PostgreSQL Source Code  git master
datetime.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * datetime.c
4  * Support functions for date/time types.
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/datetime.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <ctype.h>
18 #include <limits.h>
19 #include <math.h>
20 
21 #include "access/htup_details.h"
22 #include "access/xact.h"
23 #include "catalog/pg_type.h"
24 #include "common/string.h"
25 #include "funcapi.h"
26 #include "miscadmin.h"
27 #include "nodes/nodeFuncs.h"
28 #include "utils/builtins.h"
29 #include "utils/date.h"
30 #include "utils/datetime.h"
31 #include "utils/memutils.h"
32 #include "utils/tzparser.h"
33 
34 static int DecodeNumber(int flen, char *field, bool haveTextMonth,
35  int fmask, int *tmask,
36  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
37 static int DecodeNumberField(int len, char *str,
38  int fmask, int *tmask,
39  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
40 static int DecodeTime(char *str, int fmask, int range,
41  int *tmask, struct pg_tm *tm, fsec_t *fsec);
42 static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
43 static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
44  struct pg_tm *tm);
45 static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
46  int precision, bool fillzeros);
47 static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec,
48  int scale);
49 static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec,
50  int scale);
51 static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
52  pg_time_t *tp);
54  const char *abbr, pg_tz *tzp,
55  int *offset, int *isdst);
56 static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp);
57 
58 
59 const int day_tab[2][13] =
60 {
61  {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
62  {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
63 };
64 
65 const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
66 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
67 
68 const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
69 "Thursday", "Friday", "Saturday", NULL};
70 
71 
72 /*****************************************************************************
73  * PRIVATE ROUTINES *
74  *****************************************************************************/
75 
76 /*
77  * datetktbl holds date/time keywords.
78  *
79  * Note that this table must be strictly alphabetically ordered to allow an
80  * O(ln(N)) search algorithm to be used.
81  *
82  * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
83  * characters to fit.
84  *
85  * The static table contains no TZ, DTZ, or DYNTZ entries; rather those
86  * are loaded from configuration files and stored in zoneabbrevtbl, whose
87  * abbrevs[] field has the same format as the static datetktbl.
88  */
89 static const datetkn datetktbl[] = {
90  /* token, type, value */
91  {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
92  {DA_D, ADBC, AD}, /* "ad" for years > 0 */
93  {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
94  {"am", AMPM, AM},
95  {"apr", MONTH, 4},
96  {"april", MONTH, 4},
97  {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
98  {"aug", MONTH, 8},
99  {"august", MONTH, 8},
100  {DB_C, ADBC, BC}, /* "bc" for years <= 0 */
101  {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
102  {"dec", MONTH, 12},
103  {"december", MONTH, 12},
104  {"dow", UNITS, DTK_DOW}, /* day of week */
105  {"doy", UNITS, DTK_DOY}, /* day of year */
106  {"dst", DTZMOD, SECS_PER_HOUR},
107  {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
108  {"feb", MONTH, 2},
109  {"february", MONTH, 2},
110  {"fri", DOW, 5},
111  {"friday", DOW, 5},
112  {"h", UNITS, DTK_HOUR}, /* "hour" */
113  {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
114  {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
115  {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
116  {"j", UNITS, DTK_JULIAN},
117  {"jan", MONTH, 1},
118  {"january", MONTH, 1},
119  {"jd", UNITS, DTK_JULIAN},
120  {"jul", MONTH, 7},
121  {"julian", UNITS, DTK_JULIAN},
122  {"july", MONTH, 7},
123  {"jun", MONTH, 6},
124  {"june", MONTH, 6},
125  {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
126  {"mar", MONTH, 3},
127  {"march", MONTH, 3},
128  {"may", MONTH, 5},
129  {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
130  {"mon", DOW, 1},
131  {"monday", DOW, 1},
132  {"nov", MONTH, 11},
133  {"november", MONTH, 11},
134  {NOW, RESERV, DTK_NOW}, /* current transaction time */
135  {"oct", MONTH, 10},
136  {"october", MONTH, 10},
137  {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
138  {"pm", AMPM, PM},
139  {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
140  {"sat", DOW, 6},
141  {"saturday", DOW, 6},
142  {"sep", MONTH, 9},
143  {"sept", MONTH, 9},
144  {"september", MONTH, 9},
145  {"sun", DOW, 0},
146  {"sunday", DOW, 0},
147  {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
148  {"thu", DOW, 4},
149  {"thur", DOW, 4},
150  {"thurs", DOW, 4},
151  {"thursday", DOW, 4},
152  {TODAY, RESERV, DTK_TODAY}, /* midnight */
153  {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
154  {"tue", DOW, 2},
155  {"tues", DOW, 2},
156  {"tuesday", DOW, 2},
157  {"wed", DOW, 3},
158  {"wednesday", DOW, 3},
159  {"weds", DOW, 3},
160  {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
161  {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
162 };
163 
164 static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
165 
166 /*
167  * deltatktbl: same format as datetktbl, but holds keywords used to represent
168  * time units (eg, for intervals, and for EXTRACT).
169  */
170 static const datetkn deltatktbl[] = {
171  /* token, type, value */
172  {"@", IGNORE_DTF, 0}, /* postgres relative prefix */
173  {DAGO, AGO, 0}, /* "ago" indicates negative time offset */
174  {"c", UNITS, DTK_CENTURY}, /* "century" relative */
175  {"cent", UNITS, DTK_CENTURY}, /* "century" relative */
176  {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
177  {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
178  {"d", UNITS, DTK_DAY}, /* "day" relative */
179  {DDAY, UNITS, DTK_DAY}, /* "day" relative */
180  {"days", UNITS, DTK_DAY}, /* "days" relative */
181  {"dec", UNITS, DTK_DECADE}, /* "decade" relative */
182  {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
183  {"decades", UNITS, DTK_DECADE}, /* "decades" relative */
184  {"decs", UNITS, DTK_DECADE}, /* "decades" relative */
185  {"h", UNITS, DTK_HOUR}, /* "hour" relative */
186  {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
187  {"hours", UNITS, DTK_HOUR}, /* "hours" relative */
188  {"hr", UNITS, DTK_HOUR}, /* "hour" relative */
189  {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
190  {"m", UNITS, DTK_MINUTE}, /* "minute" relative */
191  {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
192  {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
193  {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
194  {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
195  {"millisecon", UNITS, DTK_MILLISEC}, /* relative */
196  {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
197  {"min", UNITS, DTK_MINUTE}, /* "minute" relative */
198  {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
199  {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
200  {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
201  {"mon", UNITS, DTK_MONTH}, /* "months" relative */
202  {"mons", UNITS, DTK_MONTH}, /* "months" relative */
203  {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
204  {"months", UNITS, DTK_MONTH},
205  {"ms", UNITS, DTK_MILLISEC},
206  {"msec", UNITS, DTK_MILLISEC},
207  {DMILLISEC, UNITS, DTK_MILLISEC},
208  {"mseconds", UNITS, DTK_MILLISEC},
209  {"msecs", UNITS, DTK_MILLISEC},
210  {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
211  {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
212  {"s", UNITS, DTK_SECOND},
213  {"sec", UNITS, DTK_SECOND},
214  {DSECOND, UNITS, DTK_SECOND},
215  {"seconds", UNITS, DTK_SECOND},
216  {"secs", UNITS, DTK_SECOND},
217  {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
218  {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
219  {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
220  {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
221  {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
222  {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
223  {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
224  {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
225  {"w", UNITS, DTK_WEEK}, /* "week" relative */
226  {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
227  {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
228  {"y", UNITS, DTK_YEAR}, /* "year" relative */
229  {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
230  {"years", UNITS, DTK_YEAR}, /* "years" relative */
231  {"yr", UNITS, DTK_YEAR}, /* "year" relative */
232  {"yrs", UNITS, DTK_YEAR} /* "years" relative */
233 };
234 
235 static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
236 
238 
239 /* Caches of recent lookup results in the above tables */
240 
241 static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
242 
243 static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
244 
245 static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
246 
247 
248 /*
249  * Calendar time to Julian date conversions.
250  * Julian date is commonly used in astronomical applications,
251  * since it is numerically accurate and computationally simple.
252  * The algorithms here will accurately convert between Julian day
253  * and calendar date for all non-negative Julian days
254  * (i.e. from Nov 24, -4713 on).
255  *
256  * Rewritten to eliminate overflow problems. This now allows the
257  * routines to work correctly for all Julian day counts from
258  * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
259  * a 32-bit integer. Longer types should also work to the limits
260  * of their precision.
261  *
262  * Actually, date2j() will work sanely, in the sense of producing
263  * valid negative Julian dates, significantly before Nov 24, -4713.
264  * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
265  * and associated commentary in timestamp.h.
266  */
267 
268 int
269 date2j(int y, int m, int d)
270 {
271  int julian;
272  int century;
273 
274  if (m > 2)
275  {
276  m += 1;
277  y += 4800;
278  }
279  else
280  {
281  m += 13;
282  y += 4799;
283  }
284 
285  century = y / 100;
286  julian = y * 365 - 32167;
287  julian += y / 4 - century + century / 4;
288  julian += 7834 * m / 256 + d;
289 
290  return julian;
291 } /* date2j() */
292 
293 void
294 j2date(int jd, int *year, int *month, int *day)
295 {
296  unsigned int julian;
297  unsigned int quad;
298  unsigned int extra;
299  int y;
300 
301  julian = jd;
302  julian += 32044;
303  quad = julian / 146097;
304  extra = (julian - quad * 146097) * 4 + 3;
305  julian += 60 + quad * 3 + extra / 146097;
306  quad = julian / 1461;
307  julian -= quad * 1461;
308  y = julian * 4 / 1461;
309  julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
310  + 123;
311  y += quad * 4;
312  *year = y - 4800;
313  quad = julian * 2141 / 65536;
314  *day = julian - 7834 * quad / 256;
315  *month = (quad + 10) % MONTHS_PER_YEAR + 1;
316 } /* j2date() */
317 
318 
319 /*
320  * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
321  *
322  * Note: various places use the locution j2day(date - 1) to produce a
323  * result according to the convention 0..6 = Mon..Sun. This is a bit of
324  * a crock, but will work as long as the computation here is just a modulo.
325  */
326 int
328 {
329  date += 1;
330  date %= 7;
331  /* Cope if division truncates towards zero, as it probably does */
332  if (date < 0)
333  date += 7;
334 
335  return date;
336 } /* j2day() */
337 
338 
339 /*
340  * GetCurrentDateTime()
341  *
342  * Get the transaction start time ("now()") broken down as a struct pg_tm,
343  * converted according to the session timezone setting.
344  *
345  * This is just a convenience wrapper for GetCurrentTimeUsec, to cover the
346  * case where caller doesn't need either fractional seconds or tz offset.
347  */
348 void
350 {
351  fsec_t fsec;
352 
353  GetCurrentTimeUsec(tm, &fsec, NULL);
354 }
355 
356 /*
357  * GetCurrentTimeUsec()
358  *
359  * Get the transaction start time ("now()") broken down as a struct pg_tm,
360  * including fractional seconds and timezone offset. The time is converted
361  * according to the session timezone setting.
362  *
363  * Callers may pass tzp = NULL if they don't need the offset, but this does
364  * not affect the conversion behavior (unlike timestamp2tm()).
365  *
366  * Internally, we cache the result, since this could be called many times
367  * in a transaction, within which now() doesn't change.
368  */
369 void
370 GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
371 {
373 
374  /*
375  * The cache key must include both current time and current timezone. By
376  * representing the timezone by just a pointer, we're assuming that
377  * distinct timezone settings could never have the same pointer value.
378  * This is true by virtue of the hashtable used inside pg_tzset();
379  * however, it might need another look if we ever allow entries in that
380  * hash to be recycled.
381  */
382  static TimestampTz cache_ts = 0;
383  static pg_tz *cache_timezone = NULL;
384  static struct pg_tm cache_tm;
385  static fsec_t cache_fsec;
386  static int cache_tz;
387 
388  if (cur_ts != cache_ts || session_timezone != cache_timezone)
389  {
390  /*
391  * Make sure cache is marked invalid in case of error after partial
392  * update within timestamp2tm.
393  */
394  cache_timezone = NULL;
395 
396  /*
397  * Perform the computation, storing results into cache. We do not
398  * really expect any error here, since current time surely ought to be
399  * within range, but check just for sanity's sake.
400  */
401  if (timestamp2tm(cur_ts, &cache_tz, &cache_tm, &cache_fsec,
402  NULL, session_timezone) != 0)
403  ereport(ERROR,
404  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
405  errmsg("timestamp out of range")));
406 
407  /* OK, so mark the cache valid. */
408  cache_ts = cur_ts;
409  cache_timezone = session_timezone;
410  }
411 
412  *tm = cache_tm;
413  *fsec = cache_fsec;
414  if (tzp != NULL)
415  *tzp = cache_tz;
416 }
417 
418 
419 /*
420  * Append seconds and fractional seconds (if any) at *cp.
421  *
422  * precision is the max number of fraction digits, fillzeros says to
423  * pad to two integral-seconds digits.
424  *
425  * Returns a pointer to the new end of string. No NUL terminator is put
426  * there; callers are responsible for NUL terminating str themselves.
427  *
428  * Note that any sign is stripped from the input seconds values.
429  */
430 static char *
431 AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
432 {
433  Assert(precision >= 0);
434 
435  if (fillzeros)
436  cp = pg_ultostr_zeropad(cp, Abs(sec), 2);
437  else
438  cp = pg_ultostr(cp, Abs(sec));
439 
440  /* fsec_t is just an int32 */
441  if (fsec != 0)
442  {
443  int32 value = Abs(fsec);
444  char *end = &cp[precision + 1];
445  bool gotnonzero = false;
446 
447  *cp++ = '.';
448 
449  /*
450  * Append the fractional seconds part. Note that we don't want any
451  * trailing zeros here, so since we're building the number in reverse
452  * we'll skip appending zeros until we've output a non-zero digit.
453  */
454  while (precision--)
455  {
456  int32 oldval = value;
457  int32 remainder;
458 
459  value /= 10;
460  remainder = oldval - value * 10;
461 
462  /* check if we got a non-zero */
463  if (remainder)
464  gotnonzero = true;
465 
466  if (gotnonzero)
467  cp[precision] = '0' + remainder;
468  else
469  end = &cp[precision];
470  }
471 
472  /*
473  * If we still have a non-zero value then precision must have not been
474  * enough to print the number. We punt the problem to pg_ltostr(),
475  * which will generate a correct answer in the minimum valid width.
476  */
477  if (value)
478  return pg_ultostr(cp, Abs(fsec));
479 
480  return end;
481  }
482  else
483  return cp;
484 }
485 
486 
487 /*
488  * Variant of above that's specialized to timestamp case.
489  *
490  * Returns a pointer to the new end of string. No NUL terminator is put
491  * there; callers are responsible for NUL terminating str themselves.
492  */
493 static char *
494 AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
495 {
496  return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
497 }
498 
499 /*
500  * Multiply frac by scale (to produce seconds) and add to *tm & *fsec.
501  * We assume the input frac is less than 1 so overflow is not an issue.
502  */
503 static void
504 AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
505 {
506  int sec;
507 
508  if (frac == 0)
509  return;
510  frac *= scale;
511  sec = (int) frac;
512  tm->tm_sec += sec;
513  frac -= sec;
514  *fsec += rint(frac * 1000000);
515 }
516 
517 /* As above, but initial scale produces days */
518 static void
519 AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
520 {
521  int extra_days;
522 
523  if (frac == 0)
524  return;
525  frac *= scale;
526  extra_days = (int) frac;
527  tm->tm_mday += extra_days;
528  frac -= extra_days;
529  AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY);
530 }
531 
532 /* Fetch a fractional-second value with suitable error checking */
533 static int
535 {
536  double frac;
537 
538  /* Caller should always pass the start of the fraction part */
539  Assert(*cp == '.');
540  errno = 0;
541  frac = strtod(cp, &cp);
542  /* check for parse failure */
543  if (*cp != '\0' || errno != 0)
544  return DTERR_BAD_FORMAT;
545  *fsec = rint(frac * 1000000);
546  return 0;
547 }
548 
549 
550 /* ParseDateTime()
551  * Break string into tokens based on a date/time context.
552  * Returns 0 if successful, DTERR code if bogus input detected.
553  *
554  * timestr - the input string
555  * workbuf - workspace for field string storage. This must be
556  * larger than the largest legal input for this datetime type --
557  * some additional space will be needed to NUL terminate fields.
558  * buflen - the size of workbuf
559  * field[] - pointers to field strings are returned in this array
560  * ftype[] - field type indicators are returned in this array
561  * maxfields - dimensions of the above two arrays
562  * *numfields - set to the actual number of fields detected
563  *
564  * The fields extracted from the input are stored as separate,
565  * null-terminated strings in the workspace at workbuf. Any text is
566  * converted to lower case.
567  *
568  * Several field types are assigned:
569  * DTK_NUMBER - digits and (possibly) a decimal point
570  * DTK_DATE - digits and two delimiters, or digits and text
571  * DTK_TIME - digits, colon delimiters, and possibly a decimal point
572  * DTK_STRING - text (no digits or punctuation)
573  * DTK_SPECIAL - leading "+" or "-" followed by text
574  * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
575  *
576  * Note that some field types can hold unexpected items:
577  * DTK_NUMBER can hold date fields (yy.ddd)
578  * DTK_STRING can hold months (January) and time zones (PST)
579  * DTK_DATE can hold time zone names (America/New_York, GMT-8)
580  */
581 int
582 ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
583  char **field, int *ftype, int maxfields, int *numfields)
584 {
585  int nf = 0;
586  const char *cp = timestr;
587  char *bufp = workbuf;
588  const char *bufend = workbuf + buflen;
589 
590  /*
591  * Set the character pointed-to by "bufptr" to "newchar", and increment
592  * "bufptr". "end" gives the end of the buffer -- we return an error if
593  * there is no space left to append a character to the buffer. Note that
594  * "bufptr" is evaluated twice.
595  */
596 #define APPEND_CHAR(bufptr, end, newchar) \
597  do \
598  { \
599  if (((bufptr) + 1) >= (end)) \
600  return DTERR_BAD_FORMAT; \
601  *(bufptr)++ = newchar; \
602  } while (0)
603 
604  /* outer loop through fields */
605  while (*cp != '\0')
606  {
607  /* Ignore spaces between fields */
608  if (isspace((unsigned char) *cp))
609  {
610  cp++;
611  continue;
612  }
613 
614  /* Record start of current field */
615  if (nf >= maxfields)
616  return DTERR_BAD_FORMAT;
617  field[nf] = bufp;
618 
619  /* leading digit? then date or time */
620  if (isdigit((unsigned char) *cp))
621  {
622  APPEND_CHAR(bufp, bufend, *cp++);
623  while (isdigit((unsigned char) *cp))
624  APPEND_CHAR(bufp, bufend, *cp++);
625 
626  /* time field? */
627  if (*cp == ':')
628  {
629  ftype[nf] = DTK_TIME;
630  APPEND_CHAR(bufp, bufend, *cp++);
631  while (isdigit((unsigned char) *cp) ||
632  (*cp == ':') || (*cp == '.'))
633  APPEND_CHAR(bufp, bufend, *cp++);
634  }
635  /* date field? allow embedded text month */
636  else if (*cp == '-' || *cp == '/' || *cp == '.')
637  {
638  /* save delimiting character to use later */
639  char delim = *cp;
640 
641  APPEND_CHAR(bufp, bufend, *cp++);
642  /* second field is all digits? then no embedded text month */
643  if (isdigit((unsigned char) *cp))
644  {
645  ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
646  while (isdigit((unsigned char) *cp))
647  APPEND_CHAR(bufp, bufend, *cp++);
648 
649  /*
650  * insist that the delimiters match to get a three-field
651  * date.
652  */
653  if (*cp == delim)
654  {
655  ftype[nf] = DTK_DATE;
656  APPEND_CHAR(bufp, bufend, *cp++);
657  while (isdigit((unsigned char) *cp) || *cp == delim)
658  APPEND_CHAR(bufp, bufend, *cp++);
659  }
660  }
661  else
662  {
663  ftype[nf] = DTK_DATE;
664  while (isalnum((unsigned char) *cp) || *cp == delim)
665  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
666  }
667  }
668 
669  /*
670  * otherwise, number only and will determine year, month, day, or
671  * concatenated fields later...
672  */
673  else
674  ftype[nf] = DTK_NUMBER;
675  }
676  /* Leading decimal point? Then fractional seconds... */
677  else if (*cp == '.')
