PostgreSQL Source Code  git master
checkpointer.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * checkpointer.c
4  *
5  * The checkpointer is new as of Postgres 9.2. It handles all checkpoints.
6  * Checkpoints are automatically dispatched after a certain amount of time has
7  * elapsed since the last one, and it can be signaled to perform requested
8  * checkpoints as well. (The GUC parameter that mandates a checkpoint every
9  * so many WAL segments is implemented by having backends signal when they
10  * fill WAL segments; the checkpointer itself doesn't watch for the
11  * condition.)
12  *
13  * Normal termination is by SIGUSR2, which instructs the checkpointer to
14  * execute a shutdown checkpoint and then exit(0). (All backends must be
15  * stopped before SIGUSR2 is issued!) Emergency termination is by SIGQUIT;
16  * like any backend, the checkpointer will simply abort and exit on SIGQUIT.
17  *
18  * If the checkpointer exits unexpectedly, the postmaster treats that the same
19  * as a backend crash: shared memory may be corrupted, so remaining backends
20  * should be killed by SIGQUIT and then a recovery cycle started. (Even if
21  * shared memory isn't corrupted, we have lost information about which
22  * files need to be fsync'd for the next checkpoint, and so a system
23  * restart needs to be forced.)
24  *
25  *
26  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
27  *
28  *
29  * IDENTIFICATION
30  * src/backend/postmaster/checkpointer.c
31  *
32  *-------------------------------------------------------------------------
33  */
34 #include "postgres.h"
35 
36 #include <sys/time.h>
37 #include <time.h>
38 
39 #include "access/xlog.h"
40 #include "access/xlog_internal.h"
41 #include "access/xlogrecovery.h"
42 #include "libpq/pqsignal.h"
43 #include "miscadmin.h"
44 #include "pgstat.h"
45 #include "postmaster/auxprocess.h"
46 #include "postmaster/bgwriter.h"
47 #include "postmaster/interrupt.h"
48 #include "replication/syncrep.h"
49 #include "storage/bufmgr.h"
51 #include "storage/fd.h"
52 #include "storage/ipc.h"
53 #include "storage/lwlock.h"
54 #include "storage/proc.h"
55 #include "storage/procsignal.h"
56 #include "storage/shmem.h"
57 #include "storage/smgr.h"
58 #include "storage/spin.h"
59 #include "utils/guc.h"
60 #include "utils/memutils.h"
61 #include "utils/resowner.h"
62 
63 
64 /*----------
65  * Shared memory area for communication between checkpointer and backends
66  *
67  * The ckpt counters allow backends to watch for completion of a checkpoint
68  * request they send. Here's how it works:
69  * * At start of a checkpoint, checkpointer reads (and clears) the request
70  * flags and increments ckpt_started, while holding ckpt_lck.
71  * * On completion of a checkpoint, checkpointer sets ckpt_done to
72  * equal ckpt_started.
73  * * On failure of a checkpoint, checkpointer increments ckpt_failed
74  * and sets ckpt_done to equal ckpt_started.
75  *
76  * The algorithm for backends is:
77  * 1. Record current values of ckpt_failed and ckpt_started, and
78  * set request flags, while holding ckpt_lck.
79  * 2. Send signal to request checkpoint.
80  * 3. Sleep until ckpt_started changes. Now you know a checkpoint has
81  * begun since you started this algorithm (although *not* that it was
82  * specifically initiated by your signal), and that it is using your flags.
83  * 4. Record new value of ckpt_started.
84  * 5. Sleep until ckpt_done >= saved value of ckpt_started. (Use modulo
85  * arithmetic here in case counters wrap around.) Now you know a
86  * checkpoint has started and completed, but not whether it was
87  * successful.
88  * 6. If ckpt_failed is different from the originally saved value,
89  * assume request failed; otherwise it was definitely successful.
90  *
91  * ckpt_flags holds the OR of the checkpoint request flags sent by all
92  * requesting backends since the last checkpoint start. The flags are
93  * chosen so that OR'ing is the correct way to combine multiple requests.
94  *
95  * The requests array holds fsync requests sent by backends and not yet
96  * absorbed by the checkpointer.
97  *
98  * Unlike the checkpoint fields, requests related fields are protected by
99  * CheckpointerCommLock.
100  *----------
101  */
102 typedef struct
103 {
104  SyncRequestType type; /* request type */
105  FileTag ftag; /* file identifier */
107 
108 typedef struct
109 {
110  pid_t checkpointer_pid; /* PID (0 if not started) */
111 
112  slock_t ckpt_lck; /* protects all the ckpt_* fields */
113 
114  int ckpt_started; /* advances when checkpoint starts */
115  int ckpt_done; /* advances when checkpoint done */
116  int ckpt_failed; /* advances when checkpoint fails */
117 
118  int ckpt_flags; /* checkpoint flags, as defined in xlog.h */
119 
120  ConditionVariable start_cv; /* signaled when ckpt_started advances */
121  ConditionVariable done_cv; /* signaled when ckpt_done advances */
122 
123  int num_requests; /* current # of requests */
124  int max_requests; /* allocated array size */
127 
129 
130 /* interval for calling AbsorbSyncRequests in CheckpointWriteDelay */
131 #define WRITES_PER_ABSORB 1000
132 
133 /*
134  * GUC parameters
135  */
139 
140 /*
141  * Private state
142  */
143 static bool ckpt_active = false;
144 
145 /* these values are valid when ckpt_active is true: */
148 static double ckpt_cached_elapsed;
149 
152 
153 /* Prototypes for private functions */
154 
155 static void HandleCheckpointerInterrupts(void);
156 static void CheckArchiveTimeout(void);
157 static bool IsCheckpointOnSchedule(double progress);
158 static bool ImmediateCheckpointRequested(void);
159 static bool CompactCheckpointerRequestQueue(void);
160 static void UpdateSharedMemoryConfig(void);
161 
162 /* Signal handlers */
163 static void ReqCheckpointHandler(SIGNAL_ARGS);
164 
165 
166 /*
167  * Main entry point for checkpointer process
168  *
169  * This is invoked from AuxiliaryProcessMain, which has already created the
170  * basic execution environment, but not enabled signals yet.
171  */
172 void
173 CheckpointerMain(char *startup_data, size_t startup_data_len)
174 {
175  sigjmp_buf local_sigjmp_buf;
176  MemoryContext checkpointer_context;
177 
178  Assert(startup_data_len == 0);
179 
182 
184 
185  /*
186  * Properly accept or ignore signals the postmaster might send us
187  *
188  * Note: we deliberately ignore SIGTERM, because during a standard Unix
189  * system shutdown cycle, init will SIGTERM all processes at once. We
190  * want to wait for the backends to exit, whereupon the postmaster will
191  * tell us it's okay to shut down (via SIGUSR2).
