PostgreSQL Source Code  git master
timestamp.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * timestamp.c
4  * Functions for the built-in SQL types "timestamp" and "interval".
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/timestamp.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 
16 #include "postgres.h"
17 
18 #include <ctype.h>
19 #include <math.h>
20 #include <limits.h>
21 #include <sys/time.h>
22 
23 #include "access/xact.h"
24 #include "catalog/pg_type.h"
25 #include "common/int.h"
26 #include "common/int128.h"
27 #include "funcapi.h"
28 #include "libpq/pqformat.h"
29 #include "miscadmin.h"
30 #include "nodes/nodeFuncs.h"
31 #include "nodes/supportnodes.h"
32 #include "optimizer/optimizer.h"
33 #include "parser/scansup.h"
34 #include "utils/array.h"
35 #include "utils/builtins.h"
36 #include "utils/date.h"
37 #include "utils/datetime.h"
38 #include "utils/float.h"
39 #include "utils/numeric.h"
40 #include "utils/sortsupport.h"
41 
42 /*
43  * gcc's -ffast-math switch breaks routines that expect exact results from
44  * expressions like timeval / SECS_PER_HOUR, where timeval is double.
45  */
46 #ifdef __FAST_MATH__
47 #error -ffast-math is known to break this code
48 #endif
49 
50 #define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
51 
52 /* Set at postmaster start */
54 
55 /* Set at configuration reload */
57 
58 typedef struct
59 {
63  int step_sign;
65 
66 typedef struct
67 {
71  int step_sign;
74 
75 /*
76  * The transition datatype for interval aggregates is declared as internal.
77  * It's a pointer to an IntervalAggState allocated in the aggregate context.
78  */
79 typedef struct IntervalAggState
80 {
81  int64 N; /* count of finite intervals processed */
82  Interval sumX; /* sum of finite intervals processed */
83  /* These counts are *not* included in N! Use IA_TOTAL_COUNT() as needed */
84  int64 pInfcount; /* count of +infinity intervals */
85  int64 nInfcount; /* count of -infinity intervals */
87 
88 #define IA_TOTAL_COUNT(ia) \
89  ((ia)->N + (ia)->pInfcount + (ia)->nInfcount)
90 
91 static TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec);
92 static Timestamp dt2local(Timestamp dt, int timezone);
93 static bool AdjustIntervalForTypmod(Interval *interval, int32 typmod,
94  Node *escontext);
97 
98 static void EncodeSpecialInterval(const Interval *interval, char *str);
99 static void interval_um_internal(const Interval *interval, Interval *result);
100 
101 /* common code for timestamptypmodin and timestamptztypmodin */
102 static int32
104 {
105  int32 *tl;
106  int n;
107 
108  tl = ArrayGetIntegerTypmods(ta, &n);
109 
110  /*
111  * we're not too tense about good error message here because grammar
112  * shouldn't allow wrong number of modifiers for TIMESTAMP
113  */
114  if (n != 1)
115  ereport(ERROR,
116  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
117  errmsg("invalid type modifier")));
118 
119  return anytimestamp_typmod_check(istz, tl[0]);
120 }
121 
122 /* exported so parse_expr.c can use it */
123 int32
125 {
126  if (typmod < 0)
127  ereport(ERROR,
128  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
129  errmsg("TIMESTAMP(%d)%s precision must not be negative",
130  typmod, (istz ? " WITH TIME ZONE" : ""))));
131  if (typmod > MAX_TIMESTAMP_PRECISION)
132  {
134  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
135  errmsg("TIMESTAMP(%d)%s precision reduced to maximum allowed, %d",
136  typmod, (istz ? " WITH TIME ZONE" : ""),
138  typmod = MAX_TIMESTAMP_PRECISION;
139  }
140 
141  return typmod;
142 }
143 
144 /* common code for timestamptypmodout and timestamptztypmodout */
145 static char *
146 anytimestamp_typmodout(bool istz, int32 typmod)
147 {
148  const char *tz = istz ? " with time zone" : " without time zone";
149 
150  if (typmod >= 0)
151  return psprintf("(%d)%s", (int) typmod, tz);
152  else
153  return pstrdup(tz);
154 }
155 
156 
157 /*****************************************************************************
158  * USER I/O ROUTINES *
159  *****************************************************************************/
160 
161 /* timestamp_in()
162  * Convert a string to internal form.
163  */
164 Datum
166 {
167  char *str = PG_GETARG_CSTRING(0);
168 #ifdef NOT_USED
169  Oid typelem = PG_GETARG_OID(1);
170 #endif
171  int32 typmod = PG_GETARG_INT32(2);
172  Node *escontext = fcinfo->context;
173  Timestamp result;
174  fsec_t fsec;
175  struct pg_tm tt,
176  *tm = &tt;
177  int tz;
178  int dtype;
179  int nf;
180  int dterr;
181  char *field[MAXDATEFIELDS];
182  int ftype[MAXDATEFIELDS];
183  char workbuf[MAXDATELEN + MAXDATEFIELDS];
184  DateTimeErrorExtra extra;
185 
186  dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
187  field, ftype, MAXDATEFIELDS, &nf);
188  if (dterr == 0)
189  dterr = DecodeDateTime(field, ftype, nf,
190  &dtype, tm, &fsec, &tz, &extra);
191  if (dterr != 0)
192  {
193  DateTimeParseError(dterr, &extra, str, "timestamp", escontext);
194  PG_RETURN_NULL();
195  }
196 
197  switch (dtype)
198  {
199  case DTK_DATE:
200  if (tm2timestamp(tm, fsec, NULL, &result) != 0)
201  ereturn(escontext, (Datum) 0,
202  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
203  errmsg("timestamp out of range: \"%s\"", str)));
204  break;
205 
206  case DTK_EPOCH:
207  result = SetEpochTimestamp();
208  break;
209 
210  case DTK_LATE:
211  TIMESTAMP_NOEND(result);
212  break;
213 
214  case DTK_EARLY:
215  TIMESTAMP_NOBEGIN(result);
216  break;
217 
218  default:
219  elog(ERROR, "unexpected dtype %d while parsing timestamp \"%s\"",
220  dtype, str);
221  TIMESTAMP_NOEND(result);
222  }
223 
224  AdjustTimestampForTypmod(&result, typmod, escontext);
225 
226  PG_RETURN_TIMESTAMP(result);
227 }
228 
229 /* timestamp_out()
230  * Convert a timestamp to external form.
231  */
232 Datum
234 {
236  char *result;
237  struct pg_tm tt,
238  *tm = &tt;
239  fsec_t fsec;
240  char buf[MAXDATELEN + 1];
241 
244  else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0)
245  EncodeDateTime(tm, fsec, false, 0, NULL, DateStyle, buf);
246  else
247  ereport(ERROR,
248  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
249  errmsg("timestamp out of range")));
250 
251  result = pstrdup(buf);
252  PG_RETURN_CSTRING(result);
253 }
254 
255 /*
256  * timestamp_recv - converts external binary format to timestamp
257  */
258 Datum
260 {
262 
263 #ifdef NOT_USED
264  Oid typelem = PG_GETARG_OID(1);
265 #endif
266  int32 typmod = PG_GETARG_INT32(2);
268  struct pg_tm tt,
269  *tm = &tt;
270  fsec_t fsec;
271 
273 
274  /* range check: see if timestamp_out would like it */
276  /* ok */ ;
277  else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0 ||
279  ereport(ERROR,
280  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
281  errmsg("timestamp out of range")));
282 
283  AdjustTimestampForTypmod(&timestamp, typmod, NULL);
284 
286 }
287 
288 /*
289  * timestamp_send - converts timestamp to binary format
290  */
291 Datum
293 {
296 
300 }
301 
302 Datum
304 {
306 
308 }
309 
310 Datum
312 {
313  int32 typmod = PG_GETARG_INT32(0);
314 
316 }
317 
318 
319 /*
320  * timestamp_support()
321  *
322  * Planner support function for the timestamp_scale() and timestamptz_scale()
323  * length coercion functions (we need not distinguish them here).
324  */
325 Datum
327 {
328  Node *rawreq = (Node *) PG_GETARG_POINTER(0);
329  Node *ret = NULL;
330 
331  if (IsA(rawreq, SupportRequestSimplify))
332  {
334 
336  }
337 
338  PG_RETURN_POINTER(ret);
339 }
340 
341 /* timestamp_scale()
342  * Adjust time type for specified scale factor.
343  * Used by PostgreSQL type system to stuff columns.
344  */
345 Datum
347 {
349  int32 typmod = PG_GETARG_INT32(1);
350  Timestamp result;
351 
352  result = timestamp;
353 
354  AdjustTimestampForTypmod(&result, typmod, NULL);
355 
356  PG_RETURN_TIMESTAMP(result);
357 }
358 
359 /*
360  * AdjustTimestampForTypmod --- round off a timestamp to suit given typmod
361  * Works for either timestamp or timestamptz.
362  *
363  * Returns true on success, false on failure (if escontext points to an
364  * ErrorSaveContext; otherwise errors are thrown).
365  */
366 bool
367 AdjustTimestampForTypmod(Timestamp *time, int32 typmod, Node *escontext)
368 {
369  static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
370  INT64CONST(1000000),
371  INT64CONST(100000),
372  INT64CONST(10000),
373  INT64CONST(1000),
374  INT64CONST(100),
375  INT64CONST(10),
376  INT64CONST(1)
377  };
378 
379  static const int64 TimestampOffsets[MAX_TIMESTAMP_PRECISION + 1] = {
380  INT64CONST(500000),
381  INT64CONST(50000),
382  INT64CONST(5000),
383  INT64CONST(500),
384  INT64CONST(50),
385  INT64CONST(5),
386  INT64CONST(0)
387  };
388 
389  if (!TIMESTAMP_NOT_FINITE(*time)
390  && (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
391  {
392  if (typmod < 0 || typmod > MAX_TIMESTAMP_PRECISION)
393  ereturn(escontext, false,
394  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
395  errmsg("timestamp(%d) precision must be between %d and %d",
396  typmod, 0, MAX_TIMESTAMP_PRECISION)));
397 
398  if (*time >= INT64CONST(0))
399  {
400  *time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
401  TimestampScales[typmod];
402  }
403  else
404  {
405  *time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
406  * TimestampScales[typmod]);
407  }
408  }
409 
410  return true;
411 }
412 
413 /* timestamptz_in()
414  * Convert a string to internal form.
415  */
416 Datum
418 {
419  char *str = PG_GETARG_CSTRING(0);
420 #ifdef NOT_USED
421  Oid typelem = PG_GETARG_OID(1);
422 #endif
423  int32 typmod = PG_GETARG_INT32(2);
424  Node *escontext = fcinfo->context;
425  TimestampTz result;
426  fsec_t fsec;
427  struct pg_tm tt,
428  *tm = &tt;
429  int tz;
430  int dtype;
431  int nf;
432  int dterr;
433  char *field[MAXDATEFIELDS];
434  int ftype[MAXDATEFIELDS];
435  char workbuf[MAXDATELEN + MAXDATEFIELDS];
436  DateTimeErrorExtra extra;
437 
438  dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
439  field, ftype, MAXDATEFIELDS, &nf);
440  if (dterr == 0)
441  dterr = DecodeDateTime(field, ftype, nf,
442  &dtype, tm, &fsec, &tz, &extra);
443  if (dterr != 0)
444  {
445  DateTimeParseError(dterr, &extra, str, "timestamp with time zone",
446  escontext);
447  PG_RETURN_NULL();
448  }
449 
450  switch (dtype)
451  {
452  case DTK_DATE:
453  if (tm2timestamp(tm, fsec, &tz, &result) != 0)
454  ereturn(escontext, (Datum) 0,
455  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
456  errmsg("timestamp out of range: \"%s\"", str)));
457  break;
458 
459  case DTK_EPOCH:
460  result = SetEpochTimestamp();
461  break;
462 
463  case DTK_LATE:
464  TIMESTAMP_NOEND(result);
465  break;
466 
467  case DTK_EARLY:
468  TIMESTAMP_NOBEGIN(result);
469  break;
470 
471  default:
472  elog(ERROR, "unexpected dtype %d while parsing timestamptz \"%s\"",
473  dtype, str);
474  TIMESTAMP_NOEND(result);
475  }
476 
477  AdjustTimestampForTypmod(&result, typmod, escontext);
478 
479  PG_RETURN_TIMESTAMPTZ(result);
480 }
481 
482 /*
483  * Try to parse a timezone specification, and return its timezone offset value
484  * if it's acceptable. Otherwise, an error is thrown.
485  *
486  * Note: some code paths update tm->tm_isdst, and some don't; current callers
487  * don't care, so we don't bother being consistent.
488  */
489 static int
491 {
492  char tzname[TZ_STRLEN_MAX + 1];
493  int dterr;
494  int tz;
495 
496  text_to_cstring_buffer(zone, tzname, sizeof(tzname));
497 
498  /*
499  * Look up the requested timezone. First we try to interpret it as a
500  * numeric timezone specification; if DecodeTimezone decides it doesn't
501  * like the format, we try timezone abbreviations and names.
502  *
503  * Note pg_tzset happily parses numeric input that DecodeTimezone would
504  * reject. To avoid having it accept input that would otherwise be seen
505  * as invalid, it's enough to disallow having a digit in the first
506  * position of our input string.
507  */
508  if (isdigit((unsigned char) *tzname))
509  ereport(ERROR,
510  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
511  errmsg("invalid input syntax for type %s: \"%s\"",
512  "numeric time zone", tzname),
513  errhint("Numeric time zones must have \"-\" or \"+\" as first character.")));
514 
515  dterr = DecodeTimezone(tzname, &tz);
516  if (dterr != 0)
517  {
518  int type,
519  val;
520  pg_tz *tzp;
521 
522  if (dterr == DTERR_TZDISP_OVERFLOW)
523  ereport(ERROR,
524  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
525  errmsg("numeric time zone \"%s\" out of range", tzname)));
526  else if (dterr != DTERR_BAD_FORMAT)
527  ereport(ERROR,
528  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
529  errmsg("time zone \"%s\" not recognized", tzname)));
530 
531  type = DecodeTimezoneName(tzname, &val, &tzp);
532 
533  if (type == TZNAME_FIXED_OFFSET)
534  {
535  /* fixed-offset abbreviation */
536  tz = -val;
537  }
538  else if (type == TZNAME_DYNTZ)
539  {
540  /* dynamic-offset abbreviation, resolve using specified time */
541  tz = DetermineTimeZoneAbbrevOffset(tm, tzname, tzp);
542  }
543  else
544  {
545  /* full zone name */
546  tz = DetermineTimeZoneOffset(tm, tzp);
547  }
548  }
549 
550  return tz;
551 }
552 
553 /*
554  * Look up the requested timezone, returning a pg_tz struct.
555  *
556  * This is the same as DecodeTimezoneNameToTz, but starting with a text Datum.
557  */
558 static pg_tz *
560 {
561  char tzname[TZ_STRLEN_MAX + 1];
562 
563  text_to_cstring_buffer(zone, tzname, sizeof(tzname));
564 
565  return DecodeTimezoneNameToTz(tzname);
566 }
567 
568 /*
569  * make_timestamp_internal
570  * workhorse for make_timestamp and make_timestamptz
571  */
572 static Timestamp
573 make_timestamp_internal(int year, int month, int day,
574  int hour, int min, double sec)
575 {
576  struct pg_tm tm;
578  TimeOffset time;
579  int dterr;
580  bool bc = false;
581  Timestamp result;
582 
583  tm.tm_year = year;
584  tm.tm_mon = month;
585  tm.tm_mday = day;
586 
587  /* Handle negative years as BC */
588  if (tm.tm_year < 0)
589  {
590  bc = true;
591  tm.tm_year = -tm.tm_year;
592  }
593 
594  dterr = ValidateDate(DTK_DATE_M, false, false, bc, &tm);
595 
596  if (dterr != 0)
597  ereport(ERROR,
598  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
599  errmsg("date field value out of range: %d-%02d-%02d",
600  year, month, day)));
601 
603  ereport(ERROR,
604  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
605  errmsg("date out of range: %d-%02d-%02d",
606  year, month, day)));
607 
609 
610  /* Check for time overflow */
611  if (float_time_overflows(hour, min, sec))
612  ereport(ERROR,
613  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
614  errmsg("time field value out of range: %d:%02d:%02g",
615  hour, min, sec)));
616 
617  /* This should match tm2time */
618  time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
619  * USECS_PER_SEC) + (int64) rint(sec * USECS_PER_SEC);
620 
622  pg_add_s64_overflow(result, time, &result)))
623  ereport(ERROR,
624  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
625  errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
626  year, month, day,
627  hour, min, sec)));
628 
629  /* final range check catches just-out-of-range timestamps */
630  if (!IS_VALID_TIMESTAMP(result))
631  ereport(ERROR,
632  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
633  errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
634  year, month, day,
635  hour, min, sec)));
636 
637  return result;
638 }
639 
640 /*
641  * make_timestamp() - timestamp constructor
642  */
643 Datum
645 {
646  int32 year = PG_GETARG_INT32(0);
647  int32 month = PG_GETARG_INT32(1);
648  int32 mday = PG_GETARG_INT32(2);
649  int32 hour = PG_GETARG_INT32(3);
650  int32 min = PG_GETARG_INT32(4);
651  float8 sec = PG_GETARG_FLOAT8(5);
652  Timestamp result;
653 
654  result = make_timestamp_internal(year, month, mday,
655  hour, min, sec);
656 
657  PG_RETURN_TIMESTAMP(result);
658 }
659 
660 /*
661  * make_timestamptz() - timestamp with time zone constructor
662  */
663 Datum
665 {
666  int32 year = PG_GETARG_INT32(0);
667  int32 month = PG_GETARG_INT32(1);
668  int32 mday = PG_GETARG_INT32(2);
669  int32 hour = PG_GETARG_INT32(3);
670  int32 min = PG_GETARG_INT32(4);
671  float8 sec = PG_GETARG_FLOAT8(5);
672  Timestamp result;
673 
674  result = make_timestamp_internal(year, month, mday,
675  hour, min, sec);
676 
678 }
679 
680 /*
681  * Construct a timestamp with time zone.
682  * As above, but the time zone is specified as seventh argument.
683  */
684 Datum
686 {
687  int32 year = PG_GETARG_INT32(0);
688  int32 month = PG_GETARG_INT32(1);
689  int32 mday = PG_GETARG_INT32(2);
690  int32 hour = PG_GETARG_INT32(3);
691  int32 min = PG_GETARG_INT32(4);
692  float8 sec = PG_GETARG_FLOAT8(5);
694  TimestampTz result;
696  struct pg_tm tt;
697  int tz;
698  fsec_t fsec;
699 
700  timestamp = make_timestamp_internal(year, month, mday,
701  hour, min, sec);
702 
703  if (timestamp2tm(timestamp, NULL, &tt, &fsec, NULL, NULL) != 0)
704  ereport(ERROR,
705  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
706  errmsg("timestamp out of range")));
707 
708  tz = parse_sane_timezone(&tt, zone);
709 
710  result = dt2local(timestamp, -tz);
711 
712  if (!IS_VALID_TIMESTAMP(result))
713  ereport(ERROR,
714  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
715  errmsg("timestamp out of range")));
716 
717  PG_RETURN_TIMESTAMPTZ(result);
718 }
719 
720 /*
721  * to_timestamp(double precision)
722  * Convert UNIX epoch to timestamptz.
