PostgreSQL Source Code git master
syncrep.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * syncrep.c
4 *
5 * Synchronous replication is new as of PostgreSQL 9.1.
6 *
7 * If requested, transaction commits wait until their commit LSN are
8 * acknowledged by the synchronous standbys.
9 *
10 * This module contains the code for waiting and release of backends.
11 * All code in this module executes on the primary. The core streaming
12 * replication transport remains within WALreceiver/WALsender modules.
13 *
14 * The essence of this design is that it isolates all logic about
15 * waiting/releasing onto the primary. The primary defines which standbys
16 * it wishes to wait for. The standbys are completely unaware of the
17 * durability requirements of transactions on the primary, reducing the
18 * complexity of the code and streamlining both standby operations and
19 * network bandwidth because there is no requirement to ship
20 * per-transaction state information.
21 *
22 * Replication is either synchronous or not synchronous (async). If it is
23 * async, we just fastpath out of here. If it is sync, then we wait for
24 * the write, flush or apply location on the standby before releasing
25 * the waiting backend. Further complexity in that interaction is
26 * expected in later releases.
27 *
28 * The best performing way to manage the waiting backends is to have a
29 * single ordered queue of waiting backends, so that we can avoid
30 * searching the through all waiters each time we receive a reply.
31 *
32 * In 9.5 or before only a single standby could be considered as
33 * synchronous. In 9.6 we support a priority-based multiple synchronous
34 * standbys. In 10.0 a quorum-based multiple synchronous standbys is also
35 * supported. The number of synchronous standbys that transactions
36 * must wait for replies from is specified in synchronous_standby_names.
37 * This parameter also specifies a list of standby names and the method
38 * (FIRST and ANY) to choose synchronous standbys from the listed ones.
39 *
40 * The method FIRST specifies a priority-based synchronous replication
41 * and makes transaction commits wait until their WAL records are
42 * replicated to the requested number of synchronous standbys chosen based
43 * on their priorities. The standbys whose names appear earlier in the list
44 * are given higher priority and will be considered as synchronous.
45 * Other standby servers appearing later in this list represent potential
46 * synchronous standbys. If any of the current synchronous standbys
47 * disconnects for whatever reason, it will be replaced immediately with
48 * the next-highest-priority standby.
49 *
50 * The method ANY specifies a quorum-based synchronous replication
51 * and makes transaction commits wait until their WAL records are
52 * replicated to at least the requested number of synchronous standbys
53 * in the list. All the standbys appearing in the list are considered as
54 * candidates for quorum synchronous standbys.
55 *
56 * If neither FIRST nor ANY is specified, FIRST is used as the method.
57 * This is for backward compatibility with 9.6 or before where only a
58 * priority-based sync replication was supported.
59 *
60 * Before the standbys chosen from synchronous_standby_names can
61 * become the synchronous standbys they must have caught up with
62 * the primary; that may take some time. Once caught up,
63 * the standbys which are considered as synchronous at that moment
64 * will release waiters from the queue.
65 *
66 * Portions Copyright (c) 2010-2025, PostgreSQL Global Development Group
67 *
68 * IDENTIFICATION
69 * src/backend/replication/syncrep.c
70 *
71 *-------------------------------------------------------------------------
72 */
73#include "postgres.h"
74
75#include <unistd.h>
76
77#include "access/xact.h"
78#include "common/int.h"
79#include "miscadmin.h"
80#include "pgstat.h"
81#include "replication/syncrep.h"
84#include "storage/proc.h"
85#include "tcop/tcopprot.h"
86#include "utils/guc_hooks.h"
87#include "utils/ps_status.h"
88
89/* User-settable parameters for sync rep */
91
92#define SyncStandbysDefined() \
93 (SyncRepStandbyNames != NULL && SyncRepStandbyNames[0] != '\0')
94
95static bool announce_next_takeover = true;
96
99
100static void SyncRepQueueInsert(int mode);
101static void SyncRepCancelWait(void);
102static int SyncRepWakeQueue(bool all, int mode);
103
104static bool SyncRepGetSyncRecPtr(XLogRecPtr *writePtr,
105 XLogRecPtr *flushPtr,
106 XLogRecPtr *applyPtr,
107 bool *am_sync);
108static void SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr,
109 XLogRecPtr *flushPtr,
110 XLogRecPtr *applyPtr,
111 SyncRepStandbyData *sync_standbys,
112 int num_standbys);
113static void SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr,
114 XLogRecPtr *flushPtr,
115 XLogRecPtr *applyPtr,
116 SyncRepStandbyData *sync_standbys,
117 int num_standbys,
118 uint8 nth);
119static int SyncRepGetStandbyPriority(void);
120static int standby_priority_comparator(const void *a, const void *b);
121static int cmp_lsn(const void *a, const void *b);
122
123#ifdef USE_ASSERT_CHECKING
124static bool SyncRepQueueIsOrderedByLSN(int mode);
125#endif
126
127/*
128 * ===========================================================
129 * Synchronous Replication functions for normal user backends
130 * ===========================================================
131 */
132
133/*
134 * Wait for synchronous replication, if requested by user.
135 *
136 * Initially backends start in state SYNC_REP_NOT_WAITING and then
137 * change that state to SYNC_REP_WAITING before adding ourselves
138 * to the wait queue. During SyncRepWakeQueue() a WALSender changes
139 * the state to SYNC_REP_WAIT_COMPLETE once replication is confirmed.
140 * This backend then resets its state to SYNC_REP_NOT_WAITING.
