PostgreSQL Source Code git master
datetime.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * datetime.c
4 * Support functions for date/time types.
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/utils/adt/datetime.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <ctype.h>
18#include <limits.h>
19#include <math.h>
20
21#include "access/htup_details.h"
22#include "access/xact.h"
23#include "common/int.h"
24#include "common/string.h"
25#include "funcapi.h"
26#include "miscadmin.h"
27#include "nodes/nodeFuncs.h"
28#include "parser/scansup.h"
29#include "utils/builtins.h"
30#include "utils/date.h"
31#include "utils/datetime.h"
32#include "utils/guc.h"
33#include "utils/tzparser.h"
34
35static int DecodeNumber(int flen, char *str, bool haveTextMonth,
36 int fmask, int *tmask,
37 struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
38static int DecodeNumberField(int len, char *str,
39 int fmask, int *tmask,
40 struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
41static int DecodeTimeCommon(char *str, int fmask, int range,
42 int *tmask, struct pg_itm *itm);
43static int DecodeTime(char *str, int fmask, int range,
44 int *tmask, struct pg_tm *tm, fsec_t *fsec);
45static int DecodeTimeForInterval(char *str, int fmask, int range,
46 int *tmask, struct pg_itm_in *itm_in);
47static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
48static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
49 struct pg_tm *tm);
50static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
51 int precision, bool fillzeros);
52static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum);
53static bool AdjustFractMicroseconds(double frac, int64 scale,
54 struct pg_itm_in *itm_in);
55static bool AdjustFractDays(double frac, int scale,
56 struct pg_itm_in *itm_in);
57static bool AdjustFractYears(double frac, int scale,
58 struct pg_itm_in *itm_in);
59static bool AdjustMicroseconds(int64 val, double fval, int64 scale,
60 struct pg_itm_in *itm_in);
61static bool AdjustDays(int64 val, int scale,
62 struct pg_itm_in *itm_in);
63static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in);
64static bool AdjustYears(int64 val, int scale,
65 struct pg_itm_in *itm_in);
66static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
67 pg_time_t *tp);
69 const char *abbr, pg_tz *tzp,
70 int *offset, int *isdst);
72 DateTimeErrorExtra *extra);
73
74
75const int day_tab[2][13] =
76{
77 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
78 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
79};
80
81const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
82"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
83
84const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
85"Thursday", "Friday", "Saturday", NULL};
86
87
88/*****************************************************************************
89 * PRIVATE ROUTINES *
90 *****************************************************************************/
91
92/*
93 * datetktbl holds date/time keywords.
94 *
95 * Note that this table must be strictly alphabetically ordered to allow an
96 * O(ln(N)) search algorithm to be used.
97 *
98 * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
99 * characters to fit.
100 *
101 * The static table contains no TZ, DTZ, or DYNTZ entries; rather those
102 * are loaded from configuration files and stored in zoneabbrevtbl, whose
103 * abbrevs[] field has the same format as the static datetktbl.
104 */
105static const datetkn datetktbl[] = {
106 /* token, type, value */
107 {"+infinity", RESERV, DTK_LATE}, /* same as "infinity" */
108 {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
109 {DA_D, ADBC, AD}, /* "ad" for years > 0 */
110 {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
111 {"am", AMPM, AM},
112 {"apr", MONTH, 4},
113 {"april", MONTH, 4},
114 {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
115 {"aug", MONTH, 8},
116 {"august", MONTH, 8},
117 {DB_C, ADBC, BC}, /* "bc" for years <= 0 */
118 {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
119 {"dec", MONTH, 12},
120 {"december", MONTH, 12},
121 {"dow", UNITS, DTK_DOW}, /* day of week */
122 {"doy", UNITS, DTK_DOY}, /* day of year */
123 {"dst", DTZMOD, SECS_PER_HOUR},
124 {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
125 {"feb", MONTH, 2},
126 {"february", MONTH, 2},
127 {"fri", DOW, 5},
128 {"friday", DOW, 5},
129 {"h", UNITS, DTK_HOUR}, /* "hour" */
130 {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
131 {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
132 {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
133 {"j", UNITS, DTK_JULIAN},
134 {"jan", MONTH, 1},
135 {"january", MONTH, 1},
136 {"jd", UNITS, DTK_JULIAN},
137 {"jul", MONTH, 7},
138 {"julian", UNITS, DTK_JULIAN},
139 {"july", MONTH, 7},
140 {"jun", MONTH, 6},
141 {"june", MONTH, 6},
142 {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
143 {"mar", MONTH, 3},
144 {"march", MONTH, 3},
145 {"may", MONTH, 5},
146 {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
147 {"mon", DOW, 1},
148 {"monday", DOW, 1},
149 {"nov", MONTH, 11},
150 {"november", MONTH, 11},
151 {NOW, RESERV, DTK_NOW}, /* current transaction time */
152 {"oct", MONTH, 10},
153 {"october", MONTH, 10},
154 {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
155 {"pm", AMPM, PM},
156 {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
157 {"sat", DOW, 6},
158 {"saturday", DOW, 6},
159 {"sep", MONTH, 9},
160 {"sept", MONTH, 9},
161 {"september", MONTH, 9},
162 {"sun", DOW, 0},
163 {"sunday", DOW, 0},
164 {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
165 {"thu", DOW, 4},
166 {"thur", DOW, 4},
167 {"thurs", DOW, 4},
168 {"thursday", DOW, 4},
169 {TODAY, RESERV, DTK_TODAY}, /* midnight */
170 {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
171 {"tue", DOW, 2},
172 {"tues", DOW, 2},
173 {"tuesday", DOW, 2},
174 {"wed", DOW, 3},
175 {"wednesday", DOW, 3},
176 {"weds", DOW, 3},
177 {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
178 {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
179};
180
181static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
182
183/*
184 * deltatktbl: same format as datetktbl, but holds keywords used to represent
185 * time units (eg, for intervals, and for EXTRACT).
186 */
187static const datetkn deltatktbl[] = {
188 /* token, type, value */
189 {"@", IGNORE_DTF, 0}, /* postgres relative prefix */
190 {DAGO, AGO, 0}, /* "ago" indicates negative time offset */
191 {"c", UNITS, DTK_CENTURY}, /* "century" relative */
192 {"cent", UNITS, DTK_CENTURY}, /* "century" relative */
193 {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
194 {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
195 {"d", UNITS, DTK_DAY}, /* "day" relative */
196 {DDAY, UNITS, DTK_DAY}, /* "day" relative */
197 {"days", UNITS, DTK_DAY}, /* "days" relative */
198 {"dec", UNITS, DTK_DECADE}, /* "decade" relative */
199 {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
200 {"decades", UNITS, DTK_DECADE}, /* "decades" relative */
201 {"decs", UNITS, DTK_DECADE}, /* "decades" relative */
202 {"h", UNITS, DTK_HOUR}, /* "hour" relative */
203 {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
204 {"hours", UNITS, DTK_HOUR}, /* "hours" relative */
205 {"hr", UNITS, DTK_HOUR}, /* "hour" relative */
206 {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
207 {"m", UNITS, DTK_MINUTE}, /* "minute" relative */
208 {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
209 {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
210 {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
211 {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
212 {"millisecon", UNITS, DTK_MILLISEC}, /* relative */
213 {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
214 {"min", UNITS, DTK_MINUTE}, /* "minute" relative */
215 {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
216 {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
217 {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
218 {"mon", UNITS, DTK_MONTH}, /* "months" relative */
219 {"mons", UNITS, DTK_MONTH}, /* "months" relative */
220 {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
221 {"months", UNITS, DTK_MONTH},
222 {"ms", UNITS, DTK_MILLISEC},
223 {"msec", UNITS, DTK_MILLISEC},
225 {"mseconds", UNITS, DTK_MILLISEC},
226 {"msecs", UNITS, DTK_MILLISEC},
227 {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
228 {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
229 {"s", UNITS, DTK_SECOND},
230 {"sec", UNITS, DTK_SECOND},
232 {"seconds", UNITS, DTK_SECOND},
233 {"secs", UNITS, DTK_SECOND},
234 {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
235 {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
236 {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
237 {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
238 {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
239 {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
240 {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
241 {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
242 {"w", UNITS, DTK_WEEK}, /* "week" relative */
243 {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
244 {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
245 {"y", UNITS, DTK_YEAR}, /* "year" relative */
246 {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
247 {"years", UNITS, DTK_YEAR}, /* "years" relative */
248 {"yr", UNITS, DTK_YEAR}, /* "year" relative */
249 {"yrs", UNITS, DTK_YEAR} /* "years" relative */
250};
251
252static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
253
255
256/* Caches of recent lookup results in the above tables */
257
258static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
259
260static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
261
262/* Cache for results of timezone abbreviation lookups */
263
264typedef struct TzAbbrevCache
265{
266 char abbrev[TOKMAXLEN + 1]; /* always NUL-terminated */
267 char ftype; /* TZ, DTZ, or DYNTZ */
268 int offset; /* GMT offset, if fixed-offset */
269 pg_tz *tz; /* relevant zone, if variable-offset */
271
273
274
275/*
276 * Calendar time to Julian date conversions.
277 * Julian date is commonly used in astronomical applications,
278 * since it is numerically accurate and computationally simple.
279 * The algorithms here will accurately convert between Julian day
280 * and calendar date for all non-negative Julian days
281 * (i.e. from Nov 24, -4713 on).
282 *
283 * Rewritten to eliminate overflow problems. This now allows the
284 * routines to work correctly for all Julian day counts from
285 * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
286 * a 32-bit integer. Longer types should also work to the limits
287 * of their precision.
288 *
289 * Actually, date2j() will work sanely, in the sense of producing
290 * valid negative Julian dates, significantly before Nov 24, -4713.
291 * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
292 * and associated commentary in timestamp.h.
293 */
294
295int
296date2j(int year, int month, int day)
297{
298 int julian;
299 int century;
300
301 if (month > 2)
302 {
303 month += 1;
304 year += 4800;
305 }
306 else
307 {
308 month += 13;
309 year += 4799;
310 }
311
312 century = year / 100;
313 julian = year * 365 - 32167;
314 julian += year / 4 - century + century / 4;
315 julian += 7834 * month / 256 + day;
316
317 return julian;
318} /* date2j() */
319
320void
321j2date(int jd, int *year, int *month, int *day)
322{
323 unsigned int julian;
324 unsigned int quad;
325 unsigned int extra;
326 int y;
327
328 julian = jd;
329 julian += 32044;
330 quad = julian / 146097;
331 extra = (julian - quad * 146097) * 4 + 3;
332 julian += 60 + quad * 3 + extra / 146097;
333 quad = julian / 1461;
334 julian -= quad * 1461;
335 y = julian * 4 / 1461;
336 julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
337 + 123;
338 y += quad * 4;
339 *year = y - 4800;
340 quad = julian * 2141 / 65536;
341 *day = julian - 7834 * quad / 256;
342 *month = (quad + 10) % MONTHS_PER_YEAR + 1;
343} /* j2date() */
344
345
346/*
347 * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
348 *
349 * Note: various places use the locution j2day(date - 1) to produce a
350 * result according to the convention 0..6 = Mon..Sun. This is a bit of
351 * a crock, but will work as long as the computation here is just a modulo.
352 */
353int
355{
356 date += 1;
357 date %= 7;
358 /* Cope if division truncates towards zero, as it probably does */
359 if (date < 0)
360 date += 7;
361
362 return date;
363} /* j2day() */
364
365
366/*
367 * GetCurrentDateTime()
368 *
369 * Get the transaction start time ("now()") broken down as a struct pg_tm,
370 * converted according to the session timezone setting.
371 *
372 * This is just a convenience wrapper for GetCurrentTimeUsec, to cover the
373 * case where caller doesn't need either fractional seconds or tz offset.
374 */
375void
377{
378 fsec_t fsec;
379
380 GetCurrentTimeUsec(tm, &fsec, NULL);
381}
382
383/*
384 * GetCurrentTimeUsec()
385 *
386 * Get the transaction start time ("now()") broken down as a struct pg_tm,
387 * including fractional seconds and timezone offset. The time is converted
388 * according to the session timezone setting.
389 *
390 * Callers may pass tzp = NULL if they don't need the offset, but this does
391 * not affect the conversion behavior (unlike timestamp2tm()).
392 *
393 * Internally, we cache the result, since this could be called many times
394 * in a transaction, within which now() doesn't change.
395 */
396void
397GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
398{
400
401 /*
402 * The cache key must include both current time and current timezone. By
403 * representing the timezone by just a pointer, we're assuming that
404 * distinct timezone settings could never have the same pointer value.
405 * This is true by virtue of the hashtable used inside pg_tzset();
406 * however, it might need another look if we ever allow entries in that
407 * hash to be recycled.
408 */
409 static TimestampTz cache_ts = 0;
410 static pg_tz *cache_timezone = NULL;
411 static struct pg_tm cache_tm;
412 static fsec_t cache_fsec;
413 static int cache_tz;
414
415 if (cur_ts != cache_ts || session_timezone != cache_timezone)
416 {
417 /*
418 * Make sure cache is marked invalid in case of error after partial
419 * update within timestamp2tm.
420 */
421 cache_timezone = NULL;
422
423 /*
424 * Perform the computation, storing results into cache. We do not
425 * really expect any error here, since current time surely ought to be
426 * within range, but check just for sanity's sake.
427 */
428 if (timestamp2tm(cur_ts, &cache_tz, &cache_tm, &cache_fsec,
429 NULL, session_timezone) != 0)
431 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
432 errmsg("timestamp out of range")));
433
434 /* OK, so mark the cache valid. */
435 cache_ts = cur_ts;
436 cache_timezone = session_timezone;
437 }
438
439 *tm = cache_tm;
440 *fsec = cache_fsec;
441 if (tzp != NULL)
442 *tzp = cache_tz;
443}
444
445
446/*
447 * Append seconds and fractional seconds (if any) at *cp.
448 *
449 * precision is the max number of fraction digits, fillzeros says to
450 * pad to two integral-seconds digits.
451 *
452 * Returns a pointer to the new end of string. No NUL terminator is put
453 * there; callers are responsible for NUL terminating str themselves.
454 *
455 * Note that any sign is stripped from the input sec and fsec values.
456 */
457static char *
458AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
459{
460 Assert(precision >= 0);
461
462 if (fillzeros)
463 cp = pg_ultostr_zeropad(cp, abs(sec), 2);
464 else
465 cp = pg_ultostr(cp, abs(sec));
466
467 /* fsec_t is just an int32 */
468 if (fsec != 0)
469 {
470 int32 value = abs(fsec);
471 char *end = &cp[precision + 1];
472 bool gotnonzero = false;
473
474 *cp++ = '.';
475
476 /*
477 * Append the fractional seconds part. Note that we don't want any
478 * trailing zeros here, so since we're building the number in reverse
479 * we'll skip appending zeros until we've output a non-zero digit.
480 */
481 while (precision--)
482 {
483 int32 oldval = value;
484 int32 remainder;
485
486 value /= 10;
487 remainder = oldval - value * 10;
488
489 /* check if we got a non-zero */
490 if (remainder)
491 gotnonzero = true;
492
493 if (gotnonzero)
494 cp[precision] = '0' + remainder;
495 else
496 end = &cp[precision];
497 }
498
499 /*
500 * If we still have a non-zero value then precision must have not been
501 * enough to print the number. We punt the problem to pg_ultostr(),
502 * which will generate a correct answer in the minimum valid width.
503 */
504 if (value)
505 return pg_ultostr(cp, abs(fsec));
506
507 return end;
508 }
509 else
510 return cp;
511}
512
513
514/*
515 * Variant of above that's specialized to timestamp case.
516 *
517 * Returns a pointer to the new end of string. No NUL terminator is put
518 * there; callers are responsible for NUL terminating str themselves.
519 */
520static char *
521AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
522{
523 return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
524}
525
526
527/*
528 * Add val * multiplier to *sum.
529 * Returns true if successful, false on overflow.
530 */
531static bool
533{
534 int64 product;
535
536 if (pg_mul_s64_overflow(val, multiplier, &product) ||
537 pg_add_s64_overflow(*sum, product, sum))
538 return false;
539 return true;
540}
541
542/*
543 * Multiply frac by scale (to produce microseconds) and add to itm_in->tm_usec.
544 * Returns true if successful, false if itm_in overflows.
545 */
546static bool
548 struct pg_itm_in *itm_in)
549{
550 int64 usec;
551
552 /* Fast path for common case */
553 if (frac == 0)
554 return true;
555
556 /*
557 * We assume the input frac has abs value less than 1, so overflow of frac
558 * or usec is not an issue for interesting values of scale.
559 */
560 frac *= scale;
561 usec = (int64) frac;
562
563 /* Round off any fractional microsecond */
564 frac -= usec;
565 if (frac > 0.5)
566 usec++;
567 else if (frac < -0.5)
568 usec--;
569
570 return !pg_add_s64_overflow(itm_in->tm_usec, usec, &itm_in->tm_usec);
571}
572
573/*
574 * Multiply frac by scale (to produce days). Add the integral part of the
575 * result to itm_in->tm_mday, the fractional part to itm_in->tm_usec.
576 * Returns true if successful, false if itm_in overflows.
577 */
578static bool
579AdjustFractDays(double frac, int scale,
580 struct pg_itm_in *itm_in)
581{
582 int extra_days;
583
584 /* Fast path for common case */
585 if (frac == 0)
586 return true;
587
588 /*
589 * We assume the input frac has abs value less than 1, so overflow of frac
590 * or extra_days is not an issue.
591 */
592 frac *= scale;
593 extra_days = (int) frac;
594
595 /* ... but this could overflow, if tm_mday is already nonzero */
596 if (pg_add_s32_overflow(itm_in->tm_mday, extra_days, &itm_in->tm_mday))
597 return false;
598
599 /* Handle any fractional day */
600 frac -= extra_days;
601 return AdjustFractMicroseconds(frac, USECS_PER_DAY, itm_in);
602}
603
604/*
605 * Multiply frac by scale (to produce years), then further scale up to months.
606 * Add the integral part of the result to itm_in->tm_mon, discarding any
607 * fractional part.
608 * Returns true if successful, false if itm_in overflows.
609 */
610static bool
611AdjustFractYears(double frac, int scale,
612 struct pg_itm_in *itm_in)
613{
614 /*
615 * As above, we assume abs(frac) < 1, so this can't overflow for any
616 * interesting value of scale.
617 */
618 int extra_months = (int) rint(frac * scale * MONTHS_PER_YEAR);
619
620 return !pg_add_s32_overflow(itm_in->tm_mon, extra_months, &itm_in->tm_mon);
621}
622
623/*
624 * Add (val + fval) * scale to itm_in->tm_usec.
625 * Returns true if successful, false if itm_in overflows.
626 */
627static bool
629 struct pg_itm_in *itm_in)
630{
631 /* Handle the integer part */
632 if (!int64_multiply_add(val, scale, &itm_in->tm_usec))
633 return false;
634 /* Handle the float part */
635 return AdjustFractMicroseconds(fval, scale, itm_in);
636}
637
638/*
639 * Multiply val by scale (to produce days) and add to itm_in->tm_mday.
