PostgreSQL Source Code git master
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
datetime.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * datetime.c
4 * Support functions for date/time types.
5 *
6 * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/utils/adt/datetime.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <ctype.h>
18#include <limits.h>
19#include <math.h>
20
21#include "access/htup_details.h"
22#include "access/xact.h"
23#include "common/int.h"
24#include "common/string.h"
25#include "funcapi.h"
26#include "miscadmin.h"
27#include "nodes/nodeFuncs.h"
28#include "parser/scansup.h"
29#include "utils/builtins.h"
30#include "utils/date.h"
31#include "utils/datetime.h"
32#include "utils/guc.h"
33#include "utils/tzparser.h"
34
35static int DecodeNumber(int flen, char *str, bool haveTextMonth,
36 int fmask, int *tmask,
37 struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
38static int DecodeNumberField(int len, char *str,
39 int fmask, int *tmask,
40 struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
41static int DecodeTimeCommon(char *str, int fmask, int range,
42 int *tmask, struct pg_itm *itm);
43static int DecodeTime(char *str, int fmask, int range,
44 int *tmask, struct pg_tm *tm, fsec_t *fsec);
45static int DecodeTimeForInterval(char *str, int fmask, int range,
46 int *tmask, struct pg_itm_in *itm_in);
47static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
48static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
49 struct pg_tm *tm);
50static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
51 int precision, bool fillzeros);
52static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum);
53static bool AdjustFractMicroseconds(double frac, int64 scale,
54 struct pg_itm_in *itm_in);
55static bool AdjustFractDays(double frac, int scale,
56 struct pg_itm_in *itm_in);
57static bool AdjustFractYears(double frac, int scale,
58 struct pg_itm_in *itm_in);
59static bool AdjustMicroseconds(int64 val, double fval, int64 scale,
60 struct pg_itm_in *itm_in);
61static bool AdjustDays(int64 val, int scale,
62 struct pg_itm_in *itm_in);
63static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in);
64static bool AdjustYears(int64 val, int scale,
65 struct pg_itm_in *itm_in);
66static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
67 pg_time_t *tp);
69 const char *abbr, pg_tz *tzp,
70 int *offset, int *isdst);
72 DateTimeErrorExtra *extra);
73
74
75const int day_tab[2][13] =
76{
77 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
78 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
79};
80
81const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
82"Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
83
84const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
85"Thursday", "Friday", "Saturday", NULL};
86
87
88/*****************************************************************************
89 * PRIVATE ROUTINES *
90 *****************************************************************************/
91
92/*
93 * datetktbl holds date/time keywords.
94 *
95 * Note that this table must be strictly alphabetically ordered to allow an
96 * O(ln(N)) search algorithm to be used.
97 *
98 * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
99 * characters to fit.
100 *
101 * The static table contains no TZ, DTZ, or DYNTZ entries; rather those
102 * are loaded from configuration files and stored in zoneabbrevtbl, whose
103 * abbrevs[] field has the same format as the static datetktbl.
104 */
105static const datetkn datetktbl[] = {
106 /* token, type, value */
107 {"+infinity", RESERV, DTK_LATE}, /* same as "infinity" */
108 {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
109 {DA_D, ADBC, AD}, /* "ad" for years > 0 */
110 {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
111 {"am", AMPM, AM},
112 {"apr", MONTH, 4},
113 {"april", MONTH, 4},
114 {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
115 {"aug", MONTH, 8},
116 {"august", MONTH, 8},
117 {DB_C, ADBC, BC}, /* "bc" for years <= 0 */
118 {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
119 {"dec", MONTH, 12},
120 {"december", MONTH, 12},
121 {"dow", UNITS, DTK_DOW}, /* day of week */
122 {"doy", UNITS, DTK_DOY}, /* day of year */
123 {"dst", DTZMOD, SECS_PER_HOUR},
124 {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
125 {"feb", MONTH, 2},
126 {"february", MONTH, 2},
127 {"fri", DOW, 5},
128 {"friday", DOW, 5},
129 {"h", UNITS, DTK_HOUR}, /* "hour" */
130 {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
131 {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
132 {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
133 {"j", UNITS, DTK_JULIAN},
134 {"jan", MONTH, 1},
135 {"january", MONTH, 1},
136 {"jd", UNITS, DTK_JULIAN},
137 {"jul", MONTH, 7},
138 {"julian", UNITS, DTK_JULIAN},
139 {"july", MONTH, 7},
140 {"jun", MONTH, 6},
141 {"june", MONTH, 6},
142 {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
143 {"mar", MONTH, 3},
144 {"march", MONTH, 3},
145 {"may", MONTH, 5},
146 {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
147 {"mon", DOW, 1},
148 {"monday", DOW, 1},
149 {"nov", MONTH, 11},
150 {"november", MONTH, 11},
151 {NOW, RESERV, DTK_NOW}, /* current transaction time */
152 {"oct", MONTH, 10},
153 {"october", MONTH, 10},
154 {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
155 {"pm", AMPM, PM},
156 {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
157 {"sat", DOW, 6},
158 {"saturday", DOW, 6},
159 {"sep", MONTH, 9},
160 {"sept", MONTH, 9},
161 {"september", MONTH, 9},
162 {"sun", DOW, 0},
163 {"sunday", DOW, 0},
164 {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
165 {"thu", DOW, 4},
166 {"thur", DOW, 4},
167 {"thurs", DOW, 4},
168 {"thursday", DOW, 4},
169 {TODAY, RESERV, DTK_TODAY}, /* midnight */
170 {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
171 {"tue", DOW, 2},
172 {"tues", DOW, 2},
173 {"tuesday", DOW, 2},
174 {"wed", DOW, 3},
175 {"wednesday", DOW, 3},
176 {"weds", DOW, 3},
177 {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
178 {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
179};
180
181static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
182
183/*
184 * deltatktbl: same format as datetktbl, but holds keywords used to represent
185 * time units (eg, for intervals, and for EXTRACT).
186 */
187static const datetkn deltatktbl[] = {
188 /* token, type, value */
189 {"@", IGNORE_DTF, 0}, /* postgres relative prefix */
190 {DAGO, AGO, 0}, /* "ago" indicates negative time offset */
191 {"c", UNITS, DTK_CENTURY}, /* "century" relative */
192 {"cent", UNITS, DTK_CENTURY}, /* "century" relative */
193 {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
194 {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
195 {"d", UNITS, DTK_DAY}, /* "day" relative */
196 {DDAY, UNITS, DTK_DAY}, /* "day" relative */
197 {"days", UNITS, DTK_DAY}, /* "days" relative */
198 {"dec", UNITS, DTK_DECADE}, /* "decade" relative */
199 {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
200 {"decades", UNITS, DTK_DECADE}, /* "decades" relative */
201 {"decs", UNITS, DTK_DECADE}, /* "decades" relative */
202 {"h", UNITS, DTK_HOUR}, /* "hour" relative */
203 {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
204 {"hours", UNITS, DTK_HOUR}, /* "hours" relative */
205 {"hr", UNITS, DTK_HOUR}, /* "hour" relative */
206 {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
207 {"m", UNITS, DTK_MINUTE}, /* "minute" relative */
208 {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
209 {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
210 {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
211 {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
212 {"millisecon", UNITS, DTK_MILLISEC}, /* relative */
213 {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
214 {"min", UNITS, DTK_MINUTE}, /* "minute" relative */
215 {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
216 {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
217 {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
218 {"mon", UNITS, DTK_MONTH}, /* "months" relative */
219 {"mons", UNITS, DTK_MONTH}, /* "months" relative */
220 {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
221 {"months", UNITS, DTK_MONTH},
222 {"ms", UNITS, DTK_MILLISEC},
223 {"msec", UNITS, DTK_MILLISEC},
225 {"mseconds", UNITS, DTK_MILLISEC},
226 {"msecs", UNITS, DTK_MILLISEC},
227 {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
228 {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
229 {"s", UNITS, DTK_SECOND},
230 {"sec", UNITS, DTK_SECOND},
232 {"seconds", UNITS, DTK_SECOND},
233 {"secs", UNITS, DTK_SECOND},
234 {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
235 {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
236 {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
237 {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
238 {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
239 {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
240 {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
241 {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
242 {"w", UNITS, DTK_WEEK}, /* "week" relative */
243 {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
244 {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
245 {"y", UNITS, DTK_YEAR}, /* "year" relative */
246 {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
247 {"years", UNITS, DTK_YEAR}, /* "years" relative */
248 {"yr", UNITS, DTK_YEAR}, /* "year" relative */
249 {"yrs", UNITS, DTK_YEAR} /* "years" relative */
250};
251
252static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
253
255
256/* Caches of recent lookup results in the above tables */
257
258static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
259
260static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
261
262static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
263
264
265/*
266 * Calendar time to Julian date conversions.
267 * Julian date is commonly used in astronomical applications,
268 * since it is numerically accurate and computationally simple.
269 * The algorithms here will accurately convert between Julian day
270 * and calendar date for all non-negative Julian days
271 * (i.e. from Nov 24, -4713 on).
272 *
273 * Rewritten to eliminate overflow problems. This now allows the
274 * routines to work correctly for all Julian day counts from
275 * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
276 * a 32-bit integer. Longer types should also work to the limits
277 * of their precision.
278 *
279 * Actually, date2j() will work sanely, in the sense of producing
280 * valid negative Julian dates, significantly before Nov 24, -4713.
281 * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
282 * and associated commentary in timestamp.h.
283 */
284
285int
286date2j(int year, int month, int day)
287{
288 int julian;
289 int century;
290
291 if (month > 2)
292 {
293 month += 1;
294 year += 4800;
295 }
296 else
297 {
298 month += 13;
299 year += 4799;
300 }
301
302 century = year / 100;
303 julian = year * 365 - 32167;
304 julian += year / 4 - century + century / 4;
305 julian += 7834 * month / 256 + day;
306
307 return julian;
308} /* date2j() */
309
310void
311j2date(int jd, int *year, int *month, int *day)
312{
313 unsigned int julian;
314 unsigned int quad;
315 unsigned int extra;
316 int y;
317
318 julian = jd;
319 julian += 32044;
320 quad = julian / 146097;
321 extra = (julian - quad * 146097) * 4 + 3;
322 julian += 60 + quad * 3 + extra / 146097;
323 quad = julian / 1461;
324 julian -= quad * 1461;
325 y = julian * 4 / 1461;
326 julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
327 + 123;
328 y += quad * 4;
329 *year = y - 4800;
330 quad = julian * 2141 / 65536;
331 *day = julian - 7834 * quad / 256;
332 *month = (quad + 10) % MONTHS_PER_YEAR + 1;
333} /* j2date() */
334
335
336/*
337 * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
338 *
339 * Note: various places use the locution j2day(date - 1) to produce a
340 * result according to the convention 0..6 = Mon..Sun. This is a bit of
341 * a crock, but will work as long as the computation here is just a modulo.
342 */
343int
345{
346 date += 1;
347 date %= 7;
348 /* Cope if division truncates towards zero, as it probably does */
349 if (date < 0)
350 date += 7;
351
352 return date;
353} /* j2day() */
354
355
356/*
357 * GetCurrentDateTime()
358 *
359 * Get the transaction start time ("now()") broken down as a struct pg_tm,
360 * converted according to the session timezone setting.
361 *
362 * This is just a convenience wrapper for GetCurrentTimeUsec, to cover the
363 * case where caller doesn't need either fractional seconds or tz offset.
364 */
365void
367{
368 fsec_t fsec;
369
370 GetCurrentTimeUsec(tm, &fsec, NULL);
371}
372
373/*
374 * GetCurrentTimeUsec()
375 *
376 * Get the transaction start time ("now()") broken down as a struct pg_tm,
377 * including fractional seconds and timezone offset. The time is converted
378 * according to the session timezone setting.
379 *
380 * Callers may pass tzp = NULL if they don't need the offset, but this does
381 * not affect the conversion behavior (unlike timestamp2tm()).
382 *
383 * Internally, we cache the result, since this could be called many times
384 * in a transaction, within which now() doesn't change.
385 */
386void
387GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
388{
390
391 /*
392 * The cache key must include both current time and current timezone. By
393 * representing the timezone by just a pointer, we're assuming that
394 * distinct timezone settings could never have the same pointer value.
395 * This is true by virtue of the hashtable used inside pg_tzset();
396 * however, it might need another look if we ever allow entries in that
397 * hash to be recycled.
398 */
399 static TimestampTz cache_ts = 0;
400 static pg_tz *cache_timezone = NULL;
401 static struct pg_tm cache_tm;
402 static fsec_t cache_fsec;
403 static int cache_tz;
404
405 if (cur_ts != cache_ts || session_timezone != cache_timezone)
406 {
407 /*
408 * Make sure cache is marked invalid in case of error after partial
409 * update within timestamp2tm.
410 */
411 cache_timezone = NULL;
412
413 /*
414 * Perform the computation, storing results into cache. We do not
415 * really expect any error here, since current time surely ought to be
416 * within range, but check just for sanity's sake.
417 */
418 if (timestamp2tm(cur_ts, &cache_tz, &cache_tm, &cache_fsec,
419 NULL, session_timezone) != 0)
421 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
422 errmsg("timestamp out of range")));
423
424 /* OK, so mark the cache valid. */
425 cache_ts = cur_ts;
426 cache_timezone = session_timezone;
427 }
428
429 *tm = cache_tm;
430 *fsec = cache_fsec;
431 if (tzp != NULL)
432 *tzp = cache_tz;
433}
434
435
436/*
437 * Append seconds and fractional seconds (if any) at *cp.
438 *
439 * precision is the max number of fraction digits, fillzeros says to
440 * pad to two integral-seconds digits.
441 *
442 * Returns a pointer to the new end of string. No NUL terminator is put
443 * there; callers are responsible for NUL terminating str themselves.
444 *
445 * Note that any sign is stripped from the input sec and fsec values.
446 */
447static char *
448AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
449{
450 Assert(precision >= 0);
451
452 if (fillzeros)
453 cp = pg_ultostr_zeropad(cp, abs(sec), 2);
454 else
455 cp = pg_ultostr(cp, abs(sec));
456
457 /* fsec_t is just an int32 */
458 if (fsec != 0)
459 {
460 int32 value = abs(fsec);
461 char *end = &cp[precision + 1];
462 bool gotnonzero = false;
463
464 *cp++ = '.';
465
466 /*
467 * Append the fractional seconds part. Note that we don't want any
468 * trailing zeros here, so since we're building the number in reverse
469 * we'll skip appending zeros until we've output a non-zero digit.
470 */
471 while (precision--)
472 {
473 int32 oldval = value;
474 int32 remainder;
475
476 value /= 10;
477 remainder = oldval - value * 10;
478
479 /* check if we got a non-zero */
480 if (remainder)
481 gotnonzero = true;
482
483 if (gotnonzero)
484 cp[precision] = '0' + remainder;
485 else
486 end = &cp[precision];
487 }
488
489 /*
490 * If we still have a non-zero value then precision must have not been
491 * enough to print the number. We punt the problem to pg_ultostr(),
492 * which will generate a correct answer in the minimum valid width.
493 */
494 if (value)
495 return pg_ultostr(cp, abs(fsec));
496
497 return end;
498 }
499 else
500 return cp;
501}
502
503
504/*
505 * Variant of above that's specialized to timestamp case.
506 *
507 * Returns a pointer to the new end of string. No NUL terminator is put
508 * there; callers are responsible for NUL terminating str themselves.
509 */
510static char *
511AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
512{
513 return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
514}
515
516
517/*
518 * Add val * multiplier to *sum.
519 * Returns true if successful, false on overflow.
520 */
521static bool
523{
524 int64 product;
525
526 if (pg_mul_s64_overflow(val, multiplier, &product) ||
527 pg_add_s64_overflow(*sum, product, sum))
528 return false;
529 return true;
530}
531
532/*
533 * Multiply frac by scale (to produce microseconds) and add to itm_in->tm_usec.
534 * Returns true if successful, false if itm_in overflows.
535 */
536static bool
538 struct pg_itm_in *itm_in)
539{
540 int64 usec;
541
542 /* Fast path for common case */
543 if (frac == 0)
544 return true;
545
546 /*
547 * We assume the input frac has abs value less than 1, so overflow of frac
548 * or usec is not an issue for interesting values of scale.
549 */
550 frac *= scale;
551 usec = (int64) frac;
552
553 /* Round off any fractional microsecond */
554 frac -= usec;
555 if (frac > 0.5)
556 usec++;
557 else if (frac < -0.5)
558 usec--;
559
560 return !pg_add_s64_overflow(itm_in->tm_usec, usec, &itm_in->tm_usec);
561}
562
563/*
564 * Multiply frac by scale (to produce days). Add the integral part of the
565 * result to itm_in->tm_mday, the fractional part to itm_in->tm_usec.
566 * Returns true if successful, false if itm_in overflows.
567 */
568static bool
569AdjustFractDays(double frac, int scale,
570 struct pg_itm_in *itm_in)
571{
572 int extra_days;
573
574 /* Fast path for common case */
575 if (frac == 0)
576 return true;
577
578 /*
579 * We assume the input frac has abs value less than 1, so overflow of frac
580 * or extra_days is not an issue.
581 */
582 frac *= scale;
583 extra_days = (int) frac;
584
585 /* ... but this could overflow, if tm_mday is already nonzero */
586 if (pg_add_s32_overflow(itm_in->tm_mday, extra_days, &itm_in->tm_mday))
587 return false;
588
589 /* Handle any fractional day */
590 frac -= extra_days;
591 return AdjustFractMicroseconds(frac, USECS_PER_DAY, itm_in);
592}
593
594/*
595 * Multiply frac by scale (to produce years), then further scale up to months.
596 * Add the integral part of the result to itm_in->tm_mon, discarding any
597 * fractional part.
598 * Returns true if successful, false if itm_in overflows.
599 */
600static bool
601AdjustFractYears(double frac, int scale,
602 struct pg_itm_in *itm_in)
603{
604 /*
605 * As above, we assume abs(frac) < 1, so this can't overflow for any
606 * interesting value of scale.
607 */
608 int extra_months = (int) rint(frac * scale * MONTHS_PER_YEAR);
609
610 return !pg_add_s32_overflow(itm_in->tm_mon, extra_months, &itm_in->tm_mon);
611}
612
613/*
614 * Add (val + fval) * scale to itm_in->tm_usec.
615 * Returns true if successful, false if itm_in overflows.
616 */
617static bool
619 struct pg_itm_in *itm_in)
620{
621 /* Handle the integer part */
622 if (!int64_multiply_add(val, scale, &itm_in->tm_usec))
623 return false;
624 /* Handle the float part */
625 return AdjustFractMicroseconds(fval, scale, itm_in);
626}
627
628/*
629 * Multiply val by scale (to produce days) and add to itm_in->tm_mday.
630 * Returns true if successful, false if itm_in overflows.
631 */
632static bool
633AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in)
634{
635 int days;
636
637 if (val < INT_MIN || val > INT_MAX)
638 return false;
639 return !pg_mul_s32_overflow((int32) val, scale, &days) &&
640 !pg_add_s32_overflow(itm_in->tm_mday, days, &itm_in->tm_mday);
641}
642
643/*
644 * Add val to itm_in->tm_mon (no need for scale here, as val is always
645 * in months already).
646 * Returns true if successful, false if itm_in overflows.
647 */
648static bool
650{
651 if (val < INT_MIN || val > INT_MAX)
652 return false;
653 return !pg_add_s32_overflow(itm_in->tm_mon, (int32) val, &itm_in->tm_mon);
654}
655
656/*
657 * Multiply val by scale (to produce years) and add to itm_in->tm_year.
658 * Returns true if successful, false if itm_in overflows.
659 */
660static bool
662 struct pg_itm_in *itm_in)
663{
664 int years;
665
666 if (val < INT_MIN || val > INT_MAX)
667 return false;
668 return !pg_mul_s32_overflow((int32) val, scale, &years) &&
669 !pg_add_s32_overflow(itm_in->tm_year, years, &itm_in->tm_year);
670}
671
672
673/*
674 * Parse the fractional part of a number (decimal point and optional digits,
675 * followed by end of string). Returns the fractional value into *frac.
676 *
677 * Returns 0 if successful, DTERR code if bogus input detected.
678 */
679static int
680ParseFraction(char *cp, double *frac)
681{
682 /* Caller should always pass the start of the fraction part */
683 Assert(*cp == '.');
684
685 /*
686 * We want to allow just "." with no digits, but some versions of strtod
687 * will report EINVAL for that, so special-case it.
688 */
689 if (cp[1] == '\0')
690 {
691 *frac = 0;
692 }
693 else
694 {
695 errno = 0;
696 *frac = strtod(cp, &cp);
697 /* check for parse failure */
698 if (*cp != '\0' || errno != 0)
699 return DTERR_BAD_FORMAT;
700 }
701 return 0;
702}
703
704/*
705 * Fetch a fractional-second value with suitable error checking.
706 * Same as ParseFraction except we convert the result to integer microseconds.
707 */
708static int
710{
711 double frac;
712 int dterr;
713
714 dterr = ParseFraction(cp, &frac);
715 if (dterr)
716 return dterr;
717 *fsec = rint(frac * 1000000);
718 return 0;
719}
720
721
722/* ParseDateTime()
723 * Break string into tokens based on a date/time context.
724 * Returns 0 if successful, DTERR code if bogus input detected.
725 *
726 * timestr - the input string
727 * workbuf - workspace for field string storage. This must be
728 * larger than the largest legal input for this datetime type --
729 * some additional space will be needed to NUL terminate fields.
730 * buflen - the size of workbuf
731 * field[] - pointers to field strings are returned in this array
732 * ftype[] - field type indicators are returned in this array
733 * maxfields - dimensions of the above two arrays
734 * *numfields - set to the actual number of fields detected
735 *
736 * The fields extracted from the input are stored as separate,
737 * null-terminated strings in the workspace at workbuf. Any text is
738 * converted to lower case.