678  {
679  APPEND_CHAR(bufp, bufend, *cp++);
680  while (isdigit((unsigned char) *cp))
681  APPEND_CHAR(bufp, bufend, *cp++);
682 
683  ftype[nf] = DTK_NUMBER;
684  }
685 
686  /*
687  * text? then date string, month, day of week, special, or timezone
688  */
689  else if (isalpha((unsigned char) *cp))
690  {
691  bool is_date;
692 
693  ftype[nf] = DTK_STRING;
694  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
695  while (isalpha((unsigned char) *cp))
696  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
697 
698  /*
699  * Dates can have embedded '-', '/', or '.' separators. It could
700  * also be a timezone name containing embedded '/', '+', '-', '_',
701  * or ':' (but '_' or ':' can't be the first punctuation). If the
702  * next character is a digit or '+', we need to check whether what
703  * we have so far is a recognized non-timezone keyword --- if so,
704  * don't believe that this is the start of a timezone.
705  */
706  is_date = false;
707  if (*cp == '-' || *cp == '/' || *cp == '.')
708  is_date = true;
709  else if (*cp == '+' || isdigit((unsigned char) *cp))
710  {
711  *bufp = '\0'; /* null-terminate current field value */
712  /* we need search only the core token table, not TZ names */
713  if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
714  is_date = true;
715  }
716  if (is_date)
717  {
718  ftype[nf] = DTK_DATE;
719  do
720  {
721  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
722  } while (*cp == '+' || *cp == '-' ||
723  *cp == '/' || *cp == '_' ||
724  *cp == '.' || *cp == ':' ||
725  isalnum((unsigned char) *cp));
726  }
727  }
728  /* sign? then special or numeric timezone */
729  else if (*cp == '+' || *cp == '-')
730  {
731  APPEND_CHAR(bufp, bufend, *cp++);
732  /* soak up leading whitespace */
733  while (isspace((unsigned char) *cp))
734  cp++;
735  /* numeric timezone? */
736  /* note that "DTK_TZ" could also be a signed float or yyyy-mm */
737  if (isdigit((unsigned char) *cp))
738  {
739  ftype[nf] = DTK_TZ;
740  APPEND_CHAR(bufp, bufend, *cp++);
741  while (isdigit((unsigned char) *cp) ||
742  *cp == ':' || *cp == '.' || *cp == '-')
743  APPEND_CHAR(bufp, bufend, *cp++);
744  }
745  /* special? */
746  else if (isalpha((unsigned char) *cp))
747  {
748  ftype[nf] = DTK_SPECIAL;
749  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
750  while (isalpha((unsigned char) *cp))
751  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
752  }
753  /* otherwise something wrong... */
754  else
755  return DTERR_BAD_FORMAT;
756  }
757  /* ignore other punctuation but use as delimiter */
758  else if (ispunct((unsigned char) *cp))
759  {
760  cp++;
761  continue;
762  }
763  /* otherwise, something is not right... */
764  else
765  return DTERR_BAD_FORMAT;
766 
767  /* force in a delimiter after each field */
768  *bufp++ = '\0';
769  nf++;
770  }
771 
772  *numfields = nf;
773 
774  return 0;
775 }
776 
777 
778 /* DecodeDateTime()
779  * Interpret previously parsed fields for general date and time.
780  * Return 0 if full date, 1 if only time, and negative DTERR code if problems.
781  * (Currently, all callers treat 1 as an error return too.)
782  *
783  * External format(s):
784  * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
785  * "Fri Feb-7-1997 15:23:27"
786  * "Feb-7-1997 15:23:27"
787  * "2-7-1997 15:23:27"
788  * "1997-2-7 15:23:27"
789  * "1997.038 15:23:27" (day of year 1-366)
790  * Also supports input in compact time:
791  * "970207 152327"
792  * "97038 152327"
793  * "20011225T040506.789-07"
794  *
795  * Use the system-provided functions to get the current time zone
796  * if not specified in the input string.
797  *
798  * If the date is outside the range of pg_time_t (in practice that could only
799  * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
800  * 1997-05-27
801  */
802 int
803 DecodeDateTime(char **field, int *ftype, int nf,
804  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
805 {
806  int fmask = 0,
807  tmask,
808  type;
809  int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */
810  int i;
811  int val;
812  int dterr;
813  int mer = HR24;
814  bool haveTextMonth = false;
815  bool isjulian = false;
816  bool is2digits = false;
817  bool bc = false;
818  pg_tz *namedTz = NULL;
819  pg_tz *abbrevTz = NULL;
820  pg_tz *valtz;
821  char *abbrev = NULL;
822  struct pg_tm cur_tm;
823 
824  /*
825  * We'll insist on at least all of the date fields, but initialize the
826  * remaining fields in case they are not set later...
827  */
828  *dtype = DTK_DATE;
829  tm->tm_hour = 0;
830  tm->tm_min = 0;
831  tm->tm_sec = 0;
832  *fsec = 0;
833  /* don't know daylight savings time status apriori */
834  tm->tm_isdst = -1;
835  if (tzp != NULL)
836  *tzp = 0;
837 
838  for (i = 0; i < nf; i++)
839  {
840  switch (ftype[i])
841  {
842  case DTK_DATE:
843 
844  /*
845  * Integral julian day with attached time zone? All other
846  * forms with JD will be separated into distinct fields, so we
847  * handle just this case here.
848  */
849  if (ptype == DTK_JULIAN)
850  {
851  char *cp;
852  int val;
853 
854  if (tzp == NULL)
855  return DTERR_BAD_FORMAT;
856 
857  errno = 0;
858  val = strtoint(field[i], &cp, 10);
859  if (errno == ERANGE || val < 0)
860  return DTERR_FIELD_OVERFLOW;
861 
862  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
863  isjulian = true;
864 
865  /* Get the time zone from the end of the string */
866  dterr = DecodeTimezone(cp, tzp);
867  if (dterr)
868  return dterr;
869 
870  tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
871  ptype = 0;
872  break;
873  }
874 
875  /*
876  * Already have a date? Then this might be a time zone name
877  * with embedded punctuation (e.g. "America/New_York") or a
878  * run-together time with trailing time zone (e.g. hhmmss-zz).
879  * - thomas 2001-12-25
880  *
881  * We consider it a time zone if we already have month & day.
882  * This is to allow the form "mmm dd hhmmss tz year", which
883  * we've historically accepted.
884  */
885  else if (ptype != 0 ||
886  ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
887  (DTK_M(MONTH) | DTK_M(DAY))))
888  {
889  /* No time zone accepted? Then quit... */
890  if (tzp == NULL)
891  return DTERR_BAD_FORMAT;
892 
893  if (isdigit((unsigned char) *field[i]) || ptype != 0)
894  {
895  char *cp;
896 
897  if (ptype != 0)
898  {
899  /* Sanity check; should not fail this test */
900  if (ptype != DTK_TIME)
901  return DTERR_BAD_FORMAT;
902  ptype = 0;
903  }
904 
905  /*
906  * Starts with a digit but we already have a time
907  * field? Then we are in trouble with a date and time
908  * already...
909  */
910  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
911  return DTERR_BAD_FORMAT;
912 
913  if ((cp = strchr(field[i], '-')) == NULL)
914  return DTERR_BAD_FORMAT;
915 
916  /* Get the time zone from the end of the string */
917  dterr = DecodeTimezone(cp, tzp);
918  if (dterr)
919  return dterr;
920  *cp = '\0';
921 
922  /*
923  * Then read the rest of the field as a concatenated
924  * time
925  */
926  dterr = DecodeNumberField(strlen(field[i]), field[i],
927  fmask,
928  &tmask, tm,
929  fsec, &is2digits);
930  if (dterr < 0)
931  return dterr;
932 
933  /*
934  * modify tmask after returning from
935  * DecodeNumberField()
936  */
937  tmask |= DTK_M(TZ);
938  }
939  else
940  {
941  namedTz = pg_tzset(field[i]);
942  if (!namedTz)
943  {
944  /*
945  * We should return an error code instead of
946  * ereport'ing directly, but then there is no way
947  * to report the bad time zone name.
948  */
949  ereport(ERROR,
950  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
951  errmsg("time zone \"%s\" not recognized",
952  field[i])));
953  }
954  /* we'll apply the zone setting below */
955  tmask = DTK_M(TZ);
956  }
957  }
958  else
959  {
960  dterr = DecodeDate(field[i], fmask,
961  &tmask, &is2digits, tm);
962  if (dterr)
963  return dterr;
964  }
965  break;
966 
967  case DTK_TIME:
968 
969  /*
970  * This might be an ISO time following a "t" field.
971  */
972  if (ptype != 0)
973  {
974  /* Sanity check; should not fail this test */
975  if (ptype != DTK_TIME)
976  return DTERR_BAD_FORMAT;
977  ptype = 0;
978  }
979  dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
980  &tmask, tm, fsec);
981  if (dterr)
982  return dterr;
983 
984  /* check for time overflow */
985  if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec,
986  *fsec))
987  return DTERR_FIELD_OVERFLOW;
988  break;
989 
990  case DTK_TZ:
991  {
992  int tz;
993 
994  if (tzp == NULL)
995  return DTERR_BAD_FORMAT;
996 
997  dterr = DecodeTimezone(field[i], &tz);
998  if (dterr)
999  return dterr;
1000  *tzp = tz;
1001  tmask = DTK_M(TZ);
1002  }
1003  break;
1004 
1005  case DTK_NUMBER:
1006 
1007  /*
1008  * Was this an "ISO date" with embedded field labels? An
1009  * example is "y2001m02d04" - thomas 2001-02-04
1010  */
1011  if (ptype != 0)
1012  {
1013  char *cp;
1014  int val;
1015 
1016  errno = 0;
1017  val = strtoint(field[i], &cp, 10);
1018  if (errno == ERANGE)
1019  return DTERR_FIELD_OVERFLOW;
1020 
1021  /*
1022  * only a few kinds are allowed to have an embedded
1023  * decimal
1024  */
1025  if (*cp == '.')
1026  switch (ptype)
1027  {
1028  case DTK_JULIAN:
1029  case DTK_TIME:
1030  case DTK_SECOND:
1031  break;
1032  default:
1033  return DTERR_BAD_FORMAT;
1034  break;
1035  }
1036  else if (*cp != '\0')
1037  return DTERR_BAD_FORMAT;
1038 
1039  switch (ptype)
1040  {
1041  case DTK_YEAR:
1042  tm->tm_year = val;
1043  tmask = DTK_M(YEAR);
1044  break;
1045 
1046  case DTK_MONTH:
1047 
1048  /*
1049  * already have a month and hour? then assume
1050  * minutes
1051  */
1052  if ((fmask & DTK_M(MONTH)) != 0 &&
1053  (fmask & DTK_M(HOUR)) != 0)
1054  {
1055  tm->tm_min = val;
1056  tmask = DTK_M(MINUTE);
1057  }
1058  else
1059  {
1060  tm->tm_mon = val;
1061  tmask = DTK_M(MONTH);
1062  }
1063  break;
1064 
1065  case DTK_DAY:
1066  tm->tm_mday = val;
1067  tmask = DTK_M(DAY);
1068  break;
1069 
1070  case DTK_HOUR:
1071  tm->tm_hour = val;
1072  tmask = DTK_M(HOUR);
1073  break;
1074 
1075  case DTK_MINUTE:
1076  tm->tm_min = val;
1077  tmask = DTK_M(MINUTE);
1078  break;
1079 
1080  case DTK_SECOND:
1081  tm->tm_sec = val;
1082  tmask = DTK_M(SECOND);
1083  if (*cp == '.')
1084  {
1085  dterr = ParseFractionalSecond(cp, fsec);
1086  if (dterr)
1087  return dterr;
1088  tmask = DTK_ALL_SECS_M;
1089  }
1090  break;
1091 
1092  case DTK_TZ:
1093  tmask = DTK_M(TZ);
1094  dterr = DecodeTimezone(field[i], tzp);
1095  if (dterr)
1096  return dterr;
1097  break;
1098 
1099  case DTK_JULIAN:
1100  /* previous field was a label for "julian date" */
1101  if (val < 0)
1102  return DTERR_FIELD_OVERFLOW;
1103  tmask = DTK_DATE_M;
1104  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1105  isjulian = true;
1106 
1107  /* fractional Julian Day? */
1108  if (*cp == '.')
1109  {
1110  double time;
1111 
1112  errno = 0;
1113  time = strtod(cp, &cp);
1114  if (*cp != '\0' || errno != 0)
1115  return DTERR_BAD_FORMAT;
1116  time *= USECS_PER_DAY;
1117  dt2time(time,
1118  &tm->tm_hour, &tm->tm_min,
1119  &tm->tm_sec, fsec);
1120  tmask |= DTK_TIME_M;
1121  }
1122  break;
1123 
1124  case DTK_TIME:
1125  /* previous field was "t" for ISO time */
1126  dterr = DecodeNumberField(strlen(field[i]), field[i],
1127  (fmask | DTK_DATE_M),
1128  &tmask, tm,
1129  fsec, &is2digits);
1130  if (dterr < 0)
1131  return dterr;
1132  if (tmask != DTK_TIME_M)
1133  return DTERR_BAD_FORMAT;
1134  break;
1135 
1136  default:
1137  return DTERR_BAD_FORMAT;
1138  break;
1139  }
1140 
1141  ptype = 0;
1142  *dtype = DTK_DATE;
1143  }
1144  else
1145  {
1146  char *cp;
1147  int flen;
1148 
1149  flen = strlen(field[i]);
1150  cp = strchr(field[i], '.');
1151 
1152  /* Embedded decimal and no date yet? */
1153  if (cp != NULL && !(fmask & DTK_DATE_M))
1154  {
1155  dterr = DecodeDate(field[i], fmask,
1156  &tmask, &is2digits, tm);
1157  if (dterr)
1158  return dterr;
1159  }
1160  /* embedded decimal and several digits before? */
1161  else if (cp != NULL && flen - strlen(cp) > 2)
1162  {
1163  /*
1164  * Interpret as a concatenated date or time Set the
1165  * type field to allow decoding other fields later.
1166  * Example: 20011223 or 040506
1167  */
1168  dterr = DecodeNumberField(flen, field[i], fmask,
1169  &tmask, tm,
1170  fsec, &is2digits);
1171  if (dterr < 0)
1172  return dterr;
1173  }
1174 
1175  /*
1176  * Is this a YMD or HMS specification, or a year number?
1177  * YMD and HMS are required to be six digits or more, so
1178  * if it is 5 digits, it is a year. If it is six or more
1179  * digits, we assume it is YMD or HMS unless no date and
1180  * no time values have been specified. This forces 6+
1181  * digit years to be at the end of the string, or to use
1182  * the ISO date specification.
1183  */
1184  else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
1185  !(fmask & DTK_TIME_M)))
1186  {
1187  dterr = DecodeNumberField(flen, field[i], fmask,
1188  &tmask, tm,
1189  fsec, &is2digits);
1190  if (dterr < 0)
1191  return dterr;
1192  }
1193  /* otherwise it is a single date/time field... */
1194  else
1195  {
1196  dterr = DecodeNumber(flen, field[i],
1197  haveTextMonth, fmask,
1198  &tmask, tm,
1199  fsec, &is2digits);
1200  if (dterr)
1201  return dterr;
1202  }
1203  }
1204  break;
1205 
1206  case DTK_STRING:
1207  case DTK_SPECIAL:
1208  /* timezone abbrevs take precedence over built-in tokens */
1209  type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
1210  if (type == UNKNOWN_FIELD)
1211  type = DecodeSpecial(i, field[i], &val);
1212  if (type == IGNORE_DTF)
1213  continue;
1214 
1215  tmask = DTK_M(type);
1216  switch (type)
1217  {
1218  case RESERV:
1219  switch (val)
1220  {
1221  case DTK_NOW:
1222  tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1223  *dtype = DTK_DATE;
1224  GetCurrentTimeUsec(tm, fsec, tzp);
1225  break;
1226 
1227  case DTK_YESTERDAY:
1228  tmask = DTK_DATE_M;
1229  *dtype = DTK_DATE;
1230  GetCurrentDateTime(&cur_tm);
1231  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
1232  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1233  break;
1234 
1235  case DTK_TODAY:
1236  tmask = DTK_DATE_M;
1237  *dtype = DTK_DATE;
1238  GetCurrentDateTime(&cur_tm);
1239  tm->tm_year = cur_tm.tm_year;
1240  tm->tm_mon = cur_tm.tm_mon;
1241  tm->tm_mday = cur_tm.tm_mday;
1242  break;
1243 
1244  case DTK_TOMORROW:
1245  tmask = DTK_DATE_M;
1246  *dtype = DTK_DATE;
1247  GetCurrentDateTime(&cur_tm);
1248  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
1249  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1250  break;
1251 
1252  case DTK_ZULU:
1253  tmask = (DTK_TIME_M | DTK_M(TZ));
1254  *dtype = DTK_DATE;
1255  tm->tm_hour = 0;
1256  tm->tm_min = 0;
1257  tm->tm_sec = 0;
1258  if (tzp != NULL)
1259  *tzp = 0;
1260  break;
1261 
1262  default:
1263  *dtype = val;
1264  }
1265 
1266  break;
1267 
1268  case MONTH:
1269 
1270  /*
1271  * already have a (numeric) month? then see if we can
1272  * substitute...
1273  */
1274  if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
1275  !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
1276  tm->tm_mon <= 31)
1277  {
1278  tm->tm_mday = tm->tm_mon;
1279  tmask = DTK_M(DAY);
1280  }
1281  haveTextMonth = true;
1282  tm->tm_mon = val;
1283  break;
1284 
1285  case DTZMOD:
1286 
1287  /*
1288  * daylight savings time modifier (solves "MET DST"
1289  * syntax)
1290  */
1291  tmask |= DTK_M(DTZ);
1292  tm->tm_isdst = 1;
1293  if (tzp == NULL)
1294  return DTERR_BAD_FORMAT;
1295  *tzp -= val;
1296  break;
1297 
1298  case DTZ:
1299 
1300  /*
1301  * set mask for TZ here _or_ check for DTZ later when
1302  * getting default timezone
1303  */
1304  tmask |= DTK_M(TZ);
1305  tm->tm_isdst = 1;
1306  if (tzp == NULL)
1307  return DTERR_BAD_FORMAT;
1308  *tzp = -val;
1309  break;
1310 
1311  case TZ:
1312  tm->tm_isdst = 0;
1313  if (tzp == NULL)
1314  return DTERR_BAD_FORMAT;
1315  *tzp = -val;
1316  break;
1317 
1318  case DYNTZ:
1319  tmask |= DTK_M(TZ);
1320  if (tzp == NULL)
1321  return DTERR_BAD_FORMAT;
1322  /* we'll determine the actual offset later */
1323  abbrevTz = valtz;
1324  abbrev = field[i];
1325  break;
1326 
1327  case AMPM:
1328  mer = val;
1329  break;
1330 
1331  case ADBC:
1332  bc = (val == BC);
1333  break;
1334 
1335  case DOW:
1336  tm->tm_wday = val;
1337  break;
1338 
1339  case UNITS:
1340  tmask = 0;
1341  ptype = val;
1342  break;
1343 
1344  case ISOTIME:
1345 
1346  /*
1347  * This is a filler field "t" indicating that the next
1348  * field is time. Try to verify that this is sensible.
1349  */
1350  tmask = 0;
1351 
1352  /* No preceding date? Then quit... */
1353  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1354  return DTERR_BAD_FORMAT;
1355 
1356  /***
1357  * We will need one of the following fields:
1358  * DTK_NUMBER should be hhmmss.fff
1359  * DTK_TIME should be hh:mm:ss.fff
1360  * DTK_DATE should be hhmmss-zz
1361  ***/
1362  if (i >= nf - 1 ||
1363  (ftype[i + 1] != DTK_NUMBER &&
1364  ftype[i + 1] != DTK_TIME &&
1365  ftype[i + 1] != DTK_DATE))
1366  return DTERR_BAD_FORMAT;
1367 
1368  ptype = val;
1369  break;
1370 
1371  case UNKNOWN_FIELD:
1372 
1373  /*
1374  * Before giving up and declaring error, check to see
1375  * if it is an all-alpha timezone name.