640 * Returns true if successful, false if itm_in overflows.
641 */
642static bool
643AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in)
644{
645 int days;
646
647 if (val < INT_MIN || val > INT_MAX)
648 return false;
649 return !pg_mul_s32_overflow((int32) val, scale, &days) &&
650 !pg_add_s32_overflow(itm_in->tm_mday, days, &itm_in->tm_mday);
651}
652
653/*
654 * Add val to itm_in->tm_mon (no need for scale here, as val is always
655 * in months already).
656 * Returns true if successful, false if itm_in overflows.
657 */
658static bool
660{
661 if (val < INT_MIN || val > INT_MAX)
662 return false;
663 return !pg_add_s32_overflow(itm_in->tm_mon, (int32) val, &itm_in->tm_mon);
664}
665
666/*
667 * Multiply val by scale (to produce years) and add to itm_in->tm_year.
668 * Returns true if successful, false if itm_in overflows.
669 */
670static bool
672 struct pg_itm_in *itm_in)
673{
674 int years;
675
676 if (val < INT_MIN || val > INT_MAX)
677 return false;
678 return !pg_mul_s32_overflow((int32) val, scale, &years) &&
679 !pg_add_s32_overflow(itm_in->tm_year, years, &itm_in->tm_year);
680}
681
682
683/*
684 * Parse the fractional part of a number (decimal point and optional digits,
685 * followed by end of string). Returns the fractional value into *frac.
686 *
687 * Returns 0 if successful, DTERR code if bogus input detected.
688 */
689static int
690ParseFraction(char *cp, double *frac)
691{
692 /* Caller should always pass the start of the fraction part */
693 Assert(*cp == '.');
694
695 /*
696 * We want to allow just "." with no digits, but some versions of strtod
697 * will report EINVAL for that, so special-case it.
698 */
699 if (cp[1] == '\0')
700 {
701 *frac = 0;
702 }
703 else
704 {
705 errno = 0;
706 *frac = strtod(cp, &cp);
707 /* check for parse failure */
708 if (*cp != '\0' || errno != 0)
709 return DTERR_BAD_FORMAT;
710 }
711 return 0;
712}
713
714/*
715 * Fetch a fractional-second value with suitable error checking.
716 * Same as ParseFraction except we convert the result to integer microseconds.
717 */
718static int
720{
721 double frac;
722 int dterr;
723
724 dterr = ParseFraction(cp, &frac);
725 if (dterr)
726 return dterr;
727 *fsec = rint(frac * 1000000);
728 return 0;
729}
730
731
732/* ParseDateTime()
733 * Break string into tokens based on a date/time context.
734 * Returns 0 if successful, DTERR code if bogus input detected.
735 *
736 * timestr - the input string
737 * workbuf - workspace for field string storage. This must be
738 * larger than the largest legal input for this datetime type --
739 * some additional space will be needed to NUL terminate fields.
740 * buflen - the size of workbuf
741 * field[] - pointers to field strings are returned in this array
742 * ftype[] - field type indicators are returned in this array
743 * maxfields - dimensions of the above two arrays
744 * *numfields - set to the actual number of fields detected
745 *
746 * The fields extracted from the input are stored as separate,
747 * null-terminated strings in the workspace at workbuf. Any text is
748 * converted to lower case.
749 *
750 * Several field types are assigned:
751 * DTK_NUMBER - digits and (possibly) a decimal point
752 * DTK_DATE - digits and two delimiters, or digits and text
753 * DTK_TIME - digits, colon delimiters, and possibly a decimal point
754 * DTK_STRING - text (no digits or punctuation)
755 * DTK_SPECIAL - leading "+" or "-" followed by text
756 * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
757 *
758 * Note that some field types can hold unexpected items:
759 * DTK_NUMBER can hold date fields (yy.ddd)
760 * DTK_STRING can hold months (January) and time zones (PST)
761 * DTK_DATE can hold time zone names (America/New_York, GMT-8)
762 */
763int
764ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
765 char **field, int *ftype, int maxfields, int *numfields)
766{
767 int nf = 0;
768 const char *cp = timestr;
769 char *bufp = workbuf;
770 const char *bufend = workbuf + buflen;
771
772 /*
773 * Set the character pointed-to by "bufptr" to "newchar", and increment
774 * "bufptr". "end" gives the end of the buffer -- we return an error if
775 * there is no space left to append a character to the buffer. Note that
776 * "bufptr" is evaluated twice.
777 */
778#define APPEND_CHAR(bufptr, end, newchar) \
779 do \
780 { \
781 if (((bufptr) + 1) >= (end)) \
782 return DTERR_BAD_FORMAT; \
783 *(bufptr)++ = newchar; \
784 } while (0)
785
786 /* outer loop through fields */
787 while (*cp != '\0')
788 {
789 /* Ignore spaces between fields */
790 if (isspace((unsigned char) *cp))
791 {
792 cp++;
793 continue;
794 }
795
796 /* Record start of current field */
797 if (nf >= maxfields)
798 return DTERR_BAD_FORMAT;
799 field[nf] = bufp;
800
801 /* leading digit? then date or time */
802 if (isdigit((unsigned char) *cp))
803 {
804 APPEND_CHAR(bufp, bufend, *cp++);
805 while (isdigit((unsigned char) *cp))
806 APPEND_CHAR(bufp, bufend, *cp++);
807
808 /* time field? */
809 if (*cp == ':')
810 {
811 ftype[nf] = DTK_TIME;
812 APPEND_CHAR(bufp, bufend, *cp++);
813 while (isdigit((unsigned char) *cp) ||
814 (*cp == ':') || (*cp == '.'))
815 APPEND_CHAR(bufp, bufend, *cp++);
816 }
817 /* date field? allow embedded text month */
818 else if (*cp == '-' || *cp == '/' || *cp == '.')
819 {
820 /* save delimiting character to use later */
821 char delim = *cp;
822
823 APPEND_CHAR(bufp, bufend, *cp++);
824 /* second field is all digits? then no embedded text month */
825 if (isdigit((unsigned char) *cp))
826 {
827 ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
828 while (isdigit((unsigned char) *cp))
829 APPEND_CHAR(bufp, bufend, *cp++);
830
831 /*
832 * insist that the delimiters match to get a three-field
833 * date.
834 */
835 if (*cp == delim)
836 {
837 ftype[nf] = DTK_DATE;
838 APPEND_CHAR(bufp, bufend, *cp++);
839 while (isdigit((unsigned char) *cp) || *cp == delim)
840 APPEND_CHAR(bufp, bufend, *cp++);
841 }
842 }
843 else
844 {
845 ftype[nf] = DTK_DATE;
846 while (isalnum((unsigned char) *cp) || *cp == delim)
847 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
848 }
849 }
850
851 /*
852 * otherwise, number only and will determine year, month, day, or
853 * concatenated fields later...
854 */
855 else
856 ftype[nf] = DTK_NUMBER;
857 }
858 /* Leading decimal point? Then fractional seconds... */
859 else if (*cp == '.')
860 {
861 APPEND_CHAR(bufp, bufend, *cp++);
862 while (isdigit((unsigned char) *cp))
863 APPEND_CHAR(bufp, bufend, *cp++);
864
865 ftype[nf] = DTK_NUMBER;
866 }
867
868 /*
869 * text? then date string, month, day of week, special, or timezone
870 */
871 else if (isalpha((unsigned char) *cp))
872 {
873 bool is_date;
874
875 ftype[nf] = DTK_STRING;
876 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
877 while (isalpha((unsigned char) *cp))
878 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
879
880 /*
881 * Dates can have embedded '-', '/', or '.' separators. It could
882 * also be a timezone name containing embedded '/', '+', '-', '_',
883 * or ':' (but '_' or ':' can't be the first punctuation). If the
884 * next character is a digit or '+', we need to check whether what
885 * we have so far is a recognized non-timezone keyword --- if so,
886 * don't believe that this is the start of a timezone.
887 */
888 is_date = false;
889 if (*cp == '-' || *cp == '/' || *cp == '.')
890 is_date = true;
891 else if (*cp == '+' || isdigit((unsigned char) *cp))
892 {
893 *bufp = '\0'; /* null-terminate current field value */
894 /* we need search only the core token table, not TZ names */
895 if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
896 is_date = true;
897 }
898 if (is_date)
899 {
900 ftype[nf] = DTK_DATE;
901 do
902 {
903 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
904 } while (*cp == '+' || *cp == '-' ||
905 *cp == '/' || *cp == '_' ||
906 *cp == '.' || *cp == ':' ||
907 isalnum((unsigned char) *cp));
908 }
909 }
910 /* sign? then special or numeric timezone */
911 else if (*cp == '+' || *cp == '-')
912 {
913 APPEND_CHAR(bufp, bufend, *cp++);
914 /* soak up leading whitespace */
915 while (isspace((unsigned char) *cp))
916 cp++;
917 /* numeric timezone? */
918 /* note that "DTK_TZ" could also be a signed float or yyyy-mm */
919 if (isdigit((unsigned char) *cp))
920 {
921 ftype[nf] = DTK_TZ;
922 APPEND_CHAR(bufp, bufend, *cp++);
923 while (isdigit((unsigned char) *cp) ||
924 *cp == ':' || *cp == '.' || *cp == '-')
925 APPEND_CHAR(bufp, bufend, *cp++);
926 }
927 /* special? */
928 else if (isalpha((unsigned char) *cp))
929 {
930 ftype[nf] = DTK_SPECIAL;
931 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
932 while (isalpha((unsigned char) *cp))
933 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
934 }
935 /* otherwise something wrong... */
936 else
937 return DTERR_BAD_FORMAT;
938 }
939 /* ignore other punctuation but use as delimiter */
940 else if (ispunct((unsigned char) *cp))
941 {
942 cp++;
943 continue;
944 }
945 /* otherwise, something is not right... */
946 else
947 return DTERR_BAD_FORMAT;
948
949 /* force in a delimiter after each field */
950 *bufp++ = '\0';
951 nf++;
952 }
953
954 *numfields = nf;
955
956 return 0;
957}
958
959
960/* DecodeDateTime()
961 * Interpret previously parsed fields for general date and time.
962 * Return 0 if full date, 1 if only time, and negative DTERR code if problems.
963 * (Currently, all callers treat 1 as an error return too.)
964 *
965 * Inputs are field[] and ftype[] arrays, of length nf.
966 * Other arguments are outputs.
967 *
968 * External format(s):
969 * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
970 * "Fri Feb-7-1997 15:23:27"
971 * "Feb-7-1997 15:23:27"
972 * "2-7-1997 15:23:27"
973 * "1997-2-7 15:23:27"
974 * "1997.038 15:23:27" (day of year 1-366)
975 * Also supports input in compact time:
976 * "970207 152327"
977 * "97038 152327"
978 * "20011225T040506.789-07"
979 *
980 * Use the system-provided functions to get the current time zone
981 * if not specified in the input string.
982 *
983 * If the date is outside the range of pg_time_t (in practice that could only
984 * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
985 * 1997-05-27
986 */
987int
988DecodeDateTime(char **field, int *ftype, int nf,
989 int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp,
990 DateTimeErrorExtra *extra)
991{
992 int fmask = 0,
993 tmask,
994 type;
995 int ptype = 0; /* "prefix type" for ISO and Julian formats */
996 int i;
997 int val;
998 int dterr;
999 int mer = HR24;
1000 bool haveTextMonth = false;
1001 bool isjulian = false;
1002 bool is2digits = false;
1003 bool bc = false;
1004 pg_tz *namedTz = NULL;
1005 pg_tz *abbrevTz = NULL;
1006 pg_tz *valtz;
1007 char *abbrev = NULL;
1008 struct pg_tm cur_tm;
1009
1010 /*
1011 * We'll insist on at least all of the date fields, but initialize the
1012 * remaining fields in case they are not set later...
1013 */
1014 *dtype = DTK_DATE;
1015 tm->tm_hour = 0;
1016 tm->tm_min = 0;
1017 tm->tm_sec = 0;
1018 *fsec = 0;
1019 /* don't know daylight savings time status apriori */
1020 tm->tm_isdst = -1;
1021 if (tzp != NULL)
1022 *tzp = 0;
1023
1024 for (i = 0; i < nf; i++)
1025 {
1026 switch (ftype[i])
1027 {
1028 case DTK_DATE:
1029
1030 /*
1031 * Integral julian day with attached time zone? All other
1032 * forms with JD will be separated into distinct fields, so we
1033 * handle just this case here.
1034 */
1035 if (ptype == DTK_JULIAN)
1036 {
1037 char *cp;
1038 int jday;
1039
1040 if (tzp == NULL)
1041 return DTERR_BAD_FORMAT;
1042
1043 errno = 0;
1044 jday = strtoint(field[i], &cp, 10);
1045 if (errno == ERANGE || jday < 0)
1046 return DTERR_FIELD_OVERFLOW;
1047
1048 j2date(jday, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1049 isjulian = true;
1050
1051 /* Get the time zone from the end of the string */
1052 dterr = DecodeTimezone(cp, tzp);
1053 if (dterr)
1054 return dterr;
1055
1056 tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
1057 ptype = 0;
1058 break;
1059 }
1060
1061 /*
1062 * Already have a date? Then this might be a time zone name
1063 * with embedded punctuation (e.g. "America/New_York") or a
1064 * run-together time with trailing time zone (e.g. hhmmss-zz).
1065 * - thomas 2001-12-25
1066 *
1067 * We consider it a time zone if we already have month & day.
1068 * This is to allow the form "mmm dd hhmmss tz year", which
1069 * we've historically accepted.
1070 */
1071 else if (ptype != 0 ||
1072 ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
1073 (DTK_M(MONTH) | DTK_M(DAY))))
1074 {
1075 /* No time zone accepted? Then quit... */
1076 if (tzp == NULL)
1077 return DTERR_BAD_FORMAT;
1078
1079 if (isdigit((unsigned char) *field[i]) || ptype != 0)
1080 {
1081 char *cp;
1082
1083 /*
1084 * Allow a preceding "t" field, but no other units.
1085 */
1086 if (ptype != 0)
1087 {
1088 /* Sanity check; should not fail this test */
1089 if (ptype != DTK_TIME)
1090 return DTERR_BAD_FORMAT;
1091 ptype = 0;
1092 }
1093
1094 /*
1095 * Starts with a digit but we already have a time
1096 * field? Then we are in trouble with a date and time
1097 * already...
1098 */
1099 if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1100 return DTERR_BAD_FORMAT;
1101
1102 if ((cp = strchr(field[i], '-')) == NULL)
1103 return DTERR_BAD_FORMAT;
1104
1105 /* Get the time zone from the end of the string */
1106 dterr = DecodeTimezone(cp, tzp);
1107 if (dterr)
1108 return dterr;
1109 *cp = '\0';
1110
1111 /*
1112 * Then read the rest of the field as a concatenated
1113 * time
1114 */
1115 dterr = DecodeNumberField(strlen(field[i]), field[i],
1116 fmask,
1117 &tmask, tm,
1118 fsec, &is2digits);
1119 if (dterr < 0)
1120 return dterr;
1121
1122 /*
1123 * modify tmask after returning from
1124 * DecodeNumberField()
1125 */
1126 tmask |= DTK_M(TZ);
1127 }
1128 else
1129 {
1130 namedTz = pg_tzset(field[i]);
1131 if (!namedTz)
1132 {
1133 extra->dtee_timezone = field[i];
1134 return DTERR_BAD_TIMEZONE;
1135 }
1136 /* we'll apply the zone setting below */
1137 tmask = DTK_M(TZ);
1138 }
1139 }
1140 else
1141 {
1142 dterr = DecodeDate(field[i], fmask,
1143 &tmask, &is2digits, tm);
1144 if (dterr)
1145 return dterr;
1146 }
1147 break;
1148
1149 case DTK_TIME:
1150
1151 /*
1152 * This might be an ISO time following a "t" field.
1153 */
1154 if (ptype != 0)
1155 {
1156 /* Sanity check; should not fail this test */
1157 if (ptype != DTK_TIME)
1158 return DTERR_BAD_FORMAT;
1159 ptype = 0;
1160 }
1161 dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
1162 &tmask, tm, fsec);
1163 if (dterr)
1164 return dterr;
1165
1166 /* check for time overflow */
1168 *fsec))
1169 return DTERR_FIELD_OVERFLOW;
1170 break;
1171
1172 case DTK_TZ:
1173 {
1174 int tz;
1175
1176 if (tzp == NULL)
1177 return DTERR_BAD_FORMAT;
1178
1179 dterr = DecodeTimezone(field[i], &tz);
1180 if (dterr)
1181 return dterr;
1182 *tzp = tz;
1183 tmask = DTK_M(TZ);
1184 }
1185 break;
1186
1187 case DTK_NUMBER:
1188
1189 /*
1190 * Deal with cases where previous field labeled this one
1191 */
1192 if (ptype != 0)
1193 {
1194 char *cp;
1195 int value;
1196
1197 errno = 0;
1198 value = strtoint(field[i], &cp, 10);
1199 if (errno == ERANGE)
1200 return DTERR_FIELD_OVERFLOW;
1201 if (*cp != '.' && *cp != '\0')
1202 return DTERR_BAD_FORMAT;
1203
1204 switch (ptype)
1205 {
1206 case DTK_JULIAN:
1207 /* previous field was a label for "julian date" */
1208 if (value < 0)
1209 return DTERR_FIELD_OVERFLOW;
1210 tmask = DTK_DATE_M;
1212 isjulian = true;
1213
1214 /* fractional Julian Day? */
1215 if (*cp == '.')
1216 {
1217 double time;
1218
1219 dterr = ParseFraction(cp, &time);
1220 if (dterr)
1221 return dterr;
1222 time *= USECS_PER_DAY;
1223 dt2time(time,
1224 &tm->tm_hour, &tm->tm_min,
1225 &tm->tm_sec, fsec);
1226 tmask |= DTK_TIME_M;
1227 }
1228 break;
1229
1230 case DTK_TIME:
1231 /* previous field was "t" for ISO time */
1232 dterr = DecodeNumberField(strlen(field[i]), field[i],
1233 (fmask | DTK_DATE_M),
1234 &tmask, tm,
1235 fsec, &is2digits);
1236 if (dterr < 0)
1237 return dterr;
1238 if (tmask != DTK_TIME_M)
1239 return DTERR_BAD_FORMAT;
1240 break;
1241
1242 default:
1243 return DTERR_BAD_FORMAT;
1244 break;
1245 }
1246
1247 ptype = 0;
1248 *dtype = DTK_DATE;
1249 }
1250 else
1251 {
1252 char *cp;
1253 int flen;
1254
1255 flen = strlen(field[i]);
1256 cp = strchr(field[i], '.');
1257
1258 /* Embedded decimal and no date yet? */
1259 if (cp != NULL && !(fmask & DTK_DATE_M))
1260 {
1261 dterr = DecodeDate(field[i], fmask,
1262 &tmask, &is2digits, tm);
1263 if (dterr)
1264 return dterr;
1265 }
1266 /* embedded decimal and several digits before? */
1267 else if (cp != NULL && flen - strlen(cp) > 2)
1268 {
1269 /*
1270 * Interpret as a concatenated date or time Set the
1271 * type field to allow decoding other fields later.
