PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
bufpage.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * bufpage.c
4 * POSTGRES standard buffer page code.
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/storage/page/bufpage.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/htup_details.h"
18#include "access/itup.h"
19#include "access/xlog.h"
20#include "pgstat.h"
21#include "storage/checksum.h"
22#include "utils/memdebug.h"
23#include "utils/memutils.h"
24
25
26/* GUC variable */
28
29
30/* ----------------------------------------------------------------
31 * Page support functions
32 * ----------------------------------------------------------------
33 */
34
35/*
36 * PageInit
37 * Initializes the contents of a page.
38 * Note that we don't calculate an initial checksum here; that's not done
39 * until it's time to write.
40 */
41void
42PageInit(Page page, Size pageSize, Size specialSize)
43{
44 PageHeader p = (PageHeader) page;
45
46 specialSize = MAXALIGN(specialSize);
47
48 Assert(pageSize == BLCKSZ);
49 Assert(pageSize > specialSize + SizeOfPageHeaderData);
50
51 /* Make sure all fields of page are zero, as well as unused space */
52 MemSet(p, 0, pageSize);
53
54 p->pd_flags = 0;
56 p->pd_upper = pageSize - specialSize;
57 p->pd_special = pageSize - specialSize;
59 /* p->pd_prune_xid = InvalidTransactionId; done by above MemSet */
60}
61
62
63/*
64 * PageIsVerified
65 * Check that the page header and checksum (if any) appear valid.
66 *
67 * This is called when a page has just been read in from disk. The idea is
68 * to cheaply detect trashed pages before we go nuts following bogus line
69 * pointers, testing invalid transaction identifiers, etc.
70 *
71 * It turns out to be necessary to allow zeroed pages here too. Even though
72 * this routine is *not* called when deliberately adding a page to a relation,
73 * there are scenarios in which a zeroed page might be found in a table.
74 * (Example: a backend extends a relation, then crashes before it can write
75 * any WAL entry about the new page. The kernel will already have the
76 * zeroed page in the file, and it will stay that way after restart.) So we
77 * allow zeroed pages here, and are careful that the page access macros
78 * treat such a page as empty and without free space. Eventually, VACUUM
79 * will clean up such a page and make it usable.
80 *
81 * If flag PIV_LOG_WARNING/PIV_LOG_LOG is set, a WARNING/LOG message is logged
82 * in the event of a checksum failure.
83 *
84 * If flag PIV_IGNORE_CHECKSUM_FAILURE is set, checksum failures will cause a
85 * message about the failure to be emitted, but will not cause
86 * PageIsVerified() to return false.
87 *
88 * To allow the caller to report statistics about checksum failures,
89 * *checksum_failure_p can be passed in. Note that there may be checksum
90 * failures even if this function returns true, due to
91 * PIV_IGNORE_CHECKSUM_FAILURE.
92 */
93bool
94PageIsVerified(PageData *page, BlockNumber blkno, int flags, bool *checksum_failure_p)
95{
96 const PageHeaderData *p = (const PageHeaderData *) page;
97 size_t *pagebytes;
98 bool checksum_failure = false;
99 bool header_sane = false;
100 uint16 checksum = 0;
101
102 if (checksum_failure_p)
103 *checksum_failure_p = false;
104
105 /*
106 * Don't verify page data unless the page passes basic non-zero test
107 */
108 if (!PageIsNew(page))
109 {
111 {
112 checksum = pg_checksum_page(page, blkno);
113
114 if (checksum != p->pd_checksum)
115 {
116 checksum_failure = true;
117 if (checksum_failure_p)
118 *checksum_failure_p = true;
119 }
120 }
121
122 /*
123 * The following checks don't prove the header is correct, only that
124 * it looks sane enough to allow into the buffer pool. Later usage of
125 * the block can still reveal problems, which is why we offer the
126 * checksum option.
127 */
128 if ((p->pd_flags & ~PD_VALID_FLAG_BITS) == 0 &&
129 p->pd_lower <= p->pd_upper &&
130 p->pd_upper <= p->pd_special &&
131 p->pd_special <= BLCKSZ &&
133 header_sane = true;
134
135 if (header_sane && !checksum_failure)
136 return true;
137 }
138
139 /* Check all-zeroes case */
140 pagebytes = (size_t *) page;
141
142 if (pg_memory_is_all_zeros(pagebytes, BLCKSZ))
143 return true;
144
145 /*
146 * Throw a WARNING/LOG, as instructed by PIV_LOG_*, if the checksum fails,
147 * but only after we've checked for the all-zeroes case.
148 */
150 {
151 if ((flags & (PIV_LOG_WARNING | PIV_LOG_LOG)) != 0)
154 errmsg("page verification failed, calculated checksum %u but expected %u",
155 checksum, p->pd_checksum)));
156
157 if (header_sane && (flags & PIV_IGNORE_CHECKSUM_FAILURE))
158 return true;
159 }
160
161 return false;
162}
163
164
165/*
166 * PageAddItemExtended
167 *
168 * Add an item to a page. Return value is the offset at which it was
169 * inserted, or InvalidOffsetNumber if the item is not inserted for any
170 * reason. A WARNING is issued indicating the reason for the refusal.
171 *
172 * offsetNumber must be either InvalidOffsetNumber to specify finding a
173 * free line pointer, or a value between FirstOffsetNumber and one past
174 * the last existing item, to specify using that particular line pointer.
175 *
176 * If offsetNumber is valid and flag PAI_OVERWRITE is set, we just store
177 * the item at the specified offsetNumber, which must be either a
178 * currently-unused line pointer, or one past the last existing item.
179 *
180 * If offsetNumber is valid and flag PAI_OVERWRITE is not set, insert
181 * the item at the specified offsetNumber, moving existing items later
182 * in the array to make room.
183 *
184 * If offsetNumber is not valid, then assign a slot by finding the first
185 * one that is both unused and deallocated.
186 *
187 * If flag PAI_IS_HEAP is set, we enforce that there can't be more than
188 * MaxHeapTuplesPerPage line pointers on the page.
189 *
190 * !!! EREPORT(ERROR) IS DISALLOWED HERE !!!
191 */
194 Item item,
195 Size size,
196 OffsetNumber offsetNumber,
197 int flags)
198{
199 PageHeader phdr = (PageHeader) page;
200 Size alignedSize;
201 int lower;
202 int upper;
203 ItemId itemId;
204 OffsetNumber limit;
205 bool needshuffle = false;
206
207 /*
208 * Be wary about corrupted page pointers
209 */
210 if (phdr->pd_lower < SizeOfPageHeaderData ||
211 phdr->pd_lower > phdr->pd_upper ||
212 phdr->pd_upper > phdr->pd_special ||
213 phdr->pd_special > BLCKSZ)
216 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
217 phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
218
219 /*
220 * Select offsetNumber to place the new item at
221 */
223
224 /* was offsetNumber passed in? */
225 if (OffsetNumberIsValid(offsetNumber))
226 {
227 /* yes, check it */
228 if ((flags & PAI_OVERWRITE) != 0)
229 {
230 if (offsetNumber < limit)
231 {
232 itemId = PageGetItemId(page, offsetNumber);
233 if (ItemIdIsUsed(itemId) || ItemIdHasStorage(itemId))
234 {
235 elog(WARNING, "will not overwrite a used ItemId");
236 return InvalidOffsetNumber;
237 }
238 }
239 }
240 else
241 {
242 if (offsetNumber < limit)
243 needshuffle = true; /* need to move existing linp's */
244 }
245 }
246 else
247 {
248 /* offsetNumber was not passed in, so find a free slot */
249 /* if no free slot, we'll put it at limit (1st open slot) */
250 if (PageHasFreeLinePointers(page))
251 {
252 /*
253 * Scan line pointer array to locate a "recyclable" (unused)
254 * ItemId.
