PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
rewriteheap.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * rewriteheap.c
4 * Support functions to rewrite tables.
5 *
6 * These functions provide a facility to completely rewrite a heap, while
7 * preserving visibility information and update chains.
8 *
9 * INTERFACE
10 *
11 * The caller is responsible for creating the new heap, all catalog
12 * changes, supplying the tuples to be written to the new heap, and
13 * rebuilding indexes. The caller must hold AccessExclusiveLock on the
14 * target table, because we assume no one else is writing into it.
15 *
16 * To use the facility:
17 *
18 * begin_heap_rewrite
19 * while (fetch next tuple)
20 * {
21 * if (tuple is dead)
22 * rewrite_heap_dead_tuple
23 * else
24 * {
25 * // do any transformations here if required
26 * rewrite_heap_tuple
27 * }
28 * }
29 * end_heap_rewrite
30 *
31 * The contents of the new relation shouldn't be relied on until after
32 * end_heap_rewrite is called.
33 *
34 *
35 * IMPLEMENTATION
36 *
37 * This would be a fairly trivial affair, except that we need to maintain
38 * the ctid chains that link versions of an updated tuple together.
39 * Since the newly stored tuples will have tids different from the original
40 * ones, if we just copied t_ctid fields to the new table the links would
41 * be wrong. When we are required to copy a (presumably recently-dead or
42 * delete-in-progress) tuple whose ctid doesn't point to itself, we have
43 * to substitute the correct ctid instead.
44 *
45 * For each ctid reference from A -> B, we might encounter either A first
46 * or B first. (Note that a tuple in the middle of a chain is both A and B
47 * of different pairs.)
48 *
49 * If we encounter A first, we'll store the tuple in the unresolved_tups
50 * hash table. When we later encounter B, we remove A from the hash table,
51 * fix the ctid to point to the new location of B, and insert both A and B
52 * to the new heap.
53 *
54 * If we encounter B first, we can insert B to the new heap right away.
55 * We then add an entry to the old_new_tid_map hash table showing B's
56 * original tid (in the old heap) and new tid (in the new heap).
57 * When we later encounter A, we get the new location of B from the table,
58 * and can write A immediately with the correct ctid.
59 *
60 * Entries in the hash tables can be removed as soon as the later tuple
61 * is encountered. That helps to keep the memory usage down. At the end,
62 * both tables are usually empty; we should have encountered both A and B
63 * of each pair. However, it's possible for A to be RECENTLY_DEAD and B
64 * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
65 * for deadness using OldestXmin is not exact. In such a case we might
66 * encounter B first, and skip it, and find A later. Then A would be added
67 * to unresolved_tups, and stay there until end of the rewrite. Since
68 * this case is very unusual, we don't worry about the memory usage.
69 *
70 * Using in-memory hash tables means that we use some memory for each live
71 * update chain in the table, from the time we find one end of the
72 * reference until we find the other end. That shouldn't be a problem in
73 * practice, but if you do something like an UPDATE without a where-clause
74 * on a large table, and then run CLUSTER in the same transaction, you
75 * could run out of memory. It doesn't seem worthwhile to add support for
76 * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
77 * table under normal circumstances. Furthermore, in the typical scenario
78 * of CLUSTERing on an unchanging key column, we'll see all the versions
79 * of a given tuple together anyway, and so the peak memory usage is only
80 * proportional to the number of RECENTLY_DEAD versions of a single row, not
81 * in the whole table. Note that if we do fail halfway through a CLUSTER,
82 * the old table is still valid, so failure is not catastrophic.
83 *
84 * We can't use the normal heap_insert function to insert into the new
85 * heap, because heap_insert overwrites the visibility information.
86 * We use a special-purpose raw_heap_insert function instead, which
87 * is optimized for bulk inserting a lot of tuples, knowing that we have
88 * exclusive access to the heap. raw_heap_insert builds new pages in
89 * local storage. When a page is full, or at the end of the process,
90 * we insert it to WAL as a single record and then write it to disk with
91 * the bulk smgr writer. Note, however, that any data sent to the new
92 * heap's TOAST table will go through the normal bufmgr.
93 *
94 *
95 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
96 * Portions Copyright (c) 1994-5, Regents of the University of California
97 *
98 * IDENTIFICATION
99 * src/backend/access/heap/rewriteheap.c
100 *
101 *-------------------------------------------------------------------------
102 */
103#include "postgres.h"
104
105#include <unistd.h>
106
107#include "access/heapam.h"
108#include "access/heapam_xlog.h"
109#include "access/heaptoast.h"
110#include "access/rewriteheap.h"
111#include "access/transam.h"
112#include "access/xact.h"
113#include "access/xloginsert.h"
114#include "common/file_utils.h"
115#include "lib/ilist.h"
116#include "miscadmin.h"
117#include "pgstat.h"
118#include "replication/slot.h"
119#include "storage/bufmgr.h"
120#include "storage/bulk_write.h"
121#include "storage/fd.h"
122#include "storage/procarray.h"
123#include "utils/memutils.h"
124#include "utils/rel.h"
125
126/*
127 * State associated with a rewrite operation. This is opaque to the user
128 * of the rewrite facility.
129 */
130typedef struct RewriteStateData
131{
132 Relation rs_old_rel; /* source heap */
133 Relation rs_new_rel; /* destination heap */
134 BulkWriteState *rs_bulkstate; /* writer for the destination */
135 BulkWriteBuffer rs_buffer; /* page currently being built */
136 BlockNumber rs_blockno; /* block where page will go */
137 bool rs_logical_rewrite; /* do we need to do logical rewriting */
138 TransactionId rs_oldest_xmin; /* oldest xmin used by caller to determine
139 * tuple visibility */
140 TransactionId rs_freeze_xid; /* Xid that will be used as freeze cutoff
141 * point */
142 TransactionId rs_logical_xmin; /* Xid that will be used as cutoff point
143 * for logical rewrites */
144 MultiXactId rs_cutoff_multi; /* MultiXactId that will be used as cutoff
145 * point for multixacts */
146 MemoryContext rs_cxt; /* for hash tables and entries and tuples in
147 * them */
148 XLogRecPtr rs_begin_lsn; /* XLogInsertLsn when starting the rewrite */
149 HTAB *rs_unresolved_tups; /* unmatched A tuples */
150 HTAB *rs_old_new_tid_map; /* unmatched B tuples */
151 HTAB *rs_logical_mappings; /* logical remapping files */
152 uint32 rs_num_rewrite_mappings; /* # in memory mappings */
154
155/*
156 * The lookup keys for the hash tables are tuple TID and xmin (we must check
157 * both to avoid false matches from dead tuples). Beware that there is
158 * probably some padding space in this struct; it must be zeroed out for
159 * correct hashtable operation.