739 *
740 * Several field types are assigned:
741 * DTK_NUMBER - digits and (possibly) a decimal point
742 * DTK_DATE - digits and two delimiters, or digits and text
743 * DTK_TIME - digits, colon delimiters, and possibly a decimal point
744 * DTK_STRING - text (no digits or punctuation)
745 * DTK_SPECIAL - leading "+" or "-" followed by text
746 * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
747 *
748 * Note that some field types can hold unexpected items:
749 * DTK_NUMBER can hold date fields (yy.ddd)
750 * DTK_STRING can hold months (January) and time zones (PST)
751 * DTK_DATE can hold time zone names (America/New_York, GMT-8)
752 */
753int
754ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
755 char **field, int *ftype, int maxfields, int *numfields)
756{
757 int nf = 0;
758 const char *cp = timestr;
759 char *bufp = workbuf;
760 const char *bufend = workbuf + buflen;
761
762 /*
763 * Set the character pointed-to by "bufptr" to "newchar", and increment
764 * "bufptr". "end" gives the end of the buffer -- we return an error if
765 * there is no space left to append a character to the buffer. Note that
766 * "bufptr" is evaluated twice.
767 */
768#define APPEND_CHAR(bufptr, end, newchar) \
769 do \
770 { \
771 if (((bufptr) + 1) >= (end)) \
772 return DTERR_BAD_FORMAT; \
773 *(bufptr)++ = newchar; \
774 } while (0)
775
776 /* outer loop through fields */
777 while (*cp != '\0')
778 {
779 /* Ignore spaces between fields */
780 if (isspace((unsigned char) *cp))
781 {
782 cp++;
783 continue;
784 }
785
786 /* Record start of current field */
787 if (nf >= maxfields)
788 return DTERR_BAD_FORMAT;
789 field[nf] = bufp;
790
791 /* leading digit? then date or time */
792 if (isdigit((unsigned char) *cp))
793 {
794 APPEND_CHAR(bufp, bufend, *cp++);
795 while (isdigit((unsigned char) *cp))
796 APPEND_CHAR(bufp, bufend, *cp++);
797
798 /* time field? */
799 if (*cp == ':')
800 {
801 ftype[nf] = DTK_TIME;
802 APPEND_CHAR(bufp, bufend, *cp++);
803 while (isdigit((unsigned char) *cp) ||
804 (*cp == ':') || (*cp == '.'))
805 APPEND_CHAR(bufp, bufend, *cp++);
806 }
807 /* date field? allow embedded text month */
808 else if (*cp == '-' || *cp == '/' || *cp == '.')
809 {
810 /* save delimiting character to use later */
811 char delim = *cp;
812
813 APPEND_CHAR(bufp, bufend, *cp++);
814 /* second field is all digits? then no embedded text month */
815 if (isdigit((unsigned char) *cp))
816 {
817 ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
818 while (isdigit((unsigned char) *cp))
819 APPEND_CHAR(bufp, bufend, *cp++);
820
821 /*
822 * insist that the delimiters match to get a three-field
823 * date.
824 */
825 if (*cp == delim)
826 {
827 ftype[nf] = DTK_DATE;
828 APPEND_CHAR(bufp, bufend, *cp++);
829 while (isdigit((unsigned char) *cp) || *cp == delim)
830 APPEND_CHAR(bufp, bufend, *cp++);
831 }
832 }
833 else
834 {
835 ftype[nf] = DTK_DATE;
836 while (isalnum((unsigned char) *cp) || *cp == delim)
837 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
838 }
839 }
840
841 /*
842 * otherwise, number only and will determine year, month, day, or
843 * concatenated fields later...
844 */
845 else
846 ftype[nf] = DTK_NUMBER;
847 }
848 /* Leading decimal point? Then fractional seconds... */
849 else if (*cp == '.')
850 {
851 APPEND_CHAR(bufp, bufend, *cp++);
852 while (isdigit((unsigned char) *cp))
853 APPEND_CHAR(bufp, bufend, *cp++);
854
855 ftype[nf] = DTK_NUMBER;
856 }
857
858 /*
859 * text? then date string, month, day of week, special, or timezone
860 */
861 else if (isalpha((unsigned char) *cp))
862 {
863 bool is_date;
864
865 ftype[nf] = DTK_STRING;
866 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
867 while (isalpha((unsigned char) *cp))
868 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
869
870 /*
871 * Dates can have embedded '-', '/', or '.' separators. It could
872 * also be a timezone name containing embedded '/', '+', '-', '_',
873 * or ':' (but '_' or ':' can't be the first punctuation). If the
874 * next character is a digit or '+', we need to check whether what
875 * we have so far is a recognized non-timezone keyword --- if so,
876 * don't believe that this is the start of a timezone.
877 */
878 is_date = false;
879 if (*cp == '-' || *cp == '/' || *cp == '.')
880 is_date = true;
881 else if (*cp == '+' || isdigit((unsigned char) *cp))
882 {
883 *bufp = '\0'; /* null-terminate current field value */
884 /* we need search only the core token table, not TZ names */
885 if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
886 is_date = true;
887 }
888 if (is_date)
889 {
890 ftype[nf] = DTK_DATE;
891 do
892 {
893 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
894 } while (*cp == '+' || *cp == '-' ||
895 *cp == '/' || *cp == '_' ||
896 *cp == '.' || *cp == ':' ||
897 isalnum((unsigned char) *cp));
898 }
899 }
900 /* sign? then special or numeric timezone */
901 else if (*cp == '+' || *cp == '-')
902 {
903 APPEND_CHAR(bufp, bufend, *cp++);
904 /* soak up leading whitespace */
905 while (isspace((unsigned char) *cp))
906 cp++;
907 /* numeric timezone? */
908 /* note that "DTK_TZ" could also be a signed float or yyyy-mm */
909 if (isdigit((unsigned char) *cp))
910 {
911 ftype[nf] = DTK_TZ;
912 APPEND_CHAR(bufp, bufend, *cp++);
913 while (isdigit((unsigned char) *cp) ||
914 *cp == ':' || *cp == '.' || *cp == '-')
915 APPEND_CHAR(bufp, bufend, *cp++);
916 }
917 /* special? */
918 else if (isalpha((unsigned char) *cp))
919 {
920 ftype[nf] = DTK_SPECIAL;
921 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
922 while (isalpha((unsigned char) *cp))
923 APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
924 }
925 /* otherwise something wrong... */
926 else
927 return DTERR_BAD_FORMAT;
928 }
929 /* ignore other punctuation but use as delimiter */
930 else if (ispunct((unsigned char) *cp))
931 {
932 cp++;
933 continue;
934 }
935 /* otherwise, something is not right... */
936 else
937 return DTERR_BAD_FORMAT;
938
939 /* force in a delimiter after each field */
940 *bufp++ = '\0';
941 nf++;
942 }
943
944 *numfields = nf;
945
946 return 0;
947}
948
949
950/* DecodeDateTime()
951 * Interpret previously parsed fields for general date and time.
952 * Return 0 if full date, 1 if only time, and negative DTERR code if problems.
953 * (Currently, all callers treat 1 as an error return too.)
954 *
955 * Inputs are field[] and ftype[] arrays, of length nf.
956 * Other arguments are outputs.
957 *
958 * External format(s):
959 * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
960 * "Fri Feb-7-1997 15:23:27"
961 * "Feb-7-1997 15:23:27"
962 * "2-7-1997 15:23:27"
963 * "1997-2-7 15:23:27"
964 * "1997.038 15:23:27" (day of year 1-366)
965 * Also supports input in compact time:
966 * "970207 152327"
967 * "97038 152327"
968 * "20011225T040506.789-07"
969 *
970 * Use the system-provided functions to get the current time zone
971 * if not specified in the input string.
972 *
973 * If the date is outside the range of pg_time_t (in practice that could only
974 * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
975 * 1997-05-27
976 */
977int
978DecodeDateTime(char **field, int *ftype, int nf,
979 int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp,
980 DateTimeErrorExtra *extra)
981{
982 int fmask = 0,
983 tmask,
984 type;
985 int ptype = 0; /* "prefix type" for ISO and Julian formats */
986 int i;
987 int val;
988 int dterr;
989 int mer = HR24;
990 bool haveTextMonth = false;
991 bool isjulian = false;
992 bool is2digits = false;
993 bool bc = false;
994 pg_tz *namedTz = NULL;
995 pg_tz *abbrevTz = NULL;
996 pg_tz *valtz;
997 char *abbrev = NULL;
998 struct pg_tm cur_tm;
999
1000 /*
1001 * We'll insist on at least all of the date fields, but initialize the
1002 * remaining fields in case they are not set later...
1003 */
1004 *dtype = DTK_DATE;
1005 tm->tm_hour = 0;
1006 tm->tm_min = 0;
1007 tm->tm_sec = 0;
1008 *fsec = 0;
1009 /* don't know daylight savings time status apriori */
1010 tm->tm_isdst = -1;
1011 if (tzp != NULL)
1012 *tzp = 0;
1013
1014 for (i = 0; i < nf; i++)
1015 {
1016 switch (ftype[i])
1017 {
1018 case DTK_DATE:
1019
1020 /*
1021 * Integral julian day with attached time zone? All other
1022 * forms with JD will be separated into distinct fields, so we
1023 * handle just this case here.
1024 */
1025 if (ptype == DTK_JULIAN)
1026 {
1027 char *cp;
1028 int jday;
1029
1030 if (tzp == NULL)
1031 return DTERR_BAD_FORMAT;
1032
1033 errno = 0;
1034 jday = strtoint(field[i], &cp, 10);
1035 if (errno == ERANGE || jday < 0)
1036 return DTERR_FIELD_OVERFLOW;
1037
1038 j2date(jday, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1039 isjulian = true;
1040
1041 /* Get the time zone from the end of the string */
1042 dterr = DecodeTimezone(cp, tzp);
1043 if (dterr)
1044 return dterr;
1045
1046 tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
1047 ptype = 0;
1048 break;
1049 }
1050
1051 /*
1052 * Already have a date? Then this might be a time zone name
1053 * with embedded punctuation (e.g. "America/New_York") or a
1054 * run-together time with trailing time zone (e.g. hhmmss-zz).
1055 * - thomas 2001-12-25
1056 *
1057 * We consider it a time zone if we already have month & day.
1058 * This is to allow the form "mmm dd hhmmss tz year", which
1059 * we've historically accepted.
1060 */
1061 else if (ptype != 0 ||
1062 ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
1063 (DTK_M(MONTH) | DTK_M(DAY))))
1064 {
1065 /* No time zone accepted? Then quit... */
1066 if (tzp == NULL)
1067 return DTERR_BAD_FORMAT;
1068
1069 if (isdigit((unsigned char) *field[i]) || ptype != 0)
1070 {
1071 char *cp;
1072
1073 /*
1074 * Allow a preceding "t" field, but no other units.
1075 */
1076 if (ptype != 0)
1077 {
1078 /* Sanity check; should not fail this test */
1079 if (ptype != DTK_TIME)
1080 return DTERR_BAD_FORMAT;
1081 ptype = 0;
1082 }
1083
1084 /*
1085 * Starts with a digit but we already have a time
1086 * field? Then we are in trouble with a date and time
1087 * already...
1088 */
1089 if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1090 return DTERR_BAD_FORMAT;
1091
1092 if ((cp = strchr(field[i], '-')) == NULL)
1093 return DTERR_BAD_FORMAT;
1094
1095 /* Get the time zone from the end of the string */
1096 dterr = DecodeTimezone(cp, tzp);
1097 if (dterr)
1098 return dterr;
1099 *cp = '\0';
1100
1101 /*
1102 * Then read the rest of the field as a concatenated
1103 * time
1104 */
1105 dterr = DecodeNumberField(strlen(field[i]), field[i],
1106 fmask,
1107 &tmask, tm,
1108 fsec, &is2digits);
1109 if (dterr < 0)
1110 return dterr;
1111
1112 /*
1113 * modify tmask after returning from
1114 * DecodeNumberField()
1115 */
1116 tmask |= DTK_M(TZ);
1117 }
1118 else
1119 {
1120 namedTz = pg_tzset(field[i]);
1121 if (!namedTz)
1122 {
1123 extra->dtee_timezone = field[i];
1124 return DTERR_BAD_TIMEZONE;
1125 }
1126 /* we'll apply the zone setting below */
1127 tmask = DTK_M(TZ);
1128 }
1129 }
1130 else
1131 {
1132 dterr = DecodeDate(field[i], fmask,
1133 &tmask, &is2digits, tm);
1134 if (dterr)
1135 return dterr;
1136 }
1137 break;
1138
1139 case DTK_TIME:
1140
1141 /*
1142 * This might be an ISO time following a "t" field.
1143 */
1144 if (ptype != 0)
1145 {
1146 /* Sanity check; should not fail this test */
1147 if (ptype != DTK_TIME)
1148 return DTERR_BAD_FORMAT;
1149 ptype = 0;
1150 }
1151 dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
1152 &tmask, tm, fsec);
1153 if (dterr)
1154 return dterr;
1155
1156 /* check for time overflow */
1158 *fsec))
1159 return DTERR_FIELD_OVERFLOW;
1160 break;
1161
1162 case DTK_TZ:
1163 {
1164 int tz;
1165
1166 if (tzp == NULL)
1167 return DTERR_BAD_FORMAT;
1168
1169 dterr = DecodeTimezone(field[i], &tz);
1170 if (dterr)
1171 return dterr;
1172 *tzp = tz;
1173 tmask = DTK_M(TZ);
1174 }
1175 break;
1176
1177 case DTK_NUMBER:
1178
1179 /*
1180 * Deal with cases where previous field labeled this one
1181 */
1182 if (ptype != 0)
1183 {
1184 char *cp;
1185 int value;
1186
1187 errno = 0;
1188 value = strtoint(field[i], &cp, 10);
1189 if (errno == ERANGE)
1190 return DTERR_FIELD_OVERFLOW;
1191 if (*cp != '.' && *cp != '\0')
1192 return DTERR_BAD_FORMAT;
1193
1194 switch (ptype)
1195 {
1196 case DTK_JULIAN:
1197 /* previous field was a label for "julian date" */
1198 if (value < 0)
1199 return DTERR_FIELD_OVERFLOW;
1200 tmask = DTK_DATE_M;
1202 isjulian = true;
1203
1204 /* fractional Julian Day? */
1205 if (*cp == '.')
1206 {
1207 double time;
1208
1209 dterr = ParseFraction(cp, &time);
1210 if (dterr)
1211 return dterr;
1212 time *= USECS_PER_DAY;
1213 dt2time(time,
1214 &tm->tm_hour, &tm->tm_min,
1215 &tm->tm_sec, fsec);
1216 tmask |= DTK_TIME_M;
1217 }
1218 break;
1219
1220 case DTK_TIME:
1221 /* previous field was "t" for ISO time */
1222 dterr = DecodeNumberField(strlen(field[i]), field[i],
1223 (fmask | DTK_DATE_M),
1224 &tmask, tm,
1225 fsec, &is2digits);
1226 if (dterr < 0)
1227 return dterr;
1228 if (tmask != DTK_TIME_M)
1229 return DTERR_BAD_FORMAT;
1230 break;
1231
1232 default:
1233 return DTERR_BAD_FORMAT;
1234 break;
1235 }
1236
1237 ptype = 0;
1238 *dtype = DTK_DATE;
1239 }
1240 else
1241 {
1242 char *cp;
1243 int flen;
1244
1245 flen = strlen(field[i]);
1246 cp = strchr(field[i], '.');
1247
1248 /* Embedded decimal and no date yet? */
1249 if (cp != NULL && !(fmask & DTK_DATE_M))
1250 {
1251 dterr = DecodeDate(field[i], fmask,
1252 &tmask, &is2digits, tm);
1253 if (dterr)
1254 return dterr;
1255 }
1256 /* embedded decimal and several digits before? */
1257 else if (cp != NULL && flen - strlen(cp) > 2)
1258 {
1259 /*
1260 * Interpret as a concatenated date or time Set the
1261 * type field to allow decoding other fields later.
1262 * Example: 20011223 or 040506
1263 */
1264 dterr = DecodeNumberField(flen, field[i], fmask,
1265 &tmask, tm,
1266 fsec, &is2digits);
1267 if (dterr < 0)
1268 return dterr;
1269 }
1270
1271 /*
1272 * Is this a YMD or HMS specification, or a year number?
1273 * YMD and HMS are required to be six digits or more, so
1274 * if it is 5 digits, it is a year. If it is six or more
1275 * digits, we assume it is YMD or HMS unless no date and
1276 * no time values have been specified. This forces 6+
1277 * digit years to be at the end of the string, or to use
1278 * the ISO date specification.
1279 */
1280 else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
1281 !(fmask & DTK_TIME_M)))
1282 {
1283 dterr = DecodeNumberField(flen, field[i], fmask,
1284 &tmask, tm,
1285 fsec, &is2digits);
1286 if (dterr < 0)
1287 return dterr;
1288 }
1289 /* otherwise it is a single date/time field... */
1290 else
1291 {
1292 dterr = DecodeNumber(flen, field[i],
1293 haveTextMonth, fmask,
1294 &tmask, tm,
1295 fsec, &is2digits);
1296 if (dterr)
1297 return dterr;
1298 }
1299 }
1300 break;
1301
1302 case DTK_STRING:
1303 case DTK_SPECIAL:
1304 /* timezone abbrevs take precedence over built-in tokens */
1305 dterr = DecodeTimezoneAbbrev(i, field[i],
1306 &type, &val, &valtz, extra);
1307 if (dterr)
1308 return dterr;
1309 if (type == UNKNOWN_FIELD)
1310 type = DecodeSpecial(i, field[i], &val);
1311 if (type == IGNORE_DTF)
1312 continue;
1313
1314 tmask = DTK_M(type);
1315 switch (type)
1316 {
1317 case RESERV:
1318 switch (val)
1319 {
1320 case DTK_NOW:
1321 tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1322 *dtype = DTK_DATE;
1323 GetCurrentTimeUsec(tm, fsec, tzp);
1324 break;
1325
1326 case DTK_YESTERDAY:
1327 tmask = DTK_DATE_M;
1328 *dtype = DTK_DATE;
1329 GetCurrentDateTime(&cur_tm);
1330 j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
1331 &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1332 break;
1333
1334 case DTK_TODAY:
1335 tmask = DTK_DATE_M;
1336 *dtype = DTK_DATE;
1337 GetCurrentDateTime(&cur_tm);
1338 tm->tm_year = cur_tm.tm_year;
1339 tm->tm_mon = cur_tm.tm_mon;
1340 tm->tm_mday = cur_tm.tm_mday;
1341 break;
1342
1343 case DTK_TOMORROW:
1344 tmask = DTK_DATE_M;
1345 *dtype = DTK_DATE;
1346 GetCurrentDateTime(&cur_tm);
1347 j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
1348 &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1349 break;
1350
1351 case DTK_ZULU:
1352 tmask = (DTK_TIME_M | DTK_M(TZ));
1353 *dtype = DTK_DATE;
1354 tm->tm_hour = 0;
1355 tm->tm_min = 0;
1356 tm->tm_sec = 0;
1357 if (tzp != NULL)
1358 *tzp = 0;
1359 break;
1360
1361 case DTK_EPOCH:
1362 case DTK_LATE:
1363 case DTK_EARLY:
1364 tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1365 *dtype = val;
1366 /* caller ignores tm for these dtype codes */
1367 break;
1368
1369 default:
1370 elog(ERROR, "unrecognized RESERV datetime token: %d",
1371 val);
1372 }
1373
1374 break;
1375
1376 case MONTH:
1377
1378 /*
1379 * already have a (numeric) month? then see if we can
1380 * substitute...
1381 */
1382 if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
1383 !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
1384 tm->tm_mon <= 31)
1385 {
1386 tm->tm_mday = tm->tm_mon;
1387 tmask = DTK_M(DAY);
1388 }
1389 haveTextMonth = true;
1390 tm->tm_mon = val;
1391 break;
1392
1393 case DTZMOD:
1394
1395 /*
1396 * daylight savings time modifier (solves "MET DST"
1397 * syntax)
1398 */
1399 tmask |= DTK_M(DTZ);
1400 tm->tm_isdst = 1;
1401 if (tzp == NULL)
1402 return DTERR_BAD_FORMAT;
1403 *tzp -= val;
1404 break;
1405
1406 case DTZ:
1407
1408 /*
1409 * set mask for TZ here _or_ check for DTZ later when
1410 * getting default timezone
1411 */
1412 tmask |= DTK_M(TZ);
1413 tm->tm_isdst = 1;
1414 if (tzp == NULL)
1415 return DTERR_BAD_FORMAT;
1416 *tzp = -val;
1417 break;
1418
1419 case TZ:
1420 tm->tm_isdst = 0;
1421 if (tzp == NULL)
1422 return DTERR_BAD_FORMAT;
1423 *tzp = -val;
1424 break;
1425
1426 case DYNTZ:
1427 tmask |= DTK_M(TZ);
1428 if (tzp == NULL)
1429 return DTERR_BAD_FORMAT;
1430 /* we'll determine the actual offset later */
1431 abbrevTz = valtz;
1432 abbrev = field[i];
1433 break;
1434
1435 case AMPM:
1436 mer = val;
1437 break;
1438
1439 case ADBC:
1440 bc = (val == BC);
1441 break;
1442
1443 case DOW:
1444 tm->tm_wday = val;
1445 break;
1446
1447 case UNITS:
1448 tmask = 0;
1449 /* reject consecutive unhandled units */
1450 if (ptype != 0)
1451 return DTERR_BAD_FORMAT;
1452 ptype = val;
1453 break;
1454
1455 case ISOTIME:
1456
1457 /*
1458 * This is a filler field "t" indicating that the next
1459 * field is time. Try to verify that this is sensible.
1460 */
1461 tmask = 0;
1462
1463 /* No preceding date? Then quit... */
1464 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1465 return DTERR_BAD_FORMAT;
1466
1467 /* reject consecutive unhandled units */
1468 if (ptype != 0)
1469 return DTERR_BAD_FORMAT;
1470 ptype = val;
1471 break;
1472
1473 case UNKNOWN_FIELD:
1474
1475 /*
1476 * Before giving up and declaring error, check to see
1477 * if it is an all-alpha timezone name.
