PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
rewriteheap.h File Reference
#include "access/htup.h"
#include "storage/itemptr.h"
#include "storage/relfilelocator.h"
#include "utils/relcache.h"
Include dependency graph for rewriteheap.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Data Structures

struct  LogicalRewriteMappingData
 

Macros

#define LOGICAL_REWRITE_FORMAT   "map-%x-%x-%X_%X-%x-%x"
 

Typedefs

typedef struct RewriteStateDataRewriteState
 
typedef struct LogicalRewriteMappingData LogicalRewriteMappingData
 

Functions

RewriteState begin_heap_rewrite (Relation old_heap, Relation new_heap, TransactionId oldest_xmin, TransactionId freeze_xid, MultiXactId cutoff_multi)
 
void end_heap_rewrite (RewriteState state)
 
void rewrite_heap_tuple (RewriteState state, HeapTuple old_tuple, HeapTuple new_tuple)
 
bool rewrite_heap_dead_tuple (RewriteState state, HeapTuple old_tuple)
 
void CheckPointLogicalRewriteHeap (void)
 

Macro Definition Documentation

◆ LOGICAL_REWRITE_FORMAT

#define LOGICAL_REWRITE_FORMAT   "map-%x-%x-%X_%X-%x-%x"

Definition at line 54 of file rewriteheap.h.

Typedef Documentation

◆ LogicalRewriteMappingData

◆ RewriteState

typedef struct RewriteStateData* RewriteState

Definition at line 22 of file rewriteheap.h.

Function Documentation

◆ begin_heap_rewrite()

RewriteState begin_heap_rewrite ( Relation  old_heap,
Relation  new_heap,
TransactionId  oldest_xmin,
TransactionId  freeze_xid,
MultiXactId  cutoff_multi 
)

Definition at line 234 of file rewriteheap.c.

236{
238 MemoryContext rw_cxt;
239 MemoryContext old_cxt;
240 HASHCTL hash_ctl;
241
242 /*
243 * To ease cleanup, make a separate context that will contain the
244 * RewriteState struct itself plus all subsidiary data.
245 */
247 "Table rewrite",
249 old_cxt = MemoryContextSwitchTo(rw_cxt);
250
251 /* Create and fill in the state struct */
252 state = palloc0(sizeof(RewriteStateData));
253
254 state->rs_old_rel = old_heap;
255 state->rs_new_rel = new_heap;
256 state->rs_buffer = NULL;
257 /* new_heap needn't be empty, just locked */
258 state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
259 state->rs_oldest_xmin = oldest_xmin;
260 state->rs_freeze_xid = freeze_xid;
261 state->rs_cutoff_multi = cutoff_multi;
262 state->rs_cxt = rw_cxt;
263 state->rs_bulkstate = smgr_bulk_start_rel(new_heap, MAIN_FORKNUM);
264
265 /* Initialize hash tables used to track update chains */
266 hash_ctl.keysize = sizeof(TidHashKey);
267 hash_ctl.entrysize = sizeof(UnresolvedTupData);
268 hash_ctl.hcxt = state->rs_cxt;
269
270 state->rs_unresolved_tups =
271 hash_create("Rewrite / Unresolved ctids",
272 128, /* arbitrary initial size */
273 &hash_ctl,
275
276 hash_ctl.entrysize = sizeof(OldToNewMappingData);
277
278 state->rs_old_new_tid_map =
279 hash_create("Rewrite / Old to new tid map",
280 128, /* arbitrary initial size */
281 &hash_ctl,
283
284 MemoryContextSwitchTo(old_cxt);
285
287
288 return state;
289}
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:87
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
@ MAIN_FORKNUM
Definition: relpath.h:58
static void logical_begin_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:759
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: regguts.h:323

References ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, CurrentMemoryContext, HASHCTL::entrysize, HASH_BLOBS, HASH_CONTEXT, hash_create(), HASH_ELEM, HASHCTL::hcxt, HASHCTL::keysize, logical_begin_heap_rewrite(), MAIN_FORKNUM, MemoryContextSwitchTo(), palloc0(), RelationGetNumberOfBlocks, and smgr_bulk_start_rel().

Referenced by heapam_relation_copy_for_cluster().

◆ CheckPointLogicalRewriteHeap()

void CheckPointLogicalRewriteHeap ( void  )

Definition at line 1155 of file rewriteheap.c.