1376  */
1377  namedTz = pg_tzset(field[i]);
1378  if (!namedTz)
1379  return DTERR_BAD_FORMAT;
1380  /* we'll apply the zone setting below */
1381  tmask = DTK_M(TZ);
1382  break;
1383 
1384  default:
1385  return DTERR_BAD_FORMAT;
1386  }
1387  break;
1388 
1389  default:
1390  return DTERR_BAD_FORMAT;
1391  }
1392 
1393  if (tmask & fmask)
1394  return DTERR_BAD_FORMAT;
1395  fmask |= tmask;
1396  } /* end loop over fields */
1397 
1398  /* do final checking/adjustment of Y/M/D fields */
1399  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
1400  if (dterr)
1401  return dterr;
1402 
1403  /* handle AM/PM */
1404  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
1405  return DTERR_FIELD_OVERFLOW;
1406  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
1407  tm->tm_hour = 0;
1408  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
1409  tm->tm_hour += HOURS_PER_DAY / 2;
1410 
1411  /* do additional checking for full date specs... */
1412  if (*dtype == DTK_DATE)
1413  {
1414  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1415  {
1416  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1417  return 1;
1418  return DTERR_BAD_FORMAT;
1419  }
1420 
1421  /*
1422  * If we had a full timezone spec, compute the offset (we could not do
1423  * it before, because we need the date to resolve DST status).
1424  */
1425  if (namedTz != NULL)
1426  {
1427  /* daylight savings time modifier disallowed with full TZ */
1428  if (fmask & DTK_M(DTZMOD))
1429  return DTERR_BAD_FORMAT;
1430 
1431  *tzp = DetermineTimeZoneOffset(tm, namedTz);
1432  }
1433 
1434  /*
1435  * Likewise, if we had a dynamic timezone abbreviation, resolve it
1436  * now.
1437  */
1438  if (abbrevTz != NULL)
1439  {
1440  /* daylight savings time modifier disallowed with dynamic TZ */
1441  if (fmask & DTK_M(DTZMOD))
1442  return DTERR_BAD_FORMAT;
1443 
1444  *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
1445  }
1446 
1447  /* timezone not specified? then use session timezone */
1448  if (tzp != NULL && !(fmask & DTK_M(TZ)))
1449  {
1450  /*
1451  * daylight savings time modifier but no standard timezone? then
1452  * error
1453  */
1454  if (fmask & DTK_M(DTZMOD))
1455  return DTERR_BAD_FORMAT;
1456 
1458  }
1459  }
1460 
1461  return 0;
1462 }
1463 
1464 
1465 /* DetermineTimeZoneOffset()
1466  *
1467  * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
1468  * and tm_sec fields are set, and a zic-style time zone definition, determine
1469  * the applicable GMT offset and daylight-savings status at that time.
1470  * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
1471  * offset as the function result.
1472  *
1473  * Note: if the date is out of the range we can deal with, we return zero
1474  * as the GMT offset and set tm_isdst = 0. We don't throw an error here,
1475  * though probably some higher-level code will.
1476  */
1477 int
1479 {
1480  pg_time_t t;
1481 
1482  return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1483 }
1484 
1485 
1486 /* DetermineTimeZoneOffsetInternal()
1487  *
1488  * As above, but also return the actual UTC time imputed to the date/time
1489  * into *tp.
1490  *
1491  * In event of an out-of-range date, we punt by returning zero into *tp.
1492  * This is okay for the immediate callers but is a good reason for not
1493  * exposing this worker function globally.
1494  *
1495  * Note: it might seem that we should use mktime() for this, but bitter
1496  * experience teaches otherwise. This code is much faster than most versions
1497  * of mktime(), anyway.
1498  */
1499 static int
1501 {
1502  int date,
1503  sec;
1504  pg_time_t day,
1505  mytime,
1506  prevtime,
1507  boundary,
1508  beforetime,
1509  aftertime;
1510  long int before_gmtoff,
1511  after_gmtoff;
1512  int before_isdst,
1513  after_isdst;
1514  int res;
1515 
1516  /*
1517  * First, generate the pg_time_t value corresponding to the given
1518  * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
1519  * timezone is GMT. (For a valid Julian date, integer overflow should be
1520  * impossible with 64-bit pg_time_t, but let's check for safety.)
1521  */
1522  if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
1523  goto overflow;
1524  date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE;
1525 
1526  day = ((pg_time_t) date) * SECS_PER_DAY;
1527  if (day / SECS_PER_DAY != date)
1528  goto overflow;
1529  sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE;
1530  mytime = day + sec;
1531  /* since sec >= 0, overflow could only be from +day to -mytime */
1532  if (mytime < 0 && day > 0)
1533  goto overflow;
1534 
1535  /*
1536  * Find the DST time boundary just before or following the target time. We
1537  * assume that all zones have GMT offsets less than 24 hours, and that DST
1538  * boundaries can't be closer together than 48 hours, so backing up 24
1539  * hours and finding the "next" boundary will work.
1540  */
1541  prevtime = mytime - SECS_PER_DAY;
1542  if (mytime < 0 && prevtime > 0)
1543  goto overflow;
1544 
1545  res = pg_next_dst_boundary(&prevtime,
1546  &before_gmtoff, &before_isdst,
1547  &boundary,
1548  &after_gmtoff, &after_isdst,
1549  tzp);
1550  if (res < 0)
1551  goto overflow; /* failure? */
1552 
1553  if (res == 0)
1554  {
1555  /* Non-DST zone, life is simple */
1556  tm->tm_isdst = before_isdst;
1557  *tp = mytime - before_gmtoff;
1558  return -(int) before_gmtoff;
1559  }
1560 
1561  /*
1562  * Form the candidate pg_time_t values with local-time adjustment
1563  */
1564  beforetime = mytime - before_gmtoff;
1565  if ((before_gmtoff > 0 &&
1566  mytime < 0 && beforetime > 0) ||
1567  (before_gmtoff <= 0 &&
1568  mytime > 0 && beforetime < 0))
1569  goto overflow;
1570  aftertime = mytime - after_gmtoff;
1571  if ((after_gmtoff > 0 &&
1572  mytime < 0 && aftertime > 0) ||
1573  (after_gmtoff <= 0 &&
1574  mytime > 0 && aftertime < 0))
1575  goto overflow;
1576 
1577  /*
1578  * If both before or both after the boundary time, we know what to do. The
1579  * boundary time itself is considered to be after the transition, which
1580  * means we can accept aftertime == boundary in the second case.
1581  */
1582  if (beforetime < boundary && aftertime < boundary)
1583  {
1584  tm->tm_isdst = before_isdst;
1585  *tp = beforetime;
1586  return -(int) before_gmtoff;
1587  }
1588  if (beforetime > boundary && aftertime >= boundary)
1589  {
1590  tm->tm_isdst = after_isdst;
1591  *tp = aftertime;
1592  return -(int) after_gmtoff;
1593  }
1594 
1595  /*
1596  * It's an invalid or ambiguous time due to timezone transition. In a
1597  * spring-forward transition, prefer the "before" interpretation; in a
1598  * fall-back transition, prefer "after". (We used to define and implement
1599  * this test as "prefer the standard-time interpretation", but that rule
1600  * does not help to resolve the behavior when both times are reported as
1601  * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
1602  * in some zones such as Europe/Dublin, there is widespread confusion
1603  * about which time offset is "standard" time, so it's fortunate that our
1604  * behavior doesn't depend on that.)
1605  */
1606  if (beforetime > aftertime)
1607  {
1608  tm->tm_isdst = before_isdst;
1609  *tp = beforetime;
1610  return -(int) before_gmtoff;
1611  }
1612  tm->tm_isdst = after_isdst;
1613  *tp = aftertime;
1614  return -(int) after_gmtoff;
1615 
1616 overflow:
1617  /* Given date is out of range, so assume UTC */
1618  tm->tm_isdst = 0;
1619  *tp = 0;
1620  return 0;
1621 }
1622 
1623 
1624 /* DetermineTimeZoneAbbrevOffset()
1625  *
1626  * Determine the GMT offset and DST flag to be attributed to a dynamic
1627  * time zone abbreviation, that is one whose meaning has changed over time.
1628  * *tm contains the local time at which the meaning should be determined,
1629  * and tm->tm_isdst receives the DST flag.
1630  *
1631  * This differs from the behavior of DetermineTimeZoneOffset() in that a
1632  * standard-time or daylight-time abbreviation forces use of the corresponding
1633  * GMT offset even when the zone was then in DS or standard time respectively.
1634  * (However, that happens only if we can match the given abbreviation to some
1635  * abbreviation that appears in the IANA timezone data. Otherwise, we fall
1636  * back to doing DetermineTimeZoneOffset().)
1637  */
1638 int
1639 DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
1640 {
1641  pg_time_t t;
1642  int zone_offset;
1643  int abbr_offset;
1644  int abbr_isdst;
1645 
1646  /*
1647  * Compute the UTC time we want to probe at. (In event of overflow, we'll
1648  * probe at the epoch, which is a bit random but probably doesn't matter.)
1649  */
1650  zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1651 
1652  /*
1653  * Try to match the abbreviation to something in the zone definition.
1654  */
1655  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1656  &abbr_offset, &abbr_isdst))
1657  {
1658  /* Success, so use the abbrev-specific answers. */
1659  tm->tm_isdst = abbr_isdst;
1660  return abbr_offset;
1661  }
1662 
1663  /*
1664  * No match, so use the answers we already got from
1665  * DetermineTimeZoneOffsetInternal.
1666  */
1667  return zone_offset;
1668 }
1669 
1670 
1671 /* DetermineTimeZoneAbbrevOffsetTS()
1672  *
1673  * As above but the probe time is specified as a TimestampTz (hence, UTC time),
1674  * and DST status is returned into *isdst rather than into tm->tm_isdst.
1675  */
1676 int
1678  pg_tz *tzp, int *isdst)
1679 {
1681  int zone_offset;
1682  int abbr_offset;
1683  int tz;
1684  struct pg_tm tm;
1685  fsec_t fsec;
1686 
1687  /*
1688  * If the abbrev matches anything in the zone data, this is pretty easy.
1689  */
1690  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1691  &abbr_offset, isdst))
1692  return abbr_offset;
1693 
1694  /*
1695  * Else, break down the timestamp so we can use DetermineTimeZoneOffset.
1696  */
1697  if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
1698  ereport(ERROR,
1699  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1700  errmsg("timestamp out of range")));
1701 
1702  zone_offset = DetermineTimeZoneOffset(&tm, tzp);
1703  *isdst = tm.tm_isdst;
1704  return zone_offset;
1705 }
1706 
1707 
1708 /* DetermineTimeZoneAbbrevOffsetInternal()
1709  *
1710  * Workhorse for above two functions: work from a pg_time_t probe instant.
1711  * On success, return GMT offset and DST status into *offset and *isdst.
1712  */
1713 static bool
1715  int *offset, int *isdst)
1716 {
1717  char upabbr[TZ_STRLEN_MAX + 1];
1718  unsigned char *p;
1719  long int gmtoff;
1720 
1721  /* We need to force the abbrev to upper case */
1722  strlcpy(upabbr, abbr, sizeof(upabbr));
1723  for (p = (unsigned char *) upabbr; *p; p++)
1724  *p = pg_toupper(*p);
1725 
1726  /* Look up the abbrev's meaning at this time in this zone */
1727  if (pg_interpret_timezone_abbrev(upabbr,
1728  &t,
1729  &gmtoff,
1730  isdst,
1731  tzp))
1732  {
1733  /* Change sign to agree with DetermineTimeZoneOffset() */
1734  *offset = (int) -gmtoff;
1735  return true;
1736  }
1737  return false;
1738 }
1739 
1740 
1741 /* DecodeTimeOnly()
1742  * Interpret parsed string as time fields only.
1743  * Returns 0 if successful, DTERR code if bogus input detected.
1744  *
1745  * Note that support for time zone is here for
1746  * SQL TIME WITH TIME ZONE, but it reveals
1747  * bogosity with SQL date/time standards, since
1748  * we must infer a time zone from current time.
1749  * - thomas 2000-03-10
1750  * Allow specifying date to get a better time zone,
1751  * if time zones are allowed. - thomas 2001-12-26
1752  */
1753 int
1754 DecodeTimeOnly(char **field, int *ftype, int nf,
1755  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
1756 {
1757  int fmask = 0,
1758  tmask,
1759  type;
1760  int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */
1761  int i;
1762  int val;
1763  int dterr;
1764  bool isjulian = false;
1765  bool is2digits = false;
1766  bool bc = false;
1767  int mer = HR24;
1768  pg_tz *namedTz = NULL;
1769  pg_tz *abbrevTz = NULL;
1770  char *abbrev = NULL;
1771  pg_tz *valtz;
1772 
1773  *dtype = DTK_TIME;
1774  tm->tm_hour = 0;
1775  tm->tm_min = 0;
1776  tm->tm_sec = 0;
1777  *fsec = 0;
1778  /* don't know daylight savings time status apriori */
1779  tm->tm_isdst = -1;
1780 
1781  if (tzp != NULL)
1782  *tzp = 0;
1783 
1784  for (i = 0; i < nf; i++)
1785  {
1786  switch (ftype[i])
1787  {
1788  case DTK_DATE:
1789 
1790  /*
1791  * Time zone not allowed? Then should not accept dates or time
1792  * zones no matter what else!
1793  */
1794  if (tzp == NULL)
1795  return DTERR_BAD_FORMAT;
1796 
1797  /* Under limited circumstances, we will accept a date... */
1798  if (i == 0 && nf >= 2 &&
1799  (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
1800  {
1801  dterr = DecodeDate(field[i], fmask,
1802  &tmask, &is2digits, tm);
1803  if (dterr)
1804  return dterr;
1805  }
1806  /* otherwise, this is a time and/or time zone */
1807  else
1808  {
1809  if (isdigit((unsigned char) *field[i]))
1810  {
1811  char *cp;
1812 
1813  /*
1814  * Starts with a digit but we already have a time
1815  * field? Then we are in trouble with time already...
1816  */
1817  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1818  return DTERR_BAD_FORMAT;
1819 
1820  /*
1821  * Should not get here and fail. Sanity check only...
1822  */
1823  if ((cp = strchr(field[i], '-')) == NULL)
1824  return DTERR_BAD_FORMAT;
1825 
1826  /* Get the time zone from the end of the string */
1827  dterr = DecodeTimezone(cp, tzp);
1828  if (dterr)
1829  return dterr;
1830  *cp = '\0';
1831 
1832  /*
1833  * Then read the rest of the field as a concatenated
1834  * time
1835  */
1836  dterr = DecodeNumberField(strlen(field[i]), field[i],
1837  (fmask | DTK_DATE_M),
1838  &tmask, tm,
1839  fsec, &is2digits);
1840  if (dterr < 0)
1841  return dterr;
1842  ftype[i] = dterr;
1843 
1844  tmask |= DTK_M(TZ);
1845  }
1846  else
1847  {
1848  namedTz = pg_tzset(field[i]);
1849  if (!namedTz)
1850  {
1851  /*
1852  * We should return an error code instead of
1853  * ereport'ing directly, but then there is no way
1854  * to report the bad time zone name.
1855  */
1856  ereport(ERROR,
1857  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1858  errmsg("time zone \"%s\" not recognized",
1859  field[i])));
1860  }
1861  /* we'll apply the zone setting below */
1862  ftype[i] = DTK_TZ;
1863  tmask = DTK_M(TZ);
1864  }
1865  }
1866  break;
1867 
1868  case DTK_TIME:
1869  dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
1871  &tmask, tm, fsec);
1872  if (dterr)
1873  return dterr;
1874  break;
1875 
1876  case DTK_TZ:
1877  {
1878  int tz;
1879 
1880  if (tzp == NULL)
1881  return DTERR_BAD_FORMAT;
1882 
1883  dterr = DecodeTimezone(field[i], &tz);
1884  if (dterr)
1885  return dterr;
1886  *tzp = tz;
1887  tmask = DTK_M(TZ);
1888  }
1889  break;
1890 
1891  case DTK_NUMBER:
1892 
1893  /*
1894  * Was this an "ISO time" with embedded field labels? An
1895  * example is "h04mm05s06" - thomas 2001-02-04
1896  */
1897  if (ptype != 0)
1898  {
1899  char *cp;
1900  int val;
1901 
1902  /* Only accept a date under limited circumstances */
1903  switch (ptype)
1904  {
1905  case DTK_JULIAN:
1906  case DTK_YEAR:
1907  case DTK_MONTH:
1908  case DTK_DAY:
1909  if (tzp == NULL)
1910  return DTERR_BAD_FORMAT;
1911  default:
1912  break;
1913  }
1914 
1915  errno = 0;
1916  val = strtoint(field[i], &cp, 10);
1917  if (errno == ERANGE)
1918  return DTERR_FIELD_OVERFLOW;
1919 
1920  /*
1921  * only a few kinds are allowed to have an embedded
1922  * decimal
1923  */
1924  if (*cp == '.')
1925  switch (ptype)
1926  {
1927  case DTK_JULIAN:
1928  case DTK_TIME:
1929  case DTK_SECOND:
1930  break;
1931  default:
1932  return DTERR_BAD_FORMAT;
1933  break;
1934  }
1935  else if (*cp != '\0')
1936  return DTERR_BAD_FORMAT;
1937 
1938  switch (ptype)
1939  {
1940  case DTK_YEAR:
1941  tm->tm_year = val;
1942  tmask = DTK_M(YEAR);
1943  break;
1944 
1945  case DTK_MONTH:
1946 
1947  /*
1948  * already have a month and hour? then assume
1949  * minutes
1950  */
1951  if ((fmask & DTK_M(MONTH)) != 0 &&
1952  (fmask & DTK_M(HOUR)) != 0)
1953  {
1954  tm->tm_min = val;
1955  tmask = DTK_M(MINUTE);
1956  }
1957  else
1958  {
1959  tm->tm_mon = val;
1960  tmask = DTK_M(MONTH);
1961  }
1962  break;
1963 
1964  case DTK_DAY:
1965  tm->tm_mday = val;
1966  tmask = DTK_M(DAY);
1967  break;
1968 
1969  case DTK_HOUR:
1970  tm->tm_hour = val;
1971  tmask = DTK_M(HOUR);
1972  break;
1973 
1974  case DTK_MINUTE:
1975  tm->tm_min = val;
1976  tmask = DTK_M(MINUTE);
1977  break;
1978 
1979  case DTK_SECOND:
1980  tm->tm_sec = val;
1981  tmask = DTK_M(SECOND);
1982  if (*cp == '.')
1983  {
1984  dterr = ParseFractionalSecond(cp, fsec);
1985  if (dterr)
1986  return dterr;
1987  tmask = DTK_ALL_SECS_M;
1988  }
1989  break;
1990 
1991  case DTK_TZ:
1992  tmask = DTK_M(TZ);
1993  dterr = DecodeTimezone(field[i], tzp);
1994  if (dterr)
1995  return dterr;
1996  break;
1997 
1998  case DTK_JULIAN:
1999  /* previous field was a label for "julian date" */
2000  if (val < 0)
2001  return DTERR_FIELD_OVERFLOW;
2002  tmask = DTK_DATE_M;
2003  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2004  isjulian = true;
2005 
2006  if (*cp == '.')
2007  {
2008  double time;
2009 
2010  errno = 0;
2011  time = strtod(cp, &cp);
2012  if (*cp != '\0' || errno != 0)
2013  return DTERR_BAD_FORMAT;
2014  time *= USECS_PER_DAY;
2015  dt2time(time,
2016  &tm->tm_hour, &tm->tm_min,
2017  &tm->tm_sec, fsec);
2018  tmask |= DTK_TIME_M;
2019  }
2020  break;
2021 
2022  case DTK_TIME:
2023  /* previous field was "t" for ISO time */
2024  dterr = DecodeNumberField(strlen(field[i]), field[i],
2025  (fmask | DTK_DATE_M),
2026  &tmask, tm,
2027  fsec, &is2digits);
2028  if (dterr < 0)
2029  return dterr;
2030  ftype[i] = dterr;
2031 
2032  if (tmask != DTK_TIME_M)
2033  return DTERR_BAD_FORMAT;
2034  break;
2035 
2036  default:
2037  return DTERR_BAD_FORMAT;
2038  break;
2039  }
2040 
2041  ptype = 0;
2042  *dtype = DTK_DATE;
2043  }
2044  else
2045  {
2046  char *cp;
2047  int flen;
2048 
2049  flen = strlen(field[i]);
2050  cp = strchr(field[i], '.');
2051 
2052  /* Embedded decimal? */
2053  if (cp != NULL)
2054  {
2055  /*
2056  * Under limited circumstances, we will accept a
2057  * date...