1478 */
1479 namedTz = pg_tzset(field[i]);
1480 if (!namedTz)
1481 return DTERR_BAD_FORMAT;
1482 /* we'll apply the zone setting below */
1483 tmask = DTK_M(TZ);
1484 break;
1485
1486 default:
1487 return DTERR_BAD_FORMAT;
1488 }
1489 break;
1490
1491 default:
1492 return DTERR_BAD_FORMAT;
1493 }
1494
1495 if (tmask & fmask)
1496 return DTERR_BAD_FORMAT;
1497 fmask |= tmask;
1498 } /* end loop over fields */
1499
1500 /* reject if prefix type appeared and was never handled */
1501 if (ptype != 0)
1502 return DTERR_BAD_FORMAT;
1503
1504 /* do additional checking for normal date specs (but not "infinity" etc) */
1505 if (*dtype == DTK_DATE)
1506 {
1507 /* do final checking/adjustment of Y/M/D fields */
1508 dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
1509 if (dterr)
1510 return dterr;
1511
1512 /* handle AM/PM */
1513 if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
1514 return DTERR_FIELD_OVERFLOW;
1515 if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
1516 tm->tm_hour = 0;
1517 else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
1518 tm->tm_hour += HOURS_PER_DAY / 2;
1519
1520 /* check for incomplete input */
1521 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1522 {
1523 if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1524 return 1;
1525 return DTERR_BAD_FORMAT;
1526 }
1527
1528 /*
1529 * If we had a full timezone spec, compute the offset (we could not do
1530 * it before, because we need the date to resolve DST status).
1531 */
1532 if (namedTz != NULL)
1533 {
1534 /* daylight savings time modifier disallowed with full TZ */
1535 if (fmask & DTK_M(DTZMOD))
1536 return DTERR_BAD_FORMAT;
1537
1538 *tzp = DetermineTimeZoneOffset(tm, namedTz);
1539 }
1540
1541 /*
1542 * Likewise, if we had a dynamic timezone abbreviation, resolve it
1543 * now.
1544 */
1545 if (abbrevTz != NULL)
1546 {
1547 /* daylight savings time modifier disallowed with dynamic TZ */
1548 if (fmask & DTK_M(DTZMOD))
1549 return DTERR_BAD_FORMAT;
1550
1551 *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
1552 }
1553
1554 /* timezone not specified? then use session timezone */
1555 if (tzp != NULL && !(fmask & DTK_M(TZ)))
1556 {
1557 /*
1558 * daylight savings time modifier but no standard timezone? then
1559 * error
1560 */
1561 if (fmask & DTK_M(DTZMOD))
1562 return DTERR_BAD_FORMAT;
1563
1565 }
1566 }
1567
1568 return 0;
1569}
1570
1571
1572/* DetermineTimeZoneOffset()
1573 *
1574 * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
1575 * and tm_sec fields are set, and a zic-style time zone definition, determine
1576 * the applicable GMT offset and daylight-savings status at that time.
1577 * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
1578 * offset as the function result.
1579 *
1580 * Note: if the date is out of the range we can deal with, we return zero
1581 * as the GMT offset and set tm_isdst = 0. We don't throw an error here,
1582 * though probably some higher-level code will.
1583 */
1584int
1586{
1587 pg_time_t t;
1588
1589 return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1590}
1591
1592
1593/* DetermineTimeZoneOffsetInternal()
1594 *
1595 * As above, but also return the actual UTC time imputed to the date/time
1596 * into *tp.
1597 *
1598 * In event of an out-of-range date, we punt by returning zero into *tp.
1599 * This is okay for the immediate callers but is a good reason for not
1600 * exposing this worker function globally.
1601 *
1602 * Note: it might seem that we should use mktime() for this, but bitter
1603 * experience teaches otherwise. This code is much faster than most versions
1604 * of mktime(), anyway.
1605 */
1606static int
1608{
1609 int date,
1610 sec;
1611 pg_time_t day,
1612 mytime,
1613 prevtime,
1614 boundary,
1615 beforetime,
1616 aftertime;
1617 long int before_gmtoff,
1618 after_gmtoff;
1619 int before_isdst,
1620 after_isdst;
1621 int res;
1622
1623 /*
1624 * First, generate the pg_time_t value corresponding to the given
1625 * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
1626 * timezone is GMT. (For a valid Julian date, integer overflow should be
1627 * impossible with 64-bit pg_time_t, but let's check for safety.)
1628 */
1630 goto overflow;
1632
1633 day = ((pg_time_t) date) * SECS_PER_DAY;
1634 if (day / SECS_PER_DAY != date)
1635 goto overflow;
1637 mytime = day + sec;
1638 /* since sec >= 0, overflow could only be from +day to -mytime */
1639 if (mytime < 0 && day > 0)
1640 goto overflow;
1641
1642 /*
1643 * Find the DST time boundary just before or following the target time. We
1644 * assume that all zones have GMT offsets less than 24 hours, and that DST
1645 * boundaries can't be closer together than 48 hours, so backing up 24
1646 * hours and finding the "next" boundary will work.
1647 */
1648 prevtime = mytime - SECS_PER_DAY;
1649 if (mytime < 0 && prevtime > 0)
1650 goto overflow;
1651
1652 res = pg_next_dst_boundary(&prevtime,
1653 &before_gmtoff, &before_isdst,
1654 &boundary,
1655 &after_gmtoff, &after_isdst,
1656 tzp);
1657 if (res < 0)
1658 goto overflow; /* failure? */
1659
1660 if (res == 0)
1661 {
1662 /* Non-DST zone, life is simple */
1663 tm->tm_isdst = before_isdst;
1664 *tp = mytime - before_gmtoff;
1665 return -(int) before_gmtoff;
1666 }
1667
1668 /*
1669 * Form the candidate pg_time_t values with local-time adjustment
1670 */
1671 beforetime = mytime - before_gmtoff;
1672 if ((before_gmtoff > 0 &&
1673 mytime < 0 && beforetime > 0) ||
1674 (before_gmtoff <= 0 &&
1675 mytime > 0 && beforetime < 0))
1676 goto overflow;
1677 aftertime = mytime - after_gmtoff;
1678 if ((after_gmtoff > 0 &&
1679 mytime < 0 && aftertime > 0) ||
1680 (after_gmtoff <= 0 &&
1681 mytime > 0 && aftertime < 0))
1682 goto overflow;
1683
1684 /*
1685 * If both before or both after the boundary time, we know what to do. The
1686 * boundary time itself is considered to be after the transition, which
1687 * means we can accept aftertime == boundary in the second case.
1688 */
1689 if (beforetime < boundary && aftertime < boundary)
1690 {
1691 tm->tm_isdst = before_isdst;
1692 *tp = beforetime;
1693 return -(int) before_gmtoff;
1694 }
1695 if (beforetime > boundary && aftertime >= boundary)
1696 {
1697 tm->tm_isdst = after_isdst;
1698 *tp = aftertime;
1699 return -(int) after_gmtoff;
1700 }
1701
1702 /*
1703 * It's an invalid or ambiguous time due to timezone transition. In a
1704 * spring-forward transition, prefer the "before" interpretation; in a
1705 * fall-back transition, prefer "after". (We used to define and implement
1706 * this test as "prefer the standard-time interpretation", but that rule
1707 * does not help to resolve the behavior when both times are reported as
1708 * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
1709 * in some zones such as Europe/Dublin, there is widespread confusion
1710 * about which time offset is "standard" time, so it's fortunate that our
1711 * behavior doesn't depend on that.)
1712 */
1713 if (beforetime > aftertime)
1714 {
1715 tm->tm_isdst = before_isdst;
1716 *tp = beforetime;
1717 return -(int) before_gmtoff;
1718 }
1719 tm->tm_isdst = after_isdst;
1720 *tp = aftertime;
1721 return -(int) after_gmtoff;
1722
1723overflow:
1724 /* Given date is out of range, so assume UTC */
1725 tm->tm_isdst = 0;
1726 *tp = 0;
1727 return 0;
1728}
1729
1730
1731/* DetermineTimeZoneAbbrevOffset()
1732 *
1733 * Determine the GMT offset and DST flag to be attributed to a dynamic
1734 * time zone abbreviation, that is one whose meaning has changed over time.
1735 * *tm contains the local time at which the meaning should be determined,
1736 * and tm->tm_isdst receives the DST flag.
1737 *
1738 * This differs from the behavior of DetermineTimeZoneOffset() in that a
1739 * standard-time or daylight-time abbreviation forces use of the corresponding
1740 * GMT offset even when the zone was then in DS or standard time respectively.
1741 * (However, that happens only if we can match the given abbreviation to some
1742 * abbreviation that appears in the IANA timezone data. Otherwise, we fall
1743 * back to doing DetermineTimeZoneOffset().)
1744 */
1745int
1746DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
1747{
1748 pg_time_t t;
1749 int zone_offset;
1750 int abbr_offset;
1751 int abbr_isdst;
1752
1753 /*
1754 * Compute the UTC time we want to probe at. (In event of overflow, we'll
1755 * probe at the epoch, which is a bit random but probably doesn't matter.)
1756 */
1757 zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1758
1759 /*
1760 * Try to match the abbreviation to something in the zone definition.
1761 */
1763 &abbr_offset, &abbr_isdst))
1764 {
1765 /* Success, so use the abbrev-specific answers. */
1766 tm->tm_isdst = abbr_isdst;
1767 return abbr_offset;
1768 }
1769
1770 /*
1771 * No match, so use the answers we already got from
1772 * DetermineTimeZoneOffsetInternal.
1773 */
1774 return zone_offset;
1775}
1776
1777
1778/* DetermineTimeZoneAbbrevOffsetTS()
1779 *
1780 * As above but the probe time is specified as a TimestampTz (hence, UTC time),
1781 * and DST status is returned into *isdst rather than into tm->tm_isdst.
1782 */
1783int
1785 pg_tz *tzp, int *isdst)
1786{
1788 int zone_offset;
1789 int abbr_offset;
1790 int tz;
1791 struct pg_tm tm;
1792 fsec_t fsec;
1793
1794 /*
1795 * If the abbrev matches anything in the zone data, this is pretty easy.
1796 */
1798 &abbr_offset, isdst))
1799 return abbr_offset;
1800
1801 /*
1802 * Else, break down the timestamp so we can use DetermineTimeZoneOffset.
1803 */
1804 if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
1805 ereport(ERROR,
1806 (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1807 errmsg("timestamp out of range")));
1808
1809 zone_offset = DetermineTimeZoneOffset(&tm, tzp);
1810 *isdst = tm.tm_isdst;
1811 return zone_offset;
1812}
1813
1814
1815/* DetermineTimeZoneAbbrevOffsetInternal()
1816 *
1817 * Workhorse for above two functions: work from a pg_time_t probe instant.
1818 * On success, return GMT offset and DST status into *offset and *isdst.
1819 */
1820static bool
1822 int *offset, int *isdst)
1823{
1824 char upabbr[TZ_STRLEN_MAX + 1];
1825 unsigned char *p;
1826 long int gmtoff;
1827
1828 /* We need to force the abbrev to upper case */
1829 strlcpy(upabbr, abbr, sizeof(upabbr));
1830 for (p = (unsigned char *) upabbr; *p; p++)
1831 *p = pg_toupper(*p);
1832
1833 /* Look up the abbrev's meaning at this time in this zone */
1835 &t,
1836 &gmtoff,
1837 isdst,
1838 tzp))
1839 {
1840 /* Change sign to agree with DetermineTimeZoneOffset() */
1841 *offset = (int) -gmtoff;
1842 return true;
1843 }
1844 return false;
1845}
1846
1847
1848/* DecodeTimeOnly()
1849 * Interpret parsed string as time fields only.
1850 * Returns 0 if successful, DTERR code if bogus input detected.
1851 *
1852 * Inputs are field[] and ftype[] arrays, of length nf.
1853 * Other arguments are outputs.
1854 *
1855 * Note that support for time zone is here for
1856 * SQL TIME WITH TIME ZONE, but it reveals
1857 * bogosity with SQL date/time standards, since
1858 * we must infer a time zone from current time.
1859 * - thomas 2000-03-10
1860 * Allow specifying date to get a better time zone,
1861 * if time zones are allowed. - thomas 2001-12-26
1862 */
1863int
1864DecodeTimeOnly(char **field, int *ftype, int nf,
1865 int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp,
1866 DateTimeErrorExtra *extra)
1867{
1868 int fmask = 0,
1869 tmask,
1870 type;
1871 int ptype = 0; /* "prefix type" for ISO and Julian formats */
1872 int i;
1873 int val;
1874 int dterr;
1875 bool isjulian = false;
1876 bool is2digits = false;
1877 bool bc = false;
1878 int mer = HR24;
1879 pg_tz *namedTz = NULL;
1880 pg_tz *abbrevTz = NULL;
1881 char *abbrev = NULL;
1882 pg_tz *valtz;
1883
1884 *dtype = DTK_TIME;
1885 tm->tm_hour = 0;
1886 tm->tm_min = 0;
1887 tm->tm_sec = 0;
1888 *fsec = 0;
1889 /* don't know daylight savings time status apriori */
1890 tm->tm_isdst = -1;
1891
1892 if (tzp != NULL)
1893 *tzp = 0;
1894
1895 for (i = 0; i < nf; i++)
1896 {
1897 switch (ftype[i])
1898 {
1899 case DTK_DATE:
1900
1901 /*
1902 * Time zone not allowed? Then should not accept dates or time
1903 * zones no matter what else!
1904 */
1905 if (tzp == NULL)
1906 return DTERR_BAD_FORMAT;
1907
1908 /* Under limited circumstances, we will accept a date... */
1909 if (i == 0 && nf >= 2 &&
1910 (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
1911 {
1912 dterr = DecodeDate(field[i], fmask,
1913 &tmask, &is2digits, tm);
1914 if (dterr)
1915 return dterr;
1916 }
1917 /* otherwise, this is a time and/or time zone */
1918 else
1919 {
1920 if (isdigit((unsigned char) *field[i]))
1921 {
1922 char *cp;
1923
1924 /*
1925 * Starts with a digit but we already have a time
1926 * field? Then we are in trouble with time already...
1927 */
1928 if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1929 return DTERR_BAD_FORMAT;
1930
1931 /*
1932 * Should not get here and fail. Sanity check only...
1933 */
1934 if ((cp = strchr(field[i], '-')) == NULL)
1935 return DTERR_BAD_FORMAT;
1936
1937 /* Get the time zone from the end of the string */
1938 dterr = DecodeTimezone(cp, tzp);
1939 if (dterr)
1940 return dterr;
1941 *cp = '\0';
1942
1943 /*
1944 * Then read the rest of the field as a concatenated
1945 * time
1946 */
1947 dterr = DecodeNumberField(strlen(field[i]), field[i],
1948 (fmask | DTK_DATE_M),
1949 &tmask, tm,
1950 fsec, &is2digits);
1951 if (dterr < 0)
1952 return dterr;
1953 ftype[i] = dterr;
1954
1955 tmask |= DTK_M(TZ);
1956 }
1957 else
1958 {
1959 namedTz = pg_tzset(field[i]);
1960 if (!namedTz)
1961 {
1962 extra->dtee_timezone = field[i];
1963 return DTERR_BAD_TIMEZONE;
1964 }
1965 /* we'll apply the zone setting below */
1966 ftype[i] = DTK_TZ;
1967 tmask = DTK_M(TZ);
1968 }
1969 }
1970 break;
1971
1972 case DTK_TIME:
1973
1974 /*
1975 * This might be an ISO time following a "t" field.
1976 */
1977 if (ptype != 0)
1978 {
1979 if (ptype != DTK_TIME)
1980 return DTERR_BAD_FORMAT;
1981 ptype = 0;
1982 }
1983
1984 dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
1986 &tmask, tm, fsec);
1987 if (dterr)
1988 return dterr;
1989 break;
1990
1991 case DTK_TZ:
1992 {
1993 int tz;
1994
1995 if (tzp == NULL)
1996 return DTERR_BAD_FORMAT;
1997
1998 dterr = DecodeTimezone(field[i], &tz);
1999 if (dterr)
2000 return dterr;
2001 *tzp = tz;
2002 tmask = DTK_M(TZ);
2003 }
2004 break;
2005
2006 case DTK_NUMBER:
2007
2008 /*
2009 * Deal with cases where previous field labeled this one
2010 */
2011 if (ptype != 0)
2012 {
2013 char *cp;
2014 int value;
2015
2016 errno = 0;
2017 value = strtoint(field[i], &cp, 10);
2018 if (errno == ERANGE)
2019 return DTERR_FIELD_OVERFLOW;
2020 if (*cp != '.' && *cp != '\0')
2021 return DTERR_BAD_FORMAT;
2022
2023 switch (ptype)
2024 {
2025 case DTK_JULIAN:
2026 /* previous field was a label for "julian date" */
2027 if (tzp == NULL)
2028 return DTERR_BAD_FORMAT;
2029 if (value < 0)
2030 return DTERR_FIELD_OVERFLOW;
2031 tmask = DTK_DATE_M;
2033 isjulian = true;
2034
2035 if (*cp == '.')
2036 {
2037 double time;
2038
2039 dterr = ParseFraction(cp, &time);
2040 if (dterr)
2041 return dterr;
2042 time *= USECS_PER_DAY;
2043 dt2time(time,
2044 &tm->tm_hour, &tm->tm_min,
2045 &tm->tm_sec, fsec);
2046 tmask |= DTK_TIME_M;
2047 }
2048 break;
2049
2050 case DTK_TIME:
2051 /* previous field was "t" for ISO time */
2052 dterr = DecodeNumberField(strlen(field[i]), field[i],
2053 (fmask | DTK_DATE_M),
2054 &tmask, tm,
2055 fsec, &is2digits);
2056 if (dterr < 0)
2057 return dterr;
2058 ftype[i] = dterr;
2059
2060 if (tmask != DTK_TIME_M)
2061 return DTERR_BAD_FORMAT;
2062 break;
2063
2064 default:
2065 return DTERR_BAD_FORMAT;
2066 break;
2067 }
2068
2069 ptype = 0;
2070 *dtype = DTK_DATE;
2071 }
2072 else
2073 {
2074 char *cp;
2075 int flen;
2076
2077 flen = strlen(field[i]);
2078 cp = strchr(field[i], '.');
2079
2080 /* Embedded decimal? */
2081 if (cp != NULL)
2082 {
2083 /*
2084 * Under limited circumstances, we will accept a
2085 * date...
2086 */
2087 if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
2088 {
2089 dterr = DecodeDate(field[i], fmask,
2090 &tmask, &is2digits, tm);
2091 if (dterr)
2092 return dterr;
2093 }
2094 /* embedded decimal and several digits before? */
2095 else if (flen - strlen(cp) > 2)
2096 {
2097 /*
2098 * Interpret as a concatenated date or time Set
2099 * the type field to allow decoding other fields
2100 * later. Example: 20011223 or 040506
2101 */
2102 dterr = DecodeNumberField(flen, field[i],
2103 (fmask | DTK_DATE_M),
2104 &tmask, tm,
2105 fsec, &is2digits);
2106 if (dterr < 0)
2107 return dterr;
2108 ftype[i] = dterr;
2109 }
2110 else
2111 return DTERR_BAD_FORMAT;
2112 }
2113 else if (flen > 4)
2114 {
2115 dterr = DecodeNumberField(flen, field[i],
2116 (fmask | DTK_DATE_M),
2117 &tmask, tm,
2118 fsec, &is2digits);
2119 if (dterr < 0)
2120 return dterr;
2121 ftype[i] = dterr;
2122 }
2123 /* otherwise it is a single date/time field... */
2124 else
2125 {
2126 dterr = DecodeNumber(flen, field[i],
2127 false,
2128 (fmask | DTK_DATE_M),
2129 &tmask, tm,
2130 fsec, &is2digits);
2131 if (dterr)
2132 return dterr;
2133 }
2134 }
2135 break;
2136
2137 case DTK_STRING:
2138 case DTK_SPECIAL:
2139 /* timezone abbrevs take precedence over built-in tokens */
2140 dterr = DecodeTimezoneAbbrev(i, field[i],
2141 &type, &val, &valtz, extra);
2142 if (dterr)
2143 return dterr;
2144 if (type == UNKNOWN_FIELD)
2145 type = DecodeSpecial(i, field[i], &val);
2146 if (type == IGNORE_DTF)
2147 continue;
2148
2149 tmask = DTK_M(type);
2150 switch (type)
2151 {
2152 case RESERV:
2153 switch (val)
2154 {
2155 case DTK_NOW:
2156 tmask = DTK_TIME_M;
2157 *dtype = DTK_TIME;
2158 GetCurrentTimeUsec(tm, fsec, NULL);
2159 break;
2160
2161 case DTK_ZULU:
2162 tmask = (DTK_TIME_M | DTK_M(TZ));
2163 *dtype = DTK_TIME;
2164 tm->tm_hour = 0;
2165 tm->tm_min = 0;
2166 tm->tm_sec = 0;
2167 tm->tm_isdst = 0;
2168 break;
2169
2170 default:
2171 return DTERR_BAD_FORMAT;
2172 }
2173
2174 break;
2175
2176 case DTZMOD:
2177
2178 /*
2179 * daylight savings time modifier (solves "MET DST"
2180 * syntax)
2181 */
2182 tmask |= DTK_M(DTZ);
2183 tm->tm_isdst = 1;
2184 if (tzp == NULL)
2185 return DTERR_BAD_FORMAT;
2186 *tzp -= val;
2187 break;
2188
2189 case DTZ:
2190
2191 /*
2192 * set mask for TZ here _or_ check for DTZ later when
2193 * getting default timezone
2194 */
2195 tmask |= DTK_M(TZ);
2196 tm->tm_isdst = 1;
2197 if (tzp == NULL)
2198 return DTERR_BAD_FORMAT;
2199 *tzp = -val;
2200 ftype[i] = DTK_TZ;
2201 break;
2202
2203 case TZ:
2204 tm->tm_isdst = 0;
2205 if (tzp == NULL)
2206 return DTERR_BAD_FORMAT;
2207 *tzp = -val;
2208 ftype[i] = DTK_TZ;
2209 break;
2210
2211 case DYNTZ:
2212 tmask |= DTK_M(TZ);
2213 if (tzp == NULL)
2214 return DTERR_BAD_FORMAT;
2215 /* we'll determine the actual offset later */
2216 abbrevTz = valtz;
2217 abbrev = field[i];
2218 ftype[i] = DTK_TZ;
2219 break;
2220
2221 case AMPM:
2222 mer = val;
2223 break;
2224
2225 case ADBC:
2226 bc = (val == BC);
2227 break;
2228
2229 case UNITS:
2230 tmask = 0;
2231 /* reject consecutive unhandled units */
2232 if (ptype != 0)
2233 return DTERR_BAD_FORMAT;
2234 ptype = val;
2235 break;
2236
2237 case ISOTIME:
2238 tmask = 0;
2239 /* reject consecutive unhandled units */
2240 if (ptype != 0)
2241 return DTERR_BAD_FORMAT;
2242 ptype = val;
2243 break;
2244
2245 case UNKNOWN_FIELD:
2246
2247 /*
2248 * Before giving up and declaring error, check to see
2249 * if it is an all-alpha timezone name.
