233
FullTransactionId latestCompletedXid
Definition: transam.h:238
FullTransactionId nextXid
Definition: transam.h:220
TransactionId oldestXid
Definition: transam.h:222
pg_atomic_uint64 insertingAt
Definition: xlog.c:372
XLogRecPtr lastImportantAt
Definition: xlog.c:373
LWLock lock
Definition: xlog.c:371
int64 wal_buffers_full
Definition: instrument.h:57
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
uint64 wal_fpi_bytes
Definition: instrument.h:56
int64 wal_records
Definition: instrument.h:53
CheckPoint lastCheckPoint
Definition: xlog.c:546
XLogwrtRqst LogwrtRqst
Definition: xlog.c:457
slock_t info_lck
Definition: xlog.c:554
XLogRecPtr InitializedUpTo
Definition: xlog.c:486
char * pages
Definition: xlog.c:493
pg_time_t lastSegSwitchTime
Definition: xlog.c:468
XLogRecPtr replicationSlotMinLSN
Definition: xlog.c:460
RecoveryState SharedRecoveryState
Definition: xlog.c:517
TimeLineID InsertTimeLineID
Definition: xlog.c:510
XLogRecPtr lastSegSwitchLSN
Definition: xlog.c:469
XLogSegNo lastRemovedSegNo
Definition: xlog.c:462
pg_atomic_uint64 * xlblocks
Definition: xlog.c:494
pg_atomic_uint64 logWriteResult
Definition: xlog.c:473
int XLogCacheBlck
Definition: xlog.c:495
XLogRecPtr RedoRecPtr
Definition: xlog.c:458
XLogRecPtr lastCheckPointRecPtr
Definition: xlog.c:544
XLogRecPtr lastFpwDisableRecPtr
Definition: xlog.c:552
XLogCtlInsert Insert
Definition: xlog.c:454
bool InstallXLogFileSegmentActive
Definition: xlog.c:527
bool WalWriterSleeping
Definition: xlog.c:534
XLogRecPtr asyncXactLSN
Definition: xlog.c:459
XLogRecPtr lastCheckPointEndPtr
Definition: xlog.c:545
pg_atomic_uint64 logFlushResult
Definition: xlog.c:474
pg_atomic_uint64 logInsertResult
Definition: xlog.c:472
TimeLineID PrevTimeLineID
Definition: xlog.c:511
pg_atomic_uint64 unloggedLSN
Definition: xlog.c:465
WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:446
XLogRecPtr RedoRecPtr
Definition: xlog.c:432
uint64 PrevBytePos
Definition: xlog.c:410
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:419
int runningBackups
Definition: xlog.c:440
slock_t insertpos_lck
Definition: xlog.c:400
uint64 CurrBytePos
Definition: xlog.c:409
bool fullPageWrites
Definition: xlog.c:433
XLogRecPtr lastBackupStart
Definition: xlog.c:441
TimeLineID xlp_tli
Definition: xlog_internal.h:40
XLogRecPtr xlp_pageaddr
Definition: xlog_internal.h:41
DecodedXLogRecord * record
Definition: xlogreader.h:235
XLogRecPtr EndRecPtr
Definition: xlogreader.h:206
XLogRecPtr ReadRecPtr
Definition: xlogreader.h:205
const void * data
struct XLogRecData * next
XLogRecPtr xl_prev
Definition: xlogrecord.h:45
pg_crc32c xl_crc
Definition: xlogrecord.h:49
uint8 xl_info
Definition: xlogrecord.h:46
uint32 xl_tot_len
Definition: xlogrecord.h:43
TransactionId xl_xid
Definition: xlogrecord.h:44
RmgrId xl_rmid
Definition: xlogrecord.h:47
XLogRecPtr Flush
Definition: xlog.c:330
XLogRecPtr Write
Definition: xlog.c:329
XLogRecPtr Flush
Definition: xlog.c:324
XLogRecPtr Write
Definition: xlog.c:323
Definition: guc.h:174
GucContext scontext
Definition: guc_tables.h:263
GucSource source
Definition: guc_tables.h:261
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
unsigned short st_mode
Definition: win32_port.h:258
Definition: regguts.h:323
char * rpath
Definition: basebackup.h:32
TimeLineID PrevTimeLineID
TimestampTz end_time
TimeLineID ThisTimeLineID
char rp_name[MAXFNAMELEN]
TimestampTz rp_time
void StartupSUBTRANS(TransactionId oldestActiveXID)
Definition: subtrans.c:283
void CheckPointSUBTRANS(void)
Definition: subtrans.c:329