1272 * Example: 20011223 or 040506
1273 */
1274 dterr = DecodeNumberField(flen, field[i], fmask,
1275 &tmask, tm,
1276 fsec, &is2digits);
1277 if (dterr < 0)
1278 return dterr;
1279 }
1280
1281 /*
1282 * Is this a YMD or HMS specification, or a year number?
1283 * YMD and HMS are required to be six digits or more, so
1284 * if it is 5 digits, it is a year. If it is six or more
1285 * digits, we assume it is YMD or HMS unless no date and
1286 * no time values have been specified. This forces 6+
1287 * digit years to be at the end of the string, or to use
1288 * the ISO date specification.
1289 */
1290 else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
1291 !(fmask & DTK_TIME_M)))
1292 {
1293 dterr = DecodeNumberField(flen, field[i], fmask,
1294 &tmask, tm,
1295 fsec, &is2digits);
1296 if (dterr < 0)
1297 return dterr;
1298 }
1299 /* otherwise it is a single date/time field... */
1300 else
1301 {
1302 dterr = DecodeNumber(flen, field[i],
1303 haveTextMonth, fmask,
1304 &tmask, tm,
1305 fsec, &is2digits);
1306 if (dterr)
1307 return dterr;
1308 }
1309 }
1310 break;
1311
1312 case DTK_STRING:
1313 case DTK_SPECIAL:
1314 /* timezone abbrevs take precedence over built-in tokens */
1315 dterr = DecodeTimezoneAbbrev(i, field[i],
1316 &type, &val, &valtz, extra);
1317 if (dterr)
1318 return dterr;
1319 if (type == UNKNOWN_FIELD)
1320 type = DecodeSpecial(i, field[i], &val);
1321 if (type == IGNORE_DTF)
1322 continue;
1323
1324 tmask = DTK_M(type);
1325 switch (type)
1326 {
1327 case RESERV:
1328 switch (val)
1329 {
1330 case DTK_NOW:
1331 tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1332 *dtype = DTK_DATE;
1333 GetCurrentTimeUsec(tm, fsec, tzp);
1334 break;
1335
1336 case DTK_YESTERDAY:
1337 tmask = DTK_DATE_M;
1338 *dtype = DTK_DATE;
1339 GetCurrentDateTime(&cur_tm);
1340 j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
1341 &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1342 break;
1343
1344 case DTK_TODAY:
1345 tmask = DTK_DATE_M;
1346 *dtype = DTK_DATE;
1347 GetCurrentDateTime(&cur_tm);
1348 tm->tm_year = cur_tm.tm_year;
1349 tm->tm_mon = cur_tm.tm_mon;
1350 tm->tm_mday = cur_tm.tm_mday;
1351 break;
1352
1353 case DTK_TOMORROW:
1354 tmask = DTK_DATE_M;
1355 *dtype = DTK_DATE;
1356 GetCurrentDateTime(&cur_tm);
1357 j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
1358 &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1359 break;
1360
1361 case DTK_ZULU:
1362 tmask = (DTK_TIME_M | DTK_M(TZ));
1363 *dtype = DTK_DATE;
1364 tm->tm_hour = 0;
1365 tm->tm_min = 0;
1366 tm->tm_sec = 0;
1367 if (tzp != NULL)
1368 *tzp = 0;
1369 break;
1370
1371 case DTK_EPOCH:
1372 case DTK_LATE:
1373 case DTK_EARLY:
1374 tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1375 *dtype = val;
1376 /* caller ignores tm for these dtype codes */
1377 break;
1378
1379 default:
1380 elog(ERROR, "unrecognized RESERV datetime token: %d",
1381 val);
1382 }
1383
1384 break;
1385
1386 case MONTH:
1387
1388 /*
1389 * already have a (numeric) month? then see if we can
1390 * substitute...
1391 */
1392 if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
1393 !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
1394 tm->tm_mon <= 31)
1395 {
1396 tm->tm_mday = tm->tm_mon;
1397 tmask = DTK_M(DAY);
1398 }
1399 haveTextMonth = true;
1400 tm->tm_mon = val;
1401 break;
1402
1403 case DTZMOD:
1404
1405 /*
1406 * daylight savings time modifier (solves "MET DST"
1407 * syntax)
1408 */
1409 tmask |= DTK_M(DTZ);
1410 tm->tm_isdst = 1;
1411 if (tzp == NULL)
1412 return DTERR_BAD_FORMAT;
1413 *tzp -= val;
1414 break;
1415
1416 case DTZ:
1417
1418 /*
1419 * set mask for TZ here _or_ check for DTZ later when
1420 * getting default timezone
1421 */
1422 tmask |= DTK_M(TZ);
1423 tm->tm_isdst = 1;
1424 if (tzp == NULL)
1425 return DTERR_BAD_FORMAT;
1426 *tzp = -val;
1427 break;
1428
1429 case TZ:
1430 tm->tm_isdst = 0;
1431 if (tzp == NULL)
1432 return DTERR_BAD_FORMAT;
1433 *tzp = -val;
1434 break;
1435
1436 case DYNTZ:
1437 tmask |= DTK_M(TZ);
1438 if (tzp == NULL)
1439 return DTERR_BAD_FORMAT;
1440 /* we'll determine the actual offset later */
1441 abbrevTz = valtz;
1442 abbrev = field[i];
1443 break;
1444
1445 case AMPM:
1446 mer = val;
1447 break;
1448
1449 case ADBC:
1450 bc = (val == BC);
1451 break;
1452
1453 case DOW:
1454 tm->tm_wday = val;
1455 break;
1456
1457 case UNITS:
1458 tmask = 0;
1459 /* reject consecutive unhandled units */
1460 if (ptype != 0)
1461 return DTERR_BAD_FORMAT;
1462 ptype = val;
1463 break;
1464
1465 case ISOTIME:
1466
1467 /*
1468 * This is a filler field "t" indicating that the next
1469 * field is time. Try to verify that this is sensible.
1470 */
1471 tmask = 0;
1472
1473 /* No preceding date? Then quit... */
1474 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1475 return DTERR_BAD_FORMAT;
1476
1477 /* reject consecutive unhandled units */
1478 if (ptype != 0)
1479 return DTERR_BAD_FORMAT;
1480 ptype = val;
1481 break;
1482
1483 case UNKNOWN_FIELD:
1484
1485 /*
1486 * Before giving up and declaring error, check to see
1487 * if it is an all-alpha timezone name.
1488 */
1489 namedTz = pg_tzset(field[i]);
1490 if (!namedTz)
1491 return DTERR_BAD_FORMAT;
1492 /* we'll apply the zone setting below */
1493 tmask = DTK_M(TZ);
1494 break;
1495
1496 default:
1497 return DTERR_BAD_FORMAT;
1498 }
1499 break;
1500
1501 default:
1502 return DTERR_BAD_FORMAT;
1503 }
1504
1505 if (tmask & fmask)
1506 return DTERR_BAD_FORMAT;
1507 fmask |= tmask;
1508 } /* end loop over fields */
1509
1510 /* reject if prefix type appeared and was never handled */
1511 if (ptype != 0)
1512 return DTERR_BAD_FORMAT;
1513
1514 /* do additional checking for normal date specs (but not "infinity" etc) */
1515 if (*dtype == DTK_DATE)
1516 {
1517 /* do final checking/adjustment of Y/M/D fields */
1518 dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
1519 if (dterr)
1520 return dterr;
1521
1522 /* handle AM/PM */
1523 if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
1524 return DTERR_FIELD_OVERFLOW;
1525 if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
1526 tm->tm_hour = 0;
1527 else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
1528 tm->tm_hour += HOURS_PER_DAY / 2;
1529
1530 /* check for incomplete input */
1531 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1532 {
1533 if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1534 return 1;
1535 return DTERR_BAD_FORMAT;
1536 }
1537
1538 /*
1539 * If we had a full timezone spec, compute the offset (we could not do
1540 * it before, because we need the date to resolve DST status).
1541 */
1542 if (namedTz != NULL)
1543 {
1544 /* daylight savings time modifier disallowed with full TZ */
1545 if (fmask & DTK_M(DTZMOD))
1546 return DTERR_BAD_FORMAT;
1547
1548 *tzp = DetermineTimeZoneOffset(tm, namedTz);
1549 }
1550
1551 /*
1552 * Likewise, if we had a dynamic timezone abbreviation, resolve it
1553 * now.
1554 */
1555 if (abbrevTz != NULL)
1556 {
1557 /* daylight savings time modifier disallowed with dynamic TZ */
1558 if (fmask & DTK_M(DTZMOD))
1559 return DTERR_BAD_FORMAT;
1560
1561 *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
1562 }
1563
1564 /* timezone not specified? then use session timezone */
1565 if (tzp != NULL && !(fmask & DTK_M(TZ)))
1566 {
1567 /*
1568 * daylight savings time modifier but no standard timezone? then
1569 * error
1570 */
1571 if (fmask & DTK_M(DTZMOD))
1572 return DTERR_BAD_FORMAT;
1573
1575 }
1576 }
1577
1578 return 0;
1579}
1580
1581
1582/* DetermineTimeZoneOffset()
1583 *
1584 * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
1585 * and tm_sec fields are set, and a zic-style time zone definition, determine
1586 * the applicable GMT offset and daylight-savings status at that time.
1587 * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
1588 * offset as the function result.
1589 *
1590 * Note: if the date is out of the range we can deal with, we return zero
1591 * as the GMT offset and set tm_isdst = 0. We don't throw an error here,
1592 * though probably some higher-level code will.
1593 */
1594int
1596{
1597 pg_time_t t;
1598
1599 return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1600}
1601
1602
1603/* DetermineTimeZoneOffsetInternal()
1604 *
1605 * As above, but also return the actual UTC time imputed to the date/time
1606 * into *tp.
1607 *
1608 * In event of an out-of-range date, we punt by returning zero into *tp.
1609 * This is okay for the immediate callers but is a good reason for not
1610 * exposing this worker function globally.
1611 *
1612 * Note: it might seem that we should use mktime() for this, but bitter
1613 * experience teaches otherwise. This code is much faster than most versions
1614 * of mktime(), anyway.
1615 */
1616static int
1618{
1619 int date,
1620 sec;
1621 pg_time_t day,
1622 mytime,
1623 prevtime,
1624 boundary,
1625 beforetime,
1626 aftertime;
1627 long int before_gmtoff,
1628 after_gmtoff;
1629 int before_isdst,
1630 after_isdst;
1631 int res;
1632
1633 /*
1634 * First, generate the pg_time_t value corresponding to the given
1635 * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
1636 * timezone is GMT. (For a valid Julian date, integer overflow should be
1637 * impossible with 64-bit pg_time_t, but let's check for safety.)
1638 */
1640 goto overflow;
1642
1643 day = ((pg_time_t) date) * SECS_PER_DAY;
1644 if (day / SECS_PER_DAY != date)
1645 goto overflow;
1647 mytime = day + sec;
1648 /* since sec >= 0, overflow could only be from +day to -mytime */
1649 if (mytime < 0 && day > 0)
1650 goto overflow;
1651
1652 /*
1653 * Find the DST time boundary just before or following the target time. We
1654 * assume that all zones have GMT offsets less than 24 hours, and that DST
1655 * boundaries can't be closer together than 48 hours, so backing up 24
1656 * hours and finding the "next" boundary will work.
1657 */
1658 prevtime = mytime - SECS_PER_DAY;
1659 if (mytime < 0 && prevtime > 0)
1660 goto overflow;
1661
1662 res = pg_next_dst_boundary(&prevtime,
1663 &before_gmtoff, &before_isdst,
1664 &boundary,
1665 &after_gmtoff, &after_isdst,
1666 tzp);
1667 if (res < 0)
1668 goto overflow; /* failure? */
1669
1670 if (res == 0)
1671 {
1672 /* Non-DST zone, life is simple */
1673 tm->tm_isdst = before_isdst;
1674 *tp = mytime - before_gmtoff;
1675 return -(int) before_gmtoff;
1676 }
1677
1678 /*
1679 * Form the candidate pg_time_t values with local-time adjustment
1680 */
1681 beforetime = mytime - before_gmtoff;
1682 if ((before_gmtoff > 0 &&
1683 mytime < 0 && beforetime > 0) ||
1684 (before_gmtoff <= 0 &&
1685 mytime > 0 && beforetime < 0))
1686 goto overflow;
1687 aftertime = mytime - after_gmtoff;
1688 if ((after_gmtoff > 0 &&
1689 mytime < 0 && aftertime > 0) ||
1690 (after_gmtoff <= 0 &&
1691 mytime > 0 && aftertime < 0))
1692 goto overflow;
1693
1694 /*
1695 * If both before or both after the boundary time, we know what to do. The
1696 * boundary time itself is considered to be after the transition, which
1697 * means we can accept aftertime == boundary in the second case.
1698 */
1699 if (beforetime < boundary && aftertime < boundary)
1700 {
1701 tm->tm_isdst = before_isdst;
1702 *tp = beforetime;
1703 return -(int) before_gmtoff;
1704 }
1705 if (beforetime > boundary && aftertime >= boundary)
1706 {
1707 tm->tm_isdst = after_isdst;
1708 *tp = aftertime;
1709 return -(int) after_gmtoff;
1710 }
1711
1712 /*
1713 * It's an invalid or ambiguous time due to timezone transition. In a
1714 * spring-forward transition, prefer the "before" interpretation; in a
1715 * fall-back transition, prefer "after". (We used to define and implement
1716 * this test as "prefer the standard-time interpretation", but that rule
1717 * does not help to resolve the behavior when both times are reported as
1718 * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
1719 * in some zones such as Europe/Dublin, there is widespread confusion
1720 * about which time offset is "standard" time, so it's fortunate that our
1721 * behavior doesn't depend on that.)
1722 */
1723 if (beforetime > aftertime)
1724 {
1725 tm->tm_isdst = before_isdst;
1726 *tp = beforetime;
1727 return -(int) before_gmtoff;
1728 }
1729 tm->tm_isdst = after_isdst;
1730 *tp = aftertime;
1731 return -(int) after_gmtoff;
1732
1733overflow:
1734 /* Given date is out of range, so assume UTC */
1735 tm->tm_isdst = 0;
1736 *tp = 0;
1737 return 0;
1738}
1739
1740
1741/* DetermineTimeZoneAbbrevOffset()
1742 *
1743 * Determine the GMT offset and DST flag to be attributed to a dynamic
1744 * time zone abbreviation, that is one whose meaning has changed over time.
1745 * *tm contains the local time at which the meaning should be determined,
1746 * and tm->tm_isdst receives the DST flag.
1747 *
1748 * This differs from the behavior of DetermineTimeZoneOffset() in that a
1749 * standard-time or daylight-time abbreviation forces use of the corresponding
1750 * GMT offset even when the zone was then in DS or standard time respectively.
1751 * (However, that happens only if we can match the given abbreviation to some
1752 * abbreviation that appears in the IANA timezone data. Otherwise, we fall
1753 * back to doing DetermineTimeZoneOffset().)
1754 */
1755int
1756DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
1757{
1758 pg_time_t t;
1759 int zone_offset;
1760 int abbr_offset;
1761 int abbr_isdst;
1762
1763 /*
1764 * Compute the UTC time we want to probe at. (In event of overflow, we'll
1765 * probe at the epoch, which is a bit random but probably doesn't matter.)
1766 */
1767 zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1768
1769 /*
1770 * Try to match the abbreviation to something in the zone definition.
1771 */
1773 &abbr_offset, &abbr_isdst))
1774 {
1775 /* Success, so use the abbrev-specific answers. */
1776 tm->tm_isdst = abbr_isdst;
1777 return abbr_offset;
1778 }
1779
1780 /*
1781 * No match, so use the answers we already got from
1782 * DetermineTimeZoneOffsetInternal.
1783 */
1784 return zone_offset;
1785}
1786
1787
1788/* DetermineTimeZoneAbbrevOffsetTS()
1789 *
1790 * As above but the probe time is specified as a TimestampTz (hence, UTC time),
1791 * and DST status is returned into *isdst rather than into tm->tm_isdst.
1792 */
1793int
1795 pg_tz *tzp, int *isdst)
1796{
1798 int zone_offset;
1799 int abbr_offset;
1800 int tz;
1801 struct pg_tm tm;
1802 fsec_t fsec;
1803
1804 /*
1805 * If the abbrev matches anything in the zone data, this is pretty easy.
1806 */
1808 &abbr_offset, isdst))
1809 return abbr_offset;
1810
1811 /*
1812 * Else, break down the timestamp so we can use DetermineTimeZoneOffset.
1813 */
1814 if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
1815 ereport(ERROR,
1816 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1817 errmsg("timestamp out of range")));
1818
1819 zone_offset = DetermineTimeZoneOffset(&tm, tzp);
1820 *isdst = tm.tm_isdst;
1821 return zone_offset;
1822}
1823
1824
1825/* DetermineTimeZoneAbbrevOffsetInternal()
1826 *
1827 * Workhorse for above two functions: work from a pg_time_t probe instant.
1828 * On success, return GMT offset and DST status into *offset and *isdst.
1829 */
1830static bool
1832 int *offset, int *isdst)
1833{
1834 char upabbr[TZ_STRLEN_MAX + 1];
1835 unsigned char *p;
1836 long int gmtoff;
1837
1838 /* We need to force the abbrev to upper case */
1839 strlcpy(upabbr, abbr, sizeof(upabbr));
1840 for (p = (unsigned char *) upabbr; *p; p++)
1841 *p = pg_toupper(*p);
1842
1843 /* Look up the abbrev's meaning at this time in this zone */
1845 &t,
1846 &gmtoff,
1847 isdst,
1848 tzp))
1849 {
1850 /* Change sign to agree with DetermineTimeZoneOffset() */
1851 *offset = (int) -gmtoff;
1852 return true;
1853 }
1854 return false;
1855}
1856
1857
1858/* TimeZoneAbbrevIsKnown()
1859 *
1860 * Detect whether the given string is a time zone abbreviation that's known
1861 * in the specified TZDB timezone, and if so whether it's fixed or varying
1862 * meaning. The match is not case-sensitive.
1863 */
1864static bool
1865TimeZoneAbbrevIsKnown(const char *abbr, pg_tz *tzp,
1866 bool *isfixed, int *offset, int *isdst)
1867{
1868 char upabbr[TZ_STRLEN_MAX + 1];
1869 unsigned char *p;
1870 long int gmtoff;
1871
1872 /* We need to force the abbrev to upper case */
1873 strlcpy(upabbr, abbr, sizeof(upabbr));
1874 for (p = (unsigned char *) upabbr; *p; p++)
1875 *p = pg_toupper(*p);
1876
1877 /* Look up the abbrev's meaning in this zone */
1878 if (pg_timezone_abbrev_is_known(upabbr,
1879 isfixed,
1880 &gmtoff,
1881 isdst,
1882 tzp))
1883 {
1884 /* Change sign to agree with DetermineTimeZoneOffset() */
1885 *offset = (int) -gmtoff;
1886 return true;
1887 }
1888 return false;
1889}
1890
1891
1892/* DecodeTimeOnly()
1893 * Interpret parsed string as time fields only.