723  */
724 Datum
726 {
727  float8 seconds = PG_GETARG_FLOAT8(0);
728  TimestampTz result;
729 
730  /* Deal with NaN and infinite inputs ... */
731  if (isnan(seconds))
732  ereport(ERROR,
733  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
734  errmsg("timestamp cannot be NaN")));
735 
736  if (isinf(seconds))
737  {
738  if (seconds < 0)
739  TIMESTAMP_NOBEGIN(result);
740  else
741  TIMESTAMP_NOEND(result);
742  }
743  else
744  {
745  /* Out of range? */
746  if (seconds <
748  || seconds >=
750  ereport(ERROR,
751  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
752  errmsg("timestamp out of range: \"%g\"", seconds)));
753 
754  /* Convert UNIX epoch to Postgres epoch */
756 
757  seconds = rint(seconds * USECS_PER_SEC);
758  result = (int64) seconds;
759 
760  /* Recheck in case roundoff produces something just out of range */
761  if (!IS_VALID_TIMESTAMP(result))
762  ereport(ERROR,
763  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
764  errmsg("timestamp out of range: \"%g\"",
765  PG_GETARG_FLOAT8(0))));
766  }
767 
768  PG_RETURN_TIMESTAMP(result);
769 }
770 
771 /* timestamptz_out()
772  * Convert a timestamp to external form.
773  */
774 Datum
776 {
778  char *result;
779  int tz;
780  struct pg_tm tt,
781  *tm = &tt;
782  fsec_t fsec;
783  const char *tzn;
784  char buf[MAXDATELEN + 1];
785 
786  if (TIMESTAMP_NOT_FINITE(dt))
788  else if (timestamp2tm(dt, &tz, tm, &fsec, &tzn, NULL) == 0)
789  EncodeDateTime(tm, fsec, true, tz, tzn, DateStyle, buf);
790  else
791  ereport(ERROR,
792  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
793  errmsg("timestamp out of range")));
794 
795  result = pstrdup(buf);
796  PG_RETURN_CSTRING(result);
797 }
798 
799 /*
800  * timestamptz_recv - converts external binary format to timestamptz
801  */
802 Datum
804 {
806 
807 #ifdef NOT_USED
808  Oid typelem = PG_GETARG_OID(1);
809 #endif
810  int32 typmod = PG_GETARG_INT32(2);
812  int tz;
813  struct pg_tm tt,
814  *tm = &tt;
815  fsec_t fsec;
816 
818 
819  /* range check: see if timestamptz_out would like it */
821  /* ok */ ;
822  else if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0 ||
824  ereport(ERROR,
825  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
826  errmsg("timestamp out of range")));
827 
828  AdjustTimestampForTypmod(&timestamp, typmod, NULL);
829 
831 }
832 
833 /*
834  * timestamptz_send - converts timestamptz to binary format
835  */
836 Datum
838 {
841 
845 }
846 
847 Datum
849 {
851 
853 }
854 
855 Datum
857 {
858  int32 typmod = PG_GETARG_INT32(0);
859 
861 }
862 
863 
864 /* timestamptz_scale()
865  * Adjust time type for specified scale factor.
866  * Used by PostgreSQL type system to stuff columns.
867  */
868 Datum
870 {
872  int32 typmod = PG_GETARG_INT32(1);
873  TimestampTz result;
874 
875  result = timestamp;
876 
877  AdjustTimestampForTypmod(&result, typmod, NULL);
878 
879  PG_RETURN_TIMESTAMPTZ(result);
880 }
881 
882 
883 /* interval_in()
884  * Convert a string to internal form.
885  *
886  * External format(s):
887  * Uses the generic date/time parsing and decoding routines.
888  */
889 Datum
891 {
892  char *str = PG_GETARG_CSTRING(0);
893 #ifdef NOT_USED
894  Oid typelem = PG_GETARG_OID(1);
895 #endif
896  int32 typmod = PG_GETARG_INT32(2);
897  Node *escontext = fcinfo->context;
898  Interval *result;
899  struct pg_itm_in tt,
900  *itm_in = &tt;
901  int dtype;
902  int nf;
903  int range;
904  int dterr;
905  char *field[MAXDATEFIELDS];
906  int ftype[MAXDATEFIELDS];
907  char workbuf[256];
908  DateTimeErrorExtra extra;
909 
910  itm_in->tm_year = 0;
911  itm_in->tm_mon = 0;
912  itm_in->tm_mday = 0;
913  itm_in->tm_usec = 0;
914 
915  if (typmod >= 0)
916  range = INTERVAL_RANGE(typmod);
917  else
919 
920  dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field,
921  ftype, MAXDATEFIELDS, &nf);
922  if (dterr == 0)
923  dterr = DecodeInterval(field, ftype, nf, range,
924  &dtype, itm_in);
925 
926  /* if those functions think it's a bad format, try ISO8601 style */
927  if (dterr == DTERR_BAD_FORMAT)
928  dterr = DecodeISO8601Interval(str,
929  &dtype, itm_in);
930 
931  if (dterr != 0)
932  {
933  if (dterr == DTERR_FIELD_OVERFLOW)
934  dterr = DTERR_INTERVAL_OVERFLOW;
935  DateTimeParseError(dterr, &extra, str, "interval", escontext);
936  PG_RETURN_NULL();
937  }
938 
939  result = (Interval *) palloc(sizeof(Interval));
940 
941  switch (dtype)
942  {
943  case DTK_DELTA:
944  if (itmin2interval(itm_in, result) != 0)
945  ereturn(escontext, (Datum) 0,
946  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
947  errmsg("interval out of range")));
948  break;
949 
950  case DTK_LATE:
951  INTERVAL_NOEND(result);
952  break;
953 
954  case DTK_EARLY:
955  INTERVAL_NOBEGIN(result);
956  break;
957 
958  default:
959  elog(ERROR, "unexpected dtype %d while parsing interval \"%s\"",
960  dtype, str);
961  }
962 
963  AdjustIntervalForTypmod(result, typmod, escontext);
964 
965  PG_RETURN_INTERVAL_P(result);
966 }
967 
968 /* interval_out()
969  * Convert a time span to external form.
970  */
971 Datum
973 {
974  Interval *span = PG_GETARG_INTERVAL_P(0);
975  char *result;
976  struct pg_itm tt,
977  *itm = &tt;
978  char buf[MAXDATELEN + 1];
979 
980  if (INTERVAL_NOT_FINITE(span))
981  EncodeSpecialInterval(span, buf);
982  else
983  {
984  interval2itm(*span, itm);
986  }
987 
988  result = pstrdup(buf);
989  PG_RETURN_CSTRING(result);
990 }
991 
992 /*
993  * interval_recv - converts external binary format to interval
994  */
995 Datum
997 {
999 
1000 #ifdef NOT_USED
1001  Oid typelem = PG_GETARG_OID(1);
1002 #endif
1003  int32 typmod = PG_GETARG_INT32(2);
1004  Interval *interval;
1005 
1006  interval = (Interval *) palloc(sizeof(Interval));
1007 
1009  interval->day = pq_getmsgint(buf, sizeof(interval->day));
1010  interval->month = pq_getmsgint(buf, sizeof(interval->month));
1011 
1012  AdjustIntervalForTypmod(interval, typmod, NULL);
1013 
1015 }
1016 
1017 /*
1018  * interval_send - converts interval to binary format
1019  */
1020 Datum
1022 {
1025 
1026  pq_begintypsend(&buf);
1028  pq_sendint32(&buf, interval->day);
1031 }
1032 
1033 /*
1034  * The interval typmod stores a "range" in its high 16 bits and a "precision"
1035  * in its low 16 bits. Both contribute to defining the resolution of the
1036  * type. Range addresses resolution granules larger than one second, and
1037  * precision specifies resolution below one second. This representation can
1038  * express all SQL standard resolutions, but we implement them all in terms of
1039  * truncating rightward from some position. Range is a bitmap of permitted
1040  * fields, but only the temporally-smallest such field is significant to our
1041  * calculations. Precision is a count of sub-second decimal places to retain.
1042  * Setting all bits (INTERVAL_FULL_PRECISION) gives the same truncation
1043  * semantics as choosing MAX_INTERVAL_PRECISION.
1044  */
1045 Datum
1047 {
1049  int32 *tl;
1050  int n;
1051  int32 typmod;
1052 
1053  tl = ArrayGetIntegerTypmods(ta, &n);
1054 
1055  /*
1056  * tl[0] - interval range (fields bitmask) tl[1] - precision (optional)
1057  *
1058  * Note we must validate tl[0] even though it's normally guaranteed
1059  * correct by the grammar --- consider SELECT 'foo'::"interval"(1000).
1060  */
1061  if (n > 0)
1062  {
1063  switch (tl[0])
1064  {
1065  case INTERVAL_MASK(YEAR):
1066  case INTERVAL_MASK(MONTH):
1067  case INTERVAL_MASK(DAY):
1068  case INTERVAL_MASK(HOUR):
1069  case INTERVAL_MASK(MINUTE):
1070  case INTERVAL_MASK(SECOND):
1078  case INTERVAL_FULL_RANGE:
1079  /* all OK */
1080  break;
1081  default:
1082  ereport(ERROR,
1083  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1084  errmsg("invalid INTERVAL type modifier")));
1085  }
1086  }
1087 
1088  if (n == 1)
1089  {
1090  if (tl[0] != INTERVAL_FULL_RANGE)
1091  typmod = INTERVAL_TYPMOD(INTERVAL_FULL_PRECISION, tl[0]);
1092  else
1093  typmod = -1;
1094  }
1095  else if (n == 2)
1096  {
1097  if (tl[1] < 0)
1098  ereport(ERROR,
1099  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1100  errmsg("INTERVAL(%d) precision must not be negative",
1101  tl[1])));
1102  if (tl[1] > MAX_INTERVAL_PRECISION)
1103  {
1104  ereport(WARNING,
1105  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1106  errmsg("INTERVAL(%d) precision reduced to maximum allowed, %d",
1107  tl[1], MAX_INTERVAL_PRECISION)));
1108  typmod = INTERVAL_TYPMOD(MAX_INTERVAL_PRECISION, tl[0]);
1109  }
1110  else
1111  typmod = INTERVAL_TYPMOD(tl[1], tl[0]);
1112  }
1113  else
1114  {
1115  ereport(ERROR,
1116  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1117  errmsg("invalid INTERVAL type modifier")));
1118  typmod = 0; /* keep compiler quiet */
1119  }
1120 
1121  PG_RETURN_INT32(typmod);
1122 }
1123 
1124 Datum
1126 {
1127  int32 typmod = PG_GETARG_INT32(0);
1128  char *res = (char *) palloc(64);
1129  int fields;
1130  int precision;
1131  const char *fieldstr;
1132 
1133  if (typmod < 0)
1134  {
1135  *res = '\0';
1137  }
1138 
1139  fields = INTERVAL_RANGE(typmod);
1140  precision = INTERVAL_PRECISION(typmod);
1141 
1142  switch (fields)
1143  {
1144  case INTERVAL_MASK(YEAR):
1145  fieldstr = " year";
1146  break;
1147  case INTERVAL_MASK(MONTH):
1148  fieldstr = " month";
1149  break;
1150  case INTERVAL_MASK(DAY):
1151  fieldstr = " day";
1152  break;
1153  case INTERVAL_MASK(HOUR):
1154  fieldstr = " hour";
1155  break;
1156  case INTERVAL_MASK(MINUTE):
1157  fieldstr = " minute";
1158  break;
1159  case INTERVAL_MASK(SECOND):
1160  fieldstr = " second";
1161  break;
1163  fieldstr = " year to month";
1164  break;
1166  fieldstr = " day to hour";
1167  break;
1169  fieldstr = " day to minute";
1170  break;
1172  fieldstr = " day to second";
1173  break;
1175  fieldstr = " hour to minute";
1176  break;
1178  fieldstr = " hour to second";
1179  break;
1181  fieldstr = " minute to second";
1182  break;
1183  case INTERVAL_FULL_RANGE:
1184  fieldstr = "";
1185  break;
1186  default:
1187  elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod);
1188  fieldstr = "";
1189  break;
1190  }
1191 
1192  if (precision != INTERVAL_FULL_PRECISION)
1193  snprintf(res, 64, "%s(%d)", fieldstr, precision);
1194  else
1195  snprintf(res, 64, "%s", fieldstr);
1196 
1198 }
1199 
1200 /*
1201  * Given an interval typmod value, return a code for the least-significant
1202  * field that the typmod allows to be nonzero, for instance given
1203  * INTERVAL DAY TO HOUR we want to identify "hour".
1204  *
1205  * The results should be ordered by field significance, which means
1206  * we can't use the dt.h macros YEAR etc, because for some odd reason
1207  * they aren't ordered that way. Instead, arbitrarily represent
1208  * SECOND = 0, MINUTE = 1, HOUR = 2, DAY = 3, MONTH = 4, YEAR = 5.
1209  */
1210 static int
1212 {
1213  if (typmod < 0)
1214  return 0; /* SECOND */
1215 
1216  switch (INTERVAL_RANGE(typmod))
1217  {
1218  case INTERVAL_MASK(YEAR):
1219  return 5; /* YEAR */
1220  case INTERVAL_MASK(MONTH):
1221  return 4; /* MONTH */
1222  case INTERVAL_MASK(DAY):
1223  return 3; /* DAY */
1224  case INTERVAL_MASK(HOUR):
1225  return 2; /* HOUR */
1226  case INTERVAL_MASK(MINUTE):
1227  return 1; /* MINUTE */
1228  case INTERVAL_MASK(SECOND):
1229  return 0; /* SECOND */
1231  return 4; /* MONTH */
1233  return 2; /* HOUR */
1235  return 1; /* MINUTE */
1237  return 0; /* SECOND */
1239  return 1; /* MINUTE */
1241  return 0; /* SECOND */
1243  return 0; /* SECOND */
1244  case INTERVAL_FULL_RANGE:
1245  return 0; /* SECOND */
1246  default:
1247  elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod);
1248  break;
1249  }
1250  return 0; /* can't get here, but keep compiler quiet */
1251 }
1252 
1253 
1254 /*
1255  * interval_support()
1256  *
1257  * Planner support function for interval_scale().
1258  *
1259  * Flatten superfluous calls to interval_scale(). The interval typmod is
1260  * complex to permit accepting and regurgitating all SQL standard variations.
1261  * For truncation purposes, it boils down to a single, simple granularity.
1262  */
1263 Datum
1265 {
1266  Node *rawreq = (Node *) PG_GETARG_POINTER(0);
1267  Node *ret = NULL;
1268 
1269  if (IsA(rawreq, SupportRequestSimplify))
1270  {
1272  FuncExpr *expr = req->fcall;
1273  Node *typmod;
1274 
1275  Assert(list_length(expr->args) >= 2);
1276 
1277  typmod = (Node *) lsecond(expr->args);
1278 
1279  if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
1280  {
1281  Node *source = (Node *) linitial(expr->args);
1282  int32 new_typmod = DatumGetInt32(((Const *) typmod)->constvalue);
1283  bool noop;
1284 
1285  if (new_typmod < 0)
1286  noop = true;
1287  else
1288  {
1289  int32 old_typmod = exprTypmod(source);
1290  int old_least_field;
1291  int new_least_field;
1292  int old_precis;
1293  int new_precis;
1294 
1295  old_least_field = intervaltypmodleastfield(old_typmod);
1296  new_least_field = intervaltypmodleastfield(new_typmod);
1297  if (old_typmod < 0)
1298  old_precis = INTERVAL_FULL_PRECISION;
1299  else
1300  old_precis = INTERVAL_PRECISION(old_typmod);
1301  new_precis = INTERVAL_PRECISION(new_typmod);
1302 
1303  /*
1304  * Cast is a no-op if least field stays the same or decreases
1305  * while precision stays the same or increases. But
1306  * precision, which is to say, sub-second precision, only
1307  * affects ranges that include SECOND.
1308  */
1309  noop = (new_least_field <= old_least_field) &&
1310  (old_least_field > 0 /* SECOND */ ||
1311  new_precis >= MAX_INTERVAL_PRECISION ||
1312  new_precis >= old_precis);
1313  }
1314  if (noop)
1315  ret = relabel_to_typmod(source, new_typmod);
1316  }
1317  }
1318 
1319  PG_RETURN_POINTER(ret);
1320 }
1321 
1322 /* interval_scale()
1323  * Adjust interval type for specified fields.
1324  * Used by PostgreSQL type system to stuff columns.
1325  */
1326 Datum
1328 {
1330  int32 typmod = PG_GETARG_INT32(1);
1331  Interval *result;
1332 
1333  result = palloc(sizeof(Interval));
1334  *result = *interval;
1335 
1336  AdjustIntervalForTypmod(result, typmod, NULL);
1337 
1338  PG_RETURN_INTERVAL_P(result);
1339 }
1340 
1341 /*
1342  * Adjust interval for specified precision, in both YEAR to SECOND
1343  * range and sub-second precision.
1344  *
1345  * Returns true on success, false on failure (if escontext points to an
1346  * ErrorSaveContext; otherwise errors are thrown).
1347  */
1348 static bool
1350  Node *escontext)
1351 {
1352  static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
1353  INT64CONST(1000000),
1354  INT64CONST(100000),
1355  INT64CONST(10000),
1356  INT64CONST(1000),
1357  INT64CONST(100),
1358  INT64CONST(10),
1359  INT64CONST(1)
1360  };
1361 
1362  static const int64 IntervalOffsets[MAX_INTERVAL_PRECISION + 1] = {
1363  INT64CONST(500000),
1364  INT64CONST(50000),
1365  INT64CONST(5000),
1366  INT64CONST(500),
1367  INT64CONST(50),
1368  INT64CONST(5),
1369  INT64CONST(0)
1370  };
1371 
1372  /* Typmod has no effect on infinite intervals */
1374  return true;
1375 
1376  /*
1377  * Unspecified range and precision? Then not necessary to adjust. Setting
1378  * typmod to -1 is the convention for all data types.
1379  */
1380  if (typmod >= 0)
1381  {
1382  int range = INTERVAL_RANGE(typmod);
1383  int precision = INTERVAL_PRECISION(typmod);
1384 
1385  /*
1386  * Our interpretation of intervals with a limited set of fields is
1387  * that fields to the right of the last one specified are zeroed out,
1388  * but those to the left of it remain valid. Thus for example there
1389  * is no operational difference between INTERVAL YEAR TO MONTH and
1390  * INTERVAL MONTH. In some cases we could meaningfully enforce that
1391  * higher-order fields are zero; for example INTERVAL DAY could reject
1392  * nonzero "month" field. However that seems a bit pointless when we
1393  * can't do it consistently. (We cannot enforce a range limit on the
1394  * highest expected field, since we do not have any equivalent of
1395  * SQL's <interval leading field precision>.) If we ever decide to
1396  * revisit this, interval_support will likely require adjusting.