141 *
142 * 'lsn' represents the LSN to wait for. 'commit' indicates whether this LSN
143 * represents a commit record. If it doesn't, then we wait only for the WAL
144 * to be flushed if synchronous_commit is set to the higher level of
145 * remote_apply, because only commit records provide apply feedback.
146 */
147void
149{
150 int mode;
151
152 /*
153 * This should be called while holding interrupts during a transaction
154 * commit to prevent the follow-up shared memory queue cleanups to be
155 * influenced by external interruptions.
156 */
158
159 /*
160 * Fast exit if user has not requested sync replication, or there are no
161 * sync replication standby names defined.
162 *
163 * Since this routine gets called every commit time, it's important to
164 * exit quickly if sync replication is not requested.
165 *
166 * We check WalSndCtl->sync_standbys_status flag without the lock and exit
167 * immediately if SYNC_STANDBY_INIT is set (the checkpointer has
168 * initialized this data) but SYNC_STANDBY_DEFINED is missing (no sync
169 * replication requested).
170 *
171 * If SYNC_STANDBY_DEFINED is set, we need to check the status again later
172 * while holding the lock, to check the flag and operate the sync rep
173 * queue atomically. This is necessary to avoid the race condition
174 * described in SyncRepUpdateSyncStandbysDefined(). On the other hand, if
175 * SYNC_STANDBY_DEFINED is not set, the lock is not necessary because we
176 * don't touch the queue.
177 */
178 if (!SyncRepRequested() ||
179 ((((volatile WalSndCtlData *) WalSndCtl)->sync_standbys_status) &
181 return;
182
183 /* Cap the level for anything other than commit to remote flush only. */
184 if (commit)
186 else
188
190 Assert(WalSndCtl != NULL);
191
192 LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
194
195 /*
196 * We don't wait for sync rep if SYNC_STANDBY_DEFINED is not set. See
197 * SyncRepUpdateSyncStandbysDefined().
198 *
199 * Also check that the standby hasn't already replied. Unlikely race
200 * condition but we'll be fetching that cache line anyway so it's likely
201 * to be a low cost check.
202 *
203 * If the sync standby data has not been initialized yet
204 * (SYNC_STANDBY_INIT is not set), fall back to a check based on the LSN,
205 * then do a direct GUC check.
206 */
208 {
210 lsn <= WalSndCtl->lsn[mode])
211 {
212 LWLockRelease(SyncRepLock);
213 return;
214 }
215 }
216 else if (lsn <= WalSndCtl->lsn[mode])
217 {
218 /*
219 * The LSN is older than what we need to wait for. The sync standby
220 * data has not been initialized yet, but we are OK to not wait
221 * because we know that there is no point in doing so based on the
222 * LSN.
223 */
224 LWLockRelease(SyncRepLock);
225 return;
226 }
227 else if (!SyncStandbysDefined())
228 {
229 /*
230 * If we are here, the sync standby data has not been initialized yet,
231 * and the LSN is newer than what need to wait for, so we have fallen
232 * back to the best thing we could do in this case: a check on
233 * SyncStandbysDefined() to see if the GUC is set or not.
234 *
235 * When the GUC has a value, we wait until the checkpointer updates
236 * the status data because we cannot be sure yet if we should wait or
237 * not. Here, the GUC has *no* value, we are sure that there is no
238 * point to wait; this matters for example when initializing a
239 * cluster, where we should never wait, and no sync standbys is the
240 * default behavior.
241 */
242 LWLockRelease(SyncRepLock);
243 return;
244 }
245
246 /*
247 * Set our waitLSN so WALSender will know when to wake us, and add
248 * ourselves to the queue.
249 */
250 MyProc->waitLSN = lsn;
253 Assert(SyncRepQueueIsOrderedByLSN(mode));
254 LWLockRelease(SyncRepLock);
255
256 /* Alter ps display to show waiting for sync rep. */
258 {
259 char buffer[32];
260
261 sprintf(buffer, "waiting for %X/%08X", LSN_FORMAT_ARGS(lsn));
262 set_ps_display_suffix(buffer);
263 }
264
265 /*
266 * Wait for specified LSN to be confirmed.
267 *
268 * Each proc has its own wait latch, so we perform a normal latch
269 * check/wait loop here.
270 */
271 for (;;)
272 {
273 int rc;
274
275 /* Must reset the latch before testing state. */
277
278 /*
279 * Acquiring the lock is not needed, the latch ensures proper
280 * barriers. If it looks like we're done, we must really be done,
281 * because once walsender changes the state to SYNC_REP_WAIT_COMPLETE,
282 * it will never update it again, so we can't be seeing a stale value
283 * in that case.
284 */
286 break;
287
288 /*
289 * If a wait for synchronous replication is pending, we can neither
290 * acknowledge the commit nor raise ERROR or FATAL. The latter would
291 * lead the client to believe that the transaction aborted, which is
292 * not true: it's already committed locally. The former is no good
293 * either: the client has requested synchronous replication, and is
294 * entitled to assume that an acknowledged commit is also replicated,
295 * which might not be true. So in this case we issue a WARNING (which
296 * some clients may be able to interpret) and shut off further output.
297 * We do NOT reset ProcDiePending, so that the process will die after
298 * the commit is cleaned up.
299 */
300 if (ProcDiePending)
301 {
303 (errcode(ERRCODE_ADMIN_SHUTDOWN),
304 errmsg("canceling the wait for synchronous replication and terminating connection due to administrator command"),
305 errdetail("The transaction has already committed locally, but might not have been replicated to the standby.")));
308 break;
309 }
310
311 /*
312 * It's unclear what to do if a query cancel interrupt arrives. We
313 * can't actually abort at this point, but ignoring the interrupt
314 * altogether is not helpful, so we just terminate the wait with a
315 * suitable warning.
