PostgreSQL Source Code  git master
datetime.c
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * datetime.c
4  * Support functions for date/time types.
5  *
6  * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  * src/backend/utils/adt/datetime.c
12  *
13  *-------------------------------------------------------------------------
14  */
15 #include "postgres.h"
16 
17 #include <ctype.h>
18 #include <limits.h>
19 #include <math.h>
20 
21 #include "access/htup_details.h"
22 #include "access/xact.h"
23 #include "catalog/pg_type.h"
24 #include "common/string.h"
25 #include "funcapi.h"
26 #include "miscadmin.h"
27 #include "nodes/nodeFuncs.h"
28 #include "utils/builtins.h"
29 #include "utils/date.h"
30 #include "utils/datetime.h"
31 #include "utils/memutils.h"
32 #include "utils/tzparser.h"
33 
34 static int DecodeNumber(int flen, char *field, bool haveTextMonth,
35  int fmask, int *tmask,
36  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
37 static int DecodeNumberField(int len, char *str,
38  int fmask, int *tmask,
39  struct pg_tm *tm, fsec_t *fsec, bool *is2digits);
40 static int DecodeTime(char *str, int fmask, int range,
41  int *tmask, struct pg_tm *tm, fsec_t *fsec);
42 static const datetkn *datebsearch(const char *key, const datetkn *base, int nel);
43 static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
44  struct pg_tm *tm);
45 static char *AppendSeconds(char *cp, int sec, fsec_t fsec,
46  int precision, bool fillzeros);
47 static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec,
48  int scale);
49 static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec,
50  int scale);
51 static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp,
52  pg_time_t *tp);
54  const char *abbr, pg_tz *tzp,
55  int *offset, int *isdst);
56 static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp);
57 
58 
59 const int day_tab[2][13] =
60 {
61  {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0},
62  {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}
63 };
64 
65 const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
66 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL};
67 
68 const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
69 "Thursday", "Friday", "Saturday", NULL};
70 
71 
72 /*****************************************************************************
73  * PRIVATE ROUTINES *
74  *****************************************************************************/
75 
76 /*
77  * datetktbl holds date/time keywords.
78  *
79  * Note that this table must be strictly alphabetically ordered to allow an
80  * O(ln(N)) search algorithm to be used.
81  *
82  * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN
83  * characters to fit.
84  *
85  * The static table contains no TZ, DTZ, or DYNTZ entries; rather those
86  * are loaded from configuration files and stored in zoneabbrevtbl, whose
87  * abbrevs[] field has the same format as the static datetktbl.
88  */
89 static const datetkn datetktbl[] = {
90  /* token, type, value */
91  {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */
92  {DA_D, ADBC, AD}, /* "ad" for years > 0 */
93  {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */
94  {"am", AMPM, AM},
95  {"apr", MONTH, 4},
96  {"april", MONTH, 4},
97  {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */
98  {"aug", MONTH, 8},
99  {"august", MONTH, 8},
100  {DB_C, ADBC, BC}, /* "bc" for years <= 0 */
101  {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */
102  {"dec", MONTH, 12},
103  {"december", MONTH, 12},
104  {"dow", UNITS, DTK_DOW}, /* day of week */
105  {"doy", UNITS, DTK_DOY}, /* day of year */
106  {"dst", DTZMOD, SECS_PER_HOUR},
107  {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */
108  {"feb", MONTH, 2},
109  {"february", MONTH, 2},
110  {"fri", DOW, 5},
111  {"friday", DOW, 5},
112  {"h", UNITS, DTK_HOUR}, /* "hour" */
113  {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */
114  {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */
115  {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */
116  {"j", UNITS, DTK_JULIAN},
117  {"jan", MONTH, 1},
118  {"january", MONTH, 1},
119  {"jd", UNITS, DTK_JULIAN},
120  {"jul", MONTH, 7},
121  {"julian", UNITS, DTK_JULIAN},
122  {"july", MONTH, 7},
123  {"jun", MONTH, 6},
124  {"june", MONTH, 6},
125  {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */
126  {"mar", MONTH, 3},
127  {"march", MONTH, 3},
128  {"may", MONTH, 5},
129  {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */
130  {"mon", DOW, 1},
131  {"monday", DOW, 1},
132  {"nov", MONTH, 11},
133  {"november", MONTH, 11},
134  {NOW, RESERV, DTK_NOW}, /* current transaction time */
135  {"oct", MONTH, 10},
136  {"october", MONTH, 10},
137  {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */
138  {"pm", AMPM, PM},
139  {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */
140  {"sat", DOW, 6},
141  {"saturday", DOW, 6},
142  {"sep", MONTH, 9},
143  {"sept", MONTH, 9},
144  {"september", MONTH, 9},
145  {"sun", DOW, 0},
146  {"sunday", DOW, 0},
147  {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */
148  {"thu", DOW, 4},
149  {"thur", DOW, 4},
150  {"thurs", DOW, 4},
151  {"thursday", DOW, 4},
152  {TODAY, RESERV, DTK_TODAY}, /* midnight */
153  {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */
154  {"tue", DOW, 2},
155  {"tues", DOW, 2},
156  {"tuesday", DOW, 2},
157  {"wed", DOW, 3},
158  {"wednesday", DOW, 3},
159  {"weds", DOW, 3},
160  {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */
161  {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */
162 };
163 
164 static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0];
165 
166 /*
167  * deltatktbl: same format as datetktbl, but holds keywords used to represent
168  * time units (eg, for intervals, and for EXTRACT).
169  */
170 static const datetkn deltatktbl[] = {
171  /* token, type, value */
172  {"@", IGNORE_DTF, 0}, /* postgres relative prefix */
173  {DAGO, AGO, 0}, /* "ago" indicates negative time offset */
174  {"c", UNITS, DTK_CENTURY}, /* "century" relative */
175  {"cent", UNITS, DTK_CENTURY}, /* "century" relative */
176  {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */
177  {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */
178  {"d", UNITS, DTK_DAY}, /* "day" relative */
179  {DDAY, UNITS, DTK_DAY}, /* "day" relative */
180  {"days", UNITS, DTK_DAY}, /* "days" relative */
181  {"dec", UNITS, DTK_DECADE}, /* "decade" relative */
182  {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */
183  {"decades", UNITS, DTK_DECADE}, /* "decades" relative */
184  {"decs", UNITS, DTK_DECADE}, /* "decades" relative */
185  {"h", UNITS, DTK_HOUR}, /* "hour" relative */
186  {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */
187  {"hours", UNITS, DTK_HOUR}, /* "hours" relative */
188  {"hr", UNITS, DTK_HOUR}, /* "hour" relative */
189  {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */
190  {"m", UNITS, DTK_MINUTE}, /* "minute" relative */
191  {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
192  {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
193  {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
194  {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */
195  {"millisecon", UNITS, DTK_MILLISEC}, /* relative */
196  {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */
197  {"min", UNITS, DTK_MINUTE}, /* "minute" relative */
198  {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */
199  {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */
200  {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */
201  {"mon", UNITS, DTK_MONTH}, /* "months" relative */
202  {"mons", UNITS, DTK_MONTH}, /* "months" relative */
203  {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */
204  {"months", UNITS, DTK_MONTH},
205  {"ms", UNITS, DTK_MILLISEC},
206  {"msec", UNITS, DTK_MILLISEC},
207  {DMILLISEC, UNITS, DTK_MILLISEC},
208  {"mseconds", UNITS, DTK_MILLISEC},
209  {"msecs", UNITS, DTK_MILLISEC},
210  {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */
211  {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */
212  {"s", UNITS, DTK_SECOND},
213  {"sec", UNITS, DTK_SECOND},
214  {DSECOND, UNITS, DTK_SECOND},
215  {"seconds", UNITS, DTK_SECOND},
216  {"secs", UNITS, DTK_SECOND},
217  {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */
218  {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */
219  {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */
220  {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
221  {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */
222  {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */
223  {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
224  {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */
225  {"w", UNITS, DTK_WEEK}, /* "week" relative */
226  {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */
227  {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */
228  {"y", UNITS, DTK_YEAR}, /* "year" relative */
229  {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */
230  {"years", UNITS, DTK_YEAR}, /* "years" relative */
231  {"yr", UNITS, DTK_YEAR}, /* "year" relative */
232  {"yrs", UNITS, DTK_YEAR} /* "years" relative */
233 };
234 
235 static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0];
236 
238 
239 /* Caches of recent lookup results in the above tables */
240 
241 static const datetkn *datecache[MAXDATEFIELDS] = {NULL};
242 
243 static const datetkn *deltacache[MAXDATEFIELDS] = {NULL};
244 
245 static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL};
246 
247 
248 /*
249  * Calendar time to Julian date conversions.
250  * Julian date is commonly used in astronomical applications,
251  * since it is numerically accurate and computationally simple.
252  * The algorithms here will accurately convert between Julian day
253  * and calendar date for all non-negative Julian days
254  * (i.e. from Nov 24, -4713 on).
255  *
256  * Rewritten to eliminate overflow problems. This now allows the
257  * routines to work correctly for all Julian day counts from
258  * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming
259  * a 32-bit integer. Longer types should also work to the limits
260  * of their precision.
261  *
262  * Actually, date2j() will work sanely, in the sense of producing
263  * valid negative Julian dates, significantly before Nov 24, -4713.
264  * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN()
265  * and associated commentary in timestamp.h.
266  */
267 
268 int
269 date2j(int y, int m, int d)
270 {
271  int julian;
272  int century;
273 
274  if (m > 2)
275  {
276  m += 1;
277  y += 4800;
278  }
279  else
280  {
281  m += 13;
282  y += 4799;
283  }
284 
285  century = y / 100;
286  julian = y * 365 - 32167;
287  julian += y / 4 - century + century / 4;
288  julian += 7834 * m / 256 + d;
289 
290  return julian;
291 } /* date2j() */
292 
293 void
294 j2date(int jd, int *year, int *month, int *day)
295 {
296  unsigned int julian;
297  unsigned int quad;
298  unsigned int extra;
299  int y;
300 
301  julian = jd;
302  julian += 32044;
303  quad = julian / 146097;
304  extra = (julian - quad * 146097) * 4 + 3;
305  julian += 60 + quad * 3 + extra / 146097;
306  quad = julian / 1461;
307  julian -= quad * 1461;
308  y = julian * 4 / 1461;
309  julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366))
310  + 123;
311  y += quad * 4;
312  *year = y - 4800;
313  quad = julian * 2141 / 65536;
314  *day = julian - 7834 * quad / 256;
315  *month = (quad + 10) % MONTHS_PER_YEAR + 1;
316 } /* j2date() */
317 
318 
319 /*
320  * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat)
321  *
322  * Note: various places use the locution j2day(date - 1) to produce a
323  * result according to the convention 0..6 = Mon..Sun. This is a bit of
324  * a crock, but will work as long as the computation here is just a modulo.
325  */
326 int
328 {
329  date += 1;
330  date %= 7;
331  /* Cope if division truncates towards zero, as it probably does */
332  if (date < 0)
333  date += 7;
334 
335  return date;
336 } /* j2day() */
337 
338 
339 /*
340  * GetCurrentDateTime()
341  *
342  * Get the transaction start time ("now()") broken down as a struct pg_tm.
343  */
344 void
346 {
347  int tz;
348  fsec_t fsec;
349 
351  NULL, NULL);
352  /* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
353 }
354 
355 /*
356  * GetCurrentTimeUsec()
357  *
358  * Get the transaction start time ("now()") broken down as a struct pg_tm,
359  * including fractional seconds and timezone offset.
360  */
361 void
362 GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
363 {
364  int tz;
365 
367  NULL, NULL);
368  /* Note: don't pass NULL tzp to timestamp2tm; affects behavior */
369  if (tzp != NULL)
370  *tzp = tz;
371 }
372 
373 
374 /*
375  * Append seconds and fractional seconds (if any) at *cp.
376  *
377  * precision is the max number of fraction digits, fillzeros says to
378  * pad to two integral-seconds digits.
379  *
380  * Returns a pointer to the new end of string. No NUL terminator is put
381  * there; callers are responsible for NUL terminating str themselves.
382  *
383  * Note that any sign is stripped from the input seconds values.
384  */
385 static char *
386 AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
387 {
388  Assert(precision >= 0);
389 
390  if (fillzeros)
391  cp = pg_ultostr_zeropad(cp, Abs(sec), 2);
392  else
393  cp = pg_ultostr(cp, Abs(sec));
394 
395  /* fsec_t is just an int32 */
396  if (fsec != 0)
397  {
398  int32 value = Abs(fsec);
399  char *end = &cp[precision + 1];
400  bool gotnonzero = false;
401 
402  *cp++ = '.';
403 
404  /*
405  * Append the fractional seconds part. Note that we don't want any
406  * trailing zeros here, so since we're building the number in reverse
407  * we'll skip appending zeros until we've output a non-zero digit.
408  */
409  while (precision--)
410  {
411  int32 oldval = value;
412  int32 remainder;
413 
414  value /= 10;
415  remainder = oldval - value * 10;
416 
417  /* check if we got a non-zero */
418  if (remainder)
419  gotnonzero = true;
420 
421  if (gotnonzero)
422  cp[precision] = '0' + remainder;
423  else
424  end = &cp[precision];
425  }
426 
427  /*
428  * If we still have a non-zero value then precision must have not been
429  * enough to print the number. We punt the problem to pg_ltostr(),
430  * which will generate a correct answer in the minimum valid width.
431  */
432  if (value)
433  return pg_ultostr(cp, Abs(fsec));
434 
435  return end;
436  }
437  else
438  return cp;
439 }
440 
441 
442 /*
443  * Variant of above that's specialized to timestamp case.
444  *
445  * Returns a pointer to the new end of string. No NUL terminator is put
446  * there; callers are responsible for NUL terminating str themselves.
447  */
448 static char *
449 AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
450 {
451  return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true);
452 }
453 
454 /*
455  * Multiply frac by scale (to produce seconds) and add to *tm & *fsec.
456  * We assume the input frac is less than 1 so overflow is not an issue.
457  */
458 static void
459 AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
460 {
461  int sec;
462 
463  if (frac == 0)
464  return;
465  frac *= scale;
466  sec = (int) frac;
467  tm->tm_sec += sec;
468  frac -= sec;
469  *fsec += rint(frac * 1000000);
470 }
471 
472 /* As above, but initial scale produces days */
473 static void
474 AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
475 {
476  int extra_days;
477 
478  if (frac == 0)
479  return;
480  frac *= scale;
481  extra_days = (int) frac;
482  tm->tm_mday += extra_days;
483  frac -= extra_days;
484  AdjustFractSeconds(frac, tm, fsec, SECS_PER_DAY);
485 }
486 
487 /* Fetch a fractional-second value with suitable error checking */
488 static int
490 {
491  double frac;
492 
493  /* Caller should always pass the start of the fraction part */
494  Assert(*cp == '.');
495  errno = 0;
496  frac = strtod(cp, &cp);
497  /* check for parse failure */
498  if (*cp != '\0' || errno != 0)
499  return DTERR_BAD_FORMAT;
500  *fsec = rint(frac * 1000000);
501  return 0;
502 }
503 
504 
505 /* ParseDateTime()
506  * Break string into tokens based on a date/time context.
507  * Returns 0 if successful, DTERR code if bogus input detected.
508  *
509  * timestr - the input string
510  * workbuf - workspace for field string storage. This must be
511  * larger than the largest legal input for this datetime type --
512  * some additional space will be needed to NUL terminate fields.
513  * buflen - the size of workbuf
514  * field[] - pointers to field strings are returned in this array
515  * ftype[] - field type indicators are returned in this array
516  * maxfields - dimensions of the above two arrays
517  * *numfields - set to the actual number of fields detected
518  *
519  * The fields extracted from the input are stored as separate,
520  * null-terminated strings in the workspace at workbuf. Any text is
521  * converted to lower case.
522  *
523  * Several field types are assigned:
524  * DTK_NUMBER - digits and (possibly) a decimal point
525  * DTK_DATE - digits and two delimiters, or digits and text
526  * DTK_TIME - digits, colon delimiters, and possibly a decimal point
527  * DTK_STRING - text (no digits or punctuation)
528  * DTK_SPECIAL - leading "+" or "-" followed by text
529  * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-')
530  *
531  * Note that some field types can hold unexpected items:
532  * DTK_NUMBER can hold date fields (yy.ddd)
533  * DTK_STRING can hold months (January) and time zones (PST)
534  * DTK_DATE can hold time zone names (America/New_York, GMT-8)
535  */
536 int
537 ParseDateTime(const char *timestr, char *workbuf, size_t buflen,
538  char **field, int *ftype, int maxfields, int *numfields)
539 {
540  int nf = 0;
541  const char *cp = timestr;
542  char *bufp = workbuf;
543  const char *bufend = workbuf + buflen;
544 
545  /*
546  * Set the character pointed-to by "bufptr" to "newchar", and increment
547  * "bufptr". "end" gives the end of the buffer -- we return an error if
548  * there is no space left to append a character to the buffer. Note that
549  * "bufptr" is evaluated twice.
550  */
551 #define APPEND_CHAR(bufptr, end, newchar) \
552  do \
553  { \
554  if (((bufptr) + 1) >= (end)) \
555  return DTERR_BAD_FORMAT; \
556  *(bufptr)++ = newchar; \
557  } while (0)
558 
559  /* outer loop through fields */
560  while (*cp != '\0')
561  {
562  /* Ignore spaces between fields */
563  if (isspace((unsigned char) *cp))
564  {
565  cp++;
566  continue;
567  }
568 
569  /* Record start of current field */
570  if (nf >= maxfields)
571  return DTERR_BAD_FORMAT;
572  field[nf] = bufp;
573 
574  /* leading digit? then date or time */
575  if (isdigit((unsigned char) *cp))
576  {
577  APPEND_CHAR(bufp, bufend, *cp++);
578  while (isdigit((unsigned char) *cp))
579  APPEND_CHAR(bufp, bufend, *cp++);
580 
581  /* time field? */
582  if (*cp == ':')
583  {
584  ftype[nf] = DTK_TIME;
585  APPEND_CHAR(bufp, bufend, *cp++);
586  while (isdigit((unsigned char) *cp) ||
587  (*cp == ':') || (*cp == '.'))
588  APPEND_CHAR(bufp, bufend, *cp++);
589  }
590  /* date field? allow embedded text month */
591  else if (*cp == '-' || *cp == '/' || *cp == '.')
592  {
593  /* save delimiting character to use later */
594  char delim = *cp;
595 
596  APPEND_CHAR(bufp, bufend, *cp++);
597  /* second field is all digits? then no embedded text month */
598  if (isdigit((unsigned char) *cp))
599  {
600  ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE);
601  while (isdigit((unsigned char) *cp))
602  APPEND_CHAR(bufp, bufend, *cp++);
603 
604  /*
605  * insist that the delimiters match to get a three-field
606  * date.
607  */
608  if (*cp == delim)
609  {
610  ftype[nf] = DTK_DATE;
611  APPEND_CHAR(bufp, bufend, *cp++);
612  while (isdigit((unsigned char) *cp) || *cp == delim)
613  APPEND_CHAR(bufp, bufend, *cp++);
614  }
615  }
616  else
617  {
618  ftype[nf] = DTK_DATE;
619  while (isalnum((unsigned char) *cp) || *cp == delim)
620  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
621  }
622  }
623 
624  /*
625  * otherwise, number only and will determine year, month, day, or
626  * concatenated fields later...
627  */
628  else
629  ftype[nf] = DTK_NUMBER;
630  }
631  /* Leading decimal point? Then fractional seconds... */
632  else if (*cp == '.')
633  {
634  APPEND_CHAR(bufp, bufend, *cp++);
635  while (isdigit((unsigned char) *cp))
636  APPEND_CHAR(bufp, bufend, *cp++);
637 
638  ftype[nf] = DTK_NUMBER;
639  }
640 
641  /*
642  * text? then date string, month, day of week, special, or timezone
643  */
644  else if (isalpha((unsigned char) *cp))
645  {
646  bool is_date;
647 
648  ftype[nf] = DTK_STRING;
649  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
650  while (isalpha((unsigned char) *cp))
651  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
652 
653  /*
654  * Dates can have embedded '-', '/', or '.' separators. It could
655  * also be a timezone name containing embedded '/', '+', '-', '_',
656  * or ':' (but '_' or ':' can't be the first punctuation). If the
657  * next character is a digit or '+', we need to check whether what
658  * we have so far is a recognized non-timezone keyword --- if so,
659  * don't believe that this is the start of a timezone.
660  */
661  is_date = false;
662  if (*cp == '-' || *cp == '/' || *cp == '.')