1397  *
1398  * Note: before PG 8.4 we interpreted a limited set of fields as
1399  * actually causing a "modulo" operation on a given value, potentially
1400  * losing high-order as well as low-order information. But there is
1401  * no support for such behavior in the standard, and it seems fairly
1402  * undesirable on data consistency grounds anyway. Now we only
1403  * perform truncation or rounding of low-order fields.
1404  */
1405  if (range == INTERVAL_FULL_RANGE)
1406  {
1407  /* Do nothing... */
1408  }
1409  else if (range == INTERVAL_MASK(YEAR))
1410  {
1412  interval->day = 0;
1413  interval->time = 0;
1414  }
1415  else if (range == INTERVAL_MASK(MONTH))
1416  {
1417  interval->day = 0;
1418  interval->time = 0;
1419  }
1420  /* YEAR TO MONTH */
1421  else if (range == (INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH)))
1422  {
1423  interval->day = 0;
1424  interval->time = 0;
1425  }
1426  else if (range == INTERVAL_MASK(DAY))
1427  {
1428  interval->time = 0;
1429  }
1430  else if (range == INTERVAL_MASK(HOUR))
1431  {
1434  }
1435  else if (range == INTERVAL_MASK(MINUTE))
1436  {
1439  }
1440  else if (range == INTERVAL_MASK(SECOND))
1441  {
1442  /* fractional-second rounding will be dealt with below */
1443  }
1444  /* DAY TO HOUR */
1445  else if (range == (INTERVAL_MASK(DAY) |
1446  INTERVAL_MASK(HOUR)))
1447  {
1450  }
1451  /* DAY TO MINUTE */
1452  else if (range == (INTERVAL_MASK(DAY) |
1453  INTERVAL_MASK(HOUR) |
1455  {
1458  }
1459  /* DAY TO SECOND */
1460  else if (range == (INTERVAL_MASK(DAY) |
1461  INTERVAL_MASK(HOUR) |
1464  {
1465  /* fractional-second rounding will be dealt with below */
1466  }
1467  /* HOUR TO MINUTE */
1468  else if (range == (INTERVAL_MASK(HOUR) |
1470  {
1473  }
1474  /* HOUR TO SECOND */
1475  else if (range == (INTERVAL_MASK(HOUR) |
1478  {
1479  /* fractional-second rounding will be dealt with below */
1480  }
1481  /* MINUTE TO SECOND */
1482  else if (range == (INTERVAL_MASK(MINUTE) |
1484  {
1485  /* fractional-second rounding will be dealt with below */
1486  }
1487  else
1488  elog(ERROR, "unrecognized interval typmod: %d", typmod);
1489 
1490  /* Need to adjust sub-second precision? */
1491  if (precision != INTERVAL_FULL_PRECISION)
1492  {
1493  if (precision < 0 || precision > MAX_INTERVAL_PRECISION)
1494  ereturn(escontext, false,
1495  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1496  errmsg("interval(%d) precision must be between %d and %d",
1497  precision, 0, MAX_INTERVAL_PRECISION)));
1498 
1499  if (interval->time >= INT64CONST(0))
1500  {
1502  IntervalOffsets[precision],
1503  &interval->time))
1504  ereturn(escontext, false,
1505  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1506  errmsg("interval out of range")));
1507  interval->time -= interval->time % IntervalScales[precision];
1508  }
1509  else
1510  {
1512  IntervalOffsets[precision],
1513  &interval->time))
1514  ereturn(escontext, false,
1515  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1516  errmsg("interval out of range")));
1517  interval->time -= interval->time % IntervalScales[precision];
1518  }
1519  }
1520  }
1521 
1522  return true;
1523 }
1524 
1525 /*
1526  * make_interval - numeric Interval constructor
1527  */
1528 Datum
1530 {
1531  int32 years = PG_GETARG_INT32(0);
1533  int32 weeks = PG_GETARG_INT32(2);
1534  int32 days = PG_GETARG_INT32(3);
1535  int32 hours = PG_GETARG_INT32(4);
1536  int32 mins = PG_GETARG_INT32(5);
1537  double secs = PG_GETARG_FLOAT8(6);
1538  Interval *result;
1539 
1540  /*
1541  * Reject out-of-range inputs. We reject any input values that cause
1542  * integer overflow of the corresponding interval fields.
1543  */
1544  if (isinf(secs) || isnan(secs))
1545  goto out_of_range;
1546 
1547  result = (Interval *) palloc(sizeof(Interval));
1548 
1549  /* years and months -> months */
1550  if (pg_mul_s32_overflow(years, MONTHS_PER_YEAR, &result->month) ||
1551  pg_add_s32_overflow(result->month, months, &result->month))
1552  goto out_of_range;
1553 
1554  /* weeks and days -> days */
1555  if (pg_mul_s32_overflow(weeks, DAYS_PER_WEEK, &result->day) ||
1556  pg_add_s32_overflow(result->day, days, &result->day))
1557  goto out_of_range;
1558 
1559  /* hours and mins -> usecs (cannot overflow 64-bit) */
1560  result->time = hours * USECS_PER_HOUR + mins * USECS_PER_MINUTE;
1561 
1562  /* secs -> usecs */
1563  secs = rint(float8_mul(secs, USECS_PER_SEC));
1564  if (!FLOAT8_FITS_IN_INT64(secs) ||
1565  pg_add_s64_overflow(result->time, (int64) secs, &result->time))
1566  goto out_of_range;
1567 
1568  /* make sure that the result is finite */
1569  if (INTERVAL_NOT_FINITE(result))
1570  goto out_of_range;
1571 
1572  PG_RETURN_INTERVAL_P(result);
1573 
1574 out_of_range:
1575  ereport(ERROR,
1576  errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1577  errmsg("interval out of range"));
1578 
1579  PG_RETURN_NULL(); /* keep compiler quiet */
1580 }
1581 
1582 /* EncodeSpecialTimestamp()
1583  * Convert reserved timestamp data type to string.
1584  */
1585 void
1587 {
1588  if (TIMESTAMP_IS_NOBEGIN(dt))
1589  strcpy(str, EARLY);
1590  else if (TIMESTAMP_IS_NOEND(dt))
1591  strcpy(str, LATE);
1592  else /* shouldn't happen */
1593  elog(ERROR, "invalid argument for EncodeSpecialTimestamp");
1594 }
1595 
1596 static void
1598 {
1600  strcpy(str, EARLY);
1601  else if (INTERVAL_IS_NOEND(interval))
1602  strcpy(str, LATE);
1603  else /* shouldn't happen */
1604  elog(ERROR, "invalid argument for EncodeSpecialInterval");
1605 }
1606 
1607 Datum
1609 {
1611 }
1612 
1613 Datum
1615 {
1617 }
1618 
1619 Datum
1621 {
1623 }
1624 
1625 Datum
1627 {
1629 }
1630 
1631 Datum
1633 {
1635 }
1636 
1637 /*
1638  * GetCurrentTimestamp -- get the current operating system time
1639  *
1640  * Result is in the form of a TimestampTz value, and is expressed to the
1641  * full precision of the gettimeofday() syscall
1642  */
1645 {
1646  TimestampTz result;
1647  struct timeval tp;
1648 
1649  gettimeofday(&tp, NULL);
1650 
1651  result = (TimestampTz) tp.tv_sec -
1653  result = (result * USECS_PER_SEC) + tp.tv_usec;
1654 
1655  return result;
1656 }
1657 
1658 /*
1659  * GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n)
1660  */
1663 {
1664  TimestampTz ts;
1665 
1667  if (typmod >= 0)
1668  AdjustTimestampForTypmod(&ts, typmod, NULL);
1669  return ts;
1670 }
1671 
1672 /*
1673  * GetSQLLocalTimestamp -- implements LOCALTIMESTAMP, LOCALTIMESTAMP(n)
1674  */
1675 Timestamp
1677 {
1678  Timestamp ts;
1679 
1681  if (typmod >= 0)
1682  AdjustTimestampForTypmod(&ts, typmod, NULL);
1683  return ts;
1684 }
1685 
1686 /*
1687  * timeofday(*) -- returns the current time as a text.
1688  */
1689 Datum
1691 {
1692  struct timeval tp;
1693  char templ[128];
1694  char buf[128];
1695  pg_time_t tt;
1696 
1697  gettimeofday(&tp, NULL);
1698  tt = (pg_time_t) tp.tv_sec;
1699  pg_strftime(templ, sizeof(templ), "%a %b %d %H:%M:%S.%%06d %Y %Z",
1701  snprintf(buf, sizeof(buf), templ, tp.tv_usec);
1702 
1704 }
1705 
1706 /*
1707  * TimestampDifference -- convert the difference between two timestamps
1708  * into integer seconds and microseconds
1709  *
1710  * This is typically used to calculate a wait timeout for select(2),
1711  * which explains the otherwise-odd choice of output format.
1712  *
1713  * Both inputs must be ordinary finite timestamps (in current usage,
1714  * they'll be results from GetCurrentTimestamp()).
1715  *
1716  * We expect start_time <= stop_time. If not, we return zeros,
1717  * since then we're already past the previously determined stop_time.
1718  */
1719 void
1721  long *secs, int *microsecs)
1722 {
1723  TimestampTz diff = stop_time - start_time;
1724 
1725  if (diff <= 0)
1726  {
1727  *secs = 0;
1728  *microsecs = 0;
1729  }
1730  else
1731  {
1732  *secs = (long) (diff / USECS_PER_SEC);
1733  *microsecs = (int) (diff % USECS_PER_SEC);
1734  }
1735 }
1736 
1737 /*
1738  * TimestampDifferenceMilliseconds -- convert the difference between two
1739  * timestamps into integer milliseconds
1740  *
1741  * This is typically used to calculate a wait timeout for WaitLatch()
1742  * or a related function. The choice of "long" as the result type
1743  * is to harmonize with that; furthermore, we clamp the result to at most
1744  * INT_MAX milliseconds, because that's all that WaitLatch() allows.
1745  *
1746  * We expect start_time <= stop_time. If not, we return zero,
1747  * since then we're already past the previously determined stop_time.
1748  *
1749  * Subtracting finite and infinite timestamps works correctly, returning
1750  * zero or INT_MAX as appropriate.
1751  *
1752  * Note we round up any fractional millisecond, since waiting for just
1753  * less than the intended timeout is undesirable.
1754  */
1755 long
1757 {
1758  TimestampTz diff;
1759 
1760  /* Deal with zero or negative elapsed time quickly. */
1761  if (start_time >= stop_time)
1762  return 0;
1763  /* To not fail with timestamp infinities, we must detect overflow. */
1764  if (pg_sub_s64_overflow(stop_time, start_time, &diff))
1765  return (long) INT_MAX;
1766  if (diff >= (INT_MAX * INT64CONST(1000) - 999))
1767  return (long) INT_MAX;
1768  else
1769  return (long) ((diff + 999) / 1000);
1770 }
1771 
1772 /*
1773  * TimestampDifferenceExceeds -- report whether the difference between two
1774  * timestamps is >= a threshold (expressed in milliseconds)
1775  *
1776  * Both inputs must be ordinary finite timestamps (in current usage,
1777  * they'll be results from GetCurrentTimestamp()).
1778  */
1779 bool
1781  TimestampTz stop_time,
1782  int msec)
1783 {
1784  TimestampTz diff = stop_time - start_time;
1785 
1786  return (diff >= msec * INT64CONST(1000));
1787 }
1788 
1789 /*
1790  * Convert a time_t to TimestampTz.
1791  *
1792  * We do not use time_t internally in Postgres, but this is provided for use
1793  * by functions that need to interpret, say, a stat(2) result.
1794  *
1795  * To avoid having the function's ABI vary depending on the width of time_t,
1796  * we declare the argument as pg_time_t, which is cast-compatible with
1797  * time_t but always 64 bits wide (unless the platform has no 64-bit type).
1798  * This detail should be invisible to callers, at least at source code level.
1799  */
1802 {
1803  TimestampTz result;
1804 
1805  result = (TimestampTz) tm -
1807  result *= USECS_PER_SEC;
1808 
1809  return result;
1810 }
1811 
1812 /*
1813  * Convert a TimestampTz to time_t.
1814  *
1815  * This too is just marginally useful, but some places need it.
1816  *
1817  * To avoid having the function's ABI vary depending on the width of time_t,
1818  * we declare the result as pg_time_t, which is cast-compatible with
1819  * time_t but always 64 bits wide (unless the platform has no 64-bit type).
1820  * This detail should be invisible to callers, at least at source code level.
1821  */
1822 pg_time_t
1824 {
1825  pg_time_t result;
1826 
1827  result = (pg_time_t) (t / USECS_PER_SEC +
1829 
1830  return result;
1831 }
1832 
1833 /*
1834  * Produce a C-string representation of a TimestampTz.
1835  *
1836  * This is mostly for use in emitting messages. The primary difference
1837  * from timestamptz_out is that we force the output format to ISO. Note
1838  * also that the result is in a static buffer, not pstrdup'd.
1839  *
1840  * See also pg_strftime.
1841  */
1842 const char *
1844 {
1845  static char buf[MAXDATELEN + 1];
1846  int tz;
1847  struct pg_tm tt,
1848  *tm = &tt;
1849  fsec_t fsec;
1850  const char *tzn;
1851 
1852  if (TIMESTAMP_NOT_FINITE(t))
1854  else if (timestamp2tm(t, &tz, tm, &fsec, &tzn, NULL) == 0)
1855  EncodeDateTime(tm, fsec, true, tz, tzn, USE_ISO_DATES, buf);
1856  else
1857  strlcpy(buf, "(timestamp out of range)", sizeof(buf));
1858 
1859  return buf;
1860 }
1861 
1862 
1863 void
1864 dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
1865 {
1866  TimeOffset time;
1867 
1868  time = jd;
1869 
1870  *hour = time / USECS_PER_HOUR;
1871  time -= (*hour) * USECS_PER_HOUR;
1872  *min = time / USECS_PER_MINUTE;
1873  time -= (*min) * USECS_PER_MINUTE;
1874  *sec = time / USECS_PER_SEC;
1875  *fsec = time - (*sec * USECS_PER_SEC);
1876 } /* dt2time() */
1877 
1878 
1879 /*
1880  * timestamp2tm() - Convert timestamp data type to POSIX time structure.
1881  *
1882  * Note that year is _not_ 1900-based, but is an explicit full value.
1883  * Also, month is one-based, _not_ zero-based.
1884  * Returns:
1885  * 0 on success
1886  * -1 on out of range
1887  *
1888  * If attimezone is NULL, the global timezone setting will be used.
1889  */
1890 int
1891 timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone)
1892 {
1893  Timestamp date;
1894  Timestamp time;
1895  pg_time_t utime;
1896 
1897  /* Use session timezone if caller asks for default */
1898  if (attimezone == NULL)
1899  attimezone = session_timezone;
1900 
1901  time = dt;
1902  TMODULO(time, date, USECS_PER_DAY);
1903 
1904  if (time < INT64CONST(0))
1905  {
1906  time += USECS_PER_DAY;
1907  date -= 1;
1908  }
1909 
1910  /* add offset to go from J2000 back to standard Julian date */
1912 
1913  /* Julian day routine does not work for negative Julian days */
1914  if (date < 0 || date > (Timestamp) INT_MAX)
1915  return -1;
1916 
1917  j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1918  dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
1919 
1920  /* Done if no TZ conversion wanted */
1921  if (tzp == NULL)
1922  {
1923  tm->tm_isdst = -1;
1924  tm->tm_gmtoff = 0;
1925  tm->tm_zone = NULL;
1926  if (tzn != NULL)
1927  *tzn = NULL;
1928  return 0;
1929  }
1930 
1931  /*
1932  * If the time falls within the range of pg_time_t, use pg_localtime() to
1933  * rotate to the local time zone.
1934  *
1935  * First, convert to an integral timestamp, avoiding possibly
1936  * platform-specific roundoff-in-wrong-direction errors, and adjust to
1937  * Unix epoch. Then see if we can convert to pg_time_t without loss. This
1938  * coding avoids hardwiring any assumptions about the width of pg_time_t,
1939  * so it should behave sanely on machines without int64.
1940  */
1941  dt = (dt - *fsec) / USECS_PER_SEC +
1943  utime = (pg_time_t) dt;
1944  if ((Timestamp) utime == dt)
1945  {
1946  struct pg_tm *tx = pg_localtime(&utime, attimezone);
1947 
1948  tm->tm_year = tx->tm_year + 1900;
1949  tm->tm_mon = tx->tm_mon + 1;
1950  tm->tm_mday = tx->tm_mday;
1951  tm->tm_hour = tx->tm_hour;
1952  tm->tm_min = tx->tm_min;
1953  tm->tm_sec = tx->tm_sec;
1954  tm->tm_isdst = tx->tm_isdst;
1955  tm->tm_gmtoff = tx->tm_gmtoff;
1956  tm->tm_zone = tx->tm_zone;
1957  *tzp = -tm->tm_gmtoff;
1958  if (tzn != NULL)
1959  *tzn = tm->tm_zone;
1960  }
1961  else
1962  {
1963  /*
1964  * When out of range of pg_time_t, treat as GMT
1965  */
1966  *tzp = 0;
1967  /* Mark this as *no* time zone available */
1968  tm->tm_isdst = -1;
1969  tm->tm_gmtoff = 0;
1970  tm->tm_zone = NULL;
1971  if (tzn != NULL)
1972  *tzn = NULL;
1973  }
1974 
1975  return 0;
1976 }
1977 
1978 
1979 /* tm2timestamp()
1980  * Convert a tm structure to a timestamp data type.
1981  * Note that year is _not_ 1900-based, but is an explicit full value.
1982  * Also, month is one-based, _not_ zero-based.
1983  *
1984  * Returns -1 on failure (value out of range).
1985  */
1986 int
1987 tm2timestamp(struct pg_tm *tm, fsec_t fsec, int *tzp, Timestamp *result)
1988 {
1989  TimeOffset date;
1990  TimeOffset time;
1991 
1992  /* Prevent overflow in Julian-day routines */
1994  {
1995  *result = 0; /* keep compiler quiet */
1996  return -1;
1997  }
1998 
2000  time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
2001 
2003  pg_add_s64_overflow(*result, time, result)))
2004  {
2005  *result = 0; /* keep compiler quiet */
2006  return -1;
2007  }
2008  if (tzp != NULL)
2009  *result = dt2local(*result, -(*tzp));
2010 
2011  /* final range check catches just-out-of-range timestamps */
2012  if (!IS_VALID_TIMESTAMP(*result))
2013  {
2014  *result = 0; /* keep compiler quiet */
2015  return -1;
2016  }
2017 
2018  return 0;
2019 }
2020 
2021 
2022 /* interval2itm()
2023  * Convert an Interval to a pg_itm structure.
