PostgreSQL Source Code  git master
rewriteheap.h File Reference
#include "access/htup.h"
#include "storage/itemptr.h"
#include "storage/relfilelocator.h"
#include "utils/relcache.h"
Include dependency graph for rewriteheap.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Data Structures

struct  LogicalRewriteMappingData
 

Macros

#define LOGICAL_REWRITE_FORMAT   "map-%x-%x-%X_%X-%x-%x"
 

Typedefs

typedef struct RewriteStateDataRewriteState
 
typedef struct LogicalRewriteMappingData LogicalRewriteMappingData
 

Functions

RewriteState begin_heap_rewrite (Relation old_heap, Relation new_heap, TransactionId oldest_xmin, TransactionId freeze_xid, MultiXactId cutoff_multi)
 
void end_heap_rewrite (RewriteState state)
 
void rewrite_heap_tuple (RewriteState state, HeapTuple old_tuple, HeapTuple new_tuple)
 
bool rewrite_heap_dead_tuple (RewriteState state, HeapTuple old_tuple)
 
void CheckPointLogicalRewriteHeap (void)
 

Macro Definition Documentation

◆ LOGICAL_REWRITE_FORMAT

#define LOGICAL_REWRITE_FORMAT   "map-%x-%x-%X_%X-%x-%x"

Definition at line 54 of file rewriteheap.h.

Typedef Documentation

◆ LogicalRewriteMappingData

◆ RewriteState

typedef struct RewriteStateData* RewriteState

Definition at line 22 of file rewriteheap.h.

Function Documentation

◆ begin_heap_rewrite()

RewriteState begin_heap_rewrite ( Relation  old_heap,
Relation  new_heap,
TransactionId  oldest_xmin,
TransactionId  freeze_xid,
MultiXactId  cutoff_multi 
)

Definition at line 234 of file rewriteheap.c.

236 {
238  MemoryContext rw_cxt;
239  MemoryContext old_cxt;
240  HASHCTL hash_ctl;
241 
242  /*
243  * To ease cleanup, make a separate context that will contain the
244  * RewriteState struct itself plus all subsidiary data.
245  */
247  "Table rewrite",
249  old_cxt = MemoryContextSwitchTo(rw_cxt);
250 
251  /* Create and fill in the state struct */
252  state = palloc0(sizeof(RewriteStateData));
253 
254  state->rs_old_rel = old_heap;
255  state->rs_new_rel = new_heap;
256  state->rs_buffer = NULL;
257  /* new_heap needn't be empty, just locked */
258  state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
259  state->rs_oldest_xmin = oldest_xmin;
260  state->rs_freeze_xid = freeze_xid;
261  state->rs_cutoff_multi = cutoff_multi;
262  state->rs_cxt = rw_cxt;
263  state->rs_bulkstate = smgr_bulk_start_rel(new_heap, MAIN_FORKNUM);
264 
265  /* Initialize hash tables used to track update chains */
266  hash_ctl.keysize = sizeof(TidHashKey);
267  hash_ctl.entrysize = sizeof(UnresolvedTupData);
268  hash_ctl.hcxt = state->rs_cxt;
269 
270  state->rs_unresolved_tups =
271  hash_create("Rewrite / Unresolved ctids",
272  128, /* arbitrary initial size */
273  &hash_ctl,
275 
276  hash_ctl.entrysize = sizeof(OldToNewMappingData);
277 
278  state->rs_old_new_tid_map =
279  hash_create("Rewrite / Old to new tid map",
280  128, /* arbitrary initial size */
281  &hash_ctl,
283 
284  MemoryContextSwitchTo(old_cxt);
285 
287 
288  return state;
289 }
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:86
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
MemoryContextSwitchTo(old_ctx)
@ MAIN_FORKNUM
Definition: relpath.h:58
static void logical_begin_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:759
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: regguts.h:323

References ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, CurrentMemoryContext, HASHCTL::entrysize, HASH_BLOBS, HASH_CONTEXT, hash_create(), HASH_ELEM, HASHCTL::hcxt, HASHCTL::keysize, logical_begin_heap_rewrite(), MAIN_FORKNUM, MemoryContextSwitchTo(), palloc0(), RelationGetNumberOfBlocks, and smgr_bulk_start_rel().

Referenced by heapam_relation_copy_for_cluster().

◆ CheckPointLogicalRewriteHeap()

void CheckPointLogicalRewriteHeap ( void  )

Definition at line 1155 of file rewriteheap.c.