2058  */
2059  if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
2060  {
2061  dterr = DecodeDate(field[i], fmask,
2062  &tmask, &is2digits, tm);
2063  if (dterr)
2064  return dterr;
2065  }
2066  /* embedded decimal and several digits before? */
2067  else if (flen - strlen(cp) > 2)
2068  {
2069  /*
2070  * Interpret as a concatenated date or time Set
2071  * the type field to allow decoding other fields
2072  * later. Example: 20011223 or 040506
2073  */
2074  dterr = DecodeNumberField(flen, field[i],
2075  (fmask | DTK_DATE_M),
2076  &tmask, tm,
2077  fsec, &is2digits);
2078  if (dterr < 0)
2079  return dterr;
2080  ftype[i] = dterr;
2081  }
2082  else
2083  return DTERR_BAD_FORMAT;
2084  }
2085  else if (flen > 4)
2086  {
2087  dterr = DecodeNumberField(flen, field[i],
2088  (fmask | DTK_DATE_M),
2089  &tmask, tm,
2090  fsec, &is2digits);
2091  if (dterr < 0)
2092  return dterr;
2093  ftype[i] = dterr;
2094  }
2095  /* otherwise it is a single date/time field... */
2096  else
2097  {
2098  dterr = DecodeNumber(flen, field[i],
2099  false,
2100  (fmask | DTK_DATE_M),
2101  &tmask, tm,
2102  fsec, &is2digits);
2103  if (dterr)
2104  return dterr;
2105  }
2106  }
2107  break;
2108 
2109  case DTK_STRING:
2110  case DTK_SPECIAL:
2111  /* timezone abbrevs take precedence over built-in tokens */
2112  type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
2113  if (type == UNKNOWN_FIELD)
2114  type = DecodeSpecial(i, field[i], &val);
2115  if (type == IGNORE_DTF)
2116  continue;
2117 
2118  tmask = DTK_M(type);
2119  switch (type)
2120  {
2121  case RESERV:
2122  switch (val)
2123  {
2124  case DTK_NOW:
2125  tmask = DTK_TIME_M;
2126  *dtype = DTK_TIME;
2127  GetCurrentTimeUsec(tm, fsec, NULL);
2128  break;
2129 
2130  case DTK_ZULU:
2131  tmask = (DTK_TIME_M | DTK_M(TZ));
2132  *dtype = DTK_TIME;
2133  tm->tm_hour = 0;
2134  tm->tm_min = 0;
2135  tm->tm_sec = 0;
2136  tm->tm_isdst = 0;
2137  break;
2138 
2139  default:
2140  return DTERR_BAD_FORMAT;
2141  }
2142 
2143  break;
2144 
2145  case DTZMOD:
2146 
2147  /*
2148  * daylight savings time modifier (solves "MET DST"
2149  * syntax)
2150  */
2151  tmask |= DTK_M(DTZ);
2152  tm->tm_isdst = 1;
2153  if (tzp == NULL)
2154  return DTERR_BAD_FORMAT;
2155  *tzp -= val;
2156  break;
2157 
2158  case DTZ:
2159 
2160  /*
2161  * set mask for TZ here _or_ check for DTZ later when
2162  * getting default timezone
2163  */
2164  tmask |= DTK_M(TZ);
2165  tm->tm_isdst = 1;
2166  if (tzp == NULL)
2167  return DTERR_BAD_FORMAT;
2168  *tzp = -val;
2169  ftype[i] = DTK_TZ;
2170  break;
2171 
2172  case TZ:
2173  tm->tm_isdst = 0;
2174  if (tzp == NULL)
2175  return DTERR_BAD_FORMAT;
2176  *tzp = -val;
2177  ftype[i] = DTK_TZ;
2178  break;
2179 
2180  case DYNTZ:
2181  tmask |= DTK_M(TZ);
2182  if (tzp == NULL)
2183  return DTERR_BAD_FORMAT;
2184  /* we'll determine the actual offset later */
2185  abbrevTz = valtz;
2186  abbrev = field[i];
2187  ftype[i] = DTK_TZ;
2188  break;
2189 
2190  case AMPM:
2191  mer = val;
2192  break;
2193 
2194  case ADBC:
2195  bc = (val == BC);
2196  break;
2197 
2198  case UNITS:
2199  tmask = 0;
2200  ptype = val;
2201  break;
2202 
2203  case ISOTIME:
2204  tmask = 0;
2205 
2206  /***
2207  * We will need one of the following fields:
2208  * DTK_NUMBER should be hhmmss.fff
2209  * DTK_TIME should be hh:mm:ss.fff
2210  * DTK_DATE should be hhmmss-zz
2211  ***/
2212  if (i >= nf - 1 ||
2213  (ftype[i + 1] != DTK_NUMBER &&
2214  ftype[i + 1] != DTK_TIME &&
2215  ftype[i + 1] != DTK_DATE))
2216  return DTERR_BAD_FORMAT;
2217 
2218  ptype = val;
2219  break;
2220 
2221  case UNKNOWN_FIELD:
2222 
2223  /*
2224  * Before giving up and declaring error, check to see
2225  * if it is an all-alpha timezone name.
2226  */
2227  namedTz = pg_tzset(field[i]);
2228  if (!namedTz)
2229  return DTERR_BAD_FORMAT;
2230  /* we'll apply the zone setting below */
2231  tmask = DTK_M(TZ);
2232  break;
2233 
2234  default:
2235  return DTERR_BAD_FORMAT;
2236  }
2237  break;
2238 
2239  default:
2240  return DTERR_BAD_FORMAT;
2241  }
2242 
2243  if (tmask & fmask)
2244  return DTERR_BAD_FORMAT;
2245  fmask |= tmask;
2246  } /* end loop over fields */
2247 
2248  /* do final checking/adjustment of Y/M/D fields */
2249  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
2250  if (dterr)
2251  return dterr;
2252 
2253  /* handle AM/PM */
2254  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
2255  return DTERR_FIELD_OVERFLOW;
2256  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
2257  tm->tm_hour = 0;
2258  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
2259  tm->tm_hour += HOURS_PER_DAY / 2;
2260 
2261  /* check for time overflow */
2262  if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec))
2263  return DTERR_FIELD_OVERFLOW;
2264 
2265  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2266  return DTERR_BAD_FORMAT;
2267 
2268  /*
2269  * If we had a full timezone spec, compute the offset (we could not do it
2270  * before, because we may need the date to resolve DST status).
2271  */
2272  if (namedTz != NULL)
2273  {
2274  long int gmtoff;
2275 
2276  /* daylight savings time modifier disallowed with full TZ */
2277  if (fmask & DTK_M(DTZMOD))
2278  return DTERR_BAD_FORMAT;
2279 
2280  /* if non-DST zone, we do not need to know the date */
2281  if (pg_get_timezone_offset(namedTz, &gmtoff))
2282  {
2283  *tzp = -(int) gmtoff;
2284  }
2285  else
2286  {
2287  /* a date has to be specified */
2288  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2289  return DTERR_BAD_FORMAT;
2290  *tzp = DetermineTimeZoneOffset(tm, namedTz);
2291  }
2292  }
2293 
2294  /*
2295  * Likewise, if we had a dynamic timezone abbreviation, resolve it now.
2296  */
2297  if (abbrevTz != NULL)
2298  {
2299  struct pg_tm tt,
2300  *tmp = &tt;
2301 
2302  /*
2303  * daylight savings time modifier but no standard timezone? then error
2304  */
2305  if (fmask & DTK_M(DTZMOD))
2306  return DTERR_BAD_FORMAT;
2307 
2308  if ((fmask & DTK_DATE_M) == 0)
2309  GetCurrentDateTime(tmp);
2310  else
2311  {
2312  /* a date has to be specified */
2313  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2314  return DTERR_BAD_FORMAT;
2315  tmp->tm_year = tm->tm_year;
2316  tmp->tm_mon = tm->tm_mon;
2317  tmp->tm_mday = tm->tm_mday;
2318  }
2319  tmp->tm_hour = tm->tm_hour;
2320  tmp->tm_min = tm->tm_min;
2321  tmp->tm_sec = tm->tm_sec;
2322  *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
2323  tm->tm_isdst = tmp->tm_isdst;
2324  }
2325 
2326  /* timezone not specified? then use session timezone */
2327  if (tzp != NULL && !(fmask & DTK_M(TZ)))
2328  {
2329  struct pg_tm tt,
2330  *tmp = &tt;
2331 
2332  /*
2333  * daylight savings time modifier but no standard timezone? then error
2334  */
2335  if (fmask & DTK_M(DTZMOD))
2336  return DTERR_BAD_FORMAT;
2337 
2338  if ((fmask & DTK_DATE_M) == 0)
2339  GetCurrentDateTime(tmp);
2340  else
2341  {
2342  /* a date has to be specified */
2343  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2344  return DTERR_BAD_FORMAT;
2345  tmp->tm_year = tm->tm_year;
2346  tmp->tm_mon = tm->tm_mon;
2347  tmp->tm_mday = tm->tm_mday;
2348  }
2349  tmp->tm_hour = tm->tm_hour;
2350  tmp->tm_min = tm->tm_min;
2351  tmp->tm_sec = tm->tm_sec;
2353  tm->tm_isdst = tmp->tm_isdst;
2354  }
2355 
2356  return 0;
2357 }
2358 
2359 /* DecodeDate()
2360  * Decode date string which includes delimiters.
2361  * Return 0 if okay, a DTERR code if not.
2362  *
2363  * str: field to be parsed
2364  * fmask: bitmask for field types already seen
2365  * *tmask: receives bitmask for fields found here
2366  * *is2digits: set to true if we find 2-digit year
2367  * *tm: field values are stored into appropriate members of this struct
2368  */
2369 static int
2370 DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
2371  struct pg_tm *tm)
2372 {
2373  fsec_t fsec;
2374  int nf = 0;
2375  int i,
2376  len;
2377  int dterr;
2378  bool haveTextMonth = false;
2379  int type,
2380  val,
2381  dmask = 0;
2382  char *field[MAXDATEFIELDS];
2383 
2384  *tmask = 0;
2385 
2386  /* parse this string... */
2387  while (*str != '\0' && nf < MAXDATEFIELDS)
2388  {
2389  /* skip field separators */
2390  while (*str != '\0' && !isalnum((unsigned char) *str))
2391  str++;
2392 
2393  if (*str == '\0')
2394  return DTERR_BAD_FORMAT; /* end of string after separator */
2395 
2396  field[nf] = str;
2397  if (isdigit((unsigned char) *str))
2398  {
2399  while (isdigit((unsigned char) *str))
2400  str++;
2401  }
2402  else if (isalpha((unsigned char) *str))
2403  {
2404  while (isalpha((unsigned char) *str))
2405  str++;
2406  }
2407 
2408  /* Just get rid of any non-digit, non-alpha characters... */
2409  if (*str != '\0')
2410  *str++ = '\0';
2411  nf++;
2412  }
2413 
2414  /* look first for text fields, since that will be unambiguous month */
2415  for (i = 0; i < nf; i++)
2416  {
2417  if (isalpha((unsigned char) *field[i]))
2418  {
2419  type = DecodeSpecial(i, field[i], &val);
2420  if (type == IGNORE_DTF)
2421  continue;
2422 
2423  dmask = DTK_M(type);
2424  switch (type)
2425  {
2426  case MONTH:
2427  tm->tm_mon = val;
2428  haveTextMonth = true;
2429  break;
2430 
2431  default:
2432  return DTERR_BAD_FORMAT;
2433  }
2434  if (fmask & dmask)
2435  return DTERR_BAD_FORMAT;
2436 
2437  fmask |= dmask;
2438  *tmask |= dmask;
2439 
2440  /* mark this field as being completed */
2441  field[i] = NULL;
2442  }
2443  }
2444 
2445  /* now pick up remaining numeric fields */
2446  for (i = 0; i < nf; i++)
2447  {
2448  if (field[i] == NULL)
2449  continue;
2450 
2451  if ((len = strlen(field[i])) <= 0)
2452  return DTERR_BAD_FORMAT;
2453 
2454  dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
2455  &dmask, tm,
2456  &fsec, is2digits);
2457  if (dterr)
2458  return dterr;
2459 
2460  if (fmask & dmask)
2461  return DTERR_BAD_FORMAT;
2462 
2463  fmask |= dmask;
2464  *tmask |= dmask;
2465  }
2466 
2467  if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
2468  return DTERR_BAD_FORMAT;
2469 
2470  /* validation of the field values must wait until ValidateDate() */
2471 
2472  return 0;
2473 }
2474 
2475 /* ValidateDate()
2476  * Check valid year/month/day values, handle BC and DOY cases
2477  * Return 0 if okay, a DTERR code if not.
2478  */
2479 int
2480 ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
2481  struct pg_tm *tm)
2482 {
2483  if (fmask & DTK_M(YEAR))
2484  {
2485  if (isjulian)
2486  {
2487  /* tm_year is correct and should not be touched */
2488  }
2489  else if (bc)
2490  {
2491  /* there is no year zero in AD/BC notation */
2492  if (tm->tm_year <= 0)
2493  return DTERR_FIELD_OVERFLOW;
2494  /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
2495  tm->tm_year = -(tm->tm_year - 1);
2496  }
2497  else if (is2digits)
2498  {
2499  /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
2500  if (tm->tm_year < 0) /* just paranoia */
2501  return DTERR_FIELD_OVERFLOW;
2502  if (tm->tm_year < 70)
2503  tm->tm_year += 2000;
2504  else if (tm->tm_year < 100)
2505  tm->tm_year += 1900;
2506  }
2507  else
2508  {
2509  /* there is no year zero in AD/BC notation */
2510  if (tm->tm_year <= 0)
2511  return DTERR_FIELD_OVERFLOW;
2512  }
2513  }
2514 
2515  /* now that we have correct year, decode DOY */
2516  if (fmask & DTK_M(DOY))
2517  {
2518  j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
2519  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2520  }
2521 
2522  /* check for valid month */
2523  if (fmask & DTK_M(MONTH))
2524  {
2525  if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
2526  return DTERR_MD_FIELD_OVERFLOW;
2527  }
2528 
2529  /* minimal check for valid day */
2530  if (fmask & DTK_M(DAY))
2531  {
2532  if (tm->tm_mday < 1 || tm->tm_mday > 31)
2533  return DTERR_MD_FIELD_OVERFLOW;
2534  }
2535 
2536  if ((fmask & DTK_DATE_M) == DTK_DATE_M)
2537  {
2538  /*
2539  * Check for valid day of month, now that we know for sure the month
2540  * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
2541  * unlikely that "Feb 29" is a YMD-order error.
2542  */
2543  if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
2544  return DTERR_FIELD_OVERFLOW;
2545  }
2546 
2547  return 0;
2548 }
2549 
2550 
2551 /* DecodeTime()
2552  * Decode time string which includes delimiters.
2553  * Return 0 if okay, a DTERR code if not.
2554  *
2555  * Only check the lower limit on hours, since this same code can be
2556  * used to represent time spans.
2557  */
2558 static int
2559 DecodeTime(char *str, int fmask, int range,
2560  int *tmask, struct pg_tm *tm, fsec_t *fsec)
2561 {
2562  char *cp;
2563  int dterr;
2564 
2565  *tmask = DTK_TIME_M;
2566 
2567  errno = 0;
2568  tm->tm_hour = strtoint(str, &cp, 10);
2569  if (errno == ERANGE)
2570  return DTERR_FIELD_OVERFLOW;
2571  if (*cp != ':')
2572  return DTERR_BAD_FORMAT;
2573  errno = 0;
2574  tm->tm_min = strtoint(cp + 1, &cp, 10);
2575  if (errno == ERANGE)
2576  return DTERR_FIELD_OVERFLOW;
2577  if (*cp == '\0')
2578  {
2579  tm->tm_sec = 0;
2580  *fsec = 0;
2581  /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
2582  if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND)))
2583  {
2584  tm->tm_sec = tm->tm_min;
2585  tm->tm_min = tm->tm_hour;
2586  tm->tm_hour = 0;
2587  }
2588  }
2589  else if (*cp == '.')
2590  {
2591  /* always assume mm:ss.sss is MINUTE TO SECOND */
2592  dterr = ParseFractionalSecond(cp, fsec);
2593  if (dterr)
2594  return dterr;
2595  tm->tm_sec = tm->tm_min;
2596  tm->tm_min = tm->tm_hour;
2597  tm->tm_hour = 0;
2598  }
2599  else if (*cp == ':')
2600  {
2601  errno = 0;
2602  tm->tm_sec = strtoint(cp + 1, &cp, 10);
2603  if (errno == ERANGE)
2604  return DTERR_FIELD_OVERFLOW;
2605  if (*cp == '\0')
2606  *fsec = 0;
2607  else if (*cp == '.')
2608  {
2609  dterr = ParseFractionalSecond(cp, fsec);
2610  if (dterr)
2611  return dterr;
2612  }
2613  else
2614  return DTERR_BAD_FORMAT;
2615  }
2616  else
2617  return DTERR_BAD_FORMAT;
2618 
2619  /* do a sanity check */
2620  if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
2621  tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
2622  *fsec < INT64CONST(0) ||
2623  *fsec > USECS_PER_SEC)
2624  return DTERR_FIELD_OVERFLOW;
2625 
2626  return 0;
2627 }
2628 
2629 
2630 /* DecodeNumber()
2631  * Interpret plain numeric field as a date value in context.
2632  * Return 0 if okay, a DTERR code if not.
2633  */
2634 static int
2635 DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
2636  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2637 {
2638  int val;
2639  char *cp;
2640  int dterr;
2641 
2642  *tmask = 0;
2643 
2644  errno = 0;
2645  val = strtoint(str, &cp, 10);
2646  if (errno == ERANGE)
2647  return DTERR_FIELD_OVERFLOW;
2648  if (cp == str)
2649  return DTERR_BAD_FORMAT;
2650 
2651  if (*cp == '.')
2652  {
2653  /*
2654  * More than two digits before decimal point? Then could be a date or
2655  * a run-together time: 2001.360 20011225 040506.789
2656  */
2657  if (cp - str > 2)
2658  {
2659  dterr = DecodeNumberField(flen, str,
2660  (fmask | DTK_DATE_M),
2661  tmask, tm,
2662  fsec, is2digits);
2663  if (dterr < 0)
2664  return dterr;
2665  return 0;
2666  }
2667 
2668  dterr = ParseFractionalSecond(cp, fsec);
2669  if (dterr)
2670  return dterr;
2671  }
2672  else if (*cp != '\0')
2673  return DTERR_BAD_FORMAT;
2674 
2675  /* Special case for day of year */
2676  if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
2677  val <= 366)
2678  {
2679  *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
2680  tm->tm_yday = val;
2681  /* tm_mon and tm_mday can't actually be set yet ... */
2682  return 0;
2683  }
2684 
2685  /* Switch based on what we have so far */
2686  switch (fmask & DTK_DATE_M)
2687  {
2688  case 0:
2689 
2690  /*
2691  * Nothing so far; make a decision about what we think the input
2692  * is. There used to be lots of heuristics here, but the
2693  * consensus now is to be paranoid. It *must* be either
2694  * YYYY-MM-DD (with a more-than-two-digit year field), or the
2695  * field order defined by DateOrder.
2696  */
2697  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2698  {
2699  *tmask = DTK_M(YEAR);
2700  tm->tm_year = val;
2701  }
2702  else if (DateOrder == DATEORDER_DMY)
2703  {
2704  *tmask = DTK_M(DAY);
2705  tm->tm_mday = val;
2706  }
2707  else
2708  {
2709  *tmask = DTK_M(MONTH);
2710  tm->tm_mon = val;
2711  }
2712  break;
2713 
2714  case (DTK_M(YEAR)):
2715  /* Must be at second field of YY-MM-DD */
2716  *tmask = DTK_M(MONTH);
2717  tm->tm_mon = val;
2718  break;
2719 
2720  case (DTK_M(MONTH)):
2721  if (haveTextMonth)
2722  {
2723  /*
2724  * We are at the first numeric field of a date that included a
2725  * textual month name. We want to support the variants
2726  * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
2727  * inputs. We will also accept MON-DD-YY or DD-MON-YY in
2728  * either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
2729  */
2730  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2731  {
2732  *tmask = DTK_M(YEAR);
2733  tm->tm_year = val;
2734  }
2735  else
2736  {
2737  *tmask = DTK_M(DAY);
2738  tm->tm_mday = val;
2739  }
2740  }
2741  else
2742  {
2743  /* Must be at second field of MM-DD-YY */
2744  *tmask = DTK_M(DAY);
2745  tm->tm_mday = val;
2746  }
2747  break;
2748 
2749  case (DTK_M(YEAR) | DTK_M(MONTH)):
2750  if (haveTextMonth)
2751  {
2752  /* Need to accept DD-MON-YYYY even in YMD mode */
2753  if (flen >= 3 && *is2digits)
2754  {
2755  /* Guess that first numeric field is day was wrong */
2756  *tmask = DTK_M(DAY); /* YEAR is already set */
2757  tm->tm_mday = tm->tm_year;
2758  tm->tm_year = val;
2759  *is2digits = false;
2760  }
2761  else
2762  {
2763  *tmask = DTK_M(DAY);
2764  tm->tm_mday = val;
2765  }
2766  }
2767  else
2768  {
2769  /* Must be at third field of YY-MM-DD */
2770  *tmask = DTK_M(DAY);
2771  tm->tm_mday = val;
2772  }
2773  break;
2774 
2775  case (DTK_M(DAY)):
2776  /* Must be at second field of DD-MM-YY */
2777  *tmask = DTK_M(MONTH);
2778  tm->tm_mon = val;
2779  break;
2780 
2781  case (DTK_M(MONTH) | DTK_M(DAY)):
2782  /* Must be at third field of DD-MM-YY or MM-DD-YY */
2783  *tmask = DTK_M(YEAR);
2784  tm->tm_year = val;
2785  break;
2786 
2787  case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
2788  /* we have all the date, so it must be a time field */
2789  dterr = DecodeNumberField(flen, str, fmask,
2790  tmask, tm,
2791  fsec, is2digits);
2792  if (dterr < 0)
2793  return dterr;
2794  return 0;
2795 
2796  default:
2797  /* Anything else is bogus input */
2798  return DTERR_BAD_FORMAT;
2799  }
2800 
2801  /*
2802  * When processing a year field, mark it for adjustment if it's only one
2803  * or two digits.