663  is_date = true;
664  else if (*cp == '+' || isdigit((unsigned char) *cp))
665  {
666  *bufp = '\0'; /* null-terminate current field value */
667  /* we need search only the core token table, not TZ names */
668  if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL)
669  is_date = true;
670  }
671  if (is_date)
672  {
673  ftype[nf] = DTK_DATE;
674  do
675  {
676  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
677  } while (*cp == '+' || *cp == '-' ||
678  *cp == '/' || *cp == '_' ||
679  *cp == '.' || *cp == ':' ||
680  isalnum((unsigned char) *cp));
681  }
682  }
683  /* sign? then special or numeric timezone */
684  else if (*cp == '+' || *cp == '-')
685  {
686  APPEND_CHAR(bufp, bufend, *cp++);
687  /* soak up leading whitespace */
688  while (isspace((unsigned char) *cp))
689  cp++;
690  /* numeric timezone? */
691  /* note that "DTK_TZ" could also be a signed float or yyyy-mm */
692  if (isdigit((unsigned char) *cp))
693  {
694  ftype[nf] = DTK_TZ;
695  APPEND_CHAR(bufp, bufend, *cp++);
696  while (isdigit((unsigned char) *cp) ||
697  *cp == ':' || *cp == '.' || *cp == '-')
698  APPEND_CHAR(bufp, bufend, *cp++);
699  }
700  /* special? */
701  else if (isalpha((unsigned char) *cp))
702  {
703  ftype[nf] = DTK_SPECIAL;
704  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
705  while (isalpha((unsigned char) *cp))
706  APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++));
707  }
708  /* otherwise something wrong... */
709  else
710  return DTERR_BAD_FORMAT;
711  }
712  /* ignore other punctuation but use as delimiter */
713  else if (ispunct((unsigned char) *cp))
714  {
715  cp++;
716  continue;
717  }
718  /* otherwise, something is not right... */
719  else
720  return DTERR_BAD_FORMAT;
721 
722  /* force in a delimiter after each field */
723  *bufp++ = '\0';
724  nf++;
725  }
726 
727  *numfields = nf;
728 
729  return 0;
730 }
731 
732 
733 /* DecodeDateTime()
734  * Interpret previously parsed fields for general date and time.
735  * Return 0 if full date, 1 if only time, and negative DTERR code if problems.
736  * (Currently, all callers treat 1 as an error return too.)
737  *
738  * External format(s):
739  * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>"
740  * "Fri Feb-7-1997 15:23:27"
741  * "Feb-7-1997 15:23:27"
742  * "2-7-1997 15:23:27"
743  * "1997-2-7 15:23:27"
744  * "1997.038 15:23:27" (day of year 1-366)
745  * Also supports input in compact time:
746  * "970207 152327"
747  * "97038 152327"
748  * "20011225T040506.789-07"
749  *
750  * Use the system-provided functions to get the current time zone
751  * if not specified in the input string.
752  *
753  * If the date is outside the range of pg_time_t (in practice that could only
754  * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas
755  * 1997-05-27
756  */
757 int
758 DecodeDateTime(char **field, int *ftype, int nf,
759  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
760 {
761  int fmask = 0,
762  tmask,
763  type;
764  int ptype = 0; /* "prefix type" for ISO y2001m02d04 format */
765  int i;
766  int val;
767  int dterr;
768  int mer = HR24;
769  bool haveTextMonth = false;
770  bool isjulian = false;
771  bool is2digits = false;
772  bool bc = false;
773  pg_tz *namedTz = NULL;
774  pg_tz *abbrevTz = NULL;
775  pg_tz *valtz;
776  char *abbrev = NULL;
777  struct pg_tm cur_tm;
778 
779  /*
780  * We'll insist on at least all of the date fields, but initialize the
781  * remaining fields in case they are not set later...
782  */
783  *dtype = DTK_DATE;
784  tm->tm_hour = 0;
785  tm->tm_min = 0;
786  tm->tm_sec = 0;
787  *fsec = 0;
788  /* don't know daylight savings time status apriori */
789  tm->tm_isdst = -1;
790  if (tzp != NULL)
791  *tzp = 0;
792 
793  for (i = 0; i < nf; i++)
794  {
795  switch (ftype[i])
796  {
797  case DTK_DATE:
798 
799  /*
800  * Integral julian day with attached time zone? All other
801  * forms with JD will be separated into distinct fields, so we
802  * handle just this case here.
803  */
804  if (ptype == DTK_JULIAN)
805  {
806  char *cp;
807  int val;
808 
809  if (tzp == NULL)
810  return DTERR_BAD_FORMAT;
811 
812  errno = 0;
813  val = strtoint(field[i], &cp, 10);
814  if (errno == ERANGE || val < 0)
815  return DTERR_FIELD_OVERFLOW;
816 
817  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
818  isjulian = true;
819 
820  /* Get the time zone from the end of the string */
821  dterr = DecodeTimezone(cp, tzp);
822  if (dterr)
823  return dterr;
824 
825  tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ);
826  ptype = 0;
827  break;
828  }
829 
830  /*
831  * Already have a date? Then this might be a time zone name
832  * with embedded punctuation (e.g. "America/New_York") or a
833  * run-together time with trailing time zone (e.g. hhmmss-zz).
834  * - thomas 2001-12-25
835  *
836  * We consider it a time zone if we already have month & day.
837  * This is to allow the form "mmm dd hhmmss tz year", which
838  * we've historically accepted.
839  */
840  else if (ptype != 0 ||
841  ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) ==
842  (DTK_M(MONTH) | DTK_M(DAY))))
843  {
844  /* No time zone accepted? Then quit... */
845  if (tzp == NULL)
846  return DTERR_BAD_FORMAT;
847 
848  if (isdigit((unsigned char) *field[i]) || ptype != 0)
849  {
850  char *cp;
851 
852  if (ptype != 0)
853  {
854  /* Sanity check; should not fail this test */
855  if (ptype != DTK_TIME)
856  return DTERR_BAD_FORMAT;
857  ptype = 0;
858  }
859 
860  /*
861  * Starts with a digit but we already have a time
862  * field? Then we are in trouble with a date and time
863  * already...
864  */
865  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
866  return DTERR_BAD_FORMAT;
867 
868  if ((cp = strchr(field[i], '-')) == NULL)
869  return DTERR_BAD_FORMAT;
870 
871  /* Get the time zone from the end of the string */
872  dterr = DecodeTimezone(cp, tzp);
873  if (dterr)
874  return dterr;
875  *cp = '\0';
876 
877  /*
878  * Then read the rest of the field as a concatenated
879  * time
880  */
881  dterr = DecodeNumberField(strlen(field[i]), field[i],
882  fmask,
883  &tmask, tm,
884  fsec, &is2digits);
885  if (dterr < 0)
886  return dterr;
887 
888  /*
889  * modify tmask after returning from
890  * DecodeNumberField()
891  */
892  tmask |= DTK_M(TZ);
893  }
894  else
895  {
896  namedTz = pg_tzset(field[i]);
897  if (!namedTz)
898  {
899  /*
900  * We should return an error code instead of
901  * ereport'ing directly, but then there is no way
902  * to report the bad time zone name.
903  */
904  ereport(ERROR,
905  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
906  errmsg("time zone \"%s\" not recognized",
907  field[i])));
908  }
909  /* we'll apply the zone setting below */
910  tmask = DTK_M(TZ);
911  }
912  }
913  else
914  {
915  dterr = DecodeDate(field[i], fmask,
916  &tmask, &is2digits, tm);
917  if (dterr)
918  return dterr;
919  }
920  break;
921 
922  case DTK_TIME:
923 
924  /*
925  * This might be an ISO time following a "t" field.
926  */
927  if (ptype != 0)
928  {
929  /* Sanity check; should not fail this test */
930  if (ptype != DTK_TIME)
931  return DTERR_BAD_FORMAT;
932  ptype = 0;
933  }
934  dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE,
935  &tmask, tm, fsec);
936  if (dterr)
937  return dterr;
938 
939  /* check for time overflow */
940  if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec,
941  *fsec))
942  return DTERR_FIELD_OVERFLOW;
943  break;
944 
945  case DTK_TZ:
946  {
947  int tz;
948 
949  if (tzp == NULL)
950  return DTERR_BAD_FORMAT;
951 
952  dterr = DecodeTimezone(field[i], &tz);
953  if (dterr)
954  return dterr;
955  *tzp = tz;
956  tmask = DTK_M(TZ);
957  }
958  break;
959 
960  case DTK_NUMBER:
961 
962  /*
963  * Was this an "ISO date" with embedded field labels? An
964  * example is "y2001m02d04" - thomas 2001-02-04
965  */
966  if (ptype != 0)
967  {
968  char *cp;
969  int val;
970 
971  errno = 0;
972  val = strtoint(field[i], &cp, 10);
973  if (errno == ERANGE)
974  return DTERR_FIELD_OVERFLOW;
975 
976  /*
977  * only a few kinds are allowed to have an embedded
978  * decimal
979  */
980  if (*cp == '.')
981  switch (ptype)
982  {
983  case DTK_JULIAN:
984  case DTK_TIME:
985  case DTK_SECOND:
986  break;
987  default:
988  return DTERR_BAD_FORMAT;
989  break;
990  }
991  else if (*cp != '\0')
992  return DTERR_BAD_FORMAT;
993 
994  switch (ptype)
995  {
996  case DTK_YEAR:
997  tm->tm_year = val;
998  tmask = DTK_M(YEAR);
999  break;
1000 
1001  case DTK_MONTH:
1002 
1003  /*
1004  * already have a month and hour? then assume
1005  * minutes
1006  */
1007  if ((fmask & DTK_M(MONTH)) != 0 &&
1008  (fmask & DTK_M(HOUR)) != 0)
1009  {
1010  tm->tm_min = val;
1011  tmask = DTK_M(MINUTE);
1012  }
1013  else
1014  {
1015  tm->tm_mon = val;
1016  tmask = DTK_M(MONTH);
1017  }
1018  break;
1019 
1020  case DTK_DAY:
1021  tm->tm_mday = val;
1022  tmask = DTK_M(DAY);
1023  break;
1024 
1025  case DTK_HOUR:
1026  tm->tm_hour = val;
1027  tmask = DTK_M(HOUR);
1028  break;
1029 
1030  case DTK_MINUTE:
1031  tm->tm_min = val;
1032  tmask = DTK_M(MINUTE);
1033  break;
1034 
1035  case DTK_SECOND:
1036  tm->tm_sec = val;
1037  tmask = DTK_M(SECOND);
1038  if (*cp == '.')
1039  {
1040  dterr = ParseFractionalSecond(cp, fsec);
1041  if (dterr)
1042  return dterr;
1043  tmask = DTK_ALL_SECS_M;
1044  }
1045  break;
1046 
1047  case DTK_TZ:
1048  tmask = DTK_M(TZ);
1049  dterr = DecodeTimezone(field[i], tzp);
1050  if (dterr)
1051  return dterr;
1052  break;
1053 
1054  case DTK_JULIAN:
1055  /* previous field was a label for "julian date" */
1056  if (val < 0)
1057  return DTERR_FIELD_OVERFLOW;
1058  tmask = DTK_DATE_M;
1059  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1060  isjulian = true;
1061 
1062  /* fractional Julian Day? */
1063  if (*cp == '.')
1064  {
1065  double time;
1066 
1067  errno = 0;
1068  time = strtod(cp, &cp);
1069  if (*cp != '\0' || errno != 0)
1070  return DTERR_BAD_FORMAT;
1071  time *= USECS_PER_DAY;
1072  dt2time(time,
1073  &tm->tm_hour, &tm->tm_min,
1074  &tm->tm_sec, fsec);
1075  tmask |= DTK_TIME_M;
1076  }
1077  break;
1078 
1079  case DTK_TIME:
1080  /* previous field was "t" for ISO time */
1081  dterr = DecodeNumberField(strlen(field[i]), field[i],
1082  (fmask | DTK_DATE_M),
1083  &tmask, tm,
1084  fsec, &is2digits);
1085  if (dterr < 0)
1086  return dterr;
1087  if (tmask != DTK_TIME_M)
1088  return DTERR_BAD_FORMAT;
1089  break;
1090 
1091  default:
1092  return DTERR_BAD_FORMAT;
1093  break;
1094  }
1095 
1096  ptype = 0;
1097  *dtype = DTK_DATE;
1098  }
1099  else
1100  {
1101  char *cp;
1102  int flen;
1103 
1104  flen = strlen(field[i]);
1105  cp = strchr(field[i], '.');
1106 
1107  /* Embedded decimal and no date yet? */
1108  if (cp != NULL && !(fmask & DTK_DATE_M))
1109  {
1110  dterr = DecodeDate(field[i], fmask,
1111  &tmask, &is2digits, tm);
1112  if (dterr)
1113  return dterr;
1114  }
1115  /* embedded decimal and several digits before? */
1116  else if (cp != NULL && flen - strlen(cp) > 2)
1117  {
1118  /*
1119  * Interpret as a concatenated date or time Set the
1120  * type field to allow decoding other fields later.
1121  * Example: 20011223 or 040506
1122  */
1123  dterr = DecodeNumberField(flen, field[i], fmask,
1124  &tmask, tm,
1125  fsec, &is2digits);
1126  if (dterr < 0)
1127  return dterr;
1128  }
1129 
1130  /*
1131  * Is this a YMD or HMS specification, or a year number?
1132  * YMD and HMS are required to be six digits or more, so
1133  * if it is 5 digits, it is a year. If it is six or more
1134  * digits, we assume it is YMD or HMS unless no date and
1135  * no time values have been specified. This forces 6+
1136  * digit years to be at the end of the string, or to use
1137  * the ISO date specification.
1138  */
1139  else if (flen >= 6 && (!(fmask & DTK_DATE_M) ||
1140  !(fmask & DTK_TIME_M)))
1141  {
1142  dterr = DecodeNumberField(flen, field[i], fmask,
1143  &tmask, tm,
1144  fsec, &is2digits);
1145  if (dterr < 0)
1146  return dterr;
1147  }
1148  /* otherwise it is a single date/time field... */
1149  else
1150  {
1151  dterr = DecodeNumber(flen, field[i],
1152  haveTextMonth, fmask,
1153  &tmask, tm,
1154  fsec, &is2digits);
1155  if (dterr)
1156  return dterr;
1157  }
1158  }
1159  break;
1160 
1161  case DTK_STRING:
1162  case DTK_SPECIAL:
1163  /* timezone abbrevs take precedence over built-in tokens */
1164  type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
1165  if (type == UNKNOWN_FIELD)
1166  type = DecodeSpecial(i, field[i], &val);
1167  if (type == IGNORE_DTF)
1168  continue;
1169 
1170  tmask = DTK_M(type);
1171  switch (type)
1172  {
1173  case RESERV:
1174  switch (val)
1175  {
1176  case DTK_NOW:
1177  tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ));
1178  *dtype = DTK_DATE;
1179  GetCurrentTimeUsec(tm, fsec, tzp);
1180  break;
1181 
1182  case DTK_YESTERDAY:
1183  tmask = DTK_DATE_M;
1184  *dtype = DTK_DATE;
1185  GetCurrentDateTime(&cur_tm);
1186  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1,
1187  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1188  break;
1189 
1190  case DTK_TODAY:
1191  tmask = DTK_DATE_M;
1192  *dtype = DTK_DATE;
1193  GetCurrentDateTime(&cur_tm);
1194  tm->tm_year = cur_tm.tm_year;
1195  tm->tm_mon = cur_tm.tm_mon;
1196  tm->tm_mday = cur_tm.tm_mday;
1197  break;
1198 
1199  case DTK_TOMORROW:
1200  tmask = DTK_DATE_M;
1201  *dtype = DTK_DATE;
1202  GetCurrentDateTime(&cur_tm);
1203  j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1,
1204  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1205  break;
1206 
1207  case DTK_ZULU:
1208  tmask = (DTK_TIME_M | DTK_M(TZ));
1209  *dtype = DTK_DATE;
1210  tm->tm_hour = 0;
1211  tm->tm_min = 0;
1212  tm->tm_sec = 0;
1213  if (tzp != NULL)
1214  *tzp = 0;
1215  break;
1216 
1217  default:
1218  *dtype = val;
1219  }
1220 
1221  break;
1222 
1223  case MONTH:
1224 
1225  /*
1226  * already have a (numeric) month? then see if we can
1227  * substitute...
1228  */
1229  if ((fmask & DTK_M(MONTH)) && !haveTextMonth &&
1230  !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 &&
1231  tm->tm_mon <= 31)
1232  {
1233  tm->tm_mday = tm->tm_mon;
1234  tmask = DTK_M(DAY);
1235  }
1236  haveTextMonth = true;
1237  tm->tm_mon = val;
1238  break;
1239 
1240  case DTZMOD:
1241 
1242  /*
1243  * daylight savings time modifier (solves "MET DST"
1244  * syntax)
1245  */
1246  tmask |= DTK_M(DTZ);
1247  tm->tm_isdst = 1;
1248  if (tzp == NULL)
1249  return DTERR_BAD_FORMAT;
1250  *tzp -= val;
1251  break;
1252 
1253  case DTZ:
1254 
1255  /*
1256  * set mask for TZ here _or_ check for DTZ later when
1257  * getting default timezone
1258  */
1259  tmask |= DTK_M(TZ);
1260  tm->tm_isdst = 1;
1261  if (tzp == NULL)
1262  return DTERR_BAD_FORMAT;
1263  *tzp = -val;
1264  break;
1265 
1266  case TZ:
1267  tm->tm_isdst = 0;
1268  if (tzp == NULL)
1269  return DTERR_BAD_FORMAT;
1270  *tzp = -val;
1271  break;
1272 
1273  case DYNTZ:
1274  tmask |= DTK_M(TZ);
1275  if (tzp == NULL)
1276  return DTERR_BAD_FORMAT;
1277  /* we'll determine the actual offset later */
1278  abbrevTz = valtz;
1279  abbrev = field[i];
1280  break;
1281 
1282  case AMPM:
1283  mer = val;
1284  break;
1285 
1286  case ADBC:
1287  bc = (val == BC);
1288  break;
1289 
1290  case DOW:
1291  tm->tm_wday = val;
1292  break;
1293 
1294  case UNITS:
1295  tmask = 0;
1296  ptype = val;
1297  break;
1298 
1299  case ISOTIME:
1300 
1301  /*
1302  * This is a filler field "t" indicating that the next
1303  * field is time. Try to verify that this is sensible.
1304  */
1305  tmask = 0;
1306 
1307  /* No preceding date? Then quit... */
1308  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1309  return DTERR_BAD_FORMAT;
1310 
1311  /***
1312  * We will need one of the following fields:
1313  * DTK_NUMBER should be hhmmss.fff
1314  * DTK_TIME should be hh:mm:ss.fff
1315  * DTK_DATE should be hhmmss-zz
1316  ***/
1317  if (i >= nf - 1 ||
1318  (ftype[i + 1] != DTK_NUMBER &&
1319  ftype[i + 1] != DTK_TIME &&
1320  ftype[i + 1] != DTK_DATE))
1321  return DTERR_BAD_FORMAT;
1322 
1323  ptype = val;
1324  break;
1325 
1326  case UNKNOWN_FIELD:
1327 
1328  /*
1329  * Before giving up and declaring error, check to see
1330  * if it is an all-alpha timezone name.
1331  */
1332  namedTz = pg_tzset(field[i]);
1333  if (!namedTz)
1334  return DTERR_BAD_FORMAT;
1335  /* we'll apply the zone setting below */
1336  tmask = DTK_M(TZ);
1337  break;
1338 
1339  default:
1340  return DTERR_BAD_FORMAT;
1341  }
1342  break;
1343 
1344  default:
1345  return DTERR_BAD_FORMAT;
1346  }
1347 
1348  if (tmask & fmask)
1349  return DTERR_BAD_FORMAT;
1350  fmask |= tmask;
1351  } /* end loop over fields */
1352 
1353  /* do final checking/adjustment of Y/M/D fields */
1354  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
1355  if (dterr)
1356  return dterr;
1357 
1358  /* handle AM/PM */
1359  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
1360  return DTERR_FIELD_OVERFLOW;
1361  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
1362  tm->tm_hour = 0;
1363  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
1364  tm->tm_hour += HOURS_PER_DAY / 2;
1365 
1366  /* do additional checking for full date specs... */
1367  if (*dtype == DTK_DATE)
1368  {
1369  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
1370  {
1371  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1372  return 1;
1373  return DTERR_BAD_FORMAT;
1374  }
1375 
1376  /*
1377  * If we had a full timezone spec, compute the offset (we could not do
1378  * it before, because we need the date to resolve DST status).
1379  */
1380  if (namedTz != NULL)
1381  {
1382  /* daylight savings time modifier disallowed with full TZ */
1383  if (fmask & DTK_M(DTZMOD))
1384  return DTERR_BAD_FORMAT;
1385 
1386  *tzp = DetermineTimeZoneOffset(tm, namedTz);
1387  }
1388 
1389  /*
1390  * Likewise, if we had a dynamic timezone abbreviation, resolve it
1391  * now.