192  */
194  pqsignal(SIGINT, ReqCheckpointHandler); /* request checkpoint */
195  pqsignal(SIGTERM, SIG_IGN); /* ignore SIGTERM */
196  /* SIGQUIT handler was already set up by InitPostmasterChild */
201 
202  /*
203  * Reset some signals that are accepted by postmaster but not here
204  */
206 
207  /*
208  * Initialize so that first time-driven event happens at the correct time.
209  */
211 
212  /*
213  * Write out stats after shutdown. This needs to be called by exactly one
214  * process during a normal shutdown, and since checkpointer is shut down
215  * very late...
216  *
217  * Walsenders are shut down after the checkpointer, but currently don't
218  * report stats. If that changes, we need a more complicated solution.
219  */
221 
222  /*
223  * Create a memory context that we will do all our work in. We do this so
224  * that we can reset the context during error recovery and thereby avoid
225  * possible memory leaks. Formerly this code just ran in
226  * TopMemoryContext, but resetting that would be a really bad idea.
227  */
228  checkpointer_context = AllocSetContextCreate(TopMemoryContext,
229  "Checkpointer",
231  MemoryContextSwitchTo(checkpointer_context);
232 
233  /*
234  * If an exception is encountered, processing resumes here.
235  *
236  * You might wonder why this isn't coded as an infinite loop around a
237  * PG_TRY construct. The reason is that this is the bottom of the
238  * exception stack, and so with PG_TRY there would be no exception handler
239  * in force at all during the CATCH part. By leaving the outermost setjmp
240  * always active, we have at least some chance of recovering from an error
241  * during error recovery. (If we get into an infinite loop thereby, it
242  * will soon be stopped by overflow of elog.c's internal state stack.)
243  *
244  * Note that we use sigsetjmp(..., 1), so that the prevailing signal mask
245  * (to wit, BlockSig) will be restored when longjmp'ing to here. Thus,
246  * signals other than SIGQUIT will be blocked until we complete error
247  * recovery. It might seem that this policy makes the HOLD_INTERRUPTS()
248  * call redundant, but it is not since InterruptPending might be set
249  * already.
250  */
251  if (sigsetjmp(local_sigjmp_buf, 1) != 0)
252  {
253  /* Since not using PG_TRY, must reset error stack by hand */
254  error_context_stack = NULL;
255 
256  /* Prevent interrupts while cleaning up */
257  HOLD_INTERRUPTS();
258 
259  /* Report the error to the server log */
260  EmitErrorReport();
261 
262  /*
263  * These operations are really just a minimal subset of
264  * AbortTransaction(). We don't have very many resources to worry
265  * about in checkpointer, but we do have LWLocks, buffers, and temp
266  * files.
267  */
271  UnlockBuffers();
273  AtEOXact_Buffers(false);
274  AtEOXact_SMgr();
275  AtEOXact_Files(false);
276  AtEOXact_HashTables(false);
277 
278  /* Warn any waiting backends that the checkpoint failed. */
279  if (ckpt_active)
280  {
285 
287 
288  ckpt_active = false;
289  }
290 
291  /*
292  * Now return to normal top-level context and clear ErrorContext for
293  * next time.
294  */
295  MemoryContextSwitchTo(checkpointer_context);
296  FlushErrorState();
297 
298  /* Flush any leaked data in the top-level context */
299  MemoryContextReset(checkpointer_context);
300 
301  /* Now we can allow interrupts again */
303 
304  /*
305  * Sleep at least 1 second after any error. A write error is likely
306  * to be repeated, and we don't want to be filling the error logs as
307  * fast as we can.
308  */
309  pg_usleep(1000000L);
310  }
311 
312  /* We can now handle ereport(ERROR) */
313  PG_exception_stack = &local_sigjmp_buf;
314 
315  /*
316  * Unblock signals (they were blocked when the postmaster forked us)
317  */
318  sigprocmask(SIG_SETMASK, &UnBlockSig, NULL);
319 
320  /*
321  * Ensure all shared memory values are set correctly for the config. Doing
322  * this here ensures no race conditions from other concurrent updaters.
323  */
325 
326  /*
327  * Advertise our latch that backends can use to wake us up while we're
328  * sleeping.
329  */
331 
332  /*
333  * Loop forever
334  */
335  for (;;)
336  {
337  bool do_checkpoint = false;
338  int flags = 0;
339  pg_time_t now;
340  int elapsed_secs;
341  int cur_timeout;
342  bool chkpt_or_rstpt_requested = false;
343  bool chkpt_or_rstpt_timed = false;
344 
345  /* Clear any already-pending wakeups */
347 
348  /*
349  * Process any requests or signals received recently.
350  */
353 
354  /*
355  * Detect a pending checkpoint request by checking whether the flags
356  * word in shared memory is nonzero. We shouldn't need to acquire the
357  * ckpt_lck for this.
358  */
359  if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
360  {
361  do_checkpoint = true;
362  chkpt_or_rstpt_requested = true;
363  }
364 
365  /*
366  * Force a checkpoint if too much time has elapsed since the last one.
367  * Note that we count a timed checkpoint in stats only when this
368  * occurs without an external request, but we set the CAUSE_TIME flag
369  * bit even if there is also an external request.
370  */
371  now = (pg_time_t) time(NULL);
372  elapsed_secs = now - last_checkpoint_time;
373  if (elapsed_secs >= CheckPointTimeout)
374  {
375  if (!do_checkpoint)
376  chkpt_or_rstpt_timed = true;
377  do_checkpoint = true;
378  flags |= CHECKPOINT_CAUSE_TIME;
379  }
380 
381  /*
382  * Do a checkpoint if requested.
383  */
384  if (do_checkpoint)
385  {
386  bool ckpt_performed = false;
387  bool do_restartpoint;
388 
389  /* Check if we should perform a checkpoint or a restartpoint. */
390  do_restartpoint = RecoveryInProgress();
391 
392  /*
393  * Atomically fetch the request flags to figure out what kind of a
394  * checkpoint we should perform, and increase the started-counter
395  * to acknowledge that we've started a new checkpoint.
396  */
398  flags |= CheckpointerShmem->ckpt_flags;
402 
404 
405  /*
406  * The end-of-recovery checkpoint is a real checkpoint that's
407  * performed while we're still in recovery.