1156 {
1157  XLogRecPtr cutoff;
1158  XLogRecPtr redo;
1159  DIR *mappings_dir;
1160  struct dirent *mapping_de;
1161  char path[MAXPGPATH + sizeof(PG_LOGICAL_MAPPINGS_DIR)];
1162 
1163  /*
1164  * We start of with a minimum of the last redo pointer. No new decoding
1165  * slot will start before that, so that's a safe upper bound for removal.
1166  */
1167  redo = GetRedoRecPtr();
1168 
1169  /* now check for the restart ptrs from existing slots */
1171 
1172  /* don't start earlier than the restart lsn */
1173  if (cutoff != InvalidXLogRecPtr && redo < cutoff)
1174  cutoff = redo;
1175 
1176  mappings_dir = AllocateDir(PG_LOGICAL_MAPPINGS_DIR);
1177  while ((mapping_de = ReadDir(mappings_dir, PG_LOGICAL_MAPPINGS_DIR)) != NULL)
1178  {
1179  Oid dboid;
1180  Oid relid;
1181  XLogRecPtr lsn;
1182  TransactionId rewrite_xid;
1183  TransactionId create_xid;
1184  uint32 hi,
1185  lo;
1186  PGFileType de_type;
1187 
1188  if (strcmp(mapping_de->d_name, ".") == 0 ||
1189  strcmp(mapping_de->d_name, "..") == 0)
1190  continue;
1191 
1192  snprintf(path, sizeof(path), "%s/%s", PG_LOGICAL_MAPPINGS_DIR, mapping_de->d_name);
1193  de_type = get_dirent_type(path, mapping_de, false, DEBUG1);
1194 
1195  if (de_type != PGFILETYPE_ERROR && de_type != PGFILETYPE_REG)
1196  continue;
1197 
1198  /* Skip over files that cannot be ours. */
1199  if (strncmp(mapping_de->d_name, "map-", 4) != 0)
1200  continue;
1201 
1202  if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
1203  &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
1204  elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
1205 
1206  lsn = ((uint64) hi) << 32 | lo;
1207 
1208  if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
1209  {
1210  elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
1211  if (unlink(path) < 0)
1212  ereport(ERROR,
1214  errmsg("could not remove file \"%s\": %m", path)));
1215  }
1216  else
1217  {
1218  /* on some operating systems fsyncing a file requires O_RDWR */
1219  int fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
1220 
1221  /*
1222  * The file cannot vanish due to concurrency since this function
1223  * is the only one removing logical mappings and only one
1224  * checkpoint can be in progress at a time.
1225  */
1226  if (fd < 0)
1227  ereport(ERROR,
1229  errmsg("could not open file \"%s\": %m", path)));
1230 
1231  /*
1232  * We could try to avoid fsyncing files that either haven't
1233  * changed or have only been created since the checkpoint's start,
1234  * but it's currently not deemed worth the effort.
1235  */
1236  pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
1237  if (pg_fsync(fd) != 0)
1240  errmsg("could not fsync file \"%s\": %m", path)));
1242 
1243  if (CloseTransientFile(fd) != 0)
1244  ereport(ERROR,
1246  errmsg("could not close file \"%s\": %m", path)));
1247  }
1248  }
1249  FreeDir(mappings_dir);
1250 
1251  /* persist directory entries to disk */
1253 }
unsigned int uint32
Definition: c.h:509
#define PG_BINARY
Definition: c.h:1276
uint32 TransactionId
Definition: c.h:655
int errcode_for_file_access(void)
Definition: elog.c:876
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2932
int FreeDir(DIR *dir)
Definition: fd.c:2984
int CloseTransientFile(int fd)
Definition: fd.c:2832
void fsync_fname(const char *fname, bool isdir)
Definition: fd.c:756
int data_sync_elevel(int elevel)
Definition: fd.c:3960
int pg_fsync(int fd)
Definition: fd.c:386
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2656
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2866
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:526
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_REG
Definition: file_utils.h:22
@ PGFILETYPE_ERROR
Definition: file_utils.h:20
#define MAXPGPATH
#define snprintf
Definition: port.h:238
unsigned int Oid
Definition: postgres_ext.h:31
static int fd(const char *x, int i)
Definition: preproc-init.c:105
#define PG_LOGICAL_MAPPINGS_DIR
Definition: reorderbuffer.h:23
#define LOGICAL_REWRITE_FORMAT
Definition: rewriteheap.h:54
XLogRecPtr ReplicationSlotsComputeLogicalRestartLSN(void)
Definition: slot.c:1182
Definition: dirent.c:26
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6436
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28