1392  */
1393  if (abbrevTz != NULL)
1394  {
1395  /* daylight savings time modifier disallowed with dynamic TZ */
1396  if (fmask & DTK_M(DTZMOD))
1397  return DTERR_BAD_FORMAT;
1398 
1399  *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz);
1400  }
1401 
1402  /* timezone not specified? then use session timezone */
1403  if (tzp != NULL && !(fmask & DTK_M(TZ)))
1404  {
1405  /*
1406  * daylight savings time modifier but no standard timezone? then
1407  * error
1408  */
1409  if (fmask & DTK_M(DTZMOD))
1410  return DTERR_BAD_FORMAT;
1411 
1413  }
1414  }
1415 
1416  return 0;
1417 }
1418 
1419 
1420 /* DetermineTimeZoneOffset()
1421  *
1422  * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min,
1423  * and tm_sec fields are set, and a zic-style time zone definition, determine
1424  * the applicable GMT offset and daylight-savings status at that time.
1425  * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT
1426  * offset as the function result.
1427  *
1428  * Note: if the date is out of the range we can deal with, we return zero
1429  * as the GMT offset and set tm_isdst = 0. We don't throw an error here,
1430  * though probably some higher-level code will.
1431  */
1432 int
1434 {
1435  pg_time_t t;
1436 
1437  return DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1438 }
1439 
1440 
1441 /* DetermineTimeZoneOffsetInternal()
1442  *
1443  * As above, but also return the actual UTC time imputed to the date/time
1444  * into *tp.
1445  *
1446  * In event of an out-of-range date, we punt by returning zero into *tp.
1447  * This is okay for the immediate callers but is a good reason for not
1448  * exposing this worker function globally.
1449  *
1450  * Note: it might seem that we should use mktime() for this, but bitter
1451  * experience teaches otherwise. This code is much faster than most versions
1452  * of mktime(), anyway.
1453  */
1454 static int
1456 {
1457  int date,
1458  sec;
1459  pg_time_t day,
1460  mytime,
1461  prevtime,
1462  boundary,
1463  beforetime,
1464  aftertime;
1465  long int before_gmtoff,
1466  after_gmtoff;
1467  int before_isdst,
1468  after_isdst;
1469  int res;
1470 
1471  /*
1472  * First, generate the pg_time_t value corresponding to the given
1473  * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the
1474  * timezone is GMT. (For a valid Julian date, integer overflow should be
1475  * impossible with 64-bit pg_time_t, but let's check for safety.)
1476  */
1477  if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
1478  goto overflow;
1479  date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE;
1480 
1481  day = ((pg_time_t) date) * SECS_PER_DAY;
1482  if (day / SECS_PER_DAY != date)
1483  goto overflow;
1484  sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE;
1485  mytime = day + sec;
1486  /* since sec >= 0, overflow could only be from +day to -mytime */
1487  if (mytime < 0 && day > 0)
1488  goto overflow;
1489 
1490  /*
1491  * Find the DST time boundary just before or following the target time. We
1492  * assume that all zones have GMT offsets less than 24 hours, and that DST
1493  * boundaries can't be closer together than 48 hours, so backing up 24
1494  * hours and finding the "next" boundary will work.
1495  */
1496  prevtime = mytime - SECS_PER_DAY;
1497  if (mytime < 0 && prevtime > 0)
1498  goto overflow;
1499 
1500  res = pg_next_dst_boundary(&prevtime,
1501  &before_gmtoff, &before_isdst,
1502  &boundary,
1503  &after_gmtoff, &after_isdst,
1504  tzp);
1505  if (res < 0)
1506  goto overflow; /* failure? */
1507 
1508  if (res == 0)
1509  {
1510  /* Non-DST zone, life is simple */
1511  tm->tm_isdst = before_isdst;
1512  *tp = mytime - before_gmtoff;
1513  return -(int) before_gmtoff;
1514  }
1515 
1516  /*
1517  * Form the candidate pg_time_t values with local-time adjustment
1518  */
1519  beforetime = mytime - before_gmtoff;
1520  if ((before_gmtoff > 0 &&
1521  mytime < 0 && beforetime > 0) ||
1522  (before_gmtoff <= 0 &&
1523  mytime > 0 && beforetime < 0))
1524  goto overflow;
1525  aftertime = mytime - after_gmtoff;
1526  if ((after_gmtoff > 0 &&
1527  mytime < 0 && aftertime > 0) ||
1528  (after_gmtoff <= 0 &&
1529  mytime > 0 && aftertime < 0))
1530  goto overflow;
1531 
1532  /*
1533  * If both before or both after the boundary time, we know what to do. The
1534  * boundary time itself is considered to be after the transition, which
1535  * means we can accept aftertime == boundary in the second case.
1536  */
1537  if (beforetime < boundary && aftertime < boundary)
1538  {
1539  tm->tm_isdst = before_isdst;
1540  *tp = beforetime;
1541  return -(int) before_gmtoff;
1542  }
1543  if (beforetime > boundary && aftertime >= boundary)
1544  {
1545  tm->tm_isdst = after_isdst;
1546  *tp = aftertime;
1547  return -(int) after_gmtoff;
1548  }
1549 
1550  /*
1551  * It's an invalid or ambiguous time due to timezone transition. In a
1552  * spring-forward transition, prefer the "before" interpretation; in a
1553  * fall-back transition, prefer "after". (We used to define and implement
1554  * this test as "prefer the standard-time interpretation", but that rule
1555  * does not help to resolve the behavior when both times are reported as
1556  * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also,
1557  * in some zones such as Europe/Dublin, there is widespread confusion
1558  * about which time offset is "standard" time, so it's fortunate that our
1559  * behavior doesn't depend on that.)
1560  */
1561  if (beforetime > aftertime)
1562  {
1563  tm->tm_isdst = before_isdst;
1564  *tp = beforetime;
1565  return -(int) before_gmtoff;
1566  }
1567  tm->tm_isdst = after_isdst;
1568  *tp = aftertime;
1569  return -(int) after_gmtoff;
1570 
1571 overflow:
1572  /* Given date is out of range, so assume UTC */
1573  tm->tm_isdst = 0;
1574  *tp = 0;
1575  return 0;
1576 }
1577 
1578 
1579 /* DetermineTimeZoneAbbrevOffset()
1580  *
1581  * Determine the GMT offset and DST flag to be attributed to a dynamic
1582  * time zone abbreviation, that is one whose meaning has changed over time.
1583  * *tm contains the local time at which the meaning should be determined,
1584  * and tm->tm_isdst receives the DST flag.
1585  *
1586  * This differs from the behavior of DetermineTimeZoneOffset() in that a
1587  * standard-time or daylight-time abbreviation forces use of the corresponding
1588  * GMT offset even when the zone was then in DS or standard time respectively.
1589  * (However, that happens only if we can match the given abbreviation to some
1590  * abbreviation that appears in the IANA timezone data. Otherwise, we fall
1591  * back to doing DetermineTimeZoneOffset().)
1592  */
1593 int
1594 DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
1595 {
1596  pg_time_t t;
1597  int zone_offset;
1598  int abbr_offset;
1599  int abbr_isdst;
1600 
1601  /*
1602  * Compute the UTC time we want to probe at. (In event of overflow, we'll
1603  * probe at the epoch, which is a bit random but probably doesn't matter.)
1604  */
1605  zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t);
1606 
1607  /*
1608  * Try to match the abbreviation to something in the zone definition.
1609  */
1610  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1611  &abbr_offset, &abbr_isdst))
1612  {
1613  /* Success, so use the abbrev-specific answers. */
1614  tm->tm_isdst = abbr_isdst;
1615  return abbr_offset;
1616  }
1617 
1618  /*
1619  * No match, so use the answers we already got from
1620  * DetermineTimeZoneOffsetInternal.
1621  */
1622  return zone_offset;
1623 }
1624 
1625 
1626 /* DetermineTimeZoneAbbrevOffsetTS()
1627  *
1628  * As above but the probe time is specified as a TimestampTz (hence, UTC time),
1629  * and DST status is returned into *isdst rather than into tm->tm_isdst.
1630  */
1631 int
1633  pg_tz *tzp, int *isdst)
1634 {
1636  int zone_offset;
1637  int abbr_offset;
1638  int tz;
1639  struct pg_tm tm;
1640  fsec_t fsec;
1641 
1642  /*
1643  * If the abbrev matches anything in the zone data, this is pretty easy.
1644  */
1645  if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp,
1646  &abbr_offset, isdst))
1647  return abbr_offset;
1648 
1649  /*
1650  * Else, break down the timestamp so we can use DetermineTimeZoneOffset.
1651  */
1652  if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0)
1653  ereport(ERROR,
1654  (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
1655  errmsg("timestamp out of range")));
1656 
1657  zone_offset = DetermineTimeZoneOffset(&tm, tzp);
1658  *isdst = tm.tm_isdst;
1659  return zone_offset;
1660 }
1661 
1662 
1663 /* DetermineTimeZoneAbbrevOffsetInternal()
1664  *
1665  * Workhorse for above two functions: work from a pg_time_t probe instant.
1666  * On success, return GMT offset and DST status into *offset and *isdst.
1667  */
1668 static bool
1670  int *offset, int *isdst)
1671 {
1672  char upabbr[TZ_STRLEN_MAX + 1];
1673  unsigned char *p;
1674  long int gmtoff;
1675 
1676  /* We need to force the abbrev to upper case */
1677  strlcpy(upabbr, abbr, sizeof(upabbr));
1678  for (p = (unsigned char *) upabbr; *p; p++)
1679  *p = pg_toupper(*p);
1680 
1681  /* Look up the abbrev's meaning at this time in this zone */
1682  if (pg_interpret_timezone_abbrev(upabbr,
1683  &t,
1684  &gmtoff,
1685  isdst,
1686  tzp))
1687  {
1688  /* Change sign to agree with DetermineTimeZoneOffset() */
1689  *offset = (int) -gmtoff;
1690  return true;
1691  }
1692  return false;
1693 }
1694 
1695 
1696 /* DecodeTimeOnly()
1697  * Interpret parsed string as time fields only.
1698  * Returns 0 if successful, DTERR code if bogus input detected.
1699  *
1700  * Note that support for time zone is here for
1701  * SQL TIME WITH TIME ZONE, but it reveals
1702  * bogosity with SQL date/time standards, since
1703  * we must infer a time zone from current time.
1704  * - thomas 2000-03-10
1705  * Allow specifying date to get a better time zone,
1706  * if time zones are allowed. - thomas 2001-12-26
1707  */
1708 int
1709 DecodeTimeOnly(char **field, int *ftype, int nf,
1710  int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
1711 {
1712  int fmask = 0,
1713  tmask,
1714  type;
1715  int ptype = 0; /* "prefix type" for ISO h04mm05s06 format */
1716  int i;
1717  int val;
1718  int dterr;
1719  bool isjulian = false;
1720  bool is2digits = false;
1721  bool bc = false;
1722  int mer = HR24;
1723  pg_tz *namedTz = NULL;
1724  pg_tz *abbrevTz = NULL;
1725  char *abbrev = NULL;
1726  pg_tz *valtz;
1727 
1728  *dtype = DTK_TIME;
1729  tm->tm_hour = 0;
1730  tm->tm_min = 0;
1731  tm->tm_sec = 0;
1732  *fsec = 0;
1733  /* don't know daylight savings time status apriori */
1734  tm->tm_isdst = -1;
1735 
1736  if (tzp != NULL)
1737  *tzp = 0;
1738 
1739  for (i = 0; i < nf; i++)
1740  {
1741  switch (ftype[i])
1742  {
1743  case DTK_DATE:
1744 
1745  /*
1746  * Time zone not allowed? Then should not accept dates or time
1747  * zones no matter what else!
1748  */
1749  if (tzp == NULL)
1750  return DTERR_BAD_FORMAT;
1751 
1752  /* Under limited circumstances, we will accept a date... */
1753  if (i == 0 && nf >= 2 &&
1754  (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME))
1755  {
1756  dterr = DecodeDate(field[i], fmask,
1757  &tmask, &is2digits, tm);
1758  if (dterr)
1759  return dterr;
1760  }
1761  /* otherwise, this is a time and/or time zone */
1762  else
1763  {
1764  if (isdigit((unsigned char) *field[i]))
1765  {
1766  char *cp;
1767 
1768  /*
1769  * Starts with a digit but we already have a time
1770  * field? Then we are in trouble with time already...
1771  */
1772  if ((fmask & DTK_TIME_M) == DTK_TIME_M)
1773  return DTERR_BAD_FORMAT;
1774 
1775  /*
1776  * Should not get here and fail. Sanity check only...
1777  */
1778  if ((cp = strchr(field[i], '-')) == NULL)
1779  return DTERR_BAD_FORMAT;
1780 
1781  /* Get the time zone from the end of the string */
1782  dterr = DecodeTimezone(cp, tzp);
1783  if (dterr)
1784  return dterr;
1785  *cp = '\0';
1786 
1787  /*
1788  * Then read the rest of the field as a concatenated
1789  * time
1790  */
1791  dterr = DecodeNumberField(strlen(field[i]), field[i],
1792  (fmask | DTK_DATE_M),
1793  &tmask, tm,
1794  fsec, &is2digits);
1795  if (dterr < 0)
1796  return dterr;
1797  ftype[i] = dterr;
1798 
1799  tmask |= DTK_M(TZ);
1800  }
1801  else
1802  {
1803  namedTz = pg_tzset(field[i]);
1804  if (!namedTz)
1805  {
1806  /*
1807  * We should return an error code instead of
1808  * ereport'ing directly, but then there is no way
1809  * to report the bad time zone name.
1810  */
1811  ereport(ERROR,
1812  (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
1813  errmsg("time zone \"%s\" not recognized",
1814  field[i])));
1815  }
1816  /* we'll apply the zone setting below */
1817  ftype[i] = DTK_TZ;
1818  tmask = DTK_M(TZ);
1819  }
1820  }
1821  break;
1822 
1823  case DTK_TIME:
1824  dterr = DecodeTime(field[i], (fmask | DTK_DATE_M),
1826  &tmask, tm, fsec);
1827  if (dterr)
1828  return dterr;
1829  break;
1830 
1831  case DTK_TZ:
1832  {
1833  int tz;
1834 
1835  if (tzp == NULL)
1836  return DTERR_BAD_FORMAT;
1837 
1838  dterr = DecodeTimezone(field[i], &tz);
1839  if (dterr)
1840  return dterr;
1841  *tzp = tz;
1842  tmask = DTK_M(TZ);
1843  }
1844  break;
1845 
1846  case DTK_NUMBER:
1847 
1848  /*
1849  * Was this an "ISO time" with embedded field labels? An
1850  * example is "h04mm05s06" - thomas 2001-02-04
1851  */
1852  if (ptype != 0)
1853  {
1854  char *cp;
1855  int val;
1856 
1857  /* Only accept a date under limited circumstances */
1858  switch (ptype)
1859  {
1860  case DTK_JULIAN:
1861  case DTK_YEAR:
1862  case DTK_MONTH:
1863  case DTK_DAY:
1864  if (tzp == NULL)
1865  return DTERR_BAD_FORMAT;
1866  default:
1867  break;
1868  }
1869 
1870  errno = 0;
1871  val = strtoint(field[i], &cp, 10);
1872  if (errno == ERANGE)
1873  return DTERR_FIELD_OVERFLOW;
1874 
1875  /*
1876  * only a few kinds are allowed to have an embedded
1877  * decimal
1878  */
1879  if (*cp == '.')
1880  switch (ptype)
1881  {
1882  case DTK_JULIAN:
1883  case DTK_TIME:
1884  case DTK_SECOND:
1885  break;
1886  default:
1887  return DTERR_BAD_FORMAT;
1888  break;
1889  }
1890  else if (*cp != '\0')
1891  return DTERR_BAD_FORMAT;
1892 
1893  switch (ptype)
1894  {
1895  case DTK_YEAR:
1896  tm->tm_year = val;
1897  tmask = DTK_M(YEAR);
1898  break;
1899 
1900  case DTK_MONTH:
1901 
1902  /*
1903  * already have a month and hour? then assume
1904  * minutes
1905  */
1906  if ((fmask & DTK_M(MONTH)) != 0 &&
1907  (fmask & DTK_M(HOUR)) != 0)
1908  {
1909  tm->tm_min = val;
1910  tmask = DTK_M(MINUTE);
1911  }
1912  else
1913  {
1914  tm->tm_mon = val;
1915  tmask = DTK_M(MONTH);
1916  }
1917  break;
1918 
1919  case DTK_DAY:
1920  tm->tm_mday = val;
1921  tmask = DTK_M(DAY);
1922  break;
1923 
1924  case DTK_HOUR:
1925  tm->tm_hour = val;
1926  tmask = DTK_M(HOUR);
1927  break;
1928 
1929  case DTK_MINUTE:
1930  tm->tm_min = val;
1931  tmask = DTK_M(MINUTE);
1932  break;
1933 
1934  case DTK_SECOND:
1935  tm->tm_sec = val;
1936  tmask = DTK_M(SECOND);
1937  if (*cp == '.')
1938  {
1939  dterr = ParseFractionalSecond(cp, fsec);
1940  if (dterr)
1941  return dterr;
1942  tmask = DTK_ALL_SECS_M;
1943  }
1944  break;
1945 
1946  case DTK_TZ:
1947  tmask = DTK_M(TZ);
1948  dterr = DecodeTimezone(field[i], tzp);
1949  if (dterr)
1950  return dterr;
1951  break;
1952 
1953  case DTK_JULIAN:
1954  /* previous field was a label for "julian date" */
1955  if (val < 0)
1956  return DTERR_FIELD_OVERFLOW;
1957  tmask = DTK_DATE_M;
1958  j2date(val, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
1959  isjulian = true;
1960 
1961  if (*cp == '.')
1962  {
1963  double time;
1964 
1965  errno = 0;
1966  time = strtod(cp, &cp);
1967  if (*cp != '\0' || errno != 0)
1968  return DTERR_BAD_FORMAT;
1969  time *= USECS_PER_DAY;
1970  dt2time(time,
1971  &tm->tm_hour, &tm->tm_min,
1972  &tm->tm_sec, fsec);
1973  tmask |= DTK_TIME_M;
1974  }
1975  break;
1976 
1977  case DTK_TIME:
1978  /* previous field was "t" for ISO time */
1979  dterr = DecodeNumberField(strlen(field[i]), field[i],
1980  (fmask | DTK_DATE_M),
1981  &tmask, tm,
1982  fsec, &is2digits);
1983  if (dterr < 0)
1984  return dterr;
1985  ftype[i] = dterr;
1986 
1987  if (tmask != DTK_TIME_M)
1988  return DTERR_BAD_FORMAT;
1989  break;
1990 
1991  default:
1992  return DTERR_BAD_FORMAT;
1993  break;
1994  }
1995 
1996  ptype = 0;
1997  *dtype = DTK_DATE;
1998  }
1999  else
2000  {
2001  char *cp;
2002  int flen;
2003 
2004  flen = strlen(field[i]);
2005  cp = strchr(field[i], '.');
2006 
2007  /* Embedded decimal? */
2008  if (cp != NULL)
2009  {
2010  /*
2011  * Under limited circumstances, we will accept a
2012  * date...
