PostgreSQL Source Code  git master
datetime.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * datetime.c
4  * Support functions for date/time types.
5  *
6  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/datetime.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <ctype.h>
18 #include <limits.h>
19 #include <math.h>
20 
21 #include "access/htup_details.h"
22 #include "access/xact.h"
23 #include "catalog/pg_type.h"
24 #include "common/string.h"
25 #include "funcapi.h"
26 #include "miscadmin.h"
27 #include "nodes/nodeFuncs.h"
28 #include "utils/builtins.h"
29 #include "utils/date.h"
30 #include "utils/datetime.h"
31 #include "utils/memutils.h"
32 #include "utils/tzparser.h"
33 
34 
35 static int DecodeNumber(int flen, char *field, bool haveTextMonth,
36  int fmask, int *tmask,
37  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
38 static int DecodeNumberField(int len, char *str,
39  int fmask, int *tmask,
40  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
41 static int DecodeTime(char *str, int fmask, int range,
42  int *tmask, struct pg_tm *tm, fsec_t *fsec);
43 static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
44 static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
45  struct pg_tm *tm);
46 static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
47  int precision, bool fillzeros);
48 static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec,
49  int scale);
50 static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec,
51  int scale);
52 static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
53  pg_time_t *tp);
55  const char *abbr, pg_tz *tzp,
56  int *offset, int *isdst);
57 static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp);
58 
59 
60 const int day_tab[2][13] =
61 {
62  {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
63  {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
64 };
65 
66 const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
67 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
68 
69 const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
70 "Thursday", "Friday", "Saturday", NULL};
71 
72 
73 /*****************************************************************************
74  * PRIVATE ROUTINES *
75  *****************************************************************************/
76 
77 /*
78  * datetktbl holds date/time keywords.
79  *
80  * Note that this table must be strictly alphabetically ordered to allow an
81  * O(ln(N)) search algorithm to be used.
82  *
83  * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
84  * characters to fit.
85  *
86  * The static table contains no TZ, DTZ, or DYNTZ entries; rather those
87  * are loaded from configuration files and stored in zoneabbrevtbl, whose
88  * abbrevs[] field has the same format as the static datetktbl.
89  */
90 static const datetkn datetktbl[] = {
91  /* token, type, value */
92  {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
93  {DA_D, ADBC, AD}, /* "ad" for years > 0 */
94  {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
95  {"am", AMPM, AM},
96  {"apr", MONTH, 4},
97  {"april", MONTH, 4},
98  {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
99  {"aug", MONTH, 8},
100  {"august", MONTH, 8},
101  {DB_C, ADBC, BC}, /* "bc" for years <= 0 */
102  {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
103  {"dec", MONTH, 12},
104  {"december", MONTH, 12},
105  {"dow", UNITS, DTK_DOW}, /* day of week */
106  {"doy", UNITS, DTK_DOY}, /* day of year */
107  {"dst", DTZMOD, SECS_PER_HOUR},
108  {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
109  {"feb", MONTH, 2},
110  {"february", MONTH, 2},
111  {"fri", DOW, 5},
112  {"friday", DOW, 5},
113  {"h", UNITS, DTK_HOUR}, /* "hour" */
114  {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
115  {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
116  {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
117  {"j", UNITS, DTK_JULIAN},
118  {"jan", MONTH, 1},
119  {"january", MONTH, 1},
120  {"jd", UNITS, DTK_JULIAN},
121  {"jul", MONTH, 7},
122  {"julian", UNITS, DTK_JULIAN},
123  {"july", MONTH, 7},
124  {"jun", MONTH, 6},
125  {"june", MONTH, 6},
126  {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
127  {"mar", MONTH, 3},
128  {"march", MONTH, 3},
129  {"may", MONTH, 5},
130  {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
131  {"mon", DOW, 1},
132  {"monday", DOW, 1},
133  {"nov", MONTH, 11},
134  {"november", MONTH, 11},
135  {NOW, RESERV, DTK_NOW}, /* current transaction time */
136  {"oct", MONTH, 10},
137  {"october", MONTH, 10},
138  {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
139  {"pm", AMPM, PM},
140  {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
141  {"sat", DOW, 6},
142  {"saturday", DOW, 6},
143  {"sep", MONTH, 9},
144  {"sept", MONTH, 9},
145  {"september", MONTH, 9},
146  {"sun", DOW, 0},
147  {"sunday", DOW, 0},
148  {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
149  {"thu", DOW, 4},
150  {"thur", DOW, 4},
151  {"thurs", DOW, 4},
152  {"thursday", DOW, 4},
153  {TODAY, RESERV, DTK_TODAY}, /* midnight */
154  {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
155  {"tue", DOW, 2},
156  {"tues", DOW, 2},
157  {"tuesday", DOW, 2},
158  {"wed", DOW, 3},
159  {"wednesday", DOW, 3},
160  {"weds", DOW, 3},
161  {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
162  {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
163 };
164 
165 static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
166 
167 /*
168  * deltatktbl: same format as datetktbl, but holds keywords used to represent
169  * time units (eg, for intervals, and for EXTRACT).
170  */
171 static const datetkn deltatktbl[] = {
172  /* token, type, value */
173  {"@", IGNORE_DTF, 0}, /* postgres relative prefix */
174  {DAGO, AGO, 0}, /* "ago" indicates negative time offset */
175  {"c", UNITS, DTK_CENTURY}, /* "century" relative */
176  {"cent", UNITS, DTK_CENTURY}, /* "century" relative */
177  {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
178  {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
179  {"d", UNITS, DTK_DAY}, /* "day" relative */
180  {DDAY, UNITS, DTK_DAY}, /* "day" relative */
181  {"days", UNITS, DTK_DAY}, /* "days" relative */
182  {"dec", UNITS, DTK_DECADE}, /* "decade" relative */
183  {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
184  {"decades", UNITS, DTK_DECADE}, /* "decades" relative */
185  {"decs", UNITS, DTK_DECADE}, /* "decades" relative */
186  {"h", UNITS, DTK_HOUR}, /* "hour" relative */
187  {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
188  {"hours", UNITS, DTK_HOUR}, /* "hours" relative */
189  {"hr", UNITS, DTK_HOUR}, /* "hour" relative */
190  {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
191  {"m", UNITS, DTK_MINUTE}, /* "minute" relative */
192  {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
193  {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
194  {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
195  {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
196  {"millisecon", UNITS, DTK_MILLISEC}, /* relative */
197  {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
198  {"min", UNITS, DTK_MINUTE}, /* "minute" relative */
199  {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
200  {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
201  {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
202  {"mon", UNITS, DTK_MONTH}, /* "months" relative */
203  {"mons", UNITS, DTK_MONTH}, /* "months" relative */
204  {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
205  {"months", UNITS, DTK_MONTH},
206  {"ms", UNITS, DTK_MILLISEC},
207  {"msec", UNITS, DTK_MILLISEC},
208  {DMILLISEC, UNITS, DTK_MILLISEC},
209  {"mseconds", UNITS, DTK_MILLISEC},
210  {"msecs", UNITS, DTK_MILLISEC},
211  {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
212  {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
213  {"s", UNITS, DTK_SECOND},
214  {"sec", UNITS, DTK_SECOND},
215  {DSECOND, UNITS, DTK_SECOND},
216  {"seconds", UNITS, DTK_SECOND},
217  {"secs", UNITS, DTK_SECOND},
218  {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
219  {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
220  {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
221  {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
222  {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
223  {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
224  {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
225  {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
226  {"w", UNITS, DTK_WEEK}, /* "week" relative */
227  {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
228  {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
229  {"y", UNITS, DTK_YEAR}, /* "year" relative */
230  {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
231  {"years", UNITS, DTK_YEAR}, /* "years" relative */
232  {"yr", UNITS, DTK_YEAR}, /* "year" relative */
233  {"yrs", UNITS, DTK_YEAR} /* "years" relative */
234 };
235 
236 static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
237 
239 
240 /* Caches of recent lookup results in the above tables */
241 
242 static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
243 
244 static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
245 
246 static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
247 
248 
249 /*
250  * Calendar time to Julian date conversions.
251  * Julian date is commonly used in astronomical applications,
252  * since it is numerically accurate and computationally simple.
253  * The algorithms here will accurately convert between Julian day
254  * and calendar date for all non-negative Julian days
255  * (i.e. from Nov 24, -4713 on).
256  *
257  * Rewritten to eliminate overflow problems. This now allows the
258  * routines to work correctly for all Julian day counts from
259  * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
260  * a 32-bit integer. Longer types should also work to the limits
261  * of their precision.
262  *
263  * Actually, date2j() will work sanely, in the sense of producing
264  * valid negative Julian dates, significantly before Nov 24, -4713.
265  * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
266  * and associated commentary in timestamp.h.
267  */
268 
269 int
270 date2j(int y, int m, int d)
271 {
272  int julian;
273  int century;
274 
275  if (m > 2)
276  {
277  m += 1;
278  y += 4800;
279  }
280  else
281  {
282  m += 13;
283  y += 4799;
284  }
285 
286  century = y / 100;
287  julian = y * 365 - 32167;
288  julian += y / 4 - century + century / 4;
289  julian += 7834 * m / 256 + d;
290 
291  return julian;
292 } /* date2j() */
293 
294 void
295 j2date(int jd, int *year, int *month, int *day)
296 {
297  unsigned int julian;
298  unsigned int quad;
299  unsigned int extra;
300  int y;
301 
302  julian = jd;
303  julian += 32044;
304  quad = julian / 146097;
305  extra = (julian - quad * 146097) * 4 + 3;
306  julian += 60 + quad * 3 + extra / 146097;
307  quad = julian / 1461;
308  julian -= quad * 1461;
309  y = julian * 4 / 1461;
310  julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
311  + 123;
312  y += quad * 4;
313  *year = y - 4800;
314  quad = julian * 2141 / 65536;
315  *day = julian - 7834 * quad / 256;
316  *month = (quad + 10) % MONTHS_PER_YEAR + 1;
317 
318  return;
319 } /* j2date() */
320 
321 
322 /*
323  * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
324  *
325  * Note: various places use the locution j2day(date - 1) to produce a
326  * result according to the convention 0..6 = Mon..Sun. This is a bit of
327  * a crock, but will work as long as the computation here is just a modulo.
328  */
329 int
331 {
332  date += 1;
333  date %= 7;
334  /* Cope if division truncates towards zero, as it probably does */
335  if (date < 0)
336  date += 7;
337 
338  return date;
339 } /* j2day() */
340 
341 
342 /*
343  * GetCurrentDateTime()
344  *
345  * Get the transaction start time ("now()") broken down as a struct pg_tm.
346  */
347 void
349 {
350  int tz;
351  fsec_t fsec;
352 
354  NULL, NULL);
355  /* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
356 }
357 
358 /*
359  * GetCurrentTimeUsec()
360  *
361  * Get the transaction start time ("now()") broken down as a struct pg_tm,
362  * including fractional seconds and timezone offset.
363  */
364 void
365 GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
366 {
367  int tz;
368 
370  NULL, NULL);
371  /* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
372  if (tzp != NULL)
373  *tzp = tz;
374 }
375 
376 
377 /*
378  * Append seconds and fractional seconds (if any) at *cp.
379  *
380  * precision is the max number of fraction digits, fillzeros says to
381  * pad to two integral-seconds digits.
382  *
383  * Returns a pointer to the new end of string. No NUL terminator is put
384  * there; callers are responsible for NUL terminating str themselves.
385  *
386  * Note that any sign is stripped from the input seconds values.
387  */
388 static char *
389 AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
390 {
391  Assert(precision >= 0);
392 
393  if (fillzeros)
394  cp = pg_ltostr_zeropad(cp, Abs(sec), 2);
395  else
396  cp = pg_ltostr(cp, Abs(sec));
397 
398  /* fsec_t is just an int32 */
399  if (fsec != 0)
400  {
401  int32 value = Abs(fsec);
402  char *end = &cp[precision + 1];
403  bool gotnonzero = false;
404 
405  *cp++ = '.';
406 
407  /*
408  * Append the fractional seconds part. Note that we don't want any
409  * trailing zeros here, so since we're building the number in reverse
410  * we'll skip appending zeros until we've output a non-zero digit.
411  */
412  while (precision--)
413  {
414  int32 oldval = value;
415  int32 remainder;
416 
417  value /= 10;
418  remainder = oldval - value * 10;
419 
420  /* check if we got a non-zero */
421  if (remainder)
422  gotnonzero = true;
423 
424  if (gotnonzero)
425  cp[precision] = '0' + remainder;
426  else
427  end = &cp[precision];
428  }
429 
430  /*
431  * If we still have a non-zero value then precision must have not been
432  * enough to print the number. We punt the problem to pg_ltostr(),
433  * which will generate a correct answer in the minimum valid width.
434  */
435  if (value)
436  return pg_ltostr(cp, Abs(fsec));
437 
438  return end;
439  }
440  else
441  return cp;
442 }
443 
444 
445 /*
446  * Variant of above that's specialized to timestamp case.
447  *
448  * Returns a pointer to the new end of string. No NUL terminator is put
449  * there; callers are responsible for NUL terminating str themselves.
450  */
451 static char *
452 AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
453 {
454  return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
455 }
456 
457 /*
458  * Multiply frac by scale (to produce seconds) and add to *tm & *fsec.
459  * We assume the input frac is less than 1 so overflow is not an issue.
460  */
461 static void
462 AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
463 {
464  int sec;
465 
466  if (frac == 0)
467  return;
468  frac *= scale;
469  sec = (int) frac;
470  tm->tm_sec += sec;
471  frac -= sec;
472  *fsec += rint(frac * 1000000);
473 }
474 
475 /* As above, but initial scale produces days */
476 static void
477 AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
478 {
479  int extra_days;
480 
481  if (frac == 0)
482  return;
483  frac *= scale;
484  extra_days = (int) frac;
485  tm->tm_mday += extra_days;
486  frac -= extra_days;
487  AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY);
488 }
489 
490 /* Fetch a fractional-second value with suitable error checking */
491 static int
493 {
494  double frac;
495 
496  /* Caller should always pass the start of the fraction part */
497  Assert(*cp == '.');
498  errno = 0;
499  frac = strtod(cp, &cp);
500  /* check for parse failure */
501  if (*cp != '\0' || errno != 0)
502  return DTERR_BAD_FORMAT;
503  *fsec = rint(frac * 1000000);
504  return 0;
505 }
506 
507 
508 /* ParseDateTime()
509  * Break string into tokens based on a date/time context.
510  * Returns 0 if successful, DTERR code if bogus input detected.
511  *
512  * timestr - the input string
513  * workbuf - workspace for field string storage. This must be
514  * larger than the largest legal input for this datetime type --
515  * some additional space will be needed to NUL terminate fields.
516  * buflen - the size of workbuf
517  * field[] - pointers to field strings are returned in this array
518  * ftype[] - field type indicators are returned in this array
519  * maxfields - dimensions of the above two arrays
520  * *numfields - set to the actual number of fields detected
521  *
522  * The fields extracted from the input are stored as separate,
523  * null-terminated strings in the workspace at workbuf. Any text is
524  * converted to lower case.
525  *
526  * Several field types are assigned:
527  * DTK_NUMBER - digits and (possibly) a decimal point
528  * DTK_DATE - digits and two delimiters, or digits and text
529  * DTK_TIME - digits, colon delimiters, and possibly a decimal point
530  * DTK_STRING - text (no digits or punctuation)
531  * DTK_SPECIAL - leading "+" or "-" followed by text
532  * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
533  *
534  * Note that some field types can hold unexpected items:
535  * DTK_NUMBER can hold date fields (yy.ddd)
536  * DTK_STRING can hold months (January) and time zones (PST)
537  * DTK_DATE can hold time zone names (America/New_York, GMT-8)
538  */
539 int
540 ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
541  char **field, int *ftype, int maxfields, int *numfields)
542 {
543  int nf = 0;
544  const char *cp = timestr;
545  char *bufp = workbuf;
546  const char *bufend = workbuf + buflen;
547 
548  /*
549  * Set the character pointed-to by "bufptr" to "newchar", and increment
550  * "bufptr". "end" gives the end of the buffer -- we return an error if
551  * there is no space left to append a character to the buffer. Note that
552  * "bufptr" is evaluated twice.
553  */
554 #define APPEND_CHAR(bufptr, end, newchar) \
555  do \
556  { \
557  if (((bufptr) + 1) >= (end)) \
558  return DTERR_BAD_FORMAT; \
559  *(bufptr)++ = newchar; \
560  } while (0)
561 
562  /* outer loop through fields */
563  while (*cp != '\0')
564  {
565  /* Ignore spaces between fields */
566  if (isspace((unsigned char) *cp))
567  {
568  cp++;
569  continue;
570  }
571 
572  /* Record start of current field */
573  if (nf >= maxfields)
574  return DTERR_BAD_FORMAT;
575  field[nf] = bufp;
576 
577  /* leading digit? then date or time */
578  if (isdigit((unsigned char) *cp))
579  {
580  APPEND_CHAR(bufp, bufend, *cp++);
581  while (isdigit((unsigned char) *cp))
582  APPEND_CHAR(bufp, bufend, *cp++);
583 
584  /* time field? */
585  if (*cp == ':')
586  {
587  ftype[nf] = DTK_TIME;
588  APPEND_CHAR(bufp, bufend, *cp++);
589  while (isdigit((unsigned char) *cp) ||
590  (*cp == ':') || (*cp == '.'))
591  APPEND_CHAR(bufp, bufend, *cp++);
592  }
593  /* date field? allow embedded text month */
594  else if (*cp == '-' || *cp == '/' || *cp == '.')
595  {
596  /* save delimiting character to use later */
597  char delim = *cp;
598 
599  APPEND_CHAR(bufp, bufend, *cp++);
600  /* second field is all digits? then no embedded text month */
601  if (isdigit((unsigned char) *cp))
602  {
603  ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
604  while (isdigit((unsigned char) *cp))
605  APPEND_CHAR(bufp, bufend, *cp++);
606 
607  /*
608  * insist that the delimiters match to get a three-field
609  * date.
610  */
611  if (*cp == delim)
612  {
613  ftype[nf] = DTK_DATE;
614  APPEND_CHAR(bufp, bufend, *cp++);
615  while (isdigit((unsigned char) *cp) || *cp == delim)
616  APPEND_CHAR(bufp, bufend, *cp++);
617  }
618  }
619  else
620  {
621  ftype[nf] = DTK_DATE;
622  while (isalnum((unsigned char) *cp) || *cp == delim)
623  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
624  }
625  }
626 
627  /*
628  * otherwise, number only and will determine year, month, day, or
629  * concatenated fields later...
630  */
631  else
632  ftype[nf] = DTK_NUMBER;
633  }
634  /* Leading decimal point? Then fractional seconds... */
635  else if (*cp == '.')
636  {
637  APPEND_CHAR(bufp, bufend, *cp++);
638  while (isdigit((unsigned char) *cp))
639  APPEND_CHAR(bufp, bufend, *cp++);
640 
641  ftype[nf] = DTK_NUMBER;
642  }
643 
644  /*
645  * text? then date string, month, day of week, special, or timezone
646  */
647  else if (isalpha((unsigned char) *cp))
648  {
649  bool is_date;
650 
651  ftype[nf] = DTK_STRING;
652  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
653  while (isalpha((unsigned char) *cp))
654  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
655 
656  /*
657  * Dates can have embedded '-', '/', or '.' separators. It could
658  * also be a timezone name containing embedded '/', '+', '-', '_',
659  * or ':' (but '_' or ':' can't be the first punctuation). If the
660  * next character is a digit or '+', we need to check whether what
661  * we have so far is a recognized non-timezone keyword --- if so,
662  * don't believe that this is the start of a timezone.
663  */
664  is_date = false;
665  if (*cp == '-' || *cp == '/' || *cp == '.')