References AllocateDir(), CloseTransientFile(), dirent::d_name, data_sync_elevel(), DEBUG1, elog, ereport, errcode_for_file_access(), errmsg(), ERROR, fd(), FreeDir(), fsync_fname(), get_dirent_type(), GetRedoRecPtr(), InvalidXLogRecPtr, LOGICAL_REWRITE_FORMAT, MAXPGPATH, OpenTransientFile(), PG_BINARY, pg_fsync(), PG_LOGICAL_MAPPINGS_DIR, PGFILETYPE_ERROR, PGFILETYPE_REG, pgstat_report_wait_end(), pgstat_report_wait_start(), ReadDir(), ReplicationSlotsComputeLogicalRestartLSN(), and snprintf.

Referenced by CheckPointGuts().

◆ end_heap_rewrite()

void end_heap_rewrite ( RewriteState  state)

Definition at line 297 of file rewriteheap.c.

298 {
299  HASH_SEQ_STATUS seq_status;
300  UnresolvedTup unresolved;
301 
302  /*
303  * Write any remaining tuples in the UnresolvedTups table. If we have any
304  * left, they should in fact be dead, but let's err on the safe side.
305  */
306  hash_seq_init(&seq_status, state->rs_unresolved_tups);
307 
308  while ((unresolved = hash_seq_search(&seq_status)) != NULL)
309  {
310  ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
311  raw_heap_insert(state, unresolved->tuple);
312  }
313 
314  /* Write the last page, if any */
315  if (state->rs_buffer)
316  {
317  smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
318  state->rs_buffer = NULL;
319  }
320 
321  smgr_bulk_finish(state->rs_bulkstate);
322 
324 
325  /* Deleting the context frees everything */
326  MemoryContextDelete(state->rs_cxt);
327 }
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:321
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:129
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1420
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
static void ItemPointerSetInvalid(ItemPointerData *pointer)
Definition: itemptr.h:184
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
static void raw_heap_insert(RewriteState state, HeapTuple tup)
Definition: rewriteheap.c:593
static void logical_end_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:905
HeapTupleHeader t_data
Definition: htup.h:68
ItemPointerData t_ctid
Definition: htup_details.h:161

References hash_seq_init(), hash_seq_search(), ItemPointerSetInvalid(), logical_end_heap_rewrite(), MemoryContextDelete(), raw_heap_insert(), smgr_bulk_finish(), smgr_bulk_write(), HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, and UnresolvedTupData::tuple.

Referenced by heapam_relation_copy_for_cluster().

◆ rewrite_heap_dead_tuple()

bool rewrite_heap_dead_tuple ( RewriteState  state,
HeapTuple  old_tuple 
)

Definition at line 543 of file rewriteheap.c.

544 {
545  /*
546  * If we have already seen an earlier tuple in the update chain that
547  * points to this tuple, let's forget about that earlier tuple. It's in
548  * fact dead as well, our simple xmax < OldestXmin test in
549  * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
550  * when xmin of a tuple is greater than xmax, which sounds
551  * counter-intuitive but is perfectly valid.
552  *
553  * We don't bother to try to detect the situation the other way round,
554  * when we encounter the dead tuple first and then the recently dead one
555  * that points to it. If that happens, we'll have some unmatched entries
556  * in the UnresolvedTups hash table at the end. That can happen anyway,
557  * because a vacuum might have removed the dead tuple in the chain before
558  * us.
559  */
560  UnresolvedTup unresolved;
561  TidHashKey hashkey;
562  bool found;
563 
564  memset(&hashkey, 0, sizeof(hashkey));
565  hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
566  hashkey.tid = old_tuple->t_self;
567 
568  unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
569  HASH_FIND, NULL);
570 
571  if (unresolved != NULL)
572  {
573  /* Need to free the contained tuple as well as the hashtable entry */
574  heap_freetuple(unresolved->tuple);
575  hash_search(state->rs_unresolved_tups, &hashkey,
576  HASH_REMOVE, &found);
577  Assert(found);
578  return true;
579  }
580 
581  return false;
582 }
#define Assert(condition)
Definition: c.h:861
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1434
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
ItemPointerData t_self
Definition: htup.h:65
TransactionId xmin
Definition: rewriteheap.c:163
ItemPointerData tid
Definition: rewriteheap.c:164

References Assert, HASH_FIND, HASH_REMOVE, hash_search(), heap_freetuple(), HeapTupleHeaderGetXmin, HeapTupleData::t_data, HeapTupleData::t_self, TidHashKey::tid, UnresolvedTupData::tuple, and TidHashKey::xmin.