1894 * Returns 0 if successful, DTERR code if bogus input detected.
1895 *
1896 * Inputs are field[] and ftype[] arrays, of length nf.
1897 * Other arguments are outputs.
1898 *
1899 * Note that support for time zone is here for
1900 * SQL TIME WITH TIME ZONE, but it reveals
1901 * bogosity with SQL date/time standards, since
1902 * we must infer a time zone from current time.
1903 * - thomas 2000-03-10
1904 * Allow specifying date to get a better time zone,
1905 * if time zones are allowed. - thomas 2001-12-26
1906 */
1907int
1908DecodeTimeOnly(char **field, int *ftype, int nf,
1909 int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp,
1910 DateTimeErrorExtra *extra)
1911{
1912 int fmask = 0,
1913 tmask,
1914 type;
1915 int ptype = 0; /* "prefix type" for ISO and Julian formats */
1916 int i;
1917 int val;
1918 int dterr;
1919 bool isjulian = false;
1920 bool is2digits = false;
1921 bool bc = false;
1922 int mer = HR24;
1923 pg_tz *namedTz = NULL;
1924 pg_tz *abbrevTz = NULL;
1925 char *abbrev = NULL;
1926 pg_tz *valtz;
1927
1928 *dtype = DTK_TIME;
1929 tm->tm_hour = 0;
1930 tm->tm_min = 0;
1931 tm->tm_sec = 0;
1932 *fsec = 0;
1933 /* don't know daylight savings time status apriori */
1934 tm->tm_isdst = -1;
1935
1936 if (tzp != NULL)
1937 *tzp = 0;
1938
1939 for (i = 0; i < nf; i++)
1940 {
1941 switch (ftype[i])
1942 {
1943 case DTK_DATE:
1944
1945 /*
1946 * Time zone not allowed? Then should not accept dates or time
1947 * zones no matter what else!
1948 */
1949 if (tzp == NULL)
1950 return DTERR_BAD_FORMAT;
1951
1952 /* Under limited circumstances, we will accept a date... */
1953 if (i == 0 && nf >= 2 &&
1954 (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
1955 {
1956 dterr = DecodeDate(field[i], fmask,
1957 &tmask, &is2digits, tm);
1958 if (dterr)
1959 return dterr;
1960 }
1961 /* otherwise, this is a time and/or time zone */
1962 else
1963 {
1964 if (isdigit((unsigned char) *field[i]))
1965 {
1966 char *cp;
1967
1968 /*
1969 * Starts with a digit but we already have a time
1970 * field? Then we are in trouble with time already...
1971 */
1972 if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1973 return DTERR_BAD_FORMAT;
1974
1975 /*
1976 * Should not get here and fail. Sanity check only...
1977 */
1978 if ((cp = strchr(field[i], '-')) == NULL)
1979 return DTERR_BAD_FORMAT;
1980
1981 /* Get the time zone from the end of the string */
1982 dterr = DecodeTimezone(cp, tzp);
1983 if (dterr)
1984 return dterr;
1985 *cp = '\0';
1986
1987 /*
1988 * Then read the rest of the field as a concatenated
1989 * time
1990 */
1991 dterr = DecodeNumberField(strlen(field[i]), field[i],
1992 (fmask | DTK_DATE_M),
1993 &tmask, tm,
1994 fsec, &is2digits);
1995 if (dterr < 0)
1996 return dterr;
1997 ftype[i] = dterr;
1998
1999 tmask |= DTK_M(TZ);
2000 }
2001 else
2002 {
2003 namedTz = pg_tzset(field[i]);
2004 if (!namedTz)
2005 {
2006 extra->dtee_timezone = field[i];
2007 return DTERR_BAD_TIMEZONE;
2008 }
2009 /* we'll apply the zone setting below */
2010 ftype[i] = DTK_TZ;
2011 tmask = DTK_M(TZ);
2012 }
2013 }
2014 break;
2015
2016 case DTK_TIME:
2017
2018 /*
2019 * This might be an ISO time following a "t" field.
2020 */
2021 if (ptype != 0)
2022 {
2023 if (ptype != DTK_TIME)
2024 return DTERR_BAD_FORMAT;
2025 ptype = 0;
2026 }
2027
2028 dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
2030 &tmask, tm, fsec);
2031 if (dterr)
2032 return dterr;
2033 break;
2034
2035 case DTK_TZ:
2036 {
2037 int tz;
2038
2039 if (tzp == NULL)
2040 return DTERR_BAD_FORMAT;
2041
2042 dterr = DecodeTimezone(field[i], &tz);
2043 if (dterr)
2044 return dterr;
2045 *tzp = tz;
2046 tmask = DTK_M(TZ);
2047 }
2048 break;
2049
2050 case DTK_NUMBER:
2051
2052 /*
2053 * Deal with cases where previous field labeled this one
2054 */
2055 if (ptype != 0)
2056 {
2057 char *cp;
2058 int value;
2059
2060 errno = 0;
2061 value = strtoint(field[i], &cp, 10);
2062 if (errno == ERANGE)
2063 return DTERR_FIELD_OVERFLOW;
2064 if (*cp != '.' && *cp != '\0')
2065 return DTERR_BAD_FORMAT;
2066
2067 switch (ptype)
2068 {
2069 case DTK_JULIAN:
2070 /* previous field was a label for "julian date" */
2071 if (tzp == NULL)
2072 return DTERR_BAD_FORMAT;
2073 if (value < 0)
2074 return DTERR_FIELD_OVERFLOW;
2075 tmask = DTK_DATE_M;
2077 isjulian = true;
2078
2079 if (*cp == '.')
2080 {
2081 double time;
2082
2083 dterr = ParseFraction(cp, &time);
2084 if (dterr)
2085 return dterr;
2086 time *= USECS_PER_DAY;
2087 dt2time(time,
2088 &tm->tm_hour, &tm->tm_min,
2089 &tm->tm_sec, fsec);
2090 tmask |= DTK_TIME_M;
2091 }
2092 break;
2093
2094 case DTK_TIME:
2095 /* previous field was "t" for ISO time */
2096 dterr = DecodeNumberField(strlen(field[i]), field[i],
2097 (fmask | DTK_DATE_M),
2098 &tmask, tm,
2099 fsec, &is2digits);
2100 if (dterr < 0)
2101 return dterr;
2102 ftype[i] = dterr;
2103
2104 if (tmask != DTK_TIME_M)
2105 return DTERR_BAD_FORMAT;
2106 break;
2107
2108 default:
2109 return DTERR_BAD_FORMAT;
2110 break;
2111 }
2112
2113 ptype = 0;
2114 *dtype = DTK_DATE;
2115 }
2116 else
2117 {
2118 char *cp;
2119 int flen;
2120
2121 flen = strlen(field[i]);
2122 cp = strchr(field[i], '.');
2123
2124 /* Embedded decimal? */
2125 if (cp != NULL)
2126 {
2127 /*
2128 * Under limited circumstances, we will accept a
2129 * date...
2130 */
2131 if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
2132 {
2133 dterr = DecodeDate(field[i], fmask,
2134 &tmask, &is2digits, tm);
2135 if (dterr)
2136 return dterr;
2137 }
2138 /* embedded decimal and several digits before? */
2139 else if (flen - strlen(cp) > 2)
2140 {
2141 /*
2142 * Interpret as a concatenated date or time Set
2143 * the type field to allow decoding other fields
2144 * later. Example: 20011223 or 040506
2145 */
2146 dterr = DecodeNumberField(flen, field[i],
2147 (fmask | DTK_DATE_M),
2148 &tmask, tm,
2149 fsec, &is2digits);
2150 if (dterr < 0)
2151 return dterr;
2152 ftype[i] = dterr;
2153 }
2154 else
2155 return DTERR_BAD_FORMAT;
2156 }
2157 else if (flen > 4)
2158 {
2159 dterr = DecodeNumberField(flen, field[i],
2160 (fmask | DTK_DATE_M),
2161 &tmask, tm,
2162 fsec, &is2digits);
2163 if (dterr < 0)
2164 return dterr;
2165 ftype[i] = dterr;
2166 }
2167 /* otherwise it is a single date/time field... */
2168 else
2169 {
2170 dterr = DecodeNumber(flen, field[i],
2171 false,
2172 (fmask | DTK_DATE_M),
2173 &tmask, tm,
2174 fsec, &is2digits);
2175 if (dterr)
2176 return dterr;
2177 }
2178 }
2179 break;
2180
2181 case DTK_STRING:
2182 case DTK_SPECIAL:
2183 /* timezone abbrevs take precedence over built-in tokens */
2184 dterr = DecodeTimezoneAbbrev(i, field[i],
2185 &type, &val, &valtz, extra);
2186 if (dterr)
2187 return dterr;
2188 if (type == UNKNOWN_FIELD)
2189 type = DecodeSpecial(i, field[i], &val);
2190 if (type == IGNORE_DTF)
2191 continue;
2192
2193 tmask = DTK_M(type);
2194 switch (type)
2195 {
2196 case RESERV:
2197 switch (val)
2198 {
2199 case DTK_NOW:
2200 tmask = DTK_TIME_M;
2201 *dtype = DTK_TIME;
2202 GetCurrentTimeUsec(tm, fsec, NULL);
2203 break;
2204
2205 case DTK_ZULU:
2206 tmask = (DTK_TIME_M | DTK_M(TZ));
2207 *dtype = DTK_TIME;
2208 tm->tm_hour = 0;
2209 tm->tm_min = 0;
2210 tm->tm_sec = 0;
2211 tm->tm_isdst = 0;
2212 break;
2213
2214 default:
2215 return DTERR_BAD_FORMAT;
2216 }
2217
2218 break;
2219
2220 case DTZMOD:
2221
2222 /*
2223 * daylight savings time modifier (solves "MET DST"
2224 * syntax)
2225 */
2226 tmask |= DTK_M(DTZ);
2227 tm->tm_isdst = 1;
2228 if (tzp == NULL)
2229 return DTERR_BAD_FORMAT;
2230 *tzp -= val;
2231 break;
2232
2233 case DTZ:
2234
2235 /*
2236 * set mask for TZ here _or_ check for DTZ later when
2237 * getting default timezone
2238 */
2239 tmask |= DTK_M(TZ);
2240 tm->tm_isdst = 1;
2241 if (tzp == NULL)
2242 return DTERR_BAD_FORMAT;
2243 *tzp = -val;
2244 ftype[i] = DTK_TZ;
2245 break;
2246
2247 case TZ:
2248 tm->tm_isdst = 0;
2249 if (tzp == NULL)
2250 return DTERR_BAD_FORMAT;
2251 *tzp = -val;
2252 ftype[i] = DTK_TZ;
2253 break;
2254
2255 case DYNTZ:
2256 tmask |= DTK_M(TZ);
2257 if (tzp == NULL)
2258 return DTERR_BAD_FORMAT;
2259 /* we'll determine the actual offset later */
2260 abbrevTz = valtz;
2261 abbrev = field[i];
2262 ftype[i] = DTK_TZ;
2263 break;
2264
2265 case AMPM:
2266 mer = val;
2267 break;
2268
2269 case ADBC:
2270 bc = (val == BC);
2271 break;
2272
2273 case UNITS:
2274 tmask = 0;
2275 /* reject consecutive unhandled units */
2276 if (ptype != 0)
2277 return DTERR_BAD_FORMAT;
2278 ptype = val;
2279 break;
2280
2281 case ISOTIME:
2282 tmask = 0;
2283 /* reject consecutive unhandled units */
2284 if (ptype != 0)
2285 return DTERR_BAD_FORMAT;
2286 ptype = val;
2287 break;
2288
2289 case UNKNOWN_FIELD:
2290
2291 /*
2292 * Before giving up and declaring error, check to see
2293 * if it is an all-alpha timezone name.
2294 */
2295 namedTz = pg_tzset(field[i]);
2296 if (!namedTz)
2297 return DTERR_BAD_FORMAT;
2298 /* we'll apply the zone setting below */
2299 tmask = DTK_M(TZ);
2300 break;
2301
2302 default:
2303 return DTERR_BAD_FORMAT;
2304 }
2305 break;
2306
2307 default:
2308 return DTERR_BAD_FORMAT;
2309 }
2310
2311 if (tmask & fmask)
2312 return DTERR_BAD_FORMAT;
2313 fmask |= tmask;
2314 } /* end loop over fields */
2315
2316 /* reject if prefix type appeared and was never handled */
2317 if (ptype != 0)
2318 return DTERR_BAD_FORMAT;
2319
2320 /* do final checking/adjustment of Y/M/D fields */
2321 dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
2322 if (dterr)
2323 return dterr;
2324
2325 /* handle AM/PM */
2326 if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
2327 return DTERR_FIELD_OVERFLOW;
2328 if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
2329 tm->tm_hour = 0;
2330 else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
2331 tm->tm_hour += HOURS_PER_DAY / 2;
2332
2333 /* check for time overflow */
2334 if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec))
2335 return DTERR_FIELD_OVERFLOW;
2336
2337 if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2338 return DTERR_BAD_FORMAT;
2339
2340 /*
2341 * If we had a full timezone spec, compute the offset (we could not do it
2342 * before, because we may need the date to resolve DST status).
2343 */
2344 if (namedTz != NULL)
2345 {
2346 long int gmtoff;
2347
2348 /* daylight savings time modifier disallowed with full TZ */
2349 if (fmask & DTK_M(DTZMOD))
2350 return DTERR_BAD_FORMAT;
2351
2352 /* if non-DST zone, we do not need to know the date */
2353 if (pg_get_timezone_offset(namedTz, &gmtoff))
2354 {
2355 *tzp = -(int) gmtoff;
2356 }
2357 else
2358 {
2359 /* a date has to be specified */
2360 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2361 return DTERR_BAD_FORMAT;
2362 *tzp = DetermineTimeZoneOffset(tm, namedTz);
2363 }
2364 }
2365
2366 /*
2367 * Likewise, if we had a dynamic timezone abbreviation, resolve it now.
2368 */
2369 if (abbrevTz != NULL)
2370 {
2371 struct pg_tm tt,
2372 *tmp = &tt;
2373
2374 /*
2375 * daylight savings time modifier but no standard timezone? then error
2376 */
2377 if (fmask & DTK_M(DTZMOD))
2378 return DTERR_BAD_FORMAT;
2379
2380 if ((fmask & DTK_DATE_M) == 0)
2381 GetCurrentDateTime(tmp);
2382 else
2383 {
2384 /* a date has to be specified */
2385 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2386 return DTERR_BAD_FORMAT;
2387 tmp->tm_year = tm->tm_year;
2388 tmp->tm_mon = tm->tm_mon;
2389 tmp->tm_mday = tm->tm_mday;
2390 }
2391 tmp->tm_hour = tm->tm_hour;
2392 tmp->tm_min = tm->tm_min;
2393 tmp->tm_sec = tm->tm_sec;
2394 *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
2395 tm->tm_isdst = tmp->tm_isdst;
2396 }
2397
2398 /* timezone not specified? then use session timezone */
2399 if (tzp != NULL && !(fmask & DTK_M(TZ)))
2400 {
2401 struct pg_tm tt,
2402 *tmp = &tt;
2403
2404 /*
2405 * daylight savings time modifier but no standard timezone? then error
2406 */
2407 if (fmask & DTK_M(DTZMOD))
2408 return DTERR_BAD_FORMAT;
2409
2410 if ((fmask & DTK_DATE_M) == 0)
2411 GetCurrentDateTime(tmp);
2412 else
2413 {
2414 /* a date has to be specified */
2415 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2416 return DTERR_BAD_FORMAT;
2417 tmp->tm_year = tm->tm_year;
2418 tmp->tm_mon = tm->tm_mon;
2419 tmp->tm_mday = tm->tm_mday;
2420 }
2421 tmp->tm_hour = tm->tm_hour;
2422 tmp->tm_min = tm->tm_min;
2423 tmp->tm_sec = tm->tm_sec;
2425 tm->tm_isdst = tmp->tm_isdst;
2426 }
2427
2428 return 0;
2429}
2430
2431/* DecodeDate()
2432 * Decode date string which includes delimiters.
2433 * Return 0 if okay, a DTERR code if not.
2434 *
2435 * str: field to be parsed
2436 * fmask: bitmask for field types already seen
2437 * *tmask: receives bitmask for fields found here
2438 * *is2digits: set to true if we find 2-digit year
2439 * *tm: field values are stored into appropriate members of this struct
2440 */
2441static int
2442DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
2443 struct pg_tm *tm)
2444{
2445 fsec_t fsec;
2446 int nf = 0;
2447 int i,
2448 len;
2449 int dterr;
2450 bool haveTextMonth = false;
2451 int type,
2452 val,
2453 dmask = 0;
2454 char *field[MAXDATEFIELDS];
2455
2456 *tmask = 0;
2457
2458 /* parse this string... */
2459 while (*str != '\0' && nf < MAXDATEFIELDS)
2460 {
2461 /* skip field separators */
2462 while (*str != '\0' && !isalnum((unsigned char) *str))
2463 str++;
2464
2465 if (*str == '\0')
2466 return DTERR_BAD_FORMAT; /* end of string after separator */
2467
2468 field[nf] = str;
2469 if (isdigit((unsigned char) *str))
2470 {
2471 while (isdigit((unsigned char) *str))
2472 str++;
2473 }
2474 else if (isalpha((unsigned char) *str))
2475 {
2476 while (isalpha((unsigned char) *str))
2477 str++;
2478 }
2479
2480 /* Just get rid of any non-digit, non-alpha characters... */
2481 if (*str != '\0')
2482 *str++ = '\0';
2483 nf++;
2484 }
2485
2486 /* look first for text fields, since that will be unambiguous month */
2487 for (i = 0; i < nf; i++)
2488 {
2489 if (isalpha((unsigned char) *field[i]))
2490 {
2491 type = DecodeSpecial(i, field[i], &val);
2492 if (type == IGNORE_DTF)
2493 continue;
2494
2495 dmask = DTK_M(type);
2496 switch (type)
2497 {
2498 case MONTH:
2499 tm->tm_mon = val;
2500 haveTextMonth = true;
2501 break;
2502
2503 default:
2504 return DTERR_BAD_FORMAT;
2505 }
2506 if (fmask & dmask)
2507 return DTERR_BAD_FORMAT;
2508
2509 fmask |= dmask;
2510 *tmask |= dmask;
2511
2512 /* mark this field as being completed */
2513 field[i] = NULL;
2514 }
2515 }
2516
2517 /* now pick up remaining numeric fields */
2518 for (i = 0; i < nf; i++)
2519 {
2520 if (field[i] == NULL)
2521 continue;
2522
2523 if ((len = strlen(field[i])) <= 0)
2524 return DTERR_BAD_FORMAT;
2525
2526 dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
2527 &dmask, tm,
2528 &fsec, is2digits);
2529 if (dterr)
2530 return dterr;
2531
2532 if (fmask & dmask)
2533 return DTERR_BAD_FORMAT;
2534
2535 fmask |= dmask;
2536 *tmask |= dmask;
2537 }
2538
2539 if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
2540 return DTERR_BAD_FORMAT;
2541
2542 /* validation of the field values must wait until ValidateDate() */
2543
2544 return 0;
2545}
2546
2547/* ValidateDate()
2548 * Check valid year/month/day values, handle BC and DOY cases
2549 * Return 0 if okay, a DTERR code if not.