316 */
318 {
319 QueryCancelPending = false;
321 (errmsg("canceling wait for synchronous replication due to user request"),
322 errdetail("The transaction has already committed locally, but might not have been replicated to the standby.")));
324 break;
325 }
326
327 /*
328 * Wait on latch. Any condition that should wake us up will set the
329 * latch, so no need for timeout.
330 */
332 WAIT_EVENT_SYNC_REP);
333
334 /*
335 * If the postmaster dies, we'll probably never get an acknowledgment,
336 * because all the wal sender processes will exit. So just bail out.
337 */
338 if (rc & WL_POSTMASTER_DEATH)
339 {
340 ProcDiePending = true;
343 break;
344 }
345 }
346
347 /*
348 * WalSender has checked our LSN and has removed us from queue. Clean up
349 * state and leave. It's OK to reset these shared memory fields without
350 * holding SyncRepLock, because any walsenders will ignore us anyway when
351 * we're not on the queue. We need a read barrier to make sure we see the
352 * changes to the queue link (this might be unnecessary without
353 * assertions, but better safe than sorry).
354 */
358 MyProc->waitLSN = 0;
359
360 /* reset ps display to remove the suffix */
363}
364
365/*
366 * Insert MyProc into the specified SyncRepQueue, maintaining sorted invariant.
367 *
368 * Usually we will go at tail of queue, though it's possible that we arrive
369 * here out of order, so start at tail and work back to insertion point.
370 */
371static void
373{
374 dlist_head *queue;
375 dlist_iter iter;
376
378 queue = &WalSndCtl->SyncRepQueue[mode];
379
380 dlist_reverse_foreach(iter, queue)
381 {
382 PGPROC *proc = dlist_container(PGPROC, syncRepLinks, iter.cur);
383
384 /*
385 * Stop at the queue element that we should insert after to ensure the
386 * queue is ordered by LSN.
387 */
388 if (proc->waitLSN < MyProc->waitLSN)
389 {
391 return;
392 }
393 }
394
395 /*
396 * If we get here, the list was either empty, or this process needs to be
397 * at the head.
398 */
400}
401
402/*
403 * Acquire SyncRepLock and cancel any wait currently in progress.
404 */
405static void
407{
408 LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
412 LWLockRelease(SyncRepLock);
413}
414
415void
417{
418 /*
419 * First check if we are removed from the queue without the lock to not
420 * slow down backend exit.
421 */
423 {
424 LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
425
426 /* maybe we have just been removed, so recheck */
429
430 LWLockRelease(SyncRepLock);
431 }
432}
433
434/*
435 * ===========================================================
436 * Synchronous Replication functions for wal sender processes
437 * ===========================================================
438 */
439
440/*
441 * Take any action required to initialise sync rep state from config
442 * data. Called at WALSender startup and after each SIGHUP.
443 */
444void
446{
447 int priority;
448
449 /*
450 * Determine if we are a potential sync standby and remember the result
451 * for handling replies from standby.
452 */
453 priority = SyncRepGetStandbyPriority();
454 if (MyWalSnd->sync_standby_priority != priority)
455 {
459
461 (errmsg_internal("standby \"%s\" now has synchronous standby priority %d",
462 application_name, priority)));
463 }
464}
465
466/*
467 * Update the LSNs on each queue based upon our latest state. This
468 * implements a simple policy of first-valid-sync-standby-releases-waiter.
469 *
470 * Other policies are possible, which would change what we do here and
471 * perhaps also which information we store as well.
472 */
473void
475{
476 volatile WalSndCtlData *walsndctl = WalSndCtl;
477 XLogRecPtr writePtr;
478 XLogRecPtr flushPtr;
479 XLogRecPtr applyPtr;
480 bool got_recptr;
481 bool am_sync;
482 int numwrite = 0;
483 int numflush = 0;
484 int numapply = 0;
485
486 /*
487 * If this WALSender is serving a standby that is not on the list of
488 * potential sync standbys then we have nothing to do. If we are still
489 * starting up, still running base backup or the current flush position is
490 * still invalid, then leave quickly also. Streaming or stopping WAL
491 * senders are allowed to release waiters.
492 */
497 {
499 return;
500 }
501
502 /*
503 * We're a potential sync standby. Release waiters if there are enough
504 * sync standbys and we are considered as sync.
505 */
506 LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
507
508 /*
509 * Check whether we are a sync standby or not, and calculate the synced
510 * positions among all sync standbys. (Note: although this step does not
511 * of itself require holding SyncRepLock, it seems like a good idea to do
512 * it after acquiring the lock. This ensures that the WAL pointers we use
513 * to release waiters are newer than any previous execution of this
514 * routine used.)
515 */
516 got_recptr = SyncRepGetSyncRecPtr(&writePtr, &flushPtr, &applyPtr, &am_sync);
517
518 /*
519 * If we are managing a sync standby, though we weren't prior to this,
520 * then announce we are now a sync standby.
521 */
522 if (announce_next_takeover && am_sync)
523 {
525
527 ereport(LOG,
528 (errmsg("standby \"%s\" is now a synchronous standby with priority %d",
530 else
531 ereport(LOG,
532 (errmsg("standby \"%s\" is now a candidate for quorum synchronous standby",
534 }
535
536 /*
537 * If the number of sync standbys is less than requested or we aren't
538 * managing a sync standby then just leave.