1156{
1157 XLogRecPtr cutoff;
1158 XLogRecPtr redo;
1159 DIR *mappings_dir;
1160 struct dirent *mapping_de;
1161 char path[MAXPGPATH + sizeof(PG_LOGICAL_MAPPINGS_DIR)];
1162
1163 /*
1164 * We start of with a minimum of the last redo pointer. No new decoding
1165 * slot will start before that, so that's a safe upper bound for removal.
1166 */
1167 redo = GetRedoRecPtr();
1168
1169 /* now check for the restart ptrs from existing slots */
1171
1172 /* don't start earlier than the restart lsn */
1173 if (cutoff != InvalidXLogRecPtr && redo < cutoff)
1174 cutoff = redo;
1175
1176 mappings_dir = AllocateDir(PG_LOGICAL_MAPPINGS_DIR);
1177 while ((mapping_de = ReadDir(mappings_dir, PG_LOGICAL_MAPPINGS_DIR)) != NULL)
1178 {
1179 Oid dboid;
1180 Oid relid;
1181 XLogRecPtr lsn;
1182 TransactionId rewrite_xid;
1183 TransactionId create_xid;
1184 uint32 hi,
1185 lo;
1186 PGFileType de_type;
1187
1188 if (strcmp(mapping_de->d_name, ".") == 0 ||
1189 strcmp(mapping_de->d_name, "..") == 0)
1190 continue;
1191
1192 snprintf(path, sizeof(path), "%s/%s", PG_LOGICAL_MAPPINGS_DIR, mapping_de->d_name);
1193 de_type = get_dirent_type(path, mapping_de, false, DEBUG1);
1194
1195 if (de_type != PGFILETYPE_ERROR && de_type != PGFILETYPE_REG)
1196 continue;
1197
1198 /* Skip over files that cannot be ours. */
1199 if (strncmp(mapping_de->d_name, "map-", 4) != 0)
1200 continue;
1201
1202 if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
1203 &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
1204 elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
1205
1206 lsn = ((uint64) hi) << 32 | lo;
1207
1208 if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
1209 {
1210 elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
1211 if (unlink(path) < 0)
1212 ereport(ERROR,
1214 errmsg("could not remove file \"%s\": %m", path)));
1215 }
1216 else
1217 {
1218 /* on some operating systems fsyncing a file requires O_RDWR */
1219 int fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
1220
1221 /*
1222 * The file cannot vanish due to concurrency since this function
1223 * is the only one removing logical mappings and only one
1224 * checkpoint can be in progress at a time.
1225 */
1226 if (fd < 0)
1227 ereport(ERROR,
1229 errmsg("could not open file \"%s\": %m", path)));
1230
1231 /*
1232 * We could try to avoid fsyncing files that either haven't
1233 * changed or have only been created since the checkpoint's start,
1234 * but it's currently not deemed worth the effort.
1235 */
1236 pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
1237 if (pg_fsync(fd) != 0)
1240 errmsg("could not fsync file \"%s\": %m", path)));
1242
1243 if (CloseTransientFile(fd) != 0)
1244 ereport(ERROR,
1246 errmsg("could not close file \"%s\": %m", path)));
1247 }
1248 }
1249 FreeDir(mappings_dir);
1250
1251 /* persist directory entries to disk */
1253}
#define PG_BINARY
Definition: c.h:1227
uint64_t uint64
Definition: c.h:486
uint32_t uint32
Definition: c.h:485
uint32 TransactionId
Definition: c.h:606
int errcode_for_file_access(void)
Definition: elog.c:876
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
int FreeDir(DIR *dir)
Definition: fd.c:2983
int CloseTransientFile(int fd)
Definition: fd.c:2831
void fsync_fname(const char *fname, bool isdir)
Definition: fd.c:755
int data_sync_elevel(int elevel)
Definition: fd.c:3959
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2865
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2931
int pg_fsync(int fd)
Definition: fd.c:385
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2655
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:526
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_REG
Definition: file_utils.h:22
@ PGFILETYPE_ERROR
Definition: file_utils.h:20
#define MAXPGPATH
#define snprintf
Definition: port.h:238
unsigned int Oid
Definition: postgres_ext.h:31
static int fd(const char *x, int i)
Definition: preproc-init.c:105
#define PG_LOGICAL_MAPPINGS_DIR
Definition: reorderbuffer.h:23
#define LOGICAL_REWRITE_FORMAT
Definition: rewriteheap.h:54
XLogRecPtr ReplicationSlotsComputeLogicalRestartLSN(void)
Definition: slot.c:1182
Definition: dirent.c:26
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6437
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28

