PostgreSQL Source Code  git master
datetime.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * datetime.c
4  * Support functions for date/time types.
5  *
6  * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/datetime.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <ctype.h>
18 #include <limits.h>
19 #include <math.h>
20 
21 #include "access/htup_details.h"
22 #include "access/xact.h"
23 #include "common/int.h"
24 #include "common/string.h"
25 #include "funcapi.h"
26 #include "miscadmin.h"
27 #include "nodes/nodeFuncs.h"
28 #include "parser/scansup.h"
29 #include "utils/builtins.h"
30 #include "utils/date.h"
31 #include "utils/datetime.h"
32 #include "utils/guc.h"
33 #include "utils/tzparser.h"
34 
35 static int DecodeNumber(int flen, char *str, bool haveTextMonth,
36  int fmask, int *tmask,
37  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
38 static int DecodeNumberField(int len, char *str,
39  int fmask, int *tmask,
40  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
41 static int DecodeTimeCommon(char *str, int fmask, int range,
42  int *tmask, struct pg_itm *itm);
43 static int DecodeTime(char *str, int fmask, int range,
44  int *tmask, struct pg_tm *tm, fsec_t *fsec);
45 static int DecodeTimeForInterval(char *str, int fmask, int range,
46  int *tmask, struct pg_itm_in *itm_in);
47 static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
48 static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
49  struct pg_tm *tm);
50 static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
51  int precision, bool fillzeros);
52 static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum);
53 static bool AdjustFractMicroseconds(double frac, int64 scale,
54  struct pg_itm_in *itm_in);
55 static bool AdjustFractDays(double frac, int scale,
56  struct pg_itm_in *itm_in);
57 static bool AdjustFractYears(double frac, int scale,
58  struct pg_itm_in *itm_in);
59 static bool AdjustMicroseconds(int64 val, double fval, int64 scale,
60  struct pg_itm_in *itm_in);
61 static bool AdjustDays(int64 val, int scale,
62  struct pg_itm_in *itm_in);
63 static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in);
64 static bool AdjustYears(int64 val, int scale,
65  struct pg_itm_in *itm_in);
66 static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
67  pg_time_t *tp);
69  const char *abbr, pg_tz *tzp,
70  int *offset, int *isdst);
72  DateTimeErrorExtra *extra);
73 
74 
75 const int day_tab[2][13] =
76 {
77  {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
78  {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
79 };
80 
81 const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
82 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
83 
84 const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
85 "Thursday", "Friday", "Saturday", NULL};
86 
87 
88 /*****************************************************************************
89  * PRIVATE ROUTINES *
90  *****************************************************************************/
91 
92 /*
93  * datetktbl holds date/time keywords.
94  *
95  * Note that this table must be strictly alphabetically ordered to allow an
96  * O(ln(N)) search algorithm to be used.
97  *
98  * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
99  * characters to fit.
100  *
101  * The static table contains no TZ, DTZ, or DYNTZ entries; rather those
102  * are loaded from configuration files and stored in zoneabbrevtbl, whose
103  * abbrevs[] field has the same format as the static datetktbl.
104  */
105 static const datetkn datetktbl[] = {
106  /* token, type, value */
107  {"+infinity", RESERV, DTK_LATE}, /* same as "infinity" */
108  {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
109  {DA_D, ADBC, AD}, /* "ad" for years > 0 */
110  {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
111  {"am", AMPM, AM},
112  {"apr", MONTH, 4},
113  {"april", MONTH, 4},
114  {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
115  {"aug", MONTH, 8},
116  {"august", MONTH, 8},
117  {DB_C, ADBC, BC}, /* "bc" for years <= 0 */
118  {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
119  {"dec", MONTH, 12},
120  {"december", MONTH, 12},
121  {"dow", UNITS, DTK_DOW}, /* day of week */
122  {"doy", UNITS, DTK_DOY}, /* day of year */
123  {"dst", DTZMOD, SECS_PER_HOUR},
124  {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
125  {"feb", MONTH, 2},
126  {"february", MONTH, 2},
127  {"fri", DOW, 5},
128  {"friday", DOW, 5},
129  {"h", UNITS, DTK_HOUR}, /* "hour" */
130  {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
131  {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
132  {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
133  {"j", UNITS, DTK_JULIAN},
134  {"jan", MONTH, 1},
135  {"january", MONTH, 1},
136  {"jd", UNITS, DTK_JULIAN},
137  {"jul", MONTH, 7},
138  {"julian", UNITS, DTK_JULIAN},
139  {"july", MONTH, 7},
140  {"jun", MONTH, 6},
141  {"june", MONTH, 6},
142  {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
143  {"mar", MONTH, 3},
144  {"march", MONTH, 3},
145  {"may", MONTH, 5},
146  {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
147  {"mon", DOW, 1},
148  {"monday", DOW, 1},
149  {"nov", MONTH, 11},
150  {"november", MONTH, 11},
151  {NOW, RESERV, DTK_NOW}, /* current transaction time */
152  {"oct", MONTH, 10},
153  {"october", MONTH, 10},
154  {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
155  {"pm", AMPM, PM},
156  {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
157  {"sat", DOW, 6},
158  {"saturday", DOW, 6},
159  {"sep", MONTH, 9},
160  {"sept", MONTH, 9},
161  {"september", MONTH, 9},
162  {"sun", DOW, 0},
163  {"sunday", DOW, 0},
164  {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
165  {"thu", DOW, 4},
166  {"thur", DOW, 4},
167  {"thurs", DOW, 4},
168  {"thursday", DOW, 4},
169  {TODAY, RESERV, DTK_TODAY}, /* midnight */
170  {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
171  {"tue", DOW, 2},
172  {"tues", DOW, 2},
173  {"tuesday", DOW, 2},
174  {"wed", DOW, 3},
175  {"wednesday", DOW, 3},
176  {"weds", DOW, 3},
177  {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
178  {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
179 };
180 
181 static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
182 
183 /*
184  * deltatktbl: same format as datetktbl, but holds keywords used to represent
185  * time units (eg, for intervals, and for EXTRACT).
186  */
187 static const datetkn deltatktbl[] = {
188  /* token, type, value */
189  {"@", IGNORE_DTF, 0}, /* postgres relative prefix */
190  {DAGO, AGO, 0}, /* "ago" indicates negative time offset */
191  {"c", UNITS, DTK_CENTURY}, /* "century" relative */
192  {"cent", UNITS, DTK_CENTURY}, /* "century" relative */
193  {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
194  {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
195  {"d", UNITS, DTK_DAY}, /* "day" relative */
196  {DDAY, UNITS, DTK_DAY}, /* "day" relative */
197  {"days", UNITS, DTK_DAY}, /* "days" relative */
198  {"dec", UNITS, DTK_DECADE}, /* "decade" relative */
199  {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
200  {"decades", UNITS, DTK_DECADE}, /* "decades" relative */
201  {"decs", UNITS, DTK_DECADE}, /* "decades" relative */
202  {"h", UNITS, DTK_HOUR}, /* "hour" relative */
203  {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
204  {"hours", UNITS, DTK_HOUR}, /* "hours" relative */
205  {"hr", UNITS, DTK_HOUR}, /* "hour" relative */
206  {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
207  {"m", UNITS, DTK_MINUTE}, /* "minute" relative */
208  {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
209  {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
210  {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
211  {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
212  {"millisecon", UNITS, DTK_MILLISEC}, /* relative */
213  {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
214  {"min", UNITS, DTK_MINUTE}, /* "minute" relative */
215  {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
216  {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
217  {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
218  {"mon", UNITS, DTK_MONTH}, /* "months" relative */
219  {"mons", UNITS, DTK_MONTH}, /* "months" relative */
220  {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
221  {"months", UNITS, DTK_MONTH},
222  {"ms", UNITS, DTK_MILLISEC},
223  {"msec", UNITS, DTK_MILLISEC},
225  {"mseconds", UNITS, DTK_MILLISEC},
226  {"msecs", UNITS, DTK_MILLISEC},
227  {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
228  {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
229  {"s", UNITS, DTK_SECOND},
230  {"sec", UNITS, DTK_SECOND},
232  {"seconds", UNITS, DTK_SECOND},
233  {"secs", UNITS, DTK_SECOND},
234  {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
235  {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
236  {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
237  {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
238  {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
239  {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
240  {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
241  {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
242  {"w", UNITS, DTK_WEEK}, /* "week" relative */
243  {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
244  {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
245  {"y", UNITS, DTK_YEAR}, /* "year" relative */
246  {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
247  {"years", UNITS, DTK_YEAR}, /* "years" relative */
248  {"yr", UNITS, DTK_YEAR}, /* "year" relative */
249  {"yrs", UNITS, DTK_YEAR} /* "years" relative */
250 };
251 
252 static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
253 
255 
256 /* Caches of recent lookup results in the above tables */
257 
258 static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
259 
260 static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
261 
262 static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
263 
264 
265 /*
266  * Calendar time to Julian date conversions.
267  * Julian date is commonly used in astronomical applications,
268  * since it is numerically accurate and computationally simple.
269  * The algorithms here will accurately convert between Julian day
270  * and calendar date for all non-negative Julian days
271  * (i.e. from Nov 24, -4713 on).
272  *
273  * Rewritten to eliminate overflow problems. This now allows the
274  * routines to work correctly for all Julian day counts from
275  * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
276  * a 32-bit integer. Longer types should also work to the limits
277  * of their precision.
278  *
279  * Actually, date2j() will work sanely, in the sense of producing
280  * valid negative Julian dates, significantly before Nov 24, -4713.
281  * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
282  * and associated commentary in timestamp.h.
283  */
284 
285 int
286 date2j(int year, int month, int day)
287 {
288  int julian;
289  int century;
290 
291  if (month > 2)
292  {
293  month += 1;
294  year += 4800;
295  }
296  else
297  {
298  month += 13;
299  year += 4799;
300  }
301 
302  century = year / 100;
303  julian = year * 365 - 32167;
304  julian += year / 4 - century + century / 4;
305  julian += 7834 * month / 256 + day;
306 
307  return julian;
308 } /* date2j() */
309 
310 void
311 j2date(int jd, int *year, int *month, int *day)
312 {
313  unsigned int julian;
314  unsigned int quad;
315  unsigned int extra;
316  int y;
317 
318  julian = jd;
319  julian += 32044;
320  quad = julian / 146097;
321  extra = (julian - quad * 146097) * 4 + 3;
322  julian += 60 + quad * 3 + extra / 146097;
323  quad = julian / 1461;
324  julian -= quad * 1461;
325  y = julian * 4 / 1461;
326  julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
327  + 123;
328  y += quad * 4;
329  *year = y - 4800;
330  quad = julian * 2141 / 65536;
331  *day = julian - 7834 * quad / 256;
332  *month = (quad + 10) % MONTHS_PER_YEAR + 1;
333 } /* j2date() */
334 
335 
336 /*
337  * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
338  *
339  * Note: various places use the locution j2day(date - 1) to produce a
340  * result according to the convention 0..6 = Mon..Sun. This is a bit of
341  * a crock, but will work as long as the computation here is just a modulo.
342  */
343 int
345 {
346  date += 1;
347  date %= 7;
348  /* Cope if division truncates towards zero, as it probably does */
349  if (date < 0)
350  date += 7;
351 
352  return date;
353 } /* j2day() */
354 
355 
356 /*
357  * GetCurrentDateTime()
358  *
359  * Get the transaction start time ("now()") broken down as a struct pg_tm,
360  * converted according to the session timezone setting.
361  *
362  * This is just a convenience wrapper for GetCurrentTimeUsec, to cover the
363  * case where caller doesn't need either fractional seconds or tz offset.
364  */
365 void
367 {
368  fsec_t fsec;
369 
370  GetCurrentTimeUsec(tm, &fsec, NULL);
371 }
372 
373 /*
374  * GetCurrentTimeUsec()
375  *
376  * Get the transaction start time ("now()") broken down as a struct pg_tm,
377  * including fractional seconds and timezone offset. The time is converted
378  * according to the session timezone setting.
379  *
380  * Callers may pass tzp = NULL if they don't need the offset, but this does
381  * not affect the conversion behavior (unlike timestamp2tm()).
382  *
383  * Internally, we cache the result, since this could be called many times
384  * in a transaction, within which now() doesn't change.
385  */
386 void
387 GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
388 {
390 
391  /*
392  * The cache key must include both current time and current timezone. By
393  * representing the timezone by just a pointer, we're assuming that
394  * distinct timezone settings could never have the same pointer value.
395  * This is true by virtue of the hashtable used inside pg_tzset();
396  * however, it might need another look if we ever allow entries in that
397  * hash to be recycled.
398  */
399  static TimestampTz cache_ts = 0;
400  static pg_tz *cache_timezone = NULL;
401  static struct pg_tm cache_tm;
402  static fsec_t cache_fsec;
403  static int cache_tz;
404 
405  if (cur_ts != cache_ts || session_timezone != cache_timezone)
406  {
407  /*
408  * Make sure cache is marked invalid in case of error after partial
409  * update within timestamp2tm.
410  */
411  cache_timezone = NULL;
412 
413  /*
414  * Perform the computation, storing results into cache. We do not
415  * really expect any error here, since current time surely ought to be
416  * within range, but check just for sanity's sake.
417  */
418  if (timestamp2tm(cur_ts, &cache_tz, &cache_tm, &cache_fsec,
419  NULL, session_timezone) != 0)
420  ereport(ERROR,
421  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
422  errmsg("timestamp out of range")));
423 
424  /* OK, so mark the cache valid. */
425  cache_ts = cur_ts;
426  cache_timezone = session_timezone;
427  }
428 
429  *tm = cache_tm;
430  *fsec = cache_fsec;
431  if (tzp != NULL)
432  *tzp = cache_tz;
433 }
434 
435 
436 /*
437  * Append seconds and fractional seconds (if any) at *cp.
438  *
439  * precision is the max number of fraction digits, fillzeros says to
440  * pad to two integral-seconds digits.
441  *
442  * Returns a pointer to the new end of string. No NUL terminator is put
443  * there; callers are responsible for NUL terminating str themselves.
444  *
445  * Note that any sign is stripped from the input sec and fsec values.
446  */
447 static char *
448 AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
449 {
450  Assert(precision >= 0);
451 
452  if (fillzeros)
453  cp = pg_ultostr_zeropad(cp, abs(sec), 2);
454  else
455  cp = pg_ultostr(cp, abs(sec));
456 
457  /* fsec_t is just an int32 */
458  if (fsec != 0)
459  {
460  int32 value = abs(fsec);
461  char *end = &cp[precision + 1];
462  bool gotnonzero = false;
463 
464  *cp++ = '.';
465 
466  /*
467  * Append the fractional seconds part. Note that we don't want any
468  * trailing zeros here, so since we're building the number in reverse
469  * we'll skip appending zeros until we've output a non-zero digit.
470  */
471  while (precision--)
472  {
473  int32 oldval = value;
474  int32 remainder;
475 
476  value /= 10;
477  remainder = oldval - value * 10;
478 
479  /* check if we got a non-zero */
480  if (remainder)
481  gotnonzero = true;
482 
483  if (gotnonzero)
484  cp[precision] = '0' + remainder;
485  else
486  end = &cp[precision];
487  }
488 
489  /*
490  * If we still have a non-zero value then precision must have not been
491  * enough to print the number. We punt the problem to pg_ultostr(),
492  * which will generate a correct answer in the minimum valid width.
493  */
494  if (value)
495  return pg_ultostr(cp, abs(fsec));
496 
497  return end;
498  }
499  else
500  return cp;
501 }
502 
503 
504 /*
505  * Variant of above that's specialized to timestamp case.
506  *
507  * Returns a pointer to the new end of string. No NUL terminator is put
508  * there; callers are responsible for NUL terminating str themselves.
509  */
510 static char *
511 AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
512 {
513  return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
514 }
515 
516 
517 /*
518  * Add val * multiplier to *sum.
519  * Returns true if successful, false on overflow.
520  */
521 static bool
522 int64_multiply_add(int64 val, int64 multiplier, int64 *sum)
523 {
524  int64 product;
525 
526  if (pg_mul_s64_overflow(val, multiplier, &product) ||
527  pg_add_s64_overflow(*sum, product, sum))
528  return false;
529  return true;
530 }
531 
532 /*
533  * Multiply frac by scale (to produce microseconds) and add to itm_in->tm_usec.
534  * Returns true if successful, false if itm_in overflows.
535  */
536 static bool
537 AdjustFractMicroseconds(double frac, int64 scale,
538  struct pg_itm_in *itm_in)
539 {
540  int64 usec;
541 
542  /* Fast path for common case */
543  if (frac == 0)
544  return true;
545 
546  /*
547  * We assume the input frac has abs value less than 1, so overflow of frac
548  * or usec is not an issue for interesting values of scale.
549  */
550  frac *= scale;
551  usec = (int64) frac;
552 
553  /* Round off any fractional microsecond */
554  frac -= usec;
555  if (frac > 0.5)
556  usec++;
557  else if (frac < -0.5)
558  usec--;
559 
560  return !pg_add_s64_overflow(itm_in->tm_usec, usec, &itm_in->tm_usec);
561 }
562 
563 /*
564  * Multiply frac by scale (to produce days). Add the integral part of the
565  * result to itm_in->tm_mday, the fractional part to itm_in->tm_usec.
566  * Returns true if successful, false if itm_in overflows.
567  */
568 static bool
569 AdjustFractDays(double frac, int scale,
570  struct pg_itm_in *itm_in)
571 {
572  int extra_days;
573 
574  /* Fast path for common case */
575  if (frac == 0)
576  return true;
577 
578  /*
579  * We assume the input frac has abs value less than 1, so overflow of frac
580  * or extra_days is not an issue.
581  */
582  frac *= scale;
583  extra_days = (int) frac;
584 
585  /* ... but this could overflow, if tm_mday is already nonzero */
586  if (pg_add_s32_overflow(itm_in->tm_mday, extra_days, &itm_in->tm_mday))
587  return false;
588 
589  /* Handle any fractional day */
590  frac -= extra_days;
591  return AdjustFractMicroseconds(frac, USECS_PER_DAY, itm_in);
592 }
593 
594 /*
595  * Multiply frac by scale (to produce years), then further scale up to months.
596  * Add the integral part of the result to itm_in->tm_mon, discarding any
597  * fractional part.
598  * Returns true if successful, false if itm_in overflows.
599  */
600 static bool
601 AdjustFractYears(double frac, int scale,
602  struct pg_itm_in *itm_in)
603 {
604  /*
605  * As above, we assume abs(frac) < 1, so this can't overflow for any
606  * interesting value of scale.
607  */
608  int extra_months = (int) rint(frac * scale * MONTHS_PER_YEAR);
609 
610  return !pg_add_s32_overflow(itm_in->tm_mon, extra_months, &itm_in->tm_mon);
611 }
612 
613 /*
614  * Add (val + fval) * scale to itm_in->tm_usec.
615  * Returns true if successful, false if itm_in overflows.
616  */
617 static bool
618 AdjustMicroseconds(int64 val, double fval, int64 scale,
619  struct pg_itm_in *itm_in)
620 {
621  /* Handle the integer part */
622  if (!int64_multiply_add(val, scale, &itm_in->tm_usec))
623  return false;
624  /* Handle the float part */
625  return AdjustFractMicroseconds(fval, scale, itm_in);
626 }
627 
628 /*
629  * Multiply val by scale (to produce days) and add to itm_in->tm_mday.
630  * Returns true if successful, false if itm_in overflows.
631  */
632 static bool
633 AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in)
634 {
635  int days;
636 
637  if (val < INT_MIN || val > INT_MAX)
638  return false;
639  return !pg_mul_s32_overflow((int32) val, scale, &days) &&
640  !pg_add_s32_overflow(itm_in->tm_mday, days, &itm_in->tm_mday);
641 }
642 
643 /*
644  * Add val to itm_in->tm_mon (no need for scale here, as val is always
645  * in months already).
646  * Returns true if successful, false if itm_in overflows.
647  */
648 static bool
649 AdjustMonths(int64 val, struct pg_itm_in *itm_in)
650 {
651  if (val < INT_MIN || val > INT_MAX)
652  return false;
653  return !pg_add_s32_overflow(itm_in->tm_mon, (int32) val, &itm_in->tm_mon);
654 }
655 
656 /*
657  * Multiply val by scale (to produce years) and add to itm_in->tm_year.
658  * Returns true if successful, false if itm_in overflows.
659  */
660 static bool
661 AdjustYears(int64 val, int scale,
662  struct pg_itm_in *itm_in)
663 {
664  int years;
665 
666  if (val < INT_MIN || val > INT_MAX)
667  return false;
668  return !pg_mul_s32_overflow((int32) val, scale, &years) &&
669  !pg_add_s32_overflow(itm_in->tm_year, years, &itm_in->tm_year);
670 }
671 
672 
673 /*
674  * Parse the fractional part of a number (decimal point and optional digits,
675  * followed by end of string). Returns the fractional value into *frac.