255 *
256 * Always use earlier items first. PageTruncateLinePointerArray
257 * can only truncate unused items when they appear as a contiguous
258 * group at the end of the line pointer array.
259 */
260 for (offsetNumber = FirstOffsetNumber;
261 offsetNumber < limit; /* limit is maxoff+1 */
262 offsetNumber++)
263 {
264 itemId = PageGetItemId(page, offsetNumber);
265
266 /*
267 * We check for no storage as well, just to be paranoid;
268 * unused items should never have storage. Assert() that the
269 * invariant is respected too.
270 */
271 Assert(ItemIdIsUsed(itemId) || !ItemIdHasStorage(itemId));
272
273 if (!ItemIdIsUsed(itemId) && !ItemIdHasStorage(itemId))
274 break;
275 }
276 if (offsetNumber >= limit)
277 {
278 /* the hint is wrong, so reset it */
280 }
281 }
282 else
283 {
284 /* don't bother searching if hint says there's no free slot */
285 offsetNumber = limit;
286 }
287 }
288
289 /* Reject placing items beyond the first unused line pointer */
290 if (offsetNumber > limit)
291 {
292 elog(WARNING, "specified item offset is too large");
293 return InvalidOffsetNumber;
294 }
295
296 /* Reject placing items beyond heap boundary, if heap */
297 if ((flags & PAI_IS_HEAP) != 0 && offsetNumber > MaxHeapTuplesPerPage)
298 {
299 elog(WARNING, "can't put more than MaxHeapTuplesPerPage items in a heap page");
300 return InvalidOffsetNumber;
301 }
302
303 /*
304 * Compute new lower and upper pointers for page, see if it'll fit.
305 *
306 * Note: do arithmetic as signed ints, to avoid mistakes if, say,
307 * alignedSize > pd_upper.
308 */
309 if (offsetNumber == limit || needshuffle)
310 lower = phdr->pd_lower + sizeof(ItemIdData);
311 else
312 lower = phdr->pd_lower;
313
314 alignedSize = MAXALIGN(size);
315
316 upper = (int) phdr->pd_upper - (int) alignedSize;
317
318 if (lower > upper)
319 return InvalidOffsetNumber;
320
321 /*
322 * OK to insert the item. First, shuffle the existing pointers if needed.
323 */
324 itemId = PageGetItemId(page, offsetNumber);
325
326 if (needshuffle)
327 memmove(itemId + 1, itemId,
328 (limit - offsetNumber) * sizeof(ItemIdData));
329
330 /* set the line pointer */
331 ItemIdSetNormal(itemId, upper, size);
332
333 /*
334 * Items normally contain no uninitialized bytes. Core bufpage consumers
335 * conform, but this is not a necessary coding rule; a new index AM could
336 * opt to depart from it. However, data type input functions and other
337 * C-language functions that synthesize datums should initialize all
338 * bytes; datumIsEqual() relies on this. Testing here, along with the
339 * similar check in printtup(), helps to catch such mistakes.
340 *
341 * Values of the "name" type retrieved via index-only scans may contain
342 * uninitialized bytes; see comment in btrescan(). Valgrind will report
343 * this as an error, but it is safe to ignore.
344 */
346
347 /* copy the item's data onto the page */
348 memcpy((char *) page + upper, item, size);
349
350 /* adjust page header */
351 phdr->pd_lower = (LocationIndex) lower;
352 phdr->pd_upper = (LocationIndex) upper;
353
354 return offsetNumber;
355}
356
357
358/*
359 * PageGetTempPage
360 * Get a temporary page in local memory for special processing.
361 * The returned page is not initialized at all; caller must do that.
362 */
363Page
365{
366 Size pageSize;
367 Page temp;
368
369 pageSize = PageGetPageSize(page);
370 temp = (Page) palloc(pageSize);
371
372 return temp;
373}
374
375/*
376 * PageGetTempPageCopy
377 * Get a temporary page in local memory for special processing.
378 * The page is initialized by copying the contents of the given page.
379 */
380Page
382{
383 Size pageSize;
384 Page temp;
385
386 pageSize = PageGetPageSize(page);
387 temp = (Page) palloc(pageSize);
388
389 memcpy(temp, page, pageSize);
390
391 return temp;
392}
393
394/*
395 * PageGetTempPageCopySpecial
396 * Get a temporary page in local memory for special processing.
397 * The page is PageInit'd with the same special-space size as the
398 * given page, and the special space is copied from the given page.
399 */
400Page
402{
403 Size pageSize;
404 Page temp;
405
406 pageSize = PageGetPageSize(page);
407 temp = (Page) palloc(pageSize);
408
409 PageInit(temp, pageSize, PageGetSpecialSize(page));
410 memcpy(PageGetSpecialPointer(temp),
412 PageGetSpecialSize(page));
413
414 return temp;
415}
416
417/*
418 * PageRestoreTempPage
419 * Copy temporary page back to permanent page after special processing
420 * and release the temporary page.
421 */
422void
423PageRestoreTempPage(Page tempPage, Page oldPage)
424{
425 Size pageSize;
426
427 pageSize = PageGetPageSize(tempPage);
428 memcpy(oldPage, tempPage, pageSize);
429
430 pfree(tempPage);
431}
432
433/*
434 * Tuple defrag support for PageRepairFragmentation and PageIndexMultiDelete
435 */
436typedef struct itemIdCompactData
437{
438 uint16 offsetindex; /* linp array index */
439 int16 itemoff; /* page offset of item data */
440 uint16 alignedlen; /* MAXALIGN(item data len) */
443
444/*
445 * After removing or marking some line pointers unused, move the tuples to
446 * remove the gaps caused by the removed items and reorder them back into
447 * reverse line pointer order in the page.
448 *
449 * This function can often be fairly hot, so it pays to take some measures to
450 * make it as optimal as possible.
451 *
452 * Callers may pass 'presorted' as true if the 'itemidbase' array is sorted in
453 * descending order of itemoff. When this is true we can just memmove()
454 * tuples towards the end of the page. This is quite a common case as it's
455 * the order that tuples are initially inserted into pages. When we call this
456 * function to defragment the tuples in the page then any new line pointers
457 * added to the page will keep that presorted order, so hitting this case is
458 * still very common for tables that are commonly updated.