2804  */
2805  if (*tmask == DTK_M(YEAR))
2806  *is2digits = (flen <= 2);
2807 
2808  return 0;
2809 }
2810 
2811 
2812 /* DecodeNumberField()
2813  * Interpret numeric string as a concatenated date or time field.
2814  * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
2815  *
2816  * Use the context of previously decoded fields to help with
2817  * the interpretation.
2818  */
2819 static int
2820 DecodeNumberField(int len, char *str, int fmask,
2821  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2822 {
2823  char *cp;
2824 
2825  /*
2826  * Have a decimal point? Then this is a date or something with a seconds
2827  * field...
2828  */
2829  if ((cp = strchr(str, '.')) != NULL)
2830  {
2831  /*
2832  * Can we use ParseFractionalSecond here? Not clear whether trailing
2833  * junk should be rejected ...
2834  */
2835  double frac;
2836 
2837  errno = 0;
2838  frac = strtod(cp, NULL);
2839  if (errno != 0)
2840  return DTERR_BAD_FORMAT;
2841  *fsec = rint(frac * 1000000);
2842  /* Now truncate off the fraction for further processing */
2843  *cp = '\0';
2844  len = strlen(str);
2845  }
2846  /* No decimal point and no complete date yet? */
2847  else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2848  {
2849  if (len >= 6)
2850  {
2851  *tmask = DTK_DATE_M;
2852 
2853  /*
2854  * Start from end and consider first 2 as Day, next 2 as Month,
2855  * and the rest as Year.
2856  */
2857  tm->tm_mday = atoi(str + (len - 2));
2858  *(str + (len - 2)) = '\0';
2859  tm->tm_mon = atoi(str + (len - 4));
2860  *(str + (len - 4)) = '\0';
2861  tm->tm_year = atoi(str);
2862  if ((len - 4) == 2)
2863  *is2digits = true;
2864 
2865  return DTK_DATE;
2866  }
2867  }
2868 
2869  /* not all time fields are specified? */
2870  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2871  {
2872  /* hhmmss */
2873  if (len == 6)
2874  {
2875  *tmask = DTK_TIME_M;
2876  tm->tm_sec = atoi(str + 4);
2877  *(str + 4) = '\0';
2878  tm->tm_min = atoi(str + 2);
2879  *(str + 2) = '\0';
2880  tm->tm_hour = atoi(str);
2881 
2882  return DTK_TIME;
2883  }
2884  /* hhmm? */
2885  else if (len == 4)
2886  {
2887  *tmask = DTK_TIME_M;
2888  tm->tm_sec = 0;
2889  tm->tm_min = atoi(str + 2);
2890  *(str + 2) = '\0';
2891  tm->tm_hour = atoi(str);
2892 
2893  return DTK_TIME;
2894  }
2895  }
2896 
2897  return DTERR_BAD_FORMAT;
2898 }
2899 
2900 
2901 /* DecodeTimezone()
2902  * Interpret string as a numeric timezone.
2903  *
2904  * Return 0 if okay (and set *tzp), a DTERR code if not okay.
2905  */
2906 int
2907 DecodeTimezone(char *str, int *tzp)
2908 {
2909  int tz;
2910  int hr,
2911  min,
2912  sec = 0;
2913  char *cp;
2914 
2915  /* leading character must be "+" or "-" */
2916  if (*str != '+' && *str != '-')
2917  return DTERR_BAD_FORMAT;
2918 
2919  errno = 0;
2920  hr = strtoint(str + 1, &cp, 10);
2921  if (errno == ERANGE)
2922  return DTERR_TZDISP_OVERFLOW;
2923 
2924  /* explicit delimiter? */
2925  if (*cp == ':')
2926  {
2927  errno = 0;
2928  min = strtoint(cp + 1, &cp, 10);
2929  if (errno == ERANGE)
2930  return DTERR_TZDISP_OVERFLOW;
2931  if (*cp == ':')
2932  {
2933  errno = 0;
2934  sec = strtoint(cp + 1, &cp, 10);
2935  if (errno == ERANGE)
2936  return DTERR_TZDISP_OVERFLOW;
2937  }
2938  }
2939  /* otherwise, might have run things together... */
2940  else if (*cp == '\0' && strlen(str) > 3)
2941  {
2942  min = hr % 100;
2943  hr = hr / 100;
2944  /* we could, but don't, support a run-together hhmmss format */
2945  }
2946  else
2947  min = 0;
2948 
2949  /* Range-check the values; see notes in datatype/timestamp.h */
2950  if (hr < 0 || hr > MAX_TZDISP_HOUR)
2951  return DTERR_TZDISP_OVERFLOW;
2952  if (min < 0 || min >= MINS_PER_HOUR)
2953  return DTERR_TZDISP_OVERFLOW;
2954  if (sec < 0 || sec >= SECS_PER_MINUTE)
2955  return DTERR_TZDISP_OVERFLOW;
2956 
2957  tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
2958  if (*str == '-')
2959  tz = -tz;
2960 
2961  *tzp = -tz;
2962 
2963  if (*cp != '\0')
2964  return DTERR_BAD_FORMAT;
2965 
2966  return 0;
2967 }
2968 
2969 
2970 /* DecodeTimezoneAbbrev()
2971  * Interpret string as a timezone abbreviation, if possible.
2972  *
2973  * Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
2974  * string is not any known abbreviation. On success, set *offset and *tz to
2975  * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
2976  * Note that full timezone names (such as America/New_York) are not handled
2977  * here, mostly for historical reasons.
2978  *
2979  * Given string must be lowercased already.
2980  *
2981  * Implement a cache lookup since it is likely that dates
2982  * will be related in format.
2983  */
2984 int
2985 DecodeTimezoneAbbrev(int field, char *lowtoken,
2986  int *offset, pg_tz **tz)
2987 {
2988  int type;
2989  const datetkn *tp;
2990 
2991  tp = abbrevcache[field];
2992  /* use strncmp so that we match truncated tokens */
2993  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
2994  {
2995  if (zoneabbrevtbl)
2996  tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
2997  zoneabbrevtbl->numabbrevs);
2998  else
2999  tp = NULL;
3000  }
3001  if (tp == NULL)
3002  {
3003  type = UNKNOWN_FIELD;
3004  *offset = 0;
3005  *tz = NULL;
3006  }
3007  else
3008  {
3009  abbrevcache[field] = tp;
3010  type = tp->type;
3011  if (type == DYNTZ)
3012  {
3013  *offset = 0;
3014  *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp);
3015  }
3016  else
3017  {
3018  *offset = tp->value;
3019  *tz = NULL;
3020  }
3021  }
3022 
3023  return type;
3024 }
3025 
3026 
3027 /* DecodeSpecial()
3028  * Decode text string using lookup table.
3029  *
3030  * Recognizes the keywords listed in datetktbl.
3031  * Note: at one time this would also recognize timezone abbreviations,
3032  * but no more; use DecodeTimezoneAbbrev for that.
3033  *
3034  * Given string must be lowercased already.
3035  *
3036  * Implement a cache lookup since it is likely that dates
3037  * will be related in format.
3038  */
3039 int
3040 DecodeSpecial(int field, char *lowtoken, int *val)
3041 {
3042  int type;
3043  const datetkn *tp;
3044 
3045  tp = datecache[field];
3046  /* use strncmp so that we match truncated tokens */
3047  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3048  {
3049  tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
3050  }
3051  if (tp == NULL)
3052  {
3053  type = UNKNOWN_FIELD;
3054  *val = 0;
3055  }
3056  else
3057  {
3058  datecache[field] = tp;
3059  type = tp->type;
3060  *val = tp->value;
3061  }
3062 
3063  return type;
3064 }
3065 
3066 
3067 /* ClearPgTm
3068  *
3069  * Zero out a pg_tm and associated fsec_t
3070  */
3071 static inline void
3072 ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
3073 {
3074  tm->tm_year = 0;
3075  tm->tm_mon = 0;
3076  tm->tm_mday = 0;
3077  tm->tm_hour = 0;
3078  tm->tm_min = 0;
3079  tm->tm_sec = 0;
3080  *fsec = 0;
3081 }
3082 
3083 
3084 /* DecodeInterval()
3085  * Interpret previously parsed fields for general time interval.
3086  * Returns 0 if successful, DTERR code if bogus input detected.
3087  * dtype, tm, fsec are output parameters.
3088  *
3089  * Allow "date" field DTK_DATE since this could be just
3090  * an unsigned floating point number. - thomas 1997-11-16
3091  *
3092  * Allow ISO-style time span, with implicit units on number of days
3093  * preceding an hh:mm:ss field. - thomas 1998-04-30
3094  */
3095 int
3096 DecodeInterval(char **field, int *ftype, int nf, int range,
3097  int *dtype, struct pg_tm *tm, fsec_t *fsec)
3098 {
3099  bool is_before = false;
3100  char *cp;
3101  int fmask = 0,
3102  tmask,
3103  type;
3104  int i;
3105  int dterr;
3106  int val;
3107  double fval;
3108 
3109  *dtype = DTK_DELTA;
3110  type = IGNORE_DTF;
3111  ClearPgTm(tm, fsec);
3112 
3113  /* read through list backwards to pick up units before values */
3114  for (i = nf - 1; i >= 0; i--)
3115  {
3116  switch (ftype[i])
3117  {
3118  case DTK_TIME:
3119  dterr = DecodeTime(field[i], fmask, range,
3120  &tmask, tm, fsec);
3121  if (dterr)
3122  return dterr;
3123  type = DTK_DAY;
3124  break;
3125 
3126  case DTK_TZ:
3127 
3128  /*
3129  * Timezone means a token with a leading sign character and at
3130  * least one digit; there could be ':', '.', '-' embedded in
3131  * it as well.
3132  */
3133  Assert(*field[i] == '-' || *field[i] == '+');
3134 
3135  /*
3136  * Check for signed hh:mm or hh:mm:ss. If so, process exactly
3137  * like DTK_TIME case above, plus handling the sign.
3138  */
3139  if (strchr(field[i] + 1, ':') != NULL &&
3140  DecodeTime(field[i] + 1, fmask, range,
3141  &tmask, tm, fsec) == 0)
3142  {
3143  if (*field[i] == '-')
3144  {
3145  /* flip the sign on all fields */
3146  tm->tm_hour = -tm->tm_hour;
3147  tm->tm_min = -tm->tm_min;
3148  tm->tm_sec = -tm->tm_sec;
3149  *fsec = -(*fsec);
3150  }
3151 
3152  /*
3153  * Set the next type to be a day, if units are not
3154  * specified. This handles the case of '1 +02:03' since we
3155  * are reading right to left.
3156  */
3157  type = DTK_DAY;
3158  break;
3159  }
3160 
3161  /*
3162  * Otherwise, fall through to DTK_NUMBER case, which can
3163  * handle signed float numbers and signed year-month values.
3164  */
3165 
3166  /* FALLTHROUGH */
3167 
3168  case DTK_DATE:
3169  case DTK_NUMBER:
3170  if (type == IGNORE_DTF)
3171  {
3172  /* use typmod to decide what rightmost field is */
3173  switch (range)
3174  {
3175  case INTERVAL_MASK(YEAR):
3176  type = DTK_YEAR;
3177  break;
3178  case INTERVAL_MASK(MONTH):
3180  type = DTK_MONTH;
3181  break;
3182  case INTERVAL_MASK(DAY):
3183  type = DTK_DAY;
3184  break;
3185  case INTERVAL_MASK(HOUR):
3187  type = DTK_HOUR;
3188  break;
3189  case INTERVAL_MASK(MINUTE):
3192  type = DTK_MINUTE;
3193  break;
3194  case INTERVAL_MASK(SECOND):
3198  type = DTK_SECOND;
3199  break;
3200  default:
3201  type = DTK_SECOND;
3202  break;
3203  }
3204  }
3205 
3206  errno = 0;
3207  val = strtoint(field[i], &cp, 10);
3208  if (errno == ERANGE)
3209  return DTERR_FIELD_OVERFLOW;
3210 
3211  if (*cp == '-')
3212  {
3213  /* SQL "years-months" syntax */
3214  int val2;
3215 
3216  val2 = strtoint(cp + 1, &cp, 10);
3217  if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
3218  return DTERR_FIELD_OVERFLOW;
3219  if (*cp != '\0')
3220  return DTERR_BAD_FORMAT;
3221  type = DTK_MONTH;
3222  if (*field[i] == '-')
3223  val2 = -val2;
3224  if (((double) val * MONTHS_PER_YEAR + val2) > INT_MAX ||
3225  ((double) val * MONTHS_PER_YEAR + val2) < INT_MIN)
3226  return DTERR_FIELD_OVERFLOW;
3227  val = val * MONTHS_PER_YEAR + val2;
3228  fval = 0;
3229  }
3230  else if (*cp == '.')
3231  {
3232  errno = 0;
3233  fval = strtod(cp, &cp);
3234  if (*cp != '\0' || errno != 0)
3235  return DTERR_BAD_FORMAT;
3236 
3237  if (*field[i] == '-')
3238  fval = -fval;
3239  }
3240  else if (*cp == '\0')
3241  fval = 0;
3242  else
3243  return DTERR_BAD_FORMAT;
3244 
3245  tmask = 0; /* DTK_M(type); */
3246 
3247  switch (type)
3248  {
3249  case DTK_MICROSEC:
3250  *fsec += rint(val + fval);
3251  tmask = DTK_M(MICROSECOND);
3252  break;
3253 
3254  case DTK_MILLISEC:
3255  /* avoid overflowing the fsec field */
3256  tm->tm_sec += val / 1000;
3257  val -= (val / 1000) * 1000;
3258  *fsec += rint((val + fval) * 1000);
3259  tmask = DTK_M(MILLISECOND);
3260  break;
3261 
3262  case DTK_SECOND:
3263  tm->tm_sec += val;
3264  *fsec += rint(fval * 1000000);
3265 
3266  /*
3267  * If any subseconds were specified, consider this
3268  * microsecond and millisecond input as well.
3269  */
3270  if (fval == 0)
3271  tmask = DTK_M(SECOND);
3272  else
3273  tmask = DTK_ALL_SECS_M;
3274  break;
3275 
3276  case DTK_MINUTE:
3277  tm->tm_min += val;
3278  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3279  tmask = DTK_M(MINUTE);
3280  break;
3281 
3282  case DTK_HOUR:
3283  tm->tm_hour += val;
3284  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3285  tmask = DTK_M(HOUR);
3286  type = DTK_DAY; /* set for next field */
3287  break;
3288 
3289  case DTK_DAY:
3290  tm->tm_mday += val;
3291  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3292  tmask = DTK_M(DAY);
3293  break;
3294 
3295  case DTK_WEEK:
3296  tm->tm_mday += val * 7;
3297  AdjustFractDays(fval, tm, fsec, 7);
3298  tmask = DTK_M(WEEK);
3299  break;
3300 
3301  case DTK_MONTH:
3302  tm->tm_mon += val;
3303  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3304  tmask = DTK_M(MONTH);
3305  break;
3306 
3307  case DTK_YEAR:
3308  tm->tm_year += val;
3309  tm->tm_mon += rint(fval * MONTHS_PER_YEAR);
3310  tmask = DTK_M(YEAR);
3311  break;
3312 
3313  case DTK_DECADE:
3314  tm->tm_year += val * 10;
3315  tm->tm_mon += rint(fval * MONTHS_PER_YEAR * 10);
3316  tmask = DTK_M(DECADE);
3317  break;
3318 
3319  case DTK_CENTURY:
3320  tm->tm_year += val * 100;
3321  tm->tm_mon += rint(fval * MONTHS_PER_YEAR * 100);
3322  tmask = DTK_M(CENTURY);
3323  break;
3324 
3325  case DTK_MILLENNIUM:
3326  tm->tm_year += val * 1000;
3327  tm->tm_mon += rint(fval * MONTHS_PER_YEAR * 1000);
3328  tmask = DTK_M(MILLENNIUM);
3329  break;
3330 
3331  default:
3332  return DTERR_BAD_FORMAT;
3333  }
3334  break;
3335 
3336  case DTK_STRING:
3337  case DTK_SPECIAL:
3338  type = DecodeUnits(i, field[i], &val);
3339  if (type == IGNORE_DTF)
3340  continue;
3341 
3342  tmask = 0; /* DTK_M(type); */
3343  switch (type)
3344  {
3345  case UNITS:
3346  type = val;
3347  break;
3348 
3349  case AGO:
3350  is_before = true;
3351  type = val;
3352  break;
3353 
3354  case RESERV:
3355  tmask = (DTK_DATE_M | DTK_TIME_M);
3356  *dtype = val;
3357  break;
3358 
3359  default:
3360  return DTERR_BAD_FORMAT;
3361  }
3362  break;
3363 
3364  default:
3365  return DTERR_BAD_FORMAT;
3366  }
3367 
3368  if (tmask & fmask)
3369  return DTERR_BAD_FORMAT;
3370  fmask |= tmask;
3371  }
3372 
3373  /* ensure that at least one time field has been found */
3374  if (fmask == 0)
3375  return DTERR_BAD_FORMAT;
3376 
3377  /* ensure fractional seconds are fractional */
3378  if (*fsec != 0)
3379  {
3380  int sec;
3381 
3382  sec = *fsec / USECS_PER_SEC;
3383  *fsec -= sec * USECS_PER_SEC;
3384  tm->tm_sec += sec;
3385  }
3386 
3387  /*----------
3388  * The SQL standard defines the interval literal
3389  * '-1 1:00:00'
3390  * to mean "negative 1 days and negative 1 hours", while Postgres
3391  * traditionally treats this as meaning "negative 1 days and positive
3392  * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
3393  * to all fields if there are no other explicit signs.
3394  *
3395  * We leave the signs alone if there are additional explicit signs.
3396  * This protects us against misinterpreting postgres-style dump output,
3397  * since the postgres-style output code has always put an explicit sign on
3398  * all fields following a negative field. But note that SQL-spec output
3399  * is ambiguous and can be misinterpreted on load! (So it's best practice
3400  * to dump in postgres style, not SQL style.)
3401  *----------
3402  */
3403  if (IntervalStyle == INTSTYLE_SQL_STANDARD && *field[0] == '-')
3404  {
3405  /* Check for additional explicit signs */
3406  bool more_signs = false;
3407 
3408  for (i = 1; i < nf; i++)
3409  {
3410  if (*field[i] == '-' || *field[i] == '+')
3411  {
3412  more_signs = true;
3413  break;
3414  }
3415  }
3416 
3417  if (!more_signs)
3418  {
3419  /*
3420  * Rather than re-determining which field was field[0], just force
3421  * 'em all negative.
3422  */
3423  if (*fsec > 0)
3424  *fsec = -(*fsec);
3425  if (tm->tm_sec > 0)
3426  tm->tm_sec = -tm->tm_sec;
3427  if (tm->tm_min > 0)
3428  tm->tm_min = -tm->tm_min;
3429  if (tm->tm_hour > 0)
3430  tm->tm_hour = -tm->tm_hour;
3431  if (tm->tm_mday > 0)
3432  tm->tm_mday = -tm->tm_mday;
3433  if (tm->tm_mon > 0)
3434  tm->tm_mon = -tm->tm_mon;
3435  if (tm->tm_year > 0)
3436  tm->tm_year = -tm->tm_year;
3437  }
3438  }
3439 
3440  /* finally, AGO negates everything */
3441  if (is_before)
3442  {
3443  *fsec = -(*fsec);
3444  tm->tm_sec = -tm->tm_sec;
3445  tm->tm_min = -tm->tm_min;
3446  tm->tm_hour = -tm->tm_hour;
3447  tm->tm_mday = -tm->tm_mday;
3448  tm->tm_mon = -tm->tm_mon;
3449  tm->tm_year = -tm->tm_year;
3450  }
3451 
3452  return 0;
3453 }
3454 
3455 
3456 /*
3457  * Helper functions to avoid duplicated code in DecodeISO8601Interval.