408  */
409  if (flags & CHECKPOINT_END_OF_RECOVERY)
410  do_restartpoint = false;
411 
412  if (chkpt_or_rstpt_timed)
413  {
414  chkpt_or_rstpt_timed = false;
415  if (do_restartpoint)
417  else
419  }
420 
421  if (chkpt_or_rstpt_requested)
422  {
423  chkpt_or_rstpt_requested = false;
424  if (do_restartpoint)
426  else
428  }
429 
430  /*
431  * We will warn if (a) too soon since last checkpoint (whatever
432  * caused it) and (b) somebody set the CHECKPOINT_CAUSE_XLOG flag
433  * since the last checkpoint start. Note in particular that this
434  * implementation will not generate warnings caused by
435  * CheckPointTimeout < CheckPointWarning.
436  */
437  if (!do_restartpoint &&
438  (flags & CHECKPOINT_CAUSE_XLOG) &&
439  elapsed_secs < CheckPointWarning)
440  ereport(LOG,
441  (errmsg_plural("checkpoints are occurring too frequently (%d second apart)",
442  "checkpoints are occurring too frequently (%d seconds apart)",
443  elapsed_secs,
444  elapsed_secs),
445  errhint("Consider increasing the configuration parameter \"%s\".", "max_wal_size")));
446 
447  /*
448  * Initialize checkpointer-private variables used during
449  * checkpoint.
450  */
451  ckpt_active = true;
452  if (do_restartpoint)
454  else
458 
459  /*
460  * Do the checkpoint.
461  */
462  if (!do_restartpoint)
463  ckpt_performed = CreateCheckPoint(flags);
464  else
465  ckpt_performed = CreateRestartPoint(flags);
466 
467  /*
468  * After any checkpoint, free all smgr objects. Otherwise we
469  * would never do so for dropped relations, as the checkpointer
470  * does not process shared invalidation messages or call
471  * AtEOXact_SMgr().
472  */
473  smgrdestroyall();
474 
475  /*
476  * Indicate checkpoint completion to any waiting backends.
477  */
481 
483 
484  if (!do_restartpoint)
485  {
486  /*
487  * Note we record the checkpoint start time not end time as
488  * last_checkpoint_time. This is so that time-driven
489  * checkpoints happen at a predictable spacing.
490  */
492 
493  if (ckpt_performed)
495  }
496  else
497  {
498  if (ckpt_performed)
499  {
500  /*
501  * The same as for checkpoint. Please see the
502  * corresponding comment.
503  */
505 
507  }
508  else
509  {
510  /*
511  * We were not able to perform the restartpoint
512  * (checkpoints throw an ERROR in case of error). Most
513  * likely because we have not received any new checkpoint
514  * WAL records since the last restartpoint. Try again in
515  * 15 s.
516  */
518  }
519  }
520 
521  ckpt_active = false;
522 
523  /* We may have received an interrupt during the checkpoint. */
525  }
526 
527  /* Check for archive_timeout and switch xlog files if necessary. */
529 
530  /* Report pending statistics to the cumulative stats system */
532  pgstat_report_wal(true);
533 
534  /*
535  * If any checkpoint flags have been set, redo the loop to handle the
536  * checkpoint without sleeping.
537  */
538  if (((volatile CheckpointerShmemStruct *) CheckpointerShmem)->ckpt_flags)
539  continue;
540 
541  /*
542  * Sleep until we are signaled or it's time for another checkpoint or
543  * xlog file switch.
544  */
545  now = (pg_time_t) time(NULL);
546  elapsed_secs = now - last_checkpoint_time;
547  if (elapsed_secs >= CheckPointTimeout)
548  continue; /* no sleep for us ... */
549  cur_timeout = CheckPointTimeout - elapsed_secs;
551  {
552  elapsed_secs = now - last_xlog_switch_time;
553  if (elapsed_secs >= XLogArchiveTimeout)
554  continue; /* no sleep for us ... */
555  cur_timeout = Min(cur_timeout, XLogArchiveTimeout - elapsed_secs);
556  }
557 
558  (void) WaitLatch(MyLatch,
560  cur_timeout * 1000L /* convert to ms */ ,
561  WAIT_EVENT_CHECKPOINTER_MAIN);
562  }
563 }
564 
565 /*
566  * Process any new interrupts.
567  */
568 static void
570 {
573 
575  {
576  ConfigReloadPending = false;
578 
579  /*
580  * Checkpointer is the last process to shut down, so we ask it to hold
581  * the keys for a range of other tasks required most of which have
582  * nothing to do with checkpointing at all.
583  *
584  * For various reasons, some config values can change dynamically so
585  * the primary copy of them is held in shared memory to make sure all
586  * backends see the same value. We make Checkpointer responsible for
587  * updating the shared memory copy if the parameter setting changes
588  * because of SIGHUP.
589  */
591  }
593  {
594  /*
595  * From here on, elog(ERROR) should end with exit(1), not send control
596  * back to the sigsetjmp block above
597  */
598  ExitOnAnyError = true;
599 
600  /*
601  * Close down the database.
602  *
603  * Since ShutdownXLOG() creates restartpoint or checkpoint, and
604  * updates the statistics, increment the checkpoint request and flush
605  * out pending statistic.
606  */
608  ShutdownXLOG(0, 0);
610  pgstat_report_wal(true);
611 
612  /* Normal exit from the checkpointer is here */
613  proc_exit(0); /* done */
614  }
615 
616  /* Perform logging of memory contexts of this process */
619 }
620 
621 /*
622  * CheckArchiveTimeout -- check for archive_timeout and switch xlog files
623  *
624  * This will switch to a new WAL file and force an archive file write if
625  * meaningful activity is recorded in the current WAL file. This includes most
626  * writes, including just a single checkpoint record, but excludes WAL records
627  * that were inserted with the XLOG_MARK_UNIMPORTANT flag being set (like
628  * snapshots of running transactions). Such records, depending on
629  * configuration, occur on regular intervals and don't contain important
630  * information. This avoids generating archives with a few unimportant
631  * records.
632  */
633 static void
635 {
636  pg_time_t now;
637  pg_time_t last_time;
638  XLogRecPtr last_switch_lsn;
639 
641  return;
642 
643  now = (pg_time_t) time(NULL);
644 
645  /* First we do a quick check using possibly-stale local state. */
647  return;
648 
649  /*
650  * Update local state ... note that last_xlog_switch_time is the last time
651  * a switch was performed *or requested*.