459 *
460 * When the 'itemidbase' array is not presorted then we're unable to just
461 * memmove() tuples around freely. Doing so could cause us to overwrite the
462 * memory belonging to a tuple we've not moved yet. In this case, we copy all
463 * the tuples that need to be moved into a temporary buffer. We can then
464 * simply memcpy() out of that temp buffer back into the page at the correct
465 * location. Tuples are copied back into the page in the same order as the
466 * 'itemidbase' array, so we end up reordering the tuples back into reverse
467 * line pointer order. This will increase the chances of hitting the
468 * presorted case the next time around.
469 *
470 * Callers must ensure that nitems is > 0
471 */
472static void
473compactify_tuples(itemIdCompact itemidbase, int nitems, Page page, bool presorted)
474{
475 PageHeader phdr = (PageHeader) page;
477 Offset copy_tail;
478 Offset copy_head;
479 itemIdCompact itemidptr;
480 int i;
481
482 /* Code within will not work correctly if nitems == 0 */
483 Assert(nitems > 0);
484
485 if (presorted)
486 {
487
488#ifdef USE_ASSERT_CHECKING
489 {
490 /*
491 * Verify we've not gotten any new callers that are incorrectly
492 * passing a true presorted value.
493 */
494 Offset lastoff = phdr->pd_special;
495
496 for (i = 0; i < nitems; i++)
497 {
498 itemidptr = &itemidbase[i];
499
500 Assert(lastoff > itemidptr->itemoff);
501
502 lastoff = itemidptr->itemoff;
503 }
504 }
505#endif /* USE_ASSERT_CHECKING */
506
507 /*
508 * 'itemidbase' is already in the optimal order, i.e, lower item
509 * pointers have a higher offset. This allows us to memmove() the
510 * tuples up to the end of the page without having to worry about
511 * overwriting other tuples that have not been moved yet.
512 *
513 * There's a good chance that there are tuples already right at the
514 * end of the page that we can simply skip over because they're
515 * already in the correct location within the page. We'll do that
516 * first...
517 */
518 upper = phdr->pd_special;
519 i = 0;
520 do
521 {
522 itemidptr = &itemidbase[i];
523 if (upper != itemidptr->itemoff + itemidptr->alignedlen)
524 break;
525 upper -= itemidptr->alignedlen;
526
527 i++;
528 } while (i < nitems);
529
530 /*
531 * Now that we've found the first tuple that needs to be moved, we can
532 * do the tuple compactification. We try and make the least number of
533 * memmove() calls and only call memmove() when there's a gap. When
534 * we see a gap we just move all tuples after the gap up until the
535 * point of the last move operation.
536 */
537 copy_tail = copy_head = itemidptr->itemoff + itemidptr->alignedlen;
538 for (; i < nitems; i++)
539 {
540 ItemId lp;
541
542 itemidptr = &itemidbase[i];
543 lp = PageGetItemId(page, itemidptr->offsetindex + 1);
544
545 if (copy_head != itemidptr->itemoff + itemidptr->alignedlen)
546 {
547 memmove((char *) page + upper,
548 page + copy_head,
549 copy_tail - copy_head);
550
551 /*
552 * We've now moved all tuples already seen, but not the
553 * current tuple, so we set the copy_tail to the end of this
554 * tuple so it can be moved in another iteration of the loop.
555 */
556 copy_tail = itemidptr->itemoff + itemidptr->alignedlen;
557 }
558 /* shift the target offset down by the length of this tuple */
559 upper -= itemidptr->alignedlen;
560 /* point the copy_head to the start of this tuple */
561 copy_head = itemidptr->itemoff;
562
563 /* update the line pointer to reference the new offset */
564 lp->lp_off = upper;
565 }
566
567 /* move the remaining tuples. */
568 memmove((char *) page + upper,
569 page + copy_head,
570 copy_tail - copy_head);
571 }
572 else
573 {
574 PGAlignedBlock scratch;
575 char *scratchptr = scratch.data;
576
577 /*
578 * Non-presorted case: The tuples in the itemidbase array may be in
579 * any order. So, in order to move these to the end of the page we
580 * must make a temp copy of each tuple that needs to be moved before
581 * we copy them back into the page at the new offset.
582 *
583 * If a large percentage of tuples have been pruned (>75%) then we'll
584 * copy these into the temp buffer tuple-by-tuple, otherwise, we'll
585 * just do a single memcpy() for all tuples that need to be moved.
586 * When so many tuples have been removed there's likely to be a lot of
587 * gaps and it's unlikely that many non-movable tuples remain at the
588 * end of the page.
589 */
590 if (nitems < PageGetMaxOffsetNumber(page) / 4)
591 {
592 i = 0;
593 do
594 {
595 itemidptr = &itemidbase[i];
596 memcpy(scratchptr + itemidptr->itemoff, page + itemidptr->itemoff,
597 itemidptr->alignedlen);
598 i++;
599 } while (i < nitems);
600
601 /* Set things up for the compactification code below */
602 i = 0;
603 itemidptr = &itemidbase[0];
604 upper = phdr->pd_special;
605 }
606 else
607 {
608 upper = phdr->pd_special;
609
610 /*
611 * Many tuples are likely to already be in the correct location.
612 * There's no need to copy these into the temp buffer. Instead
613 * we'll just skip forward in the itemidbase array to the position
614 * that we do need to move tuples from so that the code below just
615 * leaves these ones alone.
616 */
617 i = 0;
618 do
619 {
620 itemidptr = &itemidbase[i];
621 if (upper != itemidptr->itemoff + itemidptr->alignedlen)
622 break;
623 upper -= itemidptr->alignedlen;
624
625 i++;
626 } while (i < nitems);
627
628 /* Copy all tuples that need to be moved into the temp buffer */
629 memcpy(scratchptr + phdr->pd_upper,
630 page + phdr->pd_upper,
631 upper - phdr->pd_upper);
632 }
633
634 /*
635 * Do the tuple compactification. itemidptr is already pointing to
636 * the first tuple that we're going to move. Here we collapse the
637 * memcpy calls for adjacent tuples into a single call. This is done
638 * by delaying the memcpy call until we find a gap that needs to be
639 * closed.
640 */
641 copy_tail = copy_head = itemidptr->itemoff + itemidptr->alignedlen;
642 for (; i < nitems; i++)
643 {
644 ItemId lp;
645
646 itemidptr = &itemidbase[i];
647 lp = PageGetItemId(page, itemidptr->offsetindex + 1);
648
649 /* copy pending tuples when we detect a gap */
650 if (copy_head != itemidptr->itemoff + itemidptr->alignedlen)
651 {
652 memcpy((char *) page + upper,
653 scratchptr + copy_head,
654 copy_tail - copy_head);
655
656 /*
657 * We've now copied all tuples already seen, but not the
658 * current tuple, so we set the copy_tail to the end of this
659 * tuple.
660 */
661 copy_tail = itemidptr->itemoff + itemidptr->alignedlen;
662 }
663 /* shift the target offset down by the length of this tuple */
664 upper -= itemidptr->alignedlen;
665 /* point the copy_head to the start of this tuple */
666 copy_head = itemidptr->itemoff;
667
668 /* update the line pointer to reference the new offset */
669 lp->lp_off = upper;
670 }
671
672 /* Copy the remaining chunk */
673 memcpy((char *) page + upper,
674 scratchptr + copy_head,
675 copy_tail - copy_head);
676 }
677
678 phdr->pd_upper = upper;
679}
680
681/*
682 * PageRepairFragmentation
683 *
684 * Frees fragmented space on a heap page following pruning.