2550 */
2551int
2552ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
2553 struct pg_tm *tm)
2554{
2555 if (fmask & DTK_M(YEAR))
2556 {
2557 if (isjulian)
2558 {
2559 /* tm_year is correct and should not be touched */
2560 }
2561 else if (bc)
2562 {
2563 /* there is no year zero in AD/BC notation */
2564 if (tm->tm_year <= 0)
2565 return DTERR_FIELD_OVERFLOW;
2566 /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
2567 tm->tm_year = -(tm->tm_year - 1);
2568 }
2569 else if (is2digits)
2570 {
2571 /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
2572 if (tm->tm_year < 0) /* just paranoia */
2573 return DTERR_FIELD_OVERFLOW;
2574 if (tm->tm_year < 70)
2575 tm->tm_year += 2000;
2576 else if (tm->tm_year < 100)
2577 tm->tm_year += 1900;
2578 }
2579 else
2580 {
2581 /* there is no year zero in AD/BC notation */
2582 if (tm->tm_year <= 0)
2583 return DTERR_FIELD_OVERFLOW;
2584 }
2585 }
2586
2587 /* now that we have correct year, decode DOY */
2588 if (fmask & DTK_M(DOY))
2589 {
2590 j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
2591 &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2592 }
2593
2594 /* check for valid month */
2595 if (fmask & DTK_M(MONTH))
2596 {
2597 if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
2599 }
2600
2601 /* minimal check for valid day */
2602 if (fmask & DTK_M(DAY))
2603 {
2604 if (tm->tm_mday < 1 || tm->tm_mday > 31)
2606 }
2607
2608 if ((fmask & DTK_DATE_M) == DTK_DATE_M)
2609 {
2610 /*
2611 * Check for valid day of month, now that we know for sure the month
2612 * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
2613 * unlikely that "Feb 29" is a YMD-order error.
2614 */
2615 if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
2616 return DTERR_FIELD_OVERFLOW;
2617 }
2618
2619 return 0;
2620}
2621
2622
2623/* DecodeTimeCommon()
2624 * Decode time string which includes delimiters.
2625 * Return 0 if okay, a DTERR code if not.
2626 * tmask and itm are output parameters.
2627 *
2628 * This code is shared between the timestamp and interval cases.
2629 * We return a struct pg_itm (of which only the tm_usec, tm_sec, tm_min,
2630 * and tm_hour fields are used) and let the wrapper functions below
2631 * convert and range-check as necessary.
2632 */
2633static int
2634DecodeTimeCommon(char *str, int fmask, int range,
2635 int *tmask, struct pg_itm *itm)
2636{
2637 char *cp;
2638 int dterr;
2639 fsec_t fsec = 0;
2640
2641 *tmask = DTK_TIME_M;
2642
2643 errno = 0;
2644 itm->tm_hour = strtoi64(str, &cp, 10);
2645 if (errno == ERANGE)
2646 return DTERR_FIELD_OVERFLOW;
2647 if (*cp != ':')
2648 return DTERR_BAD_FORMAT;
2649 errno = 0;
2650 itm->tm_min = strtoint(cp + 1, &cp, 10);
2651 if (errno == ERANGE)
2652 return DTERR_FIELD_OVERFLOW;
2653 if (*cp == '\0')
2654 {
2655 itm->tm_sec = 0;
2656 /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
2658 {
2659 if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN)
2660 return DTERR_FIELD_OVERFLOW;
2661 itm->tm_sec = itm->tm_min;
2662 itm->tm_min = (int) itm->tm_hour;
2663 itm->tm_hour = 0;
2664 }
2665 }
2666 else if (*cp == '.')
2667 {
2668 /* always assume mm:ss.sss is MINUTE TO SECOND */
2669 dterr = ParseFractionalSecond(cp, &fsec);
2670 if (dterr)
2671 return dterr;
2672 if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN)
2673 return DTERR_FIELD_OVERFLOW;
2674 itm->tm_sec = itm->tm_min;
2675 itm->tm_min = (int) itm->tm_hour;
2676 itm->tm_hour = 0;
2677 }
2678 else if (*cp == ':')
2679 {
2680 errno = 0;
2681 itm->tm_sec = strtoint(cp + 1, &cp, 10);
2682 if (errno == ERANGE)
2683 return DTERR_FIELD_OVERFLOW;
2684 if (*cp == '.')
2685 {
2686 dterr = ParseFractionalSecond(cp, &fsec);
2687 if (dterr)
2688 return dterr;
2689 }
2690 else if (*cp != '\0')
2691 return DTERR_BAD_FORMAT;
2692 }
2693 else
2694 return DTERR_BAD_FORMAT;
2695
2696 /* do a sanity check; but caller must check the range of tm_hour */
2697 if (itm->tm_hour < 0 ||
2698 itm->tm_min < 0 || itm->tm_min > MINS_PER_HOUR - 1 ||
2699 itm->tm_sec < 0 || itm->tm_sec > SECS_PER_MINUTE ||
2700 fsec < 0 || fsec > USECS_PER_SEC)
2701 return DTERR_FIELD_OVERFLOW;
2702
2703 itm->tm_usec = (int) fsec;
2704
2705 return 0;
2706}
2707
2708/* DecodeTime()
2709 * Decode time string which includes delimiters.
2710 * Return 0 if okay, a DTERR code if not.
2711 *
2712 * This version is used for timestamps. The results are returned into
2713 * the tm_hour/tm_min/tm_sec fields of *tm, and microseconds into *fsec.
2714 */
2715static int
2716DecodeTime(char *str, int fmask, int range,
2717 int *tmask, struct pg_tm *tm, fsec_t *fsec)
2718{
2719 struct pg_itm itm;
2720 int dterr;
2721
2722 dterr = DecodeTimeCommon(str, fmask, range,
2723 tmask, &itm);
2724 if (dterr)
2725 return dterr;
2726
2727 if (itm.tm_hour > INT_MAX)
2728 return DTERR_FIELD_OVERFLOW;
2729 tm->tm_hour = (int) itm.tm_hour;
2730 tm->tm_min = itm.tm_min;
2731 tm->tm_sec = itm.tm_sec;
2732 *fsec = itm.tm_usec;
2733
2734 return 0;
2735}
2736
2737/* DecodeTimeForInterval()
2738 * Decode time string which includes delimiters.
2739 * Return 0 if okay, a DTERR code if not.
2740 *
2741 * This version is used for intervals. The results are returned into
2742 * itm_in->tm_usec.
2743 */
2744static int
2745DecodeTimeForInterval(char *str, int fmask, int range,
2746 int *tmask, struct pg_itm_in *itm_in)
2747{
2748 struct pg_itm itm;
2749 int dterr;
2750
2751 dterr = DecodeTimeCommon(str, fmask, range,
2752 tmask, &itm);
2753 if (dterr)
2754 return dterr;
2755
2756 itm_in->tm_usec = itm.tm_usec;
2757 if (!int64_multiply_add(itm.tm_hour, USECS_PER_HOUR, &itm_in->tm_usec) ||
2760 return DTERR_FIELD_OVERFLOW;
2761
2762 return 0;
2763}
2764
2765
2766/* DecodeNumber()
2767 * Interpret plain numeric field as a date value in context.
2768 * Return 0 if okay, a DTERR code if not.
2769 */
2770static int
2771DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
2772 int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2773{
2774 int val;
2775 char *cp;
2776 int dterr;
2777
2778 *tmask = 0;
2779
2780 errno = 0;
2781 val = strtoint(str, &cp, 10);
2782 if (errno == ERANGE)
2783 return DTERR_FIELD_OVERFLOW;
2784 if (cp == str)
2785 return DTERR_BAD_FORMAT;
2786
2787 if (*cp == '.')
2788 {
2789 /*
2790 * More than two digits before decimal point? Then could be a date or
2791 * a run-together time: 2001.360 20011225 040506.789
2792 */
2793 if (cp - str > 2)
2794 {
2795 dterr = DecodeNumberField(flen, str,
2796 (fmask | DTK_DATE_M),
2797 tmask, tm,
2798 fsec, is2digits);
2799 if (dterr < 0)
2800 return dterr;
2801 return 0;
2802 }
2803
2804 dterr = ParseFractionalSecond(cp, fsec);
2805 if (dterr)
2806 return dterr;
2807 }
2808 else if (*cp != '\0')
2809 return DTERR_BAD_FORMAT;
2810
2811 /* Special case for day of year */
2812 if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
2813 val <= 366)
2814 {
2815 *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
2816 tm->tm_yday = val;
2817 /* tm_mon and tm_mday can't actually be set yet ... */
2818 return 0;
2819 }
2820
2821 /* Switch based on what we have so far */
2822 switch (fmask & DTK_DATE_M)
2823 {
2824 case 0:
2825
2826 /*
2827 * Nothing so far; make a decision about what we think the input
2828 * is. There used to be lots of heuristics here, but the
2829 * consensus now is to be paranoid. It *must* be either
2830 * YYYY-MM-DD (with a more-than-two-digit year field), or the
2831 * field order defined by DateOrder.
2832 */
2833 if (flen >= 3 || DateOrder == DATEORDER_YMD)
2834 {
2835 *tmask = DTK_M(YEAR);
2836 tm->tm_year = val;
2837 }
2838 else if (DateOrder == DATEORDER_DMY)
2839 {
2840 *tmask = DTK_M(DAY);
2841 tm->tm_mday = val;
2842 }
2843 else
2844 {
2845 *tmask = DTK_M(MONTH);
2846 tm->tm_mon = val;
2847 }
2848 break;
2849
2850 case (DTK_M(YEAR)):
2851 /* Must be at second field of YY-MM-DD */
2852 *tmask = DTK_M(MONTH);
2853 tm->tm_mon = val;
2854 break;
2855
2856 case (DTK_M(MONTH)):
2857 if (haveTextMonth)
2858 {
2859 /*
2860 * We are at the first numeric field of a date that included a
2861 * textual month name. We want to support the variants
2862 * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
2863 * inputs. We will also accept MON-DD-YY or DD-MON-YY in
2864 * either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
2865 */
2866 if (flen >= 3 || DateOrder == DATEORDER_YMD)
2867 {
2868 *tmask = DTK_M(YEAR);
2869 tm->tm_year = val;
2870 }
2871 else
2872 {
2873 *tmask = DTK_M(DAY);
2874 tm->tm_mday = val;
2875 }
2876 }
2877 else
2878 {
2879 /* Must be at second field of MM-DD-YY */
2880 *tmask = DTK_M(DAY);
2881 tm->tm_mday = val;
2882 }
2883 break;
2884
2885 case (DTK_M(YEAR) | DTK_M(MONTH)):
2886 if (haveTextMonth)
2887 {
2888 /* Need to accept DD-MON-YYYY even in YMD mode */
2889 if (flen >= 3 && *is2digits)
2890 {
2891 /* Guess that first numeric field is day was wrong */
2892 *tmask = DTK_M(DAY); /* YEAR is already set */
2893 tm->tm_mday = tm->tm_year;
2894 tm->tm_year = val;
2895 *is2digits = false;
2896 }
2897 else
2898 {
2899 *tmask = DTK_M(DAY);
2900 tm->tm_mday = val;
2901 }
2902 }
2903 else
2904 {
2905 /* Must be at third field of YY-MM-DD */
2906 *tmask = DTK_M(DAY);
2907 tm->tm_mday = val;
2908 }
2909 break;
2910
2911 case (DTK_M(DAY)):
2912 /* Must be at second field of DD-MM-YY */
2913 *tmask = DTK_M(MONTH);
2914 tm->tm_mon = val;
2915 break;
2916
2917 case (DTK_M(MONTH) | DTK_M(DAY)):
2918 /* Must be at third field of DD-MM-YY or MM-DD-YY */
2919 *tmask = DTK_M(YEAR);
2920 tm->tm_year = val;
2921 break;
2922
2923 case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
2924 /* we have all the date, so it must be a time field */
2925 dterr = DecodeNumberField(flen, str, fmask,
2926 tmask, tm,
2927 fsec, is2digits);
2928 if (dterr < 0)
2929 return dterr;
2930 return 0;
2931
2932 default:
2933 /* Anything else is bogus input */
2934 return DTERR_BAD_FORMAT;
2935 }
2936
2937 /*
2938 * When processing a year field, mark it for adjustment if it's only one
2939 * or two digits.
2940 */
2941 if (*tmask == DTK_M(YEAR))
2942 *is2digits = (flen <= 2);
2943
2944 return 0;
2945}
2946
2947
2948/* DecodeNumberField()
2949 * Interpret numeric string as a concatenated date or time field.
2950 * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
2951 *
2952 * Use the context of previously decoded fields to help with
2953 * the interpretation.
2954 */
2955static int
2956DecodeNumberField(int len, char *str, int fmask,
2957 int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2958{
2959 char *cp;
2960
2961 /*
2962 * Have a decimal point? Then this is a date or something with a seconds
2963 * field...
2964 */
2965 if ((cp = strchr(str, '.')) != NULL)
2966 {
2967 /*
2968 * Can we use ParseFractionalSecond here? Not clear whether trailing
2969 * junk should be rejected ...
2970 */
2971 if (cp[1] == '\0')
2972 {
2973 /* avoid assuming that strtod will accept "." */
2974 *fsec = 0;
2975 }
2976 else
2977 {
2978 double frac;
2979
2980 errno = 0;
2981 frac = strtod(cp, NULL);
2982 if (errno != 0)
2983 return DTERR_BAD_FORMAT;
2984 *fsec = rint(frac * 1000000);
2985 }
2986 /* Now truncate off the fraction for further processing */
2987 *cp = '\0';
2988 len = strlen(str);
2989 }
2990 /* No decimal point and no complete date yet? */
2991 else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2992 {
2993 if (len >= 6)
2994 {
2995 *tmask = DTK_DATE_M;
2996
2997 /*
2998 * Start from end and consider first 2 as Day, next 2 as Month,
2999 * and the rest as Year.
3000 */
3001 tm->tm_mday = atoi(str + (len - 2));
3002 *(str + (len - 2)) = '\0';
3003 tm->tm_mon = atoi(str + (len - 4));
3004 *(str + (len - 4)) = '\0';
3005 tm->tm_year = atoi(str);
3006 if ((len - 4) == 2)
3007 *is2digits = true;
3008
3009 return DTK_DATE;
3010 }
3011 }
3012
3013 /* not all time fields are specified? */
3014 if ((fmask & DTK_TIME_M) != DTK_TIME_M)
3015 {
3016 /* hhmmss */
3017 if (len == 6)
3018 {
3019 *tmask = DTK_TIME_M;
3020 tm->tm_sec = atoi(str + 4);
3021 *(str + 4) = '\0';
3022 tm->tm_min = atoi(str + 2);
3023 *(str + 2) = '\0';
3024 tm->tm_hour = atoi(str);
3025
3026 return DTK_TIME;
3027 }
3028 /* hhmm? */
3029 else if (len == 4)
3030 {
3031 *tmask = DTK_TIME_M;
3032 tm->tm_sec = 0;
3033 tm->tm_min = atoi(str + 2);
3034 *(str + 2) = '\0';
3035 tm->tm_hour = atoi(str);
3036
3037 return DTK_TIME;
3038 }
3039 }
3040
3041 return DTERR_BAD_FORMAT;
3042}
3043
3044
3045/* DecodeTimezone()
3046 * Interpret string as a numeric timezone.
3047 *
3048 * Return 0 if okay (and set *tzp), a DTERR code if not okay.
3049 */
3050int
3051DecodeTimezone(const char *str, int *tzp)
3052{
3053 int tz;
3054 int hr,
3055 min,
3056 sec = 0;
3057 char *cp;
3058
3059 /* leading character must be "+" or "-" */
3060 if (*str != '+' && *str != '-')
3061 return DTERR_BAD_FORMAT;
3062
3063 errno = 0;
3064 hr = strtoint(str + 1, &cp, 10);
3065 if (errno == ERANGE)
3066 return DTERR_TZDISP_OVERFLOW;
3067
3068 /* explicit delimiter? */
3069 if (*cp == ':')
3070 {
3071 errno = 0;
3072 min = strtoint(cp + 1, &cp, 10);
3073 if (errno == ERANGE)
3074 return DTERR_TZDISP_OVERFLOW;
3075 if (*cp == ':')
3076 {
3077 errno = 0;
3078 sec = strtoint(cp + 1, &cp, 10);
3079 if (errno == ERANGE)
3080 return DTERR_TZDISP_OVERFLOW;
3081 }
3082 }
3083 /* otherwise, might have run things together... */
3084 else if (*cp == '\0' && strlen(str) > 3)
3085 {
3086 min = hr % 100;
3087 hr = hr / 100;
3088 /* we could, but don't, support a run-together hhmmss format */
3089 }
3090 else
3091 min = 0;
3092
3093 /* Range-check the values; see notes in datatype/timestamp.h */
3094 if (hr < 0 || hr > MAX_TZDISP_HOUR)
3095 return DTERR_TZDISP_OVERFLOW;
3096 if (min < 0 || min >= MINS_PER_HOUR)
3097 return DTERR_TZDISP_OVERFLOW;
3098 if (sec < 0 || sec >= SECS_PER_MINUTE)
3099 return DTERR_TZDISP_OVERFLOW;
3100
3101 tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
3102 if (*str == '-')
3103 tz = -tz;
3104
3105 *tzp = -tz;
3106
3107 if (*cp != '\0')
3108 return DTERR_BAD_FORMAT;
3109
3110 return 0;
3111}
3112
3113
3114/* DecodeTimezoneAbbrev()
3115 * Interpret string as a timezone abbreviation, if possible.
3116 *
3117 * Sets *ftype to an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
3118 * string is not any known abbreviation. On success, set *offset and *tz to
3119 * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
3120 * Note that full timezone names (such as America/New_York) are not handled
3121 * here, mostly for historical reasons.
3122 *
3123 * The function result is 0 or a DTERR code; in the latter case, *extra
3124 * is filled as needed. Note that unknown-abbreviation is not considered
3125 * an error case. Also note that many callers assume that the DTERR code
3126 * is one that DateTimeParseError does not require "str" or "datatype"
3127 * strings for.
3128 *
3129 * Given string must be lowercased already.
3130 *
3131 * Implement a cache lookup since it is likely that dates
3132 * will be related in format.
3133 */
3134int
3135DecodeTimezoneAbbrev(int field, const char *lowtoken,
3136 int *ftype, int *offset, pg_tz **tz,
3137 DateTimeErrorExtra *extra)
3138{
3139 TzAbbrevCache *tzc = &tzabbrevcache[field];
3140 bool isfixed;
3141 int isdst;
3142 const datetkn *tp;
3143
3144 /*
3145 * Do we have a cached result? Use strncmp so that we match truncated
3146 * names, although we shouldn't really see that happen with normal
3147 * abbreviations.