160 */
161typedef struct
162{
163 TransactionId xmin; /* tuple xmin */
164 ItemPointerData tid; /* tuple location in old heap */
165} TidHashKey;
166
167/*
168 * Entry structures for the hash tables
169 */
170typedef struct
171{
172 TidHashKey key; /* expected xmin/old location of B tuple */
173 ItemPointerData old_tid; /* A's location in the old heap */
174 HeapTuple tuple; /* A's tuple contents */
176
178
179typedef struct
180{
181 TidHashKey key; /* actual xmin/old location of B tuple */
182 ItemPointerData new_tid; /* where we put it in the new heap */
184
186
187/*
188 * In-Memory data for an xid that might need logical remapping entries
189 * to be logged.
190 */
191typedef struct RewriteMappingFile
192{
193 TransactionId xid; /* xid that might need to see the row */
194 int vfd; /* fd of mappings file */
195 off_t off; /* how far have we written yet */
196 dclist_head mappings; /* list of in-memory mappings */
197 char path[MAXPGPATH]; /* path, for error messages */
199
200/*
201 * A single In-Memory logical rewrite mapping, hanging off
202 * RewriteMappingFile->mappings.
203 */
205{
206 LogicalRewriteMappingData map; /* map between old and new location of the
207 * tuple */
210
211
212/* prototypes for internal functions */
214
215/* internal logical remapping prototypes */
219
220
221/*
222 * Begin a rewrite of a table
223 *
224 * old_heap old, locked heap relation tuples will be read from
225 * new_heap new, locked heap relation to insert tuples to
226 * oldest_xmin xid used by the caller to determine which tuples are dead
227 * freeze_xid xid before which tuples will be frozen
228 * cutoff_multi multixact before which multis will be removed
229 *
230 * Returns an opaque RewriteState, allocated in current memory context,
231 * to be used in subsequent calls to the other functions.
232 */
234begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
235 TransactionId freeze_xid, MultiXactId cutoff_multi)
236{
238 MemoryContext rw_cxt;
239 MemoryContext old_cxt;
240 HASHCTL hash_ctl;
241
242 /*
243 * To ease cleanup, make a separate context that will contain the
244 * RewriteState struct itself plus all subsidiary data.
245 */
247 "Table rewrite",
249 old_cxt = MemoryContextSwitchTo(rw_cxt);
250
251 /* Create and fill in the state struct */
252 state = palloc0(sizeof(RewriteStateData));
253
254 state->rs_old_rel = old_heap;
255 state->rs_new_rel = new_heap;
256 state->rs_buffer = NULL;
257 /* new_heap needn't be empty, just locked */
258 state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
259 state->rs_oldest_xmin = oldest_xmin;
260 state->rs_freeze_xid = freeze_xid;
261 state->rs_cutoff_multi = cutoff_multi;
262 state->rs_cxt = rw_cxt;
263 state->rs_bulkstate = smgr_bulk_start_rel(new_heap, MAIN_FORKNUM);
264
265 /* Initialize hash tables used to track update chains */
266 hash_ctl.keysize = sizeof(TidHashKey);
267 hash_ctl.entrysize = sizeof(UnresolvedTupData);
268 hash_ctl.hcxt = state->rs_cxt;
269
270 state->rs_unresolved_tups =
271 hash_create("Rewrite / Unresolved ctids",
272 128, /* arbitrary initial size */
273 &hash_ctl,
275
276 hash_ctl.entrysize = sizeof(OldToNewMappingData);
277
278 state->rs_old_new_tid_map =
279 hash_create("Rewrite / Old to new tid map",
280 128, /* arbitrary initial size */
281 &hash_ctl,
283
284 MemoryContextSwitchTo(old_cxt);
285
287
288 return state;
289}
290
291/*
292 * End a rewrite.
293 *
294 * state and any other resources are freed.
295 */
296void
298{
299 HASH_SEQ_STATUS seq_status;
300 UnresolvedTup unresolved;
301
302 /*
303 * Write any remaining tuples in the UnresolvedTups table. If we have any
304 * left, they should in fact be dead, but let's err on the safe side.
305 */
306 hash_seq_init(&seq_status, state->rs_unresolved_tups);
307
308 while ((unresolved = hash_seq_search(&seq_status)) != NULL)
309 {
311 raw_heap_insert(state, unresolved->tuple);
312 }
313
314 /* Write the last page, if any */
315 if (state->rs_buffer)
316 {
317 smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
318 state->rs_buffer = NULL;
319 }
320
321 smgr_bulk_finish(state->rs_bulkstate);
322
324
325 /* Deleting the context frees everything */
326 MemoryContextDelete(state->rs_cxt);
327}
328
329/*
330 * Add a tuple to the new heap.
331 *
332 * Visibility information is copied from the original tuple, except that
333 * we "freeze" very-old tuples. Note that since we scribble on new_tuple,
334 * it had better be temp storage not a pointer to the original tuple.
335 *
336 * state opaque state as returned by begin_heap_rewrite
337 * old_tuple original tuple in the old heap
338 * new_tuple new, rewritten tuple to be inserted to new heap
339 */
340void
342 HeapTuple old_tuple, HeapTuple new_tuple)
343{
344 MemoryContext old_cxt;
345 ItemPointerData old_tid;
346 TidHashKey hashkey;
347 bool found;
348 bool free_new;
349
350 old_cxt = MemoryContextSwitchTo(state->rs_cxt);
351
352 /*
353 * Copy the original tuple's visibility information into new_tuple.
354 *
355 * XXX we might later need to copy some t_infomask2 bits, too? Right now,
356 * we intentionally clear the HOT status bits.
357 */
358 memcpy(&new_tuple->t_data->t_choice.t_heap,
359 &old_tuple->t_data->t_choice.t_heap,
360 sizeof(HeapTupleFields));
361
362 new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
363 new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
364 new_tuple->t_data->t_infomask |=
365 old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
366
367 /*
368 * While we have our hands on the tuple, we may as well freeze any
369 * eligible xmin or xmax, so that future VACUUM effort can be saved.
