PostgreSQL Source Code  git master
lock.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * lock.c
4  * POSTGRES primary lock mechanism
5  *
6  * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/storage/lmgr/lock.c
12  *
13  * NOTES
14  * A lock table is a shared memory hash table. When
15  * a process tries to acquire a lock of a type that conflicts
16  * with existing locks, it is put to sleep using the routines
17  * in storage/lmgr/proc.c.
18  *
19  * For the most part, this code should be invoked via lmgr.c
20  * or another lock-management module, not directly.
21  *
22  * Interface:
23  *
24  * InitLocks(), GetLocksMethodTable(), GetLockTagsMethodTable(),
25  * LockAcquire(), LockRelease(), LockReleaseAll(),
26  * LockCheckConflicts(), GrantLock()
27  *
28  *-------------------------------------------------------------------------
29  */
30 #include "postgres.h"
31 
32 #include <signal.h>
33 #include <unistd.h>
34 
35 #include "access/transam.h"
36 #include "access/twophase.h"
37 #include "access/twophase_rmgr.h"
38 #include "access/xact.h"
39 #include "access/xlog.h"
40 #include "access/xlogutils.h"
41 #include "miscadmin.h"
42 #include "pg_trace.h"
43 #include "pgstat.h"
44 #include "storage/proc.h"
45 #include "storage/procarray.h"
46 #include "storage/sinvaladt.h"
47 #include "storage/spin.h"
48 #include "storage/standby.h"
49 #include "utils/memutils.h"
50 #include "utils/ps_status.h"
51 #include "utils/resowner_private.h"
52 
53 
54 /* This configuration variable is used to set the lock table size */
55 int max_locks_per_xact; /* set by guc.c */
56 
57 #define NLOCKENTS() \
58  mul_size(max_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
59 
60 
61 /*
62  * Data structures defining the semantics of the standard lock methods.
63  *
64  * The conflict table defines the semantics of the various lock modes.
65  */
66 static const LOCKMASK LockConflicts[] = {
67  0,
68 
69  /* AccessShareLock */
71 
72  /* RowShareLock */
74 
75  /* RowExclusiveLock */
78 
79  /* ShareUpdateExclusiveLock */
83 
84  /* ShareLock */
88 
89  /* ShareRowExclusiveLock */
93 
94  /* ExclusiveLock */
99 
100  /* AccessExclusiveLock */
105 
106 };
107 
108 /* Names of lock modes, for debug printouts */
109 static const char *const lock_mode_names[] =
110 {
111  "INVALID",
112  "AccessShareLock",
113  "RowShareLock",
114  "RowExclusiveLock",
115  "ShareUpdateExclusiveLock",
116  "ShareLock",
117  "ShareRowExclusiveLock",
118  "ExclusiveLock",
119  "AccessExclusiveLock"
120 };
121 
122 #ifndef LOCK_DEBUG
123 static bool Dummy_trace = false;
124 #endif
125 
127  MaxLockMode,
130 #ifdef LOCK_DEBUG
131  &Trace_locks
132 #else
133  &Dummy_trace
134 #endif
135 };
136 
138  MaxLockMode,
141 #ifdef LOCK_DEBUG
142  &Trace_userlocks
143 #else
144  &Dummy_trace
145 #endif
146 };
147 
148 /*
149  * map from lock method id to the lock table data structures
150  */
151 static const LockMethod LockMethods[] = {
152  NULL,
155 };
156 
157 
158 /* Record that's written to 2PC state file when a lock is persisted */
159 typedef struct TwoPhaseLockRecord
160 {
164 
165 
166 /*
167  * Count of the number of fast path lock slots we believe to be used. This
168  * might be higher than the real number if another backend has transferred
169  * our locks to the primary lock table, but it can never be lower than the
170  * real value, since only we can acquire locks on our own behalf.
171  */
172 static int FastPathLocalUseCount = 0;
173 
174 /*
175  * Flag to indicate if the relation extension lock is held by this backend.
176  * This flag is used to ensure that while holding the relation extension lock
177  * we don't try to acquire a heavyweight lock on any other object. This
178  * restriction implies that the relation extension lock won't ever participate
179  * in the deadlock cycle because we can never wait for any other heavyweight
180  * lock after acquiring this lock.
181  *
182  * Such a restriction is okay for relation extension locks as unlike other
183  * heavyweight locks these are not held till the transaction end. These are
184  * taken for a short duration to extend a particular relation and then
185  * released.
186  */
187 static bool IsRelationExtensionLockHeld PG_USED_FOR_ASSERTS_ONLY = false;
188 
189 /* Macros for manipulating proc->fpLockBits */
190 #define FAST_PATH_BITS_PER_SLOT 3
191 #define FAST_PATH_LOCKNUMBER_OFFSET 1
192 #define FAST_PATH_MASK ((1 << FAST_PATH_BITS_PER_SLOT) - 1)
193 #define FAST_PATH_GET_BITS(proc, n) \
194  (((proc)->fpLockBits >> (FAST_PATH_BITS_PER_SLOT * n)) & FAST_PATH_MASK)
195 #define FAST_PATH_BIT_POSITION(n, l) \
196  (AssertMacro((l) >= FAST_PATH_LOCKNUMBER_OFFSET), \
197  AssertMacro((l) < FAST_PATH_BITS_PER_SLOT+FAST_PATH_LOCKNUMBER_OFFSET), \
198  AssertMacro((n) < FP_LOCK_SLOTS_PER_BACKEND), \
199  ((l) - FAST_PATH_LOCKNUMBER_OFFSET + FAST_PATH_BITS_PER_SLOT * (n)))
200 #define FAST_PATH_SET_LOCKMODE(proc, n, l) \
201  (proc)->fpLockBits |= UINT64CONST(1) << FAST_PATH_BIT_POSITION(n, l)
202 #define FAST_PATH_CLEAR_LOCKMODE(proc, n, l) \
203  (proc)->fpLockBits &= ~(UINT64CONST(1) << FAST_PATH_BIT_POSITION(n, l))
204 #define FAST_PATH_CHECK_LOCKMODE(proc, n, l) \
205  ((proc)->fpLockBits & (UINT64CONST(1) << FAST_PATH_BIT_POSITION(n, l)))
206 
207 /*
208  * The fast-path lock mechanism is concerned only with relation locks on
209  * unshared relations by backends bound to a database. The fast-path
210  * mechanism exists mostly to accelerate acquisition and release of locks
211  * that rarely conflict. Because ShareUpdateExclusiveLock is
212  * self-conflicting, it can't use the fast-path mechanism; but it also does
213  * not conflict with any of the locks that do, so we can ignore it completely.
214  */
215 #define EligibleForRelationFastPath(locktag, mode) \
216  ((locktag)->locktag_lockmethodid == DEFAULT_LOCKMETHOD && \
217  (locktag)->locktag_type == LOCKTAG_RELATION && \
218  (locktag)->locktag_field1 == MyDatabaseId && \
219  MyDatabaseId != InvalidOid && \
220  (mode) < ShareUpdateExclusiveLock)
221 #define ConflictsWithRelationFastPath(locktag, mode) \
222  ((locktag)->locktag_lockmethodid == DEFAULT_LOCKMETHOD && \
223  (locktag)->locktag_type == LOCKTAG_RELATION && \
224  (locktag)->locktag_field1 != InvalidOid && \
225  (mode) > ShareUpdateExclusiveLock)
226 
227 static bool FastPathGrantRelationLock(Oid relid, LOCKMODE lockmode);
228 static bool FastPathUnGrantRelationLock(Oid relid, LOCKMODE lockmode);
229 static bool FastPathTransferRelationLocks(LockMethod lockMethodTable,
230  const LOCKTAG *locktag, uint32 hashcode);
232 
233 /*
234  * To make the fast-path lock mechanism work, we must have some way of
235  * preventing the use of the fast-path when a conflicting lock might be present.
236  * We partition* the locktag space into FAST_PATH_STRONG_LOCK_HASH_PARTITIONS,
237  * and maintain an integer count of the number of "strong" lockers
238  * in each partition. When any "strong" lockers are present (which is
239  * hopefully not very often), the fast-path mechanism can't be used, and we
240  * must fall back to the slower method of pushing matching locks directly
241  * into the main lock tables.
242  *
243  * The deadlock detector does not know anything about the fast path mechanism,
244  * so any locks that might be involved in a deadlock must be transferred from
245  * the fast-path queues to the main lock table.
246  */
247 
248 #define FAST_PATH_STRONG_LOCK_HASH_BITS 10
249 #define FAST_PATH_STRONG_LOCK_HASH_PARTITIONS \
250  (1 << FAST_PATH_STRONG_LOCK_HASH_BITS)
251 #define FastPathStrongLockHashPartition(hashcode) \
252  ((hashcode) % FAST_PATH_STRONG_LOCK_HASH_PARTITIONS)
253 
254 typedef struct
255 {
259 
261 
262 
263 /*
264  * Pointers to hash tables containing lock state
265  *
266  * The LockMethodLockHash and LockMethodProcLockHash hash tables are in
267  * shared memory; LockMethodLocalHash is local to each backend.
268  */
272 
273 
274 /* private state for error cleanup */
278 
279 
280 #ifdef LOCK_DEBUG
281 
282 /*------
283  * The following configuration options are available for lock debugging:
284  *
285  * TRACE_LOCKS -- give a bunch of output what's going on in this file
286  * TRACE_USERLOCKS -- same but for user locks
287  * TRACE_LOCK_OIDMIN-- do not trace locks for tables below this oid
288  * (use to avoid output on system tables)
289  * TRACE_LOCK_TABLE -- trace locks on this table (oid) unconditionally
290  * DEBUG_DEADLOCKS -- currently dumps locks at untimely occasions ;)
291  *
292  * Furthermore, but in storage/lmgr/lwlock.c:
293  * TRACE_LWLOCKS -- trace lightweight locks (pretty useless)
294  *
295  * Define LOCK_DEBUG at compile time to get all these enabled.
296  * --------
297  */
298 
299 int Trace_lock_oidmin = FirstNormalObjectId;
300 bool Trace_locks = false;
301 bool Trace_userlocks = false;
302 int Trace_lock_table = 0;
303 bool Debug_deadlocks = false;
304 
305 
306 inline static bool
307 LOCK_DEBUG_ENABLED(const LOCKTAG *tag)
308 {
309  return
311  ((Oid) tag->locktag_field2 >= (Oid) Trace_lock_oidmin))
312  || (Trace_lock_table &&
313  (tag->locktag_field2 == Trace_lock_table));
314 }
315 
316 
317 inline static void
318 LOCK_PRINT(const char *where, const LOCK *lock, LOCKMODE type)
319 {
320  if (LOCK_DEBUG_ENABLED(&lock->tag))
321  elog(LOG,
322  "%s: lock(%p) id(%u,%u,%u,%u,%u,%u) grantMask(%x) "
323  "req(%d,%d,%d,%d,%d,%d,%d)=%d "
324  "grant(%d,%d,%d,%d,%d,%d,%d)=%d wait(%d) type(%s)",
325  where, lock,
326  lock->tag.locktag_field1, lock->tag.locktag_field2,
327  lock->tag.locktag_field3, lock->tag.locktag_field4,
329  lock->grantMask,
330  lock->requested[1], lock->requested[2], lock->requested[3],
331  lock->requested[4], lock->requested[5], lock->requested[6],
332  lock->requested[7], lock->nRequested,
333  lock->granted[1], lock->granted[2], lock->granted[3],
334  lock->granted[4], lock->granted[5], lock->granted[6],
335  lock->granted[7], lock->nGranted,
336  dclist_count(&lock->waitProcs),
337  LockMethods[LOCK_LOCKMETHOD(*lock)]->lockModeNames[type]);
338 }
339 
340 
341 inline static void
342 PROCLOCK_PRINT(const char *where, const PROCLOCK *proclockP)
343 {
344  if (LOCK_DEBUG_ENABLED(&proclockP->tag.myLock->tag))
345  elog(LOG,
346  "%s: proclock(%p) lock(%p) method(%u) proc(%p) hold(%x)",
347  where, proclockP, proclockP->tag.myLock,
348  PROCLOCK_LOCKMETHOD(*(proclockP)),
349  proclockP->tag.myProc, (int) proclockP->holdMask);
350 }
351 #else /* not LOCK_DEBUG */
352 
353 #define LOCK_PRINT(where, lock, type) ((void) 0)
354 #define PROCLOCK_PRINT(where, proclockP) ((void) 0)
355 #endif /* not LOCK_DEBUG */
356 
357 
358 static uint32 proclock_hash(const void *key, Size keysize);
359 static void RemoveLocalLock(LOCALLOCK *locallock);
360 static PROCLOCK *SetupLockInTable(LockMethod lockMethodTable, PGPROC *proc,
361  const LOCKTAG *locktag, uint32 hashcode, LOCKMODE lockmode);
362 static void GrantLockLocal(LOCALLOCK *locallock, ResourceOwner owner);
363 static void BeginStrongLockAcquire(LOCALLOCK *locallock, uint32 fasthashcode);
364 static void FinishStrongLockAcquire(void);
365 static void WaitOnLock(LOCALLOCK *locallock, ResourceOwner owner);
366 static void ReleaseLockIfHeld(LOCALLOCK *locallock, bool sessionLock);
367 static void LockReassignOwner(LOCALLOCK *locallock, ResourceOwner parent);
368 static bool UnGrantLock(LOCK *lock, LOCKMODE lockmode,
369  PROCLOCK *proclock, LockMethod lockMethodTable);
370 static void CleanUpLock(LOCK *lock, PROCLOCK *proclock,
371  LockMethod lockMethodTable, uint32 hashcode,
372  bool wakeupNeeded);
373 static void LockRefindAndRelease(LockMethod lockMethodTable, PGPROC *proc,
374  LOCKTAG *locktag, LOCKMODE lockmode,
375  bool decrement_strong_lock_count);
376 static void GetSingleProcBlockerStatusData(PGPROC *blocked_proc,
378 
379 
380 /*
381  * InitLocks -- Initialize the lock manager's data structures.
382  *
383  * This is called from CreateSharedMemoryAndSemaphores(), which see for
384  * more comments. In the normal postmaster case, the shared hash tables
385  * are created here, as well as a locallock hash table that will remain
386  * unused and empty in the postmaster itself. Backends inherit the pointers
387  * to the shared tables via fork(), and also inherit an image of the locallock
388  * hash table, which they proceed to use. In the EXEC_BACKEND case, each
389  * backend re-executes this code to obtain pointers to the already existing
390  * shared hash tables and to create its locallock hash table.
391  */
392 void
394 {
395  HASHCTL info;
396  long init_table_size,
397  max_table_size;
398  bool found;
399 
400  /*
401  * Compute init/max size to request for lock hashtables. Note these
402  * calculations must agree with LockShmemSize!
403  */
404  max_table_size = NLOCKENTS();
405  init_table_size = max_table_size / 2;
406 
407  /*
408  * Allocate hash table for LOCK structs. This stores per-locked-object
409  * information.
410  */
411  info.keysize = sizeof(LOCKTAG);
412  info.entrysize = sizeof(LOCK);
414 
415  LockMethodLockHash = ShmemInitHash("LOCK hash",
416  init_table_size,
417  max_table_size,
418  &info,
420 
421  /* Assume an average of 2 holders per lock */
422  max_table_size *= 2;
423  init_table_size *= 2;
424 
425  /*
426  * Allocate hash table for PROCLOCK structs. This stores
427  * per-lock-per-holder information.
428  */
429  info.keysize = sizeof(PROCLOCKTAG);
430  info.entrysize = sizeof(PROCLOCK);
431  info.hash = proclock_hash;
433 
434  LockMethodProcLockHash = ShmemInitHash("PROCLOCK hash",
435  init_table_size,
436  max_table_size,
437  &info,
439 
440  /*
441  * Allocate fast-path structures.
442  */
444  ShmemInitStruct("Fast Path Strong Relation Lock Data",
445  sizeof(FastPathStrongRelationLockData), &found);
446  if (!found)
448 
449  /*
450  * Allocate non-shared hash table for LOCALLOCK structs. This stores lock
451  * counts and resource owner information.
452  *
453  * The non-shared table could already exist in this process (this occurs
454  * when the postmaster is recreating shared memory after a backend crash).
455  * If so, delete and recreate it. (We could simply leave it, since it
456  * ought to be empty in the postmaster, but for safety let's zap it.)
457  */
460 
461  info.keysize = sizeof(LOCALLOCKTAG);
462  info.entrysize = sizeof(LOCALLOCK);
463 
464  LockMethodLocalHash = hash_create("LOCALLOCK hash",
465  16,
466  &info,
468 }
469 
470 
471 /*
472  * Fetch the lock method table associated with a given lock
473  */
476 {
477  LOCKMETHODID lockmethodid = LOCK_LOCKMETHOD(*lock);
478 
479  Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods));
480  return LockMethods[lockmethodid];
481 }
482 
483 /*
484  * Fetch the lock method table associated with a given locktag
485  */
488 {
489  LOCKMETHODID lockmethodid = (LOCKMETHODID) locktag->locktag_lockmethodid;
490 
491  Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods));
492  return LockMethods[lockmethodid];
493 }
494 
495 
496 /*
497  * Compute the hash code associated with a LOCKTAG.
498  *
499  * To avoid unnecessary recomputations of the hash code, we try to do this
500  * just once per function, and then pass it around as needed. Aside from
501  * passing the hashcode to hash_search_with_hash_value(), we can extract
502  * the lock partition number from the hashcode.
503  */
504 uint32
505 LockTagHashCode(const LOCKTAG *locktag)
506 {
507  return get_hash_value(LockMethodLockHash, (const void *) locktag);
508 }
509 
510 /*
511  * Compute the hash code associated with a PROCLOCKTAG.
512  *
513  * Because we want to use just one set of partition locks for both the
514  * LOCK and PROCLOCK hash tables, we have to make sure that PROCLOCKs
515  * fall into the same partition number as their associated LOCKs.
516  * dynahash.c expects the partition number to be the low-order bits of
517  * the hash code, and therefore a PROCLOCKTAG's hash code must have the
518  * same low-order bits as the associated LOCKTAG's hash code. We achieve
519  * this with this specialized hash function.
520  */
521 static uint32
522 proclock_hash(const void *key, Size keysize)
523 {
524  const PROCLOCKTAG *proclocktag = (const PROCLOCKTAG *) key;
525  uint32 lockhash;
526  Datum procptr;
527 
528  Assert(keysize == sizeof(PROCLOCKTAG));
529 
530  /* Look into the associated LOCK object, and compute its hash code */
531  lockhash = LockTagHashCode(&proclocktag->myLock->tag);
532 
533  /*
534  * To make the hash code also depend on the PGPROC, we xor the proc
535  * struct's address into the hash code, left-shifted so that the
536  * partition-number bits don't change. Since this is only a hash, we
537  * don't care if we lose high-order bits of the address; use an
538  * intermediate variable to suppress cast-pointer-to-int warnings.
539  */
540  procptr = PointerGetDatum(proclocktag->myProc);
541  lockhash ^= ((uint32) procptr) << LOG2_NUM_LOCK_PARTITIONS;
542 
543  return lockhash;
544 }
545 
546 /*
547  * Compute the hash code associated with a PROCLOCKTAG, given the hashcode
548  * for its underlying LOCK.
549  *
550  * We use this just to avoid redundant calls of LockTagHashCode().
551  */
552 static inline uint32
553 ProcLockHashCode(const PROCLOCKTAG *proclocktag, uint32 hashcode)
554 {
555  uint32 lockhash = hashcode;
556  Datum procptr;
557 
558  /*
559  * This must match proclock_hash()!
560  */
561  procptr = PointerGetDatum(proclocktag->myProc);
562  lockhash ^= ((uint32) procptr) << LOG2_NUM_LOCK_PARTITIONS;
563 
564  return lockhash;
565 }
566 
567 /*
568  * Given two lock modes, return whether they would conflict.
569  */
570 bool
572 {
573  LockMethod lockMethodTable = LockMethods[DEFAULT_LOCKMETHOD];
574 
575  if (lockMethodTable->conflictTab[mode1] & LOCKBIT_ON(mode2))
576  return true;
577 
578  return false;
579 }
580 
581 /*
582  * LockHeldByMe -- test whether lock 'locktag' is held with mode 'lockmode'
583  * by the current transaction
584  */
585 bool
586 LockHeldByMe(const LOCKTAG *locktag, LOCKMODE lockmode)
587 {
588  LOCALLOCKTAG localtag;
589  LOCALLOCK *locallock;
590 
591  /*
592  * See if there is a LOCALLOCK entry for this lock and lockmode
593  */
594  MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */
595  localtag.lock = *locktag;
596  localtag.mode = lockmode;
597 
598  locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash,
599  &localtag,
600  HASH_FIND, NULL);
601 
602  return (locallock && locallock->nLocks > 0);
603 }
604 
605 #ifdef USE_ASSERT_CHECKING
606 /*
607  * GetLockMethodLocalHash -- return the hash of local locks, for modules that
608  * evaluate assertions based on all locks held.
609  */
610 HTAB *
611 GetLockMethodLocalHash(void)
612 {
613  return LockMethodLocalHash;
614 }
615 #endif
616 
617 /*
618  * LockHasWaiters -- look up 'locktag' and check if releasing this
619  * lock would wake up other processes waiting for it.
620  */
621 bool
622 LockHasWaiters(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock)
623 {
624  LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
625  LockMethod lockMethodTable;
626  LOCALLOCKTAG localtag;
627  LOCALLOCK *locallock;
628  LOCK *lock;
629  PROCLOCK *proclock;
630  LWLock *partitionLock;
631  bool hasWaiters = false;
632 
633  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
634  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
635  lockMethodTable = LockMethods[lockmethodid];
636  if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
637  elog(ERROR, "unrecognized lock mode: %d", lockmode);
638 
639 #ifdef LOCK_DEBUG
640  if (LOCK_DEBUG_ENABLED(locktag))
641  elog(LOG, "LockHasWaiters: lock [%u,%u] %s",
642  locktag->locktag_field1, locktag->locktag_field2,
643  lockMethodTable->lockModeNames[lockmode]);
644 #endif
645 
646  /*
647  * Find the LOCALLOCK entry for this lock and lockmode
648  */
649  MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */
650  localtag.lock = *locktag;
651  localtag.mode = lockmode;
652 
653  locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash,
654  &localtag,
655  HASH_FIND, NULL);
656 
657  /*
658  * let the caller print its own error message, too. Do not ereport(ERROR).
659  */
660  if (!locallock || locallock->nLocks <= 0)
661  {
662  elog(WARNING, "you don't own a lock of type %s",
663  lockMethodTable->lockModeNames[lockmode]);
664  return false;
665  }
666 
667  /*
668  * Check the shared lock table.
669  */
670  partitionLock = LockHashPartitionLock(locallock->hashcode);
671 
672  LWLockAcquire(partitionLock, LW_SHARED);
673 
674  /*
675  * We don't need to re-find the lock or proclock, since we kept their
676  * addresses in the locallock table, and they couldn't have been removed
677  * while we were holding a lock on them.