652  */
653  last_time = GetLastSegSwitchData(&last_switch_lsn);
654 
656 
657  /* Now we can do the real checks */
659  {
660  /*
661  * Switch segment only when "important" WAL has been logged since the
662  * last segment switch (last_switch_lsn points to end of segment
663  * switch occurred in).
664  */
665  if (GetLastImportantRecPtr() > last_switch_lsn)
666  {
667  XLogRecPtr switchpoint;
668 
669  /* mark switch as unimportant, avoids triggering checkpoints */
670  switchpoint = RequestXLogSwitch(true);
671 
672  /*
673  * If the returned pointer points exactly to a segment boundary,
674  * assume nothing happened.
675  */
676  if (XLogSegmentOffset(switchpoint, wal_segment_size) != 0)
677  elog(DEBUG1, "write-ahead log switch forced (\"archive_timeout\"=%d)",
679  }
680 
681  /*
682  * Update state in any case, so we don't retry constantly when the
683  * system is idle.
684  */
686  }
687 }
688 
689 /*
690  * Returns true if an immediate checkpoint request is pending. (Note that
691  * this does not check the *current* checkpoint's IMMEDIATE flag, but whether
692  * there is one pending behind it.)
693  */
694 static bool
696 {
698 
699  /*
700  * We don't need to acquire the ckpt_lck in this case because we're only
701  * looking at a single flag bit.
702  */
703  if (cps->ckpt_flags & CHECKPOINT_IMMEDIATE)
704  return true;
705  return false;
706 }
707 
708 /*
709  * CheckpointWriteDelay -- control rate of checkpoint
710  *
711  * This function is called after each page write performed by BufferSync().
712  * It is responsible for throttling BufferSync()'s write rate to hit
713  * checkpoint_completion_target.
714  *
715  * The checkpoint request flags should be passed in; currently the only one
716  * examined is CHECKPOINT_IMMEDIATE, which disables delays between writes.
717  *
718  * 'progress' is an estimate of how much of the work has been done, as a
719  * fraction between 0.0 meaning none, and 1.0 meaning all done.
720  */
721 void
722 CheckpointWriteDelay(int flags, double progress)
723 {
724  static int absorb_counter = WRITES_PER_ABSORB;
725 
726  /* Do nothing if checkpoint is being executed by non-checkpointer process */
727  if (!AmCheckpointerProcess())
728  return;
729 
730  /*
731  * Perform the usual duties and take a nap, unless we're behind schedule,
732  * in which case we just try to catch up as quickly as possible.
733  */
734  if (!(flags & CHECKPOINT_IMMEDIATE) &&
738  {
740  {
741  ConfigReloadPending = false;
743  /* update shmem copies of config variables */
745  }
746 
748  absorb_counter = WRITES_PER_ABSORB;
749 
751 
752  /* Report interim statistics to the cumulative stats system */
754 
755  /*
756  * This sleep used to be connected to bgwriter_delay, typically 200ms.
757  * That resulted in more frequent wakeups if not much work to do.
758  * Checkpointer and bgwriter are no longer related so take the Big
759  * Sleep.
760  */
762  100,
763  WAIT_EVENT_CHECKPOINT_WRITE_DELAY);
765  }
766  else if (--absorb_counter <= 0)
767  {
768  /*
769  * Absorb pending fsync requests after each WRITES_PER_ABSORB write
770  * operations even when we don't sleep, to prevent overflow of the
771  * fsync request queue.
772  */
774  absorb_counter = WRITES_PER_ABSORB;
775  }
776 
777  /* Check for barrier events. */
780 }
781 
782 /*
783  * IsCheckpointOnSchedule -- are we on schedule to finish this checkpoint
784  * (or restartpoint) in time?
785  *
786  * Compares the current progress against the time/segments elapsed since last
787  * checkpoint, and returns true if the progress we've made this far is greater
788  * than the elapsed time/segments.
789  */
790 static bool
792 {
793  XLogRecPtr recptr;
794  struct timeval now;
795  double elapsed_xlogs,
796  elapsed_time;
797 
799 
800  /* Scale progress according to checkpoint_completion_target. */
802 
803  /*
804  * Check against the cached value first. Only do the more expensive
805  * calculations once we reach the target previously calculated. Since
806  * neither time or WAL insert pointer moves backwards, a freshly
807  * calculated value can only be greater than or equal to the cached value.
808  */
810  return false;
811 
812  /*
813  * Check progress against WAL segments written and CheckPointSegments.
814  *
815  * We compare the current WAL insert location against the location
816  * computed before calling CreateCheckPoint. The code in XLogInsert that
817  * actually triggers a checkpoint when CheckPointSegments is exceeded
818  * compares against RedoRecPtr, so this is not completely accurate.
819  * However, it's good enough for our purposes, we're only calculating an
820  * estimate anyway.
821  *
822  * During recovery, we compare last replayed WAL record's location with
823  * the location computed before calling CreateRestartPoint. That maintains
824  * the same pacing as we have during checkpoints in normal operation, but
825  * we might exceed max_wal_size by a fair amount. That's because there can
826  * be a large gap between a checkpoint's redo-pointer and the checkpoint
827  * record itself, and we only start the restartpoint after we've seen the
828  * checkpoint record. (The gap is typically up to CheckPointSegments *
829  * checkpoint_completion_target where checkpoint_completion_target is the
830  * value that was in effect when the WAL was generated).
831  */
832  if (RecoveryInProgress())
833  recptr = GetXLogReplayRecPtr(NULL);
834  else
835  recptr = GetInsertRecPtr();
836  elapsed_xlogs = (((double) (recptr - ckpt_start_recptr)) /
838 
839  if (progress < elapsed_xlogs)
840  {
841  ckpt_cached_elapsed = elapsed_xlogs;
842  return false;
843  }
844 
845  /*
846  * Check progress against time elapsed and checkpoint_timeout.
847  */
848  gettimeofday(&now, NULL);
849  elapsed_time = ((double) ((pg_time_t) now.tv_sec - ckpt_start_time) +
850  now.tv_usec / 1000000.0) / CheckPointTimeout;
851 
852  if (progress < elapsed_time)
853  {
855  return false;
856  }
857 
858  /* It looks like we're on schedule. */
859  return true;
860 }
861 
862 
863 /* --------------------------------
864  * signal handler routines
865  * --------------------------------
866  */
867 
868 /* SIGINT: set flag to run a normal checkpoint right away */
869 static void
871 {
872  /*
873  * The signaling process should have set ckpt_flags nonzero, so all we
874  * need do is ensure that our main loop gets kicked out of any wait.