2024  * Note: overflow is not possible, because the pg_itm fields are
2025  * wide enough for all possible conversion results.
2026  */
2027 void
2028 interval2itm(Interval span, struct pg_itm *itm)
2029 {
2030  TimeOffset time;
2031  TimeOffset tfrac;
2032 
2033  itm->tm_year = span.month / MONTHS_PER_YEAR;
2034  itm->tm_mon = span.month % MONTHS_PER_YEAR;
2035  itm->tm_mday = span.day;
2036  time = span.time;
2037 
2038  tfrac = time / USECS_PER_HOUR;
2039  time -= tfrac * USECS_PER_HOUR;
2040  itm->tm_hour = tfrac;
2041  tfrac = time / USECS_PER_MINUTE;
2042  time -= tfrac * USECS_PER_MINUTE;
2043  itm->tm_min = (int) tfrac;
2044  tfrac = time / USECS_PER_SEC;
2045  time -= tfrac * USECS_PER_SEC;
2046  itm->tm_sec = (int) tfrac;
2047  itm->tm_usec = (int) time;
2048 }
2049 
2050 /* itm2interval()
2051  * Convert a pg_itm structure to an Interval.
2052  * Returns 0 if OK, -1 on overflow.
2053  *
2054  * This is for use in computations expected to produce finite results. Any
2055  * inputs that lead to infinite results are treated as overflows.
2056  */
2057 int
2058 itm2interval(struct pg_itm *itm, Interval *span)
2059 {
2060  int64 total_months = (int64) itm->tm_year * MONTHS_PER_YEAR + itm->tm_mon;
2061 
2062  if (total_months > INT_MAX || total_months < INT_MIN)
2063  return -1;
2064  span->month = (int32) total_months;
2065  span->day = itm->tm_mday;
2067  &span->time))
2068  return -1;
2069  /* tm_min, tm_sec are 32 bits, so intermediate products can't overflow */
2070  if (pg_add_s64_overflow(span->time, itm->tm_min * USECS_PER_MINUTE,
2071  &span->time))
2072  return -1;
2073  if (pg_add_s64_overflow(span->time, itm->tm_sec * USECS_PER_SEC,
2074  &span->time))
2075  return -1;
2076  if (pg_add_s64_overflow(span->time, itm->tm_usec,
2077  &span->time))
2078  return -1;
2079  if (INTERVAL_NOT_FINITE(span))
2080  return -1;
2081  return 0;
2082 }
2083 
2084 /* itmin2interval()
2085  * Convert a pg_itm_in structure to an Interval.
2086  * Returns 0 if OK, -1 on overflow.
2087  *
2088  * Note: if the result is infinite, it is not treated as an overflow. This
2089  * avoids any dump/reload hazards from pre-17 databases that do not support
2090  * infinite intervals, but do allow finite intervals with all fields set to
2091  * INT_MIN/INT_MAX (outside the documented range). Such intervals will be
2092  * silently converted to +/-infinity. This may not be ideal, but seems
2093  * preferable to failure, and ought to be pretty unlikely in practice.
2094  */
2095 int
2096 itmin2interval(struct pg_itm_in *itm_in, Interval *span)
2097 {
2098  int64 total_months = (int64) itm_in->tm_year * MONTHS_PER_YEAR + itm_in->tm_mon;
2099 
2100  if (total_months > INT_MAX || total_months < INT_MIN)
2101  return -1;
2102  span->month = (int32) total_months;
2103  span->day = itm_in->tm_mday;
2104  span->time = itm_in->tm_usec;
2105  return 0;
2106 }
2107 
2108 static TimeOffset
2109 time2t(const int hour, const int min, const int sec, const fsec_t fsec)
2110 {
2111  return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
2112 }
2113 
2114 static Timestamp
2115 dt2local(Timestamp dt, int timezone)
2116 {
2117  dt -= (timezone * USECS_PER_SEC);
2118  return dt;
2119 }
2120 
2121 
2122 /*****************************************************************************
2123  * PUBLIC ROUTINES *
2124  *****************************************************************************/
2125 
2126 
2127 Datum
2129 {
2131 
2133 }
2134 
2135 Datum
2137 {
2139 
2141 }
2142 
2143 
2144 /*----------------------------------------------------------
2145  * Relational operators for timestamp.
2146  *---------------------------------------------------------*/
2147 
2148 void
2150 {
2151  struct pg_tm *t0;
2152  pg_time_t epoch = 0;
2153 
2154  t0 = pg_gmtime(&epoch);
2155 
2156  if (t0 == NULL)
2157  elog(ERROR, "could not convert epoch to timestamp: %m");
2158 
2159  tm->tm_year = t0->tm_year;
2160  tm->tm_mon = t0->tm_mon;
2161  tm->tm_mday = t0->tm_mday;
2162  tm->tm_hour = t0->tm_hour;
2163  tm->tm_min = t0->tm_min;
2164  tm->tm_sec = t0->tm_sec;
2165 
2166  tm->tm_year += 1900;
2167  tm->tm_mon++;
2168 }
2169 
2170 Timestamp
2172 {
2173  Timestamp dt;
2174  struct pg_tm tt,
2175  *tm = &tt;
2176 
2177  GetEpochTime(tm);
2178  /* we don't bother to test for failure ... */
2179  tm2timestamp(tm, 0, NULL, &dt);
2180 
2181  return dt;
2182 } /* SetEpochTimestamp() */
2183 
2184 /*
2185  * We are currently sharing some code between timestamp and timestamptz.
2186  * The comparison functions are among them. - thomas 2001-09-25
2187  *
2188  * timestamp_relop - is timestamp1 relop timestamp2
2189  */
2190 int
2192 {
2193  return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
2194 }
2195 
2196 Datum
2198 {
2199  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2200  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2201 
2202  PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
2203 }
2204 
2205 Datum
2207 {
2208  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2209  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2210 
2211  PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
2212 }
2213 
2214 Datum
2216 {
2217  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2218  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2219 
2220  PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
2221 }
2222 
2223 Datum
2225 {
2226  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2227  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2228 
2229  PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
2230 }
2231 
2232 Datum
2234 {
2235  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2236  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2237 
2238  PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
2239 }
2240 
2241 Datum
2243 {
2244  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2245  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2246 
2247  PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
2248 }
2249 
2250 Datum
2252 {
2253  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2254  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2255 
2257 }
2258 
2259 #if SIZEOF_DATUM < 8
2260 /* note: this is used for timestamptz also */
2261 static int
2263 {
2266 
2267  return timestamp_cmp_internal(a, b);
2268 }
2269 #endif
2270 
2271 Datum
2273 {
2275 
2276 #if SIZEOF_DATUM >= 8
2277 
2278  /*
2279  * If this build has pass-by-value timestamps, then we can use a standard
2280  * comparator function.
2281  */
2282  ssup->comparator = ssup_datum_signed_cmp;
2283 #else
2284  ssup->comparator = timestamp_fastcmp;
2285 #endif
2286  PG_RETURN_VOID();
2287 }
2288 
2289 Datum
2291 {
2292  return hashint8(fcinfo);
2293 }
2294 
2295 Datum
2297 {
2298  return hashint8extended(fcinfo);
2299 }
2300 
2301 Datum
2303 {
2304  return hashint8(fcinfo);
2305 }
2306 
2307 Datum
2309 {
2310  return hashint8extended(fcinfo);
2311 }
2312 
2313 /*
2314  * Cross-type comparison functions for timestamp vs timestamptz
2315  */
2316 
2317 int32
2319 {
2320  TimestampTz dt1;
2321  int overflow;
2322 
2323  dt1 = timestamp2timestamptz_opt_overflow(timestampVal, &overflow);
2324  if (overflow > 0)
2325  {
2326  /* dt1 is larger than any finite timestamp, but less than infinity */
2327  return TIMESTAMP_IS_NOEND(dt2) ? -1 : +1;
2328  }
2329  if (overflow < 0)
2330  {
2331  /* dt1 is less than any finite timestamp, but more than -infinity */
2332  return TIMESTAMP_IS_NOBEGIN(dt2) ? +1 : -1;
2333  }
2334 
2335  return timestamptz_cmp_internal(dt1, dt2);
2336 }
2337 
2338 Datum
2340 {
2341  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2343 
2344  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) == 0);
2345 }
2346 
2347 Datum
2349 {
2350  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2352 
2353  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) != 0);
2354 }
2355 
2356 Datum
2358 {
2359  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2361 
2362  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) < 0);
2363 }
2364 
2365 Datum
2367 {
2368  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2370 
2371  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) > 0);
2372 }
2373 
2374 Datum
2376 {
2377  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2379 
2380  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) <= 0);
2381 }
2382 
2383 Datum
2385 {
2386  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2388 
2389  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt2) >= 0);
2390 }
2391 
2392 Datum
2394 {
2395  Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
2397 
2399 }
2400 
2401 Datum
2403 {
2405  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2406 
2407  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) == 0);
2408 }
2409 
2410 Datum
2412 {
2414  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2415 
2416  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) != 0);
2417 }
2418 
2419 Datum
2421 {
2423  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2424 
2425  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) > 0);
2426 }
2427 
2428 Datum
2430 {
2432  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2433 
2434  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) < 0);
2435 }
2436 
2437 Datum
2439 {
2441  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2442 
2443  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) >= 0);
2444 }
2445 
2446 Datum
2448 {
2450  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2451 
2452  PG_RETURN_BOOL(timestamp_cmp_timestamptz_internal(timestampVal, dt1) <= 0);
2453 }
2454 
2455 Datum
2457 {
2459  Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
2460 
2462 }
2463 
2464 
2465 /*
2466  * interval_relop - is interval1 relop interval2
2467  *
2468  * Interval comparison is based on converting interval values to a linear
2469  * representation expressed in the units of the time field (microseconds,
2470  * in the case of integer timestamps) with days assumed to be always 24 hours
2471  * and months assumed to be always 30 days. To avoid overflow, we need a
2472  * wider-than-int64 datatype for the linear representation, so use INT128.
2473  */
2474 
2475 static inline INT128
2477 {
2478  INT128 span;
2479  int64 days;
2480 
2481  /*
2482  * Combine the month and day fields into an integral number of days.
2483  * Because the inputs are int32, int64 arithmetic suffices here.
2484  */
2485  days = interval->month * INT64CONST(30);
2486  days += interval->day;
2487 
2488  /* Widen time field to 128 bits */
2489  span = int64_to_int128(interval->time);
2490 
2491  /* Scale up days to microseconds, forming a 128-bit product */
2493 
2494  return span;
2495 }
2496 
2497 static int
2498 interval_cmp_internal(const Interval *interval1, const Interval *interval2)
2499 {
2500  INT128 span1 = interval_cmp_value(interval1);
2501  INT128 span2 = interval_cmp_value(interval2);
2502 
2503  return int128_compare(span1, span2);
2504 }
2505 
2506 static int
2508 {
2510  INT128 zero = int64_to_int128(0);
2511 
2512  return int128_compare(span, zero);
2513 }
2514 
2515 Datum
2517 {
2518  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2519  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2520 
2521  PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0);
2522 }
2523 
2524 Datum
2526 {
2527  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2528  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2529 
2530  PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) != 0);
2531 }
2532 
2533 Datum
2535 {
2536  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2537  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2538 
2539  PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) < 0);
2540 }
2541 
2542 Datum
2544 {
2545  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2546  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2547 
2548  PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) > 0);
2549 }
2550 
2551 Datum
2553 {
2554  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2555  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2556 
2557  PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) <= 0);
2558 }
2559 
2560 Datum
2562 {
2563  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2564  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2565 
2566  PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) >= 0);
2567 }
2568 
2569 Datum
2571 {
2572  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
2573  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
2574 
2575  PG_RETURN_INT32(interval_cmp_internal(interval1, interval2));
2576 }
2577 
2578 /*
2579  * Hashing for intervals
2580  *
2581  * We must produce equal hashvals for values that interval_cmp_internal()
2582  * considers equal. So, compute the net span the same way it does,
2583  * and then hash that.
2584  */
2585 Datum
2587 {
2590  int64 span64;
2591 
2592  /*
2593  * Use only the least significant 64 bits for hashing. The upper 64 bits
2594  * seldom add any useful information, and besides we must do it like this
2595  * for compatibility with hashes calculated before use of INT128 was
2596  * introduced.
2597  */
2598  span64 = int128_to_int64(span);
2599 
2601 }
2602 
2603 Datum
2605 {
2608  int64 span64;
2609 
2610  /* Same approach as interval_hash */
2611  span64 = int128_to_int64(span);
2612 
2614  PG_GETARG_DATUM(1));
2615 }
2616 
2617 /* overlaps_timestamp() --- implements the SQL OVERLAPS operator.
2618  *
2619  * Algorithm is per SQL spec. This is much harder than you'd think
2620  * because the spec requires us to deliver a non-null answer in some cases
2621  * where some of the inputs are null.
2622  */
2623 Datum
2625 {
2626  /*
2627  * The arguments are Timestamps, but we leave them as generic Datums to
2628  * avoid unnecessary conversions between value and reference forms --- not
2629  * to mention possible dereferences of null pointers.
2630  */
2631  Datum ts1 = PG_GETARG_DATUM(0);
2632  Datum te1 = PG_GETARG_DATUM(1);
2633  Datum ts2 = PG_GETARG_DATUM(2);
2634  Datum te2 = PG_GETARG_DATUM(3);
2635  bool ts1IsNull = PG_ARGISNULL(0);
2636  bool te1IsNull = PG_ARGISNULL(1);
2637  bool ts2IsNull = PG_ARGISNULL(2);
2638  bool te2IsNull = PG_ARGISNULL(3);
2639 
2640 #define TIMESTAMP_GT(t1,t2) \
2641  DatumGetBool(DirectFunctionCall2(timestamp_gt,t1,t2))
2642 #define TIMESTAMP_LT(t1,t2) \
2643  DatumGetBool(DirectFunctionCall2(timestamp_lt,t1,t2))
2644 
2645  /*
2646  * If both endpoints of interval 1 are null, the result is null (unknown).
2647  * If just one endpoint is null, take ts1 as the non-null one. Otherwise,
2648  * take ts1 as the lesser endpoint.
2649  */
2650  if (ts1IsNull)
2651  {
2652  if (te1IsNull)
2653  PG_RETURN_NULL();
2654  /* swap null for non-null */
2655  ts1 = te1;
2656  te1IsNull = true;
2657  }
2658  else if (!te1IsNull)
2659  {
2660  if (TIMESTAMP_GT(ts1, te1))
2661  {
2662  Datum tt = ts1;
2663 
2664  ts1 = te1;
2665  te1 = tt;
2666  }
2667  }
2668 
2669  /* Likewise for interval 2. */
2670  if (ts2IsNull)
2671  {
2672  if (te2IsNull)
2673  PG_RETURN_NULL();
2674  /* swap null for non-null */
2675  ts2 = te2;
2676  te2IsNull = true;
2677  }
2678  else if (!te2IsNull)
2679  {
2680  if (TIMESTAMP_GT(ts2, te2))
2681  {
2682  Datum tt = ts2;
2683 
2684  ts2 = te2;
2685  te2 = tt;
2686  }
2687  }
2688 
2689  /*
2690  * At this point neither ts1 nor ts2 is null, so we can consider three
2691  * cases: ts1 > ts2, ts1 < ts2, ts1 = ts2
2692  */
2693  if (TIMESTAMP_GT(ts1, ts2))
2694  {
2695  /*
2696  * This case is ts1 < te2 OR te1 < te2, which may look redundant but
2697  * in the presence of nulls it's not quite completely so.
2698  */
2699  if (te2IsNull)
2700  PG_RETURN_NULL();
2701  if (TIMESTAMP_LT(ts1, te2))
2702  PG_RETURN_BOOL(true);
2703  if (te1IsNull)
2704  PG_RETURN_NULL();
2705 
2706  /*
2707  * If te1 is not null then we had ts1 <= te1 above, and we just found
2708  * ts1 >= te2, hence te1 >= te2.
2709  */
2710  PG_RETURN_BOOL(false);
2711  }
2712  else if (TIMESTAMP_LT(ts1, ts2))
2713  {
2714  /* This case is ts2 < te1 OR te2 < te1 */
2715  if (te1IsNull)
2716  PG_RETURN_NULL();
2717  if (TIMESTAMP_LT(ts2, te1))
2718  PG_RETURN_BOOL(true);
2719  if (te2IsNull)
2720  PG_RETURN_NULL();
2721 
2722  /*
2723  * If te2 is not null then we had ts2 <= te2 above, and we just found
2724  * ts2 >= te1, hence te2 >= te1.
2725  */
2726  PG_RETURN_BOOL(false);
2727  }
2728  else
2729  {
2730  /*
2731  * For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a
2732  * rather silly way of saying "true if both are non-null, else null".
2733  */
2734  if (te1IsNull || te2IsNull)
2735  PG_RETURN_NULL();
2736  PG_RETURN_BOOL(true);
2737  }
2738 
2739 #undef TIMESTAMP_GT
2740 #undef TIMESTAMP_LT
2741 }
2742 
2743 
2744 /*----------------------------------------------------------
2745  * "Arithmetic" operators on date/times.
2746  *---------------------------------------------------------*/
2747 
2748 Datum
2750 {
2751  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2752  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2753  Timestamp result;
2754 
2755  /* use timestamp_cmp_internal to be sure this agrees with comparisons */
2756  if (timestamp_cmp_internal(dt1, dt2) < 0)
2757  result = dt1;
2758  else
2759  result = dt2;
2760  PG_RETURN_TIMESTAMP(result);
2761 }
2762 
2763 Datum
2765 {
2766  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2767  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2768  Timestamp result;
2769 
2770  if (timestamp_cmp_internal(dt1, dt2) > 0)
2771  result = dt1;
2772  else
2773  result = dt2;
2774  PG_RETURN_TIMESTAMP(result);
2775 }
2776 
2777 
2778 Datum
2780 {
2781  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
2782  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
2783  Interval *result;
2784 
2785  result = (Interval *) palloc(sizeof(Interval));
2786 
2787  /*
2788  * Handle infinities.
2789  *
2790  * We treat anything that amounts to "infinity - infinity" as an error,
2791  * since the interval type has nothing equivalent to NaN.
2792  */
2793  if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2))
2794  {
2795  if (TIMESTAMP_IS_NOBEGIN(dt1))
2796  {
2797  if (TIMESTAMP_IS_NOBEGIN(dt2))
2798  ereport(ERROR,
2799  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
2800  errmsg("interval out of range")));
2801  else
2802  INTERVAL_NOBEGIN(result);
2803  }
2804  else if (TIMESTAMP_IS_NOEND(dt1))
2805  {
2806  if (TIMESTAMP_IS_NOEND(dt2))
2807  ereport(ERROR,
2808  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
2809  errmsg("interval out of range")));
2810  else
2811  INTERVAL_NOEND(result);
2812  }
2813  else if (TIMESTAMP_IS_NOBEGIN(dt2))
2814  INTERVAL_NOEND(result);
2815  else /* TIMESTAMP_IS_NOEND(dt2) */
2816  INTERVAL_NOBEGIN(result);
2817 
2818  PG_RETURN_INTERVAL_P(result);
2819  }
2820 
2821  if (unlikely(pg_sub_s64_overflow(dt1, dt2, &result->time)))
2822  ereport(ERROR,
2823  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
2824  errmsg("interval out of range")));
2825 
2826  result->month = 0;
2827  result->day = 0;
2828 
2829  /*----------
2830  * This is wrong, but removing it breaks a lot of regression tests.