2250 */
2251 namedTz = pg_tzset(field[i]);
2252 if (!namedTz)
2253 return DTERR_BAD_FORMAT;
2254 /* we'll apply the zone setting below */
2255 tmask = DTK_M(TZ);
2256 break;
2257
2258 default:
2259 return DTERR_BAD_FORMAT;
2260 }
2261 break;
2262
2263 default:
2264 return DTERR_BAD_FORMAT;
2265 }
2266
2267 if (tmask & fmask)
2268 return DTERR_BAD_FORMAT;
2269 fmask |= tmask;
2270 } /* end loop over fields */
2271
2272 /* reject if prefix type appeared and was never handled */
2273 if (ptype != 0)
2274 return DTERR_BAD_FORMAT;
2275
2276 /* do final checking/adjustment of Y/M/D fields */
2277 dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
2278 if (dterr)
2279 return dterr;
2280
2281 /* handle AM/PM */
2282 if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
2283 return DTERR_FIELD_OVERFLOW;
2284 if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
2285 tm->tm_hour = 0;
2286 else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
2287 tm->tm_hour += HOURS_PER_DAY / 2;
2288
2289 /* check for time overflow */
2290 if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec))
2291 return DTERR_FIELD_OVERFLOW;
2292
2293 if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2294 return DTERR_BAD_FORMAT;
2295
2296 /*
2297 * If we had a full timezone spec, compute the offset (we could not do it
2298 * before, because we may need the date to resolve DST status).
2299 */
2300 if (namedTz != NULL)
2301 {
2302 long int gmtoff;
2303
2304 /* daylight savings time modifier disallowed with full TZ */
2305 if (fmask & DTK_M(DTZMOD))
2306 return DTERR_BAD_FORMAT;
2307
2308 /* if non-DST zone, we do not need to know the date */
2309 if (pg_get_timezone_offset(namedTz, &gmtoff))
2310 {
2311 *tzp = -(int) gmtoff;
2312 }
2313 else
2314 {
2315 /* a date has to be specified */
2316 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2317 return DTERR_BAD_FORMAT;
2318 *tzp = DetermineTimeZoneOffset(tm, namedTz);
2319 }
2320 }
2321
2322 /*
2323 * Likewise, if we had a dynamic timezone abbreviation, resolve it now.
2324 */
2325 if (abbrevTz != NULL)
2326 {
2327 struct pg_tm tt,
2328 *tmp = &tt;
2329
2330 /*
2331 * daylight savings time modifier but no standard timezone? then error
2332 */
2333 if (fmask & DTK_M(DTZMOD))
2334 return DTERR_BAD_FORMAT;
2335
2336 if ((fmask & DTK_DATE_M) == 0)
2337 GetCurrentDateTime(tmp);
2338 else
2339 {
2340 /* a date has to be specified */
2341 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2342 return DTERR_BAD_FORMAT;
2343 tmp->tm_year = tm->tm_year;
2344 tmp->tm_mon = tm->tm_mon;
2345 tmp->tm_mday = tm->tm_mday;
2346 }
2347 tmp->tm_hour = tm->tm_hour;
2348 tmp->tm_min = tm->tm_min;
2349 tmp->tm_sec = tm->tm_sec;
2350 *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
2351 tm->tm_isdst = tmp->tm_isdst;
2352 }
2353
2354 /* timezone not specified? then use session timezone */
2355 if (tzp != NULL && !(fmask & DTK_M(TZ)))
2356 {
2357 struct pg_tm tt,
2358 *tmp = &tt;
2359
2360 /*
2361 * daylight savings time modifier but no standard timezone? then error
2362 */
2363 if (fmask & DTK_M(DTZMOD))
2364 return DTERR_BAD_FORMAT;
2365
2366 if ((fmask & DTK_DATE_M) == 0)
2367 GetCurrentDateTime(tmp);
2368 else
2369 {
2370 /* a date has to be specified */
2371 if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2372 return DTERR_BAD_FORMAT;
2373 tmp->tm_year = tm->tm_year;
2374 tmp->tm_mon = tm->tm_mon;
2375 tmp->tm_mday = tm->tm_mday;
2376 }
2377 tmp->tm_hour = tm->tm_hour;
2378 tmp->tm_min = tm->tm_min;
2379 tmp->tm_sec = tm->tm_sec;
2381 tm->tm_isdst = tmp->tm_isdst;
2382 }
2383
2384 return 0;
2385}
2386
2387/* DecodeDate()
2388 * Decode date string which includes delimiters.
2389 * Return 0 if okay, a DTERR code if not.
2390 *
2391 * str: field to be parsed
2392 * fmask: bitmask for field types already seen
2393 * *tmask: receives bitmask for fields found here
2394 * *is2digits: set to true if we find 2-digit year
2395 * *tm: field values are stored into appropriate members of this struct
2396 */
2397static int
2398DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
2399 struct pg_tm *tm)
2400{
2401 fsec_t fsec;
2402 int nf = 0;
2403 int i,
2404 len;
2405 int dterr;
2406 bool haveTextMonth = false;
2407 int type,
2408 val,
2409 dmask = 0;
2410 char *field[MAXDATEFIELDS];
2411
2412 *tmask = 0;
2413
2414 /* parse this string... */
2415 while (*str != '\0' && nf < MAXDATEFIELDS)
2416 {
2417 /* skip field separators */
2418 while (*str != '\0' && !isalnum((unsigned char) *str))
2419 str++;
2420
2421 if (*str == '\0')
2422 return DTERR_BAD_FORMAT; /* end of string after separator */
2423
2424 field[nf] = str;
2425 if (isdigit((unsigned char) *str))
2426 {
2427 while (isdigit((unsigned char) *str))
2428 str++;
2429 }
2430 else if (isalpha((unsigned char) *str))
2431 {
2432 while (isalpha((unsigned char) *str))
2433 str++;
2434 }
2435
2436 /* Just get rid of any non-digit, non-alpha characters... */
2437 if (*str != '\0')
2438 *str++ = '\0';
2439 nf++;
2440 }
2441
2442 /* look first for text fields, since that will be unambiguous month */
2443 for (i = 0; i < nf; i++)
2444 {
2445 if (isalpha((unsigned char) *field[i]))
2446 {
2447 type = DecodeSpecial(i, field[i], &val);
2448 if (type == IGNORE_DTF)
2449 continue;
2450
2451 dmask = DTK_M(type);
2452 switch (type)
2453 {
2454 case MONTH:
2455 tm->tm_mon = val;
2456 haveTextMonth = true;
2457 break;
2458
2459 default:
2460 return DTERR_BAD_FORMAT;
2461 }
2462 if (fmask & dmask)
2463 return DTERR_BAD_FORMAT;
2464
2465 fmask |= dmask;
2466 *tmask |= dmask;
2467
2468 /* mark this field as being completed */
2469 field[i] = NULL;
2470 }
2471 }
2472
2473 /* now pick up remaining numeric fields */
2474 for (i = 0; i < nf; i++)
2475 {
2476 if (field[i] == NULL)
2477 continue;
2478
2479 if ((len = strlen(field[i])) <= 0)
2480 return DTERR_BAD_FORMAT;
2481
2482 dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
2483 &dmask, tm,
2484 &fsec, is2digits);
2485 if (dterr)
2486 return dterr;
2487
2488 if (fmask & dmask)
2489 return DTERR_BAD_FORMAT;
2490
2491 fmask |= dmask;
2492 *tmask |= dmask;
2493 }
2494
2495 if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
2496 return DTERR_BAD_FORMAT;
2497
2498 /* validation of the field values must wait until ValidateDate() */
2499
2500 return 0;
2501}
2502
2503/* ValidateDate()
2504 * Check valid year/month/day values, handle BC and DOY cases
2505 * Return 0 if okay, a DTERR code if not.
2506 */
2507int
2508ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
2509 struct pg_tm *tm)
2510{
2511 if (fmask & DTK_M(YEAR))
2512 {
2513 if (isjulian)
2514 {
2515 /* tm_year is correct and should not be touched */
2516 }
2517 else if (bc)
2518 {
2519 /* there is no year zero in AD/BC notation */
2520 if (tm->tm_year <= 0)
2521 return DTERR_FIELD_OVERFLOW;
2522 /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
2523 tm->tm_year = -(tm->tm_year - 1);
2524 }
2525 else if (is2digits)
2526 {
2527 /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
2528 if (tm->tm_year < 0) /* just paranoia */
2529 return DTERR_FIELD_OVERFLOW;
2530 if (tm->tm_year < 70)
2531 tm->tm_year += 2000;
2532 else if (tm->tm_year < 100)
2533 tm->tm_year += 1900;
2534 }
2535 else
2536 {
2537 /* there is no year zero in AD/BC notation */
2538 if (tm->tm_year <= 0)
2539 return DTERR_FIELD_OVERFLOW;
2540 }
2541 }
2542
2543 /* now that we have correct year, decode DOY */
2544 if (fmask & DTK_M(DOY))
2545 {
2546 j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
2547 &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2548 }
2549
2550 /* check for valid month */
2551 if (fmask & DTK_M(MONTH))
2552 {
2553 if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
2555 }
2556
2557 /* minimal check for valid day */
2558 if (fmask & DTK_M(DAY))
2559 {
2560 if (tm->tm_mday < 1 || tm->tm_mday > 31)
2562 }
2563
2564 if ((fmask & DTK_DATE_M) == DTK_DATE_M)
2565 {
2566 /*
2567 * Check for valid day of month, now that we know for sure the month
2568 * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
2569 * unlikely that "Feb 29" is a YMD-order error.
2570 */
2571 if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
2572 return DTERR_FIELD_OVERFLOW;
2573 }
2574
2575 return 0;
2576}
2577
2578
2579/* DecodeTimeCommon()
2580 * Decode time string which includes delimiters.
2581 * Return 0 if okay, a DTERR code if not.
2582 * tmask and itm are output parameters.
2583 *
2584 * This code is shared between the timestamp and interval cases.
2585 * We return a struct pg_itm (of which only the tm_usec, tm_sec, tm_min,
2586 * and tm_hour fields are used) and let the wrapper functions below
2587 * convert and range-check as necessary.
2588 */
2589static int
2590DecodeTimeCommon(char *str, int fmask, int range,
2591 int *tmask, struct pg_itm *itm)
2592{
2593 char *cp;
2594 int dterr;
2595 fsec_t fsec = 0;
2596
2597 *tmask = DTK_TIME_M;
2598
2599 errno = 0;
2600 itm->tm_hour = strtoi64(str, &cp, 10);
2601 if (errno == ERANGE)
2602 return DTERR_FIELD_OVERFLOW;
2603 if (*cp != ':')
2604 return DTERR_BAD_FORMAT;
2605 errno = 0;
2606 itm->tm_min = strtoint(cp + 1, &cp, 10);
2607 if (errno == ERANGE)
2608 return DTERR_FIELD_OVERFLOW;
2609 if (*cp == '\0')
2610 {
2611 itm->tm_sec = 0;
2612 /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
2614 {
2615 if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN)
2616 return DTERR_FIELD_OVERFLOW;
2617 itm->tm_sec = itm->tm_min;
2618 itm->tm_min = (int) itm->tm_hour;
2619 itm->tm_hour = 0;
2620 }
2621 }
2622 else if (*cp == '.')
2623 {
2624 /* always assume mm:ss.sss is MINUTE TO SECOND */
2625 dterr = ParseFractionalSecond(cp, &fsec);
2626 if (dterr)
2627 return dterr;
2628 if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN)
2629 return DTERR_FIELD_OVERFLOW;
2630 itm->tm_sec = itm->tm_min;
2631 itm->tm_min = (int) itm->tm_hour;
2632 itm->tm_hour = 0;
2633 }
2634 else if (*cp == ':')
2635 {
2636 errno = 0;
2637 itm->tm_sec = strtoint(cp + 1, &cp, 10);
2638 if (errno == ERANGE)
2639 return DTERR_FIELD_OVERFLOW;
2640 if (*cp == '.')
2641 {
2642 dterr = ParseFractionalSecond(cp, &fsec);
2643 if (dterr)
2644 return dterr;
2645 }
2646 else if (*cp != '\0')
2647 return DTERR_BAD_FORMAT;
2648 }
2649 else
2650 return DTERR_BAD_FORMAT;
2651
2652 /* do a sanity check; but caller must check the range of tm_hour */
2653 if (itm->tm_hour < 0 ||
2654 itm->tm_min < 0 || itm->tm_min > MINS_PER_HOUR - 1 ||
2655 itm->tm_sec < 0 || itm->tm_sec > SECS_PER_MINUTE ||
2656 fsec < 0 || fsec > USECS_PER_SEC)
2657 return DTERR_FIELD_OVERFLOW;
2658
2659 itm->tm_usec = (int) fsec;
2660
2661 return 0;
2662}
2663
2664/* DecodeTime()
2665 * Decode time string which includes delimiters.
2666 * Return 0 if okay, a DTERR code if not.
2667 *
2668 * This version is used for timestamps. The results are returned into
2669 * the tm_hour/tm_min/tm_sec fields of *tm, and microseconds into *fsec.
2670 */
2671static int
2672DecodeTime(char *str, int fmask, int range,
2673 int *tmask, struct pg_tm *tm, fsec_t *fsec)
2674{
2675 struct pg_itm itm;
2676 int dterr;
2677
2678 dterr = DecodeTimeCommon(str, fmask, range,
2679 tmask, &itm);
2680 if (dterr)
2681 return dterr;
2682
2683 if (itm.tm_hour > INT_MAX)
2684 return DTERR_FIELD_OVERFLOW;
2685 tm->tm_hour = (int) itm.tm_hour;
2686 tm->tm_min = itm.tm_min;
2687 tm->tm_sec = itm.tm_sec;
2688 *fsec = itm.tm_usec;
2689
2690 return 0;
2691}
2692
2693/* DecodeTimeForInterval()
2694 * Decode time string which includes delimiters.
2695 * Return 0 if okay, a DTERR code if not.
2696 *
2697 * This version is used for intervals. The results are returned into
2698 * itm_in->tm_usec.
2699 */
2700static int
2701DecodeTimeForInterval(char *str, int fmask, int range,
2702 int *tmask, struct pg_itm_in *itm_in)
2703{
2704 struct pg_itm itm;
2705 int dterr;
2706
2707 dterr = DecodeTimeCommon(str, fmask, range,
2708 tmask, &itm);
2709 if (dterr)
2710 return dterr;
2711
2712 itm_in->tm_usec = itm.tm_usec;
2713 if (!int64_multiply_add(itm.tm_hour, USECS_PER_HOUR, &itm_in->tm_usec) ||
2716 return DTERR_FIELD_OVERFLOW;
2717
2718 return 0;
2719}
2720
2721
2722/* DecodeNumber()
2723 * Interpret plain numeric field as a date value in context.
2724 * Return 0 if okay, a DTERR code if not.
2725 */
2726static int
2727DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
2728 int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2729{
2730 int val;
2731 char *cp;
2732 int dterr;
2733
2734 *tmask = 0;
2735
2736 errno = 0;
2737 val = strtoint(str, &cp, 10);
2738 if (errno == ERANGE)
2739 return DTERR_FIELD_OVERFLOW;
2740 if (cp == str)
2741 return DTERR_BAD_FORMAT;
2742
2743 if (*cp == '.')
2744 {
2745 /*
2746 * More than two digits before decimal point? Then could be a date or
2747 * a run-together time: 2001.360 20011225 040506.789
2748 */
2749 if (cp - str > 2)
2750 {
2751 dterr = DecodeNumberField(flen, str,
2752 (fmask | DTK_DATE_M),
2753 tmask, tm,
2754 fsec, is2digits);
2755 if (dterr < 0)
2756 return dterr;
2757 return 0;
2758 }
2759
2760 dterr = ParseFractionalSecond(cp, fsec);
2761 if (dterr)
2762 return dterr;
2763 }
2764 else if (*cp != '\0')
2765 return DTERR_BAD_FORMAT;
2766
2767 /* Special case for day of year */
2768 if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
2769 val <= 366)
2770 {
2771 *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
2772 tm->tm_yday = val;
2773 /* tm_mon and tm_mday can't actually be set yet ... */
2774 return 0;
2775 }
2776
2777 /* Switch based on what we have so far */
2778 switch (fmask & DTK_DATE_M)
2779 {
2780 case 0:
2781
2782 /*
2783 * Nothing so far; make a decision about what we think the input
2784 * is. There used to be lots of heuristics here, but the
2785 * consensus now is to be paranoid. It *must* be either
2786 * YYYY-MM-DD (with a more-than-two-digit year field), or the
2787 * field order defined by DateOrder.
2788 */
2789 if (flen >= 3 || DateOrder == DATEORDER_YMD)
2790 {
2791 *tmask = DTK_M(YEAR);
2792 tm->tm_year = val;
2793 }
2794 else if (DateOrder == DATEORDER_DMY)
2795 {
2796 *tmask = DTK_M(DAY);
2797 tm->tm_mday = val;
2798 }
2799 else
2800 {
2801 *tmask = DTK_M(MONTH);
2802 tm->tm_mon = val;
2803 }
2804 break;
2805
2806 case (DTK_M(YEAR)):
2807 /* Must be at second field of YY-MM-DD */
2808 *tmask = DTK_M(MONTH);
2809 tm->tm_mon = val;
2810 break;
2811
2812 case (DTK_M(MONTH)):
2813 if (haveTextMonth)
2814 {
2815 /*
2816 * We are at the first numeric field of a date that included a
2817 * textual month name. We want to support the variants
2818 * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
2819 * inputs. We will also accept MON-DD-YY or DD-MON-YY in
2820 * either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
2821 */
2822 if (flen >= 3 || DateOrder == DATEORDER_YMD)
2823 {
2824 *tmask = DTK_M(YEAR);
2825 tm->tm_year = val;
2826 }
2827 else
2828 {
2829 *tmask = DTK_M(DAY);
2830 tm->tm_mday = val;
2831 }
2832 }
2833 else
2834 {
2835 /* Must be at second field of MM-DD-YY */
2836 *tmask = DTK_M(DAY);
2837 tm->tm_mday = val;
2838 }
2839 break;
2840
2841 case (DTK_M(YEAR) | DTK_M(MONTH)):
2842 if (haveTextMonth)
2843 {
2844 /* Need to accept DD-MON-YYYY even in YMD mode */
2845 if (flen >= 3 && *is2digits)
2846 {
2847 /* Guess that first numeric field is day was wrong */
2848 *tmask = DTK_M(DAY); /* YEAR is already set */
2849 tm->tm_mday = tm->tm_year;
2850 tm->tm_year = val;
2851 *is2digits = false;
2852 }
2853 else
2854 {
2855 *tmask = DTK_M(DAY);
2856 tm->tm_mday = val;
2857 }
2858 }
2859 else
2860 {
2861 /* Must be at third field of YY-MM-DD */
2862 *tmask = DTK_M(DAY);
2863 tm->tm_mday = val;
2864 }
2865 break;
2866
2867 case (DTK_M(DAY)):
2868 /* Must be at second field of DD-MM-YY */
2869 *tmask = DTK_M(MONTH);
2870 tm->tm_mon = val;
2871 break;
2872
2873 case (DTK_M(MONTH) | DTK_M(DAY)):
2874 /* Must be at third field of DD-MM-YY or MM-DD-YY */
2875 *tmask = DTK_M(YEAR);
2876 tm->tm_year = val;
2877 break;
2878
2879 case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
2880 /* we have all the date, so it must be a time field */
2881 dterr = DecodeNumberField(flen, str, fmask,
2882 tmask, tm,
2883 fsec, is2digits);
2884 if (dterr < 0)
2885 return dterr;
2886 return 0;
2887
2888 default:
2889 /* Anything else is bogus input */
2890 return DTERR_BAD_FORMAT;
2891 }
2892
2893 /*
2894 * When processing a year field, mark it for adjustment if it's only one
2895 * or two digits.
2896 */
2897 if (*tmask == DTK_M(YEAR))
2898 *is2digits = (flen <= 2);
2899
2900 return 0;
2901}
2902
2903
2904/* DecodeNumberField()
2905 * Interpret numeric string as a concatenated date or time field.
2906 * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
2907 *
2908 * Use the context of previously decoded fields to help with
2909 * the interpretation.
2910 */
2911static int
2912DecodeNumberField(int len, char *str, int fmask,
2913 int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2914{
2915 char *cp;
2916
2917 /*
2918 * Have a decimal point? Then this is a date or something with a seconds
2919 * field...
2920 */
2921 if ((cp = strchr(str, '.')) != NULL)
2922 {
2923 /*
2924 * Can we use ParseFractionalSecond here? Not clear whether trailing
2925 * junk should be rejected ...
2926 */
2927 if (cp[1] == '\0')
2928 {
2929 /* avoid assuming that strtod will accept "." */
2930 *fsec = 0;
2931 }
2932 else
2933 {
2934 double frac;
2935
2936 errno = 0;
2937 frac = strtod(cp, NULL);
2938 if (errno != 0)
2939 return DTERR_BAD_FORMAT;
2940 *fsec = rint(frac * 1000000);
2941 }
2942 /* Now truncate off the fraction for further processing */
2943 *cp = '\0';
2944 len = strlen(str);
2945 }
2946 /* No decimal point and no complete date yet? */
2947 else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2948 {
2949 if (len >= 6)
2950 {
2951 *tmask = DTK_DATE_M;
2952
2953 /*
2954 * Start from end and consider first 2 as Day, next 2 as Month,
2955 * and the rest as Year.