875  */
876  SetLatch(MyLatch);
877 }
878 
879 
880 /* --------------------------------
881  * communication with backends
882  * --------------------------------
883  */
884 
885 /*
886  * CheckpointerShmemSize
887  * Compute space needed for checkpointer-related shared memory
888  */
889 Size
891 {
892  Size size;
893 
894  /*
895  * Currently, the size of the requests[] array is arbitrarily set equal to
896  * NBuffers. This may prove too large or small ...
897  */
898  size = offsetof(CheckpointerShmemStruct, requests);
900 
901  return size;
902 }
903 
904 /*
905  * CheckpointerShmemInit
906  * Allocate and initialize checkpointer-related shared memory
907  */
908 void
910 {
912  bool found;
913 
915  ShmemInitStruct("Checkpointer Data",
916  size,
917  &found);
918 
919  if (!found)
920  {
921  /*
922  * First time through, so initialize. Note that we zero the whole
923  * requests array; this is so that CompactCheckpointerRequestQueue can
924  * assume that any pad bytes in the request structs are zeroes.
925  */
931  }
932 }
933 
934 /*
935  * RequestCheckpoint
936  * Called in backend processes to request a checkpoint
937  *
938  * flags is a bitwise OR of the following:
939  * CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
940  * CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
941  * CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
942  * ignoring checkpoint_completion_target parameter.
943  * CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
944  * since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
945  * CHECKPOINT_END_OF_RECOVERY).
946  * CHECKPOINT_WAIT: wait for completion before returning (otherwise,
947  * just signal checkpointer to do it, and return).
948  * CHECKPOINT_CAUSE_XLOG: checkpoint is requested due to xlog filling.
949  * (This affects logging, and in particular enables CheckPointWarning.)
950  */
951 void
953 {
954  int ntries;
955  int old_failed,
956  old_started;
957 
958  /*
959  * If in a standalone backend, just do it ourselves.
960  */
962  {
963  /*
964  * There's no point in doing slow checkpoints in a standalone backend,
965  * because there's no other backends the checkpoint could disrupt.
966  */
968 
969  /* Free all smgr objects, as CheckpointerMain() normally would. */
970  smgrdestroyall();
971 
972  return;
973  }
974 
975  /*
976  * Atomically set the request flags, and take a snapshot of the counters.
977  * When we see ckpt_started > old_started, we know the flags we set here
978  * have been seen by checkpointer.
979  *
980  * Note that we OR the flags with any existing flags, to avoid overriding
981  * a "stronger" request by another backend. The flag senses must be
982  * chosen to make this work!
983  */
985 
986  old_failed = CheckpointerShmem->ckpt_failed;
987  old_started = CheckpointerShmem->ckpt_started;
989 
991 
992  /*
993  * Send signal to request checkpoint. It's possible that the checkpointer
994  * hasn't started yet, or is in process of restarting, so we will retry a
995  * few times if needed. (Actually, more than a few times, since on slow
996  * or overloaded buildfarm machines, it's been observed that the
997  * checkpointer can take several seconds to start.) However, if not told
998  * to wait for the checkpoint to occur, we consider failure to send the
999  * signal to be nonfatal and merely LOG it. The checkpointer should see
1000  * the request when it does start, with or without getting a signal.
1001  */
1002 #define MAX_SIGNAL_TRIES 600 /* max wait 60.0 sec */
1003  for (ntries = 0;; ntries++)
1004  {
1006  {
1007  if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1008  {
1009  elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1010  "could not signal for checkpoint: checkpointer is not running");
1011  break;
1012  }
1013  }
1014  else if (kill(CheckpointerShmem->checkpointer_pid, SIGINT) != 0)
1015  {
1016  if (ntries >= MAX_SIGNAL_TRIES || !(flags & CHECKPOINT_WAIT))
1017  {
1018  elog((flags & CHECKPOINT_WAIT) ? ERROR : LOG,
1019  "could not signal for checkpoint: %m");
1020  break;
1021  }
1022  }
1023  else
1024  break; /* signal sent successfully */
1025 
1027  pg_usleep(100000L); /* wait 0.1 sec, then retry */
1028  }
1029 
1030  /*
1031  * If requested, wait for completion. We detect completion according to
1032  * the algorithm given above.
1033  */
1034  if (flags & CHECKPOINT_WAIT)
1035  {
1036  int new_started,
1037  new_failed;
1038 
1039  /* Wait for a new checkpoint to start. */
1041  for (;;)
1042  {
1044  new_started = CheckpointerShmem->ckpt_started;
1046 
1047  if (new_started != old_started)
1048  break;
1049 
1051  WAIT_EVENT_CHECKPOINT_START);
1052  }
1054 
1055  /*
1056  * We are waiting for ckpt_done >= new_started, in a modulo sense.
1057  */
1059  for (;;)
1060  {
1061  int new_done;
1062 
1064  new_done = CheckpointerShmem->ckpt_done;
1065  new_failed = CheckpointerShmem->ckpt_failed;
1067 
1068  if (new_done - new_started >= 0)
1069  break;
1070 
1072  WAIT_EVENT_CHECKPOINT_DONE);
1073  }
1075 
1076  if (new_failed != old_failed)
1077  ereport(ERROR,
1078  (errmsg("checkpoint request failed"),
1079  errhint("Consult recent messages in the server log for details.")));
1080  }
1081 }
1082 
1083 /*
1084  * ForwardSyncRequest
1085  * Forward a file-fsync request from a backend to the checkpointer
1086  *
1087  * Whenever a backend is compelled to write directly to a relation
1088  * (which should be seldom, if the background writer is getting its job done),
1089  * the backend calls this routine to pass over knowledge that the relation
1090  * is dirty and must be fsync'd before next checkpoint. We also use this
1091  * opportunity to count such writes for statistical purposes.
1092  *
1093  * To avoid holding the lock for longer than necessary, we normally write
1094  * to the requests[] queue without checking for duplicates. The checkpointer
1095  * will have to eliminate dups internally anyway. However, if we discover
1096  * that the queue is full, we make a pass over the entire queue to compact
1097  * it. This is somewhat expensive, but the alternative is for the backend
1098  * to perform its own fsync, which is far more expensive in practice. It
1099  * is theoretically possible a backend fsync might still be necessary, if
1100  * the queue is full and contains no duplicate entries. In that case, we
1101  * let the backend know by returning false.