2831  * For example:
2832  *
2833  * test=> SET timezone = 'EST5EDT';
2834  * test=> SELECT
2835  * test-> ('2005-10-30 13:22:00-05'::timestamptz -
2836  * test(> '2005-10-29 13:22:00-04'::timestamptz);
2837  * ?column?
2838  * ----------------
2839  * 1 day 01:00:00
2840  * (1 row)
2841  *
2842  * so adding that to the first timestamp gets:
2843  *
2844  * test=> SELECT
2845  * test-> ('2005-10-29 13:22:00-04'::timestamptz +
2846  * test(> ('2005-10-30 13:22:00-05'::timestamptz -
2847  * test(> '2005-10-29 13:22:00-04'::timestamptz)) at time zone 'EST';
2848  * timezone
2849  * --------------------
2850  * 2005-10-30 14:22:00
2851  * (1 row)
2852  *----------
2853  */
2855  IntervalPGetDatum(result)));
2856 
2857  PG_RETURN_INTERVAL_P(result);
2858 }
2859 
2860 /*
2861  * interval_justify_interval()
2862  *
2863  * Adjust interval so 'month', 'day', and 'time' portions are within
2864  * customary bounds. Specifically:
2865  *
2866  * 0 <= abs(time) < 24 hours
2867  * 0 <= abs(day) < 30 days
2868  *
2869  * Also, the sign bit on all three fields is made equal, so either
2870  * all three fields are negative or all are positive.
2871  */
2872 Datum
2874 {
2875  Interval *span = PG_GETARG_INTERVAL_P(0);
2876  Interval *result;
2877  TimeOffset wholeday;
2878  int32 wholemonth;
2879 
2880  result = (Interval *) palloc(sizeof(Interval));
2881  result->month = span->month;
2882  result->day = span->day;
2883  result->time = span->time;
2884 
2885  /* do nothing for infinite intervals */
2886  if (INTERVAL_NOT_FINITE(result))
2887  PG_RETURN_INTERVAL_P(result);
2888 
2889  /* pre-justify days if it might prevent overflow */
2890  if ((result->day > 0 && result->time > 0) ||
2891  (result->day < 0 && result->time < 0))
2892  {
2893  wholemonth = result->day / DAYS_PER_MONTH;
2894  result->day -= wholemonth * DAYS_PER_MONTH;
2895  if (pg_add_s32_overflow(result->month, wholemonth, &result->month))
2896  ereport(ERROR,
2897  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
2898  errmsg("interval out of range")));
2899  }
2900 
2901  /*
2902  * Since TimeOffset is int64, abs(wholeday) can't exceed about 1.07e8. If
2903  * we pre-justified then abs(result->day) is less than DAYS_PER_MONTH, so
2904  * this addition can't overflow. If we didn't pre-justify, then day and
2905  * time are of different signs, so it still can't overflow.
2906  */
2907  TMODULO(result->time, wholeday, USECS_PER_DAY);
2908  result->day += wholeday;
2909 
2910  wholemonth = result->day / DAYS_PER_MONTH;
2911  result->day -= wholemonth * DAYS_PER_MONTH;
2912  if (pg_add_s32_overflow(result->month, wholemonth, &result->month))
2913  ereport(ERROR,
2914  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
2915  errmsg("interval out of range")));
2916 
2917  if (result->month > 0 &&
2918  (result->day < 0 || (result->day == 0 && result->time < 0)))
2919  {
2920  result->day += DAYS_PER_MONTH;
2921  result->month--;
2922  }
2923  else if (result->month < 0 &&
2924  (result->day > 0 || (result->day == 0 && result->time > 0)))
2925  {
2926  result->day -= DAYS_PER_MONTH;
2927  result->month++;
2928  }
2929 
2930  if (result->day > 0 && result->time < 0)
2931  {
2932  result->time += USECS_PER_DAY;
2933  result->day--;
2934  }
2935  else if (result->day < 0 && result->time > 0)
2936  {
2937  result->time -= USECS_PER_DAY;
2938  result->day++;
2939  }
2940 
2941  PG_RETURN_INTERVAL_P(result);
2942 }
2943 
2944 /*
2945  * interval_justify_hours()
2946  *
2947  * Adjust interval so 'time' contains less than a whole day, adding
2948  * the excess to 'day'. This is useful for
2949  * situations (such as non-TZ) where '1 day' = '24 hours' is valid,
2950  * e.g. interval subtraction and division.
2951  */
2952 Datum
2954 {
2955  Interval *span = PG_GETARG_INTERVAL_P(0);
2956  Interval *result;
2957  TimeOffset wholeday;
2958 
2959  result = (Interval *) palloc(sizeof(Interval));
2960  result->month = span->month;
2961  result->day = span->day;
2962  result->time = span->time;
2963 
2964  /* do nothing for infinite intervals */
2965  if (INTERVAL_NOT_FINITE(result))
2966  PG_RETURN_INTERVAL_P(result);
2967 
2968  TMODULO(result->time, wholeday, USECS_PER_DAY);
2969  if (pg_add_s32_overflow(result->day, wholeday, &result->day))
2970  ereport(ERROR,
2971  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
2972  errmsg("interval out of range")));
2973 
2974  if (result->day > 0 && result->time < 0)
2975  {
2976  result->time += USECS_PER_DAY;
2977  result->day--;
2978  }
2979  else if (result->day < 0 && result->time > 0)
2980  {
2981  result->time -= USECS_PER_DAY;
2982  result->day++;
2983  }
2984 
2985  PG_RETURN_INTERVAL_P(result);
2986 }
2987 
2988 /*
2989  * interval_justify_days()
2990  *
2991  * Adjust interval so 'day' contains less than 30 days, adding
2992  * the excess to 'month'.
2993  */
2994 Datum
2996 {
2997  Interval *span = PG_GETARG_INTERVAL_P(0);
2998  Interval *result;
2999  int32 wholemonth;
3000 
3001  result = (Interval *) palloc(sizeof(Interval));
3002  result->month = span->month;
3003  result->day = span->day;
3004  result->time = span->time;
3005 
3006  /* do nothing for infinite intervals */
3007  if (INTERVAL_NOT_FINITE(result))
3008  PG_RETURN_INTERVAL_P(result);
3009 
3010  wholemonth = result->day / DAYS_PER_MONTH;
3011  result->day -= wholemonth * DAYS_PER_MONTH;
3012  if (pg_add_s32_overflow(result->month, wholemonth, &result->month))
3013  ereport(ERROR,
3014  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3015  errmsg("interval out of range")));
3016 
3017  if (result->month > 0 && result->day < 0)
3018  {
3019  result->day += DAYS_PER_MONTH;
3020  result->month--;
3021  }
3022  else if (result->month < 0 && result->day > 0)
3023  {
3024  result->day -= DAYS_PER_MONTH;
3025  result->month++;
3026  }
3027 
3028  PG_RETURN_INTERVAL_P(result);
3029 }
3030 
3031 /* timestamp_pl_interval()
3032  * Add an interval to a timestamp data type.
3033  * Note that interval has provisions for qualitative year/month and day
3034  * units, so try to do the right thing with them.
3035  * To add a month, increment the month, and use the same day of month.
3036  * Then, if the next month has fewer days, set the day of month
3037  * to the last day of month.
3038  * To add a day, increment the mday, and use the same time of day.
3039  * Lastly, add in the "quantitative time".
3040  */
3041 Datum
3043 {
3045  Interval *span = PG_GETARG_INTERVAL_P(1);
3046  Timestamp result;
3047 
3048  /*
3049  * Handle infinities.
3050  *
3051  * We treat anything that amounts to "infinity - infinity" as an error,
3052  * since the timestamp type has nothing equivalent to NaN.
3053  */
3054  if (INTERVAL_IS_NOBEGIN(span))
3055  {
3057  ereport(ERROR,
3058  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3059  errmsg("timestamp out of range")));
3060  else
3061  TIMESTAMP_NOBEGIN(result);
3062  }
3063  else if (INTERVAL_IS_NOEND(span))
3064  {
3066  ereport(ERROR,
3067  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3068  errmsg("timestamp out of range")));
3069  else
3070  TIMESTAMP_NOEND(result);
3071  }
3072  else if (TIMESTAMP_NOT_FINITE(timestamp))
3073  result = timestamp;
3074  else
3075  {
3076  if (span->month != 0)
3077  {
3078  struct pg_tm tt,
3079  *tm = &tt;
3080  fsec_t fsec;
3081 
3082  if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
3083  ereport(ERROR,
3084  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3085  errmsg("timestamp out of range")));
3086 
3087  if (pg_add_s32_overflow(tm->tm_mon, span->month, &tm->tm_mon))
3088  ereport(ERROR,
3089  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3090  errmsg("timestamp out of range")));
3091  if (tm->tm_mon > MONTHS_PER_YEAR)
3092  {
3093  tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
3094  tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
3095  }
3096  else if (tm->tm_mon < 1)
3097  {
3098  tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
3100  }
3101 
3102  /* adjust for end of month boundary problems... */
3103  if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
3104  tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
3105 
3106  if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
3107  ereport(ERROR,
3108  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3109  errmsg("timestamp out of range")));
3110  }
3111 
3112  if (span->day != 0)
3113  {
3114  struct pg_tm tt,
3115  *tm = &tt;
3116  fsec_t fsec;
3117  int julian;
3118 
3119  if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
3120  ereport(ERROR,
3121  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3122  errmsg("timestamp out of range")));
3123 
3124  /*
3125  * Add days by converting to and from Julian. We need an overflow
3126  * check here since j2date expects a non-negative integer input.
3127  */
3128  julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
3129  if (pg_add_s32_overflow(julian, span->day, &julian) ||
3130  julian < 0)
3131  ereport(ERROR,
3132  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3133  errmsg("timestamp out of range")));
3134  j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
3135 
3136  if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
3137  ereport(ERROR,
3138  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3139  errmsg("timestamp out of range")));
3140  }
3141 
3143  ereport(ERROR,
3144  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3145  errmsg("timestamp out of range")));
3146 
3148  ereport(ERROR,
3149  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3150  errmsg("timestamp out of range")));
3151 
3152  result = timestamp;
3153  }
3154 
3155  PG_RETURN_TIMESTAMP(result);
3156 }
3157 
3158 Datum
3160 {
3162  Interval *span = PG_GETARG_INTERVAL_P(1);
3163  Interval tspan;
3164 
3165  interval_um_internal(span, &tspan);
3166 
3169  PointerGetDatum(&tspan));
3170 }
3171 
3172 
3173 /* timestamptz_pl_interval_internal()
3174  * Add an interval to a timestamptz, in the given (or session) timezone.
3175  *
3176  * Note that interval has provisions for qualitative year/month and day
3177  * units, so try to do the right thing with them.
3178  * To add a month, increment the month, and use the same day of month.
3179  * Then, if the next month has fewer days, set the day of month
3180  * to the last day of month.
3181  * To add a day, increment the mday, and use the same time of day.
3182  * Lastly, add in the "quantitative time".
3183  */
3184 static TimestampTz
3186  Interval *span,
3187  pg_tz *attimezone)
3188 {
3189  TimestampTz result;
3190  int tz;
3191 
3192  /*
3193  * Handle infinities.
3194  *
3195  * We treat anything that amounts to "infinity - infinity" as an error,
3196  * since the timestamptz type has nothing equivalent to NaN.
3197  */
3198  if (INTERVAL_IS_NOBEGIN(span))
3199  {
3201  ereport(ERROR,
3202  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3203  errmsg("timestamp out of range")));
3204  else
3205  TIMESTAMP_NOBEGIN(result);
3206  }
3207  else if (INTERVAL_IS_NOEND(span))
3208  {
3210  ereport(ERROR,
3211  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3212  errmsg("timestamp out of range")));
3213  else
3214  TIMESTAMP_NOEND(result);
3215  }
3216  else if (TIMESTAMP_NOT_FINITE(timestamp))
3217  result = timestamp;
3218  else
3219  {
3220  /* Use session timezone if caller asks for default */
3221  if (attimezone == NULL)
3222  attimezone = session_timezone;
3223 
3224  if (span->month != 0)
3225  {
3226  struct pg_tm tt,
3227  *tm = &tt;
3228  fsec_t fsec;
3229 
3230  if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, attimezone) != 0)
3231  ereport(ERROR,
3232  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3233  errmsg("timestamp out of range")));
3234 
3235  if (pg_add_s32_overflow(tm->tm_mon, span->month, &tm->tm_mon))
3236  ereport(ERROR,
3237  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3238  errmsg("timestamp out of range")));
3239  if (tm->tm_mon > MONTHS_PER_YEAR)
3240  {
3241  tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
3242  tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
3243  }
3244  else if (tm->tm_mon < 1)
3245  {
3246  tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
3248  }
3249 
3250  /* adjust for end of month boundary problems... */
3251  if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
3252  tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
3253 
3254  tz = DetermineTimeZoneOffset(tm, attimezone);
3255 
3256  if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
3257  ereport(ERROR,
3258  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3259  errmsg("timestamp out of range")));
3260  }
3261 
3262  if (span->day != 0)
3263  {
3264  struct pg_tm tt,
3265  *tm = &tt;
3266  fsec_t fsec;
3267  int julian;
3268 
3269  if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, attimezone) != 0)
3270  ereport(ERROR,
3271  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3272  errmsg("timestamp out of range")));
3273 
3274  /*
3275  * Add days by converting to and from Julian. We need an overflow
3276  * check here since j2date expects a non-negative integer input.
3277  * In practice though, it will give correct answers for small
3278  * negative Julian dates; we should allow -1 to avoid
3279  * timezone-dependent failures, as discussed in timestamp.h.
3280  */
3281  julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
3282  if (pg_add_s32_overflow(julian, span->day, &julian) ||
3283  julian < -1)
3284  ereport(ERROR,
3285  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3286  errmsg("timestamp out of range")));
3287  j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
3288 
3289  tz = DetermineTimeZoneOffset(tm, attimezone);
3290 
3291  if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
3292  ereport(ERROR,
3293  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3294  errmsg("timestamp out of range")));
3295  }
3296 
3298  ereport(ERROR,
3299  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3300  errmsg("timestamp out of range")));
3301 
3303  ereport(ERROR,
3304  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3305  errmsg("timestamp out of range")));
3306 
3307  result = timestamp;
3308  }
3309 
3310  return result;
3311 }
3312 
3313 /* timestamptz_mi_interval_internal()
3314  * As above, but subtract the interval.
3315  */
3316 static TimestampTz
3318  Interval *span,
3319  pg_tz *attimezone)
3320 {
3321  Interval tspan;
3322 
3323  interval_um_internal(span, &tspan);
3324 
3325  return timestamptz_pl_interval_internal(timestamp, &tspan, attimezone);
3326 }
3327 
3328 /* timestamptz_pl_interval()
3329  * Add an interval to a timestamptz, in the session timezone.
3330  */
3331 Datum
3333 {
3335  Interval *span = PG_GETARG_INTERVAL_P(1);
3336 
3338 }
3339 
3340 Datum
3342 {
3344  Interval *span = PG_GETARG_INTERVAL_P(1);
3345 
3347 }
3348 
3349 /* timestamptz_pl_interval_at_zone()
3350  * Add an interval to a timestamptz, in the specified timezone.
3351  */
3352 Datum
3354 {
3356  Interval *span = PG_GETARG_INTERVAL_P(1);
3357  text *zone = PG_GETARG_TEXT_PP(2);
3358  pg_tz *attimezone = lookup_timezone(zone);
3359 
3361 }
3362 
3363 Datum
3365 {
3367  Interval *span = PG_GETARG_INTERVAL_P(1);
3368  text *zone = PG_GETARG_TEXT_PP(2);
3369  pg_tz *attimezone = lookup_timezone(zone);
3370 
3372 }
3373 
3374 /* interval_um_internal()
3375  * Negate an interval.
3376  */
3377 static void
3379 {
3381  INTERVAL_NOEND(result);
3382  else if (INTERVAL_IS_NOEND(interval))
3383  INTERVAL_NOBEGIN(result);
3384  else
3385  {
3386  /* Negate each field, guarding against overflow */
3387  if (pg_sub_s64_overflow(INT64CONST(0), interval->time, &result->time) ||
3388  pg_sub_s32_overflow(0, interval->day, &result->day) ||
3389  pg_sub_s32_overflow(0, interval->month, &result->month) ||
3390  INTERVAL_NOT_FINITE(result))
3391  ereport(ERROR,
3392  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3393  errmsg("interval out of range")));
3394  }
3395 }
3396 
3397 Datum
3399 {
3401  Interval *result;
3402 
3403  result = (Interval *) palloc(sizeof(Interval));
3404  interval_um_internal(interval, result);
3405 
3406  PG_RETURN_INTERVAL_P(result);
3407 }
3408 
3409 
3410 Datum
3412 {
3413  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
3414  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
3415  Interval *result;
3416 
3417  /* use interval_cmp_internal to be sure this agrees with comparisons */
3418  if (interval_cmp_internal(interval1, interval2) < 0)
3419  result = interval1;
3420  else
3421  result = interval2;
3422  PG_RETURN_INTERVAL_P(result);
3423 }
3424 
3425 Datum
3427 {
3428  Interval *interval1 = PG_GETARG_INTERVAL_P(0);
3429  Interval *interval2 = PG_GETARG_INTERVAL_P(1);
3430  Interval *result;
3431 
3432  if (interval_cmp_internal(interval1, interval2) > 0)
3433  result = interval1;
3434  else
3435  result = interval2;
3436  PG_RETURN_INTERVAL_P(result);
3437 }
3438 
3439 static void
3440 finite_interval_pl(const Interval *span1, const Interval *span2, Interval *result)
3441 {
3442  Assert(!INTERVAL_NOT_FINITE(span1));
3443  Assert(!INTERVAL_NOT_FINITE(span2));
3444 
3445  if (pg_add_s32_overflow(span1->month, span2->month, &result->month) ||
3446  pg_add_s32_overflow(span1->day, span2->day, &result->day) ||
3447  pg_add_s64_overflow(span1->time, span2->time, &result->time) ||
3448  INTERVAL_NOT_FINITE(result))
3449  ereport(ERROR,
3450  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3451  errmsg("interval out of range")));
3452 }
3453 
3454 Datum
3456 {
3457  Interval *span1 = PG_GETARG_INTERVAL_P(0);
3458  Interval *span2 = PG_GETARG_INTERVAL_P(1);
3459  Interval *result;
3460 
3461  result = (Interval *) palloc(sizeof(Interval));
3462 
3463  /*
3464  * Handle infinities.