678  */
679  lock = locallock->lock;
680  LOCK_PRINT("LockHasWaiters: found", lock, lockmode);
681  proclock = locallock->proclock;
682  PROCLOCK_PRINT("LockHasWaiters: found", proclock);
683 
684  /*
685  * Double-check that we are actually holding a lock of the type we want to
686  * release.
687  */
688  if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
689  {
690  PROCLOCK_PRINT("LockHasWaiters: WRONGTYPE", proclock);
691  LWLockRelease(partitionLock);
692  elog(WARNING, "you don't own a lock of type %s",
693  lockMethodTable->lockModeNames[lockmode]);
694  RemoveLocalLock(locallock);
695  return false;
696  }
697 
698  /*
699  * Do the checking.
700  */
701  if ((lockMethodTable->conflictTab[lockmode] & lock->waitMask) != 0)
702  hasWaiters = true;
703 
704  LWLockRelease(partitionLock);
705 
706  return hasWaiters;
707 }
708 
709 /*
710  * LockAcquire -- Check for lock conflicts, sleep if conflict found,
711  * set lock if/when no conflicts.
712  *
713  * Inputs:
714  * locktag: unique identifier for the lockable object
715  * lockmode: lock mode to acquire
716  * sessionLock: if true, acquire lock for session not current transaction
717  * dontWait: if true, don't wait to acquire lock
718  *
719  * Returns one of:
720  * LOCKACQUIRE_NOT_AVAIL lock not available, and dontWait=true
721  * LOCKACQUIRE_OK lock successfully acquired
722  * LOCKACQUIRE_ALREADY_HELD incremented count for lock already held
723  * LOCKACQUIRE_ALREADY_CLEAR incremented count for lock already clear
724  *
725  * In the normal case where dontWait=false and the caller doesn't need to
726  * distinguish a freshly acquired lock from one already taken earlier in
727  * this same transaction, there is no need to examine the return value.
728  *
729  * Side Effects: The lock is acquired and recorded in lock tables.
730  *
731  * NOTE: if we wait for the lock, there is no way to abort the wait
732  * short of aborting the transaction.
733  */
735 LockAcquire(const LOCKTAG *locktag,
736  LOCKMODE lockmode,
737  bool sessionLock,
738  bool dontWait)
739 {
740  return LockAcquireExtended(locktag, lockmode, sessionLock, dontWait,
741  true, NULL);
742 }
743 
744 /*
745  * LockAcquireExtended - allows us to specify additional options
746  *
747  * reportMemoryError specifies whether a lock request that fills the lock
748  * table should generate an ERROR or not. Passing "false" allows the caller
749  * to attempt to recover from lock-table-full situations, perhaps by forcibly
750  * canceling other lock holders and then retrying. Note, however, that the
751  * return code for that is LOCKACQUIRE_NOT_AVAIL, so that it's unsafe to use
752  * in combination with dontWait = true, as the cause of failure couldn't be
753  * distinguished.
754  *
755  * If locallockp isn't NULL, *locallockp receives a pointer to the LOCALLOCK
756  * table entry if a lock is successfully acquired, or NULL if not.
757  */
760  LOCKMODE lockmode,
761  bool sessionLock,
762  bool dontWait,
763  bool reportMemoryError,
764  LOCALLOCK **locallockp)
765 {
766  LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
767  LockMethod lockMethodTable;
768  LOCALLOCKTAG localtag;
769  LOCALLOCK *locallock;
770  LOCK *lock;
771  PROCLOCK *proclock;
772  bool found;
773  ResourceOwner owner;
774  uint32 hashcode;
775  LWLock *partitionLock;
776  bool found_conflict;
777  bool log_lock = false;
778 
779  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
780  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
781  lockMethodTable = LockMethods[lockmethodid];
782  if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
783  elog(ERROR, "unrecognized lock mode: %d", lockmode);
784 
785  if (RecoveryInProgress() && !InRecovery &&
786  (locktag->locktag_type == LOCKTAG_OBJECT ||
787  locktag->locktag_type == LOCKTAG_RELATION) &&
788  lockmode > RowExclusiveLock)
789  ereport(ERROR,
790  (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
791  errmsg("cannot acquire lock mode %s on database objects while recovery is in progress",
792  lockMethodTable->lockModeNames[lockmode]),
793  errhint("Only RowExclusiveLock or less can be acquired on database objects during recovery.")));
794 
795 #ifdef LOCK_DEBUG
796  if (LOCK_DEBUG_ENABLED(locktag))
797  elog(LOG, "LockAcquire: lock [%u,%u] %s",
798  locktag->locktag_field1, locktag->locktag_field2,
799  lockMethodTable->lockModeNames[lockmode]);
800 #endif
801 
802  /* Identify owner for lock */
803  if (sessionLock)
804  owner = NULL;
805  else
806  owner = CurrentResourceOwner;
807 
808  /*
809  * Find or create a LOCALLOCK entry for this lock and lockmode
810  */
811  MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */
812  localtag.lock = *locktag;
813  localtag.mode = lockmode;
814 
815  locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash,
816  &localtag,
817  HASH_ENTER, &found);
818 
819  /*
820  * if it's a new locallock object, initialize it
821  */
822  if (!found)
823  {
824  locallock->lock = NULL;
825  locallock->proclock = NULL;
826  locallock->hashcode = LockTagHashCode(&(localtag.lock));
827  locallock->nLocks = 0;
828  locallock->holdsStrongLockCount = false;
829  locallock->lockCleared = false;
830  locallock->numLockOwners = 0;
831  locallock->maxLockOwners = 8;
832  locallock->lockOwners = NULL; /* in case next line fails */
833  locallock->lockOwners = (LOCALLOCKOWNER *)
835  locallock->maxLockOwners * sizeof(LOCALLOCKOWNER));
836  }
837  else
838  {
839  /* Make sure there will be room to remember the lock */
840  if (locallock->numLockOwners >= locallock->maxLockOwners)
841  {
842  int newsize = locallock->maxLockOwners * 2;
843 
844  locallock->lockOwners = (LOCALLOCKOWNER *)
845  repalloc(locallock->lockOwners,
846  newsize * sizeof(LOCALLOCKOWNER));
847  locallock->maxLockOwners = newsize;
848  }
849  }
850  hashcode = locallock->hashcode;
851 
852  if (locallockp)
853  *locallockp = locallock;
854 
855  /*
856  * If we already hold the lock, we can just increase the count locally.
857  *
858  * If lockCleared is already set, caller need not worry about absorbing
859  * sinval messages related to the lock's object.
860  */
861  if (locallock->nLocks > 0)
862  {
863  GrantLockLocal(locallock, owner);
864  if (locallock->lockCleared)
866  else
868  }
869 
870  /*
871  * We don't acquire any other heavyweight lock while holding the relation
872  * extension lock. We do allow to acquire the same relation extension
873  * lock more than once but that case won't reach here.
874  */
875  Assert(!IsRelationExtensionLockHeld);
876 
877  /*
878  * Prepare to emit a WAL record if acquisition of this lock needs to be
879  * replayed in a standby server.
880  *
881  * Here we prepare to log; after lock is acquired we'll issue log record.
882  * This arrangement simplifies error recovery in case the preparation step
883  * fails.
884  *
885  * Only AccessExclusiveLocks can conflict with lock types that read-only
886  * transactions can acquire in a standby server. Make sure this definition
887  * matches the one in GetRunningTransactionLocks().
888  */
889  if (lockmode >= AccessExclusiveLock &&
890  locktag->locktag_type == LOCKTAG_RELATION &&
891  !RecoveryInProgress() &&
893  {
895  log_lock = true;
896  }
897 
898  /*
899  * Attempt to take lock via fast path, if eligible. But if we remember
900  * having filled up the fast path array, we don't attempt to make any
901  * further use of it until we release some locks. It's possible that some
902  * other backend has transferred some of those locks to the shared hash
903  * table, leaving space free, but it's not worth acquiring the LWLock just
904  * to check. It's also possible that we're acquiring a second or third
905  * lock type on a relation we have already locked using the fast-path, but
906  * for now we don't worry about that case either.
907  */
908  if (EligibleForRelationFastPath(locktag, lockmode) &&
910  {
911  uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode);
912  bool acquired;
913 
914  /*
915  * LWLockAcquire acts as a memory sequencing point, so it's safe to
916  * assume that any strong locker whose increment to
917  * FastPathStrongRelationLocks->counts becomes visible after we test
918  * it has yet to begin to transfer fast-path locks.
919  */
921  if (FastPathStrongRelationLocks->count[fasthashcode] != 0)
922  acquired = false;
923  else
924  acquired = FastPathGrantRelationLock(locktag->locktag_field2,
925  lockmode);
927  if (acquired)
928  {
929  /*
930  * The locallock might contain stale pointers to some old shared
931  * objects; we MUST reset these to null before considering the
932  * lock to be acquired via fast-path.
933  */
934  locallock->lock = NULL;
935  locallock->proclock = NULL;
936  GrantLockLocal(locallock, owner);
937  return LOCKACQUIRE_OK;
938  }
939  }
940 
941  /*
942  * If this lock could potentially have been taken via the fast-path by
943  * some other backend, we must (temporarily) disable further use of the
944  * fast-path for this lock tag, and migrate any locks already taken via
945  * this method to the main lock table.
946  */
947  if (ConflictsWithRelationFastPath(locktag, lockmode))
948  {
949  uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode);
950 
951  BeginStrongLockAcquire(locallock, fasthashcode);
952  if (!FastPathTransferRelationLocks(lockMethodTable, locktag,
953  hashcode))
954  {
956  if (locallock->nLocks == 0)
957  RemoveLocalLock(locallock);
958  if (locallockp)
959  *locallockp = NULL;
960  if (reportMemoryError)
961  ereport(ERROR,
962  (errcode(ERRCODE_OUT_OF_MEMORY),
963  errmsg("out of shared memory"),
964  errhint("You might need to increase %s.", "max_locks_per_transaction")));
965  else
966  return LOCKACQUIRE_NOT_AVAIL;
967  }
968  }
969 
970  /*
971  * We didn't find the lock in our LOCALLOCK table, and we didn't manage to
972  * take it via the fast-path, either, so we've got to mess with the shared
973  * lock table.
974  */
975  partitionLock = LockHashPartitionLock(hashcode);
976 
977  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
978 
979  /*
980  * Find or create lock and proclock entries with this tag
981  *
982  * Note: if the locallock object already existed, it might have a pointer
983  * to the lock already ... but we should not assume that that pointer is
984  * valid, since a lock object with zero hold and request counts can go
985  * away anytime. So we have to use SetupLockInTable() to recompute the
986  * lock and proclock pointers, even if they're already set.
987  */
988  proclock = SetupLockInTable(lockMethodTable, MyProc, locktag,
989  hashcode, lockmode);
990  if (!proclock)
991  {
993  LWLockRelease(partitionLock);
994  if (locallock->nLocks == 0)
995  RemoveLocalLock(locallock);
996  if (locallockp)
997  *locallockp = NULL;
998  if (reportMemoryError)
999  ereport(ERROR,
1000  (errcode(ERRCODE_OUT_OF_MEMORY),
1001  errmsg("out of shared memory"),
1002  errhint("You might need to increase %s.", "max_locks_per_transaction")));
1003  else
1004  return LOCKACQUIRE_NOT_AVAIL;
1005  }
1006  locallock->proclock = proclock;
1007  lock = proclock->tag.myLock;
1008  locallock->lock = lock;
1009 
1010  /*
1011  * If lock requested conflicts with locks requested by waiters, must join
1012  * wait queue. Otherwise, check for conflict with already-held locks.
1013  * (That's last because most complex check.)
1014  */
1015  if (lockMethodTable->conflictTab[lockmode] & lock->waitMask)
1016  found_conflict = true;
1017  else
1018  found_conflict = LockCheckConflicts(lockMethodTable, lockmode,
1019  lock, proclock);
1020 
1021  if (!found_conflict)
1022  {
1023  /* No conflict with held or previously requested locks */
1024  GrantLock(lock, proclock, lockmode);
1025  GrantLockLocal(locallock, owner);
1026  }
1027  else
1028  {
1029  /*
1030  * We can't acquire the lock immediately. If caller specified no
1031  * blocking, remove useless table entries and return
1032  * LOCKACQUIRE_NOT_AVAIL without waiting.
1033  */
1034  if (dontWait)
1035  {
1037  if (proclock->holdMask == 0)
1038  {
1039  uint32 proclock_hashcode;
1040 
1041  proclock_hashcode = ProcLockHashCode(&proclock->tag, hashcode);
1042  dlist_delete(&proclock->lockLink);
1043  dlist_delete(&proclock->procLink);
1045  &(proclock->tag),
1046  proclock_hashcode,
1047  HASH_REMOVE,
1048  NULL))
1049  elog(PANIC, "proclock table corrupted");
1050  }
1051  else
1052  PROCLOCK_PRINT("LockAcquire: NOWAIT", proclock);
1053  lock->nRequested--;
1054  lock->requested[lockmode]--;
1055  LOCK_PRINT("LockAcquire: conditional lock failed", lock, lockmode);
1056  Assert((lock->nRequested > 0) && (lock->requested[lockmode] >= 0));
1057  Assert(lock->nGranted <= lock->nRequested);
1058  LWLockRelease(partitionLock);
1059  if (locallock->nLocks == 0)
1060  RemoveLocalLock(locallock);
1061  if (locallockp)
1062  *locallockp = NULL;
1063  return LOCKACQUIRE_NOT_AVAIL;
1064  }
1065 
1066  /*
1067  * Set bitmask of locks this process already holds on this object.
1068  */
1069  MyProc->heldLocks = proclock->holdMask;
1070 
1071  /*
1072  * Sleep till someone wakes me up.
1073  */
1074 
1075  TRACE_POSTGRESQL_LOCK_WAIT_START(locktag->locktag_field1,
1076  locktag->locktag_field2,
1077  locktag->locktag_field3,
1078  locktag->locktag_field4,
1079  locktag->locktag_type,
1080  lockmode);
1081 
1082  WaitOnLock(locallock, owner);
1083 
1084  TRACE_POSTGRESQL_LOCK_WAIT_DONE(locktag->locktag_field1,
1085  locktag->locktag_field2,
1086  locktag->locktag_field3,
1087  locktag->locktag_field4,
1088  locktag->locktag_type,
1089  lockmode);
1090 
1091  /*
1092  * NOTE: do not do any material change of state between here and
1093  * return. All required changes in locktable state must have been
1094  * done when the lock was granted to us --- see notes in WaitOnLock.
1095  */
1096 
1097  /*
1098  * Check the proclock entry status, in case something in the ipc
1099  * communication doesn't work correctly.
1100  */
1101  if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
1102  {
1104  PROCLOCK_PRINT("LockAcquire: INCONSISTENT", proclock);
1105  LOCK_PRINT("LockAcquire: INCONSISTENT", lock, lockmode);
1106  /* Should we retry ? */
1107  LWLockRelease(partitionLock);
1108  elog(ERROR, "LockAcquire failed");
1109  }
1110  PROCLOCK_PRINT("LockAcquire: granted", proclock);
1111  LOCK_PRINT("LockAcquire: granted", lock, lockmode);
1112  }
1113 
1114  /*
1115  * Lock state is fully up-to-date now; if we error out after this, no
1116  * special error cleanup is required.
1117  */
1119 
1120  LWLockRelease(partitionLock);
1121 
1122  /*
1123  * Emit a WAL record if acquisition of this lock needs to be replayed in a
1124  * standby server.
1125  */
1126  if (log_lock)
1127  {
1128  /*
1129  * Decode the locktag back to the original values, to avoid sending
1130  * lots of empty bytes with every message. See lock.h to check how a
1131  * locktag is defined for LOCKTAG_RELATION
1132  */
1134  locktag->locktag_field2);
1135  }
1136 
1137  return LOCKACQUIRE_OK;
1138 }
1139 
1140 /*
1141  * Find or create LOCK and PROCLOCK objects as needed for a new lock
1142  * request.
1143  *
1144  * Returns the PROCLOCK object, or NULL if we failed to create the objects
1145  * for lack of shared memory.
1146  *
1147  * The appropriate partition lock must be held at entry, and will be
1148  * held at exit.
1149  */
1150 static PROCLOCK *
1151 SetupLockInTable(LockMethod lockMethodTable, PGPROC *proc,
1152  const LOCKTAG *locktag, uint32 hashcode, LOCKMODE lockmode)
1153 {
1154  LOCK *lock;
1155  PROCLOCK *proclock;
1156  PROCLOCKTAG proclocktag;
1157  uint32 proclock_hashcode;
1158  bool found;
1159 
1160  /*
1161  * Find or create a lock with this tag.
1162  */
1164  locktag,
1165  hashcode,
1167  &found);
1168  if (!lock)
1169  return NULL;
1170 
1171  /*
1172  * if it's a new lock object, initialize it
1173  */
1174  if (!found)
1175  {
1176  lock->grantMask = 0;
1177  lock->waitMask = 0;
1178  dlist_init(&lock->procLocks);
1179  dclist_init(&lock->waitProcs);
1180  lock->nRequested = 0;
1181  lock->nGranted = 0;
1182  MemSet(lock->requested, 0, sizeof(int) * MAX_LOCKMODES);
1183  MemSet(lock->granted, 0, sizeof(int) * MAX_LOCKMODES);
1184  LOCK_PRINT("LockAcquire: new", lock, lockmode);
1185  }
1186  else
1187  {
1188  LOCK_PRINT("LockAcquire: found", lock, lockmode);
1189  Assert((lock->nRequested >= 0) && (lock->requested[lockmode] >= 0));
1190  Assert((lock->nGranted >= 0) && (lock->granted[lockmode] >= 0));
1191  Assert(lock->nGranted <= lock->nRequested);
1192  }
1193 
1194  /*
1195  * Create the hash key for the proclock table.
1196  */
1197  proclocktag.myLock = lock;
1198  proclocktag.myProc = proc;
1199 
1200  proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode);
1201 
1202  /*
1203  * Find or create a proclock entry with this tag
1204  */
1206  &proclocktag,
1207  proclock_hashcode,
1209  &found);
1210  if (!proclock)
1211  {
1212  /* Oops, not enough shmem for the proclock */
1213  if (lock->nRequested == 0)
1214  {
1215  /*
1216  * There are no other requestors of this lock, so garbage-collect
1217  * the lock object. We *must* do this to avoid a permanent leak
1218  * of shared memory, because there won't be anything to cause
1219  * anyone to release the lock object later.
1220  */
1221  Assert(dlist_is_empty(&(lock->procLocks)));
1223  &(lock->tag),
1224  hashcode,
1225  HASH_REMOVE,
1226  NULL))
1227  elog(PANIC, "lock table corrupted");
1228  }
1229  return NULL;
1230  }
1231 
1232  /*
1233  * If new, initialize the new entry
1234  */
1235  if (!found)
1236  {
1237  uint32 partition = LockHashPartition(hashcode);
1238 
1239  /*
1240  * It might seem unsafe to access proclock->groupLeader without a
1241  * lock, but it's not really. Either we are initializing a proclock
1242  * on our own behalf, in which case our group leader isn't changing
1243  * because the group leader for a process can only ever be changed by
1244  * the process itself; or else we are transferring a fast-path lock to
1245  * the main lock table, in which case that process can't change it's
1246  * lock group leader without first releasing all of its locks (and in
1247  * particular the one we are currently transferring).
1248  */
1249  proclock->groupLeader = proc->lockGroupLeader != NULL ?
1250  proc->lockGroupLeader : proc;
1251  proclock->holdMask = 0;
1252  proclock->releaseMask = 0;
1253  /* Add proclock to appropriate lists */
1254  dlist_push_tail(&lock->procLocks, &proclock->lockLink);
1255  dlist_push_tail(&proc->myProcLocks[partition], &proclock->procLink);
1256  PROCLOCK_PRINT("LockAcquire: new", proclock);
1257  }
1258  else
1259  {
1260  PROCLOCK_PRINT("LockAcquire: found", proclock);
1261  Assert((proclock->holdMask & ~lock->grantMask) == 0);
1262 
1263 #ifdef CHECK_DEADLOCK_RISK
1264 
1265  /*
1266  * Issue warning if we already hold a lower-level lock on this object
1267  * and do not hold a lock of the requested level or higher. This
1268  * indicates a deadlock-prone coding practice (eg, we'd have a
1269  * deadlock if another backend were following the same code path at
1270  * about the same time).
1271  *
1272  * This is not enabled by default, because it may generate log entries
1273  * about user-level coding practices that are in fact safe in context.
1274  * It can be enabled to help find system-level problems.
1275  *
1276  * XXX Doing numeric comparison on the lockmodes is a hack; it'd be
1277  * better to use a table. For now, though, this works.
1278  */
1279  {
1280  int i;
1281 
1282  for (i = lockMethodTable->numLockModes; i > 0; i--)
1283  {
1284  if (proclock->holdMask & LOCKBIT_ON(i))
1285  {
1286  if (i >= (int) lockmode)
1287  break; /* safe: we have a lock >= req level */
1288  elog(LOG, "deadlock risk: raising lock level"
1289  " from %s to %s on object %u/%u/%u",
1290  lockMethodTable->lockModeNames[i],
1291  lockMethodTable->lockModeNames[lockmode],
1292  lock->tag.locktag_field1, lock->tag.locktag_field2,
1293  lock->tag.locktag_field3);
1294  break;
1295  }
1296  }
1297  }
1298 #endif /* CHECK_DEADLOCK_RISK */
1299  }
1300 
1301  /*
1302  * lock->nRequested and lock->requested[] count the total number of
1303  * requests, whether granted or waiting, so increment those immediately.
1304  * The other counts don't increment till we get the lock.
1305  */
1306  lock->nRequested++;
1307  lock->requested[lockmode]++;
1308  Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0));
1309 
1310  /*
1311  * We shouldn't already hold the desired lock; else locallock table is
1312  * broken.
1313  */
1314  if (proclock->holdMask & LOCKBIT_ON(lockmode))
1315  elog(ERROR, "lock %s on object %u/%u/%u is already held",
1316  lockMethodTable->lockModeNames[lockmode],
1317  lock->tag.locktag_field1, lock->tag.locktag_field2,
1318  lock->tag.locktag_field3);
1319 
1320  return proclock;
1321 }
1322 
1323 /*
1324  * Check and set/reset the flag that we hold the relation extension lock.
1325  *
1326  * It is callers responsibility that this function is called after
1327  * acquiring/releasing the relation extension lock.
1328  *
1329  * Pass acquired as true if lock is acquired, false otherwise.