539 */
540 if (!got_recptr || !am_sync)
541 {
542 LWLockRelease(SyncRepLock);
543 announce_next_takeover = !am_sync;
544 return;
545 }
546
547 /*
548 * Set the lsn first so that when we wake backends they will release up to
549 * this location.
550 */
551 if (walsndctl->lsn[SYNC_REP_WAIT_WRITE] < writePtr)
552 {
553 walsndctl->lsn[SYNC_REP_WAIT_WRITE] = writePtr;
554 numwrite = SyncRepWakeQueue(false, SYNC_REP_WAIT_WRITE);
555 }
556 if (walsndctl->lsn[SYNC_REP_WAIT_FLUSH] < flushPtr)
557 {
558 walsndctl->lsn[SYNC_REP_WAIT_FLUSH] = flushPtr;
559 numflush = SyncRepWakeQueue(false, SYNC_REP_WAIT_FLUSH);
560 }
561 if (walsndctl->lsn[SYNC_REP_WAIT_APPLY] < applyPtr)
562 {
563 walsndctl->lsn[SYNC_REP_WAIT_APPLY] = applyPtr;
564 numapply = SyncRepWakeQueue(false, SYNC_REP_WAIT_APPLY);
565 }
566
567 LWLockRelease(SyncRepLock);
568
569 elog(DEBUG3, "released %d procs up to write %X/%08X, %d procs up to flush %X/%08X, %d procs up to apply %X/%08X",
570 numwrite, LSN_FORMAT_ARGS(writePtr),
571 numflush, LSN_FORMAT_ARGS(flushPtr),
572 numapply, LSN_FORMAT_ARGS(applyPtr));
573}
574
575/*
576 * Calculate the synced Write, Flush and Apply positions among sync standbys.
577 *
578 * Return false if the number of sync standbys is less than
579 * synchronous_standby_names specifies. Otherwise return true and
580 * store the positions into *writePtr, *flushPtr and *applyPtr.
581 *
582 * On return, *am_sync is set to true if this walsender is connecting to
583 * sync standby. Otherwise it's set to false.
584 */
585static bool
587 XLogRecPtr *applyPtr, bool *am_sync)
588{
589 SyncRepStandbyData *sync_standbys;
590 int num_standbys;
591 int i;
592
593 /* Initialize default results */
594 *writePtr = InvalidXLogRecPtr;
595 *flushPtr = InvalidXLogRecPtr;
596 *applyPtr = InvalidXLogRecPtr;
597 *am_sync = false;
598
599 /* Quick out if not even configured to be synchronous */
600 if (SyncRepConfig == NULL)
601 return false;
602
603 /* Get standbys that are considered as synchronous at this moment */
604 num_standbys = SyncRepGetCandidateStandbys(&sync_standbys);
605
606 /* Am I among the candidate sync standbys? */
607 for (i = 0; i < num_standbys; i++)
608 {
609 if (sync_standbys[i].is_me)
610 {
611 *am_sync = true;
612 break;
613 }
614 }
615
616 /*
617 * Nothing more to do if we are not managing a sync standby or there are
618 * not enough synchronous standbys.
619 */
620 if (!(*am_sync) ||
621 num_standbys < SyncRepConfig->num_sync)
622 {
623 pfree(sync_standbys);
624 return false;
625 }
626
627 /*
628 * In a priority-based sync replication, the synced positions are the
629 * oldest ones among sync standbys. In a quorum-based, they are the Nth
630 * latest ones.
631 *
632 * SyncRepGetNthLatestSyncRecPtr() also can calculate the oldest
633 * positions. But we use SyncRepGetOldestSyncRecPtr() for that calculation
634 * because it's a bit more efficient.
635 *
636 * XXX If the numbers of current and requested sync standbys are the same,
637 * we can use SyncRepGetOldestSyncRecPtr() to calculate the synced
638 * positions even in a quorum-based sync replication.
639 */
641 {
642 SyncRepGetOldestSyncRecPtr(writePtr, flushPtr, applyPtr,
643 sync_standbys, num_standbys);
644 }
645 else
646 {
647 SyncRepGetNthLatestSyncRecPtr(writePtr, flushPtr, applyPtr,
648 sync_standbys, num_standbys,
650 }
651
652 pfree(sync_standbys);
653 return true;
654}
655
656/*
657 * Calculate the oldest Write, Flush and Apply positions among sync standbys.
658 */
659static void
661 XLogRecPtr *flushPtr,
662 XLogRecPtr *applyPtr,
663 SyncRepStandbyData *sync_standbys,
664 int num_standbys)
665{
666 int i;
667
668 /*
669 * Scan through all sync standbys and calculate the oldest Write, Flush
670 * and Apply positions. We assume *writePtr et al were initialized to
671 * InvalidXLogRecPtr.
672 */
673 for (i = 0; i < num_standbys; i++)
674 {
675 XLogRecPtr write = sync_standbys[i].write;
676 XLogRecPtr flush = sync_standbys[i].flush;
677 XLogRecPtr apply = sync_standbys[i].apply;
678
679 if (!XLogRecPtrIsValid(*writePtr) || *writePtr > write)
680 *writePtr = write;
681 if (!XLogRecPtrIsValid(*flushPtr) || *flushPtr > flush)
682 *flushPtr = flush;
683 if (!XLogRecPtrIsValid(*applyPtr) || *applyPtr > apply)
684 *applyPtr = apply;
685 }
686}
687
688/*
689 * Calculate the Nth latest Write, Flush and Apply positions among sync
690 * standbys.