676  *
677  * Returns 0 if successful, DTERR code if bogus input detected.
678  */
679 static int
680 ParseFraction(char *cp, double *frac)
681 {
682  /* Caller should always pass the start of the fraction part */
683  Assert(*cp == '.');
684 
685  /*
686  * We want to allow just "." with no digits, but some versions of strtod
687  * will report EINVAL for that, so special-case it.
688  */
689  if (cp[1] == '\0')
690  {
691  *frac = 0;
692  }
693  else
694  {
695  errno = 0;
696  *frac = strtod(cp, &cp);
697  /* check for parse failure */
698  if (*cp != '\0' || errno != 0)
699  return DTERR_BAD_FORMAT;
700  }
701  return 0;
702 }
703 
704 /*
705  * Fetch a fractional-second value with suitable error checking.
706  * Same as ParseFraction except we convert the result to integer microseconds.
707  */
708 static int
710 {
711  double frac;
712  int dterr;
713 
714  dterr = ParseFraction(cp, &frac);
715  if (dterr)
716  return dterr;
717  *fsec = rint(frac * 1000000);
718  return 0;
719 }
720 
721 
722 /* ParseDateTime()
723  * Break string into tokens based on a date/time context.
724  * Returns 0 if successful, DTERR code if bogus input detected.
725  *
726  * timestr - the input string
727  * workbuf - workspace for field string storage. This must be
728  * larger than the largest legal input for this datetime type --
729  * some additional space will be needed to NUL terminate fields.
730  * buflen - the size of workbuf
731  * field[] - pointers to field strings are returned in this array
732  * ftype[] - field type indicators are returned in this array
733  * maxfields - dimensions of the above two arrays
734  * *numfields - set to the actual number of fields detected
735  *
736  * The fields extracted from the input are stored as separate,
737  * null-terminated strings in the workspace at workbuf. Any text is
738  * converted to lower case.
739  *
740  * Several field types are assigned:
741  * DTK_NUMBER - digits and (possibly) a decimal point
742  * DTK_DATE - digits and two delimiters, or digits and text
743  * DTK_TIME - digits, colon delimiters, and possibly a decimal point
744  * DTK_STRING - text (no digits or punctuation)
745  * DTK_SPECIAL - leading "+" or "-" followed by text
746  * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
747  *
748  * Note that some field types can hold unexpected items:
749  * DTK_NUMBER can hold date fields (yy.ddd)
750  * DTK_STRING can hold months (January) and time zones (PST)
751  * DTK_DATE can hold time zone names (America/New_York, GMT-8)
752  */
753 int
754 ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
755  char **field, int *ftype, int maxfields, int *numfields)
756 {
757  int nf = 0;
758  const char *cp = timestr;
759  char *bufp = workbuf;
760  const char *bufend = workbuf + buflen;
761 
762  /*
763  * Set the character pointed-to by "bufptr" to "newchar", and increment
764  * "bufptr". "end" gives the end of the buffer -- we return an error if
765  * there is no space left to append a character to the buffer. Note that
766  * "bufptr" is evaluated twice.
767  */
768 #define APPEND_CHAR(bufptr, end, newchar) \
769  do \
770  { \
771  if (((bufptr) + 1) >= (end)) \
772  return DTERR_BAD_FORMAT; \
773  *(bufptr)++ = newchar; \
774  } while (0)
775 
776  /* outer loop through fields */
777  while (*cp != '\0')
778  {
779  /* Ignore spaces between fields */
780  if (isspace((unsigned char) *cp))
781  {
782  cp++;
783  continue;
784  }
785 
786  /* Record start of current field */
787  if (nf >= maxfields)
788  return DTERR_BAD_FORMAT;
789  field[nf] = bufp;
790 
791  /* leading digit? then date or time */
792  if (isdigit((unsigned char) *cp))
793  {
794  APPEND_CHAR(bufp, bufend, *cp++);
795  while (isdigit((unsigned char) *cp))
796  APPEND_CHAR(bufp, bufend, *cp++);
797 
798  /* time field? */
799  if (*cp == ':')
800  {
801  ftype[nf] = DTK_TIME;
802  APPEND_CHAR(bufp, bufend, *cp++);
803  while (isdigit((unsigned char) *cp) ||
804  (*cp == ':') || (*cp == '.'))
805  APPEND_CHAR(bufp, bufend, *cp++);
806  }
807  /* date field? allow embedded text month */
808  else if (*cp == '-' || *cp == '/' || *cp == '.')
809  {
810  /* save delimiting character to use later */
811  char delim = *cp;
812 
813  APPEND_CHAR(bufp, bufend, *cp++);
814  /* second field is all digits? then no embedded text month */
815  if (isdigit((unsigned char) *cp))
816  {
817  ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
818  while (isdigit((unsigned char) *cp))
819  APPEND_CHAR(bufp, bufend, *cp++);
820 
821  /*
822  * insist that the delimiters match to get a three-field
823  * date.
824  */
825  if (*cp == delim)
826  {
827  ftype[nf] = DTK_DATE;
828  APPEND_CHAR(bufp, bufend, *cp++);
829  while (isdigit((unsigned char) *cp) || *cp == delim)
830  APPEND_CHAR(bufp, bufend, *cp++);
831  }
832  }
833  else
834  {
835  ftype[nf] = DTK_DATE;
836  while (isalnum((unsigned char) *cp) || *cp == delim)
837  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
838  }
839  }
840 
841  /*
842  * otherwise, number only and will determine year, month, day, or
843  * concatenated fields later...
844  */
845  else
846  ftype[nf] = DTK_NUMBER;
847  }
848  /* Leading decimal point? Then fractional seconds... */
849  else if (*cp == '.')
850  {
851  APPEND_CHAR(bufp, bufend, *cp++);
852  while (isdigit((unsigned char) *cp))
853  APPEND_CHAR(bufp, bufend, *cp++);
854 
855  ftype[nf] = DTK_NUMBER;
856  }
857 
858  /*
859  * text? then date string, month, day of week, special, or timezone
860  */
861  else if (isalpha((unsigned char) *cp))
862  {
863  bool is_date;
864 
865  ftype[nf] = DTK_STRING;
866  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
867  while (isalpha((unsigned char) *cp))
868  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
869 
870  /*
871  * Dates can have embedded '-', '/', or '.' separators. It could
872  * also be a timezone name containing embedded '/', '+', '-', '_',
873  * or ':' (but '_' or ':' can't be the first punctuation). If the
874  * next character is a digit or '+', we need to check whether what
875  * we have so far is a recognized non-timezone keyword --- if so,
876  * don't believe that this is the start of a timezone.
877  */
878  is_date = false;
879  if (*cp == '-' || *cp == '/' || *cp == '.')
880  is_date = true;
881  else if (*cp == '+' || isdigit((unsigned char) *cp))
882  {
883  *bufp = '\0'; /* null-terminate current field value */
884  /* we need search only the core token table, not TZ names */
885  if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
886  is_date = true;
887  }
888  if (is_date)
889  {
890  ftype[nf] = DTK_DATE;
891  do
892  {
893  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
894  } while (*cp == '+' || *cp == '-' ||
895  *cp == '/' || *cp == '_' ||
896  *cp == '.' || *cp == ':' ||
897  isalnum((unsigned char) *cp));
898  }
899  }
900  /* sign? then special or numeric timezone */
901  else if (*cp == '+' || *cp == '-')
902  {
903  APPEND_CHAR(bufp, bufend, *cp++);
904  /* soak up leading whitespace */
905  while (isspace((unsigned char) *cp))
906  cp++;
907  /* numeric timezone? */
908  /* note that "DTK_TZ" could also be a signed float or yyyy-mm */
909  if (isdigit((unsigned char) *cp))
910  {
911  ftype[nf] = DTK_TZ;
912  APPEND_CHAR(bufp, bufend, *cp++);
913  while (isdigit((unsigned char) *cp) ||
914  *cp == ':' || *cp == '.' || *cp == '-')
915  APPEND_CHAR(bufp, bufend, *cp++);
916  }
917  /* special? */
918  else if (isalpha((unsigned char) *cp))
919  {
920  ftype[nf] = DTK_SPECIAL;
921  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
922  while (isalpha((unsigned char) *cp))
923  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
924  }
925  /* otherwise something wrong... */
926  else
927  return DTERR_BAD_FORMAT;
928  }
929  /* ignore other punctuation but use as delimiter */
930  else if (ispunct((unsigned char) *cp))
931  {
932  cp++;
933  continue;
934  }
935  /* otherwise, something is not right... */
936  else
937  return DTERR_BAD_FORMAT;
938 
939  /* force in a delimiter after each field */
940  *bufp++ = '\0';
941  nf++;
942  }
943 
944  *numfields = nf;
945 
946  return 0;
947 }
948 
949 
950 /* DecodeDateTime()
951  * Interpret previously parsed fields for general date and time.
952  * Return 0 if full date, 1 if only time, and negative DTERR code if problems.
953  * (Currently, all callers treat 1 as an error return too.)
954  *
955  * Inputs are field[] and ftype[] arrays, of length nf.
956  * Other arguments are outputs.
957  *
958  * External format(s):
959  * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
960  * "Fri Feb-7-1997 15:23:27"
961  * "Feb-7-1997 15:23:27"
962  * "2-7-1997 15:23:27"
963  * "1997-2-7 15:23:27"
964  * "1997.038 15:23:27" (day of year 1-366)
965  * Also supports input in compact time:
966  * "970207 152327"
967  * "97038 152327"
968  * "20011225T040506.789-07"
969  *
970  * Use the system-provided functions to get the current time zone
971  * if not specified in the input string.
972  *
973  * If the date is outside the range of pg_time_t (in practice that could only
974  * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
975  * 1997-05-27
976  */
977 int
978 DecodeDateTime(char **field, int *ftype, int nf,
979  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp,
980  DateTimeErrorExtra *extra)
981 {
982  int fmask = 0,
983  tmask,
984  type;
985  int ptype = 0; /* "prefix type" for ISO and Julian formats */
986  int i;
987  int val;
988  int dterr;
989  int mer = HR24;
990  bool haveTextMonth = false;
991  bool isjulian = false;
992  bool is2digits = false;
993  bool bc = false;
994  pg_tz *namedTz = NULL;
995  pg_tz *abbrevTz = NULL;
996  pg_tz *valtz;
997  char *abbrev = NULL;
998  struct pg_tm cur_tm;
999 
1000  /*
1001  * We'll insist on at least all of the date fields, but initialize the
1002  * remaining fields in case they are not set later...
1003  */
1004  *dtype = DTK_DATE;
1005  tm->tm_hour = 0;
1006  tm->tm_min = 0;
1007  tm->tm_sec = 0;
1008  *fsec = 0;
1009  /* don't know daylight savings time status apriori */
1010  tm->tm_isdst = -1;
1011  if (tzp != NULL)
1012  *tzp = 0;
1013 
1014  for (i = 0; i < nf; i++)
1015  {
1016  switch (ftype[i])
1017  {
1018  case DTK_DATE:
1019 
1020  /*
1021  * Integral julian day with attached time zone? All other
1022  * forms with JD will be separated into distinct fields, so we
1023  * handle just this case here.
1024  */
1025  if (ptype == DTK_JULIAN)
1026  {
1027  char *cp;
1028  int jday;
1029 
1030  if (tzp == NULL)
1031  return DTERR_BAD_FORMAT;
1032 
1033  errno = 0;
1034  jday = strtoint(field[i], &cp, 10);
1035  if (errno == ERANGE || jday < 0)
1036  return DTERR_FIELD_OVERFLOW;
1037 
1038  j2date(jday, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1039  isjulian = true;
1040 
1041  /* Get the time zone from the end of the string */
1042  dterr = DecodeTimezone(cp, tzp);
1043  if (dterr)
1044  return dterr;
1045 
1046  tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
1047  ptype = 0;
1048  break;
1049  }
1050 
1051  /*
1052  * Already have a date? Then this might be a time zone name
1053  * with embedded punctuation (e.g. "America/New_York") or a
1054  * run-together time with trailing time zone (e.g. hhmmss-zz).
1055  * - thomas 2001-12-25
1056  *
1057  * We consider it a time zone if we already have month & day.
1058  * This is to allow the form "mmm dd hhmmss tz year", which
1059  * we've historically accepted.
1060  */
1061  else if (ptype != 0 ||
1062  ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
1063  (DTK_M(MONTH) | DTK_M(DAY))))
1064  {
1065  /* No time zone accepted? Then quit... */
1066  if (tzp == NULL)
1067  return DTERR_BAD_FORMAT;
1068 
1069  if (isdigit((unsigned char) *field[i]) || ptype != 0)
1070  {
1071  char *cp;
1072 
1073  /*
1074  * Allow a preceding "t" field, but no other units.
1075  */
1076  if (ptype != 0)
1077  {
1078  /* Sanity check; should not fail this test */
1079  if (ptype != DTK_TIME)
1080  return DTERR_BAD_FORMAT;
1081  ptype = 0;
1082  }
1083 
1084  /*
1085  * Starts with a digit but we already have a time
1086  * field? Then we are in trouble with a date and time
1087  * already...
1088  */
1089  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1090  return DTERR_BAD_FORMAT;
1091 
1092  if ((cp = strchr(field[i], '-')) == NULL)
1093  return DTERR_BAD_FORMAT;
1094 
1095  /* Get the time zone from the end of the string */
1096  dterr = DecodeTimezone(cp, tzp);
1097  if (dterr)
1098  return dterr;
1099  *cp = '\0';
1100 
1101  /*
1102  * Then read the rest of the field as a concatenated
1103  * time
1104  */
1105  dterr = DecodeNumberField(strlen(field[i]), field[i],
1106  fmask,
1107  &tmask, tm,
1108  fsec, &is2digits);
1109  if (dterr < 0)
1110  return dterr;
1111 
1112  /*
1113  * modify tmask after returning from
1114  * DecodeNumberField()
1115  */
1116  tmask |= DTK_M(TZ);
1117  }
1118  else
1119  {
1120  namedTz = pg_tzset(field[i]);
1121  if (!namedTz)
1122  {
1123  extra->dtee_timezone = field[i];
1124  return DTERR_BAD_TIMEZONE;
1125  }
1126  /* we'll apply the zone setting below */
1127  tmask = DTK_M(TZ);
1128  }
1129  }
1130  else
1131  {
1132  dterr = DecodeDate(field[i], fmask,
1133  &tmask, &is2digits, tm);
1134  if (dterr)
1135  return dterr;
1136  }
1137  break;
1138 
1139  case DTK_TIME:
1140 
1141  /*
1142  * This might be an ISO time following a "t" field.
1143  */
1144  if (ptype != 0)
1145  {
1146  /* Sanity check; should not fail this test */
1147  if (ptype != DTK_TIME)
1148  return DTERR_BAD_FORMAT;
1149  ptype = 0;
1150  }
1151  dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
1152  &tmask, tm, fsec);
1153  if (dterr)
1154  return dterr;
1155 
1156  /* check for time overflow */
1158  *fsec))
1159  return DTERR_FIELD_OVERFLOW;
1160  break;
1161 
1162  case DTK_TZ:
1163  {
1164  int tz;
1165 
1166  if (tzp == NULL)
1167  return DTERR_BAD_FORMAT;
1168 
1169  dterr = DecodeTimezone(field[i], &tz);
1170  if (dterr)
1171  return dterr;
1172  *tzp = tz;
1173  tmask = DTK_M(TZ);
1174  }
1175  break;
1176 
1177  case DTK_NUMBER:
1178 
1179  /*
1180  * Deal with cases where previous field labeled this one
1181  */
1182  if (ptype != 0)
1183  {
1184  char *cp;
1185  int value;
1186 
1187  errno = 0;
1188  value = strtoint(field[i], &cp, 10);
1189  if (errno == ERANGE)
1190  return DTERR_FIELD_OVERFLOW;
1191  if (*cp != '.' && *cp != '\0')
1192  return DTERR_BAD_FORMAT;
1193 
1194  switch (ptype)
1195  {
1196  case DTK_JULIAN:
1197  /* previous field was a label for "julian date" */
1198  if (value < 0)
1199  return DTERR_FIELD_OVERFLOW;
1200  tmask = DTK_DATE_M;
1201  j2date(value, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1202  isjulian = true;
1203 
1204  /* fractional Julian Day? */
1205  if (*cp == '.')
1206  {
1207  double time;
1208 
1209  dterr = ParseFraction(cp, &time);
1210  if (dterr)
1211  return dterr;
1212  time *= USECS_PER_DAY;
1213  dt2time(time,
1214  &tm->tm_hour, &tm->tm_min,
1215  &tm->tm_sec, fsec);
1216  tmask |= DTK_TIME_M;
1217  }
1218  break;
1219 
1220  case DTK_TIME:
1221  /* previous field was "t" for ISO time */
1222  dterr = DecodeNumberField(strlen(field[i]), field[i],
1223  (fmask | DTK_DATE_M),
1224  &tmask, tm,
1225  fsec, &is2digits);
1226  if (dterr < 0)
1227  return dterr;
1228  if (tmask != DTK_TIME_M)
1229  return DTERR_BAD_FORMAT;
1230  break;
1231 
1232  default:
1233  return DTERR_BAD_FORMAT;
1234  break;
1235  }
1236 
1237  ptype = 0;
1238  *dtype = DTK_DATE;
1239  }
1240  else
1241  {
1242  char *cp;
1243  int flen;
1244 
1245  flen = strlen(field[i]);
1246  cp = strchr(field[i], '.');
1247 
1248  /* Embedded decimal and no date yet? */
1249  if (cp != NULL && !(fmask & DTK_DATE_M))
1250  {
1251  dterr = DecodeDate(field[i], fmask,
1252  &tmask, &is2digits, tm);
1253  if (dterr)
1254  return dterr;
1255  }
1256  /* embedded decimal and several digits before? */
1257  else if (cp != NULL && flen - strlen(cp) > 2)
1258  {
1259  /*
1260  * Interpret as a concatenated date or time Set the
1261  * type field to allow decoding other fields later.
1262  * Example: 20011223 or 040506
1263  */
1264  dterr = DecodeNumberField(flen, field[i], fmask,
1265  &tmask, tm,
1266  fsec, &is2digits);
1267  if (dterr < 0)
1268  return dterr;
1269  }
1270 
1271  /*
1272  * Is this a YMD or HMS specification, or a year number?
1273  * YMD and HMS are required to be six digits or more, so
1274  * if it is 5 digits, it is a year. If it is six or more
1275  * digits, we assume it is YMD or HMS unless no date and
1276  * no time values have been specified. This forces 6+
1277  * digit years to be at the end of the string, or to use
1278  * the ISO date specification.
1279  */
1280  else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
1281  !(fmask & DTK_TIME_M)))
1282  {
1283  dterr = DecodeNumberField(flen, field[i], fmask,
1284  &tmask, tm,
1285  fsec, &is2digits);
1286  if (dterr < 0)
1287  return dterr;
1288  }
1289  /* otherwise it is a single date/time field... */
1290  else
1291  {
1292  dterr = DecodeNumber(flen, field[i],
1293  haveTextMonth, fmask,
1294  &tmask, tm,
1295  fsec, &is2digits);
1296  if (dterr)
1297  return dterr;
1298  }
1299  }
1300  break;
1301 
1302  case DTK_STRING:
1303  case DTK_SPECIAL:
1304  /* timezone abbrevs take precedence over built-in tokens */
1305  dterr = DecodeTimezoneAbbrev(i, field[i],
1306  &type, &val, &valtz, extra);
1307  if (dterr)
1308  return dterr;
1309  if (type == UNKNOWN_FIELD)
1310  type = DecodeSpecial(i, field[i], &val);
1311  if (type == IGNORE_DTF)
1312  continue;
1313 
1314  tmask = DTK_M(type);
1315  switch (type)
1316  {
1317  case RESERV:
1318  switch (val)
1319  {
1320  case DTK_NOW:
1321  tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1322  *dtype = DTK_DATE;
1323  GetCurrentTimeUsec(tm, fsec, tzp);
1324  break;
1325 
1326  case DTK_YESTERDAY:
1327  tmask = DTK_DATE_M;
1328  *dtype = DTK_DATE;
1329  GetCurrentDateTime(&cur_tm);
1330  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
1331  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1332  break;
1333 
1334  case DTK_TODAY:
1335  tmask = DTK_DATE_M;
1336  *dtype = DTK_DATE;
1337  GetCurrentDateTime(&cur_tm);
1338  tm->tm_year = cur_tm.tm_year;
1339  tm->tm_mon = cur_tm.tm_mon;
1340  tm->tm_mday = cur_tm.tm_mday;
1341  break;
1342 
1343  case DTK_TOMORROW:
1344  tmask = DTK_DATE_M;
1345  *dtype = DTK_DATE;
1346  GetCurrentDateTime(&cur_tm);
1347  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
1348  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1349  break;
1350 
1351  case DTK_ZULU:
1352  tmask = (DTK_TIME_M | DTK_M(TZ));
1353  *dtype = DTK_DATE;
1354  tm->tm_hour = 0;
1355  tm->tm_min = 0;
1356  tm->tm_sec = 0;
1357  if (tzp != NULL)
1358  *tzp = 0;
1359  break;
1360 
1361  case DTK_EPOCH:
1362  case DTK_LATE:
1363  case DTK_EARLY:
1364  tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1365  *dtype = val;
1366  /* caller ignores tm for these dtype codes */
1367  break;
1368 
1369  default:
1370  elog(ERROR, "unrecognized RESERV datetime token: %d",
1371  val);
1372  }
1373 
1374  break;
1375 
1376  case MONTH:
1377 
1378  /*
1379  * already have a (numeric) month? then see if we can
1380  * substitute...