References AllocateDir(), CloseTransientFile(), dirent::d_name, data_sync_elevel(), DEBUG1, elog, ereport, errcode_for_file_access(), errmsg(), ERROR, fd(), FreeDir(), fsync_fname(), get_dirent_type(), GetRedoRecPtr(), InvalidXLogRecPtr, LOGICAL_REWRITE_FORMAT, MAXPGPATH, OpenTransientFile(), PG_BINARY, pg_fsync(), PG_LOGICAL_MAPPINGS_DIR, PGFILETYPE_ERROR, PGFILETYPE_REG, pgstat_report_wait_end(), pgstat_report_wait_start(), ReadDir(), ReplicationSlotsComputeLogicalRestartLSN(), and snprintf.

Referenced by CheckPointGuts().

◆ end_heap_rewrite()

void end_heap_rewrite ( RewriteState  state)

Definition at line 297 of file rewriteheap.c.

298{
299 HASH_SEQ_STATUS seq_status;
300 UnresolvedTup unresolved;
301
302 /*
303 * Write any remaining tuples in the UnresolvedTups table. If we have any
304 * left, they should in fact be dead, but let's err on the safe side.
305 */
306 hash_seq_init(&seq_status, state->rs_unresolved_tups);
307
308 while ((unresolved = hash_seq_search(&seq_status)) != NULL)
309 {
311 raw_heap_insert(state, unresolved->tuple);
312 }
313
314 /* Write the last page, if any */
315 if (state->rs_buffer)
316 {
317 smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
318 state->rs_buffer = NULL;
319 }
320
321 smgr_bulk_finish(state->rs_bulkstate);
322
324
325 /* Deleting the context frees everything */
326 MemoryContextDelete(state->rs_cxt);
327}
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:323
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:130
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1420
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
static void ItemPointerSetInvalid(ItemPointerData *pointer)
Definition: itemptr.h:184
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
static void raw_heap_insert(RewriteState state, HeapTuple tup)
Definition: rewriteheap.c:593
static void logical_end_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:905
HeapTupleHeader t_data
Definition: htup.h:68
ItemPointerData t_ctid
Definition: htup_details.h:161

References hash_seq_init(), hash_seq_search(), ItemPointerSetInvalid(), logical_end_heap_rewrite(), MemoryContextDelete(), raw_heap_insert(), smgr_bulk_finish(), smgr_bulk_write(), HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, and UnresolvedTupData::tuple.

Referenced by heapam_relation_copy_for_cluster().

◆ rewrite_heap_dead_tuple()

bool rewrite_heap_dead_tuple ( RewriteState  state,
HeapTuple  old_tuple 
)

Definition at line 543 of file rewriteheap.c.

544{
545 /*
546 * If we have already seen an earlier tuple in the update chain that
547 * points to this tuple, let's forget about that earlier tuple. It's in
548 * fact dead as well, our simple xmax < OldestXmin test in
549 * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
550 * when xmin of a tuple is greater than xmax, which sounds
551 * counter-intuitive but is perfectly valid.
552 *
553 * We don't bother to try to detect the situation the other way round,
554 * when we encounter the dead tuple first and then the recently dead one
555 * that points to it. If that happens, we'll have some unmatched entries
556 * in the UnresolvedTups hash table at the end. That can happen anyway,
557 * because a vacuum might have removed the dead tuple in the chain before
558 * us.
559 */
560 UnresolvedTup unresolved;
561 TidHashKey hashkey;
562 bool found;
563
564 memset(&hashkey, 0, sizeof(hashkey));
565 hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
566 hashkey.tid = old_tuple->t_self;
567
568 unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
569 HASH_FIND, NULL);
570
571 if (unresolved != NULL)
572 {
573 /* Need to free the contained tuple as well as the hashtable entry */
574 heap_freetuple(unresolved->tuple);
575 hash_search(state->rs_unresolved_tups, &hashkey,
576 HASH_REMOVE, &found);
577 Assert(found);
578 return true;
579 }
580
581 return false;
582}
#define Assert(condition)
Definition: c.h:812
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
ItemPointerData t_self
Definition: htup.h:65
TransactionId xmin
Definition: rewriteheap.c:163
ItemPointerData tid
Definition: rewriteheap.c:164

References Assert, HASH_FIND, HASH_REMOVE, hash_search(), heap_freetuple(), HeapTupleHeaderGetXmin, HeapTupleData::t_data, HeapTupleData::t_self, TidHashKey::tid, UnresolvedTupData::tuple, and TidHashKey::xmin.