685 *
686 * This routine is usable for heap pages only, but see PageIndexMultiDelete.
687 *
688 * This routine removes unused line pointers from the end of the line pointer
689 * array. This is possible when dead heap-only tuples get removed by pruning,
690 * especially when there were HOT chains with several tuples each beforehand.
691 *
692 * Caller had better have a full cleanup lock on page's buffer. As a side
693 * effect the page's PD_HAS_FREE_LINES hint bit will be set or unset as
694 * needed. Caller might also need to account for a reduction in the length of
695 * the line pointer array following array truncation.
696 */
697void
699{
700 Offset pd_lower = ((PageHeader) page)->pd_lower;
701 Offset pd_upper = ((PageHeader) page)->pd_upper;
702 Offset pd_special = ((PageHeader) page)->pd_special;
703 Offset last_offset;
705 itemIdCompact itemidptr;
706 ItemId lp;
707 int nline,
708 nstorage,
709 nunused;
710 OffsetNumber finalusedlp = InvalidOffsetNumber;
711 int i;
712 Size totallen;
713 bool presorted = true; /* For now */
714
715 /*
716 * It's worth the trouble to be more paranoid here than in most places,
717 * because we are about to reshuffle data in (what is usually) a shared
718 * disk buffer. If we aren't careful then corrupted pointers, lengths,
719 * etc could cause us to clobber adjacent disk buffers, spreading the data
720 * loss further. So, check everything.
721 */
722 if (pd_lower < SizeOfPageHeaderData ||
723 pd_lower > pd_upper ||
724 pd_upper > pd_special ||
725 pd_special > BLCKSZ ||
726 pd_special != MAXALIGN(pd_special))
729 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
730 pd_lower, pd_upper, pd_special)));
731
732 /*
733 * Run through the line pointer array and collect data about live items.
734 */
735 nline = PageGetMaxOffsetNumber(page);
736 itemidptr = itemidbase;
737 nunused = totallen = 0;
738 last_offset = pd_special;
739 for (i = FirstOffsetNumber; i <= nline; i++)
740 {
741 lp = PageGetItemId(page, i);
742 if (ItemIdIsUsed(lp))
743 {
744 if (ItemIdHasStorage(lp))
745 {
746 itemidptr->offsetindex = i - 1;
747 itemidptr->itemoff = ItemIdGetOffset(lp);
748
749 if (last_offset > itemidptr->itemoff)
750 last_offset = itemidptr->itemoff;
751 else
752 presorted = false;
753
754 if (unlikely(itemidptr->itemoff < (int) pd_upper ||
755 itemidptr->itemoff >= (int) pd_special))
758 errmsg("corrupted line pointer: %u",
759 itemidptr->itemoff)));
760 itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
761 totallen += itemidptr->alignedlen;
762 itemidptr++;
763 }
764
765 finalusedlp = i; /* Could be the final non-LP_UNUSED item */
766 }
767 else
768 {
769 /* Unused entries should have lp_len = 0, but make sure */
771 ItemIdSetUnused(lp);
772 nunused++;
773 }
774 }
775
776 nstorage = itemidptr - itemidbase;
777 if (nstorage == 0)
778 {
779 /* Page is completely empty, so just reset it quickly */
780 ((PageHeader) page)->pd_upper = pd_special;
781 }
782 else
783 {
784 /* Need to compact the page the hard way */
785 if (totallen > (Size) (pd_special - pd_lower))
788 errmsg("corrupted item lengths: total %u, available space %u",
789 (unsigned int) totallen, pd_special - pd_lower)));
790
791 compactify_tuples(itemidbase, nstorage, page, presorted);
792 }
793
794 if (finalusedlp != nline)
795 {
796 /* The last line pointer is not the last used line pointer */
797 int nunusedend = nline - finalusedlp;
798
799 Assert(nunused >= nunusedend && nunusedend > 0);
800
801 /* remove trailing unused line pointers from the count */
802 nunused -= nunusedend;
803 /* truncate the line pointer array */
804 ((PageHeader) page)->pd_lower -= (sizeof(ItemIdData) * nunusedend);
805 }
806
807 /* Set hint bit for PageAddItemExtended */
808 if (nunused > 0)
810 else
812}
813
814/*
815 * PageTruncateLinePointerArray
816 *
817 * Removes unused line pointers at the end of the line pointer array.
818 *
819 * This routine is usable for heap pages only. It is called by VACUUM during
820 * its second pass over the heap. We expect at least one LP_UNUSED line
821 * pointer on the page (if VACUUM didn't have an LP_DEAD item on the page that
822 * it just set to LP_UNUSED then it should not call here).
823 *
824 * We avoid truncating the line pointer array to 0 items, if necessary by
825 * leaving behind a single remaining LP_UNUSED item. This is a little
826 * arbitrary, but it seems like a good idea to avoid leaving a PageIsEmpty()
827 * page behind.
828 *
829 * Caller can have either an exclusive lock or a full cleanup lock on page's
830 * buffer. The page's PD_HAS_FREE_LINES hint bit will be set or unset based
831 * on whether or not we leave behind any remaining LP_UNUSED items.
832 */
833void
835{
836 PageHeader phdr = (PageHeader) page;
837 bool countdone = false,
838 sethint = false;
839 int nunusedend = 0;
840
841 /* Scan line pointer array back-to-front */
842 for (int i = PageGetMaxOffsetNumber(page); i >= FirstOffsetNumber; i--)
843 {
844 ItemId lp = PageGetItemId(page, i);
845
846 if (!countdone && i > FirstOffsetNumber)
847 {
848 /*
849 * Still determining which line pointers from the end of the array
850 * will be truncated away. Either count another line pointer as
851 * safe to truncate, or notice that it's not safe to truncate
852 * additional line pointers (stop counting line pointers).
853 */
854 if (!ItemIdIsUsed(lp))
855 nunusedend++;
856 else
857 countdone = true;
858 }
859 else
860 {
861 /*
862 * Once we've stopped counting we still need to figure out if
863 * there are any remaining LP_UNUSED line pointers somewhere more
864 * towards the front of the array.
865 */
866 if (!ItemIdIsUsed(lp))
867 {
868 /*
869 * This is an unused line pointer that we won't be truncating
870 * away -- so there is at least one. Set hint on page.
871 */
872 sethint = true;
873 break;
874 }
875 }
876 }
877
878 if (nunusedend > 0)
879 {
880 phdr->pd_lower -= sizeof(ItemIdData) * nunusedend;
881
882#ifdef CLOBBER_FREED_MEMORY
883 memset((char *) page + phdr->pd_lower, 0x7F,
884 sizeof(ItemIdData) * nunusedend);
885#endif
886 }
887 else
888 Assert(sethint);
889
890 /* Set hint bit for PageAddItemExtended */
891 if (sethint)
893 else
895}
896
897/*
898 * PageGetFreeSpace
899 * Returns the size of the free (allocatable) space on a page,
900 * reduced by the space needed for a new line pointer.