3465  *
3466  * We treat anything that amounts to "infinity - infinity" as an error,
3467  * since the interval type has nothing equivalent to NaN.
3468  */
3469  if (INTERVAL_IS_NOBEGIN(span1))
3470  {
3471  if (INTERVAL_IS_NOEND(span2))
3472  ereport(ERROR,
3473  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3474  errmsg("interval out of range")));
3475  else
3476  INTERVAL_NOBEGIN(result);
3477  }
3478  else if (INTERVAL_IS_NOEND(span1))
3479  {
3480  if (INTERVAL_IS_NOBEGIN(span2))
3481  ereport(ERROR,
3482  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3483  errmsg("interval out of range")));
3484  else
3485  INTERVAL_NOEND(result);
3486  }
3487  else if (INTERVAL_NOT_FINITE(span2))
3488  memcpy(result, span2, sizeof(Interval));
3489  else
3490  finite_interval_pl(span1, span2, result);
3491 
3492  PG_RETURN_INTERVAL_P(result);
3493 }
3494 
3495 static void
3496 finite_interval_mi(const Interval *span1, const Interval *span2, Interval *result)
3497 {
3498  Assert(!INTERVAL_NOT_FINITE(span1));
3499  Assert(!INTERVAL_NOT_FINITE(span2));
3500 
3501  if (pg_sub_s32_overflow(span1->month, span2->month, &result->month) ||
3502  pg_sub_s32_overflow(span1->day, span2->day, &result->day) ||
3503  pg_sub_s64_overflow(span1->time, span2->time, &result->time) ||
3504  INTERVAL_NOT_FINITE(result))
3505  ereport(ERROR,
3506  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3507  errmsg("interval out of range")));
3508 }
3509 
3510 Datum
3512 {
3513  Interval *span1 = PG_GETARG_INTERVAL_P(0);
3514  Interval *span2 = PG_GETARG_INTERVAL_P(1);
3515  Interval *result;
3516 
3517  result = (Interval *) palloc(sizeof(Interval));
3518 
3519  /*
3520  * Handle infinities.
3521  *
3522  * We treat anything that amounts to "infinity - infinity" as an error,
3523  * since the interval type has nothing equivalent to NaN.
3524  */
3525  if (INTERVAL_IS_NOBEGIN(span1))
3526  {
3527  if (INTERVAL_IS_NOBEGIN(span2))
3528  ereport(ERROR,
3529  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3530  errmsg("interval out of range")));
3531  else
3532  INTERVAL_NOBEGIN(result);
3533  }
3534  else if (INTERVAL_IS_NOEND(span1))
3535  {
3536  if (INTERVAL_IS_NOEND(span2))
3537  ereport(ERROR,
3538  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3539  errmsg("interval out of range")));
3540  else
3541  INTERVAL_NOEND(result);
3542  }
3543  else if (INTERVAL_IS_NOBEGIN(span2))
3544  INTERVAL_NOEND(result);
3545  else if (INTERVAL_IS_NOEND(span2))
3546  INTERVAL_NOBEGIN(result);
3547  else
3548  finite_interval_mi(span1, span2, result);
3549 
3550  PG_RETURN_INTERVAL_P(result);
3551 }
3552 
3553 /*
3554  * There is no interval_abs(): it is unclear what value to return:
3555  * http://archives.postgresql.org/pgsql-general/2009-10/msg01031.php
3556  * http://archives.postgresql.org/pgsql-general/2009-11/msg00041.php
3557  */
3558 
3559 Datum
3561 {
3562  Interval *span = PG_GETARG_INTERVAL_P(0);
3563  float8 factor = PG_GETARG_FLOAT8(1);
3564  double month_remainder_days,
3565  sec_remainder,
3566  result_double;
3567  int32 orig_month = span->month,
3568  orig_day = span->day;
3569  Interval *result;
3570 
3571  result = (Interval *) palloc(sizeof(Interval));
3572 
3573  /*
3574  * Handle NaN and infinities.
3575  *
3576  * We treat "0 * infinity" and "infinity * 0" as errors, since the
3577  * interval type has nothing equivalent to NaN.
3578  */
3579  if (isnan(factor))
3580  goto out_of_range;
3581 
3582  if (INTERVAL_NOT_FINITE(span))
3583  {
3584  if (factor == 0.0)
3585  goto out_of_range;
3586 
3587  if (factor < 0.0)
3588  interval_um_internal(span, result);
3589  else
3590  memcpy(result, span, sizeof(Interval));
3591 
3592  PG_RETURN_INTERVAL_P(result);
3593  }
3594  if (isinf(factor))
3595  {
3596  int isign = interval_sign(span);
3597 
3598  if (isign == 0)
3599  goto out_of_range;
3600 
3601  if (factor * isign < 0)
3602  INTERVAL_NOBEGIN(result);
3603  else
3604  INTERVAL_NOEND(result);
3605 
3606  PG_RETURN_INTERVAL_P(result);
3607  }
3608 
3609  result_double = span->month * factor;
3610  if (isnan(result_double) || !FLOAT8_FITS_IN_INT32(result_double))
3611  goto out_of_range;
3612  result->month = (int32) result_double;
3613 
3614  result_double = span->day * factor;
3615  if (isnan(result_double) || !FLOAT8_FITS_IN_INT32(result_double))
3616  goto out_of_range;
3617  result->day = (int32) result_double;
3618 
3619  /*
3620  * The above correctly handles the whole-number part of the month and day
3621  * products, but we have to do something with any fractional part
3622  * resulting when the factor is non-integral. We cascade the fractions
3623  * down to lower units using the conversion factors DAYS_PER_MONTH and
3624  * SECS_PER_DAY. Note we do NOT cascade up, since we are not forced to do
3625  * so by the representation. The user can choose to cascade up later,
3626  * using justify_hours and/or justify_days.
3627  */
3628 
3629  /*
3630  * Fractional months full days into days.
3631  *
3632  * Floating point calculation are inherently imprecise, so these
3633  * calculations are crafted to produce the most reliable result possible.
3634  * TSROUND() is needed to more accurately produce whole numbers where
3635  * appropriate.
3636  */
3637  month_remainder_days = (orig_month * factor - result->month) * DAYS_PER_MONTH;
3638  month_remainder_days = TSROUND(month_remainder_days);
3639  sec_remainder = (orig_day * factor - result->day +
3640  month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY;
3641  sec_remainder = TSROUND(sec_remainder);
3642 
3643  /*
3644  * Might have 24:00:00 hours due to rounding, or >24 hours because of time
3645  * cascade from months and days. It might still be >24 if the combination
3646  * of cascade and the seconds factor operation itself.
3647  */
3648  if (fabs(sec_remainder) >= SECS_PER_DAY)
3649  {
3650  if (pg_add_s32_overflow(result->day,
3651  (int) (sec_remainder / SECS_PER_DAY),
3652  &result->day))
3653  goto out_of_range;
3654  sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
3655  }
3656 
3657  /* cascade units down */
3658  if (pg_add_s32_overflow(result->day, (int32) month_remainder_days,
3659  &result->day))
3660  goto out_of_range;
3661  result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
3662  if (isnan(result_double) || !FLOAT8_FITS_IN_INT64(result_double))
3663  goto out_of_range;
3664  result->time = (int64) result_double;
3665 
3666  if (INTERVAL_NOT_FINITE(result))
3667  goto out_of_range;
3668 
3669  PG_RETURN_INTERVAL_P(result);
3670 
3671 out_of_range:
3672  ereport(ERROR,
3673  errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3674  errmsg("interval out of range"));
3675 
3676  PG_RETURN_NULL(); /* keep compiler quiet */
3677 }
3678 
3679 Datum
3681 {
3682  /* Args are float8 and Interval *, but leave them as generic Datum */
3683  Datum factor = PG_GETARG_DATUM(0);
3684  Datum span = PG_GETARG_DATUM(1);
3685 
3686  return DirectFunctionCall2(interval_mul, span, factor);
3687 }
3688 
3689 Datum
3691 {
3692  Interval *span = PG_GETARG_INTERVAL_P(0);
3693  float8 factor = PG_GETARG_FLOAT8(1);
3694  double month_remainder_days,
3695  sec_remainder,
3696  result_double;
3697  int32 orig_month = span->month,
3698  orig_day = span->day;
3699  Interval *result;
3700 
3701  result = (Interval *) palloc(sizeof(Interval));
3702 
3703  if (factor == 0.0)
3704  ereport(ERROR,
3705  (errcode(ERRCODE_DIVISION_BY_ZERO),
3706  errmsg("division by zero")));
3707 
3708  /*
3709  * Handle NaN and infinities.
3710  *
3711  * We treat "infinity / infinity" as an error, since the interval type has
3712  * nothing equivalent to NaN. Otherwise, dividing by infinity is handled
3713  * by the regular division code, causing all fields to be set to zero.
3714  */
3715  if (isnan(factor))
3716  goto out_of_range;
3717 
3718  if (INTERVAL_NOT_FINITE(span))
3719  {
3720  if (isinf(factor))
3721  goto out_of_range;
3722 
3723  if (factor < 0.0)
3724  interval_um_internal(span, result);
3725  else
3726  memcpy(result, span, sizeof(Interval));
3727 
3728  PG_RETURN_INTERVAL_P(result);
3729  }
3730 
3731  result_double = span->month / factor;
3732  if (isnan(result_double) || !FLOAT8_FITS_IN_INT32(result_double))
3733  goto out_of_range;
3734  result->month = (int32) result_double;
3735 
3736  result_double = span->day / factor;
3737  if (isnan(result_double) || !FLOAT8_FITS_IN_INT32(result_double))
3738  goto out_of_range;
3739  result->day = (int32) result_double;
3740 
3741  /*
3742  * Fractional months full days into days. See comment in interval_mul().
3743  */
3744  month_remainder_days = (orig_month / factor - result->month) * DAYS_PER_MONTH;
3745  month_remainder_days = TSROUND(month_remainder_days);
3746  sec_remainder = (orig_day / factor - result->day +
3747  month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY;
3748  sec_remainder = TSROUND(sec_remainder);
3749  if (fabs(sec_remainder) >= SECS_PER_DAY)
3750  {
3751  if (pg_add_s32_overflow(result->day,
3752  (int) (sec_remainder / SECS_PER_DAY),
3753  &result->day))
3754  goto out_of_range;
3755  sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
3756  }
3757 
3758  /* cascade units down */
3759  if (pg_add_s32_overflow(result->day, (int32) month_remainder_days,
3760  &result->day))
3761  goto out_of_range;
3762  result_double = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
3763  if (isnan(result_double) || !FLOAT8_FITS_IN_INT64(result_double))
3764  goto out_of_range;
3765  result->time = (int64) result_double;
3766 
3767  if (INTERVAL_NOT_FINITE(result))
3768  goto out_of_range;
3769 
3770  PG_RETURN_INTERVAL_P(result);
3771 
3772 out_of_range:
3773  ereport(ERROR,
3774  errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
3775  errmsg("interval out of range"));
3776 
3777  PG_RETURN_NULL(); /* keep compiler quiet */
3778 }
3779 
3780 
3781 /*
3782  * in_range support functions for timestamps and intervals.
3783  *
3784  * Per SQL spec, we support these with interval as the offset type.
3785  * The spec's restriction that the offset not be negative is a bit hard to
3786  * decipher for intervals, but we choose to interpret it the same as our
3787  * interval comparison operators would.
3788  */
3789 
3790 Datum
3792 {
3795  Interval *offset = PG_GETARG_INTERVAL_P(2);
3796  bool sub = PG_GETARG_BOOL(3);
3797  bool less = PG_GETARG_BOOL(4);
3798  TimestampTz sum;
3799 
3800  if (interval_sign(offset) < 0)
3801  ereport(ERROR,
3802  (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
3803  errmsg("invalid preceding or following size in window function")));
3804 
3805  /*
3806  * Deal with cases where both base and offset are infinite, and computing
3807  * base +/- offset would cause an error. As for float and numeric types,
3808  * we assume that all values infinitely precede +infinity and infinitely
3809  * follow -infinity. See in_range_float8_float8() for reasoning.
3810  */
3811  if (INTERVAL_IS_NOEND(offset) &&
3812  (sub ? TIMESTAMP_IS_NOEND(base) : TIMESTAMP_IS_NOBEGIN(base)))
3813  PG_RETURN_BOOL(true);
3814 
3815  /* We don't currently bother to avoid overflow hazards here */
3816  if (sub)
3817  sum = timestamptz_mi_interval_internal(base, offset, NULL);
3818  else
3819  sum = timestamptz_pl_interval_internal(base, offset, NULL);
3820 
3821  if (less)
3822  PG_RETURN_BOOL(val <= sum);
3823  else
3824  PG_RETURN_BOOL(val >= sum);
3825 }
3826 
3827 Datum
3829 {
3831  Timestamp base = PG_GETARG_TIMESTAMP(1);
3832  Interval *offset = PG_GETARG_INTERVAL_P(2);
3833  bool sub = PG_GETARG_BOOL(3);
3834  bool less = PG_GETARG_BOOL(4);
3835  Timestamp sum;
3836 
3837  if (interval_sign(offset) < 0)
3838  ereport(ERROR,
3839  (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
3840  errmsg("invalid preceding or following size in window function")));
3841 
3842  /*
3843  * Deal with cases where both base and offset are infinite, and computing
3844  * base +/- offset would cause an error. As for float and numeric types,
3845  * we assume that all values infinitely precede +infinity and infinitely
3846  * follow -infinity. See in_range_float8_float8() for reasoning.
3847  */
3848  if (INTERVAL_IS_NOEND(offset) &&
3849  (sub ? TIMESTAMP_IS_NOEND(base) : TIMESTAMP_IS_NOBEGIN(base)))
3850  PG_RETURN_BOOL(true);
3851 
3852  /* We don't currently bother to avoid overflow hazards here */
3853  if (sub)
3855  TimestampGetDatum(base),
3856  IntervalPGetDatum(offset)));
3857  else
3859  TimestampGetDatum(base),
3860  IntervalPGetDatum(offset)));
3861 
3862  if (less)
3863  PG_RETURN_BOOL(val <= sum);
3864  else
3865  PG_RETURN_BOOL(val >= sum);
3866 }
3867 
3868 Datum
3870 {
3872  Interval *base = PG_GETARG_INTERVAL_P(1);
3873  Interval *offset = PG_GETARG_INTERVAL_P(2);
3874  bool sub = PG_GETARG_BOOL(3);
3875  bool less = PG_GETARG_BOOL(4);
3876  Interval *sum;
3877 
3878  if (interval_sign(offset) < 0)
3879  ereport(ERROR,
3880  (errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
3881  errmsg("invalid preceding or following size in window function")));
3882 
3883  /*
3884  * Deal with cases where both base and offset are infinite, and computing
3885  * base +/- offset would cause an error. As for float and numeric types,
3886  * we assume that all values infinitely precede +infinity and infinitely
3887  * follow -infinity. See in_range_float8_float8() for reasoning.
3888  */
3889  if (INTERVAL_IS_NOEND(offset) &&
3890  (sub ? INTERVAL_IS_NOEND(base) : INTERVAL_IS_NOBEGIN(base)))
3891  PG_RETURN_BOOL(true);
3892 
3893  /* We don't currently bother to avoid overflow hazards here */
3894  if (sub)
3896  IntervalPGetDatum(base),
3897  IntervalPGetDatum(offset)));
3898  else
3900  IntervalPGetDatum(base),
3901  IntervalPGetDatum(offset)));
3902 
3903  if (less)
3905  else
3907 }
3908 
3909 
3910 /*
3911  * Prepare state data for an interval aggregate function, that needs to compute
3912  * sum and count, in the aggregate's memory context.
3913  *
3914  * The function is used when the state data needs to be allocated in aggregate's
3915  * context. When the state data needs to be allocated in the current memory
3916  * context, we use palloc0 directly e.g. interval_avg_deserialize().
3917  */
3918 static IntervalAggState *
3920 {
3922  MemoryContext agg_context;
3923  MemoryContext old_context;
3924 
3925  if (!AggCheckCallContext(fcinfo, &agg_context))
3926  elog(ERROR, "aggregate function called in non-aggregate context");
3927 
3928  old_context = MemoryContextSwitchTo(agg_context);
3929 
3931 
3932  MemoryContextSwitchTo(old_context);
3933 
3934  return state;
3935 }
3936 
3937 /*
3938  * Accumulate a new input value for interval aggregate functions.
3939  */
3940 static void
3942 {
3943  /* Infinite inputs are counted separately, and do not affect "N" */
3945  {
3946  state->nInfcount++;
3947  return;
3948  }
3949 
3951  {
3952  state->pInfcount++;
3953  return;
3954  }
3955 
3956  finite_interval_pl(&state->sumX, newval, &state->sumX);
3957  state->N++;
3958 }
3959 
3960 /*
3961  * Remove the given interval value from the aggregated state.
3962  */
3963 static void
3965 {
3966  /* Infinite inputs are counted separately, and do not affect "N" */
3968  {
3969  state->nInfcount--;
3970  return;
3971  }
3972 
3974  {
3975  state->pInfcount--;
3976  return;
3977  }
3978 
3979  /* Handle the to-be-discarded finite value. */
3980  state->N--;
3981  if (state->N > 0)
3982  finite_interval_mi(&state->sumX, newval, &state->sumX);
3983  else
3984  {
3985  /* All values discarded, reset the state */
3986  Assert(state->N == 0);
3987  memset(&state->sumX, 0, sizeof(state->sumX));
3988  }
3989 }
3990 
3991 /*
3992  * Transition function for sum() and avg() interval aggregates.
3993  */
3994 Datum
3996 {
3998 
4000 
4001  /* Create the state data on the first call */
4002  if (state == NULL)
4003  state = makeIntervalAggState(fcinfo);
4004 
4005  if (!PG_ARGISNULL(1))
4007 
4009 }
4010 
4011 /*
4012  * Combine function for sum() and avg() interval aggregates.
4013  *
4014  * Combine the given internal aggregate states and place the combination in
4015  * the first argument.
4016  */
4017 Datum
4019 {
4020  IntervalAggState *state1;
4021  IntervalAggState *state2;
4022 
4023  state1 = PG_ARGISNULL(0) ? NULL : (IntervalAggState *) PG_GETARG_POINTER(0);
4024  state2 = PG_ARGISNULL(1) ? NULL : (IntervalAggState *) PG_GETARG_POINTER(1);
4025 
4026  if (state2 == NULL)
4027  PG_RETURN_POINTER(state1);
4028 
4029  if (state1 == NULL)
4030  {
4031  /* manually copy all fields from state2 to state1 */
4032  state1 = makeIntervalAggState(fcinfo);
4033 
4034  state1->N = state2->N;
4035  state1->pInfcount = state2->pInfcount;
4036  state1->nInfcount = state2->nInfcount;
4037 
4038  state1->sumX.day = state2->sumX.day;
4039  state1->sumX.month = state2->sumX.month;
4040  state1->sumX.time = state2->sumX.time;
4041 
4042  PG_RETURN_POINTER(state1);
4043  }
4044 
4045  state1->N += state2->N;
4046  state1->pInfcount += state2->pInfcount;
4047  state1->nInfcount += state2->nInfcount;
4048 
4049  /* Accumulate finite interval values, if any. */
4050  if (state2->N > 0)
4051  finite_interval_pl(&state1->sumX, &state2->sumX, &state1->sumX);
4052 
4053  PG_RETURN_POINTER(state1);
4054 }
4055 
4056 /*
4057  * interval_avg_serialize
4058  * Serialize IntervalAggState for interval aggregates.