2013  */
2014  if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE)
2015  {
2016  dterr = DecodeDate(field[i], fmask,
2017  &tmask, &is2digits, tm);
2018  if (dterr)
2019  return dterr;
2020  }
2021  /* embedded decimal and several digits before? */
2022  else if (flen - strlen(cp) > 2)
2023  {
2024  /*
2025  * Interpret as a concatenated date or time Set
2026  * the type field to allow decoding other fields
2027  * later. Example: 20011223 or 040506
2028  */
2029  dterr = DecodeNumberField(flen, field[i],
2030  (fmask | DTK_DATE_M),
2031  &tmask, tm,
2032  fsec, &is2digits);
2033  if (dterr < 0)
2034  return dterr;
2035  ftype[i] = dterr;
2036  }
2037  else
2038  return DTERR_BAD_FORMAT;
2039  }
2040  else if (flen > 4)
2041  {
2042  dterr = DecodeNumberField(flen, field[i],
2043  (fmask | DTK_DATE_M),
2044  &tmask, tm,
2045  fsec, &is2digits);
2046  if (dterr < 0)
2047  return dterr;
2048  ftype[i] = dterr;
2049  }
2050  /* otherwise it is a single date/time field... */
2051  else
2052  {
2053  dterr = DecodeNumber(flen, field[i],
2054  false,
2055  (fmask | DTK_DATE_M),
2056  &tmask, tm,
2057  fsec, &is2digits);
2058  if (dterr)
2059  return dterr;
2060  }
2061  }
2062  break;
2063 
2064  case DTK_STRING:
2065  case DTK_SPECIAL:
2066  /* timezone abbrevs take precedence over built-in tokens */
2067  type = DecodeTimezoneAbbrev(i, field[i], &val, &valtz);
2068  if (type == UNKNOWN_FIELD)
2069  type = DecodeSpecial(i, field[i], &val);
2070  if (type == IGNORE_DTF)
2071  continue;
2072 
2073  tmask = DTK_M(type);
2074  switch (type)
2075  {
2076  case RESERV:
2077  switch (val)
2078  {
2079  case DTK_NOW:
2080  tmask = DTK_TIME_M;
2081  *dtype = DTK_TIME;
2082  GetCurrentTimeUsec(tm, fsec, NULL);
2083  break;
2084 
2085  case DTK_ZULU:
2086  tmask = (DTK_TIME_M | DTK_M(TZ));
2087  *dtype = DTK_TIME;
2088  tm->tm_hour = 0;
2089  tm->tm_min = 0;
2090  tm->tm_sec = 0;
2091  tm->tm_isdst = 0;
2092  break;
2093 
2094  default:
2095  return DTERR_BAD_FORMAT;
2096  }
2097 
2098  break;
2099 
2100  case DTZMOD:
2101 
2102  /*
2103  * daylight savings time modifier (solves "MET DST"
2104  * syntax)
2105  */
2106  tmask |= DTK_M(DTZ);
2107  tm->tm_isdst = 1;
2108  if (tzp == NULL)
2109  return DTERR_BAD_FORMAT;
2110  *tzp -= val;
2111  break;
2112 
2113  case DTZ:
2114 
2115  /*
2116  * set mask for TZ here _or_ check for DTZ later when
2117  * getting default timezone
2118  */
2119  tmask |= DTK_M(TZ);
2120  tm->tm_isdst = 1;
2121  if (tzp == NULL)
2122  return DTERR_BAD_FORMAT;
2123  *tzp = -val;
2124  ftype[i] = DTK_TZ;
2125  break;
2126 
2127  case TZ:
2128  tm->tm_isdst = 0;
2129  if (tzp == NULL)
2130  return DTERR_BAD_FORMAT;
2131  *tzp = -val;
2132  ftype[i] = DTK_TZ;
2133  break;
2134 
2135  case DYNTZ:
2136  tmask |= DTK_M(TZ);
2137  if (tzp == NULL)
2138  return DTERR_BAD_FORMAT;
2139  /* we'll determine the actual offset later */
2140  abbrevTz = valtz;
2141  abbrev = field[i];
2142  ftype[i] = DTK_TZ;
2143  break;
2144 
2145  case AMPM:
2146  mer = val;
2147  break;
2148 
2149  case ADBC:
2150  bc = (val == BC);
2151  break;
2152 
2153  case UNITS:
2154  tmask = 0;
2155  ptype = val;
2156  break;
2157 
2158  case ISOTIME:
2159  tmask = 0;
2160 
2161  /***
2162  * We will need one of the following fields:
2163  * DTK_NUMBER should be hhmmss.fff
2164  * DTK_TIME should be hh:mm:ss.fff
2165  * DTK_DATE should be hhmmss-zz
2166  ***/
2167  if (i >= nf - 1 ||
2168  (ftype[i + 1] != DTK_NUMBER &&
2169  ftype[i + 1] != DTK_TIME &&
2170  ftype[i + 1] != DTK_DATE))
2171  return DTERR_BAD_FORMAT;
2172 
2173  ptype = val;
2174  break;
2175 
2176  case UNKNOWN_FIELD:
2177 
2178  /*
2179  * Before giving up and declaring error, check to see
2180  * if it is an all-alpha timezone name.
2181  */
2182  namedTz = pg_tzset(field[i]);
2183  if (!namedTz)
2184  return DTERR_BAD_FORMAT;
2185  /* we'll apply the zone setting below */
2186  tmask = DTK_M(TZ);
2187  break;
2188 
2189  default:
2190  return DTERR_BAD_FORMAT;
2191  }
2192  break;
2193 
2194  default:
2195  return DTERR_BAD_FORMAT;
2196  }
2197 
2198  if (tmask & fmask)
2199  return DTERR_BAD_FORMAT;
2200  fmask |= tmask;
2201  } /* end loop over fields */
2202 
2203  /* do final checking/adjustment of Y/M/D fields */
2204  dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm);
2205  if (dterr)
2206  return dterr;
2207 
2208  /* handle AM/PM */
2209  if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2)
2210  return DTERR_FIELD_OVERFLOW;
2211  if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2)
2212  tm->tm_hour = 0;
2213  else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2)
2214  tm->tm_hour += HOURS_PER_DAY / 2;
2215 
2216  /* check for time overflow */
2217  if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec))
2218  return DTERR_FIELD_OVERFLOW;
2219 
2220  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2221  return DTERR_BAD_FORMAT;
2222 
2223  /*
2224  * If we had a full timezone spec, compute the offset (we could not do it
2225  * before, because we may need the date to resolve DST status).
2226  */
2227  if (namedTz != NULL)
2228  {
2229  long int gmtoff;
2230 
2231  /* daylight savings time modifier disallowed with full TZ */
2232  if (fmask & DTK_M(DTZMOD))
2233  return DTERR_BAD_FORMAT;
2234 
2235  /* if non-DST zone, we do not need to know the date */
2236  if (pg_get_timezone_offset(namedTz, &gmtoff))
2237  {
2238  *tzp = -(int) gmtoff;
2239  }
2240  else
2241  {
2242  /* a date has to be specified */
2243  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2244  return DTERR_BAD_FORMAT;
2245  *tzp = DetermineTimeZoneOffset(tm, namedTz);
2246  }
2247  }
2248 
2249  /*
2250  * Likewise, if we had a dynamic timezone abbreviation, resolve it now.
2251  */
2252  if (abbrevTz != NULL)
2253  {
2254  struct pg_tm tt,
2255  *tmp = &tt;
2256 
2257  /*
2258  * daylight savings time modifier but no standard timezone? then error
2259  */
2260  if (fmask & DTK_M(DTZMOD))
2261  return DTERR_BAD_FORMAT;
2262 
2263  if ((fmask & DTK_DATE_M) == 0)
2264  GetCurrentDateTime(tmp);
2265  else
2266  {
2267  /* a date has to be specified */
2268  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2269  return DTERR_BAD_FORMAT;
2270  tmp->tm_year = tm->tm_year;
2271  tmp->tm_mon = tm->tm_mon;
2272  tmp->tm_mday = tm->tm_mday;
2273  }
2274  tmp->tm_hour = tm->tm_hour;
2275  tmp->tm_min = tm->tm_min;
2276  tmp->tm_sec = tm->tm_sec;
2277  *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz);
2278  tm->tm_isdst = tmp->tm_isdst;
2279  }
2280 
2281  /* timezone not specified? then use session timezone */
2282  if (tzp != NULL && !(fmask & DTK_M(TZ)))
2283  {
2284  struct pg_tm tt,
2285  *tmp = &tt;
2286 
2287  /*
2288  * daylight savings time modifier but no standard timezone? then error
2289  */
2290  if (fmask & DTK_M(DTZMOD))
2291  return DTERR_BAD_FORMAT;
2292 
2293  if ((fmask & DTK_DATE_M) == 0)
2294  GetCurrentDateTime(tmp);
2295  else
2296  {
2297  /* a date has to be specified */
2298  if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2299  return DTERR_BAD_FORMAT;
2300  tmp->tm_year = tm->tm_year;
2301  tmp->tm_mon = tm->tm_mon;
2302  tmp->tm_mday = tm->tm_mday;
2303  }
2304  tmp->tm_hour = tm->tm_hour;
2305  tmp->tm_min = tm->tm_min;
2306  tmp->tm_sec = tm->tm_sec;
2308  tm->tm_isdst = tmp->tm_isdst;
2309  }
2310 
2311  return 0;
2312 }
2313 
2314 /* DecodeDate()
2315  * Decode date string which includes delimiters.
2316  * Return 0 if okay, a DTERR code if not.
2317  *
2318  * str: field to be parsed
2319  * fmask: bitmask for field types already seen
2320  * *tmask: receives bitmask for fields found here
2321  * *is2digits: set to true if we find 2-digit year
2322  * *tm: field values are stored into appropriate members of this struct
2323  */
2324 static int
2325 DecodeDate(char *str, int fmask, int *tmask, bool *is2digits,
2326  struct pg_tm *tm)
2327 {
2328  fsec_t fsec;
2329  int nf = 0;
2330  int i,
2331  len;
2332  int dterr;
2333  bool haveTextMonth = false;
2334  int type,
2335  val,
2336  dmask = 0;
2337  char *field[MAXDATEFIELDS];
2338 
2339  *tmask = 0;
2340 
2341  /* parse this string... */
2342  while (*str != '\0' && nf < MAXDATEFIELDS)
2343  {
2344  /* skip field separators */
2345  while (*str != '\0' && !isalnum((unsigned char) *str))
2346  str++;
2347 
2348  if (*str == '\0')
2349  return DTERR_BAD_FORMAT; /* end of string after separator */
2350 
2351  field[nf] = str;
2352  if (isdigit((unsigned char) *str))
2353  {
2354  while (isdigit((unsigned char) *str))
2355  str++;
2356  }
2357  else if (isalpha((unsigned char) *str))
2358  {
2359  while (isalpha((unsigned char) *str))
2360  str++;
2361  }
2362 
2363  /* Just get rid of any non-digit, non-alpha characters... */
2364  if (*str != '\0')
2365  *str++ = '\0';
2366  nf++;
2367  }
2368 
2369  /* look first for text fields, since that will be unambiguous month */
2370  for (i = 0; i < nf; i++)
2371  {
2372  if (isalpha((unsigned char) *field[i]))
2373  {
2374  type = DecodeSpecial(i, field[i], &val);
2375  if (type == IGNORE_DTF)
2376  continue;
2377 
2378  dmask = DTK_M(type);
2379  switch (type)
2380  {
2381  case MONTH:
2382  tm->tm_mon = val;
2383  haveTextMonth = true;
2384  break;
2385 
2386  default:
2387  return DTERR_BAD_FORMAT;
2388  }
2389  if (fmask & dmask)
2390  return DTERR_BAD_FORMAT;
2391 
2392  fmask |= dmask;
2393  *tmask |= dmask;
2394 
2395  /* mark this field as being completed */
2396  field[i] = NULL;
2397  }
2398  }
2399 
2400  /* now pick up remaining numeric fields */
2401  for (i = 0; i < nf; i++)
2402  {
2403  if (field[i] == NULL)
2404  continue;
2405 
2406  if ((len = strlen(field[i])) <= 0)
2407  return DTERR_BAD_FORMAT;
2408 
2409  dterr = DecodeNumber(len, field[i], haveTextMonth, fmask,
2410  &dmask, tm,
2411  &fsec, is2digits);
2412  if (dterr)
2413  return dterr;
2414 
2415  if (fmask & dmask)
2416  return DTERR_BAD_FORMAT;
2417 
2418  fmask |= dmask;
2419  *tmask |= dmask;
2420  }
2421 
2422  if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M)
2423  return DTERR_BAD_FORMAT;
2424 
2425  /* validation of the field values must wait until ValidateDate() */
2426 
2427  return 0;
2428 }
2429 
2430 /* ValidateDate()
2431  * Check valid year/month/day values, handle BC and DOY cases
2432  * Return 0 if okay, a DTERR code if not.
2433  */
2434 int
2435 ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc,
2436  struct pg_tm *tm)
2437 {
2438  if (fmask & DTK_M(YEAR))
2439  {
2440  if (isjulian)
2441  {
2442  /* tm_year is correct and should not be touched */
2443  }
2444  else if (bc)
2445  {
2446  /* there is no year zero in AD/BC notation */
2447  if (tm->tm_year <= 0)
2448  return DTERR_FIELD_OVERFLOW;
2449  /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */
2450  tm->tm_year = -(tm->tm_year - 1);
2451  }
2452  else if (is2digits)
2453  {
2454  /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */
2455  if (tm->tm_year < 0) /* just paranoia */
2456  return DTERR_FIELD_OVERFLOW;
2457  if (tm->tm_year < 70)
2458  tm->tm_year += 2000;
2459  else if (tm->tm_year < 100)
2460  tm->tm_year += 1900;
2461  }
2462  else
2463  {
2464  /* there is no year zero in AD/BC notation */
2465  if (tm->tm_year <= 0)
2466  return DTERR_FIELD_OVERFLOW;
2467  }
2468  }
2469 
2470  /* now that we have correct year, decode DOY */
2471  if (fmask & DTK_M(DOY))
2472  {
2473  j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1,
2474  &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
2475  }
2476 
2477  /* check for valid month */
2478  if (fmask & DTK_M(MONTH))
2479  {
2480  if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR)
2481  return DTERR_MD_FIELD_OVERFLOW;
2482  }
2483 
2484  /* minimal check for valid day */
2485  if (fmask & DTK_M(DAY))
2486  {
2487  if (tm->tm_mday < 1 || tm->tm_mday > 31)
2488  return DTERR_MD_FIELD_OVERFLOW;
2489  }
2490 
2491  if ((fmask & DTK_DATE_M) == DTK_DATE_M)
2492  {
2493  /*
2494  * Check for valid day of month, now that we know for sure the month
2495  * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems
2496  * unlikely that "Feb 29" is a YMD-order error.
2497  */
2498  if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
2499  return DTERR_FIELD_OVERFLOW;
2500  }
2501 
2502  return 0;
2503 }
2504 
2505 
2506 /* DecodeTime()
2507  * Decode time string which includes delimiters.
2508  * Return 0 if okay, a DTERR code if not.
2509  *
2510  * Only check the lower limit on hours, since this same code can be
2511  * used to represent time spans.
2512  */
2513 static int
2514 DecodeTime(char *str, int fmask, int range,
2515  int *tmask, struct pg_tm *tm, fsec_t *fsec)
2516 {
2517  char *cp;
2518  int dterr;
2519 
2520  *tmask = DTK_TIME_M;
2521 
2522  errno = 0;
2523  tm->tm_hour = strtoint(str, &cp, 10);
2524  if (errno == ERANGE)
2525  return DTERR_FIELD_OVERFLOW;
2526  if (*cp != ':')
2527  return DTERR_BAD_FORMAT;
2528  errno = 0;
2529  tm->tm_min = strtoint(cp + 1, &cp, 10);
2530  if (errno == ERANGE)
2531  return DTERR_FIELD_OVERFLOW;
2532  if (*cp == '\0')
2533  {
2534  tm->tm_sec = 0;
2535  *fsec = 0;
2536  /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */
2537  if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND)))
2538  {
2539  tm->tm_sec = tm->tm_min;
2540  tm->tm_min = tm->tm_hour;
2541  tm->tm_hour = 0;
2542  }
2543  }
2544  else if (*cp == '.')
2545  {
2546  /* always assume mm:ss.sss is MINUTE TO SECOND */
2547  dterr = ParseFractionalSecond(cp, fsec);
2548  if (dterr)
2549  return dterr;
2550  tm->tm_sec = tm->tm_min;
2551  tm->tm_min = tm->tm_hour;
2552  tm->tm_hour = 0;
2553  }
2554  else if (*cp == ':')
2555  {
2556  errno = 0;
2557  tm->tm_sec = strtoint(cp + 1, &cp, 10);
2558  if (errno == ERANGE)
2559  return DTERR_FIELD_OVERFLOW;
2560  if (*cp == '\0')
2561  *fsec = 0;
2562  else if (*cp == '.')
2563  {
2564  dterr = ParseFractionalSecond(cp, fsec);
2565  if (dterr)
2566  return dterr;
2567  }
2568  else
2569  return DTERR_BAD_FORMAT;
2570  }
2571  else
2572  return DTERR_BAD_FORMAT;
2573 
2574  /* do a sanity check */
2575  if (tm->tm_hour < 0 || tm->tm_min < 0 || tm->tm_min > MINS_PER_HOUR - 1 ||
2576  tm->tm_sec < 0 || tm->tm_sec > SECS_PER_MINUTE ||
2577  *fsec < INT64CONST(0) ||
2578  *fsec > USECS_PER_SEC)
2579  return DTERR_FIELD_OVERFLOW;
2580 
2581  return 0;
2582 }
2583 
2584 
2585 /* DecodeNumber()
2586  * Interpret plain numeric field as a date value in context.
2587  * Return 0 if okay, a DTERR code if not.
2588  */
2589 static int
2590 DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask,
2591  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2592 {
2593  int val;
2594  char *cp;
2595  int dterr;
2596 
2597  *tmask = 0;
2598 
2599  errno = 0;
2600  val = strtoint(str, &cp, 10);
2601  if (errno == ERANGE)
2602  return DTERR_FIELD_OVERFLOW;
2603  if (cp == str)
2604  return DTERR_BAD_FORMAT;
2605 
2606  if (*cp == '.')
2607  {
2608  /*
2609  * More than two digits before decimal point? Then could be a date or
2610  * a run-together time: 2001.360 20011225 040506.789
2611  */
2612  if (cp - str > 2)
2613  {
2614  dterr = DecodeNumberField(flen, str,
2615  (fmask | DTK_DATE_M),
2616  tmask, tm,
2617  fsec, is2digits);
2618  if (dterr < 0)
2619  return dterr;
2620  return 0;
2621  }
2622 
2623  dterr = ParseFractionalSecond(cp, fsec);
2624  if (dterr)
2625  return dterr;
2626  }
2627  else if (*cp != '\0')
2628  return DTERR_BAD_FORMAT;
2629 
2630  /* Special case for day of year */
2631  if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 &&
2632  val <= 366)
2633  {
2634  *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY));
2635  tm->tm_yday = val;
2636  /* tm_mon and tm_mday can't actually be set yet ... */
2637  return 0;
2638  }
2639 
2640  /* Switch based on what we have so far */
2641  switch (fmask & DTK_DATE_M)
2642  {
2643  case 0:
2644 
2645  /*
2646  * Nothing so far; make a decision about what we think the input
2647  * is. There used to be lots of heuristics here, but the
2648  * consensus now is to be paranoid. It *must* be either
2649  * YYYY-MM-DD (with a more-than-two-digit year field), or the
2650  * field order defined by DateOrder.
2651  */
2652  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2653  {
2654  *tmask = DTK_M(YEAR);
2655  tm->tm_year = val;
2656  }
2657  else if (DateOrder == DATEORDER_DMY)
2658  {
2659  *tmask = DTK_M(DAY);
2660  tm->tm_mday = val;
2661  }
2662  else
2663  {
2664  *tmask = DTK_M(MONTH);
2665  tm->tm_mon = val;
2666  }
2667  break;
2668 
2669  case (DTK_M(YEAR)):
2670  /* Must be at second field of YY-MM-DD */
2671  *tmask = DTK_M(MONTH);
2672  tm->tm_mon = val;
2673  break;
2674 
2675  case (DTK_M(MONTH)):
2676  if (haveTextMonth)
2677  {
2678  /*
2679  * We are at the first numeric field of a date that included a
2680  * textual month name. We want to support the variants
2681  * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous
2682  * inputs. We will also accept MON-DD-YY or DD-MON-YY in
2683  * either DMY or MDY modes, as well as YY-MON-DD in YMD mode.
2684  */
2685  if (flen >= 3 || DateOrder == DATEORDER_YMD)
2686  {
2687  *tmask = DTK_M(YEAR);
2688  tm->tm_year = val;
2689  }
2690  else
2691  {
2692  *tmask = DTK_M(DAY);
2693  tm->tm_mday = val;
2694  }
2695  }
2696  else
2697  {
2698  /* Must be at second field of MM-DD-YY */
2699  *tmask = DTK_M(DAY);
2700  tm->tm_mday = val;
2701  }
2702  break;
2703 
2704  case (DTK_M(YEAR) | DTK_M(MONTH)):
2705  if (haveTextMonth)
2706  {
2707  /* Need to accept DD-MON-YYYY even in YMD mode */
2708  if (flen >= 3 && *is2digits)
2709  {
2710  /* Guess that first numeric field is day was wrong */
2711  *tmask = DTK_M(DAY); /* YEAR is already set */
2712  tm->tm_mday = tm->tm_year;
2713  tm->tm_year = val;
2714  *is2digits = false;
2715  }
2716  else
2717  {
2718  *tmask = DTK_M(DAY);
2719  tm->tm_mday = val;
2720  }
2721  }
2722  else
2723  {
2724  /* Must be at third field of YY-MM-DD */
2725  *tmask = DTK_M(DAY);
2726  tm->tm_mday = val;
2727  }
2728  break;
2729 
2730  case (DTK_M(DAY)):
2731  /* Must be at second field of DD-MM-YY */
2732  *tmask = DTK_M(MONTH);
2733  tm->tm_mon = val;
2734  break;
2735 
2736  case (DTK_M(MONTH) | DTK_M(DAY)):
2737  /* Must be at third field of DD-MM-YY or MM-DD-YY */
2738  *tmask = DTK_M(YEAR);
2739  tm->tm_year = val;
2740  break;
2741 
2742  case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)):
2743  /* we have all the date, so it must be a time field */
2744  dterr = DecodeNumberField(flen, str, fmask,
2745  tmask, tm,
2746  fsec, is2digits);
2747  if (dterr < 0)
2748  return dterr;
2749  return 0;
2750 
2751  default:
2752  /* Anything else is bogus input */
2753  return DTERR_BAD_FORMAT;
2754  }
2755 
2756  /*
2757  * When processing a year field, mark it for adjustment if it's only one
2758  * or two digits.
2759  */
2760  if (*tmask == DTK_M(YEAR))
2761  *is2digits = (flen <= 2);
2762 
2763  return 0;
2764 }
2765 
2766 
2767 /* DecodeNumberField()
2768  * Interpret numeric string as a concatenated date or time field.