1330  */
1331 static inline void
1332 CheckAndSetLockHeld(LOCALLOCK *locallock, bool acquired)
1333 {
1334 #ifdef USE_ASSERT_CHECKING
1335  if (LOCALLOCK_LOCKTAG(*locallock) == LOCKTAG_RELATION_EXTEND)
1336  IsRelationExtensionLockHeld = acquired;
1337 #endif
1338 }
1339 
1340 /*
1341  * Subroutine to free a locallock entry
1342  */
1343 static void
1345 {
1346  int i;
1347 
1348  for (i = locallock->numLockOwners - 1; i >= 0; i--)
1349  {
1350  if (locallock->lockOwners[i].owner != NULL)
1351  ResourceOwnerForgetLock(locallock->lockOwners[i].owner, locallock);
1352  }
1353  locallock->numLockOwners = 0;
1354  if (locallock->lockOwners != NULL)
1355  pfree(locallock->lockOwners);
1356  locallock->lockOwners = NULL;
1357 
1358  if (locallock->holdsStrongLockCount)
1359  {
1360  uint32 fasthashcode;
1361 
1362  fasthashcode = FastPathStrongLockHashPartition(locallock->hashcode);
1363 
1365  Assert(FastPathStrongRelationLocks->count[fasthashcode] > 0);
1366  FastPathStrongRelationLocks->count[fasthashcode]--;
1367  locallock->holdsStrongLockCount = false;
1369  }
1370 
1372  &(locallock->tag),
1373  HASH_REMOVE, NULL))
1374  elog(WARNING, "locallock table corrupted");
1375 
1376  /*
1377  * Indicate that the lock is released for certain types of locks
1378  */
1379  CheckAndSetLockHeld(locallock, false);
1380 }
1381 
1382 /*
1383  * LockCheckConflicts -- test whether requested lock conflicts
1384  * with those already granted
1385  *
1386  * Returns true if conflict, false if no conflict.
1387  *
1388  * NOTES:
1389  * Here's what makes this complicated: one process's locks don't
1390  * conflict with one another, no matter what purpose they are held for
1391  * (eg, session and transaction locks do not conflict). Nor do the locks
1392  * of one process in a lock group conflict with those of another process in
1393  * the same group. So, we must subtract off these locks when determining
1394  * whether the requested new lock conflicts with those already held.
1395  */
1396 bool
1398  LOCKMODE lockmode,
1399  LOCK *lock,
1400  PROCLOCK *proclock)
1401 {
1402  int numLockModes = lockMethodTable->numLockModes;
1403  LOCKMASK myLocks;
1404  int conflictMask = lockMethodTable->conflictTab[lockmode];
1405  int conflictsRemaining[MAX_LOCKMODES];
1406  int totalConflictsRemaining = 0;
1407  dlist_iter proclock_iter;
1408  int i;
1409 
1410  /*
1411  * first check for global conflicts: If no locks conflict with my request,
1412  * then I get the lock.
1413  *
1414  * Checking for conflict: lock->grantMask represents the types of
1415  * currently held locks. conflictTable[lockmode] has a bit set for each
1416  * type of lock that conflicts with request. Bitwise compare tells if
1417  * there is a conflict.
1418  */
1419  if (!(conflictMask & lock->grantMask))
1420  {
1421  PROCLOCK_PRINT("LockCheckConflicts: no conflict", proclock);
1422  return false;
1423  }
1424 
1425  /*
1426  * Rats. Something conflicts. But it could still be my own lock, or a
1427  * lock held by another member of my locking group. First, figure out how
1428  * many conflicts remain after subtracting out any locks I hold myself.
1429  */
1430  myLocks = proclock->holdMask;
1431  for (i = 1; i <= numLockModes; i++)
1432  {
1433  if ((conflictMask & LOCKBIT_ON(i)) == 0)
1434  {
1435  conflictsRemaining[i] = 0;
1436  continue;
1437  }
1438  conflictsRemaining[i] = lock->granted[i];
1439  if (myLocks & LOCKBIT_ON(i))
1440  --conflictsRemaining[i];
1441  totalConflictsRemaining += conflictsRemaining[i];
1442  }
1443 
1444  /* If no conflicts remain, we get the lock. */
1445  if (totalConflictsRemaining == 0)
1446  {
1447  PROCLOCK_PRINT("LockCheckConflicts: resolved (simple)", proclock);
1448  return false;
1449  }
1450 
1451  /* If no group locking, it's definitely a conflict. */
1452  if (proclock->groupLeader == MyProc && MyProc->lockGroupLeader == NULL)
1453  {
1454  Assert(proclock->tag.myProc == MyProc);
1455  PROCLOCK_PRINT("LockCheckConflicts: conflicting (simple)",
1456  proclock);
1457  return true;
1458  }
1459 
1460  /*
1461  * The relation extension lock conflict even between the group members.
1462  */
1463  if (LOCK_LOCKTAG(*lock) == LOCKTAG_RELATION_EXTEND)
1464  {
1465  PROCLOCK_PRINT("LockCheckConflicts: conflicting (group)",
1466  proclock);
1467  return true;
1468  }
1469 
1470  /*
1471  * Locks held in conflicting modes by members of our own lock group are
1472  * not real conflicts; we can subtract those out and see if we still have
1473  * a conflict. This is O(N) in the number of processes holding or
1474  * awaiting locks on this object. We could improve that by making the
1475  * shared memory state more complex (and larger) but it doesn't seem worth
1476  * it.
1477  */
1478  dlist_foreach(proclock_iter, &lock->procLocks)
1479  {
1480  PROCLOCK *otherproclock =
1481  dlist_container(PROCLOCK, lockLink, proclock_iter.cur);
1482 
1483  if (proclock != otherproclock &&
1484  proclock->groupLeader == otherproclock->groupLeader &&
1485  (otherproclock->holdMask & conflictMask) != 0)
1486  {
1487  int intersectMask = otherproclock->holdMask & conflictMask;
1488 
1489  for (i = 1; i <= numLockModes; i++)
1490  {
1491  if ((intersectMask & LOCKBIT_ON(i)) != 0)
1492  {
1493  if (conflictsRemaining[i] <= 0)
1494  elog(PANIC, "proclocks held do not match lock");
1495  conflictsRemaining[i]--;
1496  totalConflictsRemaining--;
1497  }
1498  }
1499 
1500  if (totalConflictsRemaining == 0)
1501  {
1502  PROCLOCK_PRINT("LockCheckConflicts: resolved (group)",
1503  proclock);
1504  return false;
1505  }
1506  }
1507  }
1508 
1509  /* Nope, it's a real conflict. */
1510  PROCLOCK_PRINT("LockCheckConflicts: conflicting (group)", proclock);
1511  return true;
1512 }
1513 
1514 /*
1515  * GrantLock -- update the lock and proclock data structures to show
1516  * the lock request has been granted.
1517  *
1518  * NOTE: if proc was blocked, it also needs to be removed from the wait list
1519  * and have its waitLock/waitProcLock fields cleared. That's not done here.
1520  *
1521  * NOTE: the lock grant also has to be recorded in the associated LOCALLOCK
1522  * table entry; but since we may be awaking some other process, we can't do
1523  * that here; it's done by GrantLockLocal, instead.
1524  */
1525 void
1526 GrantLock(LOCK *lock, PROCLOCK *proclock, LOCKMODE lockmode)
1527 {
1528  lock->nGranted++;
1529  lock->granted[lockmode]++;
1530  lock->grantMask |= LOCKBIT_ON(lockmode);
1531  if (lock->granted[lockmode] == lock->requested[lockmode])
1532  lock->waitMask &= LOCKBIT_OFF(lockmode);
1533  proclock->holdMask |= LOCKBIT_ON(lockmode);
1534  LOCK_PRINT("GrantLock", lock, lockmode);
1535  Assert((lock->nGranted > 0) && (lock->granted[lockmode] > 0));
1536  Assert(lock->nGranted <= lock->nRequested);
1537 }
1538 
1539 /*
1540  * UnGrantLock -- opposite of GrantLock.
1541  *
1542  * Updates the lock and proclock data structures to show that the lock
1543  * is no longer held nor requested by the current holder.
1544  *
1545  * Returns true if there were any waiters waiting on the lock that
1546  * should now be woken up with ProcLockWakeup.
1547  */
1548 static bool
1549 UnGrantLock(LOCK *lock, LOCKMODE lockmode,
1550  PROCLOCK *proclock, LockMethod lockMethodTable)
1551 {
1552  bool wakeupNeeded = false;
1553 
1554  Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0));
1555  Assert((lock->nGranted > 0) && (lock->granted[lockmode] > 0));
1556  Assert(lock->nGranted <= lock->nRequested);
1557 
1558  /*
1559  * fix the general lock stats
1560  */
1561  lock->nRequested--;
1562  lock->requested[lockmode]--;
1563  lock->nGranted--;
1564  lock->granted[lockmode]--;
1565 
1566  if (lock->granted[lockmode] == 0)
1567  {
1568  /* change the conflict mask. No more of this lock type. */
1569  lock->grantMask &= LOCKBIT_OFF(lockmode);
1570  }
1571 
1572  LOCK_PRINT("UnGrantLock: updated", lock, lockmode);
1573 
1574  /*
1575  * We need only run ProcLockWakeup if the released lock conflicts with at
1576  * least one of the lock types requested by waiter(s). Otherwise whatever
1577  * conflict made them wait must still exist. NOTE: before MVCC, we could
1578  * skip wakeup if lock->granted[lockmode] was still positive. But that's
1579  * not true anymore, because the remaining granted locks might belong to
1580  * some waiter, who could now be awakened because he doesn't conflict with
1581  * his own locks.
1582  */
1583  if (lockMethodTable->conflictTab[lockmode] & lock->waitMask)
1584  wakeupNeeded = true;
1585 
1586  /*
1587  * Now fix the per-proclock state.
1588  */
1589  proclock->holdMask &= LOCKBIT_OFF(lockmode);
1590  PROCLOCK_PRINT("UnGrantLock: updated", proclock);
1591 
1592  return wakeupNeeded;
1593 }
1594 
1595 /*
1596  * CleanUpLock -- clean up after releasing a lock. We garbage-collect the
1597  * proclock and lock objects if possible, and call ProcLockWakeup if there
1598  * are remaining requests and the caller says it's OK. (Normally, this
1599  * should be called after UnGrantLock, and wakeupNeeded is the result from
1600  * UnGrantLock.)
1601  *
1602  * The appropriate partition lock must be held at entry, and will be
1603  * held at exit.
1604  */
1605 static void
1606 CleanUpLock(LOCK *lock, PROCLOCK *proclock,
1607  LockMethod lockMethodTable, uint32 hashcode,
1608  bool wakeupNeeded)
1609 {
1610  /*
1611  * If this was my last hold on this lock, delete my entry in the proclock
1612  * table.
1613  */
1614  if (proclock->holdMask == 0)
1615  {
1616  uint32 proclock_hashcode;
1617 
1618  PROCLOCK_PRINT("CleanUpLock: deleting", proclock);
1619  dlist_delete(&proclock->lockLink);
1620  dlist_delete(&proclock->procLink);
1621  proclock_hashcode = ProcLockHashCode(&proclock->tag, hashcode);
1623  &(proclock->tag),
1624  proclock_hashcode,
1625  HASH_REMOVE,
1626  NULL))
1627  elog(PANIC, "proclock table corrupted");
1628  }
1629 
1630  if (lock->nRequested == 0)
1631  {
1632  /*
1633  * The caller just released the last lock, so garbage-collect the lock
1634  * object.
1635  */
1636  LOCK_PRINT("CleanUpLock: deleting", lock, 0);
1637  Assert(dlist_is_empty(&lock->procLocks));
1639  &(lock->tag),
1640  hashcode,
1641  HASH_REMOVE,
1642  NULL))
1643  elog(PANIC, "lock table corrupted");
1644  }
1645  else if (wakeupNeeded)
1646  {
1647  /* There are waiters on this lock, so wake them up. */
1648  ProcLockWakeup(lockMethodTable, lock);
1649  }
1650 }
1651 
1652 /*
1653  * GrantLockLocal -- update the locallock data structures to show
1654  * the lock request has been granted.
1655  *
1656  * We expect that LockAcquire made sure there is room to add a new
1657  * ResourceOwner entry.
1658  */
1659 static void
1661 {
1662  LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
1663  int i;
1664 
1665  Assert(locallock->numLockOwners < locallock->maxLockOwners);
1666  /* Count the total */
1667  locallock->nLocks++;
1668  /* Count the per-owner lock */
1669  for (i = 0; i < locallock->numLockOwners; i++)
1670  {
1671  if (lockOwners[i].owner == owner)
1672  {
1673  lockOwners[i].nLocks++;
1674  return;
1675  }
1676  }
1677  lockOwners[i].owner = owner;
1678  lockOwners[i].nLocks = 1;
1679  locallock->numLockOwners++;
1680  if (owner != NULL)
1681  ResourceOwnerRememberLock(owner, locallock);
1682 
1683  /* Indicate that the lock is acquired for certain types of locks. */
1684  CheckAndSetLockHeld(locallock, true);
1685 }
1686 
1687 /*
1688  * BeginStrongLockAcquire - inhibit use of fastpath for a given LOCALLOCK,
1689  * and arrange for error cleanup if it fails
1690  */
1691 static void
1692 BeginStrongLockAcquire(LOCALLOCK *locallock, uint32 fasthashcode)
1693 {
1694  Assert(StrongLockInProgress == NULL);
1695  Assert(locallock->holdsStrongLockCount == false);
1696 
1697  /*
1698  * Adding to a memory location is not atomic, so we take a spinlock to
1699  * ensure we don't collide with someone else trying to bump the count at
1700  * the same time.
1701  *
1702  * XXX: It might be worth considering using an atomic fetch-and-add
1703  * instruction here, on architectures where that is supported.
1704  */
1705 
1707  FastPathStrongRelationLocks->count[fasthashcode]++;
1708  locallock->holdsStrongLockCount = true;
1709  StrongLockInProgress = locallock;
1711 }
1712 
1713 /*
1714  * FinishStrongLockAcquire - cancel pending cleanup for a strong lock
1715  * acquisition once it's no longer needed
1716  */
1717 static void
1719 {
1720  StrongLockInProgress = NULL;
1721 }
1722 
1723 /*
1724  * AbortStrongLockAcquire - undo strong lock state changes performed by
1725  * BeginStrongLockAcquire.
1726  */
1727 void
1729 {
1730  uint32 fasthashcode;
1731  LOCALLOCK *locallock = StrongLockInProgress;
1732 
1733  if (locallock == NULL)
1734  return;
1735 
1736  fasthashcode = FastPathStrongLockHashPartition(locallock->hashcode);
1737  Assert(locallock->holdsStrongLockCount == true);
1739  Assert(FastPathStrongRelationLocks->count[fasthashcode] > 0);
1740  FastPathStrongRelationLocks->count[fasthashcode]--;
1741  locallock->holdsStrongLockCount = false;
1742  StrongLockInProgress = NULL;
1744 }
1745 
1746 /*
1747  * GrantAwaitedLock -- call GrantLockLocal for the lock we are doing
1748  * WaitOnLock on.
1749  *
1750  * proc.c needs this for the case where we are booted off the lock by
1751  * timeout, but discover that someone granted us the lock anyway.
1752  *
1753  * We could just export GrantLockLocal, but that would require including
1754  * resowner.h in lock.h, which creates circularity.
1755  */
1756 void
1758 {
1760 }
1761 
1762 /*
1763  * MarkLockClear -- mark an acquired lock as "clear"
1764  *
1765  * This means that we know we have absorbed all sinval messages that other
1766  * sessions generated before we acquired this lock, and so we can confidently
1767  * assume we know about any catalog changes protected by this lock.
1768  */
1769 void
1771 {
1772  Assert(locallock->nLocks > 0);
1773  locallock->lockCleared = true;
1774 }
1775 
1776 /*
1777  * WaitOnLock -- wait to acquire a lock
1778  *
1779  * Caller must have set MyProc->heldLocks to reflect locks already held
1780  * on the lockable object by this process.
1781  *
1782  * The appropriate partition lock must be held at entry.
1783  */
1784 static void
1786 {
1787  LOCKMETHODID lockmethodid = LOCALLOCK_LOCKMETHOD(*locallock);
1788  LockMethod lockMethodTable = LockMethods[lockmethodid];
1789 
1790  LOCK_PRINT("WaitOnLock: sleeping on lock",
1791  locallock->lock, locallock->tag.mode);
1792 
1793  /* adjust the process title to indicate that it's waiting */
1794  set_ps_display_suffix("waiting");
1795 
1796  awaitedLock = locallock;
1797  awaitedOwner = owner;
1798 
1799  /*
1800  * NOTE: Think not to put any shared-state cleanup after the call to
1801  * ProcSleep, in either the normal or failure path. The lock state must
1802  * be fully set by the lock grantor, or by CheckDeadLock if we give up
1803  * waiting for the lock. This is necessary because of the possibility
1804  * that a cancel/die interrupt will interrupt ProcSleep after someone else
1805  * grants us the lock, but before we've noticed it. Hence, after granting,
1806  * the locktable state must fully reflect the fact that we own the lock;
1807  * we can't do additional work on return.
1808  *
1809  * We can and do use a PG_TRY block to try to clean up after failure, but
1810  * this still has a major limitation: elog(FATAL) can occur while waiting
1811  * (eg, a "die" interrupt), and then control won't come back here. So all
1812  * cleanup of essential state should happen in LockErrorCleanup, not here.
1813  * We can use PG_TRY to clear the "waiting" status flags, since doing that
1814  * is unimportant if the process exits.
1815  */
1816  PG_TRY();
1817  {
1818  if (ProcSleep(locallock, lockMethodTable) != PROC_WAIT_STATUS_OK)
1819  {
1820  /*
1821  * We failed as a result of a deadlock, see CheckDeadLock(). Quit
1822  * now.
1823  */
1824  awaitedLock = NULL;
1825  LOCK_PRINT("WaitOnLock: aborting on lock",
1826  locallock->lock, locallock->tag.mode);
1828 
1829  /*
1830  * Now that we aren't holding the partition lock, we can give an
1831  * error report including details about the detected deadlock.
1832  */
1833  DeadLockReport();
1834  /* not reached */
1835  }
1836  }
1837  PG_CATCH();
1838  {
1839  /* In this path, awaitedLock remains set until LockErrorCleanup */
1840 
1841  /* reset ps display to remove the suffix */
1843 
1844  /* and propagate the error */
1845  PG_RE_THROW();
1846  }
1847  PG_END_TRY();
1848 
1849  awaitedLock = NULL;
1850 
1851  /* reset ps display to remove the suffix */
1853 
1854  LOCK_PRINT("WaitOnLock: wakeup on lock",
1855  locallock->lock, locallock->tag.mode);
1856 }
1857 
1858 /*
1859  * Remove a proc from the wait-queue it is on (caller must know it is on one).
1860  * This is only used when the proc has failed to get the lock, so we set its
1861  * waitStatus to PROC_WAIT_STATUS_ERROR.
1862  *
1863  * Appropriate partition lock must be held by caller. Also, caller is
1864  * responsible for signaling the proc if needed.
1865  *
1866  * NB: this does not clean up any locallock object that may exist for the lock.
1867  */
1868 void
1870 {
1871  LOCK *waitLock = proc->waitLock;
1872  PROCLOCK *proclock = proc->waitProcLock;
1873  LOCKMODE lockmode = proc->waitLockMode;
1874  LOCKMETHODID lockmethodid = LOCK_LOCKMETHOD(*waitLock);
1875 
1876  /* Make sure proc is waiting */
1878  Assert(proc->links.next != NULL);
1879  Assert(waitLock);
1880  Assert(!dclist_is_empty(&waitLock->waitProcs));
1881  Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods));
1882 
1883  /* Remove proc from lock's wait queue */
1884  dclist_delete_from_thoroughly(&waitLock->waitProcs, &proc->links);
1885 
1886  /* Undo increments of request counts by waiting process */
1887  Assert(waitLock->nRequested > 0);
1888  Assert(waitLock->nRequested > proc->waitLock->nGranted);
1889  waitLock->nRequested--;
1890  Assert(waitLock->requested[lockmode] > 0);
1891  waitLock->requested[lockmode]--;
1892  /* don't forget to clear waitMask bit if appropriate */
1893  if (waitLock->granted[lockmode] == waitLock->requested[lockmode])
1894  waitLock->waitMask &= LOCKBIT_OFF(lockmode);
1895 
1896  /* Clean up the proc's own state, and pass it the ok/fail signal */
1897  proc->waitLock = NULL;
1898  proc->waitProcLock = NULL;
1900 
1901  /*
1902  * Delete the proclock immediately if it represents no already-held locks.
1903  * (This must happen now because if the owner of the lock decides to
1904  * release it, and the requested/granted counts then go to zero,
1905  * LockRelease expects there to be no remaining proclocks.) Then see if
1906  * any other waiters for the lock can be woken up now.
1907  */
1908  CleanUpLock(waitLock, proclock,
1909  LockMethods[lockmethodid], hashcode,
1910  true);
1911 }
1912 
1913 /*
1914  * LockRelease -- look up 'locktag' and release one 'lockmode' lock on it.
1915  * Release a session lock if 'sessionLock' is true, else release a
1916  * regular transaction lock.
1917  *
1918  * Side Effects: find any waiting processes that are now wakable,
1919  * grant them their requested locks and awaken them.
1920  * (We have to grant the lock here to avoid a race between
1921  * the waking process and any new process to
1922  * come along and request the lock.)
1923  */
1924 bool
1925 LockRelease(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock)
1926 {
1927  LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
1928  LockMethod lockMethodTable;
1929  LOCALLOCKTAG localtag;
1930  LOCALLOCK *locallock;
1931  LOCK *lock;
1932  PROCLOCK *proclock;
1933  LWLock *partitionLock;
1934  bool wakeupNeeded;
1935 
1936  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
1937  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
1938  lockMethodTable = LockMethods[lockmethodid];
1939  if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
1940  elog(ERROR, "unrecognized lock mode: %d", lockmode);
1941 
1942 #ifdef LOCK_DEBUG
1943  if (LOCK_DEBUG_ENABLED(locktag))
1944  elog(LOG, "LockRelease: lock [%u,%u] %s",
1945  locktag->locktag_field1, locktag->locktag_field2,
1946  lockMethodTable->lockModeNames[lockmode]);
1947 #endif
1948 
1949  /*
1950  * Find the LOCALLOCK entry for this lock and lockmode
1951  */
1952  MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */
1953  localtag.lock = *locktag;
1954  localtag.mode = lockmode;
1955 
1956  locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash,
1957  &localtag,
1958  HASH_FIND, NULL);
1959 
1960  /*
1961  * let the caller print its own error message, too. Do not ereport(ERROR).
1962  */
1963  if (!locallock || locallock->nLocks <= 0)
1964  {
1965  elog(WARNING, "you don't own a lock of type %s",
1966  lockMethodTable->lockModeNames[lockmode]);
1967  return false;
1968  }
1969 
1970  /*
1971  * Decrease the count for the resource owner.
1972  */
1973  {
1974  LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
1975  ResourceOwner owner;
1976  int i;
1977 
1978  /* Identify owner for lock */
1979  if (sessionLock)
1980  owner = NULL;
1981  else
1982  owner = CurrentResourceOwner;
1983 
1984  for (i = locallock->numLockOwners - 1; i >= 0; i--)
1985  {
1986  if (lockOwners[i].owner == owner)
1987  {
1988  Assert(lockOwners[i].nLocks > 0);
1989  if (--lockOwners[i].nLocks == 0)
1990  {
1991  if (owner != NULL)
1992  ResourceOwnerForgetLock(owner, locallock);
1993  /* compact out unused slot */
1994  locallock->numLockOwners--;
1995  if (i < locallock->numLockOwners)
1996  lockOwners[i] = lockOwners[locallock->numLockOwners];
1997  }
1998  break;
1999  }
2000  }
2001  if (i < 0)
2002  {
2003  /* don't release a lock belonging to another owner */
2004  elog(WARNING, "you don't own a lock of type %s",
2005  lockMethodTable->lockModeNames[lockmode]);
2006  return false;
2007  }
2008  }
2009 
2010  /*
2011  * Decrease the total local count. If we're still holding the lock, we're
2012  * done.