void BootStrapSUBTRANS(void)
Definition: subtrans.c:269
void TruncateSUBTRANS(TransactionId oldestXact)
Definition: subtrans.c:385
void ProcessSyncRequests(void)
Definition: sync.c:286
void SyncPreCheckpoint(void)
Definition: sync.c:177
void SyncPostCheckpoint(void)
Definition: sync.c:202
TimeoutId RegisterTimeout(TimeoutId id, timeout_handler_proc handler)
Definition: timeout.c:505
@ STARTUP_PROGRESS_TIMEOUT
Definition: timeout.h:38
#define TransactionIdRetreat(dest)
Definition: transam.h:141
#define InvalidTransactionId
Definition: transam.h:31
static void FullTransactionIdRetreat(FullTransactionId *dest)
Definition: transam.h:103
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstGenbkiObjectId
Definition: transam.h:195
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static FullTransactionId FullTransactionIdFromEpochAndXid(uint32 epoch, TransactionId xid)
Definition: transam.h:71
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
#define FullTransactionIdPrecedes(a, b)
Definition: transam.h:51
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
void RecoverPreparedTransactions(void)
Definition: twophase.c:2083
void restoreTwoPhaseData(void)
Definition: twophase.c:1904
int max_prepared_xacts
Definition: twophase.c:116
TransactionId PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p)
Definition: twophase.c:1966
void StandbyRecoverPreparedTransactions(void)
Definition: twophase.c:2045
void CheckPointTwoPhase(XLogRecPtr redo_horizon)
Definition: twophase.c:1822
WALInsertLock l
Definition: xlog.c:385
char pad[PG_CACHE_LINE_SIZE]
Definition: xlog.c:386
bool SplitIdentifierString(char *rawstring, char separator, List **namelist)
Definition: varlena.c:2755
void SetTransactionIdLimit(TransactionId oldest_datfrozenxid, Oid oldest_datoid)
Definition: varsup.c:372
void AdvanceOldestClogXid(TransactionId oldest_datfrozenxid)
Definition: varsup.c:355
TransamVariablesData * TransamVariables
Definition: varsup.c:34
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
#define WL_TIMEOUT
Definition: waiteventset.h:37
#define WL_EXIT_ON_PM_DEATH
Definition: waiteventset.h:39
#define WL_LATCH_SET
Definition: waiteventset.h:34
static TimestampTz wakeup[NUM_WALRCV_WAKEUPS]
Definition: walreceiver.c:130
XLogRecPtr Flush
Definition: walreceiver.c:112
XLogRecPtr Write
Definition: walreceiver.c:111
XLogRecPtr GetWalRcvFlushRecPtr(XLogRecPtr *latestChunkStart, TimeLineID *receiveTLI)
void ShutdownWalRcv(void)
void WalSndWakeup(bool physical, bool logical)
Definition: walsender.c:3793
int max_wal_senders
Definition: walsender.c:129
void WalSndInitStopping(void)
Definition: walsender.c:3872
void WalSndWaitStopping(void)
Definition: walsender.c:3898
static void WalSndWakeupProcessRequests(bool physical, bool logical)
Definition: walsender.h:65
#define WalSndWakeupRequest()
Definition: walsender.h:58
bool summarize_wal
void WaitForWalSummarization(XLogRecPtr lsn)
void WakeupWalSummarizer(void)
XLogRecPtr GetOldestUnsummarizedLSN(TimeLineID *tli, bool *lsn_is_exact)
int WalWriterFlushAfter
Definition: walwriter.c:71
int WalWriterDelay
Definition: walwriter.c:70
#define stat
Definition: win32_port.h:274
#define EINTR
Definition: win32_port.h:361
#define S_ISDIR(m)
Definition: win32_port.h:315
#define readlink(path, buf, size)
Definition: win32_port.h:226
#define O_CLOEXEC
Definition: win32_port.h:344
#define O_DSYNC
Definition: win32_port.h:346
int gettimeofday(struct timeval *tp, void *tzp)
void MarkSubxactTopXidLogged(void)
Definition: xact.c:592