3458  *
3459  * Parse a decimal value and break it into integer and fractional parts.
3460  * Returns 0 or DTERR code.
3461  */
3462 static int
3463 ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
3464 {
3465  double val;
3466 
3467  if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
3468  return DTERR_BAD_FORMAT;
3469  errno = 0;
3470  val = strtod(str, endptr);
3471  /* did we not see anything that looks like a double? */
3472  if (*endptr == str || errno != 0)
3473  return DTERR_BAD_FORMAT;
3474  /* watch out for overflow */
3475  if (val < INT_MIN || val > INT_MAX)
3476  return DTERR_FIELD_OVERFLOW;
3477  /* be very sure we truncate towards zero (cf dtrunc()) */
3478  if (val >= 0)
3479  *ipart = (int) floor(val);
3480  else
3481  *ipart = (int) -floor(-val);
3482  *fpart = val - *ipart;
3483  return 0;
3484 }
3485 
3486 /*
3487  * Determine number of integral digits in a valid ISO 8601 number field
3488  * (we should ignore sign and any fraction part)
3489  */
3490 static int
3491 ISO8601IntegerWidth(char *fieldstart)
3492 {
3493  /* We might have had a leading '-' */
3494  if (*fieldstart == '-')
3495  fieldstart++;
3496  return strspn(fieldstart, "0123456789");
3497 }
3498 
3499 
3500 /* DecodeISO8601Interval()
3501  * Decode an ISO 8601 time interval of the "format with designators"
3502  * (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
3503  * Examples: P1D for 1 day
3504  * PT1H for 1 hour
3505  * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
3506  * P0002-06-07T01:30:00 the same value in alternative format
3507  *
3508  * Returns 0 if successful, DTERR code if bogus input detected.
3509  * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
3510  * ISO8601, otherwise this could cause unexpected error messages.
3511  * dtype, tm, fsec are output parameters.
3512  *
3513  * A couple exceptions from the spec:
3514  * - a week field ('W') may coexist with other units
3515  * - allows decimals in fields other than the least significant unit.
3516  */
3517 int
3519  int *dtype, struct pg_tm *tm, fsec_t *fsec)
3520 {
3521  bool datepart = true;
3522  bool havefield = false;
3523 
3524  *dtype = DTK_DELTA;
3525  ClearPgTm(tm, fsec);
3526 
3527  if (strlen(str) < 2 || str[0] != 'P')
3528  return DTERR_BAD_FORMAT;
3529 
3530  str++;
3531  while (*str)
3532  {
3533  char *fieldstart;
3534  int val;
3535  double fval;
3536  char unit;
3537  int dterr;
3538 
3539  if (*str == 'T') /* T indicates the beginning of the time part */
3540  {
3541  datepart = false;
3542  havefield = false;
3543  str++;
3544  continue;
3545  }
3546 
3547  fieldstart = str;
3548  dterr = ParseISO8601Number(str, &str, &val, &fval);
3549  if (dterr)
3550  return dterr;
3551 
3552  /*
3553  * Note: we could step off the end of the string here. Code below
3554  * *must* exit the loop if unit == '\0'.
3555  */
3556  unit = *str++;
3557 
3558  if (datepart)
3559  {
3560  switch (unit) /* before T: Y M W D */
3561  {
3562  case 'Y':
3563  tm->tm_year += val;
3564  tm->tm_mon += rint(fval * MONTHS_PER_YEAR);
3565  break;
3566  case 'M':
3567  tm->tm_mon += val;
3568  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3569  break;
3570  case 'W':
3571  tm->tm_mday += val * 7;
3572  AdjustFractDays(fval, tm, fsec, 7);
3573  break;
3574  case 'D':
3575  tm->tm_mday += val;
3576  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3577  break;
3578  case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
3579  case '\0':
3580  if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
3581  {
3582  tm->tm_year += val / 10000;
3583  tm->tm_mon += (val / 100) % 100;
3584  tm->tm_mday += val % 100;
3585  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3586  if (unit == '\0')
3587  return 0;
3588  datepart = false;
3589  havefield = false;
3590  continue;
3591  }
3592  /* Else fall through to extended alternative format */
3593  /* FALLTHROUGH */
3594  case '-': /* ISO 8601 4.4.3.3 Alternative Format,
3595  * Extended */
3596  if (havefield)
3597  return DTERR_BAD_FORMAT;
3598 
3599  tm->tm_year += val;
3600  tm->tm_mon += rint(fval * MONTHS_PER_YEAR);
3601  if (unit == '\0')
3602  return 0;
3603  if (unit == 'T')
3604  {
3605  datepart = false;
3606  havefield = false;
3607  continue;
3608  }
3609 
3610  dterr = ParseISO8601Number(str, &str, &val, &fval);
3611  if (dterr)
3612  return dterr;
3613  tm->tm_mon += val;
3614  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3615  if (*str == '\0')
3616  return 0;
3617  if (*str == 'T')
3618  {
3619  datepart = false;
3620  havefield = false;
3621  continue;
3622  }
3623  if (*str != '-')
3624  return DTERR_BAD_FORMAT;
3625  str++;
3626 
3627  dterr = ParseISO8601Number(str, &str, &val, &fval);
3628  if (dterr)
3629  return dterr;
3630  tm->tm_mday += val;
3631  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3632  if (*str == '\0')
3633  return 0;
3634  if (*str == 'T')
3635  {
3636  datepart = false;
3637  havefield = false;
3638  continue;
3639  }
3640  return DTERR_BAD_FORMAT;
3641  default:
3642  /* not a valid date unit suffix */
3643  return DTERR_BAD_FORMAT;
3644  }
3645  }
3646  else
3647  {
3648  switch (unit) /* after T: H M S */
3649  {
3650  case 'H':
3651  tm->tm_hour += val;
3652  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3653  break;
3654  case 'M':
3655  tm->tm_min += val;
3656  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3657  break;
3658  case 'S':
3659  tm->tm_sec += val;
3660  AdjustFractSeconds(fval, tm, fsec, 1);
3661  break;
3662  case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
3663  if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
3664  {
3665  tm->tm_hour += val / 10000;
3666  tm->tm_min += (val / 100) % 100;
3667  tm->tm_sec += val % 100;
3668  AdjustFractSeconds(fval, tm, fsec, 1);
3669  return 0;
3670  }
3671  /* Else fall through to extended alternative format */
3672  /* FALLTHROUGH */
3673  case ':': /* ISO 8601 4.4.3.3 Alternative Format,
3674  * Extended */
3675  if (havefield)
3676  return DTERR_BAD_FORMAT;
3677 
3678  tm->tm_hour += val;
3679  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3680  if (unit == '\0')
3681  return 0;
3682 
3683  dterr = ParseISO8601Number(str, &str, &val, &fval);
3684  if (dterr)
3685  return dterr;
3686  tm->tm_min += val;
3687  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3688  if (*str == '\0')
3689  return 0;
3690  if (*str != ':')
3691  return DTERR_BAD_FORMAT;
3692  str++;
3693 
3694  dterr = ParseISO8601Number(str, &str, &val, &fval);
3695  if (dterr)
3696  return dterr;
3697  tm->tm_sec += val;
3698  AdjustFractSeconds(fval, tm, fsec, 1);
3699  if (*str == '\0')
3700  return 0;
3701  return DTERR_BAD_FORMAT;
3702 
3703  default:
3704  /* not a valid time unit suffix */
3705  return DTERR_BAD_FORMAT;
3706  }
3707  }
3708 
3709  havefield = true;
3710  }
3711 
3712  return 0;
3713 }
3714 
3715 
3716 /* DecodeUnits()
3717  * Decode text string using lookup table.
3718  *
3719  * This routine recognizes keywords associated with time interval units.
3720  *
3721  * Given string must be lowercased already.
3722  *
3723  * Implement a cache lookup since it is likely that dates
3724  * will be related in format.
3725  */
3726 int
3727 DecodeUnits(int field, char *lowtoken, int *val)
3728 {
3729  int type;
3730  const datetkn *tp;
3731 
3732  tp = deltacache[field];
3733  /* use strncmp so that we match truncated tokens */
3734  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3735  {
3736  tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
3737  }
3738  if (tp == NULL)
3739  {
3740  type = UNKNOWN_FIELD;
3741  *val = 0;
3742  }
3743  else
3744  {
3745  deltacache[field] = tp;
3746  type = tp->type;
3747  *val = tp->value;
3748  }
3749 
3750  return type;
3751 } /* DecodeUnits() */
3752 
3753 /*
3754  * Report an error detected by one of the datetime input processing routines.
3755  *
3756  * dterr is the error code, str is the original input string, datatype is
3757  * the name of the datatype we were trying to accept.
3758  *
3759  * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
3760  * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
3761  * separate SQLSTATE codes, so ...
3762  */
3763 void
3764 DateTimeParseError(int dterr, const char *str, const char *datatype)
3765 {
3766  switch (dterr)
3767  {
3768  case DTERR_FIELD_OVERFLOW:
3769  ereport(ERROR,
3770  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
3771  errmsg("date/time field value out of range: \"%s\"",
3772  str)));
3773  break;
3775  /* <nanny>same as above, but add hint about DateStyle</nanny> */
3776  ereport(ERROR,
3777  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
3778  errmsg("date/time field value out of range: \"%s\"",
3779  str),
3780  errhint("Perhaps you need a different \"datestyle\" setting.")));
3781  break;
3783  ereport(ERROR,
3784  (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
3785  errmsg("interval field value out of range: \"%s\"",
3786  str)));
3787  break;
3788  case DTERR_TZDISP_OVERFLOW:
3789  ereport(ERROR,
3790  (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
3791  errmsg("time zone displacement out of range: \"%s\"",
3792  str)));
3793  break;
3794  case DTERR_BAD_FORMAT:
3795  default:
3796  ereport(ERROR,
3797  (errcode(ERRCODE_INVALID_DATETIME_FORMAT),
3798  errmsg("invalid input syntax for type %s: \"%s\"",
3799  datatype, str)));
3800  break;
3801  }
3802 }
3803 
3804 /* datebsearch()
3805  * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
3806  * is WAY faster than the generic bsearch().
3807  */
3808 static const datetkn *
3809 datebsearch(const char *key, const datetkn *base, int nel)
3810 {
3811  if (nel > 0)
3812  {
3813  const datetkn *last = base + nel - 1,
3814  *position;
3815  int result;
3816 
3817  while (last >= base)
3818  {
3819  position = base + ((last - base) >> 1);
3820  /* precheck the first character for a bit of extra speed */
3821  result = (int) key[0] - (int) position->token[0];
3822  if (result == 0)
3823  {
3824  /* use strncmp so that we match truncated tokens */
3825  result = strncmp(key, position->token, TOKMAXLEN);
3826  if (result == 0)
3827  return position;
3828  }
3829  if (result < 0)
3830  last = position - 1;
3831  else
3832  base = position + 1;
3833  }
3834  }
3835  return NULL;
3836 }
3837 
3838 /* EncodeTimezone()
3839  * Copies representation of a numeric timezone offset to str.
3840  *
3841  * Returns a pointer to the new end of string. No NUL terminator is put
3842  * there; callers are responsible for NUL terminating str themselves.
3843  */
3844 static char *
3845 EncodeTimezone(char *str, int tz, int style)
3846 {
3847  int hour,
3848  min,
3849  sec;
3850 
3851  sec = abs(tz);
3852  min = sec / SECS_PER_MINUTE;
3853  sec -= min * SECS_PER_MINUTE;
3854  hour = min / MINS_PER_HOUR;
3855  min -= hour * MINS_PER_HOUR;
3856 
3857  /* TZ is negated compared to sign we wish to display ... */
3858  *str++ = (tz <= 0 ? '+' : '-');
3859 
3860  if (sec != 0)
3861  {
3862  str = pg_ultostr_zeropad(str, hour, 2);
3863  *str++ = ':';
3864  str = pg_ultostr_zeropad(str, min, 2);
3865  *str++ = ':';
3866  str = pg_ultostr_zeropad(str, sec, 2);
3867  }
3868  else if (min != 0 || style == USE_XSD_DATES)
3869  {
3870  str = pg_ultostr_zeropad(str, hour, 2);
3871  *str++ = ':';
3872  str = pg_ultostr_zeropad(str, min, 2);
3873  }
3874  else
3875  str = pg_ultostr_zeropad(str, hour, 2);
3876  return str;
3877 }
3878 
3879 /* EncodeDateOnly()
3880  * Encode date as local time.
3881  */
3882 void
3883 EncodeDateOnly(struct pg_tm *tm, int style, char *str)
3884 {
3885  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
3886 
3887  switch (style)
3888  {
3889  case USE_ISO_DATES:
3890  case USE_XSD_DATES:
3891  /* compatible with ISO date formats */
3892  str = pg_ultostr_zeropad(str,
3893  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3894  *str++ = '-';
3895  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3896  *str++ = '-';
3897  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3898  break;
3899 
3900  case USE_SQL_DATES:
3901  /* compatible with Oracle/Ingres date formats */
3902  if (DateOrder == DATEORDER_DMY)
3903  {
3904  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3905  *str++ = '/';
3906  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3907  }
3908  else
3909  {
3910  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3911  *str++ = '/';
3912  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3913  }
3914  *str++ = '/';
3915  str = pg_ultostr_zeropad(str,
3916  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3917  break;
3918 
3919  case USE_GERMAN_DATES:
3920  /* German-style date format */
3921  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3922  *str++ = '.';
3923  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3924  *str++ = '.';
3925  str = pg_ultostr_zeropad(str,
3926  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3927  break;
3928 
3929  case USE_POSTGRES_DATES:
3930  default:
3931  /* traditional date-only style for Postgres */
3932  if (DateOrder == DATEORDER_DMY)
3933  {
3934  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3935  *str++ = '-';
3936  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3937  }
3938  else
3939  {
3940  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3941  *str++ = '-';
3942  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3943  }
3944  *str++ = '-';
3945  str = pg_ultostr_zeropad(str,
3946  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3947  break;
3948  }
3949 
3950  if (tm->tm_year <= 0)
3951  {
3952  memcpy(str, " BC", 3); /* Don't copy NUL */
3953  str += 3;
3954  }
3955  *str = '\0';
3956 }
3957 
3958 
3959 /* EncodeTimeOnly()
3960  * Encode time fields only.
3961  *
3962  * tm and fsec are the value to encode, print_tz determines whether to include
3963  * a time zone (the difference between time and timetz types), tz is the
3964  * numeric time zone offset, style is the date style, str is where to write the
3965  * output.
3966  */
3967 void
3968 EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
3969 {
3970  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
3971  *str++ = ':';
3972  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
3973  *str++ = ':';
3974  str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
3975  if (print_tz)
3976  str = EncodeTimezone(str, tz, style);
3977  *str = '\0';
3978 }
3979 
3980 
3981 /* EncodeDateTime()
3982  * Encode date and time interpreted as local time.
3983  *
3984  * tm and fsec are the value to encode, print_tz determines whether to include
3985  * a time zone (the difference between timestamp and timestamptz types), tz is
3986  * the numeric time zone offset, tzn is the textual time zone, which if
3987  * specified will be used instead of tz by some styles, style is the date
3988  * style, str is where to write the output.
3989  *
3990  * Supported date styles:
3991  * Postgres - day mon hh:mm:ss yyyy tz
3992  * SQL - mm/dd/yyyy hh:mm:ss.ss tz
3993  * ISO - yyyy-mm-dd hh:mm:ss+/-tz
3994  * German - dd.mm.yyyy hh:mm:ss tz
3995  * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
3996  */
3997 void
3998 EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
3999 {
4000  int day;
4001 
4002  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4003 
4004  /*
4005  * Negative tm_isdst means we have no valid time zone translation.
4006  */
4007  if (tm->tm_isdst < 0)
4008  print_tz = false;
4009 
4010  switch (style)
4011  {
4012  case USE_ISO_DATES:
4013  case USE_XSD_DATES:
4014  /* Compatible with ISO-8601 date formats */
4015  str = pg_ultostr_zeropad(str,
4016  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4017  *str++ = '-';
4018  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
4019  *str++ = '-';
4020  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4021  *str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
4022  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4023  *str++ = ':';
4024  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4025  *str++ = ':';
4026  str = AppendTimestampSeconds(str, tm, fsec);
4027  if (print_tz)
4028  str = EncodeTimezone(str, tz, style);
4029  break;
4030 
4031  case USE_SQL_DATES:
4032  /* Compatible with Oracle/Ingres date formats */
4033  if (DateOrder == DATEORDER_DMY)
4034  {
4035  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4036  *str++ = '/';
4037  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
4038  }
4039  else
4040  {
4041  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
4042  *str++ = '/';
4043  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4044  }
4045  *str++ = '/';
4046  str = pg_ultostr_zeropad(str,
4047  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4048  *str++ = ' ';
4049  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4050  *str++ = ':';
4051  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4052  *str++ = ':';
4053  str = AppendTimestampSeconds(str, tm, fsec);
4054 
4055  /*
4056  * Note: the uses of %.*s in this function would be risky if the
4057  * timezone names ever contain non-ASCII characters, since we are
4058  * not being careful to do encoding-aware clipping. However, all
4059  * TZ abbreviations in the IANA database are plain ASCII.
4060  */
4061  if (print_tz)
4062  {
4063  if (tzn)
4064  {
4065  sprintf(str, " %.*s", MAXTZLEN, tzn);
4066  str += strlen(str);
4067  }
4068  else
4069  str = EncodeTimezone(str, tz, style);
4070  }
4071  break;
4072 
4073  case USE_GERMAN_DATES:
4074  /* German variant on European style */
4075  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4076  *str++ = '.';
4077  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
4078  *str++ = '.';
4079  str = pg_ultostr_zeropad(str,
4080  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4081  *str++ = ' ';
4082  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4083  *str++ = ':';
4084  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4085  *str++ = ':';
4086  str = AppendTimestampSeconds(str, tm, fsec);
4087 
4088  if (print_tz)
4089  {
4090  if (tzn)
4091  {
4092  sprintf(str, " %.*s", MAXTZLEN, tzn);
4093  str += strlen(str);
4094  }
4095  else
4096  str = EncodeTimezone(str, tz, style);
4097  }
4098  break;
4099 
4100  case USE_POSTGRES_DATES:
4101  default:
4102  /* Backward-compatible with traditional Postgres abstime dates */
4103  day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
4104  tm->tm_wday = j2day(day);
4105  memcpy(str, days[tm->tm_wday], 3);
4106  str += 3;
4107  *str++ = ' ';
4108  if (DateOrder == DATEORDER_DMY)
4109  {
4110  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4111  *str++ = ' ';
4112  memcpy(str, months[tm->tm_mon - 1], 3);
4113  str += 3;
4114  }
4115  else
4116  {
4117  memcpy(str, months[tm->tm_mon - 1], 3);
4118  str += 3;
4119  *str++ = ' ';
4120  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4121  }
4122  *str++ = ' ';
4123  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4124  *str++ = ':';
4125  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4126  *str++ = ':';
4127  str = AppendTimestampSeconds(str, tm, fsec);
4128  *str++ = ' ';
4129  str = pg_ultostr_zeropad(str,
4130  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4131 
4132  if (print_tz)
4133  {
4134  if (tzn)
4135  {
4136  sprintf(str, " %.*s", MAXTZLEN, tzn);
4137  str += strlen(str);
4138  }
4139  else
4140  {
4141  /*
4142  * We have a time zone, but no string version. Use the
4143  * numeric form, but be sure to include a leading space to
4144  * avoid formatting something which would be rejected by
4145  * the date/time parser later. - thomas 2001-10-19
4146  */
4147  *str++ = ' ';
4148  str = EncodeTimezone(str, tz, style);
4149  }
4150  }
4151  break;
4152  }
4153 
4154  if (tm->tm_year <= 0)
4155  {
4156  memcpy(str, " BC", 3); /* Don't copy NUL */
4157  str += 3;
4158  }
4159  *str = '\0';
4160 }
4161 
4162 
4163 /*
4164  * Helper functions to avoid duplicated code in EncodeInterval.