691 */
692static void
694 XLogRecPtr *flushPtr,
695 XLogRecPtr *applyPtr,
696 SyncRepStandbyData *sync_standbys,
697 int num_standbys,
698 uint8 nth)
699{
700 XLogRecPtr *write_array;
701 XLogRecPtr *flush_array;
702 XLogRecPtr *apply_array;
703 int i;
704
705 /* Should have enough candidates, or somebody messed up */
706 Assert(nth > 0 && nth <= num_standbys);
707
708 write_array = palloc_array(XLogRecPtr, num_standbys);
709 flush_array = palloc_array(XLogRecPtr, num_standbys);
710 apply_array = palloc_array(XLogRecPtr, num_standbys);
711
712 for (i = 0; i < num_standbys; i++)
713 {
714 write_array[i] = sync_standbys[i].write;
715 flush_array[i] = sync_standbys[i].flush;
716 apply_array[i] = sync_standbys[i].apply;
717 }
718
719 /* Sort each array in descending order */
720 qsort(write_array, num_standbys, sizeof(XLogRecPtr), cmp_lsn);
721 qsort(flush_array, num_standbys, sizeof(XLogRecPtr), cmp_lsn);
722 qsort(apply_array, num_standbys, sizeof(XLogRecPtr), cmp_lsn);
723
724 /* Get Nth latest Write, Flush, Apply positions */
725 *writePtr = write_array[nth - 1];
726 *flushPtr = flush_array[nth - 1];
727 *applyPtr = apply_array[nth - 1];
728
729 pfree(write_array);
730 pfree(flush_array);
731 pfree(apply_array);
732}
733
734/*
735 * Compare lsn in order to sort array in descending order.
736 */
737static int
738cmp_lsn(const void *a, const void *b)
739{
740 XLogRecPtr lsn1 = *((const XLogRecPtr *) a);
741 XLogRecPtr lsn2 = *((const XLogRecPtr *) b);
742
743 return pg_cmp_u64(lsn2, lsn1);
744}
745
746/*
747 * Return data about walsenders that are candidates to be sync standbys.
748 *
749 * *standbys is set to a palloc'd array of structs of per-walsender data,
750 * and the number of valid entries (candidate sync senders) is returned.
751 * (This might be more or fewer than num_sync; caller must check.)
752 */
753int
755{
756 int i;
757 int n;
758
759 /* Create result array */
761
762 /* Quick exit if sync replication is not requested */
763 if (SyncRepConfig == NULL)
764 return 0;
765
766 /* Collect raw data from shared memory */
767 n = 0;
768 for (i = 0; i < max_wal_senders; i++)
769 {
770 volatile WalSnd *walsnd; /* Use volatile pointer to prevent code
771 * rearrangement */
772 SyncRepStandbyData *stby;
773 WalSndState state; /* not included in SyncRepStandbyData */
774
775 walsnd = &WalSndCtl->walsnds[i];
776 stby = *standbys + n;
777
778 SpinLockAcquire(&walsnd->mutex);
779 stby->pid = walsnd->pid;
780 state = walsnd->state;
781 stby->write = walsnd->write;
782 stby->flush = walsnd->flush;
783 stby->apply = walsnd->apply;
785 SpinLockRelease(&walsnd->mutex);
786
787 /* Must be active */
788 if (stby->pid == 0)
789 continue;
790
791 /* Must be streaming or stopping */
794 continue;
795
796 /* Must be synchronous */
797 if (stby->sync_standby_priority == 0)
798 continue;
799
800 /* Must have a valid flush position */
801 if (!XLogRecPtrIsValid(stby->flush))
802 continue;
803
804 /* OK, it's a candidate */
805 stby->walsnd_index = i;
806 stby->is_me = (walsnd == MyWalSnd);
807 n++;
808 }
809
810 /*
811 * In quorum mode, we return all the candidates. In priority mode, if we
812 * have too many candidates then return only the num_sync ones of highest
813 * priority.
814 */
817 {
818 /* Sort by priority ... */
819 qsort(*standbys, n, sizeof(SyncRepStandbyData),
821 /* ... then report just the first num_sync ones */
823 }
824
825 return n;
826}
827
828/*
829 * qsort comparator to sort SyncRepStandbyData entries by priority
830 */
831static int
832standby_priority_comparator(const void *a, const void *b)
833{
834 const SyncRepStandbyData *sa = (const SyncRepStandbyData *) a;
835 const SyncRepStandbyData *sb = (const SyncRepStandbyData *) b;
836
837 /* First, sort by increasing priority value */
838 if (sa->sync_standby_priority != sb->sync_standby_priority)
839 return sa->sync_standby_priority - sb->sync_standby_priority;
840
841 /*
842 * We might have equal priority values; arbitrarily break ties by position
843 * in the WalSnd array. (This is utterly bogus, since that is arrival
844 * order dependent, but there are regression tests that rely on it.)
845 */
846 return sa->walsnd_index - sb->walsnd_index;
847}
848
849
850/*
851 * Check if we are in the list of sync standbys, and if so, determine
852 * priority sequence. Return priority if set, or zero to indicate that
853 * we are not a potential sync standby.
854 *
855 * Compare the parameter SyncRepStandbyNames against the application_name
856 * for this WALSender, or allow any name if we find a wildcard "*".
857 */
858static int
860{
861 const char *standby_name;
862 int priority;
863 bool found = false;
864
865 /*
866 * Since synchronous cascade replication is not allowed, we always set the
867 * priority of cascading walsender to zero.