4059  */
4060 Datum
4062 {
4065  bytea *result;
4066 
4067  /* Ensure we disallow calling when not in aggregate context */
4068  if (!AggCheckCallContext(fcinfo, NULL))
4069  elog(ERROR, "aggregate function called in non-aggregate context");
4070 
4072 
4073  pq_begintypsend(&buf);
4074 
4075  /* N */
4076  pq_sendint64(&buf, state->N);
4077 
4078  /* sumX */
4079  pq_sendint64(&buf, state->sumX.time);
4080  pq_sendint32(&buf, state->sumX.day);
4081  pq_sendint32(&buf, state->sumX.month);
4082 
4083  /* pInfcount */
4084  pq_sendint64(&buf, state->pInfcount);
4085 
4086  /* nInfcount */
4087  pq_sendint64(&buf, state->nInfcount);
4088 
4089  result = pq_endtypsend(&buf);
4090 
4091  PG_RETURN_BYTEA_P(result);
4092 }
4093 
4094 /*
4095  * interval_avg_deserialize
4096  * Deserialize bytea into IntervalAggState for interval aggregates.
4097  */
4098 Datum
4100 {
4101  bytea *sstate;
4102  IntervalAggState *result;
4104 
4105  if (!AggCheckCallContext(fcinfo, NULL))
4106  elog(ERROR, "aggregate function called in non-aggregate context");
4107 
4108  sstate = PG_GETARG_BYTEA_PP(0);
4109 
4110  /*
4111  * Initialize a StringInfo so that we can "receive" it using the standard
4112  * recv-function infrastructure.
4113  */
4115  VARSIZE_ANY_EXHDR(sstate));
4116 
4117  result = (IntervalAggState *) palloc0(sizeof(IntervalAggState));
4118 
4119  /* N */
4120  result->N = pq_getmsgint64(&buf);
4121 
4122  /* sumX */
4123  result->sumX.time = pq_getmsgint64(&buf);
4124  result->sumX.day = pq_getmsgint(&buf, 4);
4125  result->sumX.month = pq_getmsgint(&buf, 4);
4126 
4127  /* pInfcount */
4128  result->pInfcount = pq_getmsgint64(&buf);
4129 
4130  /* nInfcount */
4131  result->nInfcount = pq_getmsgint64(&buf);
4132 
4133  pq_getmsgend(&buf);
4134 
4135  PG_RETURN_POINTER(result);
4136 }
4137 
4138 /*
4139  * Inverse transition function for sum() and avg() interval aggregates.
4140  */
4141 Datum
4143 {
4145 
4147 
4148  /* Should not get here with no state */
4149  if (state == NULL)
4150  elog(ERROR, "interval_avg_accum_inv called with NULL state");
4151 
4152  if (!PG_ARGISNULL(1))
4154 
4156 }
4157 
4158 /* avg(interval) aggregate final function */
4159 Datum
4161 {
4163 
4165 
4166  /* If there were no non-null inputs, return NULL */
4167  if (state == NULL || IA_TOTAL_COUNT(state) == 0)
4168  PG_RETURN_NULL();
4169 
4170  /*
4171  * Aggregating infinities that all have the same sign produces infinity
4172  * with that sign. Aggregating infinities with different signs results in
4173  * an error.
4174  */
4175  if (state->pInfcount > 0 || state->nInfcount > 0)
4176  {
4177  Interval *result;
4178 
4179  if (state->pInfcount > 0 && state->nInfcount > 0)
4180  ereport(ERROR,
4181  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4182  errmsg("interval out of range")));
4183 
4184  result = (Interval *) palloc(sizeof(Interval));
4185  if (state->pInfcount > 0)
4186  INTERVAL_NOEND(result);
4187  else
4188  INTERVAL_NOBEGIN(result);
4189 
4190  PG_RETURN_INTERVAL_P(result);
4191  }
4192 
4194  IntervalPGetDatum(&state->sumX),
4195  Float8GetDatum((double) state->N));
4196 }
4197 
4198 /* sum(interval) aggregate final function */
4199 Datum
4201 {
4203  Interval *result;
4204 
4206 
4207  /* If there were no non-null inputs, return NULL */
4208  if (state == NULL || IA_TOTAL_COUNT(state) == 0)
4209  PG_RETURN_NULL();
4210 
4211  /*
4212  * Aggregating infinities that all have the same sign produces infinity
4213  * with that sign. Aggregating infinities with different signs results in
4214  * an error.
4215  */
4216  if (state->pInfcount > 0 && state->nInfcount > 0)
4217  ereport(ERROR,
4218  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4219  errmsg("interval out of range")));
4220 
4221  result = (Interval *) palloc(sizeof(Interval));
4222 
4223  if (state->pInfcount > 0)
4224  INTERVAL_NOEND(result);
4225  else if (state->nInfcount > 0)
4226  INTERVAL_NOBEGIN(result);
4227  else
4228  memcpy(result, &state->sumX, sizeof(Interval));
4229 
4230  PG_RETURN_INTERVAL_P(result);
4231 }
4232 
4233 /* timestamp_age()
4234  * Calculate time difference while retaining year/month fields.
4235  * Note that this does not result in an accurate absolute time span
4236  * since year and month are out of context once the arithmetic
4237  * is done.
4238  */
4239 Datum
4241 {
4242  Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
4243  Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
4244  Interval *result;
4245  fsec_t fsec1,
4246  fsec2;
4247  struct pg_itm tt,
4248  *tm = &tt;
4249  struct pg_tm tt1,
4250  *tm1 = &tt1;
4251  struct pg_tm tt2,
4252  *tm2 = &tt2;
4253 
4254  result = (Interval *) palloc(sizeof(Interval));
4255 
4256  /*
4257  * Handle infinities.
4258  *
4259  * We treat anything that amounts to "infinity - infinity" as an error,
4260  * since the interval type has nothing equivalent to NaN.
4261  */
4262  if (TIMESTAMP_IS_NOBEGIN(dt1))
4263  {
4264  if (TIMESTAMP_IS_NOBEGIN(dt2))
4265  ereport(ERROR,
4266  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4267  errmsg("interval out of range")));
4268  else
4269  INTERVAL_NOBEGIN(result);
4270  }
4271  else if (TIMESTAMP_IS_NOEND(dt1))
4272  {
4273  if (TIMESTAMP_IS_NOEND(dt2))
4274  ereport(ERROR,
4275  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4276  errmsg("interval out of range")));
4277  else
4278  INTERVAL_NOEND(result);
4279  }
4280  else if (TIMESTAMP_IS_NOBEGIN(dt2))
4281  INTERVAL_NOEND(result);
4282  else if (TIMESTAMP_IS_NOEND(dt2))
4283  INTERVAL_NOBEGIN(result);
4284  else if (timestamp2tm(dt1, NULL, tm1, &fsec1, NULL, NULL) == 0 &&
4285  timestamp2tm(dt2, NULL, tm2, &fsec2, NULL, NULL) == 0)
4286  {
4287  /* form the symbolic difference */
4288  tm->tm_usec = fsec1 - fsec2;
4289  tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
4290  tm->tm_min = tm1->tm_min - tm2->tm_min;
4291  tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
4292  tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
4293  tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
4294  tm->tm_year = tm1->tm_year - tm2->tm_year;
4295 
4296  /* flip sign if necessary... */
4297  if (dt1 < dt2)
4298  {
4299  tm->tm_usec = -tm->tm_usec;
4300  tm->tm_sec = -tm->tm_sec;
4301  tm->tm_min = -tm->tm_min;
4302  tm->tm_hour = -tm->tm_hour;
4303  tm->tm_mday = -tm->tm_mday;
4304  tm->tm_mon = -tm->tm_mon;
4305  tm->tm_year = -tm->tm_year;
4306  }
4307 
4308  /* propagate any negative fields into the next higher field */
4309  while (tm->tm_usec < 0)
4310  {
4311  tm->tm_usec += USECS_PER_SEC;
4312  tm->tm_sec--;
4313  }
4314 
4315  while (tm->tm_sec < 0)
4316  {
4318  tm->tm_min--;
4319  }
4320 
4321  while (tm->tm_min < 0)
4322  {
4323  tm->tm_min += MINS_PER_HOUR;
4324  tm->tm_hour--;
4325  }
4326 
4327  while (tm->tm_hour < 0)
4328  {
4329  tm->tm_hour += HOURS_PER_DAY;
4330  tm->tm_mday--;
4331  }
4332 
4333  while (tm->tm_mday < 0)
4334  {
4335  if (dt1 < dt2)
4336  {
4337  tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
4338  tm->tm_mon--;
4339  }
4340  else
4341  {
4342  tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
4343  tm->tm_mon--;
4344  }
4345  }
4346 
4347  while (tm->tm_mon < 0)
4348  {
4350  tm->tm_year--;
4351  }
4352 
4353  /* recover sign if necessary... */
4354  if (dt1 < dt2)
4355  {
4356  tm->tm_usec = -tm->tm_usec;
4357  tm->tm_sec = -tm->tm_sec;
4358  tm->tm_min = -tm->tm_min;
4359  tm->tm_hour = -tm->tm_hour;
4360  tm->tm_mday = -tm->tm_mday;
4361  tm->tm_mon = -tm->tm_mon;
4362  tm->tm_year = -tm->tm_year;
4363  }
4364 
4365  if (itm2interval(tm, result) != 0)
4366  ereport(ERROR,
4367  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4368  errmsg("interval out of range")));
4369  }
4370  else
4371  ereport(ERROR,
4372  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4373  errmsg("timestamp out of range")));
4374 
4375  PG_RETURN_INTERVAL_P(result);
4376 }
4377 
4378 
4379 /* timestamptz_age()
4380  * Calculate time difference while retaining year/month fields.
4381  * Note that this does not result in an accurate absolute time span
4382  * since year and month are out of context once the arithmetic
4383  * is done.
4384  */
4385 Datum
4387 {
4390  Interval *result;
4391  fsec_t fsec1,
4392  fsec2;
4393  struct pg_itm tt,
4394  *tm = &tt;
4395  struct pg_tm tt1,
4396  *tm1 = &tt1;
4397  struct pg_tm tt2,
4398  *tm2 = &tt2;
4399  int tz1;
4400  int tz2;
4401 
4402  result = (Interval *) palloc(sizeof(Interval));
4403 
4404  /*
4405  * Handle infinities.
4406  *
4407  * We treat anything that amounts to "infinity - infinity" as an error,
4408  * since the interval type has nothing equivalent to NaN.
4409  */
4410  if (TIMESTAMP_IS_NOBEGIN(dt1))
4411  {
4412  if (TIMESTAMP_IS_NOBEGIN(dt2))
4413  ereport(ERROR,
4414  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4415  errmsg("interval out of range")));
4416  else
4417  INTERVAL_NOBEGIN(result);
4418  }
4419  else if (TIMESTAMP_IS_NOEND(dt1))
4420  {
4421  if (TIMESTAMP_IS_NOEND(dt2))
4422  ereport(ERROR,
4423  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4424  errmsg("interval out of range")));
4425  else
4426  INTERVAL_NOEND(result);
4427  }
4428  else if (TIMESTAMP_IS_NOBEGIN(dt2))
4429  INTERVAL_NOEND(result);
4430  else if (TIMESTAMP_IS_NOEND(dt2))
4431  INTERVAL_NOBEGIN(result);
4432  else if (timestamp2tm(dt1, &tz1, tm1, &fsec1, NULL, NULL) == 0 &&
4433  timestamp2tm(dt2, &tz2, tm2, &fsec2, NULL, NULL) == 0)
4434  {
4435  /* form the symbolic difference */
4436  tm->tm_usec = fsec1 - fsec2;
4437  tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
4438  tm->tm_min = tm1->tm_min - tm2->tm_min;
4439  tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
4440  tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
4441  tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
4442  tm->tm_year = tm1->tm_year - tm2->tm_year;
4443 
4444  /* flip sign if necessary... */
4445  if (dt1 < dt2)
4446  {
4447  tm->tm_usec = -tm->tm_usec;
4448  tm->tm_sec = -tm->tm_sec;
4449  tm->tm_min = -tm->tm_min;
4450  tm->tm_hour = -tm->tm_hour;
4451  tm->tm_mday = -tm->tm_mday;
4452  tm->tm_mon = -tm->tm_mon;
4453  tm->tm_year = -tm->tm_year;
4454  }
4455 
4456  /* propagate any negative fields into the next higher field */
4457  while (tm->tm_usec < 0)
4458  {
4459  tm->tm_usec += USECS_PER_SEC;
4460  tm->tm_sec--;
4461  }
4462 
4463  while (tm->tm_sec < 0)
4464  {
4466  tm->tm_min--;
4467  }
4468 
4469  while (tm->tm_min < 0)
4470  {
4471  tm->tm_min += MINS_PER_HOUR;
4472  tm->tm_hour--;
4473  }
4474 
4475  while (tm->tm_hour < 0)
4476  {
4477  tm->tm_hour += HOURS_PER_DAY;
4478  tm->tm_mday--;
4479  }
4480 
4481  while (tm->tm_mday < 0)
4482  {
4483  if (dt1 < dt2)
4484  {
4485  tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
4486  tm->tm_mon--;
4487  }
4488  else
4489  {
4490  tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
4491  tm->tm_mon--;
4492  }
4493  }
4494 
4495  while (tm->tm_mon < 0)
4496  {
4498  tm->tm_year--;
4499  }
4500 
4501  /*
4502  * Note: we deliberately ignore any difference between tz1 and tz2.
4503  */
4504 
4505  /* recover sign if necessary... */
4506  if (dt1 < dt2)
4507  {
4508  tm->tm_usec = -tm->tm_usec;
4509  tm->tm_sec = -tm->tm_sec;
4510  tm->tm_min = -tm->tm_min;
4511  tm->tm_hour = -tm->tm_hour;
4512  tm->tm_mday = -tm->tm_mday;
4513  tm->tm_mon = -tm->tm_mon;
4514  tm->tm_year = -tm->tm_year;
4515  }
4516 
4517  if (itm2interval(tm, result) != 0)
4518  ereport(ERROR,
4519  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4520  errmsg("interval out of range")));
4521  }
4522  else
4523  ereport(ERROR,
4524  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4525  errmsg("timestamp out of range")));
4526 
4527  PG_RETURN_INTERVAL_P(result);
4528 }
4529 
4530 
4531 /*----------------------------------------------------------
4532  * Conversion operators.
4533  *---------------------------------------------------------*/
4534 
4535 
4536 /* timestamp_bin()
4537  * Bin timestamp into specified interval.
4538  */
4539 Datum
4541 {
4542  Interval *stride = PG_GETARG_INTERVAL_P(0);
4544  Timestamp origin = PG_GETARG_TIMESTAMP(2);
4545  Timestamp result,
4546  stride_usecs,
4547  tm_diff,
4548  tm_modulo,
4549  tm_delta;
4550 
4553 
4554  if (TIMESTAMP_NOT_FINITE(origin))
4555  ereport(ERROR,
4556  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4557  errmsg("origin out of range")));
4558 
4559  if (INTERVAL_NOT_FINITE(stride))
4560  ereport(ERROR,
4561  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4562  errmsg("timestamps cannot be binned into infinite intervals")));
4563 
4564  if (stride->month != 0)
4565  ereport(ERROR,
4566  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4567  errmsg("timestamps cannot be binned into intervals containing months or years")));
4568 
4569  if (unlikely(pg_mul_s64_overflow(stride->day, USECS_PER_DAY, &stride_usecs)) ||
4570  unlikely(pg_add_s64_overflow(stride_usecs, stride->time, &stride_usecs)))
4571  ereport(ERROR,
4572  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4573  errmsg("interval out of range")));
4574 
4575  if (stride_usecs <= 0)
4576  ereport(ERROR,
4577  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4578  errmsg("stride must be greater than zero")));
4579 
4580  if (unlikely(pg_sub_s64_overflow(timestamp, origin, &tm_diff)))
4581  ereport(ERROR,
4582  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4583  errmsg("interval out of range")));
4584 
4585  /* These calculations cannot overflow */
4586  tm_modulo = tm_diff % stride_usecs;
4587  tm_delta = tm_diff - tm_modulo;
4588  result = origin + tm_delta;
4589 
4590  /*
4591  * We want to round towards -infinity, not 0, when tm_diff is negative and
4592  * not a multiple of stride_usecs. This adjustment *can* cause overflow,
4593  * since the result might now be out of the range origin .. timestamp.
4594  */
4595  if (tm_modulo < 0)
4596  {
4597  if (unlikely(pg_sub_s64_overflow(result, stride_usecs, &result)) ||
4598  !IS_VALID_TIMESTAMP(result))
4599  ereport(ERROR,
4600  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4601  errmsg("timestamp out of range")));
4602  }
4603 
4604  PG_RETURN_TIMESTAMP(result);
4605 }
4606 
4607 /* timestamp_trunc()
4608  * Truncate timestamp to specified units.
4609  */
4610 Datum
4612 {
4613  text *units = PG_GETARG_TEXT_PP(0);
4615  Timestamp result;
4616  int type,
4617  val;
4618  char *lowunits;
4619  fsec_t fsec;
4620  struct pg_tm tt,
4621  *tm = &tt;
4622 
4625 
4626  lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
4627  VARSIZE_ANY_EXHDR(units),
4628  false);
4629 
4630  type = DecodeUnits(0, lowunits, &val);
4631 
4632  if (type == UNITS)
4633  {
4634  if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
4635  ereport(ERROR,
4636  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4637  errmsg("timestamp out of range")));
4638 
4639  switch (val)
4640  {
4641  case DTK_WEEK:
4642  {
4643  int woy;
4644 
4645  woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
4646 
4647  /*
4648  * If it is week 52/53 and the month is January, then the
4649  * week must belong to the previous year. Also, some
4650  * December dates belong to the next year.