2013  */
2014  locallock->nLocks--;
2015 
2016  if (locallock->nLocks > 0)
2017  return true;
2018 
2019  /*
2020  * At this point we can no longer suppose we are clear of invalidation
2021  * messages related to this lock. Although we'll delete the LOCALLOCK
2022  * object before any intentional return from this routine, it seems worth
2023  * the trouble to explicitly reset lockCleared right now, just in case
2024  * some error prevents us from deleting the LOCALLOCK.
2025  */
2026  locallock->lockCleared = false;
2027 
2028  /* Attempt fast release of any lock eligible for the fast path. */
2029  if (EligibleForRelationFastPath(locktag, lockmode) &&
2031  {
2032  bool released;
2033 
2034  /*
2035  * We might not find the lock here, even if we originally entered it
2036  * here. Another backend may have moved it to the main table.
2037  */
2039  released = FastPathUnGrantRelationLock(locktag->locktag_field2,
2040  lockmode);
2042  if (released)
2043  {
2044  RemoveLocalLock(locallock);
2045  return true;
2046  }
2047  }
2048 
2049  /*
2050  * Otherwise we've got to mess with the shared lock table.
2051  */
2052  partitionLock = LockHashPartitionLock(locallock->hashcode);
2053 
2054  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2055 
2056  /*
2057  * Normally, we don't need to re-find the lock or proclock, since we kept
2058  * their addresses in the locallock table, and they couldn't have been
2059  * removed while we were holding a lock on them. But it's possible that
2060  * the lock was taken fast-path and has since been moved to the main hash
2061  * table by another backend, in which case we will need to look up the
2062  * objects here. We assume the lock field is NULL if so.
2063  */
2064  lock = locallock->lock;
2065  if (!lock)
2066  {
2067  PROCLOCKTAG proclocktag;
2068 
2069  Assert(EligibleForRelationFastPath(locktag, lockmode));
2071  locktag,
2072  locallock->hashcode,
2073  HASH_FIND,
2074  NULL);
2075  if (!lock)
2076  elog(ERROR, "failed to re-find shared lock object");
2077  locallock->lock = lock;
2078 
2079  proclocktag.myLock = lock;
2080  proclocktag.myProc = MyProc;
2082  &proclocktag,
2083  HASH_FIND,
2084  NULL);
2085  if (!locallock->proclock)
2086  elog(ERROR, "failed to re-find shared proclock object");
2087  }
2088  LOCK_PRINT("LockRelease: found", lock, lockmode);
2089  proclock = locallock->proclock;
2090  PROCLOCK_PRINT("LockRelease: found", proclock);
2091 
2092  /*
2093  * Double-check that we are actually holding a lock of the type we want to
2094  * release.
2095  */
2096  if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
2097  {
2098  PROCLOCK_PRINT("LockRelease: WRONGTYPE", proclock);
2099  LWLockRelease(partitionLock);
2100  elog(WARNING, "you don't own a lock of type %s",
2101  lockMethodTable->lockModeNames[lockmode]);
2102  RemoveLocalLock(locallock);
2103  return false;
2104  }
2105 
2106  /*
2107  * Do the releasing. CleanUpLock will waken any now-wakable waiters.
2108  */
2109  wakeupNeeded = UnGrantLock(lock, lockmode, proclock, lockMethodTable);
2110 
2111  CleanUpLock(lock, proclock,
2112  lockMethodTable, locallock->hashcode,
2113  wakeupNeeded);
2114 
2115  LWLockRelease(partitionLock);
2116 
2117  RemoveLocalLock(locallock);
2118  return true;
2119 }
2120 
2121 /*
2122  * LockReleaseAll -- Release all locks of the specified lock method that
2123  * are held by the current process.
2124  *
2125  * Well, not necessarily *all* locks. The available behaviors are:
2126  * allLocks == true: release all locks including session locks.
2127  * allLocks == false: release all non-session locks.
2128  */
2129 void
2130 LockReleaseAll(LOCKMETHODID lockmethodid, bool allLocks)
2131 {
2132  HASH_SEQ_STATUS status;
2133  LockMethod lockMethodTable;
2134  int i,
2135  numLockModes;
2136  LOCALLOCK *locallock;
2137  LOCK *lock;
2138  int partition;
2139  bool have_fast_path_lwlock = false;
2140 
2141  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
2142  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
2143  lockMethodTable = LockMethods[lockmethodid];
2144 
2145 #ifdef LOCK_DEBUG
2146  if (*(lockMethodTable->trace_flag))
2147  elog(LOG, "LockReleaseAll: lockmethod=%d", lockmethodid);
2148 #endif
2149 
2150  /*
2151  * Get rid of our fast-path VXID lock, if appropriate. Note that this is
2152  * the only way that the lock we hold on our own VXID can ever get
2153  * released: it is always and only released when a toplevel transaction
2154  * ends.
2155  */
2156  if (lockmethodid == DEFAULT_LOCKMETHOD)
2158 
2159  numLockModes = lockMethodTable->numLockModes;
2160 
2161  /*
2162  * First we run through the locallock table and get rid of unwanted
2163  * entries, then we scan the process's proclocks and get rid of those. We
2164  * do this separately because we may have multiple locallock entries
2165  * pointing to the same proclock, and we daren't end up with any dangling
2166  * pointers. Fast-path locks are cleaned up during the locallock table
2167  * scan, though.
2168  */
2170 
2171  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
2172  {
2173  /*
2174  * If the LOCALLOCK entry is unused, we must've run out of shared
2175  * memory while trying to set up this lock. Just forget the local
2176  * entry.
2177  */
2178  if (locallock->nLocks == 0)
2179  {
2180  RemoveLocalLock(locallock);
2181  continue;
2182  }
2183 
2184  /* Ignore items that are not of the lockmethod to be removed */
2185  if (LOCALLOCK_LOCKMETHOD(*locallock) != lockmethodid)
2186  continue;
2187 
2188  /*
2189  * If we are asked to release all locks, we can just zap the entry.
2190  * Otherwise, must scan to see if there are session locks. We assume
2191  * there is at most one lockOwners entry for session locks.
2192  */
2193  if (!allLocks)
2194  {
2195  LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
2196 
2197  /* If session lock is above array position 0, move it down to 0 */
2198  for (i = 0; i < locallock->numLockOwners; i++)
2199  {
2200  if (lockOwners[i].owner == NULL)
2201  lockOwners[0] = lockOwners[i];
2202  else
2203  ResourceOwnerForgetLock(lockOwners[i].owner, locallock);
2204  }
2205 
2206  if (locallock->numLockOwners > 0 &&
2207  lockOwners[0].owner == NULL &&
2208  lockOwners[0].nLocks > 0)
2209  {
2210  /* Fix the locallock to show just the session locks */
2211  locallock->nLocks = lockOwners[0].nLocks;
2212  locallock->numLockOwners = 1;
2213  /* We aren't deleting this locallock, so done */
2214  continue;
2215  }
2216  else
2217  locallock->numLockOwners = 0;
2218  }
2219 
2220  /*
2221  * If the lock or proclock pointers are NULL, this lock was taken via
2222  * the relation fast-path (and is not known to have been transferred).
2223  */
2224  if (locallock->proclock == NULL || locallock->lock == NULL)
2225  {
2226  LOCKMODE lockmode = locallock->tag.mode;
2227  Oid relid;
2228 
2229  /* Verify that a fast-path lock is what we've got. */
2230  if (!EligibleForRelationFastPath(&locallock->tag.lock, lockmode))
2231  elog(PANIC, "locallock table corrupted");
2232 
2233  /*
2234  * If we don't currently hold the LWLock that protects our
2235  * fast-path data structures, we must acquire it before attempting
2236  * to release the lock via the fast-path. We will continue to
2237  * hold the LWLock until we're done scanning the locallock table,
2238  * unless we hit a transferred fast-path lock. (XXX is this
2239  * really such a good idea? There could be a lot of entries ...)
2240  */
2241  if (!have_fast_path_lwlock)
2242  {
2244  have_fast_path_lwlock = true;
2245  }
2246 
2247  /* Attempt fast-path release. */
2248  relid = locallock->tag.lock.locktag_field2;
2249  if (FastPathUnGrantRelationLock(relid, lockmode))
2250  {
2251  RemoveLocalLock(locallock);
2252  continue;
2253  }
2254 
2255  /*
2256  * Our lock, originally taken via the fast path, has been
2257  * transferred to the main lock table. That's going to require
2258  * some extra work, so release our fast-path lock before starting.
2259  */
2261  have_fast_path_lwlock = false;
2262 
2263  /*
2264  * Now dump the lock. We haven't got a pointer to the LOCK or
2265  * PROCLOCK in this case, so we have to handle this a bit
2266  * differently than a normal lock release. Unfortunately, this
2267  * requires an extra LWLock acquire-and-release cycle on the
2268  * partitionLock, but hopefully it shouldn't happen often.
2269  */
2270  LockRefindAndRelease(lockMethodTable, MyProc,
2271  &locallock->tag.lock, lockmode, false);
2272  RemoveLocalLock(locallock);
2273  continue;
2274  }
2275 
2276  /* Mark the proclock to show we need to release this lockmode */
2277  if (locallock->nLocks > 0)
2278  locallock->proclock->releaseMask |= LOCKBIT_ON(locallock->tag.mode);
2279 
2280  /* And remove the locallock hashtable entry */
2281  RemoveLocalLock(locallock);
2282  }
2283 
2284  /* Done with the fast-path data structures */
2285  if (have_fast_path_lwlock)
2287 
2288  /*
2289  * Now, scan each lock partition separately.
2290  */
2291  for (partition = 0; partition < NUM_LOCK_PARTITIONS; partition++)
2292  {
2293  LWLock *partitionLock;
2294  dlist_head *procLocks = &MyProc->myProcLocks[partition];
2295  dlist_mutable_iter proclock_iter;
2296 
2297  partitionLock = LockHashPartitionLockByIndex(partition);
2298 
2299  /*
2300  * If the proclock list for this partition is empty, we can skip
2301  * acquiring the partition lock. This optimization is trickier than
2302  * it looks, because another backend could be in process of adding
2303  * something to our proclock list due to promoting one of our
2304  * fast-path locks. However, any such lock must be one that we
2305  * decided not to delete above, so it's okay to skip it again now;
2306  * we'd just decide not to delete it again. We must, however, be
2307  * careful to re-fetch the list header once we've acquired the
2308  * partition lock, to be sure we have a valid, up-to-date pointer.
2309  * (There is probably no significant risk if pointer fetch/store is
2310  * atomic, but we don't wish to assume that.)
2311  *
2312  * XXX This argument assumes that the locallock table correctly
2313  * represents all of our fast-path locks. While allLocks mode
2314  * guarantees to clean up all of our normal locks regardless of the
2315  * locallock situation, we lose that guarantee for fast-path locks.
2316  * This is not ideal.
2317  */
2318  if (dlist_is_empty(procLocks))
2319  continue; /* needn't examine this partition */
2320 
2321  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2322 
2323  dlist_foreach_modify(proclock_iter, procLocks)
2324  {
2325  PROCLOCK *proclock = dlist_container(PROCLOCK, procLink, proclock_iter.cur);
2326  bool wakeupNeeded = false;
2327 
2328  Assert(proclock->tag.myProc == MyProc);
2329 
2330  lock = proclock->tag.myLock;
2331 
2332  /* Ignore items that are not of the lockmethod to be removed */
2333  if (LOCK_LOCKMETHOD(*lock) != lockmethodid)
2334  continue;
2335 
2336  /*
2337  * In allLocks mode, force release of all locks even if locallock
2338  * table had problems
2339  */
2340  if (allLocks)
2341  proclock->releaseMask = proclock->holdMask;
2342  else
2343  Assert((proclock->releaseMask & ~proclock->holdMask) == 0);
2344 
2345  /*
2346  * Ignore items that have nothing to be released, unless they have
2347  * holdMask == 0 and are therefore recyclable
2348  */
2349  if (proclock->releaseMask == 0 && proclock->holdMask != 0)
2350  continue;
2351 
2352  PROCLOCK_PRINT("LockReleaseAll", proclock);
2353  LOCK_PRINT("LockReleaseAll", lock, 0);
2354  Assert(lock->nRequested >= 0);
2355  Assert(lock->nGranted >= 0);
2356  Assert(lock->nGranted <= lock->nRequested);
2357  Assert((proclock->holdMask & ~lock->grantMask) == 0);
2358 
2359  /*
2360  * Release the previously-marked lock modes
2361  */
2362  for (i = 1; i <= numLockModes; i++)
2363  {
2364  if (proclock->releaseMask & LOCKBIT_ON(i))
2365  wakeupNeeded |= UnGrantLock(lock, i, proclock,
2366  lockMethodTable);
2367  }
2368  Assert((lock->nRequested >= 0) && (lock->nGranted >= 0));
2369  Assert(lock->nGranted <= lock->nRequested);
2370  LOCK_PRINT("LockReleaseAll: updated", lock, 0);
2371 
2372  proclock->releaseMask = 0;
2373 
2374  /* CleanUpLock will wake up waiters if needed. */
2375  CleanUpLock(lock, proclock,
2376  lockMethodTable,
2377  LockTagHashCode(&lock->tag),
2378  wakeupNeeded);
2379  } /* loop over PROCLOCKs within this partition */
2380 
2381  LWLockRelease(partitionLock);
2382  } /* loop over partitions */
2383 
2384 #ifdef LOCK_DEBUG
2385  if (*(lockMethodTable->trace_flag))
2386  elog(LOG, "LockReleaseAll done");
2387 #endif
2388 }
2389 
2390 /*
2391  * LockReleaseSession -- Release all session locks of the specified lock method
2392  * that are held by the current process.
2393  */
2394 void
2396 {
2397  HASH_SEQ_STATUS status;
2398  LOCALLOCK *locallock;
2399 
2400  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
2401  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
2402 
2404 
2405  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
2406  {
2407  /* Ignore items that are not of the specified lock method */
2408  if (LOCALLOCK_LOCKMETHOD(*locallock) != lockmethodid)
2409  continue;
2410 
2411  ReleaseLockIfHeld(locallock, true);
2412  }
2413 }
2414 
2415 /*
2416  * LockReleaseCurrentOwner
2417  * Release all locks belonging to CurrentResourceOwner
2418  *
2419  * If the caller knows what those locks are, it can pass them as an array.
2420  * That speeds up the call significantly, when a lot of locks are held.
2421  * Otherwise, pass NULL for locallocks, and we'll traverse through our hash
2422  * table to find them.
2423  */
2424 void
2425 LockReleaseCurrentOwner(LOCALLOCK **locallocks, int nlocks)
2426 {
2427  if (locallocks == NULL)
2428  {
2429  HASH_SEQ_STATUS status;
2430  LOCALLOCK *locallock;
2431 
2433 
2434  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
2435  ReleaseLockIfHeld(locallock, false);
2436  }
2437  else
2438  {
2439  int i;
2440 
2441  for (i = nlocks - 1; i >= 0; i--)
2442  ReleaseLockIfHeld(locallocks[i], false);
2443  }
2444 }
2445 
2446 /*
2447  * ReleaseLockIfHeld
2448  * Release any session-level locks on this lockable object if sessionLock
2449  * is true; else, release any locks held by CurrentResourceOwner.
2450  *
2451  * It is tempting to pass this a ResourceOwner pointer (or NULL for session
2452  * locks), but without refactoring LockRelease() we cannot support releasing
2453  * locks belonging to resource owners other than CurrentResourceOwner.
2454  * If we were to refactor, it'd be a good idea to fix it so we don't have to
2455  * do a hashtable lookup of the locallock, too. However, currently this
2456  * function isn't used heavily enough to justify refactoring for its
2457  * convenience.
2458  */
2459 static void
2460 ReleaseLockIfHeld(LOCALLOCK *locallock, bool sessionLock)
2461 {
2462  ResourceOwner owner;
2463  LOCALLOCKOWNER *lockOwners;
2464  int i;
2465 
2466  /* Identify owner for lock (must match LockRelease!) */
2467  if (sessionLock)
2468  owner = NULL;
2469  else
2470  owner = CurrentResourceOwner;
2471 
2472  /* Scan to see if there are any locks belonging to the target owner */
2473  lockOwners = locallock->lockOwners;
2474  for (i = locallock->numLockOwners - 1; i >= 0; i--)
2475  {
2476  if (lockOwners[i].owner == owner)
2477  {
2478  Assert(lockOwners[i].nLocks > 0);
2479  if (lockOwners[i].nLocks < locallock->nLocks)
2480  {
2481  /*
2482  * We will still hold this lock after forgetting this
2483  * ResourceOwner.
2484  */
2485  locallock->nLocks -= lockOwners[i].nLocks;
2486  /* compact out unused slot */
2487  locallock->numLockOwners--;
2488  if (owner != NULL)
2489  ResourceOwnerForgetLock(owner, locallock);
2490  if (i < locallock->numLockOwners)
2491  lockOwners[i] = lockOwners[locallock->numLockOwners];
2492  }
2493  else
2494  {
2495  Assert(lockOwners[i].nLocks == locallock->nLocks);
2496  /* We want to call LockRelease just once */
2497  lockOwners[i].nLocks = 1;
2498  locallock->nLocks = 1;
2499  if (!LockRelease(&locallock->tag.lock,
2500  locallock->tag.mode,
2501  sessionLock))
2502  elog(WARNING, "ReleaseLockIfHeld: failed??");
2503  }
2504  break;
2505  }
2506  }
2507 }
2508 
2509 /*
2510  * LockReassignCurrentOwner
2511  * Reassign all locks belonging to CurrentResourceOwner to belong
2512  * to its parent resource owner.
2513  *
2514  * If the caller knows what those locks are, it can pass them as an array.
2515  * That speeds up the call significantly, when a lot of locks are held
2516  * (e.g pg_dump with a large schema). Otherwise, pass NULL for locallocks,
2517  * and we'll traverse through our hash table to find them.
2518  */
2519 void
2520 LockReassignCurrentOwner(LOCALLOCK **locallocks, int nlocks)
2521 {
2523 
2524  Assert(parent != NULL);
2525 
2526  if (locallocks == NULL)
2527  {
2528  HASH_SEQ_STATUS status;
2529  LOCALLOCK *locallock;
2530 
2532 
2533  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
2534  LockReassignOwner(locallock, parent);
2535  }
2536  else
2537  {
2538  int i;
2539 
2540  for (i = nlocks - 1; i >= 0; i--)
2541  LockReassignOwner(locallocks[i], parent);
2542  }
2543 }
2544 
2545 /*
2546  * Subroutine of LockReassignCurrentOwner. Reassigns a given lock belonging to
2547  * CurrentResourceOwner to its parent.
2548  */
2549 static void
2551 {
2552  LOCALLOCKOWNER *lockOwners;
2553  int i;
2554  int ic = -1;
2555  int ip = -1;
2556 
2557  /*
2558  * Scan to see if there are any locks belonging to current owner or its
2559  * parent
2560  */
2561  lockOwners = locallock->lockOwners;
2562  for (i = locallock->numLockOwners - 1; i >= 0; i--)
2563  {
2564  if (lockOwners[i].owner == CurrentResourceOwner)
2565  ic = i;
2566  else if (lockOwners[i].owner == parent)
2567  ip = i;
2568  }
2569 
2570  if (ic < 0)
2571  return; /* no current locks */
2572 
2573  if (ip < 0)
2574  {
2575  /* Parent has no slot, so just give it the child's slot */
2576  lockOwners[ic].owner = parent;
2577  ResourceOwnerRememberLock(parent, locallock);
2578  }
2579  else
2580  {
2581  /* Merge child's count with parent's */
2582  lockOwners[ip].nLocks += lockOwners[ic].nLocks;
2583  /* compact out unused slot */
2584  locallock->numLockOwners--;
2585  if (ic < locallock->numLockOwners)
2586  lockOwners[ic] = lockOwners[locallock->numLockOwners];
2587  }
2589 }
2590 
2591 /*
2592  * FastPathGrantRelationLock
2593  * Grant lock using per-backend fast-path array, if there is space.
2594  */
2595 static bool
2597 {
2598  uint32 f;
2599  uint32 unused_slot = FP_LOCK_SLOTS_PER_BACKEND;
2600 
2601  /* Scan for existing entry for this relid, remembering empty slot. */
2602  for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++)
2603  {
2604  if (FAST_PATH_GET_BITS(MyProc, f) == 0)
2605  unused_slot = f;
2606  else if (MyProc->fpRelId[f] == relid)
2607  {
2608  Assert(!FAST_PATH_CHECK_LOCKMODE(MyProc, f, lockmode));
2609  FAST_PATH_SET_LOCKMODE(MyProc, f, lockmode);
2610  return true;
2611  }
2612  }
2613 
2614  /* If no existing entry, use any empty slot. */
2615  if (unused_slot < FP_LOCK_SLOTS_PER_BACKEND)
2616  {
2617  MyProc->fpRelId[unused_slot] = relid;
2618  FAST_PATH_SET_LOCKMODE(MyProc, unused_slot, lockmode);
2620  return true;
2621  }
2622 
2623  /* No existing entry, and no empty slot. */
2624  return false;
2625 }
2626 
2627 /*
2628  * FastPathUnGrantRelationLock
2629  * Release fast-path lock, if present. Update backend-private local
2630  * use count, while we're at it.
2631  */
2632 static bool
2634 {
2635  uint32 f;
2636  bool result = false;
2637 
2639  for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++)
2640  {
2641  if (MyProc->fpRelId[f] == relid
2642  && FAST_PATH_CHECK_LOCKMODE(MyProc, f, lockmode))
2643  {
2644  Assert(!result);
2645  FAST_PATH_CLEAR_LOCKMODE(MyProc, f, lockmode);
2646  result = true;
2647  /* we continue iterating so as to update FastPathLocalUseCount */
2648  }
2649  if (FAST_PATH_GET_BITS(MyProc, f) != 0)
2651  }
2652  return result;
2653 }
2654 
2655 /*
2656  * FastPathTransferRelationLocks
2657  * Transfer locks matching the given lock tag from per-backend fast-path
2658  * arrays to the shared hash table.
2659  *
2660  * Returns true if successful, false if ran out of shared memory.
2661  */
2662 static bool
2663 FastPathTransferRelationLocks(LockMethod lockMethodTable, const LOCKTAG *locktag,
2664  uint32 hashcode)
2665 {
2666  LWLock *partitionLock = LockHashPartitionLock(hashcode);
2667  Oid relid = locktag->locktag_field2;
2668  uint32 i;
2669 
2670  /*
2671  * Every PGPROC that can potentially hold a fast-path lock is present in
2672  * ProcGlobal->allProcs. Prepared transactions are not, but any
2673  * outstanding fast-path locks held by prepared transactions are
2674  * transferred to the main lock table.