2956 */
2957 tm->tm_mday = atoi(str + (len - 2));
2958 *(str + (len - 2)) = '\0';
2959 tm->tm_mon = atoi(str + (len - 4));
2960 *(str + (len - 4)) = '\0';
2961 tm->tm_year = atoi(str);
2962 if ((len - 4) == 2)
2963 *is2digits = true;
2964
2965 return DTK_DATE;
2966 }
2967 }
2968
2969 /* not all time fields are specified? */
2970 if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2971 {
2972 /* hhmmss */
2973 if (len == 6)
2974 {
2975 *tmask = DTK_TIME_M;
2976 tm->tm_sec = atoi(str + 4);
2977 *(str + 4) = '\0';
2978 tm->tm_min = atoi(str + 2);
2979 *(str + 2) = '\0';
2980 tm->tm_hour = atoi(str);
2981
2982 return DTK_TIME;
2983 }
2984 /* hhmm? */
2985 else if (len == 4)
2986 {
2987 *tmask = DTK_TIME_M;
2988 tm->tm_sec = 0;
2989 tm->tm_min = atoi(str + 2);
2990 *(str + 2) = '\0';
2991 tm->tm_hour = atoi(str);
2992
2993 return DTK_TIME;
2994 }
2995 }
2996
2997 return DTERR_BAD_FORMAT;
2998}
2999
3000
3001/* DecodeTimezone()
3002 * Interpret string as a numeric timezone.
3003 *
3004 * Return 0 if okay (and set *tzp), a DTERR code if not okay.
3005 */
3006int
3007DecodeTimezone(const char *str, int *tzp)
3008{
3009 int tz;
3010 int hr,
3011 min,
3012 sec = 0;
3013 char *cp;
3014
3015 /* leading character must be "+" or "-" */
3016 if (*str != '+' && *str != '-')
3017 return DTERR_BAD_FORMAT;
3018
3019 errno = 0;
3020 hr = strtoint(str + 1, &cp, 10);
3021 if (errno == ERANGE)
3022 return DTERR_TZDISP_OVERFLOW;
3023
3024 /* explicit delimiter? */
3025 if (*cp == ':')
3026 {
3027 errno = 0;
3028 min = strtoint(cp + 1, &cp, 10);
3029 if (errno == ERANGE)
3030 return DTERR_TZDISP_OVERFLOW;
3031 if (*cp == ':')
3032 {
3033 errno = 0;
3034 sec = strtoint(cp + 1, &cp, 10);
3035 if (errno == ERANGE)
3036 return DTERR_TZDISP_OVERFLOW;
3037 }
3038 }
3039 /* otherwise, might have run things together... */
3040 else if (*cp == '\0' && strlen(str) > 3)
3041 {
3042 min = hr % 100;
3043 hr = hr / 100;
3044 /* we could, but don't, support a run-together hhmmss format */
3045 }
3046 else
3047 min = 0;
3048
3049 /* Range-check the values; see notes in datatype/timestamp.h */
3050 if (hr < 0 || hr > MAX_TZDISP_HOUR)
3051 return DTERR_TZDISP_OVERFLOW;
3052 if (min < 0 || min >= MINS_PER_HOUR)
3053 return DTERR_TZDISP_OVERFLOW;
3054 if (sec < 0 || sec >= SECS_PER_MINUTE)
3055 return DTERR_TZDISP_OVERFLOW;
3056
3057 tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
3058 if (*str == '-')
3059 tz = -tz;
3060
3061 *tzp = -tz;
3062
3063 if (*cp != '\0')
3064 return DTERR_BAD_FORMAT;
3065
3066 return 0;
3067}
3068
3069
3070/* DecodeTimezoneAbbrev()
3071 * Interpret string as a timezone abbreviation, if possible.
3072 *
3073 * Sets *ftype to an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
3074 * string is not any known abbreviation. On success, set *offset and *tz to
3075 * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
3076 * Note that full timezone names (such as America/New_York) are not handled
3077 * here, mostly for historical reasons.
3078 *
3079 * The function result is 0 or a DTERR code; in the latter case, *extra
3080 * is filled as needed. Note that unknown-abbreviation is not considered
3081 * an error case. Also note that many callers assume that the DTERR code
3082 * is one that DateTimeParseError does not require "str" or "datatype"
3083 * strings for.
3084 *
3085 * Given string must be lowercased already.
3086 *
3087 * Implement a cache lookup since it is likely that dates
3088 * will be related in format.
3089 */
3090int
3091DecodeTimezoneAbbrev(int field, const char *lowtoken,
3092 int *ftype, int *offset, pg_tz **tz,
3093 DateTimeErrorExtra *extra)
3094{
3095 const datetkn *tp;
3096
3097 tp = abbrevcache[field];
3098 /* use strncmp so that we match truncated tokens */
3099 if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3100 {
3101 if (zoneabbrevtbl)
3102 tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
3104 else
3105 tp = NULL;
3106 }
3107 if (tp == NULL)
3108 {
3109 *ftype = UNKNOWN_FIELD;
3110 *offset = 0;
3111 *tz = NULL;
3112 }
3113 else
3114 {
3115 abbrevcache[field] = tp;
3116 *ftype = tp->type;
3117 if (tp->type == DYNTZ)
3118 {
3119 *offset = 0;
3120 *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp, extra);
3121 if (*tz == NULL)
3122 return DTERR_BAD_ZONE_ABBREV;
3123 }
3124 else
3125 {
3126 *offset = tp->value;
3127 *tz = NULL;
3128 }
3129 }
3130
3131 return 0;
3132}
3133
3134
3135/* DecodeSpecial()
3136 * Decode text string using lookup table.
3137 *
3138 * Recognizes the keywords listed in datetktbl.
3139 * Note: at one time this would also recognize timezone abbreviations,
3140 * but no more; use DecodeTimezoneAbbrev for that.
3141 *
3142 * Given string must be lowercased already.
3143 *
3144 * Implement a cache lookup since it is likely that dates
3145 * will be related in format.
3146 */
3147int
3148DecodeSpecial(int field, const char *lowtoken, int *val)
3149{
3150 int type;
3151 const datetkn *tp;
3152
3153 tp = datecache[field];
3154 /* use strncmp so that we match truncated tokens */
3155 if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3156 {
3157 tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
3158 }
3159 if (tp == NULL)
3160 {
3162 *val = 0;
3163 }
3164 else
3165 {
3166 datecache[field] = tp;
3167 type = tp->type;
3168 *val = tp->value;
3169 }
3170
3171 return type;
3172}
3173
3174
3175/* DecodeTimezoneName()
3176 * Interpret string as a timezone abbreviation or name.
3177 * Throw error if the name is not recognized.
3178 *
3179 * The return value indicates what kind of zone identifier it is:
3180 * TZNAME_FIXED_OFFSET: fixed offset from UTC
3181 * TZNAME_DYNTZ: dynamic timezone abbreviation
3182 * TZNAME_ZONE: full tzdb zone name
3183 *
3184 * For TZNAME_FIXED_OFFSET, *offset receives the UTC offset (in seconds,
3185 * with ISO sign convention: positive is east of Greenwich).
3186 * For the other two cases, *tz receives the timezone struct representing
3187 * the zone name or the abbreviation's underlying zone.
3188 */
3189int
3190DecodeTimezoneName(const char *tzname, int *offset, pg_tz **tz)
3191{
3192 char *lowzone;
3193 int dterr,
3194 type;
3195 DateTimeErrorExtra extra;
3196
3197 /*
3198 * First we look in the timezone abbreviation table (to handle cases like
3199 * "EST"), and if that fails, we look in the timezone database (to handle
3200 * cases like "America/New_York"). This matches the order in which
3201 * timestamp input checks the cases; it's important because the timezone
3202 * database unwisely uses a few zone names that are identical to offset
3203 * abbreviations.
3204 */
3205
3206 /* DecodeTimezoneAbbrev requires lowercase input */
3207 lowzone = downcase_truncate_identifier(tzname,
3208 strlen(tzname),
3209 false);
3210
3211 dterr = DecodeTimezoneAbbrev(0, lowzone, &type, offset, tz, &extra);
3212 if (dterr)
3213 DateTimeParseError(dterr, &extra, NULL, NULL, NULL);
3214
3215 if (type == TZ || type == DTZ)
3216 {
3217 /* fixed-offset abbreviation, return the offset */
3218 return TZNAME_FIXED_OFFSET;
3219 }
3220 else if (type == DYNTZ)
3221 {
3222 /* dynamic-offset abbreviation, return its referenced timezone */
3223 return TZNAME_DYNTZ;
3224 }
3225 else
3226 {
3227 /* try it as a full zone name */
3228 *tz = pg_tzset(tzname);
3229 if (*tz == NULL)
3230 ereport(ERROR,
3231 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
3232 errmsg("time zone \"%s\" not recognized", tzname)));
3233 return TZNAME_ZONE;
3234 }
3235}
3236
3237/* DecodeTimezoneNameToTz()
3238 * Interpret string as a timezone abbreviation or name.
3239 * Throw error if the name is not recognized.
3240 *
3241 * This is a simple wrapper for DecodeTimezoneName that produces a pg_tz *
3242 * result in all cases.
3243 */
3244pg_tz *
3245DecodeTimezoneNameToTz(const char *tzname)
3246{
3247 pg_tz *result;
3248 int offset;
3249
3250 if (DecodeTimezoneName(tzname, &offset, &result) == TZNAME_FIXED_OFFSET)
3251 {
3252 /* fixed-offset abbreviation, get a pg_tz descriptor for that */
3253 result = pg_tzset_offset(-offset); /* flip to POSIX sign convention */
3254 }
3255 return result;
3256}
3257
3258/* DecodeTimezoneAbbrevPrefix()
3259 * Interpret prefix of string as a timezone abbreviation, if possible.
3260 *
3261 * This has roughly the same functionality as DecodeTimezoneAbbrev(),
3262 * but the API is adapted to the needs of formatting.c. Notably,
3263 * we will match the longest possible prefix of the given string
3264 * rather than insisting on a complete match, and downcasing is applied
3265 * here rather than in the caller.
3266 *
3267 * Returns the length of the timezone abbreviation, or -1 if not recognized.
3268 * On success, sets *offset to the GMT offset for the abbreviation if it
3269 * is a fixed-offset abbreviation, or sets *tz to the pg_tz struct for
3270 * a dynamic abbreviation.
3271 */
3272int
3273DecodeTimezoneAbbrevPrefix(const char *str, int *offset, pg_tz **tz)
3274{
3275 char lowtoken[TOKMAXLEN + 1];
3276 int len;
3277
3278 *offset = 0; /* avoid uninitialized vars on failure */
3279 *tz = NULL;
3280
3281 if (!zoneabbrevtbl)
3282 return -1; /* no abbrevs known, so fail immediately */
3283
3284 /* Downcase as much of the string as we could need */
3285 for (len = 0; len < TOKMAXLEN; len++)
3286 {
3287 if (*str == '\0' || !isalpha((unsigned char) *str))
3288 break;
3289 lowtoken[len] = pg_tolower((unsigned char) *str++);
3290 }
3291 lowtoken[len] = '\0';
3292
3293 /*
3294 * We could avoid doing repeated binary searches if we cared to duplicate
3295 * datebsearch here, but it's not clear that such an optimization would be
3296 * worth the trouble. In common cases there's probably not anything after
3297 * the zone abbrev anyway. So just search with successively truncated
3298 * strings.
3299 */
3300 while (len > 0)
3301 {
3302 const datetkn *tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
3304
3305 if (tp != NULL)
3306 {
3307 if (tp->type == DYNTZ)
3308 {
3309 DateTimeErrorExtra extra;
3311 &extra);
3312
3313 if (tzp != NULL)
3314 {
3315 /* Caller must resolve the abbrev's current meaning */
3316 *tz = tzp;
3317 return len;
3318 }
3319 }
3320 else
3321 {
3322 /* Fixed-offset zone abbrev, so it's easy */
3323 *offset = tp->value;
3324 return len;
3325 }
3326 }
3327 lowtoken[--len] = '\0';
3328 }
3329
3330 /* Did not find a match */
3331 return -1;
3332}
3333
3334
3335/* ClearPgItmIn
3336 *
3337 * Zero out a pg_itm_in
3338 */
3339static inline void
3341{
3342 itm_in->tm_usec = 0;
3343 itm_in->tm_mday = 0;
3344 itm_in->tm_mon = 0;
3345 itm_in->tm_year = 0;
3346}
3347
3348
3349/* DecodeInterval()
3350 * Interpret previously parsed fields for general time interval.
3351 * Returns 0 if successful, DTERR code if bogus input detected.
3352 * dtype and itm_in are output parameters.
3353 *
3354 * Allow "date" field DTK_DATE since this could be just
3355 * an unsigned floating point number. - thomas 1997-11-16
3356 *
3357 * Allow ISO-style time span, with implicit units on number of days
3358 * preceding an hh:mm:ss field. - thomas 1998-04-30
3359 *
3360 * itm_in remains undefined for infinite interval values for which dtype alone
3361 * suffices.
3362 */
3363int
3364DecodeInterval(char **field, int *ftype, int nf, int range,
3365 int *dtype, struct pg_itm_in *itm_in)
3366{
3367 bool force_negative = false;
3368 bool is_before = false;
3369 bool parsing_unit_val = false;
3370 char *cp;
3371 int fmask = 0,
3372 tmask,
3373 type,
3374 uval;
3375 int i;
3376 int dterr;
3377 int64 val;
3378 double fval;
3379
3380 *dtype = DTK_DELTA;
3381 type = IGNORE_DTF;
3382 ClearPgItmIn(itm_in);
3383
3384 /*----------
3385 * The SQL standard defines the interval literal
3386 * '-1 1:00:00'
3387 * to mean "negative 1 days and negative 1 hours", while Postgres
3388 * traditionally treats this as meaning "negative 1 days and positive
3389 * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
3390 * to all fields if there are no other explicit signs.
3391 *
3392 * We leave the signs alone if there are additional explicit signs.
3393 * This protects us against misinterpreting postgres-style dump output,
3394 * since the postgres-style output code has always put an explicit sign on
3395 * all fields following a negative field. But note that SQL-spec output
3396 * is ambiguous and can be misinterpreted on load! (So it's best practice
3397 * to dump in postgres style, not SQL style.)
3398 *----------
3399 */
3400 if (IntervalStyle == INTSTYLE_SQL_STANDARD && nf > 0 && *field[0] == '-')
3401 {
3402 force_negative = true;
3403 /* Check for additional explicit signs */
3404 for (i = 1; i < nf; i++)
3405 {
3406 if (*field[i] == '-' || *field[i] == '+')
3407 {
3408 force_negative = false;
3409 break;
3410 }
3411 }
3412 }
3413
3414 /* read through list backwards to pick up units before values */
3415 for (i = nf - 1; i >= 0; i--)
3416 {
3417 switch (ftype[i])
3418 {
3419 case DTK_TIME:
3420 dterr = DecodeTimeForInterval(field[i], fmask, range,
3421 &tmask, itm_in);
3422 if (dterr)
3423 return dterr;
3424 if (force_negative &&
3425 itm_in->tm_usec > 0)
3426 itm_in->tm_usec = -itm_in->tm_usec;
3427 type = DTK_DAY;
3428 parsing_unit_val = false;
3429 break;
3430
3431 case DTK_TZ:
3432
3433 /*
3434 * Timezone means a token with a leading sign character and at
3435 * least one digit; there could be ':', '.', '-' embedded in
3436 * it as well.
3437 */
3438 Assert(*field[i] == '-' || *field[i] == '+');
3439
3440 /*
3441 * Check for signed hh:mm or hh:mm:ss. If so, process exactly
3442 * like DTK_TIME case above, plus handling the sign.
3443 */
3444 if (strchr(field[i] + 1, ':') != NULL &&
3445 DecodeTimeForInterval(field[i] + 1, fmask, range,
3446 &tmask, itm_in) == 0)
3447 {
3448 if (*field[i] == '-')
3449 {
3450 /* flip the sign on time field */
3451 if (itm_in->tm_usec == PG_INT64_MIN)
3452 return DTERR_FIELD_OVERFLOW;
3453 itm_in->tm_usec = -itm_in->tm_usec;
3454 }
3455
3456 if (force_negative &&
3457 itm_in->tm_usec > 0)
3458 itm_in->tm_usec = -itm_in->tm_usec;
3459
3460 /*
3461 * Set the next type to be a day, if units are not
3462 * specified. This handles the case of '1 +02:03' since we
3463 * are reading right to left.
3464 */
3465 type = DTK_DAY;
3466 parsing_unit_val = false;
3467 break;
3468 }
3469
3470 /*
3471 * Otherwise, fall through to DTK_NUMBER case, which can
3472 * handle signed float numbers and signed year-month values.
3473 */
3474
3475 /* FALLTHROUGH */
3476
3477 case DTK_DATE:
3478 case DTK_NUMBER:
3479 if (type == IGNORE_DTF)
3480 {
3481 /* use typmod to decide what rightmost field is */
3482 switch (range)
3483 {
3484 case INTERVAL_MASK(YEAR):
3485 type = DTK_YEAR;
3486 break;
3487 case INTERVAL_MASK(MONTH):
3489 type = DTK_MONTH;
3490 break;
3491 case INTERVAL_MASK(DAY):
3492 type = DTK_DAY;
3493 break;
3494 case INTERVAL_MASK(HOUR):
3496 type = DTK_HOUR;
3497 break;
3498 case INTERVAL_MASK(MINUTE):
3501 type = DTK_MINUTE;
3502 break;
3503 case INTERVAL_MASK(SECOND):
3507 type = DTK_SECOND;
3508 break;
3509 default:
3510 type = DTK_SECOND;
3511 break;
3512 }
3513 }
3514
3515 errno = 0;
3516 val = strtoi64(field[i], &cp, 10);
3517 if (errno == ERANGE)
3518 return DTERR_FIELD_OVERFLOW;
3519
3520 if (*cp == '-')
3521 {
3522 /* SQL "years-months" syntax */
3523 int val2;
3524
3525 val2 = strtoint(cp + 1, &cp, 10);
3526 if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
3527 return DTERR_FIELD_OVERFLOW;
3528 if (*cp != '\0')
3529 return DTERR_BAD_FORMAT;
3530 type = DTK_MONTH;
3531 if (*field[i] == '-')
3532 val2 = -val2;
3534 return DTERR_FIELD_OVERFLOW;
3535 if (pg_add_s64_overflow(val, val2, &val))
3536 return DTERR_FIELD_OVERFLOW;
3537 fval = 0;
3538 }
3539 else if (*cp == '.')
3540 {
3541 dterr = ParseFraction(cp, &fval);
3542 if (dterr)
3543 return dterr;
3544 if (*field[i] == '-')
3545 fval = -fval;
3546 }
3547 else if (*cp == '\0')
3548 fval = 0;
3549 else
3550 return DTERR_BAD_FORMAT;
3551
3552 tmask = 0; /* DTK_M(type); */
3553
3554 if (force_negative)
3555 {
3556 /* val and fval should be of same sign, but test anyway */
3557 if (val > 0)
3558 val = -val;
3559 if (fval > 0)
3560 fval = -fval;
3561 }
3562
3563 switch (type)
3564 {
3565 case DTK_MICROSEC:
3566 if (!AdjustMicroseconds(val, fval, 1, itm_in))
3567 return DTERR_FIELD_OVERFLOW;
3568 tmask = DTK_M(MICROSECOND);
3569 break;
3570
3571 case DTK_MILLISEC:
3572 if (!AdjustMicroseconds(val, fval, 1000, itm_in))
3573 return DTERR_FIELD_OVERFLOW;
3574 tmask = DTK_M(MILLISECOND);
3575 break;
3576
3577 case DTK_SECOND:
3578 if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
3579 return DTERR_FIELD_OVERFLOW;
3580
3581 /*
3582 * If any subseconds were specified, consider this
3583 * microsecond and millisecond input as well.
3584 */
3585 if (fval == 0)
3586 tmask = DTK_M(SECOND);
3587 else
3588 tmask = DTK_ALL_SECS_M;
3589 break;
3590
3591 case DTK_MINUTE:
3592 if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
3593 return DTERR_FIELD_OVERFLOW;
3594 tmask = DTK_M(MINUTE);
3595 break;
3596
3597 case DTK_HOUR:
3598 if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3599 return DTERR_FIELD_OVERFLOW;
3600 tmask = DTK_M(HOUR);
3601 type = DTK_DAY; /* set for next field */
3602 break;
3603
3604 case DTK_DAY:
3605 if (!AdjustDays(val, 1, itm_in) ||
3606 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3607 return DTERR_FIELD_OVERFLOW;
3608 tmask = DTK_M(DAY);
3609 break;
3610
3611 case DTK_WEEK:
3612 if (!AdjustDays(val, 7, itm_in) ||
3613 !AdjustFractDays(fval, 7, itm_in))
3614 return DTERR_FIELD_OVERFLOW;
3615 tmask = DTK_M(WEEK);
3616 break;
3617
3618 case DTK_MONTH:
3619 if (!AdjustMonths(val, itm_in) ||
3620 !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3621 return DTERR_FIELD_OVERFLOW;
3622 tmask = DTK_M(MONTH);
3623 break;
3624
3625 case DTK_YEAR:
3626 if (!AdjustYears(val, 1, itm_in) ||
3627 !AdjustFractYears(fval, 1, itm_in))
3628 return DTERR_FIELD_OVERFLOW;
3629 tmask = DTK_M(YEAR);
3630 break;
3631
3632 case DTK_DECADE:
3633 if (!AdjustYears(val, 10, itm_in) ||
3634 !AdjustFractYears(fval, 10, itm_in))
3635 return DTERR_FIELD_OVERFLOW;
3636 tmask = DTK_M(DECADE);
3637 break;
3638
3639 case DTK_CENTURY:
3640 if (!AdjustYears(val, 100, itm_in) ||
3641 !AdjustFractYears(fval, 100, itm_in))
3642 return DTERR_FIELD_OVERFLOW;
3643 tmask = DTK_M(CENTURY);
3644 break;
3645
3646 case DTK_MILLENNIUM:
3647 if (!AdjustYears(val, 1000, itm_in) ||
3648 !AdjustFractYears(fval, 1000, itm_in))
3649 return DTERR_FIELD_OVERFLOW;
3650 tmask = DTK_M(MILLENNIUM);
3651 break;
3652
3653 default:
3654 return DTERR_BAD_FORMAT;
3655 }
3656 parsing_unit_val = false;
3657 break;
3658
3659 case DTK_STRING:
3660 case DTK_SPECIAL:
3661 /* reject consecutive unhandled units */
3662 if (parsing_unit_val)
3663 return DTERR_BAD_FORMAT;
3664 type = DecodeUnits(i, field[i], &uval);
3665 if (type == UNKNOWN_FIELD)
3666 type = DecodeSpecial(i, field[i], &uval);
3667 if (type == IGNORE_DTF)
3668 continue;
3669
3670 tmask = 0; /* DTK_M(type); */
3671 switch (type)
3672 {
3673 case UNITS:
3674 type = uval;
3675 parsing_unit_val = true;
3676 break;
3677
3678 case AGO:
3679
3680 /*
3681 * "ago" is only allowed to appear at the end of the
3682 * interval.