666  is_date = true;
667  else if (*cp == '+' || isdigit((unsigned char) *cp))
668  {
669  *bufp = '\0'; /* null-terminate current field value */
670  /* we need search only the core token table, not TZ names */
671  if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
672  is_date = true;
673  }
674  if (is_date)
675  {
676  ftype[nf] = DTK_DATE;
677  do
678  {
679  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
680  } while (*cp == '+' || *cp == '-' ||
681  *cp == '/' || *cp == '_' ||
682  *cp == '.' || *cp == ':' ||
683  isalnum((unsigned char) *cp));
684  }
685  }
686  /* sign? then special or numeric timezone */
687  else if (*cp == '+' || *cp == '-')
688  {
689  APPEND_CHAR(bufp, bufend, *cp++);
690  /* soak up leading whitespace */
691  while (isspace((unsigned char) *cp))
692  cp++;
693  /* numeric timezone? */
694  /* note that "DTK_TZ" could also be a signed float or yyyy-mm */
695  if (isdigit((unsigned char) *cp))
696  {
697  ftype[nf] = DTK_TZ;
698  APPEND_CHAR(bufp, bufend, *cp++);
699  while (isdigit((unsigned char) *cp) ||
700  *cp == ':' || *cp == '.' || *cp == '-')
701  APPEND_CHAR(bufp, bufend, *cp++);
702  }
703  /* special? */
704  else if (isalpha((unsigned char) *cp))
705  {
706  ftype[nf] = DTK_SPECIAL;
707  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
708  while (isalpha((unsigned char) *cp))
709  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
710  }
711  /* otherwise something wrong... */
712  else
713  return DTERR_BAD_FORMAT;
714  }
715  /* ignore other punctuation but use as delimiter */
716  else if (ispunct((unsigned char) *cp))
717  {
718  cp++;
719  continue;
720  }
721  /* otherwise, something is not right... */
722  else
723  return DTERR_BAD_FORMAT;
724 
725  /* force in a delimiter after each field */
726  *bufp++ = '\0';
727  nf++;
728  }
729 
730  *numfields = nf;
731 
732  return 0;
733 }
734 
735 
736 /* DecodeDateTime()
737  * Interpret previously parsed fields for general date and time.
738  * Return 0 if full date, 1 if only time, and negative DTERR code if problems.
739  * (Currently, all callers treat 1 as an error return too.)
740  *
741  * External format(s):
742  * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
743  * "Fri Feb-7-1997 15:23:27"
744  * "Feb-7-1997 15:23:27"
745  * "2-7-1997 15:23:27"
746  * "1997-2-7 15:23:27"
747  * "1997.038 15:23:27" (day of year 1-366)
748  * Also supports input in compact time:
749  * "970207 152327"
750  * "97038 152327"
751  * "20011225T040506.789-07"
752  *
753  * Use the system-provided functions to get the current time zone
754  * if not specified in the input string.
755  *
756  * If the date is outside the range of pg_time_t (in practice that could only
757  * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
758  * 1997-05-27
759  */
760 int
761 DecodeDateTime(char **field, int *ftype, int nf,
762  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
763 {
764  int fmask = 0,
765  tmask,
766  type;
767  int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */
768  int i;
769  int val;
770  int dterr;
771  int mer = HR24;
772  bool haveTextMonth = false;
773  bool isjulian = false;
774  bool is2digits = false;
775  bool bc = false;
776  pg_tz *namedTz = NULL;
777  pg_tz *abbrevTz = NULL;
778  pg_tz *valtz;
779  char *abbrev = NULL;
780  struct pg_tm cur_tm;
781 
782  /*
783  * We'll insist on at least all of the date fields, but initialize the
784  * remaining fields in case they are not set later...
785  */
786  *dtype = DTK_DATE;
787  tm->tm_hour = 0;
788  tm->tm_min = 0;
789  tm->tm_sec = 0;
790  *fsec = 0;
791  /* don't know daylight savings time status apriori */
792  tm->tm_isdst = -1;
793  if (tzp != NULL)
794  *tzp = 0;
795 
796  for (i = 0; i < nf; i++)
797  {
798  switch (ftype[i])
799  {
800  case DTK_DATE:
801 
802  /*
803  * Integral julian day with attached time zone? All other
804  * forms with JD will be separated into distinct fields, so we
805  * handle just this case here.
806  */
807  if (ptype == DTK_JULIAN)
808  {
809  char *cp;
810  int val;
811 
812  if (tzp == NULL)
813  return DTERR_BAD_FORMAT;
814 
815  errno = 0;
816  val = strtoint(field[i], &cp, 10);
817  if (errno == ERANGE || val < 0)
818  return DTERR_FIELD_OVERFLOW;
819 
820  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
821  isjulian = true;
822 
823  /* Get the time zone from the end of the string */
824  dterr = DecodeTimezone(cp, tzp);
825  if (dterr)
826  return dterr;
827 
828  tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
829  ptype = 0;
830  break;
831  }
832 
833  /*
834  * Already have a date? Then this might be a time zone name
835  * with embedded punctuation (e.g. "America/New_York") or a
836  * run-together time with trailing time zone (e.g. hhmmss-zz).
837  * - thomas 2001-12-25
838  *
839  * We consider it a time zone if we already have month & day.
840  * This is to allow the form "mmm dd hhmmss tz year", which
841  * we've historically accepted.
842  */
843  else if (ptype != 0 ||
844  ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
845  (DTK_M(MONTH) | DTK_M(DAY))))
846  {
847  /* No time zone accepted? Then quit... */
848  if (tzp == NULL)
849  return DTERR_BAD_FORMAT;
850 
851  if (isdigit((unsigned char) *field[i]) || ptype != 0)
852  {
853  char *cp;
854 
855  if (ptype != 0)
856  {
857  /* Sanity check; should not fail this test */
858  if (ptype != DTK_TIME)
859  return DTERR_BAD_FORMAT;
860  ptype = 0;
861  }
862 
863  /*
864  * Starts with a digit but we already have a time
865  * field? Then we are in trouble with a date and time
866  * already...
867  */
868  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
869  return DTERR_BAD_FORMAT;
870 
871  if ((cp = strchr(field[i], '-')) == NULL)
872  return DTERR_BAD_FORMAT;
873 
874  /* Get the time zone from the end of the string */
875  dterr = DecodeTimezone(cp, tzp);
876  if (dterr)
877  return dterr;
878  *cp = '\0';
879 
880  /*
881  * Then read the rest of the field as a concatenated
882  * time
883  */
884  dterr = DecodeNumberField(strlen(field[i]), field[i],
885  fmask,
886  &tmask, tm,
887  fsec, &is2digits);
888  if (dterr < 0)
889  return dterr;
890 
891  /*
892  * modify tmask after returning from
893  * DecodeNumberField()
894  */
895  tmask |= DTK_M(TZ);
896  }
897  else
898  {
899  namedTz = pg_tzset(field[i]);
900  if (!namedTz)
901  {
902  /*
903  * We should return an error code instead of
904  * ereport'ing directly, but then there is no way
905  * to report the bad time zone name.
906  */
907  ereport(ERROR,
908  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
909  errmsg("time zone \"%s\" not recognized",
910  field[i])));
911  }
912  /* we'll apply the zone setting below */
913  tmask = DTK_M(TZ);
914  }
915  }
916  else
917  {
918  dterr = DecodeDate(field[i], fmask,
919  &tmask, &is2digits, tm);
920  if (dterr)
921  return dterr;
922  }
923  break;
924 
925  case DTK_TIME:
926 
927  /*
928  * This might be an ISO time following a "t" field.
929  */
930  if (ptype != 0)
931  {
932  /* Sanity check; should not fail this test */
933  if (ptype != DTK_TIME)
934  return DTERR_BAD_FORMAT;
935  ptype = 0;
936  }
937  dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
938  &tmask, tm, fsec);
939  if (dterr)
940  return dterr;
941 
942  /*
943  * Check upper limit on hours; other limits checked in
944  * DecodeTime()
945  */
946  /* test for > 24:00:00 */
947  if (tm->tm_hour > HOURS_PER_DAY ||
948  (tm->tm_hour == HOURS_PER_DAY &&
949  (tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)))
950  return DTERR_FIELD_OVERFLOW;
951  break;
952 
953  case DTK_TZ:
954  {
955  int tz;
956 
957  if (tzp == NULL)
958  return DTERR_BAD_FORMAT;
959 
960  dterr = DecodeTimezone(field[i], &tz);
961  if (dterr)
962  return dterr;
963  *tzp = tz;
964  tmask = DTK_M(TZ);
965  }
966  break;
967 
968  case DTK_NUMBER:
969 
970  /*
971  * Was this an "ISO date" with embedded field labels? An
972  * example is "y2001m02d04" - thomas 2001-02-04
973  */
974  if (ptype != 0)
975  {
976  char *cp;
977  int val;
978 
979  errno = 0;
980  val = strtoint(field[i], &cp, 10);
981  if (errno == ERANGE)
982  return DTERR_FIELD_OVERFLOW;
983 
984  /*
985  * only a few kinds are allowed to have an embedded
986  * decimal
987  */
988  if (*cp == '.')
989  switch (ptype)
990  {
991  case DTK_JULIAN:
992  case DTK_TIME:
993  case DTK_SECOND:
994  break;
995  default:
996  return DTERR_BAD_FORMAT;
997  break;
998  }
999  else if (*cp != '\0')
1000  return DTERR_BAD_FORMAT;
1001 
1002  switch (ptype)
1003  {
1004  case DTK_YEAR:
1005  tm->tm_year = val;
1006  tmask = DTK_M(YEAR);
1007  break;
1008 
1009  case DTK_MONTH:
1010 
1011  /*
1012  * already have a month and hour? then assume
1013  * minutes
1014  */
1015  if ((fmask & DTK_M(MONTH)) != 0 &&
1016  (fmask & DTK_M(HOUR)) != 0)
1017  {
1018  tm->tm_min = val;
1019  tmask = DTK_M(MINUTE);
1020  }
1021  else
1022  {
1023  tm->tm_mon = val;
1024  tmask = DTK_M(MONTH);
1025  }
1026  break;
1027 
1028  case DTK_DAY:
1029  tm->tm_mday = val;
1030  tmask = DTK_M(DAY);
1031  break;
1032 
1033  case DTK_HOUR:
1034  tm->tm_hour = val;
1035  tmask = DTK_M(HOUR);
1036  break;
1037 
1038  case DTK_MINUTE:
1039  tm->tm_min = val;
1040  tmask = DTK_M(MINUTE);
1041  break;
1042 
1043  case DTK_SECOND:
1044  tm->tm_sec = val;
1045  tmask = DTK_M(SECOND);
1046  if (*cp == '.')
1047  {
1048  dterr = ParseFractionalSecond(cp, fsec);
1049  if (dterr)
1050  return dterr;
1051  tmask = DTK_ALL_SECS_M;
1052  }
1053  break;
1054 
1055  case DTK_TZ:
1056  tmask = DTK_M(TZ);
1057  dterr = DecodeTimezone(field[i], tzp);
1058  if (dterr)
1059  return dterr;
1060  break;
1061 
1062  case DTK_JULIAN:
1063  /* previous field was a label for "julian date" */
1064  if (val < 0)
1065  return DTERR_FIELD_OVERFLOW;
1066  tmask = DTK_DATE_M;
1067  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1068  isjulian = true;
1069 
1070  /* fractional Julian Day? */
1071  if (*cp == '.')
1072  {
1073  double time;
1074 
1075  errno = 0;
1076  time = strtod(cp, &cp);
1077  if (*cp != '\0' || errno != 0)
1078  return DTERR_BAD_FORMAT;
1079  time *= USECS_PER_DAY;
1080  dt2time(time,
1081  &tm->tm_hour, &tm->tm_min,
1082  &tm->tm_sec, fsec);
1083  tmask |= DTK_TIME_M;
1084  }
1085  break;
1086 
1087  case DTK_TIME:
1088  /* previous field was "t" for ISO time */
1089  dterr = DecodeNumberField(strlen(field[i]), field[i],
1090  (fmask | DTK_DATE_M),
1091  &tmask, tm,
1092  fsec, &is2digits);
1093  if (dterr < 0)
1094  return dterr;
1095  if (tmask != DTK_TIME_M)
1096  return DTERR_BAD_FORMAT;
1097  break;
1098 
1099  default:
1100  return DTERR_BAD_FORMAT;
1101  break;
1102  }
1103 
1104  ptype = 0;
1105  *dtype = DTK_DATE;
1106  }
1107  else
1108  {
1109  char *cp;
1110  int flen;
1111 
1112  flen = strlen(field[i]);
1113  cp = strchr(field[i], '.');
1114 
1115  /* Embedded decimal and no date yet? */
1116  if (cp != NULL && !(fmask & DTK_DATE_M))
1117  {
1118  dterr = DecodeDate(field[i], fmask,
1119  &tmask, &is2digits, tm);
1120  if (dterr)
1121  return dterr;
1122  }
1123  /* embedded decimal and several digits before? */
1124  else if (cp != NULL && flen - strlen(cp) > 2)
1125  {
1126  /*
1127  * Interpret as a concatenated date or time Set the
1128  * type field to allow decoding other fields later.
1129  * Example: 20011223 or 040506
1130  */
1131  dterr = DecodeNumberField(flen, field[i], fmask,
1132  &tmask, tm,
1133  fsec, &is2digits);
1134  if (dterr < 0)
1135  return dterr;
1136  }
1137 
1138  /*
1139  * Is this a YMD or HMS specification, or a year number?
1140  * YMD and HMS are required to be six digits or more, so
1141  * if it is 5 digits, it is a year. If it is six or more
1142  * digits, we assume it is YMD or HMS unless no date and
1143  * no time values have been specified. This forces 6+
1144  * digit years to be at the end of the string, or to use
1145  * the ISO date specification.
1146  */
1147  else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
1148  !(fmask & DTK_TIME_M)))
1149  {
1150  dterr = DecodeNumberField(flen, field[i], fmask,
1151  &tmask, tm,
1152  fsec, &is2digits);
1153  if (dterr < 0)
1154  return dterr;
1155  }
1156  /* otherwise it is a single date/time field... */
1157  else
1158  {
1159  dterr = DecodeNumber(flen, field[i],
1160  haveTextMonth, fmask,
1161  &tmask, tm,
1162  fsec, &is2digits);
1163  if (dterr)
1164  return dterr;
1165  }
1166  }
1167  break;
1168 
1169  case DTK_STRING:
1170  case DTK_SPECIAL:
1171  /* timezone abbrevs take precedence over built-in tokens */
1172  type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
1173  if (type == UNKNOWN_FIELD)
1174  type = DecodeSpecial(i, field[i], &val);
1175  if (type == IGNORE_DTF)
1176  continue;
1177 
1178  tmask = DTK_M(type);
1179  switch (type)
1180  {
1181  case RESERV:
1182  switch (val)
1183  {
1184  case DTK_NOW:
1185  tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1186  *dtype = DTK_DATE;
1187  GetCurrentTimeUsec(tm, fsec, tzp);
1188  break;
1189 
1190  case DTK_YESTERDAY:
1191  tmask = DTK_DATE_M;
1192  *dtype = DTK_DATE;
1193  GetCurrentDateTime(&cur_tm);
1194  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
1195  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1196  break;
1197 
1198  case DTK_TODAY:
1199  tmask = DTK_DATE_M;
1200  *dtype = DTK_DATE;
1201  GetCurrentDateTime(&cur_tm);
1202  tm->tm_year = cur_tm.tm_year;
1203  tm->tm_mon = cur_tm.tm_mon;
1204  tm->tm_mday = cur_tm.tm_mday;
1205  break;
1206 
1207  case DTK_TOMORROW:
1208  tmask = DTK_DATE_M;
1209  *dtype = DTK_DATE;
1210  GetCurrentDateTime(&cur_tm);
1211  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
1212  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1213  break;
1214 
1215  case DTK_ZULU:
1216  tmask = (DTK_TIME_M | DTK_M(TZ));
1217  *dtype = DTK_DATE;
1218  tm->tm_hour = 0;
1219  tm->tm_min = 0;
1220  tm->tm_sec = 0;
1221  if (tzp != NULL)
1222  *tzp = 0;
1223  break;
1224 
1225  default:
1226  *dtype = val;
1227  }
1228 
1229  break;
1230 
1231  case MONTH:
1232 
1233  /*
1234  * already have a (numeric) month? then see if we can
1235  * substitute...
1236  */
1237  if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
1238  !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
1239  tm->tm_mon <= 31)
1240  {
1241  tm->tm_mday = tm->tm_mon;
1242  tmask = DTK_M(DAY);
1243  }
1244  haveTextMonth = true;
1245  tm->tm_mon = val;
1246  break;
1247 
1248  case DTZMOD:
1249 
1250  /*
1251  * daylight savings time modifier (solves "MET DST"
1252  * syntax)
1253  */
1254  tmask |= DTK_M(DTZ);
1255  tm->tm_isdst = 1;
1256  if (tzp == NULL)
1257  return DTERR_BAD_FORMAT;
1258  *tzp -= val;
1259  break;
1260 
1261  case DTZ:
1262 
1263  /*
1264  * set mask for TZ here _or_ check for DTZ later when
1265  * getting default timezone
1266  */
1267  tmask |= DTK_M(TZ);
1268  tm->tm_isdst = 1;
1269  if (tzp == NULL)
1270  return DTERR_BAD_FORMAT;
1271  *tzp = -val;
1272  break;
1273 
1274  case TZ:
1275  tm->tm_isdst = 0;
1276  if (tzp == NULL)
1277  return DTERR_BAD_FORMAT;
1278  *tzp = -val;
1279  break;
1280 
1281  case DYNTZ:
1282  tmask |= DTK_M(TZ);
1283  if (tzp == NULL)
1284  return DTERR_BAD_FORMAT;
1285  /* we'll determine the actual offset later */
1286  abbrevTz = valtz;
1287  abbrev = field[i];
1288  break;
1289 
1290  case AMPM:
1291  mer = val;
1292  break;
1293 
1294  case ADBC:
1295  bc = (val == BC);
1296  break;
1297 
1298  case DOW:
1299  tm->tm_wday = val;
1300  break;
1301 
1302  case UNITS:
1303  tmask = 0;
1304  ptype = val;
1305  break;
1306 
1307  case ISOTIME:
1308 
1309  /*
1310  * This is a filler field "t" indicating that the next
1311  * field is time. Try to verify that this is sensible.
1312  */
1313  tmask = 0;
1314 
1315  /* No preceding date? Then quit... */
1316  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1317  return DTERR_BAD_FORMAT;
1318 
1319  /***
1320  * We will need one of the following fields:
1321  * DTK_NUMBER should be hhmmss.fff
1322  * DTK_TIME should be hh:mm:ss.fff
1323  * DTK_DATE should be hhmmss-zz
1324  ***/
1325  if (i >= nf - 1 ||
1326  (ftype[i + 1] != DTK_NUMBER &&
1327  ftype[i + 1] != DTK_TIME &&
1328  ftype[i + 1] != DTK_DATE))
1329  return DTERR_BAD_FORMAT;
1330 
1331  ptype = val;
1332  break;
1333 
1334  case UNKNOWN_FIELD:
1335 
1336  /*
1337  * Before giving up and declaring error, check to see
1338  * if it is an all-alpha timezone name.
1339  */
1340  namedTz = pg_tzset(field[i]);
1341  if (!namedTz)
1342  return DTERR_BAD_FORMAT;
1343  /* we'll apply the zone setting below */
1344  tmask = DTK_M(TZ);
1345  break;
1346 
1347  default:
1348  return DTERR_BAD_FORMAT;
1349  }
1350  break;
1351 
1352  default:
1353  return DTERR_BAD_FORMAT;
1354  }
1355 
1356  if (tmask & fmask)
1357  return DTERR_BAD_FORMAT;
1358  fmask |= tmask;
1359  } /* end loop over fields */
1360 
1361  /* do final checking/adjustment of Y/M/D fields */
1362  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
1363  if (dterr)
1364  return dterr;
1365 
1366  /* handle AM/PM */
1367  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
1368  return DTERR_FIELD_OVERFLOW;
1369  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
1370  tm->tm_hour = 0;
1371  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
1372  tm->tm_hour += HOURS_PER_DAY / 2;
1373 
1374  /* do additional checking for full date specs... */
1375  if (*dtype == DTK_DATE)
1376  {
1377  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1378  {
1379  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1380  return 1;
1381  return DTERR_BAD_FORMAT;
1382  }
1383 
1384  /*
1385  * If we had a full timezone spec, compute the offset (we could not do
1386  * it before, because we need the date to resolve DST status).
1387  */
1388  if (namedTz != NULL)
1389  {
1390  /* daylight savings time modifier disallowed with full TZ */
1391  if (fmask & DTK_M(DTZMOD))
1392  return DTERR_BAD_FORMAT;
1393 
1394  *tzp = DetermineTimeZoneOffset(tm, namedTz);
1395  }
1396 
1397  /*
1398  * Likewise, if we had a dynamic timezone abbreviation, resolve it
1399  * now.