2675  */
2676  for (i = 0; i < ProcGlobal->allProcCount; i++)
2677  {
2678  PGPROC *proc = &ProcGlobal->allProcs[i];
2679  uint32 f;
2680 
2682 
2683  /*
2684  * If the target backend isn't referencing the same database as the
2685  * lock, then we needn't examine the individual relation IDs at all;
2686  * none of them can be relevant.
2687  *
2688  * proc->databaseId is set at backend startup time and never changes
2689  * thereafter, so it might be safe to perform this test before
2690  * acquiring &proc->fpInfoLock. In particular, it's certainly safe to
2691  * assume that if the target backend holds any fast-path locks, it
2692  * must have performed a memory-fencing operation (in particular, an
2693  * LWLock acquisition) since setting proc->databaseId. However, it's
2694  * less clear that our backend is certain to have performed a memory
2695  * fencing operation since the other backend set proc->databaseId. So
2696  * for now, we test it after acquiring the LWLock just to be safe.
2697  */
2698  if (proc->databaseId != locktag->locktag_field1)
2699  {
2700  LWLockRelease(&proc->fpInfoLock);
2701  continue;
2702  }
2703 
2704  for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++)
2705  {
2706  uint32 lockmode;
2707 
2708  /* Look for an allocated slot matching the given relid. */
2709  if (relid != proc->fpRelId[f] || FAST_PATH_GET_BITS(proc, f) == 0)
2710  continue;
2711 
2712  /* Find or create lock object. */
2713  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2714  for (lockmode = FAST_PATH_LOCKNUMBER_OFFSET;
2716  ++lockmode)
2717  {
2718  PROCLOCK *proclock;
2719 
2720  if (!FAST_PATH_CHECK_LOCKMODE(proc, f, lockmode))
2721  continue;
2722  proclock = SetupLockInTable(lockMethodTable, proc, locktag,
2723  hashcode, lockmode);
2724  if (!proclock)
2725  {
2726  LWLockRelease(partitionLock);
2727  LWLockRelease(&proc->fpInfoLock);
2728  return false;
2729  }
2730  GrantLock(proclock->tag.myLock, proclock, lockmode);
2731  FAST_PATH_CLEAR_LOCKMODE(proc, f, lockmode);
2732  }
2733  LWLockRelease(partitionLock);
2734 
2735  /* No need to examine remaining slots. */
2736  break;
2737  }
2738  LWLockRelease(&proc->fpInfoLock);
2739  }
2740  return true;
2741 }
2742 
2743 /*
2744  * FastPathGetRelationLockEntry
2745  * Return the PROCLOCK for a lock originally taken via the fast-path,
2746  * transferring it to the primary lock table if necessary.
2747  *
2748  * Note: caller takes care of updating the locallock object.
2749  */
2750 static PROCLOCK *
2752 {
2753  LockMethod lockMethodTable = LockMethods[DEFAULT_LOCKMETHOD];
2754  LOCKTAG *locktag = &locallock->tag.lock;
2755  PROCLOCK *proclock = NULL;
2756  LWLock *partitionLock = LockHashPartitionLock(locallock->hashcode);
2757  Oid relid = locktag->locktag_field2;
2758  uint32 f;
2759 
2761 
2762  for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++)
2763  {
2764  uint32 lockmode;
2765 
2766  /* Look for an allocated slot matching the given relid. */
2767  if (relid != MyProc->fpRelId[f] || FAST_PATH_GET_BITS(MyProc, f) == 0)
2768  continue;
2769 
2770  /* If we don't have a lock of the given mode, forget it! */
2771  lockmode = locallock->tag.mode;
2772  if (!FAST_PATH_CHECK_LOCKMODE(MyProc, f, lockmode))
2773  break;
2774 
2775  /* Find or create lock object. */
2776  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
2777 
2778  proclock = SetupLockInTable(lockMethodTable, MyProc, locktag,
2779  locallock->hashcode, lockmode);
2780  if (!proclock)
2781  {
2782  LWLockRelease(partitionLock);
2784  ereport(ERROR,
2785  (errcode(ERRCODE_OUT_OF_MEMORY),
2786  errmsg("out of shared memory"),
2787  errhint("You might need to increase %s.", "max_locks_per_transaction")));
2788  }
2789  GrantLock(proclock->tag.myLock, proclock, lockmode);
2790  FAST_PATH_CLEAR_LOCKMODE(MyProc, f, lockmode);
2791 
2792  LWLockRelease(partitionLock);
2793 
2794  /* No need to examine remaining slots. */
2795  break;
2796  }
2797 
2799 
2800  /* Lock may have already been transferred by some other backend. */
2801  if (proclock == NULL)
2802  {
2803  LOCK *lock;
2804  PROCLOCKTAG proclocktag;
2805  uint32 proclock_hashcode;
2806 
2807  LWLockAcquire(partitionLock, LW_SHARED);
2808 
2810  locktag,
2811  locallock->hashcode,
2812  HASH_FIND,
2813  NULL);
2814  if (!lock)
2815  elog(ERROR, "failed to re-find shared lock object");
2816 
2817  proclocktag.myLock = lock;
2818  proclocktag.myProc = MyProc;
2819 
2820  proclock_hashcode = ProcLockHashCode(&proclocktag, locallock->hashcode);
2821  proclock = (PROCLOCK *)
2823  &proclocktag,
2824  proclock_hashcode,
2825  HASH_FIND,
2826  NULL);
2827  if (!proclock)
2828  elog(ERROR, "failed to re-find shared proclock object");
2829  LWLockRelease(partitionLock);
2830  }
2831 
2832  return proclock;
2833 }
2834 
2835 /*
2836  * GetLockConflicts
2837  * Get an array of VirtualTransactionIds of xacts currently holding locks
2838  * that would conflict with the specified lock/lockmode.
2839  * xacts merely awaiting such a lock are NOT reported.
2840  *
2841  * The result array is palloc'd and is terminated with an invalid VXID.
2842  * *countp, if not null, is updated to the number of items set.
2843  *
2844  * Of course, the result could be out of date by the time it's returned, so
2845  * use of this function has to be thought about carefully. Similarly, a
2846  * PGPROC with no "lxid" will be considered non-conflicting regardless of any
2847  * lock it holds. Existing callers don't care about a locker after that
2848  * locker's pg_xact updates complete. CommitTransaction() clears "lxid" after
2849  * pg_xact updates and before releasing locks.
2850  *
2851  * Note we never include the current xact's vxid in the result array,
2852  * since an xact never blocks itself.
2853  */
2855 GetLockConflicts(const LOCKTAG *locktag, LOCKMODE lockmode, int *countp)
2856 {
2857  static VirtualTransactionId *vxids;
2858  LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
2859  LockMethod lockMethodTable;
2860  LOCK *lock;
2861  LOCKMASK conflictMask;
2862  dlist_iter proclock_iter;
2863  PROCLOCK *proclock;
2864  uint32 hashcode;
2865  LWLock *partitionLock;
2866  int count = 0;
2867  int fast_count = 0;
2868 
2869  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
2870  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
2871  lockMethodTable = LockMethods[lockmethodid];
2872  if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
2873  elog(ERROR, "unrecognized lock mode: %d", lockmode);
2874 
2875  /*
2876  * Allocate memory to store results, and fill with InvalidVXID. We only
2877  * need enough space for MaxBackends + max_prepared_xacts + a terminator.
2878  * InHotStandby allocate once in TopMemoryContext.
2879  */
2880  if (InHotStandby)
2881  {
2882  if (vxids == NULL)
2883  vxids = (VirtualTransactionId *)
2885  sizeof(VirtualTransactionId) *
2887  }
2888  else
2889  vxids = (VirtualTransactionId *)
2890  palloc0(sizeof(VirtualTransactionId) *
2892 
2893  /* Compute hash code and partition lock, and look up conflicting modes. */
2894  hashcode = LockTagHashCode(locktag);
2895  partitionLock = LockHashPartitionLock(hashcode);
2896  conflictMask = lockMethodTable->conflictTab[lockmode];
2897 
2898  /*
2899  * Fast path locks might not have been entered in the primary lock table.
2900  * If the lock we're dealing with could conflict with such a lock, we must
2901  * examine each backend's fast-path array for conflicts.
2902  */
2903  if (ConflictsWithRelationFastPath(locktag, lockmode))
2904  {
2905  int i;
2906  Oid relid = locktag->locktag_field2;
2907  VirtualTransactionId vxid;
2908 
2909  /*
2910  * Iterate over relevant PGPROCs. Anything held by a prepared
2911  * transaction will have been transferred to the primary lock table,
2912  * so we need not worry about those. This is all a bit fuzzy, because
2913  * new locks could be taken after we've visited a particular
2914  * partition, but the callers had better be prepared to deal with that
2915  * anyway, since the locks could equally well be taken between the
2916  * time we return the value and the time the caller does something
2917  * with it.
2918  */
2919  for (i = 0; i < ProcGlobal->allProcCount; i++)
2920  {
2921  PGPROC *proc = &ProcGlobal->allProcs[i];
2922  uint32 f;
2923 
2924  /* A backend never blocks itself */
2925  if (proc == MyProc)
2926  continue;
2927 
2929 
2930  /*
2931  * If the target backend isn't referencing the same database as
2932  * the lock, then we needn't examine the individual relation IDs
2933  * at all; none of them can be relevant.
2934  *
2935  * See FastPathTransferRelationLocks() for discussion of why we do
2936  * this test after acquiring the lock.
2937  */
2938  if (proc->databaseId != locktag->locktag_field1)
2939  {
2940  LWLockRelease(&proc->fpInfoLock);
2941  continue;
2942  }
2943 
2944  for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; f++)
2945  {
2946  uint32 lockmask;
2947 
2948  /* Look for an allocated slot matching the given relid. */
2949  if (relid != proc->fpRelId[f])
2950  continue;
2951  lockmask = FAST_PATH_GET_BITS(proc, f);
2952  if (!lockmask)
2953  continue;
2954  lockmask <<= FAST_PATH_LOCKNUMBER_OFFSET;
2955 
2956  /*
2957  * There can only be one entry per relation, so if we found it
2958  * and it doesn't conflict, we can skip the rest of the slots.
2959  */
2960  if ((lockmask & conflictMask) == 0)
2961  break;
2962 
2963  /* Conflict! */
2964  GET_VXID_FROM_PGPROC(vxid, *proc);
2965 
2966  if (VirtualTransactionIdIsValid(vxid))
2967  vxids[count++] = vxid;
2968  /* else, xact already committed or aborted */
2969 
2970  /* No need to examine remaining slots. */
2971  break;
2972  }
2973 
2974  LWLockRelease(&proc->fpInfoLock);
2975  }
2976  }
2977 
2978  /* Remember how many fast-path conflicts we found. */
2979  fast_count = count;
2980 
2981  /*
2982  * Look up the lock object matching the tag.
2983  */
2984  LWLockAcquire(partitionLock, LW_SHARED);
2985 
2987  locktag,
2988  hashcode,
2989  HASH_FIND,
2990  NULL);
2991  if (!lock)
2992  {
2993  /*
2994  * If the lock object doesn't exist, there is nothing holding a lock
2995  * on this lockable object.
2996  */
2997  LWLockRelease(partitionLock);
2998  vxids[count].backendId = InvalidBackendId;
3000  if (countp)
3001  *countp = count;
3002  return vxids;
3003  }
3004 
3005  /*
3006  * Examine each existing holder (or awaiter) of the lock.
3007  */
3008  dlist_foreach(proclock_iter, &lock->procLocks)
3009  {
3010  proclock = dlist_container(PROCLOCK, lockLink, proclock_iter.cur);
3011 
3012  if (conflictMask & proclock->holdMask)
3013  {
3014  PGPROC *proc = proclock->tag.myProc;
3015 
3016  /* A backend never blocks itself */
3017  if (proc != MyProc)
3018  {
3019  VirtualTransactionId vxid;
3020 
3021  GET_VXID_FROM_PGPROC(vxid, *proc);
3022 
3023  if (VirtualTransactionIdIsValid(vxid))
3024  {
3025  int i;
3026 
3027  /* Avoid duplicate entries. */
3028  for (i = 0; i < fast_count; ++i)
3029  if (VirtualTransactionIdEquals(vxids[i], vxid))
3030  break;
3031  if (i >= fast_count)
3032  vxids[count++] = vxid;
3033  }
3034  /* else, xact already committed or aborted */
3035  }
3036  }
3037  }
3038 
3039  LWLockRelease(partitionLock);
3040 
3041  if (count > MaxBackends + max_prepared_xacts) /* should never happen */
3042  elog(PANIC, "too many conflicting locks found");
3043 
3044  vxids[count].backendId = InvalidBackendId;
3046  if (countp)
3047  *countp = count;
3048  return vxids;
3049 }
3050 
3051 /*
3052  * Find a lock in the shared lock table and release it. It is the caller's
3053  * responsibility to verify that this is a sane thing to do. (For example, it
3054  * would be bad to release a lock here if there might still be a LOCALLOCK
3055  * object with pointers to it.)
3056  *
3057  * We currently use this in two situations: first, to release locks held by
3058  * prepared transactions on commit (see lock_twophase_postcommit); and second,
3059  * to release locks taken via the fast-path, transferred to the main hash
3060  * table, and then released (see LockReleaseAll).
3061  */
3062 static void
3063 LockRefindAndRelease(LockMethod lockMethodTable, PGPROC *proc,
3064  LOCKTAG *locktag, LOCKMODE lockmode,
3065  bool decrement_strong_lock_count)
3066 {
3067  LOCK *lock;
3068  PROCLOCK *proclock;
3069  PROCLOCKTAG proclocktag;
3070  uint32 hashcode;
3071  uint32 proclock_hashcode;
3072  LWLock *partitionLock;
3073  bool wakeupNeeded;
3074 
3075  hashcode = LockTagHashCode(locktag);
3076  partitionLock = LockHashPartitionLock(hashcode);
3077 
3078  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
3079 
3080  /*
3081  * Re-find the lock object (it had better be there).
3082  */
3084  locktag,
3085  hashcode,
3086  HASH_FIND,
3087  NULL);
3088  if (!lock)
3089  elog(PANIC, "failed to re-find shared lock object");
3090 
3091  /*
3092  * Re-find the proclock object (ditto).
3093  */
3094  proclocktag.myLock = lock;
3095  proclocktag.myProc = proc;
3096 
3097  proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode);
3098 
3100  &proclocktag,
3101  proclock_hashcode,
3102  HASH_FIND,
3103  NULL);
3104  if (!proclock)
3105  elog(PANIC, "failed to re-find shared proclock object");
3106 
3107  /*
3108  * Double-check that we are actually holding a lock of the type we want to
3109  * release.
3110  */
3111  if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
3112  {
3113  PROCLOCK_PRINT("lock_twophase_postcommit: WRONGTYPE", proclock);
3114  LWLockRelease(partitionLock);
3115  elog(WARNING, "you don't own a lock of type %s",
3116  lockMethodTable->lockModeNames[lockmode]);
3117  return;
3118  }
3119 
3120  /*
3121  * Do the releasing. CleanUpLock will waken any now-wakable waiters.
3122  */
3123  wakeupNeeded = UnGrantLock(lock, lockmode, proclock, lockMethodTable);
3124 
3125  CleanUpLock(lock, proclock,
3126  lockMethodTable, hashcode,
3127  wakeupNeeded);
3128 
3129  LWLockRelease(partitionLock);
3130 
3131  /*
3132  * Decrement strong lock count. This logic is needed only for 2PC.
3133  */
3134  if (decrement_strong_lock_count
3135  && ConflictsWithRelationFastPath(locktag, lockmode))
3136  {
3137  uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode);
3138 
3140  Assert(FastPathStrongRelationLocks->count[fasthashcode] > 0);
3141  FastPathStrongRelationLocks->count[fasthashcode]--;
3143  }
3144 }
3145 
3146 /*
3147  * CheckForSessionAndXactLocks
3148  * Check to see if transaction holds both session-level and xact-level
3149  * locks on the same object; if so, throw an error.
3150  *
3151  * If we have both session- and transaction-level locks on the same object,
3152  * PREPARE TRANSACTION must fail. This should never happen with regular
3153  * locks, since we only take those at session level in some special operations
3154  * like VACUUM. It's possible to hit this with advisory locks, though.
3155  *
3156  * It would be nice if we could keep the session hold and give away the
3157  * transactional hold to the prepared xact. However, that would require two
3158  * PROCLOCK objects, and we cannot be sure that another PROCLOCK will be
3159  * available when it comes time for PostPrepare_Locks to do the deed.
3160  * So for now, we error out while we can still do so safely.
3161  *
3162  * Since the LOCALLOCK table stores a separate entry for each lockmode,
3163  * we can't implement this check by examining LOCALLOCK entries in isolation.
3164  * We must build a transient hashtable that is indexed by locktag only.
3165  */
3166 static void
3168 {
3169  typedef struct
3170  {
3171  LOCKTAG lock; /* identifies the lockable object */
3172  bool sessLock; /* is any lockmode held at session level? */
3173  bool xactLock; /* is any lockmode held at xact level? */
3174  } PerLockTagEntry;
3175 
3176  HASHCTL hash_ctl;
3177  HTAB *lockhtab;
3178  HASH_SEQ_STATUS status;
3179  LOCALLOCK *locallock;
3180 
3181  /* Create a local hash table keyed by LOCKTAG only */
3182  hash_ctl.keysize = sizeof(LOCKTAG);
3183  hash_ctl.entrysize = sizeof(PerLockTagEntry);
3184  hash_ctl.hcxt = CurrentMemoryContext;
3185 
3186  lockhtab = hash_create("CheckForSessionAndXactLocks table",
3187  256, /* arbitrary initial size */
3188  &hash_ctl,
3190 
3191  /* Scan local lock table to find entries for each LOCKTAG */
3193 
3194  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
3195  {
3196  LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
3197  PerLockTagEntry *hentry;
3198  bool found;
3199  int i;
3200 
3201  /*
3202  * Ignore VXID locks. We don't want those to be held by prepared
3203  * transactions, since they aren't meaningful after a restart.
3204  */
3205  if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION)
3206  continue;
3207 
3208  /* Ignore it if we don't actually hold the lock */
3209  if (locallock->nLocks <= 0)
3210  continue;
3211 
3212  /* Otherwise, find or make an entry in lockhtab */
3213  hentry = (PerLockTagEntry *) hash_search(lockhtab,
3214  &locallock->tag.lock,
3215  HASH_ENTER, &found);
3216  if (!found) /* initialize, if newly created */
3217  hentry->sessLock = hentry->xactLock = false;
3218 
3219  /* Scan to see if we hold lock at session or xact level or both */
3220  for (i = locallock->numLockOwners - 1; i >= 0; i--)
3221  {
3222  if (lockOwners[i].owner == NULL)
3223  hentry->sessLock = true;
3224  else
3225  hentry->xactLock = true;
3226  }
3227 
3228  /*
3229  * We can throw error immediately when we see both types of locks; no
3230  * need to wait around to see if there are more violations.
3231  */
3232  if (hentry->sessLock && hentry->xactLock)
3233  ereport(ERROR,
3234  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3235  errmsg("cannot PREPARE while holding both session-level and transaction-level locks on the same object")));
3236  }
3237 
3238  /* Success, so clean up */
3239  hash_destroy(lockhtab);
3240 }
3241 
3242 /*
3243  * AtPrepare_Locks
3244  * Do the preparatory work for a PREPARE: make 2PC state file records
3245  * for all locks currently held.
3246  *
3247  * Session-level locks are ignored, as are VXID locks.
3248  *
3249  * For the most part, we don't need to touch shared memory for this ---
3250  * all the necessary state information is in the locallock table.
3251  * Fast-path locks are an exception, however: we move any such locks to
3252  * the main table before allowing PREPARE TRANSACTION to succeed.
3253  */
3254 void
3256 {
3257  HASH_SEQ_STATUS status;
3258  LOCALLOCK *locallock;
3259 
3260  /* First, verify there aren't locks of both xact and session level */
3262 
3263  /* Now do the per-locallock cleanup work */
3265 
3266  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
3267  {
3268  TwoPhaseLockRecord record;
3269  LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
3270  bool haveSessionLock;
3271  bool haveXactLock;
3272  int i;
3273 
3274  /*
3275  * Ignore VXID locks. We don't want those to be held by prepared
3276  * transactions, since they aren't meaningful after a restart.
3277  */
3278  if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION)
3279  continue;
3280 
3281  /* Ignore it if we don't actually hold the lock */
3282  if (locallock->nLocks <= 0)
3283  continue;
3284 
3285  /* Scan to see whether we hold it at session or transaction level */
3286  haveSessionLock = haveXactLock = false;
3287  for (i = locallock->numLockOwners - 1; i >= 0; i--)
3288  {
3289  if (lockOwners[i].owner == NULL)
3290  haveSessionLock = true;
3291  else
3292  haveXactLock = true;
3293  }
3294 
3295  /* Ignore it if we have only session lock */
3296  if (!haveXactLock)
3297  continue;
3298 
3299  /* This can't happen, because we already checked it */
3300  if (haveSessionLock)
3301  ereport(ERROR,
3302  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3303  errmsg("cannot PREPARE while holding both session-level and transaction-level locks on the same object")));
3304 
3305  /*
3306  * If the local lock was taken via the fast-path, we need to move it
3307  * to the primary lock table, or just get a pointer to the existing
3308  * primary lock table entry if by chance it's already been
3309  * transferred.
3310  */
3311  if (locallock->proclock == NULL)
3312  {
3313  locallock->proclock = FastPathGetRelationLockEntry(locallock);
3314  locallock->lock = locallock->proclock->tag.myLock;
3315  }
3316 
3317  /*
3318  * Arrange to not release any strong lock count held by this lock
3319  * entry. We must retain the count until the prepared transaction is
3320  * committed or rolled back.
3321  */
3322  locallock->holdsStrongLockCount = false;
3323 
3324  /*
3325  * Create a 2PC record.
3326  */
3327  memcpy(&(record.locktag), &(locallock->tag.lock), sizeof(LOCKTAG));
3328  record.lockmode = locallock->tag.mode;
3329 
3331  &record, sizeof(TwoPhaseLockRecord));
3332  }
3333 }
3334 
3335 /*
3336  * PostPrepare_Locks
3337  * Clean up after successful PREPARE
3338  *
3339  * Here, we want to transfer ownership of our locks to a dummy PGPROC
3340  * that's now associated with the prepared transaction, and we want to
3341  * clean out the corresponding entries in the LOCALLOCK table.
3342  *
3343  * Note: by removing the LOCALLOCK entries, we are leaving dangling
3344  * pointers in the transaction's resource owner. This is OK at the
3345  * moment since resowner.c doesn't try to free locks retail at a toplevel
3346  * transaction commit or abort. We could alternatively zero out nLocks
3347  * and leave the LOCALLOCK entries to be garbage-collected by LockReleaseAll,
3348  * but that probably costs more cycles.