2769  * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not.
2770  *
2771  * Use the context of previously decoded fields to help with
2772  * the interpretation.
2773  */
2774 static int
2775 DecodeNumberField(int len, char *str, int fmask,
2776  int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
2777 {
2778  char *cp;
2779 
2780  /*
2781  * Have a decimal point? Then this is a date or something with a seconds
2782  * field...
2783  */
2784  if ((cp = strchr(str, '.')) != NULL)
2785  {
2786  /*
2787  * Can we use ParseFractionalSecond here? Not clear whether trailing
2788  * junk should be rejected ...
2789  */
2790  double frac;
2791 
2792  errno = 0;
2793  frac = strtod(cp, NULL);
2794  if (errno != 0)
2795  return DTERR_BAD_FORMAT;
2796  *fsec = rint(frac * 1000000);
2797  /* Now truncate off the fraction for further processing */
2798  *cp = '\0';
2799  len = strlen(str);
2800  }
2801  /* No decimal point and no complete date yet? */
2802  else if ((fmask & DTK_DATE_M) != DTK_DATE_M)
2803  {
2804  if (len >= 6)
2805  {
2806  *tmask = DTK_DATE_M;
2807 
2808  /*
2809  * Start from end and consider first 2 as Day, next 2 as Month,
2810  * and the rest as Year.
2811  */
2812  tm->tm_mday = atoi(str + (len - 2));
2813  *(str + (len - 2)) = '\0';
2814  tm->tm_mon = atoi(str + (len - 4));
2815  *(str + (len - 4)) = '\0';
2816  tm->tm_year = atoi(str);
2817  if ((len - 4) == 2)
2818  *is2digits = true;
2819 
2820  return DTK_DATE;
2821  }
2822  }
2823 
2824  /* not all time fields are specified? */
2825  if ((fmask & DTK_TIME_M) != DTK_TIME_M)
2826  {
2827  /* hhmmss */
2828  if (len == 6)
2829  {
2830  *tmask = DTK_TIME_M;
2831  tm->tm_sec = atoi(str + 4);
2832  *(str + 4) = '\0';
2833  tm->tm_min = atoi(str + 2);
2834  *(str + 2) = '\0';
2835  tm->tm_hour = atoi(str);
2836 
2837  return DTK_TIME;
2838  }
2839  /* hhmm? */
2840  else if (len == 4)
2841  {
2842  *tmask = DTK_TIME_M;
2843  tm->tm_sec = 0;
2844  tm->tm_min = atoi(str + 2);
2845  *(str + 2) = '\0';
2846  tm->tm_hour = atoi(str);
2847 
2848  return DTK_TIME;
2849  }
2850  }
2851 
2852  return DTERR_BAD_FORMAT;
2853 }
2854 
2855 
2856 /* DecodeTimezone()
2857  * Interpret string as a numeric timezone.
2858  *
2859  * Return 0 if okay (and set *tzp), a DTERR code if not okay.
2860  */
2861 int
2862 DecodeTimezone(char *str, int *tzp)
2863 {
2864  int tz;
2865  int hr,
2866  min,
2867  sec = 0;
2868  char *cp;
2869 
2870  /* leading character must be "+" or "-" */
2871  if (*str != '+' && *str != '-')
2872  return DTERR_BAD_FORMAT;
2873 
2874  errno = 0;
2875  hr = strtoint(str + 1, &cp, 10);
2876  if (errno == ERANGE)
2877  return DTERR_TZDISP_OVERFLOW;
2878 
2879  /* explicit delimiter? */
2880  if (*cp == ':')
2881  {
2882  errno = 0;
2883  min = strtoint(cp + 1, &cp, 10);
2884  if (errno == ERANGE)
2885  return DTERR_TZDISP_OVERFLOW;
2886  if (*cp == ':')
2887  {
2888  errno = 0;
2889  sec = strtoint(cp + 1, &cp, 10);
2890  if (errno == ERANGE)
2891  return DTERR_TZDISP_OVERFLOW;
2892  }
2893  }
2894  /* otherwise, might have run things together... */
2895  else if (*cp == '\0' && strlen(str) > 3)
2896  {
2897  min = hr % 100;
2898  hr = hr / 100;
2899  /* we could, but don't, support a run-together hhmmss format */
2900  }
2901  else
2902  min = 0;
2903 
2904  /* Range-check the values; see notes in datatype/timestamp.h */
2905  if (hr < 0 || hr > MAX_TZDISP_HOUR)
2906  return DTERR_TZDISP_OVERFLOW;
2907  if (min < 0 || min >= MINS_PER_HOUR)
2908  return DTERR_TZDISP_OVERFLOW;
2909  if (sec < 0 || sec >= SECS_PER_MINUTE)
2910  return DTERR_TZDISP_OVERFLOW;
2911 
2912  tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec;
2913  if (*str == '-')
2914  tz = -tz;
2915 
2916  *tzp = -tz;
2917 
2918  if (*cp != '\0')
2919  return DTERR_BAD_FORMAT;
2920 
2921  return 0;
2922 }
2923 
2924 
2925 /* DecodeTimezoneAbbrev()
2926  * Interpret string as a timezone abbreviation, if possible.
2927  *
2928  * Returns an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if
2929  * string is not any known abbreviation. On success, set *offset and *tz to
2930  * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ).
2931  * Note that full timezone names (such as America/New_York) are not handled
2932  * here, mostly for historical reasons.
2933  *
2934  * Given string must be lowercased already.
2935  *
2936  * Implement a cache lookup since it is likely that dates
2937  * will be related in format.
2938  */
2939 int
2940 DecodeTimezoneAbbrev(int field, char *lowtoken,
2941  int *offset, pg_tz **tz)
2942 {
2943  int type;
2944  const datetkn *tp;
2945 
2946  tp = abbrevcache[field];
2947  /* use strncmp so that we match truncated tokens */
2948  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
2949  {
2950  if (zoneabbrevtbl)
2951  tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs,
2952  zoneabbrevtbl->numabbrevs);
2953  else
2954  tp = NULL;
2955  }
2956  if (tp == NULL)
2957  {
2958  type = UNKNOWN_FIELD;
2959  *offset = 0;
2960  *tz = NULL;
2961  }
2962  else
2963  {
2964  abbrevcache[field] = tp;
2965  type = tp->type;
2966  if (type == DYNTZ)
2967  {
2968  *offset = 0;
2969  *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp);
2970  }
2971  else
2972  {
2973  *offset = tp->value;
2974  *tz = NULL;
2975  }
2976  }
2977 
2978  return type;
2979 }
2980 
2981 
2982 /* DecodeSpecial()
2983  * Decode text string using lookup table.
2984  *
2985  * Recognizes the keywords listed in datetktbl.
2986  * Note: at one time this would also recognize timezone abbreviations,
2987  * but no more; use DecodeTimezoneAbbrev for that.
2988  *
2989  * Given string must be lowercased already.
2990  *
2991  * Implement a cache lookup since it is likely that dates
2992  * will be related in format.
2993  */
2994 int
2995 DecodeSpecial(int field, char *lowtoken, int *val)
2996 {
2997  int type;
2998  const datetkn *tp;
2999 
3000  tp = datecache[field];
3001  /* use strncmp so that we match truncated tokens */
3002  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3003  {
3004  tp = datebsearch(lowtoken, datetktbl, szdatetktbl);
3005  }
3006  if (tp == NULL)
3007  {
3008  type = UNKNOWN_FIELD;
3009  *val = 0;
3010  }
3011  else
3012  {
3013  datecache[field] = tp;
3014  type = tp->type;
3015  *val = tp->value;
3016  }
3017 
3018  return type;
3019 }
3020 
3021 
3022 /* ClearPgTm
3023  *
3024  * Zero out a pg_tm and associated fsec_t
3025  */
3026 static inline void
3027 ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
3028 {
3029  tm->tm_year = 0;
3030  tm->tm_mon = 0;
3031  tm->tm_mday = 0;
3032  tm->tm_hour = 0;
3033  tm->tm_min = 0;
3034  tm->tm_sec = 0;
3035  *fsec = 0;
3036 }
3037 
3038 
3039 /* DecodeInterval()
3040  * Interpret previously parsed fields for general time interval.
3041  * Returns 0 if successful, DTERR code if bogus input detected.
3042  * dtype, tm, fsec are output parameters.
3043  *
3044  * Allow "date" field DTK_DATE since this could be just
3045  * an unsigned floating point number. - thomas 1997-11-16
3046  *
3047  * Allow ISO-style time span, with implicit units on number of days
3048  * preceding an hh:mm:ss field. - thomas 1998-04-30
3049  */
3050 int
3051 DecodeInterval(char **field, int *ftype, int nf, int range,
3052  int *dtype, struct pg_tm *tm, fsec_t *fsec)
3053 {
3054  bool is_before = false;
3055  char *cp;
3056  int fmask = 0,
3057  tmask,
3058  type;
3059  int i;
3060  int dterr;
3061  int val;
3062  double fval;
3063 
3064  *dtype = DTK_DELTA;
3065  type = IGNORE_DTF;
3066  ClearPgTm(tm, fsec);
3067 
3068  /* read through list backwards to pick up units before values */
3069  for (i = nf - 1; i >= 0; i--)
3070  {
3071  switch (ftype[i])
3072  {
3073  case DTK_TIME:
3074  dterr = DecodeTime(field[i], fmask, range,
3075  &tmask, tm, fsec);
3076  if (dterr)
3077  return dterr;
3078  type = DTK_DAY;
3079  break;
3080 
3081  case DTK_TZ:
3082 
3083  /*
3084  * Timezone means a token with a leading sign character and at
3085  * least one digit; there could be ':', '.', '-' embedded in
3086  * it as well.
3087  */
3088  Assert(*field[i] == '-' || *field[i] == '+');
3089 
3090  /*
3091  * Check for signed hh:mm or hh:mm:ss. If so, process exactly
3092  * like DTK_TIME case above, plus handling the sign.
3093  */
3094  if (strchr(field[i] + 1, ':') != NULL &&
3095  DecodeTime(field[i] + 1, fmask, range,
3096  &tmask, tm, fsec) == 0)
3097  {
3098  if (*field[i] == '-')
3099  {
3100  /* flip the sign on all fields */
3101  tm->tm_hour = -tm->tm_hour;
3102  tm->tm_min = -tm->tm_min;
3103  tm->tm_sec = -tm->tm_sec;
3104  *fsec = -(*fsec);
3105  }
3106 
3107  /*
3108  * Set the next type to be a day, if units are not
3109  * specified. This handles the case of '1 +02:03' since we
3110  * are reading right to left.
3111  */
3112  type = DTK_DAY;
3113  break;
3114  }
3115 
3116  /*
3117  * Otherwise, fall through to DTK_NUMBER case, which can
3118  * handle signed float numbers and signed year-month values.
3119  */
3120 
3121  /* FALLTHROUGH */
3122 
3123  case DTK_DATE:
3124  case DTK_NUMBER:
3125  if (type == IGNORE_DTF)
3126  {
3127  /* use typmod to decide what rightmost field is */
3128  switch (range)
3129  {
3130  case INTERVAL_MASK(YEAR):
3131  type = DTK_YEAR;
3132  break;
3133  case INTERVAL_MASK(MONTH):
3135  type = DTK_MONTH;
3136  break;
3137  case INTERVAL_MASK(DAY):
3138  type = DTK_DAY;
3139  break;
3140  case INTERVAL_MASK(HOUR):
3142  type = DTK_HOUR;
3143  break;
3144  case INTERVAL_MASK(MINUTE):
3147  type = DTK_MINUTE;
3148  break;
3149  case INTERVAL_MASK(SECOND):
3153  type = DTK_SECOND;
3154  break;
3155  default:
3156  type = DTK_SECOND;
3157  break;
3158  }
3159  }
3160 
3161  errno = 0;
3162  val = strtoint(field[i], &cp, 10);
3163  if (errno == ERANGE)
3164  return DTERR_FIELD_OVERFLOW;
3165 
3166  if (*cp == '-')
3167  {
3168  /* SQL "years-months" syntax */
3169  int val2;
3170 
3171  val2 = strtoint(cp + 1, &cp, 10);
3172  if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR)
3173  return DTERR_FIELD_OVERFLOW;
3174  if (*cp != '\0')
3175  return DTERR_BAD_FORMAT;
3176  type = DTK_MONTH;
3177  if (*field[i] == '-')
3178  val2 = -val2;
3179  if (((double) val * MONTHS_PER_YEAR + val2) > INT_MAX ||
3180  ((double) val * MONTHS_PER_YEAR + val2) < INT_MIN)
3181  return DTERR_FIELD_OVERFLOW;
3182  val = val * MONTHS_PER_YEAR + val2;
3183  fval = 0;
3184  }
3185  else if (*cp == '.')
3186  {
3187  errno = 0;
3188  fval = strtod(cp, &cp);
3189  if (*cp != '\0' || errno != 0)
3190  return DTERR_BAD_FORMAT;
3191 
3192  if (*field[i] == '-')
3193  fval = -fval;
3194  }
3195  else if (*cp == '\0')
3196  fval = 0;
3197  else
3198  return DTERR_BAD_FORMAT;
3199 
3200  tmask = 0; /* DTK_M(type); */
3201 
3202  switch (type)
3203  {
3204  case DTK_MICROSEC:
3205  *fsec += rint(val + fval);
3206  tmask = DTK_M(MICROSECOND);
3207  break;
3208 
3209  case DTK_MILLISEC:
3210  /* avoid overflowing the fsec field */
3211  tm->tm_sec += val / 1000;
3212  val -= (val / 1000) * 1000;
3213  *fsec += rint((val + fval) * 1000);
3214  tmask = DTK_M(MILLISECOND);
3215  break;
3216 
3217  case DTK_SECOND:
3218  tm->tm_sec += val;
3219  *fsec += rint(fval * 1000000);
3220 
3221  /*
3222  * If any subseconds were specified, consider this
3223  * microsecond and millisecond input as well.
3224  */
3225  if (fval == 0)
3226  tmask = DTK_M(SECOND);
3227  else
3228  tmask = DTK_ALL_SECS_M;
3229  break;
3230 
3231  case DTK_MINUTE:
3232  tm->tm_min += val;
3233  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3234  tmask = DTK_M(MINUTE);
3235  break;
3236 
3237  case DTK_HOUR:
3238  tm->tm_hour += val;
3239  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3240  tmask = DTK_M(HOUR);
3241  type = DTK_DAY; /* set for next field */
3242  break;
3243 
3244  case DTK_DAY:
3245  tm->tm_mday += val;
3246  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3247  tmask = DTK_M(DAY);
3248  break;
3249 
3250  case DTK_WEEK:
3251  tm->tm_mday += val * 7;
3252  AdjustFractDays(fval, tm, fsec, 7);
3253  tmask = DTK_M(WEEK);
3254  break;
3255 
3256  case DTK_MONTH:
3257  tm->tm_mon += val;
3258  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3259  tmask = DTK_M(MONTH);
3260  break;
3261 
3262  case DTK_YEAR:
3263  tm->tm_year += val;
3264  if (fval != 0)
3265  tm->tm_mon += fval * MONTHS_PER_YEAR;
3266  tmask = DTK_M(YEAR);
3267  break;
3268 
3269  case DTK_DECADE:
3270  tm->tm_year += val * 10;
3271  if (fval != 0)
3272  tm->tm_mon += fval * MONTHS_PER_YEAR * 10;
3273  tmask = DTK_M(DECADE);
3274  break;
3275 
3276  case DTK_CENTURY:
3277  tm->tm_year += val * 100;
3278  if (fval != 0)
3279  tm->tm_mon += fval * MONTHS_PER_YEAR * 100;
3280  tmask = DTK_M(CENTURY);
3281  break;
3282 
3283  case DTK_MILLENNIUM:
3284  tm->tm_year += val * 1000;
3285  if (fval != 0)
3286  tm->tm_mon += fval * MONTHS_PER_YEAR * 1000;
3287  tmask = DTK_M(MILLENNIUM);
3288  break;
3289 
3290  default:
3291  return DTERR_BAD_FORMAT;
3292  }
3293  break;
3294 
3295  case DTK_STRING:
3296  case DTK_SPECIAL:
3297  type = DecodeUnits(i, field[i], &val);
3298  if (type == IGNORE_DTF)
3299  continue;
3300 
3301  tmask = 0; /* DTK_M(type); */
3302  switch (type)
3303  {
3304  case UNITS:
3305  type = val;
3306  break;
3307 
3308  case AGO:
3309  is_before = true;
3310  type = val;
3311  break;
3312 
3313  case RESERV:
3314  tmask = (DTK_DATE_M | DTK_TIME_M);
3315  *dtype = val;
3316  break;
3317 
3318  default:
3319  return DTERR_BAD_FORMAT;
3320  }
3321  break;
3322 
3323  default:
3324  return DTERR_BAD_FORMAT;
3325  }
3326 
3327  if (tmask & fmask)
3328  return DTERR_BAD_FORMAT;
3329  fmask |= tmask;
3330  }
3331 
3332  /* ensure that at least one time field has been found */
3333  if (fmask == 0)
3334  return DTERR_BAD_FORMAT;
3335 
3336  /* ensure fractional seconds are fractional */
3337  if (*fsec != 0)
3338  {
3339  int sec;
3340 
3341  sec = *fsec / USECS_PER_SEC;
3342  *fsec -= sec * USECS_PER_SEC;
3343  tm->tm_sec += sec;
3344  }
3345 
3346  /*----------
3347  * The SQL standard defines the interval literal
3348  * '-1 1:00:00'
3349  * to mean "negative 1 days and negative 1 hours", while Postgres
3350  * traditionally treats this as meaning "negative 1 days and positive
3351  * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign
3352  * to all fields if there are no other explicit signs.
3353  *
3354  * We leave the signs alone if there are additional explicit signs.
3355  * This protects us against misinterpreting postgres-style dump output,
3356  * since the postgres-style output code has always put an explicit sign on
3357  * all fields following a negative field. But note that SQL-spec output
3358  * is ambiguous and can be misinterpreted on load! (So it's best practice
3359  * to dump in postgres style, not SQL style.)
3360  *----------
3361  */
3362  if (IntervalStyle == INTSTYLE_SQL_STANDARD && *field[0] == '-')
3363  {
3364  /* Check for additional explicit signs */
3365  bool more_signs = false;
3366 
3367  for (i = 1; i < nf; i++)
3368  {
3369  if (*field[i] == '-' || *field[i] == '+')
3370  {
3371  more_signs = true;
3372  break;
3373  }
3374  }
3375 
3376  if (!more_signs)
3377  {
3378  /*
3379  * Rather than re-determining which field was field[0], just force
3380  * 'em all negative.
3381  */
3382  if (*fsec > 0)
3383  *fsec = -(*fsec);
3384  if (tm->tm_sec > 0)
3385  tm->tm_sec = -tm->tm_sec;
3386  if (tm->tm_min > 0)
3387  tm->tm_min = -tm->tm_min;
3388  if (tm->tm_hour > 0)
3389  tm->tm_hour = -tm->tm_hour;
3390  if (tm->tm_mday > 0)
3391  tm->tm_mday = -tm->tm_mday;
3392  if (tm->tm_mon > 0)
3393  tm->tm_mon = -tm->tm_mon;
3394  if (tm->tm_year > 0)
3395  tm->tm_year = -tm->tm_year;
3396  }
3397  }
3398 
3399  /* finally, AGO negates everything */
3400  if (is_before)
3401  {
3402  *fsec = -(*fsec);
3403  tm->tm_sec = -tm->tm_sec;
3404  tm->tm_min = -tm->tm_min;
3405  tm->tm_hour = -tm->tm_hour;
3406  tm->tm_mday = -tm->tm_mday;
3407  tm->tm_mon = -tm->tm_mon;
3408  tm->tm_year = -tm->tm_year;
3409  }
3410 
3411  return 0;
3412 }
3413 
3414 
3415 /*
3416  * Helper functions to avoid duplicated code in DecodeISO8601Interval.
3417  *
3418  * Parse a decimal value and break it into integer and fractional parts.
3419  * Returns 0 or DTERR code.
3420  */
3421 static int
3422 ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
3423 {
3424  double val;
3425 
3426  if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.'))
3427  return DTERR_BAD_FORMAT;
3428  errno = 0;
3429  val = strtod(str, endptr);
3430  /* did we not see anything that looks like a double? */
3431  if (*endptr == str || errno != 0)
3432  return DTERR_BAD_FORMAT;
3433  /* watch out for overflow */
3434  if (val < INT_MIN || val > INT_MAX)
3435  return DTERR_FIELD_OVERFLOW;
3436  /* be very sure we truncate towards zero (cf dtrunc()) */
3437  if (val >= 0)
3438  *ipart = (int) floor(val);
3439  else
3440  *ipart = (int) -floor(-val);
3441  *fpart = val - *ipart;
3442  return 0;
3443 }
3444 
3445 /*
3446  * Determine number of integral digits in a valid ISO 8601 number field
3447  * (we should ignore sign and any fraction part)
3448  */
3449 static int
3450 ISO8601IntegerWidth(char *fieldstart)
3451 {
3452  /* We might have had a leading '-' */
3453  if (*fieldstart == '-')
3454  fieldstart++;
3455  return strspn(fieldstart, "0123456789");
3456 }
3457 
3458 
3459 /* DecodeISO8601Interval()
3460  * Decode an ISO 8601 time interval of the "format with designators"
3461  * (section 4.4.3.2) or "alternative format" (section 4.4.3.3)
3462  * Examples: P1D for 1 day
3463  * PT1H for 1 hour
3464  * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min
3465  * P0002-06-07T01:30:00 the same value in alternative format
3466  *
3467  * Returns 0 if successful, DTERR code if bogus input detected.