370 */
371 heap_freeze_tuple(new_tuple->t_data,
372 state->rs_old_rel->rd_rel->relfrozenxid,
373 state->rs_old_rel->rd_rel->relminmxid,
374 state->rs_freeze_xid,
375 state->rs_cutoff_multi);
376
377 /*
378 * Invalid ctid means that ctid should point to the tuple itself. We'll
379 * override it later if the tuple is part of an update chain.
380 */
381 ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
382
383 /*
384 * If the tuple has been updated, check the old-to-new mapping hash table.
385 */
386 if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
387 HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
389 !(ItemPointerEquals(&(old_tuple->t_self),
390 &(old_tuple->t_data->t_ctid))))
391 {
392 OldToNewMapping mapping;
393
394 memset(&hashkey, 0, sizeof(hashkey));
395 hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
396 hashkey.tid = old_tuple->t_data->t_ctid;
397
398 mapping = (OldToNewMapping)
399 hash_search(state->rs_old_new_tid_map, &hashkey,
400 HASH_FIND, NULL);
401
402 if (mapping != NULL)
403 {
404 /*
405 * We've already copied the tuple that t_ctid points to, so we can
406 * set the ctid of this tuple to point to the new location, and
407 * insert it right away.
408 */
409 new_tuple->t_data->t_ctid = mapping->new_tid;
410
411 /* We don't need the mapping entry anymore */
412 hash_search(state->rs_old_new_tid_map, &hashkey,
413 HASH_REMOVE, &found);
414 Assert(found);
415 }
416 else
417 {
418 /*
419 * We haven't seen the tuple t_ctid points to yet. Stash this
420 * tuple into unresolved_tups to be written later.
421 */
422 UnresolvedTup unresolved;
423
424 unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
425 HASH_ENTER, &found);
426 Assert(!found);
427
428 unresolved->old_tid = old_tuple->t_self;
429 unresolved->tuple = heap_copytuple(new_tuple);
430
431 /*
432 * We can't do anything more now, since we don't know where the
433 * tuple will be written.
434 */
435 MemoryContextSwitchTo(old_cxt);
436 return;
437 }
438 }
439
440 /*
441 * Now we will write the tuple, and then check to see if it is the B tuple
442 * in any new or known pair. When we resolve a known pair, we will be
443 * able to write that pair's A tuple, and then we have to check if it
444 * resolves some other pair. Hence, we need a loop here.
445 */
446 old_tid = old_tuple->t_self;
447 free_new = false;
448
449 for (;;)
450 {
451 ItemPointerData new_tid;
452
453 /* Insert the tuple and find out where it's put in new_heap */
454 raw_heap_insert(state, new_tuple);
455 new_tid = new_tuple->t_self;
456
457 logical_rewrite_heap_tuple(state, old_tid, new_tuple);
458
459 /*
460 * If the tuple is the updated version of a row, and the prior version
461 * wouldn't be DEAD yet, then we need to either resolve the prior
462 * version (if it's waiting in rs_unresolved_tups), or make an entry
463 * in rs_old_new_tid_map (so we can resolve it when we do see it). The
464 * previous tuple's xmax would equal this one's xmin, so it's
465 * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
466 */
467 if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
469 state->rs_oldest_xmin))
470 {
471 /*
472 * Okay, this is B in an update pair. See if we've seen A.
473 */
474 UnresolvedTup unresolved;
475
476 memset(&hashkey, 0, sizeof(hashkey));
477 hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
478 hashkey.tid = old_tid;
479
480 unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
481 HASH_FIND, NULL);
482
483 if (unresolved != NULL)
484 {
485 /*
486 * We have seen and memorized the previous tuple already. Now
487 * that we know where we inserted the tuple its t_ctid points
488 * to, fix its t_ctid and insert it to the new heap.
489 */
490 if (free_new)
491 heap_freetuple(new_tuple);
492 new_tuple = unresolved->tuple;
493 free_new = true;
494 old_tid = unresolved->old_tid;
495 new_tuple->t_data->t_ctid = new_tid;
496
497 /*
498 * We don't need the hash entry anymore, but don't free its
499 * tuple just yet.
500 */
501 hash_search(state->rs_unresolved_tups, &hashkey,
502 HASH_REMOVE, &found);
503 Assert(found);
504
505 /* loop back to insert the previous tuple in the chain */
506 continue;
507 }
508 else
509 {
510 /*
511 * Remember the new tid of this tuple. We'll use it to set the
512 * ctid when we find the previous tuple in the chain.
513 */
514 OldToNewMapping mapping;
515
516 mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
517 HASH_ENTER, &found);
518 Assert(!found);
519
520 mapping->new_tid = new_tid;
521 }
522 }
523
524 /* Done with this (chain of) tuples, for now */
525 if (free_new)
526 heap_freetuple(new_tuple);
527 break;
528 }
529
530 MemoryContextSwitchTo(old_cxt);
531}
532
533/*
534 * Register a dead tuple with an ongoing rewrite. Dead tuples are not
535 * copied to the new table, but we still make note of them so that we
536 * can release some resources earlier.
537 *
538 * Returns true if a tuple was removed from the unresolved_tups table.
539 * This indicates that that tuple, previously thought to be "recently dead",
540 * is now known really dead and won't be written to the output.
541 */
542bool
544{
545 /*
546 * If we have already seen an earlier tuple in the update chain that
547 * points to this tuple, let's forget about that earlier tuple. It's in
548 * fact dead as well, our simple xmax < OldestXmin test in
549 * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
550 * when xmin of a tuple is greater than xmax, which sounds
551 * counter-intuitive but is perfectly valid.
552 *
553 * We don't bother to try to detect the situation the other way round,
554 * when we encounter the dead tuple first and then the recently dead one
555 * that points to it. If that happens, we'll have some unmatched entries
556 * in the UnresolvedTups hash table at the end. That can happen anyway,
557 * because a vacuum might have removed the dead tuple in the chain before
558 * us.
559 */
560 UnresolvedTup unresolved;
561 TidHashKey hashkey;
562 bool found;
563
564 memset(&hashkey, 0, sizeof(hashkey));
565 hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
566 hashkey.tid = old_tuple->t_self;
567
568 unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
569 HASH_FIND, NULL);
570
571 if (unresolved != NULL)
572 {
573 /* Need to free the contained tuple as well as the hashtable entry */
574 heap_freetuple(unresolved->tuple);
575 hash_search(state->rs_unresolved_tups, &hashkey,
576 HASH_REMOVE, &found);
577 Assert(found);
578 return true;
579 }
580
581 return false;
582}
583
584/*
585 * Insert a tuple to the new relation. This has to track heap_insert
586 * and its subsidiary functions!