901 *
902 * Note: this should usually only be used on index pages. Use
903 * PageGetHeapFreeSpace on heap pages.
904 */
905Size
907{
908 const PageHeaderData *phdr = (const PageHeaderData *) page;
909 int space;
910
911 /*
912 * Use signed arithmetic here so that we behave sensibly if pd_lower >
913 * pd_upper.
914 */
915 space = (int) phdr->pd_upper - (int) phdr->pd_lower;
916
917 if (space < (int) sizeof(ItemIdData))
918 return 0;
919 space -= sizeof(ItemIdData);
920
921 return (Size) space;
922}
923
924/*
925 * PageGetFreeSpaceForMultipleTuples
926 * Returns the size of the free (allocatable) space on a page,
927 * reduced by the space needed for multiple new line pointers.
928 *
929 * Note: this should usually only be used on index pages. Use
930 * PageGetHeapFreeSpace on heap pages.
931 */
932Size
934{
935 const PageHeaderData *phdr = (const PageHeaderData *) page;
936 int space;
937
938 /*
939 * Use signed arithmetic here so that we behave sensibly if pd_lower >
940 * pd_upper.
941 */
942 space = (int) phdr->pd_upper - (int) phdr->pd_lower;
943
944 if (space < (int) (ntups * sizeof(ItemIdData)))
945 return 0;
946 space -= ntups * sizeof(ItemIdData);
947
948 return (Size) space;
949}
950
951/*
952 * PageGetExactFreeSpace
953 * Returns the size of the free (allocatable) space on a page,
954 * without any consideration for adding/removing line pointers.
955 */
956Size
958{
959 const PageHeaderData *phdr = (const PageHeaderData *) page;
960 int space;
961
962 /*
963 * Use signed arithmetic here so that we behave sensibly if pd_lower >
964 * pd_upper.
965 */
966 space = (int) phdr->pd_upper - (int) phdr->pd_lower;
967
968 if (space < 0)
969 return 0;
970
971 return (Size) space;
972}
973
974
975/*
976 * PageGetHeapFreeSpace
977 * Returns the size of the free (allocatable) space on a page,
978 * reduced by the space needed for a new line pointer.
979 *
980 * The difference between this and PageGetFreeSpace is that this will return
981 * zero if there are already MaxHeapTuplesPerPage line pointers in the page
982 * and none are free. We use this to enforce that no more than
983 * MaxHeapTuplesPerPage line pointers are created on a heap page. (Although
984 * no more tuples than that could fit anyway, in the presence of redirected
985 * or dead line pointers it'd be possible to have too many line pointers.
986 * To avoid breaking code that assumes MaxHeapTuplesPerPage is a hard limit
987 * on the number of line pointers, we make this extra check.)
988 */
989Size
991{
992 Size space;
993
994 space = PageGetFreeSpace(page);
995 if (space > 0)
996 {
997 OffsetNumber offnum,
998 nline;
999
1000 /*
1001 * Are there already MaxHeapTuplesPerPage line pointers in the page?
1002 */
1003 nline = PageGetMaxOffsetNumber(page);
1004 if (nline >= MaxHeapTuplesPerPage)
1005 {
1006 if (PageHasFreeLinePointers(page))
1007 {
1008 /*
1009 * Since this is just a hint, we must confirm that there is
1010 * indeed a free line pointer
1011 */
1012 for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
1013 {
1014 ItemId lp = PageGetItemId(unconstify(PageData *, page), offnum);
1015
1016 if (!ItemIdIsUsed(lp))
1017 break;
1018 }
1019
1020 if (offnum > nline)
1021 {
1022 /*
1023 * The hint is wrong, but we can't clear it here since we
1024 * don't have the ability to mark the page dirty.
1025 */
1026 space = 0;
1027 }
1028 }
1029 else
1030 {
1031 /*
1032 * Although the hint might be wrong, PageAddItem will believe
1033 * it anyway, so we must believe it too.
1034 */
1035 space = 0;
1036 }
1037 }
1038 }
1039 return space;
1040}
1041
1042
1043/*
1044 * PageIndexTupleDelete
1045 *
1046 * This routine does the work of removing a tuple from an index page.
1047 *
1048 * Unlike heap pages, we compact out the line pointer for the removed tuple.
1049 */
1050void
1052{
1053 PageHeader phdr = (PageHeader) page;
1054 char *addr;
1055 ItemId tup;
1056 Size size;
1057 unsigned offset;
1058 int nbytes;
1059 int offidx;
1060 int nline;
1061
1062 /*
1063 * As with PageRepairFragmentation, paranoia seems justified.
1064 */
1065 if (phdr->pd_lower < SizeOfPageHeaderData ||
1066 phdr->pd_lower > phdr->pd_upper ||
1067 phdr->pd_upper > phdr->pd_special ||
1068 phdr->pd_special > BLCKSZ ||
1069 phdr->pd_special != MAXALIGN(phdr->pd_special))
1070 ereport(ERROR,
1072 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
1073 phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
1074
1075 nline = PageGetMaxOffsetNumber(page);
1076 if ((int) offnum <= 0 || (int) offnum > nline)
1077 elog(ERROR, "invalid index offnum: %u", offnum);
1078
1079 /* change offset number to offset index */
1080 offidx = offnum - 1;
1081
1082 tup = PageGetItemId(page, offnum);
1084 size = ItemIdGetLength(tup);
1085 offset = ItemIdGetOffset(tup);
1086
1087 if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
1088 offset != MAXALIGN(offset))
1089 ereport(ERROR,
1091 errmsg("corrupted line pointer: offset = %u, size = %u",
1092 offset, (unsigned int) size)));
1093
1094 /* Amount of space to actually be deleted */
1095 size = MAXALIGN(size);
1096
1097 /*
1098 * First, we want to get rid of the pd_linp entry for the index tuple. We
1099 * copy all subsequent linp's back one slot in the array. We don't use
1100 * PageGetItemId, because we are manipulating the _array_, not individual
1101 * linp's.
1102 */
1103 nbytes = phdr->pd_lower -
1104 ((char *) &phdr->pd_linp[offidx + 1] - (char *) phdr);
1105
1106 if (nbytes > 0)
1107 memmove(&(phdr->pd_linp[offidx]),
1108 &(phdr->pd_linp[offidx + 1]),
1109 nbytes);
1110
1111 /*
1112 * Now move everything between the old upper bound (beginning of tuple
1113 * space) and the beginning of the deleted tuple forward, so that space in
1114 * the middle of the page is left free. If we've just deleted the tuple
1115 * at the beginning of tuple space, then there's no need to do the copy.
1116 */
1117
1118 /* beginning of tuple space */
1119 addr = (char *) page + phdr->pd_upper;
1120
1121 if (offset > phdr->pd_upper)
1122 memmove(addr + size, addr, offset - phdr->pd_upper);
1123
1124 /* adjust free space boundary pointers */
1125 phdr->pd_upper += size;
1126 phdr->pd_lower -= sizeof(ItemIdData);
1127
1128 /*
1129 * Finally, we need to adjust the linp entries that remain.