868 */
870 return 0;
871
872 if (!SyncStandbysDefined() || SyncRepConfig == NULL)
873 return 0;
874
875 standby_name = SyncRepConfig->member_names;
876 for (priority = 1; priority <= SyncRepConfig->nmembers; priority++)
877 {
878 if (pg_strcasecmp(standby_name, application_name) == 0 ||
879 strcmp(standby_name, "*") == 0)
880 {
881 found = true;
882 break;
883 }
884 standby_name += strlen(standby_name) + 1;
885 }
886
887 if (!found)
888 return 0;
889
890 /*
891 * In quorum-based sync replication, all the standbys in the list have the
892 * same priority, one.
893 */
894 return (SyncRepConfig->syncrep_method == SYNC_REP_PRIORITY) ? priority : 1;
895}
896
897/*
898 * Walk the specified queue from head. Set the state of any backends that
899 * need to be woken, remove them from the queue, and then wake them.
900 * Pass all = true to wake whole queue; otherwise, just wake up to
901 * the walsender's LSN.
902 *
903 * The caller must hold SyncRepLock in exclusive mode.
904 */
905static int
906SyncRepWakeQueue(bool all, int mode)
907{
908 volatile WalSndCtlData *walsndctl = WalSndCtl;
909 int numprocs = 0;
911
914 Assert(SyncRepQueueIsOrderedByLSN(mode));
915
917 {
918 PGPROC *proc = dlist_container(PGPROC, syncRepLinks, iter.cur);
919
920 /*
921 * Assume the queue is ordered by LSN
922 */
923 if (!all && walsndctl->lsn[mode] < proc->waitLSN)
924 return numprocs;
925
926 /*
927 * Remove from queue.
928 */
930
931 /*
932 * SyncRepWaitForLSN() reads syncRepState without holding the lock, so
933 * make sure that it sees the queue link being removed before the
934 * syncRepState change.
935 */
937
938 /*
939 * Set state to complete; see SyncRepWaitForLSN() for discussion of
940 * the various states.
941 */
943
944 /*
945 * Wake only when we have set state and removed from queue.
946 */
947 SetLatch(&(proc->procLatch));
948
949 numprocs++;
950 }
951
952 return numprocs;
953}
954
955/*
956 * The checkpointer calls this as needed to update the shared
957 * sync_standbys_status flag, so that backends don't remain permanently wedged
958 * if synchronous_standby_names is unset. It's safe to check the current value
959 * without the lock, because it's only ever updated by one process. But we
960 * must take the lock to change it.
961 */
962void
964{
965 bool sync_standbys_defined = SyncStandbysDefined();
966
967 if (sync_standbys_defined !=
969 {
970 LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
971
972 /*
973 * If synchronous_standby_names has been reset to empty, it's futile
974 * for backends to continue waiting. Since the user no longer wants
975 * synchronous replication, we'd better wake them up.
976 */
977 if (!sync_standbys_defined)
978 {
979 int i;
980
981 for (i = 0; i < NUM_SYNC_REP_WAIT_MODE; i++)
982 SyncRepWakeQueue(true, i);
983 }
984
985 /*
986 * Only allow people to join the queue when there are synchronous
987 * standbys defined. Without this interlock, there's a race
988 * condition: we might wake up all the current waiters; then, some
989 * backend that hasn't yet reloaded its config might go to sleep on
990 * the queue (and never wake up). This prevents that.
991 */
993 (sync_standbys_defined ? SYNC_STANDBY_DEFINED : 0);
994
995 LWLockRelease(SyncRepLock);
996 }
998 {
999 LWLockAcquire(SyncRepLock, LW_EXCLUSIVE);
1000
1001 /*
1002 * Note that there is no need to wake up the queues here. We would
1003 * reach this path only if SyncStandbysDefined() returns false, or it
1004 * would mean that some backends are waiting with the GUC set. See
1005 * SyncRepWaitForLSN().
1006 */
1008
1009 /*
1010 * Even if there is no sync standby defined, let the readers of this
1011 * information know that the sync standby data has been initialized.
1012 * This can just be done once, hence the previous check on
1013 * SYNC_STANDBY_INIT to avoid useless work.