3468  * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like
3469  * ISO8601, otherwise this could cause unexpected error messages.
3470  * dtype, tm, fsec are output parameters.
3471  *
3472  * A couple exceptions from the spec:
3473  * - a week field ('W') may coexist with other units
3474  * - allows decimals in fields other than the least significant unit.
3475  */
3476 int
3478  int *dtype, struct pg_tm *tm, fsec_t *fsec)
3479 {
3480  bool datepart = true;
3481  bool havefield = false;
3482 
3483  *dtype = DTK_DELTA;
3484  ClearPgTm(tm, fsec);
3485 
3486  if (strlen(str) < 2 || str[0] != 'P')
3487  return DTERR_BAD_FORMAT;
3488 
3489  str++;
3490  while (*str)
3491  {
3492  char *fieldstart;
3493  int val;
3494  double fval;
3495  char unit;
3496  int dterr;
3497 
3498  if (*str == 'T') /* T indicates the beginning of the time part */
3499  {
3500  datepart = false;
3501  havefield = false;
3502  str++;
3503  continue;
3504  }
3505 
3506  fieldstart = str;
3507  dterr = ParseISO8601Number(str, &str, &val, &fval);
3508  if (dterr)
3509  return dterr;
3510 
3511  /*
3512  * Note: we could step off the end of the string here. Code below
3513  * *must* exit the loop if unit == '\0'.
3514  */
3515  unit = *str++;
3516 
3517  if (datepart)
3518  {
3519  switch (unit) /* before T: Y M W D */
3520  {
3521  case 'Y':
3522  tm->tm_year += val;
3523  tm->tm_mon += (fval * MONTHS_PER_YEAR);
3524  break;
3525  case 'M':
3526  tm->tm_mon += val;
3527  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3528  break;
3529  case 'W':
3530  tm->tm_mday += val * 7;
3531  AdjustFractDays(fval, tm, fsec, 7);
3532  break;
3533  case 'D':
3534  tm->tm_mday += val;
3535  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3536  break;
3537  case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */
3538  case '\0':
3539  if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield)
3540  {
3541  tm->tm_year += val / 10000;
3542  tm->tm_mon += (val / 100) % 100;
3543  tm->tm_mday += val % 100;
3544  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3545  if (unit == '\0')
3546  return 0;
3547  datepart = false;
3548  havefield = false;
3549  continue;
3550  }
3551  /* Else fall through to extended alternative format */
3552  /* FALLTHROUGH */
3553  case '-': /* ISO 8601 4.4.3.3 Alternative Format,
3554  * Extended */
3555  if (havefield)
3556  return DTERR_BAD_FORMAT;
3557 
3558  tm->tm_year += val;
3559  tm->tm_mon += (fval * MONTHS_PER_YEAR);
3560  if (unit == '\0')
3561  return 0;
3562  if (unit == 'T')
3563  {
3564  datepart = false;
3565  havefield = false;
3566  continue;
3567  }
3568 
3569  dterr = ParseISO8601Number(str, &str, &val, &fval);
3570  if (dterr)
3571  return dterr;
3572  tm->tm_mon += val;
3573  AdjustFractDays(fval, tm, fsec, DAYS_PER_MONTH);
3574  if (*str == '\0')
3575  return 0;
3576  if (*str == 'T')
3577  {
3578  datepart = false;
3579  havefield = false;
3580  continue;
3581  }
3582  if (*str != '-')
3583  return DTERR_BAD_FORMAT;
3584  str++;
3585 
3586  dterr = ParseISO8601Number(str, &str, &val, &fval);
3587  if (dterr)
3588  return dterr;
3589  tm->tm_mday += val;
3590  AdjustFractSeconds(fval, tm, fsec, SECS_PER_DAY);
3591  if (*str == '\0')
3592  return 0;
3593  if (*str == 'T')
3594  {
3595  datepart = false;
3596  havefield = false;
3597  continue;
3598  }
3599  return DTERR_BAD_FORMAT;
3600  default:
3601  /* not a valid date unit suffix */
3602  return DTERR_BAD_FORMAT;
3603  }
3604  }
3605  else
3606  {
3607  switch (unit) /* after T: H M S */
3608  {
3609  case 'H':
3610  tm->tm_hour += val;
3611  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3612  break;
3613  case 'M':
3614  tm->tm_min += val;
3615  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3616  break;
3617  case 'S':
3618  tm->tm_sec += val;
3619  AdjustFractSeconds(fval, tm, fsec, 1);
3620  break;
3621  case '\0': /* ISO 8601 4.4.3.3 Alternative Format */
3622  if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield)
3623  {
3624  tm->tm_hour += val / 10000;
3625  tm->tm_min += (val / 100) % 100;
3626  tm->tm_sec += val % 100;
3627  AdjustFractSeconds(fval, tm, fsec, 1);
3628  return 0;
3629  }
3630  /* Else fall through to extended alternative format */
3631  /* FALLTHROUGH */
3632  case ':': /* ISO 8601 4.4.3.3 Alternative Format,
3633  * Extended */
3634  if (havefield)
3635  return DTERR_BAD_FORMAT;
3636 
3637  tm->tm_hour += val;
3638  AdjustFractSeconds(fval, tm, fsec, SECS_PER_HOUR);
3639  if (unit == '\0')
3640  return 0;
3641 
3642  dterr = ParseISO8601Number(str, &str, &val, &fval);
3643  if (dterr)
3644  return dterr;
3645  tm->tm_min += val;
3646  AdjustFractSeconds(fval, tm, fsec, SECS_PER_MINUTE);
3647  if (*str == '\0')
3648  return 0;
3649  if (*str != ':')
3650  return DTERR_BAD_FORMAT;
3651  str++;
3652 
3653  dterr = ParseISO8601Number(str, &str, &val, &fval);
3654  if (dterr)
3655  return dterr;
3656  tm->tm_sec += val;
3657  AdjustFractSeconds(fval, tm, fsec, 1);
3658  if (*str == '\0')
3659  return 0;
3660  return DTERR_BAD_FORMAT;
3661 
3662  default:
3663  /* not a valid time unit suffix */
3664  return DTERR_BAD_FORMAT;
3665  }
3666  }
3667 
3668  havefield = true;
3669  }
3670 
3671  return 0;
3672 }
3673 
3674 
3675 /* DecodeUnits()
3676  * Decode text string using lookup table.
3677  *
3678  * This routine recognizes keywords associated with time interval units.
3679  *
3680  * Given string must be lowercased already.
3681  *
3682  * Implement a cache lookup since it is likely that dates
3683  * will be related in format.
3684  */
3685 int
3686 DecodeUnits(int field, char *lowtoken, int *val)
3687 {
3688  int type;
3689  const datetkn *tp;
3690 
3691  tp = deltacache[field];
3692  /* use strncmp so that we match truncated tokens */
3693  if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0)
3694  {
3695  tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl);
3696  }
3697  if (tp == NULL)
3698  {
3699  type = UNKNOWN_FIELD;
3700  *val = 0;
3701  }
3702  else
3703  {
3704  deltacache[field] = tp;
3705  type = tp->type;
3706  *val = tp->value;
3707  }
3708 
3709  return type;
3710 } /* DecodeUnits() */
3711 
3712 /*
3713  * Report an error detected by one of the datetime input processing routines.
3714  *
3715  * dterr is the error code, str is the original input string, datatype is
3716  * the name of the datatype we were trying to accept.
3717  *
3718  * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and
3719  * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three
3720  * separate SQLSTATE codes, so ...
3721  */
3722 void
3723 DateTimeParseError(int dterr, const char *str, const char *datatype)
3724 {
3725  switch (dterr)
3726  {
3727  case DTERR_FIELD_OVERFLOW:
3728  ereport(ERROR,
3729  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
3730  errmsg("date/time field value out of range: \"%s\"",
3731  str)));
3732  break;
3734  /* <nanny>same as above, but add hint about DateStyle</nanny> */
3735  ereport(ERROR,
3736  (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
3737  errmsg("date/time field value out of range: \"%s\"",
3738  str),
3739  errhint("Perhaps you need a different \"datestyle\" setting.")));
3740  break;
3742  ereport(ERROR,
3743  (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW),
3744  errmsg("interval field value out of range: \"%s\"",
3745  str)));
3746  break;
3747  case DTERR_TZDISP_OVERFLOW:
3748  ereport(ERROR,
3749  (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
3750  errmsg("time zone displacement out of range: \"%s\"",
3751  str)));
3752  break;
3753  case DTERR_BAD_FORMAT:
3754  default:
3755  ereport(ERROR,
3756  (errcode(ERRCODE_INVALID_DATETIME_FORMAT),
3757  errmsg("invalid input syntax for type %s: \"%s\"",
3758  datatype, str)));
3759  break;
3760  }
3761 }
3762 
3763 /* datebsearch()
3764  * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this
3765  * is WAY faster than the generic bsearch().
3766  */
3767 static const datetkn *
3768 datebsearch(const char *key, const datetkn *base, int nel)
3769 {
3770  if (nel > 0)
3771  {
3772  const datetkn *last = base + nel - 1,
3773  *position;
3774  int result;
3775 
3776  while (last >= base)
3777  {
3778  position = base + ((last - base) >> 1);
3779  /* precheck the first character for a bit of extra speed */
3780  result = (int) key[0] - (int) position->token[0];
3781  if (result == 0)
3782  {
3783  /* use strncmp so that we match truncated tokens */
3784  result = strncmp(key, position->token, TOKMAXLEN);
3785  if (result == 0)
3786  return position;
3787  }
3788  if (result < 0)
3789  last = position - 1;
3790  else
3791  base = position + 1;
3792  }
3793  }
3794  return NULL;
3795 }
3796 
3797 /* EncodeTimezone()
3798  * Copies representation of a numeric timezone offset to str.
3799  *
3800  * Returns a pointer to the new end of string. No NUL terminator is put
3801  * there; callers are responsible for NUL terminating str themselves.
3802  */
3803 static char *
3804 EncodeTimezone(char *str, int tz, int style)
3805 {
3806  int hour,
3807  min,
3808  sec;
3809 
3810  sec = abs(tz);
3811  min = sec / SECS_PER_MINUTE;
3812  sec -= min * SECS_PER_MINUTE;
3813  hour = min / MINS_PER_HOUR;
3814  min -= hour * MINS_PER_HOUR;
3815 
3816  /* TZ is negated compared to sign we wish to display ... */
3817  *str++ = (tz <= 0 ? '+' : '-');
3818 
3819  if (sec != 0)
3820  {
3821  str = pg_ultostr_zeropad(str, hour, 2);
3822  *str++ = ':';
3823  str = pg_ultostr_zeropad(str, min, 2);
3824  *str++ = ':';
3825  str = pg_ultostr_zeropad(str, sec, 2);
3826  }
3827  else if (min != 0 || style == USE_XSD_DATES)
3828  {
3829  str = pg_ultostr_zeropad(str, hour, 2);
3830  *str++ = ':';
3831  str = pg_ultostr_zeropad(str, min, 2);
3832  }
3833  else
3834  str = pg_ultostr_zeropad(str, hour, 2);
3835  return str;
3836 }
3837 
3838 /* EncodeDateOnly()
3839  * Encode date as local time.
3840  */
3841 void
3842 EncodeDateOnly(struct pg_tm *tm, int style, char *str)
3843 {
3844  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
3845 
3846  switch (style)
3847  {
3848  case USE_ISO_DATES:
3849  case USE_XSD_DATES:
3850  /* compatible with ISO date formats */
3851  str = pg_ultostr_zeropad(str,
3852  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3853  *str++ = '-';
3854  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3855  *str++ = '-';
3856  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3857  break;
3858 
3859  case USE_SQL_DATES:
3860  /* compatible with Oracle/Ingres date formats */
3861  if (DateOrder == DATEORDER_DMY)
3862  {
3863  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3864  *str++ = '/';
3865  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3866  }
3867  else
3868  {
3869  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3870  *str++ = '/';
3871  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3872  }
3873  *str++ = '/';
3874  str = pg_ultostr_zeropad(str,
3875  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3876  break;
3877 
3878  case USE_GERMAN_DATES:
3879  /* German-style date format */
3880  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3881  *str++ = '.';
3882  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3883  *str++ = '.';
3884  str = pg_ultostr_zeropad(str,
3885  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3886  break;
3887 
3888  case USE_POSTGRES_DATES:
3889  default:
3890  /* traditional date-only style for Postgres */
3891  if (DateOrder == DATEORDER_DMY)
3892  {
3893  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3894  *str++ = '-';
3895  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3896  }
3897  else
3898  {
3899  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3900  *str++ = '-';
3901  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3902  }
3903  *str++ = '-';
3904  str = pg_ultostr_zeropad(str,
3905  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3906  break;
3907  }
3908 
3909  if (tm->tm_year <= 0)
3910  {
3911  memcpy(str, " BC", 3); /* Don't copy NUL */
3912  str += 3;
3913  }
3914  *str = '\0';
3915 }
3916 
3917 
3918 /* EncodeTimeOnly()
3919  * Encode time fields only.
3920  *
3921  * tm and fsec are the value to encode, print_tz determines whether to include
3922  * a time zone (the difference between time and timetz types), tz is the
3923  * numeric time zone offset, style is the date style, str is where to write the
3924  * output.
3925  */
3926 void
3927 EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
3928 {
3929  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
3930  *str++ = ':';
3931  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
3932  *str++ = ':';
3933  str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true);
3934  if (print_tz)
3935  str = EncodeTimezone(str, tz, style);
3936  *str = '\0';
3937 }
3938 
3939 
3940 /* EncodeDateTime()
3941  * Encode date and time interpreted as local time.
3942  *
3943  * tm and fsec are the value to encode, print_tz determines whether to include
3944  * a time zone (the difference between timestamp and timestamptz types), tz is
3945  * the numeric time zone offset, tzn is the textual time zone, which if
3946  * specified will be used instead of tz by some styles, style is the date
3947  * style, str is where to write the output.
3948  *
3949  * Supported date styles:
3950  * Postgres - day mon hh:mm:ss yyyy tz
3951  * SQL - mm/dd/yyyy hh:mm:ss.ss tz
3952  * ISO - yyyy-mm-dd hh:mm:ss+/-tz
3953  * German - dd.mm.yyyy hh:mm:ss tz
3954  * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz
3955  */
3956 void
3957 EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
3958 {
3959  int day;
3960 
3961  Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR);
3962 
3963  /*
3964  * Negative tm_isdst means we have no valid time zone translation.
3965  */
3966  if (tm->tm_isdst < 0)
3967  print_tz = false;
3968 
3969  switch (style)
3970  {
3971  case USE_ISO_DATES:
3972  case USE_XSD_DATES:
3973  /* Compatible with ISO-8601 date formats */
3974  str = pg_ultostr_zeropad(str,
3975  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
3976  *str++ = '-';
3977  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3978  *str++ = '-';
3979  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3980  *str++ = (style == USE_ISO_DATES) ? ' ' : 'T';
3981  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
3982  *str++ = ':';
3983  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
3984  *str++ = ':';
3985  str = AppendTimestampSeconds(str, tm, fsec);
3986  if (print_tz)
3987  str = EncodeTimezone(str, tz, style);
3988  break;
3989 
3990  case USE_SQL_DATES:
3991  /* Compatible with Oracle/Ingres date formats */
3992  if (DateOrder == DATEORDER_DMY)
3993  {
3994  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
3995  *str++ = '/';
3996  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
3997  }
3998  else
3999  {
4000  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
4001  *str++ = '/';
4002  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4003  }
4004  *str++ = '/';
4005  str = pg_ultostr_zeropad(str,
4006  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4007  *str++ = ' ';
4008  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4009  *str++ = ':';
4010  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4011  *str++ = ':';
4012  str = AppendTimestampSeconds(str, tm, fsec);
4013 
4014  /*
4015  * Note: the uses of %.*s in this function would be risky if the
4016  * timezone names ever contain non-ASCII characters, since we are
4017  * not being careful to do encoding-aware clipping. However, all
4018  * TZ abbreviations in the IANA database are plain ASCII.
4019  */
4020  if (print_tz)
4021  {
4022  if (tzn)
4023  {
4024  sprintf(str, " %.*s", MAXTZLEN, tzn);
4025  str += strlen(str);
4026  }
4027  else
4028  str = EncodeTimezone(str, tz, style);
4029  }
4030  break;
4031 
4032  case USE_GERMAN_DATES:
4033  /* German variant on European style */
4034  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4035  *str++ = '.';
4036  str = pg_ultostr_zeropad(str, tm->tm_mon, 2);
4037  *str++ = '.';
4038  str = pg_ultostr_zeropad(str,
4039  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4040  *str++ = ' ';
4041  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4042  *str++ = ':';
4043  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4044  *str++ = ':';
4045  str = AppendTimestampSeconds(str, tm, fsec);
4046 
4047  if (print_tz)
4048  {
4049  if (tzn)
4050  {
4051  sprintf(str, " %.*s", MAXTZLEN, tzn);
4052  str += strlen(str);
4053  }
4054  else
4055  str = EncodeTimezone(str, tz, style);
4056  }
4057  break;
4058 
4059  case USE_POSTGRES_DATES:
4060  default:
4061  /* Backward-compatible with traditional Postgres abstime dates */
4062  day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
4063  tm->tm_wday = j2day(day);
4064  memcpy(str, days[tm->tm_wday], 3);
4065  str += 3;
4066  *str++ = ' ';
4067  if (DateOrder == DATEORDER_DMY)
4068  {
4069  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4070  *str++ = ' ';
4071  memcpy(str, months[tm->tm_mon - 1], 3);
4072  str += 3;
4073  }
4074  else
4075  {
4076  memcpy(str, months[tm->tm_mon - 1], 3);
4077  str += 3;
4078  *str++ = ' ';
4079  str = pg_ultostr_zeropad(str, tm->tm_mday, 2);
4080  }
4081  *str++ = ' ';
4082  str = pg_ultostr_zeropad(str, tm->tm_hour, 2);
4083  *str++ = ':';
4084  str = pg_ultostr_zeropad(str, tm->tm_min, 2);
4085  *str++ = ':';
4086  str = AppendTimestampSeconds(str, tm, fsec);
4087  *str++ = ' ';
4088  str = pg_ultostr_zeropad(str,
4089  (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4);
4090 
4091  if (print_tz)
4092  {
4093  if (tzn)
4094  {
4095  sprintf(str, " %.*s", MAXTZLEN, tzn);
4096  str += strlen(str);
4097  }
4098  else
4099  {
4100  /*
4101  * We have a time zone, but no string version. Use the
4102  * numeric form, but be sure to include a leading space to
4103  * avoid formatting something which would be rejected by
4104  * the date/time parser later. - thomas 2001-10-19
4105  */
4106  *str++ = ' ';
4107  str = EncodeTimezone(str, tz, style);
4108  }
4109  }
4110  break;
4111  }
4112 
4113  if (tm->tm_year <= 0)
4114  {
4115  memcpy(str, " BC", 3); /* Don't copy NUL */
4116  str += 3;
4117  }
4118  *str = '\0';
4119 }
4120 
4121 
4122 /*
4123  * Helper functions to avoid duplicated code in EncodeInterval.
4124  */
4125 
4126 /* Append an ISO-8601-style interval field, but only if value isn't zero */
4127 static char *
4128 AddISO8601IntPart(char *cp, int value, char units)
4129 {
4130  if (value == 0)
4131  return cp;
4132  sprintf(cp, "%d%c", value, units);
4133  return cp + strlen(cp);
4134 }
4135 
4136 /* Append a postgres-style interval field, but only if value isn't zero */
4137 static char *
4138 AddPostgresIntPart(char *cp, int value, const char *units,
4139  bool *is_zero, bool *is_before)
4140 {
4141  if (value == 0)
4142  return cp;
4143  sprintf(cp, "%s%s%d %s%s",
4144  (!*is_zero) ? " " : "",
4145  (*is_before && value > 0) ? "+" : "",
4146  value,
4147  units,
4148  (value != 1) ? "s" : "");
4149 
4150  /*
4151  * Each nonzero field sets is_before for (only) the next one. This is a
4152  * tad bizarre but it's how it worked before...