1381  */
1382  if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
1383  !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
1384  tm->tm_mon <= 31)
1385  {
1386  tm->tm_mday = tm->tm_mon;
1387  tmask = DTK_M(DAY);
1388  }
1389  haveTextMonth = true;
1390  tm->tm_mon = val;
1391  break;
1392 
1393  case DTZMOD:
1394 
1395  /*
1396  * daylight savings time modifier (solves "MET DST"
1397  * syntax)
1398  */
1399  tmask |= DTK_M(DTZ);
1400  tm->tm_isdst = 1;
1401  if (tzp == NULL)
1402  return DTERR_BAD_FORMAT;
1403  *tzp -= val;
1404  break;
1405 
1406  case DTZ:
1407 
1408  /*
1409  * set mask for TZ here _or_ check for DTZ later when
1410  * getting default timezone
1411  */
1412  tmask |= DTK_M(TZ);
1413  tm->tm_isdst = 1;
1414  if (tzp == NULL)
1415  return DTERR_BAD_FORMAT;
1416  *tzp = -val;
1417  break;
1418 
1419  case TZ:
1420  tm->tm_isdst = 0;
1421  if (tzp == NULL)
1422  return DTERR_BAD_FORMAT;
1423  *tzp = -val;
1424  break;
1425 
1426  case DYNTZ:
1427  tmask |= DTK_M(TZ);
1428  if (tzp == NULL)
1429  return DTERR_BAD_FORMAT;
1430  /* we'll determine the actual offset later */
1431  abbrevTz = valtz;
1432  abbrev = field[i];
1433  break;
1434 
1435  case AMPM:
1436  mer = val;
1437  break;
1438 
1439  case ADBC:
1440  bc = (val == BC);
1441  break;
1442 
1443  case DOW:
1444  tm->tm_wday = val;
1445  break;
1446 
1447  case UNITS:
1448  tmask = 0;
1449  /* reject consecutive unhandled units */
1450  if (ptype != 0)
1451  return DTERR_BAD_FORMAT;
1452  ptype = val;
1453  break;
1454 
1455  case ISOTIME:
1456 
1457  /*
1458  * This is a filler field "t" indicating that the next
1459  * field is time. Try to verify that this is sensible.
1460  */
1461  tmask = 0;
1462 
1463  /* No preceding date? Then quit... */
1464  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1465  return DTERR_BAD_FORMAT;
1466 
1467  /* reject consecutive unhandled units */
1468  if (ptype != 0)
1469  return DTERR_BAD_FORMAT;
1470  ptype = val;
1471  break;
1472 
1473  case UNKNOWN_FIELD:
1474 
1475  /*
1476  * Before giving up and declaring error, check to see
1477  * if it is an all-alpha timezone name.
1478  */
1479  namedTz = pg_tzset(field[i]);
1480  if (!namedTz)
1481  return DTERR_BAD_FORMAT;
1482  /* we'll apply the zone setting below */
1483  tmask = DTK_M(TZ);
1484  break;
1485 
1486  default:
1487  return DTERR_BAD_FORMAT;
1488  }
1489  break;
1490 
1491  default:
1492  return DTERR_BAD_FORMAT;
1493  }
1494 
1495  if (tmask & fmask)
1496  return DTERR_BAD_FORMAT;
1497  fmask |= tmask;
1498  } /* end loop over fields */
1499 
1500  /* reject if prefix type appeared and was never handled */
1501  if (ptype != 0)
1502  return DTERR_BAD_FORMAT;
1503 
1504  /* do additional checking for normal date specs (but not "infinity" etc) */
1505  if (*dtype == DTK_DATE)
1506  {
1507  /* do final checking/adjustment of Y/M/D fields */
1508  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
1509  if (dterr)
1510  return dterr;
1511 
1512  /* handle AM/PM */
1513  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
1514  return DTERR_FIELD_OVERFLOW;
1515  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
1516  tm->tm_hour = 0;
1517  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
1518  tm->tm_hour += HOURS_PER_DAY / 2;
1519 
1520  /* check for incomplete input */
1521  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1522  {
1523  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1524  return 1;
1525  return DTERR_BAD_FORMAT;
1526  }
1527 
1528  /*
1529  * If we had a full timezone spec, compute the offset (we could not do
1530  * it before, because we need the date to resolve DST status).
1531  */
1532  if (namedTz != NULL)
1533  {
1534  /* daylight savings time modifier disallowed with full TZ */
1535  if (fmask & DTK_M(DTZMOD))
1536  return DTERR_BAD_FORMAT;
1537 
1538  *tzp = DetermineTimeZoneOffset(tm, namedTz);
1539  }
1540 
1541  /*
1542  * Likewise, if we had a dynamic timezone abbreviation, resolve it
1543  * now.
1544  */
1545  if (abbrevTz != NULL)
1546  {
1547  /* daylight savings time modifier disallowed with dynamic TZ */
1548  if (fmask & DTK_M(DTZMOD))
1549  return DTERR_BAD_FORMAT;
1550 
1551  *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
1552  }
1553 
1554  /* timezone not specified? then use session timezone */
1555  if (tzp != NULL && !(fmask & DTK_M(TZ)))
1556  {
1557  /*
1558  * daylight savings time modifier but no standard timezone? then
1559  * error
1560  */
1561  if (fmask & DTK_M(DTZMOD))
1562  return DTERR_BAD_FORMAT;
1563 
1565  }
1566  }
1567 
1568  return 0;
1569 }
1570 
1571 
1572 /* DetermineTimeZoneOffset()
1573  *
1574  * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
1575  * and tm_sec fields are set, and a zic-style time zone definition, determine
1576  * the applicable GMT offset and daylight-savings status at that time.
1577  * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
1578  * offset as the function result.
1579  *
1580  * Note: if the date is out of the range we can deal with, we return zero
1581  * as the GMT offset and set tm_isdst = 0. We don't throw an error here,
1582  * though probably some higher-level code will.
1583  */
1584 int
1586 {
1587  pg_time_t t;
1588 
1589  return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1590 }
1591 
1592 
1593 /* DetermineTimeZoneOffsetInternal()
1594  *
1595  * As above, but also return the actual UTC time imputed to the date/time
1596  * into *tp.
1597  *
1598  * In event of an out-of-range date, we punt by returning zero into *tp.
1599  * This is okay for the immediate callers but is a good reason for not
1600  * exposing this worker function globally.
1601  *
1602  * Note: it might seem that we should use mktime() for this, but bitter
1603  * experience teaches otherwise. This code is much faster than most versions
1604  * of mktime(), anyway.
1605  */
1606 static int
1608 {
1609  int date,
1610  sec;
1611  pg_time_t day,
1612  mytime,
1613  prevtime,
1614  boundary,
1615  beforetime,
1616  aftertime;
1617  long int before_gmtoff,
1618  after_gmtoff;
1619  int before_isdst,
1620  after_isdst;
1621  int res;
1622 
1623  /*
1624  * First, generate the pg_time_t value corresponding to the given
1625  * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
1626  * timezone is GMT. (For a valid Julian date, integer overflow should be
1627  * impossible with 64-bit pg_time_t, but let's check for safety.)
1628  */
1630  goto overflow;
1632 
1633  day = ((pg_time_t) date) * SECS_PER_DAY;
1634  if (day / SECS_PER_DAY != date)
1635  goto overflow;
1637  mytime = day + sec;
1638  /* since sec >= 0, overflow could only be from +day to -mytime */
1639  if (mytime < 0 && day > 0)
1640  goto overflow;
1641 
1642  /*
1643  * Find the DST time boundary just before or following the target time. We
1644  * assume that all zones have GMT offsets less than 24 hours, and that DST
1645  * boundaries can't be closer together than 48 hours, so backing up 24
1646  * hours and finding the "next" boundary will work.
1647  */
1648  prevtime = mytime - SECS_PER_DAY;
1649  if (mytime < 0 && prevtime > 0)
1650  goto overflow;
1651 
1652  res = pg_next_dst_boundary(&prevtime,
1653  &before_gmtoff, &before_isdst,
1654  &boundary,
1655  &after_gmtoff, &after_isdst,
1656  tzp);
1657  if (res < 0)
1658  goto overflow; /* failure? */
1659 
1660  if (res == 0)
1661  {
1662  /* Non-DST zone, life is simple */
1663  tm->tm_isdst = before_isdst;
1664  *tp = mytime - before_gmtoff;
1665  return -(int) before_gmtoff;
1666  }
1667 
1668  /*
1669  * Form the candidate pg_time_t values with local-time adjustment
1670  */
1671  beforetime = mytime - before_gmtoff;
1672  if ((before_gmtoff > 0 &&
1673  mytime < 0 && beforetime > 0) ||
1674  (before_gmtoff <= 0 &&
1675  mytime > 0 && beforetime < 0))
1676  goto overflow;
1677  aftertime = mytime - after_gmtoff;
1678  if ((after_gmtoff > 0 &&
1679  mytime < 0 && aftertime > 0) ||
1680  (after_gmtoff <= 0 &&
1681  mytime > 0 && aftertime < 0))
1682  goto overflow;
1683 
1684  /*
1685  * If both before or both after the boundary time, we know what to do. The
1686  * boundary time itself is considered to be after the transition, which
1687  * means we can accept aftertime == boundary in the second case.
1688  */
1689  if (beforetime < boundary && aftertime < boundary)
1690  {
1691  tm->tm_isdst = before_isdst;
1692  *tp = beforetime;
1693  return -(int) before_gmtoff;
1694  }
1695  if (beforetime > boundary && aftertime >= boundary)
1696  {
1697  tm->tm_isdst = after_isdst;
1698  *tp = aftertime;
1699  return -(int) after_gmtoff;
1700  }
1701 
1702  /*
1703  * It's an invalid or ambiguous time due to timezone transition. In a
1704  * spring-forward transition, prefer the "before" interpretation; in a
1705  * fall-back transition, prefer "after". (We used to define and implement
1706  * this test as "prefer the standard-time interpretation", but that rule
1707  * does not help to resolve the behavior when both times are reported as
1708  * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
1709  * in some zones such as Europe/Dublin, there is widespread confusion
1710  * about which time offset is "standard" time, so it's fortunate that our
1711  * behavior doesn't depend on that.)
1712  */
1713  if (beforetime > aftertime)
1714  {
1715  tm->tm_isdst = before_isdst;
1716  *tp = beforetime;
1717  return -(int) before_gmtoff;
1718  }
1719  tm->tm_isdst = after_isdst;
1720  *tp = aftertime;
1721  return -(int) after_gmtoff;
1722 
1723 overflow:
1724  /* Given date is out of range, so assume UTC */
1725  tm->tm_isdst = 0;
1726  *tp = 0;
1727  return 0;
1728 }
1729 
1730 
1731 /* DetermineTimeZoneAbbrevOffset()
1732  *
1733  * Determine the GMT offset and DST flag to be attributed to a dynamic
1734  * time zone abbreviation, that is one whose meaning has changed over time.
1735  * *tm contains the local time at which the meaning should be determined,
1736  * and tm->tm_isdst receives the DST flag.
1737  *
1738  * This differs from the behavior of DetermineTimeZoneOffset() in that a
1739  * standard-time or daylight-time abbreviation forces use of the corresponding
1740  * GMT offset even when the zone was then in DS or standard time respectively.
1741  * (However, that happens only if we can match the given abbreviation to some
1742  * abbreviation that appears in the IANA timezone data. Otherwise, we fall
1743  * back to doing DetermineTimeZoneOffset().)
1744  */
1745 int
1746 DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
1747 {
1748  pg_time_t t;
1749  int zone_offset;
1750  int abbr_offset;
1751  int abbr_isdst;
1752 
1753  /*
1754  * Compute the UTC time we want to probe at. (In event of overflow, we'll
1755  * probe at the epoch, which is a bit random but probably doesn't matter.)
1756  */
1757  zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1758 
1759  /*
1760  * Try to match the abbreviation to something in the zone definition.
1761  */
1762  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1763  &abbr_offset, &abbr_isdst))
1764  {
1765  /* Success, so use the abbrev-specific answers. */
1766  tm->tm_isdst = abbr_isdst;
1767  return abbr_offset;
1768  }
1769 
1770  /*
1771  * No match, so use the answers we already got from
1772  * DetermineTimeZoneOffsetInternal.
1773  */
1774  return zone_offset;
1775 }
1776 
1777 
1778 /* DetermineTimeZoneAbbrevOffsetTS()
1779  *
1780  * As above but the probe time is specified as a TimestampTz (hence, UTC time),
1781  * and DST status is returned into *isdst rather than into tm->tm_isdst.
1782  */
1783 int
1785  pg_tz *tzp, int *isdst)
1786 {
1788  int zone_offset;
1789  int abbr_offset;
1790  int tz;
1791  struct pg_tm tm;
1792  fsec_t fsec;
1793 
1794  /*
1795  * If the abbrev matches anything in the zone data, this is pretty easy.
1796  */
1797  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1798  &abbr_offset, isdst))
1799  return abbr_offset;
1800 
1801  /*
1802  * Else, break down the timestamp so we can use DetermineTimeZoneOffset.
1803  */
1804  if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
1805  ereport(ERROR,
1806  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1807  errmsg("timestamp out of range")));
1808 
1809  zone_offset = DetermineTimeZoneOffset(&tm, tzp);
1810  *isdst = tm.tm_isdst;
1811  return zone_offset;
1812 }
1813 
1814 
1815 /* DetermineTimeZoneAbbrevOffsetInternal()
1816  *
1817  * Workhorse for above two functions: work from a pg_time_t probe instant.
1818  * On success, return GMT offset and DST status into *offset and *isdst.
1819  */
1820 static bool
1822  int *offset, int *isdst)
1823 {
1824  char upabbr[TZ_STRLEN_MAX + 1];
1825  unsigned char *p;
1826  long int gmtoff;
1827 
1828  /* We need to force the abbrev to upper case */
1829  strlcpy(upabbr, abbr, sizeof(upabbr));
1830  for (p = (unsigned char *) upabbr; *p; p++)
1831  *p = pg_toupper(*p);
1832 
1833  /* Look up the abbrev's meaning at this time in this zone */
1834  if (pg_interpret_timezone_abbrev(upabbr,
1835  &t,
1836  &gmtoff,
1837  isdst,
1838  tzp))
1839  {
1840  /* Change sign to agree with DetermineTimeZoneOffset() */
1841  *offset = (int) -gmtoff;
1842  return true;
1843  }
1844  return false;
1845 }
1846 
1847 
1848 /* DecodeTimeOnly()
1849  * Interpret parsed string as time fields only.
1850  * Returns 0 if successful, DTERR code if bogus input detected.
1851  *
1852  * Inputs are field[] and ftype[] arrays, of length nf.
1853  * Other arguments are outputs.
1854  *
1855  * Note that support for time zone is here for
1856  * SQL TIME WITH TIME ZONE, but it reveals
1857  * bogosity with SQL date/time standards, since
1858  * we must infer a time zone from current time.
1859  * - thomas 2000-03-10
1860  * Allow specifying date to get a better time zone,
1861  * if time zones are allowed. - thomas 2001-12-26
1862  */
1863 int
1864 DecodeTimeOnly(char **field, int *ftype, int nf,
1865  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp,
1866  DateTimeErrorExtra *extra)
1867 {
1868  int fmask = 0,
1869  tmask,
1870  type;
1871  int ptype = 0; /* "prefix type" for ISO and Julian formats */
1872  int i;
1873  int val;
1874  int dterr;
1875  bool isjulian = false;
1876  bool is2digits = false;
1877  bool bc = false;
1878  int mer = HR24;
1879  pg_tz *namedTz = NULL;
1880  pg_tz *abbrevTz = NULL;
1881  char *abbrev = NULL;
1882  pg_tz *valtz;
1883 
1884  *dtype = DTK_TIME;
1885  tm->tm_hour = 0;
1886  tm->tm_min = 0;
1887  tm->tm_sec = 0;
1888  *fsec = 0;
1889  /* don't know daylight savings time status apriori */
1890  tm->tm_isdst = -1;
1891 
1892  if (tzp != NULL)
1893  *tzp = 0;
1894 
1895  for (i = 0; i < nf; i++)
1896  {
1897  switch (ftype[i])
1898  {
1899  case DTK_DATE:
1900 
1901  /*
1902  * Time zone not allowed? Then should not accept dates or time
1903  * zones no matter what else!
1904  */
1905  if (tzp == NULL)
1906  return DTERR_BAD_FORMAT;
1907 
1908  /* Under limited circumstances, we will accept a date... */
1909  if (i == 0 && nf >= 2 &&
1910  (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
1911  {
1912  dterr = DecodeDate(field[i], fmask,
1913  &tmask, &is2digits, tm);
1914  if (dterr)
1915  return dterr;
1916  }
1917  /* otherwise, this is a time and/or time zone */
1918  else
1919  {
1920  if (isdigit((unsigned char) *field[i]))
1921  {
1922  char *cp;
1923 
1924  /*
1925  * Starts with a digit but we already have a time
1926  * field? Then we are in trouble with time already...
1927  */
1928  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1929  return DTERR_BAD_FORMAT;
1930 
1931  /*
1932  * Should not get here and fail. Sanity check only...
1933  */
1934  if ((cp = strchr(field[i], '-')) == NULL)
1935  return DTERR_BAD_FORMAT;
1936 
1937  /* Get the time zone from the end of the string */
1938  dterr = DecodeTimezone(cp, tzp);
1939  if (dterr)
1940  return dterr;
1941  *cp = '\0';
1942 
1943  /*
1944  * Then read the rest of the field as a concatenated
1945  * time
1946  */
1947  dterr = DecodeNumberField(strlen(field[i]), field[i],
1948  (fmask | DTK_DATE_M),
1949  &tmask, tm,
1950  fsec, &is2digits);
1951  if (dterr < 0)
1952  return dterr;
1953  ftype[i] = dterr;
1954 
1955  tmask |= DTK_M(TZ);
1956  }
1957  else
1958  {
1959  namedTz = pg_tzset(field[i]);
1960  if (!namedTz)
1961  {
1962  extra->dtee_timezone = field[i];
1963  return DTERR_BAD_TIMEZONE;
1964  }
1965  /* we'll apply the zone setting below */
1966  ftype[i] = DTK_TZ;
1967  tmask = DTK_M(TZ);
1968  }
1969  }
1970  break;
1971 
1972  case DTK_TIME:
1973 
1974  /*
1975  * This might be an ISO time following a "t" field.
1976  */
1977  if (ptype != 0)
1978  {
1979  if (ptype != DTK_TIME)
1980  return DTERR_BAD_FORMAT;
1981  ptype = 0;
1982  }
1983 
1984  dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
1986  &tmask, tm, fsec);
1987  if (dterr)
1988  return dterr;
1989  break;
1990 
1991  case DTK_TZ:
1992  {
1993  int tz;
1994 
1995  if (tzp == NULL)
1996  return DTERR_BAD_FORMAT;
1997 
1998  dterr = DecodeTimezone(field[i], &tz);
1999  if (dterr)
2000  return dterr;
2001  *tzp = tz;
2002  tmask = DTK_M(TZ);
2003  }
2004  break;
2005 
2006  case DTK_NUMBER:
2007 
2008  /*
2009  * Deal with cases where previous field labeled this one
2010  */
2011  if (ptype != 0)
2012  {
2013  char *cp;
2014  int value;
2015 
2016  errno = 0;
2017  value = strtoint(field[i], &cp, 10);
2018  if (errno == ERANGE)
2019  return DTERR_FIELD_OVERFLOW;
2020  if (*cp != '.' && *cp != '\0')
2021  return DTERR_BAD_FORMAT;
2022 
2023  switch (ptype)
2024  {
2025  case DTK_JULIAN:
2026  /* previous field was a label for "julian date" */
2027  if (tzp == NULL)
2028  return DTERR_BAD_FORMAT;
2029  if (value < 0)
2030  return DTERR_FIELD_OVERFLOW;
2031  tmask = DTK_DATE_M;
2032  j2date(value, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2033  isjulian = true;
2034 
2035  if (*cp == '.')