Referenced by heapam_relation_copy_for_cluster().

◆ rewrite_heap_tuple()

void rewrite_heap_tuple ( RewriteState  state,
HeapTuple  old_tuple,
HeapTuple  new_tuple 
)

Definition at line 341 of file rewriteheap.c.

343{
344 MemoryContext old_cxt;
345 ItemPointerData old_tid;
346 TidHashKey hashkey;
347 bool found;
348 bool free_new;
349
350 old_cxt = MemoryContextSwitchTo(state->rs_cxt);
351
352 /*
353 * Copy the original tuple's visibility information into new_tuple.
354 *
355 * XXX we might later need to copy some t_infomask2 bits, too? Right now,
356 * we intentionally clear the HOT status bits.
357 */
358 memcpy(&new_tuple->t_data->t_choice.t_heap,
359 &old_tuple->t_data->t_choice.t_heap,
360 sizeof(HeapTupleFields));
361
362 new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
363 new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
364 new_tuple->t_data->t_infomask |=
365 old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
366
367 /*
368 * While we have our hands on the tuple, we may as well freeze any
369 * eligible xmin or xmax, so that future VACUUM effort can be saved.
370 */
371 heap_freeze_tuple(new_tuple->t_data,
372 state->rs_old_rel->rd_rel->relfrozenxid,
373 state->rs_old_rel->rd_rel->relminmxid,
374 state->rs_freeze_xid,
375 state->rs_cutoff_multi);
376
377 /*
378 * Invalid ctid means that ctid should point to the tuple itself. We'll
379 * override it later if the tuple is part of an update chain.
380 */
381 ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
382
383 /*
384 * If the tuple has been updated, check the old-to-new mapping hash table.
385 */
386 if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
387 HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
389 !(ItemPointerEquals(&(old_tuple->t_self),
390 &(old_tuple->t_data->t_ctid))))
391 {
392 OldToNewMapping mapping;
393
394 memset(&hashkey, 0, sizeof(hashkey));
395 hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
396 hashkey.tid = old_tuple->t_data->t_ctid;
397
398 mapping = (OldToNewMapping)
399 hash_search(state->rs_old_new_tid_map, &hashkey,
400 HASH_FIND, NULL);
401
402 if (mapping != NULL)
403 {
404 /*
405 * We've already copied the tuple that t_ctid points to, so we can
406 * set the ctid of this tuple to point to the new location, and
407 * insert it right away.
408 */
409 new_tuple->t_data->t_ctid = mapping->new_tid;
410
411 /* We don't need the mapping entry anymore */
412 hash_search(state->rs_old_new_tid_map, &hashkey,
413 HASH_REMOVE, &found);
414 Assert(found);
415 }
416 else
417 {
418 /*
419 * We haven't seen the tuple t_ctid points to yet. Stash this
420 * tuple into unresolved_tups to be written later.
421 */
422 UnresolvedTup unresolved;
423
424 unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
425 HASH_ENTER, &found);
426 Assert(!found);
427
428 unresolved->old_tid = old_tuple->t_self;
429 unresolved->tuple = heap_copytuple(new_tuple);
430
431 /*
432 * We can't do anything more now, since we don't know where the
433 * tuple will be written.
434 */
435 MemoryContextSwitchTo(old_cxt);
436 return;
437 }
438 }
439
440 /*
441 * Now we will write the tuple, and then check to see if it is the B tuple
442 * in any new or known pair. When we resolve a known pair, we will be
443 * able to write that pair's A tuple, and then we have to check if it
444 * resolves some other pair. Hence, we need a loop here.
445 */
446 old_tid = old_tuple->t_self;
447 free_new = false;
448
449 for (;;)
450 {
451 ItemPointerData new_tid;
452
453 /* Insert the tuple and find out where it's put in new_heap */
454 raw_heap_insert(state, new_tuple);
455 new_tid = new_tuple->t_self;
456
457 logical_rewrite_heap_tuple(state, old_tid, new_tuple);
458
459 /*
460 * If the tuple is the updated version of a row, and the prior version
461 * wouldn't be DEAD yet, then we need to either resolve the prior