587 *
588 * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
589 * tuple is invalid on entry, it's replaced with the new TID as well (in
590 * the inserted data only, not in the caller's copy).
591 */
592static void
594{
595 Page page;
596 Size pageFreeSpace,
597 saveFreeSpace;
598 Size len;
599 OffsetNumber newoff;
600 HeapTuple heaptup;
601
602 /*
603 * If the new tuple is too big for storage or contains already toasted
604 * out-of-line attributes from some other relation, invoke the toaster.
605 *
606 * Note: below this point, heaptup is the data we actually intend to store
607 * into the relation; tup is the caller's original untoasted data.
608 */
609 if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
610 {
611 /* toast table entries should never be recursively toasted */
613 heaptup = tup;
614 }
615 else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
616 {
618
619 /*
620 * While rewriting the heap for VACUUM FULL / CLUSTER, make sure data
621 * for the TOAST table are not logically decoded. The main heap is
622 * WAL-logged as XLOG FPI records, which are not logically decoded.
623 */
625
626 heaptup = heap_toast_insert_or_update(state->rs_new_rel, tup, NULL,
627 options);
628 }
629 else
630 heaptup = tup;
631
632 len = MAXALIGN(heaptup->t_len); /* be conservative */
633
634 /*
635 * If we're gonna fail for oversize tuple, do it right away
636 */
637 if (len > MaxHeapTupleSize)
639 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
640 errmsg("row is too big: size %zu, maximum size %zu",
642
643 /* Compute desired extra freespace due to fillfactor option */
644 saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
646
647 /* Now we can check to see if there's enough free space already. */
648 page = (Page) state->rs_buffer;
649 if (page)
650 {
651 pageFreeSpace = PageGetHeapFreeSpace(page);
652
653 if (len + saveFreeSpace > pageFreeSpace)
654 {
655 /*
656 * Doesn't fit, so write out the existing page. It always
657 * contains a tuple. Hence, unlike RelationGetBufferForTuple(),
658 * enforce saveFreeSpace unconditionally.
659 */
660 smgr_bulk_write(state->rs_bulkstate, state->rs_blockno, state->rs_buffer, true);
661 state->rs_buffer = NULL;
662 page = NULL;
663 state->rs_blockno++;
664 }
665 }
666
667 if (!page)
668 {
669 /* Initialize a new empty page */
670 state->rs_buffer = smgr_bulk_get_buf(state->rs_bulkstate);
671 page = (Page) state->rs_buffer;
672 PageInit(page, BLCKSZ, 0);
673 }
674
675 /* And now we can insert the tuple into the page */
676 newoff = PageAddItem(page, (Item) heaptup->t_data, heaptup->t_len,
677 InvalidOffsetNumber, false, true);
678 if (newoff == InvalidOffsetNumber)
679 elog(ERROR, "failed to add tuple");
680
681 /* Update caller's t_self to the actual position where it was stored */
682 ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
683
684 /*
685 * Insert the correct position into CTID of the stored tuple, too, if the
686 * caller didn't supply a valid CTID.
687 */
688 if (!ItemPointerIsValid(&tup->t_data->t_ctid))
689 {
690 ItemId newitemid;
691 HeapTupleHeader onpage_tup;
692
693 newitemid = PageGetItemId(page, newoff);
694 onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
695
696 onpage_tup->t_ctid = tup->t_self;
697 }
698
699 /* If heaptup is a private copy, release it. */
700 if (heaptup != tup)
701 heap_freetuple(heaptup);
702}
703
704/* ------------------------------------------------------------------------
705 * Logical rewrite support
706 *
707 * When doing logical decoding - which relies on using cmin/cmax of catalog
708 * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
709 * information to allow the decoding backend to update its internal mapping
710 * of (relfilelocator,ctid) => (cmin, cmax) to be correct for the rewritten heap.
711 *
712 * For that, every time we find a tuple that's been modified in a catalog
713 * relation within the xmin horizon of any decoding slot, we log a mapping
714 * from the old to the new location.
715 *
716 * To deal with rewrites that abort the filename of a mapping file contains
717 * the xid of the transaction performing the rewrite, which then can be
718 * checked before being read in.
719 *
720 * For efficiency we don't immediately spill every single map mapping for a
721 * row to disk but only do so in batches when we've collected several of them
722 * in memory or when end_heap_rewrite() has been called.
723 *
724 * Crash-Safety: This module diverts from the usual patterns of doing WAL
725 * since it cannot rely on checkpoint flushing out all buffers and thus
726 * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
727 * buffer modifications is performed while the buffer(s) that are being
728 * modified are exclusively locked guaranteeing that both the WAL record and
729 * the modified heap are on either side of the checkpoint. But since the
730 * mapping files we log aren't in shared_buffers that interlock doesn't work.
731 *
732 * Instead we simply write the mapping files out to disk, *before* the
733 * XLogInsert() is performed. That guarantees that either the XLogInsert() is
734 * inserted after the checkpoint's redo pointer or that the checkpoint (via
735 * CheckPointLogicalRewriteHeap()) has flushed the (partial) mapping file to
736 * disk. That leaves the tail end that has not yet been flushed open to
737 * corruption, which is solved by including the current offset in the
738 * xl_heap_rewrite_mapping records and truncating the mapping file to it
739 * during replay. Every time a rewrite is finished all generated mapping files
740 * are synced to disk.
741 *
742 * Note that if we were only concerned about crash safety we wouldn't have to
743 * deal with WAL logging at all - an fsync() at the end of a rewrite would be
744 * sufficient for crash safety. Any mapping that hasn't been safely flushed to
745 * disk has to be by an aborted (explicitly or via a crash) transaction and is
746 * ignored by virtue of the xid in its name being subject to a
747 * TransactionDidCommit() check. But we want to support having standbys via
748 * physical replication, both for availability and to do logical decoding
749 * there.
750 * ------------------------------------------------------------------------
751 */
752
753/*
754 * Do preparations for logging logical mappings during a rewrite if
755 * necessary. If we detect that we don't need to log anything we'll prevent
756 * any further action by the various logical rewrite functions.
757 */
758static void
760{
761 HASHCTL hash_ctl;
762 TransactionId logical_xmin;
763
764 /*
765 * We only need to persist these mappings if the rewritten table can be
766 * accessed during logical decoding, if not, we can skip doing any
767 * additional work.