2036  {
2037  double time;
2038 
2039  dterr = ParseFraction(cp, &time);
2040  if (dterr)
2041  return dterr;
2042  time *= USECS_PER_DAY;
2043  dt2time(time,
2044  &tm->tm_hour, &tm->tm_min,
2045  &tm->tm_sec, fsec);
2046  tmask |= DTK_TIME_M;
2047  }
2048  break;
2049 
2050  case DTK_TIME:
2051  /* previous field was "t" for ISO time */
2052  dterr = DecodeNumberField(strlen(field[i]), field[i],
2053  (fmask | DTK_DATE_M),
2054  &tmask, tm,
2055  fsec, &is2digits);
2056  if (dterr < 0)
2057  return dterr;
2058  ftype[i] = dterr;
2059 
2060  if (tmask != DTK_TIME_M)
2061  return DTERR_BAD_FORMAT;
2062  break;
2063 
2064  default:
2065  return DTERR_BAD_FORMAT;
2066  break;
2067  }
2068 
2069  ptype = 0;
2070  *dtype = DTK_DATE;
2071  }
2072  else
2073  {
2074  char *cp;
2075  int flen;
2076 
2077  flen = strlen(field[i]);
2078  cp = strchr(field[i], '.');
2079 
2080  /* Embedded decimal? */
2081  if (cp != NULL)
2082  {
2083  /*
2084  * Under limited circumstances, we will accept a
2085  * date...
2086  */
2087  if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
2088  {
2089  dterr = DecodeDate(field[i], fmask,
2090  &tmask, &is2digits, tm);
2091  if (dterr)
2092  return dterr;
2093  }
2094  /* embedded decimal and several digits before? */
2095  else if (flen - strlen(cp) > 2)
2096  {
2097  /*
2098  * Interpret as a concatenated date or time Set
2099  * the type field to allow decoding other fields
2100  * later. Example: 20011223 or 040506
2101  */
2102  dterr = DecodeNumberField(flen, field[i],
2103  (fmask | DTK_DATE_M),
2104  &tmask, tm,
2105  fsec, &is2digits);
2106  if (dterr < 0)
2107  return dterr;
2108  ftype[i] = dterr;
2109  }
2110  else
2111  return DTERR_BAD_FORMAT;
2112  }
2113  else if (flen > 4)
2114  {
2115  dterr = DecodeNumberField(flen, field[i],
2116  (fmask | DTK_DATE_M),
2117  &tmask, tm,
2118  fsec, &is2digits);
2119  if (dterr < 0)
2120  return dterr;
2121  ftype[i] = dterr;
2122  }
2123  /* otherwise it is a single date/time field... */
2124  else
2125  {
2126  dterr = DecodeNumber(flen, field[i],
2127  false,
2128  (fmask | DTK_DATE_M),
2129  &tmask, tm,
2130  fsec, &is2digits);
2131  if (dterr)
2132  return dterr;
2133  }
2134  }
2135  break;
2136 
2137  case DTK_STRING:
2138  case DTK_SPECIAL:
2139  /* timezone abbrevs take precedence over built-in tokens */
2140  dterr = DecodeTimezoneAbbrev(i, field[i],
2141  &type, &val, &valtz, extra);
2142  if (dterr)
2143  return dterr;
2144  if (type == UNKNOWN_FIELD)
2145  type = DecodeSpecial(i, field[i], &val);
2146  if (type == IGNORE_DTF)
2147  continue;
2148 
2149  tmask = DTK_M(type);
2150  switch (type)
2151  {
2152  case RESERV:
2153  switch (val)
2154  {
2155  case DTK_NOW:
2156  tmask = DTK_TIME_M;
2157  *dtype = DTK_TIME;
2158  GetCurrentTimeUsec(tm, fsec, NULL);
2159  break;
2160 
2161  case DTK_ZULU:
2162  tmask = (DTK_TIME_M | DTK_M(TZ));
2163  *dtype = DTK_TIME;
2164  tm->tm_hour = 0;
2165  tm->tm_min = 0;
2166  tm->tm_sec = 0;
2167  tm->tm_isdst = 0;
2168  break;
2169 
2170  default:
2171  return DTERR_BAD_FORMAT;
2172  }
2173 
2174  break;
2175 
2176  case DTZMOD:
2177 
2178  /*
2179  * daylight savings time modifier (solves "MET DST"
2180  * syntax)
2181  */
2182  tmask |= DTK_M(DTZ);
2183  tm->tm_isdst = 1;
2184  if (tzp == NULL)
2185  return DTERR_BAD_FORMAT;
2186  *tzp -= val;
2187  break;
2188 
2189  case DTZ:
2190 
2191  /*
2192  * set mask for TZ here _or_ check for DTZ later when
2193  * getting default timezone
2194  */
2195  tmask |= DTK_M(TZ);
2196  tm->tm_isdst = 1;
2197  if (tzp == NULL)
2198  return DTERR_BAD_FORMAT;
2199  *tzp = -val;
2200  ftype[i] = DTK_TZ;
2201  break;
2202 
2203  case TZ:
2204  tm->tm_isdst = 0;
2205  if (tzp == NULL)
2206  return DTERR_BAD_FORMAT;
2207  *tzp = -val;
2208  ftype[i] = DTK_TZ;
2209  break;
2210 
2211  case DYNTZ:
2212  tmask |= DTK_M(TZ);
2213  if (tzp == NULL)
2214  return DTERR_BAD_FORMAT;
2215  /* we'll determine the actual offset later */
2216  abbrevTz = valtz;
2217  abbrev = field[i];
2218  ftype[i] = DTK_TZ;
2219  break;
2220 
2221  case AMPM:
2222  mer = val;
2223  break;
2224 
2225  case ADBC:
2226  bc = (val == BC);
2227  break;
2228 
2229  case UNITS:
2230  tmask = 0;
2231  /* reject consecutive unhandled units */
2232  if (ptype != 0)
2233  return DTERR_BAD_FORMAT;
2234  ptype = val;
2235  break;
2236 
2237  case ISOTIME:
2238  tmask = 0;
2239  /* reject consecutive unhandled units */
2240  if (ptype != 0)
2241  return DTERR_BAD_FORMAT;
2242  ptype = val;
2243  break;
2244 
2245  case UNKNOWN_FIELD:
2246 
2247  /*
2248  * Before giving up and declaring error, check to see
2249  * if it is an all-alpha timezone name.
2250  */
2251  namedTz = pg_tzset(field[i]);
2252  if (!namedTz)
2253  return DTERR_BAD_FORMAT;
2254  /* we'll apply the zone setting below */
2255  tmask = DTK_M(TZ);
2256  break;
2257 
2258  default:
2259  return DTERR_BAD_FORMAT;
2260  }
2261  break;
2262 
2263  default:
2264  return DTERR_BAD_FORMAT;
2265  }
2266 
2267  if (tmask & fmask)
2268  return DTERR_BAD_FORMAT;
2269  fmask |= tmask;
2270  } /* end loop over fields */
2271 
2272  /* reject if prefix type appeared and was never handled */
2273  if (ptype != 0)
2274  return DTERR_BAD_FORMAT;
2275 
2276  /* do final checking/adjustment of Y/M/D fields */
2277  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
2278  if (dterr)
2279  return dterr;
2280 
2281  /* handle AM/PM */
2282  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
2283  return DTERR_FIELD_OVERFLOW;
2284  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
2285  tm->tm_hour = 0;
2286  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
2287  tm->tm_hour += HOURS_PER_DAY / 2;
2288 
2289  /* check for time overflow */
2290  if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec))
2291  return DTERR_FIELD_OVERFLOW;
2292 
2293  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2294  return DTERR_BAD_FORMAT;
2295 
2296  /*
2297  * If we had a full timezone spec, compute the offset (we could not do it
2298  * before, because we may need the date to resolve DST status).
2299  */
2300  if (namedTz != NULL)
2301  {
2302  long int gmtoff;
2303 
2304  /* daylight savings time modifier disallowed with full TZ */
2305  if (fmask & DTK_M(DTZMOD))
2306  return DTERR_BAD_FORMAT;
2307 
2308  /* if non-DST zone, we do not need to know the date */
2309  if (pg_get_timezone_offset(namedTz, &gmtoff))
2310  {
2311  *tzp = -(int) gmtoff;
2312  }
2313  else
2314  {
2315  /* a date has to be specified */
2316  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2317  return DTERR_BAD_FORMAT;
2318  *tzp = DetermineTimeZoneOffset(tm, namedTz);
2319  }
2320  }
2321 
2322  /*
2323  * Likewise, if we had a dynamic timezone abbreviation, resolve it now.
2324  */
2325  if (abbrevTz != NULL)
2326  {
2327  struct pg_tm tt,
2328  *tmp = &tt;
2329 
2330  /*
2331  * daylight savings time modifier but no standard timezone? then error
2332  */
2333  if (fmask & DTK_M(DTZMOD))
2334  return DTERR_BAD_FORMAT;
2335 
2336  if ((fmask & DTK_DATE_M) == 0)
2337  GetCurrentDateTime(tmp);
2338  else
2339  {
2340  /* a date has to be specified */
2341  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2342  return DTERR_BAD_FORMAT;
2343  tmp->tm_year = tm->tm_year;
2344  tmp->tm_mon = tm->tm_mon;
2345  tmp->tm_mday = tm->tm_mday;
2346  }
2347  tmp->tm_hour = tm->tm_hour;
2348  tmp->tm_min = tm->tm_min;
2349  tmp->tm_sec = tm->tm_sec;
2350  *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
2351  tm->tm_isdst = tmp->tm_isdst;
2352  }
2353 
2354  /* timezone not specified? then use session timezone */
2355  if (tzp != NULL && !(fmask & DTK_M(TZ)))
2356  {
2357  struct pg_tm tt,
2358  *tmp = &tt;
2359 
2360  /*
2361  * daylight savings time modifier but no standard timezone? then error
2362  */
2363  if (fmask & DTK_M(DTZMOD))
2364  return DTERR_BAD_FORMAT;
2365 
2366  if ((fmask & DTK_DATE_M) == 0)
2367  GetCurrentDateTime(tmp);
2368  else
2369  {
2370  /* a date has to be specified */
2371  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2372  return DTERR_BAD_FORMAT;
2373  tmp->tm_year = tm->tm_year;
2374  tmp->tm_mon = tm->tm_mon;
2375  tmp->tm_mday = tm->tm_mday;
2376  }
2377  tmp->tm_hour = tm->tm_hour;
2378  tmp->tm_min = tm->tm_min;
2379  tmp->tm_sec = tm->tm_sec;
2381  tm->tm_isdst = tmp->tm_isdst;
2382  }
2383 
2384  return 0;
2385 }
2386 
2387 /* DecodeDate()
2388  * Decode date string which includes delimiters.
2389  * Return 0 if okay, a DTERR code if not.
2390  *
2391  * str: field to be parsed
2392  * fmask: bitmask for field types already seen
2393  * *tmask: receives bitmask for fields found here
2394  * *is2digits: set to true if we find 2-digit year
2395  * *tm: field values are stored into appropriate members of this struct
2396  */
2397 static int
2398 DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
2399  struct pg_tm *tm)
2400 {
2401  fsec_t fsec;
2402  int nf = 0;
2403  int i,
2404  len;
2405  int dterr;
2406  bool haveTextMonth = false;
2407  int type,
2408  val,
2409  dmask = 0;
2410  char *field[MAXDATEFIELDS];
2411 
2412  *tmask = 0;
2413 
2414  /* parse this string... */
2415  while (*str != '\0' && nf < MAXDATEFIELDS)
2416  {
2417  /* skip field separators */
2418  while (*str != '\0' && !isalnum((unsigned char) *str))
2419  str++;
2420 
2421  if (*str == '\0')
2422  return DTERR_BAD_FORMAT; /* end of string after separator */
2423 
2424  field[nf] = str;
2425  if (isdigit((unsigned char) *str))
2426  {
2427  while (isdigit((unsigned char) *str))
2428  str++;
2429  }
2430  else if (isalpha((unsigned char) *str))
2431  {
2432  while (isalpha((unsigned char) *str))
2433  str++;
2434  }
2435 
2436  /* Just get rid of any non-digit, non-alpha characters... */
2437  if (*str != '\0')
2438  *str++ = '\0';
2439  nf++;
2440  }
2441 
2442  /* look first for text fields, since that will be unambiguous month */
2443  for (i = 0; i < nf; i++)
2444  {
2445  if (isalpha((unsigned char) *field[i]))
2446  {
2447  type = DecodeSpecial(i, field[i], &val);
2448  if (type == IGNORE_DTF)
2449  continue;
2450 
2451  dmask = DTK_M(type);
2452  switch (type)
2453  {
2454  case MONTH:
2455  tm->tm_mon = val;
2456  haveTextMonth = true;
2457  break;
2458 
2459  default:
2460  return DTERR_BAD_FORMAT;
2461  }
2462  if (fmask & dmask)
2463  return DTERR_BAD_FORMAT;
2464 
2465  fmask |= dmask;
2466  *tmask |= dmask;
2467 
2468  /* mark this field as being completed */
2469  field[i] = NULL;
2470  }
2471  }
2472 
2473  /* now pick up remaining numeric fields */
2474  for (i = 0; i < nf; i++)
2475  {
2476  if (field[i] == NULL)
2477  continue;
2478 
2479  if ((len = strlen(field[i])) <= 0)
2480  return DTERR_BAD_FORMAT;
2481 
2482  dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
2483  &dmask, tm,
2484  &fsec, is2digits);
2485  if (dterr)
2486  return dterr;
2487 
2488  if (fmask & dmask)
2489  return DTERR_BAD_FORMAT;
2490 
2491  fmask |= dmask;
2492  *tmask |= dmask;
2493  }
2494 
2495  if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
2496  return DTERR_BAD_FORMAT;
2497 
2498  /* validation of the field values must wait until ValidateDate() */
2499 
2500  return 0;
2501 }
2502 
2503 /* ValidateDate()
2504  * Check valid year/month/day values, handle BC and DOY cases
2505  * Return 0 if okay, a DTERR code if not.
2506  */
2507 int
2508 ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
2509  struct pg_tm *tm)
2510 {
2511  if (fmask & DTK_M(YEAR))
2512  {
2513  if (isjulian)
2514  {
2515  /* tm_year is correct and should not be touched */
2516  }
2517  else if (bc)
2518  {
2519  /* there is no year zero in AD/BC notation */
2520  if (tm->tm_year <= 0)
2521  return DTERR_FIELD_OVERFLOW;
2522  /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
2523  tm->tm_year = -(tm->tm_year - 1);
2524  }
2525  else if (is2digits)
2526  {
2527  /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
2528  if (tm->tm_year < 0) /* just paranoia */
2529  return DTERR_FIELD_OVERFLOW;
2530  if (tm->tm_year < 70)
2531  tm->tm_year += 2000;
2532  else if (tm->tm_year < 100)
2533  tm->tm_year += 1900;
2534  }
2535  else
2536  {
2537  /* there is no year zero in AD/BC notation */
2538  if (tm->tm_year <= 0)
2539  return DTERR_FIELD_OVERFLOW;
2540  }
2541  }
2542 
2543  /* now that we have correct year, decode DOY */
2544  if (fmask & DTK_M(DOY))
2545  {
2546  j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
2547  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2548  }
2549 
2550  /* check for valid month */
2551  if (fmask & DTK_M(MONTH))
2552  {
2553  if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
2554  return DTERR_MD_FIELD_OVERFLOW;
2555  }
2556 
2557  /* minimal check for valid day */
2558  if (fmask & DTK_M(DAY))
2559  {
2560  if (tm->tm_mday < 1 || tm->tm_mday > 31)
2561  return DTERR_MD_FIELD_OVERFLOW;
2562  }
2563 
2564  if ((fmask & DTK_DATE_M) == DTK_DATE_M)
2565  {
2566  /*
2567  * Check for valid day of month, now that we know for sure the month
2568  * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
2569  * unlikely that "Feb 29" is a YMD-order error.
2570  */
2571  if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
2572  return DTERR_FIELD_OVERFLOW;
2573  }
2574 
2575  return 0;
2576 }
2577 
2578 
2579 /* DecodeTimeCommon()
2580  * Decode time string which includes delimiters.
2581  * Return 0 if okay, a DTERR code if not.
2582  * tmask and itm are output parameters.
2583  *
2584  * This code is shared between the timestamp and interval cases.
2585  * We return a struct pg_itm (of which only the tm_usec, tm_sec, tm_min,
2586  * and tm_hour fields are used) and let the wrapper functions below
2587  * convert and range-check as necessary.
2588  */
2589 static int
2590 DecodeTimeCommon(char *str, int fmask, int range,
2591  int *tmask, struct pg_itm *itm)
2592 {
2593  char *cp;
2594  int dterr;
2595  fsec_t fsec = 0;
2596 
2597  *tmask = DTK_TIME_M;
2598 
2599  errno = 0;
2600  itm->tm_hour = strtoi64(str, &cp, 10);
2601  if (errno == ERANGE)
2602  return DTERR_FIELD_OVERFLOW;
2603  if (*cp != ':')
2604  return DTERR_BAD_FORMAT;
2605  errno = 0;
2606  itm->tm_min = strtoint(cp + 1, &cp, 10);
2607  if (errno == ERANGE)
2608  return DTERR_FIELD_OVERFLOW;
2609  if (*cp == '\0')
2610  {
2611  itm->tm_sec = 0;
2612  /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
2614  {
2615  if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN)
2616  return DTERR_FIELD_OVERFLOW;
2617  itm->tm_sec = itm->tm_min;
2618  itm->tm_min = (int) itm->tm_hour;
2619  itm->tm_hour = 0;
2620  }
2621  }
2622  else if (*cp == '.')
2623  {
2624  /* always assume mm:ss.sss is MINUTE TO SECOND */
2625  dterr = ParseFractionalSecond(cp, &fsec);
2626  if (dterr)
2627  return dterr;
2628  if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN)
2629  return DTERR_FIELD_OVERFLOW;
2630  itm->tm_sec = itm->tm_min;
2631  itm->tm_min = (int) itm->tm_hour;
2632  itm->tm_hour = 0;
2633  }
2634  else if (*cp == ':')
2635  {
2636  errno = 0;
2637  itm->tm_sec = strtoint(cp + 1, &cp, 10);
2638  if (errno == ERANGE)
2639  return DTERR_FIELD_OVERFLOW;
2640  if (*cp == '.')
2641  {
2642  dterr = ParseFractionalSecond(cp, &fsec);
2643  if (dterr)
2644  return dterr;
2645  }
2646  else if (*cp != '\0')
2647  return DTERR_BAD_FORMAT;
2648  }
2649  else
2650  return DTERR_BAD_FORMAT;
2651 
2652  /* do a sanity check; but caller must check the range of tm_hour */
2653  if (itm->tm_hour < 0 ||
2654  itm->tm_min < 0 || itm->tm_min > MINS_PER_HOUR - 1 ||
2655  itm->tm_sec < 0 || itm->tm_sec > SECS_PER_MINUTE ||
2656  fsec < 0 || fsec > USECS_PER_SEC)
2657  return DTERR_FIELD_OVERFLOW;
2658 
2659  itm->tm_usec = (int) fsec;
2660 
2661  return 0;
2662 }
2663 
2664 /* DecodeTime()
2665  * Decode time string which includes delimiters.
2666  * Return 0 if okay, a DTERR code if not.
2667  *
2668  * This version is used for timestamps. The results are returned into
2669  * the tm_hour/tm_min/tm_sec fields of *tm, and microseconds into *fsec.
2670  */
2671 static int
2672 DecodeTime(char *str, int fmask, int range,
2673  int *tmask, struct pg_tm *tm, fsec_t *fsec)
2674 {
2675  struct pg_itm itm;
2676  int dterr;
2677 
2678  dterr = DecodeTimeCommon(str, fmask, range,
2679  tmask, &itm);
2680  if (dterr)
2681  return dterr;
2682 
2683  if (itm.tm_hour > INT_MAX)
2684  return DTERR_FIELD_OVERFLOW;
2685  tm->tm_hour = (int) itm.tm_hour;
2686  tm->tm_min = itm.tm_min;
2687  tm->tm_sec = itm.tm_sec;
2688  *fsec = itm.tm_usec;
2689 
2690  return 0;
2691 }
2692 
2693 /* DecodeTimeForInterval()
2694  * Decode time string which includes delimiters.
2695  * Return 0 if okay, a DTERR code if not.
2696  *
2697  * This version is used for intervals. The results are returned into
2698  * itm_in->tm_usec.