1130 *
1131 * Anything that used to be before the deleted tuple's data was moved
1132 * forward by the size of the deleted tuple.
1133 */
1134 if (!PageIsEmpty(page))
1135 {
1136 int i;
1137
1138 nline--; /* there's one less than when we started */
1139 for (i = 1; i <= nline; i++)
1140 {
1141 ItemId ii = PageGetItemId(page, i);
1142
1144 if (ItemIdGetOffset(ii) <= offset)
1145 ii->lp_off += size;
1146 }
1147 }
1148}
1149
1150
1151/*
1152 * PageIndexMultiDelete
1153 *
1154 * This routine handles the case of deleting multiple tuples from an
1155 * index page at once. It is considerably faster than a loop around
1156 * PageIndexTupleDelete ... however, the caller *must* supply the array
1157 * of item numbers to be deleted in item number order!
1158 */
1159void
1161{
1162 PageHeader phdr = (PageHeader) page;
1163 Offset pd_lower = phdr->pd_lower;
1164 Offset pd_upper = phdr->pd_upper;
1165 Offset pd_special = phdr->pd_special;
1166 Offset last_offset;
1169 itemIdCompact itemidptr;
1170 ItemId lp;
1171 int nline,
1172 nused;
1173 Size totallen;
1174 Size size;
1175 unsigned offset;
1176 int nextitm;
1177 OffsetNumber offnum;
1178 bool presorted = true; /* For now */
1179
1181
1182 /*
1183 * If there aren't very many items to delete, then retail
1184 * PageIndexTupleDelete is the best way. Delete the items in reverse
1185 * order so we don't have to think about adjusting item numbers for
1186 * previous deletions.
1187 *
1188 * TODO: tune the magic number here
1189 */
1190 if (nitems <= 2)
1191 {
1192 while (--nitems >= 0)
1193 PageIndexTupleDelete(page, itemnos[nitems]);
1194 return;
1195 }
1196
1197 /*
1198 * As with PageRepairFragmentation, paranoia seems justified.
1199 */
1200 if (pd_lower < SizeOfPageHeaderData ||
1201 pd_lower > pd_upper ||
1202 pd_upper > pd_special ||
1203 pd_special > BLCKSZ ||
1204 pd_special != MAXALIGN(pd_special))
1205 ereport(ERROR,
1207 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
1208 pd_lower, pd_upper, pd_special)));
1209
1210 /*
1211 * Scan the line pointer array and build a list of just the ones we are
1212 * going to keep. Notice we do not modify the page yet, since we are
1213 * still validity-checking.
1214 */
1215 nline = PageGetMaxOffsetNumber(page);
1216 itemidptr = itemidbase;
1217 totallen = 0;
1218 nused = 0;
1219 nextitm = 0;
1220 last_offset = pd_special;
1221 for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
1222 {
1223 lp = PageGetItemId(page, offnum);
1225 size = ItemIdGetLength(lp);
1226 offset = ItemIdGetOffset(lp);
1227 if (offset < pd_upper ||
1228 (offset + size) > pd_special ||
1229 offset != MAXALIGN(offset))
1230 ereport(ERROR,
1232 errmsg("corrupted line pointer: offset = %u, size = %u",
1233 offset, (unsigned int) size)));
1234
1235 if (nextitm < nitems && offnum == itemnos[nextitm])
1236 {
1237 /* skip item to be deleted */
1238 nextitm++;
1239 }
1240 else
1241 {
1242 itemidptr->offsetindex = nused; /* where it will go */
1243 itemidptr->itemoff = offset;
1244
1245 if (last_offset > itemidptr->itemoff)
1246 last_offset = itemidptr->itemoff;
1247 else
1248 presorted = false;
1249
1250 itemidptr->alignedlen = MAXALIGN(size);
1251 totallen += itemidptr->alignedlen;
1252 newitemids[nused] = *lp;
1253 itemidptr++;
1254 nused++;
1255 }
1256 }
1257
1258 /* this will catch invalid or out-of-order itemnos[] */
1259 if (nextitm != nitems)
1260 elog(ERROR, "incorrect index offsets supplied");
1261
1262 if (totallen > (Size) (pd_special - pd_lower))
1263 ereport(ERROR,
1265 errmsg("corrupted item lengths: total %u, available space %u",
1266 (unsigned int) totallen, pd_special - pd_lower)));
1267
1268 /*
1269 * Looks good. Overwrite the line pointers with the copy, from which we've
1270 * removed all the unused items.
1271 */
1272 memcpy(phdr->pd_linp, newitemids, nused * sizeof(ItemIdData));
1273 phdr->pd_lower = SizeOfPageHeaderData + nused * sizeof(ItemIdData);
1274
1275 /* and compactify the tuple data */
1276 if (nused > 0)
1277 compactify_tuples(itemidbase, nused, page, presorted);
1278 else
1279 phdr->pd_upper = pd_special;
1280}
1281
1282
1283/*
1284 * PageIndexTupleDeleteNoCompact
1285 *
1286 * Remove the specified tuple from an index page, but set its line pointer
1287 * to "unused" instead of compacting it out, except that it can be removed
1288 * if it's the last line pointer on the page.
1289 *
1290 * This is used for index AMs that require that existing TIDs of live tuples
1291 * remain unchanged, and are willing to allow unused line pointers instead.
1292 */
1293void
1295{
1296 PageHeader phdr = (PageHeader) page;
1297 char *addr;
1298 ItemId tup;
1299 Size size;
1300 unsigned offset;
1301 int nline;
1302
1303 /*
1304 * As with PageRepairFragmentation, paranoia seems justified.
1305 */
1306 if (phdr->pd_lower < SizeOfPageHeaderData ||
1307 phdr->pd_lower > phdr->pd_upper ||
1308 phdr->pd_upper > phdr->pd_special ||
1309 phdr->pd_special > BLCKSZ ||
1310 phdr->pd_special != MAXALIGN(phdr->pd_special))
1311 ereport(ERROR,
1313 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
1314 phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
1315
1316 nline = PageGetMaxOffsetNumber(page);
1317 if ((int) offnum <= 0 || (int) offnum > nline)
1318 elog(ERROR, "invalid index offnum: %u", offnum);
1319
1320 tup = PageGetItemId(page, offnum);
1322 size = ItemIdGetLength(tup);
1323 offset = ItemIdGetOffset(tup);
1324
1325 if (offset < phdr->pd_upper || (offset + size) > phdr->pd_special ||
1326 offset != MAXALIGN(offset))
1327 ereport(ERROR,
1329 errmsg("corrupted line pointer: offset = %u, size = %u",
1330 offset, (unsigned int) size)));
1331
1332 /* Amount of space to actually be deleted */
1333 size = MAXALIGN(size);
1334
1335 /*
1336 * Either set the line pointer to "unused", or zap it if it's the last
1337 * one. (Note: it's possible that the next-to-last one(s) are already
1338 * unused, but we do not trouble to try to compact them out if so.)