4153  */
4154  *is_before = (value < 0);
4155  *is_zero = false;
4156  return cp + strlen(cp);
4157 }
4158 
4159 /* Append a verbose-style interval field, but only if value isn't zero */
4160 static char *
4161 AddVerboseIntPart(char *cp, int value, const char *units,
4162  bool *is_zero, bool *is_before)
4163 {
4164  if (value == 0)
4165  return cp;
4166  /* first nonzero value sets is_before */
4167  if (*is_zero)
4168  {
4169  *is_before = (value < 0);
4170  value = abs(value);
4171  }
4172  else if (*is_before)
4173  value = -value;
4174  sprintf(cp, " %d %s%s", value, units, (value == 1) ? "" : "s");
4175  *is_zero = false;
4176  return cp + strlen(cp);
4177 }
4178 
4179 
4180 /* EncodeInterval()
4181  * Interpret time structure as a delta time and convert to string.
4182  *
4183  * Support "traditional Postgres" and ISO-8601 styles.
4184  * Actually, afaik ISO does not address time interval formatting,
4185  * but this looks similar to the spec for absolute date/time.
4186  * - thomas 1998-04-30
4187  *
4188  * Actually, afaik, ISO 8601 does specify formats for "time
4189  * intervals...[of the]...format with time-unit designators", which
4190  * are pretty ugly. The format looks something like
4191  * P1Y1M1DT1H1M1.12345S
4192  * but useful for exchanging data with computers instead of humans.
4193  * - ron 2003-07-14
4194  *
4195  * And ISO's SQL 2008 standard specifies standards for
4196  * "year-month literal"s (that look like '2-3') and
4197  * "day-time literal"s (that look like ('4 5:6:7')
4198  */
4199 void
4200 EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
4201 {
4202  char *cp = str;
4203  int year = tm->tm_year;
4204  int mon = tm->tm_mon;
4205  int mday = tm->tm_mday;
4206  int hour = tm->tm_hour;
4207  int min = tm->tm_min;
4208  int sec = tm->tm_sec;
4209  bool is_before = false;
4210  bool is_zero = true;
4211 
4212  /*
4213  * The sign of year and month are guaranteed to match, since they are
4214  * stored internally as "month". But we'll need to check for is_before and
4215  * is_zero when determining the signs of day and hour/minute/seconds
4216  * fields.
4217  */
4218  switch (style)
4219  {
4220  /* SQL Standard interval format */
4221  case INTSTYLE_SQL_STANDARD:
4222  {
4223  bool has_negative = year < 0 || mon < 0 ||
4224  mday < 0 || hour < 0 ||
4225  min < 0 || sec < 0 || fsec < 0;
4226  bool has_positive = year > 0 || mon > 0 ||
4227  mday > 0 || hour > 0 ||
4228  min > 0 || sec > 0 || fsec > 0;
4229  bool has_year_month = year != 0 || mon != 0;
4230  bool has_day_time = mday != 0 || hour != 0 ||
4231  min != 0 || sec != 0 || fsec != 0;
4232  bool has_day = mday != 0;
4233  bool sql_standard_value = !(has_negative && has_positive) &&
4234  !(has_year_month && has_day_time);
4235 
4236  /*
4237  * SQL Standard wants only 1 "<sign>" preceding the whole
4238  * interval ... but can't do that if mixed signs.
4239  */
4240  if (has_negative && sql_standard_value)
4241  {
4242  *cp++ = '-';
4243  year = -year;
4244  mon = -mon;
4245  mday = -mday;
4246  hour = -hour;
4247  min = -min;
4248  sec = -sec;
4249  fsec = -fsec;
4250  }
4251 
4252  if (!has_negative && !has_positive)
4253  {
4254  sprintf(cp, "0");
4255  }
4256  else if (!sql_standard_value)
4257  {
4258  /*
4259  * For non sql-standard interval values, force outputting
4260  * the signs to avoid ambiguities with intervals with
4261  * mixed sign components.
4262  */
4263  char year_sign = (year < 0 || mon < 0) ? '-' : '+';
4264  char day_sign = (mday < 0) ? '-' : '+';
4265  char sec_sign = (hour < 0 || min < 0 ||
4266  sec < 0 || fsec < 0) ? '-' : '+';
4267 
4268  sprintf(cp, "%c%d-%d %c%d %c%d:%02d:",
4269  year_sign, abs(year), abs(mon),
4270  day_sign, abs(mday),
4271  sec_sign, abs(hour), abs(min));
4272  cp += strlen(cp);
4273  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4274  *cp = '\0';
4275  }
4276  else if (has_year_month)
4277  {
4278  sprintf(cp, "%d-%d", year, mon);
4279  }
4280  else if (has_day)
4281  {
4282  sprintf(cp, "%d %d:%02d:", mday, hour, min);
4283  cp += strlen(cp);
4284  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4285  *cp = '\0';
4286  }
4287  else
4288  {
4289  sprintf(cp, "%d:%02d:", hour, min);
4290  cp += strlen(cp);
4291  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4292  *cp = '\0';
4293  }
4294  }
4295  break;
4296 
4297  /* ISO 8601 "time-intervals by duration only" */
4298  case INTSTYLE_ISO_8601:
4299  /* special-case zero to avoid printing nothing */
4300  if (year == 0 && mon == 0 && mday == 0 &&
4301  hour == 0 && min == 0 && sec == 0 && fsec == 0)
4302  {
4303  sprintf(cp, "PT0S");
4304  break;
4305  }
4306  *cp++ = 'P';
4307  cp = AddISO8601IntPart(cp, year, 'Y');
4308  cp = AddISO8601IntPart(cp, mon, 'M');
4309  cp = AddISO8601IntPart(cp, mday, 'D');
4310  if (hour != 0 || min != 0 || sec != 0 || fsec != 0)
4311  *cp++ = 'T';
4312  cp = AddISO8601IntPart(cp, hour, 'H');
4313  cp = AddISO8601IntPart(cp, min, 'M');
4314  if (sec != 0 || fsec != 0)
4315  {
4316  if (sec < 0 || fsec < 0)
4317  *cp++ = '-';
4318  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4319  *cp++ = 'S';
4320  *cp++ = '\0';
4321  }
4322  break;
4323 
4324  /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */
4325  case INTSTYLE_POSTGRES:
4326  cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before);
4327 
4328  /*
4329  * Ideally we should spell out "month" like we do for "year" and
4330  * "day". However, for backward compatibility, we can't easily
4331  * fix this. bjm 2011-05-24
4332  */
4333  cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before);
4334  cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before);
4335  if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0)
4336  {
4337  bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0);
4338 
4339  sprintf(cp, "%s%s%02d:%02d:",
4340  is_zero ? "" : " ",
4341  (minus ? "-" : (is_before ? "+" : "")),
4342  abs(hour), abs(min));
4343  cp += strlen(cp);
4344  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true);
4345  *cp = '\0';
4346  }
4347  break;
4348 
4349  /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */
4351  default:
4352  strcpy(cp, "@");
4353  cp++;
4354  cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before);
4355  cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before);
4356  cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before);
4357  cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before);
4358  cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before);
4359  if (sec != 0 || fsec != 0)
4360  {
4361  *cp++ = ' ';
4362  if (sec < 0 || (sec == 0 && fsec < 0))
4363  {
4364  if (is_zero)
4365  is_before = true;
4366  else if (!is_before)
4367  *cp++ = '-';
4368  }
4369  else if (is_before)
4370  *cp++ = '-';
4371  cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false);
4372  sprintf(cp, " sec%s",
4373  (abs(sec) != 1 || fsec != 0) ? "s" : "");
4374  is_zero = false;
4375  }
4376  /* identically zero? then put in a unitless zero... */
4377  if (is_zero)
4378  strcat(cp, " 0");
4379  if (is_before)
4380  strcat(cp, " ago");
4381  break;
4382  }
4383 }
4384 
4385 
4386 /*
4387  * We've been burnt by stupid errors in the ordering of the datetkn tables
4388  * once too often. Arrange to check them during postmaster start.
4389  */
4390 static bool
4391 CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
4392 {
4393  bool ok = true;
4394  int i;
4395 
4396  for (i = 0; i < nel; i++)
4397  {
4398  /* check for token strings that don't fit */
4399  if (strlen(base[i].token) > TOKMAXLEN)
4400  {
4401  /* %.*s is safe since all our tokens are ASCII */
4402  elog(LOG, "token too long in %s table: \"%.*s\"",
4403  tablename,
4404  TOKMAXLEN + 1, base[i].token);
4405  ok = false;
4406  break; /* don't risk applying strcmp */
4407  }
4408  /* check for out of order */
4409  if (i > 0 &&
4410  strcmp(base[i - 1].token, base[i].token) >= 0)
4411  {
4412  elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"",
4413  tablename,
4414  base[i - 1].token,
4415  base[i].token);
4416  ok = false;
4417  }
4418  }
4419  return ok;
4420 }
4421 
4422 bool
4424 {
4425  bool ok = true;
4426 
4427  Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1));
4428  Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1));
4429 
4430  ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl);
4431  ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl);
4432  return ok;
4433 }
4434 
4435 /*
4436  * Common code for temporal prosupport functions: simplify, if possible,
4437  * a call to a temporal type's length-coercion function.
4438  *
4439  * Types time, timetz, timestamp and timestamptz each have a range of allowed
4440  * precisions. An unspecified precision is rigorously equivalent to the
4441  * highest specifiable precision. We can replace the function call with a
4442  * no-op RelabelType if it is coercing to the same or higher precision as the
4443  * input is known to have.
4444  *
4445  * The input Node is always a FuncExpr, but to reduce the #include footprint
4446  * of datetime.h, we declare it as Node *.
4447  *
4448  * Note: timestamp_scale throws an error when the typmod is out of range, but
4449  * we can't get there from a cast: our typmodin will have caught it already.
4450  */
4451 Node *
4452 TemporalSimplify(int32 max_precis, Node *node)
4453 {
4454  FuncExpr *expr = castNode(FuncExpr, node);
4455  Node *ret = NULL;
4456  Node *typmod;
4457 
4458  Assert(list_length(expr->args) >= 2);
4459 
4460  typmod = (Node *) lsecond(expr->args);
4461 
4462  if (IsA(typmod, Const) && !((Const *) typmod)->constisnull)
4463  {
4464  Node *source = (Node *) linitial(expr->args);
4465  int32 old_precis = exprTypmod(source);
4466  int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue);
4467 
4468  if (new_precis < 0 || new_precis == max_precis ||
4469  (old_precis >= 0 && new_precis >= old_precis))
4470  ret = relabel_to_typmod(source, new_precis);
4471  }
4472 
4473  return ret;
4474 }
4475 
4476 /*
4477  * This function gets called during timezone config file load or reload
4478  * to create the final array of timezone tokens. The argument array
4479  * is already sorted in name order.
4480  *
4481  * The result is a TimeZoneAbbrevTable (which must be a single malloc'd chunk)
4482  * or NULL on malloc failure. No other error conditions are defined.
4483  */
4485 ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
4486 {
4487  TimeZoneAbbrevTable *tbl;
4488  Size tbl_size;
4489  int i;
4490 
4491  /* Space for fixed fields and datetkn array */
4492  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4493  n * sizeof(datetkn);
4494  tbl_size = MAXALIGN(tbl_size);
4495  /* Count up space for dynamic abbreviations */
4496  for (i = 0; i < n; i++)
4497  {
4498  struct tzEntry *abbr = abbrevs + i;
4499 
4500  if (abbr->zone != NULL)
4501  {
4502  Size dsize;
4503 
4504  dsize = offsetof(DynamicZoneAbbrev, zone) +
4505  strlen(abbr->zone) + 1;
4506  tbl_size += MAXALIGN(dsize);
4507  }
4508  }
4509 
4510  /* Alloc the result ... */
4511  tbl = malloc(tbl_size);
4512  if (!tbl)
4513  return NULL;
4514 
4515  /* ... and fill it in */
4516  tbl->tblsize = tbl_size;
4517  tbl->numabbrevs = n;
4518  /* in this loop, tbl_size reprises the space calculation above */
4519  tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) +
4520  n * sizeof(datetkn);
4521  tbl_size = MAXALIGN(tbl_size);
4522  for (i = 0; i < n; i++)
4523  {
4524  struct tzEntry *abbr = abbrevs + i;
4525  datetkn *dtoken = tbl->abbrevs + i;
4526 
4527  /* use strlcpy to truncate name if necessary */
4528  strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1);
4529  if (abbr->zone != NULL)
4530  {
4531  /* Allocate a DynamicZoneAbbrev for this abbreviation */
4532  DynamicZoneAbbrev *dtza;
4533  Size dsize;
4534 
4535  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size);
4536  dtza->tz = NULL;
4537  strcpy(dtza->zone, abbr->zone);
4538 
4539  dtoken->type = DYNTZ;
4540  /* value is offset from table start to DynamicZoneAbbrev */
4541  dtoken->value = (int32) tbl_size;
4542 
4543  dsize = offsetof(DynamicZoneAbbrev, zone) +
4544  strlen(abbr->zone) + 1;
4545  tbl_size += MAXALIGN(dsize);
4546  }
4547  else
4548  {
4549  dtoken->type = abbr->is_dst ? DTZ : TZ;
4550  dtoken->value = abbr->offset;
4551  }
4552  }
4553 
4554  /* Assert the two loops above agreed on size calculations */
4555  Assert(tbl->tblsize == tbl_size);
4556 
4557  /* Check the ordering, if testing */
4558  Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n));
4559 
4560  return tbl;
4561 }
4562 
4563 /*
4564  * Install a TimeZoneAbbrevTable as the active table.
4565  *
4566  * Caller is responsible that the passed table doesn't go away while in use.
4567  */
4568 void
4570 {
4571  zoneabbrevtbl = tbl;
4572  /* reset abbrevcache, which may contain pointers into old table */
4573  memset(abbrevcache, 0, sizeof(abbrevcache));
4574 }
4575 
4576 /*
4577  * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation.
4578  */
4579 static pg_tz *
4581 {
4582  DynamicZoneAbbrev *dtza;
4583 
4584  /* Just some sanity checks to prevent indexing off into nowhere */
4585  Assert(tp->type == DYNTZ);
4586  Assert(tp->value > 0 && tp->value < tbl->tblsize);
4587 
4588  dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value);
4589 
4590  /* Look up the underlying zone if we haven't already */
4591  if (dtza->tz == NULL)
4592  {
4593  dtza->tz = pg_tzset(dtza->zone);
4594 
4595  /*
4596  * Ideally we'd let the caller ereport instead of doing it here, but
4597  * then there is no way to report the bad time zone name.
4598  */
4599  if (dtza->tz == NULL)
4600  ereport(ERROR,
4601  (errcode(ERRCODE_CONFIG_FILE_ERROR),
4602  errmsg("time zone \"%s\" not recognized",
4603  dtza->zone),
4604  errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".",
4605  tp->token)));
4606  }
4607  return dtza->tz;
4608 }
4609 
4610 
4611 /*
4612  * This set-returning function reads all the available time zone abbreviations
4613  * and returns a set of (abbrev, utc_offset, is_dst).
4614  */
4615 Datum
4617 {
4618  FuncCallContext *funcctx;
4619  int *pindex;
4620  Datum result;
4621  HeapTuple tuple;
4622  Datum values[3];
4623  bool nulls[3];
4624  const datetkn *tp;
4625  char buffer[TOKMAXLEN + 1];
4626  int gmtoffset;
4627  bool is_dst;
4628  unsigned char *p;
4629  struct pg_tm tm;
4630  Interval *resInterval;
4631 
4632  /* stuff done only on the first call of the function */
4633  if (SRF_IS_FIRSTCALL())
4634  {
4635  TupleDesc tupdesc;
4636  MemoryContext oldcontext;
4637 
4638  /* create a function context for cross-call persistence */
4639  funcctx = SRF_FIRSTCALL_INIT();
4640 
4641  /*
4642  * switch to memory context appropriate for multiple function calls
4643  */
4644  oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
4645 
4646  /* allocate memory for user context */
4647  pindex = (int *) palloc(sizeof(int));
4648  *pindex = 0;
4649  funcctx->user_fctx = (void *) pindex;
4650 
4651  /*
4652  * build tupdesc for result tuples. This must match this function's
4653  * pg_proc entry!
4654  */
4655  tupdesc = CreateTemplateTupleDesc(3);
4656  TupleDescInitEntry(tupdesc, (AttrNumber) 1, "abbrev",
4657  TEXTOID, -1, 0);
4658  TupleDescInitEntry(tupdesc, (AttrNumber) 2, "utc_offset",
4659  INTERVALOID, -1, 0);
4660  TupleDescInitEntry(tupdesc, (AttrNumber) 3, "is_dst",
4661  BOOLOID, -1, 0);
4662 
4663  funcctx->tuple_desc = BlessTupleDesc(tupdesc);
4664  MemoryContextSwitchTo(oldcontext);
4665  }
4666 
4667  /* stuff done on every call of the function */
4668  funcctx = SRF_PERCALL_SETUP();
4669  pindex = (int *) funcctx->user_fctx;
4670 
4671  if (zoneabbrevtbl == NULL ||
4672  *pindex >= zoneabbrevtbl->numabbrevs)
4673  SRF_RETURN_DONE(funcctx);
4674 
4675  tp = zoneabbrevtbl->abbrevs + *pindex;
4676 
4677  switch (tp->type)
4678  {
4679  case TZ:
4680  gmtoffset = tp->value;
4681  is_dst = false;
4682  break;
4683  case DTZ:
4684  gmtoffset = tp->value;
4685  is_dst = true;
4686  break;
4687  case DYNTZ:
4688  {
4689  /* Determine the current meaning of the abbrev */
4690  pg_tz *tzp;
4691  TimestampTz now;
4692  int isdst;
4693 
4694  tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp);
4696  gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now,
4697  tp->token,
4698  tzp,
4699  &isdst);
4700  is_dst = (bool) isdst;
4701  break;
4702  }
4703  default:
4704  elog(ERROR, "unrecognized timezone type %d", (int) tp->type);
4705  gmtoffset = 0; /* keep compiler quiet */
4706  is_dst = false;
4707  break;
4708  }
4709 
4710  MemSet(nulls, 0, sizeof(nulls));
4711 
4712  /*
4713  * Convert name to text, using upcasing conversion that is the inverse of
4714  * what ParseDateTime() uses.
4715  */
4716  strlcpy(buffer, tp->token, sizeof(buffer));
4717  for (p = (unsigned char *) buffer; *p; p++)
4718  *p = pg_toupper(*p);
4719 
4720  values[0] = CStringGetTextDatum(buffer);
4721 
4722  /* Convert offset (in seconds) to an interval */
4723  MemSet(&tm, 0, sizeof(struct pg_tm));
4724  tm.tm_sec = gmtoffset;
4725  resInterval = (Interval *) palloc(sizeof(Interval));
4726  tm2interval(&tm, 0, resInterval);
4727  values[1] = IntervalPGetDatum(resInterval);
4728 
4729  values[2] = BoolGetDatum(is_dst);
4730 
4731  (*pindex)++;
4732 
4733  tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
4734  result = HeapTupleGetDatum(tuple);
4735 
4736  SRF_RETURN_NEXT(funcctx, result);
4737 }
4738 
4739 /*
4740  * This set-returning function reads all the available full time zones
4741  * and returns a set of (name, abbrev, utc_offset, is_dst).
4742  */
4743 Datum
4745 {
4746  ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
4747  bool randomAccess;
4748  TupleDesc tupdesc;
4749  Tuplestorestate *tupstore;
4750  pg_tzenum *tzenum;
4751  pg_tz *tz;
4752  Datum values[4];
4753  bool nulls[4];
4754  int tzoff;
4755  struct pg_tm tm;
4756  fsec_t fsec;
4757  const char *tzn;
4758  Interval *resInterval;
4759  struct pg_tm itm;
4760  MemoryContext oldcontext;
4761 
4762  /* check to see if caller supports us returning a tuplestore */
4763  if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo))
4764  ereport(ERROR,
4765  (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
4766  errmsg("set-valued function called in context that cannot accept a set")));
4767  if (!(rsinfo->allowedModes & SFRM_Materialize))
4768  ereport(ERROR,
4769  (errcode(ERRCODE_SYNTAX_ERROR),
4770  errmsg("materialize mode required, but it is not allowed in this context")));
4771 
4772  /* The tupdesc and tuplestore must be created in ecxt_per_query_memory */
4773  oldcontext = MemoryContextSwitchTo(rsinfo->econtext->ecxt_per_query_memory);
4774 
4775  if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
4776  elog(ERROR, "return type must be a row type");
4777 
4778  randomAccess = (rsinfo->allowedModes & SFRM_Materialize_Random) != 0;
4779  tupstore = tuplestore_begin_heap(randomAccess, false, work_mem);
4780  rsinfo->returnMode = SFRM_Materialize;
4781  rsinfo->setResult = tupstore;
4782  rsinfo->setDesc = tupdesc;
4783 
4784  MemoryContextSwitchTo(oldcontext);
4785 
4786  /* initialize timezone scanning code */
4787  tzenum = pg_tzenumerate_start();
4788 
4789  /* search for another zone to display */
4790  for (;;)
4791  {
4792  tz = pg_tzenumerate_next(tzenum);
4793  if (!tz)
4794  break;
4795 
4796  /* Convert now() to local time in this zone */
4798  &tzoff, &tm, &fsec, &tzn, tz) != 0)
4799  continue; /* ignore if conversion fails */
4800 
4801  /*
4802  * IANA's rather silly "Factory" time zone used to emit ridiculously
4803  * long "abbreviations" such as "Local time zone must be set--see zic
4804  * manual page" or "Local time zone must be set--use tzsetup". While
4805  * modern versions of tzdb emit the much saner "-00", it seems some
4806  * benighted packagers are hacking the IANA data so that it continues
4807  * to produce these strings. To prevent producing a weirdly wide
4808  * abbrev column, reject ridiculously long abbreviations.