1400  */
1401  if (abbrevTz != NULL)
1402  {
1403  /* daylight savings time modifier disallowed with dynamic TZ */
1404  if (fmask & DTK_M(DTZMOD))
1405  return DTERR_BAD_FORMAT;
1406 
1407  *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
1408  }
1409 
1410  /* timezone not specified? then use session timezone */
1411  if (tzp != NULL && !(fmask & DTK_M(TZ)))
1412  {
1413  /*
1414  * daylight savings time modifier but no standard timezone? then
1415  * error
1416  */
1417  if (fmask & DTK_M(DTZMOD))
1418  return DTERR_BAD_FORMAT;
1419 
1421  }
1422  }
1423 
1424  return 0;
1425 }
1426 
1427 
1428 /* DetermineTimeZoneOffset()
1429  *
1430  * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
1431  * and tm_sec fields are set, and a zic-style time zone definition, determine
1432  * the applicable GMT offset and daylight-savings status at that time.
1433  * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
1434  * offset as the function result.
1435  *
1436  * Note: if the date is out of the range we can deal with, we return zero
1437  * as the GMT offset and set tm_isdst = 0. We don't throw an error here,
1438  * though probably some higher-level code will.
1439  */
1440 int
1442 {
1443  pg_time_t t;
1444 
1445  return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1446 }
1447 
1448 
1449 /* DetermineTimeZoneOffsetInternal()
1450  *
1451  * As above, but also return the actual UTC time imputed to the date/time
1452  * into *tp.
1453  *
1454  * In event of an out-of-range date, we punt by returning zero into *tp.
1455  * This is okay for the immediate callers but is a good reason for not
1456  * exposing this worker function globally.
1457  *
1458  * Note: it might seem that we should use mktime() for this, but bitter
1459  * experience teaches otherwise. This code is much faster than most versions
1460  * of mktime(), anyway.
1461  */
1462 static int
1464 {
1465  int date,
1466  sec;
1467  pg_time_t day,
1468  mytime,
1469  prevtime,
1470  boundary,
1471  beforetime,
1472  aftertime;
1473  long int before_gmtoff,
1474  after_gmtoff;
1475  int before_isdst,
1476  after_isdst;
1477  int res;
1478 
1479  /*
1480  * First, generate the pg_time_t value corresponding to the given
1481  * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
1482  * timezone is GMT. (For a valid Julian date, integer overflow should be
1483  * impossible with 64-bit pg_time_t, but let's check for safety.)
1484  */
1485  if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
1486  goto overflow;
1487  date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE;
1488 
1489  day = ((pg_time_t) date) * SECS_PER_DAY;
1490  if (day / SECS_PER_DAY != date)
1491  goto overflow;
1492  sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE;
1493  mytime = day + sec;
1494  /* since sec >= 0, overflow could only be from +day to -mytime */
1495  if (mytime < 0 && day > 0)
1496  goto overflow;
1497 
1498  /*
1499  * Find the DST time boundary just before or following the target time. We
1500  * assume that all zones have GMT offsets less than 24 hours, and that DST
1501  * boundaries can't be closer together than 48 hours, so backing up 24
1502  * hours and finding the "next" boundary will work.
1503  */
1504  prevtime = mytime - SECS_PER_DAY;
1505  if (mytime < 0 && prevtime > 0)
1506  goto overflow;
1507 
1508  res = pg_next_dst_boundary(&prevtime,
1509  &before_gmtoff, &before_isdst,
1510  &boundary,
1511  &after_gmtoff, &after_isdst,
1512  tzp);
1513  if (res < 0)
1514  goto overflow; /* failure? */
1515 
1516  if (res == 0)
1517  {
1518  /* Non-DST zone, life is simple */
1519  tm->tm_isdst = before_isdst;
1520  *tp = mytime - before_gmtoff;
1521  return -(int) before_gmtoff;
1522  }
1523 
1524  /*
1525  * Form the candidate pg_time_t values with local-time adjustment
1526  */
1527  beforetime = mytime - before_gmtoff;
1528  if ((before_gmtoff > 0 &&
1529  mytime < 0 && beforetime > 0) ||
1530  (before_gmtoff <= 0 &&
1531  mytime > 0 && beforetime < 0))
1532  goto overflow;
1533  aftertime = mytime - after_gmtoff;
1534  if ((after_gmtoff > 0 &&
1535  mytime < 0 && aftertime > 0) ||
1536  (after_gmtoff <= 0 &&
1537  mytime > 0 && aftertime < 0))
1538  goto overflow;
1539 
1540  /*
1541  * If both before or both after the boundary time, we know what to do. The
1542  * boundary time itself is considered to be after the transition, which
1543  * means we can accept aftertime == boundary in the second case.
1544  */
1545  if (beforetime < boundary && aftertime < boundary)
1546  {
1547  tm->tm_isdst = before_isdst;
1548  *tp = beforetime;
1549  return -(int) before_gmtoff;
1550  }
1551  if (beforetime > boundary && aftertime >= boundary)
1552  {
1553  tm->tm_isdst = after_isdst;
1554  *tp = aftertime;
1555  return -(int) after_gmtoff;
1556  }
1557 
1558  /*
1559  * It's an invalid or ambiguous time due to timezone transition. In a
1560  * spring-forward transition, prefer the "before" interpretation; in a
1561  * fall-back transition, prefer "after". (We used to define and implement
1562  * this test as "prefer the standard-time interpretation", but that rule
1563  * does not help to resolve the behavior when both times are reported as
1564  * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
1565  * in some zones such as Europe/Dublin, there is widespread confusion
1566  * about which time offset is "standard" time, so it's fortunate that our
1567  * behavior doesn't depend on that.)
1568  */
1569  if (beforetime > aftertime)
1570  {
1571  tm->tm_isdst = before_isdst;
1572  *tp = beforetime;
1573  return -(int) before_gmtoff;
1574  }
1575  tm->tm_isdst = after_isdst;
1576  *tp = aftertime;
1577  return -(int) after_gmtoff;
1578 
1579 overflow:
1580  /* Given date is out of range, so assume UTC */
1581  tm->tm_isdst = 0;
1582  *tp = 0;
1583  return 0;
1584 }
1585 
1586 
1587 /* DetermineTimeZoneAbbrevOffset()
1588  *
1589  * Determine the GMT offset and DST flag to be attributed to a dynamic
1590  * time zone abbreviation, that is one whose meaning has changed over time.
1591  * *tm contains the local time at which the meaning should be determined,
1592  * and tm->tm_isdst receives the DST flag.
1593  *
1594  * This differs from the behavior of DetermineTimeZoneOffset() in that a
1595  * standard-time or daylight-time abbreviation forces use of the corresponding
1596  * GMT offset even when the zone was then in DS or standard time respectively.
1597  * (However, that happens only if we can match the given abbreviation to some
1598  * abbreviation that appears in the IANA timezone data. Otherwise, we fall
1599  * back to doing DetermineTimeZoneOffset().)
1600  */
1601 int
1602 DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
1603 {
1604  pg_time_t t;
1605  int zone_offset;
1606  int abbr_offset;
1607  int abbr_isdst;
1608 
1609  /*
1610  * Compute the UTC time we want to probe at. (In event of overflow, we'll
1611  * probe at the epoch, which is a bit random but probably doesn't matter.)
1612  */
1613  zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1614 
1615  /*
1616  * Try to match the abbreviation to something in the zone definition.
1617  */
1618  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1619  &abbr_offset, &abbr_isdst))
1620  {
1621  /* Success, so use the abbrev-specific answers. */
1622  tm->tm_isdst = abbr_isdst;
1623  return abbr_offset;
1624  }
1625 
1626  /*
1627  * No match, so use the answers we already got from
1628  * DetermineTimeZoneOffsetInternal.
1629  */
1630  return zone_offset;
1631 }
1632 
1633 
1634 /* DetermineTimeZoneAbbrevOffsetTS()
1635  *
1636  * As above but the probe time is specified as a TimestampTz (hence, UTC time),
1637  * and DST status is returned into *isdst rather than into tm->tm_isdst.
1638  */
1639 int
1641  pg_tz *tzp, int *isdst)
1642 {
1644  int zone_offset;
1645  int abbr_offset;
1646  int tz;
1647  struct pg_tm tm;
1648  fsec_t fsec;
1649 
1650  /*
1651  * If the abbrev matches anything in the zone data, this is pretty easy.
1652  */
1653  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1654  &abbr_offset, isdst))
1655  return abbr_offset;
1656 
1657  /*
1658  * Else, break down the timestamp so we can use DetermineTimeZoneOffset.
1659  */
1660  if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
1661  ereport(ERROR,
1662  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1663  errmsg("timestamp out of range")));
1664 
1665  zone_offset = DetermineTimeZoneOffset(&tm, tzp);
1666  *isdst = tm.tm_isdst;
1667  return zone_offset;
1668 }
1669 
1670 
1671 /* DetermineTimeZoneAbbrevOffsetInternal()
1672  *
1673  * Workhorse for above two functions: work from a pg_time_t probe instant.
1674  * On success, return GMT offset and DST status into *offset and *isdst.
1675  */
1676 static bool
1678  int *offset, int *isdst)
1679 {
1680  char upabbr[TZ_STRLEN_MAX + 1];
1681  unsigned char *p;
1682  long int gmtoff;
1683 
1684  /* We need to force the abbrev to upper case */
1685  strlcpy(upabbr, abbr, sizeof(upabbr));
1686  for (p = (unsigned char *) upabbr; *p; p++)
1687  *p = pg_toupper(*p);
1688 
1689  /* Look up the abbrev's meaning at this time in this zone */
1690  if (pg_interpret_timezone_abbrev(upabbr,
1691  &t,
1692  &gmtoff,
1693  isdst,
1694  tzp))
1695  {
1696  /* Change sign to agree with DetermineTimeZoneOffset() */
1697  *offset = (int) -gmtoff;
1698  return true;
1699  }
1700  return false;
1701 }
1702 
1703 
1704 /* DecodeTimeOnly()
1705  * Interpret parsed string as time fields only.
1706  * Returns 0 if successful, DTERR code if bogus input detected.
1707  *
1708  * Note that support for time zone is here for
1709  * SQL TIME WITH TIME ZONE, but it reveals
1710  * bogosity with SQL date/time standards, since
1711  * we must infer a time zone from current time.
1712  * - thomas 2000-03-10
1713  * Allow specifying date to get a better time zone,
1714  * if time zones are allowed. - thomas 2001-12-26
1715  */
1716 int
1717 DecodeTimeOnly(char **field, int *ftype, int nf,
1718  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
1719 {
1720  int fmask = 0,
1721  tmask,
1722  type;
1723  int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */
1724  int i;
1725  int val;
1726  int dterr;
1727  bool isjulian = false;
1728  bool is2digits = false;
1729  bool bc = false;
1730  int mer = HR24;
1731  pg_tz *namedTz = NULL;
1732  pg_tz *abbrevTz = NULL;
1733  char *abbrev = NULL;
1734  pg_tz *valtz;
1735 
1736  *dtype = DTK_TIME;
1737  tm->tm_hour = 0;
1738  tm->tm_min = 0;
1739  tm->tm_sec = 0;
1740  *fsec = 0;
1741  /* don't know daylight savings time status apriori */
1742  tm->tm_isdst = -1;
1743 
1744  if (tzp != NULL)
1745  *tzp = 0;
1746 
1747  for (i = 0; i < nf; i++)
1748  {
1749  switch (ftype[i])
1750  {
1751  case DTK_DATE:
1752 
1753  /*
1754  * Time zone not allowed? Then should not accept dates or time
1755  * zones no matter what else!
1756  */
1757  if (tzp == NULL)
1758  return DTERR_BAD_FORMAT;
1759 
1760  /* Under limited circumstances, we will accept a date... */
1761  if (i == 0 && nf >= 2 &&
1762  (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
1763  {
1764  dterr = DecodeDate(field[i], fmask,
1765  &tmask, &is2digits, tm);
1766  if (dterr)
1767  return dterr;
1768  }
1769  /* otherwise, this is a time and/or time zone */
1770  else
1771  {
1772  if (isdigit((unsigned char) *field[i]))
1773  {
1774  char *cp;
1775 
1776  /*
1777  * Starts with a digit but we already have a time
1778  * field? Then we are in trouble with time already...
1779  */
1780  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1781  return DTERR_BAD_FORMAT;
1782 
1783  /*
1784  * Should not get here and fail. Sanity check only...
1785  */
1786  if ((cp = strchr(field[i], '-')) == NULL)
1787  return DTERR_BAD_FORMAT;
1788 
1789  /* Get the time zone from the end of the string */
1790  dterr = DecodeTimezone(cp, tzp);
1791  if (dterr)
1792  return dterr;
1793  *cp = '\0';
1794 
1795  /*
1796  * Then read the rest of the field as a concatenated
1797  * time
1798  */
1799  dterr = DecodeNumberField(strlen(field[i]), field[i],
1800  (fmask | DTK_DATE_M),
1801  &tmask, tm,
1802  fsec, &is2digits);
1803  if (dterr < 0)
1804  return dterr;
1805  ftype[i] = dterr;
1806 
1807  tmask |= DTK_M(TZ);
1808  }
1809  else
1810  {
1811  namedTz = pg_tzset(field[i]);
1812  if (!namedTz)
1813  {
1814  /*
1815  * We should return an error code instead of
1816  * ereport'ing directly, but then there is no way
1817  * to report the bad time zone name.
1818  */
1819  ereport(ERROR,
1820  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1821  errmsg("time zone \"%s\" not recognized",
1822  field[i])));
1823  }
1824  /* we'll apply the zone setting below */
1825  ftype[i] = DTK_TZ;
1826  tmask = DTK_M(TZ);
1827  }
1828  }
1829  break;
1830 
1831  case DTK_TIME:
1832  dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
1834  &tmask, tm, fsec);
1835  if (dterr)
1836  return dterr;
1837  break;
1838 
1839  case DTK_TZ:
1840  {
1841  int tz;
1842 
1843  if (tzp == NULL)
1844  return DTERR_BAD_FORMAT;
1845 
1846  dterr = DecodeTimezone(field[i], &tz);
1847  if (dterr)
1848  return dterr;
1849  *tzp = tz;
1850  tmask = DTK_M(TZ);
1851  }
1852  break;
1853 
1854  case DTK_NUMBER:
1855 
1856  /*
1857  * Was this an "ISO time" with embedded field labels? An
1858  * example is "h04mm05s06" - thomas 2001-02-04
1859  */
1860  if (ptype != 0)
1861  {
1862  char *cp;
1863  int val;
1864 
1865  /* Only accept a date under limited circumstances */
1866  switch (ptype)
1867  {
1868  case DTK_JULIAN:
1869  case DTK_YEAR:
1870  case DTK_MONTH:
1871  case DTK_DAY:
1872  if (tzp == NULL)
1873  return DTERR_BAD_FORMAT;
1874  default:
1875  break;
1876  }
1877 
1878  errno = 0;
1879  val = strtoint(field[i], &cp, 10);
1880  if (errno == ERANGE)
1881  return DTERR_FIELD_OVERFLOW;
1882 
1883  /*
1884  * only a few kinds are allowed to have an embedded
1885  * decimal
1886  */
1887  if (*cp == '.')
1888  switch (ptype)
1889  {
1890  case DTK_JULIAN:
1891  case DTK_TIME:
1892  case DTK_SECOND:
1893  break;
1894  default:
1895  return DTERR_BAD_FORMAT;
1896  break;
1897  }
1898  else if (*cp != '\0')
1899  return DTERR_BAD_FORMAT;
1900 
1901  switch (ptype)
1902  {
1903  case DTK_YEAR:
1904  tm->tm_year = val;
1905  tmask = DTK_M(YEAR);
1906  break;
1907 
1908  case DTK_MONTH:
1909 
1910  /*
1911  * already have a month and hour? then assume
1912  * minutes
1913  */
1914  if ((fmask & DTK_M(MONTH)) != 0 &&
1915  (fmask & DTK_M(HOUR)) != 0)
1916  {
1917  tm->tm_min = val;
1918  tmask = DTK_M(MINUTE);
1919  }
1920  else
1921  {
1922  tm->tm_mon = val;
1923  tmask = DTK_M(MONTH);
1924  }
1925  break;
1926 
1927  case DTK_DAY:
1928  tm->tm_mday = val;
1929  tmask = DTK_M(DAY);
1930  break;
1931 
1932  case DTK_HOUR:
1933  tm->tm_hour = val;
1934  tmask = DTK_M(HOUR);
1935  break;
1936 
1937  case DTK_MINUTE:
1938  tm->tm_min = val;
1939  tmask = DTK_M(MINUTE);
1940  break;
1941 
1942  case DTK_SECOND:
1943  tm->tm_sec = val;
1944  tmask = DTK_M(SECOND);
1945  if (*cp == '.')
1946  {
1947  dterr = ParseFractionalSecond(cp, fsec);
1948  if (dterr)
1949  return dterr;
1950  tmask = DTK_ALL_SECS_M;
1951  }
1952  break;
1953 
1954  case DTK_TZ:
1955  tmask = DTK_M(TZ);
1956  dterr = DecodeTimezone(field[i], tzp);
1957  if (dterr)
1958  return dterr;
1959  break;
1960 
1961  case DTK_JULIAN:
1962  /* previous field was a label for "julian date" */
1963  if (val < 0)
1964  return DTERR_FIELD_OVERFLOW;
1965  tmask = DTK_DATE_M;
1966  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1967  isjulian = true;
1968 
1969  if (*cp == '.')
1970  {
1971  double time;
1972 
1973  errno = 0;
1974  time = strtod(cp, &cp);
1975  if (*cp != '\0' || errno != 0)
1976  return DTERR_BAD_FORMAT;
1977  time *= USECS_PER_DAY;
1978  dt2time(time,
1979  &tm->tm_hour, &tm->tm_min,
1980  &tm->tm_sec, fsec);
1981  tmask |= DTK_TIME_M;
1982  }
1983  break;
1984 
1985  case DTK_TIME:
1986  /* previous field was "t" for ISO time */
1987  dterr = DecodeNumberField(strlen(field[i]), field[i],
1988  (fmask | DTK_DATE_M),
1989  &tmask, tm,
1990  fsec, &is2digits);
1991  if (dterr < 0)
1992  return dterr;
1993  ftype[i] = dterr;
1994 
1995  if (tmask != DTK_TIME_M)
1996  return DTERR_BAD_FORMAT;
1997  break;
1998 
1999  default:
2000  return DTERR_BAD_FORMAT;
2001  break;
2002  }
2003 
2004  ptype = 0;
2005  *dtype = DTK_DATE;
2006  }
2007  else
2008  {
2009  char *cp;
2010  int flen;
2011 
2012  flen = strlen(field[i]);
2013  cp = strchr(field[i], '.');
2014 
2015  /* Embedded decimal? */
2016  if (cp != NULL)
2017  {
2018  /*
2019  * Under limited circumstances, we will accept a
2020  * date...