4651  */
4652  if (woy >= 52 && tm->tm_mon == 1)
4653  --tm->tm_year;
4654  if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
4655  ++tm->tm_year;
4656  isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
4657  tm->tm_hour = 0;
4658  tm->tm_min = 0;
4659  tm->tm_sec = 0;
4660  fsec = 0;
4661  break;
4662  }
4663  case DTK_MILLENNIUM:
4664  /* see comments in timestamptz_trunc */
4665  if (tm->tm_year > 0)
4666  tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
4667  else
4668  tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
4669  /* FALL THRU */
4670  case DTK_CENTURY:
4671  /* see comments in timestamptz_trunc */
4672  if (tm->tm_year > 0)
4673  tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
4674  else
4675  tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
4676  /* FALL THRU */
4677  case DTK_DECADE:
4678  /* see comments in timestamptz_trunc */
4679  if (val != DTK_MILLENNIUM && val != DTK_CENTURY)
4680  {
4681  if (tm->tm_year > 0)
4682  tm->tm_year = (tm->tm_year / 10) * 10;
4683  else
4684  tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
4685  }
4686  /* FALL THRU */
4687  case DTK_YEAR:
4688  tm->tm_mon = 1;
4689  /* FALL THRU */
4690  case DTK_QUARTER:
4691  tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
4692  /* FALL THRU */
4693  case DTK_MONTH:
4694  tm->tm_mday = 1;
4695  /* FALL THRU */
4696  case DTK_DAY:
4697  tm->tm_hour = 0;
4698  /* FALL THRU */
4699  case DTK_HOUR:
4700  tm->tm_min = 0;
4701  /* FALL THRU */
4702  case DTK_MINUTE:
4703  tm->tm_sec = 0;
4704  /* FALL THRU */
4705  case DTK_SECOND:
4706  fsec = 0;
4707  break;
4708 
4709  case DTK_MILLISEC:
4710  fsec = (fsec / 1000) * 1000;
4711  break;
4712 
4713  case DTK_MICROSEC:
4714  break;
4715 
4716  default:
4717  ereport(ERROR,
4718  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4719  errmsg("unit \"%s\" not supported for type %s",
4720  lowunits, format_type_be(TIMESTAMPOID))));
4721  result = 0;
4722  }
4723 
4724  if (tm2timestamp(tm, fsec, NULL, &result) != 0)
4725  ereport(ERROR,
4726  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4727  errmsg("timestamp out of range")));
4728  }
4729  else
4730  {
4731  ereport(ERROR,
4732  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4733  errmsg("unit \"%s\" not recognized for type %s",
4734  lowunits, format_type_be(TIMESTAMPOID))));
4735  result = 0;
4736  }
4737 
4738  PG_RETURN_TIMESTAMP(result);
4739 }
4740 
4741 /* timestamptz_bin()
4742  * Bin timestamptz into specified interval using specified origin.
4743  */
4744 Datum
4746 {
4747  Interval *stride = PG_GETARG_INTERVAL_P(0);
4749  TimestampTz origin = PG_GETARG_TIMESTAMPTZ(2);
4750  TimestampTz result,
4751  stride_usecs,
4752  tm_diff,
4753  tm_modulo,
4754  tm_delta;
4755 
4758 
4759  if (TIMESTAMP_NOT_FINITE(origin))
4760  ereport(ERROR,
4761  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4762  errmsg("origin out of range")));
4763 
4764  if (INTERVAL_NOT_FINITE(stride))
4765  ereport(ERROR,
4766  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4767  errmsg("timestamps cannot be binned into infinite intervals")));
4768 
4769  if (stride->month != 0)
4770  ereport(ERROR,
4771  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4772  errmsg("timestamps cannot be binned into intervals containing months or years")));
4773 
4774  if (unlikely(pg_mul_s64_overflow(stride->day, USECS_PER_DAY, &stride_usecs)) ||
4775  unlikely(pg_add_s64_overflow(stride_usecs, stride->time, &stride_usecs)))
4776  ereport(ERROR,
4777  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4778  errmsg("interval out of range")));
4779 
4780  if (stride_usecs <= 0)
4781  ereport(ERROR,
4782  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4783  errmsg("stride must be greater than zero")));
4784 
4785  if (unlikely(pg_sub_s64_overflow(timestamp, origin, &tm_diff)))
4786  ereport(ERROR,
4787  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4788  errmsg("interval out of range")));
4789 
4790  /* These calculations cannot overflow */
4791  tm_modulo = tm_diff % stride_usecs;
4792  tm_delta = tm_diff - tm_modulo;
4793  result = origin + tm_delta;
4794 
4795  /*
4796  * We want to round towards -infinity, not 0, when tm_diff is negative and
4797  * not a multiple of stride_usecs. This adjustment *can* cause overflow,
4798  * since the result might now be out of the range origin .. timestamp.
4799  */
4800  if (tm_modulo < 0)
4801  {
4802  if (unlikely(pg_sub_s64_overflow(result, stride_usecs, &result)) ||
4803  !IS_VALID_TIMESTAMP(result))
4804  ereport(ERROR,
4805  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4806  errmsg("timestamp out of range")));
4807  }
4808 
4809  PG_RETURN_TIMESTAMPTZ(result);
4810 }
4811 
4812 /*
4813  * Common code for timestamptz_trunc() and timestamptz_trunc_zone().
4814  *
4815  * tzp identifies the zone to truncate with respect to. We assume
4816  * infinite timestamps have already been rejected.
4817  */
4818 static TimestampTz
4820 {
4821  TimestampTz result;
4822  int tz;
4823  int type,
4824  val;
4825  bool redotz = false;
4826  char *lowunits;
4827  fsec_t fsec;
4828  struct pg_tm tt,
4829  *tm = &tt;
4830 
4831  lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
4832  VARSIZE_ANY_EXHDR(units),
4833  false);
4834 
4835  type = DecodeUnits(0, lowunits, &val);
4836 
4837  if (type == UNITS)
4838  {
4839  if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, tzp) != 0)
4840  ereport(ERROR,
4841  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4842  errmsg("timestamp out of range")));
4843 
4844  switch (val)
4845  {
4846  case DTK_WEEK:
4847  {
4848  int woy;
4849 
4850  woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
4851 
4852  /*
4853  * If it is week 52/53 and the month is January, then the
4854  * week must belong to the previous year. Also, some
4855  * December dates belong to the next year.
4856  */
4857  if (woy >= 52 && tm->tm_mon == 1)
4858  --tm->tm_year;
4859  if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
4860  ++tm->tm_year;
4861  isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
4862  tm->tm_hour = 0;
4863  tm->tm_min = 0;
4864  tm->tm_sec = 0;
4865  fsec = 0;
4866  redotz = true;
4867  break;
4868  }
4869  /* one may consider DTK_THOUSAND and DTK_HUNDRED... */
4870  case DTK_MILLENNIUM:
4871 
4872  /*
4873  * truncating to the millennium? what is this supposed to
4874  * mean? let us put the first year of the millennium... i.e.
4875  * -1000, 1, 1001, 2001...
4876  */
4877  if (tm->tm_year > 0)
4878  tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
4879  else
4880  tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
4881  /* FALL THRU */
4882  case DTK_CENTURY:
4883  /* truncating to the century? as above: -100, 1, 101... */
4884  if (tm->tm_year > 0)
4885  tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
4886  else
4887  tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
4888  /* FALL THRU */
4889  case DTK_DECADE:
4890 
4891  /*
4892  * truncating to the decade? first year of the decade. must
4893  * not be applied if year was truncated before!
4894  */
4895  if (val != DTK_MILLENNIUM && val != DTK_CENTURY)
4896  {
4897  if (tm->tm_year > 0)
4898  tm->tm_year = (tm->tm_year / 10) * 10;
4899  else
4900  tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
4901  }
4902  /* FALL THRU */
4903  case DTK_YEAR:
4904  tm->tm_mon = 1;
4905  /* FALL THRU */
4906  case DTK_QUARTER:
4907  tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
4908  /* FALL THRU */
4909  case DTK_MONTH:
4910  tm->tm_mday = 1;
4911  /* FALL THRU */
4912  case DTK_DAY:
4913  tm->tm_hour = 0;
4914  redotz = true; /* for all cases >= DAY */
4915  /* FALL THRU */
4916  case DTK_HOUR:
4917  tm->tm_min = 0;
4918  /* FALL THRU */
4919  case DTK_MINUTE:
4920  tm->tm_sec = 0;
4921  /* FALL THRU */
4922  case DTK_SECOND:
4923  fsec = 0;
4924  break;
4925  case DTK_MILLISEC:
4926  fsec = (fsec / 1000) * 1000;
4927  break;
4928  case DTK_MICROSEC:
4929  break;
4930 
4931  default:
4932  ereport(ERROR,
4933  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4934  errmsg("unit \"%s\" not supported for type %s",
4935  lowunits, format_type_be(TIMESTAMPTZOID))));
4936  result = 0;
4937  }
4938 
4939  if (redotz)
4940  tz = DetermineTimeZoneOffset(tm, tzp);
4941 
4942  if (tm2timestamp(tm, fsec, &tz, &result) != 0)
4943  ereport(ERROR,
4944  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
4945  errmsg("timestamp out of range")));
4946  }
4947  else
4948  {
4949  ereport(ERROR,
4950  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4951  errmsg("unit \"%s\" not recognized for type %s",
4952  lowunits, format_type_be(TIMESTAMPTZOID))));
4953  result = 0;
4954  }
4955 
4956  return result;
4957 }
4958 
4959 /* timestamptz_trunc()
4960  * Truncate timestamptz to specified units in session timezone.
4961  */
4962 Datum
4964 {
4965  text *units = PG_GETARG_TEXT_PP(0);
4967  TimestampTz result;
4968 
4971 
4973 
4974  PG_RETURN_TIMESTAMPTZ(result);
4975 }
4976 
4977 /* timestamptz_trunc_zone()
4978  * Truncate timestamptz to specified units in specified timezone.
4979  */
4980 Datum
4982 {
4983  text *units = PG_GETARG_TEXT_PP(0);
4985  text *zone = PG_GETARG_TEXT_PP(2);
4986  TimestampTz result;
4987  pg_tz *tzp;
4988 
4989  /*
4990  * timestamptz_zone() doesn't look up the zone for infinite inputs, so we
4991  * don't do so here either.
4992  */
4995 
4996  /*
4997  * Look up the requested timezone.
4998  */
4999  tzp = lookup_timezone(zone);
5000 
5001  result = timestamptz_trunc_internal(units, timestamp, tzp);
5002 
5003  PG_RETURN_TIMESTAMPTZ(result);
5004 }
5005 
5006 /* interval_trunc()
5007  * Extract specified field from interval.
5008  */
5009 Datum
5011 {
5012  text *units = PG_GETARG_TEXT_PP(0);
5014  Interval *result;
5015  int type,
5016  val;
5017  char *lowunits;
5018  struct pg_itm tt,
5019  *tm = &tt;
5020 
5021  result = (Interval *) palloc(sizeof(Interval));
5022 
5024  {
5025  memcpy(result, interval, sizeof(Interval));
5026  PG_RETURN_INTERVAL_P(result);
5027  }
5028 
5029  lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
5030  VARSIZE_ANY_EXHDR(units),
5031  false);
5032 
5033  type = DecodeUnits(0, lowunits, &val);
5034 
5035  if (type == UNITS)
5036  {
5038  switch (val)
5039  {
5040  case DTK_MILLENNIUM:
5041  /* caution: C division may have negative remainder */
5042  tm->tm_year = (tm->tm_year / 1000) * 1000;
5043  /* FALL THRU */
5044  case DTK_CENTURY:
5045  /* caution: C division may have negative remainder */
5046  tm->tm_year = (tm->tm_year / 100) * 100;
5047  /* FALL THRU */
5048  case DTK_DECADE:
5049  /* caution: C division may have negative remainder */
5050  tm->tm_year = (tm->tm_year / 10) * 10;
5051  /* FALL THRU */
5052  case DTK_YEAR:
5053  tm->tm_mon = 0;
5054  /* FALL THRU */
5055  case DTK_QUARTER:
5056  tm->tm_mon = 3 * (tm->tm_mon / 3);
5057  /* FALL THRU */
5058  case DTK_MONTH:
5059  tm->tm_mday = 0;
5060  /* FALL THRU */
5061  case DTK_DAY:
5062  tm->tm_hour = 0;
5063  /* FALL THRU */
5064  case DTK_HOUR:
5065  tm->tm_min = 0;
5066  /* FALL THRU */
5067  case DTK_MINUTE:
5068  tm->tm_sec = 0;
5069  /* FALL THRU */
5070  case DTK_SECOND:
5071  tm->tm_usec = 0;
5072  break;
5073  case DTK_MILLISEC:
5074  tm->tm_usec = (tm->tm_usec / 1000) * 1000;
5075  break;
5076  case DTK_MICROSEC:
5077  break;
5078 
5079  default:
5080  ereport(ERROR,
5081  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
5082  errmsg("unit \"%s\" not supported for type %s",
5083  lowunits, format_type_be(INTERVALOID)),
5084  (val == DTK_WEEK) ? errdetail("Months usually have fractional weeks.") : 0));
5085  }
5086 
5087  if (itm2interval(tm, result) != 0)
5088  ereport(ERROR,
5089  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
5090  errmsg("interval out of range")));
5091  }
5092  else
5093  {
5094  ereport(ERROR,
5095  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
5096  errmsg("unit \"%s\" not recognized for type %s",
5097  lowunits, format_type_be(INTERVALOID))));
5098  }
5099 
5100  PG_RETURN_INTERVAL_P(result);
5101 }
5102 
5103 /* isoweek2j()
5104  *
5105  * Return the Julian day which corresponds to the first day (Monday) of the given ISO 8601 year and week.
5106  * Julian days are used to convert between ISO week dates and Gregorian dates.
5107  *
5108  * XXX: This function has integer overflow hazards, but restructuring it to
5109  * work with the soft-error handling that its callers do is likely more
5110  * trouble than it's worth.
5111  */
5112 int
5113 isoweek2j(int year, int week)
5114 {
5115  int day0,
5116  day4;
5117 
5118  /* fourth day of current year */
5119  day4 = date2j(year, 1, 4);
5120 
5121  /* day0 == offset to first day of week (Monday) */
5122  day0 = j2day(day4 - 1);
5123 
5124  return ((week - 1) * 7) + (day4 - day0);
5125 }
5126 
5127 /* isoweek2date()
5128  * Convert ISO week of year number to date.
5129  * The year field must be specified with the ISO year!
5130  * karel 2000/08/07
5131  */
5132 void
5133 isoweek2date(int woy, int *year, int *mon, int *mday)
5134 {
5135  j2date(isoweek2j(*year, woy), year, mon, mday);
5136 }
5137 
5138 /* isoweekdate2date()
5139  *
5140  * Convert an ISO 8601 week date (ISO year, ISO week) into a Gregorian date.
5141  * Gregorian day of week sent so weekday strings can be supplied.
5142  * Populates year, mon, and mday with the correct Gregorian values.
5143  * year must be passed in as the ISO year.
5144  */
5145 void
5146 isoweekdate2date(int isoweek, int wday, int *year, int *mon, int *mday)
5147 {
5148  int jday;
5149 
5150  jday = isoweek2j(*year, isoweek);
5151  /* convert Gregorian week start (Sunday=1) to ISO week start (Monday=1) */
5152  if (wday > 1)
5153  jday += wday - 2;
5154  else
5155  jday += 6;
5156  j2date(jday, year, mon, mday);
5157 }
5158 
5159 /* date2isoweek()
5160  *
5161  * Returns ISO week number of year.
5162  */
5163 int
5164 date2isoweek(int year, int mon, int mday)
5165 {
5166  float8 result;
5167  int day0,
5168  day4,
5169  dayn;
5170 
5171  /* current day */
5172  dayn = date2j(year, mon, mday);
5173 
5174  /* fourth day of current year */
5175  day4 = date2j(year, 1, 4);
5176 
5177  /* day0 == offset to first day of week (Monday) */
5178  day0 = j2day(day4 - 1);
5179 
5180  /*
5181  * We need the first week containing a Thursday, otherwise this day falls
5182  * into the previous year for purposes of counting weeks
5183  */
5184  if (dayn < day4 - day0)
5185  {
5186  day4 = date2j(year - 1, 1, 4);
5187 
5188  /* day0 == offset to first day of week (Monday) */
5189  day0 = j2day(day4 - 1);
5190  }
5191 
5192  result = (dayn - (day4 - day0)) / 7 + 1;
5193 
5194  /*
5195  * Sometimes the last few days in a year will fall into the first week of
5196  * the next year, so check for this.
5197  */
5198  if (result >= 52)
5199  {
5200  day4 = date2j(year + 1, 1, 4);
5201 
5202  /* day0 == offset to first day of week (Monday) */
5203  day0 = j2day(day4 - 1);
5204 
5205  if (dayn >= day4 - day0)
5206  result = (dayn - (day4 - day0)) / 7 + 1;
5207  }
5208 
5209  return (int) result;
5210 }
5211 
5212 
5213 /* date2isoyear()
5214  *
5215  * Returns ISO 8601 year number.
5216  * Note: zero or negative results follow the year-zero-exists convention.
5217  */
5218 int
5219 date2isoyear(int year, int mon, int mday)
5220 {
5221  float8 result;
5222  int day0,
5223  day4,
5224  dayn;
5225 
5226  /* current day */
5227  dayn = date2j(year, mon, mday);
5228 
5229  /* fourth day of current year */
5230  day4 = date2j(year, 1, 4);
5231 
5232  /* day0 == offset to first day of week (Monday) */
5233  day0 = j2day(day4 - 1);
5234 
5235  /*
5236  * We need the first week containing a Thursday, otherwise this day falls
5237  * into the previous year for purposes of counting weeks
5238  */
5239  if (dayn < day4 - day0)
5240  {
5241  day4 = date2j(year - 1, 1, 4);
5242 
5243  /* day0 == offset to first day of week (Monday) */
5244  day0 = j2day(day4 - 1);
5245 
5246  year--;
5247  }
5248 
5249  result = (dayn - (day4 - day0)) / 7 + 1;
5250 
5251  /*
5252  * Sometimes the last few days in a year will fall into the first week of
5253  * the next year, so check for this.
5254  */
5255  if (result >= 52)
5256  {
5257  day4 = date2j(year + 1, 1, 4);
5258 
5259  /* day0 == offset to first day of week (Monday) */
5260  day0 = j2day(day4 - 1);
5261 
5262  if (dayn >= day4 - day0)
5263  year++;
5264  }
5265 
5266  return year;
5267 }
5268 
5269 
5270 /* date2isoyearday()
5271  *
5272  * Returns the ISO 8601 day-of-year, given a Gregorian year, month and day.
5273  * Possible return values are 1 through 371 (364 in non-leap years).
5274  */
5275 int
5276 date2isoyearday(int year, int mon, int mday)
5277 {
5278  return date2j(year, mon, mday) - isoweek2j(date2isoyear(year, mon, mday), 1) + 1;
5279 }
5280 
5281 /*
5282  * NonFiniteTimestampTzPart
5283  *
5284  * Used by timestamp_part and timestamptz_part when extracting from infinite
5285  * timestamp[tz]. Returns +/-Infinity if that is the appropriate result,
5286  * otherwise returns zero (which should be taken as meaning to return NULL).
5287  *
5288  * Errors thrown here for invalid units should exactly match those that
5289  * would be thrown in the calling functions, else there will be unexpected
5290  * discrepancies between finite- and infinite-input cases.