768 */
769 state->rs_logical_rewrite =
771
772 if (!state->rs_logical_rewrite)
773 return;
774
775 ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
776
777 /*
778 * If there are no logical slots in progress we don't need to do anything,
779 * there cannot be any remappings for relevant rows yet. The relation's
780 * lock protects us against races.
781 */
782 if (logical_xmin == InvalidTransactionId)
783 {
784 state->rs_logical_rewrite = false;
785 return;
786 }
787
788 state->rs_logical_xmin = logical_xmin;
789 state->rs_begin_lsn = GetXLogInsertRecPtr();
790 state->rs_num_rewrite_mappings = 0;
791
792 hash_ctl.keysize = sizeof(TransactionId);
793 hash_ctl.entrysize = sizeof(RewriteMappingFile);
794 hash_ctl.hcxt = state->rs_cxt;
795
796 state->rs_logical_mappings =
797 hash_create("Logical rewrite mapping",
798 128, /* arbitrary initial size */
799 &hash_ctl,
801}
802
803/*
804 * Flush all logical in-memory mappings to disk, but don't fsync them yet.
805 */
806static void
808{
809 HASH_SEQ_STATUS seq_status;
812
813 Assert(state->rs_logical_rewrite);
814
815 /* no logical rewrite in progress, no need to iterate over mappings */
816 if (state->rs_num_rewrite_mappings == 0)
817 return;
818
819 elog(DEBUG1, "flushing %u logical rewrite mapping entries",
820 state->rs_num_rewrite_mappings);
821
822 hash_seq_init(&seq_status, state->rs_logical_mappings);
823 while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
824 {
825 char *waldata;
826 char *waldata_start;
828 Oid dboid;
829 uint32 len;
830 int written;
831 uint32 num_mappings = dclist_count(&src->mappings);
832
833 /* this file hasn't got any new mappings */
834 if (num_mappings == 0)
835 continue;
836
837 if (state->rs_old_rel->rd_rel->relisshared)
838 dboid = InvalidOid;
839 else
840 dboid = MyDatabaseId;
841
842 xlrec.num_mappings = num_mappings;
843 xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
844 xlrec.mapped_xid = src->xid;
845 xlrec.mapped_db = dboid;
846 xlrec.offset = src->off;
847 xlrec.start_lsn = state->rs_begin_lsn;
848
849 /* write all mappings consecutively */
850 len = num_mappings * sizeof(LogicalRewriteMappingData);
851 waldata_start = waldata = palloc(len);
852
853 /*
854 * collect data we need to write out, but don't modify ondisk data yet
855 */
857 {
859
860 pmap = dclist_container(RewriteMappingDataEntry, node, iter.cur);
861
862 memcpy(waldata, &pmap->map, sizeof(pmap->map));
863 waldata += sizeof(pmap->map);
864
865 /* remove from the list and free */
866 dclist_delete_from(&src->mappings, &pmap->node);
867 pfree(pmap);
868
869 /* update bookkeeping */
870 state->rs_num_rewrite_mappings--;
871 }
872
873 Assert(dclist_count(&src->mappings) == 0);
874 Assert(waldata == waldata_start + len);
875
876 /*
877 * Note that we deviate from the usual WAL coding practices here,
878 * check the above "Logical rewrite support" comment for reasoning.
879 */
880 written = FileWrite(src->vfd, waldata_start, len, src->off,
881 WAIT_EVENT_LOGICAL_REWRITE_WRITE);
882 if (written != len)
885 errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
886 written, len)));
887 src->off += len;
888
890 XLogRegisterData((char *) (&xlrec), sizeof(xlrec));
891 XLogRegisterData(waldata_start, len);
892
893 /* write xlog record */
894 XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
895
896 pfree(waldata_start);
897 }
898 Assert(state->rs_num_rewrite_mappings == 0);
899}
900
901/*
902 * Logical remapping part of end_heap_rewrite().
903 */
904static void
906{
907 HASH_SEQ_STATUS seq_status;
909
910 /* done, no logical rewrite in progress */
911 if (!state->rs_logical_rewrite)
912 return;
913
914 /* writeout remaining in-memory entries */
915 if (state->rs_num_rewrite_mappings > 0)
917
918 /* Iterate over all mappings we have written and fsync the files. */
919 hash_seq_init(&seq_status, state->rs_logical_mappings);
920 while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
921 {
922 if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
925 errmsg("could not fsync file \"%s\": %m", src->path)));
926 FileClose(src->vfd);
927 }
928 /* memory context cleanup will deal with the rest */
929}
930
931/*
932 * Log a single (old->new) mapping for 'xid'.
933 */
934static void
937{
940 Oid relid;
941 bool found;
942
943 relid = RelationGetRelid(state->rs_old_rel);
944
945 /* look for existing mappings for this 'mapped' xid */
946 src = hash_search(state->rs_logical_mappings, &xid,
947 HASH_ENTER, &found);
948
949 /*
950 * We haven't yet had the need to map anything for this xid, create
951 * per-xid data structures.
952 */
953 if (!found)
954 {
955 char path[MAXPGPATH];
956 Oid dboid;
957
958 if (state->rs_old_rel->rd_rel->relisshared)
959 dboid = InvalidOid;
960 else
961 dboid = MyDatabaseId;
962
963 snprintf(path, MAXPGPATH,
965 PG_LOGICAL_MAPPINGS_DIR, dboid, relid,
966 LSN_FORMAT_ARGS(state->rs_begin_lsn),
968
969 dclist_init(&src->mappings);
970 src->off = 0;
971 memcpy(src->path, path, sizeof(path));
972 src->vfd = PathNameOpenFile(path,
973 O_CREAT | O_EXCL | O_WRONLY | PG_BINARY);
974 if (src->vfd < 0)
977 errmsg("could not create file \"%s\": %m", path)));
978 }
979
980 pmap = MemoryContextAlloc(state->rs_cxt,
982 memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
983 dclist_push_tail(&src->mappings, &pmap->node);
984 state->rs_num_rewrite_mappings++;
985
986 /*
987 * Write out buffer every time we've too many in-memory entries across all
988 * mapping files.
989 */
990 if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
992}
993
994/*
995 * Perform logical remapping for a tuple that's mapped from old_tid to
996 * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
997 */
998static void
1000 HeapTuple new_tuple)
1001{
1002 ItemPointerData new_tid = new_tuple->t_self;
1003 TransactionId cutoff = state->rs_logical_xmin;
1004 TransactionId xmin;
1005 TransactionId xmax;
1006 bool do_log_xmin = false;
1007 bool do_log_xmax = false;
1009
1010 /* no logical rewrite in progress, we don't need to log anything */
1011 if (!state->rs_logical_rewrite)
1012 return;
1013
1014 xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
1015 /* use *GetUpdateXid to correctly deal with multixacts */
1016 xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
1017
1018 /*
1019 * Log the mapping iff the tuple has been created recently.