1014 */
1016
1017 LWLockRelease(SyncRepLock);
1018 }
1019}
1020
1021#ifdef USE_ASSERT_CHECKING
1022static bool
1023SyncRepQueueIsOrderedByLSN(int mode)
1024{
1025 XLogRecPtr lastLSN;
1026 dlist_iter iter;
1027
1029
1030 lastLSN = 0;
1031
1033 {
1034 PGPROC *proc = dlist_container(PGPROC, syncRepLinks, iter.cur);
1035
1036 /*
1037 * Check the queue is ordered by LSN and that multiple procs don't
1038 * have matching LSNs
1039 */
1040 if (proc->waitLSN <= lastLSN)
1041 return false;
1042
1043 lastLSN = proc->waitLSN;
1044 }
1045
1046 return true;
1047}
1048#endif
1049
1050/*
1051 * ===========================================================
1052 * Synchronous Replication functions executed by any process
1053 * ===========================================================
1054 */
1055
1056bool
1058{
1059 if (*newval != NULL && (*newval)[0] != '\0')
1060 {
1061 yyscan_t scanner;
1062 int parse_rc;
1063 SyncRepConfigData *pconf;
1064
1065 /* Result of parsing is returned in one of these two variables */
1066 SyncRepConfigData *syncrep_parse_result = NULL;
1067 char *syncrep_parse_error_msg = NULL;
1068
1069 /* Parse the synchronous_standby_names string */
1070 syncrep_scanner_init(*newval, &scanner);
1071 parse_rc = syncrep_yyparse(&syncrep_parse_result, &syncrep_parse_error_msg, scanner);
1072 syncrep_scanner_finish(scanner);
1073
1074 if (parse_rc != 0 || syncrep_parse_result == NULL)
1075 {
1076 GUC_check_errcode(ERRCODE_SYNTAX_ERROR);
1077 if (syncrep_parse_error_msg)
1078 GUC_check_errdetail("%s", syncrep_parse_error_msg);
1079 else
1080 GUC_check_errdetail("\"%s\" parser failed.",
1081 "synchronous_standby_names");
1082 return false;
1083 }
1084
1085 if (syncrep_parse_result->num_sync <= 0)
1086 {
1087 GUC_check_errmsg("number of synchronous standbys (%d) must be greater than zero",
1088 syncrep_parse_result->num_sync);
1089 return false;
1090 }
1091
1092 /* GUC extra value must be guc_malloc'd, not palloc'd */
1093 pconf = (SyncRepConfigData *)
1094 guc_malloc(LOG, syncrep_parse_result->config_size);
1095 if (pconf == NULL)
1096 return false;
1097 memcpy(pconf, syncrep_parse_result, syncrep_parse_result->config_size);
1098
1099 *extra = pconf;
1100
1101 /*
1102 * We need not explicitly clean up syncrep_parse_result. It, and any
1103 * other cruft generated during parsing, will be freed when the
1104 * current memory context is deleted. (This code is generally run in
1105 * a short-lived context used for config file processing, so that will
1106 * not be very long.)
1107 */
1108 }
1109 else
1110 *extra = NULL;
1111
1112 return true;
1113}
1114
1115void
1117{
1118 SyncRepConfig = (SyncRepConfigData *) extra;
1119}
1120
1121void
1123{
1124 switch (newval)
1125 {
1128 break;
1131 break;
1134 break;
1135 default:
1137 break;
1138 }
1139}
#define pg_read_barrier()
Definition: atomics.h:154
#define pg_write_barrier()
Definition: atomics.h:155
#define Min(x, y)
Definition: c.h:1016
uint8_t uint8
Definition: c.h:550
void * yyscan_t
Definition: cubedata.h:65
@ DestNone
Definition: dest.h:87
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define LOG
Definition: elog.h:31
#define DEBUG3
Definition: elog.h:28
#define WARNING
Definition: elog.h:36
#define DEBUG1
Definition: elog.h:30
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
#define palloc_array(type, count)
Definition: fe_memutils.h:76
volatile uint32 InterruptHoldoffCount
Definition: globals.c:43
volatile sig_atomic_t QueryCancelPending
Definition: globals.c:33
struct Latch * MyLatch
Definition: globals.c:63
volatile sig_atomic_t ProcDiePending
Definition: globals.c:34
void GUC_check_errcode(int sqlerrcode)
Definition: guc.c:6628
void * guc_malloc(int elevel, size_t size)
Definition: guc.c:636
#define newval
#define GUC_check_errmsg
Definition: guc.h:501
#define GUC_check_errdetail
Definition: guc.h:505
GucSource
Definition: guc.h:112
char * application_name
Definition: guc_tables.c:561
Assert(PointerIsAligned(start, uint64))
static void dlist_insert_after(dlist_node *after, dlist_node *node)
Definition: ilist.h:381
#define dlist_foreach(iter, lhead)
Definition: ilist.h:623
static void dlist_delete_thoroughly(dlist_node *node)
Definition: ilist.h:416
static bool dlist_node_is_detached(const dlist_node *node)
Definition: ilist.h:525
#define dlist_reverse_foreach(iter, lhead)
Definition: ilist.h:654
static void dlist_push_head(dlist_head *head, dlist_node *node)
Definition: ilist.h:347
#define dlist_foreach_modify(iter, lhead)
Definition: ilist.h:640
#define dlist_container(type, membername, ptr)
Definition: ilist.h:593
static int pg_cmp_u64(uint64 a, uint64 b)
Definition: int.h:731
#define write(a, b, c)
Definition: win32.h:14
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
void SetLatch(Latch *latch)
Definition: latch.c:290
void ResetLatch(Latch *latch)
Definition: latch.c:374
int WaitLatch(Latch *latch, int wakeEvents, long timeout, uint32 wait_event_info)
Definition: latch.c:172
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2021
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
@ LW_EXCLUSIVE