void MarkCurrentTransactionIdLoggedIfAny(void)
Definition: xact.c:542
int XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
Definition: xlog.c:3401
void assign_wal_sync_method(int new_wal_sync_method, void *extra)
Definition: xlog.c:8715
static void CreateEndOfRecoveryRecord(void)
Definition: xlog.c:7442
uint64 GetSystemIdentifier(void)
Definition: xlog.c:4611
int wal_decode_buffer_size
Definition: xlog.c:138
XLogRecPtr ProcLastRecPtr
Definition: xlog.c:255
static XLogCtlData * XLogCtl
Definition: xlog.c:567
bool fullPageWrites
Definition: xlog.c:124
void UpdateFullPageWrites(void)
Definition: xlog.c:8234
bool RecoveryInProgress(void)
Definition: xlog.c:6404
static void CleanupBackupHistory(void)
Definition: xlog.c:4182
void GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
Definition: xlog.c:6537
TimeLineID GetWALInsertionTimeLine(void)
Definition: xlog.c:6590
XLogRecPtr RequestXLogSwitch(bool mark_unimportant)
Definition: xlog.c:8128
void do_pg_abort_backup(int code, Datum arg)
Definition: xlog.c:9456
XLogSegNo XLogGetLastRemovedSegno(void)
Definition: xlog.c:3779
XLogRecPtr XLogInsertRecord(XLogRecData *rdata, XLogRecPtr fpw_lsn, uint8 flags, int num_fpi, uint64 fpi_bytes, bool topxid_included)
Definition: xlog.c:749
char * XLogArchiveCommand
Definition: xlog.c:122
struct XLogCtlInsert XLogCtlInsert
int wal_keep_size_mb
Definition: xlog.c:118
Size WALReadFromBuffers(char *dstbuf, XLogRecPtr startptr, Size count, TimeLineID tli)
Definition: xlog.c:1754
static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto)
Definition: xlog.c:1510
static void WALInsertLockRelease(void)
Definition: xlog.c:1451
static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos)
Definition: xlog.c:1864
bool EnableHotStandby
Definition: xlog.c:123
static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt)
Definition: xlog.c:1477
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6507
void assign_wal_consistency_checking(const char *newval, void *extra)
Definition: xlog.c:4815
static void InitControlFile(uint64 sysidentifier, uint32 data_checksum_version)
Definition: xlog.c:4225
void SetInstallXLogFileSegmentActive(void)
Definition: xlog.c:9545
static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
Definition: xlog.c:1991
static void WALInsertLockAcquireExclusive(void)
Definition: xlog.c:1422
static void UpdateControlFile(void)
Definition: xlog.c:4602
void StartupXLOG(void)
Definition: xlog.c:5481
bool IsInstallXLogFileSegmentActive(void)
Definition: xlog.c:9562
static int openLogFile
Definition: xlog.c:636
void BootStrapXLOG(uint32 data_checksum_version)
Definition: xlog.c:5091
XLogRecPtr XactLastRecEnd
Definition: xlog.c:256
bool CreateRestartPoint(int flags)
Definition: xlog.c:7657
static void ValidateXLOGDirectoryStructure(void)
Definition: xlog.c:4120
int CommitDelay
Definition: xlog.c:134
static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr, XLogRecPtr endptr, TimeLineID insertTLI)
Definition: xlog.c:3886
static XLogRecPtr CreateOverwriteContrecordRecord(XLogRecPtr aborted_lsn, XLogRecPtr pagePtr, TimeLineID newTLI)
Definition: xlog.c:7507
XLogRecPtr GetInsertRecPtr(void)
Definition: xlog.c:6552
bool wal_init_zero
Definition: xlog.c:129
static void CalculateCheckpointSegments(void)
Definition: xlog.c:2174
int XLogArchiveMode
Definition: xlog.c:121
SessionBackupState get_backup_status(void)
Definition: xlog.c:9163
static void XLogReportParameters(void)
Definition: xlog.c:8171
#define RefreshXLogWriteResult(_target)
Definition: xlog.c:621
void CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3748
int wal_level
Definition: xlog.c:133
static void LogCheckpointStart(int flags, bool restartpoint)
Definition: xlog.c:6719
static XLogRecPtr RedoRecPtr
Definition: xlog.c:275
void assign_checkpoint_completion_target(double newval, void *extra)
Definition: xlog.c:2210
static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void)
Definition: xlog.c:2682
static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath, bool find_free, XLogSegNo max_segno, TimeLineID tli)
Definition: xlog.c:3584
static void WriteControlFile(void)
Definition: xlog.c:4260
int wal_segment_size
Definition: xlog.c:145
struct XLogwrtResult XLogwrtResult
WALAvailability GetWALAvailability(XLogRecPtr targetLSN)
Definition: xlog.c:7935
const char * show_archive_command(void)
Definition: xlog.c:4868
#define UsableBytesInPage
Definition: xlog.c:598
int max_wal_size_mb
Definition: xlog.c:116
void XLOGShmemInit(void)
Definition: xlog.c:4976
void ShutdownXLOG(int code, Datum arg)
Definition: xlog.c:6672
bool DataChecksumsEnabled(void)
Definition: xlog.c:4631
static bool PerformRecoveryXLogAction(void)
Definition: xlog.c:6354
RecoveryState GetRecoveryState(void)
Definition: xlog.c:6440
int XLogArchiveTimeout
Definition: xlog.c:120
static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI, XLogRecPtr EndOfLog, TimeLineID newTLI)
Definition: xlog.c:5341
#define ConvertToXSegs(x, segsize)
Definition: xlog.c:604
bool wal_recycle
Definition: xlog.c:130
static void RemoveXlogFile(const struct dirent *segment_de, XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo, TimeLineID insertTLI)
Definition: xlog.c:4030
pg_time_t GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN)
Definition: xlog.c:6655
static int XLOGChooseNumBuffers(void)
Definition: xlog.c:4677
static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos)
Definition: xlog.c:1904
static int get_sync_bit(int method)
Definition: xlog.c:8667
static XLogwrtResult LogwrtResult
Definition: xlog.c:613
void XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn)
Definition: xlog.c:2669
static void LogCheckpointEnd(bool restartpoint)
Definition: xlog.c:6751
union WALInsertLockPadded WALInsertLockPadded
void SwitchIntoArchiveRecovery(XLogRecPtr EndRecPtr, TimeLineID replayTLI)
Definition: xlog.c:6279
static bool lastFullPageWrites
Definition: xlog.c:219
char * wal_consistency_checking_string
Definition: xlog.c:127
static void WALInsertLockAcquire(void)
Definition: xlog.c:1377
int CommitSiblings
Definition: xlog.c:135
static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata, XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
Definition: xlog.c:1231
bool GetDefaultCharSignedness(void)
Definition: xlog.c:4645
static double CheckPointDistanceEstimate
Definition: xlog.c:161
static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr)
Definition: xlog.c:1947
const char * show_in_hot_standby(void)
Definition: xlog.c:4880
XLogRecPtr GetXLogInsertRecPtr(void)
Definition: xlog.c:9497
Size XLOGShmemSize(void)
Definition: xlog.c:4926
void SetWalWriterSleeping(bool sleeping)
Definition: xlog.c:9577
bool wal_log_hints
Definition: xlog.c:125
static void XLogInitNewTimeline(TimeLineID endTLI, XLogRecPtr endOfLog, TimeLineID newTLI)
Definition: xlog.c:5266
static void CheckRequiredParameterValues(void)
Definition: xlog.c:5437
#define XLogRecPtrToBufIdx(recptr)
Definition: xlog.c:592
int wal_sync_method
Definition: xlog.c:132
int XLogFileOpen(XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:3639