2021  */
2022  if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
2023  {
2024  dterr = DecodeDate(field[i], fmask,
2025  &tmask, &is2digits, tm);
2026  if (dterr)
2027  return dterr;
2028  }
2029  /* embedded decimal and several digits before? */
2030  else if (flen - strlen(cp) > 2)
2031  {
2032  /*
2033  * Interpret as a concatenated date or time Set
2034  * the type field to allow decoding other fields
2035  * later. Example: 20011223 or 040506
2036  */
2037  dterr = DecodeNumberField(flen, field[i],
2038  (fmask | DTK_DATE_M),
2039  &tmask, tm,
2040  fsec, &is2digits);
2041  if (dterr < 0)
2042  return dterr;
2043  ftype[i] = dterr;
2044  }
2045  else
2046  return DTERR_BAD_FORMAT;
2047  }
2048  else if (flen > 4)
2049  {
2050  dterr = DecodeNumberField(flen, field[i],
2051  (fmask | DTK_DATE_M),
2052  &tmask, tm,
2053  fsec, &is2digits);
2054  if (dterr < 0)
2055  return dterr;
2056  ftype[i] = dterr;
2057  }
2058  /* otherwise it is a single date/time field... */
2059  else
2060  {
2061  dterr = DecodeNumber(flen, field[i],
2062  false,
2063  (fmask | DTK_DATE_M),
2064  &tmask, tm,
2065  fsec, &is2digits);
2066  if (dterr)
2067  return dterr;
2068  }
2069  }
2070  break;
2071 
2072  case DTK_STRING:
2073  case DTK_SPECIAL:
2074  /* timezone abbrevs take precedence over built-in tokens */
2075  type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
2076  if (type == UNKNOWN_FIELD)
2077  type = DecodeSpecial(i, field[i], &val);
2078  if (type == IGNORE_DTF)
2079  continue;
2080 
2081  tmask = DTK_M(type);
2082  switch (type)
2083  {
2084  case RESERV:
2085  switch (val)
2086  {
2087  case DTK_NOW:
2088  tmask = DTK_TIME_M;
2089  *dtype = DTK_TIME;
2090  GetCurrentTimeUsec(tm, fsec, NULL);
2091  break;
2092 
2093  case DTK_ZULU:
2094  tmask = (DTK_TIME_M | DTK_M(TZ));
2095  *dtype = DTK_TIME;
2096  tm->tm_hour = 0;
2097  tm->tm_min = 0;
2098  tm->tm_sec = 0;
2099  tm->tm_isdst = 0;
2100  break;
2101 
2102  default:
2103  return DTERR_BAD_FORMAT;
2104  }
2105 
2106  break;
2107 
2108  case DTZMOD:
2109 
2110  /*
2111  * daylight savings time modifier (solves "MET DST"
2112  * syntax)
2113  */
2114  tmask |= DTK_M(DTZ);
2115  tm->tm_isdst = 1;
2116  if (tzp == NULL)
2117  return DTERR_BAD_FORMAT;
2118  *tzp -= val;
2119  break;
2120 
2121  case DTZ:
2122 
2123  /*
2124  * set mask for TZ here _or_ check for DTZ later when
2125  * getting default timezone
2126  */
2127  tmask |= DTK_M(TZ);
2128  tm->tm_isdst = 1;
2129  if (tzp == NULL)
2130  return DTERR_BAD_FORMAT;
2131  *tzp = -val;
2132  ftype[i] = DTK_TZ;
2133  break;
2134 
2135  case TZ:
2136  tm->tm_isdst = 0;
2137  if (tzp == NULL)
2138  return DTERR_BAD_FORMAT;
2139  *tzp = -val;
2140  ftype[i] = DTK_TZ;
2141  break;
2142 
2143  case DYNTZ:
2144  tmask |= DTK_M(TZ);
2145  if (tzp == NULL)
2146  return DTERR_BAD_FORMAT;
2147  /* we'll determine the actual offset later */
2148  abbrevTz = valtz;
2149  abbrev = field[i];
2150  ftype[i] = DTK_TZ;
2151  break;
2152 
2153  case AMPM:
2154  mer = val;
2155  break;
2156 
2157  case ADBC:
2158  bc = (val == BC);
2159  break;
2160 
2161  case UNITS:
2162  tmask = 0;
2163  ptype = val;
2164  break;
2165 
2166  case ISOTIME:
2167  tmask = 0;
2168 
2169  /***
2170  * We will need one of the following fields:
2171  * DTK_NUMBER should be hhmmss.fff
2172  * DTK_TIME should be hh:mm:ss.fff
2173  * DTK_DATE should be hhmmss-zz
2174  ***/
2175  if (i >= nf - 1 ||
2176  (ftype[i + 1] != DTK_NUMBER &&
2177  ftype[i + 1] != DTK_TIME &&
2178  ftype[i + 1] != DTK_DATE))
2179  return DTERR_BAD_FORMAT;
2180 
2181  ptype = val;
2182  break;
2183 
2184  case UNKNOWN_FIELD:
2185 
2186  /*
2187  * Before giving up and declaring error, check to see
2188  * if it is an all-alpha timezone name.
2189  */
2190  namedTz = pg_tzset(field[i]);
2191  if (!namedTz)
2192  return DTERR_BAD_FORMAT;
2193  /* we'll apply the zone setting below */
2194  tmask = DTK_M(TZ);
2195  break;
2196 
2197  default:
2198  return DTERR_BAD_FORMAT;
2199  }
2200  break;
2201 
2202  default:
2203  return DTERR_BAD_FORMAT;
2204  }
2205 
2206  if (tmask & fmask)
2207  return DTERR_BAD_FORMAT;
2208  fmask |= tmask;
2209  } /* end loop over fields */
2210 
2211  /* do final checking/adjustment of Y/M/D fields */
2212  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
2213  if (dterr)
2214  return dterr;
2215 
2216  /* handle AM/PM */
2217  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
2218  return DTERR_FIELD_OVERFLOW;
2219  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
2220  tm->tm_hour = 0;
2221  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
2222  tm->tm_hour += HOURS_PER_DAY / 2;
2223 
2224  /*
2225  * This should match the checks in make_timestamp_internal
2226  */
2227  if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
2228  tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
2229  tm->tm_hour > HOURS_PER_DAY ||
2230  /* test for > 24:00:00 */
2231  (tm->tm_hour == HOURS_PER_DAY &&
2232  (tm->tm_min > 0 || tm->tm_sec > 0 || *fsec > 0)) ||
2233  *fsec < INT64CONST(0) || *fsec > USECS_PER_SEC)
2234  return DTERR_FIELD_OVERFLOW;
2235 
2236  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2237  return DTERR_BAD_FORMAT;
2238 
2239  /*
2240  * If we had a full timezone spec, compute the offset (we could not do it
2241  * before, because we may need the date to resolve DST status).
2242  */
2243  if (namedTz != NULL)
2244  {
2245  long int gmtoff;
2246 
2247  /* daylight savings time modifier disallowed with full TZ */
2248  if (fmask & DTK_M(DTZMOD))
2249  return DTERR_BAD_FORMAT;
2250 
2251  /* if non-DST zone, we do not need to know the date */
2252  if (pg_get_timezone_offset(namedTz, &gmtoff))
2253  {
2254  *tzp = -(int) gmtoff;
2255  }
2256  else
2257  {
2258  /* a date has to be specified */
2259  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2260  return DTERR_BAD_FORMAT;
2261  *tzp = DetermineTimeZoneOffset(tm, namedTz);
2262  }
2263  }
2264 
2265  /*
2266  * Likewise, if we had a dynamic timezone abbreviation, resolve it now.
2267  */
2268  if (abbrevTz != NULL)
2269  {
2270  struct pg_tm tt,
2271  *tmp = &tt;
2272 
2273  /*
2274  * daylight savings time modifier but no standard timezone? then error
2275  */
2276  if (fmask & DTK_M(DTZMOD))
2277  return DTERR_BAD_FORMAT;
2278 
2279  if ((fmask & DTK_DATE_M) == 0)
2280  GetCurrentDateTime(tmp);
2281  else
2282  {
2283  /* a date has to be specified */
2284  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2285  return DTERR_BAD_FORMAT;
2286  tmp->tm_year = tm->tm_year;
2287  tmp->tm_mon = tm->tm_mon;
2288  tmp->tm_mday = tm->tm_mday;
2289  }
2290  tmp->tm_hour = tm->tm_hour;
2291  tmp->tm_min = tm->tm_min;
2292  tmp->tm_sec = tm->tm_sec;
2293  *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
2294  tm->tm_isdst = tmp->tm_isdst;
2295  }
2296 
2297  /* timezone not specified? then use session timezone */
2298  if (tzp != NULL && !(fmask & DTK_M(TZ)))
2299  {
2300  struct pg_tm tt,
2301  *tmp = &tt;
2302 
2303  /*
2304  * daylight savings time modifier but no standard timezone? then error
2305  */
2306  if (fmask & DTK_M(DTZMOD))
2307  return DTERR_BAD_FORMAT;
2308 
2309  if ((fmask & DTK_DATE_M) == 0)
2310  GetCurrentDateTime(tmp);
2311  else
2312  {
2313  /* a date has to be specified */
2314  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2315  return DTERR_BAD_FORMAT;
2316  tmp->tm_year = tm->tm_year;
2317  tmp->tm_mon = tm->tm_mon;
2318  tmp->tm_mday = tm->tm_mday;
2319  }
2320  tmp->tm_hour = tm->tm_hour;
2321  tmp->tm_min = tm->tm_min;
2322  tmp->tm_sec = tm->tm_sec;
2324  tm->tm_isdst = tmp->tm_isdst;
2325  }
2326 
2327  return 0;
2328 }
2329 
2330 /* DecodeDate()
2331  * Decode date string which includes delimiters.
2332  * Return 0 if okay, a DTERR code if not.
2333  *
2334  * str: field to be parsed
2335  * fmask: bitmask for field types already seen
2336  * *tmask: receives bitmask for fields found here
2337  * *is2digits: set to true if we find 2-digit year
2338  * *tm: field values are stored into appropriate members of this struct
2339  */
2340 static int
2341 DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
2342  struct pg_tm *tm)
2343 {
2344  fsec_t fsec;
2345  int nf = 0;
2346  int i,
2347  len;
2348  int dterr;
2349  bool haveTextMonth = false;
2350  int type,
2351  val,
2352  dmask = 0;
2353  char *field[MAXDATEFIELDS];
2354 
2355  *tmask = 0;
2356 
2357  /* parse this string... */
2358  while (*str != '\0' && nf < MAXDATEFIELDS)
2359  {
2360  /* skip field separators */
2361  while (*str != '\0' && !isalnum((unsigned char) *str))
2362  str++;
2363 
2364  if (*str == '\0')
2365  return DTERR_BAD_FORMAT; /* end of string after separator */
2366 
2367  field[nf] = str;
2368  if (isdigit((unsigned char) *str))
2369  {
2370  while (isdigit((unsigned char) *str))
2371  str++;
2372  }
2373  else if (isalpha((unsigned char) *str))
2374  {
2375  while (isalpha((unsigned char) *str))
2376  str++;
2377  }
2378 
2379  /* Just get rid of any non-digit, non-alpha characters... */
2380  if (*str != '\0')
2381  *str++ = '\0';
2382  nf++;
2383  }
2384 
2385  /* look first for text fields, since that will be unambiguous month */
2386  for (i = 0; i < nf; i++)
2387  {
2388  if (isalpha((unsigned char) *field[i]))
2389  {
2390  type = DecodeSpecial(i, field[i], &val);
2391  if (type == IGNORE_DTF)
2392  continue;
2393 
2394  dmask = DTK_M(type);
2395  switch (type)
2396  {
2397  case MONTH:
2398  tm->tm_mon = val;
2399  haveTextMonth = true;
2400  break;
2401 
2402  default:
2403  return DTERR_BAD_FORMAT;
2404  }
2405  if (fmask & dmask)
2406  return DTERR_BAD_FORMAT;
2407 
2408  fmask |= dmask;
2409  *tmask |= dmask;
2410 
2411  /* mark this field as being completed */
2412  field[i] = NULL;
2413  }
2414  }
2415 
2416  /* now pick up remaining numeric fields */
2417  for (i = 0; i < nf; i++)
2418  {
2419  if (field[i] == NULL)
2420  continue;
2421 
2422  if ((len = strlen(field[i])) <= 0)
2423  return DTERR_BAD_FORMAT;
2424 
2425  dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
2426  &dmask, tm,
2427  &fsec, is2digits);
2428  if (dterr)
2429  return dterr;
2430 
2431  if (fmask & dmask)
2432  return DTERR_BAD_FORMAT;
2433 
2434  fmask |= dmask;
2435  *tmask |= dmask;
2436  }
2437 
2438  if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
2439  return DTERR_BAD_FORMAT;
2440 
2441  /* validation of the field values must wait until ValidateDate() */
2442 
2443  return 0;
2444 }
2445 
2446 /* ValidateDate()
2447  * Check valid year/month/day values, handle BC and DOY cases
2448  * Return 0 if okay, a DTERR code if not.
2449  */
2450 int
2451 ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
2452  struct pg_tm *tm)
2453 {
2454  if (fmask & DTK_M(YEAR))
2455  {
2456  if (isjulian)
2457  {
2458  /* tm_year is correct and should not be touched */
2459  }
2460  else if (bc)
2461  {
2462  /* there is no year zero in AD/BC notation */
2463  if (tm->tm_year <= 0)
2464  return DTERR_FIELD_OVERFLOW;
2465  /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
2466  tm->tm_year = -(tm->tm_year - 1);
2467  }
2468  else if (is2digits)
2469  {
2470  /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
2471  if (tm->tm_year < 0) /* just paranoia */
2472  return DTERR_FIELD_OVERFLOW;
2473  if (tm->tm_year < 70)
2474  tm->tm_year += 2000;
2475  else if (tm->tm_year < 100)
2476  tm->tm_year += 1900;
2477  }
2478  else
2479  {
2480  /* there is no year zero in AD/BC notation */
2481  if (tm->tm_year <= 0)
2482  return DTERR_FIELD_OVERFLOW;
2483  }
2484  }
2485 
2486  /* now that we have correct year, decode DOY */
2487  if (fmask & DTK_M(DOY))
2488  {
2489  j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
2490  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2491  }
2492 
2493  /* check for valid month */
2494  if (fmask & DTK_M(MONTH))
2495  {
2496  if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
2497  return DTERR_MD_FIELD_OVERFLOW;
2498  }
2499 
2500  /* minimal check for valid day */
2501  if (fmask & DTK_M(DAY))
2502  {
2503  if (tm->tm_mday < 1 || tm->tm_mday > 31)
2504  return DTERR_MD_FIELD_OVERFLOW;
2505  }
2506 
2507  if ((fmask & DTK_DATE_M) == DTK_DATE_M)
2508  {
2509  /*
2510  * Check for valid day of month, now that we know for sure the month
2511  * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
2512  * unlikely that "Feb 29" is a YMD-order error.
2513  */
2514  if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
2515  return DTERR_FIELD_OVERFLOW;
2516  }
2517 
2518  return 0;
2519 }
2520 
2521 
2522 /* DecodeTime()
2523  * Decode time string which includes delimiters.
2524  * Return 0 if okay, a DTERR code if not.
2525  *
2526  * Only check the lower limit on hours, since this same code can be
2527  * used to represent time spans.
2528  */
2529 static int
2530 DecodeTime(char *str, int fmask, int range,
2531  int *tmask, struct pg_tm *tm, fsec_t *fsec)
2532 {
2533  char *cp;
2534  int dterr;
2535 
2536  *tmask = DTK_TIME_M;
2537 
2538  errno = 0;
2539  tm->tm_hour = strtoint(str, &cp, 10);
2540  if (errno == ERANGE)
2541  return DTERR_FIELD_OVERFLOW;
2542  if (*cp != ':')
2543  return DTERR_BAD_FORMAT;
2544  errno = 0;
2545  tm->tm_min = strtoint(cp + 1, &cp, 10);
2546  if (errno == ERANGE)
2547  return DTERR_FIELD_OVERFLOW;
2548  if (*cp == '\0')
2549  {
2550  tm->tm_sec = 0;
2551  *fsec = 0;
2552  /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
2553  if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND)))
2554  {
2555  tm->tm_sec = tm->tm_min;
2556  tm->tm_min = tm->tm_hour;
2557  tm->tm_hour = 0;
2558  }
2559  }
2560  else if (*cp == '.')
2561  {
2562  /* always assume mm:ss.sss is MINUTE TO SECOND */
2563  dterr = ParseFractionalSecond(cp, fsec);
2564  if (dterr)
2565  return dterr;
2566  tm->tm_sec = tm->tm_min;
2567  tm->tm_min = tm->tm_hour;
2568  tm->tm_hour = 0;
2569  }
2570  else if (*cp == ':')
2571  {
2572  errno = 0;
2573  tm->tm_sec = strtoint(cp + 1, &cp, 10);
2574  if (errno == ERANGE)
2575  return DTERR_FIELD_OVERFLOW;
2576  if (*cp == '\0')
2577  *fsec = 0;
2578  else if (*cp == '.')
2579  {
2580  dterr = ParseFractionalSecond(cp, fsec);
2581  if (dterr)
2582  return dterr;
2583  }
2584  else
2585  return DTERR_BAD_FORMAT;
2586  }
2587  else
2588  return DTERR_BAD_FORMAT;
2589 
2590  /* do a sanity check */
2591  if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
2592  tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
2593  *fsec < INT64CONST(0) ||
2594  *fsec > USECS_PER_SEC)
2595  return DTERR_FIELD_OVERFLOW;
2596 
2597  return 0;
2598 }
2599 
2600 
2601 /* DecodeNumber()
2602  * Interpret plain numeric field as a date value in context.
2603  * Return 0 if okay, a DTERR code if not.
2604  */
2605 static int
2606 DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
2607  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2608 {
2609  int val;
2610  char *cp;
2611  int dterr;
2612 
2613  *tmask = 0;
2614 
2615  errno = 0;
2616  val = strtoint(str, &cp, 10);
2617  if (errno == ERANGE)
2618  return DTERR_FIELD_OVERFLOW;
2619  if (cp == str)
2620  return DTERR_BAD_FORMAT;
2621 
2622  if (*cp == '.')
2623  {
2624  /*
2625  * More than two digits before decimal point? Then could be a date or
2626  * a run-together time: 2001.360 20011225 040506.789
2627  */
2628  if (cp - str > 2)
2629  {
2630  dterr = DecodeNumberField(flen, str,
2631  (fmask | DTK_DATE_M),
2632  tmask, tm,
2633  fsec, is2digits);
2634  if (dterr < 0)
2635  return dterr;
2636  return 0;
2637  }
2638 
2639  dterr = ParseFractionalSecond(cp, fsec);
2640  if (dterr)
2641  return dterr;
2642  }
2643  else if (*cp != '\0')
2644  return DTERR_BAD_FORMAT;
2645 
2646  /* Special case for day of year */
2647  if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
2648  val <= 366)
2649  {
2650  *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
2651  tm->tm_yday = val;
2652  /* tm_mon and tm_mday can't actually be set yet ... */
2653  return 0;
2654  }
2655 
2656  /* Switch based on what we have so far */
2657  switch (fmask & DTK_DATE_M)
2658  {
2659  case 0:
2660 
2661  /*
2662  * Nothing so far; make a decision about what we think the input
2663  * is. There used to be lots of heuristics here, but the
2664  * consensus now is to be paranoid. It *must* be either
2665  * YYYY-MM-DD (with a more-than-two-digit year field), or the
2666  * field order defined by DateOrder.
2667  */
2668  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2669  {
2670  *tmask = DTK_M(YEAR);
2671  tm->tm_year = val;
2672  }
2673  else if (DateOrder == DATEORDER_DMY)
2674  {
2675  *tmask = DTK_M(DAY);
2676  tm->tm_mday = val;
2677  }
2678  else
2679  {
2680  *tmask = DTK_M(MONTH);
2681  tm->tm_mon = val;
2682  }
2683  break;
2684 
2685  case (DTK_M(YEAR)):
2686  /* Must be at second field of YY-MM-DD */
2687  *tmask = DTK_M(MONTH);
2688  tm->tm_mon = val;
2689  break;
2690 
2691  case (DTK_M(MONTH)):
2692  if (haveTextMonth)
2693  {
2694  /*
2695  * We are at the first numeric field of a date that included a
2696  * textual month name. We want to support the variants
2697  * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
2698  * inputs. We will also accept MON-DD-YY or DD-MON-YY in
2699  * either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
2700  */
2701  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2702  {
2703  *tmask = DTK_M(YEAR);
2704  tm->tm_year = val;
2705  }
2706  else
2707  {
2708  *tmask = DTK_M(DAY);
2709  tm->tm_mday = val;
2710  }
2711  }
2712  else
2713  {
2714  /* Must be at second field of MM-DD-YY */
2715  *tmask = DTK_M(DAY);
2716  tm->tm_mday = val;
2717  }
2718  break;
2719 
2720  case (DTK_M(YEAR) | DTK_M(MONTH)):
2721  if (haveTextMonth)
2722  {
2723  /* Need to accept DD-MON-YYYY even in YMD mode */
2724  if (flen >= 3 && *is2digits)
2725  {
2726  /* Guess that first numeric field is day was wrong */
2727  *tmask = DTK_M(DAY); /* YEAR is already set */
2728  tm->tm_mday = tm->tm_year;
2729  tm->tm_year = val;
2730  *is2digits = false;
2731  }
2732  else
2733  {
2734  *tmask = DTK_M(DAY);
2735  tm->tm_mday = val;
2736  }
2737  }
2738  else
2739  {
2740  /* Must be at third field of YY-MM-DD */
2741  *tmask = DTK_M(DAY);
2742  tm->tm_mday = val;
2743  }
2744  break;
2745 
2746  case (DTK_M(DAY)):
2747  /* Must be at second field of DD-MM-YY */
2748  *tmask = DTK_M(MONTH);
2749  tm->tm_mon = val;
2750  break;
2751 
2752  case (DTK_M(MONTH) | DTK_M(DAY)):
2753  /* Must be at third field of DD-MM-YY or MM-DD-YY */
2754  *tmask = DTK_M(YEAR);
2755  tm->tm_year = val;
2756  break;
2757 
2758  case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
2759  /* we have all the date, so it must be a time field */
2760  dterr = DecodeNumberField(flen, str, fmask,
2761  tmask, tm,
2762  fsec, is2digits);
2763  if (dterr < 0)
2764  return dterr;
2765  return 0;
2766 
2767  default:
2768  /* Anything else is bogus input */
2769  return DTERR_BAD_FORMAT;
2770  }
2771 
2772  /*
2773  * When processing a year field, mark it for adjustment if it's only one
2774  * or two digits.