Referenced by heapam_relation_copy_for_cluster().

◆ rewrite_heap_tuple()

void rewrite_heap_tuple ( RewriteState  state,
HeapTuple  old_tuple,
HeapTuple  new_tuple 
)

Definition at line 341 of file rewriteheap.c.

343 {
344  MemoryContext old_cxt;
345  ItemPointerData old_tid;
346  TidHashKey hashkey;
347  bool found;
348  bool free_new;
349 
350  old_cxt = MemoryContextSwitchTo(state->rs_cxt);
351 
352  /*
353  * Copy the original tuple's visibility information into new_tuple.
354  *
355  * XXX we might later need to copy some t_infomask2 bits, too? Right now,
356  * we intentionally clear the HOT status bits.
357  */
358  memcpy(&new_tuple->t_data->t_choice.t_heap,
359  &old_tuple->t_data->t_choice.t_heap,
360  sizeof(HeapTupleFields));
361 
362  new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
363  new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
364  new_tuple->t_data->t_infomask |=
365  old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
366 
367  /*
368  * While we have our hands on the tuple, we may as well freeze any
369  * eligible xmin or xmax, so that future VACUUM effort can be saved.
370  */
371  heap_freeze_tuple(new_tuple->t_data,
372  state->rs_old_rel->rd_rel->relfrozenxid,
373  state->rs_old_rel->rd_rel->relminmxid,
374  state->rs_freeze_xid,
375  state->rs_cutoff_multi);
376 
377  /*
378  * Invalid ctid means that ctid should point to the tuple itself. We'll
379  * override it later if the tuple is part of an update chain.
380  */
381  ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
382 
383  /*
384  * If the tuple has been updated, check the old-to-new mapping hash table.
385  */
386  if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
387  HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
389  !(ItemPointerEquals(&(old_tuple->t_self),
390  &(old_tuple->t_data->t_ctid))))
391  {
392  OldToNewMapping mapping;
393 
394  memset(&hashkey, 0, sizeof(hashkey));
395  hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
396  hashkey.tid = old_tuple->t_data->t_ctid;
397 
398  mapping = (OldToNewMapping)
399  hash_search(state->rs_old_new_tid_map, &hashkey,
400  HASH_FIND, NULL);
401 
402  if (mapping != NULL)
403  {
404  /*
405  * We've already copied the tuple that t_ctid points to, so we can
406  * set the ctid of this tuple to point to the new location, and
407  * insert it right away.
408  */
409  new_tuple->t_data->t_ctid = mapping->new_tid;
410 
411  /* We don't need the mapping entry anymore */
412  hash_search(state->rs_old_new_tid_map, &hashkey,
413  HASH_REMOVE, &found);
414  Assert(found);
415  }
416  else
417  {
418  /*
419  * We haven't seen the tuple t_ctid points to yet. Stash this
420  * tuple into unresolved_tups to be written later.
421  */
422  UnresolvedTup unresolved;
423 
424  unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
425  HASH_ENTER, &found);
426  Assert(!found);
427 
428  unresolved->old_tid = old_tuple->t_self;
429  unresolved->tuple = heap_copytuple(new_tuple);
430 
431  /*
432  * We can't do anything more now, since we don't know where the
433  * tuple will be written.
434  */
435  MemoryContextSwitchTo(old_cxt);
436  return;
437  }
438  }
439 
440  /*
441  * Now we will write the tuple, and then check to see if it is the B tuple
442  * in any new or known pair. When we resolve a known pair, we will be
443  * able to write that pair's A tuple, and then we have to check if it
444  * resolves some other pair. Hence, we need a loop here.
445  */
446  old_tid = old_tuple->t_self;
447  free_new = false;
448 
449  for (;;)
450  {
451  ItemPointerData new_tid;
452 
453  /* Insert the tuple and find out where it's put in new_heap */
454  raw_heap_insert(state, new_tuple);
455  new_tid = new_tuple->t_self;
456 
457  logical_rewrite_heap_tuple(state, old_tid, new_tuple);
458 
459  /*
460  * If the tuple is the updated version of a row, and the prior version
461  * wouldn't be DEAD yet, then we need to either resolve the prior