3148 */
3149 if (strncmp(lowtoken, tzc->abbrev, TOKMAXLEN) == 0)
3150 {
3151 *ftype = tzc->ftype;
3152 *offset = tzc->offset;
3153 *tz = tzc->tz;
3154 return 0;
3155 }
3156
3157 /*
3158 * See if the current session_timezone recognizes it. Checking this
3159 * before zoneabbrevtbl allows us to correctly handle abbreviations whose
3160 * meaning varies across zones, such as "LMT".
3161 */
3162 if (session_timezone &&
3164 &isfixed, offset, &isdst))
3165 {
3166 *ftype = (isfixed ? (isdst ? DTZ : TZ) : DYNTZ);
3167 *tz = (isfixed ? NULL : session_timezone);
3168 /* flip sign to agree with the convention used in zoneabbrevtbl */
3169 *offset = -(*offset);
3170 /* cache result; use strlcpy to truncate name if necessary */
3171 strlcpy(tzc->abbrev, lowtoken, TOKMAXLEN + 1);
3172 tzc->ftype = *ftype;
3173 tzc->offset = *offset;
3174 tzc->tz = *tz;
3175 return 0;
3176 }
3177
3178 /* Nope, so look in zoneabbrevtbl */
3179 if (zoneabbrevtbl)
3180 tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
3182 else
3183 tp = NULL;
3184 if (tp == NULL)
3185 {
3186 *ftype = UNKNOWN_FIELD;
3187 *offset = 0;
3188 *tz = NULL;
3189 /* failure results are not cached */
3190 }
3191 else
3192 {
3193 *ftype = tp->type;
3194 if (tp->type == DYNTZ)
3195 {
3196 *offset = 0;
3197 *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp, extra);
3198 if (*tz == NULL)
3199 return DTERR_BAD_ZONE_ABBREV;
3200 }
3201 else
3202 {
3203 *offset = tp->value;
3204 *tz = NULL;
3205 }
3206
3207 /* cache result; use strlcpy to truncate name if necessary */
3208 strlcpy(tzc->abbrev, lowtoken, TOKMAXLEN + 1);
3209 tzc->ftype = *ftype;
3210 tzc->offset = *offset;
3211 tzc->tz = *tz;
3212 }
3213
3214 return 0;
3215}
3216
3217/*
3218 * Reset tzabbrevcache after a change in session_timezone.
3219 */
3220void
3222{
3223 memset(tzabbrevcache, 0, sizeof(tzabbrevcache));
3224}
3225
3226
3227/* DecodeSpecial()
3228 * Decode text string using lookup table.
3229 *
3230 * Recognizes the keywords listed in datetktbl.
3231 * Note: at one time this would also recognize timezone abbreviations,
3232 * but no more; use DecodeTimezoneAbbrev for that.
3233 *
3234 * Given string must be lowercased already.
3235 *
3236 * Implement a cache lookup since it is likely that dates
3237 * will be related in format.
3238 */
3239int
3240DecodeSpecial(int field, const char *lowtoken, int *val)
3241{
3242 int type;
3243 const datetkn *tp;
3244
3245 tp = datecache[field];
3246 /* use strncmp so that we match truncated tokens */
3247 if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3248 {
3249 tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
3250 }
3251 if (tp == NULL)
3252 {
3254 *val = 0;
3255 }
3256 else
3257 {
3258 datecache[field] = tp;
3259 type = tp->type;
3260 *val = tp->value;
3261 }
3262
3263 return type;
3264}
3265
3266
3267/* DecodeTimezoneName()
3268 * Interpret string as a timezone abbreviation or name.
3269 * Throw error if the name is not recognized.
3270 *
3271 * The return value indicates what kind of zone identifier it is:
3272 * TZNAME_FIXED_OFFSET: fixed offset from UTC
3273 * TZNAME_DYNTZ: dynamic timezone abbreviation
3274 * TZNAME_ZONE: full tzdb zone name
3275 *
3276 * For TZNAME_FIXED_OFFSET, *offset receives the UTC offset (in seconds,
3277 * with ISO sign convention: positive is east of Greenwich).
3278 * For the other two cases, *tz receives the timezone struct representing
3279 * the zone name or the abbreviation's underlying zone.
3280 */
3281int
3282DecodeTimezoneName(const char *tzname, int *offset, pg_tz **tz)
3283{
3284 char *lowzone;
3285 int dterr,
3286 type;
3287 DateTimeErrorExtra extra;
3288
3289 /*
3290 * First we look in the timezone abbreviation table (to handle cases like
3291 * "EST"), and if that fails, we look in the timezone database (to handle
3292 * cases like "America/New_York"). This matches the order in which
3293 * timestamp input checks the cases; it's important because the timezone
3294 * database unwisely uses a few zone names that are identical to offset
3295 * abbreviations.
3296 */
3297
3298 /* DecodeTimezoneAbbrev requires lowercase input */
3299 lowzone = downcase_truncate_identifier(tzname,
3300 strlen(tzname),
3301 false);
3302
3303 dterr = DecodeTimezoneAbbrev(0, lowzone, &type, offset, tz, &extra);
3304 if (dterr)
3305 DateTimeParseError(dterr, &extra, NULL, NULL, NULL);
3306
3307 if (type == TZ || type == DTZ)
3308 {
3309 /* fixed-offset abbreviation, return the offset */
3310 return TZNAME_FIXED_OFFSET;
3311 }
3312 else if (type == DYNTZ)
3313 {
3314 /* dynamic-offset abbreviation, return its referenced timezone */
3315 return TZNAME_DYNTZ;
3316 }
3317 else
3318 {
3319 /* try it as a full zone name */
3320 *tz = pg_tzset(tzname);
3321 if (*tz == NULL)
3322 ereport(ERROR,
3323 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3324 errmsg("time zone \"%s\" not recognized", tzname)));
3325 return TZNAME_ZONE;
3326 }
3327}
3328
3329/* DecodeTimezoneNameToTz()
3330 * Interpret string as a timezone abbreviation or name.
3331 * Throw error if the name is not recognized.
3332 *
3333 * This is a simple wrapper for DecodeTimezoneName that produces a pg_tz *
3334 * result in all cases.
3335 */
3336pg_tz *
3337DecodeTimezoneNameToTz(const char *tzname)
3338{
3339 pg_tz *result;
3340 int offset;
3341
3342 if (DecodeTimezoneName(tzname, &offset, &result) == TZNAME_FIXED_OFFSET)
3343 {
3344 /* fixed-offset abbreviation, get a pg_tz descriptor for that */
3345 result = pg_tzset_offset(-offset); /* flip to POSIX sign convention */
3346 }
3347 return result;
3348}
3349
3350/* DecodeTimezoneAbbrevPrefix()
3351 * Interpret prefix of string as a timezone abbreviation, if possible.
3352 *
3353 * This has roughly the same functionality as DecodeTimezoneAbbrev(),
3354 * but the API is adapted to the needs of formatting.c. Notably,
3355 * we will match the longest possible prefix of the given string
3356 * rather than insisting on a complete match, and downcasing is applied
3357 * here rather than in the caller.
3358 *
3359 * Returns the length of the timezone abbreviation, or -1 if not recognized.
3360 * On success, sets *offset to the GMT offset for the abbreviation if it
3361 * is a fixed-offset abbreviation, or sets *tz to the pg_tz struct for
3362 * a dynamic abbreviation.
3363 */
3364int
3365DecodeTimezoneAbbrevPrefix(const char *str, int *offset, pg_tz **tz)
3366{
3367 char lowtoken[TOKMAXLEN + 1];
3368 int len;
3369
3370 *offset = 0; /* avoid uninitialized vars on failure */
3371 *tz = NULL;
3372
3373 /* Downcase as much of the string as we could need */
3374 for (len = 0; len < TOKMAXLEN; len++)
3375 {
3376 if (*str == '\0' || !isalpha((unsigned char) *str))
3377 break;
3378 lowtoken[len] = pg_tolower((unsigned char) *str++);
3379 }
3380 lowtoken[len] = '\0';
3381
3382 /*
3383 * We could avoid doing repeated binary searches if we cared to duplicate
3384 * datebsearch here, but it's not clear that such an optimization would be
3385 * worth the trouble. In common cases there's probably not anything after
3386 * the zone abbrev anyway. So just search with successively truncated
3387 * strings.
3388 */
3389 while (len > 0)
3390 {
3391 bool isfixed;
3392 int isdst;
3393 const datetkn *tp;
3394
3395 /* See if the current session_timezone recognizes it. */
3396 if (session_timezone &&
3398 &isfixed, offset, &isdst))
3399 {
3400 if (isfixed)
3401 {
3402 /* flip sign to agree with the convention in zoneabbrevtbl */
3403 *offset = -(*offset);
3404 }
3405 else
3406 {
3407 /* Caller must resolve the abbrev's current meaning */
3408 *tz = session_timezone;
3409 }
3410 return len;
3411 }
3412
3413 /* Known in zoneabbrevtbl? */
3414 if (zoneabbrevtbl)
3415 tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
3417 else
3418 tp = NULL;
3419 if (tp != NULL)
3420 {
3421 if (tp->type == DYNTZ)
3422 {
3423 DateTimeErrorExtra extra;
3425 &extra);
3426
3427 if (tzp != NULL)
3428 {
3429 /* Caller must resolve the abbrev's current meaning */
3430 *tz = tzp;
3431 return len;
3432 }
3433 }
3434 else
3435 {
3436 /* Fixed-offset zone abbrev, so it's easy */
3437 *offset = tp->value;
3438 return len;
3439 }
3440 }
3441
3442 /* Nope, try the next shorter string. */
3443 lowtoken[--len] = '\0';
3444 }
3445
3446 /* Did not find a match */
3447 return -1;
3448}
3449
3450
3451/* ClearPgItmIn
3452 *
3453 * Zero out a pg_itm_in
3454 */
3455static inline void
3457{
3458 itm_in->tm_usec = 0;
3459 itm_in->tm_mday = 0;
3460 itm_in->tm_mon = 0;
3461 itm_in->tm_year = 0;
3462}
3463
3464
3465/* DecodeInterval()
3466 * Interpret previously parsed fields for general time interval.
3467 * Returns 0 if successful, DTERR code if bogus input detected.
3468 * dtype and itm_in are output parameters.
3469 *
3470 * Allow "date" field DTK_DATE since this could be just
3471 * an unsigned floating point number. - thomas 1997-11-16
3472 *
3473 * Allow ISO-style time span, with implicit units on number of days
3474 * preceding an hh:mm:ss field. - thomas 1998-04-30
3475 *
3476 * itm_in remains undefined for infinite interval values for which dtype alone
3477 * suffices.
3478 */
3479int
3480DecodeInterval(char **field, int *ftype, int nf, int range,
3481 int *dtype, struct pg_itm_in *itm_in)
3482{
3483 bool force_negative = false;
3484 bool is_before = false;
3485 bool parsing_unit_val = false;
3486 char *cp;
3487 int fmask = 0,
3488 tmask,
3489 type,
3490 uval;
3491 int i;
3492 int dterr;
3493 int64 val;
3494 double fval;
3495
3496 *dtype = DTK_DELTA;
3497 type = IGNORE_DTF;
3498 ClearPgItmIn(itm_in);
3499
3500 /*----------
3501 * The SQL standard defines the interval literal
3502 * '-1 1:00:00'
3503 * to mean "negative 1 days and negative 1 hours", while Postgres
3504 * traditionally treats this as meaning "negative 1 days and positive
3505 * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
3506 * to all fields if there are no other explicit signs.
3507 *
3508 * We leave the signs alone if there are additional explicit signs.
3509 * This protects us against misinterpreting postgres-style dump output,
3510 * since the postgres-style output code has always put an explicit sign on
3511 * all fields following a negative field. But note that SQL-spec output
3512 * is ambiguous and can be misinterpreted on load! (So it's best practice
3513 * to dump in postgres style, not SQL style.)
3514 *----------
3515 */
3516 if (IntervalStyle == INTSTYLE_SQL_STANDARD && nf > 0 && *field[0] == '-')
3517 {
3518 force_negative = true;
3519 /* Check for additional explicit signs */
3520 for (i = 1; i < nf; i++)
3521 {
3522 if (*field[i] == '-' || *field[i] == '+')
3523 {
3524 force_negative = false;
3525 break;
3526 }
3527 }
3528 }
3529
3530 /* read through list backwards to pick up units before values */
3531 for (i = nf - 1; i >= 0; i--)
3532 {
3533 switch (ftype[i])
3534 {
3535 case DTK_TIME:
3536 dterr = DecodeTimeForInterval(field[i], fmask, range,
3537 &tmask, itm_in);
3538 if (dterr)
3539 return dterr;
3540 if (force_negative &&
3541 itm_in->tm_usec > 0)
3542 itm_in->tm_usec = -itm_in->tm_usec;
3543 type = DTK_DAY;
3544 parsing_unit_val = false;
3545 break;
3546
3547 case DTK_TZ:
3548
3549 /*
3550 * Timezone means a token with a leading sign character and at
3551 * least one digit; there could be ':', '.', '-' embedded in
3552 * it as well.
3553 */
3554 Assert(*field[i] == '-' || *field[i] == '+');
3555
3556 /*
3557 * Check for signed hh:mm or hh:mm:ss. If so, process exactly
3558 * like DTK_TIME case above, plus handling the sign.
3559 */
3560 if (strchr(field[i] + 1, ':') != NULL &&
3561 DecodeTimeForInterval(field[i] + 1, fmask, range,
3562 &tmask, itm_in) == 0)
3563 {
3564 if (*field[i] == '-')
3565 {
3566 /* flip the sign on time field */
3567 if (itm_in->tm_usec == PG_INT64_MIN)
3568 return DTERR_FIELD_OVERFLOW;
3569 itm_in->tm_usec = -itm_in->tm_usec;
3570 }
3571
3572 if (force_negative &&
3573 itm_in->tm_usec > 0)
3574 itm_in->tm_usec = -itm_in->tm_usec;
3575
3576 /*
3577 * Set the next type to be a day, if units are not
3578 * specified. This handles the case of '1 +02:03' since we
3579 * are reading right to left.
3580 */
3581 type = DTK_DAY;
3582 parsing_unit_val = false;
3583 break;
3584 }
3585
3586 /*
3587 * Otherwise, fall through to DTK_NUMBER case, which can
3588 * handle signed float numbers and signed year-month values.
3589 */
3590
3591 /* FALLTHROUGH */
3592
3593 case DTK_DATE:
3594 case DTK_NUMBER:
3595 if (type == IGNORE_DTF)
3596 {
3597 /* use typmod to decide what rightmost field is */
3598 switch (range)
3599 {
3600 case INTERVAL_MASK(YEAR):
3601 type = DTK_YEAR;
3602 break;
3603 case INTERVAL_MASK(MONTH):
3605 type = DTK_MONTH;
3606 break;
3607 case INTERVAL_MASK(DAY):
3608 type = DTK_DAY;
3609 break;
3610 case INTERVAL_MASK(HOUR):
3612 type = DTK_HOUR;
3613 break;
3614 case INTERVAL_MASK(MINUTE):
3617 type = DTK_MINUTE;
3618 break;
3619 case INTERVAL_MASK(SECOND):
3623 type = DTK_SECOND;
3624 break;
3625 default:
3626 type = DTK_SECOND;
3627 break;
3628 }
3629 }
3630
3631 errno = 0;
3632 val = strtoi64(field[i], &cp, 10);
3633 if (errno == ERANGE)
3634 return DTERR_FIELD_OVERFLOW;
3635
3636 if (*cp == '-')
3637 {
3638 /* SQL "years-months" syntax */
3639 int val2;
3640
3641 val2 = strtoint(cp + 1, &cp, 10);
3642 if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
3643 return DTERR_FIELD_OVERFLOW;
3644 if (*cp != '\0')
3645 return DTERR_BAD_FORMAT;
3646 type = DTK_MONTH;
3647 if (*field[i] == '-')
3648 val2 = -val2;
3650 return DTERR_FIELD_OVERFLOW;
3651 if (pg_add_s64_overflow(val, val2, &val))
3652 return DTERR_FIELD_OVERFLOW;
3653 fval = 0;
3654 }
3655 else if (*cp == '.')
3656 {
3657 dterr = ParseFraction(cp, &fval);
3658 if (dterr)
3659 return dterr;
3660 if (*field[i] == '-')
3661 fval = -fval;
3662 }
3663 else if (*cp == '\0')
3664 fval = 0;
3665 else
3666 return DTERR_BAD_FORMAT;
3667
3668 tmask = 0; /* DTK_M(type); */
3669
3670 if (force_negative)
3671 {
3672 /* val and fval should be of same sign, but test anyway */
3673 if (val > 0)
3674 val = -val;
3675 if (fval > 0)
3676 fval = -fval;
3677 }
3678
3679 switch (type)
3680 {
3681 case DTK_MICROSEC:
3682 if (!AdjustMicroseconds(val, fval, 1, itm_in))
3683 return DTERR_FIELD_OVERFLOW;
3684 tmask = DTK_M(MICROSECOND);
3685 break;
3686
3687 case DTK_MILLISEC:
3688 if (!AdjustMicroseconds(val, fval, 1000, itm_in))
3689 return DTERR_FIELD_OVERFLOW;
3690 tmask = DTK_M(MILLISECOND);
3691 break;
3692
3693 case DTK_SECOND:
3694 if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
3695 return DTERR_FIELD_OVERFLOW;
3696
3697 /*
3698 * If any subseconds were specified, consider this
3699 * microsecond and millisecond input as well.