int max_slot_wal_keep_size_mb
Definition: xlog.c:137
XLogRecPtr GetFlushRecPtr(TimeLineID *insertTLI)
Definition: xlog.c:6569
static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli)
Definition: xlog.c:3711
static bool doPageWrites
Definition: xlog.c:288
static bool holdingAllLocks
Definition: xlog.c:653
static TimeLineID openLogTLI
Definition: xlog.c:638
XLogRecPtr XactLastCommitEnd
Definition: xlog.c:257
WalLevel GetActiveWalLevelOnStandby(void)
Definition: xlog.c:4917
bool log_checkpoints
Definition: xlog.c:131
static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
Definition: xlog.c:8019
static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
Definition: xlog.c:2307
void InitializeWalConsistencyChecking(void)
Definition: xlog.c:4842
static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
Definition: xlog.c:2703
static int LocalSetXLogInsertAllowed(void)
Definition: xlog.c:6492
void assign_max_wal_size(int newval, void *extra)
Definition: xlog.c:2203
void RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI)
Definition: xlog.c:3961
XLogRecPtr GetLastImportantRecPtr(void)
Definition: xlog.c:6626
void xlog_redo(XLogReaderState *record)
Definition: xlog.c:8303
static int MyLockNo
Definition: xlog.c:652
static void RecoveryRestartPoint(const CheckPoint *checkPoint, XLogReaderState *record)
Definition: xlog.c:7617
bool XLogNeedsFlush(XLogRecPtr record)
Definition: xlog.c:3129
void register_persistent_abort_backup_handler(void)
Definition: xlog.c:9483
static double PrevCheckPointDistance
Definition: xlog.c:162
void ReachedEndOfBackup(XLogRecPtr EndRecPtr, TimeLineID tli)
Definition: xlog.c:6317
void LocalProcessControlFile(bool reset)
Definition: xlog.c:4904
static void XLogFileClose(void)
Definition: xlog.c:3660
int wal_compression
Definition: xlog.c:126
static void UpdateCheckPointDistanceEstimate(uint64 nbytes)
Definition: xlog.c:6856
static bool LocalRecoveryInProgress
Definition: xlog.c:226
XLogSegNo XLogGetOldestSegno(TimeLineID tli)
Definition: xlog.c:3795
XLogRecPtr GetXLogWriteRecPtr(void)
Definition: xlog.c:9513
void ResetInstallXLogFileSegmentActive(void)
Definition: xlog.c:9554
static WALInsertLockPadded * WALInsertLocks
Definition: xlog.c:570
static XLogSegNo openLogSegNo
Definition: xlog.c:637
#define INSERT_FREESPACE(endptr)
Definition: xlog.c:581
int wal_retrieve_retry_interval
Definition: xlog.c:136
int XLOGbuffers
Definition: xlog.c:119
bool XLogBackgroundFlush(void)
Definition: xlog.c:2980
const struct config_enum_entry archive_mode_options[]
Definition: xlog.c:193
void GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli)
Definition: xlog.c:9525
char * GetMockAuthenticationNonce(void)
Definition: xlog.c:4621
bool track_wal_io_timing
Definition: xlog.c:139
static XLogSegNo XLOGfileslop(XLogRecPtr lastredoptr)
Definition: xlog.c:2233
static int UsableBytesInSegment
Definition: xlog.c:607
static char * GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli)
Definition: xlog.c:1638
WalInsertClass
Definition: xlog.c:561
@ WALINSERT_SPECIAL_SWITCH
Definition: xlog.c:563
@ WALINSERT_NORMAL
Definition: xlog.c:562
@ WALINSERT_SPECIAL_CHECKPOINT
Definition: xlog.c:564
bool XLogInsertAllowed(void)
Definition: xlog.c:6459
void do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces, BackupState *state, StringInfo tblspcmapfile)
Definition: xlog.c:8854
static ControlFileData * ControlFile
Definition: xlog.c:575
bool check_wal_segment_size(int *newval, void **extra, GucSource source)
Definition: xlog.c:2217