2699  */
2700 static int
2701 DecodeTimeForInterval(char *str, int fmask, int range,
2702  int *tmask, struct pg_itm_in *itm_in)
2703 {
2704  struct pg_itm itm;
2705  int dterr;
2706 
2707  dterr = DecodeTimeCommon(str, fmask, range,
2708  tmask, &itm);
2709  if (dterr)
2710  return dterr;
2711 
2712  itm_in->tm_usec = itm.tm_usec;
2713  if (!int64_multiply_add(itm.tm_hour, USECS_PER_HOUR, &itm_in->tm_usec) ||
2716  return DTERR_FIELD_OVERFLOW;
2717 
2718  return 0;
2719 }
2720 
2721 
2722 /* DecodeNumber()
2723  * Interpret plain numeric field as a date value in context.
2724  * Return 0 if okay, a DTERR code if not.
2725  */
2726 static int
2727 DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
2728  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2729 {
2730  int val;
2731  char *cp;
2732  int dterr;
2733 
2734  *tmask = 0;
2735 
2736  errno = 0;
2737  val = strtoint(str, &cp, 10);
2738  if (errno == ERANGE)
2739  return DTERR_FIELD_OVERFLOW;
2740  if (cp == str)
2741  return DTERR_BAD_FORMAT;
2742 
2743  if (*cp == '.')
2744  {
2745  /*
2746  * More than two digits before decimal point? Then could be a date or
2747  * a run-together time: 2001.360 20011225 040506.789
2748  */
2749  if (cp - str > 2)
2750  {
2751  dterr = DecodeNumberField(flen, str,
2752  (fmask | DTK_DATE_M),
2753  tmask, tm,
2754  fsec, is2digits);
2755  if (dterr < 0)
2756  return dterr;
2757  return 0;
2758  }
2759 
2760  dterr = ParseFractionalSecond(cp, fsec);
2761  if (dterr)
2762  return dterr;
2763  }
2764  else if (*cp != '\0')
2765  return DTERR_BAD_FORMAT;
2766 
2767  /* Special case for day of year */
2768  if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
2769  val <= 366)
2770  {
2771  *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
2772  tm->tm_yday = val;
2773  /* tm_mon and tm_mday can't actually be set yet ... */
2774  return 0;
2775  }
2776 
2777  /* Switch based on what we have so far */
2778  switch (fmask & DTK_DATE_M)
2779  {
2780  case 0:
2781 
2782  /*
2783  * Nothing so far; make a decision about what we think the input
2784  * is. There used to be lots of heuristics here, but the
2785  * consensus now is to be paranoid. It *must* be either
2786  * YYYY-MM-DD (with a more-than-two-digit year field), or the
2787  * field order defined by DateOrder.
2788  */
2789  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2790  {
2791  *tmask = DTK_M(YEAR);
2792  tm->tm_year = val;
2793  }
2794  else if (DateOrder == DATEORDER_DMY)
2795  {
2796  *tmask = DTK_M(DAY);
2797  tm->tm_mday = val;
2798  }
2799  else
2800  {
2801  *tmask = DTK_M(MONTH);
2802  tm->tm_mon = val;
2803  }
2804  break;
2805 
2806  case (DTK_M(YEAR)):
2807  /* Must be at second field of YY-MM-DD */
2808  *tmask = DTK_M(MONTH);
2809  tm->tm_mon = val;
2810  break;
2811 
2812  case (DTK_M(MONTH)):
2813  if (haveTextMonth)
2814  {
2815  /*
2816  * We are at the first numeric field of a date that included a
2817  * textual month name. We want to support the variants
2818  * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
2819  * inputs. We will also accept MON-DD-YY or DD-MON-YY in
2820  * either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
2821  */
2822  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2823  {
2824  *tmask = DTK_M(YEAR);
2825  tm->tm_year = val;
2826  }
2827  else
2828  {
2829  *tmask = DTK_M(DAY);
2830  tm->tm_mday = val;
2831  }
2832  }
2833  else
2834  {
2835  /* Must be at second field of MM-DD-YY */
2836  *tmask = DTK_M(DAY);
2837  tm->tm_mday = val;
2838  }
2839  break;
2840 
2841  case (DTK_M(YEAR) | DTK_M(MONTH)):
2842  if (haveTextMonth)
2843  {
2844  /* Need to accept DD-MON-YYYY even in YMD mode */
2845  if (flen >= 3 && *is2digits)
2846  {
2847  /* Guess that first numeric field is day was wrong */
2848  *tmask = DTK_M(DAY); /* YEAR is already set */
2849  tm->tm_mday = tm->tm_year;
2850  tm->tm_year = val;
2851  *is2digits = false;
2852  }
2853  else
2854  {
2855  *tmask = DTK_M(DAY);
2856  tm->tm_mday = val;
2857  }
2858  }
2859  else
2860  {
2861  /* Must be at third field of YY-MM-DD */
2862  *tmask = DTK_M(DAY);
2863  tm->tm_mday = val;
2864  }
2865  break;
2866 
2867  case (DTK_M(DAY)):
2868  /* Must be at second field of DD-MM-YY */
2869  *tmask = DTK_M(MONTH);
2870  tm->tm_mon = val;
2871  break;
2872 
2873  case (DTK_M(MONTH) | DTK_M(DAY)):
2874  /* Must be at third field of DD-MM-YY or MM-DD-YY */
2875  *tmask = DTK_M(YEAR);
2876  tm->tm_year = val;
2877  break;
2878 
2879  case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
2880  /* we have all the date, so it must be a time field */
2881  dterr = DecodeNumberField(flen, str, fmask,
2882  tmask, tm,
2883  fsec, is2digits);
2884  if (dterr < 0)
2885  return dterr;
2886  return 0;
2887 
2888  default:
2889  /* Anything else is bogus input */
2890  return DTERR_BAD_FORMAT;
2891  }
2892 
2893  /*
2894  * When processing a year field, mark it for adjustment if it's only one
2895  * or two digits.
2896  */
2897  if (*tmask == DTK_M(YEAR))
2898  *is2digits = (flen <= 2);
2899 
2900  return 0;
2901 }
2902 
2903 
2904 /* DecodeNumberField()
2905  * Interpret numeric string as a concatenated date or time field.
2906  * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
2907  *
2908  * Use the context of previously decoded fields to help with
2909  * the interpretation.
2910  */
2911 static int
2912 DecodeNumberField(int len, char *str, int fmask,
2913  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2914 {
2915  char *cp;
2916 
2917  /*
2918  * Have a decimal point? Then this is a date or something with a seconds
2919  * field...
2920  */
2921  if ((cp = strchr(str, '.')) != NULL)
2922  {
2923  /*
2924  * Can we use ParseFractionalSecond here? Not clear whether trailing
2925  * junk should be rejected ...
2926  */
2927  if (cp[1] == '\0')
2928  {
2929  /* avoid assuming that strtod will accept "." */
2930  *fsec = 0;
2931  }
2932  else
2933  {
2934  double frac;
2935 
2936  errno = 0;
2937  frac = strtod(cp, NULL);
2938  if (errno != 0)
2939  return DTERR_BAD_FORMAT;
2940  *fsec = rint(frac * 1000000);
2941  }
2942  /* Now truncate off the fraction for further processing */
2943  *cp = '\0';
2944  len = strlen(str);
2945  }
2946  /* No decimal point and no complete date yet? */
2947  else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2948  {
2949  if (len >= 6)
2950  {
2951  *tmask = DTK_DATE_M;
2952 
2953  /*
2954  * Start from end and consider first 2 as Day, next 2 as Month,
2955  * and the rest as Year.
2956  */
2957  tm->tm_mday = atoi(str + (len - 2));
2958  *(str + (len - 2)) = '\0';
2959  tm->tm_mon = atoi(str + (len - 4));
2960  *(str + (len - 4)) = '\0';
2961  tm->tm_year = atoi(str);
2962  if ((len - 4) == 2)
2963  *is2digits = true;
2964 
2965  return DTK_DATE;
2966  }
2967  }
2968 
2969  /* not all time fields are specified? */
2970  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2971  {
2972  /* hhmmss */
2973  if (len == 6)
2974  {
2975  *tmask = DTK_TIME_M;
2976  tm->tm_sec = atoi(str + 4);
2977  *(str + 4) = '\0';
2978  tm->tm_min = atoi(str + 2);
2979  *(str + 2) = '\0';
2980  tm->tm_hour = atoi(str);
2981 
2982  return DTK_TIME;
2983  }
2984  /* hhmm? */
2985  else if (len == 4)
2986  {
2987  *tmask = DTK_TIME_M;
2988  tm->tm_sec = 0;
2989  tm->tm_min = atoi(str + 2);
2990  *(str + 2) = '\0';
2991  tm->tm_hour = atoi(str);
2992 
2993  return DTK_TIME;
2994  }
2995  }
2996 
2997  return DTERR_BAD_FORMAT;
2998 }
2999 
3000 
3001 /* DecodeTimezone()
3002  * Interpret string as a numeric timezone.
3003  *
3004  * Return 0 if okay (and set *tzp), a DTERR code if not okay.
3005  */
3006 int
3007 DecodeTimezone(const char *str, int *tzp)
3008 {
3009  int tz;
3010  int hr,
3011  min,
3012  sec = 0;
3013  char *cp;
3014 
3015  /* leading character must be "+" or "-" */
3016  if (*str != '+' && *str != '-')
3017  return DTERR_BAD_FORMAT;
3018 
3019  errno = 0;
3020  hr = strtoint(str + 1, &cp, 10);
3021  if (errno == ERANGE)
3022  return DTERR_TZDISP_OVERFLOW;
3023 
3024  /* explicit delimiter? */
3025  if (*cp == ':')
3026  {
3027  errno = 0;
3028  min = strtoint(cp + 1, &cp, 10);
3029  if (errno == ERANGE)
3030  return DTERR_TZDISP_OVERFLOW;
3031  if (*cp == ':')
3032  {
3033  errno = 0;
3034  sec = strtoint(cp + 1, &cp, 10);
3035  if (errno == ERANGE)
3036  return DTERR_TZDISP_OVERFLOW;
3037  }
3038  }
3039  /* otherwise, might have run things together... */
3040  else if (*cp == '\0' && strlen(str) > 3)
3041  {
3042  min = hr % 100;
3043  hr = hr / 100;
3044  /* we could, but don't, support a run-together hhmmss format */
3045  }
3046  else
3047  min = 0;
3048 
3049  /* Range-check the values; see notes in datatype/timestamp.h */
3050  if (hr < 0 || hr > MAX_TZDISP_HOUR)
3051  return DTERR_TZDISP_OVERFLOW;
3052  if (min < 0 || min >= MINS_PER_HOUR)
3053  return DTERR_TZDISP_OVERFLOW;
3054  if (sec < 0 || sec >= SECS_PER_MINUTE)
3055  return DTERR_TZDISP_OVERFLOW;
3056 
3057  tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
3058  if (*str == '-')
3059  tz = -tz;
3060 
3061  *tzp = -tz;
3062 
3063  if (*cp != '\0')
3064  return DTERR_BAD_FORMAT;
3065 
3066  return 0;
3067 }
3068 
3069 
3070 /* DecodeTimezoneAbbrev()
3071  * Interpret string as a timezone abbreviation, if possible.
3072  *
3073  * Sets *ftype to an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
3074  * string is not any known abbreviation. On success, set *offset and *tz to
3075  * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
3076  * Note that full timezone names (such as America/New_York) are not handled
3077  * here, mostly for historical reasons.
3078  *
3079  * The function result is 0 or a DTERR code; in the latter case, *extra
3080  * is filled as needed. Note that unknown-abbreviation is not considered
3081  * an error case. Also note that many callers assume that the DTERR code
3082  * is one that DateTimeParseError does not require "str" or "datatype"
3083  * strings for.
3084  *
3085  * Given string must be lowercased already.
3086  *
3087  * Implement a cache lookup since it is likely that dates
3088  * will be related in format.
3089  */
3090 int
3091 DecodeTimezoneAbbrev(int field, const char *lowtoken,
3092  int *ftype, int *offset, pg_tz **tz,
3093  DateTimeErrorExtra *extra)
3094 {
3095  const datetkn *tp;
3096 
3097  tp = abbrevcache[field];
3098  /* use strncmp so that we match truncated tokens */
3099  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3100  {
3101  if (zoneabbrevtbl)
3102  tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
3104  else
3105  tp = NULL;
3106  }
3107  if (tp == NULL)
3108  {
3109  *ftype = UNKNOWN_FIELD;
3110  *offset = 0;
3111  *tz = NULL;
3112  }
3113  else
3114  {
3115  abbrevcache[field] = tp;
3116  *ftype = tp->type;
3117  if (tp->type == DYNTZ)
3118  {
3119  *offset = 0;
3120  *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp, extra);
3121  if (*tz == NULL)
3122  return DTERR_BAD_ZONE_ABBREV;
3123  }
3124  else
3125  {
3126  *offset = tp->value;
3127  *tz = NULL;
3128  }
3129  }
3130 
3131  return 0;
3132 }
3133 
3134 
3135 /* DecodeSpecial()
3136  * Decode text string using lookup table.
3137  *
3138  * Recognizes the keywords listed in datetktbl.
3139  * Note: at one time this would also recognize timezone abbreviations,
3140  * but no more; use DecodeTimezoneAbbrev for that.
3141  *
3142  * Given string must be lowercased already.
3143  *
3144  * Implement a cache lookup since it is likely that dates
3145  * will be related in format.
3146  */
3147 int
3148 DecodeSpecial(int field, const char *lowtoken, int *val)
3149 {
3150  int type;
3151  const datetkn *tp;
3152 
3153  tp = datecache[field];
3154  /* use strncmp so that we match truncated tokens */
3155  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3156  {
3157  tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
3158  }
3159  if (tp == NULL)
3160  {
3161  type = UNKNOWN_FIELD;
3162  *val = 0;
3163  }
3164  else
3165  {
3166  datecache[field] = tp;
3167  type = tp->type;
3168  *val = tp->value;
3169  }
3170 
3171  return type;
3172 }
3173 
3174 
3175 /* DecodeTimezoneName()
3176  * Interpret string as a timezone abbreviation or name.
3177  * Throw error if the name is not recognized.
3178  *
3179  * The return value indicates what kind of zone identifier it is:
3180  * TZNAME_FIXED_OFFSET: fixed offset from UTC
3181  * TZNAME_DYNTZ: dynamic timezone abbreviation
3182  * TZNAME_ZONE: full tzdb zone name
3183  *
3184  * For TZNAME_FIXED_OFFSET, *offset receives the UTC offset (in seconds,
3185  * with ISO sign convention: positive is east of Greenwich).
3186  * For the other two cases, *tz receives the timezone struct representing
3187  * the zone name or the abbreviation's underlying zone.
3188  */
3189 int
3190 DecodeTimezoneName(const char *tzname, int *offset, pg_tz **tz)
3191 {
3192  char *lowzone;
3193  int dterr,
3194  type;
3195  DateTimeErrorExtra extra;
3196 
3197  /*
3198  * First we look in the timezone abbreviation table (to handle cases like
3199  * "EST"), and if that fails, we look in the timezone database (to handle
3200  * cases like "America/New_York"). This matches the order in which
3201  * timestamp input checks the cases; it's important because the timezone
3202  * database unwisely uses a few zone names that are identical to offset
3203  * abbreviations.
3204  */
3205 
3206  /* DecodeTimezoneAbbrev requires lowercase input */
3207  lowzone = downcase_truncate_identifier(tzname,
3208  strlen(tzname),
3209  false);
3210 
3211  dterr = DecodeTimezoneAbbrev(0, lowzone, &type, offset, tz, &extra);
3212  if (dterr)
3213  DateTimeParseError(dterr, &extra, NULL, NULL, NULL);
3214 
3215  if (type == TZ || type == DTZ)
3216  {
3217  /* fixed-offset abbreviation, return the offset */
3218  return TZNAME_FIXED_OFFSET;
3219  }
3220  else if (type == DYNTZ)
3221  {
3222  /* dynamic-offset abbreviation, return its referenced timezone */
3223  return TZNAME_DYNTZ;
3224  }
3225  else
3226  {
3227  /* try it as a full zone name */
3228  *tz = pg_tzset(tzname);
3229  if (*tz == NULL)
3230  ereport(ERROR,
3231  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3232  errmsg("time zone \"%s\" not recognized", tzname)));
3233  return TZNAME_ZONE;
3234  }
3235 }
3236 
3237 /* DecodeTimezoneNameToTz()
3238  * Interpret string as a timezone abbreviation or name.
3239  * Throw error if the name is not recognized.
3240  *
3241  * This is a simple wrapper for DecodeTimezoneName that produces a pg_tz *
3242  * result in all cases.
3243  */
3244 pg_tz *
3245 DecodeTimezoneNameToTz(const char *tzname)
3246 {
3247  pg_tz *result;
3248  int offset;
3249 
3250  if (DecodeTimezoneName(tzname, &offset, &result) == TZNAME_FIXED_OFFSET)
3251  {
3252  /* fixed-offset abbreviation, get a pg_tz descriptor for that */
3253  result = pg_tzset_offset(-offset); /* flip to POSIX sign convention */
3254  }
3255  return result;
3256 }
3257 
3258 /* DecodeTimezoneAbbrevPrefix()
3259  * Interpret prefix of string as a timezone abbreviation, if possible.
3260  *
3261  * This has roughly the same functionality as DecodeTimezoneAbbrev(),
3262  * but the API is adapted to the needs of formatting.c. Notably,
3263  * we will match the longest possible prefix of the given string
3264  * rather than insisting on a complete match, and downcasing is applied
3265  * here rather than in the caller.
3266  *
3267  * Returns the length of the timezone abbreviation, or -1 if not recognized.
3268  * On success, sets *offset to the GMT offset for the abbreviation if it
3269  * is a fixed-offset abbreviation, or sets *tz to the pg_tz struct for
3270  * a dynamic abbreviation.
3271  */
3272 int
3273 DecodeTimezoneAbbrevPrefix(const char *str, int *offset, pg_tz **tz)
3274 {
3275  char lowtoken[TOKMAXLEN + 1];
3276  int len;
3277 
3278  *offset = 0; /* avoid uninitialized vars on failure */
3279  *tz = NULL;
3280 
3281  if (!zoneabbrevtbl)
3282  return -1; /* no abbrevs known, so fail immediately */
3283 
3284  /* Downcase as much of the string as we could need */
3285  for (len = 0; len < TOKMAXLEN; len++)
3286  {
3287  if (*str == '\0' || !isalpha((unsigned char) *str))
3288  break;
3289  lowtoken[len] = pg_tolower((unsigned char) *str++);
3290  }
3291  lowtoken[len] = '\0';
3292 
3293  /*
3294  * We could avoid doing repeated binary searches if we cared to duplicate
3295  * datebsearch here, but it's not clear that such an optimization would be
3296  * worth the trouble. In common cases there's probably not anything after
3297  * the zone abbrev anyway. So just search with successively truncated
3298  * strings.
3299  */
3300  while (len > 0)
3301  {
3302  const datetkn *tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
3304 
3305  if (tp != NULL)
3306  {
3307  if (tp->type == DYNTZ)
3308  {
3309  DateTimeErrorExtra extra;
3311  &extra);
3312 
3313  if (tzp != NULL)
3314  {
3315  /* Caller must resolve the abbrev's current meaning */
3316  *tz = tzp;
3317  return len;
3318  }
3319  }
3320  else
3321  {
3322  /* Fixed-offset zone abbrev, so it's easy */
3323  *offset = tp->value;
3324  return len;
3325  }
3326  }
3327  lowtoken[--len] = '\0';
3328  }
3329 
3330  /* Did not find a match */
3331  return -1;
3332 }
3333 
3334 
3335 /* ClearPgItmIn
3336  *
3337  * Zero out a pg_itm_in
3338  */
3339 static inline void
3340 ClearPgItmIn(struct pg_itm_in *itm_in)
3341 {
3342  itm_in->tm_usec = 0;
3343  itm_in->tm_mday = 0;
3344  itm_in->tm_mon = 0;
3345  itm_in->tm_year = 0;
3346 }
3347 
3348 
3349 /* DecodeInterval()
3350  * Interpret previously parsed fields for general time interval.
3351  * Returns 0 if successful, DTERR code if bogus input detected.
3352  * dtype and itm_in are output parameters.
3353  *
3354  * Allow "date" field DTK_DATE since this could be just
3355  * an unsigned floating point number. - thomas 1997-11-16
3356  *
3357  * Allow ISO-style time span, with implicit units on number of days
3358  * preceding an hh:mm:ss field. - thomas 1998-04-30
3359  *
3360  * itm_in remains undefined for infinite interval values for which dtype alone
3361  * suffices.