1020 */
1021 if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
1022 do_log_xmin = true;
1023
1024 if (!TransactionIdIsNormal(xmax))
1025 {
1026 /*
1027 * no xmax is set, can't have any permanent ones, so this check is
1028 * sufficient
1029 */
1030 }
1031 else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
1032 {
1033 /* only locked, we don't care */
1034 }
1035 else if (!TransactionIdPrecedes(xmax, cutoff))
1036 {
1037 /* tuple has been deleted recently, log */
1038 do_log_xmax = true;
1039 }
1040
1041 /* if neither needs to be logged, we're done */
1042 if (!do_log_xmin && !do_log_xmax)
1043 return;
1044
1045 /* fill out mapping information */
1046 map.old_locator = state->rs_old_rel->rd_locator;
1047 map.old_tid = old_tid;
1048 map.new_locator = state->rs_new_rel->rd_locator;
1049 map.new_tid = new_tid;
1050
1051 /* ---
1052 * Now persist the mapping for the individual xids that are affected. We
1053 * need to log for both xmin and xmax if they aren't the same transaction
1054 * since the mapping files are per "affected" xid.
1055 * We don't muster all that much effort detecting whether xmin and xmax
1056 * are actually the same transaction, we just check whether the xid is the
1057 * same disregarding subtransactions. Logging too much is relatively
1058 * harmless and we could never do the check fully since subtransaction
1059 * data is thrown away during restarts.
1060 * ---
1061 */
1062 if (do_log_xmin)
1064 /* separately log mapping for xmax unless it'd be redundant */
1065 if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
1067}
1068
1069/*
1070 * Replay XLOG_HEAP2_REWRITE records
1071 */
1072void
1074{
1075 char path[MAXPGPATH];
1076 int fd;
1078 uint32 len;
1079 char *data;
1080
1082
1083 snprintf(path, MAXPGPATH,
1086 LSN_FORMAT_ARGS(xlrec->start_lsn),
1087 xlrec->mapped_xid, XLogRecGetXid(r));
1088
1089 fd = OpenTransientFile(path,
1090 O_CREAT | O_WRONLY | PG_BINARY);
1091 if (fd < 0)
1092 ereport(ERROR,
1094 errmsg("could not create file \"%s\": %m", path)));
1095
1096 /*
1097 * Truncate all data that's not guaranteed to have been safely fsynced (by
1098 * previous record or by the last checkpoint).
1099 */
1100 pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
1101 if (ftruncate(fd, xlrec->offset) != 0)
1102 ereport(ERROR,
1104 errmsg("could not truncate file \"%s\" to %u: %m",
1105 path, (uint32) xlrec->offset)));
1107
1108 data = XLogRecGetData(r) + sizeof(*xlrec);
1109
1110 len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
1111
1112 /* write out tail end of mapping file (again) */
1113 errno = 0;
1114 pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
1115 if (pg_pwrite(fd, data, len, xlrec->offset) != len)
1116 {
1117 /* if write didn't set errno, assume problem is no disk space */
1118 if (errno == 0)
1119 errno = ENOSPC;
1120 ereport(ERROR,
1122 errmsg("could not write to file \"%s\": %m", path)));
1123 }
1125
1126 /*
1127 * Now fsync all previously written data. We could improve things and only
1128 * do this for the last write to a file, but the required bookkeeping
1129 * doesn't seem worth the trouble.
1130 */
1131 pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
1132 if (pg_fsync(fd) != 0)
1135 errmsg("could not fsync file \"%s\": %m", path)));
1137
1138 if (CloseTransientFile(fd) != 0)
1139 ereport(ERROR,
1141 errmsg("could not close file \"%s\": %m", path)));
1142}
1143
1144/* ---
1145 * Perform a checkpoint for logical rewrite mappings
1146 *
1147 * This serves two tasks:
1148 * 1) Remove all mappings not needed anymore based on the logical restart LSN
1149 * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
1150 * only has to deal with the parts of a mapping that have been written out
1151 * after the checkpoint started.
1152 * ---
1153 */
1154void
1156{
1157 XLogRecPtr cutoff;
1158 XLogRecPtr redo;
1159 DIR *mappings_dir;
1160 struct dirent *mapping_de;
1161 char path[MAXPGPATH + sizeof(PG_LOGICAL_MAPPINGS_DIR)];
1162
1163 /*
1164 * We start of with a minimum of the last redo pointer. No new decoding
1165 * slot will start before that, so that's a safe upper bound for removal.
1166 */
1167 redo = GetRedoRecPtr();
1168
1169 /* now check for the restart ptrs from existing slots */
1171
1172 /* don't start earlier than the restart lsn */
1173 if (cutoff != InvalidXLogRecPtr && redo < cutoff)
1174 cutoff = redo;
1175
1176 mappings_dir = AllocateDir(PG_LOGICAL_MAPPINGS_DIR);
1177 while ((mapping_de = ReadDir(mappings_dir, PG_LOGICAL_MAPPINGS_DIR)) != NULL)
1178 {
1179 Oid dboid;
1180 Oid relid;
1181 XLogRecPtr lsn;
1182 TransactionId rewrite_xid;
1183 TransactionId create_xid;
1184 uint32 hi,
1185 lo;
1186 PGFileType de_type;
1187
1188 if (strcmp(mapping_de->d_name, ".") == 0 ||
1189 strcmp(mapping_de->d_name, "..") == 0)
1190 continue;
1191
1192 snprintf(path, sizeof(path), "%s/%s", PG_LOGICAL_MAPPINGS_DIR, mapping_de->d_name);
1193 de_type = get_dirent_type(path, mapping_de, false, DEBUG1);
1194
1195 if (de_type != PGFILETYPE_ERROR && de_type != PGFILETYPE_REG)
1196 continue;
1197
1198 /* Skip over files that cannot be ours. */
1199 if (strncmp(mapping_de->d_name, "map-", 4) != 0)
1200 continue;
1201
1202 if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
1203 &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
1204 elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
1205
1206 lsn = ((uint64) hi) << 32 | lo;
1207
1208 if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
1209 {
1210 elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
1211 if (unlink(path) < 0)
1212 ereport(ERROR,
1214 errmsg("could not remove file \"%s\": %m", path)));
1215 }
1216 else
1217 {
1218 /* on some operating systems fsyncing a file requires O_RDWR */
1219 int fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
1220
1221 /*
1222 * The file cannot vanish due to concurrency since this function
1223 * is the only one removing logical mappings and only one
1224 * checkpoint can be in progress at a time.