1102  */
1103 bool
1105 {
1106  CheckpointerRequest *request;
1107  bool too_full;
1108 
1109  if (!IsUnderPostmaster)
1110  return false; /* probably shouldn't even get here */
1111 
1112  if (AmCheckpointerProcess())
1113  elog(ERROR, "ForwardSyncRequest must not be called in checkpointer");
1114 
1115  LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1116 
1117  /*
1118  * If the checkpointer isn't running or the request queue is full, the
1119  * backend will have to perform its own fsync request. But before forcing
1120  * that to happen, we can try to compact the request queue.
1121  */
1122  if (CheckpointerShmem->checkpointer_pid == 0 ||
1125  {
1126  LWLockRelease(CheckpointerCommLock);
1127  return false;
1128  }
1129 
1130  /* OK, insert request */
1132  request->ftag = *ftag;
1133  request->type = type;
1134 
1135  /* If queue is more than half full, nudge the checkpointer to empty it */
1136  too_full = (CheckpointerShmem->num_requests >=
1138 
1139  LWLockRelease(CheckpointerCommLock);
1140 
1141  /* ... but not till after we release the lock */
1142  if (too_full && ProcGlobal->checkpointerLatch)
1144 
1145  return true;
1146 }
1147 
1148 /*
1149  * CompactCheckpointerRequestQueue
1150  * Remove duplicates from the request queue to avoid backend fsyncs.
1151  * Returns "true" if any entries were removed.
1152  *
1153  * Although a full fsync request queue is not common, it can lead to severe
1154  * performance problems when it does happen. So far, this situation has
1155  * only been observed to occur when the system is under heavy write load,
1156  * and especially during the "sync" phase of a checkpoint. Without this
1157  * logic, each backend begins doing an fsync for every block written, which
1158  * gets very expensive and can slow down the whole system.
1159  *
1160  * Trying to do this every time the queue is full could lose if there
1161  * aren't any removable entries. But that should be vanishingly rare in
1162  * practice: there's one queue entry per shared buffer.
1163  */
1164 static bool
1166 {
1167  struct CheckpointerSlotMapping
1168  {
1169  CheckpointerRequest request;
1170  int slot;
1171  };
1172 
1173  int n,
1174  preserve_count;
1175  int num_skipped = 0;
1176  HASHCTL ctl;
1177  HTAB *htab;
1178  bool *skip_slot;
1179 
1180  /* must hold CheckpointerCommLock in exclusive mode */
1181  Assert(LWLockHeldByMe(CheckpointerCommLock));
1182 
1183  /* Avoid memory allocations in a critical section. */
1184  if (CritSectionCount > 0)
1185  return false;
1186 
1187  /* Initialize skip_slot array */
1188  skip_slot = palloc0(sizeof(bool) * CheckpointerShmem->num_requests);
1189 
1190  /* Initialize temporary hash table */
1191  ctl.keysize = sizeof(CheckpointerRequest);
1192  ctl.entrysize = sizeof(struct CheckpointerSlotMapping);
1193  ctl.hcxt = CurrentMemoryContext;
1194 
1195  htab = hash_create("CompactCheckpointerRequestQueue",
1197  &ctl,
1199 
1200  /*
1201  * The basic idea here is that a request can be skipped if it's followed
1202  * by a later, identical request. It might seem more sensible to work
1203  * backwards from the end of the queue and check whether a request is
1204  * *preceded* by an earlier, identical request, in the hopes of doing less
1205  * copying. But that might change the semantics, if there's an
1206  * intervening SYNC_FORGET_REQUEST or SYNC_FILTER_REQUEST, so we do it
1207  * this way. It would be possible to be even smarter if we made the code
1208  * below understand the specific semantics of such requests (it could blow
1209  * away preceding entries that would end up being canceled anyhow), but
1210  * it's not clear that the extra complexity would buy us anything.
1211  */
1212  for (n = 0; n < CheckpointerShmem->num_requests; n++)
1213  {
1214  CheckpointerRequest *request;
1215  struct CheckpointerSlotMapping *slotmap;
1216  bool found;
1217 
1218  /*
1219  * We use the request struct directly as a hashtable key. This
1220  * assumes that any padding bytes in the structs are consistently the
1221  * same, which should be okay because we zeroed them in
1222  * CheckpointerShmemInit. Note also that RelFileLocator had better
1223  * contain no pad bytes.
1224  */
1225  request = &CheckpointerShmem->requests[n];
1226  slotmap = hash_search(htab, request, HASH_ENTER, &found);
1227  if (found)
1228  {
1229  /* Duplicate, so mark the previous occurrence as skippable */
1230  skip_slot[slotmap->slot] = true;
1231  num_skipped++;
1232  }
1233  /* Remember slot containing latest occurrence of this request value */
1234  slotmap->slot = n;
1235  }
1236 
1237  /* Done with the hash table. */
1238  hash_destroy(htab);
1239 
1240  /* If no duplicates, we're out of luck. */
1241  if (!num_skipped)
1242  {
1243  pfree(skip_slot);
1244  return false;
1245  }
1246 
1247  /* We found some duplicates; remove them. */
1248  preserve_count = 0;
1249  for (n = 0; n < CheckpointerShmem->num_requests; n++)
1250  {
1251  if (skip_slot[n])
1252  continue;
1253  CheckpointerShmem->requests[preserve_count++] = CheckpointerShmem->requests[n];
1254  }
1255  ereport(DEBUG1,
1256  (errmsg_internal("compacted fsync request queue from %d entries to %d entries",
1257  CheckpointerShmem->num_requests, preserve_count)));
1258  CheckpointerShmem->num_requests = preserve_count;
1259 
1260  /* Cleanup. */
1261  pfree(skip_slot);
1262  return true;
1263 }
1264 
1265 /*
1266  * AbsorbSyncRequests
1267  * Retrieve queued sync requests and pass them to sync mechanism.
1268  *
1269  * This is exported because it must be called during CreateCheckPoint;
1270  * we have to be sure we have accepted all pending requests just before
1271  * we start fsync'ing. Since CreateCheckPoint sometimes runs in
1272  * non-checkpointer processes, do nothing if not checkpointer.
1273  */
1274 void
1276 {
1277  CheckpointerRequest *requests = NULL;
1278  CheckpointerRequest *request;
1279  int n;
1280 
1281  if (!AmCheckpointerProcess())
1282  return;
1283 
1284  LWLockAcquire(CheckpointerCommLock, LW_EXCLUSIVE);
1285 
1286  /*
1287  * We try to avoid holding the lock for a long time by copying the request
1288  * array, and processing the requests after releasing the lock.