4809  */
4810  if (tzn && strlen(tzn) > 31)
4811  continue;
4812 
4813  MemSet(nulls, 0, sizeof(nulls));
4814 
4816  values[1] = CStringGetTextDatum(tzn ? tzn : "");
4817 
4818  MemSet(&itm, 0, sizeof(struct pg_tm));
4819  itm.tm_sec = -tzoff;
4820  resInterval = (Interval *) palloc(sizeof(Interval));
4821  tm2interval(&itm, 0, resInterval);
4822  values[2] = IntervalPGetDatum(resInterval);
4823 
4824  values[3] = BoolGetDatum(tm.tm_isdst > 0);
4825 
4826  tuplestore_putvalues(tupstore, tupdesc, values, nulls);
4827  }
4828 
4829  pg_tzenumerate_end(tzenum);
4830  return (Datum) 0;
4831 }
void EncodeDateOnly(struct pg_tm *tm, int style, char *str)
Definition: datetime.c:3842
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, Datum *values, bool *isnull)
Definition: tuplestore.c:750
#define INTSTYLE_POSTGRES_VERBOSE
Definition: miscadmin.h:235
#define DYEAR
Definition: datetime.h:57
#define DTERR_BAD_FORMAT
Definition: datetime.h:280
#define DTK_TZ_HOUR
Definition: datetime.h:178
#define DTK_CENTURY
Definition: datetime.h:170
void GetCurrentDateTime(struct pg_tm *tm)
Definition: datetime.c:345
#define PM
Definition: datetime.h:73
#define IsA(nodeptr, _type_)
Definition: nodes.h:580
#define DAY
Definition: datetime.h:94
#define UNITS
Definition: datetime.h:108
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:205
int errhint(const char *fmt,...)
Definition: elog.c:1071
#define DAGO
Definition: datetime.h:36
void DateTimeParseError(int dterr, const char *str, const char *datatype)
Definition: datetime.c:3723
#define IGNORE_DTF
Definition: datetime.h:99
int64 pg_time_t
Definition: pgtime.h:23
#define APPEND_CHAR(bufptr, end, newchar)
int tm_wday
Definition: pgtime.h:33
int pg_next_dst_boundary(const pg_time_t *timep, long int *before_gmtoff, int *before_isdst, pg_time_t *boundary, long int *after_gmtoff, int *after_isdst, const pg_tz *tz)
Definition: localtime.c:1608
List * args
Definition: primnodes.h:477
PGDLLIMPORT pg_tz * session_timezone
Definition: pgtz.c:28
static const datetkn * deltacache[MAXDATEFIELDS]
Definition: datetime.c:243
TupleDesc CreateTemplateTupleDesc(int natts)
Definition: tupdesc.c:44
#define DWEEK
Definition: datetime.h:54
#define DatumGetInt32(X)
Definition: postgres.h:472
#define DTK_JULIAN
Definition: datetime.h:174
#define DTK_WEEK
Definition: datetime.h:165
#define DTK_YEAR
Definition: datetime.h:168
int tm_isdst
Definition: pgtime.h:35
#define MILLENNIUM
Definition: datetime.h:121
#define LATE
Definition: datetime.h:41
#define USECS_PER_SEC
Definition: timestamp.h:94
#define YEAR
Definition: datetime.h:93
#define castNode(_type_, nodeptr)
Definition: nodes.h:598
#define CENTURY
Definition: datetime.h:120
#define DTK_DELTA
Definition: datetime.h:160
void InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl)
Definition: datetime.c:4569
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:275
int64 TimestampTz
Definition: timestamp.h:39
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:293
static const datetkn datetktbl[]
Definition: datetime.c:89
Datum pg_timezone_abbrevs(PG_FUNCTION_ARGS)
Definition: datetime.c:4616
int tm_hour
Definition: pgtime.h:29
static char * EncodeTimezone(char *str, int tz, int style)
Definition: datetime.c:3804
#define NOW
Definition: datetime.h:42
#define DECADE
Definition: datetime.h:119
#define DTK_QUARTER
Definition: datetime.h:167
#define isleap(y)
Definition: datetime.h:271
int timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone)
Definition: timestamp.c:1784
static pg_tz * FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp)
Definition: datetime.c:4580
static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp)
Definition: datetime.c:1455
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:109
char * pg_ultostr_zeropad(char *str, uint32 value, int32 minwidth)
Definition: numutils.c:563
bool CheckDateTokenTables(void)
Definition: datetime.c:4423
Definition: nodes.h:529
#define AGO
Definition: datetime.h:111
#define DTK_TIME_M
Definition: datetime.h:193
void EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str)
Definition: datetime.c:3927
#define DTK_MILLENNIUM
Definition: datetime.h:171
unsigned char pg_tolower(unsigned char ch)
Definition: pgstrcasecmp.c:122
void pg_tzenumerate_end(pg_tzenum *dir)
Definition: pgtz.c:416
int errcode(int sqlerrcode)
Definition: elog.c:610
int offset
Definition: tzparser.h:29
int scale
Definition: pgbench.c:153
int IntervalStyle
Definition: globals.c:117
#define MemSet(start, val, len)
Definition: c.h:971
#define DTK_ISODOW
Definition: datetime.h:181
#define TZ
Definition: datetime.h:96
#define USE_SQL_DATES
Definition: miscadmin.h:215
#define UNKNOWN_FIELD
Definition: datetime.h:125
long date
Definition: pgtypes_date.h:9
#define SECOND
Definition: datetime.h:103
int32 value
Definition: datetime.h:212
static int DecodeNumberField(int len, char *str, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2775
int DecodeUnits(int field, char *lowtoken, int *val)
Definition: datetime.c:3686
#define DTK_TODAY
Definition: datetime.h:156
#define DTK_TOMORROW
Definition: datetime.h:157
#define MAXTZLEN
Definition: miscadmin.h:241
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, Datum *values, bool *isnull)
Definition: heaptuple.c:1020
#define ADBC
Definition: datetime.h:109
Definition: pgtime.h:25
#define LOG
Definition: elog.h:26
char * pg_ultostr(char *str, uint32 value)
Definition: numutils.c:603
#define AD
Definition: datetime.h:76
#define INTERVAL_FULL_RANGE
Definition: timestamp.h:48
#define EPOCH
Definition: datetime.h:38
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:297
static void AdjustFractSeconds(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
Definition: datetime.c:459
static const int szdeltatktbl
Definition: datetime.c:235
int DecodeTimeOnly(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:1709
#define lsecond(l)
Definition: pg_list.h:200
#define DTK_DATE_M
Definition: datetime.h:192
#define MINS_PER_HOUR
Definition: timestamp.h:89
TupleDesc tuple_desc
Definition: funcapi.h:112
signed int int32
Definition: c.h:355
#define USE_ISO_DATES
Definition: miscadmin.h:214
#define TOMORROW
Definition: datetime.h:44
#define DHOUR
Definition: datetime.h:52
#define MAX_TZDISP_HOUR
Definition: timestamp.h:103
char * zone
Definition: tzparser.h:27
#define DA_D
Definition: datetime.h:61
static struct pg_tm tm
Definition: localtime.c:102
#define Abs(x)
Definition: c.h:926
bool is_dst
Definition: tzparser.h:30
#define malloc(a)
Definition: header.h:50
#define DMILLISEC
Definition: datetime.h:49
pg_tz * pg_tzset(const char *tzname)
Definition: pgtz.c:236
#define DSECOND
Definition: datetime.h:50
#define DTK_MONTH
Definition: datetime.h:166
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:299
#define DTK_MILLISEC
Definition: datetime.h:172
#define MONTHS_PER_YEAR
Definition: timestamp.h:69
#define sprintf
Definition: port.h:195
#define DMICROSEC
Definition: datetime.h:48
#define DTK_DECADE
Definition: datetime.h:169
#define TODAY
Definition: datetime.h:43
int DecodeDateTime(char **field, int *ftype, int nf, int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:758
#define TZ_STRLEN_MAX
Definition: pgtime.h:44
const char *const months[]
Definition: datetime.c:65
#define linitial(l)
Definition: pg_list.h:195
#define DTK_TZ
Definition: datetime.h:147
#define DTK_HOUR
Definition: datetime.h:163
#define ERROR
Definition: elog.h:43
#define DTERR_FIELD_OVERFLOW
Definition: datetime.h:281
#define DOW
Definition: datetime.h:107
#define AM
Definition: datetime.h:72
int DecodeTimezoneAbbrev(int field, char *lowtoken, int *offset, pg_tz **tz)
Definition: datetime.c:2940
#define MAX_INTERVAL_PRECISION
Definition: timestamp.h:54
char token[TOKMAXLEN+1]
Definition: datetime.h:210
#define MILLISECOND
Definition: datetime.h:104
#define IntervalPGetDatum(X)
Definition: timestamp.h:33
#define SECS_PER_DAY
Definition: timestamp.h:86
static bool CheckDateTokenTable(const char *tablename, const datetkn *base, int nel)
Definition: datetime.c:4391
static char * AddISO8601IntPart(char *cp, int value, char units)
Definition: datetime.c:4128
#define DTERR_INTERVAL_OVERFLOW
Definition: datetime.h:283
#define DTK_SECOND
Definition: datetime.h:161
bool pg_interpret_timezone_abbrev(const char *abbrev, const pg_time_t *timep, long int *gmtoff, int *isdst, const pg_tz *tz)
Definition: localtime.c:1755
#define DCENTURY
Definition: datetime.h:59
int j2day(int date)
Definition: datetime.c:327
int DecodeTimezone(char *str, int *tzp)
Definition: datetime.c:2862
TupleDesc BlessTupleDesc(TupleDesc tupdesc)
Definition: execTuples.c:2052
const char * pg_get_timezone_name(pg_tz *tz)
Definition: localtime.c:1873
datetkn abbrevs[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:220
int tm_mday
Definition: pgtime.h:30
static const datetkn * datebsearch(const char *key, const datetkn *base, int nel)
Definition: datetime.c:3768
#define HOURS_PER_DAY
Definition: timestamp.h:78
static const datetkn deltatktbl[]
Definition: datetime.c:170
int tm_mon
Definition: pgtime.h:31
int DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp)
Definition: datetime.c:1433
#define DMILLENNIUM
Definition: datetime.h:60
#define SECS_PER_MINUTE
Definition: timestamp.h:88
int errdetail(const char *fmt,...)
Definition: elog.c:957
#define DMINUTE
Definition: datetime.h:51
#define USE_POSTGRES_DATES
Definition: miscadmin.h:213
bool time_overflows(int hour, int min, int sec, fsec_t fsec)
Definition: date.c:1278
pg_time_t timestamptz_to_time_t(TimestampTz t)
Definition: timestamp.c:1716
void EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str)
Definition: datetime.c:3957
#define MAX_TIMESTAMP_PRECISION
Definition: timestamp.h:53
int strtoint(const char *pg_restrict str, char **pg_restrict endptr, int base)
Definition: string.c:50
static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, struct pg_tm *tm)
Definition: datetime.c:2325
#define DTK_ISOYEAR
Definition: datetime.h:180
const char *const days[]
Definition: datetime.c:68
void GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp)
Definition: datetime.c:362
int32 fsec_t
Definition: timestamp.h:41
#define DTK_YESTERDAY
Definition: datetime.h:155
#define DTK_NUMBER
Definition: datetime.h:142
#define MINUTE
Definition: datetime.h:102
static struct cvec * range(struct vars *v, chr a, chr b, int cases)
Definition: regc_locale.c:416
#define IS_VALID_JULIAN(y, m, d)
Definition: timestamp.h:155
#define USECS_PER_DAY
Definition: timestamp.h:91
void TupleDescInitEntry(TupleDesc desc, AttrNumber attributeNumber, const char *attributeName, Oid oidtypeid, int32 typmod, int attdim)
Definition: tupdesc.c:603
#define DTK_TZ_MINUTE
Definition: datetime.h:179
int DateOrder
Definition: globals.c:116
void j2date(int jd, int *year, int *month, int *day)
Definition: datetime.c:294
#define SECS_PER_HOUR
Definition: timestamp.h:87
static char * AddPostgresIntPart(char *cp, int value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4138
#define MONTH
Definition: datetime.h:92
#define DTK_MINUTE
Definition: datetime.h:162
int DecodeISO8601Interval(char *str, int *dtype, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3477
#define DATEORDER_YMD
Definition: miscadmin.h:220
static int ParseFractionalSecond(char *cp, fsec_t *fsec)
Definition: datetime.c:489
#define BC
Definition: datetime.h:77
TimestampTz GetCurrentTransactionStartTimestamp(void)
Definition: xact.c:783
char * abbrev
Definition: tzparser.h:26
#define DTERR_TZDISP_OVERFLOW
Definition: datetime.h:284
void EncodeInterval(struct pg_tm *tm, fsec_t fsec, int style, char *str)
Definition: datetime.c:4200
char zone[FLEXIBLE_ARRAY_MEMBER]
Definition: datetime.h:228
#define DTK_DOW
Definition: datetime.h:176
#define DTK_LATE
Definition: datetime.h:152
Tuplestorestate * tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes)
Definition: tuplestore.c:318
int DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, pg_tz *tzp, int *isdst)
Definition: datetime.c:1632
#define DTK_MICROSEC
Definition: datetime.h:173
Node * TemporalSimplify(int32 max_precis, Node *node)
Definition: datetime.c:4452
#define DAYS_PER_MONTH
Definition: timestamp.h:77
uintptr_t Datum
Definition: postgres.h:367
#define INTSTYLE_ISO_8601
Definition: miscadmin.h:237
Definition: pgtz.h:65
const int day_tab[2][13]
Definition: datetime.c:59
int work_mem
Definition: globals.c:121
#define DMONTH
Definition: datetime.h:55
static char * AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec)
Definition: datetime.c:449
#define DATEORDER_DMY
Definition: miscadmin.h:221
#define BoolGetDatum(X)
Definition: postgres.h:402
static void AdjustFractDays(double frac, struct pg_tm *tm, fsec_t *fsec, int scale)
Definition: datetime.c:474
static char * AddVerboseIntPart(char *cp, int value, const char *units, bool *is_zero, bool *is_before)
Definition: datetime.c:4161
#define WEEK
Definition: datetime.h:118
#define ISOTIME
Definition: datetime.h:116
#define DTK_TIME
Definition: datetime.h:146
static struct @143 value
int date2j(int y, int m, int d)
Definition: datetime.c:269
#define ereport(elevel,...)
Definition: elog.h:144
static int DecodeTime(char *str, int fmask, int range, int *tmask, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:2514
#define DTK_DOY
Definition: datetime.h:177
int allowedModes
Definition: execnodes.h:305
#define YESTERDAY
Definition: datetime.h:45
static void ClearPgTm(struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3027
void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
Definition: timestamp.c:1757
size_t strlcpy(char *dst, const char *src, size_t siz)
Definition: strlcpy.c:45
SetFunctionReturnMode returnMode
Definition: execnodes.h:307
char type
Definition: datetime.h:211
#define Assert(condition)
Definition: c.h:738
#define AMPM
Definition: datetime.h:100
pg_tzenum * pg_tzenumerate_start(void)
Definition: pgtz.c:399
#define DTIMEZONE
Definition: datetime.h:63
static int ISO8601IntegerWidth(char *fieldstart)
Definition: datetime.c:3450
MemoryContext multi_call_memory_ctx
Definition: funcapi.h:101
size_t Size
Definition: c.h:466
#define DTK_EARLY
Definition: datetime.h:151
#define MAXDATEFIELDS
Definition: datetime.h:203
#define DTK_STRING
Definition: datetime.h:143
static int list_length(const List *l)
Definition: pg_list.h:169
#define DTK_DAY
Definition: datetime.h:164
#define MAXALIGN(LEN)
Definition: c.h:691
static int DecodeNumber(int flen, char *field, bool haveTextMonth, int fmask, int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits)
Definition: datetime.c:2590
#define RESERV
Definition: datetime.h:91
#define DDAY
Definition: datetime.h:53
int DecodeSpecial(int field, char *lowtoken, int *val)
Definition: datetime.c:2995
#define HeapTupleGetDatum(tuple)
Definition: funcapi.h:220
MemoryContext ecxt_per_query_memory
Definition: execnodes.h:233
#define DTK_ALL_SECS_M
Definition: datetime.h:191
Tuplestorestate * setResult
Definition: execnodes.h:310
#define INTERVAL_MASK(b)
Definition: timestamp.h:45
#define DTZ
Definition: datetime.h:97
#define DTK_EPOCH
Definition: datetime.h:153
static TimeZoneAbbrevTable * zoneabbrevtbl
Definition: datetime.c:237
Datum pg_timezone_names(PG_FUNCTION_ARGS)
Definition: datetime.c:4744
static Datum values[MAXATTR]
Definition: bootstrap.c:167
Definition: zic.c:98
static char * AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros)
Definition: datetime.c:386
ExprContext * econtext
Definition: execnodes.h:303
pg_tz * pg_tzenumerate_next(pg_tzenum *dir)
Definition: pgtz.c:428
#define INTSTYLE_SQL_STANDARD
Definition: miscadmin.h:236
#define USE_XSD_DATES
Definition: miscadmin.h:217
void * user_fctx
Definition: funcapi.h:82
TupleDesc setDesc
Definition: execnodes.h:311
int tm_year
Definition: pgtime.h:32
void * palloc(Size size)
Definition: mcxt.c:949
static const datetkn * datecache[MAXDATEFIELDS]
Definition: datetime.c:241
int errmsg(const char *fmt,...)
Definition: elog.c:824
static const datetkn * abbrevcache[MAXDATEFIELDS]
Definition: datetime.c:245
static const int szdatetktbl
Definition: datetime.c:164
static int ParseISO8601Number(char *str, char **endptr, int *ipart, double *fpart)
Definition: datetime.c:3422
#define USE_GERMAN_DATES
Definition: miscadmin.h:216
#define DYNTZ
Definition: datetime.h:98
#define DTK_NOW
Definition: datetime.h:154
#define elog(elevel,...)
Definition: elog.h:214
int DecodeInterval(char **field, int *ftype, int nf, int range, int *dtype, struct pg_tm *tm, fsec_t *fsec)
Definition: datetime.c:3051
int i
#define TOKMAXLEN
Definition: datetime.h:205
#define CStringGetTextDatum(s)
Definition: builtins.h:87
#define DTK_M(t)
Definition: datetime.h:188
static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, int *offset, int *isdst)
Definition: datetime.c:1669
int tm_yday
Definition: pgtime.h:34
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define UNIX_EPOCH_JDATE
Definition: timestamp.h:162
#define POSTGRES_EPOCH_JDATE
Definition: timestamp.h:163
#define HOUR
Definition: datetime.h:101
bool pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
Definition: localtime.c:1849
#define DTK_ZULU
Definition: datetime.h:158
int tm_sec
Definition: pgtime.h:27
int ParseDateTime(const char *timestr, char *workbuf, size_t buflen, char **field, int *ftype, int maxfields, int *numfields)
Definition: datetime.c:537
#define DQUARTER
Definition: datetime.h:56
#define DTZMOD
Definition: datetime.h:123
#define DTERR_MD_FIELD_OVERFLOW
Definition: datetime.h:282
unsigned char pg_toupper(unsigned char ch)
Definition: pgstrcasecmp.c:105
#define DOY
Definition: datetime.h:106
#define EARLY
Definition: datetime.h:40
int tm_min
Definition: pgtime.h:28
int16 AttrNumber
Definition: attnum.h:21
int DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp)
Definition: datetime.c:1594
TimeZoneAbbrevTable * ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n)
Definition: datetime.c:4485
long val
Definition: informix.c:664
Datum now(PG_FUNCTION_ARGS)
Definition: timestamp.c:1538
Node * relabel_to_typmod(Node *expr, int32 typmod)
Definition: nodeFuncs.c:587
#define DDECADE
Definition: datetime.h:58
#define DTK_DATE
Definition: datetime.h:145
#define offsetof(type, field)
Definition: c.h:661
#define HR24
Definition: datetime.h:74
#define DTK_SPECIAL
Definition: datetime.h:150
#define MAX_TIME_PRECISION
Definition: date.h:51
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:317
unsigned char bool
Definition: c.h:317
#define MICROSECOND
Definition: datetime.h:105
int ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, struct pg_tm *tm)
Definition: datetime.c:2435
#define INTSTYLE_POSTGRES
Definition: miscadmin.h:234
#define DB_C
Definition: datetime.h:62
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:295
int tm2interval(struct pg_tm *tm, fsec_t fsec, Interval *span)
Definition: timestamp.c:1956