1225 */
1226 if (fd < 0)
1227 ereport(ERROR,
1229 errmsg("could not open file \"%s\": %m", path)));
1230
1231 /*
1232 * We could try to avoid fsyncing files that either haven't
1233 * changed or have only been created since the checkpoint's start,
1234 * but it's currently not deemed worth the effort.
1235 */
1236 pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
1237 if (pg_fsync(fd) != 0)
1240 errmsg("could not fsync file \"%s\": %m", path)));
1242
1243 if (CloseTransientFile(fd) != 0)
1244 ereport(ERROR,
1246 errmsg("could not close file \"%s\": %m", path)));
1247 }
1248 }
1249 FreeDir(mappings_dir);
1250
1251 /* persist directory entries to disk */
1253}
uint32 BlockNumber
Definition: block.h:31
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:273
Size PageGetHeapFreeSpace(Page page)
Definition: bufpage.c:980
void PageInit(Page page, Size pageSize, Size specialSize)
Definition: bufpage.c:42
Pointer Page
Definition: bufpage.h:81
static Item PageGetItem(Page page, ItemId itemId)
Definition: bufpage.h:354
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
#define PageAddItem(page, item, size, offsetNumber, overwrite, is_heap)
Definition: bufpage.h:471
BulkWriteState * smgr_bulk_start_rel(Relation rel, ForkNumber forknum)
Definition: bulk_write.c:87
void smgr_bulk_write(BulkWriteState *bulkstate, BlockNumber blocknum, BulkWriteBuffer buf, bool page_std)
Definition: bulk_write.c:323
BulkWriteBuffer smgr_bulk_get_buf(BulkWriteState *bulkstate)
Definition: bulk_write.c:347
void smgr_bulk_finish(BulkWriteState *bulkstate)
Definition: bulk_write.c:130
#define MAXALIGN(LEN)
Definition: c.h:765
#define Assert(condition)
Definition: c.h:812
#define PG_BINARY
Definition: c.h:1227
TransactionId MultiXactId
Definition: c.h:616
uint64_t uint64
Definition: c.h:486
uint32_t uint32
Definition: c.h:485
uint32 TransactionId
Definition: c.h:606
size_t Size
Definition: c.h:559
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1420
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1385
int errcode_for_file_access(void)
Definition: elog.c:876
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
int FreeDir(DIR *dir)
Definition: fd.c:2983
int FileSync(File file, uint32 wait_event_info)
Definition: fd.c:2319
int CloseTransientFile(int fd)
Definition: fd.c:2831
void FileClose(File file)
Definition: fd.c:1977
void fsync_fname(const char *fname, bool isdir)
Definition: fd.c:755
int data_sync_elevel(int elevel)
Definition: fd.c:3959
File PathNameOpenFile(const char *fileName, int fileFlags)
Definition: fd.c:1574
DIR * AllocateDir(const char *dirname)
Definition: fd.c:2865
struct dirent * ReadDir(DIR *dir, const char *dirname)
Definition: fd.c:2931
int pg_fsync(int fd)
Definition: fd.c:385
int OpenTransientFile(const char *fileName, int fileFlags)
Definition: fd.c:2655
static ssize_t FileWrite(File file, const void *buffer, size_t amount, off_t offset, uint32 wait_event_info)
Definition: fd.h:208
PGFileType get_dirent_type(const char *path, const struct dirent *de, bool look_through_symlinks, int elevel)
Definition: file_utils.c:526
PGFileType
Definition: file_utils.h:19
@ PGFILETYPE_REG
Definition: file_utils.h:22
@ PGFILETYPE_ERROR
Definition: file_utils.h:20
Oid MyDatabaseId
Definition: globals.c:93
bool heap_freeze_tuple(HeapTupleHeader tuple, TransactionId relfrozenxid, TransactionId relminmxid, TransactionId FreezeLimit, TransactionId MultiXactCutoff)
Definition: heapam.c:7245
#define HEAP_INSERT_SKIP_FSM
Definition: heapam.h:36
#define HEAP_INSERT_NO_LOGICAL
Definition: heapam.h:38
bool HeapTupleHeaderIsOnlyLocked(HeapTupleHeader tuple)
#define XLOG_HEAP2_REWRITE
Definition: heapam_xlog.h:59
HeapTuple heap_toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup, int options)
Definition: heaptoast.c:96
#define TOAST_TUPLE_THRESHOLD
Definition: heaptoast.h:48
HeapTuple heap_copytuple(HeapTuple tuple)
Definition: heaptuple.c:778
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define HEAP_XMAX_IS_LOCKED_ONLY(infomask)
Definition: htup_details.h:227
#define HeapTupleHeaderIndicatesMovedPartitions(tup)
Definition: htup_details.h:444
#define HeapTupleHeaderGetXmin(tup)
Definition: htup_details.h:309
#define HeapTupleHasExternal(tuple)
Definition: htup_details.h:671
#define HEAP_XACT_MASK
Definition: htup_details.h:215
#define HEAP_XMAX_INVALID
Definition: htup_details.h:208
#define HEAP_UPDATED
Definition: htup_details.h:210
#define HeapTupleHeaderGetUpdateXid(tup)
Definition: htup_details.h:361
#define MaxHeapTupleSize
Definition: htup_details.h:558
#define dclist_container(type, membername, ptr)
Definition: ilist.h:947
static void dclist_push_tail(dclist_head *head, dlist_node *node)
Definition: ilist.h:709
static uint32 dclist_count(const dclist_head *head)
Definition: ilist.h:932
static void dclist_delete_from(dclist_head *head, dlist_node *node)
Definition: ilist.h:763
static void dclist_init(dclist_head *head)
Definition: ilist.h:671
#define dclist_foreach_modify(iter, lhead)
Definition: ilist.h:973
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
Pointer Item
Definition: item.h:17
bool ItemPointerEquals(ItemPointer pointer1, ItemPointer pointer2)
Definition: itemptr.c:35
static void ItemPointerSet(ItemPointerData *pointer, BlockNumber blockNumber, OffsetNumber offNum)
Definition: itemptr.h:135
static void ItemPointerSetInvalid(ItemPointerData *pointer)
Definition: itemptr.h:184
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition: itemptr.h:83
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1181
void pfree(void *pointer)
Definition: mcxt.c:1521
void * palloc0(Size size)