3362  */
3363 int
3364 DecodeInterval(char **field, int *ftype, int nf, int range,
3365  int *dtype, struct pg_itm_in *itm_in)
3366 {
3367  bool force_negative = false;
3368  bool is_before = false;
3369  bool parsing_unit_val = false;
3370  char *cp;
3371  int fmask = 0,
3372  tmask,
3373  type,
3374  uval;
3375  int i;
3376  int dterr;
3377  int64 val;
3378  double fval;
3379 
3380  *dtype = DTK_DELTA;
3381  type = IGNORE_DTF;
3382  ClearPgItmIn(itm_in);
3383 
3384  /*----------
3385  * The SQL standard defines the interval literal
3386  * '-1 1:00:00'
3387  * to mean "negative 1 days and negative 1 hours", while Postgres
3388  * traditionally treats this as meaning "negative 1 days and positive
3389  * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
3390  * to all fields if there are no other explicit signs.
3391  *
3392  * We leave the signs alone if there are additional explicit signs.
3393  * This protects us against misinterpreting postgres-style dump output,
3394  * since the postgres-style output code has always put an explicit sign on
3395  * all fields following a negative field. But note that SQL-spec output
3396  * is ambiguous and can be misinterpreted on load! (So it's best practice
3397  * to dump in postgres style, not SQL style.)
3398  *----------
3399  */
3400  if (IntervalStyle == INTSTYLE_SQL_STANDARD && nf > 0 && *field[0] == '-')
3401  {
3402  force_negative = true;
3403  /* Check for additional explicit signs */
3404  for (i = 1; i < nf; i++)
3405  {
3406  if (*field[i] == '-' || *field[i] == '+')
3407  {
3408  force_negative = false;
3409  break;
3410  }
3411  }
3412  }
3413 
3414  /* read through list backwards to pick up units before values */
3415  for (i = nf - 1; i >= 0; i--)
3416  {
3417  switch (ftype[i])
3418  {
3419  case DTK_TIME:
3420  dterr = DecodeTimeForInterval(field[i], fmask, range,
3421  &tmask, itm_in);
3422  if (dterr)
3423  return dterr;
3424  if (force_negative &&
3425  itm_in->tm_usec > 0)
3426  itm_in->tm_usec = -itm_in->tm_usec;
3427  type = DTK_DAY;
3428  parsing_unit_val = false;
3429  break;
3430 
3431  case DTK_TZ:
3432 
3433  /*
3434  * Timezone means a token with a leading sign character and at
3435  * least one digit; there could be ':', '.', '-' embedded in
3436  * it as well.
3437  */
3438  Assert(*field[i] == '-' || *field[i] == '+');
3439 
3440  /*
3441  * Check for signed hh:mm or hh:mm:ss. If so, process exactly
3442  * like DTK_TIME case above, plus handling the sign.
3443  */
3444  if (strchr(field[i] + 1, ':') != NULL &&
3445  DecodeTimeForInterval(field[i] + 1, fmask, range,
3446  &tmask, itm_in) == 0)
3447  {
3448  if (*field[i] == '-')
3449  {
3450  /* flip the sign on time field */
3451  if (itm_in->tm_usec == PG_INT64_MIN)
3452  return DTERR_FIELD_OVERFLOW;
3453  itm_in->tm_usec = -itm_in->tm_usec;
3454  }
3455 
3456  if (force_negative &&
3457  itm_in->tm_usec > 0)
3458  itm_in->tm_usec = -itm_in->tm_usec;
3459 
3460  /*
3461  * Set the next type to be a day, if units are not
3462  * specified. This handles the case of '1 +02:03' since we
3463  * are reading right to left.
3464  */
3465  type = DTK_DAY;
3466  parsing_unit_val = false;
3467  break;
3468  }
3469 
3470  /*
3471  * Otherwise, fall through to DTK_NUMBER case, which can
3472  * handle signed float numbers and signed year-month values.
3473  */
3474 
3475  /* FALLTHROUGH */
3476 
3477  case DTK_DATE:
3478  case DTK_NUMBER:
3479  if (type == IGNORE_DTF)
3480  {
3481  /* use typmod to decide what rightmost field is */
3482  switch (range)
3483  {
3484  case INTERVAL_MASK(YEAR):
3485  type = DTK_YEAR;
3486  break;
3487  case INTERVAL_MASK(MONTH):
3489  type = DTK_MONTH;
3490  break;
3491  case INTERVAL_MASK(DAY):
3492  type = DTK_DAY;
3493  break;
3494  case INTERVAL_MASK(HOUR):
3496  type = DTK_HOUR;
3497  break;
3498  case INTERVAL_MASK(MINUTE):
3501  type = DTK_MINUTE;
3502  break;
3503  case INTERVAL_MASK(SECOND):
3507  type = DTK_SECOND;
3508  break;
3509  default:
3510  type = DTK_SECOND;
3511  break;
3512  }
3513  }
3514 
3515  errno = 0;
3516  val = strtoi64(field[i], &cp, 10);
3517  if (errno == ERANGE)
3518  return DTERR_FIELD_OVERFLOW;
3519 
3520  if (*cp == '-')
3521  {
3522  /* SQL "years-months" syntax */
3523  int val2;
3524 
3525  val2 = strtoint(cp + 1, &cp, 10);
3526  if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
3527  return DTERR_FIELD_OVERFLOW;
3528  if (*cp != '\0')
3529  return DTERR_BAD_FORMAT;
3530  type = DTK_MONTH;
3531  if (*field[i] == '-')
3532  val2 = -val2;
3534  return DTERR_FIELD_OVERFLOW;
3535  if (pg_add_s64_overflow(val, val2, &val))
3536  return DTERR_FIELD_OVERFLOW;
3537  fval = 0;
3538  }
3539  else if (*cp == '.')
3540  {
3541  dterr = ParseFraction(cp, &fval);
3542  if (dterr)
3543  return dterr;
3544  if (*field[i] == '-')
3545  fval = -fval;
3546  }
3547  else if (*cp == '\0')
3548  fval = 0;
3549  else
3550  return DTERR_BAD_FORMAT;
3551 
3552  tmask = 0; /* DTK_M(type); */
3553 
3554  if (force_negative)
3555  {
3556  /* val and fval should be of same sign, but test anyway */
3557  if (val > 0)
3558  val = -val;
3559  if (fval > 0)
3560  fval = -fval;
3561  }
3562 
3563  switch (type)
3564  {
3565  case DTK_MICROSEC:
3566  if (!AdjustMicroseconds(val, fval, 1, itm_in))
3567  return DTERR_FIELD_OVERFLOW;
3568  tmask = DTK_M(MICROSECOND);
3569  break;
3570 
3571  case DTK_MILLISEC:
3572  if (!AdjustMicroseconds(val, fval, 1000, itm_in))
3573  return DTERR_FIELD_OVERFLOW;
3574  tmask = DTK_M(MILLISECOND);
3575  break;
3576 
3577  case DTK_SECOND:
3578  if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
3579  return DTERR_FIELD_OVERFLOW;
3580 
3581  /*
3582  * If any subseconds were specified, consider this
3583  * microsecond and millisecond input as well.
3584  */
3585  if (fval == 0)
3586  tmask = DTK_M(SECOND);
3587  else
3588  tmask = DTK_ALL_SECS_M;
3589  break;
3590 
3591  case DTK_MINUTE:
3592  if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
3593  return DTERR_FIELD_OVERFLOW;
3594  tmask = DTK_M(MINUTE);
3595  break;
3596 
3597  case DTK_HOUR:
3598  if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3599  return DTERR_FIELD_OVERFLOW;
3600  tmask = DTK_M(HOUR);
3601  type = DTK_DAY; /* set for next field */
3602  break;
3603 
3604  case DTK_DAY:
3605  if (!AdjustDays(val, 1, itm_in) ||
3606  !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3607  return DTERR_FIELD_OVERFLOW;
3608  tmask = DTK_M(DAY);
3609  break;
3610 
3611  case DTK_WEEK:
3612  if (!AdjustDays(val, 7, itm_in) ||
3613  !AdjustFractDays(fval, 7, itm_in))
3614  return DTERR_FIELD_OVERFLOW;
3615  tmask = DTK_M(WEEK);
3616  break;
3617 
3618  case DTK_MONTH:
3619  if (!AdjustMonths(val, itm_in) ||
3620  !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3621  return DTERR_FIELD_OVERFLOW;
3622  tmask = DTK_M(MONTH);
3623  break;
3624 
3625  case DTK_YEAR:
3626  if (!AdjustYears(val, 1, itm_in) ||
3627  !AdjustFractYears(fval, 1, itm_in))
3628  return DTERR_FIELD_OVERFLOW;
3629  tmask = DTK_M(YEAR);
3630  break;
3631 
3632  case DTK_DECADE:
3633  if (!AdjustYears(val, 10, itm_in) ||
3634  !AdjustFractYears(fval, 10, itm_in))
3635  return DTERR_FIELD_OVERFLOW;
3636  tmask = DTK_M(DECADE);
3637  break;
3638 
3639  case DTK_CENTURY:
3640  if (!AdjustYears(val, 100, itm_in) ||
3641  !AdjustFractYears(fval, 100, itm_in))
3642  return DTERR_FIELD_OVERFLOW;
3643  tmask = DTK_M(CENTURY);
3644  break;
3645 
3646  case DTK_MILLENNIUM:
3647  if (!AdjustYears(val, 1000, itm_in) ||
3648  !AdjustFractYears(fval, 1000, itm_in))
3649  return DTERR_FIELD_OVERFLOW;
3650  tmask = DTK_M(MILLENNIUM);
3651  break;
3652 
3653  default:
3654  return DTERR_BAD_FORMAT;
3655  }
3656  parsing_unit_val = false;
3657  break;
3658 
3659  case DTK_STRING:
3660  case DTK_SPECIAL:
3661  /* reject consecutive unhandled units */
3662  if (parsing_unit_val)
3663  return DTERR_BAD_FORMAT;
3664  type = DecodeUnits(i, field[i], &uval);
3665  if (type == UNKNOWN_FIELD)
3666  type = DecodeSpecial(i, field[i], &uval);
3667  if (type == IGNORE_DTF)
3668  continue;
3669 
3670  tmask = 0; /* DTK_M(type); */
3671  switch (type)
3672  {
3673  case UNITS:
3674  type = uval;
3675  parsing_unit_val = true;
3676  break;
3677 
3678  case AGO:
3679 
3680  /*
3681  * "ago" is only allowed to appear at the end of the
3682  * interval.
3683  */
3684  if (i != nf - 1)
3685  return DTERR_BAD_FORMAT;
3686  is_before = true;
3687  type = uval;
3688  break;
3689 
3690  case RESERV:
3691  tmask = (DTK_DATE_M | DTK_TIME_M);
3692 
3693  /*
3694  * Only reserved words corresponding to infinite
3695  * intervals are accepted.
3696  */
3697  if (uval != DTK_LATE && uval != DTK_EARLY)
3698  return DTERR_BAD_FORMAT;
3699 
3700  /*
3701  * Infinity cannot be followed by anything else. We
3702  * could allow "ago" to reverse the sign of infinity
3703  * but using signed infinity is more intuitive.
3704  */
3705  if (i != nf - 1)
3706  return DTERR_BAD_FORMAT;
3707 
3708  *dtype = uval;
3709  break;
3710 
3711  default:
3712  return DTERR_BAD_FORMAT;
3713  }
3714  break;
3715 
3716  default:
3717  return DTERR_BAD_FORMAT;
3718  }
3719 
3720  if (tmask & fmask)
3721  return DTERR_BAD_FORMAT;
3722  fmask |= tmask;
3723  }
3724 
3725  /* ensure that at least one time field has been found */
3726  if (fmask == 0)
3727  return DTERR_BAD_FORMAT;
3728 
3729  /* reject if unit appeared and was never handled */
3730  if (parsing_unit_val)
3731  return DTERR_BAD_FORMAT;
3732 
3733  /* finally, AGO negates everything */
3734  if (is_before)
3735  {
3736  if (itm_in->tm_usec == PG_INT64_MIN ||
3737  itm_in->tm_mday == INT_MIN ||
3738  itm_in->tm_mon == INT_MIN ||
3739  itm_in->tm_year == INT_MIN)
3740  return DTERR_FIELD_OVERFLOW;
3741 
3742  itm_in->tm_usec = -itm_in->tm_usec;
3743  itm_in->tm_mday = -itm_in->tm_mday;
3744  itm_in->tm_mon = -itm_in->tm_mon;
3745  itm_in->tm_year = -itm_in->tm_year;
3746  }
3747 
3748  return 0;
3749 }
3750 
3751 
3752 /*
3753  * Helper functions to avoid duplicated code in DecodeISO8601Interval.
3754  *
3755  * Parse a decimal value and break it into integer and fractional parts.
3756  * Set *endptr to end+1 of the parsed substring.
3757  * Returns 0 or DTERR code.
3758  */
3759 static int
3760 ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart)
3761 {
3762  double val;
3763 
3764  /*
3765  * Historically this has accepted anything that strtod() would take,
3766  * notably including "e" notation, so continue doing that. This is
3767  * slightly annoying because the precision of double is less than that of
3768  * int64, so we would lose accuracy for inputs larger than 2^53 or so.
3769  * However, historically we rejected inputs outside the int32 range,
3770  * making that concern moot. What we do now is reject abs(val) above
3771  * 1.0e15 (a round number a bit less than 2^50), so that any accepted
3772  * value will have an exact integer part, and thereby a fraction part with
3773  * abs(*fpart) less than 1. In the absence of field complaints it doesn't
3774  * seem worth working harder.
3775  */
3776  if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
3777  return DTERR_BAD_FORMAT;
3778  errno = 0;
3779  val = strtod(str, endptr);
3780  /* did we not see anything that looks like a double? */
3781  if (*endptr == str || errno != 0)
3782  return DTERR_BAD_FORMAT;
3783  /* watch out for overflow, including infinities; reject NaN too */
3784  if (isnan(val) || val < -1.0e15 || val > 1.0e15)
3785  return DTERR_FIELD_OVERFLOW;
3786  /* be very sure we truncate towards zero (cf dtrunc()) */
3787  if (val >= 0)
3788  *ipart = (int64) floor(val);
3789  else
3790  *ipart = (int64) -floor(-val);
3791  *fpart = val - *ipart;
3792  /* Callers expect this to hold */
3793  Assert(*fpart > -1.0 && *fpart < 1.0);
3794  return 0;
3795 }
3796 
3797 /*
3798  * Determine number of integral digits in a valid ISO 8601 number field
3799  * (we should ignore sign and any fraction part)
3800  */
3801 static int
3802 ISO8601IntegerWidth(char *fieldstart)
3803 {
3804  /* We might have had a leading '-' */
3805  if (*fieldstart == '-')
3806  fieldstart++;
3807  return strspn(fieldstart, "0123456789");
3808 }
3809 
3810 
3811 /* DecodeISO8601Interval()
3812  * Decode an ISO 8601 time interval of the "format with designators"
3813  * (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
3814  * Examples: P1D for 1 day
3815  * PT1H for 1 hour
3816  * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
3817  * P0002-06-07T01:30:00 the same value in alternative format
3818  *
3819  * Returns 0 if successful, DTERR code if bogus input detected.
3820  * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
3821  * ISO8601, otherwise this could cause unexpected error messages.
3822  * dtype and itm_in are output parameters.
3823  *
3824  * A couple exceptions from the spec:
3825  * - a week field ('W') may coexist with other units
3826  * - allows decimals in fields other than the least significant unit.
3827  */
3828 int
3830  int *dtype, struct pg_itm_in *itm_in)
3831 {
3832  bool datepart = true;
3833  bool havefield = false;
3834 
3835  *dtype = DTK_DELTA;
3836  ClearPgItmIn(itm_in);
3837 
3838  if (strlen(str) < 2 || str[0] != 'P')
3839  return DTERR_BAD_FORMAT;
3840 
3841  str++;
3842  while (*str)
3843  {
3844  char *fieldstart;
3845  int64 val;
3846  double fval;
3847  char unit;
3848  int dterr;
3849 
3850  if (*str == 'T') /* T indicates the beginning of the time part */
3851  {
3852  datepart = false;
3853  havefield = false;
3854  str++;
3855  continue;
3856  }
3857 
3858  fieldstart = str;
3859  dterr = ParseISO8601Number(str, &str, &val, &fval);
3860  if (dterr)
3861  return dterr;
3862 
3863  /*
3864  * Note: we could step off the end of the string here. Code below
3865  * *must* exit the loop if unit == '\0'.
3866  */
3867  unit = *str++;
3868 
3869  if (datepart)
3870  {
3871  switch (unit) /* before T: Y M W D */
3872  {
3873  case 'Y':
3874  if (!AdjustYears(val, 1, itm_in) ||
3875  !AdjustFractYears(fval, 1, itm_in))
3876  return DTERR_FIELD_OVERFLOW;
3877  break;
3878  case 'M':
3879  if (!AdjustMonths(val, itm_in) ||
3880  !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3881  return DTERR_FIELD_OVERFLOW;
3882  break;
3883  case 'W':
3884  if (!AdjustDays(val, 7, itm_in) ||
3885  !AdjustFractDays(fval, 7, itm_in))
3886  return DTERR_FIELD_OVERFLOW;
3887  break;
3888  case 'D':
3889  if (!AdjustDays(val, 1, itm_in) ||
3890  !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3891  return DTERR_FIELD_OVERFLOW;
3892  break;
3893  case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
3894  case '\0':
3895  if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
3896  {
3897  if (!AdjustYears(val / 10000, 1, itm_in) ||
3898  !AdjustMonths((val / 100) % 100, itm_in) ||
3899  !AdjustDays(val % 100, 1, itm_in) ||
3900  !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3901  return DTERR_FIELD_OVERFLOW;
3902  if (unit == '\0')
3903  return 0;
3904  datepart = false;
3905  havefield = false;
3906  continue;
3907  }
3908  /* Else fall through to extended alternative format */
3909  /* FALLTHROUGH */
3910  case '-': /* ISO 8601 4.4.3.3 Alternative Format,
3911  * Extended */
3912  if (havefield)
3913  return DTERR_BAD_FORMAT;
3914 
3915  if (!AdjustYears(val, 1, itm_in) ||
3916  !AdjustFractYears(fval, 1, itm_in))
3917  return DTERR_FIELD_OVERFLOW;
3918  if (unit == '\0')
3919  return 0;
3920  if (unit == 'T')
3921  {
3922  datepart = false;
3923  havefield = false;
3924  continue;
3925  }
3926 
3927  dterr = ParseISO8601Number(str, &str, &val, &fval);
3928  if (dterr)
3929  return dterr;
3930  if (!AdjustMonths(val, itm_in) ||
3931  !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3932  return DTERR_FIELD_OVERFLOW;
3933  if (*str == '\0')
3934  return 0;
3935  if (*str == 'T')
3936  {
3937  datepart = false;
3938  havefield = false;
3939  continue;
3940  }
3941  if (*str != '-')
3942  return DTERR_BAD_FORMAT;
3943  str++;
3944 
3945  dterr = ParseISO8601Number(str, &str, &val, &fval);
3946  if (dterr)
3947  return dterr;
3948  if (!AdjustDays(val, 1, itm_in) ||
3949  !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3950  return DTERR_FIELD_OVERFLOW;
3951  if (*str == '\0')
3952  return 0;
3953  if (*str == 'T')
3954  {
3955  datepart = false;
3956  havefield = false;
3957  continue;
3958  }
3959  return DTERR_BAD_FORMAT;
3960  default:
3961  /* not a valid date unit suffix */
3962  return DTERR_BAD_FORMAT;
3963  }
3964  }
3965  else
3966  {
3967  switch (unit) /* after T: H M S */
3968  {
3969  case 'H':
3970  if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3971  return DTERR_FIELD_OVERFLOW;
3972  break;
3973  case 'M':
3974  if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
3975  return DTERR_FIELD_OVERFLOW;
3976  break;
3977  case 'S':
3978  if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
3979  return DTERR_FIELD_OVERFLOW;
3980  break;
3981  case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
3982  if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
3983  {
3984  if (!AdjustMicroseconds(val / 10000, 0, USECS_PER_HOUR, itm_in) ||
3985  !AdjustMicroseconds((val / 100) % 100, 0, USECS_PER_MINUTE, itm_in) ||
3986  !AdjustMicroseconds(val % 100, 0, USECS_PER_SEC, itm_in) ||
3987  !AdjustFractMicroseconds(fval, 1, itm_in))
3988  return DTERR_FIELD_OVERFLOW;
3989  return 0;
3990  }
3991  /* Else fall through to extended alternative format */
3992  /* FALLTHROUGH */
3993  case ':': /* ISO 8601 4.4.3.3 Alternative Format,
3994  * Extended */
3995  if (havefield)
3996  return DTERR_BAD_FORMAT;
3997 
3998  if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3999  return DTERR_FIELD_OVERFLOW;
4000  if (unit == '\0')
4001  return 0;
4002 
4003  dterr = ParseISO8601Number(str, &str, &val, &fval);
4004  if (dterr)
4005  return dterr;
4006  if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
4007  return DTERR_FIELD_OVERFLOW;
4008  if (*str == '\0')
4009  return 0;
4010  if (*str != ':')
4011  return DTERR_BAD_FORMAT;
4012  str++;
4013 
4014  dterr = ParseISO8601Number(str, &str, &val, &fval);
4015  if (dterr)
4016  return dterr;
4017  if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
4018  return DTERR_FIELD_OVERFLOW;
4019  if (*str == '\0')
4020  return 0;
4021  return DTERR_BAD_FORMAT;
4022 
4023  default:
4024  /* not a valid time unit suffix */
4025  return DTERR_BAD_FORMAT;
4026  }
4027  }
4028 
4029  havefield = true;
4030  }
4031 
4032  return 0;
4033 }
4034 
4035 
4036 /* DecodeUnits()
4037  * Decode text string using lookup table.