3683 */
3684 if (i != nf - 1)
3685 return DTERR_BAD_FORMAT;
3686 is_before = true;
3687 type = uval;
3688 break;
3689
3690 case RESERV:
3691 tmask = (DTK_DATE_M | DTK_TIME_M);
3692
3693 /*
3694 * Only reserved words corresponding to infinite
3695 * intervals are accepted.
3696 */
3697 if (uval != DTK_LATE && uval != DTK_EARLY)
3698 return DTERR_BAD_FORMAT;
3699
3700 /*
3701 * Infinity cannot be followed by anything else. We
3702 * could allow "ago" to reverse the sign of infinity
3703 * but using signed infinity is more intuitive.
3704 */
3705 if (i != nf - 1)
3706 return DTERR_BAD_FORMAT;
3707
3708 *dtype = uval;
3709 break;
3710
3711 default:
3712 return DTERR_BAD_FORMAT;
3713 }
3714 break;
3715
3716 default:
3717 return DTERR_BAD_FORMAT;
3718 }
3719
3720 if (tmask & fmask)
3721 return DTERR_BAD_FORMAT;
3722 fmask |= tmask;
3723 }
3724
3725 /* ensure that at least one time field has been found */
3726 if (fmask == 0)
3727 return DTERR_BAD_FORMAT;
3728
3729 /* reject if unit appeared and was never handled */
3730 if (parsing_unit_val)
3731 return DTERR_BAD_FORMAT;
3732
3733 /* finally, AGO negates everything */
3734 if (is_before)
3735 {
3736 if (itm_in->tm_usec == PG_INT64_MIN ||
3737 itm_in->tm_mday == INT_MIN ||
3738 itm_in->tm_mon == INT_MIN ||
3739 itm_in->tm_year == INT_MIN)
3740 return DTERR_FIELD_OVERFLOW;
3741
3742 itm_in->tm_usec = -itm_in->tm_usec;
3743 itm_in->tm_mday = -itm_in->tm_mday;
3744 itm_in->tm_mon = -itm_in->tm_mon;
3745 itm_in->tm_year = -itm_in->tm_year;
3746 }
3747
3748 return 0;
3749}
3750
3751
3752/*
3753 * Helper functions to avoid duplicated code in DecodeISO8601Interval.
3754 *
3755 * Parse a decimal value and break it into integer and fractional parts.
3756 * Set *endptr to end+1 of the parsed substring.
3757 * Returns 0 or DTERR code.
3758 */
3759static int
3760ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart)
3761{
3762 double val;
3763
3764 /*
3765 * Historically this has accepted anything that strtod() would take,
3766 * notably including "e" notation, so continue doing that. This is
3767 * slightly annoying because the precision of double is less than that of
3768 * int64, so we would lose accuracy for inputs larger than 2^53 or so.
3769 * However, historically we rejected inputs outside the int32 range,
3770 * making that concern moot. What we do now is reject abs(val) above
3771 * 1.0e15 (a round number a bit less than 2^50), so that any accepted
3772 * value will have an exact integer part, and thereby a fraction part with
3773 * abs(*fpart) less than 1. In the absence of field complaints it doesn't
3774 * seem worth working harder.
3775 */
3776 if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
3777 return DTERR_BAD_FORMAT;
3778 errno = 0;
3779 val = strtod(str, endptr);
3780 /* did we not see anything that looks like a double? */
3781 if (*endptr == str || errno != 0)
3782 return DTERR_BAD_FORMAT;
3783 /* watch out for overflow, including infinities; reject NaN too */
3784 if (isnan(val) || val < -1.0e15 || val > 1.0e15)
3785 return DTERR_FIELD_OVERFLOW;
3786 /* be very sure we truncate towards zero (cf dtrunc()) */
3787 if (val >= 0)
3788 *ipart = (int64) floor(val);
3789 else
3790 *ipart = (int64) -floor(-val);
3791 *fpart = val - *ipart;
3792 /* Callers expect this to hold */
3793 Assert(*fpart > -1.0 && *fpart < 1.0);
3794 return 0;
3795}
3796
3797/*
3798 * Determine number of integral digits in a valid ISO 8601 number field
3799 * (we should ignore sign and any fraction part)
3800 */
3801static int
3802ISO8601IntegerWidth(char *fieldstart)
3803{
3804 /* We might have had a leading '-' */
3805 if (*fieldstart == '-')
3806 fieldstart++;
3807 return strspn(fieldstart, "0123456789");
3808}
3809
3810
3811/* DecodeISO8601Interval()
3812 * Decode an ISO 8601 time interval of the "format with designators"
3813 * (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
3814 * Examples: P1D for 1 day
3815 * PT1H for 1 hour
3816 * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
3817 * P0002-06-07T01:30:00 the same value in alternative format
3818 *
3819 * Returns 0 if successful, DTERR code if bogus input detected.
3820 * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
3821 * ISO8601, otherwise this could cause unexpected error messages.
3822 * dtype and itm_in are output parameters.
3823 *
3824 * A couple exceptions from the spec:
3825 * - a week field ('W') may coexist with other units
3826 * - allows decimals in fields other than the least significant unit.
3827 */
3828int
3830 int *dtype, struct pg_itm_in *itm_in)
3831{
3832 bool datepart = true;
3833 bool havefield = false;
3834
3835 *dtype = DTK_DELTA;
3836 ClearPgItmIn(itm_in);
3837
3838 if (strlen(str) < 2 || str[0] != 'P')
3839 return DTERR_BAD_FORMAT;
3840
3841 str++;
3842 while (*str)
3843 {
3844 char *fieldstart;
3845 int64 val;
3846 double fval;
3847 char unit;
3848 int dterr;
3849
3850 if (*str == 'T') /* T indicates the beginning of the time part */
3851 {
3852 datepart = false;
3853 havefield = false;
3854 str++;
3855 continue;
3856 }
3857
3858 fieldstart = str;
3859 dterr = ParseISO8601Number(str, &str, &val, &fval);
3860 if (dterr)
3861 return dterr;
3862
3863 /*
3864 * Note: we could step off the end of the string here. Code below
3865 * *must* exit the loop if unit == '\0'.
3866 */
3867 unit = *str++;
3868
3869 if (datepart)
3870 {
3871 switch (unit) /* before T: Y M W D */
3872 {
3873 case 'Y':
3874 if (!AdjustYears(val, 1, itm_in) ||
3875 !AdjustFractYears(fval, 1, itm_in))
3876 return DTERR_FIELD_OVERFLOW;
3877 break;
3878 case 'M':
3879 if (!AdjustMonths(val, itm_in) ||
3880 !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3881 return DTERR_FIELD_OVERFLOW;
3882 break;
3883 case 'W':
3884 if (!AdjustDays(val, 7, itm_in) ||
3885 !AdjustFractDays(fval, 7, itm_in))
3886 return DTERR_FIELD_OVERFLOW;
3887 break;
3888 case 'D':
3889 if (!AdjustDays(val, 1, itm_in) ||
3890 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3891 return DTERR_FIELD_OVERFLOW;
3892 break;
3893 case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
3894 case '\0':
3895 if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
3896 {
3897 if (!AdjustYears(val / 10000, 1, itm_in) ||
3898 !AdjustMonths((val / 100) % 100, itm_in) ||
3899 !AdjustDays(val % 100, 1, itm_in) ||
3900 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3901 return DTERR_FIELD_OVERFLOW;
3902 if (unit == '\0')
3903 return 0;
3904 datepart = false;
3905 havefield = false;
3906 continue;
3907 }
3908 /* Else fall through to extended alternative format */
3909 /* FALLTHROUGH */
3910 case '-': /* ISO 8601 4.4.3.3 Alternative Format,
3911 * Extended */
3912 if (havefield)
3913 return DTERR_BAD_FORMAT;
3914
3915 if (!AdjustYears(val, 1, itm_in) ||
3916 !AdjustFractYears(fval, 1, itm_in))
3917 return DTERR_FIELD_OVERFLOW;
3918 if (unit == '\0')
3919 return 0;
3920 if (unit == 'T')
3921 {
3922 datepart = false;
3923 havefield = false;
3924 continue;
3925 }
3926
3927 dterr = ParseISO8601Number(str, &str, &val, &fval);
3928 if (dterr)
3929 return dterr;
3930 if (!AdjustMonths(val, itm_in) ||
3931 !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in))
3932 return DTERR_FIELD_OVERFLOW;
3933 if (*str == '\0')
3934 return 0;
3935 if (*str == 'T')
3936 {
3937 datepart = false;
3938 havefield = false;
3939 continue;
3940 }
3941 if (*str != '-')
3942 return DTERR_BAD_FORMAT;
3943 str++;
3944
3945 dterr = ParseISO8601Number(str, &str, &val, &fval);
3946 if (dterr)
3947 return dterr;
3948 if (!AdjustDays(val, 1, itm_in) ||
3949 !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in))
3950 return DTERR_FIELD_OVERFLOW;
3951 if (*str == '\0')
3952 return 0;
3953 if (*str == 'T')
3954 {
3955 datepart = false;
3956 havefield = false;
3957 continue;
3958 }
3959 return DTERR_BAD_FORMAT;
3960 default:
3961 /* not a valid date unit suffix */
3962 return DTERR_BAD_FORMAT;
3963 }
3964 }
3965 else
3966 {
3967 switch (unit) /* after T: H M S */
3968 {
3969 case 'H':
3970 if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3971 return DTERR_FIELD_OVERFLOW;
3972 break;
3973 case 'M':
3974 if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
3975 return DTERR_FIELD_OVERFLOW;
3976 break;
3977 case 'S':
3978 if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
3979 return DTERR_FIELD_OVERFLOW;
3980 break;
3981 case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
3982 if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
3983 {
3984 if (!AdjustMicroseconds(val / 10000, 0, USECS_PER_HOUR, itm_in) ||
3985 !AdjustMicroseconds((val / 100) % 100, 0, USECS_PER_MINUTE, itm_in) ||
3986 !AdjustMicroseconds(val % 100, 0, USECS_PER_SEC, itm_in) ||
3987 !AdjustFractMicroseconds(fval, 1, itm_in))
3988 return DTERR_FIELD_OVERFLOW;
3989 return 0;
3990 }
3991 /* Else fall through to extended alternative format */
3992 /* FALLTHROUGH */
3993 case ':': /* ISO 8601 4.4.3.3 Alternative Format,
3994 * Extended */
3995 if (havefield)
3996 return DTERR_BAD_FORMAT;
3997
3998 if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in))
3999 return DTERR_FIELD_OVERFLOW;
4000 if (unit == '\0')
4001 return 0;
4002
4003 dterr = ParseISO8601Number(str, &str, &val, &fval);
4004 if (dterr)
4005 return dterr;
4006 if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in))
4007 return DTERR_FIELD_OVERFLOW;
4008 if (*str == '\0')
4009 return 0;
4010 if (*str != ':')
4011 return DTERR_BAD_FORMAT;
4012 str++;
4013
4014 dterr = ParseISO8601Number(str, &str, &val, &fval);
4015 if (dterr)
4016 return dterr;
4017 if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in))
4018 return DTERR_FIELD_OVERFLOW;
4019 if (*str == '\0')
4020 return 0;
4021 return DTERR_BAD_FORMAT;
4022
4023 default:
4024 /* not a valid time unit suffix */
4025 return DTERR_BAD_FORMAT;
4026 }
4027 }
4028
4029 havefield = true;
4030 }
4031
4032 return 0;
4033}
4034
4035
4036/* DecodeUnits()
4037 * Decode text string using lookup table.
4038 *
4039 * This routine recognizes keywords associated with time interval units.
4040 *
4041 * Given string must be lowercased already.
4042 *
4043 * Implement a cache lookup since it is likely that dates
4044 * will be related in format.
4045 */
4046int
4047DecodeUnits(int field, const char *lowtoken, int *val)
4048{
4049 int type;
4050 const datetkn *tp;
4051
4052 tp = deltacache[field];
4053 /* use strncmp so that we match truncated tokens */
4054 if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
4055 {
4056 tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
4057 }
4058 if (tp == NULL)
4059 {
4061 *val = 0;
4062 }
4063 else
4064 {
4065 deltacache[field] = tp;
4066 type = tp->type;
4067 *val = tp->value;
4068 }
4069
4070 return type;
4071} /* DecodeUnits() */
4072
4073/*
4074 * Report an error detected by one of the datetime input processing routines.
4075 *
4076 * dterr is the error code, and *extra contains any auxiliary info we need
4077 * for the error report. extra can be NULL if not needed for the particular
4078 * dterr value.
4079 *
4080 * str is the original input string, and datatype is the name of the datatype
4081 * we were trying to accept. (For some DTERR codes, these are not used and
4082 * can be NULL.)
4083 *
4084 * If escontext points to an ErrorSaveContext node, that is filled instead
4085 * of throwing an error.
4086 *
4087 * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
4088 * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
4089 * separate SQLSTATE codes, so ...
4090 */
4091void
4093 const char *str, const char *datatype,
4094 Node *escontext)
4095{
4096 switch (dterr)
4097 {
4099 errsave(escontext,
4100 (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
4101 errmsg("date/time field value out of range: \"%s\"",
4102 str)));
4103 break;
4105 /* <nanny>same as above, but add hint about DateStyle</nanny> */
4106 errsave(escontext,
4107 (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
4108 errmsg("date/time field value out of range: \"%s\"",
4109 str),
4110 errhint("Perhaps you need a different \"DateStyle\" setting.")));
4111 break;
4113 errsave(escontext,
4114 (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
4115 errmsg("interval field value out of range: \"%s\"",
4116 str)));
4117 break;
4119 errsave(escontext,
4120 (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
4121 errmsg("time zone displacement out of range: \"%s\"",
4122 str)));
4123 break;
4124 case DTERR_BAD_TIMEZONE:
4125 errsave(escontext,
4126 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
4127 errmsg("time zone \"%s\" not recognized",
4128 extra->dtee_timezone)));
4129 break;
4131 errsave(escontext,
4132 (errcode(ERRCODE_CONFIG_FILE_ERROR),
4133 errmsg("time zone \"%s\" not recognized",
4134 extra->dtee_timezone),
4135 errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
4136 extra->dtee_abbrev)));
4137 break;
4138 case DTERR_BAD_FORMAT:
4139 default:
4140 errsave(escontext,
4141 (errcode(ERRCODE_INVALID_DATETIME_FORMAT),
4142 errmsg("invalid input syntax for type %s: \"%s\"",
4143 datatype, str)));
4144 break;
4145 }
4146}
4147
4148/* datebsearch()
4149 * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
4150 * is WAY faster than the generic bsearch().
4151 */
4152static const datetkn *
4153datebsearch(const char *key, const datetkn *base, int nel)
4154{
4155 if (nel > 0)
4156 {
4157 const datetkn *last = base + nel - 1,
4158 *position;
4159 int result;
4160
4161 while (last >= base)
4162 {
4163 position = base + ((last - base) >> 1);
4164 /* precheck the first character for a bit of extra speed */
4165 result = (int) key[0] - (int) position->token[0];
4166 if (result == 0)
4167 {
4168 /* use strncmp so that we match truncated tokens */
4169 result = strncmp(key, position->token, TOKMAXLEN);
4170 if (result == 0)
4171 return position;
4172 }
4173 if (result < 0)
4174 last = position - 1;
4175 else
4176 base = position + 1;
4177 }
4178 }
4179 return NULL;
4180}
4181
4182/* EncodeTimezone()
4183 * Copies representation of a numeric timezone offset to str.
4184 *
4185 * Returns a pointer to the new end of string. No NUL terminator is put
4186 * there; callers are responsible for NUL terminating str themselves.
4187 */
4188static char *
4189EncodeTimezone(char *str, int tz, int style)
4190{
4191 int hour,
4192 min,
4193 sec;
4194
4195 sec = abs(tz);
4196 min = sec / SECS_PER_MINUTE;
4197 sec -= min * SECS_PER_MINUTE;
4198 hour = min / MINS_PER_HOUR;
4199 min -= hour * MINS_PER_HOUR;
4200
4201 /* TZ is negated compared to sign we wish to display ... */
4202 *str++ = (tz <= 0 ? '+' : '-');
4203
4204 if (sec != 0)
4205 {
4206 str = pg_ultostr_zeropad(str, hour, 2);
4207 *str++ = ':';
4208 str = pg_ultostr_zeropad(str, min, 2);
4209 *str++ = ':';
4210 str = pg_ultostr_zeropad(str, sec, 2);
4211 }
4212 else if (min != 0 || style == USE_XSD_DATES)
4213 {
4214 str = pg_ultostr_zeropad(str, hour, 2);
4215 *str++ = ':';
4216 str = pg_ultostr_zeropad(str, min, 2);
4217 }
4218 else
4219 str = pg_ultostr_zeropad(str, hour, 2);
4220 return str;
4221}
4222
4223/* EncodeDateOnly()
4224 * Encode date as local time.
4225 */
4226void
4227EncodeDateOnly(struct pg_tm *tm, int style, char *str)
4228{
4229 Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4230
4231 switch (style)
4232 {
4233 case USE_ISO_DATES:
4234 case USE_XSD_DATES:
4235 /* compatible with ISO date formats */
4237 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4238 *str++ = '-';
4240 *str++ = '-';
4242 break;
4243
4244 case USE_SQL_DATES:
4245 /* compatible with Oracle/Ingres date formats */
4246 if (DateOrder == DATEORDER_DMY)
4247 {
4249 *str++ = '/';
4251 }
4252 else
4253 {
4255 *str++ = '/';
4257 }
4258 *str++ = '/';
4260 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4261 break;
4262
4263 case USE_GERMAN_DATES:
4264 /* German-style date format */
4266 *str++ = '.';
4268 *str++ = '.';
4270 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4271 break;
4272
4273 case USE_POSTGRES_DATES:
4274 default:
4275 /* traditional date-only style for Postgres */
4276 if (DateOrder == DATEORDER_DMY)
4277 {
4279 *str++ = '-';
4281 }
4282 else
4283 {
4285 *str++ = '-';
4287 }
4288 *str++ = '-';
4290 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4291 break;
4292 }
4293
4294 if (tm->tm_year <= 0)
4295 {
4296 memcpy(str, " BC", 3); /* Don't copy NUL */
4297 str += 3;
4298 }
4299 *str = '\0';
4300}
4301
4302
4303/* EncodeTimeOnly()
4304 * Encode time fields only.
4305 *
4306 * tm and fsec are the value to encode, print_tz determines whether to include
4307 * a time zone (the difference between time and timetz types), tz is the
4308 * numeric time zone offset, style is the date style, str is where to write the
4309 * output.
4310 */
4311void
4312EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
4313{
4315 *str++ = ':';
4317 *str++ = ':';
4318 str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
4319 if (print_tz)
4320 str = EncodeTimezone(str, tz, style);
4321 *str = '\0';
4322}
4323
4324
4325/* EncodeDateTime()
4326 * Encode date and time interpreted as local time.
4327 *
4328 * tm and fsec are the value to encode, print_tz determines whether to include
4329 * a time zone (the difference between timestamp and timestamptz types), tz is
4330 * the numeric time zone offset, tzn is the textual time zone, which if
4331 * specified will be used instead of tz by some styles, style is the date
4332 * style, str is where to write the output.
4333 *
4334 * Supported date styles:
4335 * Postgres - day mon hh:mm:ss yyyy tz
4336 * SQL - mm/dd/yyyy hh:mm:ss.ss tz
4337 * ISO - yyyy-mm-dd hh:mm:ss+/-tz
4338 * German - dd.mm.yyyy hh:mm:ss tz
4339 * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
4340 */
4341void
4342EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
4343{
4344 int day;
4345
4346 Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
4347
4348 /*
4349 * Negative tm_isdst means we have no valid time zone translation.
4350 */
4351 if (tm->tm_isdst < 0)
4352 print_tz = false;
4353
4354 switch (style)
4355 {
4356 case USE_ISO_DATES:
4357 case USE_XSD_DATES:
4358 /* Compatible with ISO-8601 date formats */
4360 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4361 *str++ = '-';
4363 *str++ = '-';
4365 *str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
4367 *str++ = ':';
4369 *str++ = ':';
4370 str = AppendTimestampSeconds(str, tm, fsec);
4371 if (print_tz)
4372 str = EncodeTimezone(str, tz, style);
4373 break;
4374
4375 case USE_SQL_DATES:
4376 /* Compatible with Oracle/Ingres date formats */
4377 if (DateOrder == DATEORDER_DMY)
4378 {
4380 *str++ = '/';
4382 }
4383 else
4384 {
4386 *str++ = '/';
4388 }
4389 *str++ = '/';
4391 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4392 *str++ = ' ';
4394 *str++ = ':';
4396 *str++ = ':';
4397 str = AppendTimestampSeconds(str, tm, fsec);
4398
4399 /*
4400 * Note: the uses of %.*s in this function would be risky if the
4401 * timezone names ever contain non-ASCII characters, since we are
4402 * not being careful to do encoding-aware clipping. However, all
4403 * TZ abbreviations in the IANA database are plain ASCII.