3700 */
3701 if (fval == 0)
3702 tmask = DTK_M(SECOND);
3703 else
3704 tmask = DTK_ALL_SECS_M;
3705 break;
3706
3707 case DTK_MINUTE:
3708 if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
3709 return DTERR_FIELD_OVERFLOW;
3710 tmask = DTK_M(MINUTE);
3711 break;
3712
3713 case DTK_HOUR:
3714 if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3715 return DTERR_FIELD_OVERFLOW;
3716 tmask = DTK_M(HOUR);
3717 type = DTK_DAY; /* set for next field */
3718 break;
3719
3720 case DTK_DAY:
3721 if (!AdjustDays(val, 1, itm_in) ||
3722 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3723 return DTERR_FIELD_OVERFLOW;
3724 tmask = DTK_M(DAY);
3725 break;
3726
3727 case DTK_WEEK:
3728 if (!AdjustDays(val, 7, itm_in) ||
3729 !AdjustFractDays(fval, 7, itm_in))
3730 return DTERR_FIELD_OVERFLOW;
3731 tmask = DTK_M(WEEK);
3732 break;
3733
3734 case DTK_MONTH:
3735 if (!AdjustMonths(val, itm_in) ||
3736 !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3737 return DTERR_FIELD_OVERFLOW;
3738 tmask = DTK_M(MONTH);
3739 break;
3740
3741 case DTK_YEAR:
3742 if (!AdjustYears(val, 1, itm_in) ||
3743 !AdjustFractYears(fval, 1, itm_in))
3744 return DTERR_FIELD_OVERFLOW;
3745 tmask = DTK_M(YEAR);
3746 break;
3747
3748 case DTK_DECADE:
3749 if (!AdjustYears(val, 10, itm_in) ||
3750 !AdjustFractYears(fval, 10, itm_in))
3751 return DTERR_FIELD_OVERFLOW;
3752 tmask = DTK_M(DECADE);
3753 break;
3754
3755 case DTK_CENTURY:
3756 if (!AdjustYears(val, 100, itm_in) ||
3757 !AdjustFractYears(fval, 100, itm_in))
3758 return DTERR_FIELD_OVERFLOW;
3759 tmask = DTK_M(CENTURY);
3760 break;
3761
3762 case DTK_MILLENNIUM:
3763 if (!AdjustYears(val, 1000, itm_in) ||
3764 !AdjustFractYears(fval, 1000, itm_in))
3765 return DTERR_FIELD_OVERFLOW;
3766 tmask = DTK_M(MILLENNIUM);
3767 break;
3768
3769 default:
3770 return DTERR_BAD_FORMAT;
3771 }
3772 parsing_unit_val = false;
3773 break;
3774
3775 case DTK_STRING:
3776 case DTK_SPECIAL:
3777 /* reject consecutive unhandled units */
3778 if (parsing_unit_val)
3779 return DTERR_BAD_FORMAT;
3780 type = DecodeUnits(i, field[i], &uval);
3781 if (type == UNKNOWN_FIELD)
3782 type = DecodeSpecial(i, field[i], &uval);
3783 if (type == IGNORE_DTF)
3784 continue;
3785
3786 tmask = 0; /* DTK_M(type); */
3787 switch (type)
3788 {
3789 case UNITS:
3790 type = uval;
3791 parsing_unit_val = true;
3792 break;
3793
3794 case AGO:
3795
3796 /*
3797 * "ago" is only allowed to appear at the end of the
3798 * interval.
3799 */
3800 if (i != nf - 1)
3801 return DTERR_BAD_FORMAT;
3802 is_before = true;
3803 type = uval;
3804 break;
3805
3806 case RESERV:
3807 tmask = (DTK_DATE_M | DTK_TIME_M);
3808
3809 /*
3810 * Only reserved words corresponding to infinite
3811 * intervals are accepted.
3812 */
3813 if (uval != DTK_LATE && uval != DTK_EARLY)
3814 return DTERR_BAD_FORMAT;
3815
3816 /*
3817 * Infinity cannot be followed by anything else. We
3818 * could allow "ago" to reverse the sign of infinity
3819 * but using signed infinity is more intuitive.
3820 */
3821 if (i != nf - 1)
3822 return DTERR_BAD_FORMAT;
3823
3824 *dtype = uval;
3825 break;
3826
3827 default:
3828 return DTERR_BAD_FORMAT;
3829 }
3830 break;
3831
3832 default:
3833 return DTERR_BAD_FORMAT;
3834 }
3835
3836 if (tmask & fmask)
3837 return DTERR_BAD_FORMAT;
3838 fmask |= tmask;
3839 }
3840
3841 /* ensure that at least one time field has been found */
3842 if (fmask == 0)
3843 return DTERR_BAD_FORMAT;
3844
3845 /* reject if unit appeared and was never handled */
3846 if (parsing_unit_val)
3847 return DTERR_BAD_FORMAT;
3848
3849 /* finally, AGO negates everything */
3850 if (is_before)
3851 {
3852 if (itm_in->tm_usec == PG_INT64_MIN ||
3853 itm_in->tm_mday == INT_MIN ||
3854 itm_in->tm_mon == INT_MIN ||
3855 itm_in->tm_year == INT_MIN)
3856 return DTERR_FIELD_OVERFLOW;
3857
3858 itm_in->tm_usec = -itm_in->tm_usec;
3859 itm_in->tm_mday = -itm_in->tm_mday;
3860 itm_in->tm_mon = -itm_in->tm_mon;
3861 itm_in->tm_year = -itm_in->tm_year;
3862 }
3863
3864 return 0;
3865}
3866
3867
3868/*
3869 * Helper functions to avoid duplicated code in DecodeISO8601Interval.
3870 *
3871 * Parse a decimal value and break it into integer and fractional parts.
3872 * Set *endptr to end+1 of the parsed substring.
3873 * Returns 0 or DTERR code.
3874 */
3875static int
3876ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart)
3877{
3878 double val;
3879
3880 /*
3881 * Historically this has accepted anything that strtod() would take,
3882 * notably including "e" notation, so continue doing that. This is
3883 * slightly annoying because the precision of double is less than that of
3884 * int64, so we would lose accuracy for inputs larger than 2^53 or so.
3885 * However, historically we rejected inputs outside the int32 range,
3886 * making that concern moot. What we do now is reject abs(val) above
3887 * 1.0e15 (a round number a bit less than 2^50), so that any accepted
3888 * value will have an exact integer part, and thereby a fraction part with
3889 * abs(*fpart) less than 1. In the absence of field complaints it doesn't
3890 * seem worth working harder.
3891 */
3892 if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
3893 return DTERR_BAD_FORMAT;
3894 errno = 0;
3895 val = strtod(str, endptr);
3896 /* did we not see anything that looks like a double? */
3897 if (*endptr == str || errno != 0)
3898 return DTERR_BAD_FORMAT;
3899 /* watch out for overflow, including infinities; reject NaN too */
3900 if (isnan(val) || val < -1.0e15 || val > 1.0e15)
3901 return DTERR_FIELD_OVERFLOW;
3902 /* be very sure we truncate towards zero (cf dtrunc()) */
3903 if (val >= 0)
3904 *ipart = (int64) floor(val);
3905 else
3906 *ipart = (int64) -floor(-val);
3907 *fpart = val - *ipart;
3908 /* Callers expect this to hold */
3909 Assert(*fpart > -1.0 && *fpart < 1.0);
3910 return 0;
3911}
3912
3913/*
3914 * Determine number of integral digits in a valid ISO 8601 number field
3915 * (we should ignore sign and any fraction part)
3916 */
3917static int
3918ISO8601IntegerWidth(char *fieldstart)
3919{
3920 /* We might have had a leading '-' */
3921 if (*fieldstart == '-')
3922 fieldstart++;
3923 return strspn(fieldstart, "0123456789");
3924}
3925
3926
3927/* DecodeISO8601Interval()
3928 * Decode an ISO 8601 time interval of the "format with designators"
3929 * (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
3930 * Examples: P1D for 1 day
3931 * PT1H for 1 hour
3932 * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
3933 * P0002-06-07T01:30:00 the same value in alternative format
3934 *
3935 * Returns 0 if successful, DTERR code if bogus input detected.
3936 * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
3937 * ISO8601, otherwise this could cause unexpected error messages.
3938 * dtype and itm_in are output parameters.
3939 *
3940 * A couple exceptions from the spec:
3941 * - a week field ('W') may coexist with other units
3942 * - allows decimals in fields other than the least significant unit.
3943 */
3944int
3946 int *dtype, struct pg_itm_in *itm_in)
3947{
3948 bool datepart = true;
3949 bool havefield = false;
3950
3951 *dtype = DTK_DELTA;
3952 ClearPgItmIn(itm_in);
3953
3954 if (strlen(str) < 2 || str[0] != 'P')
3955 return DTERR_BAD_FORMAT;
3956
3957 str++;
3958 while (*str)
3959 {
3960 char *fieldstart;
3961 int64 val;
3962 double fval;
3963 char unit;
3964 int dterr;
3965
3966 if (*str == 'T') /* T indicates the beginning of the time part */
3967 {
3968 datepart = false;
3969 havefield = false;
3970 str++;
3971 continue;
3972 }
3973
3974 fieldstart = str;
3975 dterr = ParseISO8601Number(str, &str, &val, &fval);
3976 if (dterr)
3977 return dterr;
3978
3979 /*
3980 * Note: we could step off the end of the string here. Code below
3981 * *must* exit the loop if unit == '\0'.
3982 */
3983 unit = *str++;
3984
3985 if (datepart)
3986 {
3987 switch (unit) /* before T: Y M W D */
3988 {
3989 case 'Y':
3990 if (!AdjustYears(val, 1, itm_in) ||
3991 !AdjustFractYears(fval, 1, itm_in))
3992 return DTERR_FIELD_OVERFLOW;
3993 break;
3994 case 'M':
3995 if (!AdjustMonths(val, itm_in) ||
3996 !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3997 return DTERR_FIELD_OVERFLOW;
3998 break;
3999 case 'W':
4000 if (!AdjustDays(val, 7, itm_in) ||
4001 !AdjustFractDays(fval, 7, itm_in))
4002 return DTERR_FIELD_OVERFLOW;
4003 break;
4004 case 'D':
4005 if (!AdjustDays(val, 1, itm_in) ||
4006 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
4007 return DTERR_FIELD_OVERFLOW;
4008 break;
4009 case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
4010 case '\0':
4011 if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
4012 {
4013 if (!AdjustYears(val / 10000, 1, itm_in) ||
4014 !AdjustMonths((val / 100) % 100, itm_in) ||
4015 !AdjustDays(val % 100, 1, itm_in) ||
4016 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
4017 return DTERR_FIELD_OVERFLOW;
4018 if (unit == '\0')
4019 return 0;
4020 datepart = false;
4021 havefield = false;
4022 continue;
4023 }
4024 /* Else fall through to extended alternative format */
4025 /* FALLTHROUGH */
4026 case '-': /* ISO 8601 4.4.3.3 Alternative Format,
4027 * Extended */
4028 if (havefield)
4029 return DTERR_BAD_FORMAT;
4030
4031 if (!AdjustYears(val, 1, itm_in) ||
4032 !AdjustFractYears(fval, 1, itm_in))
4033 return DTERR_FIELD_OVERFLOW;
4034 if (unit == '\0')
4035 return 0;
4036 if (unit == 'T')
4037 {
4038 datepart = false;
4039 havefield = false;
4040 continue;
4041 }
4042
4043 dterr = ParseISO8601Number(str, &str, &val, &fval);
4044 if (dterr)
4045 return dterr;
4046 if (!AdjustMonths(val, itm_in) ||
4047 !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
4048 return DTERR_FIELD_OVERFLOW;
4049 if (*str == '\0')
4050 return 0;
4051 if (*str == 'T')
4052 {
4053 datepart = false;
4054 havefield = false;
4055 continue;
4056 }
4057 if (*str != '-')
4058 return DTERR_BAD_FORMAT;
4059 str++;
4060
4061 dterr = ParseISO8601Number(str, &str, &val, &fval);
4062 if (dterr)
4063 return dterr;
4064 if (!AdjustDays(val, 1, itm_in) ||
4065 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
4066 return DTERR_FIELD_OVERFLOW;
4067 if (*str == '\0')
4068 return 0;
4069 if (*str == 'T')
4070 {
4071 datepart = false;
4072 havefield = false;
4073 continue;
4074 }
4075 return DTERR_BAD_FORMAT;
4076 default:
4077 /* not a valid date unit suffix */
4078 return DTERR_BAD_FORMAT;
4079 }
4080 }
4081 else
4082 {
4083 switch (unit) /* after T: H M S */
4084 {
4085 case 'H':
4086 if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
4087 return DTERR_FIELD_OVERFLOW;
4088 break;
4089 case 'M':
4090 if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
4091 return DTERR_FIELD_OVERFLOW;
4092 break;
4093 case 'S':
4094 if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
4095 return DTERR_FIELD_OVERFLOW;
4096 break;
4097 case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
4098 if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
4099 {
4100 if (!AdjustMicroseconds(val / 10000, 0, USECS_PER_HOUR, itm_in) ||
4101 !AdjustMicroseconds((val / 100) % 100, 0, USECS_PER_MINUTE, itm_in) ||
4102 !AdjustMicroseconds(val % 100, 0, USECS_PER_SEC, itm_in) ||
4103 !AdjustFractMicroseconds(fval, 1, itm_in))
4104 return DTERR_FIELD_OVERFLOW;
4105 return 0;
4106 }
4107 /* Else fall through to extended alternative format */
4108 /* FALLTHROUGH */
4109 case ':': /* ISO 8601 4.4.3.3 Alternative Format,
4110 * Extended */
4111 if (havefield)
4112 return DTERR_BAD_FORMAT;
4113
4114 if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
4115 return DTERR_FIELD_OVERFLOW;
4116 if (unit == '\0')
4117 return 0;
4118
4119 dterr = ParseISO8601Number(str, &str, &val, &fval);
4120 if (dterr)
4121 return dterr;
4122 if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
4123 return DTERR_FIELD_OVERFLOW;
4124 if (*str == '\0')
4125 return 0;
4126 if (*str != ':')
4127 return DTERR_BAD_FORMAT;
4128 str++;
4129
4130 dterr = ParseISO8601Number(str, &str, &val, &fval);
4131 if (dterr)
4132 return dterr;
4133 if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
4134 return DTERR_FIELD_OVERFLOW;
4135 if (*str == '\0')
4136 return 0;
4137 return DTERR_BAD_FORMAT;
4138
4139 default:
4140 /* not a valid time unit suffix */
4141 return DTERR_BAD_FORMAT;
4142 }
4143 }
4144
4145 havefield = true;
4146 }
4147
4148 return 0;
4149}
4150
4151
4152/* DecodeUnits()
4153 * Decode text string using lookup table.
4154 *
4155 * This routine recognizes keywords associated with time interval units.
4156 *
4157 * Given string must be lowercased already.
4158 *
4159 * Implement a cache lookup since it is likely that dates
4160 * will be related in format.
4161 */
4162int
4163DecodeUnits(int field, const char *lowtoken, int *val)
4164{
4165 int type;
4166 const datetkn *tp;
4167
4168 tp = deltacache[field];
4169 /* use strncmp so that we match truncated tokens */
4170 if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
4171 {
4172 tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
4173 }
4174 if (tp == NULL)
4175 {
4177 *val = 0;
4178 }
4179 else
4180 {
4181 deltacache[field] = tp;
4182 type = tp->type;
4183 *val = tp->value;
4184 }
4185
4186 return type;
4187} /* DecodeUnits() */
4188
4189/*
4190 * Report an error detected by one of the datetime input processing routines.
4191 *
4192 * dterr is the error code, and *extra contains any auxiliary info we need
4193 * for the error report. extra can be NULL if not needed for the particular
4194 * dterr value.
4195 *
4196 * str is the original input string, and datatype is the name of the datatype
4197 * we were trying to accept. (For some DTERR codes, these are not used and
4198 * can be NULL.)
4199 *
4200 * If escontext points to an ErrorSaveContext node, that is filled instead
4201 * of throwing an error.
4202 *
4203 * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
4204 * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
4205 * separate SQLSTATE codes, so ...
4206 */
4207void
4209 const char *str, const char *datatype,
4210 Node *escontext)
4211{
4212 switch (dterr)
4213 {
4215 errsave(escontext,
4216 (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
4217 errmsg("date/time field value out of range: \"%s\"",
4218 str)));
4219 break;
4221 /* <nanny>same as above, but add hint about DateStyle</nanny> */
4222 errsave(escontext,
4223 (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
4224 errmsg("date/time field value out of range: \"%s\"",
4225 str),
4226 errhint("Perhaps you need a different \"DateStyle\" setting.")));
4227 break;
4229 errsave(escontext,
4230 (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
4231 errmsg("interval field value out of range: \"%s\"",
4232 str)));
4233 break;
4235 errsave(escontext,
4236 (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
4237 errmsg("time zone displacement out of range: \"%s\"",
4238 str)));
4239 break;
4240 case DTERR_BAD_TIMEZONE:
4241 errsave(escontext,
4242 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4243 errmsg("time zone \"%s\" not recognized",
4244 extra->dtee_timezone)));
4245 break;
4247 errsave(escontext,
4248 (errcode(ERRCODE_CONFIG_FILE_ERROR),
4249 errmsg("time zone \"%s\" not recognized",
4250 extra->dtee_timezone),
4251 errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
4252 extra->dtee_abbrev)));
4253 break;
4254 case DTERR_BAD_FORMAT:
4255 default:
4256 errsave(escontext,
4257 (errcode(ERRCODE_INVALID_DATETIME_FORMAT),
4258 errmsg("invalid input syntax for type %s: \"%s\"",
4259 datatype, str)));
4260 break;
4261 }
4262}
4263
4264/* datebsearch()
4265 * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
4266 * is WAY faster than the generic bsearch().
4267 */
4268static const datetkn *
4269datebsearch(const char *key, const datetkn *base, int nel)
4270{
4271 if (nel > 0)
4272 {
4273 const datetkn *last = base + nel - 1,
4274 *position;
4275 int result;
4276
4277 while (last >= base)
4278 {
4279 position = base + ((last - base) >> 1);
4280 /* precheck the first character for a bit of extra speed */
4281 result = (int) key[0] - (int) position->token[0];
4282 if (result == 0)
4283 {
4284 /* use strncmp so that we match truncated tokens */
4285 result = strncmp(key, position->token, TOKMAXLEN);
4286 if (result == 0)
4287 return position;
4288 }
4289 if (result < 0)
4290 last = position - 1;
4291 else
4292 base = position + 1;
4293 }
4294 }
4295 return NULL;
4296}
4297
4298/* EncodeTimezone()
4299 * Copies representation of a numeric timezone offset to str.
4300 *
4301 * Returns a pointer to the new end of string. No NUL terminator is put
4302 * there; callers are responsible for NUL terminating str themselves.
4303 */
4304static char *
4305EncodeTimezone(char *str, int tz, int style)
4306{
4307 int hour,
4308 min,
4309 sec;
4310
4311 sec = abs(tz);
4312 min = sec / SECS_PER_MINUTE;
4313 sec -= min * SECS_PER_MINUTE;
4314 hour = min / MINS_PER_HOUR;
4315 min -= hour * MINS_PER_HOUR;
4316
4317 /* TZ is negated compared to sign we wish to display ... */
4318 *str++ = (tz <= 0 ? '+' : '-');
4319
4320 if (sec != 0)
4321 {
4322 str = pg_ultostr_zeropad(str, hour, 2);
4323 *str++ = ':';
4324 str = pg_ultostr_zeropad(str, min, 2);
4325 *str++ = ':';
4326 str = pg_ultostr_zeropad(str, sec, 2);
4327 }
4328 else if (min != 0 || style == USE_XSD_DATES)
4329 {
4330 str = pg_ultostr_zeropad(str, hour, 2);
4331 *str++ = ':';
4332 str = pg_ultostr_zeropad(str, min, 2);
4333 }
4334 else
4335 str = pg_ultostr_zeropad(str, hour, 2);
4336 return str;
4337}
4338
4339/* EncodeDateOnly()
4340 * Encode date as local time.