4165  */
4166 
4167 /* Append an ISO-8601-style interval field, but only if value isn't zero */
4168 static char *
4169 AddISO8601IntPart(char *cp, int value, char units)
4170 {
4171  if (value == 0)
4172  return cp;
4173  sprintf(cp, "%d%c", value, units);
4174  return cp + strlen(cp);
4175 }
4176 
4177 /* Append a postgres-style interval field, but only if value isn't zero */
4178 static char *
4179 AddPostgresIntPart(char *cp, int value, const char *units,
4180  bool *is_zero, bool *is_before)
4181 {
4182  if (value == 0)
4183  return cp;
4184  sprintf(cp, "%s%s%d %s%s",
4185  (!*is_zero) ? " " : "",
4186  (*is_before && value > 0) ? "+" : "",
4187  value,
4188  units,
4189  (value != 1) ? "s" : "");
4190 
4191  /*
4192  * Each nonzero field sets is_before for (only) the next one. This is a
4193  * tad bizarre but it's how it worked before...
4194  */
4195  *is_before = (value < 0);
4196  *is_zero = false;
4197  return cp + strlen(cp);
4198 }
4199 
4200 /* Append a verbose-style interval field, but only if value isn't zero */
4201 static char *
4202 AddVerboseIntPart(char *cp, int value, const char *units,
4203  bool *is_zero, bool *is_before)
4204 {
4205  if (value == 0)
4206  return cp;
4207  /* first nonzero value sets is_before */
4208  if (*is_zero)
4209  {
4210  *is_before = (value < 0);
4211  value = abs(value);
4212  }
4213  else if (*is_before)
4214  value = -value;
4215  sprintf(cp, " %d %s%s", value, units, (value == 1) ? "" : "s");
4216  *is_zero = false;
4217  return cp + strlen(cp);
4218 }
4219 
4220 
4221 /* EncodeInterval()
4222  * Interpret time structure as a delta time and convert to string.
4223  *
4224  * Support "traditional Postgres" and ISO-8601 styles.
4225  * Actually, afaik ISO does not address time interval formatting,
4226  * but this looks similar to the spec for absolute date/time.
4227  * - thomas 1998-04-30
4228  *
4229  * Actually, afaik, ISO 8601 does specify formats for "time
4230  * intervals...[of the]...format with time-unit designators", which
4231  * are pretty ugly. The format looks something like
4232  * P1Y1M1DT1H1M1.12345S
4233  * but useful for exchanging data with computers instead of humans.
4234  * - ron 2003-07-14
4235  *
4236  * And ISO's SQL 2008 standard specifies standards for
4237  * "year-month literal"s (that look like '2-3') and
4238  * "day-time literal"s (that look like ('4 5:6:7')
4239  */
4240 void
4241 EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
4242 {
4243  char *cp = str;
4244  int year = tm->tm_year;
4245  int mon = tm->tm_mon;
4246  int mday = tm->tm_mday;
4247  int hour = tm->tm_hour;
4248  int min = tm->tm_min;
4249  int sec = tm->tm_sec;
4250  bool is_before = false;
4251  bool is_zero = true;
4252 
4253  /*
4254  * The sign of year and month are guaranteed to match, since they are
4255  * stored internally as "month". But we'll need to check for is_before and
4256  * is_zero when determining the signs of day and hour/minute/seconds
4257  * fields.
4258  */
4259  switch (style)
4260  {
4261  /* SQL Standard interval format */
4262  case INTSTYLE_SQL_STANDARD:
4263  {
4264  bool has_negative = year < 0 || mon < 0 ||
4265  mday < 0 || hour < 0 ||
4266  min < 0 || sec < 0 || fsec < 0;
4267  bool has_positive = year > 0 || mon > 0 ||
4268  mday > 0 || hour > 0 ||
4269  min > 0 || sec > 0 || fsec > 0;
4270  bool has_year_month = year != 0 || mon != 0;
4271  bool has_day_time = mday != 0 || hour != 0 ||
4272  min != 0 || sec != 0 || fsec != 0;
4273  bool has_day = mday != 0;
4274  bool sql_standard_value = !(has_negative && has_positive) &&
4275  !(has_year_month && has_day_time);
4276 
4277  /*
4278  * SQL Standard wants only 1 "<sign>" preceding the whole
4279  * interval ... but can't do that if mixed signs.
4280  */
4281  if (has_negative && sql_standard_value)
4282  {
4283  *cp++ = '-';
4284  year = -year;
4285  mon = -mon;
4286  mday = -mday;
4287  hour = -hour;
4288  min = -min;
4289  sec = -sec;
4290  fsec = -fsec;
4291  }
4292 
4293  if (!has_negative && !has_positive)
4294  {
4295  sprintf(cp, "0");
4296  }
4297  else if (!sql_standard_value)
4298  {
4299  /*
4300  * For non sql-standard interval values, force outputting
4301  * the signs to avoid ambiguities with intervals with
4302  * mixed sign components.
4303  */
4304  char year_sign = (year < 0 || mon < 0) ? '-' : '+';
4305  char day_sign = (mday < 0) ? '-' : '+';
4306  char sec_sign = (hour < 0 || min < 0 ||
4307  sec < 0 || fsec < 0) ? '-' : '+';
4308 
4309  sprintf(cp, "%c%d-%d %c%d %c%d:%02d:",
4310  year_sign, abs(year), abs(mon),
4311  day_sign, abs(mday),
4312  sec_sign, abs(hour), abs(min));
4313  cp += strlen(cp);
4314  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4315  *cp = '\0';
4316  }
4317  else if (has_year_month)
4318  {
4319  sprintf(cp, "%d-%d", year, mon);
4320  }
4321  else if (has_day)
4322  {
4323  sprintf(cp, "%d %d:%02d:", mday, hour, min);
4324  cp += strlen(cp);
4325  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4326  *cp = '\0';
4327  }
4328  else
4329  {
4330  sprintf(cp, "%d:%02d:", hour, min);
4331  cp += strlen(cp);
4332  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4333  *cp = '\0';
4334  }
4335  }
4336  break;
4337 
4338  /* ISO 8601 "time-intervals by duration only" */
4339  case INTSTYLE_ISO_8601:
4340  /* special-case zero to avoid printing nothing */
4341  if (year == 0 && mon == 0 && mday == 0 &&
4342  hour == 0 && min == 0 && sec == 0 && fsec == 0)
4343  {
4344  sprintf(cp, "PT0S");
4345  break;
4346  }
4347  *cp++ = 'P';
4348  cp = AddISO8601IntPart(cp, year, 'Y');
4349  cp = AddISO8601IntPart(cp, mon, 'M');
4350  cp = AddISO8601IntPart(cp, mday, 'D');
4351  if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
4352  *cp++ = 'T';
4353  cp = AddISO8601IntPart(cp, hour, 'H');
4354  cp = AddISO8601IntPart(cp, min, 'M');
4355  if (sec != 0 || fsec != 0)
4356  {
4357  if (sec < 0 || fsec < 0)
4358  *cp++ = '-';
4359  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4360  *cp++ = 'S';
4361  *cp++ = '\0';
4362  }
4363  break;
4364 
4365  /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
4366  case INTSTYLE_POSTGRES:
4367  cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
4368 
4369  /*
4370  * Ideally we should spell out "month" like we do for "year" and
4371  * "day". However, for backward compatibility, we can't easily
4372  * fix this. bjm 2011-05-24
4373  */
4374  cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
4375  cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
4376  if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
4377  {
4378  bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
4379 
4380  sprintf(cp, "%s%s%02d:%02d:",
4381  is_zero ? "" : " ",
4382  (minus ? "-" : (is_before ? "+" : "")),
4383  abs(hour), abs(min));
4384  cp += strlen(cp);
4385  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4386  *cp = '\0';
4387  }
4388  break;
4389 
4390  /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
4392  default:
4393  strcpy(cp, "@");
4394  cp++;
4395  cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
4396  cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
4397  cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
4398  cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
4399  cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
4400  if (sec != 0 || fsec != 0)
4401  {
4402  *cp++ = ' ';
4403  if (sec < 0 || (sec == 0 && fsec < 0))
4404  {
4405  if (is_zero)
4406  is_before = true;
4407  else if (!is_before)
4408  *cp++ = '-';
4409  }
4410  else if (is_before)
4411  *cp++ = '-';
4412  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4413  /* We output "ago", not negatives, so use abs(). */
4414  sprintf(cp, " sec%s",
4415  (abs(sec) != 1 || fsec != 0) ? "s" : "");
4416  is_zero = false;
4417  }
4418  /* identically zero? then put in a unitless zero... */
4419  if (is_zero)
4420  strcat(cp, " 0");
4421  if (is_before)
4422  strcat(cp, " ago");
4423  break;
4424  }
4425 }
4426 
4427 
4428 /*
4429  * We've been burnt by stupid errors in the ordering of the datetkn tables
4430  * once too often. Arrange to check them during postmaster start.
4431  */
4432 static bool
4433 CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
4434 {
4435  bool ok = true;
4436  int i;
4437 
4438  for (i = 0; i < nel; i++)
4439  {
4440  /* check for token strings that don't fit */
4441  if (strlen(base[i].token) > TOKMAXLEN)
4442  {
4443  /* %.*s is safe since all our tokens are ASCII */
4444  elog(LOG, "token too long in %s table: \"%.*s\"",
4445  tablename,
4446  TOKMAXLEN + 1, base[i].token);
4447  ok = false;
4448  break; /* don't risk applying strcmp */
4449  }
4450  /* check for out of order */
4451  if (i > 0 &&
4452  strcmp(base[i - 1].token, base[i].token) >= 0)
4453  {
4454  elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
4455  tablename,
4456  base[i - 1].token,
4457  base[i].token);
4458  ok = false;
4459  }
4460  }
4461  return ok;
4462 }
4463 
4464 bool
4466 {
4467  bool ok = true;
4468 
4469  Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
4470  Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
4471 
4472  ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
4473  ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
4474  return ok;
4475 }
4476 
4477 /*
4478  * Common code for temporal prosupport functions: simplify, if possible,
4479  * a call to a temporal type's length-coercion function.
4480  *
4481  * Types time, timetz, timestamp and timestamptz each have a range of allowed
4482  * precisions. An unspecified precision is rigorously equivalent to the
4483  * highest specifiable precision. We can replace the function call with a
4484  * no-op RelabelType if it is coercing to the same or higher precision as the
4485  * input is known to have.
4486  *
4487  * The input Node is always a FuncExpr, but to reduce the #include footprint
4488  * of datetime.h, we declare it as Node *.
4489  *
4490  * Note: timestamp_scale throws an error when the typmod is out of range, but
4491  * we can't get there from a cast: our typmodin will have caught it already.
4492  */
4493 Node *
4494 TemporalSimplify(int32 max_precis, Node *node)
4495 {
4496  FuncExpr *expr = castNode(FuncExpr, node);
4497  Node *ret = NULL;
4498  Node *typmod;
4499 
4500  Assert(list_length(expr->args) >= 2);
4501 
4502  typmod = (Node *) lsecond(expr->args);
4503 
4504  if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
4505  {
4506  Node *source = (Node *) linitial(expr->args);
4507  int32 old_precis = exprTypmod(source);
4508  int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
4509 
4510  if (new_precis < 0 || new_precis == max_precis ||
4511  (old_precis >= 0 && new_precis >= old_precis))
4512  ret = relabel_to_typmod(source, new_precis);
4513  }
4514 
4515  return ret;
4516 }
4517 
4518 /*
4519  * This function gets called during timezone config file load or reload
4520  * to create the final array of timezone tokens. The argument array
4521  * is already sorted in name order.
4522  *
4523  * The result is a TimeZoneAbbrevTable (which must be a single malloc'd chunk)
4524  * or NULL on malloc failure. No other error conditions are defined.
4525  */
4527 ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
4528 {
4529  TimeZoneAbbrevTable *tbl;
4530  Size tbl_size;
4531  int i;
4532 
4533  /* Space for fixed fields and datetkn array */
4534  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4535  n * sizeof(datetkn);
4536  tbl_size = MAXALIGN(tbl_size);
4537  /* Count up space for dynamic abbreviations */
4538  for (i = 0; i < n; i++)
4539  {
4540  struct tzEntry *abbr = abbrevs + i;
4541 
4542  if (abbr->zone != NULL)
4543  {
4544  Size dsize;
4545 
4546  dsize = offsetof(DynamicZoneAbbrev, zone) +
4547  strlen(abbr->zone) + 1;
4548  tbl_size += MAXALIGN(dsize);
4549  }
4550  }
4551 
4552  /* Alloc the result ... */
4553  tbl = malloc(tbl_size);
4554  if (!tbl)
4555  return NULL;
4556 
4557  /* ... and fill it in */
4558  tbl->tblsize = tbl_size;
4559  tbl->numabbrevs = n;
4560  /* in this loop, tbl_size reprises the space calculation above */
4561  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4562  n * sizeof(datetkn);
4563  tbl_size = MAXALIGN(tbl_size);
4564  for (i = 0; i < n; i++)
4565  {
4566  struct tzEntry *abbr = abbrevs + i;
4567  datetkn *dtoken = tbl->abbrevs + i;
4568 
4569  /* use strlcpy to truncate name if necessary */
4570  strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1);
4571  if (abbr->zone != NULL)
4572  {
4573  /* Allocate a DynamicZoneAbbrev for this abbreviation */
4574  DynamicZoneAbbrev *dtza;
4575  Size dsize;
4576 
4577  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size);
4578  dtza->tz = NULL;
4579  strcpy(dtza->zone, abbr->zone);
4580 
4581  dtoken->type = DYNTZ;
4582  /* value is offset from table start to DynamicZoneAbbrev */
4583  dtoken->value = (int32) tbl_size;
4584 
4585  dsize = offsetof(DynamicZoneAbbrev, zone) +
4586  strlen(abbr->zone) + 1;
4587  tbl_size += MAXALIGN(dsize);
4588  }
4589  else
4590  {
4591  dtoken->type = abbr->is_dst ? DTZ : TZ;
4592  dtoken->value = abbr->offset;
4593  }
4594  }
4595 
4596  /* Assert the two loops above agreed on size calculations */
4597  Assert(tbl->tblsize == tbl_size);
4598 
4599  /* Check the ordering, if testing */
4600  Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n));
4601 
4602  return tbl;
4603 }
4604 
4605 /*
4606  * Install a TimeZoneAbbrevTable as the active table.
4607  *
4608  * Caller is responsible that the passed table doesn't go away while in use.
4609  */
4610 void
4612 {
4613  zoneabbrevtbl = tbl;
4614  /* reset abbrevcache, which may contain pointers into old table */
4615  memset(abbrevcache, 0, sizeof(abbrevcache));
4616 }
4617 
4618 /*
4619  * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation.
4620  */
4621 static pg_tz *
4623 {
4624  DynamicZoneAbbrev *dtza;
4625 
4626  /* Just some sanity checks to prevent indexing off into nowhere */
4627  Assert(tp->type == DYNTZ);
4628  Assert(tp->value > 0 && tp->value < tbl->tblsize);
4629 
4630  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value);
4631 
4632  /* Look up the underlying zone if we haven't already */
4633  if (dtza->tz == NULL)
4634  {
4635  dtza->tz = pg_tzset(dtza->zone);
4636 
4637  /*
4638  * Ideally we'd let the caller ereport instead of doing it here, but
4639  * then there is no way to report the bad time zone name.
4640  */
4641  if (dtza->tz == NULL)
4642  ereport(ERROR,
4643  (errcode(ERRCODE_CONFIG_FILE_ERROR),
4644  errmsg("time zone \"%s\" not recognized",
4645  dtza->zone),
4646  errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
4647  tp->token)));
4648  }
4649  return dtza->tz;
4650 }
4651 
4652 
4653 /*
4654  * This set-returning function reads all the available time zone abbreviations
4655  * and returns a set of (abbrev, utc_offset, is_dst).
4656  */
4657 Datum
4659 {
4660  FuncCallContext *funcctx;
4661  int *pindex;
4662  Datum result;
4663  HeapTuple tuple;
4664  Datum values[3];
4665  bool nulls[3];
4666  const datetkn *tp;
4667  char buffer[TOKMAXLEN + 1];
4668  int gmtoffset;
4669  bool is_dst;
4670  unsigned char *p;
4671  struct pg_tm tm;
4672  Interval *resInterval;
4673 
4674  /* stuff done only on the first call of the function */
4675  if (SRF_IS_FIRSTCALL())
4676  {
4677  TupleDesc tupdesc;
4678  MemoryContext oldcontext;
4679 
4680  /* create a function context for cross-call persistence */
4681  funcctx = SRF_FIRSTCALL_INIT();
4682 
4683  /*
4684  * switch to memory context appropriate for multiple function calls
4685  */
4686  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
4687 
4688  /* allocate memory for user context */
4689  pindex = (int *) palloc(sizeof(int));
4690  *pindex = 0;
4691  funcctx->user_fctx = (void *) pindex;
4692 
4693  /*
4694  * build tupdesc for result tuples. This must match this function's
4695  * pg_proc entry!
4696  */
4697  tupdesc = CreateTemplateTupleDesc(3);
4698  TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev",
4699  TEXTOID, -1, 0);
4700  TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset",
4701  INTERVALOID, -1, 0);
4702  TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst",
4703  BOOLOID, -1, 0);
4704 
4705  funcctx->tuple_desc = BlessTupleDesc(tupdesc);
4706  MemoryContextSwitchTo(oldcontext);
4707  }
4708 
4709  /* stuff done on every call of the function */
4710  funcctx = SRF_PERCALL_SETUP();
4711  pindex = (int *) funcctx->user_fctx;
4712 
4713  if (zoneabbrevtbl == NULL ||
4714  *pindex >= zoneabbrevtbl->numabbrevs)
4715  SRF_RETURN_DONE(funcctx);
4716 
4717  tp = zoneabbrevtbl->abbrevs + *pindex;
4718 
4719  switch (tp->type)
4720  {
4721  case TZ:
4722  gmtoffset = tp->value;
4723  is_dst = false;
4724  break;
4725  case DTZ:
4726  gmtoffset = tp->value;
4727  is_dst = true;
4728  break;
4729  case DYNTZ:
4730  {
4731  /* Determine the current meaning of the abbrev */
4732  pg_tz *tzp;
4733  TimestampTz now;
4734  int isdst;
4735 
4736  tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp);
4738  gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now,
4739  tp->token,
4740  tzp,
4741  &isdst);
4742  is_dst = (bool) isdst;
4743  break;
4744  }
4745  default:
4746  elog(ERROR, "unrecognized timezone type %d", (int) tp->type);
4747  gmtoffset = 0; /* keep compiler quiet */
4748  is_dst = false;
4749  break;
4750  }
4751 
4752  MemSet(nulls, 0, sizeof(nulls));
4753 
4754  /*
4755  * Convert name to text, using upcasing conversion that is the inverse of
4756  * what ParseDateTime() uses.
4757  */
4758  strlcpy(buffer, tp->token, sizeof(buffer));
4759  for (p = (unsigned char *) buffer; *p; p++)
4760  *p = pg_toupper(*p);
4761 
4762  values[0] = CStringGetTextDatum(buffer);
4763 
4764  /* Convert offset (in seconds) to an interval */
4765  MemSet(&tm, 0, sizeof(struct pg_tm));
4766  tm.tm_sec = gmtoffset;
4767  resInterval = (Interval *) palloc(sizeof(Interval));
4768  tm2interval(&tm, 0, resInterval);
4769  values[1] = IntervalPGetDatum(resInterval);
4770 
4771  values[2] = BoolGetDatum(is_dst);
4772 
4773  (*pindex)++;
4774 
4775  tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
4776  result = HeapTupleGetDatum(tuple);
4777 
4778  SRF_RETURN_NEXT(funcctx, result);
4779 }
4780 
4781 /*
4782  * This set-returning function reads all the available full time zones
4783  * and returns a set of (name, abbrev, utc_offset, is_dst).