static void XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno, TimeLineID srcTLI, XLogSegNo srcsegno, int upto)
Definition: xlog.c:3439
static int LocalXLogInsertAllowed
Definition: xlog.c:238
static void RemoveTempXlogFiles(void)
Definition: xlog.c:3853
XLogRecPtr XLogRestorePoint(const char *rpName)
Definition: xlog.c:8146
static XLogRecPtr LocalMinRecoveryPoint
Definition: xlog.c:647
#define NUM_XLOGINSERT_LOCKS
Definition: xlog.c:152
struct XLogwrtRqst XLogwrtRqst
TimeLineID GetWALInsertionTimeLineIfSet(void)
Definition: xlog.c:6606
void do_pg_backup_stop(BackupState *state, bool waitforarchive)
Definition: xlog.c:9182
bool check_wal_consistency_checking(char **newval, void **extra, GucSource source)
Definition: xlog.c:4728
const struct config_enum_entry wal_sync_method_options[]
Definition: xlog.c:173
int min_wal_size_mb
Definition: xlog.c:117
bool CreateCheckPoint(int flags)
Definition: xlog.c:6959
#define BootstrapTimeLineID
Definition: xlog.c:113
CheckpointStatsData CheckpointStats
Definition: xlog.c:211
bool check_wal_buffers(int *newval, void **extra, GucSource source)
Definition: xlog.c:4693
XLogRecPtr GetFakeLSNForUnloggedRel(void)
Definition: xlog.c:4660
static char * str_time(pg_time_t tnow, char *buf, size_t bufsize)
Definition: xlog.c:5253
void XLogPutNextOid(Oid nextOid)
Definition: xlog.c:8091
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2783
static void ReadControlFile(void)
Definition: xlog.c:4370
static SessionBackupState sessionBackupState
Definition: xlog.c:393
static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
Definition: xlog.c:7577
static bool updateMinRecoveryPoint
Definition: xlog.c:649
int CheckPointSegments
Definition: xlog.c:158
static bool check_wal_consistency_checking_deferred
Definition: xlog.c:168
static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1114
void XLogShutdownWalRcv(void)
Definition: xlog.c:9535
#define NextBufIdx(idx)
Definition: xlog.c:585
static void UpdateLastRemovedPtr(char *filename)
Definition: xlog.c:3833
static TimeLineID LocalMinRecoveryPointTLI
Definition: xlog.c:648
void issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
Definition: xlog.c:8757
struct XLogCtlData XLogCtlData
static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
Definition: xlog.c:1170
void XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN)
Definition: xlog.c:2612
bool XLogCheckpointNeeded(XLogSegNo new_segno)
Definition: xlog.c:2283
bool * wal_consistency_checking
Definition: xlog.c:128
static int XLogFileInitInternal(XLogSegNo logsegno, TimeLineID logtli, bool *added, char *path)
Definition: xlog.c:3213
static void update_checkpoint_display(int flags, bool restartpoint, bool reset)
Definition: xlog.c:6894
#define XLogArchivingActive()
Definition: xlog.h:99
#define TABLESPACE_MAP_OLD
Definition: xlog.h:309
#define XLOG_MARK_UNIMPORTANT
Definition: xlog.h:155
#define TABLESPACE_MAP
Definition: xlog.h:308
@ ARCHIVE_MODE_ALWAYS
Definition: xlog.h:67
@ ARCHIVE_MODE_OFF
Definition: xlog.h:65
@ ARCHIVE_MODE_ON
Definition: xlog.h:66
#define CHECKPOINT_FLUSH_UNLOGGED
Definition: xlog.h:143
#define STANDBY_SIGNAL_FILE
Definition: xlog.h:304
#define CHECKPOINT_CAUSE_XLOG
Definition: xlog.h:148
WALAvailability
Definition: xlog.h:188
@ WALAVAIL_REMOVED
Definition: xlog.h:194
@ WALAVAIL_RESERVED
Definition: xlog.h:190
@ WALAVAIL_UNRESERVED
Definition: xlog.h:193
@ WALAVAIL_EXTENDED
Definition: xlog.h:191
@ WALAVAIL_INVALID_LSN
Definition: xlog.h:189
#define BACKUP_LABEL_OLD
Definition: xlog.h:306