1289  *
1290  * Once we have cleared the requests from shared memory, we have to PANIC
1291  * if we then fail to absorb them (eg, because our hashtable runs out of
1292  * memory). This is because the system cannot run safely if we are unable
1293  * to fsync what we have been told to fsync. Fortunately, the hashtable
1294  * is so small that the problem is quite unlikely to arise in practice.
1295  */
1297  if (n > 0)
1298  {
1299  requests = (CheckpointerRequest *) palloc(n * sizeof(CheckpointerRequest));
1300  memcpy(requests, CheckpointerShmem->requests, n * sizeof(CheckpointerRequest));
1301  }
1302 
1304 
1306 
1307  LWLockRelease(CheckpointerCommLock);
1308 
1309  for (request = requests; n > 0; request++, n--)
1310  RememberSyncRequest(&request->ftag, request->type);
1311 
1312  END_CRIT_SECTION();
1313 
1314  if (requests)
1315  pfree(requests);
1316 }
1317 
1318 /*
1319  * Update any shared memory configurations based on config parameters
1320  */
1321 static void
1323 {
1324  /* update global shmem state for sync rep */
1326 
1327  /*
1328  * If full_page_writes has been changed by SIGHUP, we update it in shared
1329  * memory and write an XLOG_FPW_CHANGE record.
1330  */
1332 
1333  elog(DEBUG2, "checkpointer updated shared memory configuration values");
1334 }
1335 
1336 /*
1337  * FirstCallSinceLastCheckpoint allows a process to take an action once
1338  * per checkpoint cycle by asynchronously checking for checkpoint completion.
1339  */
1340 bool
1342 {
1343  static int ckpt_done = 0;
1344  int new_done;
1345  bool FirstCall = false;
1346 
1348  new_done = CheckpointerShmem->ckpt_done;
1350 
1351  if (new_done != ckpt_done)
1352  FirstCall = true;
1353 
1354  ckpt_done = new_done;
1355 
1356  return FirstCall;
1357 }
void AuxiliaryProcessMainCommon(void)
Definition: auxprocess.c:44
sigset_t UnBlockSig
Definition: pqsignal.c:22
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1608
void AtEOXact_Buffers(bool isCommit)
Definition: bufmgr.c:3559
void UnlockBuffers(void)
Definition: bufmgr.c:5130
#define Min(x, y)
Definition: c.h:1007
#define Max(x, y)
Definition: c.h:1001
#define SIGNAL_ARGS
Definition: c.h:1348
#define Assert(condition)
Definition: c.h:861
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:401
#define MemSet(start, val, len)
Definition: c.h:1023
size_t Size
Definition: c.h:608
static void UpdateSharedMemoryConfig(void)
static XLogRecPtr ckpt_start_recptr
Definition: checkpointer.c:147
static bool ImmediateCheckpointRequested(void)
Definition: checkpointer.c:695
static bool IsCheckpointOnSchedule(double progress)
Definition: checkpointer.c:791
static void ReqCheckpointHandler(SIGNAL_ARGS)
Definition: checkpointer.c:870
bool ForwardSyncRequest(const FileTag *ftag, SyncRequestType type)
static void CheckArchiveTimeout(void)
Definition: checkpointer.c:634
void CheckpointerMain(char *startup_data, size_t startup_data_len)
Definition: checkpointer.c:173
static double ckpt_cached_elapsed
Definition: checkpointer.c:148
static bool ckpt_active
Definition: checkpointer.c:143
static bool CompactCheckpointerRequestQueue(void)
static void HandleCheckpointerInterrupts(void)
Definition: checkpointer.c:569
#define MAX_SIGNAL_TRIES
void AbsorbSyncRequests(void)
#define WRITES_PER_ABSORB
Definition: checkpointer.c:131
double CheckPointCompletionTarget
Definition: checkpointer.c:138
static pg_time_t last_xlog_switch_time
Definition: checkpointer.c:151
int CheckPointWarning
Definition: checkpointer.c:137
void CheckpointerShmemInit(void)
Definition: checkpointer.c:909
bool FirstCallSinceLastCheckpoint(void)
static CheckpointerShmemStruct * CheckpointerShmem
Definition: checkpointer.c:128
int CheckPointTimeout
Definition: checkpointer.c:136
void RequestCheckpoint(int flags)
Definition: checkpointer.c:952
static pg_time_t last_checkpoint_time
Definition: checkpointer.c:150
void CheckpointWriteDelay(int flags, double progress)
Definition: checkpointer.c:722
static pg_time_t ckpt_start_time
Definition: checkpointer.c:146
Size CheckpointerShmemSize(void)
Definition: checkpointer.c:890
bool ConditionVariableCancelSleep(void)
void ConditionVariableBroadcast(ConditionVariable *cv)
void ConditionVariablePrepareToSleep(ConditionVariable *cv)
void ConditionVariableInit(ConditionVariable *cv)
void ConditionVariableSleep(ConditionVariable *cv, uint32 wait_event_info)
void AtEOXact_HashTables(bool isCommit)
Definition: dynahash.c:1912
void hash_destroy(HTAB *hashp)
Definition: dynahash.c:865
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:955
HTAB * hash_create(const char *tabname, long nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:352
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1180
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1157
void EmitErrorReport(void)
Definition: elog.c:1687
ErrorContextCallback * error_context_stack
Definition: elog.c:94
void FlushErrorState(void)
Definition: elog.c:1867
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errmsg(const char *fmt,...)