2775  */
2776  if (*tmask == DTK_M(YEAR))
2777  *is2digits = (flen <= 2);
2778 
2779  return 0;
2780 }
2781 
2782 
2783 /* DecodeNumberField()
2784  * Interpret numeric string as a concatenated date or time field.
2785  * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
2786  *
2787  * Use the context of previously decoded fields to help with
2788  * the interpretation.
2789  */
2790 static int
2791 DecodeNumberField(int len, char *str, int fmask,
2792  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2793 {
2794  char *cp;
2795 
2796  /*
2797  * Have a decimal point? Then this is a date or something with a seconds
2798  * field...
2799  */
2800  if ((cp = strchr(str, '.')) != NULL)
2801  {
2802  /*
2803  * Can we use ParseFractionalSecond here? Not clear whether trailing
2804  * junk should be rejected ...
2805  */
2806  double frac;
2807 
2808  errno = 0;
2809  frac = strtod(cp, NULL);
2810  if (errno != 0)
2811  return DTERR_BAD_FORMAT;
2812  *fsec = rint(frac * 1000000);
2813  /* Now truncate off the fraction for further processing */
2814  *cp = '\0';
2815  len = strlen(str);
2816  }
2817  /* No decimal point and no complete date yet? */
2818  else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2819  {
2820  if (len >= 6)
2821  {
2822  *tmask = DTK_DATE_M;
2823 
2824  /*
2825  * Start from end and consider first 2 as Day, next 2 as Month,
2826  * and the rest as Year.
2827  */
2828  tm->tm_mday = atoi(str + (len - 2));
2829  *(str + (len - 2)) = '\0';
2830  tm->tm_mon = atoi(str + (len - 4));
2831  *(str + (len - 4)) = '\0';
2832  tm->tm_year = atoi(str);
2833  if ((len - 4) == 2)
2834  *is2digits = true;
2835 
2836  return DTK_DATE;
2837  }
2838  }
2839 
2840  /* not all time fields are specified? */
2841  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2842  {
2843  /* hhmmss */
2844  if (len == 6)
2845  {
2846  *tmask = DTK_TIME_M;
2847  tm->tm_sec = atoi(str + 4);
2848  *(str + 4) = '\0';
2849  tm->tm_min = atoi(str + 2);
2850  *(str + 2) = '\0';
2851  tm->tm_hour = atoi(str);
2852 
2853  return DTK_TIME;
2854  }
2855  /* hhmm? */
2856  else if (len == 4)
2857  {
2858  *tmask = DTK_TIME_M;
2859  tm->tm_sec = 0;
2860  tm->tm_min = atoi(str + 2);
2861  *(str + 2) = '\0';
2862  tm->tm_hour = atoi(str);
2863 
2864  return DTK_TIME;
2865  }
2866  }
2867 
2868  return DTERR_BAD_FORMAT;
2869 }
2870 
2871 
2872 /* DecodeTimezone()
2873  * Interpret string as a numeric timezone.
2874  *
2875  * Return 0 if okay (and set *tzp), a DTERR code if not okay.
2876  */
2877 int
2878 DecodeTimezone(char *str, int *tzp)
2879 {
2880  int tz;
2881  int hr,
2882  min,
2883  sec = 0;
2884  char *cp;
2885 
2886  /* leading character must be "+" or "-" */
2887  if (*str != '+' && *str != '-')
2888  return DTERR_BAD_FORMAT;
2889 
2890  errno = 0;
2891  hr = strtoint(str + 1, &cp, 10);
2892  if (errno == ERANGE)
2893  return DTERR_TZDISP_OVERFLOW;
2894 
2895  /* explicit delimiter? */
2896  if (*cp == ':')
2897  {
2898  errno = 0;
2899  min = strtoint(cp + 1, &cp, 10);
2900  if (errno == ERANGE)
2901  return DTERR_TZDISP_OVERFLOW;
2902  if (*cp == ':')
2903  {
2904  errno = 0;
2905  sec = strtoint(cp + 1, &cp, 10);
2906  if (errno == ERANGE)
2907  return DTERR_TZDISP_OVERFLOW;
2908  }
2909  }
2910  /* otherwise, might have run things together... */
2911  else if (*cp == '\0' && strlen(str) > 3)
2912  {
2913  min = hr % 100;
2914  hr = hr / 100;
2915  /* we could, but don't, support a run-together hhmmss format */
2916  }
2917  else
2918  min = 0;
2919 
2920  /* Range-check the values; see notes in datatype/timestamp.h */
2921  if (hr < 0 || hr > MAX_TZDISP_HOUR)
2922  return DTERR_TZDISP_OVERFLOW;
2923  if (min < 0 || min >= MINS_PER_HOUR)
2924  return DTERR_TZDISP_OVERFLOW;
2925  if (sec < 0 || sec >= SECS_PER_MINUTE)
2926  return DTERR_TZDISP_OVERFLOW;
2927 
2928  tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
2929  if (*str == '-')
2930  tz = -tz;
2931 
2932  *tzp = -tz;
2933 
2934  if (*cp != '\0')
2935  return DTERR_BAD_FORMAT;
2936 
2937  return 0;
2938 }
2939 
2940 
2941 /* DecodeTimezoneAbbrev()
2942  * Interpret string as a timezone abbreviation, if possible.
2943  *
2944  * Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
2945  * string is not any known abbreviation. On success, set *offset and *tz to
2946  * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
2947  * Note that full timezone names (such as America/New_York) are not handled
2948  * here, mostly for historical reasons.
2949  *
2950  * Given string must be lowercased already.
2951  *
2952  * Implement a cache lookup since it is likely that dates
2953  * will be related in format.
2954  */
2955 int
2956 DecodeTimezoneAbbrev(int field, char *lowtoken,
2957  int *offset, pg_tz **tz)
2958 {
2959  int type;
2960  const datetkn *tp;
2961 
2962  tp = abbrevcache[field];
2963  /* use strncmp so that we match truncated tokens */
2964  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
2965  {
2966  if (zoneabbrevtbl)
2967  tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
2968  zoneabbrevtbl->numabbrevs);
2969  else
2970  tp = NULL;
2971  }
2972  if (tp == NULL)
2973  {
2974  type = UNKNOWN_FIELD;
2975  *offset = 0;
2976  *tz = NULL;
2977  }
2978  else
2979  {
2980  abbrevcache[field] = tp;
2981  type = tp->type;
2982  if (type == DYNTZ)
2983  {
2984  *offset = 0;
2985  *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp);
2986  }
2987  else
2988  {
2989  *offset = tp->value;
2990  *tz = NULL;
2991  }
2992  }
2993 
2994  return type;
2995 }
2996 
2997 
2998 /* DecodeSpecial()
2999  * Decode text string using lookup table.
3000  *
3001  * Recognizes the keywords listed in datetktbl.
3002  * Note: at one time this would also recognize timezone abbreviations,
3003  * but no more; use DecodeTimezoneAbbrev for that.
3004  *
3005  * Given string must be lowercased already.
3006  *
3007  * Implement a cache lookup since it is likely that dates
3008  * will be related in format.
3009  */
3010 int
3011 DecodeSpecial(int field, char *lowtoken, int *val)
3012 {
3013  int type;
3014  const datetkn *tp;
3015 
3016  tp = datecache[field];
3017  /* use strncmp so that we match truncated tokens */
3018  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3019  {
3020  tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
3021  }
3022  if (tp == NULL)
3023  {
3024  type = UNKNOWN_FIELD;
3025  *val = 0;
3026  }
3027  else
3028  {
3029  datecache[field] = tp;
3030  type = tp->type;
3031  *val = tp->value;
3032  }
3033 
3034  return type;
3035 }
3036 
3037 
3038 /* ClearPgTm
3039  *
3040  * Zero out a pg_tm and associated fsec_t
3041  */
3042 static inline void
3043 ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
3044 {
3045  tm->tm_year = 0;
3046  tm->tm_mon = 0;
3047  tm->tm_mday = 0;
3048  tm->tm_hour = 0;
3049  tm->tm_min = 0;
3050  tm->tm_sec = 0;
3051  *fsec = 0;
3052 }
3053 
3054 
3055 /* DecodeInterval()
3056  * Interpret previously parsed fields for general time interval.
3057  * Returns 0 if successful, DTERR code if bogus input detected.
3058  * dtype, tm, fsec are output parameters.
3059  *
3060  * Allow "date" field DTK_DATE since this could be just
3061  * an unsigned floating point number. - thomas 1997-11-16
3062  *
3063  * Allow ISO-style time span, with implicit units on number of days
3064  * preceding an hh:mm:ss field. - thomas 1998-04-30
3065  */
3066 int
3067 DecodeInterval(char **field, int *ftype, int nf, int range,
3068  int *dtype, struct pg_tm *tm, fsec_t *fsec)
3069 {
3070  bool is_before = false;
3071  char *cp;
3072  int fmask = 0,
3073  tmask,
3074  type;
3075  int i;
3076  int dterr;
3077  int val;
3078  double fval;
3079 
3080  *dtype = DTK_DELTA;
3081  type = IGNORE_DTF;
3082  ClearPgTm(tm, fsec);
3083 
3084  /* read through list backwards to pick up units before values */
3085  for (i = nf - 1; i >= 0; i--)
3086  {
3087  switch (ftype[i])
3088  {
3089  case DTK_TIME:
3090  dterr = DecodeTime(field[i], fmask, range,
3091  &tmask, tm, fsec);
3092  if (dterr)
3093  return dterr;
3094  type = DTK_DAY;
3095  break;
3096 
3097  case DTK_TZ:
3098 
3099  /*
3100  * Timezone means a token with a leading sign character and at
3101  * least one digit; there could be ':', '.', '-' embedded in
3102  * it as well.
3103  */
3104  Assert(*field[i] == '-' || *field[i] == '+');
3105 
3106  /*
3107  * Check for signed hh:mm or hh:mm:ss. If so, process exactly
3108  * like DTK_TIME case above, plus handling the sign.
3109  */
3110  if (strchr(field[i] + 1, ':') != NULL &&
3111  DecodeTime(field[i] + 1, fmask, range,
3112  &tmask, tm, fsec) == 0)
3113  {
3114  if (*field[i] == '-')
3115  {
3116  /* flip the sign on all fields */
3117  tm->tm_hour = -tm->tm_hour;
3118  tm->tm_min = -tm->tm_min;
3119  tm->tm_sec = -tm->tm_sec;
3120  *fsec = -(*fsec);
3121  }
3122 
3123  /*
3124  * Set the next type to be a day, if units are not
3125  * specified. This handles the case of '1 +02:03' since we
3126  * are reading right to left.
3127  */
3128  type = DTK_DAY;
3129  break;
3130  }
3131 
3132  /*
3133  * Otherwise, fall through to DTK_NUMBER case, which can
3134  * handle signed float numbers and signed year-month values.
3135  */
3136 
3137  /* FALLTHROUGH */
3138 
3139  case DTK_DATE:
3140  case DTK_NUMBER:
3141  if (type == IGNORE_DTF)
3142  {
3143  /* use typmod to decide what rightmost field is */
3144  switch (range)
3145  {
3146  case INTERVAL_MASK(YEAR):
3147  type = DTK_YEAR;
3148  break;
3149  case INTERVAL_MASK(MONTH):
3151  type = DTK_MONTH;
3152  break;
3153  case INTERVAL_MASK(DAY):
3154  type = DTK_DAY;
3155  break;
3156  case INTERVAL_MASK(HOUR):
3158  type = DTK_HOUR;
3159  break;
3160  case INTERVAL_MASK(MINUTE):
3163  type = DTK_MINUTE;
3164  break;
3165  case INTERVAL_MASK(SECOND):
3169  type = DTK_SECOND;
3170  break;
3171  default:
3172  type = DTK_SECOND;
3173  break;
3174  }
3175  }
3176 
3177  errno = 0;
3178  val = strtoint(field[i], &cp, 10);
3179  if (errno == ERANGE)
3180  return DTERR_FIELD_OVERFLOW;
3181 
3182  if (*cp == '-')
3183  {
3184  /* SQL "years-months" syntax */
3185  int val2;
3186 
3187  val2 = strtoint(cp + 1, &cp, 10);
3188  if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
3189  return DTERR_FIELD_OVERFLOW;
3190  if (*cp != '\0')
3191  return DTERR_BAD_FORMAT;
3192  type = DTK_MONTH;
3193  if (*field[i] == '-')
3194  val2 = -val2;
3195  if (((double) val * MONTHS_PER_YEAR + val2) > INT_MAX ||
3196  ((double) val * MONTHS_PER_YEAR + val2) < INT_MIN)
3197  return DTERR_FIELD_OVERFLOW;
3198  val = val * MONTHS_PER_YEAR + val2;
3199  fval = 0;
3200  }
3201  else if (*cp == '.')
3202  {
3203  errno = 0;
3204  fval = strtod(cp, &cp);
3205  if (*cp != '\0' || errno != 0)
3206  return DTERR_BAD_FORMAT;
3207 
3208  if (*field[i] == '-')
3209  fval = -fval;
3210  }
3211  else if (*cp == '\0')
3212  fval = 0;
3213  else
3214  return DTERR_BAD_FORMAT;
3215 
3216  tmask = 0; /* DTK_M(type); */
3217 
3218  switch (type)
3219  {
3220  case DTK_MICROSEC:
3221  *fsec += rint(val + fval);
3222  tmask = DTK_M(MICROSECOND);
3223  break;
3224 
3225  case DTK_MILLISEC:
3226  /* avoid overflowing the fsec field */
3227  tm->tm_sec += val / 1000;
3228  val -= (val / 1000) * 1000;
3229  *fsec += rint((val + fval) * 1000);
3230  tmask = DTK_M(MILLISECOND);
3231  break;
3232 
3233  case DTK_SECOND:
3234  tm->tm_sec += val;
3235  *fsec += rint(fval * 1000000);
3236 
3237  /*
3238  * If any subseconds were specified, consider this
3239  * microsecond and millisecond input as well.
3240  */
3241  if (fval == 0)
3242  tmask = DTK_M(SECOND);
3243  else
3244  tmask = DTK_ALL_SECS_M;
3245  break;
3246 
3247  case DTK_MINUTE:
3248  tm->tm_min += val;
3249  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3250  tmask = DTK_M(MINUTE);
3251  break;
3252 
3253  case DTK_HOUR:
3254  tm->tm_hour += val;
3255  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3256  tmask = DTK_M(HOUR);
3257  type = DTK_DAY; /* set for next field */
3258  break;
3259 
3260  case DTK_DAY:
3261  tm->tm_mday += val;
3262  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3263  tmask = DTK_M(DAY);
3264  break;
3265 
3266  case DTK_WEEK:
3267  tm->tm_mday += val * 7;
3268  AdjustFractDays(fval, tm, fsec, 7);
3269  tmask = DTK_M(WEEK);
3270  break;
3271 
3272  case DTK_MONTH:
3273  tm->tm_mon += val;
3274  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3275  tmask = DTK_M(MONTH);
3276  break;
3277 
3278  case DTK_YEAR:
3279  tm->tm_year += val;
3280  if (fval != 0)
3281  tm->tm_mon += fval * MONTHS_PER_YEAR;
3282  tmask = DTK_M(YEAR);
3283  break;
3284 
3285  case DTK_DECADE:
3286  tm->tm_year += val * 10;
3287  if (fval != 0)
3288  tm->tm_mon += fval * MONTHS_PER_YEAR * 10;
3289  tmask = DTK_M(DECADE);
3290  break;
3291 
3292  case DTK_CENTURY:
3293  tm->tm_year += val * 100;
3294  if (fval != 0)
3295  tm->tm_mon += fval * MONTHS_PER_YEAR * 100;
3296  tmask = DTK_M(CENTURY);
3297  break;
3298 
3299  case DTK_MILLENNIUM:
3300  tm->tm_year += val * 1000;
3301  if (fval != 0)
3302  tm->tm_mon += fval * MONTHS_PER_YEAR * 1000;
3303  tmask = DTK_M(MILLENNIUM);
3304  break;
3305 
3306  default:
3307  return DTERR_BAD_FORMAT;
3308  }
3309  break;
3310 
3311  case DTK_STRING:
3312  case DTK_SPECIAL:
3313  type = DecodeUnits(i, field[i], &val);
3314  if (type == IGNORE_DTF)
3315  continue;
3316 
3317  tmask = 0; /* DTK_M(type); */
3318  switch (type)
3319  {
3320  case UNITS:
3321  type = val;
3322  break;
3323 
3324  case AGO:
3325  is_before = true;
3326  type = val;
3327  break;
3328 
3329  case RESERV:
3330  tmask = (DTK_DATE_M | DTK_TIME_M);
3331  *dtype = val;
3332  break;
3333 
3334  default:
3335  return DTERR_BAD_FORMAT;
3336  }
3337  break;
3338 
3339  default:
3340  return DTERR_BAD_FORMAT;
3341  }
3342 
3343  if (tmask & fmask)
3344  return DTERR_BAD_FORMAT;
3345  fmask |= tmask;
3346  }
3347 
3348  /* ensure that at least one time field has been found */
3349  if (fmask == 0)
3350  return DTERR_BAD_FORMAT;
3351 
3352  /* ensure fractional seconds are fractional */
3353  if (*fsec != 0)
3354  {
3355  int sec;
3356 
3357  sec = *fsec / USECS_PER_SEC;
3358  *fsec -= sec * USECS_PER_SEC;
3359  tm->tm_sec += sec;
3360  }
3361 
3362  /*----------
3363  * The SQL standard defines the interval literal
3364  * '-1 1:00:00'
3365  * to mean "negative 1 days and negative 1 hours", while Postgres
3366  * traditionally treats this as meaning "negative 1 days and positive
3367  * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
3368  * to all fields if there are no other explicit signs.
3369  *
3370  * We leave the signs alone if there are additional explicit signs.
3371  * This protects us against misinterpreting postgres-style dump output,
3372  * since the postgres-style output code has always put an explicit sign on
3373  * all fields following a negative field. But note that SQL-spec output
3374  * is ambiguous and can be misinterpreted on load! (So it's best practice
3375  * to dump in postgres style, not SQL style.)
3376  *----------
3377  */
3378  if (IntervalStyle == INTSTYLE_SQL_STANDARD && *field[0] == '-')
3379  {
3380  /* Check for additional explicit signs */
3381  bool more_signs = false;
3382 
3383  for (i = 1; i < nf; i++)
3384  {
3385  if (*field[i] == '-' || *field[i] == '+')
3386  {
3387  more_signs = true;
3388  break;
3389  }
3390  }
3391 
3392  if (!more_signs)
3393  {
3394  /*
3395  * Rather than re-determining which field was field[0], just force
3396  * 'em all negative.
3397  */
3398  if (*fsec > 0)
3399  *fsec = -(*fsec);
3400  if (tm->tm_sec > 0)
3401  tm->tm_sec = -tm->tm_sec;
3402  if (tm->tm_min > 0)
3403  tm->tm_min = -tm->tm_min;
3404  if (tm->tm_hour > 0)
3405  tm->tm_hour = -tm->tm_hour;
3406  if (tm->tm_mday > 0)
3407  tm->tm_mday = -tm->tm_mday;
3408  if (tm->tm_mon > 0)
3409  tm->tm_mon = -tm->tm_mon;
3410  if (tm->tm_year > 0)
3411  tm->tm_year = -tm->tm_year;
3412  }
3413  }
3414 
3415  /* finally, AGO negates everything */
3416  if (is_before)
3417  {
3418  *fsec = -(*fsec);
3419  tm->tm_sec = -tm->tm_sec;
3420  tm->tm_min = -tm->tm_min;
3421  tm->tm_hour = -tm->tm_hour;
3422  tm->tm_mday = -tm->tm_mday;
3423  tm->tm_mon = -tm->tm_mon;
3424  tm->tm_year = -tm->tm_year;
3425  }
3426 
3427  return 0;
3428 }
3429 
3430 
3431 /*
3432  * Helper functions to avoid duplicated code in DecodeISO8601Interval.
3433  *
3434  * Parse a decimal value and break it into integer and fractional parts.
3435  * Returns 0 or DTERR code.