4404 */
4405 if (print_tz)
4406 {
4407 if (tzn)
4408 {
4409 sprintf(str, " %.*s", MAXTZLEN, tzn);
4410 str += strlen(str);
4411 }
4412 else
4413 str = EncodeTimezone(str, tz, style);
4414 }
4415 break;
4416
4417 case USE_GERMAN_DATES:
4418 /* German variant on European style */
4420 *str++ = '.';
4422 *str++ = '.';
4424 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4425 *str++ = ' ';
4427 *str++ = ':';
4429 *str++ = ':';
4430 str = AppendTimestampSeconds(str, tm, fsec);
4431
4432 if (print_tz)
4433 {
4434 if (tzn)
4435 {
4436 sprintf(str, " %.*s", MAXTZLEN, tzn);
4437 str += strlen(str);
4438 }
4439 else
4440 str = EncodeTimezone(str, tz, style);
4441 }
4442 break;
4443
4444 case USE_POSTGRES_DATES:
4445 default:
4446 /* Backward-compatible with traditional Postgres abstime dates */
4447 day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
4448 tm->tm_wday = j2day(day);
4449 memcpy(str, days[tm->tm_wday], 3);
4450 str += 3;
4451 *str++ = ' ';
4452 if (DateOrder == DATEORDER_DMY)
4453 {
4455 *str++ = ' ';
4456 memcpy(str, months[tm->tm_mon - 1], 3);
4457 str += 3;
4458 }
4459 else
4460 {
4461 memcpy(str, months[tm->tm_mon - 1], 3);
4462 str += 3;
4463 *str++ = ' ';
4465 }
4466 *str++ = ' ';
4468 *str++ = ':';
4470 *str++ = ':';
4471 str = AppendTimestampSeconds(str, tm, fsec);
4472 *str++ = ' ';
4474 (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4475
4476 if (print_tz)
4477 {
4478 if (tzn)
4479 {
4480 sprintf(str, " %.*s", MAXTZLEN, tzn);
4481 str += strlen(str);
4482 }
4483 else
4484 {
4485 /*
4486 * We have a time zone, but no string version. Use the
4487 * numeric form, but be sure to include a leading space to
4488 * avoid formatting something which would be rejected by
4489 * the date/time parser later. - thomas 2001-10-19
4490 */
4491 *str++ = ' ';
4492 str = EncodeTimezone(str, tz, style);
4493 }
4494 }
4495 break;
4496 }
4497
4498 if (tm->tm_year <= 0)
4499 {
4500 memcpy(str, " BC", 3); /* Don't copy NUL */
4501 str += 3;
4502 }
4503 *str = '\0';
4504}
4505
4506
4507/*
4508 * Helper functions to avoid duplicated code in EncodeInterval.
4509 */
4510
4511/* Append an ISO-8601-style interval field, but only if value isn't zero */
4512static char *
4513AddISO8601IntPart(char *cp, int64 value, char units)
4514{
4515 if (value == 0)
4516 return cp;
4517 sprintf(cp, "%lld%c", (long long) value, units);
4518 return cp + strlen(cp);
4519}
4520
4521/* Append a postgres-style interval field, but only if value isn't zero */
4522static char *
4523AddPostgresIntPart(char *cp, int64 value, const char *units,
4524 bool *is_zero, bool *is_before)
4525{
4526 if (value == 0)
4527 return cp;
4528 sprintf(cp, "%s%s%lld %s%s",
4529 (!*is_zero) ? " " : "",
4530 (*is_before && value > 0) ? "+" : "",
4531 (long long) value,
4532 units,
4533 (value != 1) ? "s" : "");
4534
4535 /*
4536 * Each nonzero field sets is_before for (only) the next one. This is a
4537 * tad bizarre but it's how it worked before...
4538 */
4539 *is_before = (value < 0);
4540 *is_zero = false;
4541 return cp + strlen(cp);
4542}
4543
4544/* Append a verbose-style interval field, but only if value isn't zero */
4545static char *
4546AddVerboseIntPart(char *cp, int64 value, const char *units,
4547 bool *is_zero, bool *is_before)
4548{
4549 if (value == 0)
4550 return cp;
4551 /* first nonzero value sets is_before */
4552 if (*is_zero)
4553 {
4554 *is_before = (value < 0);
4555 value = i64abs(value);
4556 }
4557 else if (*is_before)
4558 value = -value;
4559 sprintf(cp, " %lld %s%s", (long long) value, units, (value == 1) ? "" : "s");
4560 *is_zero = false;
4561 return cp + strlen(cp);
4562}
4563
4564
4565/* EncodeInterval()
4566 * Interpret time structure as a delta time and convert to string.
4567 *
4568 * Support "traditional Postgres" and ISO-8601 styles.
4569 * Actually, afaik ISO does not address time interval formatting,
4570 * but this looks similar to the spec for absolute date/time.
4571 * - thomas 1998-04-30
4572 *
4573 * Actually, afaik, ISO 8601 does specify formats for "time
4574 * intervals...[of the]...format with time-unit designators", which
4575 * are pretty ugly. The format looks something like
4576 * P1Y1M1DT1H1M1.12345S
4577 * but useful for exchanging data with computers instead of humans.
4578 * - ron 2003-07-14
4579 *
4580 * And ISO's SQL 2008 standard specifies standards for
4581 * "year-month literal"s (that look like '2-3') and
4582 * "day-time literal"s (that look like ('4 5:6:7')
4583 */
4584void
4585EncodeInterval(struct pg_itm *itm, int style, char *str)
4586{
4587 char *cp = str;
4588 int year = itm->tm_year;
4589 int mon = itm->tm_mon;
4590 int64 mday = itm->tm_mday; /* tm_mday could be INT_MIN */
4591 int64 hour = itm->tm_hour;
4592 int min = itm->tm_min;
4593 int sec = itm->tm_sec;
4594 int fsec = itm->tm_usec;
4595 bool is_before = false;
4596 bool is_zero = true;
4597
4598 /*
4599 * The sign of year and month are guaranteed to match, since they are
4600 * stored internally as "month". But we'll need to check for is_before and
4601 * is_zero when determining the signs of day and hour/minute/seconds
4602 * fields.
4603 */
4604 switch (style)
4605 {
4606 /* SQL Standard interval format */
4608 {
4609 bool has_negative = year < 0 || mon < 0 ||
4610 mday < 0 || hour < 0 ||
4611 min < 0 || sec < 0 || fsec < 0;
4612 bool has_positive = year > 0 || mon > 0 ||
4613 mday > 0 || hour > 0 ||
4614 min > 0 || sec > 0 || fsec > 0;
4615 bool has_year_month = year != 0 || mon != 0;
4616 bool has_day_time = mday != 0 || hour != 0 ||
4617 min != 0 || sec != 0 || fsec != 0;
4618 bool has_day = mday != 0;
4619 bool sql_standard_value = !(has_negative && has_positive) &&
4620 !(has_year_month && has_day_time);
4621
4622 /*
4623 * SQL Standard wants only 1 "<sign>" preceding the whole
4624 * interval ... but can't do that if mixed signs.
4625 */
4626 if (has_negative && sql_standard_value)
4627 {
4628 *cp++ = '-';
4629 year = -year;
4630 mon = -mon;
4631 mday = -mday;
4632 hour = -hour;
4633 min = -min;
4634 sec = -sec;
4635 fsec = -fsec;
4636 }
4637
4638 if (!has_negative && !has_positive)
4639 {
4640 sprintf(cp, "0");
4641 }
4642 else if (!sql_standard_value)
4643 {
4644 /*
4645 * For non sql-standard interval values, force outputting
4646 * the signs to avoid ambiguities with intervals with
4647 * mixed sign components.
4648 */
4649 char year_sign = (year < 0 || mon < 0) ? '-' : '+';
4650 char day_sign = (mday < 0) ? '-' : '+';
4651 char sec_sign = (hour < 0 || min < 0 ||
4652 sec < 0 || fsec < 0) ? '-' : '+';
4653
4654 sprintf(cp, "%c%d-%d %c%lld %c%lld:%02d:",
4655 year_sign, abs(year), abs(mon),
4656 day_sign, (long long) i64abs(mday),
4657 sec_sign, (long long) i64abs(hour), abs(min));
4658 cp += strlen(cp);
4659 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4660 *cp = '\0';
4661 }
4662 else if (has_year_month)
4663 {
4664 sprintf(cp, "%d-%d", year, mon);
4665 }
4666 else if (has_day)
4667 {
4668 sprintf(cp, "%lld %lld:%02d:",
4669 (long long) mday, (long long) hour, min);
4670 cp += strlen(cp);
4671 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4672 *cp = '\0';
4673 }
4674 else
4675 {
4676 sprintf(cp, "%lld:%02d:", (long long) hour, min);
4677 cp += strlen(cp);
4678 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4679 *cp = '\0';
4680 }
4681 }
4682 break;
4683
4684 /* ISO 8601 "time-intervals by duration only" */
4685 case INTSTYLE_ISO_8601:
4686 /* special-case zero to avoid printing nothing */
4687 if (year == 0 && mon == 0 && mday == 0 &&
4688 hour == 0 && min == 0 && sec == 0 && fsec == 0)
4689 {
4690 sprintf(cp, "PT0S");
4691 break;
4692 }
4693 *cp++ = 'P';
4694 cp = AddISO8601IntPart(cp, year, 'Y');
4695 cp = AddISO8601IntPart(cp, mon, 'M');
4696 cp = AddISO8601IntPart(cp, mday, 'D');
4697 if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
4698 *cp++ = 'T';
4699 cp = AddISO8601IntPart(cp, hour, 'H');
4700 cp = AddISO8601IntPart(cp, min, 'M');
4701 if (sec != 0 || fsec != 0)
4702 {
4703 if (sec < 0 || fsec < 0)
4704 *cp++ = '-';
4705 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4706 *cp++ = 'S';
4707 *cp++ = '\0';
4708 }
4709 break;
4710
4711 /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
4712 case INTSTYLE_POSTGRES:
4713 cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
4714
4715 /*
4716 * Ideally we should spell out "month" like we do for "year" and
4717 * "day". However, for backward compatibility, we can't easily
4718 * fix this. bjm 2011-05-24
4719 */
4720 cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
4721 cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
4722 if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
4723 {
4724 bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
4725
4726 sprintf(cp, "%s%s%02lld:%02d:",
4727 is_zero ? "" : " ",
4728 (minus ? "-" : (is_before ? "+" : "")),
4729 (long long) i64abs(hour), abs(min));
4730 cp += strlen(cp);
4731 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4732 *cp = '\0';
4733 }
4734 break;
4735
4736 /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
4738 default:
4739 strcpy(cp, "@");
4740 cp++;
4741 cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
4742 cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
4743 cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
4744 cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
4745 cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
4746 if (sec != 0 || fsec != 0)
4747 {
4748 *cp++ = ' ';
4749 if (sec < 0 || (sec == 0 && fsec < 0))
4750 {
4751 if (is_zero)
4752 is_before = true;
4753 else if (!is_before)
4754 *cp++ = '-';
4755 }
4756 else if (is_before)
4757 *cp++ = '-';
4758 cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4759 /* We output "ago", not negatives, so use abs(). */
4760 sprintf(cp, " sec%s",
4761 (abs(sec) != 1 || fsec != 0) ? "s" : "");
4762 is_zero = false;
4763 }
4764 /* identically zero? then put in a unitless zero... */
4765 if (is_zero)
4766 strcat(cp, " 0");
4767 if (is_before)
4768 strcat(cp, " ago");
4769 break;
4770 }
4771}
4772
4773
4774/*
4775 * We've been burnt by stupid errors in the ordering of the datetkn tables
4776 * once too often. Arrange to check them during postmaster start.
4777 */
4778static bool
4779CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
4780{
4781 bool ok = true;
4782 int i;
4783
4784 for (i = 0; i < nel; i++)
4785 {
4786 /* check for token strings that don't fit */
4787 if (strlen(base[i].token) > TOKMAXLEN)
4788 {
4789 /* %.*s is safe since all our tokens are ASCII */
4790 elog(LOG, "token too long in %s table: \"%.*s\"",
4791 tablename,
4792 TOKMAXLEN + 1, base[i].token);
4793 ok = false;
4794 break; /* don't risk applying strcmp */
4795 }
4796 /* check for out of order */
4797 if (i > 0 &&
4798 strcmp(base[i - 1].token, base[i].token) >= 0)
4799 {
4800 elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
4801 tablename,
4802 base[i - 1].token,
4803 base[i].token);
4804 ok = false;
4805 }
4806 }
4807 return ok;
4808}
4809
4810bool
4812{
4813 bool ok = true;
4814
4815 Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
4816 Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
4817
4818 ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
4819 ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
4820 return ok;
4821}
4822
4823/*
4824 * Common code for temporal prosupport functions: simplify, if possible,
4825 * a call to a temporal type's length-coercion function.
4826 *
4827 * Types time, timetz, timestamp and timestamptz each have a range of allowed
4828 * precisions. An unspecified precision is rigorously equivalent to the
4829 * highest specifiable precision. We can replace the function call with a
4830 * no-op RelabelType if it is coercing to the same or higher precision as the
4831 * input is known to have.
4832 *
4833 * The input Node is always a FuncExpr, but to reduce the #include footprint
4834 * of datetime.h, we declare it as Node *.
4835 *
4836 * Note: timestamp_scale throws an error when the typmod is out of range, but
4837 * we can't get there from a cast: our typmodin will have caught it already.
4838 */
4839Node *
4840TemporalSimplify(int32 max_precis, Node *node)
4841{
4842 FuncExpr *expr = castNode(FuncExpr, node);
4843 Node *ret = NULL;
4844 Node *typmod;
4845
4846 Assert(list_length(expr->args) >= 2);
4847
4848 typmod = (Node *) lsecond(expr->args);
4849
4850 if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
4851 {
4852 Node *source = (Node *) linitial(expr->args);
4853 int32 old_precis = exprTypmod(source);
4854 int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
4855
4856 if (new_precis < 0 || new_precis == max_precis ||
4857 (old_precis >= 0 && new_precis >= old_precis))
4858 ret = relabel_to_typmod(source, new_precis);
4859 }
4860
4861 return ret;
4862}
4863
4864/*
4865 * This function gets called during timezone config file load or reload
4866 * to create the final array of timezone tokens. The argument array
4867 * is already sorted in name order.
4868 *
4869 * The result is a TimeZoneAbbrevTable (which must be a single guc_malloc'd
4870 * chunk) or NULL on alloc failure. No other error conditions are defined.
4871 */
4873ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
4874{
4876 Size tbl_size;
4877 int i;
4878
4879 /* Space for fixed fields and datetkn array */
4880 tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4881 n * sizeof(datetkn);
4882 tbl_size = MAXALIGN(tbl_size);
4883 /* Count up space for dynamic abbreviations */
4884 for (i = 0; i < n; i++)
4885 {
4886 struct tzEntry *abbr = abbrevs + i;
4887
4888 if (abbr->zone != NULL)
4889 {
4890 Size dsize;
4891
4892 dsize = offsetof(DynamicZoneAbbrev, zone) +
4893 strlen(abbr->zone) + 1;
4894 tbl_size += MAXALIGN(dsize);
4895 }
4896 }
4897
4898 /* Alloc the result ... */
4899 tbl = guc_malloc(LOG, tbl_size);
4900 if (!tbl)
4901 return NULL;
4902
4903 /* ... and fill it in */
4904 tbl->tblsize = tbl_size;
4905 tbl->numabbrevs = n;
4906 /* in this loop, tbl_size reprises the space calculation above */
4907 tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4908 n * sizeof(datetkn);
4909 tbl_size = MAXALIGN(tbl_size);
4910 for (i = 0; i < n; i++)
4911 {
4912 struct tzEntry *abbr = abbrevs + i;
4913 datetkn *dtoken = tbl->abbrevs + i;
4914
4915 /* use strlcpy to truncate name if necessary */
4916 strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1);
4917 if (abbr->zone != NULL)
4918 {
4919 /* Allocate a DynamicZoneAbbrev for this abbreviation */
4920 DynamicZoneAbbrev *dtza;
4921 Size dsize;
4922
4923 dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size);
4924 dtza->tz = NULL;
4925 strcpy(dtza->zone, abbr->zone);
4926
4927 dtoken->type = DYNTZ;
4928 /* value is offset from table start to DynamicZoneAbbrev */
4929 dtoken->value = (int32) tbl_size;
4930
4931 dsize = offsetof(DynamicZoneAbbrev, zone) +
4932 strlen(abbr->zone) + 1;
4933 tbl_size += MAXALIGN(dsize);
4934 }
4935 else
4936 {
4937 dtoken->type = abbr->is_dst ? DTZ : TZ;
4938 dtoken->value = abbr->offset;
4939 }
4940 }
4941
4942 /* Assert the two loops above agreed on size calculations */
4943 Assert(tbl->tblsize == tbl_size);
4944
4945 /* Check the ordering, if testing */
4946 Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n));
4947
4948 return tbl;
4949}
4950
4951/*
4952 * Install a TimeZoneAbbrevTable as the active table.
4953 *
4954 * Caller is responsible that the passed table doesn't go away while in use.
4955 */
4956void
4958{
4959 zoneabbrevtbl = tbl;
4960 /* reset abbrevcache, which may contain pointers into old table */
4961 memset(abbrevcache, 0, sizeof(abbrevcache));
4962}
4963
4964/*
4965 * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation.
4966 *
4967 * On failure, returns NULL and fills *extra for a DTERR_BAD_ZONE_ABBREV error.
4968 */
4969static pg_tz *
4971 DateTimeErrorExtra *extra)
4972{
4973 DynamicZoneAbbrev *dtza;
4974
4975 /* Just some sanity checks to prevent indexing off into nowhere */
4976 Assert(tp->type == DYNTZ);
4977 Assert(tp->value > 0 && tp->value < tbl->tblsize);
4978
4979 dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value);
4980
4981 /* Look up the underlying zone if we haven't already */
4982 if (dtza->tz == NULL)
4983 {
4984 dtza->tz = pg_tzset(dtza->zone);
4985 if (dtza->tz == NULL)
4986 {
4987 /* Ooops, bogus zone name in config file entry */
4988 extra->dtee_timezone = dtza->zone;
4989 extra->dtee_abbrev = tp->token;
4990 }
4991 }
4992 return dtza->tz;
4993}
4994
4995
4996/*
4997 * This set-returning function reads all the available time zone abbreviations
4998 * and returns a set of (abbrev, utc_offset, is_dst).
4999 */
5000Datum
5002{
5003 FuncCallContext *funcctx;
5004 int *pindex;
5005 Datum result;
5006 HeapTuple tuple;
5007 Datum values[3];
5008 bool nulls[3] = {0};
5009 const datetkn *tp;
5010 char buffer[TOKMAXLEN + 1];
5011 int gmtoffset;
5012 bool is_dst;
5013 unsigned char *p;
5014 struct pg_itm_in itm_in;
5015 Interval *resInterval;
5016
5017 /* stuff done only on the first call of the function */
5018 if (SRF_IS_FIRSTCALL())
5019 {
5020 TupleDesc tupdesc;
5021 MemoryContext oldcontext;
5022
5023 /* create a function context for cross-call persistence */
5024 funcctx = SRF_FIRSTCALL_INIT();
5025
5026 /*
5027 * switch to memory context appropriate for multiple function calls
5028 */
5029 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
5030
5031 /* allocate memory for user context */
5032 pindex = (int *) palloc(sizeof(int));
5033 *pindex = 0;
5034 funcctx->user_fctx = pindex;
5035
5036 if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
5037 elog(ERROR, "return type must be a row type");
5038 funcctx->tuple_desc = tupdesc;
5039
5040 MemoryContextSwitchTo(oldcontext);
5041 }
5042
5043 /* stuff done on every call of the function */
5044 funcctx = SRF_PERCALL_SETUP();
5045 pindex = (int *) funcctx->user_fctx;
5046
5047 if (zoneabbrevtbl == NULL ||
5048 *pindex >= zoneabbrevtbl->numabbrevs)
5049 SRF_RETURN_DONE(funcctx);
5050
5051 tp = zoneabbrevtbl->abbrevs + *pindex;
5052
5053 switch (tp->type)
5054 {
5055 case TZ:
5056 gmtoffset = tp->value;
5057 is_dst = false;
5058 break;
5059 case DTZ:
5060 gmtoffset = tp->value;
5061 is_dst = true;
5062 break;
5063 case DYNTZ:
5064 {
5065 /* Determine the current meaning of the abbrev */
5066 pg_tz *tzp;
5067 DateTimeErrorExtra extra;
5069 int isdst;
5070
5071 tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp, &extra);
5072 if (tzp == NULL)
5074 NULL, NULL, NULL);
5077 tp->token,
5078 tzp,
5079 &isdst);
5080 is_dst = (bool) isdst;
5081 break;
5082 }
5083 default:
5084 elog(ERROR, "unrecognized timezone type %d", (int) tp->type);
5085 gmtoffset = 0; /* keep compiler quiet */
5086 is_dst = false;
5087 break;
5088 }
5089
5090 /*
5091 * Convert name to text, using upcasing conversion that is the inverse of
5092 * what ParseDateTime() uses.
5093 */
5094 strlcpy(buffer, tp->token, sizeof(buffer));
5095 for (p = (unsigned char *) buffer; *p; p++)
5096 *p = pg_toupper(*p);
5097
5098 values[0] = CStringGetTextDatum(buffer);
5099
5100 /* Convert offset (in seconds) to an interval; can't overflow */
5101 MemSet(&itm_in, 0, sizeof(struct pg_itm_in));
5102 itm_in.tm_usec = (int64) gmtoffset * USECS_PER_SEC;
5103 resInterval = (Interval *) palloc(sizeof(Interval));
5104 (void) itmin2interval(&itm_in, resInterval);
5105 values[1] = IntervalPGetDatum(resInterval);
5106
5107 values[2] = BoolGetDatum(is_dst);
5108
5109 (*pindex)++;
5110
5111 tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
5112 result = HeapTupleGetDatum(tuple);
5113
5114 SRF_RETURN_NEXT(funcctx, result);
5115}
5116
5117/*
5118 * This set-returning function reads all the available full time zones
5119 * and returns a set of (name, abbrev, utc_offset, is_dst).
5120 */
5121Datum
5123{
5124 ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
5125 pg_tzenum *tzenum;
5126 pg_tz *tz;
5127 Datum values[4];
5128 bool nulls[4] = {0};
5129 int tzoff;
5130 struct pg_tm tm;
5131 fsec_t fsec;
5132 const char *tzn;
5133 Interval *resInterval;
5134 struct pg_itm_in itm_in;
5135
5136 InitMaterializedSRF(fcinfo, 0);
5137
5138 /* initialize timezone scanning code */
5139 tzenum = pg_tzenumerate_start();
5140
5141 /* search for another zone to display */
5142 for (;;)
5143 {
5144 tz = pg_tzenumerate_next(tzenum);
5145 if (!tz)
5146 break;
5147
5148 /* Convert now() to local time in this zone */
5150 &tzoff, &tm, &fsec, &tzn, tz) != 0)
5151 continue; /* ignore if conversion fails */
5152
5153 /*
5154 * IANA's rather silly "Factory" time zone used to emit ridiculously
5155 * long "abbreviations" such as "Local time zone must be set--see zic
5156 * manual page" or "Local time zone must be set--use tzsetup". While
5157 * modern versions of tzdb emit the much saner "-00", it seems some
5158 * benighted packagers are hacking the IANA data so that it continues
5159 * to produce these strings. To prevent producing a weirdly wide
5160 * abbrev column, reject ridiculously long abbreviations.