Definition: mcxt.c:1347
void * palloc(Size size)
Definition: mcxt.c:1317
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:454
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define InvalidOffsetNumber
Definition: off.h:26
uint16 OffsetNumber
Definition: off.h:24
#define MAXPGPATH
const void size_t len
const void * data
#define pg_pwrite
Definition: port.h:226
#define snprintf
Definition: port.h:238
#define InvalidOid
Definition: postgres_ext.h:36
unsigned int Oid
Definition: postgres_ext.h:31
static int fd(const char *x, int i)
Definition: preproc-init.c:105
void ProcArrayGetReplicationSlotXmin(TransactionId *xmin, TransactionId *catalog_xmin)
Definition: procarray.c:3968
MemoryContextSwitchTo(old_ctx)
#define RelationGetRelid(relation)
Definition: rel.h:505
#define RelationGetTargetPageFreeSpace(relation, defaultff)
Definition: rel.h:378
#define RelationIsAccessibleInLogicalDecoding(relation)
Definition: rel.h:684
#define HEAP_DEFAULT_FILLFACTOR
Definition: rel.h:349
@ MAIN_FORKNUM
Definition: relpath.h:58
#define PG_LOGICAL_MAPPINGS_DIR
Definition: reorderbuffer.h:23
struct RewriteMappingDataEntry RewriteMappingDataEntry
static void raw_heap_insert(RewriteState state, HeapTuple tup)
Definition: rewriteheap.c:593
void end_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:297
bool rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
Definition: rewriteheap.c:543
UnresolvedTupData * UnresolvedTup
Definition: rewriteheap.c:177
RewriteState begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin, TransactionId freeze_xid, MultiXactId cutoff_multi)
Definition: rewriteheap.c:234
static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple)
Definition: rewriteheap.c:999
static void logical_heap_rewrite_flush_mappings(RewriteState state)
Definition: rewriteheap.c:807
void heap_xlog_logical_rewrite(XLogReaderState *r)
Definition: rewriteheap.c:1073
static void logical_begin_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:759
void CheckPointLogicalRewriteHeap(void)
Definition: rewriteheap.c:1155
struct RewriteMappingFile RewriteMappingFile
static void logical_end_heap_rewrite(RewriteState state)
Definition: rewriteheap.c:905
OldToNewMappingData * OldToNewMapping
Definition: rewriteheap.c:185
struct RewriteStateData RewriteStateData
void rewrite_heap_tuple(RewriteState state, HeapTuple old_tuple, HeapTuple new_tuple)
Definition: rewriteheap.c:341
static void logical_rewrite_log_mapping(RewriteState state, TransactionId xid, LogicalRewriteMappingData *map)
Definition: rewriteheap.c:935
#define LOGICAL_REWRITE_FORMAT
Definition: rewriteheap.h:54
struct LogicalRewriteMappingData LogicalRewriteMappingData
XLogRecPtr ReplicationSlotsComputeLogicalRestartLSN(void)
Definition: slot.c:1182
Definition: dirent.c:26
Size keysize
Definition: hsearch.h:75
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:220
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
union HeapTupleHeaderData::@47 t_choice
ItemPointerData t_ctid
Definition: htup_details.h:161
HeapTupleFields t_heap
Definition: htup_details.h:157
ItemPointerData new_tid
Definition: rewriteheap.h:40
RelFileLocator old_locator
Definition: rewriteheap.h:37
ItemPointerData old_tid
Definition: rewriteheap.h:39
RelFileLocator new_locator
Definition: rewriteheap.h:38
ItemPointerData new_tid
Definition: rewriteheap.c:182
LogicalRewriteMappingData map
Definition: rewriteheap.c:206
char path[MAXPGPATH]
Definition: rewriteheap.c:197
TransactionId xid
Definition: rewriteheap.c:193
dclist_head mappings
Definition: rewriteheap.c:196
TransactionId rs_freeze_xid
Definition: rewriteheap.c:140
MemoryContext rs_cxt
Definition: rewriteheap.c:146
TransactionId rs_oldest_xmin
Definition: rewriteheap.c:138
HTAB * rs_logical_mappings
Definition: rewriteheap.c:151
Relation rs_new_rel
Definition: rewriteheap.c:133
HTAB * rs_unresolved_tups
Definition: rewriteheap.c:149
uint32 rs_num_rewrite_mappings
Definition: rewriteheap.c:152
Relation rs_old_rel
Definition: rewriteheap.c:132
TransactionId rs_logical_xmin
Definition: rewriteheap.c:142
BulkWriteState * rs_bulkstate
Definition: rewriteheap.c:134
BulkWriteBuffer rs_buffer
Definition: rewriteheap.c:135
HTAB * rs_old_new_tid_map
Definition: rewriteheap.c:150
XLogRecPtr rs_begin_lsn
Definition: rewriteheap.c:148
BlockNumber rs_blockno
Definition: rewriteheap.c:136
MultiXactId rs_cutoff_multi
Definition: rewriteheap.c:144
TransactionId xmin
Definition: rewriteheap.c:163
ItemPointerData tid
Definition: rewriteheap.c:164
TidHashKey key
Definition: rewriteheap.c:172
ItemPointerData old_tid
Definition: rewriteheap.c:173
Definition: dirent.h:10
char d_name[MAX_PATH]
Definition: dirent.h:15
dlist_node * cur
Definition: ilist.h:200
Definition: regguts.h:323
TransactionId mapped_xid
Definition: heapam_xlog.h:475
bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.c:280
#define InvalidTransactionId
Definition: transam.h:31
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:85
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
#define ftruncate(a, b)
Definition: win32_port.h:82
TransactionId GetCurrentTransactionId(void)
Definition: xact.c:453
XLogRecPtr GetRedoRecPtr(void)
Definition: xlog.c:6437
XLogRecPtr GetXLogInsertRecPtr(void)
Definition: xlog.c:9435
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:43
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:474
void XLogRegisterData(const char *data, uint32 len)
Definition: xloginsert.c:364
void XLogBeginInsert(void)
Definition: xloginsert.c:149
#define XLogRecGetData(decoder)
Definition: xlogreader.h:415
#define XLogRecGetXid(decoder)
Definition: xlogreader.h:412