1339 */
1340 if ((int) offnum < nline)
1341 ItemIdSetUnused(tup);
1342 else
1343 {
1344 phdr->pd_lower -= sizeof(ItemIdData);
1345 nline--; /* there's one less than when we started */
1346 }
1347
1348 /*
1349 * Now move everything between the old upper bound (beginning of tuple
1350 * space) and the beginning of the deleted tuple forward, so that space in
1351 * the middle of the page is left free. If we've just deleted the tuple
1352 * at the beginning of tuple space, then there's no need to do the copy.
1353 */
1354
1355 /* beginning of tuple space */
1356 addr = (char *) page + phdr->pd_upper;
1357
1358 if (offset > phdr->pd_upper)
1359 memmove(addr + size, addr, offset - phdr->pd_upper);
1360
1361 /* adjust free space boundary pointer */
1362 phdr->pd_upper += size;
1363
1364 /*
1365 * Finally, we need to adjust the linp entries that remain.
1366 *
1367 * Anything that used to be before the deleted tuple's data was moved
1368 * forward by the size of the deleted tuple.
1369 */
1370 if (!PageIsEmpty(page))
1371 {
1372 int i;
1373
1374 for (i = 1; i <= nline; i++)
1375 {
1376 ItemId ii = PageGetItemId(page, i);
1377
1378 if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
1379 ii->lp_off += size;
1380 }
1381 }
1382}
1383
1384
1385/*
1386 * PageIndexTupleOverwrite
1387 *
1388 * Replace a specified tuple on an index page.
1389 *
1390 * The new tuple is placed exactly where the old one had been, shifting
1391 * other tuples' data up or down as needed to keep the page compacted.
1392 * This is better than deleting and reinserting the tuple, because it
1393 * avoids any data shifting when the tuple size doesn't change; and
1394 * even when it does, we avoid moving the line pointers around.
1395 * This could be used by an index AM that doesn't want to unset the
1396 * LP_DEAD bit when it happens to be set. It could conceivably also be
1397 * used by an index AM that cares about the physical order of tuples as
1398 * well as their logical/ItemId order.
1399 *
1400 * If there's insufficient space for the new tuple, return false. Other
1401 * errors represent data-corruption problems, so we just elog.
1402 */
1403bool
1405 Item newtup, Size newsize)
1406{
1407 PageHeader phdr = (PageHeader) page;
1408 ItemId tupid;
1409 int oldsize;
1410 unsigned offset;
1411 Size alignednewsize;
1412 int size_diff;
1413 int itemcount;
1414
1415 /*
1416 * As with PageRepairFragmentation, paranoia seems justified.
1417 */
1418 if (phdr->pd_lower < SizeOfPageHeaderData ||
1419 phdr->pd_lower > phdr->pd_upper ||
1420 phdr->pd_upper > phdr->pd_special ||
1421 phdr->pd_special > BLCKSZ ||
1422 phdr->pd_special != MAXALIGN(phdr->pd_special))
1423 ereport(ERROR,
1425 errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
1426 phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
1427
1428 itemcount = PageGetMaxOffsetNumber(page);
1429 if ((int) offnum <= 0 || (int) offnum > itemcount)
1430 elog(ERROR, "invalid index offnum: %u", offnum);
1431
1432 tupid = PageGetItemId(page, offnum);
1433 Assert(ItemIdHasStorage(tupid));
1434 oldsize = ItemIdGetLength(tupid);
1435 offset = ItemIdGetOffset(tupid);
1436
1437 if (offset < phdr->pd_upper || (offset + oldsize) > phdr->pd_special ||
1438 offset != MAXALIGN(offset))
1439 ereport(ERROR,
1441 errmsg("corrupted line pointer: offset = %u, size = %u",
1442 offset, (unsigned int) oldsize)));
1443
1444 /*
1445 * Determine actual change in space requirement, check for page overflow.
1446 */
1447 oldsize = MAXALIGN(oldsize);
1448 alignednewsize = MAXALIGN(newsize);
1449 if (alignednewsize > oldsize + (phdr->pd_upper - phdr->pd_lower))
1450 return false;
1451
1452 /*
1453 * Relocate existing data and update line pointers, unless the new tuple
1454 * is the same size as the old (after alignment), in which case there's
1455 * nothing to do. Notice that what we have to relocate is data before the
1456 * target tuple, not data after, so it's convenient to express size_diff
1457 * as the amount by which the tuple's size is decreasing, making it the
1458 * delta to add to pd_upper and affected line pointers.
1459 */
1460 size_diff = oldsize - (int) alignednewsize;
1461 if (size_diff != 0)
1462 {
1463 char *addr = (char *) page + phdr->pd_upper;
1464 int i;
1465
1466 /* relocate all tuple data before the target tuple */
1467 memmove(addr + size_diff, addr, offset - phdr->pd_upper);
1468
1469 /* adjust free space boundary pointer */
1470 phdr->pd_upper += size_diff;
1471
1472 /* adjust affected line pointers too */
1473 for (i = FirstOffsetNumber; i <= itemcount; i++)
1474 {
1475 ItemId ii = PageGetItemId(page, i);
1476
1477 /* Allow items without storage; currently only BRIN needs that */
1478 if (ItemIdHasStorage(ii) && ItemIdGetOffset(ii) <= offset)
1479 ii->lp_off += size_diff;
1480 }
1481 }
1482
1483 /* Update the item's tuple length without changing its lp_flags field */
1484 tupid->lp_off = offset + size_diff;
1485 tupid->lp_len = newsize;
1486
1487 /* Copy new tuple data onto page */
1488 memcpy(PageGetItem(page, tupid), newtup, newsize);
1489
1490 return true;
1491}
1492
1493
1494/*
1495 * Set checksum for a page in shared buffers.
1496 *
1497 * If checksums are disabled, or if the page is not initialized, just return
1498 * the input. Otherwise, we must make a copy of the page before calculating
1499 * the checksum, to prevent concurrent modifications (e.g. setting hint bits)
1500 * from making the final checksum invalid. It doesn't matter if we include or
1501 * exclude hints during the copy, as long as we write a valid page and
1502 * associated checksum.
1503 *
1504 * Returns a pointer to the block-sized data that needs to be written. Uses
1505 * statically-allocated memory, so the caller must immediately write the
1506 * returned page and not refer to it again.
1507 */
1508char *
1510{
1511 static char *pageCopy = NULL;
1512
1513 /* If we don't need a checksum, just return the passed-in data */
1514 if (PageIsNew(page) || !DataChecksumsEnabled())
1515 return page;
1516
1517 /*
1518 * We allocate the copy space once and use it over on each subsequent
1519 * call. The point of palloc'ing here, rather than having a static char
1520 * array, is first to ensure adequate alignment for the checksumming code
1521 * and second to avoid wasting space in processes that never call this.
1522 */
1523 if (pageCopy == NULL)
1525 BLCKSZ,
1527 0);
1528
1529 memcpy(pageCopy, page, BLCKSZ);
1530 ((PageHeader) pageCopy)->pd_checksum = pg_checksum_page(pageCopy, blkno);
1531 return pageCopy;
1532}
1533
1534/*
1535 * Set checksum for a page in private memory.
1536 *
1537 * This must only be used when we know that no other process can be modifying
1538 * the page buffer.