4038  *
4039  * This routine recognizes keywords associated with time interval units.
4040  *
4041  * Given string must be lowercased already.
4042  *
4043  * Implement a cache lookup since it is likely that dates
4044  * will be related in format.
4045  */
4046 int
4047 DecodeUnits(int field, const char *lowtoken, int *val)
4048 {
4049  int type;
4050  const datetkn *tp;
4051 
4052  tp = deltacache[field];
4053  /* use strncmp so that we match truncated tokens */
4054  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
4055  {
4056  tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
4057  }
4058  if (tp == NULL)
4059  {
4060  type = UNKNOWN_FIELD;
4061  *val = 0;
4062  }
4063  else
4064  {
4065  deltacache[field] = tp;
4066  type = tp->type;
4067  *val = tp->value;
4068  }
4069 
4070  return type;
4071 } /* DecodeUnits() */
4072 
4073 /*
4074  * Report an error detected by one of the datetime input processing routines.
4075  *
4076  * dterr is the error code, and *extra contains any auxiliary info we need
4077  * for the error report. extra can be NULL if not needed for the particular
4078  * dterr value.
4079  *
4080  * str is the original input string, and datatype is the name of the datatype
4081  * we were trying to accept. (For some DTERR codes, these are not used and
4082  * can be NULL.)
4083  *
4084  * If escontext points to an ErrorSaveContext node, that is filled instead
4085  * of throwing an error.
4086  *
4087  * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
4088  * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
4089  * separate SQLSTATE codes, so ...
4090  */
4091 void
4093  const char *str, const char *datatype,
4094  Node *escontext)
4095 {
4096  switch (dterr)
4097  {
4098  case DTERR_FIELD_OVERFLOW:
4099  errsave(escontext,
4100  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
4101  errmsg("date/time field value out of range: \"%s\"",
4102  str)));
4103  break;
4105  /* <nanny>same as above, but add hint about DateStyle</nanny> */
4106  errsave(escontext,
4107  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
4108  errmsg("date/time field value out of range: \"%s\"",
4109  str),
4110  errhint("Perhaps you need a different \"datestyle\" setting.")));
4111  break;
4113  errsave(escontext,
4114  (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
4115  errmsg("interval field value out of range: \"%s\"",
4116  str)));
4117  break;
4118  case DTERR_TZDISP_OVERFLOW:
4119  errsave(escontext,
4120  (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
4121  errmsg("time zone displacement out of range: \"%s\"",
4122  str)));
4123  break;
4124  case DTERR_BAD_TIMEZONE:
4125  errsave(escontext,
4126  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4127  errmsg("time zone \"%s\" not recognized",
4128  extra->dtee_timezone)));
4129  break;
4130  case DTERR_BAD_ZONE_ABBREV:
4131  errsave(escontext,
4132  (errcode(ERRCODE_CONFIG_FILE_ERROR),
4133  errmsg("time zone \"%s\" not recognized",
4134  extra->dtee_timezone),
4135  errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
4136  extra->dtee_abbrev)));
4137  break;
4138  case DTERR_BAD_FORMAT:
4139  default:
4140  errsave(escontext,
4141  (errcode(ERRCODE_INVALID_DATETIME_FORMAT),
4142  errmsg("invalid input syntax for type %s: \"%s\"",
4143  datatype, str)));
4144  break;
4145  }
4146 }
4147 
4148 /* datebsearch()
4149  * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
4150  * is WAY faster than the generic bsearch().
4151  */
4152 static const datetkn *
4153 datebsearch(const char *key, const datetkn *base, int nel)
4154 {
4155  if (nel > 0)
4156  {
4157  const datetkn *last = base + nel - 1,
4158  *position;
4159  int result;
4160 
4161  while (last >= base)
4162  {
4163  position = base + ((last - base) >> 1);
4164  /* precheck the first character for a bit of extra speed */
4165  result = (int) key[0] - (int) position->token[0];
4166  if (result == 0)
4167  {
4168  /* use strncmp so that we match truncated tokens */
4169  result = strncmp(key, position->token, TOKMAXLEN);
4170  if (result == 0)
4171  return position;
4172  }
4173  if (result < 0)
4174  last = position - 1;
4175  else
4176  base = position + 1;
4177  }
4178  }
4179  return NULL;
4180 }
4181 
4182 /* EncodeTimezone()
4183  * Copies representation of a numeric timezone offset to str.
4184  *
4185  * Returns a pointer to the new end of string. No NUL terminator is put
4186  * there; callers are responsible for NUL terminating str themselves.
4187  */
4188 static char *
4189 EncodeTimezone(char *str, int tz, int style)
4190 {
4191  int hour,
4192  min,
4193  sec;
4194 
4195  sec = abs(tz);
4196  min = sec / SECS_PER_MINUTE;
4197  sec -= min * SECS_PER_MINUTE;
4198  hour = min / MINS_PER_HOUR;
4199  min -= hour * MINS_PER_HOUR;
4200 
4201  /* TZ is negated compared to sign we wish to display ... */
4202  *str++ = (tz <= 0 ? '+' : '-');
4203 
4204  if (sec != 0)
4205  {
4206  str = pg_ultostr_zeropad(str, hour, 2);
4207  *str++ = ':';
4208  str = pg_ultostr_zeropad(str, min, 2);
4209  *str++ = ':';
4210  str = pg_ultostr_zeropad(str, sec, 2);
4211  }
4212  else if (min != 0 || style == USE_XSD_DATES)
4213  {
4214  str = pg_ultostr_zeropad(str, hour, 2);
4215  *str++ = ':';
4216  str = pg_ultostr_zeropad(str, min, 2);
4217  }
4218  else
4219  str = pg_ultostr_zeropad(str, hour, 2);
4220  return str;
4221 }
4222 
4223 /* EncodeDateOnly()
4224  * Encode date as local time.
4225  */
4226 void
4227 EncodeDateOnly(struct pg_tm *tm, int style, char *str)
4228 {
4229  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4230 
4231  switch (style)
4232  {
4233  case USE_ISO_DATES:
4234  case USE_XSD_DATES:
4235  /* compatible with ISO date formats */
4237  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4238  *str++ = '-';
4240  *str++ = '-';
4242  break;
4243 
4244  case USE_SQL_DATES:
4245  /* compatible with Oracle/Ingres date formats */
4246  if (DateOrder == DATEORDER_DMY)
4247  {
4249  *str++ = '/';
4251  }
4252  else
4253  {
4255  *str++ = '/';
4257  }
4258  *str++ = '/';
4260  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4261  break;
4262 
4263  case USE_GERMAN_DATES:
4264  /* German-style date format */
4266  *str++ = '.';
4268  *str++ = '.';
4270  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4271  break;
4272 
4273  case USE_POSTGRES_DATES:
4274  default:
4275  /* traditional date-only style for Postgres */
4276  if (DateOrder == DATEORDER_DMY)
4277  {
4279  *str++ = '-';
4281  }
4282  else
4283  {
4285  *str++ = '-';
4287  }
4288  *str++ = '-';
4290  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4291  break;
4292  }
4293 
4294  if (tm->tm_year <= 0)
4295  {
4296  memcpy(str, " BC", 3); /* Don't copy NUL */
4297  str += 3;
4298  }
4299  *str = '\0';
4300 }
4301 
4302 
4303 /* EncodeTimeOnly()
4304  * Encode time fields only.
4305  *
4306  * tm and fsec are the value to encode, print_tz determines whether to include
4307  * a time zone (the difference between time and timetz types), tz is the
4308  * numeric time zone offset, style is the date style, str is where to write the
4309  * output.
4310  */
4311 void
4312 EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
4313 {
4315  *str++ = ':';
4317  *str++ = ':';
4318  str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
4319  if (print_tz)
4320  str = EncodeTimezone(str, tz, style);
4321  *str = '\0';
4322 }
4323 
4324 
4325 /* EncodeDateTime()
4326  * Encode date and time interpreted as local time.
4327  *
4328  * tm and fsec are the value to encode, print_tz determines whether to include
4329  * a time zone (the difference between timestamp and timestamptz types), tz is
4330  * the numeric time zone offset, tzn is the textual time zone, which if
4331  * specified will be used instead of tz by some styles, style is the date
4332  * style, str is where to write the output.
4333  *
4334  * Supported date styles:
4335  * Postgres - day mon hh:mm:ss yyyy tz
4336  * SQL - mm/dd/yyyy hh:mm:ss.ss tz
4337  * ISO - yyyy-mm-dd hh:mm:ss+/-tz
4338  * German - dd.mm.yyyy hh:mm:ss tz
4339  * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
4340  */
4341 void
4342 EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
4343 {
4344  int day;
4345 
4346  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4347 
4348  /*
4349  * Negative tm_isdst means we have no valid time zone translation.
4350  */
4351  if (tm->tm_isdst < 0)
4352  print_tz = false;
4353 
4354  switch (style)
4355  {
4356  case USE_ISO_DATES:
4357  case USE_XSD_DATES:
4358  /* Compatible with ISO-8601 date formats */
4360  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4361  *str++ = '-';
4363  *str++ = '-';
4365  *str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
4367  *str++ = ':';
4369  *str++ = ':';
4370  str = AppendTimestampSeconds(str, tm, fsec);
4371  if (print_tz)
4372  str = EncodeTimezone(str, tz, style);
4373  break;
4374 
4375  case USE_SQL_DATES:
4376  /* Compatible with Oracle/Ingres date formats */
4377  if (DateOrder == DATEORDER_DMY)
4378  {
4380  *str++ = '/';
4382  }
4383  else
4384  {
4386  *str++ = '/';
4388  }
4389  *str++ = '/';
4391  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4392  *str++ = ' ';
4394  *str++ = ':';
4396  *str++ = ':';
4397  str = AppendTimestampSeconds(str, tm, fsec);
4398 
4399  /*
4400  * Note: the uses of %.*s in this function would be risky if the
4401  * timezone names ever contain non-ASCII characters, since we are
4402  * not being careful to do encoding-aware clipping. However, all
4403  * TZ abbreviations in the IANA database are plain ASCII.
4404  */
4405  if (print_tz)
4406  {
4407  if (tzn)
4408  {
4409  sprintf(str, " %.*s", MAXTZLEN, tzn);
4410  str += strlen(str);
4411  }
4412  else
4413  str = EncodeTimezone(str, tz, style);
4414  }
4415  break;
4416 
4417  case USE_GERMAN_DATES:
4418  /* German variant on European style */
4420  *str++ = '.';
4422  *str++ = '.';
4424  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4425  *str++ = ' ';
4427  *str++ = ':';
4429  *str++ = ':';
4430  str = AppendTimestampSeconds(str, tm, fsec);
4431 
4432  if (print_tz)
4433  {
4434  if (tzn)
4435  {
4436  sprintf(str, " %.*s", MAXTZLEN, tzn);
4437  str += strlen(str);
4438  }
4439  else
4440  str = EncodeTimezone(str, tz, style);
4441  }
4442  break;
4443 
4444  case USE_POSTGRES_DATES:
4445  default:
4446  /* Backward-compatible with traditional Postgres abstime dates */
4447  day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
4448  tm->tm_wday = j2day(day);
4449  memcpy(str, days[tm->tm_wday], 3);
4450  str += 3;
4451  *str++ = ' ';
4452  if (DateOrder == DATEORDER_DMY)
4453  {
4455  *str++ = ' ';
4456  memcpy(str, months[tm->tm_mon - 1], 3);
4457  str += 3;
4458  }
4459  else
4460  {
4461  memcpy(str, months[tm->tm_mon - 1], 3);
4462  str += 3;
4463  *str++ = ' ';
4465  }
4466  *str++ = ' ';
4468  *str++ = ':';
4470  *str++ = ':';
4471  str = AppendTimestampSeconds(str, tm, fsec);
4472  *str++ = ' ';
4474  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4475 
4476  if (print_tz)
4477  {
4478  if (tzn)
4479  {
4480  sprintf(str, " %.*s", MAXTZLEN, tzn);
4481  str += strlen(str);
4482  }
4483  else
4484  {
4485  /*
4486  * We have a time zone, but no string version. Use the
4487  * numeric form, but be sure to include a leading space to
4488  * avoid formatting something which would be rejected by
4489  * the date/time parser later. - thomas 2001-10-19
4490  */
4491  *str++ = ' ';
4492  str = EncodeTimezone(str, tz, style);
4493  }
4494  }
4495  break;
4496  }
4497 
4498  if (tm->tm_year <= 0)
4499  {
4500  memcpy(str, " BC", 3); /* Don't copy NUL */
4501  str += 3;
4502  }
4503  *str = '\0';
4504 }
4505 
4506 
4507 /*
4508  * Helper functions to avoid duplicated code in EncodeInterval.
4509  */
4510 
4511 /* Append an ISO-8601-style interval field, but only if value isn't zero */
4512 static char *
4513 AddISO8601IntPart(char *cp, int64 value, char units)
4514 {
4515  if (value == 0)
4516  return cp;
4517  sprintf(cp, "%lld%c", (long long) value, units);
4518  return cp + strlen(cp);
4519 }
4520 
4521 /* Append a postgres-style interval field, but only if value isn't zero */
4522 static char *
4523 AddPostgresIntPart(char *cp, int64 value, const char *units,
4524  bool *is_zero, bool *is_before)
4525 {
4526  if (value == 0)
4527  return cp;
4528  sprintf(cp, "%s%s%lld %s%s",
4529  (!*is_zero) ? " " : "",
4530  (*is_before && value > 0) ? "+" : "",
4531  (long long) value,
4532  units,
4533  (value != 1) ? "s" : "");
4534 
4535  /*
4536  * Each nonzero field sets is_before for (only) the next one. This is a
4537  * tad bizarre but it's how it worked before...
4538  */
4539  *is_before = (value < 0);
4540  *is_zero = false;
4541  return cp + strlen(cp);
4542 }
4543 
4544 /* Append a verbose-style interval field, but only if value isn't zero */
4545 static char *
4546 AddVerboseIntPart(char *cp, int64 value, const char *units,
4547  bool *is_zero, bool *is_before)
4548 {
4549  if (value == 0)
4550  return cp;
4551  /* first nonzero value sets is_before */
4552  if (*is_zero)
4553  {
4554  *is_before = (value < 0);
4555  value = i64abs(value);
4556  }
4557  else if (*is_before)
4558  value = -value;
4559  sprintf(cp, " %lld %s%s", (long long) value, units, (value == 1) ? "" : "s");
4560  *is_zero = false;
4561  return cp + strlen(cp);
4562 }
4563 
4564 
4565 /* EncodeInterval()
4566  * Interpret time structure as a delta time and convert to string.
4567  *
4568  * Support "traditional Postgres" and ISO-8601 styles.
4569  * Actually, afaik ISO does not address time interval formatting,
4570  * but this looks similar to the spec for absolute date/time.
4571  * - thomas 1998-04-30
4572  *
4573  * Actually, afaik, ISO 8601 does specify formats for "time
4574  * intervals...[of the]...format with time-unit designators", which
4575  * are pretty ugly. The format looks something like
4576  * P1Y1M1DT1H1M1.12345S
4577  * but useful for exchanging data with computers instead of humans.
4578  * - ron 2003-07-14
4579  *
4580  * And ISO's SQL 2008 standard specifies standards for
4581  * "year-month literal"s (that look like '2-3') and
4582  * "day-time literal"s (that look like ('4 5:6:7')
4583  */
4584 void
4585 EncodeInterval(struct pg_itm *itm, int style, char *str)
4586 {
4587  char *cp = str;
4588  int year = itm->tm_year;
4589  int mon = itm->tm_mon;
4590  int64 mday = itm->tm_mday; /* tm_mday could be INT_MIN */
4591  int64 hour = itm->tm_hour;
4592  int min = itm->tm_min;
4593  int sec = itm->tm_sec;
4594  int fsec = itm->tm_usec;
4595  bool is_before = false;
4596  bool is_zero = true;
4597 
4598  /*
4599  * The sign of year and month are guaranteed to match, since they are
4600  * stored internally as "month". But we'll need to check for is_before and
4601  * is_zero when determining the signs of day and hour/minute/seconds
4602  * fields.
4603  */
4604  switch (style)
4605  {
4606  /* SQL Standard interval format */
4607  case INTSTYLE_SQL_STANDARD:
4608  {
4609  bool has_negative = year < 0 || mon < 0 ||
4610  mday < 0 || hour < 0 ||
4611  min < 0 || sec < 0 || fsec < 0;
4612  bool has_positive = year > 0 || mon > 0 ||
4613  mday > 0 || hour > 0 ||
4614  min > 0 || sec > 0 || fsec > 0;
4615  bool has_year_month = year != 0 || mon != 0;
4616  bool has_day_time = mday != 0 || hour != 0 ||
4617  min != 0 || sec != 0 || fsec != 0;
4618  bool has_day = mday != 0;
4619  bool sql_standard_value = !(has_negative && has_positive) &&
4620  !(has_year_month && has_day_time);
4621 
4622  /*
4623  * SQL Standard wants only 1 "<sign>" preceding the whole
4624  * interval ... but can't do that if mixed signs.
4625  */
4626  if (has_negative && sql_standard_value)
4627  {
4628  *cp++ = '-';
4629  year = -year;
4630  mon = -mon;
4631  mday = -mday;
4632  hour = -hour;
4633  min = -min;
4634  sec = -sec;
4635  fsec = -fsec;
4636  }
4637 
4638  if (!has_negative && !has_positive)
4639  {
4640  sprintf(cp, "0");
4641  }
4642  else if (!sql_standard_value)
4643  {
4644  /*
4645  * For non sql-standard interval values, force outputting
4646  * the signs to avoid ambiguities with intervals with
4647  * mixed sign components.
4648  */
4649  char year_sign = (year < 0 || mon < 0) ? '-' : '+';
4650  char day_sign = (mday < 0) ? '-' : '+';
4651  char sec_sign = (hour < 0 || min < 0 ||
4652  sec < 0 || fsec < 0) ? '-' : '+';
4653 
4654  sprintf(cp, "%c%d-%d %c%lld %c%lld:%02d:",
4655  year_sign, abs(year), abs(mon),
4656  day_sign, (long long) i64abs(mday),
4657  sec_sign, (long long) i64abs(hour), abs(min));
4658  cp += strlen(cp);
4659  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4660  *cp = '\0';
4661  }
4662  else if (has_year_month)
4663  {
4664  sprintf(cp, "%d-%d", year, mon);
4665  }
4666  else if (has_day)
4667  {
4668  sprintf(cp, "%lld %lld:%02d:",
4669  (long long) mday, (long long) hour, min);
4670  cp += strlen(cp);
4671  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4672  *cp = '\0';
4673  }
4674  else
4675  {
4676  sprintf(cp, "%lld:%02d:", (long long) hour, min);
4677  cp += strlen(cp);
4678  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4679  *cp = '\0';
4680  }
4681  }
4682  break;
4683 
4684  /* ISO 8601 "time-intervals by duration only" */
4685  case INTSTYLE_ISO_8601:
4686  /* special-case zero to avoid printing nothing */
4687  if (year == 0 && mon == 0 && mday == 0 &&
4688  hour == 0 && min == 0 && sec == 0 && fsec == 0)
4689  {
4690  sprintf(cp, "PT0S");
4691  break;
4692  }
4693  *cp++ = 'P';
4694  cp = AddISO8601IntPart(cp, year, 'Y');
4695  cp = AddISO8601IntPart(cp, mon, 'M');
4696  cp = AddISO8601IntPart(cp, mday, 'D');
4697  if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
4698  *cp++ = 'T';
4699  cp = AddISO8601IntPart(cp, hour, 'H');
4700  cp = AddISO8601IntPart(cp, min, 'M');
4701  if (sec != 0 || fsec != 0)
4702  {
4703  if (sec < 0 || fsec < 0)
4704  *cp++ = '-';
4705  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4706  *cp++ = 'S';
4707  *cp++ = '\0';
4708  }
4709  break;
4710 
4711  /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
4712  case INTSTYLE_POSTGRES:
4713  cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
4714 
4715  /*
4716  * Ideally we should spell out "month" like we do for "year" and
4717  * "day". However, for backward compatibility, we can't easily
4718  * fix this. bjm 2011-05-24
4719  */
4720  cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
4721  cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
4722  if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
4723  {
4724  bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
4725 
4726  sprintf(cp, "%s%s%02lld:%02d:",
4727  is_zero ? "" : " ",
4728  (minus ? "-" : (is_before ? "+" : "")),
4729  (long long) i64abs(hour), abs(min));
4730  cp += strlen(cp);
4731  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4732  *cp = '\0';
4733  }
4734  break;
4735 
4736  /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
4738  default:
4739  strcpy(cp, "@");
4740  cp++;
4741  cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
4742  cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
4743  cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
4744  cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
4745  cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
4746  if (sec != 0 || fsec != 0)
4747  {
4748  *cp++ = ' ';
4749  if (sec < 0 || (sec == 0 && fsec < 0))
4750  {
4751  if (is_zero)
4752  is_before = true;
4753  else if (!is_before)
4754  *cp++ = '-';
4755  }
4756  else if (is_before)
4757  *cp++ = '-';
4758  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4759  /* We output "ago", not negatives, so use abs(). */
4760  sprintf(cp, " sec%s",
4761  (abs(sec) != 1 || fsec != 0) ? "s" : "");
4762  is_zero = false;
4763  }
4764  /* identically zero? then put in a unitless zero... */
4765  if (is_zero)
4766  strcat(cp, " 0");
4767  if (is_before)
4768  strcat(cp, " ago");
4769  break;
4770  }
4771 }
4772 
4773 
4774 /*
4775  * We've been burnt by stupid errors in the ordering of the datetkn tables
4776  * once too often. Arrange to check them during postmaster start.