3436  */
3437 static int
3438 ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
3439 {
3440  double val;
3441 
3442  if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
3443  return DTERR_BAD_FORMAT;
3444  errno = 0;
3445  val = strtod(str, endptr);
3446  /* did we not see anything that looks like a double? */
3447  if (*endptr == str || errno != 0)
3448  return DTERR_BAD_FORMAT;
3449  /* watch out for overflow */
3450  if (val < INT_MIN || val > INT_MAX)
3451  return DTERR_FIELD_OVERFLOW;
3452  /* be very sure we truncate towards zero (cf dtrunc()) */
3453  if (val >= 0)
3454  *ipart = (int) floor(val);
3455  else
3456  *ipart = (int) -floor(-val);
3457  *fpart = val - *ipart;
3458  return 0;
3459 }
3460 
3461 /*
3462  * Determine number of integral digits in a valid ISO 8601 number field
3463  * (we should ignore sign and any fraction part)
3464  */
3465 static int
3466 ISO8601IntegerWidth(char *fieldstart)
3467 {
3468  /* We might have had a leading '-' */
3469  if (*fieldstart == '-')
3470  fieldstart++;
3471  return strspn(fieldstart, "0123456789");
3472 }
3473 
3474 
3475 /* DecodeISO8601Interval()
3476  * Decode an ISO 8601 time interval of the "format with designators"
3477  * (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
3478  * Examples: P1D for 1 day
3479  * PT1H for 1 hour
3480  * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
3481  * P0002-06-07T01:30:00 the same value in alternative format
3482  *
3483  * Returns 0 if successful, DTERR code if bogus input detected.
3484  * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
3485  * ISO8601, otherwise this could cause unexpected error messages.
3486  * dtype, tm, fsec are output parameters.
3487  *
3488  * A couple exceptions from the spec:
3489  * - a week field ('W') may coexist with other units
3490  * - allows decimals in fields other than the least significant unit.
3491  */
3492 int
3494  int *dtype, struct pg_tm *tm, fsec_t *fsec)
3495 {
3496  bool datepart = true;
3497  bool havefield = false;
3498 
3499  *dtype = DTK_DELTA;
3500  ClearPgTm(tm, fsec);
3501 
3502  if (strlen(str) < 2 || str[0] != 'P')
3503  return DTERR_BAD_FORMAT;
3504 
3505  str++;
3506  while (*str)
3507  {
3508  char *fieldstart;
3509  int val;
3510  double fval;
3511  char unit;
3512  int dterr;
3513 
3514  if (*str == 'T') /* T indicates the beginning of the time part */
3515  {
3516  datepart = false;
3517  havefield = false;
3518  str++;
3519  continue;
3520  }
3521 
3522  fieldstart = str;
3523  dterr = ParseISO8601Number(str, &str, &val, &fval);
3524  if (dterr)
3525  return dterr;
3526 
3527  /*
3528  * Note: we could step off the end of the string here. Code below
3529  * *must* exit the loop if unit == '\0'.
3530  */
3531  unit = *str++;
3532 
3533  if (datepart)
3534  {
3535  switch (unit) /* before T: Y M W D */
3536  {
3537  case 'Y':
3538  tm->tm_year += val;
3539  tm->tm_mon += (fval * MONTHS_PER_YEAR);
3540  break;
3541  case 'M':
3542  tm->tm_mon += val;
3543  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3544  break;
3545  case 'W':
3546  tm->tm_mday += val * 7;
3547  AdjustFractDays(fval, tm, fsec, 7);
3548  break;
3549  case 'D':
3550  tm->tm_mday += val;
3551  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3552  break;
3553  case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
3554  case '\0':
3555  if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
3556  {
3557  tm->tm_year += val / 10000;
3558  tm->tm_mon += (val / 100) % 100;
3559  tm->tm_mday += val % 100;
3560  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3561  if (unit == '\0')
3562  return 0;
3563  datepart = false;
3564  havefield = false;
3565  continue;
3566  }
3567  /* Else fall through to extended alternative format */
3568  /* FALLTHROUGH */
3569  case '-': /* ISO 8601 4.4.3.3 Alternative Format,
3570  * Extended */
3571  if (havefield)
3572  return DTERR_BAD_FORMAT;
3573 
3574  tm->tm_year += val;
3575  tm->tm_mon += (fval * MONTHS_PER_YEAR);
3576  if (unit == '\0')
3577  return 0;
3578  if (unit == 'T')
3579  {
3580  datepart = false;
3581  havefield = false;
3582  continue;
3583  }
3584 
3585  dterr = ParseISO8601Number(str, &str, &val, &fval);
3586  if (dterr)
3587  return dterr;
3588  tm->tm_mon += val;
3589  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3590  if (*str == '\0')
3591  return 0;
3592  if (*str == 'T')
3593  {
3594  datepart = false;
3595  havefield = false;
3596  continue;
3597  }
3598  if (*str != '-')
3599  return DTERR_BAD_FORMAT;
3600  str++;
3601 
3602  dterr = ParseISO8601Number(str, &str, &val, &fval);
3603  if (dterr)
3604  return dterr;
3605  tm->tm_mday += val;
3606  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3607  if (*str == '\0')
3608  return 0;
3609  if (*str == 'T')
3610  {
3611  datepart = false;
3612  havefield = false;
3613  continue;
3614  }
3615  return DTERR_BAD_FORMAT;
3616  default:
3617  /* not a valid date unit suffix */
3618  return DTERR_BAD_FORMAT;
3619  }
3620  }
3621  else
3622  {
3623  switch (unit) /* after T: H M S */
3624  {
3625  case 'H':
3626  tm->tm_hour += val;
3627  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3628  break;
3629  case 'M':
3630  tm->tm_min += val;
3631  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3632  break;
3633  case 'S':
3634  tm->tm_sec += val;
3635  AdjustFractSeconds(fval, tm, fsec, 1);
3636  break;
3637  case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
3638  if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
3639  {
3640  tm->tm_hour += val / 10000;
3641  tm->tm_min += (val / 100) % 100;
3642  tm->tm_sec += val % 100;
3643  AdjustFractSeconds(fval, tm, fsec, 1);
3644  return 0;
3645  }
3646  /* Else fall through to extended alternative format */
3647  /* FALLTHROUGH */
3648  case ':': /* ISO 8601 4.4.3.3 Alternative Format,
3649  * Extended */
3650  if (havefield)
3651  return DTERR_BAD_FORMAT;
3652 
3653  tm->tm_hour += val;
3654  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3655  if (unit == '\0')
3656  return 0;
3657 
3658  dterr = ParseISO8601Number(str, &str, &val, &fval);
3659  if (dterr)
3660  return dterr;
3661  tm->tm_min += val;
3662  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3663  if (*str == '\0')
3664  return 0;
3665  if (*str != ':')
3666  return DTERR_BAD_FORMAT;
3667  str++;
3668 
3669  dterr = ParseISO8601Number(str, &str, &val, &fval);
3670  if (dterr)
3671  return dterr;
3672  tm->tm_sec += val;
3673  AdjustFractSeconds(fval, tm, fsec, 1);
3674  if (*str == '\0')
3675  return 0;
3676  return DTERR_BAD_FORMAT;
3677 
3678  default:
3679  /* not a valid time unit suffix */
3680  return DTERR_BAD_FORMAT;
3681  }
3682  }
3683 
3684  havefield = true;
3685  }
3686 
3687  return 0;
3688 }
3689 
3690 
3691 /* DecodeUnits()
3692  * Decode text string using lookup table.
3693  *
3694  * This routine recognizes keywords associated with time interval units.
3695  *
3696  * Given string must be lowercased already.
3697  *
3698  * Implement a cache lookup since it is likely that dates
3699  * will be related in format.
3700  */
3701 int
3702 DecodeUnits(int field, char *lowtoken, int *val)
3703 {
3704  int type;
3705  const datetkn *tp;
3706 
3707  tp = deltacache[field];
3708  /* use strncmp so that we match truncated tokens */
3709  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3710  {
3711  tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
3712  }
3713  if (tp == NULL)
3714  {
3715  type = UNKNOWN_FIELD;
3716  *val = 0;
3717  }
3718  else
3719  {
3720  deltacache[field] = tp;
3721  type = tp->type;
3722  *val = tp->value;
3723  }
3724 
3725  return type;
3726 } /* DecodeUnits() */
3727 
3728 /*
3729  * Report an error detected by one of the datetime input processing routines.
3730  *
3731  * dterr is the error code, str is the original input string, datatype is
3732  * the name of the datatype we were trying to accept.
3733  *
3734  * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
3735  * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
3736  * separate SQLSTATE codes, so ...
3737  */
3738 void
3739 DateTimeParseError(int dterr, const char *str, const char *datatype)
3740 {
3741  switch (dterr)
3742  {
3743  case DTERR_FIELD_OVERFLOW:
3744  ereport(ERROR,
3745  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
3746  errmsg("date/time field value out of range: \"%s\"",
3747  str)));
3748  break;
3750  /* <nanny>same as above, but add hint about DateStyle</nanny> */
3751  ereport(ERROR,
3752  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
3753  errmsg("date/time field value out of range: \"%s\"",
3754  str),
3755  errhint("Perhaps you need a different \"datestyle\" setting.")));
3756  break;
3758  ereport(ERROR,
3759  (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
3760  errmsg("interval field value out of range: \"%s\"",
3761  str)));
3762  break;
3763  case DTERR_TZDISP_OVERFLOW:
3764  ereport(ERROR,
3765  (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
3766  errmsg("time zone displacement out of range: \"%s\"",
3767  str)));
3768  break;
3769  case DTERR_BAD_FORMAT:
3770  default:
3771  ereport(ERROR,
3772  (errcode(ERRCODE_INVALID_DATETIME_FORMAT),
3773  errmsg("invalid input syntax for type %s: \"%s\"",
3774  datatype, str)));
3775  break;
3776  }
3777 }
3778 
3779 /* datebsearch()
3780  * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
3781  * is WAY faster than the generic bsearch().
3782  */
3783 static const datetkn *
3784 datebsearch(const char *key, const datetkn *base, int nel)
3785 {
3786  if (nel > 0)
3787  {
3788  const datetkn *last = base + nel - 1,
3789  *position;
3790  int result;
3791 
3792  while (last >= base)
3793  {
3794  position = base + ((last - base) >> 1);
3795  /* precheck the first character for a bit of extra speed */
3796  result = (int) key[0] - (int) position->token[0];
3797  if (result == 0)
3798  {
3799  /* use strncmp so that we match truncated tokens */
3800  result = strncmp(key, position->token, TOKMAXLEN);
3801  if (result == 0)
3802  return position;
3803  }
3804  if (result < 0)
3805  last = position - 1;
3806  else
3807  base = position + 1;
3808  }
3809  }
3810  return NULL;
3811 }
3812 
3813 /* EncodeTimezone()
3814  * Copies representation of a numeric timezone offset to str.
3815  *
3816  * Returns a pointer to the new end of string. No NUL terminator is put
3817  * there; callers are responsible for NUL terminating str themselves.
3818  */
3819 static char *
3820 EncodeTimezone(char *str, int tz, int style)
3821 {
3822  int hour,
3823  min,
3824  sec;
3825 
3826  sec = abs(tz);
3827  min = sec / SECS_PER_MINUTE;
3828  sec -= min * SECS_PER_MINUTE;
3829  hour = min / MINS_PER_HOUR;
3830  min -= hour * MINS_PER_HOUR;
3831 
3832  /* TZ is negated compared to sign we wish to display ... */
3833  *str++ = (tz <= 0 ? '+' : '-');
3834 
3835  if (sec != 0)
3836  {
3837  str = pg_ltostr_zeropad(str, hour, 2);
3838  *str++ = ':';
3839  str = pg_ltostr_zeropad(str, min, 2);
3840  *str++ = ':';
3841  str = pg_ltostr_zeropad(str, sec, 2);
3842  }
3843  else if (min != 0 || style == USE_XSD_DATES)
3844  {
3845  str = pg_ltostr_zeropad(str, hour, 2);
3846  *str++ = ':';
3847  str = pg_ltostr_zeropad(str, min, 2);
3848  }
3849  else
3850  str = pg_ltostr_zeropad(str, hour, 2);
3851  return str;
3852 }
3853 
3854 /* EncodeDateOnly()
3855  * Encode date as local time.
3856  */
3857 void
3858 EncodeDateOnly(struct pg_tm *tm, int style, char *str)
3859 {
3860  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
3861 
3862  switch (style)
3863  {
3864  case USE_ISO_DATES:
3865  case USE_XSD_DATES:
3866  /* compatible with ISO date formats */
3867  str = pg_ltostr_zeropad(str,
3868  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3869  *str++ = '-';
3870  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3871  *str++ = '-';
3872  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3873  break;
3874 
3875  case USE_SQL_DATES:
3876  /* compatible with Oracle/Ingres date formats */
3877  if (DateOrder == DATEORDER_DMY)
3878  {
3879  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3880  *str++ = '/';
3881  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3882  }
3883  else
3884  {
3885  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3886  *str++ = '/';
3887  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3888  }
3889  *str++ = '/';
3890  str = pg_ltostr_zeropad(str,
3891  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3892  break;
3893 
3894  case USE_GERMAN_DATES:
3895  /* German-style date format */
3896  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3897  *str++ = '.';
3898  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3899  *str++ = '.';
3900  str = pg_ltostr_zeropad(str,
3901  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3902  break;
3903 
3904  case USE_POSTGRES_DATES:
3905  default:
3906  /* traditional date-only style for Postgres */
3907  if (DateOrder == DATEORDER_DMY)
3908  {
3909  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3910  *str++ = '-';
3911  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3912  }
3913  else
3914  {
3915  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3916  *str++ = '-';
3917  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3918  }
3919  *str++ = '-';
3920  str = pg_ltostr_zeropad(str,
3921  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3922  break;
3923  }
3924 
3925  if (tm->tm_year <= 0)
3926  {
3927  memcpy(str, " BC", 3); /* Don't copy NUL */
3928  str += 3;
3929  }
3930  *str = '\0';
3931 }
3932 
3933 
3934 /* EncodeTimeOnly()
3935  * Encode time fields only.
3936  *
3937  * tm and fsec are the value to encode, print_tz determines whether to include
3938  * a time zone (the difference between time and timetz types), tz is the
3939  * numeric time zone offset, style is the date style, str is where to write the
3940  * output.
3941  */
3942 void
3943 EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
3944 {
3945  str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
3946  *str++ = ':';
3947  str = pg_ltostr_zeropad(str, tm->tm_min, 2);
3948  *str++ = ':';
3949  str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
3950  if (print_tz)
3951  str = EncodeTimezone(str, tz, style);
3952  *str = '\0';
3953 }
3954 
3955 
3956 /* EncodeDateTime()
3957  * Encode date and time interpreted as local time.
3958  *
3959  * tm and fsec are the value to encode, print_tz determines whether to include
3960  * a time zone (the difference between timestamp and timestamptz types), tz is
3961  * the numeric time zone offset, tzn is the textual time zone, which if
3962  * specified will be used instead of tz by some styles, style is the date
3963  * style, str is where to write the output.
3964  *
3965  * Supported date styles:
3966  * Postgres - day mon hh:mm:ss yyyy tz
3967  * SQL - mm/dd/yyyy hh:mm:ss.ss tz
3968  * ISO - yyyy-mm-dd hh:mm:ss+/-tz
3969  * German - dd.mm.yyyy hh:mm:ss tz
3970  * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
3971  */
3972 void
3973 EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
3974 {
3975  int day;
3976 
3977  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
3978 
3979  /*
3980  * Negative tm_isdst means we have no valid time zone translation.
3981  */
3982  if (tm->tm_isdst < 0)
3983  print_tz = false;
3984 
3985  switch (style)
3986  {
3987  case USE_ISO_DATES:
3988  case USE_XSD_DATES:
3989  /* Compatible with ISO-8601 date formats */
3990  str = pg_ltostr_zeropad(str,
3991  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3992  *str++ = '-';
3993  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
3994  *str++ = '-';
3995  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
3996  *str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
3997  str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
3998  *str++ = ':';
3999  str = pg_ltostr_zeropad(str, tm->tm_min, 2);
4000  *str++ = ':';
4001  str = AppendTimestampSeconds(str, tm, fsec);
4002  if (print_tz)
4003  str = EncodeTimezone(str, tz, style);
4004  break;
4005 
4006  case USE_SQL_DATES:
4007  /* Compatible with Oracle/Ingres date formats */
4008  if (DateOrder == DATEORDER_DMY)
4009  {
4010  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
4011  *str++ = '/';
4012  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
4013  }
4014  else
4015  {
4016  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
4017  *str++ = '/';
4018  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
4019  }
4020  *str++ = '/';
4021  str = pg_ltostr_zeropad(str,
4022  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4023  *str++ = ' ';
4024  str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
4025  *str++ = ':';
4026  str = pg_ltostr_zeropad(str, tm->tm_min, 2);
4027  *str++ = ':';
4028  str = AppendTimestampSeconds(str, tm, fsec);
4029 
4030  /*
4031  * Note: the uses of %.*s in this function would be risky if the
4032  * timezone names ever contain non-ASCII characters. However, all
4033  * TZ abbreviations in the IANA database are plain ASCII.
4034  */
4035  if (print_tz)
4036  {
4037  if (tzn)
4038  {
4039  sprintf(str, " %.*s", MAXTZLEN, tzn);
4040  str += strlen(str);
4041  }
4042  else
4043  str = EncodeTimezone(str, tz, style);
4044  }
4045  break;
4046 
4047  case USE_GERMAN_DATES:
4048  /* German variant on European style */
4049  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
4050  *str++ = '.';
4051  str = pg_ltostr_zeropad(str, tm->tm_mon, 2);
4052  *str++ = '.';
4053  str = pg_ltostr_zeropad(str,
4054  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4055  *str++ = ' ';
4056  str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
4057  *str++ = ':';
4058  str = pg_ltostr_zeropad(str, tm->tm_min, 2);
4059  *str++ = ':';
4060  str = AppendTimestampSeconds(str, tm, fsec);
4061 
4062  if (print_tz)
4063  {
4064  if (tzn)
4065  {
4066  sprintf(str, " %.*s", MAXTZLEN, tzn);
4067  str += strlen(str);
4068  }
4069  else
4070  str = EncodeTimezone(str, tz, style);
4071  }
4072  break;
4073 
4074  case USE_POSTGRES_DATES:
4075  default:
4076  /* Backward-compatible with traditional Postgres abstime dates */
4077  day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
4078  tm->tm_wday = j2day(day);
4079  memcpy(str, days[tm->tm_wday], 3);
4080  str += 3;
4081  *str++ = ' ';
4082  if (DateOrder == DATEORDER_DMY)
4083  {
4084  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
4085  *str++ = ' ';
4086  memcpy(str, months[tm->tm_mon - 1], 3);
4087  str += 3;
4088  }
4089  else
4090  {
4091  memcpy(str, months[tm->tm_mon - 1], 3);
4092  str += 3;
4093  *str++ = ' ';
4094  str = pg_ltostr_zeropad(str, tm->tm_mday, 2);
4095  }
4096  *str++ = ' ';
4097  str = pg_ltostr_zeropad(str, tm->tm_hour, 2);
4098  *str++ = ':';
4099  str = pg_ltostr_zeropad(str, tm->tm_min, 2);
4100  *str++ = ':';
4101  str = AppendTimestampSeconds(str, tm, fsec);
4102  *str++ = ' ';
4103  str = pg_ltostr_zeropad(str,
4104  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4105 
4106  if (print_tz)
4107  {
4108  if (tzn)
4109  {
4110  sprintf(str, " %.*s", MAXTZLEN, tzn);
4111  str += strlen(str);
4112  }
4113  else
4114  {
4115  /*
4116  * We have a time zone, but no string version. Use the
4117  * numeric form, but be sure to include a leading space to
4118  * avoid formatting something which would be rejected by
4119  * the date/time parser later. - thomas 2001-10-19
4120  */
4121  *str++ = ' ';
4122  str = EncodeTimezone(str, tz, style);
4123  }
4124  }
4125  break;
4126  }
4127 
4128  if (tm->tm_year <= 0)
4129  {
4130  memcpy(str, " BC", 3); /* Don't copy NUL */
4131  str += 3;
4132  }
4133  *str = '\0';
4134 }
4135 
4136 
4137 /*
4138  * Helper functions to avoid duplicated code in EncodeInterval.