3349  */
3350 void
3352 {
3353  PGPROC *newproc = TwoPhaseGetDummyProc(xid, false);
3354  HASH_SEQ_STATUS status;
3355  LOCALLOCK *locallock;
3356  LOCK *lock;
3357  PROCLOCK *proclock;
3358  PROCLOCKTAG proclocktag;
3359  int partition;
3360 
3361  /* Can't prepare a lock group follower. */
3362  Assert(MyProc->lockGroupLeader == NULL ||
3364 
3365  /* This is a critical section: any error means big trouble */
3367 
3368  /*
3369  * First we run through the locallock table and get rid of unwanted
3370  * entries, then we scan the process's proclocks and transfer them to the
3371  * target proc.
3372  *
3373  * We do this separately because we may have multiple locallock entries
3374  * pointing to the same proclock, and we daren't end up with any dangling
3375  * pointers.
3376  */
3378 
3379  while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
3380  {
3381  LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
3382  bool haveSessionLock;
3383  bool haveXactLock;
3384  int i;
3385 
3386  if (locallock->proclock == NULL || locallock->lock == NULL)
3387  {
3388  /*
3389  * We must've run out of shared memory while trying to set up this
3390  * lock. Just forget the local entry.
3391  */
3392  Assert(locallock->nLocks == 0);
3393  RemoveLocalLock(locallock);
3394  continue;
3395  }
3396 
3397  /* Ignore VXID locks */
3398  if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION)
3399  continue;
3400 
3401  /* Scan to see whether we hold it at session or transaction level */
3402  haveSessionLock = haveXactLock = false;
3403  for (i = locallock->numLockOwners - 1; i >= 0; i--)
3404  {
3405  if (lockOwners[i].owner == NULL)
3406  haveSessionLock = true;
3407  else
3408  haveXactLock = true;
3409  }
3410 
3411  /* Ignore it if we have only session lock */
3412  if (!haveXactLock)
3413  continue;
3414 
3415  /* This can't happen, because we already checked it */
3416  if (haveSessionLock)
3417  ereport(PANIC,
3418  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
3419  errmsg("cannot PREPARE while holding both session-level and transaction-level locks on the same object")));
3420 
3421  /* Mark the proclock to show we need to release this lockmode */
3422  if (locallock->nLocks > 0)
3423  locallock->proclock->releaseMask |= LOCKBIT_ON(locallock->tag.mode);
3424 
3425  /* And remove the locallock hashtable entry */
3426  RemoveLocalLock(locallock);
3427  }
3428 
3429  /*
3430  * Now, scan each lock partition separately.
3431  */
3432  for (partition = 0; partition < NUM_LOCK_PARTITIONS; partition++)
3433  {
3434  LWLock *partitionLock;
3435  dlist_head *procLocks = &(MyProc->myProcLocks[partition]);
3436  dlist_mutable_iter proclock_iter;
3437 
3438  partitionLock = LockHashPartitionLockByIndex(partition);
3439 
3440  /*
3441  * If the proclock list for this partition is empty, we can skip
3442  * acquiring the partition lock. This optimization is safer than the
3443  * situation in LockReleaseAll, because we got rid of any fast-path
3444  * locks during AtPrepare_Locks, so there cannot be any case where
3445  * another backend is adding something to our lists now. For safety,
3446  * though, we code this the same way as in LockReleaseAll.
3447  */
3448  if (dlist_is_empty(procLocks))
3449  continue; /* needn't examine this partition */
3450 
3451  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
3452 
3453  dlist_foreach_modify(proclock_iter, procLocks)
3454  {
3455  proclock = dlist_container(PROCLOCK, procLink, proclock_iter.cur);
3456 
3457  Assert(proclock->tag.myProc == MyProc);
3458 
3459  lock = proclock->tag.myLock;
3460 
3461  /* Ignore VXID locks */
3463  continue;
3464 
3465  PROCLOCK_PRINT("PostPrepare_Locks", proclock);
3466  LOCK_PRINT("PostPrepare_Locks", lock, 0);
3467  Assert(lock->nRequested >= 0);
3468  Assert(lock->nGranted >= 0);
3469  Assert(lock->nGranted <= lock->nRequested);
3470  Assert((proclock->holdMask & ~lock->grantMask) == 0);
3471 
3472  /* Ignore it if nothing to release (must be a session lock) */
3473  if (proclock->releaseMask == 0)
3474  continue;
3475 
3476  /* Else we should be releasing all locks */
3477  if (proclock->releaseMask != proclock->holdMask)
3478  elog(PANIC, "we seem to have dropped a bit somewhere");
3479 
3480  /*
3481  * We cannot simply modify proclock->tag.myProc to reassign
3482  * ownership of the lock, because that's part of the hash key and
3483  * the proclock would then be in the wrong hash chain. Instead
3484  * use hash_update_hash_key. (We used to create a new hash entry,
3485  * but that risks out-of-memory failure if other processes are
3486  * busy making proclocks too.) We must unlink the proclock from
3487  * our procLink chain and put it into the new proc's chain, too.
3488  *
3489  * Note: the updated proclock hash key will still belong to the
3490  * same hash partition, cf proclock_hash(). So the partition lock
3491  * we already hold is sufficient for this.
3492  */
3493  dlist_delete(&proclock->procLink);
3494 
3495  /*
3496  * Create the new hash key for the proclock.
3497  */
3498  proclocktag.myLock = lock;
3499  proclocktag.myProc = newproc;
3500 
3501  /*
3502  * Update groupLeader pointer to point to the new proc. (We'd
3503  * better not be a member of somebody else's lock group!)
3504  */
3505  Assert(proclock->groupLeader == proclock->tag.myProc);
3506  proclock->groupLeader = newproc;
3507 
3508  /*
3509  * Update the proclock. We should not find any existing entry for
3510  * the same hash key, since there can be only one entry for any
3511  * given lock with my own proc.
3512  */
3514  proclock,
3515  &proclocktag))
3516  elog(PANIC, "duplicate entry found while reassigning a prepared transaction's locks");
3517 
3518  /* Re-link into the new proc's proclock list */
3519  dlist_push_tail(&newproc->myProcLocks[partition], &proclock->procLink);
3520 
3521  PROCLOCK_PRINT("PostPrepare_Locks: updated", proclock);
3522  } /* loop over PROCLOCKs within this partition */
3523 
3524  LWLockRelease(partitionLock);
3525  } /* loop over partitions */
3526 
3527  END_CRIT_SECTION();
3528 }
3529 
3530 
3531 /*
3532  * Estimate shared-memory space used for lock tables
3533  */
3534 Size
3536 {
3537  Size size = 0;
3538  long max_table_size;
3539 
3540  /* lock hash table */
3541  max_table_size = NLOCKENTS();
3542  size = add_size(size, hash_estimate_size(max_table_size, sizeof(LOCK)));
3543 
3544  /* proclock hash table */
3545  max_table_size *= 2;
3546  size = add_size(size, hash_estimate_size(max_table_size, sizeof(PROCLOCK)));
3547 
3548  /*
3549  * Since NLOCKENTS is only an estimate, add 10% safety margin.
3550  */
3551  size = add_size(size, size / 10);
3552 
3553  return size;
3554 }
3555 
3556 /*
3557  * GetLockStatusData - Return a summary of the lock manager's internal
3558  * status, for use in a user-level reporting function.
3559  *
3560  * The return data consists of an array of LockInstanceData objects,
3561  * which are a lightly abstracted version of the PROCLOCK data structures,
3562  * i.e. there is one entry for each unique lock and interested PGPROC.
3563  * It is the caller's responsibility to match up related items (such as
3564  * references to the same lockable object or PGPROC) if wanted.
3565  *
3566  * The design goal is to hold the LWLocks for as short a time as possible;
3567  * thus, this function simply makes a copy of the necessary data and releases
3568  * the locks, allowing the caller to contemplate and format the data for as
3569  * long as it pleases.
3570  */
3571 LockData *
3573 {
3574  LockData *data;
3575  PROCLOCK *proclock;
3576  HASH_SEQ_STATUS seqstat;
3577  int els;
3578  int el;
3579  int i;
3580 
3581  data = (LockData *) palloc(sizeof(LockData));
3582 
3583  /* Guess how much space we'll need. */
3584  els = MaxBackends;
3585  el = 0;
3586  data->locks = (LockInstanceData *) palloc(sizeof(LockInstanceData) * els);
3587 
3588  /*
3589  * First, we iterate through the per-backend fast-path arrays, locking
3590  * them one at a time. This might produce an inconsistent picture of the
3591  * system state, but taking all of those LWLocks at the same time seems
3592  * impractical (in particular, note MAX_SIMUL_LWLOCKS). It shouldn't
3593  * matter too much, because none of these locks can be involved in lock
3594  * conflicts anyway - anything that might must be present in the main lock
3595  * table. (For the same reason, we don't sweat about making leaderPid
3596  * completely valid. We cannot safely dereference another backend's
3597  * lockGroupLeader field without holding all lock partition locks, and
3598  * it's not worth that.)
3599  */
3600  for (i = 0; i < ProcGlobal->allProcCount; ++i)
3601  {
3602  PGPROC *proc = &ProcGlobal->allProcs[i];
3603  uint32 f;
3604 
3606 
3607  for (f = 0; f < FP_LOCK_SLOTS_PER_BACKEND; ++f)
3608  {
3609  LockInstanceData *instance;
3610  uint32 lockbits = FAST_PATH_GET_BITS(proc, f);
3611 
3612  /* Skip unallocated slots. */
3613  if (!lockbits)
3614  continue;
3615 
3616  if (el >= els)
3617  {
3618  els += MaxBackends;
3619  data->locks = (LockInstanceData *)
3620  repalloc(data->locks, sizeof(LockInstanceData) * els);
3621  }
3622 
3623  instance = &data->locks[el];
3624  SET_LOCKTAG_RELATION(instance->locktag, proc->databaseId,
3625  proc->fpRelId[f]);
3626  instance->holdMask = lockbits << FAST_PATH_LOCKNUMBER_OFFSET;
3627  instance->waitLockMode = NoLock;
3628  instance->backend = proc->backendId;
3629  instance->lxid = proc->lxid;
3630  instance->pid = proc->pid;
3631  instance->leaderPid = proc->pid;
3632  instance->fastpath = true;
3633 
3634  /*
3635  * Successfully taking fast path lock means there were no
3636  * conflicting locks.
3637  */
3638  instance->waitStart = 0;
3639 
3640  el++;
3641  }
3642 
3643  if (proc->fpVXIDLock)
3644  {
3645  VirtualTransactionId vxid;
3646  LockInstanceData *instance;
3647 
3648  if (el >= els)
3649  {
3650  els += MaxBackends;
3651  data->locks = (LockInstanceData *)
3652  repalloc(data->locks, sizeof(LockInstanceData) * els);
3653  }
3654 
3655  vxid.backendId = proc->backendId;
3657 
3658  instance = &data->locks[el];
3659  SET_LOCKTAG_VIRTUALTRANSACTION(instance->locktag, vxid);
3660  instance->holdMask = LOCKBIT_ON(ExclusiveLock);
3661  instance->waitLockMode = NoLock;
3662  instance->backend = proc->backendId;
3663  instance->lxid = proc->lxid;
3664  instance->pid = proc->pid;
3665  instance->leaderPid = proc->pid;
3666  instance->fastpath = true;
3667  instance->waitStart = 0;
3668 
3669  el++;
3670  }
3671 
3672  LWLockRelease(&proc->fpInfoLock);
3673  }
3674 
3675  /*
3676  * Next, acquire lock on the entire shared lock data structure. We do
3677  * this so that, at least for locks in the primary lock table, the state
3678  * will be self-consistent.
3679  *
3680  * Since this is a read-only operation, we take shared instead of
3681  * exclusive lock. There's not a whole lot of point to this, because all
3682  * the normal operations require exclusive lock, but it doesn't hurt
3683  * anything either. It will at least allow two backends to do
3684  * GetLockStatusData in parallel.
3685  *
3686  * Must grab LWLocks in partition-number order to avoid LWLock deadlock.
3687  */
3688  for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
3690 
3691  /* Now we can safely count the number of proclocks */
3693  if (data->nelements > els)
3694  {
3695  els = data->nelements;
3696  data->locks = (LockInstanceData *)
3697  repalloc(data->locks, sizeof(LockInstanceData) * els);
3698  }
3699 
3700  /* Now scan the tables to copy the data */
3702 
3703  while ((proclock = (PROCLOCK *) hash_seq_search(&seqstat)))
3704  {
3705  PGPROC *proc = proclock->tag.myProc;
3706  LOCK *lock = proclock->tag.myLock;
3707  LockInstanceData *instance = &data->locks[el];
3708 
3709  memcpy(&instance->locktag, &lock->tag, sizeof(LOCKTAG));
3710  instance->holdMask = proclock->holdMask;
3711  if (proc->waitLock == proclock->tag.myLock)
3712  instance->waitLockMode = proc->waitLockMode;
3713  else
3714  instance->waitLockMode = NoLock;
3715  instance->backend = proc->backendId;
3716  instance->lxid = proc->lxid;
3717  instance->pid = proc->pid;
3718  instance->leaderPid = proclock->groupLeader->pid;
3719  instance->fastpath = false;
3720  instance->waitStart = (TimestampTz) pg_atomic_read_u64(&proc->waitStart);
3721 
3722  el++;
3723  }
3724 
3725  /*
3726  * And release locks. We do this in reverse order for two reasons: (1)
3727  * Anyone else who needs more than one of the locks will be trying to lock
3728  * them in increasing order; we don't want to release the other process
3729  * until it can get all the locks it needs. (2) This avoids O(N^2)
3730  * behavior inside LWLockRelease.
3731  */
3732  for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
3734 
3735  Assert(el == data->nelements);
3736 
3737  return data;
3738 }
3739 
3740 /*
3741  * GetBlockerStatusData - Return a summary of the lock manager's state
3742  * concerning locks that are blocking the specified PID or any member of
3743  * the PID's lock group, for use in a user-level reporting function.
3744  *
3745  * For each PID within the lock group that is awaiting some heavyweight lock,
3746  * the return data includes an array of LockInstanceData objects, which are
3747  * the same data structure used by GetLockStatusData; but unlike that function,
3748  * this one reports only the PROCLOCKs associated with the lock that that PID
3749  * is blocked on. (Hence, all the locktags should be the same for any one
3750  * blocked PID.) In addition, we return an array of the PIDs of those backends
3751  * that are ahead of the blocked PID in the lock's wait queue. These can be
3752  * compared with the PIDs in the LockInstanceData objects to determine which
3753  * waiters are ahead of or behind the blocked PID in the queue.
3754  *
3755  * If blocked_pid isn't a valid backend PID or nothing in its lock group is
3756  * waiting on any heavyweight lock, return empty arrays.
3757  *
3758  * The design goal is to hold the LWLocks for as short a time as possible;
3759  * thus, this function simply makes a copy of the necessary data and releases
3760  * the locks, allowing the caller to contemplate and format the data for as
3761  * long as it pleases.
3762  */
3764 GetBlockerStatusData(int blocked_pid)
3765 {
3767  PGPROC *proc;
3768  int i;
3769 
3771 
3772  /*
3773  * Guess how much space we'll need, and preallocate. Most of the time
3774  * this will avoid needing to do repalloc while holding the LWLocks. (We
3775  * assume, but check with an Assert, that MaxBackends is enough entries
3776  * for the procs[] array; the other two could need enlargement, though.)
3777  */
3778  data->nprocs = data->nlocks = data->npids = 0;
3779  data->maxprocs = data->maxlocks = data->maxpids = MaxBackends;
3780  data->procs = (BlockedProcData *) palloc(sizeof(BlockedProcData) * data->maxprocs);
3781  data->locks = (LockInstanceData *) palloc(sizeof(LockInstanceData) * data->maxlocks);
3782  data->waiter_pids = (int *) palloc(sizeof(int) * data->maxpids);
3783 
3784  /*
3785  * In order to search the ProcArray for blocked_pid and assume that that
3786  * entry won't immediately disappear under us, we must hold ProcArrayLock.
3787  * In addition, to examine the lock grouping fields of any other backend,
3788  * we must hold all the hash partition locks. (Only one of those locks is
3789  * actually relevant for any one lock group, but we can't know which one
3790  * ahead of time.) It's fairly annoying to hold all those locks
3791  * throughout this, but it's no worse than GetLockStatusData(), and it
3792  * does have the advantage that we're guaranteed to return a
3793  * self-consistent instantaneous state.
3794  */
3795  LWLockAcquire(ProcArrayLock, LW_SHARED);
3796 
3797  proc = BackendPidGetProcWithLock(blocked_pid);
3798 
3799  /* Nothing to do if it's gone */
3800  if (proc != NULL)
3801  {
3802  /*
3803  * Acquire lock on the entire shared lock data structure. See notes
3804  * in GetLockStatusData().
3805  */
3806  for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
3808 
3809  if (proc->lockGroupLeader == NULL)
3810  {
3811  /* Easy case, proc is not a lock group member */
3813  }
3814  else
3815  {
3816  /* Examine all procs in proc's lock group */
3817  dlist_iter iter;
3818 
3820  {
3821  PGPROC *memberProc;
3822 
3823  memberProc = dlist_container(PGPROC, lockGroupLink, iter.cur);
3824  GetSingleProcBlockerStatusData(memberProc, data);
3825  }
3826  }
3827 
3828  /*
3829  * And release locks. See notes in GetLockStatusData().
3830  */
3831  for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
3833 
3834  Assert(data->nprocs <= data->maxprocs);
3835  }
3836 
3837  LWLockRelease(ProcArrayLock);
3838 
3839  return data;
3840 }
3841 
3842 /* Accumulate data about one possibly-blocked proc for GetBlockerStatusData */
3843 static void
3845 {
3846  LOCK *theLock = blocked_proc->waitLock;
3847  BlockedProcData *bproc;
3848  dlist_iter proclock_iter;
3849  dlist_iter proc_iter;
3850  dclist_head *waitQueue;
3851  int queue_size;
3852 
3853  /* Nothing to do if this proc is not blocked */
3854  if (theLock == NULL)
3855  return;
3856 
3857  /* Set up a procs[] element */
3858  bproc = &data->procs[data->nprocs++];
3859  bproc->pid = blocked_proc->pid;
3860  bproc->first_lock = data->nlocks;
3861  bproc->first_waiter = data->npids;
3862 
3863  /*
3864  * We may ignore the proc's fast-path arrays, since nothing in those could
3865  * be related to a contended lock.
3866  */
3867 
3868  /* Collect all PROCLOCKs associated with theLock */
3869  dlist_foreach(proclock_iter, &theLock->procLocks)
3870  {
3871  PROCLOCK *proclock =
3872  dlist_container(PROCLOCK, lockLink, proclock_iter.cur);
3873  PGPROC *proc = proclock->tag.myProc;
3874  LOCK *lock = proclock->tag.myLock;
3875  LockInstanceData *instance;
3876 
3877  if (data->nlocks >= data->maxlocks)
3878  {
3879  data->maxlocks += MaxBackends;
3880  data->locks = (LockInstanceData *)
3881  repalloc(data->locks, sizeof(LockInstanceData) * data->maxlocks);
3882  }
3883 
3884  instance = &data->locks[data->nlocks];
3885  memcpy(&instance->locktag, &lock->tag, sizeof(LOCKTAG));
3886  instance->holdMask = proclock->holdMask;
3887  if (proc->waitLock == lock)
3888  instance->waitLockMode = proc->waitLockMode;
3889  else
3890  instance->waitLockMode = NoLock;
3891  instance->backend = proc->backendId;
3892  instance->lxid = proc->lxid;
3893  instance->pid = proc->pid;
3894  instance->leaderPid = proclock->groupLeader->pid;
3895  instance->fastpath = false;
3896  data->nlocks++;
3897  }
3898 
3899  /* Enlarge waiter_pids[] if it's too small to hold all wait queue PIDs */
3900  waitQueue = &(theLock->waitProcs);
3901  queue_size = dclist_count(waitQueue);
3902 
3903  if (queue_size > data->maxpids - data->npids)
3904  {
3905  data->maxpids = Max(data->maxpids + MaxBackends,
3906  data->npids + queue_size);
3907  data->waiter_pids = (int *) repalloc(data->waiter_pids,
3908  sizeof(int) * data->maxpids);
3909  }
3910 
3911  /* Collect PIDs from the lock's wait queue, stopping at blocked_proc */
3912  dclist_foreach(proc_iter, waitQueue)
3913  {
3914  PGPROC *queued_proc = dlist_container(PGPROC, links, proc_iter.cur);
3915 
3916  if (queued_proc == blocked_proc)
3917  break;
3918  data->waiter_pids[data->npids++] = queued_proc->pid;
3919  queued_proc = (PGPROC *) queued_proc->links.next;
3920  }
3921 
3922  bproc->num_locks = data->nlocks - bproc->first_lock;
3923  bproc->num_waiters = data->npids - bproc->first_waiter;
3924 }
3925 
3926 /*
3927  * Returns a list of currently held AccessExclusiveLocks, for use by
3928  * LogStandbySnapshot(). The result is a palloc'd array,
3929  * with the number of elements returned into *nlocks.
3930  *
3931  * XXX This currently takes a lock on all partitions of the lock table,
3932  * but it's possible to do better. By reference counting locks and storing
3933  * the value in the ProcArray entry for each backend we could tell if any
3934  * locks need recording without having to acquire the partition locks and
3935  * scan the lock table. Whether that's worth the additional overhead
3936  * is pretty dubious though.
3937  */
3940 {
3941  xl_standby_lock *accessExclusiveLocks;
3942  PROCLOCK *proclock;
3943  HASH_SEQ_STATUS seqstat;
3944  int i;
3945  int index;
3946  int els;
3947 
3948  /*
3949  * Acquire lock on the entire shared lock data structure.
3950  *
3951  * Must grab LWLocks in partition-number order to avoid LWLock deadlock.
3952  */
3953  for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
3955 
3956  /* Now we can safely count the number of proclocks */
3958 
3959  /*
3960  * Allocating enough space for all locks in the lock table is overkill,
3961  * but it's more convenient and faster than having to enlarge the array.
3962  */
3963  accessExclusiveLocks = palloc(els * sizeof(xl_standby_lock));
3964 
3965  /* Now scan the tables to copy the data */
3967 
3968  /*
3969  * If lock is a currently granted AccessExclusiveLock then it will have
3970  * just one proclock holder, so locks are never accessed twice in this
3971  * particular case. Don't copy this code for use elsewhere because in the
3972  * general case this will give you duplicate locks when looking at
3973  * non-exclusive lock types.
3974  */
3975  index = 0;
3976  while ((proclock = (PROCLOCK *) hash_seq_search(&seqstat)))
3977  {
3978  /* make sure this definition matches the one used in LockAcquire */
3979  if ((proclock->holdMask & LOCKBIT_ON(AccessExclusiveLock)) &&
3980  proclock->tag.myLock->tag.locktag_type == LOCKTAG_RELATION)
3981  {
3982  PGPROC *proc = proclock->tag.myProc;
3983  LOCK *lock = proclock->tag.myLock;
3984  TransactionId xid = proc->xid;
3985 
3986  /*
3987  * Don't record locks for transactions if we know they have
3988  * already issued their WAL record for commit but not yet released
3989  * lock. It is still possible that we see locks held by already
3990  * complete transactions, if they haven't yet zeroed their xids.