462 * version (if it's waiting in rs_unresolved_tups), or make an entry
463 * in rs_old_new_tid_map (so we can resolve it when we do see it). The
464 * previous tuple's xmax would equal this one's xmin, so it's
465 * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
466 */
467 if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
469 state->rs_oldest_xmin))
470 {
471 /*
472 * Okay, this is B in an update pair. See if we've seen A.
473 */
474 UnresolvedTup unresolved;
475
476 memset(&hashkey, 0, sizeof(hashkey));
477 hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
478 hashkey.tid = old_tid;
479
480 unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
481 HASH_FIND, NULL);
482
483 if (unresolved != NULL)
484 {
485 /*
486 * We have seen and memorized the previous tuple already. Now
487 * that we know where we inserted the tuple its t_ctid points
488 * to, fix its t_ctid and insert it to the new heap.
489 */
490 if (free_new)
491 heap_freetuple(new_tuple);
492 new_tuple = unresolved->tuple;
493 free_new = true;
494 old_tid = unresolved->old_tid;
495 new_tuple->t_data->t_ctid = new_tid;
496
497 /*
498 * We don't need the hash entry anymore, but don't free its
499 * tuple just yet.
500 */
501 hash_search(state->rs_unresolved_tups, &hashkey,
502 HASH_REMOVE, &found);
503 Assert(found);
504
505 /* loop back to insert the previous tuple in the chain */
506 continue;
507 }
508 else
509 {
510 /*
511 * Remember the new tid of this tuple. We'll use it to set the
512 * ctid when we find the previous tuple in the chain.
513 */
514 OldToNewMapping mapping;
515
516 mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
517 HASH_ENTER, &found);
518 Assert(!found);
519
520 mapping->new_tid = new_tid;
521 }
522 }
523
524 /* Done with this (chain of) tuples, for now */
525 if (free_new)
526 heap_freetuple(new_tuple);
527 break;
528 }
529
530 MemoryContextSwitchTo(old_cxt);
531}
bool heap_freeze_tuple(HeapTupleHeader tuple, TransactionId relfrozenxid, TransactionId relminmxid, TransactionId FreezeLimit, TransactionId MultiXactCutoff)
Definition: heapam.c:7245
bool HeapTupleHeaderIsOnlyLocked(HeapTupleHeader tuple)
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:778
@ HASH_ENTER
Definition: hsearch.h:114
#define HeapTupleHeaderIndicatesMovedPartitions(tup)
Definition: htup_details.h:444
#define HEAP_XACT_MASK
Definition: htup_details.h:215
#define HEAP_XMAX_INVALID
Definition: htup_details.h:208
#define HEAP_UPDATED
Definition: htup_details.h:210
#define HeapTupleHeaderGetUpdateXid(tup)
Definition: htup_details.h:361
bool ItemPointerEquals(ItemPointer pointer1, ItemPointer pointer2)
Definition: itemptr.c:35
static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple)
Definition: rewriteheap.c:999
OldToNewMappingData * OldToNewMapping
Definition: rewriteheap.c:185
union HeapTupleHeaderData::@47 t_choice
HeapTupleFields t_heap
Definition: htup_details.h:157
ItemPointerData new_tid
Definition: rewriteheap.c:182
ItemPointerData old_tid
Definition: rewriteheap.c:173
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280

References Assert, HASH_ENTER, HASH_FIND, HASH_REMOVE, hash_search(), heap_copytuple(), heap_freetuple(), heap_freeze_tuple(), HEAP_UPDATED, HEAP_XACT_MASK, HEAP_XMAX_INVALID, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleHeaderIndicatesMovedPartitions, HeapTupleHeaderIsOnlyLocked(), ItemPointerEquals(), ItemPointerSetInvalid(), logical_rewrite_heap_tuple(), MemoryContextSwitchTo(), OldToNewMappingData::new_tid, UnresolvedTupData::old_tid, raw_heap_insert(), HeapTupleHeaderData::t_choice, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_heap, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_self, TidHashKey::tid, TransactionIdPrecedes(), UnresolvedTupData::tuple, and TidHashKey::xmin.

Referenced by reform_and_rewrite_tuple().