Definition: elog.c:1070
sigjmp_buf * PG_exception_stack
Definition: elog.c:96
#define LOG
Definition: elog.h:31
#define DEBUG2
Definition: elog.h:29
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
static double elapsed_time(instr_time *starttime)
Definition: explain.c:1294
void AtEOXact_Files(bool isCommit)
Definition: fd.c:3188
volatile sig_atomic_t LogMemoryContextPending
Definition: globals.c:40
volatile sig_atomic_t ProcSignalBarrierPending
Definition: globals.c:39
int NBuffers
Definition: globals.c:141
int MyProcPid
Definition: globals.c:46
bool IsUnderPostmaster
Definition: globals.c:119
volatile uint32 CritSectionCount
Definition: globals.c:44
bool ExitOnAnyError
Definition: globals.c:122
bool IsPostmasterEnvironment
Definition: globals.c:118
struct Latch * MyLatch
Definition: globals.c:62
@ PGC_SIGHUP
Definition: guc.h:71
void ProcessConfigFile(GucContext context)
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_BLOBS
Definition: hsearch.h:97
void SignalHandlerForShutdownRequest(SIGNAL_ARGS)
Definition: interrupt.c:105
volatile sig_atomic_t ShutdownRequestPending
Definition: interrupt.c:28
volatile sig_atomic_t ConfigReloadPending
Definition: interrupt.c:27
void SignalHandlerForConfigReload(SIGNAL_ARGS)
Definition: interrupt.c:61
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
void proc_exit(int code)
Definition: ipc.c:104
void SetLatch(Latch *latch)
Definition: latch.c:632
void ResetLatch(Latch *latch)
Definition: latch.c:724
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:517
#define WL_TIMEOUT
Definition: latch.h:130
#define WL_EXIT_ON_PM_DEATH
Definition: latch.h:132
#define WL_LATCH_SET
Definition: latch.h:127
bool LWLockHeldByMe(LWLock *lock)
Definition: lwlock.c:1893
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1168
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1781
void LWLockReleaseAll(void)
Definition: lwlock.c:1876
@ LW_EXCLUSIVE
Definition: lwlock.h:114
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:383
void pfree(void *pointer)
Definition: mcxt.c:1521
MemoryContext TopMemoryContext
Definition: mcxt.c:149
void * palloc0(Size size)
Definition: mcxt.c:1347
MemoryContext CurrentMemoryContext
Definition: mcxt.c:143
void ProcessLogMemoryContextInterrupt(void)
Definition: mcxt.c:1289
void * palloc(Size size)
Definition: mcxt.c:1317
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
#define AmCheckpointerProcess()
Definition: miscadmin.h:378
#define RESUME_INTERRUPTS()
Definition: miscadmin.h:135
#define START_CRIT_SECTION()
Definition: miscadmin.h:149
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
#define HOLD_INTERRUPTS()
Definition: miscadmin.h:133
@ B_CHECKPOINTER
Definition: miscadmin.h:354
#define END_CRIT_SECTION()
Definition: miscadmin.h:151
BackendType MyBackendType
Definition: miscinit.c:63
static int progress
Definition: pgbench.c:261
void pgstat_before_server_shutdown(int code, Datum arg)
Definition: pgstat.c:532
void pgstat_report_checkpointer(void)
PgStat_CheckpointerStats PendingCheckpointerStats
void pgstat_report_wal(bool force)
Definition: pgstat_wal.c:48
int64 pg_time_t
Definition: pgtime.h:23
pqsigfunc pqsignal(int signo, pqsigfunc func)
void ProcessProcSignalBarrier(void)
Definition: procsignal.c:496
void procsignal_sigusr1_handler(SIGNAL_ARGS)
Definition: procsignal.c:671
MemoryContextSwitchTo(old_ctx)
tree ctl
Definition: radixtree.h:1853
void ReleaseAuxProcessResources(bool isCommit)
Definition: resowner.c:1002
Size add_size(Size s1, Size s2)
Definition: shmem.c:493
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:387
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
void pg_usleep(long microsec)
Definition: signal.c:53
static pg_noinline void Size size
Definition: slab.c:607
void smgrdestroyall(void)
Definition: smgr.c:335
void AtEOXact_SMgr(void)
Definition: smgr.c:829
#define SpinLockInit(lock)
Definition: spin.h:57
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
SyncRequestType type
Definition: checkpointer.c:104
ConditionVariable done_cv
Definition: checkpointer.c:121
ConditionVariable start_cv
Definition: checkpointer.c:120
CheckpointerRequest requests[FLEXIBLE_ARRAY_MEMBER]
Definition: checkpointer.c:125
Definition: sync.h:51
Definition: dynahash.c:220
Latch procLatch
Definition: proc.h:169
Latch * checkpointerLatch
Definition: proc.h:418
PgStat_Counter restartpoints_requested
Definition: pgstat.h:299
PgStat_Counter num_requested
Definition: pgstat.h:296
PgStat_Counter num_performed
Definition: pgstat.h:297
PgStat_Counter restartpoints_timed
Definition: pgstat.h:298
PgStat_Counter num_timed
Definition: pgstat.h:295
PgStat_Counter restartpoints_performed
Definition: pgstat.h:300
void RememberSyncRequest(const FileTag *ftag, SyncRequestType type)
Definition: sync.c:487
SyncRequestType
Definition: sync.h:24
void SyncRepUpdateSyncStandbysDefined(void)
Definition: syncrep.c:921
static void pgstat_report_wait_end(void)
Definition: wait_event.h:101
const char * type
#define SIGCHLD
Definition: win32_port.h:178
#define SIGHUP
Definition: win32_port.h:168
#define SIG_DFL
Definition: win32_port.h:163
#define SIGPIPE
Definition: win32_port.h:173
#define kill(pid, sig)
Definition: win32_port.h:503
#define SIGUSR1
Definition: win32_port.h:180
#define SIGALRM
Definition: win32_port.h:174
#define SIGUSR2
Definition: win32_port.h:181
#define SIG_IGN
Definition: win32_port.h:165
int gettimeofday(struct timeval *tp, void *tzp)
void UpdateFullPageWrites(void)
Definition: xlog.c:8165
bool RecoveryInProgress(void)
Definition: xlog.c:6333
XLogRecPtr RequestXLogSwitch(bool mark_unimportant)
Definition: xlog.c:8059
bool CreateRestartPoint(int flags)
Definition: xlog.c:7590
XLogRecPtr GetInsertRecPtr(void)
Definition: xlog.c:6481
int wal_segment_size
Definition: xlog.c:142
void ShutdownXLOG(int code, Datum arg)
Definition: xlog.c:6601
int XLogArchiveTimeout
Definition: xlog.c:117
pg_time_t GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN)
Definition: xlog.c:6584
XLogRecPtr GetLastImportantRecPtr(void)
Definition: xlog.c:6555
bool CreateCheckPoint(int flags)
Definition: xlog.c:6888
int CheckPointSegments
Definition: xlog.c:155
#define CHECKPOINT_CAUSE_XLOG
Definition: xlog.h:148
#define CHECKPOINT_END_OF_RECOVERY
Definition: xlog.h:140
#define CHECKPOINT_CAUSE_TIME
Definition: xlog.h:149
#define CHECKPOINT_REQUESTED
Definition: xlog.h:146
#define CHECKPOINT_WAIT
Definition: xlog.h:145
#define CHECKPOINT_IMMEDIATE
Definition: xlog.h:141
#define XLogSegmentOffset(xlogptr, wal_segsz_bytes)
uint64 XLogRecPtr
Definition: xlogdefs.h:21
XLogRecPtr GetXLogReplayRecPtr(TimeLineID *replayTLI)