3991  */
3992  if (!TransactionIdIsValid(xid))
3993  continue;
3994 
3995  accessExclusiveLocks[index].xid = xid;
3996  accessExclusiveLocks[index].dbOid = lock->tag.locktag_field1;
3997  accessExclusiveLocks[index].relOid = lock->tag.locktag_field2;
3998 
3999  index++;
4000  }
4001  }
4002 
4003  Assert(index <= els);
4004 
4005  /*
4006  * And release locks. We do this in reverse order for two reasons: (1)
4007  * Anyone else who needs more than one of the locks will be trying to lock
4008  * them in increasing order; we don't want to release the other process
4009  * until it can get all the locks it needs. (2) This avoids O(N^2)
4010  * behavior inside LWLockRelease.
4011  */
4012  for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
4014 
4015  *nlocks = index;
4016  return accessExclusiveLocks;
4017 }
4018 
4019 /* Provide the textual name of any lock mode */
4020 const char *
4022 {
4023  Assert(lockmethodid > 0 && lockmethodid < lengthof(LockMethods));
4024  Assert(mode > 0 && mode <= LockMethods[lockmethodid]->numLockModes);
4025  return LockMethods[lockmethodid]->lockModeNames[mode];
4026 }
4027 
4028 #ifdef LOCK_DEBUG
4029 /*
4030  * Dump all locks in the given proc's myProcLocks lists.
4031  *
4032  * Caller is responsible for having acquired appropriate LWLocks.
4033  */
4034 void
4035 DumpLocks(PGPROC *proc)
4036 {
4037  int i;
4038 
4039  if (proc == NULL)
4040  return;
4041 
4042  if (proc->waitLock)
4043  LOCK_PRINT("DumpLocks: waiting on", proc->waitLock, 0);
4044 
4045  for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
4046  {
4047  dlist_head *procLocks = &proc->myProcLocks[i];
4048  dlist_iter iter;
4049 
4050  dlist_foreach(iter, procLocks)
4051  {
4052  PROCLOCK *proclock = dlist_container(PROCLOCK, procLink, iter.cur);
4053  LOCK *lock = proclock->tag.myLock;
4054 
4055  Assert(proclock->tag.myProc == proc);
4056  PROCLOCK_PRINT("DumpLocks", proclock);
4057  LOCK_PRINT("DumpLocks", lock, 0);
4058  }
4059  }
4060 }
4061 
4062 /*
4063  * Dump all lmgr locks.
4064  *
4065  * Caller is responsible for having acquired appropriate LWLocks.
4066  */
4067 void
4068 DumpAllLocks(void)
4069 {
4070  PGPROC *proc;
4071  PROCLOCK *proclock;
4072  LOCK *lock;
4073  HASH_SEQ_STATUS status;
4074 
4075  proc = MyProc;
4076 
4077  if (proc && proc->waitLock)
4078  LOCK_PRINT("DumpAllLocks: waiting on", proc->waitLock, 0);
4079 
4081 
4082  while ((proclock = (PROCLOCK *) hash_seq_search(&status)) != NULL)
4083  {
4084  PROCLOCK_PRINT("DumpAllLocks", proclock);
4085 
4086  lock = proclock->tag.myLock;
4087  if (lock)
4088  LOCK_PRINT("DumpAllLocks", lock, 0);
4089  else
4090  elog(LOG, "DumpAllLocks: proclock->tag.myLock = NULL");
4091  }
4092 }
4093 #endif /* LOCK_DEBUG */
4094 
4095 /*
4096  * LOCK 2PC resource manager's routines
4097  */
4098 
4099 /*
4100  * Re-acquire a lock belonging to a transaction that was prepared.
4101  *
4102  * Because this function is run at db startup, re-acquiring the locks should
4103  * never conflict with running transactions because there are none. We
4104  * assume that the lock state represented by the stored 2PC files is legal.
4105  *
4106  * When switching from Hot Standby mode to normal operation, the locks will
4107  * be already held by the startup process. The locks are acquired for the new
4108  * procs without checking for conflicts, so we don't get a conflict between the
4109  * startup process and the dummy procs, even though we will momentarily have
4110  * a situation where two procs are holding the same AccessExclusiveLock,
4111  * which isn't normally possible because the conflict. If we're in standby
4112  * mode, but a recovery snapshot hasn't been established yet, it's possible
4113  * that some but not all of the locks are already held by the startup process.
4114  *
4115  * This approach is simple, but also a bit dangerous, because if there isn't
4116  * enough shared memory to acquire the locks, an error will be thrown, which
4117  * is promoted to FATAL and recovery will abort, bringing down postmaster.
4118  * A safer approach would be to transfer the locks like we do in
4119  * AtPrepare_Locks, but then again, in hot standby mode it's possible for
4120  * read-only backends to use up all the shared lock memory anyway, so that
4121  * replaying the WAL record that needs to acquire a lock will throw an error
4122  * and PANIC anyway.
4123  */
4124 void
4126  void *recdata, uint32 len)
4127 {
4128  TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata;
4129  PGPROC *proc = TwoPhaseGetDummyProc(xid, false);
4130  LOCKTAG *locktag;
4131  LOCKMODE lockmode;
4132  LOCKMETHODID lockmethodid;
4133  LOCK *lock;
4134  PROCLOCK *proclock;
4135  PROCLOCKTAG proclocktag;
4136  bool found;
4137  uint32 hashcode;
4138  uint32 proclock_hashcode;
4139  int partition;
4140  LWLock *partitionLock;
4141  LockMethod lockMethodTable;
4142 
4143  Assert(len == sizeof(TwoPhaseLockRecord));
4144  locktag = &rec->locktag;
4145  lockmode = rec->lockmode;
4146  lockmethodid = locktag->locktag_lockmethodid;
4147 
4148  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
4149  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
4150  lockMethodTable = LockMethods[lockmethodid];
4151 
4152  hashcode = LockTagHashCode(locktag);
4153  partition = LockHashPartition(hashcode);
4154  partitionLock = LockHashPartitionLock(hashcode);
4155 
4156  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
4157 
4158  /*
4159  * Find or create a lock with this tag.
4160  */
4162  locktag,
4163  hashcode,
4165  &found);
4166  if (!lock)
4167  {
4168  LWLockRelease(partitionLock);
4169  ereport(ERROR,
4170  (errcode(ERRCODE_OUT_OF_MEMORY),
4171  errmsg("out of shared memory"),
4172  errhint("You might need to increase %s.", "max_locks_per_transaction")));
4173  }
4174 
4175  /*
4176  * if it's a new lock object, initialize it
4177  */
4178  if (!found)
4179  {
4180  lock->grantMask = 0;
4181  lock->waitMask = 0;
4182  dlist_init(&lock->procLocks);
4183  dclist_init(&lock->waitProcs);
4184  lock->nRequested = 0;
4185  lock->nGranted = 0;
4186  MemSet(lock->requested, 0, sizeof(int) * MAX_LOCKMODES);
4187  MemSet(lock->granted, 0, sizeof(int) * MAX_LOCKMODES);
4188  LOCK_PRINT("lock_twophase_recover: new", lock, lockmode);
4189  }
4190  else
4191  {
4192  LOCK_PRINT("lock_twophase_recover: found", lock, lockmode);
4193  Assert((lock->nRequested >= 0) && (lock->requested[lockmode] >= 0));
4194  Assert((lock->nGranted >= 0) && (lock->granted[lockmode] >= 0));
4195  Assert(lock->nGranted <= lock->nRequested);
4196  }
4197 
4198  /*
4199  * Create the hash key for the proclock table.
4200  */
4201  proclocktag.myLock = lock;
4202  proclocktag.myProc = proc;
4203 
4204  proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode);
4205 
4206  /*
4207  * Find or create a proclock entry with this tag
4208  */
4210  &proclocktag,
4211  proclock_hashcode,
4213  &found);
4214  if (!proclock)
4215  {
4216  /* Oops, not enough shmem for the proclock */
4217  if (lock->nRequested == 0)
4218  {
4219  /*
4220  * There are no other requestors of this lock, so garbage-collect
4221  * the lock object. We *must* do this to avoid a permanent leak
4222  * of shared memory, because there won't be anything to cause
4223  * anyone to release the lock object later.
4224  */
4225  Assert(dlist_is_empty(&lock->procLocks));
4227  &(lock->tag),
4228  hashcode,
4229  HASH_REMOVE,
4230  NULL))
4231  elog(PANIC, "lock table corrupted");
4232  }
4233  LWLockRelease(partitionLock);
4234  ereport(ERROR,
4235  (errcode(ERRCODE_OUT_OF_MEMORY),
4236  errmsg("out of shared memory"),
4237  errhint("You might need to increase %s.", "max_locks_per_transaction")));
4238  }
4239 
4240  /*
4241  * If new, initialize the new entry
4242  */
4243  if (!found)
4244  {
4245  Assert(proc->lockGroupLeader == NULL);
4246  proclock->groupLeader = proc;
4247  proclock->holdMask = 0;
4248  proclock->releaseMask = 0;
4249  /* Add proclock to appropriate lists */
4250  dlist_push_tail(&lock->procLocks, &proclock->lockLink);
4251  dlist_push_tail(&proc->myProcLocks[partition],
4252  &proclock->procLink);
4253  PROCLOCK_PRINT("lock_twophase_recover: new", proclock);
4254  }
4255  else
4256  {
4257  PROCLOCK_PRINT("lock_twophase_recover: found", proclock);
4258  Assert((proclock->holdMask & ~lock->grantMask) == 0);
4259  }
4260 
4261  /*
4262  * lock->nRequested and lock->requested[] count the total number of
4263  * requests, whether granted or waiting, so increment those immediately.
4264  */
4265  lock->nRequested++;
4266  lock->requested[lockmode]++;
4267  Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0));
4268 
4269  /*
4270  * We shouldn't already hold the desired lock.
4271  */
4272  if (proclock->holdMask & LOCKBIT_ON(lockmode))
4273  elog(ERROR, "lock %s on object %u/%u/%u is already held",
4274  lockMethodTable->lockModeNames[lockmode],
4275  lock->tag.locktag_field1, lock->tag.locktag_field2,
4276  lock->tag.locktag_field3);
4277 
4278  /*
4279  * We ignore any possible conflicts and just grant ourselves the lock. Not
4280  * only because we don't bother, but also to avoid deadlocks when
4281  * switching from standby to normal mode. See function comment.
4282  */
4283  GrantLock(lock, proclock, lockmode);
4284 
4285  /*
4286  * Bump strong lock count, to make sure any fast-path lock requests won't
4287  * be granted without consulting the primary lock table.
4288  */
4289  if (ConflictsWithRelationFastPath(&lock->tag, lockmode))
4290  {
4291  uint32 fasthashcode = FastPathStrongLockHashPartition(hashcode);
4292 
4294  FastPathStrongRelationLocks->count[fasthashcode]++;
4296  }
4297 
4298  LWLockRelease(partitionLock);
4299 }
4300 
4301 /*
4302  * Re-acquire a lock belonging to a transaction that was prepared, when
4303  * starting up into hot standby mode.
4304  */
4305 void
4307  void *recdata, uint32 len)
4308 {
4309  TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata;
4310  LOCKTAG *locktag;
4311  LOCKMODE lockmode;
4312  LOCKMETHODID lockmethodid;
4313 
4314  Assert(len == sizeof(TwoPhaseLockRecord));
4315  locktag = &rec->locktag;
4316  lockmode = rec->lockmode;
4317  lockmethodid = locktag->locktag_lockmethodid;
4318 
4319  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
4320  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
4321 
4322  if (lockmode == AccessExclusiveLock &&
4323  locktag->locktag_type == LOCKTAG_RELATION)
4324  {
4326  locktag->locktag_field1 /* dboid */ ,
4327  locktag->locktag_field2 /* reloid */ );
4328  }
4329 }
4330 
4331 
4332 /*
4333  * 2PC processing routine for COMMIT PREPARED case.
4334  *
4335  * Find and release the lock indicated by the 2PC record.
4336  */
4337 void
4339  void *recdata, uint32 len)
4340 {
4341  TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata;
4342  PGPROC *proc = TwoPhaseGetDummyProc(xid, true);
4343  LOCKTAG *locktag;
4344  LOCKMETHODID lockmethodid;
4345  LockMethod lockMethodTable;
4346 
4347  Assert(len == sizeof(TwoPhaseLockRecord));
4348  locktag = &rec->locktag;
4349  lockmethodid = locktag->locktag_lockmethodid;
4350 
4351  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
4352  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
4353  lockMethodTable = LockMethods[lockmethodid];
4354 
4355  LockRefindAndRelease(lockMethodTable, proc, locktag, rec->lockmode, true);
4356 }
4357 
4358 /*
4359  * 2PC processing routine for ROLLBACK PREPARED case.
4360  *
4361  * This is actually just the same as the COMMIT case.
4362  */
4363 void
4365  void *recdata, uint32 len)
4366 {
4367  lock_twophase_postcommit(xid, info, recdata, len);
4368 }
4369 
4370 /*
4371  * VirtualXactLockTableInsert
4372  *
4373  * Take vxid lock via the fast-path. There can't be any pre-existing
4374  * lockers, as we haven't advertised this vxid via the ProcArray yet.
4375  *
4376  * Since MyProc->fpLocalTransactionId will normally contain the same data
4377  * as MyProc->lxid, you might wonder if we really need both. The
4378  * difference is that MyProc->lxid is set and cleared unlocked, and
4379  * examined by procarray.c, while fpLocalTransactionId is protected by
4380  * fpInfoLock and is used only by the locking subsystem. Doing it this
4381  * way makes it easier to verify that there are no funny race conditions.
4382  *
4383  * We don't bother recording this lock in the local lock table, since it's
4384  * only ever released at the end of a transaction. Instead,
4385  * LockReleaseAll() calls VirtualXactLockTableCleanup().
4386  */
4387 void
4389 {
4391 
4393 
4394  Assert(MyProc->backendId == vxid.backendId);
4396  Assert(MyProc->fpVXIDLock == false);
4397 
4398  MyProc->fpVXIDLock = true;
4400 
4402 }
4403 
4404 /*
4405  * VirtualXactLockTableCleanup
4406  *
4407  * Check whether a VXID lock has been materialized; if so, release it,
4408  * unblocking waiters.
4409  */
4410 void
4412 {
4413  bool fastpath;
4414  LocalTransactionId lxid;
4415 
4417 
4418  /*
4419  * Clean up shared memory state.
4420  */
4422 
4423  fastpath = MyProc->fpVXIDLock;
4424  lxid = MyProc->fpLocalTransactionId;
4425  MyProc->fpVXIDLock = false;
4427 
4429 
4430  /*
4431  * If fpVXIDLock has been cleared without touching fpLocalTransactionId,
4432  * that means someone transferred the lock to the main lock table.
4433  */
4434  if (!fastpath && LocalTransactionIdIsValid(lxid))
4435  {
4436  VirtualTransactionId vxid;
4437  LOCKTAG locktag;
4438 
4439  vxid.backendId = MyBackendId;
4440  vxid.localTransactionId = lxid;
4441  SET_LOCKTAG_VIRTUALTRANSACTION(locktag, vxid);
4442 
4444  &locktag, ExclusiveLock, false);
4445  }
4446 }
4447 
4448 /*
4449  * XactLockForVirtualXact
4450  *
4451  * If TransactionIdIsValid(xid), this is essentially XactLockTableWait(xid,
4452  * NULL, NULL, XLTW_None) or ConditionalXactLockTableWait(xid). Unlike those
4453  * functions, it assumes "xid" is never a subtransaction and that "xid" is
4454  * prepared, committed, or aborted.
4455  *
4456  * If !TransactionIdIsValid(xid), this locks every prepared XID having been
4457  * known as "vxid" before its PREPARE TRANSACTION.
4458  */
4459 static bool
4461  TransactionId xid, bool wait)
4462 {
4463  bool more = false;
4464 
4465  /* There is no point to wait for 2PCs if you have no 2PCs. */
4466  if (max_prepared_xacts == 0)
4467  return true;
4468 
4469  do
4470  {
4471  LockAcquireResult lar;
4472  LOCKTAG tag;
4473 
4474  /* Clear state from previous iterations. */
4475  if (more)
4476  {
4477  xid = InvalidTransactionId;
4478  more = false;
4479  }
4480 
4481  /* If we have no xid, try to find one. */
4482  if (!TransactionIdIsValid(xid))
4483  xid = TwoPhaseGetXidByVirtualXID(vxid, &more);
4484  if (!TransactionIdIsValid(xid))
4485  {
4486  Assert(!more);
4487  return true;
4488  }
4489 
4490  /* Check or wait for XID completion. */
4491  SET_LOCKTAG_TRANSACTION(tag, xid);
4492  lar = LockAcquire(&tag, ShareLock, false, !wait);
4493  if (lar == LOCKACQUIRE_NOT_AVAIL)
4494  return false;
4495  LockRelease(&tag, ShareLock, false);
4496  } while (more);
4497 
4498  return true;
4499 }
4500 
4501 /*
4502  * VirtualXactLock
4503  *
4504  * If wait = true, wait as long as the given VXID or any XID acquired by the
4505  * same transaction is still running. Then, return true.
4506  *
4507  * If wait = false, just check whether that VXID or one of those XIDs is still
4508  * running, and return true or false.
4509  */
4510 bool
4512 {
4513  LOCKTAG tag;
4514  PGPROC *proc;
4516 
4518 
4520  /* no vxid lock; localTransactionId is a normal, locked XID */
4521  return XactLockForVirtualXact(vxid, vxid.localTransactionId, wait);
4522 
4523  SET_LOCKTAG_VIRTUALTRANSACTION(tag, vxid);
4524 
4525  /*
4526  * If a lock table entry must be made, this is the PGPROC on whose behalf
4527  * it must be done. Note that the transaction might end or the PGPROC
4528  * might be reassigned to a new backend before we get around to examining
4529  * it, but it doesn't matter. If we find upon examination that the
4530  * relevant lxid is no longer running here, that's enough to prove that
4531  * it's no longer running anywhere.
4532  */
4533  proc = BackendIdGetProc(vxid.backendId);
4534  if (proc == NULL)
4535  return XactLockForVirtualXact(vxid, InvalidTransactionId, wait);
4536 
4537  /*
4538  * We must acquire this lock before checking the backendId and lxid
4539  * against the ones we're waiting for. The target backend will only set
4540  * or clear lxid while holding this lock.
4541  */
4543 
4544  if (proc->backendId != vxid.backendId
4545  || proc->fpLocalTransactionId != vxid.localTransactionId)
4546  {
4547  /* VXID ended */
4548  LWLockRelease(&proc->fpInfoLock);
4549  return XactLockForVirtualXact(vxid, InvalidTransactionId, wait);
4550  }
4551 
4552  /*
4553  * If we aren't asked to wait, there's no need to set up a lock table
4554  * entry. The transaction is still in progress, so just return false.
4555  */
4556  if (!wait)
4557  {
4558  LWLockRelease(&proc->fpInfoLock);
4559  return false;
4560  }
4561 
4562  /*
4563  * OK, we're going to need to sleep on the VXID. But first, we must set
4564  * up the primary lock table entry, if needed (ie, convert the proc's
4565  * fast-path lock on its VXID to a regular lock).
4566  */
4567  if (proc->fpVXIDLock)
4568  {
4569  PROCLOCK *proclock;
4570  uint32 hashcode;
4571  LWLock *partitionLock;
4572 
4573  hashcode = LockTagHashCode(&tag);
4574 
4575  partitionLock = LockHashPartitionLock(hashcode);
4576  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
4577 
4579  &tag, hashcode, ExclusiveLock);
4580  if (!proclock)
4581  {
4582  LWLockRelease(partitionLock);
4583  LWLockRelease(&proc->fpInfoLock);
4584  ereport(ERROR,
4585  (errcode(ERRCODE_OUT_OF_MEMORY),
4586  errmsg("out of shared memory"),
4587  errhint("You might need to increase %s.", "max_locks_per_transaction")));
4588  }
4589  GrantLock(proclock->tag.myLock, proclock, ExclusiveLock);
4590 
4591  LWLockRelease(partitionLock);
4592 
4593  proc->fpVXIDLock = false;
4594  }
4595 
4596  /*
4597  * If the proc has an XID now, we'll avoid a TwoPhaseGetXidByVirtualXID()
4598  * search. The proc might have assigned this XID but not yet locked it,
4599  * in which case the proc will lock this XID before releasing the VXID.
4600  * The fpInfoLock critical section excludes VirtualXactLockTableCleanup(),
4601  * so we won't save an XID of a different VXID. It doesn't matter whether
4602  * we save this before or after setting up the primary lock table entry.
4603  */
4604  xid = proc->xid;
4605 
4606  /* Done with proc->fpLockBits */
4607  LWLockRelease(&proc->fpInfoLock);
4608 
4609  /* Time to wait. */
4610  (void) LockAcquire(&tag, ShareLock, false, false);
4611 
4612  LockRelease(&tag, ShareLock, false);
4613  return XactLockForVirtualXact(vxid, xid, wait);
4614 }
4615 
4616 /*
4617  * LockWaiterCount
4618  *
4619  * Find the number of lock requester on this locktag
4620  */
4621 int
4622 LockWaiterCount(const LOCKTAG *locktag)
4623 {
4624  LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
4625  LOCK *lock;
4626  bool found;
4627  uint32 hashcode;
4628  LWLock *partitionLock;
4629  int waiters = 0;
4630 
4631  if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
4632  elog(ERROR, "unrecognized lock method: %d", lockmethodid);
4633 
4634  hashcode = LockTagHashCode(locktag);
4635  partitionLock = LockHashPartitionLock(hashcode);
4636  LWLockAcquire(partitionLock, LW_EXCLUSIVE);
4637 
4639  locktag,
4640  hashcode,
4641  HASH_FIND,
4642  &found);
4643  if (found)
4644  {
4645  Assert(lock != NULL);
4646  waiters = lock->nRequested;
4647  }
4648  LWLockRelease(partitionLock);
4649 
4650  return waiters;
4651 }
static uint64 pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
Definition: atomics.h:424
#define InvalidBackendId
Definition: backendid.h:23
unsigned short uint16
Definition: c.h:494
unsigned int uint32
Definition: c.h:495
#define Max(x, y)
Definition: c.h:987
#define lengthof(array)
Definition: c.h:777
uint32 LocalTransactionId
Definition: c.h:643
#define MemSet(start, val, len)
Definition: c.h:1009
uint32 TransactionId
Definition: c.h:641
size_t Size
Definition: c.h:594
int64 TimestampTz
Definition: timestamp.h:39
void DeadLockReport(void)
Definition: deadlock.c:1072
void hash_destroy(HTAB *hashp)
Definition: dynahash.c:863
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:953
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:350
long hash_get_num_entries(HTAB *hashp)
Definition: dynahash.c:1377
Size hash_estimate_size(long num_entries, Size entrysize)
Definition: dynahash.c:781
bool hash_update_hash_key(HTAB *hashp, void *existingEntry, const void *newKeyPtr)
Definition: dynahash.c:1157
uint32 get_hash_value(HTAB *hashp, const void *keyPtr)
Definition: dynahash.c:909
void * hash_search_with_hash_value(HTAB *hashp, const void *keyPtr, uint32 hashvalue, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:966
void * hash_seq_search(HASH_SEQ_STATUS *status)
Definition: dynahash.c:1431
void hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
Definition: dynahash.c:1421
int errhint(const char *fmt,...)