462  * version (if it's waiting in rs_unresolved_tups), or make an entry
463  * in rs_old_new_tid_map (so we can resolve it when we do see it). The
464  * previous tuple's xmax would equal this one's xmin, so it's
465  * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
466  */
467  if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
469  state->rs_oldest_xmin))
470  {
471  /*
472  * Okay, this is B in an update pair. See if we've seen A.
473  */
474  UnresolvedTup unresolved;
475 
476  memset(&hashkey, 0, sizeof(hashkey));
477  hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
478  hashkey.tid = old_tid;
479 
480  unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
481  HASH_FIND, NULL);
482 
483  if (unresolved != NULL)
484  {
485  /*
486  * We have seen and memorized the previous tuple already. Now
487  * that we know where we inserted the tuple its t_ctid points
488  * to, fix its t_ctid and insert it to the new heap.
489  */
490  if (free_new)
491  heap_freetuple(new_tuple);
492  new_tuple = unresolved->tuple;
493  free_new = true;
494  old_tid = unresolved->old_tid;
495  new_tuple->t_data->t_ctid = new_tid;
496 
497  /*
498  * We don't need the hash entry anymore, but don't free its
499  * tuple just yet.
500  */
501  hash_search(state->rs_unresolved_tups, &hashkey,
502  HASH_REMOVE, &found);
503  Assert(found);
504 
505  /* loop back to insert the previous tuple in the chain */
506  continue;
507  }
508  else
509  {
510  /*
511  * Remember the new tid of this tuple. We'll use it to set the
512  * ctid when we find the previous tuple in the chain.
513  */
514  OldToNewMapping mapping;
515 
516  mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
517  HASH_ENTER, &found);
518  Assert(!found);
519 
520  mapping->new_tid = new_tid;
521  }
522  }
523 
524  /* Done with this (chain of) tuples, for now */
525  if (free_new)
526  heap_freetuple(new_tuple);
527  break;
528  }
529 
530  MemoryContextSwitchTo(old_cxt);
531 }
bool heap_freeze_tuple(HeapTupleHeader tuple, TransactionId relfrozenxid, TransactionId relminmxid, TransactionId FreezeLimit, TransactionId MultiXactCutoff)
Definition: heapam.c:7158
bool HeapTupleHeaderIsOnlyLocked(HeapTupleHeader tuple)
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:776
@ HASH_ENTER
Definition: hsearch.h:114
#define HeapTupleHeaderIndicatesMovedPartitions(tup)
Definition: htup_details.h:444
#define HEAP2_XACT_MASK
Definition: htup_details.h:279
#define HEAP_XACT_MASK
Definition: htup_details.h:215
#define HEAP_XMAX_INVALID
Definition: htup_details.h:208
#define HEAP_UPDATED
Definition: htup_details.h:210
#define HeapTupleHeaderGetUpdateXid(tup)
Definition: htup_details.h:361
bool ItemPointerEquals(ItemPointer pointer1, ItemPointer pointer2)
Definition: itemptr.c:35
static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple)
Definition: rewriteheap.c:999
OldToNewMappingData * OldToNewMapping
Definition: rewriteheap.c:185
HeapTupleFields t_heap
Definition: htup_details.h:157
union HeapTupleHeaderData::@48 t_choice
ItemPointerData new_tid
Definition: rewriteheap.c:182
ItemPointerData old_tid
Definition: rewriteheap.c:173
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280

References Assert, HASH_ENTER, HASH_FIND, HASH_REMOVE, hash_search(), HEAP2_XACT_MASK, heap_copytuple(), heap_freetuple(), heap_freeze_tuple(), HEAP_UPDATED, HEAP_XACT_MASK, HEAP_XMAX_INVALID, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleHeaderIndicatesMovedPartitions, HeapTupleHeaderIsOnlyLocked(), ItemPointerEquals(), ItemPointerSetInvalid(), logical_rewrite_heap_tuple(), MemoryContextSwitchTo(), OldToNewMappingData::new_tid, UnresolvedTupData::old_tid, raw_heap_insert(), HeapTupleHeaderData::t_choice, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_heap, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_self, TidHashKey::tid, TransactionIdPrecedes(), UnresolvedTupData::tuple, and TidHashKey::xmin.

Referenced by reform_and_rewrite_tuple().