1539 */
1540void
1542{
1543 /* If we don't need a checksum, just return */
1544 if (PageIsNew(page) || !DataChecksumsEnabled())
1545 return;
1546
1547 ((PageHeader) page)->pd_checksum = pg_checksum_page(page, blkno);
1548}
uint32 BlockNumber
Definition: block.h:31
struct itemIdCompactData itemIdCompactData
Size PageGetFreeSpace(const PageData *page)
Definition: bufpage.c:906
static void compactify_tuples(itemIdCompact itemidbase, int nitems, Page page, bool presorted)
Definition: bufpage.c:473
bool ignore_checksum_failure
Definition: bufpage.c:27
void PageRestoreTempPage(Page tempPage, Page oldPage)
Definition: bufpage.c:423
Size PageGetFreeSpaceForMultipleTuples(const PageData *page, int ntups)
Definition: bufpage.c:933
Size PageGetHeapFreeSpace(const PageData *page)
Definition: bufpage.c:990
itemIdCompactData * itemIdCompact
Definition: bufpage.c:442
Page PageGetTempPage(const PageData *page)
Definition: bufpage.c:364
Page PageGetTempPageCopy(const PageData *page)
Definition: bufpage.c:381
void PageIndexMultiDelete(Page page, OffsetNumber *itemnos, int nitems)
Definition: bufpage.c:1160
OffsetNumber PageAddItemExtended(Page page, Item item, Size size, OffsetNumber offsetNumber, int flags)
Definition: bufpage.c:193
bool PageIndexTupleOverwrite(Page page, OffsetNumber offnum, Item newtup, Size newsize)
Definition: bufpage.c:1404
void PageSetChecksumInplace(Page page, BlockNumber blkno)
Definition: bufpage.c:1541
void PageIndexTupleDelete(Page page, OffsetNumber offnum)
Definition: bufpage.c:1051
char * PageSetChecksumCopy(Page page, BlockNumber blkno)
Definition: bufpage.c:1509
void PageRepairFragmentation(Page page)
Definition: bufpage.c:698
Size PageGetExactFreeSpace(const PageData *page)
Definition: bufpage.c:957
void PageTruncateLinePointerArray(Page page)
Definition: bufpage.c:834
void PageInit(Page page, Size pageSize, Size specialSize)
Definition: bufpage.c:42
bool PageIsVerified(PageData *page, BlockNumber blkno, int flags, bool *checksum_failure_p)
Definition: bufpage.c:94
Page PageGetTempPageCopySpecial(const PageData *page)
Definition: bufpage.c:401
void PageIndexTupleDeleteNoCompact(Page page, OffsetNumber offnum)
Definition: bufpage.c:1294
#define PD_VALID_FLAG_BITS
Definition: bufpage.h:192
static bool PageIsEmpty(const PageData *page)
Definition: bufpage.h:224
#define PIV_LOG_LOG
Definition: bufpage.h:469
PageHeaderData * PageHeader
Definition: bufpage.h:174
static void PageSetHasFreeLinePointers(Page page)
Definition: bufpage.h:402
static uint16 PageGetSpecialSize(const PageData *page)
Definition: bufpage.h:317
#define PageGetSpecialPointer(page)
Definition: bufpage.h:339
char PageData
Definition: bufpage.h:81
static Size PageGetPageSize(const PageData *page)
Definition: bufpage.h:277
#define PIV_LOG_WARNING
Definition: bufpage.h:468
static Item PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:354
static bool PageIsNew(const PageData *page)
Definition: bufpage.h:234
#define SizeOfPageHeaderData
Definition: bufpage.h:217
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:244
static bool PageHasFreeLinePointers(const PageData *page)
Definition: bufpage.h:397
#define PG_PAGE_LAYOUT_VERSION
Definition: bufpage.h:206
static void PageClearHasFreeLinePointers(Page page)
Definition: bufpage.h:407
PageData * Page
Definition: bufpage.h:82
uint16 LocationIndex
Definition: bufpage.h:91
static void PageSetPageSizeAndVersion(Page page, Size size, uint8 version)
Definition: bufpage.h:300
#define PIV_IGNORE_CHECKSUM_FAILURE
Definition: bufpage.h:470
#define PAI_IS_HEAP
Definition: bufpage.h:465
#define PAI_OVERWRITE
Definition: bufpage.h:464
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:372
#define unconstify(underlying_type, expr)
Definition: c.h:1216
#define MAXALIGN(LEN)
Definition: c.h:782
int16_t int16
Definition: c.h:497
uint16_t uint16
Definition: c.h:501
#define unlikely(x)
Definition: c.h:347
#define MemSet(start, val, len)
Definition: c.h:991
signed int Offset
Definition: c.h:595
size_t Size
Definition: c.h:576
uint16 pg_checksum_page(char *page, BlockNumber blkno)
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define LOG
Definition: elog.h:31
#define WARNING
Definition: elog.h:36
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:149
Assert(PointerIsAligned(start, uint64))
#define MaxHeapTuplesPerPage
Definition: htup_details.h:624
#define nitems(x)
Definition: indent.h:31
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
Pointer Item
Definition: item.h:17
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
#define ItemIdGetOffset(itemId)
Definition: itemid.h:65
struct ItemIdData ItemIdData
#define ItemIdSetNormal(itemId, off, len)
Definition: itemid.h:140
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
#define ItemIdSetUnused(itemId)
Definition: itemid.h:128
#define ItemIdHasStorage(itemId)
Definition: itemid.h:120
#define MaxIndexTuplesPerPage
Definition: itup.h:181
void pfree(void *pointer)
Definition: mcxt.c:2150
void * MemoryContextAllocAligned(MemoryContext context, Size size, Size alignto, int flags)
Definition: mcxt.c:2038
MemoryContext TopMemoryContext
Definition: mcxt.c:165
void * palloc(Size size)
Definition: mcxt.c:1943
#define VALGRIND_CHECK_MEM_IS_DEFINED(addr, size)
Definition: memdebug.h:23
static bool pg_memory_is_all_zeros(const void *ptr, size_t len)
Definition: memutils.h:239
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
#define FirstOffsetNumber
Definition: off.h:27
Datum lower(PG_FUNCTION_ARGS)
Definition: oracle_compat.c:49
Datum upper(PG_FUNCTION_ARGS)
Definition: oracle_compat.c:80
static bool checksum_failure
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:41
#define PG_IO_ALIGN_SIZE
unsigned lp_len
Definition: itemid.h:29
unsigned lp_off
Definition: itemid.h:27
LocationIndex pd_special
Definition: bufpage.h:168
LocationIndex pd_upper
Definition: bufpage.h:167
uint16 pd_flags
Definition: bufpage.h:165
uint16 pd_checksum
Definition: bufpage.h:164
LocationIndex pd_lower
Definition: bufpage.h:166
ItemIdData pd_linp[FLEXIBLE_ARRAY_MEMBER]
Definition: bufpage.h:171
uint16 offsetindex
Definition: bufpage.c:438
uint16 alignedlen
Definition: bufpage.c:440
char data[BLCKSZ]
Definition: c.h:1090
bool DataChecksumsEnabled(void)
Definition: xlog.c:4754