Definition: elog.c:1316
int errcode(int sqlerrcode)
Definition: elog.c:858
int errmsg(const char *fmt,...)
Definition: elog.c:1069
#define LOG
Definition: elog.h:31
#define PG_RE_THROW()
Definition: elog.h:411
#define PG_TRY(...)
Definition: elog.h:370
#define WARNING
Definition: elog.h:36
#define PG_END_TRY(...)
Definition: elog.h:395
#define PANIC
Definition: elog.h:42
#define ERROR
Definition: elog.h:39
#define PG_CATCH(...)
Definition: elog.h:380
#define ereport(elevel,...)
Definition: elog.h:149
BackendId MyBackendId
Definition: globals.c:85
int MaxBackends
Definition: globals.c:140
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_REMOVE
Definition: hsearch.h:115
@ HASH_ENTER
Definition: hsearch.h:114
@ HASH_ENTER_NULL
Definition: hsearch.h:116
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_FUNCTION
Definition: hsearch.h:98
#define HASH_BLOBS
Definition: hsearch.h:97
#define HASH_PARTITION
Definition: hsearch.h:92
#define dlist_foreach(iter, lhead)
Definition: ilist.h:623
static void dlist_init(dlist_head *head)
Definition: ilist.h:314
static void dlist_delete(dlist_node *node)
Definition: ilist.h:405
static uint32 dclist_count(const dclist_head *head)
Definition: ilist.h:932
static bool dclist_is_empty(const dclist_head *head)
Definition: ilist.h:682
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:640
static bool dlist_is_empty(const dlist_head *head)
Definition: ilist.h:336
static void dlist_push_tail(dlist_head *head, dlist_node *node)
Definition: ilist.h:364
static void dclist_delete_from_thoroughly(dclist_head *head, dlist_node *node)
Definition: ilist.h:776
static void dclist_init(dclist_head *head)
Definition: ilist.h:671
#define dlist_container(type, membername, ptr)
Definition: ilist.h:593
#define dclist_foreach(iter, lhead)
Definition: ilist.h:970
int i
Definition: isn.c:73
Assert(fmt[strlen(fmt) - 1] !='\n')
static bool XactLockForVirtualXact(VirtualTransactionId vxid, TransactionId xid, bool wait)
Definition: lock.c:4460
LockAcquireResult LockAcquire(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock, bool dontWait)
Definition: lock.c:735
static LOCALLOCK * awaitedLock
Definition: lock.c:276
static void RemoveLocalLock(LOCALLOCK *locallock)
Definition: lock.c:1344
LockAcquireResult LockAcquireExtended(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock, bool dontWait, bool reportMemoryError, LOCALLOCK **locallockp)
Definition: lock.c:759
static void LockReassignOwner(LOCALLOCK *locallock, ResourceOwner parent)
Definition: lock.c:2550
VirtualTransactionId * GetLockConflicts(const LOCKTAG *locktag, LOCKMODE lockmode, int *countp)
Definition: lock.c:2855
static bool Dummy_trace
Definition: lock.c:123
static const char *const lock_mode_names[]
Definition: lock.c:109
#define LOCK_PRINT(where, lock, type)
Definition: lock.c:353
bool DoLockModesConflict(LOCKMODE mode1, LOCKMODE mode2)
Definition: lock.c:571
static PROCLOCK * SetupLockInTable(LockMethod lockMethodTable, PGPROC *proc, const LOCKTAG *locktag, uint32 hashcode, LOCKMODE lockmode)
Definition: lock.c:1151
static PROCLOCK * FastPathGetRelationLockEntry(LOCALLOCK *locallock)
Definition: lock.c:2751
void VirtualXactLockTableInsert(VirtualTransactionId vxid)
Definition: lock.c:4388
#define NLOCKENTS()
Definition: lock.c:57
#define FastPathStrongLockHashPartition(hashcode)
Definition: lock.c:251
static uint32 ProcLockHashCode(const PROCLOCKTAG *proclocktag, uint32 hashcode)
Definition: lock.c:553
xl_standby_lock * GetRunningTransactionLocks(int *nlocks)
Definition: lock.c:3939
#define FAST_PATH_CHECK_LOCKMODE(proc, n, l)
Definition: lock.c:204
void GrantAwaitedLock(void)
Definition: lock.c:1757
int LockWaiterCount(const LOCKTAG *locktag)
Definition: lock.c:4622
bool LockHeldByMe(const LOCKTAG *locktag, LOCKMODE lockmode)
Definition: lock.c:586
void AtPrepare_Locks(void)
Definition: lock.c:3255
bool LockRelease(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock)
Definition: lock.c:1925
void lock_twophase_postcommit(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: lock.c:4338
#define FAST_PATH_LOCKNUMBER_OFFSET
Definition: lock.c:191
void GrantLock(LOCK *lock, PROCLOCK *proclock, LOCKMODE lockmode)
Definition: lock.c:1526
void VirtualXactLockTableCleanup(void)
Definition: lock.c:4411
BlockedProcsData * GetBlockerStatusData(int blocked_pid)
Definition: lock.c:3764
bool VirtualXactLock(VirtualTransactionId vxid, bool wait)
Definition: lock.c:4511
static volatile FastPathStrongRelationLockData * FastPathStrongRelationLocks
Definition: lock.c:260
void RemoveFromWaitQueue(PGPROC *proc, uint32 hashcode)
Definition: lock.c:1869
void LockReleaseAll(LOCKMETHODID lockmethodid, bool allLocks)
Definition: lock.c:2130
static void CheckAndSetLockHeld(LOCALLOCK *locallock, bool acquired)
Definition: lock.c:1332
void InitLocks(void)
Definition: lock.c:393
#define ConflictsWithRelationFastPath(locktag, mode)
Definition: lock.c:221
static bool FastPathTransferRelationLocks(LockMethod lockMethodTable, const LOCKTAG *locktag, uint32 hashcode)
Definition: lock.c:2663
static HTAB * LockMethodLocalHash
Definition: lock.c:271
void LockReassignCurrentOwner(LOCALLOCK **locallocks, int nlocks)
Definition: lock.c:2520
static bool UnGrantLock(LOCK *lock, LOCKMODE lockmode, PROCLOCK *proclock, LockMethod lockMethodTable)
Definition: lock.c:1549
#define FAST_PATH_SET_LOCKMODE(proc, n, l)
Definition: lock.c:200
#define PROCLOCK_PRINT(where, proclockP)
Definition: lock.c:354
LockData * GetLockStatusData(void)
Definition: lock.c:3572
static void CleanUpLock(LOCK *lock, PROCLOCK *proclock, LockMethod lockMethodTable, uint32 hashcode, bool wakeupNeeded)
Definition: lock.c:1606
static uint32 proclock_hash(const void *key, Size keysize)
Definition: lock.c:522
static bool FastPathUnGrantRelationLock(Oid relid, LOCKMODE lockmode)
Definition: lock.c:2633
void AbortStrongLockAcquire(void)
Definition: lock.c:1728
static bool FastPathGrantRelationLock(Oid relid, LOCKMODE lockmode)
Definition: lock.c:2596
static HTAB * LockMethodLockHash
Definition: lock.c:269
static ResourceOwner awaitedOwner
Definition: lock.c:277
void lock_twophase_postabort(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: lock.c:4364
bool LockHasWaiters(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock)
Definition: lock.c:622
static void GetSingleProcBlockerStatusData(PGPROC *blocked_proc, BlockedProcsData *data)
Definition: lock.c:3844
#define FAST_PATH_CLEAR_LOCKMODE(proc, n, l)
Definition: lock.c:202
int max_locks_per_xact
Definition: lock.c:55
static const LockMethod LockMethods[]
Definition: lock.c:151
void lock_twophase_standby_recover(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: lock.c:4306
void LockReleaseCurrentOwner(LOCALLOCK **locallocks, int nlocks)
Definition: lock.c:2425
static void WaitOnLock(LOCALLOCK *locallock, ResourceOwner owner)
Definition: lock.c:1785
void lock_twophase_recover(TransactionId xid, uint16 info, void *recdata, uint32 len)
Definition: lock.c:4125
void LockReleaseSession(LOCKMETHODID lockmethodid)
Definition: lock.c:2395
Size LockShmemSize(void)
Definition: lock.c:3535
void MarkLockClear(LOCALLOCK *locallock)
Definition: lock.c:1770
static bool IsRelationExtensionLockHeld PG_USED_FOR_ASSERTS_ONLY
Definition: lock.c:187
const char * GetLockmodeName(LOCKMETHODID lockmethodid, LOCKMODE mode)
Definition: lock.c:4021
static const LockMethodData default_lockmethod
Definition: lock.c:126
#define FAST_PATH_GET_BITS(proc, n)
Definition: lock.c:193
static LOCALLOCK * StrongLockInProgress
Definition: lock.c:275
#define FAST_PATH_BITS_PER_SLOT
Definition: lock.c:190
static const LockMethodData user_lockmethod
Definition: lock.c:137
static int FastPathLocalUseCount
Definition: lock.c:172
#define EligibleForRelationFastPath(locktag, mode)
Definition: lock.c:215
uint32 LockTagHashCode(const LOCKTAG *locktag)
Definition: lock.c:505
static void BeginStrongLockAcquire(LOCALLOCK *locallock, uint32 fasthashcode)
Definition: lock.c:1692
bool LockCheckConflicts(LockMethod lockMethodTable, LOCKMODE lockmode, LOCK *lock, PROCLOCK *proclock)
Definition: lock.c:1397
static void GrantLockLocal(LOCALLOCK *locallock, ResourceOwner owner)
Definition: lock.c:1660
static const LOCKMASK LockConflicts[]
Definition: lock.c:66
static void ReleaseLockIfHeld(LOCALLOCK *locallock, bool sessionLock)
Definition: lock.c:2460
LockMethod GetLocksMethodTable(const LOCK *lock)
Definition: lock.c:475
static void FinishStrongLockAcquire(void)
Definition: lock.c:1718
#define FAST_PATH_STRONG_LOCK_HASH_PARTITIONS
Definition: lock.c:249
void PostPrepare_Locks(TransactionId xid)
Definition: lock.c:3351
static void LockRefindAndRelease(LockMethod lockMethodTable, PGPROC *proc, LOCKTAG *locktag, LOCKMODE lockmode, bool decrement_strong_lock_count)
Definition: lock.c:3063
static void CheckForSessionAndXactLocks(void)
Definition: lock.c:3167
static HTAB * LockMethodProcLockHash
Definition: lock.c:270
struct TwoPhaseLockRecord TwoPhaseLockRecord
LockMethod GetLockTagsMethodTable(const LOCKTAG *locktag)
Definition: lock.c:487
uint16 LOCKMETHODID
Definition: lock.h:122
#define DEFAULT_LOCKMETHOD
Definition: lock.h:125
struct LOCALLOCK LOCALLOCK
#define LOCK_LOCKTAG(lock)
Definition: lock.h:325
struct LOCK LOCK
#define SET_LOCKTAG_VIRTUALTRANSACTION(locktag, vxid)
Definition: lock.h:235
struct PROCLOCK PROCLOCK
@ LOCKTAG_OBJECT
Definition: lock.h:145
@ LOCKTAG_RELATION_EXTEND
Definition: lock.h:138
@ LOCKTAG_RELATION
Definition: lock.h:137
@ LOCKTAG_VIRTUALTRANSACTION
Definition: lock.h:143
#define VirtualTransactionIdIsValid(vxid)
Definition: lock.h:67
#define LockHashPartitionLock(hashcode)
Definition: lock.h:527
#define LOCK_LOCKMETHOD(lock)
Definition: lock.h:324
#define LOCKBIT_OFF(lockmode)
Definition: lock.h:85
#define LOCALLOCK_LOCKMETHOD(llock)
Definition: lock.h:443
#define InvalidLocalTransactionId
Definition: lock.h:65
#define SET_LOCKTAG_TRANSACTION(locktag, xid)
Definition: lock.h:226
struct LOCKTAG LOCKTAG
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:181
#define MAX_LOCKMODES
Definition: lock.h:82
struct PROCLOCKTAG PROCLOCKTAG
#define LOCKBIT_ON(lockmode)
Definition: lock.h:84
#define LocalTransactionIdIsValid(lxid)
Definition: lock.h:66
#define LOCALLOCK_LOCKTAG(llock)
Definition: lock.h:444
#define LockHashPartition(hashcode)
Definition: lock.h:525
#define VirtualTransactionIdEquals(vxid1, vxid2)
Definition: lock.h:71
struct LOCALLOCKTAG LOCALLOCKTAG
#define PROCLOCK_LOCKMETHOD(proclock)
Definition: lock.h:382
#define LockHashPartitionLockByIndex(i)
Definition: lock.h:530
LockAcquireResult
Definition: lock.h:501
@ LOCKACQUIRE_ALREADY_CLEAR
Definition: lock.h:505
@ LOCKACQUIRE_OK
Definition: lock.h:503
@ LOCKACQUIRE_ALREADY_HELD
Definition: lock.h:504
@ LOCKACQUIRE_NOT_AVAIL
Definition: lock.h:502
#define GET_VXID_FROM_PGPROC(vxid, proc)
Definition: lock.h:77
#define VirtualTransactionIdIsRecoveredPreparedXact(vxid)
Definition: lock.h:69
int LOCKMODE
Definition: lockdefs.h:26
#define NoLock
Definition: lockdefs.h:34
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareRowExclusiveLock
Definition: lockdefs.h:41
#define AccessShareLock
Definition: lockdefs.h:36
int LOCKMASK
Definition: lockdefs.h:25
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ExclusiveLock
Definition: lockdefs.h:42
#define RowShareLock
Definition: lockdefs.h:37
#define ShareLock
Definition: lockdefs.h:40
#define MaxLockMode
Definition: lockdefs.h:45
#define RowExclusiveLock
Definition: lockdefs.h:38
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1195
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1808
#define NUM_LOCK_PARTITIONS
Definition: lwlock.h:99
#define LOG2_NUM_LOCK_PARTITIONS
Definition: lwlock.h:98
@ LW_SHARED
Definition: lwlock.h:117
@ LW_EXCLUSIVE
Definition: lwlock.h:116
void pfree(void *pointer)
Definition: mcxt.c:1456
MemoryContext TopMemoryContext
Definition: mcxt.c:141
void * palloc0(Size size)
Definition: mcxt.c:1257
MemoryContext CurrentMemoryContext
Definition: mcxt.c:135
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1476
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1021
void * palloc(Size size)
Definition: mcxt.c:1226
#define START_CRIT_SECTION()
Definition: miscadmin.h:148
#define END_CRIT_SECTION()
Definition: miscadmin.h:150
static PgChecksumMode mode
Definition: pg_checksums.c:56
const void size_t len
const void * data
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:322
uintptr_t Datum
Definition: postgres.h:64
unsigned int Oid
Definition: postgres_ext.h:31
#define FP_LOCK_SLOTS_PER_BACKEND
Definition: proc.h:79
@ PROC_WAIT_STATUS_OK
Definition: proc.h:124
@ PROC_WAIT_STATUS_WAITING
Definition: proc.h:125
@ PROC_WAIT_STATUS_ERROR
Definition: proc.h:126
PGPROC * BackendPidGetProcWithLock(int pid)
Definition: procarray.c:3126
void set_ps_display_remove_suffix(void)
Definition: ps_status.c:396
void set_ps_display_suffix(const char *suffix)
Definition: ps_status.c:344
void ResourceOwnerRememberLock(ResourceOwner owner, LOCALLOCK *locallock)
Definition: resowner.c:1050
ResourceOwner ResourceOwnerGetParent(ResourceOwner owner)
Definition: resowner.c:819
ResourceOwner CurrentResourceOwner
Definition: resowner.c:147
void ResourceOwnerForgetLock(ResourceOwner owner, LOCALLOCK *locallock)
Definition: resowner.c:1070
int slock_t
Definition: s_lock.h:754
Size add_size(Size s1, Size s2)
Definition: shmem.c:502
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:396
HTAB * ShmemInitHash(const char *name, long init_size, long max_size, HASHCTL *infoP, int hash_flags)
Definition: shmem.c:341
PGPROC * BackendIdGetProc(int backendID)
Definition: sinvaladt.c:385
#define SpinLockInit(lock)
Definition: spin.h:60
#define SpinLockRelease(lock)
Definition: spin.h:64
#define SpinLockAcquire(lock)
Definition: spin.h:62
PGPROC * MyProc
Definition: proc.c:66
void ProcLockWakeup(LockMethod lockMethodTable, LOCK *lock)
Definition: proc.c:1637
PROC_HDR * ProcGlobal
Definition: proc.c:78
ProcWaitStatus ProcSleep(LOCALLOCK *locallock, LockMethod lockMethodTable)
Definition: proc.c:1004
void LogAccessExclusiveLockPrepare(void)
Definition: standby.c:1442
void StandbyAcquireAccessExclusiveLock(TransactionId xid, Oid dbOid, Oid relOid)
Definition: standby.c:986
void LogAccessExclusiveLock(Oid dbOid, Oid relOid)
Definition: standby.c:1425
int first_lock
Definition: lock.h:477
int first_waiter
Definition: lock.h:481
int num_waiters
Definition: lock.h:482
int num_locks
Definition: lock.h:478
uint32 count[FAST_PATH_STRONG_LOCK_HASH_PARTITIONS]
Definition: lock.c:257
Size keysize
Definition: hsearch.h:75
HashValueFunc hash
Definition: hsearch.h:78
Size entrysize
Definition: hsearch.h:76
MemoryContext hcxt
Definition: hsearch.h:86
long num_partitions
Definition: hsearch.h:68
Definition: dynahash.c:220
int64 nLocks
Definition: lock.h:423
struct ResourceOwnerData * owner
Definition: lock.h:422
LOCKTAG lock
Definition: lock.h:410
LOCKMODE mode
Definition: lock.h:411
LOCALLOCKOWNER * lockOwners
Definition: lock.h:438
uint32 hashcode
Definition: lock.h:432
int maxLockOwners
Definition: lock.h:437
LOCK * lock
Definition: lock.h:433
int64 nLocks
Definition: lock.h:435
int numLockOwners
Definition: lock.h:436
bool holdsStrongLockCount
Definition: lock.h:439
PROCLOCK * proclock
Definition: lock.h:434
LOCALLOCKTAG tag
Definition: lock.h:429
bool lockCleared
Definition: lock.h:440
Definition: lock.h:165
uint8 locktag_type
Definition: lock.h:170
uint32 locktag_field3
Definition: lock.h:168
uint32 locktag_field1
Definition: lock.h:166
uint8 locktag_lockmethodid
Definition: lock.h:171
uint16 locktag_field4
Definition: lock.h:169
uint32 locktag_field2
Definition: lock.h:167
Definition: lock.h:309
int nRequested
Definition: lock.h:319
LOCKTAG tag
Definition: lock.h:311
int requested[MAX_LOCKMODES]
Definition: lock.h:318
dclist_head waitProcs
Definition: lock.h:317
int granted[MAX_LOCKMODES]
Definition: lock.h:320
LOCKMASK grantMask
Definition: lock.h:314
LOCKMASK waitMask
Definition: lock.h:315
int nGranted
Definition: lock.h:321
dlist_head procLocks
Definition: lock.h:316
Definition: lwlock.h:41
Definition: lock.h:467
LOCKMASK holdMask
Definition: lock.h:455
LOCKMODE waitLockMode
Definition: lock.h:456
bool fastpath
Definition: lock.h:463
LOCKTAG locktag
Definition: lock.h:454
TimestampTz waitStart
Definition: lock.h:459
int leaderPid
Definition: lock.h:462
BackendId backend
Definition: lock.h:457
LocalTransactionId lxid
Definition: lock.h:458
const bool * trace_flag
Definition: lock.h:113
const LOCKMASK * conflictTab
Definition: lock.h:111
const char *const * lockModeNames
Definition: lock.h:112
int numLockModes
Definition: lock.h:110
Definition: proc.h:162
LWLock fpInfoLock
Definition: proc.h:284
Oid fpRelId[FP_LOCK_SLOTS_PER_BACKEND]
Definition: proc.h:286
LocalTransactionId lxid
Definition: proc.h:183
PROCLOCK * waitProcLock
Definition: proc.h:224
dlist_head lockGroupMembers
Definition: proc.h:296
Oid databaseId
Definition: proc.h:198
pg_atomic_uint64 waitStart
Definition: proc.h:228
bool fpVXIDLock
Definition: proc.h:287
BackendId backendId
Definition: proc.h:197
int pid
Definition: proc.h:186
LOCK * waitLock
Definition: proc.h:223
TransactionId xid
Definition: proc.h:173
LOCKMODE waitLockMode
Definition: proc.h:225
PGPROC * lockGroupLeader
Definition: proc.h:295
LocalTransactionId fpLocalTransactionId
Definition: proc.h:288
LOCKMASK heldLocks
Definition: proc.h:226
dlist_head myProcLocks[NUM_LOCK_PARTITIONS]
Definition: proc.h:252
ProcWaitStatus waitStatus
Definition: proc.h:168
dlist_node links
Definition: proc.h:164
LOCK * myLock
Definition: lock.h:365
PGPROC * myProc
Definition: lock.h:366
Definition: lock.h:370
LOCKMASK holdMask
Definition: lock.h:376
dlist_node lockLink
Definition: lock.h:378
PGPROC * groupLeader
Definition: lock.h:375
LOCKMASK releaseMask
Definition: lock.h:377
PROCLOCKTAG tag
Definition: lock.h:372
dlist_node procLink
Definition: lock.h:379
PGPROC * allProcs
Definition: proc.h:362
uint32 allProcCount
Definition: proc.h:380
LOCKTAG locktag
Definition: lock.c:161
LOCKMODE lockmode
Definition: lock.c:162
LocalTransactionId localTransactionId
Definition: lock.h:62
BackendId backendId
Definition: lock.h:61
dlist_node * cur
Definition: ilist.h:179
dlist_node * cur
Definition: ilist.h:200
dlist_node * next
Definition: ilist.h:140
Definition: type.h:95
TransactionId xid
Definition: lockdefs.h:51
#define InvalidTransactionId
Definition: transam.h:31
#define FirstNormalObjectId
Definition: transam.h:197
#define TransactionIdIsValid(xid)
Definition: transam.h:41
void RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info, const void *data, uint32 len)
Definition: twophase.c:1258
int max_prepared_xacts
Definition: twophase.c:118
TransactionId TwoPhaseGetXidByVirtualXID(VirtualTransactionId vxid, bool *have_more)
Definition: twophase.c:871
PGPROC * TwoPhaseGetDummyProc(TransactionId xid, bool lock_held)
Definition: twophase.c:934
#define TWOPHASE_RM_LOCK_ID
Definition: twophase_rmgr.h:25
const char * type
bool RecoveryInProgress(void)
Definition: xlog.c:5948
#define XLogStandbyInfoActive()
Definition: xlog.h:118
bool InRecovery
Definition: xlogutils.c:53
#define InHotStandby
Definition: xlogutils.h:57
static struct link * links
Definition: zic.c:299