Definition: lwlock.h:112
void pfree(void *pointer)
Definition: mcxt.c:1594
static PgChecksumMode mode
Definition: pg_checksums.c:56
static rewind_source * source
Definition: pg_rewind.c:89
int pg_strcasecmp(const char *s1, const char *s2)
Definition: pgstrcasecmp.c:32
#define sprintf
Definition: port.h:262
#define qsort(a, b, c, d)
Definition: port.h:499
CommandDest whereToSendOutput
Definition: postgres.c:92
void set_ps_display_remove_suffix(void)
Definition: ps_status.c:439
void set_ps_display_suffix(const char *suffix)
Definition: ps_status.c:387
bool update_process_title
Definition: ps_status.c:31
#define SpinLockRelease(lock)
Definition: spin.h:61
#define SpinLockAcquire(lock)
Definition: spin.h:59
PGPROC * MyProc
Definition: proc.c:67
Definition: proc.h:179
XLogRecPtr waitLSN
Definition: proc.h:269
dlist_node syncRepLinks
Definition: proc.h:271
int syncRepState
Definition: proc.h:270
Latch procLatch
Definition: proc.h:186
uint8 syncrep_method
Definition: syncrep.h:68
char member_names[FLEXIBLE_ARRAY_MEMBER]
Definition: syncrep.h:71
int sync_standby_priority
Definition: syncrep.h:49
XLogRecPtr apply
Definition: syncrep.h:48
XLogRecPtr write
Definition: syncrep.h:46
XLogRecPtr flush
Definition: syncrep.h:47
XLogRecPtr lsn[NUM_SYNC_REP_WAIT_MODE]
WalSnd walsnds[FLEXIBLE_ARRAY_MEMBER]
dlist_head SyncRepQueue[NUM_SYNC_REP_WAIT_MODE]
slock_t mutex
XLogRecPtr flush
WalSndState state
XLogRecPtr write
int sync_standby_priority
XLogRecPtr apply
dlist_node * cur
Definition: ilist.h:179
dlist_node * cur
Definition: ilist.h:200
Definition: regguts.h:323
static int SyncRepWaitMode
Definition: syncrep.c:98
void SyncRepInitConfig(void)
Definition: syncrep.c:445
void SyncRepWaitForLSN(XLogRecPtr lsn, bool commit)
Definition: syncrep.c:148
static bool SyncRepGetSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr, XLogRecPtr *applyPtr, bool *am_sync)
Definition: syncrep.c:586
static void SyncRepGetNthLatestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr, XLogRecPtr *applyPtr, SyncRepStandbyData *sync_standbys, int num_standbys, uint8 nth)
Definition: syncrep.c:693
void assign_synchronous_commit(int newval, void *extra)
Definition: syncrep.c:1122
void assign_synchronous_standby_names(const char *newval, void *extra)
Definition: syncrep.c:1116
static int standby_priority_comparator(const void *a, const void *b)
Definition: syncrep.c:832
static int SyncRepWakeQueue(bool all, int mode)
Definition: syncrep.c:906
SyncRepConfigData * SyncRepConfig
Definition: syncrep.c:97
int SyncRepGetCandidateStandbys(SyncRepStandbyData **standbys)
Definition: syncrep.c:754
void SyncRepReleaseWaiters(void)
Definition: syncrep.c:474
void SyncRepUpdateSyncStandbysDefined(void)
Definition: syncrep.c:963
static bool announce_next_takeover
Definition: syncrep.c:95
static int SyncRepGetStandbyPriority(void)
Definition: syncrep.c:859
char * SyncRepStandbyNames
Definition: syncrep.c:90
static void SyncRepQueueInsert(int mode)
Definition: syncrep.c:372
static void SyncRepCancelWait(void)
Definition: syncrep.c:406
bool check_synchronous_standby_names(char **newval, void **extra, GucSource source)
Definition: syncrep.c:1057
static void SyncRepGetOldestSyncRecPtr(XLogRecPtr *writePtr, XLogRecPtr *flushPtr, XLogRecPtr *applyPtr, SyncRepStandbyData *sync_standbys, int num_standbys)
Definition: syncrep.c:660
void SyncRepCleanupAtProcExit(void)
Definition: syncrep.c:416
static int cmp_lsn(const void *a, const void *b)
Definition: syncrep.c:738
#define SyncStandbysDefined()
Definition: syncrep.c:92
#define SYNC_REP_PRIORITY
Definition: syncrep.h:35
#define NUM_SYNC_REP_WAIT_MODE
Definition: syncrep.h:27
#define SyncRepRequested()
Definition: syncrep.h:18
#define SYNC_REP_NO_WAIT
Definition: syncrep.h:22
#define SYNC_REP_WAIT_WRITE
Definition: syncrep.h:23
#define SYNC_REP_WAITING
Definition: syncrep.h:31
#define SYNC_REP_WAIT_COMPLETE
Definition: syncrep.h:32
#define SYNC_REP_WAIT_FLUSH
Definition: syncrep.h:24
#define SYNC_REP_NOT_WAITING
Definition: syncrep.h:30
int syncrep_yyparse(SyncRepConfigData **syncrep_parse_result_p, char **syncrep_parse_error_msg_p, yyscan_t yyscanner)
#define SYNC_REP_WAIT_APPLY
Definition: syncrep.h:25
void syncrep_scanner_finish(yyscan_t yyscanner)
void syncrep_scanner_init(const char *str, yyscan_t *yyscannerp)
#define WL_LATCH_SET
Definition: waiteventset.h:34
#define WL_POSTMASTER_DEATH
Definition: waiteventset.h:38
WalSnd * MyWalSnd
Definition: walsender.c:120
int max_wal_senders
Definition: walsender.c:129
bool am_cascading_walsender
Definition: walsender.c:124
WalSndCtlData * WalSndCtl
Definition: walsender.c:117
#define SYNC_STANDBY_DEFINED
WalSndState
@ WALSNDSTATE_STREAMING
@ WALSNDSTATE_STOPPING
#define SYNC_STANDBY_INIT
@ SYNCHRONOUS_COMMIT_REMOTE_WRITE
Definition: xact.h:73
@ SYNCHRONOUS_COMMIT_REMOTE_APPLY
Definition: xact.h:76
@ SYNCHRONOUS_COMMIT_REMOTE_FLUSH
Definition: xact.h:75
#define XLogRecPtrIsValid(r)
Definition: xlogdefs.h:29
#define LSN_FORMAT_ARGS(lsn)
Definition: xlogdefs.h:47
uint64 XLogRecPtr
Definition: xlogdefs.h:21
#define InvalidXLogRecPtr
Definition: xlogdefs.h:28