4139  */
4140 
4141 /* Append an ISO-8601-style interval field, but only if value isn't zero */
4142 static char *
4143 AddISO8601IntPart(char *cp, int value, char units)
4144 {
4145  if (value == 0)
4146  return cp;
4147  sprintf(cp, "%d%c", value, units);
4148  return cp + strlen(cp);
4149 }
4150 
4151 /* Append a postgres-style interval field, but only if value isn't zero */
4152 static char *
4153 AddPostgresIntPart(char *cp, int value, const char *units,
4154  bool *is_zero, bool *is_before)
4155 {
4156  if (value == 0)
4157  return cp;
4158  sprintf(cp, "%s%s%d %s%s",
4159  (!*is_zero) ? " " : "",
4160  (*is_before && value > 0) ? "+" : "",
4161  value,
4162  units,
4163  (value != 1) ? "s" : "");
4164 
4165  /*
4166  * Each nonzero field sets is_before for (only) the next one. This is a
4167  * tad bizarre but it's how it worked before...
4168  */
4169  *is_before = (value < 0);
4170  *is_zero = false;
4171  return cp + strlen(cp);
4172 }
4173 
4174 /* Append a verbose-style interval field, but only if value isn't zero */
4175 static char *
4176 AddVerboseIntPart(char *cp, int value, const char *units,
4177  bool *is_zero, bool *is_before)
4178 {
4179  if (value == 0)
4180  return cp;
4181  /* first nonzero value sets is_before */
4182  if (*is_zero)
4183  {
4184  *is_before = (value < 0);
4185  value = abs(value);
4186  }
4187  else if (*is_before)
4188  value = -value;
4189  sprintf(cp, " %d %s%s", value, units, (value == 1) ? "" : "s");
4190  *is_zero = false;
4191  return cp + strlen(cp);
4192 }
4193 
4194 
4195 /* EncodeInterval()
4196  * Interpret time structure as a delta time and convert to string.
4197  *
4198  * Support "traditional Postgres" and ISO-8601 styles.
4199  * Actually, afaik ISO does not address time interval formatting,
4200  * but this looks similar to the spec for absolute date/time.
4201  * - thomas 1998-04-30
4202  *
4203  * Actually, afaik, ISO 8601 does specify formats for "time
4204  * intervals...[of the]...format with time-unit designators", which
4205  * are pretty ugly. The format looks something like
4206  * P1Y1M1DT1H1M1.12345S
4207  * but useful for exchanging data with computers instead of humans.
4208  * - ron 2003-07-14
4209  *
4210  * And ISO's SQL 2008 standard specifies standards for
4211  * "year-month literal"s (that look like '2-3') and
4212  * "day-time literal"s (that look like ('4 5:6:7')
4213  */
4214 void
4215 EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
4216 {
4217  char *cp = str;
4218  int year = tm->tm_year;
4219  int mon = tm->tm_mon;
4220  int mday = tm->tm_mday;
4221  int hour = tm->tm_hour;
4222  int min = tm->tm_min;
4223  int sec = tm->tm_sec;
4224  bool is_before = false;
4225  bool is_zero = true;
4226 
4227  /*
4228  * The sign of year and month are guaranteed to match, since they are
4229  * stored internally as "month". But we'll need to check for is_before and
4230  * is_zero when determining the signs of day and hour/minute/seconds
4231  * fields.
4232  */
4233  switch (style)
4234  {
4235  /* SQL Standard interval format */
4236  case INTSTYLE_SQL_STANDARD:
4237  {
4238  bool has_negative = year < 0 || mon < 0 ||
4239  mday < 0 || hour < 0 ||
4240  min < 0 || sec < 0 || fsec < 0;
4241  bool has_positive = year > 0 || mon > 0 ||
4242  mday > 0 || hour > 0 ||
4243  min > 0 || sec > 0 || fsec > 0;
4244  bool has_year_month = year != 0 || mon != 0;
4245  bool has_day_time = mday != 0 || hour != 0 ||
4246  min != 0 || sec != 0 || fsec != 0;
4247  bool has_day = mday != 0;
4248  bool sql_standard_value = !(has_negative && has_positive) &&
4249  !(has_year_month && has_day_time);
4250 
4251  /*
4252  * SQL Standard wants only 1 "<sign>" preceding the whole
4253  * interval ... but can't do that if mixed signs.
4254  */
4255  if (has_negative && sql_standard_value)
4256  {
4257  *cp++ = '-';
4258  year = -year;
4259  mon = -mon;
4260  mday = -mday;
4261  hour = -hour;
4262  min = -min;
4263  sec = -sec;
4264  fsec = -fsec;
4265  }
4266 
4267  if (!has_negative && !has_positive)
4268  {
4269  sprintf(cp, "0");
4270  }
4271  else if (!sql_standard_value)
4272  {
4273  /*
4274  * For non sql-standard interval values, force outputting
4275  * the signs to avoid ambiguities with intervals with
4276  * mixed sign components.
4277  */
4278  char year_sign = (year < 0 || mon < 0) ? '-' : '+';
4279  char day_sign = (mday < 0) ? '-' : '+';
4280  char sec_sign = (hour < 0 || min < 0 ||
4281  sec < 0 || fsec < 0) ? '-' : '+';
4282 
4283  sprintf(cp, "%c%d-%d %c%d %c%d:%02d:",
4284  year_sign, abs(year), abs(mon),
4285  day_sign, abs(mday),
4286  sec_sign, abs(hour), abs(min));
4287  cp += strlen(cp);
4288  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4289  *cp = '\0';
4290  }
4291  else if (has_year_month)
4292  {
4293  sprintf(cp, "%d-%d", year, mon);
4294  }
4295  else if (has_day)
4296  {
4297  sprintf(cp, "%d %d:%02d:", mday, hour, min);
4298  cp += strlen(cp);
4299  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4300  *cp = '\0';
4301  }
4302  else
4303  {
4304  sprintf(cp, "%d:%02d:", hour, min);
4305  cp += strlen(cp);
4306  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4307  *cp = '\0';
4308  }
4309  }
4310  break;
4311 
4312  /* ISO 8601 "time-intervals by duration only" */
4313  case INTSTYLE_ISO_8601:
4314  /* special-case zero to avoid printing nothing */
4315  if (year == 0 && mon == 0 && mday == 0 &&
4316  hour == 0 && min == 0 && sec == 0 && fsec == 0)
4317  {
4318  sprintf(cp, "PT0S");
4319  break;
4320  }
4321  *cp++ = 'P';
4322  cp = AddISO8601IntPart(cp, year, 'Y');
4323  cp = AddISO8601IntPart(cp, mon, 'M');
4324  cp = AddISO8601IntPart(cp, mday, 'D');
4325  if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
4326  *cp++ = 'T';
4327  cp = AddISO8601IntPart(cp, hour, 'H');
4328  cp = AddISO8601IntPart(cp, min, 'M');
4329  if (sec != 0 || fsec != 0)
4330  {
4331  if (sec < 0 || fsec < 0)
4332  *cp++ = '-';
4333  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4334  *cp++ = 'S';
4335  *cp++ = '\0';
4336  }
4337  break;
4338 
4339  /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
4340  case INTSTYLE_POSTGRES:
4341  cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
4342 
4343  /*
4344  * Ideally we should spell out "month" like we do for "year" and
4345  * "day". However, for backward compatibility, we can't easily
4346  * fix this. bjm 2011-05-24
4347  */
4348  cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
4349  cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
4350  if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
4351  {
4352  bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
4353 
4354  sprintf(cp, "%s%s%02d:%02d:",
4355  is_zero ? "" : " ",
4356  (minus ? "-" : (is_before ? "+" : "")),
4357  abs(hour), abs(min));
4358  cp += strlen(cp);
4359  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4360  *cp = '\0';
4361  }
4362  break;
4363 
4364  /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
4366  default:
4367  strcpy(cp, "@");
4368  cp++;
4369  cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
4370  cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
4371  cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
4372  cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
4373  cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
4374  if (sec != 0 || fsec != 0)
4375  {
4376  *cp++ = ' ';
4377  if (sec < 0 || (sec == 0 && fsec < 0))
4378  {
4379  if (is_zero)
4380  is_before = true;
4381  else if (!is_before)
4382  *cp++ = '-';
4383  }
4384  else if (is_before)
4385  *cp++ = '-';
4386  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4387  sprintf(cp, " sec%s",
4388  (abs(sec) != 1 || fsec != 0) ? "s" : "");
4389  is_zero = false;
4390  }
4391  /* identically zero? then put in a unitless zero... */
4392  if (is_zero)
4393  strcat(cp, " 0");
4394  if (is_before)
4395  strcat(cp, " ago");
4396  break;
4397  }
4398 }
4399 
4400 
4401 /*
4402  * We've been burnt by stupid errors in the ordering of the datetkn tables
4403  * once too often. Arrange to check them during postmaster start.
4404  */
4405 static bool
4406 CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
4407 {
4408  bool ok = true;
4409  int i;
4410 
4411  for (i = 0; i < nel; i++)
4412  {
4413  /* check for token strings that don't fit */
4414  if (strlen(base[i].token) > TOKMAXLEN)
4415  {
4416  /* %.*s is safe since all our tokens are ASCII */
4417  elog(LOG, "token too long in %s table: \"%.*s\"",
4418  tablename,
4419  TOKMAXLEN + 1, base[i].token);
4420  ok = false;
4421  break; /* don't risk applying strcmp */
4422  }
4423  /* check for out of order */
4424  if (i > 0 &&
4425  strcmp(base[i - 1].token, base[i].token) >= 0)
4426  {
4427  elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
4428  tablename,
4429  base[i - 1].token,
4430  base[i].token);
4431  ok = false;
4432  }
4433  }
4434  return ok;
4435 }
4436 
4437 bool
4439 {
4440  bool ok = true;
4441 
4442  Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
4443  Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
4444 
4445  ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
4446  ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
4447  return ok;
4448 }
4449 
4450 /*
4451  * Common code for temporal prosupport functions: simplify, if possible,
4452  * a call to a temporal type's length-coercion function.
4453  *
4454  * Types time, timetz, timestamp and timestamptz each have a range of allowed
4455  * precisions. An unspecified precision is rigorously equivalent to the
4456  * highest specifiable precision. We can replace the function call with a
4457  * no-op RelabelType if it is coercing to the same or higher precision as the
4458  * input is known to have.
4459  *
4460  * The input Node is always a FuncExpr, but to reduce the #include footprint
4461  * of datetime.h, we declare it as Node *.
4462  *
4463  * Note: timestamp_scale throws an error when the typmod is out of range, but
4464  * we can't get there from a cast: our typmodin will have caught it already.
4465  */
4466 Node *
4467 TemporalSimplify(int32 max_precis, Node *node)
4468 {
4469  FuncExpr *expr = castNode(FuncExpr, node);
4470  Node *ret = NULL;
4471  Node *typmod;
4472 
4473  Assert(list_length(expr->args) >= 2);
4474 
4475  typmod = (Node *) lsecond(expr->args);
4476 
4477  if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull)
4478  {
4479  Node *source = (Node *) linitial(expr->args);
4480  int32 old_precis = exprTypmod(source);
4481  int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
4482 
4483  if (new_precis < 0 || new_precis == max_precis ||
4484  (old_precis >= 0 && new_precis >= old_precis))
4485  ret = relabel_to_typmod(source, new_precis);
4486  }
4487 
4488  return ret;
4489 }
4490 
4491 /*
4492  * This function gets called during timezone config file load or reload
4493  * to create the final array of timezone tokens. The argument array
4494  * is already sorted in name order.
4495  *
4496  * The result is a TimeZoneAbbrevTable (which must be a single malloc'd chunk)
4497  * or NULL on malloc failure. No other error conditions are defined.
4498  */
4500 ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
4501 {
4502  TimeZoneAbbrevTable *tbl;
4503  Size tbl_size;
4504  int i;
4505 
4506  /* Space for fixed fields and datetkn array */
4507  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4508  n * sizeof(datetkn);
4509  tbl_size = MAXALIGN(tbl_size);
4510  /* Count up space for dynamic abbreviations */
4511  for (i = 0; i < n; i++)
4512  {
4513  struct tzEntry *abbr = abbrevs + i;
4514 
4515  if (abbr->zone != NULL)
4516  {
4517  Size dsize;
4518 
4519  dsize = offsetof(DynamicZoneAbbrev, zone) +
4520  strlen(abbr->zone) + 1;
4521  tbl_size += MAXALIGN(dsize);
4522  }
4523  }
4524 
4525  /* Alloc the result ... */
4526  tbl = malloc(tbl_size);
4527  if (!tbl)
4528  return NULL;
4529 
4530  /* ... and fill it in */
4531  tbl->tblsize = tbl_size;
4532  tbl->numabbrevs = n;
4533  /* in this loop, tbl_size reprises the space calculation above */
4534  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4535  n * sizeof(datetkn);
4536  tbl_size = MAXALIGN(tbl_size);
4537  for (i = 0; i < n; i++)
4538  {
4539  struct tzEntry *abbr = abbrevs + i;
4540  datetkn *dtoken = tbl->abbrevs + i;
4541 
4542  /* use strlcpy to truncate name if necessary */
4543  strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1);
4544  if (abbr->zone != NULL)
4545  {
4546  /* Allocate a DynamicZoneAbbrev for this abbreviation */
4547  DynamicZoneAbbrev *dtza;
4548  Size dsize;
4549 
4550  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size);
4551  dtza->tz = NULL;
4552  strcpy(dtza->zone, abbr->zone);
4553 
4554  dtoken->type = DYNTZ;
4555  /* value is offset from table start to DynamicZoneAbbrev */
4556  dtoken->value = (int32) tbl_size;
4557 
4558  dsize = offsetof(DynamicZoneAbbrev, zone) +
4559  strlen(abbr->zone) + 1;
4560  tbl_size += MAXALIGN(dsize);
4561  }
4562  else
4563  {
4564  dtoken->type = abbr->is_dst ? DTZ : TZ;
4565  dtoken->value = abbr->offset;
4566  }
4567  }
4568 
4569  /* Assert the two loops above agreed on size calculations */
4570  Assert(tbl->tblsize == tbl_size);
4571 
4572  /* Check the ordering, if testing */
4573  Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n));
4574 
4575  return tbl;
4576 }
4577 
4578 /*
4579  * Install a TimeZoneAbbrevTable as the active table.
4580  *
4581  * Caller is responsible that the passed table doesn't go away while in use.
4582  */
4583 void
4585 {
4586  zoneabbrevtbl = tbl;
4587  /* reset abbrevcache, which may contain pointers into old table */
4588  memset(abbrevcache, 0, sizeof(abbrevcache));
4589 }
4590 
4591 /*
4592  * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation.
4593  */
4594 static pg_tz *
4596 {
4597  DynamicZoneAbbrev *dtza;
4598 
4599  /* Just some sanity checks to prevent indexing off into nowhere */
4600  Assert(tp->type == DYNTZ);
4601  Assert(tp->value > 0 && tp->value < tbl->tblsize);
4602 
4603  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value);
4604 
4605  /* Look up the underlying zone if we haven't already */
4606  if (dtza->tz == NULL)
4607  {
4608  dtza->tz = pg_tzset(dtza->zone);
4609 
4610  /*
4611  * Ideally we'd let the caller ereport instead of doing it here, but
4612  * then there is no way to report the bad time zone name.
4613  */
4614  if (dtza->tz == NULL)
4615  ereport(ERROR,
4616  (errcode(ERRCODE_CONFIG_FILE_ERROR),
4617  errmsg("time zone \"%s\" not recognized",
4618  dtza->zone),
4619  errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
4620  tp->token)));
4621  }
4622  return dtza->tz;
4623 }
4624 
4625 
4626 /*
4627  * This set-returning function reads all the available time zone abbreviations
4628  * and returns a set of (abbrev, utc_offset, is_dst).
4629  */
4630 Datum
4632 {
4633  FuncCallContext *funcctx;
4634  int *pindex;
4635  Datum result;
4636  HeapTuple tuple;
4637  Datum values[3];
4638  bool nulls[3];
4639  const datetkn *tp;
4640  char buffer[TOKMAXLEN + 1];
4641  int gmtoffset;
4642  bool is_dst;
4643  unsigned char *p;
4644  struct pg_tm tm;
4645  Interval *resInterval;
4646 
4647  /* stuff done only on the first call of the function */
4648  if (SRF_IS_FIRSTCALL())
4649  {
4650  TupleDesc tupdesc;
4651  MemoryContext oldcontext;
4652 
4653  /* create a function context for cross-call persistence */
4654  funcctx = SRF_FIRSTCALL_INIT();
4655 
4656  /*
4657  * switch to memory context appropriate for multiple function calls
4658  */
4659  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
4660 
4661  /* allocate memory for user context */
4662  pindex = (int *) palloc(sizeof(int));
4663  *pindex = 0;
4664  funcctx->user_fctx = (void *) pindex;
4665 
4666  /*
4667  * build tupdesc for result tuples. This must match this function's
4668  * pg_proc entry!
4669  */
4670  tupdesc = CreateTemplateTupleDesc(3);
4671  TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev",
4672  TEXTOID, -1, 0);
4673  TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset",
4674  INTERVALOID, -1, 0);
4675  TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst",
4676  BOOLOID, -1, 0);
4677 
4678  funcctx->tuple_desc = BlessTupleDesc(tupdesc);
4679  MemoryContextSwitchTo(oldcontext);
4680  }
4681 
4682  /* stuff done on every call of the function */
4683  funcctx = SRF_PERCALL_SETUP();
4684  pindex = (int *) funcctx->user_fctx;
4685 
4686  if (zoneabbrevtbl == NULL ||
4687  *pindex >= zoneabbrevtbl->numabbrevs)
4688  SRF_RETURN_DONE(funcctx);
4689 
4690  tp = zoneabbrevtbl->abbrevs + *pindex;
4691 
4692  switch (tp->type)
4693  {
4694  case TZ:
4695  gmtoffset = tp->value;
4696  is_dst = false;
4697  break;
4698  case DTZ:
4699  gmtoffset = tp->value;
4700  is_dst = true;
4701  break;
4702  case DYNTZ:
4703  {
4704  /* Determine the current meaning of the abbrev */
4705  pg_tz *tzp;
4706  TimestampTz now;
4707  int isdst;
4708 
4709  tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp);
4711  gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now,
4712  tp->token,
4713  tzp,
4714  &isdst);
4715  is_dst = (bool) isdst;
4716  break;
4717  }
4718  default:
4719  elog(ERROR, "unrecognized timezone type %d", (int) tp->type);
4720  gmtoffset = 0; /* keep compiler quiet */
4721  is_dst = false;
4722  break;
4723  }
4724 
4725  MemSet(nulls, 0, sizeof(nulls));
4726 
4727  /*
4728  * Convert name to text, using upcasing conversion that is the inverse of
4729  * what ParseDateTime() uses.
4730  */
4731  strlcpy(buffer, tp->token, sizeof(buffer));
4732  for (p = (unsigned char *) buffer; *p; p++)
4733  *p = pg_toupper(*p);
4734 
4735  values[0] = CStringGetTextDatum(buffer);
4736 
4737  /* Convert offset (in seconds) to an interval */
4738  MemSet(&tm, 0, sizeof(struct pg_tm));
4739  tm.tm_sec = gmtoffset;
4740  resInterval = (Interval *) palloc(sizeof(Interval));
4741  tm2interval(&tm, 0, resInterval);
4742  values[1] = IntervalPGetDatum(resInterval);
4743 
4744  values[2] = BoolGetDatum(is_dst);
4745 
4746  (*pindex)++;
4747 
4748  tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
4749  result = HeapTupleGetDatum(tuple);
4750 
4751  SRF_RETURN_NEXT(funcctx, result);
4752 }
4753 
4754 /*
4755  * This set-returning function reads all the available full time zones
4756  * and returns a set of (name, abbrev, utc_offset, is_dst).
4757  */
4758 Datum
4760 {
4761  MemoryContext oldcontext;
4762  FuncCallContext *funcctx;
4763  pg_tzenum *tzenum;
4764  pg_tz *tz;
4765  Datum result;
4766  HeapTuple tuple;
4767  Datum values[4];
4768  bool nulls[4];
4769  int tzoff;
4770  struct pg_tm tm;
4771  fsec_t fsec;
4772  const char *tzn;
4773  Interval *resInterval;
4774  struct pg_tm itm;
4775 
4776  /* stuff done only on the first call of the function */
4777  if (SRF_IS_FIRSTCALL())
4778  {
4779  TupleDesc tupdesc;
4780 
4781  /* create a function context for cross-call persistence */
4782  funcctx = SRF_FIRSTCALL_INIT();
4783 
4784  /*
4785  * switch to memory context appropriate for multiple function calls
4786  */
4787  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
4788 
4789  /* initialize timezone scanning code */
4790  tzenum = pg_tzenumerate_start();
4791  funcctx->user_fctx = (void *) tzenum;
4792 
4793  /*
4794  * build tupdesc for result tuples. This must match this function's
4795  * pg_proc entry!