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:140
@ WAL_COMPRESSION_NONE
Definition: xlog.h:82
#define BACKUP_LABEL_FILE
Definition: xlog.h:305
#define CHECKPOINT_CAUSE_TIME
Definition: xlog.h:149
#define CHECKPOINT_FORCE
Definition: xlog.h:142
SessionBackupState
Definition: xlog.h:289
@ SESSION_BACKUP_RUNNING
Definition: xlog.h:291
@ SESSION_BACKUP_NONE
Definition: xlog.h:290
#define CHECKPOINT_WAIT
Definition: xlog.h:145
#define CHECKPOINT_FAST
Definition: xlog.h:141
#define RECOVERY_SIGNAL_FILE
Definition: xlog.h:303
#define CHECKPOINT_IS_SHUTDOWN
Definition: xlog.h:139
#define XLogArchivingAlways()
Definition: xlog.h:102
WalLevel
Definition: xlog.h:73
@ WAL_LEVEL_REPLICA
Definition: xlog.h:75
@ WAL_LEVEL_LOGICAL
Definition: xlog.h:76
@ WAL_LEVEL_MINIMAL
Definition: xlog.h:74
RecoveryState
Definition: xlog.h:90
@ RECOVERY_STATE_CRASH
Definition: xlog.h:91
@ RECOVERY_STATE_DONE
Definition: xlog.h:93
@ RECOVERY_STATE_ARCHIVE
Definition: xlog.h:92
#define XLogIsNeeded()
Definition: xlog.h:109
@ WAL_SYNC_METHOD_OPEN
Definition: xlog.h:26
@ WAL_SYNC_METHOD_FDATASYNC
Definition: xlog.h:25
@ WAL_SYNC_METHOD_FSYNC_WRITETHROUGH
Definition: xlog.h:27
@ WAL_SYNC_METHOD_OPEN_DSYNC
Definition: xlog.h:28
@ WAL_SYNC_METHOD_FSYNC
Definition: xlog.h:24
#define XLogStandbyInfoActive()
Definition: xlog.h:123
#define XLP_FIRST_IS_CONTRECORD
Definition: xlog_internal.h:74
static RmgrData GetRmgr(RmgrId rmid)
#define IsValidWalSegSize(size)
Definition: xlog_internal.h:96
XLogLongPageHeaderData * XLogLongPageHeader
Definition: xlog_internal.h:71
#define XLP_FIRST_IS_OVERWRITE_CONTRECORD
Definition: xlog_internal.h:80
#define XLOG_CONTROL_FILE
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
static bool IsXLogFileName(const char *fname)
static void XLogFromFileName(const char *fname, TimeLineID *tli, XLogSegNo *logSegNo, int wal_segsz_bytes)
#define XLByteToPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
#define XLogSegNoOffsetToRecPtr(segno, offset, wal_segsz_bytes, dest)
#define MAXFNAMELEN
XLogPageHeaderData * XLogPageHeader
Definition: xlog_internal.h:54
#define XLOGDIR
#define XLP_LONG_HEADER
Definition: xlog_internal.h:76
static bool IsBackupHistoryFileName(const char *fname)
#define XLP_BKP_REMOVABLE
Definition: xlog_internal.h:78
#define XLOG_PAGE_MAGIC
Definition: xlog_internal.h:34
#define XLByteToSeg(xlrp, logSegNo, wal_segsz_bytes)
static void BackupHistoryFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static void XLogFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
#define XRecOffIsValid(xlrp)
#define SizeOfXLogShortPHD
Definition: xlog_internal.h:52
#define SizeOfXLogLongPHD
Definition: xlog_internal.h:69
static void XLogFileName(char *fname, TimeLineID tli, XLogSegNo logSegNo, int wal_segsz_bytes)
static void BackupHistoryFilePath(char *path, TimeLineID tli, XLogSegNo logSegNo, XLogRecPtr startpoint, int wal_segsz_bytes)
static bool RmgrIdExists(RmgrId rmid)
#define XLByteInPrevSeg(xlrp, logSegNo, wal_segsz_bytes)
static bool IsPartialXLogFileName(const char *fname)
bool XLogArchiveIsReadyOrDone(const char *xlog)
Definition: xlogarchive.c:664
bool XLogArchiveIsBusy(const char *xlog)
Definition: xlogarchive.c:619
bool XLogArchiveIsReady(const char *xlog)
Definition: xlogarchive.c:694
void XLogArchiveNotifySeg(XLogSegNo segno, TimeLineID tli)
Definition: xlogarchive.c:492
void ExecuteRecoveryCommand(const char *command, const char *commandName, bool failOnSignal, uint32 wait_event_info)
Definition: xlogarchive.c:295
bool XLogArchiveCheckDone(const char *xlog)