4341 */
4342void
4343EncodeDateOnly(struct pg_tm *tm, int style, char *str)
4344{
4345 Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4346
4347 switch (style)
4348 {
4349 case USE_ISO_DATES:
4350 case USE_XSD_DATES:
4351 /* compatible with ISO date formats */
4353 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4354 *str++ = '-';
4356 *str++ = '-';
4358 break;
4359
4360 case USE_SQL_DATES:
4361 /* compatible with Oracle/Ingres date formats */
4362 if (DateOrder == DATEORDER_DMY)
4363 {
4365 *str++ = '/';
4367 }
4368 else
4369 {
4371 *str++ = '/';
4373 }
4374 *str++ = '/';
4376 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4377 break;
4378
4379 case USE_GERMAN_DATES:
4380 /* German-style date format */
4382 *str++ = '.';
4384 *str++ = '.';
4386 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4387 break;
4388
4389 case USE_POSTGRES_DATES:
4390 default:
4391 /* traditional date-only style for Postgres */
4392 if (DateOrder == DATEORDER_DMY)
4393 {
4395 *str++ = '-';
4397 }
4398 else
4399 {
4401 *str++ = '-';
4403 }
4404 *str++ = '-';
4406 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4407 break;
4408 }
4409
4410 if (tm->tm_year <= 0)
4411 {
4412 memcpy(str, " BC", 3); /* Don't copy NUL */
4413 str += 3;
4414 }
4415 *str = '\0';
4416}
4417
4418
4419/* EncodeTimeOnly()
4420 * Encode time fields only.
4421 *
4422 * tm and fsec are the value to encode, print_tz determines whether to include
4423 * a time zone (the difference between time and timetz types), tz is the
4424 * numeric time zone offset, style is the date style, str is where to write the
4425 * output.
4426 */
4427void
4428EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
4429{
4431 *str++ = ':';
4433 *str++ = ':';
4434 str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
4435 if (print_tz)
4436 str = EncodeTimezone(str, tz, style);
4437 *str = '\0';
4438}
4439
4440
4441/* EncodeDateTime()
4442 * Encode date and time interpreted as local time.
4443 *
4444 * tm and fsec are the value to encode, print_tz determines whether to include
4445 * a time zone (the difference between timestamp and timestamptz types), tz is
4446 * the numeric time zone offset, tzn is the textual time zone, which if
4447 * specified will be used instead of tz by some styles, style is the date
4448 * style, str is where to write the output.
4449 *
4450 * Supported date styles:
4451 * Postgres - day mon hh:mm:ss yyyy tz
4452 * SQL - mm/dd/yyyy hh:mm:ss.ss tz
4453 * ISO - yyyy-mm-dd hh:mm:ss+/-tz
4454 * German - dd.mm.yyyy hh:mm:ss tz
4455 * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
4456 */
4457void
4458EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
4459{
4460 int day;
4461
4462 Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4463
4464 /*
4465 * Negative tm_isdst means we have no valid time zone translation.
4466 */
4467 if (tm->tm_isdst < 0)
4468 print_tz = false;
4469
4470 switch (style)
4471 {
4472 case USE_ISO_DATES:
4473 case USE_XSD_DATES:
4474 /* Compatible with ISO-8601 date formats */
4476 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4477 *str++ = '-';
4479 *str++ = '-';
4481 *str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
4483 *str++ = ':';
4485 *str++ = ':';
4486 str = AppendTimestampSeconds(str, tm, fsec);
4487 if (print_tz)
4488 str = EncodeTimezone(str, tz, style);
4489 break;
4490
4491 case USE_SQL_DATES:
4492 /* Compatible with Oracle/Ingres date formats */
4493 if (DateOrder == DATEORDER_DMY)
4494 {
4496 *str++ = '/';
4498 }
4499 else
4500 {
4502 *str++ = '/';
4504 }
4505 *str++ = '/';
4507 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4508 *str++ = ' ';
4510 *str++ = ':';
4512 *str++ = ':';
4513 str = AppendTimestampSeconds(str, tm, fsec);
4514
4515 /*
4516 * Note: the uses of %.*s in this function would be risky if the
4517 * timezone names ever contain non-ASCII characters, since we are
4518 * not being careful to do encoding-aware clipping. However, all
4519 * TZ abbreviations in the IANA database are plain ASCII.
4520 */
4521 if (print_tz)
4522 {
4523 if (tzn)
4524 {
4525 sprintf(str, " %.*s", MAXTZLEN, tzn);
4526 str += strlen(str);
4527 }
4528 else
4529 str = EncodeTimezone(str, tz, style);
4530 }
4531 break;
4532
4533 case USE_GERMAN_DATES:
4534 /* German variant on European style */
4536 *str++ = '.';
4538 *str++ = '.';
4540 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4541 *str++ = ' ';
4543 *str++ = ':';
4545 *str++ = ':';
4546 str = AppendTimestampSeconds(str, tm, fsec);
4547
4548 if (print_tz)
4549 {
4550 if (tzn)
4551 {
4552 sprintf(str, " %.*s", MAXTZLEN, tzn);
4553 str += strlen(str);
4554 }
4555 else
4556 str = EncodeTimezone(str, tz, style);
4557 }
4558 break;
4559
4560 case USE_POSTGRES_DATES:
4561 default:
4562 /* Backward-compatible with traditional Postgres abstime dates */
4563 day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
4564 tm->tm_wday = j2day(day);
4565 memcpy(str, days[tm->tm_wday], 3);
4566 str += 3;
4567 *str++ = ' ';
4568 if (DateOrder == DATEORDER_DMY)
4569 {
4571 *str++ = ' ';
4572 memcpy(str, months[tm->tm_mon - 1], 3);
4573 str += 3;
4574 }
4575 else
4576 {
4577 memcpy(str, months[tm->tm_mon - 1], 3);
4578 str += 3;
4579 *str++ = ' ';
4581 }
4582 *str++ = ' ';
4584 *str++ = ':';
4586 *str++ = ':';
4587 str = AppendTimestampSeconds(str, tm, fsec);
4588 *str++ = ' ';
4590 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4591
4592 if (print_tz)
4593 {
4594 if (tzn)
4595 {
4596 sprintf(str, " %.*s", MAXTZLEN, tzn);
4597 str += strlen(str);
4598 }
4599 else
4600 {
4601 /*
4602 * We have a time zone, but no string version. Use the
4603 * numeric form, but be sure to include a leading space to
4604 * avoid formatting something which would be rejected by
4605 * the date/time parser later. - thomas 2001-10-19
4606 */
4607 *str++ = ' ';
4608 str = EncodeTimezone(str, tz, style);
4609 }
4610 }
4611 break;
4612 }
4613
4614 if (tm->tm_year <= 0)
4615 {
4616 memcpy(str, " BC", 3); /* Don't copy NUL */
4617 str += 3;
4618 }
4619 *str = '\0';
4620}
4621
4622
4623/*
4624 * Helper functions to avoid duplicated code in EncodeInterval.
4625 */
4626
4627/* Append an ISO-8601-style interval field, but only if value isn't zero */
4628static char *
4629AddISO8601IntPart(char *cp, int64 value, char units)
4630{
4631 if (value == 0)
4632 return cp;
4633 sprintf(cp, "%lld%c", (long long) value, units);
4634 return cp + strlen(cp);
4635}
4636
4637/* Append a postgres-style interval field, but only if value isn't zero */
4638static char *
4639AddPostgresIntPart(char *cp, int64 value, const char *units,
4640 bool *is_zero, bool *is_before)
4641{
4642 if (value == 0)
4643 return cp;
4644 sprintf(cp, "%s%s%lld %s%s",
4645 (!*is_zero) ? " " : "",
4646 (*is_before && value > 0) ? "+" : "",
4647 (long long) value,
4648 units,
4649 (value != 1) ? "s" : "");
4650
4651 /*
4652 * Each nonzero field sets is_before for (only) the next one. This is a
4653 * tad bizarre but it's how it worked before...
4654 */
4655 *is_before = (value < 0);
4656 *is_zero = false;
4657 return cp + strlen(cp);
4658}
4659
4660/* Append a verbose-style interval field, but only if value isn't zero */
4661static char *
4662AddVerboseIntPart(char *cp, int64 value, const char *units,
4663 bool *is_zero, bool *is_before)
4664{
4665 if (value == 0)
4666 return cp;
4667 /* first nonzero value sets is_before */
4668 if (*is_zero)
4669 {
4670 *is_before = (value < 0);
4671 value = i64abs(value);
4672 }
4673 else if (*is_before)
4674 value = -value;
4675 sprintf(cp, " %lld %s%s", (long long) value, units, (value == 1) ? "" : "s");
4676 *is_zero = false;
4677 return cp + strlen(cp);
4678}
4679
4680
4681/* EncodeInterval()
4682 * Interpret time structure as a delta time and convert to string.
4683 *
4684 * Support "traditional Postgres" and ISO-8601 styles.
4685 * Actually, afaik ISO does not address time interval formatting,
4686 * but this looks similar to the spec for absolute date/time.
4687 * - thomas 1998-04-30
4688 *
4689 * Actually, afaik, ISO 8601 does specify formats for "time
4690 * intervals...[of the]...format with time-unit designators", which
4691 * are pretty ugly. The format looks something like
4692 * P1Y1M1DT1H1M1.12345S
4693 * but useful for exchanging data with computers instead of humans.
4694 * - ron 2003-07-14
4695 *
4696 * And ISO's SQL 2008 standard specifies standards for
4697 * "year-month literal"s (that look like '2-3') and
4698 * "day-time literal"s (that look like ('4 5:6:7')
4699 */
4700void
4701EncodeInterval(struct pg_itm *itm, int style, char *str)
4702{
4703 char *cp = str;
4704 int year = itm->tm_year;
4705 int mon = itm->tm_mon;
4706 int64 mday = itm->tm_mday; /* tm_mday could be INT_MIN */
4707 int64 hour = itm->tm_hour;
4708 int min = itm->tm_min;
4709 int sec = itm->tm_sec;
4710 int fsec = itm->tm_usec;
4711 bool is_before = false;
4712 bool is_zero = true;
4713
4714 /*
4715 * The sign of year and month are guaranteed to match, since they are
4716 * stored internally as "month". But we'll need to check for is_before and
4717 * is_zero when determining the signs of day and hour/minute/seconds
4718 * fields.
4719 */
4720 switch (style)
4721 {
4722 /* SQL Standard interval format */
4724 {
4725 bool has_negative = year < 0 || mon < 0 ||
4726 mday < 0 || hour < 0 ||
4727 min < 0 || sec < 0 || fsec < 0;
4728 bool has_positive = year > 0 || mon > 0 ||
4729 mday > 0 || hour > 0 ||
4730 min > 0 || sec > 0 || fsec > 0;
4731 bool has_year_month = year != 0 || mon != 0;
4732 bool has_day_time = mday != 0 || hour != 0 ||
4733 min != 0 || sec != 0 || fsec != 0;
4734 bool has_day = mday != 0;
4735 bool sql_standard_value = !(has_negative && has_positive) &&
4736 !(has_year_month && has_day_time);
4737
4738 /*
4739 * SQL Standard wants only 1 "<sign>" preceding the whole
4740 * interval ... but can't do that if mixed signs.
4741 */
4742 if (has_negative && sql_standard_value)
4743 {
4744 *cp++ = '-';
4745 year = -year;
4746 mon = -mon;
4747 mday = -mday;
4748 hour = -hour;
4749 min = -min;
4750 sec = -sec;
4751 fsec = -fsec;
4752 }
4753
4754 if (!has_negative && !has_positive)
4755 {
4756 sprintf(cp, "0");
4757 }
4758 else if (!sql_standard_value)
4759 {
4760 /*
4761 * For non sql-standard interval values, force outputting
4762 * the signs to avoid ambiguities with intervals with
4763 * mixed sign components.
4764 */
4765 char year_sign = (year < 0 || mon < 0) ? '-' : '+';
4766 char day_sign = (mday < 0) ? '-' : '+';
4767 char sec_sign = (hour < 0 || min < 0 ||
4768 sec < 0 || fsec < 0) ? '-' : '+';
4769
4770 sprintf(cp, "%c%d-%d %c%lld %c%lld:%02d:",
4771 year_sign, abs(year), abs(mon),
4772 day_sign, (long long) i64abs(mday),
4773 sec_sign, (long long) i64abs(hour), abs(min));
4774 cp += strlen(cp);
4775 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4776 *cp = '\0';
4777 }
4778 else if (has_year_month)
4779 {
4780 sprintf(cp, "%d-%d", year, mon);
4781 }
4782 else if (has_day)
4783 {
4784 sprintf(cp, "%lld %lld:%02d:",
4785 (long long) mday, (long long) hour, min);
4786 cp += strlen(cp);
4787 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4788 *cp = '\0';
4789 }
4790 else
4791 {
4792 sprintf(cp, "%lld:%02d:", (long long) hour, min);
4793 cp += strlen(cp);
4794 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4795 *cp = '\0';
4796 }
4797 }
4798 break;
4799
4800 /* ISO 8601 "time-intervals by duration only" */
4801 case INTSTYLE_ISO_8601:
4802 /* special-case zero to avoid printing nothing */
4803 if (year == 0 && mon == 0 && mday == 0 &&
4804 hour == 0 && min == 0 && sec == 0 && fsec == 0)
4805 {
4806 sprintf(cp, "PT0S");
4807 break;
4808 }
4809 *cp++ = 'P';
4810 cp = AddISO8601IntPart(cp, year, 'Y');
4811 cp = AddISO8601IntPart(cp, mon, 'M');
4812 cp = AddISO8601IntPart(cp, mday, 'D');
4813 if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
4814 *cp++ = 'T';
4815 cp = AddISO8601IntPart(cp, hour, 'H');
4816 cp = AddISO8601IntPart(cp, min, 'M');
4817 if (sec != 0 || fsec != 0)
4818 {
4819 if (sec < 0 || fsec < 0)
4820 *cp++ = '-';
4821 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4822 *cp++ = 'S';
4823 *cp++ = '\0';
4824 }
4825 break;
4826
4827 /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
4828 case INTSTYLE_POSTGRES:
4829 cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
4830
4831 /*
4832 * Ideally we should spell out "month" like we do for "year" and
4833 * "day". However, for backward compatibility, we can't easily
4834 * fix this. bjm 2011-05-24
4835 */
4836 cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
4837 cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
4838 if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
4839 {
4840 bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
4841
4842 sprintf(cp, "%s%s%02lld:%02d:",
4843 is_zero ? "" : " ",
4844 (minus ? "-" : (is_before ? "+" : "")),
4845 (long long) i64abs(hour), abs(min));
4846 cp += strlen(cp);
4847 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4848 *cp = '\0';
4849 }
4850 break;
4851
4852 /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
4854 default:
4855 strcpy(cp, "@");
4856 cp++;
4857 cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
4858 cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
4859 cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
4860 cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
4861 cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
4862 if (sec != 0 || fsec != 0)
4863 {
4864 *cp++ = ' ';
4865 if (sec < 0 || (sec == 0 && fsec < 0))
4866 {
4867 if (is_zero)
4868 is_before = true;
4869 else if (!is_before)
4870 *cp++ = '-';
4871 }
4872 else if (is_before)
4873 *cp++ = '-';
4874 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4875 /* We output "ago", not negatives, so use abs(). */
4876 sprintf(cp, " sec%s",
4877 (abs(sec) != 1 || fsec != 0) ? "s" : "");
4878 is_zero = false;
4879 }
4880 /* identically zero? then put in a unitless zero... */
4881 if (is_zero)
4882 strcat(cp, " 0");
4883 if (is_before)
4884 strcat(cp, " ago");
4885 break;
4886 }
4887}
4888
4889
4890/*
4891 * We've been burnt by stupid errors in the ordering of the datetkn tables
4892 * once too often. Arrange to check them during postmaster start.
4893 */
4894static bool
4895CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
4896{
4897 bool ok = true;
4898 int i;
4899
4900 for (i = 0; i < nel; i++)
4901 {
4902 /* check for token strings that don't fit */
4903 if (strlen(base[i].token) > TOKMAXLEN)
4904 {
4905 /* %.*s is safe since all our tokens are ASCII */
4906 elog(LOG, "token too long in %s table: \"%.*s\"",
4907 tablename,
4908 TOKMAXLEN + 1, base[i].token);
4909 ok = false;
4910 break; /* don't risk applying strcmp */
4911 }
4912 /* check for out of order */
4913 if (i > 0 &&
4914 strcmp(base[i - 1].token, base[i].token) >= 0)
4915 {
4916 elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
4917 tablename,
4918 base[i - 1].token,
4919 base[i].token);
4920 ok = false;
4921 }
4922 }
4923 return ok;
4924}
4925
4926bool
4928{
4929 bool ok = true;
4930
4931 Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
4932 Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
4933
4934 ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
4935 ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
4936 return ok;
4937}
4938
4939/*
4940 * Common code for temporal prosupport functions: simplify, if possible,
4941 * a call to a temporal type's length-coercion function.
4942 *
4943 * Types time, timetz, timestamp and timestamptz each have a range of allowed
4944 * precisions. An unspecified precision is rigorously equivalent to the
4945 * highest specifiable precision. We can replace the function call with a
4946 * no-op RelabelType if it is coercing to the same or higher precision as the
4947 * input is known to have.
4948 *
4949 * The input Node is always a FuncExpr, but to reduce the #include footprint
4950 * of datetime.h, we declare it as Node *.
4951 *
4952 * Note: timestamp_scale throws an error when the typmod is out of range, but
4953 * we can't get there from a cast: our typmodin will have caught it already.
4954 */
4955Node *
4956TemporalSimplify(int32 max_precis, Node *node)
4957{
4958 FuncExpr *expr = castNode(FuncExpr, node);
4959 Node *ret = NULL;
4960 Node *typmod;
4961
4962 Assert(list_length(expr->args) >= 2);
4963
4964 typmod = (Node *) lsecond(expr->args);
4965
4966 if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
4967 {
4968 Node *source = (Node *) linitial(expr->args);
4969 int32 old_precis = exprTypmod(source);
4970 int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
4971
4972 if (new_precis < 0 || new_precis == max_precis ||
4973 (old_precis >= 0 && new_precis >= old_precis))
4974 ret = relabel_to_typmod(source, new_precis);
4975 }
4976
4977 return ret;
4978}
4979
4980/*
4981 * This function gets called during timezone config file load or reload
4982 * to create the final array of timezone tokens. The argument array
4983 * is already sorted in name order.
4984 *
4985 * The result is a TimeZoneAbbrevTable (which must be a single guc_malloc'd
4986 * chunk) or NULL on alloc failure. No other error conditions are defined.
4987 */
4989ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
4990{
4992 Size tbl_size;
4993 int i;
4994
4995 /* Space for fixed fields and datetkn array */
4996 tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4997 n * sizeof(datetkn);
4998 tbl_size = MAXALIGN(tbl_size);
4999 /* Count up space for dynamic abbreviations */
5000 for (i = 0; i < n; i++)
5001 {
5002 struct tzEntry *abbr = abbrevs + i;
5003
5004 if (abbr->zone != NULL)
5005 {
5006 Size dsize;
5007
5008 dsize = offsetof(DynamicZoneAbbrev, zone) +
5009 strlen(abbr->zone) + 1;
5010 tbl_size += MAXALIGN(dsize);
5011 }
5012 }
5013
5014 /* Alloc the result ... */
5015 tbl = guc_malloc(LOG, tbl_size);
5016 if (!tbl)
5017 return NULL;
5018
5019 /* ... and fill it in */