4796  */
4797  tupdesc = CreateTemplateTupleDesc(4);
4798  TupleDescInitEntry(tupdesc, (AttrNumber) 1, "name",
4799  TEXTOID, -1, 0);
4800  TupleDescInitEntry(tupdesc, (AttrNumber) 2, "abbrev",
4801  TEXTOID, -1, 0);
4802  TupleDescInitEntry(tupdesc, (AttrNumber) 3, "utc_offset",
4803  INTERVALOID, -1, 0);
4804  TupleDescInitEntry(tupdesc, (AttrNumber) 4, "is_dst",
4805  BOOLOID, -1, 0);
4806 
4807  funcctx->tuple_desc = BlessTupleDesc(tupdesc);
4808  MemoryContextSwitchTo(oldcontext);
4809  }
4810 
4811  /* stuff done on every call of the function */
4812  funcctx = SRF_PERCALL_SETUP();
4813  tzenum = (pg_tzenum *) funcctx->user_fctx;
4814 
4815  /* search for another zone to display */
4816  for (;;)
4817  {
4818  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
4819  tz = pg_tzenumerate_next(tzenum);
4820  MemoryContextSwitchTo(oldcontext);
4821 
4822  if (!tz)
4823  {
4824  pg_tzenumerate_end(tzenum);
4825  funcctx->user_fctx = NULL;
4826  SRF_RETURN_DONE(funcctx);
4827  }
4828 
4829  /* Convert now() to local time in this zone */
4831  &tzoff, &tm, &fsec, &tzn, tz) != 0)
4832  continue; /* ignore if conversion fails */
4833 
4834  /*
4835  * IANA's rather silly "Factory" time zone used to emit ridiculously
4836  * long "abbreviations" such as "Local time zone must be set--see zic
4837  * manual page" or "Local time zone must be set--use tzsetup". While
4838  * modern versions of tzdb emit the much saner "-00", it seems some
4839  * benighted packagers are hacking the IANA data so that it continues
4840  * to produce these strings. To prevent producing a weirdly wide
4841  * abbrev column, reject ridiculously long abbreviations.
4842  */
4843  if (tzn && strlen(tzn) > 31)
4844  continue;
4845 
4846  /* Found a displayable zone */
4847  break;
4848  }
4849 
4850  MemSet(nulls, 0, sizeof(nulls));
4851 
4852  values[0] = CStringGetTextDatum(pg_get_timezone_name(tz));
4853  values[1] = CStringGetTextDatum(tzn ? tzn : "");
4854 
4855  MemSet(&itm, 0, sizeof(struct pg_tm));
4856  itm.tm_sec = -tzoff;
4857  resInterval = (Interval *) palloc(sizeof(Interval));
4858  tm2interval(&itm, 0, resInterval);
4859  values[2] = IntervalPGetDatum(resInterval);
4860 
4861  values[3] = BoolGetDatum(tm.tm_isdst > 0);
4862 
4863  tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
4864  result = HeapTupleGetDatum(tuple);
4865 
4866  SRF_RETURN_NEXT(funcctx, result);
4867 }
void EncodeDateOnly(struct pg_tm *tm, int style, char *str)
Definition: datetime.c:3858
#define INTSTYLE_POSTGRES_VERBOSE
Definition: miscadmin.h:235
#define DYEAR
Definition: datetime.h:57
#define DTERR_BAD_FORMAT
Definition: datetime.h:280
#define DTK_TZ_HOUR
Definition: datetime.h:178
#define DTK_CENTURY
Definition: datetime.h:170
void GetCurrentDateTime(struct pg_tm *tm)
Definition: datetime.c:348
#define PM
Definition: datetime.h:73
#define IsA(nodeptr, _type_)
Definition: nodes.h:575
#define DAY
Definition: datetime.h:94
#define UNITS
Definition: datetime.h:108
int errhint(const char *fmt,...)
Definition: elog.c:974
#define DAGO
Definition: datetime.h:36
void DateTimeParseError(int dterr, const char *str, const char *datatype)
Definition: datetime.c:3739
#define IGNORE_DTF
Definition: datetime.h:99
int64 pg_time_t
Definition: pgtime.h:23
#define APPEND_CHAR(bufptr, end, newchar)
int tm_wday
Definition: pgtime.h:33
int pg_next_dst_boundary(const pg_time_t *timep, long int *before_gmtoff, int *before_isdst, pg_time_t *boundary, long int *after_gmtoff, int *after_isdst, const pg_tz *tz)
Definition: localtime.c:1625
List * args
Definition: primnodes.h:463
PGDLLIMPORT pg_tz * session_timezone
Definition: pgtz.c:28
static const datetkn * deltacache[MAXDATEFIELDS]
Definition: datetime.c:244
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
#define DWEEK
Definition: datetime.h:54
#define DatumGetInt32(X)
Definition: postgres.h:472
#define DTK_JULIAN
Definition: datetime.h:174
#define DTK_WEEK
Definition: datetime.h:165
#define DTK_YEAR
Definition: datetime.h:168
int tm_isdst
Definition: pgtime.h:35
#define MILLENNIUM
Definition: datetime.h:121
#define LATE
Definition: datetime.h:41
#define USECS_PER_SEC
Definition: timestamp.h:94
#define YEAR
Definition: datetime.h:93
#define castNode(_type_, nodeptr)
Definition: nodes.h:593
#define CENTURY
Definition: datetime.h:120
#define DTK_DELTA
Definition: datetime.h:160
void InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl)
Definition: datetime.c:4584
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:276
int64 TimestampTz
Definition: timestamp.h:39
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:283
static const datetkn datetktbl[]
Definition: datetime.c:90
Datum pg_timezone_abbrevs(PG_FUNCTION_ARGS)
Definition: datetime.c:4631
int tm_hour
Definition: pgtime.h:29
static char * EncodeTimezone(char *str, int tz, int style)
Definition: datetime.c:3820
#define NOW
Definition: datetime.h:42
#define DECADE
Definition: datetime.h:119
#define DTK_QUARTER
Definition: datetime.h:167
#define isleap(y)
Definition: datetime.h:271
int timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone)
Definition: timestamp.c:1777
static pg_tz * FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp)
Definition: datetime.c:4595
static struct @144 value
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
Definition: datetime.c:1463
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
bool CheckDateTokenTables(void)
Definition: datetime.c:4438
Definition: nodes.h:524
#define AGO
Definition: datetime.h:111
#define DTK_TIME_M
Definition: datetime.h:193
void EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
Definition: datetime.c:3943
#define DTK_MILLENNIUM
Definition: datetime.h:171
unsigned char pg_tolower(unsigned char ch)
Definition: pgstrcasecmp.c:122
void pg_tzenumerate_end(pg_tzenum *dir)
Definition: pgtz.c:416
int errcode(int sqlerrcode)
Definition: elog.c:570
int offset
Definition: tzparser.h:29
int scale
Definition: pgbench.c:151
int IntervalStyle
Definition: globals.c:117
#define MemSet(start, val, len)
Definition: c.h:955
#define DTK_ISODOW
Definition: datetime.h:181
#define TZ
Definition: datetime.h:96
#define USE_SQL_DATES
Definition: miscadmin.h:215
#define UNKNOWN_FIELD
Definition: datetime.h:125
long date
Definition: pgtypes_date.h:9
#define SECOND
Definition: datetime.h:103
int32 value
Definition: datetime.h:212
static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2791
int DecodeUnits(int field, char *lowtoken, int *val)
Definition: datetime.c:3702
#define DTK_TODAY
Definition: datetime.h:156
#define DTK_TOMORROW
Definition: datetime.h:157
#define MAXTZLEN
Definition: miscadmin.h:241
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
#define ADBC
Definition: datetime.h:109
Definition: pgtime.h:25
#define LOG
Definition: elog.h:26
#define AD
Definition: datetime.h:76
#define INTERVAL_FULL_RANGE
Definition: timestamp.h:48
#define EPOCH
Definition: datetime.h:38
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:287
static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
Definition: datetime.c:462
static const int szdeltatktbl
Definition: datetime.c:236
int DecodeTimeOnly(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:1717
#define lsecond(l)
Definition: pg_list.h:200
#define DTK_DATE_M
Definition: datetime.h:192
#define MINS_PER_HOUR
Definition: timestamp.h:89
TupleDesc tuple_desc
Definition: funcapi.h:113
signed int int32
Definition: c.h:346
#define USE_ISO_DATES
Definition: miscadmin.h:214
#define TOMORROW
Definition: datetime.h:44
#define DHOUR
Definition: datetime.h:52
#define MAX_TZDISP_HOUR
Definition: timestamp.h:103
char * zone
Definition: tzparser.h:27
#define DA_D
Definition: datetime.h:61
static struct pg_tm tm
Definition: localtime.c:108
#define Abs(x)
Definition: c.h:910
bool is_dst
Definition: tzparser.h:30
#define malloc(a)
Definition: header.h:50
#define DMILLISEC
Definition: datetime.h:49
pg_tz * pg_tzset(const char *tzname)
Definition: pgtz.c:236
#define DSECOND
Definition: datetime.h:50
#define DTK_MONTH
Definition: datetime.h:166
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:289
#define DTK_MILLISEC
Definition: datetime.h:172
#define MONTHS_PER_YEAR
Definition: timestamp.h:69
#define sprintf
Definition: port.h:194
#define DMICROSEC
Definition: datetime.h:48
#define DTK_DECADE
Definition: datetime.h:169
#define TODAY
Definition: datetime.h:43
int DecodeDateTime(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:761
#define TZ_STRLEN_MAX
Definition: pgtime.h:44
const char *const months[]
Definition: datetime.c:66
#define linitial(l)
Definition: pg_list.h:195
#define DTK_TZ
Definition: datetime.h:147
#define DTK_HOUR
Definition: datetime.h:163
#define ERROR
Definition: elog.h:43
#define DTERR_FIELD_OVERFLOW
Definition: datetime.h:281
#define DOW
Definition: datetime.h:107
#define AM
Definition: datetime.h:72
int DecodeTimezoneAbbrev(int field, char *lowtoken, int *offset, pg_tz **tz)
Definition: datetime.c:2956
#define MAX_INTERVAL_PRECISION
Definition: timestamp.h:54
char token[TOKMAXLEN+1]
Definition: datetime.h:210
#define MILLISECOND
Definition: datetime.h:104
#define IntervalPGetDatum(X)
Definition: timestamp.h:33
#define SECS_PER_DAY
Definition: timestamp.h:86
static bool CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
Definition: datetime.c:4406
static char * AddISO8601IntPart(char *cp, int value, char units)
Definition: datetime.c:4143
#define DTERR_INTERVAL_OVERFLOW
Definition: datetime.h:283
#define DTK_SECOND
Definition: datetime.h:161
bool pg_interpret_timezone_abbrev(const char *abbrev, const pg_time_t *timep, long int *gmtoff, int *isdst, const pg_tz *tz)
Definition: localtime.c:1772
#define DCENTURY
Definition: datetime.h:59
int j2day(int date)
Definition: datetime.c:330
int DecodeTimezone(char *str, int *tzp)
Definition: datetime.c:2878
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2048
const char * pg_get_timezone_name(pg_tz *tz)
Definition: localtime.c:1890
datetkn abbrevs[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:220
int tm_mday
Definition: pgtime.h:30
static const datetkn * datebsearch(const char *key, const datetkn *base, int nel)
Definition: datetime.c:3784
#define HOURS_PER_DAY
Definition: timestamp.h:78
static const datetkn deltatktbl[]
Definition: datetime.c:171
int tm_mon
Definition: pgtime.h:31
int DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
Definition: datetime.c:1441
#define DMILLENNIUM
Definition: datetime.h:60
#define SECS_PER_MINUTE
Definition: timestamp.h:88
int errdetail(const char *fmt,...)
Definition: elog.c:860
#define DMINUTE
Definition: datetime.h:51
#define USE_POSTGRES_DATES
Definition: miscadmin.h:213
pg_time_t timestamptz_to_time_t(TimestampTz t)
Definition: timestamp.c:1711
void EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
Definition: datetime.c:3973
#define MAX_TIMESTAMP_PRECISION
Definition: timestamp.h:53
int strtoint(const char *pg_restrict str, char **pg_restrict endptr, int base)
Definition: string.c:50
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm)
Definition: datetime.c:2341
#define DTK_ISOYEAR
Definition: datetime.h:180
const char *const days[]
Definition: datetime.c:69
void GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:365
int32 fsec_t
Definition: timestamp.h:41
#define DTK_YESTERDAY
Definition: datetime.h:155
#define DTK_NUMBER
Definition: datetime.h:142
#define MINUTE
Definition: datetime.h:102
static struct cvec * range(struct vars *v, chr a, chr b, int cases)
Definition: regc_locale.c:416
double rint(double x)
Definition: rint.c:21
#define IS_VALID_JULIAN(y, m, d)
Definition: timestamp.h:155
#define USECS_PER_DAY
Definition: timestamp.h:91
void TupleDescInitEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:603
#define DTK_TZ_MINUTE
Definition: datetime.h:179
#define ereport(elevel, rest)
Definition: elog.h:141
int DateOrder
Definition: globals.c:116
void j2date(int jd, int *year, int *month, int *day)
Definition: datetime.c:295
#define SECS_PER_HOUR
Definition: timestamp.h:87
static char * AddPostgresIntPart(char *cp, int value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4153
#define MONTH
Definition: datetime.h:92
#define DTK_MINUTE
Definition: datetime.h:162
int DecodeISO8601Interval(char *str, int *dtype, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3493
#define DATEORDER_YMD
Definition: miscadmin.h:220
static int ParseFractionalSecond(char *cp, fsec_t *fsec)
Definition: datetime.c:492
#define BC
Definition: datetime.h:77
TimestampTz GetCurrentTransactionStartTimestamp(void)
Definition: xact.c:783
char * abbrev
Definition: tzparser.h:26
#define DTERR_TZDISP_OVERFLOW
Definition: datetime.h:284
void EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
Definition: datetime.c:4215
char zone[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:228
#define DTK_DOW
Definition: datetime.h:176
#define DTK_LATE
Definition: datetime.h:152
int DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, pg_tz *tzp, int *isdst)
Definition: datetime.c:1640
#define DTK_MICROSEC
Definition: datetime.h:173
Node * TemporalSimplify(int32 max_precis, Node *node)
Definition: datetime.c:4467
#define DAYS_PER_MONTH
Definition: timestamp.h:77
uintptr_t Datum
Definition: postgres.h:367
char * pg_ltostr_zeropad(char *str, int32 value, int32 minwidth)
Definition: numutils.c:410
#define INTSTYLE_ISO_8601
Definition: miscadmin.h:237
Definition: pgtz.h:65
const int day_tab[2][13]
Definition: datetime.c:60
#define DMONTH
Definition: datetime.h:55
static char * AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
Definition: datetime.c:452
#define DATEORDER_DMY
Definition: miscadmin.h:221
#define BoolGetDatum(X)
Definition: postgres.h:402
static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
Definition: datetime.c:477
static char * AddVerboseIntPart(char *cp, int value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4176
#define WEEK
Definition: datetime.h:118
#define ISOTIME
Definition: datetime.h:116
#define DTK_TIME
Definition: datetime.h:146
int date2j(int y, int m, int d)
Definition: datetime.c:270
static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:2530
#define DTK_DOY
Definition: datetime.h:177
#define YESTERDAY
Definition: datetime.h:45
static void ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3043
void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
Definition: timestamp.c:1750
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
char type
Definition: datetime.h:211
char * pg_ltostr(char *str, int32 value)
Definition: numutils.c:487
#define Assert(condition)
Definition: c.h:732
#define AMPM
Definition: datetime.h:100
pg_tzenum * pg_tzenumerate_start(void)
Definition: pgtz.c:399
#define DTIMEZONE
Definition: datetime.h:63
static int ISO8601IntegerWidth(char *fieldstart)
Definition: datetime.c:3466
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:102
size_t Size
Definition: c.h:466
#define DTK_EARLY
Definition: datetime.h:151
#define MAXDATEFIELDS
Definition: datetime.h:203
#define DTK_STRING
Definition: datetime.h:143
static int list_length(const List *l)
Definition: pg_list.h:169
#define DTK_DAY
Definition: datetime.h:164
#define MAXALIGN(LEN)
Definition: c.h:685
static int DecodeNumber(int flen, char *field, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2606
#define RESERV
Definition: datetime.h:91
#define DDAY
Definition: datetime.h:53
int DecodeSpecial(int field, char *lowtoken, int *val)
Definition: datetime.c:3011
#define HeapTupleGetDatum(tuple)
Definition: funcapi.h:221
#define DTK_ALL_SECS_M
Definition: datetime.h:191
#define INTERVAL_MASK(b)
Definition: timestamp.h:45
#define DTZ
Definition: datetime.h:97
#define DTK_EPOCH
Definition: datetime.h:153
static TimeZoneAbbrevTable * zoneabbrevtbl
Definition: datetime.c:238
Datum pg_timezone_names(PG_FUNCTION_ARGS)
Definition: datetime.c:4759
static Datum values[MAXATTR]
Definition: bootstrap.c:167
Definition: zic.c:98
static char * AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
Definition: datetime.c:389
pg_tz * pg_tzenumerate_next(pg_tzenum *dir)
Definition: pgtz.c:428
#define INTSTYLE_SQL_STANDARD
Definition: miscadmin.h:236
#define USE_XSD_DATES
Definition: miscadmin.h:217
void * user_fctx
Definition: funcapi.h:83
int tm_year
Definition: pgtime.h:32
void * palloc(Size size)
Definition: mcxt.c:924
static const datetkn * datecache[MAXDATEFIELDS]
Definition: datetime.c:242
int errmsg(const char *fmt,...)
Definition: elog.c:784
static const datetkn * abbrevcache[MAXDATEFIELDS]
Definition: datetime.c:246
static const int szdatetktbl
Definition: datetime.c:165
static int ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
Definition: datetime.c:3438
#define USE_GERMAN_DATES
Definition: miscadmin.h:216
#define DYNTZ
Definition: datetime.h:98
#define DTK_NOW
Definition: datetime.h:154
#define elog(elevel,...)
Definition: elog.h:226
int DecodeInterval(char **field, int *ftype, int nf, int range, int *dtype, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3067
int i
#define TOKMAXLEN
Definition: datetime.h:205
#define CStringGetTextDatum(s)
Definition: builtins.h:83
#define DTK_M(t)
Definition: datetime.h:188
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst)
Definition: datetime.c:1677
int tm_yday
Definition: pgtime.h:34
#define PG_FUNCTION_ARGS
Definition: fmgr.h:188
#define UNIX_EPOCH_JDATE
Definition: timestamp.h:162
#define POSTGRES_EPOCH_JDATE
Definition: timestamp.h:163
#define HOUR
Definition: datetime.h:101
bool pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
Definition: localtime.c:1866
#define DTK_ZULU
Definition: datetime.h:158
int tm_sec
Definition: pgtime.h:27
int ParseDateTime(const char *timestr, char *workbuf, size_t buflen, char **field, int *ftype, int maxfields, int *numfields)
Definition: datetime.c:540
#define DQUARTER
Definition: datetime.h:56
#define DTZMOD
Definition: datetime.h:123
#define DTERR_MD_FIELD_OVERFLOW
Definition: datetime.h:282
unsigned char pg_toupper(unsigned char ch)
Definition: pgstrcasecmp.c:105
#define DOY
Definition: datetime.h:106
#define EARLY
Definition: datetime.h:40
int tm_min
Definition: pgtime.h:28
int16 AttrNumber
Definition: attnum.h:21
int DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
Definition: datetime.c:1602
TimeZoneAbbrevTable * ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
Definition: datetime.c:4500
long val
Definition: informix.c:684
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1533
Node * relabel_to_typmod(Node *expr, int32 typmod)
Definition: nodeFuncs.c:588
#define DDECADE
Definition: datetime.h:58
#define DTK_DATE
Definition: datetime.h:145
#define offsetof(type, field)
Definition: c.h:655
#define HR24
Definition: datetime.h:74
#define DTK_SPECIAL
Definition: datetime.h:150
#define MAX_TIME_PRECISION
Definition: date.h:51
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:307
unsigned char bool
Definition: c.h:308
#define MICROSECOND
Definition: datetime.h:105
int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, struct pg_tm *tm)
Definition: datetime.c:2451
#define INTSTYLE_POSTGRES
Definition: miscadmin.h:234
#define DB_C
Definition: datetime.h:62
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:285
int tm2interval(struct pg_tm *tm, fsec_t fsec, Interval *span)
Definition: timestamp.c:1949