Definition: xlogarchive.c:565
void XLogArchiveNotify(const char *xlog)
Definition: xlogarchive.c:444
void XLogArchiveCleanup(const char *xlog)
Definition: xlogarchive.c:712
char * build_backup_content(BackupState *state, bool ishistoryfile)
Definition: xlogbackup.c:29
#define XLogRecPtrIsValid(r)
Definition: xlogdefs.h:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:47
#define FirstNormalUnloggedLSN
Definition: xlogdefs.h:37
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
uint32 TimeLineID
Definition: xlogdefs.h:63
#define DEFAULT_WAL_SYNC_METHOD
Definition: xlogdefs.h:83
uint64 XLogSegNo
Definition: xlogdefs.h:52
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:478
void XLogRegisterData(const void *data, uint32 len)
Definition: xloginsert.c:368
void XLogSetRecordFlags(uint8 flags)
Definition: xloginsert.c:460
void XLogBeginInsert(void)
Definition: xloginsert.c:152
XLogReaderState * XLogReaderAllocate(int wal_segment_size, const char *waldir, XLogReaderRoutine *routine, void *private_data)
Definition: xlogreader.c:107
bool DecodeXLogRecord(XLogReaderState *state, DecodedXLogRecord *decoded, XLogRecord *record, XLogRecPtr lsn, char **errormsg)
Definition: xlogreader.c:1682
size_t DecodeXLogRecordRequiredSpace(size_t xl_tot_len)
Definition: xlogreader.c:1649
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:409
#define XLogRecGetData(decoder)
Definition: xlogreader.h:414
#define XL_ROUTINE(...)
Definition: xlogreader.h:117
#define XLogRecMaxBlockId(decoder)
Definition: xlogreader.h:417
#define XLogRecHasBlockImage(decoder, block_id)
Definition: xlogreader.h:422
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:416
#define SizeOfXLogRecordDataHeaderShort
Definition: xlogrecord.h:217
#define XLR_BLOCK_ID_DATA_SHORT
Definition: xlogrecord.h:241
#define XLR_INFO_MASK
Definition: xlogrecord.h:62
#define SizeOfXLogRecord
Definition: xlogrecord.h:55
void ShutdownWalRecovery(void)
bool ArchiveRecoveryRequested
Definition: xlogrecovery.c:140
bool InArchiveRecovery
Definition: xlogrecovery.c:141
void RecoveryRequiresIntParameter(const char *param_name, int currValue, int minValue)
void PerformWalRecovery(void)
char * archiveCleanupCommand
Definition: xlogrecovery.c:87
XLogRecPtr GetCurrentReplayRecPtr(TimeLineID *replayEndTLI)
void xlog_outdesc(StringInfo buf, XLogReaderState *record)
bool PromoteIsTriggered(void)
static XLogRecPtr missingContrecPtr
Definition: xlogrecovery.c:381
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)
static XLogRecPtr abortedRecPtr
Definition: xlogrecovery.c:380
EndOfWalRecoveryInfo * FinishWalRecovery(void)
void InitWalRecovery(ControlFileData *ControlFile, bool *wasShutdown_ptr, bool *haveBackupLabel_ptr, bool *haveTblspcMap_ptr)
Definition: xlogrecovery.c:520
char * recoveryEndCommand
Definition: xlogrecovery.c:86
TimeLineID recoveryTargetTLI
Definition: xlogrecovery.c:125
TimestampTz GetLatestXTime(void)
bool XLogHaveInvalidPages(void)
Definition: xlogutils.c:224
XLogRedoAction XLogReadBufferForRedo(XLogReaderState *record, uint8 block_id, Buffer *buf)
Definition: xlogutils.c:303
HotStandbyState standbyState
Definition: xlogutils.c:53
bool InRecovery
Definition: xlogutils.c:50
@ STANDBY_DISABLED
Definition: xlogutils.h:52
@ STANDBY_INITIALIZED
Definition: xlogutils.h:53
#define InHotStandby
Definition: xlogutils.h:60
@ BLK_RESTORED
Definition: xlogutils.h:76
void WaitLSNWakeup(WaitLSNType lsnType, XLogRecPtr currentLSN)
Definition: xlogwait.c:269
@ WAIT_LSN_TYPE_REPLAY
Definition: xlogwait.h:38