4777  */
4778 static bool
4779 CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
4780 {
4781  bool ok = true;
4782  int i;
4783 
4784  for (i = 0; i < nel; i++)
4785  {
4786  /* check for token strings that don't fit */
4787  if (strlen(base[i].token) > TOKMAXLEN)
4788  {
4789  /* %.*s is safe since all our tokens are ASCII */
4790  elog(LOG, "token too long in %s table: \"%.*s\"",
4791  tablename,
4792  TOKMAXLEN + 1, base[i].token);
4793  ok = false;
4794  break; /* don't risk applying strcmp */
4795  }
4796  /* check for out of order */
4797  if (i > 0 &&
4798  strcmp(base[i - 1].token, base[i].token) >= 0)
4799  {
4800  elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
4801  tablename,
4802  base[i - 1].token,
4803  base[i].token);
4804  ok = false;
4805  }
4806  }
4807  return ok;
4808 }
4809 
4810 bool
4812 {
4813  bool ok = true;
4814 
4815  Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
4816  Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
4817 
4818  ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
4819  ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
4820  return ok;
4821 }
4822 
4823 /*
4824  * Common code for temporal prosupport functions: simplify, if possible,
4825  * a call to a temporal type's length-coercion function.
4826  *
4827  * Types time, timetz, timestamp and timestamptz each have a range of allowed
4828  * precisions. An unspecified precision is rigorously equivalent to the
4829  * highest specifiable precision. We can replace the function call with a
4830  * no-op RelabelType if it is coercing to the same or higher precision as the
4831  * input is known to have.
4832  *
4833  * The input Node is always a FuncExpr, but to reduce the #include footprint
4834  * of datetime.h, we declare it as Node *.
4835  *
4836  * Note: timestamp_scale throws an error when the typmod is out of range, but
4837  * we can't get there from a cast: our typmodin will have caught it already.
4838  */
4839 Node *
4840 TemporalSimplify(int32 max_precis, Node *node)
4841 {
4842  FuncExpr *expr = castNode(FuncExpr, node);
4843  Node *ret = NULL;
4844  Node *typmod;
4845 
4846  Assert(list_length(expr->args) >= 2);
4847 
4848  typmod = (Node *) lsecond(expr->args);
4849 
4850  if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
4851  {
4852  Node *source = (Node *) linitial(expr->args);
4853  int32 old_precis = exprTypmod(source);
4854  int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
4855 
4856  if (new_precis < 0 || new_precis == max_precis ||
4857  (old_precis >= 0 && new_precis >= old_precis))
4858  ret = relabel_to_typmod(source, new_precis);
4859  }
4860 
4861  return ret;
4862 }
4863 
4864 /*
4865  * This function gets called during timezone config file load or reload
4866  * to create the final array of timezone tokens. The argument array
4867  * is already sorted in name order.
4868  *
4869  * The result is a TimeZoneAbbrevTable (which must be a single guc_malloc'd
4870  * chunk) or NULL on alloc failure. No other error conditions are defined.
4871  */
4873 ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
4874 {
4875  TimeZoneAbbrevTable *tbl;
4876  Size tbl_size;
4877  int i;
4878 
4879  /* Space for fixed fields and datetkn array */
4880  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4881  n * sizeof(datetkn);
4882  tbl_size = MAXALIGN(tbl_size);
4883  /* Count up space for dynamic abbreviations */
4884  for (i = 0; i < n; i++)
4885  {
4886  struct tzEntry *abbr = abbrevs + i;
4887 
4888  if (abbr->zone != NULL)
4889  {
4890  Size dsize;
4891 
4892  dsize = offsetof(DynamicZoneAbbrev, zone) +
4893  strlen(abbr->zone) + 1;
4894  tbl_size += MAXALIGN(dsize);
4895  }
4896  }
4897 
4898  /* Alloc the result ... */
4899  tbl = guc_malloc(LOG, tbl_size);
4900  if (!tbl)
4901  return NULL;
4902 
4903  /* ... and fill it in */
4904  tbl->tblsize = tbl_size;
4905  tbl->numabbrevs = n;
4906  /* in this loop, tbl_size reprises the space calculation above */
4907  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4908  n * sizeof(datetkn);
4909  tbl_size = MAXALIGN(tbl_size);
4910  for (i = 0; i < n; i++)
4911  {
4912  struct tzEntry *abbr = abbrevs + i;
4913  datetkn *dtoken = tbl->abbrevs + i;
4914 
4915  /* use strlcpy to truncate name if necessary */
4916  strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1);
4917  if (abbr->zone != NULL)
4918  {
4919  /* Allocate a DynamicZoneAbbrev for this abbreviation */
4920  DynamicZoneAbbrev *dtza;
4921  Size dsize;
4922 
4923  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size);
4924  dtza->tz = NULL;
4925  strcpy(dtza->zone, abbr->zone);
4926 
4927  dtoken->type = DYNTZ;
4928  /* value is offset from table start to DynamicZoneAbbrev */
4929  dtoken->value = (int32) tbl_size;
4930 
4931  dsize = offsetof(DynamicZoneAbbrev, zone) +
4932  strlen(abbr->zone) + 1;
4933  tbl_size += MAXALIGN(dsize);
4934  }
4935  else
4936  {
4937  dtoken->type = abbr->is_dst ? DTZ : TZ;
4938  dtoken->value = abbr->offset;
4939  }
4940  }
4941 
4942  /* Assert the two loops above agreed on size calculations */
4943  Assert(tbl->tblsize == tbl_size);
4944 
4945  /* Check the ordering, if testing */
4946  Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n));
4947 
4948  return tbl;
4949 }
4950 
4951 /*
4952  * Install a TimeZoneAbbrevTable as the active table.
4953  *
4954  * Caller is responsible that the passed table doesn't go away while in use.
4955  */
4956 void
4958 {
4959  zoneabbrevtbl = tbl;
4960  /* reset abbrevcache, which may contain pointers into old table */
4961  memset(abbrevcache, 0, sizeof(abbrevcache));
4962 }
4963 
4964 /*
4965  * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation.
4966  *
4967  * On failure, returns NULL and fills *extra for a DTERR_BAD_ZONE_ABBREV error.
4968  */
4969 static pg_tz *
4971  DateTimeErrorExtra *extra)
4972 {
4973  DynamicZoneAbbrev *dtza;
4974 
4975  /* Just some sanity checks to prevent indexing off into nowhere */
4976  Assert(tp->type == DYNTZ);
4977  Assert(tp->value > 0 && tp->value < tbl->tblsize);
4978 
4979  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value);
4980 
4981  /* Look up the underlying zone if we haven't already */
4982  if (dtza->tz == NULL)
4983  {
4984  dtza->tz = pg_tzset(dtza->zone);
4985  if (dtza->tz == NULL)
4986  {
4987  /* Ooops, bogus zone name in config file entry */
4988  extra->dtee_timezone = dtza->zone;
4989  extra->dtee_abbrev = tp->token;
4990  }
4991  }
4992  return dtza->tz;
4993 }
4994 
4995 
4996 /*
4997  * This set-returning function reads all the available time zone abbreviations
4998  * and returns a set of (abbrev, utc_offset, is_dst).
4999  */
5000 Datum
5002 {
5003  FuncCallContext *funcctx;
5004  int *pindex;
5005  Datum result;
5006  HeapTuple tuple;
5007  Datum values[3];
5008  bool nulls[3] = {0};
5009  const datetkn *tp;
5010  char buffer[TOKMAXLEN + 1];
5011  int gmtoffset;
5012  bool is_dst;
5013  unsigned char *p;
5014  struct pg_itm_in itm_in;
5015  Interval *resInterval;
5016 
5017  /* stuff done only on the first call of the function */
5018  if (SRF_IS_FIRSTCALL())
5019  {
5020  TupleDesc tupdesc;
5021  MemoryContext oldcontext;
5022 
5023  /* create a function context for cross-call persistence */
5024  funcctx = SRF_FIRSTCALL_INIT();
5025 
5026  /*
5027  * switch to memory context appropriate for multiple function calls
5028  */
5029  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
5030 
5031  /* allocate memory for user context */
5032  pindex = (int *) palloc(sizeof(int));
5033  *pindex = 0;
5034  funcctx->user_fctx = (void *) pindex;
5035 
5036  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
5037  elog(ERROR, "return type must be a row type");
5038  funcctx->tuple_desc = tupdesc;
5039 
5040  MemoryContextSwitchTo(oldcontext);
5041  }
5042 
5043  /* stuff done on every call of the function */
5044  funcctx = SRF_PERCALL_SETUP();
5045  pindex = (int *) funcctx->user_fctx;
5046 
5047  if (zoneabbrevtbl == NULL ||
5048  *pindex >= zoneabbrevtbl->numabbrevs)
5049  SRF_RETURN_DONE(funcctx);
5050 
5051  tp = zoneabbrevtbl->abbrevs + *pindex;
5052 
5053  switch (tp->type)
5054  {
5055  case TZ:
5056  gmtoffset = tp->value;
5057  is_dst = false;
5058  break;
5059  case DTZ:
5060  gmtoffset = tp->value;
5061  is_dst = true;
5062  break;
5063  case DYNTZ:
5064  {
5065  /* Determine the current meaning of the abbrev */
5066  pg_tz *tzp;
5067  DateTimeErrorExtra extra;
5068  TimestampTz now;
5069  int isdst;
5070 
5071  tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp, &extra);
5072  if (tzp == NULL)
5074  NULL, NULL, NULL);
5076  gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now,
5077  tp->token,
5078  tzp,
5079  &isdst);
5080  is_dst = (bool) isdst;
5081  break;
5082  }
5083  default:
5084  elog(ERROR, "unrecognized timezone type %d", (int) tp->type);
5085  gmtoffset = 0; /* keep compiler quiet */
5086  is_dst = false;
5087  break;
5088  }
5089 
5090  /*
5091  * Convert name to text, using upcasing conversion that is the inverse of
5092  * what ParseDateTime() uses.
5093  */
5094  strlcpy(buffer, tp->token, sizeof(buffer));
5095  for (p = (unsigned char *) buffer; *p; p++)
5096  *p = pg_toupper(*p);
5097 
5098  values[0] = CStringGetTextDatum(buffer);
5099 
5100  /* Convert offset (in seconds) to an interval; can't overflow */
5101  MemSet(&itm_in, 0, sizeof(struct pg_itm_in));
5102  itm_in.tm_usec = (int64) gmtoffset * USECS_PER_SEC;
5103  resInterval = (Interval *) palloc(sizeof(Interval));
5104  (void) itmin2interval(&itm_in, resInterval);
5105  values[1] = IntervalPGetDatum(resInterval);
5106 
5107  values[2] = BoolGetDatum(is_dst);
5108 
5109  (*pindex)++;
5110 
5111  tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
5112  result = HeapTupleGetDatum(tuple);
5113 
5114  SRF_RETURN_NEXT(funcctx, result);
5115 }
5116 
5117 /*
5118  * This set-returning function reads all the available full time zones
5119  * and returns a set of (name, abbrev, utc_offset, is_dst).
5120  */
5121 Datum
5123 {
5124  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
5125  pg_tzenum *tzenum;
5126  pg_tz *tz;
5127  Datum values[4];
5128  bool nulls[4] = {0};
5129  int tzoff;
5130  struct pg_tm tm;
5131  fsec_t fsec;
5132  const char *tzn;
5133  Interval *resInterval;
5134  struct pg_itm_in itm_in;
5135 
5136  InitMaterializedSRF(fcinfo, 0);
5137 
5138  /* initialize timezone scanning code */
5139  tzenum = pg_tzenumerate_start();
5140 
5141  /* search for another zone to display */
5142  for (;;)
5143  {
5144  tz = pg_tzenumerate_next(tzenum);
5145  if (!tz)
5146  break;
5147 
5148  /* Convert now() to local time in this zone */
5150  &tzoff, &tm, &fsec, &tzn, tz) != 0)
5151  continue; /* ignore if conversion fails */
5152 
5153  /*
5154  * IANA's rather silly "Factory" time zone used to emit ridiculously
5155  * long "abbreviations" such as "Local time zone must be set--see zic
5156  * manual page" or "Local time zone must be set--use tzsetup". While
5157  * modern versions of tzdb emit the much saner "-00", it seems some
5158  * benighted packagers are hacking the IANA data so that it continues
5159  * to produce these strings. To prevent producing a weirdly wide
5160  * abbrev column, reject ridiculously long abbreviations.
5161  */
5162  if (tzn && strlen(tzn) > 31)
5163  continue;
5164 
5166  values[1] = CStringGetTextDatum(tzn ? tzn : "");
5167 
5168  /* Convert tzoff to an interval; can't overflow */
5169  MemSet(&itm_in, 0, sizeof(struct pg_itm_in));
5170  itm_in.tm_usec = (int64) -tzoff * USECS_PER_SEC;
5171  resInterval = (Interval *) palloc(sizeof(Interval));
5172  (void) itmin2interval(&itm_in, resInterval);
5173  values[2] = IntervalPGetDatum(resInterval);
5174 
5175  values[3] = BoolGetDatum(tm.tm_isdst > 0);
5176 
5177  tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
5178  }
5179 
5180  pg_tzenumerate_end(tzenum);
5181  return (Datum) 0;
5182 }
static const datetkn * abbrevcache[MAXDATEFIELDS]
Definition: datetime.c:262
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm)
Definition: datetime.c:2398
const int day_tab[2][13]
Definition: datetime.c:75
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
Definition: datetime.c:1607
static char * AddVerboseIntPart(char *cp, int64 value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4546
#define APPEND_CHAR(bufptr, end, newchar)
static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2912
pg_tz * DecodeTimezoneNameToTz(const char *tzname)
Definition: datetime.c:3245
static char * AddPostgresIntPart(char *cp, int64 value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4523
static bool CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
Definition: datetime.c:4779
int DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, pg_tz *tzp, int *isdst)
Definition: datetime.c:1784
static int ParseFraction(char *cp, double *frac)
Definition: datetime.c:680
void InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl)
Definition: datetime.c:4957
static const datetkn datetktbl[]
Definition: datetime.c:105
static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum)
Definition: datetime.c:522
int DecodeUnits(int field, const char *lowtoken, int *val)
Definition: datetime.c:4047
static char * EncodeTimezone(char *str, int tz, int style)
Definition: datetime.c:4189
int DecodeTimeOnly(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp, DateTimeErrorExtra *extra)
Definition: datetime.c:1864
static TimeZoneAbbrevTable * zoneabbrevtbl
Definition: datetime.c:254
static const datetkn * deltacache[MAXDATEFIELDS]
Definition: datetime.c:260
int j2day(int date)
Definition: datetime.c:344
int ParseDateTime(const char *timestr, char *workbuf, size_t buflen, char **field, int *ftype, int maxfields, int *numfields)
Definition: datetime.c:754
void EncodeInterval(struct pg_itm *itm, int style, char *str)
Definition: datetime.c:4585
static bool AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:633
static const datetkn * datecache[MAXDATEFIELDS]
Definition: datetime.c:258
static int DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2727
int DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
Definition: datetime.c:1585
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst)
Definition: datetime.c:1821
static char * AddISO8601IntPart(char *cp, int64 value, char units)
Definition: datetime.c:4513
void DateTimeParseError(int dterr, DateTimeErrorExtra *extra, const char *str, const char *datatype, Node *escontext)
Definition: datetime.c:4092
static int ParseFractionalSecond(char *cp, fsec_t *fsec)
Definition: datetime.c:709
static bool AdjustFractYears(double frac, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:601
static bool AdjustMicroseconds(int64 val, double fval, int64 scale, struct pg_itm_in *itm_in)
Definition: datetime.c:618
static int DecodeTimeCommon(char *str, int fmask, int range, int *tmask, struct pg_itm *itm)
Definition: datetime.c:2590
int DecodeInterval(char **field, int *ftype, int nf, int range, int *dtype, struct pg_itm_in *itm_in)
Definition: datetime.c:3364
static int DecodeTimeForInterval(char *str, int fmask, int range, int *tmask, struct pg_itm_in *itm_in)
Definition: datetime.c:2701
bool CheckDateTokenTables(void)
Definition: datetime.c:4811
static const int szdeltatktbl
Definition: datetime.c:252
int DecodeTimezoneAbbrev(int field, const char *lowtoken, int *ftype, int *offset, pg_tz **tz, DateTimeErrorExtra *extra)
Definition: datetime.c:3091
Datum pg_timezone_names(PG_FUNCTION_ARGS)
Definition: datetime.c:5122
void EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
Definition: datetime.c:4312
static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:2672
static bool AdjustFractMicroseconds(double frac, int64 scale, struct pg_itm_in *itm_in)
Definition: datetime.c:537
int DecodeISO8601Interval(char *str, int *dtype, struct pg_itm_in *itm_in)
Definition: datetime.c:3829
int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, struct pg_tm *tm)
Definition: datetime.c:2508
int DecodeSpecial(int field, const char *lowtoken, int *val)
Definition: datetime.c:3148
void j2date(int jd, int *year, int *month, int *day)
Definition: datetime.c:311
void GetCurrentDateTime(struct pg_tm *tm)
Definition: datetime.c:366
static int ISO8601IntegerWidth(char *fieldstart)
Definition: datetime.c:3802
static bool AdjustYears(int64 val, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:661
Datum pg_timezone_abbrevs(PG_FUNCTION_ARGS)
Definition: datetime.c:5001
TimeZoneAbbrevTable * ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
Definition: datetime.c:4873
void EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
Definition: datetime.c:4342
int DecodeTimezone(const char *str, int *tzp)
Definition: datetime.c:3007
const char *const months[]
Definition: datetime.c:81
static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in)
Definition: datetime.c:649
static char * AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
Definition: datetime.c:448
static const int szdatetktbl
Definition: datetime.c:181
void EncodeDateOnly(struct pg_tm *tm, int style, char *str)
Definition: datetime.c:4227
static char * AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
Definition: datetime.c:511
static const datetkn * datebsearch(const char *key, const datetkn *base, int nel)
Definition: datetime.c:4153
static int ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart)
Definition: datetime.c:3760
int DecodeDateTime(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp, DateTimeErrorExtra *extra)
Definition: datetime.c:978
int date2j(int year, int month, int day)
Definition: datetime.c:286
static bool AdjustFractDays(double frac, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:569
static void ClearPgItmIn(struct pg_itm_in *itm_in)
Definition: datetime.c:3340
static const datetkn deltatktbl[]
Definition: datetime.c:187
void GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:387
const char *const days[]
Definition: datetime.c:84
static pg_tz * FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp, DateTimeErrorExtra *extra)
Definition: datetime.c:4970
int DecodeTimezoneName(const char *tzname, int *offset, pg_tz **tz)
Definition: datetime.c:3190
Node * TemporalSimplify(int32 max_precis, Node *node)
Definition: datetime.c:4840
int DecodeTimezoneAbbrevPrefix(const char *str, int *offset, pg_tz **tz)
Definition: datetime.c:3273
int DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
Definition: datetime.c:1746
void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
Definition: timestamp.c:1874