4784  */
4785 Datum
4787 {
4788  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
4789  bool randomAccess;
4790  TupleDesc tupdesc;
4791  Tuplestorestate *tupstore;
4792  pg_tzenum *tzenum;
4793  pg_tz *tz;
4794  Datum values[4];
4795  bool nulls[4];
4796  int tzoff;
4797  struct pg_tm tm;
4798  fsec_t fsec;
4799  const char *tzn;
4800  Interval *resInterval;
4801  struct pg_tm itm;
4802  MemoryContext oldcontext;
4803 
4804  /* check to see if caller supports us returning a tuplestore */
4805  if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
4806  ereport(ERROR,
4807  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4808  errmsg("set-valued function called in context that cannot accept a set")));
4809  if (!(rsinfo->allowedModes & SFRM_Materialize))
4810  ereport(ERROR,
4811  (errcode(ERRCODE_SYNTAX_ERROR),
4812  errmsg("materialize mode required, but it is not allowed in this context")));
4813 
4814  /* The tupdesc and tuplestore must be created in ecxt_per_query_memory */
4815  oldcontext = MemoryContextSwitchTo(rsinfo->econtext->ecxt_per_query_memory);
4816 
4817  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
4818  elog(ERROR, "return type must be a row type");
4819 
4820  randomAccess = (rsinfo->allowedModes & SFRM_Materialize_Random) != 0;
4821  tupstore = tuplestore_begin_heap(randomAccess, false, work_mem);
4822  rsinfo->returnMode = SFRM_Materialize;
4823  rsinfo->setResult = tupstore;
4824  rsinfo->setDesc = tupdesc;
4825 
4826  MemoryContextSwitchTo(oldcontext);
4827 
4828  /* initialize timezone scanning code */
4829  tzenum = pg_tzenumerate_start();
4830 
4831  /* search for another zone to display */
4832  for (;;)
4833  {
4834  tz = pg_tzenumerate_next(tzenum);
4835  if (!tz)
4836  break;
4837 
4838  /* Convert now() to local time in this zone */
4840  &tzoff, &tm, &fsec, &tzn, tz) != 0)
4841  continue; /* ignore if conversion fails */
4842 
4843  /*
4844  * IANA's rather silly "Factory" time zone used to emit ridiculously
4845  * long "abbreviations" such as "Local time zone must be set--see zic
4846  * manual page" or "Local time zone must be set--use tzsetup". While
4847  * modern versions of tzdb emit the much saner "-00", it seems some
4848  * benighted packagers are hacking the IANA data so that it continues
4849  * to produce these strings. To prevent producing a weirdly wide
4850  * abbrev column, reject ridiculously long abbreviations.
4851  */
4852  if (tzn && strlen(tzn) > 31)
4853  continue;
4854 
4855  MemSet(nulls, 0, sizeof(nulls));
4856 
4858  values[1] = CStringGetTextDatum(tzn ? tzn : "");
4859 
4860  MemSet(&itm, 0, sizeof(struct pg_tm));
4861  itm.tm_sec = -tzoff;
4862  resInterval = (Interval *) palloc(sizeof(Interval));
4863  tm2interval(&itm, 0, resInterval);
4864  values[2] = IntervalPGetDatum(resInterval);
4865 
4866  values[3] = BoolGetDatum(tm.tm_isdst > 0);
4867 
4868  tuplestore_putvalues(tupstore, tupdesc, values, nulls);
4869  }
4870 
4871  pg_tzenumerate_end(tzenum);
4872  return (Datum) 0;
4873 }
void EncodeDateOnly(struct pg_tm *tm, int style, char *str)
Definition: datetime.c:3883
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, Datum *values, bool *isnull)
Definition: tuplestore.c:750
#define INTSTYLE_POSTGRES_VERBOSE
Definition: miscadmin.h:250
#define DYEAR
Definition: datetime.h:57
#define DTERR_BAD_FORMAT
Definition: datetime.h:280
#define DTK_TZ_HOUR
Definition: datetime.h:178
#define DTK_CENTURY
Definition: datetime.h:170
void GetCurrentDateTime(struct pg_tm *tm)
Definition: datetime.c:349
#define PM
Definition: datetime.h:73
#define IsA(nodeptr, _type_)
Definition: nodes.h:587
#define DAY
Definition: datetime.h:94
#define UNITS
Definition: datetime.h:108
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:207
int errhint(const char *fmt,...)
Definition: elog.c:1156
#define DAGO
Definition: datetime.h:36
void DateTimeParseError(int dterr, const char *str, const char *datatype)
Definition: datetime.c:3764
#define IGNORE_DTF
Definition: datetime.h:99
int64 pg_time_t
Definition: pgtime.h:23
#define APPEND_CHAR(bufptr, end, newchar)
int tm_wday
Definition: pgtime.h:40
int pg_next_dst_boundary(const pg_time_t *timep, long int *before_gmtoff, int *before_isdst, pg_time_t *boundary, long int *after_gmtoff, int *after_isdst, const pg_tz *tz)
Definition: localtime.c:1608
List * args
Definition: primnodes.h:503
PGDLLIMPORT pg_tz * session_timezone
Definition: pgtz.c:28
static const datetkn * deltacache[MAXDATEFIELDS]
Definition: datetime.c:243
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:45
#define DWEEK
Definition: datetime.h:54
#define DatumGetInt32(X)
Definition: postgres.h:516
#define DTK_JULIAN
Definition: datetime.h:174
#define DTK_WEEK
Definition: datetime.h:165
#define DTK_YEAR
Definition: datetime.h:168
int tm_isdst
Definition: pgtime.h:42
#define MILLENNIUM
Definition: datetime.h:121
#define LATE
Definition: datetime.h:41
#define USECS_PER_SEC
Definition: timestamp.h:94
#define YEAR
Definition: datetime.h:93
#define castNode(_type_, nodeptr)
Definition: nodes.h:605
#define CENTURY
Definition: datetime.h:120
#define DTK_DELTA
Definition: datetime.h:160
void InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl)
Definition: datetime.c:4611
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:267
int64 TimestampTz
Definition: timestamp.h:39
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:293
static const datetkn datetktbl[]
Definition: datetime.c:89
Datum pg_timezone_abbrevs(PG_FUNCTION_ARGS)
Definition: datetime.c:4658
int tm_hour
Definition: pgtime.h:36
static char * EncodeTimezone(char *str, int tz, int style)
Definition: datetime.c:3845
#define NOW
Definition: datetime.h:42
#define DECADE
Definition: datetime.h:119
#define DTK_QUARTER
Definition: datetime.h:167
#define isleap(y)
Definition: datetime.h:271
int timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone)
Definition: timestamp.c:1822
static pg_tz * FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp)
Definition: datetime.c:4622
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
Definition: datetime.c:1500
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
char * pg_ultostr_zeropad(char *str, uint32 value, int32 minwidth)
Definition: numutils.c:563
bool CheckDateTokenTables(void)
Definition: datetime.c:4465
Definition: nodes.h:536
#define AGO
Definition: datetime.h:111
#define DTK_TIME_M
Definition: datetime.h:193
void EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
Definition: datetime.c:3968
#define DTK_MILLENNIUM
Definition: datetime.h:171
unsigned char pg_tolower(unsigned char ch)
Definition: pgstrcasecmp.c:122
void pg_tzenumerate_end(pg_tzenum *dir)
Definition: pgtz.c:414
int errcode(int sqlerrcode)
Definition: elog.c:698
int offset
Definition: tzparser.h:29
int scale
Definition: pgbench.c:191
int IntervalStyle
Definition: globals.c:120
#define MemSet(start, val, len)
Definition: c.h:1008
#define DTK_ISODOW
Definition: datetime.h:181
#define TZ
Definition: datetime.h:96
#define USE_SQL_DATES
Definition: miscadmin.h:230
#define UNKNOWN_FIELD
Definition: datetime.h:125
long date
Definition: pgtypes_date.h:9
#define SECOND
Definition: datetime.h:103
int32 value
Definition: datetime.h:212
static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2820
int DecodeUnits(int field, char *lowtoken, int *val)
Definition: datetime.c:3727
#define DTK_TODAY
Definition: datetime.h:156
#define DTK_TOMORROW
Definition: datetime.h:157
#define MAXTZLEN
Definition: miscadmin.h:256
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
#define ADBC
Definition: datetime.h:109
Definition: pgtime.h:32
#define LOG
Definition: elog.h:26
char * pg_ultostr(char *str, uint32 value)
Definition: numutils.c:603
#define AD
Definition: datetime.h:76
#define INTERVAL_FULL_RANGE
Definition: timestamp.h:48
#define EPOCH
Definition: datetime.h:38
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:297
static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
Definition: datetime.c:504
static const int szdeltatktbl
Definition: datetime.c:235
int DecodeTimeOnly(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:1754
#define lsecond(l)
Definition: pg_list.h:179
#define DTK_DATE_M
Definition: datetime.h:192
#define MINS_PER_HOUR
Definition: timestamp.h:89
TupleDesc tuple_desc
Definition: funcapi.h:112
signed int int32
Definition: c.h:429
#define USE_ISO_DATES
Definition: miscadmin.h:229
#define TOMORROW
Definition: datetime.h:44
#define DHOUR
Definition: datetime.h:52
#define MAX_TZDISP_HOUR
Definition: timestamp.h:103
char * zone
Definition: tzparser.h:27
#define DA_D
Definition: datetime.h:61
static struct pg_tm tm
Definition: localtime.c:102
#define Abs(x)
Definition: c.h:992
bool is_dst
Definition: tzparser.h:30
#define malloc(a)
Definition: header.h:50
#define DMILLISEC
Definition: datetime.h:49
pg_tz * pg_tzset(const char *tzname)
Definition: pgtz.c:234
#define DSECOND
Definition: datetime.h:50
#define DTK_MONTH
Definition: datetime.h:166
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:299
#define DTK_MILLISEC
Definition: datetime.h:172
#define MONTHS_PER_YEAR
Definition: timestamp.h:69
#define sprintf
Definition: port.h:219
#define DMICROSEC
Definition: datetime.h:48
#define DTK_DECADE
Definition: datetime.h:169
#define TODAY
Definition: datetime.h:43
int DecodeDateTime(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:803
#define TZ_STRLEN_MAX
Definition: pgtime.h:51
const char *const months[]
Definition: datetime.c:65
#define linitial(l)
Definition: pg_list.h:174
#define DTK_TZ
Definition: datetime.h:147
#define DTK_HOUR
Definition: datetime.h:163
#define ERROR
Definition: elog.h:46
#define DTERR_FIELD_OVERFLOW
Definition: datetime.h:281
#define DOW
Definition: datetime.h:107
#define AM
Definition: datetime.h:72
int DecodeTimezoneAbbrev(int field, char *lowtoken, int *offset, pg_tz **tz)
Definition: datetime.c:2985
#define MAX_INTERVAL_PRECISION
Definition: timestamp.h:54
char token[TOKMAXLEN+1]
Definition: datetime.h:210
#define MILLISECOND
Definition: datetime.h:104
#define IntervalPGetDatum(X)
Definition: timestamp.h:33
#define SECS_PER_DAY
Definition: timestamp.h:86
static bool CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
Definition: datetime.c:4433
static char * AddISO8601IntPart(char *cp, int value, char units)
Definition: datetime.c:4169
#define DTERR_INTERVAL_OVERFLOW
Definition: datetime.h:283
#define DTK_SECOND
Definition: datetime.h:161
bool pg_interpret_timezone_abbrev(const char *abbrev, const pg_time_t *timep, long int *gmtoff, int *isdst, const pg_tz *tz)
Definition: localtime.c:1755
#define DCENTURY
Definition: datetime.h:59
int j2day(int date)
Definition: datetime.c:327
int DecodeTimezone(char *str, int *tzp)
Definition: datetime.c:2907
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2082
const char * pg_get_timezone_name(pg_tz *tz)
Definition: localtime.c:1873
datetkn abbrevs[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:220
int tm_mday
Definition: pgtime.h:37
static const datetkn * datebsearch(const char *key, const datetkn *base, int nel)
Definition: datetime.c:3809
#define HOURS_PER_DAY
Definition: timestamp.h:78
static const datetkn deltatktbl[]
Definition: datetime.c:170
int tm_mon
Definition: pgtime.h:38
int DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
Definition: datetime.c:1478
#define DMILLENNIUM
Definition: datetime.h:60
#define SECS_PER_MINUTE
Definition: timestamp.h:88
int errdetail(const char *fmt,...)
Definition: elog.c:1042
#define DMINUTE
Definition: datetime.h:51
#define USE_POSTGRES_DATES
Definition: miscadmin.h:228
bool time_overflows(int hour, int min, int sec, fsec_t fsec)
Definition: date.c:1426
pg_time_t timestamptz_to_time_t(TimestampTz t)
Definition: timestamp.c:1754
void EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
Definition: datetime.c:3998
#define MAX_TIMESTAMP_PRECISION
Definition: timestamp.h:53
int strtoint(const char *pg_restrict str, char **pg_restrict endptr, int base)
Definition: string.c:50
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm)
Definition: datetime.c:2370
#define DTK_ISOYEAR
Definition: datetime.h:180
const char *const days[]
Definition: datetime.c:68
void GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:370
int32 fsec_t
Definition: timestamp.h:41
#define DTK_YESTERDAY
Definition: datetime.h:155
#define DTK_NUMBER
Definition: datetime.h:142
#define MINUTE
Definition: datetime.h:102
static struct cvec * range(struct vars *v, chr a, chr b, int cases)
Definition: regc_locale.c:412
#define IS_VALID_JULIAN(y, m, d)
Definition: timestamp.h:155
#define USECS_PER_DAY
Definition: timestamp.h:91
void TupleDescInitEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:583
#define DTK_TZ_MINUTE
Definition: datetime.h:179
int DateOrder
Definition: globals.c:119
void j2date(int jd, int *year, int *month, int *day)
Definition: datetime.c:294
#define SECS_PER_HOUR
Definition: timestamp.h:87
static char * AddPostgresIntPart(char *cp, int value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4179
#define MONTH
Definition: datetime.h:92
#define DTK_MINUTE
Definition: datetime.h:162
int DecodeISO8601Interval(char *str, int *dtype, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3518
#define DATEORDER_YMD
Definition: miscadmin.h:235
static int ParseFractionalSecond(char *cp, fsec_t *fsec)
Definition: datetime.c:534
#define BC
Definition: datetime.h:77
TimestampTz GetCurrentTransactionStartTimestamp(void)
Definition: xact.c:798
char * abbrev
Definition: tzparser.h:26
#define DTERR_TZDISP_OVERFLOW
Definition: datetime.h:284
void EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
Definition: datetime.c:4241
char zone[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:228
#define DTK_DOW
Definition: datetime.h:176
#define DTK_LATE
Definition: datetime.h:152
Tuplestorestate * tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
Definition: tuplestore.c:318
int DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, pg_tz *tzp, int *isdst)
Definition: datetime.c:1677
#define DTK_MICROSEC
Definition: datetime.h:173
Node * TemporalSimplify(int32 max_precis, Node *node)
Definition: datetime.c:4494
#define DAYS_PER_MONTH
Definition: timestamp.h:77
uintptr_t Datum
Definition: postgres.h:411
#define INTSTYLE_ISO_8601
Definition: miscadmin.h:252
Definition: pgtz.h:65
const int day_tab[2][13]
Definition: datetime.c:59
int work_mem
Definition: globals.c:124
#define DMONTH
Definition: datetime.h:55
static char * AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
Definition: datetime.c:494
#define DATEORDER_DMY
Definition: miscadmin.h:236
#define BoolGetDatum(X)
Definition: postgres.h:446
static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
Definition: datetime.c:519
static char * AddVerboseIntPart(char *cp, int value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4202
#define WEEK
Definition: datetime.h:118
#define ISOTIME
Definition: datetime.h:116
#define DTK_TIME
Definition: datetime.h:146
static struct @143 value
int date2j(int y, int m, int d)
Definition: datetime.c:269
#define ereport(elevel,...)
Definition: elog.h:157
static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:2559
#define DTK_DOY
Definition: datetime.h:177
int allowedModes
Definition: execnodes.h:305
#define YESTERDAY
Definition: datetime.h:45
static void ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3072
void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
Definition: timestamp.c:1795
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
SetFunctionReturnMode returnMode
Definition: execnodes.h:307
char type
Definition: datetime.h:211
#define Assert(condition)
Definition: c.h:804
#define AMPM
Definition: datetime.h:100
pg_tzenum * pg_tzenumerate_start(void)
Definition: pgtz.c:397
#define DTIMEZONE
Definition: datetime.h:63
static int ISO8601IntegerWidth(char *fieldstart)
Definition: datetime.c:3491
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:101
static rewind_source * source
Definition: pg_rewind.c:79
size_t Size
Definition: c.h:540
#define DTK_EARLY
Definition: datetime.h:151
#define MAXDATEFIELDS
Definition: datetime.h:203
#define DTK_STRING
Definition: datetime.h:143
static int list_length(const List *l)
Definition: pg_list.h:149
#define DTK_DAY
Definition: datetime.h:164
#define MAXALIGN(LEN)
Definition: c.h:757
static int DecodeNumber(int flen, char *field, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2635
#define RESERV
Definition: datetime.h:91
#define DDAY
Definition: datetime.h:53
int DecodeSpecial(int field, char *lowtoken, int *val)
Definition: datetime.c:3040
#define HeapTupleGetDatum(tuple)
Definition: funcapi.h:220
MemoryContext ecxt_per_query_memory
Definition: execnodes.h:233
#define DTK_ALL_SECS_M
Definition: datetime.h:191
Tuplestorestate * setResult
Definition: execnodes.h:310
#define INTERVAL_MASK(b)
Definition: timestamp.h:45
#define DTZ
Definition: datetime.h:97
#define DTK_EPOCH
Definition: datetime.h:153
static TimeZoneAbbrevTable * zoneabbrevtbl
Definition: datetime.c:237
Datum pg_timezone_names(PG_FUNCTION_ARGS)
Definition: datetime.c:4786
static Datum values[MAXATTR]
Definition: bootstrap.c:156
Definition: zic.c:93
static char * AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
Definition: datetime.c:431
ExprContext * econtext
Definition: execnodes.h:303
pg_tz * pg_tzenumerate_next(pg_tzenum *dir)
Definition: pgtz.c:426
#define INTSTYLE_SQL_STANDARD
Definition: miscadmin.h:251
#define USE_XSD_DATES
Definition: miscadmin.h:232
void * user_fctx
Definition: funcapi.h:82
TupleDesc setDesc
Definition: execnodes.h:311
int tm_year
Definition: pgtime.h:39
void * palloc(Size size)
Definition: mcxt.c:1062
static const datetkn * datecache[MAXDATEFIELDS]
Definition: datetime.c:241
int errmsg(const char *fmt,...)
Definition: elog.c:909
static const datetkn * abbrevcache[MAXDATEFIELDS]
Definition: datetime.c:245
static const int szdatetktbl
Definition: datetime.c:164
static int ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
Definition: datetime.c:3463
#define USE_GERMAN_DATES
Definition: miscadmin.h:231
#define DYNTZ
Definition: datetime.h:98
#define DTK_NOW
Definition: datetime.h:154
#define elog(elevel,...)
Definition: elog.h:232
int DecodeInterval(char **field, int *ftype, int nf, int range, int *dtype, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3096
int i
#define TOKMAXLEN
Definition: datetime.h:205
#define CStringGetTextDatum(s)
Definition: builtins.h:86
#define DTK_M(t)
Definition: datetime.h:188
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst)
Definition: datetime.c:1714
int tm_yday
Definition: pgtime.h:41
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define UNIX_EPOCH_JDATE
Definition: timestamp.h:162
#define POSTGRES_EPOCH_JDATE
Definition: timestamp.h:163
#define HOUR
Definition: datetime.h:101
bool pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
Definition: localtime.c:1849
#define DTK_ZULU
Definition: datetime.h:158
int tm_sec
Definition: pgtime.h:34
int ParseDateTime(const char *timestr, char *workbuf, size_t buflen, char **field, int *ftype, int maxfields, int *numfields)
Definition: datetime.c:582
#define DQUARTER
Definition: datetime.h:56
#define DTZMOD
Definition: datetime.h:123
#define DTERR_MD_FIELD_OVERFLOW
Definition: datetime.h:282
unsigned char pg_toupper(unsigned char ch)
Definition: pgstrcasecmp.c:105
#define DOY
Definition: datetime.h:106
#define EARLY
Definition: datetime.h:40
int tm_min
Definition: pgtime.h:35
int16 AttrNumber
Definition: attnum.h:21
int DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
Definition: datetime.c:1639
TimeZoneAbbrevTable * ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
Definition: datetime.c:4527
long val
Definition: informix.c:664
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1544
Node * relabel_to_typmod(Node *expr, int32 typmod)
Definition: nodeFuncs.c:635
#define DDECADE
Definition: datetime.h:58
#define DTK_DATE
Definition: datetime.h:145
#define offsetof(type, field)
Definition: c.h:727
#define HR24
Definition: datetime.h:74
#define DTK_SPECIAL
Definition: datetime.h:150
#define MAX_TIME_PRECISION
Definition: date.h:51
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:317
unsigned char bool
Definition: c.h:391
#define MICROSECOND
Definition: datetime.h:105
int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, struct pg_tm *tm)
Definition: datetime.c:2480
#define INTSTYLE_POSTGRES
Definition: miscadmin.h:249
#define DB_C
Definition: datetime.h:62
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:295
int tm2interval(struct pg_tm *tm, fsec_t fsec, Interval *span)
Definition: timestamp.c:1994