5161 */
5162 if (tzn && strlen(tzn) > 31)
5163 continue;
5164
5166 values[1] = CStringGetTextDatum(tzn ? tzn : "");
5167
5168 /* Convert tzoff to an interval; can't overflow */
5169 MemSet(&itm_in, 0, sizeof(struct pg_itm_in));
5170 itm_in.tm_usec = (int64) -tzoff * USECS_PER_SEC;
5171 resInterval = (Interval *) palloc(sizeof(Interval));
5172 (void) itmin2interval(&itm_in, resInterval);
5173 values[2] = IntervalPGetDatum(resInterval);
5174
5175 values[3] = BoolGetDatum(tm.tm_isdst > 0);
5176
5177 tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
5178 }
5179
5180 pg_tzenumerate_end(tzenum);
5181 return (Datum) 0;
5182}
static const datetkn * abbrevcache[MAXDATEFIELDS]
Definition: datetime.c:262
static char * EncodeTimezone(char *str, int tz, int style)
Definition: datetime.c:4189
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm)
Definition: datetime.c:2398
const int day_tab[2][13]
Definition: datetime.c:75
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
Definition: datetime.c:1607
#define APPEND_CHAR(bufptr, end, newchar)
static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2912
Node * TemporalSimplify(int32 max_precis, Node *node)
Definition: datetime.c:4840
pg_tz * DecodeTimezoneNameToTz(const char *tzname)
Definition: datetime.c:3245
static bool CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
Definition: datetime.c:4779
int DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, pg_tz *tzp, int *isdst)
Definition: datetime.c:1784
static int ParseFraction(char *cp, double *frac)
Definition: datetime.c:680
void InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl)
Definition: datetime.c:4957
static const datetkn datetktbl[]
Definition: datetime.c:105
static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum)
Definition: datetime.c:522
int DecodeUnits(int field, const char *lowtoken, int *val)
Definition: datetime.c:4047
int DecodeTimeOnly(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp, DateTimeErrorExtra *extra)
Definition: datetime.c:1864
static TimeZoneAbbrevTable * zoneabbrevtbl
Definition: datetime.c:254
static const datetkn * deltacache[MAXDATEFIELDS]
Definition: datetime.c:260
int j2day(int date)
Definition: datetime.c:344
int ParseDateTime(const char *timestr, char *workbuf, size_t buflen, char **field, int *ftype, int maxfields, int *numfields)
Definition: datetime.c:754
void EncodeInterval(struct pg_itm *itm, int style, char *str)
Definition: datetime.c:4585
static bool AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:633
static const datetkn * datecache[MAXDATEFIELDS]
Definition: datetime.c:258
static int DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2727
int DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
Definition: datetime.c:1585
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst)
Definition: datetime.c:1821
void DateTimeParseError(int dterr, DateTimeErrorExtra *extra, const char *str, const char *datatype, Node *escontext)
Definition: datetime.c:4092
static int ParseFractionalSecond(char *cp, fsec_t *fsec)
Definition: datetime.c:709
static bool AdjustFractYears(double frac, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:601
static bool AdjustMicroseconds(int64 val, double fval, int64 scale, struct pg_itm_in *itm_in)
Definition: datetime.c:618
static int DecodeTimeCommon(char *str, int fmask, int range, int *tmask, struct pg_itm *itm)
Definition: datetime.c:2590
int DecodeInterval(char **field, int *ftype, int nf, int range, int *dtype, struct pg_itm_in *itm_in)
Definition: datetime.c:3364
static int DecodeTimeForInterval(char *str, int fmask, int range, int *tmask, struct pg_itm_in *itm_in)
Definition: datetime.c:2701
static char * AddPostgresIntPart(char *cp, int64 value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4523
bool CheckDateTokenTables(void)
Definition: datetime.c:4811
static const int szdeltatktbl
Definition: datetime.c:252
int DecodeTimezoneAbbrev(int field, const char *lowtoken, int *ftype, int *offset, pg_tz **tz, DateTimeErrorExtra *extra)
Definition: datetime.c:3091
Datum pg_timezone_names(PG_FUNCTION_ARGS)
Definition: datetime.c:5122
void EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
Definition: datetime.c:4312
static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:2672
static bool AdjustFractMicroseconds(double frac, int64 scale, struct pg_itm_in *itm_in)
Definition: datetime.c:537
int DecodeISO8601Interval(char *str, int *dtype, struct pg_itm_in *itm_in)
Definition: datetime.c:3829
int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, struct pg_tm *tm)
Definition: datetime.c:2508
int DecodeSpecial(int field, const char *lowtoken, int *val)
Definition: datetime.c:3148
void j2date(int jd, int *year, int *month, int *day)
Definition: datetime.c:311
void GetCurrentDateTime(struct pg_tm *tm)
Definition: datetime.c:366
static int ISO8601IntegerWidth(char *fieldstart)
Definition: datetime.c:3802
static bool AdjustYears(int64 val, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:661
Datum pg_timezone_abbrevs(PG_FUNCTION_ARGS)
Definition: datetime.c:5001
void EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
Definition: datetime.c:4342
int DecodeTimezone(const char *str, int *tzp)
Definition: datetime.c:3007
TimeZoneAbbrevTable * ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
Definition: datetime.c:4873
const char *const months[]
Definition: datetime.c:81
static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in)
Definition: datetime.c:649
static char * AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
Definition: datetime.c:448
static const int szdatetktbl
Definition: datetime.c:181
void EncodeDateOnly(struct pg_tm *tm, int style, char *str)
Definition: datetime.c:4227
static char * AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
Definition: datetime.c:511
static const datetkn * datebsearch(const char *key, const datetkn *base, int nel)
Definition: datetime.c:4153
static char * AddISO8601IntPart(char *cp, int64 value, char units)
Definition: datetime.c:4513
static int ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart)
Definition: datetime.c:3760
int DecodeDateTime(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp, DateTimeErrorExtra *extra)
Definition: datetime.c:978
int date2j(int year, int month, int day)
Definition: datetime.c:286
static bool AdjustFractDays(double frac, int scale, struct pg_itm_in *itm_in)
Definition: datetime.c:569
static void ClearPgItmIn(struct pg_itm_in *itm_in)
Definition: datetime.c:3340
static char * AddVerboseIntPart(char *cp, int64 value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4546
static const datetkn deltatktbl[]
Definition: datetime.c:187
void GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:387
const char *const days[]
Definition: datetime.c:84
static pg_tz * FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp, DateTimeErrorExtra *extra)
Definition: datetime.c:4970
int DecodeTimezoneName(const char *tzname, int *offset, pg_tz **tz)
Definition: datetime.c:3190
int DecodeTimezoneAbbrevPrefix(const char *str, int *offset, pg_tz **tz)
Definition: datetime.c:3273
int DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
Definition: datetime.c:1746
void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
Definition: timestamp.c:1864
int itmin2interval(struct pg_itm_in *itm_in, Interval *span)
Definition: timestamp.c:2096
int timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone)
Definition: timestamp.c:1891
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1608
pg_time_t timestamptz_to_time_t(TimestampTz t)
Definition: timestamp.c:1823
static Datum values[MAXATTR]
Definition: bootstrap.c:151
#define CStringGetTextDatum(s)
Definition: builtins.h:97
#define MAXALIGN(LEN)
Definition: c.h:765
#define Assert(condition)
Definition: c.h:812
int64_t int64
Definition: c.h:482
int32_t int32
Definition: c.h:481
#define PG_INT64_MIN
Definition: c.h:545
#define MemSet(start, val, len)
Definition: c.h:974
size_t Size
Definition: c.h:559
int64 TimestampTz
Definition: timestamp.h:39
#define SECS_PER_HOUR
Definition: timestamp.h:127
#define MAX_TIMESTAMP_PRECISION
Definition: timestamp.h:92
#define MAX_TZDISP_HOUR
Definition: timestamp.h:143
int32 fsec_t
Definition: timestamp.h:41
#define USECS_PER_HOUR
Definition: timestamp.h:132
#define MONTHS_PER_YEAR
Definition: timestamp.h:108
#define MINS_PER_HOUR
Definition: timestamp.h:129
#define IS_VALID_JULIAN(y, m, d)
Definition: timestamp.h:227
#define MAX_INTERVAL_PRECISION
Definition: timestamp.h:93
#define SECS_PER_MINUTE
Definition: timestamp.h:128
#define USECS_PER_DAY
Definition: timestamp.h:131
#define USECS_PER_SEC
Definition: timestamp.h:134
#define HOURS_PER_DAY
Definition: timestamp.h:118
#define USECS_PER_MINUTE
Definition: timestamp.h:133
#define DAYS_PER_MONTH
Definition: timestamp.h:116
#define UNIX_EPOCH_JDATE
Definition: timestamp.h:234
#define SECS_PER_DAY
Definition: timestamp.h:126
#define POSTGRES_EPOCH_JDATE
Definition: timestamp.h:235
bool time_overflows(int hour, int min, int sec, fsec_t fsec)
Definition: date.c:1446
#define MAX_TIME_PRECISION
Definition: date.h:45
int errdetail(const char *fmt,...)
Definition: elog.c:1203
int errhint(const char *fmt,...)
Definition: elog.c:1317
int errcode(int sqlerrcode)
Definition: elog.c:853
int errmsg(const char *fmt,...)
Definition: elog.c:1070
#define LOG
Definition: elog.h:31
#define errsave(context,...)
Definition: elog.h:261
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:225
#define ereport(elevel,...)
Definition: elog.h:149
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
void InitMaterializedSRF(FunctionCallInfo fcinfo, bits32 flags)
Definition: funcapi.c:76
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:276
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:304
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:308
@ TYPEFUNC_COMPOSITE
Definition: funcapi.h:149
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:310
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:306
static Datum HeapTupleGetDatum(const HeapTupleData *tuple)
Definition: funcapi.h:230
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:328
int IntervalStyle
Definition: globals.c:126
int DateOrder
Definition: globals.c:125
void * guc_malloc(int elevel, size_t size)
Definition: guc.c:638
const char * str
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
#define MAXDATEFIELDS
Definition: datetime.h:202
#define DTK_TOMORROW
Definition: datetime.h:156
#define DAGO
Definition: datetime.h:35
#define EPOCH
Definition: datetime.h:37
#define DTK_EPOCH
Definition: datetime.h:152
#define DYEAR
Definition: datetime.h:56
#define DTK_SPECIAL
Definition: datetime.h:149
#define MILLENNIUM
Definition: datetime.h:120
#define AMPM
Definition: datetime.h:99
#define DTERR_BAD_ZONE_ABBREV
Definition: datetime.h:288
#define DTK_TIME
Definition: datetime.h:145
#define UNKNOWN_FIELD
Definition: datetime.h:124
#define DTK_DECADE
Definition: datetime.h:168
#define DTK_SECOND
Definition: datetime.h:160
#define PM
Definition: datetime.h:72
#define DTK_NUMBER
Definition: datetime.h:141
#define DTK_STRING
Definition: datetime.h:142
#define DTERR_INTERVAL_OVERFLOW
Definition: datetime.h:285
#define DTK_QUARTER
Definition: datetime.h:166
#define DTK_JULIAN
Definition: datetime.h:173
#define MONTH
Definition: datetime.h:91
#define DHOUR
Definition: datetime.h:51
#define DTK_DELTA
Definition: datetime.h:159
#define IGNORE_DTF
Definition: datetime.h:98
#define MICROSECOND
Definition: datetime.h:104
#define DWEEK
Definition: datetime.h:53
#define DTK_TZ_HOUR
Definition: datetime.h:177
#define DTK_TIME_M
Definition: datetime.h:192
#define DTK_M(t)
Definition: datetime.h:187
#define DTIMEZONE
Definition: datetime.h:62
#define HOUR
Definition: datetime.h:100
#define DTK_TZ_MINUTE
Definition: datetime.h:178
#define WEEK
Definition: datetime.h:117
#define DECADE
Definition: datetime.h:118
#define DAY
Definition: datetime.h:93
#define ADBC
Definition: datetime.h:108
#define DTK_LATE
Definition: datetime.h:151
#define YEAR
Definition: datetime.h:92
#define DTK_DATE
Definition: datetime.h:144
#define DTK_CENTURY
Definition: datetime.h:169
#define TZ
Definition: datetime.h:95
#define DTK_ISODOW
Definition: datetime.h:180
#define DMONTH
Definition: datetime.h:54
#define MILLISECOND
Definition: datetime.h:103
#define DTERR_BAD_TIMEZONE
Definition: datetime.h:287
#define DTK_DAY
Definition: datetime.h:163
#define RESERV
Definition: datetime.h:90
#define BC
Definition: datetime.h:76
#define DB_C
Definition: datetime.h:61
#define DTERR_BAD_FORMAT
Definition: datetime.h:282
#define HR24
Definition: datetime.h:73
#define CENTURY
Definition: datetime.h:119
#define DTK_DATE_M
Definition: datetime.h:191
#define DTK_MILLENNIUM
Definition: datetime.h:170
#define TZNAME_ZONE
Definition: datetime.h:301
#define DTK_EARLY
Definition: datetime.h:150
#define DDECADE
Definition: datetime.h:57
#define DTK_ISOYEAR
Definition: datetime.h:179
#define DDAY
Definition: datetime.h:52
#define SECOND
Definition: datetime.h:102
#define DMICROSEC
Definition: datetime.h:47
#define DTK_ALL_SECS_M
Definition: datetime.h:190
#define isleap(y)
Definition: datetime.h:271
#define DMILLENNIUM
Definition: datetime.h:59
#define DTZMOD
Definition: datetime.h:122
#define DTK_DOY
Definition: datetime.h:176
#define DTK_TZ
Definition: datetime.h:146
#define DOW
Definition: datetime.h:106
#define TZNAME_FIXED_OFFSET
Definition: datetime.h:299
#define DCENTURY
Definition: datetime.h:58
#define TZNAME_DYNTZ
Definition: datetime.h:300
#define DQUARTER
Definition: datetime.h:55
#define AD
Definition: datetime.h:75
#define TOMORROW
Definition: datetime.h:43
#define DTERR_TZDISP_OVERFLOW
Definition: datetime.h:286
#define EARLY
Definition: datetime.h:39
#define DA_D
Definition: datetime.h:60
#define ISOTIME
Definition: datetime.h:115
#define DTK_HOUR
Definition: datetime.h:162
#define DTK_WEEK
Definition: datetime.h:164
#define MINUTE
Definition: datetime.h:101
#define DSECOND
Definition: datetime.h:49
#define LATE
Definition: datetime.h:40
#define DTK_MICROSEC
Definition: datetime.h:172
#define DTZ
Definition: datetime.h:96
#define NOW
Definition: datetime.h:41
#define DMILLISEC
Definition: datetime.h:48
#define DTK_DOW
Definition: datetime.h:175
#define DTK_YEAR
Definition: datetime.h:167
#define AGO
Definition: datetime.h:110
#define AM
Definition: datetime.h:71
#define DTK_MILLISEC
Definition: datetime.h:171
#define TODAY
Definition: datetime.h:42
#define YESTERDAY
Definition: datetime.h:44
#define DTK_MONTH
Definition: datetime.h:165
#define DTK_YESTERDAY
Definition: datetime.h:154
#define DOY
Definition: datetime.h:105
#define DMINUTE
Definition: datetime.h:50
#define DTERR_FIELD_OVERFLOW
Definition: datetime.h:283
#define DTK_ZULU
Definition: datetime.h:157
#define TOKMAXLEN
Definition: datetime.h:204
#define DYNTZ
Definition: datetime.h:97
#define DTERR_MD_FIELD_OVERFLOW
Definition: datetime.h:284
#define DTK_MINUTE
Definition: datetime.h:161
#define UNITS
Definition: datetime.h:107
#define DTK_TODAY
Definition: datetime.h:155
#define DTK_NOW
Definition: datetime.h:153
#define token
Definition: indent_globs.h:126
static struct @161 value
long val
Definition: informix.c:689
static bool pg_mul_s64_overflow(int64 a, int64 b, int64 *result)
Definition: int.h:293
static bool pg_mul_s32_overflow(int32 a, int32 b, int32 *result)
Definition: int.h:187
static bool pg_add_s64_overflow(int64 a, int64 b, int64 *result)
Definition: int.h:235
static bool pg_add_s32_overflow(int32 a, int32 b, int32 *result)
Definition: int.h:151
int y
Definition: isn.c:71
int i
Definition: isn.c:72
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:76
static struct pg_tm tm
Definition: localtime.c:104
void * palloc(Size size)
Definition: mcxt.c:1317
#define USE_SQL_DATES
Definition: miscadmin.h:237
#define USE_POSTGRES_DATES
Definition: miscadmin.h:235
#define MAXTZLEN
Definition: miscadmin.h:263
#define INTSTYLE_SQL_STANDARD
Definition: miscadmin.h:258
#define INTSTYLE_POSTGRES_VERBOSE
Definition: miscadmin.h:257
#define USE_ISO_DATES
Definition: miscadmin.h:236
#define DATEORDER_DMY
Definition: miscadmin.h:243
#define DATEORDER_YMD
Definition: miscadmin.h:242
#define INTSTYLE_ISO_8601
Definition: miscadmin.h:259
#define USE_XSD_DATES
Definition: miscadmin.h:239
#define INTSTYLE_POSTGRES
Definition: miscadmin.h:256
#define USE_GERMAN_DATES
Definition: miscadmin.h:238
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:298
Node * relabel_to_typmod(Node *expr, int32 typmod)
Definition: nodeFuncs.c:684
#define IsA(nodeptr, _type_)
Definition: nodes.h:158
#define castNode(_type_, nodeptr)
Definition: nodes.h:176
char * pg_ultostr_zeropad(char *str, uint32 value, int32 minwidth)
Definition: numutils.c:1267
char * pg_ultostr(char *str, uint32 value)
Definition: numutils.c:1307
const void size_t len
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
static rewind_source * source
Definition: pg_rewind.c:89
static int scale
Definition: pgbench.c:181
pg_tz * pg_tzset_offset(long gmtoffset)
Definition: pgtz.c:320
pg_tz * pg_tzenumerate_next(pg_tzenum *dir)
Definition: pgtz.c:426
int pg_next_dst_boundary(const pg_time_t *timep, long int *before_gmtoff, int *before_isdst, pg_time_t *boundary, long int *after_gmtoff, int *after_isdst, const pg_tz *tz)
Definition: localtime.c:1610
const char * pg_get_timezone_name(pg_tz *tz)
Definition: localtime.c:1875
pg_tz * pg_tzset(const char *tzname)
Definition: pgtz.c:234
#define TZ_STRLEN_MAX
Definition: pgtime.h:54
bool pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
Definition: localtime.c:1851
PGDLLIMPORT pg_tz * session_timezone
Definition: pgtz.c:28
int64 pg_time_t
Definition: pgtime.h:23
void pg_tzenumerate_end(pg_tzenum *dir)
Definition: pgtz.c:414
pg_tzenum * pg_tzenumerate_start(void)
Definition: pgtz.c:397
bool pg_interpret_timezone_abbrev(const char *abbrev, const pg_time_t *timep, long int *gmtoff, int *isdst, const pg_tz *tz)
Definition: localtime.c:1757
long date
Definition: pgtypes_date.h:9
#define sprintf
Definition: port.h:240
unsigned char pg_toupper(unsigned char ch)
Definition: pgstrcasecmp.c:105
unsigned char pg_tolower(unsigned char ch)
Definition: pgstrcasecmp.c:122
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
uintptr_t Datum
Definition: postgres.h:64
static Datum BoolGetDatum(bool X)
Definition: postgres.h:102
static int32 DatumGetInt32(Datum X)
Definition: postgres.h:202
MemoryContextSwitchTo(old_ctx)
static struct cvec * range(struct vars *v, chr a, chr b, int cases)
Definition: regc_locale.c:412
char * downcase_truncate_identifier(const char *ident, int len, bool warn)
Definition: scansup.c:37
int strtoint(const char *pg_restrict str, char **pg_restrict endptr, int base)
Definition: string.c:50
const char * dtee_timezone
Definition: datetime.h:293
const char * dtee_abbrev
Definition: datetime.h:295
char zone[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:227
void * user_fctx
Definition: funcapi.h:82
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:101
TupleDesc tuple_desc
Definition: funcapi.h:112
List * args
Definition: primnodes.h:768
Definition: nodes.h:129
datetkn abbrevs[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:219
char token[TOKMAXLEN+1]
Definition: datetime.h:209
int32 value
Definition: datetime.h:211
char type
Definition: datetime.h:210
int tm_mon
Definition: timestamp.h:86
int tm_year
Definition: timestamp.h:87
int tm_mday
Definition: timestamp.h:85
int64 tm_usec
Definition: timestamp.h:84
int64 tm_hour
Definition: timestamp.h:70
int tm_year
Definition: timestamp.h:73
int tm_mon
Definition: timestamp.h:72
int tm_mday
Definition: timestamp.h:71
int tm_sec
Definition: timestamp.h:68
int tm_min
Definition: timestamp.h:69
int tm_usec
Definition: timestamp.h:67
Definition: pgtime.h:35
int tm_hour
Definition: pgtime.h:38
int tm_mday
Definition: pgtime.h:39
int tm_mon
Definition: pgtime.h:40
int tm_min
Definition: pgtime.h:37
int tm_yday
Definition: pgtime.h:43
int tm_wday
Definition: pgtime.h:42
int tm_sec
Definition: pgtime.h:36
int tm_isdst
Definition: pgtime.h:44
int tm_year
Definition: pgtime.h:41
Definition: pgtz.h:66
char * zone
Definition: tzparser.h:27
int offset
Definition: tzparser.h:29
char * abbrev
Definition: tzparser.h:26
bool is_dst
Definition: tzparser.h:30
Definition: zic.c:94
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, const Datum *values, const bool *isnull)
Definition: tuplestore.c:784
#define INTERVAL_FULL_RANGE
Definition: timestamp.h:76
static Datum IntervalPGetDatum(const Interval *X)
Definition: timestamp.h:58
#define INTERVAL_MASK(b)
Definition: timestamp.h:73
const char * type
TimestampTz GetCurrentTransactionStartTimestamp(void)
Definition: xact.c:869